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Preface

This book is intended to provide a reasonably self-contained account of a
major portion of the general theory of rings and modules suitable as a text
for introductory and more advanced graduate courses. We assume the famil-
iarity with rings usually acquired in standard undergraduate algebra courses.
Our general approach is categorical rather than arithmetical. The continuing
theme of the text is the study of the relationship between the one-sided
ideal structure that a ring may possess and the behavior of its categories of
modules.

Following a brief outline of set-theoretic and categorical foundations, the
text begins with the basic definitions and properties of rings, modules and
homomorphisms and ranges through comprehensive treatments of direct
sums, finiteness conditions, the Wedderburn-Artin Theorem, the Jacobson
radical, the hom and tensor functions, Morita equivalence and duality, de-
composition theory of injective and projective modules, and semiperfect and
perfect rings. In this second edition we have included a chapter containing
many of the classical results on artinian rings that have helped to form the
foundation for much of the contemporary research on the representation
theory of artinian rings and finite dimensional algebras. Both to illustrate the
text and to extend it we have included a substantial number of exercises
covering a wide spectrum of difficulty. There are, of course, many important
areas of ring and module theory that the text does not touch upon. For
example, we have made no attempt to cover such subjects as homology, rings
of quotients, or commutative ring theory.

This book has evolved from our lectures and research over the past
several years. We are deeply indebted to many of our students and colleagues
for their ideas and encouragement during its preparation. We extend our
sincere thanks to them and to the several people who have helped with the
preparation of the manuscripts for the first two editions, and/or pointed out
errors in the first.

Finally, we apologize to the many authors whose works we have used but
not specifically cited. Virtually all of the results in this book have appeared in
some form elsewhere in the literature, and they can be found either in the
books and articles that are listed in our bibliography, or in those listed in the
collective bibliographies of our citations.

Eugene, OR Frank W. Anderson
Iowa City, IA Kent R. Fuller

January 1992
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Preliminaries 1
§0. Preliminaries

In this section is assembled a summary of various bits of notation, termin-
ology, and background information. Of course, we reserve the right to use
variations in our notation and terminology that we believe to be self-
explanatory without the need of any further comment.

A word about categories. We shall deal only with very special concrete
categories and our use of categorical algebra will be really just terminological
—at a very elementary level. Here we provide the basic terminology that we
shall use and a bit more. We emphasize though that our actual use of it will
develop gradually and, we hope, naturally. There is, therefore, no need to try
to master it at the beginning.

0.1. Functions. Usually, but not always, we will write functions “on the
left”. That is, if fis a function from A4 to B, and if a € 4, we write f(a) for the
value of f at a. Notation like f: A — B denotes a function from A4 to B. The
elementwise action of a function f: 4 — B is described by

famfl@) (aeA).
Thus, if A’ S A, the restriction (f | A') of f to A’ is defined by
(fl4):a’— fla)  (a'eA).
Given f:A — B, A’ = A, and B' < B, we write
f(A)={f@|acd} and [=(B)={acA|f(@eB}.

For the composite or product of two functions f: 4 - Band g:B — C we write
g < f, or when no ambiguity is threatened, just gf; thus, g o f: 4 — C is defined
by gof:a+> g(f(a)) for all ae A. The resulting operation on functions is
associative wherever it is defined. The identity function from A to itself is
denoted by 1,. The set of all functions from A4 to B is denoted by B4 or by
Map(A, B).:

B* = Map(A,B) = {f| f:A— B}.
So A* is a monoid (= semigroup with identity) under the operation of
composition.
A diagram of sets and functions commutes or is commutative in case travel

'flround it is independent of path. For example, the first diagram commutes
iff f = hg. If the second is commutative,

AC

j

ICN

m—

AL B A
al h 1
C D

then in particular, travel from A to E is independent of path, whence
jaf = ih.
A function f: A — B is injective (surjective) or is an injection (surjeciion)

E

i
-
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in case it has a left (right) inversef': B — A; thatis,incasef’f = 1, (ff' = 1)
for some f':B — A. So (see (0.2)) f: 4 — B is injective (surjective) iff it is
one-to-one (onto B). A function f: A — B is bijective or a bijection in case
it is both injective and surjective; that is, iff there exists a (necessarily unique)
inverse f "':B—> Awithff "' = lgand f " = 1,.

If A < B, then the function i = i, 5:A4 — Bdefined by i = (13| A):ar>a
for all ae A is called the inclusion map of A in B. Note that if A < B and
Ac Candif B+# C, theni g # i .c. Of course 1, = i c,.

With every pair (0, 1) there is a Kronecker delta; that is, a function
d:(a, By 8,4 on the class of all ordered pairs defined by

s U ffa=p
“®700  ifa#p

Whenever we use a Kronecker delta, the context will make clear our choice
of the pair (0, 1).

0.2. The Axiom of Choice. Let A be a set, let ¥ be a collection of non-
empty subsets of B, and let ¢ be a function from A4 to &. Then the Axiom of
Choice states that there is a function g: 4 — B such that

g(a) € a(a) (ae A).

Suppose now that f: B — A is onto A4; that is, f(B) = A. Then for each a€ A4,
there is a non-empty subset a(a) = f “({a}) & B. Applying the Axiom of
Choice to A, the function ¢:a+ a(a), and the collection & of subsets of B
produces a right inverse g for f, so as claimed in (0.1), f is surjective.

Let ~ be an equivalence relation on a set A. A subset R of A is a (complete)
irredundant set of representatives of the relation ~ in case for each ae 4
there is a unique o(a)e R such that a ~ g(a). The Axiom of Choice
guarantees the existence of such a set of representatives for each equivalence
relation.

0.3. Cartesian Products. A function 6: 4 — X will sometimes be called
an indexed set (in X indexed by A) or an A-tuple (in X) and will be written as

o= (xa )aEA

where x, = a(a). If 4 = {1,...,n}, then we also use the standard variation
(X2)ees = (x4, ..., X,). Let (X, ). 4 be an indexed set of non-empty subsets of a
set X. Then the (cartesian) product of (X, ),c 4 15

XX, ={0:4-> X|o(@)eX, (xed)}

That is, X, X, is just the set of all A-tuples (x,),.4 Such that x, € X, (x € A).
By the Axiom of Choice X, X, is non-empty. If 4 = {1,...,n}, then we
allow the notational variation

X X, =X, x...xX,.

Note that if X = X, (x € A), then the cartesian product X , X, is simply X*,
the set of all functions from A to X. For each ae A the a-projection
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n,.: X X, = X, is defined via
n,: 0+ a(a) (ceX X))

In A-tuple notation, 7,((xs)sc4) = X,. An easy application of the Axiom of
Choice shows that each =, is surjective. Observe that if ¢ and ¢’ are in this
cartesian product, then ¢ = ¢’ iff 7,0 = 7,0’ for all « € A. This fact establishes
the uniqueness assertion in the following result. This result, whose easy
proof we omit, is used in making certain definitions coordinatewise.

0.4. Let (X,), 4 be an indexed set of non-empty sets, let Y be a set, and for
each a€ A, let f,:Y — X,. Then there is a unique f:Y — X, X, such that
w.S = f, for each a € A.

0.5. Posets and Lattices. A relation < on a set P is a partial order on P
in case it is reflexive (a < a), transitive (a < band b < ¢ = a < ¢), and anti-
symmetric (a < band b < a=>a = b). A pair (P, <) consisting of a set and a
partial order on the set is called a partially ordered set or a poset. If the partial
order is a total order (a < b or b < a for every pair g, b), then the poset is a
chain. If (P, <) is a poset and if P’ < P, then (P’, <') is a subposet in case <’
is the restriction of < to P’; of course, this requires that (P, <’) be a poset.
Henceforth, we will usually identify a poset (P, <) with its underlying set P.

Let P be a poset and let 4 < P. An element e€ A is a greatest (least)
element of A in case a < e (e < a) for all ae A. Not every subset of a poset
has a greatest or a least element, but clearly if one does exist, it is unique.
(See Example (2) below.) An element b€ P is an upper bound (lower bound)
for A in case a < b (b < a) for all ae A. So a greatest (least) element, if it
exists, is an upper (lower) bound for A. If the set of upper bounds of A has a
least element, it is called the least upper bound (lub), join, or supremum (sup)
of A4; if the set of lower bounds has a greatest element, it is called the greatest
lower bound (glb), meet, or infimum (inf) of A. A lattice (complete lattice) is a
poset P in which every pair (every subset) of P has both a least upper bound
and a greatest lower bound in P.

Examples. (1) Let X be a set. The power set of X is the set (X) of all
subsets of X. Then 2(X) is certainly a poset under the partial order of set
inclusion. This poset is a complete lattice for if o/ is a subset of #(X), then its
join in 2(X) is its union u.ef and its meet in 2(X) is its intersection N.o/.

(2) Let X be a set and let #(X) be the set of all finite subsets of X. Then
Z(X) is a poset under set inclusion, and it is a lattice for if A, Be #(X), then
AU Band 4 n B are their join and meet. Since these are also join and meet
of A, B in2(X), it follows that #(X) is a sublattice of (X ). But note that if
X is infinite, #(X) is not complete.

(3) Let X be the closed unit interval on the real line. Then the set #(X)
of all closed intervals in X is certainly a subposet of 2(X). Also the inter-
section (= meet in2(X)) of any subset of #(X) is again in #(X). The convex
closure of the union of any subset & of #(X) is in #(X) and is clearly the
Join of &/ in #(X). So #(X)is a complete lattice. But #(X)is not a sublattice
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of #(X) precisely because the join in #(X) of some pairs of elements of #(X)
is not their join (= union) in £(X).

(4) Let X be a two-dimensional real vector space and let (X)) be the
set of all subspaces. Then &#(X) is a subposet of (X), and the intersection
of any subset of &#(X) is again in #(X). The join in #(X) of any subset .&/
of #(X) is the subspace spanned by the union U (not necessarily U.%/
itself). So #(X) is a complete lattice but it is not a sublattice of 2(X).

Let P be a lattice. Then each pair a, b € P has both a join and a meet in P,
let us denote these by a v band a A b, respectively. Then the maps v and A
from P x P to P defined by

(a,b)r—savb and (a,b)—sanb

are binary operations on P. It is easy to see that both (P, v) and (P, A) are
commutative semigroups with

ava=a=aAa (aeP).

The lattice is said to be modular in case it satisfies the modularity condition:
Forall a,b,ceP

a>bimpliesa A (bv c)=bv(ano).

Most lattices we encounter will be modular (but note (3) above). The lattice
is distributive in case it satisfies the stronger property: For all a, b,c € P

anbvcey=(@nb) viano).

Examples (1) and (2) above are distributive, but (4) is not.

0.6. A partially ordered set P is a complete lattice if P has a join (i.e, P
contains a greatest element) and every non-empty subset of P has a meet in P.

Proof. 1t will suffice to prove that if B < P, then B has a join in P. Let
e € P be the greatest element of P. Then e > x for all x € P. In particular, the
set of upper bounds of B is non-empty, so it has a meet. Clearly this meet
of the upper bounds of B is an upper bound of B and hence the join of B. [

0.7. Lattice Homomorphisms. Let P and P’ be posets. A mapf:P — P’ is
order preservz’ng (order reversing) in case whenever a < b in P, then
f@<fd) (f(b) <f(@)in P. If P and P’ are lattices, then f is a lattice
homomorphism (lattice antihomomorphism) in case whenever a,be P,

flavb)=fla v fb) (flav b)=fla)nASb)
flanb)=f@rfb) (flanb)=/@v D))

It is easy to see (using a < b<>a = a A b) that a lattice-homomorphism is
order preserving. The converse, however, is false (try the inclusion map
F(X) - P(X) in example (3) of (0.5)). A bijective lattice (anti-) homomor-
phism is a lattice (anti-)isomorphism. It is a simple exercise to prove the
following useful test:
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0.8. Let P and P be lattices, and let f:P — P’ be bijective with inverse
f~Y:P' — P. Thenfis a lattice isomorphism if and only if both f and f ~* are
order preserving.

0.9. The Maximal Principle. Let P be a poset. An element meP is
maximal (minimal) in P in case xe P and x > m (x < m) implies x = m.
Clearly, a greatest (least) element in P, if it exists, is maximal (minimal) in P;
on the other hand, a poset may have many maximal (minimal) elements and
no greatest (least) element.

A poset P is inductive in case every subchain of P has an upper bound in
P; that is, for every subset C of P that is totally ordered by the partial
ordering of P, there is an element of P greater than or equal to every
element of C. The Maximal Principle (frequently called Zorn's Lemma) is
an equivalent form of the Axiom of Choice (see Stoll [63] for the details). It
states:

Every non-empty inductive poset has at least one maximal element.

0.10. Cardinal Numbers. Two sets 4 and B are cardinally equivalent or
have the same cardinal in case there is a bijection from A to B (and hence one
from B to A). Since this clearly defines an equivalence relation, the class of all
sets (see (0.11)) can be partitioned into its classes of cardinally equivalent
sets. These classes are the cardinal numbers. The class of a set 4 is denoted by
card A:

card A = {B|there is a bijection A — B}.

Given two sets 4 and B we write
card A < card B

in case there is an injection from A4 to B (or, equivalently, a surjection from
B to A). Clearly this is independent of the representatives 4 and B. Given
sets A and B there is always an injection from one to the other. The
Cantor-Schroder—-Bernstein Theorem states that

If card A <card B and card B <card A, then card A = card B.

Thus the relation < is a total order on the class of cardinal numbers.

Let N = {1, 2,...} be the natural numbers. Its cardinality is often denoted
by cardN =N,. A set A is finite if card A < cardN. Of course,
card ({1,...,n}) = nand card & = 0. If card A < card N, then A is countable.
If card A > card N, then A is infinite.

The operations of cardinal arithmetic are given by

card A + card B = card((A x {1}) U (B x {2}))
card A - card B = card(A x B)
(card A)=r® = cqrd(A®)

If A and B are finite sets these operations agree with ordinary addition,
multiplication and exponentiation. Moreover, they satisfy:
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(1) If A is infinite then, card A + card B = max{card A, card B}.
(2) If A is infinite and B # &, then

card A - card B = max{card A, card B}.
(3) For all sets A, B, and C,
((card A)(card B))(card C) — (card A)(card B) - (card C)_

(4) If card B > 2, then (card B)“*** > card A.
It is easy to establish the existence of a bijection between the power set 2(A)
and the set of functions from A4 to {1, 2}. Thus card(@(4)) = 2" > card A.
However, the set of finite subsets of any infinite set A has the same cardinality
as A. For further details see Stoll [63].

0.11. Categories. The term “class”, like that of “set”, will be undefined.
Every set is a class, and there is a class containing all sets. Note that if 4 is a
set and ¥ is a class, then an indexed class (A¢)c. ¢ in #(A) has a union and an
intersection in A. Let € be a class for each pair 4, Be %, let morc(A4, B) be a
set; write the elements of morc(A, B) as “arrows” f: 4 — B for which A4 is
called the domain and B the codomain. Finally, suppose that for each triple
A, B, C € € there is a function

o:morc(B, C) x mor.(A4, B) = mor.(4, C).
We denote the arrow assigned to a pair
g:B-C f:A-B

by the arrow gf: 4 — C. The system C = (%, mor, ») consisting of the class
%, the map mor¢:(A, B)— morc(A, B), and the rule - is a category in case:
(C.1) For every triple h:C - D,g:B - C,f:A — B,

ho(gof) = (hog)of.

(C.2) For each A€ ¥, there is a unique 1, e mor.(A, A) such that if
f:A—> Bandg:C — A, then

foly=f and l,og=g

If Cis a category, then the elements of the class € are called the objects of the
category, the “arrows” f: 4 — B are called the morphisms, the partial map o is
called the composition, and the morphisms 1, are called the identities of the
category. A morphism f: 4 — B in C is called an isomorphism in case there
is a (necessarily unique) morphism f “!:B — 4 in C such that f "'of = 1,
and fof ! = 1.

For our purpose the most interesting categories are certain “concrete”
categories. Let C = (¥, mor¢, °) be a category. Then C is concrete in case
there is a function u from % to the class of sets such that for each 4, Be ¢

morc(A4, B) S Map(u(A), u(B)),

1= lu(A)’
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and such that o is the usual composition of functions. Here an isomorphism
f:A — Bisa bijection f:u(A4) — u(B).

Examples. (1) Let & be the class of all sets; for each 4, Be %, let
mors(A, B) = Map(A, B), and for each A,B,Ce¥, let o:mori(B,C) x
mors(A, B) - morg(A, C) be the composition of functions. Then § =
(&, mors, ) is a concrete category where u(4) = A for each A€ &. Call S the
category of sets.

(2) Let ¢ be the class of all groups, let morg (G, H) be the set of all group
homomorphisms from G to H, and again let o be the usual composition of
functions. Then G = (%, morg, o) is a concrete category, the category of
groups, where u(G) is the underlying set of G.

(3) The category of V real vector spaces is the category (¥, mor,, o) where
¥ is the class of real vector spaces, mor,(U, V) is the set of linear trans-
formations from U to V¥, and o is the usual composition. This category is
concrete where u(V) is the underlying set of V.

(4) Let 2 be the class of all posets, mor,(P, Q) the set of all monotone
maps (order preserving and order reversing ones), and o the usual com-
position. Then (2, mor,, °) is not a category, for o is not as required—the
composite of two monotone functions need not be monotone.

If C = (¥, mor, °) is a concrete category, then the set u(A) is called the
underlying set of A€ €.

A category D = (2, mory, °) is a subcategory of C = (%, morc, ) pro-
vided 2 < €, mory(A, B) = mor (A, B) for each pair 4, Be 9, - in D is the
restriction of o in C. If in addition mory(A4, B) = mor.(A, B) for each
A,Be 2, then D is a full subcategory of C.

It is clear that the class of abelian groups is the class of objects of a full
subcategory of the category of groups, and that this category has a full sub-
category whose objects are the finite abelian groups. It is a common practice
in algebra to identify an object in a category with its underlying set. Thus
for example, we usually identify a group (G, o), consisting of a set G and an
operation o, with its underlying set G. Note, however, that the category of
groups is not a subcategory of the category of sets, quite simply because for
groups (G, °), (H,°)in 4

morg((G, <), (H,°)) € Map(G, H)
and
morg((G,°), (H,°)) & Map((G, °),(H, °)).

0.12. Functors. A functor is a thing that can be viewed as a “homo-
morphism of categories”. Let C = (¥, morc,~) and D= (2, map,, °) be two
categories. A pair of functions F = (F', F") is a covariant functor from C
to D in case F' is a function from € to 2, F” is a function from the
morphisms of C to those of D such that for all 4,B,Ce% and allf:4 - B
andg:B— Cin C,

(F.1) F"(f):F'(A) » F'(B)in D;
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(F.2) F'(gof) = F'(g)o F'(f);

(F.3) F'(1,) = gy _ N
Thus, a covariant functor sends objects to objects, maps to maps, identities
to identities, and “preserves commuting triangles”:

A—L>B F4)—L  F(B)
NS
F'(C)

A contravariant functor is a pair F = (F', F") satisfying instead of (F.1) and
(F.2) their duals

(F.1)* F'(f):F'(B)— F'(A) in D;

(F2)* F'(g=f) = F'(f) F'(g);

(F.3) F'(1,) = 1pay
So a contravariant functor is “arrow reversing”.

Examples. (1) Given a category C = (%, mor., o), there is the identity
Sunctor 1. = (1¢, 1) from C to C defined by 1.(4) = 4 and 1(f) = f.

(2) Let C = (%, morc,°) be a concrete category. For each A€ ¥, let
F'(A) = u(A) be the underlying set of 4. For each morphism f of C, let
F"(f) = f. Then clearly F = (F', F") is a covariant functor from C to the
category of sets. It is called a forgetful functor (because it “forgets” all the
“structure” on the objects of C). It should be evident there are “partially
forgetful functors” of various kinds—for example, the covariant functor from
the category of real vector spaces to the category of abelian groups that
“forgets” the scalar multiplication.

(3) Let (G, +) be an abelian group. If A is a set, then (G4, +) is an
abelian group where for 6,7€G*, the sum o+ t1e€G* is defined by
(6 + 1):a> o(a) + t(a). (Note that (G4, +) is simply the cartesian product
of A copies of G with coordinatewise addition.) Define F'(4) = (G4, +). If
A, B are sets, and if f: A — B, then define F”(f):G?® — G4 by '

F'(f)@)=0-f (c€G”).

Then F"(f) is a group homomorphism, and F = (F’, F") is a contravariant
functor from the category of non-empty sets to the category of abelian
groups. All kinds of contravariant functors can be built in this way. For
example, if (G, +,) were a real vector space, then' G* can be made into a
vector space with coordinatewise operations, and a contravariant functor
into the real vector spaces results.

Given a functor F = (F', F”), then rather than bother with all the primes,
we shall usually write F(4) and F(f) instead of F'(A) and F"(f). The
relatively minor formal objection is that a morphism f of the category may
also be an object of the category whence F'(f) and F”(f) may both make
sense yet be different.

0.13. Natural Transformations. A natural transformation is a thing that
compares two functors between the same categories. Let C and D be categor-
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ies. Let F and G be functors from C to D, say both covariant. Let
7 = (.4).4ec be an indexed class of morphisms in D indexed by € such that
foreach A €%,

14 € mory (F(A), G(A)).

Then #n is a natural transformation from F to G in case for each pair,
A,Be ¥, and each fe mor.(A, B) the diagram

F(4) 22 F(B)

Na n»
G(4) =22, G(B)

commutes; that is 75 ° F(f) = G(f)e° n,. If each 5, is an isomorphism, then
is called a natural isomorphism. (If both F and G were contravariant, the only
change would be to reverse the arrows F(f) and G(f).) The crucial property
of functors is that “they preserve commuting triangles”; then a natural
transformation n achieves a “translation of commuting triangles”

n

F(A) ——————— G(A)

le \\G(‘n
’ s

F(gf) /F(B) G(gf)— G(B)
Flg) Glg)

F(O)— ", G(C)

In fact notice that any commutative diagram A in C when operated on
elementwise by F and G produces a pair of commutative diagrams F(A) and
G(A) in D (because F and G are functors). Then a natural transformation n
from F to G “translates” commutatively F(A) onto G(A). Because of the
technical clumsiness in defining many interesting functors at this stage, we
shall postpone giving examples until such time as we have an abundance
of functors (see §20).

Some Special Notation
0o=1{0,1,2, b the non negative integers;
{1,2, ...}, the positive integers;
{peN|pis prime};
the set of integers;

- ={0,1,...,n—1};

Q = the set of rational numbers;
R = the set of real numbers;

C = the set of complex numbers;
& = the empty set.

N
N
P
z
Z



Chapter 1

Rings, Modules and Homomorphisms

The subject of our study is ring theory. In this chapter we introduce the
fundamental tools of this study. Section 1 reviews the basic facts about rings,
subrings, ideals, and ring homomorphisms. It also introduces some of the
notation and the examples that will be needed later.

Rings admit a valuable and natural representation theory, analogous to
the permutation representation theory for groups. As we shall see, each ring
admits a vast horde of representations as an endomorphism ring of an
abelian group. Each of these representations is called a module. A substantial
amount of information about a ring can be learned from a study of the
class of modules it admits. Modules actually serve as a generalization of both
vector spaces and abelian groups, and their basic behavior is quite similar
to that of the more special systems. In Sections 2 and 3 we introduce modules
and their homomorphisms. In Section 4 we see that these form various
natural and important categories, and we begin our study of categories of
modules.

§1. Review of Rings and their Homomorphisms

Rings and Subrings

By a ring we shall always mean an associative ring with identity. Formally,
then, a ring is a system (R, +,-,0, 1) consisting of a set R, two binary
operations, addition (+) and multiplication (-), and two elements 0 # 1 of R
such that (R, +, 0) is an abelian group, (R, -, 1) is a monoid (i.e., a semigroup
with identity 1) and multiplication is both left and right distributive over
addition. A ring whose multiplicative structure is commutative is called a
commutative ring. We assume that the reader is versed in the elementary
arithmetic of rings and we shall therefore use that arithmetic without further
mention. We shall also invoke the time-honored convention of identifying a
ring with its underlying set whenever there is no real risk of confusion. Of
course, when we are dealing with more than one ring we may modify our
notation to eliminate ambiguity. Thus, for example, if R and S are two rings,
we may distinguish their identities by such self-explanatory notation as
lg and 1.

Often in practice, particularly in some areas of analysis, one encounters
“rings without identity”. Nevertheless the severity of our requirement of an
identity is more imaginary than real. Indeed a ring without identity can be

10
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embedded naturally in a ring with identity (see Exercise (1.1)). Thus our
requirement involves no substantive restrictions, but it does allow consider-
able streamlining of the theory.

In this section and its exercises we treat very briefly several of the more
basic concepts and examples that serve as tools for our study of rings.

Let R be a ring. Then an element a € R is said to be:

(1) cancellable on the left (or left cancellable) in case for all x, y e R

ax = ay implies X =y;

(2) a left zero divisor in case there is an element b # 0in R with ab = 0;
(3) invertible on the left (or left invertible) in case there is an element
a € R, called a left inverse for a, such that a'a = 1.
The meanings of the right and two-sided (= left and right) versions, such as
right cancellable and cancellable, should be clear. (See Exercises for some of
the arithmetic properties of these special elements.)

These arithmetical concepts provide the means for an important classifi-
cation of rings. A ring R is an integral domain in case each of its non-zero
elements is cancellable (or equivalently, it has no non-zero divisors of zero).
Note that integral domains need not be commutative. A division ring is a ring
each of whose non-zero elements is invertible (see Exercise (1.2)); thus a
division ring is an integral domain. A commutative division ring is a field.

We reserve the term “subring” for what is sometimes called a “unital
subring”. Thus, if R and S are rings, we say that S is a subring of R and that R
is an overring of S, and write S < R in case additively S is a subgroup of R
and multiplicatively S is a submonoid of R; so in particular, for S to be a
subring of R, it must contain the identity 1 of R.

Observe that every subring of an integral domain is again an integral
domain, but that an overring of an integral domain need not be one. For
example, the ring of all continuous functions from R to R is not an integral
domain, but the constant functions form a subring that is a field. Also
observe that the ring of integers Z (an integral domain) has a matural
embedding as a subring of the rational numbers Q (a field). In general, every
commutative integral domain has a natural overfield, called its field of
fractions (or quotient field), which is constructed in the same way that Q is
constructed from Z.

Ring Homomorphisms

Consistent with our requirement of identities for rings we shall require that
ring homomorphisms preserve these identities. Thus, if R and S are rings, a
function ¢:R — S is a (ring) homomorphism in case ¢ is simultaneously an
additive group homomorphism and a multiplicative monoid homomor-
phism. That is, the function ¢ is a ring homomorphism if and only if for all
a,beR

d(a+ b) = ¢la) + ¢(b); ¢(ab) = d(a)p(b); ¢(1g) = .
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The composition of two ring homomorphisms (where defined as a function)
is again a ring homomorphism and the identity map 15:R — R is a ring
homomorphism. (The ambiguity of the notation 1, is, in practice, not at all
disturbing. In fact, if we think of the elements of R as “multiplications”
R — R, then the ambiguity vanishes.) Thus, the collection of rings and ring
homomorphisms with the usual composition is a concrete category (0.11).

A ring homomorphism ¢ :R — S that is bijective (as a function) is called
a (ring) isomorphism. If ¢ is such an isomorphism, then as a function from R
to S it has an inverse; i.e., there exists a (necessarily unique) function y:S — R
such that

yop=1g and Poy =l
Indeed this y must be a ring isomorphism; for first if s, s € S, then
D(Y(ss')) = L5(ss') = 58" = Ls(s)Is(s")
= ¢(Y(5))pWY(s') = d(Y(sh(s),

and so, since ¢ is injective Y(ss') = Y(s)y(s’). Similarly, one checks that
is an additive homomorphism and that it preserves 1. Thus,

1.1. Proposition. Let R and S be rings and let ¢ : R — S be a ring homomor-
phism. Then ¢ is an isomorphism if and only if there exist functions , ¢’ :S - R
such that

Vo =14 and oy =1
Moreover, if the latter condition holds, then y = /' is a ring isomoprhism. []
If R and S are rings, then we say they are isomorphic, and we write
R=~S§,

in case there is a (ring) isomorphism ¢:R — S. Since the identity map on a
ring is clearly an isomorphism from the ring to itself, we have as an easy
application of (1.1) that the relation of “being isomorphic” satisfies the usual
equivalence properties.

Of course, the behavior of the subrings of one ring is virtually the same as
that of the subrings of any isomorphic ring. For ring homomorphisms we
have the following easily proved resuit:

1.2. Proposition. Let R and S be rings and let ¢: R — S be a ring homomor-
phism. Then for each subring R’ of R, its image ¢(R') under ¢ is a subring of S and

(| R):R - $(R)

is a surjective ring homomorphism. On the other hand, for each subring S’ of S,
its preimage ¢ (S’) is a subring of R, and

d(07(S) <§" a

Ideals and Factor Rings

Like structure preserving maps in general, ring homomorphisms are effec-
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tively determined by congruence relations. For rings these are characterized
by ideals. Specifically, a subset I of a ring R is a (two-sided) ideal of R in case it
is an additive subgroup such that for all xe I and all a, be R

axbel.

Note that the two subsets {0} and R are both ideals of R; these are called the
trivial ideals of R. Any ideal of R other than R itself is called a proper ideal. The
ideal {0}, which we frequently denote simply by O, is called the zero ideal.
Observe that if ae R, then a = a*1-1, so it is immediate that an ideal I is all
of R if and only if 1 € I. Moreover, if a € R is left invertible, say a'a = 1, then
1 = dal, so R is the only ideal that contains a left invertible (or a right
invertible) element.

The ring R is simple in case 0 and R are the only ideals of R. Thus, every
division ring is a simple ring. On the other hand, every commutative simple
ring is a field, but in general, simple rings need not be division rings and
division rings need not be commutative. (See Exercises (1.6), (1.7).) Using
just these few elementary concepts we have already identified and compared
(modulo a few exercises) several very important classes of rings. There is one
further fact about these concepts that it not so easy. Not every division ring
is a field, but Wedderburn proved in 1905 that every finite division ring is a.
field. From this remarkable result it follows (see Exercise (1.2)) that every
finite integral domain is a field. We shall not include a proof since it is
arithmetic and would lead us too far astray. (See Jacobson [64].)

The collection of all ideals of a ring R is a complete lattice partially
ordered by set inclusion. The proof of this will follow trivially from (2.5); see
also (1.9) and (2.13). In any event this lattice we shall call the ideal lattice of R.

Given a ring homomorphism ¢:R — S, the image Im ¢ and the kernel
Ker ¢ of ¢ are defined by

Im¢ = {¢p(x)|xeR}  Ker¢ = {xeR|¢(x)=0}.

Then by (1.2) Im ¢ is a subring of S, and Ker ¢ is easily seen to be a proper
ideal of R. The kernel characterizes the equivalence relation induced on R by
¢ via

¢(a) = ¢(b) if a—beKerg.
Thus, every ring homomorphism gives rise to a proper ideal, its kernel,

which describes the classes of the homomorphism. Before we proceed, there
is one (now trivial) fact that we should record:

1.3. Proposition. Let R and S be rings and let ¢ : R — S be a ring homomor-
phism. Then

(1) ¢ isonto Sifand only if Im¢ = S;

(2) ¢ is an injection if and only if Ker ¢ = 0. d

Now we can prove a fundamental result, one that is a ring theoretic
version of part of The Factor Theorem. (See (3.6).)

1.4. Theorem Let R, S, and S’ be rings, let $:R — S and ¢':R — §' be ring
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homomorphisms with ¢’ surjective, and let K = Ker¢ and K' = Ker ¢'.
If K' € K, then there is a unique ring homomorphism :S' — S such that
Yo ¢’ = ¢. Moreover, Y is injective if and only if K = K.

Proof. Assume that K' < K, and let x', y’ € §'. Since ¢’ is surjective, there
exist x, y € R such that ¢’(x) = x’ and ¢'(y) = y'. Now if x' = y/, then

Px—y=¢x-¢N=x-y =0
whence x — ye K’ < K, and so ¢(x) = ¢(y). In other words, there is a

function y: S’ — S such that y(¢’(x)) = ¢(x) for all x € R. It is easy to check
that y is a homomorphism. For example, with x, x', y, and y’ as above

Y(x' + ) = Y(@'(x) + ¢'(y) = y¢'(x + )
= ¢(x +y) = ¢(x) + &)
= Y(¢'(x) + (@' () = ¥(x) + ¥(y).

That ¢ is unique with o ¢’ = ¢ follows from the fact that Im¢’ = §'.
Finally, ¢ is injective if and only if Ker y = 0(1.3), but clearly Kery = ¢'(K),
and ¢'(K) =0ifand only if K = K. ]

Suppose next that I is a proper ideal of a ring R. Then I determines a both
additive and multiplicative congruence relation on R defined by

a = b(modI) in case a—bel
The congruence class of any element a € R is its coset
a+I={a+x|xel}
and the factor set R/I of these cosets of I is a ring with operations
@+h+b+D=(@+b+1, (a+ Db+ 1I)=(ab) + 1,
and having additive and multiplicative identities
0+1 and 1+ 1,

respectively. We call the ring R/I the factor ring (of R) modulo I. Moreover,
the natural map
n:R-> R/l via n;:a—a+1 (aeR)

is a surjective ring homomorphism with Kern, = I. With this terminology

we now have what is perhaps the single most important application of
Theorem (1.4).

1.5. Corollary.Let R and S be rings and let ¢:R — S be a surjective ring
homomorphism with kernel
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K = Ker ¢.
Then there is a unique isomorphism y : R/K — S with ) o ngy = ¢.

R—2 5§

A
//
i\ Y4

R/K

Another immediate consequence of (1.3) and (1.4) is that a ring R is simple
if and only if every ring homomorphism ¢:R — § is injective. We shall
postpone further review of the ideal structure of a ring until we have
developed enough additional information to ‘treat it as a part of module
theory.

Some Special Rings

We conclude this section with several odds and ends of examples, notation,
and special constructions that we shall need subsequently.

1.6 The notation Z, Q, R, and C for the sets of integers, rational
numbers, real numbers, and complex numbers will also be used to denote
these sets with their usual ring structures. Of course, as rings they are all
commutative integral domains, and Q, R, and C are fields. As an abelian
group Z is cyclic, so every subgroup is cyclic. Thus every ideal of the ring Z
is principal (see (2.13)); i.e., is of the form Zn = {an|a € Z} for some unique
n > 0. For each n > 1 and each a € Z, denote by [a], the least positive re-
mainder of a divided by n; that is, [a], is the unique element of

Z,=1{0,1,...,n—1}

in the coset a + Zn. Now Z, is a ring under the usual operations of residues
modulo n, and it is easy to check that r,:a+ [a], is also a surjective ring
homomorphism Z — Z, with kernel Zn. So (1.5), Z, = Z/Zn as rings.

1.7. Polynomial Rings. We shall relegate the definitions and general
treatment of polynomial rings to the exercises. (See Exercises (1.16)-(1.18).)
Here we wish to point out that if R is a ring, then we write

R[Xi,..., X,]

for the ring of all polynomials over R in the commuting indeterminants
Xy,..., X,. Note that R is not a subring of R[ X}, ..., X, ] but that it is isomor-
phic, under the obvious map, to the subring of “constant polynomials”. Thus
we shall feel free to identify R with its natural image in R[X|,..., X, ]. Note
also that as a notational consequence of this identification

R[X,][X,]...[X,] = R[X,, X,, ..., X.].

1.8. Products and Function Rings. Let (R,),., be a non-empty indexed
set of rings, and let
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R = XARﬂ

be the cartesian product of this indexed set of sets. Then the ring structures
on the factors R, induce a ring structure, defined “coordinatewise” on the
product R. That is, with respect to the operations

(r+ 8)(a) = r@) + s(a), (rs)(a) = r(w)s(@) (e A),

for all r, se R, R is a ring with additive and multiplicative identities 0 and 1
defined by

Oa)=0, and @) =1, (x€A).
Using the “A-tuple” notation (0.3), the operations are given by

(ra)aeA + (su)aeA = (ru + sa)ueA’ (ra)zEA(su)aeA = (rasu)ueA

and the identities by

(Oa)aeA and (la)aeA'

The resulting ring R is called the (cartesian) product of the rings (R,),c 4, and
is denoted

R =T,R,.

Let R be the product of the rings (R,),..- Then the canonical projections
n,:R— R, (xe A) are surjective ring homomorphisms. The canonical
injections t,:R, — R (x € A) defined coordinatewise (see (0.4)) by

Tgta = 6¢ﬂlka (BeA)

preserve both operations and are injections, but if A has at least two
elements, then the ¢, are not ring homomorphisms.

A special case of a product ring is a function ring. That is, if 4 is a non-
empty set and if R is a ring, then the set

RY*={f|f:A—> R}
of all functions from A4 to R becomes a ring with “pointwise” operations
(f+9)(@) = f(@ + gl@), (/@) = f(@g(x)
and with identities the “constant functions”
O(a) = 0, 1(a) =1

for all a € A. Now define a function A — {R} by a+> R, = R. Thus (R,),c4
is an indexed class of “A4 copies of R”. Then it is easy to check that R* is
precisely the same as the product of (R,),. 4. Therefore we shall denote this
ring by

RA=TI,R

1.9. Let R be a ring and let A = R. Then the set & of all subrings of R
that contain A4 is not empty for R € &/. Moreover, it is easy to check that the
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intersection ()& is a subring of R; it is called the subring of R generated by A.
Thus, the subring of R generated by A is the unique smallest subring of R
that contains 4. Different subsets of R may generate the same subring. Indeed
in any ring &, {0}, and {1} all generate the same subring of R. This subring
can be characterized as the image of the unique ring homomorphism
¥:Z — R and so is isomorphic to some factor ring of Z. (See Exercise (1.11).)

1.10. The Center of a Ring. Let R be a ring. Then its center is
CenR = {reR|rx = xr (xeR)}.

It is easy to check that Cen R is a subring of R. Of course, Cen R is commuta-
tive and R is commutative if and only if R is equal to its center. But it is not
true in general that CenR is a maximal commutative subring. We may say
that an element r € R is central in case r € Cen R. Note that if A = CenR,
then the subring of R generated by A is also in the center of R.

1.11. Algebras.Let R be a ring, K a commutative ring, and ¢: K — CenR
a ring homomorphism. The resulting system (R, K, ¢) is called a K-algebra.
In practice we tend to suppress the ¢ and we speak of R as a K-algebra or as
an algebra over K. Thus by (1.5) R is a K-algebra (with respect to some ¢)
if and only if there is an ideal I of K with K/I isomorphic to a subring of
Cen R. Therefore, since (see Exercise (1.11)) there is a unique ring homo-
morphism y:Z — CenR, the ring R is (in one and only one way) a
Z-algebra.

Classically this concept has its greatest importance when K is a field
and the homomorphism ¢ is necessarily injective. In this case the entire
concept of a K-algebra R is equivalent to the requirements that, in addition
to being a ring, R be a K-vector space satisfying

a(ab) = a(ab) = (xa)b

forallze K, and all a, be R.

If R and R’ are K-algebras, via ¢ and ¢, respectively, then a ring
homomorphism ¢:R — R’ is a K-algebra homomorphism in case for each
aeK,aeR,

o(p(x)a) = ¢'(x)o(a).

It is easy to check that the class of K-algebras together with all K-algebra
homomorphisms and the usual composition is a concrete category (0.11).

1.12. The Opposite Ring of a Ring. Let R be g ring. From this we con-
struct a new ring R°?, called the opposite ring of R. Both the underlying set
and the additive structure of R°? are just those of R. But the multiplication on
R°?, which for the present we shall denote by (r,s) > r * s, is defined by

r*s =sr.

'It is easy to check that R’ is a ring with these operations and that the
identities of R°? are those of R. Clearly, CenR = CenR°® and R is
commutative if and only if R = R°P.
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d S are rings. Then a function ¢ :R — § is a ring anti-
¢ is an abelian group homomorphism, ¢(1) = 1, and

¢{ab) = ¢(b)p(a).

Thus, the function ¢ :R — § is a ring anti-homomorphism if and only if the
same function ¢ : R° — S is a ring homomorphism.

Suppose that R an
homomorphism in case

1.13. Matrix Rings. Particularly for constructing examples it is often a
great convenience to have a generalization of the familiar rings of n x n
matrices over a field. Indeed we want rings of matrices of infinite dimension.
Clearly the usual multiplication will not generalize without some adjustment
quite simply because in the infinite case “row dot column” can result in in-
finite sums. Fortunately the adjustment is natural, so we shall permit our-
selves a relaxed treatment omitting some of the rather dull details and
formalities. Let R be a ring and let I" and A be non-empty sets. ThenaI” x A-
matrix over R is simply a function A:T' x A - R. Let A be a I' x A-matrix
over R. For each (a, f}eI" x A let A(a, B) = a,5€ R; then we call g, the
(o, B) entry in A and we write

4= [[aaﬂ:ﬂl'xl\-

When there is no likelihood of confusion about the sets I' and A we may
simply write A = [a,4]. If " = T and A’ = A are non-empty subsets, then
the restriction of A to I" x A’ is a submatrix of A and may be denoted
(g A -

Let xeT" and Be A. Then [a,4] x4 and [a,s]r« (s are called the a row
of A and the B column of A, respectively. The matrix A is said to be row finite
(column finite) in case each row (column) of 4 has at most finitely many
non-zero entries. In practice we shall be interested mainly in matrices that
are row finite or column finite. The collection of all I' x A-matrices over
the ring R will be denoted by

Mrxa(R)
and the subsets of row finite and column finite matrices by
RFMp, o(R)  and CFMr«A(R),

respectively. If I' = A, then we write simply M(R), RFM(R) and CFM(R),
and we call the entries I'-square or I' x I'-square matrices. The diagonal of a
I’ x [-square matrix 4 = [a,,] is the indexed set (a,, )cr-

Of course, M, A(R) is simply RT ** and so (see 1.8) it has a natural group
structure; in particular, it is an abelian group with “pointwise” addition. In
matrix notation, let

A= [aaﬂ]]’ B = H:baﬁ]]

be elements of M, A(R); then this pointwise or matrix addition is given
somewhat imprecisely by

ﬂ:aaﬁ]] + [[baﬂ]] = [[aﬂﬂ + baﬁ]]'
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The identity of this group structure on My, ,(R) is the zero matrix
0 = [0,], and the inverse (negative) of 4 is — A4 = [—a].
Now suppose that I', A, and Q are non-empty sets, and that

A= [[aaﬂ]] € Mr . A(R), B= [[bﬂy]] € Mp«a(R).

For each a € I" and y € Q consider the formal series I, a,z b, If either A4 is
row finite or B is column finite, then this series has at most finitely many
non-zero terms which sum to a unique element c,, € R, and the I' x Q-matrix

AB = [[EBEAaaB bﬁy]]l" xQ

is called the (matrix) product of A and B (in that order). Note that if both 4
and B are column finite (row finite) then AB is column finite (row finite). It
is easy (but tedious) to show that wherever this product is defined, it is
associative and that it distributes over addition on both the right and left.
Now let I be the I' x I'-square matrix over R

Il" = [[6111]]

where §,; denotes the Kronecker delta over R (0.1). Then clearly, I is both
row finite and column finite.

We call I the I' x I'-identity matrix over R. Now the point is that on
both of the sets RFM(R) and CFM(R) the matrix product defines a binary
operation, which we call matrix multiplication.

1.14. Proposition. Let R be a ring and let T be a non-empty set. Then with
pointwise addition and matrix multiplication

RFM(R) and CFM(R) 0
are rings.
In the case where I' = {1,...,m} and A = {l,...,n} are finite, all
matrices are both row finite and column finite, and we write simply

M,.«s(R)  M,(R)

for the sets of these m x n-matrices over R and the set of n x n-square matrices
over R, respectively. From (1.14) M,(R) is a ring, called the ring of n x n-
matrices over R, with respect to matrix addition and matrix multiplication.
Also, as usual, we shall adopt the familiar rectangular array notation for an
m x n-matrix [a;;] over R.

The ideal structure of the matrix rings M,(R) is quite easy. It can be shown
(see Exercise (1.8)) that a subset K of M,(R) is an ideal in M, (R) if and only if
there is an ideal I of R with K = {[a;;] € M,(R)|a;;eI}.

With a slight perversion of notation this says that

I'— M, (I)
defines an isomorphism between the ideal lattices of R and of M,(R). In
particular, M, (R) is a simple ring if and only if R is a simple ring.

On the other hand, if T is infinite, then the ideal structure of CFM(R),
say, is not quite so clear. However, in the case of greatest interest, where Ris a
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field, the ideal lattice of CFM(R) is a chain of more than two elements. (See
Exercise (14.13).)

Among the many interesting subrings of CFM(R) there is one that we
shall refer to frequently. If I is linearly ordered by <, a I' x I'-square
matrix A = [a,;] is upper triangular (lower triangular) in case for alla, f € '

o> ﬂ lmphes Qg = 0 (a < ﬂ implles Qg = 0)

Of course every scalar matrix is both upper and lower triangular. Moreover,
it is easy to see that the set of upper triangular matrices in CFM(R) forms a
subring of CFM(R) and the set of upper triangular matrices in RFM(R)
forms a subring of RFM(R). Of course, parallel statements hold for the sets
of lower triangular matrices.

1.15. Endomorphism Rings. We look next at a class of examples that
motivates much of our subsequent work. Thus, let A be an abelian group
written additively. By an endomorphism of A we mean of course just a group
homomorphismf: A — A;in other words, if we write our functions on the left,

fla+b)=f(a+fb) (a,be A).

It is easy to check that the set E of all such endomorphisms of 4 forms an
abelian group with respect to the addition (f, g)+ f + g defined by

(f+ 9@ =fa+g@ (acA)

Of course the identity and the inverse (= negative) are given by
O0a@=0 and (-f)@= —f(a)

Now on E it also happens that composition of functions is an associative
operation that distributes over the additive operation on E. So if 4 # 0
(i.e, if E has at least two elements), then E is actually a ring whose identity is
the identity map 1,:4 — A. But note that if f,g € E, then in general, the
product fg in E depends on whether we consider these as functions operating
on the left or on the right:

(f9)a@) = f(9(@);  (a)(fg) = ((a)f)g.

In other words, there arise naturally for every (non-zero) abelian group 4
two endomorphism rings, a ring of left endomorphisms and a ring of right
endomorphisms, denoted

End(4) and  End'(A),

respectively. The fates being what they are, we shall have need for both of
these rings. When we have an fe End'(A), we are considering it as a “left”
endomorphism and shall denote its values f(a). On the other hand, if we have
f€ End'(A), then we are considering f as a “right” endomorphism and shall
denote its values by (a)f. Of course,

End'(A) = (End"(4))".
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1t turns out that such endomorphism rings (pick a side) play a role in ring
theory entirely analogous to that played by the symmetric groups in the
theory of groups. In fact, there is a perfect analogue of “Cayley’s Theorem”
to the effect that every ring is isomorphic to a subring of an endomorphism
ring of an abelian group. (See Exercise (1.10).)

1.16. Idempotents. Let R be a ring. An element e € R is an idempotent in
case e = e. A ring always has at least two idempotents, namely 0 and 1. An
idempotent e of R is a central idempotent in case it is in the center of R. As we
shall see, the arithmetic of idempotents plays a fundamental role in the
study of rings. For the most part, however, the details of this arithmetic are
quite straightforward and will be relegated to the exercises. As one small
example, we note here that if e € R is an idempotent, then so is 1 — ¢, for

l—e?=1—-e—e+e?=1—e—e+e=1—e
Also it is easy to check that if e is central, then so is 1 — e.
Each non-zero idempotent e of a ring R determines a second ring, namely
eRe = {exe|x e R},

with addition and multiplication that of R restricted to eRe, and with
identities 0 = eQe and e = ele. If e # 1, then the ring eRe is not a subring of
R and if e is not central, eRe need not be a homomorphic image of R. Of
course, if e is a central idempotent, then the map

T,:X > exe (xeR)

is a surjective ring homomorphism R onto eRe with kernel (1 — e)R(1 — e).

There is one easy but important class of examples of this last phenomenon.
Thus, let R be the cartesian product R = I1, R, of rings (R,),.,- Let a€ A.
Then there is an element ¢, € R defined coordinatewise (0.4) by

n,ge,) = Gypl,.

That is, e, =1 ,(1,) is the identity of R, at the «'* coordinate and 0 elsewhere.
Now it is easy to see that e, is a central idempotent of R and that the ring
e,Re, is isomorphic to R, via

(m,| e, Re,):e,Re, = R,.

Moreover, in the case where 4 is finite, the existence of a ring isomorphism
R = TI4R, can be determined by means of the behavior of the central
idempotents of R. (See §7.)

As another important example of idempotents, let R be a ring, let n. > 0
be an integer and consider the matrix ring M,(R). Let 1 < m < n and let
e = [a;;] be the matrix defined via

4 = Il fi=j<m
Y |0 otherwise.
Then it is easy to check that e is a non-zero idempotent and that as rings
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eM,(R)e = M,,(R).

Incidentally, we can draw the same conclusions provided just that e has
exactly m non-zero entries, each of which is a 1 on the diagonal. It is important
to realize that these examples by no means describe all of the idempotents of
the matrix ring M (R).

1.17. Nilpotent Elements. The antithesis of the idempotents of a ring are
its nilpotent elements. An element x of a ring R is nilpotent in case there is a
natural number n such that

x"=0;

the least such n is called the nilpotency index of the element. Clearly 0 is the
only element of a ring that is simultaneously idempotent and nilpotent.

If R is a ring and if n > 1, then the matrix ring M,(R) is fairly rich in
nilpotent elements. Indeed, every strictly upper triangular matrix (i.e., upper-
triangular with O diagonal) and every strictly lower-triangular matrix in
M, (R) is nilpotent with nilpotency index at most n.

There is one “zero-like” property of nilpotent elements that is of some
importance. Indeed if x is nilpotent, then 1 — x is invertible. For if x" = 0,
then

l=-x)1+x+..+x"H=1 and (I1+x+..+x""H1-x) =1

The elementwise concept of nilpotence can be extended. Thus, a subset A
of a ring R is nilpotent in case there is an integer n > 0 such that

XyXy...x, =0

for every sequence x,, X3, ..., X, in A. Also, a subset 4 of a ring is nil in case
each of its elements is nilpotent. Thus, every nilpotent subset of R is certainly
nil; but there are nil subsets of rings that are not nilpotent. (See Exercise
(1.14).)

As we shall see, the analysis of a ring and its arithmetic is very dependent
on the behavior of its idempotents and its nilpotent elements. One seeks to
learn the idempotents of a ring to a large extent because locally they behave
like the identity; indeed a non-zero idempotent e € R is the identity of the
induced ring eRe. In a sense the nilpotent elements are relatively weak and
the extent to which they permeate the ring provides a measure of the arith-
metic strength of the ring. For example (see Exercise (15.14)) a commutative
ring with no non-zero nilpotent elements can be embedded in a cartesian
product of fields. On the other hand, rings having substantial amounts of
nilpotence often suffer from some very weird pathologies.

1. Exercises

1. Let (R, +,,0) be a system satisfying all the requirements for a ring except
the existence of a multiplicative identity. Prove that there is a ring
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(R, +,,0,1) in which (R, +,-,0) is an ideal. [Hint: On R x Z define
addition and multiplication by (r,n) + (s, m) = (r + s,n + m) and
(r,n)(s,m) = (rs + mr + ns,nm).]

2. (1) Prove that a ring in which each non-zero element is left cancellable
(left invertible) is an integral domain (division ring).

(2) Prove that every finite integral domain is a division ring.

3. Letae R, aring. Prove that if @ has more than one left inverse, then it has
infinitely many. [Hint: Set A = {a’e R|a'a = 1}. Then A # &. Fix
a, € A. Observe that @'+ aa’ — | + a, defines an injection from A to a
proper subset of itself.]

4. Show that the matrix [d;,;] € CFMy(R) is left invertible but not even
right cancellable.

5. Let R and S be rings and ¢ :R — § a surjective ring homomorphism.
Prove that if a € R is invertible, central, idempotent, or nilpotent, respec-
tively, then so is ¢(a) in S. How about converses?

6. Let H be the subset of M, (C), the 2 x 2 matrices over the complex field,
of all elements of the form

_ a+ib c+id
T=| _c+id a-ib

with a,b,c,de R. Show that H is a subring of M,(C). Consider the
elements

RO NS R

in H. Thus, the above “typical” element q of H is ¢ = al + bi + ¢j + dk.
Show that if g # 0, then it is invertible. Deduce that H is a non-
commutative division ring. It is called the ring of quaternions.

7. Let K be a field. Prove that:
(1) M,(K) is a simple ring.
(2) In the ring CFMy(K), the set T of matrices that have only a finite
number of rows with non-zero entries is a non-trivial ideal. [Hint: If
a; = 0 whenever i > n and [c;] = [b;]-[a;] then c;; = 0 whenever
i > max{k|b,; # 0and 1 <j < n}.]
(3) CFMy(K) has exactly one non-trivial ideal.

8. Let R be a ring and let n > 1 be a natural number. For each ideal I of R
set

M,(I) = {[a;] € M,(R)|a; €l (i,j = 1,....n}.

(1) Prove that I+ M,(I) defines an isomorphism from the lattice
of ideals of R onto the lattice of ideals of M,(R). This generalizes
the first part of Exercise (1.7): The ring of n x n matrices over a simple
ring is a simple ring. [Hint: If [ is an ideal of M,(R), then the collection
of all entries from elements of | forms an ideal I of R.]

(2) Prove that if I is an ideal of R, then M, (R)/M,(I) = M,(R/I).
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9.

10.

11.

12.

13.

14.

15.

Rings, Modules and Homomorphisms

Let R be aring and A € R. The R-centralizer of A is Ceng(A) = {x e R|
ax = xa (a€ A)}. Thus Cen R = Cen g(R). Prove that:

(1) Ceng(A)is a subring of R.

(2) A is a maximal commutative subring of R iff A = Ceng(A).

(3) If x € Ceng(A) is invertible in R, then its inverse is in Ceng(A).

(4) Infer that the center of a simple ring is a field. [Hint: If xe CenR,
then {rx|re R} is an ideal of R.]

Denote the underlying additive group of the ring R by R*. For each
r € R define two functions 4,, p,:R — R by

Aix i rx and PyiX > Xr.

Write each 4, as a left operator and each p, as a right operator.
(1) Prove that A:r— 4, defines an injective ring homomorphism into
End'(R*)and that p:r+ p, defines an injective ring homomorphism into
End’(R™). Thus a ring R is isomorphic to a ring of left endomorphisms
of an abelian group as well as to a ring of right endomorphisms of an
abelian group.
(2) Prove that if R* is cyclic, then R is commutative and both 4 and p
are isomorphisms.
Let R be a ring. Prove that there is a unique ring homomorphism
x:Z — R. The kernel of x is of the form Zn for some unique n > 0 (1.6);
this n is the characteristic of R.
(1) Let Rbearingand A < R. Suppose R is generated by 4 (i.e., R is the
only subring of R that contains A4 (1.9)). Prove that if ¢:R — S is a ring
homomorphism, then Im ¢ is the subring of S generated by ¢(A4).
(2) Let x:Z — R (see Exercise (1.11)). Deduce that Imy is the subring of
R generated by {1}. Infer that if R is an integral domain, its characteristic
is either O or a prime.
A ring is a Boolean ring in case each of its elements is idempotent. Prove
that:
(1) Every Boolean ring R is commutative and a = —a for all aeR.
[Hint: Square (a + a) and (a — b).]
(2) Every subring and every factor ring of a Boolean ring is a Boolean
ring.

(3) Every simple Boolean ring is isomorphic to Z,.
(4) If A is a set and if R is a Boolean ring, then R4 is a Boolean ring.
Let p € P be a prime. Prove that for each natural number n the ideals of
Z ,» form a chain and that each proper ideal is nilpotent. Then show that
the product

R=X

n>1 Zp"

has a nil ideal that is not nilpotent. [Hint: For each n > 1 let I, be a
proper ideal of Z ... Let I be the set of all g € R such that a(n) € I, and is
not zero for at most finitely many n.)

Let G be a non-empty set and let R be a ring. A function f:G — R is zero

almost always in case its support S(f) = {x € G| f(x) # 0} is finite. The
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16.

17.

set R'@ of all functions G — R that are zero almost always is clearly a
subgroup of the additive group of R“ under the addition (f,g)—f+ g
where (f + g)(x) = f(x) + g(x) for all xe G, for S(f+ g) = S(f) v S(g).
Now suppose that G is a semigroup (written multiplicatively) with
identity e. For each pair f, g € R define

(fo)(x) = Z,.-x f(¥)g(z2)  (x€G).

(1) Prove that with respect to this addition and multiplication R‘¥) is a
ring with identity the function &(e): x — 8., in R©. This ring is called the
semigroup ring (or group ring if G is a group) of G over R. It is denoted RG.
(2) For each r € R and each x € G define o(r) and £(x) in RG by

o(N(x)=9,r and  (x)(y) =9,

Prove that g:r+— a(r) defines an injective ring homomorphism R - RG
and that &:x+—&(x) defines an injective monoid homomorphism
G — RG into the multiplicative semigroup of RG.

(3) Prove that for each non-zero fe R'® there is a unique sequence
ry,...,r, of non-zero elements of R and distinct x,,...,x, € G such that
f=o(r)éx,) + ... + a(r,)é(x,). For this reason it is a common practice
to write f simply in the form r;x, + ... + r,x,. Observe that in this
notation, the canonical image of r € R (under ¢).in RG is re, the identity
of RG is le, and (with the obvious simplification that may be possible on
the right)

($1y1+ o F SV rixy + o+ rex,) = ZNL ST VX

(4) Let S be a ring and suppose that there is a ring homomorphism
¢:R - S and a monoid homomorphism 6:G — S such that for each
reR and x € G, ¢(r)f(x) = 8(x)@(r). Prove that there is a unique ring
homomorphism §:RG — Ssuch that yoc =g and yo & =80.

Using the concept of a semigroup ring, polynomial rings can be treated
without recourse to the artificial invention of an indeterminant. The non-
negative integers N, = {0, 1,2,...} form a commutative-monoid under
addition. Let R ke a ring. Adopting the notation of Exercise (1.15.2) (with
G =Njand e =0), let X = &(1) e RN,. We call the ring RN, the ring
of polynomials in one indeterminant (i.e., X) over R, and we normally
denote it by R[X]. The elements of R[X] are called polynomials in X
over R.

(1) Prove that in R[X], if ne N, then &n) = X™. [Remember that N,
is an additive semigroup.] Infer that for each non-zero polynomial
feR[X] there is a unique n and a unique sequence ro,ry,...,7, in R
withr, #0and f=ro X° + r, X + ... + r, X" We call this n the degree
of f (the zero polynomial is assigned degree — o) and write deg f = n,
call ry,r,, ..., r, the coefficients of f and call r, the leading coefficient of f.
(2) Prove that if R is commutative, then so is R[X ].

Let S be a ring and let R be a subring of S. Let x € S such that rx = xr for
all r € R. Prove that there is a unique ring homomorphism ¢ :R[X] — S
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such that
Yire X0+ X + ...+ P X" =g+ rix+ ...+ r,x"

for each rg, F1s.-., o € R. [See Exercise (1.15.4). Prove then that the image
of  is the subring of S generated by R u {x}.]

18. Let N3 be the n-fold cartesian product of N,. Under coordinatewise
addition Nj is a commutative monoid. Let R be a ring. Prove that the
semigroup ring RNy is isomorphic to the (iterated) polynomial ring
R[X,][X.]...[X,]- We usually denote this ring by R[X,, X,,..., X, ].

§2. Modules and Submodules

Let R be a ring. Then a pair (M, 4) is a left R-module in case M is an abelian
group (which we shall write additively) and 4 is a map from R to the set of left
endomorphisms of M such that if M is not zero,

A:R — End' (M)

is a ring homomorphism. This means simply that for each ae R, there is a
mapping A(@): M — M such that for allg,beR and all x, ye M

Ma)(x +y) = Ha)(x) + Ma)(y),  AMab)(x) = Aa)(A(b)(x)),
Ma + b)(x) = Aa)(x) + A(b)(x), A (x) = x.

In practice we usually are able to suppress the A and the excess parentheses.
Writing just ax for A(a)(x) we may think of 1 as defining a “left scalar
multiplication” R x M —» M via (a, x)+— ax satisfying for all a,be R and
x, y € M the axioms for a “left R-vector space™:

a(x + y) = ax + ay, (ab)x = a(bx),
(@ + b)x = ax + bx, Ix = x.

At the same time we shall usually say simply that M, rather than (M, 4), is
the left R-module. This allows some potential ambiguity, for a given abelian
group may admit more than one left R-module structure. In only a few in-
stances will this ambiguity be significant, and in these we shall be able to
eliminate the ambiguity with special notation.

By a right R-module we mean an abelian group M and a ring homo-
morphism p of R into the right endomorphism ring of M. Shorn of un-
necessary notation this means that there is a “right scalar multiplication”

(x,a)— xa (xeM,a€eR)
from M x R to M satisfying for alla,beR and x,ye M
(x + y)a = xa + ya, x(ab) = (xa)b,
x(a + b) = xa + xb, xl = x.
Thus, it is intuitively obvious (but see Exercise (2.1)) that the right R-modules
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are essentially the same as the left R°?-modules. So in particular, if R is com-
mutative, we may be allowed to view the two concepts as identical.

2.1. Examples.(1) If D is a division ring, then a left D-module is simply our
old friend a left D-vector space. In most elementary courses, we encounter
only vector spaces over fields and hence are not concerned with sides. But for
non-commutative division rings D, a left D-vector space is not the same as a
right D-vector space.

(2) If V is a vector space of dimension n over a field K, then the ring
R = M, (K) of n x n-matrices over K operates as K-linear transformations,
and hence as abelian group endomorphisms, on V. Here in particular we have
considerable choice. If we view R as operating from the left on column
vectors, then V acquires the structure of a left R-module. If we let R operate
on the right on row vectors, then V has the structure of a right R-module. But
there is more. In either case the way that R operates on V is determined by the
choice of basis; each such choice giving a different module structure to V.
Of course all of the left structures obtained this way are in some sense
“isomorphic” as are the various right structures. Still it must be recognized
that strictly speaking these structures are different.

(3) For a ring R there is a unique ring homomorphism from Z to R (see
Exercise (1.11)). So for every abelian group M there is a unique Z-module
structure on M. This is simply the structure given by the usual “multiple
function”

(n, x) — nx.

(4) In Exercise (1.10) we found homomorphisms 4 and p of the ring R
into the left and right endomorphism rings, respectively, of the additive group
of R. Thus each ring R induces a left R-module structure on its additive group
and a right R-module structure on its additive group via the scalar
multiplications

(a, x}+— ax, and (x, a)— xa,

where ax and xa denote products in the ring R. These modules induced on the
additive group of a ring R will be called the regular left and regular right
modules of R, respectively.

(5) This last example admits an important extension. Let R and S be
rings and let ¢ : R — S be a ring homomorphism. Then ¢ induces both a left
and a right R-module structure on the additive group of S. Indeed, the scalar
multiplication, for the left R-module S, is given by

(r, s)— ¢(r)s (reR,sef)

where the product ¢(r)s is computed in the ring S. The right R-module
structure on S is defined similarly. Clearly this is an extension of the familiar
business of viewing a field S as a vector space over each of its subfields R.
(6) There is one particularly important way of constructing new modules
from old ones. The general theory will be discussed in §6. For now, however,
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suppose M,,...,M, is a sequence of left R-modules. Then the cartesian
product M, x ... x M, admits a natural R-module structure. That is,
writing the elements of this product as n-tuples (x,...,x,), the module
operations are defined by the formulas

(xl,...,x,,) + (_Vnn-,}’,.) = (xl + yl""vxn + yn)
P(Xgy ooy Xp) = (PXyqy ooy 71X )

This module, which we continue to denote by M, x ... x M, is called the
cartesian product (module) of M, ..., M .

Except for a few exercises we shall not treat much of the elementary
arithmetic of modules. Indeed, with few exceptions this elementary arith-
metic differs only superficially from that of vector spaces. Perhaps the most
dramatic difference is that with general modules we can expect ax = 0 even
though neither a nor x is zero. The interested reader can find the general
material in several standard texts.

The concept of a bimodule arises most naturally in the context of endo-
morphism rings of modules (see §4). Nevertheless, bimodules are simple
enough to introduce directly. Thus, let R and S be two rings. An abelian
group M is a left R- right S-bimodule in case M is both a left R-module and a
right S-module for which the two scalar multiplications jointly satisfy

r(xs) = (rx)s (reR, se8s, xeM).

There are other styles of bimodules depending on the sides on which R and S
operate. The crucial identity in the definition of, say, a left R- left S-bimodule
is then

r(sx) = s(rx) (reR, se8S, xe M).

There is a very concise and suggestive notational device for describing
the various flavors of modules. The following partial dictionary should
suffice to explain this device:

gM means M is a left R-module
My means M is a right R-module
rM;s means M is a left R- right S-bimodule
'r-sM means M is a left R- left S-bimodule.

The bimodule z_gM is in essence the same object as the bimodule My,
(see Exercise (2.1)). Thus we shall generally deal with left-right bimodules,
and simply refer to My as an (R, S)-bimodule. Note also that the Z-module
structure that the abelian group M admits (2.1.3) makes g M into a bimodule
RMZ'

Linear Combinations and Submodules

Let M be a left R-module. Then an abelian subgroup N of M is a (left R-)
submodule of M in case N is stable under the endomorphisms of M induced
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by R. In other words, N is a submodule of M if and only if it is a subgroup of
M “closed” under scalar multiplication by R. In particular, a submodule N
of M is a left R-module on its own right. It is possible for a subgroup N of a
left R-module M to be an R-module in terms of some representation
R — End'(N) without being an R-submodule of M. (See Exercise (2.2).)

If X € M and A < R, then any element of M of the form

ax, +..+a,x, =2}, ax;

with x(,...,x,€X and a,,...,a,eA is a linear combination of X with
coefficients in A, or simply an A-linear combination of X. We shall denote the
set of all such A-linear combinations of X by AX.

2.2. Proposition. Let M be a left R-module and let X be a non-empty subset
of M. Then RX is an R-submodule of M.

Proof. The R-linear combinations of X are clearly closed under the group
operation of M, and the identity

alryx, + ... + r,x,) = (ary)x, + ... + (ar,)x,
finishes the job. O

The subset {0} of a module M is clearly a submodule of M. We call it the
zero submodule and usually denote it by 0 alone. To avoid a special case
later, we agree

RZ =0;

that is, 0 is the unique R-linear combination of . The following, which is an
easy exercise, characterizes submodules as those non-empty subsets “closed”
under all R-linear combinations.

2.3. Proposition. Let M be a left R-module and let N be a non-empty subset
of M. Then the following are equivalent :

(a) N is a submodule of M ;

(b) RN = N;

(c) Foralla,beRand all x,ye N

ax + byeN. O

Of course for each of the various types of modules there is a corresponding
notion of submodule, and there are results analogous to (2.2) and (2.3). For
example, given s M a subset N is an (R, S)-submodule (strictly speaking, a
left R-, right S-submodule) of M iff N is simultaneously an R-submodule
and an S-submodule. Also, in this setting, for example, an (R, S)-linear
combination of X < M is simply an element of the form

rix8; + ... +r,x,s,

withr,e R,s;€S,and x;e X (i = 1,..., n). The set of all of these is abbreviated
RXS. Then a non-empty subset N of M is an (R, S)-submodule if and only
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if N = RNS. This in turn is equivalent to containing those (R, S)-linear
combinations of the form rxs + r'x’s’ with x, x' € N.

Like the subgroups of a group or the subspaces of a vector space, the set
of submodules of a module M forms a complete modular lattice with respect
to the partial order of set inclusion. Thus suppose that M is a module. If N
is a submodule of M, we denote this fact by

N<M.

To avoid occasional ambiguity about the ring of scalars, we may also use
such self-explanatory variations as

RN < RM or RPS < RQS~

Let M be a left R-module and let L < M and N < M be submodules.
Then it is clear from (2.3) that

L<N iff L < N.

In particular, the set &(M) of all submodules of M is partially ordered by <
(which on &(M) coincides with set inclusion). The submodules 0 and M of
M are the unique smallest and largest elements of & (M). Moreover, if &/
is any non-empty subset of ¥(M), then it is an immediate consequence of
(2.3) that

ol € S(M).

Since clearly n.«/ must be the greatest lower bound of & in ¥(M), we infer
that (M) is a complete lattice (see (0.6)). Although the partial order for the
lattice (M) is set inclusion and the greatest lower bound is intersection, the
least upper bound of & = & (M) is not generally its union. Indeed the union
of two submodules is rarely a submodule. (See Example 4 of (0.5).) To
characterize the join in ¥(M) we introduce some special, but entirely
standard, notation; if M, ..., M, are non-empty subsets of M, we set

M+ ..+ M ={x +..+x,|x;eM (i=1,..,n}
Another easy consequence of (2.3) is
2.4. Lemma.If M is a left R-module and if My, ..., M, are submodules of

M, then M, + ... + M, is also a submodule of M. In fact, M, + ... + M, is
the set of all R-linear combinations of M|, U ... U M, O

If & is an arbitrary collection of subsets of M, then there is no reasonable
concept of “sum” of . However, motivated by this last lemma we do define
the sum X/ of a family & of submodules of M to be the set of all R-linear
combinations of u./. It is easy to see that if & = {M,|« € A}, then

LA = M =U{M, +...+ M, |a,,...,0,ed (n=12,..)},
i.e, each element of X, M, can be written as a finite sum

Zo 1 X, (xs, €M,,, 2, € A).
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By (2.2) then, the sum Z.o of a set ./ of submodules is again a submodule, and
moreover, if N is any submodule of M containing all the submodules in 2/,
then by (2.3) it must contain the sum Z.o/. Therefore it is this sum .o/ that
is the least upper bound of .« in (M).

Let H, K, and L be submodules of M. Then it is easy to check that

HAK+L > HNK)+ HnL).

In general this inequality may be strict, i.e., (M) need not be a distributive
lattice. However, if H > K and he H, ke K, l € L with h = k + [ then, since
ke K = Hn K, (M) does satisfy the modularity condition (see (0.5)).

In summary we have

2.5. Proposition. [f M is a left R-module, then the set #(M) of submodules
of M is a complete modular lattice with respect to <. In this lattice, if o is a
non-empty set, then its join and meet are given by

p3-4 and N,
respectively. In particular, if K and L are submodules of M, then
K+ L and KnL

are their join and meet, respectively; and if H is another submodule of M, then
K<H implies HnNn(K+L)=K+ (HnL). ad

These submodule lattices &#(M) provide a great deal of information
about the nature of the modules, and hence about the scalar ring. In many
instances we are able to obtain very explicit information about the ring from
knowledge of these lattices. Conversely, for certain rings the behavior of
these lattices is quite civilized; a familiar example is offered by modules
(= vector spaces) over fields. In general, however, modules can be very
unpredictable; just some of the less extreme pathology they display will be
considered in the exercises.

Given a module M and a subset X = M, the set .« of all submodules of M
that contain X contains M and so is non-empty. Its intersection N . is again
a submodule of M and it is, in fact, the unique smallest submodule of M that
contains X. We call it the submodule of M spanned by X.

2.6. Proposition.If M is a left R-module and if X is a subset of M, then the
submodule of M spanned by X is just RX, the set of all R-linear combinations
of X.

Proof. By (2.2), RX is a submodule of M and since 1x = x for all xe M,
we certainly have X < RX. Finally, by (2.3), any submodule that contains X
must contain the linear combinations RX. ]

If (M,), , are submodules of M, then £, M, is the submodule spanned by
(M,),e 4. Thus if

M=3%,M,
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then we say that the submodules (M,),., span M. If X is a subset of fM
such that

RX = M,

then X is said to span M, and X is called a spanning set for M. A module with
a finite spanning set is said to be finitely spanned. A module with a single
element spanning set is a cyclic module. Thus a cyclic left module is one of
the form M = R{x} where x is some element of M; and we write

M = Rx = {rx|reR}.

Of course, the regular modules ;R and Ry are cyclic. Now it is clear that every
module is spanned by the set of its cyclic submodules.

2.7. Proposition. If X is a spanning set for .M, then
M=2Z2Z_ Rx O

A module M is simple in case M # 0 and it has no non-trivial submodules.
Not only is such a module cyclic, but clearly a non-zero module is simple iff
it is spanned by each of its non-zero elements. Somewhat like the primes in
arithmetic the simple modules are basic building blocks in the theory of
modules. Indeed note that an abelian group is simple iff it is isomorphic to
Z, for some prime pe P.

Clearly the module itself is the greatest element in its lattice of sub-
modules; hence in the terminology of posets it is a maximal (indeed the only
maximal) submodule of itself. But it is the next level, the maximal proper
submodules, that is of real interest. Dually, the zero submodule is of little
consequence, but the minimal non-zero submodules of a module are very
important. As a result one rather weird bit of terminology has evolved. That is,

maximal submodule means maximal proper submodule
minimal submodule means minimal non-zero submodule.

For example, M is simple (hence non-zero) iff M is a minimal and 0 is a
maximal submodule! The question of existence of minimal or maximal sub-
modules is critical and not trivial. Note for example that the abelian group
Z has no minimal subgroup (= Z-submodule). (See also Exercise (2.8).) On
the other hand there is at least one very important class of modules, each with
maximal submodules.

2.8 Theorem. Let M be a non-zero left R-module witha finite spanning set.
Then every proper submodule of M is contained in a maximal submodule. In
particular, M has a maximal submodule.

Proof. Let K be a proper submodule of M. Then there is a finite sequence
X1, ..., X, € M such that

M =K + Rx, + ... + Rx,.

So certainly among all such sequences there is one of minimal length
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(presumably there are several such sequences), and so we may assume that
X{»---» X, has minimal length. Then

L=K+Rx; +..+Rx,

is a proper submodule of M (otherwisé the too short sequence x,, ..., x,
would do for x,, x,,...,x,). Let 2 be the set of all proper submodules of M
that contain L. Clearly, 2 is a non-empty subposet of the lattice of sub-
modules of M for L e 2. Now a submodule N that contains L is in & iff
x, ¢ N. We apply the Maximal Principle (0.9) to 2. Suppose ¥ is a non-empty
chain in the poset 2. Set V = U¥. We claim that V is a submodule of M. For
ifa,beR and x, y € V, then for some N,, N,e¥, xe N, and y€N,. Since €
is a chain, we may assume N, < N,. So x,ye N,and (23)ax + bye N, < V.
Thus (2.3) V is a submodule of M as claimed. But clearly since x, is in no
element of €, x, ¢ V. We have shown then that every non-empty chain in 2
has an upper bound in 2, namely its union, so by the Maximal Principle 2
has a maximal element, say N. Because N is maximal in & any strictly larger
submodule of M is not in &, and so contains x,. But then any such module
must contain N + Rx, > L + Rx, = M. Thus N is a maximal (proper)
submodule of M containing K. For the final statement of the Theorem let
K=0. O

There is in one case a significant difference between left modules and
bimodules. If g Mg is an R-S-bimodule, and if x € M, then the cyclic submodule
spanned by x is RxS = (Rx)S, but this need not be just the elements rxs.
(See Exercise (2.3).)

Factor Modules

Just as for vector spaces, there is a factor module of a module with respect to
each of its submodules. Let M be a left R-module and let K be a submodule.
Then jt is easy to see that the set of cosets

M/K = {x+ K|xe M}
isa left R-module relative to the addition and scalar multiplication defined via
(x+K)+(y+K)=()f+y)+K, ax + K) = ax + K.
Of course, the additive identity and inverses are given by
K=0+K and —-(x+K)=-x+K.

The resulting module M/K is called (the-left R-factor module of ) M modulo K.
Entirely similar constructions exist for other types of factor modules. Thus,
for instance, if we have ;Mg and an R-S-submodule K, then the factor group
M/K is a left R- right S-bimodule via

rix+ K)s =rxs + K

forallreR,xeM, seS.
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Let K be a submodule of M. Then it is easy to see that the set
FM)K ={HeFM)|K < H}
is a sublattice of (M). Moreover, for each H in this sublattice
ng(H) = H/K

is obviously a submodule of the factor module M/K. Since clearly H < H'
implies ng(H) < ng(H'), we have that ng defines an order-preserving function
from #(M)/K to ¥(M/K). On the other hand, if T is a submodule of M/K,
then

ng(T)={xeM|x+ KeT}

is a submodule of M, and, since 0 + K = k + Ke T for all ke K, clearly
K < ng(T). We see at once that ngng(T) = T and ngng(H) > H for all
Te ¥ (M/K) and for all He #(M)/K. But if xengnyg(H), then x + K =
a + K for some a€ H and so since K < H, we have x € H. Thus, ny and ny
define inverse bijections. Finally, since ng is also order-preserving, we have
by (0.8) the important

2.9. Proposition. Let M be a left R-module and let K be a submodule of M.
Then the lattice of submodules of the factor module M/K is lattice isomorphic
to the submodules of M that contain K via the inverse maps

ng:H— H/K = {x + K|xe H}
ng :Trng(T)={xeM|x+ KeT}. O

Since a module is simple iff its lattice of submodules is a two element chain,
we have the

2.10. Corollary. 4 factor module M/K is simple if and only if K is a maximal
submodule of M. ad

Change of Rings

There are certain important and natural ways that a module over one ring
inherits a module structure over a second. For example, every module over
one ring R is, in a completely natural way, a module over all subrings of R.
In general, some of these “changes of rings” are induced by ring homomor-
phisms. Thus suppose that M is a left S-module, that R is a second ring, and
that ¢:R — S is a ring homomorphism. If the structure ¢M is obtained from
the ring homomorphism 4i:S — End'(M), then

i¢:R — End'(M)

induces a left R-structure on M. Here the scalar multiplication is given by
(r.x)+— ¢(r)x. Thus ¢M is a left R-module ;M with

rx =¢(r)x (reR, xe M).
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If S’ is a subring of S, then the inclusion map is.:S" — S, a ring homomor-
phism, induces an S’-module structure .M on each ¢M with the induced
multiplication

(8", x) > s'x = ig.(s')x.

So with each S-module ¢M and each ring homomorphism ¢:R — S, there
are four modules

sM, M, y;yM, M.

Clearly each submodule of any one of these is a submodule of each subse-
quent one and since the meet and join of submodules are just intersection
and sum, the submodule lattice of any of these is a sublattice of that of the
subsequent modules. Notice also that the submodule lattices of gM and
oM are the same. These nearly trivial but important facts we state
formally in

2.11. Proposition. Let ¢:R — S be a ring homomorphism and let M be an
abelian group that is simultaneously a left R-module and a left S-module such
that for allre R, x e M, rm = ¢(r)m. Then, as lattices

.V(SM)SV(RM)=V(¢(R,M)SY(ZM). O

Of course the inclusions stated in (2.11) in general are not equalities. For
example, in a one-dimensional R-vector space there are Q-subspaces that
are not R-subspaces, and there are abelian subgroups that are not
Q-subspaces.

Suppose now that M is a left R-module via the ring homomorphism
A:R - End'(M). As usual though, we abbreviate ax = A(a)(x). Then the
kernel

K =Kerd = {aeR|ax =0 (xe M)}

is a two-sided ideal of R, called the annihilator of M in R. If K = 0 (ie., 4 is
injective), we say that M is a faithful left R-module. By (1.4) we have that for
every ideal I of R contained in this annihilator, there is a unique ring
homomorphism

n:R/I - End'(M)

such that nn; = A. Thus, for each such ideal I there is induced on M a left
R/I module structure called the natural R/I-structure g;;M. In this case the
scalar multiplication is given by

@+ I, x)—~(a+ I)x = ax (aeR,xeM).

Thus the R-structure on M is just that induced as in the previous paragraph
by the R/I structure and the surjective ring homomorphism n;:R — R/I;
so by (2.11) and (1.4) we have

2.12. Corollary. Let M be a left R-module, and let I be an ideal of R con-
tained in the annihilator of M. Then
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(1) a subgroup of M is an R-submodule iff it is an R/I-submodule. That is, the
lattices of R-submodules and R/I-submodules coincide;
(2) M is faithful as a left R/I-module iff I is the annihilator of M. |

As an easy and important illustration of some of this, let M be a finite
non-zero Z-module (ie., abelian group). Then its annihilator K in Z is a
proper ideal. Indeed, K is the (principal) ideal Zk where k is the least positive
integer with kx = 0 for all xe M. Then M becomes a Z/Zk(= Z,) module
with respect to the scalar multiplication

(m + Zk)x = mx.

In particular, if K = Zp with p prime, then Z, is a field, M is naturally a
Z ,-vector space, and the lattice of subgroups of M is precisely that of the
lattice of Z -subspaces of the Z -vector space ; M.

2.13. Rings as Bimodules. As we saw in (2.1.4) the additive group of a
ring R is both a left R-module and a right R-module via left and right ring
multiplications. Since ring multiplication is associative,

a(xb) = (ax)b,

it follows that these left and right multiplications give R the structure of a
bimodule. Henceforth when we speak of a ring R as a module (left, right, or
two-sided) over itself, we mean this regular module structure, and unless we
explicitly suspend this agreement,

RR! RR! and RRR

will denote these regular modules.
Clearly, if R is a ring, then a non-empty subset I of R is an ideal iff it is a
submodule of the bimodule zRg. This is equivalent to

I = RIR.

More generally, the submodules of gR are called left ideals of R and the
submodules of Ry are called right ideals of R. Thus a non-empty set I of R is a
left ideal iff

I =RL

A left, right, or two-sided cyclic ideal is usually said to be principal.

Since the ideals—Ileft, right, or two-sided—of R are merely the sub-
modules of certain special modules, we have in particular that each of these
sets is a complete lattice with respect to set inclusion. And of course these
lattices satisfy the general properties of lattices of submodules. The con-
vention about maximal and minimal submodules also is adopted: maximal
(left, right, two-sided) ideal means proper and minimal means non-zero.
Also for example, if 4 is a non-empty subset of R, then

RA, AR, and RAR
are the left ideal, the right ideal, and the (two-sided) ideal of R spanned by 4,
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Proof. (1) and (2) are really easy. For (3) apply (2) to Ig(X) for
In(X) € Igrylg(X). Then apply (1) to the first assertion of (2) for
Ir(X) 2 lgryg Ip(X). O

One very significant bit of information has emerged already. Suppose g Mg
is a bimodule. Then

ry:I—ry(l) and Ig: K — Ix(K)

are order-reversing maps between the poset of left ideals I of R and the poset
of right S-submodules K of M. Of course these maps are not always bijective
since the inclusion of (1) and (2) can be strict (consider M = ,Z,). Also in
general they are not lattice anti-homomorphisms (see Exercise (2.15)) but as
the next result shows, they come close. Curiously enough there is an
important lattice anti-isomorphism (of new lattices) lurking in the wings.
(See Exercise (2.16).)

2.16. Proposition. Let M be a left R-module. Let (K,),., and (I,),.4 be
subgroups of the additive groups of M and R, respectively. Then

(1) r(Z4K,) = N Ik(K,) and ry(Zql,) = 0 ry(l);

() Z,r(K) S (N K,)  and Zyry(L,) S ry(0y L)

Proof. (1) Since K; < Z, K, for each B, apply (2.15.1) to get I(2,K,)
Ix(K,) for each a. On the other hand, if an element r € R annihilates every
K,, then it certainly annihilates every sum of elements from these K,. Thus,
N x(K,) € I(Z,K,). A similar argument handles the right annihilators.

(2) Clearly, n, K, = Kgforeach g € A.So by (2.15.1), Ig(Ky) < Ig(n 4 K,)
for each B. Now lz(n,K,) is a left ideal of R (2.14.1), so X, , lz(K;) S
Ig(n 4K,). Again a similar argument for right annihilators. O

2. Exercises

1. Let R be a ring and let R°” be its opposite ring. Denote the multiplication
operation in R°? by *, thus,r *s = srforall r,se R.

(1) Let M be a left R-module. Define a function *:M x R°” - M via
(x,r)— x *r = rx. Prove that under this operation M is a right R’
module; we shall denote it by M°?. [Hint: See (1.15).]

(2) Let S be a second ring and let M be a left R- left S-bimodule. Prove
that with the operation *:M x R°? —+ M of part (1), M is a left S- right
R°P-bimodule.

2. (1) Let M be a non-zero abelian group, L = End'(M), and R = End"(M).
Then ;M and M. Show that ; My iff L is commutative. [Hint: Exercise
(2.1).]

(2) Let oV be a non-zero complex vector space. The abelian group V
becomes a left C-vector space ¢V with the scalar multiplication
(@, x) > @x (& is the conjugate of a). Prove that neither of these C-vector
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spaces ¢V and ¥ is a subspace of the other and that these two C-scalar
multiplications do not form a (C, C)-bimodule.

3. Let R be aring and x € R. Prove that the ideal (i.e., (R, R)-submodule of
xRg) of R generated by x is the set of all finite sums r,;xs, + ... + r,xs,
for neN, ry,...,r,, $;,...,5,€R. Give an example showing that
{rxs|r,s € R} need not be an ideal of R. [Hint: Consider M,(Q).]

4. Let M be a left R-module, let 4, B < R, and let X = M. Prove that:

(1) AX < M whenever A is a left ideal of R;

(2) A(BX) = (4AB)X;

(3) A(Xc X,) = Z; AX, whenever each X, is a subgroup of ;M (y € C);
(4) (¢ A,)X = Z; A, X whenever each 4, is a subgroup of ;R.

5. (1) Let I be left ideal and J be a two-sided ideal in R. Prove that if I and J
are nil (nilpotent), then so is the left ideal I + J. [Hint: Consider
(I + J)/J in R/J. (Also note that I nilpotent means I" = 0 for some
neN.)]
(2) Prove that if [ is a left ideal in R, then [ is nilpotent iff I R is nilpotent.
Conclude that if I and K are nilpotent left ideals then so is I + K.
(3) Let .# be a set of nilpotent left ideals of R. Prove that Z.# is a nil left
ideal.
(4) Let _# be a set of nil ideals in R. Prove that X £ is a nil ideal.

6. These are (Hasse) diagrams of three finite posets

. ?/Z\r/g .. -/.\T ./I\.
RN, (@ \, - (i) ]/
For example, the first poset has seven elements, a through g, a is the meet
of {b,f} and also of {c,f}, e is the join of {c,d} and of {a, d}, c is the join
of {b, ¢} and the pair {d, g} has neither a join nor a meet.
(1) Prove that ifa lattice L has a sublattice with diagram (ii), (respectively
(iii)), then L is not modular (distributive). Conversely, prove that a non-
modular lattice actually contains a sublattice like (ii). (A non-distributive
lattice must also contain a copy of (ii) or (iii). (See Birkhoff [66].)
(2) Let L be a modular lattice and let a, b, c € L with a < b. Prove that.
ifave=bvcandaa c=b A c,thena = b.
(3) Prove that a lattice L is distributive iff av (b A c)=(a Vv b) A
(av c)foralla,b,ceL.(See (0.5).)

7. (1) Sketch the (Hasse) diagrams of the lattices of submodules of the
Z-modules Zq, Z,,, Z s, Z4,. Using the test claimed in Exercise (2.6)
determine whether any of these are distributive.

(2) Let R be the ring of all 2 x 2 upper triangular matrices over the field
Z,. Sketch the diagrams of the lattices of submodules of gR, of Rpg,
and of gRy.

(3) Which, if any, of these modules are spanned by their minimal sub-
modules?

(4) For each module in (1) and (2) determine the intersection of the
maximal submodules.

8. Let pe P be a positive prime. Then M = {a/p"e Q|a€eZ and ne N} is
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respectively. In the same way, for example, if I is an ideal of R, then the lattice
of left ideals of R/I is isomorphic to the lattice of left ideals of R that contain I.
Therefore, we shall feel free to apply our various results about modules in
general to these special ones. However, as we shall see in the next section,
when we are considering homomorphisms we shall have to exercise
caution about such translations.

Annihilators

Given a left R-module M we should like to read properties of R from M and
conversely, properties of M from R. One very valuable tool for obtaining
some of this exchange of information is provided by “annihilators”. We have
mentioned the annihilator in a ring of an R-module M. More generally,
let M be a left R-module. Then for each X € M, the (left) annihilator of X
inRis
(X)={reR|rx=0 (xeX)},
and, for each A < R, the (right) annihilator of A in M is
ry(d)={xeM|ax=0 (acd)}.

For singletons {x} and {a}, we usually abbreviate to Ig(x) and ry(a). When
there is no chance for ambiguity, we may omit the subscripts R and M. Also,
of course, beginning with a right R-module M, we encounter the right
annihilator rg(X) and the left annihilator /,,(A4). There is some other fairly
obvious terminology; for example, if 4 < Ix(X), we may say that A4
annihilates X. The value of these annihilators will not be evident until much
later, but their basic properties are easy enough to obtain now.

2.14. Proposition. Let Mg be a bimodule, let X < M and let A = R. Then

(1) Ix(X) is a left ideal of R;

(2) ry(A) is a submodule of M.
Moreover, if X is a submodule of gkM, then lg(X) is an ideal of R. If A is a right
ideal of R, then ry(A) is a submodule of gMs. If R is commutative, then lx(X)
is an ideal and r\(A) is a submodule of M.

Proof. Consider (2). Let x, y € ry(A) and let s, 5" € S. Then for each a € 4,
we have (since R My is a bimodule):

a(xs + ys') = a(xs) + a(ys’) = (ax)s + (ay)s’ = 0.

So (2.3.c) since ry(A4) # & (it must contain 0), it is a submodule of M. The
rest of the proof is equally simple and will be omitted. O

2.15. Proposition. Let M be a left R-module, let X, Y be subsets of M and
let A, B be subsets of R. Then

(1) X < Y implies Ig(X) 2 Ig(Y) and A < B implies ry(A) 2 ry(B).

2) X € ryli(X) and A < Igry(A).

() Ir(X) = lgrylg(X)  and  ry(A) = rylgry(A4).



10.

11.

12.

13.

14.

Rings, Modules and Homomorphisms

an additive subgroup of @ with subgroup Z. Denote the factor group
M/Z by Z ,». Clearly the elements a/p" € M with 0 < a < p" form a set
of representatives.

(1) Prove that for each x € Z ,» and each m # O in Z, thereis a ye 2,
with x = my.

(2) Prove that every proper subgroup of Z,= is cyclic and spanned by
1/p" for some n. Then deduce that the lattice of subgroups of Z,= is a
well ordered chain and that Z ,» has no maximal subgroup.

. Let M be a non-zero module, let N be a proper submodule, and let

x e M\N. Prove that:

(1) M has a submodule K maximal with respectto N < K and x ¢ K.
(2) If M = Rx + N, then M has a maximal submodule K with N < K
and x¢ K.

Let I and M be proper ideals of a ring R. Prove that:

(1) M is a maximal ideal iff R/M is a simple ring.

(2) R has a maximal ideal that contains I.

(3) R has at least one maximal ideal.

Let R be commutative. A proper ideal P of R is prime in case abe P
implies that ae P or b € P. Prove that

(1) A proper ideal P is prime iff the factor ring R/P is an integral domain.
Thus every maximal ideal is prime.

(2) There exist chains of prime ideals of arbitrary length. [Hint: Consider
7[Xy,.... X,]]

(3) If there is an n e N such that x" = x for each x € R, then every prime
ideal is maximal.

(4) Every prime ideal of R contains a minimal (possibly 0) prime ideal.
[Hint: Apply the dual of the Maximal Principle.]

A commutative ring is a local ring in case it has a unique maximal ideal.
(See §15 for the non-commutative generalization.)

(1) Prove that every commutative ring whose ideal lattice is a chain
(e.g., Z,») is a local ring. Can you give an example of a commutative local
ring whose "ideal lattice is not a chain? [Hint: Try a factor ring of
Q[X, Y]]

(2) Let peZ be a prime and set

Z, = {a/bcQ|b¢Zp(a/b in lowest terms)}

Prove that Z,,, is a local ring with maximal ideal pZ .

(3) Prove that the ideal lattice of the local ring Z,, is co-well-ordered
(i.e., every non-empty set has a greatest element).

Generalize Exercise (1.9) by proving that if a ring R, not necessarily
commutative, has a unique maximal ideal, then CenR is a local ring.
Thus, every such ring R can be viewed as a (central) algebra over a local
ring. Show, however, that a ring whose center is local (even a field!) need
not have a unique maximal ideal. [Hint: Exercise (2.7.2).]

(1) Let I be a left ideal of a ring R. Prove that I(R/I) is the unique largest
two-sided ideal of R that is contained in I.
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15.

16.

17.

18.

(2) On the other hand show that it is possible for I to be a maximal left
ideal yet contain no maximal ideal of R. [Hint: Try Exercise (1.7).]

Let R be the subring of Z[X] x Z[Y] of all (f, g) with £(0) = g(0) (i.e.,
all pairs with the same constant term). It is easy to see that R is iso-
morphic to the factor ring of Z[X, Y] modulo the principal ideal
generated by X Y. Let M = zR. Show that the inclusions of (2.16.2) can
be strict even if we choose the K,'s to be annihilators of ideals and the I,’s
to be annihilators of submodules. [Hint: Consider for example the sub-
module generated by (X, 0).]

Let M be a left R-module. Let £g(M) = {lg(X)|X = M} and A, (R) =
{ru(A)| A = R}. Observe that 4 € LR(M)iff A = lgr,(A) and X € Ry(R)
iff X = rylz(X). Now prove that:

(1) Both ZR(M) and #,(R) are closed under arbitrary intersections,
whence as posets partially ordered by set inclusion #z(M) and #,(R)
are complete lattices. Moreover, if & < %z(M) and & < %,,(R), then

infof = N, sup A = l(ry(ZH))
inf% = nZ, sup & = ry(lx(ZZ)).

(2) The maps ry: A—ry(A) and Ig: X — I(X) are lattice anti-isomor-
phisms between #,(M) and %,,(R).

Let V be a left vector space over a division ring D. A subset X < V' is
linearly independent in case for every finite sequence x, ..., x, of distinct
elements of X and every d,,...,d,eD

dix, +..+d,x,=0 implies d,=...=d,=0.

A linearly independent spanning set of V is called a basis for V. (Note
that &¥ is a basis for 0.)

(1) Use the Maximal Principle to prove that if Yis a linearly independent
subset of Vand X is a spanning set, then there exists a subset X' € X
such that Yu X' is a basis for V.

(2) Prove that every vector space has a basis, and that every maximal
linearly independent subset and every minimal spanning set of a vector
space is a basis. _

(3) Prove that if W < V and X is a basis for V, then there is a subset
X'c Xsuchthat V= W+ DX'and W DX' = 0.

If X is a basis for a vector space V, then the dimension of V is
dim V = card X. This is independent of the choice of basis. Indeed, prove
that if X and Y are bases for ¥, then card X = card Y. [Hint: If X is
finite, use Exercise (2.17.1) and induction to show that card Y < card X.
On the other hand suppose that X is infinite. Then for each x € X there
is a finite subset F(x) = {y,, ..., y,} of Ysuch that xe Dy, + ... + Dy,
Show that Y = U, F(x) and hence that card Y < card(N x X) =
card X. (See (0.10).)]
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§3. Homomorphisms of Modules

If M and N are two left R-modules, then a function f:M — N is a (left R-)
homomorphism in case for all a, be R and all x, ye M
flax+by) = af (x)+bf(y);

i.e,, in case f'is R-linear. Note that here “left” has nothing to do with the side
on which we write f. Thus, if we write f on the right,

_ (ax+by)f = a((x)f)+b((y)f)-
Or if Mg and N, then f :M — N is a right R-homophorism iff

f(xa+yb) = f(x)a+f(yb.

The point really is that to be a module homomorphism f must preserve the
defining structure. Thus, if the abelian groups M and N are, say, left R-modules
via ring homomorphisms 4 and 4’ of R into their left endomorphism rings,
then an abelian group homomorphism f :M — N is an R-homomorphism iff
for each a € R the diagram

s
M——N
Aa) l . l A'(a)
s
M N

commutes.

For bimodules we have the obvious variations. Given bimodules ;Mg and
&Ns, an (R,S)-homomorphism from M to N is simply a function f:M — N
that is linear over both R and §; this can be expressed “jointly”. Thus,
f:M — Nisan(R,S)-homomorphism iffforallr,” e R,s,s'e S,and x, x' e M

Srxs+r'x's’) = rif (x)s +rf(x)s".

Since the arithmetic of module homomorphisms is clearly analogous to
that of abelian group homomorphisms and of linear transformations of
vector spaces, we shall not discuss it here. We do note, however, that whenever
two, say, left R-homomorphisms compose as functions, then the resulting
function is again an R-homomorphism. And that for M the identity map
1ps:M — M is an R-homomorphism. Thus the class of all left R-modules and
all R-homomorphisms between them form a concrete category; although it
will be important later, for the present we shall not be concerned with this
fact.

