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Preface

This book is intended to serve as a textbook for a course in algebraic topology
at the beginning graduate level. The main topics covered are the classification
of compact 2-manifolds, the fundamental group, covering spaces, singular
homology theory, and singular cohomology theory (including cup products
and the duality theorems of Poincaré and Alexander). It consists of material
from the first five chapters of the author’s earlier book Algebraic Topology:
An Introduction (GTM 56) together with almost all of his book Singular
Homology Theory (GTM 70). This material from the two earlier books has
been revised, corrected, and brought up to date. There is enough here for a
full-year course.

The author has tried to give a straightforward treatment of the subject
matter, stripped of all unnecessary definitions, terminology, and technical
machinery. He has also tried, wherever feasible, to emphasize the geometric
motivation behind the various concepts. Several applications of the methods
ofalgebraic topology to concrete geometrical—topological problems are given
(e.g, Brouwer fixed point theorem, Brouwer—Jordan separation theorem,
Invariance of Domain, Borsuk—Ulam theorem).

In the minds of some people, algebraic topology is a subject which is
“esoteric, specialized, and disjoint from the overall sweep of mathematical
thought.” It is the author’s fervent hope that the emphasis on the geometric
motivation for the various concepts, together with the examples of the applica-
tions of the subject will help to dispel this point of view.

The concepts and methods which are introduced are developed to the point
where they can actually be used to solve problems. For example, after defining
the fundamental group, the Seifert—Van Kampen theorem is introduced and
explained. This is the principal tool available for actually determining the
structure of the fundamental group of various spaces. Another such example
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is the cup product. Not only is the cup product defined and its principal
properties explained; cup products are actually determined in real, complex,
and quaternionic projective spaces, and these computations are then applied
to prove certain theorems.

In any exposition of a subject such as algebraic topology, the author has
to make choices at various stages. One such choice concerns the class of spaces
which will be emphasized. We have preferred to emphasize CW-complexes
rather than simplicial complexes. Another choice occurs in the actual defini-
tion of singular homology groups: Should one use singular simplices or
singular cubes? From a strictly logical point of view it does not matter because
the resulting homology and cohomology theories are isomorphic in all re-
spects. From a pedagogical point of view, it does make a difference, however.
In developing some of the basic properties of homology theory, such as the
homotopy property and the excision property, it is easier and quicker to use
the cubical theory. For that reason, we have chosen to use the cubical theory.
Of course, it is more traditional to use the simplicial theory; the author hopes
that possible prospective users of this book will not reject it because of their
respect for tradition alone.

The prospective user of this book can gain some idea of the material
contained in each chapter by glancing at the Contents. We are now going to
offer additional comments on some of the chapters.

In Chapter I, the classification theorem for compact 2-manifolds is dis-
cussed and explained. The proof of the theorem is by rather standard “cut and
paste” methods. While this chapter may not be logically necessary for the rest
of the book, it should not be skipped entirely because 2-manifolds provide a
rich source of examples throughout the book.

The general idea of a “universal mapping problem” is a unifying theme in
Chapters 111 and IV. In Chapter II1 this idea is used in the definition of free
groups and free products of groups. Students who are familiar with these
concepts can skip this chapter. In Chapter IV the Seifert-Van Kampen
theorem on the fundamental group of the union of two spaces is stated in
terms of the solution to a certain universal mapping problem. Various special
cases and examples are discussed in some detail.

The discussion of homology theory starts in Chapter VI, which contains a
summary of some of the basic properties of homology groups, and a survey
of some of the problems which originally motivated the development of
homology theory. While this chapter is not a prerequisite for the following
chapters from a strictly logical point of view, it should be extremely helpful
to students who are new to the subject.

Chapters VII, VIII, and IX are concerned solely with singular homology
with integer coefficients, perhaps the most basic aspect of the subject. Chapter
VIII gives various examples and applications of homology theory, including
a proof of the general Jordan—Brouwer separation theorem, and Brouwer’s
theorem on “Invariance of Domain.” Chapter 1X explains a systematic method
of computing the integral homology groups of a regular CW-complex.



Preface vii

In Chapter X we introduce homology with arbitrary coefficient groups.
This generalization is carried out by a systematic use of tensor products.
Tensor products also play a significant role in Chapter XI, which is concerned
with the homology groups of a product space, i.e., the Kiinneth theorem and
the Eilenberg—Zilber theorem.

Cohomology groups make their first appearance in Chapter XII. Much of
this chapter of necessity depends on a systematic use of the Hom functor.
However, there is also a discussion of the geometric interpretation of cochains
and cocycles, a subject which is usually neglected. Chapter XIII contains a
systematic discussion of the various products: cup product, cap product, cross
product, etc. The cap product is used in Chapter XIV for the statement and
proof of the Poincaré duality theorem for manifolds. This chapter also con-
tains the famous Alexander duality theorem and the Lefschetz—Poincaré
duality theorem for manifolds with boundary. In Chapter XV we determine
cup products in real, complex, and quaternionic projective spaces. These
products are then used to prove the classical Borsuk—Ulam theorem, and to
give a discussion of the Hopf Invariant of a map of a (2n — 1)-sphere onto an
n-sphere.

The book ends with two appendices. Appendix A is devoted to a proof of
the famous theorem of DeRham, and Appendix B summarizes various basic
facts about permutation groups which are needed in Chapter V on covering
spaces.

At the end of many chapters there are notes which give further comments
on the subject matter, hints of more recent developments, or a brief history of
some of the ideas.

As mentioned above, there is enough material in this book for a full-year
course in algebraic topology. For a shorter course, Chapters I-VIII would
give a good introduction to many of the basic ideas. Another possibility for
a shorter course would be to use Chapter 1, skip Chapters 1I through V, and
then take as many chapters after Chapter V as time permits. The author has
tried both of these shorter programs several times with good results.

Prerequisites

As in any book on algebraic topology, a knowledge of the basic facts of point
set topology is necessary. The reader should feel comfortable with such
notions as continuity, compactness, connectedness, homeomorphism, product
space, etc. From time to time we have found it necessary to make use of the
quotient space or identification space topology; this subject is discussed in the
more comprehensive textbooks on point set topology.

The amount of algebra the reader will need depends on how far along he
is in the book; in general, the farther he goes, the more algebraic knowledge
will be necessary. For Chapters 11 through V, only a basic, general knowledge
of group theory is necessary. Here the reader must understand such terms as
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group, subgroup, normal subgroup, homomorphism, quotient group, coset,
abelian group, and cyclic group. Moreover, it is hoped that he has seen enough
examples and worked enough exercises to have some feeling for the true
significance of these concepts. Most of the additional topics needed in group
theory are developed in Chapter III and in Appendix B. Most of the groups
which occur in these chapters are written multiplicatively.

From Chapter VI to the end of the book, most of the groups which occur
are abelian and are written additively. It would be desirable if the reader were
familiar with the structure theorem for finitely generated abelian groups (see
Theorem V.3.6). Starting in Chapter X, the tensor product of abelian groups
is used; and from Chapter XII on the Hom functor is used. Also needed in a
few places are the first derived functors of tensor product and Hom (the
functors Tor and Ext). These functors are described in detail in books on
homological algebra and various other texts. At the appropriate places we
give complete references and a summary of their basic properties. In these
later chapters we also use some of the language of category theory for the sake
of convenience; however, no results or theorems of category theory are used.
In order to read Appendix A the reader must be familiar with differential forms
and differentiable manifolds.
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Notation and Terminology

The standard language and notation of set theory is used throughout. Some
more special notations that are used in this book are the following:

Z = ring of integers,

Q = field of all rational numbers,

R = field of all real numbers,

C = field of all complex numbers,

R" = set of all n-tuples (x,,..., x,) of real numbers,
C" = set of all n-tuples of complex numbers.

If x = (x4,...,x,) € R" then the norm or absolute value of x is
x| = (x2 + x3 + - + x2)'2,
With this notation, we define the following standard subsets of R” for any
n> Q0
E'= {xeR"[|x| =1},
Um={xeR"||x| <1},
S = {xeR"||x| = 1}.

These spaces are called the closed n-dimensional disc or ball, the open n-
dimensional disc or ball, and the (n — 1)-dimensional sphere, respectively. Each
is topologized as a subset of Euclidean n-space, R". The symbols RP", CP",
and QP" are introduced in Chapter IX to denote n-dimensional real, complex,
and quaternionic projective space, respectively.

A homomorphism from one group to another is called an epimorphism if
it is onto, a monomorphism if it is one-to-one (i.e., the kernel consists of a single
element) and an isomorphism if it is both one-to-one and onto. If h1: 4 — B is
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a homomorphism of abelian groups, the cokernel of h is the quotient group
B/h(A). A sequence of groups and homomorphisms such as
oy h,
e An—l . An — An+1 —_—
is called exact if the kernel of each homomorphism is precisely the same as
the image of the preceding homomorphism. Such exact sequences play a big
role from Chapter VII on.



CHAPTER 1

Two-Dimensional Manifolds

§1. Introduction

The topological concept of a surface or 2-dimensional manifold is a mathe-
matical abstraction of the familiar concept of a surface made of paper, sheet
metal, plastic, or some other thin material. A surface or 2-dimensional mani-
fold is a topological space with the same local properties as the familiar plane
of Euclidean geometry. An intelligent bug crawling on a surface could not
distinguish it from a plane if he had a limited range of visibility.

The natural, higher-dimensional analog of a surface is an n-dimensional
manifold, which is a topological space with the same local properties as
Euclidean n-space. Because they occur frequently and have application in
many other branches of mathematics, manifolds are certainly one of the most
important classes of topological spaces. Although we define and give some
examples of n-dimensional manifolds for any positive integer n, we devote
most of this chapter to the case n = 2. Because there is a classification theorem
for compact 2-manifolds, our knowledge of 2-dimensional manifolds is in-
comparably more complete than our knowledge of the higher-dimensional
cases. This classification theorem gives a simple procedure for obtaining all
possible compact 2-manifolds. Moreover, there are simple computable in-
variants which enable us to decide whether or not any two compact 2-
manifolds are homeomorphic. This may be considered an ideal theorem.
Much research in topology has been directed toward the development of
analogous classification theorems for other situations. Unfortunately, no such
theorem is known for compact 3-manifolds, and logicians have shown that
we cannot even hope for such a complete result for n-manifolds, n = 4.
Nevertheless, the theory of higher-dimensional manifolds is currently a very
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active field of mathematical research and will probably continue to be so for
a long time to come.
We shall use the material developed in this chapter later in the book.

§2. Definition and Examples of n-Manifolds

Assume n is a positive integer. An n-dimensional manifold is a Hausdorff space
(i.e., a space that satisfies the T, separation axiom) such that each point has
an open neighborhood homeomorphic to the open n-dimensional disc U"
(= {x € R":|x| < 1}). Usually we shall say “n-manifold” for short.

Examples

2.1. Euclidean n-space R" is obviously an n-dimensional manifold. We can
easily prove that the unit n-dimensional sphere

S"={xeR"":|x| =1}

is an n-manifold. For the point x = (1,0,...,0), the set {(x;,..., X,41) €
S":x,; > 0} is a neighborhood with the required properties, as we see by
orthogonal projection on the hyperplane in R**! defined by x; = 0. For any
other point x € S”, there is a rotation carrying x into the point (1, 0,..., 0).
Such a rotation is a homeomorphism of S” onto itself; hence, x also has the
required kind of neighborhood.

2.2. If M" is any n-dimensional manifold, then any open subset of M" is
also an n-dimensional manifold. The proof is immediate.

2.3. If M is an m-dimensional manifold and N is an n-dimensional manifold,
then the product space M x N is an (m + n)-dimensional manifold. This
follows from the fact that U™ x U™ is homeomorphic to U™*". To prove this,
note that, for any positive integer k, U* is homeomorphic to R*, and R™ x R"
is homeomorphic to R™*".

In addition to the 2-sphere S, the reader can easily give examples of many
other subsets of Euclidean 3-space R?, which are 2-manifolds, e.g., surfaces of
revolution, etc.

As these examples show, an n-manifold may be either connected or dis-
connected, compact or noncompact. In any case, an n-manifold is always
locally compact.

What is not so obvious is that a connected manifold need not satisfy the
second axiom of countability (i.e., it need not have a countable base). The
simplest example is the “long line.”! Such manifolds are usually regarded as
pathological, and we shall restrict our attention to manifolds with a countable
base.

! See General Topology by J. L. Kelley. Princeton, N.J.: Van Nostrand, 1955. Exercise L, p. 164.
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Note that in our definition we required that a manifold satisfy the Hausdorfl
separation axiom. We must make this requirement explicit in the definition
because it is not a consequence of the other conditions imposed on a manifold.
We leave it to the reader to construct examples of non-HausdorfT spaces, such
that each point has an open neighborhood homeomorphic to U" for n = 1
or 2.

§3. Orientable vs. Nonorientable Manifolds

Connected n-manifolds for n > 1 are divided into two kinds: orientable and
nonorientable. We will try to make the distinction clear without striving for
mathematical precision.

Consider the case where n = 2. We can prescribe in various ways an
orientation for the Euclidean plane R? or, more generally, for a small region
in the plane. For example, we could designate which of the two possible kinds
of coordinate systems in the plane is to be considered a right-handed coordi-
nate system and which is to be considered a left-handed coordinate system.
Another way would be to prescribe which direction of rotation in the plane
about a point is to be considered the positive direction and which is to be
considered the negative direction. Let us imagine an intelligent bug or some
2-dimensional being constrained to move in the plane; once he decides on a
choice of orientation at any point in the plane, he can carry this choice with
him as he moves about. If two such bugs agree on an orientation at a given
point in the plane, and one of them travels on a long trip to some distant point
in the plane and eventually returns to his starting point, both bugs will still
agree on their choice of orientation.

Similar considerations apply to any connected 2-dimensional manifold
because each point has a neighborhood homeomorphic to a neighborhood of
a point in the plane. Here our two hypothetical bugs agree on a choice of
orientation at a given point. It is possible, however, that after one of them
returns from a long trip to some distant point on the manifold, they may find
they are no longer in agreement. This phenomenon can occur even though
both were meticulously careful about keeping an accurate check of the positive
orientation.

The simplest example of a 2-dimensional manifold exhibiting this phe-
nomenon is the well-known M{bius strip. As the reader probably knows, we
construct a model of a Mébius strip by taking a long, narrow rectangular strip
of paper and gluing the ends together with a half twist (see Figure 1.1).
Mathematically, a Mbius strip is a topological space that is described as
follows. Let X denote the following rectangle in the plane:

X={(x,y)eR:-10<x< +10, -1 <y< +1}.

We then form a quotient space of X by identifying the points (10, y) and
(=10, —y)for —1 < y < +1. Note that the two boundaries of the rectangle



4 1. Two-Dimensional Manifolds

Glue edge ABC to A’B’/C’

A

FIGURE 1.1. Constructing a M&bius strip.

corresponding to y = +1 and y = — 1 were omitted. This omission is crucial;
otherwise the result would not be a manifold (it would be a “manifold with
boundary,” a concept we will take up later in Chapter XIV). Alternatively, we
could specify a certain subset of R* which is homeomorphic to the quotient
space just described.

However, we define the MGbius strip, the center line of the rectangular strip
becomes a circle after the gluing or identification of the two ends. We leave it
to the reader to verify that if our imaginary bug started out at any point on
this circle with a definite choice of orientation and carried this orientation
with him around the circle once, he would come back to his initial point with
his original orientation reversed. We will call such a path in a manifold an
orientation-reversing path. A closed path that does not have this property will
be called an orientation-preserving path. For example, any closed path in the
plane is orientation preserving.

A connected 2-manifold is defined to be orientable if every closed path is
orientation preserving; a connected 2-manifold is nonorientable if there is at
least one orientation-reversing path.

We now consider the orientability of 3-manifolds. We can specify an
orientation of Euclidean 3-space or a small region thereof by designating
which type of coordinate system is to be considered right handed and which
type is to be considered left handed. An alternative method would be to specify
which type of helix or screw thread is to be designated as right handed and
which kind is to be left handed. We can now describe a closed path in a
3-manifold as orientation preserving or orientation reversing, depending on
whether or not a traveler who traverses the path comes back to his initial
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point with his initial choice of right and left unchanged. If our universe were
nonorientable, then an astronaut who made a journey along some orientation-
reversing path would return to earth with the right and left sides of his body
interchanged: His heart would not be on the right side of his chest, etc.

There is a 3-dimensional generalization of the Mdbius strip which furnishes
a particularly simple example of a nonorientable 3-manifold. Let

X={(x,92eR*:—10=x< +10, - 1<y< +1, -l <z< +1}.

Form a quotient space of X by identifying the points (10, y, z) and (— 10, — y, 2)
for —1 <y < +1and —1 < z < + 1. This space may also be considered the
product of an ordinary 2-dimensional Mobius strip with the open interval
{zeR: —1<z< +1}. In any case, the segment —10 < x < + 10 of the x
axis becomes a circle under the identification, and we leave it to the reader to
convince himself that this circle is an orientation-reversing path in the resulting
3-manifold.

We will consider the analogous definitions for higher-dimensional mani-
folds in later chapters.

§4. Examples of Compact, Connected 2-Manifolds

To save words, from now on we shall refer to a connected 2-manifold as a
surface. The simplest example of a compact surface is the 2-sphere S2; another
important example is the torus. A torus may be roughly described as any
surface homeomorphic to the surface of a doughnut or of a solid ring. It may
be defined more precisely as

(@) Any topological space homeomorphic to the product of two circles,
St x St
(b) Any topological space homeomorphic to the following subset of R*:
{(x,y,2) e R*:[(x* + y*)'* - 2]* + 22 = 1}.

[This is the set obtained by rotating the circle (x — 2)? + z2 = 1 in the xz
plane about the z axis.]
(¢) Let X denote the unit square in the plane R%:

{(x,y)eR*:0<x=<1,0=<y <1}

Then, a torus is any space homeomorphic to the quotient space of X
obtained by identifying opposite sides of the square X according to the
following rules. The points (0, y)and (1, y) are to be identified for0 < y <1,
and the points (x, 0) and (x, 1) are to be identified for 0 < x < 1.

We will find it convenient to indicate symbolically how such identifications
are to be made by a diagram such as Figure 1.2. Sides that are to be identified
are labeled with the same letter of the alphabet, and the identifications should
be made so that the directions indicated by the arrows agree.
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FIGURE 1.2. Construction of a torus.

We leave it to the reader to prove that the topological spaces described in
(a), (b), and (c) are actually homeomorphic. The reader should also convince
himself that a torus is orientable.

Our next example of a compact surface is the real projective plane (referred
to as the projective plane for short). It is a compact, nonorientable surface.
Because it is not homeomorphic to any subset of Euclidean 3-space, the
projective plane is much more difficult to visualize than the 2-sphere or the
torus.

Definition. The quotient space of the 2-sphere S? obtained by identifying
every pair of diametrically opposite points is called a projective plane. We shall
also refer to any space homeomorphic to this quotient space as a projective
plane.

For readers who have studied projective geometry, we shall explain why
this surface is called the real projective plane. Such a reader will recall that,
in the study of projective plane geometry, a point has “homogeneous” coordi-
nates (xg, X;, X;), Where xg, X;, and x, are real numbers, at least one of which
is # 0. The term “homogeneous” means (X, X;, X,)and (xg, x}, X3) represent
the same point if and only if there exists a real number A (of necessity # 0)
such that

x;=Ax;, i=0,1,2.

If we interpret (xg, X;, X,) as the ordinary Euclidean coordinates of a point
in R3, then we see that (x4, X, x,) and (xg, x;, X5) represent the same point
in the projective plane if and only if they are on the same line through the
origin. Thus, we may reinterpret a point of the projective plane as a line
through the origin in R3 The next question is, how shall we topologize the
set of all lines through the origin in R3? Perhaps th easiest way is to note that
each line through the origin in R3 intersects the unit sphere S2 in a pair of
diametrically opposite points. This leads to the above definition.

Let H = {(x, y, z) € S*: z 2 0} denote the closed upper hemisphere of S2.
It is clear that, of each diametrically opposite pair of points in S2, at least one
point lies in H. If both points lie in H, then they are on the equator, which is
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FiGURE 1.3. Construction of a projective plane from a square.

the boundary of H. Thus, we could also define the projective plane as the
quotient space of H obtained by identifying diametrically opposite points on
the boundary of H. As H is obviously homeomorphic to the closed unit disc
E? in the plane,

E?={(x,y)eR?:x* + y? < 1},

the quotient space of E2 obtained by identifying diametrically opposite points
on the boundary is a projective plane. For E2 we could substitute any homeo-
morphic space, e.g., a square. Thus, a projective plane is obtained by identi-
fying the opposite sides of a square as indicated in Figure 1.3. The reader
should compare this with the construction of a torus in Figure 1.2.

The projective plane is easily seen to be nonorientable; in fact, it contains
a subset homeomorphic to a Mobius strip.

We shall now describe how to give many additional examples of compact
surfaces by forming what are called connected sums. Let S, and S, be disjoint
surfaces. Their connected sum, denoted by §; # S,, is formed by cutting a small
circular hole in each surface, and then gluing the two surfaces together along
the boundaries of the holes. To be precise, we choose subsets D, = §; and
D, = §, such that D, and D, are closed discs (i.e., homeomorphic to E?). Let
S; denote the complement of the interior of D; in §; for i = 1 and 2. Choose a
homeomorphism h of the boundary circle of D, onto the boundary of D,.
Then S, # S, is the quotient space of §; U §’, obtained by identifying the
points x and h(x) for all points x in the boundary of D, . It is clear that S, # S,
is a surface. It seems plausible, and can be proved rigorously, that the topologi-
cal type of §; # S, does not depend on the choice of the discs D, and D, or
the choice of the homeomorphism h.

Examples

4.1. If S, is a 2-sphere, then S, # S, is homeomorphic to §;.

4.2. If S, and §, are both tori, then S, # S, is homeomorphic to the surface
of a block that has two holes drilled through it. (It is assumed, of course, that
the holes are not so close together that their boundaries touch or intersect.)

43. If §, and §, are projective planes, then S! # S?is a “Klein bottle,” i.e.,
homeomorphic to the surface obtained by identifying the opposite sides of a
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FiGURE 1.4. Construction of a Klein bottle from a square.
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FiGURE 1.5. The Klein bottle is the union of two Mobius strips.

square as shown in Figure 1.4. We may prove this by the “cut and paste”
technique, as follows. If S; is a projective plane and D; is a closed disc such
that D; < §;, then S;, the complement of the interior of D;, is homeomorphic
to a Mobius strip (including the boundary). In fact, if we think of S; as the
space obtained by identification of the diametrically opposite points on the
boundary of the unit disc E? in R, then we can choose D; to be the image of
the set {(x, y)€ E*:|y| 2 4} under the identification, and the truth of the
assertion is clear. From this it follows that S, # S, is obtained by gluing
together two MoObius strips along their boundaries. On the other hand, Figure
1.5 shows how to cut a Klein bottle so as to obtain two Mobius strips. We
cut along the lines AB’ and BA’; under the identification, this cut becomes a
circle.

We will now consider some properties of this operation of forming connected
sums.

It is clear from our definitions that there is no distinction between S, # S,
and S, # §,; 1e., the operation is commutative. It is not difficult to see that
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the manifolds (S, # S,) # S; and S, # (S, # S,) are homeomorphic. Thus,
we see that the connected sum is a commutative, associative operation on the
set of homeomorphism types of compact surfaces. Moreover, Example 4.1
shows the sphere is a unit or neutral element for this operation. We must not
jump to the conclusion that the set of homeomorphism classes of compact
surfaces forms a group under this operation: There are no inverses. It only
forms what is called a semigroup.

The connected sum of two orientable manifolds is again orientable. On the
other hand, if either S, or §, is nonorientable, then so is S; # §,.

§5. Statement of the Classification Theorem
for Compact Surfaces

In the preceding section we have seen how examples of compact surfaces can
be constructed by forming connected sums of various numbers of tori and/or
projective planes. Our main theorem asserts that these examples exhaust all
the possibilities. In fact, it is even a slightly stronger statement, in that we do
not need to consider surfaces that are connected sums of both tori and
projective planes.

Theorem 5.1. Any compact surface is either homeomorphic to a sphere, or to a
connected sum of tori, or to a connected sum of projective planes.

As preparation for the proof, we shall describe what might be called a
“canonical form” for a connected sum of tori or projective planes.

Recall our description of a torus as a square with the opposite sides
identified (see Figure 1.2). We can obtain an analogous description of the
connected sum of two tori as follows. Represent each of the tori T, and T, as
a square with opposite sides identified as shown in Figure 1.6(a). Note that
all four vertices of each square are identified to a single point of the corre-
sponding torus. To form their connected sum, we must first cut out a circular
hole in each torus, and we can do this in any way that we wish. It is convenient
to cut out the regions shaded in the diagrams. The boundaries of the holes
are labeled ¢, and c,, and they are to be identified as indicated by the arrows.
We can also represent the complement of the holes in the two tori by the
pentagons shown in Figure 1.6(b), because the indicated edge identifications
imply that the two end points of the segment c; are to be identified, i = 1, 2.
We now identify the segments ¢, and c,; the result is the octagon in Figure
1.6(c), in which the sides are to be identified in pairs, as indicated. Note that
all eight vertices of this octagon are to be identified to a single pointin T; # T;.

This octagon with the edges identified in pairs is our desired “canonical
form” for the connected sum of two tori. By repeating this process, we can
show that the connected sum of three tori is the quotient space of the 12-gon
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FIGURE 1.6. (a) Two disjoint tori, T, and T,. (b} Disjoint tori with holes cut out.
(c) After gluing together.

shown in Figure 1.7, where the edges are to be identified in pairs as indicated.
It should now be clear how to prove by induction that the connected sum of
n tori is homeomorphic to the quotient space of a 4n-gon whose edges are to
be identified in pairs according to a scheme, the precise description of which
is left to the reader.

Next, we must consider the analogous procedure for the connected sum of
projective planes. We have considered the projective plane as the quotient
space of a circular disc; diametrically opposite points on the boundary are to
be identified. By choosing a pair of diametrically opposite points on the
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ba az

alyk 4b3

FiGURE 1.7. The connected sum of three tori is obtained by identifying the edges of a
12-gon in pairs as shown.

a

FiGURE 1.8. The projective plane is obtained by identifying opposite edges of a 2-gon.

boundary as vertices, the circumference of the disc is divided into two seg-
ments. Thus, we can regard the projective plane as obtained from a 2-gon by
identification of the two edges; see Figure 1.8.

Figure 1.9 shows how to obtain a representation of the connected sum of
two projective planes as a square with the edges identified in pairs. The method
is basically the same as that used to obtain a representation of the connected
sum of two tori as a quotient space of an octagon (Figure 1.6). By repeating
this process, we see that the connected sum of three projective planes is the
quotient space of a hexagon with the sides identified in pairs as indicated in
Figure 1.10. By a rather obvious induction, we can prove that, for any positive
integer n, the connected sum of n projective planes is the quotient space of a
2n-gon with the sides identified in pairs according to a certain scheme. Note
that all the vertices of this polygon are identified to one point.

It remains to represent the sphere as the quotient space of a polygon with
the sides identified in pairs. We can do this as shown in Figure 1.11. We can
think of a sphere with a zipper on it, like a purse; when the zipper is opened,
the purse can be flattened out.
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FiGURE 1.9. {a) Two disjoint projective planes, P, and P,. (b) Disjoint projective planes
with holes cut out. (c) After gluing together.

FiGURE 1.10. Construction of the connected sum of three projective planes by identi-
fying the sides of a hexagon in pairs.
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a

FiGURE 1.11. The sphere is a quotient space of a 2-gon with edges identified as shown.

Thus, we have shown how each of the compact surfaces mentioned in
Theorem 5.1 can be considered as the quotient space of a polygon with the
edges identified in pairs. We now introduce a rather obvious and convenient
method of indicating precisely which paired edges are to be identified in such
a polygon, Consider the diagram which indicates how the edges are identified;
starting at a definite vertex, proceed around the boundary of the polygon,
recording the letters assigned to the different sides in succession. If the arrow
on a side points in the same direction that we are going around the boundary,
then we write the letter for that side with no exponent (or the exponent + 1).
On the other hand, if the arrow points in the opposite direction, then we write
the letter for that side with the exponent — 1. For example, in Figures 1.7 and
1.10 the identifications are precisely indicated by the symbols

a;bya'bira,bya; by azbya3ths  and a4 a,a,a,a,.

In each case we started at the bottom vertex of the diagram and read clockwise
around the boundary. It is clear that such a symbol unambiguously describes
the identifications; on the other hand, in writing the symbol corresponding to
a given diagram, we can start at any vertex, and proceed either clockwise or
counterclockwise around the boundary.

We summarize our results by writing the symbols corresponding to each
of the surfaces mentioned in Theorem 5.1.

(a) The sphere: aa™.
(b) The connected sum of n tori:

a;bai'blaybya3'b3t .. a,b,a; bt
(c) The connected sum of n projective planes:

a,a,a,a,...4,4,.
EXERCISES
5.1. Let P be a polygon with an even number of sides. Suppose that the sides are

identified in pairs in accordance with any symbol whatsoever. Prove that the
quotient space is a compact surface.
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FI1GURE 1.12. Some types of intersection forbidden in a triangulation.

§6. Triangulations of Compact Surfaces

To prove Theorem 5.1, we must assume that the given surface is triangulated,
i.e., divided up into triangles which fit together nicely. We can easily visualize
the surface of the earth divided into triangular regions, and such a subdivision
is very useful in the study of compact surfaces in general.

Definition. A triangulation of a compact surface S consists of a finite family
of closed subsets {T}, T, ..., T,} that cover §, and a family of homeomor-
phisms ¢;: T, > T,,i = 1, ..., n, where each T is a triangle in the plane R?
(i.e., a compact subset of R bounded by three distinct straight lines). The
subsets T; are called “triangles.” The subsets of T; that are the images of the
vertices and edges of the triangle 7; under ¢; are also called “vertices” and
“edges,” respectively. Finally, it is required that any two distinct triangles, T;
and T, either be disjoint, have a single vertex in common, or have one entire
edge in common.

Perhaps the conditions in the definition are clarified by Figure 1.12, which
shows three unallowable types of intersection of triangles.

Given any compact surface §, it seems plausible that there should exist a
triangulation of S. A rigorous proof of this fact (first given by T. Rado in 1925)
requires the use of a strong form of the Jordan curve theorem. Although it is
not difficult, the proof is tedious, and we will not repeat it here.

We can regard a triangulated surface as having been constructed by gluing
together the various triangles in a certain way, much as we put together a
jigsaw puzzle or build a wall of bricks. Because two different triangles cannot
have the same vertices we can specify completely a triangulation of a surface
by numbering the vertices, and then listing which triples of vertices are vertices
of a triangle. Such a list of triangles completely determines the surface together
with the given triangulation up to homeomorphism.

Examples

6.1. The surface of an ordinary tetrahedron in Euclidean 3-space is homeo-
morphic to the sphere §2; moreover, the four triangles satisfy all the conditions
for a triangulation of S2. In this case there are four vertices, and every triple
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3

Fi1GuUre 1.13. A triangulation of the projective plane.

of vertices is the set of vertices of a triangle. No other triangulation of any
surface can have this property.

6.2. In Figure 1.13 we show a triangulation of the projective plane, con-
sidered as the space obtained by identifying diametrically opposite points on
the boundary of a disc. The vertices are numbered from 1 to 6, and there are
the following 10 triangles:

124 245
235 135
156 126
236 346
134 456

6.3. In Figure 1.14 we show a triangulation of a torus, regarded as a square
with the opposite sides identified. There are 9 vertices, and the following 18
triangles:

124 245 235
356 361 146
457 578 658
689 649 479
187 128 289

239 379 137
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F1GURE 1.14. A triangulation of a torus.

We conclude our discussion of triangulations by noting that any triangula-
tion of a compact surface satisfies the following two conditions:

(1) Each edge is an edge of exactly two triangles.

(2) Let v be a vertex of a triangulation. Then we may arrange the set of all
triangles with v as a vertex in cyclic order, T, T;, T, ..., T, -, T, = T,
such that T; and T;,, have an edge in common for0 <i<n— 1.

The truth of (1) follows from the fact that each point on the edge in question
must have an open neighborhood homeomorphic to the open disc U2 If an
edge were an edge of only one triangle or more than two triangles, this would
not be possible. The rigorous proof of this last assertion can be given by using
the concept of “The local homology groups at a point.” We will take up this
concept in Chapter VIIL

Condition (2) can be demonstrated as follows. The fact that the set of all
the triangles with v as a vertex can be divided into several disjoint subsets,
such that the triangles in each subset can be arranged in cyclic order as
described, is an easy consequence of condition (1). However, if there were more
than one such subset, then the requirement that v have a neighborhood
homeomorphic to U? would be violated. This statement can also be proved
by using local homology groups at a point.

§7. Proof of Theorem 5.1

Let S be a compact surface. We shall demonstrate Theorem 5.1 by proving
that § is homeomorphic to a polygon with the edges identified in pairs as
indicated by one of the symbols listed at the end of §5.
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First step. From the discussion in the preceding section, we may assume
that S is triangulated. Denote the number of triangles by n. We assert that we
can number the triangles T}, T, ..., T,, so that the triangle T; has an edge ¢,
in common with at least one of the triangles T}, ..., T,_,,2 < i < n. To prove
this assertion, label any of the triangles T} ; for T, choose any triangle that has
an edge in common with T, for Ty choose any triangle that has an edge in
common with T, or T,, etc. If at any stage we could not continue this process,
then we would have two sets of triangles {T}, ..., T;}, and {T,,,, ..., T} such
that no triangle in the first set would have an edge or vertex in common with
any triangle of the second set. But this would give a partition of S into two dis-
joint nonempty closed sets, contrary to the assumption that S was connected.

We now use this ordering of the triangles, T}, T,, ..., T,, together with the
choice of edges e,, e;, ..., e,, to construct a “model” of the surface S in the
Euclidean plane; this model will be a polygon whose sides are to be identified
in pairs. Recall that for each triangle T, there exists an ordinary Euclidean
triangle 7’ in R% and a homeomorphism ¢; of T/ onto T,. We can assume that
the triangles Ty, T;, ..., T, are pairwise disjoint; if they are not, we can translate
some of them to various other parts of the plane R2. Let

T=UT;
i=1

then T” is a compact subset of R2 Define a map ¢ : T" — S by ¢|T; = ¢;; the
map ¢ is obviously continuous and onto. Because T is compact and § is a
Hausdorff space, ¢ is a closed map, and hence S has the quotient topology
determined by ¢. This is a rigorous mathematical statement of our intuitive
idea that S is obtained by gluing the triangles T}, T3, ... together along the
appropriate edges.

The polygon we desire will be constructed as a quotient space of T
Consider any of the edges ¢,, 2 < i < n. By assumption, ¢, is an edge of the
triangle 7; and one other triangle T;, for which 1 < j < i. Therefore, ¢! (e;)
consists of an edge of the triangle T; and an edge of the triangle 7;. We identify
these two edges of the triangles 7; and T by identifying points which map
onto the same point of e; (speaking intuitively, we glue together the triangles
T/ and T;). We make these identifications for each of the edges e,, e5, ..., €,.
Let D denote the resulting quotient space of T". It is clear that the map
¢ : T" — S induces a map ¥ of D onto S, and that S has the quotient topology
induced by ¥ (because D is compact and S is Hausdorff, ¢ is a closed map).

We now assert that topologically D is a closed disc. The proof depends on
two facts:

(a) Let E, and E, be disjoint spaces, which topologically are closed discs (i.c.,
they are homeomorphic to E?). Let 4, and A, be subsets of the boundary
of E, and E,, respectively, which are homeomorphic to the closed interval
[0,1],and let h: A, — A, be a definite homeomorphism. Form a quotient
space of E; U E, by identifying points that correspond under h. Then,
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topologically, the quotient space is also a closed disc. The reader may
either take this very plausible fact for granted, or construct a proof using
the type of argument given in IL.8. Intuitively, it means that if we glue two
discs together along a common segment of their boundaries, the result is
again a disc.

(b) In forming the quotient space D of T’, we may either make all the
identifications at once, or make the identifications corresponding to e,,
then those corresponding to e,, etc., in succession. This is a consequence
of standard theorems about quotient spaces.

We now use these facts to prove that D is a disc as follows. T} and T, are
topologically equivalent to discs. Therefore, the quotient space of Ty U T,
obtained by identifying points of ¢ ~!(e, ) is again a disc by (a). Form a quotient
space of this disc and T3 by making the identifications corresponding to the
edge e, etc.

It is clear that S is obtained from D by identifying certain paired edges on
the boundary of D.

Examples

7.1. Figure 1.15 shows an easily visualized example. The surface of a cube
has been triangulated by dividing each face by a diagonal into two triangles.
The resulting disc D might look like the diagram, depending, of course, on
how the triangles were enumerated, and how the edgese,, ..., e, , were chosen.
The edges to D that are to be identified are labeled in the usual way. At this
stage, we can forget about the edges e,, e;, ..., e;,. Thus, instead of the
polygon in Figure 1.15, we could work equally well with the one in Figure 1.16.

J
T{
e
aY /' b
T4
g €3 b, f
7 T 7y T4,
A -] €4 €10 €12 Ae
s e en
T T{ T, T,
d e c 7
T
aA Y U
Tg
]

FiGURE 1.15. Example illustrating the first step of the proof of Theorem 5.1.
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FiGURE 1.16. Simplified version of polygon shown in Figure 1.15.

EXERCISES

Carry out the above process for each of the surfaces whose triangulations are given
below. (NOTE: these examples will be used later.)

7.1. 124 236 134 246
367 347 469 459
698 678 457 259
289 578 358 125
238 135
7.2. 123 234 341 412
7.3. 123 234 345 451 512
136 246 356 416 526
74. 124 235 346 457 561 672
713 134 245 356 467 571
126 237
7.5. 123 256 341 451
156 268 357 468
167 275 374 476
172 283 385 485

Second step. Elimination of adjacent edges of the first kind. We have now
obtained a polygon D whose edges have to be identified in pairs to obtain the
given surface S. These identifications may be indicated by the appropriate
symbol; e.g., in Figure 1.16, the identifications are described by

aa”'fbb7f e~ lgcc g dd e
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(b)

(e) (d)

FiGure 1.17. Elimination of an adjacent pair of edges of the first kind.

If the letter designating a certain pair of edges occurs with both exponents,
+1 and —1, in the symbol, then we will call that pair of edges a pair of the
first kind; otherwise, the pair is of the second kind. For example, in Figure
1.16, all seven pairs are of the first kind.

We wish to show that an adjacent pair of edges of the first kind can be
eliminated, provided there are at least four edges in all. This is easily seen from
the sequence of diagrams in Figure 1.17. We can continue this process until
all such pairs are eliminated, or until we obtain a polygon with only two sides.
In the latter case, this polygon, whose symbol will be aa or aa™!, must be a
projective plane or a sphere, and we have completed the proof. Otherwise, we
proceed as follows.

Third step. Transformation to a polygon such that all vertices must be
identified to a single vertex. Although the edges of our polygon must be
identified in pairs, the vertices may be identified in sets of one, two, three, four,
.... Let us call two vertices of the polygon equivalent if and only if they are to
be identified. For example, the reader can easily verify that in Figure 1.16 there
are eight different equivalence classes of vertices. Some equivalence classes
contain only one vertex, whereas other classes contain two or three vertices.

Assume we have carried out step two as far as possible. We wish to prove
we can transform our polygon into another polygon with all its vertices
belonging to one equivalence class.

Suppose there are at least two different equivalence classes of vertices. Then,
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(2) (b)

FIGURE 1.18. Third step in the proof of Theorem S.1.

the polygon must have an adjacent pair of vertices which are nonequivalent.
Label these vertices P and Q. Figure 1.18 shows how to proceed. As P and Q
are nonequivalent, and we have carried out step two, it follows that sides a
and b are not to be identified. Make a cut along the line labeled c, from the
vertex labeled Q to the other vertex of the edge a (i.c., to the vertex of edge a,
which is distinct from P). Then, glue the two edges labeled a together. A new
polygon with one less vertex in the equivalence class of P and one more vertex
in the equivalence class of Q results. If possible, perform step two again. Then
carry out step three to reduce the number of vertices in the equivalence class
of P still further, then do step two again. Continue alternately doing step three
and step two until the equivalence class of P is eliminated entirely. If more
than one equivalence class of vertices remains, we can repeat this procedure
to reduce the number by 1. If we continue in this manner, we ultimately obtain
a polygon such that all the vertices are to be identified to a single vertex.
Fourth step. How to make any pair of edges of the second kind adjacent. We
wish to show that our surface can be transformed so that any pair of edges of
the second kind are adjacent to each other. Suppose we have a pair of edges
of the second kind which are nonadjacent, as in Figure 1.19(a). Cut along the

(2) (b)

FIGURE 1.19. Fourth step in the proof of Theorem 5.1.
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B

Fi1GURE 1.20. A pair of edges of the first kind.

dotted line labeled a and paste together along b. As shown in Figure 1.19(b),
the two edges are now adjacent.

Continue this process until all pairs of edges of the second kind are adjacent.
If there are no pairs of the first kind, we are finished, because the symbol of
the polygon must then be of the form q,4a,a,aq,...a,a,, and hence S is the
connected sum of n projective planes.

Assume to the contrary that at this stage there is at least one pair of edges
of the first kind, each of which is labeled with the letter c. Then we assert that
there is at least one other pair of edges of the first kind such that these two
pairs separate one another; i.c., edges from the two pairs occur alternately as
we proceed around the boundary of the polygon (hence, the symbol must be
of the forme...d...c™'...d7!..., where the dots denote the possible occur-
rence of other letters).

To prove this assertion, assume that the edges labeled ¢ are not separated
by any other pair of the first kind. Then our polygon has the appearance
indicated in Figure 1.20. Here A and B each designate a whole sequence of
edges. The important point is that any edge in A must be identified with
another edge in A4, and similarly for B. No edge in A is to be identified with
an edge in B. But this contradicts the fact that the initial and final vertices of
either edge labeled c are to be identified, in view of step three.

Fifth step. Pairs of the first kind. Suppose, then, that we have two pairs of
the first kind which separate each other as described (see Figure 1.21). We
shall show that we can transform the polygon so that the four sides in question
are consecutive around the perimeter of the polygon.

First, cut along c and paste together along b to obtain Figure 1.21(b). Then,
cut along d and paste together along a to obtain Figure 1.21(c), as desired.

Continue this process until all pairs of the first kind are in adjacent groups
of four, as cdc™'d ™! in Figure 1.21(c). If there are no pairs of the second kind,
this leads to the desired result because, in that case, the symbol must be of the

form

a;byay'bila,b,a3'b3! .. a,b,a; b}

and the surface is the connected sum of n tori.
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(b) (e)

FiGURE 1.21. Fifth step in the proof of Theorem 5.1.

It remains to treat the case in which there are pairs of both the first and
second kind at this stage. The key to the situation is the following rather
surprising lemma:

Lemma 7.1. The connected sum of a torus and a projective plane is homeomor-
phic to the connected sum of three projective planes.

PrROOF. We have remarked that the connected sum of two projective planes
is homeomorphic to a Klein bottle (see Example 4.3). Thus, we must prove
that the connected sum of a projective plane and a torus is homeomorphic to
the connected sum of a projective plane and a Klein bottle. To do this, it will
be convenient to give an alternative construction for a connected sum of any
surface S with a torus or a Klein bottle. We can represent the torus and Klein
bottle as rectangles with opposite sides identified as shown in Figure 1.22. To
form the connected sum, we first cut out the disc that is shaded in the diagrams,
cut a similar hole in S, and glue the boundary of the hole in the torus or Klein
bottle to the boundary of the hole in S. However, instead of gluing on the
entire torus or Klein bottle in one step, we may do it in two stages: First, glue
on the part of the torus or Klein bottle that is the image of the rectangle
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b A B b A B
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b A’ B’ b A’ B’

(=) (b)

F1GURE 1.22. (a) Torus with hole. (b) Klein bottle with hole.

ABB’ A’ under the identification, and then glue on the rest of the torus or Klein
bottle. In the first stage we form the connected sum of S with an open tube or
cylinder. Such an open tube or cylinder is homeomorphic to a sphere with
two holes cut in it, and forming the connected sum of S with a sphere does
not change anything. Thus, the space resulting from the first stage is homeo-
morphic to the original surface S with two holes cut in it. In the second stage
we then connect the boundaries of these two holes with a tube that is the
remainder of the torus or Klein bottle. The difference between the two cases
depends on whether we connect the boundaries so they will have the same or
opposite orientations. This is illustrated in Figure 1.23, where S is a Mobius
strip.

We now assert that the two spaces shown in Figures 1.23(a) and 1.23(b)
(i.e., the connected sum of a Mobius strip with a torus and a Klein bottle,
respectively) are homeomorphic. To see this, imagine that we cut each of these
topological spaces along the lines AB. In each case, the result is the connected
sum of a rectangle and a torus, with the two ends of the rectangle to be
identified with a twist, as shown in Figure 1.24. Hence, the two spaces are
homeomorphic.

As stated previously, we obtain the projective plane by gluing the boundary
of a disc to the boundary of a Mobius strip. As the spaces shown in Figure
1.23 are homeomorphic, so are the spaces obtained by gluing a disc on the
boundary of each. Thus, the connected sum of a projective plane and a torus
is homeomorphic to the connected sum of a projective plane and a Klein
bottle, as was to be proved. QED.

It should be clear that this lemma takes care of the remaining case. Assume
that after the fifth step has been completed, the polygon has m pairs (m > 0)
of the second kind such that the two edges of each pair are adjacent, and n
quadruples (n > 0) of sides, each quadruple consisting of two pairs of the first
kind which separate each other. Then, the surface is the connected sum of m
projective planes and n tori, which by the lemma is homeomorphic to the
connected sum of m + 2n projective planes. This completes the proof of
Theorem 5.1.



§7. Proof of Theorem 5.1 25

(b)

FiGURE 1.23. (a) Connected sum of a Mébius strip and a torus. (b) Connected sum of
a Mobius strip and a Klein bottle.

B

FIGURE 1.24. The result of cutting the spaces shown in Figure 1.23 along the line AB.
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EXERCISES

7.6. Carry out each of the above steps for the examples given in Exercises 7.1-7.5.

It is clear that we can also work the process described above backwards;
whenever there are three pairs of the second kind, we can replace them by one
pair of the second kind and two pairs of the first kind. Alternatively, we can
apply Lemma 7.1 to any connected sum of which three or more of the
summands are projective planes. The following alternative form of Theorem
5.1, which may be preferable in some cases, results.

Theorem 7.2. Any compact, orientable surface is homeomorphic to a sphere or
a connected sum of tori. Any compact, nonorientable surface is homeomorphic
to the connected sum of either a projective plane or Klein bottle and a compact,
orientable surface.

§8. The Euler Characteristic of a Surface

Although we have shown that any compact surface is homeomorphic to a
sphere, a sum of tori, or a sum of projective planes, we do not know that all
these are topologically different. It is conceivable that there exist positive
integers m and n, m # n, such that the sum of m tori is homeomorphic to the
sum of n tori. To show that this cannot happen, we introduce a numerical
invariant called the Euler characteristic.

First, we define the Euler characteristic of a triangulated surface. Let M be
a compact surface with triangulation {7, ..., T,}. Let

v = total number of vertices of M,
e = total number of edges of M,
t = total number of triangles (in this case, ¢ = n).
Then,
I(M)=v—e+1t

is called the Euler characteristic of M.

Example

8.1. Figure 1.25 suggests uniform methods of triangulating the sphere,
torus, and projective plane so that we may make the number of triangles as
large as we please. Using such triangulations, the reader should verify that the
Euler characteristics of the sphere, torus, and projective plane are 2,0, and 1,
respectively. He should also verify that the Euler characteristics are inde-
pendent of the number of vertical and horizontal dividing lines in the diagrams
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a

e

(a)

Ya

2

(b)

(c)

FiGURE 1.25. Computing the Euler characteristic from a triangulation. (a) Sphere.
(b) Torus. (c) Projective plane.
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(a) (®)

{c)
FiGURE 1.26. (a) 1-gon. (b) A 2-gon. (c) A 3-gon.

Ficure 1.27. An allowable kind of edge.

for the sphere and torus, and of the number of radial lines or concentric circles
in the case of the diagram for the projective plane.

Consideration of these and other examples suggests that y(M)depends only
on M, not on the triangulation chosen. We wish to suggest a method of
proving this. To do this, we shall allow subdivisions of M into arbitrary
polygons, not just triangles. These polygons may have any number n of sides
and vertices, n = 1 (see Figure 1.26). We shall also allow for the possibility of
edges that do not subdivide a region, as in Figure 1.27. In any case, the interior
of each polygonal region is required to be homeomorphic to an open disc,
and each edge is required to be homeomorphic to an open interval of the real
line, once the vertices are removed (the closure of each edge shall be homeo-
morphic to a closed interval or a circle). Finally, the number of vertices, edges,
and polygonal regions will be finite. As before, we define the Euler characteristic
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of such a subdivision of a compact surface M to be
x(M) = (No. of vertices) — (No. of edges) + (No. of regions).

It is now easily shown that the Euler characteristic is invariant under the
following processes:

(a) Subdividing an edge by adding a new vertex at an interior point (or,
inversely, if only two edges meet at a given vertex, we can amalgamate the
two edges into one and eliminate the vertex).

(b) Subdividing an n-gon, n = 1, by connecting two of the vertices by a new
edge (or, inversely, amalgamating two regions into one by removing an
edge).

(c) Introducing a new edge and vertex running into a region, as shown in
Figure 1.27 (or, inversely, eliminating such an edge and vertex).

The invariance of the Euler characteristic would now follow if it could be
shown that we could get from any one triangulation (or subdivision) to any
other by a finite sequence of “moves” of types (a), (b), and (c). Suppose we have
two triangulations

y= {Tl, Tz,..., Tm},
I ={T,T...,T;}

of a given surface. If the intersection of any edge of the triangulation 7 with
any edge of the triangulation 7 consists of a finite number of points and a
finite number of closed intervals, then it is easily seen that we can get from the
triangulation J to the triangulation ' in a finite number of such moves; the
details are left to the reader. However, it may happen that an edge of 7
intersects an edge of 7 in an infinite number of points, like the following two
curves in the xy plane:

{,y):y=0 and —1=<x< 41},
{(x,y):y=xsin% and 0<|x|§1}u{(0,0)}.

If this is the case, it is clearly impossible to get from the triangulation J to
the triangulation 7 by any finite number of moves. It appears plausible that
we could always avoid such a situation by “moving” one of the edges slightly.
This is true and can be proved rigorously. However, we do not attempt such
a proof here for several reasons: (a) The details are tedious and involved.
(b) In Chapter IX we will define the Euler characteristic for a more general
class of topological spaces and prove its invariance by means of homology
theory. In these more general circumstances, the type of proof we have
suggested here is not possible. (c) We will use the Euler characteristic to
distinguish between compact surfaces. We will achieve this purpose with
complete rigor in later chapters by the use of the fundamental group and by
use of homology groups.
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Proposition 8.1. Let S, and S, be compact surfaces. The Euler characteristics
of S, and S, and their connected sum, S, # S,, are related by the formula

XSy # 82) = x(81) + x(S2) — 2

Proor. The proof is very simple; assume S, and S, are triangulated. Form
their connected sum by removing from each the interior of a triangle, and then
identifying edges and vertices of the boundaries of the removed triangles. The
formula then follows by counting vertices, edges, and triangles before and after
the formation of the connected sum. QED.

Using this proposition, and an obvious induction, starting from the known
results for the sphere, torus, and projective plane, we obtain the following
values for the Euler characteristics of the various possible compact surfaces:

Surface Euler characteristic
Sphere 2
Connected sum of n tori 2—2n
Connected sum of n projective planes 2—n
Connected sum of projective plane and n tori 1—2n
Connected sum of Klein bottle and n tori —2n

Note that the Euler characteristic of an orientable surface is always even,
whereas for a nonorientable surface it may be either odd or even.

Assuming the topological invariance of the Euler characteristic and Theorem
5.1, we have the following important result:

Theorem 8.2. Let S, and S, be compact surfaces. Then, S, and S, are homeo-
morphic if and only if their Euler characteristics are equal and both are
orientable or both are nonorientable.

This is a topological theorem par excellence; it reduces the classification
problem for compact surfaces to the determination of the orientability and
Euler characteristic, both problems usually readily soluble. Moreover, Theorem
5.1 makes clear what are all possible compact surfaces.

Such a complete classification of any class of topological spaces is very rare.
No corresponding theorem is known for compact 3-manifolds, and for 4-
manifolds it has been proven (roughly speaking) that no such result is possible.

We close this section by giving some standard terminology. A surface that
is the connected sum of n tori or n projective planes is said to be of genus n,
whereas a sphere is of genus 0. The following relation holds between the genus
g and the Euler characteristic y of a compact surface:

_ {32 — ) in the orientable case
" |2—x in the nonorientable case.
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EXERCISES

8.1.

8.2.

8.3.

84.

8.5.

8.6.

8.7.

8.8.

8.9.

For over 2000 years it has been known that there are only five regular polyhedra,
namely, the regular tetrahedron, cube, octahedron, dodecahedron, and icosa-
hedron. Prove this by considering subdivisions of the sphere into n-gons (n fixed)
such that exactly m edges meet at each vertex (m fixed, m, n = 3). Use the fact that
x(8?) =2

For any triangulation of a compact surface, show that
3t = 2e,
=3(v — ),

v 237 + /49 — 24y).

In the case of the sphere, projective plane, and torus, what are the minimum values
of the numbers v, ¢, and ¢? (Here, t, e, and v denote the number of triangles, edges,
and vertices, respectively.)

In how many pieces do n great circles, no three of which pass through a common
point, dissect a sphere?

(a) The sides of a regular octagon are identified in pairs in such a way as to obtain
a compact surface. Prove that the Euler characteristic of this surface is > —2.

(b) Prove that any surface (orientable or nonorientable) of Euler characteristic
2 —2 can be obtained by suitably identifying in pairs the sides of a regular
octagon.

Prove that it is not possible to subdivide the surface of a sphere into regions, each
of which has six sides (i.e., it is a hexagon) and such that distinct regions have no
more than one side in common.

Let S, be a surface that is the sum of mtori, m > 1, and let S, be a surface that is
the sum of n projective planes, n 2 1. Suppose two holes are cut in each of these
surfaces, and the two surfaces are then glued together along the boundaries of the
holes. What surface is obtained by this process?

What surface is represented by a regular 10-gon with edges identified in pairs, as
indicated by the symbol abcdec 'da™'b~'e™'? (HINT: How are the vertices identified
around the boundary?)

What surface is represented by a 2n-gon with the edges identified in pairs according
to the symbol

a,a,...a.a7'a;t .. a7t a,?
What surface is represented by a 2n-gon with the edges identified in pairs according

to the symbol
~1,-1 -1 -1
a,a,...a,a7°ay ...a,tat?

(HINT: The cases where n is odd and where n is even are different.)

Remark: The results of Exercises 8.8 and 8.9 together give an alternative
“normal form” for the representation of a compact surface as a quotient space
of polygon.
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NOTES

Definition of the connected sum of two manifolds

The definition of the connected sum given in §4 is adequate for 2-dimensional
manifolds, but more care is necessary when we define the connected sum of
two orientable n-manifolds for n > 2. We must worry about whether the
homeomorphism h in our definition preserves or reverses orientations. The
essential reason for this difference is that any orientable surface admits
an orientation-reversing self-homeomorphism, whereas there exist orien-
table manifolds in higher dimensions which do not admit such a self-
homeomorphism. Seifert and Threlfall ([6], pp. 290-291) give an example of
a 3-dimensional manifold with this property. The complex projective plane is
a 4-dimensional manifold having the property in question.

Triangulation of manifolds

In the early days of topology, it was apparently taken for granted that all
surfaces and all higher-dimensional manifolds could be triangulated. The first
rigorous proof that surfaces can be triangulated was published by Tibor Rad6
in a paper on Riemann surfaces [7]. Rado pointed out the necessity of
assuming the surface has a countable basis for its topology and gave an
example (due to Priifer) of a surface that does not have such a countable basis.
Rado’s proof, given in Chapter I of the text by Ahlfors and Sario [1], makes
essential use of a strong form of the Jordan Curve Theorem. The triangulability
of 3-manifolds was proved by E. Moise (Affine Structures in 3-manifolds, V:
The triangulation theorem and Hauptvermutung. Ann. Math. 56 (1952), 96—
114).

Recent results of A. Casson and M. Freedman show that some 4-
dimensional manifolds cannot be triangulated.

Models of nonorientable surfaces in Euclidean 3-space

No closed subset of Euclidean n-space is homeomorphic to a nonorientable
(n — 1)-manifold. This result, first proved by the Dutch mathematician L.E.J.
Brouwer in 1912, can now be proved as an easy corollary of some general
theorems of homology theory. This fact seriously hampers the development
of our geometric intuition regarding compact, nonorientable surfaces, since
they cannot be imbedded homeomorphically in Euclidean 3-space. However,
it is possible to construct models of such surfaces in Euclidean 3-space pro-
vided we allow “singularities” or “self-intersections.” We can even construct
amathematical theory of such models by considering the concept of immersion
of manifolds. We say that a continuous map f of a compact n-manifold M"
into m-dimensional Euclidean space R™ is a topological immersion if each point
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of M" has a neighborhood mapped homeomorphically onto its image by f.
(The definition of a differentiable immersion is analogous; f is required to be
differentiable and have a Jacobian everywhere of maximal rank.) The usual
model of a Klein bottle in R? is an immersion of the Klein bottle in 3-space.
Werner Boy, in his thesis at the University of Goéttingen in 1901 [Uber die
Abbildung der projektiven Ebene auf eine im Endlichen geschlossene singu-
laritatenfreie Flache. Nach. Konigl. Gesell. Wiss. Gottingen (Math. Phys. K1),
1901, pp. 20-33. See also Math. Annal. 57 (1903), 173-184], constructed
immersions of the projective plane in R3. One of the immersions given by Boy
is reproduced in Hilbert and Cohn-Vossen [3]. Since any compact, non-
orientable surface is homeomorphic to the connected sum of an orientable
surface and a projective plane or a Klein bottle, it is now easy to construct
immersions of the remaining compact, nonorientable surfaces in R>.

The usual immersion of the Klein bottle in R? is much nicer than any of
the immersions of the projective plane given by Boy. The set of singular points
for the immersion of the Klein bottle consists of a circle of double points,
whereas the set of singular points for Boy’s immersions of the projective plane
is much more complicated. This raises the question, does there exist an
immersion of the projective plane in R* such that the set of singular points
consists of disjoint circles of double points? The answer to this question is
negative, at least in the case of differentiable immersions; for the proof, see the
two papers by T. Banchoff in Proceedings of the American Mathematical
Society published in 1974 (46, 402—-413).

For further information on the immersion of compact surfaces in R3, see
the interesting article entitled “Turning a Surface Inside Out” by Anthony
Phillips in Scientific American published in 1966 (214, 112-120).

Bibliographical notes

The first proof of the classification theorem for compact surfaces is ascribed
by some to H. R. Brahana (4Ann. Math. 23 (1922), 144—-68). However, Seifert
and Threlfall ([6], p. 322), attribute it to Dehn and Heegard and do not even
list Brahana’s paper in their bibliography. During the 19th century several
mathematicians worked on the classification of surfaces, especially at the time
of Riemann and afterword. The nonexistence of any algorithm for the classifi-
cation of compact triangulable 4-manifolds is a result of the Russian mathe-
matician A. A. Markov (Proc. Int. Cong. Mathematicians, 1958, pp. 300-306).
For the use of the Euler characteristic to prove the 5-color theorem for maps,
see R. Courant and H. Robbins, What Is Mathematics? (Oxford University
Press, New York, 1941, pp. 264-267). We also refer the student to excellent
drawings in the books by Cairns ([2], p. 28), and Hilbert and Cohn-Vossen
([3], p. 265), illustrating how the connected sum of two or three tori can be
cut open to obtain a polygon whose opposite edges are to be identified in pairs.
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CHAPTER II
The Fundamental Group

§1. Introduction

For any topological space X and any point x, € X, we will define a group,
called the fundamental group of X, and denoted by n(X, x,). (Actually, the
choice of the point x, is usually of minor importance, and hence it is often
omitted from the notation.) We define this group by a very simple and intuitive
procedure involving the use of closed paths in X. From the definition, it will
be clear that the group is a topological invariant of X i.e., if two spaces are
homeomorphic, their fundamental groups are isomorphic. This gives us the
possibility of proving that two spaces are not homeomorphic by proving that
their fundamental groups are nonisomorphic. For example, this method suf-
fices to distinguish between the various compact surfaces and in many other
cases.

Now only does the fundamental group give information about spaces, but
it also is often useful in studying continuous maps. As we shall see, any
continuous map from a space X into a space Y induces a homomorphism of
the fundamental group of X into that of Y. Certain topological properties of
the continuous map will be reflected in the properties of this induced homo-
morphism. Thus, we can prove facts about certain continuous maps by
studying the induced homomorphism of the fundamental groups.

We can summarize the above two paragraphs are follows: By using the
fundamental group, topological problems about spaces and continuous maps
can sometimes be reduced to purely algebraic problems about groups and
homomorphisms. This is the basic strategy of the entire subject of algebraic
topology: to find methods of reducing topological problems to questions of
pure algebra, and then hope that algebraists can solve the latter.
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This chapter will only give the basic definition and properties of the
fundamental group and induced homomorphism, and determine its structure
for a few very simple spaces. In later chapters we shall develop more general
methods for determining the fundamental groups of some more interesting
spaces.

§2. Basic Notation and Terminology

As usual, for any real numbers a and b such that a < b, [a, b] denotes the
closed interval of the real line with a and b as end points. For conciseness, we
set I = [0, 1]. We note that, given any two closed intervals [a, b] and [c, d],
there exist unique linear homeomorphisms

hl) hO : [a’ b] - [C’ d];

such that
hO(a) = C7 hO(b) = d)

hi@=d  hb)=c

We distinguish between these two by calling h, orientation preserving and
h, orientation reversing.

A path or arc in a topological space X is a continuous map of some closed
interval into X. The images of the end points of the interval are called the end
points of the path or arc, an the path is said to join its end points. One of the
end points is called the initial point, the other is called the terminal point (it
is clear which is which).

A space X is called arcwise connected or pathwise connected if any two
points of X can be joined by an arc. An arcwise-connected space is connected,
but the converse statement is not true. The arc components of X are the
maximal arcwise-connected subsets of X (by analogy with the ordinary com-
ponents of X). Note that the arc components of X need not be closed sets. A
space is locally arcwise connected if each point has a basic family of arcwise-
connected neighborhoods (by analogy with ordinary local connectivity).

EXERCISE

2.1. Prove that a space which is connected and locally arcwise connected is arcwise
connected.

Definition. Let f,, f; : [a, b] - X be two paths in X such that f,(a) = f;(a),
Jo(b) = f,(b)(i.e., the two paths have the same initial and terminal points). We
say that these two paths are equivalent, denoted by f, ~ f,,if and only if there
exists a continuous map

filab]l xI->X,
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such that
Sf(t,0) = fo(®)
fi, 1) = fi(»
f(a,s) = fola) = fl(a)}s el
S(b, 5) = fo(b) = f1(b) '

}te [a, b],

Note that in the above definition we could replace I by any other closed
interval if necessary. We leave it as an exercise to verify that this relation is
reflexive, symmetric, and transitive.

Intuitively we say that two paths are equivalent if one can be continuously
deformed into the other in the space X. During the defomation, the end points
must remain fixed.

Our second basic definition is that of the product of two paths. The product
of two paths is only defined if the terminal point of the first path is the initial
point of the second path. If this condition holds, the product path is traversed
by traversing the first path and then the second path, in the given order. To
be precise, assume

f:la,b] - X,
g:[b,cl->X
are paths such that f(b) = g(b) (here a < b < c). Then the product f-g is
defined by
f@0), te[a b]
g = 2.1
(o {g(t), te[b,c] 22D

It is amap [a, ¢] — X. In the above definition, we had the rather cumbersome
requirement that the domains of f and g had to be the intervals [a, b] and
[b, c], respectively. We can remove this requirement by changing the domain
of f or g by means of an orientation-preserving linear homeomorphism.
Actually, in the future we shall only be interested in equivalence classes of
paths rather than the paths themselves. By “equivalence class,” we mean, with
respect to the equivalence relation defined above and also with respect to the
following obvious equivalence relation: If f: [a, b] - X and g : [¢,d] — X are
paths such that g = fh, where h:[c, d] — [a, b] is an orientation-preserving
linear homeomorphism, then f and g are to be regarded as equivalent. Rather
than considering paths whose domain is an arbitrary closed interval and
allowing orientation-preserving linear homeomorphisms between any two
such intervals, we find it technically simpler to demand that all paths be
functions defined on one fixed interval, namely, the interval I = [0, 1]. As a
result of this simplification, the simple formula for the product of two paths,
(2.2.1), has to be replaced by a more complicated formula. Also, it will not be
immediately obvious that the multiplication of path classes is associative.
However, the reader should keep in mind that there are various alternative
ways of proceeding with this subject.



38 I1. The Fundamental Group

§3. Definition of the Fundamental Group of a Space

From now on, by a path in X we mean a continuous map I — X. If fand ¢
are paths in X such that the terminal point of f is the initial point of g, then
the product f- g is defined by

o ff@, 0<st<%
v g)t_{g(Zt—l), 1<t

We say two paths, f; and f;, are equivalent ( f, ~ f;) if the condition in §2 is
satisfied.

Lemma 3.1. The equivalence relation and the product we have defined are
compatible in the following sense: If f, ~ f, and gy ~ g, then fy-go ~ f1° 91
(it is assumed, of course, that the terminal point of f, is the initial point of g,).

The proof may be left to the reader. In proving lemmas such as this, the
following fact is often useful: Let A and B be closed subsets of the topological
space X such that X = AU B. If f is a function defined on X such that the
restrictions f|A and f|B are both continuous, then f is continuous. The proof,
which is easy, is left to the reader. In the future, we will use this fact without
comment,

As a result of Lemma 3.1, the multiplication of paths defines a multiplica-
tion of equivalence classes of paths (provided the terminal point of the first
path and the initial point of the second path coincide). It is this multiplication
of equivalence classes with which we are primarily concerned. Note that the
multiplication of paths is not associative in general,i.e.,(f g)-h # f- (g h)(we
assume both products are defined). However, we have

Lemma 3.2. The multiplication of equivalence classes of paths is associative.

Proor. It suffices to prove the following: Let f, g, and h be paths such that
the terminal point of f = initial point of g, and the terminal point of g = initial
point of h. Then

(f-9)h~f(gh.

To prove this, consider the function F: I x I - X defined by

4t s+ 1
<t=x
(f(l+s)’ O=ts 4
s+ 1 s+ 2
F(t,s) = 4t — 1 —s), St=
(t,5) = < g( 5) g Si=—
41 — 1) s+2
h{1 — <tZ1
\( 2—s)’ 4 T =
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FIGURE 2.1. Proof of associativity.

Then, F is continuous, F(t,0) = [(f-g) h]t, and F(t,1)=[f-(g h)]t. The
motivation for the definition of F is given in Figure 2.1. Q.E.D.

For any point x € X, let us denote by &, the equivalence class of the
constant map of I into the point x of X. This path class has the following
fundamental property:

Lemma 3.3. Let o be an equivalence class of paths with initial point x and
terminal point y. Then &, o = x and a- &, = o.

PROOF. Let e: I — X be the constant map such that e(I) = {x} and let f: I —
X be a representative of the path class a. To prove the first relation, it suffices
to prove thate  f ~ f. Define F: I x I - X by

1
X, 0<t=<3s

F(t,s) = 2t —s
(322)
Then F(t,0) = f(t) and F(t, 1) = (e* f)t as required. The motivation for the

definition of F is shown in Figure 2.2. The proof that a- &, = « is similar and
is left to the reader. Q.E.D.

st 1.

1A
1A

(ST

For any path f: I - X, let f denote the path defined by

f)=fA-1, tel
The path f is obtained by traversing the path f in the opposite direction.

Lemma 3.4 Let o and & denote the equivalence classes of the paths f and f,
respectively. Then,



40 I1. The Fundamental Group

-]

) (1,1)

0

FIGURE 2.2. Proof of existence of units.
o o= &, ao=4,

where x and y are the initial and terminal points of the path f.

Proor. To prove the first equation, it suffices to show that - f ~ e, where e
is the constant path at the point x. Therefore, we define F: I x I - X by
f, 0<t<3s
F(t,s) =< f(s), sl —43s
f@-2, 1-is<t<1.

We then see that F(t, 0) = x, whereas (- f)t = F(t, 1). Figure 2.3 explains the
choice of the function F. We can also motivate the deformation of the path

&1) (L1

0

F1GURE 2.3. Proof of existence of inverses.
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f-f into the constant path e by a simple mechanical analogy. Consider the
path f as an elastic “thread” in the space X from the point x to y; then f is
another “thread” in the opposite direction, from y to x, and f - f is represented
by joining the two threads at the point y. We can now “pull in” the doubled
thread to the point x because we do not need to keep it attached to the point y.

The proof that &@-« = &, is similar and is left to the reader. Q.E.D.

In view of these properties of the path class &, from now on we will denote
it by a~'. It is readily seen that the conditions of the lemma just proved
characterize ™! uniquely. Hence, if f, ~ f;, then f; ~ f;.

We can summarize the lemmas just proved by saying that the set of all path
classes in X satisfies the axioms for a group, except that the product of two
paths is not always defined.

Definition. A path, or path class, is called closed, or a loop, if the initial and
terminal points are the same. The loop is said to be based at the common end
point.

Let x be any point of X; it is readily seen that the set of all loops based at
x is a group. This group is called the fundamental group or Poincaré group of
X at the base point x and is denoted by n(X, x).

Next, we will investigate the dependence of the group n(X, x) on the base
point x. Let x and y be two points in X, and let y be a path class with initial
point x and terminal point y (hence, x and y belong to the same are component
of X). Using the path y, we define a mapping u: n(X, x) - n(X, y) by the
formula o — y ~'ay. We see immediately that this mapping is a homomorphism
of n(X, x) into n(X, y). By using the path y~! instead of y, we can define a
homomorphism v: n(X, y) - n(X, x) in a similar manner. We immediately
verify that the composed homomorphisms vu and uv are the identity maps of
7(X, x) and n(X, y), respectively. Thus, u and v are isomorphisms, each of
which is the inverse of the other. Thus, we have proved

Theorem. 3.5. If X is arcwise connected, the groups n(X, x) and n(X, y) are
isomorphic for any two points x, y € X.

The importance of this theorem is obvious; €.g., the question as to whether
or not n(X, x) has any given group theoretic property (e.g., it is abelian, finite,
nilpotent, free, etc.) is independent of the point x, and thus depends only on
the space X, provided X is arcwise connected.

On the other hand, we must keep in mind that there is no canonical or
natural isomorphism between n(X, x) and =(X, y); corresponding to each
choice of a path class from x to y there will be an isomorphism, from 7(X, x)
to n(X, y), and, in general, different path classes will give rise to different
isomorphisms.
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EXERCISES

3.1. Under what conditions will two path classes, y and y, from x to y give rise to the
same isomorphism of n(X, x) onto n(X, y)?

3.2. Let X be an arcwise-connected space. Under what conditions is the following
statement true: For any two points x, y € X, all path classes from x to y give rise
to the same isomorphism of n(X, x) onto n(X, y)?

3.3. Let f, g: I - X be two paths with initial point x, and terminal point x,. Prove
that f ~ g if and only if f-g is equivalent to the constant path at x, (g is defined
as in Lemma 3.4).

We will actually determine the structure of the fundamental group of
various spaces later in this chapter and in Chapter IV.

§4. The Effect of a Continuous Mapping
on the Fundamental Group

Let ¢ : X — Y be a continuous mapping, and let f,, f; : I — X be paths in X.
It is readily seen that if f; and f, are equivalent, then so are the paths ¢f, and
of, represented by the composed functions. Thus, if a denotes the path class
that contains f; and f}, it makes sense to denote by ¢, (2) the path class that
contains the paths ¢f,, and ¢f,. ¢,(2) is the image of th path class « in the
space Y, and it is readily verified that the mapping ¢, which sends a into ¢, (%)
has the following properties:

(@) If « and B are path classes in X such that « - § is defined, then ¢, (a-f) =
(942 (@4 B)-

(b) For any point x € X, @,(&,) = &,)-
(C) q’*(a—l) = (q’*a)—l'

For these reasons, we shall call ¢, a “homomorphism,” or, the “homomor-
phism induced by ¢.”

If y:Y > Z is also a continuous map, then we can verify the following
property easily:

d) Wo)y = ¥y 0,.
Finally, if ¢ : X — X is the identity map, then
(¢) @.(2) = afor any path class « in X i.e., ¢, is the identity homomorphism.

Note that, in view of these properties, a continuous map ¢ : X — Y induces
ahomomorphism ¢, : 7(X, x) - n(Y, ¢(x));and, if ¢ is a homomorphism, then
@, is an isomorphism. This induced homeomorphism will be extremely impor-
tant in studying the fundamental group.
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Caution: If ¢ is a one-to-one map, it does not follow that ¢* is one-to-one;
similarly, if ¢ is onto, it does not follow that ¢, is onto. We shall see examples
to illustrate this point later.

EXERCISE

4.1. Let ¢ : X — Y be a continuous map and let y be a class of paths in X from x, to
x,. Prove that the following diagram is commutative:

(X, xo) —— n(Y, ¢(xo))

(X, x;) —— (Y, ¢(x,)).

Here the isomorphism u is defined by u(«) = y 'ay, and v is defined similarly using
¢,(y)in place of y. [NOTE: An important special case occurs if ¢(x,) = ¢(x,). Then,
¢,{(7) is an element of the group 7n(Y, ¢(x,)).]

To make further progress in the study of the induced homomorphism ¢,,
we must introduce the important notion of homotopy of continuous maps.

Definition. Two continuous maps ¢,, @, : X — Y are homotopic if and only if
there exists a continuous map ¢ : X x I — Y such that, for x € X,

o(x, 0) = @y(x),
o(x, 1) = ¢,(x).

If two maps ¢, and ¢, are homotopic, we shall denote this by ¢, ~ ¢,. We
leave it to the reader to verify that this is an equivalence relation on the set of
all continuous maps X — Y. The equivalence classes are called homotopy
classes of maps.

To better visualize the geometric content of the definition, let us write
¢, (x) = @(x, t)for any (x,t) e X x I. Then, forany te I,

o X-Y

is a continuous map. Think of the parameter t as representing time. Then, at
time t = 0, we have the map ¢,, and, as t varies, the map ¢, varies continuously
so that at time t = 1 we have the map ¢, . For this reason, a homotopy is often
spoken of as a continuous deformation of a map.!

! The student who is familiar with the compact-open topology for function spaces will recognize
that two maps ¢@,, ¢, : X — Y are homotopic if and only if they can be joined by an arc in the
space of all continuous functions X — Y (provided X and Y satisfy certain hypotheses). Indeed,
the map ¢ — g, in the above notation is a path from ¢, to ¢,.
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Definition. Two maps ¢,, ¢, : X — Y are homotopic relative to the subset A
of X if and only if there exists a continuous map ¢ : X x I — Y such that

@(x, 0) = @o(x), x € X,

o(x, 1) = ¢1(x), x € X,

oa,t) = @ya) = @,(a), acAtel
Note that this condition implies @y|A4 = @, | A.

Theorem 4.1. Let ¢, ¢, : X — Y be maps that are homotopic relative to the
subset {x}. Then
Pox = P14 : X, X) > 7(Y, ®o(x)),

i.e., the induced homomorphisms are the same.
Proor. The proof is immediate.

Unfortunately, the condition that the homotopy should be relative to the
base point x is too restrictive for many purposes. This condition can be
omitted, but we then complicate the statement of the theorem. We shall,
however, do this in §8.

We shall now apply some of these results.

Definition. A subset A4 of a topological space X is called a retract of X if there
exists a continuous map r: X — A (called a retraction) such that r(a) = a for
anyace A.

As we shall see shortly, it is a rather strong condition to require that a
subset 4 be a retract of X. A simple example of a retract of a space is the
“center circle” of a M6bius strip. (What is the retraction in this case?)

Now let r: X — A be a retraction, as in the above definition, and i: 4 - X
the inclusion map. For any point a € A4, consider the induced homomorphisms

iy (A, a)> (X, a),

rye s (X, @) > n(A4, a).
Because ri = identity map, we conclude that r,i, = identity homomorphism
of the group (4, a), by properties (d) and (e) given previously. From this we
conclude that i, is a monomorphism and r, is an epimorphism. Moreover, the
condition that r,i, = identity imposes strong restrictions on the subgroup
i,n(4, a) of n(X, a).

We shall actually use this result later to prove that certain subspaces are

not retracts.

EXERCISES

4.2. Show that a retract of a Hausdorff space must be a closed subset.
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4.3. Provethatif Aisaretractof X,r: X — Aisaretraction,i: A - X is theinclusion,
and i, n(A) is a normal subgroup of n(X), then n(X) is the direct product of the
subgroups image i, and kernel , (see §2 of Chapter III for the definition of direct
product of groups).

4.4. Let A be a subspace of X, and let Y be a nonempty topological space. Prove that
A x Y isaretract of X x Y if and only if A is a retract of X.

4.5. Prove that the relation “is a retract of” is transitive, i.e., if A is a retract of B and
B is a retract of C, then A is a retract of C.

We now introduce the notion of deformation retract. The subspace A is a
deformation retract of X if there exists a retraction r: X — A homotopic to
the identity map X — X. The precise definition is as follows:

Definition. A subset A of X is a deformation retract® of X if there exists a
retractionr: X — A and a homotopy f: X x I - X such that

f(x,0) = x
oo 1) = r(x)} xeX,

fla,ty=a, aeAtel

Theorem 4.2. If A is a deformation retract of X, then the inclusion map
i:A— X induces an isomorphism of n(A, a) onto n(X, a) for any a € A.

PROOF. As above, r,i, is the identity map of n(4, a). We will complete the
proof by showing that i r, is the identity map of n(X, a). This follows because
ir is homotopic to the identity map X — X (relative to {a}); hence, Theorem

4.1 is applicable. Q.E.D.

We shall use this theorem in two different ways. On the one hand, we shall
use it throughout the rest of this book to prove that two spaces have isomor-
phic fundamental groups. On the other hand, we can use it to prove that a
subspace is not a deformation retract by proving the fundamental groups are
not isomorphic. In particular, we shall be able to prove that certain retracts
are not deformation retracts.

Definition. A topological space X is contractible to a point if there exists a
point x, € X such that {x,} is a deformation retract of X.

Definition. A topological space X is simply connected if it is arcwise connected
and n(X, x) = {1} for some (and hence any) x € X.

Corollary 4.3. If X is contractible to a point, then X is simply connected.

2 Some authors define this term in a slightly weaker fashion.
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Examples

4.1. A subset X of the plane or, more generally, of Euclidean n-space R" is
called convex if the line segment joining any two points of X lies entirely in
X. We assert that any convex subset X of R" is contractible to a point. To prove
this, choose an arbitrary point x, € X, and then define f: X x I - X by the
formula

fO, =01 — t)x + ixq

for any (x, t) € X x I[i.e., f(x, t)is the point on the line segment joining x and
x, which divides it in the ratio (1 — t): t]. Then f is continuous, f(x, 0) = x,
and f(x, 1) = x,, as required. More generally, we may define a subset X of R"
to be starlike with respect to the point x,, € X provided the line segment joining
x and x, lies entirely in X for any x € X. Then, the same proof suffices to
show that if X is starlike with respect to x,, it is contractible to the point x.

4.2. We assert that the unit (n — 1)-sphere $"~! is a deformation retract of
E" — {0}, the closed unit n-dimensional disc minus the origin. To prove this,
define amap f: X x I - X, where

X=E'—-{0}={xeR":0< x| =1},
by the formula
Sty =(1—nx+t=>
=010 —-1tx —
||
(The reader should draw a picture to show what happens here when n = 2 or
n = 3.) Then f is continuous, f(x, 0) = x, f(x, 1) = x/|x| € $"™}, and, if x €
S$""!, then f(x,t) = x for all te I. In particular, for n = 2, we see that the
boundary circle is a deformation retract of a punctured disc.

EXERCISES

4.6. Let x, be any point in the plane R Find a circle C in R? which is a deformation
retract of R? — {x,}. What is the n-dimensional analog of this fact?

4.7. Find a circle C which is a deformation retract of the Mobius strip.

438. Let T be a torus and let X be the complement of a point in T. Find a subset of
X which is homeomorphic to a figure “8” curve (i.e., the union of two circles with
a single point in common) and which is a deformation retract of X.

4.9. Generalize Exercise 4.8 to arbitrary compact surfaces, i.e, let S be a compact
surface and let X be the complement of a point in S. Find a subset A of X such
that (a) A is homeomorphic to the union of a finite number of circles and (b) 4
is a deformation retract of X. (HINT: Consider the representation of S as the space
obtained by identifying in pairs the edges of a certain polygon.)

4.10

Let x and y be distinct points of a simply connected space X. Prove that there
is a unique path class in X with initial point x and terminal point y.
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4.11. Let X be a topological space, and for each positive integer n let X, be an
arcwise-connected subspace containing the base point x, € X. Assume that the
subspaces X, are nested, ie., X, = X,, for all n, that

X=X,
n=1

and that for any compact subset A of X there exists an integer nsuch that 4 < X .
(eExaMPLE: Each X, is open.) Let i, : 7(X,) — n(X) and j,,, : n(X,,) = n(X,),m < n,
denote homomorphisms induced by inclusion maps. Prove the following two
statements: (a) For any « € n(X), there exists an integer n and an element
o' € n(X,)such that i,(a') = a. (b) If § € n(X,,) and i,,(B) = 1, then there exists an
integer n = m such that j,,,(8) = 1. [REMARK: These two statements imply that
n(X) is the direct limit of the sequence of groups n(X,) and homomorphisms j,,,.
We shall see examples later on where the hypotheses of this exercise are valid.]
If the homomorphisms j, ., are monomorphisms for all n, prove that each i, is
also a monomorphism and that #(X) is the union of the subgroups i,n(X,).

§5. The Fundamental Group of a Circle is
Infinite Cyclic

Let S' denote the unit circle in the Euclidean plane R?, S' = {(x,y)e
R?:x? + y? = 1} (or, equivalently, in the complex plane C). Let f:I - S*
denote the closed path that goes around the circle exactly once, defined by

J(¢) = (cos 2mt,sin 2xt), 0 <t <1,

and denote the equivalence class of f by the symbol a.

Theorem 5.1. The fundamental group n(S*, (1, 0)) is an infinite cyclic group
generated by the path class a.

Proor. Let g:1— S, g(0) = g(1) = (1, 0) be a closed path in S!. We shall
prove first that g belongs to the equivalence class «™ for some integer m (m
may be positive, negative, or zero). Let

U ={(xyeS:y>—}
U,={(x,p)eS":y< +15}

Then, U, and U, are connected open subsets of S*, each of which is slightly
larger than a semicircle, and U, u U, = §'. Obviously U, and U, are each
homeomorphic to an open interval of the real line, hence, each is contractible.
In the case where g(I) = U, or g(I) = U,, it is then clear that g is equivalent
to the constant path, and hence belongs to the equivalence class of x°. We put
this case aside and assume from now on that g(I) ¢ U, and g(I) ¢ U,.

We next assert that it is possible to divide the unit interval into subintervals
[0,¢,1, [t1, 821, ---, [tn-1, 1], where 0=1¢, <t, < <t,.; <t,=1, such
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that the following conditions hold:

(@) g(lti, i )= Uy or
gt tis DU, for 0Zi<n
(b) g([ti-1, t1) and g([t, 4y 1)

are not both contained in the same open set U;, j = 1 or 2.

This assertion may be proved as follows. {g~'(U,),¢ *(U,)} is an open
covering of the compact metric space I; let & be a Lebesgue number? of this
covering.

Divide the unit interval in any way whatsoever into subintervals of length
< & With this subdivision, condition (a) will hold; however, condition (b) may
not hold. If two consecutive subintervals are mapped by g into the same set
U;, then amalgamate these two subintervals into a single subinterval by
omitting the common end point. Continue this process of amalgamation until
condition (b) holds.

Let B denote the equivalence class of the path g, and let §; denote the
equivalence class of g|[t;-,, t;] for 1 <i < n. Then, obviously, f is a product,
B=BB-- b
Each f; is a path in U, or U,. Because of condition (b), it is clear that
g(t;) € Uy n U,. U, n U, has two components, one of which contains the point
(1, 0), and the other of which contains the point (— 1, 0). For each index i,
0 < i < n,choose a path class y; in U, n U, with initial point g(¢;) and terminal
point (1, 0) or (—1, 0), depending on which component of U, n U, contains

g(t;). Let

o = Bin»
S =y-\By for l<i<n,
On = Va-1 B
Then, it is clear that
B =0,6,""9, (2.51)

where each §, is a path class in U, or U, having its initial and terminal points
in the set {(1, 0), (— 1, 0)}. For any index i, if J; is a closed path class, then
d; = 1, because U, and U, are simply connected. We may therefore assume
that any such §; has been dropped from formula (2.5-1), and, changing notation
if necessary, that §;, d,, ..., and §, are not closed paths.

Becuase U, is simply connected, there is a unique path class #, in U, with

3 We say ¢ is a Lebesgue number of a covering of a metric space X if the following condition holds:
Any subset of X of diameter <e¢ is contained in some set of the covering. It is a theorem that any
open covering of a compact metric space has a Lebesgue number, The reader may either prove
this as an exercise or look up the proof in a textbook on general topology.
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initial point (1, 0) and terminal point (— 1, 0) (see Exercise 4.10). Also, ;! is
the unique path class in U, with initial point (— 1, 0) and terminal point (1, 0).
Analogously, we denote by 7, the unique path class in U, with initial point
(—1, 0) and terminal point (1, 0). Note that n,1, = «.

Thus, we see that, for each index i,

— .l _ Lt
i = N or =13

In view of condition (b) above, if §; = i, then §;,, = n3', while if §; = n3*,
then &;,, = ni'. Therefore only the following possibilities remain;

=1,
B=nnamny nin2,

or
B=ni'ni'natnrt oy tnt

In the second case § = a™ for some m > 0, whereas in the third case § = a™
for some integer m < 0. Thus, we have f = o™ in all cases.

From this it follows that =(S!) is a cyclic group. However, this argument
gives no hint as to the order of =(S*). In §3 of Chapter V we will complete the
proof by showing that z(S) is an infinite group, using the theory of covering
spaces; another proof is given in the discussion of Example 7.1 of Chapter V.
When we introduce homology theory later on, it will be easy to give still other
proofs,

It would be possible to give a direct, ad hoc proof now that n(S") is infinite;
see Massey ([ 2], Chapter II) or Ahlfors and Sario ([1], Chapter I, Section 10).
It is also possible to give a proof using the concept of the winding number or
index of a closed path in the plane with respect to a point; this is explained in
most textbooks on complex function theory. The theory of the winding
number or index can also be developed in the context of real function theory.

Given the fundamental importance of Theorem 5.1 and its basic intuitive
appeal, it is not surprising that there should be so many different proofs
available. Q.E.D.

As a corollary of Theorem 5.1, we see that the fundamental group of any
space with a circle as deformation retract is infinite cyclic. Examples of such
spaces are the Mobius strip, a punctured disc, the punctured plane, a region
in the plane bounded by two concentric circles, etc. (see the exercises in the
preceding section).

EXERCISES

5.1. Let {U;} be an open covering of the space X having the following properties:
(a) There exists a point x4 such that x, € U; for all i. (b) Each U; is simply connected.
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(c) If i # j, then U; n Uj; is arcwise connected. Prove that X is simply connected.
[HINT: To prove any loop f: 1 — X based at x, is trivial, first consider the open
covering { f "1(U;)} of the compact metric space I and make use of the Lebesgue
number of this covering.]

Remark. The two most important cases of this exercise are the following: (1) A
covering by two open sets and (2) the sets U, are linearly ordered by inclusion.
The student should restate the exercise for these two special cases.

5.2. Use the result of Exercise 5.2, remark (1), to prove that the unit 2-sphere S? or,
more generally, the n-sphere $7, n > 2, is simply connected.

5.3. Prove that R? and R" are not homeomorphic if n # 2. (HINT: Consider the
complement of a point in R? or R")

5.4. Prove that any homeomorphism of the closed disc E? onto itself maps S* onto S*
and U? onto U2

§6. Application: The Brouwer Fixed-Point Theorem
in Dimension 2

One of the best known theorems of topology is the following fixed-point
theorem of L.E.J. Brouwer. Let E" denote the closed unit ball in Euclidean
n-space R™

E"={xeR":|x| £1}.

Theorem 6.1. Any continuous map f of E™ into itself has at least one fixed point,
i.e., a point x such that f(x) = x.

We shall only prove this theorem for n < 2. Before going into the proof, it
seems worthwhile to indicate why there should be interest in fixed-point
theorems such as this one.

Suppose we have a system of n equations in n unknowns:

gl(xl"”’xn)z()’
g(x15...,x,) =0,
i 26.1)
gn(xl’~~~’xn)=0'

Here the g;’s are assumed to be continuous real-valued functions of the real
variables x,, ..., x,. It is often an important problem to be able to decide
whether or not such a system of equations has a solution. We can transform
this problem into a fixed-point problem as follows. Let

hi(xi, ... x,) = gi(Xy,5 .05 X,) + X;
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fori=1,2,..., n Then, for any point x = (x,, ..., x,), we define
h(x) = (hy(x), ..., hy(x)).

Then, h is a continuous function mapping a certain subset of Euclidean n-space
(depending on the domain of definition of the functions ¢,, ..., g,) into
Euclidean n-space. If we can find a subset X of Euclidean n-space homeo-
morphic to E", such that h is defined in X and h(X) = X, then we can conclude
by Brouwer’s theorem that the function & has a fixed point in the set X; but
any fixed point of the function h is readily seen to be a common solution of
Equations (2.6.1).

Brouwer’s theorem has been extended from the subset E" of Euclidean
space to apply to certain subsets of function spaces. The resulting theorem
can then be used to prove existence theorems for ordinary and partial differ-
ential equations; in fact, this is one of the most powerful methods of proving
existence theorems for certain types of nonlinear equations.

ProoF oF THEOREM 6.1. For n < 2: First we prove that, for any integer n > 0,
the existence of a continuous map f: E" — E", which has no fixed points,
implies that the (n — 1)-sphere $"~' = {x e R": |x| = 1} is a retract of E". We
do this by the following simple geometric construction. For any point x € E”,
let r(x) denote the point of intersection of $" ! and the ray starting at the point
f(x) and going through the point x. Figure 2.4 shows the situation for the case
where n = 2. Using vector notation, we can easily write a formula for r(x) in
terms of f(x). From this formula, we see that r is a continuous map of E" into
S" 1. If x e S"7!, it is clear that r(x) = x. Therefore, r is the desired retraction.

N
L

FIGURE 2.4. Proof of the Brouwer Fixed-Point Theorem.
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If we could prove that S"~! is not a retract of E", then we would have a
contradiction. For n = 1, this is clear, because E! is connected, but S° is
disconnected. For n = 2, we invoke what we have learned about the funda-
mental groups of retracts. Because n(S') is infinite cyclic, whereas n(E?) is a
trivial group, it easily follows that S! is not a retract of E? (see the discussion
of retracts in §4). QED.

The proof of this theorem for the case where n > 2 will be given in Chapter
VIIL

§7. The Fundamental Group of a Product Space

In this section, we shall prove that the fundamental group of the product of
two spaces is naturally isomorphic to the direct product of their fundamental
groups; in symbols,

(X x Y) = n(X) x n(Y).

(For a review of the definition of the direct product of groups, see §2 of
Chapter 111.)

Let X, Y, and A be topological spaces. If f: 4 - X x Y is any map, let us
denote the coordinates of f(a) by (f1(a), f>(a)) for any point a e A. Then f;
and f, are maps of 4 into X and Y, respectively, and it is well known f is
continuous ifand only if both f; and f, are continuous. This is a basic property
of the product topology. Thus, a natural one-to-one correspondence exists
between continuous maps f: 4 » X x Y and pairs of continuous maps f; :
A- X, f,: A-> Y If we denote by p: X x Yo X and q: X x Y - Y the
projection of the product space onto its two factors, then f; = pfand f, = qf.

Let us apply these considerations to the case where 4 = I, the unit interval.
We see that there is a natural one-to-one correspondence between paths
f:1 - X x Y in the product space and pairs of paths f, : I - X, f,: I - Yin
the factors. Note that f; = pf and f, = qf as before. This natural correspon-
dence has the following obvious but important properties:

(@) Iff,g:1 > X x Y are paths with the same initial and terminal points, then
S ~gifandonlyif f; ~ g, and f, ~ g, (here g, = pg and g, = qg).

(b) Let f,g:I - X x Y be paths such that the terminal point of f is the initial
point of g, and let h= f-g. Then h, = f,-g, and h, = f,-g,, where
h, = phand h, = gh.

We can summarize these two statements by stating that the natural cor-
respondence f«>(f;, f,) is compatible with the equivalence relation and
product we have defined between paths. We leave the verification of these
statements to the reader.
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Now let us apply these considerations to the study of the fundamental
group of the product space, n(X x Y, (x, y)). Let p,:n(X x Y, (x,y))—
n(X, x) and q,:7n(X x Y, (x,y)) » n(Y, y) denote the homomorphisms in-
duced by the projections p and g. From property (a), we see that the cor-
respondence o — (p, 2, 4, ) establishes a one-to-one correspondence between
the sets n(X x Y,(x, y)) and =(X, x) x =n(Y, y). Moreover, it follows from
property (b) that this correspondence preserves products, i.e., it is an isomor-
phism of groups. We summarize these results as follows:

Theorem 7.1. The fundamental group of the product space, n(X x Y, (x, y)), is
naturally isomorphic to the direct product of fundamental groups, n(X, x) X
7(Y,y). The isomorphism is defined by assigning to any element ae
(X x Y, (x,y)) the ordered pair (p, o, q,u), where p: X x Y > X and q:
X x Y - Y denote the projections of the product space onto its factors.

Obviously, this theorem can be extended to the product of any finite
number of spaces.

EXERCISES

7.1. Describe the structure of the fundamental group of a torus.

7.2. Prove that the subset S' x {x,} is a retract of S' x S, but that it is not a
deformation retract of S! x S! for any point x, € S'.

7.3. Generalize Theorem 7.1 to obtain a description of the fundamental group of the
product of an infinite collection of topological spaces.

74. Leti: X - X x Yandj: Y - X x Y be maps defined by i(x) = (x, y,) and j(y) =
(xg, y), where x5 € X and y, € Y are base points which are chosen once for all.
Prove that the mapping of n(X, x,) x (Y, y,) into n(X x Y, (xq, yo)) defined by
(B,7) = (i,B)- (J,7) is an isomorphism of the first group onto the second. (HINT:
Prove it is the inverse of the isomorphism described in Theorem 7.1.) Deduce as
a corollary that the elements i, and j,y commute, i€, (i, 8)(jo7) = (j 1) (i, B).

7.5. Assume that G is a topological space, u: G x G — G is a continuous map, and
e € G is such that the following conditions hold: For any x € G, u(x, e) = p{e, x) =
x. [An important example: G is a topological group, e is the identity element, and
u(x, y) = the product of x and y for any elements x, ye G.] Leti: G - G x G and
j:G = G x G be defined as in Exercise 7.4: i(x) = (x, €) and j(x) = (e, x) for any
x € G. Prove that, for any elements §, y € n(G, e), p, [(i,8)(j )] = By. [HINT:
Consider first the case where f or y = 1.]. Deduce as a corollary that (G, e) is an
abelian group.

7.6. Let G, e, and u be as in Exercise 7.5. Assume in addition that there exists a
continuous map ¢: G — G such that u(x, ¢(x)) = u(c(x), x) = e for any x € G. [An
important example: G is a topological group and ¢(x) = x"! for any x € G.] Prove
that, for any element B € n(G, e), e,(8) = 7.
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§8. Homotopy Type and Homotopy Equivalence
of Spaces

Before we can prove the next theorem, we need to develop some preliminary
material about the topology of certain subsets of the plane. A topological
space will be called a closed disc if it is homeomorphic to the set

E?={x,y)eR*:x? +y? < 1};
it will be called an open disc if it is homeomorphic to the set
U?={(x,y)eR?:x2 + y2 <1}.

The boundary of a closed disc is the subset that corresponds to the circle S*
under a homeomorphism of the disc onto E?; it can be proved that this subset
is independent of the choice of the homeomorphism (see Exercise 5.5).

We shall now consider some elementary properties of discs.

(a) Any compact, convex subset E of the plane with nonempty interior is a
closed disc.

PrOOF. We can set up a homeomorphism between E and E? as follows.
Choose a point x, belonging to the interior of E. Consider any ray in the plane
starting at the point x,; the intersection of this ray with E must be a closed
interval having x, as one end point. Map this interval linearly onto the unit
interval on the parallel ray through the origin. If we do this for each ray
through x,, we obtain a one-to-one correspondence between the points of E
and E? which can be proved to be continuous in both directions.

(b) Let E, and E, be closed discs with boundaries B, and B,, respectively.
Then, any continuous map f: B, — B, can be extended to a continuous
map F: E, - E,. If f is a homeomorphism, then we can choose F to be a
homeomorphism also.

ProoF. In view of the definition of a closed disc, it suffices to prove this
statement in the case where E, = E, = E? and B, = B, = S'. We leave this
proof to the reader.

(c) Let E, be a closed disc. Let E, denote the quotient space of E; obtained
by identifying a closed segment of the boundary of E, to a point. Then,
this quotient space E, is again a closed disc.

Proor. In view of property (b), it suffices to prove this assertion for the case
of a particular closed disc and a particular segment on the boundary of that
disc. We are at liberty to choose the particular disc and segment in any
convenient way. We choose E, to be the trapezoid ABDE in the xy plane
shown in Figure 2.5, and E, to be the triangle ABC. We shall define a map
S E, - E, such that the segment DE of the boundary of E, is mapped onto
the vertex C of E,, but otherwise f is one-to-one. Then, we shall complete the
proof by showing that E, has the quotient topology determined by /.
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Sy
>

FIGURE 2.5. Proof of Theorem 8.3.

We define f by the condition that, for any point P e E,, the points P,
P’ = f(P)and C = (0, 1) will lie on a straight line, and the y coordinate of P’
will be twice that of P. If (x, y) are the coordinates of P and (x’, y’) are the
coordinates of P’, then we find that

or

“(5-3)
2y’ =2 0<y <l

y=1%y
This first pair of formulas shows that f is continuous, whereas the second pair
of formulas shows that f is one-to-one except on the segment DE; obviously
the segment DE is all mapped into the point C. Because E, is compact and

E, is Hausdorff, f is a closed map, and hence E, has the quotient topology.
Q.E.D.

