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Foreword

This book is an introduction to the theory and applications of “modern
geometry” — roughly speaking, geometry that was developed after Euclid.
It covers three major areas of non-Euclidean geometry and their applica-
tions: spherical geometry (used in navigation and astronomy), projective
geometry (used in art), and spacetime geometry (used in the Special The-
ory of Relativity). In addition it treats some of the more useful topics from
Euclidean geometry, focusing on the use of Euclidean motions, and includes
a chapter on conics and the orbits of planets.

My aim in writing this book was to balance theory with applications.
It seems to me that students of geometry, especially prospective mathe-
matics teachers, need to be aware of how geometry is used as well as how
it is derived. Every topic in the book is motivated by an application and
many additional applications are given in the exercises. This emphasis on
applications is responsible for a somewhat nontraditional choice of top-
ics: I left out hyperbolic geometry, a traditional topic with practically no
applications that are intelligible to undergraduates, and replaced it with
the spacetime geometry of Special Relativity, a thoroughly non-Euclidean
geometry with striking implications for our own physical universe. The
book contains enough material for a one semester course in geometry at
the sophomore-to-senior level, as well as many exercises, mostly of a non-
routine nature (the instructor may want to supplement them with routine
exercises of his/her own).

I prepared the illustrations on a PC using Windows Draw 3.0 by Micro-
grafx and Mathematica 2.2 by Wolfram Research.
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1

Euclidean Geometry

1.1 Euclidean Space

FEuclidean space is the space that contains the ordinary objects of high
school geometry: lines, circles, spheres, and so on. An n-dimensional Eu-
clidean space is essentially the same thing as R™, the set of all ordered
n-tuples (2, ...,2,) of real numbers (R stands for ‘Real numbers’, n for
‘n-dimensonal’). The notation E” stands for n-dimensional Euclidean space
(E for Euclid, n for ‘n-dimensional’.) R™ and E” differ in that R™ comes
equipped with a special system of coordinates and a specially marked point
(the origin), while Euclidean space has no natural coordinates or distin-
guished points. In this chapter we shall refer to geometrical space as R™
when we are using coordinates and E” when we are not.

Euclidean space is absolutely uniform (the technical term is “homogen-
eous”)—every place in a Euclidean space looks the same as every other
place. This uniformity of Euclidean space is a key feature of Euclidean ge-
ometry, for it enables one to move objects around inside Euclidean space
without bending, stretching, or otherwise distorting them. Distant objects
can be compared without changing their shapes by bringing them together
and placing one on top of the other. Reliable measurement is possible in
Euclidean space because one can move measuring instruments from place
to place without destroying their accuracy. The most important measur-
ing tools for the Euclidean geometer are a ruler (for measuring distances),
the protractor (for measuring angles), and a sense of erientation or rota-
tional direction for distinguishing between clockwise and counterclockwise
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rotations.
Objects are moved from place to place in space by the action of functions
(Fig. 1.1). A function
f:E* - E"
(read “f is a function from E™ to E™”) takes each point P € E" and moves
it to a new position f(P) € E*. ' If S is a set of points then

f(8) = {f(P)| P € S}

is the set that results from applying the function f to all of the points in
S.

1.2 Isometries and Congruence

The notation PQ means “the distance from the point P to the point Q”.
The most important functions on E™ are those that preserve distance.

Definition 1.2.1 Isometry. A function f : E® — E” is an isometry if,
for all points P and @ in E",

f(P)f(Q) = PQ.

QP f(P) QP o(P)
: Jl D
> : >
Q Q. Q #Q

An isometry . Not an isometry

FI1GURE 1.1. Functions on Euclidean space.

Isometries on Euclidean space are often called “Euclidean isometries”,
“Euclidean motions”, or “Euclidean transformations”.

All the familiar geometric qualities of figures: length, area, volume, the
size of angles, etc., are derived from distances. The length of a polygon is the
sum of the distances between its adjoining vertices and the lengths of more
general curves are computed by approximating them with polygons. Angles
are measured (in radians) by measuring the length of arc subtended by the
angle on a unit circle. The area of a rectangle is the product of its length and
its width, the volume of a rectangular box is (length)x(width)x (height),
and the areas and volumes of more general regions can be approximated
by filling them up with little rectangles or boxes.

1t may happen that f(P) = P.
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Since isometries preserve distances they also preserve lengths, angles,
areas, and volumes. In short, isomelries preserve the size and shape of
every geomelric figure.

Example. The line segment PQ is the shortest curve connecting P to
Q. If f is an isometry then it follows that f(PQ) must be the shortest
curve connecting f(P) to f(Q), since isometries preserve lengths. Therefore
f(PQ) also is a line segment

f(PQ) = f(P)f(Q).

Definition 1.2.2 Congruence. Subsets A, B C E” are congruent (in
symbols A = B) if there is an isometry f such that f(A4) = B.

Exercise 1.2.1 a). Show that every isometry is a one-to-one function. (In
other words, show that if f is an isometry and P and @ are points with
P # Q then f(P) # f(Q))-

b) Assume that f is an isometry and that it has an inverse function
1. Show that f~! also is an isometry. (Exercise 1.10.2 shows that every
isometry does, in fact, have an inverse).

Exercise 1.2.2 Let C C E? be the circle with center P and radius r.
Prove that if f : E2 — E? is an isometry then f(C) is the circle with
center f(P) and radius 7. (Hint: prove that if C’ is the circle with center
f(P) and radius r then f(C) C C’ and f~!(C") C C. You may assume
that f has an inverse and that f~! is an isometry).

1.3 Reflections in the Plane

Every Euclidean isometry is a combination of three fundamental types:
reflections, translations, and rotations.

Let P be a point and L a line in E2. Drop a perpendicular M from P
to L. The reflection of P in L is the point P’ € M such that P’ lies on
the opposite side of L from P and P’ is the same distance from L as P.
(P'= Pif P € L; see Fig. 1.2).

To reflect an entire figure simply reflect all of its points.

d d
______ ! --_I;A___'
P 90° P

L

FIGURE 1.2. Reflection in a Line.

There are three other ways to reflect a figure, all leading to the same
result.
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1. Flip the plane over onto its back by rotating it 180° around L in three
dimensional space. Equivalently, fold the plane over along the line L, then
trace the figure on the other side. (See Fig. 1.3. This construction explains
why reflections are isometries, since it is obvious that merely rotating a
plane does not change the size or shape of any figure in it).

F1GURE 1.3. Reflecting by flipping over.

2. A “ruler and compass construction”. If P ¢ L, draw two circles with
their centers on L, intersecting at P (any two such circles will do). The two
circles will intersect at another point on the opposite side of L; this point
is the reflection of P (Fig. 1.4.).

.=~ P -7 T~
T AN \
/ VRN *
. j&l} ¢ |
\ \ . ,]L

P
~ . /
- P'\\ /’

FIGURE 1.4. Ruler and compass construction.

The ruler and compass construction is based on the fact that reflection
in a line L preserves any circle that is centered on L. Let C be a circle with
center Z € L and let f be the reflection in L. f(Z) = Z since Z € L, so
f(Q)Z = QZ for every point () because f preserves distances. In particular
if @ € C then f(Q) must also lie on C. This holds for both circles in the
ruler and compass construction, so f maps each point in their intersection
to another point in their intersection.

3. Reflection in the z axis in R? is given by the formula

f(z,y) = (z,~y).

Exercise 1.3.1 Find a formula in terms of a,b, and ¢ for reflection in an
arbitrary line az + by + ¢ = 0 in R2.

Exercise 1.3.2 a) Prove that any two circles in the plane intersect in
exactly two, one, or zero points, depending on the distance between their
centers and the sizes of their radii.
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(Hint. Write equations for the circles and solve them simultaneously. This
is not hard to do if you set up coordinates so that the x axis passes through
the centers of both circles.)

b) Prove that if two circles in E? intersect in two points then the line
connecting their centers is the perpendicular bisector of the line segment
connecting the points where the two circles intersect.

1.4 Reflections in Space

Let P be a point and H a plane in E3. Drop a perpendicular M from P
to H. The reflection of P in H is the point P’ € M such that P’ lies on
the opposite side of H from P and P’ is the same distance from H as P
(P' = P if P € H; see Fig. 1.5).

One way to find P’ would be to construct three spheres with noncollinear
centers on H, all intersecting at P. If P ¢ H then the spheres intersect at
exactly two points, P and P’ (Why?).

FIGURE 1.5. Reflection in a plane.
Reflection in the z,y plane in R3 is given by the formula

f(z,9,2) = (2,9, —2).

Exercise 1.4.1 Show that every reflection (in E? or E®) is its own inverse:
if f:E®™ — E"is a reflection (n = 2 or 3) then f~! = f.

Vectors

A vector is a directed line segment that points from one point to another
in E™ or R"™. Vectors are equivalent (and we shall regard them as equal)
if they have the same length and point in the same direction. We will use

the same notation (z,,...,Z,) to denote the point (z,,...,z,) € R™ and
the vector that points from the origin to the point (z,,...,z,) in R® (Fig.
1.6).

Vectors are added to and subtracted from each other in the usual way,
by placing the vectors end to end (Fig. 1.4). Vectors can also be added to
points. If P and @ are points in E® and 7 is the vector that points from
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X3 /N vector (xl,xz,)§ )

point (x,% ,% )
</

FIGURE 1.6. Vectors and points in R3.

P to @ then, as is shown in Figure 1.7,

—

Q=P+ % ,P=Q—7,andv =PQ=Q— P.

Q

R,
v

—_— 4

Q=P+V, '

V=Q-P

F1GURE 1.7. Adding vectors to points and vectors.

Orientation in the Plane

In the plane, reflections produce mirror images of objects, with the line
in which one is reflecting serving as the mirror. Reflected writing has the
same size and shape as the original, but it is still hard to read because its
ortentation has been changed. Here, “orientation” refers to a choice of di-
rection of rotation — clockwise or counterclockwise in the plane. Reflections
reverse orientation by changing clockwise rotations into counterclockwise
rotations and vice-versa (Fig. 1.8).

fog got

FIGURE 1.8. Reflections reverse orientation.

Orientation in Space
Orientation in E? is determined by using the “right hand rule” (Fig. 1.9).

Let (7, ?, 6) be an ordered triple of nonzero vectors in E3, not all parallel
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to the same plane. (7, _B_), ?j) 1s positively oriented if, when you point the
thumb of your right hand in the A direction and your first finger in the
B direction, then the rest of the fingers of your right hand curl toward the
C direction. (K,?, 6) 1s negatively oriented if the rest of your fingers

. . - » .
point in the — C' direction.

FiGURE 1.9. Right-hand rule.

Reflections in space reverse orientations by mapping positively oriented
triples of vectors to negativly oriented triples and vice-versa.

1.5 Translations

Translations move objects along a straight line through space without rotat-
ing the objects or changing their orientation (Fig. 1.10). There is a one-to-
one correspondence between vectors in E™ and translations: the translation
T associated to a vector v € E™ acts by adding @" to each point,

T(P): P+ .

7 is the displacement vector for the translation T

e

FIGURE 1.10. A translation.
In coordinates, if ¥ = (vy,...,vn) then

T(zy,...,zn) =(z1+v1,..-,Tn+ Un).
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Exercise 1.5.1 Let S be the square whose vertices are (0,0), (1,0), (1,1),
and (0,1), and let T be the translation associated to the vector ¥’ = (2,5).
Find 7(S).

Composition of translations is equivalent to vector addition. If T, is
translation by @ and T}, is translation by W then the composition T, o T;,
is translation by the sum @ + w:

TyoTy =Tytw-

€|

—

\4
- —
V+w

F1GURE 1.11. Composition of translations.

The inverse of a translation T, also is a translation:

T '=T.,. (1.1)

<

0 Q=T, (P

_ -l o
P-T,(Q

FIGURE 1.12. Inverse of a translation.

The next proposition says that every translation is a composition of
reflections:

Proposition 1.5.1 Let L, and Ly be parallel lines in E?. Let T be the
vector that points from L, to Ly at right angles to the two lines, let f be
reflection in Ly, and let fo reflection in Lo. Then the composition f o f,
is translation by the vector 2.

Proof. (See Fig. 1.13). Let P be an arbitrary point. Let A and B be
vectors perpendicular to the two lines, with A pointing from P to L, and
F pointing from fi(P) to Ly. Then

P+7f € L,
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l

P+24 = fi(P),

P+2A+B € L,
— ]
P+2A+2B = f(H({)).

Because A + 3 points from L; to Ly and because all three vectors o,

A and B are perpendicular to L, and Ly, it follows that & = A +
Hence fo(fi(P)) = P + 27 for all P.
This completes the proof.

—
v

—_
B

<|

|

P £, f, (£, (®)

FiGURE 1.13.

A similar result with a similar proof holds for reflections in parallel planes
in E3.

1.6 Rotations

Rotations in the plane

A rotation in the plane is performed by revolving the plane around a
given point (the center of the rotation) through a given angle. Thus it
takes two pieces of data to completely describe a rotation in E2, a point and
an angle. Counterclockwise rotations sweep out positive angles; clockwise
rotations sweep out negative angles.

FIGURE 1.14. A rotation.

We will sometimes use the notation

Rc,¢ = (the rotation with center C and angle ¢)
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Rotation in the z,y plane through an angle ¢ about the origin O is given
by the formula

Ro 4(z,y) = (xrcos¢ — ysin ¢, zsin¢ + ycos §).
To see this, express (z,y) in polar coordinates (r,6):
z=rcosf, y=rsinb.
Then

Ro 4(z,y) = (rcos(0+ ¢),rsin(0+ ¢))
(r(cos 6 cos ¢ — sin@sin @), r(cosf sin ¢ + sin 8 cos ¢))
= (zcos¢ —ysing,zsing + ycos @)

by the addition formulas for trigonometric functions (Exercise 1.8.9).
The inverse of a rotation is a rotation with the same center and the
opposite angle:
-1 .
(Rp,0)™" = Rp,—g. (1.2)
The next exercise shows that every rotation, just like every translation,
is a composition of reflections.

Exercise 1.6.1 Let L), L, be two lines intersecting at a point P in EZ2.
Let f; be reflection in I, and let f; be reflection in L;. Show that the
composition f; o f; is a rotation around P, and the angle of the rotation is
equal to twice the angle formed by the two intersecting lines. (Hint: imitate
the proof of Proposition 1.5.1).

Exercise 1.6.2 Find a formula for rotation through an angle ¢ around an
arbitrary point (a,b) € R2.

Rotations in Space

A rotation R4 4 in three dimensional space has an angle ¢ and an axis
A. Ais a directed line — a line with a sense of direction. The direction of
the axis determines the direction of positive rotation by using the “right
hand rule”: if the thumb of your right hand points in the direction of the
axis then the fingers of your right hand curl towards positive rotations. See
Fig. 1.9.

It is worth noticing that both translations and rotations preserve orien-
tations. This follows from the fact that every translation and every rotation
is the composition of two reflections (Proposition 1.5.1 and Exercise 1.6.1).
Each of these reflections reverses orientation but the two orientation rever-
sals cancel each other out, so in the end the orientation is the same as it
was at the beginning.
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1.7 Applications and Examples

Example 1.7.1 A boy intends to collect some water from a stream and
then carry it home. He wants to find the shortest path that takes him to
the stream and then to his house. What route should he take? (See Fig.
1.15.)

Obviously he should go straight to some point on the bank of the stream,
fill his bucket, and then go straight home. To which point on the stream
should he go?

FIGURE 1.15. Shortest path?

Solution. Assume the boy is at A, his home is at B, and the bank of
the stream forms a line L. Assume further that A and B are on the same
side of L (since the solution is obvious if they are on opposite sides).

Claim 1.7.1 Let B’ be the reflection of B in L and let
P=ABNL.
I claim that APB is the shortest path.?

Proof. It suffices to show that if Q # P is any other point on L then
AP+ PB < AQ + @B.
Since reflections preserve distance, @B = QB’. Thus

AQ+ Q@B =AQ +QB'.
Likewise PB = PB’, so

AP + PB= AP + PB'.
Clearly

AP + PB' < AQ + QB

2Notat_i0n! If A1, A2,..., A, are a sequence of points then A1A2... A, is a
union of line segments A1 A>... A, = AjA2UA2A3U...UAn_1A,.
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because A, P, and B’ lie in a straight line while A, @, and B’ do not. Hence
AP+ PB < AQ+ QB
which proves the claim.

Exercise 1.7.1 Let L be a line in the plane, B a point not on L, B’ the
reflection of B in L, and Q = BB’ N L. Prove that @ is the closest point
to Bon L.

Exercise 1.7.2 Suppose that in Example 1.7.1 A = (0,2), B = (6,1), and
L is the x axis. Where is P7

When a light ray bounces off a flat mirror the angle of incidence, the
angle between the incoming ray and a line perpendicular to the mirror, is
equal to the angle of reflection, the angle between the outgoing ray and a
line perpendicular to the mirror (Fig. 1.16). The incoming ray, the reflected
ray, and the perpendicular lie in a plane that is perpendicular to the surface

angle of angle of
Q incidence o Q  reflection
A IS e
B
H
7777 TITTTTT 7T 7777777777777
mirror AR ,
S D
. -
e}

FIGURE 1.16. Reflection from a mirror.

To bounce a light beam from a point A to a point B on the same side of
a planar mirror one should aim the light toward the reflection B’ of B in
the plane of the mirror. To see why, let H be the plane of the mirror, B’
the reflection of B in H, and P = AB' N H. Let Q be a point on the same

side of H as A, with ‘Q_I?’ perpendicular to H, and let @’ be the reflection
of @ in H.
LBPQ = LB'PQ’

because reflections preserve angles, while
LB'PQ = LAPQ

because ZB'PQ’ and LAPQ are “vertical angles” (a 180° rotation about
P in the plane AP B takes £B'PQ’ to LAPQ). Hence LAPQ = LBPQ, so
light travels along the path APB.
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Remark. From our discussion of Example 1.7.1 it follows that APB
is the shortest path from A to the mirror and then to B. This is an ex-
ample of Hamilton’s “Principle of Least Action,” an important principle
in physics that says that all types of waves, including strange things like
“matter waves”, tend to follow paths that minimize some physical quan-
tity (“action”). The interested reader should consult Richard Feynman’s
famous little book QED [8] for a simple and intuitive discussion of the role
of Hamilton’s principle in quantum mechanics.

Example 1.7.2 Two mirrors meet in a 70° angle (Fig. 1.17). Someone
stands between the mirrors with her eye at point B searching for images of
an object that is located at point A. How many images of the object will
she see? In what direction and how far away will they appear to be?

For simplicity’s sake assume that A and B lie in a plane H that is
perpendicular to the line where the two mirrors intersect. This enables
us to treat the problem as a problem in plane geometry: because H is
perpendicular to both mirrors a light ray reflecting from A to B will remain
in H for its entire trip.

FIGURE 1.17. Multiple reflections.

Fig. 1.17 shows five images of A and their apparent locations as they
appear from an observer at B. A itself is one of the “images” since the
observer could look directly at A. Another image is formed by light that
goes from A to the first mirror, M, reflects, and then goes to B. This
image appears to be located at the reflection A’ of A in M;, because the
reflected light comes from the same direction as A’ and it travels a distance
equal to A’B. Similarly light traveling along the path ASB forms an image
that appears to be located at A”, the reflection of A in M.
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The image A’ is formed as follows. M| is the reflection of the mirror
My in My. A" is the reflection of A” in M{. A"’B intersects M; at Q'
and M, at T. Reflecting A" Q) in M| one gets A”Q’, then reflecting the
path A”Q'T in M5 one obtains the path AQT'. Thus light reflects from A
to B along the path AQT B, and the image appears to be located at A””.

Similarly, light reflects along the path AU’PB producing an image at
A", A" is the reflection of A’ in M}, while M} is the reflection M; in M,.
U=A"BNM}, P=A"BNM,, AU reflects to A'U in M}, and A'UP
reflects to AU’P in M,.

One can construct all of these reflections by folding the plane over (see
page 4). For instance the path AU’P B results from folding A"’ B once over
M} and then over M; . Or one could think of A”7B as the result of unfolding
AU’'PB, once over M; and then over Mj.

This folding construction makes it easy to see why no reflections are
possible in this example except the five that were constructed above. When
one unfolds a path, the points where the light reflects (e.g. U’ and P in
AU'PB) become points where the unfolded line crosses a mirror (e.g. U
and P in A" B). As the unfolding progresses the successive images of A
(A’,A" in the unfolding of AU'PB) all lie on the same side of the line
that connects B to the point where the two mirrors intersect. No more
images are possible because it is impossible to produce any more images of
A without passing from one side of this line to the other.

The number of reflections, and hence the number of images seen by
the observer, varies in different examples. It depends mainly on the angle
between the two mirrors, and also is affected somewhat by the position of
the viewer (B) and the position of the object (A) relative to the mirrors.

Exercise 1.7.3 Find all possible paths that light could take in Example
1.7.2 if the angle between the mirrors were

a) 90°.

b) 60°.

c) 50°.

d) Can you find a formula for the number of paths from A to B as a
function of the angle between the mirrors and the positions of the points
A and B?

Exercise 1.7.4 What modifications should be made in the discussion of
Example 1.7.2 if A and B do not lie in a plane that is perpendicular to the
intersection of the two mirrors?

Exercise 1.7.5 Balls bounce the same way as light if you neglect the ef-
fects of friction. Suppose a frictionless ball is placed at the center of the
pool table that is twice as long as 1t is wide (Fig. 1.18).

a) Show how to make a shot that will send the ball into the corner
pocket C, bouncing it off each side of the table at least once along the way
(minimum of four bounces). Neglect friction. (Hint: reflect the pool table
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repeatedly over each of its sides to generate a grid pattern like the one in
Fig. 1.18, then construct your path by folding up the appropriate straight
line. Fig. 1.18 shows a shot that lands the ball in the pocket C after three
bounces.)

b) Prove that the shot called for in part a) can be done with five bounces,
but it cannot be done with only four.

B A B A
o S
X
C D<: N S \IC D
B - A B A
C D C D

FIGURE 1.18. A pool shot.

Example. (Adapted from [22, page 10 problem 2}). A road is proposed
that will connect two towns A and B on opposite sides of a river. The
road will cross the river in a bridge that is perpendicular to the riverbanks.
Where should the bridge be placed so as to minimize the total length of
the road? (See Fig. 1.19).

Solution. Let 7" be the vector that points from the riverbank on the A
side of river to the riverbank on the B side, perpendicular to the river. Set
A’ = A+ 7. The bridge should be built at the point P’ where A’B crosses
the riverbank on the B side of the river.

A
A+v=A . i bridge
LN |
v N Q) river
y ) N B
QP

FIGURE 1.19. Bridge between two towns.

Proof. We must show that if one puts the bridge anywhere else he will
—_

get a longer road. A bridge at P’ extends from P’ to the point P = P'— %



16 1. Euclidean Geometry

on the opposite riverbank. With the bridge at P’, the length of the road is
AP+ |7 |+ P'B

(Notation: | ?” | stands for the length of the vector o).

Let Q" # P’ be any other point on the B side of the river and let
Q = Q' — ¥ be the corresponding point on the opposite riverbank. If the
bridge were built at @’ then the road’s length would be

AQ +|7 |+ @'B.
Translation by @ maps AP to A’P’ and AQ to A’Q’. Thus
AP 4|7 |+ PB= AP +|7|+P'B

and
AQ+ |V |+ Q' P=AQ +|7|+Q'P.

Clearly
AP +PB<AQ +QB

since the points A’, P’, and B lie on a line. Hence A’P' + |7’ | + P'B <
A'Q' + |7 |+ Q'P,so APP'B is the shortest road.

Exercise 1.7.6 Show how to find the shortest road between two towns
separated by an arbitrary number of rivers that must be bridged (Fig.
1.20). Prove that your road really is the shortest possible.

Ae

=

FicuURrE 1.20. Two rivers between two towns.

Example 1.7.3 Let AABC be an arbitrary triangle in the plane, and let
AA'BC, AAB'C, AABC' be equilateral triangles attached to the outside
of AABC'. Then

AA'= BB =CC'.

(See Fig. 1.21).
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Bv

CI

FIGURE 1.21. Equilateral triangles on a triangle.

Proof. A 60° rotation about the point C carries B to A’ and B’ to A
simultaneously. Since rotations preserve distances, it follows that BB’ =
A’'A. A similar argument (rotate by 60° around B) shows that CC' = A’A.

It turns out (see Exercise 1.9.2) that the three lines AA’, BB, CC" in
Example 1.7.3 all intersect at the same point, in 60° angles. The point
D where they intersect is the solution to another minimization problem:
if none of the angles of AABC is larger than 120° then the sum of the
distances AP + BP + CP is smallest when P = D. For an elementary
proof see [4, Chap. VII §5].

1.8 Some Key Results of High School Geometry:
The Parallel Postulate, Angles of a Triangle,
Similar Triangles, and the Pythagorean
Theorem

Two lines in E" are parallel if and only if they are equal or they lie in a
common plane and do not intersect.

The Parallel Postulate: Given a line L and a point P in E" there is
exactly one line through P that is parallel to L.

In fact if 7" is a translation that takes some point on L to P then T'(L)
is parallel to L (Fig. 1.22).

The parallel postulate was the most controversial of Euclid’s postulates
for geometry. Many scholars felt that it should be possible to deduce the
parallel postulate from Euclid’s other postulates. It was later proved to
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L s
] A
T,” par:allcl
L N v

FIGURE 1.22. Parallel postulate.

be impossible to deduce the parallel postulate from the other postulates,
and efforts to do so led to the invention of various “non-Euclidean geome-
tries” in which the parallel postulate is violated. Besides being interesting
to mathematicians, some non-Euclidean geometries have found practical
application, the most famous being in Einstein’s General Theory of Rela-

tivity.

\

FIGURE 1.23. Alternate Interior-Exterior Angles.

Recall that two figures A and B are congruent (in symbols A = B) if
there is an isometry 7 such that T(A) = B.

Alternate interior-exterior angles /A and /A’ are formed when parallel
lines intersect a transversal (Fig. 1.23). Alternate interior-exterior angles
are congruent since a translation maps one of them to the other.

Conversely, if ZA = LA’ then L and L’ are parallel. To see this let L”
be the line through P’ that is parallel to L. ZA, and one of the angles
LA" between L" and the transversal, are alternate interior-exterior angles.
Hence LA"” =2 LA’. Since LA"” and LA’ have the same vertex it follows that
they are the same angle, so L = L’. Hence L’ is parallel to L.

-7 180°

F1GURE 1.24. Vertical Angles.

Two pairs of vertical angles are formed when two lines intersect (Fig.
1.24). Vertical angles are congruent since a 180° rotation about the point
of intersection maps one angle to the other.
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Theorem 1.8.1 The sum of the angles of a Euclidean iriangle is 180°.

Proof. Given AABC, draw a line L through A parallel to BC. Label
angles as in Fig. 1.25. ZA and ZA’ are vertical angles so ZA = /A’, while
(B = /B and /C = L(C’ because they are alternate interior-exterior
angles. Clearly ZA' + LB’ + £C" = 180°.

par:allel
A4

FIGURE 1.25. Sum of angles = 180°.

Theorem 1.8.1 depends strongly on the parallel postulate-it is not true
in non-Euclidean geometries where “space” is “curved”. The difference be-
tween the sum of the angles of a triangle and 180° is a measure of the
curvature of space; if the difference is not zero the space is curved rather
than flat. In this sense our own physical universe is a curved space: if you
build a very large triangle by joining three vertices together with curves of
minimal length then the angles of the triangle generally will not add up to
180°. The General Theory of Relativity explains that this bending of space
is a manifestation of gravitation.