Let M and N be left R-modules and let f :M — N be a left R-homo-
morphism. Then the image of f, Im f, and the kernel of f, Ker f, are defined by

v Imf={f(x)eN|xeM}, Ker f = {xeM| f(x) = 0}.
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These are readily seen to be submodules of N and M, respectively. The
coimage of f and the cokernel of f are defined by

Coim f = M/Ker f, Coker f = N/Im f.

The linearity of an R-homomorphism tells us that its behavior is com-
pletely determined by its action on a spanning sei. That is,

3.1 Proposition. Let M and N be left R-modules, let X span M and let
f:M — N be an R-homomorphism. Then Im f is spanned by f(X). Moreover,
if g is also an R-homomorphism from M to N, then

f=9 ¥ f)=4g(x) (xeX)

Proof. The first statement follows from (2.7) in view of the fact that
Im f = f(RX) = Rf(X).

One implication in the final statement is trivial. For the converse, suppose
f(x) = g(x) for all x € X. It is easy to check that

K= {yeM|f(y)=g(y)}

is a submodule of M. But since X < K, we have M = RX < K by (2.3). Thus
f(y)=g(y)forallye M. O

Epimorphisms and Monomorphisms

A homomorphism f :M — N is called an epimorphism in case it is surjective
(ie., onto N). It is called a monomorphism in case it is injective (i.e., one-to-
one). From time to time we shall use self-explanatory variations of these
terms (e.g., epic and monic) to simplify our sentence structure.

If M is a left R-module, then every submodule of M is actually the image
of some monomorphism. For if K is a submodule of M, then the inclusion
map iy = iy K — M (see (0.1)) is an R-monomorphism, also called the
natural embedding of K in M, with image K. Every submodule of M is also the
kernel of an epimorphism. For let K be a submodule of M. Then the mapping
nx:M — M/K from M onto the factor module M/K defined by

ng(x) = x+ Ke M/K (xe M)

is seen to be an R-epimorphism with kernel K. We call ny the natural
epimorphism of M onto M/K.

An R-homomorphism f:M — N is an (R-) isomorphism in case it is a
bijection. Two modules M and N are said to be (R-) isomorphic, abbreviated
Mx=N
in case there is an R-isomorphism f:M — N. It is easy to check that this

relation (of “being isomorphic”) is an equivalence relation.

3.2. Story of “0”. Given any pair of left R-modules M and N there is
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always one R-homomorphism from M to N, namely, the zero homomorphism
0:M — N defined via

0:x—0eN (xeM)

Fortunately, the ambiguity of our multiple use of the symbol “0” for all zero
elements, all zero submodules, and now all zero homomorphisms, turns out
to be of no real consequence in practice. Indeed, we note that the zero sub-
module of a module M is the unique single element submodule of M, that
one whose single element is zero, and that not only are any two zero sub-
modules isomorphic but there is a unique isomorphism between them,
namely the zero homomorphism.

While we are on the subject, there are several other conventions con-
cerning 0. Since between any two zero modules there is a unique iso-
morphism, we shall feel free to identify all zero modules. Also, given a
module M there is a unique homomorphism M — 0, that is necessarily epic,
and there is a unique homomorphism 0 — M that is necessarily monic. When
we write something such as M — 0 or 0 -+ M, we have in mind these unique
module homomorphisms. Now finally, for any module M,

ne:M - M/O and ny:M/M -0

are isomorphisms, and again we shall usually identify the factor modules
M/0 and M/M with M and 0, respectively.

We now state various characterizations of epimorphisms and mono-
morphisms analogous to those for surjections and injections in the category
of sets and functions. For homomorphisms we have the advantage of the
0-function, but we no longer can characterize, say, monomorphisms as we
did injections by means of a one-sided inverse.

3.3 Proposition. Let M and N be left R-modules and let f :M — N be an
R-homomorphism. Then the following statements are equivalent :

(@) f is an epimorphism onto N;

(b)y Imf =N;

(c) For every zK and every pair g, h:N — K of R-homomorphisms, gf = hf
implies g = h;

(d) For every xK and every R homomorphism g:N — K, gf = 0 implies
g=0.

Proof. (a) <> (b) and (a) = (c) are trivial.

(c) = (d). Let h:N — K be the zero homomorphism. Then gf = 0 means
gf = hf; so assuming (c), we have g = h = 0.

(d)=(b). Let I = Imf Then n;:N - N/I = Coker f clearly satisfies
n, f = 0. So assuming (d) this means that n; = 0. But since n, is onto N/I, we
infer N/I = 0 whence I = N. |

3.4. Proposition. Let M and N be left R-modules and let f:M — N be an
R-homomorphism. Then the following statements are equivalent:

(a) fis a monomorphism;

(b) Kerf=0;
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(c) For every gK and every pair g, h:K — M of R-homomorphisms, fg = fh
implies g = h;

(d) For every xK and every R-homomorphism g:K — M, fg = 0 implies
g="0.

Proof. The implication (d) = (b) is the only one that offers any challenge.
But let K = Ker f. Then ix:K — M is an R-homophorphism and fi; = 0.
So assuming (d) we have ix = 0. But then K = Imiy = 0. O

3.5. Proposition. Let M and N be left R-modules and let f:M — N be an
R-homomorphism. Then f is an isomorphism iff there are functions g, h: N - M
such that

fg=1y and hKf =1,,.
When these last conditions are satisfied, g = h is an isomorphism.

Proof. Of course the implication (<) and the uniqueness assertion are
easy (g = 1,9 = hfg = hly = h). For the converse we observe that if f is an
isomorphism, and hence a bijection, then there is a function g: N — M such
that fg = 1y and gf = 1,. (See (0.1).) To complete the proof we need to
check that g is R-linear. But since f is, we have

f(glax+by)) = ax+by = f(ag(x)+bg(y)),
and then since f is injective, we have the R-linearity of g. O

When f:M — N is an isomorphism, the unique R-homomorphism
g:N — M satisfying the condition of (3.5) is the inverse of fand is denoted by
f 1 (See (0.1).) Note that in (3.3) and (3.4) we did not claim as an equivalent
condition the existence of one-sided inverses. As we shall see, this omission
was not accidental.

The Factor Theorem

A homomorphism f:M — N that is the composite of homomorphisms
S =gh,

is said to factor through g and h. The following result essentially says that a
homomorphism f factors uniquely through every epimorphism whose kernel
is contained in that of f and through every monomorphism whose image
contains the image of f.

3.6. The Factor Theorem. Let M, M’, N, and N’ be left R-modules and let
S:M — N be an R-homomorphism.

(1) If g:M — M’ is an epimorphism with Ker g = Kerf, then there exists a
unique homomorphism h: M’ — N such that

f=hg.

Moreover, Kerh = g(Kerf) and Imh=Imf, so that h is monic iff
Kerg = Ker f and h is epic iff f is epic.



46 Rings, Modules and Homomorphisms

(2) If g:N' - N is a monomorphism with Imf < Img, then there exists a
unique homomorphism h:M — N’ such that

f=gh

Moreover, Ker h = Ker fand Imh = g*(Im f), so that h is monic iff f is monic
and h is epic iff Img = Im f.

M—L N M—L N
7 N\
N ///h h\\\ /
/ v
M’ N’

(1) @ :

Proof. (1) Since g:M — M’ is epic, for each m' e M’ there is at least one
me M with g(m) = m'. If also | € M with g(I) = m’, then clearly m—1 € Ker g.
But since Kerg < Ker f, we have that f(m) = f(I). Thus, there is a well
defined function h: M’ — N such that f = hg. To see that h is actually an
R-homomorphism, let x', ' € M’ and let x, ye M with g(x) = x', g(y) = y'.
Then for each a, b € R, g(ax+ by) = ax'+ by, so that

h(ax'+by") = f(ax+by)
= af (x)+bf (y) = ah(x')+bh(y").

The uniqueness of h with these properties is assured by (3.3.c) since g is an
epimorphism. The final assertion is trivial.

(2) For each me M, f(m)e Im f < Img. So since g is monic, there is a
unique n’ € N’ such that g(n') = f(m). Therefore, there is a function h:M — N’
(viz.,, m+ n’) such that f = gh. The rest of the proof is also easy. O

As consequences of the first part of the factor theorem we have the all-
important Noether Isomorphism Theorems.

3.7, Corollary [The Isomorphism Theorems]. Let M and N be left R-
modules.

(1) If f- M — N is an epimorphism with Ker f = K, then there is a unique
isomorphism n:M/K — N such that nim + K) = f(m) for allme M.

(2 f K <L <M,then M/L =~ (M/K)L/K).

(3) IfH<Mand K < M, then (H+K)/K = H/(H n K).

Proof. (1) Let M’ = M/K and let g be the natural epimorphism
g =ng:M— M/K in (3.6.1).

To prove (2) and (3) apply (1) to the epimorphism f':M/K — M/L via
f'(m + K) = m+ L and to the epimorphism f”:H — (H + K)/K via f"(h) =
h+ K, respectively. O

3.8. Corollary. Let M and N be left R-modules and let f:M — N be an
R-epimorphism with kernel K. Then

L f(L) = {f(x)|xe L}
P f(P) = {xe M| f(x)e P}
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are inverse lattice isomorphisms between the lattices (M )/K of submodules
of M that contain K and ¥(N) of all submodules of N.

Proof. By The First Isomorphism Theorem (3.7.1) we have an iso-
morphism n: M/K — N such that

M——N

.

commutes. Clearly, n induces a lattice isomorphism between ¥ (M/K) and
F(N). But by (2.9) ng induces one between & (M)/K and &#(M/K). Now it is
simply a matter of checking that these isomorphisms compose into the ones
claimed. - N

It is now easy to characterize (to within isomorphism) the cyclic modules
and the (subclass of) simple modules. This is not to be scoffed at, for as we
saw in (2.8) every module is spanned by its cyclic submodules and as we shall
see in §9, modules spanned by simple ones are very well behaved. Given M
and x € M right multiplication by x

Peirp(r) =rx (reR)
is a left homomorphism from R onto the cyclic submodule Rx with kernel
Kerp, = Ig(x) = {re R|rx = 0}

the left annihilator (in R) of x. So by (3.7.1) R/lg(x) = Rx. On the other hand,
if I is a left ideal of R, then R/I is a cyclic left module spanned by 1 + I and with
1x(1+1I) = I. Thus with an assist from (2.10)

3.9. Corollary. A left R-module M is cyclic if and only if it is isomorphic
to a factor module of RR. If M = Rx, then p.: R — M is an epimorphism with
kernel Ig(x), so M = R/Iz(x) and M is simple if and only if Iy(x) is a maximal left
ideal. ad

As a final application here of The Factor Theorem, we give

3.10. Corollary. Let M and K be left R-modules and let j:K — M be an
R-monomorphism with Imj = 1. Then there is a unique isomorphism v:1 - K
such that jv = i,.

Proof Let] = M,M =N, K =N'andi; = fiandj=¢gin (3.6.2). [

3.11. Rings and Other Modules. Again we have been stating our definitions
and results for left R-modules. Fortunately, with no difficulty everything
translates to other styles of modules. There is, however, one possible source of
misunderstanding, namely, that there is a real difference between ring homo-
morphisms of a ring R and bimodule homomorphisms of zRjy. (See Exercise
(3.6).) Let R and S be rings and let ¢:R — S be a ring homomorphism. Then
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(see §2) ¢ induces a bimodule structure zSg on § via
(r,s)—@(r)s and (s, r)— s(r).
Moreover, ¢ is then an (R,R)-bimodule homomorphism
& xR = Sy

and its image is not only an (R,R)-submodule, but also a subring of S. If ¢ is
actually onto S, then the left and right R-submodules of S coincide with the
same sided ideals of the ring S and we have the ring theoretic version of (3.8),
namely, that if ¢:R — § is a ring homomorphism onto § with kernel K, then
¢ induces lattice isomorphisms between the left, right and two-sided ideal
lattices of S and, respectively, the sublattices of left, right and two-sided ideals
of R that contain K. (Note, however, that if ¢ is not onto S, then the images of
ideals of R, although (R,R)-submodules of S, need not be ideals of S.)

Exactness

A pair of homomorphisms
M4 M5

is said to be exact at M in case Imf = Ker g. We also say that a single homo-
morphism M’ % M is exact at both M’ and M. F inally, a sequence (finite or
infinite) of homomorphisms

I M, LM M, — ..

is exact in case it is exact at each M,; i.e, in case for each successive pair

j;ufni'l
Imf, = Ker f, ..

Immediate from the definition is the following set of special cases.

3.12. Proposition. Given modules M and N and a homomorphismf:M — N,
the sequence

(1) 0- M L N is exact iff f is monic;

(2) M5 N0 is exact iff f is epic;

(3) 0> M L N - 0 is exact iff fis an isomorphism. d

To some extent the status of the kernel and cokernel of a homomorphlsm
can be summarized as a certain exact sequence.

3.13. Proposition. If M and N are modules and if f:M — N is a homo-
morphism, then

0— Kerf5>M L N3 Cokerf— 0

is exact where i is the inclusion map and n is the natural epimorphism
N = N/Imf. O
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This result, whose proof is trivial, has as special cases the two facts that
f:M — N is monic iff

0->M>L NS Cokerf—0
is exact, whereas it is epic iff
0> Kerf SMAN-0
is exact. In general, an exact sequence of the form
0-KLZMEN-0

is called a short exact sequence. By (3.12) in such a sequence f is a mono-
morphism and g is an epimorphism. Thus by (3.7.1) and (3.10) there exist
unique isomorphisms v and 5 such that

0-KL5MAHENSO

Y\
Imf M/Kerg

commutes where i is the inclusion map and n is the natural epimorphism. But
by exactness Imf = Ker g, so v and #n are isomorphisms such that

s
0-Imf5> M5 M/Inf-0

commutes. That is, every short exact sequence is “isomorphic” in this latter
sense to one of the form

0->M S5SM5M/M >0

where i is an inclusion map of a submodule M’ of M and n is the natural
epimorphism. A short exact sequence

0—>K1>M—€>N—>0

is also called an extension of K by N. (See Exercise (3.13).)

Remark. In order to simplify matters we shall try to omit certain un-
necessary symbols. In a given diagram if we fail to specify some homo-
morphism, it is generally because there is really only one natural candidate.
For example, if we were to write, “consider the short exact sequence
0 Kerf—-M L N0, we clearly intend Kerf— M to be the identity
embedding. On the other hand, it is often helpful to add more than necessary.
Examples of this occur in statements such as “consider a monomorphism
0—- K4 M,” or such as “given an epimorphism M 5 N - 0.”

For several standard lemmas about commuting diagrams, the usual
proofs involve a technique known as “diagram chasing”. In our next result,
one of these diagram lemmas, we illustrate this technique.



50 Rings, Modules and Homomorphisms

3.14 Lemma. Suppose that the following diagram of modules and homo-
morphisms

AL B-4LC
S
Al L’ B/ _9_" C/
is commutative and has exact rows.
(1) If a, y, and f’ are monic, then so is 8;
(2) If a, v, and g are epic, then so is ;
(3) If B is monic, and if « and g are epic, then y is monic;
(4) If B is epic, and if f' and y are monic, then a is epic.

Proof. (1) It will suffice to show Ker f = 0. So let be Ker 8. Since the
diagram commutes, yg(b) = ¢g'f(b) = 0. Since y is monic, g(b) = 0 whence
be Kerg. But the top row is exact, so Kerg = Imf. Thus, there is an ae A
such that b = f(a). Now since the diagram commutes f'a(a) = ff(a) =
B(b) = 0. Finally, f* and « are monic, so a = 0, whence b = f(a) = 0.

(4) Let a' € A'. Then since f§ is epic, there is a b € B such that f(b) = f'(a').
Since the diagram commutes and the bottom row is exact yg(b) = g'B(b) =
gf'(@’) = 0. But y is monic, so b e Kerg = Imf. Thus, there is an a € A with
f(a) = b.Sof'a(a) = Bf(a) = B(b) = f'(a'). Finally,f’ is monic,so a(a) = a'.(J

3.15. The “Five Lemma”.Suppose that the following diagram of modules
and homomorphisms

A—B—-C—D-—>E

R

A’_'B’——’CI_'DI—’E’

is commutative and has exact rows.
(1) If a is epic and B and 5 are monic, then y is monic.
(2) If e is monic and B and 6 are epic, then v is epic.
(3) If a, B, &, and & are isomorphisms, then so is y.

Proof. By diagram chasing. O
3. Exercises

1. Let M be a left R-module. Prove that the following assertions are equiva-
lent: (a) M = 0; (b) For each left R-module N there is a unique R-homo-
morphism M — N; (¢) For each left R-module N there is a unique R-
homomorphism N — M.

2. Let M be a left R-module. Prove that the following are equivalent:
(a) M is simple; (b) Every non zero homomorphism M — N is a mono-
morphism; (c) Every non-zero homomorphism N — M is an epi-
morphism.
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3. Let f:M —» N be an R-homomorphism. Prove that if f is monic, then
Ix(M) 2 Ix(N), whereas if f is epic, then Ig(M) < I(N).

4. Let C be a category and let f:4— B be a morphism in C. Then fis a
monomorphism (epimorphism) in case it is cancellable on the left (right) in
C; ie, in case for each pair of morphisms g, h:C — A(g, h:B—C) in C,
if fg = fh (if gf = hf), then g = h. The morphism f is an isomorphism in
case it is invertible in C; i.e, in case there is a morphism g:B— A with
gf=1,and fg = 1.

(1) Prove thatif f: 4 - B and f': B —» C are both monomorphisms, epi-
morphisms, isomorphisms, respectively, then f’f is a monomorphism,
epimorphism, isomorphism.

(2) Prove that in the concrete category R of all rings and ring homo-
morphisms, the inclusion map f:Z — Q is both a monomorphism and an
epimorphism but not an isomorphism. (Also, see Exercise (4.2).)

5. Let R be a ring and let a: R — R be a ring automorphism. For each left
R-module M define amap *:R x M — M via (r,m)—r *m = a(r)m. Show
that with respect to this operation M is a left R-module; we denote this
module by M? (See Exercise (2.2).) However, show that in general, M and
M? need not be R-isomorphic. [Hint: Let R = Q[X, Y], « the auto-
morphism that interchanges X and Y, and M = R/I where I is the ideal
generated by X. Then use Exercise (3.3).]

6. Let R and S be rings and let ¢ : R — S be a ring homomorphism, so that S

is an (R,R)-bimodule with respect to the scalar multiplications
(r,s)> ¢(r)s and (s, r)—>s(r).
(1) Prove that if ¢ is surjective, then the (R,R)-submodules of S are pre-
cisely the ideals of the ring S, but that if ¢ is not surjective, then the
images of the ideals of R need not be ideals of S. [Hint: Let S be a field.]
(2) Let 6:Q — M,(Q) be defined by

, r O
T
’ 0o r|

Then o is a ring homomorphism, whence via g, M,(Q) is an (Q,Q)-
bimodule. Show that the mapping f: Q— M,(Q) defined via

r 0
f:rH[O —r:I.

is an (Q,Q)-homomorphism but not a ring homomorphism.

7. Let f:M — N be an epimorphism and let K < M. Prove that
(1) f Kn Kerf=0,then (f|K):K— N is a monomorphism.
(2) If K+ Ker f = M, then (f | K):K — N is an epimorphism.

8. (1) Prove that if M is a finite cyclic Z-module, then there is a short exact
sequence

0-2575M-0.
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10.

1.

12.
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(2) Prove that there exists an exact sequence (over Z)
0_’ 22424-"24-’22—’0.
(3) Prove that there exists an exact sequence (over Z)

,.—’24—’24—’2,‘—’24—’

. Let U, V, W be real vector spaces of dimension one, three, and two res-

pectlvcly Let {u} be a basis for U, {v,, v, v3} a basis for ¥;and {w,, w,}a
basis for W. Finally, let f:U -V be the R-homomorphism defined by
flou) = av, +av, and g:V—W be the R-homomorphism defined by
glo v+ a0+ a3v3) = aywy +asw,.

(1) Prove that the sequence 0 U 5 V5 W— 0 is exact at U and W but
not at V. )

(2) Prove that there exists g': V—» W with 0 —» U —f» V&% W0 exact.

(3) Prove that there exists /' :U— ¥V with 0= U L V4 W— 0 exact.

Let R be a ring and let M’ LIMEM bea sequence of R-modules and
R-homomorphisms. Prove that this sequence is exact iff there exists a
commutative diagram

O\N/O
DAy
7/
7\

0 0
of R-modules and R-homomorphisms in which the “diagonal” sequences
are all exact.

(1) Prove “The Five Lemma” (3.15).
(2) Suppose that the following diagram of modules and homomorphisms
is commutative and has exact rows:

0—-ALBLC»0
!
0—-ALBLC—0
Assume that f is an isomorphism. Prove that « is monic and y is epic, and
that « is epic iff y is monic.

Suppose that the following diagram of modules and homomorphisms is
commutative and has exact rows:
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13.

14.

0O 0 o0
Lol
0-A'>B—->C—0
Lol
0-A—B—C—0
Lol
0-A">B"-C"-0
Lol
0 0 o

Prove that if the middle column is exact, then the last column is exact iff
the first column is exact.

Two extensions of K by N
0-KLMEAN-0
0-KLM LNSO

are equivalent in case there is a homomorphism h: M — M’ such that

commutes.

(1) Prove that if the above two extensions are equivalent (via h), then h
is an isomorphism.

(2) Prove that the relation of “being equivalent” is an equivalence
relation on the class of all extensions of K by N.

(3) Given K and N, there is at least one extension of K by N
0o KLHKxNSN-SO

where ¢ :k+— (k,0) and n: (k, n) > n.
(4) Prove that there are (at least) two inequivalent extensions of Z, by
Z,.

Let R be a commutative integral domain and let M be a left R-module.
The set T(M) = {x e M |lz(x) # 0} is a submodule (proof?) called the
torsion submodule of kM. If T(M) = M, then M is torsion; if T(M) = 0,
then M is torsion free. Let M and xN and let f:M — N be an R-homo-
morphism. Prove that

(1) T(M/T(M)} = 0.

(2) If N is torsion free, then T(M) < Ker f.
(3) If M is torsion, then Imf < T(N).
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15.

16.

17.

18.
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Let R be a commutative integral domain. A left R-module M is (R-)
divisible in case aM = M for each 0 # ae€ R; i.e., in case m = ax has a
solution xe M for each me M and 0 # ae R. Let Q be the field of
fractions of the integral domain R. Prove that

(1) If M is a Q-vector space, then as an R-module it is divisible and
torsion free.

(2) If M is a divisible and torsion free R-module via 4:R — End'(M),
then there is a unique ring homomorphism 6:Q — End'(M) with
(0| R) = 2; in particular 6 induces a Q-vector space structure on M.

(3) Iff:M — Nisan R-epimorphism and if M is R-divisible, then so is N.

Let p € P. Consider the abelian group Z,». (See Exercise (2.8).)

(1) Prove that Z ,» is divisible (see Exercise (3.15)). Moreover, show that
if neZ is not divisible by p, then x+> nx defines an isomorphism
2,0 = Z yoo.

(2) Prove that an abelian group M is isomorphic to Z ,» iff M is spanned
by a countable set g,, g,, ... of non zero elements satisfying pg, = 0 and

PGus1 =g, (n=1,2,...).

Let peP. Consider the abelian group Z,» and let A(p) = End"(Z ,»).
The ring A(p) is called the ring of p-adic integers.

(1) Prove that A(p) has a (unique) subring isomorphic to the ring Z,,.
(See Exercises (2.12), (3.15.2), and 3.16.1).)

(2) Let gy, g,.... be a spanning set for Z o with pg, = 0 and pg,,, = g,
(n=1,2,...). (See Exercise (3.16.2).) Prove that for each

g = (an)neN € ZT’
there is an endomorphism & € A(p) defined by

6(9") = algn + azgn—l + ...+ a,9,,

and that the map o+ G is a bijection from Z} onto A(p). Infer that
A(p) is not isomorphic to Z ).
(3) Denote the endomorphism & (see (2)) as a “power series”

G=a; +a,p+asp’+...

Show that computations in A(p) with these power series are the natural
extensions of the usual computations with integers represented to the
“base” p. In particular, deduce that A(p) is commutative.

An indexed set (x,),c, in a vector space V is linearly independent in case
{x,| ¢ € A} is linearly independent and « # B implies x, # xg. Thus if
(X2)se4 is @ basis for ¥, then dim V = card A. (See Exercises (2.17) and
(2.18).) Let V'and W be left D-vector spaces. Prove

(1) If (x,),cc is independent in V and (y,),.c is an indexed set in W, then
there exists a linear transformation (= D-homomorphism) f:V—» W
such that f(x,) = y, (ye C).

(2) There exists an epimorphism (monomorphism) f: V' — W iff dim V >
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dim W (dim V < dim W), and if f is epic (monic) then dim V = dim(Ker f)
+ dim W (dim W = dim V + dim(Coker f)).

(3) A linear transformation f: ¥ — W is epic (monic) iff f has a right (left)
inverse f*W— V.

4) V= WifdimV=dimW.

§4. Categories of Modules; Endomorphism Rings

Given two modules M and N, say left R-modules, every R-homomorphism
from M to N is an element of the set of functions from M to N, in particular,
these homomorphisms form a set. The standard notation for this set is
Homg(M, N).
Suppose we have left R-modules fM and gN. Then for each pair f, g in
Homg(M, N) define the functions f + g and (—f) from M to N by

f+g:x—f(x) + g(x) (xe M).
(=f):x— —f(x) (xe M).

It is completely elementary, if somewhat tedious, to check that each of these
is a left R-homomorphism from M to N. Using the “negative”, (—f), and
the zero homomorphism, an easy computation gives

4.1. Proposition. If M and N are left R-modules, then Homg(M, N) is an
abelian group with respect to the operation of addition (f,g)— f + g defined by

(f+9x)=f(x) +9(x) (xeM) O

Although we shall not need the terminology for several sections, we begin
now to acclimate ourselves to thinking of modules categorically. Given a
ring R the category of left R-modules is the system

rM = (r#, Hompg, )

where  # is the class of all left R-modules, Homg:(M, N)— Homg(M, N),
and o is the usual composition of functions. Clearly, this is a concrete category
(0.11) whose objects are left R-modules, (M, 1) with underlying set M, and
whose morphisms are left R-homomorphisms. Allowing a slight perversion
of our notation, we may write things like M € xM and fe zxM to indicate that
M is an object in xM and fis a morphism in xM. As we shall see, xM has a rich
structure. One thing that already distinguishes it from other categories is that
for each pair M, N e gM, the set Homg(M, N) has the structure of an abelian
group such that the composition of M distributes over this addition.

There are many other module categories that are of interest. Thus there
is the concrete category My = (#y, Homg, o) of right R-modules and right
R-homomorphisms. There is the category zMg of left R- right S-bimodules
and their homomorphisms. Two other very important ones are the category
rFM of all finitely spanned left R-modules and its sister FMy of all finitely



56 Rings, Modules and Homomorphisms

spanned right R-modules. These latter are full subcategories of M and Mg,
respectively. For more on the subject, including a few examples of functors,
see the exercises.

Concerning the homomorphism groups there are two rather simple facts
that we should note. Suppose we have two S-modules (M and gN and a ring
homomorphism ¢:R — S. Then ¢ induces an R-module structure on both
M and N and every S-homomorphism f:M — N is also an R-homomor-
phism. For

S(rx) = f(@(r)x) = ¢(r) f(x) = rf(x).

(Indeed ¢ induces a functor from M to zM; see Exercise (4.15).) Thus as
abelian groups

4.2. Homg(M, N) < Homg(M, N) = Hom (M, N) < Homz(M, N)

Now suppose that ;M and zN are R-modules and that I is an ideal of R
that annihilates both M and N. Then (see §2), M and N both carry natural
R/I module structures, and certainly every R-homomorphism between them
is an R/I-homomorphism. Therefore, with one inclusion from (4.2) we have

4.3. Homg(M, N) = Homg,;(M, N).

Again, let zM and N be left R-modules. In general we cannot expect the
abelian group Homg(M, N) to be an R-module. Of course there is always the
temptation prompted by our experience in linear algebra, to define a scalar
product af: M — N by af : x — af (x) (x € M). This is a perfectly good function,
but it may fail to be “R-linear” unless ae Cen R. For in general we cannot
conclude that (af)(bx) = af (bx) = abf(x) and b(af)(x) = b(af (x)) = baf(x)
areequal. However, if M = g M;is a bimodule, then for each s € S the function
obtained by first multiplying by s and then applying fe Homg(M, N)

sf x> f(xs) (xe M)
is an R-homomorphism sfe Homg(M, N). Indeed, it is clearly additive and
(f)rx) = f((rx)s) = f(r(xs)) = r(f(xs)) = r(sf)(x).

In other words, Homg(g Mg, gN) is a left S-module with scalar multiplication
(5,f)+— sf defined by

Nx) =f(xs)  (xeM)

Thus from the right action of S on M we get a left action of S on Homg(M, N).
On the other hand if N = gNy, then Homg(gM, gN;) is a right T-module
with scalar multiplication (f; ¢) +— ft defined by

(fx) =fx)p  (xeM).

Here the right action of T on N induced a right action of T on Homg(M, N).
Note also thatif se S, t € T, then

() (x) = ((N)x))e = f(xs)t = (f1)(xs) = (s(S1))(x).
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These and other equally easy computations give

4.4. Proposition. Let M and N be abelian groups and let R, S, and T be
rings. Then the module structure

(1) gkMs, gNy induces a left S- right T-bimodule structure on Homg(M, N)
via

()(x) = f(xs) and (ft)(x) =Sf(x)t;

(2) sMg, +Ng induces a left T- right S-bimodule structure on Homg(M, N)

via
tNx) = tf(x) and (fs)(x) = f(sx). O

This business of transferring the action of a ring on M or N to action on
Homgz(M, N) has many rather obvious variations. But about all of them there
are two things to remember. First, the basic R-action on M and N does not
transfer to Homg(M, N). And second, the sides change when transferring from
the first variable M, but stay the same when transferring from the second
variable N. (Incidentally, this latter “contravariant-covariant” phenomenon
will be treated more fully in subsequent sections.) Concerning notation:
when, for example, we write Homg(zMs, xkNy) we are viewing Homg(M, N)
with the bimodule structure of (4.4.1).

The regular bimodule 3Ry gives rise to important applications of (4.4).
By (4.4.1) for each xM we have a left R-module Homg(gRg, gM) and a right
R-module Homg(gM, gRR). The second of these, called the R-dual of M, will
receive attention in later sections. The first is just another copy of M:

4.5. Proposition. Given a left R-module M there is a left R-isomorphism
p:M — Homg(R, M) defined by

p(x)(a) = ax (xe M,aeR).
Moreover, if M is a bimodule Mg then p is an (R, S) isomorphism.
Proof. First we seé that p(x) is an R-homomorphism from R to M for
p(x)(ab + a'b’) = (ab + a'b')x = ap(x)(b) + a’ p(x)(b’)
foralla,a', b, b’ € R. Then p itself is R-linear, for
plax + by)(c) = c(ax + by) = cax + cby
= p(x)(ca) + p(y)(cb) = (ap(x) + bp(y))(c)

by (4.4.1). Now p is monic for p(x) = 0 forces x = p(x)(1) = 0. And p is epic
for if fe Homg(R, M), then f(a) = af (1) = p(f(1))(a). The last statement is
now easy to check. U

In §20 we shall see that this isomorphism p between M and Homg(R, M)
is “natural” in that it defines a natural transformation of functors (see
(0.13)). There is a generalization of this that will be quite useful. Let e R be
a non-zero idempotent. Then eRe is a ring with identity (1.16). Moreover, if
&M is a left R-module, then
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eM = {ex|xe M}
is clearly a subgroup of M and acquires a left eRe-module structure via the
scalar multiplication

(ere, ex)— erex.

Actually, left multiplication by e defines a covariant functor from zM to
.reM (see Exercise (4.17)). For now, however, we record only the following
easy generalization of (4.5) whose proof we leave as an exercise. (See Exercise

4.9))

4.6. Proposition. Let e R, fe S be non-zero idempotents and let zMg be a
bimodule. Then,g.eMs and ¢ Mf s are bimodules, and

p:eM — Homg(Re, M) and A:Mf— Homg(fS, M)
defined via
p (em)(re) = rem and Amf)(fr) = mfr
are bimodule isomorphisms. d
As a particularly important special case we have
4.7. Corollary. If e and f are idempotents in a ring R, then
Homg(Re, Rf) = g.eRf;r; = Homg(fR, eR). O

An R-homomorphism of an R-module M to itself is called an (R-)endo-
morphism of M. An R-isomorphism from M to itself is an (R-)automorphism
of M. As we have seen (4.1), the set

Homg(M, M)

of all R-endomorphisms of M is an abelian group. Since it is also closed
under the usual product (= composition) of maps, if M =+ 0, then
Homg(M, M) is a subring of the ring of endomorphisms of the abelian group
M. But just as for groups, there are two such rings and we must distinguish
between them. Let

Endi(M) and  Endy(M)

denote the ring of endomorphisms of ;M treated as left operators on M and
as right operators on M, respectively. Thus, these are opposite rings of each
other. There usually turns out to be a preferred side. Indeed since we shall
almost always want to write endomorphisms, when considered as elements
in the endomorphism ring, on the side opposite the scalars, we adopt a
convention. For a left R-module M we write

End(xM) = Endy(M)

Sor the endomorphism ring of M operating on the right and for a right R-module
N we write

End(Ng) = Endy(N)
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for the endomorphism ring of N operating on the left. In other words the endo-
morphisms will operate on the side opposite the interior subscript.

Before proceeding with real business at hand we shall note versions of
(4.2) and (4.3) for endomorphism rings. Suppose then that ¢M is a non-zero
left S-module and that ¢:R — S is a ring homomorphism. Then considering
M with the R-structure induced by ¢, it is clear from (4.2) that as rings

4.8. End(sM) < End(xM) = End(,,M) < Endy(M).

Also, if gk M is non-zero and if I is an ideal of R that annihilates M, then
(see (4.3)) we have that

4.9. End(xM) = End(g,M).

If M is a non-zero left R-module, then End(zM), the ring of R-endo-
morphisms of M viewed as right operators, is actually a subring of End%(M).
(See (4.8).) This means simply that (M, i) is a right End(zM )-module where
i:End(gM) — Endy(M) is the inclusion map. That each fe End(gM) is an
R-endomorphism means that for each such f, each r€ R, and each xe M,

(rx)f = r(xf).
In other words, M is a left R- right-End(gM)-bimodule

RMEnd( M)

This simple fact is really the starting point for the concept of bimodules. For
suppose also that S is a ring and that M is a right S-module via a ring homo-
morphism p:S — Endy(M). If s € S, then p(s) is in the subring End(zM) iff for
all reR and xe M, '

r(xp(s)) = (rx)p(s),
or writing p(s) as a scalar product,
r(xs) = (rx)s. .

Therefore, the image of p is in the subring End(z M) iff this identity holds for all
se S, all reR, and all xe M; that is, iff M is an (R,S)-bimodule. Reversing
the roles of R and S will clearly produce a similar conclusion. From this it
should be clear how the concept of a bimodule enriches the theory—a
bimodule is simply the representation of one ring as a ring of endomorphisms
of a module over another ring. Formally summarizing these observations
we have

4.10. Proposition. Let R and S be rings and M an abelian group. If M is a
left R-module via 4:R — End'(M) and a right S-module via p:S — End"(M),
then the following are equivalent:

(@) gMs;

(b) A:R — End(Mjy) is a ring homomorphism;

(c) p:S — End(gM) is a ring homomorphism. O

Thus for a bimodule ;M we have the canonical ring homomorphisms
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“left and right multiplication”
A:R — End(Mj) and p:S - End(xM)
such that forreR, xe M and se S
Mr):x—rx and p(s):x > xs.

Here gM (respectively, M) is faithful iff A (respectively, p) is injective. If both
4 and p are surjective we say that ;M is a balanced bimodule. In other words,
the bimodule gM; is balanced in case eveiy S-endomorphism of M is
“multiplication by” an element of R and every R-endomorphism of M is
“multiplication by” an element of S. If A and p are isomorphisms, then Mg
is called a faithfully bdlanced bimodule.

There is an example, perhaps familiar, from elementary linear algebra.
Let S be a field, let M be a non-zero vector space over S, and let R = End(Mj)
be the ring of S-linear transformations of M viewed as left operators. Then,
it is clear that ;M (see (4.10)) and both M and M faithful. In particular,
right multiplication by each scalar s € S is an endomorphism of zM. But an
easy argument (see Exercise (4.4)) shows that every o € End(gM) is in fact just
such a scalar multiplication. Therefore Mg is a faithfully balanced
bimodule.

Another important example of a faithfully balanced bimodule is given in

4.11. Proposition. If R is a ring and if A and p denote left and right
multiplication, then

A:R — End(Rg) and p:R — End(zR)
are ring isomorphisms; i.e., the regular bimodule g Ry is faithfully balanced.

Proof. That A and p are ring homomorphisms follows from (4.10). That
they are bijective follows from (4.5) and its right-hand version. d

Consider a left R-module M and its endomorphism ring
T = End(gM).

By (4.10) there is a bimodule zM; where the T-action is induced by the
identity homomorphism T — End(xM). The endomorphism ring B of M,
called the biendomorphism ring of xM, is abbreviated

B = BiEnd(xM) = End(My).

The elements of B are called the biendomorphisms of gM. Since M, is a
bimodule, (4.10) implies that if the module action of R is given by A, then
A(r) € BiEnd(g M) for all r € R. That is, 4 is a ring homomorphism

A:R - BiEnd(xM);

we call this the natural homomorphism of R into the biendomorphism ring of
gM. On the other hand, by (4.10), the left R-module M can be made into a
bimodule ;M with multiplication
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(b, x) — b(x) and (x, t) — xt.
It is, in fact, a balanced bimodule.

4.12. Proposition. If M is a left R-module, then

BiEnd(« M; MEnd( «M)

is a faithfully balanced bimodule.

Proof. Let T = End(xM) and B = BiEnd(gM) = End(M7). Then gM and
M are automatically faithful; and every T-homomorphism is, by definition,
(multiplication by) an element of B. But because of the ring homomorphism
A:R — B with A(r)x = rx, we have End(zM) < End(gM) = T (see (4.8)); and
the proposition is proved. O

There is a parallel theory for right modules. If N, then

End(N, )N BiEnd(N,)

is faithfully balanced. Also right multiplication p:R — BiEnd(Ny) is called
the natural homomorphism of R into BiEnd(Nyg).

4.13. Remark. By (4.12) the natural development that leads from R to
T = End(xM) to B = BiEnd(zM) stabilizes. That is, T is the “triendo-
morphism ring” T = End(yzM) = BiEnd(M7).

There is an important variation of the concept of a balanced bimodule.
We say that a non-zero left R-module M is balanced in case the derived
bimodule

RMEnd( M)

is a balanced bimodule. Thus, g M is balanced iff the natural homomorphism
A:R — BiEnd(xM)

is surjective, and M is both balanced and faithful iff 4 is an isomorphism.
Again there is an obvious corresponding notion for right modules. There is a
more than formal difference between balanced bimodules and balanced one-
sided modules. On the one hand, we see at once that

4.14. Proposition. If M is a (faithfully) balanced bimodule, then ¢M and
Mg are (faithful and) balanced modules. O

On the other hand the converse of (4.14)isfalse. Forif oM isa 2-dimensional
vector space, both oM and Mg are balanced but the bimodule oMq is not.
We deduce from (4.11) and (4.14) that both xR and Ry are balanced. From
(4.12) and (4.14) we have, in rather imprecise terminology, that every module
is balanced both over its endomorphism ring and over its biendomorphism
ring.

Let e € R be a non-zero idempotent. An argument very much like that used
for (4.11) allows us to characterize the ring eRe as the endomorphism ring of
the principal left ideal Re of R. Again as we shall see in §7 these left ideals and
their endomorphism rings are of considerable significance in analyzing R.



62

Rings, Modules and Homomorphisms

4.15. Proposition. If e is a non-zero idempotent in a ring R, then

p.eRe — End(gRe) and A:eRe — End(eRg)

defined via

plere):ae > aere and A(ere):ea erea

are ring isomorphisms. In particular,

BiEnd(zRe) = End(Re,g,). O

Remark. Looking somewhat far ahead we can perhaps get an idea of the

significance of this study of the biendomorphism ring. Given a specific ring R
it may be possible to find an especially well-behaved representation
A:R - End'(M). By “well-behaved” we might mean any of a variety of
things—for example, xM may be simple, or faithful, or its endomorphism
ring T may be a simple ring, an integral domain, etc. In any event, from this
good behavior we may be able to deduce the structure of the biendomorphism
ring B = BiEnd(gxM). This is not too far-fetched for we have assumed some
reasonable behavior for M, we know how to compute B in terms of M, and
with B we have achieved a certain stability (4.13).

1.

4. Exercises

Let pe P be a positive prime. Compute each of the following abelian
groups:

Homz(Q, 2), Homyz(Z =, Q), Homy(Z ,», Z).
[Hint: Exercises (3.14), (3.15), and (3.16).]

. Let F be the full subcategory of ;M whose object class consists of all

torsionfree groups (see Exercise (3.14)) and let D be the full subcategory
of ;M whose object class consists of all divisible groups (see Exercise
(3.15)).

(1) Prove that in F the morphism f:Z — Z defined via f:x - 2x is an
epimorphism even though in the category ;M it is not an epimorphism.
(See Exercise (3.4).)

(2) Prove that in D the natural epimorphism f:Q — Q/Z is a mono-
morphism even though it is not a monomorphism in ;M. (See Exercise
(3.4).)

. Let R be aring, let K = Cen R, and let ;M be a non-zero left R-module.

Prove that End(gM) is a K-algebra (see (1.11)) via ¢:K — End(xM)
where (x)¢(x) = ax for all ae K and x € M. Moreover, if ¢ M is faithful,
then ¢ is an injection into Cen(End(gxM)).

. Let D be a division ring, let V, be a non-zero vector space, and let

R = End(Vp). Then RV, is a bimodule that is both R and D faithful
(4.10). Prove that
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10.

11

12.

13.

(1) gVpis balanced. [Hint: Let o € End(gV), let x € V; and suppose x and
xo are D-linearly independent. Then there is an r € R with rx = 0 and
r(xa) = x!]

(2) If X is a basis for ¥}, then R = CFM (D).

. Let gM; be a faithfully balanced bimodule. Show that there is a ring

isomorphism ¢:Cen R — CenS such that km = m¢(k) for all me M
and ke CenR.

. Let M be a non-zero module. Prove that

(1) As sets of functions, Cen(BiEnd(gxM)) = Cen(End(xM)).
(2) If R is commutative, then gM is balanced iff every element in
Cen(End(xM)) is multiplication by an element of R.

. Every abelian group M admits a unique (Z, Z)-bimodule structure ;M.

Prove that if M is a finitely generated abelian group, then M, is balanced
iff M is cyclic.

. Let I be,the ideal of the polynomial ring Q[X, Y] generated by

{X% XY, Y?} and let R = Q[X, Y]/I. By Proposition 4.11 the regular
bimodule gRy is faithfully balanced. Prove that R has submodules
and factor modules that are not balanced.

. (1) Prove Proposition 4.6.

(2) Prove Proposition 4.15.

Compute both the endomorphism ring T and the biendomorphism ring B
of each of the modules

(1) 2Q.

(2) grRe where R is the ring of 3 x 3 lower triangular matrices over a
field K and

1 00
e=|0 0 O
0 0 0].

Let M be a non-zero abelian group with S = End'(M). Suppose that M is
a left R-module via 1:R — S. Let R’ be the S-centralizer of A(R),

R’ = Ceng(A(R)).

(See Exercise (1.9).) Then z. M. Set R” = Ceng(R’), etc. The rings R’ and
R" are sometimes called the first and second centralizers of M, res-
pectively. Prove that

(1) R = (End(gM))*?and R" = BiEnd(xM).

(2) R" =R. .
Let I be a two sided ideal of a ring R. Then R/I is both a ring and a left
R-module. Let f: R — R/I be the natural left R-epimorphism with kernel
I. Prove that as rings End(g(R/I)) = R/I and that there is a ring homo-
morphism ¢:R — End(x(R/I)) such that f (xr) = f(x)¢(r) for all x,» € R.
Generalize the result of Exercise (4.12). That is, let M and N be left
R-modules and let f:M — N be an R-epimorphism. Suppose further
that Kerf is .stable under End(gM); i.e., Kerfis a right End(zxM) sub-
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module of M. Prove that there is a ring homomorphism ¢ : End(xM) —
End(gN) such that f(my) = f(m)¢(y) for all me M, y € End(xM). Also
show that

Ker ¢ = renq, m(M/Kerf).

Let M and N be left R-modules and let f: M — N be an R-isomorphism.
Prove that

(1) There is a ring isomorphism ¢, :End(xM) — End(gN) such that
f(my) = f(m)¢,(y) for all me M, ye End(xM). [Hint: See Exercise
(4.13).]

(2) There is a ring isomorphism ¢, : BiEnd(gxM) — BiEnd(gN) such that
f(bm) = ¢,(b)f(m)for allm e M, b € BiEnd(xM).

(3) If xM is balanced, then so is g N.

Let R and S be rings and let ¢ : R — S be a ring homomorphism. For each
sM let T,(M) be the R-module (M, y) where y(r)(x) = ¢(r)x for each
reR, xeM. For each pair M, (N and each fe Homg(M, N), let
T,(f) € Homg(Ty(M), Ty(N)) be T,(f) = f. Prove that

(1) T, defines a covariant functor from sM to zM.

(2) Unless ¢ is surjective, T, restricted to the full subcategory ;FM of
finitely spanned left S-modules need not be a functor to gFM, the category
of finitely spanned left R-modules.

Let I be an ideal of R. For each zM let F(M) be the left R/I-module
M/IM. For each g M, xN and each fe Homg(M, N)let F(f): F(M) - F(N)
be defined by F(f):x + IM — f(x) + IN. Prove that F defines a co-
variant functor from gxM to ;M. Show that F restricted to zFM is a
functor to g,,FM.

Let R be a ring and let e€ R be a non-zero idempotent. For each ;M
define T,: M +— eM, where eM is the left eRe-module defined on page 58.
For each pair tM, xN and each left R-homomorphism f: M N, let
T,:f—(f | eM). Prove that T, defines a covariant additive functor from
rM to .z .M

eRe' '



Chapter 2

Direct Sums and Products

For each ring R we have derived several module categories—among these
the category xM of left R-modules. This derivation is not entirely reversible
for, in general, ¢M does not characterizc R. However, as we shall see in
Chapter 6 it does come close. Thus, we can expect to uncover substantial
information about R by mining M. So in this chapter we start to probe more
deeply into the structure of the modules themselves. In so far as possible we
propose to do this in the context of the category M for in this way at any
subsequent stage we shall be able to apply the general machinery of category
theory.

We begin with the general decomposition theory of modules. This
parallels closely the more special theories for vector spaces and for abelian
groups, so many of the fundamental ideas are fairly transparent. In Sections
S and 6 we develop the general theory of both internal and external de-
compositions. The substance is reasonably clear, but the necessary
formalities are occasionally tedious.

In Section 7 we apply the theory to the regular modules zR, Rg, and zRy
to obtain some of the fundamental results on the theory of ring decomposi-
tions. Finally, in Section 8 we make a natural application to obtain a general
treatment of the concepts of generating one class of modules by another and
of its less familiar dual of cogenerating one class by another.

§5. Direct Summands

Given two modules M, and M, we can construct their cartesian product
M, x M,: The structure of this product module is then determined “co-
ordinatewise” from that of the factors M, and M,. In this section we shall
begin by considering when this process can be reversed. That is, given a
module M we shall concern ourselves with when it can be “factored” in some
fashion as a type of product of other modules.

Split Homomorphisms

Let M, and M, be submodules of a module M. Recall that they span M in
case

M1+M2=M;
65
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i.e., in case their supremum | in (M) is M. At the other extreme, they are
independent in case

M, nM,=0;

i.e, in case their infimum in $(M) is 0. Now there is a canonical R-homo-
morphism i from the cartesian product M, x M, module (2.1.6) to M
defined via

i1(xg, Xz) > xp + X, ((x1, x;) € M; x M,)
with image and kernel
Imi=M, +M, and Keri= {(x,—x)|xe M, n M,}.

So i is epic iff M, and M, span M, and monic iff M, and M, are independent.
If this canonical homomorphism i is an isomorphism (i.e., if M, and M, are
independent and span M), then M is the (internal) direct sum of its sub-
modules M, and M,, and we write

M=M1®M2.

Thus M =M, @ M, iff for each xe M there exist unique elements
x; € M, and x, € M, such that

X =Xx; + X;.

Not every submodule of a module M need appear in such a direct factoriza-
tion of M. Those that do, however, are of considerable interest. A submodule
M, of M is a direct summand of M in case there is a submodule M, of M with
M = M, ® M,; such an M, is also a direct summand, and M, and M, are
complementary. direct summands or direct complements of each other. Of
course, even in vector spaces direct summands need not have unique
complements.

The following fundamental result shows how one encounters direct sums
and direct summands in the study of homomorphisms with “one-sided
inverses”.

5.1. Lemma. Let f:M — N and f':N — M be homomorphisms such that
=1y

Then f is an epimorphism, ' is a monomorphism and
M=Kerf® Imf'.

Proof. Clearly (see (3.3) and (3.4)), f is epic, ' is monic. If x = f'(y)e
Kerfn Imf’ then 0 = f(x) ff'y)=yand x =f'(y) =0 If xe M, then
fx=ffx)=fx)=f(x)=0, and x = (x — ff(x)) + ff(x)e Kerf +
Imf’. O

If f:M — N and f":N - M are homomorphisms with ff’ = 1,, we say
that fis a split epimorphism, and we write

M —d- N - 0;
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and we say that f” is a split monomorphism, and we write
0N - M.
A short exact sequence (see §3)
0-M,L5MEM,-0

is split or is split exact in case f is a split monomorphism and g is a split
epimorphism. As we see next, if an exact sequence is split at either end, then
it is split at both ends.

5.2. Proposition. The following statements about a short exact sequence
0-M LSMEM, >0
in M are equivalent :
(@) The sequence is split;
(b) The monomorphismf: M, — M is split;
(c) The epimorphismg: M — M, is split;
(d) Imf = Kerg is adirect summand of M ;
(e) Every homomorphism h: M, — N factors through f;
(f) Every homomorphism h: N — M, factors through g.

M—M,>0
L

N
"\ N
N\ - N
/ \h N /
\ \
\ \

0-M, —L M N

Proof. (a) = (b) and (a) = (c) are trivial, and (b) = (d) and (c) = (d) are
by (5.1). Since (b) and (c) together give (a), it will suffice to prove
(d) = (¢) = (b) and (d) = (f) = (c).

(d) = (e). Suppose M = Imf@® K and h: M, — N. Since f is monic, for
each me M there is a unique m, e M, and ke K with m = f(m,) + k.
Define h:M — N by

h:m = f(m,) + k> h(m,).

Then clearly his an R-homomorphism with I_zf = h.

(d) = (f). Suppose M = Kerg ® Kand h:N - M,.Since Kn Kerg =0
and g(M) = g(K), we 'see that (9| K):K - M, is an isomorphism. Let
g':M; - K be its inverse. Then i = g’h: N - M is an R-homomorphism
with gh = h.

(e) = (b) and (f) = (c). Let h = 1, where in the.first case N = M, and in
the other N = M,. O

Let M, and M, be two modules. Then with their product module
M, x M, are associated the natural injections and projections

M > M, x M, and ;M x M, - M;
U = 1,2), defined by
4(xy) = (x,,0), t2(x2) = (0, x;),
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and
mi(x1, X2) = Xy, my(x1, X2) = X;.

These are clearly R-homomorphisms for which
0->M, SM xM,3M,-0
0-M,3M, xM,3M, >0
are exact. Moreover, since
by = Ly, and Myly = ly,,

these sequences are split exact.
Observe also that

mie; = O;ila, and U+ 0T = Ly, oy
We now prove that, as we might expect, these sequences are the prototypes
of all split exact sequences.
5.3. Proposition. For a sequence of R-homomorphisms
0-M IU4MBM, -0

the following statements are equivalent :
(@) The sequence is split exact ;
(b) There exists a sequence of R-homomorphisms

0-M,BMA M -0
(necessarily split exact) such that for i, je {1,2},
gifi = 6ijly, and fi91 + 292 = 1y

(¢) There exists an isomorphism h: M; x M, — M such that the following
diagram commutes:
M, x M,
v l N

M, - 0

0 M,
\,M/

Proof. (a) = (c). To prove this implication define h: M, x M, - M by
h(xy, x,) = fi(x,) + fa(x;) where f,: M, — M satisfies g, f, = 1,,. Then the
diagram commutes, and h is an isomorphism by The Five Lemma (3.15).

(c) = (b). Given an isomorphism h making the diagram commute, define
f2=hi,and g, = mh™ ' Then

g.fi = n,-h_'hcj =mt; = 01y,
and
fig1 + f29; = hemh™! + heymyh™!

=h(t,m, + (;m)h™ = hh™! = 1,,.
(b) = (a). Assume (b). Then fig, + f29, = 1y, 50 M = Imf, + Imf,.
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But g,f, = 0 implies Imf, = Kerg,, and g, f, = 1, implies (see (5.1))
M = Ker g, @ Imf,. So by modularity
Kerg, = Imf, + (Kerg, n Imf,) = Imf,.
Thus the sequence
0-M U4MBM, -0

is exact at M; and since g, f; = 1,,, and g, f, = 1,,,, it is split exact. O

Projections
Let K be a direct summand of M with complementary direct summand K',
soM = K® K'. Then
Pk + K-k (keK,k'eK')

defines an epimorphism
kM > K

called the projection of M on K along K'.

5.4. Proposition. If M = K @ K', then the projection of M on K along K’
is the unique epimorphism

M% K- 0
satisfying
(px|K) = 1 and Kerpy = K'.

Proof. That py does satisfy these conditions is an immediate consequence
of its definition. If g:M — K is such that (g| K) = 15 and Kerg = K’, then
forall ke K, ke K', gtk + k') = g(k} + g(k') = k = pg(k + k). O

Again let K be a direct summand of M with complementary direct
summand K',

M=K®K.

Then K' is a direct summand of M with complementary direct summand K.
Moreover, if py is the projection of M on K along K', then the projection
px- of M on K’ along K can be characterized by

Px-imi—>m — py(m) (me M).

Now if ix:K - M and iy.:K' — M are the inclusion maps, then by (5.4)
and (5.2), ,

0—-K-5MXK-—-0

0—-KS5M™K 0
are split exact. Also it is clear that, with the obvious notational changes,
these maps satisfy the identities of (5.3).
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In general, a direct summand of a module has many complementary
direct summands; the projections provide a useful characterization of these.

5.5. Proposition. Let M = K @ K/, let py be the projection of M on K
along K', and let L be a submodule of M. Then

M=L®K
if and only if

(PK|L)3L - K
is an isomorphism.

Proof Let L< M = K @ K'. Then Ker(px|L)= L~ Kerpy = LN K’
so that (px| L) is monic iff L n K’ = 0. On the other hand, since (px| K) = 1
and Ker py = K/,

px(L) = px(L + K') = px((L + K')n (K + K'))
= px(((L + K')n K) + K') = px((L + K')n K)
=(L+K)nK
sothat p(L) = Kif K< L + K'iff L + K’ = M. O

Idempotent Endomorphisms
Suppose that tM = K @ K’ and py is the projection of M on K along K'.
Define ex € End(xM) by

ex: X pg(x) (xe M).
Then since (px | K) = 1, ey is an idempotent endomorphism of M,

ex = ek € End(xM),
and (note that e, is a right operator on M)
K = Meg.

Thus each direct summand of M is the image of an idempotent endo-
morphism of M. As we see from the following lemma, the converse is also true.

5.6. Lemma. Let e be an idempotent in End(xkM). Then 1 — e is an idem-
potent in End(gM) such that

Kere={xeM|x=x(1-e)}=Iml—e),
Ime = {xeM|x = xe} = Ker(l —e)
and M = Me ® M(1 — e).

Proof. In (1.16) we saw that 1 — ¢ is an idempotent. Since e? = e,
(1.—e’=(1—e), and e(l —e)= (1 —e)e =0, we have at once the
inclusions
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Ime = {xeM|x = xe} = Ker(l — e),
Im(1 —e)< {xeM|x=x(1 —e)} < Kere.

But since x = xe + x(1 —¢) for all xe M, these are not strict and
M = Me + M(1 — ¢). Finally, Men M(1 — e) =0, for if xe = y(1 — e),
then xe = xe? = (y(1 — e))e = 0. O

5.7. Proposition. If ;M = K @ K’, then there is a unique idempotent
ex € End(gM) such that

K = Mey, and K = M(1 — eg).

Proof. The proposition follows from (5.4) and (5.6) which combine to tell us
that if e € End(,M) is idempotent, then x — xe is the projection of M on Me

along M(1 — e). O
5.8. Corollary. A submodule K < M is a direct summand of M if and only
if K = Ime for some idempotent endomorphism e of M. O

It should be noted that a direct summand K of M can be the image of
several different idempotent endomorphisms (see Exercise (5.13)), but for
each decomposition M = K @ K’ the associated pair of idempotents (5.7)
is unique. The idempotents of a direct summand K provide a tool for
computing the endomorphism ring of K.

5.9. Proposition. Let e be an idempotent in End(xM). Then there is a ring
isomorphism

¢:e End(xM)e — End(gMe),
such that for all s€ End(zM) and all xe M
Plese): xe — xese.

Proof. It is a routine matter to check that there is an injective ring
homomorphism ¢ from e End(xM)e into End(gzMe) satisfying the required
condition. Now e:Me — M is a split monomorphism (5.6). So (5.2) if
geEnd(zMe) (ie.,g:Me — Me < M), then g factors through e

L3
N\

9 ~J
Me —':1‘4 .
Thus for each g € End(zMe) there is a § € End(gM) such that for all xe e Me
xep(ege) = xeje = xege = xeqg.
Thus ¢ is an isomorphism. O

Itisclear that every non-zero module M has at least two direct summands,
namely, 0 and M. A non-zero module M is indecomposable if 0 and M are
its only direct summands. Such indecomposable modules will play a central
role in our work.
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A pair of idempotents e, and e, in a ring R are said to be orthogonal if
eje; =0 =eye,.

An idempotent e R is called a primitive idempotent in case e + 0 and for
every pair e, e, of orthogonal idempotents

e=¢e; + e, implies e, =0 or e, =0.

If e = e €R, then e and 1 — e are orthogonal idempotents such that
l=e+ (1 —e.
Thus, applying (5.8) and (5.6) we have

5.10. Proposition. Let M be a non-zero module. Then the following are
equivalent:

(a) M is indecomposable.

(b) 0 and 1 are the only idempotents in End(M).

(c) 1is a primitive idempotent in End(M). a

If e is a non-zero idempotent in a ring R, then e is primitive if and only if
the identity e of the ring eRe is a primitive idempotent. Indeed, if
e =e, + e, where e, and e, are orthogona! idempotents in R, then
e, = ee;ec eRe and e, = ee,e € eRe. Hence the preceding two propositions
yield

5.11. Corollary. Let e be a non-zero idempotent endomorphism of a left
module M. Then the direct summand Me of M is indecomposable if and only if
e is a primitive idempotent in End(M). O

Essential and Superfluous Submodules

A submodule K or M is a direct summand of M iff there is a submodule K’
of M with

KnK =0 and K+ K =M,

that is, iff K is complemented in the lattice of submodules of M. For any
submodule K of M we can always find a submodule satisfying, with K, one
or the other of these conditions. Indeed,

Kn0=0 and K+ M=M.

Those submodules for which one of these is the “best” turn out to be of great
significance in our subsequent work. Specifically, a submodule K of M is
essential (or large) in M, abbreviated

K= M,
in case for every submodule L < M,
KnL=0 implies L =0.
Dually, a submodule K of M is superfluous (or small) in M, abbreviated

K« M,
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in case for every submodule L < M
K+L=M implies L=M.

The three concepts, direct summand, essential submodule, and super-
fluous submodule, are reminiscent of the topological concepts of connected
component, dense, and nowhere dense. In a sense an essential submodule
of M dominates the lattice of submodules in that it is independent of no
non-zero submodule, whereas a superfluous submodule is quite ineffective
in that it contributes nothing to spanning M. Note, however, that a
submodule can be both essential and superfluous; indeed this is true of every
non-trivial submodule of Z ,«.

A monomorphism f:K — M is said to be essential in case Imf<a M.
An epimorphism g: M — N is superfluous in case Ker g « M. As we shall
see below (particularly (5.13) and (5.15)) these two concepts are dual in the
category M. That is, any statement about an essential monomorphism stated
in terms of yM is true iff the statement obtained by reversing the arrows is
true about superfluous epimorphisms. Thus perhaps it would be best to state
our results in “arrowese” where their duals are natural. However, in practice
we shall more often be concerned with the behavior of the essential and
superfluous submodules of M in the lattice (M). Therefore most of the
results are in lattice theoretic terms. See the exercises for the categorical
formulation. (Particularly, Exercises (5.14)—(5.16).)

5.12. Proposition. For a submodule K of M the following statements are
equivalent :

(a) K= M.
(b) The inclusion map iy: K — M is an essential monomorphism.
(c) For every module N and for each he Hom(M, N),

(Kerh)n K =0 implies Kerh = Q.

Proof. (a) <> (b) and (a) = (c) are both clear.

(c) = (a). Suppose that L < M and K~ L = 0. Let n, : M — M/L be the
natural epimorphism. Then clearly (Kern;)n K = 0. So assuming (c),
L = Kern, =0. O

Suppose fis a monomorphism and h is a homomorphism such that fo h
is monic. Then clearly h is also a monomorphism. On the other hand,

5.13. Corollary. A monomorphism f:L — M is essential if and only if, for
all homomorphisms (equivalently, epimorphisms) h, if hf is monic, then h is monic.

Proof. Let K = Imf. Then by (3.10) there is an isomorphism v:K — L
such that fv = iy. Thus it follows that hf is monic iff hig is monic. But the
latter condition holds iff (Ker h) n K = 0. For the parenthetical version note
that / is an epimorphism onto Im h. O

The proofs of the following duals to Proposition (5.12) and Corollary
(5.13) are left as exercises.
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5.14. Proposition. For a submodule K of M the following statements are
equivalent:

(a) K« M.

(b) The natural map px:M — M/K is a superfluous epimorphism.

{c) For every module N and for every he Hom(N, M)

(Imh)+ K=M implies Imh=M. O

5.15. Corollary. An epimorphism g: M — N is superfluous if and only if
Jor all homomorphisms (equivalently, monomorphisms) h, if gh is epic, then h is
epic, O

The essential submodules of M form an important sublattice of the lattice
of all submodules of M; specifically,

5.16. Proposition. Let M be a module with submodules K < N < M and
H < M. Then

() KaMiff KaNand N= M;

RQHNK=2MifHaMand K2 M.

Proof. (1) Let K=a M and suppose 0 # L < M, then LN K # 0. In
particular this is true if L < N, so K== N.Butalso K <NsoLnN #0
whence N <a M.

Conversely, if K== N and N M and L < M, then L n K = 0 implies
L~ N =0 implies L = 0.

(2) One implication follows at once from (1). For the other, suppose
H<M and K= M. If L<M with LnHNnK=0, then LNnH=0
because K <t M. Whence L= 0 because H<a M. 0

This result has a natural dual for superfluous submodules. In categorical
terminology its statement is quite obvious. The lattice theoretic version,
whose proof we omit, goes as follows.

5.17. Proposition. Let M be a module with submodules K < N < M and
H <M. Then

(1) N« Miff K« M and NK « M/K;

2QH+ K«MiffH«Mand K <« M. a

The following lemma concerning superfluous submodules also has a dual.
However, we shall relegate it to the exercises where we can give a proper
formulation. :

5.18. Lemma. If K « M andf:M — N is a homomorphism thenf(K) « N.
In particular, if K « M < N then K « N.

Proof. Let L < N and assume L + f(K) = N. Thenf "(L) + K = M.
Since K « M, thisimpliess K < M = f “(L),sof(K) < L,and L= N. []

Our next lemma gives an extraordinarily useful test for essential
inclusions.
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5.19. Lemma. A submodule K < M is essential in M if and only if for each
0 #+ x € M there exists anre R such that 0 + rxe K.

Proof. (=) If K== M and 0 # xe M, then Rxn K # 0.

(<) If the condition holds and 0 # xe L < M, then there is an r € R such
that 0 # rxe K n L. |

Using these two lemmas we have

5.20. Proposition. Suppose that K, <M, <M, K, <M, <M, and
M =M, ® M,; then

D) Ki®K,«M M, iff K, « My and K, « M,;

QK @K,=M, M, iff K M, and K, M,.

Proof. (1) Let p;:M — M, denote the projection of M on M, along M,
(i # j). Then K; = p;(K,); so necessity follows from (5.18).

Conversely, if K; « M; <M (i=1,2), then by (5.18) and (5.17.2)
K ®K, =K, + K, « M.

(2) Suppose, say, K, is not essential in M, i.e. K, n L, = 0 for some
0 # L, < M,. Then the necessity is proved by observing that

(K, + K;)nL, =0;
forif k, e K,,k,eK;,and |, e L, with k, + k, = I, then
k=1, —kieM.nM, =0.

For the sufficiency suppose that K; <t M; and 0 # x; € M; (i = 1, 2), then
by (5.19) there is an r, e R such that 0 # r,x, € K,. If r,x, € K, then, by
independence, 0 # r;x; + r x, € K, @ K,. If r;x, ¢ K, then again by (5.19)
there is an r, € R with 0 # r,r,x, € K,, and we have

0+#ryrix, +r,rix, 6K, ®K,.
Thus K, ® K, M, & M,. O

Let N be a submodule of M. If N’ < M is maximal with respect to
N N =0, then we say that N’ is an M-complement of N. Using the
Maximal Principle we readily see that if N < M, then the set of those sub-
modules of M whose intersection with N is zero contains a maximal element
N'. This proves the first part of

5.21. Proposition. Every submodule N < M has an M-complement. More-
over, if N' is an M-complement of N, then

) NeN=aM;

(2) (N@® N')/N'= M/N'.

Proof (1) If0# L < M and (N @ N')n L =0, then it readily follows
that N n (N’ + L) = 0, contrary to the maximality of N'.
(2) Suppose that L > N’ with L n (N + N’) < N’; then by modularity

(LAN)Y®N =Ln(N+N)<N".
Therefore, L »n N = 0 and by maximality of N', L = N'". ]
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5. Exercises

1. Let M be a left R-module. Prove that every epimorphism f:M — ¢R
splits. However, show that there can be monomorphisms g:xR - M
that do not split. [Hint: Let R = Z.]

2. Let M be a non-zero module. In M? = M x M,let M, = {(m,0)|me M}
and M, = {(O,m)| me M}. For each ¢ € End(gM), set

M° = {(m,mo)|me M}.

Then M° < M2 Let K < M?. Prove that
(1) M2 = K @ M, iff K = M” for some o € End(xM).
(2) If K = M? for some automorphism ¢ € End(gM), then

M?2=M, ®K.

3. Prove that if ¢M has a distributive lattice (see (0.5)) ¥(M) of sub-
modules, then each direct summand has a unique complement. For
example, show that if R is a Boolean algebra, then zR has a distributive
lattice of submodules.

4 LetM=K®K =L@ L. Prove
(1) K = L implies K’ = L, but does not imply K’ = L.

() K€ H < MimpliesH = K® (Hn K').
(3) K~ L = 0 does not imply that K + L is a direct summand of M.
[Hint: Consider Z x Z in Exercise (5.2.1).]

S.Let M=K + L and let f:M — N be an epimorphism. Prove that
N=f(K)®f(L)if Kn L = Kerf.

6. (1) In order to give meaning to M = H® K® L, prove that if
M=H®H  and H =K® L thenM=(H+ K)®LandH + K =
HoK (le, H®(K@L)=(H®K)®L)

(2) Let H, K, L< M. Provethat M=H@®K®LIffTHNK=0=
LnKand M/K = (H + K)/K ® (L + K)/K.

7. (1) Give an example of an indecomposable module .that has a de-
composable submodule. [Hint: Try a factor module of zR where
R=Q[X, Y]]

(2) Give an example of an mdecomposable module that has a_de-
composable factor module.

8. Let M=M,®M, and let f:M - N be an epimorphism with
K = Ker f. Then (see Exercise (5.5))

N =f(M,) + f(M,).

(1) Prove that if K =(KnM,)+ (KnM,), eg, if the submodule
lattice (M) is distributive, then this sum is direct.
(2) Show that in general, however, this sum is not direct. [Hint: Let Lbea
module, M = L x Land f:M — Lvia f(l,,1;) =1, — I,.]

9. Let M =M, ® M,and let N < M. Then

N>(NAM)® (N M,)
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10.

11

12.

13.

14,

15.

If either M, < N or M, < N, or if the submodule lattice (M) is
distributive, then equality holds. Show that in general, however, the
inequality may be strict.

Let M = M, @ M, and let p, (i = 1, 2) be the corresponding projections.
(1) Prove that if N < M, then p(N)/N n M, = p,(N)/N n M,.

(2) Conversely, prove that if K; < N; < M; (i=1,2), and if N,/K, =
N,/K,, then there is an N < M with K, = Nn M,, and N, = p,(N)
(i=1,2). [Hint: Let 6:N,/K, > N,/K, be an isomorphism and
N ={n + ny|n, + K, = a(n, + K,)}.]

(3) The two extreme cases are of interest; they occur when N =
(NnM))+ (Nn M,)and when Nn M, = N M, = 0. Give a non-
trivial example of each of these.

Letg:N - M and f: K — N be homomorphisms. Prove

(1) If fand g are both split monomorphisms (epimorphisms), then gfis a
split monomorphism (epimorphism).

(2) Show the converse of (1) is false.

(3) Infer from (1) that a direct summand of a direct summand is a direct
summand.

Suppose that the following diagram of modules and homomorphisms is
commutative

0—>A—f>B—9»C—>0

| o4

0-ALBLC -0
and that a, 8, y are isomorphisms. Prove that the top row is (split) exact
iff the bottom row is (split) exact.
(1) Let e € R be an idempotent. Show that foreachx e R,t = e + (1 — e)xe
is also an idempotent. Moreover, show that for each such ¢ thereisa ye R
with e = t 4+ (1 — t)yt. [Hint: Since et = e and te = ¢, it follows that
y = —(1 — e)xe works.]
(2) Let xM be a non-zero module and let e € End(zM) be an idempotent.
For each idempotent te End(zM) prove that Imt=1Ime iff t =
e + (1 — e)xe for some x € End(gM).
Consider the following commutative diagrams in zM:

K K
N /N

(1) Prove that if in the first g is monic, then A is an essential mono-
morphism iff both f and g are. [Hint: (5.13).] Deduce Proposition
(5.16.1).

(2) Prove that if in the second g is epic, then h is a superfluous epi-
morphism iff both f and g are. [Hint: (5.15).] Deduce Proposition
(5.17.1).

Consider the following commutative diagram in the category zM
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16.

17.

18.

19.

Direct Sums and Products

0-A4ALBS
a B 7
0-A4LBsC-o.

-0

OO

(1) Assume that both rows are exact and a is epic. Prove that if the g is
superfluous, so is g'.

(2) Show that (1) is equivalent to (5.18).

(1) In Exercise (5.15) assume both rows are exact and y is monic. Prove
that if /* is essential, then so is f.

(2) Deduce that if K< M and if x e M, then

pr(K)={reR|rxeK}= gR.

Let M be a non-zero module and let K be an (R, End(zM))-submodule
K < gMgpy aay-

(1) Prove that if zM = M, ® M,, then K = (K n M,) ® (K n M,;).

(2) Prove that if Rk K « gM, and if o(M/K) is indecomposable, then zM
is indecomposable.

(3) Prove that if K=<t M and if K is indecomposable, then M is in-
decomposable.

Let I be a nilpotent left ideal of R. Prove that for each left R-module M,
IM « M. [Hint: If IM + N = M, then ’M + IN + N = M.]

Let M be an abelian group and K < M. Prove that

(1) Every homomorphism f: K — Q has an extension f:M — Q. [Hint:
The set G = {g,| L < M and g, € Hom,(L, Q)} is partially ordered by
set inclusion {each ge G is a set of ordered pairs). There is a g, € G
maximal with respect to K < L and (g, | K) = f. If xe M\L, then for
some n, Zx n L = Znx # 0 and there is an h:Zx + L — Q with
h(mx + ) = mn~'g,(nx) + g.(}).]

(2) Every monomorphism g:Q — M splits.

§6. Direct Sums and Products of Modules

In this section we consider two (dual) generalizations of finite products of
modules (2.1.6) and of internal direct sums M = M, @ M, of a module.

Throughout this section we shall suppose that (M,),. , is an indexed class

of left R-modules. Analogues for right modules and bimodules should prove
no difficulty.

Direct Products

The cartesian product X, M, of the sets (M,),., becomes an R-module with
operations defined coordinatewise. That is, if 7, denotes the a-th coordinate
map, then for each pair x, y in the product and each re R
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Ta(X + )) = M,(X) + 7,(y)  7(rx) = rm,(x).

That these are (well-defined) operations on the product is immediate from
(0.4), and it is elementary to check that they do induce the claimed module
structure. In A-tuple notation the operations on the product are given,
somewhat imprecisely, by

(xﬂ) + (ya) = (xd + ya)’ r(xl) = (rxd)'

The resulting module, called the direct (or cartesian) product of (M), 4, Will
be denoted by

n,M,,

or some reasonably natural variation such as ITf_ , M, or M, x ... x M,
in the finite case. If M, = M for all a € 4, we write

M* =TI M.

This is simply the set of all functions from 4 to M with coordinatewise
operations. If A = ¢, the product has exactly one element (the empty
function) and so

NgM, =0= M2

The fundamental property of IT, M, is given in

6.1. Proposition. Let (M,),., be an indexed set of modules. Let N be a
module and ( f,),c4 be homomorphisms f,:N — M,. Then there exists a unique
homomorphism f:N — I1, M, such that for each a € A the following diagram

commutes
N

s
N/
Mﬂ
Proof. For each x e N define f(x) € [1, M, coordinatewise (see (0.4)) by

. f(x) = f(x)  (x€A)

Since the n, and the f, are homomorphisms, it follows also that f:x — f(x)
defines a homomorphism N — IT, M. Moreover n,f = f, for all ae 4. To
complete the proof suppose that g:N — IT, M, is a homomorphism such
that n,g = f, for all « € A. Then for each xe M and each ae A we have
Mag(x) = 7, f(x) so g(x) = f(x). (See (0.4).) Thus g = f. O

The unique homomorphism f:N — II,M, in (6.1) is called the direct
product of (f,),. 4 and is often denoted by f = IT, f,. It is characterized by

)=/ (a€A)

6.2. Corollary. Let f,: N - M, (« € A) be an indexed set of homomorphisms.
Then

HA M:x

Ker(Il, f,) =N  Kerf,.
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Proof. Set f=T1,f,, and let xe N. Then f(x) = 0 iff n,f(x) = 0 for all
aeAifff(x) =0forall ae A. O

If B < A, then we have the two products [1; M, and I1,M,. If x e [13 M},
then x is a function with domain B and has a unique extension to an element
x e IT, M, that is zero on all « ¢ B. So there is a map

g M, > T M,

defined by t5:x > X. Clearly t5 is an R-monomorphism whose image is the
submodule of IT, M, consisting of those A-tuples that vanish outside of B.
On the other hand, for each xeIl M,, a function with domain 4, its
restriction (x | B) is an element of I1; M,. Clearly the restriction map

ng: I, M, > Iy M,

defined by mz:x+— (x| B) is an R-homomorphism from IT, M, onto [Ty M,.
With the help of (5.1) and (5.3) it is easy to check the following properties of
these maps.

6.3. Proposition. Let (M,),. , be an indexed set of modules and let A be the
disjoint union A = Bw C. Then

(1) mgip = ln,m, 3
2 n,M, = ‘B(HBMp) @ ‘C(HcMy)i
(3) 0 - MaM, 5 T M, T TI. M, — 0 is split exact. O

In practice if e 4, we usually identify IT 45 M, with M, itself, and
with m,;. Also we usually write ¢, for ¢,5. This monomorphism

M, -1 M,,
called the -coordinate injection, is characterized by

nazp=6a,,1MB (x € A).

Of course, it is a special case of (6.3) that the sequences

0— MMy puM, —2> TI,M, ™ M; >0

are split exact.

The “universal mapping property” of IT, M, described in Proposition 6.1
actually serves to characterize the direct product. Thus a pair (M,(p,)ec4)
consisting of a module M and homomorphisms

PaM > M, (xe A)

is called a (direct) product of (M,),. 4 in case for each module N and each set of
homomorphisms

fi: N> M,
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there exists a unique homomorphism f: N — M such that

fo=p.S (xeA).

Very informally, a product of (M,),., is a gadget that stores in a single
homomorphism any collection of homomorphisms (f,:N — M,) from a
module to the M, and is programmed to sort them out again (via the p,).

Observe that Proposition (6.1) says, in particular, that the indexed set
(M,),ea does have at least one product, namely its cartesian product
(M M,, (n)eq) We now see that all products of the (M,),., are actually
isomorphic in a strong sense.

6.4. Theorem. Let (M,(p,).cs) be a product of (M,),c,. Then a pair
(M’, (Py)ac4), where each p,: M’ — M, is an R-homomorphism (o € A), is also a
product of (M,),, if and only if there exists a (necessarily unique) iso-
morphism p:M' — M such that p,p = p,, for each a € A.

M —L— M
N
M,

Proof. Since (M, (p,).c4) is @ product, there is a unique homomorphism
p:M' — M with p,p = p/, for each a € A.

(=). If (M',(p})se4) is also a product, then there is a unique homo-
morphism p':M — M’ with p,p’ = p, for each a. Then p, = p,p = p,p'p.

_—,M’

Ny

But p, = 1, p., so by uniqueness, p'p = 1,,.. Similarly, pp’ = 1.

(«<=). Suppose that f,:N — M, (x€ A) are R-homomorphisms. Since
(M, (P.)ee4) is @ product, there is a unique homomorphism h making the
outside triangle in

commute for each a€ A. So assuming p is an isomorphism and taking
f= p~'h we have that (M’, (p,),c4) is @ product. O

6.5. Examples. (1) Let V be a two-dimensional vector space over a field
K, and let (x,, x,) be a basis for V. If (p,, p,) are the usual linear functionals
with kernels (Kx,, Kx,), then (¥, (p,, p,)) is a product of (K, K). In particular,
a module M may be a product of an indexed set (M,),., via many different
homomorphisms (p, ) e 4-
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(2) Consider the abelian group Z;,. The residues modulo 2, 3, and 5,
respectively, give epimorphisms

p2:Z30 = Zy, py:lyo—Zy, ps:Ziyg— Ls.

Therefore, by (6.1) there is a homomorphism p from Z,, to the product
Z, x Zy x Z4 such that p, = n,p (x = 2,3,5) where the n, are the co-
ordinate projections of the product. By (6.2)

Kerp = Kerp, n Kerpyn Ker ps = 223y N 3239 N 5234 = 0.

Thus p is a monomorphism. So since Z34 and Z, x Z, x Zs have the same
finite cardinality, p is an isomorphism. Observe that this implies by (6.4)
that (Z,4, (3, p3, Ps)) is an (abstract) product of (Z ,, Z,, Z ); clearly though,
Z,, and the cartesian product Z, x Z, x Z are quite different sets.

Direct Sums—Coproducts

Recall that a product of (M,), , is something of a computer to organize sets
of homomorphisms into the M,. We now turn to the dual question of studying
gadgets that organize homomorphisms from the M,. The definition is almost
self-evident; we simply reverse the arrows in the definition of a product.
Formally, then, a pair (M, (j,).4) consisting of a module M and
homomorphisms
JaMy > M

is a direct sum (or a coproduct) of (M,),. , in case for each module N and each
set of homomorphisms
J.oM, > N (e A)

there is a unique homomorphism f: M — N such that
fo=Si. (xeA)

The next result, whose proof is obtained by reversing the arrows in that of
(6.4), establishes that if direct sums do exist, they are essentially unique.

6.6. Theorem. Let (M, (j,)4) be a direct sum of (M,),cq. Then a pair
(M, J)aes)» where each j,:M, —» M’ is an R-homomorphism (¢ € A), is also a
direct sum of (M, ), 4 if and only if there exists a (necessarily unique) isomorphism
j:M — M’ such that jj, = j, for each a € A.

M—'—M

N A

M

External Direct Sums

Now we establish that direct sums do exist. An element x € IT , M, is zero for _
almost all a € A (or almost always zero) in case its support
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S(x) = {x € 4| x(@) = m,(x) # 0}

is finite. Since 0 is almost always zero and since both S(x + y) = S(x) u S(y)
and S(rx) € S(x), it follows that

@M, = {xell,M,| x is almost always zero}

is a submodule of IT, M, This submodule is the (external) direct sum of
(M,),e4; as we shall see, the use of “direct sum” is justified. We employ
natural variations of this notation, such as @{_ M, in the finite case. Of
course, if A is finite, then the external direct sum is the cartesian product.
Moreover, if M, = M for all a € A4, then

MY = @,M

designates the external direct sum of card 4 copies of M.

In general, for an indexed set (M,),., and for each a e A4, the image
t,(M,) is the set of xeIl, M, with S(x) & {a}. Moreover, x e [1, M, has
finite support iff it is a finite sum of elements each of whose support is a
singleton. Thus @ , M, is the submodule of IT , M, spanned by its submodules
(+2{M,))ee 4 Since the images «,(M,) are in @, M,, we usually feel free to
treat each ¢, also as a monomorphism from M, to @ ,M,. Similarly, we
often view each =, as an epimorphism from ® , M, to M,.

Now suppose that N is a module and that (f,),., is an indexed set of
homomorphisms

fiiM, >N (x € A).

For each x € @ ,M,, its support, S(x) = {a € A| m,(x) = 0}, is finite so there
is a function f/: ® ,M, — N defined by

f(x) = zzeS(x)ﬁc na(x)

(where we let f(x) = 0 if S(x) = ). It is easy to check, since the f, and =,
are homomorphisms, that fis a homomorphism. We call f the direct sum of
(f2)ee4 and write both

f=®,4fa

and for each x = (x,)es € ® 4 M,,

S(x) = Z,fulx,).

Also it is clear that for each a € 4, fi, = f,. This direct sum behaves very
much like a regular sum (see Exercise (6.7)). For example, if g: N — K, then
af,:M, — K for each x € 4, and

9@ 4 f) = Dalgf.)

6.7. Proposition. Let (M,),., be an indexed set of modules. Let N be a
module and (f,),., be an indexed class of homomorphisms f,:M,— N for
o€ A. Then there exists a unique homomorphism f-@® ;M, — N (necessarily
= ® [, such that
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commutes for each a € A. Thus (@ 4M,, (¢,),c4) is a direct sum of (M,)

acAd"

Proof. In view of our above remarks only the question of uniqueness
remains. But that the sum f = @ ,f, is unique with the desired properties
follows from (3.1). g

There is one simple fact about direct sums of homomorphisms that we
might record now. Suppose f = @ ,f,. Then since fi, = f,, it is clear that
Imf, < Imf. Thus it is immediate from the definition that

6.8. Proposition. If f= @, f, is the direct sum of homomorphisms
f,:M, > N, then

Imf=X,Im{,. (|

Suppose B = A. Then it is easy to check that the restriction of «g to
@®pM; is a homomorphism into the direct sum @ ,M,. Similarly, the
restriction of n, to @, M, is an epimorphism onto the direct sum @ 5 M.
Again we conserve notation and denote these restrictions by tz and ng.
From (6.3) we infer

6.9. Proposition. Let (M, ), be an indexed set of modules and let A be the
disjoint union A = B w C. Then

(1) mgep= l"BMﬂ;

(2 &M, = ‘B((‘BBMﬁ)® LC(@(‘M}.);

() 0> @My @M, 2> M, - 0 is split exact. O

Internal Direct Sums

Let M,, M, be submodules of a module M. and let i;:M, - M, and
i,: M, - M be their inclusion maps. Then (see §5) M is the internal direct
sum of M, and M, iff in our present terminology i; @ i, is an isomorphism.
By virtue of (6.6) and (6.7) this is equivalent to having (M, (i, i,)) a direct
sum of (M, M,).
More generally, suppose that (M, ),., is an indexed set of submodules of
a module M. Let
iy M, - M (aE€ A)

a* a

be the corresponding inclusion maps. Generalizing our definition in §5 we
say that M is the (internal) direct sum of its submodules (M),. 4 in case the
direct sum map

Y= @i @M, M

is an isomorphism. This condition holds, namely i is an isomorphism, iff
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each x e M has a unique representation as a sum
x=X,x,

with x, € M, zero for almost all a € 4. With this summation notation, we
have, since i is an R-homomorphism,

X, +Z v, =Z,(x, + y.) and HZ x,) = Z,rx,.

Also if f:M — N is a homomorphism, then since each of these Z ,x, is really
just a finite sum in M,

FZax,) = Z,4f(x,).

In other words, if M is the internal direct sum of (M, ), ,, then we can study M
“coordinatewise”.

We now have three concepts of “direct sum”, the abstract direct sum
(= coproduct), the external direct sum of an indexed set of modules, and the
internal direct sum of submodules. We assume that the distinctions among
them are reasonably clear. (But see the exercises, particularly Exercise (6.4).)

Let (M,),., be an indexed set of submodules of M with inclusion maps
(i;)zc4- Then by (6.8) we have

Im(®,i,) =2, Imi, = Z M,.

So whether or not it is epic, if the direct sum map i = @ i, is monic, then
the submodule £ ,M, is an internal direct sum of its submodules (M, ), .
As for the case of two submodules (§5) we can characterize this in the lattice
& (M) of submodules. We say (M, ),. 4 is independent in case for each a € 4

M, A (E55.M;) = 0.

Clearly this is consistent with our earlier definition for two submodules. Of
course, it is possible for (M,),., to be independent in pairs without being
independent. However,

6.10. Proposition. Let (M,),. , be an indexed set of submodules of a module
M with inclusion maps (i,), 4. Then the following are equivalent:

(@) Z,M, is the internal direct sum of (M,),c4;

(b) i =@ 0,:® M, - M is monic;

(€) (M,),e, is independent;

(d) (M,)uer is independent for every ﬁnﬁe_subset FcA;

(e) For every pair B,C < A, if BA'C = &, then

(ZaMy) A (EcM,) = 0.

Proof. Each one of these conditions is clearly equivalent to stating that 0
has a unique representation 0 = X ,x, with x,e M, zero for almost all
o€ A. . O

6.11. Corollary. The module M is the internal direct sum of its submodules
(M,)se if and only if (M,), 4 is independent and spans M. O
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If the submodules (M,),., of M are independent, we say that the sum
XM, is direct and write

ZAMJ = ®AM1;

we may also refer to this as a direct decomposition of Z ,M,. As usual we shall
allow more or less self-explanatory variations of this notation and terminology.

Now the external direct sum of (M,),., is the internal direct sum of the
images (t,(M,)),c4 but not the internal direct sum of (M, ), . Thus the nota-
tion @ is being asked to serve two distinct, but related, duties. Only on rare
occasions does this cause difficulty. On these we may denote the external
direct sum by

DM,
or in the finite case
M®..OM,.
6.12. Proposition. Let (M, ..., M,) be a finite sequence of modules. Then
My x...x M,=M®...0OM, = ,(M)®... ®,(M,). a

6.13. Examples. (1) Let V be a vector space over a field K, and let (x,),c
be an indexed set in V. Then (x,),., span Viff V = L ,Kx,. Also (x,),. 4 is an
independent set of vectors iff the indexed set (Kx,),., of cyclic submodules
of Vis independent. Thus V is the internal direct sum

V=2,Kx,=®,Kx,

iff (x,)4c 4 Is @ basis for V.

(2) Consider again the abelian group Z,,. (See (6.5).) It has subgroups
15Z 54, 10Z 54, 6Z,; let i,, iy, is be the corresponding inclusion maps. Then
by (6.7) the direct sum i = i, @ iy @ i5 is a homomorphism

i:(15Z30) @ (10Z30) @ (6Z30) = Z5.
Now
Im' = 15230 + I,OZJO + 6230 = 230,

so i is epic. By a cardinality argument it follows that i is an isomorphism.
Thus Z,, is the internal direct sum of its submodules (15Z 5, 10Z 54, 6Z 5,).
Note also that these modules are isomorphic, respectively, to Z,, Z4, Z. So

Zao = (15230) @(10230) @ (6230)
27,02,®Zs=12, x I, x Zs.

Properties of Independence

In addition to the characterizations given in (6.10) there are three other
properties of independence having special importance. The first is a generali-
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zation of the familiar fact that in a vector space an ordered set of vectors is
independent iff no one of the vectors depends on its predecessors.

6.14. Proposition. 4 sequence M, M,, ... of submodules of M is independent
if and only if for each n > 1

M, + ...+ M)AM,,, =0.

Proof. (=). See (6.10.e). («=).If x;e M;, and x, + ... + x,,, = 0 then
Xpe  EM, + ...+ M) M, .. O

The next result is a formal statement of the simple fact that independent
sets of submodules of independent submodules form an independent set of
submodules.

6.15. Proposition. Let (M), be independent submodules of a module M.
For each B € B, let (L,,),yc4, be an indexed class of submodules of M. Let A
be the disjoint union A = wgAy. If (L,,)spea, is independent for each f € B,
then (L,),. . is independent.

Proof. Suppose there is a finite set «;, ..., a, € 4 and x; € L,, with
X, +...+x,=0.

We may assume there is a k and a f with «y,...,0,€ 45 and o, y,...,
a, ¢ A;. The independence of (My).5 then forces

X; 4+ .o+ x=0=x,; +... + X,
and the independence of (L,,),e4, forces x, = ... = x, = 0, etc. O
This has the following very useful corollary about internal direct sums.

6.16. Corollary. Let M = M, let My = X, L,, for each f € B, and let
A be the disjoint union A = -)pAg. Then

M=@®,L, if M=®yMy and M;=d,,L,, (B € B).
Proof. (<=). By (6.15). (=). By (6.10.¢). Od

Our final result on independence is the important one that independence
is preserved under “essential changes” of the submodules.

6.17. Proposition. Suppose that (L,), .is a set of independent submodules
of M. If (M), is a set of submodules of M such that L, <2 M, for each o.€ A,
then

(1) (M,),c 4 is independent, and
2 ®,L, = ® M,

Proof. Suppose that L, and L, are independent submodules of M with
L, = M, and L, < M,. Then

(LinMy)nL,=L,nL,=0

so, since L, = M,, we have L, n M, = 0. But
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M, A"M,)NnL, <L, nM, =0.

So, since L, @ M,, M, n M, = 0. That is, (M, M,) is an independent set of
submodules of M. Moreover, by (5.20.2), we have L, ® L, M; ® M,.
Now if (1) and (2) hold for F = {a,,...,a,} S A, then for any a, ., € A\F the
sum

LIIM = (@1 M) + M, |

is direct, and
@11 L, =2 @M,

Thus, arguing inductively, (1) and (2) hold for every finite subset of F < A4,
and by (6.10.d) (M,),.4 is independent. But if 0 # xe ® ,M,, then there
exists a finite subset F < A4 such that 0 # xe ®;M,. So since L, <
@rM,, by (5.19) there is an r € R with

0+ rxe®;L, < ®,L,
and hence ® L, < ® M,. O

The Idempotents for a Decomposition

Suppose M has an (internal) direct decomposition M = @ (M,. Then (see
(6.16)) for each e A

M=M® (Zp%aMp);
so by (5.6) and (5.7), there is a unique idempotent e, € End(zM) with
M, =1Ime, and  Z;,,M;= Kere,.

We call the idempotents (e,),.. the idempotents for the decomposition
M = ®,M,, and for each ae 4, we call e, the idempotent for M, in this
decomposition.

6.18. Proposition. Let (M,),., be submodules of a module M. Then
M = ® M, if and only if there exists an (necessarily unique) indexed set
(e )sc 4 Of idempotent endomorphisms ‘of M such that for all a € A

M,=1Ime, and Zp:aM; = Kere,.

Moreover, if such idempotent endomorphisms of M exist, then e, is the
idempotent for M, in the decomposition M = ® ,M,.

Proof. We need only prove the sufficiency. So assume (e,),. 4 satisfies the
stated condition. Then by (5.6) since Ime, N Kere, = 0 for each a€ 4, it
follows that (M,),., is independent. But also by (5.6), Ime, + Kere, = M.
So clearly (M,),., spans M. The final claim follows from the uniqueness
assertion in (5.7). O

A set of idempotents (e,),.4 in a ring is said to be orthogonal in case the
set is “pair-wise” orthogonal, i.e.,
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e,ep = 0,50, (a, B A).

6.19. Corollary. The idempotents (e,),. 4 for a decomposition M = @ M,
are orthogonal. Moreover, if xe M, then xe, = 0 for almost all a€ A and

x =X, xe,.

Proof If o # B, then My < X, M, = Kere, so Mege, = Mye, = 0.
Moreover, writing x = £,x, with x,e M, = Me, zero for almost all
a e A, we have

Xep = zAx,ep = Xﬂeﬂ = Xg
forall Be A. O

A finite orthogonal set of idempotents e, ..., e, in a ring R is said to be
complete in case

e+ ...+e, =1€ekR

From the following corollary we see that there is a 1-1 correspondence
between the finite direct decompositions of a module and the complete sets
of orthogonal idempotents in its endomorphism ring.

6.20. Corollary. Let M,,..., M, be submodules of M. Then
M=M@&..®M,

if and only if there exists a (necessarily unique) complete set ey, ...,e, of
orthogonal idempotents in End(xM) with

M"= Me,» (i= l,...,n).

Proof. (=). Let e,,..., e, be the idempotents for M = M, ® ... ® M,.
By (6.19) they are orthogonal and 1,, = ¢, + ... + ¢, for

x=2XI_,xe; = x(e, +... +e,) (xe M).
(«<=). If ey, ..., e, are as claimed, then for each xe M
x=x(e, +...+e,)=xe; + ...+ Xxe,

so clearly M; = Ime; and X;,; M; = Ker e;. Now apply (6.18). O

A Characterization of Direct Sums

There is a variation of these last results that provides a valuable characteriza-
tion of abstract direct sums. Its real value will be evident when we begin
studying additive functors.

6.21. Proposition. Let (M,),., be an indexed set of modules, let M be a
module, and for each aeA, let j,:M, -+ M be a homomorphism. Then
(M, (j)ses) is a direct sum of (M,),.. if and only if there exist (necessarily
unique) homomorphisms q,: M — M, (« € A) satisfying, for all «, e A and all
xXeM,
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(l) ‘Iaja = 5131Mav
(i1) g,(x) = O for almost all a € A,
(lil) EAjaqa(x) = X.

Moreover, if (M, (j,)seq) is a direct sum of (M,),c4 and if f:M,
(o € A) are homomorphisms, then

fix— Z,f,q.0x) (xeM)
is the unique homomorphism f:M — N such that f, = fj, (x € A).

Proof. (=). Suppose that (M, (j,), ) is a direct sum of (M,),.,. Then
((6.6) and (6.7)) the direct sum map j = @,j,: D, M, » M is an iso-
morphism. Let «, and =, be the usual coordinate maps for the external
direct sum @, M,. For each a € A let

- N

Q=T j VM > M,

Then since j, = ji, for each a € 4, it is easy to see that the g, satisfy (i)
and (ii). Now for each x e M,

X =JjTHx) = j(Z4 a7 ()
= ZAj"anaj- l(x) = zAjuqa(x)-

By (6.8), M = X Imj,, so in view of (i) and (3.1), the g, are unique.
(«=). If (q4)se satisfy the three conditions and f,: M, - N (x € A), then
define f: M — N by

fX)=Z4£4.x) (xeM)
Then for all a € 4 and all x, e M,,
Ja(Xa) = Zpes fp9pUa(xa)) = Lalx,).
Moreover, ifg: M — N with gj, = f, for each a € A, then for all xe M
9(x) = 9(Z.4j29.(x)) = Z 4 f29.(x) = f(x). a

This important characterization assumes a particularly nice form for the
case of finite direct sums.

6.22. Corollary. Let (M,..., M,) be a finite sequence of modules and let
JitM; -+ M (i = 1,...,n) be homomorphisms. Then (M, (j,, ..., J,)) is a direct
sum of (M, ...,M,) if and only if there exist homomorphisms q;:M — M,
(i=1,...,n)suchthat forall 1 <i,k <n

i = Oulm, and Zi-1Jigi = I ]

Products and Sums of Functions

6.23. Let (M,),., be an indexed set of modules. Let (M, (p,),..) be a
product of (M,),.,. Then by (6.4) and (6.1), there is a unique isomorphism
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p:I1,M, - M such that p,p = =,, the a-coordinate map of I1 , M,. For each
a € A define i, = p:,: M, - M. Then for each o, f e A

Paig = Pa(Peg) = (paP)iy = Mgty = 5«51M,-
We infer from (5.1) that the maps
M, - M M- M

a

are a split monomorphism and a split epimorphism, with
M = (Imi,) ® (Ker p,).