We are now ready to state and prove a key lemma. Let D denote a closed
disc, let B denote its boundary (which is a circle), and let g: I - B denote a
continuous map which wraps the interval exactly once around the circle; i.e.,
g(0) = g(1) = dy € B, and g maps the open interval (0, 1) homeomorphically
onto B — {d,}. Let X be a topological space.

Lemma 8.1. A continuous map f:B — X can be extended to amap D - X if
and only if the closed loop fg:1 — X is equivalent to the constant loop at the
base point f(d,).
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Proor. First assume that f: B —» X can be extended to a continuous map
F:D - X. Consider the unit square {(x,)) eR?:0<x<1and0<y < 1}.
Define a continuous map 4 of the boundary of this square into B as follows:

hix,0) =g(x), 0sx=<1,
h(x, 1) = h(0, y) = h(1, y) = d,

for x € I or y € I. By property (b), we can extend h to a continuous map H of
the unit square. Then, the existence of the composite map FH proves the loop
Ja is equivalent to the constant path.

Next, assume the loop fy is equivalent to the constant path. By definition,
this means there exists a continuous map G of the unit square into X such that

G(x, 0) = f(g(x))
G(x, 1) = G(0, y) = G(1, y) = f(d,).

Because G maps the top and the two sides of this square into the single point
JS(d,), it is clear that G induces a continuous map of the quotient space of the
square (obtained by identifying the top and two sides of the square to a single
point) into X. By property (c), this quotient space is a closed disc, which we
may take to be D, and the natural map of the boundary of the square onto
the quotient space may be taken to be the map h in Equations (2.8.1). The
induced map of the disc D into X is clearly an extension of f, as desired.

Q.E.D.

(2.8.1)

In applying this lemma, it is convenient to use the following “abuse of
language™ We shall say that the map f: B — X “represents” the equivalence
class of the loop fg.

To state the next theorem, let ¢,, ¢, : X — Y be continuous maps, and let
@:X x I - Y be a homotopy between ¢, and ¢,, i.e., @(x, 0) = @,(x) and
©(x, 1) = ¢,(x). Choose a base point x,e X. Then, ¢, and ¢, induce
homomorphisms

Dox : T[(X’ xO) e T[(K ‘Po(xo)),
@14 - (X, x0) = (Y, @1(x0))-

Let y denote the homotopy class of the path t —» ¢(x,,1),0 < t £ 1,in Y. This
defines an isomorphism u: n(Y, @4(xo)) = n(Y, @,(x,)) by the formula

u(@) =y tay, aen(Y, @o(xo)).
Theorem 8.2. Under the above hypotheses, the following diagram is commutative:

(o)

(X, xo) u

o > n(Y, 94(x0))

This theorem is the natural and full generalization of Theorem 4.1.
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PRroOF. Let a € n(X, x,); we must prove that
@14(@) =77 (@04 0)7-
Choose a closed path f: I —» X representing the path a. Consider the map

g IxI->Y
defined by
g(x, y) = o(f(x), y)

Then, for x, y € I, we have
g(x, 0) = oo (f(x)),
g(x, 1) = ¢,(f(x)),
g(0, y) = g(1, y) = @(x0, ¥).

Hence, the map g of the bottom of the square represents ¢, (x), on the top
of the square it represents ¢,,(x), and on the two sides of the square it
represents y. If we read around the boundary of the square, the map represents
(o, 0)7(@14%) 'y~". Now apply Lemma 8.1 conclude that

(Pox)¥(@142) 'y = L

From this the desired equation follows [multiply on the right by y(¢, ) and
then on the left by y~!]. QE.D.

Definition. Two spaces X and Y are of the same homotopy type if there exist
continuous maps (called homotopy equivalences) f : X — Y,g: Y — X such that
gf ~ identity: X —» X and fg ~ identity: Y - Y.

Obviously, two homeomorphic spaces are of the same homotopy type, but
the converse is not true.

EXERCISES

8.1. Prove that, if A is a deformation retract of X, then the inclusioni: 4 - X is a
homotopy equivalences. (Actually, one of the conditions in the definition of a
deformation retract given in §4 is superfluous here; omission of this condition
leads to the notion of a “deformation retract in the weak sense.” For spaces which
are sufficiently “nice,” it can be proved that the two notions agree.)

Theorem 8.3. If f:X - Y is a homotopy equivalence, then f,:n(X, x)—
7(Y, f(x)) is an isomorphism for any x € X.

ProOF. Because gf ~ identity: X — X, we obtain the following diagram
(which is commutative by Theorem 8.2):

(X, x) —2— a(¥, f(x))
e

(X, gf(x))
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Here u is an isomorphism induced by a certain path from x to gf(x). Therefore,
we conclude f, is a monomorphism and g, is an epimorphism.

If we apply the same argument to the homotopy fg ~ identity: ¥ — Y, we
obtain the following commutative diagram:

(Y, f(x))
9%

(X, gf(x)) — =(Y, faf(x))

Therefore, we conclude g, is a monomorphism. Because g, is both an epimor-
phism and a monomorphism, it is an isomorphism. Because

g*f* =u

and both g, and u are isomorphisms, we conclude that f, is also an
isomorphism. Q.E.D.

This theorem will be used as an aid in the determination of the fundamental
group of certain spaces, and as a method of proving that certain spaces are
not of the same homotopy type (and hence are not homeomorphic).

EXERCISE

8.2. Assume that G, p, and e satisfy the hypotheses of Exercise 7.5. Use Lemma 8.1 to
prove directly that for any elements «, 8 € n(G, e), aBa "' 7! = 1. (HINT: Choose D
to be a square, and choose a map of B into G which represents afa~!87!. Use the
existence of y to define the required extension.) Deduce that (G, ) is abelian.

NOTES

The fundamental group was introduced by the great French mathematician
Henri Poincaré in 1895 (Analysis Situs, J. Ecole Polytechn. 1 (1895), 1-121).
The notation of two spaces being of the same homotopy type was introduced
by Witold Hurewicz in a series of four papers, in 1935-1936, which appeared
in the Proceedings of the Koninklijke Nederlandse Akademie van Wetenschapen.
In these papers, Hurewicz also introduced higher-dimensional analogs of the
fundamental group, called homotopy groups. These ideas of Hurewicz have
played a significant role in algebraic topology since 1935.

The reader who is interested in the proof of existence theorems in analysis
by the use of fixed-point theorems is referred to the following book by Jane
Cronin: Mathematical Surveys No. 11, Fixed Points and Topological Degree
in Nonlinear Analysis, American Mathematical Society, Providence, R.I., 1964.
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CHAPTER III

Free Groups and
Free Products of Groups

§1. Introduction

In the preceding chapters we have introduced the fundamental group of a
space and actually determined its structure in some of the simplest cases. In
more complicated cases we need a larger vocabulary and a greater knowledge
of group theory to describe its structure and actually to make use of its
properties. The object of this chapter is to supply this need. We first discuss
the case of abelian groups because this case is simpler and more closely related
to the student’s previous experience. Then we discuss the general case of not
necessarily abelian groups. Here the results are entirely analogous to the
abelian case, but the possibilities are more varied and less intuitive.

The three main group theoretic concepts introduced in this chapter are the
following: free group, free product of groups, and presentation of a group by
generators and relations. These concepts will be used throughout the next two
chapters. The definition of a free group or a free product of groups involves
a mathematical concept of wide application, the so-called “universal mapping
problem,” which is also a basic concept in Chapter I1V.

§2. The Weak Product of Abelian Groups

We assume the student is familiar with the concept of the direct product of a
finite number of groups,

G=G, x G, x - xG,
The elements of G are ordered n-tuples
g= (gp g2;---» gn)’
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where g; € G; fori = 1, 2, ..., n, with multiplication defined componentwise:

(915925 ---59n)(g1> 92> -5 90) = (9197, 92925 - > Gngn)-

It is easy to extend this definition to the case of an infinite collection of groups
{G;:ieI}. Here I is an index set, which may be countable or uncountable.
The direct product of such a collection is denoted by

I—[ Gio

iel
Its elements are functions g which assign to each index i € I an element g, € G;.

These elements are multiplied componentwise: if g and h are elements of the
direct product, then

(gh) = (9:)(h)

foranyiel.
Let {G;: i € I} be any collection of groups, and let
6=T]G,
iel

be their product.

Definition. The weak product® of the collection {G; : i € I} is the subgroup of
their product G consisting of all elements g € G such that g; is the identity
element of G; for all except a finite number of indices i.

Obviously, if {G;:ie I} is a finite collection of groups, then the product
and weak product are the same.

If G denotes either the product or weak product of the collection {G;: i e I},
then, for each index i € I, there is a natural monomorphism ¢, : G; » G defined
by the following rule: For any element x € G; and any index j € I,

x fj=i
(q’ix)"_{l ifj i

In the case where each G; is an abelian group, the following theorem gives an
important characterization of their weak product G and the monomorphisms

D;-

Theorem 2.1. If {G;:i € I} is a collection of abelian groups and G is their weak
product, then for any abelian group A and any collection of homomorphisms

¥.:G,> A, iel,

! When each group G, is abelian and the group operation is addition, it is customary to call the
weak product the “direct sum.” In this definition, we do not require that any two groups in the
collection {G,} be nonisomorphic. In fact, it may even occur that all of the groups of the collection
are isomorphic to some given group.
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there exists a unique homomorphism f:G — A such that for any iel the
Jollowing diagram is commutative:

ProoOF. Given the y;’s, define f by the following rule: For any x € G, f(x) will
be the product of the elements y,(x;) for all i € I. Because x; = 1 for all except
a finite number of indices i, this product is really a finite product; and because
all the groups involved are abelian, the order of multiplication is immaterial.
Thus, f(x) is well defined, and it is readily verified that f is a homomorphism,
which renders the given diagram commutative. It is easy to see that f is the
unique homomorphism having this property. Q.E.D.

Our next proposition states that this theorem actually characterizes the
weak product of abelian groups.

Proposition 2.2. Let {G;}, G, and ¢,: G; — G be as in Theorem 2.1; let G’ be any
abelian group and let @;: G, —» G’ be any collection of homomorphisms such that
the conclusion of Theorem 2.1 holds with G’ and ¢} substituted for G and ¢;,
respectively. Then, there exists a unique isomorphism h: G — G’ such that the
Jollowing diagram is commutative for any ie I:

Proor. The existence of a homomorphism h: G - G’ making the required
diagram commutative is assured by Theorem 2.1. Because Theorem 2.1 also
applies to G’ and the @] (by hypothesis), there exists a unique homomorphism
k: G’ - G such that the following diagram is commutative for any index i e I':

G/

From these facts, we readily conclude that the following two diagrams are
commutative for any i e I:
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G; lhk
Ty T~

However, these two diagrams would also be commutative if we replaced kh
by the identity map G — G in the first, and hk by the identity map G’ —» G’ in
the second. We now invoke the uniqueness statement in the conclusion of
Theorem 2.1 to conclude that kk and hk are both identity maps. Hence, h and
k are inverse isomorphisms of each other. QE.D.

The student should reflect on the significance of the characterization of the
weak product given by Theorem 2.1. We may consider any other abelian
group A with definite homomorphisms ; : G, - A as a candidate for some
kind of a “product” of the abelian groups G;; then this theorem asserts that
the weak product G is the “freest” among all such candidates in the sense that
there exists a homomorphism of G into 4 commuting with ¢; and ¥, for all i.
Here we use the word “freest” in the sense of “fewest possible relations
imposed,” and the general philosophy is that if certain relations hold for the
group G, they also hold for any homomorphic image of G; of course, additional
relations may hold for the homomorphic image. This same philosophy also
holds for other kinds of algebraic objects, such as rings, etc.

As we shall see, the argument used to prove Proposition 2.2 applies almost
verbatim to many other cases.

Since the weak product G of a collection {G;} of abelian groups is com-
pletely characterized by the properties of the monomorphisms ¢;: G, » G
stated in Theorem 2.1, we could just as well ignore the fact that G is a subgroup
of the product

I16G:

iel
and focus our attention instead on the group G and the homomorphisms ¢;.
Furthermore, because each ¢; is a monomorphism, we can identify G; with its
image in G under ¢;, and consider ¢, as an inclusion map, if this is convenient.
In this case, we say that G is the weak product of the subgroups G, it being
understood that each ¢; is an inclusion map.

§3. Free Abelian Groups

We recall that, if S is a subset of a group G, then S is said to generate G in
case every element of G can be written as a product of positive and negative
powers of elements of S. (An equivalent condition is the following: S is not
contained in any proper subgroup of G.) For example, if G is a cyclic group
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of order n,
G={xx%x3..,x"=1}

then the set S = {x} generates G.
If the set S generates the group G, certain products of elements of S may
be the identity element of G. For example,

(@ IfxeS, then xx™!' =1,
(b) If G is a cyclic group of order n generated by {x}, then x" = 1.

Any such product of elements of S that is equal to the identity is often called
a relation between the elements of the generating set S. Roughly speaking, we
may distinguish between two types of relations between generators: trivial
relations, as in Example (a), which are a direct consequence of the axioms for
a group and thus hold no matter what the choice of G and S, and nontrivial
relations, such as Example (b), which are not a consequence of the axioms for
a group, but depend on the particular choice of G and S.

These notions lead naturally to the following definition: Let S be a set of
generators for the group G. We say that G is freely generated by S or a free
group on § in case there are no nontrivial relations between the elements of
S. For example, if G is an infinite cyclic group consisting of all positive and
negative powers of the element x, then G is a free group on the set S = {x}.

These notions also lead to the idea that we can completely prescribe a group
by listing the elements of a generating set S and listing the nontrivial relations
between them.

The ideas described in the preceding paragraphs have been current among
group theorists for a long time. Unfortunately, when stated as above, these
ideas are lacking in mathematical precision. For example, what precisely is a
nontrivial relation? It cannot be an element of G, because considered as
elements of G, all relations give the identity. Also, under what conditions are
two relations to be considered the same? For example, in a cyclic group of
order n, are the relations

x"=1,
xn+1x—l — 1
to be considered the same or different?

We should emphasize that it was not an easy matter for mathematicians
to find an entirely satisfactory and precise way of treating these questions.
Fortunately, such a treatment has been found in recent years. This treatment
has the advantage that it applies not only to groups, but also to other algebraic
structures such as rings, and even to many situations in other branches of
mathematics. As so often happens in mathematics, the method of definition
finally chosen seems rather roundabout and nonobvious.? This method of
definition depends on the following rather simple observations:

2 An analogous situation occurs in the problem of precisely defining limits in the calculus. The
& — J technique which is standard today seems rather far removed from our intuitive notion of
a variable quantiy approaching a limit,
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(1) Let S be a set of generators for G, and let f : G —» G’ be an epimorphism,;
i.e., G’ is a homomorphic image of G. Then, the set f(S) is a set of generators
for G’. Moreover, any relation which holds between the elements of S also holds
between the elements of f(S). Thus, the group G’ satisfies at least as many
relations as or more relations than G.

(2) Let S be a set of generators for G, and let f: G —» G’ be an arbitrary
homomorphism. Then, f is completely determined by its restriction to the set
S. However, we do not assert that any map g:S — G’ can be extended to a
homomorphism f: G —» G’ (the student should give a counterexample). The
intuitive reason for this is clear: Given amap g : § — G’ there may be nontrivial
relations between the elements of S which do not hold between the elements
of g(S).

We shall now give a precise definition of a free abelian group on a given
set S; in §5 we shall discuss the case of general (i.e., not necessarily abelian)
groups. The case of abelian groups is discussed first because it is simpler.

Definition. Let S be an arbitrary set. A free abelian group on the set S is an
abelian group F together with a function ¢ : S — F such that the following
condition holds: For any abelian group 4 and any function ¢ : § — A, there
exists a unique homomorphism f: F — A4 such that the following diagram is
commutative:

First, we show that this definition does indeed characterize free abelian
groups on a given set S.

Proposition 3.1. Let F and F' be free abelian groups on the set S with respect
to the functions ¢:S — F and ¢':S — F', respectively. Then, there exists a
unique isomorphism h . F — F’ such that the following diagram is commutative:

F/

Proor. The proofis completely analogous to that of Proposition 2.2, and may
be left to the reader.

Let us emphasize that all we have done so far is make a definition; given
the set S, it is not at all clear that there exists a free abelian group F on the
set S. Moreover, even if F exists, it is conceivable that the map ¢ need not be
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one-to-one, or that F may not be generated by the subset ¢(S) in the sense of
the definition at the beginning of this section. We shall clarify all these points
by actually proving the existence of F and elucidating its structure completely.

EXERCISES

3.1. Prove directly from the definition that ¢(S) genertes F. [HINT: Assume not;
consider the subgroup F’ generated by ¢(S).]

As a first step, we consider the following situation. Assume that {S;:i e I}
is a family of nonempty subsets of S, which are pairwise disjoint and such that
S = U Sl"

iel
For each index i € I, let F,; be a free abelian group on the set S, with respect
to a function @, : §; — F;. Let F denote the weak product of the groups F, for
alli e I, andlet 5, : F; - F denote the natural monomorphism. Since the S; are
pairwise disjoint, we can define a function ¢ : S — F by the rule

®lS; = ne;

Proposition 3.2. Under the above hypotheses, F is a free abelian group on the
set S with respect to the function ¢ : S — F.

Roughly speaking, this proposition means that the weak product of any
collection of free abelian groups is a free abelian group.

Proor. Let A be an abelian group and let  : S — A4 be a function. We have
to prove the existence of a unique homomorphism f: F - 4such thaty = fo.
For each index i, let y;: S; - A denote the restriction of Y to the subset ;.
Because F; is a free abelian group on the set S;, there exists a unique homomor-
phism f;: F; » A such that the following diagram is commutative:

S, 1 f (33.1)

We now invoke the fundamental property of the weak product of groups
contained in Theorem 2.1 to conclude that there exists a unique homo-
morphism f: F — A such that the following diagram is commutative for any
index i:

(332
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We can put these two commutative diagrams together into a single diagram
as follows:

b lﬁ / ; (3.33)

Because ¢|S; = n,¢;, we conclude that the following diagram is commutative
for each index i.
@S

S; — F
w\ /f. 3.34)
A

Finally, because y, = y/|S; for each i and S = | J S;, we conclude that y = fo,
as required.

To prove uniqueness, let f be any homomorphism F — A having the
required property. Define f;: F; » Aby f; = fn;. With this definition, it follows
that diagram (3.3.1) is commutative for each index i; for,

Jiei = fmioi = flo|S) = WISy
= '»bi-

Because F, is the free abelian group on §; (with respect to ¢,), it follows that
each f; is unique. Then because (3.3.2) is commutative for each i, and F is the
weak product of the F;, it follows that f is unique. QE.D.

We now apply this theorem as follows: Suppose that
S={x;:iel}.

For each index i, let S; denote the subset {x;} having only one element, and
let F; be an infinite cyclic group consisting of all positive and negative powers
of the element x;:

Fi={x:neZ}.

Let ¢, : S; —> F; denote the inclusion map, i.e., ¢,(x;) = x!. It is clear that F; is
a free abelian group on the set S;. Therefore, all the hypotheses of Proposition
3.2 are satisfied. Thus, we conclude that a free abelian group on any set S is
a weak product of a collection of infinite cyclic groups, with the cardinal
number of the collection equal to that of S.

Because F is the weak product of the F;, any element g € F is of the
following form: For any index i, the ith component g; = x;* where each n, € Z
and n; = 0 for all but a finite number of indices i. Moreover, the function ¢ is
defined by the following rule: For any index j € I,
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L oies

x; fi=j

X:). = . .

(o) {x}’ ifi #j.

From this formula, it is clear that ¢ is a one-to-one map.

As ¢ is a one-to-one map, if we wish, we can identify each x; € S with its
image ¢(x;) € F. Then S becomes a subset of F, and it is clear that we can
express each element g # 1 of F uniquely in the following form:

— LT IR U
g= xil xi2 xik,

(33.5)

where the indices i,, i,, ..., i are all distinct, and n, n,, ..., n, are nonzero
integers. This expression for the element g is unique except for the order of
the factors. Moreover, each such product of the x;s represents a unique
element g # 1 of F. From this it is clear that F is generated by the subset
S = ¢(S).

This identification of S and ¢(S) is quite customary in the discussion of free
abelian groups. When this is done, ¢ : S —» F becomes an inclusion map, and
often it is not even mentioned in the discussion.

An alternative approach to the topic of free abelian groups would be to
define an abelian group F to be free on the subset {x;:ie I} = F if every
element g # 1 of F admits an expression of the form (3.3.5), which is unique
up to order of the factors. Actually, this procedure would be somewhat quicker
and easier than the one we have chosen. However, it would suffer from the
disadvantage that it could not be generalized to non-abelian groups and other
situations which will actually be our main concern.

One reason for the importance of free abelian groups is the following
proposition.

Proposition 3.3. Any abelian group is the homomorphic image of a free abelian
group; i.e., given any abelian group A, there exists a free abelian group F and
an epimorphism f : F — A.

Proor. The proof is very simple. Let S A be a set of generators for 4 (e.g.,
we could take S = A), and let F be a free group on the set S with respect to a
function ¢ : S —» F. Let ¢: S — A denote the inclusion map. By definition,
there exists a homomorphism f: F — A such that fp = . It is clear that f
must be an epimorphism, since S was chosen to be a set of generators for A.

QED.

This proposition enables us to attach a precise meaning to the notion
“nontrivial relation between the generators S,” mentioned earlier. Let A4, S, F,
and f have the meaning just described; then we define any element r # 1 of
kernel f to be a nontrivial relation between the set of generators S. If {r; : i e I}
is any collection of such relations, and r is an element of the subgroup of F
generated by the r;’s, then the relation r is said to be a consequence of the
relations r;. This implies that r can be expressed as a product of the r;’s and
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their inverses. If the collection {r;:i € I} generates the kernel of f, then the
group A is completely determined up to isomorphism by the set of generators
S and the set of relations {r;:i € I'}; A is isomorphic to the quotient group of
F modulo the subgroup generated by the r/s.

It is clear that, if S and S’ are sets having the same cardinal number, and
F and F’ are free abelian groups on S and §', respectively, then F and F’ are
isomorphic. We shall now show that the converse of this statement is true, at
least for the case of finite sets. For this purpose, we make the following
definition. If G is any group, and n is any positive integer, then G” denotes the
subgroup of G generated by the set

{g":9€G}.

If the group G is abelian, then the set {g":g € G} is actually already a
subgroup.

Lemma 3.4. Let F be a free abelian group on a set consisting of k elements.
Then, the quotient group F/F" is a finite group of order n*.

Proor. We leave the proof to the reader; it is not difficult if one makes use of
the explicit structure of free abelian groups described above.

Corollary 3.5. Let S and S’ be finite sets whose cardinals are not equal, and let
F and F' be free abelian groups on S and §', respectively. Then, F and F' are
nonisomorphic.

Proor. The proof is by contradiction. Any isomorphism between F and F’
would induce an isomorphism between the quotient groups F/F" and F'/F",
which is impossible by the lemma.

EXERCISES

3.2, Prove that the statement of this corollary is still true if S is a finite set and §’ is
an infinite set.

Let F be a free abelian group on a set S. The cardinal number of the set S
is called the rank of F. We have proved that two free abelian groups are
isomorphic if and only if they have the same rank, at least in the case where
onc of them has finite rank.

We shall conclude this section on abelian groups with a brief discussion of
the structure of finitely generated abelian groups. Let A be an abelian group;
the set of all elements of A which have finite order is readily seen to be a
subgroup, called the torsion subgroup of A. When the torsion subgroup
consists of the element 1 alone, A is called a torsion-free abelian group. On
the other hand, if every element of A has finite order, then A is called a torsion
group. If we denote the torsion subgroup by T, then the quotient group A/T
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is obviously torsion free. It is clear that, if A and A’ are isomorphic, then so
are their torsion subgroups, T and T", and their torsion-free quotient groups,
A/T and A'/T'. However, the converse is not true in general; we cannot
conclude that A is isomorphic to A'if T ~ T' and 4/T ~ A'/T". However, for
abelian groups which are generated by a finite subset we have the following
theorem which describes their structure completely:

Theorem 3.6. (a) Let A be a finitely generated abelian group and let T be its
torsion subgroup. Then, T and A/T are also finitely generated, and A is isomor-
phic to the direct product T x A/T. Hence, the structure of A is completely
determined by its torsion subgroup T and its torsion-free quotient group A/T.
(b) Every finitely generated torsion-free abelian group is a free abelian group
of finite rank. (c) Every finitely generated torsion abelian group T is isomorphic
toaproduct C, x C, x --- x C,, where each C,is a finite cyclic group of order
g; such that ¢; is a divisor of ¢, fori=1,2,...,n — 1. Moreover, the integers
&15€z,...,&, are uniquely determined by the torsion group T and they completely
determine its structure.

The numbers ¢, ..., &, are called the torsion coefficients of T, or more
generally, if T is the torsion subgroup of A, they are caled the torsion coeffi-
cients of A. Similarly, the rank of the free group A/T is called the rank of A.
With this terminology, we can summarize Theorem 3.6 by stating that the
rank and torsion coefficients are a complete set of invariants of a finitely
generated abelian group. Theorem 3.6 asserts that every finitely generated
abelian group is a direct product of cyclic groups, but it also asserts much
more. Note that a finitely generated torsion group is actually of finite order.

A word of explanation about the various isomorphisms mentioned in
Theorem 3.6 seems in order here. These isomorphisms are not natural, or
uniquely determined in any way. In each case, there are usually many different
choices for the isomorphism in question and one choice is as good as another.

Theorem 3.7. Let F be a free abelian group on a set S, and let F' be a subgroup
of F. Then, F' is a free abelian group on a certain set S', and the cardinal of S’
is less than or equal to that of S.

Although the proofs of Theorems 3.6 and 3.7 are not difficult, we shall not
give them here, because they properly belong in the study of linear algebra
and modules over a principal ideal domain.

EXERCISES

3.3. Give an example of a torsion-free abelian group which is not free.

34. Let A be an abelian group which is a direct product of two cyclic groups of orders
12 and 18, respectively. What are the torsion coefficients of A? (Note that the
torsion coefficients are required to satisfy a divisibility condition.)
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3.5. Give an example to show that in Theorem 3.7 the subset § < F and the subgroup
F’ < F may be disjoint, even in the case where the cardinals of S and § are equal.

§4. Free Products of Groups

The free product of a collection of groups is the exact analog for arbitrary (i.e.,
not necessarily abelian) groups of the weak product for abelian groups. (It
should be emphasized that any groups considered in this section may be either
abelian or non-abelian, unless the contrary is explicitly stated.)

Definition. Let {G,: i € I} be a collection of groups, and assume there is given
for each index i a homomorphism ¢, of G; into a fixed group G. We say that
G is the free product or coproduct of the groups G, (with respect to the
homomorphisms ;) if and only if the following condition holds: For any
group H and any homomorphisms

¥,:G,>H, iel,

there exists a unique homomorphism f: G —» H such that for any i € I, the
following diagram is commutative:

First, we have the following uniqueness proposition about free products:

Proposition 4.1. Assume that G and G’ are free products of a collection
{G;:ie I} of groups (with respect to homomorphisms ¢,:G,— G and ¢;:
G;— @', respectively). Then, there exists a unique isomorphism h: G — G’ such
that the following diagram is commutative for any i€ I

ol

ProoF. The proof is almost word for word that of Proposition 2.2.

Although we have defined free products of groups and proved their unique-
ness, it still remains to prove that they always exist. We shall also show that
each of the homomorphisms ¢, occurring in the definition is a monomorphism,
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that the free product is generated by the union of the images ¢,(G;), and get
more detailed insight into the algebraic structure of a free product.

Theorem 4.2. Given any collection {G;:ie€ I} of groups, their free product
exists.

ProOF. We define a word in the G;’s to be a finite sequence (x,, x5, ..., X,)
where each x, belongs to one of the groups G,, any two successive terms in the
sequence belong to different groups, and no term is the identity element of any
G,. The integer n is the length of the word. We also include the empty word,
i.e., the unique word of length 0. Let W denote the set of all such words.

For each index i, we now define left operations of the group G; on the
set W (see Appendix B). Let g € G; and (x4, ..., x,) € W; we must define
glxy, ..., Xp)-

Case 1: x, ¢ G;. Then, if g # 1,

g(xl’ ""xn) = (g’xl’“';xn)'

We shall also define the action of g on the empty word by a similar formula,
1e,g( )=1(g). Ifg = 1, then,

G(X g5 eees Xp) = (X155 Xp)-
Case 2: x, € G;. Then,

{(gxl, Xy ..o, X,) ifgx, #1
’xn)’:

g1 - (X3, .05 X,) ifgx, = 1.

[When gx, = 1 and n = 1, it is understood, of course, that g(x, ) is the empty,
word.]

We must now verify that the requirements for left operations of G; on W
are actually satisfied; i.e., for any word w,

lw=w,

(99')w = g(g'w).
This verification is a trivial checking of various cases.

It is clear that each of the groups G; acts effectively. Thus, each element g
of G; may be considered as a permutation of the set W, and G; may be
considered as a subgroup of the group of all permutations of W (see Appendix
B). Let G denote the subgroup of the group of all permutations of W which
is generated by the union of the G;’s. Then, G contains each G; as a subgroup;
we let

¢i:G;>G

denote the inclusion map.

Any element of G may be expressed as a finite product of elements from
the various G;’s. If two consecutive factors in this product come from the same
G,, it is clear that they may be replaced by a single factor. Thus, any element
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g # 1 of G may be expressed as a finite product of elements from the G;’s in
reduced form, i.e., sO no two consecutive factors belong to the same group,
and so no factor is the identity element. We now assert that the expression of
any element g # 1 of g in reduced form is unique: If

9=6192"" Gm = hihyh,

with both products in reduced form, thenm =nand g; = h;for1 <i < m.To
see this, consider the effect of the permutations ¢, g, g,, and h h,---h, on
the empty word; the results are the words (g,, g5, ..., g,) and (hy, by, ..., h,),
respectively. Because these two words must be equal, the conclusion follows.

It is clear how to form the inverse of an element of G written in reduced
form, and how to form the product of two such elements.

It is now an easy matter to verify that G is actually the free product of the
G/s with respect to the ¢;’s. For, let H be any groupand let ;: G, > H, ie I,
be any collection of homomorphisms. Define a function f: G —» H as follows.
Express any given g # 1 in reduced form,

9=9192" 9m G€G, 1=Sk=m,
and then set

Sflg) = (%,gl)(%zgz)' : '('ﬂi,,,gm)

We also set f(1) = 1, of course. It is clear that f is a homomorphism, and that
Jf makes the required diagrams commutative. It is also clear that f is the only
homomorphism that makes these diagrams commutative. QE.D.

Because the homomorphisms ¢, : G; — G are monomorphisms, it is cus-
tomary to identify each group G; with its image under ¢;, and to regard it as
a subgroup of the free product G. Then, ¢; becomes an inclusion map, and it
is not usually necessary to mention it explicitly.

The two most important facts to remember from the proof of Theorem 4.2
are the following:

(a) Any element g # 1 of the free product can be expressed uniquely as a
product in reduced form of elements from the groups G,.

(b) The rules for multiplying two such products in reduced form (or for
forming their inverses) are the obvious and natural ones.

These facts give one great insight into the structure of a free product of
groups.

Examples

4.1. Let G, and G, be cyclic groups of order 2, G, = {1, x,} and G, =
{1, x,}. Then, any element g # 1 of their free product can be written uniquely
as a product of x, and x,, with the factors x, and x, alternating. For example,
the following are such elements:

X1, X1 X2, X1 XX 1, X1X2X1 X3, €IC,,
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or
Xgs X3X1, X3X1Xg, X3X1X,Xy, €tC.

Note that the elements x, x, and x,x, are both of infinite order, and they are
different. Note also the great difference between the direct product or weak
product of G, and G, and their free product in this case. The direct product
is an abelian group of order 4, whereas the free product is a non-abelian group
with elements of infinite order.

Notation: We denote the free product of groups G,, G,,...,G, by G, *G, % *
G, or
IT* G.

1=i=n

The free product of the family of groups {G;:i e I} is denoted by

I]* G..

iel
EXERCISES

4.1. Let {G;:i €I} be a collection containing more than one group, each of which
has more than one element. Prove that their free product is non-abelian, contains
elements of infinite order, and that its center consists of the identity element
alone.

4.2. For each index i, let G} be a subgroup of G; (proper or improper). Prove that the
free product of the collection {G}:i € I} may be considered as a subgroup of the
free product of the G,.

4.3. Let {G;:ie I} and {G]:i€ I} be two families of groups indexed by the same set
I. Assume that for each index i € I there is given a homomorphism f;: G; - G;.
Prove that there exists a unique homomorphism f: G — G’ of the free product
of the first family of groups into the free product of the second family such that
the following diagram is commutative for each index i

@

GG — G
Tt
G — G

i
@i

Show that if each f; is a monomorphism (respectively, epimorphism), then fis a
monomorphism (respectively, epimorphism).

4.4. Prove that if an element x of the free product G » H has finite order, then x is an
element of G or H, or is conjugate to an element of G or H. (HINT: Express x as
a word in reduced form; then make the proof by induction on the length of the
word.) Deduce that if G and H are cyclic groups of orders m and n, respectively,
where m > 1 and n > 1, then the maximum order of any element of G H is
max(m, n).
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4.5.

4.6.

4.7.

48.

49.

4.10.

§5.

Let {G;: ie I} be a collection of abelian groups, and let G be their free product
with respect to homomorphisms ¢; : G, - G. Let G’ = G/[G, G] be the quotient
of G by its commutator® subgroup and let ¢;: G; » G’ be the composition of ¢;
with the natural homomorphism G — G'. Prove that G’ is a weak product of the
groups {G,} with respect to the homomorphisms ¢; (ie., the conclusion of
Proposition 2.1 holds).

Let G, H, G, and H’ be cyclic groups of orders m, n, m’, and n’, respectively. If
G » H is isomorphicto G’ + H',thenm = m’andn = n’orelsem = n’and n = m’.
(HINT: Apply Exercise 4.5 to G » Hand G’ » H'; thus we see that, if we “abelianize”
G » H and G’ » H', we obtain finite abelian groups of orders mn and m’n’, respec-
tively. Now apply Exercise 4.4.)

Let H and H' be conjugate subgroups of G. Prove that if f is any homomorphism
of G into some other group such that f(H) = 1, then f(H’) = 1 also.

Let G be the free product of the family of groups {G;: i e I'}, where it is assumed
that G, # {1} for any index i. Prove that, for any two distinct indices i and i’ € I,
the subgroups G; and G, of G are not conjugate. (HINT: Apply Exercise 4.7. Use
Exercise 4.3 to construct a homomorphism f of G into another free product with
the required properties.)

Let G = G, » G,, and let N be the least normal subgroup of G which contains
G,. Prove that G/N is isomorphic to G,. (HINT: Use Exercise 4.3. Let G} = {1},

% = G, f1 : G| = G be the trivial homomorphism, and let f, : G, — G} be the
identity map. Prove that N is the kernel of the induced homomorphism
f:G->G)

Let G admit two different decompositions as a free product:
G= Go:u(l_[* Gi) = HO-<]'[* Hi)
iel iel

with the same index set I. Assume that, for each index ie I, G; and H; are
conjugate subgroups of G. Prove that G, and H, are isomorphic. (HINT: The
method of proof is similar to that of Exercise 4.9.)

Free Groups

As the reader may have guessed, the definition of a free group is entirely
analogous to that of a free abelian group.

Definition. Let S be an arbitrary set. A free group on the set S (or a free group
generated by S) is a group F together with a function ¢ : S — F such that the
following condition holds: For any group H and any function ¥ : S - H, there
exists a unique homomorphism f: F — H such that the following diagram is

3 This terminology and notation is explained in the following section just before the statement
of Proposition 5.3.
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commutative:

Exactly as in the previous cases we have encountered, this definition
completely characterizes a free group. To be precise:

Proposition 5.1. Let F and F' be free groups on the set S with respect to
Junctions @ :S— F and ¢': S > F', respectively. Then, there exists a unique
isomorphism h: F — F' such that the following diagram is commutative:

It still remains to prove that, given any set S, there exists a free group on
the set S, and to establish its principal properties. We shall do this by exactly
the same method as that used for the case of free abelian groups.

Assume, then, that

S={ S,

iel
where the subsets S; are disjoint and nonempty. For each index i, let F, be a
free group on the set S; with respect to a function ¢, : S; - F;. Let F denote
the free product of the groups F; with respect to homomorphisms #,: F, > F
(recall that we have proved that each #; is actually a monomorphism!). Because
the subsets S; are pairwise disjoint, we can define a function ¢ : S — F by the
rule

@18 = n0;.

Proposition 5.2. Under the above hypotheses, F is the free group on the set S
with respect to the function ¢ : S — F.

The proof of this proposition is the same as that of Proposition 3.2 except
for obvious modifications. Hence, it is not necessary to go through these
details again. This proposition may be restated as follows: The free product
of any collection of free groups is a free group.

We shall now apply this proposition to prove the existence of free groups
exactly as we applied Proposition 3.2 to prove the existence of free abelian
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groups. The details are as follows: Let S = {x;: i € I} be an arbitrary nonempty
set, and, for each index i, let S; = {x;}. Let f; denote an infinite cyclic group
generated by x;,

Fo={x!:nel},

and let ¢ : S; = F; denote the inclusion map. Then, F; is readily seen to be a
free group on the set S; with respect to the map ¢; (as we shall see later, this
case, where S has only one element, is the only one where the free group on a
set S and the free abelian group on S are the same). The hypotheses of
Proposition 5.2 are all satisfied; we conclude that F is a free group on the set
S with respect to the functon ¢ : § — F. Note that F is a free product of infinite
cyclic groups. From what we have learned about free products, we see that
every element g # 1 of the free group F can be expressed uniquely in the form

g= x'l"xgz"'x,:'“,

where x,, x,, ..., x, are elements of S such that any two successive elements are
different, and n,, n,, ..., n, are nonzero integers, positive or negative. Such an
expression for g is called a reduced word in the elements of S. To avoid
exceptions, we say that the identity 1 is represented by the empty word. The
rules for forming inverses and products of reduced words are the obvious ones.

From these facts, it is clear that the function ¢ : S — F is one-to-one, and
that F is actually generated by the subset ¢(S) in the sense defined earlier.

In many cases it is convenient to take S to be a subset of F and ¢ to be the
inclusion map. If this is the case, we may as well omit any mention of ¢.

EXERCISES

5.1. Prove that a free group on a nonempty set S is abelian if and only if S has exactly
one element.

5.2, Prove that the center of a free group on a set having more than one element
consists of the identity element alone.

5.3. Let g and h be two elements of a free group on a set S having more than one
element. Give a necessary and sufficient condition for g and h to be conjugate in
terms of their expressions as reduced words. (HINT: Consider cyclic permutations
of the factors of a reduced word.)

We shall conclude this section by considering the relation between free
groups and free abelian groups. Recall that, if x and y are any two elements
of a group G, the notation [x, y] denotes the element xyx 'y~! € G, and it is
called the commutator of x and y (in the given order). The notation [G, G]
denotes the subgroup of G generated by all commutators; it is called the
commutator subgroup and is readily verified to be a normal subgroup. The
quotient group G/[G, G] is abelian. Conversely, if N is any normal subgroup
of G such that G/N is abelian, then N = [G, G].
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Proposition 5.3. Let F be a free group on the set S with respect to a function
©:S— F,and let n: F - F/[F, F] denote the natural projection of F onto the
quotient group. Then, F/[F, F] is a free abelian group on S with respect to the
Sunction ne : S — F/[F, F].

The proof is a nice exercise in the use of the definitions and the facts stated
in the preceding paragraph.

Corollary 5.4. If F and F’ are free groups on finite sets S and S', then F and F'
are isomorphic if and only if S and S’ have the same cardinal number.

PROOF. Any isomorphism of F onto F’ would induce an isomorphism of the
quotient groups, F/[F, F] and F'/[F', F']. We now reach a contradiction by
using the preceding proposition and Corollary 3.5. This proves the “only if”
part of the corollary. The proof of the “if” part is trivial.

EXERCISES
5.4. Prove that this corollary is still true if S is a finite set and S is an arbitrary set.

If F is a free group on a set S, the cardinal number of S is called the rank
of F. Corollary 5.4 shows that the rank is an invariant of the group at least in
the case of free groups of finite rank. It can also be proved that the rank of a
free group is an invariant even in the case where it is an infinite cardinal. The
proof is more of an exercise in the arithmetic of cardinal numbers than in
group theory, and we shall not give it here.

If F is a free group on the set S with respect to the function ¢ :S - F,
because ¢ is one-to-one it is usually convenient to consider S as a subset of
F and ¢ as an inclusion map, as we mentioned above. With this convention,
S is called a basis for F. In other words, a basis for F is any subset S of F such
that F is a free group on S with respect to the inclusion map S — F. A free
group has many different bases.

§6. The Presentation of Groups by
Generators and Relations

We begin with a result that is the analog for arbitrary groups of Proposition
33.

Proposition 6.1. Any group is the homomorphic image of a free group. To be
precise, if S is any set of generators for the group G, and F is a free group on
S, then the inclusion map S — G determines a unique epimorphism of F onto G.
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The proof is the same as that of Proposition 3.3. This proposition enables
us to give a mathematically precise meaning to the term “nontrivial relation
between generators” by a method analogous to that used in the case of abelian
groups. There is one slight difference between the abelian case and the present
case because, in the case of abelian groups, any subgroup can be the kernel
of a homomorphism, whereas in the case of non-abelian groups, only a normal
subgroup can be a kernel. For this reason we shall give a complete discussion
of this case.

Let S be a set of generators for the group G let F be a free group on the set
S with respect to amap ¢ : S — F, let ¢ : S — G be the inclusion map, and let
f: F — G be the unique homomorphism such that fo = . Any element r # 1
of the kernel of F is (by definition) a relation between the generators of S for
the group G. In view of what we have proved, r can be expressed uniquely as
a reduced word in the elements of S. Because every element of S is also an
element of G, this reduced word can also be considered as a product in G;
however, in G, this product reduces to theidentity element. Thus, by this device
of introducing the free group F on the set S, we have given the relation r a
“place to live,” to use a figure of speech. If {r;} is any collection of relations,
then any other relation r is said to be a consequence of the relations r; if and
only if r is contained in the least normal subgroup of F which contains the
relation r;. In the case where every relation is a consequence of the set of
relations {r,}, the kernel of f is completely determined by the set {r;}; it is the
intersection of all normal subgroups of F which contain the set {r;}. In this
case, the group G is completely determined up to isomorphism by the set of
generators S and the set of relations {r;}, because it is isomorphic to the
quotient of F modulo the least normal subgroup containing the set {r;}. Such
a set of relations is called a complete set of relations.

Definition. A presentation of a group G is a pair (S, {r;}) consisting of a set of
generators for G and a complete set of relations between these generators. The
presentation is said to be finite in case both S and {r;} are finite sets, and the
group G is said to be finitely presented in case it has at least one finite
presentation.

Let us emphasize that any group admits many different presentations,
which may look quite different. Conversely, given two presentations (S, {r;})
and (8, {r;}), it is often nearly impossible to determine whether or not the two
groups thus defined are isomorphic.

Examples

6.1. A cyclic group of order n admits a presentation with one generator x
and one relation x".

6.2. We shall prove later that the fundamental group of the Klein bottle
admits the following two different presentations (among others):
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(a) Two generators a and b and one relation baba™.

(b) Two generators a and ¢ and one relation a®c2.

The relationship between the two presentations in this case is fairly simple:
¢ = ba ! or b = ca. To be precise, let F(a, b) and F(a, c) denote free groups on
the sets {a, b} and {a, c}, respectively. Define homomorphisms f: F(a, b) >
F(a, c)and g: F(a, ¢) > F(a, b) by the following conditions:

flay=a,  f(b)=ca,
g@=a,  g(c)=ba'.

It follows directly from the definition of a free group that these equations
define unique homomorphisms. We compute that

glf@1=a,  gLf(b)]=0b,
flg@l=a, flg(d)]=c.

Therefore, gf is the identity map of F(a, b), and fg is the identity map of F(a, c).
Hence, f and g are isomorphisms which are the inverse of eac other. Next, we
check that

a*c? = ¢ '[ f(baba ')]c,
baba™! = (ba *)[g(a®c®)](ba™ 1)L

Therefore, the normal subgroup of F(a, b), generated by baba™*, and the
normal subgroup of F(a, c), generated by a*c?, correspond under the isomor-
phisms f and g. Hence, f and g induce isomorphisms of the corresponding
quotient groups.

Note that the essence of the above argument is contained in the following
two simple calculations:

(@) If b = ca, then baba™! = ca®c and a*c* = ¢ '[baba™']c.
(b) If ¢ = ba™!, then a’c? = a?ba 'ba™! and baba™! = (ba™*)(a*c?)(ba~')™".

6.3. Consider the following two group presentations:

(a) Two generators a and b and one relation a*b~2.
(b) Two generators x and y and one relation xyxy *x~'y™1,

We assert that these are presentations of isomorphic groups. The relationship
between the two different pairs of generators is given by the following system
of equations:

a=xy, b = xyx,

x=a'b, y=bla%
We leave it to the reader to work out the details. We shall see in Section IV.6

that this is a presentation of the fundamental group of the complement of a
certain knotted circle in Euclidean 3-space.
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In dealing with groups presented by means of generators and relations, it
is often convenient to take a more informal approach. To illustrate what we
mean, consider the first presentation in Example 6.3. The group G under
consideration is the quotient of a free group F on two generators a and b by
the least normal subgroup containing the element a*b~2. Let us denote the
image of the generators a and b in the group G by the same symbols. Then,
a*h~2 = 1in G, or a®> = b2 When computing with elements of G (which are
products of powers of a and b) we can use the equation a® = b? in whatever
way is convenient.

EXERCISES

6.1. Suppose we are given presentations of two groups G, and G, by means of
generators and relations. Show how to obtain from this a presentation of the direct
product G; x G,, the free product G, *+ G,, and the commutator quotient group
G1/[Gy, G1].

§7. Universal Mapping Problems

In the preceding sections of this chapter we have defined and studied the
following types of algebraic objects: weak products of abelian groups, free
abelian groups, free products of groups, and free groups. In each of these cases,
the algebraic object in question was actually a system consisting of two things
with a mapping between them, e.g., ¢ : S — G. This system consisting of two
things and a mapping between them was characterized by a certain triangular
diagram, e.g.,

As the reader will recall, the object H and the map y in this diagram could
be chosen in a fairly arbitrary manner, subject only to minor restrictions. It
was then required that there exist a unique map f making the diagram
commutative.

This method of characterizing the system ¢ : S — G is usually referred to
by the statement that ¢ : S — G (or for brevity, G) is the solution of a “universal
mapping problem.” We shall see another important example of such a uni-
versal mapping problem in the next chapter. Defining or characterizing
mathematical objects as the solution to a universal mapping problem has
become very common in recent years. For example, one of the most prominent
contemporary algebraists (C. Chevalley) has written a textbook on algebra
[6] that has universal mapping problems as one of its main themes.
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If a mathematical object is defined or characterized as being the solution
to a universal mapping problem, it follows easily (by the method used to prove
Proposition 2.2) that this object is unique up to an isomorphism. In fact, the
isomorphism is even uniquely determined! However, the existence of an object
satisfying a given universal mapping problem is another question. The reader
will note that in the four cases discussed in this chapter, at least three different
constructions were given to prove the existence of a solution. However, in
each case, the existence proof carried with it a bonus, in that it gave great
insight into the actual structure of the desired mathematical object.

There exists a rather general method for proving the existence of solutions
of universal mapping problems (see [5], [7]). However, this general method
gives absolutely no insight into the mathematical structure of the solution. It
is a pure existence proof.

We now give two more examples of the characterization of mathematical
objects as solutions of universal mapping problems. The examples are given
for illustrative purposes only and will not be used in any of the succeeding
chapters.

Examples

7.1. Free commutative ring with a unit. Let Z[x,, x,, ..., x,] denote, as
usual, the ring of all polynomials with integral coefficients in the “variables”
or “indeterminates” x,, x5, ..., x,. Each nonzero element of this ring can be
expressed uniquely as a finite linear combination with integral coefficients of
the monomials x*'x%2 ... x* where k,, k,,..., k, are non-negative integrs. This
ring may be considered to be the free commutative ring with unit generated
by the set S = {x,, ..., x,}. We make this assertion precise, as follows: Let
¢:8—>Z[x,,...,x,] denote the inclusion map. Then, for any commutative
ring R (with unit) and any function  : S — R, there exists a unique ring
homomorphism f: Z[x,,..., x,] = R [with f(1) = 1] such that the following
diagram is commutative:

Z[xl’ ...,x,.]

e
xR

7.2. The Stone—Cech Compactification. For any Tychonoff space X, there
is defined a certain compact Hausdorff space f(X) which contains X as an
everywhere dense subset; it is called the Stone—Cech Compactification of X.
Let ¢: X - B(X) denote the inclusion map. Then, we have the following
characterization: For any compact Hausdorff space Y and any continuous
map ¥ : X — Y, there exists a unique continuous map f: f(X) — Y such that
the following diagram is commutative:

S f
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For a more complete discussion see J. L. Kelley, General Topology. Princeton,
N.J.: Van Nostrand, 1955. pp. 152—153.

For a precise, axiomatic treatment of universal mapping problems and
further examples, see references [5, 7].

NOTES

Definition of free groups, free products, etc.

The concepts of free abelian group, free group, free product of groups, etc.,
are rather old. The main difference between a modern treatment of the subject
and one of the older treatments is the method of defining these algebraic
objects. Formerly, they were defined in terms of what are now considered some
of their characteristic properties. For example, a free group on set S was
defined to be the collection of all equivalence classes of “words” formed from
the elements of S. From a strictly logical point of view, there can be no
objection to this procedure. However, from a conceptual point of view, it has
the disadvantage that the definition of each type of free object requires new
insight and ingenuity, and may be a difficult problem. The idea of defining
free objects as solutions to universal mapping problems, which gradually
evolved during the time of World War II and immediately thereafter, seems
to be one of the important unifying ideas in modern mathematics.

The elegant proof given in the text for the existence of free products of
groups (Theorem 4.2), which is simpler than the older proofs, is due to B.L.
Van der Waerden (Am. J. Math. 70 (1948), 527-528). In a more recent paper
(Proc. Kon. Ned. Akad. Weten. (series A) 69 (1966), 78—83), Van der Waerden
has pointed out how the basic idea of the procedure used for the proof of
Theorem 4.2 is applicable to prove the existence of solutions to universal
mapping problems in many other algebraic situations.

Different levels of abstraction in mathematics

The first time the student encounters the material in this chapter, it may seem
rather foreign to him. The probable reason is that it is on a higher level of
abstraction than any of his previous studies in mathematics. To make this
point clearer, we shall try to describe briefly the different levels of abstraction
that seem to occur naturally in mathematics.

The lowest level of abstraction is the level of most high school and begin-
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ning undergraduate mathematics courses. This level is characterized by a
concern with a few very explicit mathematical objects, e.g., the integers,
rational numbers, real numbers, the complex numbers, the Euclidean plane,
etc. The next level of abstraction occurs when certain properties common to
several different concrete mathematical objects are isolated and studied for
their own sake. This leads to the study of such abstract and general mathe-
matical systems as groups, rings, fields, vector spaces, topological spaces, etc.
Ordinarily the mathematics student makes the transition to this level of
abstraction some time in this undergraduate career.

The material of this chapter provides an introduction to the next higher
level of abstraction. As was pointed out in Example 4.1, the weak direct
product of two abelian groups, G, and G,, and their free product G, * G,, are
quite different types of groups. Yet there is a strong analogy between the weak
direct product of abelian groups and the free product of arbitrary groups. To
perceive this analogy, it is necessary to consider the category of all abelian
groups and the category of all (i.e., not necessarily abelian) groups, respectively.
This is characteristic of this next level of abstraction: the simultaneous con-
sideration of all mathematical systems (e.g., groups, rings, or topological
spaces) of a certain kind, and the study of the properties of such a collection
of mathematical systems.

The history of mathematics in the last two hundred years or so has been
characterized by the considerations of mathematical systems on ever higher
levels of abstraction. Presumably this trend will continue in the future. It
should be emphasized strongly, however, that this movement is not a case of
abstraction for the sake of abstraction itself. Rather, it has been forced on
mathematicians for various reasons, such as bringing out the analogies between
seemingly quite different phenomena.

Presentations of groups by generators and relations

Let us emphasize that the specification of a group by means of generators and
relations is very unsatisfactory in many respects, because some of the most
natural problems that arise in connection with group presentations are very
difficult or impossible. For a further discussion of this point, see the texts by
Kurosh [1, Chap. X] or Rotman [4, Chap. 12].

That part of group theory which is concerned with groups presented by
generators and relations is called “Combinatorial Group Theory.” The stan-
dard introductory text on this subject is Magnus, Karrass, and Solitar [3]. A
more advanced treatise is Lyndon and Schupp [2].
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CHAPTER 1V

Seifert and Van Kampen Theorem
on the Fundamental Group of the Union
of Two Spaces. Applications

§1. Introduction

So far we have actually determined the structure of the fundamental group of
only a very few spaces (e.g., contractible spaces, the circle). To be able to apply
the fundamental group to a wider variety of problems, we must know methods
for determining its structure for more spaces. In this chapter, we shall develop
rather general means for doing this.

Assume that we wish to determine the fundamental group of an arcwise-
connected space X, which is the union of two subspaces U and V¥, each of
which is arcwise connected, and whose fundamental group is known. Choose
a base point x, € Un V; it seems plausible to expect that there should be
relations between the groups =n(U, x,), n(V, x,), and =n(X, x,). The main
theorem of this chapter (discovered independently by H. Seifert and E. Van
Kampen) asserts that, if U and V' are both open sets, and it is assumed that
their intersection U n V is also arcwise connected, then n(X, x,) is completely
determined by the following diagram of groups and homomorphisms:

Y
n(UnV) 4.1.1)
” )
Here ¢, and ¢, are induced by inclusion maps. The way in which n(X, x,) is

determined by this diagram can be roughly described as follows. The above
diagram can be completed by forming the following commutative diagram:
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n(U)
q”/‘ ¥
aUnV) ——— #(X). 4.1.2)

N

Here all arrows denote homomorphisms induced by inclusion maps, and the
base point x, is systematically omitted. Then, the Seifert—Van Kampen
theorem asserts that n(X) is the freest possible group we can use to complete
diagram (4.1.1) to a commutative diagram like (4.1.2). As usual, the phrase
“freest possible” is made precise by the consideration of a certain universal
mapping problem.

Actually, we shall state and prove a more general version of the theorem,
in that we allow X to be the union of any number of arcwise-connected open
subsets rather than just two. This more general version is no more difficult to
prove, and in some situations it is the only applicable version.

After proving the Seifert—-Van Kampen theorem, we state several corol-
laries and then use these corollaries to determine the structure of the funda-
mental groups of the various compact surfaces and certain other spaces. In
the final section of this chapter we show how these methods can be applied
to distinguish between certain knots.

§2. Statement and Proof of the Theorem
of Seifert and Van Kampen

First, we give a precise statement of the theorem. Assume that U and V are
arcwise-connected open subsets of X such that X =UuV and UnV is
nonempty and arcwise connected. Choose a base point x, € U n V for all
fundamental groups under consideration.

Theorem 2.1. Let H be any group, and p,, p,, and p; any three homomorphisms
such that the following diagram is commutative:

o AmU)_
e ‘
nUny) —2—

o~

* )

Then, there exists a unique homomorphism o : n(X) — H such that the following
three diagrams are commutative:
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v n(X) v n(X) v n(X)
7I(U) [ 4 7I(V) 4 7I(U A V) [
T i e o I p

(Here the homomorphisms ¢; and ;, i = 1, 2, 3, are induced by inclusion
maps.)

By the methods used in Chapter III, we can prove that the group n(X) is
characterized up to isomorphism by this theorem. We leave the precise state-
ment and proof of this fact to the reader.

We shall next state the more general version of the Seifert—Van Kampen
theorem. The generalization consists in allowing a covering of the space X by
any number of open sets instead of just by two open sets as in Theorem 2.1.
Of course, the open sets must all be arcwise connected, and the intersection
of any finite number of them must be arcwise connected and contain the base
point. To be precise, we assume the following hypotheses:

(a) X is an arcwise-connected topological space and x, € X.

(b) {U,: A€ A} is a covering of X of arcwise-connected open sets such that
forall Ae A, x, € U,.

(¢) For any two indices 4,, 4, € A there exists an index A€ A such that
U;, n U,, = U, (we express this fact by saying that the family of sets {U, }
is “closed under finite intersections”).

We now consider the fundamental groups of these various sets with base point
x,. For brevity, we omit the base point from the notation.
If U, = U,, then the notation

@z (Uy) > m(U,)
denotes the homomorphism induced by the inclusion map. Similarly, for any
index 4,
Y, m(U) - n(X)
is induced by the inclusion map U, — X. Note that, if U, c U,, the following

diagram is commutative:

n(U,)

P 7I(X)

nU,) "

Theorem 2.2. Under the above hypotheses the group n(X) satisfies the following
universal mapping condition: Let H be any group and let p, : n(U,) - H be any
collection of homomorphisms defined for all A € A such that if U, < U, the
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Jollowing diagram is commutative:

”(Uﬁ.)\p“
Py H
n(U,)

Then, there exists a unique homomorphism o : n(X) — H such that forany A€ A
the following diagram is commutative:

w X

n(U,) 4

P H

Moreover, this universal mapping condition characterizes n(X) up to a unique
isomorphism.

The proof of the last sentence of the theorem is a routine matter which may
be left to the reader. We shall now give the proof of the rest of this theorem.
Applications of this theorem are given in §3-§6.

Lemma. 2.3. The group n(X)is generated by the union of the images y,[n(U,)],
LeA

Proor. Let a € n(X); choose a closed path f: I — X representing a. Choose
an integer n so large that 1/n is less than the Lebesgue number of the open
covering {f'(U,): A € A} of the compact metric space I. Subdivide the in-
terval I into the closed subintervals J; = [i/n, (i + 1)/n], 0 i <n— 1. For
each subinterval J;, choose an index 4; € A such that f(J;) = U,,. Choose a
path g, in U,,  n U, joining the point x, to the point f(i/n), 1 K i<n— 1
Let f;: I — X denote the path represented by the composite function

SV

h
I — J — X,

where h; is the unique orientation-preserving linear homeomorphism. Then

forgiha i 'gg_l, g2 f295"s s Gn-2 fom2" Gnt1s Gn-1 " fuoy are closed paths,
each contained in a single open set U,, and their product in the order given
is equivalent to f. Hence, we can write

0= 0 0ty "0y e Oy s
where
ywey, [n(U)], 0sis<n-1

This completes the proof of the lemma.
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Remark: The hypotheses could be slightly weakened for the purposes of this
lemma. Actually it is only required that {U, } be an open covering by arcwise-
connected subsets of X such that the intersection of any two sets be arcwise
connected. It does not matter whether or not the intersection of three sets is
arcwise connected.

ProoF OF THEOREM 2.2. Let H be any group and let p, : n(U,) - H, L € A, be
a set of homomorphisms satisfying the hypotheses of the theorem. We must
demonstrate the existence of a unique homomorphism ¢ : 7(X) — H such that
the following diagram is commutative for any 4 € A:

v )
/
ﬂ(UA) g.

T

H

From the lemma just proved, it is clear that such a homomorphism g, if it
exists, must be unique, and must be defined according to the following rule.
Let a € n(X), Then, by Lemma 2.3, we have

=y, (@) ¥,,(22) .. ¥y (@), 4.2.1)

where o, e n(U,)), i = 1, 2, ..., n. Hence, if the homomorphism o exists, we
must have

6(0) = P, (@) 1, (02) .- P (). (422)

Our strategy will be to take equation (4.2.2) as a definition of ¢. To justify this
definition, we must show that it is independent of the choice of the representa-
tion of o in the form (4.2.1). Clearly, if it is independent of the form of the
representation of a, then it is a homomorphism, and the desired commutativity
relations must hold.

To prove that ¢ is independent of the representation of « in the form (4.2.1),
it suffices to prove the following lemma:

Lemma 24. Let ;e n(U,),i=1,..., q be such that

¥a,(B1) ¥, (B2) . ¥ (B) = 1.
Then, the product

Pa,(ﬂl)Paz(ﬂz)“'P;,q(ﬁq) =1.

Although the proof of this lemma does not require any new methods, it is
rather long, tedious, and complicated. In order not to interrupt the exposition,
the proof has been relegated to §7 at the end of this chapter.
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§3. First Application of Theorem 2.1

Assume, as in the statement of Theorem 2.1, that X is the union of the open
sets U and V and that U, V, and U n V are all arcwise connected. Let ¢, and
i, have the meaning assigned to them in §2.

Theorem 3.1. If U 1 V is simply connected, then n(X) is the free product of the
groups n(U) and n(V) with respect to the homomorphisms s, : n(U) - n(X) and
Y, (V) - n(X).

Proor. This is a direct corollary of Theorem 2.1. If n(U n V) = {1}, then the
diagram

n(U)

SN

aUnv) —2

7I(V) [z}

will be commutative for any choice of p, and p,; hence, these two homomor-
phisms are completely arbitrary, whereas p; is uniquely determined. Similarly,
the diagram

y, X)

ﬂ(Uﬁ V) 4

P H
will be commutative for any choice of ¢; requiring it to be commutative
imposes no condition on ¢. The remaining two conditions on ¢ in Theorem
2.1 are exactly those which occur in the definition of the free product of two
groups. Q.E.D.

We now give some examples where this theorem is applicable. These
examples will, in turn, be used later to study other examples.

Examples

3.1. Let X be a space such that X = AUB, AnB = {x,}, and A and B
are each homeomorphic to a circle S' (see Figure 4.1). X may be visualized
as a curve shaped like a figure “8.”

If A and B were open subsets of X, we could apply Theorem 3.1 with U = 4
and V = B to determine the structure of 7(X). Unfortunately, 4 and B are not
open.

However, a slight modification of this strategy will work. Choose points
acA and beB such that a#x, and b #x,. Let U= X — {b}, and
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A B

FIGURE 4.1. Example 3.1, a figure “8” curve.

let V=X —{a}. U and V are each homeomorphic to a circle with two
“whiskers.” Then, it is clear that 4 and B are deformation retracts of U and
V, respectively, and that U NV = X — {a, b} is contractible, hence, simply
connected. Thus, we conclude that (X)) is the free product of the groups n(U)
and (V) or, equivalently, the free product of 7(A4) and n(B) [because n(4) ~
n(U) and n(B) ~ n(V)]. Because A and B are circles, n(A) and n(B) are infinite
cyclic groups. Therefore, n(X) is the free product of two infinite cyclic groups;
by Proposition I11.5.2, n(X) is a free group on two generators. We can take as
generators closed path classes « and f based at x,, which go once around A
and B, respectively.

3.2. Let E? be the closed unit disc in the plane, let a and b be distinct interior
points of E?, and let Y = E? — {q, b}. It is easily seen that we can find a subset
X < Y, such that X is the union of two circles with a single point in common,
as in Example 3.1, and X is a deformation retract of Y (see Figure 4.2).
Therefore, n(Y) ~ n(X), and n(Y) is a free group on two generators. We can
take as generators path classes « and § based at x, which go once around the
“holes” a and b.

FIGURE 4.2. Example 3.2, a disc with two holes.
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There is an experimental physical verification of this result that appeals to
one’s geometric intuition. Take a piece of plywood or some other strong, light
material in the shape of a circular disc, and at the points a and b attach vertical
pegs several inches long. Fasten both ends of a piece of string a few feet long
to the plywood at the point x, with a thumbtack. Any element #1 of the
fundamental group of Y can be represented uniquely as a “reduced word” in
o and f; and for any such reduced word, we can choose a representative path
in Y and then lay out the string on the board to represent this path. We can
then test experimentally whether or not this path is equivalent to the constant
path by moving the string about on the board. Of course, it is not permissible
to lift the string over the pegs while doing this.

3.3. The same argument applies if Y is an open disc minus two points, or
the entire plane minus two points, or a sphere minus three points. It also
applies if, instead of removing isolated points from a disc, we remove small
circular discs, either open or closed.

3.4. Let X be the union of n circles with a single pointin common, n > 2;i.e.,

X=A,0A,u UA,

where each 4; is homeomorphic to S', and, if i # j, 4; n A; = {x,}. The space
X can be pictured as an “n-leafed rose” in the plane (see Figure 4.3 for the
case where n = 4). We will prove by induction on n that n(X) is a free group
onngenerators, o,,0,," " -, d,, where a, is represented by a path that goes around
the circle A; once. We have already proved this in the case where n = 2. To
make this induction, we apply Theorem 3.1 as follows. Choose a point g; € 4;
such that a; # x,. Let

U=X —{a,},
V= X - {al,az,..., a"_l}.

Then, U and V are open sets, 4, u--- U A,_, is a deformation retract of U,
A, is a deformation retract of ¥, and U n ¥V is contractible. Thus, using
Theorem 3.1, we can conclude n(X, x,) is the free product of n(U) and =(V)
or equivalently, of (4, U ‘- A,_,) and n(4,). Proposition I11.5.2 can now
be applied to complete the proof of the inductive step.

(R

FIGURE 4.3. Example 3.4 for the case n = 4.
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3.5. We can use the result just proved to discuss the following example:
Let Y be a space obtained by removing n points from a disc (open or closed)
or from the entire plane. By the same type of argument as that used in Example
3.2, we conclude n(Y) is a free group on n generators, o, a,, -, a,. Roughly
speaking, o, is represented by a closed path which goes around the ith hole
once.

We leave it to the reader to discuss a physical model illustrating that z(Y)
is a free group on n generators, as was done for Example 3.2.

EXERCISES

3.1. Prove the following generalization of Theorem 3.1. Let {W} U {V;:iel} be a
covering of X by open arcwise-connected sets having the following properties: (a)
W is a proper subset of V; for all i € I. (b) For any two distinct indices i, je I,
V.V, = W.(c) W is simply connected. (d) x, € W. Using Theorem 2.2, prove that
n(X, x,) is the free product of the groups n(V,, x,) [with respect to the homomor-
phisms ¥, : 7(V;) — n(X) induced by inclusion maps].

3.2. Let

X= U Ai,
iel

where each A, is homeomorphic to S!, be such that, for any two distinct indices
i,jel, A;n A; = {x,}, and the topology on X satisfies the Hausdorff separation
axiom and the following condition: A subset B of X is closed (open) if and only if
B~ A; is a closed (open) subset of A4; for all i e I. For each index i, let a; be a
generator of the infinite cyclic group n(4;, x,). Use the result of Exercise 3.1 to
prove that n(X, x,) is a free group on the set {a;:i € I}.

3.3. Give an example of a compact Hausdorff space
X =) A4,
=1

where each 4; is homeomorphic to S', 4, 4; = {x,} for i # j, and yet X does
not satisfy the condition of the previous exercise. (SUGGESTION: there exists a subset
of the Euclidean plane having the required properties.) Is n(X, x,) a free group
on the set {«;}, as in Exercise 3.2?

34. Let Y be the complement of the following subset of the plane R?:
{(x, 0) e R?: x is an integer}.
Prove that n(Y) is a free group on a countable set of generators.

35. Let X be a Hausdorff space such that X = 4 U B, where 4 and B are each
homeomorphic to a torus, and A » B = {x,}. What is the structure of 7(X, x,)?

3.6. Let M, and M, be disjoint, connected n-manifolds. Prove that the following
method of constructing the connected sum M, # M, isequivalent to the definition
given in §1.4 in the case where n = 2. Choose points m; € M;, and open neighbor-
hoods U, of m; such that there exist homeomorphisms h; of U, onto R"” with
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hi(m;)=0,i=1, 2. Define M; # M, to be the quotient space of (M; — {m,}) v
(M, — {m,}) obtained by identifying points x, € U; — {m,} and x, € U, — {m,}
if and only if
hy(x,)
lha(x2)[?
3.7. If M, and M, are connected n-manifolds, n > 2, prove that n(M, # M,) is the
free product of n(M,) and n(M,).

hy(xy) =

§4. Second Application of Theorem 2.1

Once again we assume the hypotheses and notation of Theorem 2.1: U, ¥, and
U N V are arcwise-connected open subsets of X, X = Uu V,and x, e Un V.

Theorem 4.1. Assume that V is simply connected. Then, s, : n(U) — n(X) is an
epimorphism, and its kernel is the smallest normal subgroup of n(U) containing
the image ¢, [z (U n V)].

Note that this theorem completely specifies the structure of n(X): It is
isomorphic to the quotient group of 7(U) modulo the stated normal subgroup.

Proor. Consider the following commutative diagram:

q’l/‘n(U) ¥,
UnV) —2 5 w(x)

@2 - ( V) Y2

Because n(V) = {1}, it readily follows that i; is a trivial homomorphism and
that image ¢, is contained in kernel ¢, . It is also clear that i, is an epimor-
phism; this follows from Lemma 2.3, or we could prove it directly from
Theorem 2.1.

Thus, the only thing remaining is to prove that the kernel of y, is the
smallest normal subgroup of n(U) containing image ¢, (conceivably, it could
be a larger normal subgroup containing image ¢,). For this purpose, take
H = n(U)/N, where N is the smallest normal subgroup of n(U) containing
image ¢,, and let p, : 1(U) —» H be the natural map of n(U) onto its quotient
group. Let p, : n(V)— H and p;: n(U n V) —» H be trivial homomorphisms.
Then, the hypotheses of Theorem 2.1 are satisfied. Hence, we conclude that
there exists a homomorphism ¢ : 7(X) — H such that the following diagram
is commutative:

" n(X)

7I(U) (4

.

H
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From this, it follows that
kernel y, < kernel p, = N.

Because we already know that

N < kernel y,,

we can conclude tht
kernel y, = N

as required. QE.D.

In the next section we combine this theorem with our preceding results to
determine the structure of the fundamental groups of the various compact,
connected 2-manifolds.

EXERCISES

4.1. Assuming the hypotheses and using the notation of Theorem 2.1, prove the
following assertions:

(a) If @, is an isomorphism onto, then so is .

(b) If both ¢, and ¢, are epimorphisms, then y, is also an epimorphism, and its
kernel is the smallest normal subgroup of z(U n V) which contains both the
kernel of ¢, and the kernel of ¢,.

(¢) If (U ~ V) is a cyclic group with generator a, then n(X) is isomorphic to the
quotient group of the free product of #(U) and (V) by the least normal
subgroup containing (¢, a)(@,a) 1.

(d) n(X) is isomorphic to the quotient group of the free product n(U) = n(V) by
the smallest normal subgroup containing.

{(010)(@0) 7 s e (U A V)}.

(¢) Assume that you are given presentations for the groups n(U ) and n(¥), also
a set of generators for z(U ~ V). Show how to obtain a presentation for n(X)
from this data and the knowledge of the homomorphism ¢, and ¢,. Prove
that, if #(U) and n(V) have finite presentations, and n(U n V) is finitely
generated, then n(X) has a finite presentation.

(f) If ¢, is an epimorphism, then so is . Describe the kernel of ¢, in this case.

(g) If there exists a homomorphism r: (V) — n(U n V) such that re, is the
identity, then there exists a homomorphism s : #(X) — n(U) such that sy, is
the identity, and ¢,r = s¢,.

§5. Structure of the Fundamental Group
of a Compact Surface

We shall show by examples how Theorem 4.1 can be used to determine
the structure of the fundamental group of the various compact, connected 2-
manifolds.
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Xo b xo
[4
a Yo ﬂ a
X1
d
0 b 0

FIGURE 4.4. Determination of the fundamental group of a torus.

Examples

5.1. The torus, T. Because T = S' x S', we already know by Theorem

I1.7.1 that
n(T) = n(S') x n(S!)

is the product of two infinite cyclic groups, i.e, a free abelian group on two
generators. However, we shall derive this result from Theorem 4.1. This simple
case serves as a good introduction to the rest of the examples.

Represent the torus as the space obtained by identifying the opposite faces
of a square, as shown in Figure 4.4. Under the identification the sides a and
b each become circles which intersect in the point x,. Let y be the center point
of the square, and let U = T — {y}. Let V be the image of the interior of the
square under the identification. Then, U and V are open subsets, U, V, and
U n V are arcwise connected, and V is simply connected (V is homeomorphic
to an open disc). Thus, we can apply Theorem 4.1. We conclude that

Y (U, xy) - (T, x,)

is an epimorphism, and its kernel is the smallest normal subgroup containing
the image of the homomorphism

o (UnV,x))-nU,x,).

Because the boundary of a square is a deformation retract of the whole square
minus a point, it is clear that the union of the two circles @ and b is a
deformation retract of U. Therefore, n(U, x,)is a free group on two generators.
To be more precise, (U, x,) is a free group on two generators a and f§, where
a and B are represented by the circles a and b, respectively. Hence, n(U, x,) is
a free group on the two generators

o =6 'ad,
B =47"Bs,

where J is the equivalence class of a path d from x4 to x, (see Figure 4.4).
It is also clear that U n V has the homotopy type of a circle. Therefore,



98 IV. The Theorem of Seifert and Van Kampen

(U n ¥, x,) is an infinite cyclic group generated by y, the equivalence class
of a closed path ¢ which circles around the point y once. It is also clear from
Figure 4.4 that
o) = o fo I p

Hence, n(T, x,) is isomorphic to the free group on the generators o’ and f’
modulo the normal subgroup generated by the element o'« ! §'~!. Changing
to the base point x,, we see that n(T, x,) is isomorphic to the free group on
the generators « and  modulo the normal subgroup generated by afa'f7".

This means exactly that we have a presentation of the group n(T) (see
§I11.6). In this case, we can readily determine the structure of n(T) from this
presentation. On the one hand, it follows that the generators « and § of n(T)
commute; from this it follows that =(T) is a commutative group, and therefore
the least normal subgroup of the free group on « and § containing afa ' 7!
contains the commutator subgroup. On the other hand, it is obvious that this
normal subgroup is contained in the commutator subgroup. Therefore, the
two subgroups are equal. Hence, by Proposition IT1L.5.3, n(T) is a free abelian
group on the generators o and f.

5.2. Thereal projective plane, P,. We shall prove that n(P,)is cyclic of order
2 by using Theorem 4.1. We consider P, the space obtained by identifying the
opposite sides of a 2-sided polygon, as shown in Figure 4.5. Under the
identification, the edge a becomes a circle. Let y be the center point of the

polygon,
U=P,—{y},
V = image of the interior of the polygon under the identifications.

Then, the conditions for the application of Theorem 4.1 hold. In this case the
circle a is a deformation retract of U; therefore, n(U, x,) is an infinite cyclic
group generated by an element o represented by the closed path a. Also,
n(U, x,) is an infinite cycle group generated by o' = 6™ '«d, where & has the
same meaning as in Example 5.1. Finally, (U n ¥, x,) is an infinite cyclic

To xo

a

FIGURE 4.5. Determination of the fundamental group of a projective plane.
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by az

b

bn n

FIGURE 4.6. Determination of the fundamental group of an orientable surface of
genus n.

group with generator y represented by a closed path ¢ which goes around the
point y once. It is clear that

oi(y) = a2,

Therefore, n(P,, x,) is the quotient of an infinite cyclic group generated by o
modulo the subgroup generated by o'?; equivalently, n(P,, x,) is the quotient
of an infinite cyclic group generated by « modulo the subgroup generated by
. Thus, n(P,) is a cyclic group of order 2.

5.3. The connected sum of n tori. Here the method is completely analogous
to the two preceding examples, but the final result is new and more compli-
cated. We can represent M, the sum of n tori, as a 4n-gon with the sides
identified in pairs, as shown in Figure 4.6. Under the identification, the edges
a,, by, ab,, ..., a, b, become circles on M, and any two of these circles
intersect only in the base pont x,. As before, let U = M — {y}, the comple-
ment of the center point y, and let V be the image of the interior of the polygon
under the identification; V is an open disc in M. The union of the 2n circles
a,, by, ..., a,, b, is a deformation retract of U, therefore, n(U, x,) is a free
group on the 2n generators «, B,, a,, f,, ..., o,, B,, where a; is represented
by the circle a;, and f; is represented by the circle b,. As before, n(U NV, x,)
is an infinite cyclic group with generator y represented by the circle ¢, and

o) = n [, B1,

where [}, f;] denotes the commutator a;f;a; ! fi~!, and
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o) = 67 1a;é,
ﬂ;' = 6_lﬂi6'

As a result, n(M, x,) is the quotient of the free group on the generators
ays By - .., s B, modulo the normal subgroup generated by the element

n [, B

re, m(M, x,) has a presentation consisting of the set of generators
{ay, By, ..., a,, B,} and the single relation

n [, A1

In the case where n > 1, there is no simple, invariant description of this group.
It is readily seen however that if we “abelianize” (M, x,) (i.e., if we take its
quotient modulo its commutator subgroup), we obtain a free abelian group
on 2n generators. This is a consequence of the single relation’s obviously being
contained in the commutator subgroup of the free group on the generators
oy, Bis .y oy, B, From this it follows that, if m # n, the connected sum of m
tori and the connectd sum of n tori have nonisomorphic fundamental groups.
Therefore, they are not of the same homotopy type. This is a stronger result
than that proved in Chapter I, where it was shown that these spaces were not
homeomorphic (assuming the proof that the Euler characteristic is a topologi-
cal invariant).

5.4. The connected sum of n projective planes. The connected sum M of n
projective planes can be obtained by identifying in pairs the sides of a 2n-gon,
as shown in Figure 4.7. By carrying out exactly the same procedure as before,

a2

ay

FiGURE 4.7. Determination of the fundamental group of a nonorientable surface of
genus n (first method).
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we find that the fundamental group n(M, x,) has a presentation consisting of
the set of generators

{oty, oz, .0y 0y},

where o; is represented by the circle a;, and one relation

alal.. . ol
For n > 1, this is again a group with no simple invariant description. If we
abelianize, we obtain an abelian group which also has a presentation con-
sisting of n generators and one relation. The reader who is familiar with the
theory of finitely generated abelian groups can easily determine the rank and
torsion coefficients of this group by reducing a certain integer matrix to
canonical form. We shall do this by a more geometric procedure.
Using Theorem 1.7.2, we see that M, a nonorientable surface of genus n,
has the following alternative representation:

(a) For n odd, M is homeomorphic to the connected sum of an orientable
surface of genus %(n — 1) and a projective plane.

(b) For n even, M is homeomorphic to the connected sum of an orientable
surface of genus 4(n — 2) and a Klein bottle.

This leads to the representation M as the space obtained by identifying the
edges of 2n-gon in pairs as shown in Figure 4.8(a) and (b). In case (a), we see
that n(M, x,) has a presentation with generators

{oty, Bys -y s Bis €}

and one relation

oy Bidlez, B2] [, ﬂk]az;

whereas in case (b) there is a presentation of n(M, x,) with generators

{al, ﬂl, ceey Oy ﬁk’ Og+1s 8}

and the one relation

(o1, Bi1[az, Bo1 [, ﬁk]“k+18“;+118-

Using this presentation, we can easily determine the structure of the abelianized
group,

n(M)
[n(M), z(M)]’

In case (a) it is the direct product of a free abelian group on the 2k generators
{oty, Bys...s o, B} and a cyclic group of order 2 (generated by ¢); i.e,, it is an
abelian group of rank 2k = n — 1 and with one torsion coefficient of order 2.
In case (b) it is the direct product of a free abelian group on the 2k + 1
generators {a,, B, ..., %, B, %, and a cyclic group of order 2 (generated
by ¢); ie, it is an abelian group of rank 2k + 1 = n — 1 with one torsion
coefficient of order 2.
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b2 az

(a)

e Q41

(b)

FiGURE 4.8. Determination of the fundamental group of a nonorientable surface of
genus 71 (second method). (a) n odd, k = 4(n — 1). (b) n even, k = 4(n — 2).
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We can summarize our results on the abelianized fundamental groups as
follows:

Proposition 5.1. If M is the connected sum of n tori, then the abelianized
Sfundamental group, n(M)/[n(M), n(M)] is a free abelian group of rank 2n. If
M is the connected sum of n projective planes, then the abelianized fundamental
group is of rank n — 1, and has one torsion coefficient, which is of order 2.

From this result we see that a compact, connected orientable manifold is
never of the same homotopy type as a compact, connected nonorientable
manifold, because the abelianized fundamental group of a nonorientable
manifold always contains an element of order 2, whereas in the orientable
case, every element is of infinite order. It also follows that, if m # n, then the
connected sum of m projective planes and of n projective planes are not of the
same homotopy type.

These results are a slight improvement on thiose of Chapter 1, obtained by
using the Euler characteristic.

EXERCISES

5.1. Show how to obtain geometrically the two different presentations of the funda-
mental group of a Klein bottle mentioned as an example in §IIL.6.

5.2. Consider the presentation of the fundamental group of the Klein bottle with two
generators, a and b, and one relation, baba™'. Prove that the subgroup generated
by b is a normal subgroup, and that the quotient group is infinite cyclic. Prove
also that the subgroup generated by a is infinite cyclic.

5.3. The fact that the connected sum of three projective planes is homeomorphic to
the connected sum of a torus and a projective plane gives rise to two different
presentations of the fundamental group (as in Problem 5.2). Prove algebraically
that these presentations represent isomorphic groups.

5.4. For any integer n > 2, show how to construct a space whose fundamental group
is cyclic of order n.

5.5. Prove that the fundamental group of a compact nonorientable surface of genus
n has a presentation consisting of n generators, a,, ..., &,, and one relation,
@0y o0 et ot o, (see Exercise 1.8.8).

5.6. Prove that the fundamental group of a compact, orientable surface of genus n has
a presentation consisting of 2n generators, a,, a5, ..., %,,, and one relation,

@0y, .. 007" ... a5 (see Exercise 1.8.9).

§6. Application to Knot Theory

A knot is, by definition, a simple closed curve in Euclidean 2-space. It is a
mathematical abstraction of our intuitive idea of a knot tied in a piece of string;
the two ends of the string are to be thought of as spliced together so that the
knot can not become untied.
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It is also necessary to define when two knots are to be thought of as
equivalent or nonequivalent. Here it would be highly desirable to frame the
definition so that it corresponds to the usual notion of two knots in two
different pieces of string being the same. Of several alternative ways of doing
this, the following definition is now universally accepted (as the result of many
years of experience) as being the most suitable.

Definition. Two knots K, and K, contained in R? are equivalent if there exists
an orientation-preserving homeomorphism h: R3 = R? such that h(K,) =
K,.

Obviously, if K, and K, are equivalent according to this definition, then
h maps R? — K, homeomorphically onto R® — K,. Therefore, R — K and
R3 — K, have isomorphic fundamental groups. Thus, given two knots K, and
K, in R3, if we can prove that the groups n(R> — K,) and n(R3> — K,) are
nonisomorphic, then we know the knots K, and K, are nonequivalent. This
is the most common method of distinguishing between knots. The funda-
mental group n(R? — K) is called the group of the knot K.

We shall show how it is possible to use the Seifert—Van Kampen theorem
to determine a presentation of the group of certain knots, and then discuss
the problem of proving that these groups are nonisomorphic.

In certain cases, it will be convenient to think of the knots we shall consider
as being imbedded in the 3-sphere S3,

$3={xeR*:|x| =1}

rather than being imbedded in R3. This makes little difference because S? is
homeomorphic to the Alexandroff 1-point compactification of R3; this can be
proved by stereographic projection (see M. H. A. Newman, Elements of the
Topology of Plane Sets of Points, The University Press, Cambridge, 1951,
pp. 64-65).

EXERCISES

6.1. If K is a knot in R? and we regard S* as the 1-point compactification of R?, prove
that the fundamental groups n(R® — K)and n(S*® — K) are isomorphic. (HINT: Use
Theorem 4.1.)

We shall consider a class of knots called torus knots because they are
contained in a torus imbedded in R? in the standard way (i.e., the torus is
obtained by rotating a circle about a line in its plane). Recall that a torus may
be considered as the space obtained by identifying the opposite edges of the
unit square,

{(x, ) eR*:0<x<1,0<y=<1}.

or, alternatively, as the space obtained from the entire plane R? by identifying
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FIGURE 4.9. Torus knot of type (2, 3).

two points (x, y) and (x’, y’)if and only if x — x’ and y — y’ are both integers.
Let p: R? - T be the identification map. Let L be a line through the origin
in R? with slope m/n, where 1 <m < n, and m and n are relatively prime
integers. It is readily seen that the image

K = p(L)

is a simple closed curve on the torus T; it spirals around the torus m times
while going around it n times the order way. If we now assume that T is
imbedded in R? in the standard way, then

KcTcR?

and K is a knot in R3 called a torus knot of type (m, n). Such knots will be our
main object of study.

We shall also consider unknotted circles in R?, ie., any knot equivalent to
an ordinary Euclidean circle in a plane in R?.

To begin, we obtain a presentation of the group of a torus knot of type
(m, n) and of the group of an unknotted circle. The first step is to obtain a
certain decomposition of the 3-sphere S into two pieces, which is necessary
for the use of the Seifert—Van Kampen theorem. Let

A ={(x;, X3, X3, X4) €S> : x3 + x3 < x§ + xZ},
B = {(x, x5, X3, X,) € S*: x2 + x3 2 x5 + x}}.
It is clear that 4 and B are closed subsets of S3, that A U B = S3, and that

ANB={(x;, xp, x3,x,) €S>:x? + x3 =4and x§ + x} = 1}.
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From this it is clear that A n B is a torus; in fact, it is the Cartesian product
of the circle x? + x3 = 1 [in the (x,, x,) plane] and the circle x3 + x2 = 4 [in
the (x3, x,) plane].

We now assert that A and B are each solid tori (i.e., homeomorphic to the
product of a disc and a circle). We shall prove this by exhibiting a homeomor-
phism. Let

D={(x,,x;)eR*:x? + x} <4},
S'={(x3, xs)eR*:x} + xi =14}
be a closed disc and a circle, each of radius %ﬁ. Define a map
f:DxS'—> A4
by the formula
Sx1s X2, X35 X4)
= (X1, X2, /253 [1 = (3 + XD /2,01 = (5 + x5)]17).

This function is obviously continuous. We leave it to the reader to verify that
it is one-to-one and onto, and hence a homeomorphism. A similar proof
applies to the set B. It is also clear from this that the torus A n Bis the common
boundary of the two solid tori A and B.

We leave it to the reader to verify that, under stereographic projection, the
torus A N B corresponds to a torus imbedded in R? in the standard way.

First, we consider the group of an unknotted circle K in S*. We can take
as our unknotted circle the “center line” of the solid torus A:

K = {(xl’ X2, X3, X4)EA:x1 = x2 = 0}

Then, K is the unit circle in the (x5, x,) plane. Clearly, the boundary of 4 is
adeformation retract of A — K; therefore Bis a deformation retract of S — K.
It is also clear that the center line of B.

{(xl’ Xy, X3, X4)EBix3=x, = 0}’

is a deformation retract of B. Therefore, the center line of B is a deformation
retract of S> — K. Hence, S* — K has the homotopy type of a circle, and the
group of K is infinite cyclic. Thus, we have proved.

Proposition 6.1. The group of an unknotted circle in R? is infinite cyclic.

Next, we consider a torus knot K of type (m, n) in S3. We can consider K
a subset of the torus A N B < S3. It would be convenient to apply the Seifert—
Van Kampen theorem to determine the fundamental group of S — K by
using the fact that

S*— K=(A—-K)u(B - K).
Then, A — K, B — K, and (4 — K) n(B — K) are all arcwise connected, but
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unfortunately 4 — K and B — K are not open subsets of S* — K. The way
around this difficulty is clear: We enlarge A and B slightly to obtain open sets
with the same homotopy type as A and B.

To be precise, choose a number &£ > 0 small enough so that, if N denotes a
tubular neighborhood of K of radius ¢, then $* — N is a deformation retract
of 8% — K. It is clear that this will be the case provided ¢ is sufficiently small;
the precise meaning of the phrase “sufficiently small” depends on the integers
m and n. Then, let U and V be the ie neighborhoods of 4 and B, respectively.
It is clear that U and V are each homeomorphic to the product of an open
disc with a circle, and 4 and B are deformation retracts of U and V. Also,
U n Vis a “thickened” torus, i.e., homeomorphic to the product of A n B and
the open interval (— 3¢, $¢). We can now use the fact that

S~ N=@U-Nu(l-N)

and apply the Seifert—Van Kampen theorem to arrive at a presentation of
n(S* — N) = n(§* — K).

First, U — N and V — N both have the homotopy type of a circle; in fact,
the center lines of 4 and B are deformation retracts of these two spaces.
Therefore, their fundamental groups are infinite cyclic.

Second, the spaces (U — N)n(¥V¥ — N)={UnV)—N and (4 —K)n
(B — K) = (A n B) — K both have the same homotopy type. In fact, the set
(A—N)n(B— N)=(AnB)— N is a deformation retract of each of these
spaces. We can readily see that (4 n B) — K is a subset of the torus 4 n B
homeomorphic to the product of a circle with an open interval. It is a strip
wound spirally around the torus, like a bandage. Its fundamental group is
infinite cyclic.

Finally, we must determine the homomorphisms

¢,:n(UnV — N)->n(U — N),
@,.t(UnV — N)-> a(V — N).

Here we leave the details to the reader. The result is that one of these
homomorphisms is of degree m, and the other is of degree n. (We say a
homomorphism of one infinite cyclic group into another is of degree m if the
image of a generator of the first group is the mth power of a generator of the
second group.) If we combine this result with Exercise 4.1(c) we obtain the
following result:

Proposition 6.2. The group G of a torus knot of type (m, n) has a presentation
consisting of two generators, {a, B}, and one relation, a™f".

There remains the task of proving that these groups are nonisomorphic for
different values of the pair (m, n). This we now do by a method due to O.
Schreier. Consider the element a™ = 7" in this group. This element commutes
with o and B, and hence with every element; thus it belongs to the center. Let
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N denote the subgroup generated by this element; it is obviously a normal
subgroup. Consider the quotient group G/N. Let o’ and #’ denote the coset of
a and B in G/N. Obviously, G/N is generated by the elements o and ', and
it has the following presentation:

Generators: o, ' Relations: '™, .

From this presentation, it follows that G/N is the free product of a cyclic group
of order m (generated by ') and a cyclic group of order n (generated by §).
The proof, which is not difficult, is left to the reader. We now apply Exercise
IT1.4.1 to conclude that the center of G/N is {1}. Because the image of the
center of G is contained in the center of G/N, it follows that N is the entire
center of G. Thus, the quotient of G by its center is the free product of two
cyclic groups (of order m and n). We can now apply the result of Exercise
I11.4.6 to conclude that the integers m, n are completely determined (up to
their order) by G. Thus, we have proved the following.

Proposition 6.3. If torus knots of types (m, n) and (m’, n’) are equivalent, then
m=m"and n=n’,or elsem = n' and n = m’. No torus knot is equivalent to an
unknotted circle (assuming m, n > 1),

Thus, by means of torus knots we have constructed an infinite family of
nonequivalent knots.

Of course, most knots are not torus knots. The foregoing paragraphs
should only be considered a brief introduction to the subject of knot theory.
The reader who wishes to learn more about this subject can consult the
following books: Burde and Zieschang [2], Crowell and Fox [4], Kauffman
[6], Moran [7], Neuwirth [8], or Rolfsen [12].

§7. Proof of Lemma 2.4

For the convenience of the reader, we will restate Lemma 2.4. The hypotheses
and notation are listed in §2.

Lemma 24. Let ;e n(U,),i=1,..., q be such that
l/’xl(ﬁl)'l/’/lz(ﬂz)' ceet l//lq(ﬁq) =1

Then, the product
le(ﬁl)sz(ﬁz)' v qu(ﬁq) =1

ProoOF. Choose closed paths
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representing f; fori =1, 2, ..., q. Then, the product
9
ﬂwam
is clearly represented by the closed path f: [0, 1] - X defined by

i—1 i
s~ | = i i=1,2,..., .
[q J fi q

By hypothesis, f is equivalent to the constant path. Hence, there exists a
continuous map

f

F:IxI-X
such that, forany s, te I,
F(s, 0) = f(s),
F(s,1)=F(@0,t) = F(1,t) = x,.

Let ¢ denote the Lebesgue number of the open covering {F~'(U;): 4 € A} of
the compact metric space I x I (we give I x I the metric it has as a subset of
the Euclidean plane). We now subdivide the square I x I into smaller rect-
angles of diameter < ¢ as follows. Choose numbers

S50=0, 8,82,..,8,=1,

to=0, t,ty.. =1,
such that the following three conditions hold: (a) s, < s; < s, <*** < s,, and
ty <t; <t, < - <t (b) the fractions 1/q, 2/q, ..., (9 — 1)/q are included

among the numbers s, , s, ..., S,; (¢) if we subdivide the unit square I x I into
rectangles by the vertical and horizontal lines,

s=s8, i=01,...,m,

t=t],

j=0,1,...,n,

the length of the diagonal of each rectangle is less than e Clearly, such a
subdivision is possible.

Before proceeding further with the proof, we must introduce a rather
elaborate notation for the various vertices, edges, and rectangles of this
subdivision as follows.

Vertices:
vy =(s,¢), 0ZismO0=j<n
Subintervals of I = [0, 1]:
Ji=I[5-1,8], 1Zi<m,

Kj = [tj—l, t'], 1

A
A

JEn



110 IV. The Theorem of Seifert and Van Kampen

/
1
Vi-l,; Qi Uij
K; bi—1,;A Ry Aby
li—1@-——— TRV S Uij-1
0 >3
-1 Ji 8 1
0

FIGURE 4.10. Notation used in the proof of Lemma 2.4.

Rectangles:

Horizontal edges:

a;=J;x{}, 1sisml<j<n
Vertical edges:

bj={s} xK;, 0sisml<j<n

In Figure 4.10 we indicate how a typical rectangle of this subdivision and its
vertices and edges are labeled. We also need the following notation for certain
paths:

A - X, Ai(s)=F(S,¢t), sed.
B;: K;—> X, Bi(t)=F(s;, 1), teK,
With a slight abuse of notation, we can write
A;;=Fla
B;; = F|b,

ijs

ij:

For each rectangle R;;, choose an open set U,; ; such that
F(R, ;) = Uy ).

Condition (c) on the subdivisions assures us that such a choice is possible.
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Each vertex v;; is a vertex of 1, 2, or 4 of the rectangles R,; let U,; ;, denote
the intersection of the corresponding 1, 2, or 4 open sets U, 5. Then, Uy ;
is an open set of the given covering and

F(U'.i) € Uu(i,]’)'
Choose a path
gy = Uy

with initial point x, and terminal point F(v;); if F(v;;) = x,, we require that
g;; be the constant path.

Having introduced most of the necessary notation, we now interpolate a
sublemma.

Sublemma. Let U; and U, be two sets of the given open covering of X and let
hiI1-UnU, B(0) = h(1) = x,,

beaclosed path. Let a € n(U,, x) and B € n(U,, x,) denote the equivalence class
of the loop h in the two different groups. Then, p; = (&) = p,(B).

ProOF OF SUBLEMMA. The set U, = U; n U, also belongs to the covering by
hypothesis, and h represents an element y € n(U,, x,). Then, clearly,

a= (Pvl()’)9
B = ,0)
Hence,
p:(@) = p;0,:(y) = p.(¥),

2.(B) = p,0.,,() = p,(¥).
Q.E.D.

This sublemma enables us to adopt a certain sloppiness of notation without
fear of ambiguity. We can denote the element p;(«) = p,(B) € H by the nota-
tion p(h); we need not worry about whether we should take the equivalence
class of 4 in the group n(U,) or in the group n(U,).

With this convention, let

o;; = p[(gi—l.inj)(gtj)_ll
ﬁij = p[(gi,j—lBij)(gij)_l]-

[Here (g;;) ™" denotes the path defined by ¢t — g,,(1 — ).] Note that «;; and B,
are both well-defined elements of H.

Next, we assert that, corresponding to each rectangle R;;, there is a relation
of the following form in the grup H:

o 1B = ﬁi—l,jaij' 4.7.3)

-
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To prove this, note first that we have the following equivalence between
(nonclosed) paths in Uy, 5

Ai,j—lBij ~ Bi—l,inj'
This equivalence is a consequence of Lemma I1.8.1 applied to the mapping

F|R;;: R;;—> Uy and Exercise I1.3.3. As a result, we have the following
equivalence between closed paths in U, j:

di-1,j-1 Ai,j—l(gi,j—l)_lgi,j—l Blj(gij)_l ~ Gi-1,j-1 Bi—l,j(gi—l,j)_lgi—l,inj(gij)_l'
4.7.4)

If we now take the equivalence class in n(U,; ;) of both sides, and then apply
the homomorphism p,; ;, we obtain equation (4.7.3). [NOTE: To be strictly
correct, since multiplication of paths is not associative, parentheses should be
inserted in (4.7.4). However, it does not matter how the parentheses are
inserted.]

The next relation we need is

f]l Uio = kljl P (Be), 4.7.5)

which is an easy consequence of requirement (b) that the points 1/q, 2/q, ...,
(g9 — 1)/q be included in the set {s;: 0 < i < m} together with the definitions
and constructions we have made. Finally, we have the relations

o, =1, 1Zi<m, (4.7.6)
Boy=Bm=1 1Z5jZn 4.7.7)
These relations result from the fact that
F(s, 1) =F(0,8) = F(1,£) = x,

for any, s, tel
In view of relation (4.7.5), we must prove

120 =1 4.7.8)
=1

We shall now do this by using relations (4.7.3), (4.7.6), and (4.7.7). First, we
show that

,:1 %y = f'__nll %i.j 4.7.9)
for any integer j, 1 < j £ n. Indeed, we have

Y1182,y O ot = O o191 O o1 B by (4.7.7)

=0y 5-102,5-1 " %oy j-1 Bne1, jOm; DY (47.3)

=04 j-1%2,j-1"" Bu-2,j%m-1,j%m,; DY (47.3)

= ﬁo;'al,jaz,j' COlp—1, j0m, j by (4.7.3)

=0y, 0 Oy, O, - by (4.7.7)
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In all, we must apply (4.7.3) m times. If we now apply (4.7.9)withj=1,2,...,
n is succession, we obtain

But, by use of (4.7.6),

This completes the proof of (4.7.8), and hence of Lemma 2.4. Q.E.D.

NOTES

Apparently a theorem along the lines of Theorem 2.1 was first proved by
H. Seifert in 1931 in a paper entitled “Konstruktion dreidimensionaler ge-
schlossener Raume” [ Ber. Sdchs. Akad. Wiss. 83 (1931), 26—66]. A little later
a similar theorem was discovered and proved independently by E. R. Van
Kampen [“On the connection between the fundamental groups of some
related spaces,” Am. J. Math. 55 (1933), 261-267]. In spite of this, it is uaually
referred to as “Van Kampen’s theorem” in American books and papers. Of
course, the formulation of the theorem as the solution of a universal mapping
problem came later. Our exposition is based on a paper by R. H. Crowell [3],
which was apparently inspired by lectures of R. H. Fox at Princeton; see their
joint textbook [4].