Many key results from high school geometry follow from elementary facts
about area. Often the area inside a figure can be computed by cutting the
figure up and rearranging the pieces until one obtains a figure of known
area. For instance, starting with the fact that the area of a rectangle is the
length of its base times its height, one finds that:

(area of a parallelogram) = (base) x (height).

FIGURE 1.26. Area of a parallelogram.
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(area of a triangle) = %(base) x (height).

FIGURE 1.27. Area of a triangle.

(area of a circle) = %(circumference) x (radius).

(If = is its radius then the area of the circle is 7r? since its circumference
18 277).

1
-_Z_c

FIGURE 1.28. Area of a circle.

To obtain the last formula cut the circle into an arbitrarily large num-
ber of infinitesimally thin sectors and rearrange them into an approximate
parallelogram as shown in Fig. 1.28. Then take the limit as the number of
sectors approaches infinity.

Proposition 1.8.1 If L is parallel to AB, and C,C’' € L, then AABC
and AA'B'C’ have the same area (Fig. 1.29).

Proof. Both triangles have the same base and height.

C c

A B

FIGURE 1.29. The triangles have equal area.

A similar result holds for parallelograms (Fig. 1.30).
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FiGURE 1.30. The parallelograms have equal area.

Definition 1.8.1 Similar Triangles. Triangles AABC and AA’'B'C’ are
stmilar f LA= (A", (B= (B and LC = (LC".

The next result is often stated as an axiom in high school texts.

Theorem 1.8.2 Similar Triangles are Proportional.
If AABC and AA'B'C’ are similar then
A'B"  A'C' BC
AB ~ AC ~ BC
Proof. (Adapted from Euclid [6, Book VI, Proposition 2}). Without loss
of generality, we may assume that AB > A’B’. Since ZA = LA’ there exists
R — —_— —
an isometry T such that T(A'B’) = AB and T(A'C’) = AC. By applying
T we may arrange the triangles as in Fig. 1.31, where A = A’, B’ € AB,
and C' € AC.

A A

FiGure 1.31.

Regard AABC' and AA'B'C’ as triangles with their bases on AB and

their heights equal to the distance from AB to C'. The formula for the area
of a triangle says that
A'B'  area(AA'B'C")

AB ~ Tarea(AABC) (1-3)

Similarly,
A'C'  area(AA'C'B') (1.4)
AC ~— area(AACB') '

Now B/C' is parallel to BC since LC = LC', so the distance from B to
—> —>
the line B’ C’ equals the distance from C to B’C’. Hence

area(AB’C'C) = area(AB'C'B). (1.5)
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But
area( AABC') = area(AA'B'C’) + area(AB'C'B)

and
area( AACB') = area(AA'B'C') + area(AB'C'C).

So by Equation 1.5,
area( AABC') = area( AACB').
Plug this result into Equations 1.3 and 1.4 and get
A'B AT
AB T AC
An analogous argument shows that A'B’/AB = B'C'/BC.
This completes the proof.

Remark. From the law of cosines (Exercise 1.8.6) it follows that the
converse to Theorem 1.8.21s also true: if A’B'/AB = A'C'/AC = B'C'/BC
then AA’'B'C’ is similar to AABC (Exercise 1.8.7).

The Pythagorean Theorem

The following generalization of the Pythagorean Theorem was proved by
Pappus of Alexandria in the fourth century, A.D. (See [7, Lecture 4] for
further discussion and generalizations.)

Theorem 1.8.3 Let AABC be an arbitrary triangle in E2, not necessarily
a right triangle. Erect parallelograms ABDE and ACFG on the outside of
AABC so that ABDE meets AABC along the edge AB and ACFG meets

AABC along the edge AC. Let P be the point where the lines DE and FG
meet. Erect a third parallelogram BCHI on the outside of AABC so that
the vectors
PA=BI
are equal. Then
area( ABDE) + area( ACFG) = area( BCHI).
(See Fig. 1.32).

Proof. Let Q = DENBI, R = FGNCH, J = PANBC, and K =
PANTH. QB, PA, RC, and JK are parallel. Two parallelograms with the
same base and height have the same area, so

area(ABDE) = area(ABQP) = area(JKIB),

and
area(ACFG) = area(ACRP) = area(JK HC).
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I K H

FIGURE 1.32. The Generalized Pythagorean Theorem.

Clearly,
area(BCHI) = area(JKIB) + area(JKHC),

so the proof is complete.

Exercise 1.8.1 The Pythagorean theorem. Deduce the Pythagorean
theorem from Theorem 1.8.3: if Z4 = 90° then (AB)? + (AC)? = (BC)2.

The theorem on similar triangles (Theorem 1.8.2) and the Pythagorean
theorem form the basic link between geometry and algebra. The “point-
slope” equation of a line 1s a consequence of the theorem on similar tri-
angles: if (z1,y1) and (z2,y2) are two points on the line and m = (y2 —
#)/(z2 — z1) then, given any other point (z,y) on the line, the ratios
(y —wn)/(z — z,) and (y2 — y1)/(z2 — z1) are equal (by similar triangles).
Hence (y—y1) = m(z — ;). It follows from this that equations of the form
Az + By + C = 0 represent lines. Equations of the form Az? + Bzy +
Cy?+ Dz + Ey+ F = 0 represent circles, ellipses, hyperbolas, and parabo-
las because of the Pythagorean theorem, which says that the square of the
distance between (z,,¥,) and (z2,y2) is d? = (z2 — z1)? + (y2 — n1)%.

This marriage of geometry and algebra has been exceptionally fruitful.
It enables us to apply the intuitions of geometry to algebraic problems and
the precision of algebra to geometric problems, producing an enormous
increase in the depth and scope of both fields.

Similar triangles and the Pythagorean theorem also provide the foun-
dation of trigonometry and much of the science of measurement. Using
similar triangles one can recover the dimensions of an object by measuring
a scale model of the object. Each angle on the object is the same as a cor-
responding angle on the model, so each length on the object differs from
the corresponding length on the model by the same scale factor. There-
fore to obtain a distance on the original object one need only multiply the
corresponding length on the model by this scale factor.

Example. How high is your science building? From two points A and B
on the ground (see Fig. 1.33) I could see point C at the top of our science
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building. Using a protractor and a tape measure, 1 found that the angle
of elevation from point A to point C is LA = 19°, the angle of elevation
from B to C is ZB = 43° and the distance from A to B is AB = 39ft. The
measurements were taken at my eye level, about 5.5 ft. above the ground.

To find the height of the building I made a scale drawing of AABC. I
drew a line segment A’ B’ of some convenient length on a piece of paper (I
used A’'B’ = 19.5 cm. but any other length would do just as well). Then
I drew a line through A’ meeting A’B’ in a 19° angle and another line
through B’ meeting A’B’ in a 43° angle. Let C’ be the point where the

_ —
two lines meet. Drop a perpendicular C'D’ from C’ to the line A'B’. C'D'

represents the side CD of the science building (Fig. 1.33). Measuring my
drawing with a ruler I found that

C'D' =~ 10.9 cm.

The scale factor in my drawing is the ratio r = AB/A’B’ of the true
length AB to the distance A’B’ between the corresponding points in the
drawing. In my case AB = 39 ft. and A’B’ = 19.5 cm. so the scale factor
is » = 39 ft./19.5 cm.. Hence the true distance CD is

39 ft.

19.5 cm.
39 ft.

19.5 cm.

CD = C'D x
~ 10.9 cm. x

~ 21.8 ft.

My eye level is about 5.5 ft. above the ground, so it follows that our
science building is approximately 21.8 ft. + 5.5 ft. &~ 27.3 ft. high.

As— 195ecm.=39ft. —> B

FIGURE 1.33. Measurement of a remote object.

Figure 1.34 shows the simple device that I used to measure the angles
of elevation. To make it you need a straight stick, a protractor, a string,
some washers for a weight, and some tape, and two people: one to sight the
object and one to read the scale.



1.8. Some Key Results of High School Geometry 25

Horizontal Line
Protractor

Weight Angle of elevation

- 90°-0

FIGURE 1.34. A device for measuring angle of elevation.

Exercise 1.8.2 Make a scale drawing and use it to find the height of the
library building on your campus.

Exercise 1.8.3 From two points A and B on their side of a river, a group
of sightseers can see a dock C on the opposite bank. Using a protractor
and a tape measure, they find that ZCAB = 75°, LABC = 80°, and
AB = 100ft. Make a scale drawing and use it to find the width of the river.

Long ago people realized that for solving this type of problem it would be
useful to have a table of triangles and their dimensions. Instead of having
to draw and measure scale models of triangles one could simply look up
their measurements in the table. In fact it is enough simply to have a table
of right triangles, because every triangle can be broken down into two right
triangles (Fig. 1.35).

AAN A

FIGURE 1.35. Every triangle is made from two right triangles.

A table of trigonometric functions is such a table; sines and cosines are
the lengths of the legs of a right triangle if the length of its hypotenuse
1s one. In practice one usually can achieve better results using a table of
trigonometric functions than one can by drawing and measuring because
it is difficult to draw and measure really accurately, whereas trigonometric
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functions can be computed to any desired precision.? Nevertheless, trigono-
metric tables are in essence nothing but tables of similar triangles, a sub-
stitute for scale drawings.

Exercise 1.8.4 Use a table of trigonometric functions (or a calculator)
instead of a scale drawing to work Exercise 1.8.3. Compare the results.

Exercise 1.8.5 The Law of Sines
Given a triangle with a side of length a opposite vertex A, side b opposite
vertex B, and side ¢ opposite vertex C, prove that

a b ¢
sin/A  sinZB ~ sin/C’

(Hint: Compute the area of the triangle three times using sides a, b, and
¢, respectively, as the base. For a sharper version of the Law of Sines see
Exercise 1.9.11.)

Exercise 1.8.6 The Law of Cosines.
Given a triangle with sides a, b, and ¢, and vertex C opposite side c,
prove that
¢® = a® 4 b? — 2abcos(LC).
(Hint: break the triangle up into two right triangles as in Fig. 1.35 and
apply the Pythagorean theorem).

Exercise 1.8.7 Use the law of cosines (Exercise 1.8.6) to prove the con-
verse to Theorem 1.8.2:if A’B’/AB = A'C'/AC = B'C'/BC then AA'B'C’
is similar to AABC.

Exercise 1.8.8 The Dot Product. The dot product of two vectors v° =
(xl)yl), and W = (-’l!z,yz) in R? is

(z1,11) - (22, 92) = 2122 + Y192

Use the law of cosines (Exercise 1.8.6) and the Pythagorean theorem to
prove that

a) |[2'|2 =" - %', where | 7’| is the length of ¥’

b) ¥ W = |¥’|| | cos@, where € is the angle between % and .
(Hint: Apply the law of cosines to the triangle whose sides are v°, o,

and v - W)

3For instance, using the Taylor series

- 12,14 15
Cosx—l—iz +Z1: _az +---
. 1
smz:z——zs_}.l 5 iz7+__.

3t TET T
More efficient methods for machine computation are discussed in [19]-
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Exercise 1.8.9 Addition Formulas.
a) By applying the law of cosines to the triangle in Fig. 1.36, deduce that

cos(¢ + 6) = cos(¢) cos() — sin(¢) sin(8)

and
sin(¢ + 6) = sin(¢) cos(8) + cos(¢) sin(6)

whenever 0 < ¢,6 < 90°.

b) Using the identities cos(6) = cos(—0) = — cos(6 + 180°) and sin(f) =
—sin(—6) = —sin(# + 180°), generalize the results in part a) to all angles
—00 < ¢, 0 < o0.

tan O

\f¢\t 4)
sec @

FiGURE 1.36. Addition formulas.

1.9 SSS, ASA, and SAS

Much of school geometry is taken up with the study of elementary rela-
tions (“angle-side-angle”, “side-side-side”, ctc.) between congruent trian-
gles. These relations, as well as all the rest of Euclidean geometry, follow
from properties of isometries.

Proposition 1.9.1 Side-Angle-Side (SAS).
If AB = A'B', BC = B'C', and (B = [B' then AABC = AA'B'C’
see (Fig. 1.37.

5 5

B + C B' H C!

F1GURE 1.37. Side-angle-side.

Proof. (Adapted from Euclid [6, Book I, Proposition 4]). Since 4B is
congruent to ZB' there is an isometry T such that T(£/B) = /B'. By
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composing it with a reflection if necessary we may assume that 7T takes

e —_— — —_— .
BA to B'A' and BC to B'C’. Because AB = A'B' and BC = B'C' it
follows that T(A) = A’ and T(C) = C’, since isometries preserve distances.
Therefore T maps AABC to AA'B'C’.

Proposition 1.9.2 Angle-Side-Angle (ASA).
If tA= (A", (LB= /B, and AB = A'B' then AABC = ANA'B'C’.

Proof. /C = LC' = 180° — LA — LB. By the law of sines (Exercise

1.8.5),
__(AB)(sinA) (A'B')sinA’)  _,_,
BC = sinC - sin C’ =BC.

Thus by SAS (Prop. 1.9.1) the triangles are congruent.

Proposition 1.9.3 Side-Side-Side (SSS).
If AB=A'B', AC = A'C', and BC = B'C’ then AABC = AA'B'C".

Proof. By the law of cosines (Exercise 1.8.6)
(AC)? + (BC)? — (AB)?

cosC 2(AC)(BC)
B (AICI)2 + (BICI)2 _ (A/B/)2 _ C’
= AA'CY(B'C) - st

Hence /C = LC', so by SAS the triangles are congruent.

Isosceles Triangles and Arcs on a Circle

Corollary 1.9.1 Isosceles triangles.
LA= (B in AABC if and only if AC = BC.

Proof. If LA = LB then by ASA there is an isometry 7" such that
T(A) = B, T(B) = A, and T(C) = C. Thus T(AC) = BC, so AC = BC.

Conversely, if AC = BC then by SSS there is an isometry T such that
T(A)=B,T(B)=A,and T(C) = C,so LA= /LB.

If AC = BC and M is the midpoint of AB, then CM is the perpendicular
bisector of AB. For ACM A is congruent to ACM B by SSS, and ZCM A+
LCMB = 180° This principle is used in an old-fashioned design for a
carpenter’s level (Fig. 1.38). Build a triangle AABC with AC = BC.
Mark the midpoint M of AB and hang a weight on a string attached at C.

To use the level rotate the triangle until the string crosses AB at M.

Then AB will be a horizontal line.

According to Thompson, [21, page 100] this type of level was used in the
eighteenth century for surveying the Mason-Dixon Line.

The following useful result from elementary geometry is another appli-
cation of isosceles triangles.
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FIGURE 1.38. A Carpenter’s Level.
Proposition 1.9.4 Let C be a circle with center at P, A an arc of C, and
Q € C a point not on A. Let R and S be the endpoints of A. Then
LSPR =2/SQR
(see Fig. 1.39).

FiGure 1.39.

Proof. (See Fig. 1.40). Let Q' be the opposite end of the diameter
through Q. PQ = PR, so AQPR is isosceles. Hence ZQRP = LPQR.
Since the sum of the angles of AQRP is 180° it follows that

LRPQ = 180° — 2LPQR,
and since ZQ'PR = 180° — LRPQ we have

LQ'PR=2LPQR.

Similarly,
LSPQ' = 2/SQP.
Since
LSPR=(SPQ + (Q'PR
and

LSQR = LSQP + LPQR
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FIGURE 1.40.

with the same plus-or-minus sign in each case, it follows that LSPR =
24SQR.

Corollary 1.9.2 If R and S are opposite ends of a diameter of a circle
and Q) is any other point on the circle then LSQR = 90°.

Exercise 1.9.1 (Adapted from [16, page 6]). The best seat in a certain
theater is the seat marked “A”. Find all other points from which the stage
subtends the same angle as 1t does for the viewer in seat A (Fig. 1.41).

FIGURE 1.41.

Exercise 1.9.2 Show that the lines j‘lA’, BB', CC’ in Example 1.7.3 all

intersect in 60° angles at a single point, D. (Hint: let D = H NBB'. Show
that £ZC'DB = LBDA' = LA'DC = 60°, then deduce that C’, D, and C
must be collinear).

Exercise 1.9.3 The navigator of a ship S saw landmarks in the distance
at three points A, B, and C. Taking sightings from the deck of the ship
she found that ZASB = 100°, £LBSC = 125°, and ZCSA = 135°. Then
she located the points A, B, and C on a map and used Proposition 1.9.4
to find the exact position of her ship. How did she do it? (Fig. 1.42).

Exercise 1.9.4 Tangents to circles and spheres.
a) A line is tangent to a circle if and only if it intersects the circle in
exactly one point. Let C be a circle with center Z, A € C, and L a line
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o C
FIGURE 1.42. Sightings from a ship.

through A. Prove that L is tangent to C if and only if L is perpendicular
to ZA. (Hint: use the Pythagorean theorem).

b) State and prove a corresponding result for planes that are tangent to
spheres.

Exercise 1.9.5 Tangents to circles (continued).

a) In some applications (e.g. drafting) it is useful to be able to construct
a line through a given point P, tangent to a given circle C. One may try
to do this by eye but it i1s hard to get it just right.

Here is a better way. Let Z be the center of C and M the midpoint of
ZP. Draw the circle with radius ZM and center M, and let A and B be
the points where it intersects C.

— — .
Prove that AP and BP are tangent to C (Fig. 1.43).

FIGURE 1.43. Tangents to a Circle.

b) Here is a way to draw lines tangent to two given circles. (This tech-
nique is used, for example, in drawing pictures of belts passing over pulleys).
Start with two circles C,C’, with radii 7, and centers Z,Z’, respectively.

Assume r > r’. To draw an “external” tangent (Fig. 1.44), first draw an
auxiliary circle K with center Z and radius r —»’. With the technique from

—>
part a), locate a point A € K such that AZ’ is tangent to K. Let B be

the point where ZA intersects C. Starting at Z’, draw a ray parallel to ZA
and let B’ be the point where it intersects C’'. Prove that BB’ is tangent
to both C and C’.
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To draw an “internal” tangent (Fig. 1.45) follow the same construction,

— JE—
except let 7+ 7' be the radius of K and make ZA and Z' B’ point in opposite
directions.

c) A belt wraps around two pulleys, which are mounted with their centers
4 feet apart. If the radius of one pulley is 1 ft. and the radius of the other
is 2 ft., how long is the belt? (Assume the belt has zero thickness and does
not cross itself).

radius r

radius r'

. ' ) = .
’ A To. !
)
&2' Z: ' / 'z
N ' 4 Cv U
radiusr-r'

FIGURE 1.44. “External” Tangent to Two Circles.

radius r +r' ) AN

radius r

radjus r'

FIGURE 1.45. “Internal” Tangent.
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Exercise 1.9.6 a) Prove: If AP and BP are tangent to a circle at distinct
points A and B, respectively, then AP = BP and the bisector of ZAPB
passes through the center of the circle.

b) State and prove a corresponding result for lines tangent to spheres.

Exercise 1.9.7 The Inscribed Circle.

a) Prove that the bisectors of the angles of a triangle all meet at the
same point P, and there is a circle centered at P that is tangent to all
three sides of the triangle (Fig. 1.46).

b) What 1s the largest sphere that will pass through a triangular hole
with sides 7 in., 8 in., and 9 in. long?

c) (Adapted from [15, page 66 no. 164]). A gardener cut a piece of sod to
fill a triangular hole. When he tried to put it in the hole he found that it
fit perfectly, but only with the wrong side up. How can he cut the triangle
into three pieces so that the shape of each piece is not changed when he
turns it over?

Fi1GURE 1.46. The Inscribed Circle.

Exercise 1.9.8 A globe is supported by a triangular stand set on a table
(see Figure 1.47 below). Pads are placed on the sides of the stand to prevent
the globe from getting scratched. The stand is 3 in. tall; its sides form a
30° — 60° — 90° triangle whose shortest side is 1 ft. long. Exactly where on
the triangle should each pad be placed? If the globe is 2 ft. in diameter,
how high is the top of the globe above the table? (See Fig. 1.47. Neglect
the thickness of the pads).

3in.] W/l

FIGURE 1.47. Globe on a stand.
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Exercise 1.9.9 The Circumscribed Circle.

a) Prove that the perpendicular bisectors of the sides of any triangle all
meet at a single point P, and there is a circle centered at P that passes
through all three vertices of the triangle (Fig. 1.48).

b) State and prove a corresponding result for tetrahedrons and spheres
in space.

FiGURE 1.48. The Circumscribed Circle.

Exercise 1.9.10 A thin iron triangle with angles 45°, 60°, and 75 is ac-
cidentally dropped into a hemispherical tank (fig. 1.49). The tank is ten
feet deep and filled with water.

It is proposed to fish the triangle out of the tank by lowering a powerful
magnet into the tank with a rope, allowing the magnet to attach itself
to the triangle, and then pulling 1t up. To enable the magnet to reach the
triangle the rope must be long enough to reach the triangle from the surface
of the water.

What is the minimum length of rope that is required to ensure that one
can reach the triangle if the shortest side of the triangle is ten feet long?

FIGURE 1.49. Retrieving a triangle.

Exercise 1.9.11 The Extended Law of Sines.
Given a triangle with sides of length a,b,c opposite vertices A,B,C' re-
spectively, prove that

a b c

SnZA — sniB —snczC ¢
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where d 1s the diameter of the circle that circumscribes the triangle. (Hint:
to prove that a/sin ZA = d, slide A along the circumscribed circle until A
and B are opposite ends of a diameter. By Proposition 1.9.4 this does not
change ZA or a.)

Exercise 1.9.12 The Orthocenter.

An altitude of a triangle is a line that is perpendicular to one side of the
triangle and extends to the opposite vertex.

a) Prove that the three altitudes of any triangle all meet at a single point
(Fig. 1.50). The point where the altitudes meet is called the orthocenter of
the triangle.

b) Let AABC be a triangle in E3. Let Sy be the sphere with diameter
AB, S, the sphere with diameter AC, and S3 the sphere with diameter BC.
Prove that the intersection Sy N S, N S3 contains exactly two points P and
Q. Show that the plane containing AABC is the perpendicular bisector
of PQ and the midpoint of P() is the orthocenter of AABC. (Hint: Show
that the perpendicular bisector of AB is a plane that contains the circle
S2NS3.)

F1GURE 1.50. The Orthocenter.

Exercise 1.9.13 A tripod has three legs AB, AC, and AD, joined at the
point A. AB = 8in., AC =9in., AD = 10in., ZCAD = 40°, ZDAB = 50°,
and ZBAC = 60°. How high is the tripod? Will it stand up or will it fall
over?

(Hint: The argument in the next two paragraphs leads to a solution of this
problem. The student should fill in the details of the argument, supplying
any necessary diagrams, and then use the result to calculate the height of
the tetrahedron and its center of gravity.

Let P € BCD be the point such that the line PA is perpendicular to
the plane BCD. PA is the altitude of the tetrahedron. To locate P, erect
triangles AA; BC = AABC, AA3BD = AABD, and AA3CD = AACD

in the plane BCD, on the outside of ABCD. Each of the three lines PAj,

PAj,, PAs is an altitude of one of the triangles AA,BC, AA,BD, or
AA3CD, so one can locate P by intersecting these three altitudes.

To see why P A, is an altitude of AA, BC, observe that AA, BC can be
- . —> —
obtained by revolving AABC around BC until it falls into the plane BCD.
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As the point A revolves, it sweeps out an arc of a circle in a plane that 1s

perpendicular to BC. This plane contains P (why?), and the intersection
of this plane with the plane BCD is an altitude of AA BC. Therefore the
altitude contains P.)

Exercise 1.9.14 Give a definition for the angle between two planes. (Hint:
consider vectors that are normal to the planes.) Let H be the plane that
contains the points (1,0,0),(0,1,0), and (0,0,1). Use your definition to
compute the angle between H and the x,y plane. (Answer: about 55°).

Give a definition of the angle between a line and a plane and use 1t to
compute the angle between H and the z axis.

1.10 'The General Isometry

Theorem 1.10.1 Every isomelry f : E* — E” s a composition of rola-
tions, translations, and reflections.

Sketch of Proof. We will sketch the proof for the case n = 2; the
general case may be treated in much the same way.

Set up a system of coordinates on E2 in the usual way. Choose a pair
of perpendicular lines for coordinate axes, label the four “quadrants”, then
assign coordinates (z,y) to each point in E? by measuring the distance
(£y) from the point to one of the axes (the “z axis”) and the distance
(%) from the point to the other axis (the “y axis”). The plus or minus
signs depend on which quadrant it is that contains the point.

The “positive end” of the z axis is the set of points with positive z
coordinates on the z axis. The “positive end” of the y axis is defined in a
similar way.

Let

X = the x axis,

Y = they axis.

An isometry f : E2 — E? maps X and Y to another pair of perpendicular
lines. Let

X' = f(X),
Y = f(Y).

We shall regard X’ and Y’ as a new pair of coordinate axes, labeling
the quadrants so that f maps the i-th quadrant in the X,Y coordinate
system onto the i—th quadrant in the X’ Y’ coordinate system for each
i=1,...,4

Since isometries preserve distance, the distance from X to any point
P € E? equals the distance from X’ to f(P). Similarly, the distance ¥
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to P equals the distance from Y’ to f(P). It follows that if a given point
P € E? has coordinates (a,b) in the X,Y coordinate system then the point
f(P) has the same coordinates (a,b) in the X', Y' coordinate system!
Consequently one can compute f(P) for every point P € E? as soon as
one knows what f does to the coordinate axes. In particular, two isometries
are the same if they both have the same effect on the coordinate azes (fig.

1.51).

FiGcure 1.51.

Let T’ be the translation such that
7(0,0) = £(0,0).

T maps X to a line through f(0,0). Choosc a rotation around f(0,0) that
maps T'(X) to X'. There are two such rotations, each differing from the
other by 180°; let R be the one that takes points on the positive end of X
to points on the positive end of X’. The composition RoT maps X to X'.
Since (R o T)(Y')) preserves angles it must also map Y to Y.

If R o1 maps points on the positive end of Y to points on the positive
end of Y/ then Ro 71" has the same effect on X and Y as f does, which
proves that f = R o 7. Otherwise R o 1T maps points on the positive end
of Y to points on the negative end of Y’. In this case let F' be reflection
in X’. (F o RoT) maps the positive end of X to the positive end of X’
and the positive end of Y to the positive end of Y”, s0 f = FoRoT.
In either case f is a composition of translations, rotations, and reflections,
which completes the proof.

Corollary 1.10.1 FEvery isomelry is a composition of reflections.

Proof. By Proposition 1.5.1 and Exercise 1.6.1 every rotation and every
translation in E? is a composition of reflections. The same facts hold in E”
(with similar proofs).

Exercise 1.10.1 Show that if f: E2 — E? is an orientation-preserving
isometry then f is a translation or a rotation.

(Hint: let P be a point such that f(P) # P. Set up a coordinate system
whose origin is at P and whose positive x axis passes through f(P). Let C
be the point where the perpendicular bisectors of the line segments P f( P)
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and f(P)f(f(P)) intersect. Show that f(C) = C, and deduce that f is a
rotation about C through an angle equal to ZPC f(P). If the perpendic-
ular bisectors Pf(P) and f(P)f(f(P)) do not intersect show that f is a
translation or a rotation through a 180° angle.)