The homomorphisms (i,),. , and (p,),. + are the injections and the projections,
respectively, of the product (M, (p,),.4). If N is another module and if
J.:N - M, (a € A) are homomorphisms, then by definition there is a unique
f:N - M with p,f = f, (x€ A). Generalizing our earlier definition, we call
[ the direct product of ( f,),c 4 relative to the projections (p,),. 4. Using (6.2) and
the fact that p, = n,p~ !, we have

Ker f=n Kerf,.

6.24. Dually, let (M, (j,),.1) be a direct sum of (M,),.,. Let (¢,),., be the
homomorphisms guaranteed by (6.21). Then since g;j, = d,41,,. We infer
from (5.1) that

J.M, - M q.,'M->M,
are a split monomorphism and a split epimorphism with
M = (Imj,) ® (Ker q,).

We call (j,),.4 and (q,),4 the injections and projections of the direct sum
(M,(jz)ze)- Suppose f,: M, - N (xe A) are homomorphisms. Then the unique
f:M — N with fj, = f, (¢ € A) is called the direct sum of (f,),c 4 relative to the
injections (j,),c.. With an assist from (6.8) the characterization (6.21) of f
gives

Imf=2%,Imf,.

6.25. There is yet another useful variation. Let (M}),., be a second
indexed set of modules indexed by A and for each ae A let
fi M, > M,

If (P, (p,)4)and (P, (p.),,) are products respectively of these modules, then it is
easy to see that there is a unique homomorphism P — P, which we also
denote by I1, £, such that

Il ) =fip, (x€A)

Dually, if (S, (j,) ) and (S, (j.) ) are direct sums, then there is a unique homo-
morphism § — §’, which we also denote by @, f; such that

(®A/;)Ja =Jlafa (aEA)
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P n/, P S f, s
p.l lp i.I L'.
M, —~—> M M, —=— M,

Finally, for cartesian products and for external direct sums, it is easy to
prove that under either of these maps

(xz)zeA = (L(xa))aeA
and that

ImMl, f)y=T11,Imf,, Ker(T1,f,) = 1, Ker f,
and

Im@.f)=@,Imf,,  Ker(®4f,) = @ Kerf,

(Note that this last statement does not make sense in the cases of the

“abstract” direct product and sum. But of course, it does have an obvious
interpretation.)

6. Exercises

1. Let (M,),., be an indexed set of modules, let M be a module and let
Ja:M, » M and p,:M — M, (a € A) be homomorphisms.
(1) Assume (M, (p,),.,) is a direct product of (M,),., with injections
Ua)aes- Prove that (M, (j,),...) is a direct sum of (M,),_ , iff A4 is finite.
(2) Assume (M. (j,),.,) is a direct sum of (M,),., with projections
(Pa)aca- Prove that (M, (p,),..) is a direct product of (M,),. , iff 4 is finite.
2. Let (M,),., be an indexed set of modules, let K, < M, (xe A), and let
i: M, /K, = (D M,)/(® 4K,) and p,:(I1,M,)/(T1,K,) - M,/K, be the
canonical maps. Prove that
(1) (® M,/D ,K,, (i,),c4) is a direct sum of (M,/K,),. ,.
(2) M M,/TT  K,,(p,)sq) is a direct product of (M,/K, )z
3. Let (M,),, be an indexed set of left R-modules and let I be a left ideal of
R. Prove that

(@ M,)=@ M, and (D M) M)= @ M,/IM,.

4. Let (M,), 4 be an indexed set of modules.

(1) For each o€ A4 let j,:M, -~ M be a monomorphism. Prove that
(M, (j,)se4) is a direct sum of (M,),_, iff M is the internal direct sum of the
images (Imj, )

(2) On the other hand suppose that each M, is a submodule of M with
inclusion maps i,: M, — M. Prove that M is the internal direct sum of
(M,)eq iff (M, (i),.,) is a direct sum. Show that it is possible for
M to be isomorphic to the external direct sum @ ,M, yet not be the
internal direct sum of these submodules.
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5.

6.

10.

11.

13.

14.

15

16.

Assume that M has a decomposition M = @ M,. Prove that if
f:M — N is an isomorphism, then N = @, f(M,).

Let ¢:R — S be a ring homomorphism. Let M be a left S-module with a
direct decomposition M = @ M,. Prove that with the R-module
structure induced by ¢, M is also the internal direct sum of its sub-
modules (M, ),c.4-

. Let f,:M, > M and g,:M, > M be homomorphisms (xe A), let

f=®4f,and g = @ ,g, be their direct sums, let h:M — N. Prove that
f+g=@@,/, +g.)and if = @ ,(H,).

. Prove that Q/Z = @, Z».
. Let R be a commutative integral domain and let (M,),. , be an indexed

set of R-modules. Prove that each M, is divisible (torsion free) iff IT M,
(® 4 M,) is divisible (torsion free). [Hint: See Exercises (3.14) and (3.15).]
Let M be a torsion free abelian group (Exercise (3.14)). Prove that there
is a monomorphism f: M — QM. [Hint: If 0 # x € M, there is a homo-
morphism f,: M — Q with f,(x) # 0. (Exercise (5.19).)]

(1) Prove that ZV/Z™ cannot be embedded in a product Z*. [Hint:
Let xeZN with m,(x) = 2" for each neN. Its image in ZY/Z"™ is
divisible by every power of 2.]

(2) Prove that the natural monomorphism 0 — Z™ — ZV does not
split.

. Let M,, M,, ... be an independent sequence of submodules of M. Show

that it is possible for each sum X}_, M, to be a direct summand of M
without T2, M, = @2, M, being a direct summand of M. [Hint:
Exercise (6.11).]

Let M; < M, < ... be a chain of submodules of M with each M, a
direct summand of M. Prove that there exists a sequence M7, M, ...
of direct summands of M such that M, =M, @M, ®...d M,
(n = 1,2,...). [Hint: See Exercise (5.4.2).]
Let ¢ be a set of non-zero submodules of M and let N < M.
(1) Prove that there is an indexed set (K,),. , in 2" maximal with respect
to N+ Z,K,=N@(@,K,). [Hint: Apply The Maximal Principle
to those independent indexed sets (K,),., With

Nn(EZK,)=0]
(2) In particular, if M = @ ,K,, there is a subset B A maximal with
respect to N Nn.(®pK;) = 0. Show though that even if N is a direct
summand of M, the sum N + Z;K; need not be. [Hint: Exercise
(5.4.3).] '
Let xM have a finite spanning set. Prove that every direct decomposition
M = @ M, of M has at most finitely many non-zero terms. On the
other hand, prove that the number of terms need not be bounded.
Let M be a module and A be a set. Then by definition,

card(M?) < card(M*) = (card M)<*4?
Prove that if M 5 0
(1) If either A or M is infinite, then card M) = (card M)-(card A).
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17.

18.

19.

20.

Direct Sums and Products

[Hint: Consider the set of finite subsets of M x A (see (0.10)).]

(2) card(RN) = card(R™). (But these real vector spaces are not iso-
morphic. Can you prove it?)

Let M be a left R-module and let 4 and B be sets. Define maps
¢:(M*)? > (M®)*and 0:(M*)® > M**E by

[@N)@]®b) = [f®)]a) and  [6(f)(b)](a) = f(a,b).
Prove that
(1) Both ¢ and 0 are left R-isomorphisms.
(2) ¢ restricted to (M*)® is a monomorphism into (M‘®)4,
(3) The restriction of (2) need not be epic.
Let (M,),.. be an indexed set of submodules of M. It is co-independent
in case M, + (ny,,M,;) = M for each a € A. This gives rise to a notion
dual to that of an internal direct sum. Indeed, consider the homo-
morphism f: M — I1 ,(M/M,) defined coordinatewise by

nfix—x+ M
and prove of T e

(1) fis monic iff n M, = 0.

(2) Iffis epic, then (M,),. , is co-independent. [Hint: For each x e M and
a € A there is an x, such that n;f(x,) = d,5x + M, (Be 4).]

(3) If A is finite and if (M,), , is co-independent, then f'is epic.

Let (M,),.. be an indexed set of modules and let M < IT1,M,. Then M
is a subdirect product of (M,),., in case (n,|M):M — M, is an epi-
morphism for each a € A. Clearly both I1 M, and & , M, are subdirect
products of (M, ),c .-

(1) Let C(R) < R® be the R-submodule of all functions f:R - R that
are continuous in the usual topology. Prove that C(R) is a subdirect
product of R-copies of R. Deduce that a subdirect product need not
contain the direct sum.

(2) Prove that a module M is isomorphic to a subdirect product of
(M,),4 iff there exists an indexed class (f,),.4 of epimorphisms
forM > M, (xe A) with n  Ker f, = 0.

(3) Prove that Z is isomorphic to a subdirect product of (Z,), . ;. More-
over, prove that if A is an infinite subset of N (e.g., if A = P), then Z is
isomorphic to a subdirect product.of (Z,),.4-

(4) Prove that if X < R is a dense subset (e.g., if X = Q), then C(R) is
isomorphic to a subdirect product of X copies of R. [Hint: See (1) and
@]

For many purposes the concept of a subdirect product is not a very
sharp one. Even simple examples like those of Exercise (6.19) should
make it clear that a single module may be representable as a subdirect
product in a number of vastly different ways. At one extreme, however,
we say that a non-zero module M is subdirectly irreducible in case
whenever there is a monomorphism f: M — I1, M, with each =, f epic,
then at least one n,f is an isomorphism. Thus if M is subdirectly
irreducible, then whenever it is isomorphic to a subdirect product of
modules, it is actually isomorphic to one of them.
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(1) Prove that M is subdirectly irreducible iff the intersection of its non-
zero submodules is non-zero. (See Exercise (6.19.2).)
(2) Using The Maximal Principle prove that if 0 # x € M, then there isa
submodule N, -<M maximal with respect to the property x ¢ N,. Then
prove that M/N_ is subdirectly irreducible.
(3) Prove that every module is isomorphic to a subdirect product of
subdirectly irreducible modules. [Hint: n, .o N, = 0.]

21. Let gkM be a non-zero module. Set T = End(gM). Let A + . Infor-
mally each (x,),., € M'* can be viewed as a | x A row finite “matrix
over M”. If [t,5] is an A-square row finite matrix over T, define

(xz)aeA l[taﬁ]] = (EZEA xataﬂ)ﬂs/l'

(1) Prove that relative to this right scalar multiplication, M4 is a left R-,
right RFM ,(T) bimodule.

(2) Prove that the bimodule of (1) is balanced whenever s M is balanced.
(3) In particular, prove that

End(zgR"™) = RFM (R) and  BiEnd(zR”) = R.

22. Let myne N. Then Homg(gR™, xRR™) is a left M, (R) right M,(R) bi-
module. (See (4.4) and Exercise (6.21).) Prove that there is a bimodule
isomorphism

0:Homg(gR™, gR™) = M, (R)
such that [ry,...,r, ] 0(f) = f(rys-... ).

§7. Decomposition of Rings

For each ring R there are the three “regular” modules xR, Ry, and gRg,
and each has its own decomposition theory. The results of the previous
sections readily specialize to give us basic information about the decomposi-
tions of xR and of Rg. Indeed, as we saw in (4.11), right multiplication p and
left multiplication A are ring isomorphisms.

p:R > End(zR),  A:R — End(Ry).

Thus, (5.8) and (5.6) apply to give a characterization of the direct summands
of xR (and of Rg):

7.1. Proposition. A4 left ideal I of a ring R is a direct summand of ¢R if and
only if there is an idempotent e € R such that

I = Re.

Moreover, if e€ R is an idempotent, then so is | — e, and Re and R(1 — e) are
direct complements of each other. That is,

<R =Re®R(l —e). 0
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No direct decomposition of xR (or of Rg) can have infinitely many
non-zero summands. Indeed, suppose that

R=@®,1,

is a decomposition of gR as a direct sum of left ideals (I, ), 4, and let (p,),e 4

be the projection maps p,:R — I,. By (6.21), p,(1) # O for at most finitely
o € A. But

I, = Imp, = Rp,(1),

so I, # 0 for at most finitely many o € A. It should be noted, however, that
there need be no bound on the number of non-zero terms that can appear
in a direct decomposition of xR (or Rg). (Consider Z") Now recalling
that e,, e,, ..., e, € R is a complete set of pairwise orthogonal idempotents if
and only if ]

ee; =€ G,j=1,...,n)
and
l=e +..+e,
we have by (6.20) the following extension of (7.1):

7.2. Proposition. Let I, ..., I, be left ideals of the ring R. Then the following
statements are equivalent about the left R-module zR:

@QR=1,®..0I,;
(b) Each element r € R has a unique expression

r=ri+..+r,

withrel,(i=1,...,n);
(c) There exists a (necessarily unique) complete set e, ..., e, of pairwise
orthogonal idempotents in R with

I‘. = Rei (i = l,...,_n).

Note in particular, that if ey, ..., ¢, are idempotents in R that satisfy (c),
then for each re R '

r=re + ...+re,

Thus in the unique expressionr = r, + ... + r, for r promised in (b) we have
r, = re (i = 1,...,n). Since a result similar to (7.2) holds for the decomposi-
tions of the right regular module Ry we have

7.3. Corollary.  Ife,,..., e, is a complete set of pairwise orthogonal idem-
potents for the ring R, then

rR=Re, ®... ® Re,
and

Rp=¢,R®D...®e,R. ]
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Recall that an idempotent e € R is primitive in case it is non-zero and
cannot be written as a sum e = ¢’ + ¢” of non-zero orthogonal idempotents.
A left (right) ideal of R is primitive in case it is of the form Re (eR) for some
primitive idempotent e€ R. Since the endomorphism ring of Re is iso-
morphic to eRe, we have by (5.10) and (5.11)

7.4. Corollary. Let e€ R be a non-zero idempotent. Then the following
statements are equivalent:

(a) e is a primitive idempotent;

(b) Re is a primitive left ideal of R;

(c) eR is a primitive right ideal of R;

(d) Re is an indecomposable direct summand of gR;

(e) eR is an indecomposable direct summand of Rg;

(f) The ring eRe has exactly one non-zero idempotent, namely e. d

In later sections we shall be very much concerned with the existence and
properties of “indecomposable decompositions” of modules (see, for example,
§12). For zR this means simply that zR is a direct sum of (necessarily)
finitely many primitive left ideals, or by (7.2) and (7.4):

7.5. Corollary. For a ring R the left regular module gR is a direct sum
I, ®...® I, of primitive left ideals if and only if there exists a complete set
ey, ..., e, of pairwise orthogonal primitive idempotents in R with

I, = Re; i=1,...,n). d

Of course, (7.4) and (7.3) show that if iR has an indecomposable de-
composition, so does Rg. The existence of such decompositions for R is far
from common, but many rings that are met in practice do have indecom-
posable left and right decompositions. (See Exercise (7.4).) These ideas will
be developed further in Chapter 7.

Suppose now that R has a decomposition as a direct sum of ideals. That
is, suppose that

sRR=R, @®...®R,

where each R, is a non-zero two-sided ideal of R. Then by (7.2) there exists a
unique set uy, ..., u, of non-zero pairwise orthogonal idempotents in R with

l=u +...4+u,
and
R; = Ruy; (i=1,..,n)
For each isince u; € R;, and since R; is an ideal, u;R € R;. Thus, if i # j, then
u;Ru; < RN Ru; = R,nR; =0.
So, foreach re R,
wr = wnr(l) =ur(u, + ... + u,)

= wru; = (uy; + ... + u)ry; = ru;.
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In other words, each y; is a central idempotent and each
R; = Ru; = ;R = u;Ry;

is a ring with identity u;. Conversely, if u,, ..., u, is an orthogonal set of non-
zero central idempotents of R with | = u; + ... + u,, then clearly each

R; = Ry, i=1,..n
is an ideal of R and

R=R,®..0OR,.

Observe also that this is a decomposition of R as a right module Ry and as a
bimodule zRg. When R has such a decomposition, we say that R is the ring
direct sum of the ideals R,, ..., R,, we call R, ..., R, ring direct summands of
R, and write

R=R,+..+R,

We also say that this is a ring decomposition of R.

Suppose now that R is the ring direct sum of the ideals R,,..., R, and
that u,, ..., u, are the associated central idempotents. Then it is easy to check
that the map defined by

ri—(ruy,...,ru,) (reR)

is a ring isomorphism from R onto the cartesian product R; x ... x R, of
the rings Ry, ..., R,. Conversely, if Ry, ..., R, is a finite sequence of rings and
if ¢,,..., ¢, are the canonical injections of these rings into the product
R, x ... x R,, then again it is easy to check that

Ry % ...x R, = t,(R) + ... + ,(R,).

Here, of course, the central idempotents in R; x ... x R, of this decomposi-
tion are just ¢,(1,),..., ¢,(1,), the natural images of the identities of the rings
R,,...,R,. Now summarizing we have:

7.6. Proposition. Let R, ..., R, be non-zero two-sided ideals of R. Then
the following statements are equivalent :.

(@ R=R, + ...+ R,;

(b) RR=R, ®...®R,;

(c) As an abelian group R is the direct sum of R,,...,R,;

(d) There exist pairwise orthogonal central idempotents uj,...,u,e R
withl =u, +... + u,, and

R,=Ry, (i=1,...,n) O

Our use of the terminology “ring” direct sum may appear to conflict
with the terminology of category theory in the sense that it is practically
never a direct sum (= coproduct) in the category of rings. (See Exercise
(7.18).) Fortunately, in formal category theory the accepted term is
“coproduct”. Thus we shall allow historical precedent and our frequent
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desire to view this notion in the context of module decomposition to override
this slight conflict.

A ring R is said to be indecomposable in case it has no ring decomposi-
tions with more than one term.

7.7. Corollary. A ring R is an indecomposable ring if and only if 1 is the only
non-zero central idempotent of R.

Proof. The sufficiency is clear from (7.6). Conversely, if u is a non-zero
central idempotent, then 1 — u and u are orthogonal central idempotents,
so by (7.6) if R is indecomposable, | — u =0and u = 1. O

In general, a ring need not admit a ring decomposition into indecom-
posable rings. (See Exercise (7.8).) However, if such a decomposition does
exist, then it is unique in a strong sense.

7.8. Proposition. Let R = R, + ... + R, be a ring decomposition of R with
each Ry, ..., R, indecomposable as a ring. Let u,,...,u, be the central idem-
potents of this decomposition. If R = S, + ... + S,, is a ring decomposition
of R with associated central idempotents v, ..., v,, then there is a partition
Agy .oy Amof {1, ..., n} such that

v, = Z,u (i=1,....m)
So, in particular,
S‘. = +A,Rj (l = 1,..., m)-

Proof. For each i and j, it is clear that v;u, is a central idempotent of R;;
so by (7.7) either v;u; = 0 or v;u; = u;. Set

A= {j|vu; = u;}.

Now since v,,..., v, are orthogonal, 4, ..., A,, are pairwise disjoint, and
since | =v, ... + v, we have 4, u...u 4, = {1,..., n}. Finally, since
l=u + ...+ u,wehavev, = vu; +... + vu, = Z,u;. O

The central idempotents of any ring form a Boolean algebra, and indeed
this last result is simply a special case of a proposition about Boolean
algebras. (See Exercise (7.7).)

There is one important class of rings that do have decompositions as a
direct sum of indecomposable rings—those rings R for which the module 4R
has a decomposition as a direct sum of primitive left ideals. Indeed, for such a
ring R there is a valuable method for determining the (necessarily unique)
indecomposable ring decomposition of R from any one of its (possibly many)
left decompositions. Thus suppose that xR has a decomposition as a direct
sum of primitive left ideals. By (7.5) this means there exists a complete set
ey, ..., e, of pairwise orthogonal primitive idempotents in R. Set

E = {ey,...,e,}.
On E define a relation ~ by
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in case thereis a 1 < k < n with
exRe; # 0 and e,Re; #+ 0.

Then ~ is a reflexive and symmetric relation on E. It can be extended to an
equivalence relation = defined by

e xe;

in case there is a sequence i,, ..., in {1,..., n} such that
g ~e ~...~e ~e.

Observe that if u € R is a non-zero central idempotent and ue; # 0, then ue;
and (1 — u)e, are orthogonal idempotents, e; = ue; + (1 — u)e,, and ¢, is
primitive, so ue; = ¢;. So if e, e € E with e ,Re; + 0 and ue; # 0, then
ue, Re; = e, Rue; = ¢,Re; + 0; whence 0 # ue, = ¢,. Arguing thusly, we see
that if ¢; ~ e;, then ue; # 0 iff ue; # 0. This extends to give that if ¢; = ¢,
then

ue; # 0 iff ue; # 0.

Let E,,...,E, be the = equivalence classes of E, and for each
i=1,...,mlet

u, = ZE‘

be the sum of the idempotents e; in the class E;. Then (Exercise (7.5)) each y;
is a non-zero idempotent of R and the set u,,..., u,, is pairwise orthogonal
with 1 =u, + ... + u,. These idempotents u,,...,u, are called the block
idempotents of R and the rings u,Ru,, ..., u,, Ru,, are the blocks of R deter-
mined by E. As one consequence of the next result, these block idempotents
and their blocks are independent of the primitive idempotents E.

7.9. The Block Decomposition Theorem. Let R be a ring whose identity can
be written as a sum

l=e +..+e,

of pairwise orthogonal primitive idempotents; let u, ..., u,, be the block idem-
potents of R determined by E = {e,,...,e,}. Then u,,...,u, dre pairwise
orthogonal central idempotents, with

l=u + ...+ u,
Moreover, each block u;Ru; (i = 1,..., m) is an indecomposable ring, and
R = (u,Ru;) + ... + (u, Ru,,)
is a (necessarily unique) decomposition of R into indecomposable rings.

Proof. As we noted above, u,,...,u, are pairwise orthogonal and
1 =u; + ...+ u, Ifi#j, then by the way ~ is defined, u; Ru; = 0. So for
each reR we have ur = wr(u, + ... + u,) = wru; = (u, + ... + u,yry; =
ru;. That is, each u; is central. To complete the proof it will now suffice to
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prove that u; is the unique non-zero central idempotent of u; Ry;. If, on the
contrary there is a non-zero central idempotent v e u; Ry; with v # u;, then
w = u; — v and v are orthogonal non-zero central idempotents in R with

: v=ou, and w = wu,.
Thus, if E; is the class of u; in {e,, ..., e,}, there must be e;, ¢, € E; with
ve; # 0 and we, # 0.
Since e; and ¢, are primitive, this means
ve;, = e; and we, = e,.
But since vw = 0, this implies that
ve; # 0 and ve, =0

which, as we saw in the discussion preceding the theorem, is contrary to
e; X e O

As we have now seen, the decomposition theory of a ring R and that of its
left regular and right regular modules zR and Ry are simply equivalent to
that of its idempotents. Since idempotents are preserved under ring homo-

morphisms, the direct summands of R yield direct summands of the factor
rings of R. Specifically, we have

7.10. Proposition. Let I be a proper ideal of the ring R. If e € R is a (central)
idempotent of R, then e + 1 is a (central) idempotent of the factor ring R/I, and
both as left R-modules and left R/I-modules.

(R/I)(e + I) = (Re + I)/I = Re/le.

In particular, if e, ..., e, € R is a pairwise orthogonal set of idempotents of R
withl = e, + ... + e,, then

R/l = Re,/le; @ ... ® Re,/Ie,
both as left R-modules and left R/I-modules.

Proof. Most of this is a trivial consequence of the fact that the natural
map R — R/I is a surjective ring homomorphism. Thus, finally, since

Renl= {reeR|reel} =1Ie
we have by (3.7.3) that
(Re + I)/I = Re/(Re n I) = Re/le. O

Of course, in a factor ring of R there may be considerably more decom-
posability than just that inherited from R. Indeed, if I is an ideal of R and
ecR\I is a primitive idempotent, then e + I is certainly a non-zero
idempotent of R/I, but it need not be primitive. A problem of great interest
that we shall consider later (see §27) is that of determining conditions under
which decomposition of R/I “lift” to ones of R.
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7. Exercises

. Let R be the ring of all 2 x 2 upper triangular matrices over Z,. (See

Exercise (2.7.2).)

(1) List all direct summands of zR and of Rg.

(2) For each direct summand in (1) list all idempotents spanning it.

(3) Find two idempotents e, fe R with Re = Rf and eR # fR.

Let e and f be idempotents in a ring R. Prove that

(1) Re = Rfifff = e + (1 — e)xefor some x € R. [See Exercise (5.13).]
(2) Re = Rfiff there exist x € eRfand y e f Re with xy = eand yx = f.
(3) Re =~ Rfiff eR = fR.

(4) If ¢,fe CenR (in particular, if R is commutative), then Re = Rf
iffe=f

. Let ¥, be a vector space over a field Q, and R = End(V,).

(1) Prove that an idempotent e € R is primitive iff dim(Ime) = 1.

(2) Prove that if e, fe R are primitive idempotents, then Re = Rf. [See
Exercise (7.2.2).]

(3) Prove that if dim V= n, then R has a complete set e,,...,e, of
orthogonal primitive idempotents.

Let Q be a field and n > 1. Consider M,(Q).

(1) Find a complete set of pairwise orthogonal primitive idempotents in
M, (Q). [Hint: See Exercise (7.3.2).]

(2) Find two different complete sets of pairwise orthogonal primitive
idempotents in the subring R of all n x n upper triangular matrices.

. Lete,,..., e, be pairwise orthogonal idempotents in a ring R.

(1) Prove thate = e, + ... + e, is an idempotent of R.
(2) Prove thate,,...,e,, 1 — e is a complete set of pairwise orthogonal
idempotents of R if e # 1.

. Let ¢, f be idempotents in a ring R.

(1) Prove that if either ef = fe or fe = 0, then e + f — ef is idempotent
and Re + Rf = R(e + f — ¢f).

(2) Show that it is possible for ef = 0 without e andf being orthogonal.
(3) Prove that Re + Rf = Re @ R(f — fe).

(4) Show that in general e + f — ¢f need not be idempotent. [Hint:
Consider M, (Z).]

. (1) Let B be a Boolean ring (see Exercise (1.13)). Suppose that there is a

set e,,...,e,€ B of pairwise orthogonal primitive idempotents. with
1 =e¢, +... + e, Prove that if ae B is non-zero, then there exists a
unique subset {iy,...,i,} S {l,....,n} such thata=¢;, + ... + ¢ .

(2) Let B(R) be the set of central idempotents of a ring R. Define an
operation # on B(R) by e# f= e + f— ef Prove that B(R) is a
Boolean ring with the multiplication from R and with addition .
[Hint: See Exercise (7.6).]

(3) Deduce Proposition (7.8) from (1) and (2).

Let R be the ring of all continuous functions f:Q — R. Prove that there
is a bijection from B(R) (see Exercise (7.7)) to the set of clopen sets of Q.
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10.

11

12.

13.

14.

Deduce that R has infinitely many complete sets of pairwise orthogonal
idempotents but not even one primitive idempotent.

. Let p be a binary relation on a set 4. Define a relation p on A4 by apb in

case there exists a finite sequence x,,..., x,€A4 with apx,, x,pb, and
X pxivq (i = 1,...,n — 1). Clearly p = p iff p is transitive.

(1) Prove that § is transitive; it is the transitive extension of p.

(2) Prove that if p is reflexive and symmetric, then § is an equivalence
relation.

Let E = {e,,...,e,} be a complete set of pairwise orthogonal primitive
idempotents for a ring R. Recall that ¢, ~ ¢; in case ¢, Re; # 0 and
e,Re; # 0 for some e,. Define a relation p on E by e;pe; in case
e;Re; # 0 or e;Re; # 0.

(1) Show that p and ~ need not be the same. [Hint: Upper triangular
matrices.

(2) Prove that p and ~ have the same transitive extension.

Let I be a non-zero left ideal of a ring R. If I is a ring direct summand of
R, then it is both a direct summand of zR and an ideal of R.

(1) Show that the converse of this last statement is false. [Hint: Consider
upper triangular matrices. ]

(2) Show that a non-zero ideal I of R is a ring direct summand iff
there is an idempotent ee R such that I = eR = Re.

Let R be a ring and I a left ideal of R. Prove that:

(1) If I is a direct summand of 4R, then I = I.

(2) Evenif R is a commutative ring, I> = I does not force I to be a direct
summand. [Hint: An infinite product of fields.]

(3) If R is commutative, I is finitely generated, and I? = I, then I is a
direct summand. [Hint: Say I = Rx; + ... + Rx, = Ix;, + ... + Ix,.
Suppose t; el with (1 — ¢;)] € Ix; + ... + Ix,. Then there is a t;,, el
with (1 -, )< Ix;,, +...+ Ix, Set e=1t,,,, and note that
I = Rel]

Let I, ..., I, be ideals of a ring R. They are (pairwise) comaximal in case
I; + I; = R whenever i # j. For example, if cach [; is a maximal ideal,
then the ideals are comaximal.

(1) Prove The Chinese Remainder Theorem: If I, ..., I, are comaximal
ideals, then the natural map ¢:R — R/I, x ... x R/I, is a surjective
ring homomorphism with kernel I, n...~I,. [Hint: The (R,R) bi-
modules I,,..., I, are co-independent (Exercise (6.18); for example,

L+n' L2, +5L)...(, +I)=R"'=R]

(2) From (1) deduce the classical Chinese Remainder Theorem of
elementary number theory.

Let R be the ring of n x n upper triangular matrices over a field
Q(n>1).ForeachkletI, = {[a;]eR|a, =0}, and let J = n}_, I,.
(1) Prove that each I, is a maximal ideal of R with R/I, = Q.

(2) Using The Chinese Remainder Theorem (Exercise (7.13)) prove that
R/J is isomorphic to a product of n copies of Q.
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15.

16.

17.

18.
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Let R be a ring, let I be an ideal of R, and let ue R be idempotent
modulo I (that is, u> — ue I). Then u can be lifted to an idempotent in R
in case there is an idempotent ¢ in R with e — ue I.

(1) Let n > 1 in N. Prove that if n is not a power of a prime, then there
exist idempotents modulo Zn in Z that cannot be lifted to idempotents
inZ.

(2) Prove that if R is the ring of n x n upper triangular matrices over a
field Q and if J is the ideal of matrices having zero on the diagonal, then
every idempotent modulo J can be lifted to an idempotent in R. [Hint:
See Exercises (7.14) and (7.7).]

(3) Prove that with R as in (2) there are idempotents that are central
modulo J that cannot be lifted to central idempotents of R.

Let (R,),.4 be an indexed set of rings and let R be a subring of IT,R,.
Then R is a subdirect product of (R,),, in case the homomorphism
(m,|R):R — R, is surjective for each « € A. (See Exercise (6.19).)

(1) Let (I,),.4 be an indexed set of ideals of a ring R. Prove that the
image of the natural map ¢:R — I1,(R/]l,) defined coordinatewise by
n,@:r—r + I, isa subdirect product of (R/I,),.4 With Ker ¢ = n I,.
(2) Prove that there exist two indexed sets (R,),., and (Sg)s.p of rings
with no pair R, and S; isomorphic such that the ring Z is isomorphic to a
subdirect product of (R,),. , and to a subdirect product of (Sg), 5.

(3) Let R be a Boolean ring and let 0 # xe R. Prove that there is a
maximal ideal I, of R with x ¢ I.. Deduce that R is isomorphic to a sub-
direct product of copies of Z,. [Hint: Note that R(1 — x)is a proper ideal
excluding x. See Exercise (1.13).]

Let G be a group of order n, and let K be a commutative ring in which
n = n-1 is invertible. Let R = KG be the group ring of G over K (see
Exercise (1.15)), and let I be a left ideal of R. Then of course R is a left
K-module and I is a K-submodule of R.

(1) Suppose that g/ is a direct summand of xR with a projection map
p:xR — kI (along some complement of I in zR). Set

e=n"'Zs9"'plg).
Prove that for each he G, he = n~'Z;g™ 'p(gh); then deduce that e is
an idempotent in R, e€ I, and xe = x for each x e I.
(2) Prove the remarkable fact that ,I is a direct summand of R iff g/
is a direct summand of zR.
Let (R,),.+ be an indexed class of rings.
(1) A pair (R,(p,)se) consisting of a ring R and ring homomorphisms
P.:R - R, (€ A) is a product of (R,),. , in case for each ring S and each
indexed class (q,),. , of ring homomorphisms q,:S — R, (x € A), there is a
unique ring homomorphism ¢ :S — R such that q, = p,¢ for each a € A.
Prove that

(HA Ra> (nu)usA)
is a product of (R, )., and that if (R, (p,),c.) is a product of (R, ), 4, then
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there is a ring homomorphism ¢:I1,R, = R with n, = p,¢ for each
ae A.

(2) Dualizing the concept of a product define a coproduct (R, (i,),e 4) Of
(Ry)se4- Let m and n be natural numbers. Prove that (Z,,, Z,) has a co-
product iff m and n are not relatively prime. (Note, however, that if m and
n are relatively prime, then there is, in some sense, no “need” for a
coproduct.)

§8. Generating and Cogenerating

The important concept of a spanning set for a module is not categorical and
does not have a natural dual. There is, however, an effectively equivalent
one that is categorical and that does have a very important dual. These dual
concepts of generating and cogenerating are the subjects of this section.

We resume our practice of assuming that all modules and homomor-
phisms are left R-modules and left R-homomorphisms over a ring R.

Generated and Cogenerated Classes

Let % be a class of modules. A module M is ( finitely) generated by ¥ (or %
(finitely) generates M) in case there is a (finite) indexed set (U, ), 4 in % and an
epimorphism

®,U, - M-0.

If % = {U} is a singleton, then we simply say that U (finitely) generates M;
of course this means that there is an epimorphism

U4 > M-0
for some (finite) set A. One of the most important examples is given in

8.1. Theorem. If a module gk M has a spanning set X = M, then there is an
epimorphism

R¥® 5 M 0.
Moreover, R finitely generates M if and only if M has a finite spanning set.

Proof. Let X = M span M. For each xe X, right multiplication
p.:r—>rx is a left R-homomorphism R — M. Let p = @, p, be the direct
sum of these homomorphisms. Then

p:RY > M

and Imp = Z, Imp, = £, Rx = M. Thus p is epic. The final statement is
now clear. 0

There is another simple and familiar example that serves very well to
illustrate this entire section.
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8.2. Example. Recall that a group ,M is torsion in case each of its elements
has finite order. So if ,M is torsion, then for each xe M there is an
n(x) >0in N and a homomorphism f, :Z, ., - M with Imf, = Zx, and the
direct sum f = @,, f, is an epimorphism

[®OpLyy = M.

Conversely, if M is an epimorphic image of a direct sum of finite cyclic
groups, it is clearly spanned by elements of finite order, so it is torsion. In
other words an abelian group is torsion iff it is generated by

¥ ={Z,|n=23..}

Observe also that this is equivalent to being generated by the single group
@nZ,. (See (8.9).)

The notion of generating is categorical. It depends only on the objects
and the morphisms of the category x M and not on the elements of any
module M. And of course this concept has a natural dual—simply turn the
arrows around.

Let % be a class of modules. A module M is ( finitely) cogenerated by % (or
U (finitely) cogenerates M) in case there is a (finite) indexed set (U,),., in %
and a monomorphism

O-M-II,U,.

We make the obvious adjustments in terminology if % = {U} is a singleton.
Again there is a particularly easy and illuminating example in , M.

8.3. Example. If M is a torsion-free abelian group, then there is a mono-
morphism M — QM (see Exercise (6.10)); thus, ;M is cogenerated by ,Q.
On the other hand, any subgroup of Q# is certainly torsion free. In other
words, the torsion-free abelian groups are precisely the abelian groups
cogenerated by Q.

Let % be a class of modules. The class of all modules generated by # is
denoted Gen(%) and the class cogenerated by # is denoted Cog(%). Also
FGen(%) and FCog(%) denote the classes finitely generated and finitely
cogenerated by %, respectively.

For example, if % = {Z,|n> 1}, then Gen(®%) is the class of torsion
groups, whereas Cog(Q) is the class of torsion-free groups. Viewed in the
light of these examples, the next two propositions are rather obvious.

8.4. Proposition. Let % be a class of modules.

(1) If M is in Gen(%)(FGen(%)), then so is every epimorphic image of M.

(2) If (M,),e4 is a (finite) indexed set in Gen(U)(FGen(%)), then® M,
is in Gen(%)(F Gen(Z)).

Proof. (1) If f:®,U, - M and g:M — M’ are epimorphisms, then so is
gf: @ 4 Uz - MI'

(2) Let f,:®5 Uy — M, be an epimorphism for each a € A. Then (6.25)
the direct sum f = @ ,f, is an epimorphism

f1®,4(®5a Upl) - DM,
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Butif C = w,B,, then @ (D, Uzl = DcU,. 0

Stated somewhat informally this last result says that the class of modules
(finitely) generated by % is closed in M under isomorphism, forming factor
modules, and taking (finite) direct sums. We omit the proof of the following,
a simple dual to that of (8.4).

8.5. Proposition. Let % be a class of modules.

(1) If M is in Cog(%)(FCog(%)), and if g:M' — M is a monomorphism,
then M’ is in Cog(«)(F Cog(4));

(2) If (M,).c4 is a (finite) indexed set in Cog(U)(FCog(#)), then TI, M,
is in Cog(%)(FCog()). O

There is an easy consequence of these propositions. In effect it says that
generating and cogenerating are “transitive”.

8.6. Corollary. Let % and ¥~ be classes of modules.
(1) If ¥ is contained in Gen(¥)(FGen(%)), then so is Gen(¥")(FGen(¥")).
(2) If ¥ is contained in Cog(%)(FCog(%)), then so is Cog(¥" )(FCog(¥")).

8.7. Remark. There is another way of describing each of the concepts
generating and cogenerating that is related to those of spanning and of sub-
direct product (Exercise (6.19)). These formulations are also immediate from
(6.8) and (6.2).

(1) The class % generates M iff M is a sum of submodules each an epi-
morphic image of some module of %.

(2) The class % cogenerates M iff there is a set A of submodules of M such
that M/K is embedded in some module of U for each K e X and n X" = 0.

Generators and Cogenerators

It follows from Corollary (8.6) that if % and ¥~ are classes of modules that
generate each other, then Gen(#) = Gen(¥'); in particular, % and ¥ could
be quite different yet generate the same classes. Thus, given % it is appropriate
to seek out some canonical class that also generates Gen(%).

Of course there is one essentially trivial reduction. A set %' € % is a
class of representatives (of the isomorphism types) of % in case each U e # is
isomorphic to some element of %*; if in addition, no two elements of %’ are
isomorphic, then the class of representatives is irredundant (see (0.2)). Clearly,
if %' is a class of representatives of %, then Gen(%) = Gen(%') and
Cog(#U) = Cog(U').

Given a class %, a module G is a generator for Gen(%) in case
Gen(#%) = Gen(G). A module C is a cogenerator for Cog(¥) in case
Cog(#U) = Cog(C). A generator (cogenerator) for the class g.# of all left
R-modules is usually called simply a (left R-) generator (cogenerator) without
reference to the class. In this terminology the first half of (8.1) can be
rephrased.
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8.8. Corollary. The regular module xR is a generator.

As we mentioned above, in §18 we shall prove that dually there is a
natural left R-cogenerator. Also in this terminology, Example (8.3) says that
Q is a cogenerator for the class of torsion-free groups, and Example (8.2)
says that G = @, ., Z, is a generator for the class of torsion groups.

It follows immediately from (8.6) that G generates Gen(%) iff G € Gen(%)
and G generates each U € %. And of course the dual assertion holds for co-
generators. With these observations, it is nearly trivial to prove

8.9. Proposition. If % has a set {U, | o€ A} of representatives, then
(1) @ ,U,is agenerator for Gen(%),
(2) ®@,U, and I1, U, are cogenerators for Cog(%).

Proof. (2) By (8.5) both I1, U, and its submodule &, U, are in Cog(%).
The injection maps ¢,:U, - @, U, are monic, so @ , U, cogenerates each
U,; hence it cogenerates Cog(%). Trivially IT, U, cogenerates @ , U,. O

For a module U, the next result gives a very useful characterization of
Gen(U) and Cog(U).

8.10. Proposition. Let U and M be modules. Then

(1) U (finitely) generates M if and only if there is a (finite) subset
H < Homp(U,M)withM = X, z, Imh;

(2) U (finitely) cogenerates M if and only if there is a (finite) subset
H < Homg(M, U) withQ = N 4y Ker h.

Proof. The proof of (1) is an easy variation of that of (8.1). For (2) suppose
U cogenerates M. Say f:M — U“ is a monomorphism. Then for each x € A,
fi=n,/:M-> U is a homomorphism. Since f is the direct product of
(fDzea» N4 Ker f, = 0(6.2). Conversely, if H & Homg(M, U), then the direct
product

l—IHh:M d UH
has kernel n, Ker h. ]

A corollary says in effect that U generates (cogenerates) M iffl Homg(U, M)
(resp., Homg(M, U)) “separates points” in Homg(M, N) (resp., Homg(N, M))
for every module N.

8.11. Corollary. Let U and M be modules. Then

(1) U generates M iff for every non-zero homomorphism f:M — N there
exists an he Homg(U, M) such that fh + O;

(2) U cogenerates M iff for every non-zero homomorphism f: N — M there
exists an he Homg(M, U) such that hf # 0.

Proof. (1) Set H = Hom(U,M), and T=ZyImh< M. If f:M - N,
then fh = 0 for all he H iff T < Kerf. On the other hand T is contained in
the kernel of the natural map M — M/T. Now apply (8.10.1). (2) is even
easier. |
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The Trace and Reject

Let % be a class of modules. From (8.7) it is clear that whether or not &
generates M, there is a unique largest submodule of M generated by %. And
dually, there is a unique largest factor module of M cogenerated by #. The
trace of % in M and the reject of % in M are defined by

Try(#)=X{Imh|h:U > M for some U e %}
and

Rejy(%) = n{Ker h|h:M — U for some U e %}.

Observe that even though the class 4 need not be a set, these sums and
intersections are taken over sets of submodules of M, and thus are well-
defined submodules of M. In the particular case where # = {U} is asingleton,
these assume the simpler form.

Try(U)=Z{Imh| he Homg(U, M)},
Rejy(U) = n{Ker h| he Homg(M, U)}.
As an easy extension of (8.10) we have

8.12. Proposition. Let % be a class of modules, and let M be a module. Then

(1) Trp(%) is the unique largest submodule L of M generated by U ;

(2) Rejy (%) is the unique smallest submodule K of M such that M/K is
cogenerated by U.

Proof. (1) Let (U,),. . be an indexed set in % and let h:® , U, - M. Then
Imh =X Im(h.,) < Try(%), so every submodule of M in Gen(#%) is con-
tained in Try(%). On the other hand there is an indexed set (U,),., and
homomorphisms h,: U, - M with Try, (%) = X, Imh,. Thus ® ;h,:® U, »
M has image Tr,, (%) (see (6.8)), so Try (%) is in Gen(%).

(2) Let (U,),.4 be an indexed set in %, let h:M — I1,M,, and let
K = Ker h. Then K = n ,Ker(n,h) 2 Rej\ (%), so if M/K is cogenerated by
U, K 2 Rejy(#%). On the other hand there-is an indexed set (U,),., in % and
h,:M — U, with Rejy (%) = n,Kerh,. Thus I1 ;h,:M — I1, U, has kernel
Rejp (%) (see (6.2)), so M/Rejy (%) is in Cog(%). |

8.13. Corollary. Let M be a module and % a class of modules. Then
(1) % generates Miff Try (%) = M ;
(2) % cogenerates M iff Rejpy (%) = 0. O

One part of the next corollary says in effect that the trace of the trace is the
trace. Another says that if the reject is factored out, there is zero reject.

8.14. Corollary. Let M be a module and % a class of modules. Let K < M.
Then
(1) K= Try(%) iff K > Trp(%) and Tr (%) = K ;
In particular,
Trr,, o) (%) = Try(%) and Rejupe;, (%) = 0. O
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8.15. Examples. (1) If % = {Z,|n = 2,3,...}, then for each abelian
group M, the trace Try (%) is simply the torsion subgroup T(M) of M. (See
Exercise (8.8).) Of course T(M) is the unique largest torsion subgroup of M,
and T(T(M)) = T(M).

(2) If M is an abelian group, then Rej,(Q) is the intersection of all
K < M with M/K torsion free. So Rej,(Q) is again just the torsion sub-
group T(M) of M, the unique smallest subgroup with M/T(M) torsion free.
And of course T(M/T(M)) = 0.

Clearly both Tr,(%) and Rej, (%) are left R-submodules of M. More-
over, they are both stable under endomorphisms of M.

8.16. Proposition. Let % be a class of modules, let M and N be modules,
and let f:M — N be a homomorphism. Then

STry(%) < Try(%)  and  [(Rejy(¥)) < Rejn(U).

In particular, Try (%) and Rej\(¥) are left R- right End(gM)-bisubmodules
ofM.

Proof. For the first, simply observe that for each he Homg(U, M) we have
fhe Homg(U, N) and f(Im h) = Imfh. For the second, if x € Rej,(U) and
he Homg(N, U), then hfe Homg(M, U) so h(f(x)) = 0. O

In general, the image of the trace or reject need not be the trace or reject
of the image. For instance, consider the natural map Z — Z, in the setting of
Example (8.15). But with the hypothesis of (8.16) we do have

8.17. Corollary. (1) If f: M — N is monic and Try(%) < Imf, then
S (Try(%)) = Try(¥);

(2) Iff:M — N is epic and Ker f < Rejp (%), then
J(Reju(%)) = Rejn(¥).

Proof. We shall prove (2). By (8.16), f(Rejy(#%)) < Rejy(%). But if f is
epic with Ker f = Rej,,(%), then by The Factor Theorem (3.6), there is an
isomorphism _

M/Rejy (%) — N/ f(Rejy(¥)).

By (8.14) the rejects of % in these are both zero, so by (8.14.2), we have
f(Rejy (%)) = Rejn(%). O

For an indexed set (M,),., of modules and class of modules %, the
direct sum of the traces Try (%) and the direct sum of the rejects Rejy (%)
are both contained in @ 4,M,. In fact, these are the trace and reject of %,
respectively in @  M,.

8.18. Proposition. If (M,),., is an indexed set of modules, then for each
module M
Tro m. (%) = @ ,Try (%)
and

RejaAMQ(%) = Dy Reju,(%)-
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Proof. We shall do the trace. A similar argument works for the reject.
Applying (8.16) to the natural injections i, and projections n, we have

TreAM,(%) = Z"una(Tr$AM,(%))
< Zio(Try (%)) < Tro m (%).
Thus the inequalities are equalities. But
Lio(Try (%)) = @ o Trp (%) O

8.19. Lemma. Let % and ¥~ be classes of modules.
(1) If ¥ < Gen(%), then Trp (V") < Trp(%);
(2) If v < Cog(%), then Rejy (%) < Rejpy (V).

Proof. We shall do (2). Suppose x¢ Rejy(¥"). Then there is a homo-
morphism f:M — V with Ve ¥ and x ¢ Kerf. Since Ve Cog(#), there is a
homomorphism h:V —» U with Ue% and f(x)¢ Ker h. Now hf:M - U
with x ¢ Ker hf. So x ¢ Rejy (). O

8.20. Proposition. Let G be a generator for Gen(¥) and let C be a co-
generator for Cog(%). Then for each M

Try(%) = Try(G) and Rejy (%) = Rejpy(C).
In particular, if (U,),. 4 is an indexed set of modules
Tru(@4U,) = Z,Try(U,)
Rejy (I, U,) = N4 Reju(U,) = Rejy (D, U,).
Proof. By (8.9) and (8.19). O

Two Special Cases

Since gR is a generator (for z.#) it follows from (8.6) that ;M is a generator
iff it generates xR. Whether or not zM is a generator, its trace in R is a
measure of how close it comes to being one:

8.21. Proposition. For each class % of left R-modules, the trace Trg(%)
is a two sided ideal. Moreover, a module M is a generator if and only if
Trg(M) = R.

Proof. By (4.11), the endomorphisms of gR are the right multiplications
p(r) by elements of R. Thus by (8.16) Trp(%) is a two-sided ideal. The last
statement is by (8.8), (8.13.1) and (8.6.1). 0O

Recall that if M is a module, then its (left) annihilator is
IxM)={reR|rx=0 (xeM)},
and that M is faithful in case Iz (M) = 0.
8.22. Proposition. For each left R-module M
' Rejr(M) = Ix(M).
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In particular, M is faithful if and only if M cogenerates R.
Proof. Using (4.5) we have
RejgM = r {Kerf | fe Hom(R, M)}
= n {Kerp(x)|xe M}

= Nyem lr(x) = 1R(M). d

Motivated by this last fact, we define, for a class # of left R-modules, its
annihilator:

1a(¥) = Reja(®).

Thus Ix(%) is simply the intersection of all left ideals I of R such that R/I
embeds in some element of #.

8.23. Corollary. For each class % of left R-modules, the reject
Rejgr(%) = Ix(%) a

is a two-sided ideal.

8. Exercises

1. Prove that there exist modules U and M such that:

(1) M is generated by U but not every submodule of M is generated by U.
[Hint: Let R be the ring of 2 x 2 upper triangular matrices over a field
and let U = M be a left ideal of R.]

(2) M is cogenerated by U but not every factor module of M is
cogenerated by U.

2. If U generates or cogenerates M, then I4(U) = Ix(M). Show, however,
that the converse is false.

3. Prove that for a module zM the following are equivalent: (a) M is
faithful; (b) M cogenerates R; (c) M cogenerates a generator.

4. Prove that zG is a generator iff for some natural number n and some
module gL there is an isomorphism G™ =~ R @ L. [Hint: See Exercise
(5.1).]

5. Prove that if N < M and if M either generates N or cogenerates M/N,
then N is a BiEnd(gM) submodule of M.

6. Let M be a left R-module with S = End(gM). Let ee S be idempotent.
Prove that

Try(Me) = (Me)S and Rejy(Me) = 1,/(Se).
7. Let M and U be left R-modules. Prove that
Homg(M, Try(M)) = Homg(M, U)
Homg(M/Rej\(U), U) =~ Homg(M, U).
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8.

9.

10.

1L

12,

13.

14.

Let I be a left ideal of R and let M be a left R-module. Prove that
Try(R/I) = Rry(I).
Let % be the set of all simple abelian groups. Prove that for an abelian
group M,
(1) Try(#%) = {xe M| x has square free order}.
(2) Rejp(#%) = n {N < M| N is a maximal subgroup of M}.
Let R be the ring of n x n upper triangular matrices over a field Q, and
let % be the class of simple left R-modules. Prove that:
(1) Try@) = {[a;]eR]|a;=0 (i > 2)}.
(2) Rejp(¥) ={[a;] €R|ay=0 (k=1,....m}.
An indexed set (x,),. 4 of elements of a module is linearly independent in
case for every finite sequence ay, ..., a, of distinct elements of A and
everyry,...,r,€R

riXg + ... + X, =0impliesr; = ... =r, =0.

An R-module F with a linearly independent spanning set (x,),. 4 is called
a free R-module (of rank card A) with free basis (X,),c -

(1) Let (x,),.. be an indexed set in a left R-module F. For each a let
P.:R — F be the right multiplication r— rx,. Prove that the following
are equivalent:

(a) F is free with free basis (x,),c4;

(b) ®4p,:R™M - F is an isomorphism;

(c) For every M and every indexed set (y,),.4 in M there is a unique
homomorphism f: F - M with f(x,) = y, (x € A).

(2) Prove that a module zF is free of rank card A iff F = R'“. Thus there
exist free modules of arbitrary rank.
(3) Prove that every free module is a generator.

(4) Prove that if 4F is free, then every epimorphism f:M — F splits.
[Hint: Use (c) of part (1).]

Let F; be a free right R-module with free basis (x,),., and let
S = End(Fg). For each aeS and each x, there is an indexed set
(@up)ee4 In R with almost all .4 zero such that

a(xp) aeA aaﬂxa'

Prove that a [a,4] 1 pcax4 defines a ring isomorphism from § =
End(Fg) onto the ring CFM ,(R) of all A x A column finite matrices
over R.

Let F be a free module of rank card A. Prove that:

(1) If A is infinite, every free basis for F has cardinality card A.

(2) If F has a finite spanning set, then A is finite.

A ring R is left SBN (for “single basis number”) in case all non-zero free
modules of finite rank are isomorphic to zR.

(1) Prove that the following are equivalent:

(a) Risleft SBN;

(b) kR = R

(c) There exist a,a’,b,b’e R with ab + a'b’ =1, ba=b'a’ =1, and
b'a = ba’ = 0 [Hint: For (b) = (c), see (5.3).];
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15.

16.
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(d) Risright SBN.

(2) Prove that if R is SBN, then so is every factor ring of R.

(3) Prove that if I" is an infinite set, then the ring R of all I'-square
column finite matrices over a ring S is left SBN. [Hint: Since I is infinite,
it is the disjoint union of two subsets I, I'” each with cardinality card I'.
Now consider condition (b) of part (1).]

(4) Give an example of a simple SBN ring. [Hint: Parts (2) and (3).]

A ring R is left IBN (for “invariant basis number”) in case no two free left
R-modules of different ranks are isomorphic. Thus (see Exercise (8.13)),
R is IBN iffl R™ =~ R™ implies m = n. Prove that:

(1) Left IBN implies right IBN. [Hint: Exercise (6.22).]

(2) If I is an ideal of R and if R/I is IBN, then so is R. [Hint: Exercise
(6.3).]

(3) Every field is IBN.

(4) Every commutative ring is IBN.

Recall that a commutative integral domain R is a principal ideal domain
(= P.ILD) in case every ideal of R is principal. Of course Z is a P.I.D.
Essentially all results for abelian groups extend to ones for modules
over P.I.D.’s. Show that standard proofs for abelian groups extend to
prove the following results for modules over a principal ideal domain R:
(1) Every finitely spanned torsion-free R-module M is free. (Note:
“torsion-free” means ax =0 for xe M and a€eR implies a =0 or
x =0)

(2) Every submodule of a free R-module is free.



Chapter 3

Finiteness Conditions for Modules

The first round of generalities is over, and it is now time for us to apply this
formal machinery to the study of specific classes of rings and modules. We
begin in this chapter with an investigation of the structure of classes of
modules having certain natural finiteness properties. In the next chapter we
return to the rings themselves.

The lattice of submodules of a module reveals a substantial amount of
information about the module and provides a natural means for classifying
the module. Our point of departure is the observation that the modules with
the simplest possible non-trivial submodule lattices are both simple and
indecomposable. We then classify modules with respect to how they are
pieced together from simple or from indecomposable modules.

In Section 9 we study those modules that are generated by simple modules.
These are precisely the modules that have decompositions as direct sums of
simple modules. Such “semisimple” modules form perhaps the most impor-
tant single class of modules and provide the basic building blocks of much of
the theory. In the next two sections we turn to the modules whose submodule
lattices satisfy one of the so-called “chain conditions”.

Modules satisfying both of these conditions have finite maximal chains—
composition series—that generalize the familiar prime factorization of finite
abelian groups. Finally, in Section 12 we study modules with yet another
“finiteness” property, that is, modules that have indecomposable decom-
positions. Here, one of our major concerns is the uniqueness of such
decompositions and the way such decompositions generalize the notion of a
basis for a vector space.

§9. Semisimple Modules—The Socle and the Radical

From the point of view of module theory among the most remarkable
features of a vector space are that it has a basis, that the cardinality of this
basis is an invariant of the module, and that any independent set can be
extended to a basis by adjoining elements from a given basis. These
properties can be rephrased in module theoretic terms, and as we shall see in
this section, they hold in any module that is generated by simple modules.
These are the “semisimple” modules.

Throughout this section we shall continue our agreement that R is a ring,
that “module” means “left R-module”, etc.

115
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Simple Modules

Recall that a non-zero module xT is simple in case it has no non-trivial sub-
modules. A simple module can be characterized in x M as a non-zero module
T such that every non-zero homomorphism T — N (N — T)in z Misa mono-
morphism (epimorphism). (See Exercise (3.2).) From (2.10) and (3.9) we have

9.1. Proposition. A left R-module T is simple if and only if T =~ R/M for
some maximal left ideal M of R. O

Since the maximal left ideals of R form a set, there is a set 7 of representa-
tives of the isomorphism types of simple modules. (See p. 107.) Note, also,
that since gR is cyclic, it does have at least one maximal left 1dea1 (2.8), so
there do exist simple modules.

Semisimple Modules

Let (T,),., be an indexed set of simple submodules of M. If M is the direct
sum of this set, then

M=00,T,

is a semisimple decomposition of M. A module M is said to be semisimple in
case it has a semisimple decomposition. Clearly every simple module is semi-
simple, so for every ring there do exist semisimple modules. As we shall see,
semisimple modules need not be plentiful, but since any direct sum of simple
modules is semisimple, they are numerous.

If a module M is spanned by simple submodules (T,),.,, then the T,
behave very much like the one-dimensional subspaces spanned by a span-

ning set for a vector space. Evidence of this is given by the fundamental

9.2. Lemma. Let (T,),., be an indexed set of simple submodules of the left
R-module M. If

M = ZA Tv
then for each submodule K of M there is a subset B = A such that (Ty)g.p is
independent and
M=K®(®:sTy.

Proof. Let K < M. By The Maximum Principle there is a subset B < A
maximal with respect to the conditions that (Tj)sp is independent and
K n (23 T;) = 0. (See Exercise (6.14).) Then the sum

N=K+EsT) =K®(®3T))

is direct. We claim N = M. For let ae 4. Since T, is simple, either
T.AnN=T,or TnN=0. But T, n N =0 would contradict the maxi-
mality of B. Thus T, < N foreacha e A,so M = N. O
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As one consequence of this fundamental lemma we have the following
generalization of the fact that in a vector space every spanning set contains
a basis.

9.3. Proposition. If a module M is spanned by an indexed set (T,),., of
simple submodules, then for some B = A

M=@®pT,;
that is, M is semisimple.

Proof. In (9.2) let K = 0. O

9.4. Proposition. Let M be a semisimple left R-module with semisimple
decomposition M = @ , T, If

0-KLIMAENSO

is an exact sequence of R-modules, then the sequence splits and both K and N
are semisimple. Indeed, there is a subset B & A and isomorphisms

N=@®T; and Kz=®,sT,.

Proof. Since Imf is a submodule of M, by (9.2) there is a subset B = 4
such that M = (Imf) @ (®p Ty). Thus the sequence splits and N = M/Imf
= @pT; Butalso M = (@ 5 T,) @ (@5 Tp), so that (see (5.5))

K=zImf=®,sT. d

This is a very significant result. Every submodule and every factor
module of a semisimple module are semisimple. Moreover, every submodule
is a direct summand. As we shall see below (9.6) this property actually
characterizes semisimple modules.

9.5. Corollary. Let (T,),., be an indexed set of simple submodules of M. If
T is a simple submodule of M such that

Tn(EZ,T)+0,
then there is an a € A such that T =~ T,.

Proof. If T is simple and Tn (£, T;) # 0, then T < Z, T,. So clearly we
may assume that M = X, T,. Then by (9.3) we have that M is semisimple
and M = @, T, for some B < A. Finally, apply (9.4). a

Now we have the following fundamental characterizations of semisimple
modules.

9.6. Theorem. For a left R-module the following statements are equivalent:
(@) M is semisimple;

(b) M is generated by simple modules;

(c) M is the sum of some set of simple submodules;

(d) M is the sum of its simple submodules;

(e) Every submodule of M is a direct summand ;

(f) Every short exact sequence
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0--K-M->N-0
of left R-modules splits.

Proof. The implication (a)=> (f) is by (9.4), (f)=(e) is by (5.2), and
(b) = (a) is by (9.3). Also (b) <> (c) < (d) are all trivial. Finally,

(e) = (d). Assume that M satisfies (e). We claim that every non-zero
submodule of M has a simple submodule. Indeed, let x # 0 in M. Then (2.8)
Rx has a maximal submodule, say H. By (e), we have that M = H® H' for
some H' < M. Thus, by modularity (2.5), Rx = Rxn M = H® (Rxn H)
and Rx n H' = Rx/H is simple (2.10). So Rx has a simple submodule. Let N
be the sum of all simple submodules of M. Then M = N @ N’ by (e) for some
N’ < M. Since NN N’ =0, N’ has no simple submodule. But as we have
just seen, this means N’ = 0.So N = M. O

It is clear then that if R is a division ring, then every R-vector space zM
is semisimple, for M is generated by its cyclic modules and every non-zero
cyclic R-module is simple. Also by (9.6.d) an abelian group M is semisimple
iff it is spanned by its elements of prime order. (See Exercise (9.1).)

The Socle

The equivalence (a)<>(b) in (9.6) says that the class of semisimple left
R-modules is precisely the class Gen(¥) of modules generated by the simple
modules . Therefore, each module M has a (unique) largest semisimple
submodule, the trace of & in M. This submodule, usually called the socle of M
(from the French word for “pedestal”), and abbreviated

Soc M = Try (%),

is of fundamental importance. Clearly, M is semisimple iff M = Soc M. An
important multiple characterization of the socle is

9.7. Proposition. If M is a left R-module, then
Soc M = Z{K < M | K is minimal in M }
= (L < M| L isessential in M }.

Proof. The first equality is trivial. To prove the final equality, let T < M
be simple. If L<a M, then T n L # 0,s0 T < L. Thus Soc M is contained in
every essential submodule of M. On the other hand, set H = ()L < M |
L=a M}. We claim that H is semisimple. For let N < H and let N' < M be
a complement of N. (See (5.21)) Then N + N' = N @ N'<2 M. But then
N < H < N® N/, and by modularity

H=HA(N®N)=N®HnN.

Thus N is a direct summand of H. Therefore (9.6.e), H is semisimple; so
H < Soc M. O

Many properties of the socle are immediate from the fact that Soc M is
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just the trace in M of some class of modules. For example, Soc(zR) is an
ideal of R. (See (8.21).) More generally,

9.8. Proposition. Let M and N be left R-modules and let f: M — N be an
R-homomorphism. Then
f(Soc M) < Soc N.

In particular, Soc M is a left R-right End(gM) submodule of M.
Proof. By (8.16). O
9.9. Corollary. Let M be a module and let K < M. Then
Soc K = Kn Soc M.

In particular,
Soc(Soc M) = Soc M.

Proof. By (9.8) Soc K < Soc M. By (9.4) K n Soc M is semisimple so
contained in Soc K. a

Now the socle Soc M of M is the largest submodule of M that is con-
tained in every essential submodule of M. In general, though, Soc M need
not be essential in M; in fact, non-zero modules can have zero socles. (See
Exercise (9.2).) However, we do have

9.10. Corollary. Let M be a left R-module. Then Soc M < M if and only
if every non-zero submodule of M contains a minimal submodule.

Proof. This follows from (9.7) and (9.9). |
As we have noted, the class of simple left R-modules has a set J of
representatives. So from (8.20) we have

9.11. Proposition. Let J be a set of representatives of the simple left R-
modules. Then for each gM

Soc M = Try(T) = Try(®y T) = T, Try(T). O

Note that one consequence of (9.11) is that the class of semisimple
R-modules has a semisimple generator, namely @, T If T is simple, then the
trace Try(T) of T in M is called the T-homogeneous component of Soc M.
Of course, Tr,,(T) is generated by a simple module, so it is semisimple and in
Soc M. By (9.5) every simple submodule of Tr,(T) is isomorphic to T. For
example, the Z ,-homogeneous component of the socle of an abelian group M
is simply the set of elements of order p. (See Exercise (9.1).)

A semisimple module H is T-homogeneous in case

H = Try(T).

Thus it is clear that for any module M, the T-homogeneous component of
Soc M is the unique largest T-homogeneous semisimple submodule of M.
Of course, if M has no simple submodules isomorphic to 7, then the
T-homogeneous component of its socle is zero. By (9.11) the homogeneous
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components of Soc M span Soc M; by (9.5) they are independent (see
Exercise (9.8)); and by (8.16) they are stable under endomorphisms of M.
Thus we have

9.12. Proposition. The socle of a left R-module M is, as a left R- right
End(gM )-bimodule, a direct sum of its homogeneous components.

The Radical

The socle of a module M is the largest submodule of M generated by the
class & of simple modules. There is a dual: for every module M there is a
unique “largest” factor module of M cogenerated by &. However we focus less
on this factor module of M, called the capital of M, than on the corresponding
reject of & in M.

Let & be the class of simple left R-modules. For each left R-module M
the (Jacobson) radical of M is the reject in M of &:

Rad M = Rej, (#).

A dual version of (9.7) is now given by the following characterization of the
radical.

9.13. Proposition. Let M be a left R-module. Then
RadM =()|K < M|K is maximal in M}
= Z{L < M| L is superfluous in M}.

Proof. Since K < M is maximal in M iff M/K is simple, the first equality
is immediate from the definition of the reject in M of a class. For the second
equality, let L « M. If K is a maximal submodule of M, and if L £ K, then
K + L = M; but then since L « M, we have K = M, a contradiction. We
infer that every superfluous submodule of M is contained in Rad M. On the
other hand, let xe M. If N < M with Rx + N = M, then either N = M or
there is a maximal submodule K of M with N < K and x ¢ K. (See Exercise
(2.9)) If xe Rad M, then the latter cannot occur; thus xe Rad M forces
Rx « M and the second equality is proved. O

Since the radical of M is simply the reject in M of a class of modules, we
infer many properties of Rad M from those of rejects. For example (8.23)
Rad(zR) is an ideal of R. More generally, by (8.16) we have

9.14. Proposition. Let M and N be left R-modules and let f:M — N be an
R-homomorphism. Then

f(Rad M) < Rad N.
In particular, Rad M is a left R- right End(gM)-submodule of M. O

Given a homomorphism f:M — N we have just seen that f(Rad M) <
Rad N. Even if f'is an epimorphism, we cannot expect f(Rad M) to be the
radical of N. (See Exercise (9.2).) However, an immediate consequence of
(8.17.2) is
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9.15. Proposition. If f:M — N is an epimorphism and if Ker{f < Rad M,
then Rad N = f(Rad M). In particular,

Rad(M/Rad M) = 0. O
Recall that Soc M = M iff M is semisimple. The dual statement is

9.16. Proposition. Let M be a left R-module. Then Rad M = 0 if and only if
M is cogenerated by the class of simple modules. In particular, if M is semi-
simple, then Rad M = 0.

Proof. The first assertion is by (8.13.2) and the second by the fact that a
direct sum of simples is contained in a product of simples. a

The dual of the T-homogeneous component of the socle of M is the reject
Rejy(T). And dual to (9.11) we have by (8.20)

9.17. Proposition. Let J be a set of representatives of the simple left R-
modules. Then for each gM,

Rad M = Rejy(I1y T) = Rejy(®5 T) = Ny Rejp(T).

Now the radical of M is the smallest submodule of M that contains all
superfluous submodules. However, the radical need not be superfluous. (See
Exercise (9.2).) We do have an important sufficient condition for Rad M « M,
but surprisingly the condition is not necessary. (See (9.10) and Exercise (9.4).)

9.18. Proposition. If every proper submodule of M is contained in a maximal
submodule of M, then Rad M is the unique largest superfluous submodule of M.

Proof. Let L be a proper submodule of M and let K be a maximal sub-
module with L < K. Then by (9.13) L + Rad M < K # M. O

We conclude this section by noting that both the socle and the radical
behave well toward direct sums. (But see Exercise (9.12) for the product.)
For by (8.18) we have

9.19. Proposition. If (M,),., is an indexed set of submodules of M with
M= @® M, then

SocM = @, ,Soc M, and RadM = @ ,Rad M,. O

9. Exercises

1. Let ;M be an abelian group.
(1) Prove that Soc M is the subgroup spanned by the elements of prime
order. (See Exercise (8.8.)
(2) Prove that the Z ,-homogeneous component of Soc M is ry(p).
(3) Let neN. Prove that Z, is semisimple iff n is square free (i.e., n is
divisible by no square other than 1).

2. Let ;M be an abelian group. Prove that: (1) If ;M is torsion-free, then
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10.

11.

12.

13.

14

Soc M = 0; (2) If ;M is torsion, then Soc M =2 M; (3) If ;M is divisible,
then Rad M = M.

. Compute both the socle and the radical of each of the following left
Z-modules:
(1) Z; (2) Z,; (3) R; (4) Z,; (5) Z,.

. Since ,Z generates ;. # (see (8.1)), there exists an epimorphism f: Z'*’ — Q.

Prove that Kerf = K is contained in no maximal subgroup of Z'%.
Deduce that for a module M, Rad M « M does not imply that every
proper submodule is contained in a maximal one.

. Let R be the ring of 2 x 2 upper triangular matrices over a field.
(1) Compute the socle and the radical of both ¢R and Rg. [Note that
each of these four is an ideal of R; also note any similarities or
dissimilarities. ]
(2) Show that R has two non-isomorphic simple modules, but that
Soc(grR) has only one non-zero homogeneous component.

. Let D be a division ring and let M/, be a finite dimensional vector space

over D. Let R = End(Mp). Prove that
(1) Rad(gxR) = Rad(Rgz) = 0.
(2) Soc(gR) = Soc(Rg) = R.

. Let M be a left R-module. Prove that the following are equivalent:
(a) M is semisimple; (b} For every K < M and every R-homomorphism
Sf:K - H there is an extension f:M — H of f: (c) For every K < M and
every R-homomorphism g:H — M/K there is a homomorphism
g:H - M with g = ngg.

. Let (T;),c 4 and (Sp)4.p be indexed sets of simple submodules of a module

gM. Prove that if (Z,T,)n (Z5S;) # 0, then T, = S, for some axe 4
and feB.

. Let M and N be left R-modules and let f:M — N be an epimorphism.

Show that it is possible for Rad N & f(Rad M). But prove that if
M/Rad M is semisimple, then Rad(N) = f(Rad M).

Let M be a left R-module and let K < M. Prove that:

(1) K= RadM iff K < Rad M and Rad(M/K) = 0.

(2) K =SocM iff K > Soc M and SocK = K.

(3) f K « M and Rud M/K = 0,then K = Rad M.

(4) If K= M and Soc K = K, then K = Soc M.

Prove that Rad M = 0 iff M is a subdirect product of simples. But show
that Rad M = 0 is possible even though M is neither a sum nor product
of simple modules.

Show that a product IT, M, of simple modules M, (x € A) need not be
semisimple. [Hint: Let K be a field and let R = K% Then gR is a
product of simple modules. Compute the socle.]

Let T be a simple left R-module. Assume that zR = Soc gR. Prove that
the T-homogeneous component of xR is a ring direct summand of R,
and deduce that as a ring, R is the direct sum of its homogeneous
components.

. A module M is co-semisimple in case every submodule of M is the
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intersection of maximal submodules. Prove that:

(1) M is co-semisimple iff Rad(M/K) = 0 for all K < M.

(2) Every submodule and every factor module of a co-semisimple
module is co-semisimple.

(3) Every semisimple module is co-semisimple.

(4) If R is a Boolean ring, then zR is co-semisimple. Infer that co-
semisimple modules need not be semisimple. [Hint: Let K be a sub-
module of R. Then R/K is a Boolean ring as well as a factor module of R.
Apply Exercise (7.16.3) to get that zR is co-semisimple. For the final
assertion, let K = Z, in the Hint for Exercise (9.12).]

§10. Finitely Generated and Finitely Cogenerated Modules—Chain
Conditions

As we have noted, the concepts of spanning sets, and finite spanning sets are
not categorical and do not have duals. Here, however, we reformulate the
concept of finitely spanned both lattice theoretically and categorically, and
we do obtain an important dual.

Finitely Generated Modules

A module M is finitely generated in case for every set o/ of submodules of M
that spans M, there is a finite set & < o that spans M that is,

T =M implies IF =M

for some finite & < /. This is nothing really new; it is simply a reformula-
tion of a familiar concept.

10.1. Proposition. The following statements about a left R-module are
equivalent:

(a) M is finitely generated;

(b) For every set f,:U, - M (x€ A) with M = X, Imf,, there is a finite
set FS AwithM = XpImf,;

(c) For every indexed set (U,),., and epimorphism ® ,U, - M — 0, there
is a finite set F < A and an epimorphism @U, - M — 0;

(d) Every module that generates M finitely generates M ;

(€) M contains a finite spanning set.

Proof. The implications (a) = (b) and (c) = (d) are both clear.

(b) = (c). By (6.8) we have that f:@®,U, - M is an epimorphism iff
Z,Imfi, = M. And of course fi,: U, - M (x € A).

(d) = (e). This follows from (8.1).

(e) = (a). Suppose that {x,,...,x,} is a finite spanning set in M and
suppose that .« is a set of submodules of M with M = Z./. Then for each
x; there is a finite subset &, = & with x,€eXF,. Set F = F, ... U ZF,.
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Then & is finite, and since L& is a submodule of M that contains a spanning
set for M, L = M. That is, M is finitely generated. O

Finitely Cogenerated Modules

The definition of a finitely generated module has an obvious if not so
familiar dual. A module M is finitely cogenerated in case for every set &/ of
submodules of M

N =0 implies NF =0

for some finite # < .
For example, the abelian group Z is finitely generated but not finitely
cogenerated. The group Z ,« is finitely cogenerated but not finitely generated.
Only four of the conditions of Proposition 10.1 have duals and sur-
prisingly only three of these are equivalent. Although we state these
equivalences now, we have no immediate need of one of the implications and
the proof of this one will be postponed until §18 (see (18.17)).

10.2. Proposition. The following statements about a left R-module M are
equivalent:

(a) M is finitely cogenerated;

(b) For every set f,:M — U, (x€ A) with N Kerf, =0, there is a finite
set F < A with ngKerf, =0;

(c) For every indexed set (U,),., and monomorphism 0 - M — [1,U,,
there is a finite set F = A and a monomorphism 0 - M — I U,.

Proof. (a) = (b). This is clear.

(b) = (a). Let {M, |« € A} be submodules of M with n M, = 0. Apply
(b) to the natural maps f,: M — M/M, (« € A) to get (a).

(b) = (c). Suppose f:M — I1,U, is a monomorphism. Then by (6.2),
N4 Kern,f=0. So by (b) there is a finite set F = A with np Kern,f= 0.
So again by (6.2) n;f:M — I, U, is a monomorphism.

(c) = (b). This implication is proved in (18.17). However, see Exercise

(10.4). O

10.3. Corollary. If M is finitely cogenerated, then every module that co-
generates M finitely cogenerates M.

Proof. By the implication (b) = (c) of (10.2). O

The property of finitely cogenerated modules stated in (10.3) is the dual
of (10.1.d); however, it does not characterize finitely cogenerated modules.
For example, the abelian group @, Z, is not finitely cogenerated yet every
group that cogenerates it finitely cogenerates it. (See Exercise (10.2).) This
fact does not flaw the Principle of Duality that the dual of a theorem is a
theorem. The implication (d) = (a) in (10.1) is simply not a theorem in the
category zM, for to obtain it requires some version of the non-categorical
statement (10.1.e). One version of (10.1.e) is that zR is a finitely generated
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generator in zM. And sure enough whenever zM has a finitely cogenerated
cogenerator, then the converse of (10.3) is true in xM. (See Exercise (10.3).)

The Roles of the Radical and the Socle

Next we state fundamental characterizations of finitely generated and
finitely cogenerated modules. They show that “finitely generated” and
“finitely cogenerated” are determined by the radical and the socle, res-
pectively.

10.4. Theorem. Let M be a left R-module. Then
(1) M is finitely generated if and only if M/Rad M is finitely generated and
the natural epimorphism

M - M/Rad M -0

is superfluous (i.e., Rad M « M);
(2) M is finitely cogenerated if and only if Soc M is finitely cogenerated

and the inclusion map
0—-SocM - M

is essential (i.e., Soc M = M).

Proof. We shall prove (2). The proof of (1) is dual.

(=). Clearly a submodule of a finitely cogenerated module is finitely
cogenerated. So it will suffice to show that if M is finitely cogenerated, then
Soc M < M. But suppose K < M with (Soc M) n K = 0. Now Soc M is the
intersection of all essential submodules of M (see (9.7)), so since M is finitely
cogenerated, there exist essential submodules L,,...,L, of M with L, n ...
NL,N"K=0But(L,n...n L,)<2 M (see (5.16.2)), whence K = 0.

(<=). Let Soc M be finitely cogenerated and essential in M. Let &/ be any
set of submodules of M with (.o = 0. Then ({(4 N Soc M)|Ae st} = 0.
This forces '

A;n...nA)n(SocM)=(A,nSocM)n...n(A,nSocM) =10
for some A,,...,A,e /. But Soc M<= M whence A, n...n A, =0. O

10.5. Corollary. Let M be a non-zero module.
(1) If M is finitely generated, then M has a maximal submodule;
(2) If M is finitely cogenerated, then M has a minimal submodule. O

For semisimple modules the two concepts are equivalent and we have

10.6. Proposition. The following statements about a semisimple module M
are equivalent :

(a) M is finitely cogenerated;

b)M=T,®...@® T, with T, simple (i = 1, ..., n);

(c) M is finitely generated.

Proof. (a) = (b). Assume (a). Then since M clearly can be embedded in a
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product of simple modules and since (10.2.c) holds, M can be embedded in a
product of finitely many simples. Now apply (9.4).

(b) = (cJ. Assume (b). Then clearly M has a finite spanning set. Apply
(10.1).

(c) = (a). Assume (c). Since M is semisimple, it is spanned by simple
submodules. So by (c) it is spanned by a finite set T}, ..., T, of simple sub-
modules. We shall prove (a) by induction on n. Certainly if n = 1, then M is
simple, and finitely cogenerated. Assume inductively that n > 1 and that
any module spanned by fewer than n simple modules is finitely cogenerated.
Now suppose of is a set of submodules of M with n&/ = 0. Then
T,nL=0forsome Les. By 94), L =S, ®...® S, with each S; simple
and m < n. Set o' = {NnL|Nes/}, so s is a set of submodules of L
with ng’ = 0. So for some finite set {N,..., N,} < &,

LAN n...AaN. =0,
and M is finitely cogenerated. O

This last Proposition and (10.4.2) combine to establish the following
characterization of finitely cogenerated modules.

10.7. Proposition. A module is finitely cogenerated if and only if its socle is
essential and finitely generated. O

It is clear from the definitions that if M is finitely generated (finitely
cogenerated), then so is every factor module (submodule) of M. Thus we have
at once the necessity of the conditions in the next result.

10.8. Proposition. Let M = M, @ ... ® M,. Then M is finitely generated
(finitely cogenerated) if and only if each M, (i = 1, ..., n) is finitely generated
(finitely cogenerated).

Proof. Since the union of spanning sets for the M, (i = 1,..., n) is a span-
ning set for M. the finitely generated case is settled by (10.1). So it suffices to
show that if M, (i = 1,..., n) is finitely cogenerated, then so is M. But we
know (9.19)

SocM = (SocM )@ ... ® (Soc M,).

Since each M, is finitely cogenerated, each Soc M, is finitely generated by
(10.7). Thus Soc M is finitely generated by the other part of this Proposition.
Also by (10.7) each Soc M; <2 M;, whence by (6.17) Soc M <« M. Finally
another application of (10.7) gives that M is finitely cogenerated. d

The Chain Conditions

Modules for which every submodule (every factor module) is finitely genera-
ted (finitely cogenerated) can be characterized in terms of certain “chain
conditions”. In general, neither of these finiteness conditions implies the
other although in some very special settings they may be equivalent. Note for
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example, that the submodules of Z are finitely generated and the factor
modules of Z » are finitely cogenerated. A set # of submodules of M satisfies
the ascending chain condition in case for every chain

Li<L,<..<L,<..

in%, thereisannwith L,,; = L, (i = 1,2,...). Turn the inequalities around
for the descending chain condition. (See Exercise (10.9).)

A module M is noetherian in case the lattice & (M) of all submodules of
M satisfies the ascending chain condition. It is artinian in case ¥ (M)
satisfies the descending chain condition.

10.9. Proposition. For a module M the following statements are equivalent :
(a) M is noetherian,

(b) Every submodule of M is finitely generated,;

(c) Every non-empty set of submodules of M has a maximal element. [

The proof of this proposition is dual to that of the next proposition and
therefore it will be omitted.

10.10. Proposition. For a module M the following statements are equiva-
lent.

(a) M is artinian;

(b) Every factor module of M is finitely cogenerated;

(c) Every non-empty set of submodules of M has a minimal element.

Proof. (a) = (c). Let &/ be a non-empty set of submodules of M and
suppose that o/ does not have a minimal element. Then for each L € &/ the
set {Le o/ | L < L} is not empty. Thus, by the Axiom of Choice (0.2), there is
a function L+ L with L > L for each Le /. Let L € &/. Then

L>LC>L>..

is an infinite descending chain of submodules of M.

(c) = (b). Assume (c). Then by (2.9) it will suffice to show that if K < M
and if o/ is a collection of submodules of M with K'= n«/, then K = nF
for some finite subset # < /. But set Z = {(nF | # < « is finite}.. Then
by (c), 2 has a minimal element, N&. Clearly, K = n#.

(b) = (a). Assume (b) and suppose that M has a descending chain

Li>L,>...>L,>..

of submodules. Set K = nyL,. Then since M/K is finitely cogenerated, there
must be some n with K = L, whence L,,, = L, (i=1,2,...). O

10.11. Corollary. Let M be a non-zero module.

(1) If M is artinian, then M has a simple submodule; in fact, Soc M is an
essential submodule;

(2) If M is noetherian, then M has a maximal submodule; in fact, Rad M
is a superfluous submodule. O
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10.12. Proposition. Let
0-K->M->N-0

be an exact sequence of left R-modules. Then M is artinian (noetherian) if and
only if both K and N are artinian (noetherian).

Proof. Let M be artinian. Then since K is isomorphic to a submodule of M,
K is artinian by the definition. Also every factor module of N is isomorphic
to a factor module of M (3.7), so by (10.10) N is artinian,

Conversely, suppose K and N are both artinian; we claim that M is
artinian. Clearly we may assume that K < M and that M/K = N. Now
suppose that

Li>L,>...>2L,>...

is a descending chain of submodules of M. Since M/K = N is artinian, there
is an integer m such that

L,+K=L,,,+K (i=12..).
Since K is artinian, there is an integer n > m such that
LnK=L,,;,nK (i=1,2..).

Thus using modularity and the fact that L, > L,,;, we have for each
i=12..,

L,=L,n(L,+K)=L,n(L,; + K)
= Ln+i + (Ln N K) = Ln+i + (Ln+|' N K) = Ln+i'

Therefore M is artinian. The proof of the noetherian case is dual. O
10.13. Corollary. Let M = M| @ ... ® M,. Then M is artinian (noether-
ian) if and only if each M (i = 1, ..., n) is artinian (noetherian). a

One of the most significant properties of artinian and noetherian modules
is that each such module admits a finite indecomposable direct decomposi-
tion. Note, however, that modules that are just finitely generated need not
have such a decomposition; for example, if R is a product of infinitely many
copies of a field, then zR is cyclic but has no indecomposable decomposition
(also see Exercise (7.8)).

10.14. Proposition. Let M be a non-zero module that has either the ascend-
ing or the descending chain condition on direct summands (e.g., if M is artinian
or noetherian). Then M is the direct sum

M=M&..®M,
of a finite set of indecomposable submodules.

Proof. For each non-zero module M that does not have a finite inde-
composable decomposition choose a proper decomposition

M=N®&M
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such that M’ has no finite indecomposable decomposition. Suppose M is
non-zero and is not a finite direct sum of indecomposable modules. Then

M=NeeM, M =N @M,..
is a sequence of proper decompositions. So there exist infinite chains
N<N®N <... and M>M>M>..

of direct summands of M. O
The four finiteness conditions are equivalent for semisimple modules.

10.15. Proposition. For each module M the following statements are equi-
valent:

(@) Rad M = 0 and M is artinian;

(b) Rad M = 0 and M is finitely cogenerated;

(c) M is semisimple and finitely generated;

(d) M is semisimple and noetherian;

(€) M is the direct sum of a finite set of simple submodules.

Proof. The implications (a)=>(b) and (d) = (c) are immediate from
Propositions (10.10) and (10.9), respectively.

(b) = (e). Assume (b). Then by (9.16) and (10.2.c) M is isomorphic to a
submodule of a finite product P of simple modules. Since such a product is
necessarily a direct sum (6.12), P is semisimple. Now apply (9.4).

(c) <> (e). By Proposition 10.6.

(e) = (a) and (e) = (d). Assume (¢). Then M is semisimple, and by (9.16)
we have Rad M = 0. Clearly a simple module is both artinian and noetherian.
Now apply (10.13). d

10.16. Corollary. For a semisimple module M the following statements are
equivalent :

(a) M is artinian,

(b) M is noetherian;

(c) M is finitely generated;

(d) M is finitely cogenerated. d

Chain Conditions for Rings

A ring R is left artinian (right artinian) in case the left (right) regular module
&R (Rg) is an artinian module. The ring is artinian in case it is both left
artinian and right artinian; i.e., in case gR and Ry are both artinian modules.
The concepts left noetherian, right noetherian or simply noetherian for a ring
are similarly defined in terms of the regular modules ;R and Rg.
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It is easy to see that the ring R of all 2 x 2 upper triangular matrices

a b

0 v
with a,beR and y€e Q is both left artinian and left noetherian, but it is
neither right artinian nor right noetherian. Of course, Z is a noetherian ring

that is not artinian. However, in §15 we shall prove the remarkable fact that
every (left) artinian ring is (left) noetherian.

10.17. Proposition. If R is either left or right artinian or noetherian, then R
has a block decomposition

R=R,+..+R,
as a ring direct sum of indecomposable rings.

Proof. By (10.14) and (7.5), R has a complete set of pairwise orthogonal
primitive idempotents. Now apply (7.9). ad

Observe that if R is left or right artinian, then certainly zRy is artinian;
i.e., the ring R has the descending chain condition on (two-sided) ideals. On
the other hand, a ring R can have the descending chain condition on ideals
yet be neither left nor right artinian; indeed (see Exercise (10.14)) there are
simple rings that are not artinian.

10.18. Proposition. For eachring R the following statements are equivalent :
(a) R is left artinian, )

(b) R has a generator zG that is artinian;

(c) Every finitely generated left R-module is artinian;

(d) Every finitely generated left R-module is finitely cogenerated.

Proof. (a) = (b). This follows since gzR is a generator (8.8).

(b) = (c). Assuming (b), we have that for each finite set F, G'P is artinian
by (10.13). But if M is finitely generated, then by (10.1.d), M is isomorphic to a
factor of G'P for some finite set F. Now apply (10.12) to deduce that M is
artinian.

(c) = (d). Immediate from (10.10).

(d) = (a). Assume (d). Since zR is finitely generated, so is every factor
module of zR. So by (d) every factor module of xR is finitely cogenerated.
Now apply (10.10). O

The proof of the following result, similar to that of (10.18), will be
omitted.

10.19. Proposition. For eachring R the following statements are equivalent :
(a) R is left noetherian,

(b) R has a generator G that is noetherian;

(c) Every finitely generated left R-module is noetherian;

(d) Every submodule of every finitely generated left R-module is finitely
generated. O
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10. Exercises

1. (1) Prove that if ¢ M is finitely generated (finitely cogenerated), then so is
every factor module (submodule) of M.

(2) Give an example of a finitely generated module (in fact, a cyclic one)
with submodules that are not finitely generated.

2. Prove that every Z-module that cogenerates M = @, Z, finitely co-
generates M, but that M is not finitely cogenerated.

3. (1) Let R be a ring that has a finitely cogenerated cogenerator RC.
Prove that for ¢M the following are equivalent:

(a) M is finitely cogenerated; (b) Every module that cogenerates M
finitely cogenerates M; (c) There is an ne N and a monomorphism
M - C™,

(2) Generalize Exercise (10.2) by proving that if R is a ring with an
infinite set (T;),.n of pairwise non-isomorphic simple modules, then
M = @\ T, satisfies (1.b) but is not finitely cogenerated.

4. A slight variation of the condition of Corollary (10.3) does characterize
finitely cogenerated modules. Prove that M is finitely cogenerated iff
for every module U and every set A, if there is a monomorphism
f:M — U4 then there is a finite subset F < A such that ngof:M — UF
is a monomorphism. [Hint: (<=) Suppose M, <M and N, M, =0.
Set U = I1, M/M, and consider some monomorphism M — U4.]

5. Prove that M is finitely generated iff for every chain € of proper sub-
modules of M, its union | ] € is also a proper submodule. [Hint: Assume
that the submodules of M satisfy the condition. Consider the set
2 = {K < M|M/K is not finitely generated}. If 2 # &, then the
condition on chains of submodules implies that 2 has a maximal
element, say N (why?). But if xe M\N, and N €9, then N + Rx is also
in 9, a contradiction. So since M ¢ 2, we must conclude that 2 = &.]

6. Prove that M is finitely cogenerated iff for every chain € of non-zero
submodules of M its intersection N is not zero. [Hint: Suppose M is
not finitely cogenerated. Then there is a set </ of submodules maximal
with respect to N/ = 0 and N # 0 for all finite ¥ < /. Let € be a
maximal chain in /. If n% # 0, then since & is closed under finite
intersections, "% € «/.]

7. Let ¢:Q — R be a ring homomorphism and let M be a left R-module.
Then via ¢, M is a left Q-module (see Exercisc (4.15)). Prove that if
oM is artinian or noetherian, then so is g M. Deduce that if R is a finite
dimensional algebra (via ¢) over a field Q, then the following are
equivalent: (a) g M is artinian and noetherian; (b) g M is finitely generated;
(c) oM is finite dimensional.

8. Let M, be a non-zero homogeneous semisimple module (e.g., a vector
space) and let S = End(Mp). Prove that
(1) The set U = {ye S|Imy is finitely generated} is the unique smallest
non-zero ideal of S. [Hint: If T}, T, are simple submodules of M, then by
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10.

11.

12.
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the homogeneity of M and by Exercise (9.7) there exist e; = e? € S and
feS with e,M = T, and (e, fe, | T;): T; — T, an isomorphism.]
(2) Soc(sS) = Soc(Sg) = U and Rad(sS) = Rad(Ss) = 0.

. A poset (P, <) satisfies the ascending (descending) chain condition in case

there is no infinite properly ascending (descending) chain a, < a, <
a;<..(a,>a,>ay;>..)inP.

(1) Prove that a poset P satisfies the ascending (descending) chain con-
dition iff it satisfies the maximum (minimum) condition (i.e., every non-
empty subset of P contains a maximal (minimal) element).

(2) Apply (1) to obtain another proof of (10.14). [Hint: If M has the a.c.c.
on direct summands, let 2 be the set of direct summands of M having
finite indecomposable decompositions. Let N € 2 be maximal and
suppose M = N @ N’ with N’ # 0. The set 2’ of proper direct sum-
mands of N’ has a maximal element N” and N' = N” @ N” for some
N" # 0. Consider N @ N".]

(1) A lattice L with greatest element u has the finite join property
(abbreviated FJP) in case each subset .o/ with join u has a finite subset #
with join u. Prove that L has the ascending chain condition iff for each
ae L the sublattice

a” ={xeL|x <a}

has the FJP.

(2) A lattice L with least element O has the finite meet property (FMP)
in case its dual has the FJP. Prove that L has the descending chain
condition iff for each a € L the sublattice

a* ={xeL|x>a}

has the FMP. [Hint: This should follow from (1)!]

Prove that the following statements about a non-zero module zM are
equivalent:

(a) The set of direct summands of M has the ascending chain condition;
(b) The set of direct summands of M has the descending chain condition;
(c) End(gM) has no infinite orthogonal set of non-zero idempotents.
[Hint: For (a)<>(b) consider Exercise (10.9). For (c)=> (b) suppose
M=L,>L,>L,>..isacham of direct summands. Then for each n,
M=K, ®..®K,®L, with K, ®L,=L,_,. Let e, be the idem-
potent of K,, in this decomposition. ]

Over a field Q let R be the set of all N-square row finite matrices
A = [a,,] such that «,, = a,, for all m and n (ie, with constant
diagonal) and a,,, = 0 if m # 1 and m # n (i.e, only the first row can be
non-zero off the diagonal).

(1) Prove that R is a subalgebra of the Q-algebra RFMy(Q) of N-square
row finite matrices over Q. [Note that R is isomorphic to the ring
Q[ X, X3, ...] of polynomials in “N indeterminants” modulo the ideal
generated by all X, X; (i,j = 1,2,...).]

(2) Prove that R is a commutative local ring (i.e., R has a unique maximal
ideal).
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13.

14.

15.

16.

(3) Prove that gxR is finitely generated but not noetherian. [Hint: If J is
the unique maximal ideal, then gJ is not noetherian. ]

(4) Let M be the left R-module Homy(Rg, Q). (See (4.4).) Prove that M
is finitely cogenerated but not artinian. [Hint: The set K of all fe M
with J < Ker f is the unique minimal submodule of ¢M and K= M.]
Let R be the ring of all 2 x 2 upper triangular matrices

5 2]

with a,be R and y € Q. Prove that R is left artinian and left noetherian
but neither right noetherian nor right artinian.

Let Q be a field and let ne N. For each A € M,(Q) let D(4) be the N x N
matrix over Q given in block form:
" A -
A
A 0
D(4) =
0

Let R be the set of all D(A) for 4 e M,(Q) and ne N.

(1) Prove that R is a simple subring of the ring CFM(Q) of column
finite matrices over Q.

(2) Prove that gR satisfies neither the ascending nor the descending
chain conditions for direct summands. [Hint: In the descending case,
consider the idempotents E, with (i, j) entry 9;,,6;,, ]

(3) Deduce that R is a simple Q-algebra that is not finite dimensional
and not a division ring.

Prove that every finitely cogenerated module has a finite indecomposable
decomposition.

(1) Prove that for a Boolean ring R, the following are equivalent:
(a) R is artinian; (b) R is noetherian; (c) R is finite; (d) R is semisimple.
[Hint: If R is not finite, then for each 0 # a € R, one of the rings Ra or
R(1 — a) is not finite.]

(2) Prove that if M is an artinian or noetherian module over a Boolean
ring R, then M is semisimple.

§11. Modules with Composition Series

Suppose that M is a non-zero module with the property that every non-zero
submodule of M has a maximal submodule. For example, by (10.11) and



134 Finiteness Conditions for Modules

{10.12) we have that every non-zero noetherian module has this property.
In any event, given such a module M it has a maximal submodule M,, and
either M, = 0 or in turn it has a maximal submodule M,. Then clearly
every such process leads to an infinite descending chain

M>M >M,>..
of submodules, each maximal in its predecessor, or there is finite chain
M>M>M,>..>M, =0

with each term maximal in its predecessor. Observe that if in addition M is
artinian, then only the latter option can occur.

Similarly, if M is a non-zero module with the property that every non-zero
factor module has a simple submodule (e.g., if M is artinian), then there is an
ascending chain

O0<L, <L,<..

of submodules of M each maximal in its successor. Again, if M is noetherian,
the chain terminates at M after finitely many terms; i.e., L, = M for some n.

From the existence of such chains of submodules it is possible to prove a
substantial number of the familiar arithmetic properties of dimension for
vector spaces.

Composition Series

Let M be a non-zero module. A finite chain of n + 1 submodules of M
M=My>M,>..>M, =0

is called a composition series of length n for M provided that M,_,/M; is
simple (i = 1,2,...,n); i.e, provided each term in the chain is maximal in its
predecessor. We have just noted that if a module is both artinian and
noetherian, then it has such a series. Indeed those are the only modules with
composition series. ‘

11.1. Proposition. A non-zero module M has a composition series if and
only if M is both artinian and noetherian.

Proof. In view of the above remarks it suffices to prove the necessity of
the condition. So suppose that M has a composition series; we shall induct
on the minimum length, say n, of all such series. Certainly if n = 1, then M
is simple and we are done. Otherwise, if

M=My>M >..>M, =0

is a composition series of minimal length for M, then M, has a composition
series of length n — 1 and M/M, is simple. Now apply (10.12). O

11.2. Corollary. Let K, M, and N be non-zero modules and suppose there is
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an exact sequence
0 K->M->N-0

of homomorphisms. Then M has a composition series if and only if K and N both
have composition series.

Proof. This is immediate from (10.12) and (11.1). O

We shall return to this corollary later in the section and obtain a
sharpened form of one direction of it, a form that is the basis for some of the
arithmetic properties of such modules.