Free products with amalgamated subgroups

Let {W} U {V;:ie I} bea covering of X by arcwise-connected open sets such
that V,nV, = Wifi # jand x, € W (see Exercise 3.1). Assume that, for each
index i, the homomorphism n(W, x,) = n(V;, x,) is a monomorphism. Then, the
fundamental group n(X, x,), as specified by Theorem 2.2, has a structure that
has been well studied by group theorists; it is called a “free product with
amalgamated subgroup.” It is a quotient group of the free product of the
groups n(V;) obtained by “amalgamating” or identifying the various sub-
groups which correspond to (W, x,) under the given monomorphisms. Every
element of such a free product with amalgamated subgroups has a unique
expression as a “word in canonical form.” Such groups are important in
certain aspects of group theory and have also been used in topology. For
further information on this subject, see the textbooks on group theory listed
in the bibliography of Chapter III.

The Poincaré conjecture

It follows from the computations made in this chapter that any simply-
connected, compact surface is homeomorphic to the 2-sphere S*. Poincaré
conjectured in the early 1900s that an analogous statement is true for 3-
manifolds, namely, that a compact, simply-connected 3-manifold is homeo-
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morphic to the 3-sphere S3. In spite of the expenditure of much effort by many
outstanding mathematicians over the years since Poincaré, it is still unknown
whether or not this famous conjectue is true. It is easy to give examples of
compact, simply-connected 4-manifolds which are not homeomorphic to §*
(e.g, S x §?). However, for all integers n > 3 there is an analog of the
Poincaré conjecture, namely, that a compact n-manifold that has the homot-
opy type of an n-sphere is homeomorphic to S This generalized Poincaré
conjecture was proved for n > 4 by S. Smale in 1960 [see Ann. Math. 74 (1961),
391-406]. The case where n = 4 was proved by Michael Freedman in 1982.
Until the classical Poincaré conjecture (the case where n = 3) is settled, we
cannot hope to have a classification theorem for compact 3-manifolds.

Homotopy type vs. topological type for compact manifolds

From the computations of the fundamental groups of compact surfaces in this
chapter, the following fact emerges: If two compact surfaces are not homeo-
morphic, then they do not have the same homotopy type. The analogous
statement for compact 3-manifolds is known to be false; there are fairly simple
examples of compact 3-dimensional manifolds which are of the same homot-
opy type, but not homeomorphic (the so-called “lens spaces”). The proof of
this fact is the culmination of the work of mathematicians in several countries
over a period of years. The details are rather elaborate.

Higher-dimensional examples of manifolds which are of the same homot-
opy type but not homeomorphic have been constructed by using a theorem
of S. P. Novikov (topological invariance of rational Pontrjagin classes).

Fundamental group of a noncompact surface

The fundamental group of any noncompact surface (with a countable basis)
is a free group on a countable or finite set of generators. Any simply-connected,
noncompact surface is homeomorphic to the plane R2 For a proof of these
facts, see Ahlfors and Sario [1, Chapter I].

Sketch of the proof that any finitely presented group can be
the fundamental group of a compact 4-manifold

First, note that the fundamental group of §* x S is infinite cyclic. Hence, by
forming the connected sum of n copies of S* x S3, we obtain an orientable,
compact 4-manifold whose fundamental group is a free group on n generators
(see Exercise 3.7).

Next, suppose that M is a compact, orientable 4-manifold and C is a
smooth, simply closed curve in M, it may be shown that any sufficiently smali,
closed tubular neighborhood N of C is homeomorphic to S' x E* (this
assertion would not be true if M were nonorientable). Also, the boundary of
N is homeomorphicto S* x §2. Now S* x S$%is also the boundary of E2 x §2,
a 4-dimensional manifold with boundary. Let M’ denote the complement of
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the interior of N. Form a quotient space of M’ U (E? x §2) by identifying
corresponding points of the boundary of N and the boundary of EZ x §2;
denote the quotient space by M,. Then, M, is readily seen to be a compact,
orientable 4-manifold also; the process of obtaining M, from M is often called
“surgery.”

What is the fundamental group fo M;? We can answer this question by
applying the Seifert—Van Kampen theorem twice. First, M = M’ U N and
M’ A N is homeomorphic to S* x S2. It is readily seen that the homomor-
phism n(M’ N N)— n(N) (induced by the inclusion) is an isomorphism,
therefore by Exercise 4.1(a) the homomorphism n(M’) - n(M) is also an
isomorphism. Next, M, = M’ U(E? x §2) and M'n(E? x §2)=M'nN.
Because E2 x $2 is simply connected, Theorem 4.1 is applicable, and we can
conclude that n(M’) —» n(M, ) is an epimorphism, and the kernel is the smallest
normal subgroup containing the image of z(M’ n N) - n(M’); but it is readily
seen that the images of n(M’' N N) - n(M’) and =(C) - n(M) are equivalent.
(NOTE: Actually, each time we apply the Seifert—-Van Kampen theorem, it is
necessary to make use of deformation retracts, etc., because M’ and N are not
open subsets of M.)

We can summarize the conclusion just obtained as follows: n(M, ) is natu-
rally isomorphic to the quotient of (M) by the smallest normal subgroup
containing the image of n(C) — n(M). In other words, we have “killed off” the
element a of n(M) represented by the closed path C. If the group n(M) is
presented by means of generators and relations, then (M, ) has a presentation
consisting of the same set of generators and having one additional relation,
namely, .

It is not difficult to show that any element a € n(M) can be represented by
a smooth closed path C without any self-intersections, as required in the
preceding argument. In fact, this is true for any orientable n-manifold M
provided n = 3. In a manifold of dimension =3 there is enough “room” to
get rid of the self-intersections in any closed path by means of arbitrarily small
deformations.

Now let G be a group which has as a presentation consisting of n generators
Xi,...,X,and k relations r,, r,, ..., r,. Let M be the connected sum of n copies
of S x §3; then n(M) is a free group on n generators, which we may denote
by x4, ..., x,- We now perform surgery k times on M, killing off in succession
the elements r,, ..., r,. The result will be a compact, orientable 4-manifold M,
such that n(M,) = G, as required.!

This construction was utilized by A. A. Markov in his proof that there
cannot exist any algorithm for deciding whether or not two given compact,
orientable, triangulable 4-manifolds are homeomorphic. Markov’s proof
depends on the fact that there exists no general algorithm for deciding whether
or not two given group presentations represent isomorphic groups (see Pro-
ceedings of International Congress of Mathematicians, 1958, pp. 300-306; also,

! This result is due to Seifert and Threlfall [9, p. 187].
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W. Boone, W. Haken, and V. Poenaru, “On Recursively Unsolvable Problems
in Topology and Their Classification” in Contributions to Mathematical
Logic, edited by H. Schmidt, K. Schutte and H.-J. Thiele, North-Holland,
Amsterdam, 1968, pp. 37-74).

Alternative proof of the Seifert—Van Kampen theorem

There is another method of proving the theorem of Seifert and Van Kampen,
using the theory of covering spaces as described in the next chapter. Although
this proofis not as long as that given in §2, it uses more machinery and requires
the assumption of additional hypotheses. An exposition of this proof is given
in the French text Godbillon [10] and in the research paper Knill [11].
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CHAPTER V

Covering Spaces

§1. Introduction

Let X be a topological space: a covering space of X consists of a space X
and a continuous map p of X onto X which satisfies a certain very strong
smoothness requirement. The precise definition is given below. The theory of
covering spaces is important not only in topology, but also in related disci-
plines such as differential geometry, the theory of Lie groups, and the theory
of Riemann surfaces.

The theory of covering spaces is closely connected with the study of the
fundamental group. Many basic topological questions about covering spaces
can be reduced to purely algebraic questions about the fundamental groups
of the various spaces involved. It would be practically impossible to give a
complete exposition of either one of these two topies without also taking up
the other.

§2. Definition and Some Examples of
Covering Spaces

In this chapter, we shall assume that all spaces are arcwise connected and
locally arcwise connected (see §11.2 for the definition) unless otherwise stated.
To save words, we shall not keep repeating this assumption. On the other
hand, it is not necessary to assume that the spaces we are dealing with satisfy
any separation axioms.
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Definition. Let X be a topological space. A covering space of X is a pair
consisting of a space X and a continuous map p: X —» X such that the
following condition holds: Each point x € X has an arcwise-connected open
neighborhood U such that each arc component of p~*(U) is mapped topologi-
cally onto U by p [in particular, it ia assumed that p~!(U) is nonempty]. Any
open neighborhood U that satisfies the condition just stated is called an
elementary neighborhood. The map p is often called a projection.

To clarify this definition, we now give several examples. In some of the
examples our discussion will be rather informal, which is often more helpful
than a more rigorous and formal discussion in getting an intuitive feeling for
the concept of covering space.

Examples
2.1. Let p: R - §! be defined by
p(t) = (sin t, cos t)

forany t € R. Then, the pair (R, p) is a covering space of the unit circle S*. Any
open subinterval of the circle S* can be serve as an elementary neighborhood.
This is one of the simplest and most important examples.

2.2. Let us use polar coordinates (r, 8) in the plane R2. Then, the unit circle
S! is defined by the condition r = 1. For any integer n, positive or negative,
define a map p, : S* - S! by the equation

pa(1, 0) = (1, nf).

The map p, wraps the circle around itself n times. It is readily seen that, if
n # 0, the pair (S?, p,) is a covering space of S'. Once again, any proper open
interval in S* is an elementary neighborhood.

23. If X isany space,and i : X — X denotes the identity map, then the pair
(X, i) is a trivial example of a covering space of X. Similarly, if f is a homeo-
morphism of Y onto X, then (Y, f) is a covering space of X, which is also a
rather trivial example. Later in this chapter, we shall prove that, if X is simply
connected, then any covering space of X is one of these trivial covering spaces.
Thus, we can only hope for nontrivial examples of covering spaces in the case
of spaces that are not simply connected.

2.4. If (X, p) is a covering space of X, and (¥, q) is a covering space of ¥,
then (X x ¥, p x g) is a covering space of X x Y [the map p x q is defined
by (p x q)(x, ¥) = (px, qy)]. We leave the proof to the reader. It is clear that,
if U is an elementary neighborhood of the point x € X and V is an elementary
neighborhood of the point y € Y, then U x V is an elementary neighborhood
of(x,y)e X x Y.

Using this result and Examples 2.1 and 2.2, the reader can construct
examples of covering spaces of the torus T = S* x S!. In particular, the plane
R2 = R x R, the cylinder R x S, or the torus itself can serve as a covering
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FiGURE 5.1. A surface of genus 2 as a quotient space of a bordered surface.

space of the torus. The reader should try to visualize the projection p involved
in each of these cases.

2.5. In §L.4, the projective plane P was defined as a quotient space of the
2-sphere S2. Let p: S — P denote the natural map. Then, it is readily seen
that (S2, p) is a covering space of P. We can take as an elementary neighbor-
hood of any point x € P an open disc containing x.

2.6. Let S be a compact, orientable surface of genus 2. We shall show how
to construct a great variety of covering spaces of S. Note that we can regard
S asa quotient space of a compact, bordered surface M, where M is orientable,
of genus 0, and its boundary consists of four circles Cy, Ci, C;, and C;. The
natural map M — § identifies the boundary circles in pairs (see Figure 5.1):
C! and C} are identified to a single circle C; by means of a homeomorphism
h;of C; onto C/,i = 1,2. We can also think of M as obtained from § by cutting
along the circles C, and C,.

Let D be the finite set {1, 2, 3, ..., n} with the discrete topology and g : M x
D — M, the projection of the product space onto the first factor. We can think
of M x D as consisting of n disjoint copies of M, each of which is mapped
homeomorphically onto M by q. We now describe how to form a quotient
space of M x D, which will be a connected 2-manifold § and such that the
map ¢ will induce a map p: § — S of quotient spaces; i.e., so we will have a
commutative diagram

Y
|
S

MxD —

’

—_—
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It will turn out that (8, p) is a covering space of S. The identification by which
we form S from M x D will all be of the following form: The circle C; x {j}
is identified with the circle C x {k} by a homeomorphism which sends the
point (x, j) onto the point (h(x), k), where i = 1 or 2, and j and k are positive
integers <n. We can carry out this identification of circles in pairs in many
different ways, so long as we obtain a space § which is connected. For example,
in the case where n = 3, we could carry out the identifications according to
the following scheme: Identify

C x {1} with C{ x {2},
C; x {2} with Cy x {3},
Ci x {3} with Cjy x {1},
C, x {1} with Cj x {2},
C, x {2} with Cj x {1},
C, x {3} with Cj x {3}.
We leave it to the reader to concoct other examples and to prove that in each
case we actually obtain a covering space. Obviously, we could use a similar
procedure to obtain examples of covering spaces of surfaces of higher genus.
2.7. Let X be a subset of the plane consisting of two circles tangent at a
point:
Ci={xy):x-1*+y*=1},
C={(xy:(x+1)+y*=1},
X = Cl | Cz.
We shall give two different examples of covering spaces of X. For the first
example, let X denote the set of all points (x, y) € R? such that x or y (or both)
is an integer; X is a union of horizontal and vertical straight lines. Define
p: X - X by the formula
(1 + cos(m — 2nx), sin 2nx) if y is an integer,
(—1) + cos 2zy, sin 2ny) if x is an integer.

wa={

The map p wraps each horizontal line around the circle C; and each vertical
line around the circle C,.

For the second example, let D, denote the circle {(x, y) e R*: (x — 1)* +
(y — 3n)* = 1} for any integer n, positive, negative, or zero, and let L denote
the vertical line {(x, y): x = 0}. The circles D, are pairwise disjoint, and each
is tangent to the line L. Define

£ -ro(yn),

neZ

and p': X’ - X as follows: Let p’ map each circle D, homeomorphically onto
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C, by a vertical translation of the proper amount. Let p’ wrap the line L
around the circle C, in accordance with the formula

2 2
p'(0, y) = (—1 + cos%, sing).

Then, (X', p’) is a covering space of X.

28. Here is an example for students who have at least a slight familiarity
with the theory of functions of a complex variable. As usual, let
z’l
n!

Ms

exp(z) =

n=0

denote the exponential function, where z is any complex number. The expo-
nential function is a map, exp: C - C — {0}, where C denotes the complex
plane. We assert that (C, exp) is a covering space of C — {0}, and that, for any
z € C — {0}, the open disc

U ={weC:|lw-z| <|z]}

is an elementary neighborhood. To prove this, we would have to show that
any component V of the inverse image of U, is mapped homeomorphically
onto U, by exp; i.e., that there exists a continuous function f: U, - ¥ such
that, for any w e U,,

exp[f(w)] = w,

and, foranyve ¥V,
flexpv)=v.

Such a function f is called a “branch of the logarithm function in the disc U,”
in books on complex variables, and in the course of establishing the properties
of the logarithm, the required facts are proved.

Recall that, if z = x + iy, then exp z = (exp x)'(cos y + isin y), where
exp x = ¢* now refers to the more familiar real exponential function,
exp:R - {te R:t > 0}. From this formula, the following fact emerges. We
canregard C=R x Rand C — {0} = {re R:r > 0} x S (use polar coordi-
nates). Then, we can consider the map exp:C - C — {0} as a map p x q:
RxR-{reR:r>0} xS' where p(x)=e* and g(y)= (cos y, sin y).
Compare Examples 2.1, 2.3, and 2.4.

29. We now give another example from the theory of functions of a
complex variable. Forany integer n # 0,let p, : C — C be defined by p,(z) = z".
Then, (C — {0}, p,) is a covering space of C — {0}. The proof is given in
books on complex variables when the existence and properties of the various
“branches” of the function \"/E are discussed; the situation is analogous to that
in Example 2.8. Note that it is necessary to omit O from the domain and range
of the function p,; otherwise we would not have a covering space. As in
Example 2.8, we can consider C — {0} = {re R:r > 0} x §! and decompose
the covering space (C — {0}, p,) into the Cartesian product of two covering
spaces.
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To clarify further the concept of covering space, we shall give some ex-
amples which are almost, but not quite, covering spaces.

Definition. A continuous map f: X — Y is a local homeomorphism if each
point x € X has an open neighborhood V such that f(V)is open and f maps
V topologically onto f(V).

It is readily proved that, if (X, p) is a covering space of X, then p is a local
homeomorphism (the proof depends on the fact that in a locally arcwise
connected space, the arc components of an open set are open). Also, the
inclusion map of an open subset of a toplogical space into the whole space is
a local homeomorphism. Finally, the composition of two local homeomor-
phisms is again a local homeomorphism. Thus, we can construct many ex-
amples of local homeomorphisms.

On the other hand, it is easy to construct examples of local homeomor-
phisms which are onto maps, but not covering spaces. For example, let p map
the open interval (0, 10) onto the circle S! as follows:

p(t) = (cos ¢, sin ¢).

Then, p is a local homeomorphism, but ((0, 10), p) is not a covering space of
S'. (Which points of S! fail to have an elementary neighborhood?) More
generally, if (X, p) is a covering space of X, and V is a connected, open, proper
subset of X, then p|V is a local homeomorphism, but (¥, p|V)is not a covering
space of X. It is important to keep this distinction between covering spaces
and local homeomorphisms in mind.

Note that a local homeomorphism is an open map. In particular, if (X, p)
is a covering space of X, then p is an open map.

We next give a lemma which makes it possible to give many additional
examples of covering spaces.

Lemma 2.1. Let (X, p) be a covering space of X, let A be a subspace of X which
is arcwise connected and locally arcwise connected, and let A be an arc compo-
nent of p~'(A). Then, (4, p| A) is a covering space of A.

The proof is immediate. The two covering spaces described in Example 2.7
can also be obtained by applying this lemma to the covering spaces R = R x
Rand R x §! of the torus §! x S! described in Example 2.4 [choose 4 to be
the following subset of S x S§': 4 = (§' x {xo})U({xo} x S!), where x, €
s

We close this section by stating two of the principal problems in the theory
of covering spaces:

(a) Give necessary and sufficient conditions for two covering spaces
(X1, p1) and (X5, p;) of X to be isomorphic (by definition, they are
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isomorphic if and only if there exists a homeomorphism & of X, onto
X, such that p,h = p,).

(b) Given a space X, determine all possible covering spaces of X (up to
isomorphism).

As we shall see, these problems have reasonable answers in terms of the
fundamental groups of the spaces involved.

EXERCISES

2.1. Prove that the following four conditions on a topological space are equivalent:

(a) They are components of any open subset are open.

(b) Every point has a basic family of arcwise-connected open neighborhoods.

(c) Every point has a basic family of arcwise-connected neighborhoods (they are
not assumed to be open).

(d) Forevery point x and every neighborhood U of x, there exists a neighborhood
V of x such that ¥ = U and any two points of V can be joined by an arcin U.

Thus, any one of these conditions could be taken as the definition of local
arcwise connectivity.

2.2. Give an example of a local homeomorphism f: X — Y and a subset A = X such
that f]A is not a local homeomorphism of 4 onto f(A).

2.3. Prove that if X is compact and f: X — Y is a local homeomorphism, then, for
any point y € Y, f “}(y) is a finite set. If it is also assumed that Y is a connected
Hausdorff space, then f maps X onto Y.

24. Assume X and Y are arcwise connected and locally arcwise connected, X is
compact Hausdorff, and Y is Hausdorff. Let f : X — Y be a local homeomorphism;
prove that (X, f) is a covering space of Y. (WARNING: This exercise is more subtle
than it looks!)

§3. Lifting of Paths to a Covering Space

In this section, we prove some simple lemmas which provide the key to many
of the results in this chapter. Let (X, p) be a covering space of X, and let
g:1—- X be a path in X; then, pg is a path in X. Also, if g,, g, : { » X and
do ~ g, then pg, ~ pg,. We can now ask for a sort of converse result: If
f:1- X is a path in X, does there exist a path g: I » X such that pg = f?1If
do. 9, : 1 = X and pg, ~ pg,, does it follow that g, ~ g,? We shall see that
the answer to both questions is Yes. This fact expresses one of the basic
properties of covering spaces.

Lemma 3.1. Let (X, p) be a covering space of X, %o € X, and x, = p(%,). Then,
for any path f : I - X with initial point x, there exists a unique path g : I - X
with initial point %, such that pg = f.
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Proor. If the path f were contained in an elementary neighborhood U there
would be no problem. For, if V denotes the arc component of p~!(U) which
contains X, then, because p maps V topologically onto U, there would exist
a unique g in V with the required properties.

Of course, f will not, in general, be contained in an elementary neighbor-
hood U. However, we can always express f as the product of a finite number
of “shorter” paths, each of which is contained in an elementary neighborhood,
and then apply the argument in the preceding paragraph to each of these
shorter paths in succession.

The details of this procedure may be described as follows. Let {U;} be a
covering of X by elementary neighborhoods; then { f ~1(U))} is an open covering
of the compact metric space I. Choose an integer n so large that 1/n is less than
the Lebesgue number of this covering. Divide the interval I into the closed
subintervals [0, 1/n], [1/n,2/n], ..., [(n — 1)/n, 1]. Note that f maps each
subinterval into an elementary neighborhood in X. We now define g succes-
sively over these subintervals, starting with [0, 1/n].

The uniqueness of the lifted path g is a consequence of the following more
general lemma.

Lemma 3.2. Let (X, p) be a covering space of X and let Y be a space which is
connected. Given any two continuous maps fy, f, : Y - X such that pf, = pf;,
the set {y € Y: fo(y) = f1())} is either empty or all of Y.

ProoF. Because Y is connected, it suffices to prove that the set in question is
both open and closed. First we shall prove that it is closed. Let y be a point
of the closure of this set, and let

x = pfo(y) = pf1(y)-

Assume f,(y) # f1(y); we will show that this assumption leads to a contradic-
tion. Let U be an elementary neighborhood of x, and let ¥, and ¥, be the
components of p~!(U) which contain f,(y) and f; (), respectively. Since f, and
f1 are both continuous, we can find a neghborhood W of y such that fo(W) <
Vy and f1(W) < V,. But it is readily seen that this contradicts the fact that any
neighborhood W of y must meet the set in question.

An analogous argument enables us to show that every point of the set
{y € Y: fo(y) = fi(y)} is an interior point. Q.ED.

Lemma 3.3. Let (X, p) be a covering space of X and let gy, g, : I - X be paths
in X which have the same initial point. If pgy ~ pg,, then g, ~ g,; in particular,
go and g, have the same terminal point.

ProoF. The strategy of this proof is essentially the same as that of Lemma
3.1. Let X, be the initial point of g, and g,. The hypothesis pg, ~ pg; implies
the existence of a map F:I x I —» X such that
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F(s, 0) = pgo(s),
F(s, 1) = pg,(s),
F(0, t) = pgo(0) = p(%o),
F(1, £) = pgo(1).

By an argument using the Lebesgue number, etc., we can find numbers
O=sp<s;, < <s,=land 0=t, <t; < - <t,=1 such that F maps
each small rectangle [s;_;, s;] x [t;-;, t;] into some elementary neighborhood
in X. We shall prove that there exists a unique map G : I x I » X such that
pG = F and G(0, 0) = %,. First, we define G over the small rectangle [0, s, ] x
[0, t, ] so that the required properties hold; it is clear that this can be done
because F maps this small rectangle into an elementary neighborhood of the
point p(X,). Then, we extend the definition of G successively over the rectangles
[sic1, 8] x [0,¢,]fori =2,3,..., m taking care that the definitions agree on
the common edge of any two successive rectangles. Thus, G is defined over
the strip I x [0, t,]. Next, G is defined over the rectangles in the strip I x
[t,,t;], etc.

The uniqueness of G is assured by Lemma 3.2. Similarly, by the uniqueness
assertion of Lemma 3.1, we see that G(s, 0) = go(s), G(0, t) = %y, G(s, 1) =
g1(s), and that G maps {1} x I into a single point %, such that

p(%1) = pgo(1) = pg,(1).

Thus, G defines an equivalence between the paths g, and g, as required.
Q.E.D.

As a corollary to these results on the lifting of paths, we shall prove the
following lemma:

Lemma 34. If (X, p) is a covering space of X, then the sets p™'(x) forall x € X
have the same cardinal number.

ProoF. Let x, and x, be any two points of X. Choose a path f in X with
initial point x, and terminal point x,. Using the path f, we can define a
mapping p~!(x,) = p~!(x,) by the following procedure. Given any point
Yo € p 1(xo), lift f to a path g in X with initial point y, such that pg = f. Let
y, denote the terminal point of g. Then, y, — y, is the desired mapping. Using
the inverse path f [defined by f(t) = f(1 — t)], we can define in an analogous
way a map p *(x;) = p~'(xo) It is clear that these maps are the inverse of
each other; hence each is one-to-one and onto. Q.E.D.

This common cardinal number of the sets p~!(x), x € X, is called the number
of sheets of the covering space (X, p). For example, we speak of an n-sheeted
covering, or an infinite-sheeted covering.
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Examples

3.1. Consider the covering space (R, p) of S* described in Example 2.1.
According to Lemmas 3.1 and 3.3, any element a € n(S?, (0, 1)) can be “lifted”
to a unique path class in R starting at the point 0. The end point of this path
class will be some integral multiple of 2n. Conversely, suppose we have a path
class fin R starting at 0 and ending at some point which is an integral multiple
of 2n. The path class p, (f) is an element of 7(S*). According to this argument,
path classes in R which end at different integral multiples of 2z must give rise
to different elements of #(S!). Thus, n(S) is an infinite group. This completes
the proof of Theorem 5.1 of Chapter II.

§4. The Fundamental Group of a Covering Space
As a corollary of Lemma 3.3, we have the following fundamental resuit:

Theorem 4.1. Let (X, p) be a covering space of X, %, € X, and xo, = p(%,). Then,
the induced homomorphism p, : n(X, %o) - n(X, X,) is a monomorphism.

This is a direct consequence of the special case of Lemma 3.3 in which g,
and g, are assumed to be closed paths.

This theorem leads to the following question: Suppose %, and X, are points
of X such that p(%y) = p(%;) = x,. How do the images of the homomorphisms

DPx : n(z, x~0) - 7Z(X, xO)’
p, (X, %,) = (X, xo),

compare? The answer is very simple. Choose a class y of paths in X from %,
to %,; this defines an isomorphism u: n(X, %,) — n(X, x,) by the formula
u() = y~'ay. Thus, we obtain the following commutative diagram (see the
exercises in §11.4):

2R, %) —2 (X, Xo)
u v

X, %) — n(X, x,)

Here, v(8) = (p,7) ' B(p,7). But p,(7) is a closed path, and, hence, an element
of n(X, x,). Thus, we see that the images of (X, %,) and of n(X, %,) under p,
are conjugate subgroups of n(X, x¢)-

Next, the question arises, can every subgroup in the conjugacy class of the
subgroup p, n(X, %,) be obtained as the image p, n(X, £,) for some choice of
the point %, € p~1(x,)? Here the answer is Yes. To prove this, note that any
subgroup in this conjugacy class is of the form a™'[p, n(X, %,)]a for some
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choice of the element @ € (X, x,). Choose a closed path f : I - X representing
«. Apply Lemma 3.1 to obtain a path g: I - X covering a with initial point
X,. Let X, be the terminal point of this lifted path. Then, it is readily seen that

p*n(X, gl) = a_l[p*n("?’ gO)]“-

We can summarize what we have proved in the following theorem:

Theorem 4.2. Let (X, p) be a covering space of X and xq € X. Then, the
subgroups p, (X, X) for % € p~'(x,) are exactly a conjugacy class of subgroups
of n(X, x).

The student who desires examples of this theorem can consider the various
examples of covering spaces given in §2.

EXERCISES

4.1. Discuss the effect of the changing the “base point” x, in the statement of Theorem
4.2 to a new base point x; € X.

This conjugacy class of subgroups of 7(X, x,) is an algebraic invariant of
the covering space (X, p). We shall later prove that it completely determines
the covering space up to isomorphism!

§5. Lifting of Arbitrary Maps to a Covering Space

In §3 we studied the “lifting” of paths in X to a covering space X. We now
study the analogous problem for maps of any space Y into X. To discuss this
question, we introduce the following notation: If X and Y are topological
spaces, x € X and y € Y, then the notation f:(X, x)— (Y, y) means f is a
continuous map of X into Y and f(x) = y. With this notation, we can concisely
state our main question as follows: Let (X, p) be a covering space of X, %, € X,
Xo = pP(%0), Yo € Y,and ¢ : (Y, yo) — (X, X,). Under what conditions does there
exist amap ¢ : (Y, yo) = (X, %,) such that the diagram

@ ( s 20)
(Y, yo) p
"X, x0)

is commutative? If such a map @ exists, we say that ¢ can be lifted to ¢, or
that ¢ is a lifting of ¢.

It is easy to obtain a necessary condition for the existence of such a lifting
¢ by consideration of the fundamental groups of the spaces involved. For, if
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we assume such a map @ exists, then we obtain the following commutative
diagram of groups and homomorphisms:

(7,. (X’ 20)
(Y, yo) Pa
X, x,)

Because p, is a monomorphism, the existence of a homomorphism @, :
(Y, yo) = (X, %,), which makes this diagram commutative, is exactly equiva-
lent to the condition that the image of ¢, be contained in the image of p,.
This is our desired necessary condition. The surprising thing is that this
necessary condition is also sufficient.

Theorem 5.1. Let (X, p) be a covering space of X, Y a connected and locally
arcwise-connected space, yo€ Y, %o€ X, and x, = p(X,). Given a map ¢:
(Y, yo) = (X, xo), there exists a lifting ¢:(Y,yo)— (X, %,) if and only if
(p*TL'(Y, yO) < p*TE(X, 20)

ProOF. We have already proved the necessity of the given condition; it
remains to prove it is sufficient. To do this, we must actually define the map
@. The following considerations show that there is an essentially unique way
to define @ if it exists at all. Assume that @ exists; let y be any point of Y.
Because Y is arcwise connected, we may choose a path f: I — Y with initial
point y, and terminal point y. Consider the paths ¢f and @f in X and X,
respectively. The path ¢f is a lifting of the path ¢f, and @(y) is the terminal
point of the path @f.

In view of these considerations, we define the map ¢ : (Y, y,) = (X, %,) as
follows: Given any point y € Y, choose a path f:I — Y with initial point y,
and terminal point y. Then, ¢f is a path in X with initial point x,. Apply
Lemma 3.12 to obtain a path g:I — X such that the initial point of g is X,
and pg = ¢f. Define

@(y) = terminal point of g.

To justify this definition, we must show that ¢(y) is independent of the
choice of the path f. By using Lemma 3.3, we see that we can replace f by an
equivalent path without altering the definition of ¢(y); i.e., @(y) only depends
on the equivalence class « of the path f. Suppose that « and f are two different
equivalence classes of paths in Y from y, to y. Then, af! is a closed path
based at y,; hence, af~! € n(Y, y,) and therefore by the hypothesis of the
theorem, ¢, (af™") € p, n(X, %,). Thus, there is a class of loops based at %, in
X which projects onto (¢, 2)(¢,B)7", or, if (¢, ®) (@, B)~" is “lifted” to a path
in X starting at X, the result is a closed path in X. Hence, if ¢, a and ¢,  are
each lifted to paths in X starting at %,, they have the same terminal point.



§5. Lifting of Arbitrary Maps to a Covering Space 129

Next, we must prove that the function ¢ thus defined is continuous. Let
ye Y and let U be an arbitrary neighborhood of @(y). We must show that
there exists a neighborhood V of y such that (V) = U. Choose an elementary
neighborhood U’ of p@(y) = ¢(y) such that U’ < p(U). Let W be the arc
component of p~1(U’) which contains &(y), and let U” be an elementary
neighborhood of ¢(y) such that U” < p(U n W). Then it is easily shown that
the arc component of p~!(U”), which contains ¢ () is contained in U. Because
@ is continuous, we can choose V such that ¢(V) = U”. We can also choose
V so that it is arcwise connected, because Y is locally arcwise connected. We
leave it to the reader to verify that the neighborhood V thus chosen has the
required properties.

It is obvious from our method of defining ¢ that the required commuta-
tivity relation pg = ¢ holds. Q.E.D.

Remarks: 1. The map ¢ is unique, in view of Lemma 3.2. The uniqueness of
¢ is also clear from the proof of the theorem.

2. This theorem is a beautiful illustration of the general strategy of
algebraic topology: A purely topological question (the existence of a con-
tinuous map satisfying certain conditions) is reduced to a purely algebraic
question. In most cases in algebraic topology where such a reduction can be
effected, the details are much more complicated than in Theorem 5.1.

EXERCISES

5.1. Let G be a topological space with a continuous multiplication u: G x G — G with
a unit e such that (e, x) = p(x, €) = x for any x € X (see Exercise I1.7.5). Let (G, p)
be a covering space of G and & e G a point such that p(¢) = e. Prove that there
exists 2 unique continuous multiplication fi: G x G — G such that & is a unit [i.e.,
ji(€, y) = ji(y, &) = y for any y € G] and p commutes with the multiplication in G
and G [i.e., u(px, py) = pji(x, y)]. (HINT: Use Theorem 5.1 together with the result
of Example 2.4 and the exercise of §I1.7 referred to above.) Assume G is arcwise
connected and locally arcwise connected as usual. Prove also that, if the multipli-
cation y is associative, then so is the multiplication .

5.2. Let G be a connected, locally arcwise-connected topological group with unit e.
Let (G, p) be a covering space of G and & € G such that p(&) = e. Prove that there
exists a unique continuous multiplication u: G x G — G such that G is a topologi-
cal group with unit & and p is a homomorphism. (HINT: Use the results of Exercises
5.1 and I1.7.6 to show the existence of inverses in G.) Prove also that the kernel
of p is a discrete normal subgroup of G and hence is contained in the center of G.

5.3. Apply the considerations of Exercise 5.2 to the case in which G = S!, the multipli-
cative group of all complex numbers of absolute value 1. Examples of covering
spaces of S! were described in §2.

5.4. In Exercises 5.1 and 5.2, if the multiplication in G is commutative, prove that the
multiplication in G is also commutative.
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§6. Homomorphisms and Automorphisms
of Covering Spaces

We wish to obtain some information about the various possible covering
spaces of a given space X. As we shall see, we can gain much insight into this
problem by considering homomorphisms and automorphisms of covering
spaces of X. This procedure is in accordance with the following semimystical
principle which seems to help guide much present-day mathematical research:
Whenever we wish to gain information about a certain class of mathematical
objects, it is usually helpful to consider also the appropriate class of admissible
maps and automorphisms of these objects.

Definition. Let(X,, p,)and (X,, p,)be covering spaces of X. A homomorphism
of (X, p,) into (X, p,) is a continuous map ¢: X, - X, such that the
following diagram is commutative:

Xl — Xz
P\ /z
X

Note that the composition of two homomorphisms is again a homomor-
phism, and that, if (X, p) is a covering space of X, then the identity map X — X
is a homomorphism.

Definition. A homomorphism ¢ of (X,, p,) into (X,, p,) is called an isomor-
phism if there exists a homomorphism ¢ of (X,, p,) into (X,, p;) such that
both compositions ¢ and @y are identity maps. Two covering spaces are
said to be isomorphic if there exists an isomorphism of one onto the other. An
automorphism is an isomorphism of a covering space onto itself; it may or may
not be the identity map.

Automorphisms of covering spaces are usually called covering transforma-
tions in the literature (German: Deckbewegung). Note that a homomorphism
of covering spaces is an isomorphism if and only if it is a homeomorphism in
the usual sense. The set of all automorphisms of a covering space (X, p) of X
is obviously a group under the operation of composing maps. We shall use
the notation A(X, p) to denote this group.

We now derive some basic properties of homomorphisms and automor-
phisms of covering spaces.

Lemma 6.1. Let ¢, and ¢, be homomorphisms of (X,, p,)into (X,, p,). If there
exists any point x € X, such that @o(x) = ¢,(x), then @, = ¢,.

This is a special case of Lemma 3.2.
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Corollary 6.2. The group A(X, p) operates without fixed points on the space
Xiie,if o A(X,p)and ¢ # 1, then @ has no fixed points.

Lemma 6.3. Let (X,, p,) and (X,, p,) be covering spaces of X and %;€ X,,i =
1, 2, points such that p,(%X,) = p,(X,). Then, there exits a homomorphism ¢ of
X, py) into (X, p,) such that ¢(%,) =X, if and only if p, ,n(X,, %) c
P2 X3, X2).

This is a special case of Theorem 5.1.

Corollary 6.4. Under the hypotheses of Lemma 6.3, there exists an isomorphism
@ of (X, p1) onto (X, p,) such that ¢(X,) = %, if and only lfpl*n("?ly X)) =
Pz*n(Xp X2)-

This is a direct consequences of Lemma 6.3, the definition of an isomor-
phism, and Corollary 6.2.

Corollary 6.5. Let (X, p) be a covering space of X and %, %, € p~'(x,), where
Xy € X. There exists an automorphism ¢ € A(X, p) such that ¢(%,) = %, if and
Only lfp*T[(X, gl) = pZ*n(X’ 22)

This is a special case of Corollary 6.4.

Theorem 6.6. Two covering spaces (X,, p,) and (X,, p,) of X are isomorphic if
and only if, for any two points %, € X, and %, € X, such that p,(%,) = p,(%,) =
Xo, the subgroups p, ,n(X,, %,) and pz*n(Xz, X,) belong to the same conjugacy
class in n(X, x,).

Proor. This follows directly from Corollary 6.4 and Theorem 4.2.

This theorem shows that the conjugacy class of subgroups mentioned in
Theorem 4.2 completely determines a covering space up to isomorphism.

Lemma 6.7. Let (X,, p,) and (X,, p,) be covering spaces of X, and let ¢ be a
homomorphism of the first covering space into the second. Then, (X,, ¢) is a
covering space of X,.

ProorF. First, note that any point x € X has an open arcwise-connected
neighborhood U which is an elementary neighborhood of x for both of the
covering spaces simultaneously. We can obtain such a neighborhood by
choosing open elementary neighborhoods U, and U, of x for the coverings
(X,, p,) and (X,, p,), respectively, and then let U be the arc component of
U, n U, which contains x.

Next, we prove that ¢ maps X, onto X,. Let y by any point of X,; we must
show that there exists a point x of X, such that ¢(x) = y. Choose a base point
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x, € X,,and let x, = ¢(x,), X, = p1(%,) = p,(x,). Choose a path f in X, with
initial point x, and terminal point y, and let g = p, f be the image path in X.
By Lemma 3.1, there exists a unique path h in X, with initial point x, and
such that p, h = g. Let x be the terminal point of h. Then the paths ¢h and f
both have the same initial point and p,¢h = g = p, f, hence ph = f by the
uniqueness assertion of Lemma 3.1. Therefore, ¢(x) = y, as required.

It should now be clear how to choose an elementary neighborhood of any
point z € X,. Choose a neighborhood U of x = p,(z) which is elementary for
both coverings, and let W be the component of p; ' (U) which contains z. The
proof that W has the required properties is easy. Q.E.D.

Let (X, p) be a covering space of X such that X is simply connected. If
(X', p') is any other covering space of X, then, by Lemma 6.3, there exists a
homomorphism ¢ of (X, p) onto (X', p’), and, by the lemma just proved, (X, ¢)
is a covering space of X'; i.e., X can serve as a covering space of any covering
space of X. For this reason a simply connected covering space, such as (X, p),
is called a universal covering space. By Theorem 6.6, any two universal
covering spaces of X are isomorphic.

EXERCISES

6.1. Prove that, if X is a simply connected space and (X, p) is a covering space of X,
then p is a homeomorphism of X onto X.

6.2. Determine all covering spaces (up to isomorphism) of each of the following spaces:
S1, the circle; P, the projective plane; the subset {(x, y) e R?: 1 < x? + y* < 4} of
the plane. Exhibit an explicit covering space (X, p) from each isomorphism class.
(SuGGEsTION: Consider the examples in §2.)

6.3. Let X be a topological space whose fundamental group is abelian and which has
a universal covering space. If (X;, p,) and (X, p,) are covering spaces of X, define
(X,,p,) = (X,, p,) if and only if there exists a homomorphism of (X,, p,) onto
(X, p,). Prove that this relation is transitive, reflexive, and, if (X, p,) < (X,, p,)
and (X,, p,) £ (X,, p,), then (X,, p,)isisomorphic to (X,, p,). Finally, prove that
any two covering spaces of X have a least upper bound and a greatest lower bound
with respect to this partial ordering relation. [NoTE: This result is definitely not
true if the hypothesis that 7(X) is abelian is omitted.] (SUGGESTION: Use Lemma
10.1)

6.4. Let
4
. l \‘Y
. —

be a commutative diagram of spaces and continuous maps. Assume that (X, p) is
a covering space of Y and (X, q) is a covering space of Z. Prove that (Y,r) is a
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covering space of Z. [HINT: Let U < Z be an elementary neighborhood for the
covering space (X, q), and let ¥ be an are component of r}(U). Apply Lemma 2.1
to V considered as a subspace of Y]

6.5. Let X be a space which has a universal covering space. If (X,, p,) is a covering
space of X and (X, p,) is a covering space of X,, then (X,, p, p,) is a covering
space of X.

§7. The Action of the Group n(X, x) on the Set p~!(x)

To study further the group of automorphisms of a covering space (¥, p) of X,
we define an action of the group (X, x) on the set p~!(x) for any x € X; ie,
we make n(X, x) operate on the right on the set p~!(x). The definition is very
natural and simple; it depends on Lemmas 3.1 and 3.3. on the lifting of paths.

Definition. Let (X, p) be a covering space of X and x € X. For any point
%€ p~'(x) and any a € n(X, x), define X-« € p~!(x) as follows. By Lemmas 3.1
and 3.3, there exists a unique path class @ in X such that p,(&) = « and the
initial point of & is the point X. Define % - « to be the terminal point of the path
class 4.

We leave it to the reader to verify the formulas:
(X o) =% (ap) (57.1)
£1=%x (5.7.2)

These are exactly the conditions needed for n(X, x) to be a group of right
operators on the set p~!(x) (see Appendix B). We assert that the group n(X, x)
operates transitively on the set p~!(x). To prove this, let %, and %, € p~!(x);
because X is assumed to be arcwise connected, there exists a path class & in
X with initial point %, and terminal point %,. Let « = p (). Then, « is an
equivalence class of closed paths, and obviously X,-a = %, as was to be
proved.

Thus, the set p~*(x) is a homogeneous right m(X, x)-space (as defined in
Appendix B). From the definition, we see immediately that, for any point
% € p~Y(x), the isotropy subgroup corresponding to this point is precisely the
subgroup p*n(X, %) of n(X, x). Hence, as a right n(X, x)-space, p~!(x) is
isomorphic to the space of cosets, n(X, x)/p, n(X, %), and the number of sheets
of the covering is equal to the index of the subgroup p,n(X, X).

We now have the following important result, which establishes a connec-
tion between the group of automorphisms of a covering space and the action
of (X, x) on p~1(x).

Proposition 7.1. For any automorphism ¢ € A(X, p), any point % € p~'(x), and
any a € n(X, x),
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e(X-a) = (pX) o3

i.e., each element ¢ € A(X, p) induces an automorphism of the set p~'(x) con-
sidered as a right n(X, x)-space.

PrOOF. The proof is simple. Life « to a path & in X with initial point % and
such that p_ (&) = «; then % - « is the terminal point of & Now consider the path
¢,(& in X. Its initial point is ¢(%), and its terminal point is (% -a). Next,
observe that

P[0 (D] = (p9) (&) = p, (&) = &;

ie., @, (@) is a lifting of the path a also. Hence, by definition (¢%)-a is the
terminal point of the path ¢, (@); i.c., (p%) « = ¢(%- @), as required.

We can now completely determine the structure of the automorphism
group A(X, p).

Theorem 7.2. Let (X, p) be a covering space of X. Then, the group of automor-
phisms, A(X, p), is naturally isomorphic to the group of automorphisms of the
set p_1(x), x € X, considered as a right n(X, x)-space.

PrOOF. If ¢ is any automorphism of (X, p), then the restriction ¢|p~!(x)is an
automorphism of p~!(x) as a right n(X, x)-space, in view of Proposition 7.1.
Moreover, it follows from Corollary 6.2 that each automorphism ¢ is com-
pletely determined by its restriction, ¢|p~!(x). In other words, the mapping
@ — @|p~'(x)is amonomorphism of A(X, p)into the group of automorphisms
of the right (X, x)-space p~!(x). Next, it follows from Lemma 2.1 of Appendix
B and Corollary 6.5 that the mapping ¢ — ¢|p~'(x) is an epimorphism of
A(X, p) onto the group of automorphisms of p~*(x). Hence, we have the
theorem. Q.E.D.

Corollary 7.3. For any point x € X and any % € p~'(x), the automorphism group
A(X, p) is isomorphic to the quotient group N [p*n(X , 91/p,7(X, X), where
N[p*n(X, %)] denotes the normalizer of the subgroup p,n(X, X) in n(X, x).

This corollary is obtained by applying Theorem 2.2 of Appendix B to
Theorem 7.2.

An especially important class of covering spaces consists of those for which
P, (X, %) is a normal subgroup of (X, x). [Note that this condition is inde-
pendent of the choice of the point X € p~!(x).] Such a covering space is called
regular.

Corollary 7.4. If (X, p) is a regular covering space of X, then A(X,p) is
isomorphic to the quotient group n(X, x)/p,n(X, %) for any x € X and any
Xep(x)
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This follows from Corollary 7.3 because N [p*n(X , ¥)]1 = n(X, x) in this

case.
This corollary applies in particular to the universal covering space:

Corollary 7.5. Let (X, p) be a universal covering space of X. Then, A(X, p) is
isomorphic to n(X), and the order of the group n(X) is equal to the number of
sheets of the covering space (X, p).

Examples

7.1. Consider the covering space (R, p) of the circle S! defined by p(t) =
(sint, cos t) for any ¢t € R (see Example 2.1). Because the real line R is con-
tractible, it is simply connected. Therefore, (R, p) is a universal covering space
of §!, and Corollary 7.5 is applicable. Let us determine the group of automor-
phisms of this covering space. From the known periodicity of the functions
sin ¢t and cos ¢, it is clear that the “translation” T, : R — R defined by T,(¢) =
t + 2nw is an automorphism for any integer n. Moreover, it is clear that, if x
is any point of S! and t, and ¢, are any two points of p~!(x), then there exists
an integer n such that T,(t,) = t,. It follows that every automorphism of the
covering space (R, p) is such a translation (see Lemma 6.1 and Corollary 6.2).
Because the group of all such translations {T,:n e Z} is obviously infinite
cyclic, we have once again proved that (S!) is infinite cyclic.

7.2. Let p: §? » P denote the natural map of the 2-sphere onto its quotient
space, the projective plane; then, (S, p) is a covering space of P (see Example
2.5), and, because S? is simply connected, it is a universal covering space.
Because it is a 2-sheeted covering space, the fundamental group n(P) and the
automorphism group must both be of order 2. It is clear that the automor-
phism group is generated by the antipodal map T:8%— §2, T(x, y,z) =
(—x, —y, —2).

EXERCISES

7.1. Let p: G — G be a continuous homomorphism of topological groups such that
(G, p) is a covering space of G. (It is assumed, of course, that both G and G are
connected and locally arcwise connected.) Let K denote the kernel of p; then K
is a discrete subgroup of G which is contained in the center (see the exercises in
§5). For each element k ¢ K, define 2 map ¢,:G— G by ¢y (x) =x-k =k-x,
Prove that the mapping k — ¢, is an isomorphism of K onto A(G, p).

7.2. Determine the group of automorphisms of the covering spaces described in
Examples 2.2, 2.4, 2.7, 2.8, and 2.9.

§8. Regular Covering Spaces and Quotient Spaces
Let (X, p) be a covering space of X; because p is an open map, X has the

quotient topology induced by p. Thus, we can regard X as being obtained
from X by a process of identifying certain points: For any point x € X, all the
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points of the set p~!(x) are to be identified to a single point. Recall that the
automorphism group A(X, p) permutes the points of the set p~!(x) among
themselves. However, it is not true, in general, that the quotient space
X/A(X, p) is naturally homeomorphic to X, because there may exist distinct
points X,, X, € p~!(x) such that there is no automorphism ¢ € A(X, p) for
which ¢(%,;) = %,; in other words, the automorphism group A(X, p) need not
operate transitively on p~'(x). Indeed, we have the following lemma:

Lemma 8.1 Let (X, p) be a covering space of X. The automorphism group
A(X, p) operates transitively on p~'(x), x € X, if and only if (X, p) is a regular
covering space of X.

This is an immediate consequences of Theorem 4.2 and Corollary 6.5.

As a result, we see that if (X, p) is a regular covering space of X, then X is
naturally homeomorphic to the quotient space X/A4(X, p). This leads to the
following rather natural question: Let Y be a topological space, and let G be
a group of homeomorphisms of Y. Let p: Y — Y/G denote the natural map of
Y onto its quotient space. Under what conditions is (Y, p) a regular covering
space of Y/G with A(Y, p) = G? First, it is clear that there are some necessary
conditions which must be satisfied. For example, if (X, p) is a regular covering
space of X, then A(X, p) acts on X without fixed points (this is the content of
Corollary 6.2). Also, the orbit of any point % € X under the action of the group
A(X, p) [ie., the set of points {¢(%): ¢ € A(X, p)}] is a discrete, closed subset
of X. In fact, the following even stronger condition holds: Every point X € X
has a neighborhood U such that the sets ¢(U), ¢ € A(X, p), are pairwise
disjoint (we can choose U to be a component of the inverse image of an
appropriate elementary neighborhood in X). A group of homeomorphisms
satisfying this condition is said to be properly discontinuous. Note that a
properly discontinuous group of homeomorphisms is fixed point free. It turns
out that these necessary conditions are also sufficient.

Proposition 8.2. Let Y be a connected, locally arcwise-connected topological
space and let G be a properly discontinuous group of homeomorphisms of Y. Let
p: Y > Y/G denote the natural projection of Y onto its quotient space. Then,
(Y, p) is a regular covering space of Y/G, and G = A(Y, p).

ProoOF. Let x € Y/G; we must show that x has an elementary neighborhood.
Choose a point y € Y such that p(y) = x. By hypothesis, there exists a neigh-
borhood N of y such that the sets ¢(N), ¢ € G, are pairwise disjoint. Because
Y is locally arcwise connected, there exists an open, arcwise-connected neigh-
borhood V of y such that ¥V < N. Let U = p(V). We assert that U is an
elementary neighborhood of x. Because p is an open map, U is an open set,
and it is clearly arcwise connected. It is also clear that p maps V in a
one-to-one, continuous fashion onto U; and because p is an open map, it is a
homeomorphism of ¥ onto U. If W is any component of p~! (U) different from
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¥, then there exists a ¢ € G such that W = ¢(V). Because ¢ is a homeomor-
phism of ¥ onto W, and p = pe, it follows that p also maps W homeomor-
phically onto U. Thus, U is an elementary neighborhood of x, and (Y, p)is a
covering space of Y/G. It is obvious that every ¢ € G is an automorphism of
(Y, p); thus, G = A(Y, p). The assumption that G is a proper subgroup of A(Y, p)
is readily seen to imply that A(Y, p) has elements with fixed points. Hence,
G = A(Y, p). Finally, it follows from Lemma 8.1 that (Y, p) is a regular covering
space of Y/G. Q.E.D.

We shall now give some simple examples of this theorem.

Examples

8.1. Let Y = R, the real line, and, for each integer n, define ¢, : R — R by
@u(x)=x+ n. Let G={g,:neZ}. Then, G is a properly discontinuous
group of homeomorphisms of R; indeed, for any x € R, if we let U be the open
interval (x — %, x + %), then the neighborhoods ¢,(U) are pairwise disjoint.
Hence, by the proposition just proved, R is a regular covering space of the
quotient space R/G. By standard theorems on quotient spaces, R/G is homeo-
morphic to the quotient space of the closed unit interval [0, 1] obtained by
identifying the two end points of the interval. Thus, R/G is a circle. Once again
we have proved that the universal covering space of a circle is the real line,
and that the group of automorphisms is infinite cyclic (see Example 7.1).

8.2. Let Y = §”, the unit n-sphere in Euclidean (n + 1)-space, and let T':
S" — S" be the antipodal map defined by T(x) = —x for any x € $". Clearly,
T2 is the identity transformation; hence, T generates a group G of homeomor-
phisms of §", which is cyclic of order 2. It is obvious that G is a properly
discontinuous group of homeomorphisms; therefore, S” is a covering space of
§"/G, which is a real projective n-space. Because S" is simply connected, it is
a universal covering space, and the fundamental group of a real projective
n-space is cyclic of order 2 (see Example 7.2 for the case where n = 2).

EXERCISES

8.1. Let Y be 2 Hausdorff space and let G be a finite group of homeomorphisms of Y
such that each element ¢ # 1 of G has no fixed points. Prove that G is a properly
discontinuous group of homeomorphisms.

8.2. Let Y be a topological group and let G be a discrete subgroup of Y. Prove that
there exists a neighborhood U of the identity such that the sets g- U for g € G are
pairwise disjoint (NOTE: g- U = {g- x : x € U}). HINT: Choose a neighborhood V of
the identity such that ¥ ~ G = {1}. Then prove that there exists a neighborhood
U of the identity such that {x-y™':x,ye U} = V.

8.3. Let Y be a topological group and let G be a discrete subgroup. Let Y/G denote
the space of cosets {G-y:ye Y} with the quotient space topology, and p: Y —
Y/G the natural projection. Prove that (Y, p) is a regular covering space of Y/G
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with A(Y, p) = G, where G operators on Y by multiplication on the left. (HINT: Use
the result of Exercise 8.2 and Proposition 8.2.) Note that Example 8.1 is a special
case of this exercise.

8.4. Let X be a regular topological space, and (X, p) a covering space of X. Prove that
for any compact set C < X, the set {¢ € A(X, p): ¢(C) n C # &} is finite,

8.5. Let Y be a locally compact Hausdorff space, and let G be a group of homeomor-
phisms of Y such that each element ¢ # 1 of G has no fixed points, and for any
compact set C < Y, the set {p € G: p(C)n C # F} is finite. Prove that G is a
properly discontinuous group of homeomorphisms, and that the quotient space
Y/G is locally compact and Hausdorff.

§9. Application: The Borsuk-Ulam Theorem
for the 2-Sphere

As usual, let S” denote the unit n-sphere in R™*!:
S"={xeR"™:|x|=1}.

Forany positive integers m and n, let us agree to callamap f: S™ — S™ antipode
preserving in case f(—x) = —f(x) for any x € §™. The following well-known
theorem, due to the Polish mathematicians K. Borsuk and S. Ulam, has many
interesting consequences.

Theorem 9.1. There does not exist any continuous, antipode-preserving map
f:8" 8" (n>0)

We will prove this theorem only for n < 2. Before giving the proof, we
indicate and prove some interesting corollaries.

Corollary 9.2. Assume that {: S" — R" is a continuous map such that f(—x) =
— f(x) for any x € S". Then, there exists a point x € 8" such that f(x) = 0,

PRrOOF. Assume to the contrary that f(x) # O for all x € §". For any x € §",
define
_ &)

|f&)
Then, g is a continuous map S" — S"~!, which is antipode preserving, contrary
to Theorem 9.1.

g(x)

Corollary9.3. Assume f: S" — R"is a continuous map. Then, there exists a point
x € 8" such that f(x) = f(—x). In particular, f is not one-to-one.

PrROOF. Assume to the contrary that, for every point x € ", f(x) # f(—x).
Define g(x) = f(x) — f(—x). Then, g(—x) = —g(x), and g(x) # O for all x,
which contradicts Corollary 9.2.
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Corollary 9.4. No subset of R" is homeomorphic to S".

This is an obvious consequence of Corollary 9.3.
There is another interpretation of Corollary 9.3 which is interesting. If
f:8" > R" is a continuous map, we can write

f(x) = (fi(x), ..., fa(x)),

where f,(x), ..., f,(x) are continuous real-valued functions on S". Thus, we
may reword the corollary as follows: Let f,, f>, ..., f, be continuous real-valued
functions on S". Then, there exists a point x € S" such that fi(x) = fi(—x) for
i=1, ..., n. For example, if f;(x) and f,(x) denote the temperature and
barometric pressure at a certain instant at any point x on the earth’s surface,
and we assume that the temperature and barometric pressure both vary
continuously over the earth’s surface, then we conclude that there exists a pair
of antipodal points on the surface of the earth which simultaneously have the
same temperature and pressure! This is a topological theorem par excellence;
only topological hypotheses are involved in the statement and proof.

ProoF OF THEOREM 9.1. For n < 2: The case where n = 1 is trivial, because
S! is connected, but S° is not connected. Therefore, we concentrate on the
case where n = 2. The proof is by contradiction; assume that there exists a
continuous antipode-preserving map f: §% — S'. Consider the quotient spaces
of % and S! obtained by identifying diametrically opposite points. These
spaces are the real projective plane P,, and a space which is again homeomor-
phicto §', respectively. We denote by p, : S — P, and p, : S* — S the natural
maps of each space onto its quotient space. Because f is antipode preserving,
it induces a continuous map g: P, » S! such that the following diagram is
commutative:
!

s — St

L]

PZ T Sl
Note that (S, p,) and (S, p,) are 2-sheeted covering spaces of P, and S!,
respectively; this is a consequence of Proposition 8.2 (with G a cyclic group
of order 2). We shall now reach a contradiction by an argument involving the
induced homomorphism

gy :m(Py) > n(S")

of the fundamental groups.

On the one hand, we know that =(P,) is cyclic of order 2, and n(S') is
infinite cyclic. Therefore, the homomorphism g, must be trivial for purely
algebraic reasons.

On the other hand, let o denote an equivalence class of paths on S? such
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that the end points of « are antipodal points of S2. Because f is antipode
preserving, the end points of f,, (x) are antipodal points of S'. Now, p, () and
P14 f+(2) are closed paths on P, and S', and hence represent elements of
the fundamental groups, n(P,) and =n(S'). We assert that p,,(«) # 1 and
P15f+ (@) # 1; this follows by considering the action of the fundamental groups
n(P,, x,) and n(S, y,) on the sets p;!(x,) and py'(y,), respectively (see §7). It
follows from the definitions that p,,(«) and p, , f, () operate nontrivially on
these sets. Next, by commutativity of the diagram above,

g*PZ*(a) = pl*f*(d).

Therefore, g, sends p,, () onto p,, f, (), contradicting the fact that g, is
trivial. Q.E.D.

It is clear that to prove the Brouwer fixed point theorem (see Chapter II)
and the Borsuk-Ulam theorem in the cases where n > 2, we need higher
dimensional analogs of the fundamental group. The fundamental group is
essentially a 1-dimensional invariant of a space and will not suffice for this
purpose. The proof of the Borsuk—Ulam theorem for the case where n > 2
will be given in the last chapter of this book, using cohomology groups and
cup products.

EXERCISES

9.1. Generalize the argument used for proving the Borsuk—-Ulam theorem as follows:
Let X and Y be spaces which are connected and locally arcwise connected, let G
be a group which operates on the left on X and Y such that it is a properly
discontinuous group of homeomorphisms of each, and let f: X — Y be a con-
tinuous G-equivariant map (see Appendix B for the definition). Let p: X — X/G
and q: Y — Y/G denote the natural maps, and let g : X/G — Y/G denote the map
induced by f. Prove that the homomorphism g, : 7(X/G) — n(Y/G) induces an
isomorphism of quotient groups: n{X/G)/p,n(X) = n(Y/G)/q,n(Y).

9.2. Prove that following corollary of the general Borsuk—Ulam theorem: There does
not exist a continuous 1-1 map f:R"™' > R" for any n = 1,

9.3. Does there exist a continuous antipode preserving map f : S* — S* of even degree?
Prove your answer,

§10. The Existence Theorem for Covering Spaces

We have proved that a covering space (X, p) of X is determined up to
isomorphism by the conjugacy class of the subgroup p, (X, %) of n(X, x). This
fact gives rise to the following question: Suppose X is a topological space and
we are given a conjugacy class of subgroups of n(X, x). Does there exist a
covering space (X, p) of X such that p, (X, X) belongs to the given conjugacy
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class? We shall show that this question can be answered affirmatively, pro-
vided X satisfies a slight additional hypothesis.

First, we prove that it suffices to consider this problem for the special case
where the given conjugacy class of subgroups consists of the trivial subgroup

{1}

Lemma 10.1. Let X be a topological space which has a univeral covering space.
Then, for any conjugacy class of subgroups of n(X, x), there exists a covering
space (X, p) of X such that p.7(X, X) belongs to the given conjugacy class.

ProoOF. Let (Y, q) be a universal covering space of X; i.e., Y is simply con-
nected. According to §7, n(X, x) operates transitively on the right on the set
g !(x), and, since Y is simply connected, it operates without any fixed points.
Also, the group of automorphisms A(Y, q) is isomorphic to n(X), and it
operates transitively without fixed points on the left on the set g~ *(x). Choose
a point y € ¢”'(x) and a subgroup G of n(X, x), which belongs to the given
conjugacy class. Let H be the subgroup of A(Y, q) defined as follows: ¢ € H if
and only if there exists an element « € G such that ¢(y) = y-a. It is readily
seen that G and H are isomorphic under the following correspondence: ¢ < a
if and only if ¢(y) = y-a.

Because H is a subgroup of A(Y, g), it is a properly discontinuous group of
homeomorphisms of Y. Let X denote the quotient space Y/H, r: Y — X the
natural projection, and p: X — X the map induced by q: ¥ — X. Then, we
have the following commutative diagram:

By assumption, (Y, g) is a covering space of X, and (Y, r) is a covering space
of X by Proposition 8.2. It follows by an easy argument that (£, p)is a covering
space of X (see Exercise 6.4). Since (X, p) is a covering space of X, the group
7(X, x) operates on the right on the set p~!(x). Let ¥ = r(y) € p~!(x). By our
construction of X, it is clear that the isotropy subgroup of n(X, x) correspond-
ing to the point X is precisely the subgroup G. But this is exactly equivalent
to the assertion that p_n(X, %) = G (see §7). QE.D.

We now consider the following problem: Given a topological space X, does
X have a universal covering space? First, we derive a rather simple necessary
condition. Let (X, p) be a universal covering space of X, let x be an arbitrary
point of X, let X be a point p~'(x), let U be an elementary neighborhood of x,
and let V be the component of p~!(U) which contains the point X. We then
have the following commutative diagram involving fundamental groups:
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v, %) — n(X,%)
(P|V)n P

(U, x) — (X, x)

Because p|V is a homeomorphism of ¥ onto U, (p|V), is an isomorphism.
Note also that, by hypothesis, 7(X, %) = {1}. From these two facts and the
commutativity of this diagram, it follows that i, is a trivial homomorphism;
i.e, image i, = {1}. Thus, we conclude that the space X has the following
property: Every point x € X has a neighborhood U such that the homomorphism
(U, x) = n(X, x) is trivial. A space which has this property is called semi-
locally simply connected.! This definition can also be phrased as follows: A
space X is semilocally simply connected if and only if every point x € X has
a neighborhood U such that any loop in U can be shrunk to a point in X.
The following is a simple example of a space which is connected and locally
arcwise connected, but not semilocally simply connected. For any positive

integer n, let
2 12 2 1
C=(xy)eR"{x——] +y"=—0;
n n

i.e., C, is a circle of radius 1/n with center at the point (1/n, 0). Let X denote
the union of the circles C, for all positive integers n. Then, X is not semilocally
simply connected; the point (0, 0) does not have the required kind of
neighborhood.

Fortunately, most of the topological spaces that arise in problems from
other branches of mathematics where covering spaces are involved are semi-
locally simply connected. For example, all manifolds and manifolds with
boundary have this property.

We shall now prove that this necessary condition for the existence of a
universal covering space is also sufficient.

Theorem 10.2. Let X be a topological space which is connected, locally arcwise
connected, and semilocally simply connected. Then, given any conjugacy class
of subgroups of n(X, x), there exists a covering space (X, p) of X corresponding
to the given conjugacy class [i.e., such that p*n(X, X) belongs to the given
conjugacy class].

PRrooOF. In view of Lemma 10.1, it suffices to prove that X has a universal
covering space. This we will do by a direct construction. To motivate this

! This name is rather long and awkward, but it is an accurate description of the property in
question. It lies between ordinary simple connectivity and true local simple connectivity (which
we do not consider in this book). Moreover, this name is sanctioned by several years of common
acceptance,
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construction, we shall try to describe how an early topologist might have
discovered it.

Let us assume for the moment that X has a universal covering space (X, p).
Choose a base point %, € X, and let x, = p(%). Given any point y € X, there
exists a path class a with initial point X, and terminal point y, because X is
arcwise connected. Because X is simply connected, this path class is unique.
Now consider the function which assigns to the point y the path class p, (%)
in X. It follows from Lemmas 3.1 and 3.3 that this is a one-to-one map of Y
onto the set of path classes in X which have x, as initial point. Thus, we can
identify the points of X with the path classes in X which start at the point x,.
This simple observation is the basis of the following construction.

Choose a base point x, € X and define X to be the set of all equivalence
classes of paths « in X which have x, as their initial point. Define a function
p: X — X by setting p(«) equal to the terminal point of the path class . We
shall now show how to topologize X so that it is a simply connected space
and (X, p) is a covering space of X.

Observe that our hypotheses imply that the topology on X has a basis
consisting of open sets U with the following properties: U is arcwise connected
and the homomorphism z(U) — n(X) (induced by the inclusion map)is trivial.
Equivalently, every closed path in U is equivalent (in X) to a constant path.
For brevity let us agree to call such an open set U basic. Note that, if x and
y are any two points in a basic open set U, then any two paths fand g in U
with initial point x and terminal point y are equivalent (in X).

Given any path « € X and any basic open set U which contains the end
point p(«), denote by (a, U) the set of all paths 8 € X such that, for some path
class « in U, f = a-o’. Then (a, U) is a subset of X. We topologize X by
choosing as a basic family of open sets the family of all such sets (a, U). In
order that the family of all sets of the form (&, U) can be a basis for some
topology on X, it is necessary to prove the following statement: If y € (&, U) N
(B, V), then there exists a basic open set W such that (y, W) < (a, U)n (8, V).
However, the proof of this statement is easy: We choose W to be any basic
open set such that p(y)e W c U n V.

Before proceeding with the proof that (X, p) is a universal covering space
of X, it is convenient to make the following two simple observations:

(a) Leta € X, and let U be a basic open neighborhood of p(«). Then, p|(x, U)
is a one-to-one map of («, U) onto U.
(b) Let U be any basic open set, and let x be any point of U. Then,

pHU) =) (@ V),
A
where {a;} denotes the totality of all path classes in X with initial point

X, and terminal point x. Moreover, the sets (a,, U) are pairwise disjoint.

The proof of these two observations is easy and can be left to the reader.
Note that it follows from (b) that p is continuous. Hence, p|(a, U) is a
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one-to-one continuous map of (a, U) onto U, by (a). We assert that p|(a, U) is
an open map of («, U) onto U. For, any open subset of («, U) is a union of sets
of the form (B, V), where V < U, and hence the fact that p|(«, U) is open also
follows from (a). Thus, p maps («, U) homeomorphically onto U. Since U is
arcwise connected, so is (¢, U). Because the sets (x;, U) occurring in statement
(b) are pairwise disjoint, it follows that any basic open set U < X has all the
properties required of an elementary neighborhood.

Next, we shall prove that the space X is arcwise connected. Let %€ X
denote the equivalence class of the constant path at x,,. Given any point « € X,
it suffices to exhibit an arcjoining the points %, and a. For this purpose, choose
a path f:I - X belonging to the equivalence class a. For any real number
sel, define f,: 1 - X by f(t) = f(st), t € I. Then, f; = f and f, = constant
path at x,. Let a; denote the equivalence class of the path f,. We assert that
the map s — «, is a continuous map I — X, i.e., a path in X. To prove this
assertion, we must check that, for any s, € I and any basic neighborhood U
of f(so), there exists a real number § > O such that if |s — s4| < J, then
a, € (a,,, U). For this purpose, we choose d so that, if |s — so| < J, then f(s) e
U; such a number § exists because f is continuous. Thus, s — a, is a path in
X with initial point X, and terminal point a, as required.

Finally, we must prove that X is simply connected. Now p,n(X, %,) is the
isotropy subgroup corresponding to the point X, for the action of #(X, x) on
p~1(x,) (see §7). Thus, we must determine X, « for any a € n(X, x,). Choose
a closed path f:I — X belonging to the equivalence class «, and, by the
method of the preceding paragraph, define the path s — «, in X. This path in
X has %, as initial point, « € X as terminal point, and is obviously a lifting of
the path f. Hence, %,-a = a, by the definition of the action of n(X, x,) on
p '(xo). Therefore, %, o = %, if and only if @ = 1; hence, the isotropy sub-
group consists of the element 1 alone, as required. QE.D.

EXERCISES

10.1. Prove that for any positive integer n there exists a noncompact surface S and a
properly discontinuous group G of homeomorphisms of S such that G is a free
abelian group of rank 2n and S/G is a compact, orientable surface of genus n.

NOTES

Branched covering spaces

The Riemann surface of a so-called “multiple-valued” analytic function in the
complex plane is usually not a covering space of the domain of definition of the
function because of the existence of “branch points.” It is an example of a
“branched” or “ramified” covering space. The idea of a branched covering
has turned out to be useful in several different areas of mathematics. Usually
branched covering spaces are considered in the context of manifolds rather
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than more general topological spaces, and only branched coverings having
finitely many sheets are allowed. For two quite different rather general
definitions of branched covering spaces, see the article by R.H. Fox entitled
“Covering Spaces with Singularities” in the book Algebraic Geometry and
Topology: A Symposium in Honor of S. Lefschetz (Princeton University Press,
Princeton, N.J., 1957) and the paper by A. Dold entitled “Ramified Coverings,
Orbit Projections, and Symmetric Powers” [Math. Proc. Camb. Phil. Soc. 99
(1986), 65-72]. There is no extensive general theory about branched covering
spaces, although a great deal is known in various special cases, e.g., for
2-dimensional manifolds.

Covering spaces without any connectivity assumptions

It is natural to ask whether the assumptions of connectedness and local
arcwise connectedness, which played such an important role in this chapter,
can be weakened or omitted. Certainly the definition of a covering space can
be formulated so as to avoid any reference to these assumptions; and some of
the basic lemmas and theorems of this chapter can be proved under weakened
hypotheses. For a treatment of covering spaces in such a context, see Spanier
[7]. However, the principal theorems of this chapter, which establish a close
connected between the theory of covering spaces and the fundamental group,
seem to require assumptions of connectedness and local arcwise connected-
ness. In situations where the theory of covering spaces finds natural applica-
tion the spaces involved usually satisfy all the needed hypotheses.

The reader’s attention should be called to the example on p. 158 of Hilton
and Wylie [2]. This example shows the necessity of the assumption that Y be
locally arcwise connected in Theorem 5.1,

Covering spaces as fiber spaces or fiber bundles

The reader who is familiar with the theory of fiber spaces and fiber bundles
will recognize that a covering space as we have defined the term is a locally
trivial fiber space with a discrete fiber. Thus, the theory of covering spaces
may be considered as a chapter in the general theory of fiber spaces. We may
also consider that a covering space (X, p) of X is a fiber bundle with n(X) as
structural group and the discrete homogeneous space n(X)/p,n(X) as the
fiber. The regular covering spaces then correspond to the principal fiber
bundles. This topic is discussed in Sections 13 and 14 of the book The Topology
of Fiber Bundles by N. E. Steenrod (Princeton University Press, Princeton,
N.J., 1951); see also Spanier [7].

Higher homotopy groups of a covering space

For any space X and point x, € X, the notation =,(X, x,) denotes the set of
all homotopy classes of maps (S”, y,) = (X, X,); here y, € S" and it is under-
stood that all homotopies are relative to the chosen base point y, (see §11.4
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for the definition of relative homotopy). Note that, for n = 1, n,(X, x,) =
(X, X,) is just the fundamental group. It is also possible to define in a natural
way an addition in =,(X, X,) for n > 1, so that it becomes an abelian group,
called the nth homotopy group of X. We assert that, if (X, p) is a covering space
of X, the projection p induces an isomorphism of n,(X, x) onto (X, p(x)) for
any point x € X and any integer n > 1. The proof is a simple application of
Theorem 5.1. If ¢ : (S”, yo) — (X, p(x)) is any continuous map, then there exists
a unique map @:(S", yo) — (X, x) such that py = ¢. Moreover, two such
maps, @q, @, : (8", yo) = (X, p(x)) are homotopic (relative to y,) if and only if
the corresponding lifted maps @, @, : (S", yo) = (X, x) are homotopic.
This result is often useful in the study of higher homotopy groups.

Determination of all covering spaces with a finite number of sheets

In general, we probably cannot hope for an effective procedure for determining
all covering spaces of a given space X [or equivalently, of determining all
conjugacy classes of subgroups of z(X)]. However, if the fundamental group
n(X) is finitely presented, then for any given integer n there is an effective
procedure for finding all n-sheeted covering spaces of X. This procedure is
illustrated on pp. 207-210 of Seifert and Threlfall [3].

The Jordan curve theroem

A proof of the Jordan curve theorem using the theory of fundamental groups
and covering spaces may be found in Munkres, [6, pp. 374-386]. This book
also has exercises which contain an outline of a proof of the Brouwer theorem
on “Invariance of Domain” in the plane.
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CHAPTER VI

Background and Motivation
for Homology Theory

§1. Introduction

Homology theory is a subject whose development requires a long chain of
definitions, lemmas, and theorems before it arrives at any interesting results
or applications. A newcomer to the subject who plunges into a formal, logical
presentation of its ideas is likely to be somewhat puzzled because he will
probably have difficulty seeing any motivation for the various definitions and
theorems. It is the purpose of this chapter to present some explanation, which
will help the reader to overcome this difficulty. We offer two different kinds
of material for background and motivation. First, there is a summary of some
of the most easily understood properties of homology theory, and a hint at
how it can be applied to specific problems. Second, there is a brief outline of
some of the problems and ideas which led certain mathematicians of the
nineteenth century to develop homology theory.

It should be emphasized that the reading of this chapter is not a logical
prerequisite to the understanding of anything in later chapters of this book.

§2. Summary of Some of the Basic Properties
of Homology Thoery

Homology theory assigns to any topological space X a sequence of abelian

groups Hy(X), H,(X), H,(X), ..., and to any continuous map f: X > Y a
sequence of homomorphisms

f*:Hn(X)_’Hn(Y)’ n=0’1’2’-"~



148 V1. Background and Motivation for Homology Theory

H,(X) is called the n-dimensional homology group of X, and f, is called the
homomorphism induced by f. We will list in more or less random order some
of the principal properties of these groups and homomorhisms.

(a If f:X > Y is a homeomorphism of X onto Y, then the induced
homomorphism f, : H,(X) —» H,(Y) is an isomorphism for all n. Thus, the
algebraic structure of the groups H,(X),n =0, 1, 2, ..., depends only on the
topological type of X. In fact, an even stronger statement holds: if f is a
homotopy equivalence, then f, is an isomorphism. Thus, the structure of
H,(Y) only depends on the homotopy type of X. Two spaces of the same
homotopy type have isomorphic homology groups (for the definition of these
terms, the reader is referred to Chapter I1, §4 and §8.

(b) If two maps fy, f, : X - Y are homotopic, then the induced homomor-
phisms f;, and f,, : H,(X) » H,(Y) are the same for all n. Thus, the induced
homomorphism f, only depends on the homotopy class of f. By its use, we
can sometimes prove that certain maps are not homotopic.

(c) For any space X, the group Hy(X) is free abelian, and its rank is equal
to the number of arcwise connected components of X. In other words, Hy(X)
has a basis in 1-1 correspondence with the set of arc components of X. Thus,
the structure of Hy(X) has to do with the arcwise connectedness of X. By
analogy, the groups H,(X), H,(X), ... have something to do with some kind
of higher connectivity of X. In fact, one can look on this as one of the principal
purposes for the introduction of the homology grups: to express what may be
called the higher connectivity properties of X.

(d) If X is an arcwise-connected space, the 1-dimensional homology group,
H,(X), is the abelianized fundamental group. In other words, H, (X) is isomor-
phic to n(X) modulo its commutator subgroup.

(e) If X is a compact, connected, orientable n-dimensional manifold, then
H,(X) is infinite cyclic, and H,(X) = {0} for all g > n. In some vague sense,
such a manifold is a prototype or model for nonzero n-dimensional homology
groups.

(f) If X is an open subset of Euclidean n-space, then H,(X) = {0} for all
qzn.

We have already alluded to the fact that sometimes it is possible to use
homology theory to prove that two continuous maps are not homotopic.
Analogously, homology groups can sometimes be used to prove that two
spaces are not homeomorphic, or not even of the same homotopy type. These
are rather obvious applications. In other cases, homology theory is used in
less obvious ways to prove theorems. A nice example of this is the proof of
the Brouwer fixed-point theorem in Chapter VIII, §2. More subtle examples
are the Borsuk—Ulam theorem in Chapter XV, §2 and the Jordan—Brouwer
separation theorem in Chapter VIII, §6.
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§3. Some Examples of Problems Which Motivated
the Development of Homology Theory in the
Nineteenth Century

The problems we are going to consider all have to do with line integrals,
surface integrals, etc., and theorems relating these integrals, such as the well-
known theorems of Green, Stokes, and Gauss. We assume the reader is
familiar with these topics.

As a first example, consider the following problem which is discussed in
most advanced calculus books. Let U be an open, connected set in the plane,
and let V be a vector field in U (it is assumed that the components of V have
continuous partial derivatives in U). Under what conditions does there exist
a “potential function” for V, i.c., a differentiable function F(x, y) such that V
is the gradient of F? Denote the x and y components of V by P(x, y) and
QO(x, y) respectively; then an obvious necessary condition is that

oP 0Q
dy  ox
at every point of U. If the set U is convex, then this necessary condition is also

sufficient. The standard proof of sufficiency is based on the use of Green’s
theorem, which asserts that

&de+Qdy=JJ (Z—Q—Z—P>dxdy.
c p \0X y

Here D is a domain with piecewise smooth boundary C (which may have
several component) such that D and C are both contained in U. By using
Green’s theorem, one can prove that the line integral on the left-hand side
vanishes if C is any closed curve in U. This implies that if (x,, yo) and (x, y)
are any two points of U, and L is any piecewise smooth path in U joining
(x0, ¥o) and (x, y), then the line integral

Jde+Qdy
L

is independent of the choice of L; it only depends on the end points (x,, y,)
and (x, y). If we hold (x,, y,) fixed, and define F(x, y) to be the value of this
line integral for any point (x, y) in U, then F(x, y) is the desired potential
function.

On the other hand, if the open set U is more complicated, the necessary
condition 0P/0y = 0Q/0x may not be sufficient. Perhaps the simplest example
to illustrate this point is the following: Let U denote the plane with the origin
deleted,

y x

——— and = .
x? + y? ¢ x? + y?

P=_
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Then the condition dQ/dx = 0P/dy is satisfied at each point of U. However,
if we compute the line integral

Jde+Qd% (6.3.1)
[

where C is a circle with center at the origin, we obtain the value 2n. Since
27 # 0, there cannot be any potential function for the vector field V = (P, Q)
in the open set U. It is clear where the preceding proof breaks down in this
case: the circle C (with center at the origin) does not bound any domain D
such that D < U.

Since the line integral (1) may be nonzero in this case, we may ask, What
are all possible values of this line integral as C ranges over all piecewise smooth
closed curvesin U? The answer is 2nm, where nranges over all integers, positive
ornegative. Indeed, any of these values may be obtained by integrating around
the unit circle with center at the origin an appropriate number of times in the
clockwise or counterclockwise direction; and an informal argument using
Green’s theorem should convince the reader that these are the only possible
values.

We can ask the same question for any open, connected set U in the plane,
and any continuously differentiable vector field V = (P, Q) in U satisfying the
condition dP/0y = 6Q/éx: What are all possible values of the line integral
(6.3.1) as C ranges over all piece-wise smooth closed curves in U? Anybody
who studies this problem will quickly come to the conclusion that the answer
depends on the number of “holes” in the set U. Let us associate with each hole
the value of the integral (6.3.1) in the case where C is a closed path which goes
around the given hole exactly once and does not encircle any other hole
(assuming such a path exists). By analogy with complex function theory, we
will call this number the residue associated with the given hole. The answer
to our problem then is that the value of the inegral (6.3.1) is some finite, integral
linear combination of these residues, and any such finite integral linear com-
bination actually occurs as a value.

Next, let us consider the analogous problem in 3-space: we now assume
that U is an open, connected set in 3-space, and V is a vector field in U with
components P(x, y, z), Q(x, y, z), and R(x, y, z) (which are assumed to be
continuously differentiable in U). Furthermore, we assume that curl V = 0. In
terms of the components, this means that the equations

oy  0z> 6z ox’ ox  dy

hold at each point of U. Once again it can be shown that if U is convex, then
there exists a function F(x, y, z) such that V is the gradient of F. The proof is
much the same as the previous case, except that now one must use Stokes’s
theorem rather than Green’s theorem to show that the line integral
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dex+Qdy+Rdz

is independent of the path.
In case the domain U is not convex, this proof may break down, and it can
actually happen that the line integral

& Pdx+Qdy+ Rdz (6.3.2)
[

is nonzero for some closed path C in U. Once again we can ask: What are all
possible values of the line integral (2) for all possible closed paths in U? The
“holes” in U are again what makes the problem interesting; however, in this
case there seem to be different kinds of holes. Let us consider some examples:

(@) Let U = {(x, y, 2)|x> + y* > 0}, i.e., U is the complement of the z axis.
This example is similar to the 2-dimensional case treated earlier. If C denotes
a circle in the xy plane with center at the origin, we could call the value of the
integral (6.3.2) with this choice of C the residue corresponding to the hole in
U. Then the value of the integral (6.3.2) for any other choice of C in U would
be some integral multiple of this residue; the reader should be able to convince
himself of this in any particular case by using Stokes’s theorem.

(b) Let U be the complement of the origin in R3. If £ is any piecewise
smooth orientable surface in U with boundary C consisting of one or more
piecewise smooth curves, then according to Stokes’s theorem,

JdR 0Q
ide+Qdy+Rdz—JJ<E—E>dydz
z

dP OR aQ opP
+ (E_E>d2dx+ (E—E>dxdy.

We leave it to the reader to convince himself that any piecewise smooth closed
curve ¢ in U is the boundary of such a surface X, hence by Stokes’s theorem,
the integral around such a curve is zero (the integral on the right-hand side is
identically zero). Thus, the same argument applies as in the case where U is
convex to show that any vector fixed V in U such that curl V.= 01in U is of
the form V = grad F for some function F. The existence of the hole in U does
not matter in this case.

(c) It is easy to give other examples of domains in 3-space with holes in
them such that the hole does not matter. The following are such examples: let
U, = {(x, 3, 2)|x* + y* + 22 > 1}; let U, be the complement of the upper half
(z = 0) of the z axis; and let U, be the complement of a finite set of points in
3-space. In each case, if V is a vector field in U, such that curl V = 0, then
V = grad F for some function F. The basic reason is that any closed curve C
in U; is the boundary of some oriented surface X in U; in each of the cases
i=1,2,0r3.
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There is another problem for 3-dimensional space which involves closed
surfaces rather than closed curves. It may be phrased as follows: Let U be a
connected open set in R? and let V be a continuously differentiable vector
field in U such that div V = 0. Is the integral of (the normal component of) V
over any closed, orientable piecewise smooth surface X in U equal to O0? If not,
what are the possible values of the integral of V over any such closed surface?
If U is a convex open set, then any such integral of 0. One proves this by the
use of Gauss’s theorem (also called the divergence theorem):

JJV = JJJ(div V)dx dy dz.
) D

Here D is a domain in U with piecewise smooth boundary X (the boundary
may have several components). The main point is that a closed orientable
surface X contained in a convex open set U is always the boundary of a domain
D contained in U. However, if the open set U has holes in it, this may not be
true, and the situation is more complicated. For example, suppose that U is
the complement of the origin in 3-space, and V is the vector field in U with
components P = x/r3, Q = y/r?, and R = z/r*, where r = (x? + y2 + 22)'? is
the distance from the origin. It is readily verified that div V = 0; on the other
hand, the integral of V over any sphere with center at the origin is readily
calculated to be +4m; the sign depends on the orientation conventions. The
set of all possible values of the surface integral {5 V for all closed, orientable
surfaces X in U is precisely the set of all integral multiples of 4.

On the other hand, if U is the complement of the z axis in 3-space, then the
situation is exactly the same as in the case where U is convex. The reason is
that any closed, orientable surface in U bounds a domain D in U; the existence
of the hole in U does not matter.

There is a whole series of analogous problems in Euclidean spaces of
dimension four or more. Also, one could consider similar problems on curved
submanifolds of Euclidean space. Although there would doubtless be interest-
ing new complications, we have already presented enough examples to give
the flavor of the subject.

At some point in the nineteenth century certain mathematicians tried to
set up general procedures to handle problems such as these. This led them to
introduce the following terminology and definitions. The closed curves, sur-
faces, and higher-dimensional manifolds over which one integrates vector
fields, etc., were called cycles. In particular, a closed curve is a 1-dimensional
cycle, a closed surface is a 2-dimensional cycle, and so on. To complete the
picture, a 0-dimensional cycle is a point. It is understood, of course, that cycles
of dimension > 0 always have a definite orientation, i.e., a 2-cycle is an oriented
closed surface. Moreover, it is convenient to attach to each cycle a certain
integer which may be thought of as its “multiplicity.” To integrate a vector
field over a 1-dimensional cycle or closed curve with multiplicity + 3 means
to integrate it over a path going around the curve 3 times; the result will be
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three times the value of the integral going around it once. If the multiplicity
is —3, then one integrates three times around the curve in the opposite
direction. If the symbol ¢ denotes a 1-dimensional cycle, then the symbol 3¢
denotes this cycle with the multiplicity + 3, and — 3c denotes the same cycle
with multiplicity — 3. It is also convenient to allow formal sums and linear
combinations of cycles (all of the same dimension), that is, expressions like
3¢; + 5¢, — 10c;, where ¢,, ¢,, and ¢, are cycles. With this definition of
addition, the set of all n-dimensional cycles in an open set U of Euclidean
space becomes an abelian group; in fact it is a free abelian group. It is
customary to denote this group by Z,(U). There is one further convention that
is understood here: If ¢ is the 1-dimensional cycle determined by a certain
oriented closed curve, and ¢’ denotes the cycle determined by the same curve
with the opposite orientation, then ¢ = —¢’. This is consistent with the fact
that the integral of a vector field over ¢’ is the negative of the integral over c.
Of course, the same convention also holds for higher-dimensional cycles.

It is important to point out that 1-dimensional cycles are only assumed to
be closed curves; they are not assumed to be simple closed curves. Thus, they
may have various self-intersections or singularities. Similarly, a 2-dimensions
cycle in U is an oriented surface in U which is allowed to have various
self-intersections or singularities. It is really a continuous (or differentiable)
mapping of a compact, connected, oriented 2-manifold into U. Because of the
possible existence of self-intersections or singularities, these cycles are often
called singular cycles.

Once one knows how to define the integral of a vector field (or differential
form) over a cycle, it is obvious how to define the integral over a formal linear
combination of cycles. If ¢,, ..., ¢, are cycles in U and

z2=n¢y + 0+ By,

where n,, n,, ..., n, are integers, then

k
z i=1 o
for any vector field V in U.

The next step is to define an equivalence relation between cycles. This
equivalence relation is motivated by the following considerations. Assume
that U is an open set in 3-space.

(a) Let u and w be 1-dimensional cycles in U, i.e., u and w are elements of the
goups Z,(U). Then we wish to define u ~ w so that this implies

Jv-L

for any vector field V in U such that curl V = 0.
(b) Letu and w be elements of the group Z,(U). Then we wish to define u ~ w
so that this implies
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Jv= Ly

for any vector field V in U such that div vV = 0.

[

can be rewritten as follows, in view of our conventions:

[ v-o

Thus, u ~wifand only ifu — w ~ 0.

In case (a), Stokes’s theorem suggests the proper definition, while in case
(b) the divergence theorem points the way.

We will discuss case (a) first. Suppose we have an oriented surface in U
whose boundary consists of the oriented closed curves ¢,, c;, ..., ¢. The
orientations of the boundary curves are determined according to the conven-
tions used in the statement of Stokes’s theorem. Then the 1-dimensional cycle

Note that the condition

z=c 4+ 4+
is defined to be homologous to zero, written
z~0.

More generally, any linear combination of cycles homologous to zero is also
defined to be homologous to zero. The set of all cycles homologous to zero is
a subgroup of Z,(U) which is denoted by B, (U). We define z and 2z’ to be
homologous (written z ~ z’) if and only if z — z’ ~ 0. Thus, the set of equiva-
lence classes of cycles, called homology classes, is nothing other than the
quotient group

H,(U) = Z,(U)/B,(U)

which is called the 1-dimensional homology group of U.

Analogous definitions apply to case (b). Let D be a domain in U whose
boundary consists of the connected oriented surfaces s;, s,, ..., s;. The
orientation of the boundary surfaces is determined by the conventions used
for the divergence theorem. Then the 2-dimensional cycle

Z=Sl+52+"'+sk
is by definition homologous to zero, written z ~ 0. As before, any linear
combination of cycles homologous to zero is also defined to be homologous
to 0, and the set of cycles homologous to 0 constitutes a subgroup, B,(U), of
Z,(U). The quotient group

Hy(U) = Z,(U)/B,(U)

is called the 2-dimensional homology group of U.
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Let us consider some examples. If U is an open subset of the plane, then
H,(U)is a free abelian group, and it has a basis (or minimal set of generators)
in 1-1 correspondence with the holes in U. If U is an open subset of 3-spaces,
then both H,(U) and H,(U) are free abelian groups, and each hole in U
contributes generators to H,(U) or H,(U), or perhaps to both. This helps
explain the different kinds of holes in this case.

In principle, there is nothing to stop us from generalizing this procedure,
and defining for any topological space X and non-negative integer n the group
Z,(X) of n-dimensional cycles in X, the subgroup B,(X) consisting of cycles
which are homologous to zero, and the quotient group

H,(X) = Z,(X)/B,(X),

called the n-dimensional homology group of X. However, there are difficulties
in formulating the definitions rigorously in this generality; the reader may
have noticed that some of the definitions in the preceding pages were lacking
in precision. Actually, it took mathematicians some years to surmount these
difficulties. The key idea was to think of an n-dimensional cycle as made up
of small n-dimensional pieces which fit together in the right way, in much the
same way that bricks fit together to make a wall. In this book, we will use
n-dimensional cycles that consist of n-dimensional cubes which fit together in
a nice way. To be more precise, the “singular” cycles will be built from
“singular” cubes; a singular n-cube in a topological space X is simply a
continuous map T:I"— X, where I" denotes the unit n-cube in Euclidean
n-space.

There is another complication which should be pointed out. We mentioned
in connection with the examples above that if U is an open subset of the plane
or 3-space, then the homology groups of U are free abelian groups. However,
there exist open subsets U of Euclidean n-space for all n > 3 such that the
group H,(U) contains elements of finite order (compare the discussion of the
homology groups of nonorientable surfaces in §VIII.4). Suppose that ue
H,(U) is a homology class of order k # 0. Let z be a 1-dimensional cycle in
the homology class u. Then z is not homologous to 0, but k- z is homologous
to 0. This implies that if V is any vector field in U such that curl V =0,

then
j v-o,

Toseethis,let [,V = r. Then [,, V = k-r; but [,, V = Osince kz ~ 0. Therefore
r = 0. It is not clear that this phenomenon was understood in the nineteenth
century; at least there seems to have been some confusion in Poincaré’s early
papers on topology about this point. Of course, one source of difficulty is the
fact that this phenomenon eludes our ordinary geometric intuition, since it
dows not occur in 3-dimensional space. Nevertheless it is a phenomenon of
importance in algebraic topology.
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Before ending this account, we should make clear that we do not claim that
the nineteenth century development of homology theory actually proceeded
along the lines we have just described. For one thing, the nineteenth centry
mathematicians involved in this development were more interested in complex
analysis than real analysis. Moreover, many of their false starts and tentative
attempts to establish the subject can only be surmised from reading the
published papers which have survived to the present. For a fairly readable
nineteenth century account of some of these ideas, the reader is referred to the
famous book by J. C. Maxwell [6].

The modern development of these same ideas led to De Rham’s theorem;
see Appendix A.

NOTES

The history of algebraic topology

The early development of what is now called algebraic topology occurred
mainly in the nineteenth century. Even in the early part of that century some
mathematicians, such as Gauss, foresaw the need for such a development. In
those days topology was referred to as “analysis situs.” The work of Riemann
on complex function theory in the middle of the century was a strong stimulus
for the further development of the subject, especially for the topology of
surfaces. Unfortunately, Riemann never published his ideas on algebraic
topology; the brief “Fragment” [ 10] published after his death in his collected
works seems rather vague and incomprehensible. Riemann contracted tuber-
culosis in 1862 and spent much of the few remaining years of his life in Italy,
trying to regain his health. While there, he discussed his ideas on topology with
some Italian mathematicians, especially Professor Enrico Betti of Pisa. Some
of Betti’s letters to other Italian mathematicians have been published; he writes
of the things he has learned from Riemann. Betti published on these topics in
a paper [1] after Riemann’s death. In 1895 Poincaré tried to further develop
the ideas of Riemann and Betti in a long paper entitled “Analysis Situs” [7].
The Danish mathematician P. Heegard in his Copenhagen thesis of 1898
criticized certain aspects of Poincaré’s paper. This apparently forced Poincaré
to reexamine his ideas, and in subsequent “Complements” to his original paper
on analysis situs he changed his point of view and created what was to become
homology theory.

Background and motivation for homology theory

The student may find it helpful to read further articles on this subject. Several
such articles are listed in the bibliography blow. The books by Blackett [11]
and Frechet and Fan [12] have bibliographies which list many additional
articles that are helpful and interesting.
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CHAPTER VII

Definitions and Basic Properties
of Homology Theory

§1. Introduction

This chapter gives formal definitions of the basic concepts of homology theory,
and rigorous proofs of their basic properties. For the most part, examples and
applications are postponed to Chapter VIII and subsequent chapters.

For the rest of this book, all abelian groups will be written additively, unless
there is an explicit statement to the contrary.

§2. Definition of Cubical Singular Homology Groups

First, we list some terminology and notation which will be used from here on.

R = real line.

I = closed unit interval, [0, 1].

R"=R x R x --- x R (nfactors, n > 0) Euclidean n-space.
I"=1 x1I x -+ x I (nfactors, n > 0) unit n-cube.

By definition, I° is a space consisting of a single point.
Any topological space homeomorphic to I" may be called an n-dimensional
cube.

Definition 2.1. A singular n-cube in a topological space X is a continuous map
T:I"> X (n>0).

Note the special casesn = 0and n = 1.
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0,(X) denotes the free abelian group generated by the set of all singular
n-cubes in X. Any element of Q,(X) has a unique expression as a finite linear
combination with integral coefficients of n-cubes in X.

Definition 2.2. A singular n-cube T:I" — X is degenerate if there exists an
integer i, 1 < i < n, such that T(x,x,, ..., x,) does not depend on x;.

Note that a singular 0-cube is never degenerate; a singular 1-cube T: I - X
is degenerate if and only if T is a constant map.

Let D,(X) denote the subgroup of Q,(X) generated by the degenerate
singular n-cubes, and let C,(X) denote the quotient group Q,(X)/D,(X). The
latter is called the group of cubical singular n-chains in X, or just n-chains in
X for simplicity.

Remark: If X = (¥, the empty set, then Q,(X) = D,(X) = C,(X) = {0} for all
n>0.

If X is a space consisting of a single point, then there is a unique singular
n-cube in X for all n > 0; this unique n-cube is degenerate if n > 1. Hence
Co(X) is an infinite cyclic group and C,(X) = {0} for n > 0 in this case.

For any space X, Dy(X) = {0}, hence Cy(X) = Qo(X).

For any space X, it is readily verified that for n > 1, C,(X) is a free abelian
group on the set of all nondegenerate n-cubes in X (or, more precisely, their
cosets mod D,(X)).

2.1. The Faces of a Singular n-Cube (n > 0)
Let T:I" > X be a singular n-cube in X. Fori=1, 2, ..., n, we will define
singular (n — 1)-cubes
AT BT:I"'5X
by the formulas
AT, o Xeg) = T, ooy Ximyy 0, X4, oy Xy ),
BT(xy,...,%—1) =T(xy, .3 Xi—1,0, X4y ..., Xp—y)-

A; T is called the front i-face and B;T is called the back i-face of T
These face operators satisfy the following identities, where T: I" — X is an
n-cube,n > l,and 1 <i<j<n:

AiA(T) = A A(T),
B:B(T) = B,_, B(T),
A;B(T) = B;_, A(T),
B A(T) = A;_, B(T).

(7.2.1)
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We now define the boundary operator; it is a homomorphism 4, : 0,(X) —
0,_1(X),n = 1. To define such a homomorphism, it is only necessary to define
it on the basis elements, the singular cubes, by the basic property of free abelian
groups. Usually we will write ¢ rather than 4, for brevity.

Definition 2.3. For any n-cube T, n > 0,

o(T) = ¥ (- VAT - BT]

The reader should write out this formula explicitly for the cases n = 1, 2,
and 3, and by drawing pictures convince himself that it does in some sense
represent the oriented boundary of an n-cube T. The following are the two most
important properties of the boundary operator:

On1(0n(T)) =0 (n>1), (7.22)
8,(D,(X)) < D,_,(X) (n>0). (7.2.3)

The proof of (7.2.2) depends on identities (7.2.1); the proof of (7.2.3) is easy.
As a consequence of (7.2.3), d, induces a homomorphism C,(X) — C,_,(X),
which we denote by the same symbol, é,. Note that this new sequence of
homomorphisms ¢,, é,, ..., 4,, ..., satisfies Equation (7.2.2). 4,-, 6, = 0.
We now define

Z,(X) = kernel 9, = {u e C,(X)|0(u) =0} (n> 0),
B,(X) = image 0,4 = 0p+1(Cpr1(X)) (n 2 0).
Note that as a consequence of the equation d,_,d, = 0, it follows that
B(X)c Z,(X) forn>0.
Hence we can define
H,(X)=Z,(X)/B,(X) forn>0.

It remains to define Hy(X) and H,(X) for n < 0, which we will do in a minute.
H,(X) is called the n-dimensional singular homology group of X, or the n-
dimensional homology group of X for short. These groups H,(X) will be our
main object of study. The groups C,(X), Z,(X), and B,(X) are only of second-
ary importance. More terminology: Z,(X) is called the group of n-dimensional
singular cycles of X, or group of n-cycles. B,(X) is called the group of n-
dimensional boundaries or group of n-dimensional bounding cycles.