Exercise 1.10.2 Show that every isometry on E? or E® has an inverse.
(Hint: use Theorem 1.10.1 together with Exercisc 1.4.1, Equation 1.1, and
Equation 1.2 to write down an inverse for an arbitrary isometry).

Corollary 1.10.2 A formula for the general isometry on R2. Every
isometry f : R2 — R? has the form

f(z,y) = (ap + zcos@ F ysinb, by + xsinf + y cosb). (1.6)

Here, ag, by, and 0 are constants, f(0,0) = (ao,bo) in the standard coordi-
nates on R2, and the plus or minus sign is ‘plus’ if f preserves orientation
or ‘minus’ if f reverses orientation.

Proof. Let (ao,bo) = f(0,0). Let

v = f(1>0)_f(0’0)7
w o= f(O,l)—f(0,0)

be the vectors that point from f(0,0) to f(1,0) and f(0, 1), respectively.

7 and W are perpendicular unit vectors since f is an isometry, so there
exists an angle € such that

¥ = (cos,sinf) and (1.7)

w = =(—sinb,cosh).

The sign in the formula for W' is ‘plus’ if f preserves orientation, ‘minus’
otherwise.

f maps the x axis to an axis X’ with origin at (ao, bp) and positive end
pointing in the @ direction, and it maps the y axis to an axis Y’ with
origin at (ag, bg) and positive end pointing in the w direction. Since each
point f(z,y) has the same coordinates in the X', Y’ coordinate system as
(z,y) has in the x,y coordinate system, it follows that

f(z,y) = (ap,bp) + =¥ +yw

for each point (x,y) in the x,y plane. Plug Equations 1.7 into this formula;
the result is Equation 1.6.
This completes the proof.
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1.11 Appendix: The Planimeter

A planimeter (see [14, pagell]) is a mechanical device for measuring areas
of figures in the plane. In its simplest form (Fig. 1.52) it consists of two
rods XY and YZ which are joined together by a hinge at Y and connected
to a pivot which is attached to the plane at X. At Z is a pointer which is
free to move about on the plane, and there is a wheel W mounted on the
rod YZ in such a way that it can rotate around YZ but it cannot slide
along the rod toward either end. The edge of the wheel rests on the plane.

FIGURE 1.52. A Planimeter.

Let C be a simple closed curve? in the plane. To measure the area inside
C one traces once around the curve with the pointer. As the pointer traces

out C the vectors XY and Y Z rotate and translate about in the plane.
For the planimeter to work correctly it is essential that in the course of

their motion neither XY nor Y Z ever rotales a full 360° from its original
direction. This condition is easy to achieve in practice if one uses a big
enough planimeter and places X sufficiently far away from the curve.

As the pointer moves it drags the wheel along with it, causing the wheel
to slide and roll along on the plane. Ignore the sliding, but keep track of how
far the wheel rolls by counting the number of revolutions it makes around its
axis. (Counterclockwise revolutions count as positive revolutions, clockwise
revolutions count as negative). The area inside the curve is obtained by
plugging the total number of revolutions into the following formula:

area inside C = L(27pN) (1.8)
= LD
where
N = number of revolutions made by the wheel

* Simple means the curve does not cross itself.
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L = lengthof YZ
p = radius of the wheel
D = distance the wheel rolled.

(N need not be an integer).

To see why Equation 1.8 is true, consider the area that is swept out by the
rod Y Z as it makes an infinitesimal motion in the plane. The infinitesimal
motion can be broken down into an infinitesimal translation 7° and an
infinitesimal rotation R (see Fig. 1.53). During the translation the rod
sweeps out the interior of the parallclogram bounded by YZ and T(ﬁ)
During the rotation the rod sweeps out the interior of the circular sector
between T(Y Z) and R(T(Y Z)). The total infinitesimal area that it sweeps
out is the sum of these areas,

A(area) = (area of the parallelogram) + (area of the sector)
L2A6
= LAh+ 5 (1.9)
where
Ah = (height of the parallelogram),
and

A6 = (angle of the rotation).

FiGure 1.53.

The wheel rolls on the plane in directions perpendicular to Y Z and slides
on the plane in directions parallel to Y Z. The distance it rolls during the
translation plus the distance it rolls during the rotation is:

AD = Ah+ rAb. (1.10)

where
r = distance from the hinge Y to the wheel.
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Thus by equations 1.9 and 1.10, YZ sweeps out the total infinitesimal
area A(area) that is given by the formula,

L?A6
2
L
= LAD+L (—2— —r) Af.

A(area) = LAD - LrAG+

Summing all these infinitesimal areas we find the total area swept out
by the rod as the pointer moves around the curve.

(watome o) oy (X Yo aa
where

D = (total distance rolled by the wheel), and

6 = (total angle of rotation of the vector ﬁ)

Now the curve is closed, so the rods must return to their starting position
when the pointer reaches the end of the curve. Therefore & must be an

integral multiple of 360°. YZ is not allowed to rotate through an entire
360° angle, so it follows that the total angle # must be zero. Hence

(total area swept) — ID

out by YZ
= L(2wpN)

by Equation 1.11. (The second line follows from the obvious fact that the
distance, D, that the wheel rolls is the product of its circumference, 27mp,
and the number N of revolutions that it makes.)

To prove Equation 1.8 it remains to show that the area swept out by Y Z
is the area inside C.

As the wheel rolls distances contributed by counterclockwise revolutions
count positively while distances contributed by clockwise revolutions count
negatively. The same goes for area: positive revolutions contribute positive
area and negative revolutions contribute negative area. The net effect is
shown in Figure 1.54: the area swept out as the rod moves from Y2,
to Y227, is positive while the area swept out as it moves back to Y, 2, is
negative. Thus the area inside C is positive, the area inside the curve C’
traced out by Y is negative, and the area between the two curves cancels
out,

tal t
(toc;tab; %swep ) = (area inside C) — (area inside C').
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Fi1GURE 1.54.

C' is an arc of a circle centered at X since the vector XY is fixed to the

plane at X. But XY is not allowed to rotate through full 360° angle; it
follows that the area inside C’ is zero. Hence

(total area swept

out by YZ ) = (area inside C).

This completes the proof of Equation 1.8.
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Spherical Geometry

2.1 Geodesics

In any geometrical setting where it makes sense to talk about the distance
between points, the most important curves are the geodesics.

Definition 2.1.1 Geodesics. The shortest curve connecting two points
in a space is a geodesic in that space.

Example 2.1.1 A geodesic connecting two points on the globe can be
found by stretching a piece of string across the globe between the points
and pulling it tight. The geodesic connecting Los Angeles to London passes
northeast through central Canada, turns east across the southern tip of
Greenland, and arrives in London heading southeast. (Try it!) Ships and
airliners save fuel by following such “great circle routes” when traveling
long distances (fig. 2.1).

It should be emphasized that one looks only al curves that lie entirely
in the space when searching for geodesics in a space S. The fact that there
may be shorter curves outside of S is irrelevant — one treats S as if it were
the entire universe. For instance one could find a shorter path from Los
Angeles to London than the one in Example 2.1.1 by burrowing through
the earth, but that does not matter since such a path would take one out
of the “universe” which, in this case, is the surface of the globe.

There may be more than one geodesic connecting a given pair of points.
For example, there are infinitely many geodesics connecting the north and
south poles on the globe.
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FIGURE 2.1. Geodesic connecting Los Angeles to London.

One can connect shorter geodesics together to get longer ones in the same
way that one jolns line segments to get a line. In general we say that a curve
1s a “geodesic” if every sufficiently small segment of the curve has minimum
length in the sense of Definition 2.1.1. Such geodesics minimize length over
short distances but may fail to minimize length over long distances.

Example 2.1.2 If you roll up a piece of paper into a cylinder, connect two
points on the cylinder with a piece of string, and pull the string tight, you
will get a geodesic connecting the two points. There are infinitely many
ways to do this, depending on the number of times the string winds around
the cylinder, but only one (or, in certain cases, two) of these geodesics
minimizes the length between the two points.

A geodesic may even intersect itself. You can create an example of this
by wrapping a string tightly around a cone (Fig. 2.2).

1

—= ~
-~ -
¥~

FI1GURE 2.2. Geodesics.

Definition 2.1.2 Geodesic Triangle. A geodesic iriangle is a “triangle”
which consists of three vertices connected by geodesics.
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A little experimentation shows that the angles of a geodesic triangle on
a curved surface need not add up to 180°.

Example 2.1.3 Make a paper cone by joining the edges of a circular sector
(Fig. 2.3). Mark three points A, B, and C on the cone, and join them with
geodesic segments by flattening the cone out on a table and connecting the
points with line segments. These line segments remain shortest curves on
the paper even when it 1s lifted off the table, unflattened, and bent into
a cone, because flattening or unflattening the paper does not stretch or
shrink 1t, and so does not distort lengths within the paper. Thus AABC
is a geodesic triangle on the cone.

Let @ be the angle subtended by the circular sector. If the vertex of the
cone lies in the interior of AABC you will find that

LA+ LB+ LC = 540° - 6. (2.1)
In particular ZA+ ZB + £C > 180° if 8 < 360°.

F1GURE 2.3. Triangle on a cone.

You can make a circular sector that subtends an angle § > 360° by
glueing together two smaller sectors. If you join together the edges of this
sector you will get a saddle-shaped surface (Fig. 2.4). Equation 2.1 applies
to this case as well, so the angles of a geodesic triangle on the saddle-shaped
surface add up to less than 180° if the vertex of the sector is in the triangle’s

)7
N7

join
FIGURE 2.4. Triangle on a saddle.
Based on these examples one might guess that the angles of a geodesic

triangle on a surface add up to less than 180° if the surface is saddle-
shaped, or more than 180° if the surface is is bowl shaped like a cone. Such
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a result would enable two-dimensional beings who lived inside the surface
to discover whether it is saddle- or bowl- shaped, without ever going outside
the surface, by adding up the angles of a geodesic trniangle and comparing
the sum with 180°. A similar procedure would enable three-dimensional
beings such as ourselves to discover whether or not their universe is curved
without having to leave their universe to make the measurement. (Our own
universe is curved, but you have to look at very large triangles to detect
the curvature.)

The famous Gauss-Bonnet Theorem says that the conjectures in the pre-
vious paragraph are true, at least on surfaces that are sufficiently smooth;
it is proved in courses in differential geometry.! We shall content ourselves
with proving it in the special case where the surface is a sphere (Theorem
2.3.1 on page 51).

Exercise 2.1.1 Prove Equation 2.1 for surfaces built from sectors sub-
tending an arbitrary angle 0° < 6 < 540°. Show that if § > 540° then no
geodesic triangle in the surface has the vertex of the sector in 1its interior.
What 1s the sum of the angles of a geodesic triangle on these surfaces if the
vertex of the surface i1s not in its interior?

2.2 Geodesics on Spheres
Definition 2.2.1 A great circle is the intersection of a sphere and a plane

that passes through the center of the sphere. All other circles on the sphere
are “small circles” (Fig. 2.5).

C

Small Circle
Great Circle

FI1GURE 2.5.

Let A and B be two pomnts on the sphere and let C be its center. The
arc AB subtended by the ZACB is a segment of a great circle with length

length(AB) = R(£LACB)

where R is the radius of the sphere and ZACB 1s measured in radians.

!See [17, Chap. 7 §8].
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It is convenient to use spherical coordinates when computing the lengths
of curves in the sphere. Set up a system of rectangular coordinates on E3
with the origin at the center C of the sphere and the positive z axis piercing
the sphere at A. The spherical coordinates of a point P on the sphere are
(R, 0, ) where

R is the radius of the sphere,
¢ =LPCA, and

6 is the angle between the positive x axis and the projection of
CP into the X,y plane.
(See Fig. 2.6).

Elementary trigonometry shows that spherical coordinates are related to
rectangular coordinates by the formulas:

= Rsin¢cosh
= Rsingsinéb
z = Rcosd.

FIGURE 2.6. Spherical Coordinates.

Theorem 2.2.1 The shortest path between two poinils on a sphere is an
arc of a great circle.

Proof. Let ¢ : [a,b] — S be a parametrized curve in S with
o(a) = A and o(b) = B.

Write o(t) = (z(1), y(t), z(t)) in rectangular coordinates. The length of the
curve o is given by the length formula

length(o) = /b VT ()2 + ¥ ()2 + 2/ (2)2dt. (2.2)
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In spherical coordinates,

z(t) = Rsing(t)cosd(t) (2.3)
y(t) = Rsing(t)sinb(t)
z(t) = Recos¢(t).

Plug the derivatives
z'(t) = R(cos¢(t)cosb(t)d’(t) — sin ¢(t)sinb(t)8'(t))
Yy (t) = R(cos(t)sinb(t)¢'(t) + sin ¢(t) cos H(t)6’(t))
#(t) = —Rsing(t)¢'(?)

into the integrand in Equation 2.2 and get

b
length(c) = / R\/(JS’(t)2 + sin® ¢()0’ (t)2dt

b
> / Ré'(t)dt
= R(¢(b) - ¢(a))
= R({BCA)
= length(AB).
with strict inequality unless 6(t) = 0 or sin?$(t) = 0 for all t, that is,

unless ¢ never leaves the arc AB.
This completes the proof.

The geometry of geodesics on the sphere is different from the geometry
of lines in the plane. For instance a sphere has no “parallel” geodesics since
two great circles always intersect at a pair of diametrically opposite points
(Fig. 2.7).

N7

FIGURE 2.7. Great circles always intersect.

2.3 The Six Angles of a Spherical Triangle

A spherical triangle is a geodesic triangle on the surface of a sphere. Ifet
AABC be aspherical triangle with side a opposite vertex A, side b opposite



2.3. The Six Angles of a Spherical Triangle 49

vertex B, and side c opposite vertex C, on a sphere with center at 0. AABC
has six angles: three arc angles Za, /b, and Zc and three vertez angles /A,
/B, LC (Fig. 2.8).

vertex angles of arc angles of
A ABC AABC

FIGURE 2.8. Six angles.

Arc angles measure the angles subtended by the sides of the triangle.

La = L(OB,00), Lb= L(OC,0A4), and zc = L(OA,OB).?
Vertex angles measure three things at once /A equals

1. the angle between the arcs AB and AC at A,

2. the angle between a vector V that is tangent to AB at A, and a
vector W that is tangent to AC at A,

3. the angle between the planes ABO and ACO.

The first and second items in the above list are equal by definition. The
second and third items are equal because V and W are perpendicular to

the line A0 where the planes ABO and ACO intersect (Fig. 2.9).
Similar statements hold for £B and £C.
To simplify the notation from now on, set

A =04, B =08, and C = OC.

— — — — .,
We shall regard £( A, B) and £( B, A) as representing the same angle;
for our purposes angles of a spherical triangle have no orientation.

Lemma 2.3.1 In a spherical triangle AABC,

2L(EA',O‘B') denotes the angle between the vectors O4 and OB, etc. All
spherical angles measure between 0° and 180°.
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vertex angle ZA

FIGURE 2.9. Vertex angle.

1. the arc angles are

- —

la = (L(B,C)

— —

Ly = ((C,A)

le = L(J_‘f,?)

2. the vertez angles are

LA = A(Xxﬁ,?fxﬁ)
—_ = = —
(B = ((BxC,BxA)
(C = ((CxA,CxB)

where x 1is the “cross product”.

Proof. 1. This is just a restatement of the definition of arc angles.
2.: A x B is perpendicular to ABO, and A x C is perpendicular to

S B — — — — .

ACO. This almost proves that /A = /(A x B, A x C') since an angle
between two planes equals the angle between their normal vectors. The
problem is that two intersecting planes actually determine two supplemen-

tary angles, so we need to make sure that 4(71) X ?, A x 6) equals ZA
and not 180° — ZA.

- — — )
Let V be tangent to AB and let W be tangent to AC at A4

LA=L(V W) (2.4)

3Supplementary angles add up to 180°.
"More precisely, V is the initial velocity of a particle traveling from A to B
along AB A similar definition applies to W.
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— — . — i
Since V and W are perpendicular to A the right hand rule says that
AxV points in the direction obtained by rotating % ninety degrees to
the right around A. Similarly Axw points 90° to the right of W around

"A. Rotations do not change angles, so
((V,W)=2L(AxV, A xW). (2.5)

But A x V points the same direction® as A x B, and A x W points the
same direction as 4 x C . Thus

—

LAV, AxW)=((A x B, A x C). (2.6)
Equations 2.4, 2.5, 2.6 imply that
—_ = = —
LA=((A x B, A xC).

— —_ — —
Similar arguments show that /B = (B x C,B x A) and £(C =
e I
L(C x A,C x B).
This completes the proof.
Theorem 2.3.1 In a spherical triangle AABC

area(AABC)

LA+ !B+ (C=m+—;

(27)

in radians, where R 1s the radius of the sphere.

In particular ZA+ 4B + £C > 180°.

Proof. Given a point P on the sphere, let —P be the point on the
opposite end of a diameter from P. Two great circles meeting at an angle 6
at P bound a sector of the sphere with vertices P and —P. Fig. 2.10 shows
that the ratio of the sector’s area to the sphere’s area is the same as the
ratio of the angle 6 to an angle subtending a full circle:

area(sector) 0
area(sphere) ~ 27’

Since the area of the sphere is 4w R? it follows that

area(sector) = 2R?8.

SSince X, B, and % lie in the same plane; use the right-hand rule.
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side view top view

F1GURE 2.10. Area of sector = 2 x (angle of sector).

Each vertex angle of AABC subtends a sector on the sphere; call them
the “A-sector”, the “B-sector”, and the “C-sector”. Let H¢ be the hemi-

sphere that contains C and is bounded by AB. H¢ contains both the A-
and the B- sectors but only part of the C-sector. Fig. 2.11 shows two views
of the three sectors. In the view on the right the sphere has been rotated
so that H¢ is the visible hemisphere; part of the C-sector wraps around to
the back of the sphere behind the visible hemisphere.

Fi1GuURE 2.11. Rotating the sphere.

From Fig. 2.11 one can see that

area(Hc) = area(AABC) + area(A(—A)BC) (2.8)

+ area(AA(—B)C) + area(A(—A)(—B)C)
area(A-sector) = area(AABC) + area(A(~A)BC), (2.9)
area(B-sector) = area(AABC) + area(AA(—B)C), (2.10)
area(C-sector) = area(AABC) + area(AAB(-C). (2.11)

Reflection through the center of the sphere is an isometry f that takes
each point P on the sphere to the point —P at the opposite end of a
diameter.’ f(AAB(-C)) = A(—A)(—=B)C so, since f is an isometry, it
follows that

area( AAB(—C)) = area(A(—A)(-B)C)).

¢If the sphere is centered at the origin then f(z,y,z) = (—%,—¥, —z), in
coordinates.
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Hence, by Equation 2.11,
area(C-sector) = area(AABC) + area(A(—A)(—B)C). (2.12)

Comparing the sum of Equations 2.9, 2.10, and 2.12 with Equation 2.8,
we find that

area(A-sector) + area(B-sector) + area(C-sector) (2.13)
= area(Hc¢) + 2area(AABC).

(see Fig. 2.12). Since

area(A-sector) = 2R?/A
area(B-sector) = 2R?*/B
area(C-sector) = 2R2*/C

and
area(Hc) = 2n R? = (1/2)area(sphere),

Equation 2.13 says that
2R?*/LA+ 2R*/B +2R*/C = 27 R? + 2area(AABC).

Divide by 2R? to get Equation 2.7.
This completes the proof.

A A 5 A 5
s+ O+ 0¥
B A B B -A

area of area of area of
A-sector B-sector C-sector

A
-B
= + 2X ¢
-C B
area of area of
hemisphere AABC

FiGURE 2.12.

Corollary 2.3.1 It is impossible to have an isometry between a region
on a sphere and a region in the plane, so long as the region in the sphere
includes at least one geodesic triangle together with its interior:
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Proof. Isometries preserve distances so they map shortest curves to
shortest curves. Therefore such an isometry would map geodesic trian-
gles on the sphere to geodesic triangles on the plane. But isometries also
preserve angles.” Therefore the sum of the angles of the spherical triangle
would have to equal the sum of the angles of a planar triangle, and this
contradicts Theorem 2.3.1.

2.4 The Law of Cosines for Sides

Let AABC be a spherical triangle with side a opposite vertex A, side b
opposite vertex B, and side ¢ opposite vertex C.

Proposition 2.4.1 The Law of Cosines for Sides.
cos Za = cos Lbcos /¢ + sin Zbsin Zccos LA.

Proof. We use the dot product to compute cos(ZA). By Lemma 2.3.1,
LA = 1(71’ X ?,7 X 6), so:

(AxB)-(AxC)=|4 x B||Z x Cl|cos LA.

Also L(1_4', E) = /c and L(T‘f, E)) = /bso

e — =
|A x Bl = |A]|B]sinl/e,
—_ — —_ —

|A x C| = |A]|lC]sin/b.

Thus

— — T
(|A|| B|sin Le)(] A]| C |sin £b) cos LA
R%sin /bsin Lccos LA

(A x B)- (4 x C)

Il

(2.14)

since |A| = |B| = |C| = R. A standard identity® from vector algebra
enables us to simplify the left-hand side of Equation 2.14:

(AxB) (AxC) = det(A'f, 4-C
A B.-C

"We have proved this only in the plane but it is true in general. The reason
is that any angle can be subtended by arcs of infinitesimally small length. Such
arcs are basically line segments, so the angle between them can be computed
from infinitesimal lengths by using the law of cosines. Since isometries preserve
infinitesimal lengths they must, therefore, preserve angles.

B AxF) (CxD)=(A-C)YB -D)- (A -B)E-0).
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—

— —
— et | A|? | A||C|cos £b
— — - —
| B||AlcossZe |B||C|cosla

— det R? R?cos Lb
- R%2cos/c RZcosla

= R%cosla— R*cos/bcosLe.
Combining this result with Equation 2.14 one has
R*cosZa— R*cos Lbcos Zc = R*sin Lbsin Zccos LA.

Finally divide by R*, then add cos Zbcos Zc to both sides to finish the
proof.

Remark. When using the law of cosines to solve a triangle the accuracy
of the results can easily be ruined by rounding off, so it is best to carry
out all calculations to at least five or six decimal places. Better still, use
the memories in your calculator to store all your intermediate results, and
your answers will be as accurate as your calculator can make them.

Exercise 2.4.1 SAS and SSS.
Solve the spherical triangle AABC if
a)/A =60° £b=T0° Lc=80°.
b)Za = 60°, £b =70° and Zc = 80°.

2.5 The Dual Spherical Triangle

The importance of the dual (or “polar”) triangle lies in the fact that its
vertices correspond to the sides of the original triangle and its sides cor-
respond to the vertices of the original triangle. Every theorem about the
sides of the original triangle gives us, for free, a theorem about the vertices
of the dual triangle, and every theorem about the vertices of the original
triangle gives us a theorem about the sides of the dual triangle. By using
this “duality” we cut our labor in half.

Duality is used in many parts of mathematics. We will meet it again in
Chapter 4.

Definition 2.5.1 Dual Spherical Triangle. Let AABC be a spherical
triangle. The dual triangle *A ABC is the spherical triangle AA* B*C*

where

& _ BxC
Rsin Za’
E _ 6><X

Rsin /b’
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E;,{ _ ZX§
" Rsin/c’

Here R is the radius of the Sphere and, as in the rest of this chapter,
— —_—

A* = QA*, B* = OB* and C* = OC* where O is the center of the sphere.
The purpose of the scalars Rsin Za, Rsin /b, and Rsin Zc in the definition

— — —

is to adjust the lengths of the vectors so that |A*| = |B*| = |C*| = R
— — . — B —

(Recall that |V x W| = |V||W|sin £(V,W) for any two vectors V and

W and Za = L(?, 8), Lb = 1(8,7) and /¢ = [(7,?) by Lemma
2.3.1.)

hard —
A* is perpendicular to the plane BCO containing side a of the original

— —
triangle. Likewise B* is perpendicular to the plane containing b and C* is
perpendicular to the plane containing c. In this sense the vertices of the
dual triangle correspond to the sides of the the original triangle. The next
proposition shows that in the same sense the sides of the dual triangle
correspond to the vertices of the original triangle. Finally Corollary 2.5.3
says that each of the angles on the dual triangle is supplementary® to the
corresponding angle on the original triangle.

Proposition 2.5.1 Let A*, B*, C* be the vertices of the dual triangle in
Definition 2.5.1. Let a* be the side opposite vertex A*, b* the side opposite
vertez B*, and c* the side opposite vertex C*. Then

_— —

X - B* x C*
= ¢ Rsin Za*

— —

B - C* x A*
= 8 Rsin /b*

—_

6 . A*-x B*
Rsin /c*

where 10

—

s = =+1 is the sign of det[z, ?, C].

9Supplementary angles add up to 180°.
10 —_— = = . A
det[ A, B, C] is the determinant of the 3 x 3 matrix whose rows are the
vectors Z, —§, and C.
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Proof.

[ S — — -
E,: - Cx A 9 A x B
Rsin /b Rsin /c

_ (a)XZ)X(ZXE))
B R2sin/bsin Z¢ (2.15)

Use the the vector identity
Xx(Yx2)=(X-Z2)Yy -(X-Y)Z

to multiply out the numerator on the right hand-side of Equation 2.15.

(T x Z)x (7 x B) ((E'XX)-B)Z_((E’XZ’)-X)E’

Hence

_*’ * _ A det[x—’l), E, 6]

BTxC =4 R2sin /bsin Zc |’
SO

— —_— — 2 ai 3

2 = (B xC% (———R sﬁ‘ﬁ‘”jc) .

det[ A, B, C]

Thus

Rsin Za*

—_ —
- L B* x C*
A points in the same direction as s

(0 < sin Za*,sin £b,sin Zc since 0° < Za*, /b, Lc < 180°). Moreover

—

R = |A|and
|B* x C¥|
B xC

R Rsin Za*

. — — —_ —
since |B*| = |C*| = R and /(B*,C*) = /a*. Therefore

L (Fx
“ %\ Bsinza* |-

The other equations follow in a similar way.
This completes the proof.
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Corollary 2.5.1 The Dual of the Dual Triangle
The dual of *\ ABC 1is

AABC if det

*(*AABC) = {
A(—A)(—B)(—C)  if det

Corollary 2.5.2
*(*AABC)) = AABC.

Proof. By Corollary 2.5.1 either *(* AABC)) equals AABC or it equals
the reflection of AABC through the center of the sphere.

Corollary 2.5.3 Let A*, B* and C* be the vertices of * A ABC as in
Definition 2.5.1. Let a* be the side opposite vertez A*, b* the side opposite
vertezx B*, and c* the side opposite vertexr C*. Then

LA+ La* = [A*+4/La = 180°
LB+ Lb* = ([(B*+/b = 180°, (2.16)
LCH Lc* = LC*+Lc = 180°
Proof. By Definition 2.5.1 and Lemma 2.3.1
—_— —
la* = L(B*,C*)
- s —
= (L(C x A, A x B)
— — — —
= L{~-AxC,A x B)
—_— = = —
= 180°-£(A x C, A x B)

= 180° — ZA.

Thus
LA+ La* = 180°.

Applying this result to the dual AA** B**C** of AA*B*C*, we have
LAT + La** = 180°, (2.17)

where a** is the side opposite ZA**. But Za** = /a, for corollary 2.5.2
says that AA** B**C** is congruent to AABC. Hence

LAY + Za = 180°.

by Equation 2.17.
This proves the first Equation 2.16. The other two follow in a similar

way.
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Exercise 2.5.1 a) Let

(0,0,1),

5= (L0,

c = 0L}

on the unit sphere centered at (0,0,0) in R3. Find the vertices of the dual
triangle of AABC.

b) By direct computation, verify Proposition 2.5.1 and Corollaries 2.5.1
and 2.5.3 for AABC and its dual.