Now let M be an arbitrary module and let L < M. Then whether or not
L is a term in a composition series for M, if L has a maximal submodule K,
the simple module L/K is called a composition factor of M. Moreover, if M
has a composition series

M=My>M >...>M, =0,
then the simple modules
MO/MIY MI/MZ)'”’Mn—l/Mn

are called the composition factors of the series. If M has a second composition
series

M=Ny>N;>...>N,=0

then the two series are equivalent in case n = p and there is a permutation ¢
of {1,2,...,n} such that

M;/M; | = Nyiy/Noy+1 (i=12,...,n).

Observe that equivalence simply means that for each simple R-module T the
number of isomorphic copies of T in the sequence of composition factors
for the one composition series equals the number of isomorphic copies of T
in the other.

11.3. The Jordan-Hdlder Theorem. If a module M has a composition series,
then every pair of composition series for M are equivalent.

Proof. If M has a composition series, then denote by ¢(M) the minimum
length of such a series for M. We shall induct on ¢(M). Clearly, if ¢(M) = 1,
there is no challenge. So assume that.¢(M) = n > 1 and that any module
with a composition series of smaller length has all of its composition series
equivalent. Let

(1) M=My>M,>..>M, =0
be a composition series of minimal length for M and let
(2) M=Ny>N, >...>N,=0

be a second composition series for M. If M, = N, then by the induction
hypothesis, since ¢(M,) < n — 1, the two series are equivalent. So we may
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assume that M, #+ N,. Then since M, is a maximal submodule of M, we
have M, + N, = M, so by (3.7.3).

3 M/M, = (M; + N)/M, = N,/(M, n N,),
and
O] M/N, = (M, + N,)/N, = M,/(M, n N,).

Thus M; n N, is maximal in both M, and N,. Now by (11.2), M, n N, has
a composition series

MinN,=Ly>L,>...>L,=0.
So
Mi>Ly>...>L, =0
and
Ni>Ly>...>L, =0
are composition series for M, and N;. Since ¢(M,) < n, every two composi-
tion series for M, are equivalent, so the two series
M=My>M >M,>..>M =0
and
M=My>M,>Ly>...>L, =0
are equivalent. In particular, k < n — 1, so clearly ¢(N,) < n. Thus by our

induction hypothesis, every two composition series for N, are equivalent.
Thus the two series

M=Ny>N,>N,>...>N, =0

p
and
M=Ny>N,>Ly>...>L, =90
are equivalent. But as we noted in (3) and (4)
M/M, = N,/L, and M/N, = M,/L,;

thus the series (1) and (2) are equivalént, and we are done. O

Composition Length

It is an immediate consequence of the Jordan-Holder Theorem that for any
module having a composition series, all composition series for that module
have the same length. A module M that is both artinian and noetherian is
said to be of finite length; as we have just noted, for such a module M we can
define its (composition) length ¢(M) unambiguously by

0 ifM=0
M) = ) .. .
n if M has a composition series of length n.
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If a module M is not of finite length, we say it is of infinite length and write
c(M) = 0.

A finite dimensional vector space clearly has a composition length and this
length is simply the dimension of the space. Indeed the function ¢ of
composition length behaves on modules of finite length very much like the
dimension function behaves on finite dimensional vector spaces.

Now we prove the promised revision of one half of Corollary (11.2). Let
K, M, and N be modules and let

0-KLMELEN-0
be an exact sequence. Suppose further that
K=Ky,>K;,>...>K,=0
and
N=Ny>N;>..>N,=0

are composition series for K and N, respectively. For each i =0, 1,...,n,
let K; = f(K;) and for each j = 0, 1,..., p, let N; = g™(N;). Then by (3.8) the
series

M=Ny>N{>..>N,=Ky,>K;>...>K,=0

is a composition series for M. Thus, in view of the uniqueness of length of
such composition series, we have

11.4. Corollary. Let K, M, and N be modules and suppose there is an exact
sequence

0-K->M __'N -0
of homomorphisms. Then )
) (M) = c(N) + c(K). O
From this Corollary we deduce easily the following fundamental result:

11.5. Corollary. [The Dimension Theorem.] Let M be a module of finite
length and let K and N be submodules of M. Then

K+ N)+ e(Kn N)=c(K)+ c(N).

Proof. By (3.7), (K + N)/N = K/(K n N). Then apply (11.4) to the two
exact sequences

0-oN->K+N->(K+ N)/N->0
and
0-KNnN->K->K/(KNnN)->0
to get
(K + N)— c(N) = c¢(K) — (K nN). O
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Fitting’s Lemma

An endomorphism f of a finite dimensional vector space induces a direct
decomposition of the space into two subspaces, on one of which f is nil-
potent and on the other of which fis invertible. This fact has a generalization
of fundamental importance to the study of modules of finite length. Its proof
depends on

11.6. Lemma. Let M be a module and let f be an endomorphism of M.

(1) If M is artinian, then Imf" + Ker f" = M for some n, whence f is an
automorphism if and only if it is monic;

(2) If M is noetherian, then Imf" n Ker f" = 0 for some n, whence f is an
automorphism if and only if it is epic.

Proof. For (1) observe that
Imf>Imf*> ...

Assume that M is artinian. Then this descending chain is finite, and there is
an n such that Imf2" = Imf™.
Let x e M. Then f"(x) e Imf2" so f"(x) = f2"(y) for some y € M. Clearly

x=f ")+ (x —f(y)elmf" + Kerf"

Finally, if f is monic, then Ker f" = 0, so that Imf" = M whence Imf = M.
We omit the proof of (2). O

11.7. Proposition. [Fitting’s Lemma.] If M is a module of finite length n and
if f.is an endomorphism of M, then

M =1Imf"® Kerf".

Proof. By (11.1), M is both artinian and noetherian, so by the Lemma,
there is an m with M = Imf™ @ Ker f™ But since M has length n, both
Imf" = Imf™ and Kerf" = Ker f™. O

11.8. Corollary. Let M be an indecomposable module of finite length. Then
the following statements about an endomorphism f of M are equivalent :

(a) f'is a monomorphism;

(b) fis an epimorphism;

(c) fis an automorphism;

(d) fis not nilpotent. O

11. Exercises

1. Let n be a positive integer.

(1) Determine the composition length ¢(Z,) of the Z-module Z,.

(2) Characterize those n for which Z, has a unique composition series.
2. Give examples of modules M such that ¢(M) = 2 and such that:

(1) M has exactly one composition series.
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10.

11

12.

(2) M has exactly two composition series.
(3) M has infinitely many composition series.

. Give an example of a module M that does not have a composition series

but for which every non-zero submodule has a maximal submodule and
every non-zero factor module has a minimal submodule.

. Let M,,...,M, be submodules of M such that each M/M, has finite

length. Prove that M/(M, n...n M,) has finite length. Moreover
determine a formula for computing this length.

. (1) Let M be a module of finite length and let (M,),., be an indexed set

of submodules with M = Z ,M,. Prove that ¢M)=ZX,c(M,) iff
M=@,.M,.

(2) Let M be semisimple. Prove that c¢(M) is finite iff M is finitely
generated.

. Prove the Schreier Refinement Theorem: If M is a module of finite

length and if
M=Ny>N,>...>N,=0

is a chain of submodules of M, then there is a composition series for M

whose terms include Ny, Ny, ..., N,.

. Prove that if L~ M/K and T is isomorphic to a composition factor

of M then T is isomorphic to a composition factor of either K or L
(even if M isn’t of finite length).

. Let M be noetherian and let f be an endomorphism of M. Suppose that

Coker f has finite length. Prove that both Coker " and Kerf" have
finite length (n = 1,2,...).
[Hint: By (11.6.2) there is an m with Ker f™ N Imf™ = 0.]

. (1) Prove that if M is either artinian or noetherian and if m,ne N

with M™ =~ M, then m = n. [Hint: (11.6).]

(2) Deduce that if R has an ideal I such that R/I is left noetherian or left
artinian, then R-its IBN. (See Exercise (8.15).)

(3) Find a simple ring that is neither left artinian, right artinian, left
noetherian nor right noetherian. '

Let (L, <) be a complete modular lattice. Prove that if L has a maximal
chain of finite length, then every two maximal chains have the same
length. [Hint: Use an induction argument similar to that in the proof of
(11.3). Also see Exercise (2.6.2).]

Prove that if M has two semisimple decompositions M = @, T, =
@pSs then these two decompositions are equivalent, ie., there is a
bijection o: A — B such that T, = S, (« € A). [Hint: One may assume
that M is homogeneous: (Why?) If A is finite use the Jordan-Hélder
Theorem. If 4 is infinite, argue as in Exercise (2.18).]

Prove the following version of Fitting’s Lemma: If M is a module of
finite length and f:M — M is an endomorphism, then there exist sub-
modules I and K suchthat M = I ® K, (f | I):1 — I is an automorphism
and (f| K):K — K is nilpotent. [Hint: If ¢(M) = n, let I = Imf* and
K = Ker f".]
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§12. Indecomposable Decompositions of Modules

Recall that a module is indecomposable in case it is non-zero and has no
non-trivial direct summands. A direct decomposition

M=@.M,

of a module M as a direct sum of indecomposable submodules (M, ), 4 is an
indecomposable decomposition. For example, semisimple modules (§9),
artinian modules and noetherian modules (10.14) all have such decomposi-
tions. Indeed, as we have observed in §9 it is the existence of such in-
decomposable decompositions with simple terms that allowed us to prove, for
semisimple modules, analogues of the standard properties of vector spaces.
Not every module admits an indecomposable decomposition. Indeed, if
R is the ring of all continuous functions from Q to R, then the left regular
module zR has no indecomposable direct summands, so certainly no in-
decomposable decompositions (see Exercise (7.8)). Nevertheless a significant
number of the modules met in practice do have indecomposable decomposi-
tions, and the study of these modules and their decomposition theories is one
of the most important in ring theory. There are two main directions this study
takes, the study of the structure of indecomposable modules and the study
of the behavior of the decompositions themselves. Anything even resembling
a definitive study of these awaits the work of future generations. The
structure of indecomposable modules, even over comparatively simple rings,
can be staggeringly complex. In this section we concern ourselves with the
decompositions and shall see that even if there is an indecomposable
decomposition, there is no guarantee that it is particularly well behaved.

Equivalent Decompositions

We begin our study with an important concept for decompositions that
generalizes one of the fundamental properties of bases in vector spaces. Let
M be a module. Two direct decompositions

M= @AM.-, = @nNﬁ

of M are said to be equivalent in case there is a bijection, called an
equivalence map, ¢: A — B such that

M,=N,, (xcd)

For example, every two indecomposable decompositions of a semisimple
module are equivalent (Exercise (11.11)).

It is easy to check that in the set of all direct decompositions of a module
the property of being equivalent defines an equivalence relation.

12.1. Proposition. Let (M,),., and (Ny)g.p be indexed sets of non-zero sub-
modules of M. Suppose

M=®,M,=@pN,.
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Let 6: A — B be a map. These two decompositions are equivalent via ¢ if and
only if there is an automorphism f of M with f(M,) = N, for eacha € A.

Proof. (=>). For each a € 4, let f,:M, = N, be an isomorphism. Then
since o is bijective, the direct sum (see (6.25)) f = @, f,:M — M is an auto-
morphism with f(M,) = f,(M,) = N, 4.

(<=). It will suffice to show that 6:4 — B is a bijection. But a # o' in 4
implies M, # M,. whence N, # N, and o(a) # a(a’). Now

f(M) = @Af(Ma) = @ANa(a) =M.

Soif fe B and f ¢ a(A), then Ny = Nyn M = Nyn (Z4N,,) = 0 which is
not the case. a

It is immediate that any decomposition of a module that is equivalent to
an indecomposable one is indecomposable. On the other hand two inde-
composable decompositions of a module need not be equivalent. For one
example of this phenomenon see Exercise (12.4). Thus it is important,
although non-trivial, to devise meaningful sufficient conditions for inde-
composable decompositions to be equivalent.

Decompositions that Complement Direct Summands

We consider next a generalization of a fundamental property of semisimple
modules (9.2). First recall that if M is a module, then a direct summand K of
M is a maximal direct summand of M if and only if K has an indecomposable
direct complement N in M. Now a decomposition

M =@M,

of a module M as a direct sum of non-zero submodules (M,),., is said to
complement direct summands (complement maximal direct summands) in case
for every (every maximal) direct summand K of M there is a subset B € A
with

M= (@BMII) @® K.

Of course, a decomposition that complements direct summands comple-
ments maximal direct summands. The converse fails, for as we have seen
(Exercise (7.8)) there are modules having no indecomposable direct sum-
mands and for such a module every decomposition complements maximal
direct summands. A decomposition that complements (all) direct summands
is necessarily indecomposable. (See Exercise (12.2).)

Now suppose that a module M has a direct decomposition

M=0o,M,

that complements (maximal) direct summands. If M’ is a second module
and if f:M — M’ is an isomorphism, then

M, = ®Af(Mu)
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is a direct decomposition of M’ that complements (maximal) direct sum-
mands. In particular, by Proposition 12.1 if one of two equivalent de-
compositions of M complements (maximal) direct summands, then so does
the other. (See Exercise (12.1).)

* 12.2. Lemma. Let M = @ , M, be a decomposition that complements maxi-
mal direct summands. If

M=N,®..ON,®K
witheach N,, ..., N, indecomposable, then there exist a,, ..., a, € A such that
M, =N, (i=1,,..,n),
and for each 1 <1 < n,
M=M,®..0OM,®N,,®..0ON,®K.

Proof. We induct on n. If n = 1, then K is a maximal direct summand, so
the result is immediate. Suppose

M=N,®..®N,®N,., ®K

with the N; indecomposable, and let M,
the lemma through [ = n. Then

M, ®..0M, &K

is a maximal direct summand of M with direct complement N, . ,. So there is
an M, necessarily isomorphic to N, ,, such that

an+1°
M=M,®..0M, &M, @K O

Our first main goal is to show that if M has an indecomposable de-
composition complementing maximal direct summands, then every two
indecomposable decompositions are equivalent, whence every indecom-
posable decomposition complements maximal direct summands. To show
this we require the following lemma.

\»---» M, satisfy the conclusion of

12.3. Lemma. Let M = ® M, be a decomposition that complements
(maximal) direct summands. Let A’ < Aand set M' = £ M,.. Then

M =@M,

is a decomposition of M’ that complements (maximal) direct summands. More-
over, if M has a decomposition that complements direct summands, then so does
every direct summand of M.

Proof. 1t is clear that M’ = @ , M, is a decomposition of M’. Suppose
that K is a (maximal) direct summand of M’. Then

(@4 M) K

is a (maximal) direct summand of M. So by hypothesis there is a subset
B’ = A such that
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M= (@A\A'Ma) ® (@B’Mﬂ') ® K.

But then clearly we must have B = A’ and
M = (@sM,)® K.

This proves the first statement. The final statement follows from the first in
view of the fact that if M = @ ,M,, if N is a direct summand of M, and if
B < Awith M = (®3M;) ® N, then N = @,\s M,. O

Incidentally, it is apparently not known whether the last assertion of
(12.3) holds for decompositions just complementing maximal direct sum-
mands.

12.4. Theorem. If a module M has an indecomposable decomposition that
complements maximal direct summands, then all indecomposable decomposi-
tions of M are equivalent.

Proof. Suppose that M = @ ,M, and M = @, N, are indecomposable
decompositions and that the first complements maximal direct summands.
For each indecomposable direct summand L of M set

A(L)= {xeA|M,~L} and C(L)={yeC|N,=L}.

Then to complete the proof it will sufice to show that for each L, there is a
bijection from A(L) onto C(L) or equivalently that

card A(L) = card C(L).

This will involve several steps.
First, suppose that 4A(L) is finite. Then by (12.2) for each finite subset
F={y1....7,} € C(L), there is an injection 75:F — A such that

L=N, =M i=1..,n).

Thus Im 1 < A(L) and in this case card C(L) < card A(L).
Next suppose that A(L) is infinite. Let (p,),.c be the projections for the
decomposition M = @¢N,. For each a € 4, set

Clearly by (5.5), yeF, iff (p,|M,):M,— N, is an isomorphism. Also
M = @ 4M, complements each @, ,Nj, so clearly

C(L) = v F,.

tr(vi)

Let a € A. Since (N, ),c spans M, there existy,.. ..., ¥, € C with
M,A(N,, +..4+N,)+#0.

Thus, Ker(p,|M,) = 0 only if y € {y,,...,7,}; hence each F, is finite. But
this means a— F, is a mapping from A(L) to a set of finite subsets of C(L)
that cover C(L). Therefore card C(L) < card (N x A(L)). But since A(L) is
infinite, card (N x A(L)) = card A(L). (See (0.10).)

We now have that for each indecomposable direct summand L of M,
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card C(L) < card A(L). That is, there is an injection o:C — 4 such that
N, = M, for each y € C. Therefore there is an isomorphism

SM=@cN,-»>®:M,,

such that f(N,) = M,,, for each ye C. Thus, by (12.3) the decomposition
M = @®N, also complements maximal direct summands. So we can reverse
the roles of 4 and C and infer that for each indecomposable module L,

card A(L) < card C(L)
So (0.10) there is a bijection C(L) — A(L). O

12.5. Corollary. If a module M has an indecomposable decomposition that
complements (maximal) direct summands, then every indecomposable decom-
position of M complements (maximal) direct summands. O

Azumaya’s Decomposition Theorem

A ring R is said to be local in case for each pair a, b € R if a + b is invertible,
then either a or b is invertible. (Also see Exercise (2.12).) We shall have more
to say about such rings in §15. For now we simply observe (see Exercise
(12.9)) that if R is local, then O and 1 are its only idempotents. So, in
particular, a module with a local endomorphism ring must be indecompos-
able (5.10). This establishes the first assertion of the following important
theorem of Azumaya.

12.6. Theorem [Azumaya). If a module has a direct decomposition
M=0,M,
where each endomorphism ring End(M,) is local, then this is an indecomposable

decomposition and

(1) Every non-zero direct summand of M has an indecomposable direct
summand;

(2) The decomposition M = @ 4, M, complements maximal direct summands
and thus is equivalent to every indecomposable decomposition of M.

Proof. Throughout this proof we shall treat the elements of the various
endomorphism rings as right operators. Now suppose that

(1) M=@,1M¢

is a decomposition whose terms have local endomorphism rings, and that
M = N @ N'is a decomposition of M with N non-zero. Leteande' =1 — e
be the orthogonal idempotents in End(M) such that

N = Me and N = Me'.

We claim that N has a decomposition N = K @ N” such that, for some
a € A, e restricts to an isomorphism (e|M,):M, - K. First observe that
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since the submodules (M,),., span M, there is a finite set a,, ..., a, € A such
that

NAM, ®..@M,)#0.

Next let e, be the idempotent for M, in the decomposition (1). Then
e, End(M )e,, which is isomorphic to End(M, ) by (5.9), is a local ring with
identity e,. Thus since

e, = e ee, + e ee,

one of these terms must be invertible in e, End(M)e,. Thus for some
fiele €'}, e, fie, is invertible in e, End(M)e,. Set

2 K, = Imf(e, f}).
Since both e, fie, and e, are isomorphisms from M, to M, ,
3) (fi|M,):M,, > K, and (e,| K,):K, > M,,

are isomorphisms. Now the second of these together with (5.5) gives a
decomposition

(l)l M= Kl @ (@a#alMa)

in which each term has a local endomorphism ring. If n > 1, then let e, be
the idempotent for M,, in the decomposition (1),. Repeating this last argu-
ment we obtain f; € {e, €'} with

(PR K, = Im(e, f;)

and isomorphisms

) (f2 l MM, - K, and (e, I K,):K;, - M,
so that

(1), M=K, ®K; ®(@spa.0, M)

We can continue this until we have

(1), M=K &®.. K, ®@izs4,,..... M)

and a sequence f}, f, ..., f, from {e, &'} with each
(i M): M, - K;

an isomorphism. At least one of the f; must be e for if all the f; are ¢, then
e = 1 — e would restrict to an isomorphism

Mq, @ wee @ M:,, - Kl @ @ Kn;
this is impossible, however, because
(Kere)nM, ®.. &M, )=Nn(M, ®..®M,)+0.

Therefore for some 1 < i < n,f; = e, and we have that K is a direct summand
of M that is contained in N = Me such that (e| M, ):M, — K, is an iso-
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morphism. Thus, taking « = «; and K = K; we have

(4) N=K@®N"
such that e restricts to an isomorphism
(5) (e| M,):M, - K.

This essentially completes the proof. For first K =~ M, is an indecomposable
direct summand of N, and second if N is indecomposable, then we must have
K = N so that, by (5) and (5.5), M, is a complement of the maximal direct
summand N’ of M. Of course the last assertion of part (2) now follows from

(12.4). O
12.7. Corollary. If M has a finite direct decomposition
M=M®&..eM,

where each endomorphism ring End(M;) is local, then this decomposition
complements direct summands.

Proof.Let M = N @ K where N #+ 0. Then by (12.6) thereisal < i, <n
and an Ny < N with M =M, @ N, @ K. If N; # 0, then again by (12.6)
there isa 1 <i; <nand an N, < N, with M =M, @M, ® N, @K,
and clearly i; # i,. Continuing by induction and noting that this can
continue for at most n steps, we conclude that there exist i,, ..., i, for some
k < n with

M=M,®..0M,®K O

The condition of local endomorphism rings is not necessary for a
decomposition to complement maximal direct summands. Indeed any in-
decomposable module, with or without a local endomorphism ring, has a
decomposition that complements direct summands. Of course a module that
has no indecomposable direct summands has a decomposition that com-
plements maximal direct summands.

The Krull-Schmidt Theorem

The classical Krull-Schmidt Theorem is now an easy consequence of
Azumaya’s Theorem and the following

12.8. Lemma. If M is an indecomposable module of finite length, then
End(M) is a local ring.

Proof. Let M be an indecomposable module of finite length ¢(M) = n.
Let f, g€ End(M), and suppose that f + g is invertible in End(M). It will
suffice to show that if g is not invertible, then fis. But if f + g is invertible,
then for some automorphism A,

(f+9h=1y
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in End(M). If g is not invertible, then by (11.8) neither is gh, so also by (11.8)
gh is nilpotent; in fact, (gh)" = 0. Thus

(1—gh)(1 +gh+...(ghy" ") = 1.
In other words fh is invertible whence f'is invertible. O

12.9. The Krull-Schmidt Theorem. Let M be a non-zero module of finite
length. Then M has a finite indecomposable decomposition

M=M@®..0M,
such that for every indecomposable decomposition
M=N&®... ®N,,
n = k and there is a permutation ¢ of {1,..., n} such that
Myy=N  (i=1..n),
and for each 1 < | < n,

M=M,®.@Mu®N, &..ON,.
In fact the decomposition M = M, @ ... ® M, complements direct summands.

Proof. Since M has finite length, we know that it does have a finite
indecomposable decomposition

M=M®..0M,.

(See (11.1) and (10.14).) We have from (12.8) then that each End(M,) is local;
thus, the corollary (12.7) to Azumaya’s Theorem applies, and the decomposi-
tion complements direct summands. The other assertions follow at once
from (12.2). O

As we noted earlier, the hypothesis of local endomorphism rings is not
necessary for an indecomposable decomposition to complement maximal
direct summands. However, one consequence of the following result is that
if both M and M® = M x M have indecomposable decompositions that
complement maximal direct summands, then the endomorphism rings of the
terms in these decompositions must be local.

12.10. Proposition. Let M = @ ,M, be an indecomposable decomposition
that complements maximal direct summands. If M, appears at least twice in this
decomposition (i.e., there isa f #+ a in A such that M; = M,), then End(M ) is a
local ring.

Proof. In view of Lemma 12.3 it will suffice to show that if M is an in-
decomposable module and if the decomposition

MO =MxM=M @M,
where

M, = {(m0)|meM} and M, ={0,m|meM},
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complements maximal direct summands, then End(M) is a local ring. So
suppose that we have these hypotheses and let

nM?P M (i=1,2)

be the natural coordinate projections with Kern, = M; (i # j). Now let
/, g € End(xM) with

f—g=1n
It will suffice to prove that either f or g is an automorphism. So set
M’ = {(mf,mg)|me M} and M, = {(m,m)|meM}.

Then, from the fact that (mf, mg) = (n, n) implies m = m(f—g) =n—n=0,
and the identity

(m,n) = ((m = n)f,(m — n)g) + (m — (m = n)f,m — (m — n)f),
we have M = M, @ M.

But also we see at once that M = M, Whence M’ is a maximal direct
summand of M‘?, Thus, either M? = M, @ M’ or M® = M, @ M’, and
therefore, either

(MMM >M o (n,|M):M->M

is an isomorphism. Finally it is easy to check that this means either f or g
is an automorphism, as desired. ]

12. Exercises

1. Let f:M — N be an isomorphism and let M = @ ,M,. Prove that this
decomposition complements (maximal) direct summands iff N =
@ ,f(M,) complements (maximal) direct summands.

2. Prove that if M = @ (M, is a decomposition that complements direct
summands, then each M, is indecomposable.

3. Let A be an infinite set and let S.= R4,

(1) Prove that ¢S does not have an indecomposable decomposition.

(2) The constant functions in S form a subring of S isomorphic to R.
Prove that the resulting module &S has an indecomposable decomposi-
tion.

(3) Give an example of an indecomposable R-direct summand of S that
is not an S-direct summand of S.

4. (1) Let I and J be left ideals of a ring R such that I + J = R. Prove that
as left R-modules, I ® J = R @ (I nJ). [Hint: The natural epimor-
phism I @ J — R splits. (Exercise (5.1).)]

(2) Let R = Z[,/—5]. Prove that R has a module M having inequivalent
indecomposable decompositions. [Hint: For each r = a + b,/—5 in R
define? = a — b,/-5, and



Indecomposable Decompositions of Modules 149

10.

|r]l = rF = a® + 5b%

Show that || rs| = | r|ls||. Deduce then that the ideal I generated by
{3,2 + /= 5} is not principal and similarly that the ideal J generated
by {3,2 — /=35} is not principal.]

. An indexed set (M, ), , is homologically independent in case a # f implies

Homg(M,, M) = 0. Let M = @ 4M, with (M,),., homologically in-
dependent.

(1) Prove that if each M, is indecomposable and if K is a non-zero direct
summand of M, then K = @M, for some (necessarily unique) B < A.
[Hint: Let (e,),4 be the idempotents in End(gM) for the given de-
composition. Let e = e? € End(gM). Then « # B implies ezee, = 0.]

(2) If each M, has an indecomposable decomposition that complements
(maximal) direct summands, then so does M.

. Give an example of an indecomposable decomposition M = @ M,

with A infinite that complements direct summands and no End(yM,)
local. [Hint: See Exercise (12.5).]

. Let M be a left R-module and set B = BiEnd(sM). Let K, L, M, (x € A)

and N, (y € C) be submodules of M. Prove that

(1) K is an (indecomposable) direct summand of M iff K is an (in-
decomposable) direct summand of gM. [Hint: See Proposition (4.12).]
(2) If K is a direct summand of M, then End(xK) = End(zK).

(3) K and L are R-isomorphic direct summands of zM iff they are
B-isomorphic direct summands of gM.

4) M =@ M, = ®cN, are equivalent decompositions of ;M iff they
are equivalent decompositions of gM.

(5) M = @ M, complements (maximal) direct summands in M iff it
complements (maximal) direct summands in gM.

(6) If ¢M is simple (semisimple), then M is simple (semisimple).

(7) If gM is semisimple, then ;M has a decomposition that complements
direct summands.

. Let M have the property that every direct summand has an indecom-

posable decomposition. Prove that if M has a decomposition that
complements maximal direct summands, then so does every direct
summand.

. Prove that if R is a local ring, then 0 and 1 are its only idempotents. Show

that the converse is false.

(1) Deduce from Proposition 12.10 that the Z-module Z @ Z does not
have an indecomposable decomposition that complements maximal
direct summands. Observe, however, that every two indecomposable
decompositions of Z @ Z are equivalent. [Hint: Exercise (8.16).]

(2) Determine a maximal direct summand of Z @ Z that is not com-
plemented by the decomposition Z (1,1) ® Z (1, 2).



Chapter 4

Classical Ring-Structure Theorems

As we saw in the last chapter semisimple modules play a distinguished role
in the theory of modules. Classically, the most important class of rings
consists of those rings R whose category gM has a semisimple generator. A
characteristic property of such a ring R, called a “semisimple” ring, is that
each left R-module is semisimple. These rings are the objects of study in
Section 13 where we prove the fundamental Wedderburn-Artin characteri-
zation of these rings as direct sums of matrix rings over division rings. In
particular, a semisimple ring is a direct sum of rings each having a simple
faithful left module. In Section 14 we study rings characterized by this latter
property—the “(left) primitive” rings. Here we prove Jacobson’s important
generalization of the semisimple case characterizing left primitive rings as
“dense rings” of linear transformations.

If R is a ring, then the radical of the regular module &R is an ideal, the
“radical” of the ring R. This ideal, an object of considerable importance, is the
focus of attention in Section 15. It is characterized as the unique smallest
ideal of R modulo which R can be suitably represented as a subring of a
product of left primitive rings.

§13. Semisimple Rings

As we have noted several times, the good behavior of vector spaces is often a
consequence of their special decomposition theory. It is more than that
vector spaces are direct sums of simple modules; it is that they are direct
sums of copies of the same simple module. Module theoretically this property
of division rings D is just that the category of left D-modules has a simple
generator. It is not restricted to division rings—indeed any endomorphism
ring of a finite dimensional vector space also has this property. We begin by
considering this from the point of view of matrices.

A Simple Example

13.1. Let D be a division ring and ne N. Let C,(D) be the set of all n x 1
column matrices over D and let R,(D) be the set of all 1 x n row matrices
over D. Then C,(D) is an n-dimensional right D-vector space and R,(D) is
an n-dimensional left D-vector space:

C.(D) = (Dp)"  and  R,(D)= (pD)".

150
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Moreover, the usual matrix multiplications 2 and p are ring isomorphisms
A :M,(D) - End(C,(D)p)
p:M,(D) — End(;R,(D)).
So C,(D) and R,(D) are left and right M,(D) modules respectively. But
notice that C,(D) is a simple left M,(D)-module and R,(D) is a simple right

M, (D)-module. (See Exercise (13.3).) Let E,, E,,..., E, be the primitive
diagonal idempotents of M,(D). Then as a left M,(D)-module

M,(D) = M,(D)E, ® ... ® M,(D)E,
=C,D)®...®C,(D)
and as a right M,(D)-module
M,(D) = E,M,D)® ... ® E,M,(D)
=2R,D)® ... ® R,(D).

In particular, M, (D) is generated both as a left module and as a right module
over itself by a simple module. So by (8.8) and (8.6) every left M, (D)-module
is generated by the simple M, (D) module C,(D) and every right M, (D) is
generated by R, (D).

This rather inelegant looking example (but see Exercise (13.2)) is really
the whole story. For as we shall see, the property of having a simple generator
characterizes (to within isomorphism) such matrix rings. Thus, in particular,
from this assumption on one side, we can deduce it on the other side. The first
step for the converse of this example will deal with endomorphism rings of
finite direct sums of a module.

Simple Artinian Rings

Let R be an arbitrary ring, RM a non-zero left R-module, and n >0 a
natural number. In what follows we shall write the endomorphisms of M and
of M™ as right operators, and we shall also write the natural injections and
projections

M ->M"  and A, M" - M

on the right. Now for each a = [«;;] € M,(End(M)) define p(«) € End(M™)
coordinatewise by

(xp(a))n; = Z; xm; o5
Then xp(a) is simply the usual matrix product
xp(2) = [xy, ..., x,] (2]

where the elements x of M™ are considered as 1 x n row matrices
x = [x,,...,x,] over M. Thus it follows from computations just as in
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ordinary matrix multiplication that M'” is a bimodule

’RM™ i Enaon)
via p. That is,
p:M,(End(M)) - End(M™)
is a ring homomorphism. (See Proposition 4.10.)

13.2. Proposition. Let M be a non-zero left R-module and let n > 0 be a
natural number. Then

p:M, (End(M)) » End(M™)
is a ring isomorphism.
Proof. If a € Ker p, then for each i, j, a;; = ¢;p(%)n; = 0, so p is injective.
Finally, if y € End(M™), then
(Xp(ﬁ‘k)’n.t]l))ﬂj = xni(‘.‘?'ﬂj) = (x“/)'"-j
and p is an isomorphism. O

13.3. Schur’s Lemma. If ;T is a simple module, then End(gT) is a division
ring.

Proof. Every non-zero endomorphism T — T is an isomorphism. |

Now we have the very fundamental Wedderburn characterization of
simple artinian rings (see (13.5)) phrased in terms of simple generators.

13.4. Theorem [Wedderburn]. The ring R has a simple left generator if and
only if R is isomorphic to the full matrix ring M, (D) for some division ring D
and some natural number n. Moreover, if ;T is a simple left generator for R,
then as a ring

R =~ M,(D)
where D = End(gxT) and n = c(xR).

Proof. With the notation of (13.1) C,(D), a simple left M, (D)-module,
generates every left M, (D)-module (see (8.8) and (8.6)), so M,(D) has a simple
left genecator.

For the rest of the Theorem it will suffice to prove the final assertion. So
suppose T is a simple generator for R. Since gR is finitely generated and
since T generates R, there is an integer m and an epimorphism 7™ — R — 0.
So by (9.4) kR = T™ for some natural number n. Therefore 4R has a com-
position series of length n (see Exercise (11.5)), so c¢(gR) = n (see §11). Now
by (4.11) and (13.2), as rings

R = End(gR) = End(, T™) = M (End(T)).
Finally, by Schur’s Lemma (13.3), End(T) = D is a division ring. O

Observe that this Theorem implies that if R has a simple generator 47,
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then T, is a finite dimensional vector space over the division ring
D = End(xT) and R =~ End(T,). (See Exercise (13.1).) In §14 we shall return
to consider the Wedderburn Theorem from this point of view as a special
case of a general result on biendomorphism rings.

There are other important characterizations of rings having simple left
generators. Of particular interest are that they are precisely the simple left
artinian rings and that they are also, symmetrically, the rings having simple
right generators.

13.5. Proposition. For a ring R the following statements are equivalent:
(a) R has a simple left generator;

(@’) R has a simple right generator;

(b) R is simple and left artinian;

(b") R is simple and right artinian;

(c) For some simple g T, kR = T™ for some n;

(c') For some simple Tz, Rg = T™ for some n;

(d) R is simple and gR is semisimple;

(d’) R is simple and Ry is semisimple.

Proof. (a) <> (c). This is clear.

(a) = (d). Assume R has a simple left generator T Let I be a proper ideal
of R. Then I is contained in a maximal left ideal L of R, and we have R/L = T.
But clearly ;T is faithful. So, since IR € L,

I < If(R/L) = I(T) = 0

and R is simple. Since (a) = (c), R is semisimple.

(d) = (b). If xR is a direct sum of simples, it must be a finite direct sum of
simples (see §7), so (see (10.15)), gR is artinian.

(b) = (a). If R is left artinian, then (10.11) R has a minimal non-zero left
ideal T. Now the trace Trg(T) # O of T in R is an ideal (8.21) of R, so if R is
simple, then Trg(T) = R. That is, xR is generated by T.

(a) <> (a’). Since M,(D) has a simple left generator and a simple right
generator, (13.4) establishes this equivalence.

(a") < (b’) < (c') < (d’) are now clear. O

In particular, from this proposition we see that for simple rings, the
conditions, left artinian, right artinian, and artinian are equivalent. A ring
satisfying the equivalent conditions of (13.5) (i.e., a ring that is isomorphic
to an n x n matrix ring over a division ring) is usually referred to as a simple
artinian ring.

The Wedderburn-Artin Theorem
A ring R is said to be semisimple in case the left regular module 4R is semi-
simple. By (13.5) we have that every simple artinian ring is semisimple. Also it
follows that any ring direct sum of semisimple rings is also semisimple. (See
Exercise (13.6).) Thus, we have one implication in the following result—one
of the most important theorems in all of algebra.
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13.6. Theorem (Wedderburn-Artin]. A ring R is semisimple if and only if it
is a (ring) direct sum of a finite number of simple artinian rings.

This version actually understates the case. Indeed, to prove the remaining
implication of the Wedderburn-Artin Theorem we shall make the following
analysis of the

13.7. Structure of a Semisimple Ring [Wedderburn-Artin]. Let R be a
semisimple ring. Then R contains a finite set T\, Ty, ..., T,, of minimal left ideals
which comprise an irredundant set of representatives of the simple left R-
modules. Moreover for each such set the homogeneous components

Tre(T;) = RT.R (i=12,..m

are simple artinian rings and R is the ring direct sum

R =RTR+ ...+ RT,R
Finally, T, is a simple generator for the ring RT,R and

RT,R = M, (D))
where
n; = ¢(RT,R) and D; = End(gT))

(i=1,2.. m).

Proof. By (9.1) and (9.4) every simple left R-module is isomorphic to a
minimal left ideal of R. In particular, for each simple T the trace
Trg(T) # 0. Now gR is the direct sum of these traces (9.12); so (see §7) there
is a finite set T, Ty, ..., T,, of minimal left ideals of R that is an irredundant

set of representatives of simple left R-modules. By (8.21) each of the traces
Trg(T) is an ideal of R and hence

gRr = Trg(T) @ ... @ Trg(T,)
So, by (7.6) each Trg(T,) is a ring and this latter is a ring direct sum
R = Try(T)) + ... + Trg(T,)

Certainly T,  Trg(T;) and so by (7.6) it follows that 7; is a simple left ideal
of the ring Trg(T;). Since T, generates Trg(T;) as an R-module (8.12) it gener-
ates it as a Trg(T;)-module. Thus by (13.5), Trg(T;) is a simple ring, hence a
minimal two-sided ideal of R, so

Trg(T) = RTR.

The rest of the proof is now an easy application of (13.4). O
13.8. Corollary. A ring R is semisimple if and only if Ry is semisimple.
Proof. This is clear from (13.5) and (13.6). O

Now we easily deduce the following important characterizations of
semisimple rings.
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13.9. Proposition. For a ring R the following statements are equivalent :
(a) R is semisimple;

(b) R has a semisimple left generator;

(c) Every short exact sequence

0-K-M->N-0

of left R-modules splits;

(d) Every left R-module is semisimple.
Moreover, these statements are equivalent if throughout “left” is replaced by
“right”.

Proof. In view of (13.8) it will clearly suffice to prove the equivalence of
the “left”-hand version of the conditions.

(a) = (b). By (8.8), gR is a left generator.

(b) = (d). Every module is an epimorphic image of a direct sum of copies
of any generator. Now apply (9.4).

(d) = (c) = (a). This is by Theorem (9.6). O

This result implies immediately the following characterization of cate-
gories of xM for which R is a semisimple ring.

13.10. Corollary. For a ring R the following statements are equivalent :

(a) R is semisimple;

(b) Every monomorphism in gM splits;

(c) Every epimorphism in gM splits. O

13. Exercises

1. Let R have a simple generator T and let D = End(,T).
(1) Prove that if g M is simple, then M =~ T.
(2) For some n, kR = T™ and R =~ M,(D). (See (13.4).) Prove that
dim(Tp) = nand that 4: R — BiEnd(zT) is an isomorphism. [Hint: With
the notation of (13.1), C,(D) is a simple left R-module.]
(3) Prove that Cen R = Cen(End(gT)). [Hint: Exercise (4.6).]
2. Let V be an n-dimensional right D-vector space over the division ring D.
Let vy,...,v, be a basis for V. Set R = End(V}).
(1) Prove that gV is a simple generator (for M).
(2) Foreach 1 < i,j < n, let ¢;;€ R with
e;i(v) = Sy v; (k=1,...,n).
Prove that e;; = e, is an idempotent of R and that Re;, =~ jV.
(3) Prove that ykR = Re; @ ... @ Re,.
(4) Deduce that R = ¢,R @ ... @ ¢,R, whence ¢;R is a simple generator

for Ry.
3. Let D be a division ring, neN, 1 < k < n, and set
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Ck) = {[[“ij]] € M, (D) | ;= 5jk°‘ij}
R(k) = {[«;] e M, (D) | a;; = Sy}

(1) Prove that C(k) is a simple left ideal of M,(D) and R(k) is a simple
right ideal of M, (D). [Hint: Exercise (13.2).]

(2) Prove that as left M,(D) modules C(k) =~ C,(D) (see 13.1)) and as
right M, (D) modules, R(k) = R, (D).

(3) Prove that the left (right) regular module over M,,(D) is the direct sum
of C(1),..., C(n) (resp. R(1), ..., R(n)).

4. (1) Let R be a semisimple ring and let I be a proper ideal of R. Prove that
R/I is also a semisimple ring.

(2) Show that subrings of semisimple rings need not be semisimple.

S. (1) Let ¢:R — S be a surjective ring homomorphism. Prove that S is a
semisimple ring iff ;S is semisimple.

(2) State and prove necessary and sufficient conditions in order that Z,
be a semisimple ring. [Hint: Exercise (9.3).]

6. Let (R,),c4 be an indexed class of rings. Prove that the product IT, R, is
semisimple iff A is finite and each R, is semisimple.

7. (1) Prove that if R is isomorphic to a subdirect product of a finite set
(Ry)i =, of simple rings, then R is a ring direct sum of simple rings. [Hint:
Exercises (7.13) and (7.16).]

(2) Prove that if R is isomorphic to a subdirect product of a finite set of
semisimple rings, then R is semisimple.

8. (1) Let I be a minimal left ideal of a ring R. Prove that I is a direct

summand of gR iff I> # 0. [Hint: If I? # 0, then I = Ix for some x € I.
So there is an e € I such that ex = x. Now suppose 0 # R(e — €?).]
(2) Prove that for a left artinian ring R the following are equivalent:
(a) R is semisimple; (b) R contains no non-zero nilpotent (nil) left ideals;
(c) R contains no non-zero left ideals with square zero; (d) for all x € R,
xRx = 0 implies x = 0.

9. (1) Prove that the converse of Schur’s Lemma is false. That is, show that
there exists a non-simple module whose endomorphism ring is a
division ring. [Hint: Consider a ring of upper triangular matrices. ]

(2) Let R be a ring having no nen-zero nilpotent left ideals. Prove that if
I is a left ideal of R such that End(gI) is a division ring, then g1 is simple.
[Hint: Let 0 # xel. Then Rx is not nilpotent, so for some reR,
p.x:1 — Iis a non-zero endomorphism of I.]

10. A ring R is left cosemisimple (or a left V ring) in case xM has a semisimple
cogenerator.
(1) Prove that for a ring R the following are equivalent:
(a) R is left cosemisimple; (b) Rad(M) = O for all left R-modules M;
(c) Every left R-module is cosemisimple; (d) xM has a cosemisimple
cogenerator. [Hint: See Exercise (9.14).]
(2) Prove that every semisimple ring is cosemisimple.
(3) Prove that if M has a simple cogenerator, then R is a simple ring.
(4) Prove that for a ring R the following are equivalent:
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(a) R issimple artinian; (b) Every non-zero left R-module is a generator;
(c) Every non-zero left R-module is a cogenerator.

11. Let G be a finite group of order n and let K be a field whose characteristic
does not divide n. Thus n = n-1 is invertible in K. Using the results of
Exercise (7.17) prove

Maschke’s Theorem If G is a group of order n and if K is a field whose
characteristic does not divide n, then the group ring KG is semisimple.

12. Let R be a finite dimensional algebra over an algebraically closed field.
Prove that if R is a simple ring, then R =~ M,(K). [Hint: First R is
artinian (Exercise (10.7)). If R =~ M,(D) where D is a division ring, then
CenD = CenR = K (see Exercises (4.4) and (4.5)). So D is finite
dimensional over K. Thus K = D.]

13. (1) Using the fact that every finite division ring is a field, prove
Theorem. Let R be a simple ring of m elements and let K be its center.
Then: K = GF(p") for some prime p and some n; m = (p")** for some k;
and

R = M(GF(p")).

[Here GF(p") is the unique (to within isomorphism) finite field of p"
elements.]

(2) Deduce that there is a natural bijection between the finite semisimple
rings (to within isomorphism) and the set of all finite sequences

(plr ny, kl)r s (plr n;, kl)

of triples of natural numbers with p,, ..., p, prime.

§14. The Density Theorem

Recall that if T is a faithful left R-module, then the natural map
A:R - BiEnd(xT) is an injective ring homomorphism. One consequence of
the last section (see Exercise (13.1)) is that if R has a simple generator T, then
rT is faithful, the mapping A is an isomorphism, and BiEnd(,T) is the endo-
morphism ring of a finite dimensional vector space T}, over a division ring
D = End(,T). More generally, in this section we consider those rings R
having a faithful simple module T. For such a ring BiEnd(,xT) is the endo-
morphism ring of a (possibly infinite dimensional) vector space. Then the
f:lassical Jacobson-Chevalley Density Theorem asserts that the canonical
1mage of R in BiEnd(xT) is a “dense” subring, The first step toward proving
this is a lemma concerning biendomorphism rings.

Biendomorphism Rings of Direct Sums

Suppose that the module M has a direct summand M’. Then M’ is stable
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under BiEnd(gxM). Indeed, if M = M’ @ M” and if e € End(zxM) is the idem-
potent for M’ in this decomposition, then for each b € BiEnd(z M)

b(M’) = b(Me) = (bM)e = M.

Also every endomorphism of M’ extends to one of M, so the restriction to M’
of a biendomorphism of M is a biendomorphism of M’ and the restriction
map

BiEnd(xM) -2 BiEnd(xM’)
is a ring homomorphism.

14.1. Lemma. Let the left R-module M be the direct sum M = M' @ M"
of submodules M’ and M". Then the restriction map Res is a ring homomorphism
making the diagram

R

BiEnd(xM) —R&> BiEnd( M)

commute. Moreover,
(1) If M’ generates or cogenerates M", then Res is injective;
(2) If M’ generates and cogenerates M”", then Res is an isomorphism.

Proof. The first assertion is an immediate consequence of the preceding
remarks. For the others, let

S = End(xM),

and let eeS be the idempotent for M’ in the direct decomposition
M = M’ ® M". Then by (5.9) there is a ring isomorphism p:eSe — End(zM’)
where for each se S and each x e M’, p(ese): x — xese. Thus, it follows that
M’ is a right eSe module, and

BiEnd(xgM') = End(M.s,).

So now let b € BiEnd(xM) and suppose that (b| M’) = 0. If M’ generates M”,
then clearly it generates M (8.4) whence M'S = Tr,(M') = M (see Exercise
(8.6)), so b(M) = b(M’S) = (bM’)S = 0. On the other hand suppose M’
cogenerates M”. Then M’ cogenerates M whence (see Exercise (8.6))
54(Se) = Rej(M’') = 0. But (bM)Se = b(MSe) < bM’' = 0 so that bM = 0.
In either case b = 0 and (1) is established.

Now for part (2) suppose that M’ generates and cogenerates M”; then we
need only show that Res:BiEnd(xM) — BiEnd(gM') is surjective. But let
a€ BiEnd(zM') = End(M.g,). We claim that there is an S-homomorphism
a:M'S —» M such that

a:x x;s; — X(ax;)s;

for all x;e M’ and s;€S. Indeed, suppose Z x;s; = 0. Then for each s€ S,
(Z(ax;)s;)se = Z(ax;)es;se = a(X x;es;se) = 0. But since M’ cogenerates M,
1,,(Se) = 0, so Z(ax;)s; = 0, and our claim follows. Also since M’ generates
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M, M'S = M, so ae BiEnd(xM). Finally, it is clear that (a|M’') = a, and
thus (2) is proved. a

Now let M be a non-zero left R-module and let A be a non-empty set.
Since M is a left BiEnd(gM)-module, the direct sum M is not only a left
R-module but also a left BiEnd(, M) module with rsspect to “caordinatewise”
scalar multiplication. That is, for each beBiEnd(zM) and each
X = (xa)aeA € M(A)’

bx = (bxa)aEA‘

Equivalently (see §2), there is a ring homomorphism u from BiEnd(xM) to
to Z-endomorphism ring of M4 such that

ﬂ(b)(x) = (bxa)aEA‘

We claim that in fact these Z-endomorphisms u(b) of M4 are the biendo-
morphisms of (M4, To see this, first let us denote, for each a€ A4, the
a-coordinate injection and projection of M4 by , and =, respectively, and
let us view ¢, and =, as right operators. It is clear that ¢, and =, are also the
a-coordinate injection and projection of M“ viewed as a BiEnd(xM)
module. (See Exercise (12.7).) Let ye A. Then +,:M — M., is an R-isomor-
phism so (see Exercise (4.14)) there is a ring isomorphism ¢: BiEnd(xM) —
BiEnd(g M) such that

¢(b)(ms,) = (bm)i, = b(m¢,).

By (14.1) Res:BiEnd(xM'?) - BiEnd(gM,) is an isomorphism. For each
be BiEnd(zM)let b = Res™ '((b)) € BiEnd(x M™). Then

bime,) = $(b)(me,) = (bm)e,.
Then for each « € 4, since n, ¢, € End(xM'*), we have
b(mu,) = b(mu,m,¢,) = (b(me,))m, ¢,
= ((bm)i,)m, 1, = bime,) = p(b)(me,).

Thus, since (Im ¢,),., spans M4 over Z, we sce that u(b) = b. Therefore
u = Res™'o¢ is aring isomorphism p:BiEnd(xM) — BiEnd(;M'*) and we
have proved

14.2. Proposition. Let M be a non-zero left R-module and let A be a non-
empty set. Then there is a ring isomorphism

p:BiEnd(xkM) — BiEnd(xgM'?)
defined coordinatewise by p(b) (X, )ges = (DXy)ae - a

Now we are ready to prove

The Density Theorem

14.3. The Density Theorem. Let M be a semisimple left R-module. If
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Xy, ..., X, € M and b€ BiEnd(gxM), then there is an r € R such that
bx; = rx; i=1..n).

Proof. Since M is semisimple, M™ is also semisimple. Thus the cyclic
submodule R(x,, ..., x,) of M is a direct summand of M™; so R(x,,..., X,)
is also a BiEnd(xM"™) submodule of M™. Then by (14.2), R(x,, ..., X,) is a
BiEnd(xM)-submodule of M™; in particular,

(BiEnd(gM))(xy,..., X,) = R(x, ..., X,).
Thus, for b € BiEnd(g M) there is an r € R such that
(bxy, ..., bx,) = b(xy, ..., X,)

=Xy ey Xy) = (PXqy ..o, 1X,). O

There is sound topological justification for the name of this theorem.
Indeed, consider the cartesian product M™. Then the product topology on
M™ induced by the discrete topology on M is called the “finite topology” on
M™. For fe MM a neighborhood base for fin this topology consists of the sets

{ge MM | f(x;) = g(x;) for all x,,..., x,}

as {x,, ..., x,} ranges over the finite subsets of M. Now suppose that M is an
abelian group, and let R and S be subrings of End(M). In particular, R and §
inherit the finite topology from M™. Thus, if R is a subring of S we say that R
is dense in S (over M) in case in the finite topology R is a dense subset of S. Of
course this means that for every finite set x,, ..., x, € M and every s € S there
is an r € R such that

rx; = sX; i=1,..,n).

Suppose next that M is a left R-module. Then the image A(R) of R under the
natural map 4:R — End(M,) is a subring of BiEnd(zM), and The Density
Theorem states that if M is semisimple, then A(R) is dense in BiEnd(xM).

Now we turn to Jacobson’s generalization of simple artinian rings and the
Wedderburn Structure Theorem for these rings. A ring R is left primitive in
case it has a simple faithful left module. Since a simple artinian ring has a
simple left generator and since a generator is faithful, every simple artinian
ring is left primitive. The Wedderburn Theorem asserts that a simple artinian
ring is isomorphic to the ring of endomorphisms of a finite dimensional
vector space. The generalization for primitive rings is the following.

14.4. The Density Theorem for Primitive Rings. Let R be a left primitive
ring with simple faithful module xT, and let

D = End(zT).

Then D is a division ring, Ty, is a D-vector space and, via left multiplication 4,
R is isomorphic to a dense subring of End(Tp). In particular, for every finite
D-linearly independent set x,,...,x,€ T and every y,,...,y,€ T there is an
r € R such that
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rx; =y, (i=1,...,n).

Proof. By Schur’s Lemma (13.2), D is a division ring, whence Tp is a
D-vector space. Since T is faithful and simple, the ring homomorphism
A:R — End(Tp) = BiEnd(RT) is injective and The Density Theorem (14.3)
establishes that the image is dense in End(Tp). For the final statement suppose
X,..., X, € T are D-linearly independent and y,, ..., y,€ T. Then there is a
linear transformation b€ End(Tp) such that b(x;) = y; (i=1,...,n. Now

apply (14.3). O

The converse is also true and thus there is the following important
characterization of left primitive rings.

14.5. Corollary. A ring is left primitive if and only if it is isomorphic to a
dense ring of linear transformations of a vector space. In other words, a ring R
is left primitive if and only if there is a division ring D and a bimodule 5 Ty, with
rT faithful such that for every finite D-linearly independent set x,,...,x, €T
and every y,, ..., y,€ T there is anr € R such that

rxi=yi (l= 1!"-9")'

Proof. In view of (14.4) it will suffice to prove that if D is a division ring
and ;T satisfies the final condition, then R is left primitive. But by hypothesis
&T is faithful. Moreover, it is simple. For if x € T is non-zero, then {x} is
D-linearly independent, so again by hypothesis Rx = T. Hence R is left
primitive. O

14.6. Remarks.

(1) We claimed above that Theorem (14.4) is a generalization of the
Wedderburn Theorem for simple artinian rings. For as we noted then a
simple artinian ring R is left primitive, so by (14.4) it is isomorphic to a dense
subring of End(Mp) for some D-vector space My, Using the fact that R is left
artinian, it is easy to show (see Exercise (14.4)) that M, is finite dimensional.
Then using density we have another proof of the fact that R is isomorphic to
End(Mp).

(2) Every simple ring is primitive (see Exercise (14.1)). The converse fails,
however. For example, by (14.5), End(M ) is primitive for every vector space
My, but unless M, is finite dimensional, then End(M}) is not simple. On the
other hand there are simple rings that are not artinian. (See Exercise (11.9).)

(3) One notable feature of the structure theorems for simple artinian
rings in §13 was the left-right symmetry of these theorems. Such symmetry
does not extend to primitive rings. By a right primitive ring we mean a ring
having a simple faithful right module. Then it can be seen that left primitive
rings need not be right primitive. (See Bergman [64].) In this connection
we shall let primitive ring mean left primitive ring.

Matrix Representation

If D is a division ring and M), is a right D-vector space, then M, is free (see
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Exercises (8.11) and (2.17)) so the ring End(M p) of endomorphisms of M, is
isomorphic to a ring of column finite matrices over D. (Exercise (8.12).) That
is, if (x,),eq is @ basis for Mp, then the mapping

a v [a,]

from End(Mp) to the ring CFMg(D) of all column-finite Q x Q-matrices
over D defined by

a(xg) = L, X, 8,p

is an isomorphism. Because of the help this matrix representation can
provide, particularly in the study of examples, it deserves a bit of attention
here. )

Just as in elementary linear algebra, the vector space M, can be viewed as
the set of all column finite Q x 1-column vectors over D. Moreover, M, then
has a basis (e,),.q Where the column vector e, is 1 in the “a-row” and 0
elsewhere. Then with the isomorphism

avs [a,)

from End(Mp) onto CFM (D) determined by this basis, we have

aleg) = [[auﬁ]leﬂ
for each ae End(Mp) and feQ. In other words, we can view M, as
Q-column vectors, End(Mp) as the ring CFMg(D) of Q x Q-column finite
matrices over D, and the action of End(Mp) as given by matrix multiplication.
Now it is easy to check that a subring R of End(Mp) is dense (over M) if

and only if for each finite set §,,...,5,€Q and finite set y,,...,y,€ Mp,
there is an a € R with

aleg) = y; i=1...,n).

(See Exercise (14.3).) That is, the density condition only needs to be tested on
finite subsets of a given basis. For matrix rings this implies that if D is a
division ring, if Q is a non-empty set, and if R is a subring of CFM(D) such
that for every finite set I' = Q the restriction of R to Q x I' is CFM, , (D),
then R is primitive. Of course the converse is true in the sense that every
primitive ring is isomorphic to such a subring of some CFMy(D). In
particular, if D is a division ring and if R is a subring of CFMy(D), then R is
dense in CFMy(D) (and hence is primitive) iff for each neN and each
U € M, (D), there is a matrix in R of the form

o+

14. Exercises

1. (1) Prove that every simple ring is both left and right primitive.



The Density Theorem 163

(2) Prove that every commutative primitive ring is a field.
2. Let Q be a field. For each ne N, each 4 e M,(Q), and each seQ, let
[4, s] e My(Q) be the matrix

Let S be a subring of @ and R = {[4,s]|se S, AeM,(Q),neN}.

(1) Prove that R is a primitive subring of CFMy(Q) with Cen R = §S.
Thus each subring of a field is the center of some primitive ring. (See
Exercise (1.9).)

(2) Prove that if S is not a field, then R has a non-primitive factor ring.

3. Let D be a division ring and let M, be a right D-vector space with basis
(X,)scq- Let R be a subring of End(Mp). Prove that R is dense in
End(Mp) iff for each finite subset F = A and every set (m,), of elements
of M, there isan r e R with r(x,) = m, forallye F.

4. Let D be a division ring, let M, be a right D-vector space, and let R be a
dense subring of End(Mp). Prove that if x,, x,, x3,... are D-linearly
independent in M, then

Ig(xy) > Ig(xy, X3) > Lg(xy, X3, %3) > ...

5. Let Mp be an infinite dimensional vector space over a division ring D and
let R be a subring of End(Mp). Prove that if R is dense in End(Mp), then
for each ne N there is a subring S, of R and a surjective ring homomor-
phism ¢,:S, - M, (D).

6. Let n > 1 and let R be a primitive ring such that x" = x for each x e R.
Prove that R is a division ring. (Actually, R is a field. Can you prove it?)

7. (1) Prove that if R is primitive and e € R is a non-zero idempotent, then
eRe is primitive. [Hint: If ¢ M is simple, then eM is either 0 or eRe-
simple.]

(2) Let R be aring and let n > 1. Prove that R is left primitive iff M,(R)
is left primitive. [Hint: Exercise (1.8).]

8. Let M and N be left R-modules. Prove that
(1) If M is balanced and either generates or cogenerates N, then
M @ N is balanced.

(2) If M generates and cogenerates N and N generates and cogenerates
M, then

BiEnd(xM) = BiEnd(zN) and Cen(End(xM)) = Cen(End(xN)).
[Hint: Exercise (4.6).]
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. Let M be a left R-module and let 4 be the canonical ring homomorphism

R — BiEnd(xM).

(1) Prove that the following assertions are equivalent: (a) A(R) is dense
in BiEnd(xM); (b) For each n > 0, each R-submodule of M™ is a
BiEnd(xM) submodule of M™; (c) For each n > 0, each R-submodule of
M™ is a BiEnd(,M™) submodule of M™,

(2) Prove that if zM is a cogenerator, then A(R) is dense in BiEnd(;M).
[Hint: Part (1) and Exercise (8.5).]

A ring R is prime in case each non-zero left ideal is faithful. Prove that
(1) A commutative ring is prime iff it is an integral domain.

(2) For a ring R, these are equivalent:

(@) Ris prime;

(b) Every non-zero right ideal is (right) faithful;

(c) For each pair I, I, of non-zero ideals, I,I, + 0;

(d) Forall x,ye R, xRy = 0 implies x =0 or y = 0.

(3) Every primitive ring is prime.

(4) Every left artinian prime ring is simple.

(1) Let R be a prime ring. Prove that if Soc xR # 0, then R is primitive,
Soc gR is homogeneous, and Soc xR =2 zR.

(2) Prove that if R is prime and Soc zR is non-zero and of finite length,
then R is simple artinian.

(3) Prove that if R is prime and Soc gR is a simple left ideal, then R is a
division ring.

(4) Show that there exist primitive rings R with Soc xR = 0. [Hint:
End(Mp) for My, a vector space has a simple factor ring. ]

(1) Prove that if R is a prime ring and e € R is a non-zero idempotent,
then eRe is a prime ring. [Hint: Exercise (14.10.2).]

(2) Let R be a ring and n > 1. Prove that R is prime iff M,(R) is prime.
[Hint: Exercise (1.8).]

Let V be an infinite dimensional vector space over a division ring D. For
each fe End(Vp) define the rank of f by rank f = dim(Im f).

(1) Let c be an infinite cardinal. Prove that

I, = {fe End(Vp)|rankf < c}

is an ideal of End(Vp).
(2) Let I be an ideal of End(Vp)-and let fe I. Prove that

{g € End(Vp) | rank g < rank f}

is contained in I.

(3) Prove that I, is the unique minimal ideal of End(Vp) and Iy, is
the unique maximal ideal of End(V}).

(4) It can be shown that the collection of cardinal numbers that are less
than or equal to a given cardinal is well ordered by <. (See Stoll [63].)
Using this fact prove that I # 0 is a proper ideal of End(Vy) iff I = I, for
some cardinal ¢ such that Xy < ¢ < dim V. Conclude that the ideal lattice
of End(Vp) is well ordered.
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§15. The Radical of a Ring—Local Rings and Artinian Rings

Let R be a ring. Then End(gR) is simply the ring of right multiplications by
elements of R (see (4.11)). Thus, by (9.14) the radical Rad(zR) of zR is a
(two-sided) ideal of R. This ideal of R is called the (Jacobson) radical of R, and
we usually abbreviate

J(R) = Rad(gR).

One consequence of the first theorem of this section (15.3) is that this radical
is also Rad(Ry); therefore we have to contend with no left-right ambiguity.

Primitive Ideals

The first goal of this section is to obtain several characterizations of the
radical J(R) of a ring. One of the more important of these is that J(R) is the
smallest ideal modulo which R is “residually primitive”. We say that an ideal
P of R is a (left) primitive ideal in case R/P is a (left) primitive ring. Similarly, a
right primitive ideal is an ideal P of R such that R/P is a right primitive ring,
Since every simple ring is primitive (see Exercise (14.1)), every maximal ideal
is both left and right primitive. However, although a left primitive ideal of R
is a two-sided ideal, it need not be right primitive (see Bergman [64]). Of
course, the primitive ideals of R are simply the kernels of the ring homo-
morphisms of R onto dense rings of linear transformations of vector spaces.
Another easy characterization:

15.1. Proposition. An ideal P of a ring R is a primitive ideal if and only if
there exists a haximal left ideal M of R such that

P = Ig(R/M) = Rejp(R/M).

Proof. The factor ring R/P is primitive iff R/P has a faithful simple module
iff (2.12) P is the annihilator of a simple left R-module. The second equality
is by (8.22). a

Characterizations of the Radical

Since R is finitely generated as a left R-module, its radical J(R) is the
unique largest superfluous left R-submodule of R. (See (9.18) and (10.5.1).)
Also since every nilpotent left ideal of R is superfluous in gR, the radical
J(R) contains all nilpotent left ideals. (See Exercise (5.18).) Indeed, if R is left
artinian, then J(R) is the unique largest nilpotent left ideal of R. (See (15.19).)
In general, however, J(R) is not nilpotent, or even nil. But there is a useful
generalization of nilpotence that leads to a generalization of the above
characterization of J(R) for left artinian rings.

An element x € R is left quasi-regular in case | — x has a left inverse in R.
Similarly x € R is right quasi-regular (quasi-regular) in case 1 — x has a right
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(two-sided) inverse in R. Of course, an element of R can be left quasi-regular
but not right quasi-regular. A subset of R is left quasi-regular (etc)) in case
each element of R is left quasi-regular (etc.). This does generalize nilpotence.
For if x € R with x" = 0, then

lT+x+...+x"NM-x)=1=01-x)1+x+...+x""
so x is quasi-regular.

15.2. Proposition. For a left ideal I of R the following statements are
equivalent:

(@) I is left quasi-regular;

(b) I is quasi-regular;

(c) I is superfluous in R.

Proof. (a) = (b). Assume (a) and let x € I. Then x is left quasi-regular, so
x'(1 — x) = 1 for some x € R. Thus since x'xel is left quasi-regular and
since x' = 1+ x'x = 1 — (—x'x), there is a y € R such that yx’ = 1. But then
X' isinvertibleand y = 1 — x. So (1 — x)x’ = 1 and x is quasi-regular.

(b) = (c). Assume (b) and let K be a left ideal of R with R = I + K. Then
there exist xe I and ke K with 1 = x + k. So k = 1 — x is invertible whence
leKand K = R.

(c) = (a). Assume (c) and let x € I. Then Rx « R. But R = Rx + R(1 — x),
whence R(1 — x) = R,so | — x has a left inverse. O

Now we come to an important multiple characterization of J(R). One
consequence of it is that there is a fourth condition equivalent to the three
of (15.2), namely, that I is right quasi-regular.

15.3. Theorem. Given a ring R each of the following subsets qf R is equal to
the radical J(R) of R.

(Jy) The intersection of all maximal left (right) ideals of R;

(J2) The intersection of all left (right) primitive ideals of R;

(Js) {x€R|rxs is quasi-regular for all r,s € R}

(Js) {x€R|rxis quasi-regular for allr e R},

(Js) {x € R|xsis quasi-regular for all s R};

(Je) The union of all the quasi-regular left (right) ideals of R;

(J7) The union of all the quasi-regular ideals of R;

(Jg) The unique largest superfluous left (right) ideal of R.
Moreover, (J3), (J4), (J5), (Jg) and (J;) also describe the radical J(R) if “‘quasi-
regular” is replaced by *left quasi-regular” or by “right quasi-regular”.

Proof. To denote the right-hand version of (J,), (J,), (Js) and (Jg) we shall
append an asterisk. Thus J¥ is the intersection of all maximal right ideals of
R. Now by (9.17) and (15.1), we have that

J, = Rad(zR) = n{Rejg(T)| x T is simple} = J,.

Also since gzR is finitely generated, we know from (9.13) and (10.4.1) that
J; = Jg and by (15.2) we see that Jg = Jg. Of course, also
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Jt=Jt=Jt =}

But since J, and J¥ are ideals, Jg and J¢¥ are ideals. So clearly J; = J¥ = J,.
Now it is immediate that
Jo = Jy & J, & Jg,

and
J¢cJycJs < JE,

so we do have the equality claimed by the first assertion of the theorem. Also
in their left quasi-regular versions

J,ehyeJ S J.

But thanks to (15.2) the left quasi-regular version and the quasi-regular
version of Jg are equal as are the two versions of J,. Similarly, the right
quasi-regular versions of Jy, Js, J¥ and J, equal J(R). Now we have all the
claimed sets equal J(R) except for the left quasi-regular versions of
Js (= J¥ with left quasi-regular) and the right quasi-regular versions of
J, (= Jg with right quasi-regular). We shall show that the right quasi-regular
version of J is the radical and let symmetry handle the other. Clearly, in their
right quasi-regular forms J; < J, and as we have seen, J, = J¥; so in order
to accomplish this it only remains to show that every right quasi-regular left
ideal is contained in JT = Rad(Rg). Suppose then that Rx is right quasi-
regular and that x ¢ J¥; then there exists a maximal right ideal K of R with
x¢ K. Thus forsomere R and ke K

1 =xr+k
Now rx is right quasi-regular, so there is a u € R with
(I —rxu=1
Therefore,
x = x(1 — rx)u =(x — xrxju
= xu — (1 — k)xu = kxue K.

This contradiction means that Rx < J¥ as claimed, and the proof is
complete. Oa

15.4. Corollary. If R is a ring, then
Rad(gR) = J(R) = Rad(Ry). O

In view of (8.22), (15.1), and the fact (15.3) that J(R) = J, = J,, we have
immediately

15.5. Corollary. If R is a ring, then J(R) is the annihilator in R of the class
of simple left (right) R-modules. O

A key fact about the Jacobson radical J(R) of R (or indeed about any
“radical”; see p. 174) is
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15.6. Corollary. If 1 isanideal of aring R, and if J(R/I) = O, then J(R) < I. .

Proof. If x ¢ I, there exists a maximal left ideal M of R with I = M and
x ¢ M (see (15.3) and (3.8)), so x ¢ J(R). 0O

15.7. Corollary. For an ideal I of a ring R the following are equivalent:

(@) I =J(R);

(b) I is left quasi-regular and J(R/I) = 0;

(c) Iis left quasi-regular and J(R) < I;

(d) gl is superfluous in gR and J(R/I) = 0;

(e) gl is superfluous in xR and J(R) < I. O

The radical of a factor ring of R is at least as big as the corresponding
factor of J(R), but they need not be equal. Indeed, the ring Z has zero
radical, but Z, does not. (See Exercise (15.1).)

15.8. Corollary. If R and S are rings and if ¢ :R — S is a surjective ring
homomorphism, then @(J(R)) < J(S). Moreover, if Ker ¢ < J(R), then
¢(J(R)) = J(S). In particular,

J(R/J(R)) = O.

Proof. Clearly since ¢ is surjective, ¢(J(R)) is a quasi-regular ideal of S;
thus ¢(J(R)) € J(S) by (15.3). On the other hand suppose Ker ¢ = J(R).If M
is a maximal left ideal of R, then Ker ¢ = J(R) & M, so by (3.11), p(M) is a
maximal left ideal of S and by (15.3), J(S) & ¢(M). But also by (15.3) and
(3.11), ¢(J(R)) is the intersection of all ¢(M) for M a maximal left ideal of R.
So J(S) < ¢(J(R)) d

15.9. Corollary. If R is the ring direct sum of ideals R, R,, ..., R,, then
J(R) =J(R,) + J(R,) + ... + J(R,).

Proof. Let | = u, + u, + ... + u, where u,, u,, ..., u, are pairwise ortho-
gonal central idempotents. Then it is easy to see that I is a quasi-regular ideal
inRifandonlyifI = I, + ... + I, where, for each k = 1,..., n, I, is a quasi-
regular ideal in the ring w,Ru, = R,. O

As we have already noted, J(R) contains every nilpotent left ideal of R.
Recall that an ideal (left, right, or two-sided) is nil in case each of its elements
is nilpotent. Thus, more generally,

15.10. Corollary. If R is a ring, then every nil left, right, or two-sided ideal
of R is left quasi-regular, whence every nil left, right, or two-sided ideal of R is
contained in J(R).

Proof. Every nilpotent element x € R is left quasi-regular, for if x" = 0,
l+x+..+x""H1l-x)=1 O

15.11. Corollary. If R is a ring, then J(R) contains no non-zero idempotent.

Proof. If ee R is idempotent and if ee J(R), then Re is a superfluous
direct summand of gR. Thus, e = 0. Od
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15.12. Corollary. Let I be an ideal of the ring R. If I is nil and if J(R/I) = 0,
then I = J(R). On the other hand, if I = J(R) and if every non-zero left ideal
of R/I contains a non-zero idempotent, then I = J(R).

Proof. The first assertion is immediate from (15.7) and (15.10). The
second follows from (15.11) and (15.8). O

Recall (9.18) and (10.5) that if ;M is non-zero and finitely generated, then
Rad M # M. Using this fact we have the following very useful characteriza-
tion of J(R). It is often called Nakayama’s Lemma.

15.13. Corollary. For a left ideal 1 of a ring R, the following are
equivalent:

(@) I < J(R);

(b) For every finitely generated left R-module M, if IM = M, then M = 0;

(c) For every finitely generated left R-module M, IM is superfluous in M.

Proof. (a) = (b). Suppose M # 0 is finitely generated. Then M has a
maximal submodule K. (See (10.5).) So by (15.5), J(RM < K.
(b) = (c). Suppose N < M and IM + N = M. Then

I(M/N) = (IM + N)/N = M/N.

So if M is finitely generated, (b) implies M/N = 0.
(c) = (a). Assume (c). Then since zxR is finitely generated, IR « R. Thus;
I < IR < J(R). a

Semiprimitive Rings

A ring R is semiprimitive in case J(R) = 0. In particular, a primitive ring is
semiprimitive. The left-right symmetry that holds for simple artinian and
semisimple rings but that fails for primitive rings (see (14.6.3)) reappears for
semiprimitive ones.

15.14. Proposition. For a ring R the following are equivalent:
(a) R is semiprimitive;

(b) gR is cogenerated by the class of simple left R-modules;
(c) Ry is cogenerated by the class of simple right R-modules;
(d) R has a faithful semisimple module.

Proof. This is immediate by (15.5) and (9.17). O

Since J(R) = J, (see (15.3)), a ring R is semiprimitive iff it is isomorphic
to a subdirect product of primitive rings. (See Exercise (7.16).)

Remark. The term “semisimple” is often. used for rings R with J(R) = 0.
This is confusing because a semiprimitive ring need not be semisimple.
However (see (15.16)), the semisimple rings are precisely the artinian semi-
primitive rings.
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Local Rings

Recall from §12 that a ring R is a local ring in case the set of non-invertible
elements of R is closed under addition. Using the radical we have the
following characterization of this important class of rings.

15.15. Proposition. For aring R the following statements are equivalent :
(a) Risalocalring;

(b) R has a unique maximal left ideal ;

(c) J(R)is a maximal left ideal ;

(d) The set of elements of R without left inverses is closed under addition;
(e) J(R) = {xeR|Rx # R};

(f) R/J(R)is adivision ring;

(8) J(R) = {xeR|x is not invertible}

(h) If x € R then either x or 1 — x is invertible.

Proof. (b) <> (c). This is immediate from the definition of J(R).

(c) = (d). Assume (c). Then by (15.3) J(R) is the unique maximal left ideal
of R. Let x, y € R be non left invertible. Then since every proper left ideal is
contained in a maximal one (10.5), Rx, Ry < J(R), whence x + y e J(R). So
x + yis not left invertible.

(d) = (e). Assume (d). Since J(R) is a proper left ideal it will clearly suffice
to prove that if x € R with Rx # R, then x € J(R). But then for each re R, rx
does not have a left inverse and 1 = rx + (1 — rx), so by (d), 1 — rx does have
a left inverse. Thus by (15.3), xe J, = J(R).

(e) = (). Assuming (e) it follows that every non-zero element of R/J(R)
has a left inverse there. Thus R/J(R) is a division ring, (See Exercise (1.2).)

(f) = (b). Since a division ring has no non-trivial left ideals, if R/J(R) is a
division ring, then J(R) is a maximal left ideal. (See (3.8).)

(h) = (g). Assume (h). Let xe R be non-invertible, say x has no left
inverse. Then no rx is invertible, so by (h) each rx is quasi-regular. Thus
xe J(R).

(f) = (g). Assume (f). Suppose x € R and x ¢ J(R). Then by hypothesis x
is invertible modulo J(R). That is, Rx + J(R) = R and xR + J(R) = R.
But since J(R) = Jg in (15.3), Rx = R and xR = R. So x is invertible.

(g) = (f) and (g) = (a) = (h). These are clear. O

Rings Semisimple Modulo the Radical

One of the most significant of these characterizations is that R is local iff it is
a division ring modulo its radical. In particular, a local ring is semisimple
modulo its radical. Another class of rings with this property is the class of
artinian rings.

15.16. Proposition. Let R be left artinian. Then R is semisimple if and only
if J(R) = 0. In particular, R/J(R) is semisimple.
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Proof. The first assertion is just (10.15). The second follows from the first
and (15.8) since R/J(R) is a left artinian ring. |

In general rings do not have any semisimple factor rings. For example, no
simple non-semisimple ring can have a semisimple factor ring (see Exercise
(10.14)). However, rings R for which R/J(R) is semisimple are of considerable
interest. Some of the reason for their importance is given in:

15.17. Proposition. For a ring R with radical J(R) the following statements
are equivalent:

(@) R/J(R)is semisimple;

(b) R/J(R) is left artinian,

(c) Every product of simple left R-modules is semisimple;

(d) Every product of semisimple left R-modules is semisimple;

(e) For every left R-module M, Soc M = r,,(J(R)).

Proof. (a) <> (b) is immediate from (15.16), (10.15), and the fact (15.8) that
J(R/J(R)) = 0.

(a) = (e). By (15.5), J(R) annihilates every simple left R-module. Thus,
Soc M < ry(J(R)) for every g M. But J(R)r,(J(R)) = 0. Therefore r,,(J(R))
is an R/J(R) module. So assuming (a), we have that r,,(J(R)) is semisimple
and contained in Soc M.

(e) = (d). Since J(R) annihilates all semisimple modules it annihilates all
products of semisimple modules. Thus, assuming (e) we have that every
product of semisimple modules is its own socle and hence is semisimple.

(d) = (c). This is clear.

(c) = (a). We know that R/J(R) is cogenerated by simple R-modules.
Thus by (9.4) it follows that (c) implies (a). O

For any left R-module M the factor module M/Rad M is cogenerated by
the simple left R-modules. But by (15.5) we know that J(R) annihilates all
simple modules, so certainly it annihilates M/Rad M. In other words,

J(RM < Rad M.

In general, equality does not hold. But if R is semisimple modulo its radical,
then not only does J(R) determine the socle of each M, by Soc M = ry(J(R)),
but also, it determines the radical of M. Specifically,

15.18. Corollary. Let R be a ring with radical J = J(R). Then for every left
R-module M,

JM < Rad M.

If R is semisimple modulo its radical, then for every left R-module M,
JM = RadM

and M/JM is semisimple.

Proof. The first inequality has been established above. Now assume that
R/J is semisimple. Let M be a left R-module. Then M/JM is a semisimple
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R/J-module, and hence (2.12) a semisimple R-module. Therefore
Rad(M/JM) =0
and by (9.15) it follows that Rad M < JM. O

The Radical of an Artinian Ring

If R is left artinian, then its radical J(R) is the unique smallest ideal modulo
which R is semisimple. Now we can also characterize J(R) for artinian rings
as the unique largest nilpotent ideal.

15.19. Theorem. If R is a left artinian ring, then its radical J(R) is the unique
largest nilpotent left, right, or two-sided ideal in R.

Proof. In view of (15.10) it will suffice to prove that for a left artinian ring R
its radical J = J(R) is nilpotent. But since we do have

J2J*2J3 2.,

if R is left artinian, then J" = J"*! for some n > 0. Suppose J" # 0. Then the
collection of left ideals of R that are not annihilated by J" is not empty. So
(10.10) there is a left ideal I of R minimal with respect to the property
J'I # 0. Let xe I with J"x # 0. Then Jx < Rx < I and J"(Jx) = J"*1x =
J"x # 0.So by the minimality of I, we have Jx = Rx, contrary to (15.13). [J

Now it is easy to prove the following very remarkable result:

15.20. Theorem [Hopkins]. Let R be a ring with J = J(R). Then R is left
artinian if and only if R is left noetherian, J is nilpotent, and R/J is semisimple.

Proof. If R is left artinian, then by (15.19) J is nilpotent and by (15.16) R/J
is semisimple. So we may assume that R/J is semisimple and that J is nil-
potent, say J” = 0. We induct on n. If n = 1, then R = R/J is semisimple, so
(10.16) gives the proof. So let n > 1 and assume the result for every ring of
nilpotency index less than n. By (15.12), J(R/J"™ ') = J/J"™ !, so our inductive
assumption implies that R/J"~! is left artinian iff it is left noetherian. Now
there is a short exact sequence of left R-modules:

0-J"'S5R->R/JTI0.

So by (10.12) R is left artinian (noetherian) iff both J"~! and R/J"~! are. But
since J" = J(J""') = 0 and since R/J is semisimple, J" ! is semisimple.
Thus by (10.16), J"~ ! is artinian iff it is noetherian. O

15.21, Corollary. Let R be left artinian. If M is a left R-module, then
SocM =ry(J)=s M and RadM = JM « M.

Moreover, for M the following statements are equivalent :
(@) M is finitely generated,
(b) M is noetherian;
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(c}) M has a composition series;
(d) M is artinian;
(e) M/JM is finitely generated.

Proof. Let 0 # x € M. Then Rx is a factor of R, hence, Rx is artinian and
Soc Rx = Rx n (Soc M) # 0 by (10.11). By (15.16) R/J is semisimple, so by
(15.17.e), Soc M = ry,(J). By (15.16) and (15.18), Rad M = JM. By (15.19), J
is nilpotent, so JM « M. (See Exercise (5.18).)

(@)= (c). If M is finitely generated, then there is an R-epimorphism
R™ — M — 0. But then since xR is both artinian and noetherian, so is M
((10.12) and (10.13)), i.e, M has a composition series (11.1).

(c) = (b) and (d). By (11.1).

(b) = (a). By (10.9).

(d) = (e). If M is artinian, then so is M/JM (10.12); hence by (15.18) and
(10.15) M/JM is finitely generated.

(e) <> (a). Since JM « M, this follows from (15.18) and (10.4). O

Levitzki’s Theorem

It follows from (15.10) and (15.19) that if R is left artinian, then every nil one-
sided idea! of R is actually nilpotent. This fact admits the following
generalization to left noetherian rings.

15.22. Theorem [Levitzki]. If R is left noetherian, then every nil one-sided
ideal of R is nilpotent.

Proof. Let R be left noetherian. Then by (10.9) R has a maximal nilpotent
ideal, say N. Let S = R/N. Then 0 is the only nilpotent ideal in S. We claim
that 0 is the only nil right ideal in S. To see this, suppose 0 # I < S is nil.
Since S is left noetherian, the set {/s(x) | 0 # x € I'} has a maximal element, say
I(x). Let seS with xs # 0. Now xsel is nilpotent, say (xs)**' = 0 and
(xs)* # 0. Clearly /5(x) < I5((xs)*), so by maximality /5(x) = /((xs)*). Thus
xsx = 0. Therefore (SxS)? = 0, x = 0, and the claim is established. Thus if
is a nil right ideal in R, then (I + N)/N = 0e R/NandI € N, ie, N contains
every nil right ideal of R. But if ae R and Ra is nil, then.aR is also nil (if
(ra)" = O, then (ar)"*! = 0) so we see that N also contains every nil left ideal
of R. Since N is nilpotent, this completes the proof. |

Combining (15.20) and (15.22) we have

15.23. Corollary. Let R be left noetherian. If R/J(R) is semisimple and if
J(R) is nil, then R is left artinian.

General Radicals

Given any non-empty class 2 of rings, there is for each ring R an associated
P-radical, Rad,(R), the intersection of all kernels of the surjective homo-
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morphisms R —» P for P e 2. Many of the fundamental properties of these
general radicals are very easy to prove. For example, the 2-radical is an ideal,
the ring modulo the #-radical has zero 2-radical, the 2-radical is 0 iff R is
isomorphic to a subdirect product (see Exercise (7.16)) of rings in 2, etc.
The Jacobson radical J(R) is just the #-radical for £ the class of primitive
rings. In the exercises we shall look at another important radical, namely the
one induced by the class of “prime rings”.

15. Exercises

1. Compute the Jacobson radical of each of the following rings:
(1) Z
(2) z,.
(3) R where R is a Boolean ring.
{(4) The ring of all n x n upper triangular matrices over a field K.

2. Let R be the ring of all upper triangular N x N-matrices over a
field that are O a.e. off the main diagonal.
(1) Show that the Jacobson radical J(R) of R is the subset of all strictly
upper triangular matrices (i.e., all [a;;] € R with a; = 0 for all i).
(2) Show that J(R) is nil but not nilpotent.

3. Let (M,),., be an indexed class of left R-modules and let I be a right
ideal of R.
(1) Prove that I(IT,M,) < IT ,(IM,) and that equality holds whenever I
is finitely generated.
(2) Show that if I is not finitely generated, then equality need not hold in
part (1). [Hint: Try R = ZN and I = Z™.]
(3) Prove that if R is right artinian, then Rad(I1,M,) = I1 ,(Rad M,).

4. Let (R,),. 4 be an indexed class of rings. Prove that

JII R, = {relI,R,|n,(r)eJ(R,) (xeA)}.

That is, with a few notational liberties, J(IT,R,) = IT,J(R,).

5. Let R be a commutative ring, and let # be the set of all maximal ideals of
R. Prove that Rad(M) = n,., IM. [Hint: If L is a maximal submodule
of M, then M/L = R/I for some I € # and IM < L.]

6. Let R be left artinian with radical J and with T, ..., T, a complete set of
representatives of the simple left R-modules. Prove that
(1) A two-sided ideal of R is primitive iff it is maximal.

(2) Rejg(Ty),..., Rejp(T,) is the set of maximal ideals of R.
(3) J = A, Reja(Ty).
(4) If x Tis simple, then R/Rejo(T) = Trg,(T).

7. Let pe P be a prime and let J be the radical of Z,,,. (See Exercise (2.12).)
Prove that J is not nil but that "2, J" = 0.

8. Let Q be an uncountable well-ordered set, let Q be a field, and let ¥ be a
right Q-vector space with ordered basis (x,),.q. For each a € Q, set



The Radical of a Ring—Local Rings and Artinian Rings 175

10.

1L

12.

13.

Vo= Z5.,0%
Let R be the subset of End(V,) of those f such that for some scalar a,
(i) dimg Im(f —a;1,) < o
@) (f=—a/ly)(x)eV, (xeQ).

(1) Prove that R is a subring of End(V}). [Note: R can be represented as -
the ring of all Q x Q upper triangular matrices over Q, constant (= a,)
on the diagonal and with at most finitely many non-zero rows above the
diagonal.]

(2) Prove that J = J(R) = {fe R|a, = 0}.

(3) Prove that if (f},f5,...) is any sequence in J, then there exists an n
such that f, f, _, ...f; = 0. [Hint: For each a € Q, let «, € Q be least such
that Im(f.f,-,.. )<V, . I f.fu-1...fi # O for all n, then a; > a; >
... >a, > ..., a contradiction.]

(4) In particular, deduce from (3) that J is nil.

(5) Prove, however, that N2, J" # 0. [Hint: Let w be the first element
of Q such that {a € Q| « < w} is uncountable. Define e, and f, by

0 ifa<n 0 ife<w
enlxe) = {x,, ifa>n Jolxe) = {x,, ifa>w

Thenf, = e, f, = ejes f3=....]

. A ring R with J = J(R) is semiprimary in case R/J is semisimple and J is

nilpotent. Prove that if M is a left module over a semiprimary ring R, then
SocM =ry(J)= M, RadM = JM « M, and M is artinian iff M is
noetherian.

(1) Prove that if R is left artinian, then there exists a finite sequence
M,,..., N, of distinct maximal ideals of R with M, n ... n M, nilpotent.
(2) Use part (1), Exercises (13.7) and (14.4), and the Density Theorem to
obtain another: version of the Wedderburn-Artin Theorem (13.7): If R
is left artinian with no non-zero nilpotent ideals, then R is isomorphic
to a direct sum of rings R, ..., R, each the endomorphism ring of a finite
dimensional vector space V; over a division ring D;.

Let e and f be idempotents in a ring R and let J be the Jacobson radical
of R.

(1) Prove that Rad(Re) = Je.

(2) Prove that if e # 0, then J(eRe) = eJe.

(3) Deduce that the following statements are equivalent:

(a) Re ~ Rf;(b) Re/Je =~ Rf/Jf,(c)eR = fR;(d)eR/eJ = fR/fJ.

Prove that the following are equivalent for an element a in a ring R:
(a) Ra is a direct summand of zR; (b) a = axa for some xe R; (c)aR isa
direct summand of Rg.

A ring R is von Neumann regular in case a € aRa for each a € R. It follows
from Exercise (15.12) that R is von Neumann regular iff every principal
left ideal is a direct summand iff every principal right ideal is a direct
summand.
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(1) Prove that R is von Neumann regular iff every finitely generated left
(right) ideal is a direct summand. [Hint: Let e = e> € R and a€ R. Then
by hypothesis there exists f = f? € R such that Rf = Ra(l — e) < Ra + Re.
Show that Re + Ra = Re + Rf and apply Exercise (7.6.1).]

(2) Prove that every von Neumann regular ring is semiprimitive.

(3) Prove that every factor ring of a von Neumann regular ring is von
Neumann regular.

(4) Prove that if e is a non-zero idempotent in a von Neumann regular
ring R, then eRe is von Neumann regular.

(5) Prove that a commutative ring is von Neumann regular iff 12 = I for
each ideal I of R.

(6) Prove that for a von Neumann regular ring the following properties
are equivalent: (a) semisimple; (b) left artinian; (c) right artinian; (d) left
noetherian; (e) right noetherian.

(7) Prove that if M is semisimple, then End(Mj) is von Neumann regular.
[Hint:IfaeR,then M = Kera® L =K ® Ima. Letx = 0® (a| L) "
Consider axa.]

(8) Let R be the primitive ring of Exercise (14.2). Prove that R is von
Neumann regular iff the subring S is a subfield of Q.

An ideal P of a ring R is a prime ideal in case R/P is a prime ring(see
Exercise (14.10)). Thus an ideal P is prime iff for each x, ye R, xRy < P
implies x € P or y € P. Note that for commutative rings this agrees with
the definition given in Exercise (2.11). The prime radical or the lower nil
radical N(R) of a ring R is the intersection of all prime ideals of R. A ring
R is semiprime in case N(R) = 0, that is, in case R is isomorphic to a sub-
direct product of prime rings. (See Exercise (7.16).)

(1) Let I be an ideal of R. Prove that N(R/I) = 0iff I is an intersection of
prime ideals of R. In particular, N(R/N(R)) = 0.

(2) Prove that N(R) = 0 iff R has no non-zero nilpotent left ideals.
[Hint: (=). See Exercise (14.10.2). (<=). Let Rx be non-nilpotent and let P
be an ideal of R maximal with respect to (Rx)" ¢ P for all ne N. By
(14.10.2.c) P is a prime ideal.]

(3) Let U(R) be the unique largest nil ideal of R. (See Exercise (2.5). This
ideal is called the upper nil radical of R.) Prove that N(R) < U(R); thus
N(R) is a nil ideal of R. [Hint: By (2), N(R/U(R)) = 0; now apply (1).]
(4) Prove that if R is left noetherian, then N(R) = U(R) is the unique
largest nilpotent ideal of R.

(5) Prove that J(R) =2 N(R), but that they need not be equal.

(6) Prove that if R is artinian, then J(R) = N(R), in fact, that every prime
ideal is maximal.

(7) Prove that if R is commutative, then N(R) is just the set of nilpotent
elements of R, so R is semiprime iff R has no non-zero nilpotent
elements.

(8) Prove that a commutative ring R is semiprime iff it can be embedded
in a product of fields.



Chapter 5

Functors Between Module Categories

It should now be clear that the structure of the category M determines to a
significant extent the structure of the ring R. Thus in this chapter we turn to
the direct study of these categories xM. Our starting point will be the study of
certain natural “functors” or “homomorphisms” between pairs of these
categories.

The various module categories that we study have one important feature
distinct from many other classes of categories. For each pair M, N of R
modules, the set Homg(M, N) is an abelian group. Since this property is an
integral part of the structure of these categories, we shall study only functors
that respect it. Thus suppose C is a full subcategory of R-modules and that
D is a full subcategory of S-modules. Then a functor T from C to D is
additive in case for each M, N, modules in C, and each pair f,g:M — N in C,

T(f+9)=T()+ T(g).
In particular, if T is additive and covariant, then the restriction
T:Homg(M,N) - Homg(T(M), T(N))

is an abelian group homomorphism, whereas if T is additive and contra-
variant, then the restriction

T:Homg(M, N) = Homg(T(N), T(M))

is an abelian group homomorphism.

In Sections 16 and 19 we study the two most important classes of additive
functors, the “Hom” and “tensor” functors, between module categories.
Certain pathologies of these functors vanish for some distinguished classes
of modules. These modules, the projective, injective, and flat modules, are the
centers of attention in Sections 17, 18, and part of 19. Projective and
injective modules, duals of each other, are particularly important for their
universal splitting properties—for example, an injective module is a direct
summand of each of its extensions.

Finally, in Section 20 we investigate the notion of a natural transformation
between functors. Here we show the naturality of many of the homo-
morphisms of earlier sections. As we shall see, it is this naturality that allows
us to make some very significant comparisons of rings and their categories
by means of the Hom and tensor functors.

177
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§16. The Hom Functors and Exactness—Projectivity and Injectivity
Let R and S be rings and let U = U be a bimodule. Then (see (4.4)) for
each left R-module xM there are two S-modules,

Homg(Ug, M) € s M and Homg(M, Us) € M.

Thus M +— Homg(Us, M) and M — Homg(M, Us) define functions from .4
to s# and to ., respectively. These two functions can be extended to
additive functors from zM to ¢M and to Mg. The resulting functors are of
fundamental importance in our analysis of module categories.

Definition of the Hom Functors

As above, let U = jUs be a bimodule. Let
f:rM = gN

be an R-homomorphism in M. Then for each y e Homg(U, M), we have
fy€ Homg(U, N). We claim that

Hom(U,f):y—f
is an S-homomorphism
Homg(U,f): Homg(U, M) - Homg(U, N).
Forify,,y, € Homg(U, M) and s,, s, € S, then for allue U,
Sfo(syyy + s272)(W) = f(7,(usy) + y,(us,))
= fyi(usy) + f7,(us;)
= (s1(fr1) + s2(fr2))w).
Thus, we do have a function Homg(U, _):gM — M defined by
Homg(U, _):M +— Homg(U, M)
Homg(U, _):f+— Homg(U,f).

The notation Homg(U, f) can be awkward, so if there is no ambiguity with
the module U, we are likely to abbreviate

Jx = Homg(U, ).
Note that if f: M — N in zM, then f, is characterized by
M—L>N

\ /:lv)
U

Now it is an easy matter to check that this function Homg(U, _) is actually
an additive covariant functor from zM to M.
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On the other hand, for the R-homomorphism f: ;M — N we can define
a mapping

f* = Homg(f, U): Homg(N, U) - Homg(M, U)
via
Homg(f,U):y—+f.

It is straightforward to show that f* = Homg(f, U) is an S-homomorphism.
For f* we have

M—L N

N
U

Here then we have a function Homg(_, U):gM — Mg defined by
Homg(_,U):M +— Homg(M, U)
Homg(_, U):f+— Homg(f, U).
Now finally,
16.1. Theorem. Let R and S be rings and let U = jUg be a bimodule. Then
Homg(U, _):xM - M
is an additive covariant functor and
Homg(_,U):xM - Mg
is an additive contravariant functor.

Proof. We shall show that Homg(_, U) reverses composition and pre-
serves addition. The rest of the proof is at least as routine and will be
omitted. Suppose then that g:M — M’ and f:M’ - M” are morphisms in
M. If y e Homp(M", U), then

(fog)* ) =7vofog =g*(f*¥) = (g% f*)).

Next suppose that f:M — N and g:M — N are morphisms in gM. If
y€ Hom(N, U), then

(f+9*D) =7°(f+@ =Gof)+Geg) =*®) + g*O) a

Appealing to opposite rings we can deduce from this Theorem the
existence of a variety of additive functors. For example, a bimodule 5_¢V
yields a covariant functor

Homg(sV, _):gM = Mg,
and a contravariant functor
Homg(_,sV):gM - M.

We shall frequently refer to this class of functors as the “Hom functors”.
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General Properties of Additive Functors

Before proceeding to the explicit study of these Hom functors, we shall
prove a pair of results about additive functors that we shall need subse-
quently.

16.2. Proposition. Let C and D be full subcategories of the categories of left
(or right) modules over rings R and S. Let F:C — D (G:C — D) be an additive
covariant (contravariant) functor. If

S 9
0o K—&@ - M—@->N-0
is split exact in C, then both

0 F(K) 24 F(M) 2% F(N) - 0
G(g) G(f)

0- G(N) 22 6(M) 22 G(K) -0

are split exact in D. In particular, if g:M — N is an isomorphism, then both
F(g) and G(g) are isomorphisms.

We shall prove this result jointly with

16.3. Proposition. Let C, D, F, and G be as in (16.2). If M, M, ..., M, are
modules in C and if M =M, ® ... ® M, is a direct sum with injections
ty,..., t, and projections my, ..., m,, then

(1) F(M) is a direct sum of F(M,),..., F(M,) with injections F(i,),...,
F(1,) and projections F(n,),..., F(n,);

(2) G(M) is a direct sum of G(M,), ..., G(M,) with injections G(n,),...,
G(n,) and projections G(t,), ..., G(1,).

Proof (of (16.2) and (16.3)). For each pair M, N in C, F: Homg(M,N) —
Homg(F(M), F(N)) is a group homomorphism. Thus F of the zero map is
the zero map. Now for (16.3.1) we have from (6.22), and the additivity and
covariance of F:

Z i F(WF(m) = F(Z<, ym) = F(ly) = lF(M);
F(m)F(ij) = F(m; '-)) = F(0;;) = 6i1pm-

A similar argument takes care of (16.3.2). Finally, (16.2) now follows as a
special case of (16.3) by virtue of (5.3.b) and (6.22). ]

Suppose again that C, D, F and G are as in (16.2). Let f;:M;, > N
(i=1,...,n) be homomorphisms in C. Applying F to the appropriate
diagrams we have for eachi = 1,..., n,

F(@M,) —="— F(N)

F(i) F(f)

F(M;)

Thus by (16.3) and the uniqueness of the direct sum map,
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F(@i=1 f) = 1= F(f);

hence, relative to the injections F(+,),..., F(t,), F preserves finite direct sums
of homomorphisms as well as of modules. Of course we can also write

F(IT}., g;) = ;= F(g;),
G(®i-, fi) = IT}-, G(f)
and

G(IT}-, g) = ®!-,G(g))

Direct Sums and Products under Hom

Given a bimodule Us the functors Homg(_, U) and Homg(U, _) are both
additive, so by (16.3) they “preserve” finite direct sums. In fact, they do even
better as the next proposition shows.