To define Hy(X), we will first define Z,(X), then set Hy(X) = Zy(X)/Bo(X)
as before. It turns out that there are actually two slightly different candidates
for Zo(X), which give rise to slightly different groups H,(X). In some situations
one definition is more advantageous, whereas in other situations the other is
better. Hence we will use both. The difference between the two is of such a
simple nature that no trouble will resuit.
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2.2. First Definition of Hy(X)

This definition is very simple. We define Z,(X) = C,(X) and
Ho(X) = Zo(X)/Bo(X) = Co(X)/Bo(X).

There is another way we could achieve the same result: we could define
C.(X) = {0} for n < 0, define 9, : C,(X) = C,_;(X) in the only possible way for
n <0 (ie., 6, =0 for n < 0), and then define Z,(X) = kernel d,. More gen-
erally, we could then define Z,(X) = kernel 9, for all integers n, positive or
negative, B,(X) = 0,_,(C,+ (X)) c Z,(X), and H,(X) = Z,(X)/B,(X) for all n.
Of course we then obtain H,(X) = {0} for n < 0.

Note that H,(X) is defined even in case X is empty.

2.3. Second Deﬁnition—~The Reduced 0-dimensional
Homology Group, H,(X)

For this purpose, we define a homomorphism ¢ : Co(X) — Z, where Z denotes
the ring of integers. This homomorphism is often called the augmentation.
Since Cy(X) = Qo(X) is a free group on the set of O-cubes, it suffices to define
¢(T) for any O-cube T in X. The definition is made in the simplest possible
nontrivial way: ¢(T) = 1. It then follows that if u = ) ;n,T; is any O-chain,
e(u) = 3 ;n; is just the sum of the coefficients. One now proves the folllowing
important formula:

god; =0. (7.2.4)

To prove this formula, it suffices to verify that for any singular 1-cube T in X,
£(¢,(T)) = 0, and this is a triviality.

We now define Z,(X) = kernel &. Formula (7.2.4) assures us that By(X) <
Z,(X), hence we can define

HO(X) = ZO(X)/BO(X)'

H,(X)is called the reduced 0-dimensional homology group of X. To avoid some
unpleasantness later, we agree to only consider the reduced group Hy(X) in
case the space X is nonempty. It is often convenient to set H,(X) = H,(X) for
n>0.

We will now discuss the relation between the groups Hy(X) and Hy(X).
First of all, note that Z,(X) is a subgroup of Zy(X) = Co(X), hence Hy(X) is
a subgroup of Hy(X). Let ¢ : Hy(X) » Hy(X) denote the inclusion homomor-
phism. Second, from Formula (7.2.4), it follows that &(By(X)) = 0, hence the
augmentation ¢ induces a homomorphism.

ee - Ho(X) > Z.
Proposition 2.4. The following sequence of groups and homomorphisms

0= Ao(X) 5 Hy(X) 3 Z -0
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is exact. Then, we may identify Hy(X) with the kernel of ,. (The space X is
assumed nonempty.)

The proof is easy. It follows that Hy(X) is the direct sum of Hy(X) and an
infinite cyclic subgroup; however, this direct sum decomposition is not natural
or canonical; the infinite cyclic summand can often be chosen in many different
ways.

Examples

2.1. X = space consisting of a single point. Then we find that

Hy(X)~ Z,
H,(X)= {0} forn 30,
HO(X) = {0}

¢, Hy(X) - Z is an isomorphism.

Proposition 2.6. Let X be a nonempty arcwise-connected topological space.
Then e, : Hy(X) — Z is an isomorphism, and Hy(X) = {0}.

To prove this proposition, it suffices to observe that ¢: Cy(X) — Z is an
epimorphism, and to prove the B,(X) = kernel &. The details are left to the
reader.

Proposition 2.7. Let X, y e T, denote the set of arc components of the topo-
logical space X. Then the homology group H,(X) is naturally isomorphic to the
direct sum of the groups H,(X,) for all y e T.

In other words, the n-dimensional homology group of any space is the
direct sum of the n-dimensional homology groups of all its arc components.

Proor. Note that each singular n-cube lies entirely in one of the arc com-
ponents. Hence, Q,(X) breaks up naturally into a direct sum:

0a(X) = Zr 0.(X,).

Similarly, with D,(X):
D(X) =}, DuX,);

yell

hence on passing to quotient groups we see that
C(X)=Y C,(X,) (directsum).
yell
Next, note that if a singular n-cube is entirely contained in the arc component

X,, thenits faces are also entirely contained in X,,. It follows that the boundary
0, C(X) > C,_(X) maps C,(X,) into C,_,(X,). Therefore, we have the fol-
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lowing direct sum decompositions:
Z,(X) = Zr Z,(X,),
ye

B,(X) = Zr B,(X,),

and hence
H(X) =Y H.(X,). QE.D.
yell

Corollary 2.5. For any topological space X, Hy(X) is a direct sum of infinite
cyclic groups, with one summand for each arc comporent of X. In other words,
Hy(X) is a free abelian group whose rank is equal to the number of arc
components of X.

Note that such a simple direct sum theorem does not hold for Hy(X). For
example, if X has exactly two arcwise connected components, what is the
structure of Hy(X)?

EXERCISES

2.1. Determine the structure of the homology group H(X). n > 0, if X is (a) the set of
rational numbers with their usual topology. (b) a countable, discrete space.

These example shows the relation between the structure of Hy(X) and
certain topological properties of X (the number of arcwise-connected com-
ponents). In an analogous way, the algebraic structure of the groups H,(X)
for n > 0 express certain topological properties of the space X. Naturally,
these will be properties of a more subtle nature. One of our principal aims will
be to develop methods of determining the structure of the groups H,(X) for
various spaces X.

§3. The Homomorphism Induced by
a Continuous Map

Homology theory associates with every topological space X the sequence of
groups H(X), n=0, 1, 2, .... Equally important, it associates with every
continuous map f: X — Y between spaces a sequence of homomorphisms
fo i H(X)—-> H,(Y), n=0, 1, 2, .... Certain topological properties of the
continuous map f are reflected in algebraic properties of the homomorphisms
S+ We will now give the definition of f,, which is very simple.

First of all, we define homomorphisms f, : Q,(X) — Q,(Y) by the simple
rule

f#(T) =fT
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for any singular n-cube T:I"—> X, n=0, 1, 2, .... We now list the main
properties of this homomorphism f,:

(3.1) If T'is a degenerate singular n-cube, so is £, (T). Hence f, maps D,(X)
into D,(Y), and induces a homomorphism of C,(X) into C,(Y). We will denote
this induced homomorphism by the same symbol,

fo i1 G(X)> C(Y), n=0,1,2,...,

to avoid an undue proliferation of notation.
(3.2) The following diagram is commutative forn=1,2,3,...:

0.X) 2 oyY)

s
0,1 (X) —5 0., (V)

This fact can also be expressed by the equation &, o fy = fy o J,, or by the
statement that f, commutes with the boundary operator. [To prove this, one
observes that f,(A4;T) = A;(f4 T) and f,(B;T) = B,(f4(T)).] It follows that
the following diagram is commutative forn =1, 2, 3, ....

C(xX) —I ¢ v)
L
S

Cn—l(X) I n—l(Y)

Hence f, maps Z,(X)into Z,(Y)and B,(X)into B,(Y)for all n > 0 and induces
a homomorphism of quotient groups, denoted by

fu:H(X)> H(Y), n=0,12,....

This is our desired definition.
(3.3) The following diagram is also readily seen to be commutative:

Co(X)_
4 Z

Co(Y)

Hence f, also maps Z,(X)into Z,(Y) and induces a homomorphism of H,(X)
into A,(Y) which is denoted by the same symbol:

fut Bo(X) - Ho(Y).

The student should verify that the following two diagrams are also
commutative:
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Hy(X) —— Ho(X)  Ho(X)_ .

L s

~ ¢ ey
Ho(Y) —— Ho(Y)  Ho(Y)
Here the notation is that of Proposition 2.4.
(3.4) Let f: X - X denote the identity map. It is easy to verify successively
that the following homomorphisms are identity maps:

S 1 Qa(X) > Qu(X),
J# 1 GX) - Cu(X),
Jat Hy(X) — Hy(X),

and _ _
Jut H(X) - H(X).

Of course, the real interest lies in the fact that f, is the identity.

(3.5) Let X, Y, and Z be topological spaces, and g: X - Y, f: Y > Z
continuous maps. We will denote by fg: X — Z the composition of the two
maps. Under these conditions, we have the homomorphisms f,g, and (fg),
from H,(X) to H,(Z) for all n > 0, and from Hy(X) to Hy(Z). We assert that
these two homomorphisms are the same in all cases:

(fg)* = f*g*-

To prove this assertion, one verifies first that (fg), and f,g, are the same
homomorphisms from Q,(X) to Q,(Z), then that (fg), and f, g, are the same
homomorphisms from C,(X) to C,(Z). From this the assertion follows.

Since Properties (3.4) and (3.5) are so obvious, the reader may wonder why
we even bothered to mention them explicitly. These properties will be used
innumerable times in the future, and it is in keeping with the customs of
modern mathematics to make explicit any axiom or theorem that one uses.

Caution: If f:X —» Y is a 1-1 map, it does not necessarily follow that
St Hy(X) > H,(Y)is 1-1; similarly, the fact that f is onto does not imply that
£, is onto. There will be plenty of examples to illustrate this point later.

EXERCISES

3.1. Let X, be an arccomponent of X, and f: X, » X the inclusion map. Prove that
f. - H{(X,)— H,(X)is a monomorphism, and the image is the direct summand of
H,(X) corresponding to X, as described in Proposition 2.6. Consequence: the
direct sum decomposition of Proposition 2.6 can be described completely in terms
of such homomorphisms which are induced by inclusion maps.

3.2 Let X and Y be spaces havng a finite number of arcwise-connected components,
and f: X - Y a continuous map. Describe the induced homomorphism f, :
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Hy(X) - Hy(Y). Generalize to the case where X or Y have an infinite number of
arc components.

3.3 Let A be a retract of X with retracting map r: X — A, and let i: A —» X denote
the inclusion map. Prove that r, : H,(X) - H,(A) is an epimorphism, i, : H(4) —»
H,(X) is a monomorphism, and that H,(X) is the direct sum of the image of i,
and the kernel of r,.

§4. The Homotopy Property of
the Induced Homomorphisms

In this section we will prove a basic property of the homomorphism induced
by a continuous map. This property is to a large extent responsible for the
distinctive character of a homology theory, and is one of the factors making
possible the computation of the homology groups H,(X) for many spaces X.

Definition 4.1. Two continuous maps f, g: X — Y are homotopic (notation:
f ~ g) if there exists a continuous map F : I x X — Y such that F(0, x) = f(x)
and F(1, x) = g(x) for any x € X.

Intuitively speaking, f ~ g if and only if it is possible to “continuously
deform” the map f into the map g. The reader should prove that ~ is an
equivalence relation on the set of all continuous maps from X into Y. The
equivalence classes are called homotopy classes. The classification of con-
tinuous maps into homotopy classes is often very convenient; for example,
usually there will be uncountably many continuous maps from X into Y, but
if X and Y are reasonable spaces, there will often only be finitely many or
countably many homotopy classes.

Theorem 4.2. Let f and g be continuous maps of X into Y. If f and g are
homotopic, then the induced homomorphisms, f, and g,, of H,(X) into H(Y)
are the same. Also, f, = g, : Hy(X) > Hy(Y).

PROOF. Let F:I x X — Y be a continuous map such that F(0, x) = f(x) and
F(1, x) = g(x). We will use the continuous map F to construct a sequence of
homomorphisms

@p: Ci(X)> C, (YY), n=0,1,2,...,

such that the following relation holds:
—J4+ 94 =01 °0,+ @uy0d,, n=0,12,.... (74.1)

[Forn = 0, we will interpret this equation as follows: C_,(X) = C_(Y) = {0},
0o is the 0 homomorphism, and ¢_, : C_,(X) — Cy(Y) is (of necessity) the 0
homomorphism.] We assert that the theorem follows immediately from Equa-
tion (7.4.1). To see this, let u € H,(X); choose a representative cycle u’ € Z,(X)
for the homology class u. Since d,(u’) = 0, it follows from Equation (7.4.1) that
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~fW') + gx (W) = Opr i (@u()).

Hence, —f,(u') + g4(u’) € B,(Y), and therefore f, (1) = g,(u). The proof in
case u € Hy(X) is left to the reader.

This is a typical procedure in algebraic topology; from the continuous map
F we construct homomorphisms (algebraic maps) ¢, which relfect properties
of F.

To construct the homomorphisms ¢,, we define a sequence of homomor-
phisms

(Dn:Qn(X)"’Qrﬁl(Y)’ n=012..,

as follows. For any singular n-cube T: I" — X, define a singular (n + 1)-cube
®,(T): I"*' - Y by the formula

@, T)(xy,..os Xpp1) = F(xy, T(X3, ...y Xps1))- (7.4.2)
We wish to compute J,,, P,(T). For this purpose, observe that
A 0,(T) = f,(T),
B, ®,(T) = g4(T),
AP (T)=®,_,4,,(T) 2<i<n+1),
Bo (T)=®,_B._((T) 2<i<n+1).

We now compute:

G ®(T) = Y. (= ITA®,(T) - BOT)]

n+1

—[fe(T) — 94(D)] + ';2 (= 1Y@y (A4 (T) — B—((T))

—f4(T) + g(T) + z (= 1)@, (A4(T) — B(T))

= —f4(T) + g4(T) — ©,—, 5(T).
Therefore we conclude that for any u € Q,(X)
_f# (u) + g#(u) = 6n+1(Dn(u) + (Dn—l 6"(14). (743)

Next, observe that if T is a degenerate singular n-cube, n > 0, then ®,(T) is a
degenerate (n + 1)-cube. Hence

(Dn(Dn(X)) < Dn+l(Y)
and therefore ®, induces a homomorphism
(pn : Cn(X) - n+l(Y)'
From (7.4.3) it follows that ¢, satisfies Equation (7.4.1), as desired. Q.E.D.
Some terminology. The function F above is called a homotopy between the

continuous maps f and g. The homomorphisms ¢,,n =0, 1, 2, ..., constitute
a chain homotopy or algebraic homotopy between the chain maps f, and g.,.
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We will now discuss some applications of Theorem 4.2. Later on when we
are able to actually determine the structure of some homology groups and
compute some induced homomorphisms, we will be able to use it to prove
that certain maps are not homotopic. For example, it can be shown that there
are infinitely many homotopy classes of maps of an n-sphere onto itself if
n > 0. For the convenience of the reader, we will repeat some definitions from
Chapter II.

4.1. Homotopy Type of Spaces

Definition 4.3. Two spaces X and Y are of the same homotopy type if there
exist continuous maps f: X — Y and g: Y - X such that gf is homotopic to
the identity map X — X, and fg is homotopic to the identity map Y — Y. The
maps f and g occurring in this definition are called homotopy equivalences.

For example, if X and Y are homeomorphic, then they are of the same
homotopy type (but not conversely).

Theorem 4.4. If f: X — Y is a homotopy equivalence, then f, : H,(X) — H,(Y),
n=0,1,2,...,and f,: Hy(X) - Hy(Y) are isomorphisms.

The proof, which is simple, is left to the reader.

Definition 4.5. A space X is contractible to a point if there exists a continuous
map F:I x X - X such that F(0,x)=x and F(l, x) = x, for any xe X
(here x, is a fixed point of X).

For example, any convex subset of Euclidean n-space is contractible to a
point (proof to be supplied by the reader). If a space X is contractible to a
point, then it has the same homotopy type as a space consisting of a single
point, and its homology groups are as follows:

Ho(X)~Z, Hy(X)=0,
H(X)=0 forn +#0.

Definition 4.6. A subset A4 of a space X is a deformation retract of X if there
exists a retraction r: X — A (i.e, A is a retract of X) and a continuous map
F:I x X — X such that F(0, x) = x, F(1, x) = r(x) for any x € X.

For example, in Definition 4.5, the set {x,} is a deformation retract of X.

If A is a deformation retract of X, then the inclusion mapi: A - X is a
homotopy equivalence; the proof is left to the reader. Hence, the induced
homomorphism i, : H,(A) = H,(X) is an isomorphism. This is a useful princi-
ple to remember when trying to determine the homology groups of a space.
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§5. The Exact Homology Sequence of a Pair

In order to be able to use homology groups effectively, it is necessary to be
able to determine their structure for various spaces; so far we can only do this
for a few spaces, such as those which are contractible. In most cases, the
definition of H,(X) is useless as a means of computing its structure. In order
to make further progress, it seems to be necessary to have some general
theorems which give relations between the homology groups of a space X and
those of any subspace A contained in X. If i: A -+ X denotes the inclu-
sion map, then there is defined the induced homomorphism i, : H,(4) - H,(X)
for n=0, 1, 2, .... As was mentioned earlier, i, need not be either an
epimorphism or monomorphism.

In this section we will generalize our earlier definition of homology groups,
by defining relative homology groups for any pair (X, A) consisting of a
topological space X and a subspace A4; these groups are denoted by H,(X, A),
wheren =0, 1,2,... . There is a nice relation between these relative homology
groups and the homomorphisms i, : H,(4) - H,(X), which is expressed by
something called the homology sequence of the pair (X, A). Thus, it will turn
out that knowledge of the structure of the groups H,(X, A) will give rise to
information about the homomorphisms i, : H,(A) - H,(X) and vice versa. In
the next section we will take up various properties of the relative homology
groups, such as the excision property; this will enable us to actually determine
these relative homology groups in certain cases.

The relative homology groups are true generalizations of the homology
groups defined earlier in the sense that if 4 is the empty set, then H,(X, A) =
H,(X). Nevertheless, the primary interest in algebraic topology centers on the
nonrelative homology groups H,(X) for any space X. Our point of view is that
the relative groups H,(X, A) are introduced mainly for the purpose of making
possible the computation of the “absolute” homology groups H,(X), even
though in certain circumstances the relative groups are of independent
interest.

5.1. The Definition of Relative Homology Groups

Let A be a subspace of the topological space X, and let i: A -+ X denote
the inclusion map. It is readily verified that the induced homomorphism
iy 1 C,(A) — C,(X) is a monomorphism, hence we can consider C,(A) to be a
subgroup of C,(X); it is the subgroup generated by all nondegenerate singular
cubes in A. We will use the notation C,(X, A4) to denote the quotient group
C,(X)/C,(A), it is called the group of n-dimensional chains of the pair
(X, A). The boundary operator d,: C,(X) - C,_,(X) has the property that
0,(C,(A)) = C,_,(A), hence, it induces a homomorphism of quotient groups

0, Gi(X, )~ G, (X, 4)
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which we will usually denote by d,, or 9, for simplicity. In analogy with the
definition in §2, we define the group of n-dimensional cycles of (X, A)forn > 0
by

Z,(X, A) = kernel 0, = {u e C,(X, A)|d(u) = 0}

and for n > 0 the group of n-dimensional bounding cycles by
B,(X, A) = image 0, = 0y (Cosa (X, 4)).
Since 9,d,,, = 0, it follow that
B,(X,A) = Z (X, A)
and hence we can define
H,(X, A) = Z,(X, A)/B,(X, A).

In case n = 0, we define Zy(X, A) = Cy(X, A) and Hy(X, A) = Co(X, A)/By(X, A).

Intuitively speaking, the relative homology group H,(X, A) is defined in
the same way as H,(X), except that one neglects anything in the subspace A.
For example, let u € C,(X), then the coset of u in the quotient group, C,(X, A),
is a cycle mod A if and only if d() € C,_,(A), i.e,, d(u) is a chain in the subspace
of A.

EXERCISES

5.1. Prove that C,(X, A) is a free abelian group generated by the (cosets of) the
nondegenerate singular n-cubes of X which are not contained in A.

It is convenient to display the chain groups C,(A), C,(X), and C,(X, A) to-
gether with their boundary operators in one large diagram as follows:

Cour(A) —s Cpor(X) =20 Cpor(X, )

C

) — X~ x4 (15.1)

Cor(d) = Coi(X) = €y, )
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Here the vertical arrows denote the appropriate boundary operator, d, and
Jj« denotes the natural epimorphism of C,(X) onto its quotient group C,(X, A4).
It is clear that each square in this diagram is commutative. In order to avoid
having to consider the case n = 0 as exceptional, we will define for any integer
n <0,

Thus, this diagram extends infinitely far upward and downward.

As was pointed out in §3, the homomorphisms i, induce homomorphisms
i, of H,(A) into H,(X) for all n. Similarly, the homomorphisms j, induce
homomorphisms

j*:H"(X)"’H"(X,A), n=07 1727~~~~
We will now define a third sequence of homomorphisms
0, Hy(X, A) - H,_,(A4)

for all integral values of n by a somewhat more elaborate procedure, as follows.
Let u € H,(X, A), we wish to define d,(u) € H,_,(A). Choose a representative
n-dimensional cycle u’ € C,(X, A) for the homology class u. Because j, is an
epimorphism, we can choose a chain u” € C,(X) such that j,(u") = u’. Con-
sider the chain d(u”") € C,_(X); using the commutatively of Diagram (7.5.1)
and the fact that u’ is a cycle, we see that j, d(u”) = 0; hence d(u”) actually
belongs to the subgroup C,_,(A4) of C,_,(X). Also d(u") is easily seen to be a
cycle; we define d,(u) to be the homology class of the cycle d(u”).

To justify this definition of d,, one must verify that it does not depend on
the choice of the representative cycle u’ or of the chain u” such that j, (u”) = u'’.
In addition, it must be proved that J, is a homomorphism, i, d,(u + v) =
O, (u) + 0, (v). These verifications should be carried out by the reader.

The homomorphism 0, is called the boundary operator of the pair (X, A).

It is natural to consider the following infinite sequence of groups and
homomorphisms for any pair (X, A):

A HL XS HWS XS X, 5

This sequence will be called the homology sequence of the pair (X, A). Once
again, in order to avoid having to consider the case n = 0 as exceptional, we
will make the convention that for n < 0, H,(4) = H,(X) = H,(X, A) = {0}.
Thus, the homology sequence of a pair extends to infinity in both the right
and left dirctions.

The following is the main theorem of this section:

Theorem 5.1. The homology sequence of any pair (X, A) is exact.

In order to prove this theorem, it obviously suffices to prove the following
six inclusion relations:
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image i, < kernel j,, image i, > kernel j,,
image j, < kernel ¢, image j, o kernel 0,,
image 0, < kernel i, image J, o kernel i.

We strongly urge the reader to carry out these six proofs, none of which is
difficult. It is only by working through such details that one can acquire
familiarity with the techniques of this subject.

Proposition 5.2. Let (X, A) be a pair with A nonempty. Then the boundary
operator 0, : H\(X, A) = Hy(A) sends H (X, A) into the subgroup Hy(A) of
H(A), and the following sequence is exact:

g, A)f:ﬁo(A)-iiﬁo(X)hHo(X, A)—-0.

This proposition may be paraphrased as follows: If A # J, we may replace
Hy(A) and H,(X) by Hy(A) and Hy(X) in the homology sequence of (X, A),
and the resulting sequence will still be exact. The proof of the proposition is
left to the reader; it is an interesting exercise.

EXERCISES

5.1. For any pair (X, A4), prove the following assertions:

(a) i, : H,(A) - H,(X) is an isomorphism for all n if and only if H (X, A) = 0 for
all n.

(b) j,: H,(X) - H, (X, A4) is an isomorphism for all n if and only if H,(4) = O for
all n.

(¢c) H(X, A) =0forn < qifand only if i, : H (4) —» H,(X) is an isomorphism for
n < g and an epimorphism for n = ¢.

5.2. Let X,,y e I', denote the arcwise-connected components of X. Prove that H,(X, 4)
is isomorphism to the direct sum of the groups H,(X,, X, n A) for all y e I'. Also,
determine the structure of Hy(X,, X, n A). (HINT: There are two cases to consider.)

5.3. For any pair (X, A), prove there are natural isomorphisms, as follows: Let
Z (X mod A) = {x e C,(X)|0(x) € C,_,(A)}. Then

Z(X, A) ~ Z,(X mod A)/C,(A),
B.(X, 4) ~ [B(X) + C,(4)]/C,(4)
& B,(X)/[B,(X) n C,(A)],
H(X, A) ~ Z,(X mod A)/[B,(X) + C,(A)].

[NoTE: The notation B,(X) + C,(A4) denotes the least subgroup of C,(X) which
contains both B,(X) and C,(A4); it need not be isomorphic to their direct sum.]

5.4. Give a discussion of the exact sequence of a pair (X, A4) in case the subspace A4 is
empty.
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5.5. Let X be a totally disconnected topological space, and let A be an arbitrary subset
of X. Determine the various groups and homomorphisms in the homology
sequence of (X, A).

§6. The Main Properties of
Relative Homology Group

In order to determine the structure of the relative homology groups of a pair,
we need to know the general properties of these newly defined homology
groups. First we will consider some properties that are strictly analogous to
those discussed in §3 and §4 for “absolute” homology groups.

Let (X, A) and (Y, B) be pairs consisting of a topological space and a
subspace. We will say that a continuous function f mapping X into Y is a map
of the pair (X, A) into the pair (Y, B) if f(A) = B; we will use the notation
S (X, A) - (Y, B) to indicate that f is such a map.

Our first observation is that any map of pairs f:(X, A) ~ (Y, B) induces a
homomorphism f, . H,(X, A) — H,(Y, B) of the corresponding relative homol-
ogy groups. This induced homomorphism is defined as follows.

The continuous map f induces a homomorphism £, : C,(X) — C,(Y)for all
n, as described in §3. Since f(A4) < B, it follows that f,, sends the subgroup
C,(A) into the subgroup C,(B), and hence there is induced a homomorphism
of quotient groups C,(X, A) — C,(Y, B) which we will also denote by f,. These
induced homomorphisms commute with the boundary operators, in the sense
that the following diagram is commutative for each n:

G(X, 4) —L2 ¢ v, B

2 2

Corr(X, ) > C, i (Y, B)
It now follows exactly as in §3 that f, induces a homomorphism f, :
H,(X, A) - H,(Y, B) of the corresponding homology groups for all n.

The reader should formulate and verify the analogs for maps of pairs of
the properties described in (7.3.4) and (7.3.5) for maps of spaces.

Note that the homomorphism j, : H,(X) — H,(X, A) which is part of the
homology sequence of the pair (X, A) (as explained in the preceding section)
is actually a homomorphism of the kind we have just described. For, we can
consider that the identity map of X into itself defines a mapj : (X, &) — (X, 4)
of pairs, and then it is easily checked that the homomorphism j, : H,(X) —
H,(X, A) defined in the preceding section is the homomorphism induced by j.

Next, we will consider the homotopy relation for maps of pairs. The
appropriate generalization of Definition 4.1 is the following: Two maps f,
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g:(X, A) - (Y, B) are homotopic (as maps of pairs) if there exists a continuous
map F: (I x X, I x A)— (Y, B)such that F(0, x) = f(x)and F(1, x) = g(x) for
any x € X. The point is that we are requiring that F(I x A) < B in addition
to the conditions of Definition 4.1. This additional condition enables one to
prove the following resulit:

Theorem 6.1. Let f, g : (X, A) - (Y, B) be maps of pairs. If f and g are homo-
topic (as maps of pairs), then the induced homomorphisms f, and g, of H,(X, A)
into H,(Y, B) are the same.

The proof proceeds along the same lines as that of Theorem 4.2. Because
of the stronger hypothesis on the homotopy F, it follows that the homomor-
phisms ¢, constructed in the proof of Theorem 4.2 satisfy the following
condition:

?n(Ca(A)) > Cyy1(B).
Hence, @, induces a homomorphism of quotient groups.
@ G(X, A) > G,y (Y, B).

The details are left to the reader.
EXERCISES

6.1. Formulate the appropriate definition of two pairs, (X, A) and (Y, B), being of the
same homotopy type, and prove an analog of Theorem 4.4 for such pairs. Simi-
larly, generalize the concepts of retract and deformation retract from spaces to
pairs of spaces, and prove the analogs of the properties stated in §3 and §4 for
these concepts.

Next, we will consider the effect of a map f: (X, A) -+ (Y, B) on the exact
homology sequences of the pairs (X, A) and (Y, B). We can conveniently
arrange the two exact sequences and the homomorphisms induced by fin a
ladderlike diagram, as follows:

s Hy(A) — H(X) =2 H(X, A) —2 H, (A) ——

I R T

i H(B) - H(Y) . H(Y,B) = H,_ (B —

We assert that each square of this diagram is commutative. For the left-hand
square and the middle square, this assertion is a consequence of Property (3.5)
and its analog for pairs. For the right-hand square, which involves ¢, and J,,
the assertion of commutativity is the statement of a new property of the
homology of pairs. To prove it, one must go back to the basic definitions of



§6. The Main Properties of Relative Homology Groups 175

the concepts involved. Since the proofis absolutely straightforward, the details
are best left to the reader.

The commutativity of Diagram (7.6.1) helps to give us new insight into the
significance of the relative homology groups. From a strictly algebraic point
of view, there are usually many different way that we could define groups
H,(X, A) for each integer n in such a way that we would obtain an exact
sequence involving the homomorphism i, : H,(4) — H,(X) at every third step.
The fact that Diagram (7.6.1) is commutative for any map f of pairs means
that we have choosen a natural way to define the groups H,(X, A) and the
exact homology sequence of a pair.

EXERCISES

6.2. Let A be an infinite cyclic group and let B be a cyclic group of order n,n > 1. How
many solutions are there to the following algebraic problem (up to isomorphism):
Determine an abelian group G and homomorphisms ¢: 4 —» G and ¥ :G > B
such that the following sequence is exact:

0—->A—¢;G—¢->B—+0.

We now come to what is perhaps the most important and at the same time
the most subtle property of the relative homology groups, called the excision
property. There is no analogue of this property for absolute homology groups.
It will give us some indication as to what the relative homology groups depend
on. Ideally, we would like to be able to say that H,(X, 4) depends only on
X — A, the complement of A in X. While this statement is true under certain
rather restrictive hypotheses, in general it is false. Another rough way of
describing the situation is to say that under certain hypotheses, H,(X, A) is
isomorphic to H,(X/A) for n> 0, and H,(X, A) ~ Hy(X/A), where X/A
denotes the quotient space obtained from X by shrinking the subset 4 to a
point. In any case, the true statement is somewhat weaker.

Theorem 6.2. Let (X, A) be a pair, and let W be a subset of A such that W is
contained in the interior A. Then the inclusion map (X — W, A — W) - (X, A)
induces an isomorphism of relative homology groups:

H(X - W,A— W)~ H(X,A), n=0,12,....

The statement of this theorem can be paraphrased as follows: Under the
given hypotheses, we can excise the set W without affecting the relative
homology groups.

The proof of this theorem depends on the fact that in the definition of
homology groups we can restrict our consideration to singular cubes which
are arbitrarily small, and this will not change anything. For example, if X is
ametric space, and ¢ is a small positive number, we can insist that only singular
cubes of diameter less than ¢ be used in the definition of H,(X, A) if we wish.
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If X is not a metric space, we can prescribe an “order of smallness” by choosing
an open covering of X, and then using only singular cubes which are small
enough to be contained in a single set of the given open covering. For technical
reasons, it is convenient to allow a slightly more general type of covering of
X in our definition.

Definition 6.3. Let % = {U,|A € A} be a family of subsets of the topological
space X such that the interiors of the sets U, cover X (we may think of such
a family as a generalization of the notion of an open covering of X). A singular
n-cube T: I" — X is said to be small of order % if there exists an index A€ A
such that T(I") < U,.

For example, if X is a metric space and ¢ is small positive number, we could
choose % to be the covering of X by all spheres of radius e.

We can now go through our preceding definitions and systematically
modify them by allowing only singular cubes which are small of order %. This
procedure works because if T': I" — X is a singular n-cube which is small of
order %, then J,(T) is a linear combination of singular (n — 1)-cubes, all of
which are also small of order %.

Notation: Q,(X, %) denotes the subgroup of @,(X) generated by the singular
n-cubes which are small of order % D, (X, %)= Q.(X, %) D,(X), and
CAX, %) = Q. X, %)/D,(X, %). Similarly, for any subspace 4 of X, Q,(A4, %) =
0n(A) " Q,(X, U), D,(A, %) = Dy(A) " Q(A, %), and Cy(A, %) = Qn(A, %)/
D,(A, %). Finally, for the relative chain groups we let C,(X, A, %) = C,(X, %)/
C.(A, %).

Note that d, maps Q,(X, %) into Q,_,(X, %), and hence induces homomor-
phisms

Cn(X’ ﬂ”) - n—l(X7 ﬂ”)a
Cn(A7 ﬂ”) - n—l(A7 ﬂ”)’
and
CX, A, %) - C,_((X, A, %),
all of which we will continue to denote by the same symbol, 8,. Thus, we can
define exactly as before
Z,(X, A, U) = {ue C(X, A, U)|0,(u) = 0},
Bn(X7 A7 ﬂ”) = 6n+l(cn+l (X’ Aa ﬂ”))
Then since B(X, A, %) = Z,(X, A, %), we can define the homology group
H, (X, A, %)= Z,X, A, %)/B,(X, A, %).
Notice what happens for n = 0: Q,(X, %) = Qy(X), and hence it follows that
CO(X7 A7 0”) = CO(Xi A)’
ZO(X7 A7 ﬂ”) = CO(Xa A)y

Ho(X, A, %) = Co(X, A)/By(X, A, U).
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Next, note that the inclusion Q,(X, %) = Q,(X) induces homomorphisms
0,: Co(X, A, %) - C\(X, A)

(actually, g, is 2 monomorphism, although this fact seems to be of no great
importance). Obviously, the homomorphism ¢ commutes with the boundary
operator 9, i.c., the following diagram is commutative:

CX, A, U) —— C,_,(X, A, )

CiX, A) —— Cpy(X, A)

Hence, o maps Z,(X, A, %) into Z,(X, A) and B,(X, A4, %) into B,(X, 4), and
thus induces a homomorphism

0, H (X, A, %) H,(X, A)
for all n.

Theorem 6.4. Assume that U satisfies the above hypotheses. Then the induced
homomorphisms o, : H(X, A, %) — H,(X, A) are isomorphism for all n.

This theorem is the precise formulation of the assertion made earlier that
we can restrict our consideration to singular cubes which are small of order
% in defining H,(X, A). The proof, which is rather long, is given in the next
section.

We will now give the proof of Theorem 6.2, the excision property, using
Theorem 6.4.

Let (X, A) and W satisfy the conditions of Theorem 6.2. The hypotheses

imply that
Interior (A) u Interior (X — W) = X,
hence % = {A, X — W) s a generalized open covering of the kind that occurs
in Theorem 6.4. Note that for each n,
CAX,U)=C,(A) + Ci(X — W)

by the definition of C,(X, %) (NOTE: this is not a direct sum).
To prove the excision property, consider the following commutative dia-
gram for each integer n:

CX-WA-W) L Cx A

dl!

(1.6.2)

CX, A, %)

Each of the homomorphisms indicated in this diagram is induced by an
inclusion relation. On passing to homology groups, we obtain the following
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commutative diagram:
H(X —W,A— W) —— H/X, A4)

(1.6.3)

I

H,(X, A, %).

We wish to prove that the homomorphism indicated by arrow 3 is an isomor-
phism. Since o, is an isomorphism (by Theorem 6.4), it suffices to prove that
arrow 4 is an isomorphism. Now the homomorphism designated by arrow 4
is induced by homomorphism designated by arrow 2; therefore let us consider
this homomorphism in more detail. By definition,

CiX — W, A~ W) = C,(X — W)/C\(A — W)
= G(X — W)[C,(X — W)n C,(A)]
since C,(A — W) = C,(X — W) C,(A). Similarly,
CX, A, U) = C(X,U)/C,(A, ¥)
[Ci(X = W) + C(A)]/Cy(A).
Thus, the homomorphism denoted by arrow 2 consists of homomorphisms
C.(X—-W) N C.(X — W)+ CyA)
Ca(X — W)n C(4) Ci(A)

forn=0,1, 2, ..., which are induced by the obvious inclusion relations. But
according to the first isomorphism theorem of group theory a homomorphism
such as that in (6.4) is an isomorphism. Hence arrow 2 in (6.2) designates an
isomorphism, and it follows that the induced homomorphism, arrow 4 in
(7.6.3), is also an isomorphism. This completes the proof of Theorem 6.2.

We will give examples of the use of the excision property and other
properties of relative homology groups in the next chapter.

(1.6.4)

§7. The Subdivision of Singular Cubes and
the Proof of Theorem 6.4

In this section, we introduce the technique of subdivision of singular cubes
and use it to prove Theorem 6.4. Although this technique is based on a rather
simple and natural geometric idea, the actual proof is rather long and in-
volved. For that reason it may be advisable to skip this section on a first
reading and return to it later.

Actually, we will first prove Theorem 6.4 for the easier case of absolute
homology groups (the case where A = ¢ in the statement of the theorem).
The general case will then follow by an easy argument using a purely algebraic
proposition called the five-lemma.
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The first step in the proof of Theorem 6.4 is to introduce the so-called
subdivision operator, and prove its properties. This will involve some lengthy
formulas, tedious verifications, etc. The reader must not let those obscure the
essentially simple geometric ideas behind the proof.

First, we will consider the process of subdividing a (singular) cube. Prob-
ably the simplest way to subdivide the cube I" is to divide it into 2" cubes each
of side §, by means of the hyperplanes x; = 4,i = 1,2,..., n. This leads to the
following definitions. Let &, denote the set of all vertices of the cube I"; an

n-tuple of real numbers e = (¢, e,, ..., e,) belong to &, if and only if e; = 0 or
1 for all i. For any singular n-cube T: I" — X and any e € &, define
F(T): "> X

by

(F.T)(x) = T(3(x + e)) (7.7.1)
for all x = (x,, ..., x,) € I". Then define Sd,: Q,(X) - Q,(X) by

8d,(T) = Z::p F/(T). (7.7.2)
All this is for n > 1, if T is a singular O-cube, we define
Sdo(T)=T.

We will now list some properties of the homomorphism Sd,.
(a) If T is a degenerate cube, then so is F,(T). Hence Sd, maps D,(X) into
D,(X) and induces a homomorphism

sd, : C,(X) = C,(X).
(b) The homomorphisms Sd, commute with the boundary operator, i.c.,
0,08d,=Sd,_, 04,

In order to prove this, one verifies the following three identities regarding the

operators F,.
(b.1) Assumeeand e’ € &, are such thate; = e fori # je; = 1,¢; = 0. Then

A;F, = B;F,.
(b.2) Assume e € &,,¢; = 0,and e’ € &,_, is defined by
e =(e,...,€ 1, €45, ..,8,)
Then
A;F,=F, A,

(b.3) Assumee€ &,,¢; = 1,and €' € §,_, is defined by
e =(er,...,€ 1,841, .. €

Then
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These three identities are exactly what one needs to verify that
,8d,(T) = 8d,_,6,(T).

Naturally, it follows that the induced homomorphism sd,, : C,(X) - C,(X)also
commutes with the boundary operator.

(©) If ue Co(X) = Qo(X), then &(Sdy(u)) = e(u). This is a triviality, since
Sd, = sd, is the identity map. We can summarize this property by stating that
the operator Sd,, is augmentation preserving.

(d) For any n-chain u € C,(X), there exists an integer ¢ > 0 such that

sd¥(u) e C,(X, %),

were sd? denotes the homomorphism obtained by g-fold iteration of sd,. In
order to prove this assertion, it suffices to prove that for each singular n-cube
T:I" - X, there exists an integer g(T) such that Sd2™(T) is a sum of cubes
which are small of order %, i.e., such that Sd*™(T) € Q,(X, %). Then, if u is a
linear combination of the singular n-cubes T}, T,, ..., T,, it suffices to choose
q to be the largest of the integers ¢(T)), ¢(T>), ..., q(Tp).

To prove that such an integer q(T) exists, consider the open covering of
the compact metric space I” by the inverse images under T of the interiors of
the sets of the covering %; let ¢ denote the Lebesgue number! of this covering.
Then if we choose ¢(T), so that

279D < ¢/ /n,

the required condition will be satisfied (the \/; occurs in the denominator
because that is the ratio of the length of the diagonal to the length of the side
for an n-dimensional cube).

Next, we are going to define homomorphisms

(,D,,:C"(X)“) Il+l(X)i n=0’1’---’
such that for any u € C,(X),
Sdn(u) —u= an+l (P,,(u) + Pn-1 6,,(14). (773)

In the terminology of §4, the ¢,’s are a chain homotopy between the subdivi-
sion operator, sd, and the identity map. In order to define ¢,, we first define
two auxiliary functions 4, 1, : I> - I' by the formulas

(xp, x5 = 5
Xy, X)) = ,
NolX 1, X3 2-x,
x +1 .
217 ifx, +x,<1
Ni(xy, x5) = - X2
1 ifx, +x,2> L

! The Lebesgue number of a covering is defined in a footnote in Chapter 11, §5.
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To gain a better understanding of 7, and #,, note that #, maps the square 12
onto the interval [0, 1] and that the curves

No(xy, X;) = constant

are straight lines through the point (0, 2). Also, n, maps the square I? onto
the interval [, 1], and the curves

n1(x, x,) = constant

are straight lines through the point (—1, 2), provided x, + x, < 1.

Now for any e € &, and any singular n-cube T:I" - X, n > 0, define a
singular (n + 1)-cube G,(T): I"*! — X by the formula (G, T)(x;, ...,X,41) =
T(ne,(xh Xpt1)s nez(x27 Xpi1)s ooy ’Ie,,(xm Xn+1)). Define

®,:Q,(X) > Q,iy(X), n>0,
by
®,(T) = (=1)""" ). GAT).

eed,

We will complete the definition by defining @, : Q4 (X) -+ Q,(X) to be the zero
map. The motivation for the definition of @, is indicated in Figure 7.1 for the
case n = 1. We will now prove some properties of the homomophisms ®,.

(e) If T is a degenerate cube, then so is G,(T). Hence ®, maps D,(X) into
D,,.(X) and induces the desired homomorphism

@ C(X)»Cop (X)), n=0,1,....
(fy For any singular n-cube T: I" -+ X, we have
0,11 90,(T)=8d,(T)— T — ®,_,3,(T) + degenerate cubes. (7.7.4)

Equation (7.7.3) follows from this. Of course Formula (7.7.4) is a triviality if
n=0. Therefore, we will concentrate on the case n> 0. To compute
0p+1P,(T), one needs the following identities:

X
2

T Degenerate

rfaces of G, T
| .'

FIGURE 7.1
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(1) Apy1Go(T) = F(T).
(f2) B,,,G(T)=T if e=(0,0,...,0) and B,,,G,(T) is a degenerate cube
otherwise.
(f.3) Assumee, e’ €8,,j<n,e;=1,¢;=0,and ¢; = ¢; forall i # j. Then
4;G,(T) = B,G,(T)

for any n-cube T.
(f4) Assumee € &,,n > 2, and ¢ € &,_, is defined by
e =(ey,...,€_1,€4,...,8) j<n
If ¢; = 0, then
A;Gy(T) = G A{(T),
whereas if ¢, = 1, then
B,G,(T) = G, B(T).

Incasen=1, A, G, T and B, G, T are degenerate.

By using Identities (f.1)~(f.4), it is a straightforward matter to verify Formula
(7.7.4) and hence (7.7.3).

(g) Ifue C,(X, %), then @,(u) € C,, (X, ¥)also. To prove this, observe that
if a cube T is small of order %, then so is G,(T). Hence ®,(T) € Q,,,(X, %),
and ¢, has the required property.

We have now defined the operators sd, and ¢,, and proved their principal
properties. For the sake of simplicity, we will write sd rather than sd, and ¢
rather than ¢, from now on.

We also need the following formulas. For any integer g > 0, define

lpq : CH(X) - n+l(X)7 n= 07 17 27 ey
by
q-1 .
Yo (w) = Zo p(sd').
The following equation now readily follows from Equation (7.7.3):
sd(u) — u = oy () + Y, 0(u). (7.7.5)

Note that statement (g) leads to the following.
(8") Ifue C(X, %), then y,(u) € C,.,(X, %) for any integer g4 > 0.
With these preliminaries out of the way, we can now prove directly that

o, H,(X, %) H,(X)
is an isomorphism.
First, we prove that g, is an epimorphism. Let x € H,(X); we will prove

there exists an element y € H, (X, %) such that 6,(y) = x. Let u e C,(X) be a
representative cycle for x. By Statement (d), there exists an integer ¢ such that

sd¥(u) € C,(X, %).
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Since u is a cycle and sd commutes with the boundary operator, it follows that
sd?(u) is also a cycle. If we apply Equation (7.7.5), we see that u and sd?(u)
belong to the same homology class. Let y be the homology class of sd%(u) in
H,(X, %). Then 0, (y) = x, as desired.

Next, we will prove that g, is a monomorphism. Assume x € H,(X, %) and
0,.(x) = 0. We will show that x = 0. Let v € C,(X, %) be a representative cycle
for x. Since o, (x) = 0, there exists an element u € C,,,(X) such that

ou) =v.
Apply Statement (d) to obtain an integer g such that
sd¥(u) € C,,,(X, %).
Now apply Equation (7.7.5),
sd?(u) — u = 0, (u) + Y, (v).
Apply the boundary operator to both sides to obtain
0(sd? u) — v = dy,(v)
or
v = 0(sd? u — Y (v))
Since v € C,(X, %), y,(v) € C,,, (X, %) by Statement (g’). Thus,
sd?u — y,(v) € C, (X, %)

and hence v is the boundary of a chain which is small of order % Therefore,
x=0.

This completes the proof of Theorem 6.4 in the case 4 = (J.

Next, we will prove Theorem 6.4 in the general case, where A is an arbitrary
subset of X. Observe that for each integer n we have the following commuta-
tive diagram:

0 —— CUA, %) —— CyX,U) —— CyX, A, U) —> 0

ST

0 — G —— CX) -2 X, 4 — 0

Both of the rows in this diagram are exact sequences of chain groups. On
passing to the corresponding homology groups, we obtain the following
ladderlike diagram involving two long exact sequences:

— n+l(X7 A, ﬂ”)—’ Hn(A’ %)—’ Hn(X7 ﬂ”)—’ Hn(Xa A, ﬂ”)—’ o

P S A

s Hy (X A) -2 H(A) s H(X) I HyX, A) —
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Each square in this diagram is commutative; the proof of this fact is exactly
the same as the proof of the commutativity of Diagram (7.6.1). By what we
have already proved, the homomorphisms o, and o, are isomorphisms. It
now follows from the so-called five-lemma that the homomorphism o, is also
an isomorphism, as was to be proved.

It remains to state and prove the five-lemma:

Lemma 7.1. Consider the following diagram of abelian groups and homomor-
phisms.

i i iy iy
4, —— 4, S o4y 2 oA, o4

AR

B, _’j B, — B, — B, —— B;
1 Jz EE) Ja
Assume that each row is exact, that each square is commutative, that f, is an
epimorphism, f, and f, are isomorphisms, and f5 is a monomorphism. Then f is

also an isomorphism.

Proor. It suffices to prove the following two assertions:

(a) For any x € A,, if f3(x) = 0 then x = 0.
(b) Given any x € B,, there exists an element y € A, such that f5(y) = x.

The proof of each of these two assertions is carried out by a technique called
“diagram chasing.” For the reader who has seen this technique used before,
the proof of this lemma will be very easy. For those who are unfamiliar with
the technique, the proof of this lemma is an ideal exercise, and such readers
are urged to work out the details of the proof. The proof of a proposition such
as the five-lemma by diagram chasing requires practically no cleverness or
ingenuity. At each stage of the proof there is only one possible “move”; one
does not have to make any choices.

NOTES

The reader may have wondered why we singled out certain properties of
homology theory and called them “basic.” The choice of these particular
properties is essentially due to the work of S. Eilenberg and N. E. Steenrod.
In the 1940s they developed an axiomatic approach to homology theory.
Their ideas were announced in 1945 in a short note in Volume 31 of the
Proceedings of the National Academy of Sciences and developed in a well-
known book (entitled Foundations of Algebraic Topology) published in 1952.
They intended to publish a second volume explaining more of their ideas, but
unfortunately this project was never completed.

This work of Eilenberg and Steenrod was very influential and greatly
advanced our understanding of homology theory. Subsequent developments
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in algebraic topology, especially the introduction and use of what are called
“extraordinary” homology and cohomology theories, have added further
justification to the choices that Eilenberg and Steenrod made back in 1945.
Apparently exact sequances were introduced into algebraic topology by
Witold Hurewicz in 1941 [see Bull Am. Math. Soc., 47 (1941), 562-563].
Seldom in the history of mathematics has a new definition had such happy
consequences as the definition of an exact sequence! For some mysterious
reason exact sequences seem to be ubiquitous in algebraic topology; we will
see more examples in the later chapters of this book. They are also of frequent
occurrence in several other parts of mathematics. Exact sequences often occur
in a pattern similar to the exact sequence of a pair, as in Theorem 5.1 of this
chapter, so that the simple statement that such-and-such a sequence is exact
is equivalent to six inclusion relations between various images and kernels.



CHAPTER VIII

Determination of the Homology Groups
of Certain Spaces: Applications and
Further Properties of Homology Theory

§1. Introduction

In this chapter, we will actually determine the homology groups of various
spaces: the n-dimensional sphere, finite graphs, and compact 2-dimensional
manifolds. We also use homology theory to prove some classical theorems of
topology, most of which are due to L.E.J. Brouwer. In addition, we prove some
more basic properties of homology groups.

§2. Homology Groups of Cells and
Spheres—Applications

We will now use the exact homology sequence and the excision property to
determine the homology groups of a noncontractible space, namely, the
n-sphere

S"={xeR"|x| =1}.

This example is not only interesting in its own right; it is also basic to much
that follows.

Theorem 2.1. For any integer n > 0,

~oom JL ifi=n
H"(S)_{{O} ifi #n
Hence
" ZO®Z ifn=0
s - {7 % 10
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It is clear that the second statement is equivalent to the first statement for
i =0, in view of the relation between reduced and nonreduced homology
groups.
Proor oF THEOREM 2.1. The proof is by induction on n. The theorem is true

for n = 0, because S° is a space consisting of exactly two points. In order to
make the inductive step, we will identify S” with the “equator” of $"*!, i.e.,

S" = {x = (x15 ceey x"+2) € S"+1|x"+2 = 0}
We also need to consider the following two subsets of $"*!:

E'-'++1 = {(xl’ o> Xpya) € S"+1|xn+2 = 0}’
E’l+1 = {(xl, ...,x,,+2)€ S"+1|x"+2 S 0}.

These may be referred to as the upper and lower hemispheres of $"**. These
hemispheres are obviously homeomorphic to the set

E" = {(xla [EXX} xn+2)e R"+2||x| < land Xpy2 = 0},

hence they are contractible. The reader should draw a picture illustrating these
sets for the case n = 1. Now consider the following diagram of homology
groups:

- ) k, .

Hi(S") & Hyyy (B2, 87 3 Hiy(S™, BV & H,y(S™).

In this diagram, j: S"*' — (S"*!, Ei*')and k : (E"*!, S") - (S"*!, E"*!) denote
inclusion maps. Consideration of the homology sequence of the pair (E"*!, S")
shows that d, is an isomorphism, because E"*! is contractible; similarly, it
follows from the exactness of the homology sequence of the pair (S**!, E"*!)
and the contractibility of E5*! that j, is an isomorphism. To complete the
proof, it suffices to prove that k is an isomorphism. Now the pair (E**!, S")
is obtained from the pair (S"*!, E*!) by excising the set E"** — S". However,
we can not invoke the excision property (Theorem I1.6.2) because the closure
of E"*! — §" is not contained in the interior of E**!. There is a way around
this difficulty, however. Let

W= {(xla e xn+2) € S"+1|X,,+2 2 %}
Now consider the following diagram:

Hy\ (BP0, 8% —2s H, (5", B2

,+1(S"+1 — W En+1

Here the symbols e and h denote inclusion maps. This diagram is obviously
commutative. Now we can invoke the excision property to conclude that e,
is an isomorphism. Moreover, h, is also an isomorphism because the map h
is a homotopy equivalence of pairs; there is an obvious deformation retraction
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of the pair (S"*! — W, E%*! — W) onto the pair (E"**, $"). It follows from the
commutativity of the diagram that k, is also an isomorphism, as desired.
QED.

This proof illustrates the strategy that frequently has to be employed in
applying the excision property. The situation is reminiscent of that often
encountered in trying to apply the Seifert—Van Kampen theorem to determine
the structure of the fundamental group of a space.

In §5 we will indicate an alternative proof of this theorem using the
Mayer—Vietoris sequence.

We will now state some applications and corollaries of this result.

Proposition 2.2. The sphere S" is not contractible to a point.

For the statement of the next two propositions, we will use the notation
E" to denote the set {x € R"||x| < 1}, called the unit disc or ball in R" (the
proofs are left to the reader).

Proposition 2.3. S" is not a retract of E"*',

Proposition 2.4. The relative homology groups of the pair (E", S"™') are as
follows (forn > 1)

0, i#n
H, E", Sn—l = 4
d ) {Z, i=n.
Proposition 2.5 (Brouwer fixed-point theorem). Any continuous map f: E" —
E" has at least one fixed point, i.e., a point x such that f(x) = x.

PrROOF. Assume to the contrary that f(x) # x for all x € E*. Then the two
distinct points x and f(x) determine a unique straight line which intersects
$"~! in two points. Let v(x) denote that point of the intersection which is such
that x is between v(x) and f(x), or x is equal to v(x). Then v is a map of E"
onto $"7. It is a nice technical exercise for the student to prove that v is
continuous. It is obvious from the definition that v is a retraction. But this
contradicts Proposition 2.3. QED.

For a discussion of the significance of the Brouwer fixed-point theorem,
see Chapter II, §6.

We will use the knowledge we have gained about the homology groups of
S" to study continuous maps of S” into itself. Let f: S" — S" be such a con-
tinuous map; consider the induced homomorphism

i 1 Hy(S™) ~ Hy(S").

Since H,(S") is an infinite cyclic group, there exists a unique integer d such
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that f, (4) = du for any u € H,(S"). This integer d is called the degree of f. It
has the following basic properties:

(a) It is a homotopy invariant, i.e., if f; and f; are homotopic maps of S"
intoitself, then f, and f; have the same degree. This fact is a direct consequence
of the homotopy property of the induced homomorphism. It is proved in
books on homotopy theory that the converse statement is also true, ie., if f,
and f; have the same degree, then they are homotopic.

(b) The degree of the composition of two maps is the product of the degrees.
To be precise, if f and g are continuous maps S" — S", then degree (gf) =
(degree g)(degree f).

Given any map f:S"— S", we will define a new map Xf:S"*! —» §"*1,
called the suspension of f by the following formula:

©,...,0, X,.5) if x4, =1

=) (x » X25 e0es Xy =
( f)( 1 2 +2) (tf(ﬁ, ---,x"+1>7xn+2> iflxn+2‘ < 1

t t

where t = (1 — x2,,)"2. The geometric idea behind this formula may be
described as follows: £f maps the north pole of S"*! to the north pole, the
south pole of $"*! to the south pole, and the equator into the equator
according to the given map f. The meridian of $**! through the point x on
the equator is mapped homeomorphically onto the meridian through the
point f(x).

(c) The degree of the suspension, Zf, is the same as that of the original map
f- The proof of this property is left to the reader; it depends on the diagram
used to prove Theorem 2.1 and the following two inclusions:

EEVY) < B and  (Bf)(EZ™) < ETM

In order to make use of this notion of degree, it is necessary to know the
degree of certain explicit maps. The following are some propositions along
this line. The proofs are left to the reader as exercises for the most part.

(d) The degree of the identity map is + 1.

(e) The degree of a constant map is 0.

(f) Any map f:S° — S° has degree +1 or 0.

(2) Let v:S8"— S" denote the map which is reflection in a hyperplane
through the origin of R"*!; then v has degree — 1. To prove this, note first of
all that we may choose our coordinate system so that the hyperplane in
question has the equation x,,, = 0. Then using the suspension, it is easy to
prove this formula by induction on n, starting with the case n = 0.

(h) Let f: S® —> S" denote the antipodal map, defined by f(x) = —x. Then
the degree of f is (—1)"*'. (HINT: Represent f as a composition of reflections.)

(i) Let f:S* — S" be a map which is fixed point free, i.e., f(x) # x for all x.
Then f is homotopic to the antipodal map, and hence has degree (— 1)***.

We will now use these facts to discuss the existence of continuous tangent
vector fields on S". By a tangent vector field on S" we mean a function v which
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assigns to each point x € S" a vector v(x) which is tangent to S" at the point
x. The tangency condition means that the vector v(x) must be perpendicular
to the unit vector x for all x € S". The vector field v is said to be continuous
(or differentiable) if the components of v are continuous (or differentiable)
real-valued functions. When we speak of a nonzero vector field v, we mean
that v(x) # 0 for all x € $". The main theorem about such vector fields is the

following;:

Theorem 2.6. There exists a continuous nonzero tangent vector field on S" if
and only if n is odd.

It is easy to give an example of a continuous nonzero tangent vector field
on 8" for n odd: One defines

v(xla res xn+1) = (_x27 X1y —Xg45X30000s —Xpt1s x,,).

To prove that such a vector field does not exist on S” for n even, one proves
the following statement: If there exists a continuous nonzero tangent vector
field v on S", then the identity map of S" onto itself is homotopic to a
fixed-point-free map f: " — S”. In fact, one may define f by the formula

_ x+(x)
Jx) = [x + v(x)]|

and the homotopy by

X + to(x)

_, <t<l.
[x + to(x)|

fix) =

Theorem 2.6 now follows from this statement and Property (i) above.

Later on we will prove that there exist maps S" — S" of every possible degree
provided n > 1.

The discussion of the degree of a map that we have just given applies only
to maps of S" into itself. These considerations may be extended to a slightly
more general situation as follows. Let X and Y be topological spaces which
are homeomorphic to $" (n > 1) or more generally, have the same homotopy
type as S". Then H,(X) and H,(Y) are infinite cyclic groups; hence there are
two different choices possible for a generator of each of these groups. If definite
choices of a generator have been made in each case, we will say that the spaces
X and Y have been oriented. Assume that the chosen generators are denoted
by x € H,(X) and y € H,(Y), respectively. Let f: X - Y be a continuous map;
then there exists a unique integer d such that f,(x) = dy. This integer d is called
the degree of f. Note that changing the orientation of either X or Y changes
the sign of the degree. It is a homotopy invariant of f, and has properties
analogous to those discussed above.
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Examples

21. Let X = S'and Y = R? — {0}. We leave it to the reader to prove that
S* is a deformation retract of R? — {0}. A continuous map S* - R? — {0} may
be interpreted as a closed, continuous curve in the plane R? which does not
pass through the origin. The degree of such a map is essentially the same things
as the winding number of the closed path around the origin, as described in
books on analysis.

Definition 2.7. Let X be a Hausdorff space and xe X. The group
H,(X, X — {x}) is called the n-dimensional local homology group of X at x.

If N is any neighborhood of x in X, then it follows easily from the excision
property that H,(N, N — {x}) ~ H(X, X — {x}). Thus, the local homology
groups of X at x only depend on arbitrarily small neighborhoods of x in X,
hence the name. Examples and properties of these local homology groups are
given in the exercises.

EXERCISES

2.1. Prove that $""! is a deformation retract of R" — {0}.

2.2. Prove that the complement of a point in §” is homeomorphic to R” (stereographic
projection).

2.3. Prove by two different methods that R™ and R" are not homeomorphic if m # n:
(a) Prove that their Alexandroff 1-point compactifications are not homeomorphic,
and (b) prove that the complement of a point in R™ is not homeomorphic to the
complement of a point in R".

2.4. Prove that any homeomorphism k of E" onto itself maps $" ! onto §" L. (HINT:
Consider the complement of a point.)

2.5. Let f: 5" — S" be a continuous map whose degree is nonzero. Prove that f maps
S" onto S".

2.6. Let X be a Hausdorff space, x € X, and assume x has a closed, contractible
neighborhood N with boundary Bsuch that B is a deformation retract of N — {x}.
Prove that the local homology group H,(X, X — {x}) is isomorphic to H',,_l(B).
(NoTE: This often gives a practical method for determining local homology groups
of reasonably nice spaces.)

2.7. Determine the local homology groups at various points of the closed n-
dimensional ball, E". Use this computation to give another solution of Exercise 2.4.

2.8. Use local homology groups to prove that an n-dimensional and an m-dimensional
manifold are not homeomorphic if m # n.

2.9. Prove that a M&bius strip is not homeomorphic to the annulus {x e R?|1 <
|x| < 2}, although they have the same homotopy type and both are compact.
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(SUGGESTION: As a first step, determine local homology groups at various points
of both spaces.)

§3. Homology of Finite Graphs

In this section we will use the properties of relative homology groups to
develop a systematic procedure for computing the homology groups of a
rather simple type of topological space called a graph. The results obtained
are not very profound; however, they are illustrative of the techniques we will
use later to determine the homology groups of more general spaces.

Definition 3.1. A finite, regular graph (or just a graph for short) is a pair
consisting of a Hausdorff space X and a finite subspace X° (points of X° are
called vertices) such that the following conditions hold:

(@) X — X?is the disjoint union of a finite number of open subsets ¢, ,, ...,
e, called edges. Each e; is homeomorphic to an open interval of the real
line.

(b) The point set boundary, ¢; — e;, of the edge e; consists of two distinct
vertices, and the pair (g;, ¢;) is homeomorphic to the pair ([0, 1], (0, 1)).

One could also consider infinite graphs, and nonregular graphs, i.e., those
for which g; — ¢; may consist of one or two vertices. However, we will not do
this for the present.

Note that a graph is compact, since it is the union of a finite number of
compact subsets (the closed edges ¢; and the vertices). It may be either
connected or disconnected, and it may have isolated vertices. If a vertex v
belongs to the closure of an edge ¢,, it is customary to say that e; and v are
incident.

It is easy to give many examples of graphs. It can be shown that every
graph, as defined here, can be embedded homeomorphically in Euclidean
3-space, and many can be embedded in the plane. A famous theorem of
Kuratowski (1920) gives necessary and sufficient conditions for a graph to be
embeddable in the plane.

Ifa space X can be given a structure of a graph by specifying a set of vertices
X?° then we can specify additional graph structures on X by subdividing, i.e.,
inserting additional vertices (provided the set of edges is nonempty).

We will now show how to determine the structure of the homology groups
of a graph X. First, we will determine the relative homology groups of the
pair (X, X°) and then use the exact homology sequence of (X, X°) to achieve
our goal. Let e,, e,, ..., ¢, denote the edges of the given graph (X, X°). We
will consistently use the notation é; = ¢; — e, to denote the boundary of the
edge ¢;. It follows from Proposition 2.4 and the definition of a graph that
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_ Z forg=1
H,(e;, é) = {0 forq # 1. (83.1)

Theorem 3.2. Let (X, X°) be a finite, regular graph with edges e,, e,, ..., ,.
Then the inclusion map (e;, é;) — (X, X°) induces a monomorphism H (e, é;) —
H (X, X°) fori=1,2,..., k and H(X, X°) is the direct sum of the image
subgroups. It follows that H,(X, X°) is a free abelian group of rank k, and
Hy(X,X°) =0 forq +# 1.

(Note: The rank of a free abelian group is the number of elements in a basis;
it is proved in books on linear algebra that it is an invariant of the group).

Proor. The third sentence of the theorem is a consequence of the two pre-
ceding sentences, in view of Equation (8.3.1). Therefore, we will concentrate
our attention on the first two sentences of the theorem.

According to the definition of a graph, the set ¢; is homeomorphic to the
unit interval I = [0, 1]; choose a definite homeomorphism of e; with I for
i=1,2, ..., k and let g; denote the point which corresponds to § € I; it is
the midpoint of the edge ¢;. Similarly, let d; denote the subset of e; which
corresponds to the closed subinterval [4,2],and D =d, ud, U - ud,, A =
{al, as, ..., a,}. Our proof of the theorem is based on the consideration of the
following diagram:

H(D,D—A) —— H(X,X —A) —— H,X, X°)

5 | I
Hyd;, d; — {a;}) —— H,(e, & — {a)}) —— H,&,¢é)

All homomorphisms in this diagram are induced by inclusion maps of the
corresponding pairs. It follows that each square of this diagram is commuta-
tive. We assert that all four horizontal arrows in this diagram denote isomor-
phisms. For arrow 4, this follows from the fact that ¢, is a deformation retract
of g, — {a;}, together with the five-lemma (Lemma VII.7.1). Exactly the same
kind of argument shows that arrow 2 is an isomorphism. It follows from the
excision property that arrows 1 and 3 are isomorphisms.

The theorem now follows from the fact that the space D is disconnected
and its components are d,, d,, ..., d;, and d; — {a;} = d;~ (D — A) (cf. Exercise
VIIL.5.2). Q.ED.

We will now consider the exact homology sequence of the pair (X, X°).
The structure of the relative homology groups H,(X, X°) is described by the
theorem just proved. Since X° is a finite space with the discrete topology,
H,(X°) = 0for q #0,and Hy(X°)is a free abelian group whose rank is equal
to the number of vertices. From this it follows easily that H(X) = Oforgq > 1,
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and the only nontrivial portion of the homology sequence of the pair (X, X°)
is the following:

0 H,(X) 3 H (X, X°) 3 Hy(X) 5 Ho(X) 0. (832)

We already know that Hy(X) is a free abelian group whose rank is equal to
the number of arc components of the topological space X. For a finite, regular
graph, it is readily proved that the components and arc-components are the
same.

Thus, we know the structure of all the groups in the homology sequence
of the pair (X, X°), with the exception of H,(X). To determine the structure
of this one remaining group, we need the following two results from linear
algebra:

(A) Any subgroup of a free abelian group is also free abelian.

(B) Let f: A — F be an epimorphism of an abelian group A onto the free abelian
group F. Then the kernel of f is a direct summand of A; the other summand
is isomorphic to F.

The proofs of these propositions may be found in textbooks on linear
algebra. The proof of (B) is especially simple.

Definition 3.3. The Euler characteristic of a graph is the number of vertices
minus the number of edges.

We can now state the main theorem about the homology groups of a graph:

Theorem 3.4. Let (X, X°)be a finite, regular graph. Then H,(X) = 0 for g > 1,
H,(X) is a free abelian group, and

rank(Hy (X)) — rank(H (X)) = Euler characteristic.

We leave it to the reader to prove this theorem, using the homology
sequence of the pair (X, X°) and the two results from linear algebra stated
above.

This theorem gives a simple method for determining the structure for
H,(X). For we can determine the rank of H,(X) by counting the number of
components, and we can determine the Euler characteristic by counting the
number of vertices and edges. For certain purposes it is necessary to go more
deeply into the structure of H,(X), and actually give some sort of concrete
representation of the elements of this group. This we will now proceed to do.

The exact sequence (8.3.2) shows that H,(X) and Hy(X) are the kernel and
cokernel respectively of the homomorphism 4, : H,(X, X°) - Hy(X°). Our
procedure will be to choose convenient bases for the free abelian groups
H,(X, X®°)and H,(X°), and then express d, in terms of these bases. The edges
of the graph X will be denoted by ¢, ..., ¢, and the vertices by v, ..., v,,.

It is easy to choose a natural basis for the group Hy(X°). Since X° is a
discrete space, H,(X?) is naturally isomorphic to the direct sum of the groups
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Hy@) fori=1,2,..., m. The augmentation homomorphism ¢: Hy(v;) > Z is
an isomorphism; therefore it is natural to choose as a generator of H,(v;) the
element a; such that ¢(a;) = 1. Then {a,, ..., a,} is a basis for Hy(X°). To
avoid proliferation of notation, it is convenient to use the same symbol v; for
the basis element a; € Hy(v;). This abuse of notation will hardly ever lead to
confusion, and it is sanctioned by many decades of use. Thus, we will denote
our basis of Hy(X%) by {vy, ..., v,}.

Choosing a basis for H,(X, X°)is only slightly more complicated.

According to Theorem 3.2, H,(X, X°) decomposes into the direct sum of
infinite cyclic subgroups, which correspond to the edges e, ..., €. Thus, to
choose a basis for H,(X, X°) it suffices to choose a generator for the infinite
cyclic group H,(e;, é;) for i =1, 2, ..., k. It turns out that such a choice is
purely arbitrary; there is no natural or preferred choice of a generator. In order
to understand the meaning of such a choice, consider the following commuta-
tive diagram (cf. Exercise VIL.5.5.):

H,(e,¢;) — Ho(é;)

!

0

The homomorphism J, is an isomorphism; thus choosing a generator for
H (g, ¢é;) is equivalent to choosing a generator for H,(é;). The set ¢, consists
of two vertices; let us denote them by v, and v,. Using the convention
introduced in the preceding paragraph, we may use the same symbols, v, and
vg, to denote a basis for Hy(¢;). With this convention, the two possible choices
of a generator for the infinite cyclic subgroup H,(é;) are v, — vg and vg — v,.
Thus, we see that a choice of basis for H,(e;, ¢;) corresponds to an ordering
of the vertices of the edge e;. For this reason, we will say that we orient the
edge ¢; when we make such a choice. To make things precise, we lay down the
following rule: Orient the edge e; by choosing an ordering of its two vertices. If
Vg > Uy, then this ordering of vertices corresponds to the generator 81_1(0,, - 1,)
of the group H (e, é;).
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We can now give the following recipe for the homomorphism 0, :
H, (X, X% - Hy(X°):

(@) A basis for H,(X°) consists of the set of vertices.

(b) Orient the edges by choosing an order for the vertices of each edge. On a
diagram or drawing of the given graph, it is convenient to indicate the
orientation by an arrow on each edge pointing from the first vertex to the
second.

(c) A basis for H,(X, X°) consists of the set of oriented edges.

(d) Ife; is any edge, with vertices v, and v, and orientation determined by the
relation vy > v,, then

O (e;) = vg — v,

Examples

3.1. Figure 8.1 shows a graph with six vertices and nine edges which cannot
be imbedded in the plane. (This graph comes up in the well-known problem
of the three houses and the three utilities.) We have oriented all the edges by
placing arrows on them which point upward. According to the preceding rules,
the homomorphism J, is given by the following formulas:

O.(e) =1, —v,

Oxlez) = Uy —Us

0,(e3) = Uy — Ve
Oule)) = 1y —v4

0,(es) = U3 —Us

O,(e6) = v, —vs

O,(e7) = Uy — Ve
O, (eg) = Uy —Uq

O,(e9) = v, —vg.

Uy

€g

F1GURE 8.1
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In other words, 0, is represented by the following matrix:

100 -1 0 0
010 0 -1 0
001 0 0 -1
010 -1 0 0
001 0 -1 0
100 0 —1 0
010 0 -0 -1
001 -1 0 0
100 0 0 —1]

There remains the problem of determining the kernel and cokernel of J,.. In
books on linear algebra there is an algorithm described for introducing new
bases in the domain and range of such a homomorphism so that the corre-
sponding matrix is a diagonal matrix. Then generators of the kernel and
cokernel can be read off with ease. Unfortunately, this algorithm is rather
lengthy and tedious. As a practical alternative, one can proceed as follows.

The Euler characteristic of this graph is 6 — 9 = — 3. Since it is connected,
Hy(X) has rank 1. Hence H,(X) has rank 4, by Theorem 3.4. Therefore, we
should be able to find four linearly independent elements in the kernel of J,,
and then hope to prove that they form a basis for the kernel of 4. Consider
the following four elements of H, (X, X°):

zZ,=e;, —eg+ €3 — €y,

z, =€, — e, + eg — €s,

Zy=e€3— €5+ € — €y,
and

z,=e;—e, +es — €.

These four elements (which we may as well call cycles) were determined by
inspection of the above diagram. They correspond in an obvious way to
certain oriented closed paths in the diagram. It is readily verified that all four
of these cycles actually belong to the kernel of d,, and that they are linearly
independent. Finally, it is a nice exercise in linear algebra to check that the
set {e,, €,, ey, €4, €5, 21, 23, 23, 24 } is also a basis for H, (X, X°). These facts
suffice to prove that {z,, z,, z3, z, } is actually a basis for the kernel of d,, or
what is equivalent, for the homology group H,(X). We leave it to the reader
to carry through the details of the proof. The reader is strongly urged to make
diagrams of several graphs and determine a set of linearly independent cycles
which constitute a basis for the 1-dimensional homology group of each graph.
It is only by such exercises that one can gain an adequate understanding and
intuitive feeling for homology theory. The idea that a 1-dimensional homology
class is represented by a linear combination of cycles is very important.
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Next we will discuss the problem of determining the homomorphism
induced on the 1-dimensional homology groups by a continuous map from
one graph to another. This problem is probably just as important as the
problem of determining the structure of the 1-dimensional homology groups.
Let (X, X°) and (Y, Y°) be finite regular graphs and f: X — Y a continuous
map. In order to have an effective procedure for determining the induced
homomorphism f, : H,(X) — H(Y), it is necessary to impose some conditions
of f. The following will be convenient for our purposes:

(A) f(X° < YO ie., f maps vertices into vertices.
(B) Given any edge e; of X, either f maps g, homeomorphically onto some
closed edge ] of Y, or f maps e; onto a vertex of Y.

Of course, most continuous maps f do not satisfy these conditions. How-
ever, it can be shown that one can deform any map f homotopically into one
which does satisfy them, provided one subdivides (X, X°) first. In view of the
invariance of f, under homotopies, this is allowable for our purposes.

Since f(X°) = Y° we may consider f as a map of pairs: (X, X°) - (Y, Y°).
Hence we obtain the following commutative diagram involving the exact
homology sequences of the pairs (X, X°) and (¥, Y°).

0 —— Hy(X) —2 H,(X, X9 —" Ho(X) —— Ho(X) — 0

I P
0 —— Hy(Y) 25 H(Y,Y°) —2 Hy(Y%) —5 Ho(Y) — 0

From this diagram, it is clear that the homomorphism f, : H,(X) — H(Y)
is completely determined by the homomorphism labeled f; . To determine the
homomorphism f,, it suffices to describe its effect on the basis we have chosen
for H,(X, X°),i.e., on the oriented edges. Suppose first that f maps €; homeo-
morphically onto the closed edge €] of Y, as stated in condition (B) above. We
assume that the edges e; and ej have both been oriented by choosing an order
of their vertices. Then two cases arise, according as the map f is orientation
preserving, or orientation reversing (the meaning of these terms is obvious).
We leave it to the reader to prove that

+e; if f preserves orientation

fl(ei)={

Here f, denotes the homomorphism H,(X, X°) —» H,(Y, Y°) induced by f,
whereas e; € H,(X, X°) and ¢ € H,(Y, Y°) denote the basis elements repre-
sented by the corresponding oriented edges. Suppose next that f maps the
edge e; of X onto the vertex v; of Y. Then

fi(e) =0.

To prove this equation, consider the following commutative diagram:

—e; if f reverses orientation.
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H,(X, X°) —I H,(Y, Y°)

|

Hl(éiséi) — H1(U,{, U,’)

The vertical arrows denote homomorphisms induced by inclusion maps. Since
H, (v}, vj) = 0, the assertion follows.

3.2. By subdividing into short arcs, the circle S! may be considered as a
graph in various different ways. Let us consider S! as the unit circle in the
complex plane, C:

S'={zeCl|z] =1}.

Let f:S' > S! be the continuous map defined by f(z) = z3. We wish to
determine the induced homomorphism f, : H,(S') - H,(S"). In order to solve
this problem, we need to subdivide S* into a regular graph in two different
ways. The first subdivision is into six equal arcs by means of the vertices

LAY _1>, i=0,1,...,5.

v; = exp (j 3

The corresponding (oriented) edges e, €4, . .., €5 are shown in Figure 8.2. The
second subdivision is into two semicircles by the vertices u, = +1and u; =
— 1; the corresponding (oriented) edges, denoted by e; and e} are also shown
in the diagram. Let X° = {v,, vy,..., vs} and Y° = {u,, u;}. Then we can
consider f as a map of pairs, (S, X°) — (S, Y?), and conditions (A) and (B)
arefulfilled, with X = Y = S'. The induced homomorphism f; : H,(S}, X°) -
H (S?, Y°) is described by

filey) = {

—ep ifj=0,2,0r4

—e} ifj=1,3,0r5 (833)

€3 €5

u; Uy

v
2 v,
ey ¢o
Us Vo J

;
/ €

F1GURE 8.2
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in view of our choice of orientations. The kernels of the homomorphisms
0, Hy(SY, X°) = Hy(X),
0,:Hy(S', Y%) - Hy(YO)

are both of rank 1, and they are generated by the cycles
5

x=) ¢ and y=e;+ej, 8.3.4)
=0

respectively. We can consider each of these cycles as a representative of a
generator of the infinite cyclic group H,(S'); in view of the way the orientations
of the edges were chosen, it seems likely that the generators so represented
are the negatives of each other. It follows readily from Equations (8.3.3) and
(8.3.4) that

filx) = =3y;

thus, the map f has degree + 3. Actually, its degree is + 3.

3.3. The preceding example raises the following question: suppose we
subdivide a given space X into a finite regular graph in two different ways.
Using each of these subdivisions, we can determine cycles which represent
elements of the homology group H,(X). How can we compare representative
cycles from the two different subdivisions? The following example shows how
this problem can be solved. Consider two different subdivisions of the unit
circle S! in the complex plane; for example, consider the two subdivisions
considered in the previous example with vertex sets

X% ={vg,...,vs} and Y°={ug u},

respectively. We will define a continuous map g:S*' — S* such that g is
homotopic to the identity map, and so that g is a map of pairs (!, X°)—
(S*, Y°) such that conditions (A) and (B) hold. The easiest way to define g is
to define it separately on each closed cell €, taking care that the various
mappings so defined agree on the end points of the cells. We list the definitions
as follows:

(a) g shall map e, homeomorphically onto &; with g(v,) = 1, and g(v,) = u;.

(b) g(e,) = g(e;) = u;.
(c) g maps e; homeomorphically onto e} with g(v;) = u; and g(v,) = u,.

(d) g(e,) = g(es) = u.
We leave it to the reader to verify that g is actually homotopic to the
identity map of S* onto itself. The induced homomorphism g, : H,(S?, X°) -
H,(S!, Y%)is described by the following equations, using the same orientations
of edges as in the preceding example:

gi(eo) = —eo,

giles) = —ef,

gi(e) =0 forj=1,2,4,0r5.
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From this it follows that
g1 (x) = - ys

where x and y are the cycles defined in the previous example. Since g is
homotopic to the identity map, we know that the induced homomorphism
g, H,(S') » H,(S") is the identity homomorphism. From this it follows that
the cycles x and — y represent the same homology class.

The point of this example is not so much to prove rigorously what is
intuitively obvious, as it is to illustrate a general procedure for handling
questions of this kind.

EXERCISES

3.1. Determine the degree of the mapping f:S' — S! defined by f(z) = z* for any
integer k.

3.2. Prove that for any integer k and any positive integer n there exists a continuous
map f: S" — §” of degree k.

3.3. Identify S2 with the Alexandroff 1-point compactification of the complex plane
C, obtained by adjoining a point to C, called the point at infinity. Let f(z) be a
polynomial of positive degree with complex coefficients; we may consider f to be
a continuous nonconstant map f:C — C. Prove that we may extend f to a

continuous map f : S* — 5? by mapping the point at infinity onto itself.

34. Let f(z) = z* k > 0. Determine the degree of the extension [ : $2 — S2 of f defined
according to the procedure of the preceding exercise.

3.5. Let f(x) be a polynomial of degree k > 0 with complex coefficients. Determine the
degree of the extension [ : $2 — S2 of f defined as above.

3.6. Let f(z) be a polynomial of degree k > 0 with complex coefficients. Prove that the
equation f(z) = 0 has at least one root in the field of complex numbers, C (this is
the so-called fundamental theorem of algebra).

3.7. Let X = {(x, y, z) € R*|xyz = 0} i.e., X is the union of the three coordinate planes.
Prove that any homeomorphism of X onto itself must have the origin, (0, 0, 0), as
a fixed point. (SUGGESTION: Determine the local homology groups at varous
points.)

3.8. Use local homology groups to prove that any triangulation of a compact surface
satisfies conditions (1) and (2) stated near the end of §1.6.

§4. Homology of Compact Surfaces

A compact surface is homeomorphic to one of the following: the 2-sphere, S?;
the torus, S! x S!; the real projective plane; a connected sum of tori; or, a
connected sum of projective planes. For a description of these various surfaces,
see Chapter I. The main fact that we will use is that every compact surface
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Fi1GURE 8.3

can be obtained from some polygonal disc by identifying the edges in pairs
according to a certain scheme.

Examples

4.1 (the torus). We can think of a torus as obtained from a rectangle by
identification of the opposite edges, as shown in Figure 8.3. Under the identifi-
cation, each pair of edges becomes a circle, and the two circles, labeled 4 and
Binthe diagram, intersect in a single point. We will use the following notation:

E? = the rectangle,

X = the torus,

f: E? - X, the identification map,
E? = boundary of the rectangle,
X!'=f(E*) = AUB.

The homology groups of X' can be determined by the methods of the pre-
ceding section. If we knew the relative homology groups H,(X, X'), then we
could hope to determine the homology groups of X by studying the exact
homology sequence of the pair (X, X1).

Proposition 4.1. The identification map f: (E?, E?) > (X, X') induces an iso-
morphism f, : H(E%, E*) > H (X, X") of relative homology groups for all q.
Hence H/(X, X') = 0 for q # 2, and H,(X, X') is infinite cyclic.

Proor. The last sentence is a consequence of the first sentence and Proposi-
tion 2.4. The pattern of proof of the first sentence of the proposition, using the
excision property, deformation retracts, etc., is one that we have used before.

Let x denote the center point of the rectangle E2, and let D? denote a closed
disc with center at the point x whose radius is small enough so that it is
contained entirely in the interior of the rectangle E2. Consider the following
diagram of relative homology groups:

. 1 3
Hq(EZ, E?) — Hq(EZ, E? — {x}) — Hq(DZ, D? — {x})
Je 5

Hy(X, X') —2o H/(X,X — {fx}) «=— H(fD? fD* — {fx})
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In this diagram the horizontal arrows all denote homomorphisms induced by
inclusion maps, and the vertical arrows denote homomorphisms induced by
/- Each square in the diagram is commutative.

We assert that the four homomorphisms denoted by horizontal arrows are
all isomorphisms. For arrows 3 and 4 this assertion follows from the excision
property. For arrow 1, it follows from the fact that E? is a deformation retract
of E? — {x}; one must also use the five-lemma. By a similar argument, the
assertion can be proved for arrow 2.

To complete the proof, observe that arrow 5 is an isomorphism because
maps D? homeomorphically onto f(D?). It now follows from the commutativity
of the diagram that f, is also an isomorphism. Q.E.D.

The subset X! of X can be subdivided so as to be a finite, regular graph;
it is obviously connected, and its Euler characteristic is — 1. Therefore,
HyX')=1Z, H(X')=Z®Z, and H(X')=0 for g > 1. If we put this
informaton about the homology groups of (X, X!) and X! into the exact
homology sequence of the pair (X, X'), we see that H (X) = 0 for ¢ > 2, and
the only nontrivial part of this homology sequence is the following:

: ; :
0 Hy(X)3 Hy(X, X1) 3 H,(X')3 H,(X) > 0. (8.4.1)

From this sequence, we see that H,(X)and H,(X) are the kernel and cokernel,
respectively, of the homomorphism J,.. Thus, it is necessary to determine J,.
For this purpose consider the following commutative diagram:

[7
H,(X, X') —— H;(X")
I Sia

Hy(E% E?) — Hy(E?)

By the proposition just proved, f, is an isomorphism. It follows from con-
sideration of the homology sequence of the pair (E2, E?) that &, is an isomor-
phism. The homomorphism f;, is induced by the identification maps f; : E? —
X1; this is a map of finite, regular graphs of the type discussed in §3. Using
the techniques of that section, it is a routine matter to calculate the f,, is the
zero homomorphism; we leave the details to the reader. From this it follows
that 0, is also the zero homomorphism.

Going back to the exact sequence (8.4.1) we see that both j, and i, are
isomorphisms. Thus, we have completely determined the structure of the
homology groups of the torus, as follows:

Hy(X)=Z (X is connected),
H(X)=Z&®Z,

Hy(X)=1Z,
and
H(X)=0 forqg>2
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FiGURE 8.4

The fact that the inclusion map i: X' - X induces an isomorphism i, :
H,(X') > H,(X) is also significant. This means that elements of H,(X) can
be represented by cycles on the graph X*. Note also that this statement is still
true if the inclusion map i: X! —» X is deformed homotopically into some
other map.

4.2 [the connected sum of n tori, n > 1 (an orientable surface of genus
n)]. This example is completely analogous to the torus. Such a surface can be
obtained from a polygonal disc having 4n edges by identifying the edges in
pairs according to the scheme shown in Figure 8.4. Under the identification,
each pair of edges becomes a circle on the surface X, and these 2n circles,
which may be denoted 4,, 4,, ..., A4,, B, B,, ..., B, all intersect in a single
point. The union of these circles may be denoted by the symbol X, by analogy
with the case of the torus. Let (E2, E2) denote the pair consisting of the
polygonal disc and its boundary circle. One can prove that the identification
map f: (E2, E?) > (X, X')induces isomorphisms f, : H(E2, E?) » H,(X, X!)
for all g; the proof of Proposition 4.1 applies without any essential change.
Then one completes the determination of the homology groups of X by
studying the homology sequence of the pair (X, X!). The final results are the
following:

H,(X) and H,(X) are infinite cyclic,
H,(X) is free abelian of rank 2n,
and
H(X)=0 forg>2.
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Exactly as in the case of the torus, the inclusion map i: X' - X induces an
isomorphism i, : H,(X') » H,(X).

4.3 (the projective plane). The projective plane may be obtained from a
circular disc by identifying diametrically opposite points on the boundary. It
is harder to visualize than the surfaces we have considered so far because it
can not be imbedded homeomorphically in Euclidean 3-space. It is a non-
orientable surface, and this results in a somewhat different structure for its
homology groups, as we shall see.

As in the previous cases, denote the disc by E?, the projecti\fe plane by X,
and let f:(E?, E?) > (X, X") be the identification map. Here E? denotes the
boundary circle of E2, and X' = f(E?) is also a circle. The induced map
f,:E? > X'is a 2-to-1 map, i.,, it has degree +2. Exactly as before, we can
prove that f, : H,(E?, E?) > H,(X, X) is an isomorphism for all g. The only
nontrivial part of the homology sequence of the pair (X, X') is the following:

Jx 1 O 1 Ix
0 — Hy(X) — H,(X,X') — H,(X") — H,(X) — 0

L

Hy(E? E?) —= H,(E?)

Since f, and 0, are isomorphisms, and f;, has degree +2, we conclude that
0, also has degree +2. It now follows from exactness of the homology
sequence of (X, X!) that

H,(X)=0
and

H,(X) is cyclic of order 2.

Of course Ho(X) = Z and H,(X) = 0 for g > 2 exactly as before.

This is our first example of a space whose homology groups have an
element of finite order; in fact it is probably the simplest example of such a
space. It can be proved that if X is any reasonable subset of Euclidean 3-space,
its homology groups have no elements of finite order.

4.4 (the Klein bottle, K). We have two different ways of obtaining a Klein
bottle by identifying edges of a square: That indicated on the left in Figure
8.5, in which opposite edges are to be identified, or that indicated on the right
in Figure 8.5, in which adjacent edges are to be identified. It is interesting to
use both representations to compute the homology groups of K, and then
compare the results. The details are left to the reader. In either case, it is readily
seen that H,(K) = 0. What is the structure of H,(K)? How can one prove
algebraically that both methods lead to the same result?

4.5 (and arbitrary nonorientable compact surface). An arbitrary nonorient-
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FIGURE 8.5

able surface X is the connected sum of n projective planes, n > 1. If n is odd,
it can be considered as the connected sum of a projective plane and an
orientable surface, whereas if n is even, it can be considered as the connected
sum of a Klein bottle and an orientable surface. The integer n is sometimes
called the genus of the nonorientable surface. Whether n is odd or even, we
obtain two distinct ways of representing X as the quotient space of disc; for
details, Chapter IV, Example 5.4. The reader should use at least one of these
ways (and preferably both) to determine the homology groups of X. The final
result is that H,(X) = 0, and H,(X) is the direct sum of a free abelian group
of rank n — 1 and a cyclic group of order 2.

Note that for the orientable surfaces, H,(X) is infinite cyclic and H,(X) is
afree abelian group, whereas for nonorientable surfaces H,(X) = Oand H,(X)
has a subgroup which is cyclic of order 2. Later we will see that analogous
results hold for compact, connected n-dimensional manifolds for any positive
integer n.

EXERCISES

4.1. Compute the homology groups of a space obtained by identifying the three edges
of a triangle to a single edge as shown in Figure 8.6. (NOTE: This space is not a
manifold.)

42. Given any integer n > 1, show how to construct a space X such that H,(X) is
cyclic of order n.

SIeD

FIGURE 8.6
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§5. The Mayer—Vietoris Exact Sequence
In this section we will be concerned with the following question: Suppose the
space X is the union of two subspaces,

X=AuUB.

What relations hold between the homology groups of the three subspaces A,
B, An B and the homology groups of the whole space? If we make certain
rather mild assumptions on the subspaces involved, we can give a rather nice
answer to this question in the form of an exact sequence, called the Mayer-
Vietoris sequence. This exact sequence plays the same role in homology theory
that the Seifert-Van Kampen theorem plays in the study of the fundamental
group (see Chapter 1V).
In order to describe this exact sequence, let

iy: H(A " B)~ H,(A),
Ju: Hy(4 0 B) > Hy(B),
ky : H,(A) = H,(X),
and
ly - H,(B) ~ H(X)

denote homomorphisms induced by inclusion maps. Using these homomor-
phisms, we define homomorphisms

¢ : H(An B) > H,(4) ® H,(B),
Y : H,(A) @ H,(B) » H,(X)
by the formulas
P(x) = (i,(x), ju(x)), xe€H,(4ANB),
Wi, v) = ko) — L,(0), ueH,(4),ve H,B).
Theorem 5.1. Let A and B be subsets of the topological space X such that

X = (interior A) v (interior B). Then it is possible to define natural homomor-
phisms

A : Hn(X) - n—l(A N B)
for all values of n such that the following sequence is exact:
- AHANBSHMAOHB S H(X)SH,_(AnB) S

If A~ B # (&, the sequence remains exact if we substitute reduced homology
groups for ordinary homology groups in dimension 0.
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This sequence is called the Mayer—~Vietoris sequence. The statement that
the homomorphism A is natural has the following precise technical meaning:
Assume that the subspaces A’ and B’ of X’ are such that

X’ = (interior A’) U (interior B')

and that f: X — X' is a continuous map such that f(4) € A’ and f(B) = B'.
Then the following diagram is commutative for all n:

Hy(X) —— H,_,(AnB)

L

H,(X') —— H,_,(A'nB)

PrOOF OF THEOREM 5.1. Let % = {A, B}; in view of the hypotheses assumed
on A and B we can apply Theorem VII.6.4 to conclude that the inclusion
homomorphisms o : C (X, %) — C,(X)induces isomorphisms o, : H (X, %) -
H,(X) for all n. Note that

G(X, %) = G,(4) + C,(B),

where the group on the right is the least subgroup of C,(X) containing C,(A)
and C,(B)(it is not a direct sum). Therefore, the homomorphisms k : C,(4) —»
C,(X)and I, : C(B) = C,(X) have the property that their images are contained
in the subgroup C,(X, %) in each case. Hence we have commutative diagrams
as follows:

@ LCiX ) L GO
C.(4) a G.(B)
kc,(X) "\‘Cn(X )

Our strategy will be to replace the group H,(X) by H,(X, %) in proving
Theorem 5.1; when we do this, we must systematically replace k by k' and !
by I'. We will assume this has been done, and from now on will drop the primes
from the notation for these homomorphisms.

By analogy with the definition of the homomorphisms ¢ and y above, we
define homomorphisms

®:C,(4n B)—> C,(4) @ C,(B),
¥ : C,(4) ® Cu(B) - C(X, %)
by the following formulas:
D(x) = ({4 X, j$X),
W(u, v) = ky () — 14(v).
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Now consider the following diagram of chain groups and homomorphisms:

0—— Cy11(A A B)—25 Cp 11 (A) ® Cp 11 (B)——> Cp11 (X, %) —— 0

0— C(AnB) —— C(A)®C(B) —— CiX,%) ——0

~

0—— Cy_y(4 " B)—>— C,_1(4) ® C,_,(B)—— C,_(X, %) ——0

The vertical arrows denote the appropriate boundary operator in each case.
In the case of the vertical arrows in the middle column, this means the direct
sum of the boundary operators for 4 and B. The two most important facts
about this diagram are the following:

(1) Each square of this diagram is commutative. This is practically obvious,
in view of the way the homomorphisms ® and ¥ were defined.

(2) Each horizontal line in this diagram is exact. The verification of this fact
is left to the reader; it should not present any real difficulty.

The reader should now compare this diagram with Diagram (7.5.1) which
was used to set up the exact homology sequence of a pair. The essential
properties of the two diagrams are the same. By the same process that was
used in §VILS to define the boundary operator of a pair, one can now define
the homomorphisms

A: Hn(X1 %) - n—l(A f\B)

for all values of n. Moreover, the methods used to prove the exactness of the
homology sequence of a pair apply without change to give the exactness of
the following sequence of groups and homomorphisms:

A H(ANBSH ()@ HB) S H (X, 1) 5.

All this remains is to substitute H,(X) for H,(X, %), and we have proved the
exactness of the Mayer—Vietoris sequence.

We leave it to the reader to verify that the homomorphism A is natural and
to investigate what happens when one uses reduced homology groups in
dimension 0 (provided 4 N B # ). QE.D.
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Examples

5.1. We will show how the Mayer—Vietoris sequence can be used to make
the inductive step in the proof of Theorem 2.1. As the inductive hypothesis,
assume that A,(S") = Z, and H;(S") =0 for i # n. We wish to determine
H,(S"*1). Let A be the complement of the point (0, ..., 0, — 1) in $**! and let
B be the complement of the point (0, ..., 0, +1) in $"*'. Then 4 and B are
open subsets of $"*1, and 4 U B = S"*!. Therefore, we can apply the Mayer—
Vietoris sequence; in this case 4 N B # ¢, and it is convenient to used reduced
homology groups in dimension 0. Consider the following portion of the
sequence:

A (@ A1, (B) > B,y (5" S H(A n B) — A(4) @ Hy(B)

One proves by stereographic projection that 4 and B are both homeomorphic
to R"*!, hence they are contractible. Therefore, H,(A4) = A,(B) = 0 for all i. It
follows by exactness that A is an isomorphism. Now A4 m B is homeomorphic
to R"*! minus a point, and therefore it contains S" as a deformation retract.
Hence by the inductive hypothesis H,(4 " B) = Z, and H(A ~ B) = 0 for
i #n. Since A is an isomorphism, it follows that H,.,(S"*!')=Z, and
H(S"*') = 0fori # n + 1, as was to be proved.

One final comment about the Mayer—Vietoris sequence: we could weaken
the hypotheses of Theorem 5.1 to read X = A U B, provided we knew that the
inclusion homomorphism C,(A4) + C,(B) — C,(X) induced isomorphisms on
homology groups; this was the purpose of the assumption that the interiors
of A and B cover X. We will come back to this point later.

EXERCISES

5.1. Assume that X = U v V, where U and V are open subsets of X, and UV is
nonempty and contractible. Express the homology groups of X in terms of those
of Uand V.

5.2. Assume that X = A U B, where A and B are closed subsets of X,and A ~ B = {x,}.
Assume further that x, has an open neighborhood N in X such that N n 4 and
N ~ Bare both contractible, and that during the contraction the point x, remains
fixed. Express the homology groups of X in terms of those of 4 and B.

5.3. Assume that the space X and the subspaces A and B satisfy the hypotheses
of Theorem 5.1. (a) Prove that the inclusion maps (4, A » B) > (X, B) and
(B, An B) > (X, A) induce isomorphisms on homology. (b) Show that the
homomorphism A : H,(X) - H._,(A n B) is the composition of the following
homorphisms:

H,(X)5 H,(X, B)~ H,{4, An B) 5 H, ,(A " B).
5.4. Use the result of part (b) of the preceding exercise to define the homomorphism
A:H(X)— H,_,(A ~ B). Then prove directly (by diagram chasing, without going

back to chain groups) that the Mayer—Vietories sequence is exact (cf. Eilenberg
and Steenrod, [2, Chapter I].



§6. The Jordan—Brouwer Separation Theorem 211

§6. The Jordan—Brouwer Separation Theorem
and Invariance of Domain

The classical Jordan curve theorem may be stated asfollows: Let C be a simple
closed curve in the plane R?, ie., Cis a subset of R? which is homeomorphic
to S!. Then R? — C has exactly two components, and C is the boundary of
each component (in the sense of point set topology). It is our object in this
section to prove a generalization of this theorem to R”, and derive various
consequences. Most of the results of this section were first proved by the Dutch
mathematician L. E. J. Brouwer.

The Mayer—Vietoris sequence will play an essential role in the proof. We
will also need another general property of singular homology theory, which
may be stated as follows:

Proposition 6.1. Let (X, A) be a pair consisting of a topological space X and
subspace A. (a) Given any homology class u € H,(X, A), there exists a compact
pair (C, D) = (X, A) and a homology class u’ € H,(C, D) such that i (u') = u,
where i : (C, D) — (X, A)is the inclusion map. (b) Let (C, D) be any compact pair
suchthat (C, D) c (X, A),andv € H,(C, D)ahomology class such thati,(v) = 0.
Then there exists a compact pair (C', D') such that (C, D) = (C', D') = (X, A)
and j,(v) = 0, where j : (C, D) — (C', D') is the inclusion map.

In the statement of this proposition, “a compact pair (C, D)” means a pair
such that C is compact and D is a compact subset of C. An inclusion relation
between pairs, such as (C, D) = (X, 4), means that C = X and D = A. For the
reader who is familiar with the concept of direct limit, this proposition may
be restated as follows: H,(X, 4)is the direct limit of the groups H,(C, D), where
(C, D) ranges over all compact pairs contained in (X, A4).

The proof of this proposition depends on the following fact: If a € Q,(X),
then there exists a compact set C = X such that a € Q,(C). In fact, if a is a
linear combination of the singular n-cubes T, T3, ..., T;, then we may choose
C=T(I"Yv L") v - u T,("). The proposition follows readily from this
fact by choosing representative cycles for the homology classes involved, etc.
The details can be easily worked out by the reader. We also leave it to the
reader to verify that this proposition remains true if we replace ordinary
homology groups by reduced homology groups everywhere in the statement.