¢) Sketch AABC and *2A ABC on the unit sphere.

2.6 The Law of Cosines for Angles

We get the next result for free from the law of cosines for sides by exploiting
duality.

Corollary 2.6.1 The Law of Cosines for Angles.
Let AABC be a spherical triangle with sides a opposite A, b opposite B,
and ¢ opposite C. Then

cos LA = —cos LB cos LC + sin LB sin £LC cos La. (2.18)

Proof. Apply the law of cosines for sides (Proposition 2.4.1) to the dual
triangle AA* B*C* =*AABC:

cos Za* = cos £b* cos Lc* + sin £b* sin £c* cos LA, (2.19)

where a* is the side opposite A*, b* is opposite B*, and c* is opposite
C*. By Proposition 2.5.3 La* 180" — LA, £b* = 180° — /B, and /c*
180° — /C. Plug these into Equation 2.19, Lhen use the fact that cos(180°
f) = —cosf and sin(180° — 0) = sin 6 for every angle 0 to get Equation
2.18.

This completes the proof.

Given its vertex angles one can completely solve a spherical triangle
by using the law of cosines—two spherical triangles with the same vertex
angles are congruent. In plane geometry one can say only that two triangles
with the same angles are similar.

Example 2.6.1 Find the sides Za, /b, /Zc of a spherical triangle if its
vertex angles are £A = 60°, LB = 70°, LC = 80°.
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Solution. By the law of cosines for angles,

cos LA+ cos/Bcos/C
sin/Bsin .C
.50000 + (.34202)(.17365)
(-93969)(.98481)
~ .60447

cosla =

s0
La = arccos(.60447) ~ 52.809°.

Similarly

cos 70° + cos 60° cos 80°
sin 60° sin 80°
.34202 + (.50000)(.17365)
(.86603)(.98481)
~ .50283

coslb =

cos 80° 4 cos 60° cos 70°
sin 60° sin 70°
17365 + (.50000)(.34202)
(.86603)(.93969)
~ .42352

coslc =

S0
Lb = 59.813° and Zc =~ 64.943°.

When one combines several spherical angles having the same vertez the
angles add up in the same way as they do in the plane. For example Za +
Lb+ Zc = 360° in Fig. 2.13. The reason is that the spherical angle between
two curves is, by definition, equal to the angle between tangents to the
curves, so if several angles have the same vertex they combine as do angles
between vectors in a single tangent plane.

FIGURE 2.13. ¢ 4+ b + ¢ = 360°.

Example 2.6.2 A dodecahedron is a symmetrical closed surface made by
Jjoining twelve congruent regular pentagons together along their edges with
three pentagons meeting at each vertex (Fig. 2.14). Find the distance from
a vertex of the dodecahedron to its center if each of its edges is one inch
long.
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Solution. Let A and B be adjacent vertices and O the center of the
dodecahedron. One could find the distance OA by solving the isosceles
triangle AAOB if one knew the size of ZAOB since

(1in.)? = 2(0A)? - 2(0A)? cos LAOB (2.20)

by the law of cosines for triangles in the plane.

We shall find ZAOB by solving a spherical triangle. Project the do-
decahedron out onto its circumscribing sphere, getting a spherical surface
consisting of twelve congruent “spherical pentagons”. Then subdivide each
spherical pentagon into five congruent isosceles spherical triangles by con-
necting arcs from its center to its vertices (see Figure 2.14).

dodecahedron ..projected onto a sphere ..and subdivided

FIGURE 2.14.

Let AABC be one of the triangles, where C is the center of a pentagon.
Three spherical pentagons meet at each vertex, so each angle of the spher-
ical pentagon measures 360°/3 = 120°. Inside the pentagon two triangles
meet at each vertex; it follows that

120°

LA=/B= 5

= 60°.

Five triangles meet at the center of the pentagon so

3607

LC 5

=72°.

Apply the law of cosines for angles:

— o 2 o
cos/ AB — 00572' —;—cos 60
sin” 60°
~ 0.74536 .
Thus by Equation 2.20
1 in. .
OA ~ ~ 1.401in.

V2 — (2)(:74536)
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Exercise 2.6.1 ASA and AAA for Spherical Triangles.
Solve the spherical triangle AABC if
a)/A =65°, /B =75° Lc=85°.
b)ZA = 65°, /B = 75° and /C = 85°.

Exercise 2.6.2 (See Fig. 2.15). Given that its edges are one inch long,
find the distance from the center to one vertex of a

a) regular tetrahedron,

b) truncated icosahedron. (A truncated icosahedron is made by joining
twelve congruent regular pentagons and twenty congruent regular hexagons
into a symmetrical closed surface, with one pentagon and two hexagons
meeting at each vertex. It looks like a soccer ball. See Fig. 2.15.)

an icosahedron a truncated icosahedron

FiGURE 2.15.

2.7 The Law of Sines for Spherical Triangles

Proposition 2.7.1 The Law of Sines for Spherical Triangles.

Let AABC be a spherical triangle with side a opposite vertex A, side b
opposite vertex B, and side c opposite vertexr C. Let A*, B*, and C* be
the vertices of the dual triangle as in Definition 2.5.1. Then

sin/a sin /b sin /¢

sin/A =~ sin/B - sin ZC
det[A, B, C)

[—gsrep——
det[A*, B*, Cc*)

where
—_ - =
s = *1 is the sign of det[ 4, B, C].

Proof. Let R be the radius of the sphere. By Definition 2.5.1 and Propo-
sition 2.5.1

det[A%, BF,C*] = AF.(B*xC¥)
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BxC _ (XRsina*)

Rsin/a s
. * = . — =

_ (Slfl[a ) A-(BxC(C) (2.21)
sin Za ]

(sin La*) det[x_4’, 3, 6]

sin/a S

But sin Za* = sin /A since ZA+ Za* = 180°. Substitute this into Equa-
tions 2.21:
—_ =
sin/a _ det[A, B, 6]
1 A - —_— — —
SInLA - det[A%, BY, CF)
Because s = +1, this proves the first part of the proposition; the rest follows

in a similar way.
This completes the proof.

2.8 Navigation Problems

Spherical trigonometry is commonly used to solve problems arising from
astronomy and navigation.

Latitude, Longitude, and Bearings

The latitude of a point is the angle between the point and the equator,
measured along a great circle passing through the point and the poles. For
example a point at latitude 25° N is 25° north of the equator and a point
at latitude 25° S is 25° south of the equator.

The longitude of a point is the angle between two great circles, one con-
necting the point to the north and south poles and the other connecting
the north and south poles to the observatory at Greenwich, England. A
point at longitude 25° W is 25° west of Greenwich; a point at longitude
25° E is 25° east of Greenwich.

Bearings measure directions on the earth’s surface. For example the di-
rection bearing N 25° E points 25° to the east of due north and the direction
S 25° W points 25° to the west of due south.

A nautical mile is the length of arc on the earth’s surface that is sub-
tended by an angle of one minute (1’ = 1/60 degree) with vertex at the
center of the earth.

A statute mile (5280 ft.) is the unit of distance commonly used on land.

The radius of the earth is 3960 statute miles (approximately).

Thus the number of statute miles in one nautical mile is:

1 nautical mile = distance subtended by one minute of arc
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1 degree = radians
60 180 degrees
= 1.15 statute miles.

(3960 statute miles)

Speed is sometimes measured in knots. One knot equals one nautical mile
per hour.

Example 2.8.1 (Adapted from [3, page 25, example 2]). Find the distance
from New Orleans to New York and the bearing (direction) from each city
to the other. Use the following data:

latitude longitude
New Orleans  30° N 90° W
New York 41° N 74° W

Solution. Set up a spherical triangle whose three vertices are New York,
New Orleans, and the north pole. Since New York is located at 41° N
latitude, the angle between New York and the north pole is 90° —41° = 49°,
The angle between New Orleans and the north pole is 90° — 30° = 60°. The
angle between the arc connecting New Orleans to the north pole and the
arc connecting New York to the north pole is the difference between the
longitudes of New York and New Orleans, 90° — 74° = 16° (Fig. 2.16).

North Pole

49°
60°

New York

New Orleans

FIGURE 2.16. A geographic spherical triangle.

Let @ be the arc connecting New Orleans to New York. By the law of
cosines for sides,

cos/a = cos49°cos60° + sin49° sin 60° cos 16°
(.65606)(.50000) + (.75471)(.86603)(.96126)
=~ .95631

Q

SO

16.999°
.29670 radians.

a

Q

Q
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Multiply this by the radius of the earth to get the distance from New York
to New Orleans.

distance from New York to New Orleans = (.29670)(3960 mi.)
1175 mi.

The vertex angle /ZN.O. at New Orleans measures the direction from
New Orleans to New York. By the law of cosines for sides,

cos 49° — cos 16.999° cos 60°

cos /N.O. = sin 16.999° sin 60°
~ .70266

/N.O. = 45.359°
~ 45°22'

Since New York lies to the east of New Orleans,

the bearing from New Orleans to New York is
N 45° 22" E

approximately.

A similar computation shows that the vertex angle /ZN.Y at New York is
N 125° 16’ approximately. According to the bearing notation we are using,
all angles should measure between 0° and 90° from north or south, so this
angle should be described as bearing 180° — (125°16’) = 54°44’ west from
south:

the bearing from New York to New Orleans is
S 54° 44' W

approximately.

Exercise 2.8.1 A plane flies from Los Angeles (latitude N 34°3’, longitude
W 118°15’) along a great circle to Honolulu, Hawaii (latitude N 21°18’,
longitude W 157°50'). In what direction is the plane headed as it leaves
Los Angeles? In what direction is it headed as it approaches Honolulu? If
its speed averages 500 knots (= nautical miles per hour) approximately
how long will the trip take?

Exercise 2.8.2 (Adapted from [3, page 38, exercise 14]). Radio receivers
at Boston, Mass., and Norfolk, Va., detect signals from an enemy ship
in a direction bearing S 83° 15 E from Boston and N 73° 30’ E from
Norfolk. Compute the latitude and longitude of the ship and its distance
from Norfolk and Boston. Use the following data:
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latitude  longitude
Boston 42° 21’ N 71°04' W
Norfolk 36° 50’ N 76° 18 W

(Hint. Solve a system of four spherical triangles connecting Boston, Norfolk,
the ship, and the north pole. See Fig. 2.17.)

North Pole

Boston

Ship
Norfolk

FIGURE 2.17. Four spherical triangles.

Exercise 2.8.3 The Bermuda Triangle is a region in the Atlantic Ocean
where, it is said, a large number of ships and planes have disappeared for
mysterious reasons. The boundaries of the Bermuda Triangle are ill-defined
but for the sake of argument we shall take thern to be a spherical triangle
with vertices at Miami, Florida (lat. 25° 46’ N, long. 80° 12’ W); San Juan,
Puerto Rico (lat. 18° 29’ N, long. 66° 8 W); and Hamilton, Bermuda (lat.
32° 18’ N, long. 64° 47" W). If a ship sinks at an unknown location in
the Bermuda triangle how many square miles must be searched to find the
survivors? (Hint: use Theorem 2.3.1, page 51).

2.9 Mapmaking

In Section 2.3 we proved that it is impossible to make a map of any part
of a spherical earth on a flat sheet of paper without introducing some type
of distortion. The mapmaker’s challenge is to control the distortion so that
the information he wants to depict is displayed as clearly and accurately
as possible. What kind of distortion is acceptable depends on the map’s
intended use.

We will study four map projections:

Central Projection. A map that uses lines to represent geodesics.
Cylindrical Projections. A map that preserves areas.

Mercator Projections and Stereographic Projections. Maps that
preserve angles.
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FIGURE 2.18. Cylindrical projection: latitude S90° to /N90°.

BN gpes

FIGURE 2.19. Mercator projection: latitude S85° to N85°.
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FIGURE 2.20. Central projection: latitude N23.5° to N90°.

FIGURE 2.21. Stereographic projection: latitude N23.5° to N90°.
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Figures 2.18-2.21 on pages 6768 compare maps that were prepared with
these projections.

Central Projections

A central projection maps a hemisphere S’ onto a plane by projecting
along lines extending radially from the center O of the hemisphere. Let
H be a plane that does not contain O and is parallel to the great circle
forming the boundary of the hemisphere. The projection f(P) € H of a

point P € S’ is the point where the line OP intersects H (Fig. 2.22):

f(P)=0PnH

FIGURE 2.22. Central Projection.

All mappings from the sphere into the plane distort distances. With
central projection the distortion is minimal near the point on S’ where the
tangent plane is parallel to H. Distortion becomes increasingly extreme
near the edge of the hemisphere.

Proposition 2.9.1 Let C be a curve on S’'. f(C) is a line segment if and
only if C is an arc of a great circle (see (Fig. 2.23).

Proof. If C is an arc of a great circle then C lies in a plane M containing
O. Thus the line connecting any point on C to O lies in M. It follows that
the entire projection f(C) is contained in M N H. Therefore f(C) is a line
segment.

Conversely if f(C) is a line segment then C is contained in the plane
Jjoining the line segment to the center of the sphere. Hence C is an arc of a
great circle.

As a practical application we have a method for drawing a great circle
route between two points on any given map M. First locate the points on a
central projection and draw a line between them. Record the latitude and
longitude coordinates of several points along this line. Now locate points
with the same latitude and longitude coordinates on M and connect them
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LTS

-—l

FIGURE 2.23. Projecting a great circle to a line.

with a smooth curve. The resulting curve describes a great circle route on

M.

Cylindrical Projections

A cylindrical projection maps a sphere minus two diametrically opposite
points into a cylinder by projecting out along lines extending radially out
from a diameter of the sphere (Fig. 2.24).

FIGURE 2.24. Cylindrical Projection.

Let S be a sphere and C a cylinder whose axis contains a diameter of
S. To project a point P € S into the cylinder, extend a ray from a point
on the diameter through P, perpendicular to the diameter. The projection
f(P) is the point where the ray intersects the cylinder (see Fig. 2.24).

Once the sphere is projected out onto the cylinder a flat map can be
produced by slitting the cylinder from end to end, unrolling it, and laying
it out flat. Distortions are least along the great circle where tangent planes
on the sphere are parallel to tangent planes on the cylinder.

Proposition 2.9.2 If the radii of the cylinder and sphere are equal the
cylindrical projection preserves areas. In other words, if R is any region on
the sphere then

area of R = area of f(R).

Proof. It is enough to prove that

area(ABDC) = area(f(ABDC))
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whenever ABDC is an infinitesimal rectangle, since any area can be com-
puted by summing up areas of infinitesimal rectangles.

Set up a systemn of latitude and longitude coordinates (¢, €) on the sur-
face of the sphere (see Fig. 2.25). ¢ is the latitude, measured up from the
‘equator’ where the cylinder is tangent to the sphere, and 8 is the longitude,
measured around the axis of the cylinder.!!

Latitude and longitude meridians'? are perpendicular to each other.
Therefore the infinitesimally nearby points given in latitude and longitude
coordinates by

A = (¢,0), B = (¢,0+A40),

are the vertices of an infinitesimal rectangle on the sphere (Fig. 2.25). Its
area is

area(ABCD) = length(AB) x length(AC), (2.22)
and the area of its projection is
area(f(ABCD)) ~ length(f(AB)) x length(f(AC)) (2.23)

with the approximations becoming exact in the limit as the lengths of the
sides approach zero.
Let
r = (radius of the sphere).

The arc AB subtends an angle A at a distance of 7 cos ¢, measured from
the axis of the cylinder. Thus

length(AB) = r cos ¢A6.
f(AB) subtends an angle of A at a distance r from the axis. Thus

length(f(AB)) = rA6.

It follows that .
length(f(AB)) 1

length(A,B) cos ¢

(2.24)

On the other hand ¢ also is the angle between the tangent to AC at A
and the cylinder, so

length( f(AC))
length(AC)

= cos ¢. (2.25)

19 and 90° — ¢ are the spherical coordirates angles that were discussed on
page 47).
124 is constant on a latitude meridian; @ is constant on a longitude meridian.
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FIGURE 2.25. Equal areas.

Multiply together equations 2.24 and 2.25 then substitute in equations

2.22, 2.23 to obtain
area(f(ABDC))

=1
area(ABCD)

with equality in the limit as the lengths of the sides approach zero.
This completes the proof.

One consequence of Proposition 2.9.2 is that anyone armed with a plan-
imeter and a cylindrical projection can accurately measure the area of any
region on the globe. Practical cylindrical projections are scaled down to
human size by using a constant scale factor which must, of course, be
taken into account when computing areas.

Conformal Maps

Definition 2.9.1 Conformal Mapping. A conformal mapping is a func-
tion f that preserves angles. f is a conformal mapping if, whenever C' and
C’ are curves that meet in the domain of f, then the angle subtended by
C and C’ is congruent to the angle subtended by f(C) and f(C’).

Example 2.9.1 An example of a conformal mapping in R" is “dilation
by a factor of a”:

f(xl)"‘)xﬂ) = (a’xl)-'-)a‘zn)y

where a # 0 is some constant. Such a map simply scales everything up a
factor of a, mapping each triangle AABC to a similar triangle f(AABC).

If AABC is an infinitesimal triangle in the domain of a conformal map
f, then AABC is similar to f(AABC). Thus every conformal map acts
like a dilation at the infinitesimal level Conversely, it can be shown that
this condition is enough to ensure that f is conformal. We shall state it in
the following form:
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If f acts like a dilation on infinitesimally small rectangles then
f is a conformal map.

Conformal mappings are quite special but they are not as rare as one
might suppose. For instance every complex differentiable function f: C —
C is conformal.!® (To see why you will have to take a course in complex
analysis!)

Mercator Projections. The most common conformal map is the Mer-
cator projection, invented by Gerhard Kremer (1512-15694), (also known as
Mercator). His idea was to alter the distortion in a cylindrical projection
by stretching the cylinder along its axis until the map becomes conformal.
Equations 2.24 and 2.25 say that

1
cos

length(f(AB)) = ; length(AB)
while . -
length(f(AC)) = cos ¢ length(AC)

so in order to make cylindrical projection conformal one needs to stretch

the length of f(AC) by a factor of 1/ cos? ¢ = sec? ¢.

Set up coordinates w and z on the surface of the cylinder, with w measur-
ing distance around the cylinder and z measuring distance up the cylinder.
When the cylinder is unrolled and laid out flat, w and z become a sys-
tem of rectangular coordinates on the resulting planar map. Using elemen-
tary trigonometry one finds that if (¢, 8) is a point on the sphere given in
latitude-longitude coordinates, then its image under cylindrical coordinate
projection is the point (w, z) given by the following formulas:

w = 16 (2.26)

z = rsing.

Differentiating the second equation 2.26, one has

dz

— =rcos¢.

d¢ ¢
Hence to stretch the height of an infinitesimal rectangle by a factor of sec? ¢
one must replace z by a function v whose derivative is sec? ¢ times as large
as the derivative of z:

dv
dé

dz
=rsec? ¢—— = rsec¢.

d¢

13C is the complex plane.
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It follows that

v = / sec ¢d¢
= vrlog|secd + tang| + C
for some constant C (we shall take C to be zero). The result

w(¢,0) = ab,
v(¢,0) = alog|secd + tand),

where a i1s an arbitrary positive constant, gives a formula for the Merca-
tor projection. (Changing a merely changes the scale on the map without
affecting any angles).

A line on a Mercator projection map represents a curve with a constant
heading realtive to latitude and longitude lines; the angle between the curve
and a longitude meridian is the same at every point on the curve. Such a
curve on the earth is called a rhumb line or lozodrome; it is particularly
easy for a vessel to follow since the pilot simply needs to keep a constant
heading on the compass.

Exercise 2.9.1 Where do you end up if you sail forever at a constant
heading (assuming that you don’t run aground)?

Stereographic Projection

N

G

Q=

FIGURE 2.26. Stereographic Projection.

A stereographic projection maps a sphere minus one point to a plane by
projecting along lines through the missing point (Fig. 2.26). Let

S = asphere,
N = apoint on S,
H = a plane distinct from but parallel to the

tangent plane at N.
If P € (S — {N}) then its stereographic projection f(P) is

f(P)=NPNH.
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Distortion is least near points on the sphere where its tangent plane is
parallel to H.

To prove that stereographic projection is conformal we need two simple
lemmas:

Lemma 2.9.1 Let My, My, Hy, H3 be planes in E3. If H, is parallel to Ho
then the lines My N Hy, and My N H, sublend the same angle as the lines
Ml N H2 and M2 N Hz.

Proof. Let A be the point where the two lines meet in H; and B the

point where the other two lines meet in Hy. Translation by B4 maps one
set of lines to the other (Fig. 2.27).

r/‘/-\':\
. - H1
-/M-’-

FIGURE 2.27. Equal angles.

Lemma 2.9.2 Let C, and C; be a pair of circles in E? intersecting in two
points A and B. Then the circles sublend the same angle at A as they do
at B.

__Proof. Reflection in the plane that forms the perpendicular bisector of
AB maps the angle at 4 to the angle at B (Fig. 2.28).

XN
ST N
N

B

FIGURE 2.28. Equal angles.

Proposition 2.9.3 Stereographic projection is a conformal mapping.

Proof. (See Fig. 2.29). Let P # N be a point on the sphere, and let @,

W be tangent vectors forming an angle § at P. Let M; and M3 be planes
containing P and N such that
M, = istangent to ¥

b

M; = is tangent to W,
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and set

C] - M]FIS,
Cy = MynNnS.

The circles C; and C, meet at P in the same angle § as do @’ and W,
and their projections meet in the projection of this angle. Thus we need to
show that the angle formed by the circles at P is congruent to the angle
formed by their projections at f(P). But the angle between the circles at
P is congruent to the angle between the circles at N by Lemma 2.9.2,
and the angle between the circles at N is congruent to the angle between
their projections by Lemma 2.9.1. Therefore the angle between the circles
1s congruent to the angle between their projections.

FIGURE 2.29. Stereographic projection is conformal.

Exercise 2.9.2 a) Let S be the unit sphere centered at the origin in R3.
Show that stereographic projection of S from the point N = (0,0, 1) into
the x,y plane H is given by the formula

_ z y
fend) = (155 12500)
for (z,y,2) 1In S.

b)Show that the inverse function is

2u v w4+t -1
w2417 w4241 w2+ 0241

1 (u,v,0) = (

for (u, v,0) in the x,y plane. (Hint: find the points where the line connecting
(u,v,0) to (0,0,1) intersects the sphere).

Exercise 2.9.3 Let f, S, N, and H be as in Exercise 2.9.2, and let C be

a curve in S. Show that
i) C is a circle and N € C if and only if f(C) is a line in H.
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i) Cis a circle and N ¢ C if and only if f(C) is a circle in H.
(Hint: a circle in S is the intersection of S with a plane az+by+cz+d = 0.
Substitute in the formula

(z,y,2) = (

2u 2 w402 -1
w42 +1'u2 40241240241

from Exercise 2.9.2 and multiply through by u? + v2 4 1 to get a formula
for the corresponding curve in H).

2.10 Applications of Stereographic Projection
Stereographic Projection in the Plane

YA
(x,y)

FIGURE 2.30. Stereographic Projection in the Plane.

Figure 2.30 illustrates a stereographic projection of the circle 22 +y? = 1
in R? from the point (—1,0) to the y axis. If (z,y) is a point on the circle
and (0,1) is its projection onto the y axis then

v
-2 (2.27)

since 1 is the slope of the line connecting (z,y) to (—1,0).
One can also solve for (z,y) in terms of t. Equation 2.27 says that

y=t(z +1).
Plug this into the equation of the circle to get
z? 4 t3(x + 1)2 =1.
Now subtract 1 from both sides,
(z2 = 1) +t*(z +1)? =0,
then factor out (z + 1)
[z + 1][(z — 1) + t*(z + 1)] = 0.
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Assuming (z,y) # (—1,0) we have

(.r—l)-l—tz(:c-l-l):o.

Solve for z,
112
14142
then plug back into the equation y = t(z + 1) of the line:
1—¢2 2t
(z,y) = (H-—tz’ 1+—t2) . (2.28)

Application #1. Pythagorean Triples
A Pythagorean triple is a sequence (X, Y, Z) of three integers such that

X24vi=2% (2.29)

For instance (3,4,5) and (5,12, 13) are Pythagorean triples.

We shall find a formula that produces all the Pythagorean triples. If
(X,Y, Z) is a Pythagorean triple then (Y, X, Z) is also, so it is enough to
produce either one of them. Also if (X,Y, Z) is a Pythagorean triple and
D is any integer then (DX, DY, DZ) is also a Pythagorean triple, so it is
enough to find all the Pythagorean triples (X,Y, Z) where X, Y, and Z
have no common factors. From now on we shall assume that X, Y, and
that Z have no common factors (other than +1). In particular X and Y
are not both zero; it follows that Z # 0, too.

Divide Equation 2.29 through by Z2? and get

X2 y?

77 + 77~ 1. (2.30)
Set x v
z=— and y = 7 (2.31)

z and y are nonzero rational numbers since X, Y and Z are nonzero inte-
gers. Plug Equations 2.31 into Equation 2.30 and get

2+t =1.

Hence (z,y) is a point on the unit circle, with rational coordinates (by
Equation 2.31).

Using stereographic projection, project (z,y) from (—1,0) to the y axis.
By Equation 2.27 the projection of (z,y) is the point (0,t) where

t=—2 (2.32)
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Hence t also is a rational number, so one can write t as a fraction reduced
to lowest terms:

t= (2.33)

where M and N are integers with no common factors (other than +1).
To get a formula for the Pythagorean triples we simply reverse these
steps by solving for XY, and Z in terms of M and N. By Equation 2.28

(z,7) = 1—t2 2
PY=\1ye i)
Plug in Equations 2.33 and 2.31:

(X Y) B (I—Mz/N2 2M/N )

z'7Z 1+ M?2/N?’ 1+ M2/N?
2 2
_ (x2;AMJ2NZTX42) (2.34)
These equations are satisfied if we set
(X,Y,Z)=(N? - M2 2MN, M? + N?). (2.35)

Equation 2.35 produces a Pythagorean triple for every pair of integers
M and N. It remains to show that we have produced them all. The only
thing that could possibly go wrongis N>— M2, 2M N, and M2+ N? might
all have a common factor D which cancels out in Equation 2.34, thereby
leading to a solution

(2.36)

N2—-M? 9MN M?+ N2
Y =
(X) )Z) ( D ’ D ) D )

not covered by Formula 2.35.

If P were a common prime factor of N2— M?%, 2M N and M2 + N? then
P must divide evenly into (N2 + M?) + (N2 — M?) = 2N? and also into
(N? + M%) — (N2 — M?) = 2M?2. It follows that either P is a common
factor of M and N or else P = 2.

By hypothesis M and N have no common factors other than +1 so P
must be 2. Since P divides evenly into N2 — M? it follows that either M
and N are both even numbers, or M and N are both odd numbers. In
either case both N + M and N — M are even, so
_N+M N-M

' _
2 and N' = 5

are integers. Setting D = 2 in Equation 2.36 we have
(N2 — M?2 2MN M? 4 N?