16.4. Proposition. Let sUg be a bimodule and let (M,),. , be an indexed set
of left R-modules. 4
(1) If (M, (q)ac4) is a direct product of (M,),c 4, then

(Homg(Us, M), (Homg(Us, q,))ac4)

is a direct product of the left S-modules (Homg(Us, M,) )ac 4’
(2) If (M, (jo)ac4) is a direct sum of (M,),c 4, then

(Homg(M, Us), (Homg(jas Us))aea)
is a direct product of the right S-modules (Homg(M,, Us))sca-

Proof. We leave (1) as an exercise. To prove (2) let (n,), 4 be the projections
for the direct product IT , Homg(M,, Us). Then by (6.1) there is an S-homo-
morphism n making the diagrams

Homg(M, Us) 2 -+ I1, Homg(M,, Us)

Hompg(y,. p'\l .

Homg(M,, Us)
commute for all a € 4. If y € Ker  then
0 = nun(“l}) = HomR(ja, U)()’) = 7j¢

for all @ € A. But this, since M = X, Im j, (see (6.21.ii1)), forces y = 0. Thus n is
monic. If (7,),.4 € 11, Homg(M,, Us), then the direct sum map @ ,7,, making
the diagrams

M D.4vs U

¥;
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commute (x € A), satisfies

Tcd"l(@A‘YZ) = HO’"U«? US)(@A‘YG)
= (D aVa)ia = Ya (€ A).
Thus # is an isomorphism, and by (6.4) the proof is complete. d

Reversing the variables, we see that Proposition (16.4) relates the
functors Homg(® ,U,, _) and Homg(_,I1,U,) to the functors Homg(U,,_)
and Homg(_, U,). That is,

Homg(® ,U,,M) = 1, Homg(U,, M),
Homg(M,T1,U,) = I1, Homg(M, U,).
(See (6.4).) The next corollary asserts that these relationships are “natural”.

(See §20.)

16.5. Corollary. Let (U, ),. , be an indexed set of left R-modules. If M and N
are left R-modules, then there exist Z-isomorphisms 1, Ny, vy and v, such that
Sor allf:gM — gN the diagrams

Homg(®,U,, M) =L, Homp(® .U, N)
(l) Mw ’M[
I, Homg(U,, M) 222, 17 Homg(U,, N)

and

Hom(f, 1T, U,)
—_—

Homg(N,I1, U,) Homg(M,I1,U,)

(2
I, Homg(N, U,) —Z" %, 1 Homg(N, U,)
are commutative.

Proof. Again we omit the proof of (1). To prove (2) let (4, ). 4 be the pro-
jections for IT,U, and let (m,),., and (n}),., be the projections for

IT, Homg(N, U,) and I1 , Homg(M, U,), respectively. Then (see (16.4.1) and
(6.4)) there are isomorphisms

vy:Homg(N,I1,U,) = I1, Homg(N, U,)

and
vy :Homp(M,11,U,) - I1, Homg(M, U,)
such that
n, vy = Homg(N, q,) (x€ A)
and

vy = Homg(M, q,) (e € A).



The Hom Functors and Exactness—Projectivity and Injectivity 183

If ye Homg(N,T1,U,) then for all x € A
n, (I, Hom(f, U) (v (v))) = Hom(f, U )(m,vn(7))
= Hom(f, U,)(Hom(N, ¢,)(7)) = q.3f
= Hom(M, q,)(Hom({, 1, U,)())
(v (Hom(f, L, U,) ().

Thus the diagram commutes, as desired. d

Although the Hom functors preserve split exact sequences, in general
they need not preserve all exactness. For the remainder of this section we shall
be primarily concerned with the behavior of the Hom functors on exact
sequences.

Exact Functors
Let C and D be the full subcategories of categories of modules and let
F:C — D be a covariant functor. If for every short exact sequence in C
0-K-M->N->0

the sequence

0 - F(K)— F(M) — F(N)
is exact in D, then F is said to be left exact. On the other hand if

F(K) > F(M)—> F(N)->0

is exact in D, then F is said to be right exact. In the contravariant case the
defining diagrams are

0 - G(N) - G(M) - G(K)
for left exact and
G(N)-> GM)—- G(K)->0

for right exact. A functor that is both left and right exact is called simply an
exact functor. This name is well chosen, for (see Exercise (16.4)) the image of
any exact sequence under an exact functor on zM is exact.

16.6. Proposition. The Hom functors are left exact. Thus, in particular if
rU is a module, then for every exact sequence 0 - K LMENSOIn rM
the sequences

0 — Homg(U, K) 33 Homg(U, M) & Homg(U,N)
and
0 — Homg(N, U) S Homg(M, U) &3 Homg(K, U)

are exact.
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Proof. We shall do the contravariant case. If ye Homg(N,U) and

0 = g*(y) = yg theny = 0 because g is epic. Thus g* is monic. Since the Hom

functors are additive we have f*g* = (gf)* = 0* = 0;sothat Img* < Kerf*

If B € Ker f*, then Bf = f*(8) = 0,s0 Ker B = Imf = Ker g. So the Factor

Theorem tells us that § factors through g. Therefore § = yg = g*(y) € Im g*

and we have proved that Im g* = Ker f*. O
N\

The left exactness of the Hom functors Homg(V, _) and Homg(_, V) on
Mg can be established by considering opposite rings.

M-projective and M-injective Modules

Let U be a module. Then in general the functors Homg(U, _) and
Hompg(_,U) are not exact. For example, it is easy to see that neither
Homg(Z,, _) nor Homz(_, Z,) preserves the exactness of the natural short
exact sequence

0-Z2->72->2Z,-0.

Nevertheless, the functors Homg(U, _) and Homg(_, U) do preserve the
exactness of some short exact sequences. We now look at some aspects of
this “local exactness”.

Let U be a module. If i M is a module, then U is projective relative to M
(or U is M-projective) in case for each epimorphism g: M — zN and each
homomorphism y:,U — gN there is an R-homomorphism 3:U — M such
that the diagram

"7// l'f
K/
M- N-0
commutes. On the other hand U is injective relative to M (or U is M-injective)

in case for each monomorphism f:K - M and each homomorphism
y:gK — gU there is an R-homomorphism 7: M — U such that the diagram

U

x
‘/I N
N
\

0—+K7->M

commutes. The next two results assert that U is M-projective (M-injective)
if and only if Homg(U, _) (respectively Homg(_, U)) preserves the exactness
of all short exact sequences with middle term M.

16.7. Proposition. Let U and M be left R-modules. Then the following are
equivalent :

(@) U is M-projective;

(b) For every short exact sequence with middle term M

0-KLZMS NSO
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in gM, the sequence
0 — Homg(U, K) & Homg(U, M) % Homg(U,N) - 0

is exact;
(c) For each submodule K < gM, every R-homomorphism h:U — M/K
factors through the natural epimorphism ny: M — M/K.

Proof. (a)<> (b). By (16.6) condition (b) holds if and only if for every
epimorphism M 4, N =0 the sequence Homg(U, M) 5 Homg(U,N) - 0
is exact. But f, is epic if and only if for each ye Hom(U, N) there is a
y € Homg(U, M) such that y = f,(y) = f3.

(a) = (c). This is clear.

(c) = (a). Suppose we have an epimorphism g:M — N with K = Keryg.
Then by The Factor Theorem (3.6.1) there is an isomorphism h:N — M/K
such that hg = ng. By hypothesis, if y:u — N then hy factors through n,; that
is, there is a 7 such that

commutes. Thus we have hgy = ng¥ = hy. So since h is an isomorphism,
g7 = y and U is M-projective. 0

Similar methods prove

16.8. Proposition. Let U and M be left R-modules. Then the following are
equivalent:

(@) U is M-injective;

(b) For every short exact sequence with middle term M

0-+-KL-ME5EN-0
in gM, the sequence
0 - Homg(N, U) S Homg(M, U) 5 Homg(K, U) -» 0

is exact;

(c) For each submodule g K < gM, every R-homomorphism h:K — U can
be extended to an R-homomorphism h:M — U (i.e., every h:K — U factors
through the natural monomorphism iy: K — M). O

A module P is said to be projective in case it is projective relative to every
module ;M. And 2 module ,Q is injective in case it is injective relative to eyery
module g M. Thus,

16.9. Corollary. A module zP is projective if and only if the additive co-
variant functor Homg(P, _) is exact on M. A module zQ is injective if and only
if the additive contravariant functor Homg(_, Q) is exact on gM.
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Projectivity and Injectivity Classes

Although there exist modules that are neither projective nor injective, we
shall see in later sections that over a ring R there do exist many projective and
injective modules. Of course it is trivial that the zero module is both projective
and injective. Now let kM be a module. Denote by 2:(M) (respectively,
Fn(M)) the class of all M-projective (M-injective) modules. Thus #+(M) and
S »(M) contain all the projective and injective modules, respectively, so in
particular, they both contain 0. Our next result implies that 2.(M) is
“closed” under direct sums and that #»(M) is “closed” under direct
products.

16.10. Proposition. Let M be a left R-module and let (U,),. 4 be an indexed
set of left R-modules. Then

(1) ®,U, is M-projective if and only if each U, is M-projective;

(2) M, U, is M-injective if and only if each U, is M-injective.

Proof. This follows from (16.5). For example, Hom(® U,, f) is epic if and
only if each Hom(U,, f) is epic. (See also Remark (6.25).) O

16.11. Corollary. Let (U,),.4 be an indexed set of left R-modules. T hen
(1) @, U, is projective if and only if each U, is projective;
(2) I, U, is injective if and only if each U, is injective.

Projectivity and Injectivity Domains

The projectivity domain of a left R-module U is 2+~ }(U), the collection of all
modules M such that U is M-projective. The injectivity domain of U is
F»~1(U) which consists of those modules M such that U is M-injective.
Again it is trivial that O belongs to both 2.~ }(U) and £~ '(U). Also it is
immediate that U is projective or injective, respectively, if and only if
P+~ (U) or £»~'(U) contains all left R-modules. The most important
properties of the classes 2:~!(U) and #»~'(U) are that they are both closed
under submodules and epimorphic images, that 2:~'(U) is closed under
finite direct sums and that £~ !(U) is closed under arbitrary direct sums.

16.12. Proposition. Let U be a left R-module.

M Ifo-M A ME M 50is exact in gM and U is M-projective, then
U is projective relative to both M' and M".

(2) If U is projective relative to each of M,,...,M,, then U is ®!_, M;-
projective.

Moreover, if U is finitely generated and M,-projective (€ A), then U is
projective relative to ® 4 M,.

Proof. (1) Let U be M-projective and let
0-MAEMIEM -0

be exact. If g:M” — N” is epic, then since U is M-projective and gk is epic
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guky = (gh),

is epic. But then g, is epic so U is M"-projective. To prove that M’ is U-
projective, we may assume that M’ < M. If K' < M’ then there is a
commutative diagram

0
!
O- M - M -MM->0
" l 1
0-M/K - M/K' - M/M' -0
l 1 l
0 0 0

with exact rows and columns. Applying Homg(U, _) to this diagram we have
the commutative diagram

0
!

0— Homg(U,M') — Homg(U, M) — Homg(U, M/M’)
el ! !

0 — Homg(U, M'/K’) » Homg(U, M/K') —» Homg(U, M/M’)
! 1
0 0

with exact rows and columns. But now it follows from (3.14.4) that (ng'), is
epic. Thus U is M'-projective.

(2) Clearly it is sufficient to show that if U is projective relative to M, and
M,, then U is M; @ M,-projective. So suppose K < M, @ M,. Then the
obvious maps yield the commutative diagram

0—M,—a—M, &M, @ >M, 0
l "ll l

0- (M, + K)/)K—- (M, ®M,)/JK~ (M, ®M,)/(M, + K)-0
l ! !
0 0 0

with exact rows and columns. To prove that (ny), is epic, apply Homg(U, _)
and The Five Lemma (3.15).

Finally, suppose that U is finitely generated and projective relative to
each M, (x € A). If we have the solid part of

5,7 J"/
7

@AN;_-!—'»N—’O

then, since Im y is finitely generated and g is epic, there exist x,...., x,€ @, M,
such that {g(x,),...,g(x,)} is a spanning set for Imy. Let M’ = Rx, + ... +
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Rx, < ®  M,. Then M’ is contained in a finite direct sum @M, < @ M,;
and hence by (1) and (2) U is M’'-projective. Thus there exists a y making
U
¥ Y
M Y Imy 50

(and hence the first diagram) commute. O

16.13. Proposition. Let U be a left R-module.

1) Ifo-M AMEM >0isexactin gM and U is M-injective, then U
is injective relative to both M’ and M".

(2) If U is injective relative to each of the R-modules M,(x € A), then U is
@ (M, -injective.

Proof. (1) This proofis similar to that of (16.12.1): If f: K’ — M’ is monic,
thensois hf: K’ - M. Thus
S*h* = (hf)*

is epic, f* is epic, and hence U is M'-injective. To see that U is M"-
injective, assume that M’ < K < M and that M” = M/M'. Then apply
Homg(_, U) to the canonical diagram

0

T
O-M->M->MM -0

T 1 T
0-M->K->K/M -0

T 1 1

0 0 0

(2) Suppose that M = ® ,M, and U is M,-injective for all ae A. Let
K < M and h:gK — U. Let

F={f(L->U|K<L<Mand(f|K)=h}.

Then & is ordered by set inclusion (i.e,f < gifandonlyiff= g<= M x U)
and & is clearly inductive. Let

h: N->U

be a maximal element in . To complete the proof we need only show that
each M, is contained in N. Let

K,=M,nN.
Then
(h]| K,):K, » U,
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so since K, < M, and U is M,-injective, there is a map

hy:M, - U
with
(he| K,) = (k] K,).

If meM, and_neN such that m, + n =0, then m,= —neK, and
hy(m,) + h(n) = h(—n) + h(n) = 0. Thus

fimy + nis hy(m,) + hin)
is a well-defined R-map
S M+ N->U.
But(f|N) = h. So by the maximality of b, M, < N. 0

16.14. Corollary. Let U be a left R-module and suppose that G is a generator
in gM.

(1) If U is G-injective, then U is injective.

(2) If U is finitely generated and G-projective, then U is projective.

Proof. Every left R-module is an epimorph of a direct sum of copies of G.
Thus (16.13) and (16.12) apply. a

16. Exercises

1. (1) Let ¢:R — S be a ring homomorphism. Prove that the functor
T,:sM — M of Exercise (4.15) is exact.

(2) Let eeR be a non-zero idempotent. Prove that the functor
T,:gM - z M of Exercise (4.17) is exact.

2. Let F:gM - ¢M be an additive functor, and ict ¢M € g.. For each
K < M let ig . 5, denote the inclusion map. Prove that
(1) If F is covariant, then K — Im F(ix .,,) defines an order preserving
map from the lattice (M) of submodules of M to the lattice ¥ (F(M))
of submodules of F(M).

(2) If Fis contravariant, then K — Ker F(ix . ) defines an order reversing
map ¥ (M) - L(F(M)).

3. Let {U be finitely generated and let (M,),., be an indexed set of left
R-modules. Prove that Homg(U, ® 4M,) = @, Homg(U, M,). [Hint:
There is a natural monomorphism one way. ]

4. Let C be a full subcategory of M that contains with each M all sub-
modules and factor modules of M. Let F:C — M be a covariant additive
functor (there are obvious variations of this exercise for contravariant
functors). Prove that
(1) Fisexact iff for each exact sequence M’ 4 M 5% M" in C the induced
sequence
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10.

11.

12.

13.

14.

Functors Between Module Categories

F(M') =55 F(M) =% F(M")
is exact in gM. [Hint: See Exercise (3.10).]
(2) F is left exact iff for each exact sequence 0 - M' > M - M" in C
the induced sequence 0 - F(M') - F(M) — F(M")is exact in gM.
(3) State and prove the “right exact” version of part (2).

. (1) Let E be (U-)injective and let U finitely cogenerate V. Prove that

Trg(V) < Trg(U). In particular, if V generates E, then so does U.
(2) Let P be (U-)projective and let U generate V. Prove that Rejp(V) >
Rejp(U). In particular, if V cogenerates P, then so does U.

. Let R be the ring of all 2 x 2 upper triangular matrices over Q. Using

Exercise (16.5) prove that SocR is not injective and R/J(R) is not
projective.

Prove that an exact sequence 0 > K - M —» N -0 of R-homo-
morphisms splits if either K is M-injective or N is M-projective.

. Prove that the following statements about a left R-module M are

equivalent: (a) Every left R-module is M-projective; (b) Every left
R-module is M-injective; (c) Every simple left R-module is M-projective;
(d) M is semisimple. [ Hint: (a) = (d) and (b) = (d) by Exercise (16.7). For
(c) = (d), first assume that M is cyclic.]

. Prove that the following statements about a ring R are equivalent:

(a) R is semisimple; (b) Every left R-module is projective; (c) Every left
R-module is injective; (d) Every simple left R-module is projective. [Hint:
Exercise (16.8).]

(1) Prove that every divisible abelian group is projective relative to the
regular module ,Z but no non-zero divisible group is a projective
Z-module. So ,Q is ,Z-projective but not projective. Deduce that
21”1 (Q) is not closed under direct sums. [Hint: If ;D is divisible, then
Homy(D, Z,) = 0.]

(2) Prove that every torsion-free abelian group F is injective relative to
every torsion group T, but that the torsion-free group ,Z is not an
injective Z-module. Deduce that £, '(Z) is not closed under direct
products. [Hint: 13 Z, has a torsion-free subgroup.]

Let R be a P.I.D. Prove that if a module M is divisible (see Exercise
(3.15)), then it is injective relative to R and hence is injective over R.

Let ;G be a generator, let U have a spanning set X, and let U be
G™-projective. Prove that pU is projective.

Let U, V, M be R-modules with V < U. Prove that:

(1) If U is M-injective and Try(M) < V, then Vis M-injective.

(2) If U is M-projective and V < Rej (M), then U/V is M-projective.

(3) If V= U and V is M-injective, then Try(M) <V and U is M-
injective. [Hint: If f:M — U, let N = f ~(V). By hypothesis there is a
g:M - V with (g | N) = (f | N). Observe that Im(f — g)n V = 0.]

(4) If V« U and U/V is M-projective, then V < Rej,(M) and U is
M-projective. [Hint: Try for a dual.]

(5) £ 2(U)(P+(U))is closed under essential (superfluous) extensions.

Let I be an ideal of R and let gP and xE. Prove that:
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15.

16.

17.

18.

19.

(1) If P is projective, then P/IP is R/I-projective.
(2) If E is injective, then rg(I) is R/I-injective.
A module U is projective (injective) modulo its annihilator in case U is a
projective (injective) R/lx(U) module.
(1) Prove that these are equivalent: (a) gU is projective modulo its
annihilator; (b) U is a projective R/I module for some ideal I < Ix(U):
(c) U is U4-projective for every set A.
(2) Prove that these are equivalent: (a) zU is injective modulo its
annihilator; (b) U is an injective R/I module for some ideal I < I(U);
(c) U is U“-injective for every set A.
Prove that a module that is projective (injective) modulo its annihilator
need not be projective (injective). [Hint: See Exercise (16.6).]
A module U is quasi-projective (quasi-injective) in case it is U-projective
(U-injective). Thus from Exercise (16.15) we infer that if U is projective
(injective) modulo its annihilator, then it is quasi-projective (quasi-
injective). Prove that
(1) Every semisimple module is quasi-projective and quasi-injective.
(2) The abelian group @pZ, is quasi-projective and quasi-injective but
neither projective nor injective modulo its annihilator.
(3) Every quasi-projective (quasi-injective) module is quasi-projective
(quasi-injective) aver its biendomorphism ring.
4) U, @ ... ® U, is quasi-projective (quasi-injective) iff U; is U;-projec-
tive (U;-injective) for all i, j.
(5) The following are equivalent for a ring R: (a) R is semisimple; (b)
Every left R-module is quasi-projective; (c) Every left R-module is
quasi-injective.
Let S = End(zU) and let T be simple. Prove that:
(1) If U is quasi-projective, then the left S-module Homg(Us, T) is simple
or zero.
(2) If U is quasi-injective, then the right S-module Homg(T, Us) is simple
or zero.
[Hint: For (1) suppose 0 # y € Homg(U, T). Then y is epic and U is
quasi-projective, so y, : 5§ = Homg(Us, T)is epic. Thus

Sy = Homg(U, T).]

Let ;U be quasi-injective with I = I5(U). Prove that the following are
equivalent: (a) U finitely cogenerates R/I; (b) U is finitely generated over
End(RU); (c) U finitely cogenerates BiEnd(gU). Moreover, prove that
each of these conditions implies that U is injective both modulo its
annihilator and as a BiEnd(gU) module.

§17. Projective Modules and Generators

Recall that a left R-module P is projective in case P is projective relative to
every left R-module. That is, whenever there is given the solid part of a
diagram
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A/I"i‘»N—>0

in gM with exact row, there is an R-homomorphism 7 such that the whole
diagram commutes, i.e., gy = y. We begin with several

Characterizations of Projective Modules

17.1. Proposition. The following statements about a left R-module P are
equivalent :

(a) P is projective;

(b) For each epimorphism f: M — N the map

Homg(P,f): Homg(P, M) - Homg(P, N)

is an epimorphism ;
(c) For each bi-module structure g Pg the functor

Homg(Pg,—):gM > gM

is exact;
(d) For every exact sequence

M LML M
in gM the sequence

Homg(P, M’) 5 Homg(P, M) ¥ Homg(P, M")

is exact.
Proof. (a) = (b) and (a) < (c) both follow from (16.7). Finally (c) <> (d) is
immediate from Exercise (16.4). O

It is an easy consequence of (4.5) and (17.1) that gR is projective. A direct
proof is also easy. Indeed, suppose we have the solid part of the diagram

R
ﬂ(:'/)// lv
M3N-SO

and that the row is exact. Then there is an me M with g(m) = y(1). Clearly
p(m):r—rm defines an R-homomorphism R — M making the entire
diagram commute. Recall that a module is free in case it is isomorphic to
R for some set A. So the important fact (16.11) that direct sums of pro-
jective modules are projective establishes that every free module is projective.
This gives rise to the following characterization.

17.2. Proposition. The following statements about a left R-module P are
equivalent :
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(a) P is projective;
{b) Every epimorphism gM — jP — O splits;
(c) P is isomorphic to a direct summand of a free left R-module.

Proof. (a) = (b). Suppose f:M — P is an epimorphism. If P is projective,
then there is a homomorphism g such that fg = 1, so (§5), the epimorphism
S splits.

(b) = (c). This follows from the fact (8.1) that every module is an
epimorph of a free module.

(c) = (a). Every free module is projective. Apply (16.11). O

17.3. Corollary. A left R-module P is finitely generated and projective if and
only if for some module g P’ and some integer n > O there is an R-isomorphism

P@® P = R".

Proof. A module gP is finitely generated if and only if for some natural
number n, there is an epimorphism

R™ - P 0.
But by (17.2) this epimorphism splits if and only if P is projective. O

In §13 we saw that modules over semisimple rings behave very much like
modules over division rings. Of course modules over division rings are
projective. The parallel behavior of division rings and semisimple rings is
seen further in

17.4. Corollary. 4 ring R is semisimple if and only if every left R-module is
projective.

Proof. By (13.10) R is semisimple iff every epimorphism in zM splits.
But, by (17.2.b) this condition holds iff every left R-module is projective. [

Characterization of Generators

Recall (see §8) that a module G is a generator in case G generates every
module in gM. That is, G is a generator if and only if for every ;M there is a
set 4 and an R-epimorphism

G4 - M-0.

A sort of duality exists between generators and projectives. The projectives
are the modules P for which Homg(P, ) maps every epimorphism to an
epimorphism; the generators are those modules G for which Homg(G, _)
only maps epimorphisms to epimorphisms. Other examples of this pheno-
menon can be found by comparing (17.1) with the following characterizations
of generators.

17.5. Proposition. For a left R-module G the following statements are
equivalent:

(a) G is a generator
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(b) For every homomorphism f in gM if Homg(G,f) =0, then f = 0;

(c) For every f:gM — gN in gM, if f, :Homg(G, M) » Homg(G,N) is
epic, then f is epic;

(d) A sequence

is exact in gM if the sequence
Homg(G, M') 55 Homg(G, M) %5 Homg(G, M")

is exact.

Proof. (a) <> (b). This follows at once from (8.11.1).

(a) = (d). Let G be a generator. Suppose

RM D M S M
is a sequence in zM such that the sequence
Homg(G, M') 53 Homgy(G, M) % Homg(G, M")

is exact. Then 0 = g, f, = Hom(G, gf). Thus, since (a) <> (b), we have gf = 0.
Le, Imf < Kerg. Let xe Kerg. Then, since G generates Kerg, there exist
homomorphisms f;:G — Kerg < M and y; € G such that

x = Xi- | By
Then, for each i. gf; = 0;s0 §; € Kerg, = Imf,. That is, for each i there is an
o; € Hom(G, M’) with §; = f,(«;) = f;. Therefore,
x =X Bi(y) = Zi-| fai(y:)eImf.
(d) = (c). This implication is clear.

(c) = (a). Assuming (c) it will suffice to show (see (8.13)) that for each M
the trace Tr,,(G) is M. Consider then the canonical exact sequence

0 — Try(G) > M 5 M/Try(G) —» 0
which yields an exact sequence
0 — Homg(G, Try,(G)) = Homg(G, M) > Homg(G, M/Tr(G)).
If € Hom(G, M), then [n(B)](G) = n(B(G)) = 0 because
B(G) € Try(G) = Kern.

Thus Imi, = Kern, = Homg(G, M) and i, is surjective. So (c) implies that i
must be surjective; that is, Try(G) = Imi = M. O

Since R is a generator (8.8), a module generates R if and only if it
generates every module. However, gR is also finitely generated, so any
module that generates xR must finitely generate 4R (see (10.1)). Finally, since
&R is projective, it follows that 4G is a generator if and only if there is a split
epimorphism G — R — 0. In gther words
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17.6. Proposition. A4 left R-module G is a generator if and only if for some
module R’ and some integer n > O there is an R-isomorphism

G"~R®R. O

The dual behavior of generators and finitely generated projective
modules is illustrated by (17.3) and (17.6). The next two important results
provide further evidence.

17.7. Lemma. Let zQs be a faithfully balanced bimodule. Then RQ is a
generator if and only if Qg is finitely generated and projective.

Proof. (=). Since right multiplication p:S — End(RQ) is a ring iso-
morphism, as right S-modules

Homg(Q, Q) = Ss.
Also by (17.6), since zQ is a generator,
Q" =R@®FR

for some left R-module R. Now applying (16.3) and (4.5) we get right
S-isomorphisms

S = Homg(Q, Q5)™ = Homg(Q™, Qs)
= Homg(R @ R, Qs5) = Homg(R, Q5) ® Homg(R', Q)
=000,
so that, by (17.3), Q, is finitely generated and projective.
(<=). This follows from (17.3) and (17.6) since

rQ"™ = Homg(S, gQ)™ = Homg(S™, Q)
= Homg(Q @ ', Q) = Homg(Q, rQ) ® Homs(Q', Q)
=R®R. |

17.8. Theorem A left R-module G is a generator if and only if
(i) rG is faithful and balanced,
(1) Ggpai,q) is finitely generated and projective.

Proof. (=>). Since zG is a generator, by (17.6)
RG(") = R @ R/

for some R'. Applying (14.2), Exercise (4.14) and (14.1.1) we have a commuta-
tive diagram of ring homomorphisms

ta R le R

e e Ay ‘s

BiEnd(G) — BiEnd(G™) — BiEnd(R @ R’) - BiEnd(xR)

where the composite of maps in the bottom row is injective and, by (4.11), 4,
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is bijective. Thus 4, is an isomorphism. That is, making the obvious
identifications,

R < BiEnd(G) = BiEnd(G'™) = BiEnd(R ® R')
< BiEnd(R) = R.

Therefore G is faithful and balanced. That is, gGgn(ze) is @ faithiully
balanced bimodule. Now (17.7) applies.
(<=). This implication follows at once from (17.7). O

Of course, the regular module ¢R, or indeed any free left R-module, is
both a projective module and a generator. In general not all projective
modules are generators. The next result, however, shows that the important
class of projective generators can be characterized as those projective
modules that generate all simple modules.

17.9. Proposition. Let P be a projective left R-module. Then the following
statements are equivalent:

(@) P is a generator;

(b) Homg(P, T) # O for all simple left R-modules T;

(c) P generates every simple left R-module.

Proof. The implications (a) = (c) and (c) = (b) are trivial. Finally for
{(b) = (a), assume that P satisfies condition (b). It will suffice to prove that P
generates R, or (see (8.21)) that Trgx(P) = R. But if Trg(P) # R, then since
it is a left ideal, Trg(P) is contained in some maximal left ideal I of R. Then
R/I is simple, so there is a non-zero R-homomorphism y:P — R/I. Since P
is projective, there is a commutative diagram

p

7
R — R/I — 0.

This produces a contradiction since Im9 = Trg(P) < L. d

Radicals of Projective Modules

It is not surprising, in view of (17.2), that the behavior of projective modules
parrots much of that of the regular module zR. Next we observe this in the
case of radicals of projective modules.

17.10. Propesition. Let R be a ring with radical J(R) = J. If P is a projec-
tive left R-module, then

Rad P = JP.

Proof. Proposition (17.2) allows us to assume that P is a direct summand
of a free module P @ P’ = R'“. Then by (9.19)

RadP @ Rad P’ = Rad(R“’) = (Rad R)'"
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=JA = J-R4 = JP@ JP.

So, since JP < RadP and JP < Rad P’ (see (15.18)), we must have
RadP = JP. O

Next we calculate the radical of the endomorphism ring of a projective
module.

17.11. Proposition. Let P be a projective left R-module with endomorphism
ring S = End(pP). Let ae S. Then

aeJ(S) iff Ima « P.

Proof. («<). Suppose Ima « gP. Then, by (15.3), it will suffice to show that
Sa « ¢S. So suppose that I < ¢Sand Sa+ I = S. So 1, = sa + b for some
seSandbel. Then P = Pl, < Psa+ Pb < Ima + Pb, so that Pb = P. But
then b is an epimorphism b: P — P. So, since P is projective, this epimorphism
splits and there is some ce S with 1, = che . Thus I = S and Sa « S.

(=). Let ae J(S) and suppose that K < P with Ima + K = P. Then we
readily see that if ng: P — P/K is the natural epimorphism, any:P — P/K is
epic. So, choosing s € S such that

P

P— P/K—0

commutes, we have (1 — sa)n, = 0. But, since ae J(S), 1 — sa is invertible
and ng = 0. Therefore, K = P. |

17.12. Corollary. Let J = J(R). If P is a projective left R-module such that
JP « P (eg., if gP is finitely generated), then

J(End(gP)) = Homg(P,JP) and End(gP)/J(EndgP) = End(zP/JP).

Proof. Since, by (17.10) we have Rad P = JP, the hypothesis JP « P
insures that a submodule of P is superfluous iff it is contained in JP. (See
(9.13).) In particular then, by (17.11), an endomorphism a of P belongs to
J(End(gP))iff Ima < JP. Thus J(End(xP)) = Homg(P, JP).

Now observe that, since JP is stable under endomorphisms of P,

¢(s):(p + JP)r> ps + JP

defines a ring homomorphism ¢ : End(gxP)} - End(xP/JP); and that, since P
is projective, this homomorphism ¢ is surjective.

P, p/JP
a1y
P—— P/JP
But clearly we have Ker ¢ = Homg(P, JP), so that
End(gP)/J(End(gP)) = End(gP/JP). O
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17.13. Corollary. Let R be a ring with radical J,let ne N, and let e€ R be a
non-zero idempotent. Then

J(M,(R)) = M,(J), and J(eRe) = eJe.
Proof. By (4.11) and (13.2) there is a natural ring isomorphism
p:M,(R) = End(zR™).

Now JR™ = J™ and clearly p([r;;])€ Homg(R™,J™) iff [r;;] €M,(J). So
apply (17.12). For the other assertion, recall (4.15) that there is a natural
isomorphism

p:eRe — End(gRe)

and clearly p(ere) e Homg(Re, Je) iff ereeJ. Again apply (17.12). (Or see
Exercise (15.11).) O

Now we can prove the important fact that no non-zero projective module
is its own radical; that is,

17.14. Proposition. Every non-zero projective module contains a maximal
submodule.

Proof. Let P be projective. Then by (17.3) we may assume that there is a
free left R-module F with F = P @ P'. If P contains no maximal submodule,
then by (17.10) we have

P=JPc JF.

To prove the proposition we show that this forces P = 0. To this end, let

x € P. Let e be an idempotent endomorphism of F such that Fe = P and let

(x4).c 4 be a free basis for F. Then, for some finite subset H < 4, and some

r,e R(xe H), X = Ty FuXe.

Also, for each o € H, there are finite sets H, = A and a5 € J (f € H,) such that
X, = Zpey AipXp.

Now, inserting 0’s where necessary, we may assume that all of these sums are
taken over a common finite subset K < A to get

0 =x—xe=(ZeexrsXa) = (Zack TaX,€)
= (Zpex ra(Zpek 5;ax0)) = (Zaek Ta(Zpek aaﬂxﬁ))
= Zpek(Zrex Tal0ap — ag) )X
Since the x, are independent this equation yields the matrix equation
[r.] (I, — [a.]) = [0] €M, .,(R)

where n = card(K) and I, is the identity matrix in M,(R). But by (17.13)
[a,;] € J(M,(R)) and hence is quasi-regular. Thus I, — [a,s] has an inverse
in M(R) and [r,] = [0] € M, «,(R). This means

X =X, kryX, = 0. O
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Projective Covers

Every free module is projective (17.2) and every module is generated by ;R
(8.1). Thus trivially

17.15. Proposition. Every module is an epimorphic image of a projective
module. O

For some modules M an even stronger assertion is possible: there is a
projective module P and an epimorphism f: P - M “minimal” in the sense
that (f|L):L —» M is epic for no proper submodule of P. It is clear from
(5.15) that this minimality condition simply says that Ker f « P. This leads
to a formal definition.

A pair (P, p) is a projective cover of the module M in case P is a projective
left R-module and

PLEM S0

is a superfluous epimorphism (Ker p « P). We also employ natural variations
and abbreviations of this terminology; for example, we may well call P itself
a projective cover of M.

17.16. Examples. (1) If e is an idempotent in R, then by (17.10) and (10.4),
Je = Rad(Re) « Re. So since Re is projective, the pair (Re, n) is a projective
cover of Re/Je where n: Re — Re/Je is the natural map.

(2) The pair (Z, r,) where r,:Z — Z, is the natural map is not a pro-
jective cover since 2Z is not superfluous in Z. In fact, using (17.17) it is easy to
prove that Z, has no projective covers. (See Exercise (17.14).)

(3) Let R be a local ring and ¢M finitely generated. Then R/J is a
division ring and M/JM is a finite dimensional vector space over R/J. Say
M/JM is k-dimensional; set P = R™. Then clearly there is an R-epimor-
phism p: P — M/JM with Ker p = JP. Since gP is projective and the natural
map n:M - M/JM is epic, there is a homomorphism p:P - M with
np = p. By Nakayama's Lemma (15.13), JM « M, so n is a superfluous
epimorphism. Thus, by (5.15), p is ‘epic. But Kerp < Kerp =JP « P,
whence (P, p) is a projective cover of M.

Now we prove The Fundamental Lemma for Projective Covers. One of
its consequences is that if a module does have a projective cover, then it has
(essentially) only one.

17.17. Lemma. Suppose ¢ M has a projective cover p: P — M. If zQ is pro-
Jjective and q:Q — M is an epimorphism, then Q has a decomposition

O=P@P
such that

(1) P=P;
(2) P" < Kergq,
(3) (| P):P' > M is a projective cover for M.



200 Functors Between Moduie Categories

Moreover, if f:M, - M, is an isomorphism and if p,:P, > M, and
p2:P, = M, are projective covers, then there is an isomorphism f :P, — P,
such that p, [ = fp,.

Proof. By the projectivity of Q there is a commutative diagram

with exact row and column. Since p is a superfluous epimorphism and
ph = g is epic, h is also epic by (5.15). But P is projective, so A splits, i.e., there
isa monomorphism g: P — Q such that hg = 1,,and hence Q = Img @ Ker h.
Now, setting

P =1Img and P’ = Kerh,

we see that (1) holds because g is monic, and that (2) holds because ph = q.
But now we have g(P’) = ¢(Q) = M, so that

P (qlP) M 0

is exact; and this is a projective cover because from gg = phg = p, it follows
that Ker(q| P') = g(Ker p), a superfluous submodule of g(P) = P'. Thus (3)
also holds.

To prove the last statement, let p = p,, ¢ =fp, and f= h Then
p2f = fp,. Also f = h is epic, Kerf = Kerp, is a superfluous direct sum-
mand of P, and fis an isomorphism. O

17.18. Proposition. Let e and f be idempotents in a ring R. Then the follow-
ing are equivalent:

(a) Re = Rf;

(b) Re/Je = Rf/Jf;

(c) eR/eJ =R/ fJ;

(d) eR = fR.

Proof. (a) <> (b). That (a) implies (b) is clear. If h:Re/Je — Rf/Jf is an
isomorphism, then since the natural maps Re — Re/Je and Rf — Rf/Jf are
projective covers, it follows from Lemma (17.17) that there is an isomorphism
h:Re — Rf.

(c) <> (d). This is symmetric to the proof of (a) < (b).

(a) = (d). If Re =~ RYf, then (see (4.6))

eR =~ Hom(Re, R) = Hom(Rf,R) = fR. |

In Chapter 7 we shall deal extensively with projective covers. There
projective covers of simple modules will be of particular interest. We now
have the resources to give
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17.19. Proposition. Let R be a ring with radical J = J(R). Then the follow-
ing statements about a projective left R-module P are equivalent :

(@) P is the projective cover of a simple left R-module;

(b) JP is a superfluous maximal submodule of P;

(c) End(gxP)is alocal ring.
Moreover, if these conditions hold, then P = Re for some idempotent e € R.

Proof. (a) = (b). Clearly P is the projective cover of a simple module iff P
contains a superfluous maximal submodule. But JP is contained in every
maximal submodule of P; and JP contains every superfluous submodule of P
((9-13) and (17.10)).

(b) = (c). If JP is a superfluous maximal submodule of P, then by (17.12)
and Schur’s Lemma (13.1)

End(z P)/J(End(g P)) = Endg(P/JP)
is a division ring. Thus by (15.15), (b) implies that End(,P) is local.

(c) = (a). Suppose that End(xP) is a local ring. Then P # 0. By (17.14)
there is a maximal submodule K < P. We claim that the natural epi-
morphism P —» P/K — 0 is a projective cover, i.e, K « P. Suppose that
K + L = Pforsome L < P. Then

P/K = (L + K)/K = LAL n K);

so there is a non-zero homomorphism f:P — L/(L n K). Thus, since P is
projective there is an endomorphism s: P — L < P such that

P
7|

L5 L(LAK)=>0
commutes. Since O # f = sn, Ims £ K; from which it follows that Ims is
not superfluous in P. Therefore s ¢ J(End(zP))(17.11), s is an invertible endo-
morphism of P (15.15.g), L = P; and we have shown that K « P.
Moreover, every simple module is an epimorph of R, so by (17.17), a
projective cover P of a simple module must be isomorphic to a direct
summand of zR. That is, P = Re for some ¢ = e?¢ R. O

17.20. Corollary. The following statements about an idempotent e in a ring
R are equivalent:

(@) Re/Je is simple;

(b) Je is the unique maximal submodule of Re;

(c) eReis alocal ring;

(d) eJ is the unique maximal submodule of eR;

(e) eR/el is simple. a

17. Exercises

1. Prove that every projective module over a P.LD. is free. [Hint: Exercise
(8.16).]
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Prove that if R is a local ring, then every finitely generated projective
module is free. [Hint: See (12.7).]

Prove that the abelian group ZN is not projective; hence products of
projectives need not be projective. [Hint: Let K consist of those x € ZV
such that each power of 2 divides all but finitely many =,(x). Show that
if ZN is free, then K is free of uncountable rank. Now consider K/2K.]

. Let e€ R be idempotent. Prove that:

(1) Re is simple and faithful iff eR is simple and faithful. [Hint: By
(17.20), if J(R) = 0, then Re is simple iff eR is. If Re is simple and faithful
and 0 # r e R, then there exist s, t € R with srte = e.]

(2) If Re is simple and faithful, then Soc(gR) = ReR = Soc(Rg).

. Recall that for a ring R the properties x-primitive and y-artinian for

x, y € {left, right} are equivalent, but that in general a primitive ring
need not be right primitive.

(1) Now prove that for a ring R the following are equivalent: (a) R is
primitive and has a minimal left ideal; (b) R is primitive and has a simple
projective left module; (c) R is primitive and has a projective simple
right module; (d) R is primitive and has a minimal right ideal; (e) R is
right primitive and has a minimal right ideal. [Hint: Exercises (13.8)
and (17.4).]

(2) Prove that if R is the endomorphism ring of a vector space, then R
is primitive and has a minimal left ideal.

(3) Prove that if R is a simple ring and has a minimal left ideal, then R
is artinian.

(4) Prove that the primitive ring of Exercise (14.2) has a minimal left
ideal.

. Prove that ¢M is faithful iff zM cogenerates every projective left

R-module. (See Exercise (8.3).)

. Prove that each finitely generated non-zero projective module is a

generator over its endomorphism ring and finitely generated projective
over its biendomorphism ring.

. For each left R-module M, let M* denote the right R-module

M* = Homg(M, R). Prove that if M is finitely generated and projective
(a generator), then so is M*.

. Prove that a module M is a projective generator iff M@ is free for some

C+g.

A generator ;G is a minimal generator in case it is an epimorphic image of
every generator in M.

(1) Show that if R is either semisimple, local, a P.I.D., or the endo-
morphism ring of an infinite dimensional vector space, then R has a
minimal generator. [Hint: In the last three cases zR is a minimal
generator. |

(2) Let R = IT;%. | M, (Q) where Q is a division ring. Prove that R has no
minimal generator. [Hint: For each n let G, be a generator for M,(Q).
Then G, @ ... ® G, ® I, , M,(Q) is a generator for R.]

Let P be a left R-module. A pair of indexed sets (x,),., in P and
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13.

14.

15.

16.

17.

18.

19.

20.

(f2)ac 4 in Homg(P, R) is a dual basis for P in case for all x ¢ P.

(i} f,(x) = Ofor almost all a € A.
(i) x =X, f(x)x,.

Prove

(1) The Dual Basis Lemma. P is projective iff it has a dual basis. [Hint:
(17.2).]

(2) P is finitely generated projective iff there exist x,,...,x,e P and
J1s--»Jn € Homg(P, R) such that for each x € P

x = Zioy filx)x.

Recall that if gP is projective, then Rad P = JP. Dually prove that
Soc P = (Soc gR)P.

Let P be a non-zero projective module. Prove that P is the projective
cover of a simple module iff every non-zero factor module of P is
indecomposable.

(1} Prove that if R is a ring with J(R} = 0, then no non-projective
R-module has a projective cover. In particular, no finite Z-module has a
projective cover.

(2) Let n be a natural number and let p be a prime that divides n, say p”
is the largest p-power that divides n. Prove that if 1 < k < m, then the
epimorphism Z . = Z . is a projective cover in z M.

(1) Prove that if p,:P. - M, (i=1,...,n) are projective covers, then
(®:p;):®;P. » ®; M, is a projective cover.

(2) Prove that if M and M @ N have projective covers, then so does N.
[Hint: If p:P > M and p':P' > M @ N are projective covers, then
ST(N)-> N is a projective cover where f:P' - P @ N satisfies
(P® 1) Sf=7p"]

(1) Prove that if U has a projective cover, then 2:~ (U} is closed under
direct products. [Hint: Exercise (16.13).]

(2) Prove that if p: P — U is a projective cover, then the following are
equivalent: (a) U is quasi-projective; (b} U is projective modulo its
annihilator; (c) Ker p = Ig(U)P.

(3) Prove that if P is projective and K is a left R- right End(zP)-
submodule of P, then P/K is a quasi-projective left R-module.

Let U be a quasi-projective module with a projective cover p:P — U.
Prove that if P = P, ® P;, then U is a direct sum U = U, @ U, of
quasi-projective modules U,, U, such that (p{ P,): P, —» U, are projective
covers (i = 1,2). In particular, if U is indecomposable, then so is P.

Let p;: P, » U, (i = 1, 2) be projective covers. Prove that if P, ~ P, and
if U; @ U, is quasi-projective, then U, = U,.

Prove that a finite abelian group M is quasi-projective iff for each prime p
the p-primary components of M all have the same length. [Hint: Exercises
(17.14.2) and (17.18).]

Let R be a left artinian ring with J = J(R). Then by (10.14) and (7.2)
R=Re, ®... ® Re, where e,,...,e, is a complete set of pairwise
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orthogonal primitive idempotents. By (12.8) and (17.20) each Re;/Je; is
simple and Re; — Re;/Je; is a projective cover.

(1) Prove that every simple left R-module has a projective cover. [Hint:
R/J = Re,/Je, ® ... ® Re,/Je,.]

(2) Prove that every semisimple module has a projective cover. [Hint:
If M is semisimple, then there exists an indexed set (f,),.4 in {ey,...,€,}
such that M = @ Rf,/Jf, = (@, RLO/AD®4Jf,) By Exercise (5.18),
®Jf. « ®4Rf.]

(3) Prove that for each left R-module M, there is an indexed set
(fu)aea in {e,,..., e,} and a projective cover ® ,Rf, - M. [Hint: Since
M/JM is semisimple, it has a projective cover p: ® 4 Rf, = M/JM. Since
M - M/JM, p lifts to p: ® ,Rf, = M. Since JM « M (Exercise (5.18)),
p is a projective cover.]

(4) Prove that if P is projective, then there exists an indexed set
(fu)acain {ey,...,e,} such that P =~ @ ,Rf,.

§18. Injective Modules and Cogenerators

Recall that a left R-module E is injective in case E is injective relative to
every left R-module. That is, E is injective in case whenever there is given the
solid part of a diagram
E
LN
N5

0—»K~[—»\M

in xM with exact row, there is an R-homomorphism ¥ such that the whole
diagram commutes; i.e., 7/ = y. In other words, the injective modules are the
arrow-theoretic or categorical duals of the projective modules.

Characterizations of Injective Modules

The injective and the projective modules have dual effect on the Hom
functors; in particular, dual to (17.1) we have:

18.1. Proposition. The following statements about a left R-module E are
equivalent :

(a) E is injective;

(b) For each monomorphism f : gk K — M the map

Hom( f, E): Homg(M, E) - Homg(K, E)

is an epimorphism;
(c) For each bimodule structure g Eg the functor

Hompg(-, E5):gM — Mg

is exact;
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(d) For every exact sequence

MLMmEM
in gM the sequence

Homg(M",E) 5 HomR(M E) HomR(M’ E)
is exact. O

Until we establish the existence of sufficiently many injective modules, we
cannot prove the proper dual to (17.2). As a temporary substitute, though, we
have at once from (16.11) the important fact: O

18.2. Proposition. Direct products and direct summands of injective modules
are injective.

Every module is an epimorph of a projective (even free) module. One of
our tasks is to prove the dual result that every module can be embedded in an
injective module. First, however, we establish a very useful test for injectivity.
This test (sometimes called “The Baer Criterion™) says that injectivity of a
module E can be determined by its behavior in the set of diagrams

E.
1
0-I1I->R

when the row is restricted to inclusion maps of left ideals.

18.3. The Injective Test Lemma.T he following statements about a left R-
module E are equivalent:

(a) E is injective;

(b) E is injective relative to R;

(c) For every left ideal I < xR and every R-homomorphism h:1 — E there
exists an x € E such that h is right multiplication by x

h(a) = ax (ael)

Proof. (a) <> (b). This is by (16.14), since xR is a generator.

(b) = (c). If E is gR-injective and I < R with h:I — E, then there is an
h:R — E such that (h\I) = h. Let x = h(l) Then h(a) = h(a) = ah(l) = ax
forallael

()= (b). If I < xR, xe€ E and h(a) = ax for all ae I, then right multi-
plication by x, p(x):R— E, extends h Thus (c) implies that E is
rR-injective. O

Recall that an abelian group Q is divisible in case nQ = Q for each
non-zero integer n. (See Exercise (3.15).)

18.4. Lemma. An abelian group Q is divisible if and only if Q is injective as
a Z-module.

Proof. (=>). Every non-zero ideal of Z is of the form Zn,n # 0. If Q is a
divisible abelian group and h:Zn — Q, then there is a b e Q with h(n) = nb
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and h(jn) = jh(n) = (jn)b for all jne Zn. Thus The Injective Test Lemma
applies.

(«<=). If ,Q is injective, ae Q@ and 0 # neZ, then h:jn— ja defines a
homomorphism h:Zn — Q which, by The Injective Test Lemma, must be
multiplication by some b € Q. But then a = h(n) = nb. O

18.5. Lemma. If Q is a divisible abelian group, then the left R-module
Homz(Rg, Q) is injective.

Proof. By (4.4.1), Homz(Rg, Q) is a left R-module. Let I < xR and suppose
h:I > Homy(Rg, Q) is an R-homomorphism. Then y:a+ [h(a)](1) defines
an abelian group homomorphism y:;I — Q. Thus, since ,Q is injective,
there is a 7 € Homy(R, Q) such that (]| I) = y. Now we have, for all ael,
reR,

(@y)(r) = ¥(ra) = y(ra) = [h(ra)](1)
= [r-ha)](1) = [Wa)](r);

so, h(a) = ay for all ael. Therefore, by The Injective Test Lemma,
Homy(Rg, Q) is an injective left R-module. O

18.6. Proposition. Every left R-module can be embedded in an injective left
R-module.

Proof. Let M be a left R-module. Then by (8.1) there is a set 4 and a
Z-epimorphism f: 24 » M. Thus, since

M = Z/Kerf < Q4/Ker,

and since direct products and factor groups of divisible abelian groups are
divisible (see Exercises (3.15) and (6.9)), we may assume that ;M < ,Q with
Q divisible. Finally, apply (18.5) to

xM = Homg(Rg, M) < Homz(Rg, M) < Homy(Rg, Q). O

The following partial dual to (17.2) is an immediate consequence of (18.2),
(18.6), and Exercise (16.7). :

18.7. Proposition. A left R-module E is injective if and only if every mono-
morphism
0 gE—- M O
splits.

And dual to (17.4) we have from (13.9):

18.8. Corollary. A ring R is semisimple if and only if every left R-module is
injective. O

Injective Envelopes

As we have seen (18.6) every R-module M can be embedded in an injective
R-module. This leads to a notion dual to that of a projective cover, namely a
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“minimal” embedding of M in an injective module. A pair (E, i) is an injective
envelope of M in case E is an injective left R-module and

0-M%E

is an essential monomorphism. Again we shall allow obvious variations in our
terminology.

Since Q is divisible as a Z-module, it is Z-injective. Clearly the inclusion
map i:Z — Q is essential. Thus (Q, i) is an injective envelope of Z. (Also see
Exercise (18.2).)

Dual to (17.17) we have the following Fundamental Lemma for
Injective Envelopes:

18.9. Lemma. Let M be a left R-module and suppose that i:M — E is an
injective envelope of M. If g Q is injective and qg: M — Q is a monomorphism, then
Q has a decomposition

Q=EQE
such that

(1) E' = E;

(2) Imq < E';

(3) g:M — E'is an injective envelope of M.

Moreover, if f:M, - M, is an isomorphism and i, :M, —» E, and i,: M, - E,
are injective envelopes,. then there is an isomorphism f:E, —» E, such that
fiy=1if p

?i%

M, L M, a

Not every module has a projective cover (see Exercise (17.14)). Thus the
next very important result is especially remarkable.

18.10. Theorem. Every module has an injective envelope. It is unique to
within isomorphism.

Proof. Let M be a left R-module. Then by (18.6) there is an injective
module pQ with M < Q. The set of N < Q such that M =a N is clearly
inductive. So by the Maximal Principle there is a maximal member E of
this set. Now choose E' < Q maximal with respect to En E' = 0, (i.e, let
E’' be a Q-complement of E) so

(E®@ EYVE=QIE

(see (5.21)). The fact is that E@ E' = Q. To see this let g:(E @ E')/E' —» E be
the obvious isomorphism. Then using the injectivity of @ we have a com-
mutative diagram with exact row and column

0
oﬁwezﬁ?>mE
0
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By (5.13), h is monic, so
M= E =1Img = h(E® E')/E') hQ/E").
Therefore M 2 h(Q/E’) by (5.16), so by the maximality of E
h((E @ E')/E') = h(Q/E").

Then since h is monic, Q = E @ E’. Now by (18.2) we have that E is injective
so the inclusion M — E is an injective envelope. That it is unique up to
isomorphism follows from (18.9). O

18.11. Corollary. The following statements about an R-monomorphism
i:M — E are equivalent:

(a) i: M - E is an injective envelope of M ;

(b) E is an injective module and for every R-monomorphism f:M — Q with
Q injective there is a monomorphism g:E — Q making the following diagram
commute:

M—LQ

//
1 /g
/

E

(c) i is an essential monomorphism and for every essential monomorphism
f:M — N there is a monomorphism g:N — E making the following diagram
commute:

Proof. To prove that (a) implies (b) and (c) use injectivity to get g and then
use.(5.13) to see that g is monic.

On the other hand, assume (b). By Theorem (18.10) there is an injective
envelope f:M — Q for M. Then (b) gives a monomorphism g:E — Q with
f = gi. Since E is injective, this monomorphism splits (18.7); say Q =
(Img)® E'. But f is an essential monomorphism, so Imf< Q and
Imf = Imgi < Img. Thus, E' = 0, and g is an isomorphism; so i:M — E is
also essential.

Finally to prove that (c) implies (a), we use (18.10) to get an injective
envelope f:M — N, and then apply (c). We omit the details. O

It will be a very great convenience for us to take some liberties with our
notation for injective envelopes. Every module has an injective envelope but
no non-zero module has a unique one. Nevertheless, if i:gM — zQ is an
injective envelope for M, we shall often write Q = E(zM), or simply
Q = E(M), and say that E(M) is “the injective envelope” of M. Moreover, we
shall frequently identify M with its image in E(M) and shall thus think of M
as a submodule of E(M). In this guise E(M) is an essential injective extension



Injective Modules and Cogenerators 209

of M. Then (18.11) can be rephrased loosely to characterize E(M) (to within
isomorphism) simultaneously as the unique minimal injective extension and
also the unique maximal essential extension of M. Indeed E(M) appears as a
direct summand (though not necessarily uniquely; see Exercise (18.6)) of
every injective module that contains M, and E(M) contains a copy of every
essential extension of M.

Among the more important other properties of the injective envelope we
have the following:

18.12. Proposition. In the category of left R-modules over a ring R:

(1) M is injective if and only if M = E(M);

(2) If M= N, then E(M) = E(N);

(3) If M < Q, with Q injective, then Q = E(M) @ E';

4) If ® 4 E(M,) is injective ( for instance, if A is finite) then

E(@AMG) = ®A E(Ma)

Proof. Part (1) is immediate from the definition of the injective envelope.
For (2),since N<a E(N),if M<a N, then M <2 E(N) and E(N) is injective, so
the inclusion M — E(N) is an injective envelope of M. For (3) apply (18.11)

to the inclusion map f:M — Q and then use (18.2). Finally, for (4), suppose
@ 4,E(M,) is injective. Let

[ ®M, - ®AE(M¢)

be the direct sum of the injective envelopes M, — E(M,). Since f is monic
(6.25) it will suffice to show that it is essential. But this is just (6.17.2). O

Direct Sums of Injectives

It is not true that every direct sum of injective modules is injective. Indeed
it is precisely the noetherian rings over which every direct sum of injectives
is injective, and over these rings injective envelopes commute with direct
sums.

18.13. Propeosition. For a ring R the following are equivalent:

(a) Every direct sum of injective left R-modules is injective;

(b) If (M, )4 is an indexed set of left R-modules, then
E(@.M,) = @AE(Ma)~

(c) R is a left noetherian ring.

Proof. (a) <> (b). The one implication is by (18.12.4) and the other by
(18.12.1).

(a) = (c). Suppose that (a) holds and that

L <L <..

is an ascending chain of left ideals in R. Let I = U2, I;. Observe that if
ae I, then a e I; for all but finitely many i e N. So there is an
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f:I- @2, ERR/L)
defined via
nfla)=a+ I (ael).
By The Injective Test Lemma there is an xe @2, E(R/I;) such that
f(a) = ax for all ae I. Now choose n such that #,,,(x) =0,k =0, 1,.... So
Ik = mph(f(D) = 74 (Ix) = I, (x) = 0

or, equivalently, I, = I, ,, forallk = 0,1,2,....

(c) = (a). If R is left noetherian, I < zR and f:I - @ ,E,, then since I is
finitely generated, Imf is contained in @ E, for some finite subset F = A.
Now apply (18.2) and The Injective Test Lemma. O

Cogenerators

A module C in gM is a cogenerator (see §8) in case C cogenerates every left
R-module; that is, in case each left R-module M can be embedded in a
product of copies of C

0-M-CH
(i.e., Rejy(C) = 0). In terms of the functor Homg(_, C) we have
18.14. Proposition. For a left R-module C the following statements are
equivalent :
(a) C is a cogenerator;
(b) For every homomorphism f in gM if Homg(f,C) = O, then f = 0;
(c) For every f:xM — gN in gM, if f*:Homyz(N,C) - Homz(M, C) is

epic, then f is monic;
(d) A sequence

MLMSM
is exact in gM if the sequence
Homg(M”,C) & Homg(M, C) 5 Homg(M', C)
is exact.

Proof. (a) < (b). This is by (8.11.2).
(a)=>(d). Let C be a cogenerator. Suppose that f:M’'—» M, and
g:M — M” are such that
Homy(M", C) & Homg(M,C) 5 Homg(M', C)

is exact. Then since Homg(gf, C) = Homg(f, C)Homg(g, C) = 0, we see that
Im f < Kerg. Let n:M — M/Im f be the natural epimorphism. Then for
each h:M/Im f—- C

[/ *(hm)](M’) = h(n(Imf)) = 0,
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so that hn e Ker f* = Img*. Equivalently hn = ag for some « € Homg(M", C).
But now we have

h(Kerg/Imf) = hn(Ker g) = ag(Kerg) = 0.
Thus Kerg/Imf < Rejy;, /(C) = 0 and hence
Mr L M 4, Mrl

is exact.

(d) = (c). This is clear.

(c) = (a). It is not difficult to see that if n: M — M/Rej,,(C) is the natural
map, then n*:Homg(M/Rejy(C),C) - Homg(M,C) is an isomorphism.
Thus, under the hypothesis (c), n must always be monic; ie., Rejy,(C) = 0. [J

Dual to (17.9) we have

18.15. Proposition. Let E be an injective left R-module. Then the following
are equivalent:

(a) E is a cogenerator;

(b) Homg(T, E) + O for all simple left R-modules T;

(c) E cogenerates every simple left R-module.

Proof. The implications (a) = (c) and (c) = (b) are trivial. For (b) = (a)
assume that E satisfies (b). Let M be a left R-module and let 0 # xe M.
Since Rx is cyclic, it contains a maximal submodule, so by (b) there is a non-
zero homomorphism h:Rx — E. But E is injective, so h can be extended to a
homomorphism h: M — E with h(x) = h(x) # 0. Thus, Rej,(E) = 0. O

Now we shall see that there exist cogenerators in the category z M. In
fact, xM contains a cogenerator C,, which we call the minimal cogenerator,
that embeds in every cogenerator in xM.

18.16. Corollary.iet &, denote an irredundant set of representatives of the
simple modules in gM. Then

C = @TeYo E(T)

is a cogenerator in xM. Moreover, for a left R-module C, the following are
equivalent :

(a) C is a cogenerator;

(b) E(T) is isomorphic to a direct summand of C for every simple left
R-module T;

(c) C, is isomorphic to a submodule of C.

Proof. 1t follows from (18.15) that the injective module ;. E(T) is a
cogenerator. But this module is clearly cogenerated by @1y, E(T). Thus,
by (8.6.2), the first statement holds and (c) = (a). To see that (a) = (b) observe
that if T is simple and is not contained in the kernel of f:E(T) - C, then
Kerfn T = 0; but since T=a2 E(T), it follows that f is monic. Finally, to
prove that (b) = (c) observe that an irredundant set &, of simple sub-
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modules of C must be independent; hence, by (6.17.1), the set {E(T)| Te ¥,}
of their essential extensions is also independent in C. O

As promised in §9 we have

18.17. Corollary. A left R-module M is finitely cogenerated if and only if
for every indexed set of left R-modules (U,),. , and every monomorphism

0-M-II,U,
there is a monomorphism

0-M-I:U,
for some finite subset F < A.

Proof. We need only prove sufficiency (see (10.2)). By (18.16) M is co-
generated by injective envelopes of simple modules. Thus by hypothesis there
is a finite set of simple modules T, ..., T, such that M is isomorphic to a sub-
module of E(T})® ... ® E(T,) = E(T, ® ... ® T,). But by (10.7) this module
(whose socle is T, @ ... ® T,), is finitely cogenerated; hence M is finitely
cogenerated. |

While on the subject we observe

18.18. Proposition. 4 module M is finitely cogenerated if and only if
EM) = E(T)) ® ... ® E(T,) for some finite set T,, ..., T, of simple modules.

Proof. Clearly E(T))® ... ® E(T,) = E(T,®...® T,) has a finitely
generated essential socle. Thus each of its submodules is finitely cogenerated.
Conversely,if SocM =T, ®@...® T, Mthen EM) = E(T,) ® ... ® E(T,).

O

Finally, we see that the injective cogenerators are distinguished in the
class of injective modules as are the projective generators distinguished in the
class of projective modules. The class of injective cogenerators is closed under
the formation of direct products, and a module is injective if and only if it is a
direct summand of an injective cogenerator. There is, however, one notable
difference. Every ring R possesses a unique (to within isomorphism) minimal
injective cogenerator, namely, E(C,), but in general, a ring need not have a
minimal projective generator. (See Exercise (17.10).)

18.19. Corollary. Let &, denote an irredundant set of representatives of the
simple modules in kM. Then

Q= E(@Teyo T)

is an injective cogenerator in gM. Moreover,

(1) @ = E(Cy);

(2) If Q' is an injective cogenerator in gM, then there is a (split) mono-
morphism Q — Q'.

Proof. Clearly Cy<a Q so (1) holds and Q is an injective cogenerator.
Finally (2) follows from (18.16). O
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Endomorphism Rings of Injective Modules

We conclude this section with the duals of (17.11) and (17.12).

18.20. Proposition. Let E be an injective left R-module with endomorphism
ring S = End(gE). Let a€ S. Then

aelJ(S) iff Kera< E.

Proof. If Ker a=a E, then it will suffice to prove that aS « S;. (See (15.3).)
The rest of the proof is entirely dual to that of (17.11) and will be omitted. [

18.21. Corollary. Let E be an injective left R-module such that SocE<a E
(e.g.. if rE is finitely cogenerated). Let S = End(gxE). Then

J(S) = rg(SocE) and S/J(S) = End(gSocE).
Proof. This is dual to the proof of (17.12). O

18. Exercises

1. A ring R is left (right) self-injective in case gR (Rg) is injective. Prove that
if Risa P.I.LD.,, and I # Ois an ideal of R, then R/I is self-injective.

2. Let R be a commutative integral domain. Prove that:

(1) If Q is the field of quotients of R, then RQ = E(gR). [Hint: If
rI < xR and f:zI - 30, then [:Z q,a;+> Z q;f(a;) defines a Q-homo-
morphism.]

(2) If gE is injective, then E is divisible (see Exercise (3.15)).

(3) If Risa P.I.D,, then RE is injective iff zE is divisible.

3. Let D be a division ring, Q = M, (D), and R the subring of upper tri-
angular matrices. Prove that gQ is an injective envelope of zR. [Hint:
Let S be the set of all a € Q zero off the first row. Then § is an ideal of R,
Sq = Oimplies ¢ = 0, and SQ < R. In particular RR <0 ¢Q. Let I be a left
ideal of R and ¢:I » Q be an R-homomorphism. If X g,a;, = 0 with
a; €1, then sX q,¢(a;) = O for each s € S; thus there is a Q-homomorphism
$:0I — Q such that (¢ | I) = ¢. By (18.8) ,Q is injective so ¢ extends to
an endomorphism of 4Q.]

4. Let M, be a non-zero vector space over a division ring D and let
R = End(Mp). Prove that:

(1) SocgR = {feR|rankf < oo} = Soc Rg, and (Soc gR)? = SocgR.
[Hint: Exercises (14.13) and (17.4).]

(2) If ¢:Soc(Rg) = Ry is a right R-homomorphism, then there exists a
unique extension ¢ : Rz — R of ¢. [Hint: Let (x,),., be a basis for M,
and let e, € R be defined by e,(x;) = 6,5X,. Then ¢ is defined by

¢ (N(x) = Z,[¢le)](e(f(x))).

(3) If I'is a right ideal of R, then Soc(Rg) < I @ I' for some right ideal I
of R. [Hint: See (5.21).]
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(9]

Functors Between Module Categories

(4) The ring R is right self-injective.

(5) If M, is infinite dimensional, then R is not left self-injective, in fact R
has a primitive idempotent e such that Re is not injective. [Hint: There
is an R-homomorphism ¢:Soc(zxR) — g R such that ¢(Re,) = Re for each
a€ A]

. Let M be a non-zero module. Prove that E(M“) = E(M)* iff A is finite.
. Let E denote the injective Z,-module Z, ® Z, (see Exercise (18.1)).

Let M = {(0,0),(2,2)} < E. Prove that:

(1) M is not injective.

(2) M is the intersection of injective submodules of E.
(3) E contains more than one copy of E(M).

. If M is a left R-module, then it is contained in an injective module E (see

(18.6)). Forming injective envelopes is not a “closure” operation in the
usual sense, for E(M) need not be the intersection in E of the injective
submodules containing M. (See Exercise (18.6).) In this connection prove
that:

(1) If E is injective, then every submodule of E has a unique injective
envelope in E iff the intersection of every pair of injective submodules of E
is injective.

(2) If H, K, and H n K are injective submodules of a module M, then so
is H+ K.

(3) The converse of (2) fails in the sense that there exist injective sub-
modules of the Z-module Q @ Q whose sum is injective and whose
intersection is not injective.

. Let P and E be left R-modules. Suppose P is E-projective and E is P-

injective. Prove that every submodule of P is E-projective iff every factor
module of E is P-injective. [Hint: Consider
0- L ->P

!
0« E/K—E.]

. (1) Let0> K—>P—->M—->0and0 - K' > P> M — 0 be exact with P

and P’ both projective. Prove
Schanuel’s Lemma. P® K' =~ P’ @ K.
[Hint: Consider

0 0
|l
K'=K
Il
0-K-Q%P -0
o=l e
0-K->PSH5M-0
[
0 0
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10.

11.

12.

13.

where O = {(p,p')e P x P'|g(p) = g'(p)}.]
(2) Let0- K-> E—- M —>0and0 - K - E' > M’ — 0be exact with E
and E' injective. Prove that:

EOM =E®M.

A ring R is (left) hereditary in case each of its left ideals is projective. For
example, every P.I.D. is left hereditary. Prove that:

(1) For a ring R the following are equivalent: (a) R is left hereditary,
(b) Every factor module of an injective left R-module is injective; (c) Every
submodule of a projective left R-module is projective. [Hint: Exercise
(18.8).]

(2) Let R be left artinian with J = J(R) and let e, ..., e, be a complete
set of pairwise orthogonal primitive idempotents. (See Exercise (17.20).)
Prove that the following are equivalent: (a) R is left hereditary; (b) Every
maximal left ideal is projective; (c) Je; is projective (i = 1,...,n); (d) gJ is
projective. [Hint: (c)=>(a). Let kR =1>1; > ... > I, =0 be a com-
position series. Consider the exact sequences0 — I, ., » I, = I,/[, ., - 0
and 0 - Je —» Re — I,./I,,; = 0. Now use Schanuel’s Lemma (Exercise
(18.9)) and induction.]

(3) The ring R of n x n upper triangular matrices over a field K is both
left and right hereditary.

Let R be a commutative integral domain with field of quotients Q. For
each ideal I < R define I™' = {ge Q| gl = R}. Then [ is invertible in
case I"'I = R (ie, in case there exist q,,...,q,€I"! and a,,...,a,€l
with q,a, + ... + g,a, = 1). We say that R is a Dedekind domain in case
every non-zero ideal of R is invertible. Prove that:

(1) For each non-zero ideal I, the multiplication 4:q— A(q) defines an
isomorphism A:I1~!' — Homg(I, R).

(2) A non-zero ideal I of R is invertible iff it is (finitely generated and)
projective. [Hint: Use (1) and The Dual Basis Lemma (Exercise (17.11)).]
(3) The following are equivalent: (a) R is a Dedekind domain; (b) R is
hereditary; (c) Every divisible R-module is injective.

(4) Every Dedekind domain is noetherian.

Prove that a ring R is left hereditary (and noetherian) iff the sum of every
pair (set) of injective submodules in any left R-module is injective.
Consequently, each module over a hereditary noetherian ring contains
(as a direct summand) a unique maximal injective submodule. [Hint: For
the sufficiency, let E = M, = M, in Exercise (5.10).]

Let R be a PI.D. Two elements a,be R are equivalent in case there
exists an invertible element u € R such that a = ub. The primes in R are
those non-invertible elements divisible only by elements equivalent to
themselves and invertible elements. Let P denote a set consisting of one
element from each equivalence class of primes in R. Prove that if Q is the
field of quotients of R, then Q/R = @pR,x (Where R,» = {(a/p") +
R|laeR,neZ}) is the minimal cogenerator in gxM. In particular,
Q/Z = ®pZ~ is the minimal cogenerator in ;M.
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Functors Between Module Categories

Let R = LTM,(K), K a field, E = M,(K) and J = J(R). Show that E/J is
the minimal left R-cogenerator.

Let E and Q be injective modules. Prove that if there exist mono-
morphisms f:E - Q and q:Q » E, then E~ Q. [Hint: f E=Q ® Q'
and H = EC,.n/"(Q)), then H= H® Q']

Let R be a ring such that for every triple gE, RU, ¢V, if E is injective and U
cogenerates V, then Trg(V) < Trg(U). Prove that R/J(R) is semisimple.
Thus in general the assertion of Exercise (16.5.1) fails without the
finiteness requirement.

Let U and M be left R-modules. Prove that U is M-injective iff
Imy < U for each y: M — E(U). In particular, U is quasi-injective iff it
is stable under End(xE(U)). [Hint: Exercise (16.13).]

Let U be a quasi-injective module. Prove that if E(U) = E; @ E, then
U= U, ® U, where E; = E(U;)(i = 1,2). Conclude that U is indecom-
posable iff E(U) is indecomposable.

Let U, and U, be quasi-injective modules such that E(U,) = E(U,).
Prove that U, @ U, is quasi-injective iff U, = U,.

Show that a finite abelian group is quasi-injective iff it is quasi-
projective. [Hint: Exercises (17.19) and (18.19).]

Prove that every quasi-injective left module over a left artinian ring is
injective modulo its annihilator.

Prove that for a left R-module U the following statements are equivalent:
(a) U# is quasi-injective for every set 4; (b) U is injective modulo its
annihilator; (¢) U = rgy,(Ir(U)).

Recall that a module is co-semisimple in case each of its submodules is an
intersection of maximal submodules and that a ring is left co-semisimple
in case it has a semisimple left cogenerator. (See Exercises (9.14) and
(13.10).) Prove that: '

(1) For a left R-module M the following are equivalent: (a) M is co-
semisimple; (b) Every finitely cogenerated factor module of M is semi-
simple; (c) Every simple left R-module is M-injective.

(2) Submodules, factor modules and direct sums of co-semisimple
modules are co-semisimple.

(3) For a ring R the following are equivalent: (a) gR is co-semisimple;
(b) R is left co-semisimple; (c} Every left R-module is co-semisimple;
(d) Every simple left R-module is injective; (¢) Every short exact
sequence 0 —» K —» M — (N — 0 with K finitely cogenerated splits.
((@) <> (d) is due to Villamayor.)

(4) If R is co-semisimple, then I = I for each left ideal I < R. [Hint: It
will suffice to show x e (Rx)? for each x € R. If x ¢ (Rx)? then for some
maximal left ideal M of R, x ¢ M and (Rx)* < M. (See part (1).) But then
R=Rx+ M]

(5) For a commutative ring R the following are equivalent: (a) R is co-
semisimple; (b) I?> = I for each ideal I of R; (c) R is von Neumann
regular. (This is due to Kaplansky.) [Hint: (c)= (a). Let ] < R and
x ¢ 1. By (c), x = yx? for some y € R. Let M be maximal with I < M and



Injective Modules and Cogenerators 217

24.

25.

26.

27.

28.

29.

30.

x¢ M. Then M is a maximal ideal of R so gzR is co-semisimple. See
Exercise (15.13).]

(6) If R is the endomorphism ring of an infinite dimensional vector space
M, then R x R°? is von Neumann regular but neither left nor right co-
semisimple. [Hint: Exercise (18.4).] (Note: Cozzens [70] has shown
that co-semisimple rings need not be von Neumann regular.)

A ring R is left co-artinian (co-noetherian) in case every submodule
(factor module) of each finitely cogenerated left module is finitely genera-
ted (finitely cogenerated).

(1) Prove that R is left co-artinian (co-noetherian) iff E(T) is noetherian
(artinian) for every simple left R-module T.

(2) Zis co-noetherian but not co-artinian.

A module is faithful iff it cogenerates every projective module. (See
Exercise (17.6).) A module is co-faithful in case it generates every
injective module. Prove that:

(1) M is co-faithful iff M finitely cogenerates the regular module RzR.
[Hint: For (=) observe that 1 € Trgg,M.]

(2) Every faithful left R-module is co-faithful iff zR is finitely co-
generated.

(3) Prove that every co-faithful quasi-injective module is injective.

A module is faithful iff it cogenerates a generator. (See Exercise (8.3).) A
module is *-faithful in case it generates a cogenerator. Prove that:

(1) gM is *-faithful iff M generates the minimal cogenerator in zM.

(2) co-faithful => *-faithful = faithful.

(3) If R is left artinian then all three are equivalent.

(1) Theorem. If 3E is a non-zero injective module and if S = End(RE), then
S/J(S) is von Neumann regular. [Hint: Exercise (15.13). If a€ S, then
E =E(Kera)® E = E’ ® E'aand (a|E'): E' — E'a is an isomorphism.
Let x = 0@ (a| E')" ' and show that Ker(axa — a)<2 E.]

(2) Corollary. If R is left or right self-injective, then R/J(R) is von Neumann
regular.

Let U be quasi-injective. Prove that End(xU) is isomorphic to a factor
ring of End(xE(U)) and End(RU)/J(End(gU)) is von Neumann regular.
A Boolean ring R is complete in case for each 4 < R there is an element
u € R such that I(4) = l(u). Prove that:

(1) A Boolean ring R is complete iff R is self-injective.

(2) Prove that the ring of all continuous functions from Q to Z, (with
the discrete topology) is von Neumann regular but not self-injective.
Let R be primitive with Soc R # 0. (See Exercise (17.5).) Then there is an
idempotent e € R with Re and eR faithful and simple. Set

B = BiEnd(Re) = End(Re,g,),

and identify R = A(R) with a dense subring of B. For each left (right),
eRe-module U let U* be the right (left) eRe-module Hom, g (U, eRe).
Prove that:

(1) eB = Re*.
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32.
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(2) eR<a eB as right R-modules. [Hint: Show Be = Re.]
(3) If Re and eR are R-injective, then the eRe vector space Re is re-
flexive; i.e,, the evaluation map o: Re — ((Re)*)* defined via

[e()]() = ¥)

is an isomorphism. [Hint: Let B' = BiEnd(eRg). Then ((Re)*)* = (eB)*
= (eR)* = B'e = Re.]

(4) No infinite dimensional vector space is reflexive. [Hint: Let M,
have a basis (x,),,. Define f3(x,) = 8,5 € D. If A is infinite, there exists
0 # g:M* - D such that g(f,) =0 for all «€ A. Then g +# o(v) for
veM.]

(5) Theorem. If R has simple faithful injective projective left and right
modules, then R is simple artinian.

(6) Use (5) to prove that if M, is an infinite dimensional vector space,
then End(Mp) is not both left and right self-injective. (See also Exercise
(18.4.5).)

Let R be a left artinian ring. Prove that:

(1) If Soc gkM = @ ,T, with cach T, simple, then E(M) =~ & ,E(T).

(2) Every injective left R-module has a decomposition (whose terms are
injective envelopes of simple modules) that complements direct sum-
mands.

(3) The numbers of isomorphism classes of simple, indecomposable
projective and indecomposable injective left R-modules are all (finite
and) equal. (See Exercise (17.20).)

Prove that every left cogenerator over a left artinian ring is balanced.
[Hint: Let zE be an injective cogenerator. Apply (14.2) and Exercise
(8.5) to R(x,,...,x,) < E™ to see that R operates densely on E. Then
apply Exercise (16.19) to see that E is balanced. Now apply (14.1).]

§19. The Tensor Functors and Flat Modules

There is another important class of additive functors, in addition to the Hom
functors, that ply their trade among module categories. This is the class of
“tensor” functors that arises from the study of multilinear algebra. In a sense
such functors serve to linearize multilinear functions.

Tensor Products of Modules

Given a right module My and a left module zN over a ring R and an abelian
group A4, a function

B:Mx N - A

is said to be R-balanced in case for all m, m; e M, n,n,e N and re R

(l) B(ml + my, n) = ﬁ(ml’n) + B(mzv n);
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(2) Bim,ny + ny) = B(m,ny) + B(m, ny);
(3) B(mr’ n) = B(m’ rn).
The most familiar examples of such maps are the inner products of
elementary linear algebra and ring multiplications R x R — R.
We shall not study R-balanced maps as such. For there is a natural way
to trade each R-balanced map in for a linear map by using the concept of a
tensor product. Let M, and xN be modules. A pair (T, t) consisting of an
abelian group T and an R-balanced map 7:M x N — T'is a tensor product
of Mg and gN in case for every abelian group 4 and every R-balanced map
B:M x N — A there is a unique Z-homomorphism f: T — A4 such that the
diagram
Mx N
X
T—L-———4
commutes. If (7; 7) is a tensor product of My and gN, then clearly, fo 1 is
R-balanced for each homomorphism f: T — A. Thus, (7, 1) is a tensor pro-
duct of My and N if and only if for each abelian group A4

f(»—bfo T
defines a one-to-one correspondence between Hom,(T, A) and the set of
R-balanced maps §: M x N — A. Our first task is to show that not only do

such tensor products exist, but that they are essentially unique. The
uniqueness is particularly easy.

19.1. Proposition. If (T, t) and (T', t°) are two tensor products of (Mg, gN)
then there is a Z-isomorphism f: T — T' such that v = fz.
M x N\
/ ,

I— 1,7

Proof. The hypotheses imply the existence of homomorphisms f and g

such that
/M X N\ /M X N\
T d T T——~——T

commute. Then the commuting of the diagrams

M x N M x N
T/ i \T 1'/'——1—\»'T
forces gf = 1. Similarly fg = 17, whence f'is an isomorphism. O

Next we shall construct a tensor product of (Mg, g N) over R. For this let
F =7Z™"" be a free abelian group on M x N. Then F has a free basis
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(X )xem < n- For notational convenience let us simply write (m, n) for x, .
Then
F = @y xnZ(m,n).
Now let K be the subgroup of F generated by all elements of the form
(my + my,n) — (my,n) — (my,n),
(my,ny + ny) — (myny) — (m, ny),
(mr, n) — (m, rn),
andset T = F/K. Define t:M x N - Tvia
t(m,n) = (m,n) + K.

19.2. Proposition. With T and < defined as above, (T, 1) is a tensor product
of (Mg, gN) over R.

Proof. Suppose f:M x N — A is an R-balanced map. Since F is free on
M x N there is a Z-homomorphism h: F — A such that

M x N

N

F

commutes. Since f is R-balanced, K < Ker h. Thus, there is a Z-homomor-

phism f: T — A such that
M x N
/N
T 4 A

commutes. Finally, since (M x N) clearly spans T, f is uniquely determined
by this diagram. O

Given (Mpg, gN), let (T 7) be the tensor product constructed above. By
Proposition 19.1 it is unique to within isomorphism. We write

T=M@yN
and for each (m,n)e M x N,
(mn)=m@Q n.

We tend to be somewhat loose with our terminology and call M ®g N the
tensor product of M and N. As we shall see, the notation m@® n is
ambiguous. That is, f me M’ < M and ne N' < N, then m ® n can have a
vastly different meaning in M’ ®z N’ than in M ®z N. Usually, however,
the context removes this ambiguity. Now combining (19.1) and (19.2) we
have that M ®z N is the unique (to within isomorphism) abelian group
that contains a spanning set {m® n|me M, ne N} satisfying
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19.3. Proposition. For each R-balanced map f:M x N — A there exists a
unique abelian group homomorphism

S M®gN- A
such that forallme M,ne N
S(m ® n) = B(m, n). O
Also we have at once the following arithmetic properties of M ® x N:

19.4. Proposition. Each element of M ®x N can be expressed as a finite

sum of the form
Z(m ®n) (m;e M,n;eN).

Moreover, for allm,m;e M,n,n,e N andre R.

(1) (my + my) @ n = (m; @ n) + (m, @ n),

@ m®(n, +ny)=mMm®An,) + (m® ny),

By m@n=m@g rn. O

A few more words of caution are in order. Although

MxN)={m@n|lmeM,neN}

spans M ®g N, in general t(M x N) # M ®g N. Moreover, the representa-
tion of elements of M ® 4 N as finite sums X, (m; ® n;) need not be unique.

In general, the abelian group M ®z N is not an R-module. However,
bimodule structures on M or N induce module structures on M ®x N.
Suppose, for example, that we have (sMg, g N). Then for each s € S the map-
pingo,:M x N = M ®p N defined via

o(mn)=(sm@n
is R-balanced. Hence there is a unique Z-homomorphism
V) MQ@OgN->MQ@PgN

such that
Mx N

AN

M @i N 3 M®gN

commutes. It is easy to see that v:s+ v(s) defines a unital ring homo-
morphism § — End'(M ®x N). Thus M ®¢ N is a left S-module with

sim ® n) = (sm) @ n.

If N = xNis a bimodule, then a similar argument shows that M ® N isa
right T-module. In fact it is now easily checked that

19.5. Proposition. If M and xN are bimodules, then M @ N is a left
S-right T-bimodule with

s(m® n) = (sm) ® n, (m® n)t = m® (nt). a
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Since xRy, it follows from (19.5) that M ® R is a right R-module and
R ® g N is a left R-module.

19.6. Proposiltion. For each right module My, there is an R-isomorphism
n:M ®y R — M such that
nm@r)y=mr, 7 im=me]1

and for each left module xN there is an R-isomorphism u:R ® g N - N such
that

ur® n) = rn, i =1xn
Moreover, if ;Mg (gNy) is a bimodule, then n (u) is a bimodule isomorphism.
Proof. We shall prove only the first assertion. Since (m, r)— mr defines
an R-balanced map M x R — M, there is an #n:M ®z R - M such that
n(m @ r) = mr. Clearly n is an R-homomorphism. Also n':M - M @z R

defined via n'(m) = m ® 1 is also an R-homomorphism by (19.4). Clearly
non =1,.SinceM @z R={m® 1|m €M}, it is also clear that

n'en=lyg,r O

Tensor Products of Homomorphisms

Enroute to the tensor functors we next develop a theory of a tensor product
J® g of two R-homomorphisms.

Let M, M’ be right R-modules, and let N, N’ be left R-modules. Suppose
further that f:M — M’ and ¢g:N — N’ are R-homomorphisms. Define a
map (f,g):M x N> M ®z N’ via

(f,9)(m, n) = f(m) ® g(n).

It is evident that (f, g) is R-balanced, so there is a unique Z-homomorphism,
which we shall denote by f® g, from M ®z N to M’ @z N’ such that the
following diagram commutes:

M x N

N

M @ N ———— M@ N'

Thus, in particular, f ® g is characterized via

(f®g)(m® n) = f(m @ g(n).

19.7. Lemma. Consider My, My, gN, gN'. For all f,, f,, f€ Homg(M,M’)
and all g,, g,, g€ Homg(N, N'),

D) N1+)®9=(/i®9)+(,®9)

2 f®(g,+9)=0/®g)+ (f®g:)

3) f/®0=0®g =0,

@ 1y ® 1y =1lye,n-
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Proof. These identities clearly hold on the generators m® n of
M ®gN. a

19.8. Lemma. Given R-homomorphismsf:M - M'.f':M' - M",g:N - N,
andg':N' - N”,
(@9 ®9=(®(g9
Proof. It works on all m ® n. O

19.9. Lemma. Suppose that (My, (i), 4) is a direct sum of (M,),c 4 and that
(N, Ug)ges) is a direct sum of (Ng)gep. Then (M ®@g N, (i, ®jg)a,prcaxs) is @
direct sum of (M, ® g Ng)4.gyc4 x 5-

Proof. Let (p,),e 4 and (gg)g.p be R-homomorphisms such that

M,5M% M, and N,ZBNZ%N,
satisfy

Paiw = Oarly, — and  qgjp = dply,
and

Tiplm)=m  and  Egjpqn) = n
forallme M and ne N. Then

M, @ Ny =22 M @ N 22% M, ® N,

satisfy
(P: ® 4p) (i ® Jg) = daaypp It @4, »
(P2 ® gg)(m ® n) = O for almost all (&, f)e 4 x B,
Zipla®Jg)(P. @ gg)m@n) =m® n.
Now apply Proposition 6.21. O

The Tensor Functors
Let U = ;U be a bimodule. Then it follows from (19.7) and (19.8) that there
is an additive covariant functor
(U®g -):gM - M
defined by
(U®g-):M—U @M
URg-)f1y®f

By (19.5) each U ®x M is a left S-module. We claim moreover that if
f:M - M’ is an R-homomorphism, then

Ug fisU®@rM = U@ M
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is an S-homomorphism. It suffices to check this on the generators u ® m of
U ®x M. But foreachse S, ue U,and me M.

U@ Nsu@m) =1y ® N)su®@m)
=s5u® f(m) = su® f(m))
= 5((U ®¢ f)(u® m))

as claimed. Thus we may view this as an additive functor from zxM to ¢M,
and write it

(sU ®r -):gM - sM.
Similarly, there is an additive covariant functor
(- ®5 Ug): Mg - My
defined by
(- ®sUg):N—> N ®g Uy
(- ®sUp):g—>g ® 1.
Finally, applying (19.9) we have

19.10. Theorem. Let R and S be rings and let gUg be a bimodule. Then
(sU ®g -):gM — M
and
(- ®sUg): Mg — Mg
are both additive covariant functors that preserve (arbitrary) direct sums. [

There are other versions of tensor functors. Thus for example, a bimodule
Uyg-s gives rise to a functor

(Ug-s ®g -):gM = Mg,
The properties of any one of these can be deduced from the others by simple
translations via opposite rings. Indeed observe that

M ®R N = N ®RopM.

Thus our usual practice shall be to state our results in terms of a functor
(sU ®x -):xM — M, but we shall feel free to use the related versions for the
other tensor functors.

Now let (M’ < zM, let W be a left R-module, and let i: M’ — M be the
inclusion map. Informally, we often tend to view Homg(W, M’) as a sub-
module of Homg(W, M). Although strictly speaking this identification is
incorrect, it is justified by the fact that

Homg(W, i): Homg(W, M') - Homgz(W, M)

is a monomorphism, or more generally, that the functor
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Homg(W, _):gM - ;M

is left exact. Similarly, it is the left exactness of Homg(_, W) that keeps us from
disaster when we view Homg(M/M’, W) as a submodule of Hom(M, W).

Again let kM’ < ¢ M, but now let U be a right R-module. Then in general,
U ® g M’ cannot be identified with a submodule of U ® ; M. For example, as
Z-modules Z < Q, but for each n > 1,

2,®,2=17, and Z,®;Q =0.
To see the last assertion, note that if xe Z,, thenin Z, ®; Q,
x®q=x@nn"'gg=nx@n 'q=0®n"'q=0.

This latter phenomenon is a consequence of the fact that in general the
functors (U ®j -) are not left exact. However, we shall soon see that each of
these tensor functors is right exact. We begin with

19.11. Lemma.Given modules Uy and 4N, if f: g M’ — M is an R-homo-
morphism, then there exist Z-isomorphisms ¢ and ¢’ such that the following
diagram commutes:

Homy(f. Homg(U. N))

Homg(M, Homg(U, N)) » Homg(M', Homg(U, N))
¢ Py
Homg((U @ M), N) ——2 0, Homg((U @ M'), N)

Proof. Let ye Homg(M, Homg(U, N)). Then it is easy to check that
(u, m) — y(m)(u) is R-balanced. So there exists an S-homomorphism

o():sU @M - N

defined by ¢(y):u ® mrs y(m)(u). It is straightforward to check that the
mapping ¢ defined by ¢ :y— ¢(y) is an isomorphism between the appropri-
ate abelian groups with inverse ¢~ '(8)(m):u~ d(u ® m). Then with a
parallel definition for ¢’, we have

@'(Homg(f, Homs(U, N))(7)) (u @ m') =
= ¢ () u@m') = y(f(m')) ()
=o(u® f(m)) = ¢p(7) (U ®g U@ m’)
= Homgs((U @ /), N)(¢())(u ® n),
and the diagram commutes. O

Note that this last result states that under certain circumstances a tensor
functor can be traded for a Hom functor. Formally this lemma is the state-
ment of an “adjoint” relationship. (See §21.)

Now let C be an injective cogenerator in the category ;M of abelian
groups. (See (18.19).) Let

()* = Homy(_, ).
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Recall that if U is a right R-module, then U* is a left R-module. Using this
notation we can state the following “exactness test” whose proof involves the
trade made possible by the last lemma.

19.12. Lemma. Let f:M' — M and g:M — M" be R-homomorphisms in
rMand let U be a right R-module. Then

U®RM/ U@®axS U®RM UQ®axg U®RM”
is exact if and only if

Homg(M", U*) —ome U0, Home (M, U*) —mUY0_, Home(M!, U*)

is exact.

Proof. From (19.11) we have a commutative diagram

Homg(M", U*) — 22980, Homp(M, U*) —222200 , Homp(M', U*)
¢ ¢ &
(U@ My —E22 s (U@ M) —2 L (U@ M)*
where ¢”, ¢ and ¢’ are isomorphisms. It follows that the top row is exact if
and only if the bottom row is exact. But, since C is an injective cogenerator

in zM, it follows from (18.1) and (18.14) that the bottom row is exact if and
only if

UM L2, U@ M L8, UM

is exact. O
19.13. Proposition. The tensor functors are right exact. In particular, if
0-MLMEHEM -0
is exact in gM, then for every bimodule Uy,
U@pM Lol Y@M Y, UM -0
is exact in gM.
Proof. Apply (19.12) to the sequence
0 — Homg(M", U*) —Hemale. V), Hom (M, U*) —Homsll U, Home(M', U*)
which we know is exact by (16.6). d

Flat Modules

We say that a module Uy is flat relative to a module M (or that U is M-flat)
in case the functor (U ®j _) preserves the exactness of all short exact
sequences with middle term M. Then, of course, U is M-flat if and only if for
every submodule K < M the sequence

U®nix

0 U@ gK———>U®@gM
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is exact. A module V4 that is flat relative to every right R-module is called a
flat right R-module. The theory of flat left modules is an obvious left-right
symmetric version of that of flat right modules.

We continue our convention of letting ( )* denote the functor
Homgy(_, C) where C is a fixed injective cogenerator in ;M.

19.14. Lemma. Let M be a left R-module. A right R-module V is M-flat if
and only if V* is M-injective. In particular V is flat if and only if V* is injective.

Proof. Apply (19.12) to the monomorphisms 0 - K — M. O

19.15. Proposition. Let (V,),.4 be an indexed set of right R-modules. Then
® .V, is flat if and only if each V, is flat..

Proof. By (16.4), (® ,V,)* =~ IT,(V,)* and by (16.11) the latter is injective
if and only if each (V,)* is injective. Thus Lemma (19.14) applies. O

19.16. Proposition. Every projective module is flat.

Proof. Since projective modules are isomorphic to direct summands of
free modules (17.2), we need only show that the regular module Ry is flat.
But if f: M’ - M is a monomorphism in gM, then by (19.6) there are isomor-
phisms g’ and u that make the diagram

0o-M—L M
u'] L‘
R@yM L&/, R@y M

commute. Thus R ®; fis monic; and R is flat. Od

19.17. The Flat Test Lemma. The following statements about a right R-
module V are equivalent:

(a) Visflat;

(b) Vis flot relative to gR;

(c) For each (finitely generated) left ideal 1 < gxR the Z-epimorphism
ur:V@gl— VIwith y,(v® a) = va is monic.

Prcof. (a) <> (b). This is by the Injective Test Lemma and Lemma (19.14).
(b) <> (c). The diagram

Vgl L2, V®gR

vl —~— Vv

commutes, where y is the isomorphism of (19.6). Thus since the inclusion map
iy; is a Z-monomorphism, ¥V ® i, is monic if and only if g4, is monic.
Finally, the parenthetical version of (c) implies the non-parenthetical
version. For let v;e ¥, a;eR (i = 1,...,n) and suppose Z;v; ® a; € Ker y;;
that is, X, v,a; = 0. Then Z;v; ® a; € Ker uy where K = X, Ra;. By hypothesis,
Z;v; ® q; = 0 as an element of ¥V ® z K. So with ig: K — I the inclusion map
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0=(V®rix)Z(v;®a))=2X(v;®a)eV @l a

From the Flat Test Lemma we obtain the following two additional tests
for flatness.

19.18. Lemma. Let V be aflat right R-module and suppose that the sequence
0-K5vhv o

is exact in Mg. Then V' is flat if and only if for'each (finitely generated) left
ideal I < gR

KI=KnVIL

Proof. The diagram of Z-homomorphisms

0
K@yl —2 v @y I L2 v @p1—0
ui ml ﬂ}l
0-KnVI—— yI Y¥, pqp
l
0

is commutative and has exact rows and columns. Therefore by (3.14.3) and
(3.14.4) u; is monic if and only if u is epic. But Imuy = KI < K n V1, so that
u;is monic if and only if KI = K n V1. Thus the Flat Test Lemma applies. O]

19.19. Lemma. 4 module Vy is flat if and only if for every relation
Z;=lvjaj=0 (UJEI/,aJGR)
there exist elementsu,, ..., u, € Vand elementsc;e R(i = 1,...,m,j=1,...,n)
such that

Xi_yc;a;=0 @

1,...,m)

and
ZL uici; = v; G=1,...,n).

Proof. (=>). Suppose that V; is flat and E., v,a; = 0. Let I = X, Ra;.
Consider the free left R-module F = @}.., Rx; and the short exact sequence

0-K&%FL150

where f(x;) = a; for each j=1,...,n. By the Flat Test Lemma (19.17.c)
Ziv; ®f(x;)) =Z;(v; ®a;) = 0 as an element of ¥ ®, I. So in the exact
sequence

0 VK25 VveF 2L yveI-0
we have Z;(v; ® x;) e Ker(V® f) = Im(V ® ix). Thus there exist ;€ V and
k;e K with Z;(v; ® x;) = Zi(u; ® k;). Now each k;e F, so k; = Zc;;x; for
each i = 1,...,m and some c;; € R. From this we get
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Zjciia;=Z;c;;f(x;))=f(k)=0 i=1,...,n).
Moreover, this also gives
Ziv; ® x;) = Zi(u; ® k;) = Zi(u; ® (Zj¢45%;)
=X;((Z;uc;) ® x;))

But V@ F = @j., Im(V ® ig,,) by (19.9), so v; = X, u;c;; for each j.
(<=). Let I < xR and suppose a; e[ and v; e V with X;v;a; = 0. Then by
hypothesis there exist u;€ ¥, ¢;; € R such thatin V ® I,

Zi(v; ® a) = Z;((Zuici) ® ay)
=Xy ®ZX;c;a)=0
and the Flat Test Lemma (19.17) applies. O

Products of Flat Modules

A finitely generated module zM is said to be finitely presented in case in every
exact sequence

0-K—-F-M-0

with F finitely generated and free the kernel K is also finitely generated.
Observe that R is noetherian if and only if every finitely generated R-module
is finitely presented. (See Proposition (10.19).) More generally, a ring R is left
coherent if each of its finitely generated left ideals is finitely presented. These
are the rings over which direct products of flat right modules are flat.