In order to prove the Jordan—Brouwer separation theorem, we need the
following lemma, which is of some interest in its own right:

Lemma 6.2. Let Y be a subset of S" which is homeomorphic to I¥, where
0<k<n Then H(S"— Y) =0 for all i.

Proor. The proof is by induction on k. For k =0, I* is a single point (by
definition), and S" — I* is homeomorphic to R", which is contractible.



212 VIII. Determination of the Homology Groups of Certain Spaces

In order to make the inductive step it is convenient to assume we have
chosen a definite homeomorphism of Y with I*; then we may as well identify
Y with I* by means of this homeomorphism. Let

Yo={(x1,...,x) € Y|x; <73},
Y, ={(xy,...,x) € Y|x; > 3}.
Then
Yout, =%,
§"—(YpnY)=(5"-Y)u(Ss"-Y),
and we may apply the Mayer—Vietoris sequence to this representation of

S" — (Y, N Y;) as the union of two open subsets. Note that Y, » Y; is homeo-
morphic to I*7!; hence, by the inductive hypothesis

A" = (YonY))=0

for all i. Therefore, we conclude from the exactness of the Mayer—Vietoris
sequence that

Q: ﬁi(sn -Y) _'ﬁi(sn -Y)® ﬁi(sn -Y)

is an isomorphism for all i.
Now recall the definition of the homomorphism ¢ from the preceding
section:

@(x) = (ipy(x), i1 4(x)),

where iy :S" — Y > 8" — Yyand i; : $" — Y —» §" — Y, are inclusion maps. In
order to complete the proof of the inductive step, we will assume that for some
integer i, H,(S" — Y) # 0, and show that this assumption leads to a contradic-
tion. As a first consequence of the assumption that H,(S" — Y) # 0, we see
that we can find an element a, € H,(S* — Y)such that Iog(@0) # 0,01, (ap) #
0.

Let us first take up the case where a; = iy (a,) # 0. Let

Yoo = {(x1, ..., %) € Yo|0 < x; <3},
Yo, = {(X1, cey X)) € Yo|% <x; < %}
Then
YO = YooU YOI'
Let

iog: 8" — Yo 8" — Yoo,
i01:8" = Y= 8" - Yo,

Then by a repetition of the above argument using the Mayer- Vietoris se-
quence and the inductive hypothesis, we may prove that iy, (a;) # 0 or
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Io1s(a;) # 0. 1In the other case where i,,(a,) # 0, we may represent Y; as the
union of two subsets,

Yi=Y,uT,

such that i o, (a,) # 0, or i, (a,) # 0 where now a, =i, (a,) # 0.

The reader will immediately see that we may continue this process ad
infinitum. The net result is that we can construct an infinite decreasing sequence
of subsets of Y each homeomorphic to I* and denoted by

YoV VoY oo Y™S..
such that the following two properties hold:

(a) Let Y™ denote the intersection of all the sets of this sequence; then Y* is
homeomorphic to I*~*. Hence, H;(S" — Y*) = 0 for all j by our inductive
hypothesis.

(b) Let us denote the complementary sets and their inclusion maps as follows:

s _yhs—yhe_yrh..
Using the element a, € H,(S" — Y), we may construct an infinite sequence
(ag,ay, a,,...)
of elements such that a,, € H,(S" — Y™) and a,, # 0 as follows:
a; =1i,(ao),
a; =i, (ay),
a, =i,(a,), etc.

We will complete the proof by showing that the existence of such an infinite
sequence of nonzero elements contradicts Proposition 6.1. Apply Proposition
6.1(a) to obtain a compact set C = S" — Y and a homology class a; € H,(C)
such that a; — a, under the inclusion map C — (S" — Y). Since A,(S" — Y*) =
0, we may apply Proposition 6.1(b) to the inclusion C = §" — Y™ to conclude
that there exists a compact set C’' such that

CcCcsS"—7Y®

and agy — 0 under the homomorphism induced by the inclusion map C - C'.
Since C' is compact, there exists an integer m such that C' = $" — Y™, Now
consider the following diagram of reduced homology groups:

H:’(C) - H(C)

]

A"~ Y) —— H(ES"— Y™)

All homomorphisms in this diagram are induced by inclusion maps, hence the
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diagram is commutative. If we consider the element a; € H,(C) and chase it
both ways around this diagram, we see that it must go to zero one way, while
the other way it goes to a,, # 0. This is the desired contradiction, and hence
the proof of the inductive step is complete. QED.

Perhaps the reader wonders who concocted such a complicated proof as
this. The answer is that it is the work of many mathematicians; it has evolved
over a relatively long portion of the history of algebraic topology. In order to
appreciate why the proof of this lemma might have to be so complicated, the
reader should consider some examples of subsets Y of S* which are homeo-
morphic to I' and such that S* — I' has a nontrivial fundamental group (cf.
Artin and Fox [1]).

Theorem 6.3. Let A be a subset of S" which is homeomorphic to S*, 0 < k <
n—1.ThenH, ,_(S"— A =Z,and H(S" — A)=0fori#n—k— 1.

ProoF. Once again the proof is by induction on k, using the Mayer—Vietoris
sequence. If k = 0, then A consists of two points and S" — A is homeomorphic
to R" with one point removed. Hence S” — A has the homotopy type of "2,
and the theorem is true for this case.

Now we will make the inductive step. Since A is homeomorphic to S*, it
follows that A = A, U A,, where A, and A, are subsets of A which are
homeomorphic to I*, and 4, N A, is homeomorphic §*~! (cf. the proof of
Theorem 2.1). Therefore,

§"—(A;nAy))=(8"—A)u(S"— 4,),
and we may apply the Mayer—Vietoris sequence to this representation of
S" — (A, n A,) as the union of two open subsets. By the lemma just proved,
Hi(sn —A) = ﬁi(sn —A4;)=0
for all i. It follows from the exactness of the Mayer—Vietoris sequence that
A:H; (8"~ (A0 Ay) > B(S" — 4)

is an isomorphism for all i. Since 4, N A, is homeomorphic to S$*~!, this
isomorphism suffices to prove the inductive step. QE.D.

Examples

6.1. Suppose that A is a subset of $* which is homeomorphic to S!, ie., A
is a simple closed curve in S>. It follows from the theorem just proved that
H,(S® — A) is infinite cyclic, and H,(S> — 4) = 0 for i # 1. It is well known
that a simple closed curve in R® or S* can be “knotted” in various different
ways, or left unknotted. Thus the homology groups of S* — A in this case are
independent of how A is knotted. On the other hand, it may be shown that
the fundamental group of S* — A does depend on how A is knotted; cf. Chapter
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IV, §6, and the references given there. The fact that the homology groups of
$* — A are independent of how A is knotted can be an advantage or a
disadvantage, depending on what one is trying to do.

Corollary 6.4 (Jordan—Brouwer theorem). Let A be a subset of S" which is
homeomorphic to S"~*. Then S* — A has exactly two components.

ProOF. Apply the case k = n — 1 of the preceding theorem to conclude that
H,(S" — A) has rank 2; hence S” — A has exactly two arc components. But it
is readily seen that S” — A is locally arcwise connected, hence the components
and arc components are the same.

Proposition 6.5. Let A be a subset of S" which is homeomorphic to $"~'. Then
A is the boundary of each component of S" — A.

In order to better appreciate this proposition, consider the case where A is
a subset of S which is homeomorphic to S* x I (instead of S*). Then S — A
has two components, but the boundary of either component is a proper subset
of A.

PROOF oF ProOPOSITION 6.5. Since S” — A is locally connected, each com-
ponent of S* — A is an open subset of $” — A4, and hence an open subset of S”.
Therefore, the boundary of each component must be a subset of A. To
complete the proof of the proposition, we must show that any point a € A4 is
a boundary point of each component of $* — A. Denote the components of
§" — A by Cy and C,. Let N be any open neighborhood of a in $*; we must
show that NN C; # Ffori =0and 1.

Note that N n A is an open neighborhood of a in A4. Since A is homeomor-
phic to $" !, we can find a decomposition

A=A1\JA2,

as in the proof of Theorem 6.3, such that A, and A, are homeomorphic to
I"', A, n A, is homeomorphic to $" 2, and A, = N n A. It follows from
Lemma 6.2 that S" — A, is arcwise connected. Let p, e C,, and p, € Cy;
choose an arcin §" — A, joining p,top,,ie., acontinuousmap f:I - S" — A4,
such that f(0) = p,, and f(1) = p,. It follows from what we have already
proved that f(I)~ A # ¢, and hence f(I)n A, # . Consider the subset
f7Y(A,) < I, this is a compact subset of I, and hence it must have a least point
t, and a greatest point t,. Obviously t, and t, are boundary points of f ~*(4,),
and f~!(N) is an open subset of I which contains both t, and ¢,. From this it
follows by an easy argument that f "}(N)n f~}(C;)and f Y (N)n f~1(C,) are
both nonempty. Hence, N N C, # ¢ and N n C, # (J, as desired. QE.D.

Note that essential role that Lemma 6.2 plays in this proof.
In order to better appreciate the significance of Corollary 6.4 and Proposi-
tion 6.5, the reader should study the Alexander horned sphere or other wild
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imbeddings of S in S3, cf. Hocking and Young, [3, p. 176]. For the case of
imbeddings of S! in S2, there is the so-called Schénflies theorem, which is
stronger than the Jordan curve theorem (see E. Moise [4]).

Next, we will prove another of L. E. J. Brouwer’s theorems, usually referred
to as “the theorem on invariance of domain.”

Theorem 6.6. Let U and V be homeomorphic subsets of S". If U is open, then
so is V (and conversely).

PrROOF. Let h: U — V be a homeomorphism. For any point x € U we can find
a closed neighborhood N of x in U such that N is homeomorphic to I” and
its boundary, N, is homeomorphic to S* . Let y = h(x); then N’ = h(N)is a
closed neighborhood of y in ¥V with boundary N’ = h(N). It follows from
Lemma 6.2 that S — N’ is connected, and from Theorem 6.4 that S* — N’ has
exactly two components. Note that $" — N’ is the disjoint union of N’ — N’
and " — N’; since both of these sets are connected, they are the components
of " — N'. Therefore, both of them are open subsets of S" — N’ and hence of
$". In particular, N’ — N’ is an open neighborhood of y which is entirely
contained in V. Therefore, y is an interior point of V. Since this argument
obviously applies to any point y € V, the proof is complete. QE.D.

Brouwer’s theorem on invariance of domain is a powerful theorem, and it
deserves to be better known. It should be looked on as a very special topologi-
cal property of S"; or more generally, of n-dimensional manifolds. (See the
exercises below.)

Corollary 6.7. Let A and B be arbitrary subsets of S, and let h: A— B be a
homeomorphism. Then h maps interior points onto interior points, and boundary
points onto boundary points.

This corollary shows that the property of being an interior or boundary
point ofasubset 4 — S"is anintrinsic property, independent of the imbedding.

Lemma 6.2 and Theorem 6.3 are special cases of the Alexander duality
theorem, which will be taken up in Chapter XIV.

EXERCISES

6.1. Let Y be a subset of R” which is homeomorphic to I*, 0 < k < n. Determine the
homology groups of R” — Y. (HINT: Consider R" as the complement of a point in
5")

6.2. Let A be a subset of R" which is homeomorphic to $¥,0 < k < n — 1. Determine
the homology groups of R* — A. How many components does R" — A have?

6.3. Does the analogue of Proposition 6.5 hold true for subsets of R" which are
homeomorphic to §* 17

6.4. Let Abeaclosed subset of R” which is homeomorphic to R 1, Prove thatR* — A
has exactly two components.
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6.5.

6.6.

6.7.

6.8.

6.9.
6.10.
6.11.

6.12.

6.13.

6.14.

§7.

Prove that Theorem 6.6 and Corollary 6.7 hold for subsets of R”. Then prove
the following more general form of Brouwer’s theorem. Assume M and N are
n-dimensional manifolds; let U and V be subsets of M and N, respectively, such
that U and V are homeomorphic. If U is an open subset of M, then V is an open
subset of N. (NOTE: An n-dimensional manifold is a Hausdorff space such that
each point has an open neighborhood which is homeomorphic to R")

Use Brouwer’s theorem on invariance of domain to prove that R™ and R" are
not homeomorphic if m # n (it is not necessary to use homology theory in this
proof).

Prove that if m > n, then there is no subset of $" which is homeomorphic to I™.

Let U be an open subset of R” and let f: U —» R” be a map which is continuous
and one-to-one. Prove that f is a homeomorphism of U onto f(U).

Prove that no proper subset of $” can be homeomorphic to S".
Prove that a continuous map f: $" — R" cannot be one-to-one.

Let U be an open subset of R™ Prove that if m > n, there is no continuous,
one-to-one map of U into R", Generalize this statement by replacing R™ and R"
by manifolds of dimension m and n respectively.

Let A and B be subsets of $” which are homeomorphic to $? and $7, respectively,
where 0 < p < q < n. Determine the homology groups of $" — (4 v B) in the
following two cases:

(a) A and B are disjoint subsets of $".
(b) A n B consists of exactly one point.

In case p = ¢ = n — 1, determine the number of components of $” — (4 U B).

Let A and B be homeomorphic subsets of R”. If A4 is closed, does it follow that
B is closed?

Let X be a subset of $* which is a finite, connected, regular graph (see Definition
3.1). Prove that H,(S> — X) is a free abelian group of the same rank as H,(X)
and that H,($* — X) = Ofor ¢ > 1. [HINT: Use induction on the number of edges
of X. Any finite connected graph X has an edge e such that the closure (in X) of
X — @is a connected graph Y having one less edge; and Y may have either one
or two vertices in common with e.]

The Relation Between the Fundamental Group
and the First Homology Group*

The main theorem of this section asserts that for an arcwise-connected space,
the fundamental group completely determines the first homology group. The
precise statement will be given after some preliminary definitions. It is assumed

* This section may be omitted by readers who are not familiar with the properties of the
fundamental group.
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that the reader is familiar with the basic properties of the fundamental group;
cf. Chapter II. We will consider the fundamental group as a multiplicative
group and H,(X) as an additive group.

First of all, for any topological space X and any base point x, € X we define
a homomorphism

hy :m(X, x,) = H,(X)

as follows. Let a € n(X, x,); choose a closed path f:I — X belonging to the
equivalence class . We can think of f as a singular 1-cube, and hence as
determining an element of the chain group C,(X). Since f(0) = f(1) = x,,
d:(f) = 0; in other words, f is a cycle. We define h,(«) to be the homology
class of the cycle f. To see that hy(a) is well defined, one must verify that if
g:1— X is another closed path in the equivalence class a, then the cycles f
and g belong to the same homology class. We leave this verification to the
reader. Next, one should check that hy is a homomorphism, i.e., hy{a‘f) =
hy(x) + hx(B). This may be done as follows. Choose representatives f : [ - X
and g: I — X for o and B, respectively. Then f-g:I — X is a representative

for a - B, where
(1@, 0<t<i
(/o) = { <t<l

g2t-1), 3
Now define a singular 2-cube T: I? - X by the formula
Sxy + 2x3), x;+2x; <1
T(xy, x;) = _
( 1 2) (M), x; + 2x2 > 1.
x; +1

The function T was chosen so that it is constant along the straight lines shown
in Figure 8.7. It is readily checked that

M=f+g9-fg—¢

———
——
—
——
—

Lx, + 2x, £ 1

X,

0 I 1

FIGURE 8.7
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where ¢ is a degenerate singular 1-cube. But this equation clearly implies that
hy(o B) = hy(x) + hy(P), as required. In order to better understand the defini-
tion of the function T, it is suggested that the reader try to work out the formula
for T(x,, x,) himself so that it will have the required properties.

The homomorphism we have just defined satisfies the following obvious
naturality condition. Let ¢ : X — Y be a continuous map such that ¢(x,) = y,.
Then the following diagram is commutative:

(X, xo) SELLEN (Y, yo)

hx hy

Hy(X) —=> H,(Y)
In addition, the following two rather obvious remarks apply to the homomor-
phism A.

(a) If the space X is not arcwise connected, H,(X) is the direct sum of the
groups H,(X ), where {X ;|4 € A} denotes the set of arc components of X. It
is obvious that the image of the homomorphism hy is entirely contained in
the 1-dimensional homology group of the arc component of X which contains
the basepoint x,. Therefore, the homomorphism hy is mainly of interest in the
case of arcwise-connected spaces.

(b) Since H,(X) is abelian, the commutator subgroup of n(X, x,) is con-
tained in the kernel of hy. Let us use the notation n'(X, x,) to denote the
“abelianized” fundamental group, i.e., the quotient group of n(X, x,) modulo
its commutator subgroup. Then hy induces a homomorphism 7'(X, x,) —
H,(X), which we will denote by the same symbol, hy, or h for short.

With these properties out of the way, we can state the main result of this
section:

Theorem 7.1. Let X be an arcwise-connected space. Then h is an isomorphism
of the abelianized fundamental group n'(X, x,) onto H,(X).

Proor. In order to carry out the proof, it is convenient to show that one can
compute the singular homology groups of an arcwise-connected space X using
only those singular cubes which have all their vertices mapped into the
basepoint x,. There is a certain analogy here with Theorem VIL.6.4.

Let Q,(X/x,) denote the subgroup of Q,(X) generated by all singular
n-cubes T : I" —» X such that T(v) = x, for any vertex v of the cube I". Define
Dn(X/xo) = Dn(X) N Qn(X/xo) and Cn(X/xo) = Qn(X/xo)/Dn(X/xo)' NOte that
the boundary operator &, : Q,(X)— Q,-,(X) obviously maps the subgroup
0,(X/x,) into Q,_;(X/x,), and hence it induces a boundary operator d,:
C,(X/xo) = C,_1(X/x,). As usual, we define the group of n-cycles, Z,(X/x,),
to be the kernel of 4,

Zn(X/xo) = {u € C,,(X/xo)la,,(u) = 0},
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and the group of bounding cycles B,(X/x,) to be 8,,,(C,.,(X/x,)). Then
B,(X/x,) = Z,(X/x,) and we define

H,(X/Xo) = Zy(X/Xo)/Ba(X [ Xo)-
The inclusion Q,(X/x,) = Q,(X) induces homomorphisms
Tn: Gi(X/x5) = Go(X)
and

Ty Hy(X/x0) = Hy(X).

Lemma 7.2. If the space X is arcwise connected, then the homomorphism t, is
an isomorphism for all n.

ProOF OF LEMMA. The strategy of the proof is to show that the system of
subgroups C,(X/x,),n =0, 1,2, ...1is a “deformation retract” of the full chain
groups C,(X),n=0, 1, 2,..., in some algebraic sense. To be precise, we will
define a sequence of homomorphisms p, : C,(X) = C,(X/x,) such that the p,’s
commute with the boundary operators and hence induce homomorphisms
Pyt Hy(X) = H,(X/x,). It will turn out that p,z, is the identity map of C,(X /x,)
for each n; hence, p, 7, is the identity map of H,(X/x,). Finally, we will define
a sequence of homomorphisms @, : C,(X) — C,,,(X) which will be a chain
homotopy between the chain map 1, p, and the identity map of C,(X). Hence
T, Py is the identity map of H,(X), and the proof will be complete. Actually,
we will only carry out this program for small values of n, because we only need
to know that 7, : H,(X/x,) = H,(X) is an isomorphism. The rest of the proof
will be left as an exercise. Also, it turns out to be easiest to define the
homomorphisms ®, first, and then define the homomorphisms p, afterwards.

In order to define ®,, we will define homomorphisms ¢, : Q,(X) = Q,,,,(X)
such that ¢,(D,(X)) = D,,,(X). We will do this in succession forn =0, 1, 2.
In each case, if T is a singular n-cube, ¢, T will be a singular n + 1 cube. We
proceed as follows:

Case n = 0. We can identify the singular 0-cubes with the points of X. For
each x € X such that x # x,, choose a path T : I — X such that T(0) = x, and
T(1) = x, and then define ¢(x) = T. Complete the definition by defining ¢(x,)
to be the degenerate singular 1-cube at x,. Note that

0190(x) = x — X,
for any singular O-cube x.
Casen = 1. Let T: I — X be a singular 1-cube; we have to define a singular
2-cube ¢, T: I*> - X. We have already defined the chain homotopy ¢, on the
two faces A; T and B, T, and we want the new definition to be consistent with

what we have already defined. Therefore, we impose the following three
conditions on ¢, T:
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B, T=T,
A0, T = @A, T,
B, T=¢oB, T

Note that these conditions imply that 4, ¢, T € Q,(X/x,). Given a singular
1-cube T, there always exist singular 2-cubes ¢, T satisfying these three condi-
tions because the subset of I? consisting of the union of any three edges is a
retract of I 2. Therefore, we may define ¢, by choosing for each singular 1-cube
T a singular 2-cube ¢, T satisfying these three conditions. We wish also to
impose the following two additional conditions, which are consistent with the
three we have already imposed, and with each other:

(a) If T € Q,(X/x,), i.e., if T maps both the vertices of I into x,, define ¢, T by
(@1 T)(x1, x3) = T(x3).

Then ¢, T is degenerate.
(b) If T is a degenerate 1-cube, i.e., T(x) = constant, define

(@1 T)(x1, x3) = (9o A1 T)(x;) = (9B, T)(x,).
Then ¢, T is also degenerate.

Case n = 2. Given a singular 2-cube T:I? — X we wish to define ¢, T':
I® > X so that the definition is consistent with the definition of ¢, on the four
faces of T. Therefore, we impose the following conditions on ¢, T

By, T=T,

A0, T= AT, =123,

Bip, T=¢ B, T, i=23.
Given T, there will always exist singular 3-cubes ¢, T satisfying these five
conditions, because the union of any five faces of I is a retract of I>. Define
@, by choosing for each 2-cube T a 3-cube ¢, T satisfying these five conditions:
Note that A, ¢, T € Q,(X/x,). We also impose the following two additional

conditions, which are consistent with the previous five conditions and with
each other:

(a) If T € Q,(X/x,), define ¢, T by
(@2 T)(x1, X5, x3) = T(x3, x3).

Then ¢, T is degenerate in this case.
(b) If T is a degenerate 2-cube define ¢, T as follows. Since T is degenerate,

T(xy, x3) = A, T(x3) = B, T(x3)

or
T(xy, x3) = A, T(x,) = B, T(x,).
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In the first case, define
@2 T(xy, X3, x3) = (@14, T)(x1, X3)
= (1B T)(xy, x3),
whereas in the second case let
@2 T(xy, X3, X3) = (91 A2 T)(xy, X3)
= (¢1B, T)(xy, x3).

In either case, ¢, T is also degenerate.

The reader who so desires can define ¢, inductively, following the same
pattern for the casesn = 1 and n = 2.

Forn = 1 or 2 it is a routine matter to verify the following formula for any

singular n-cube T:
On410n(T) = T — A, 0,(T) — @51 0,(T);
whereas for n = 0 we have the simpler formula
01 ¢o(x) = x — Xo.
Therefore, we define p, : Q,(X) = Q,(X/x,) as follows: Forn = 0,
Po(X) = xo
for any singular O-cube x. Forn =1 or 2,
Pa(T) = A1 0a(T).
With this notation, the preceding formulas can be written as follows:
0100(u) = u — po(u), ue Qo(X), 8711
Op+19a(W) + 0p10,(w) =u — p(w), u€Q,(X),n=1lor2. (872

Note that p, restricted to the subgroup Q,(X/x,) is the identity map, and
both ¢, and p, map degenerate chains into degenerate chains. Therefore they
define homomorphisms

P s Co(X) = C(X/X,),

(Dn : Cn(X) - n+1(X)1

and analogues of Equations (8.7.1) and (8.7.2) hold. It remains to prove that
p commutes with the boundary operator, ie.,

anpn(u) = Pn-1 6,,(u).

This equation is an easy consequence of Equations (8.7.1) and (8.7.2): Apply
0, to both sides of Equation (8.7.2) and also substitute J,.(u) for u in this

equation, and compare the results.
This completes the proof of Lemma 7.2. This proof is conceptually quite
simple, but the many details which need to be checked make it rather long.
QED.
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We can now proceed with the proof of Theorem 7.1. First of all, note that
Z,(X/x,) = C,(X/x,); hence there is a natural epimorphism k : C,(X/x,) —
H (X /x,) and the kernel of k is B, (X/x,).

Next, we will define a homomorphism [: Q,(X/x,) = n'(X/x,) in a rather
obvious way. Since Q,(X/x,) is a free abelian group and 7'(X, x,) is abelian,
it suffices to define / on a basis for Q,(X/x,), namely, on the singular 1-cubes.
But each such basis element T : I — X with vertices at x,, is a closed path and
hence determines a unique element of 7(X, x,). Note that I maps D,(X/x,)
trivially, and therefore induces a homomorphism [I': C,(X/x,) - 7'(X, x,),
which is obviously an epimorphism. Also, the following diagram is clearly
commutative:

Ci(X/xo) —— T(X, Xo)
k h (8.7.3)

Hy(X/xo) —* H,(X)
Since 7, is an isomorphism it follows from this diagram that
kernel I’ < kernel k = B,(X/x,).

We will next show that
B,(X/x,) < kernel I; (8.7.4)

from this it will follow that
kernel I’ = kernel k,

and since both k and I’ are epimorphisms, and Diagram (8.7.3) is commutative,
h must be an isomorphism as desired.

To prove Inclusion (8.7.4), consider the following sequence of homomor-
phisms.

02(X/x0) 3 01(X/x0) > (X, xo)

By using a basic property of the fundamental group (cf. Lemma I1.8.1) it is
easy to prove that the composition /6, = 0. From this fact Inclusion (8.7.4)
follows. QE.D.

This theorem should help to develop one’s intuition about the first ho-
mology group H,(X). If we apply this theorem with X = S!, we have still
another method of completing the proof of Theorem I1.5.1 on the fundamental
group of a circle.

EXERCISES

7.1. Assume that G is an arcwise-connected topological space, e € G, and there exists
a continuous map u: G x G - G such that u(e, x) = u(x, e) = x for any x € G.
[Example: G is a topological group and e is the identity.] Prove that n(X, e) is
isomorphic to H,(X) (cf. Exercise 7.5 of Chapter II).
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NOTES

In all the examples in this chapter, the homology groups are finitely generated.
In applications of homology theory this is quite often the case. If the group
H,(X) is finitely generated, it is customary to call the rank of H,(X) the gth
Betti number of X, and the torsion coefficients of H,(X) the g-dimensional
torsion coefficients of X.(For the definition of the rank and torsion coefficients
of a finitely generated abelian group, see §I11.3.)

In the early years of algebraic topology, up until about 1930, the Betti
numbers and torsion coefficients were the main objects of interest. For ex-
ample,in 1922 Oswald Veben published his monograph entitled Analysis Situs
(American Mathematical Society Colloquium Lectures, Volume 5) and no-
where did he mention homology groups. The shift of emphasis from Betti
numbers and torsion coefficients to the homology groups themselves was due
mainly to the influence of Emmy Noether in the late 1920s.
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CHAPTER IX
Homology of CW-Complexes

§1. Introduction

The purpose of this chapter is to develop a systematic procedure for deter-
mining the homology groups of a certain class of topological spaces. The
class of topological spaces chosen consists of the CW-complexes of J.H.C.
Whitehead. The procedure developed is a natural generalization and exten-
sion of the method used in the preceding chapter to determine the homology
groups of graphs and compact 2-manifolds.

§2. Adjoining Cells to a Space

The reader may have noticed that there was an analogy in the way the exact
homology sequence and Excision property were applied in §VIIL.3 to deter-
mine the homology groups of a graph, and the way they were applied in §VIIL.4
to determine the homology groups of a compact surface. The reason behind
this analogy may be stated as follows: A graph may be obtained by adjoining
the edges to the vertices, and each edge is homeomorphic to R*. A compact
surface may be obtained by adjoining an open disc (which is homeomorphic
to R?) to a certain graph (which is a union of one or more circles with a single
point in common).

It is natural to expect there would be a higher-dimensional analogy of these
two cases, in which one considers spaces which are obtained by adjoining
higher-dimensional open “discs” or “open solid balls” to a given space, and
then uses the Excision property, etc.,, in an analogous way to compute the
homology groups of the resulting space. In this section we will study such a
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higher-dimensional analogue. We will even consider the case where an infinite
number of n-dimensional “discs” or “balls” are all attached at once.

In the next section, we will consider spaces that are built up one dimension
at a time by first attaching open 2-dimensional discs to a graph (as in the case
of a surface), then open 3-dimensional balls to the resulting space, etc.

In this and the following sections, we will use the following terminology
and notation for any integer n > 1:

E"={xeR"||x| <1} (closed n-dimensional disc or ball),
U"={xeR"||x| < 1} (open n-dimensional disc or ball),
$"!'={xeR"|x| =1} (n— 1)-dimensional sphere).

The sphere $*~! is called the “boundary” of E". Note that U” is homeomorphic
to R", and that it is contractible.

In this section we assume that X* is a Hausdorff space, and that X is a
closed subset of X* such that X* — X is the disjoint union of open subsets
e}, A € A;each ef is assumed to be homeomorphic to U”, and is called an n-cell
or open n-cell. Finally, it is assume that each n-cell ef is “attached” to X by
means of a so-called characteristic map. This means that for each index A € A
there exists a continuous map

Ji E"— e}

such that f; maps U" homeomorphically onto e? and f;(S"!) = X.

If there are only a finite number of n-cells, then we need impose no other
conditions. However, if the number of n-cells is infinite, then we must impose
the following further condition in order to avoid various pathological situa-
tions: It is assumed that a subset A of X* is closed if and only if 4 » X and
fi'(A)are closed for all A € A. This last condition is often expressed by saying
that “X* has the weak topology determined by the maps f; and the inclusion
map X — X*” Note that this condition is automatically satisfied in case the
number of cells is finite (since the finite union of closed sets is closed in any
topological space and a compact subset of a Hausdorff space is closed).

Intuitively speaking, we can think of the space X* as obtained from X by
the “pasting on” of the n-cells e;. The characteristic map f, describes precisely
how the cell e is pasted onto X. In Chapter VIII there were examples of the
cases where n = 1 or 2 and the number of cells attached is finite. The reader
should construct other examples to illustrate some of the various possibilities
inherent in this definition.

In this section, we wish to consider the following problem. Suppose X is a
space whose homology groups are known. Let X* be a space obtained from
X by adjoining n-cells so that the above conditions hold. How are the
homology groups of X* related to those of X? The obvious way to attack this
problem is to consider the exact sequence of the pair (X*, X). This requires
that we determine the homology groups of the pair (X*, X). This we can do
by application of the techniques of the last chapter. The result may be stated
as follows:
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Theorem 2.1. Let X* be a space obtained by attaching a collection of n-cells
(n>0) {ejlie A} to X so that the hypotheses listed above hold. Then
H,(X*, X) =0 for all q¢ # n. For each index A e A, the characteristic map f,
induces a monomorphism of relative homology groups f,,: H,(E", S"™!) -
H,(X*, X) and H,(X*, X) is the direct sum of the image subgroups. Thus,
H,(X*, X)is a free abelian group with basis in 1-1 correspondence with the set
of cells {ef|1 € A}.

Corollary 2.2. The homomorphism i, : H(X)— H,(X*) is an isomorphism
except possibly for q = nand ¢ = n — 1; the only nontrivial part of the homology
sequence of the pair (X*, X) is the following:

0 — Hy(X) > Hy(X*) > Hy(X*, X) > H,_,(X) > H,_,(X*) 0.

ProoF OF THEOREM 2.1. The closed ball E* and the sphere S"! both have
center at the origin, 0, and radius 1. We also need to consider the closed ball
of radius § with center at the origin:

D" = {x e R"||x| <i}.

Let
D; = f,(D"),
a; = £,(0),
2= ) D,,
1€A
A= {a;|A e A},
X' =X*— A

Note that f; maps the pair (D", D" — {0}) homeomorphically onto (D,, D; —
{a;}), and that the subsets D,, 1€ A, are pairwise disjoint. Consider the
following diagram:

H(2 9 — A)> H(X* X') & H(X*, X),

where both arrows denote homomorphisms induced by inclusion maps. We
assert that both homomorphisms in this diagram are isomorphisms for all g.
For the homomorphism represented by arrow 2, this follows from the fact
that X is a deformation retract of X', and by using the five-lemma. For the
homomorphism represented by arrow 1, it is a consequence of the excision
property.

Next, note that the arcwise-connected components of 2 are obviously the
sets D;. Hence H,(2, 2 —~ A)is the direct sum of the groups H,(D;, D; — {a,})
for all A € A. Moreover,

0 forg#n

Hy(D;, D; — {a;}) = {z for q =
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From this it follows that H,(X*, X) = O for g # n, and that H,(X*, X)is a free
abelian group with basis in 1-1 correspondence with the set of n-cells {e}}.
To complete the proof, consider the following commutative diagram:

H(2 9 — A) —— H(X*X) «— H(X* X)

fl’n [ fl"n [ fln

H,(D", D" — {0}) —— H,(E, E" — {0}) «—— H,(E",S"")
The vertical arrows denote homomorphisms induced by f,. Since f; maps
(D", D" — {0}) homeomorphically onto (D;, D; — {a,}), it follows that f],
maps H,(D", D" — {0}) isomorphically onto the direct summand H,(D,, D, —
{a,}) of H,(2, 2 — A). We have already proved that arrows 1 and 2 are
isomorphisms; by exactly the same method, one can prove that arrows 3 and
4 are isomorphisms. Putting all these facts together suffices to prove that
S1e t Hy(E" 8"1) = H,(X*, X) has the desired properties. QE.D.

To close this section, we call the reader’s attention to the naturality of the
exact sequence of the pair (X*, X). Thus, if X* is obtained from X by the
adjunction of n-cells, and Y* is similarly obtained from Y by the adjunction
of n-cells, and ¢ : (X*, X) - (Y*, Y) is a continuous map of pairs, then we get
a ladderlike commutative diagram of maps of the homology sequence of
(X*, X) into that of (Y*, Y). Of course this is a special case of naturality of
the exact sequence of a pair, but it is important and we will make use of it.

§3. CW-Complexes

One of the problems encountered in a systematic exposition of algebraic
topology is deciding on a suitable category of spaces to be studied. If the
category chosen is too narrow and restricted, the theorems are not likely to
be applicable in other parts of mathematics. On the other hand, if the category
chosen is too broad and inclusive, many of the theorems one desires to prove
will become very difficult or false (algebraic topology is mainly concerned
with topological spaces which are sufficiently nice locally so as to be
nonpathological). The category of CW-complexes (introduced by J. H. C.
Whitehead in 1949) has proven to be a reasonable compromise between the
various extremes. Roughly speaking, a CW-complex is built up by the succes-
sive adjunction of cells of dimensions 1, 2, 3, ..., etc, as described in the
preceding section. Our treatment of this topic is rather brief; hence it may be
advisable for the student to read further on this topic. The original paper on
the subject is by J. H. C. Whitehead [10]. The book by Lundell and Weingram
[5] is rather complete. Other references are Cooke and Finney [2, Chapter
I], Hilton [3], Hu [4], and Massey [6].
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The original reason for the term “CW-complex” may be explained as
follows: The letter C stands for closure-finite and W stands for weak topology.

Definition 3.1. A structure of CW-complex is prescribed on a space X (which
is always assumed to be Hausdorff) by the prescription of an ascending
sequence of closed subspaces

X0cX'c X2
which satisfy the following conditions:

(i) X° has the discrete topology.
(i) For n > 0, X" is obtained from X""! by adjoining a collection of n-cells
so that the conditions explained in §2 hold.
(iii) X is the union of the subspaces X* for i > 0.
(iv) The space X and the subspaces X all have the weak topology: A subset
A is closed if and only if A ne"is closed for all n-cells, e”,n =0, 1, 2, ....

The subset X" is called the n-skeleton. The points of X° are called vertices
or O-cells. A CW-complex is finite or infinite according as the number of cells
is finite or infinite. If X = X" for some integer n, the CW-complex is called
finite dimensional, and the least such integer n is called the dimension.

Note that for finite CW-complexes, condition (iv) is superfluous. This fact
greatly simplifies the theory in the finite case, which will be our main interest.

Examples

3.1. The n-sphere, S, can be given a CW-complex structure such that there
are only two cells, a 0-cell and an n-cell. In other words, the k-skeleton is a
single point for 0 < k < n, and the n-skeleton is S". The characteristic map,
by which the n-cell is attached, maps the boundary of E" to a single point.

3.2. A finite graph, as defined in §VIIL3, is a finite, 1-dimensional CW-
complex with an additional condition imposed on the characteristic maps by
which the 1-cells are attached.

3.3. In §VIIL3 we determined the homology groups of a compact, orient-
able surface of genus g > 0 (i.e., the connected sum of g tori). This amounted
to prescribing a finite, 2-dimensional CW-complex structure on each of these
surfaces, such that there is a single O-cell, 2g 1-cells, and a single 2-cell. In the
case of a nonorientable surface of genus g (ie., the connected sum of g
projective planes) we used a CW-complex having a single 0-cell, g 1-cells, and
a single 2-cell.

34. To triangulate a compact 2-manifold, as explained in Chapter I, gives
it the structure of a finite, 2-dimensional CW-complex. The vertices are the
0-cells, the edges are the 1-cells, and the triangles are the 2-cells. Similarly, the
more general subdivision of a compact 2-manifold discussed in § V1.8 also gives
rise to a CW-complex.
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3.5. Suppose that X and Y are finite CW-complexes with skeletons ({X*}
and {Y*}, respectively. Then one can specify a CW-complex on the product
space X x Y such that the n-skeleton is the union of the subspaces X° x Y”,
XU x Y"1 X2 x Y2, ..., X" x Y° The product of a p-cell of X and a g-cell
of Yisa p + g-cell of X x Y; the attaching map of such a product cell is the
product of the attaching maps. The details of this construction will be described
in §X1.2.

3.6. A more subtle and interesting example is a real, complex, or quater-
nionic projective space. Given any field F, an n-dimensional projective space
over F is defined to be the set of all 1-dimensional subspaces in an (n + 1)-
dimensional vector space over F. This definition is valid even if the field F is
noncommutative (although then one should distinguish between right and left
vector spaces over F). Since any (n + 1)-dimensional vector space over F is
isomorphic to the space F**! of all (n + 1)-tuples of elements of F, we may as
well restrict ourselves to consideration of F**!. Any point (x,, ..., X,.,) of
F"*! different from (0, ..., 0) determines a unique 1-dimensional subspace, and
hence a unique point of the corresponding projective space. Two such (n + 1)-
tuples, (x4, ..., X,.1)and (y4, ..., ¥4 ) determine the same point of projective
space if and only if there exists a nonzero element A of F such that y; = ix;
for 1 <i<n+ 1. In books on projective geometry, such an (n + 1)-tuple is
referred to as a set of homogeneous coordinates for the corresponding point in
projective space.

We will only be interested in the cases where F is the field of real numbers,
complex numbers, or quaternions. In each of these cases the field F has a
standard topology, and the vector space F**! is given the product topology.
The corresponding projective space can be looked on as a quotient space of
Fr*1 — {0}, and it is customary to give it the quotient space topology. Alter-
natively, the projective space can be topologized as a quotient space of the
unit sphere with center at the origin in F**'.

There is an obvious imbedding of F" in F"*!, defined by (x,, ..., x,) =
(x1,---5 x,,0). This leads to a corresponding imbedding of the (n — 1)
dimensional projective space into the n-dimensional projective space over F.
This kind of imbedding will define the skeletons of a CW-complex on these
projective spaces. We will now discuss in more detail each of the cases:

Case 1: F = real numbers. The n-dimensional real projective space, denoted
by RP", is the set of all 1-dimensional subspaces of R"*1. It may be topologized
as a quotient space of R**! — {0}, or of the unit sphere, S". Each 1-dimensional
subspace of R"*! intersects S" in a pair of antipodal points. Hence S" is a
2-sheeted covering space of RP" (see Example V.8.2 on p. 137). The inclusions
R' = R? = --- « R"*! give rise to corresponding inclusions of real projective
spaces:

RP°c RP'! c RP?c--- c RP".

It is clear that RP is a single point, and easy to verify that RP! is a circle. We
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will take these subspaces as the skeletons of a CW-complex. We assert that
RP* is obtained from RP*™! by the adjunction of a single cell of dimension k.
Using homogeneous coordinates in RP*, the characteristic map

fi: EX— RP*
is defined by the formula

f;c(xls ety xk) = (xla ceny Xgs v 1 - |x|2))

where x = (x,, ..., x,). We leave it to the reader to verify that f, maps E* —
$*~! homeomorphically onto RP* — RP*", and $*"! onto RP*™! (but not
homeomorphically).

Case 2: F = complex numbers. The n-dimensional complex projective
space, denoted by CP", is the set of all 1-dimensional subspaces of the complex
vector space C"*!. The inclusions

Cl c C2 c e Cn+1
give rise to corresponding inclusions of complex projective spaces,
CP°c CP'c--cCP"

Once again, CP? is a single point, and it may be shown without too much
difficulty that CP! is homeomorphic to S In this case, CP* is obtained from
CP*"! by the adjunction of a single cell of dimension 2k. The adjunction map

S E* > CP*

is defined by the formula

fk(zla "-9zk) =(zla cees 2y, Y 1 - |Z|2).

Here we are using the following notational conventions: z = (z,,...,2,) is a
point of C* = R?% On the right-hand side of this formula we are using
homogeneous coordinates in CP*. The norm of z is defined by

|zl = (2> + [z2* + -+ + |2*)"2

E? is the unit ball in C* = R?*, Once again, it can be verified that f, maps
S§Z1 onto CP*7!, and E?* — SZ*"! homeomorphically onto CP* — CP*™!,
Hence we can take CP* as the 2k-skeleton of CP" for k=0, 1, ..., n. The
2k + 1-dimensional skeleton is the same as the 2k dimensional skeleton. There
are cells of dimensions 0, 2, 4, ..., 2n.

Case 3: F = quaternions. This case is very similar to the preceding. The
n-dimensional quaternionic projective space is denoted by QP". We have
inclusions,

QP°c QP! c---c QP

QP is a single point and QP! is homeomorphic to S*. QP* is obtained from
QP! by adjunction of a single cell of dimension 4k. The formula for the
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characteristic map is the same as in the two preceding cases, using quaternions
in place of real or complex numbers. QP" is a CW-complex having a single
cell in each of the dimensions, 0, 4, 8, ..., 4n.

For further details about these projective spaces, the reader is referred to
Bourbaki [1] or Brown [8].

Not every HausdorfT space admits a CW-complex structure. If it does admit
such a structure, then usually it admits infinitely many different such structures
(e.g., consider a finite regular graph as a CW-complex, and consider all its
subdivisions).

Among the nice properties of a CW-complex, we list the following without
proof:

(i) A CW-complex is paracompact, and hence normal.

(i) A CW-complex is locally contractible, i.e., every point has a basic family
of contractible neighborhoods.

(iii) A compact subset of a CW-complex meets only a finite number of cells.
A CW-complex is compact if and only if it is finite.

(iv) A function f defined on a CW-complex is continuous if and only if the
restriction of f to the closure " of every n-cell is continuous (n =
0,12...)

A subset 4 of a CW-complex is called a subcomplex if A is a union of cells
of X, and if for any cell e,

e"cA=>e"c A
If this is the case, it may be shown that the sets
A"=AnX", n=0,12,...,
define a CW-complex structure on A.

For example, the skeletons X" are subcomplexes.

Definition 3.2. A continuous map of f: X — Y of one CW-complex into
another is called cellular if f(X") = Y"forn=0,1,2,...(here X" and Y" denote
the n-skeletons of X and Y).

In [10] J. H. C. Whitehead proves that any continuous map X — Y is
homotopic to a cellular map.

§4. The Homology Groups of a CW-Complex

The purpose of this section is to apply the results of §2 to CW-complexes in
a systematic way.

Let K ={K"n=0,1,2,...} denote a structure of CW-complex on the
topological space X (each K" is a closed subset of X). We will define K" = &
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for n < 0. Since K" is obtained from K" by the adjunction of n-cells (by
definition), we can apply the results of Theorem 2.1 to conclude that

H(K" K" =0

for ¢ # n and that H, (K", K"™!) is a free abelian group with basis in 1-1
correspondence with the n-cells of K.

Lemma 4.1. H(K") =0 forall g > n.

The proof is by induction on n. For n = 0, the lemma is trivial, since K° is
a discrete space (by definition). The inductive step is proved by using the
homology sequence of the pair (K", K"™!).

We will now associate with the CW-complex K certain “chain groups”
C,(K),n=0,1,2,..., and then we will prove that the nth homology group
obtained from these chain groups is naturally isomorphic to H,(X). The
definitions are as follows:

C.(K) = H,(K", K"™),
and
dn : Cn(K) g Cn—l(K)
is defined to be the composition of homomorphisms,
H,(K" K™ 3 H, (K" 255 H, (K", K72,

where 0, is the boundary operator of the pair (K", K"™!) and j,_, is the
homomorphism induced by the inclusion map. Of course, one must verify that
d,_,d, =0, but this is easy. We will find it convenient to denote the n-
dimensional groups of cycles, bounding cycles, and homology classes derived
from these chain groups by the notations

Z,(K), ByJK), and Hy(K),
respectively, here Z,(K) = kerneld,, B,(K)=imaged,.;, and H,(K)=
Z,(K)/B,(K).
For the statement of the main theorem, consider the following diagram:
H,(X) < H,(K") 5 H,(K", K"™) = C,(K).

Here j, and k, are homomorphisms induced by inclusion maps.

Theorem 4.2. In the above diagram:

k, is an epimorphism.
Jn IS @ monomorphism.
image j, = Z,(K).
kernel k, = j;1(B,(K)).

Then j, o k! defines an isomorphism

6,: H,(X) - H,(K).
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This theorem asserts that H,(X) ~ H,(K); however, it says even more, in
that a certain composition of maps is asserted to be an isomorphism. This
additional information is important in certain cases.

ProOF OF THEOREM 4.2. First of all, note that for n > 1 the only nontrivial
part of the homology sequence of the pair (K", K"™!) is the following;:

0- H(K") 5 H (K, K™Y 3 H,_ (K" 5 H,_(K)»0. (94.1)

This is a consequence of Theorem 2.1 and Lemma 4.1, It follows that the
homomorphism

it Hy(K"™') > H(K")
is an isomorphism except for ¢ = n and ¢ = n — 1; in particular it is an

isomorphism for ¢ < n — 1, i.e., for n > q + 1. Thus, we have the following
commutative diagram for each integer g > O:

Hq(Kq+1) i’ Hq(KlH'Z) i‘”a, L, Hq(K"') L e
kgz
~ 4 (9.42)
H,(X)

The horizontal arrows are all isomorphisms from what we have just said.
In case X is finite dimensional, K™ = X for some sufficiently large integer
m, and it follows from this diagram that

k,: H(K*) - H (X)

is an isomorphism for any integer « > g. We wish to derive this same con-
clusion in case X is infinite dimensional. For this purpose, recall Property (iii)
of CW-complexes mentioned in the preceding section: Any compact subset of
a CW-complexes meets only a finite number of cells. It follows that any
compact subset C of X is contained in some skeleton K™ If one now applies
Proposition VIIL6.1 the desired conclusion follows quite easily. The details
are left to the reader. Note the particular case « = ¢ + 1: the homomorphism

kq+1 : Hq(Kq+1) - Hq(X)

is an isomorphism.
Next, we consider the exact sequence (9.4.1). It follows from exactness that

Jnt Ho(K™) — H,(K", K"™")
is a monomorphism for all integers n, and

in : Hn—l(K"_l) - Hn—l (K")
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is an epimorphism for all n. In view of the commutativity of the diagram

i

H,(K") —— J,(K™")

H,(X)

and the fact that k,,, is an isomorphism, it follows that k, is onto, and kernel
k, = kernel i, ,. Thus, we may replace exact sequence (9.4.1) by the following:

0-H (KD H(K K™Y 3 H_ (K™Y 2 H_ (X)-0. (94.3)
Since d,, = ji,-, 0, and j,_, is a monomorphism, we see that
Z,(K) = kernel d, = kernel 0,
= image j,.

Next, we see that
kernel k,_, = image d,

= jn’1(image j,,0,)
= jn’y(image d,)
= jul1(By-1(K))

as required.
This completes the proof of Theorem 4.2. Q.E.D.

We will now consider some applications of this theorem:
(1) Supppse X is a CW-complex which is n-dimensional. Then

H(X)=0 forq>n

(2) Suppose X is a CW-complex with only a finite number of n-dimensional
cells. Then H,(X)is a finitely generated abelian group (hence it is a direct sum
of cyclic groups).

(3) Suppose X is a CW-complex with no n-dimensional cells. Then
H,(X)=0.

(4) The Euler characterstic. Let K = {K"} be a structure of finite CW-
complex on the space X (hence X is compact). Denote the number of n-cells
of K by a,,. The Euler characteristic of K is defined to be the integer

1K) =Y (=1 a,
n>0
We will now outline a proof that y(K) is actually a homotopy type invariant
of the space X; it does not depend on K.

Define a subset of an abelian group to be linearly independent if it satisfies

the usual condition with integer coefficients. Then define the rank of an abelian
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group to be the cardinal number of a maximal linearly independent subset.
Earlier, we defined the rank of a free abelian group to be the cardinal number
of a basis; it is an exercise in matrix theory to prove that the two definitions
are equivalent in the case of free abelian groups.

For any abelian group A, let r(4) denote the rank of 4. One can now prove
the following facts about the rank of abelian groups:

(a) If B is a subgroup or quotient group of A, then r(B) < r(A4). Hence any
finitely generated abelian group has finite rank.

(b) Let 0 > A - B — C — 0 be a short exact sequence abelian groups with B
of finite rank. Then

r(B) =r(A4) + r(C).

The proofs are left to the reader.
The proof of invariance of the Euler characteristic of a finite CW-complex
depends on the following lemma:

Lemma 4.3. Let K be a finite CW-complex on the space X. Then
2 (=1)'r(C(K)) = Y (— 1)'r(Hu(K)).

We leave the proof, which depends on statement (a) and (b), to the reader.
The following important theorem in an immediate corollary.

Theorem 4.4. Let K = {K"} be a finite CW-complex on the space X. Then the
Euler characteristic satisfies the following equation:

X(K) =Y (= 1)'r(H,(X)).
Hence x(K) is independent of the choice of the CW-complex K on the space X.

(5) The homology groups of n-dimensional projective space. Using the CW-
complexes on CP" and QP" described in the previous section, the following
results are immediate:

Z forgevenand0<q <2n
H/(CP") =
CF) {0 otherwise,

forg=0mod4and 0 < q < 4n
otherwise.

Z
Hq(QP") = {0

On the other hand, the methods we have developed do not suffice to determine
the homology groups of RP". All one can prove using these methods is that
H,(RP")is a cyclic group for 0 < g < nand is 0 otherwise [of course, H,(RP")
is infinite cyclic].

Next, we will discuss the homomorphism induced by a cellular map of one
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CW-complex into another. Let K = {K"} be a CW-complex on the space X,
and let L = {L"} be a CW-complex on the space Y, and let f: X - Y be a
cellular map, ie., f(K") = L" for all n. Then for each integer n, f induces a
homomorphism of the homology sequence of the pair (K", K"™!) into the
homology sequence of the pair (L" L"'). Thus, we have the following com-
mutative diagram:

fo A i
0 — H,(K") —"— H(K" K"") — H,_ (K™ —, H,_(K") — 0

T

Ja

a. il
0 — H(L" — H(L" LY — H,_(L"Y — H_,(I"y — 0

Here f,: K" — L"is the map induced by f, asis ¢, : (K", K" 1) - (L", L""!). In
view of the definition of the boundary operator d,,: C,(K) —» C,_,(K) above, it
follows that the following diagram is commutative for all n:

C(K) —2 CJL)

d, d,

Cot(K) 225 € y(L)

Hence by exactly the same reasoning used in §VIL.3, we conclude that the
collection of homomorphisms {¢,} induce homomorphisms

¢ H,(K) > H(L), n=0,12,....

Theorem 4.5. The induced homomorphisms f,:H,(X)— H,(Y) and ¢,:
H,(K) — H,(L) correspond under the isomorphisms 8, of Theorem 42., ie., the
Sfollowing diagram is commutative for all n:

Hy(X) — H,(K)

l Ju l ®u
8
Proor. This follows immediately from the fact that the following diagram is

commutative for all n, together with the definition of 8, contained in Theorem
4.2:

Hy(X) —= H, (K" —"— H,(K" K"1)

CT

H(Y) 2 H(L) —2 HL" L")
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We will conclude this section with a discussion of the effective comput-
ability of the various concepts introduced in this section. First of all, the groups
C,(K),n=0,1,2,...,are free groups with basis in 1-1 correspondence with
the set of n-cells of K, hence they may be considered to be well determined.
To compute the homology groups H,(K) ~ H,(X), we must determine the
homomorphisms

d,: C(K)—~ C,_y(K), n=0,1,2,....

In general, these homomorphisms will depend on the choice of the character-
istic maps by which the various cells are attached, and there seems to be no
universal, simple, method for their determination. The following simple ex-
ample illustrates this point. Let X be a torus and Y a Klein bottle. We may
choose CW-complexes K and L on X and Y, respectively, each of which has
one vertex, two 1-cells, and one 2-cell. Thus C,(K) ~ C,(L) for all n. However,
since H,(K) # H,(L) for n = 1, or 2, it follows that the boundary homomor-
phisms d, for K and L must be essentially different (compare §VIIL.4). The
reason, of course, lies in the fact that the 2-cell is attached by different maps
in the two cases.

The situation is even worse as regards the computation of the homomor-
phisms ¢, : C,(K) — C,(L) mentioned earlier. Here an example is furnished by
the case X = Y = 8", the n-sphere. We proved earlier (cf. Exercise VIIL3.2)
that there exist continuous maps S" — S" of every possible degree. If we take
K = Ltobea CW-complex with one vertex and one n-cell, then a map $" — S"
will be cellular if and only if the vertex is mapped onto the vertex; and this
can always be arranged by an appropriate homotopic deformation of any
given map. Thus it is clear that in such cases Theorem 4.5 is of no help in
determining the homomorphism induced by a continuous map.

One of our objectives will be to introduce a more restricted class of
CW-complexes and cellular maps such that the boundary operator and the
induced homomorphism are actually computable.

§5. Incidence Numbers and Orientations of Cells

This section is devoted to some material of a more or less technical nature
which will be used in the computation of homology groups of CW-complexes.

As in the preceding section, let K = {K"} be a CW-complex on the space
X. For each n-cell, e, there is a characteristic map,

f),:(E", S"—l)—P(K", Kn—l)

and according to Theorem 2.1 the induced homomorphism on the n-
dimensional relative homology groups is a monomorphism, and H,(K", K" 1)
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is the direct sum of the image subgroups. The characteristic map f, cor-
responding to the cell e} is by no means unique, and it is conceivable that this
direct sum decomposition of the group H,(K", K"™!) depends on the choices
of the characteristic maps. Before proceeding further, it is important to point
out that this is not the case; the direct sum decomposition of H,(K", K" ') is
canonical, and independent of the choices of the characteristic maps. This may
be proved as follows. For any n-cell ef, n > 0, let

én=er — el

We will call é] the boundary of e}, even though it need not coincide with the
boundary in the sence of point set topology. We can factor the characteristic
map f; through the pair (€7, é3), as follows:

n Qn— 91 Zn sn
(E ) N 1) - (eb el)
fi L

(K", Kn—l)

Here /; is an inclusion map. Passing to homology, we obtain the following
commutative diagram:

H(E" $"™") -2 H, (e}, )
fln ll.

H"(K", Kn—l)

We can apply Theorem 2.1 with (X*, X) = (€7, €}) to conclude that g;,, is an
isomorphism. Hence,

image f,, = image [,

and, therefore, image f;, is independent of the choice of the characteristic map
f3, aswas to be proved. Note that this also proves that [, is a monomorphism,
and H,(K", K" 1) is the direct sum of the images for all 1 € A.

Since the group H,(e7, %) is infinite cyclic for n > 0, there are two ways to
choose a generator and the choices are negatives of each other. We will call
a generator of the group H,(€7, ¢}) an orientation of the cell ej.

Assume we have chosen an orientation a} € H,(e7, é3) for each n-cell ef; let

b)’.' = 11*(02) € Cn(K)

Then the set {b7} is a basis for the chain group C,(K).
The foregoing remarks are only valid if n > 0; the case n = 0 must be
modified, as follows. By definition, Co(K) = Hy(K°), and

Ho(K®) = AZA Ho(e}),
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where {€J|4 € A} denotes the set of 0-cells (or vertices) of K. For each 4, the
augmentation homomorphism

Byl Ho(eg) -7

is a natural isomorphism. We will always choose a3 € Hy(¢?) to be the unique
element such that ¢,(a3) = 1, and let b7 € Hyo(K°) = Co(K) be the element
corresponding to a3. Thus, {b|1 € A,} is a basis for Cy(K).

The distinction between the cases n = 0 and n > 0 may be summarized as
follows: For n > 0, an n-cell has two orientations, and there is no reason to
prefer one orientation over the other. On the other hand, a 0-cell consists of
a single point, and the question of choice of orientation does not arise in this
case.

Assume, then, that the case {b]|A € A,} have been chosen for the chain
groups C,(K)forn =0, 1,2,..., as described above. The boundary homomor-
phisms

d,:C(K)—C,_(K), n=1,23,...,

are completely determined by the value of d, of the basis elements; and we
may uniquely express d,(b}) as a linear combination of the bJ™'s. It is
customary to use the following notation for this purpose:

d,b7) = Zz: [by:bi b

The integral coefficient [b] : by '] is called the incidence number of the cells e;
and e} ™" (with respect to the chosen orientations). Obviously, the homomor-
phism d,, is completely determined by the incidence numbers, and vice versa.
The most important properties of the incidence numbers are summarized in
the following two lemmas.

Lemma 5.1. The incidence numbers of a CW-complex have the following
properties:
(a) Forany n-cell €7, [b}:by~'] = 0 for all but a finite number of (n — 1)-cells
n—1
et
(b) For any n-cell € and (n — 2)-cell €772,
Z [b]:by 1] [b‘:'—1 (b2 =0.
M
(c) Forany l-celle},y ,[b}:b2]=0.
(d) [—by:br 1 =[b]: —b '] = —[by: b '],

Proor. The proof of (a) is a direct consequence of the definition of incidence
numbers, and the proof of (b) follows from the relation d,_,d, = 0. To prove
(c), recall that C,(K)= H (K", K°), Co(K) = Ho(K° K™') = Hy(K°), and
d, : C{(K) = Cy(K) is the homomorphism
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0, Hi(K"', K® - Ho(K°)

in the homology sequence of the pair (K, K°). Now consider the following
diagram, which is commutative:

Ho(Ko)

Q)
.

¢
H,(K',K°) —— H,(K°)

[

z
The vertical line is exact by Proposition VII.2.4, hence ¢, & = 0. Therefore,
£,0, = £,£0, = 0.
Hence we obtain
0=¢,0,0b;)=c¢,d(b})
=g, [bl:b1b0 =Y [b):b21e, (b))
u u
=2 [b1:b7]
°
since b was chosen so that ¢, (b) = 1.
The proof of (d) is trivial. Q.E.D.

Lemma 5.2. If the cell e""‘1 is not contained in the closure of the cell e}, then
[b7:by'1=0.

Proor. Earlier in this section, it was pointed out that the canonical direct sum
decomposition of the group C,(K)= H,(K", K"™!) is determined by the
monomorphisms

I).* : H,,(Ef, e;.') g Hn(K"a K"—l)

for all n-cells e} of K. Corresponding to this direct sum decomposition, there
are projections of C,(K) onto each of the summands. We assert that these
projections may be described in terms of the following commutative diagram:

&
B
H, (K" K" — ef) %

H,(e], é3)

H, (K", K"™!)
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Here I; and m, are inclusion maps. We assert that [}, is an isomorphism and
m,, composed with the inverse of I3, gives the projection of C,(K) onto the
direct summand corresponding to the cell e;. The proof that I}, is an isomor-
phism is based on Theorem 2.1, and is exactly the same as the proof that [;,
is a monomorphism whose image is a direct summand. To prove the assertion
about m;,, one must prove that if e} # e;, then m, I, = 0; this is an easy
consequence of Lemma 5.3 below.

In view of these facts, and the definition of incidence numbers, it is clear
that in order to prove [b], b,:'“] = 0, we must prove that the following
composition of homomorphisms is zero:

Jat

Lie - 2 - St opme
H,@,é}) — H (K" K"") —> H,_((K"") —  H, (K", K"?)

K

H,,_l(K"_l, Kn—l _ e:—l)
We can imbed this sequence of homomorphisms in the following commutative

diagram:

Hy(K" K™Y) —5 H,_ (K™Y = H,_ (K™, K"2)

ST

H(e},¢) —— Hea() —— Ho (KL K™ —e™)
By commutativity of the squares in this diagram, we see that we must prove
J0 =0.

Since e ! is not contained in €j, the inclusion map j:é; — (K" ™!, K" —

e; ') is homotopic to a map of ¢} into K"~' — ;™! (to see this, choose a point
xo € e~ such that x, ¢ eJ; the required homotopy of the map j is defined by
means of a “radial projection” outward from the point x, to the boundary of
the cell ej~*). It follows from Lemma 5.3 below that j, = 0, and the proof is

complete. Q.E.D.

Lemma 5.3. Let f:(X, A) — (Y, B) be a map of pairs which is homotopic to a
map g : (X, A) — (Y, B) such that g(X) = B. Then the induced homomorphism

Syt Hi(X, A)— H,(Y, B)

is zero for all n.

PRroOF. By the homotopy property, f, = g,; hence, we must prove that g, =
0. The hypotheses imply that g can be factored, as follows:

(X, 4) 5 (B, B > (¥, B)
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Passing to homology, we have
H,(X, A)% H,(B, B)™> H,(Y, B).
Since H,(B, B) = 0 for all n, the result follows.

§6. Regular CW-Complexes

We will now introduce a special category of CW-complexes which have the
property that their homology groups are effectively computable (at least in
case the complex is finite).

Definition 6.1. A CW-complex is regular if for each cell ", n > 0, there exists
a characteristic map f : E® — &" which is a homeomorphism.

We recall that previously we have only required that the characteristic map
be a homeomorphism of U” onto e", and map S"! into the (n — 1)-skeleton.
We are now requiring in addition that the characteristic map be a homeomor-
phism of $"~! into K" L.

To clarify the definition, we present in Figure 9.1 an example of a CW-
complex on the closed 2-dimensional disc which is not regular. There are three
vertices, three edges, and one 2-cell:

We now list three basic geometric properties of regular CW-complexes:

(1) If m < nand e™ and e" are cells such that e™ N é" # &, then e™ < é".

(2) For any n-cell ¢, n > 0, " and ¢" are the underlying spaces of sub-
complexes. Also, é” is the union of closures of (n — 1)-cells.

Before stating the third property, we need a definition. We say e™ is a face
of e” if e™ = ", and denote this by e™ < ¢". Clearly, every cell is a face of itself;
we say e™ is a proper face of e" if it is a face of e”, and e™ # e" (NOTATION:
e™ < e"). This definition makes sense in a regular cell complex mainly because
of property (1).

FIGURE 9.1
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(3) Let e" and e"*2 be cells of a regular cell complex such that e" is a face
of e"*2. Then there are exactly two (n + 1)-cells e"*! such that e” < e"*! <
en+2‘

It should be emphasized that (1), (2), and (3) need not be true for nonregular
CW-complexes. The proofs depend on Brouwer’s theorem on invariance of
domain, Corollary VIIL6.7.

The proofs of (1), (2), and (3) are given by Cooke and Finney [2] or Massey
[7]. We will not reproduce these proofs here. Actually, in any specific case it
will be clear that these properties hold.

§7. Determination of Incidence Numbers
for a Regular Cell Complex

Let K be a regular cell complex on the space X. We will denote the n-cells
of K by the symbol e}, where the index A ranges over a certain set A,, n =
0, 1, 2,.... We assume orientations b] have been chosen for each cell ¢} as
described in §5.

Lemma 7.1. The incidence numbers [b]:b; '] in a regular cell complex K
satisfy the following four conditions:

(1) If e; ™" is not a face of ej, then [b} :b;™'] = 0.
(2) If ey tisa face of e}, then [b7: b '] = +1.
3 If eg and €0 are the two vertices which are faces of the 1-cell e, then

[b): 607 + [} : b7 = 0.

(4) Let e} and e}~ be cells such that e)™* < e}; let e ™" and e]™" denote the
unique (n — 1)-cells e"™* such that e} > < "' < ej. Then

[by: by~ q0by~ by 2] + [b - by 1607 b 72] = 0.

ProoF. Condition (1)is a consequence of Lemma 5.2 and the definition of the
term face.

In order to prove statement (2), we will make use of statement (2) of §6.
According to this statement, &7 is a subcomplex of K which contains the cell
es”!, and it is easy to see that it does not matter whether we compute the
incidence number [b} : b7~'] relative to the subcomplex &} or to the whole
complex K. Let L = {L?} denote this subcomplex on the space e;. Then
L" = e} is a closed n-dimensional ball, and L*! = ¢%is an (n — 1)-sphere. We
will use the method of proof of Lemma 5.2 to prove the present lemma. Thus,
we see that in the commutative diagram

Hy(L" LYy 2 f,_, (™Y = H,_,(L", 1772

ky My

H,,._l(L"—l, Ln-—l _ e;—l)
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we must prove that k9, is an isomorphism. We will prove this by proving
that both J, and k, are isomorphisms.

To prove that J, is an isomorphism, one considers the homology sequence
of the pair (L, L"™1). Since L" = &7 is contractible, A (L") = 0,and the desired
result follows.

To prove that k, is an isomorphism, one considers the homology sequence
of the pair (L™, L"™! — e[ ™'); k,, is one of the homomorphisms in this exact
sequence. We will prove that L"™' — eJ ™! is contractible, from which it will
follow that

ALt —e) =0

for all ¢, and hence that k, is an isomorphism. To prove that L"™' — ef ™! is
contractible, recall that L™ is an (n — 1)—sphere. Let x be a point of e"™*;
then L"™! — ¢f~!is obviously a deformationretract of L"™! — {x};and L"™! —
{x} is homeomorphic to R"™!, hence contractible. Therefore, L"™! — el ™! is
also contractible.

Statement (3) is a consequence of part (c) of Lemma 5.1 and statement (1),
together with the obvious fact that any 1-cell in a regular CW-complex has
exactly two vertices which are faces.

Statement (4) follows from part (b) of Lemma 5.1, statement (1), and
statement (3) of §6. Q.E.D.

Our main theorem now asserts that the four conditions of the lemma just
proved completely characterize the incidence numbers of a regular CW-
complex.

Theorem 7.2. Let K be a regular CW-complex on the topological space X. For
each pair (3, e;™") consisting of an n-cell and an (n — 1)-cell of K, let there be
given an integer a3, = 0 or +1 such that the following four conditions hold:

(1) If e is not a face of ej, then aj, = 0.
(2) If ef" ' is a face of e}, then o}, = +1.
(3) If €2 and €9 are the two vertices of the 1-cell e}, then

o, + ai, =0.
(4) Let e} and e} 2 be cells of K such that e} < e}; let e; ™" and ;™" denote
the unique (n — 1)-cells e"™* such that e}™? < "' < e}.
Then
agapt + af,ant = 0.

Under these assumptions, it is possible to choose an orientation b} for each cell
e’ in one and only one way such that

[b3: 607" =,

for all pairs (3, e} ')
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Proor. We will prove the existence of the required orientation b on the cell
e? by induction on n. For n = 0 there is no choice: a 0-cell has a unique
orientation, which we denote by b}.

Next, let e} be a 1-cell, and let €2 and e be the two vertices which are faces
of it, It is clear that one of the two possible orientations of ¢}, which we will
denote by b}, satisfies the equation

[b;:b0] =aj,.
Then since
aj, +ai, =0,
[bi:b)1+[bi:b6)1=0,
it follows that
[b;:6)] =,
as required.
Now we make the inductive step. Assume that an orientation bf for each
cell ef has been chosen for all ¢ < n such that the required conditions hold.
Let e} be an n-cell of K, and let e;"' be an (n — 1)-cell which is a face of ej.

Once again, it is clear that we can choose one of the two possible orientations
of e}, which we will denote by b7, so that

[b7:bl5'] = a3 8.7.1)
We must prove that if e?~! is any other face of 5, then
[bf:br '] =af,. 8.7.2)

For this purpose, consider the subcomplex L of K consisting of all the cells
of é. Then
z= Z a,’llvbv"—l)

where the summation is over all (n — 1)-cells of L, is a nonzero (n — 1)-chain
of L. A routine calculation using the properties of regular cell complexes and
the inductive hypothesis shows that

dn—l(z) = 0’
i.e., z is a cycle. A similar argument shows that

2 =Y [b]: by by

is also a nonzero cycle. Since é; = L" ! is an (n — 1)-sphere, it follows that
Hn—l(L) =Z,(L)

is an infinite cyclic group. Therefore, z and z’ are both multiples of a generator
of this group. Since {b7"'} is a basis for C,_,(L), and we are assuming that
Equation (8.7.1) holds, it follows that z and z’ must be the same multiple of a
generator of Z,_;(L), i.e., z = z'. By comparing coefficients of z and z’, we see
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that (8.7.2) holds for all v. This completes the proof of the existence of the
desired orientations.

The proof of uniqueness of orientations is also done by induction on n. For
n = 0, orientations are unqgiue by definition. Assume inductively that orienta-
tions have been proven unique for all cells of dimension < n; let ef be an n-cell.
Choose an (n — 1)-dimensional face ] ' of ¢]. By statement (d) of Lemma 5.1,
changing the orientation of e} would change the incidence number [b] : b 7],
which is not allowed. Q.E.D.

Notational Convention. From now on, we will usually only need to consider
one choice of orientation for the cells of a regular CW-complex. Therefore,
we will use the same symbol for a cell and its orientation. Thus, [e}:e} '] =0
or +1 denotes the incidence number of the oriented cells ¢} and e""_l. This
calculated sloppiness in notation is customary and convenient.

The uniqueness statement of Theorem 7.2 is important, because it shows
that we can specify orientations for the cells of a regular CW-complex by
specifying a set of incidence numbers for the complex. This is one of the most
convenient ways of specifying orientations of cells. Regular CW-complexes
are often more convenient than other CW-complexes, because of this simple
method for specifying the orientation of cells.

The method of using this theorem is quite simple. We assume we have given
a list of cells of K together with the information as to whether e} ! < e} for
any two cells ]! and ell. For each 1-cell e', choose incidence numbers
between it and its two vertices so that considers (2) and (3) of Lemma 7.1 (or
Theorem 7.2) hold. Define all other incidence numbers between vertices and
1-cells to be O [condition (1)].

Now assume, inductively, that incidence numbers have been chosen be-
tween all cells of dimension <n. Let " be an 1-cell. Choose a face ef~* of e”,
and choose [e":ef '] to be +1 or —1. Using condition (4), determine
[e":e}71] for all (n — 1)-cells e}~ which are faces of e” and have an (n — 2)-
face in common with e}~ '. Spread out over the boundary e" by repeating this
process. Theorem 7.2 assures us that we will never reach a contradiction by
this process. Repeat this process for each n-cell of K, and then use condition
(1) to define all other incidence numbers between (n — 1)- and n-cells.

Here is a convenient way to indicate incidence relations between low-
dimensional cells on a diagram:

(a) Between O-cells and 1-cells. Let e! be a 1-cell with vertices eJ and 9.
Consider the two incidence numbers [e' : €3] and [e! : 9]; one of these is 1,
the other is — 1. Draw an arrow on e indicating the direction from the vertex
corresponding to — 1 to the vertex corresponding to +1 as in Figure 9.2.

(b) Between 1-cells and 2-cells. Let e2 be a 2-cell and let e be a face of €2,
as shown in Figure 9.3. We assume the orientation chosen for e' is indicated
by means of an arrow, as shown. Indicate the orientation of e* by indicating
a direction of rotation of e? about its center. This direction of rotation will be
the same as that indicated by the arrow on e if [e*:e'] = + 1, otherwise it
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€y

FIGURE 9.2

€y

FIGURE 9.3

will be the opposite. Note that the resultant direction of rotation of e? is
independent of the choice of the face e’.

(c) Between 2-cells and 3-cells. We can indicate orientations of 3-cells by
assigning to them a right- or left-handed corkscrew. We assume that all the
faces of a given 3-cell e have their orientations indicated as described in the
preceding paragraph. Let e? be a face of €3. If [e? : ¢*] = + 1, assign to e the
kind of corkscrew needed to bore into ¢* from the outside, through the face
2, rotating in the direction indicated by the orientation of €2, If [e®: e?] =
—1, assign to e? the kind of corkscrew needed to bore out of e* through the
face e?, rotating in the direction indicated by the orientation of e2. Note once
again that the type of corkscrew assigned to e is independent of the choice
of the face e

EXERCISES

7.1. Divide an orientable surface of genus n into 4n quadrilaterals. There will be 2n + 2
vertices and 8n 1-cells. Figure 9.4 indicates the case n = 2:

FIGURE 9.4

Compute incidence numbers.
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7.2. Consider real projective 3-space as obtained by identifying diametrically opposite
points on the boundary of the regular octahedron

{2 e R3Ix| + |yl +12] < 1}.
Divide the octahedron into eight tetrahedra by means of the coordinate planes
(i.e., there is one tetrahedron in each octant). Compute incidence numbers. Note:
This process can be generalized to define a regular CW-complex on real projective
n-space.
7.3. Let K be aregular CW-complex on X. Define K to be an almost simplicial complex
if the following conditions hold for all n > 0:

(a) Each n-cell has exactly n + 1 vertices.
(b) Any set of n + 1 vertices is the set of vertices of at most one n-cell (it need not
be the set of vertices of any n-cell).

Prove the following two facts about almost simplicial complexes:

1. An n-cell has exactly n + 1 faces of dimension n — 1.

2. Incidence numbers for an almost simplicial complex can be described explicitly as
follows: Each cell is uniquely described by listing its vertices. Linearly order all the
vertices (in any order whatsoever) and agree to always list vertices in the given order.
If e” has vertices vy, vy, --., U, in the given order, and the face ¢" ! has only the
vertex v; omitted, then set [e":e" '] = (—1).

(Note: A simplicial complex, as defined in most books, is an almost simplicial complex

with certain additional geometric structure. This additional structure is irrelevant as

far as computing homology groups is concerned.)

§8. Homology Groups of a Pseudomanifold

In this section we apply the results of §7 to determine the structure of certain
homology groups of a special class of regular CW-complexes. This special
class is of fairly wide occurrence.

Definition 8.1. An n-dimensional pseudomanifold is an n-dimensional finite,
regular CW-complex which satisfies the following three conditions:

(1) Every cell is a face of some n-cell.
(2) Every (n — 1)-dimensional cell is a face of exactly two n-cells.
(3) Given any two n-cells, e” and e™, there exists a sequence of n-cells

e, e, ..., ep
such that e§ =e", ¢f = ¢, and e, and ¢! have a common (n — 1)-

dimensional face i = 1, 2,.. ., k).

Some authors call an n-dimensional pseudomanifold a simple n-circuit.
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A regular CW-complex on a compact connected 2-manifold is an example
of a 2-dimensional pseudomanifold. More generally it may be shown that a
regular CW-complex on a compact connected n-manifold is an n-dimensional
pseudomanifold. An example of a pseudomanifold which is not a manifold
may be constructed as follows: Let K be a regular CW-complex on a compact,
connected 2-manifold. Form the quotient by identifying two vertices which
are not both vertices of the same 2-cell. The quotient space has an obvious
structure of regular CW-complex, which may be shown to be a 2-dimensional
pseudomanifold.

It may be proved that the above definition is “topologically invariant” in
the sense that it expresses a condition on the underlying space rather than a
condition on the particular regular CW-complex chosen on the space (a proof
of this fact is contained in the book by Seifert and Threlfall [9, Chapter 5].

Let K be an n-dimensional pseudomanifold, and let ] and e be n-cells of
K which have a common (n — 1)-dimensional face e"~!. We define orientations
for e? and e} to be coherent (with respect to the common face e"™') if the
incidence numbers satisfy the following relation:

[ef:e" ] + [ek:e" 1] =0.

Note that this condition is independent of the choice of the orientation for
the cell e” 1. A set of orientations for all the n-cells of K is said to be coherent,
if it is coherent in the above sense for any pair of n-cells which have a common
face of dimension n — 1.

In connection with the above definition, it should be pointed out that a
pair of n-cells in an n-dimensional pseudomanifold may have more than one
common (n — 1)-dimensional face; in such a case it is essential to specify the
common face with respect to which given orientations are asserted to be
coherent. An example is the following subdivision of the projective plane with
four vertices, v, , ..., v,, seven edges, e,, ..., e;, and four 2-cells, 4, B, C, and
D (see Figure 9.5). The 2-cells A and B have the edges e, and e; in common;

C
e v3 e
5, 4 3 5 v,
A e B e,
€y
v Uy
2 €e [ ]
D

FIGURE 9.5
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if A and B are oriented coherently with respect to the edges e, , the orientations
are not coherent with respect to the edge e,, and vice versa.

Given an n-dimensional pseudomanifold K, either all the n-cells of K can
be simultaneously oriented so any pair having a common (n — 1)-dimensional
face are oriented coherently, or they can not be so oriented. In the former case,
K is said to be orientable, in the latter case nonorientable.

Theorem 8.2. If K is an orientable n-dimensional pseudomanifold, then H,(K)
is infinite cyclic; if K is nonorientable then H,(K) = 0.

The details of the proof are left to the reader. Note that since K is an
n-dimensional CW-complex, H,(K) = Z,(K). If K is orientable, and the n-cells
are oriented so that any pair having a common face of dimension n — 1 are
coherently oriented, then the sum of all the n-cells (thus oriented) is an n-cycle;
moreover, any n-cycle is an integral multiple of this sum. If X is nonorientable,
then one proves that there are no nonzero n-cycles.

In view of the invariance of the homology groups of a regular CW-complex
K, this theorem shows that the concepts of orientability and nonorientability
really only depend on the underlying topological space involved, and not on
the choice of the regular cell complex K.

The next theorem describes the structure of the torsion subgroup of
H,_,(K).

Theorem 8.3. Let K be an n-dimensional pseudomanifold. If K is orientable,
then H,_,(K) is torsion-free. If K is nonorientable, then the torsion subgroup of
H,_,(K) is cyclic of order two.

ProoF. Let k denote the number of n-cells of K. We assert that it is possible
to enumerate the n-cells of K in order e, €3, ..., ef and to choose (n — 1)-cells
el 1,2 <i < k, of K such that the following condition holds: e’ ! isa common
face of ef and some n-cell e with j < i. The proof of this assertion is left to the
reader.

Assume that the n-cells have been enumerated and the (n — 1)-cells e37*,

., e8! have been chosen so the above conditions hold. Choose an arbitrary
orientation for the cell e?; then orient e} so that its orientation is coherent to
that of e? with respect to the face e2*. Next orient €} so it is coherent with
respect to the face e} ! to either e or e} as is relevant. Continue in this manner,
orienting all the n-cells in succession, so each e} is coherently oriented with
some e], j < i, with respect to e/ ~'. Once the orientation of e} is chosen, this
condition uniquely determines the orientations of the rest of the n-cells. It is
easy to see that if K is orientable, then the result is a coherent orientation of
all the n-cells of K.

We next assert that any (n — 1)-cycle z of K is homologous to a cycle z’
such that the coefficient of each of the cells e37%, ..., ef ! in z’ is 0. The proof
is left to the reader.

With these preparations out of the way, we can now prove the theorem.
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Let u be a homology class of finite order of H,_,(K), ie., g-u = 0 for some
integer g. Let z € Z,_,(K) be a representative cycle for u. By the above argu-
ment, we may assume that the coefficients of the cellse3™%,..., ef ! in the cycle
z are all 0. Since qu = 0, there exists an n-chain

such that
d(c)=q 2

In view of the way we have oriented the n-cells e, and the fact that the
coefficients of 571, ..., e ! are 0in z, we conclude that

Oy =0y =+ = Oy.
If K 1s orientable, we see that
d(c) =0,

hence g-z=0, z=0, and u =0, as required. In the nonorientable case,
consider the n-chain

k
=3 e
i=1
Then d(c’) is a nonzero (n — 1)-cycle which assigns the coefficient 0 or +2 to
every (n — 1)-cell of K. Hence,
= 1d(c)

is an (n — 1)-dimensional cycle of K, and its homology class is an element of
order 2 in H,_,(K). Note that the coefficient of any (n — 1)-cell is O or +1 in
the expression for the cycle y. Since ¢ = ac’ for some integer o, we see that

d(c) = ad(c’),
gz = 2ay,
20
zZ=—)

hence the homology class of z is a multiple of that of y. Thus, the torsion
subgroup of H,_, (K) is the cyclic group generated by the homology class of y.
QE.D.

Since it may be shown that any regular CW-complex on a compact
connected n-manifold is an n-dimensional pseudomanifold, the above
results apply in particular to all compact n-manifolds which can be “subdi-
vided” so as to define a regular CW-complex structure. It is known that every
compact n-manifold admits such a subdivision if n < 3; however, there exist
compact 4-dimensional manifolds which do not admit such a subdivision.
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CHAPTER X

Homology with
Arbitrary Coefficient Groups

§1. Introduction

This chapter is more algebraic in nature than the preceding chapters. In §2 we
discuss chain complexes. This discussion mainly puts on a formal basis many
facts that the reader must know by now. Nevertheless, there is some point to
a systematic organization of the ideas involved, and certain new ideas and
techniques are introduced. The remainder of the chapter is concerned with
homology groups with arbitrary coefficients. These new homology groups are
a generalization of those we have considered up to now. In the application of
homology theory to certain problems they are often convenient and some-
times necessary.

Starting in §3, we make systematic use of tensor products. It is assumed
that the reader knows the definition and basic properties of tensor products
of abelian groups.

§2. Chain Complexes

Much of this section consists of terminology and definitions which it will be
very convenient to use from now on.

Definition 2.1. A chain complex K = {K,, d,} is a sequence of abelian groups

K,,n=0, +1, +2, ..., and a sequence of homomorphisms 4, : K, - K,_,
which are required to satisfy the condition
an—l =0

for all n.
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For any such chain complex K = {K,, d,} we define
Z,(K) = kernel ¢,,
B,(K) = image J,,.
Then B,(K) < Z,(K) < K,, and we can define
H,(K) = Z,(K)/B,(K),
called the nth homology group of K.

Example
2.1. For any space X, we have previously defined the chain complexes

Q(X) = {Qn(X), 3.},
D(X) = {D,(X), 0.},
C(X) = {C\(X), 0},

and for any pair (X, A),

C(X, A) = {C(X, A), d,}.
Definition 2.2. Let K = {K,, 9,} and K’ = {K, §,} be chain complexes. A

chain map f: K — K’ consists of a sequence of homomorphisms f,: K, — K/,
such that the commutativity condition

Ja-10n = Onfy
holds for all n.

Examples
2.2. A continuous map ¢ : X — Y induces chain maps
P4 - Q(X) » Q(Y),
@4 : D(X) — D(Y),
04 : C(X) > C(Y),

etc.
If f: K — K’ is a chain map, then f,[Z,(K)] < Z,(K’) and f,[B,(K)] <
B,(K’); hence, there is induced a homomorphism

f+ 1 Hy(K) = H,(K')
for all n.
Note that the set of all chain complexes and chain maps constitutes a

category, and that H, is a functor from this category to the category of abelian
groups and homomorphisms. Note also that if f and g: K - K’ are chain
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maps, their sum,
f+g={fi+ g}
is also a chain map, and
(f+ 9 = fs + 94 Hi(K) = Hy(K').

In other words, H,, is an additive functor.

Definition 2.3. Let f, g: K — K’ be chain maps. A chain homotopy D : K — K’
between f and g is a sequence of homomorphisms

Dn : Kn - K;l+l
such that
j;l —Ggn= ’,l+lDll + Dn—lan

for all n. Two chain maps are said to be chain homotopic if there exists a chain
homotopy between them (notation: f ~ g).

Examples

2.3. If @y, ¢, : X — Y are continuous maps, any homotopy between ¢, and
@, gives rise to a chain homotopy between the induced chain maps ¢y4 and
¢, 4 on cubical singular chains (see §VIL4).

The reader should prove the following two facts for himself:

Proposition2.4. Let f,g: K — K' be chain maps. If f and g are chain homotopic,
then

fx =9, H,(K) - H,(K")
for all n.

Proposition 2.5. Chain homotopy is an equivalence relation on the set of all
chain maps from K to K'.

EXERCISES

2.1. By analogy with the category of topological spaces and continuous maps, complete
the following definitions:

(a) A chain map f: K — K’ is a chain homotopy equivalence if

(b) A chaincomplex K'is a subcomplex of the chain complex K if

(c) A subcomplex K’ of the chain complex K is a retract of K if

(d) A subcomplex K’ of the chain complex K is a deformation retract of K
f_

(e) fK'isa subcomplex of K, the quotient complex K/K' is
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In each case, what assertions can be made about the homology groups of the
various chain complexes involved, and about the homomorphisms induced by
the various chain maps?

22. Let f, g, f', and g’ be chain maps K — K'. If f is chain homotopic to f’, and g is
chain homotopic to g’, then prove that f + g is chain homotopic to f* + g'.

23. Letf,g: K - K'and f’,g’: K’ - K" be chain maps, D a chain homotopy between
fand g, and D’ a chain homotopy between f” and g’. Using D and D’, construct an
explicit chain homotopy between f’f and g’'g: K — K".

2.4. Let D be a chain homotopy between the maps f and g : K — K (of K into itself).
Use D to construct an explicit chain homotopy between f" = fff-*- f and g" =
gg--- g (n-fold iterates).

Definition 2.6. A sequence of chain complexes and chain maps
oKLk Sk

is exact if for each integer n the sequence of abelian groups
"—?'K,,I;K;,E;KZ—’"'

is exact in the usual sense.

We will be especially interested in short exact sequences of chain complexes,
i.e.. those of the form

E:0-KLKSK S0,
This means that for each n, f, is an monomorphism, g, is an epimorphism,
and image f, = kernel g,. Given any such short exact sequence of chain

complexes, we can follow the procedure of §VIL5 to define a connecting
homomorphism or boundary operator

O : H(K") - H,_,(K’)
for all n, and then prove that the following sequence of abelian groups
F
B H(K) 5 H(K) S H(K") 5 Hy (K -

is exact. One can also prove that following important naturality property of
this connecting homomorphism or boundary operator: Let

f g

EE 00— K — K — K' —> 0

1T

F: 0 — L’ hﬁ‘L iﬁ‘ L — 0

be a commutative diagram of chain complexes and chain maps. It is assumed
that the two rows, denoted by E and F, are short exact sequences. Then the
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following diagram is commutative for each n:

H,(K") —% H,_,(K")

® Py

H(L") —*> H, (L)

EXERCISES

2.5,

2.6.

Define the direct sum and direct product of an arbitrary family of chain complexes
in the obvious way. How is the homology of such a direct sum or product related
to the homology of the individual chain complexes of the family?

Let E:0 > K’ —f>K 5 K" 0 be a short exact sequence of chain complexes.

By a splitting homomorphism for such a sequence we mean a sequence s = {s,}

such that for each n, s,: K] —» K,, and g,s, = identity map of K onto itself.

Note that we do not demand that s should be a chain map. Assume that such a

splitting homomorphism exists.

(a) Prove that there exist unique homomorphisms ¢, : K — K/,_; for all n such
that

f;l—l(pn = ansn - sn—lalll"

(b) Prove that J,_, @, + @,-10, = Oforall n.

(¢) Lets’ = {s,} be another sequence of splitting homomorphisms, and ¢, : K, -
K/,_, the unique homomorphisms such that f,_, ¢, = 0,5, — s, 0. Prove that
there exists a sequence of homomorphisms D, : K; — K, such that

On — (P:. = a;Dn - Dn—la:

for all n.

(d) Prove that the connecting homomorphism ; : H,(K”) - H,_,(K’) is induced
by the sequence of homomorphisms {¢,} in the same sense that a chain map
induces homomorphisms of homology groups. (Note: The sequence of homo-
morphisms {¢@,} can be thought of as a “chain map of degree —1.” The
sequence of homomorphisms {D,} in Part (¢) is a chain homotopy between

(¢a} and {¢,})

We will conclude this section on chain complexes with a discussion of a

construction called the algebraic mapping cone of a chain map.

Definition 2.7. Let K = {K,, d,} and K’ = {Kj,, d,} be chain complexes and

f:

K — K’a chain map. The algebraic mapping cone of f, denoted by M(f) =

{M(f),, d,} is a chain complex defined as follows:

M(f),=K,_, ® K, (direct sum).

The boundary operator d,: M(f), — M(f),_, is defined by
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dn(x’ x’) = (_an—lx’ ar,:x, + j;l—lx)

for any x € K,_, and x' € K. It is trivial to verify thatd,_,d, = 0.

Next, define i, : K, = M(f), by i,(x’) = (0, x'). The sequence of homomor-
phisms i = {i,} is easily seen to be a chain map K' — M(f). Similarly, the
sequence of projections j, : M(f), — K,-, [defined by j,(x, x") = x] is almost
a chain map. However, it reduces degrees by one, and instead of commuting
with the boundary operators, we have the relation

an—ljn = —-jn—ldn'

It is a “chain map of degree —1.” It induces a homomorphism of homology
groups which reduces degrees by 1.
The chain maps i and j define a short exact sequence of chain complexes:

0K 5 M(f)5 K 0.

As usual, this short exact sequence of chain complexes gives rise to a long
exact homology sequence:

- Hy(K) S HM(f) 5 B, (K) 5 H,_ (K) >

Here d, denotes the connecting homomorphism. It is now an easy matter to

check that
d* = f* : Hn(K) - H,,(K’)

for all n. Thus we have imbedded the homomorphisms f, induced by the given
chain map in a long exact sequence; and this has been done in a natural way.
That is the whole point of introducing the algebraic mapping cone. The long
exact sequence will be called the exact homology sequence of f.

Remark. The topological analog of this construction is described in §XV.3.

Our first application of the algebraic mapping cone is to prove the following
basic theorem. We will see other applications later on.

Theorem2.8. LetK = {K,, 3,} and K' = {K,,, 8,} be chain complexes such that
K, and K, are free abelian groups for all n. Then a chain map f: K — K’
is a chain homotopy equivalence if and only if the induced homomorphism
fi 1 H(K) > H(K’) is an isomorphism for all n.

The only if part of this theorem is a triviality, hence will be concerned only
with the if part. First, we need a couple of lemmas.

Recall that if the identity map and the zero map of a chain complex K into
itself are chain homotopic, then H,(K) = 0 for all n. The first lemma is a partial
converse of this statement.
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Lemma 2.9. Let K be a chain complex such that Z,(K) is a direct summand of
K, for all n, and H,(K) = 0 for all n. Then the identity map and the zero map
of K into itself are chain homotopic.

Proor. For each n, choose a direct sum decomposition
K,=Z,(K)® 4,

Since H,(K) =0, B,(K) = Z,(K) for all n. It follows that ¢, maps A4, isomor-
phically onto Z,_,(K). We now define the chain homotopy D, : K, — K, as
follows: D, restricted to A, is the zero map, and D, restricted to Z,(K) shall
map Z,(K) isomorphically onto A4, ., by the inverse of the isomorphism 4, .
It is now easily verified that

Dn—lan(x) + au+1Dn(x) =X
for any x € K,,. Q.E.D.

Lemma 2.10. Let K be a chain complex such that K, is a free abelian group.
Then Z,,(K) is a direct summand of K, ,.

ProoF. Since K, is free abelian, it follows by a standard theorem of algebra
that the subgroup B,(K) is also free abelian. Because 4, ,, is a homomorphism
of K, ., onto the free group B,(K), we can conclude that Z, ,,(K) = kernel ,,,
is a direct summand. QED.

PrOOF OF THEOREM 2.8. We assume that the induced homomorphism
S+ 1 Hy(K) — H,(K’)is an isomorphism for all n, and will prove that f is a chain
homotopy equivalence. Let M(f) denote the algebraic mapping cone of f;
our assumption implies that H,(M(f)) = 0 for all n. Since K and K’ are both
chain complexes of free abelian groups, it follows that M(f) is also a chain
complex of free abelian groups. Hence Z,(M(f)) is a direct summand of M(f),
for all n by Lemma 2.10. Therefore we can apply Lemma 2.9 to M(f) to
conclude that there exists a chain homotopy D, : M(f), — M(f),., such that

dy1Dy(a) + D,_1dy(a) = a (10.2.1)

for any a € M(f),. Making use of the fact that M(f), is a direct sum for any
n, we see that there exist unique homomorphisms

D}':K, , —K,,
D,,12 : K:' e K,,,
DnZI Ky = Ky,
D}?*:K,— K.,
such that
D,(x, x') = (D}'x + D}*x', D}'x + D??x")
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for any x € K,_, and x’ € K,. With this notation, Equation (10.2.1) is equiva-
lent to the following four equations:

—8,D} —~ D, + D2 fo =1, (10.2.2)

—8,D}? + D126, =0, (10.2.3)

Dt + 9, D} = D226, + D22 fy 1 =0 (10.2.4)
D} + 8, D¥* + D22, =1". (10.2.5)

In these equations, the symbols 1 and 1’ denote the identity maps of the chain
complexes K and K’, respectively. Equation (10.2.3) implies that the sequence
of homomorphisms D*? = {D}?} is a chain map K’ - K. Similarly, Equation
(10.2.2) implies that

D12f ~ 1,

whereas Equation (10.2.5) implies that

fD2 ~ 1/,

This completes the proof. Q.E.D.

EXERCISES

2.7. Assume we have given a commutative diagram

28

29,

K —f} K’
T
g
L — L

of chain complexes and chain maps. Show that the pair of chain maps (¢, ¥)
induces a chain map M(f)— M(g) and gives rise to a commutative diagram
involving the exact homology sequences of f and g (this is a naturality statement
for the algebraic mapping cone).

Let f, g: K = K’ be chain maps. Show that any chain homotopy D between f
and g gives rise to a chain map M(f)— M(g) which induces isomorphisms
H,(M(f)) ~ H,(M(g)) for all n. What is the relation between the exact homology
sequences of f and g in this case?

Assume that
E:0-KLK 5K 50

is a short sequence of chain complexes and chain maps. Prove that the exact
homology sequence of f and the exact homology sequence of g are both isomor-
phic to the exact homology sequence of E.
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§3. Definition and Basic Properties of
Homology with Arbitrary Coefficients

In VIL.2 we defined an element of the group Q,(X) to be a finite linear
combination a, T, + a,T, + *-* + a, T} of singular n-cubes with integral co-
efficients. As the reader may have already suspected, one could equally well
use linear combinations of n-cubes with coefficients in an arbitrary ring, rather
than the ring of integers. In fact, one can even go further, and allow the
coefficients a,, a,, ... above to be elements of an arbitrary abelian group
(written additively). It turns out that the entire theory we have developed so
far can be redone with very little change with this added degree of generality.
For certain problems the resulting homology groups with other coefficients
are more convenient, or perhaps even essential. Examples to illustrate this
point will be given later.

For our purposes, it will be quicker and more convenient to develop the
properties of homology groups with arbitrary coefficients by using the theory
of tensor products. This we will now proceed to do. The motivation for this
approach is as follows: Recall that Q,(X) is a free abelian group with basis
consisting of the set of singular n-cubes in X. Let G be an abelian group. It
follows that any element of the group G ® Q,(X) has a unique expression of
the form

G0N +a, T+ +a,®T,,

where Ty, T, ... are singular n-cubes in X, and a,, 4a,, ... are elements of the
given group G. We can look at this expression as a linear combination of the
singular n-cubes T, Ty, ... with coefficients in G, as desired. This motivates
the following definition.

Definition 3.1. Let K = {K,, d,} be a chain complex and G an abelian group.
Then K ® G denotes the chain complex {K, ® G, d, ® 15}, where 15 denotes
the identity map of G. If f = {f,} is a chain map K —» L, then f® 15: K ®
G — L ® G denotes the chain map { f, ® 15}. Finally, if D: K — L is a chain
homotopy between f and g: K — L, then D® 15,: K ® G — L ® G denotes
the chain homotopy {D,® 1} between f ® 1 and g ® 1.

Of course, in the above definition it is necessary to verify that K ® G is
actually a chain complex, that f ® 15 is a chain map, and that D ® 1, is a
chain homotopy between f ® 1; and g ® 1;. However, these are trivialities.
A more serious problem is the following: Suppose that

0-KLk4K S0 (10.3.1)

is a short exact sequence of chain complexes and chain maps. We would like
to be able to conclude that for any abelian group G, the sequence

0— K6 2L k96 L K"®6 —— 0 (1032
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is also exact. Then we could define the corresponding long exact homology
sequence. Unfortunately, it is generally not true that Sequence (10.3.2) will be
exact; all we can expect is that the sequence

1 1
K6 %5 ko6 2L K'®@G6 —— 0

will be exact (right exactness of the tensor product). Thus, we will not be able
to define a long exact homology sequence without some further assumptions.
Experience has shown that the following assumption suffices for most of
the applications we have in mind. Define a short exact sequence of chain
complexes

0-KLKSK 50
to be split, or split exact, if for each integer n, image f, is a direct summand of
K,. Alternatively, we can require that for each integer n there exists a homo-
morphism s, : K;, — K, such that g,s, = identity map of K, (such a homomor-
phism is called a splitting homomorphism). Note that we do not require that

the sequence of homomorphisms s, should be a chain map; such an assump-
tion would be far too strong for our purposes.

Lemma 3.2. If the sequence 0 v K’ A K3 Kl” — O is split exact, then 50 is the
sequence0 — K'® G LAY K®G LA K'®G — 0.

In fact, if {s,} is a sequence of splitting homomorphisms for the original
short exact sequence, then {s, ® 1} is a sequence of splitting homomorphisms
for the second sequence.

Lemma 3.3. If K" is a chain complex of free abelian groups, then any short
exact sequence 0 —» K' — K — K" — 0 is split exact.

The proof is easy.

Since most of the chain complexes we will encounter are composed of free
abelian groups, this lemma will find frequent application.

We will now apply these ideas to the homology groups of topological
spaces.

Given any topological space X, we have the following short exact sequence
of chain complexes:

0 - D(X) - Q(X) - C(X) - 0.