Ml

_ ' ' 7
5 )_(2y,2x,22)
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where
(X’, YI, ZI) — (NIZ _ M12,2NIM’, NI2 + M’Z).

This equation has the same form as 2.35, except that the formulas for X
and Y are switched. Therefore we have proved the following claim.

Claim 2.10.1 (X,Y,Z2) is a Pythagorean triple if and only if it can be
written in the form

(X,Y,Z) = (DX',DY', DZ") or (DY', DX', DZ")

where
(X', Y',Z') = (N?* = M?,2NM, N? + M?)

and D, M, and N are iniegers.

Exercise 2.10.1 Find all the Pythagorean triples with D = 1 and 1 <
M < N <5 (see Claim 2.10.1).

Exercise 2.10.2 Use the result of Exercise 2.9.2 to find formulas for all
quadruples (W, X,Y, Z) of integers such that W? + X2 +Y? = 72,

Application #2. Integrals of Rational Trigonometric Functions
Consider an integration problem of the form

/ R(cos 8, sin 8)d6 (2.37)
where R(z,y) is a rational function (a quotient of two polynomials). Using
Formula 2.28 write Ly

-1

z =cosf = e (2.38)
and o

y= sinH = 1—.§_—t2_ (2.39)
where (z,y) # (—1,0) is an arbitrary point on the unit circle (see Fig.
2.30).

Differentiating Equation 2.39 one obtains
2212
cosfdf = (_1+t_2)2dt
1—1¢2
= 2 dt
(i5) (re)

= cosf T3 dt

where the last line follows from Equation 2.38. Thus
o= —2_dt. (2.40)

1412
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Substitute Formulas 2.39, 2.38, and 2.40 into the integral on Line 2.37
to transform the integral into the form

1—¢t2 2t 2
R dt. 2.41
/ (1+t2’1+t2) 141¢2 (2.41)

The integrand 1s now a rational function of ¢ which can be integrated by
partial fractions.

Example 2.10.1 To compute

/sec0d0 :/ ! dé,
cosf
substitute in Formulas 2.38, 2.39, and 2.40. The integral becomes
1482 2 2
_/1—t21+t2dt o /1—t2dt

= / T3 + —dt (by partial fractions)
= log|1+t|—log]1—t|+C. (2.42)

To get a solution to the original problem, rewrite this as a function of 6.
Combine Equations 2.27, 2.38, 2.39 to get

_ sinf
" 14 cosf
and substitute this into log|1 +t| — log [1 — t| + C, yielding the solution

log |1+ sin 6 log 11 sin 6
8 1+cosﬂ’ 8 14 cos@
Alternatively, from Fig. 2.30 one can see that '*
t = tan o
= ta 2
so Formula 2.42 can be written
0 0
log l+tan§ —log l—ta.n§ +C.

A third alternative is to use properties of logarithms to rearrange Formula
2.42. Write

1+t

log|l +t|—log|l —t] = logl———t—

1*For this reason the techniques in this section are often called “the tan6/2
substitution” in calculus books.
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log
log

log

14+t1+t
1—tl+t
142 2t
1—1t2 +1—t2
1 sin
cosf  cos@

log | sec 6 + tan 6|

where the third line comes from Equations 2.38 and 2.39. This is the formula

that one finds in calculus books.

Exercise 2.10.3 Use the techniques of this section to evaluate

—d6.
1+ cosé



Conics

3.1 Conic Sections

If you take two intersecting lines L and A in E® and revolve L around A
then the rotating line will sweep out a right circular cone (unless the lines
are perpendicular, in which case the rotating line sweeps out a plane). Every
line that is obtained by rotating L around A is called a generator of the
cone. The line A is the cone’s azis, the point V where L and A intersect
is the cone’s vertez, and although this is not standard terminology, we
will call the angle o between L and A the “vertez half-angle” of the cone
(0 < a < 90°, see Fig. 3.1).

a generator

vertex

FIGURE 3.1. Right circular cone.

A conic section (or simply “a conic”) is obtained by intersecting a right
circular cone with a plane.
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For the rest of this chapter we will use the following notation:

K = a right circular cone with vertex at V,
H = a plane,

C = HN K, a conic section,

o = the vertex half-angle of K,

B = the angle between H and the axis of K.

Figure 3.2 shows what o and 8 look like from the side, with the plane
H viewed “edge-on” in various positions.

N

ka
o= vertex half angle
B~ angle between axis and plane

FiGuURE 3.2. Side View.

The overall shape of the conic depends on two things: the relative sizes
of the angles o and 3, and whether ornot V€ H. C'is

a. smoothif V¢ H,
b. degenerate or, equivalently, singularif V € H,

and it is

i. ellipticif o < B3,
ii. parabolic if o = 3,
ii. hyperbolic if « > .

Thus there are 2 x 3 = 6 basic types of conics (see Fig. 3.3). A singular
hyperbolic consists of two lines intersecting at V, a singular parabolic is a
single line, and a singular elliptic is a point. The interesting conics are the
smooth ones: the ellipse (smooth elliptic), the parabola (smooth parabolic),
and the hyperbola (smooth hyperbolic).

Exercise 3.1.1 The Sundial. The common sundial consists of a hori-
zontal plane and a vertical pointer or gnomen. As the sun travels across
the sky it causes the shadow of the gnomen to move across the plane. The
position of the shadow tells the observer the time of day.

The tip of the moving shadow traces out a curve whose shape depends
on two things: 1) the latitude of the place where the sundial is located
(this determines the angle between the gnomen and the earth’s axis of
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Smooth Conics

parabola ellipse

Singular Conics

degenerate degenerate degenerate

hyperbolic parabolic elliptic

(two lines) (one tangent (a point)
line)

FIGURE 3.3. The six types of conics.
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revolution), and 2) the season (this determines the position of the earth in
its orbit around the sun, and hence the angle between the earth’s axis and
rays of light that come from the sun. See Fig. 3.4.)

What curve is traced out by the tip of the shadow on a sundial, and how
is its shape affected by the season and the latitude? What will its shape be
if the sundial is located

a. at the north pole,
b. at latitude 45° north,
c. on the equator,

on

i. the summer solstice (the day when the sun is highest in the

sky),
ii. the winter solstice (the day when the sun is lowest in the

sky),
iii. the equinox (the day when the sun passes over the equator)?

(Hint: Instead of thinking of the earth rotating around its axis, it may
help to think of the earth as stationary and to regard the sun as moving
around a huge circle in the sky. The size of the earth is insignificant com-
pared to the distance to the sun so you may pretend that the earth’s radius
is zero. The angle between the earth’s axis and the plane containing the
earth’s orbit around the sun is about 66.5 degrees.)

spring

summer winter

fall

FI1GURE 3.4. Four seasons.

3.2 Foci of Ellipses and Hyperbolas

The focal properties of conics are quite important in practical applications.
They have been studied at least since the time of the Greek geometer
Appolonius of Persa (262-190 B.C). Our discussion follows a modern line
of argument due to the Belgian mathematician G. P. Dandelin in 1822,
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Dandelin’s constructions use spheres that are inscribed in the cone K
and also tangent to the plane H.! If the conic is an ellipse or a hyperbola
exactly two inscribed spheres are tangent to H (see Figs. 3.6 and 3.9) but if
the conic is a parabola only one inscribed sphere has this property. Exercise
3.2.3 shows how to construct spheres that are inscribed in K and tangent
to H; in the following we will simply assume that they exist.

Let S; be a sphere that is inscribed in K and tangent to H. If there are
two such spheres call the other one S2. A point where S; or S is tangent
to H is a focus of the conic C. Set

F1=SlﬂHandF2=SgﬂH.

Proposition 3.2.1 IfC is an ellipse then PF) + PF; is the same for every
point P € C (Fig. 3.5).

PFI + PF 2= constant

FIGURE 3.5. Ellipse.

Proof. (See Fig. 3.6). Let P be an arbitrary point on the ellipse. PR

is tangent to S; at F} and PF> is tangent to S, at F» since S; and S, are
tangent to H at these points. Let ; and ), be the circles where S} and
S2 intersect the cone, and set

—
R, = PVNS, and
R, = PVnS,.

Since S; and S, are tangent to K along @Q; and Q2, it follows that PR)

is tangent to Sy at R; and PRy is tangent to S; at R,. Hence by Exercise
1.9.6,
PF1 = PR1 and PF2 = PR2.

Therefore
PFy + PF;, = PR, + PR,.

But PR; + PR2 = R; Ry, which is the distance between the circles @,
and Q.. Since the distance between @; and Q2 does not depend on P it
follows that PF; + PF, is the same for all P € C.

'A sphere is inscribed in a cone if it is tangent to the cone and its center lies
on the axis of the cone.
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F1GURE 3.6. Dandelin’s construction: ellipse.

This completes the proof.

Example 3.2.1 An Apparatus for Drawing Ellipses. Drive nails into the
plane at F) and F5,. Take a piece of string whose length £ is greater than
F1 F5 and tie its ends to F; and F,. Keeping the string stretched tight with
your pencil, draw a curve around the two nails. The curve will be an ellipse
with foci F} and F5, satisfying the equation PF) + PF; = £ for every point
P on the curve (Fig. 3.7).

F1GURE 3.7. Apparatus for drawing ellipses.

1 A sphere is inscribed in a cone if it is tangent to the cone and its center lies
on the axis of the cone.
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Proposition 3.2.2 If C is a hyperbola then |PF, — PF,| is the same for
all P € C (Fig. 3.8).

F, IPF; - PF,|= constant.

FI1GURE 3.8. Hyperbola.

Exercise 3.2.1 Prove Proposition 3.2.2 by modifying the proof of Propo-
sition 3.2.1. (Hint: compare Figs. 3.6 and 3.9).

F1GURE 3.9. Dandelin’s construction: hyperbola.

Example 3.2.2 An Apparatus for Drawing Hyperbolas. Insert nails at F},
F5 then attach a rod so that it pivots around the nail at F). Cut a piece
of string with length such that

0 < (length of rod) — (length of string) < F\ Fy.

Tie one end of the string to the free end of the rod and the other end
to the nail at 5. Hold your pencil against the side of the rod and keep
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the string stretched tight with your pencil as you trace out a curve. The
curve is part of the hyperbola that satisfies the equation |PFy — PFy| =
(length of rod) — (length of string) for all points P on the hyperbola (Fig.
3.10).

('I?o get a really accurate drawing the tip of the pencil, the point where
the string is attached to the rod, and the pivot Fy should always lie in a
straight line).

FiGURE 3.10. Apparatus for drawing hyperbolas.

Exercise 3.2.2 Show that the devices in Examples 3.2.1 and 3.2.2 perform
as advertised by showing that the curves they produce satisfy the condition
in Proposition 3.2.1 or Proposition 3.2.2.

Exercise 3.2.3 Show how to construct sphere(s) that are inscribed in a
cone and tangent to a plane by revolving inscribed circles like those con-
structed in Exercise 1.9.7 on page 33 around the axis of the cone.

3.3 Eccentricity and Directrix; the Focus of a
Parabola

Every noncircular smooth conic has at least one directriz. To construct it,
let S be a sphere that is inscribed in K and tangent to H. S intersects K
in a circle. Every circle lies in a plane, so let F be the plane that contains
SN K. The line

D=FENH

is a directrix of C, and the focus F' = SN H is its “associated focus” (see
Fig. 3.11).
If C is a circle then E is parallel to H, so the directrix does not exist.
The eccentricity of a conic C' is the ratio

cos 8
e = )
cos o
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In particular,

e > 1if Cis a hyperbola,
e = 1if Cis a parabola,
0 < e<1ifCis anoncircular ellipse,

= Q01if Cis a circle.

Proposition 3.3.1 If C is a noncircular smooth conic with eccentricity e,
directriz D, and associated focus F, then

PF = (e)(PD)

for every point P € C.

PR =PF, PT =PD, and

PR cos = PT cos = PZ

FIGURE 3.11. Dandelin’s construction: directrix.

Proof. (See Fig. 3.11). Let E be the plane containing SN K, and let P
be an arbitrary point on C. Choose points Z, T, and R so that

Z € F and @ is perpendicular to E,
T € D and TP is perpendicular to D, and
R=VPnNS.

Z P is parallel to the axis of the cone since both ZP and the axis of the
cone are perpendicular to E. Since ZP is perpendicular to E and D lies in
E, it follows that Z P is perpendicular to D. Since TP is also perpendicular
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to D it follows that the plane ZPT is perpendicular to D. Since D lies in
H,
the plane ZP7T is perpendicular to H.

Therefore
LZPT = 8,

because ZP is parallel to the axis of the cone, and
LZPR =«
for the same reason. Thus
PZ = PRcosa = P1 cos 3.

But PR = PF because PR and PF are tangent to S at R and F, and
PT = PD because PT is perpendicular to D. Heuce

PFcosa = PDcosf.

Divide through by cos @ to complete the proof.
Corollary 3.3.1 If C is a parabola with focus F' and directrix D then

PF =PDforall PeC. (3.1)
Proof. If C is a parabola then e = 1. (Fig. 3.12).

D F PF=PD

FiGURE 3.12. Parabola.

Example 3.3.1 An Apparatus for Drawing Parabolas. Make a “T-
square” by joining two rods at right angles in the shape of the letter “T”.
Cut a string the same length as the trunk of the “T”.

Given a focus F' and a directrix D, attach one end of the string to the
bottom of the trunk of the “I” and the other to a point F in the plane.
Trace out a curve by sliding the crosspiece of the “T” along the directrix,
pulling the string tight with your pencil and keeping it in contact with the
trunk of the “I”. The curve is part of a parabola with focus F' and directrix
D (Fig. 3.13).

Exercise 3.3.1 Show that every point P on the curve traced out by the
apparatus in Example 3.3.1 satisfies the equation PF = PD.
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D
FI1GURE 3.13. Apparatus for drawing parabolas.

3.4 Tangent Lines

No line can intersect a smooth conic section in more than two points. To
prove this substitute the equation of the line (z = @ or y = mz + b) into
the equation of the conic (see Section 3.6) and solve for z. The result is a
quadratic equation

Az’ + Bz +C=0

for the & coordinates of the intersection. Such equations have at most two

solutions.

FIGURE 3.14. Lines Intersecting a Smooth Conic.

Lines that intersect the conic in exactly two points are secant lines.

A line that intersects the conic in only one point is either:

a) tangent to the conic, or

b) a line that is parallel to one of its asymptotes if the conic is a hyper-
bola, or

c) a line that is parallel to its axis if the conic is a parabola.

Proposition 3.4.1 Let C be a smooth conic, P a point on C, and F a
focus. If C is a parabola let D be the directriz, otherwise let F' be the other
focus.
a) If C is an ellipse then the line that bisects the angle between the vectors
—
—PF and PF is tangent to C at P (Fig. 3.15).

b) If C 1s a hyperbola then the line that bisects the angle between PF and
—
PF is tangent to C al P (Fig. 3.16).
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¢) If C is a parabola let R € D be the point such that PR is perpendicular

to D. Then the line that bisects the angle between PF and PR is tangent
to C at P (Fig. 3.17).

Proof. Let AB be a line through P, with A and B on opposite sides of

P.
a) Assume that C is an ellipse and ZAPF = (BPF. By Proposition

3.2.1 there exists a constant k such that
QF +QF =k for all Q € C.

Since LAPF = (BPF, Claim 1.7.1 and Exercise 1.7.1 imply that FPF
is the shortest path from F' to AB to F. Hence

QF +QF > kifQc AB and Q # P.

In other words AB intersects C only at P. This proves part a).

F1GURE 3.15. Tangent to an ellipse.

b) Assume that C is a hyperbola and ZAPF = LAPF. By Proposition
3.2.2 there exists a constant k such that |QF — QF| =k for all Q € C.

Let E be the point on the ray PF such that PE = PF. Then EF =
|PF — PF}, so
EF =k.

Since AB bisects ZFPF it follows that j@) is the perpendicular bisector
of the base of the isosceles triangle AEPF. Thus if Q # P is any other

. ‘———} -~ . . . .
point on AB then AEQF also is isosceles, in particular

QE = QF.

Clearly QF < QF + EF and QF < QF + EF since @, F and F are not
collinear. Hence
QF - EFF < QF < QF + EF.

Subtract QF and get —FF < QF —QF < EF, so
|QF — QE| < EF.
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But QE = QF and EF =k, so
|QF — QF| < k (3.2)

L
for all @ # P in AB.
This almost proves that AB is tangent to C; it only remains to eliminate

the possibility that AB is parallel to an asymptotic line. The hyperbola di-
vides the plane into three connected open regions: a middle region between
the two branches of the hyperbola, and two outer regions, one contain-
ing F and the other containing F. Define a function f on the plane by
f(Q) = QF — QF. f = +k on the hyperbola, and it is easy to see that
f < —k on the region containing F, —k < f < k on the middle region,
and f > k on the region containing F. Equation 3.2 says that —k < f <k

— L aeend . .
everywhere on AB, so AB never crosses over the hyperbola into either of

the outer regions. It follows that AB is tangent to the hyperbola.
k<f<k

f<k k<f

F1GURE 3.16. Tangent to a hyperbola.

¢) Assume C is a parabola and /ZFPA = /RPA. By Corollary 3.3.1
Qe C if and only if QF = QD.
Since PR is perpendicular to D we have

PR = PF,

so ARPF is an isosceles triangle. Let @ € AB. ARQF also is an isosceles
triangle, in particular

QF = QR.
If @ # P then QR is not perpendicular to D, so QR > QD. Hence

QF - QD =QR—- QD > 0.

It follows that AB intersects the parabola only at P.
The parabola bounds two open, connected regions in the plane, one con-
taining F and the other containing D. Define a function f by f(Q) =
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QF — QD. f <0 on the region containing the focus and f > 0 on the re-
gion containing the directrix. Since f > 0 everywhere on AT it follows that
AB never crosses over the parabola from one region to the other. Therefore

— .
AB is a tangent line.

f>0 f<0

FIGURE 3.17. Tangent to a parabola.

Exercise 3.4.1 Prove that if an ellipse and a hyperbola have the same
foci then they are perpendicular to each other at each point where they
intersect.

3.5 Focusing Properties of Conics

Light and sound reflect off smooth curved surfaces in the same direction as
they would reflect off a plane that is tangent to the surface, following the
rule that the angle of incidence equals the angle of reflection. Because of the
special relation between the foci of smooth conics and their tangents, mir-
rors formed by revolving an ellipse or a hyperbola around the line through
its foci, or a parabola around its axis of symmetry, have unique focusing
properties that are useful in applications.

Parabolic Mirrors. Figure 3.18 shows that light entering a parabolic
mirror in a direction parallel to its axis of symmetry will reflect into the
focus of the parabola. ZLPB = /RPA since they are “vertical angles”,
and ZRPA = LFPA by Proposition 3.4.1. Hence ZLPB = LFPA, which
says that the angle of incidence equals the angle of reflection.

Reflecting telescopes use parabolic mirrors because the ability of par-
abolic mirrors to gather a great deal of light into one spot enables as-
tronomers to see objects that otherwise would be too dim to detect. Par-
abolic mirrors are also used in solar collectors, long distance microphones,
and receiving antennas.

Energy radiating out from the focus of a parabolic mirror reflects into a
beam that is parallel to the axis, which makes parabolic reflectors ideal for
constructing headlights, spotlights, and directional transmitting antennas.
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F1GURE 3.18. Parabolic reflector.

Hyperbolic Mirrors. Light aimed at one focus of a hyperbolic mirror
reflects off the mirror toward the other focus. /LPB = /FPA = (FPA
in Figure 3.19, by Proposition 3.4.1 and the congruence of vertical angles.

FIGURE 3.19. Hyperbolic reflector.

Some reflecting telescopes use a secondary hyperbolic mirror in addition
to the main parabolic reflector to redirect the light from the main focus
to a more convenient point. Both the parabola and the hyperbola in Fig.
3.20 have the same focus F. Light entering the parabolic mirror reflects
toward F, then bounces off the hyperbolic mirror and travels toward the
other focus of the hyperbola.

FIGURE 3.20. Compound parabolic-hyperbolic reflector.
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Elliptic Mirrors. Another consequence of Proposition 3.4.1 is that en-
ergy radiating out from one focus of an elliptic reflector reflects toward the
other focus. Dentists’ lamps use elliptic reflectors to focus light at one spot
in the patient’s mouth (Fig. 3.21). The Capitol building in Washington,
D.C. contains an elliptically shaped “whispering gallery”, designed so that
a whisper uttered at one focus can be heard at the other focus but not in
other parts of the room.

-
Say ahhh!

FIGURE 3.21. A dentist’s elliptical lamp.

3.6 Review Exercises: Standard Equations for
Smooth Conics

Exercise 3.6.1 The Equation of a Parabola.
Let C be the parabola in the x,y plane with focus F' = (¢, 0) and directrix
the line z = ¢. Using Equation 3.1 show that C satisfies the equation

y? = 4ex.

Exercise 3.6.2 Equations for Hyperbolas and Ellipses.

Let C be a hyperbola or ellipse in the x,y plane with foci Fy, F, = (¢, 0)
on the x axis, ¢ > 0.

a) Show that there are constants a > 0 and s = %1 such that

PF, + sPFy=42aforall PeC, (3.3)
where

5= 1 if Cis an ellipse
~ 1 =1 if Cis a hyperbola.

b) Deduce that C satisfies the equation

2 2

z Y

where
b2 = sla? — ).
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(Hint. Rewrite Equation 3.3 in the form PF), = +2a — sPF5;, substitute
P = (z,y), then square both sides, rearrange terms, and square again to
eliminate the square roots.)

c) If C is a hyperbola show that the asymptotes have slope +b/a. (Hint:
solve Equation 3.4 for y2/z? then let z go to infinity.)

d) Let e be the eccentricity of the conic and D the directrix associated
with the focus (c,0). Show that

c
e=—

and

D= {(.c,y)|a: = g}.

(Hint. The equation says that the points (a,0) and (—a,0) lie on C.
The proof of Proposition 3.3.1 shows that D is perpendicular to the line

F1F3, so D satisfies an equation of the form x = d. Use this together with
Proposition 3.3.1 to get two equations in the unknowns e and d, and solve
them).

Exercise 3.6.3 Equation for a Smooth Conic in Polar Coordi-
nates.
Let 0 < d,e. Show that a smooth conic with focus = (0,0), associated

directrix the line £ = —d, and eccentricity e is parametrized in polar coor-
dinates by
p
=— 3.5
"= 1 ecosd (3.5)
where
p=de.

Note that Equation 3.5 makes sense even when e = 0, in which case C
is a circle (an ellipse with “directrix at infinity”).

3.7 LORAN Navigation

Electronic Navigation. The LORAN (LOng RAnge Navigation) system
enables the navigator of a ship or airplane to find its position without re-
lying on visible landmarks. Radio stations at F; and F3 simultaneously
broadcast signals that are received by the ship at P. The navigator mea-
sures the interval

At =ty —t;

between the time ¢, when he receives the signal sent by F5, and the time ¢,
when he receives the signal from F;. If T} is the amount of time it takes the
signal from F) to reach the ship, and 7> is the amount of time it takes the
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signal from F3 to reach the ship, then the difference between the distance
from the ship to F; and the distance from the ship to F; is

PFy, — PF) = cAt

where c is the speed of light.

The navigator cannot measure 7} and 73 directly without knowing pre-
cisely when the signals were sent. But he or she can accurately measure
the difference At between the times when the signals were received, which
is enough to determine that the ship lies at some point P on the hyperbola
whose equation is

|PF1 - PF2| = cAl.

The navigator can locate the ship’s position exactly if he or she receives
signals from three stations F, Fy, F3. Each pair of stations gives a hyper-
bola containing the ship, so its exact position must lie at the point where
the three hyperbolas intersect. The navigator could find this position on a
map by plotting the three hyperbolas and intersecting them, or by setting
up coordinates and computing their intersection algebraically. (In real life
it would be necessary to correct for the curvature of the earth, and to take
into account the possibility that the radio signals may have been reflected
and other potential sources of error.)

North
& (Bird ]sland7 A )
22— A
//_\ /
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/
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(distances are in miles)

FIGURE 3.22. Carson Bay and vicinity.

Exercise 3.7.1 An oil tanker heading for Carson Bay in dense fog re-
ceives signals that were broadcast simultaneously from three radio stations
F\, F3, F3, located on a line with F; in the middle (see Fig. 3.22). If the ship
receives the signal from F) 7.22 x 10~ sec. later than signal from F,, and
the signal from F3 6.30 x 106 sec. later than the signal from F2, where is
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the ship and in which direction should the helmsman steer to avoid running
aground? (The speed of light is approximately 186,000 mi./sec.)

(Hint: Set a system of coordinates with F'j, F2, F3 on the x axis, write
equations for the hyperbolas, and solve them simultaneously).

3.8 Kepler’s Laws of Planetary Motion

The elliptical shape of planetary orbits was discovered by Johannes Kepler
(1571 - 1630), through careful analysis of the astronomical observations of
Tycho Brahe (1546 - 1601). It is difficult to appreciate fully the magnitude
of Kepler’s achievernent. Not only did he have to calculate planetary orbits
by hand from Tycho Brahe’s raw data, but he had to correct for the fact
that Brahe’s observations were taken from a moving platform (the earth)
which was also traveling along an unknown path. And he did all this work
at a time when most astronomers believed that the earth was immovably
fixed at the center of the universe, with all heavenly bodies traveling in
complicated paths around it.

Kepler’s Laws

1. Each planet travels in an elliptical orbit with one focus at
the center of mass of the system formed by the planet and
the sun.

2. The vector pointing from this focus to the planet sweeps out
equal areas in equal intervals of time (Fig. 3.23).

3. The cube of the period of the orbit (that is, the cube of the
length of the planet’s “year”) is proportional to the square
of the length of the orbit’s major axis.

FIGURE 3.23. Equal areas in equal times.

More generally, any object in orbit around the sun travels in an orbit
that has the shape of a conic section with one focus near the sun. Objects
that follow closed orbits travel in ellipses; objects that are traveling fast

enough to escape from the sun travel along hyperbolas or parabolas (Fig.
3.24).
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slow (elliptic orbit)

medium (parabolic orbit)

fast (hyperbolic orbit)

FIGURE 3.24. Orbits around a massive object.

Kepler's Laws provided evidence that enabled Sir Isaac Newton (1643
-1727) to formulate and confirm his famous Laws of Motion and Universal
Law of Gravitation (the “inverse-square law” of gravitational force). In this
section we shall reverse the historical order of events and derive Kepler's
Laws from Newton’s.? An argument running in the opposite direction is
outlined in the exercises (see exercise 3.8.1).

Newton’s Laws of Motion

1. A body that is experiencing no forces moves in a straight line
at a constant speed.

2. The force on a body is the product of the body’s mass and
its acceleration (“f = ma”).

3. When two bodies exert forces on each other, the forces are
always equal in magnitude and opposite in direction (“every
action has an equal and opposite reaction”).

Implicit in Newton’s Laws is the assumption that the motion of the
body is measured in an unaccelerated, or “inertial”, coordinate system.
In an inertial coordinate system, the x,y, and z axes may move through
space as time passes but their acceleration is zero. One of the fundamental
observations of Newtonian physics is that the physical properties of objects
are the same when they are measured in an inertial coordinate system as
they are in a coordinate system that is at rest. We shall elaborate on this
theme in Chapter 5.