19.20. Theorem [S. U. Chase]. For a ring R the following are equivalent:
(a) Every direct product of flat right R-modules is flat;

(b) R4 is flat for every set A;

(c) Ris left coherent.

Proof. (a) = (b). By (19.16), Ry is flat.
(b) = (c). Suppose I < xR and F is a free module with free basis
Xy, ..., X, that maps onto gl

FLI-0.

For each j=1..,nlet a;=f(x;) and let K = Kerf To show that K is
finitely generated define, in the direct product RX of card(K) copies of R,
elements v; € R¥ via the equations

k=mv)x; + ... + m(v,)x, (ke K).
Then 0 = f(k) = Z;m,(v))a; or, equivalently,
27, v;a;=0eRX
By hypothesis R¥ is flat so by (19.19) there exist uy, ..., u, € RX, ¢;;€ R, with

n — m —
Xiic;a,=0 and XL uc; = v;
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for all i and j. Now let
ki =ZXj_,c;x;€eF.
Then f(k;) = Z;c;;a; = 0 so that ky, ..., k, € K. But for each ke K
k=Z;m(v)x; = Z;mZ; u;cj)x;
= Z;m(u)(Zciix;) = i (u)k;;

hence K is spanned by ky, ..., k,.

(c) = (a). Let R be a left coherent ring. The first step in this proof is to
show, via (19.19), that the right R-module (R"®)* is flat for all sets 4 and B.
So suppose that

vje(R®)4 and  g;eR
with
Xz v8;=0.

Let F be the free left R-module with free basis x,,..., x, and let K be the
kernel of the epimorphism

FL%  Ra;j»0  (f(x;)=a;j=1,...,n).
Then since R is left coherent we can write
K =X Rk;
where
ki=ZXZj.,¢;x;€eK
and
Yioycya;=fk)=0 (i=1..,m).
Now to find the u;’s observe that for all « € 4, f € B we also have
20 [vj@]B)x;e K.

Thus we may choose b,z€R (i = 1,...,m) such that b,, = 0 whenever

[v;@](B) =0,(j =1,...,n) and
iy [vj(“)](ﬂ)xj = Xy biggk;

to get uy,...,u,, € (R'®)* defined by

[ui(@)](B) = bigp (xeAd, BeB,i=1,...,m);
so that
Z;[vj@]B)x; = Z;[u@) ] (B)k;
= Z; [, JIB)E;ciyx;)
= Z;(Z; [u;(@) ] (B)eij)x;
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or equivalently
v; = XL Uy G=1,..,n).

Thus by (19.19) we see that (R®)4 is always flat.
Now to complete the proof suppose that (V,),., are flat right R-modules

and let B be a set such that the free right modules F, = R® map onto V,.
That is

0-K,-F,58V,-0
is exact for all a € A. Then we have an exact sequence
0-T,K,»TI,F, 211 ,V,-0

(see (6.25)) in which 1, F, = (R"®)4 is flat. Now let I be a finitely generated
left ideal in R. Then for any direct product of right R-modules [T, M, we have
(I M) = II ((M,I) (see Exercise (15.3)). So applying (19.18) we have

(MK = T(K,I) = T,(K, n F,I)=(I1,K,) n (T1 (F,I))
= (I K,) n (T, F)I

and the theorem is proved. Od

19. Exercises

1. Let Rbe aring, L < R and I < Rg. Prove that:
(1) For each gM there is a Z-isomorphism f:R/I ® x M - M/IM such
that f:(r + 1) ® m—» rm + IM. Deduce that as abelian groups

R/I ®g R/L = R/I + L).

(2) If m,ne N and if d = (m, n) is the greatest common divisor of m and n,
then 2, ®, 2, = Z,.
. Let R be commutative. Let F and G be free R-modules with free bases
(X4)ac 4 @nd (yg)gep, respectively. Prove that F ® G is a free R-module
with free basis (X, ® Vg)a.prea x 8-
3. Let L be an extension field of K and let V be a K-vector space with basis
(X4)eea- Prove that (1 ® x,),c 4 is a basis for the L-vector space L @ V.

4. Let R and S be rings and let e € R, fe S be non-zero idempotents. Prove
that:
(1) For each gMg there are isomorphisms n,, and u,,

Nu:eR @r M — g.eM; and HuM @5 Sf— gMfysy.

such that (e ® m) = em and py(m ® f) = mf.
(2) nu is a natural transformation from the tensor functor eR ®gx(-) to
T. (see (0.13) and Exercise (4.17)).
5. Let R and S be algebras over a commutative ring K. Prove that:
(I) R®g S is a K-algebra with multiplications

8o
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r@s)(r®s)=rre®ss
k(r ® s) = (kr) ® s = r ® (ks).

(2) a:rr»r®1 and f:s+—1®s define algebra homomorphisms
2:R—> R®gS and f:S - R ®x S such that a(r)f(s) = B(s)a(r) for all
reR,seS.

6. Let R and S be rings. Consider the rings (Z-algebras) T= R ®;, S,

U=R®;S5°% and V = R ®, S. (See Exercise (19.5).) Prove that:

(1) Each bimodule Mg induces modules ;M where (r ® s)m = rms and
M, where m(r ® s) = rms.

(2) The maps « and g of Exercise (19.5.2) induce an gMop structure on
each module ;M.

7. For each left R-module M let M* be the right R-module Homg(gM, gRR).
Then by Exercise (19.6), M ®; M* is a left R ® ; R°’-module. Prove that:
(1) If zP is finitely generated projective, then P ®, P* is finitely
generated projective over R ®; R°P.

(2) If xG is a generator, then G ®, G* is an R ®; R°P-generator.

. Let K be a field. Prove that as K-algebrasM,,(K) ® xM,(K) = M,,.(K).

9. Recall that a module U over a commutative integral domain R is
torsion-free in case Iz(u) = O for all 0 # ue U. Prove that:
(1) If Risa P.LD, (U is flat iff {U is torsion-free. [Hint: aR ® s U =
{a ® u|ue U}. Apply the Flat Test Lemma (19.17).]
(2) If K is a field, then RX + RYis a torsion-free R = K[ X, Y] ideal but
is not R flat.

10. Let ¢:R — S be aring homomorphism. Then (S; and ;S via ¢. Consider
the functors T, = (sS ®¢ -) and Hy, = Homg(Ss, =) from zM to ¢M.
Deduce from (19.11) that
(1) If P is projective in xM, then T,(P) is projective is M.

(2) If E is injective in zM, then H,(E) is injective in ¢M.

11. A submodule RU < gVis pure in Vin case IU = U n IV for each right
ideal I < Rg. Thus if V is flat, then V/U is flat iff U is pure in V. (See
(19.18).)

(1) Prove that if (U,),. 4 is a chain of pure submodules of ¥, then U , U,
is pure in V.

(2) Prove that if K < V, then there is a submodule U < V maximal with
respect to U < K and U pure in V.

12. "Prove that extensions of flat modules by flat modules are flat; i.e., if
0- V' > V- V" —0isexact with ¥’ and V" flat, then V is flat. [Hint:
(19.17) and (3.14.1).]

13. Prove that if ¥ is flat for all sets 4, then (V*®)4 is flat for all sets 4 and B.

14. Let (Vi be a bimodule and let ¢Q be an injective cogenerator in gM.
Prove that the following are equivalent: (a) Vj is flat; (b) Homg(V, Q) is
an injective left R-module; (c) There exists a left S-cogenerator C such that
Homg(Vy, C) is injective over R; (d) Homg(Vy, E) is injective over R for
each injective gE.

15. Given modules My and {U let #(M) denote the class of left R-modules

oo
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16.

17.

18.

19.

20.

that are M-flat and let # ~!(U) denote the class of right R-modules N
such that U is N-flat. Prove that:

(1) # (M) is closed under direct sums and direct summands.

(2) & ~Y(U)is closed under submodules, factor modules and direct sums.
(3) If Vi is flat, then #(V) is closed under extensions; i.e., if
0- U —-U-U"->0is exact and U’ and U" e #(V) then Ue F(V).
Prove that a ring is von Neumann regular iff each of its left modules is
flat. [Hint: For (<) use (19.18) on 0 - Ra - R - R/Ra - 0.]

Prove that if 0 - K- P - M — 0 is exact with K and P finitely
generated and P projective then M is finitely presented. [Hint: Schanuel’s
Lemma, Exercise (18.9).]

Let Ug and xkM be modules. Define the annihilator in M of U to be

Anny(U) = {meM|u®@m=0in U ®zM forallueU};

say that Uy is g M-faithful in case Anny(U) = 0. Prove that:

(1) Anny(U) is the unique smallest submodule K of M such that U is
M/K-faithful.

(2) Iff: gM — gN, then f(Ann, (U)) € Anny(U). In particular, Ann,, (U)
is stable under endomorphisms of M.

(3) If f:M — N is epic and Ker f < Ann,(U), then

f(Anny(U)) = Anny(0).

(4) If (U,),eq are right R-modules and M is a left R-module, then
Anny(® 4 U,) = n 4 Anny(U,).
(5) If (M,),e4 are left R-modules and U is a right R-module,

Anng,, (U) = @ 4 Anny (U).

(6) If Uy generates Vg, then Anny(U) < Anny (V).
(7) Uy is gM-faithful iff for every homomorphism f:N - M, U ® f=0
implies f = 0.
(8) Ann g(U) = rg(U).
(9) If I £ gRg, then Ann,(R/I) = IM. [Hint: Exercise (19.1.1).]
A module W; is said to be completely faithful in case Anny (W) = 0O for
every left R-module M. Prove that:
(1) Ry is completely faithful;
(2) Every generator in M is completely faithful.
(3) The following statements about a module W; are equivalent:
(a) Wgis completely faithful;
(b) For every homomorphism fe ;M,if W® f = 0, thenf = 0;
(c) For every homomorphism fe gM, if W ® f is monic, then f is
monic;
(d) A sequence M’ - M — M" is exact in gM if the induced sequence
WM ->WRM->W® M”is exact.
Given modules Wy, M and sC, let W* = Homg(W, C) € xM. Use the
isomorphism ¢ of (19.11) to prove:
(1) Anny(W) < Rejy(W*).
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@) IfsCis 2 cogenerator, then Anny (W) = Rejy,(W*).
@) If <C is 2 cogenerator, then Wy is completely faithful iff W* is a
cogenerato¥ M RT.

21. Prove that the following statements about a flat right R-module V are

equivalent:
(@) Vis completely faithful;
b) V® M # 0 whenever ;M + 0;
€ VORr T # 0 for every simple left R-module T;
d) VI + V for every maximal left ideal I or R.
[Hint: Exerciges (19.20) and (19.1.1).] .

22, Let S be a direct sum of a set of representatives of the simple right
modules over 2 ring R. For each left R-module M define
Trad M = Antu(S). Prove that:

(1) Trad gR = J(R). [Hint: Exercise (19.18.8).]

@) If R is commutative, then Trad M = Rad M. [Hint: Exercises
(19.189) and (15:5)]

Q) If R/J(R) is semisimple, then Trad M = Rad M.

23, Prove that for a commutative ring R the following statements are
equivalent: (a) R has a completely faithful semisimple module; (b) R is
von Neumanf regular; (c) R is co-semisimple. [Hint: See Exercise
(18.23). For (0)= () Let S = ®,T, with T, simple. Then S® T, # 0.
Now apply Exercises (‘19.16) and (19.21).]

24. Suppose that R has faithful simple projective modules Re and eR. (See
Exercise (17,5).) Prove that eR is injective iff eR = Hom,g (Re, eRe).
[Hint: Exercises (19.14) and (18.30).]

25. Let M, be aft infinite dimensional vector space over a field K and let R
be the subring of End(M,) generated by the socle S and the scalar
transformations KIM < End(My). [Note that S is just the set of elements
of End(My) of finite rank, so g € R iff ¢ — «1,, has finite rank for some
ae K.] Prove that:

(1) Ris von Neumann regular.

(2) To within isomorphism R has exactly two left and two right simple
modules and that exactly three of them are injective.

(3) Risright but not let'} co-semisimple. (See Exercise (18.23).)

(4) R has completely faithful semisimple left and right modules.

6. Prove that R i left coherent iff a direct product of card R copies of Rg is
flat, [Hint: Se¢ the proof (b) = (c) of (19.20).]

§20. Natural Transformations

At last we come 10 the central notion of categorical algebra, that of a natural
transformation. It is by means of this that the intuitive idea of a “natural”
homomorphism i made prepise. Recall (0.13) that if C = (¥, mor, °) and
D = (2, moro, 2) ¥ categories and if F, G are covariant functors C to D,
then a natural transformation from F to G is a map n: M n,, from € to morp.
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such that for each M €%, n,,: F(M) - G(M) and for each f:M - N in C,
FiM) 225 F(N)

LY nw~
G(M) =2, G(N)

commutes. (If F and G are contravariant, reverse the arrows F(f) and G(f)
in this diagram.) We usually abbreviate this by n:F — G. If each n,, is an
isomorphism, then we call the natural transformation n:F — G a natural
isomorphism.

Let F and G be functors (of the same variance) between two categories
C and D. We say that F and G are isomorphic and write

F=G

in case there is a natural isomorphism n:F — G. It is easy to check that this
concept induces an equivalence relation on the class of functors from C to D.

Two Simple Examples

Several important isomorphisms in the preceding sections are natural
isomorphisms of functors. Two of the most basic of these, given in (4.5) and
(19.6), assert that for each left R-module M there are isomorphisms

Homg(R,M)=M and R®xM =M.

These are actually natural isomorphisms of the functors Homg(R, _) and
(R ®z_) with the identity functor on zM. Specifically,

20.1. Proposition. Let R be a ring. Then there are natural isomorphisms:
(1) p:1 44— Homg(grRg, ) where for each M, each me M, each re R,
and each y € Homg(R, M)

pum)ir—>rm  and  py'(y) =(1);
(2) n:(rRR ®g =) = 1m where for each gM, eachme M, and eachr € R
Uyr®my=rm and pplm =1 m.

Proof. We have already seen in (4.5) and (19.6) that p,, and pu,, are
R-isomorphisms. Thus all that remains is to check their naturality. For (2)
observe that

ROM 22, R@, M

™ l P"'

M —L 5 M
commutes because
bm o (R @ f)(r @ m) = ppy(r @ f(m))
=1f(m) = f(rm) = fo upy(r ® m).
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It is equally easy to prove the naturality of p. O

Direct Sums and Products

Suppose that C and D are categories of modules and that all direct sums and
products of members of D belong to D. If (F,),., is an indexed class of
additive functors F,:C — D all of the same variance, then their direct sum
and direct product are the additive functors

@ F,:C->D and In,F,:C->D
defined coordinatewise by
(@®F)() =@ F,(f)) and  (T1,F)(f) = ILJ(F,())
For instance if the F, are covariant and M 4 M'in C, then
F(M)—""— FM')  (xe4)
and (see Remark 6.25)
I, Fy(M) 205 T1 F (M),

The straightforward proof that these are additive functors is left to Exercise
(20.4).

The first two assertions of the next proposition, simply rephrasings of
(16.5), were used to prove that direct sums of projectives are projective and
that direct products of injectives are injective. The final assertion of this
proposition follows easily from (19.9).

20.2. Proposition. Let (U,),. , be an indexed set of left R-modules. Then, as
Sunctors from gM to ;M,

(1) Homg(® 4 U,, -) = 11, Homg(U,, _);

(2) Homg(_,11,U,) = 1, Homg(_, U,);

(3) (- ®r(®4Up) = @4(- ®rU,). a

Endomorphism Rings and Bimodules

Recall that the Hom and tensor functors preserve certain module structure.
For example, given modules zMg, gN, Kg, then Homg(M, N) and
K ®pg M are naturally a left S-module and a right S-module, respectively.
(See (4.4) and (19.5).) This behavior is typical of additive functors and is a
consequence of the following

20.3. Lemma. Let zC, (D and Dy be full subcategories of gM, sM and Mg,
respectively. Suppose that F:3C — (D and H:p,C — Dy are additive functors
with F covariant and H contravariant. Then for each non-zero M € xC these
functors restrict to ring homomorphisms

F:End(gM) - End(sF(M))  and  H:End(xM) — End(H(M)s).
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Proof. Let fe End(gM). Then
M5 M
belongs to gM. Hence
SFM)"Ls FM)  and  H(M)s =25 HM)s

are endomorphisms of F(M)and H(M), respectively. Denoting composition
in the categories by o and multiplication in the endomorphism rings by
juxtaposition we have, for f, g € End(gM),

F(fg) =F(geof)= F(g)°F(f) = F(f)F(g)
and
H(fg)=H(gf)= H(f)°H(g) = H(f)H(g).

Thus, since F and H are additive and preserve identity maps, they restrict to
the desired ring homomorphisms. O

Suppose now that we have F: ;C — ¢D and H:gC — Dgas in the lemma,
and that g M; is a bimodule such that ;M € zC. Then letting p denote scalar
multiplication in M,

M = M (teT),

we have by Lemma (20.3) and (4.10) that

t—=F(p(t)) and  t—H(p@t)) (teT)
define ring homomorphisms

T - End(sF(M)) and T — End(H(M)s).
Thus (see 4.10) we obtain bimodules

sF(M)y  and  pH(M)
where for xe F(M), ye HM)and te T
xt =F(p(t))(x) and  ty = H(p(t))(y).

These bimodules are called the (canonical) bimodules sF(M)y and +H(M)g
induced by g M.

The bimodule structures that were constructed earlier from the Hom and
tensor functors are precisely the canonical ones for these functors. For
example, consider the functor

Homg(M, _):gM - ;M.
Let RU;. Then in §4 we made
Hompg(gM, gUr) = Homg(M, _)(U)
into a right T-module with

(yt)(m) = (y(m))t = (p(t) o y) (m),
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yt = Homg(M, p(t))(y),

so that the right T-module is the canonical (Z, T)-bimodule induced by
rUr. Similarly (sV ®z -):gM — gM and the bimodule

sV®gUr = (V®R -1(U)

is the (S, T)-bimodule induced by Us.

Let zC and D be full subcategories of ™M and M, respectively. If T is a
ring, then the left R- right T-bimodules U, with (U in xC and the (R, T)-
homomorphisms between them form a full subcategory gC of tM;. There
is a similar subcategory Dy of M. Let F:gC — (D be an additive covariant
functor. Then equipping each F(x M) with its canonical bimodule structure,
we have that F maps the objects of zC; to objects in sD;. The next result
implies that F, restricted to zCy, is a functor to Dy, and that natural
transformations between pairs of such functors restrict to natural trans-
formations of their restrictions.

20.4. Lemma. Let zC, (D, and Dy be full subcategories of R- and S-modules.
Let F, F': gC — (D be covariant and H, H': C — Dg be contravariant additive
Sfunctors. Let n:F — F' and v:H — H' be natural transformations. Finally, let
rUr and gV be bimodules with U, V€ xC and let

f:rUr = RVr

be a bimodule homomorphism. Then with the canonical bimodule structure
(1) F(f):sFU)r = sF(V)y and H(f):tH(V)s — +H(U)s;
() ng:sF(U)r » sF'(U)r  and  vy:7H(U)s — :H'(U)s:

are bimodule homomorphisms.

Proof. For (1) it will suffice to check that F(f) and H(f) are T-homo-
morphisms. Denote scalar multiplication in both Uy and V; by p. If te T
then, since f is a right T-homomorphism, fo p(t) = p(t) o f. Thus, for all
xeF(U),andteT,

F(f)(xt) = F(f)° Fp(t))(x) = F(fo p(t))(x)
= F(p(t) f)(x) = F(p(t))(F(f)(x))
= (F(NH)(x)e.

Similarly H(f) is a left T-homomorphism.
For (2) simply observe that the diagrams

F(U) F(pl(t)) F(U) H(U) Hplt)) H(U)
L3 lﬂu and vy Yu
F,(U) F'(p(t)) F,(U) H,(U) H'(p(t)) H’(U)

commute. O
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Applied to (20.2.1) for example, this Lemma implies that Homg(® , U,, _)
and IT, Homg(U,, _) restricted to zMy are (still) isomorphic functors to Ms.
As another application we have

20.5. Proposition. Let 6:3Us — ¢ Vs be a bimodule homomorphism. Then
the following are natural transformations:

(1) n:Homg(Vs, _) = Homg(Us, _) defined via ny, = Homg(6, M);

(2) v:Homg(-, Ug) = Homg(_, V5) defined via vy, = Homg(M, 0);

(3) ¢:(- ®g Us) = (- ® Vs) defined via gy = N © 0.

Moreover, if 0 is an isomorphism, then each of the above is a natural
isomorphism.

Proof. We'll do (1). Because Homg(-, M):gM — ;M is a contravariant
additive functor, (20.4.1) implies that 1, = Homg(0, M) is a left S-homo-
morphism. But, for each ¢M ER rRM’

Homg(V, f)

Homg(V, M) Homg(V, M’)
M N
Homg(U, M) — 2220, Homg(U, M')

commutes because Homg (0, M')o Homg(V,f) = Homg(U,f)o Homg(6, M). O

Some Hom-tensor Relations

Giveh a triple (M, Wy, sN) of modules there is, by Proposition (19.11), an
isomorphism

¢ = dywn:Homg(M, Homg(W, N)) - Homg((W @x M), N)
defined via

[6()](w ® m) = [y(m)](w).

The importance of this isomorphism in our study of the tensor functors is
that if W and N are fixed, then the indexed class (@,,wy), indexed by the left
R-modules M, is a natural isomorphism of contravariant functors

Homg( -, Homs(W, N)) = Homs((W ®g -), N).
Speaking loosely we can view both
HOMR(_, Homs(_, —-)) and Homs((- ®R —)’ -)

as functors of “three variables” (Mg, sWg, sN) with mixed variance. Then
because of (19.11) we shall say that the isomorphism ¢y y is natural in M. It
should be clear how to develop a theory of functors of several variables and of
homomorphisms of such functors natural in various variables. We shall
illustrate this by showing that the isomorphism ¢, is natural in each of
the three variables. First suppose that N 5 ¢N'. Then the diagram of
Z-homomorphisms
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Homg(M, Hom(W, N)) Homi M. Homs W), Homg(M, Homg(W, N'))
Puwn Puwn
Homs((W ®g M), N) R S e Homg(W ® M, N')

commutes, and so the isomorphism ¢ = ¢y is natural in N. Finally,
suppose h:sWp - ;Wi is a bimodule homomorphism. Then by (20.4.1)
Homg(h, N)is aleft R-homomorphismand h ® g M is a left S-homomorphism
so that we can form Homg(M, Homg(h, N)) and Homg((h ® g M), N). It is
easy to check that

Homg(M, Homg(W', N)) —2enaM Homs® M), Homgp(M, Homg(W, N))

Duw x Puwy
Homg((W' @g M),N) Aom e MY, Homg((W ®¢ M), N)

also commutes; hence the isomorphism ¢ = ¢y is natural in W. Stated
formally:

20.6. Proposition. For every triple of modules (gM, Wy, sN) there is an
isomorphism

¢:Homg(M, Homg(W, N)) — Homg((W ®g M), N),
defined via
)W @ m) = [y(m)](w),
that is natural in each of the three variables M, N, and W. O
For the Hom functors we have

20.7. Proposition. For every triple of modules (M, N, gUs) there is an
isomorphism

n:Homg(M, Homg(N, U)) » Homg(N, Homg(M, U)),
defined via
(1) ](n):m > [y(m)] (n),

that is natural in each of the three variables M, N, and U.

Proof. The inverse of n is given by

(7~ ") ](m):n > [x(n)](m).

We leave the details as an exercise. O

Because of the following proposition it is often said that the formation of
tensor products is associative.

20.8. Proposition. For every triple of modules (Mg, gWs, sN) there is an
isomorphism

VM@ (W®sN)—> (Mg W) N,



Natural Transformations 241

defined via
vim@r(W@sn)— (Mm@ w) Rgn,
that is natural in each of the three variables M, W, and N.

Proof. For each me M the map f,,:W x N » (M ® W) ®s N defined
by Bn(w,n) = (m ®z w) ®sn is clearly S-balanced. Thus, for each ne M
there is a unique homomorphism

Vi WRrg N> (M@ W) ®s N
such that
Va(Zi w; @5 1) = Zi((m @g w;) @ ;).
The map y:M x (W ®@sN) - (M ®g W) @ N defined by
yim Zw; Qs n) = vu(Z;w; Qg n;)
is clearly R-balanced. So there is a homomorphism
ViIM @r(W®sN)—> (M @z W)@s N
such that
Vm @p (W ®sn)) = vp(w @sn) = (M @pw) ®sh.
With a similar argument it can be shown that there is a homomorphism
buwn = p:(M @g W) @sN > M @ (W®sN)
such that
H((m @gw) @sn) = mQ@g (W Qs n).
It is now easy to show that u is an inverse of v, whence v is an isomorphism.

Suppose next that f: Mz — Mpg. Then it is evident that

M@z W)@ N —L2M8Y (M @, W)®sN

Huwy Huwy

M®g(WRsN) L2280, M' @, (W ®sN)

commutes, whence yu is natural in M. To complete the proof it is simple to
check the naturality of u in the other two variables. gd

If Uy and sW; are bimodules, then there are the two functors
Homg(U, Homg(W, _)):sM - M
and
Homg((W ®z U), -):sM - M.

Viewed as functors to the category M, they are naturally isomorphic (20.6).
The fact is that they are isomorphic as functors to +M; to see this it will suffice
to show that for each N e M
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¢ = dywy:Homp(U, Homg(W, N)) » Homg((W ®¢ U), N)

is a T-homomorphism. But that ¢ is a T-homomorphism is a trivial conse-
quence of the definition of the T-action on these modules. However, it is also a
consequence of (20.4.2) and the fact that ¢ defines a natural isomorphism
between the functors

Homg(_, Homg(W,N)):xM - M,
Homg(W ®gx _),N):gM = M.

Of course similar observations apply in the other variables and to the
natural transformations of (20.7) and (20.8).

Given a natural transformation n:F —» G we often are concerned with
those modules M for which n,, is an isomorphism (or merely monic or epic).
The following lemma tells us that these classes of modules are closed under
finite direct sums and direct summands.

20.9. Lemma. Let C and D be full subcategories of the categories of left or
right modules over rings R and S. Let F and G be additive functors from C to D
and let n: F — G be a natural transformation. If

O-M-®-M-P->M -0

is split exact in C, then n,, is monic (epic) if and only if both n,. and n,,. are
monic (epic).

Proof. Consider the commutative diagrams with, by (16.2), split exact
rows

0— F(M')—@®— F(M)~®— F(M") > 0
| ] |
0-GM)-D->GM)—-D—->GM")-0
and
0> FM")-@®—-> FM)-®—- FM')-0
n..-l " |
0->GM")-®—->GM)-@—~ G(M') -0
obtained from
0-M-®-M-P->M -0
and
0> M —@>M-®—>M - 0. O

Now (20.9) implies that if ny,,...,n,, are isomorphisms, then so is
M.o..oM, Therefore, if np is an isomorphism, then so is y, for every finitely
generated projective R-module P. Using this fact we derive the following
two natural isomorphisms:
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20.10. Proposition. Given modules 3P, sUr and N there is a homomorphism,
natural in P, U and N,
n:Homg(P,U) ® + N = Homg(P, (U ®1 N))
defined via
ny @rn):p—y(p) @rn.
If <P is finitely generated and projective, then n is an isomorphism.

Proof. 1t is tedious but not difficult to check that  is a Z-homomorphism
that is natural in all three variables. Now for each Uy and ;N we have by
(20.1.1) and (20.5.3)

Homg(S,U)®7 N = U ®7; N = Homy(S,(U ®r N))
via
P @rn=y(1) @rn—p((1) @1 n).
Butforall se S
Ny @z n)(s) = y(s) @z n = s(y(1) @rn)
= [p(x(1) ®1 n)](5).
Thus
n:Homg(S, U) ® + N - Homg(S, (U @1 N))

is the composite of these isomorphisms, and so is itself an isomorphism. So by
(20.9) and (17.3)

n:Homg(P,U)® 1 N - Homg(P,(U ®1 N))
is an isomorphism for every finitely generated projective sP. O
Similar arguments can be used to prove:

20.11. Proposition. Given modules Py, tUg and N there is a homomor-
phism, natural in P, U and N,

v:P ®g Homp(U,N) > Homp(Homg(P, U), N)
defined via
v(p ®g ¥):6 — y(d(p)).

If Py is finitely generated and projective, then v is an isomorphism. O

The U-dual Functors

Let gUg be a bimodule. Then the pair of contravariant additive functors

Hompg (-, gUs):gM > Mg and Homg(-, gUs): Mg - gM
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is called the U-dual. For brevity we write
( )* = Hom(-, gUs)
to denote either of these functors. So if M, 5 M, in &M then
M,* L M
in Mg and
Ml"*ﬁv szu

in gM. The module M* is said to be the U-dual of M and the map f* is called
the U-dual of f. Also M** and f** are called the double dual of M and f,
respectively. For each M in gM or Mg

[on(m]() =y(m)  (meM,yeM*)
defines the evaluation map
oy M > M**
this evaluation map is easily seen to be an R-homomorphism if M € zM or
an S-homomorphism if M € Mg. Moreover if M, EA M, then for all me M,,
yEMy*
L/ **(aa, ()] () = (a0, (M) o f*)(7)
= [on,(m)] (7 o f) = ¥(f(m))
= [om,(f ()] ()

so that the diagram

M, L M,

M ** L5 M *
commutes. Thus the evaluation maps yield natural transformations
o:ly = ()"
and
aily, = (( )"

A module M is said to be U-reflexive in case g, is an isomorphism. If a,, is
monic, then M is U-torsionless.

A module M is U-torsionless if and only if U cogenerates M. In fact from
the definition of g, we see that me Ker g, if and only if me Kery for all
y:M — U. In other words

20.12. Proposition. Let g Us be a bimodule, and let M be a left R- or a right
S-module. Then

Kera, = Rejy,(U). O
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We know of no such handy tests for reflexivity. However, by Lemma
(20.9) the class of U-reflexive modules is closed under direct summands and
finite direct sums.

20.13. Proposition. Let M =~ M, @ ... ® M,. Then M is U-reflexive (tor-
sionless) if and only if each of M, ..., M, is U-reflexive (torsionless). O

20.14. Proposition. Let g Us be a bimodule and let M be a module in gM or
Ms. Then

(1) op*oope = Lppm.
(2) M* is U-torsionless.
(3) If M is U-reflexive, then M* is U-reflexive.

Proof. First observe that op.:M* - M*** and o,* M*** > M* If
y€ M*, then for allme M

ou*(04-(2)) (M) = (G41-(y) © Tp) (m)

= [on(m)] () = ¥(m).

This proves (1). From (1) it follows that o ,. is a (split) monomorphism so (2)
also holds. For (3), suppose that g, is an isomorphism. Then so is g,,*. But
then (1) forces g, to be an isomorphism. ad

There is a useful test for the reflexivity of the regular modules zR and S;.
20.15. Pr(;position. Let RUg be a bimodule and let
A:R — End(Us)
be left multiplication. Then o is injective or surjective if and only if A is.
Proof. We know by (20.1) that there is an R-isomorphism
py:U - Homg(R, U) = (gR)*.

By naturality (20.4.2) this is also an S-isomorphism. Thus since ( )* is a
functor,

pu* :(rRR)** — (Us)*
is an isomorphism. But

Pu*(ar(r) W) = ax(r)(py(u) = py()(r) = A(r)(u)

so that
py*oag = A O
20.16. Corollary. Let jUg be a bimodule. Then gR and Sg are U-reflexive
if and only if g Uy is a faithfully balanced bimodule. O

One of the most important duals is the Rz dual. We shall denote this
dual by

( )® = Homg(-, R).
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In the event that R is a field this is just our old friend from linear algebra, the
vector-space dual.
If e is an idempotent in R then, as we saw in Proposition (4.6),

Re® ~ eR and Re®® ~ Re.

Applying the preceding results we have, more generally,

20.17. Proposition. Let P be a finitely generated projective R-module.
Then

(1) P is R-reflexive.

(2) P® is finitely generated and projective over R.

Proof. Suppose P is a finitely generated projective left R-module. Then,
by (17.3) there exist P’ and n such that P @ P’ = 4R™. But by (4.11)
2:R — End(Rg) is an isomorphism. So we infer from (20.15) and (20.9) that
P is R-reflexive. Moreover,

P® @ PO®x (P@ P)® = (R")® x (R®)" =~ R™,
so that P®is a finitely generated projective right R-module. O

20. Exercises

1. Let C, D, and E be categories, let F, F, F":C - D and G, G':D — E be
functors. Prove:
() If n:F > F and u:F — F” are natural transformations (isomor-
phisms), then so is their “composite” yon:F — F” defined by (¢ o #), =
EmoNm-
(2) If n:F > F' is a natural isomorphism, then its “inverse” n~':F' - F
defined by (7~ ')y = (15) ! is a natural isomorphism.
Y FzF,FxF=>F=F,andFxFand F ~F' =F=xF"
@4 F=FandG=G=>G-F=GoF.

2. Let R be commutative. Prove ‘that for each M e gM the functors
(M ®f _)and (_ ®z M) from gM to zM are isomorphic.

3. Let ¢: R — S bearing homomorphism so that, via ¢, we have bimodules
rSs and §Sg. Let F,:gM — ;M be the change of rings functor (of
Exercise (4.15)) induced by ¢. Consider the functors

T, = (sS ®r -) H, = Homg(Ss, 2)

from zM to ¢M. Prove that
(1) Homg(sSg, -) = Fy = (xS ®5 -).
(2) T,o Fy=1,y= Hyo F,if ¢ is surjective;

4. Let C and D be categories of modules with D closed under the formation
of direct sums and products. Let (F,),., be an indexed set of functors of
the same variance from C to D. Define @ , F, and Il , F, from C to D by
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@ F, M-, F,(M) @ F, - @ F )
MLF: ML EM) T F:fTLE()

Prove that these are additive functors and that n:®,F, = II,F, is a
natural transformation where n,,: ® , F,(M) — I1, F,(M) is the inclusion
map.

5. Let C be a full subcategory of xM and let F:C — C be isomorphic to the
identity functor F = 1 via n:1. — F. Prove that for all M, N e C the
restriction F:Homg(M, N)— Homg(F(M), F(N)) of F is an isomor-
phism whose inverse is given by g — ny ! o g o n,, for each

g € Homg(F(M),F(N)).

6. Let C be a full subcategory of M and let Us and g V5 be bimodules with
xU and gV both in C. Consider the functors Homg(Us, _) and
Homg(Vs, _) from C to ¢M and Homg(_, Us) and Homg(_, Vs) from C to
M;. Prove that:

(1) If ¢:Homg(Us, _) - Homg(Vs, _) is a natural isomorphism, then
du(1y):V = U and ¢y '(1,): U - V are inverse (R, S)-isomorphisms.

(2) If ¢:Homg(_, Us) > Homg(_, V5) is a natural isomorphism, then
rUs = gVs.

7. Let C and D be full subcategories of xM and M, respectively. Let
T:C - D and H:D — C be additive covariant functors. Then T is a
left adjoint of H and H is a right adjoint of T, or simply (T, H) is an
adjoint pair in case for each M e C and N e D there is a Z-isomor-
phism

¢ = dyn:Homg(M, H(N)) > Homg(T(M), N)

that is natural in both M and N. Prove the following version of Kan's
Theorem:

(1) If Tand T’ are both left adjoints of H, then T = T". [Hint: Exercise
(20.6).]

(2) Let C = xM and D = ¢M and let (T, H) be an adjoint pair. Let Uy
be the canonical bimodule Uy = T(zRR). Then H =~ Homgy(Ug, _) and
T = (sU ®x _). In particular, if H' is a right adjoint of T, then H = H'.

8. An additive functor T:xM — M is faithful in case T(f) = 0 implies
f = 0.So for example, if C is a cogenerator, then Homg(_, C) s a faithful
functor. Let H:gM — ;M be a right adjoint of T:gM — ¢M (see Exercise
(20.7)). Prove that:

(1) If gN is injective and T is exact, then gH(N) is injective. [Hint: The
functor Homg(_, H(N)) is exact.]

(2) If gN is a cogenerator and g H(N) is injective, then T is exact. [Hint:
(18.14).]

(3) If gN is a cogenerator and T is faithful, then fH(N) is a cogenerator.
(4) If kH(N) is a cogenerator for some gN, then T is faithful.

(5) If xM is projective and H is exact, then sT(M) is projective.

(6) If g M is a generator and T (M) is projective, then H is exact.
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10.

1L

12.

13.

Functors Between Module Categories

(7) If xM is a generator and H is faithful, then (T(M) is a generator.
(8) If T (M) is a generator for some gM, then H is faithful.

. Given modules Ng and ;Us, use the isomorphism

Homg(_, Homg(N, gUs)) = Homg(N,Homg(_, gUs))

of Proposition (20.7) to prove that:

(1) Ngprojective and zU injective implies Homg(N, g Us) injective.

(2) Nga generator and Homg(N, xUs) injective implies gU injective.

(3) Ng a generator and gU a cogenerator implies Homg(N, zUs) a
cogenerator.

(4) Homg(N, gUs) a cogenerator implies U a cogenerator.

Given modules N and g W, use the isomorphism

(- @r(WRsN)) =((- @z W)®sN)

of Proposition (20.8) to prove:

(1) N flat and zW flat implies ;W ® ¢N flat.

(2) ¢N completely faithful and s W ® N flat implies g W flat.

(3) sN and g W completely faithful implies s W ® N completely faithful.
(4) R W ® gN completely faithful implies x W completely faithful.
Letx,,...,x,€ Prandf,, ..., f, € P* = Homg(P, R). Prove that (x,, ..., x,),
(fy,-.-,f,) is a dual basis for Py iff (f1,...,f,), (6(x,), ..., 0(x,)) is a dual
basis for 5 P*. (Exercise (17.11).)

Let ( )® denote the xR dual so that M® = Homg(M, R). For each pair
Ng, Mg of right R-modules there is a map

0:N ®x M® - Homg(M, N)

such that 0(n ® y):m > ny(m). Prove that:
(1) 6is a Z-homomorphism natural in M and N.
(2) The following are equivalent:

(a) Pgis finitely generated projective;

(b) 6:(P ®g (-)®) = Homg(_, P) is a natural isomorphism;

(¢) 0:(_ ®x P®) > Homg(P, _) is a natural isomorphism;

(d) 0:P ®¢ P® — Homg(P, P)is a Z-isomorphism.
[Hint: (a) = (b). Let (x;), (f;) be a dual basis for Ps. Let g € Homg(M, P).
Theng = 0(Z;(x; ® fi9). If 0(Z; y; ® y;) = 0, then write y; in terms of the
dual basis to infer

Z;yi®y;=Li(x; ® Z filylvi) = Zi(x; ® 0) = 0.

(d) = (a). Consider #~'(1;) and the Dual Basis Lemma. (Exercise
(17.11).).]

Prove that every finitely presented flat module is projective. In particular,
every finitely generated flat module over a noetherian ring is projective.
[Hint: Let P, » P, - Vz — 0 be exact with the P, finitely generated
projective. Apply the functors ¥V ®4 (_)* and Homg(_, V) and Exercises
(16.4) and (20.12).]
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14.

15.

16.

17.

18.

Prove that a ring R is von Neumann regular iff every finitely presented
left R-module is projective. [Hint: Exercise (19.16).]

(1) Prove that if gE is injective and I is an ideal of R, then
Hompg(lg, E) = E/rg(I).

(2) Prove that if R is right artinian and left hereditary, then it is right
hereditary. [Hint: Exercises (20.13), (19.14), and (18.10).]

Let ¢Us be a bimodule. Let s R(U) denote the class of U-reflexive left
R-modules. Then x#(U) is closed under the formation of finite direct
sums and direct summands (20.13). Let

02 gK> M- N->O

be exact. Prove that

(1) If U and Us are injective and N is U-torsionless, then M is reflexive
iff K and N are reflexive.

(2) If RU and Us are injective and jU is a cogenerator, then R(U) is
closed under submodules, epimorphic images, and extensions (of
modules in zR(U) by modules in g R(U)).

Let C and D be full subcategories of M and M, say. Let F and G be
additive functors from C to D that preserve direct sums and let
n:F — G be a natural transformation. Let (M,),., be an indexed class in
C with a direct sum (M, (t,),c4) in C. Prove that n,, is an isomorphism iff
each 1y, (x€ A) is an isomorphism.

Let 4P be finitely generated and projective with S = End(zP), and let
C(P) denote the full subcategory of xM whose objects are modules M
such that there are sets X and Y and an exact sequence

PY o pX) , M 0.
Prove that if H = Homg(P,—) and T = (P ®s—), then
H:C(P)—> M and T:sM - C(P)

and these functors define an equivalence of categories in the sense that
HoT=13M and To H = lp). [Hint: The first isomorphism of func-
tors follows from (20.10); the second uses Exercise 16.3 and the Five
Lemma, among other things.]



Chapter 6
Equivalence and Duality for Module Categories

So far our emphasis has been on studying rings in terms of the module
categories they admit—that is, in terms of the representations of the rings as
endomorphism rings of abelian groups. As we shall see the Wedderburn
Theorem for simple artinian rings can be interpreted as asserting that a ring R
is simple artinian if and only if the category M is “the same” as the category
pM for some division ring D. On the other hand, if D is a division ring, then
the theory of duality from elementary linear algebra asserts that the
categories ,FM and FM,, of finitely generated left D-vector spaces and right
D-vector spaces are “duals” of one another.

These are examples of two related general theories that are of truly
fundamental importance to the study of rings and modules. Although
historically they were not studied in the context of categories and functors,
it is in that context that their significance and their simplicity are clear. The
principal work on the subject was done by Morita [58a]. In this chapter we
treat the basic theory including what are sometimes known as the “Morita
Theorems”.

§21. Equivalent Rings

Let C and D be arbitrary categories. Then a covariant functor
F:C->D
is a category equivalence in case there is a functor (necessarily covariant)
G:b-cC
and natural isomorphisms
GF = 1. and FG = 1.

A functor G with this property (also a category equivalence) is called an
inverse equivalence of F. Two categories are equivalent in case there exists a
category equivalence from one to the other. We write

CxD

in case C and D are equivalent. It is easy to check that this defines an equiva-
lence relation on the class of all categories. (See Exercise (21.2).)
For the remainder of this section (excluding the exercises) our interest will
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be restricted to module categories. Thus, we shall revert to our earlier
convention and assume that all functors between such categories are additive,
Thus for two such categories to be equivalent there must be an additive
equivalence from one to the other.

Definitions and Notation

Two rings R and S are (Morita) equivalent, abbreviated
R=xS
in case
M= M,

i.e, in case there are additive equivalences between these categories of
modules. As we shall see in §22, the categories M and ¢M are equivalent if
and only if M, and Mg are equivalent.

Since the study of the properties of equivalent pairs of rings entails a fair
amount of notation, it will be especially useful to pause to assemble most of
it in one place.

21.1. Let R and S be a pair of equivalent rings. Specifically, assume that
(1) F:xM > M and G:sM - M
are inverse (additive) equivalences. In particular,
GF =1, and FG=1,,;
that is, there exist natural isomorphisms
(2) n:GF -1, and (:FG— 1, .

This means (see §20), in the case of n, that for each zM there is an iso-
morphism n,, :GF(M) —» M in M such that for each M, M’ in xM and each
f:M - M’ in gM, the diagram

M L5 M

(3) L] [ o T'Iv
GF(M) -2, GF(M')

commutes. (Of course, parallel remarks apply to {.) Now for each zM in
gM and each ¢N in gM, there are Z-homomorphisms

¢ = dyn:Homg(N, F(M)) - Homg(G(N), M)
@ 0 = 0yn:Homg(F(M),N) » Homg(M, G(N))

defined via

Dun 7Ny e G(Y)
Bun:0—G()ony'.
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The natural isomorphism { determines a pair of homomorphisms similar to
¢ and 0; however, we have no need to introduce special notation for these
here. In practice, there is almost never any real ambiguity about the domain
of the n,,, {y, dun» and 0,y. Thus, for the most part we shall clean up our
notation by omitting these subscripts.

It should now be plausible from say (3) dbove, that if R = §, then the
behaviour of M and M is the same “to within isomorphism”. To expand on
this we first prove:

21.2. Proposition. Let F:xM — (M be a category equivalence. Then for
each M, M’ in gM the restriction of F to Homg(M, M’') is an abelian group
isomorphism

F:Homg(M,M') - Homg(F(M), F(M'))
such that F(f) is an epimorphism (monomorphism) in ¢M if and only if f is an
epimorphism (monomorphism) in kM. Moreover, if M s O, then this restriction
F:End(gM) — End(sF(M))
is a ring isomorphism.
Proof. Since F is additive, these restrictions are abelian group homo-

morphisms. The latter is a ring homomorphism by (20.3). To finish the proof
we shall adopt the notation of (21.1). Then clearly for each M and M’ in z.#

H:Homg(F(M), F(M')) > Homg(M, M’)
defined by

H:g - ny G(gny'
is @ Z-homomorphism. Moreover, it is monic, for if H(g) =0, then
G(g) =0, so
g = ':F(M')FG(Q)C;(.’IM) =0.
But now, for all fe Homg(M, M)

HFE(f) = nyGF(f)ny' = f.

It follows that H is an epimorphism. Thus H is an isomorphism with
inverse F. Therefore F is an isomorphism. Now it is clear from (21.1.3) that f
is monic (epic) if and only if GF(f) is monic (epic). So suppose f is monic and
that for some h in {M

F(f)h = 0.

Then since G is an additive functor and GF(f) is monic, GF(f)G(h) = 0, and
hence G{h) = 0. But then FG(h) = 0, so from the version of (21.1.3) for ¢, it
is clear that h = 0, whence F(f) is monic (3.4.d). The remainder of the proof
is entirely similar and will be omitted. d
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The Fundamental Lemma

One of the most important facts concerning equivalent rings is that the
homomorphisms ¢ and 6 of (21.1) are natural isomorphisms. That is, the
pairs (G, F) and (F, G) of (21.1) are adjoint pairs of functors (see Exercise
(20.7)). This adjoint relationship of equivalences F and G provides a very
powerful bit of machinery. It is described in the following lemma.

21.3. Lemma. Let R and S be equivalent rings. Then, in the notation of
(21.1). the homomorphisms
¢:Homg(N, F(M)) = Homg(G(N), M)
0:Homg(F(M), N) > Homg(M, G(N))
are isomorphisms natural in each variable. In particular, for each
y€ Homg(N,, F(M,)), é € Homg(F(M,), N,)
y€ Homg(G(N,), M,), d € Homg(M,, G(N,)),
and for each
h:M; > M,, k:N, > N,

we have

(1) ¢(F(h)yk) = hd(y)G(k),

(2) O(kSF(h)) = G(k)O(S)h,

() ¢7(h3G(k)) = F(hyp~'(P)k,

(4) 07 1(G(k)dh) = kO~ ' (3)F(h).
Finally, ¢(y) is a monomorphism (epimorphism) if and only if y is a monomor-
phism (epimorphism), and 0(3) is a monomorphism (epimorphism) if and only if
& is a monomorphism (epimorphism).

Proof. The Z-homomorphism induced by G
G:Homg(N, F(M)) - Homg(G(N), GF(M))

is an isomorphism by (21.2). Since #,,:GF(M) — M is an isomorphism, so is
Homg(G(NY), ny): Homg(G(N), GF(M)) - Homg(G(N), M)

(see (16.2)). Thus, since it is the composite of these two maps,
¢:Homg(N, F(M)) - Homg(G(N), M)
is a Z-isomorphism. Also, with h, k, and y as given in the hypothesis,
®(F (hyk) = 14 ,GF(R)G(7)G (k)
= 1, GF (M3} 1y, G()G (K)
= h¢(7)G (k).

That 6 is an isomorphism and that the identities (2), (3), and (4) hold are
proved similarly and therefore will be omitted. The equations (1) and (2)
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mean that ¢ and 0 are natural in both M and N. For instance, taking k = 1,
we see from (1) that for each M, LN M, in gM the diagram

Homg(N, F(k))

Homg(N, F(M,)) Homg(N, F(M,))
¢M|~ ¢~1N
Homg(G(N), M;) —="C2 Homy(G(N), M,)
commutes.

For the final assertion, let y € Homg(N, F(M)). Then ¢(3) = ny, ° G(y).
So since 7,, is an isomorphism, G(y) is a monomorphism (epimorphism) if
and only if ¢(y) is a monomorphism (epimorphism). But by (21.2) G(y) is
monic (epic) if and only if y is. O

Remark: 1t should be observed that we can use ¢ and 0 to “transform”
certain diagrams in zxM (respectively, sM) to corresponding diagrams in jM
(respectively, gM). For example, (21.3.1) asserts that the composite

N, — F(M,)
k F(h)

N, =%, F(M,)

is transformed by ¢ to

G(N,) —2 M,

oo] |

G(Nz) $UF(h)pk) Mz-

Properties Preserved by Equivalence

Now we have the wherewithal to prove the basic properties of categorical
equivalences. The first of these is that such equivalences “preserve
exactness”.

21.4. Proposition. Let F:zM — M be a category equivalence. Then a
sequence

0-MIMEM -0
is (split) exact in xM if and only if the sequence
0 - F(M') 24 FMy 29 FM’) - 0
is (split) exact in gM.

Proof. We shall use the notation of (21.1). Then since n is a natural
isomorphism, the diagram
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0- M L M —5 M —0
n n n

0 - GF(M') =22, GF(M) =222, GF(M”) - 0

commutes, and it follows that either row is (split) exact if and only if the other
is. So to prove both implications of the proposition it will suffice to prove that
F preserves (split) short exact sequences. The “split” part follows because F
is additive (16.2). Let

0O-MILMEM -0

be exact in gM. Then by (21.2), F(f) is monic, F(g) is epic, and also
F(g)F(f) = F(gf) = 0. Thus all that remains to prove is that Ker F(g) =
ImF(f). To this end let K = Ker F(g) and let i : K — F(M) be the inclusion
map. Then ¢(ix):G(K) - M and by (21.3.1) go(ix) = ¢(F(g)ix) = 0. Thus
Im@(ix) < Kerg = Imf; and by The Factor Theorem (3.6.2) there is a
7 € Homg(G(K),M’) such that fy = ¢(ix). Now applying (21.3.3) we have

ix=9¢""'(fN) =F(Np~'(H)
so that Ker F(g) = Imiy < ImF(f). O

21.5. Proposition. Let F: M — M be a category equivalence. Then

(1) A pair (M,(Py)sca) is a direct product of (M,),., if and only if
(F(M), (F(p))es) s a direct product of (F(M,)es:

(2) A pair (M, (iy)seq) is a direct sum of (M,),ea if and only if
(F(M)v (F(ia))aeA) is a direct sum of(F(Ma))aeA'

Proof. We shall do (1); the proof of the other part is dual. Suppose then
that (M, (p,)sc4) is @ product of (M,),.,, and suppose that in gM there ‘are
homomorphisms g,: N — F(M,). Thenin xM, these induce ¢(g,): G(N) = M,,
so there exists a unique f:G(N) - M such that ¢(g,) = p,f for each a € A.
So by (21.3) ¢ () is unique with the property that

9.=¢7'(PS) = F(p)P™'(f)  (xeA).

Conversely; suppose that (F(M), (F(p,))s4) is a product of (F(M,)).4, and
suppose that in M there are homomorphisms g,:K — M,. Then in M
these induce F(g,):F(K)— F(M,), so there is a unique homomorphism
9:F(K) — F(M) such that

FQq,)= F(p)g (x€A).

Finally, by (21.2) there is a unique g’ € Homg(K, M) with F(g') = g, and we
are done. O

21.6. Proposition. Let R and S be equivalent rings via an equivalence
F:pM o M. Let M, M’, and U be left R-modules. Then

(1) U is M-projective (M-injective) if and only if F(U) is F(M)-projective
(F(M )-injective);

(2) U is projective (injective) if and only if F(U) is projective (injective);
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(3) U generates{cogenerates) M if and only if F{(U) generates (cogenerates)
F(M);

(4) U is a generator (a cogenerator) ( faithful) if and only if F(U) is a
generator (a cogenerator) ( faithful);

(5) A monomorphism (epimorphism) f:M — M’ is essential (superfluous)
if and only if F(f): F(M) — F(M’) is essential (superfluous);

(6) f:M — M’ is an injective envelope (projective cover) if and only if
F(f):F(M) - F(M’) is an injective envelope (projective cover).

Proof. We again adopt the notation of (21.1). Then for (1) suppose that U
is M-projective, and that in gM there is a diagram

F(U)

9

F(M) - N—O
with fan epimorphism. Then 6(f) is epic in zM, so there is an h such that

-
'

ho” 8g)
M— G(N)— 0
o(f)

commutes. Now, by (21.34), g = 87 '(8(g)) = 0~ '(8(f)h) = f F(h), whence
F(U)is F(M)-projective. We omit the rest of this proof.

(2) This is immediate from (1).

(3) This is an easy consequence of (21.4) and (21.5).

(4) This is by (3). (Note that U is faithful iff U cogenerates a generator
(Exercise (8.3).)

(5) Suppose g:F(M’) —» N is a homomorphism in ¢M such that gF(f)is
monic. Then by (21.3)

d(gF(f)) = ¢(9)f

is monic. So if fis an essential monomorphism, ¢(g) is monic (5.13). Thus,
again by (21.3), g is monic. Applying (5.19) we have therefore that F(f) is
essential. We omit the rest of this proof.

(6) This is immediate from (1) and (5). a

Of considerable importance in the present study is the fact that sub-
module lattices are “preserved” by equivalences. To state this formally, we
add to our list of notation. Thus, if K < M, we let

il( <M K- M
denote the inclusion monomorphism.

21.7. Proposition. Let R and S be equivalent rings via an equivalence
F:xM — ¢M. Then for each left R-module M, the mapping defined by

Ay K= ImF(igep)
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is a lattice isomorphism from the lattice of submodules of M onto the lattice of
submodules of F(M).

Proof. Since F is a functor, it is easy to see that A is order preserving (see
Exercise (16.2)). On the other hand, adopting the notation of (21.1), for each
N < F(M)define

Fy(N) = Im(iy < ppny)-

Then Iy, is a function from the submodules of F(M) to those of M. It also is
order preserving by (21.3.1). Now for K < M, let

N = AM(K)-

Then since F(ix . ) is monic (21.2), there is an isomorphism h:F(K) - N
making

/F(M)
N Fligsn)
h
F(K)

commute. But then by (21.3)
¢(iNsF(M))G(h) = ¢(iN5F(M)h) = ¢(Flix<m))
= ix<mP(lp)),
and so since G(h) and ¢(1f,) are isomorphisms ((21.2) and (21.3)),
FyuAu(K) = Im ¢liy < pany) = Imig oy = K.
Next, let N < F(M), and let
K =T y(N).
Then there is an isomorphism y making

G(N)

\m,,...)

' M

K/

commute. Applying ¢ ~! and (21.3),
N Foy = ¢_l(ix5M“)’) = F(ixsu)d’—l(‘/)
whence, since ¢~ !(y) is an isomorphism (21.3), we have
AyTy(N) = ImF(ixcp) = Imiycpmy =N

and the proof is complete. 0O
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21.8. Proposition. Let R and S be equivalent rings, via an equivalence
F:xM — (M, and let M and M’ be left R-modules. Then

(1) M is simple (semisimple) if and only if F(M) is simple (semisimple);

(2) M is finitely generated ( finitely cogenerated) if and only if F(M) is
finitely generated (finitely cogenerated),

(3) M is artinian (noetherian) if and only if F(M) is artinian (noetherian);

(4) (M) = c(F(M)); that is, M and F(M) have the same composition
length;

(5) M is indecomposable if and only if F(M) is indecomposable.

Proof. Each of these is simply an assertion about the lattices of sub-
modules of M and F(M). O

21.9. Corollary. Let R and S be equivalent rings. Then R is semisimple, left
artinian, left noetherian, primitive, or a ring with zero radical, respectively, if and
only if so is S.

Proof. The semisimple case is by (21.8) and (13.9). The artinian and
noetherian cases follow from (21.8) because by (10.19) and (10.20) a ring is left
artinian (noetherian) if and only if each of its finitely generated left modules is
artinian (noetherian). For the remaining cases, recall that R is primitive
(J(R) = 0)iff R has a faithful simple (semisimple) module. O

It should now be abundantly clear that the categories of left modules over
equivalent rings do have essentially the same structure. Also it is easy to
show that much of the “two sided” structure in the rings themselves is the
same.

21.10. Proposition. If R and S are equivalent rings, then Cen R =~ Cen S.

Proof. Adopt the notation of (21.2). Then by (21.2) R =~ End(gxR) =
End(sF(R)). But since xR is a generator, F(R) is a generator (21.6). So by
(17.9) S >~ BiEnd(sF(R)). Now apply Exercise (4.6) to get

CenR = Cen(End(sF(R)))
= Cen(BiEnd(sF(R))) =~ CenS. Od

21.11. Proposition. Let R and 'S be equivalent rings via an equivalence
F :gM — ¢M. For each (two sided) ideal I of R, set

O(I) = Is(F(R/I)).

Then the mapping defined by
O:1— O(I)

is an isomorphism of the lattice of ideals of R and the lattice of ideals of S.
Moreover, for each ideal I of R, there is an equivalence

R/I = S/o(I).

Proof. As usual we adopt the notation of (21.1). If I is an ideal of R, then
F(R/I) is a left S-module, so its left annihilator ®(I) is clearly an ideal of S.
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Similarly, if K is an ideal of S, then
I'(K) = Iz(G(S§/K))

is an ideal of R. We claim that ®@ and I'" define inverse mappings of the ideal
lattices. By viewing F(R/I) first as a faithful S/®(I) module, it is clear that as
S-modules, F(R/I) cogenerates S/®(I) (see 8.22) and S/®(I) generates F(R/I).
Thus, by (21.6), R/I cogenerates G(S/®(I)) and G(S/®(I)) generates R/I as
R-modules. In particular these two R-modules must have the same
annihilator (Exercise (8.2)). That is, '®(I) = I. Similarly for each ideal K of
S,®I'(K) = K. Also note that if I and I’ are ideals of R with I < I, then there
is a natural R-epimorphism R/I — R/I’ = 0. Thus, there is an S-epimor-
phism (21.2) F(R/I) - F(R/I') -0 whence &(I) < &(I'), and & is order
preserving. Similarly, so is I. Thus @ is a lattice isomorphism.

For the final assertion let I be an ideal of R and let v:R — R/I be the
natural ring homomorphism. Then the change of rings functor

T,:gM - M

is an equivalence from g,,M to the full subcategory Gg(R/I) of M whose
objects are generated by R/I. Thus by (21.6.3) the functor F, restricted to
Gr(R/I) defines an equivalence with the full subcategory Gg(F(R/I)) of 4M
whose objects are generated by F(R/I). But as we have seen above, S/®(/)
generates F(R/I). Also R/I generates G(S/®(I)), whence F(R/I) generates
S/®(I). Thus G5(F(R/I)) = Gg(S/®(1)) and we have /M = g,M. O

21.12. Corollary. If R ~ S and if R is simple, then S is simple.

21.13. Corollary. If F:3M — (M is an equivalence, then R/J(R) =~ S/J(S)
and J(S) = I(F(R/J(R))).

Proof. According to (21.9) and (21.11) an ideal P of R is primitive if and
only if the corresponding ideal ®(P) is a primitive ideal of S. Thus by (21.11)

J(S) = n{®(P)| P is a primitive ideal of R}
= O(J(R)) = Is(F(R/J(R))).

21. Exercises

1. Let C and D be categories. Let F,F':C - D and G,G':D — C be
covariant functors with F =~ F’ and G =~ G'. Prove that if F and G are
inverse equivalences, then F’ and G’ are inverse equivalences. [Hint:
First show F and G’ are inverse equivalences. Say ¢ :G' — G, n:FG - 1,
and v:GF — 1. are isomorphisms. Considern': FG' = l,and v:G'F—1.
defined via ny = ny o F(¢y) and vl = v o gy

2. Prove that the relation = of equivalence is an equivalence relation on
the class of all categories. [Hint: Let C, D, E be categories. Let
F:C—-D, G:D—-E, H:D - C and K:E — D be covariant and let
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n:HF — lc and v:KG — |, be natural isomorphisms. Then show that
Na © H(Vpy): HKGF(M) — M defines a natural isomorphism. ]

Let C and D be categories. Prove that a covariant functor F:C — D is
an equivalence iff it is both faithful and full, and each DeD is iso-
morphic to some F(C) with C e C. [Note: F is full in case F(morc(C, C'))
= morp(F(C), F(C").]

. A covariant functor F:C — D is an isomorphism in case there is a

covariant functor G:D — C with FG = 1, and GF = 1. If such a pair
of functors exist, then C and D are isomorphic. Clearly isomorphic
categories are equivalent, but the converse fails. For example, let ;T be
a simple module and let C be the full subcategory of M whose object class
is {T}. Let 2 be a non-empty set of R-modules isomorphic to 7, and let
D be the full subcategory of zM with object class 2. Prove that C ~ D
but that C and D are isomorphic iff 2 is a singleton.

. Let C; and C, be categories. Their product is the category C, x C,

with objects %, x %,, morphisms morc x morc, applied coordinate-
wise, and composition the product composition. Prove that if R, and R,
are rings then

AM X e M2 e M

. This exercise culminates in a direct proof of the important fact that a ring

R is equivalent to each of its matrix rings M,(R) (n = 1, 2,...). This fact
is also an immediate corollary of the general characterization of
equivalence in the next section. (See (22.6).) Let R be a ring and let ee R
be a non-zero idempotent. Set S = eRe. Prove that:

(1) There is a natural homomorphism #:(Re ®seR ®g -) = 1,4 such
that for each g M,

Ny ae ® eb ® m— aebm.

(2) n is a natural isomorphism iff ReR = R. [Hint: (<). Suppose
X;s;et;m; = 0. Let | = Z;q,eb,. Then

e ]
Lise@et;®m;) = Z;(ae @ eb; ® Z;s;et;m;) = 0,
$O 1, is monic. ]
(3) If ReR =R, then R x S = eRe. [Hint: Consider the functors
F=(R®g_):gM > sMand G = (Re ®; _):sM — M. Apply (1) and

@]
(4) ForeachneN, R = M, (R).

. Let F:xM - ¢M be an additive covariant functor. Then F is a projector

(injector) in case for each projective module ¢P (injective module gQ),
its image ¢F(P) is projective (sF(Q) is injective). For example, see
Exercise (19.10). Let G:gM — M be a left adjoint of F. Prove that F is
an injector (G is a projector) iff G is exact (F is exact). [Hint: See Exercise
(20.8).]

. Let Py be a bimodule and let Qg = Homg(sPg, gRg). Consider the

three functors
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10.

Fp=(sP®r ):gM - M
Gp = (RO ®s ):sM —gM
Hp = Homg(sPg, ):sM — gM.

(1) By (20.6), (Fp, Hp) is an adjoint pair. Prove that F, is a projector iff
sP is projective. [Hint: Exercise (21.7).]

(2) Prove that if Py is finitely generated projective, then (Gp, Fp) is an
adjoint pair. [Hint: Exercise (20.7(2)) and Proposition 20.11.]

(3) Prove that if Py is finitely generated projective, then Fj is an injector
iff Qg is flat.

(4) Let both P; and ¢P be finitely generated projective. Then Py is
Frobenius in case as (R, S)-bimodules

Hompg(sPg, gRg) = Homg(sPg, sSs)-

Prove that 3Py is Frobenius iff G, =~ H,. [Hint: (20.10).]
(5) Let ¢Pg be Frobenius. Prove that if 4R is injective (S is injective),
then P (Pg) is injective.

. Let R be a finite dimensional algebra over a field S. Then R is called a

Frobenius algebra if sRp is a Frobenius bimodule. Prove that:

(1) If R is a Frobenius algebra over S, then R is both left and right self
injective.

(2) The following are equivalent: (a) R is Frobenius; (b) zRs =
Homg(sRg, S); (c) There is an R-balanced map ¢:Rz x gR — S such
that if 0 # xe R, then ¢(x, R) # 0 and ¢(R, x) # 0. [Hint: (c) = (a).
Define 6:Homg(sRg, R) = Homg(sRg, S) by 6(f)(x) = ¢(x,f(1)). A
dimension argument implies that 8 is epic.]

(3) If R is simple, then R is Frobenius. [Hint: Part (2.b) and Exercise
(20.17).]

(4) If G is a finite group, then the group algebra R = SG is Frobenius.
[Hint: Let ee G be the identity. Define A:R — S by i(f) = f(e) and
¢:R x R—> Sby¢(f.f') = Aff'). Now use (2.c).]

Let ¢:S — R be a ring homomorphism. Then via ¢, R has the module
structure Rz and gRs = Homg(sRg, gRg) with Rg and gR projective.
So the change of ring functor F = (R ®5 -):gM — sM has left adjoint
G = (R ®5 -):sM - zM and right adjoint H = Homg(sRg, _):sM —
rM. (See Exercise (21.9).) If ¢ M, then we simply write (M for F(gM).
Prove that:

(1) If gR is (finitely generated) projective, and if M is (finitely generated)
projective, then M is (finitely generated) projective. [Hint: Exercise
(20.8). Also see Exercise (19.16).]

(2) If Ry is flat and if xM is injective, then gM is injective.
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(3) If 4R is a generator and if kM is a generator, then sM is a generator.
[Hint: Exercise (20.8).]
(4) F and G are inverse equivalences iff ¢ is an isomorphism.

11. Let R and S be equivalent rings via an equivalence F: ;M — ¢M with
inverse G:sM — zM. Prove each of the following:
(1) M is finitely presented iff sF(M) is finitely presented.
(2) xM has a decomposition that complements (maximal) direct sum-
mands iff F(M) has such a decomposition.

12, Let R and S be rings with R ~ S. Prove that:
(1) R is von Neumann regular iff S is von Neumann regular. [Hint:
Exercise (20.14).]
(2) R is left hereditary iff S is left hereditary.
(3) R is left self-injective iff S is left self-injective.
(4) R is co-semisimple ifl S is co-semisimple.

§22. The Morita Characterizations of Equivalence

The prototype of (Morita) equivalence is provided by a ring R and the ring
M,(R) of n x n matrices over R. Indeed, the Wedderburn characterization
of simple artinian rings (13.3) may be viewed as one of the earliest treatments
of the theory of equivalence of rings. In this section we shall give the
complete characterizations of equivalence, generalizing the Wedderburn-
Artin theory, that are due to Morita [58a]. We begin with various necessary
conditions.

A left R-module g P is a progenerator (or a left R-progenerator) in case it is
a finitely generated projective generator. In particular, gR is a progenerator.
Indeed, P is a progenerator if and only if there are integers m and n and
modules P’ and R’ with

R"~P@®P and P"~R@R.

22.1. Theorem. Let R and S be equivalent rings via inverse equivalences
F:xM > ;Mand G:sM — ;M. Set

P=FR) and Q=G(S)

Then P and Q are naturally bimodules sPg and Qg such that
(1) sPg and zQs are faithfully balanced;
(2) Pg, 5P, zQ and Qg are all progenerators;
(3) sPr = Homg(Q, S) = Homgz(Q, R) and zQg = Homg(P, R) =
Homg(P,S);
(4) F =~ Homg(Q, -) and G = Homg(P, _);
(5) F=(P®gr-)and G = (Q ®s -).
Proof. We shall assume all of the notation of (21.1). From (20.3) we see that

the bimodule structure xRy and the additivity of the functor F induce a
canonical bimodule structure P = F(R) where the right R-scalar multi-
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plication is given by the ring homomorphism r+ F(p(r)) of R into
End(sP) = End(sF(R)). Observe that this is just the composition of the two
isomorphisms

R=End(zR) and  End(zxR) = End(sF(R))

of (4.11) and (21.2).

Now the left S-module P = F(gR) is a progenerator since zR is clearly
a progenerator and F is an equivalence ((21.6) and (21.8)). In particular, since
sP is a generator, it is balanced (17.8.1). But as we have just observed R, with
its natural action on gP, is isomorphic to End(sP). Thus, Py is a faithfully
balanced bimodule. Therefore, by (17.7), Py is also a progenerator. Similarly,
rQ = G(sS) has, induced by ¢S5, a natural faithfully balanced bimodule
structure Qg with ¢Q and Qg both progenerators. This gives (1) and (2).

Next, let M be a left R-module. Then since the Z-isomorphism ¢ of
(21.1) is natura! in the first variable,

¢ :Homg(S, F(M)) - Homg(G(S), M) = Homg(Q, M)
is a left S-isomorphism (20.4). But then the S-isomorphisms
F(M) =~ Homg(S, F(M)) =~ Homg(Q, M)

are natural in M whence F =~ Homg(Q, _). Similarly, G =~ Homg(P, _). Then
at gRy and at ¢Sg these natural isomorphisms are (see (20.4)) bimodule
isomorphisms

sPr = sF(R)g = Homg(Q, R)
and
r9s = rG(S)s = Homg(P, S).
But then, applying (1) and (20.7)
sPr = Homg(Q, R) = Homg(Q, Homs(Q, Q))
= Homg(Q, Homg(Q, Q)) = Homg((Q, S)
and
Qs = Homg(P, S) = Homg(P, Homg(P, P))
=~ Homg(P, Homg(P, P)) = Homg(P, R).

Thus, we have (3) and (4).
Finally, (5) follows from (4) and (3) because by (20.5), (20.11) and (20.1),
there are natural isomorphisms

Homg(Q, _) = Homg(Homg(P, R), )
=~ P ®z Homg(R, _)

= (P ®g-)
and similarly
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Homg(P, _) = (Q ®; _). O

Now it is an easy matter to prove the basic characterization of equivalent
rings.

22.2. Theorem [Morita). Let R and S be rings and let
F:gM > M and G:sM - M

be additive functors. Then F and G are inverse equivalences if and only if there
exists a bimodule 4Py such that:

(1) P and Pg are progenerators;

(2) sPg is balanced;

(3) F=(P®g_)and G =~ Homg(P, _).
Moreover, if there is a bimodule 3Py satisfying these conditions, then with

Q = Homg(P,R),
we have gQ with gQ and Qg progenerators and
F =~ Homg(Q, ) and G =(Q®s-)

Proof. The final assertion as well as the necessity of the conditions (1),
(2), and (3) are immediate from (21.1). So, conversely, suppose that ¢Pg is a
bimodule satisfying (1) and (2). Then for each ¢kM and each N there are
natural isomorphisms:

Homg(P,P ®g M) = Homg(P,P) ® g M (20.10)
> R@xM (by (2))
>~ M (20.1)
and
P ®g Homg(P, N) = Homg(Homg(P, P),N) (21.11)
= Homg(S, N) (by ()
>N (21.1).
Thus F = (P ®g- ) and G = Homg(P ,_) are inverse equivalences. O

22.3. Corollary. IfR and S are rings, then yM = sMifand only if Mg = Ms.

Proof. Let kM ~ ¢M. Then by (22.2) there is a balanced gP; with ¢P and
Py progenerators and with

(P®r-) and  Homg(P,.)

inverse equivalences. Then by (22.1) ¢ = Homg(P, S) is a balanced bimodule
<05 with ;0 and Qg progenerators. Thus, we may view Q as a bimodule
sorQgop that is balanced and with Qgop and sopQ both progenerators. Then
(22.2) asserts that gopM = 50pM or equivalently that M, & M. The converse
now follows by using opposite rings again. O
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In particular, we see from this corollary that, as we have claimed earlier,
there is no concern with just “left” and “right” equivalence for rings. Indeed,
that left semisimple rings are the same as right semisimple rings, is also a
corollary of (22.3). (See Corollary 21.9.)

Among the most useful tests for equivalence are those given in the next
corollary.

22.4. Corollary. For two rings R and S the following assertions are equiva-
lent:

(@) R~ S;

(b) There is a progenerator Py with S =~ End(Pg);

(c) There is a progenerator Q with S =~ End(zQ).

Proof. (a) = (b). This is immediate from (22.2).

(b) = (a). We may assume that S = End(Pg). By (17.8) we know that since
Pr is a generator, it is balanced and finitely generated projective over
S = End(Pg). Then also since gPg is balanced and Py is finitely generated
projective, an application of (17.7) gives us that ¢P is a generator. Now (22.2)
appliesand R and S are equivalent via F = (P ® _)and G = Homg(P, _). O

22.5. Corollary. Let R be a ring. If Py is a progenerator, then R and
S = End(Pg) are equivalent. In fact, if
P® = Homg(P, R),
then ¢Pg and R P®; are bimodules and
(P®g -):gM > M
(PP®; _):sM > M
are inverse equivalences. O
Now we can prove what is perhaps the most important special case. (See
also Exercise (21.6).)
22.6. Corollary. Let R be a ring and let n > 0 be a natural number. Then
R and M, (R) are equivalent rings.

Proof. The matrix ring M, (R) is isomorphic to the endomorphism ring
of the free right R-module R™. (See (13.2).) But R™ is clearly a right R-
progenerator. O

22.7. Corollary. If R and S are equivalent rings, then there is a positive
integer n and an idempotent matrix e € M,(R) such that
S = eM,(R)e.

Proof. We may assume that R™ = P@ P'. Then S =~ End(Pg) =

e End(R'™)e where e is the idempotent for P in the given decomposition
of R™, O
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22. Exercises

1. Let P; be a finitely generated projective right R-module, let P® be its
R-dual Homg(P, R). Then zP®is finitely generated and projective (20.17).
The ideal T = Trg(P) is simply called the trace of P. (See (8.21).) Since R
is a generator, Py is a progenerator iff T = R. Prove that:

(1) T* = T; PT = P;and T = Trg(P®).

(2) The natural maps P® T - Py and T ® zx P®— P® are isomor-
phisms. [Hint: If (x;),(f;) is a dual basis for P, then x> Z x; ® fi(x) gives
one inverse. ]

(3) If ee R is an idempotent and P =~ eR, then T = ReR.

2. Let P and P®be as in Exercise (22.1). Assume that R is a prime ring
(Exercise (14.10)). Prove the following generalization of Exercise (17.4.1):
Py is faithful iff , P®is faithful.

3. Every generator is faithful (Exercise (8.3)). Concerning a converse, prove
that:

(1) A projective module Py is a generator iff for each ideal I of R, if
PI = P, then I = R. [Hint: Exercise (22.1).]

(2) Faithful finitely generated projective modules need not be generators.
(3) If Riscommutative and Py is finitely generated projective, then Pyisa
progenerator iff it is faithful. [Hint: Let T be the trace of P. Then Tis a
finitely generated ideal with T2 = T. Use Exercise (7.12) for T = Re. If
Py is faithful, e = 1.]

4. The category RFM of finitely generated left R-modules characterizes the
entire category zM to within category equivalence. Indeed, let R and S
be rings; prove that:

(1) If ¢N and ¢N' are finitely generated, then an S-homomorphism
f:N — N’ is epic iff for each he sFM, hf = 0 implies h = 0. [Hint: (3.3)
and Exercise (10.1)]

(2) If kM, xM’ arein sFMandif F: ;FM — jFMisa category equivalence,
then f:M — M’ is a (split) epimorphism iff F(f):F(M)—» F(M') is a
(split) epimorphism.

(3) RFM =~ sFM iff ;M ~ ¢M. [Hint: (=). Let F:3FM — ¢FM be an
equivalence with inverse equivalence G. If R™ — G(S) is a split epi-
morphism, then so is F(R)™ —» FG(S) = §.]

5. Let sPy and Qs be bimodules, and let (6, ¢) be a pair of bimodule
homomorphisms

0:P ®gQ — sSs and $:Q ®sP - gRy
such that for all x, ye P and f,g € Q,

0x®@f)y=x¢(f®y and fO(x®g)=d(f® x)g.

Then (6, ) is a Morita pair for (P, Q). Clearly then (¢,06) isa Morita pair
for (Q,P). For each xeP and each feQ define ¢(x):Q - R and
é(f):P - Rby
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d(x):f>d(f®@x) and  B(f):x+— (S ® x).

Prove that:
(1} ¢ is an (S, R)-homomorphism P — Homg(zQs, rRg) and & is an
(R, S)-homomorphism Qg — Homg(sPg, gRg).
(2) If 8 is epic, then
(i) 0 is an isomorphism;
(i) Pg and RQ are finitely generated projective;
(iii) gP and Qg are generators;

(iv) ¢ and @ are isomorphisms;

(v) 4:S - End(Pg) and p:S — End(zQ) are ring isomorphisms.
[Hint: For (iii) observe that Trg(P) > 6(Q)(P) = (P ® Q). Next sup-
pose that X, 0(x; ® f;) = lg€ S. Then

zj(yj ® gj) = Z;(x; ®j;'(zj9(yj ® gj))),

and it follows that 8 is monic. Also (x;) and (¢(f;)) form a dual basis for
Pg. (See Exercise (17.11).) If ¢(f) = 0, then show that f= flg = 0. If
g€ Homg(P,R), then g = ¢(Z;g(x;)f). If A(s) =0, then s = slg = 0.
Finally, if u € End(Pg), then u = A(Z; f(ux; ® £))).]

6. Let P, be a right R-module and let S = End(Pg). Then ¢Pg. Let
P®= Homg(sPg, gRg). Then ;P& Prove that:
(1) There is a Morita pair (6p, ¢p) for (P, P®)via

Op(x®@f):y—xf(y) and  ¢p(f® x) = f(x).

(2) Py is finitely generated projective iff 6, is an isomorphism. [Hint:
The Dual Basis L.emma (Exercise (17.11)).]

(3) Pgis a generator iff ¢p is an isomorphism.

(4) Py is a progenerator iff 6, and ¢, are both epic.

7. Prove the following version of Morita’s Theorem (22.2): Two rings R and
S are equivalent iff there exist bimodules ¢P; and Qg and a Morita
pairing (6, ¢) of (P, Q) with both 6 and ¢ epic. [Hint: Exercises (22.5)
and (22.6).]

8. Let sP; and zQ; be bimodules, let (8, ¢) be a Morita pair for (P, Q) such
that 6, ¢ are epic. Thus, by Exercise (22.7), R = S. For each ideal I of R
and each ideal I of S define

) =6(PI®Q) and o(I')y = ¢(QI' ® P).
Prove that:
(1) ® and © define inverse lattice isomorphisms between the ideal
lattices of R and S.
(2) If H and I are ideals of R, then ©(IH) = O(I)O(H).
(3) Prove that I is a prime (nilpotent) ideal of R iff ©(I) is a prime
(nilpotent) ideal of S.
(4) Prove that N is the lower nilradical of R iff ®(N) is the lower
nilradical of S.

9. Let K be a commutative ring and let R, S, T be K-algebras. Consider the
K-algebras
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10.

11

12.

13.

14.

15.
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RT=T®xR and ST=T®S.

(See Exercise (19.5).) Prove that if R = S, then RT ~ S”. [Hint: Exercise
(22.7).]

Two modules M and N are similar, abbreviated M ~ N, in case there
exist natural numbers m and n and modules M’ and N’ with

M@®M = N™ and N@N = M.

(1) Prove that ~ defines an equivalence relation on the class z.4.

(2) Prove that gP is similar to 4R iff P is a progenerator.

Let M, and N be non-zero modules over a ring K. Let R = End(My)
and S = End(Ny). Consider the bimodules

sPr = Homy(gMy, sNy) and rQs = Homy(sNy, gMy).

(1) Prove that there is a Morita pair (6, ¢) for (P, Q) such that for each
fePandgeQ,

6(f®9)=fg and Pg®f)=4df

(2) Prove that both 6 and ¢ (of part (1)) are epic iff My and N are
similar. (See Exercise (22.10).)

(3) Infer that if My and Ny are similar, then End(M) =~ End(Ny).
[Hint: Exercise (22.7).]

Let F:xM — M be a category equivalence. Prove that M is flat iff
sF (M) is flat. Deduce that R is coherent iff S is coherent.

Let Pg be finitely generated and projective, and let S = End(Pg). Then
Py is a projector (injector) in case the associated functor

Fp= (P ®g -):xM = M

is a projector (injector), (See Exercises (21.7), (21.8).) Let T = Tix(P)
be the trace of Pg. Now Fj is an equivalence iff T = R. Prove that:

(1) If T is projective, then ¢Pg is a projector. [Hint: By Exercise (22.1),
P® = Homg(P, R) generates the projective module 7T, so for some 4
there is a split epimorphism P @ (P& » P®; T in (M. But
PRz P®x>S and (P ®; T = (P is projective. (Exercises (22.6) and
(22.1))]

(2) If Ty is flat, then gPy is an injector. [Hint: It will suffice to show that
P& =~ T ®, P® is flat. But P®sP®=R, so if o/ <, and L =
Ker(P®® I — S),thenP® L =0,50 T® L = 0.]

Prove that if R is hereditary (von Neumann regular), then every finitely
generated projective module Py is a projector (injector).

Let K be a field and T= K[X]/X*K[X]. Let R be the subring of
M ,(T) consisting of all matrices of the form
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where a, 8, y, u, n, ve K. Let

0O 0 O 1 0 0 o0
e=10 1 O0f, f=]0 1 , g=10 1
0 0 O 0 0 0O 0 1
Prove that:

(1) eR is both an (R, eRe)-projector and an (R, eRe)-injector.
(2) ReR is neither left R-projective nor right R-flat.

(3) fRis an (R, fRf)-injector, but not an (R, fRf)-projector.
(4) gR is an (R, gRg)-projector, but not an (R, gRg)-injector.

16. Let R be von Neumann regular and left self-injective. Prove that if Py is
finitely generated projective, then End(Pg) is von Neumann regular and
left self-injective. In particular, if ee R is a non-zero idempotent, then
eRe is von Neumann regular and left self-injective. [Hint: By Morita it is
true if Py is free. Now use (5.9) and Exercise (22.14).]

(Note: The conclusion of this exercise is false if Py is not finitely
generated (Exercise (18.4)) or if R is not von Neumann regular. (See
Rosenberg and Zelinsky [61].))

17. Let R be hereditary. Prove that if Py is finitely generated projective, then
End(Pg) is hereditary. In particular, if ee R is a non-zero idempotent,
eRe is hereditary.

§23. Dualities

Let C and D be two categories. Then a pair (H', H") of contravariant functors
H:C-D and H":D->C

is a duality between C and D in case there are natural isomorphisms
H'H =1, and H'H" =~ 1.

The general theories of dualities and of equivalences really are dual. That is, if
op:C — C° denotes the canonical contravariant functor from a category to
its opposite category (Exercise (23.1)), then it is easy to see that the pair
(H', H") is a duality between C and D if and only if

(op)o H':C — D°F and H" o (0op):D°? - C

are inverse equivalences. (See Exercise (23.2).)

Because of this last observation there is no need to develop anew the
general theory of duality. However, when interpreted specifically in categories
of modules, things are not so simple; the theory of duality in module categor-
ies is markedly different from that of equivalences. Of course, non-trivial
dualities between certain module categories do exist—for example, the well-
known dualities of finite dimensional vector spaces. But for no two rings R
and S is there a duality between ;M and sM (or Mg); the difficulty here is that
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(gM)°? is not equivalent to sM or Mg for any ring S. (See Exercise (24.1).) Thus,
although a unified treatment of parts of the two theories is possible, we shall
treat them separately. We shall economize some, however, by omitting proofs
that are patently dual to previous ones.

Our interest is in dualities (H’, H") between categories of modules; and in
this context we require that H' and H” be additive functors.

Reflexive Modules and Duality

We first check that dualities between module categories do exist. Thus let
R and S be rings, let ;Ug be a non-zero bimodule, and set

H' = Homg(_,U):gM - Mg
H" = Homg(_, U):Mg4 - M
Then for each yM the evaluation map a,,:M — H"H'(M), defined via
ou(x)(f) = f(x),
and for each N the evaluation map ay:N — H'H"(N), defined via

an(y)(g) = g(y),

are natural homomorphisms (see §20). That is, they define natural trans-
formations

g:ly - H'H and o:1y — HH".

Now let sR[U] and Rg[U] be the full subcategories of gM and Mg whose
objects are the U-reflexive modules. Then (20.14) since H' and H” are
functors between these categories of reflexive modules, we have from §20 the
following result:

23.1. Proposition. Let R and S be rings and let gUg be a bimodule. Then the
Sfunctors

H' = Homg(_,U) and H” = Homg(_, U)

define a duality between the categories RR[U] and Rg[U] of U-reflexive
modules. Indeed, for each M € RR[U] and each N eRs[ U], the evaluation maps

oM - H H' (M) and oy:N - H H'(N)
are natural isomorphisms. a
Thus there do exist non-trivial dualities. For example, every finitely
generated projective module is 4R, reflexive. Indeed, from (20.17) we infer
that H' = Homg(_, xRR) and H” = Homg(_, Rg) define a duality between

the full subcategories zFP and FPy of xM and M, whose object classes are
the finitely generated projective modules.
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The Fundamental Lemma

The main purpose of the rest of this section is to prove that, with very modest
restrictions, every duality between module categories is of the form described
in the last proposition. In our discussion of dualities it will be convenient (but
not at all necessary) to deal with dualities between categories of left
R-modules and of right S-modules.

We proceed next to assemble suitable notation, dual to that of (21.1), and
to establish certain basic isomorphisms dual to those of (21.2) and (21.3) for
equivalences.

23.2. Let ,C and Dy be full subcategories of left R-modules and right
S-modules, respectively. That is, ;C is a full subcategory of xM and Dy is a
full subcategory of Mg. Let the pair of functors

n H':z;C - Dy and H":Dg — xC
be a duality between xC and Dg. Then
H'H =1, and HH =1, ,
that is, there exist natural isomorphisms
(2) n:H'H — 1. and (:H'H" - 15, .

In particular, for n this means that for each M in xC there is an iso-
morphism n,,:H"H' (M) - M such that for each M,, M, in zC and each
R-homomorphism f: M, — M, the diagram

M, / M,
(3) 'lu.] i I'lu.
HIIH!(Ml) (l’ HIIHI(MZ)

commutes. Again similar remarks apply to {. For each xM in zC and each
N in Dg there are Z-homomorphisms
1= pyy:Homs(N, H'(M)) - Homg(M, H"(N})

@ v = vy : Homg(H'(M), N) » Homg(H"(N), M)
defined via

Hun:y = H' () oy’

Vin 10> Mg 0 H(8)
for each y e Homg(N, H'(M)) and 6 € Homg(H'(M), N).

H'H' (M)~ H'(N) H'(N) == H"H'(M)

n

-~ <
7 s 1
=7 ) wo) T~

M- =M

As in the case of equivalences we shall frequently omit the subscripts on
n, ¢, uand v.
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Now we have two results whose proofs are dual to those of (21.2) and
(21.3) and will be omitted.

23.3. Proposition. Let (H', H") be a duality between full subcategories gC
and Dy of xM and M. Then for each M,, M, in gC and each N\, N, in Dg the
restrictions of H' to Homg(M,, M,) and of H" to Homg(N,, N,) are abelian
group isomorphisms

H' :Homg(M,M,) - Homg(H' (M,), H'(M,))
H":Homg(N,, N;) - Homg(H"(N,), H'(N,)).
If M in RC and N in Dg are non-zero, then these maps are ring isomorphisms
End(gkM) — End(H'(M)s)
End(Ng) —» End(gH"(N)). O

Observe that here if f, ge Homg(M, M), then since the functor H’' is
contravariant

H'(fg) = H(gH'(f).

But (see (20.3)) if we view f and g as right operators in End(xfM) and H'(f)
and H'(g) as left operators in End(H'(M)s), according to our usual convention
(§4), then the order is straightened out to give an isomorphism

End(xM) - End(H'(M)).

Note also that our statement (23.3) is not the complete dual of (21.2).
Indeed, in (21.2) we have that under equivalences, monomorphisms and
epimorphisms are preserved. Now it is true that for dualities, “mono-
morphisms” and “epimorphisms” are reversed—but here we mean mono-
morphisms and epimorphisms in the categories RC and Dy, and these need
not be monomorphisms and epimorphisms in the categories xM and Mg.
(See Exercise (4.2).)

23.4. Lemma. Let (H', H") be a duality between full subcategories RC and
D;s of kM and Mg. Then in the notation of (23.2) the homomorphisms

u:Homg(N, H’(Mj) — Homg(M, H"(N))
v:Homg(H' (M), N) - Homg(H"(N), M)
are isomorphisms natural in each variable. In particular, for each
y € Homg(N,, H'(M,)), 6 € Homs(H'(M>), N,),
y € Homg(M,, H"(N,)), de Homg(H"(N,), M),
and for each
h:M, > M, k:N, » N,,

we have
(1) u(H'(hyyk) = H"(k)u(y)h
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(2) v(k8H'(h)) = hv(d)H" (k)
(3) u™ '(H"(k)7h) = H' (i~ " (Pk

4) v Y(héH"(k)) = kv~ Y (8)H'(h). O
For example, the assertion (1) can be illustrated by the diagrams

Ny —— H'(M)) H'(N;) —"— M,

k[ H'(h) H” (k) h

Ny —5 H(M,) H'(N;) & M,

A Characterization of Dualities

The main result of this section, due to Morita [58a], characterizes
dualities between full subcategeries of modules as “U-dualities” for some
bimodule U provided only that the categories be “closed under isomorphic
images” and contain the appropriate regular modules. Thus,

23.5. Theorem [Morita). Let R and S be rings and let ;C and Dg be full
subcategories of kM and Mg such that

rReRC and Ss € Dy,

and such that every module in g # (respectively, #s) isomorphic to one in xC
(Dg) is in xC (Cs). If (H', H") is a duality between the categories xC and Dy,

H:xC—Ds and H":Dg— xC,

then there is a bimodule U such that
(1) RU = H"(S) and Ug = H'(R);
(2) There are natural isomorphisms

H' =~ Homg(_,U) and H" ~ Homg(_, U);
(3) All M € xC and all N € Dg are U-reflexive.

Proof. We adopt the notation of (23.2). By hypothesis R € xC and
Ss € Dg. Thus '

U = H'(R) e Dg and V = H"(S) € gC;

and (see §20) the regular bimodules gR, and ¢Sg induce canonical bimodule
structures

rUs = H'(R) and Vs = H'(S).
Since u is natural in both variables, for each M € zC and each N € Dy,
gy - Homg(N, H'(R)) - Homg(R, H"(N))
is a left R-isomorphism and
kus:Homg(S, H'(M)) — Homg(M, H"(S))

is a right S-isomorphism. (See (20.4).) Moreover, since the first of these
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isomorphisms is natural in N,
Ugs:Homg(S, H'(R)) » Homg(R, H"(S))
is an (R, S)-isomorphism. Whence (4.5), as (R, S)-bimodules
U =~ Homg(S, H'(R)) = Homg(S, H"(S)) = V.
Now since u,,s is natural in M, it induces a natural S-isomorphism
Homg(S, H'( )) = Homg(_, H"(S)).
Similarly ugy induces a natural R-isomorphism
Homg(R,H"( )) = Homg(_, H'(R)).
So by (20.1.1) and (20.5.2), there are natural isomorphisms:
H' = Homg(S, H'( )) = Homg(_,”H"(S)) = Homg(_, U),
and
H" =~ Homg(R,H"( )) = Homg(_, H'(R)) = Homg(_, U).
This gives both (1) and (2).
Now to prove (3) we may assume that there is a bimodule zUg and that
H = Homg(_,U) and H” = Homg(_,U)

gives a duality between zC and Dg. Let N € Dg. In order to prove that N is
U-reflexive we first show that the natural S-isomorphism

{yHH'(N)-> N
determines an R-automorphism a: H"(N) - H”(N). Indeed, define « via
(@(g)(n) = (5 '(m)(9)

for ge H'(N) = Homg(N, U) and ne N. It is easy to check that x is a (monic)
R-endomorphism of H”(N). Now since Ug is a bimodule

H'(U) = Homg(U, U)
is an (S, S)-bimodule and, by the néturality of v(23.4.2),
v = vyn:Homg(H'(U), N) - Homg(H"(N),U) = H'H"(N)
is a right S-isomorphism. Thus,
7n = Vin o L5 ' 1N — Homg(H'(U), N)

is a natural isomorphism. That is, these yy induce a natural isomorphism of
functors

y:lp, = Homg(H'(U), -).
Thus, for each N € Dy,
1) ¥ :Homg(N, U) » Homg(Homg(H'(U),N), H'H'(U))
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defined via
¥ :g— Homg(H'(U), g)

is a Z-isomorphism. (See Exercise (20.5).) Also since gUs is a bimodule,
H"H'(U) is a left R- right S-bimodule via H” and H' (§20). Then, since y,, is
an isomorphism,

(2) Homg(yy, H'H'(U)): Homg(Homg(H'(U), N), H"H'(U)) —
Homg(N, H'H'(U))

is also a Z-isomorphism. Since n is natural, n,:H"H'(U)—> U is an
S-isomorphism and

3) Homg(N, n,): Homg(N, H"H'(U)) - Homg(N, U)

is a Z-isomorphism. Now throwing these together, we have for each
g€ Homg(N,U)and eachne N,

((Homg(N, ny) - Homs(yy, H"H'(U)) < ¢)(g))(n)
= (ny ° Homs(H'(U), g) = yy)(n)
= ny(g ° yn(n)) = ny(Homs(yx(n), U)(g))
= (ny o H"(yv(m))(g) = (vun(7n(n)))(g)
= ((x '(m)(g) = (g))(n).

Thus a is just the composite of the three isomorphisms (1), (2), and (3); hence
o is an R-automorphism of H”(N) as claimed.

Now given N e Dg, we know that N =~ H'H"(N), via {y, so in particular,
N is isomorphic to the U-dual of a module and thus, N is U-torsionless
(20.14). So to see that N is U-reflexive, we need only show that if ¢ e H' H"(N),
then there is an ne N such that &(g) = g(n) for all ge H"(N). But let
¢ e H'H"(N). Then since « is an endomorphism of H"(N), we have

Eoae HH'(N) = Im{3".
Thus there does exist an n € N such that
Eoa={y'(n)
Then for all g e H"(N),
&g) = (n ' (M) (@™ (9) = ™ '(g))(n) = g(n),

whence N is U-reflexive. Similarly, each M e xC is U-reflexive and the proof
is complete. g

23. Exercises

1. Let C = (¥, mor,°) be a category and let C°? = (¥°?, mor°?,*) where
€°P = €, where mor°?(A, B) = mor(B, A) for each pair A4, B of ¢°?, and
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where f*g =gof. For each Ae®¥ and each morphism f in C, let
op(A) = A and op(f) = f. Prove that:

(1) C°?isa category and C°?°? = C.

(2) op:C — C°Pis a contravariant functor.

(3) (op, op) is a duality between C and C°.

. Let C and D be categories and H':C — D and H":D — C be contra-

variant functors. Prove that (H’, H") is a duality between C and D iff

(op)o H':C — D°? and H" o (0p):D°? - C
P

are inverse equivalences. (See Exercise (23.1).)

. Let C be a category. Recall (Exercise (3.4)) that a morphism f:4 — B in

C is a monomorphism (an epimorphism) iff it is cancellable on the left (on
the right). Suppose (H’, H") is a duality between categories C and D.
Prove that a morphism f:4 — B in C is a monomorphism (an epi-
morphism) iff H'(f):H (B) —» H'(A) is an epimorphism (a monomor-
phism) in D. Thus in particular, the statements “f is a monomorphism”
and “f is an epimorphism” are dual.

. Each of the following terms has been defined in module categories zM.

Extend these definitions to arbitrary categories C in such a way that in
each pair the terms are dual to one another (i.e., so that, under a duality
between C and D, the first corresponds to the second).

(1) Projective object; injective object.

(2) Superfluous epimorphism; essential monomorphism.

(3) Projective cover; injective envelope.

(4) Generator; cogenerator.

(5) Direct sum; direct product.

(6) Simple object; simple object.

. Let R be the ring of upper triangular 2 x 2 matrices over a field S. Let

= Us be the set of column vectors S,

(1) Show that {U is the unique (to within isomorphism) simple object in
the category RR[U]. (Note that 4U is not simple in gM.)

(2) Describe gR[U]and R[U]s.

. Let R be a finite dimensional algebra over a field K. Then an R-module

is finitely generated iff it is finite dimensional as a K-vector space iff it has
a composition series. Recall that a finite dimensional K-space M and
its dual

M* = Homg(M, K)
have the same dimension. Assuming that all modules below are finitely
generated, prove that:

(1) ( y*:gFM > FMgand ( )*:FMy — zFM define a duality. [Hint: The
usual evaluation map

op'M > M**

with [6,(m)](y) = y(m)is an R-isomorphism.]
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(2) 0> M, 5 M, % My — 0is (split) exact iff its dual 0 —» M* & M3 &3
M¥ - 0 is(split) exact.