All three of these chain complexes consist of free abelian groups, and the
sequence is split exact. Therefore, it we define new chain complexes as follows:

D(X;6) =D(X)®G,
2X;6)=0(X)® G,
C(X;6)=C(X)®G,
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then the resulting sequence
0 D(X;G) - Q(X;G) > C(X;G) =0

is also split exact. Thus, we can consider D,(X;G)=D,(X)® G as a
subgroup of Q,(X; G) = Q,.(X)® G, and C,(X; G) is the quotient group,
0.(X; G)/D,(X; G). As was remarked above, an element of Q,(X; G) has a
unique expression as a linear combination of singular n-cubes in X with
coefficients in G; obviously, D,(X; G) is the subgroup consisting of linear
combinations of degenerate singular cubes.

If A is any subspace of X, we have the short exact sequence of chain
complexes:

0 C(4) > C(X) 5 C(X, 4) 0.
Once again each of the chain complexes consists of free abelian groups and
the sequence is split exact. Therefore, if we define
C(X,4;G)=C(X, ARG,
then the resulting sequence
0 — c4;6) 25 cx;6) 2L cx,4:6) —— 0

is also split exact. Thus, we can regard C,(4; G) as a subgroup of C,(X; G),
and C,(X, A4; G) is the quotient group C,(X; G)/C,(4; G). It is customary to
denote the group H,(C(X, A; G)) by the notation H,(X, 4; G) and call it the
relative homology group of (X, A) with coefficient group G.

If o : (X, A) — (Y, B)is a continuous map of one pair of spaces into another,
then we have the induced chain map

04 : C(X, A) - C(Y, B).
Hence, we get in induced chain map
¢4 ®16:C(X, 4; G) - C(Y, B; G)
and an induced homomorphism of homology groups, which we will denote by
@, Hy(X, 4; G) - H,(Y, B; G).

If two maps ¢,, ¢, : (X, A) — (Y, B) are homotopic (as maps of pairs), then any
homotopy between them defines a chain homotopy D:C(X, A) —» C(Y, B)
between the chain maps

Qox,> 14 : C(X, A) - C(Y, B)

(see §VIL4). Hence, D ® 15 is a chain homotopy between ¢y4 ® 1, and
@4 ® 1. It follows that the induced homomorphisms
Dox> Prx - H,(X, A;G) - Hn(Y9 B; G)

are the same.
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It is now an easy matter to check that all the properties of homology theory
which were proved in §§VIL.2-VIL5 remain true for homology theory with
coefficients in an abelian group G. In particular, given any pair (X, A4), we have
a natural exact homology sequence,

B HA6) S X OB H(X, 4,65

Also, one can check by direct computation that if P is a space consisting of a

single point,
G forg=0

{0} forg+#0.

In order to define reduced homology groups in dimension 0, it is convenient
for any space X # (J to define the augmented chain complex C(X) as follows:

H,(P;G)= {

C_(X)=2Z,
8=, ifg#0or —1,
do=¢ (see §VIL.2),
d_,=0.

Then A (X) = H,(C(X)). We next define
CX;6)=C(X)®G,
H(X; G) = H(C(X; G)).
One readily verifies that
H,(X;G)=H,/(X;G) ifqg#0,
whereas for g = 0 there is a split exact sequence
0 Hy(X;6G)—» Hy(X,G) 3G -0

relating the reduced and unreduced 0-dimensional homology groups.
In order to prove the excision property for homology with arbitrary
coefficients, it is convenient to have the following lemma.

Lemma 34. Let K and K’ be chain complexes of free abelian groups, and let
f:K — K’ be a chain map such that the induced homomorphism f, : H,(K) —
H,(K’) is an isomorphism for all n. Then for any coefficient group G, the chain
map f® 15: K ® G —» K' ® G also induces isomorphisms

(f®15), : H(K® G) ~ H,(K'® G)
for all n.
Proor. By Theorem 2.8, f is a chain homotopy equivalence. It follows readily

that f ®1;: K® G — K’ ® G is also a chain homotopy equivalence. Hence,
(f ® 1), is an isomorphism, as required. Q.E.D.
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Now suppose that the hypotheses of the excision property hold as stated
in Theorem VIL6.2, ie., (X, A) is a pair and W is a subset of A such that W
is contained in the interior of A. Then it should be clear how to apply the
lemma we have just proved in order to conclude that the inclusion map
(X — W,A — W)—> (X, A)induces anisomorphism H,(X — W, A — W, G) =
H,(X, A; G)for any n. Thus the excision property also holds true for homology
with coefficients in any group G.

In a similar way, one can use Lemma 3.4 to prove that Theorem VIL.6.4
holds true for homology with coefficients in an arbitrary group G: If  is a
generalized open covering of C, then the chain map

0®1:CX, A UNRG-C(X, ARG

induces isomorphisms on homology groups. This result can then be used to
prove the exactness of the Mayer- Vietoris sequence (Theorem VIIL5.1) for
homology with coefficient group G. The details are left to the reader.

Later on in this chapter, we will indicate an alternative method of proving
the excision property and exactness of the Mayer—Vietoris sequence without
using Theorem 2.8.

§4. Intuitive Geometric Picture of a Cycle
with Coefficients in G

In Chapter VI we emphasized the intuitive picture of a 1-cycle as a collection
of oriented closed curves with integral “multiplicities” attached to each, a
2-cycle as a collection of oriented closed surfaces, etc. The intuitive picture of
a cycle with coefficients in a group G is basically similar, except now the
multiplicity assigned to each closed curve or closed surface must be an element
of G rather than an integer.

If the group G has elements of finite order, then certain new possibilities
arise. For example, suppose G is a cyclic group of order n generated by an
element of g € G. Let x and y be distinct points in the space X, and suppose
we have n distinct oriented curves in X, starting at x and ending at y. If the
element g is assigned as the multiplicity of each curve, then the “sum” of all
these oriented curves is a 1-cycle, because n-g = 0.

If the group G is infinitely divisible, certain other new phenomena occur.
Consider, for example, the case where G is the additive group of rational
numbers. Suppose that z is an n-dimensional cycle in X with coefficient group
G, and the gz is homologous to 0 for some integer g # 0. Since we can divide
by g in this case, we can conclude that z is homologous to 0.

The above are just examples of two of the many things that can occur. The
reader will undoubtedly encounter other examples as he proceeds in the study
of this subject.
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§5. Coefficient Homomorphisms and
Coefficient Exact Sequences

Let h:G, —» G, be a homomorphism of abelian groups. Then we get an
obvious homomorphism

1®h:C(X, 4;G) > (X, 4; G,)

for any pair (X, 4) and all integers n. These homomorphisms fit together
to define a chain map C(X, 4; G,) = C(X, 4; G,) which we may as well
continue to denote by the same symbol, 1 ® h, and hence there is an induced
homomorphism

h# : Hn(X’ A’ Gl) g Hn(X’ A’ GZ)

The reader should verify the following two naturality properties of this in-
duced homomorphism:

(a) For any continuous map f: (X, 4) — (Y, B), the following diagram is
commutative:

Hy(X, 4; G,) —2— H,(Y, B; G,)

hy hy

H(X, 4;G,) —> H,(Y, B; G,)

(b) For any pair (X, A), the following diagram is commutative:
a,
H,(X, 4; G,) — H,_,(4; G,)
h, hy

H,(Y, B;G,) —*— H,_,(B;G,)

The induced homomorphism h, is important in the further development
of homology theory. As an example, we give the following application. Let R
be an arbitrary ring, and assume that the abelian group G is also a left
R-module, i.e., R operates on the left on G as a set of endomorphisms, satisfying
the usual conditions. Any element r € R defines an endomorphism G — G by
the rule x — rx for x € G. There is an induced endomorphism of H,(X, X; G)
according to the procedure developed in the preceding paragraphs. Thus, for
each element r € R we have defined an endomorphism of H,(X, 4; G). We
leave it to the reader to verify that these induced endomorphisms define on
H,(X, A; G) a structure of left R-module. The naturality properties (a) and (b)
above show that f, and d,, respectively, are homomorphisms of left R-
modules.

An especially important case occurs when R is a commutative field and G
is a vector space over R. Then H,(X, A; G) is also a vector space over R, and
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the induced homomorphisms f, and J, are R-linear. In this case all the

machinery of vector space theory and linear algebra can be applied to prob-

lems arising in homology theory, which is often a substantial advantage.
Next, suppose that

065656 50

is a short exact sequence of abelian groups. This gives rise to the following
sequence of chain maps and chain complexes for any pair, (X, A):

0 —— C(X, 4;6) =24 c(x, 4;,6) 225 c(x,4;6") —- 0.

We assert that this sequence of chain complexes is exact. This assertion is
an easy consequence of the fact that C(X, A4)is a chain complex of free abehian
groups. As a consequence, we get a corresponding long exact homology
sequence:

h k h
L a6 X 460 S HX 4,60 B H, (X, 4,605

The connecting homomorphism f of this exact sequence is called the Bockstein
operator corresponding to the given short exact sequence of coefficient groups.
As is 50 often the case, this label is a misnomer because this homomorphism
was introduced by other mathematicians before Bockstein.

The reader should formulate and prove the naturality properties of the
Bockstein operator vis d vis homomorphisms induced by continuous maps
and the boundary homomorphism of the exact sequence of a pair (X, A).

H/(X, 4; G") —— H,_,(X, 4;G)

a, 0y

H,_(4;G") — H,_,(4;G)

Caution: The question as to whether or not this diagram is commutative is a
bit subtle.

EXERCISES

5.1. Using the methods of §VIIL4, determine the homology groups of the real projec-
tive plane for the case where the coefficient group G is cyclic of order 2. Then
determine the long exact homology sequence corresponding to the following short
exact sequence Of coefficient groups:

0-25252,-0.

Here h(n) = 2nforanyne Z.

The coefficient homomorphism and Bockstein operator are additional
elements of structure on the homology groups of a space. The fact that
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homomorphisms induced by continuous maps must commute with them
places a definite limitation on such induced homomorphisms.

§6. The Universal Coefficient Theorem

We will next take up the relation between integral homology groups and
homology groups with various coeflicients.

Let K = {K,, d,} be an arbitrary chain complex. There is a natural
homomorphism

a:H(K)Y® G- H,(K® G)

defined as follows. Let u € H,(K) and x € G. Choose a representative cycle
u’ € Z,(K) for u. Then it is immediate that ¥’ ® x € K, ® G is a cycle; define
a(u ® x) to be the homology class of u’ ® x. Of course it must be verified
that this definition is independent of the choice of u’, and that a is a
homomorphism.

As usual, « is natural in several different senses:

(a) Iff: K - K’isachain map, then the following diagram is commutative:

H(K®G — H(K®G)
|f.®la (f®1g),

H(K)®G —— H/(K ®G)
(b) f E:0-K - K- K”—0is a split exact sequence of chain com-
plexes, then the following diagram is commutative:

H(K)®G —— H,(K"®G)

l aE ® lG l aE@G

H, ,(K)® G — H, ;(K'®G)

(Note: The fact that E is split exact assures exactness on tensoring with G.)
(c) Ifh: G; = G, is a homomorphism of coefficient groups, then the follow-
ing diagram is commutative:

H,(K)® G, —— H,(K®G,)

PR

H,(K)® G, —— H,(K ® G,)

If0 - G’ - G = G"” - 0is a short exact sequence of abelian groups, and K
is a chain complex of free abelian groups, then we might expect a commutative
diagram involving the Bockstein operator, but such does not exist.
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For our purposes, the most important case of the homomorphism is where
K = C(X, A); then we obtain a homomorphism

a:H(X, A)® G- H,(X, 4; G)
with all the above naturality properties.

Lemma 6.1. If G is a free abelian group, then the homomorphisms o . H(K) ®
G - H,(K ® G) is an isomorphism.

Proor. First, one considers the case where G = Z, which is trivial. In the
general case, G is a direct sum of infinite cyclic groups, and a obviously
“respects” such direct sum decompositions [because of property (c) above].

Q.E.D.

In order to make further progress, we must make use of the Tor functor
(the first derived functor of the tensor product). For any two abelian groups
A and B, we will use the notation Tor(4, B) to denote Tor%(4, B). The
definition and properties of this functor are given in most books on homo-
logical algebra, e.g., Cartan and Eilenberg [1], Hilton and Stammbach [2],
or Mac Lane [3]. Here is a list of some of the principal properties of this
function:

(1) (Symmetry) Tor(A, B) and Tor(B, A) are naturally isomorphic.

(2) If eiter A or B is torsion-free, then Tor(A4, B) = 0.

(3) Let 0> F, LA F, —krA — 0 be a short exact sequence with F; a free
abelian group; it follows that F, is also free. Then there is an exact sequence,
as follows:

0 —> Tor(4,B) — F,®B 2 F,@B 2 49B — 0

Since any abelian group A is the homomorphic image of some free abelian
group F,, we can use this property to define Tor(4, B), or to determine it in
specific cases.

(4) For any abelian group G, Tor(Z,, G) is isomorphic to the subgroup of
G consisting of all x € G such that nx = 0 [this may be proved by use of (3)].
In particular, Tor(Z,, Z,,) is a cyclic group whose order is the g.c.d. of m
and n.

(5) Tor is an additive functor in each variable, i.e., for direct sums

Tor (Z A, B) ~ Z Tor(A,, B).

(6) Let0 > A’ e A 2 A” — 0 be a short exact sequence of abelian groups;
then we have the following long exact sequence:

0 — > Tor(4, B) "4 Tor(4, B) 2“4 Tor(4”, By

—— A®B o AQB — > A'®B —— 0

[this is a generalization of (3)].
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With these preliminaries out of the way, we can state and prove the
universal coefficient theorem:

Theorem 6.2. Let K be a chain complex of free abelian groups, and let G be an
arbitrary abelian group. Then there exists a split short exact sequence

0 - H,(K)® G 5 H,(K ® G) 5 Tor(H,-,(K), G) 0.

The homomorphism B is natural vis a vis chain maps and coefficient homomor-
phisms. The splitting is natural vis a vis coefficient homomorphisms, but it is not
natural with respect to chain mappings.

ProoF. As mentioned in (3) above, we may choose a free abelian group F,
such that there is an epimorphism k: F, — G; let F; denote the kernel of k.
Then F; is free, and we have the following short exact sequence:

0-FAF 5650
Now consider the following commutative diagram:

H(K®F,) —* H(K® Fy) —— H(K®G) —*> H,_,(K®F,)

[ ) [ K [ ’
h 1@k

H(K)®F, — H(K)® F, — H(K)®G —> 0
The top line is part of the long exact sequence corresponding to the given
short exact sequence of coefficients, with Bockstein operator f,. The bottom
line is exact, and both a, and a, are isomorphisms by Lemma 6.1. From
this diagram it readily follows that « is a monomorphism, and image o =
image k, = kernel f,.

Next, consider the following somewhat analogous diagram:

0 — Tor(H, ,(K\G) — H, (K)®F, 25 H,_(K)®F, 2 H, (K)®G — 0

H(K ®G) T H,_(K®F) h—’ H, (K®Fy k_; H, (K ®QG).
0 #

The top line of this diagram is the exact sequence mentioned in property
(3) above. Once again, a; and a, are isomorphisms, and the diagram is com-

mutative. It follows easily from this diagram that there exists a unique
homomorphism

p: H (K ® G)— Tor(H,_(K), G)

which makes the left-hand square (labeled 1) of this diagram commutative.
Furthermore, § is an epimorphism, and kernel § = kernel f,.
Thus, we have defined the homomorphism f, and proved the exactness of
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the sequence mentioned in the theorem. We leave it to the reader to prove
that § is natural vis a vis chain maps and coefficient homomorphisms. It
remains to prove that the sequence splits. For this purpose, we will use the
following trick. We may consider the sequence of abelian groups {H,(K)} as
a chain complex with g, = 0 for all n; we will denote this chain complex by
H(K). With this notation, it is clear that H,(H(K)) = H,(K). We assert that
there exists a chain map f: K — H(K) such that the induced homomorphism
Syt Hy(K) = H,(H(K)) is the identity map of H,(K) onto itself. To prove this
assertion, note that our hypothesis that K, is a free abelian group for each n
implies that Z,(K) is a direct summand of K,. Hence, we may choose a direct
sum decomposition

K,=Z2,K)®L,

for each n. Define f,: K, — H,(K) by f,|Z,(K) = natural homomorphisms of
Z,(K) onto H,(K), and f,|L, = 0. It is readily verified that the sequence of
homomorphisms f = {f,} is a chain map with the required properties.
The definition of f obviously depends on the choice of the direct sum
decomposition.

Next, by the naturality of a, we have the following commutative diagram:

H(K)®G ——> H(K®OG)
fi® g (f®1g),

H(H(K)®G —— H(H(K)® G)

However, it is readily checked that H,(H(K))® G = H(K)® G = H,(H(K) ®
G) and that f, ® 1; and «’ are both the identity maps. Hence, it follows from
the commutativity of the diagram that image « is a direct summand of
H,(K ® G), as required. Incidentally, this furnishes an altenative proof that «
is a monomorphism.

Using this procedure, it is easy to prove that the direct sum decomposition
is natural vis a vis coefficient homomorphisms. QE.D.

We will give an example later to prove that it is impossible to choose the
direct sum decomposition so it is natural with respect to chain maps.

Corollary 6.3. For any pair (X, A) and any abelian group G there exists a split
short exact sequence:

0 - Hy(X, A)® G 5 H,(X, 4; G) 5 Tor(H,_, (X, 4), G) > 0.

The homomorphism a and § are natural with respect to homomorphisms induced
by continuous maps of pairs and coefficient homomorphisms. The splitting can
be chosen to be natural with respect to coefficient homomorphisms, but not with
respect to homomorphisms induced by continuous maps.
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These result show that the structure of the homology group H,(X, 4; G) is
completely determined by the structure of the integral homology groups
H,(X, A) and H,_,(X, A). However, this does not imply that the homomor-
phism f, : H (X, A; G) - H,(Y, B; G) is determined by the homomorphisms
fe Hy(X, A) - H,(Y, B) and f, : H,_,(X, A) > H,_,(Y, B) [here f:(X, A)—>
(Y, B)denotes a continuous maps of pairs]. A convincing example will be given
later.

EXERCISES

6.1. Decide whether or not the following diagram is commutative for any pair (X, A)
and any abelian group G:

Hy(X, 4; G) —— Tor(H,_,(X, A), G),

l 3 l Tor(d,, lg)

Hy(4;G) ——  Tor(H,_,(A), G)

6.2. Prove that a: H(X, A)® G — H\(X, A; G) is an isomorphism for any pair (X, A)
and any group G fori=0or 1.

6.3. Let X be a finite regular graph. Express the structure of the homology groups
H,(X; G) in terms of the Euler characteristic and number of components of X.

6.4. Describe the structure of the homology groups H,(X; G) for any group G in the
following cases:
(@ X=15"
(b) X is a compact orientable 2-manifold.
(c) X is a compact nonorientable 2-manifold.

6.5. Let X be an n-dimensional pseudomanifold in the sense of §IX.8. Determine the
structure of H,(X, G) in case X is (a) orientable and (b) nonorientable.

We will conclude that section by giving anoter proof of the excision
property for homology with arbitrary coefficient groups. Let (X, A) be a pair,
and W a subset of 4 such that W is contained in the interior of 4. Then the
inclusion map i: (X — W, A — W) —» (X, A) induces a chain map

iy:C(X —W,A—W)>C(X, A)
It is easy to verify that i, is a monomorphism; thus, we can consider
C(X — W, A — W)as a subcomplex of C(X, A). Hence, we have the following
short exact sequence of chain complexes:
C(X, 4)

cx—wa—w_ "

0-C(X —W,4— W) Cx, 4)—

This short exact sequence of chain complexes gives rise to a long exact
homology sequence, as usual. Because the excision property is true for integral
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homology, we can conclude that

C(X, A)
H"(C(X —W,A— W)) =0

for all n. Next, one must verify that the quotient complex

C(X, A)
CX —W,A- W)

is a chain complex of free abelian groups, and that the short exact sequence
above is split exact. This is not difficult and is left to the reader. One now
completes the proof by tensoring the short exact sequence with G and con-
sidering the resulting long exact homology sequence. By using Theorem 6.2,

one proves that
H C(X, A)
"\CX ~-W, A~ W)

56)-0

for all n. It follows from exactness that
iy H(X—-W,4A—-W;G)-H/(X, 4; G)

is an isomorphism for all n, as desired.
This technique can also be used to prove that the chain map

6®@16:C(X, ;%) ®G - C(X, A)® G

induces isomorphisms in homology in all dimensions (here % is a generalized
open covering of X).

§7. Further Properties of Homology with
Arbitrary Coefficients

Practically all the properties we have proved for integral homology have
analogs for homology with arbitrary coefficients. For example, the reader
should have no difficulty verifying that Proposition VIIL6.1 is true for ho-
mology with coeflicients in any group G.

The material in Chapter IX on the homology of CW-complexes readily
generalizes to the case of an arbitrary coefficient group. We will quickly
indicate how this goes.

Let K = {K"} be a CW-complex on the space X. Using the universal
coefficient theorem (Corollary 6.3)it is readily shown that H (K", K"™!; G) = 0
for g # n, and that

a: H(K", K"')® G —» H(K", K"™!; G)
is an isomorphism. Thus, if we define
CJ(K; G) = H, (K", K"™!; G),
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then
C(K; 0 =C(K)®G.

Next, we define a boundary operator C,(K; G) = C,_,(K; G) as the composi-
tion of the homomorphisms

H,(K" K", G) =2 H,_,(K"'; G) -2 H,_,(K"', K*%; G)

by analogy with that defined in §IX.4. It is then true that this boundary
operator is d, ® 1, where d,: C,(K) - C,_(K) is defined in §IX.4. In other
words,

CKK;G)=C(K)®G.

One can now prove an analog of Theorem [X.4.2 for the case of an arbitrary
coefficient group G. Essentially this analog says that H,(X; G) is naturally
isomorphic to H,(C(K; G)). Similarly, there is an analog of Theorem IX.4.5
for homomorphisms induced by cellular maps: Assume K = {K"} is a CW-
complex on X, L = {L"} is a CW-complex on Y, and f: X — Y is a cellular
map, i.e., f(K") = L" Then f induces a chain map ¢ : C(K) —» C(L), and we
have a commutative diagram:

H(X; G~ H,(CK)®G
N (0 ® 15),

H,(Y;G) ~ H,(C(L)®G)

These results can be summarized as follows: To extend the results of §IX.4
from integral homology to homology with arbitrary coefficient group G,
simply tensor all chain complexes and chain maps with G. In particular, this
applies to the computation of the homology of regular CW-complexes as
described in §IX.7.

There is one case where the computation of the homology of regular cell
complexes becomes greatly simplified, namely, the case where G = Z,. In this
case every incidence number must be 0 or 1, and we see that [e":e" 1] =1
or 0 according as e""! is or is not a face of e". Thus, the four rules given in
Theorem IX.7.2 for determining incidence numbers reduce to two rules, and
it is not necessary to use an inductive procedure. Of course, mod 2 homology
ignores much of the structure of integral homology, but for some problems it
is more appropriate than integral homology.

Examples

7.1. Let P? denote the real projective plane. In VIIL4 we found that the
only nonzero homology groups of P? were

Ho(P*) = Z,
HI(PZ) = Zz.
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Thus, if f: P2 — §? is any continuous map, then
Je  Ho(P?) - Ho(S5?)

is an isomorphism (both are connected spaces), whereas for g # 0,
fu 1 Hy(P?) > H(S?)

must be the zero map. Hence, there is no possibility of distinguishing between
different homotopy classes of such maps using integral homology. We will
now show that one can distinguish two different homotopy classes using
mod 2 homology. To prove this, recall that there is a CW-complex, K, on P2
having a single cell in dimensions 0, 1, and 2; this was used to compute the
homology of P? in Example VIIL4.3, although it was not called a CW-complex
at that time. Thus, Cy(K), C,(K), and C,(K) are infinite cyclic groups,

d; : Co(K) = C((K)
has degree +2, and

d;: Ci(K) = Co(K)

has degree 0. Analogously, there is a CW-compex L on $? having a single
vertex, a single 2-cell, and no 1-cells. There is an obvious cellular group

f:P?§?
defined by shrinking the 1-skeleton, K, to a point, namely, L°. The open 2-cell
of K is mapped homomorphically onto the open 2-cell of L. We wish to

compute the induced homomorphism on mod 2 homology. To this end, we
determine the chain transformation

1 C(K) > C(L)

induced by the cellular group f. The only nontrivial problem is to determine
the homomorphism C,(K) — C,(L). But this is easily settled by Theorem
IX.2.1 Let g:(E? S') - (K? K') be the characteristic map for the unique
2-cell of K. In view of the way the map f: P? — S? was defined, it is clear that

h=fg:(E? §') > (L% L")

is a characteristic map for the only 2-cell of L. Thus, we have the following
commutative diagram:

(EZ,SI) 7, (Kz’ K')
" f
(L% LY)

Hence, we have the following commutative diagram:
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H,(E% SY) - H,(K% K')

\ | 2
H,(L?* L)

By Theorem 1X.2.1, g, and k, are isomorphisms; it follows that f, is also an
isomorphism. Therefore, the chain map f': C(K) — C(L) is completely deter-
mined. All that remains is to tensor with Z, and then pass to homology. The
end result is that

fe Hy(P* 22) — H,(S%, Z,)
is an isomorphism. On the other hand, if ¢ : P2 — S2is the constant map, then
(P* : HZ(PZ, ZZ) hd HZ(SZ’ ZZ)

is the 0 homomorphism. Thus, f and ¢ are not homotopic.

Note that f and @ must (of necessity) induce the same homomorphism on
integral homology groups. This proves our earlier assertion that the induced
homomorphisms on integal homology groups do not suffice to determine the
induced homomorphisms on homology groups with other coefficients

Finally, this example also show that the splitting of the short exact sequence
of the universal coefficient theorem (Corollary 6.3) cannot be chosen to be
natural. Consider the following commutative diagram involving the universal
coefficient theorems for H,(P?, Z,) and H,(S, Z,) and the homomorphism
induced by the map f: P? — S? described above:

a, B
0 — H,(P>)®Z, — H,(P%,Z,) —— Tor(H,(P?),Z;) — 0

Li®1 | fe | Tor(f,. 1)

y B,
0 — H,(SH®Z, —> H,(S,Z,) —— Tor(H,(5?),2,) — 0

In the top line, H,(P?) ® Z, = 0 and B, is an isomorphism. In the bottom
line, Tor(H,(S?), Z,) = 0 and «, is an isomorphism. As we have just proved,
the vertical arrow labeled f, is an isomorphism; however, this fact contradicts
the possibility of any splitting of these two short exact sequences which is
natural with respect to homomorphisms induced by continuous maps.

We will conclude this section with a brief consideration of the mod 2
homology of a nonorientable pseudomanifold.

Let K be an n-dimensional nonorientable pseudomanifold; by Theorem
IX.8.2, H,(K) = 0. For some purposes, this is a defect in the theory; we need
an nonzero homology class in the top dimension. This matter is partially
remedied by using mod 2 homology. Indeed we find that H,(K, Z,) = Z, (use
the universal coefficient theorem and Theorem: IX.8.2 and IX.8.3). A repre-
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sentative cycle for the nonzero element of H,(K, Z,) is obtained by taking the
sum of all the n-cells of K. Since we are using Z, as coefficient group, we do
not need to worry about orientations.
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CHAPTER X1

The Homology of Product Spaces

§1. Introduction

If two or more spaces are related to each other in some way, we would
naturally expect that their homology groups should also be related in some
way. Some of the most important theorems in the preceding chapters bear out
this expectation: If A is a subspace of X, the exact homology sequence of the
pair (X, A) describes the relations between the homology groups of A and the
homology groups X. If the space X is the union of two subspaces U and ¥,
then the Mayer—Vietoris sequence gives relations between the homology
groups of U, ¥, U nV, and X.

The main theorems of this chapter are of this same general nature. The
Eilenberg-Zilber theorem asserts that the singular chain complex of the
product of two spaces, C(X x Y), is chain homotopy equivalent to the tensor
product of the chain complexes of the two factors denoted by C(X) ® C(Y).
The Kiinneth theorem expresses the homology groups of the product space
X x Y in terms of the homology groups of X and the homology groups of Y.
The derivation of the Kiinneth theorem from the Eilenberg—Zilber theorem
is purely algebraic.

These theorems are somewhat more complicated than most of our previous
theorems, such as the exactness of the Mayer—Vietoris sequence. Nevertheless,
they are of basic importance in homology theory.

The material on CW-complexes in §2 is not essential for most of the rest
of the chapter. It is introduced mainly to motivate the definition of the tensor
product of chain complexes.
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§2. The Product of CW-Complexes and
the Tensor Product of Chain Complexes

Let K = {K"} be a CW-complex on the space X, and L = {L"} a CW-complex
on the space Y. We wish to prove that X x Y isa CW-complex in a natural
way. In order to understand this situation better, we need the following basic
facts about open and closed cells; our notation is that of §IX.2.

(@) E™ x E" is homeomorphic to E™*™"; under any such homeomorphism,
(E™ x " 1)U (S™™! x E") corresponds to the boundary S™*"~1.

(b) U™ x U"is homeomorphic to U™*".

In view of statement (b), it is natural to demand that an open cell of a
CW-complex on X x Y should be the product of an open cell of K with an
open cell of L. Therefore, we define the n-skeleton ofa CW-structureon X x Y
by

M= |J KPx L
ptg=n
forn=0,1,2,.... Then the subsets M" < X x Y are closed, M" = M™*! for
all n > 0, M is discrete (because it is the product of discrete spaces) and

X x Y= U M",
n=0

If e™ 1s an m-cell of K with characteristic map f : E™ — ™ and if ¢" is an n-cell
of L with characteristic map g: E" - ", then f x g: E™ x E" ->e™ x " has
all the required properties for a characteristic map of the product cell e™ x e".
Thus, it only remains to check that the product topology on X x Y is the
same as the weak topology determined by the closed cells. If both K and L
are finite CW-complexes, then M will also have only a finite number of cells,
and there is nothing to prove. J. H. C. Whitehead proved that if one of the
factors is locally compact then the product topology agrees with the weak
topology. However, Dowker gave an example to show that in the general case,
the two topologies on X x Y do not agree. See Lundell and Weingram [5]
for details. Fortunately, there is an easy way out of this difficulty; one can
agree to give X x Y the weak topology, so that it is a CW-complex. The weak
topology will be larger than the product topology in general [i.e., it will have
more open (or closed) sets], but the compact sets will be the same in both
topologies. Therefore, the identity map,

X X Y(weaktop.)_'X X Y(prod. top.)*

is a continuous map and induces an isomorphism on singular homology
groups. See N. E. Steenrod [8] for details.

However, we do not want to get involved with these fine points now. The
reader can restrict his attention to finite CW-complexes, knowing full well
that the generalization to infinite CW-complexes is not difficult.
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Next, let us assume that K and L are regular CW-complexes. Then it is
readily seen that M = {M"} (as defined above) is a regular CW-complex on
X x Y(provided X x Yis given the weak topology). As usual, there are many
choices for orientations of the cells of X x Y, and hence of incidence numbers.
Let us assume that orientations (and hence incidence numbers) have been
chosen for the cells of K and L. It seems plausible to expect that there should
be a way to use these chosen orientations of the cells of K and L to define
canonical orientations of the cells of M. The following theorem shows that this
expectation is justified. The actual result is stated in terms of incidence
numbers rather than orientations. However, this does not matter from a
logical point of view, since there is a 1-1 correspondence between incidence
numbers and orientations of cells in any regular CW-complex.

Theorem 2.1. Let K be a regular CW-complex on X with cells e, and let L be
a regular CW-complex on Y with cells o'. Assume that the incidence numbers
have been chosen for both K and L. Then incidence numbers are defined for
the product cells on X x Y by the following rules:

[em x 6":e™ ! x "] = [e™:e™ 1]
[em x g":e™ x 6" '] =(—1)"[6":0""!]

[el x o] :ef x af]1=0if e[ # ef and o] # of

To prove this theorem, we must verify that statements (1)—(4) of Theorem
IX.7.2 are true with the stated choices of incidence numbers. This we leave to
the reader as a nontrivial exerxise.

Obviously one could establish other conventions for the incidence numbers
of a product complex, but the one given by this theorem is universally
accepted.

Now let us consider the group of n-chains, C,(M) of the regular CW-
complex M on X x Y. It has as basis the oriented product cells ef x af,
p + q = n. This suggests that we should identify C,(M) with the direct sum of
tensor products,

Y. C(K)®C,(L).
ptq=n

Using the formulas for incidence numbers in the theorem, we see that
d(ef x of) = (0ef) x af + (—1)Pe? x (o),

where the right-hand side of this equation is to be interpreted in an obvious

way. Since this formula holds true for the basis elements, we can extend it of

linear combinations of the basis elements, obtaining the formula
u®v)=0Cw)® v+ (—1Yu® (0u)

for any u € C,(K) and v € C,(L).
This suggests the following definition.
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Definition 2.2. Let C' = {C,, 3,} and C” = {C}, 7, } be chain complexes. Their
tensor product C = C' ® C” is the chain complex defined as follows: The
groups are

G= ) G®C,

p+g=n
and the homomorphisms 4, : C, — C,_, are defined by
Ou(u ® v) = (G,u) ® v + (— 1)’u ® (5;v)

foranyue C,,veCj,p+qg=n

Of course, one must verify that d,_,d, = 0.

In view of this definition, we can assert that the chain complex C(M) is
isomorphic to C(K) ® C(L), where K, L, and M are regular CW-complexes on
X, Y, and X x Y, as described above. Of course, it remains to determine the
relation between the homology groups of the tensor product of two chain
complexes and the homology of each of the factors. We will describe the
solution to this problem in §4. This result shows that the algebraic operation
of taking the tensor product of chain complexes corresponds to the topologi-
cal operation of taking the certesian product of two spaces. Soon we will see
another example of this process.

EXERCISES

2.1. Let K and L be finite CW-complexes on X and Y, respectively. What is the relation
between the Euler characteristic of X, Y,and X x Y?

2.2. Let K and L be regular CW-complexes on X and Y, respectively. Assume that
orientations and incidence numbers have been chosen for the cells of K and L.
Consider the canonical homeomorphism f: X x Y — Y x X defined by f(x, y) =
(y, x). Then f maps the oriented cell e™ x ¢"” homeomorphically onto " x e¢™and
induces an isomorphism

f* : I_Im+n[e"l X O'", (em X 0'")] - Hm+n[a" X em, (O'" X em)]_

Show that f_(e™ x ¢") = (—1)™a" x e™ (HINT: Use induction on the dimension
of the cell.)

§3. The Singular Chain Complex of a Product Space

Our immediate objective is to define a natural chain map
(:CX)RC(Y)-C(X x Y)

for any topological spaces X and Y. Then later we will show that { induces
an isomorphism of homology groups. The definition of { is very simple;
however, the proof that the induced homomorphism on homology groups is
an isomorphism will be somewhat more involved.
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It will be convenient to use the following notation, which is now standard:
If f: A— Band g:C — D are continuous maps, then f x g: A x C—>B x D
denotes the map defined by (f x g)(a, ¢) = (fa, gc). We will also find it con-
venient to identify I™ x I" with I™*" in the obvious way. With these conven-
tions, if S: I™ - X and T : I" - Y are singular cubes in X and Y, respectively,
then § x T:I™*" 5 X x Y is a singular cube in the product space. Thus, we
can define a homomorphism

Cm,n : Qm(X) ® Qn(Y) - Qm+n(X ® Y)
by the formula
(maS®T)=8SxT.
We assert that the homomorphisms {,, , for all values of m and n define a chain
map
(:9(X)®Q(Y) - Q(X x Y).

To verify that { is a chain map, one must compute ¢(S x T). This is not difficult
if one uses the following formulas:

AS)x T=A4(xT), l<i<m,
BS)x T=B(S xT), l<i<m,
S x (AJT) = Am+j(S X T)’ 1 Sj <n,

SXx(BT)=B,.(SxT), 1<j<n
Itisclear thatif S or T'is a degenerate singular cube, thensois S x T.Hence,

{mn(@m(X) ® Dy(Y)) © Dpyn(X % Y),
{nn(Dn(X) @ Qu(Y)) & D,y a(X % Y)
and, therefore, {,, , induces a homomorphism of quotient groups,
Cmon: CulX) ® oY) > Curn(X X Y)
and the homomorphisms {,, , for m and n obviously define a chain map
{:C(X)®C(Y)-> C(X x Y).

Next, we point out that the chain map { has the following very important
naturality property: Let f: X - X" and g: Y — Y’ be continuous maps. Then
the following diagram is obviously commutative:

0.(X)®Q,(Y) —= @ a(X X Y)

# [+ Py (f x 9y

0.(X)® O,(Y") == 0, (X' X Y')

Hence on passing to quotient goups, etc., we obtain the following commuta-
tive diagram:
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CN®CY) —— C(XxY)

ff Ry | (f X 9y
CX)®C(Y) —— C(X' x Y))

Theorem 3.1 (Eilenberg-Zilber theorem. The chain map {: C(X) ® C(X) -
C(X x Y)is a chain homotopy equivalence, and hence induces isomorphisms

Lo H(C(X)® C(Y)) R H,(X x Y).

We will postpone the proof of this theorem until later. For the time being,
we point out that

$0,0: Co(X) ® Co(Y) = Co(X x Y)

is an isomorphism for any spaces X and Y. However, in higher degrees, { is
only a monomorphisms, not an isomorphism.

§4. The Homology of the Tensor Product
of Chain Complexes (The Kiinneth Theorem)

The preceding paragraphs should convince the reader of the importance of
the following problem: Let K and L be chain complexes. Is the homology of
the tensor product, K ® L, determined by the homology of K and L? If so, how?
The answer to the first question is affirmative. We will now proceed to describe
the details. First of all, there is a natural homomorphism

«:H,(K)®H,(L)->H,,,(K® L)

which is defined as follows. Let u € H,,(K) and v € H,(L); choose representa-
tive cycles u’ € Z,,(K) for u and v’ € Z,(L) for v. It is immediate that u’' ® v’ €
K, ® L, is a cycle; its homology class is, by definition, a(u ® v). Of course, it
is necessary to check that this definition is independent of the choices of the
cycles u’ and v’, and that « is actually a homomorphism. The reader will note
that this definition is a slight generalization of that given in §X.6.

The homomorphism « has various naturality properties. For example:

(a) If f: K— K’ and g: L — L’ are chain maps, then the following diagram
1s commutative:

H,(K)® H,(L) —— H, (K x L)
fi®9. (f % 9.

H,(K')® Hy(L') —— H,,,(K' x L)
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(b) Assume that ‘ ‘
E:05K S5KLK 50
is a short exact sequence of chain complexes, and that L is a chain complex
such that the following sequence is exact:
EQLO0 — KoL 2L koL ®L k'@L — 0

(sufficient conditions for E ® L to be exact are that E be split exact, or that L
be a chain complex of torsion-free abelian groups). Then the following dia-
gram is commutative:

H(K)®H(L) —— H, K" ®L)
E®1 oL

Hpt (K'Y ® Hy(L) —— Hpopy (K ® L)
(c) There is an obvious symmetric situation: Assume that
E:O—rL’—ile»L”—vo
is a short exact sequence of chain complexes, and that K is a chain complex
such that the sequence
K®E 0 — KoL 22, koL 2%, koL —— 0

1s exact. The reader should investigate the question of the commutativity of
the following diagram:

H,(K)® H((L") —— H, ,(K®L")
1® dg Ox®E

H(K)® Hy-y(L') —— Hp\p(K®L)

With these preliminaries taken care of, we can now state our main theorem,
the so-called Kiinneth theorem:

Theorem 4.1. Let K and L be chain complexes, at least one of which consists
of free abelian groups. Then there exists a split exact sequence:
0> Y HEKQHL) SH(EK®LS T Tor(H(K), H(L) - 0.
itj=n i+j=n-1
The homomorphisms a and B are natural with respect to chain maps but the
splitting is not natural.

The proof of this important theorem is not difficult; it may be found in
various books on homological algebra and algebraic topology, e.g., Vick [9],
Hilton and Stammbach [4], Mac Lane [6], Cartan and Eilenberg [1], or Dold
[2]. Actually, the theorem can be proved under slightly more general hy-
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potheses than we have stated it, but we will have no use for such greater
generality.

This theorem can be combined with our previous results on the product of
regular CW-complexes and the singular chain complex of a product space to
obtain significant results on the homology of product spaces. We will state
the precise results later. In the meantime, we note the following corollary for
future reference:

Corollary 4.2. Suppose that K and L are chain complexes of free abelian groups
which have the homology of a point, i.e.,

H(K}=H/(L)y=0 forq#0,
Ho(K) = Ho(L) = Z.
Then K ® L also has the homology of a point, and
a: Ho(K) ® Ho(L) > Hy(K® L)
is an isomorphism.

§5. Proof of the Eilenberg—Zilber Theorem

We must define a chain map n: C(X x Y) - C(X) ® C(Y) such that n{ is
chain homotopic to the identity map of C(X) ® C(Y), and {# is chain homo-
topic to the identity map of C(X x Y). One way to proceed is by brute force,
relying on our geometric intuitive to lead us to the correct formulas. We will
indicate the first few steps in such a procedure, by defining homomorphisms
M QX x V> T 0(X)®0,Y)

1TJ=q
such that on passing to the quotient groups modulo degenerate singular
chains we obtain the desired chain map #.

Note that a singular n-cube I” - X x Y in the product space corresponds
in an obvious way to a pair of singular n-cubes S:I" > X and T:I"> Y in
each of the factors. It will be convenient to let the notation (S, T) denote the
corresponding singular n-cube in the product space X x Y.

It is obvious that we should define 5y : Qo(X x Y) = Q4(X) ® Qo(Y) by the
formula

1,5, T)=S®T

for any singular O-cubes S: I® — X and T': I° - Y. This makes 7, the inverse
of {, (which is an isomorphism).
Next, one defines 7, : Q;(X x Y) = Qo(X) ® Q,(Y) + Q,(X) @ Qo(Y) by
the formula
mS,T)=(A,9®T+S®(B,T)

for any singular 1-cubes S: I' > X and T: I' -» Y.
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To define #, in general, we need a generalization of the face opertors 4; and
B;. Let H be any subset of {1, 2, ..., n}, and let K denote the complementary
subset. If H has p elements and K has q elements, p + q = n, we will let

ox:K—-{1,2,...,q}

denote the unique bijective, order-preserving map. If T: I" — X is any singular
n-cube, let

AyT,ByT: "> X
denote the following maps:

(AHT)(XD ceey xq) = T(yh "'9yn)9

where
_Jo ifieH
Y= Xoy HIi€K,
and
ByT)(x1, .3 %) = T(¥1s - Yu)s
where
) ifieH
= Vo ifi€K.
Examples

51. IfH= @, then A4, T=B,T=T.

52. IfH = {i},then Ay T = A;T and B4 T = B;T.

53. If H=1{1,2,...,n}, then Az T and By T are singular 0-cubes repre-
sented by T(0, ..., 0) and T(1, ..., 1), respectively.

We can now define 7,:Q,(X x Y) - Y ;,;-, 0:(X) ® Q;(Y) by the magic
formula

148, T) = Z Pu, x An(S) ® By(T),

where S: I > X and T : I? - Y are singular g-cubes, H ranges over all subsets
of{1,2, ..., q} and K denotes the complementary set, and py x = + 1 denotes
the signature of the permutation HK of {1, ..., q}. If H or K is empty, then
Pax = +1)

The student who has sufficient stamina and enthusiasm for calculating can
now verify the following assertions:

(a) If (S, T) is a degenerate singular cube, then #,(S, T) belongs to
Y i+ j=g[Di(X) ® Qi(Y) + Qi(X) ® D(Y)]. Hence, n, induces a homomorphism

Mg C,(X x Y)> Y C(X)® C(Y).

i+j=q
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(b) The sequence of homomorphismsn = {#,} isa chainmap C(X x Y) -
C(X)® C(Y).

(¢) n¢{ = identity map of C(X) ® C(Y).

(d) It is possible to define a chain homotopy between {n and the identity
map of C(X x Y), but the formulas are somewhat complicated.

Rather than go through the details of these lengthy calculations, it seems
preferable to use a more conceptual method due to Filenberg and Mac Lane,
called the method of acyclic models. This method makes strong use of the
naturality of the chain maps { and n which we have defined. By making full
use of this naturality, it is possible to avoid the necessity of having explicit
formulas. First, however, we have to make two brief digressions in preparation
for this proof.

Digression 1: Some more generalities on chain complexes
Definition 5.1. A chain complex K = {K,} is positive if K, = {0} for g < 0.

Most of the chain complexes we have considered so far have been positive.
Note that the tensor product of two positive chain complexes is again a
positive chain complex.

Definition 5.2. An augmentation of a postive chain complex {K,, d,} = K is
a homomorphism ¢ : K, — Z such that &6, = 0.

Observe that an augmentation ¢ induces a homomorphism ¢, : Hy(K) » Z.

Definition 5.3. A positive chain complex K with augmentation is acyclic if
H/(K) = 0 for g # 0 and ¢, : Hy(K) — Z is an isomorphism.

For example, if X is a contractible space, then the chain complex C(X) is
acyclic.

Let K and L be positive chain complexes with augmentations. It should be
clear what we mean when we say a chain map f: K — L “preserves the
augmentation.” For example, if ¢ : X — Y is a continuous map, the induced
chain map ¢, : C(X) —» C(Y) obviously preserves the augmentation. In the
rest of this chapter, we will be mainly concerned with chain complexes which
have an augmentation, and chain maps which preserve the augmentation.

Let K' = {K, 0,} and K" = {K}, J;} be positive chain complexes with
augmentation ¢ : Ky — Z and ¢”: K — Z, respectively. It is customary to
define an augmentation ¢ on the tensor product K = K’ ® K” by the simple
formula

eu®v)=¢W)- €' (v)

for any u e K, and v e K. With this definition, the following diagram is
obviously commutative;
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Ho(K') ® Ho(K") —— Hy(K' ® K”)

G®e,
Z®17 — Z

Propeosition 5.4. The tensor product of two free acyclic chain complexes (with
augmentations) is again acyclic.

This following from the Corollary 4.2 to the Kiinneth theorem and the
commutative diagram above.

Digression 2. Let usdenote by y,,: Q,(X) — C,(X) the natural homomorphism
of 0,(X) onto its quotient group. It is obvious that D,(X) is a direct summand
of Q,(X), hence we can choose (for each space X) a homomorphism v,:
C,(X) - Q,(X) such that u,v, = identity map of C,(X). What is surprising is
that we can do this in a natural way. To be precise:

Lemma 5.5. There exist homomorphisms v¥ : C(X) — Q,(X), defined for each
space X and each integer n > 0 such that p,v¥ = identity, and for any con-
tinuous map f: X - Y, the following diagram is commutative:

G(X) 5 0.(X)
Is I#

ProOOF. In order to save words, in the rest of this section we will call a
homomorphism, such as v} or uY, which is defined for each space X and
commutes with the homomorpism f, induced by any continuous map f, a
natural homomorphism. As examples, we have the face operators

Aia Bi:Qn(X)_’Qn—l(X)9 1 Sl <n,
which were (almost) defined in §VII.2; they satisfy the identifies listed in VIL.2.
Another important example is the family of degeneracy operators

E;:QuX) > Qpiy(X), 1<i<n+1,
defined by

(EiT)(xys .-y Xpp1) = T(xq, ooy Ry s Xpaq)

for any singular n-cube T :I" — X ; the circumflex over x; means that it is to
be omitted. Note that image E; = D,,,(X), and every degenerate singular

(n + 1)-cube is of the form E,;T for some i and some n-cube T. It is a routine
matter to verify the following list of identities:
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EE;=E;E, i<],
AE;=E; A,  BE=E_ B, i<},
AjE; = BE; = 1,
AE;=E;A;,, BE;=EB_,, i>]
Now consider the natural homomorphism
(1= EA)(1 = Ezd3)+ (1 = E,4,): Q4(X) > Qu(X).

We assert that this homomorphism annihilates D,(X), and hence defines a
natural homomorphism

vyt Co(X) = Qp(X).
To prove this assertion, it helps to first prove the following identities:
(1 — E;A)E; =0,
(1 — E,A))E; = E(1 —E;_ 1 A;;) ifi<j.

It remains to verify that pu,v, = identity. This follows from the fact that for
any u € 0,(X),

(1 —E A,)(1 - E Ay) (1 — E,A,)(u)
belongs to the same coset modulo D,(X) as u. Q.E.D.
With these digressions out of the way, we can proceed with our proof that
{:C(X)®C(Y)—> C(X x Y) is a chain homotopy equivalence. The proof
depends on the following three lemmas:
Lemma 5.6. For every ordered pair of spaces (X, Y) we can choose a chain map
Y C(X x Y)- C(X)® C(Y)

(which commutes with augmentations) such that the following naturality condi-
tion holds: For any continuous maps f: X - X' and g:Y - Y', the following
diagram is commutative:

cxxy) 25 cxyec(y)
l (f % g)g J4®ay
CX % Y) — CX)@C(Y)

Lemma 5.7. Let o*7, y*7: C(X)® C(Y) - C(X) ® C(Y) be anatural collec-

tion of chain maps. Then there exists a natural collection of chain homotopies
D*Y . C(X)® C(Y) - C(X)® C(Y)

such that
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(pX,Y _ wx,y — aDX,Y + DX,Ya

Jfor every ordered pair (X, Y) of spaces.

Lemma 5.8. Let o* 7, y*Y:C(X x Y) » C(X x Y)be a natural collection of
chain maps. Then there exists a natural collection of chain homotopies D*'7 :
C(X x Y)> C(X x Y) such that

(pX,Y _ wx,y — aDX,Y + DX,Ya'

In regard to the statements of these lemmas, the following points should
be emphasized:

(@) All chain maps are assumed to preserve the augmentation.

(b) In each case, the adjective “natural” has the following technical meaning:
Any pair of continuous maps f: X —» X' and g: Y - Y’ gives rise to a
certain square diagram, which is required to be commutative.

It should be clear that these three lemmas imply the truth of the assertion
that {: C(X) ® C(Y) - C(X x Y)is a chain homotopy equivalence. For, let
£:C(X x Y)— C(X)® C(Y) be the chain map whose existence is guaranteed
by Lemma 5.6. Then £ and the identity are natural chain maps C(X) ®
C(Y) - C(X)® C(Y), and hence they are chain homotopic by Lemma 5.7.
Similarly, {£ and the identity C(X x Y) - C(X x Y) are chain homotopic by
Lemma 5.8. This result is known as the Eilenberg—-Zilber theorem.

PrOOF OF LEMMA 5.6. We will use induction on n to define homomorphisms
& CX x Y) > [C(X) ® C(Y)],

for all spaces X and Y, which will be natural, and will define the required chain
map (i.e., will commute with the boundary operator).
Case n = 0. Define
&7 Co(X x ¥) = Co(X) ® Co(Y)
by
(S, T)=8S®T

for any singular O-cubes S:I1°— X and T:I°—> Y [recall that Qo(W) =
Co(W) for any space W1]. Then it is trivial to check that £ is natural and that
it preserves the augmentation.

Case n=1. Let 1:1' > I' denote the identity map. Then (1,1):I' -
(I' x I') is a singular 1-cube, i.e., (1, 1) € @,(I* x I'), and

0Ly e QO(Il X I‘) = CO(Il X I‘),
10,11 € CoIt) ® CollY)
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and
sé{)l,llal(l’ l) = 861(1’ l) = 0

since &, preserves augmentation. By Proposition 5.4, the chain complex
C(I') ® C(I") is acyclic. Hence we can choose an element

ele[CU)®CU)],
such that
0y(e") = £,0,(1,1).
Define a homomorphism
ENT104(X x ¥) > [C(X) ® C(Y)],
for any spaces X and Y by the formula
El(ss T) = (S# ® T#)(el)’

where S:1' - X and T:I' — Y are arbitrary singular 1-cubes. We now have
to check two things:

(a) Naturality. If f: X > X’andg: Y —» Y’ are continuous map, the follow-
ing diagram is commutative:

i

(X xY) — [CX)®C(Y)],
U x 9 Jo @4y

QX' xY) —— [CX)®C(Y)],

This is an easy calculation: ’
(f# ®94)E(S, T) = (J4 ®94)(S4 ® Ty)(ey)
= ((fS)% ®(gT)4)(ey),
E(f % )4 (S, T) = &:(/S, gT)
= ((fS)s ®(gT)4)(e,).

(b) Commutativity with d,, i.e., the following diagram is commutative:

0.(X x ) —2 [CX) ® C(1)],

2 2

Qo(X x ¥) —2 [C(X)® C(Y)],

Here the computation proceeds as follows:
08,(S, T) = 0(S4 ® Ty)(ey)
= (S4 ® T)d(e,)
= (S ® T)S00(, 1)
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=&o(S x T)x 0, 1)

= $o0(S X T)y(1,1)
= foa(S, T)-

Now define £7: C,(X x Y) - [C(X)® C(Y)], by
lX Y _ 1X lex Y

Then &, is natural because it is the composition of natural homomorphisms.
It remains to check that ¢, commutes with é,. Consider the following diagram:

0.X x Y)

A

CiX x ¥) —— [C(X)®C(Y)],

&
lal lar
¢

ColX x ¥) —— [ColX)® Co(Y)].

We wish to prove that

0ty = Loy
We have
0Fey = 0 &ivi = &odyvy,
€001 = &o01pvy = o001V
as desired.

Inductive step. Assume that n > 1 and homomorphisms
EFTCX x V) [CX) @ C(Y)],

have been defined for all spaces X and Y and all ¢ < n so that naturality holds
and the homomorphisms commute with the boundary operator. Define
homomorphisms

EXT10,(X x V) [C(X)® C(Y)],
for all X, Y and q < n by the formula
éx Y _ éx Yﬂ ,Y
q
Note that ¢, is a natural homomorphism and that the various &,’s commute
with the boundary operators d, since they are the composition of homomor-

phisms having these two properties. Let 1: I" — I" denote the identity map.
Then (1, 1): I" - I" x I" is a singular n-cube, and (1, 1) € Q,(I" x I"),

Emre.a e [CUM® CIM],-y,
an—l én—lan(l9 I) = én—Zan—lan(l9 l) =0

Therefore, &,_,0,( 1) is a cycle, and since C(I") ® C(I") is acyclic, we can
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choose e, € [C(I") ® C(I")], such that
a(en) = En—l an(l9 I)'
For any S:I"— X and T: I" - Y, define

én(s’ T) = (S# ® T#)(en)'

Then &, defines a homomorphism Q,(X x Y) - [C(X) ® C(Y)],. Exactly as
for the case n = 1, we can prove that &, is natural; Also, the following diagram
is commutative:

0.(X xY) — [CC®C],

a, Oy

0,(X x ¥) 5 [C()® C(N)],y

In fact, we have
Ona(S, T) = 05(S4 ® Ty )(en)
= (8¢ ® T)a.(en)
= (S4 ® Ty)Eu-10:(5, 1),
En 1008, T) = &,-10(S X TNy (1,1)
= &u-1(S X T) 043, 9)
= (S¢ ® Ty) & 10a(, ).
Next, define
&7 CUX x Y) > [C(X) ® C(Y)],
by

G = .

Then £, is natural since it is the composition of natural homomorphisms. Also,

anén = én—l an’
for, we have
anén = angnvn = En—lanvn
= én—l un—lanvn
= én—l an”nvn = én—lan
as desired. Q.E.D.

PrROOF OF LEMMA 5.7. Once again we will use induction on n to define
homomorphisms

D" [C(X)® C(Y)], - [C(X) ® C(Y)]pns

for all integers n and all spaces X, Y, such that
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GFT = YT = 8, DI + DETG,
and such that naturality holds.

Casen = (0. We assert that the condition on ¢ and y imply that o7 = &7
for any spaces X and Y. The assertion is true for X = Y = I° (a single point)
because ¢ : Co(I°) ® Co(I°) — Z is an isomorphism, and ¢ and y are assumed
to be augmentation preserving. For arbitrary spaces X and Y, let S:1° » X
and T:I° — Y be singular O-cubes. Then

S®T = (84 ® Ty)t ®1) € Co(X) ® Co(Y),

where 1:1° — I° is the identity map. Hence, it follows by naturality that

@ =y
Since @'Y = y&'¥, we may define DY =0 and all conditions will be

satisfied.
For the remainder of the proof, it will be convenient to define homomor-
phisms

&N U [Q(X) ® Q(Y)], - [C(X) ® C(Y)],
by the formulas
o' =0 T (W @u’),
UY =T (u* @ p).

Then ¢ and y are natural chain mappings since they are the composition of
natural chain mappings. Also, for any integer g > 0 we let

YA &
denote the identity map.
Case n = 1. Consider

o ® 1 € Qo(I°) @ Q,(I')
and

1 ®1€0:(I') ® QoI°).
We now compute

91y — Y1) (o ® 1)) = (Po — Vo)1 (10 ® 1)
=0

since @p = @ = Yo = Y. Similarly, 6,(¢, — ¥,)(t; ® 1,) =0. Since the
chain complexes C(I%) ® C(I') and C(I') ® C(I°) are acyclic, we can choose
elements

eor €[CUI%)® C(I')],,
€10 € [C(Il) ® C(Io)]z
such that
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85(e01) = (@1 — Y1) (to ® 1),
d2(e10) = (@1 — Y1) 1y ® 1).
Define D, : [Q(X) ® @(Y)], — [C(X) ® C(Y)], by

(S, ® Ty)eo)) ifS:I°>X, T:I'>Y

bE®T) = {(S# ® Tu)ero) ifS:I' > X, T:I°> Y.

Then D, is natural in the sense that the following diagram is commutative:
D,
RX)®Q(Y)], — [CX)®C(Y)];

T+ ® gy J#®ay

[Q(X)® Q(Y)], — [C(X)® C(Y)],

The verification of naturality should present no difficulty to the reader who
has already gone through details of such verifications earlier.
Next, if S: I° - X and T:I' - Y are singular cubes, we compute

0,D,(S @ T) = 8,(S4 ® Ty)(eo)

= (S¢ ® Ty)0,(e01)

=(Se ® Ty )¢y — l;Zx)(lo ®y)

= (¢ — lpx)(s# ® Ty)(o®1,)

= ((51 - Jx)(s ® T)-
Similarly, we can prove that 3,D,(S® T) = (¢, — ¥,)(S® T)incase S: I' >
X and T:1° > Y. Thus, we see that

651 =@ — Jx,
in all cases.
Now define

DIV [C(X)® C(Y)], » [C(X)® C(Y)],
by
DY = DXY(v X @ vY).

Then D, is natural because it is the composition of natural homomorphisms,
and

0,DFY = 0, DTV @ vY)
= (@ -y @)
= (" =y @ uNv* @ v
= (" — ¢V @ (p"v)]
=" =y

as required.
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Inductive step. Assume that n > 1 and
D,:[C(X)® C(Y)], » [C(X) @ C(Y)],+
is defined for all r < n, that D, is natural, and
@ — Yy = 0,41 D, + D,,0,.
Define D, : [Q(X) ® Q(Y)], » [C(X) ® C(Y)],,, for all r < n by
DXV = DF'(u* @ ).
Then D, is natural, and
011D, = 0, D(u* ® p")
=@ — ¢ — Dy 8)(p* @ 1)
= (¢ — Y)W @ ") ~ D,y (W* ® u")3,
= ¢, ~ ¥, — D0,
Next, we define D,. Let (p, q) range over all pairs of non-negative integers

such that p + ¢ = n, and for each such pair consider 1, ® 1, € [Q(I?) ® Q(19)],
and

[@ — ¥n — Dy 18,10, ® 1) € [CUIP) ® C(I)],.
We now compute as follows:
Oul @n — ¥n — Dy10,1(2, ® 1,)

= [ @n-10n — Yn-105 — 00,1 8,101, ® 1,)

= [0xDp-10s — 0,010,101, ® 1) = 0.
Since C(I7) ® C(I?) is acyclic, there exists e, , € [C(IP) ® C(I?)],+, such that

0(€p.q) = [@n — Yo — Da10,10, ®1,).
IfS:1?7 > X and T:I? - Y are singular cubes, define

DS ® T) = (S ® Ty)(e,.0)-

Then DX is a homomorphism of [Q(X) ® Q(Y)], into [C(X) ® C(Y)]ps,-
As before, we can easily prove that D, is a natural homomorphism, and

Ons1 Da(S @ T) = 0,41 (S4 ® Ty)le,.,)
=(Sg ® Ty)0ns1(ep,q)
= (84 ® Ty )(@w — ¥u — Dt 3) (1, ®11,)
= (@ =¥ = Dpe10,)(S4 ® Ty) (2, ® 1)
= (@n — ¥n— Dps9,)(S® T).
We now define
D" [C(X)® C(Y)], » [C(X) ® C(Y)1ass
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by
DFY = DXY(v* @ v").
Then D, is natural, and
o1 DFY = 0,1 DY TV ® )
(on — Jl - Bn—lan)(vx ®v")
= (@0 = ¥n — Dpr B (¥ @ )V @ vT)
= (@7 —¢a" = D20,

as required.

The reader should have no trouble by now proving Lemma 5.8 for himself,
hence we will not go through the details.

The reader should reflect on the essentials of these proofs. They were
concerned with certain chain complexes defined on ordered pairs (X, Y) of
topological spaces, namely, Q(X x Y), C(X x Y), Q(X) ® Q(Y), and C(X)®
C(Y). There were certain models at hand: for Q(X x Y) they were the pairs
(I", I") and the singular cube (3, 1); I" = I" x I", (1,1) € Q,(I" x I"), whereas for
Q(X) ® Q(Y) they were the pairs (I”, 1) and the elements 1, ® 1, € Q,(I") ®
Q(I9). The important thing about the models is that Q,(X x Y) has a basis
composed of the elements (S, T) = (S x T),(1, 1), whereas Q,(X) ® Q,(Y) has
a basis composed of the elements S® T = (S, ® Ty)(t, ®1,). Finally these
models are acyclic in the sense that the chain complexes C(I" x I") and
C(I?) ® C(19) are acyclic. The whole procedure is explained is complete gen-
erality in the original paper of Eilenberg and Mac Lane [3]. However, such
a general treatment is so abstact that it is difficult to follow; moreover, the
reader who has used the method in a few specific cases should have no
difficulty in applying it to new cases.

This method of acyclic models is applicable to many problems involving
singular homology groups. For example, singular homology groups can be
defined using singular simplexes rather than singular cubes. Then one can use
the method of acyclic models to define a natural chain homotopy equivalence
between cubical singular chains and simplicial singular chains. This is ex-
plained in detail in the paper of Eilenberg and Mac Lane [ 3] mentioned above,

EXERCISES

5.1. Prove that any two natural chain maps
XY YyXY:C(X)® C(Y)» C(X x Y)

are chain homotopic (by a natural chain homotopy). [NoTE: This applies, in
particular, to the natural chain map { defined in §3.]

5.2. Prove that there exist natural chain maps
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5.3.

5.4.

AY: C(X) - C(X) ® C(X)

and that any two such natural chain maps are chain homotopic (by a natural
chain homotopy). Such a natural chain map is sometimes called a diagonal map.

Prove that there is a 1-1 correspondence between diagonal maps
A*: C(X) - C(X) ® C(X)
as defined in the preceding exercise and natural chain maps
LY C(X x Y) = C(X)® C(Y)
as described in Lemma 5.6. This 1-1 correspondence is defined as follows:
(a) Given any such diagonal map A, define a natural chain map
AXY . C(X x Y) > C(X)® C(Y)
by the formula
AY =(n,, ® 7, 0)AYY,

where n; : X x Y- X and n, : X x Y — Y denote projections on the first and
second factors, respectively.
(b) Given a natural chain map ¢: C(X x Y) - C(X) ® C(Y), define a diagonal
map
& C(X) - C(X)® C(Y)
by the formula
éx = éx,xd#,

whered: X — X x X denotes the “diagonal” map defined by d(x) = (x, x) for
any x € X. [NoTE: When we study cohomology theory, we will see the real
importance of such diagonal maps.]

Let A*: C(X) » C(X) ® C(X) be a diagonal map, as defined in Exercise 5.2, and
let ¥ : C(X) ® C(X) - C(X) ® C(X) be the natural chain map defined by

wu®v)=(—1)"v®u,
where u e C,(X), and ve C(X). By Exercise 5.2, there exists a natural chain
homotopy DX : C(X) —» C(X) ® C(X) bertween A and 1A, i.e.,
A — 1A =0D + Dé.
Prove by the method of acyclic models that there exist natural homomorphisms
such that
D +tD=¢0D - Do

(Note that r?> = identity. One can think of D’ as a “second-order chain homotopy”
between the “first-order” chain homotopies D and —zD’. One could then consider
third-order chain homotopies between D’ and D', etc. This procedure leads to
one method of constructing the Steenrod squaring operations in cohomology
theory; see E. Spanier [7, pp. 271-276].)
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§6. Formulas for the Homology Groups
of Product Spaces

Our objective is to combine the Kiinneth theorem for chain complexes
(Theorem 4.1) with the existence of the natural chain homotopy equivalences
(Eilenberg—Zilber theorem)

C(X)® C(Y) % C(X x Y)

to express the homology groups of X x Y in terms of those of X and Y.
By this method, we obviously obtain a split exact sequence:

0- Y HX)®H(Y)>H(X x )5 T Tor(H,(X), H(Y)) - 0.

ptg=n pt+g=n—1
The homomorphisms o and g are natural, but the splitting is not natural.
One way to generalize this theorem is the following: Let G be an abelian
group. Then we have the following natural chain homotopy equivalences:

(®1
CX)® C(Y)® G— C(X x Y)®G.
t{®1

In the Kiinneth theorem we only needed to assume that one of the chain
complexes K and L was free. Hence, we obtain the following split exact
sequence:
0- ¥ Hy(X)® H,(Y; G)> H,(X x Y; G)
ptq=n
LY Tor(H,(X), H(Y; G) - 0.

ptg=n—1
Once again, the homomorphisms a and f§ are natural, but the splitting is not
natural.

We will now generalize these theorems to include relative homology

groups. If (X, A) is a pair, then

C(X, 4) = C(X)/C(4)
by definition; also, the sequence
0-CA)->CX)»C(X,4)-0

is split exact. Using these facts, plus basic properties of tensor products, it is
easy to see that there is a natural isomorphism of chain complexes

C(X) ®C(Y) - C(X) ® C(Y)
C(4) ~ C(B) C(X)®C(B) + C(4)® C(Y)
for any pairs (X, A) and (Y, B). In the denominator on the right-hand side of

this equation, the plus sign does not mean direct sum,; it refers to the least
subgroup containing the two terms.
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Due to the naturality of the chain maps { and ¢ with respect to the chain
maps iy : C(4) - C(X) and j, ; C(B) - C(Y) induced by inclusion maps i and
Jj, we conclude that we have chain homotopy equivalences

C(X)® C(Y) : C(X x Y)

S
CX)®CB) + C(A®@C(Y) t C(X x B+ C(4 x Y)'

The inclusionmaps X x B X x BUAXx YandAXx Y- X X BuAxY

induce an obvious chain map

CXxB)+CA+Y)»C(X xBuAxY)

Under certain circumstances, this chain map will be a chain homotopy
equivalence; for example, this will be the case if either A or B is empty
(trivially). More generally, it will be the case if the interiors of X x B and
A x Ycover X x BuA x Y (cf, Theorem VII.6.4) in the relative topology of
(X x Bju(4 x Y).

Definition 6.1. Let X, and X, be subspaces of some topological space X. We
say {X,, X, } is an excisive couple if the obvious chain map C(X,) + C(X,) —
C(X,v X,) (induced by inclusion) induces isomorphisms on homology
groups.

The term “excisive” is used here because of its obvious connection with the
excision property.

We note the following two sufficient conditions for {X,, X,} to be an
excisive couple:

(@) If X, u X, = (Interior X,)u (Interior X,) in the relative topology of
X, U X,, then {X,, X,} is an excisive couple. This is a consequence of
Theorem VIL.6.4.

(b) If X is a CW-complex and X, and X, are subcomplexes, then {X,, X,}
is an excisive couple. This is a consequence of the theorems of §IX.4,

EXERCISES

6.1. Prove that the following conditions are equivalent to {X, X,} being an excisive
couplein X:

(a) H(C(X, u X,)/(C(X,) + C(X,))) = 0forall q.

(b) The obvious chain map C(X)AC(X,) + C(X,)) » C(X)/C(X, v X;) induces
isomorphisms on homology groups.

(¢) The inclusion map (X, X; n X,) - (X, u X,, X,) induces isomorphisms on
homology groups.

6.2. If {X,, X,} is an excisive couple, prove that the chain map C(X; G) +
C(X,; G) = C(X, u X,; G)induces an isomorphism on homology groups for any
coefficient group G. Then deduce that the analogues of conditions (a), (b), and (c)
of Exercise 6.1 hold for homology with coefficient group G.
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In view of the above discussion, we see thatif {4 x Y, X x B} is an excisive
couple, then the composition of the Eilenberg—Zilber chain homotopy
equivalence

C(X xY)
CX xB)y+CAxY)

C(X, A)® C(Y, B) >

and the chain map

C(X x Y) C(X x Y)
CXxB)+CAxY) CXxBUAxY)

induces in isomorphism
H(C(X,A)®C(Y,B)) ¥ H(X x Y, X x BUA x Y)

for all g. Hence we have the following:

Theorem 6.2. Let (X, A) and (Y, B) be pairs such that {A x Y, X x B} is an
excisive couple in X x Y. Then there exists a split exact sequence

0~ ¥ H,(X,A)® H(Y,B;G) > H,(X x , Ax YUX x B; G)

ptq=n

L Y TorH,X, A) HyY, B; G)

ptg=n—1
-0

The homomorphisms a and B are natural, but the splitting is not.

Examples

6.1. Let K = {K"} and L = {L"} be finite CW-complexes on the spaces X
and Y respectively. Then

a: H(KP, KP ) ® Hy(L%, L*™") » H,, (KP x L% KP x L1 UKP™! x L9)
is an isomorphism by the above theorem. Let

M= ) KPxLs, n=0,1,2,..,

ptq=n

denote the CW-complex on X x Y. Then composing the isomorphism a with
the homomorphism induced by the inclusion map

(K? x L% K?™! x [9UKP x Li71) — (M", M"™))
gives rise to a natural homomorphism
C,(K) ® Ci(L) = C,(M).

It may be shown that this agrees with the identification
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CM)= 3 CK)® C,(L)

ptg=n
we made in §2 for the case where K and L are regular CW-complexes.

EXERCISES

6.3. Let K and L be pseudomanifolds of dimensions m and n, respectively. (a) Prove
that K x L is a pseudomanifold of dimension m + n. (b) Prove that K x L is
orientable if and only if both K and L are orientable.

6.4. Let P? denote the real projective plane. Compute the integral and mod 2 homol-
ogy groups of P? x P2,

6.5. Let R be aring, and let K = {K,,, d,} and L = {L,, d,} be chain complexes such
that each K, is a right R-module, each 4, is a homomorphism of right R-modules,
each L, is a left R-module, and each d, is a homomorphism of left R-modules (we
can express these conditions more briefly by saying that K is a chain complex of
right R-modules and L is a chain complex of left R-modules.)) The definition of
K ®gx L should be obvious; it is a chain complex of abelian groups. Define a
natural homomorphism a : H,(K) ® g H,(L) = H,, ,(K ® g L) by analogy with our
earlier definition.

6.6. Let F be acommutative field, and let K and L be chain complexes of vector spaces
over F. Prove that
a: Y H(K)®yH/(L)—> H,(K®L)

pt+q=n
is an isomorphism.

6.7. Let (X, A) and (Y, B) be pairs such that {4 x ¥, X x B} is an excisive couple in
X x Y, and let F be a commutative field. Prove that there exists a natural
isomorphism

@ Y H(X,A;F)®rH(Y,B;F)>H(X x Y,Ax YUX x B; F).
pP+q=n

6.8. Let F be a commutative field and (X, 4) a pair such that for all g, the vector space
Hy(X, A; F) has finite rank r, over F. Define the Poincaré series of (X, A)(over F)
to be the formal power series

P(X,A;t) =3 rptt
q>0
Give a formula for P(X x Y; X x BUA x Y:t) in terms of P(X, 4;t) and
P(Y, B; ), assuming that {4 x Y, X x B} is an excisive couple.
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CHAPTER XII

Cohomology Theory

§1. Introduction

Recall that one obtains homology groups with coefficient group G by the
following process:

(a) Start with the chain complex C(X, 4) = {C,(X, A), J,)}.
(b) Apply the functor ® G to obtain the new chain complex

CX,A®G=CX, 4;G).
(c) Take the homology groups of the resulting chain complex:
H/(X, A; G) = H(C(X, 4; G)).

We could go through the same procedure, only at step (b), apply the functor
Hom( , G) instead of ® G, and obtain what are called the cohomology groups
of (X, A) with coefficient group G. Much of the resulting theory parallels that
of Chapter X. However, the geometric interpretation of cycles (or cocycles),
etc. is somewhat different, and perhaps a bit more obscure. More importantly,
it is possible to introduce additional operations into cohomology theory, most
notably, what are called cup products and Steenrod squares. These new opera-
tions are additional invariants of homotopy type, and enable us to distinguish
between spaces that we could not tell apart otherwise. Cup products are
explained in the next chapter.
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§2. Definition of Cohomology Groups—Proofs
of the Basic Properties

For any pair (X, A) and any abelian group G, define
CYX, A; G) = Hom(C,(X, A), G),
and
6,: CU(X, 4; G) - C**'(C, 4; G)

by 6, = Hom(0,.,, 15). Then
C*(X,A; G) = {CYX, 4; G), 6}

is a cochain complex, in accordance with the following definition:

Definition 2.1. A cochain complex K consists of a sequence of abelian groups
{K?} and homomorphisms J,: K¢ » K**! defined for all g and subject to the
condition that J,,, 6, = 0 for all g. The homomorphism J, is called a cobound-
ary operator.

An important example of a cochain complex is the following: Let C =
{C,, 0,} be a chain complex; define K? = Hom(C,, G) and §,: K? - K*' by
0, = Hom(d,,,, 1), where 1 denotes the identity homomorphism G — G. Then
K = {K4, 4,} is a cochain complex; we will denote this cochain complex by

K = Hom(C, G).

On the other hand, if K is a cochain complex, then an analogous definition
leads to a chain complex Hom(K, G).

Obviously, the theory of chain complexes and the theory of cochain com-
plexes are isomorphic; to get from one to the other, change the sign of all the
indices. The distinction between the two is made partly for tradition, and
partly for convenience in the applications we have in mind. Corresponding to
the notions of chain map and chain homotopy we have cochain maps and
cochain homotopies: Let K and L be cochain complexes. A cochain map
f:K — Lis a sequence of homomorphisms

S K> L2
which commute with the coboundary operators. If f, g: K — L are cochain

maps, then a cochain homotopy D between f and g is a sequence of homo-
morphisms D?: K? — L% ! such that

f9— g9 =591D8 4 DIt

We leave it to the reader to define the following two concepts:
(a) Suppose C and C’ are chain complexes and f: C — C' is a chain map.
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Then a cochain map
Hom({, 1): Hom(C’, G) - Hom(C, G)
is defined.
(b) Assume C and C' are chain complexes, f, g: C - C are chain maps,
and D: C — C'is a chain homotopy between f and g. Then a cochain homotopy
Hom(D, 1) is defined between the cochain maps Hom(f, 1) and Hom(g, 1).

If K = {K?} is a cochain complex with coboundary opertor §¢: K¢ — K7*!,
then the following notation and terminology is standard:

Z%(K) = kernel 64, the g-dimensional cocycles,
BY(K) = image 577, the g-dimensional coboundaries,
H*(K) = Z%K)/B%(K), the g-dimensional cohomology group.
Thus, for any pair (X, A) and abelian group G, we have the cochain complex
C*(X, A; G) = Hom(C(X, A), G)
and the associated cohomoology groups
HYX, A; G) = HY(C*(X, 4; G)).

Let f: (X, A) — (Y, B) be a continuous map of pairs; then we have the induced
chain map,

f#:C(X, A) - C(Y, B),
which gives rise to a cochain map
f* = Hom(f, 1): C*(Y, B; G) > C*(X, 4; G)
and hence to an induced homomorphism on cohomology groups
f*:HYY, B; G)—» HYX, 4; G)

for all g. Note that the induced homomorphism in cohomology goes the
opposite way from that in homology; we are dealing with a contravariant
functor.

If two maps f,, f; : (X, A) = (Y, B) are homotopic, then any homotopy
f:(X x I, A x I)>(Y, B) gives rise to a chain homotopy D:C(X, A)—>
C(Y, B) between the chain maps fy, and f; 4. Hence, Hom(D, 1) is a cochain
homotopy between f¢* = Hom(fy4, 1) and f7* = Hom(f, 4, 1); it follows that
the induced homomorphisms

f& it HY(Y, B; G)—» HY(X, 4, G)

are the same.
Next, we will discuss exact sequences. Let

E0sCHchc oo
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be a short exact sequence of chain complexes and chain maps. If we apply the
functor Hom( , G), we do not obtain a short exact sequence of cochain
complexes, in general. All we can be certain of is that the following sequence

is exact:
Hom(C, 6) ™Y Hom(C, 6) “™* Hom(C", G) «—— 0.

In general, Hom(j, 1) will not be an epimorphism. However, if the sequence E
is split exact, then the sequence

0 « Hom(C', G) « Hom(C, G) « Hom(C”, G) « 0

will also be split exact, and we will get a corresponding long exact sequence
of cohomology groups.

We can apply these considerations to the short exact sequence of chain
complexes

0> C)BCcx)BCx, 4)-0

for any pair (X, A). This is a split exact sequence of chain complexes; hence,
we obtain a corresponding split exact sequence of cochain complexes

0« C*(4; G) « C*(X; G)L C*(X, 4; G) <0

for any abelian group G. It follows that there is a long exact sequence of
cohomology groups:

S HYA; G HIXG ) £ 4X, 4; 0 HUM (43 G)

will all the usual properties.

For all the usual properties.

For some purposes it is convenient to define reduced cohomology groups
H°(X; G) in dimension 0. For this purpose, one uses the augmented chain
complex C(X) that is defined in §X.3. We define the augmented cochain complex

C*(X; G) = Hom(C(X), G)
and the reduced cohomology groups
AYX; G) = HY(C*(X; G)).
One readily proves that for any nonempty space X and abelian group G,
AYX;G)= HYX;G) forq#0,
whereas for g = 0 we have a split short exact sequence,
0-G3 HOX; G) - A°X; G)— 0.

We leave it for the reader to check that if P is a space consisting of a single
point, then

M(P;G)=0 forallgq.
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From this it follows that
e*:G—- HOP; G)

is an isomorphism.
We will discuss the excision property and the Mayer—Vietoris sequence in
cohomology later in this chapter.

§3. Coefficient Homomorphisms and
the Bockstein Operator in Cohomology

Let h: G, — G, be a homomorphism of abelian groups. Then for any chain
complex C, we get an obvious cochain map

Hom(l, h): Hom(C, G,) » Hom(C, G,)

and an induced map on cohomology groups. In particular, for any pair (X, A),
we have the cochain map

Hom(l, h): C*(X, A; G,) - C*(X, 4; G,)
and the induced homomorphism
hy: HY(X, A; G)) - HU(X, A; G,)

on cohomology groups. The reader should state and prove naturality prop-

erties of the coefficient homomorphism h, analogous to properties (a) and (b)

of §X.5. In addition, he should prove that if G is a left module over some ring

R, then HY(X, A; G) inherits a natural left R-module structure; in that case,

the homomorphisms f* and J, are homomorphisms of left R-modules.
Next, let

0565656 -0
be a short exact sequence of abelian groups. From this, we get the following
sequence of cochain complexes:

05 C*X, 4;G') 220D cx(x, 4; G) 22N ox(x, 4; ")~ 0.

Since C(X, A) is a chain complex of free abelian groups, it follows easily that
this sequence of cochain complexes is exact. By the usual procedure, we get
the following long exact sequence of cohomology groups:

L X, 4,603 HU(X, 4,6)3 H (X, 4,6") 5 61 (x, 4; 6').

Here § is the Bockstein operator in cohomology. It has naturality properties
similar to that of the Bockstein operator in homomology.
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§4. The Universal Coefficient Theorem
for Cohomology Groups

The object of this theorem is to express HY(X, A; G) in terms of integral
homology groups of (X, A4); it is analogous to Corollary X.6.3.

Let K = {K,, 0,} be an arbitrary chain complex, G an abelian group,
x € H,(K), and u € H"(Hom(K, G)). The inner product {u, x> of u and x is the
element of G obtained according to the following simple prescription; Choose
a representative cocycle u' € Hom(K,, G) for u, and a representative cycle
x’' € K, for x. Then

, x)=u'(x)eG.

It is easy to verify that this definition is independent of the choice of the
representatives u’ and x’, and that the inner product is additive in each variable
separately, i.e.,

{uy + uy, x) = <uy, x) + {uy, x),
<uy xy + %20 =<y, x1) + <u, x3).

This inner product is one of the basic ideas of cohomology theory.
Using this inner product, we define a homomorphism

o : H(Hom(K, G)) - Hom(H,(K), G)
by the following rule: for any u € H"(Hom(K, G) and x € H,(K),
() (x) = <u, x.

The homomorphism a has the following three naturality properties (cf. §X.6):
(a) If f: K —» K'is a chain map, then the following diagram is commutative:

H'Hom(K,G)) —— Hom(H,(K), G)
Hom(f, 1)* , Hom(f,, 1)

HYHom(K',G) —*— Hom(H,(K'), G)

(b) Let E:0—» K'— K — K" — 0 be a split exact sequence of chain com-
plexes. Then the following sequence of cochain complexes is also exact,

0 <« Hom(X', G) « Hom(K, G) « Hom(K", G) « 0,
and the following diagram is commutative:

o

H'(Hom(K’, G)) ——  Hom(H,(K'), G)
5 Hom(d;, 1)

Ht*!(Hom(K", G)) —— Hom(H,,,(K"), G)
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(¢) Ifh: G, — G, is a homomorphism of coefficient groups, then the follow-
ing diagram is commutative:

HYHom(K, G,)) —— Hom(H,(K), G,)
hy Hom(1, h)

HYHom(K, G,)) —— Hom(H,(K'), G,)

Of course, we will mainly be interested in the homomorphism in case
K = C(X, A).
a: HY(X, A; G)— Hom(H,(X, A); G).

We leave it to the reader to reformulate the naturality properties (a), (b), and
(c) in an appropriate way for the cohomology of spaces.

In order to further investigate the properties of the homomorphism ¢, it is
best to use homological algebra; in particular, it is necessary to make use of
the functor Ext(A4, B). To be concise, Ext(A4, B) bears the same relation to
Hom(A, B) that Tor(A, B) does to A ® B (these are both examples of first
derived functors). Although Tor(A, B) is symmetric in the two variables, there
can be no question of Ext(A, B) being symmetrical since it is contrivariant in
the first variable and covariant in the second variable.

In order to make use of the functor Ext, it is convenient to have available
certain basic properties of divisible abelian groups.

Definition 4.1. An abelian group A is divisible if given any a € A and any
nonzero integer n, there exists an element x € A such that nx = a.

Examples

4.1. The additive group of rational numbers is divisible. It is easily proved
that any quotient group of a divisible group is divisible, and any direct sum
of divisible groups is divisible. Thus, we could construct many more examples.

In a certain sense, divisible groups have properties which are dual to those
of free abelian groups. For example, any subgroup of a free abelian group is
also free abelian, whereas any quotient group of a divisible group is divisible.
Any free group F is projective (in the category of abelian groups), in the sense
that given any epimorphism h: A - B and any homomorphism g : F - B,
there exists a homomorphism f: F — A such that the following diagram is
commutative:

(the proof is easy).
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Dually, an abelian group G is called injective if given any monomorphism
h: B— A and any homomorphism g : B — G, there exists a homomorphism
f: A — G such that the following diagram is commutative:

G

g

A<—h—B<—0

Note that this diagram is obtained from the previous one by reversing all the
Arrows.

Theorem 4.2. An abelian group is injective if and only if it is divisible.

The proof that an injective group is divisible is easy and is left to the reader.

Assume that G is divisible; we will prove that it is injective. Let 4, B, h, and
g be as in the diagram above. We may as well assume that B is a subgroup of
A, and h 1s the inclusion map. Consider all pairs (G;, h;) where G; is a subgroup
of A which contains B, and h; : G; - G is a homomorphism such that h;|B = g.
This family of pairs is nonvacuous because (B, g) obviously satisfies the
required conditions. Define (G;, h;) < (G;, b)) if G, = G; and h;|G; = h,. Apply
Zorn’s lemma to this family with this ordering to conclude there exists a
maximal pair (G,,, h,,). We assert G,, = A4; forif G,, # A,letae A — G,,; using
the fact that G is divisible, it is easily shown that h,, can be extended to the
subgroup generated by G,, and a. But this contradicts maximality of G,,.

It is well known that every abelian group is isomorphic to a quotient of a
free abelian group. The following is the dual property:

Proposition 4.3. Any group is isomorphic to a subgroup of a divisible group.

PrOOF. There are various ways to prove this. One way is to express the given
group G as the quotient group of a free group F:
G ~ F/R.

Obviously F can be considered as a subgroup of a divisible group D; for if
{b;} is a basis for F, then we take D as a rational vector space on the same
basis. Then G is isomorphic to a subgroup of the divisible group D/R.

QE.D.

We will now list the basic properties of Ext(A, B). For any abelian groups
A and B, Ext(A, B) is also an abelian group. If f: A’ > 4 and g: B— B’ are
homomorphisms, then

Ext(f, g): Ext(A, B) > Ext(A4, B)

is a homomorphism with the usual functorial properties.
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There are two ways to define or construct Ext(A, B):

(a) By means of a free or projective resolution of A. Choose a short exact
sequence 0 — F, 4 Fy 5 A — 0 with F, (and hence F,) free abelian. Then the
following sequence is exact:

0 « Ext(4, B) — Hom(F,, B) =% YHom(F,, B) ©2“YHom(4, B) « 0.

In other words, Ext(4, B) is the cokernel of the homomorphism Hom(d, 1).

(b) By means of an injective resolution of B. Choose a short exact sequence
0-B5D, 4 D, - 0 with D, (and hence D,) divisible. (By Proposition 4.3,
such a sequence always exists.) Then the followmg sequence is exact:

0 - Hom(4, B)2*™%9 Hom(4, Dy) ™9 Hom(4, D,) — Ext(4, B) - 0.

Thus, Ext(4, B) is the cokernel of the homomorphism Hom(l, d).

Naturally, one must prove that the group Ext(A, B) is independent of the
projective resolution in (a) and of the injective resolution in (b). Also, it must
be proved that the two definitions give rise to the same group. For information
on these matters, the reader is referred to books on homological algebra (see
the bibliography for Chapter X).

The definition of the induced homomorphism Ext(f, g)is left to the reader.

From these definitions, the following two statements are obvious con-
sequences;

(1) If A is a free abelian group, then Ext(A4, B) = 0 for any group B.
(2) If B is a divisible group, then Ext(A, B) = O for any group A.

Using the definition (a) above, one readily shows that:

(3) Ext(Z,, B) ~ B/nB,
Hom(Z,, B) ~ {x € B|nx = 0}.

By means of (1) and (3), the structure of Ext(4, B) can be determined in
case A is a finitely generated abelian group.

We conclude this summary of the principal properties of the functor Ext
by mentioning the following two exact sequences. Let

054 LY B LY C-0
be a short exact sequence of abelian groups, and let G be an arbitrary abelian

group. Then the following two sequences are exact:

0 — Hom(C, 6) 22%% Hom(B, G) 2™ Hom(4, G) (1241
1

— Ext(C, 6) 28 pxy(B, G) 2N Ext(4, G) —— 0,

0 — Hom(G, 4) 22228 Hom(G, B) 2% Hom(G, C) 1242
12.4.2)

—— Ext(G, A) 2B Bxy(G, B) 22N Ext(G, ) —— 0.

In these exact sequences, the connecting homomorphisms Hom(A, G) —»
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Ext(C, G) and Hom(G, C) — Ext(G, A4) have all the naturality properties that
one might expect.

With these preliminaries out of the way, we can now state the main result
in this area:

Theorem 4.4. (Universal coefficient theorem for cohomology). Let K be a chain
complex of free abelian groups, and let G be an arbitrary abelian group. Then
there exists a split exact sequence

0 - Ext(H,_, (K), G) > H'(Hom(K, G)) 5 Hom(H,(K), G) — 0.

The homomorphism f is natural, with respect to coefficient homomorphisms and
chain maps. The splitting is natural with respect to coefficient homomorphisms
but not with respect to chain maps.

ProoF. The proof we present is dual to that given in §X.6. For the reader who
has some feeling for this duality, it is a purely mechanical exercise to transpose
the previous proof to the present one.

First, we need a lemma, which is the dual of Lemma X.6.1.

Lemma 4.5. If G is a divisible group, then the homomorphism
o: H"(Hom(K, G)) » Hom(H,(K), G)

is an isomorphism for any chain complex K.

The proof of this lemma is a nice exercise, involving the various definitions
and the fact that divisible groups are injective,
Now we will prove the theorem. Let

05G5Dy 5D, >0

be a short exact sequence with Dy and D, divisible [see Property (b)]. Consider
the corresponding long exact sequence in cohomology, and the following
commutative diagram:

Bo 3 d o
-+ — H"(Hom(K,G)) — H"(Hom(K,D,)) —t, H"(Hom(K,D,)) —ﬂ—*

0 — Hom(H(K),G) m Hom(H (K),D,) m Hom(H ,(K),D,).
The bottom lime is exact by the standard properties of the functor Hom, and
the diagram is commutative by the naturality properties of a. Also, ag and o,
are isomorphisms since Dy and D, are divisible groups. From this diagram

one deduces that o is an epimorphism, and kernel « = kernel ¢,.
Next, one considers the following similar diagram:
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d o €
L I H*" Y(Hom(K,D,)) —2*— H" Y(Hom(K,D,)) —— HYHom(K,G)) —

l% l n

-+~ Hom(H,_ (K),Do) Hom(H,-,(K),D,) — Exu(H,_(K)G) — 0.

—_—
Hom(1.d)

Once again the bottom line is exact, and the diagram is commutative; as
before, oy and «, are isomorphisms. One now proves that there is a unique
homomorphism

B: Ext(H,_,(K), G) » H"(Hom(K, G))

which makes the square labeled 1 commutative. Then one proves that §is a
monomorphism, and image f = image f,. Since image f, = kernel ¢, it
follows that image § = kernel a.

It remains to prove that the short exact sequence of the theorem splits. This
can be done by the method used in the proof of Theorem X.6.2, modified to
cover the case at hand. The details are left to the reader.

Corollary 4.6. For any pair (X, A) and any abelian group G there exists a split
short exact sequence:

0 - Ext(H, (X, ), G) > H"(X, 4; G) > Hom(H,(X, 4), G) - 0.

The homomorphisms a and [ are natural with respect to homomorphisms induced
by continuous maps of pairs and coefficient homomorphisms. The splitting can
be chosen to be natural with respect to coefficient homomophisms, but not with
respect to homomorphisms induced by continuous maps.

EXERCISES
4.1. Let (X, A) be a pair such that H,(X, A) is a finitely generated abelian group for
all n. Prove that H"(X, A; Z) is also finitely generated for all n, and that
rank(H"(X, A; Z)) = rank(H,(X, A)),
Torsion(H"(X, A; Z)) ~ Torsion(H,_(X, A)).

4.2, Prove that a: H'(X, A; G) » Hom(H,(X, A4), G) is an isomorphism forn =0, 1
(for any pair (X, A) and any group G).

43, For any pair (X, A), prove that HY(X, A; Z) is a torsion-free abelian group.

4.4. Let X be a finite regular graph. Express the structure of the cohomology groups
H"(X, G) in terms of the Euler characteristic and number of components of X.

4.5, Describe the structure of the cohomology groups H%(S"; G) and HYE", S"°!; G)
for all ¢, n, and G.

4.6. Let X be an n-dimensional pseudomanifold as defined in §IX.8. Determine the
structure of H"(X; G).
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4.7.

4.8

4.9.

4.10.

4.11.

§5.
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Let X be a compact connected 2-dimensional manifold. Determine the structure
of H'(X; G) for all n and G (use the classification theorem for such manifolds to
express your final result).

Let K = {K"} be a finite dimensional CW-complex on the space X. Prove that
there is an isomophism H"(X; G) ~ H*(Hom(C(K), G) for all n and G (here
C(K) = {H, (K% K?7')} is a chain complex described in §X.7. Prove also that this
isomorphism has the following naturality property: Let L be a CW-complex on
Yand f: X - Y acontinuous map which is cellular, i.e., f(K") = L"forall n. Then
there is an induced chain map f, : C(K) - C(L), and the following diagram
is commutative:

H"(X; G) ~ H"(Hom(C(K), G))

[ A [ Hom(f,, 1*

H"(Y: G) ~ H"(Hom(C(L), G))

Consider continuous maps f: P2 — S?, where P? denotes the real projective
plane. By considering the induced homomorphism f*: H3(S?; Z) - HX(P?; Z),
show that there are at least two homotopy classes of such maps (cf. the example
in §X.7. Use the results of Exercise 4.8).

Show that the homomorphism f*:H"(Y, B; G)— H"(X, A; G) induced by a
continuous map f:(X, A) > (Y, B) is not determined by knowledge of the
homomorphisms on homology

Ju: Hy(X, A)~ Hy(Y, B)
for all q.

Prove that the splitting of the short exact sequence of Corollary 4.6 cannot be
chosen to be natural with respect to homomorphisms induced by continuous
maps.

Geometric Interpretation of Cochains,
Cocycles, etc.

In homology theory it is not difficult to have some geometric intuition about
chains, cycles, bounding cycles, etc. This geometric intuition is often of as-
sistance in leading one to the correct solution of problems. Unfortunately,
these things are more complicated for cohomology theory.

In order to understand the situation better, let us first reconsider homology
theory. Let K = {K"} be a CW-complex on the space X, and let u € C,(K, G);
then u has a unique expression of the form

u=7 g,
1

where g; € G and the ¢ are oriented n-cells of K. It is natural to associate with
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the chain u the subset

|u| = U E.'",
i

where the union is over all cells ¢ such that the corresponding coefficient
g; # 0. Ifu = O, we define |u| = . The set |u| is called the support of u. It has
the following properties:

(a) |u| is a compact subset of X.
(b) |u| = & if and only ifu = 0.
(©) luto|<=lulvlo]

(d) |du| = |ul.

Of course, the chain u is not determined by the set |u| = X (except in the case
where G = Z,), but the structure of the set |u| is a vital piece of information
about u. One thinks of u as determined by |u| and the coefficients g; which are
assigned to various oriented subsets of |u].

There is also a natural way to define the support of a singular chain u in
an arbitrary topological space X. Let u € C,(X, G);ifu = 0, we define |u| = (.
If u # 0, then u has a unique expression as a finite linear combination of
nondegenerate singular n-cubes with nonzero coefficients,

u=zgi1;'5 giEG5

and it is natural to define

lul = ) TA").

It is clear that properties (a)—(d) continue to hold. However, it is also clear
that in this situation |u| does not give us much information about u as it did
in the previous situation. The reason is that two quite different nondegenerate
n-cubes may have the same image set, i.e., we may have n-cubes

T, T,: "> X

such that T;(I") = T,(I"), yet T # Ts.

We will now try to define the support of a cochain so that properties (a)—(d)
will hold. First, it is convenient to formulate the definition of a cochain in a
slightly different, but equivalent, way. This alternate definition is based on the
following principle: Let F be a free abelian group with basis B — F, and let G
be an arbitrary abelian group. Then there is a natural 1-1 correspondence
between homomorphisms u:F — G and arbitrary functions f: B — G. This
correspondence is established by assigning to each such homomorphism u the
function f = u|B, the restriction of u to B, and to each such function f its
unique linear extension u.

Let us apply this principle to the n-cochains of a CW-complex K on the
space X. Let u e C"(K, G) = Hom(C,(K), G). The chain group C,(K) has as
natural basis the set of n-cells {e]'}, where a definite orientation has been
chosen for each such cell. Thus, we can think of u as a function which assigns
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to each such oriented n-cell ¢ an element u(e]') € G. In view of the previous
definition for support of a chain, it seems natural to define || to be the union
of all closed n-cells &, such that u(e!') # 0. However, experience has shown
that this definition definitely does not work! The main trouble is that the
analogue of condition (d) above does not hold.

We will indicate a way to correct this deficiency for the case of cochains in
a regular CW-complex. Recall that given a regular CW-complex, for each cell
ef' there exists a characteristic map

Sii (BN, S~ (e, &)

which is a homeomorphism. Of course, if n > 0, there will exist for each cell
¢! infinitely many such maps which are homeomorphisms, and there is no
reason to prefer one over another. We will assume that for each e/ one such
characteristic map has been chosen and call it the preferred characteristic map.
By means of this preferred characteristic map, geometric concepts which are
valid for E" can be carried over to €. In particular, we wish to carry over the
following two concepts from E" to e;":

(1) The center of the cell E" is the origin, (0,0, ..., 0). By definition, the
center of e]' is the image of the center of E" under the preferred characteristic
map.

(2) If A is any subset of S"™!, the cone over A, denoted by I'(A), is the
following subset of E™:

I'A)={t-alac Aand 0 <t <1},

i.e., ['(4) is the union of all straight line segments joining the origin to points
a € A. Analogously, if A is any subset of ¢, then I'(4) is a subset of &', defined
using the preferred characteristic map for the cell ¢f'. Note that if A is a closed
set, then so is I'(4). More generally, if A is a subset of the (n — 1)-skeleton
K"™!, then we define I'(A) to be the union of A and the sets I'(4 N &) for all
n-cells ef'. I'(A) is a subset of K", and if A is closed, so is I'(4) because of the
weak topology. We can iterate this procedure, defining

I'*(A) = T(T'(4)),
I"(4) =TT '(4)),

°(A) = Q "(A).

We will mainly be interested in this operation for the case of a finite-
dimensional CW-complex. Then I'°(4) is attained after a finite number of

iterations.

Now let u € C"(K, G); consider u as a function defined on oriented n-cells
e with values in G. Define A to the set of all center points of all cells ;" such
that u(e) # 0. Then A is a closed, discrete subset of X; however, it is not
compact, in general. We define

lu] = T°(4).
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If K is finite dimensional, it is clear that |u| is a closed subset of X. One can
also verify the analogue of conditions (b), (¢), and (d):

lu| = & if and only if u = 0,
lu o] = [ulu v,
[0()| = |ul.

Although rather complicated, this seems to be the proper definition. The fact
that |u| is noncompact in general is not a defect in our definition, it is an
inherent property of the cohomology theory we are using. It is possible to
define a cohomology theory based on cochains with “compact supports,” but
we will not do this for the present.

Note that if K is a CW-complex of dimension N, and u € C*¥(K, G), then
|u| is a set of dimension <N — k. Thus, as k increases, the dimension of |u|
decreases. This is just the opposite of what happens with chains.