Consider an isolated system of two masses m and M, traveling freely
through space, affected by no forces except each others’ gravity. Let

7 = the vector that points from 0 to m, (3.6)
7 = the force on m,

2See [12] for a beautiful analysis using only elementary geometry.
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the vector that points from 0 to M,

m| =
I

= the force on M,

and let .
— —
r=|7|,f=|f|,R=|R|,F=|F|

be the magnitudes of these vectors. (Forces are represented by vectors since
they have both magnitude and direction).
The center of mass of the two body system is the point

—_
center of mass =m7™ + MR.

Newton’s Second Law of Motion says that

—

f=m7" (3.7)
174
F=mR ,

where here and in the rest of this section, primes denote derivatives with
respect to t = time. Newton’s Third Law says that

—

F=-7. (3.8)

Hence
"

_.)
mT"”"+MR =0
so the center of mass is not accelerating. Therefore to simplify our calcu-
lations we may change to an inertial system of coordinates whose origin is
located at the center of mass. In these coordinates

m7 + MR =0. (3.9)
With this assumption
ﬁ::—%?wd (3.10)
— m—
F = -27. :
M f (3.11)

It remains only to calculate 7 and 7.

According to the Newtonian inverse square law of gravitation, the mag-
nitude of the gravitational force between the two bodies is inversely pro-
portional to the square of the distance separating the bodies and directly
proportional to their masses:

GMm
(r+ R)?
1 GMm

f =

(3.12)



104 3. Conics

Here G is a constant (the “gravitational constant”), and the second line
in Equation 3.12 follows from the first by Equation 3.10. The gravitational

force ? on the planet m points from m towards M:
. . - . . —
direction of f = —(direction of 7). (3.13)

To derive Kepler’s second law, consider the area swept out by 7 as t
varies over an infinitesimally small time interval At. The infinitesimal area
AA swept out by 7 during this time interval is approximately equal to
the area of the triangle whose sides are 7 and A7, or one half the area
of the parallelogram whose adjacent edges are 7 and A7:

1
AAm |7 x AT,

where
AT =T (t+ At) — 7T(t).
If At is very small then
AT =T At
SO

1
AA=x §|7’ x 7 |At

with equality in the limit as At — 0. Thus the area swept out by 7° changes

at the rate of da 1

Kepler’s second law asserts that dA/dt is constant. To see this, differen-
tiate 7 x 7 ' in Equation 3.14,

d

a("r”X?") = 7T'x7T'+7x7T"
= Tx7r”
.
= 7’xi- (3.15)
m

(the last equation comes from Newton’s Second Law, Equation 3.7). Equa-

tion 3.13 says that ? is parallel to 7. Since 7 x 7 =0 it follows that

Thus
T x 7' is a constant vector.

In particular dA/dt = (1/2)|7 x 7’| is constant, which proves Kepler's
Second Law.
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Set

N=7x7" (3.16)
— . — . . ~ . -

7 points from 0 to m, and 7 is perpendicular to V. Therefore m lies in
the plane that is perpendicular to N and passes through the origin. Since

N is constant this plane does not change with time, and hence it contains
the entire orbit of m.

Since the orbit of m lies in a single plane we may set up coordinates in
such a way that the plane containing the orbit of m is the x,y plane. Let 7,

_’
7,and k = 7’ x 7 be unit vectors pointing in the x, y, and z directions,
respectively. Write

T = (rcos6) 7 + (rsinf) 7
= 7(cosf@7 +sinf7) (3.17)

where 6 is the angle between 7 and the x axis. Differentiate twice with
respect to t:

7' = 1'(cosO7 +sinf7) (3.18)
+78'(—sin@7% + cos677)
and
7" = (" ~10?%)(cos07 +5sinf7) (3.19)
+(2r'0' +r6")(—sinf7 + cos67),
then combine Equations 3.16, 3.17, and 3.18, to obtain

(r2)k = N.

In particular, %€’ is constant. Setting a = |ﬁ| we have

g =2 (3.20)

=
where a is a constant equal to twice the rate of change of the area swept
out by 7.

Differentiate a = 726’ to obtain 0 = 27’6’ + r6”. Plug this result into
Equation 3.19 to obtain

T = (" — r6'%)(cos 07 +sin67).

—)
Plug that equation into Newton’s Second Law f = m7 ”, and combine
with equations 3.12 and 3.13 to obtain a second order differential equation
governing the motion of m:

1 GMm

n__ 72 - _ T
m(r" — rf’*) Ea+EE

(3.21)
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To solve this equation we use the chain rule and Equation 3.20 to replace
derivatives with respect to t with derivatives with respect to 6.

&r _d (drdd\ d (dra
e " a(@a>—&(@ﬁ)
d /dr\ a drd ra
= az(@)rz*@a(rz)
_ d {dr\ d6 a dr [ —2adr
= @(@)Eﬁ*@(r—sa)
- éﬁ(g)ﬁéz(—_?aé:d_o)
de? \r2 do \ »3 dodt

Pra® _(dr\*a
do? r4 o) r5°

Thus, by Equation 3.21,

d*ra® | (dr a2 @ 1 GM
d6? r4 ) r» 3 r2(1+R)?

Multiply through by —r2/a? to get a second order differential equation in
r and 6, governing the orbit of m.

1d% 2 (dr)\® 1 GM
s () T Earpe (3:22)

Equation 3.22 looks pretty nasty until you realize that it can be rewritten
in the following way:

& (1)+1_ GM (3.23)

d2\r) "r 21+ 2)2

a linear second order ordinary differential equation in (1/7) and 6 with
counstant coefficients! That is nowhere near as nasty; its general solution is

GM
; = m — BCOS(o — 00)
_ 1 —ecos(6 — 6p) (3.24)
p
where B and 6 are constants, and
02(1 + %)2
—_M 3.25
o and (3.25)

= pB.



3.8. Kepler’s Laws of Planetary Motion 107

Compare Equation 3.24 with Formula 3.5 on page 99, which says that
the conic with focus at the origin, parameter p, eccentricity e, and directrix
parallel to the y axis is given in polar coordinates by the equation

1__ 1 —-ecosf

r p
Equation 3.24 also describes a conic in the x,y plane with focus at the
origin; the additional constant 6y indicates that the directrix of the conic
is tilted at an angle 6, relative to the y axis.
This proves Kepler’s first law.

It remains to prove Kepler’s Third Law. If one writes ¢ as a function of
0, then as 6 runs from a to b the change in t is

b
dt
At = i @dﬂ.

By Equation 3.20, dt/df = r?/a so the time it takes to make one full
revolution, i.e. the period, is

2 ,,,2
period = / —de
0 a

if the orbit is closed. By the standard formula for areas in polar coordinates,
the area inside the orbit is

1 27
area = — / r2do,
2 Jo

2
the period of the orbit = a(area inside the orbit).

The area inside an ellipse is

area = %LL’ , where

L = (length of the major axis), and
L' = (length of the minor axis).

The lengths of the major and minor axes of an ellipse with eccentricity e
and parameter p are easily calculated from Formula 3.5 on page 99, using
the fact that the endpoints of the major axis occur when 6 = 0 or 7, and
the endpoints of the minor axis occur where y = rsin 6 has a maximum or
a minimum, that is, when cos @ = e. One finds that

2p
L = l—_e2 and
L ! — 2p

Vi
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Thus the area inside the orbit is

2

area = w—F
- (1 —e2)3/2
3/2

g

2p

9=3/2p1/23/2
and the period is
. 2
period = a(area)

— o1/ (51’2_)1/2 [3/2

7T(1 + %)LS/Z
V2GM

where the last line follows from the definition of p (Equation 3.25).
This proves Kepler’s Third Law.

The Second Body
The orbit of the second body is

— m—)

Rz‘ﬁr

by Equation 3.10. Since they differ only by the scale factor —m /M, the
orbits have similar shapes and equal periods.

Exercise 3.8.1 How Kepler’s Laws Confirm Newton’s Inverse
Square Law of Gravitation. Pretend that you live at the time of Newton
and you know about Kepler’s Laws. Your aim is to use them to measure the
gravitational force in a two-body system. Let m, 7,7, ?, LM, ﬁ, R, ?, F
be as defined in Equations 3.6. Put the origin at the center of mass of the

two-body system and treat the gravitational forces 7 and F as unknowns.

a) From Kepler’s Second Law and the fact that the orbit of m lies in

a nlane, deduce that ? always points directly toward or directly away
nom the origin, and hence that it points directly toward (or away from)

M. (Hint: Use Newton”s Second Law of Motion (? = m7T ") and the
argument leading to Equation 3.15).
b) Deduce the inverse square law
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where C is constant, from Kepler’s First Law. (Hint: Let 7,6 be polar
coordinates in the plane containing m’s orbit. Kepler's First Law says that

r= P
1—ecos@

for some constants p and e. The argument leading to Equation 3.21 says
that
f=m(r" —r6").

Now use the chain rule and Equation 3.20.)

The Energy of a Two Body System
The total energy of the Keplerian two body system is

E=KE, +KEy+U

where 1 )
KEn=zm/7'"  and  KEy= 5M|?2"|2
are the kinetic energies of the bodies and
GMm
U=FExn—- ——
T+R

is the potential energy of the system. E, is a constant representing the
amount of energy the system would have if the bodies were infinitely far
apart and were traveling at zero velocity. Using Equations 3.10, 3.18, 3.20,
3.24, and 3.25, and a little algebra, one can show that

1 GMm , ,
E_Em_2_p(l—+%—)(e —1)

Exercise 3.8.2 a) If the orbit is closed, show that

E—E. 1 GMm

L(1+ %)
where L is the length of the major axis.

b) A 1000 kilogram satellite is launched into an elliptical orbit whose
highest and lowest points are, respectively, 35,000 km. and 15,000 km.
above the earth’s surface. How much extra energy would be required to
boost the satellite into a circular orbit 27,000 km. high? (Hint: If m is the
mass of the satellite and M is the mass of the earth then m/M =~ 0. To
compute GM use Newton’s Second Law of Motion, the inverse square law,
and the fact that the acceleration due to gravity at the earth’s surface is
about 9.8m/sec?. The mean radius of the earth is about 6371 km.)



110 3. Conics

3.9 Appendix: Reduction of a Quadratic
Equation to Standard Form

Any quadratic equation
Az? + Bry+Cy* + Dz + Ey+F =0 (3.26)

(where A,B,C do not all equal zero) can be reduced to one of the following
standard forms by changing coordinates:

1. Standard form for a hyperbolic or a nonempty elliptic:

2 2

25 + s% =1t
where
s = { 1 (the elliptic c:_ase), or
—1 (the hyperbolic case),
and

A 1 (the smooth case), or
B 0 (the degenerate case).

2. Standard form for an empty elliptic:

2 2
= Y
a b2

3. Standard form for a parabolic:
y? = 4cx

where

a positive constant (the smooth case), or
€= { 0 (the degenerate case).

It follows that the graph of a quadratic equation is either a conic section
or the empty set.

It turns out (see Proposition 3.9.1 below) that one can determine whether
the conic is hyperbolic, elliptic, parabolic, smooth, or singular without con-
verting the equation to a standard form.

To put the Equation 3.26 in standard form, set up a new coordinate
system x’,y’ by choosing a new origin and a new pair of perpendicular
coordinate axes passing through it. If the new coordinates arc chosen cor-
rectly then Equation 3.26 will be in standard form when you rewrite in the
new coordinates.
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In the standard system of coordinates the vector 7' points in the x
direction and 7’ points in the y direction. Rotate 2 and 77" through angle
6 in the counterclockwise direction to get vectors

7' = cos@7 +sinf7
7' = —sinf7 +cosf7.

Set up a new system of rectangular coordinates x’,y’ with origin at (z,y) =
(a,b) and axes pointing in the 7"’ and 7’/ directions (Fig. 3.25). A point
P whose coordinates are (z’,y’) in the new coordinate system is obtained
by starting at (a,b) and moving z’ units of distance in the 2’/ direction
and ' units of distance in the "’ direction:

P=(a,b)+ 27 " +9 7"
Its coordinates in the original x,y coordinate system are

z = a+72' cosf—y'sind (3.27)
y = b+z'sinf+y cosé. (3.28)

X s @b)+xi 4y

sin@Qi+cos 0) =7

1'=cos0i +sin §

FIGURE 3.25.

After substituting Formulas 3.27 and 3.28 into Equation 3.26 we get
A(a+a'cos@ — g/ sin@)* +--- + F = 0.
Multiply this equation out and collect terms to get
A2+ B2’y +C'y2+D's’ +Ey +F =0 (3.29)
with coefficients

A" = Acos?0+ Bcossinf + Csin? 6, (3.30)
B' = (C— A)sin20 + B cos?20,
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C' = Ccos?6+ BcosOsinf + Asin?#,

D’ (2Aa + Bb+ D) cosf + (Ba + 2Cb + E)sin#,
E (Ba + 2Cb + E) cosf + (—2Aa — Bb — D)sin#,
F' = Ad®+ Bab+Cbt? + Da+ Eb+ F.

Lemma 3.9.1 These substitutions do not change the form of the expres-
stons

i

B? —4A'C’' = B2 — 4AC,
and
A'E” + F'B” +C'D”? - BE'D' - 4A'C'F’
= AE?+ FB?+CD? — BED — 4ACF.
in Proposition 3.9.1.
Proof. (Left to the reader).
One can arrange things so that
B' =0 (3.31)
by setting
0= 1 arctan (L) .
2 A-C
If B2 — 4AC # 0 then one can also obtain
D'=0and E'=0

by setting
_2AE-BD and b — 2CD - BE
~ B?2-4AC ~ B2-4AC’

In this case Equation 3.29 becomes
Alzl2 +B’y'2 +F’ =0,
which is easily reduced to one of the standard hyperbolic or elliptic forms.

If B2 — 4AC = 0 then B> —4A’C’ = 0 by Lemma 3.9.1, so A’ = 0 or
C’ = 0 by Equation 3.31. Hence Equation 3.29 has the form

C'y?2+ Dz +Ey+F =0
or
A’z’z +D'z'+E'y'+F’ =0.

One can eliminate the ¥’ term in the first equation by dividing through
by C’, then making a further substitution of the form 3" = (y' + E’/2C"),
z” = z’ and completing the square. The second equation can be handled
in a similar way by dividing through by A’ then making the substitution

" = (z' + E'/2A"), " = y'. In either case the result is equivalent to one
of the standard elliptic equations.
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Proposition 3.9.1 If the graph of Equation 3.26 is nonempty then it is

hyperbolic if B> — 4AC <0,

parabolic if B2 —4AC =0,

elliptic if B> — 4AC > 0,

smooth if AE? + FB2 + CD? — BED — 4ACF # 0,
singular if AE? + FB%2 + CD? — BED — 4ACF = 0.

Proof. It is trivial to check that the proposition holds for a quadratic
equation once it is in standard form. But by Lemma 3.9.1, changing a
quadratic equation to standard form does not change the expressions B? —
4AC or AE? + FB? + CD? — BED — 4ACF.
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Projective Geometry

Projective geometry is an example of mathematics that was originally cre-
ated with one application in mind, and yet has unexpectedly shed light
on fields that are totally unrelated to the one for which it was originally
developed. Created by artists during the Renaissance for analyzing perspec-
tive, projective geometry blossomed during the eighteenth and nineteenth
centuries into a complete revision of the entire field of geometry. Recently
it has provided the setting for the modern study of algebraic equations,
and has even played a role in physics in the mathematics of quantum field
theory.

4.1 Perspective Drawing

When you look at a scene your eye does not respond directly to the objects
in the scene itself. It responds instead to the light rays that it receives from
points in the scene. To make a correct perspective drawing the artist first
projectivizes the scene by extending an imaginary line to his eye from each
point in the scene. He then projects the scene into a plane by intersecting the
plane with each of the imaginary lines. Taken together these intersections
form an image that looks just the same as the original scene to the artist’s
eye (Fig. 4.1).

Projective geometry is the study of the properties of geometric figures
that are not altered by projections. Two basic projections are the following
(see Fig. 4.2).
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FIGURE 4.1. Projecting a scene into a plane.

1. Central projection. Given a point P and a plane H with P ¢ H,
define a projection function f by the formula

Q) =PQnH

for every point @@ such that 15—@ is not parallel to H. f is called
projection from P into H; P is the center of the projection f.

2. Parallel projection. Let @ be a nonzero vector and H a plane that
is not parallel to ¥’. For each point @ let Lg be the line through Q

that is parallel to @'. Define a projection function g by the formula
9(Q)=LoNH.
g is called parallel projection into H along the direction v .

Parallel projection acts like a central projection whose center is infinitely
far away.

\
™  Q WQ

e I

central projection parallel projection

FIGURE 4.2.

Some examples of properties that are preserved by projections are: the
property of being a point, the property of being a line, and the property
of being a conic section. (Here and in the rest of this chapter we consider
only objects that do not contain the artist’s eye).

Properties that are not preserved include length, the size of angles, area,
and the property of being a circle.
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Projectivization. From now on we will imagine that the artist has only
one eye, and that it is located at the origin, O. A radial line or plane is
one that passes through O. The projectivization of a scene is the set of all
radial lines that pass through points in the scene, together with all radial
lines that are infinitesimally close to lines passing through points in the
scene (nobody’s eye is sharp enough to distinguish between lines that are
infinitesimally close to each other).

As it views a scene your eye does not respond directly to the objects in
the scene. Instead it responds to a projectivization of the scene, namely
the projectivization that consists of all the light rays that travel along lines
from points in the scene to your eye. This fact has important consequences:

1. Radial lines look like points, and radial planes look like lines
because they are being viewed “edge on” by the eye at the origin.

2. Radial dimensions are lost because radial lines look like points.

3. Non-radial lines acquire an extra “point at infinity”. The
projectivization of a non-radial line L is the set of radial lines in
the plane OL that connects L with the eye. Only one radial line in
the plane OL does not connect a point on L to the eye. That one
exception is the radial line that is parallel to L. We shall call this
exceptional line P, the “point at infinity” on L. To the eye P
appears to be a point at infinity on L, because it is the limit of lines

OP connecting the eye to points P € L as P approaches infinity (Fig.
4.3),

. —
Py = lim OP.
P—oo

—>» oo

FIGURE 4.3. A point at infinity.

4. Non-radial planes acquire an extra “line at infinity”. Let H
be a non-radial plane. As P € H goes to infinity the line OP tends
towards the radial plane that is parallel to H. We call this plane L,
the line at infinity of H.

Loo:{an ‘61'5|PeH}.
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To the eye, points in L, look like they lie “at infinity” on the horizon
of H (Fig. 4.4).

M

/ﬁ%\\>\

FIGURE 4.4. Ly is a “line at infinity”.

As a general rule any figure that extends off to infinity will acquire extra
“points at infinity” when it is projectivized.

Vanishing Points.

A perspective drawing is created by intersecting the projectivization of
a scene with a plane. The plane, which we shall call the viewplane, is the
artist’s canvas. The image of the scene is the intersection of the projec-
tivization of the scene with the viewplane. A vanishing point is an image
of a point at infinity.

Vanishing Point
Image of L

Parallel Lines have the same Vanishing Point.
FIGURE 4.5.

Parallel lines all are parallel to the same radial line, so they have the same
point at infinity. Therefore the images of parallel lines all pass through the
same vanishing point (Fig. 4.5). The only exception to this rule occurs when
the lines are all parallel to the viewplane. In that case their point at infinity
does not intersect the viewplane, so the lines have no vanishing points and
their images are parallel. (Of course their common point at infinity is still
visible to the eye, but it does not appear in the picture).

A plane’shorizon is the image of its line at infinity. If the plane contains
some parallel lines then their common vanishing point is on the plane’s
horizon.
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Figure 4.6 shows four views of a rectangular box. The first is a “three
point perspective”; all three vanishing points are present in the viewplane.
The second view is a “two point perspective” — only two vanishing points
are present and four edges have parallel images with no vanishing point.

The third view is a “one point perspective”. The viewplane is parallel to
a whole side of the box.

It is impossible to have a true “zero point perspective” drawing of a rect-
angular box since the viewplane cannot be parallel to all its edges at once.
However if you move the artist’s eye off to infinity then central projection
through the artist’s eye becomes a parallel projection, the images of paral-
lel lines become parallel, and the image of a box has no vanishing points.
The fourth view is a parallel projection.

one point perspective parallel projection

FIGURE 4.6. Four views of a box.

Parallel projections generally are preferred in technical and scientific ap-
plications, even though they look less natural than true perspective draw-
ings, because there is a simpler relationship between distances in the draw-
ing and distances in the original scene with parallel projections than there
is with perspective drawings. This makes parallel projections easier to cre-
ate, and simplifies the task of calculating the exact measurements of the
original object from data that are given in drawings.

Exercise 4.1.1 If you are looking at a drawing of a rectangular box in
three point perspective, where should you place your eye so that the picture
will look the same to you as the original box did to the artist? Let V), V3,
and V3 be the three vanishing points. Show that you should put your eye



120 4. Projective Geometry

— —> —

at a point P such that the lines PV;, PV,, and PVj3 are all perpendicular
to each other. Let S; be the sphere with diameter V,V3, S, the sphere
with diameter V V3, and Sz the sphere with diameter V;V,. Show that
P € S; NS, N S3. There are two points in this intersection, one on each
side of the viewplane.

Where should you put your eye if the box is drawn in two point perspec-
tive? In one point perspective?

4.2 Projective Space

Definition 4.2.1 A projective point (notation: P?) is a radial line.
A projective line (notation: P') is the set of radial lines in a radial plane.
A projective plane (notation: P2) is the set of radial lines in a radial three
dimensional space.

Generalizing the above, there are two equivalent definitions for projective
space.

Definition 4.2.2 An n dimensional projective space P" is the set of radial
lines in R™*!.

Definition 4.2.3 n dimensional projective space P™ is obtained by start-
ing with R™ and completing it by adding on its “points at infinity”.

To see why the two definitions are equivalent, recall that
R = {(zo,z1,---,Zn) |z: €R, i=0,---,n}.
Regard R™ as the set of points in R"+! with z¢ coordinate equal to one:
R"={(1,z1,---,z,) |z: €R, i=1,--- n},

a kind of “viewplane” in R*t!.

Set £ = (z1,---,zn). Every point (1,z) = (1,z1,---,z,) in R™ lies
on exactly one radial line, namely, the line L, ;) consisting of all scalar
multiples of the vector (1, z):

Loz ={(ttz1,- -, tzn) |t € R}

Radial lines
L(O,z‘) = {(01 tzy,-- ,tl‘n)lt € R}:

whose points have zy components equal to zero, are parallel to R™; they
represent “points at infinity” on R™. Thus every radial line in R**! can
be matched up either with a point (1,z;,---,z,) in R™ or with a point at
infinity on R”™. This produces a one to one correspondence

{radial lines in R"*!} Y RuU {points at infinity},
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projective points point at
(radial lines) in P infinity

IS, v
A S xn%

Euclidean points 2%

F1GURE 4.7. P” = R™ U {points at infinity}

which shows that Definitions 4.2.2 and 4.2.3 are equivalent (see Fig. 4.7).

The fact that projective spaces contain “points at infinity” is an impor-
tant difference between projective spaces and Euclidean spaces. Neverthe-
less the two kinds of space look the same to the eye, so they usually are
depicted in the same way in diagrams.

A theorem about projective space can be interpreted as a theorem about
a Euclidean space of the same dimension, provided that lines meeting at
a point at infinity are interpreted as parallel lines, planes meeting along a
line at infinity are interpreted as parallel planes, and so on.

Let us emphasize that in projective space all points look exactly the same,
all lines look ezactly the same, and all planes look ezactly the same. In other
words there 1s nothing special about points, lines, or planes at infinity. This
means that any point, line, or plane in P” can be regarded as a point, line,
or plane at infinity, provided that this is done in a consistent way: the line
at infinity in P? must contain all the points at infinity, the plane at infinity
in P3 must contain all the lines at infinity, and so on.

From now on we will drop the word “projective” wherever possible,
and call projective points, projective lines and projective planes simply
“points”, “lines” and “planes”.

Proposition 4.2.1 (See Fig. 4.8).
1. Every pair of points in P™ lies on ezactly one line.
2. Every pair of lines in P? intersects in ezxactly one point.
3. Every pair of planes in P3 intersects in ezactly one line.

Proof of 1. According to Definition 4.2.2, part 1) of the proposition says
that a pair of radial lines in R**! lies in exactly one radial plane. This is
clear because any pair of intersecting lines lies in a unique plane.

Proof of 2. Again using Definition 4.2.2, part 2) says that two radial
planes in R3 must intersect in exactly one radial line. This is true because
two radial planes cannot be parallel as both contain the origin.

Proof of 3 (sketch). A rigorous proof of part 3) requires one to think
about intersecting three-dimensional radial subspaces of R*. Here is a more
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K

two polrits two coplanar two planes in

determine lines determine P~ determine

a line a point a line
FIGURE 4.8.

intuitive argument. Let H and H' be planes in P3. Let Ho, be a third plane
in P3, different from the other two. Regard Ho, as a plane at infinity, and
P3 — H,, as a copy of R3. The set H — Hy, of all “finite points” on H
is a plane in R3. Likewise the set H' — H  of all finite points on H' is
a plane in R3. These two Euclidean planes either intersect in a Euclidean
line or else they are parallel and have the same line at infinity. In either
case it follows that H and H' intersect in a line when points at infinity are
included.
Similar arguments establish the next proposition.

Proposition 4.2.2 Any three noncollinear points in P3 lie in ezactly one
plane. Three planes in P3 must either intersect in ezactly one point or else
they contain a common line. A line and a plane in P3 intersect in ezactly
one point unless the line lies in the plane. If two lines in P32 do not lie in
a common plane then they are skew (and do not intersect).

4.3 Desargues’ Theorem

A set of lines is coincident if all the lines intersect at the same point. A
triangle AABC is the union of three intersecting but noncoincident lines

AABC = ABU AC U BC,

Triangles AABC and AA'B'C’ are in perspective if the lines 747", BB’,

—
CC' that join corresponding vertices on the two triangles, are coincident
(Fig. 4.9).

Theorem 4.3.1 (Girard Desargues, (1591-1661)).
If the triangles AABC and AA'B'C’ are in perspective then the points

— 4,—; — — — ———
P=ABNnA'B', Q=ACNnAC', R=BCnB'(C,
where their corresponding sides intersect, are collinear (Fig. 4.9).

Proof. Let

X=AANBB NCC'.
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FIGURE 4.9. Desargues’ Theorem.

Case 1: Suppose that AABC and AA’B’C’ do not lie in the same plane.
In this case we must first check that the intersections ABN A’ B, ACNA'C ,

— —
and BCNB'C’ are nonempty. The fact that the triangles are in perspective
implies that each of the following pairs of lines is contained in a plane:

AB,A'B' C 7ABX,
AC,A'C' C ACX,
BC,B'C'’ c BCX.

Therefore each pair of lines must intersect somewhere, so the points P, Q,
and R do, in fact, exist.
Clearly

AB,AC,BC < 4BC,
AB AC BC c ABC.

Hence

P,Q,R € ABCNnA'B'C'

which is a line by part 3) of Proposition 4.2.1. This proves Desargues the-
orem in Case 1.

Case 2: (See Fig. 4.10). Suppose that AABC and AA'B'C’ lie in the
same plane. Our approach will be to treat these triangles as projections of
triangles that satisfy the conditions of Case 1.

If A= A", B = B, and C = C' there is nothing to prove. Therefore
without loss of generality we may assume that the two triangles differ on

— “_>, 7
at least one edge. For the sake of argument let us assume that BC' # B'C’.
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FIGURE 4.10.
Let
H = a plane containing A, B,C,A’,B',C’,
Z ¢ H
a € ﬁ, with a, A, and Z all distinct.