(3) M issimple, semisimple, indecomposable (respectively) iff M* is,

(4) o(M) = c(M*).

(5) Soc(M*) ~ (M/Rad M)* and M*/Rad M* = (Soc M)*.

(6) M is injective (projective) iff M* is projective (injective).

(7) f:M,; > M, isaninjective envelope (projective cover)ifff * : M% — M*
is a projective cover (injective envelope). (Recall (Exercise (17.20)) that
projective covers exist over artinian rings.)

(8) M is a generator (cogenerator) iff M* is a cogenerator (generator).
) Izg(M) = rg(M*).

(10) If e is a primitive idempotent in R, then Re/Je = (eR/eJ)*
(J = J(R))and E(Re/Je) = (eR)*.

7. Let R and S be rings and let zUs be a bimodule with both U and Ug
injective. Let cFLM and FLMg be the full subcategories of M and Mg
of modules of finite length. Prove that H' = Homg(_,U) and H" =
Homg(_, U) define a duality (H', H") between gFLM and FLMy iff for
each simple R-module T and each simple S-module Vs, the modules
H'(T) and H"(V) are simple. [Hint: Induct on the length to show that
each M € gFLM and each N € FLM is U-reflexive.]

8. Prove that if R is commutative, then there exists a duality (H', H")
between FLM and itself. [Hint: Let U be the minimal injective
cogenerator of R. Apply Exercise (23.7).]

9. Let (P, <) be a poset (see (0.5). Define a category C(P, <) = (P, mor, o)
where for each a,be P,

{@b)} if a<b

mor(a, b) = { & it agh

and where (a,b)° (b,c¢) = (a,¢) if a < b and b < c. A category in which
every isomorphism is an identity is a hull category. Prove that:

(1) (P, <)+ C(P, <) defines a one-to-one correspondence between the
class of all posets and the class of all hull categories C = (¥, mor, o) such
that ¥ is a set and for each A4, B € €, mor(A, B) is at most a singleton.

(2) (P, <) is a lattice iff C(P, <) is closed under finite direct sums and
direct products. (See Exercise (23.4.5).)

(3) If (P, <) and (P, <') are posets, then a mapping f:P — P’ is order-
preserving (order-reversing) iff the induced map C(P, <) —» C(P', <') is
a covariant (contravariant) functor.

(4) Two posets (P, <) and (P’, <') are isomorphic (anti-isomorphic) iff
there is an equivalence (a duality) between C(P, <) and C(P’, <'). [Hint:

In C(P, <), there is an isomorphism a — b iffa = b.]

(5) If (P, <) is a poset (lattice), then (P, >) is a poset (lattice) and
C(P, =) = C(P, <)°?. Thus, the class of posets (lattices) is self dual. In
particular, duality in posets is a specia! case of categorical duality.
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§24. Morita Dualities

The dualities that are of interest in practice are between subcategories of
rM and Mg that do contain gR and Sg, and for these, Theorem 23.5 permits a
substantial simplification. Therefore, throughout this section we shall let R
and S be rings and let RU; be a fixed bimodule. Also for each module M and
each module N we set

M* = H'(M) = Homg(M, U)
N* = H"(N) = Homg(N, U),
and we use ¢ for both natural transformations
Oy M - M** and an:N - N**,
We say that ;U defines a Morita duality or that the duality given by
Homg(_, U) and Homg(_, U)

is a Morita duality in case
(1) grR and Sgare U-reflexive;
(2) Every submodule and every factor module of a U-reflexive module is
U-reflexive.

A Characterization of Morita Dualities

A familiar example of a Morita duality is afforded by the case in which R = §
is a division ring and RUgz = gRg. Then the reflexive modules are the finite
dimensional R-vector spaces and U defines a Morita duality. In general,
however, Morita dualities appear only infrequently.

24.1. Theorem. Let R and S be rings. Then for a bimodule g U the followirg
statements are equivalent: :

(@) rUs defines a Morita duality;

(b) Every factor module of gR, S, RU and Uy is U-reflexive;

(c) rUs is a balanced bimodule such that RU and Ug are injective co-
generators.

Proof. (a) = (b). Assume (a). Since by (4.5) Ug = (gR)*, since by hypothesis
R is reflexive, and since by (20.14) duals of reflexives are reflexive, we know
that Uy is reflexive. Similarly, U is reflexive. Now (b) follows from (a) and the
reflexivity of gR, Sg, U and Us.

(b) = (c). Assume (b). Then by (20.16) Uy is a balanced bimodule, so it
will suffice to prove that jU is an injective cogenerator. To see that U is
injective, let I be a left ideal of R and consider the natural short exact
sequence

0-+ILRSR/I-O.
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Then there is a factor module T of Ug = R* and right S-homomorphisms h
and k so that

0 (R/N*S R* L, [+

h k
/ T\
0 0
is commutative with the horizontal and diagonal sequences exact. Now T,

a factor of U, is U-reflexive by hypothesis. Thus by (20.14) its dual T* is
U-reflexive. Since oz f = f**g, = h*k*c,, we have a commutative diagram

0 T* 2, R 2 (R/I)** 5 0
k® ooy L Oait

01— SRR 0.

Since R and R/I are reflexive and ( )* = Hom(_, U) is left exact, the two
right-hand vertical maps are isomorphisms and the rows are exact. Thus,
since the diagram commutes, the map k* o ¢,:1 — T* is an isomorphism. But
then I, isomorphic to T*, is U-reflexive, so k*:I** — T* is an isomorphism.
But then (see (16.2)) k**: T** — [*** s also an isomorphism; so since I'*, is0-
morphic to the dual of a U-reflexive module, and T are U-reflexive, we sec
from the commutative diagram

wx 0 raax
T** — I

J

T — I

that k is an isomorphism. Whence, since Imf* = Imk,
0—-(R/D*>R*->1*->0

is exact. Thus, by (18.3), R U is injective. Also, any simple left R-module is a
factor of R whence by hypothesis every simple left R-module is U-reflexive.
Therefore, every simple left R-module is U-torsionless and by (18.15) rU is
a cogenerator. Similarly, Uy is an injective cogenerator.

(c) = (a). Assume (c). Since cogenerators are faithful (8.22), jUs is a
faithfully balanced bimodule. But then, by (20.16), xR and Sg are U-reflexive.
Let M be U-reflexive, let K < M and consider the commutative diagram

0o K—M-—M/K—0

og O L

0 — K** — M** - (M/K)** - 0.

Since xU and Us are injective, the bottom row is exact. Since U cogenerates
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M/K, 0,k is monic. But now, since g, is an isomorphism, it easily follows
that g, and o are also isomorphisms (see Exercise (3.11)). O

24.2. Corollary. Let gUs define a Morita duality. Then a sequence of R-
homomorphisms

is exact if and only if
M2 S My D M
is exact. In particular, f is epic (monic) iff f* is monic (epic).

Proof. Since U defines a Morita duality, g U is an injective cogenerator.

a

Of course, if RUg defines a Morita duality, then the obvious version of
(24.2) for S-homomorphisms also holds.

Annihilators

A module xM together with its jUs-dual M* determine a “pairing” of the
two modules M, M* in U, an (R, S)-bilinear map M x M* — U defined via

(x.f) = f(x).

In general, such pairings of modules form the basis of the general theory of
annihilators.

Suppose that ;M and Ng are modules. If U is a bimodule then a
function

u:MxN->U
is (R, S)-bilinear in case forallm,me M, n,n e N,reR,and se§
wm + m',n) = p(m, n) + u(m’, n)
wm,n+ n') = p(m, n) + u(m, n')
u(rm, ns)v = ru(m, n)s.

Let u:M x N - U be (R, S)-bilinear. For each subset A = M the right
annihilator of A in N (with respect to u) is defined to be

ry(A) = {neN|ua,n =0 (aeA)}
For each subset B = N, the left annihilator of B in M (with respect to u) is
Iy(B) = {(me M|u(mb) =0 (beB)}.

Clearly, ry(A) and 1,,(B) are submodules of N and M, respectively. Thus u
induces mappings

MsryM) (M < M)
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In particular,
(1) 1y(M*) = Rejy(U) = Keroy;
(2) L, (rps(K)) = K iff U cogenerates M/K.

Proof. First recall (24.3.2) that K < l,(ry.(K)). If x el (ry.(K)) and
f:M/K — U, then the natural epimorphism ny,: M — M/K composed with f
gives fongery.K). So fong is annihilated by x. That is, f(x + K) =
fong(x) =0,and x + Ke Ker f. Thus,

Rejyx(U) 2 ly(ry(K))/K.

But every ger,.(K) (so K < Kerg) factors through ny (3.6.1). That is,
g = fong where f:M/K — U. Thus if x + K € Rejyx(U), then for each such
g we have g(x) = fo ng(x) = f(x + K) = 0; so x € l,,(ry(K)). Now for part
(1) of the last statement take K = 0 and recall (20.12). For part (2) apply
(8.13). O

Properties of Morita Dualities

Each bimodule jUg determines a duality (H', H") between the categories
rR[U] and Rg[U] of U-reflexive modules (23.1). The duality (H', H")
dualizes properties in the categories ;R[U] and Rg[ U], but in general it need
not dualize them to properties in gM and M. (See Exercises (23.4) and (23.5).)
For Morita dualities, however, we can claim more. (See also (24.2) and
Exercises (24.4) through (24.6).)

We have already proved (in (20.14)) the first statement of the following
theorem.

24.5. Theorem. Let R and S be rings, let RUs define a Morita duality, and let
rM and Ng be U~reflexive. Then M* and N* are U-reflexive, and with respect
to the canonical pairings induced by U-duality,

(1) ForeachK < M and each L < M*,

Lyry.(K)=K and ryely(L)=L;
(2) ForeachL < N and each K < N*,
erN'(L) =L and IN"N(K) = K,

(3) The lattices of submodules of M and M* are anti-isomorphic via the
mapping K — ry.(K);

(4) The lattices of submodules of N and N* are anti-isomorphic via the
mapping L Iy.(L).

Proof. Since xU and Uy are cogenerators the first assertion of (1) and (2)
follow from Lemma (24.4). So letting M* = N, we have, by the first part of (2),

Fulye(L) =L (L < M¥).
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But since g, is an isomorphism,we have for L < M*
Lyee(L) = {oy(x)|or(x)(h) = O for all he L}
= {aM(x)I h(x) = Oforall he L}

= ay(lu(L))
and hence
Fae(Iyeo(L)) = {fe M*|0p(y)(f) = Oforall ye I, (L)}
= rpe(1y(L)).

Thus the second assertion of (1) follows from the first of (2) and, by symmetry,
we have the second of (2). Now (3) and (4) follow from (1) and (2) and (24.3).(J

24.6. Theorem. Let R and S be rings. If there exists a bimodule xUg that
defines a Morita duality, then,

(1) The lattices of two-sided ideals of R and S are isomorphic;

(2) The centers of R and S are isomorphic;

(3) Every finitely generated or finitely cogenerated left R- (right S-) module
is reflexive;

(4) A left R- (right S-) module is finitely generated projective if and only if
its U-dual is finitely cogenerated injective.

Proof. For (1), recall that R* = Homg(R, U) is isomorphic to sUs as an
(R, S)-bimodule (4.5). Also for each ideal I of R, its annihilator rg.(i) is
clearly an (R, S)-submodule of R*. On the other hand, for any (R, S)-
submodule V¥ of R*, its left annihilator Ix(V) is clearly an ideal of R.
So it follows from (24.5) that the lattices of ideals of R and of (R, S)-sub-
modules of gUs are anti-isomorphic. Similarly the lattices of ideals of S and
of (R, S)-submodules of ,Us are anti-isomorphic. Thus the ideal lattices of R
and of S are isomorphic.

From the fact (24.1) that jUs is faithfully balanced it follows easily (see
Exercise (4.5)) that CenR = Cen S.

It follows from (20.13) that the finite direct sums of reflexive modules are
reflexive. Thus, since zR is a generator and zU is a cogenerator (24.1) and
since both are reflexive, (3) follows from the definition of a Morita duality.

Finally, for (4), since R is reflexive and R* =~ U, a module zM is finitely
generated projective if and only if for some integer n there is a split epi-
morphism R™ —@®— M — 0 if and only if there is a split epimorphism
0> M* —@®— U™. However, by (24.5) and (24.1), U is a finitely cogenerated
injective cogenerator, so this last condition is equivalent to M* being
finitely cogenerated injective. O

Dualities of Finitely Generated Modules

As we have noted before, there is a duality between the finitely generated left
and right modules over a division ring. We conclude this section by showing
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N' - 1,(N') (N"<N)

between the lattices of submodules of zM and of Ng.
Note that if Q is a third ring and if ;M and ;N are bimodules, then the
tensor product

®MxN->MQ®yN

is a Q-balanced (R, S)-bilinear map.
Suppose that M is a left R-module. Then R-scalar multiplication
determines an (R, Z)-bilinear map

UW:Rx M -  Mj.

Thus it is clear that the annihilators with respect to this map u are simply the
annihilators of subsets of M and R as defined in §2. That is, the present
general definition of annihilators is consistent with the earlier special one.
Indeed the proof of the following important result involves just trivial
modifications of those of (2.15) and (2.16), and so will be omitted.

24.3. Proposition. Let R and S be rings, let M, Ng and g Ug be modules and
let uy:M x N — U be (R, S)-bilinear. Then for all submodules M', M", and M,
(xeA)of M:

(1) M < M" implies ry(M') > ry(M");

(2) M’ < lyry(M');

() ry(M’) = rylyry(M');

(@) ry(Z4M,) = N ry(M,);

(5) ry(n My) 2 Z,4ry(M,).
Moreover, analogous statements hold for the S-submodules of N. O

As we mentioned in §2 the inequalities of (2) and (5) of (24.3) cannot be
strengthened to equalities. (See Exercise (2.15).) However, in certain im-
portant cases arising from dualities, they are equalities.

For the present then we shall assume that M, Ng, and ;U are modules.
Then there are (R, S)-bilinear maps

Mx M*->U and N*x N->U
defined by
(mf)f(m) and  (g,n) gln)
respectively. Thus,if A € M and B € M*,
ry(4) = {f:M > U|A < Kerf}
I4(B) = n{Kerf|feB}.

Until further notice we shall compute annihilators with respect to these
bilinear maps induced by the U-duals.

24.4. Lemma. Let ¢ M and g Ug be modules. Then for each submodule K < M
Rejpx(U) = Ly (rye(K))/K.
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that in order to have a duality between zFM and FMy it is necessary that R
be left artinian and S be right artinian.

24.7. Lemma [Osofsky]. If a bimodule gUs defines a Morita duality, then no
infinite direct sum of non-zero left R-modules is U-reflexive.

Proof. Suppose that Us defines a Morita duality and that (M,),., is an
indexed set of non-zero submodules of M such that M = & M, is U-
reflexive. Let (p,)..4 be the projections for this direct sum. Since each M, is
U-torsionless, we see at once that there is an fe M* such that (f| M,) # 0 for
each a € A. Since N, Ker p, = 0, we have by (24.5) that

T rys(Kerp) = M*.
Thus

S=6s + ... + 4,
with
gaiE(M.(Kerp,i) i=1...,n).
Ifae A\{a,,...,a,} then M, = Kerp, (i=1,...,n) and
fM,) € g, (M) + ... + g, (M,) = 0.
Thus we have 4 = {a,, ..., a,}. O

24.8. Theorem. Let R and S be rings. Then the following are equivalent :

(a) There exists a duality between the category FM of finitely generated
left R-modules and the category FMg of finitely generated right S-modules;

(b) R is left artinian and some bimodule R U defines a Morita duality;

(c) S isright artinian and some bimodule g Ug defines a Morita duality.
Moreover, if R, S and U satisfy either of the last two conditions, then a left
R- (right S-) module is U-reflexive iff it is finitely generated iff it is finitely
cogenerated.

Proof. (a) = (b). Assume (a). Then by (23.5) there is a bimodule pUg that
defines a duality between zFM and FMg; and all members of ;FM and FMg
are U-reflexive. Now since each factor module of zR, S, zU = (S)* and
Us = (R)* is finitely generated we have by (24.1) that U defines a Morita
duality. Hence it follows from (24.5) that every finitely generated left
R-module M, being isomorphic to the U-dual of the finitely generated
S-module M*, is finitely cogenerated. Thus R is left artinian by (10.18).

(b) = (a). Suppose that R is left artinian and U defines a Morita .
duality. By (24.6.3) every finitely generated left R- (right S-) module is U-
reflexive. Moreover, if M e zFM, then M is finitely cogenerated (10.18) and
by (24.5) M* € FMg. Let N € FM. Then N* is U-reflexive. So, since U defines a
Morita duality, the semisimple module N*/Rad N* cannot be an infinite
direct sum of simples (24.7). Thus N*/Rad N* is finitely generated, and hence
by (15.21), N*ezFM. We have now shown that U defines a duality
between zFM and FMg.
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(a) <> (c). By symmetry.
The last statement follows from (24.7), (15.21), and (24.5). O

24.9. Corollary [Azumaya, Morita). Let R and S be rings and let Ug be a
bimodule. Then

Homg(_, U) and Homg(_, U)

is a duality between the categories sFM and FMg iff R and Sg are artinian,
rU and Ug are finitely generated injective cogenerators, and g Uy is balanced.(]

(The conditions of this corollary are not the weakest possible. See Morita
[58a] and Azumaya [59].)

24. Exercises

1. Prove that for no rings R and S is there a duality between ;M and M.

2. Prove that for no ring R and bimodule Uy does ,Uy define a Morita
duality.

3. Let xM, Ng, and U be modules, and let u:M x N - U be (R, S)-
bilinear. Prove that if foreach M’ < M andeach N' < N

lyra(M') =M’ and ryly(N') = N/,
then for each indexed set (M,),. , of submodules of M,
rv(naM,) = Z,ry(M,)
and for each indexed set (N,),. 4 of submodules of N,
Lu(n 4Ny = Z41u(N,).

4. Let qUg define a Morita duality. Let M be U-reflexive. Prove that:

(1) M is simple, semisimple, indecomposable, of finite length n, res-
pectively, iff M* = Hom(M, U) is.

(2) M is finitely generated (noetherian) iff M* is finitely cogenerated
(artinian).

5. Let gUg define a Morita duality. Let M;, M, be U-reflexive, and let
f:M,; - M,. Prove that:

(1) fis a superfluous epimorphism (essential monomorphism) iff for
each h in the category zsR[U], fh is epic implies h is epic. (hf is monic
implies h is monic.) [Hint: See (5.13) and (5.15).]

(2) f:M; > M, is a superfluous epimorphism iff f*:M% — MY} is an
essential monomorphism.

6. Again let s Ugdefine a Morita duality and let M be U-reflexive. Prove that:
(1) If M is finitely generated, then E(M*)* is a projective cover for M.
(2) If M is finitely cogenerated and P(M*) is a projective cover for M*,
then (P(M*))* is an injective envelope of M.

(3) Soc M* =~ (M/Rad M)* and M*/Rad M* = (Soc M)*.
(4) If R is left artinian, then M is faithful over R iff M* is faithful over S.
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7.

10.

11.

12.

13.
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Let gUs define a Morita duality. Since Ug is isomorphic to (xR)* and
rU is isomorphic to (S5)*, there exist lattice anti-isomorphisms between
the submodule lattices of xR and Ug and between those of Sg and gU.
(See (24.5).) Prove that:

(1) Foreach zxI < gRand each V5 < Us, Ig(ry(I)) = Iand ry(Ig(V)) = V.
(2) For each Kg < Sg and each tW < pU, ry(ly(K)) = K and
Ly(rs(W)) = W.

. Prove that if ;U defines a Morita duality, then:

(1) R/J(R) and S/J(S) are semisimple. [Hint: The sum of all minimal
submodules in Uy is the sum of a finite number of them. ]

(2) Soc gU = Soc Us. [Hint: By (1) the intersection of the maximal left
ideals in R equals the intersection of the maximal two-sided ideals in R.]

. (1) Let R be a ring with radical J = J(R) and let ;T be simple. Prove

that if R/J is semisimple and J? = 0, then E(T)/T = Homg(J, T). [Hint:
Exercise (20.15).]

(2) P. M. Cohn [61] has shown that there is a division ring D and a
division subring C of D such that D is finite dimensional and (D is not.
Let R be the ring of all matrices

_ d;, d,

T 0 c
with d,,d, € D and ¢ € C. Prove that R is both left and right artinian but
that . FM has a duality with FMg for no ring S. [Hint: Let T < R consist
of those r with d, = ¢ = 0. Then T is simple and E(T) is not finitely
generated (use (1)). Apply (24.9).]
A ring R is a cogenerator ring in case both xR and Ry are cogenerators.
Prove that for a ring R the following are equivalent: (a) R is a cogenerator
ring; (b) xR and Ry are injective cogenerators; (c) gRg defines a Morita
duality. [Hint: (a) = (b). By (a) there isaset A with xR < E = E(R) < gR*.
Ifn, (1) = e,foreachae 4,let] = X ,e,R < Rg. Thenlz(I) =0sol = R.
Say 1 = X, e,r, with almost all r, zero. Then x+— Z , m,(x)r, is a split
epimorphism E — R.]
A ring R has the double annihilator property in case

rele)=1 and  lerg(l) =T

for each right ideal I and each left ideal I'. Suppose that R has the double
annihilator property. Then prove that the following are equivalent for R:
(a) left artinian; (b) right artinian; (c) left noetherian; (d) right
noetherian.

Prove that aring R is a cogenerator ring iff xR and Ry are injective and R
has the double annihilator property. [Hint: (18.15) and Exercise (24.7).]
A ring R is quasi-Frobenius in case it is an artinian cogenerator ring.
Prove that if R is artinian, then the following are equivalent: (a) R is
quasi-Frobenius; (b) xR and Ry are injective; (c) R has the double
annihilator property; (d) the gRg-dual ( )* defines a duality between
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14.

15.

gFMand FMg. [Hint: (b) = (a). Exercise (18.31). (c) = (b). Let I < xR and
let f:I — R. Induct on the length of a minimal generating set for . If
I = Rx, then f(x) e rglz(x) = xR, so f(x) = xa for some a € R. Suppose
I =1, + 1, and f(x;) = x;a; for all x;e I, (i = 1, 2). Then

a; —ayerg(ly n L) = rp(ly) + rx(l;)

by Exercise (24.3), say a, — a; = b; + b,. Then f(x) = x(a, + b,) for
all xe L]

(1) Prove that every Frobenius algebra is quasi-Frobenius. (See Exercise
(21.9))

(2) Prove that every semisimple ring is quasi-Frobenius.

(3) Prove that if R=R, x ... x R,, then R is a cogenerator ring
(quasi-Frobenius ring) iff each R; is.

(4) Prove that if R = S, then R is a cogenerator ring (quasi-Frobenius
ring) iff S is.

Quasi-Frobenius rings (introduced by Nakayama in 1939) have moti-
vated much of the study of duality via bimodules. Each of the following
conditions serves to characterize them. Although there is not room for
the converses here, prove that a quasi-Frobenius ring R satisfies each of:
(1) R is left noetherian and left or right self-injective.

(2) R is left noetherian and xR or Ry is a cogenerator.

(3) R is left or right noetherian and every faithful left R-module is a
generator. '

(4) R is left (right) artinian and the gRgz-dual of each simple module is
simple.

(5) Every projective left R-module is injective.

(6) Every injective left R-module is projective.



Chapter 7

Injective Modules, Projective Modules, and Their
Decompositions

In this chapter we return to the study of decompositions of modules
—specifically of injective and projective modules. First we examine char-
acterizations of noetherian rings in terms of the structure of injective
modules. Then, after considering the decomposition theory of direct sums
of countably generated modules, we proceed to the study of semiperfect and
perfect rings (those over which all finitely generated modules and, res-
pectively, all modules have projective covers). In the final section we show
that the structure of the endomorphism ring of a finitely generated module
determines whether direct sums of copies of that module have decompositions
that complement direct summands.

§25. Injective Modules and Noetherian Rings—The Faith-Walker
Theorems

Recall (18.13) that a ring R is left noetherian if and only if the class of injective
left R-modules is closed under the formation of direct sums. In this section we
pursue this further and study the relation between the decomposition theory
of the injective modules in zM and the finiteness conditions of R.

The annihilator Ig(X) in R of a subset X of a left R-module M is a left
ideal of R; such left ideals will be called M-annihilator left ideals. The set
Zr(M) of all M-annihilator left ideals, ordered by set inclusion, is a complete
lattice where for each &/ & Z5(M) the meet and join in ZR(M) of o/ are

Y4 and  l(ry(Zs)),

respectively. (See Exercise (2.16).) In general, #z(M) is not a sublattice of the
lattice of left ideals of R since not every sum of M-annihilator left ideals need
be an M-annihilator left ideal. (See Exercise (2.15).) The lattice FR(M) is
anti-isomorphic to the lattice #,,(R) of annihilators in M of subsets in R via
the inverse maps

Isry(I)  and  Aslg(A)

for each I € #¢(M) and each A € Z,,(R). (See Exercise (2.16).) Now if zE is an
injective module, the lattice #;(E) determines whether E is injective for
all sets A.

288



Injective Modules and Noetherian Rings—The Faith-Walker Theorems 289

25.1. Theorem [Faith].  The following statements about an injective left
R-module E are equivalent :

(@) E'Y is injective for all sets A;

(b) The E-annihilator left ideals in R sausfy the ascending chain condition;

() E™ is injective.

Proof. (a) = (c). This implication is immediate. (Also note that Exercise
(25.4) yields its converse directly.)

(c) = (b). Assume that (c) holds but that (b) does not. Then there is a
strictly increasing sequence

Lclc
in ZR(E). The right annihilators of this sequence
re(1) o rg(ly) > ...
are strictly decreasing. Choose x, € rg(I,)\rg(l, ) and let
I=vuy7, 1,

Then for each ael there exists an n > 0 such that ax,,, =0 for all
k =1,2,.... Thus, the map

fiar(ax,, ax,,...) (ael)

is an R-homomorphism f:I — E™, But now by The Injective Test Lemma
there exists a

y=1-Yn0,...)€ EV
such that, for allae I
(ax,, ax,,...) = f(a) = ay
= (AY1y.er @Yn 0,...).

But this is contrary to our choice of x,+, € rg(l,+2)-

(b) = (a). Assume (b). Then every non-empty collection of E-annihilator
left ideals contains a maximal element. (See Exercise (10.9).) Let I < 4R and
consider an R-homomorphism

f:I - EW,

Since E“ is injective and since E‘ < E“, there exists an x € E4 such that
fla) = ax for all ae I. For each subset B < A4 let xy = tzmp(x), i€.,

(xg) = n,(x), ifaeB
malXp) = 0, otherwise.

If we let F range over the finite subsets of A, then by hypothesis, the set of
E-annihilator left ideals of the form

Ip(x 0r) = Ip( {“a(x)la € A\F})
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contains a maximal element lg(x 4 r,). By maximality, if F is a finite subset
of A, then

F 2 F, implies Ig(x4r) = lr(xqr,)
Now for each ae I, since f(a) e E“, there is a finite subset F, 2 F, such that
am(x) = m(ax) = n(f(@) = 0 (x€ A\F,).
Thus, for every ae I we have a € Ig(x 4\r,) = Ig(x4,), Whence
fla) = ax — ax 4r, = axg, (ael).

But since x, € E¥ it follows from the Injective Test Lemma that E¥ is
injective. O

We may view Theorem (18.13) as a test to determine whether a ring is
noetherian. The preceding theorem together with the next lemma gives rise
to a much more economical test.

25.2. Lemma. Let I be a left ideal of R and let M be a left R-module. Then
M cogenerates R/I if and only if I is the annihilator of a subset of M.

Proof. 1t is easy to check that
lxrpdD)) = ~{Kerf | f:xR - M with I < Kerf}.
Hence ly(ry(1))/I = Rejg,(M). 0

25.3. Theorem. Let R be a ring with minimal left R-cogenerator C,. Then
the following are equivalent :

(a) R is left noetherian;

(b) An infinite direct sum of copies of some left R-cogenerator is injective;

(€) CW is injective.

Proof. (a) = (c). Recall that the minimal cogenerator is a direct sum of
injective (envelopes of simple) modules (18.16). Thus C% is a direct sum of
injective modules. So this implication follows from (18.13).

(c) = (b). This is immediate.

(b) = (a). By (25.1) and (25.2). O

Decompositions of Injective Modules

25.4. Lemma. The endomorphism ring of every indecomposable injective
module is local.

Proof. Let E be an indecomposable injective left R-module. Let
t € End(gE). Then since

Kert n Ker(1 —t) =0,

it follows from (18.12) that either t or 1 — ¢ is monic. But the image of a
monomorphism E — E is a direct summand of E (18.7), so eithertor 1 —t1s
invertible. Thus End(zE) is local (see (15.15)). a
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25.5. Proposition. If an injective module E has an indecomposable decom-
position E = @® ,E,, then that decomposition complements direct summands.

Proof. By the above lemma an indecomposable decomposition of an
injective module E = @, E, satisfies the hypothesis of Azumaya’s Theorem
(12.6). Let K be a direct summand of E and choose a subset B & A maximal
with respect to

(®sE) " K = 0.

Then the submodule (@3 E;) + K = (@ E;) ® K is injective (18.2); thus for
some E' < E,

E=E®(@E) ®K

We claim that E' = 0. For if E’ # 0, then by (12.6) E' contains an indecom-
posable direct summand and there is a y € 4 and a direct summand E” of E’
such that

E=E®E @@k ®K)

contrary to the maximality of B. Thus E = (@ E;) ® K, and the given
decomposition complements direct summands. O

The injective modules over R need not have indecomposable decom-
positions. Indeed, we now prove that they all do if and only if R is noetherian.

25.6. Theorem. For a ring R the following are equivalent :

(a) R is left noetherian;

(b) Every injective left R-module is a direct sum of indecomposable modules;

(c) Every injective left R-module has a decomposition that complements
direct summands;

(d) Every injective left R-module has a decomposition that complements
maximal direct summands.

Proof. (a) = (b). Let E be an injective left module over a left noetherian
ring R. If 0 # x e E, then by (18.12.3) we may assume E = E(Rx) @ E’ for
some E' < E. If (M), is a set of independent submodules of E(Rx), then
(Rx N M,),. is an independent set of submodules of Rx. Thus, since Rx is
noetherian, all but finitely many of the Rx nM, are zero. But Rx = E(Rx),
so it follows that E(Rx) contains no infinite independent set of non-zero
submodules. Thus it contains no infinite ascending chdin of direct summands
and, by (10.14), E(Rx) = E, ® ... @ E, where each E; is indecomposable.
This shows that every non-zero injective E contains an indecomposable
direct summand. Now, by The Maximal Principle there exists a maximal
independent set {E,|a€ A} of indecomposable direct summands of E. Let
E’ = @ ,E,. Then, since R is left noetherian, E’ is injective and E = E' @ E".
But E” must be zero, for otherwise, since it is injective, it contains an inde-
composable direct summand. Therefore E = @ ,E, is an indecomposable
decomposition of E.

(b) = (c). This follows from (25.5).
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(c) = (d). This is trivial.
(d) = (a). Let & be an irredundant set of representatives of the simple left
R-modules (see (18.16)); then

Co = @res E(T),
is the minimal cogenerator for ¢M. Let
E = E(C).
Then by hypothesis there is a decomposition
E = @,E,

that complements maximal direct summands. For each of the simple modules
Te, let

A(T) = {xe A|E, = E(T)}.

Now for each n > 0, the injective submodule E(T)™ is isomorphic to a direct
summand of E. So by (12.2)

card(A(T)) = n,
and hence A(T) is infinite. Let
B = U 1.4 A(T).

Then it is clear that C¥ is isomorphic to a direct summand of the direct
summand @zE; of E. Therefore C§¥ is injective, and by (25.3) R is left
noetherian. a

The Main Faith-Walker Theorem

A module M is c-generated in case there is an indexed set (x,),.c that spans
M with ¢ = card C. Thus (see (8.1)) if C is a set, then M is card C generated if
and only if M is an epimorphic image of the free module R, It is clear
therefore that every epimorphic image of a c-generated module is c-generated.
In general, of course, submodules of c-generated modules need not be
c-generated.

25.7. Lemma. Let c be an infinite cardinal. Let M = ® M, andlet N < M.
If N is c-generated, then there is a subset B < A with cardB < c and
N < ®pM,.

Proof. Let (x,),.c span N and let card C = c. Then each x, is in a finite
sum of the M,, so there is a function F:y — F(y) from C to the finite subsets of
A with x, € @M, for each ye C. Set B = UF(y). Then since C is infinite,
card C > card B. d

Observe that if ./ is a set of modules, then each module in the set is
c-generated where

¢ = card(VH).
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Now an indecomposable injective left R-module must be the injective
envelope of each of its non-zero submodules. (See (18.12.3).) It follows that
the set '

{E(R/D|I < R}

contains an isomorphic copy of each indecomposable injective. Since this is
a set, we have that there is a cardinal number ¢ such that every indecompos-
able injective left R-module is c-generated. Then it follows from Theorem
(25.6) that if R is left noetherian, there is a cardinal number ¢ such that every
injective left R-module is a direct sum of c-generated modules. In fact, the
converse is true.

25.8. Theorem [Faith and Walker]. A ring R is left noetherian if and only
if there exists a cardinal number c such that every injective left R-module is a
direct sum of c-generated modules.

Proof. As we have just observed, the condition is necessary. Conversely,
assume the existence of a cardinal number satisfying the stated condition.
It is clear that any larger cardinal will then also satisfy this condition. Now
to prove that R is left noetherian it will suffice to show that if gE is injective,
then E™ is also injective (25.3). So let zE be injective. Now any module
spanned by a set C has at most (card R) - (card C) elements. Thus, our
assumption implies that there is an infinite cardinal number c that is greater
than both card E and card R and such that every injective module is a direct
sum of modules of cardinality at most c. Let B be a set with

card B > 2°.

The direct product E? is injective (18.2), so by hypothesis
EB = @A Ex

where each E, has cardinality at most c. We claim that there is a partition
{Aq, Ay, Ay, ...} of A such that
cardA, < c m=12..)

and
('BA,.E::QII@Q:I (n= 1121)
with @, = E. Once this claim is established, we will be done, for assuming

our claim,

EP = (@710, © (@721 Q) @ (®4,E))

and so EN =~ @, Q,, a direct summand of an injective, is injective. Now,
to establish the claim suppose A4,, ..., 4, are disjoint subsets of 4 such that
card A; < c(i=1,...,n)and

OLE =000 (=1..n
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with Q; =~ E. Set
D=A,u...UA4,

and observe that card(®,E,) < n-c* = c. For each fe B, let 15:E — E® be
the natural injection. Since {(@pE,) N L,,(E)|B € B} is a set of independent
submodules of @, E, and since @ E, has at most 2°(< card B) subsets, there
exists a feB with @pE, N 4(E) = 0. Thus the projection of E® on
@ ap E, is monic on 14(E). In particular,

®A\DE= =0V

for some Q =~ gE. So by (25.7) there is a subset A4,,, & A\D with
card Ay < ¢ with Q < @, , E, Now a standard induction argument
establishes the existence of 4,, 4,,.... Finally, set A, = A\U, A4,. O

25. Exercises

1. A non-zero module H is uniform in case each of its non-zero submodules
is essential in H. It is co-uniform in case each of its proper submodules is
superfluous in H.

(1) Prove that a non-zero module H is uniform iff E(H) is indecompos-
able.

(2) Suppose that p:P — H is a projective cover. Prove that H is co-
uniform iff P is End(g P) is local.

2. The Goldie dimension G.dim(M) of a module M is the infimum of those
cardinal numbers ¢ such that card A < ¢ for every independent set
(M,),es of non-zero submodules of M. Thus, G.dim(0) =0 and
G.dim(M) = 1iff M is uniform. Prove that:

(1) For a module M the following are equivalent: (a) G.dim(M) = n;
(b) there exists an independent sequence H,,..., H, of uniform sub-
modulesof M with H, @ ... ® H,= M, (c) EM) = E; ® ... ® E, with
each E; indecomposable.

(2) A module M has finite Goldie dimension iff M contains no infinite
independent set of non-zero submodules.

(3) If M, and M, are R-modules, then

G.dim(M,) + G.dim(M,) = G.dim(M, ® M,).

(4) If R is left noetherian and c is a cardinal number, then the following
are equivalent: (a) G.dim(M) = c; (b) there exists an independent set of
uniform submodules (H,),.c with card C = c and @, H, = M; (c) EM)
= @ E, with card C = ¢ and each E, indecomposable.

3. Prove that the following are equivalent: (a) R is left noetherian; (b) UY
is quasi-injective whenever R U is; (c) E' is quasi-injective whenever zE
is injective.

4. Prove that @ ,E, is injective if @¢E, is injective for each countable
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subset C = A. [Hint: If @ ,E, is not injective then there exists I < zR
and f:I - @ 4E, such that n,(Imf) # O for a countably infinite number
ofae A]

5. Prove that R is left noetherian iff ® ., E(T,) is injective for each sequence
Ty, Ty, ... of simple left R-modules.

§26. Direct Sums of Countably Generated Modules—With Local
Endomorphism Rings

The results of §12 show the importance of those decompositions M = @ M,
in which each M, has a local endomorphism ring. It is apparently an open
question whether the direct summands of such a module M also have
decompositions whose terms have local endomorphism rings. In this section
we show that if in addition each M, has a countable spanning set, then every
direct summand of M does have such a decomposition.

A Theorem of Kaplansky

Recall that a module N is c-generated in case N has a spanning set (x,),ec
such that card C = c. In particular, a module with a countable spanning set
is countably generated. The following important theorem was first proved by
Kaplansky in the countably generated case, and later extended to its present
form by C. Walker.

26.1. Theorem. Let ¢ be an infinite cardinal. If a module M is a direct sum
of c-generated submodules then so is every direct summand of M.

Proof Let M = ® , M, and suppose that each M, is c-generated. Suppose
alsothat M = K @ L and let

(KB)BEB and (L'/)VEC

denote the c-generated submodules of K and L, respectively. Let 2 denote the
set of ordered triples

(4, B, C)
such that
(i) A=A BcB C<cC,;
(i) @ , M, = (@5 Kp) ® (@c-L,)
Define a partial ordering < on 2 by (4, B, C') < (4", B", C") in case
A€ A", B = B", C' = C". It is easy to check that (, <) is inductive; so
there is a maximal element

(A4',B,C)e?.

TO prove the theorem we shall show that A’ = A. Let e and f be the
Idempotents in End(xM) for K and L, respectively, in the decomposition
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M =K@ L. Suppose A" + A, and let ae A\A". By Lemma (25.7) each
c-generated submodule of M is contained in a sum of at most ¢ of the M,.
In particular, if D = A is of cardinality at most ¢, then both

(®pM;)e and (®pM,) f

are c-generated submodules of M, so their sum, also c-generated, is contained
in a sum of at most ¢ of the M,. So by a standard induction argument it follows
that there exists an increasing sequence

D,cD,c..
of subsets of 4 each of cardinality at most ¢ such that
M, < Me+ M,f< ®p M,
@p,M; < (®p,M;)e + (®p, M) f < ®p, M,

®p,M; < (@p,My)e + (@p,M,)f < @p, ,, M,

Set D = X, D,. Since the M, are independent and a ¢ A’, it is clear that
D & A'. Note also that

(®pM;)e < ®p M, and (®pM;)f < ®pM;
and that @, M, is c>-generated = c-generated. Now set
M =@®cM. K =®yK,, L=@&cL,
Then by hypothesis M’ = K' @ L. Also set
M'=®,,pM, K'=M'e L =MTf
Then
K'=(K'+L+ @®pM;le < K' + (@®pM;) < M",
and
L=(K+L+@M)f<L+ (®pM;)<M".

So since M" < K" @ L, we infer that M" = K" @ L. Now K’ and L are
direct summands of M contained in K” and L', respectively. So for some
submodules K} < KandL| < L,wehave K" = K'® Kjand L' = L ® L;.
Thus

M=K'@®L=Mao®K,®L)).
Now
Ki®L, =2=M'/M = ®p 4 M,

is non-zero and c-generated. This contradicts the maximality of (4', B, C’)
in#. O

Every free module is a direct sum of countably generated (indeed cyclic)
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modules. Since every projective module is a direct summand of a free
module, it follows at once that

26.2. Corollary. Every projective module is a direct sum of countably
generated modules.

Also, Theorem (26.1) combines with (25.8) to yield

26.3. Corollary. A ring R is left noetherian if and only if there exists a left
R-module H such that every left R-module can be embedded in a direct sum of
copies of H. O

Proof. Since a module can be embedded in an injective module, the
necessity follows from (25.8) and the fact that every c-generated module is
isomorphic to a submodule of the direct sum of the modules in the set
{RO/K|K < R©} when card C = c.

Conversely, if H satisfies the stated condition then every injective left
R-module is isomorphic to a direct summand of a direct sum of copies of H.
Hence this implication follows from (26.1) and (25.8). O

Countably Generated Modules with Local Endomorphism Rings

Before we state the main result of the section, we pause to insert a lemma of
some interest in its own right. Recall that if a module has decompositions

M=@®M,=K®L

with K # 0 and each End(M,) a local ring, then Azumaya’s Theorem (12.6)
implies that K has a direct summand isomorphic to one of the M,. The next
lemma implies that on the other hand each M, is isomorphic to a direct
summand of either K or L.

26.4. Lemma. Let M be a module with a decomposition M = K @ L. Let N
be a direct summand of M such that N = N, @ ... ® N, with each End(N;) a
local ring. Then there exist direct summands K’ < K and L < L such that

M=N®K @@L

Proof. Suppose that N, H, H’, K and L are submodules of zM, that
End(gxN) is a local ring, and that

M=NOH®H =H®K®L.
We shall prove that there are direct summands K’ < K, L < L such that
M=N®H®K ®L
Then with an obvious induction argument
(Nyyy =N and N,®..®N,=H)

the proof of the Lemma follows. Now let ¢, ¢, f be idempotents in End(xM)
with e and ¢’ orthogonal,
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K=Me, L=Me, H=M(l—-e-¢)
and
N=Mf, H®H =M(l -/

Since fEnd(xfM)f =~ End(zxN) is a local ring with identity f, and since
f=fef + feff (for f(1 — e — €)f = 0), we may assume that fef is invertible
in fEnd(gM) f. So let s € End(xM) with

s=fsf and sfef = fefs = f.
Then in End(zM), (ese)® = e(sfef)se = efse = ese so that
M = (Imese) ® (Ker ese).
ButL® H = M(1 — e) < Kerese, so
Kerese = (Kerese)n (K ® L @ H)
= ((Kereseyn K)® L ® H.

Set
K’ = (Kerese)n K.
Then
M=MesedK ®LO®H
and

p:mi— mese
defines the projection of M on Mese along K' @ L @ H. Consider
(p|N):N — Mese.
Since
Mese = (Mes)ese = (Mf)ese = Nese = Mese,
the image of (p|N) is Mese. And since
fese = (fef )s(fe)

(p|N)is a composite of monomorphisms. Thus ( p| N)is an isomorphism and
(see 5.5\ M = N@® K' @ L @ H. This establishes the initial claim and hence
also the lemma. O

Now it is not difficult to prove the main result of this section
26.5. Theorem [Crawley-Jgnsson-Warfield]. If a module M is a direct sum

of countably generated modules, each with local endomorphism ring, then so is
every direct summand of M.

Proof. By hypothesis M = @ , M, with each M, countably generated and
with each End(M,) local. By Theorem (26.1) it follows that each direct
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summand of M is a direct sum of countably generated submodules (neces-
sarily direct summands) of M. So it will suffice to prove the result for a
countably generated direct summand of M. Thus, let

M=K@®L

with K countably generated. Let x € K. Then there is a finite set G = A with
x€ ®gM,. Set N = @gM,. By (26.4) there are direct summands K' < K
and L < L such that

M=N®K ®L
Let
H=Kn(N®L).
Then xe K n N € H, and by modularity
K=KnM=Kn(N®L)®K)
=H®K.

Since L is a direct summand of L, there is a submodule I < L with
L =1@® L. Thus

NzM/K'@L)=H® L

But by (12.7) the decomposition N = @, M, complements direct summands.
Hence, in particular, H is isomorphic to @ M, for some finite subset F = A.
Now let x,, x,, ... be a spanning set for K. Assume that there exists a direct
decomposition

K=H ®..®H,®K,
of K and finite subsets Fy, ..., F, of 4 such that
X1, X, €H, ®...® H,
H, = @M, i=1..n.
Then there exist h,e H, @ ... ® H, and k, € K, with
Xpy1 = h, + k,.

Since k, e K, the above argument assures us that there exist submodules
H,,, K,,, of K, and a finite set F,,, & 4 with

K,, = H,,+1 @ Kn+1y
kneHn+l = ®F..,1Ma'

Thus a straightforward induction argument shows that there exists a
sequence H,, H,, ... of submodules of K and a sequence F,, F,, ... of finite
subsets of A with

K=®=,H, and H,=®; M, (n=12..).

This completes the proof of the theorem. O
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26.6. Corollary. Let M = @, M, where each M, is countably generated
and has a local endomorphism ring. If M = @ Ny is any other decomposition
of M, then there is a partition (Ag)s.p of A such that

Ny= @, M, (BeB).

Proof. This is an immediate consequence of Theorem (26.5) and
Asumaya’s Theorem (12.6). O

Since R = End(xR) (see (4.11)), Theorem (26.5) also tells us that pro-
jective modules over local rings are free. We record this as the following
corollary.

26.7. Corollary. Every projective module over a local ring is free.

This result, originally proved by Kaplansky, is very likely the inspiration
for a major portion of the results in the next section.

26. Exercises

1. Let € be a class of left R-modules and let zM be countably generated.
Suppose that, for every direct summand K of M, each element of K
belongs to a direct summand of K that is isomorphic to a member of €.
Prove that M is isomorphic to a direct sum of members of €.

2. Let R be a von Neumann regular ring. Prove that:

(1) Every finitely generated submodule of a projective R-module is a
direct summand. [Hint: Let K be a finitely generated submodule of
R™. Let F = Homg(R™, _). Then F:zM — p,rmyM is a category
equivalence and 0 — F(K) — F(R™) splits.]

(2) If g P is projective then there exist idempotents (e,),. 4 in R such that
P~ ®,Re,.

3. Prove that the following are equivalent: (a) R is a local ring; (b) Every
projective left R-module is free and has an indecomposable decomposi-
tion that complements maximal direct summands; (c) Every finitely
generated projective left R-module is free and has a decomposition that
complements direct summands; (d) The decomposition
R = { (R) @ 1,(R) complements direct summands.

4. Indecomposable injective modules have local endomorphism rings (25.4)
and by (25.6) every direct sum of indecomposable injective modules over
a noetherian ring satisfies the conclusion of the Crawley-Jgnsson—
Warfield Theorem (26.5). Show that the field of fractions of R[X] (i.e.,
the rational functions) is an indecomposable injective module over a
noetherian ring that is not countably generated. [Hint: Exercise

(18.13)] O
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§27. Semiperfect Rings

Let R be a local ring and let zP be finitely generated projective. Then P/JP
is a vector space over the division ring R/J(R). A remarkable fact suggested
by Exercise (26.3) is that the very civilized decomposition theory of the
vector space P/JP “lifts” to that of the module P. The ability to perform such
lifting of decompositions is not restricted to local rings, but it clearly does
depend on the regular module gR. Since the decompositions of gR are
determined by the idempotents of R we turn now to a study of a phenomenon
known as

Lifting Idempotents

The idempotents in a ring R represent idempotents in every factor ring of R
(see (7.10)). However, idempotent cosets in a factor ring of R need not have
idempotent representatives in R. For example, Z has but two idempotents,
while Z¢ has four.

Let I be an ideal in a ring R and let g + I be an idempotent element of
R/I. We say that this idempotent can be lifted (to e) modulo I in case there is
an idempotent eecR such that g + I = e + I. We say that idempotents
lift modulo I in case every idempotent in R/I can be lifted to an idempotent
in R

Intuitively, the smaller the ideal I, the more likely that idempotents lift
modulo I. A nil ideal is small enough.

27.1. Proposition. If I is a nil ideal in aring R then idempotents lift modulo I.

Proof. Suppose that I is a nil ideal in R and g € R satisfiesg + I = g*> + I.
Then letting n be the nilpotency index of g — g*> we can use the binomial
formula as follows

0=1(g9-g%) = Zi-0@g" ™ (= g% = Zi-o(= D)g" "
=g = ¢ @ (=D R
to obtain t = ZP_,(—1)*"*(2)g* "' € R such that
g =4g""t and gt=1g
Now
e =g't" = (g"*lt)n = gnt i+
=gt U= =gt = o2
s0 e = g"t" is idempotent; and also
g+l=g"+I=g"""t+1
=@ +D+D=@+De+D)=gt+1
sothatg+I=(g+I)"=(gt+I)"=e+ L a
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Orthogonality Relations

In general, if a pair of orthogonal idempotents g, + I and g, + I in R/I lifts
to idempotents e, and e, in R, there is no guarantee that e, and e, will be
orthogonal. (For example, consider an upper triangular matrix ring.) We
propose to show, however, that for each ideal I = J(R) (e.g., if I is nil)
orthogonality can be preserved. This fact hinges on properties of projective
covers established in the following two lemmas.

27.2. Lemma. Let xM have a decomposition M = M, @ ... ® M, such that
each term M; has a projective cover. Then an R-homomorphism

p:P—-M

is a projective cover if and only if P has a decomposition P =P, @ ... ® P,
such that for eachi = 1,...,n

(p|P):P; > M,
is a projective cover.

Proof. Let ¢q;:Q, - M, (i = 1, ..., n) be projective covers. Then it follows
inductively from (16.11) and (5.20) that

@'19:0,®..00 -M&..0OM,

is a projective cover. Thus, letting q; = {p| P,) we see that the condition is
sufficient. The necessity follows from the last statement of (17.17). O

27.3. Lemma. A cyclic module xM has a projective cover if and only if
M = Re/le for some idempotent e € R and some left ideal I = J(R). For eand I
satisfying this condition the natural map

Re — Re/le - 0
is a projective cover.

Proof. The natural map Re — Re/Ie has kernel Ie. So if I < J(R), then
Ie = J(R)e « Re. Conversely, suppose g M has a projective cover p:P — M.
If M is cyclic, then there is an epimorphism f:R — M. So by (17.17) we may
assume R = P @ P’ with p = (f|P). Thus for some idempotent e € R, P = Re
and Ie = Ker p « Re. Whence Ie < J(R)e < J(R) and M = Re/Ie. O

Now we return to the problem of lifting orthogonal sets of idempotents.

27.4. Proposition. Let R be a ring and let I be an ideal of R with I = J(R).
Then the following are equivalent :

(a) Idempotents lift modulo I;

(b) Every direct summand of the left R-module R/I has a projective cover;

(c) Every (complete) finite orthogonal set of idempotents in R/I lifts to a
(complete) orthogonal set of idempotents in R.

Proof. (a) = (b). A direct summand of xR/I is also one of g,R/I and so is
generated by an idempotent of R/I. Assuming (a), we can lift any such
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idempotent, so it will suffice to prove that if ee R is idempotent, then
(Re + I)/I has a projective cover in gM. But

(Re + I/I = Re/(I n Re) = Re/le
and so (27.3) applies.

(b) = (c). Let g4, ..., g, € R be a complete orthogonal set of idempotents
modulo I. (This will suffice since any finite orthogonal set can be expanded
to a complete orthogonal set) Since I < J(R)« R, the natural map
n;:R — R/l is a projective cover. By hypothesis each term in

R/I = (R/)(g, + D@ ... ® (R/)(ga + 1)

has a projective cover, so by (27.2) and (7.2) there is a complete orthogonal set
of idempotents e, ..., e,€ R such that

(R/I)(e; + I) = ny(Re;) = (R/I)(g; + 1) i=1,..,n).
But then applying the uniqueness part of (7.2.c) we have
e+1=g+1 i=1,...,n).
(c) = (a). This is clear. O

The Basic Characterizations

A ring R is called semiperfect in case R/J(R) is semisimple and idempotents
lift modulo J(R). So for example, local rings are semiperfect. From (15.16),
(15.19) and (27.1) it follows that a left (or right) artinian ring is semiperfect.
It is worthy of note that in a semiperfect ring the radical is the unique largest
ideal containing no non-zero idempotents. (See (15.12).)

The next theorem, which gives the basic characterizations of semiperfect
rings, depends on the following lemma. Note that this lemma is a dual of the
fact (18.12.2) that if M <3 N, then the injective envelopes of M and N are the
same.

27.5. Lemma. Let f:M — N be a superfluous epimorphism and let
p:P — M be an R-homomorphism. Then p: P — M is a projective cover if and
only iffp: P — N is a projective cover.

Proof. Clearly it will suffice to prove that p is a superfluous epimorphism
if and only if fp is. So suppose p, as well as £, is a superfluous epimorphism;
then certainly fp is epic. To see that fp is superfluous we use (5.15): If his a
homomorphism with fph epic, then ph is epic, whence h is epic. Thus fp is
superfluous. Conversely, if fp is a superfluous epimorphism, then p is epic by
(5.15) and p is superfluous because Ker p < Ker fp « P. O

Observe that, since the definition of semiperfect rings is left-right
symmetric, the right-hand versions of conditions (c) and (d) below also
serve to characterize semiperfect rings.
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27.6. Theorem. For a ring R the following statements are equivalent :

(@) R is semiperfect;

(b) R has a complete orthogonal set e,,...,e, of idempotents with each
e;Re; a local ring;

(c} Every simple left R-module has a projective cover;

(d) Every finitely generated left R-module has a projective cover.

Proof. Throughout this proof let J = J(R) be the radical of R.

(a) = (b). If R is semiperfect, then we can, by (27.4), lift the idempotents
(7.2) for a semisimple decomposition of R/J to obtain a complete orthogonal
set ey, ..., e, of idempotents in R with each

Re;/Je; = (R/J)(e; + J)

simple. Then by (17.20) each ¢;Re; is local.

(b) = (c). Given (b), each Re;/Je; is simple by (17.20), and has a projective
cover by (27.3). But each simple left R-module is isomorphic to a factor of
R/J = Re,/Je, @ ... ® Re,/Je,, and so is isomorphic to one of the Re;/Je,.
(See (9.4).)

(c) = (d). Assume (c) and let 2 be a complete set of projective covers of
simple left R-mrodules. Then by (17.9) and (8.9), # generates every left
R-module. Let M be finitely generated. Then there is a sequence P,,..., P,
in 2 and an epimorphism

P=P&.®&PLM-0
Since f(JP) = JM we infer that there is an epimorphism
P,JJP, ®...® P,/JP, = P/JP > M/JM - 0.

But each P,/JP; is simple (17.19), so M/JM is a finite direct sum of simple
modules (9.4). Therefore, by (27.2), M/JM has a projective cover. But
JM « M by Nakayama’s Lemma (15.13), so M - M/JM is a superfluous
epimorphism. Now apply (27.5).

(d) = (a). Assume (d). Since this implies in particular that every direct
summand of R/J has a projective cover, idempotents lift modulo J by (27.4).
To see that R/J is semisimple, let J < K < zR. Then, since the cyclic R-
module R/K has a projective cover, we have by (27.3)

R/K = Re/le

for some left ideal Ie = Je. But then J-Re/le =~ J-R/K =0 so that
Je = JRe < Ie. Thus Ie = Je and

R/K = Re/Je = (R/J)(e + J)

is projective over R/J. Hence K/J is a direct summand of R/J. Thus R/J is
semisimple. O

27.7. Corollary. Let e,, ..., e, € R be non-zero orthogonal idempotents with
1 =e, +... + e, Then R is semiperfect if and only if each e;Re, is semiperfect.
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Proof. (=). By (4.15), (7.2) and (27.6.b) R is semiperfect iff 4R is a direct
sum of modules with local endomorphism rings. But by (12.7) then so is
every direct summand of zR. Hence e;, the identity of e;Re; = End(zRe;),
must satisfy (27.6.b).

(<=). If each ¢; is a sum of idempotents satisfying (27.6.b), then so is
l=¢ +..+e, O

27.8. Corollary. Let R be a semiperfect ring. If gP is a non-zero finitely
generated projective module, then End(zP) is semiperfect. In particular, every
ring Morita equivalent to R is semiperfect.

Proof. Since property (c) of (27.6) is clearly categorical, (21.6), (21.8), we
have the final assertion. On the other hand, End(zP) is of the form eSe for
some S Morita equivalent to R and some idempotent e€ S. Thus (27.7)
applies. O

27.9. Corollary. If R is semiperfect, then so is every factor ring of R.

Proof. It is easy to show that condition (b) of (27.6) is preserved under
surjective ring homomorphisms. O

Projective Modules
Let R be semisimple. Then ;M has a minimal projective generator of the form
Re = Re, @ ... ® Re,

with e = ¢, + ... + e, an idempotent and e,,...,e, pairwise orthogonal
idempotents that generate a complete set of pairwise non-isomorphic simple
R-modules. Now eRe =~ End(zRe) is a ring direct sum of the division rings
e;Re,,...,e,Re, and is Morita equivalent to R. Of course this is just one
formulation of the Wedderburn—Artin structure of semisimple rings. More-
over, in this analysis, if M is a left R-module, then there exist sets
Ay,..., A, unique to within cardinality, with

M = R @ ... ® RelAm

Thus, R and the category gxM are effectively characterized by the simple
modules Re, ..., Re,, and the division rings e, Rey;, ..., e, Re,,, or equivalently
by the ring eRe. If R is semiperfect, then in view of the last theorem it is hardly
surprising that the above reduction of the semisimple ring R/J(R) “lifts”,
at least in part, to a reduction of R itself.

Let R be semiperfect. A module M is primitive in case there is a primitive
idempotent e € R with

M = Re.
Thus, for a semisimple ring the primitive modules are just the simple ones. A
set ey, ..., e, of idempotents of R is basic in case it is pairwise orthogonal, and
Rey,...,Re,,

is a complete irredundant set of representatives of the primitive left R-
modules. Now the semisimple ring R = R/J(R) clearly has a basic set
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€,,..., €, of idempotents. By (27.4.c) and (17.18), this set lifts to a basic set
ey,..., ey for R.

27.10. Proposition. Let R be semiperfect with J = J(R). Then every com-
plete set of orthogonal primitive idempotents for R contains a basic set. More-
over, for pairwise orthogonal primitive idempotents e, ..., e, € R the following
are equivalent:

(a) ey, ..., e, is a basic set of primitive idempotents for R;

(b) Re,...., Re,, is an irredundant set of representatives of the indecompos-
able projective left R-modules;

(c) Re,/Je,,...,Re,/Je, is an irredundant set of representatives of the
simple left R-modules;

(d) e, + J,..., e, + J generate the simple blocks in the block decomposition
of the semisimple ring R/J.

Finally, these are also equivalent to the corresponding versions of (b) and (c)
for right R-modules.

Proof. As we noted above, the equivalence of (a) and (c) follows from
(27.4) and (17.18). Also (c) and (d) are equivalent by (13.7). Every primitive
left R-module is indecomposable and projective. So to prove the equivalence
of (a) and (b) it will suffice to prove that every indecomposable projective
R-module is primitive. Suppose then that P is a non-zero projective. Then
for some zP' and some set A

P@® P =~ RY

By (27.6.b) and (4.15), R is a direct sum of primitive modules each with a
local endomorphism ring. Thus by (12.6) P has a primitive direct summand,
so P is indecomposable iff it is primitive. The first statement is now easy. For
if f,. ... f, form a complete set of orthogonal primitive idempotents for R, then
they are primitive modulo J (17.20), and hence they form such a set for the
semisimple ring R/J. But clearly such a complete set for R/J contains a basic
set for R/J. Now apply the equivalence of (a) and (d) to lift to a basic set for R.
The final assertion follows from the left right symmetry of (d). O

A basic set of idempotents for a semisimple ‘ring can be used to
characterize all modules. A basic set for a semiperfect ring characterizes all
projective modules.

27.11. Theorem. Let R be a semiperfect ring and let'é,,:‘."f'.v?, e be a basic set
of primitive idempotents for R. If gP is projective, 'tiiep_‘ there exist sets
A,, ..., A, (unique to within cardinality and possibly empty) such that

P~ Re{"™ @ ... @ Rel.

Proof. By (27.6) the regular module R is a direct sum of primitive left
R-modules. So there exist sets C,, ..., C, with

#R = RSV @ ... @ RelC.

Let P be projective. Then there is a set 4 and a module P’ such that
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PO®P = R4 = Rl "V @ ... ® Rel{m™ 4.

Now (27.6) each e;Re; =~ End(zRe;) is a local ring. So the existence assertion
of the Theorem follows from the Crawley-Jgnsson-Warfield result (26.5).
The uniqueness assertion follows from (12.6). O

This structure of projective modules over semiperfect rings and
Azumaya'’s extension of the Krull-Schmidt Theorem (12.6) readily yield part
of the following characterization of semiperfect rings in terms of the
decomposition theory of their projective modules.

27.12. Theorem. The following statements about a ring R are equivalent :

(a) R is semiperfect,

(b) Every projective (left) R-module has an indecomposable decomposition
that complements maximal direct summands;

(c) Every finitely generated projective (left) R-module has a decomposition
that complements direct summands;

(d) The free (left) R-module R‘® has a decomposition that complements
direct summands.

Proof. (a) = (b). This follows from (27.11) and Azumaya’s Theorem (12.6)
since in (27.6.b) each ¢;Re; = End(zRe;) is local.

{b) = (c). Assume (b), and let P be a finitely generated projective
R-module. Then every direct summand of P is a finite direct sum of indecom-
posable modules. Thus a decomposition of P that complements maximal
direct summands must complement all direct summands. (See (12.2).)

(c) = (d). This is clear.

(d) = (a). Assume (d). Then by (12.3) each direct summand of R‘® has a
decomposition that complements direct summands. In particular, gR has
such a decomposition, say

R = Re, @ ... ® Re,.
But then
R®R =Re, ®Re, @ ... ® Re, @ Re,

is an indecomposable decomposition and so (12.5) complements direct sum-
mands. Since each Re; appears at least twice in this latter decomposition, its
endomorphism ring

¢;Re; =~ End(gRe,;)
is local (12.10). Thus, by (27.6) R is semiperfect. |

Projective Covers of Finitely Generated Modules

Let R be semiperfect with basic set e, ..., e,, of idempotents. It follows from
(27.11) that a finitely generated projective module P is then characterized
by a set ky, ..., k,, of non-negative integers, namely, those for which

P=Re{V®...® Relkm,
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Moreover, the induced decomposition of P is very well behaved in the sense
(27.12) that it complements direct summands. For finitely generated but not
necessarily projective modules the situation is not so easy. However such a
module zM does have a projective cover P - M — 0 and, as we shall see,
the projective module P must be finitely generated. In fact, the projective
module P is completely characterized by the semisimple module M/JM.
Thus, although the module M and its decomposition theory may defy a
complete analysis, the existence and accessibility of its projective cover give
us some solid information about M.

27.13. Characterization of Projective Covers. Let R be semiperfect with
basic set of idempotents e,,..., e, and let ;M be finitely generated. Then
M/JM is finitely generated and semisimple, so (see (27.10.c)) there exist
unique non-negative integers k,, ..., k,, such that

M/JIM = (Re [Je) )™ @ ... @ (Rey,/Je, ) .
Set
P =Ref" @ ... ® Relim.

Thus P is finitely generated projective and P/JP = M/JM. But by (15.13),
JP « P, so the natural epimorphism P — P/JP — 0 is a projective cover.
Also by (15.13), JM « M, so we deduce from (27.5) that there is a projective
cover P - M — 0. Now projective covers, when they exist, are unique to
within isomorphism (17.17), so to summarize:

If M/JM = (Re,/Je,)*V @ ... ® (Re,/Je,)*™, then there isa projective
cover P — M — 0 if and only if

P>~ Re™ @ ... @ Relm.

Basic Rings

An idempotent e of a semiperfect ring R is called a basic idempotent of R in
case e is the sum
e=e¢e +..+e,

of a basic set e, ..., e, of primitive idempotents of R. Since a basic set of
primitive idempotents is pairwise orthogonal, every basic set sums to a basic
idempotent. If

e=¢e +...+e, and f=fi+...+f,

are basic idempotents for R, then clearly
Re=PRe,®.. ®Re, 2 Rf{®... ® Rf, =R,
SO as rings
eRe = End(gRe) = End(gRf) = fRf.

A ring S is a basic ring for R in case S is isomorphic to eRe for some basic
idempotent e € R. Thus for each semiperfect ring R a basic ring exists and is
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uniquely defined to within isomorphism. We shall feel free therefore to speak
of “the” basic ring eRe of R.

As we suggested earlier the Wedderburn-Artin Theorem can be viewed
as saying, at least in part, that a semisimple ring and its category of modules
is completely determined by its basic ring. This extends to semiperfect rings.

27.14. Proposition. A semiperfect ring is Morita equivalent to its basic ring.
Moreover, two semiperfect rings are Morita equivalent if and only if their basic
rings are isomor phic.

Proof. Let R be semiperfect with basic idempotent e. By (27.10) and (17.9)
Re is a progenerator for M. Thus by (22.4) R and eRe = End(gzRe) are
Morita equivalent; that is, R and its basic ring are Morita equivalent. From
this we deduce at once that if R and S are semiperfect with isomorphic, hence
equivalent, basic rings, then R and S are equivalent.

Conversely, suppose R and S are equivalent semiperfect rings via an
equivalence

F:gM - M.

Ife=-e, + ... + ¢, is a basic idempotent for R, then it follows from (27.10)
and the results of §21 that '

F(Re) = F(Re,) @ ... ® F(Re,,)

where F(Re,),..., F(Re,) is an irredundant set of representatives of the in-
decomposable projective left S-modules. Thus by (27.10), if f is a basic
idempotent for S, then F(Re) = Sf and we have (see (21.2))

eRe =~ End(zRe) =~ End(sF(Re)) = fSf.
So the basic rings of R and S are isomorphic. (]

A semiperfect ring R is a basic ring in case 1 is a basic idempotent for R.
Now if R is semiperfect with basic idempotent e = e, + ... + ¢, then eRe
is semiperfect (27.6.b) with exactly m isomorphism classes of indecomposable
projective left modules ((27.14), (21.6) and (21.8)) which must be represented
by eRe,, ..., eRe,,. Thus e is a basic idempotent for eRe and so fortunately
the basic ring of a semiperfect ring is a basic ring. The importance of all this is
that the basic rings form canonical representatives of the semiperfect rings
with respect to Morita equivalence. Concerning basic rings we note

27.15. Proposition. Let R be a semiperfect ring. Then R is a basic ring if and
only if R/J(R) is a direct sum of division rings.

Proof. Observe simply that by (27.10), (a) and (c), an idempotent e of R is
basic iff e + J(R) is basic in R/J(R). O

Central Idempotents

Let R be semiperfect. The general structure of the regular modules xR and
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Ry have been pretty well nailed down. There exists a complete set
ey, ..., e, of pairwise orthogonal primitive idempotents, so

R=Re,®...D Re,

and of course, each Re;/Je; is simple and each e;Re; is a local ring. Now we
look briefly at the two-sided decomposition theory of R. Because 1 is a sum of
primitive idempotents, R does have a “block decomposition” (7.9). That is,
there exist unique orthogonal central idempotents u,,..., 4, in R such that
1 =u; + ... + u,and each u;Ru; is an indecomposable ring. In other words,
R is the ring direct sum

R =u,Ru; + ... + wRy,

with each u; Ruy; indecomposable. We call these rings (ideals of R) the blocks
of R. Given any primitive idempotent e e R it is clear (see §7) that eu; # 0
for exactly one j and eu; # O iff eu; = e. Thus a primitive idempotent e of R
belongs to exactly one block. Moreover, it is easy to see (Exercise (27.9)) that
the members of a pair of left modules M,, M, over a semiperfect ring R have
a common composition factor (i.e., contain submodules L; < K; < M, such
that K;/L, (i = 1,2) are isomorphic simple modules) iff there exists a
primitive idempotent ee R that annihilates neither M, nor M,. Thus,
considering the equivalence relation =~ of §7 we have

27.16. Theorem. Every semiperfect ring R has a block decomposition. If
e,...., e, is basic set of idempotents for R, then two primitive idempotents e and
f of R belong to the same block if and only if there exist idempotents

€;,, ..., €, in that basic set such that Re = Re,, Rf = Re; and the members of
each consecutive pair Re‘-j, Rein ( =1,...,1 = 1) have a common composition
Sactor. 4

Again let R be semiperfect. Then as we just noted, R has a block
decomposition. If I is any ideal of R (in particular, if / = J(R)) then the
factor ring R/I is semiperfect and so has a block decomposition. Since u + [
is a central idempotent of R/l whenever u is a central idempotent of R, it is
clear that the factor of each block of R is a sum of blocks of R/I. In general,
however, the blocks of R/I (i.e., in effect, the central idempotents of R/I) do
not “lift” to ones of R. For example, consider the ring R of n x n upper
triangular matrices over a field with J = J(R). Then R is indecomposable,
but R/J is a direct sum of n copies of the field. (See Exercise (7.15.3).) Note, on
the other hand, that in this example, R/J? is indecomposable, so central
idempotents lift modulo J2. More generally,

27.17. Proposition. Let I be an ideal of a ring R such that
Ny, I"=0.

Let e € R be idempotent. Then e € Cen R if and only ife + 1* € Cen R/I*. Thus,
if idempotents lift modulo I?, then central idempotents lift to central idempotents.
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Proof. Clearly it will suffice to show thatif e = e2€ Rand e + I? is central
in R/I?, then e is central in R. So let e be central modulo I2. Then

eR(1 —¢g)c I? and el cle+ I
Suppose that eR(1 — e) < I". Then
eR(l —e)cel'(l —e)
ce+ M1 —¢
cleR(l —e)+ I""'(1 —¢)

c In+l

So by induction eR(1 — e) € I" for alln = 1, 2,.... Similarly (1 — e)Re < I"
for all n. Our hypothesis then forces eR(1 — €) = (1 — e)Re = 0. So for each
x€R

ex = exe = xe
and indeed, e is central in R. |

27.18. Corollary. Let R be semiperfect with J = J(R) and nX.,J" =0

(e.g., let R be left artinian). Then R is indecomposable if and only if R/J? is
indecomposable.

27. Exercises

1. Let I be an ideal of R with I < J(R) such that idempotents lift modulo I.
Prove: _
(1) If 0 # f = f2 € R, then idempotents lift modulo f1If in the ring f Rf.
[Hint: Suppose g = fgfand g — g? €f1f. Then show that

Rf/If = (Rf/If)(g + f1f) @ (Rf/If)((Sf — g) + fIf),

and consider the proof (b) = (c) of (27.4).]
(2) Countable orthogonal sets of idempotents can be lifted modulo I.
[Hint: Suppose g;g;€;;9; + I (i,jeN) and e,,...,e, are orthogonal
idempotents with e, — g;el (i=1,...,n). Let fi=1—(e; +... + ¢,
and show that f,g,.,f, — gn+1€1.]

2. Prove that for a ring R with J = J(R) the following are equivalent:
(a) For each n = 1,2,..., if K is a direct summand of (R/J)™, there exists
a direct summand P of R™ such that (P + J™)/J™ = K; (b) For each
n = 1,2,..., every direct summand of R™/J™ has a projective cover over
R; (c) Idempotents lift modulo M, (J) in each matrix ring M,(R)
(n=1,2,...); (d) Idempotents lift modulo the radical of every ring that
is Morita equivalent to R. (Question: Is “idempotents lift modulo J(R)”
categorical?)

3. From Lemma (25.4) and Theorem (27.6) we see that an injective module
has a finite indecomposable decomposition iff its endomorphism ring is
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semiperfect. Prove:

(1) If R Us defines a Morita duality, then R and S are semiperfect.

(2) If R is any ring and RE is injective with S = End(gxE), then idem-
potents lift mod J(S). [Hint: If K = Ker(g — g?)<s E (18.20) then E =
E(K)® E(K(1 — g)). Let e and 1 — e be the corresponding idempotents.

. Let R = {m/ne Q|2 tnand 3} n(m/nin lowest terms)}.

(1) Prove that R is a ring and that 2R and 3R are the only maximal ideals
in R.
(2) Show that R/J(R) is semisimple but idempotents do not lift modulo
J(R).

. Show that every commutative semiperfect ring is a basic ring and iso-

morphic to a finite direct product of local rings.

. Prove that the following are equivalent: (a) R is semiperfect with local

basic ring; (b) R is semiperfect and has (to within isomorphism) only one
simple left module; (c) R is Morita equivalent to a local ring; (d) R is
isomorphic to M, (S) for some local ring S.

. Calculate the basic ring of the ring of matrices of the form

All AlZ Aln
AZZ AZn
0 A

where 4;;€ MMI;MJ(D), D a division ring. Also show that this ring is
indecomposable.

. Let e be a basic idempotent in a semiperfect ring R. Prove that Re is

isomorphic to a direct summand of every generator in zM. Conclude
that Re is the unique (to within isomorphism) minimal generator in gM.
Let e be an idempotent in R such that Re/J(R)e is simple (e.g., let e be
primitive in a semiperfect ring). Prove that ;M has a composition factor
isomorphic to Re/J(R)e if and only if eM # 0.

§28. Perfect Rings

Two properties that are characteristic of a semiperfect ring R are (1) that
every finitely generated module has a projective cover and (2) that every
finitely generated projective module has a decomposition that complements
direct summands. A “defect” in both of these is the restriction to finitely
generated modules. Interestingly enough, however, without this restriction
the two resulting conditions are still equivalent and characterize the class of
so-called perfect rings, the object of study in this section. Unlike semiperfect
rings there is a loss of symmetry and we are forced to distinguish between left
perfect and right perfect rings. As we shall see, the perfect rings (left or right)
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are replete with very strong properties; indeed, many classical results about
artinian rings, themselves perfect, extend easily to left and right perfect rings.

T-nilpotence

Certain fundamental properties of perfect rings depend on a generalization
of the concept of nilpotence. We first encounter this in the study of changes of
basis in a free module.

28.1. Lemma. Let a,, a,,... be a sequence in the ring R. Let F be the free left
R-module with free basis x,, x,,..., let
Yn = Xp = QpXp 4 (nGN),

and finally, let G be the submodule of F spanned by y,, y,,.... Then
(1) G is free with free basis y,,y5,...;
(2) G = F iff for each ke N there is an n > k such that a, ...a, = 0.

Proof. Let n > k and let r,, ..., r,€ R. Then a routine computation gives

Tt o F Y =X+ (e — X ey + oo +
(rr; — Ty-18,- l)xn = Fn@pXp 4 1

Thus if ry, + ... + r,y, = 0, the independence of the x’s clearly forces

ry="rysy =..=r,=0,so the y’s are independent. This gives (1). Suppose
next that x, € G, say x, = r,y, + ... + r,y, Thenclearlyr, = ..=r,_, =0.
Comparing the coefficients of x,, ..., x, in this equation we see that r, = 1,
Tewt =Ni@o Tes2 = Tes1Bisgs oo Tn=Tn—1Gy—y, and ra, =0 So

aa, ., ...a, = 0. This gives the necessity in (2). For the converse, let k < n;
then

Xk = Y + QYisr + oo F (@ Gy 1)Yn + (A )X 1
Soif a, ... a, = 0, then x, € G. g
28.2. Lemma. With the hypotheses of Lemma (28.1) if G is a direct summand
of F, then the chain a,R > a,a,R > ... of principal right ideals terminates.

Proof. By (28.1.1) there is an isomorphism F — G via x, > y,. Suppose the
inclusion map G — F splits. Then there is an endomorphism s € End(g F) such
that y,s = x,(ne N). For each me N write

XmS = Zk Comk Xk
as a linear combination of x,, x,, .... Then

Xp = YpS = (xn = Xy + l)s = Zk (an = A,Ch+ lk)xk’

“and so

Cok — AnCn+ 1k = Oppe
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Now for some k, c,, = 0 for all n > k. So for each n > k,
=8y ... 0Cpyqp = Ay ... Ay l(l - Cmu)

=a,..0,_1 — Ay ...0,_ \Cpy

=ay...0,-y — Ay ...0y_ 3Cp— 1n

=4a,..a,-, — a,Cy,

=a,..0,-,

That is, for eachn > k,a, ..a,_,€a, .. a,R. O

A subset I of a ring R is left T—nilpoteni (*T” for “transfinite”) in case for
every sequence a,, a,, ... in I there is an n such that

a,..a,=0.
The subset [ is right T-nilpotent in case for each a,, a,,...in I

a,...a; =0
for some n.

Observe that if I is left or right T-nilpotent, then it is nil because
a,a,a,...is a sequence in I whenever a € I. On the other hand, even for ideals
I left T-nilpotence does not imply right T-nilpotence (see Exercise (15.8)), so
in particular, nil ideals need not be right (or left) T-nilpotent. Also note that
(28.1.2) may be rephrased to assert that y,, y,, ... is a free basis for the free
module F in that Lemma iff for each ke N the sequence g, a; ., .. is left
T-nilpotent.

The importance of the concept of T-nilpotence is due to the fact that the
radical J = J(R) of a ring R is left T-nilpotent precisely when a
“Nakayama’s Lemma” (15.13) holds for all left modules, finitely generated
or not.

28.3. Lemma. Let J be a left ideal in a ring R. Then the following are
equivalent:

(@) J is left T-nilpotent;

(b) JM # M for every non-zero left R-module M ;

(c) JM « M for every'non-zero left R-module M ;

(d) JF « F for the countably generated free module F = R™,

Proof. (a) = (b). Suppose that JM = M + 0. Let & be the set of finite
sequences da,, ..., d, in J such that

a,...a,e Ng(M).
Then, since JM = M # 0,J & Ix(M)so & contains sequences of length one.
But also if g, ..., a, belongs to &, then

O#a,...aM=a,..aJM
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so there exists a sequence ay, ..., a,, 4, in &. Since 0¢J\I[ (M), induction
guarantees a sequence a,, d,, ... such that a, ...a, # Oforalln = 1,2, ....

(b) = (c). Assume (b). Suppose M is a left R-module and K < M is a
proper submodule. Then by (b), J-(M/K) # M/K. But (JM + K)/K =
J-(M/K) whence JM + K #+ M. In other words, JM « M.

(c) = (d). This is clear.

(d)=(a). Let F =~ R™ have free basis x,,x,,..., let a;,a,,... be a
sequence in J, and let G = X2, R(x; — a;x;,,) as in Lemma (28.1). Then
clearly G + JF = F.But,assuming (d), this implies that G = F. So by (28.1.2),
a, ...a, = 0 for some n. O

Bass’s Theorem P

A ring R is left perfect (right perfect) in case each of its left (right) modules
has a projective cover. It follows from (27.6) that left perfect rings and right
perfect rings are both semiperfect. However (see Exercise (28.2)) right perfect
rings need not be left perfect. The pioneering work on perfect rings was
done by H. Bass [60] and most of the principal characterizations of left
perfect rings are contained in the following version of Theorem P from that
paper.

28.4. Theorem [Bass]. Let R be a ring with radical J = J(R). Then the
Sollowing statements are equivalent:

(@) R is left perfect;

(b) R/J is semisimple and J is left T-nilpotent;

(c) R/J is semisimple and every non-zero left R-module contains a maximal
submodule ;

(d) Every flat left R-module is projective;

(e) R satisfies the minimum condition for principal right ideals;

(f) R contains no infinite orthogonal set of idempotents and every non-zero
right R-module contains a minimal submodule.

Proof. (a) = (c). Suppose R is left perfect. Then R/J is semisimple by
(27.6). Moreover, if M # 0, then there is a projective module P with
superfluous submodule K « P such that M =~ P/K. Since P is projective, P
has a maximal submodule L (17.14). Since K « P, K & L.Thus L/K is a maxi-
mal submodule in P/K = M.

(c) = (b). Since J annihilates every simple module, if (c) holds, then
JM # M whenever zM # 0. Thus this implication follows from (28.3).

(b) = (a). Assume (b). Then R is semiperfect by (27.1). Let M be a non-zero
left R-module. Then M/JM is semisimple, so (27.10.c) there exists an indexed
set (e,),e4 Of primitive idempotents in R with

@, Re,/Je, = M/IM.

Let P = @, Re,. Since J is left T-nilpotent, by (28.3) both JP « P and
JM « M. Thus M has a projective cover by (27.5)
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P
] e

M5 MM 0.

(a) => (d). Assume (a). Let U be flat and let f:P —» U be a projective
cover. Then K = Kerf « P, so by (9.13) and (17.10), K < JP. Since zP and
g U are flat, the maps

Uy J @gP—JP and Hy:J @ U - JU

with u,(j ® p) = jp and p,(j ® u) = ju are isomorphisms (19.17). Now it is
easy to check that the diagram

Jp YR gy

m By
J® K J®zP-2L @, U

commutes (where iy:K — P is the inclusion map). Therefore, since the
bottom row is exact and u, and y, are isomorphisms, we have

K = Kerf= Ker(f|JP)
= p,(Ker(J ® f)
= u(Im(J ® ix)) = JK.

Thus JK = K; but then, since (a)<>(b), K =0 (283) and U= P is
projective.

{(d) = (e). Clearly every descending chain of principal right ideals is of the
form a,R > a,a,R > ... for some sequence a,, a,, ... of elements of R. Given
such a sequence, let G and F be the modules of Lemma (28.1). Then by
(28.2) we need only show that F/G is flat. By (28.1), ¥3u---s Vus Xpt1s Xns 25 -+
is a free basis for F, so each submodule G, = Z7_, Ry; is a direct summand
of F and each factor module F/G, is free, hence flat. Now G is the union of
these G,, so (see Exercise (19.11)) we see that F/G is flat by applying the
right-left symmetric version of (19.18)

G N IF = (|G N IF = {Ja(G, n IF)
= UnlG, = IG.

(e) = (). Assume (e). Then R contains no infinite orthogonal set of
idempotents because if e,, e,, ... are non-zero orthogonal idempotents, then
(1 —e)R>(1—e —e;)R> ... Suppose 0 # xeM and xR contains no
simple submodule. Then, since xR itself is not simple, there is an a, € R with
xR > xa;R > 0 such that xa,R contains no simple submodule. Thus
proceeding inductively we can obtain a sequence a,,a,,... in R such that

J®ix

xa,R > xa;a,R > ....

Therefore a;R > a,a,R > ... contrary to (e).
(f) = (b). Assume (f). Let a,,qa,, ... be a sequence in J and suppose that
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a, ... a, # 0for all n. Then by the Maximal Principal there exists a right ideal
I < Ry maximal with respect to

- (n=1,2,...)

Now R/I is a non-zero right R-module, so by (f) there exists a right ideal K
with I < K < Ry and K/I simple. By maximality, there exists an n such that
ay ...a,€ K. But then also a, ... a,a,,, € K\I. So, since K/I is simple, there
exists an r € R with

(ay...a,)(l —a,, r)el

Buta,.,€J,s0 1 — a,,ris invertible. This clearly contradicts a, ... a, ¢ I.
Thus J is left T-nilpotent. In particular, J is nil so idempotents lift modulo J
(27.1). Now, using the hypothesis that R contains no infinite set of orthogonal
idempotents we have that R contains a complete orthogonal set e, ...,e, of
primitive idempotents. (See 10.14) and Exercise (10.11).) Since idempotents
lift modulo J, these must also be primitive modulo J. (See (27.4) and (17.18).)
But by (f) each (¢;R + J)/J contains a minimal right ideal of R/J. So, since
minimal right ideals of a ring with zero radical are direct summands ((15.10)
and Exercise (13.8)), (¢;R + J)/J must be simple. Thus R/J is semisimple and
the proof is complete. O

28.5. Remark. It is worthwhile to observe that (28.3) and the proof
(f) = (b) of (28.4) show that for a ring R:

(1) If every left R-module has a maximal submodule, then J(R) is left
T-nilpotent;

(2) If every right R-module has a minimal submodule, then J(R) is left
T-nilpotent.

The Z-modules Z ,. and Z show that the converses of both (1) and (2) are false.
On the other hand, it is easy to see from (28.4) that:
(3) If R is left perfect with J = J(R), then for all modules ¢M and Ny

RaidM=JM« M and  Soc N =ly(J)= Ny

There exist rings (e.g., cosemisimple rings) whose modules all satisfy
Rad M = JM « gM that are not left perfect. However, if Soc N = Iy(J)=2 Ny
for all right modules Ny, then R is left perfect (see (15.17) and part (2) above);
but there do exist non-perfect rings all of whose non-zero right modules have
minimal submodules (i.e., Soc N =2 Ny for all Ny). (See Exercise (28.5).)

28.6. Corollary. If R is left perfect, then the endomorphism ring of every
finitely generated projective left R-module is left perfect. In particular any rzng
Morita equivalent to R is left perfect.

Proof. Clearly “left perfect” is categorical (21.6). Moreover if gP is
finitely generated projective, then there is a ring S and an idempotent e€ S
such that R ~ S and End(zxP) = eSe. But by (28.4.b) eSe must be left perfect. [J
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28.7. Corollary. If R is perfect, then so is ecery factor ring of R.

Proof. Let R be left perfect. Since R/J(R) is semisimple, if I is an ideal of R
then (see Exercise (9.9)) J(R/I) = (J(R) + I)/1is left T-nilpotent. ]

There is an especially important class of (two-sided) perfect rings. A ring
R is semiprimary in case R/J is semisimple and J is nilpotent. The semiprimary
rings form a class of rings that contains both the left and the right artinian
rings. However, the ring R of 2 x 2 upper triangular real matrices with all

diagonal entries rational,
Q R
R =
o o

is a semiprimary ring that is neither left nor right artinian.

28.8. Corollary. Every semiprimary ring, hence every left or right artinian
ring, is perfect. O

Recall (18.13) that direct sums of injective left R-modules are injective if
{and only if) R is left noetherian. Right artinian rings are left perfect and right
coherent (the latter because they are right noetherian (15.20)). Thus since
their flat modules and projective modules coincide (28.4.d), Chase’s Theorem
(19.20) implies the following partial dual to (18.13).

28.9. Corollary. If R is right artinian, then every direct product of projective
left R-modules is projective.

Note. Chase actually proved that every direct product of projective left
R-modules is projective if and only if R is left perfect and right coherent.

There are analogues of (27.7) for both perfect and semiprimary rings. We
shall obtain them via the following lemma.

28.10. Lemma. Let e,,..., e, be a complete orthogonal set of idempotents
Sor R and let I be an ideal of R. Then I is left T-nilpotent (nilpotent) if and only
if each e;le, is left T-nilpotent (nilpotent).

Proof. One implication of each-version is clear.
Conversely, assume that I is not left T-nilpotent. Then there is a
sequence a,, a,, ... in I such that

aa,...a, 0 (n=12,..).
Let & be the set of finite sequences x,,..., x,, in {e,, ..., ¢,} such that
X1G1X385 ... XpQpmOpy 1+ iy F 0

for each k = 1,2,.... Then since 1 = e, + ... + e, it is easy to see that & is
not empty and that every sequence x,,..., x, belonging to & has a proper
extension x,,...,Xx,, X,., that belongs to &. Thus there exists an infinite
sequence X, X,, ... in {e,, ..., e,} such that each product

X1a1X583 . XpQuXms1 F O
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But then there is an ¢; such that x, = ¢; for infinitely many k, whence ¢;I¢;
is not left T-nilpotent. For the nilpotent version, let & be the set of sequences
X1y ...s X in {e,, ..., €,} such that

x Ixy I .. x, 1" # 0
foreachk=1,2,.... O

Now, recalling (27.7), we have at once

28.11. Proposition. Let e,, ..., e, be a complete orthogonal set of idempo-
tents in a ring R. Then R is left perfect (right perfect) (semiprimary) if and only
if each e;Re; is left perfect (right perfect) (semiprimary). a

28.12. Example. The semiprimary non-artinian ring

Q R
R =
o e
provides an example that is relevant to these last results. It is hereditary,
hence right coherent, so the converse of (28.9) is false. Moreover, it has a

complete orthogonal set of idempotents e,, e, such thate,Re, = e, Re, = Q,
so there is no artinian analogue of (28.11).

Projective Modules

Let R be left perfect. Then, since R is semiperfect, it has a basic set of
idempotents e, ...,e, such that the sequence Re,/Je,,..., Re,/Je,, includes
exactly one copy of each simple left R-module (see (27.10).) Let M be a left
R-module. Then M/JM is semisimple, so there exist sets A4,,..., 4, unique to
within cardinality, such that

M/JM = (Re,/Je, ) @ ... @ (Re,/Je,,) 4.
Set

P =Rl @ ... ® Reldm,

Then P/JP =~ M/JM, P is projective, JP « P and JM « M (28.3), so by
(27.5) there is a projective cover P % M — 0. Thus, by uniqueness of
projective covers (17.17), we conclude

28.13. Proposition. Let R be left perfect with basic set e, ..., e, of primitive
idempotents. Let gM be a left R-module. Let A,,..., A, be sets and let

P =R @ ... ® Reli.
Then there is a projective cover P - M — 0 if and only if
M/JM = (Re,/Je )" @ ... ® (Re,/]e,) ™ 0

Since a left perfect ring R is semiperfect, if e,,..., e, is a basic set of
idempotents for R, the projective left and right R-modules are those
modules of the form

rRP = R @ ... ® Reliim) and Qr = e, R4 @ ... @ e, R,
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Our next result implies that if R is left perfect, the induced decomposition of
rP complements direct summands, and hence is as well behaved as could be
desired. Moreover, the existence of such decompositions for all projective
left modules is characteristic of left perfect rings.

28.14. Theorem. The following statements about a ring R are equivalent :

(a) R is left perfect;

(b) Every projective left R-module has a decomposition that complements
direct summands;

(c) The countably generated free module F = R™ has a decomposition that
complements direct summands.

Proof. Let J = J(R).

(a) = (b). Assume (a) and let P be projective. Since R is semiperfect, P
has a decomposition P = @, P, as a direct sum of primitive submodules.
For each H < P, set

= (H + JP)/JP.

Then, each P, = P,/JP, is simple (see (27.10). Suppose P = U @ V. Since
P = @,P, is semisimple and P = U @ V, there exists, by (9.2),aset B 4
such that

P=U® (®sP)

We claim that this decomposition “lifts”. Indeed, P = U + (X3P} + JP
and JP « P (28.3) imply

P=U+(®P)

Set L = Z3P;. So to complete the proof of this implication we need only
show U n L =0. But since U and L are direct summands of P, we have
JU=UnJPand JL = L n JL. Therefore, since P = U ® L,

UnLsJPNnUANL=JUNJL.

Now the natural map U x L — U + L = P is epic, hence split, and it has
kernel K = {(u, —u)|ue U n L} <.I U x L).Since J(U x L)« U x L, we
infer K =0andUn L =0.

(b) = (c). This is clear.

(c) = (a). Let F be the free left R-module with free basis x,, x,, ... and sup-
pose that F = R™) has a decomposition that complements direct summands.
Then so does R®, by (12.3). Thus R is semiperfect by (27.12). Let ey, ..., €, be
a complete orthogonal set of primitive idempotents of R. Let a,, a,,... be a
sequence in J, and let y, = x, — g, x;+, and G =X, Ry, <F as in
Lemmas (28.1) and (28.2). Since both sequences a,,0,4a3,0, ... and 0,a,,0, a, ---
satisfy the condition of (28.1.2), both y,, x,, ¥3, X4, ... and X, ¥, X3, Yas ---
are free bases for F. Thus F has an indecomposable decomposition

= (@ 1(®i=1Re;yyu- 1) ® (D= 1 (D)= 1 Reix )

which, by (12.5), must complement direct summands; and @, Ry, is one
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of those direct summands. Therefore there exist left ideals I,, I,,... (each of
the form R(e;, + ... + e,) or 0) such that

F= (@ Ryu) ® (@i 1 Tak—1V2k—1) @ (®i= 1 1o x2)-

We claim that the sum of the first two terms is G = @~ , Ry,. For if we
apply the projections p, for F = @F_ , Rx, to the above decomposition of F,
we obtain

Rx, = p\(F) = I,x,
andforl =1,2,...,
Rxzip1 = P+ l(F) = pas Ry + Pars tUars1 Y2+ 1)

= (Ray + I+ X241
Then since Ra,, < J « R, we must have
R=1I,=1I,..

Therefore G is a direct summand of F. Now by (28.2) there is an neN and an
reR such that a, ...a, = aq, ... a,a,, ,r so, since 1 — a,,,r is invertible,
a, ...a, = 0 as desired. O

By Corollary (15.23), a ring that is left or right perfect ring and left
noetherian must be a left artinian ring. Thus from (25.6) and (28.14) we have

28.15. Corollary. A ring R is left artinian if and only if each of its injective
left modules and each of its projective left modules has a decomposition that
complements direct summands. O

28. Exercises

1. Let xF be a free module with free basis x,, x,, .... This basis determines
a ring isomorphism ¢:End (xF) - RFMi\(R). (See Exercise (8.12).) Con-
sider the two N square matrices over R:

! —-a, O 1 a, aa, a,a,a,
0 1 —a, .. 01 a, a,a,
A=10 O 1 . B=10 0 1 a,

L. B : A
Then AeRFMy(R) and 4, Be CFMy(R). Let ¢ (s) = A.

(1) Use the fact that AB = BA = 1, the N x N identity matrix, to prove
Lemma 28.1.

(2) Prove that Ims is a direct summand of F iff A has a right inverse in
RFM(R).

(3) Use (2) to prove Lemma 28.2.
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N

Let R be the ring of all the N-square lower triangular matrices over a field
Q that are constant on the diagonal and have only finitely many non
zero entries offthe diagonal. Prove that Ris left perfect but not right perfect.
[Hint: See Exercise (15.8).]

3. Let J = J(R) and let ;P be projective. Prove that JP « P iff P/JP has a
projective cover.

4. Prove that R is left perfect iff every semisimple left R-module has a
projective cover. [Hint: Apply (27.6), (28.3), and Exercise (28.3).]

5. Verify the assertions of Remark (28.5). For the last one try R =
K1, + Soc(End(Vy)) where V is an infinite dimensional vector space.

6. Prove that R is left perfect iff R/J is semisimple and every factor ring of R
has a non-trivial right socle.

7. Prove that R is left artinian iff every factor ring of R is left finitely
cogenerated. [Hint: By Exercise (28.6) R is right perfect. In such a ring
J"=J""!implies J" = 0.]

8. Prove that if U defines a Morita duality and R is left or right perfect,
then R is left artinian. [Hint: If R is left perfect, let I < S5 and show, via
(24.7), that (S/I)* is finitely generated, and then apply (24.5). If R is right
perfect and I < ;R then R/I is finitely cogenerated.]

9. Prove that, for a left perfect ring R with J = J(R), the following are
equivalent: (a) R/J? is right artinian; (b) J/J? is a finitely generated right
R-module; (c) R is right artinian. [Hint: For (b)=> (c). Suppose that
J=jR+ ...+ jR + J*and that J' ¢ J'*! (I = 1,2,...). Show that J
is not left T-nilpotent by considering the set & of finite sequences
Xyyeeey Xpi0 {J1,..., ji} such that x, ...x,J' € J*"* 1 (1 =1,2,...).]

10. Construct a right perfect ring with radical J such that n{_,J" # 0.
[Hint: Modify Exercise (15.8).]

11. Prove the assertions of Example (28.12).

§29. Modules with Perfect Endomorphism Rings

We have seen earlier that in rings satisfying certain finiteness conditions nil
one sided ideals are nilpotent. In this final section we begin by considering
some more such conditions. As one consequence we shall show that every
module of finite length has a semiprimary endomorphism ring. Then using -
the results of §28 we characterize those finitely generated modules M for
which each direct sum M“ has a decomposition that complements direct
summands. Finally, these combine to show that every direct sum of copies
of a module of finite length has such a decomposition.

A ring R has the maximum condition for right annihilators in case every
non empty set of right annihilators rg(A4) (A & R)in R has a maximal element;
an equivalent formulation is that every increasing chain of right annihilators

rR(Al) < rR(AZ) < ...
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has finite length. See Exercise (10.9).) Moreover, this is also equivalent to the
minimum condition for left annihilators (see (24.5)).

29.1. Proposition. Let R have the maximum condition for right annihilators.
If Iis aright T-nilpotent one sided ideal, then I is nilpotent.

Proof. Let I be a non nilpotent one sided ideal. The assumption on right
annihilators implies that for some neN

re(I™) = rp(I"* ) = ...

Since I is not nilpotent, I"* ! #+ 0, so I"x, # 0 for some x, € I\rg(I"). But then
x, grg(I"*1),s0 I"*'x, # 0. Clearly then there is sequence x,, X, ... in I such
that for each k,

Xy ... X €N\rg(I").

In particular, I is not right T-nilpotent. O
The following important “nil implies nilpotence” theorem is due to
Small and Fisher.