There is also a definition of support of singular cochains in a general space
which we will now consider, although it is less satisfactory than that we have
just given.

If ue C"(X, G) = Hom(C,(X), G), then u is a homomorphism of C,(X) =
0.(X)/D,(X) into G. Hence, we can regard u as a function which is defined on
singular n-cubes with values in G and vanishes on all degenerate singular
n-cubes. Rather than defining |u|, it will be more convenient to define the
complementary set: A point x does not belong to |u| if and only if there is an
open neighborhood U of x such that u(T) = O for all singular n-cubes T: I" —
U. From this definition it is clear that the complementary set is open; hence,
|ul is closed. We also have the following properties:

u=0 implies |u| = &,
lu £ v = ulUlol,
[6u| < |ul.
Unfortunately, we can have nonzero cochains u such that |u| = ¢. This defect
can be remedied by factoring out all such cochains (i.e., passing to a quotient
group). By using Theorem VII1.6.4 it can be proved that this process does not

change the resulting cohomology theory. However, we will have no need to
pursue this matter further, (cf. Massey, [1, Lemma 8.16, p. 260].

§6. Proof of the Excision Property;
the Mayer—Vietoris Sequence

Let (X, A) be a pair and let W be a subset of 4. We than have the following
split exact sequence of chain complexes (cf. §X.6):

C(X, A)

-0
CX-W,A-W)

05 CX — W, A — W) 3 C(X, A)—
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Note that these are all chain complexes of free abelian groups. By passing to
the long exact homology sequence, we see that i, : H(X — W, A — W)—
H,(X, A) is an isomorphism for all ¢ if and only if H(C(X, A)/C(X — W,
A — W)) =0for all q.

We may also apply the functor Hom( , G) to the above split exact sequence
of chain complexes, obtaining the following exact sequence:

0 C*X — W, A — W; G) & C*(X, 4; G)

C(X, A)
<—Hom<C(X_ WA W),G><—0.

Passing to cohomology, we see that i* : HY(X, A; G)—» HY(X —~ W, A — W; G)
is an isomorphism for all g if and only if H{(Hom(C(X, 4)/C(X — W, A — W),
G)) = O for all g. Making use of Theorem 4.4, one concludes that the excision
property for integral homology implies a corresponding property for coho-
mology: If W is a subset of A suchthat W < interior A, theni* : HY(X, A; G) -
HY(X — W, A — W; G) is an isomorphism for all q.

Let % be an open covering of X, or more generally, a family of sets whose
interiors cover X. It is known that the inclusion

6:C(X,A, %) - C(X, A)

induces an isomorphism on homology (Theorem VII.6.4). By the same type
of argument as that just given, it can be shown that the induced homomor-
phism on cochain complexes

Hom(o, 1): C*(X, 4; G)—» C*(X, A, %, G)

also induces an isomorphims on passage to cohomology. This fact can be used
to prove the existence of the Mayer—Vietoris sequence for cohomology as
follows. Let A and B be subsets of X such that

X = (interior A ) v (interior B).

Then we may take # = {A, B}, and o : C(X, %) - C(X) will have the prop-
erties described above. In §VII.5 we introduced the commutative diagram of
chain complexes

W A CA)

C(AnB) CX, %)

A

and the following short exact sequence
0-C(ANnB)S C)® CB) - C(X, %) >0

in order to prove the Mayer—Vietoris sequence for homology theory. Recall
that ® and ‘P are defined by
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D(x) =(gx,jux), WU, v)=ky(u) — L)

Also, C(X, %) is a chain complex of free abelian groups, hence the short exact
sequence splits. Therefore, we may apply the functor Hom( , G) to obtain the
following short exact sequence of cochain complexes:

0~ C*(ANB;G)— C*A;G)D C*(B; G) « C*(X, U; G) « 0.
It is readily verified that homomorphisms Hom(®, 1) and Hom('V, 1) have the
following expression in terms of i*, j*, k*, and I*:
Hom(¥, 1)(x) = (k*(x), —I*(x)),
Hom(®, 1)(u, v) = i*u + j*v.
Therefore, we may pass to the corresponding long exact sequence of co-

homology groups and make use of the isomorphism H4(X, %; G) ~ HY(X; G)
to obtain the Mayer—Vietoris sequence in cohomology:

L H(X, G) & HY(A A B, G) & HY(4: G) @ HY(B; G) L HI(X; Gy & -+
Here
Y(x) = (k*(x), — I*(x)),
o(u, v) = i*(u) + j*(v).

It should be remarked that there are other ways of deriving the Mayer—
Vietoris sequence for cohomology.

EXERCISES

6.1, Let K = {K,, d,} be a chain complex such that each K, is a vector over a
commutative field F, and each 4, is linear over F. Define the cochain complex
Homg(K, V), where V is a vector space over F, and the natural homomorphism

a: H{(Homg(K, V)) - Hom (HYK), V).
Prove that « is an isomorphism.

6.2. Let {X,, X,} be an excisive couple in the space X, as defined in §IX.6. Prove that
the inclusion map i: {X,, X; n X;) —» (X, u X, X;) induces an isomorphism

i*: HY(X, U X,, X,; G) > HY(X,, X, n X,; G)

for all g and all groups G.

We will conclude this chapter by pointing out one basic property of
homology theory which does not have an obvious analog for cohomology.
The property we have in mind was stated earlier as Proposition VIIL6.1. This
proposition says, in essence, that for any pair (X, A4), the homology group
H,(X, A) is the direct limit of the groups H,(C, D), where (C, D) ranges over
all compact pairs contained in (X, A). It is tempting to conjecture that the
cohomology group H"(X, A; G) is the inverse limit of the groups H"(C, D; G).
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However, counterexamples can be given to show that this is false. A special
case of this question comes up in §3 of Appendix A.

NOTES

Surprisingly, cohomology theory was not developed until the middle 1930s
about 40 years after the origin of homology theory by Poincaré. Although
there were hints of cohomology theory earlier, the subject suddenly appeared
on the scene in the years 1935-38. It is usual to ascribe its origin to four
topologists: the Americans James W. Alexander and Hassler Whitney, the
Czech Eduard Cech, and the Russian Andrei N. Kolmogoroff. References to
the original papers of these four may be found in the extensive bibliography
at the end of the American Mathematical Society Colloquium, Vol. XXVII
(1942) by S. Lefschetz entitled Algebraic Topology.

Soon after the introduction of cohomology theory it became apparent that
in many situations it was more useful than homology theory. In spite of this,
many topologists resisted using it, preferring more complicated ad hoc argu-
ments with homology theory. Part of this resistance may perhaps be ascribed
to the normal resistance to any new theory. But a more fundamantal reason
was the greater difficulty in developing a satisfactory geometric intuition for
cohomology theory, as discussed in §5 of this chapter.
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CHAPTER XIII

Products in Homology and Cohomology

§1. Introduction

The most important product is undoubtedly the so-called cup product: It
assigns to any elements u € H?(X; G,) and v € HYX; G,) an element u v e
H?*(X; G, ® G,). This product is bilinear (or distributive) and is natural
with respect to homomorphisms induced by continuous maps. It is an addi-
tional element of structure on the cohomology groups that often allows one
to distinguish between spaces of different homotopy types, even though they
have isomorphic homology and cohomology groups. This additional structure
also imposes restrictions on the possible homomorphisms which can be
induced by continuous maps.

Another product we shall consider is called the cap product. It assigns to ele-
mentsu € H?(X; G,)andv e H(X; G,)anelementunve H,_,(X; G, ® G,).
It is also bilinear and natural. Although the cap product is not as important
as the cup product, it is needed for the statement and proof of the Poincaré
duality theorem in the next chapter.

We will also consider two other products: A cross product which is closely
related to the cup product, and a slant product, which has strong connections
with the cap product. The main reasons for considering these two additional
products is for the light they throw on the cup and cap product.

In order to make effective use of cup products, it is necessary to have ways
to computing them for various spaces. Unfortunately, this is a rather difficult
topic; any systematic discussion of it would be rather lengthy. In Chapter XV
we will use the Poincaré duality theorem to determine cup products in
projective spaces; then we can use these products to prove some interesting
theorems (Borsuk-Ulam theorem, nontriviality of the Hopf maps, etc.). In the
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present chapter we will mainly be concerned with a systematic discussion of
the basic properties of these various products.

Because this chapter is rather long and does not have many examples, it
may be best to skim through it on a first reading. Then the reader can return
to it later to study more carefully the various details as they are needed.

§2. The Inner Product

In §X11.4 we defined the so-called inner product, and used it to define a natural
homomorphism «: H'(Hom(K, G)) - Hom(H,(K), G). The various naturality
properties of the homomorphism « could also be interpreted as naturality
properties of the inner product.

It will be convenient to generalize the definition of the inner product slightly
for later use in this chapter. Let G, and G, be arbitary abelian groups, and
let K be a chain complex. Then for any elements u € H{(Hom(K, G,)) and
ve H(K ® G,), the inner product {u, x) € G; ® G, is defined as follows.
Choose a representative cocycle u’ € Hom(K,, G,) for u, and a representative
cycle

k
=Y x®g;, xeK,gi€G,,
=1
for x. Then
k
x> =Y w(x)®geG @Gy

This more general version of the inner product has essentially the same
properties as the original version.

§3. An Overall View of the Various Products

To define products, one needs to make use of the natural chain homotopy
equivalences of Chapter XI,

£:C(X)® C(Y) - C(X x Y),
&:C(X x Y)= C(X) ® C(Y),

especially the later. We will continue to use the above notation for these chain
maps, as in Chapter XI.

First, we introduce the cross product. Recall that if f:G— G and g:
H — H' are homomorphisms of abelian groups, then f ® g:G® H - G’ @ H’
denotes the tensor product of the two homomorphisms. Using this notation,
if ue C’(X,G,)=Hom(C,(X),G,) and ve CUY, G,) = Hom(C,(Y), G,),
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then u ® v € Hom(C,(X) ® C,(Y), G, ® G,). We may consider u ® v as an
element of Hom((C(X) ® C(Y)),+, G, ® G,) if we understand that u ® v is
the zero homomorphism on C;(X) ® C,(Y), except when i = p and j = g. Let

¢* = Hom(, 1): Hom(C(X) ® C(Y), G, ® G,)
- Hom(C(X x Y),G, ® G,)
=C*X xY;G,®G,).
Then we define u x ve C*P™(X x Y; G, ® G,) by
uxv=E:(*u®v).

It is readily verified that

Su x v) = (6u) x v + (—1)’u x dv.
From this coboundary formula, the following facts follow:

(1) If u and v are cocycles, then sois u x v.

(2) Ifu, and u, are cocycles which are cohomologous, then u; x vand u, x v
are cohomologous for any cocycle v.

(3) Similarly, if v, and v, are cohomologous cocycles, then u x v, and u x v,
are cohomologous for any cocycle u.

From these three statements it is clear that we can pass to cohomology
classes, and thus define a cross product which assigns to any cohomology class
x € H*(X; G,) and y € HY(Y; G,) a cohomology class x x ye H**4(X x Y;
G, ® G,). The two most important properties of this cross product are the
following:

(1) Bilinearity. (x; + x;) X y=x; X y+x, x y and x x (y; +y;) =x x
Vi +Xx Xy,

(2) Naturality. If f:X’> X and g:Y' - Y are continuous maps, x €
H?(X; G,) and y € H(Y; G,), then

(f*x) x (g*y) = (f x g)*(x x y).

Later we will generalize the definition of the cross product to relative co-
homology groups, and prove various additional properties.

Next, we will define the cup product in terms of the cross product. For any
space X, let dy or d for short, denote the diagonal map X - X x X
defined by d(x) = (x, x). If ue H?(X, G,) and v € HY(X, G,), define uvve
H**(X, G, ® G,) by

uvv=d*®u xv)
We see immediately that the cup product has the following two basic
properties:
(1) Bilinearity. (u; + u;)vv=u,vv+u,vvand uu(v; +v,)=uvv, +
uv,.
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(2) Naturality. If f: X' - X is a continuous map, ue H?(X, G,) and ve
HY(X, G,), then
fruo)=(*u) o (f*)

We have just defined the cup product in terms of the cross product, using
the diagonal map d. Conversely, it is possible to derive the cross product from
the cup product. To clarify this point, let us assume that the cup product is
given, which is bilinear and natural as just described. Define a new cross
product, u # v by the formula

u#v=(ptu v (ptv)

for any ue H*(X, G,) and ve HY Y, G,). Here p;: X x Y > X and p,:
X x Y — Y are the projections. Then it follows easily that this new cross
product is also bilinear and natural, in the same sense as the original cross
product. If we use this new cross product to define a new cup product by the
formula

uJov=d*u#v

for any u € H*(X, G,) and v € H¥(X, G,), then we find that u W' v = u L v, ie,
the new cup product is the same as the old. This may be proved by the
following computation:

uJ'v=d*u #v) =d*((ptu) v (piv))
= (d*ptu) v (d*p3v)
= (pd)*uv (pyd)*v=uvw.
Similarly, we find that
u# v =(pTu)v(p3v)

= d¥«y((pTu) x (pIv))

= dfxy(p1 X p2)*(u x v)

=[Py X P2)dxxy]*(u X v) =u xv

for any u € H?(X, G,) and v € H(Y, G,).
We can reformulate what we have just proved as follows: the formulas

uvv=d*(u xv),
ux v=(ptuo(p3v)

establish a 1-1 correspondence between cross products and cup products
(which are required to be bilinear and natural).

From this point of view, the theory of cup products and the theory of cross
products are logically equivalent. However, cup products are more useful,
whereas cross products have a more direct and simpler definition. Later we
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will consider other properties of cross and cup products, such as associativity,
commutativity, and existence of a unit. We will also extend the definitions to
relative cohomology groups, and consider their behavior under the coboundary
operator of the exact cohomology sequence of a pair (X, A). Naturally, the
exposition of the properties of cup products will parallel that of cross products.

Remark on Terminology. Cross products are sometimes called exterior co-
homology products and cup products are then called interior cohomology
products.

Next, we will discuss slant products, and cap products, which are derived
from slant products by means of the diagonal map.
First we define a homomorphism

Hom(C,(Y), G)) @ [C(X)® C(Y)],® G, = (-, (X)® G, ® G,
denoted by ¢ ® u — ¢\\u, as follows:
P\a®b®g=(-1""a®eb)®yg

forany ¢ e Hom(C,(Y), G,),a € C(X),b € C(Y)and g € G,. Here the notation
|| means the degree of ¢, |a| means the degree of a, etc, and we make the
convention that ¢(b) = O unless b € C,(Y). We can verify the formula

AP\ ®b®g) = Bo\\a®b® g+ (~1)p\\0@a® b ®g)
provided we follow the convention that
(09)(b) = (— 1% (0b).

We next define a homomorphism

Hom(C,(Y), G|)® C(X x Y, G,) —» C,_ (X, G; ® G,),
denoted by 4 ® v — u\v, by using the Eilenberg—Zilber chain map ¢.

u\v = U\\g(v).
Once again we have the formula
Au\v) = Bu\v + (— 1)"u\o(v).
Hence we can pass to homology classes and get a homomorphism
HP(Y, G,) ® Hy(X X Y. G,) > Hy_ (X, G, ® Gy),

denoted by u ® v — u\v, which is called the slant product. In addition to the
obvious bilinearity of the slant product, it satisfies the following naturality
condition: Let f: X —» X" and g: Y - Y’ be continuous maps. Then for any
ue H(Y',G|)and v e H (X x Y, G,) we have

Fu((@*u)\v) = u\(f x g),0.
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This naturality relation can be indicated by the following diagram:

HY(Y) ® Hq(Xx Y) — q_p(X)
L}‘ (f X 9y S

H(Y)® HJX xY) — H,_,(X")
although this is not a commutative diagram in the conventional sense.
Remark: One can reformulate the slant product so as to obtain commutative
diagrams in the usual sense. Recall that there is a natural adjoint associativity

isomorphism
Hom(B ® A, C) * Hom(A4, Hom(B, C))

for any abelian groups A4, B, and C. Thus, we can consider the slant product
as a homomorphism

Hy (X x Y) - Hom(H?(Y), H,_,(X)).

Then the naturality condition gives rise to the following diagram, which is
commutative in the usual sense:

H (X xY) —— Hom(H?(Y), H,_,(X))
(S x g Hom(f*, g,)

H X' x Y) —— Hom(H*(Y'), H,_,(X"))

However, most people find this formulation of the slant product rather awk-
ward to work with.
We can now define the cap product. It is a homomorphism

H*(X,G)® Hy(X, G;) > H,_,(X,G, ®G,),
denoted by u ® v = u N v, and defined by
unv=u\d, ()

where d: X - X x X is the diagonal map. It is bilinear and natural in the
following sense. Let f: X — X’ be a continuous map. Then for any u € H?(X"),
v € Hy(X) we have

Hl(f*wov)y=un f,o.
The corresponding diagram is the following:
HP(X) ® H(X) —— H,_,(X)

HP(X') @ H(X') —— H,_,(X’)
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Once again, this could be made into a conventional commutative diagram by
using the Hom functor rather than ®.

We have just shown how to derive the cap product from the slant product.
Conversely, the slant product can be derived from the cap product, as follows.
For any u e H?(Y, G,;)and v e H(X x Y, G,), define

u\v = p,,((p3u) N v),

where p, and p, are the projections of X x Y on the first and second factors,
respectively. By the same methods used in the discussion of cross and cup
products, one can prove that our formulas establish a 1-1 correspondence
between slant and cap products (which are required to be natural and to be
bilinear). Thus, the theories of these two different kinds of products should be
logically equivalent. Actually, cap products will be needed in our discussion
of the Poincaré duality theorem for manifolds; however, the definition of slant
products is a bit simpler.

Remark. We have based our discussion of the cup and can product on the use
of the Eilenberg—Zilber natural chain homotopy equivalence

£:C(X x Y)> C(X)® C(Y)

together with the diagonal map d: X - X ® X. An alternative procedure
would be to use natural diagonal maps A¥ : C(X) - C(X) ® C(X)as described
in Exercise X1.5.2. For the connection between £ and A, see Exercise X1.5.3.
The choice of which method to use is largely a matter of taste. However, there
is some advantage to having both cross and cup products, and the relationship
between them.

§4. Extension of the Definition of the Various
Products to Relative Homology
and Cohomology Groups

The main difficulty in extending cross and slant products to relative co-
homology and homology groups is the problem of extending the Eilenberg—
Zilber chain homotopy equivalence ¢ to relative groups; this problem was
already encountered in the discussion in §XI.6 of the homology groups of
product spaces. The main result of that discussion may be summarized as
follows: Let (X, A) and (Y, B) be pairs. Then the chain map & induces a chain
homotopy equivalence

CX) o €Y ¢ C(X x Y)
C(A) " CB) CXxB+CAxY)

If we assume that {X x B, A x Y} is an excisive couple in X x Y, then the
homomorphism
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‘ C(X x Y) C(X x Y)
"CX xB) +C(AxY) CXxBudxY)

induces isomorphisms on homology and cohomology with any coefficients.

In view of this, when we want to define cross or slant products in the
homology and/or cohomology of pairs (X, A) and (Y, B), we will always
assume that {X x B, 4 x Y} is an excisive couple in X x Y. With this added
assumption, our previous definitions generalize very easily. The details are as
follows.

Cross Product. If ue CP(X, A; G;) = Hom(C,(X)/C,(A), G;) and ve
Ci(Y, B; G,) = Hom(C,(Y)/C,(B), G,), then

C(X) _ C(Y)
u® v e Hom ((m ® ﬁ)p+q, Gl ® Gz)

= CX)® C(Y)
- Hom<(C(X) ® C(B) + C(A® C(Y))p+q’ G, ® Gz)

and

# CX xY)
J (“®”)EH°"‘((C(X X B) + C(A x Y))W’G‘ ®GZ)‘

Passing to cohomology groups, and applying the isomorphism (k*)~!, we
obtain the cross product in cohomology, which is a homomorphism

HP(X, A; G,) ® HY(Y, B; G,) > HP*(X x Y; A x YUX x B; G, ® Gy).

The naturality condition now reads as follows: Let f: (X, A) > (X’, A’) and
g:(Y, By = (Y, B’) be continuous maps of pairs. Then the following diagram
is commutative:

H?(X', A)® HY(Y', B) —— H**"Y{X' x Y, A’ x Y'UX' x B)
/e (f x 9"
H?(X, A)® HYY,B) —— H’*X x Y,Ax YUuX x B)
In symbols,

(f*u) x (g*v) = (f x g)*(u x v)

foranyu e H?(X', A’; G,)and v € HY(Y’, B'; G,). It is assumed, of course, that
{A x Y, X x B}and {4’ x Y’, X’ x B'} are excisive couples.

Slant Product. First, one defines the homomorphism

G(Y) c(X) _C(Y) _,M
Hom(C”(B)’ Gl)®|:—C(A) ®ﬁ:|q®62 C,_,(A) ® G, ® G,,

denoted by ¢ ® u = ¢\\u, by the formula
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P\a®b®g=(-1""a®@eb)®g
exactly as in §3. Then one defines a homomorphism

Cp(Y) Cq(X x Y) .
Hom(Cp(B) ’ Gl) ® Cq(A x Y)+ Cq(X x B) ® G, > Cq-p(X, A, G, ® G,),

denoted by ¢ ® u — ¢\, by the formula
P\u= @\\C(u).

Passing to homology and cohomology, and using the isomorphism (k,)™?, we
obtain the slant product, a homomorphism
H?(Y,B;G))®H(X x Y;Ax YUX x B;G,)>H,_,(X,4,G,®G,)
which is denoted by u ® v — u\v. The naturality condition is expressed by the
following diagram:
H(Y,BY@H (X' x Y, A xY uX x B) — H,_,(X', A)

g* { (f % g), S

HP(Y,B) ® H((X x Y, AxYuXxB) —— H_yX, A
Here f: (X, A) = (X', A') and g: (Y, B) = (Y’, B’) are continuous maps of pairs,
and it is assumed that {4 x Y, X x B} and {4’ x Y’, X’ x B’} are excisive
couples.
We will now take up the problem of defining the cup and cap product for
relative cohomology and homology groups. Here the situation is slightly
different. For the cup product, the object is to define a homomorphism

H?(X, A, G,)® HYX, B; G,) —— H"*X,AUB; G, ®G,)

under a reasonable set of assumptions; and for the cap product, one wishes
to define a homomorphism

HP(X, A;G))® H(X, AUB; G,) » H,_,(X, B; G, ® G,)

under minimal hypotheses. The cup product will be defined from the cross
product, and the cap product will be defined from the slant product by use of
the diagonal mapd: X —» X x X.

Cup Products. Let us consider a triad (X; 4, B) consisting of a topological
space X and arbitrary subspaces 4 and B. We have the following two chain
maps, induced by obvious inclusions:

) C(X x X) C(X x X)

CA xX)+C(XxB)_’C(A x XuX x By’
™ X
"C(A)+C(B) C(AuBy

If we attempt to define the cup product using the cross product and the
diagonal map, we are led to the following commutative diagram:
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H”(X,A)@Hq(X,B)
J' C(X x X) dy C(X) ))
+ + G
A q(H"m(cm xX)+CXxB ®G’)) H q(H"m(CM) +cmy S0

L. L.

d‘
H %X x X, X x BUAXx X;G,®G,) ————— H"*%X, AU B; G, ®G,).

Here d} and d¥ are induced by the diagonal mapd: X - X x X. From this
diagram it is clear that to define cup products, we may either assume that
{A x X, X x B} is an excisive couple, in which case k* will be an isomorphism,
or we may assume that {4, B} is an excisive couple in X, in which case [* will
be an isomorphism. It is preferable and customary to make the latter assump-
tion for a couple of reasons. First of all in the important special case 4 = B,
{A, B} is always an excisive couple, whereas {4 x X, X x B} need not be
excisive (as far as is known). Second, for some of our later results about cup
products, we will need to assume that {4, B} is an excisive couple in X for
other reasons. Thus, we may as well assume it is excisive at the beginning.
Therefore, in order to define cup products

H?(X, A)® HY(X, B) —<— H"*Y(X, AU B)
we will always assume that {A, B} is an excisive couple in X. This has the
following slight disadvantage: In order to have the relation
uvv=d*u xv)

hold true, it is necessary to assume that both {4, B} and {X x B, A x X} are
excisive couples.

Cap Product. The discussion is analogous to that just given for the cup
product. Let 4 and B be arbitrary subsets of X; then we have the following
commutative diagram:

C(X x X) 184,
C(X x BU A x X)®G’)

- -

C(X x X) ®G)<%H,,(XAG)®H
CXxB) +CAx X)_ ?

cix
H"(X,4;G, ®Hq( )

H”(X,A;Gl)®H,,( CiA

® Gz)

HP(X,A;G,)@H,,( a(m

slant

product cap product

-AX,B:G,®G))

This diagram is entirely analogous to the preceding one, and the symbols for
the various maps have the same meaning. In order to define the cap product,
we will assume that { A, B} is an excisive couple in X. Then the cap product is
a homomorphism
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H?(X, 4; G;) ® Hy(X, AU B; G,) 5 H,_,(X, B; G, ® G,)

which is the composition of (1 ® [,)!, 1 ® d, ,, and the slant product in the
above diagram. If in addition we assume that {X x B, A x X} is an excisive
couple in X x X, then the following relation holds between the slant and cap
products:

uNnv=u\(d,,0)

§5. Associativity, Commutativity, and Existence
of a Unit for the Various Products

In order to discuss these questions, it is necessary to discuss the associativity,
commutativity, and existence of a unit for the Eilenberg—Zilber chain ho-
motopy equivalence ¢: C(X x Y)— C(X)® C(Y). In order to discuss the
associativity of &, consider the following diagram:

cX xY.Z

CXxYxZ)y — CXxY)y®C2Z
cX.YKZ cX.Y®l

CH® C(Y x 2) ~— CX)® C(V)® C(2)

Recall that the proof of the existence of the chain map £ required the choice
of a certain chain e, e [C(I") ® C(I")], for each positive integer n. It is too
much to expect that the above diagram would be commutative for an arbi-
trarily constructed chain map £ However, using the method of acyclic models,
it is easy to prove that the two different chain maps in this diagram from
CX x Y x 2Z)to C(X)® C(Y)® C(Z) are chain homotopic (in fact, by a
natural chain homotopy). Hence on passage to homology we do obtain a
commutative diagram.

EXERCISES

5.1. Prove that the natural chainmapn: C(X x Y) —» C(X) ® C(Y)(explicitly defined
in §X1.5) is associative, i.., if it is substituted for ¢ in the diagram above, one
obtains a commutative diagram.

5.2. Prove that the natural chain map {: C(X) ® C(Y) » C(X x Y) defined in §XI.3
is associative (in the sense discussed above).

In order to discuss the commutativity of £, consider the following diagram:
cx x ) 25 cxy® ¢(Y)
T

ly

C(Y x X) 42 C(Y)® C(X)
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In this diagram, t: X x Y= Y x X is defined by t(x, y) = (y, x), and T is
defined by

T@®b)=(—1Yh®a

for any ae C,(X) and b € C(Y). It is readily checked that T is a chain map.
Therefore, T¢XY and ¢¥*t, are both natural chain maps C(X x Y)—
C(Y)® C(X), and by the method of acyclic models they can be proven chain
homotopic (by a natural chain homotopy). It is interesting to note that there
is one rather important difference between the question of the associativity
and the question of the commutativity of £: As we saw in Exercise 5.1, it is
possible to choose & so that it will be associative. However, it is known that
it is not possible to choose a natural chain map £ which is commutative. This
follows from the fact that the Steenrod squaring operations exist and are
nonzero (see Exercise X1.5.4 and the reference to Spanier’s book given there).
This is one of the mysterious “facts of life” in algebraic topology.

Next we will discuss the property of the Eilenberg—Zilber map ¢ that
guarantees the existence of units for cross and cup products. For this purpose,
let us regard the additive group of integers Z as a chain complex which is
“concentrated in degree 0,” i.e,, as a chain complex C such that C; = Z, and
C, = 0 for g # 0. Then the augmentation ¢ : Cy(X) = Z can be looked on as
a chain map ¢ : C(X) - Z. With these conventions, consider the following two
diagrams:

CX xY) 22 ) CX xY) —2 ()

l cx.y H J cx.y H

C(X)® C(Y) = CX)®Z CX)®C(Y) —7 Z® C(Y)

Once again, by the use of acyclic models it can be proved that these two
diagrams are homotopy commutative, (In these diagrams p, : X x Y —» X and
P, X x Y — Y denote projections on the first and second factors respectively.)

EXERCISES

5.3. Verify that if we substitute the explicit map n defined in §XL.5 for ¢ in the above
diagrams, they become commutative.

With these preliminaries out of the way, we can state our various associative
laws, commutative laws, etc. The verifications of these properties will be left
to the reader for the most part. First we will list the various associative laws.

Associative Law for Cross Products. Let u e H?(X, A; G,), v e HY(Y, B; G,),
and we H'(Z, C; G;). Then

UX@OxXw=@Uuxpvxw
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provided enough couples are assumed excisive to insure that all x-products
are defined.

Associative Law for Cup Products. Letu € H?(X, A4; G,),v e HY(X, B; G,) and
we H(X, C; G;). Then
uv@uw)=uuv)uw

provided enough couples in X are assumed excisive for everything to be well
defined.

Associative Law for Slant Products.Letu € H?(Y, B; G,),v € HY(Z, C; G,)and
we H (X, A) x (Y, B) x (Z, C); G), where we set

X, AAx (Y, B)=X x Y, X xBuAdxY)
etc,, for the sake of brevity. Then
(U x v)\w = u\(v\w),

provided enough couples in the various product spaces are assumed excisive
so that everything is well defined.

Associative Law for Cap Products. Assume that ue H?(X, A;G,), ve
HYX, B; G,),and we H(X, AuBuUC; G;). Then

UNnvyNnw=un@®nw)

inH,_,_(X,C; G, ® G, ® G,), provided {4, B}, {B, AuC}, {AUB, C}, and
{A, C} are excisive couples in X.

The fact that one has to make so many awkward assumptions about
excisive couples in order to state an associative law must be considered a defect
of singular homology and cohomology theory. Fortunately, in practice one
does not usually have trouble about this because it will be clear from the
context in many cases, that all the couples involved are automatically excisive.
This will be true if all the subspaces are open sets, or if all are subcomplexes
of CW-complexes, for example.

Next, we will take up the commutative laws.

Commutative Law for Cross Products. Let ue H?(X, A;G,) and ve
H4(Y, B; G,). Then

t*(u x v)=(—1Y x yu,
where t:(Y, B) x (X, A) = (X, A) x (Y, B) is defined by t(y, x) = (x, y). Of
course, one must assume that {X x B, A x Y} is an excisive couple.

Commutative Law for Cup Products. Let ue H?(X,A;G,) and ve
HYX, B; G,). Then
uvv=(—1)fvvu

provided {4, B} is an excisive couple.
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There is no commutative law for slant or cap products; they do not lend
themselves to any such law. This is not to say that the homotopy com-
mutativity of the Eilenberg—Zilber chain homotopy equivalence £ does not
affect these products, however.

Existence of Units. For any space X, the augmentation ¢ : C,(X) - Z may be
considered to be a 0-cochain, which is a cocycle. We will denote its co-
homology class by 1 € H°(X; Z), or 1y to be more explicit. For cross products,
we have the following equations:

uxly=p¥u), ueH?X, A;G),
1y x v = p%(v), ve HY(Y, B; G).

In these equations, p; and p, denote the projections on the first and second

factors of the product space, as usual.
For cup products, the equations are even simpler: for any u € H?(X, A; G),

lyvu=uuly=u.
For slant products, we have
1 \v = py,(v)
for any v e Hy(X x Y; A x Y, G) whereas for cap products,
Iynv=v

for any v € H(X, B; G).

Note that 1, acts as both a left and right unit for cross and cup products,
whereas for slant and cap products, we have only a left unit. Also note that
there is no unit in H°(X, A) if A is nonempty.

§6. Digression: The Exact Sequence of
a Triple or a Triad

In order to describe in a most concise way the behavior of the various products
with respect to the boundary operator d, : Hy(X, A)— H,_,(A) or the co-
boundary operator 6* : H?(A) - H?*1(X, A), it is convenient to make use of
the exact homology (or cohomology) sequence of a triad.

First, let (X, A, B) be a triple,i.e., X is a topological space,and X > 4 > B.
Then we have the following split exact sequence of chain complexes:

0 C(4, B3 c(X, B3 c(x, 4)—0.

Since this sequence is split exact, if we apply the functor ® G or Hom( , G),
we again obtain a short exact sequence of chain or cochain complexes. We
may then pass to the corresponding long exact homology and cohomology
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sequences:
S H(A B, G)S H(X, B; G 5 HyX, 4 G) S Hy_,(A, B; G) -+,
L H4,B; 6) & HYX, B; 6L HY(X, 4;,G)E HI™ (4, B; G) -+~ .

Note: The exact homology or cohomology sequence of a triple can also be

derived directly from the basic concepts of singular homology theory, without
going back to chain complexes; cf. Eilenberg and Steenrod, [2, Chapter I, §10].

Next, let (X; A, B) be a triad, ie., A and B are arbitrary subsets of X (no
inclusion relations are assumed between A and B). Assume that {4, B} is an
excisive couple in X; it follows that the inclusion maps

ki:(A,AnB)y—> (AU B, B),
k,:(B,AnB)—=(AUB, A)

induce isomorphisms on homology and cohomology groups with any coeffi-
cients. If we substitute the (co-) homology groups of (4, A N B) for those of
(A v B, B) in the exact (co-) homology sequence of the triple (X, 4 U B, B),
(using the isomorphism induced by k), we obtain one of the (co-) homology
sequences of the triad (X; 4, B). To obtain the other (co-) homology sequence
of this triad, use the isomorphism induced by k, to substitute the (co-)
homology groups of (B, A n B) for those of (AU B, A) in the exact (co-)
homology sequence of the triple (X, A U B, A). The resulting homology se-
quences are as follows:

5% HyA, A B)— H/X, B)» H(X, AUB) S H, (4, A" B) -,
S H(B ANB) - H,(X, A)> H(X,AUB) 3 H, (B, AnB)--.

The coefficient group has been omitted from the notation. The homomor-
phisms A, will be referred to as the boundary operators of the triad (X; A, B),
they are defined so as to make the following two diagrams commutative:

o, »H,_1(AUB, B)
H,(X, AU B) i

A‘
H,_ (A, AnB)
0. »H,1(AUB, A)

H,(X, AU B) kse

*

H,,(B, A" B)

Analogously, we will denote the coboundary operators of the exact co-
homology sequences of this triad as follows:
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A*:H""1(4, A ~ B)—> H"(X, AU B),
A*:H""\(B, A~ B)» H"(X, AU B).

We have introduced the exact homology and cohomology sequences of a
triad for a very specific purpose in connection with the various products.
However, these exact sequences, and the exact sequence of a triple, are of
interest in their own right.

There is one other exact sequence which it is convenient to introduce now,
known as the relative Mayer—Vietoris sequence. It will be needed in Chapter
XIV. Let (X; A, B) be a triad, and assume that {4, B} is an excisive couple in
X. We will use the following notation for inclusion maps:

i:(X,AnB)—=(X, A),
j: (X, An B)—(X, B),
k:(X, A) - (X, Au B),
I:(X, B)— (X, Au B).
Consider the following sequence of chain complexes and chain maps:

C(X)
C(A) + CB)

Here the chain maps ® and ¢ are defined as follows:

0-CX,AnB)Scx, HoCX,B S

D(x) = (i4X, j4x),
W(u, v) =k, W) — 1,(©)
It is not difficult to prove that this sequence is exact; in fact, it is even split
exact because all the chain complexes consist of free abelian groups. If we
pass to the corresponding long exact homology sequence and substitute

C(X, A v B) for C(X)/[C(A) + C(B)], we obtain the relative Mayer— Vietoris
sequence of the triad (X; A, B):
> H(X,AnB) 5 H (X, A)® H,(X, B) % H,(X, AU B)
SH,_(X,AnB) 5.

Of course, there is a dual exact sequence of cohomology groups.

§7. Behavior of Products with Respect to
the Boundary and Coboundary Operator
of a Pair

We will content ourselves with stating the main properties involved, leaving
the proofs to the reader.
(a) Cross Products. Assume that (X, A) and (Y, B) are pairs such that
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{A x Y, X x B} is an excisive couple. Then the following two diagrams are
commutative:

X

H’(A)@ HY(Y,B) —= H?*(4 x Y, A x B)
*®1 A,
HP*U(X, A)® HY(Y, B) —— HP***' (X x ¥, X x BUA x Y)

H?(X, A)® HY(B) —— H?P*(X x B, A x B)

i(—l)"@&‘ IA‘

HP(X, A) ® H'*\(Y, B) —— HP*"*' (X x ¥, X x BUA x Y)

These two relations may also be expressed by equations as follows: For any
u e H?(A) and v € H4(Y, B),

(0*u) x v = A*(u x v).
For any u € H?(X, A) and v € HY(B),
(—1)P(u x 3*v) = A*(u x v).

Obviously, the second relation can be derived from the first by use of the
commutative law.

(b) Cup Products. Assume that {4, B} is an excisive couple in X. Then we
have the following two diagrams to describe the relations involved (they are
not commutative diagrams in the usual sense; cf. the discussion of naturality
of the slant and cap products).

H?(A) ® HYA,AnB) —> HP*(4, An B)
H?*'(X, A)® HYX,B) —>— H"*"*(X, AU B)
H?(B,AnB)® HYB —— H’*YB,AnB)
Av

* 5 (—1y

H?(X,A) ® H*'(X,B) —~— H"***1(X, AU B)

These relations may also be stated in equations as follows. If u € H?(A4) and
v e HY(X, B), then

(0*uw)y L v = A*(u U k*v).
For the second relation, if u € H?(X, A) and v € HY(B), then

(—DPu v 6*v = A*((I*u) L ).
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EXERCISES

7.1. Under the above assumptions, prove that we have the following commutative
diagram:

H?(X,A) ! > HP(X) i > HP(A) - HP (X, A)

J'uv J'uv J'uk‘v J'
AY
H?*%X,AuB) —— HP*YXB) —— H*%(A,An B) —> H*"*Y(X, 4 UB)

Here v € HY(X, B).

(c) Slant Products. Assume, as in (a), that (X, A) and (Y, B) are pairs such
that {X x B, A x Y} is an excisive couple. Then the relations are expressed
by the following two diagrams of which the first is a commutative diagram in
the usual sense:

slant

HY(Y,B)®@ H(X x Y,Ax YUX x B) — H,_, (X, A)

(_I)P®At at

slant

HP(Y,B)® H,_1(A x Y, A x B) — H,_,_,(4)
HP(Y,B)®@ H)(X x Y, A x YUuX x B)

slant
5* A, (-1 _H,_,(X, A)

slant

H*"'(B)® H,_,(X x B,A x B)

The second diagram expresses the fact that the homomorphisms é* and A,
are adjoint in a certain sense. These relations may be expressed in equations
as follows: Let u € H?(Y,B)and ve Hy(X x Y, A x YU X x B). Then

O, (u\v) = (—1)Pu\A,v.

For the second relation, let ue H?"!(B)and ve H(X x ¥, A x YU X x B).
Then

(0*uw\v + (=1 Tu\A,v = 0.

(d) Cap Products. Assume that {4, B} is an excisive couple in X. Then the
following diagram is commutative, up to the sign (— 1):

HP(X’ A)®Hq(X,AUB) —i—’ q-p(X’ B)
K ®A, Oy

H?(B,AnB)® H,_,(B,AnB) —— H,_,_,(B)
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This relation may be expressed by the following equation:
(—1Pk*u) N (Av) = 0, (unD)

for any u € H?(X, A) and v € H (X, A U B). A second relation is indicated by
the following diagram:

H?(X,A)® H, (X,AUB) —— H,_,(X,B)

5 A, (—1y k,

H?"Y(4) ® H,_,(A, AnB) —— H,_,(4, AN B)

Equivalently,
*wyrnv+ (=1 Tk munAv)=0

for any u e H?71(A4) and any v € Hy(X, A v B).
EXERCISES

7.2. Prove that the following diagram is commutative:

H,(B,AnB) —— H,(X, A) — H,(X,AUB) —— H,_,(B, AnB)

I k*u)n I un I un (— 1y I (k*u)n

a‘
Hq—p(B) . q—p(X) — Hq—p(X’ B) — q—p—l(B)
Here u € H?(X, A).

7.3. Prove that corresponding homomorphisms in the following two exact sequences
are “adjoints” of each other, with respect to the indicated cap product:

HP(4) < HP(X) < HP(X,A) ———— HP"'(4)
® ® ® ®
HyA, A~ B) — H(X.B) —> H(X,AuB) — H,_,(A, A~ B)

Hy oA, AnB) — H,_(XB) = H, (X.B) < H, (4, A~ B).

§8. Relations Involving the Inner Product

These relations involve the inner product, which was defined in §2, and the
cross, slant, cup, and cap products.

(a) Assume that (X, A) and (Y, B) are pairs such that {4 x Y, X x B}isan
excisive couple in X x Y. In Chapter XI we defined the homomorphism
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a:Hp(X, A)®Hq(Y,B)—’ p+q((X’A) X(Y’B))
Letae H,(X, A), b e H(Y, B),ue H*(X, A; G,), and v € H!(Y, B; G,). Then
(= DPu x v, a(@a® b)) = (u, a) ® (v, b).

The proof of this relation is easy.

(b) Assume, as in (a) that {4 x Y, X x B} is an excisive couple in X x Y.
Let ue HY(X, A;G,), ve H(Y,B;G;), and we H, (X x LA X YU X x B;
G,). Then

{u x v, w) = {u, v\w).

(c) Assume that {4, B} is an excisive couple in X. Let u € H?(X, 4; G,),
ve HY(X, B; G,),and we H,, (X, AU B; G;3). Then

uvo,w) ={u,vNnw).

A noteworthy special case of this relation occurs when 4 = &5, p = 0,G, = Z,
andu = 1 € H%(X; Z). Then 1 U v = v, and it is easily verified that {1, v N w) =
&, (v N w). Thus, under these hypotheses, we obtain the relation

o, w) =g, (vnw)

which expresses the inner product in terms of the cap product and the
augmentation.

The proof of relations (b) and (c) are easy. In the case where G, = G, =
Gy = F, where F is a field, and all the homology and cohomology groups
involved are finite-dimensional vector spaces over F, relation (b) shows that
cross products are determined by slant products, and vice versa. Similarly,
relation (c) shows that under these hypotheses, cup products are determined
by cap products, and vice versa (cf. Exercise XI1.6.1).

§9. Cup and Cap Products in a Product Space

Let u e H?(X, A), v e HY(X, B), w e H'(Y, C), and x € H*(Y, D) (the coefficient
groups are omitted from the notation). Then

xwu@xx)=(—D)"uuv) x (Wux) (13.9.1)

provided we assume enough couples are excisive so that everything is well
defined. In particular, this would be the case if 4, B, C, and D were all empty.

Probably the easiest way to prove Equation (13.9.1) is to make use of the
relation between cup and cross products explained in §3. If everything is
expressed in terms of cup products, this relation becomes almost obvious.
Therefore, the details are left to the reader.

To state an analogous relation for cap products, we must use the homo-
morphism

a:H(X, )@ H(Y,B)» H, (X x Y, A x YUX x B)
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defined in §§XI1.4 and XI.6. This can be extended in an obvious way to a
homomorphism

a:Hy(X, 4;G,) ® H(Y, B;G,) » H, (X x ¥, AXx YUX x B, G, ® G,)

with arbitrary coefficients G, and G,. Assume that ue H?(X, A,), ve
HYY,B,),ae H(X, A, v A;)and b € H,(Y, B, v B,). Then

uxv)na@® b)=(—1)"a((una)® (vn b)), (13.9.2)

provided enough couples are assumed excisive. A detailed proof of this relation
is written out in Dold [1, pp. 240-241].
This completes our survey of the main properties of the four products.

§10. Remarks on the Coefficients for the Various
Products—The Cohomology Ring

In all four products, we started out with homology or cohomology classes u
and v with coefficient groups G, and G,, respectively, and the product always
had coefficient group G, ® G,. Sometimes it is convenient to assume given a
homomorphism h: G, ® G, = G and to systematically apply the coefficient
homomorphism k4 to the resulting product. For example, if R is a ring and
h:R ® R — R is the homomorphism induced by the multiplication, then we
get a cup product which assigns to elements u € H?(X; R) and v € HY(X; R)
an element u U v e H?*4(X; R). With this multiplication, the direct sum

H*(X;R) =Y H"(X; R)

becomes a kind of ring which is called a graded ring, because the underlying
additive group is the direct sum of a sequence of subgroups, indexed by the
integers. In fact, H*(X; R) is the prototype of a graded ring. If R has a unit
1 € R, then H*(X; R) has a unit 1, € H°(X; R); it is represented by the cocycle

Co(X) S Z5R,

where ¢ is the augmentation and e is the unique ring homomorphism defined
by e(1) = L. If the ring R is commutative, then H*(X; R) is commutative in
the graded sense (sometimes called skew-commutative or anticommutative):

uvv=(—D"vvu

for any u e HP(X; R) and v e H%X; R). In this case, H*(X; R) is a graded
algebra over the commutative ring R.

We mention two more examples like this, leaving the reader to fill in the
details of the definitions, etc. For both examples, let R be a ring with unit, M
aleft R-module, and h: R ® M — M the homomorphism defining the module
structure.
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Examples

10.1. The cap product assigns to any elements ue€ H?(X; R) and ve
H,(X; M) an element unv e H,_,(X; M). Using this cap product, the direct

sum
H,(X; M) =} H,(X; M)

becomes a graded left module over the graded ring H*(X; R).

10.2. Let (X, A) be an arbitrary pair. The cup product assigns to elements
ue H?(X; R) and v e HY(X, A; M) an element uu v e H?*%X, A; M). This
makes

H*(X, 4; M) = Y H"(X, 4; M)

into a graded left module over H*(X; R). Moreover, each of the homomor-
phisms of the exact sequence of the pair (X, A),

J*: HY(X, A; M) - H*(X; M),
i*: H*(X; M) - H*(A; M),
and
6* . H*(A; M) - H*(X, A; M)
are homomorphisms of graded left H*(X; R)-modules [the definition of the
module structure on H*(X; M) and H*(A4; M) is left to the reader]. In this

example, the homomorphisms j* and i* have degree 0, whereas 6* has degree
+1.

§11. The Cohomology of Product Spaces
(The Kiinneth Theorem for Cohomology)

By combining the Kiinneth theorem of §XI.6 with the universal coefficient
theorem for cohomology of §XI1.4, one can express the cohomology groups
of a product space, H"(X x Y; G) in terms of the homology groups of the
factors, H,(X) and H,(Y) (in principle, at least). What we are now interested
in is the expression of H"(X x Y; G) in terms of the cohomology groups of the
factors, H?(X) and H%(Y). The point is that we can use such an expression
together with the relations given in §9 to obtain informaton about cup and
cap products in X x Y terms of these products in the factors, X and Y.
The cross product defines a homomorphism

H?(X,Z)® HYY,Z)— H**Y(X x Y, Z).
This definition can be extended in an obvious way to a homomorphism

Y HY(X;Z)® H(Y;Z)—» H'(X x Y, Z).

ptq=n
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One would then hope to prove that this homomorphism is a monomorphism,
and that the cokernel is isomorphic to something of the form

Y Tor(H?(X; Z), H(Y; Z))

p.4q
just as in the case of homology. Unfortunately, simple examples show that
this is too much to hope for: If X and Y are discrete spaces having infinitely
may points, no such theorem holds. However, if X or Y is a finite discrete
space, then there is no problem.

This is the key to the situation: one must impose some sort of finiteness
condition on at least one of the factors.

Before we can state and prove such a theorem, we need some algebraic
preliminaries. First of all, recall that if F is a free abelian group of finite rank
then Hom(F, Z) is also a free abelian group (of the same rank). It may be
proved that if F is a free abelian of infinite rank, then Hom(F, Z) is not free.
However, we will have no need for this result. It follows that if K = {K, ,}
is a chain complex such that K, is free abelian of finite rank for each g, then
Hom(K, Z) is a cochain complex of free abelian groups.

Second, recall that we introduced earlier the natural homomorphism
Hom(A4, A’) ® Hom(B, B') » Hom(4 ® B, A’ ® B’) which assigns to homo-
morphisms f: A - A’ and g : B — B’ the tensor product of the two homomor-
phisms, f® g: A ® B —» A’ ® B'. In general, the abelian groups Hom(4, A') ®
Hom(B, B') and Hom(4 ® B, A’ ® B’) are not isomorphic. However, in the
special case where A is free abelian of finite rank and A’ = Z, it is readily
verified that the natural homomorphism is an isomorphism of Hom(4, Z) ®
Hom(B, B') onto Hom(A4 ® B, B’). We can now extend this result to chain
complexes. Suppose that K = {K_, d,} is a positive chain complex such that
each K, is free abelian of finite rank, that C = {C,, d,} is another positive
chain complex, and G is an abelian group. Then the natural chain map

Hom(K, Z) ® Hom(C, G) - Hom(K ® C, G)

is an isomorphism of chain complexes.
Finally, we need the following lemma of a rather technical nature:

Lemma 11.1. Let (X, A) be a pair such that H (X, A) is finitely generated for
all q. Then there exists a chain complex K = {K_, 0,} such that each K is a
free abelian group of finite rank, and a chain homotopy equivalence f:
K- C(X, A).

Proor. For each g, choose an epimorphism e, of a finitely generated free
abelian group F, onto H,(X, A); denote the kernel by R,,,, and let d,,, :
R, ., = F, denote the inclusion homomorphism. Then

dyy
0 «— Hf(X,A) «* F, & R, «—0

is a short exact sequence, and both F, and R, ., are free abelian of finite rank.
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Define K, = F,® R, forallg,and 6,: K, - K, _, by
OlF, =0,
0,|R, = d,.

Then K = {K,, d,} is a chain complex such that each K is free abelian of
finite rank. It is an easy exercise to prove that there exist homomorphisms

0, F, > Z,(X, A),
Yar1: Ry — Bq(X’ A)
for all g such that the following diagram is commutative:

0 — H(X,4) «=— F, & R, —0

H |- |+

0 —— H(X,A) «—Z(X,A) «— By(X,4) «——0

Next, we may choose a homomorphism 6,., : R, = C,, (X, A) such that
the following diagram is commutative:

 ACen(X, A)

R,y 8

Now define f,: K, = C,(X, A) by
JolFy = @
folRy =6,

It is readily checked that f = {f,} is a chain map, and that the induced

homomorphism
Jo i Hy(K) - Hy(X, 4)

is an isomorphism for all q. Therefore, f is a chain homotopy equivalence, by
Theorem X.2.8. QE.D.

Now that we have these technical details behind us, we can state the desired
theorem:

Theorem 11.2. Let (X, A) and (Y, B) be pairs such that the following two
conditions hold: H/(X, A) is finitely generated for all g, and {X x B, A x Y}
is an excisive couple in X x Y. Then the cross product defines a homomorphism
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Y igen HP(X, A, Z) @ HU(Y, B; G)> H"(X x Y; A x YUX X B; G) which
is a monomorphism onto a direct summand and the cokernel is naturally isomor-
Phic 105 q-n+1 TOr(H?(X, 4; Z), H(Y, B; G).

We will indicate the main steps in the proof, leaving the verification of
details to the reader.

By Lemma 11.1, there exists a chain complex K of finitely generated free
abelian groups and a chain homotopy equivalence f: K — C(X, A). It follows
that Hom(K, Z) is a cochain complex of free abelian groups, and Hom(f, 1):
Hom(C(X, A), Z) » Hom(K, Z) is also a chain homotopy equivalence. Now
consider the following commutative diagram of cochain complexes and cochain
maps:

Hom(K ® C(Y.B)G) +————r Hom(C(X.4) ® C(Y,B),G)

! W

Hom(X,Z) ® Hom(C(Y,B),G) W Hom(C(X,A4),Z) ® Hom(C(Y,B),G).

In this diagram, the symbol 1 refers to an appropriate identity map. By the
discussion preceding Lemma 11.1, the arrow labeled a denotes an isomor-
phism. Since f'is a chain homotopy equivalence, it follows that the horizontal
arrows denote cochain homotopy equivalences. Hence on passage to co-
homology, all four arrows in this diagram would induce isomorphisms. To
complete the proof, one applies the Kiinneth theorem to the tensor product
Hom(K, Z) ® Hom(C(Y, B), G). This is legitimate, since Hom(K, Z) is a co-
chain complex of free abelian groups. The remaining details may be left to the
reader. Q.E.D.

Corollary 11.3. Let X and Y be topological spaces such that H,(X) is finitely
generated for all q and such that at least one of the two spaces has all cohomology
groups torsion-free. Then
«: Y HP(X;Z)® H(Y;Z)—> H"(X x Y; Z)
p+q=n

is an isomorphism for all n. In this case the cohomology ring H*(X x Y, Z) is
completely determined by H*(X ; Z) and H*(Y, Z).

The last sentence of this corollary follows from the relations for cup
productsin a product space givenin §9. It also inspires the following definition.

Definition 11.4. Let A* =), A" and B* = Y ; B be graded rings. The tensor
product A* ® B* is the graded ring defined as follows:

(A*®B*)"= Y A'®B’ (direct sum).

i+j=n

The multiplication is defined as follows:
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(uy ®vy) (u; ® vy) = (— 1" (u,u,;) ® (vy0,),

where u; € A” and v; € B% for i, j = 1, 2. With this structure A* ® B* is also
a graded ring.

Using this definition, the corollary above can be restated as follows: Let X
and Y be topological spaces such that H (X) is finitely generated for all q, and
at least one of the two spaces has all cohomology groups torsion-free. Then the
cohomology ring H*(X x Y, Z) is naturally isomorphic to the tensor product
of the cohomology rings of the factors:

a:H*(X;Z)@ H*(Y,;Z)~ H*(X x Y, Z)
Examples

11.1. The cohomology ring of an n-sphere, H*(S"; Z) is easily determined.
We know that H®(S"; Z) is an infinite cyclic group generated by the unit,
1 € H°(S"; Z), and H"(S"; Z) is also infinite cyclic with generator u; all other
cohomology groups are 0. The cup products are completely determined by

the equations
uul=1lvu=u.

We can now use the above rules to determine the cohomology ring
H*(S™ x §"; Z). Let ue H"(S™;Z) and v e H"(S"; Z) denote generators of
these infinite cyclic groups. Then H*(S™ x §"; Z) is the direct sum of four
infinite cyclic groups, with generators 1 x 1 (the unit),u x 1,1 x v,and u X v.
There is one nontrivial product:

wxDhu(lxv)y=uxuo
EXERCISES

11.1. Let A be a retract of X with retraction r: X — A and inclusion map i: 4 - X.
Consider the induced homomorphisms

r*. H*(A; Z) » H*(X; Z),
i* . H¥*(X;Z) > H*(4; Z).
Prove that kernel i* is an ideal in the graded ring H*(X; Z), and image r* is a
subring.
11.2. Let X and Y be spaces with chosen base points, x, € X and y, € Y. Define
XvY=(Xx{y}u({xe} x Y)

It is sometimes called the 1-point union of X and Y. Assuming that X and Y are
arcwise connected, express the structure of the cohomology ring H*(X v Y; Z)
in terms of H*(X; Z) and H*(Y; Z). (Assume also that x, and y, have “nice”
neighborhoods in X and Y respectively, as described in Problem VIII.5.2))

11.3. Let m and n be positive integers, X = S™ x S", and Y = $™ v §" v §"*". Prove
that H(X; G) = H,(Y; G)and H%(X; G) ~ H(Y; G)for any abelian group G and
integer q; then prove that X and Y are not of the same homotopy type.
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We conclude this lengthy chapter with an analogue of Corollary 11.3 for
the case where we use cohomology with coefficients in a commutative field F.
The result is easy to state, and of rather wide generality.

Theorem 11.5. Let (X, A) and (Y, B) be pairs such that {X x B, A x Y} is an
excisive couple, and H(X, A; F) is a finite-dimensional vector space over F for
all q. Then the x-product defines a natural isomorphism

a: Y HP(X,A;F)® H(Y,B; F)> H"X x Y,Ax YUX x B;F).

p+q=n F

Corollary 11.6. Let X be a space such that H (X ; F) has finite rank over F for
all q. Then for any space Y, the cohomology algebra H*(X x Y; F)is naturally
isomorphic to the tensor product:

o: H*(X; F)® H*(Y; F) ~ H*(X x Y, F).
F

The proof of this theorem and corollary is actually somewhat simpler than
the proof of Theorem 11.2 and Corollary 11.3 because one has to deal with
vector spaces over F rather than abelian groups. It is also necessary to use
relations such as the following:

CX)®C(Y)®F ~ C(X,F)®C(Y, F),

Hom(C(X), F) ~ Hom(C(X, F), F).

Once again, the details are left to the reader.
NOTES

The cup and cap products were introduced by Alexander, Cech, Kolmogoroff,
and Whitney when they introduced cohomology groups in the years 1935-38
(see the Notes at the end of Chapter XII). The close relation between the cup
products and the cross products was first described and exploited by Lefschetz
in his 1942 A. M. S. Colloquium Volume (also referred to in the Notes to
Chapter XII).

There was one predecessor of cup products, which existed before the
development of cohomology theory. In the middle 1920s, J. W. Alexander and
S. Lefschetz developed an “intersection theory” of homology classes in a
compact oriented manifold. For more information on this, see the notes at the
end of Chapter XIV,
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CHAPTER XIV

Duality Theorems for
the Homology of Manifolds

§1. Introduction

An n-dimensional manifold is a Hausdorff space such that every point has an
open neighborhood which is homeomorphic to Euclidean n-space, R” (see
Chapter I). One of the main goals of this chapter will be to prove one of the
oldest results of algebraic topology, the famous Poincaré duality theorem for
compact, orientable manifolds. It is easy to state the Poincaré duality theorem
but the proof is lengthy.

If a compact connected n-dimensional manifold M can be subdivided into
cells so as to be a regular cell complex, then it is a pseudomanifold, and the
results of §IX.8 are applicable. Thus, if it is orientable, H,(M, Z) will be an
infinite cyclic group. One of our first goals will be to prove that this result is
still true even if the manifold is not a regular cell complex. To “orient” such
a manifold means to choose a generator u of the group H,(M, Z). The Poincaré
duality theorem then asserts that the homomorphism of HY(M", G) into
H,_,(M", G), defined by x — x " u for any x € H{(M", G), is an isomorphism
for all integers q and all coefficient groups G! This is a rather severe restriction
on the homology and cohomology groups of a compact, orientable manifold.
By using the relation (x U y) n g = x n (y n p), we will be able to show that
the Poincaré duality theorem has strong implications for cup products in a
manifold.

We will also prove a duality theorem relating the homology and coho-
mology groups of a manifold with boundary. Finally, we will discuss the
famous Alexander duality theorem. This relates the cohomology groups of a
closed subset X of Euclidean n-space, R", and the homology groups of the
complementary set R" — X, It is a far-reaching generalization of the results
proved in VIIL6 (ie., the Jordan-Brouwer separation theorem, etc).
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The method of proof we use for the Poincaré duality theorem is that
described by J. Milnor in some mimeographed lecture notes in 1964; see also
the appendix to [8]. The basic idea of Milnor’s proof is very natural and may
be explained as follows. It follows from the definition that any n-manifold is
a union of certain open subsets, each of which is homeomorphic to R". Thus,
it seems natural to try to prove the theorem first for R", and then to use
Mayer—Vietoris sequences to extend to the case of a finite union of open
subsets, each of which is homeomorphic to R". Finally we can extend to the
case of an infinite union of such open sets by a direct limit argument. The only
trouble with this idea is that the Poincaré duality theorem as formulated above
applies only to compact manifolds. Thus, it will be necessary to state and
prove a more general version of the Poincaré duality theorem which is also
applicable to noncompact manifolds. The reader must not let the technical
complications involved in stating and proving this more general version
obscure the basic ideas involved.

§2. Orientability and the Existence of Orientations
for Manifolds

Let M be an arbitrary n-dimensional manifold; we emphasize that M need
not be compact or connected; in fact we do not even need to assume that M
is paracompact! For any point x € M, consider the local homology groups
H(M, M — {x}) (cf. §VIIL2). Using the fact that x has a neighborhood
homeomorphic to R” and the excision property, we see that

H(M, M — {x}) ~ H(R" R" — {x}).

Hence, if we use integer coefficients, H(M, M — {x}) is infinite cyclic for i = n,
and zero for i # n. A choice of a generator for the infinite cyclic group
H,(M, M — {x}; Z) will be referred to as a local orientation of M at x.

Definition 2.1. An orientation of an n-dimensional manifold M is a function
p which assigns to each point x € M a local orientation u, € H,(M, M — {x}; Z)
subject to the following continuity condition; Given any point x € M, there
exists a neighborhood N of x and an element uy € H,(M, M — N) such that
i,(uy) = p, for any y € N, where i, : H(M, M — N) - H,(M, M — {y}) de-
notes the homomorphism induced by inclusion.

In order to better understand this continuity condition, recall that any
point x € M has an open neighborhood U which is homeomorphic to R”. By
the excision property, for any y € U,

H,(U, U — {y}) ~ H,(M, M — {y}).

However, if x and y are any two points of R, there is a canonical isomorphism
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H,R",R"— {x}) ~ H,(R", R" — {y}) defined by choosing a closed ball E" =
R" large enough so that x and y are both in the interior of E", and noting that
in the following diagram,

H,R“R"— {x}) L H,(R", R" — E")

]

J

H,R“R"— {y})

both i, and j, are isomorphisms. Moreover, the isomorphism between
H,(R", R" — {x}) and H,(R", R" — {y}) that we thus obtain is independent of
the choice of the ball E".

Terminology. The manifold M is said to be orientable if it admits at least
one orientation; otherwise, it is called nonorientable. A pair consisting of a
manifold M and an orientation is called an oriented manifold.

The reader should convince himself that for 2-dimensional manifolds, these
definitions agree with those of Chapter I.

Examples

2.1. (a) Euclidean n-space, R", is orientable (use the fact mantioned
above that there exists a canonical isomorphism H,(R" R" — {x}) =~
H,(R" R" — {y}) for any two point x, y € R"). (b) Similarly, the n-sphere, S",
is orientable according to our definition. (c) If M is an n-manifold, 4 is an
orientation for M, and N is an open subset of M, then u restricted to N is an
orientation of the n-manifold N. In particular, if M is oriented and discon-
nected, then each component is oriented. If any component is nonorientable,
then so is M. (d) Let M be an m-dimensional manifold with orientation x and
N and n-dimensional manifold with orientation v. Let u x v denote the
function which assigns to each point (x, y) € M x N the homology class

a(”x@”y)e Hm+n(M X N’M x N — {(X, y)})’

where a is the homomorphism which occurs in Theorem XL.6.1. It is readily
seen that a(u, ® u,) is a generator of the homology group in question. It is
also easy to verify that the required continuity condition holds, and thus u x v
is an orientation for M x N. Thus, the product of two orientable manifolds
is orientable.

In dealing with question such as these, we will need to frequently consider
for any subset A of the manifold M, the homology groups H(M, M — A). If
B < A4, it will be convenient to denote the corresponding homomorphism
H(M,M — A) - H(M, M — B) by the symbol pg; for any homology class
ue H(M,M — A), pg(u) can be thought of as the “restriction” of u to a
homology group associated with B.
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Let M be an n-dimensional manifold with orientation y; it would be
advantageous if there were a global homology class u,, € H,(M, Z) such that
forany x e M,

By = pu(pm)-

Unfortunately, this cannot be true if M is noncompact, as the reader can easily
verify by using Proposition VIIL6.1. The closest possible approximation to
such a result is the following theorem. It will play a crucial role in the statement
and proof of the Poincaré duality theorem:

Theorem 2.2. Let M be an n-manifold with orientation u. Then for each compact
set K = M there exists a unique homology class ux € H,(M, M — K) such that

ptix) = ps
Jor each x € K.

Note that if M is a compact manifold, this theorem assures us of the
existence of a unique global homology class u,, € H,(M, Z) such that for any
point x e M,

Hx = plitm).

Proor. The uniqueness of uy is a direct consequence of a more general lemma
below (Lemma 2.3). Therefore, we will concentrate on the existence proof.
Obviously, if the compact set K is contained in a sufficiently small neighbor-
hood of some point, the continuity condition in the definition of u assures us
of the existence of ug. Next, suppose that K = K; u K,, where K, and K,
are compact subsets of M, and both uy and ug, are assumed to exist. Then
{M - K,,M — K,} is an excisive couple, and hence we have a relative
Mayer—Vietoris sequence (cf. §XIIL6):

H,,(M,M — K, nK;)5 H(M, M — K)
SHM,M - K,)®H,M,M—K,)
Y HM, M — K, nK,).
Recall that the homomorphisms ¢ and y are defined by
@ (u) = (pk, (), px,(),
Yy, v,) = lenxz(%) - lenxz(vz)
for any ue H,(M,M — K), v, e H,(M, M — K,), and v, € H,(M, M — K3).
By the uniqueness of ux ~x,, we see that
Px,nk,(Bk,) = Pk, nk,(Bk,)

= ﬂKlf\Kz’
and hence
Y(ug,, ug,) = 0.
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It follows from Lemma 2.3 below that H,.,(M, M — (K, n K,)) = 0; hence
by exactness there is a unique homology class ug € H,(M, M — K) such that

o(ux) = (Ug,s Hx,)-

It is readily verified that this homology class uy satisfies the desired condition
px(ﬂl() = Ui fOI' any x € K.

Next, assume that K = K, v K, u---uUK,, where each K; is a compact
subset of M, and p, exists. By an obvious induction on r, using what we have
just proved, we can conclude that uj exists. But any compact subset K of M
can obviously be expressed as a finite union of subsets K;, each of which is
sufficiently small so that the corresponding homology class ug, exists. Hence
[y eXists, as was to be proved. Q.E.D.

It remains to state and prove Lemma 2.3.
Lemma 2.3. Let M be an n-dimensional manifold and G an abelian group.
(a) For any compact set K « M and all i > n,
HM,M—-K;G)=0
(b) Ifue H(M, M — K; G) and p.(u) = 0 for all x € K, thenu = 0.
Proor. The method of proof is to start with the case M = R" and then to
progress to successively more complicated cases, ending with the general case.

Case 1: M = R" and K is a compact, convex subset of R". To prove this
case, choose a large ball E" = R” such that K is contained in the interior of
E" For any x € K, consider the following commutative diagram:

H(M, M — K) —2> HM, M - {x})

H(E", ")
Then it is readily proved that arrows 1 and 2 are isomorphisms. Hence, p, is

an isomorphism for all i which suffices to prove that lemma in this case.

Case 2:K = K, uK,,where K, K,, and K, are compact subsets of M and
it is assumed that the lemma is true for K, K,, and K, n K,. In order to
prove this case, we will again use the relative Mayer— Vietoris sequence of the
triad (M; M — K, M — K,). The proof of this case is based on the following
portion of this Mayer—Vietoris sequence:

Hi(M, M — K, nK;) S H(M, M — K)
LP’HE(M’ M - K1)®H,(M, M — Kz)

The proof of parts (a) and (b) of the lemma for this case is quite easy and may
be left to the reader.
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Case 3: M =R"and K = K, UK, u---uUK,, where each K; is compact
and convex. This case is proved by induction on r, using cases 1 and 2 (the
fact that the intersection of convex sets is convex is used).

Case 4: M = R" and K is an arbitrary compact subset. We assert that for
any u e H;(R", R" — K), there exists an open set N containing K and an
elements u’ € Hy(R", R" — N) such that k_(v') = u, where

k:(R", R" — N) - (R", R" — K)

is the inclusion map. To prove this assertion, recall that there exists a compact
pair (X, A) = (R", R" — K), and a homology class v € H;(X, 4) such that the
inclusion homomorphism H;(X, A) - H,(R", R" — K) maps v onto u (see Pro-
position VIIL.6.1). Now we may choose N to be any open neighborhood of K
which is disjoint from A, and the assertion will certainly be true.

Given the open neighborhood N of K, we may find a finite collection
{B,, B,, ..., B,} of closed balls such that B; = N for 1 <j < r, and the union
of the B;’s covers K. We may also assume that K N B; # Jfor1 <j <r. Now
consider the following commutative diagram:

H(R"R" — N) —— H, (R"’ R"— Bf)
j

k

- M

HR", R" — K)

We will use this diagram to prove the lemma for this case. The proof of part
(a) for this case is very easy: If i > n, then H,(R",R" — | J;B;) = 0 by case 3,
and hence the given element k_(u') = u € H;(R", R" — K) must be zero also.
The proof of part (b) is only slightly more difficult. Assume u € H,(R", R" — K),
p(1) = 0 for all x € K, and that N and «’ € H,(R", R" — N) have been chosen
sothatu = k (u'). Letu” = I (u') € H,(R", R" — | J; B;) in the above diagram.
We assert that p,(u”) = O for each y e B, U B, U***B,. To see this, assume
that y € B;; choose a point x € B;n K. Consider the following commutative
diagram:

R" R"— . — H(R" R" — B)
1
H (R" R"— {y}) 2

my,

HE R — Ky R )

All homomorphisms in this diagram are induced by inclusion maps, and the
homomorphisms denoted by arrows 1 and 2 are isomorphisms, (by case 1).
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Since m_(1") = u, and p,(u) = 0, it readily follows that p,(u”) = 0 as desired.
Therefore, we can conclude by case 3 that u” = 0, and hence u = m_(u") is
also zero.

Case 5: M is arbitrary, but the compact set K is assumed to be “small”
enough so that there exists an open set U which is homeomorphic to R” and
U < K.In this case H(M, M — K) = H,(U, U — K) by the excision property;
hence, we can apply case 4 to reach the desired conclusion.

Case 6: The general case. In this case, K is a finite union of compact subsets,
K=K, uK,u'uk,,

where each K; is small enough so that case 5 applies. Hence, we can make an
induction on r, using case 2, to compute the proof of the lemma. Q.E.D.

In order to study the homology of arbitrary manifolds (i.e., orientable or
nonorientable) it is desirable to go through similar considerations with Z,
coefficients. Let M be an arbitrary n-dimensional manifold, and x € M. The
local homology group H,(M, M — {x}; Z,) is cyclic of order 2; hence, it has
a unique generator u, € H,(M, M — {x}; Z,) (no choice is involved). It is
readily seen that the function u which assigns to each x € M the element pu,
satisfies the continuity condition occurring in the definition of an orientation:
Each point x € M has a neighborhood N for which there exists an element
uy € H,(M, M — N; Z,) such that p,(uy) = p, for all y € N. It is convenient
to refer to u as the “mod 2 orientation of M.”

Theorem 2.4. Let M be an arbitrary n-dimensional manifold (i.e., M need not
be orientable). Then for each compact set K c M there exists a unique homology
class ux € H, (M, M — K; Z,) such that

px(ﬂl() = Ux

for any x € K, where p, denotes the unique nonzero element of the local
homology group H,(M, M — {x}; Z,).

The proof may be patterned on that of Theorem 2.2; the details are left to
the reader.

EXERCISES

In the first three exercises, it is assumed that the reader is familiar with the theory of
covering spaces; see Chapter V.

2.1. Let (X, p) be a covering space of X, where X and X are both locally arcwise
connected Hausdorff spaces. Prove that X is an n-dimensional manifold if and
only if X is an n-dimensional manifold.

2.2. Let (M, p) be a covering space of M, where M and M are both connected
n-manifolds. Assume that M is orientable. Prove that M is orientable, and that
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23.

24

25.

2.6.

2.7.

238.

every covering transformation (i.e., automorphism) of (M, p) is orientation pre-
serving (the definition of orientation preserving is the obvious one).

Let (M, p) be a regular covering space of M. Assume M is a connected, orientable
r-manifold, and that every covering transformation of (M, p) is orientation pre-
serving. Prove that M is orientable.

(A continuity lemma). Let K be a compact subset of the n-dimensional manifold
M,ue H,(M,M — K; G), and x € K. Prove that there exists an open neighbor-
hood N of x and a unique element uy € H,(M, M — N; G) such that the following
two properties are true:

(a) For any ye N, p,: H(M,M — N; G) » H(M, M — {y}; G) is an isomor-
phism.
(b) Forany ye NN K, p(u) = p,(uy).

[HiNT: To ensure that (a) will be true, choose N to be an open n-dimensional ball
such that M — N is a deformation retract of M — {y}. To prove the existence of
uy, use Proposition VIIL.6.1.)

Prove the following corollaries of the preceding exercise:

(a) Let K be acompact subset of M and u € H(M; M — K; G). Then the follow-

ing two sets
{x € K|p(u) = 0},

{x € K|p(u) # 0}

are both open subsets of K. Hence, if K is connected, one of them must be
empty.

(b) Let K be a compact, connected subset of M. Then H, (M, M — K; Z) s either
infinite cyclic or zero.

[HINT: Use part (a) and Lemma 2.3). If H,(M, M — K; Z) is infinite cyclic, then
oy H(M, M — K) > H(M, M — {y}) is a monomorphism for any y € K.

(c) Let K be a compact, connected subset of M, ue H (M, M — K; Z) and let
x € K be such that p, (1) is k times a generator of H (M, M — {x}). Prove that
for any y € K, p,(u) is also k times a generator of H,(M, M — {y}).

Assume that M is connected, and that for each compact K =« M, H,(M, M —
K; Z) # {0}. Prove that M is orientable. [HINT: use the fact that any two points
of M are contained in a compact connected subset of M, e.g., a path joining the
two points.)

Let M be a compact, connected, nonorientable manifold. Prove that H,(M; Z) =
0.

For any abelian group G, let ,G = {g € G|2g = 0}. Recall that there is a natural
isomorphism o : H,(M, M — {x}; Z) ® G - H, (M, M — {x}; G) for any point x
of the n-manifold M (see §X.6). Show that if g € ,G, the element g, = a(p, ® g) €
H,(M, M — {x}; G) is independent of the choice of the local orientation u, e
H, (M, M — {x}; Z). Then prove that for each compact set K = M and g € ,G,
there exists a unique homology class gx € H,(M, M — K; G) such that p,(gx) = g,
for any x € K.
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2.9. Let M be a connected n-dimensional manifold. Assume that for each compact
set K = M there is chosen an element hy € H,(M, M — K; G) such that p,(hy) =
h, for any x € K, and that 2k, # O for all x € M. Prove that the manifold M is
orientable. [HINT: Show that there exists a fixed element h € G and unique local
orientations u, for all x € M such that h, = a(u, ® h). Note that h cannot be an
element of ,G.)

2.10. Let M be a compact, connected, nonorientable, n-dimensional manifold and G
an abelian group. Prove that H,(M; G) is isomorphic to ,G. (Use the results of
the preceding exercises).

2.11. Let M be a compact, connected, nonorientable n-dimensional manifold. Prove
that the torsion subgroup of H,_,(M; Z) is cyclic of order 2. (Use the results of
Exercises 2.7 and 2.10 and the universal coefficient theorem. You may make use
of the fact that all the integral homology groups of M are finitely generated; see
Lemma 5.2 of this chapter. The reader should compare the statements of this
exercise and Exercise 2.7 with the theorems about pseudomanifolds in §1X.8.)

§3. Cohomology with Compact Supports

In order to state and prove the Poincare duality theorem for noncompact
manifolds, it is necessary to use a new kind of cohomology theory, called
cohomology with compact supports. On compact spaces, this new cohomology
theory reduces to the usual kind of cohomology.

Recall that C*(X, A; G) is a subcomplex of C*(X; G); it is (by definition)
the kernel of the cochain map

i* . C*(X; G) - C*(4; G).

Definition 3.1. A cochainu € C¥(X, G)hascompact support if and only if there
exists a compact set K = X such that ue C(X, X — K; G).

Note that the set of cochains u € C*(X; G) which have compact support is
a subgroup of C¥X; G), which we will denote by C3(X; G). Also, if u has
compact support, so does its coboundary, d(u); hence, we obtain the cochain
complex

C*X; G) = {CAX, G), 8}.

We denote the g-dimensional cohomology group of this complex by H3(X; G);
it is called the g-dimensional cohomology group of X with compact supports.

Obviously, if X is compact, C*(X) = C*(X), and H!(X) = HY(X). If X is
noncompact, H¥(X, G) is obviously a topological invariant of the space X;
however, it is definitely not a homotopy type invariant of X. We will have
examples to illustrate this point later. It is only an invariant of what is called
the proper homotopy type of X; see Massey [7], p. 38.
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One could now systematically develop the various properties of co-
homology with compact supports. The reader who is interested in seeing this
done is referred to the 1948/49 Cartan seminar notes [2, Exposé V, §6, Exposé
VIII, §4 and 5, and Exposé IX, §4]; see also various books on sheaf theory.
We will not do this because the singular cohomology theory with compact
supports does not have such nice properties; the Cech—Alexander—Spanier
cohomology with compact supports is a much more elegant theory; cf. Massey
[7]. We will confine ourselves to elaborating those properties of cohomology
with compact supports that are actually needed in this chapter.

There is an alternative definition of cohomology with compact supports,
based on the notion of direct limit; the reader who is not already familiar with
direct limits can quickly learn all that is needed from the appendix to [7]. We
will now proceed to explain this alternative definition.

First of all, note that the compact subsets of any topological space X are
partially ordered by inclusion; even more, they are directed by the inclusion
relation because the union of any two compact subsets is compact.

Next, observe that the cochain group C#(X) may be looked on as the union
of the subgroups C%(X, X — K), where K ranges over all compact subsets of
X. In other words,

Ci(X; G) = dir lim CY(X, X — K; G),

where the direct limit is taken over the above mentioned directed set, consist-
ing of all compact subsets K = X. Now the operation of taking homology
groups of a cochain complex commutes with the passage to the direct limit;
therefore,

H!(X; G) =dir lim HY(X, X — K; G),

where again the direct limit is taken over all compact subsets K = X, This is
the definition that we will actually use for Hi(X, G).

EXERCISES

3.1. Determine the structure of the groups HY(R"; G) for all i. [cauTION: Even though
R" is contractible, these cohomology groups are not all trivial. Note also the
structure of H2(R").]

3.2. Let X be an arcwise connected Hausdorff space which is noncompact. What is
the structure of H?(X; G) for any coefficient group G?

3.3. A continuous map f: X — Y is said to be proper if the inverse image under f of
any compact subset of Y is compact. Let f: X — Y be a proper continuous map,
andlet f* : C*(Y, G) » CP(X, G)denote the induced homomorphism on cochains.
Prove that f*(CP(Y)) = C?(X), and hence f induces a homomorphism of H?(Y)
into H?(X).



360 XIV. Duality Theorems for the Homology of Manifolds

§4. Statement and Proof of the
Poincaré Duality Theorem

Let M be an n-dimensional manifold with orientation u; we stress that we do
not need to assume that M is compact, connected, or even paracompact.
Moreover, we do not need to make any hypotheses of triangulability or
differentiability.

Because of the choice of orientation u, there is singled out a unique
homology class uy, € H,(M, M — K; Z) for each compact subset K (see Theo-
rem 2.2). Hence the cap product with uy defines a homomorphism

H'M,M - K; G)—= H,_,(M; G)
by the formula
X = XN Ug
for any x € HY(M, M — K; G). Here the coeflicient group G is arbitrary, and
the cap product is defined using the natural isomorphism G ® Z ~ G. Because
of the naturality of the cap product, the homomorphisms thus defined for

different compact sets are compatible in the following sense: if K and L are
compact, and K = L, then the following diagram is commutative:

HYM, M = K) _

H,_,(M)

(here the homomorphism denoted by the vertical arrow is induced by inclu-
sion). Now it is a basic property of direct limits that any such compatible
family of homomorphisms induces a homomorphism of the direct limit; thus,
we have a well-defined homomorphism

P: H!(M; G) > H,_,(M; G)

HY(M, M — L)

(the letter P stands for Poincaré).

Theorem 4.1 (Poincaré duality). Let M be an oriented n-dimensional manifold
and G an arbitrary abelian group. Then the homomorphism

P:HIM; G)— H,_(M; G)
is an isomorphism for all q.
We will give the proof of this theorem now, postponing the discussion of
examples, special cases, and applications to later. As in the proof of Lemma

2.3, there are several cases, starting with M = R", and ending with the general
case.
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Case 1: M = R". Let B, denote the closed ball in R” with center at the origin
and radius k. Clearly, the sequence of closed balls

B,, B,, B, ...
is cofinal in the directed set of all compact subsets of R". It follows that
HY(R"; G) = dir lim HYR", R" — B,; G).
Note also that the homomorphism
HYR",R"— B)—> H' R, R"—B,,))
is an isomorphism for all k and g; hence, it follows that
G forg=n
HRT: 6) = {O for;l #n.

In view of the known structure of H,_,(R"; G), we see that it is indeed true
that the groups H,_,(R"; G) and H(R"; G) are isomorphic for all G and q. It
only remains to prove that
P: H'R" G) - Hy(R"; G)
is an isomorphism; in view of the definition of P, it suffices to prove that for
any closed n-dimensional ball B = R", the homomorphism
H"(R", R" — B; G) = Hy(R"; G)
defined by x — x N ugis an isomorphism. Now ug is a generator of the infinite
cyclic group H,(R", R" — B; Z). We will complete the proof by using the fol-
lowing relation:
e (x N pg) = (x, pup)
(see §XIIL.8). Since R" in arcwise connected, the homomorphism
g, H(R", G) > G
is an isomorphism. Moreover, by the universal coefficient theorem for coho-
mology (see §XI11.4), the homomorphism
a: H'(R", R" — B; G) > Hom(H,(R", R" — B); G)

is also an isomorphism. Using the definition of « in terms of the scalar product,
the desired conclusion follows.

Case 2: Assume M = U u V, where U and V are open subsets, of M, and
that Poincaré duality holds for U, ¥, and U n ¥ (it is assumed, of course, that
the orientation for U is the restriction of u to U, and similarly for ¥ and
U n V). In this situation, we can construct a Mayer—Vietoris exact sequence
for cohomology with compact supports:

> HIT' (M) > HY(U 1 V) - HI(U) © HX(V) ~ HI(M) -+

To construct this sequence, let K = U and L = V be compact sets; we then
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have the following relative Mayer—Vietoris sequence, which is exact:
SHMM—KnL) S H(M, M — K)® H(M, M — L)
% H(M, M — KU L)

(we have used this Mayer—Vietoris sequence a couple of times previously
in this chapter) Now by the excision property, we have the following
isomorphisms:

H(M,M —KnLy~xH({UnV,UnV - KnL),
HY M, M — K) ~ HY(U, U — K),
and
HY(M,M — Ly~ HY(V,V — L).

Next, note that as K ranges over all compact subsets of U and L ranges over
all compact subsets of ¥, K n L ranges over all compact subsets of U n ¥ and
K U L ranges over all compact subsets of M. Hence, as we pass to the direct
limit over all such ordered pairs (K, L), the direct limit of the relative Mayer—
Vietoris sequences gives the desired result.

We now have the following diagram:

w—— H{(UnV) — H{U)@H{(V) —— HIM) — -

| |

I Hn—q(U N V) R Hn—q(U)®Hn—q(V) - Hn—q(M) —_—

The top line of this diagram is the Mayer—Vietoris sequence we have just
constructed, and the bottom line is the usual Mayer— Vietoris sequence in
homology. The vertical arrows are the Poincaré duality homomorphisms for
UnV, U, V,and M, respectively. We assert that every square of this diagram
is commutative. As a general rule, it is fairly easy to check whether or not a
diagram such as this is commutative, But this seems to be an exception to the
general rule! The proof of commutativity is lengthy, to say the least. The
complete details are given in the appendix to this chapter (see Lemma 8.2).

In any event, once we have proved commutativity for this diagram, the
proof that M satisfies Poincare duality in this case is an obvious consequence
of the five-lemma.

Case 3: M is the union of a nested family of open subsets {U,} and it is
assumed that the Poincaré duality theorem holds for each of the U;. In order
to prove this case, it is necessary to make use of a natural homomorphism

7: H(U; G) » HY(X; G)

which is defined as follows for any open subset U of the Hausdorff space X.
If K is any compact subset of U, then the excision property guarantees us an
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isomorphism
HY(U,U — K)~ HY(X, X — K).

Passing to the direct limit over all compact sets K = U, we obtain the desired
homomorphism (it is not an isomorphism in general because not every com-
pact subset of X is contained in U). Two of the most important properties of
7 are the following:

(a) If U = X, then 1 is the identity homomorphism.
(b) If U= V< X, and U and V are open subsets of X, then the following
diagram is commutative:

Hi(U) —— HI(V)

|

HI(X)
In addition, if U is an open subset of the oriented n-manifold M, then the

following diagram is commutative:
HYU) —— HiM)

.
Hy-o(U) —— H,_,(M)

Here i: U -» M denotes the inclusion homomorphism, and as usual, the
orientation of U is assumed to be the restriction of the orientation of M, The
proof of the commutativity of this diagram is an easy consequence of the
definition of P and the naturality of the cap product.

With these preliminaries taken care of, we can now easily prove case 3.
Because the open subsets U, are nested, we can form the direct limits

dir lim H4(U,)
and
dir lim H,_(U,).

In the first case, it is understood that the homomorphisms in the direct system
of groups { HI(U,)} are the t’s corresponding to any inclusion, whereas in the
second case, they are the i,’s corresponding to any inclusion. Next, observe
that the homomorphisms

7, Hi(U;) = HI(M),
il* . Hn—q(UJ.) - Hn—q(M)

(which are defined for all 1) constitute a compatible collection of homomor-
phisms, and hence define homomorphisms of the direct limit groups:
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dir lim HY(U,) » HY(M),
dir lim H,_(U;) = H,_(M).

We assert that these homomorphisms are both isomorphisms; this is a con-
sequence of the fact that any compact subset of M is contained in some U;.
Finally, the Poincaré duality homomorphism P: H¥(U;) » H,_,(U,) is as-
sumed to be an isomorphism for each 1; it follows by passage to the direct
limit that P: H}(M) — H,_,(M) is also an isomorphism.

Case 4: M is an open subset of R", If M is convex, then it is homeomorphic
to R", and case 1 applies. If M is not convex, then we make use of the fact that
the topology of R" has a countable basis consisting of open n-dimensional
balls. Hence, M is a countable union of open balls:

M= B.
i=1
Let
k
Mk = U Bi'
i=1

The theorem must be true for each M,, by an obvious induction on K (use
case 2). Then we can apply case 3 to conclude that the theorem is true for

M= M,
k=1

Case 5: The general case. Let M be an arbitrary oriented n-manifold.
Consider the family of all open subsets U of M such that Poincaré duality
holds for U. This family is obviously nonempty. In view of case 3, we can apply
Zorn’s lemma to this family to conclude that there exists a maximal open set
V belonging to it. If ¥ # M, then there is an open subset B = M such that B
is homeomorphic to R”, and B is not contained to V. We could then apply
cases 2 and 4 to conclude that Poincaré duality also holds for ¥ u B, con-
tradicting the maximality of V. Thus, ¥V = M, and we are through. Q.E.D.

Next, we will take up the mod 2 version of the Poincaré duality theorem.
While this version is weaker in that it only applies to homology and co-
homology groups with Z, coeflicients, it has the advantage that it applies to
all manifolds, whether orientable or not.

We will use the hypotheses and notation of Theorem 2.4: M is an arbitrary
n-dimensional manifold; for each point x € M, u, denotes the unique nonzero
element of the local homology group H,(M, M — {x}; Z,), and for each
compact subset K, ux denotes the unique element of H,(M, M — K; Z,) such
that p.(ux) = p, for all x e K. Let G be a vector space over Z,. Define a
homomorphism

HYM, M — K; G) > H,_,(M, G)
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by the formula
X=X N Ug

for any x € HY(M, M — K; G) (use the natural isomorphism G® Z, = G to
define this cap product). The homomorphisms thus defined for all compact
sets K = M are compatible, and hence define a homomorphism of the direct
limit group,

P,: HM;G)— H,_,(M; G)

which we will refer to as the mod 2 Poincaré duality homomorphism.

Theorem 4.2. For any n-dimensional manifold M and any Z,-vector space G,
the mod 2 Poincaré duality homomorphism P, is an isomorphism of H3(M; G)
onto H,_,(M; G).

The proof is almost word for word the same as that of Theorem 4.1; the
necessary modifications are rather obvious.

EXERCISES

4.1. Use the Poincaré duality theorem to prove that if M is a connected, noncompact
orientable n-dimensional manifold, then H,(M, G) = O for all ¢ > n and all coeffi-
cient groups G.

§5. Applications of the Poincaré Duality Theorem
to Compact Manifolds

Let M be a compact manifold with orientation g; in this case, by Theorem
2.2, there exists a unique homology class u,, € H,(M; Z)such that p.(uy,) = u,
for all x € M; p,, is often referred to as the fundamental homology class of the
oriented manifold M. The Poincaré duality isomorphism

P:HYM; G)—> H,_,(M; G)
is defined by
P(x) = x N py

for any x € HY(M; G).

We can draw some immediate conclusions from this. For example, if M is
assumed to be connected, then H,(M; G) is isomorphic to G. Similarly,
H, (M;Z)~ H'(M; Z) ~ Hom(H,(M; Z), Z) is a torsion-free group.

In case M is compact but not necessarily orientable, we can obtain similar
results with Z, coefficients. There is a unique mod 2 fundamental class,
Uy € H,(M; Z,) and the mod 2 Poincaré duality isomorphism
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Py: H(M; Z,) » H, (M; Z,)

is defined by
Py(x) = x O pry.

From this isomorphism, we deduce that the rank of the vector space
H,(M; Z,) (over Z,) is equal to the number of components of M.

We will now use Poincaré duality theorem to deduce some restrictions on
cup products in the cohomology of a manifold.

Theorem 5.1. Let M be a compact oriented n-manifold and F a field. Then the
bilinear form
HYM; F)®@ H"9M; F)> F
defined by
U@V UUD, Uy

foranyue HY(M; F) and v e H* 4(M; F) is nonsingular.

ProoF. The relation

Uuv, py) =, vN0 Py

can be interpreted as a commutativity relation, as indicated by the following
diagram:

HYM; F)® H" (M, F)\
I®P F

HYM; F)® HM, F) /

In this diagram, arrow 1 denotes the bilinear form of the theorem, arrow 2
denotes the bilinear form defined by x ® y — (x, y)> for any x € H(M; F) and
y € H,(M, F), I denotes the identity map, and P the Poincaré duality isomor-
phism. The bilinear form denoted by arrow 2 is nonsingular because of the
isomorphism

HY(M; F) ~ Hom(H,(M, F), F).

Since P is an isomorphism, it follows that the bilinear form denoted by arrow
1 is also nonsingular, Q.E.D.

If the manifold M is nonorientable, this theorem will still be true provided
we assume that F is a field of characteristic two, e.g., F = Z,.

It would be nice to have an analogue of Theorem 5.1 for the case of
cohomology with integer coefficients, rather than coefficients in a field. Since
the groups HY(M; Z) and Hom(H (M, Z), Z) are not isomorphic in general,
some modifications are necessary in order to obtain a valid theorem. One way
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to proceed is the following: For any space X, define B (X), the g-dimensional
Betti group of X, to be the quotient group of H,(X; Z) modulo its torsion
subgroup. Similarly, define B4(X) to be the quotient group of H(X; Z) modulo
its torsion subgroup. If H,_, (X; Z) is a finitely generated abelian group, then

BY(X) ~ Hom(B,(X), Z);
this is a direct consequence of the short exact sequence

0 - Ext(H,_,(X), Z) » HY(X; Z) 5 Hom(H,(X), Z) - 0.

Lemma 5.2. Let M be a compact manifold; then the integral homology group
H (M) in finitely generated for all q.

If M could be given the structure of a CW-complex, then compactness
would imply that this CW-complex was finite, and the theorem would follow.
However it is not known at present whether or not all compact manifolds are
CW-complexes. Fortunately, there is a way to avoid this difficulty. By results
in Chapter IV, §8 of Dold, [4], a compact manifold is what is called an ENR
(short for Euclidean neighborhood retract). Then Proposition V.4.11 on
p- 103 of Dold [4] asserts that the homology groups of an ENR are finitely
generated. Q.E.D.

Note: This follows from Poincaré duality in case M is orientable; cf. Spanier,
[9, Corollary 11 at bottom of p. 298].

As a consequence of this lemma, we see that for any compact manifold M,
we have a natural isomorphism

BY(M) ~ Hom(B,(M), Z).

This isomorphism is defined as follows. Let HY(M; Z) ® H(M,Z)—~ Z be a
bilinear form defined by x ® y = (x, y) for x e HI(M; Z) and y € H,(M; Z.).
It is obvious that if either x or y has finite order, then {x, y> = 0. Hence, there
is an induced bilinear form on quotient groups:

B{M)® B (M) - Z.
This bilinear form defines the desired isomorphism.

Now let us consider the bilinear form
H(M,Z)Q H' M, Z)->Z

defined by

U v—>{Uu, dy)
(this is similar to the bilinear form defined in Theorem 5.1). Once again, if u

or v has finite order, then {u U v, ), > = 0. Hence, there is an induced bilinear
form

BYM)® B" (M) - Z.
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Theorem 5.3. Let M be a compact, connected, oriented n-manifold. Then the
bilinear form
B(M)y® B" (M)~ Z

defined above is nonsingular and induces an isomorphism of Bi(M) onto
Hom(B""4(M), Z) for all q.

The proof is very similar to that of Theorem 5.1 and may be left to the
reader.

For the present, we will given one application of these theorems. Further
applications will be found in the next chapter.

Proposition 5.4. Let M be a compact, orientable manifold of dimension n =
4k + 2, and let F be a field of characteristic #2. Then H***'(M; F) is a vector
space over F whose dimension is even.

ProoF. By Theorem 5.1, the bilinear form
H2k+1(M; F)® H2k+l(M; F) —PF
defined by
u®@v—-uu, Uy
is nonsingular. Moreover, by the commutative law for cup products,
uuv=—vuu

for any u,v € H***1(M; F). It follows that the bilinear form is skew-symmetric;
but it is a standard theorem of algebra that nonsingular skew-symmetric
bilinear forms can only exist on vector spaces of even dimension (over a field
of characteristic #2). For a proof of this theorem, see Jacobson, [5, Section
6.2].

As an example of this proposition, consider compact orientable 2-
manifolds.

EXERCISES

5.1. Let M be a compact, orientable n-manifold. Prove that the homology groups
H(M; Z) and H,_,(M; Z) have the same ranks. Also, show that the torsion
subgroup of Hy(M; Z) is isomorphic to the torsion subgroup of H,_,_;(M; Z).
(NoTE: This is the way the Poincaré duality theorem was often stated before the
introduction of cohomology groups about 1935. Compare Exercise XI1.4.1.)

5.2. Prove that the Euler characteristic of a compact n-manifold is 0 for n odd.

5.3. Prove that the Euler characteristic of a compact orientable manifold of dimension
4k + 2 is even.

5.4. Let M, and M, be compact, orientable n-manifold, and let f: M; > M, be a
continuous map such that the induced homomorphism
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f* . Hn(Ml; Z) - Hn(MZ’ Z)
is an isomorphism. Prove that for any coefficient group G the induced homomor-
phism

f* : Hq(Ml; G) - Hq(Mz; G)

is an epimorphism and the kernel of f, is a direct summand of H,(M,; G).
Similarly, prove that

f*: Hi(My; G) » HY(My; G)
is a monomorphism, and the image is a direct summand of H4(M,; G).

5.5. Let M be a compact, connected, orientable n-manifold and f: M - M a con-
tinuous map such that f, : H,(M, Z) - H,(M; Z) is an isomorphism. Prove that
the induced homomorphisms f, : H (M, G) - H,(M, G) and f*:HYM, G) »
H(M, G) are isomorphisms for all g and any group G. (HINT: Do the case G = Z
first.)

5.6. Given any eveninteger n,show how to construct a compact connected, orientable
manifold M of dimension 4k + 2 such that the rank of the vector space
H*™*Y(M; F) is n. (uNT: Consider first the case of 2-manifolds, i.e., k = 0. For
larger values of k, proceed by analogy with the case k = 0, recalling the classifi-
cation theorem for 2-manifolds.)

5.7. Let X be a Hausdorf space, and let K be a compact subset of X. Consider the
cup product:

HP(X; G) ® HYX, X — K; G,) > H?*Y(X, X — K; G; ® G,).
Prove that passing to the direct limit over all compact subsets K of X defines a
homomorphism
HP(X; G;) ® HA(X; G,) > HFM(X; G, ® Gy).
(This is called the cup product homomorphism.)

5.8. (a) Let M be an oriented n-manifold. For any compact set K = M, let uy e
H,(M, M — K) denote the unique homology class such that p, (1) = p, for
any x € K. Given u € H?(M; G), choose a compact set K = M such that there
exists a representative u' € H*(M, M — K; G) for u. Show that the element

<u’5 ﬂK> €G

is independent of the choice of the representative v’ for v, and that this process
defines a homomorphism H}(M; G) - G, sometimes called integration over
M.

(b) Show that the following diagram is commutative

HX(M; G)
1
|+
HyM;G) —— G

Here arrow 1 denotes integration over M.
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(c) Prove that for any elements u € H?(M; G,) and v € H{(M; G,), the following
equation holds:
un P(v) = P(uuv).

Here the cup product is that defined in Exercise 5.7, and P denotes the
Poincaré duality isomorphism.
(d) Let F be a field. Define a bilinear form

¢: H"™?(M; F)® H'(M; F)» F

by setting o(u ® v) = the integral of ¥ U v over M. Prove that this bilinear
form is nonsingular and that it defines an isomorphism

H""P(M; F) ~ Homy(H?(M, F), F).

5.9. Let M" be a compact connected orientable n-manifold and let T: M" - M" be
a homeomorphism. How can one determine whether or not T is orientation
preserving, in terms of knowledge about the induced homomorphism T, :
H,(M") - H,(M")? (Compare Exercise 2.2)

5.10. For which integers n is real projective n-space, RP", orientable, and for which n
is it nonorientable? (For the definition of RP", see §IX.3; see also statement (h)
in §VIIL.2)

§6. The Alexander Duality Theorem

Let A be a subset of a topological space X; by a neighborhood N of A in X,
we mean a subset N of X which contains A in its interior. The neighborhoods
of A (ordered by inclusion) constitute a directed set since the interestion of
any two neighborhoods of A4 is again a neighborhood of A. Consider the direct
system of groups { H4(N)}, where N ranges over all neighborhoods of 4 in X
(the homomorphisms are those induced by the inclusion relations, of course).
For each such N, the inclusion A « N induces a homomorphism HY(N) -
H9(A), and the collection of all such homomorphisms is obviously compatible.
Hence, there is induced a homomorphism

dir lim HY(N) — H4(A).

The subspace A is said to be tautly imbedded in X (or simply taut in X) with
respect to singular cohomology if this homomorphism is an isomorphism
for all g and all coefficient groups. This concept was introduced by Spanier
[9, p. 189]. We need it for our discussion of the Alexander duality theorem.