(Z—A—; and Xa both lie in the plane ZAX, so we can define
ad = ﬁ N %.

. — > > R
By construction X € aa’ N BB’ N CC’ so AaBC and Aa'B'C’ are in
perspective. Moreover they do not lie in the same plane, for H is the only

. — — .
plane that contains BC and B’C’, but H does not contain a or a’.
By Case 1 it follows that

3 1 ! = Yali
p=aBnaB, ¢g=aCNndC’, and R

are collinear.
Projections map lines to lines. Since projection from Z into H maps a
—
to A and a’ to A’ while fixing every point in H, it must map p = aBNa'B’
to P=ABNA'B' and ¢ =aCNdC' to Q = ACN A’C’ while leaving R
fixed. Therefore since p, ¢ and R are collinear, their images P, ), and R

must also be collinear.
This completes the proof of Desargues’ theorem.
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Exercise 4.3.1 Lines that Intersect at Remote Points. (Adapted
from [9, Chap. 3, page 54]).

Desargues’ theorem enables one to draw a set of lines that intersect at a
point located off the drawing paper. Prove that the following construction
produces a line L” that contains the intersection of two given lines L and
L' and passes through a given point X.

Construction. Given two lines L and L’ and a point X, draw three
coincident lines My, My, and M3z with X € M;. Let

A = MinL A = MinL
B = M,nL B = MnlL
C = M3ﬂL C, = M3nL'
— — — —
P ABNA'B @Q = BC'nBC
— —
Y = XPnAM, Z = YQ@nNMs.
Now set
L"=XZ2.

(Hint: AAB'C, AA'BC’, and AXY Z are in perspective. See fig. 4.11.)

The three coincident lines M;, M3, M3 in exercise 4.3.1 may be parallel,
that is they may meet at a point at infinity. In practice this often gives the
best results.

FIGURE 4.11. Lines intersecting at a remote point.
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4.4 Cross Ratios

It is impossible to calculate the exact distances between objects in a scene
from data obtained by measuring a perspective drawing of the scene be-
cause the drawing does not depict radial distances. However, using some-
thing called the cross ratio, one can find the relative distances between
three or more collinear points in the scene, provided that the points are
not on the same radial line and one knows the location of the vanishing
point of the line that contains them.
Notation: the ratio of two parallel vectors in Euclidean space is

—
v

— =tif ¥ =tw and W #0.

—_

w

Definition 4.4.1 The Cross Ratio of Four Points on a Euclidean
Line.

The cross ratio [A, B, C, D] of four distinct points A, B,C,D on a Eu-

clidean line 1s

Example 4.4.1 The cross ratio of four numbers q, b, ¢,d on a number line
is

c—ad-b
[a.6,¢,d) = d—ac—-b

If you rearrange the points their cross ratio may change. For example
[B,A,C,D]=1/[A,B,C,D].

The cross ratio is significant in projective geometry because it is not
changed by projections (see part 2 of the next proposition).

Proposition 4.4.1 Let A, B, C, and D be four points on a Fuclidean
line, and P a point that is not on that line. Then

1.
sin LAPC sin £.BPD

. 1
sin LAPD sin {BPC 4.1

2. Let A/, B',C', D’ be the projections, respectively, of A, B,C,D from
P onto another line. Then

[A,B,C,D] =

[A,B,C,D)=[A",B',C’, D'].

(See Fig. 4.12).

It is important to keep track of the signs. The angles in part 1 of the
above proposition are oriented angles, with a direction of rotation chosen
so that an angle ZXY Z indicates a rotation between 0° and 180° carrying
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FIGURE 4.12. [A,B,C,D]=[A",B’,C’,D’].

YX to YZ. The sines of two of these angles have the same sign if and only
if the angles rotate in the same direction.

Proof. Taking into account the orientations of the angles, it is easy to
check that the left and right sides of Equation 4.1 have the same signs. It
remains to show that their magnitudes are equal.

The magnitude of the cross ratio is

AC BC
l[A,B,C,D]l = EE
_ areaA APC area A BPD
~  area A APD area A BPC
(AP)(CP)sin LAPC | |(BP)(DP)sin LBPD
(AP)(DP)sin LAPD‘ (BP)(CP)sin .BPC

sin LAPC sin {BPD
sin LAPD sin (BPC

This proves part 1 of the proposition.

Part 2 is an immediate consequence of part 1 since ZAPB = LA'PB’
and so on.

This completes the proof.

If one of the four points A, B, C, D in Definition 4.4.1 is a point at
infinity we can still compute the cross ratio by taking a limit. For example
if A= oo then

[A,B,C, D] = Plirr;o[P, B,C, Dj

and so on.! The same result is obtained simply by defining > =1 and
_® — 1.

o0
Example 4.4.2 If b, ¢, d are numbers on a number line,

. c—pd-=b
[00,b,¢,d] = pllongod—pc—b

1Of course P, B, C, and D must be collinear.
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d—b
= 3

The conclusion of part 2 of Proposition 4.4.1 remains true if A, B, C,
D or P is a point at infinity. In particular if P is a point at infinity then
“projection from P” is parallel projection, and the proof of part 2 of the
proposition is a simple application of similar triangles.

The next proposition shows how to compute the ratio of distances be-
tween points in a scene by using the cross ratio of their images in a per-
spective drawing.

Corollary 4.4.1 Let B, C, D be three points on a Fuclidean line, let B,
C’, D' be their images in a perspective drawing and let V' be the vanishing
pownt of the line. Then

%g— =[V',B',C',D].
Proof. By Proposition 4.4.1,
[V!,B',C",D'] = [oo0,B,C,D]
_ BD
BC’

Example 4.4.3 (See [9, Chap. 3, page 47.]). The following procedure will
produce a perspective drawing of a Euclidean line segment that has been
subdivided into n equal parts.

On the viewplane, let AB be the image of a Euclidean line segment and
V be the vanishing point of the corresponding Euclidean line. Let P ¢ AB

be a point in the viewplane and let L # PV be a line parallel to PV in the
viewplane. Set
A =APNL and B' = BP.
Choose points AY, ..., A!,_; € L such that
AA = AA,=.. = A,_B.

Foreach:=1,...,n set

—_—
A; = A\PNAB.

Then Ay, A, ..., Anp_1 are the images of points that subdivide the original
Euclidean line segment into n segments of equal length (see Fig. 4.13).

Exercise 4.4.1 Prove that the construction in Example 4.4.3 really does
produce a perspective drawing of a line segment that has been divided into
pieces of equal length. (Hint: Use part 2 of Proposition 4.4.1 and Corollary
4.4.1.
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FIGURE 4.13. Equal lengths.

More Cross Ratios
Definition 4.4.1 and Proposition 4.4.1 can be extended in many ways to
cover produce additional kinds of cross ratios.

Definition 4.4.2 The Cross Ratio of Four Points on a Projective
Line. Let P, ..., P4 be four points on a projective line, let H be a Eu-
clidean viewplane, and let P{ = PnH,...,P; = P4 N H be the images of
Py,...Pyin H. Then

[Pl,PZ,PS,PlI]:[P{,Pénpé»Pt;]-

Definition 4.4.2 would be useless if intersecting Py, ..., P4 with differ-
ent planes H gave different cross ratios, but part 2 of Proposition 4.4.1
guarantees that this never happens.

Corollary 4.4.2 In projective space, if Py, ..., Py are four points on a line
L, and P{,..., P} are their images under a central projection mapping L
to another line L', then

[Pl)P2:P3)P4]:[P{IP2')P§'P‘;]‘

Proof. If you intersect everything with a viewplane then 4.4.2 becomes
part 2 of Proposition 4.4.1.

Definition 4.4.3 The Cross Ratio of Four Coincident Lines in a
Plane. Let L,,...,Ls be four coincident lines in a plane. If P, € L;,
Py € Ly, P3s € L3, and P4 € L4 are any four collinear points, define

[Ly,La, L, Ls] = [P1, P2, Ps, Pa4).

Definition 4.4.3 applies in both projective and Euclidean spaces. In either
case, part 2 of Proposition 4.4.1 guarantees that the cross ratio of the four
lines is the same regardiess of the choice of the points Py, ..., P;.
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Proposition 4.4.2 Cross ratios of lines are not changed by projec-
tions. In P3 or E3 let I, Ly, L3, Lg be four coincident lines in a plane
H. If H' is another plane and f is a central projection from H into H’
then

[f(L1), f(L2), f(L3), f(La)] = [Ly, L2, L3, La].

Proof. (See Fig. 4.14). Let M be aline in H. For each i = 1,...,4 set
P,e MNL;. Then

(L1, L2, L3, Ls] = [Py, Py, P3, P4
[f(Pl)’ f(P2)1 f(PS);f(-P4)]
= [f(Ll)’f(LZ)i f(L3):f(L4)]

FIGURE 4.14. Cross ratios are not changed by projections.

A conic in the projective plane is the projectivization of a conic in the
Euclidean plane. The projective conic is “smooth” if the corresponding
Euclidean conic is smooth.

Proposition 4.4.3 Let A, B,C,D be four points on a smooth conic K.
Then for all P,Q € K,

[P4,PB,PC,PD) = [Q4,QB,QC, QD).

Proof. (See Fig. 4.15). Clearly it is enough to prove the proposition for
a Euclidean cone, for every projective cone can be made into a Euclidean
cone by intersecting it with a viewplane.

Every smooth Euclidean conic is a section of a right circular cone. Let
V be the vertex of the cone. If you project X from V into a plane that is
perpendicular to the axis of the cone the image of K will be a circle, and
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the images of the lines FZ, Cen &Tﬁ will be lines through that circle. Since
cross ratios are not changed by projections the proposition is true for K if
and only if it is true for the circle.

Therefore it is enough to prove the proposition in case K is a circle.
Assume K is a circle. Proposition 4.4.1 and Definition 4.4.3 say that

sinZA'P'C'sin.B'P'D’
sin ZA’P'D' sin LB'P'C’

[PA,P'B,P'C’, P'D)| =
and
sin LA'Q'C’ sin LB'Q' D’
sin LA'Q'D’ sin LB'Q'C"”
If K is a circle, Proposition 1.9.4 says that

—_— — — —
[Q,A,,Q,B’,Q’C',Q'D,] —

LA'P'C

= (AQC', (BP'D = (BQD,
LAP'D = (AQD, (BPC =

(B'Q'C’
It follows immediately that
— —

STt oo o ot Al Yo S~ St
[P'A",P'B',P'C", P'D'| = [Q'A",Q'B',Q'C",Q'D'].

This completes the proof of Proposition 4.4.3.

F1GURE 4.15. The cross ratios are equal.

Definition 4.4.4 The Cross Ratio of Four Points on a Smooth

Conic.
The cross ratio [A, B, C, D] of four points A, B, C, D on a smooth conic

1s defined by the formula
[4,B,C, D] = [PA, PB, PC, PD]

where P is any point on K. (By Proposition 4.4.3, [A, B, C, D] is the same
regardless of the point P that is used to compute it).
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Exercise 4.4.2 The Complete Quadrilateral. (See [12, Chap. 4, pages
53-64]).

Let A, B, C, D be four points in a plane, no three of which lie on a line.
The complete quadrilateral ABCD is quadrilateral ABuUBCuUCDuU DA

together with its diagonals AC and BD (Fig. 4.16). Let

Vi = ABNCD, V, = ADNBC,
— — — D —
Va0 = BDNWV,, V4, = ACNWVa.

Show that if one takes V}Vj, to be the line at infinity then A, B, C, and

D are the vertices of a parallelogram in the Euclidean plane P? — V; V.
Use this fact to show that [V}, V5, V5, V4] = —1.

1 V3 2 Vs
D
C
A
B

FIGURE 4.16. A complete quadrilateral.

Exercise 4.4.2 shows that every quadrilateral in P2 is the projectivization
of a parallelogram.

The Fourth Harmonic. Given three points Vi, V5, and V3 on a line,
draw two lines L and L’ through V; and another line L” through V5. Let

B=LNL",D=L'nL" A= BV,NL, C=DVaNL,and V; = ACN; V3.

ABCD is a complete quadrilateral so [V;, V3, Va3, V4] = —1 (see Exercise
4.4.2). V4 is called the “fourth harmonic” of V;, V5, and V3. The charming
thing about this construction is that if you start with the same three points
Vi, Va, V3 in the beginning and follow the instructions above you will always
get the same point V4 no matter what lines L, L', and L” you use. Try it!

(The reason for this is that V4 is the only point X on m that produces
the cross ratio [Vi, Vo, V5, X] = —1.)

One can sometimes use the diagonals of a quadrilateral instead of the
technique in Example 4.4.3 to make perspective drawings of line segments
of equal length. Figure 4.17 shows how to use complete quadrilaterals to
draw ties on a pair of railroad tracks. The first two ties are drawn, making
a quadrilateral, then the first diagonal is drawn. Next, the second diagonal
is drawn with the same vanishing point as the first diagonal, and the next
tie is drawn with the same vanishing point as the other ties, crossing the
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track at the point where the second diagonal crosses the track. This step
is repeated until all the ties are drawn.

In the actual scene the rectangles formed by the tracks and the ties
all are parallel and congruent. Thus their diagonals also are parallel, so
corresponding sides and diagonals meet at the same points on the horizon.

FIGURE 4.17. Railroad tracks.

Exercise 4.4.3 a) Draw a checkerboard that extends toward the horizon
in all directions.

b) Draw a scene showing a row of equally spaced houses along a street
that runs toward the horizon.

4.5 Projections in Coordinates

In this section (z,y, z) are the standard coordinates in R>.

Example 4.5.1 Given two parallel lines

L1 = {:L':landz:—l}
L, = {£=-1and z= -1}
contained in the plane
G={z=-1},
project L; and Ly from the origin into the viewplane
H={y=1}.

Solution. (See Fig. 4.18). Points (z,1,z) € H and (z',3/,—1) € G lie
on the same radial line if and only if

(', ¢,-1) =t(=z,1,2)
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for some scalar ¢, that is, if and only if

' =tx, Yy =t and ~1=tz.

The third equation says that ¢ = —1/z; using this the first two become

1
z'=-= and y =—-=. (4.2)
z z

(z',4,—1) lies on L; if and only if ' = 1. Hence (z,1,2) lies on the
projection of L; if and only if —z/z = 1. Multiplying through by z to clear
the fractions, we get the equation for the projection of L;:

—r = 2.
Similarly, the equation for the projection of Ly is 2’ = —z/z = —1, i.e.
T =z

The horizon of G is the intersection of the viewplane with the plane
z = 0, which is parallel to G. Thus the horizon is the line z = 0 in H. The
projections of Ly and L meet at the common vanishing point, (z,y,z) =
(0,1,0), of Ly and L in H, which lies on the horizon of G.

(0,0,0)
‘\

(x, 1,2) (x/z, -1/z, -1)

4L / L,
\\L L, =1

FIGURE 4.18. Images of parallel lines meeting at the horizon.

Example 4.5.2 Project the parabolas

Ql = {y:]-{—%,z:—l} and

Q = {y=£4—,22—1}

from the plane G = {z = —1} into the y = 1 plane.
Solution. (See Fig. 4.19). By plugging Formulas 4.2 from the preyi-
ous example into the formula for Q;, one obtains a formula —1/z = | 4
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(1/4)(—z/2)? for the projection of Q. Multiply through by 2?2 to clear the

fractions, and obtain
2

_,2, T
z._z+4.

To find out what this equation represents, complete the square then mul-

tiply by four:
1\ 2
4 (z + 5) +22=1.

This is the equation of an ellipse in H with center (0, 1,—%), minor axis
1 unit long, parallel to the x axis, and major axis 2 units long, parallel to
the z axis. The ellipse is tangent to the horizon of G at the point (0,1, 0),
which is the vanishing point of the axis of symmetry of the parabola Q.
From the projective point of view the parabola is simply an ellipse that is
tangent to the horizon because these curves look identical to an eye at the
origin.

The image of @2 is computed in a similar way. Plug Formulas 4.2 into
the formula for Q2 to get 1/z = (1/4)(—z/z)?, then multiply through by
422 to clear the fractions:

4z = 22
This is the equation of a parabola that is tangent to the horizon of G at
(0,1,0). The image of Q3 is a parabola instead of an ellipse because the
radial line through the point (0,0,—1) € Q2 is parallel to the viewplane.
As points on @ approach (0,0,—1), their projections in the viewplane go

off to infinity.
/ y=1
(0,0,0)

__(ﬁlz) (%/2,-1/z,-1)

TF /
/ Q, z-1

FI1GURE 4.19. Projecting a parabola onto an ellipse.

Exercise 4.5.1 Project

a) the parabola y = —1 + 22/4,
b) the circle y% + 22 = 1,
¢) the hyperbola y2 — 22 =1,
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in the £ = 1 plane from the origin into the y = 1 plane. Give a formula for
the projected curve, identify what type of curve (circle, ellipse, parabola,
etc.) it is, and locate the points, (if any) where it intersects the horizon of
the z = 1 plane.

4.6 Homogencous Coordinates and Duality

Definition 4.6.1 Homogeneous Coordinates. The homogeneous coor-
dinates of a radial line in R3 are the Euclidean coordinates [X, Y, Z] of any
nonzero point on that line.

Homogeneous coordinates serve as coordinates for points on the projec-
tive plane. Note that [X,Y, Z] must be nonzero. Square brackets and capi-
tal letters are used to distinguish homogeneous coordinates from Cartesian
coordinates.

There 1s an important difference between homogeneous coordinates on
P? and Cartesian coordinates on R3: while Cartesian coordinate triples
(z,, 2) are in one to one correspondence with points in R3, a single pro-
jective point has infinitely many sets of homogeneous coordinates.

Proposition 4.6.1 [X,Y,Z] and [X',Y’, Z’] are homogeneous coordinates
for the same point in P? if and only if

[X',Y', 2| = [tX,tY,tZ]
for some nonzero scalar t.

Proof. (X,Y,Z) and (X',Y’, Z') lie on the same radial line if and only
if one of them is a scalar multiple of the other.

The Dual Projective Plane

Definition 4.6.2 The Dual Projective Plane. The dual projective plane
P2" is the set of all lines in P2. A point in P2” is a line in P2.

Tt turns out that P2* isa projective plane just like P2. To see why, recall
that a line in P2 is a radial plane in R3, that is, a line is the set of all points
[X,Y, Z] € P? satisfying a linear equation of the form

AX+BY +CZ=0 (4.3)

where A, B, and C are constants, at least one of them nonzero. One can
think of [A, B,C] as a set of homogeneous coordinates for the line. They
are “homogeneous” because if ¢ is a nonzero scalar then [A, B,C] and
[tA,tB,tC] represent the same line, for AX + BY + CZ = 0 if and only if

tAX + tBY +tCZ = 0. Thus from a formal algebraic point of view, p2*
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1s just a projective plane whose homogeneous coordinates are represented
by letters at the beginning of the alphabet instead of letters at the end.
Similarly a point in P? is a line in P2* . If we regard [A, B, C] as homoge-
neous coordinates of a point in P2* then Equation 4.3 says that the point
[A, B,C] lies on the line whose coefficients are [X,Y, Z]. Thus [X,Y, Z]

. *
becomes a line in P2 .

TABLE 4.1. Duality.

algebraic interpretation dual
statement interpretation
[X,Y,Z] point in P2 line in P2*
[A, B,C] line in P2 point in p2*
AX+BY +CZ =0 the point the line [X,Y, Z]

[X,Y, Z] lies on
the line [A, B, C]

contains the point

[A, B,C]

Il
=

4
41

A

AX1+ BY1 +
and
AX2 + BYz +CZ2 =0

the points
[Xl , Yl) Zl] and
(X2, Y2, 2] lie

on the line

[4,B,C]

the lines
[Xl, Yl, Z]] and
[Xg, Yz, Zz] inter-
sect at the point
[4, B, C]

AAX+BY+CiZ2=0
and
A X+ BY +CZ =0

the lines
[Al, Bl , CI] and
[Az, Bz y Cz] nter-
sect at the point

[X,Y, Z]

the points
[Al, Bl , C]] and
[Az, Bz, Cz] lle
on the line
[X,)Y, Z]

. L *, .

The fact that there is no algebraic difference between P? and P2" besides
the position of their coordinates in the alphabet, means that any statement
about projective planes that can be expressed in algebraic language has two
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interpretations: one where “points” and “lines” are points and lines in P?
and a dual interpretation where “points” are points in p2* (lines in P?)
and “lines” are lines in P2 (points in P?).

Table 4.6 summarizes this process. To dualize an existing theorem replace
the words “point” by “line”, “line” by “point”, “intersect at” by “lie in”,
and “lie in” by “intersect at”, wherever they occur. Since the new theorem
says exactly the same thing as the old theorem when translated into algebra
it i1s unnecessary to prove them separately. A proof of either the theorem
or its dual proves them both.

Example 4.6.1 The Theorem of Pappus. (Pappus of Alexandria, circa
320 AD).
In P2, given points A, B, C on a line L, and A’, B’, C’ on a line L', set

“— “— > — —> —>
P=AB'NnA'B, Q=AC'nAC, R=BC'nB'C.

Then P, @, and R are collinear (Fig. 4.20).

FIGURE 4.20. Theorem of Pappus.

The Dual Theorem of Pappus. says:
In P2, given lines A, B, C passing through a point L, and lines A’,B’,C"
passing through a point L', set

P=(ANB)YANB), Q=(ANC)A'NC), R=(BNC)(B NC).

Then P, @, and R are coincident (Fig. 4.21).

Exercise 4.6.1 Prove both Pappus’ theorem (Example 4.6.1) and its dual
by proving the dual theorem. (Hint: Regard P2 as the union of a Euclidean

plane and its line at infinity (see page 120). Take LI’ to be the line at
infinity. Show that the lines A,B,C are parallel, and the lines A’,B’,C’ are

—
also parallel, in the Euclidean plane P? — LL’. Write equations for these
lines in x,y coordinates on the Euclidean plane, then solve for the points
where they intersect).
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FIGURE 4.21. Dual theorem of Pappus.

Example 4.6.2 The Dual of Desargues’ Theorem for triangles in P2
(see Proposition 4.3.1) says:

Let AABC and AA’'B'C’ be triangles in P? whose sides are the lines A,
B, C and A’, B’, C’, respectively. If the points AN A’, BNB’, and CNC’
all lie on the same line X, then the lines

P=(ANB)(A'NB),Q=(ANC)A' NC'),R=(BNC)(B' NC)

all pass through the same point (Fig. 4.22).

I'IGURE 4.22. Dual of Desargues’ theorem.

Desargues’ theorem is unusual in that its dual is the same as its converse.

Exercise 4.6.2 Show that the projectivization of the line y = mz + b has
homogeneous coordinates {m, —1, ] in p2*.
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Exercise 4.6.3 Let L;, Ly, and L3 be distinct, coincident lines in P2
Show how to construct a fourth line L4, coincident with the other three,
such that [L;, Ly, L3, L4] = —1 (Hint: Dualize the construction of the fourth
harmonic [page 132]).

4.7 Homogeneous Polynomials, Algebraic Curves

Homogeneous Polynomials Every polynomial is a sum of one or more
“monomials”. A monomial is a product of a constant and a finite number
of variables with nonnegative integer exponents. The degree of a nonzero
monomial is the sum of the exponents. The degree of a polynomial is the
largest of the degrees of its monomials. A nonzero polynomial is homoge-
neous if all of its monomials have the same degree.

Example 4.7.1 225?23 is a monomial of degree 5+2+3 = 10.
2y32% + 3zy + 1 s a polynomial of degree 3+4=17.
z? 4 2y23 is a homogeneous polynomial of degree 4.

Proposition 4.7.1 If f(z,y,2) is a homogeneous polynomial of degree d
then

f(tz, ty,tz) = tdf(z,y,z)
for all scalars t.

Proof. If g(z,y, z) = kz®y*2¢ is a monomial of degree a + b+ ¢ = d then

gtz ty,tz) = k(t)’(ty)"(t2)°
kta+b+cmaybzc

= tig(z,y,2)

for every scalar ¢t. The same holds for f since all of its terms have the same
degree.

A similar statement with a similar proof holds for polynomials in any
number of variables.

Corollary 4.7.1 If f is homogeneous and f(x,y,z) = 0 at some nonzero
point (z,y,2) € R3, then f = 0 everywhere on the radial line through the

point (z,y, z).

Proof. The radial line consists of scalar multiples (tz,ty,tz) of (z,y, 2),
so by proposition 4.7.1 f(tz,ty,tz) = t4 f(z,y, z) = 0, where d is the degree
of the homogeneous polynomial f.

Algebraic Curves
An algebraic curve in the Euclidean plane is the set of points (z,y) € E?
satisfying a polynomial equation

f(z,y) =0
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where f is a nonconstant polynomial. Examples include the circle z2 + y? —
1 = 0, the line y — 2z — 5 = 0, the parabola z? — y = 0, and the “figure
eight” z%(z2 - 1) + 32 = 0.

An algebraic curve in the projective plane is the set of points [X,Y, Z] €
P? satisfying a homogeneous polynomial equation

F(X,Y,Z)=0

where F' is a nonconstant homogeneous polynomial. Examples include the
projectivized circle X24Y2-22 = (, the projectivized line Y —2X~57 = 0,
the projectivized parabola X2 —Y Z = 0, and the projectivized figure eight
X¥(X?-2%)+Y?Z2=0.

Proposition 4.7.1 says that the locus {(z,y,2) € R®|F(z,y,2z) = 0} of a
homogeneous polynomial equation is a union of radial lines. In other words
it is a kind of “generalized cone” in R3 with vertex at the origin. To an eye
at the origin it looks like a curve (Fig. 4.23).

radial
tangent plane

(0,0,0)

projective curve

FIGURE 4.23. Generalized cone, with radial tangent planc.

Homogenization

Projectivization is the process of converting a Euclidean figure into a
projective figure by replacing each of its points by a radial line. Homoge-
nization 1s the algebraic analog of projectivization. To homogenize a poly-
nomial f(z;,...,z,) of degree d, introduce n + 1 new variables X, ...,
X, Z, then replace each z;,7 = 1,...,n by X;/Z and multiply through
by Z? to clear fractions.

To recover the original polynomial f from the homogeneous polynomial
replace each X; by z; and Z by 1.

Example 4.7.2 Let f(z,y) = 1 + z + 2y + 32% + z35.

XY X Y x\2 /x\/Y\?
(7a)=vzrs(z) +(2) ()

Multiply through by Z* to get the homogeneous polynomial

F(X,Y,2)=2"+ XZ3 +2v 23 +3X%2%2 + XY3.
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To convert F back into f set X =z,Y =y, and Z = 1:
F(z,y,1) = 14z+2y+3z?+zy°
= f(z,y)

Exercise 4.7.1 Homogenize the following polynomials.
a) f(t) =1+ 2t + 312 + 4¢3
b) g(z,y,2) =1+ zyz.

To see the relation between homogenization and projectivization, con-
sider the Euclidean curve

f(z,y)=0and 2 =1

given by the polynomial equation f(z,y) = 0 in the z = 1 plane. Let d
be the degree of f. A nonzero point (z,y, 2) lies on the projectivization of
C if the radial line through the point intersects C, that is, if some scalar
multiple (tz,ty,tz) of (z,y, z) satisfies the equations

f(tz,ty) =0 and tz = 1.