29.2. Theorem.Let M be either artinian or noetherian. Then every nil one
sided ideal of End (xM) is nilpotent.

Proof. Suppose that M is artinian. Let S = End(gM). Since M is faithful,
each right annihilator of § is of the form r¢(K) for some K < M. So since
gM is artinian, S has the maximum condition on right annihilators (see
(24.3)). Now suppose that I is a nil one sided ideal of S. Let C be the set of all
first terms s, of sequences s, s,,... in I satisfying

Sp-..5 #0 (n=12..).

In view of (29.1) it will suffice to prove that C = @. On the contrary let us
assume that C # Q. Since zM is artinian, there is an s, €C for which Ms, is
minimal in {Ms|se C}. Clearly, Cs; n C # §, so there is an s, € C for which
Ms, is minimal in {Ms|ss,eC}. Notice that Ms,s, = Ms,. An obvious
induction argument now shows that there exists a sequence s,,5,,... in C
such that for each n, Ms, is minimal in {Msl|ss,_, ... s,eC}. In particular,
if n > m, then

For each n, set

Do =S,...5;.

Then Mp, = Ms, = Mp,, for all m and n. Therefore given n, if xe M, there is
an x'eM with x'p,, , = xp,, 80 x =x — x's,, | + x's,,, and

(1) M = Kerp, + Ims, , ;.

Now suppose that n > m and s,,p, # 0. If k > m, then Ms, ... s,.,p, = Ms,.p,,
SO Sy ... SuSp -+ S +-- S1 = Sg .. SmPs # 0. The minimality of Ms,, then implies
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Ms,S, ... Sy = Ms,, # 0, clearly contrary to the nilpotence of s,...s,.
Therefore s,,p, = 0 whenever n > m; that is,

(2) Irr‘smS ﬂanKerpn‘
Using modularity (2.5) and (1) and (2) an easy induction shows that
3 iz Kerp, + Y2 Ims; = M.

Since xM is artinian, there is an n such that ();-, Ker p, < Ker p,, ,. But
by (2), Kerp,,, = Yt} Ims, so by (3) we have the desired contradiction,
Kerp,,, = M.

The dual proof for the case in which ;M is noetherian will be omitted. []

29.3. Corollary.  Every module of finite length has a semiprimary endo-
morphism ring.

Proof. Let xM have finite length n and let S = End (3 M). By (12.8), (12.9),
and (27.6) S is semiperfect. So in view of (29.2) it will suffice to prove that J(S)
is nil. But if ae J(S), then by Fitting’s Lemma (11.7)

M=Ima" @ Kera"

Thus (a|Ima") is an automorphism of Ima" and there is an seS such that
(sa|Ima") = 1;,, .. Since 1, — sa is invertible in S (15.3), we have Ima" <
Ker (1) — sa)=0. O

In order to study the decompositions of direct sums of copies of a
finitely generated module we show next that such direct sums “look like” free
modules over its endomorphism ring. Specifically we prove

29.4. Lemma. Let M be a finitely generated left R-module with endomor-
phismring S = End(xM). Let P denote the category of projective left S-modules
and let .S denote the category of direct summands of direct sums of copies of M.
Then the functors

Homgp(Mg, _): S — 5P
and
(M @5 -):sP — 4S
are inverse category equivalences.

Proof. Since (M ®g _) and Homg(M, _) preserve direct sums (Theorem
(19.10) and Exercise (16.3)), we see at once that they are functors between
the desired categories. For instance, a split exact sequence

0o N-@D->MAY_P-> N -0
goes to a split exact sequence

0 — Homg(M, N) —® — Homg(M, M) —@ — Homg(M,N') - 0
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(see (16.2)) in which the middle term is isomorphic to ¢S‘. Now for each
module N in S define ny: M ®5 Homg(M, N) — N via

nw(m ® y) = y(m).
Then it is routine to check that this yields a natural transformation
n:(M ®s Homg(M, _)) = 1

Moreover, since ;M is finitely generated, the functor (M ®g Homg(M, _))
preserves direct sums (Theorem (19.10) and Exercise (16.3)). So we need
only check that #,, is an isomorphism to see that n is actually a natural
isomorphism (Exercise (20.17)). But this is the case by (19.6) because
Homg(Mg, M) = ¢S. On the other hand, for each projective module P in
sP.let y: P — Homg(M (M @5 P)) via

v, (p)m—>m® p
to obtain, in a similar manner, a natural isomorphism
vilp — Homp(M,(M ®; _)).

(Observe here that vs:sS = Homg(M, (M ®sS)) is the canonical isomor-
phism.) O

29.5. Theorem. Let M be a finitely generated left R-module. Then the
Sfollowing are equivalent :

(a) MY has a decomposition that complements direct summands for every
set A;

(b) M"™ has a decomposition that complements direct summands;
(c) End(gM) is left perfect.

Proof. Under the equivalence of (29.4) M corresponds to the free left
S-module $“, and it is not hard to show that if N corresponds to P under
such an equivalence then N has a decomposition that complements direct
summands iff P does. (See Exercise (21.11.2).) Thus (28.14) applies. d

29.6. Corollary. Let M = @ , M, be an indecomposable decomposition such
that each term has finite length and the modules (M,),. , represent only finitely
many isomorphism classes. Then this decomposition complements direct
summands.

Proof. If each M, is isomorphic to one of M,
morphic to a direct summand of

M, ®...0 M, )

and the module M, @ ... ® M,, has a perfect (indeed, semiprimary) endo-
morphism ring by (29.3). Thus the corollary follows from (29.5) and (12.3). O

. M, , then M is iso-

PTURN

Every module over a semisimple ring has a decomposition that comple-
ments direct summands. On the other hand, in this chapter we have seen that
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every injective and every projective left module over a ring R has a decom-
position that complements direct summands iff R is left artinian (28.15). A
ring R is a ring of finite module type in case there exist R-modules M,..., M,
of finite length such that every R-module is isomorphic to a direct sum of
copies of the M;. The literature on these rings is too extensive for us to cover
here. However, we do note that by (29.6) every module over a ring of finite
module type does have a decomposition that complements direct summands;
and that such a ring need not be semisimple. (See Exercise (29.5).)

29. Exercises

1. Prove that if 3E is injective and noetherian, then S = End (xE) is semi-
primary. [Hint: By Exercise (27.3), S is semiperfect. Now use (18.20)
and (29.2).]

2. Let R satisfy the maximum condition for left annihilators and the
*maximum condition for right annihilators. Prove that every nil one
sided ideal of R is nilpotent. [Hint: There is an n such that every chain of
annihilators has length < n.]

3. Prove that the left perfect ring of Exercise (28.2) has the maximum condi-
tion for right annihilators but that not every left T-nilpotent ideal is
nilpotent.

4. Let R be the ring of polynomials over Z, in countably many indetermin-
ants X, X,, .... Let I be the ideal generated by {X?, X2, ...}. Prove that
S = R/I has a non nilpotent ideal J each element of which is nilpotent of
nilpotency index 2.

5. Let R be the ring of upper triangular 2 x 2 matrices over a field. Let
e = [3 9]€R. Prove that every left R-module M has a decomposition
M = E @ S such that E = Re'® and § is semisimple. Conclude that R
is a non-semisimple ring of finite module type. [Hint: Consider a maxi-
mal indepent subset of {Rex|x € M and J(R)ex # 0}.]



Chapter 8

Classical Artinian Rings

In our concluding chapter we present basic results on several types of artinian
rings that have come to be regarded as classical due to their natural origins
and the influence they have had on the literature of ring and module theory.
These include artinian rings with duality, quasi-Frobenius (or QF) rings,
QF-3 rings, and serial rings.

§30. Artinian Rings with Duality

In this section we present a theorem of Azumaya and Morita which yields
several necessary and sufficient conditions that the category RFM of finitely
generated left modules over a ring R have a duality with the category FMg
of finitely generated right modules over a ring S. From §23 and §24 we see that
in order for such a duality to exist the ring R must be left artinian and possess
a finitely generated injective cogenerator. This pair of conditions is the basic
characterization. Also from §23 and §24 it follows that in order to have a
duality between gFM and FMg, S must be right artinian; and the duality is
isomorphic to the gUs-dual for some bimodule gUs. This bimodule is both
left and right faithful (indeed, a cogenerator) and the U-dual takes simples to
simples in the sense that T* = Hom(T, U) is a simple right S- (left R-) module
whenever T is a simple left R- (right S-) module. These conditions also serve
to characterize the existence of a duality between gFM and FMg. They are
intimately connected to the annihilator condition of Theorem 24.5 by the first
theorem of this section.

Duality Theorems

A bilinear mapping (see §24) u: gM x Ng— gUs is called non-degenerate in
case I,,(N) = 0 and ry(M) = 0. Note that scalar multiplication yields a bi-
linear mapping gR x gUs — g Us that is non-degenerate iff U is faithful; and
that the usual bilinear map M x M* — Uy is non-degenerate iff M is
U-torsionless.

30.1. Theorem. Let xUs be a bimodule such that the gUs-dual ( )* takes
simples to simples. Let

u:gM x Ns— g Us

327
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be a non-degenerate bilinear map. If either g M or Ng has a composition series,
then:
(1) For each K < M and each L < N,

Lry(K) =K and ry(l(L) = L;
(2) The induced mappings
A:gM > N* and p:Ng— M*

defined by A(m):n— u(m,n) and p(n): m u(m, n) are isomorphisms;
(3) All submodules and factor modules of M and N are U-reflexive;
(4) RU is M-injective and Ug is N-injective.

Proof. Suppose that the 5 Ug-dual does take simples to simples. If W is a
left R- or right S-module of finite length and K is a maximal submodule of W,
then, from the exact sequence

0 — (W/K)* =5 s =, K%,

we see that ¢(W*) < ¢(K*) + L. Thus, arguing inductively on composition
length, we have

c(W*) < c(W).
Moreover, the inequalities
c(W) = c(W*) = c(W**)

imply that W is U-reflexive iff W is U-torsionless.
Now to prove the theorem, let
B:gM x Ng— g Us

be non-degenerate and suppose it is g M that has a composition series. For
each K < M, define

'pX:N/ry(K) > K*
via
pX(n + ryK):k— u(k,n) (ne N, ke K);
and for each L < N, define
Ap:ly(L)—> (N/L)*
via
Ag(x):n + L—> u(x,n) (x el (L),ne N).

Then it is easy to check that pX and 1, are monomorphisms (p* is monic for
any y and A, is monic because u is non-degenerate). These monomorphisms
and our discussion in the first paragraph of this proof yield the following
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inequalities for each K < M:

c(K) < clly(ry(K)) (24.32)
< c((N/ry(K))*)  (using 4, )
< ¢(N/ry(K)) (first paragraph)
< c(K*) < c(K) (using pX).

These must all be equalities. Since they are, we see that
Iy(ry(K)) = K

and that pX is an isomorphism for all K < M. Moreover, since u is non-
degenerate,

p=pM:N->M*

is an isomorphism. Noting that N =~ M* also has a composition series, it
follows by symmetry that (1) and (2) hold, and that M and N (being isomor-
phic to U-duals of one another), and all of their submodules, are U-torsionless
(20.14). But factor modules of N and, by symmetry, of M are also U-tor-
sionless because of the isomorphisms p'® which yield

N/L = N/ry(lu(L)) = Iu(L)*.

Thus, since U-torsionless modules of finite length are U-reflexive, (3) also
holds. Finally, since pX is an isomorphism, if K < M, then every map h: g K —
rU is of the form

h:kv u(k, n,) (ke K)
for some n, € N; such a map can be extended to h: M — R U via
h:mi> u(m, ny). (me M).

Thus, U is M-injective, by symmetry Us is N-injective, and the proof is
complete. d

Let R be a semisimple ring. Then, since all R-modules are semisimple,
projective, and injective, and R contains a copy of each of its simple modules,
an R-module U is faithful if and only if it is a generator if and only if it is a
cogenerator (see (17.9) and (18.15)). Suppose that U is a finitely generated
faithful left module over a semisimple ring R and let S = End(gU). Then zU
is a progenerator, so (see (22.4) and (21.9)) S is semisimple, and (see (17.9)) g Us
is a faithfully balanced module. But as we have just noted, U and Uy, being
faithful modules over semisimple rings, are injective cogenerators, so by (24.1)
the p Us-dual defines a Morita duality. In particular (see (24.5)), the g Us-dual
takes simples to simples—a fact which we now extend to any finitely co-

generated injective cogenerator over a ring that is semisimple modulo its
radical.
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30.2. Lemma. Let R/J(R) be semisimple and let gU be a finitely cogen-
erated injective cogenerator with End(gU) = S. Then

(1) Soc gU = Soc Ug;

(2) The gUg-dual ( )* takes simples to simples.

Proof. (1) Since gU is a finite direct sum of indecomposable injectives
(18.18), S = End(gxU) must be semiperfect by (25.4) and (27.6); and, letting
V = Soc(xU) < U, it follows from (18.21) that J(S) = rg(V). Now we have

Soc(Us) = l,(J(S)  (15.17)
=L(rs(V)  (18.21)
= Iy(ry«(V)) (U* = End(U))
=V (24.4.2).

(2) Using (1), write SocgU = V = Soc Us. Then, since g Vis finitely gener-
ated and contains a copy of every simple left R-module (18.15) and S/J(S) is
naturally isomorphic to End(gV) = End(g,y& V) by (18.21), we see from the
discussion preceding the lemma that the g, Vs/ss)-dual takes simples to
simples. But if g T and Ty are simple, then Homg(T, U) = Homg,;&(T, V) and
Homg(T', U) = Homg,;s,(T", V), so the pUs-dual takes simples to simples. []

30.3. Lemma. If R is a left artinian ring, then every cogenerator gU is
balanced. '

Proof. If R is left artinian and g U is a cogenerator, then, since R has only
finitely many isomorphism classes of simple modules, U = U, @ U’, where
U, is a finitely cogenerated injective cogenerator (18.16). By (14.1.1), since U,
cogenerates U’, BiEnd(x U) embeds in BiEnd(g U,). Thus, we may assume that
U is a finitely cogenerated injective cogenerator. Then letting S = End(xU),
the U duals of simples are simples by (30.2); and since U is faithful, the
bilinear map

p:gR x Us — g Us

given by scalar multiplication is non-degenerate. Thus, since xR has a compo-
sition series, we see by (30.1.2) that RU is balanced, ie., 1:R — (Ug)* =
BiEnd(xU) is an isomorphism. O

From Theorem 23.5 it follows that to have a duality
H':gFM > FMg,  H”:FMg— gFM,
there must exist a bimodule g Ug such that
H' =~ Homg(—,U) =( )*, H" = Homg(—,U) = ( )*,

and every finitely generated left R- and right S-module is U-reflexive. If g Us
is such a bimodule, then U = (S5)* and Us = (gxR)* are finitely generated
and are, by Theorem 24.1, injective cogenerators. Moreover, by Theorem
24.8, R is a left artinian ring, S is a right artinian ring, and a left R- or right
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S-module is U-reflexive iff it has a composition series. We now are ready to
prove the main theorem of this section which gives several necessary and
sufficient conditions on R, S, and ;U to ensure that these phenomena occur.

30.4. Theorem [Azumaya, Morita]. Let R be a left artinian ring and let
& Us be a bimodule. Then the following are equivalent:
(@) The qUs-dual ( )* defines a duality between FM and FMy;
(b) R, U, and S satisfy
(i) S is right artinian,
(i) all finitely generated left R-modules and right S-modules are U-
reflexive;
(c) R, U, and S satisfy
(i) S is right artinian (xU is finitely generated),
(ii) U and Ug are faithful,
(i) all simple left R-modules and right S-modules are U-reflexive;
(d) R, U, and S satisfy
(i) rU is finitely generated (S is right artinian),
(ii) rU and Us are faithful,
(iii) the gUs-dual ( )* takes simples to simples;
(e) R, U, and S satisfy
() Ss is U-reflexive (i.e., right multiplication p:S — End(gU) is an
isomorphism),
(i) gU is a finitely generated injective cogenerator ;
(f) R, U, and S satisfy
(i) Ssis U-reflexive,
(ii) gU and U are injective cogenerators;;
(®) R, U, and S satisfy
(i) rU is finitely generated (S is right artinian),
(ii) for each I < gR and each V < U, Ix(ry(I)) = I and ry(lg(V)) =V,
(iii) for each K < S and each W < {U, rs(Iy(K)) = K and ly(rg(W)) =
W.

Proof. (a) = (b). This implication follows from Theorem 24.8.

(b) = (c). The regular modules gR and Sg are U-torsionless iff they are
faithful (e.g., Ker g = Rejg(U) = Igx(U) by (20.12) and (8.22)). The remaining
parts of this implication are clear.

(c) = (d). Assume (c) and.let T be a simple left R-module. Then since S is
semiprimary (29.3) and T** # 0 implies T* # 0, T* contains a maximal
submodule M. Taking the dual of the natural exact sequence

0— M 22 T 0, Tx/M S 0,
we obtain an exact sequence
0 —— (T*/My* 24, e 5, ppx

Being the U-dual of a simple module, (T*/M)* # 0. Thus, since T** is simple,
n¥ is epic and, consequently, if; = 0. But T* is U-torsionless (see (20.14)) or,
equivalently, U cogenerates T*. Hence, by (8.11.2), i% = 0 implies iy, = 0, so
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that M = 0. Thus, T* is simple for every simple left R- (and, similarly, every
simple right S-) module T. Now we see that either version of (c) implies both
the parenthetical and the non-parenthetical version of (d) by applying (30.1)
to the non-degenerate bilinear map

RU X SS_'RUS

given by scalar multiplication (u, s) — us.
(d) = (e). This implication follows from Theorem 30.1 applied to the non-
degenerate bilinear maps

rU x Sg— gUs and gxR x Us— gUs

given by scalar multiplication. The first application shows that Sg is U-
reflexive because, by (20.15), Sy is U-reflexive iff p: S — End(z U) is an isomor-
phism. The second shows that g U is R-injective, so since every simple left
R-module is U-torsionless, zU is an injective cogenerator (see (18.3) and
(18.15)).

(e) = (f). By (30.2), Theorem 30.1 applied to scalar multiplication

rU % 85— g Us

gives the proof of this implication.

(f)=(a). In view of (30.3) the hypotheses of (f) imply that pUs is a bal-
anced bimodule. Thus, this implication follows from (24.1) and (24.8).

(d) = (g). By (30.1).

(g) = (d). Assume (g). Then

Ix(U) = Ig(ry(0)) = 0
and
rs(U) = rs(1,(0)) = 0,

so that RU and Uy are faithful. If I is a maximal left ideal in R, then clearly
ry(I) is a minimal submodule of Us. But it is easy to see that

(R/D)* = rgI) = ry(I)

for any I < xR (see (4.5)). This and a symmetric argument show that the
rUs-dual takes simples to simples. O

Over a left artinian ring a finitely cogenerated injective cogenerator is
always of the form
rRU Z E(T\)" @ @ E(T)™,
where T,,..., T, represent all simple left R-modules. Thus, we have
30.5. Corollary. Let R be a ring. Then there is a duality between xFM and

FMg for some ring S if and only if R is a left artinian ring over which the
injective envelope of each simple left R-module is finitely generated. O

Next we consider some artinian rings that have self-duality, i.e., a duality
between their categories finitely generated left and right modules. It remains
an open problem to determine which artinian rings have self-duality.
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Artin Algebras

Let K be a subring of the center of a ring R, so that R is a K-algebra. Then a
left module M is an R-K-bimodule with mk = km, and if C is a K-module,
then Homy(xM,C) € My by (4.4) and, similarly, given N; we also have
Homy(Ng,C) € gM. If K is artinian and gR is finitely generated, then R is
called an artin algebra over K. In this case, R is artinian and an R-module is
finitely generated if and only if it is finitely generated as a K-module. More-
over, R is an artin algebra if and only if Cen R is artinian and R is finitely
generated as a Cen R-module (Exercise 30.2). Of course, any commutative
artinian ring is an artin algebra.

30.6. Proposition. Let R be an artin algebra over K with C = E(K/J(K)),
the minimal cogenerator over K. Then D = Hom(—, C) defines a duality be-
tween gFM and FMg.

Proof. Since K/J(K) is a ring direct sum of fields,
SocC=8, D ®S,,

where the S; are the distinct simple K-modules, and §; =~ K/I; for some maxi-
mal ideal I; (i = 1,...,n). But then

Hom,(S;, C) = Homg(K/I, K/I,) = S,

fori=1,..., n, so by (30.4 (d) and (b)) every finitely generated K-module is
C-reflexive. In particular, the evaluation K-maps o), and gy are isomorphisms
for all finitely generated g M and Np, so, since they are in fact R-maps, we have
DD = 1,.,and DD = 1,,. a

QF Rings

We turn our attention to those rings for which the zRg-dual ( )* defines a
duality between the category of finitely generated left and right modules over
R. From the results of §24, we see at once that such a ring must be left
and right self-injective and left and right artinian. These conditions are, in
fact, both necessary and sufficient. A ring satisfying them is called a quasi-
Frobenius (or QF) ring. Nakayama introduced QF rings in 1938. They are, in
a sense, the minimal categorical generalization of group algebras. Their basic
characterizations are presented in

30.7. Theorem. The following statements about a left artinian ring R are
equivalent :

(@) RisQF,;

(b) R is left or right self-injective ;

(c) gRor Ry is a cogenerator;

(d) For each left ideal I < xR and each right ideal K < Ry,

Ip(re()) =1 and rglx(K) = K;
(e) The gRg-dual ( )* defines a duality between FM and FMpg.
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Proof. (a)<>(d)<>(e). These are by (30.4).

(a)= (b). This is obvious.

(b)<>(c). Lete,,..., e, be a basic set of primitive idempotents for R. If R
is injective, then e, R, ..., e,R must be pairwise non-isomorphic indecom-
posable injectives in M. Since their socles are essential (see (28.8) and (28.5)),
they must be the injective envelopes of the n distinct simple right R-modules.
Thus, every simple right R-module embeds in Rg, and Ry is a cogenerator by
(18.15). Conversely, if Rg is a cogenerator, then, by (18.16), R must have
direct summands isomorphic to the n indecomposable injective right R-
modules; they must be e R, ..., e,R, so Ry is injective.

(c) = (e). Since (b)<=>(c), if xR is a cogenerator then g R satisfies (30.4(e))
and (e) follows. But if Ry is a cogenerator then rgz(lz(K)) = K for every
K < Ry by (25.2). Since R is left noetherian, it follows that R is right artinian,
so the version of (30.4) for right artinian rings applies in this case. ad

Several other characterizations of QF rings now follow from (30.4).

30.8. Corollary. Let R be a left artinian ring. Then the following are equiva-
lent:

(a) RisQF,;

(b) Every finitely generated left and right R-module is g R z-reflexive ;

(c) Every simple left and right R-module is g Rg-reflexive ;

(d) The gRg-dual ( )* takes simples to simples;

(e) Every left and every right cyclic R-module is R-torsionless.

Proof. The equivalence of (a), (b), (c), and (d) is immediate from (30.7)
and (30.4); and considering (30.7(d)) and (25.2), we see that (e) is equivalent to
(a). O

A left noethenian ring that is either left or right self-injective is also QF,
as we shall see using the following lemma.

30.9. Lemma. If R is left self-injective, then
(1) rg(I, n 1) =rg(1y) + rg(I) for every pair of left ideals 1,, 1, < gR;
(2) rg(lx(K)) = K for every finitely generated right ideal K < Rpy.

Proof. (1) As noted in (2.16) we always have, for I,, I, < gR,
re(ly) + rgllz) S re(ly N 1)
Let x € rg(I, N I,). Then, checking that
¢:a, + a—ax (a;el)
defines an R-homomorphism
o1, +1,-R,

we see that there is, by the Injective Test Lemma, an element y € R such that
¢ is right multiplication by y. But then

ay=0¢(a, +0=0x=0
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foralla, €I, and

a(x —y) = ¢(a;) — ¢(a;) =0
for all a, e I, so that

x=y+x—yer(l,)+r(,).

(2) First we prove that rg(/g(x)) = xR whenever x € R and gR is injective.
The inclusion xR < rg(lx(x)) always holds (see (2.15)). If a € rg(lx(x)), then
since rx = 0 implies ra = 0,

O:rx—ra (reR)
defines an R-homomorphism
0:Rx > Ra.
Using injectivity, we see that 6 is right multiplication by some y € R. Hence,
a=0(x)=xyexR
and the reverse inclusion holds. Now using (1) and (2.16), if
K=x;R+--+x,R
is a finitely generated right ideal, we have
rU(K)) = rall(,R) A+ A\ Iy (x,R)
= ralla(x,)) + -+ + rallg(x,))
=x;R+--+x,R=K. O
30.10. Theorem. Every left self-injective left or right noetherian ring is QF.

Proof. Suppose the xR is injective and that R is either left or right noethe-
rian. Then the ascending chain condition ensures that R has a complete set
of primitive idempotents e,, ..., e, ((10.14) and (7.5)); each Re; is an inde-
composable injective module so its endomorphism ring, isomorphic to e;Re;,
is local (25.4). Thus, R is semiperfect by (27.6). Letting J = J(R), we see from
the ascending chain of ideals

leU) < %) < -
that, for some n > 0,
1) = I(J"*).

By (15.17(¢)), the right socle of R/Ix(J")is Iz (J"*1)/Ix(J"). If R is left noetherian,
then, by Lemma 30.9, R has the descending chain condition on principal right
ideals, so the preceding equality implies R/lz(J") = O (see (28.8)). Thus, in this
case, J" = RJ" = 0. If, on the other hand, R is right noetherian, then (30.9)
yields

J" = rg(lg(J"™) = rR(lR(J"+1)) =Jm,

so, by Lemma 15.13, J" = 0. Thus, R is a semiprimary and noetherian; hence
artinian, on one side or the other, so R is QF by (30.7). O
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30. Exercises

1. Prove that if R is a QF ring with basic idempotent e, then the following
are equivalent:
(a) gM is faithful;
(b) gM is a cogenerator;
(c) gM is a generator;
(d) Re is isomorphic to a direct summand of gM. In particular, every
faithful R-module is balanced.
2. Let R be an artin algebra over K < Cen R. Prove that:
(1) gM is finitely generated iff ¢ M is finitely generated.
(2) Cen R is artinian and R is finitely generated over Cen R.
(3) R is indecomposable iff Cen R is local.
(4) Exercise (23.6) is valid with ( )* replaced by the artin algebra duality D.
(5 f L= CenR, C, = E(K/J(K)), and C, = E(L/J(L)), then the functors
Homyg(—,C,) and Hom(—, C,) are isomorphic on ; FM, and hence on zFM.
[Hint: L is an artin K-algebra; show that C, ~ Homg(L, C,).]
3. Let] < gRpand M € g M.
(1) Prove thatif IM = 0, then E(g;; M) = rgy,(I).
(2) Conclude that if R is left artinian with Morita duality, then so is R/I.
4. Schofield [85, pp. 215-218] has shown that there is a division ring E
with division ‘subring F such that dim E =2, dim Ep=3, and
dim(Homg(Ep, Fg)g) = 1. Prove that the ring

<[5 7]

is artinian with all indecomposable left and right injective modules finitely
generated, but R does not have self-duality. [Hint: See Exercise (24.9).]

§31. Injective Projective Modules

In this section we present a characterization of injective projective modules
over artinian rings, and examine the structure of QF, QF-3, and QF-2 rings.

Projective and Injective Modules

We begin by recalling results from §25, §27, and §28 that specify the structure
of the projective and injective modules over a left artinian ring R with radical
J = J(R). Since R is semiperfect, according to (27.10) it has a basic set of
primitive idempotents e,, ..., e, such that

Re,,...,Re, and e¢,R,...,e,R

are complete irredundant sets of the indecomposable projective left and right
R-modules, and the simple left and right R-modules are similarly represented
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by
Re,/Je,,...,Re,/Je, and e,R/e,d,...,e,R/e,J.

Since R is perfect, indeed semiprimary (28.8), every R-module has an essential
socle (28.4(f)), so the indecomposable injective R-modules are

E(Re,/Je,), ..., E(Re,/Je,) and E(e,R/e,J), ..., E(e,R/e,J).

Moreover, by (27.11), the projective left (right) R-modules are the direct sums
of copies of the Re;(e;R), and since R is left noetherian, according to (25.6) the
injective left R-modules are the direct sums of copies of the E(Re;/Je;). These
direct sum decompositions of injective and projective modules over R are
unique in a very strong sense (see (25.6), (28.14) and §12).

Suppose now that R is a QF ring. Then Re,,..., Re, must be
E(Re,/Je,), ..., E(Re,/Je,) in some order, so we see that

31.1. Proposition. A module over a QF ring is injective if and only if it is
projective. d

Injective Projective Modules

Our next objective is to determine just when an indecomposable projective
Re; is injective. To do so we shall employ

31.2. Lemma. Let E be an injective left module over a ring R with S =
End(RE), and let f be an idempotent in R such that rg(fR) = 0. Then the natural
homomorphism

0:Homg(_, rEg) > Homg (fR® _, fE)
is an isomorphism. Thus,
fEXfR®E
is fR f-injective and there is a natural isomorphism
S = End(;g,fE).

Proof. First, for each y € Homg(R/RfR, E), we have fR Imy = 0; so, by
hypothesis, y = 0. Then, from

0—->RfR—-R—->R/RfR—0
and the injectivity of E,
0 — 0 — Homg(R, E) > Homg(RfR,E) — 0,

is exact so that E = Homg(R, E) = Homg(RfR, E). Next consider the epimor-
phism Rf ® fR — RfR given by multiplication, with kernel K,

0->K—>Rf®r;fR—RfR-0O.
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Then for every Y ;(a;f ® fb;) € K and every y € Homg(K, E), we have
fR“/(Z‘,' (a.-f®fb.~)) = )’(f@fR g‘hﬂ%) =0.
So since rg(fR) = 0, we have Homg(K, E) = 0 and
Homg(RfR, E) = Homg((Rf ®;g; fR), E).
Thus,
E =~ Homg(R,E)
= Homg((Rf ® fR), E)
= Hom g, (fR,Homg(Rf,E)) (by (20.6))
= Homg(fR, fE).
Then for every M, we have
Homg(M, E) = Homg(M, Homg (R, fE))
= Homz (fR® M), fE) (by (20.6))
= Hom,(fM, fE).
Now Hompg(—, E) is exact and, for each module N, the isomorphism
N = fR® Homgg/(fR,N)

is natural, so Homgg,(,fE) is exact on M, and fE is fRf-injective.
Finally, applying the natural isomorphism 6 to z E we deduce that
S = End(gE) = End( g, fE). a

We note that as a consequence of the next theorem there is a one-to-one
correspondence between the indecomposable injective projective left and
right modules over any one-sided artinian ring.

31.3. Theorem. Let R be a left or right artinian ring with J = J(R), and let
e be a primitive idempotent in R. Then Re is injective if and only if there
is a primitive idempotent f € R such that
Soc Re = Rf/Jf and Soc fR = eR/el.

Proof. (=). Assume that Re is injective. Then there is a primitive idem-
potent f € R such that Re = E(T) with T = Rf/Jf. We claim that
I;x(Re) = rg(fR) = 0. N

Suppose that fr #0. Then Rfr/Jfr = Rf/Jf = T, so the Injective Test
Lemma yields frRe # 0. On the other hand, fT # 0, where T = Soc(Re), so

rr.(fR) = 0. Now since Re is injective and rg,(fR) = 0, we have by (31.2) that
fReis fRf-injective and that

eRe = End(Re) = End( g, fRe).
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We claim next that fT = f(Soc Re) is simple. Indeed, let 0 # L < ;z,fRe.
Then T < RL, so fT < fRL = L. Then fT = Soc(;x;fRe). But fT = fRf/
SfJf, so that

fRe = E(fRf/fIf)

is a finitely cogenerated injective cogenerator over fRf. Thus, from (30.2.1) we
have

Soc(fRe.g.) = Soc(yrsfRe)
= Homgg(fRf, Soc fRe)
= Homg (fRf/fJf, fRe)

which is simple by (30.2.2). Now since /;z(Re) = 0, no minimal right ideal in

fRis annihilated by e; so from (Soc fR)e < Soc(fRe,g,) we see that Soc fR =
eR/eJ.

(«<=). Conversely, suppose e and f are primitive idempotents with
T = Soc Re =~ Rf/Jf and S = SocfR = eR/eJ.
Then, since S & l;x(Re) and T & rg (fR),
I;x(Re) = 0 = rg (fR).

Also one easily checks that fT and Se are the unique minimal submodules of
sryfRe and fRe,g,, respectively, so

Soc(srsfRe) = fTe = fSe = Soc(fRe,z,)
and both are simple. Thus, from

Homg,(fRf/fJf,fRe) = Homsg (fRf, fSe),

we see that the 5, fRe, g -duals of simples are simple. Now, since R is left or
right artinian, either .z fR or Re, g, has a composition series so we can apply
(30.1) to the non-degenerate bilinear map

SR x Re— ;p.fRe.g,

via multiplication in R to see that g fRe is injective (see also (16.13) and
(18.3)) and that

Re =~ Homnu(fR,fRe)

over R (as well as over eRe) via p(re): fx — fxre. But then using (20.6), we have
natural isomorphisms of functors

Hompg(-, Re) = Homg(_, Hom g (fR, fRe))

= Homyz;((fR® -), fRe).

However, fReis fRf-injective and fR is R-projective, so Homg(-, Re) is exact
and Re is injective (as in Exercise (20.8.1)). O
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The condition of the following immediate corollary was Nakayama’s
defining condition for QF rings. The permutation ¢ therein is known as the
Nakayama permutation.

31.4. Corallary. A left artinian ring R with basic set of idempotentse,, ...,
e, and J = J(R) is QF if and only if there is a permutation o of {1,...,n} such
that .

Soc Re; = Re,y/Je,, and Soc e, R = e;R/e;J

fori=1,...,n

QF-3 Rings

A faithful left (or right) R-module U is said to be a minimal faithful module in
case it is isomorphic to a direct summand of each faithful left (respectively,
right) R-module. This rather unusual usage of the adjective “minimal” has
become accepted in this particular context. For example, if e is a basic
idempotent for a QF ring R, then Re = E(Re/Je) is such a minimal faithful
module; that is, it is faithful and appears as a direct summand of every faithful
left R-module (Exercise (30.1)). Finite-dimensional algebras having such mini-
mal faithful modules were first studied by R. M. Thrall. An excellent account
of more general cases appears in [Tachikawa, 73] which includes the follow-
ing fundamental characterization of minimal faithful modules by Colby and
Rutter.

31.5. Lemma. Let U be left R-module. If qU is minimal faithful, then gU
is both injective and projective, and there is a sume =e, + -+ + e, of ortho-
gonal primitive idempotents in R with

U=xRe, @ - ®Re,=Re,
such that
Re, = E(T), (i=1....k

where Ty, ..., T, is an irredundant set of representatives of the minimal left
ideals in R. Conversely, if T, ..., T, are pairwise non-isomorphic simple mod-
ules with

U=ET® ®T)=EMN)®  ®ET)
faithful and projective, then gU is a minimal faithful left R-module.

Proof. Suppose that g U is a minimal faithful left R-module. Then U must
isomorphic to a direct summand of the regular module gR, so there is an
idempotent e € R such that U = Re. But U must also be isomorphic to a
direct summand of the (faithful) minimal cogenerator Co = Pr.s, E(T) (see
(18.16)). Since U = Re is cyclic, the image of any embedding of U in C, must
be contained in a finite direct sum of the E(T) (T € S,). Thus, there is a finite
irredundant set of simple left R-modules (T,,), . ¢ such that U is isomorphic to
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a direct summand of @ E(T,). But then (see (25.5)) among the T, there must
exist Ty, ..., T, with

U=z E(T,))® @ E(T) = Re,

and we can write e as a sum of primitive orthogonal idempotents e =
e, + -+ e, with Re; =~ E(T)) (i = 1,...,k) where, since every minimal left
ideal must embed. in a faithful module, T, ..., T, is an irredundant set of
representatives of the minimal left ideals in R.

Conversely, if Tj,..., T, are pairwise non-isomorphic simple modules
such that E(T;) is projective for i =1,..., k, then, since faithful modules
cogenerate all projective modules (see Exercise (17.6)), if g M is faithful, there
exist monomorphisms (i.e., maps whose kernels do not contain T;)

0—s E(T)—>M (i=1,...,k).

Since the T; are pairwise non-isomorphic simple modules y,(T}), ..., %(T;)
must be independent. But then (see (6.24)) so are their essential extensions
Imy,, ..., Imy,. Hence, the injective module E(T, ® - @ T,) = Imy, +--- +
Im y, is isomorphic to a direct summand of M. O

Aring Ris said to be a left (right) QF-3 ring in case it has a minimal faithful
left (right) R-module. A ring is a QF-3 ring in case it is both left and right
QF-3. Thus, every QF-ring is QF-3.

Next we give several characterizations of one-sided artinian QF-3 rings.
In particular, we shall see that in the presence of either minimum condition
“left QF-3” and “right QF-3” are equivalent. It is to be noted, however, that
unlike the QF case, there do exist left artinian QF-3 rings that are not right
artinian. (See Exercise (31.2).)

31.6. Theorem. The following statements about a left artinian ring R are
equivalent:

(a) Ris left (right) QF-3;

(b) R has a faithful injective left (right) ideal ;

(c) R has a faithful injective projective left (right) module;

(d) E(gxR) (E(RR)) is projective;

Moreover, if Ris QF-3, then the minimal faithful R-modules are of the form

Re=Re, ®  ®Re, and fR=fiR® @ fR
withe = e, + - + e and f =f, + - + f, sums of orthogonal primitive idem-
potents such that
Soc Re; = Rf;/Jf; and Soc f;R =eR/eJ (j=1,...,k)

and these simple modules are irredundant sets of representatives of the minimal
left and right ideals.

Proof. (a) = (b). These are consequences of Lemma 31.5.

(b) = (c). Trivial.

(c) = (d). The hypothesis (c) implies that R is cogenerated by an injec-
tive projective left (right) module Q (see (8.22)), i.e., there is a left (right)
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R-monomorphism
0-R-Q4

for some set A. In the left-hand case, since gR is finitely cogenerated, we may
take A to be finite. In the right-hand case, direct products of projective right
R-modules are projective (28.9). Thus, in either case, the regular module R
embeds in an injective projective module, so its injective envelope is projec-
tive.

(d)=(a). If (d) holds, then E(xR) is a direct sum of injective envelopes
of simple modules; so choosing one from each isomorphism class, we
can find pairwise non-isomorphic simple modules T;,..., T, such that
E(T,® - @ T,) is projective and has the same annihilator as E(zR)—
namely, zero. Thus, Lemma 31.5 applies. The proof of the right-hand version
is entirely similar,

If R is left QF-3 with minimal faithful module Re = Re, @ - @ Re, as in
(31.5), then from a basic set of primitive idempotents for R, we can choose
Sis--os fiwith Rfi/Jf; = Soc Re; (i=1,...,k).If f = f, + - + f, then fR =
fiR® - @® f,R is injective and Soc f;R = ¢;R/e;J (i = 1,...,k) by (31.3); and
no two of these are isomorphic. Since, by (31.5), each minimal left ideal is
isomorphic to one of the Soc(Re;) = Rf;/Jf;, we see that fR is faithful because
rz(fR) contains no minimal left ideals. Now by (31.5) again, /R is a minimal
faithful right ideal. This proves the concluding statement and that the left-
hand version of (a) implies the right-hand version. Similarly, we see that the
right-hand version of (a) implies the left-hand one. O

QF-2 Rings

A left or right artinian ring is a QF-2 ring in case each of its indecomposable
projective left and right modules has a simple socle. Of course, QF rings are
QF-2 (31.4). Thrall proved that finite-dimensional QF-2 algebras are QF-3,
and (31.3) allows us to extend this to the artinian case.

31.7. Theorem. Every left or right artinian QF-2ring is QF-3.

Proof. Let J = J(R), and, for each zM, define L(M) = | in case J'M = 0
and J'"'M # 0. Let T be a minimal left ideal of R. Then there exists a
primitive left ideal Re with L(Re) maximal among those satisfying Soc Re =
T. If ¢’ is any primitive idempotent in R, then we see that (Soc Re)-Je' =0
because otherwise, right multiplication by some element of Je’ gives a mono-
morphism of Re into Je', contrary to the maximality of L(Re). Thus,

Soc Re < Ig(J) = Soc(RR).
Now let f be a primitive idempotent in R such that Soc Re = Rf/Jf. Then
0 # f(Soc Re) = f(Soc(Rg))e = (Soc fR)e,

so that, since it is simple, Soc fR = eR/eJ. Thus, Re is injective by (31.3); and
(31.6) applies. O
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From (31.7), (31.5), and (31.4) one can easily obtain

31.8. Corollary. The following statements about a left or right artinian ring
R are equivalent:

(a) Ris QF;

(b) R is QF-2 and Soc(gR) = Soc(Rg);

() R is QF-2 and every simple left R-module embeds in R.

Proof. Exercise (3.14). g

The Faith-Walker Characterization of QF Rings

We conclude this section with a theorem that characterizes QF rings strictly
in terms of projective and injective modules.

31.9. Theorem. The following statements about a ring R are equivalent:
(a) Ris QF;

(b) Every projective left R-module is injective ;

(c) Every injective left R-module is projective.

Proof. (a) = (b) and (a) = (c) by (31.1).

(b) = (). Suppose that xR is injective for some .infinite set A. Then by
(25.1) and the discussion preceding it, R has the ascending (descending) chain
condition on annihilator left (right) ideals. By (30.9), every principal right ideal
is an annihilator right ideal, so R is left perfect (28.4(e)). Thus, as in the proof
of (30.10), R is semiprimary. Now if e, ..., e, is a basic set of idempotents for
R, then Re,, ..., Re, must be the injective envelopes of the n distinct simple
left R-modules, and we see that xR is a cogenerator (18.15). But then by (25.2)
every left ideal is an annihilator left ideal, so the left self-injective ring R is left
noetherian and hence QF by (30.10).

(c) = (a). Suppose all injective left R-modules are projective. Then they all
must be isomorphic to direct summands of free modules, and it follows that
every left R-module embeds in a direct sum of copies of R. Thus, by (26.3), R
is left noetherian, and moreover, by considering projections on the terms in
R“Y. we see that each simple left R-module is isomorphic to a minimal left
ideal. Since any collection of pairwise non-isomorphic simple submodules of
a module is independent, and since R is left noetherian, it follows that R has
only finitely many isomorphism classes of simple modules. Let T,..., T,
denote one representative from each of these classes. Then, by hypothesis, the
pairwise non-isomorphic indecomposable injective modules E(T}), ..., E(T,)
are projective. Their endomorphism rings are local (25.4), so they are projec-
tive covers of (pairwise non-isomorphic, by (17.18)) simple modules by (17.20).
Thus, letting E = E(T,) ® --- @ E(T,), we see that the projective module E
maps onto each of Ty, ..., T, and, hence, must be a generator (17.10). There-
fore, we have R® R’ = E™ (17.6) and R is QF. O
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31. Exercises

1. Prove that if R is a left artinian QF-3 ring, then Soc(Ry) is a finite direct
sum of simples.

2. Prove that if C is a division subring of a division ring D such that .D has
finite dimension, but D¢ does not, then the ring of matrices

D 0 O
D C O
D D D

is a left artinian QF-3 ring that is not right artinian.
3. Show that the ring of matrices, over any division ring, of the form

0 00O

Q

T < &
x O o
<= o O
a O O

is a QF-3 ring that is not QF-2.
4. (1) Prove that if R is a left or right artinian QF-3 ring with e a primitive
idempotent in R, then Re is injective iff Soc Re = Soc(Rg).
(2) Prove Corollary 31.8.
5. A QF ring R is called a Frobenius ring in case Soc(gR) =z R/J. Prove:
(1) An artinian ring R is Frobenius iff Soc(gxR) =zxR/J and Soc(Rg) =
R/Jg.
(2) The basic ring of every QF ring is Frobenius.
(3) If R is a finite-dimensional algebra over a field K, the following are
equivalent:
(a) R is Frobenius;
(b) There is an isomorphism ¢ : xR = Homg(Rg, K);
(c) There is a non-degenerate R-balanced K-bilinear mapping 6:R x
R - K. [Hint: Try 6(r,s) = (¢(s))(r).];
(d) Rg = Homg(xR, K). )
6. A QF ring R is called weakly symmetric in the case Soc Re =~ Re/Je for all
(primitive) idempotents e in R. Prove that:
(1) If R is artinian, then the following are equivalent:
(a) R is a weakly symmetric ring;
(b) Soc Re = Re/Je and Soc eR = eR/eJ for all primitive idempotents
ein R;
(c) Hompg(Re/Je,R) = eR/eJ and Homg(eR/eJ,R) = Re/Je for all pri-
mitive idempotents e in R.
(2) The algebra of matricies, over a field K, of the form

a y 00
0
X
0 00 a
is Frobenius but not weakly symmetric.



Serial Rings 345

7. A finite-dimensional algebra R over a field K is a symmetric algebra in case
there is a bimodule isomorphism ¢ : g Rg = Homg(R, K). Prove that:
(1) The following are equivalent:
(a) R is a symmetric algebra;
(b) The functors Homg(—,R) and Homg(—,K):xFM — FMy are iso-
morphic;
(c) There is a non-degenerate R-balanced symmetric (i.e., 0(r,s) =
0(s,r)(r,s € R)) K-bilinear mapping §:R x R - K.
(2) If G is a finite group, then the group algebra KG is symmetric via
0:(3.a,9,Y.b,9) = Y a,b,-1.

8. Let R be a two-sided QF-3 ring (no chain conditions) with minimal faithful
modules Re = Re; @@ Re,, and fR=ffR® - ® f,R as in (31.5).
Prove that:

(1) k=mand f,, ..., f, can be renumbered so that Soc Re; =~ Rf;/Jf; and
Soc f;R = e;R/e;J. [Hint: Je; is maximal by (25.4) and (17.20).]
(2) srySRe.g, defines a Morita duality such that Re and fR are reflexive.

9. Suppose that R is a left artinian ring and 0 # f = f? in R. Let E =
E(Rf/J(R)). Prove:

(1) I;r(E) = 0 and rg(fR) = 0.

(2) srsSE is a cogenerator.

(3) Let D(E) denote the full subcategory of gk M whose objects are modules
M such that there are sets X and Y and an exact sequence

0> M — E® 5 ED,
Prove that if H = Hom g ,(fR,-) and T = (fR ® g-), then
T:D(E) - ;g;M and H:zM - D(E)

and these functors define an equivalence of categories, i, To H = 1,5, M
and H o T = g, (cf. Exercise 20.18). [Hint: The first isomorphism of
functors follows from (20.11); the second uses (31.2) and the Five Lemma,
among other things.]

§32. Serial Rings

With the exception of semisimple rings, serial rings provide the best illustra-
tion of the relationship between the structure of a ring and its categories of
modules. They were one of the earliest examples of rings of finite module (or
representation) type; their introduction by Nakayama some 50 years ago was
fundamental to what has come to be known as the representation theory of
artinian rings and finite-dimensional algebras.

Loewy Series and Uniserial Modules

For each module M # 0 over a semiprimary ring R, there is a smallest
positive integer £ such that J°M = 0. This number Z is called the Loewy length
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of M and we write L(M) = £. (If M = 0, then, of course, L(M)} = 0.) The upper
Loewy series, or radical series, for M is
M>JIM>-->J'M=0.

The lower Loewy series for M is
0<ry()) < <ry(J)=M.
Letting J° = R, we say thatforeachk=1,...,¢
JIMJIEM
is the k-th upper Loewy factor of M and
Ty ()<

is the k-th lower Loewy factor of M. Each of these factors is semisimple and
none are zero (unless M is). All of these concepts have obvious analogues for
right modules. Moreover, we note that

() (TE 1) = Soc(M ey (J*Y)) (k= 1,...,0);
so we often write
Soct M = r,(J%)

and call the lower Loewy series the socle series.

A module is called uniserial in case its lattice of submodules is a finite
chain, i.e., any two submodules are comparable. Thus, simple modules and
Z,. (p a prime) are uniserial modules.

32.1. Lemma. The following statement about a module M # 0 over a semi-
primary ring R are equivalent:

(@) M is uniserial;

(b) M has a unique composition series

(¢} The upper Loewy series

M>JM>->JM=0

is a composition series for M;
(d) The lower Loewy series

0<SocM < Soc’M <+ <Soc!M =M
is a composition series for M.

Proof. (a)<>(b). This is obvious.

(a) = (¢) and (d). Any non-simple Loewy factor would yield incomparable
submodules.

(d) = (a). Let L < M and choose k maximal with respect to Soc* M < L.
Then L~ Sock*' M < Soc*** M, so, by hypothesis, L n Soc**' M = Soc* M,
ie.,

L/Sock M ~ Soc(M/Soc* M) = 0.

Thus, since socles of R-modules are essential, L = Soc* M and (a) follows.
(c) = (a). This is dual to (d) = (a). O
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Serial Rings Characterized

An artinian ring is a left (right) serial ring in case each of its left (right)
indecomposable projective modules is uniserial. Thus, R is (two-sided) serial
iff R is semiprimary and zR and Rpy are direct sums of uniserial modules.

32.2. Theorem. The following statements about a left artinian ring R with
J = J(R) are equivalent:

(a) R is aserial ring;

(b) Every factor ring of R is QF-2;

(c) Every factor ring of R is QF-3;

(d) R/J? is serial.

Proof. (a)=(b). If ] <gRg and ey, ..., e, is a complete orthogonal set of
idempotents in R, then

R/l = Re,/le; @+ @ Re,/le,.

Thus, factor rings of serial rings are serial, and hence QF-2.

(b)= (c). Thisis by (31.7).

(c) = (d). Suppose J2 = 0 and R is QF-3. If f is a primitive idempotent in
R such that fJ # 0, then Rf/Jf is isomorphic to a minimal left ideal since
J < Soc(gR). But then fR is injective (31.6), so fJ = Soc fR is simple. Thus,
R is right, and similarly left, serial.

(d) = (a). Assume inductively, for k > 1, that J*¢;/J** ¢, is simple, so there
is a projective cover

Rej g Jkei g 0.
Then Je;/J%e; = J**'e,/J** 2¢; unless the latter is O. 0

The next result characterizes serial rings in terms of left modules and also
serves to describe their left and their right modules.

32.3. Theorem. If R is a left artinian ring, then the following are equivalent:

(@) R is aserial ring;

(b) Every left R-module is a direct sum of uniserial modules;

(c) Every finitely generated indecomposable left R-module is uniserial ;

(d) The projective cover and the injective envelope of every simple left
R-module are uniserial.

Proof. (a)=(b). Let J =J(R)and £ = L(R), so J*=0and J*™' #0.If e
is a primitive idempotent in R such that J’"'e # 0, then since R is QF-3, Re
is injective by (31.6). Suppose now that M is a left R-module, and let & denote
the set of Rex such that e is a primitive idempotent in R, J* 'ex # 0 and
x € M; and let E be the (necessarily direct) sum of a maximal independent
subset of &. Then since each Rex = Re, via multiplication by x, E is injective
and we have M = E@® M’, where E is a direct sum of serial modules. But
Je'M’ = 0 since, otherwise, some Rex € & would be contained in M’ con-
trary to maximality. Thus, M’ is an R/J‘"'-module and this implication
follows by induction on L(R).

(b) = (c). Obviously.
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(c)=(d). If Soc* E/Soc* ! E is not simple, then E contains a finitely gener-
ated submodule that is not uniserial; and every submodule of the injective
envelope of a simple module is indecomposable.

(d) = (a). It follows from Exercise (30.3) that if S is a simple left R-module
with E = E(S), then since JS = 0, the injective envelope of S over R/J? is
re(J?) = Soc? E; and, of course, the projectives over R/J? are factors of those
over R. Thus, by (32.2(d)), we may assume that J? = 0. Let f be a primitive
idempotent in R. If fJ = 0, then fR is certainly uniserial. If fJ # 0, then J
contains a copy of Rf/Jf, so there is a non-zero map from J to E = E(Rf/Jf)
which must be multiplication by an element of E (18.3). Thus, in this case
JE #0,s0 ¢(E)= 2, and if E/JE =~ Re/Je, then E =~ Re. But then, by (31.3),
/R is injective with Soc fR = fJ =~ eR/eJ and fR is uniserial. O

The Kupisch Series

Let R be a serial ring with basic set of primitive idempotents e,, ..., e, and
J=J(R).Foreachi=1,...,n, set
S; = Re;/Je; and T, =e;R/eJ.
Thus, S,,..., S, and Ty, ..., T, are complete irredundant sets of simple left
and right R-modules, respectively. The (right) quiver of R is the directed graph
2(R) with vertex set {e;,e,,...,e,} and with an arrow e; — ¢; if and only
if e;Je; & J2. (See Exercise (32.14) for the quivers of an artinian ring.) Equiva-
lently,
e;—¢;in 2(R) iff Je;/J%e; = S,

iffe;J/e,J? = T,

iff Re; » Je; = 0 is a projective cover

iff ¢;R - e;J — 0 is a projective cover.
It follows from (27.18) that R is indecomposable iff 2(R) is connected as an
undirected graph (i.e., ignoring directions 2(R) is topologically connected).
Now since R is serial, for all i = 1,..., n, the modules Je; and e;J have unique
projective covers of the form Re; and ¢;R, so in 2(R) the in and out valence of
any vertex is at most 1; i.e., neither configuration

e, >e+e NOT e e —e

can occur in 2(R). Thus, if R is also indecomposable, so that 2(R) is con-
nected, then 2(R) is either a single directed path of length n or a single cycle
of length n. That is,

32.4. Theorem. If R is an indecomposable serial ring with J = J(R), then a
basic set of idempotents can be numbered so that the quiver 2(R) of R is either

e,—re,—> - —e, oOr |
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50 that there are projective covers
Re;_y —»Je;—»0 (i=2,...,n)
and
Re, — Je, -0
if Jey # 0. O

The list of indecomposable projective modules Rey, ..., Re, of Theorem
324 is called the Kupisch series for R. We note that it is unique, except for
cyclic permutation of {1,...,n} when Je, # 0. Also, if ¢; = c(Re;), then

Je; = Re;_ /J e,y (i=2,...,n)
and
Je, = Re,/J e,
if Je, # 0. Thus, we must have
2<¢<c_y+1fori=2,...,n and ¢, <c,+ 1

The numbers ¢y, ..., ¢, form what is called the admissible sequence for R; and
any sequence c,, ..., ¢, satisfying these inequalities is simply called an admis-
sible sequence. We shall presently see that each of these is the admissible
sequence for some serial ring.

In what follows, if k € Z, we let [k] denote the least positive residue of k
modulo n. The next lemma, a consequence of the Kupisch series, is the key to
many of the remaining results in this section.

32.5. Lemma. Let R be an indecomposable serial ring with Kupisch series
Re,,..., Re,and J = J(R). Then there exist

a,_€e_Je, fori=2,...,n and a,ee,Je,
such that, for any k > O and anyie {1,...,n},
k K
J'¢; = Rag_y...a3-284-y; and  eJ" = aa;,. .. a0 R

Proof. By (32.4), there are projective covers Re;_; — Je;—» 0 for i =
2,...,nand Re,— Je; -0 if Je, # 0. The images of e,, ..., e, under these
epimorphisms are elements a,_, € e;_, Je,\J%, i=2,...,n,and g, € e, Je;\J?
if Je, # 0, and a, = 0if Je, = 0. Then the conclusion surely holds for k = 1.
If k > 1, then, assuming the condition for k — 1, we have

Jkei = Jk—lRa“_“

n

_ k-1

—< J ej)“[i-u
=

k—1
=J ey
= Ray;_y. .- j-2,0(i-1)

The proof for e;J* is entirely similar. O
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From Lemma 32.5 we see at once that if R is serial with Kupisch series
Rey,...,Re,and ¢; = c(Re;) (i = 1,...,n), then

J¥e; = Rep_y/J ey
if J*e; # 0, and the composition factors of Re; are, starting from the top,
Sis Sticip o> S15 Spy Sty oo Sty vy Simep 41y
Similarly, if d; = c(e;R) (i = 1,..., n), then
eJ* = e R/
if e;J* # 0 and the composition factors of e;R are, from the top,
Ty Tivsps s T iy ooy Ty o, Tiggmage

In specific cases, this information can be nicely represented by diagram.
For example, if the admissible sequence for Ris ¢, = 4,¢, = 5, ¢; = 5 struc-
tures of Re,, Re,, Re; and e, R, e, R, e3R are indicated by

3
|
1
and |
2
|
3

—_— N W— —
—_——N— W = N
— W —— N— W
N— —— W N— —
W N — m— W— N

respectively.
Injective Modules

It is now relatively easy to identify the indecomposable injective modutes, and
hence all injective modules, over a serial ring R. Every serial ring is QF-3; so
in terms of this characterization of injective modules, we can also characterize
their minimal faithful modules.

Let R be a serial ring with Kupisch series Re,,..., Re, and admissible
sequence c;, ..., ¢, and again for each i let
S; = Re;/Je,.

Let x M be indecomposable. By (32.3), M is uniserial and so has a projective
cover Re; » M — 0 for some unique i. Thus, if ¢(M) = m, then m < c; and

M = Re;/J™e,.
It follows that the composition factors for M are, from the top,
M/-’M = Si’ S[i—l]’ ceey S[i—m+1] =~ SocM.

Reading this in the other direction, if Soc M = S,, then the composition
factors for M are, from the bottom,

Soc M = Sy, Systps - Seem—1y = M/IM,
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so that
M = Reyym-1)/I € rm-1)-

In other words, every indecomposable module is characterized to within
isomorphism by its length and its socle. Now since Re; — Je;,;— 0 is a
projective cover, ¢;;,;; > m if and only if

M = Re,/J™e; = Jey ) /" s

and there is a proper embedding of M into Reg,y/J™ ey
Now let ¢ E be an indecomposable injective with Soc E = S, so

E = E(Re;/Je;).

Then every left R-module M with Soc M = §; can be embedded in E. There-
fore, E is the unique uniserial module of maximal length with socle §;. With
these last two observations we have established

32.6. Theorem. Let R be an indecomposable serial ring with Kupisch series

Rey, ..., Re, and admissible sequence c,, ..., c,. For 1 <i<nandm <c,, the
indecomposable module Re;/J™e, is injective iff ¢y < m < ¢;. In particular,
Re, is injective iff ¢4y < ;. O

This last statement means that the modules Re; with ¢j;,,; < ¢; are the
indecomposable projective injective modules. As we have seen, serial rings are
QF-3 rings. Thus, their minimal faithful modules are identified in

32.7. Corollary. Let R be an indecomposable serial ring with Kupisch series

Re, ..., Re, and admissible sequence c,, ..., c,. Then
@ Re
Cli+11S¢
is the minimal faithful left R-module. d

The casec, = 1

The particular case of an indecomposable serial ring with ¢, =1 is quite
special. This is the case in which the quiver Q(R) is a directed path

e, e, - e,

As we shall see, these turn out to be factor rings of rings of upper triangular
matrices. Indeed, let D be a division ring and let R = UTM, (D) be the upper
triangular matrix ring over D. This is an indecomposable serial ring with
Kupisch series Re,, ..., Re, where e, is the matrix whose only non-zero entry
is 1 in the ii*" position. The admissible sequenceisc, = 1,¢c; =2,...,¢c, = h.
Note also, in this case, Re, is simple and Soc Re, =~ - = Soc Re, = Re,, so

Soc(xR) = ® Soc(Re,) = (Re, )"
i=1

is projective. As a converse we have
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32.8. Theorem. Let R be a basic indecomposable serial ring with Kupisch
series Rey, ..., Re,. If Re, is simple, then R is isomorphic to a factor ring of
the n x n upper triangular matrix ring UTM, (D) over a division ring D. More-
over, if Soc(gR) is projective, then R = UTM,(D).

Proof. Suppose ¢, = 1. Then ¢, < k for k=1, 2,...,n, and, by Lemma
32.5, we see that the only composition factors of Re; are the first c; of §;,
Si—15--+» Sy (S; = Rey/Je)). It follows that for all i and j either j —¢; <i <j
and

e;Re; = ¢S,

is simple over e;Re; or ¢;Re; = 0. Similarly, e;Re; is simple or zero over e;Re;.
Thus, with ay, ..., a, as promised in (32.5), if we set

e; ifi=j
b= {a,l...aj_1 =ea;...a;1¢; fl<i<j<n,
then we see that the e;Re; are division rings and
e;Re; = ¢;Re;e;; = e;;e;Re;

whenever 1 < i < j < n. It follows that there are division ring isomorphisms

o;:e;_yRe;_, - e;Re; (i=2,...,n)
such that

di18i-y = a;_10(d;-y) (di-; € &;_Re;_y),

and that

Re; = i e;Re; = i e;Ree;;.

i=1 i=1
Now let g, = 1, g, and
6,=0;000,:e,Re;, »e;Re; (i=1,...,n),
and let
D = {5,(x) + 6,(x) + -+ + §,(x)|x € e, Re, }.
Then D is a division ring,

R = Z De..’

i<j Y
andifd = Y 1, 6(x), then, fori=2,..., n,
da;_, = 6;_;(x)a;_, = a;_,6(x) = a;_,d.
Thus, we see that whenever 1 <i < j <n,
de;; = e;d

for all d € D, and it follows that the surjective mapping

[dij]1— Z d;;e;; ([dij] e UTM, (D))
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is a ring homomorphism. For the last statement, we note that this is a
D-vector space map and observe that if Soc(gR) is projective, then e;; # 0 for
ail<i<j<n O

If R is an indecomposable serial ring with Kupisch series Re;, ..., Re,,
then an argument similar to one in the proof of (32.8) shows that the division
rings e;Re;/e;J e; are all isomorphic, i.e., if R is basic, then R/J is a direct sum
of n copies of the same division ring. One might hope that this division ring
and the admissible sequence would determine the ring R, but this is dashed
by the rings Z, and Z,[x]/(x*). We shall, however, show that the hoped for
result does hold for certain finite-dimensional algebras.

Split Serial Algebras

A finite-dimensional algebra R over a field K = Cen R is a split algebra in case
the endomorphism ring of every simple R-module consists entirely of scalar
multiplications by element of K. Equivalently, in case R/J(R) is isomorphic
as a K-algebra to a direct sum of matrix rings over K; and if R is basic, then
Rissplitifand only if yR = Ke, @ --- ® Ke, ® J(R)whene,, ..., e, is a basic
set of idempotents. If K is algebraically closed, then R is automatically split
(Exercise (32.7)).

If # is a finite semigroup with O (i.e, Ox = 0 = x0 for all x € &), the
semigroup algebra X Z is an algebra (maybe without identity) with K-basis
2\ {0}, and (with sums taken over &£\ {0}) multiplication satisfying

(zre)(z ) -2 (2.00):

and Ox = 0 € #. Similarly to Exercise (1.15), one can define this object as
KR ={f:2- K|f(0) =0}.
We employ this notion to prove

32.9. Theorem. If K is a field, then any two split basic indecomposable
serial K-algebras with identical admissible sequences are isomorphic.

Proof. Let R be such a K-algebra with Kupisch series Re,, ..., Re,. Then
since R is split and basic, c(xR) = dim(xR) = Y .7, ¢;. Thus, it easily follows
from (32.5) that ifa;_, € e;_, Je;\J* (i = 2,...,n)and a, € e, Je,\J (if Je, # 0),
then {e,,...,e,} U {ay,...,a,_,,a,} generates a subsemigroup (%, *) of (R, *)
whose non-zero elements form a K-basis for R. Therefore, R = KZ. So since
the multiplication table of # is determined, via (32.5), by the admissibie

sequence ¢, ..., ¢,, the theorem follows. d

This last theorem suggests a method of constructing a serial ring with
a given admissible sequence c,,...,c,. Let ey,...,e,, a;,...,a,, and 0 be
distinct symbols (except possibly a, =0 if ¢, = 1). Then denote a k-tuple
(fizig - > Bim2)» Bpi-y)) BY Gpiny- - - Gy, let

F={ay_y...au_yll <k <c,i=1,..,n} u{0},
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and let
R={ey,....,e,} U L.
Define multiplication on R by
ee;=¢ ifi=j,
€Ay Api-11€1 = Qji—py--- G-y i j=[i —k]and =i,
(@gj-q -+ 8j-1) @iz - - - Bpi=1)) = Q=51 --- Gi—yy i j=[i—s]ands +1t <,
and define all other products to be 0. If any of x, y, or z is O or ¢;, then, clearly,

(xy)z = x(yz). In fact, it is nearly obvious that associativity holds in every case
except possibly when

X = Qy_y)- - A1y Y =ag_g.. 1) Z=a5_g...084-y

where k =[j —t], j=[i — s],and t + u > c;. But even here, we have
xy)z2=0z=0
and, from ¢; = ¢y = ¢; — s, we obtain
stt+tu=s+e=q
so that
x(yz) = Aimu—t=g) - Ofi-1) = 0

also. Thus, £ is a semigroup.

32.10. Theorem. If c,...,c, is an admissible sequence and K is a field,
then there is a split serial K-algebra R with Kupisch series Re,, ..., Re, and
c(Re)=c,i=1,...,n

Proof. Of course, we set R = K&; and we leave the rest of the proof as
Exercise (32.8). O

The Transpose and Nakayama’s Characterization

One of the most effective contemporary tools in the representation (or mod-
ule) theory of artinian rings and artin algebras is the transpose of Auslander
and Bridger [69], which we present here to obtain Nakayama'’s characteriza-
tion of serial rings. But first we require some more information on projective
modules.

An exact sequence of R-modules

Pl‘_f’Po—’M—'O

is called a minimal projective presentation of M in case P, and P, are finitely
generated projective and Ker f « P, and Im f « P,. When R is semiperfect,
every finitely presented R-module has a minimal presentation (see Exercise
(20.17)), and then letting J = J(R), minimality just means Ker f < JP, and
Im f < JP,. We begin by showing that these presentations are essentially
unique.
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32.11. Lemma. If M and N have minimal projective presentations
P,LsPp—M—50 and Q,—2Q,— N—0,

then M =~ N if and only if there are isomorphisms ¢, and ¢, making the
diagram

p, L p,

01— Qo

commute.

Proof. The condition is clearly sufficient. Conversely, given an isomor-
phism ¢: M — N, we use projectively of P, to get ¢, making the right-hand
square commute in the diagram

p-Lp Mo

Ql_"Qo—go—’N—*o

Then g, ¢, is epic; so since g, is a superfluous epimorphism, ¢, is an epimor-
phism; and g, splits since Q, is projective. But Ker ¢, < Ker ¢f, = Ker fy«
Py, 50 @ is an isomorphism. Now ¢q(Ker f,) = Ker g, ; so, by exactness, we
can obtain ¢, in the same manner as we found ¢,. O

The xRg-dual ( )* and its properties presented in §20 are fundamental
components of the transpose. We also need

3.12. Lemma. If P is a finitely generated projective left R-module and
I <gR then, regarding Homg(P, I) as a subset of P*,

P*I = Homg(P, I\.

Proof. Since P*, being (finitely generated) projective (20.17), is flat, we have
isomorphisms

P*I =~ Homg(P,R)®3 I
~ Homg(P,(R ®g I))
= Homg(P,I)

by (19, 17), (20.10), and (19.6). The composite of these isomorphisms makes
the diagram

P = P*
Homg(P,I) —— Homg(P, R)

commute. d
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If an R-module M has a minimal projective presentation
P, LN Pp— M — 0,

then the transpose of M is defined to be TM = Coker f* where f* =
Homg(f, R).

32.13. Theorem. Let R be a semiperfect ring. If M is a left (right) R-module

with no non-zero projective direct summands and minimal projective presenta-
tion

p,—Lsp—sM—s0,
then the exact sequence
PP TM 0

is a minimal projective presentation of the right (left) R-module TM. Moreover,
TM has no non-zero projective direct summands.

Proof. Let J = J(R), suppose that R, M, and the exact sequence
PP, LM —0
satisfy the hypothesis, and consider the exact sequence
P-Lpr s TM —s0,
where TM = P¥/Im f* and n is the natural epimorphism. Then Py and P¢
are finitely generated and projective by (20.17). If y € Pg, then

[/*@1P) = y(f(P) < y(UPy) < J;
so by (32.12)
Im f* < P¥J.

If § € Ker f*,then Ker f, = Im f = Ker §,so there is a commutative diagram .
of R-maps

—»M—»O

\/

Thus, since M, and hence Im ¢, has no non-zero projective direct summands,
Imé = Im ¢ = J (Exercise (32.11.2)). Now applying (32.12) again we have

Ker f* = P}¥J,

so f* yields a minimal projective presentation of TM.

For the last statement, suppose that TM = P¥/Im f* has a non-
zero projective direct summand. Then P¥=Q@Q’, where Q#0
and Im f* < Q' (Exercise (32.11.1)); it follows that P}* = P @ P’, where
P = {y e P**|y(Q') = 0} = Q* (see (16.3)). But then 0 P* = Ker f** since
y € P implies f**(y) =y o f* =0. In view of the reflexivity of P, and P,
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(20.17),
Pl** f“, PO**
p, 1 P,
this is contrary to Ker f « P,. O

If R is semiperfect with basic set of primitive idempotents e, ..., e,, then
Re;i— ¢;R =~ (Re;)* is a one-to-one correspondence between the 1somorphlsm
types of indecomposable projective left and right R-modules (27.10). The
transpose provides a one-to-one correspondence between the remaining iso-
morphism types of finitely presented indecomposable left and right R-mod-
ules. Indeed, if we choose a fixed minimal projective presentation of each
finitely presented R-module, then the transpose can be viewed as a pair of
mappings described in

32.14. Corollary. If R is a semiperfect ring, the transpose mappings T,
between classes of the finitely presented left and right R-modules without
non-zero projective direct summands, satisfy

(1) T0O=0;

2 TMTNif M=N;

B) TM®N)=TM®TN;

4 TTM =M.

Proof. (1) is clear; (2) follows from Lemma 32.11; (3) holds because the
direct sum of pair of minimal projective presentations is one too; (4) is a
consequence of (32.11) and the reflexivity of P, and P, (20.17.1). O

A left module M over R is called local in case Rad(M) is a superfluous
maximal submodule of M ; equivalently, M is finitely generated and has a
unique maximal submodule. Thus, every local module is indecomposable,
and if R is semiperfect, then M is local if and only if it is an epimorphic image
of an indecomposable projective module—namely, its projective cover.

When he introduced serial rings, Nakayama proved that all of their
modules are direct sums of local (hence uniserial) modules (32. 3(b)) Con-
versely, he also proved.

32.15. Theorem. An artinian ring R is serial if each of its finitely generated
indecomposable modules is local.

Proof. Let J = J(R) and let e and f; be primitive idempotents in R such
that

Rf;— Re —» Re/Je - 0

||@a-
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is a minimal projective presentation of Re/Je. Then, by (32.13) and (4.7), we
have a minimal projective presentation

k
eR - @ f,R— T(Re/Je)— 0,
i=1
and, by (32.14), T(Re/Je) is indecomposable. Thus, by hypothesis k = 1, so
Je/J%e = Rf,/Jf, is simple. It follows that R is left serial. (Note-that we have
only used localness of right indecomposable modules so far.) Similarly, R s
right serial. g

In conclusion we note the serial rings also have self-duality as has been
shown by Dischinger and Miiller [84] and Waschbusch [86]; the proofs are
of such a technical nature that we choose not to include them here. Also
Warfield [75] has provided an interesting account of non-artinian serial
rings.

32. Exercises

1. Prove that if R is a serial ring with Kupisch series Re,, ..., Re, with
¢;=c(Re))and d; = c(e;R) fori =1, ..., n, then:
(1) dy,...,d, is a permutation of c,,..., c,. [Hint: Try induction on
L(R).]
(2) If Soc(e;R) = ¢;R/e;J, then E(Re;/Je;) = Re;/J%e;.

2. If R is a left artinian ring with basic set of idempotents e, ..., e,, the

Cartan matrix of R is C(R) = [¢;;], where c;; is the number of composition
factors in a composition series of Re; that are isomorphic to Re;/Je;.
Prove:

(1) ¢;j = c(c.re,€iRE)).

(2) c(Rey) = Z?=1 Cij-

(3) If R is serial, then c(e;R) = ) 7_, c;;.

3. Let R be a basic serial ring with Kupisch series Re,, ..., Re, and ¢; =
¢(Re;). Prove that a subset I = R is an ideal iff there are integers 0 < b; <
c;withh, <b,_, + 1(i=2,...,n)andb, < b, + L suchthatI = Y I_, J%,

4. Prove that if R is a serial ring the following are equivalent:

(@) Soc(gxR)is projective;

(b) R is left hereditary;

(c) Ris right hereditary.

[Note: (b) is equivalent to (c) over any perfect or noetherian ring R (see
Rotman [79] for example).]

5. Let S be a semiperfect ring, and suppose that gl < J(S). Prove that if
S/I =~ R (Morita equivalent), then there is a ring §' ~ S with an ideal
I' < J(§') such that S'/I’ = R. [Hint: Exercise (17.16) and the proof of
(17.12) may help.]

6. The(m,,...,m,)block upper triangular matrix ring over a ring D is the ring
of matrices of the form [A4;;] where 4;; is an m; x m; matrix over D and
A;=0ifi> j. Prove:
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10.

11.

12.

13.

(1) S = UTM,(D) (Morita equivalent) with D a division ring iff there
exist m,, ..., m, such that S is isomorphic to the (m,,...,m,) block upper
triangular matrix ring over D.

(2) If R is an indecomposable serial ring with ¢, = 1 (respectively, ¢, = i
fori=1,...,n), then R is a homomorphic image of (isomorphic to) a
block upper triangular ring over D.

. Let R be a finite-dimensional algebra over a field K. Prove:

(1) If R is basic, then R is split iff ;R = Ke, @ --- ® Ke, ® J(R).
(2) If K is algebraically closed, then R is split. [Hint: First show that K
is the only finite-dimensional division algebra over K.]

. A finite semigroup # with O such that # = {e,,...,e,} U # satisfying

RI < F, IR £, 9" = {0}, and ¢e; = ¢, (i.e., £ is a nilpotent ideal
and ey, ..., e, are orthogonal idempotents ¢ #); and # = | ;e Re; is
called an algebra semigroup.

(1) Prove that if & if an algebra semigroup with R = K&, then J(R) =
K ¢ and Re; = KRe; (i = 1,...,n).

(2) Complete the proof of Theorem 32.10.

. A serial ring each of whose indecomposable projective modules has only

one isomorphism type of composition factors is called a uniserial ring.
Prove that the following statements about an artinian ring R are equiva-
lent:

(a) R is uniserial;

(b) R is a direct sum of serial rings whose Kupisch series each have only
one term;

(c) R isisomorphic to a direct sum matrix rings over local serial rings;
(d) Every factor ring of R is QF;

(e) Every left and every right ideal of R is principal.

Prove that the lattice of submodules of a left R-module M is a (possibly
infinite) chain if and only if for all x, ye M, Rx < Ry or Ry < Rx.

For a projective module g P, prove:

(DI I<zxMand M/I=P®N, then M =P ®N' with P~ P and
I<N.

(2) If every epimorphic image of P has a projective cover, if zM has no
projective direct summands; and if ¢:M — P, then Im ¢ « P. [Hint:
(17.17) and (1) above.]

Use the transpose to show that if R is a left artinian ring with only finitely
many isomorphism'types of indecomposable finitely generated left mod-
ules, then R is right artinian and has the same number of isomorphism
types of left and right finitely generated indecomposable modules.
Lete,,...,e,and f}, ..., f,, be primitive idempotents in a semiperfect ring
R and suppose that M has a minimal projective presentation

Rfi® - ®Rf,>Re,® - ®Re,» M- 0.

Show that, writing direct sums of left (right) modules as row (column)
vectors, one can regard a as right multiplication by a matrix 4 = [a;;]
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with a;; € f;Re;; and then

AR e, R
@ ®
® @

faR e,R

14. Let R be a left artinan ring with J = J(R), basic set of primitive intem-
potents ey, ..., e,, and simple modules S; = Re,/Je; (i = 1,...,n). Let h;;
denote the composition length of the S; homogeneous component of
Je;/J%e;. The left quiver of R is a directed graph Q(zR) with vertex set
{e,...,e,} and h;; arrows

e —e, (k=1,....h; 1 <ij<n)

If R is right artinian then Q(Ry) is defined analogously.

(1) Show that R is indecomposable iff Q(zR) is connected.

(2) Prove that R is left serial iff at most one arrow exits each vertex.
(3) Let K be a field and let R be the algebra of matrices

o O O O
O O O 8
O O 6 T X
o O o <
> O O AN

with entries in K. Calculate Q(gR) and Q(Ry) to show that R is left but

not right serial.

(4) Sketch the quiver of a “typical” indecomposable left serial ring.
15. Associated with a quiver (i.e., a finite directed graph), 2 is the path semi-

group P(2), a free semigroup with O on the vertices e,, ..., e, and arrows

e; = ¢; of 2 subject to the relations

5 ' a ife Se
G =%t GG = otherwise,

Thus, if we designate e, , ..., e, directed paths of length 0, we may identify
P(2)\ {0} with the directed paths in 2. (For example, if e, 3 e, LA eyis 2,
then the fa,, represent the only paths of length > 2 in 2). If K is a field,
we write

K[2] = KP(9)

and this semigroup algebra is called the K-path algebra of 2. Let N
denote the ideal of K[2] generated by the paths of length > 2 in 2, and
prove:
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() If I < N is an ideal and R = K[2]/I is finite-dimensional, then
9(gR) = 2, and R is a split basic algebra with basic set of idempotents
{e, +1,...,e, + I}.

(2) If R is a split basic algebra with 2 = 2(xR), then there is an ideal
I < N such that K[2]/I = R. [Hint: The number of arrows in 2 is the
K-dimension of J/J2 if J = J(R). Now see Exercise (1.15(4)).]

(3) If 2 consists of one arrow and one vertex, then K[2] =~ K[ X].
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artin algebra, 333
Frobenius algebra, 344
path algebra of a quiver, 360
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split serial algebra, 353
symmetric algebra, 345
Algebra semigroup, 359
Annihilator(s), 35, 37, 233, 280, 288
double annihilator(s) property, 286
left annihilator(s) of X in R, 37
maximum condition for
annihilator, 322
annihilator(s) of M in R, 35
right annihilator(s) of A in M, 37
annihilator(s) with respect to ®, 233
Artin-Wedderburn Theorem, 154, 309
Artinian
artinian module, 127
artinian ring, 129, 172
simple artinian ring, 153, 160, 218
Ascending chain condition, 127
Automorphism, 58
Axiom of Choice, 2
Azumaya’s Theorem, 144
Azumaya-Mority duality for artinian
rings, §30, 331

Baer’s Criterion, 205
Balanced
balanced bimodule, 60
balanced module, 61
R-balanced function, 218
Bass’s Theorem P, 315
Biendomorphism, 60, 157
Bijection, 2
Bilinear map, 280
non-degenerate bilinear map, 327
symmetric bilinear map, 345

Bimodule, 28, 36, 59
faithful bimodule, 60
balanced bimodule, 60
canonical bimodule, 237
Boolean
complete boolean ring, 217
boolean ring, 24, 133

Cancellable, 11

Capital, 120

Cardinal numbers, 5

Cartan matrix, 358

Cartesian product, 2, 79
cartesian product module, 28, 79
projections for cartesian product,
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see also direct product

Category, 6
concrete category, 6
duality of categories, 269
category equivalence, 250, 254
equivalent categories, 250
category of finitely spanned

modules, 55

full category, 7
functor between categories, 7
hull category, 277
categories of left R-modules, 55
morphism in a category, 6
objects of a category, 6
product of categories, 260
subcategory of a category, 7
underlying category, 7

Center of a ring, 17

Centralizer, 24

C-generated module, 292, 296

Chain, 3

Chain conditions, 127, 129
ascending chain condition, 127
descending chain condition, 127
posets with chain conditions, 132
rings with chain conditions, 129

Characteristic of a ring, 24
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Chinese Remainder Theorem, 103
Co-artinian, 217
Co-domain, 6
Co-faithful, 217
Co-generate, 106, 256
finitely co-generate, 106, 124
Co-generator, 107
minimal co-generator, 211
co-generator module, 210
co-generator ring, 286
Coimage, 43
Coindependent, 94
Cokernel, 43
Comaximal ideals, 103
Complement direct summands, 141
(M-) complement of N, 75
Composition
composition factors, 135
Jordan-Hélder Theorem, 135
composition length, 136, 137
length of composition series, 134, 136
composition series, 134
Concrete category, 6
concrete category of groups, 7
concrete category of real vector
spaces, 7
concrete category of sets, 7
Co-noetherian, 217
Coproduct, 82, 105
Co-semisimple, 122, 156, 216
Crawley-Jansson-Warfield Theorem, 298
Cyclic module, 32, 47
Countably generated module, 295, 297

Decomposition
block decomposition, 100, 130
direct decomposition, 86

idempotents for a decomposition, 88

indecomposable decomposition, 140
decomposition of injective
modules, 290
decomposition of rings, §7, 98
Dedekind domain, 215
Density Theorem (Jacobson-Chevalley),
159, 160 ‘
Descending chain condition, 127
Diagram, 1
commutative diagram, 1
Hasse diagram, 39
Dimension Theorem, 137
Direct decomposition, 86
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Direct product
direct product of additive factors, 230
coordinate injections for a direct
product, 80
direct product homomorphism,
79, 80
direct product of modules, 79
sub direct product, 104
universal mapping property of a
direct product, 80
Direct sum
direct sum of additive functors, 236
direct sum (coproduct), 82, 89
external direct sum, 83
direct sum homomorphism, 83
indecomposable module, 71
injections for a direct sum
internal direct sum, 66, 84
direct sum of modules, 66, 82, 298
projections for a direct sum, 69
ring direct sum, 98, 130
Direct summand, 66
complementary direct summand, 66
Divisible group, 205
Divisible R-module, 54
Division ring, 11, 161
Domain, 6
Dedekind domain, 215
principal ideal domain, 114
Dual Basis Lemma, 203
Duality
Azumaya-Morita Duality Theorem,
331
duality of categories, 269
Morita duality, §24, 278

Endomorphism, 20, 58
idempotent endomorphism, 70
‘local endomorphism ring, 297
endomorphism of a module
(convention), 58
rank of endomorphism, 164
ring of endomorphisms, 20, 213, 236,
297,322
Epimorphism, 43
epimorphism in a category, 51, 276
natural epimorphism, 43
split epimorphism, 66
superfluous epimorphism, 73
Equivalence(s)
category equivalence(s), 250
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inverse category equivalences, 250
equivalence map, 140

Equivalent
equivalent categories, 250
equivalent composition series, 135
equivalent decompositions, 140

equivalent elements in a domain, 215

(Morita) equivalent rings, 251
Essential

essential monomorphism, 73

essential submodule, 72
Evaluation map, 244, 270
Exactness, 49

extension, 49

short exact sequence, 49

split exactness, 67

exactness test for ®, 226

exactness under category

equivalence, 254

Extension(s)

equivalent extensions, 53

extension(s) of K by N, 49

transitive extension, 103
External direct sum, 83

Factor
factor module, 33
factor ring, 14
Factor Theorem, 45
Faith-Walker Theorem, 293
Faith-Walker characterization of QF
rings, 343
Faithful
co-faithful, 217
completely faithful, 233
faithful functor, 247
faithful module, 35, 61, 233
*faithful, 217
Field, 11
field of fractions, 11
Finite module type, 326
Fitting’s Lemma, 138, 139
Five Lemma, 50, 52
Flat module, 226
Flat Test Lemma, 227
Free R-module, 113, 300
Function(s), 1
bijective function, 2
bilinear function, 280
composite of functions, 1
identity function, 1

3N

inclusion functions, 2

injective function, 1

Kronecker delta function, 2

order preserving (reversing)
function(s), 4

product of functions, 1

restriction of a function, 1

function ring, 16

support of a function, 24

surjective function, 1

Functor(s), 7, §16, 177, 324

additive functor, 177, 180

adjoint functor(s), 247, 253

contravariant functor, 8

covariant functor, 7

direct sum & product of functors, 236

dual functor(s), 244

exact functor, 183

faithful functor, 247

forgetful functor, 8

full functor, 260

Hom functor(s), §16, 324

identity functor, 8

injector functor, 260

isomorphic functors, 235, 260

natural transformation between
functors, 9, 234

projector functor, 260

tensor functor(s), 223, 324

Fundamental Lemma for
fundamental lemma for injective

envelope, 207
fundamental lemma for projective
covers, 199

Generate, 105

finitely generate, 105

Generator, 107, 193

minimal generator, 202
generator module, 193

Goldie dimension, 294

Hasse diagrams, 39
Hom functor, §16, 239, 324
Homogeneous, 117

homogeneous component, 117

Homologically independent, 149
Homomorphism(s)

automorphism, 58
biendomorphism, 60
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coimage of homomorphism, 43

cokernel of homomorphism, 43

composite of homomorphisms, 45

direct product of
homomorphisms, 79, 91

direct sum of homomorphisms, 83,
91

endomorphism, 20, 58

epimorphism, 43

factoring of homomorphism(s), 45

homomorphism group, 55

Homg (M, N), 55

image of homomorphism, 13, 42

injection, 91

inverse homomorphism(s), 45

kernel of homomorphism, 13, 42

lattice homomorphism, 4

homomorphism of modules, §3

monomorphism, 43

projection, 91

ring homomorphism, 11

ring anti-homomorphism, 18

tensor product of homomorphisms,
222

zero homomorphism(s), 44

Hopkin’s Theorem, 172

IBN ring, 114

Ideal(s), 13
comaximal ideals, 103
ideal lattice, 13
left ideal, 36
natural R/I-structure, 35
nil ideal, 168
prime ideal, 40, 176
primitive ideal, 97, 165
principal ideal, 36
proper ideal, 13
ideal as a submodule, 36
trivial ideal(s), 13
two-sided ideal, 13, 35
zero ideal(s), 13

Idempotent(s), 21, 95, 200, 301
basic idempotent(s), 305, 308
block idempotent(s), 100
idempotents for cartesian product,

21

central idempotent(s), 21, 309
complete set of idempotents, 89
idempotent endomorphism, 70
idempotents for a decomposition, 88

Index

lifting idempotents, 104, 301, 310
matrix ring idempotents, 22
orthogonal idempotents, 72, 88, 302
primitive idempotent(s), 72, 97
idempotent generated left ideal, 61
Inclusion map, 2, 43
Indecomposable
indecomposable decomposition, 140
indecomposable direct summand, 97
indecomposable module, 71
indecomposable ring, 99
Independent, 68, 85, 86
Injection, 67, 91
Injective
injective-class, 186
direct sum of injective modules, 205,
209
injective envelope, 207
injectivity domain, 186
M-injective module, 184
injective module, 185, §18, 288, 290
injective modulo its annihilator, 191
quasi-injective module, 191
Injective Test Lemma, 205
Injector, 260, 268
Integral domain, 11
Internal direct sum, 84
Invertible, 11
Irredundant set of representatives, 2, 107
Isomorphism
module isorhorphism, 43
isomorphism of functors, 235, 260
ring isomorphism, 12
isomorphism theorems, 46

Jacobson
Jacobson-Chevalley Density
Theorem, 159, 160
Jacobson radical of a module, 120,
125
Jacobson radical of a ring, 165
Join property, 132
Jordan-Holder Theorem, 135

Kernel of
kernel of module homomorphism, 42
kernel of ring homomorphism, 11
Kronecker delta, 2
Krull-Schmidt Theorem, 147
Kupisch series, 348
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Lattice, 3
modular lattice, 3
distributive lattice, 3
Levitzki’s Theorem, 173
Local ring, 40, 144, 170, 297, 300
Loewy length, 345
Loewy series, 346

Maschke’s Theorem, 157
Matrix
matrix addition, 18
column finite matrix, 18
matrix multiplication, 19
matrix rings, 19, 27
row finite matrix, 18
upper (lower) triangular matrix, 20
Maximal Principal, 5
Meet property, 132
Minimal projective presentation, 354
Minimum condition, 315
Modularity condition, 4
Module(s), 26
annihilator of a module, 35, 37
artinian module, 127
automorphism of modules, 58
balanced module, 61
balanced bimodule, 60
bimodule, 28, 36, 59
capital of a module, 120
cartesian product module(s), 28
c-generated module, 292
chain-conditions for modules, 127
co-faithful module, 217
cogenerated by module(s), 106
composition series for modules, 134
co-semisimple module, 122, 156, 216
co-uniform module, 294
countably generated module, 295, 298
cyclic module, 32, 47
direct sum of modules, 66, 82
divisible module, 54
endomorphism of a module, 58
module(s) epimorphism, 43
essential sub module, 72
factor module, 33
faithful module, 35, 36, 60, 233
faithfully balanced module, 60
finitely co-generated module, 106, 124
finitely generated module, 105, 123,
283, 307
finitely presented module, 229
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finitely spanned module, 32

flat module, 226

free module, 113

Frobenius module, 261

module(s) generated by module(s),
105

generator, 193

homogenous semisimple module, 117

homomorphism of modules, §3

indecomposable module, 71

independent sub module, 66, 85, 86

injective module, 185 §18, 288

injective projective module
characterized, §31, 338

module(s) isomorphism, 43

left R-module, 26

maximal & minimal sub module(s),
32

minimal faithful module, 340

module(s), monomorphism, 43

noetherian module, 127

primitive module, 305

progenerator, 262

projective module(s), 185, §17, 305

pure sub module, 232

quasi-injective module, 191

quasi-projective module, 191

radical of a module, 120, 125

reflexive module(s), 244, 270

regular module(s), 27

right R-module(s), 26

rings as bimodule(s), 36

semisimple module(s), 116, §9

similar modules, 268

simple module, 28, 47, §9

socle of a module, 118, 125

span, 31, 60

spanning set of a module, 32

submodule(s), 28

see also submodule

superfluous sub module, 72

tensor product of modules, 219

torsion module(s), 53

torsionless module, 244

uniform module, 294

uniserial module, 346

zero module(s), 29, 44

Monomorphism, 43, 276

monomorphism in a category, 51,276

essential monomorphism, 73

natural embedding, 43

split monomorphism, 67
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Morita, 262, 273, 285, 309, 317
Morita duality, §24, 278, §30
Morita equivalent rings, 251
Morita pair, 266
Morphism(s) (in a category), 6
composition of morphisms (in a
category), 6
epi morphism (in a category), 51, 276
identity morphism(s) (in a category), 6
isomorphism (in a category), 6
monomorphism (in a category), 51,
276

Nakayama characterization of serial
rings, 357
Nakayama’s Lemma, 169
Natural
natural epimorphism, 43
natural isomorphism, 9, 235, 239, 269
natural R/I-structure, 35
natural transformation, 9, 234
Nil, 22, 168, 314
Nilpotent element, 22
index of nilpotent element, 22
nilpotent element subset, 22, 314
Nilpotent ideal, 78, 165, 323
Noetherian
noetherian modules, 127, 172
noetherian rings, 129, 172, 288
Noether Isomorphism Theorems, 46

Objects of category, 6
Opposite of a ring, 17
Orthogonal idempotents, 72, 88, 302

P-adic integers, 54
Partially ordered set (poset), 3
greatest & least element of partially
ordered set (poset), 3
inductively ordered partially ordered
set (poset), 5
lattice, 3
sup, inf, join, meet in a partially
ordered set (poset), 3
totally ordered partially ordered set
(poset) (chain), 3
upper & lower bound in a partially
ordered set (poset), 3
Path algebra, 360

Index

Polynomials, 16, 25
Poset—see partially ordered set
Power set, 3
Prime
prime element, 215
prime ideal, 40, 176
Primitive
primitive ideal, 97, 165
primitive ring, 160
Principal
principal ideal, 36
principal ideal domain, 114
Product
cartesian product, 2, 28
direct product, 79
product of rings, 104
product ring, 16
subdirect product, 94, 104
Projection, 2, 67, 69, 91
Projective
projective-class, 186
projective cover, 199, 302, 304, 307,
319
M-projective module, 184
projective module, 185, §17, 256, 305,
319
projective modulo its annihilator, 191
projectivity domain, 186
quasi-projective module, 191
radical of projective modules, 196,
198
Projector, 260, 268

Quasi-regular
left, right quasi-regular, 165
quasi-regular set, 166
Quaternions, ring of, 23

'Quiver, 360

quiver of a serial ring, 348
quiver(s) of an artinian ring, 360
Quotient field, 11

Radical

general radical, 173

(Jacobson) radical of module, 120,
125

(Jacobson) radical of ring, §15, 165,
172

lower nil radical, 176

prime radical, 176
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radical of endomorphism ring, 197
radical of projective module, 198
Rank, 164
Reject, 109
Relations on a set, 103
transitive extension, 103
Ring(s), 10
artinian ring, 129, 172
basic ring, 308, 309
biendomorphism, 60, 157
ring, as a bimodule, 36
blocks of a ring, 100, 306, 310
block triangular matrix ring, 358
Boolean ring, 24, 133
center of a ring, 17
centralizer in a ring, 24
chain conditions on a ring, 129
characteristic of a ring, 24
co-artinian ring, 217
co-generator ring, 286
coherent (left) ring, 229
commutative ring, 10
complete Boolean ring, 217
co-noetherian ring, 217
coproduct of rings, 105
decomposition of ring(s), §7, 98, 130
Dedekind domain, 215
division ring, 11
endomorphism ring(s), 20, 236, 297
factor ring(s), 14
field, 11
Frobenius ring, 344
function ring, 16
group ring, 25
hereditary ring, 215
ring homomorphism, 11
IBN ring, 114
ideal in a ring, 13
indecomposable, 99
integral domain, 11
ring isomorphism, 12
local ring, 40, 144, 170, 297, 300
matrix ring, 19
Morita equivalent rings, 251
noetherian ring, 129, 288
opposite ring, 17
overring, 11
perfect ring, §28, 315
polynomial ring, 16, 25
prime ring, 164
primitive ring, 160, 161, 169
principal ideal domain, 114
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product ring, 15, 104

quasi-Frobenius ring, 286, 333

QF ring, 333, §30, §31

QF-2ring, 342

QF-3 ring, 341

ring(s) (of) quaternions, 23

radical of ring, §15, 165, 172

SBN ring, 113

self-injective ring, 213

semigroup ring, 25

semiperfect ring, 303

semiprimary ring, 175, 318

semiprime ring, 176

semiprimitive ring, 169

semisimple ring, §13, 153, 160, 169,
170, 193, 206

serial ring, §32, 347

simple ring(s), 13

simple artinian ring(s), 153, 160,
218

sub ring(s), 11

uniserial ring, 359

von Neumann regular ring(s), 175,
216, 234, 249, 262, 269, 300

weakly symmetric ring, 344

SBNring, 113
Schanuel’s Lemma, 214
Schur’s Lemma, 152
Self duality, 332
self duality for artin algebras, 333
self duality for QF rings, 333
Semigroup algebra, 353
Semisimple
semisimple decomposition, 116
semisimple module, 116, 258
semisimple ring, §13, 153, 160, 169,
170, 193, 206
Set of representatives, 2, 107
Short exact sequence, 49
split short exact sequence, 67
Simple
simple artinian ring, 153, 160
simple module, 32, §9
simple ring, 13
simple semisimple ring, 153, 160, 169,
170, 193, 206
Socle, 118,125,172
homogeneous component of socle,
119
Socle series, 346
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Split

split epimorphism, 66

split exact sequence, 67

split monomorphism, 67
*-faithful, 217
Subdirect product, 94, 104
Subdirectly irreducible, 94
Submodule(s), 28

co-independent submodules, 94

essential submodule(s), 72

submodule(s) (as) ideals, 36

independent submodules, 66, 85, 86

(internal) direct sum of submodules,

66
join of submodules, 30
linear combination of submodules,
30

maximal submodule, 32

meet of submodules, 31

minimal submodule, 32

modular lattice of submodules, 30

pure submodule, 232

submodule spanned by, 31, 65

sum of family of submodules, 30

superfluous submodule, 72

zero submodule(s), 29, 44
Subring, 11

subring of R generated by A, 17
Sum

direct sum (coproduct), 66, 89

external direct sum, 66, 83

internal direct sum, 66, 84

Index

Superfluous
superfluous epimorphism, 73
superfluous submodule, 72, 165
Support
support of an element, 82
support of a function, 24
Surjection, 1

Tensor
annihilator with respect to tensor, 233
tensor functor, 223, 324
tensor product, §19
tensor product of homomorphisms,
222
tensor product of modules, 219
T-nilpotent, 314
Torsion, 53
Torsion free, 53
Trace, 109, 266
Transitive extension, 103
Transpose of a module, 356

Universal mapping property, 80

Wedderburn-Artin structure theorems,
152, 154, 309

Zero divisor, 11
Zero submodule, 29
Zorn’s Lemma, 5
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