Examples

6.1. Let A denote the subset of the plane R? consisting of the union of the
graph of the function y = sin(1/x) (for x # 0) and the y axis. We assert that 4
is not taut in R2. In order to prove this, note that the open neighborhoods of
A are confinal in the family of all neighborhoods of A. Furthermore, the open,
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arcwise connected neighborhoods are confinal in the family of all open neigh-
borhoods. It follows that the direct limit, dir im H°(N; Z), is infinite cyclic.
On the other hand, H°(A4; Z) is free abelian of rank 3 (there are three arc
components).

As another example, let P denote the subset of A consisting of one point,
the origin. Then it is readily verified that P is not taut in A.

In some sense, these two examples are rather pathological. We will see
shortly that any “nice” subset of a nice space is tautly imbedded. We will be
mainly interested in the case where X is a manifold. Then it will turn out that
the question of whether or not a subset 4 of X is taut or not depends only on
A! Obviously, the question only depends on arbitrarily small neighborhoods
of A in X, but we are asserting something stronger than this.

The situation may be explained in more detail as follows. This book has
been concerned exclusively with singular homology and cohomology theory.
However, there is also another type of cohomology theory, called Cech—
Alexander—Spanier cohomology theory. For any pair (X, A), any integer g,
and any abelian group G, there is defined the g-dimensional Cech—Alexander—
Spanier cohomology group, which we denote by H(X, A4; G). Just as for the
singular cohomology theory, a continuous map f: (X, A) - (Y, B) induces
homomorphisms f*: HY(Y, B; G) - H4X, A; G) for all q. The basic prop-
erties of the Cech—Alexander—Spanier cohomology theory are exactly the
same as those of the singular cohomology theory; the reader may find more
details in Spanier, [9, Chapter 6, Sections 4 and 5], or Massey [7, Chapter 8].

One of the major differences between singular and Alexander—Spanier
cohomology is this matter of tautness. In general, tautness is more likely to
hold with respect to the Alexander—Spanier cohomology theory than with
respect to the singular theory. In fact, the following theorem holds:

Theorem 6.1. In each of the following four cases A is taut in X with respect to
the Alexander—Spanier cohomology theory:

(1) Ais compact and X is Hausdorff.

(2) Ais closed and X is paracompact Hausdorff.

(3) A is arbitrary and every open subset of X is paracompact Hausdorff.
(4) A is aretract of some open subset of X.

This theorem is taken from Spanier [10]; for a proof, see Massey [7, pp.
238-241]. One case of this theorem is proved in Spanier [9, pp. 316-317].

A more precise comparison of singular and Alexander—Spanier coho-
mology is possible because there is defined for any pair (X, A), any coefficient
group G, and any integer g, a homomorphism

A:HY(X, A; G) » HY(X, A; G).

This homomorphism is natural, in the sense that it commutes with homomor-
phisms induced by continuous maps. There are various theorems which
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asserts that for certain classes of nice topological spaces, 4 is an isomorphism
for all G and q. For a discussion of this question, see Spanier [9, Chapter 6,
Section 9], or Massey [7, §8.8]. For our purposes, the following are the two
most important cases in which A: HY(X; G) » H%X; G) is known to be an
isomorphism for all G and q:

(a) X a paracompact n-manifold.
(b) X is a CW-complex, or a space which has the homotopy type of a
CW-complex.

Using these properties of the homomorphism 1, we can easily prove the
following propositions;

Proposition 6.2. Let M be a paracompact n-manifold, and let A be a closed
subset of M. Then A is taut in M (with respect to singular cohomology) if and
only if A: HY(A; G) > H%A; G) is an isomorphism for all q and G.

Thus, in this case, the question of tautness depends only on 4.

Proposition 6.3. Let M be a paracompact n-manifold, and let A be a closed
subset of M. Then

dir lim HYN; G) ~ H(4; G),

where the direct limit is taken over all neighborhoods N of A in M.

The proof of both of these propositions depends on the naturality of the
homomorphism A. The open neighborhoods of A4 are cofinal in the family of
all neighborhoods of A; and every open neighborhood N of A is also a
paracompact manifold. Therefore, A : H(N) — H%N) is an isomorphism. The
rest of the details of the proofs may be left to the reader.

Remark: In Dold [4], the conclusion of Proposition 6.3 is taken as the
definition of the Cech—Alexander—Spanier cohomology groups H%(A).

We will now use these results to derive important relations between the
homology groups of an open subset of a compact manifold and the coho-
mology groups of its complement. Let M be a compact, oriented n-manifold,
U an open subset of M, and A = M — U the closed complement. For any
compact set K < U, consider the following diagram:

)
HY{M, M — K) —— HY(M) — HYM — K) —— H"* (M, M — K)

: o

HYU, U — K) P H, (M—-K, U-K) H" YU, U - K)

P L |

iy Jo J
H, (U) — H, (M) —— H, (M\U) ——— H,_,_,(U).
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In this diagram, the top line is the cohomology sequence of the pair
(M, M — K), the bottom line is the homology sequence of the pair (M, U), and
k:(UU-K)y-»M,M — K)and!:(M — K, U — K) - (M, U) are inclusion
maps which induce isomorphisms by the excision property. The homomor-
phisms denoted by arrows 1 and 2 are defined by

X—=>XxXN (k;lﬂx),

y-oyolyn,)

for any x e H{(U, U — K) and y e H{M — K); here uy € H,(M, M — K) and
u4 € H(M, M — A)have the same meaning as in the definition of the Poincaré
duality isomorphism. In addition, each square of this diagram is commutative;
this is a consequence of Lemma 8.1 in the appendix to this chapter.

Now pass to the direct limit as K ranges over all compact subsets of U.
Note that

dir lim HYM — K) = H%(A)

since as K ranges over all compact subsets of U, M — K ranges over all open
neighborhoods of A (see Proposition 6.3). Hence, we obtain the following
commutative diagram:

H(U) —— H(M) -2 Hya) 2 HOY(U)

o E L |+ s

» * bl
H,_(U) —— H, (M) —2> H, (M,U) —— H,_,_,(U)

Each square of this diagram is commutative, and the top line is exact, since
direct limits preserve exactness. The vertical arrows labeled P are the Poincaré
duality isomorphisms for M and U. It follows from the five-lemma that the
homomorphism labeled P’ is also an isomorphism. For future reference, we state
this as follows:

Proposition 6.4. Let M be a compact orientable n-manifold, A a closed subset
of M, and U =M — A the complementary set. Then the relative homology
group H,_ (M, U; G) is isomorphic to the Cech—Alexander—Spanier coho-
mology group H(A; G).

Of course the most interesting cases of Diagram (14.6.1) and Proposition
6.4 are those cases where the Alexander—Spanier cohomology group, H4(A),
and the singular cohomology group, H%(A), are isomorphic. In that case, it is
easily verified that h* is the homomorphism induced by the inclusion of 4 in
M. However, the reader must not lose sight of the fact that it is absolutely
necessary to use Alexander—Spanier cohomology for the correct statement of
this proposition. The following example illustrates this point: Consider the
2-sphere, 52, as the compactification of the plane R, obtained by adjoining
to it a point labeled 0. Let A4 be the closed subset of $* which is the union of
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the graph of the equation y = sin(1/x) (x s 0), the segment —1 <y < +1of
the y axis, and the point co. As above, let U = §2 — A = R?> — A. Then U has
two components, and it may be shown that each component is homeomorphic
to an open disc. Consider the following portion of the reduced homology
sequence of (82, U):
H(8%) 5 Hy(5%, U) > Bo(U) 5 Ho(S?).

Since H,(U) is infinite cyclic, we deduce that H,(S2, U) is also infinite cyclic.
Hence, by Proposition 6.4, H'(A) is infinite cyclic. On the other hand, the
singular cohomology group H*(A)is zero. The set A has the same Alexander—
Spanier cohomology groups as a circle, whereas its singular cohomology
groups are the same as a space consisting of two points. However, the comple-
ment of 4 in §? is homeomorphic to the complement of a circle imbedded in
S2.

Proposition 6.5. Let A be a closed, proper subset of a compact, connected,
orientable n-manifold. Then H(A; G) = 0 for all ¢ > n and all coefficient groups
G.

This is a direct consequence of Proposition 6.4. It is of interest to note
that this proposition is false in general for the singular cohomology groups
HY(A; G); for a spectacular counterexample, see Barrett and Milnor [1].

Theorem 6.6 (Alexander duality theorem). Let M be a compact, connected,
orientable n-manifold and q an integer such that H(M, G) = H,,,(M, G) = 0.
Then for any closed subset A —c M,

H"*"Y(4; G) ~ HM — 4; G).

The most important example of a manifold satisfying the hypotheses of this
theorem is the n-sphere, §". Obviously, we must have 0 < ¢ < n — 1 because
Hy(M, G)and H,(M, G) are always nonzero for a compact, connected, orient-
able n-manifold. However, there is no difficulty in stating versions of this
theorem corresponding to the cases ¢ = 0 and ¢ = n — 1; this we will now do.

Theorem 6.6, continued. Let M be a compact connected orientable n-manifold,
and let A be a closed, proper subset of M.

(@) If H(M; G) = 0, then H"\(4; G) ~ Hy(M — A; G).

(b) H°(A; G) always contains a direct summand isomorphic to G; if
H,_,(M; G) = 0, then the quotient group of H°(A) modulo this summand is
isomorphic to H,_,(M — A; G).

This direct summand of H°(4; G) can be more precisely described as
follows: let P denote a space consisting of one point, and let f: A — P be the
unique map. Then the subgroup in question is f*( H°(P; G)). The correspond-
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ing quotient group is the “reduced” 0-dimensional Alexander—Spanier coho-
mology group.

The proof of the Alexander duality theorem follows immediately from
Diagram (14.6.1); the details are left to the reader. The theorem can be
considered a far-reaching generalization of the Jordan—Brouwer separation
theorem and the other theorems which were proved in §VIIL6. Various
applications of it are given in the exercises below. One of the main con-
sequences is that if 4 is a closed subset of S”, the homology groups of §" — 4
are independent of how A is imbedded in §". We have already seen special
examples of this phenomenon in §VIIL6.

EXERCISES

6.1. Let 4 be a compact connected orientable (n — 1)-manifold (1 > 1) imbedded in
S”. Prove that S" — A4 has exactly two components.

6.2. Prove that a nonorientable compact (n — 1)-manifold can not be imbedded in $*.
[HINT: If M is such a manifold, prove first that H" }(M; Z) is a finite group of
order 2. Then apply the Alexander duality theorem. See Exercises 2.7 and 2.11.]

6.3. Let A be acompact subset of R". Derive a relation between the Alexander—Spanier
cohomology groups of 4 and the singular homology groups of R* — 4.

6.4. Let M be a compact, connected, orientable 2-manifold. We say a homology class
ue H{(M; Z) can be represented by an inbedded circle if there exists a subset
A = M such that 4 is homeomorphic to a circle, and the obvious homomorphism
H,(A4) - H,(M) sends a generator of H,(4; Z) onto u. Prove that ifu # 0 and u
can be represented by an imbedded circle, then u is not divisible [i.e., there does
not exist an integer d > 1 and a homology class v such that u = dv; an equivalent
condition is that the subgroup of H;(M) generated by u should be a direct
summand]. Prove also that if M is a torus, every nondivisible homology class can
be represented by an imbedded circle.

6.5. State and prove the analogues of the theorems of this section for nonorientable
manifolds, using Z, coefficients for all homology and cohomology groups.

6.6. Let A be a compact subset of Euclidean 3-space R? which is tautly imbedded and
has finitely generated integral homology groups. Prove that the integral homology
and cohomology groups of 4 are torsion-free.

§7. Duality Theorems for Manifolds with Boundary

We recall the definition: An n-dimensional manifold with boundary M is a
Hausdorff space such that each point has an open neighborhood homomor-
phic to R", or to R}, = {(x4, ..., x,) € R"|x, > 0}. For simple examples of
manifolds with boundary, and for the classification of compact, connected
2-dimensional manifolds with boundary, the reader is referred to Massey [6,
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Chapter I, Sections 9-12]. The set of all points of M having an open neighbor-
hood homomorphic to R" is called the interior of M, and the complementary
set is called the boundary of M. Whether a point x belongs to the interior or
boundary of M can be determined by means of the local homology groups of
M at x (cf. §VIIL.2). The interior is an open, everywhere dense subset of M,
which is an n-dimensional manifold; the boundary is a closed subset which is
an (n — 1)-dimensional manifold.

Our main objective is to state and prove an analog of the Poincaré duality
theorem for manifolds with boundary. For this purpose, it will be convenient
to use the following fundamental theorem of Morton Brown:

Theorem 7.1. Let M be a compact n-dimensional manifold with boundary B.
Then there exists an open neighborhood V of B and a homeomorphism g of
B x [0, 1) onto V such that g(b,0) = b for any b € B.

For a short proof of this theorem, see R. Connelly [3]. Connelly’s proof is
reproduced in the appendix to Vick [11].
This theorem has many consequences; among them are the following:

Corollary 7.2. The inclusion map of M — B into M is a homotopy equivalence.

Corollary 7.3. Let V,=g(B x [0,t)) forO<t < 1,and K, =M — V,. Then V,
is an open neighborhood of B in M, B is a deformation retract of V,, and the
collection {K,|0 <t < 1} is cofinal in the fimaily of all compact subsets of
M- B

Next, for 0 <t < 1 let i, : (M, B) - (M, M — K,) = (M, V) denote the in-
clusion map. It follows that the induced homomorphisms

i Hy(M, By~ Hy(M, M — K,),
i*: H(M, M — K,) > HYM, B)

are isomorphisms.
Corollary 7.4. H{(M — B; G) is naturally isomorphic to HY(M, B; G).

This corollary follows from the definition of H{(M — B) as a direct limit,
the fact that HY(M — B, (M — B) — K) = HY(M, M — K) for any compact set
K = M — B, and the cofinality of the family {K,}.

We will define a manifold M with boundary B to be oriented if the
manifold M — B is oriented in the sense defined in §2. This implies that
for each compact set K « M — B, there is a unique homology class uy €
H, (M — B, M — B — K; Z)such that p,(uy) is the local orientation of M — B
at x. But as was observed above,

H(M — B,M — B— K)~ H(M, M - K),
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by the excision property. In addition, if M is compact and K = K|,
H,(M, M — K) = H,(M, B). Thus, the fact that M is oriented and compact
implies the existence of a unique homology class u,, € H,(M, B; Z) such that
for any x e M — B, the homomorphism H,(M, B) > H,(M, M — {x}) maps
Uy onto the local orientation p,. py, is called the fundamental homology class
of M.

Theorem 7.5. Let M be a compact orientable n-dimensional manifold with
boundary B. Then the homomorphism

HYM, B; G) - H,_,(M; G)
[defined by x — x Ny, for any x € HY(M, B; G)] is an isomorphism.

Proor. We already know that HY(M, B; G)is isomorphic to H,_,(M; G). For,
by Corollary 7.4, H4(M, B) ~ H}(M — B); then we have the Poincaré duality
isomorphism P: H{(M — B) ~ H,_,(M — B). Finally, by Corollary 7.2, there
is an isomorphism H,_,(M — B) ~ H,_,(M) induced by inclusion. Thus, it
suffices to prove that the composition of these three isomorphisms is the same
as the homomorphism H%M, B) - H,_,(M) occurring in the statement of the
theorem. In order to prove this, consider the following commutative diagram:

HYSM, FM — K) —— HYM,M — K) —— H4M, B)
® ® ®

H(SM, $M — K) —— H,(M,M — K) —— H,(M, B)

|

Hy M) ——  H_ M) —— H,_ M)

In this diagram, #M = M — B denotes the interior of M, K = K|, all three
vertical arrows denote cap products, and all horizontal arrows denote iso-
morphisms which are induced by inclusion maps. The left-hand vertical arrow
defines the Poincaré duality isomorphism P : HI(# M) —» H,_ (¥ M), and the
right-hand vertical arrow denotes the cap product occurring in the statement
of the theorem. Putting all these facts together, the reader should have no
difficulty deducing the theorem. Q.E.D.

The isomorphism of the theorem just proved is one-half of the Lefschetz—
Poincaré duality theorem for manifolds with boundary. As a preliminary to
the other half of this duality theorem, we need the following important result:

Theorem 7.6. Let M be a compact, oriented, n-dimensional manifold with bound-
ary B, and let 0, : H(M, B; Z) - H, _,(B, Z) denote the boundary operator of
the pair (M, B). Then 0, () is a fundamental homology class for some orienta-
tion of B; in particular, B is orientable.
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PROOF. In order to prove this theorem, it is necessary to show that for any
b e B, jo,(uy) is a generator of the infinite cyclic group H,_,(B, B — {b}; Z).
Here j denotes the homomorphism H,_,(B) —» H,_,(B, B — {b}) induced by
inclusion. Note that jd, = ¢’ is the boundary operator of the exact homology
sequence of the triple (M, B, B — {b}).

By the definition of a manifold with boundary, there exists an open neigh-
borhood U of b and a homeomorphism h of U onto R’ . Since b is a boundary
point of M, h(b) must lie in the subspace of R", defined by the equation x, = 0.
Obviously, we can assume that h is chosen so that h(b) = (0, 0, ..., 0). We may
as well identify each point x € U with its image h(x) € R’ ; thus the coordinates
Xy, ..., X, in R% are actually coordinate functions in U. Then B~ U is the
subset of U defined by the equation x,=0. Let ae U be the point with
coordinates (0, ..., 0, 1), and let N and W be the following subsets of U:

N ={(xy,....x,)e U]Y. x} < 4},
W = {(xy,..., x,) € N|Y. x} <4 and x, > 0},
E=NnB

Now consider the following commutative diagram:

AN H,_ B, B— — H,_\(E,E— {b})
l \ \ lﬁ
H(M,M— 4—1— H(M M- W) (M =W, (M- W)—{b})

i | |

H(N,N — {a}) «—— H{N,N — W) L I H,_ (N — W,(N - W)—{b}).

In this diagram, the arrows labeled ¢, ¢,, and @, denote the boundary
operators of certain triples; all other arrows denote homomorphisms induced
by inclusion maps. It is a routine matter to prove that 0, and the homomor-
phisms numbered 1 through 6 are isomorphisms. Thus, all the groups in the
diagram, except possibly H,(M, B), are infinite cyclic, and are related by a
unique isomorphism. We know that p(u,,) is a generator of the infinite cyclic
group H,(M, M — {a}). It, therefore, follows that 0'(u,,) is a generator of the
infinite cyclic group H,_,(B, B — {b}), as was to be proved. Q.E.D.

We can now derive the remaining half of the Lefschetz—Poincaré duality
theorem for manifolds with boundary. Let M be a compact, oriented n-
dimensional manifold with boundary B, and let u,, € H,(M, B; Z) denote the
fundamental homology class of M. Consider the following diagram involving
the exact homology and cohomology sequences of the pair (M, B):
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-

_ ; \
HYM,B:G) ——— HYM:G) ————— HYB;G) ————— H**'(M,B;G)

o | | b I
H,_(M;G) —— H, (MB;G) —— H, , (B:G) —— H,_,_,(M;G).

In this diagram, homomorphisms denoted by arrows 1 and 2 are cap product
with the fundamental class, i.e., x & x N uy,. Arrow 3 denotes the Poincaré
duality isomorphism for B, defined by y — y n(9u,). Because of the basic
properties of cap products, each square in this diagram is commutative up to
a +sign. We have already proved that arrows 1 and 3 are isomorphisms. It
follows from the five-lemma that arrow 2 is also an isomorphism. Thus, we
have proved the following result:

Theorem 7.7. Let M be a compact, oriented n-dimensional manifold with bound-
ary B and fundamental class py, € H,(M, B; Z). Then there are Lefschetz—
Poincaré duality isomorphisms

Hi(M, B; G) > H,_,(M; G)
and
HY(M; G) > H,_ M, B; G)

defined by cap product with . In addition the homology sequence of (M, B)
and the cohomology sequence of (M, B) are isomorphic as indicated in Diagram
(D) above.

EXERCISES

7.1. Let M be a compact, connected, orientable n-manifold with nonempty boundary
B(B need not be connected). Prove the following relations for any abelian group G:

H(M; G) =0.
H/(M, B;G) ~ G.
H, (M;Z)and H,_,(M, B; Z) are torsion-free abelian groups.

7.2. State and prove analogues of the theorems of this section for nonorientable
manifolds with boundary, using Z, coefficients.

7.3. Let M be a compact n-dimensional manifold with boundary B. If n is odd, prove
that
x(B) = 2x(M) = —2x(M, B),

where y denotes the Euler characteristic. [NOTE: It may be proved that the integral
homology groups of a compact manifold with boundary are all finitely generated.
Hence the Euler characteristics (M) and x(M, B) are well defined.]

7.4. Let M be a compact, oriented n-dimensional manifold with boundary B. (a) For
any field F, prove that the bilinear form



380 XIV. Duality Theorems for the Homology of Manifolds

HYM, B; F)® H" %M; F) > F,

defined by u ® v —» {u U, uy, >, is nonsingular (cf. Theorem 5.1). (b) By analogy
with Theorem 5.2, prove that the bilinear form

Bi(M, B)® B 4(M) > Z,
defined by u ® v » (u U v, u,, D, is nonsingular.

7.5. Prove that the integral homology groups H,(M, B) and H,_,(M) have the same
rank, and that the torsion subgroups of H (M, B) and H,_,_, (M) are isomorphic,
where (M, B) is as in the preceding exercise. (NOTE: This is the way the Lefschetz—
Poincaré duality theorem was often stated before the introduction of cohomology
groups about 1935.)

7.6. Let M be a compact, orientable 2¢-dimensional manifold with boundary B, where
q is odd, and let F be a field of characteristic #2. Prove that the homomorphism
J*: HYM, B; F) > HY(M;, F) has even rank. (HINT: See the proof of Proposition
53)

7.7. Let M; be a manifold with boundary B, for i = 1, 2. Prove that M; x M, is a
manifold with boundary. What is the boundary of M; x M,?

§8. Appendix: Proof of Two Lemmas
about Cap Products

For the statement of the first lemma, assume that {4, B} is an excisive couple
in the space X, and X = Au B. We then have the following diagram of
homology groups and homomorphisms:

H(A, A~ B)™S H(X, B) & H(X) H (X, A2 H/(B, A A B).

All homomorphisms are induced by inclusion maps; e, and e,, are isomor-
phisms because {4, B} is excisive. Assume that v € H,(X) is given; let

v, =(e,,) ', (v) e H(A, AN B),
v, =(e,,) Y, () € H(B, An B).

Now consider the following diagram:

j* i ad
HY(X,A) N HY(X) — HYA) > HY(X,A)
le; lnvl le;
H%B, A n B) ne H,_ (A, A~ B) HY*Y(B, A n B)

([m:z lel. ([m;z

Hy o(B) == H, (X) =77 H.-(X,B) —— H,_,_.\(B).
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The top line is the exact cohomology sequence of the pair (X, A), the bottom
line is the exact homology sequence of the pair (X, B), and the vertical arrows
are induced eithe by the inclusion maps e, or e,, or else by cap product with
the indicated homology class.

Lemma 8.1. Each square in the above diagram is commutative.

Proor. In §XIII. 3, we defined a slant product
C(Y, G) ® C(X x Y;G,) > G (X G, @ Gy)
by the formula
u\v = u\\§(v)

foranyu e C?(Y)and v € C,(X x Y).Thisslant product satisfies the following
formula:

o(u\v) = (ou)\v + (— 1)Pu\(0v).
On passing to homology and cohomology classes, it determines a homomor-
phism

HP(Y)® H/(X x Y) > H,_,(X),
which is also called the slant product.

For the purposes of this appendix, it is convenient to define in a similar
way, a cap product on the chain—cochain level. This will be a homomorphism

CP(X; G) ® C(X; Gy) S Cpp(X; G, ® Gs)
defined by
unv=u\dy(v),

where d : C;(X) —» C(X x X)isthe chain map induced by the diagonal map
d. It satisfies the following boundary—coboundary formula,

d(unv) = (5u) N v + (— 1)Pu~ (9v), (14.8.1)

for any u € C?(X) and v € C,(X). On passage to cohomology and homology
classes, it gives rise to the cap product defined in §XIIL.3. The naturality
condition

fe(ffwynv) = un(fv)

obviously holds for any continuous map f: X — X', u € C?(X’) and v € C,(X).
Moreover, this definition can be generalized easily to cover the case of relative
chain and cochain groups which we need below.

Since {A, B} is excisive and X = 4 U B, the inclusion map

C(A)+ C(B)— C(X)
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induces isomorphisms on homology groups. Therefore, we can choose a
representative cycle z for the homology class v € H,(X) such that z € C,(4) +
C,(B). In other words,

z=12, 4+ z,,

where z, € C,(A) and z, € C,(B). Although z is a cycle, i.e., d(z) = 0, it does not
follow that z, and z, are cycles. All we can conclude is that

0(z;) = —0(z;) € C,-1(A " B).
Let z; € C,(A, A B) and z; € C,(B, A n B) denote the images of z; and z,,
respectively, in these quotient groups. Then
0(z1) = d(z) =0
and
e14(21) = 14(2), e,4(22) = j4(2).

Therefore, z; and z; are representative cycles for v, and v,, respectively. Now
consider the following diagram of chain and cochain complexes, and chain—
cochain maps:

j# j#
0 —> C*X,A) —2— C*X) —> C*4) —— 0
C*(B, An B) Nz C(A, AN B)
Nz C1a

0 — CB — CX) — CX,B) — 0
ke b (14.8.2)

Although the homomorphisms denoted by the vertical arrows do not have
degree 0, they commute with the boundary and coboundary operators because
z, 27, and zj are cycles, and because of Formula (14.8.1). The top and bottom
lines of this diagram are exact. We assert that each square of this diagram is
commutative. This is a consequence of the “commutativity” of the following
diagram:

C*B, A n B) ‘e—; C*(X,A) — C*X) = C*(X) -,—" C*(A)
® ® ® ® ®
CAB, A " B) ——= C{X,A) «—— C{X) —— CX.B) «5— C{4, A B)

CB) ——— (X) = C(X) —— C(X,B) +— C(4,4n B).
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The “commutativity” of each of the four squares of this diagram expresses a
naturality relation for cap products.

The proof of the lemma may now be completed by passing from Diagram
(14.8.2) to the corresponding diagram of homology and cohomology groups,
induced homomorphisms, etc. Q.E.D.

The statement and proof of the second lemma are somewhat longer. As-
sume that M is an oriented n-manifold and that M = U u V, where U and V
are open subsets of M. Let K and L be compact subsets of U and V, respec-
tively. Since M is oriented, by Theorem 2.2, there exist unique homology
classes

Hxor € Hy(M, M — KU L),
g € H,(M, M — K),
u e H(M, M — L),
and
g~ € H,(M,M — KN L)

which restrict to the chosen local orientations at each point. Consider the
following diagram:

. A,
A HM M -KAL) — HMM-K)®@HMM-—L) — HM—Kul) —

JP. Jkr@k;

HUAV,U~NnV~-Knl) HY(U,U—-K)®H(V,V ~ L) Mot

J”me. J(”h)@(ﬂvﬂ
A.

..i. H, UnV) —— H,_(U)®H,_ (V) ————— H,_ (M) ——

In the top line of this diagram, we have the relative Mayer—Vietoris coho-
mology sequence of the triad (M; M — K, M — L), whereas the bottom line
is the usual Mayer—Vietoris homology sequence. The maps

pUNVUNV—-—KnL)»(MM—-KnL),
ki:(U,U-K)->(M,M - K),
ky:(V,V-L)>(M M- L)

are inclusion maps which induce isomorphisms on homology and coho-
mology by the excision property; also,

VknL = P;l(#an),
Vg = ku(#x)’
VL= kgi(#L)'
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Lemma 8.2. Each square of the above diagram is commutative.

It is understood that the diagram is extended to the right and left indefi-
nitely, and that the lemma applies to each square of the extended diagram.

If we pass to the direct limit over all such compactsets K « Uand L c V,
we obtain a commutative diagram involving two exact sequences which
played a crucial role in the proof of the Poincaré duality theorem in §4.

Lemma 8.2 is a special case of a more general lemma which we will now
state. Let X, X,, Y;, and Y, be subspaces of a topological space X such that
X = (Interior X,)u (Interior X,) and {Y;, Y,} is an excisive couple. Assume
we have given homology classes

peH,(X, Y, nY,),
v,€e H (X, X,nY), a=12,

and
vEH (X n X5, XinX,n(Y0Y)))
such that
T (1) = Koy (V)
and

Gax (Va) = My (v)
for « = 1, 2, where
i (X, 1" 1) - (X, X,),
ket (Xy, X, N Y) > (X, X)),
e (Xa» Xo N X) > (X, X, n (Y, U Y2)),
and
m:(XinX,, X, nX;n(Yuh)> (X, X,n(Y;uY,)

are all inclusion maps. Consider the following diagram:
[ ¥ .

HU(X, Y, U Yy) — HYX, Y,) @ H(X,Y,) — HX, Y, n Y;) — HUX, ¥, U Y,)
L4 ¥ a,

H, (X, X;) — Hn—q(xl)®Hn—q(Xz) > H, (X) — H,_ (X, n X))

The top line is the relative Mayer- Vietoris cohomology sequence of the triad
(X; Y, Y;), whereas the bottom line is the usual Mayer—Vietoris homology
sequence. The homomorphisms «, 8, and y are defined as follows:

a(x) =(p*x)nv, xe H*(X, Y0 Y,),
By, v) = ((ktu) vy, (k3v) N vy), we HY(X, ), ve H*(X, Y2)
'y(W)=Wmﬂ, WEH*(X’ Ylm)IZ)'



§8. Appendix: Proof of Two Lemmas about Cap Products 385

Herep: (X, n X,, X, n X, n(Y; U Y,)) > (X, Y, U Y,)is an inclusion. From
the basic properties of cap products, it is easy to check that the squares 1 and
2 in the above diagram are commutative. However, square 3 need not be
commutative. In fact, we have the following precise statement:

Lemma 8.3. There exists a homology class y € H, (X, Y, U Y,) such that for
any integer q and any we HY(X, Y, n Y,),
Ayy(w) — aB*(w) = A, ((A*w) N y)

(the homology class y is not unique, in general).

Before proving this lemma, we will indicate how it implies Lemma 8.2. Let
X =M, =U, X, =V
Yy=M-K, and Y, =M — L.
Then H,,,(X,Y,uY,)=H, M M—-KnL)y=0 since M is an n-

dimensional manifold. Hence y = 0 in this case, and Lemma 8.2 follows.

Proor or LEMMA 8.3. The standard situation which leads to a commutative
diagram of exact sequences is the following:

i j

60— K — K — K' — 0
" ¢ " ¢ " @ (1483)
0— L 25 p 1o v —0

In this diagram, the following two hypotheses are assumed:

(1) The top and bottom lines are short exact sequences of chain complexes
and chain maps.
(i) Thechainmaps ¢’, ¢, and ¢” satisfy the following commutativity relations:

pi=ko' and ¢"j=lep.

Unfortunately, this situation does not apply to the case at hand, because
neither of these two hypotheses holds when we go back to chains and cochains.
In oreer to prove Lemma 8.3, it is necessary to investigate what happens when
we relax these hypotheses. The first (and more interesting) step is to relax the
commutativity condition (ii) and require only commutativity up to a chain
homotopy. To be precise, assume that the following chain homotopy relations
hold in the above diagram:

@i — ko' = 0D + D¢,
¢"j —lp = 8"E + Eo,

where D: K’ - Land E : K — L"” are homomorphisms of degree + 1. An easy
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calculation then shows that
0"(Ei + ID) = —(Ei + ID)?',

i.e., the homomorphism Ei + ID:K’'— L” commutes with the boundary
operator (up to a minus sign). Therefore, it induces homomorphisms

(Ei + ID), : H,;(K') > Hy(L")

for all g. We assert that this homomorphism gives us a measure of the lack of
commutativity of the following diagram:

jt ” 6’( { i‘
I Hq(K) ? Hq—l(K) > T

124 o
C A By 2 ol L) B
In fact, the following equation holds:
o9, — ¢, 0x = O.(Ei + ID), 0. (14.8.4)
To prove this equation, one must prove that for any u € H (K"),

@, k() = (@3 (u) — (Ei + ID), Ox(u)).

Choose a representative cycle for the homology class u, and then compute
representative cycles for the left- and right-hand side of this equation. We leave
it to the reader to verify that the two representative cycles are homologous.

Next, we will consider relaxing hypothesis (i), the exactness hypothesis. We
will assume given a diagram

K5KLK

of chain complexes and chain maps such that i is a monomorphism, j is an
epimorphism, and image i is contained in kernel j. However, we do not assume
that image i = kernel j; this is the assumption we have to avoid. We also have
to consider the following two additional chain complexes:

X (f) = kernel j,
%(i) = cokernel i.

We then have the following commutative diagram of chain complexes and
chain maps:

i

0 — K K %() 0

oLl

0 — X#(j) — K —5 K" — 0

Each row of this diagram is exact. Using the five-lemma, it is readily seen that
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a, : H(K') = H,('(j)) is an isomorphism for all g if and only if B, : H,(%(i)) -
H,(K") is an isomorphism for all q. If that is the case, we can define a long
exact homology sequence

s H(K) S K S H K S H,_ (k)

in a natural way.
Let us agree to say that the sequence of chain complexes and chain maps

KSKLK

is almost exact if all the assumptions listed in the preceding paragraph
(including that «, and f§, are isomorphisms) hold. The point is that almost
exact sequences are just as good as short exact sequences when it comes to
defining long exact homology sequences.

Examples

8.1. Assume that {4, B} is an excisive couple in the space X. We then have
the following almost exact sequence of chain complexes,

C(X, AnB)-> C(X, A)® C(X, B)> C(X, AU B)

which gives rise to the relative Mayer—Vietoris homology sequence (cf. XIIL.6).
The dual sequence of cochain complexes,

C*X,AUB;G) > C*(X,A4;G)® C*(X,B; G) » C*(X, An B)

is also almost exact, and gives rise to the relative Mayer— Vietoris sequence in
cohomology.

We will now apply these ideas to generalize Diagram (14.8.3) and Equation
(14.8.4). Assume we have given the following diagram of chain complexes and
chain maps:

K/ _i’ K _"’ Kl/

J "3 J [ J " (1485)

L/ _k’ L _l’ L//

It is assumed that both rows of this diagram are almost exact (instead of exact),
and that each square is chain-homotopy commutative; in other words, there
exist chain homotopies D : K’ » L and E : K — L” such that

@i — ko' = dD + D@,
¢"j — lp = 0"E + E&.
Then, exactly as before, we can verify that the homomorphism

Ei+ID:K'->L"
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commutes with the boundary operators (up to a minus sign) and induces
homomorphisms
(Ei +ID),:H,_,(K') = H/(L").

Then this homomorphism suffices to describe the lack of commutativity in
the following diagram:

1" a" ’
H/(K") —— H,_(K")
A P
o ,
H(L") —— H,,(L)
by means of the following equation:

OLPx — @40k = OL(Ei + ID), 0, (14.8.6)

ProOF OF EQUATION (14.8.6). Consider the following diagram:

i

K . K . %)
@ j B
L/ @ K//

k
a @
2 () , L — L

It follows that we can write down the analog of Equation (14.8.4) for the
following diagram:

K — K — %0

Lo

H() — L —— L

Since «, and f, are isomorphisms, Equation (14.8.6) is then an easy
consequence. Q.E.D.
We are now ready to apply these ideas to prove Lemma 8.3. Choose
representative cycles
weCX, ul),
V, € Cn(Xa’ X, N Yc)’ a=12,
Vel (X, nXy X nX,n(Yuly))

for the homology classes y, v,, and v, respectively. Now consider the following
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diagram of chain and cochain complexes, and chain maps:

C*X, Y,u Y, —— C*X, Y,)®C*X, Y,) — C*X,Y,nY,)

o 4 ¥

CXnXy) —2»  CEYDCE) ——s CXy)+C(Xy)

The homomorphisms in this diagram are defined as follow (see the diagram
at the end of the proof):

o(x) = (jfx jfx), xeC*X,Y,uY,),
d(x)=(p*x)nv, xeC*X,Y,uY,),
Y, v)=ifu—ifv, ue C*X,Y,),veC*X,Y,),
Bu, v) = (kfu)n vy, (kFv)nvy), ueC*(X, Y)),ve C*X, Y,),
YWy =wny, weC¥*X,Y, nY,),
o(x) = (mx, myx), xeC(X;nX,),
V' (u, 0) = kiu— kyo, ue C(X,),ve C(Xy)

The top line is almost exact; on passage to cohomology, one obtains the
relative Mayer—Vietoris sequence. The bottom line is exact; on passage to
homology, it gives the usual Mayer—Vietoris sequence. At the right end of the
bottom line, C(X,) + C(X,) denotes the chain subcomplex of C(X) generated
by C(X,) and C(X,). In order that the image of 7' lie in this subcomplex, we
assume that the representative cycle y' is a linear combination of singular
cubes which the “small of order %,” where Z = {X, X, }.

It is readily verified that o', and #, and y' are chain maps. Moreover, both
squares of this diagram are chain homotopy commutative. Explicit chain
homotopies may be defined as follows. The hypothesis that i, (1) = k., (v,)
implies the existence of chains

a,€Cn(X, ), a=12
such that
0a, = iyg (') — Ky (v').
Similarly, the hypothesis that g, (v,) = m,,(v) implies the existence of chains
be Gy (Xe, X,n (YU YY)
such that
0b, = qupe (Vi) — Moy (V).
Then one defines chain homotopies
D:C*(X, Y, uY,) - C(X,) ®C(X,),
E:C*X,Y)®C*X, Y,)» C(X,) + C(X,)
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by the formulas
D(x) = (= D)™((nfx) " by, (nf x) N by)),
Ew,v)=(—D"una, —vna,)

It is then easy to verify that

Bo — @'a’ =D + D4,

Yy —y'B = 0E + Ed
as required. Thus, we are in the situation described in Diagram (14.8.5), and
Formula (14.8.6) is applicable. Using the definition of D and E above, and the

naturality properties of the cap product, an easy computation gives the
following formula:

(Ep + y'D)(x) = (—x ny’
for any x € C*(X, Y; u Y,), where
Y =Jj1#a1 + nigby —jaga; — nyubs.
In view of the way the chains a,, a,, b,, and b, were chosen, it is easy to check
that dy’ =0, i.e,, y’ is a cycle. Let y € H,,,(X, Y; u Y,) denote the homology
class of y’; then it follows from Formula (14.8.6) that + y has the properties
stated in Lemma 8.3; this completes the proof. To assist the reader in following

the above proof, we offer the following commutative diagram of the chain
complexes and chain maps which occur in the above proof:

CX, "hnl
7N
C(X Yy C(X, Yz)
CX, X, n Y1 \ / CX,,X;nY,)
gi1w C(X, Yl V] Yz) 20
RBis B2
C(X, X, n(uT)) pe CXyp X, n(hhul)

m . mu

CX,NnX,XinX;n(Y,uly))

All chain maps in this diagram are induced by inclusion maps.

Remark: The homology class y is not unique; for, the chains a,, a,, b, and
b, can each be changed by adding a cycle from the chain group to which it
belongs. We leave it to the interested reader to investigate in more detail the
indeterminancy of the homology class y.
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NOTES

In his first paper on analysis situs in 1895, Poincaré asserted that if M is a
compact, orientable n-manifold, then the ranks of the homology groups H, (M)
and H,_,(M) are the same. Of course, his proof of this assertion was not
rigorous even by the standards of the nineteenth century.

Alexander first stated and proved his famous duality theorem in a paper
in volume 23 of the Transactions of the American Mathematical Society (1922)
in essentially the following form: Let X be a subset of $” which is a finite
CW-complex. Then the homology groups H,,(X ; Z,) and 17,,_,,_1(5" - X; Z,)
have the same rank as Z,-vector spaces [the Z,-rank of H (X, Z,) is called
the ¢ connectivity number of X).

In those days there was no possibility of stating the conclusion of the
Poincaré or Alexander duality theorems as an assertion that certain groups
wer isomorphic because algebraic topology at that time was concerned with
Betti numbers, torsion coefficients, and connectivity numbers rather than
homology groups (see the Notes at the end of Chapter VIII). By 1930, when
the group-theoretic point of view became dominant, giving a more natural
statement to these duality theorems was obviously an important problem.
Much effort and ingenuity was expended on this problem; for example, it
seems likely that L. Pontrjagin was motivated to prove his famous duality
theorem for abelian topological groups in order to be able to state the
Alexander duality theorem in full generality using only homology groups. A
truly neat and general statement of the duality theorems eluded topologists
until the introduction of cohomology groups made possible the type of state-
ments in this chapter.

An extension of Poincaré duality to manifolds with boundary was first
given by S. Lefschetz in 1926.

Intersection theory for the homology of manifolds

Let M be a compact, oriented n-dimensional manifold, and let P : HY(M, Z) —»
H,_,(M,Z) denote the Poincaré¢ duality isomorphism. Given homology
classes ue H,(M,Z) and v e H,(M, Z), we define their intersection, uove
H,,q-n(M, Z), by

uov= P[P lw)u(P 'v)]

It follows that this operation has the same basic algebraic properties as the
cup product, i.e., it is an associative, distributive product, which is commuta-
tive up to a + sign. Since it is derived from the cup product via the Poincaré
duality isomorphism, it is unlikely to give any information that is not already
obtainable from cup products. However, this homology operation is of great
historical interest: in the mid-1920s, a direct definition of the intersection of
two homology classes in an oriented manifold was given by two American
topologists, J. W. Alexander and especially S. Lefschetz. This was a full decade



392 XIV. Duality Theorems for the Homology of Manifolds

before the development of cohomology theory and cup products. Their
method used a very basic and simple geometric idea. It is easily verified that
two linear subspaces of Euclidean n-space, of dimensions p and g, respectively,
intersect in a linear subspace of dimension p + g — n, provided the subspaces
are in “general position” (this could be taken as a definition of general
position). Now suppose we are given homology classes u € H,(M) and v e
H, (M), as above. Lefschetz pointed out that one can choose representative
cycles 4’ and v’, respectively, so that 4’ and v’ are in “general position.” This
condition means that locally the situation should be like that of linear sub-
spaces of dimensions p and g in R” which are in general position. Under this
condition, Lefschetz showed that the intersection of 4’ and v’ (in the sense of
point set topology) could be assigned an orientation and multiplicity (see
§VI.3) so it becomes a cycle of dimension p + g — n. Then Lefschetz defined
u o v to be the homology class of this cycle. To show that this definition is
independent of all the choices which must be made, that it is topologi-
cally invariant, and to establish its properties would be a formidable task.
Just before World War II, L. Pontrjagin assigned it to a student of his,
M. Glezerman. Unfortunately Glezerman was killed fighting during the War,
but his paper was published in 1947 (see American Mathematical Society
Translation No. 50 (1951) entitled “Intersections in Manifolds” by Glezerman
and Pontrjagin). It takes 150 pages just to establish the basic properties and
there are no applications. In the Introduction, the authors remark that,

“The whole theory is very cumbersome and Lefschetz
has not carried it out very concretely.”

Although intersection theory in manifolds is mainly of historical interest
today, it is still of some value in aiding our geometric intuition about cocycles
and cup products, at least in the case of manifolds. A good example to consider
in this regard is n-dimensional complex projective space, CP". The co-
homology and cup products in CP” are determined in the next chapter. The
reader who has some knowledge of projective geometry can work out the
intersection theory for the homology of CP", and check the assertions of the
preceeding paragraph for this particular example.
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CHAPTER XV

Cup Products in Projective Spaces
and Applications of Cup Products

§1. Introduction

In this chapter we will determine cup products in the cohomology of the real,
complex, and quaternionic projective spaces. The cup products (mod 2) in real
projective spaces will be used to prove the famous Borsuk—Ulam theorem.
Then we will introduce the mapping cone of a continuous map, and use it to
define the Hopf invariant of a map f: $?"~! - S". The proof of existence of
maps of Hopf invariant 1 will depend on our determination of cup products
in the complex and quaternionic projective plane.

§2. The Projective Spaces

We defined the n-dimensional real, complex, and quaternionic projective
spaces (denoted by RP", CP", and QP", respectively) in §IX.3. We also defined
CW-complex structures on them, and then determined the homology groups
of CP" and QP" Now we are going to prove that they are compact, connected
manifolds, and then use the Poincaré duality theorem to determine the cup
products in their cohomology.

Since the universal covering space of RP" is S, it is clear that RP" is a
compact, connected manifold (see Exercise 2.1 in the preceding chapter).

Next, we will prove that CP" is a 2n-dimensional manifold. Let (z,, z4, .. .,
z,) denote homogeneous coordinates in CP" (see 1X.3), and let

U; = {(zo, ., 2,) € CP"|z; # 0}

fori=0,1,...,n Then U, is an open subset of CP". We may “normalize” the
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homogeneous coordinates of a point in U, by requiring that z; = 1. With this
normalization, each point of U; has unique homogeneous coordinates. These
unique coordinates define an obvious homomorphism of U; with C* = R?",
Since the collection of sets {U;|i =0, 1, ..., n} isclearly a covering of CP", this
suffices to prove that CP" is a 2n-manifold.

Remark: In the preceding paragraph, we have neglected various details of
point set topology which arise because of the fact that CP" is defined as a
quotient space. The reader can either work these details out for himself, or
consult some reference such as Bourbaki [3].

That CP" is compact and connected follows from the CW-complex defined
onit in §IX.3.

An analogous proof, using quaternions instead of complex numbers, shows
that QP" is a compact, connected manifold of dimension 4n.

A method of proving that RP" is orientable for n odd and nonorientable
for n even is outlined in Exercises 2.2 to 2.5, of Chapter XIV. We will not make
use of this result in this chapter, except in the exercises. In §IX.4, we proved
that the integral homology groups H,,(CP") and H,,(QP") are infinite cyclic.
This implies that CP" and QP" are orientable for all n.

We will now discuss cup products in these projective spaces. For the sake
of brevity, it will be convenient to write uv instead of u U v. For any integer
n > 1, u" will denote the product uu - - - u (n factors), while u® = 1.

In order to describe cup products in the cohomology of CP" and QP", note
that

Z forievenand0 <i<2n

H(CP, Z)~ < )
(P Z) {0 otherwise.

This follows from determination of the homology of CP" in §IX.4 and the
universal coefficient theorem. Similarly,

Z fori=0mod4and0<i<4n
0 otherwise.

H(QP,Z)~ {
Theorem 2.1. Let u be a generator of the infinite cyclic group H*(CP"; Z). Then
u* is a generator of H**(CP™";Z) for 0 <k <n.

Theorem 2.2. Let v be a generator of H*(QP"; Z). Then v* is a generator of the
infinite cyclic group H*(QP", Z) for 0 < k < n.

Proor oF THEOREM 2.1. The proofis by induction on n, using Theorem 5.2 of
the preceding chapter. For n = 1, the theorem is a triviality, whereas forn = 2,
it follows direclty from Theorem XIV.5.2. Assume that the theorem is true for
CP", n > 2, we will show this implies the theorem for CP"*!,

In §IX.3, we defined a structure of CW-complex on CP"*!, such that the
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skeleton of dimension 2k is CP* for 0 < k < n + 1. From this it follows that
we may consider CP" as a closed subspace of CP"*!, and the relative co-
homology groups of the pair (CP"*!, CP") are given by

Z fork=2n+2

k Pn+1 Pn. Z —
H(C  CPL ) {0 otherwise.

Let i: CP" - CP"*! denote the inclusion map; from the exact cohomology
sequence we deduce that

i*: H{(CP"*'; Z) » H*(CP"; Z)

is an isomorphism for all k # 2n + 2. Let udenote a generator of H*(CP"*'; Z);
by the inductive hypothesis, (i*u)* is a generator of H**(CP"; Z)for0 < k < n;
it follows that u* is a generator of H**(CP"*!; Z) for the same values of k. By
applying Theorem XIV.5.2 to the cup product

HZ"(CP"+1; Z) ® HZ(CPn+1; Z) — H2"+2(CP"+1; Z),

we conclude that u"*! is a generator of H>"*2(CP"*!), completing the inductive
step. QED,

The proof of Theorem 2.2 is similar and is left to the reader. To obtain an
analogous result for real projective space, RP", it is necessary to use mod 2
cohomology.

Theorem 2.3. The mod 2 cohomology group H*(RP"; Z,) is cyclic of order 2
for 0 < k < n. If wis a generator of H'(RP"; Z,), then w* is a generator of
H*RP"; Z,) for 0 < k <n.

PROOF. Once again the proof is by induction on n, using the CW-complex
structure on RP" which is given in §IX.3. The theorem is true for n = 1, because
RP! is homomorphic to S'. We determined the integral homology groups
of RP? in §VIIL.4; from this one can show that H*(RP?;Z,) = Z, for k =
0, 1, 2. Determination of the cup products in H*(RP?; Z,) then follows from
the analog for nonorientable manifolds of Theorem 5.1 of the preceding
chapter.

The inductive step is slightly more complicated than that in the proof of
Theorem 2.1. Recall that RP" is a CW-complex with one cell in each dimension
< n, and the k-skeleton is RP* for 0 < k < n. It follows that

Z, fork=n

H*(RP", RP""1,Z,) =
(RP", 1 2a) {0 for k # n.

From this it follows that
i*: HYRP", Z,) > H"(RP" ™1, Z,)

is an isomorphism for k < n — 1. We will prove that it is also an isomorphism
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fork = n — 1. Consider the following portion of the mod 2 exact cohomology
sequence of the pair (RP", RP"™!).

0 H*"1(RP") 5 H*~(RP"™) &3 H"(RP", RP"™) 5 H(RP") 5 H"(RP™).

First of all, H"(RP"™'; Z,) = 0 because RP""! is only (n — 1)-dimensional.
Therefore, j*: H"(RP"; RP""') > H*(RP") is an epimorphism. Next,
H"(RP"; Z,) is cyclic of order 2 because RP" is a compact, connected n-
manifold. Since j* is an epimorphism of a group of order 2 onto a group of
order 2, it must be an isomorphism. It follows by exactness that 6*:
H" Y (RP""') > H"(RP", RP*"') is the zero homomorphism. Hence, i*:
H""Y(RP") —» H""'(RP""!) is an isomorphism, as was asserted.

The remainder of the inductive step is similar to that in the proof of
Theorem 2.1 and may be left to the reader. The only difference is that one uses
the analog for nonorientable manifolds of Theorem 5.1 rather than Theorem
5.2 of Chapter XIV.

One can express Theorem 2.1 by means of the following ring isomorphism:
H*(CP" Z) ~ Z[u]/u""");

in other words, the integral cohomology ring H*(CP"; Z) is isomorphic to the
integral polynomial ring Z[u] modulo the ideal generated by u"*!. Similarly,

H*(QP", Z) ~ Z[v]/(v"*"),
H*(RP"; Z,) = Z,[w]/(w"*").

Rings with this type of structure are often called truncated polynomial rings.
We will now use this result on the structure of H*(RP"; Z,) to prove the
famous Borsuk—Ulam theorem (for a discussion of some of the interesting
consequences of this theorem, the reader is referred to §V.9). Recall that a map
f:8™ - S"is called antipode preserving in case f(—x) = —f(x) for any x € S™.

Theorem 2.4, There does not exist any continuous antipode preserving map
f:8"-8

Proor. We will only give the proof for n > 2; the proof for n < 2 is contained
in§V.9. The proofis by contradiction. Assume that f : $* — $" ! is an antipode
preserving map. Hence, f induces a map g: RP" — RP""! since RP" is the
quotient space obtained by identifying antipodal points of S”. Thus, we get a
commutative diagram

f

Su Su -1
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where p and q are the projections of S” and $"~! onto their quotient spaces.
Because n > 2, both $" and $"~! are simply connected. Thus, they are the
universal covering spaces of RP" and RP"™!, respectively, and the funda-
mental groups, 7(RP") and n(RP"!), are both cyclic of order 2. The induced
homomorphism

gy T(RP") > n(RP"" 1)
must be an isomorphism; this may be proved by an easy argument which is
given in §V.9. Now consider the following commutative diagram:

e

n(RP") —2 n(RP"Y)

R
H,(RP") —2 H,(RP")

The homomorphisms denoted by h are the natural homomorphisms of the
fundamental group onto the first homology group which were defined in
VIIL7. Since the fundamental groups involved are abelian, these homomor-
phisms are both isomorphisms (cf. Theorem VIIL7.1). It follows that g, :
H, (RP") > H,(RP""!')is an isomorphism.

Next, consider the following commutative diagram:

H'RP";Z,) —— Hom(H,(RP");,Z,)
g* Hom(g‘,l)

HI(RPH“l; ZZ) —ab HOm(Hl(RP"_l)s ZZ)

The homomorphisms labeled « are those which occur in the universal co-
efficient theorem (§XII.4); in this case they are both isomorphism. It follows
from this that

g*:H'(RP"';Z,) > H'(RP";, Z,)

is also an isomorphism. Let w be a generator of H (RP"™'; Z,); then g*(w) is
a generator of H'(RP"; Z,). By Theorem 2.3, (g*w)" # 0. However, this is a
contradiction, since

(g*w)" = g*(w")
and w" = 0. Q.E.D.
EXERCISES
2.1. Fork < n, consider CP* as the 2k-skeleton of CP". Prove that CP* is not a retract

of CP". Similarly, prove that for k < n, QP* is not a retract of QP", and RP* is not
aretract of RP".
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2.2. Determine the integral homology groups of RP" by induction on n. Use the fact
that RP" is a CW-complex, as described in §IX.3, and that it is orientable for n
odd, and nonorientable for n even.

2.3. Use the results of the preceding exercise and the universal coefficient theorem to
determine the structure of the integral cohomology groups H*(RP"; Z). Then
determine the cup products in the integral cohomology of RP". (HINT: Use the
homomorphism H*(RP"; Z) —» H*(RP", Z,) induced by reduction mod 2 of the
integers.)

§3. The Mapping Cylinder and Mapping Cone

The techniques developed in this section will be used in the next section to
define certain homotopy invariants of continuous maps.

Let f: X — Y be a continuous map. The mapping cylinder of f, denoted by
M(f), is the topological space defined as follows: Assume that X x [ and Y
are disjoint; if they are not, take disjoint copies. Then form the quotient space
of the disjoint union of X x I and Y by identifying the points (x, 0) and f(x)
for each x € X.

The mapping cylinder M(f) can be visualized as a space which contains a
copy of X (namely, X x {1}), a copy of Y, and corresponding to each x € X
a copy of the unit interval connecting the points x and f(x). This space is
topologized so that if x, and x, are points in X, that are close to each other,
then the corresponding segments from x; to f(x,) and from x, to f(x,) are
also close to each other.

The obvious deformation retraction of X x I onto X x {0} gives rise to a
deformation retraction of M(f) onto Y. If we denote by i: X - M([f) the
inclusion map (defined by i(x) = (x, 1)) and by r: M(f) - Y the retraction,
then the following diagram is commutative:

M(f)

X — Y

Thus, an arbitrary continuous map f is the composition of an inclusion map
i and a homotopy equivalence r.

The mapping cone of f: X — Y, denoted by C(f), is the quotient space of
the mapping cylinder M(f) obtained by identifying the subset X x {1} to a
single point. Alternatively, the mapping cone can be constructed as follows:
let C(X), called the cone over X, denote the quotient space of X x I obtained
by identifying all of X x {1} to a single point. Then C(f) is the quotient space
of the (disjoint) union of Y and C(X) obtained by identifying the point
(x, 0) € C(X) with the point f(x) e Y for all x € X.



400 XV. Cup Products in Projective Spaces and Applications of Cup Products

Examples

3.1. If X = $" the n-sphere, then it is easily seen that C(X) is homomorphic
to the (n + 1)-dimensional ball E**!, In this case, C(f) is the same as the space
X* = X ue! obtained by adjoining an (n + 1)-cell to the space X by
means of the map f, as described in §IX.2. In particular, if K" denotes the
m-dimensional skeleton of a CW-complex, then we can regard K™*! as the
mapping cone of a certain map f: X — K", where X is a disjoint union of
n-spheres (assuming that the number of (n + 1)-cells is finite).

One of the basic facts about the spaces M(f) and C(f) is that they satisfy
certain naturality conditions. Let

f

X — Y

J ®1 J P2

x . v
be a commutative diagram of topological spaces and continuous maps. Then
it is readily seen that ¢, and ¢, induce continuous maps of quotient spaces,
M(f)—- M(f')and C(f) - C(f"); let us agree to denote both of these induced
maps by the symbol ¢. Then it follows that the following two diagrams are
commutative:

X — My > Y
J o J @ J 02
x -5 My s v

y — ¢

J P2 J [

v~ o)
In the second diagram, the symbols j and j* denote obvious inclusion maps.
Lemma 3.1. Let p: M(f)— C(f) denote the natural map which identifies the

subset X = X x {1} of M(f) to a single point P of C(f). Then the induced
homomorphism of relative cohomology groups

p*: HY(C(f), P) » H'(M(f), X)

is an isomorphism for all q.

PROOF. Let X denote the subset X x [4, 1] of M(f), and let P denote the
image of X under p. Consider the following commutative diagram:
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HYM(f), X) «—— H(M(f), X) —— HYM(f) — X, X — X)

[ P* [ rt P

HYC(f), P) «—— HYC(f), P) —— HYC(f)—P,P - P)
In this diagram, the horizontal arrows denote homomorphisms induced by
inclusion maps, and the vertical arrows denote homomorphisms induced by
p. Arrows 1 and 2 are isomorphisms because X is a deformation retract of X
and P is a deformation retract of P. Arrows 3 and 4 are isomorphisms by the
excision property; and p¥ is an isomorphism, because p maps M(f) — X and
X — X homomorphically onto C(f) — P and P — P, respectively. It follows
that p* is an isomorphism, as desired. Q.ED.

Now let k: Y —» M(f) denote the inclusion map; k is a homotopy equiva-
lence because Y is a deformation retract of M(f). Consider the following
diagram: .

HY(C(f),P) — HYY)

A

HNX) —— HUM(f), X) —— HIM(f) —— H(X)

The bottom line is the cohomology sequence of the pair (M(f), X). All the
vertical arrows are isomorphisms, and k* and r* are inverses of each other.
Finally, the diagram is readily seen to be commutative. As a consequence of
these facts, we see that the following sequence of cohomology groups and
homomorphisms is exact:

S HYX) S HAC(), P D H(Y) D () -

Here A = (p*)™'6. This exact sequence will be called the cohomology sequence
of the map f. Observe that a commutative diagram

/

X — Y

J ®1 J P2

Xl ; Y!
gives rise to an induced map of the cohomology sequence of f into the
cohomology sequence of f*; that is, we get a ladderlike diagram involving the
two exact sequences, and every square in the diagram is commutative.

Now let us apply these ideas to study the cohomology sequences of two
maps which are homotopic. Let f;, f; : X —» Y be continuous maps, and let
f:X xI—>Y be a homotopy between f;, and f,, ie., fo(x) = f(x, 0) and
f1(x) = f(x, 1). This gives rise to the following commutative diagram:
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on
h
I—be

0
h,

fi Y

X
X x

X
Here h;(x) = (x, i) for i = 0 or 1. Corresponding to this diagram, we get a
bigger diagram involving the chomology sequences of f,, f, and f; together
with homomorphisms between them. By making use of the five-lemma to-
gether with the fact that hy, and h, are homotopy equivalences, we easily
deduce that the cohomology sequences of the maps f, and f, are isomorphic.
To be precise, any homotopy between f, and f; gives rise to an isomorphism
between the corresponding cohomology sequences. Presumably different
homotopies could give rise to different isomorphisms.

We could also word this conclusion as follows: the cohomology sequence of
a map f is a homotopy invariant of f.

Examples

3.2. Suppose f: X — Yisa constant map. Then it is clear that Y is a retract
of C(f). Hence, there exists a homomorphism r* : H4(Y) - H4(C(f)) such that
j¥r* is the identity map of HI(Y). Moreover, r* preserves cup products, ie.,
r*(x v y) = (r*x) U (r*y). Because of the invariance of the cohomology se-
quence of f under homotopies, we can conclude that this same result is true
in case f: X — Y is only assumed to be homotopic to a constant map. As a
matter of fact, it is easy to prove directly that f is homotopic to a constant
map if and only if Y is a retract of C(f).

EXERCISES

3.1. As in the above discussion, let f: X x I — Y be a continuous map, and let f,
f1:X > Y be defined by fi(x, i) = f(x, i), i = 0, 1. Prove that M(f;) is a deforma-
tion retract of M(f), and C(f)) is a deformation retract of C(f) for i = 0, 1. Then
deduce that the pairs (C(f;), Y) and (C(f;), Y) are of the same homotopy type.

§4. The Hopf Invariant

The Hopf invariant associates with each map f: $2"~! — $” an integer that is
a homotopy invariant of f. Using it, we will be able to prove that for n even
and >2, there are infinitely many different homotopy classes of such maps.
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In order to define the Hopf invariant, we will assume that the spheres $2"~!
and S" are “oriented,” in the sense that definite generators a e H*"~1(§2""1, Z)
and b e H*(S"; Z) have been chosen for these infinite cyclic groups. We will
also assume that n > 2. As in the preceding section, let C(f) denote the
mapping cone of f. It follows from the exactness of the chomology sequence
of the map f that the following two homomorphisms

A H2n—1(52n—1) N HZ"(C(f)),
J*¥ :H(C(f)) > H"(S")

are both isomorphism. Let a’ = A(a) € H2*(C(f); Z), and let b’ € H"(C(f), Z)
be the unique element such that j*(b’) = b. Since H**(C(f); Z) is infinite cyclic,
there exists a unique integer H(f) such that

b'ub = H(f) a.

In veiw of the homotopy invariance of the cohomology sequence of f, the
integer H(f) depends only on the homotopy class of f.

We will now list some of the principal properties of the Hopf invariant:

(1) If n is odd and >1 then H(f) =0 for any map f:S>""! —» §". This
follows from the anticommutative law for cup products. As a consequence,
the Hopf invariant is useless in this case.

(2) If n = 2, 4, or 8, there exist maps f:82""! - §" such that H(f) = + 1.
For n = 2 we may choose f such that C(f) = CP?, the complex projective
plane; whereas for n = 4, we may choose f such that C(f) = QP2 The case
n = 8 is more complicated; in essence, we must choose f so that C(f) is the
so-called Cayley projective plane. An explicit description of such a map f is
given by Steenrod [5, pp. 109—110]. A complete discussion of the Cayley
projective plane is given by H. Freudenthal [4].

(3) For any even integer n > 2, there exist maps f such that H(f) = +2.
To prove this, recall that S” may be considered as a CW-complex with a single
vertex, €%, a single n-cell e”, and no cells of any other dimension. Hence $” x S”
may be represented as a CW-complex with one vertex, e® x €°, two n-cells,
e° x e" and e" x ¢°, and one 2n-cell, e” x e". The n-skeleton of this CW-
complex is the subspace

S"v 8 =(8"xe)u(e x 5

of §* x S". Let g:8%""! - 8" v §" denote the attaching map for the single
2n-cell of this CW-complex, and let h: S" v S” — S” be defined by h(x, °) =
h(e®, x) = x for x € $" (h is sometimes called the folding map). We assert that
if we define

f=hg:$* 158,

then (for n even), H(f) = +2. To prove this assertion, consider the following
commutative diagram:
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SZn-l _g’ Sty st L’ C(g)

bl

S2n-—1 St Ja C(f)

Here k' is induced by h. By definition, C(g) = S" x S". Let b denote the chosen
generator of H*(S"; Z). Then {b x 1,1 x b} is a basis for H"(S" x S") and
(b x )u(l x b)=b x b is a generator of H>"(S" x S") (cf. §XIII.11). Now,
consider the following commutative diagram:

HY(S" v §") < H"(S" x §7)
h* h'*

H'(S")  «=— HY(C())
Both j* and j* are isomorphisms, and j¥(b’) = b. We leave it to the reader to

convince himself that
H*b')y=(0b x 1)+ (1 x b).

We also have the following commutative diagram:

H>(S" x 8% (4

B* H2n—1(52n—1)
H?"(C(f)) /

Both A, and A, are isomorphisms, hence h'* is an isomorphism. Let us assume
that the generator a e H**"1($2""1) is chosen so that A,(a) = b x b; hence
h'*(a’) = b x b. To prove our assertion, apply the homomorphism h'* to the
equation
bub =H(f)a.
The result is
bxl4ylxbubx1l4+1xb=H()bxb)

hence, H(f) = 2. If we had used the orientation of $2"~! determined by the
generator —a, we would have obtained H(f) = —2.
(4) Let f:8%""! > §" be a continuous map, and h : S" — S" a map of degree
k [i.e., h*(b) = kb]. Then
H(hf) = K*H(f).
(5) Let h:82""! —» §2""! be a map of degree k [i.c., h*(a) = ka] and f:
§2"~1 - $" a continuous map. Then

H(fh) = k-H(f).

The proof of assertions (4) and (5) are left to the reader as exercises.
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Remark: Assume that n is even and >2. It follows from the preceding
paragraphs that given any integer 2m, there exists a map f: $?"~! - §" such
that H(f) = 2m. It is known that H(f) is of necessity an even integer, except
whenn = 2, 4, or 8. This was proved by José Adem [2] for n # 2*and by J. F.
Adams [1] forn = 2% k > 3.

It is also known that two maps f,, f; : S — §? are homotopic if and only
if H(f,) = H(f;)- In general, such a statement is not true for maps of §2"!
into §", n > 2. However, it is known that there are only a finite number of
homotopy classes of such maps having a given integer as Hopf invariant.

EXERCISES

4.1. Given any space X, define the suspension of X, denoted S(X), to be the quotient
space of X x I obtained by identifying each of the subsets X x 0and X x 1 toa
point; it is a sort of “double cone” over X. Similarly, if f: X — Y is a continuous
map, define S(f): S(X) — S(Y) to be the map induced on quotient spaces by the
map of X x I'into Y x I which sends (x, ¢) to (fx, ¢).

(@) If X = S", prove that S(X) is homeomorphic to S**!.

(b) What is the relation between the homology groups of X and those of S(X)?
(c) Ifu e HP(S(X)) and v € HY(S(X)), where p > Oand g > 0, prove thatu uv = 0.
(d) If £y, f1: X - Y, and f; is homotopic to f;, prove that S(f,) is homotopic to

S(f)-
(e) Let f: X — Y; we would like to prove that C(Sf) = S(Cf). Unfortunately, this

is not quite true. Prove that there is a natural map S(Cf) — C(Sf) which
induces isomorphisms of homology and cohomology groups.

() Let £:582"2 5 S""1 be a continuous map; in view of (a), the Hopf invariant
H(Sf) is defined. Prove that H(Sf) = 0. [REMARK: The converse of this last
statement is true “up to homotopy.” To be more explicit, let g : $2"~! — S" be
a map such that H(g) = 0. Then there exists a map f: $2"2 — §"~1 such that
g is homotopic to S(f); see G. W. Whitehead [6].)

NOTES

The Hopf Invariant for the case of a map from S* to §? was first introduced
by H. Hopfin 1931 in a paper in volume 104 of Mathematische Annalen. This
paper was quite surprising in its day, because it gave the first example of a
continuous map of a sphere to a sphere of lower dimension which was not
homotopic to a constant map. In 1935 in a paper in volume 25 of Fundamenta
Mathematica, Hopf considered the general case of a mapping from §$2"! to
§". In these papers, Hopf used intersection theory to define his invariant (see
the Notes to the preceding chapter). A more modern account of the Hopf
invariant using cup products and the mapping cylinder was given by N. E.
Steenrod in 1949 in volume 50 of the Annals of Mathematics. The Hopf
invariant has been extensively generalized by G. W. Whitehead and others;
see [6, Chapter XI].
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APPENDIX A
A Proof of De Rham’s Theorem

§1. Introduction

In Chapter VI we mentioned that some of the motivating ideas for the
development of homology theory in the nineteenth century arose in con-
nection with such topics as Stokes’s theorem, Green’s theorem, Gauss’s di-
vergence theorem, and the Cauchy integral theorem. De Rham’s theorem may
be looked on as the modern culmination of this particular line of thought. It
relates the homology and cohomology of a differentiable manifold to the
exterior differential forms on the manifold. Exterior differential forms are
objects which can serve as integrands of line integrals, surface integrals, etc.,
such as occur in the statement of the classical Green’s theorem and Stokes’s
theorem. De Rham’s theorem is of obvious importance because it is a connect-
ing link between analysis on manifolds and the topological properties of
manifolds.

In this appendix we will assume that the reader is familiar with the basic
properties of differentiable manifolds, differential forms on manifolds, and the
integration of differential forms over (differentiable) singular cubes. These
topics are explained in many current textbooks, and there would belittle point
in our repeating such an exposition here. As examples of such texts, we list
the following: M. Spivak [6], Flanders [3], Warner [9], and Whitney [10].

The first part of this chapter is devoted to using differentiable singular cubes
to define the homology and cohomology groups of a differentiable manifold.
We prove that in studying the homology and cohomology groups of such a
manifold, it suffices to consider only differentiable singular cubes; the non-
differentiable ones can be ignored.

Next, we introduce what may be called the De Rham cochain complex of a
differentiable manifold. This cochain complex consists of the exterior differ-
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ential forms, with the exterior derivative serving as the coboundary operator.
There is a natural homomorphism from this De Rham complex to the cochain
complex (with coefficient group R, the real numbers) based on differentiable
singular cubes. This homomorphism is defined on any exterior differential
form of degree p by integrating that form over differentiable singular p-cubes.
The general form of Stokes’s theorem is precisely the assertion that this natural
homomorphism is a cochain map. De Rham’s theorem asserts that this natural
cochain map induces an isomorphism on cohomology.

The proof we give of De Rham’s theorem is modeled on Milnor’s proof of
the Poincaré duality theorem in Chapter XIV. The reader who has worked
through that proof should have no trouble grasping the structure of our proof
of De Rham’s theorem. Curtis and Dugundji [11] have also given a proof of
De Rham’s theorem along somewhat similar lines.

§2. Differentiable Singular Chains

Let M be an n-dimensional differentiable manifold of class C* (we assume the
reader is familiar with this concept). In order to define a differentiable singular
cube, we must make use of the fact that the standard unit p-cube,

IP={(x,,..,x,)eR?I0<x; < 1,i=1,2,..., p}

is a subset of Euclidean space R?. For p > 0, a singular p-cube T: I > M will
be called differentiable if there exists an open neighborhood U of I? in R? and
an extension T': U —» M of T such that T’ is differentiable (of class C*). We
complete this definition by defining any singular O-cube to be differentiable.

Remark: Ifasingular p-cube T : I? — M is differentiable, there will, in general,
be many different choices for the open neighborhood U and the extension
T:U->M.

We now introduce the following notation:

Q5(M) = subgroup of Q (M) generated by the
differentiable singular p-cubes,

D;(M) = D,(M) 1 Q;(M),
C,(M) = Q3(M)/D;(M).

The superscript S in the above notation is intended to suggest the word
“smooth.” We will refer to C5(M) as the group of differentiable or smooth
p-chains of M. Note that C5(M) = Q3(M) = Q,(M) = Cy(M).

Next, observe that if T: I? —> M is a differentiable singular p-cube, then the
faces A;T and B, T, 1 < i < p, are all obviously differentiable singular (p — 1)-
cubes. It follows that d,(T) € Q5-,(M). Thus, Q5(M) = {Q3(M), 3,} is a sub-
complex of Q(M), and C*(M) = {C5(M)} is a subcomplex of C(M). We will



§2. Differentiable Singular Chains 409

also introduce the following notation: for any abelian group G,
C¥(M; G) = C5(M) ® G,
C¥(M; G) = Hom(C5(M), G),
H;(M; G) = H,(C°(M; G)),
HE(M; G) = HP(CF(M; G).

We can now state the main theorem of this section:

Theorem 2.1. Let M be a differentiable manifold. The inclusion map of chain
complexes,
C3(M) » C(M),

induces an isomorphism of homology groups,

HS(M) ~ H,(M).

Corollary 2.2. For any abelian group G, we have the following isomorphisms of
homology and cohomology groups:

H;(M; G)~ H,(M; G),
Hi(M; G) ~ H?(M; G).

The corollary follows from the theorem by use of standard techniques (cf.
Theorem X.2.8). Before we can prove the theorem, it is necessary to discuss to
what extent the methods and results of Chapters VII and VIII on homology
theory carry over to the homology groups H;(M; G) for any differentiable
manifold M. We will now do this in a brief but systematic fashion.

(a) Let M, and M, be differentiable manifolds, and let f: M, > M, be a
differentiable maps of class C*. If T:I? - M, is a differentiable singular p
cube,in M, thenfT: I? - M, is also differentiable. Hence, we get an induced
chain map

f# 1 C(My) > C(My)

with all the usual properties.

(b) Two differentiable maps f,, f; : M; - M, will be called differentiably
homotopic if there exists amap f: I x M, - M, such that f,(x) = f(0, x) and
fi(x) = f(1, x) for any x € M, and in addition, there exists an open neighbor-
hood U of I x M, in R x M, and amap f': U - M, which is an extension
of f, and is differentiable of class C*. The technique of §VII.4 can now be
applied verbatim to prove that the induced chain maps fy 4, f,4: CS(M,) -
C5(M,) are chain homotopic. This has all the usual consequences; in par-
ticular, the induced homomorphisms on homology and cohomology groups
are the same.

() An open, convex subset of R" is differentiably contractible to a point; in
fact, the standard formulas for proving that such a subset is contractible are
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differentiable homotopies in the sense of the preceding definition. From this
it follows that if U is an open, convex subset of R", then

G forp=0

H3(U; G) =
p(U: ) {0 for p #0,

with similar formulas for HZ(U; G).

(d) Let M be a differentiable manifold, and let 4 be a subspace of M which
is a differentiable submanifold. For example, 4 could be an arbitrary open
subset of M, of 4 could be a closed submanifold of M. Then we can consider
C5(A) as a subcomplex of C5(M); hence, we can consider the quotient complex
C5(M)/C5(A) = C5(M, A) and we obtain exact homology and cohomology
sequences for the pair (M, A) using differentiable singular cubes.

(e) If T:I"> M is a differentiable singular cube, the subdivision of T,
Sd,(T) as defined in §VIL7, is readily seen to be a lincar combination of
differentiable singular cubes. Hence, the subdivision operator defines a chain
map

sd : C5(M) » C5(M)

just as in §VIL7. Unfortunately, the chain homotopy ¢, : C,(M) - C,,,(M)
defined in §VIL7 does not map C5(M) into CS,,(M). This is because the
function n, : I? = [, 1] is not differentiable (the function 5, : 12 — I is differ-
entiable). However, it is not difficult to get around this obstacle. Consider the
real-valued function 7 defined by

14+ x;, —x,x,

n1(xy, x2) = 2—x,

It is readily verified that #;, maps I? into the interval [4, 1], and that , and
1 are equal along the boundary of the square 12. Obviously, 7, is differentiable
in a neighborhood of I2. Thus, if we substitute #; for #, in the formula for
G,(T) in §VIL7, then G,(T) will be a linear combination of differentiable
singular cubes whenever T is a differentiable singular cube. Moreover, the
operator G, will continue to satisfy identities (f.1) to (f.4) of §VIL.7. Thus, we
can define a chain homotopy ¢, : C3(M) - C5,,(M) using the modified defi-
nition of G,. From this point on, everything proceeds exactly as in §VIL.7. The
net result is that we can prove an analog of Theorem VII.6.3 for singular
homology based on differentiable singular cubes, and the excision property
(Theorem VII.6.2) holds for this kind of homology theory.

(f) Suppose that the differentiable manifold M is the union of two open
subsets,

M=UuV.

Then we can obtain an exact Mayer— Vietoris sequence for this situation by
the method described in §VIILS.

(g) Finally, we note that an analog of Proposition VIIL6.1 must hold for
homology groups based on differentiable singular cubes; this is practically
obvious.
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With these preparations out of the way, we can now prove Theorem 2.1.
The pattern of proof is similar to Milnor’s proof of the Poincaré duality
theorem in §4 of Chapter XIV, only this proof is much easier. We prove the
theorem for th easiest cases first, and then proceed to successively more general
cases.

Case 1: M is a single point. This case is completely trivial.

Case 2: M is an open convex subset of Euclidean n-space, R". This follows
easily from case 1, since M is differentiably contractible to a point in this case.

Case3: M = U v V, where U and V are open subsets of M, and the theorem
is assumed to be true for U, ¥, and U n V. This case is proved by use of the
Mayer—Vietoris sequence and the five-lemma.

Case 4: M is the union of a nested family of open sets, and the theorem is
assumed to be true for each set of the family. Then the theorem is true for M.
The proofis by an easy argument using direct limits, and Proposition VIIL6.1.

Case 5: M is an open subset of R". Every open subset of R" is a countable
union of convex open subsets,

ao
M=) U.
i=1
For each U; the theorem is true by case 2. For any finite union, | )i, U, the
theorem is true by induction on n, using case 3 and the basic properties of
convex sets. Then one uses case 4 to prove the theorem for M.

Case 6: The general case. Any differentiable manifold can be covered by
coordinate neighborhoods, each of which is diffeomorphic to an open subset
of Euclidean space. Using case 4, case 5, and Zorn’s lemma, we see that there
must exist a nonempty open susbset U < M such that the theorem is true for
U, and U is maximal among all open sets for which the theorem is ture. If
U # M, then we can find a coordinate neighborhood V such that V is not
contained in U. By case 3, the theorem is true for U U V, contradicting the
maximality of U. Hence U = M, and the proof is complete.

§3. Statement and Proof of De Rham’s Theorem

For any differentiable manifold M, we will denote by DY(M) the set of C*
differential forms on M of degree q. D(M) is a vector space ove the field of
real numbers. As usual, d : DY(M) — D?*'(M) will denote the exterior differ-
ential. Since d°® = 0,

D*(M) = {D%(M), d}

is a cochain complex, which will be referred to as the De Rham complex of M.
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If f: M, - M, is a differentiable map (of class C*), then there is defined in a
welll-known way a homomorphism f*: DYM,) — DY M,). The homomor-
phism f* commutes with the exterior differential d, and hence it is a cochain
map of D*(M,) into D*(M,).

Given any differentiable singular n-cube T:I" - M, and any differential
form w € D"(M), there is defined the integral of w over T, denoted by

J.e

(cf. Spivak [6, p. 100ff]). The basic idea of the definition is quite simple: T*(w)
is a differential form of degree n on the cube I"; hence, it can be written

T*(w) = fdx,dx, - dx,

in terms of the usual coordinate system (x,, X, ..., x,) in I". Then [y w is
defined to be the n-fold integral of the C* real-valued function f over the cube
I". Actually, the preceding definition only makes sense if n > 0; in case n = 0,
 is a real-valued function, and I" = I° is a point. In this case [ w is defined
to be the value of the function w at the point T(I°) € M.

More generally, if

u=Y aT,

is a linear combination of differentiable singular n-cubes, then we define

With this notation, we can write the generalized Stokes’s theorem as follows:
For any u € Q3(M) and any w € D" (M),

g

For the proof, see Spivak [6, p. 102—-104].
At this stage, we should mention three formal properties of the integral of
a differential form over a singular chain. The proofs are more or less obvious
(a) The integral |, w is a bilinear function

Q3(M) x D"(M) > R.

In other words, for each u it is a linear function of w, and for each w it is a
linear function of u.
(b) Let f: M, - M, be adifferentiable map, u € @5(M,), and w € D"(M,).

Then
-[ fHo)= -[ .
“ Sa(u)
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(c) If uis a degenerate singular n-chain, i.e., u € D5(M), then

=

for any differential form @ of degree n.
In view of Property (a), we can define a homomorphism

@ : D"(M) > Hom(Q(S), R)

by the formula
.

for any w € D"(M) and any u € Q3(M). The generalized Stokes’s theorem now
translates into the assertion that ¢ is a cochain map

D*(M)— Hom(Q(M), R)
and property (c) translates into the assertion that the image of ¢ is contained

in the subcomplex Hom(C5(M), R) = C¥(M; R); thus, we can (and will) look
on ¢ as a cochain map

¢ :D*(M)- C¢(M; R).

Finally, property (b) is equivalent to the assertion that the cochain map ¢ is
natural via a vis differentiable maps of manifolds.

Theorem 3.1. (De Rham’s theorem). For any paracompact differentiable mani-
fold M, the cochain map ¢ induces a natural isomorphism ¢* : H'(D*(M)) ~
H3(M; R) of cohomology groups.

If we combine this result with Corollary 2.2, we see that H*(D*(M)) is
naturally isomorphic to H"(M; R) for any paracompact differentiable mani-
fold M.

ProOOF OF DE RHAM’S THEOREM. The proof proceeds according to the same
basic pattern as Milnor’s proof of the Poincaré duality theroem in Chapter
XIV.

Case 1: M is an open, convex subset of Euclidean n-space, R". In this case,
we know from the results of §2 that
R ifn=0
H3(M;R) =
(M R) {0 ifn#0.
Similarly,
R ifn=0

H(D*(M)) = {0 ifn#0.
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This is essentially the content of the so-called Poincaré lemma (see Spivak,
[6, p. 94]). Thus, to prove the theorem in this case, we only have to worry
about what happens in degree 0. This is made easier by the fact that in degree
0, every cohomology class contains exactly one cocycle. The details of the
proof are simple, and may be left to the reader.

Case 2: M is the union of two open subsets, U and V, and De Rham’s
theorem is assumed to hold for U, V, and U n V. Then De Rham’s theorem
holds for M.

To prove the theorem in this case we use Mayer—Vietoris sequences. We
already have a Mayer— Vietoris sequence for cohomology based on differen-
tiable singular cubes; we will now derive such a sequence for the De Rham
cohomology. Let i:UnV->U, j:UnV-V, k:U->M, and [: V> M
denote inclusion maps. Define cochain maps

o : D*(M) » C*(U) ® D*(V),
B:D*(U) @ D*(V) - D*({U U V)

by
a(w) = (k*w, *w),

By, w;) = i*(w,) — j*(@,).

We assert that the following sequence
0 - D*(M) 3 D*(U)® D*(V) 5 D*U A V) >0 (A3.1)

is exact. The only part of this assertion which is not easy to prove is the fact
that B is an epimorphism. This may be proved as follows. Let {g, h} be a C*
partition of unity subordinate to the open covering {U, V} of M. This means
that g and h are C*® real-valued functions defined on M such that the following
conditions hold: g + h = 1,0 < g(x) < 1 and 0 < h(x) < 1 for any x € M, the
closure of the set {x € M|g(x) # 0} is contained in U, and the closure of the
set {x € M|h(x) # 0} is contained in V. The hypothesis that M is paracompact
implies the existence of such a partition of unity. The proof is given in many
textbooks, e.g., De Rham [2, p. 4], Sternberg [8, Chapter II, §4], Auslander
and Mackenzie [1, §5-6]. Now let w be a differential form on U n V. Then
gw can be extended to C*® differential form wy on V by defining w,(x) = 0 at
any point x € ¥V — U. Similarly, hw can be extended to a C* differential form
wyon U bydefining wy(y) = 0 at any pointy € U — V. Thenitis easily verified
that

Bloy —wy)=w

as desired.

On passage to cohomology, the short exact sequence (A.3.1) gives rise to a
Mayer- Vietoris sequence for De Rham cohomology.

Similarly, the Mayer—Vietoris sequence for cohomology based on differ-
entiable singular cubes is a consequence of the following short exact sequence
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of cochain complexes (cf. §VIIL.5):
0> C¥M, %) Lo CXxU)D C¥(V) LA C¥HUnV)>0. (A3.2)

Here % = {U, V'} is an open covering of M, and the definition of the cochain
maps o' and f§ is similar to that of « and § above.

Finally, we may put these two short exact sequences together in a com-
mutative diagram as follows:

0 —— D*M) —— D*U)®D*(V) —— D*UAV) — 0
@
C¥ (M) 0 0

J a
0 — GMU —— CGHUISCHY) —— GUAY) —> 0
The cochain map labeled a is induced by the inclusion of the subcomplex
C5(M, %) in C5(M); it induces an isomorphism on cohomology. Clearly, each
square of this diagram is commutative. On passage to cohomology we obtain
the diagram we need to prove this case of De Rham’s theorem.

Case 3: M =2, U, where Uy c U, <« - <« U; < Uy, © -+ is a nested
sequence of open sets, and for each i, U; is compact. It is assumed that De
Rham’s theorem holds for each U;; we will show that it holds for M. To carry
out the proof in this case, we need to make use of inverse limits. The reader
can find all the required material on inverse limits in the appendix, pp.
381-410 of Massey [5].

First, for each index i there is a cochain map D*(M) — D*(U)) induced by
inclusion of U, in M. This is a compatible family of maps, and D*(M) is the
inverse limit of the inverse system of cochain complexes {D*(U;)} (this is
practically obvious from the definitions of inverse limit and differential form).
Moreover, for each g, the inverse sequence or tower {D%(U;)} satisfies the
Mittag—Leffler condition; this is an easy consequence of the assumption that
each U, is compact. It follows that the first derived functor

lim! DY(U) = 0

for all q. Hence, we can apply Theorem A.19 on pp. 407-408 of Massey [5]
to conclude that there exists a natural short exact sequence

0 - lim! H™Y(D*(U})) » HY(D*(M)) - lim inv HY(D*(U;)) » 0. (A.3.3)

Next, we will prove similar facts about the cochain complexes C¥(U;; R)
and C*(M; R). We know that the chain complex C5(M) is the direct limit of
the chain complexes C5(U)),

CS(M) = dir lim C5(U,).
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Apply the functor Hom( , R), we see that
C3(M; R) = Hom(C*(M); R)

= inv lim Hom(C3(U;); R)

= inv lim C¥(U; R);
(compare Exercise 2 on p. 297 of Massey [5]). Moreover, for each index i, the
homomorphism

C¥(Uis; R - CH(U; R)

is obviously an epimorphism. Therefore, the Mittag—Leffler condition holds
for the inverse sequence of cochain complexes { C¥(U;; R)}. Applying Theorem

A.19 of Massey [5] to this situation, we obtain the following natural short
exact sequence:

0 lim! H§'(U; R) » HY(M; R) - lim inv HYU; R)—> 0. (A.3.4)

We may now apply the cochain map ¢ to obtain a homomorphism from
Sequence (A.3.3) into the Sequence (A.3.4). This homomorphism enables one
to easily complete the proof in this case.

Case 4: M is an open subset of Euclidean space. Every such M is obviously
the union of a countable family of convex open subsets {U;} having the
property that each U, is compact and U, = M. Then one proves that De
Rham’s theorem holds true for finite unions

U

i

-

1

by an induction on n, using case 2 and the basic properties of convex sets.
Next one passes to the limit as n — oo, using case 3.

Case 5: M is a connected paracompact manifold. It is known that any
connected paracompact manifold has a countable basis of open sets (for a
thorough discussion of the topology of paracompact manifolds, see the ap-
pendix to Volume I of Spivak [7]). It follows that M is the union of a countable
family of open sets {U,} such that each U, is a coordinate neighborhood (and
hence diffeomorphic to an open subset of Euclidean space) and U, is compact.
Let ¥,= U, v U, u---uU,. Using case 2 and 4, we can prove by induction
on n that De Rham’s theorem is true for each V,. Note that ¥, is compact, and
M = | )2, V,. Hence, it follows from case 3 that De Rham’s theorem holds
for M.

Case 6: The general case. By case 5, De Rham’s theorem is true for each
component of M. It follows easily that it is true for M.

This completes the proof of De Rham’s theorem. We conclude by pointing
out two directions in which De Rham’s theorem can be extended:

(a) One of the basic operations on differential forms is the product: if ®
and @ are differential forms of degree p and g, respectively, then their product,
w A 8, is a differential form of degree p + g. Moreover, the differential of such
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a product is given by the standard formula:
dw A ) =(dw) A 8+ (—1Pw A (dF).

It follows that this product in the De Rham complex D*(M) gives rise to a
product in H*(M)), just as the cup product in the cochain complex C*(M; R)
gives rise to cup products in H¥(M, R). It can then be proved that the De
Rham isomorphism.

@*: H*(D*(M)) > H¥(M; R)

preserves products. However, the proof is of necessity rather roundabout,
since the cochain map ¢ : D*(M) —» C¥(M, R) definitely is not a ring homo-
morphism. For a discussion and proof of these matters in a context some-
what similar to that of this appendix, see V. Gugenheim [4]. Gugenheim’s
paper makes heavy use of the technique of acyclic models.

(b) Given any differential form @ on M, we define the support of w to be
the closure of the set {x € M|w(x) # 0}. With this definition, it is readily seen
that the set of all differential forms of degree p which have compact support
is a vector subspace of D?(M), which we will denote by D?(M). Moreover, if
the support of @ is compact, then so is the support of d(w). Hence, D¥(M) =
{DP(M), d} is a cochain subcomplex of D*(M).

Now consider the cochain map ¢ : D*(M) - C¥(M; R). It is clear that if @
is a differential form with compact support, then @(w) is a cochain with
compact support in accordance with the definition in §XIV.3 (be to precise,
that definition has to be modified slightly because we are using cochains which
are defined only on differentiable singular cubes). It can now be proved that
¢ induces an isomorphism of H/(D*(M)) onto the g-dimensional cohomology
group of M with compact supports and real coefficients. The details are too
lengthy to be included in this appendix. Such a theorem is usually proven in
books on sheaf theory.

NOTE

Georges De Rham’s famous theorem was contained in his thesis, which was
published in 1931 in volume 10 of the Journal de Mathematiques Pures et
Appliqués. At that time cohomology groups had not yet been introduced, so
of course he did not state his theorem in the way that is customary today.
Instead, he gave a logically equivalent statement involving Betti numbers,
integration of closed differential forms over cycles, etc.
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APPENDIX B

Permutation Groups or
Transformation Groups

§1. Basic Definitions

The reader is undoubtedly familiar with the following fact from his previous
study of group theory: If E is any set (finite or infinite), then the set of all
permutations of E (ie., function E — E which are one-to-one and onto) is a
group under the operation of composition or superposition of permutations.
He has undoubtedly considered examples of such a group (called the sym-
metric group of the set E), especially in the case where E is a finite set. Also,
he has probably studied various subgroups of the symmetric group on a finite
set.

If G is an arbitrary group, a homomorphism of G into the symmetric group
on aset E is called a representation of G by permutations of E. If the homomor-
phism is an isomorphism, the representation is called faithful. It is an easily
proved result that any group admits a faithful representation by permutations.
We omit the proof because we have no need for this theorem in this book.

We now consider another approach to this same set of ideas which occurs
frequently. At first sight, this approach seems quite different, but it leads to
the same result.

Definition. Let E be a set and let G be a group. We say that E is a left G-space
or that E admits G as a group of operators on the left if there is given a mapping
G x E > E, denoted by (g, x) > g- x for any g € G and x € E, such that the
following two properties hold:

(1) Foranyxe E, 1-x = x.
(2) Foranyxe Eand g,,9, € G,

(9192) x =¢g,°(g2"x).
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For example, if G is a subgroup of the symmetric group of E, and the
notation g- x denotes the effect of applying the permutation g to the element
x € E, then E is a left G-space.

Another simple example is the following: Let E denote ordinary Euclidean
3-space and let G denote the group of all rotations of E which leave the origin
fixed. Let g- x denote the image of the point x under the rotation g. Then E
is a left G-space.

Right G-spaces are defined in an analogous fashion. There is assumed given
a map E x G — E, denoted by (x, g) = x-g, such that the following two
conditions hold:

1) x-1=x
@) x-(9192) = (x"91) g2

The essential difference between right and left G-spaces is not whether the
elements of G are written on the right or left of those of E. The main point is
the difference between condition (2) and condition (2'). If E is a left G-space,
then the product g,g, operates on x € E in such a way that g, operates first
and then g, operates on the result, whereas for right G-spaces, g, operates
first, then g,.

EXERCISES

1.1. Assume that E is a left G-space. For any x € E and g € G, define
x-g=(g7")x
With this definition, prove that E is a right G-space.

Theorem 1.1. Let E be a left-G-space. For any g € G, the map E — E defined
by x = g- x is a permutation of E.

ProoF. Denote the map in question by ¢, : E - E. Consider the map ¢,-.. It
readily follows from the axioms for a left G-space that the composed maps
©,9,-1 and @ -1 @, are both the identity maps of E onto itself. Therefore, ¢, is
one-to-one and onto, i.e., a permutation. Q.ED.

This simple but important theorem shows that the notion of a left G-space
is equivalent to the notion of a representation of G by permutations of the set
E. We must not conclude, however, that such a representation is faithful; it
can very well happen that there exists an element g # 1in Gsuchthatg-x = x
for all x € G. In the case where no such element g € G exists, we say that G
operates effectively on the set E.

It E, and E, are left G-spaces, amapping f : E, — E, is called G-equivariant,
or simply a mapping of left G-spaces, in case

flg-x)=g"(f)
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for any ge G and xe€ E;. A G-equivariant map f:E; - E, is called an
isomorphism of left G-spaces in case there exists another G-equivariant map
f'1E, - E, such that f'f is the identity map of E, and ff" is the identity map
of E,. This is equivalent to the condition that f be one-to-one and onto. This
definition of isomorphism is the natural one in this context. The reader should
note that it is sometimes possible for a group G to operate in several different,
nonisomorphic ways on a given set E. As usual, an automorphism of a G-space
is a self-isomorphism.

§2. Homogeneous G-Spaces

Let E be a left G-space. We say that G operates transitively on E or that E is
a homogeneous left G-space if the following condition holds: For any elements
x, y € E, there exists an element g € G such that

g-x=y.

Homogeneous G-spaces are of frequent occurrence, and thus are important.

Examples

2.1. Let G be a group, and let H be an arbitrary subgroup of G. We denote
by G/H the set of all cosets, g- H, g € G. It is readily seen that, if we multiply
all the elements in a given coset on the left by any element g € G, we obtain
as a result elements all of which lic in the same coset. This defines a map
G x G/H - G/H, and it is readily verified that the two conditions for a left
G-space hold. It is also clear that G/H is a homogeneous left G-space.

We now show that any homogeneous left G-space is isomorphic to some
coset space G/H. Let E be an arbitrary homogeneous left G-space. Choose an
element x, € E, and let

H={geG:g xo=xo}.

We easily check that H is a subgroup of G. It is called the isotropy subgroup
corresponding to x,. Consider the map G — E defined by g — g- x,,. This map
is onto because E is a homogeneous G-space. Under what condition do two
elements g,, g, € G both map onto the same element of E? This is easily
determined as follows:

g1Xo = g2%0<>g2'g1X0 = Xo
¢g;lgl e H.
Hence, g, and g, map onto the same element of E if and only if g, and ¢,

belong to the same coset of H. Therefore, the map G — E induces a map
f:G/H - E which is one-to-one and onto; and it is easily checked that f is
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G-equivariant. Thus, G/H and E are isomorphic left G-spaces, as was to be
proved.

The isomorphism f and the subgroup H in the preceding argument depend
on the choice of the point x, in E. A different choice of x, will give rise to a
conjugate subgroup.

For the purposes of Chapter ¥, we need to know the structure of the group
of automorphisms of a homogeneous G-space. To be consistent with the usage
adopted in that chapter, we shall consider a homogeneous right G-space E.
Let ¢ : E — E be an automorphism of E. Then, one verifies directly from the
definitions that, for any point x € E, the points x and ¢(x) have the same
isotropy subgroup. Conversely, suppose x and y are points of E which have
the same isotropy subgroup. We assert that there exists an automorphism ¢
of E such that ¢(x) = y. We define ¢ in the following rather obvious way. Let
z € E. Then, there exists a g € G such that

z=x"g.
Hence, we must have
o(2)=o(x g)=(px) g=yg

Therefore, we define @(z) = y - g. Of course, we must check that this definition
is independent of the choice of g;i.e,if x-g = x-g’, then y-g = y-g’. But this
is a consequence of the assumption that x and y have the same isotropy
subgroup. We must also verify that the map thus defined is G-equivariant,
and that it is one-to-one and onto. It is trivial to verify the first statement, and
to verify the second, we construct by the same method an inverse of ¢ such
that o~ 1(y) = x.

Next, we note that if ¢, and ¢, are automorphisms of the homogeneous
right G-space E, and, for some point x € E, ¢,(x) = ¢,(x), then ¢, = ¢,. This
is a direct consequence of the fact that G acts transitively on E.

As a consequence of these considerations, we have the following lemma:

Lemma 2.1. A group A of automorphisms of a homogeneous G-space E is the
entire group of automorphisms if and only if for any two points x, y € E which
have the same isotropy subgroup, there exists an automorphism @ € A such that

@(x) = y.

Next, we determine the structure of the group of automorphisms of a
homogeneous G-space. First, we need a definition. Let H be a subgroup of G
and

NH)={ge G:gHg™ ' = H}.

N(H) is a subgroup of G which contains H, and it is called the normalizer of
H. It is the largest subgroup of G which contains H as a normal subgroup.

Theorem 2.2. Let E be a homogeneous G-space, and let H be the isotropy
subgroup of G corresponding to the point x, € E. Then the group of automor-
phisms of E is isomorphic to N(H)/H.
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ProoF. Let S denote the set of all points x € E whose isotropy subgroup is
H. In view of what we have proved above, we see that the automorphism
group acts transitively on S.

Next, we assert that, if x € S and g € G, then x-g € S if and only if g € N(H).
For, the condition xg € § is equivalent to the condition

{heG:xg-h=x-g} =H.
But xgh = xg if and only if xghg™ = x, i.e., if and only if ghg™ € H, or
he g~'Hg. Thus, the subgroup N(H) acts transitively on the subspace S, and
the elements of H leave each point of S fixed. Hence, the quotient group
N(H)/H acts transitively on the right on S without fixed points.
We now set up an isomorphism between the automorphism group and

N(H)/H as follows. Let ¢ be an automorphism,; there exists a unique element
o € N(H)/H such that

xo" 0 = @(xo)

because N(H)/H operates transitively on S without fixed points. Conversely,
for any element & € N(H)/H there exists a unique automorphism ¢ such that
@(x4) = x4 a. Thus, the correspondence ¢ <> a is a one-to-one correspon-
dence between the automorphism group and N(H)/H. We now check that this
correspondence preserves products, as follows. Suppose that

@(xo) = xo° 1,
Y(xo) = xo° B
Then,
(@¥)(xo) = @(¥x0) = @(x,)
= (@x0)B = (xo®)B = xo(ap);
hence, ¢y and af correspond. Therefore, the correspondence is an

isomorphism. Q.E.D.

It should be emphasized that this isomorphism between N(H)/H and the
automorphism group is not natural; it depends on the choice of the point
xq € E. The student should investigate the effect of a different choice of the
base point x, on the one-to-one correspondence which was set up.
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