The equation on the right says that £ = 1/2, hence the equation on the left

says
f (5,2) =0. (4.4)

Hence, if z # 0 then [z,y, 2] lies on the projectivized curve if and only if
the homogenized polynomial

F(r,y,z):zdf (f 2)

)
z z

vanishes.

Points [z,y, 2] with F(z,y, z) = 0 are points at infinity if z = 0. Points at
infinity are radial lines that are parallel to asymptotic lines of the Euclidean
curve C.

The above calculation needs to be modified slightly if the Euclidean curve
does not lie in the z = 1 plane, but the basic approach is the same.

Example 4.7.3 One can use the technique of Examples 4.5.1 and 4.5.2 to
find homogeneous equations for the projectivizations of the parabolas

Q1 = {Y:l—}-T,Z:—l} and

Q2 = {Y:—)i—z,Zz—l}
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in the z = —1 plane. A point (z,y, z) with z # 0 lies on the cone through
)1 if and only if

t 2
ty:1+(::) and {2z = —1

for some scalar £. Thus t = —1/z and

—y 1 /-z\?
—=14-— .
z + 4 ( 2 )
Multiply through by 22 to clear the fractions, and replace the small letters

z, y, z by capital letters. The result is a homogeneous equation for the
projectivized curve Q;:

YZ+7,2+41X2:0.

A similar computation produces a homogeneous equation for the projec-
tivized curve @)s:
1
YZ+ ZX2 =0.
The equations for the original Euclidean curves can be recovered from
these equations by replacing X by z, Y by y, and Z by —1.

Exercise 4.7.2 Find a homogeneous polynomial equation for the cone
with vertex at the origin that passes through the circle where the plane
X +Y + Z = 1 intersects the sphere X2 + Y2+ 72 =1.

4.8 'Tangents

The projectivization of a Euclidean curve is a cone, and the projectivization
of a line that is tangent to the curve is a plane that is tangent to the
cone (see Fig. 4.23 on page 141). If P = [Xo, Yo, Zo] is a point on the
projectivized curve F(X,Y, Z) = 0 then the equation of its tangent plane
at P is 8

(P) + Y (P) + Z (P) (4.5)

[0F/0X,0F]0Y, BF/aZ] are the homogeneous coordinates of the projec-
tive line that is tangent to the projectivized curve.

Lines that are asymptotic to the original Euclidean curve become tan-
gents at points at infinity on the projectivized curve when they are projec-
tivized.

If all of the partial derivatives of F' are zero at P then P is a singular
point. A curve may have multiple tangent lines at singular points (Fig.
4.24).
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FIGURE 4.24. Tangents at a singular point.

Exercise 4.8.1 a) Consider the hyperbola z2/a? —y2/b? = 1 in the z = 1
plane in R3. Find homogeneous equations for the projectivization of the hy-
perbola and for the projectivizations of its asymptotic lines. Verify directly
that the projectivized asymptotic lines are tangent to the projectivized
hyperbola where it intersects the line at infinity.

b) Show that projectivization of the parabola y = z2 in the z = 1 plane
1s tangent to the line at infinity.

Exercise 4.8.2 a) Show that the projectivization of the Euclidean curve
z? = y(z? — y?) intersects the line at infinity at three points: [X,Y, Z] =
[1,0,0],[1,1,0], and [1,—1,0]. (Remember that homogeneous coordinates
are defined only up to scalar multiples!)

b) Find the tangents to the projectivized curve at the points where it
intersects the line at infinity and use them to find all the asymptotes of
the Euclidean curve 22 = y(z? — y?). Sketch the graph of the curve. (Hint:
intersect the projectivized tangents with the z = 1 plane).

Exercise 4.8.3 a) Consider a conic given by an equation
Az? + Bzy+ Cy? + Dz + Ey+ F =0

in the z = 1 plane. Show that the projectivized conic meets the line at
infinity at points [X, Y, 0] where

X —B++/B2—4AC

Y 2A

b) Use the result from part a) to explain why the conic is

elliptic if B2 — 4AC < 0,
parabolic if B2 —4AC = 0,
hyperbolic if B? —4AC > 0.

4.9 Dual Curves

For every curve G C P? there is a dual curve C* C P2*. A point on C* js
a line that is tangent to C.
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Definition 4.9.1
C*={P*e¢ p2* | P* is tangent to C}.2

The Dual of the Dual Curve
The dual C** of the dual curve consists of lines that are tangent to the

dual curve. Since a line in P2 is a point in P2, C** is a curve in P2,
Proposition 4.9.1 C** = C.

Sketch of Proof. Suppose that C and C* are smooth curves. For each
P € C and P* € C* let

T(P) = line tangent to C at P,
T*(P*) = line tangent to C* at P*.

To prove the proposition it is enough to show that
P* = T(P) if and only if P = T*(P*)

for arbitrary P and P*.
Let P* = T(P),Q* = T(Q) where P,Q € C. By definition

T*(P*)= lim Q*P* (4.6)
Q*—»P*

—
is the limit of secant lines Q*P* as Q* goes to P* on C*. Dualizing,
T*(P*) becomes a point in P2,

T*(P*) = Qliir;)* T(Q)NT(P) = ‘;i_r} T(Q)NT(P) = P.

(See Fig. 4.25). The second equality follows from the fact that Q* — P*
as Q — P.

A similar argument shows that 7(P) = P*.

This proves Proposition 4.9.1 if C and C* are smooth. If C or C* is not
smooth then some technicalities involving singular points must be dealt
with, but in the end everything works out in more or less the same way.

The equation of a dual curve

It rarely is necessary to compute the equation of a dual curve. This is
fortunate, since the calculation of the equation of a dual curve usually
involves some pretty complicated algebra. The following example gives an
idea of how it can be done.

2If C is singular this definition needs to be modified slightly. In that case C*
also contains the limit of every convergent sequence of lines that are tangent to

C.
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FIGURE 4.25. Dual curves.

Example 4.9.1 Let C be the projectivization of the Euclidean hyperbola

.2 2
Y 1.
4 9
To compute the dual of C we start by finding all the lines that are tangent

to C. Let L be the line whose equation
y=mz+b.

L is tangent to the hyperbola if and only if it intersects the hyperbola at
only one point and is not parallel to one of the asymptotes. To find the
points where L intersects the hyperbola, plug the equation for L into the
equation for the hyperbola:

2 (mz+b)®

4 9 1

A(5)(F)- o) w

and solve for . Equation 4.7 takes the form

multiply out:

P:c2+Qa:+R=0

where

P~ (7). o (), w-(r)

The asymptotic lines of the hyperbola have slope +/9/4 = +£3/2. If L is
not parallel to an asymptotic line it follows that P # 0, so one can use the
quadratic formula to solve for z:

—Q++/Q?—4PR
T = 5P .
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There is exactly one solution if and only if
Q?-4PR=0.

Plugging in Equations 4.8, one finds that the line y = mz + b is tangent to
the hyperbola if and only if

B 4m?
3- 5 *1=0 (4.9)

Equation 4.9 determines a conic in the m,b-plane, and C* is its projec-
tivization.

Proposition 4.9.2 The dual of a smooth conic in P? is a smooth conic
in P2".

Sketch of proof. One can prove this using the same method as in
Example 4.9.1, starting with the general equation for a conic (Equation
3.27). We omit the details.

Exercise 4.9.1 Find an equation for the dual of the circle z% 4 y? = 1.

4.10 Pascal’s and Brianchon’s Theorems

A hezagon is the union of six lines in P2,
Theorem 4.10.1 (Blaise Pascal [1623-1662]).

If a hexagon is inscribed in a smooth conic, the intersections
of opposite sides of the hexagon are collinear.

(In other words if the points A, B, C, A’, B’, C' lie on a smooth conic
then

TR AR A TR AT b ST
P=AB NA'B, Q=AC'nA'C, R=BC'nB'C

are collinear. See Fig. /.26 and compare with Pappus’ Theorem J.6.1, page
138).

Proof. (Adapted from [4, Ch. 1V, §8.4, pages 209- 212]. See Fig. 4.27.)
Let X = AB N BC and Y = AC' N B'C. Projecting from B we see that
— > y, —
[C''B',A A"l = [BC'",BB',BA, BA"]

by the definition of cross ratio of four points on a conic (Definition 4.4.4).
Also

[X,B', A, P|=[BC, BB, BA, BA'
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FIGURE 4.26. Pascal’s theorem.

by the definition of the cross ratio of four points on a line (Definition 4.4.3).

Hence
[C', B’,A,A’] = [X,B’,A,P]. (4-10)

If we project from C the same argument shows that
[C',B', A, A') = [CC',CB',CA,CA]

and

[C',Y,A,Q) = [CC',CB'CA,CA),
SO
[C’! B” A’A’] = [C’) Y’ A’ Q]'
Combining this with Equation 4.10, we have

[X,B', A, P]=[C,Y,A Q) (4.11)

Now let % be the line at infinity, and regard the rest of P2 as a Eu-
clidean plane. To show that P ,Q, and R are collinear it suffices to show

. - - - - — - e—
that R is a point at infinity, or in other words that BC’ is parallel to B'C
in the Euclidean plane. Since P and @ are points at infinity, AB’ is parallel

— — : — . . .
to A’B and AC’ is parallel to A’C in the Euclidean plane. Also since P
and @ are points at infinity, Equation 4.11 says that

XA CA
— = =
B'A YA

Therefore, since each of the triangles AY AB’ has one side on AB’ and
—>
another side on AC’, it follows that these two triangles are similar. Hence

—

%’ is parallel to B'C.

. — — . . . R B . > .
In particular R = BC' N B'C is a point at infinity, so it lies on PQ. This
completes the proof.
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FIGURE 4.27.

Remark. The points on the hexagon need not be arranged exactly as
they are in Fig. 4.26 or Fig. 4.27. Pascal’s theorem is true no matter how
the points are arranged, so long as they all lie on a single smooth conic.
The six points need not even be distinct; Pascal’s theorem will hold even if
two adjacent points on the hexagon are equal, if we take the corresponding
edge of the hexagon to be the tangent line at that point.

We get the next theorem for free, by dualizing Pascal’s theorem.

Theorem 4.10.2 Brianchon’s Theorem. (Charles Julien

Brianchon )-

If a hezgon is circumscribed around a smooth conic, the lines
connecting opposite vertices all pass through the same point.

(In other words, given siz lines A,B,C,A’,B’,C’ tangent to a smooth
conic K the lines

P = (AnB)A'NB),
Q = (AnC)ANC),
R = (BNC)B NC)

all intersect at the same point. See Fig. 4.28.)

Proof. Dualize Pascal’s theorem, using the fact that the dual of a smooth
conic is a smooth conic.

Tangents to a Smooth Conic, Revisited.

We constructed tangents to a circle in Exercise 1.9.5 on page 31. The
construction in the following claim enables us to construct tangents to any
smooth conic.



150 4. Projective Geometry

FIGURE 4.28. Brianchon’s theorem.

Claim 4.10.1 Let K be a smooth conic and O a point outside K. Draw
lines Ly,L2,L3 through O, each intersecting K in two points. Set

LiNnK = {A A,
L,NnK = {B, B},
LsnK = {C,C'}.

Let

P = ABNAB,

R = BC'NnBC,
S € KnPR

Then OS 1s tangent to K at S (Fig. 4.29).

FIGURE 4.29. Tangent to a conic.

Exercise 4.10.1 Prove Claim 4.10.1 in the following two steps:
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a) Set

Q = ﬁn xTC,
— —
X = ABnA'PB,
-
Y = ACNAC,
—
Z = BCNBC.
Prove that all six points R, S,T, X,Y, Z are collinear.

(Hint. Apply Pascal’s theorem to the hexagon AB'C A’ BC’. Then apply
Desargues’ theorem to triangles AABC and AA'B'C’, triangles AA’BC
and AAB'C’, triangles AAB’'C and AA’BC’, and triangles AABC’ and
AA'B'C)

b) By part a) PR= ﬁ, so

S=KnPX.
Observe that P and X depend only on L, and L,. Therefore one can

rotate the line Lz around the point O without affecting S. Rotate L3 until
it becomes tangent, that is, until C = C’; and apply part a).






D
Special Relativity

5.1 Spacetime

“The whole of science is nothing more than a refinement of
everyday thinking.” — Albert Einstein.

“Time is nature’s way of preventing everything from hap-
pening all at once.”

The subject of this chapter is Einstein’s special relativity theory and
what 1t says about the geometry of flat spacetime. This is not so difficult
or abstruse as it sounds; it involves little beyond high school mathematics.
A spacetime is simply the mathematical version of a universe that, like
our own physical universe, has dimensions both of space and of time. A
flat spacetime is a spacetime with no gravity, since gravitation tends to
“bend” a spacetime. Flat spacetimes are the simplest kind of spacetimes;
they stand in the same relation to curved spacetimes as a flat Euclidean
plane does to a curved surface.

What makes a flat spacetime different from a Euclidean space is, of
course, the existence of a time dimension. In the two-dimensional case there
is just one space dimension and one time dimension; we will focus on this
case because it is the simplest and yet it illustrates the key elements of the
theory.

We will need to discuss lengths of vectors and angles between vectors in
a two-dimensional spacetime, and to have an analogue of the Pythagorean
theorem. You should not be too surprised when these turn out to behave
differently than lengths and angles in Euclidean space. After all, what does
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it mean to speak of the “length of” or the “angle between” vectors that
are pointing forward in time?

Events and Worldlines

In mechanics one studies objects moving through space over intervals of
time. Motion along a line is represented by the graph of a function z = z(t)
in the ¢, z plane, a two- dimensional spacetime where t represents time and
z(t) represents the position of the object at time ¢. (Physics texts usually
put time on the vertical axis and space on the horizontal axis). The local
slope dz /dt of the graph is the velocity of the particle (Fig 5.1).

space worldline

X

A

FIGURE 5.1. A two-dimensional spacetime.

time

An event is a point in a spacetime. A worldline is a curve z = z(t)
that shows the position of a particle as a function of time. The event at
time ¢ in the life of the particle occurs at the point (¢, z) in the spacetime.
The ¢,z plane has only one space dimension, so worldlines in the t,x plane
represent the motions of particles along a line. Motions of particles in higher
dimensional spaces require higher dimensional spacetimes. The worldline
of a particle moving in the z,y plane is the graph of a function (z,y) =
(z(t), »(t)) in a three dimensional t,x,y spacetime; for each ¢ the event at
the point (t,z(t),y(t)) is the event in the life of the particle at time .
The worldline of a particle moving in three dimensional space exists in a
spacetime with four independent dimensions t,x,y,z.

Nature does not equip her spacetimes with a set of coordinate axes. In
real life coordinates like ¢ and  must be artificially defined and measured
by observers who live within the spacetime. Different observers may set
up different coordinate systems and disagree on the locations and times of
events, so it is important to find a way to relate these different measure-
ments to each other. The search for a solution to this problem leads to the
Special Theory of Relativity. 5

Imagine two observers, O and O, living in a two dimensional spacetime.
Observer O assigns coordinates (t,z) to each event by measuring

t = the time (according to O) when the event occurred, and
z = the distance (according to O) between himself and the event
at the moment when it occurred.

O also assigns coordinates, which he calls (1, %), to each event:
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{ = the time (according to 6) when the event occurred, and

Z = the distance (according to O) between himself and the event
at the moment when it occurred.

A Fundamental Problem: What is the relation between the coordi-
nates (¢,z) and (¢, z) of two different observers in the same spacetime?

A basic difficulty arises from the fact that the observers are likely to
be moving. Since their state of motion affects their measurements, each
observer needs to be able to measure his own motion in order to correct
for its effects. But without a natural system of coordinates to refer to, it is
physically impossible for the observers to measure, in any absolute sense,
exactly where they are or how they are moving, or even whether or not
they are moving at all!

Imagine that both observers are coasting along in deep space. If an ob-
server turns on his rocket engine he will be pressed back in his seat. He
knows that he is moving because he feels the acceleration. If he is not ac-
celerating he will feel no motion even though he may be moving with great
speed. Though he can measure his position and velocity relative to other
objects in the universe he cannot determine his absolute position or velocity
since the absolute positions and velocities of these other objects are also
unknown.

In the end one is forced to conclude that position and velocity are physi-
cally meaningful only in relation to other objects. “Absolute position” and
“absolute velocity” are meaningless abstractions. As long as an observer is
not accelerating then as far as he can tell or we can tell (if we are moving
with him) he might as well be standing still.

An inertial observer is an observer who is not accelerating. His or her
coordinates are inertial coordinates. The basic premise of relativity — that
nature does not come equipped with a special set of coordinates and all
motion is relative — means that the universe looks the same to all inertial
observers: if two inertial observers do the same experiment then they will
get the same results. This is:

The Principle of Relativity. The laws of physics are the
same in any inertial coordinate system.

5.2 Galilean Transformations

From now on O and O will be inertial observers moving with a constant
relative velocity v so that each observer sees the other moving away from
him with velocity v. Figure 5.2 shows what spacetime looks like to O in his
own system of coordinates.

Since = measures the distance from O to an event, points where x = 0
are events on O’s own worldline. The event (0, 0) is the event in the life of
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x O's worldline

[\/— slope = v

| O's worldline
t

FIGURE 5.2. Spacetime in O’s coordinates.

O at time t = 0, (1,0) is the event in the life of O at time t = 1, (2,0) is
the event in the life of O at time t = 2, etc. Taken together, the points on
O’s worldline form the t axis.

The z axis is the set of all events with ¢ = 0. It is a snapshot of the
universe at time ¢ = 0 . Vertical linest = 1, ¢t = 2, ¢t = 3,... are snapshots
of the universe at timest=1,¢t=2,t=3,...

O 1s traveling with constant velocity v away from O, so his z coordinate
at time ¢ 1s

z=vt+xo (5.1)

where zp is a constant. The line z = vt + x4 is O’s worldline expressed in
O’s coordinates; its slope v i1s the velocity of 0 relative to O.

Before Einstein, physicists assumed that O and O would get the same
result whenever they measured the interval of time between two events. It
follows that the time on O’s clock can differ from the time on O’s clock
only by a constant, {o:

t=t+1o. (5.2)

One cannot expect O and O to agree on the positions of events that occur
at different times because each observer measures position on his own ruler,
which moves with him relative to the other observer. For the same reason,
a person standing on the side of a road would not measure the length of a
moving car by comparing the position of its rear bumper at one time with
the position of its front bumper one minute later.

Nevertheless i1t was assumed that the observers would agree on the dis-
tances between simultaneous events. To measure the length of the moving
car, you compare the positions of its front and rear bumpers at the same
time. _

Let € be an event with O-coordinates (t, ). e is # units of distance away
from O when O’s clock reads . At that moment, O’s clock reads t = £ —to.
At time ¢ the distance from O to O is z(t) = vt + xo and the distance from
O to e is &. Both observers agree on these measurements since they were
made simultaneously, so we can combine them to find the distance at that
moment from O to e:

z = (distance from O to €) + (distance from O to O)
= T+ v+ zxo.
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Collecting Equations 5.2 and 5.3 together, we have:

Proposition 5.2.1 The Galilean Transformations.!

Let O and O be a pair of inertial observers moving with relative velocity
v, and let (t,z) and (1,%) be their respective inertial coordinate systems.
If O and 0] agree on the time interval between any two events and on the
distances between simultaneous events, then

t = t+1ty and

= x—vvlt—=Ip

21

where tg and zoy are constants.

Figure 5.3 compares the two coordinate systems. The vertical lines are
t = constant lines (respectively, = constant lines) and the horizontal lines
are x = constant (respectively Z = constant) lines.

X \ 'i' _
LA )
Lo x= ] o
x=2 / /l / —~—
_ t
x=1 x=1 —
7 X =0 L
x=0 > O O
t A // |
t=1 t=2 t=3 t=11=271=3
O's coordinates O's coordinates

I'1GURE 5.3. Galilean Transformations.

Galilean Spacetimes
Definition 5.2.1 Galilean Spacetime. A Galilean spacetime is a space-
time in which the coordinates of inertial observers are related by Galilean
transformations. Galilean observers are inertial observers in a Galilean
spacetime.

Galilean observers agree on the elapsed time between events and on the
distance between simultaneous events, and they have a particularly simple
formula for the addition of velocities.

Proposition 5.2.2 Addition of Velocities in Galilean Spacetimes.

Let O and O be Galilean observers and A an object in a Galilean space-
time. If O is traveling with velocity v relative to O, and A is traveling in
the same direction with velocity w relative to O, then A is traveling with
velocity v + w relative to O.

' Named after the famous Italian astronomer and physicist Galileo of Galilei
(1564-1642).
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In other words, if a child is running forward with a speed of 10 miles per
hour inside a train which is traveling at 50 miles per hour then the child’s
total speed relative to the ground is 60 miles per hour. B

Proof. Since A is traveling with constant velocity w relative to O, A’s
worldline satisfies an equation of the form

ﬁzwi+io

in O’s coordinates, where Zg is a constant. Substitute the Galilean trans-
formations into this equation and get

z — vt —zg = w(t + to) + Zo

in O’s coordinates. Solve for z to find the position of A at time ¢ according
to O:

T = ('U+w)t+($0+wt0+io)
= (v + w)t + (constant).

Hence A’s velocity is v + w according to O.

5.3 The Failure of the Galilean Transformations

It turns out that we do not live in a Galilean spacetime. Observers in
our universe do not agree on the time interval between events, they do
not agree on distances between events that are simultaneous according to
some observer, and velocities do not add in the simple way described in
Proposition 5.2.2. It took a long time for scientists to realize this because
the assumption that our universe is Galilean produces only negligible errors
at low relative speeds. But at speeds close to the speed of light the errors
are too large to ignore.

By the end of the nineteenth century scientists had measured the speed
of light to great accuracy under many different conditions. Experiments?
show that all observers get the same result, about 186,282 miles per second,
when they measure the speed of light in a vacuum regardless of the velocity
of the observer or the velocity of the light source.

Suppose a jet fighter is hurtling along at a speed of one mile per second.
The pilot measures the speed of light traveling forward in his cockpit to be
186,282 miles per second. According to Galilean velocity addition, a person
standing on the ground should see the same light flashing by at a speed of
186,282 + 1 = 186, 283 miles per second. But he does not! In fact, he gets
exactly the same figure as the pilot on the plane. The velocity addition
formula simply does not work, at least when it is applied to light. Since

2For instance the famous Michelson-Morely experiments (1881-1887). See [11].
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the velocity addition formula is derived from the assumption that different
observers could agree on distances between simultaneous events and on
time, this assumption must also be false.

5.4 Lorentz Transformations

In this section we enter the strange world of relativistic physics by replacing
the Galilean transformations with transformations that are consistent with
the fact that the speed of light is the same for all inertial observers.

Simultaneity and the Relativity of Time.

Imagine a pair of flashing lights mounted at points A and B a certain
distance, say one mile, apart. Place a detector at a point halfway between
the two lights and measure whether or not the light from A arrives at the
detector at the same time as the light from B. Both signals travel the same
distance at the same velocity, so both take the same amount of time to
reach the detector. Therefore we know that A flashed first if the signal
from A arrives at the detector before the signal from B, B flashed first if
the signal from A arrives later than the signal from B, or A and B flashed
simultaneously if the two signals arrive together (Fig. 5.4).

X

A's worldline < x=a
. : ->\
light rays - - -~ x=(a+b)/2

. _>/
x=b

B's worldline

t

FIGURE 5.4. Simultaneous events.

Definition 5.4.1 Simultaneity of Distant Events.

Let O be an observer with inertial coordinate system (¢, z). Two events
occur simultaneously according to O if and only if two light signals, one
originating at each event, would arrive together at the point exactly halfway
between the events.

The exact location of the point halfway between the events is determined
by O, using his own ruler.

Comments on the definition.

1) The events in Definition 5.4.1 are not actually required to send out
any light signals, but whatever means are used to assign times to the events
must give the same results as would have been obtained if light signals had
been sent.
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2) The measurement of simultaneity depends on the observer. It is en-
tirely possible that another observer, carrying out the same measurement,
will get different results. Time, as well as position, may be different for
different observers.

Let O and O be inertial observers with inertial coordinate systems (t,z)
and (, ), respectively, moving apart with relative velocity v. We seek func-
tions f and g which are consistent with the principle of relativity, the defi-
nition of simultaneity, and the fact that the speed of light is constant, such
that

t=f(t,z) and % = g(t, z).

Assume that f and ¢ have a form that is similar to the Galilean trans-
formations, that is, that there are constants p, ¢, 7, s, zo, and tp such that

f(t,z) = pt+gr+ty and (5.3)
g(t,z) = rt+sz+ zo.

Besides the fact that this assumption simplifies our task considerably,
there are other reasons for asserting that it should be so. It is equivalent to
the statement that the partial derivatives 8t/8t, 0t/dz, 8z /0t, and 8% /0x
are all constant. If the partials were not constant then we might expect
to find a point (¢, z) where the partial derivatives were especially nice, say
where 0t /0t has a minimum or something of that sort. Such a point would
be a specially marked point in spacetime, and we could base a special
coordinate system upon it. But the principle of relativity says that there
are no specially marked points or other natural features in the universe on
which to base a special “natural” system of coordinates, ¢ so we conclude
that such a point does not exist. Hence the partial derivatives should be
constant.

In any case let us agree to accept Equations 5.3. Then

pt+qr+ty and (5.4)
= rt+ s+ zop.

8 e~

Our job is to find the constants p, q,7, s, to, and zg.

To simplify the calculations let us suppose that O and O have some
common event in their lives, that is, that their worldlines intersect at some
event E. They might as well agree to synchronize their clocks at this event,
so we may assume that both observers assign to E' the time

t(E) =1(E) = 0.

3The special theory of relativity assumes an idealized universe with no gravity
and hence no significant masses. The general theory of relativity allows gravity,
which bends the surrounding spacetime and destroys its uniformity. In the general
theory the partial derivatives 9z /dz etc. are not constant.
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FIGURE 5.5.

Also, because E lies on both of their worldlines, they both assign it the
position

2(E) = #(E) = 0.

Thus O’s and O’s coordinate systems have a common origin at the event
E. Substituting the coordinates (0,0) = (¢,z) = (¢,%) of E into Equations
5.3 we deduce that

to =zo=0. (5.5)

Let us also assume that O and O agree to orient their x axes so that if
a light beam is traveling in the positive x direction according to O, then it
1s also traveling in the positive Z direction according to O.

Figure 5.5 1s a picture of spacetime in O’s coordinates. The t axis is O’s
worldline and the line z = vt is O’s worldline. Since £ = 0 on O’s worldline,

we have
z = 0 when z = »t. (5.6)

Plug Equations 5.5 and 5.6 into the second of Equations 5.4 to get
0 = rt + svt. (5.7)

Hence » = —sv. Substitute this and Equation 5.5 back into Equations 5.4
to obtain the system

= pt+qz, (5.8)
= sx — sut.

8~

The next step is to locate the # axis. (The ¢ axis is O’s worldline.)
The Z axis contains all the events with ¢ coordinate equal to zero, so to
find it we must locate another event (other than the origin £) that has t
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coordinate equal to zero. Let F' = (0,a), in O’s coordinates, be such an
event. According to 6, F 1s simultaneous with F since they both occur at
time £ = 0, so light signals sent by E and F will meet at a point halfway
between them. E lies on the worldline # = 0, F' lies on the worldline £ = a,
so the point halfway inbetween lies on the worldline Z = a/2. Thus to find
F all we need to do is follow a light beam from the origin until it crosses
the line £ = a/2, then follow another light beam back from there until it
intersects the line £ = a. (See Fig. 5.5).
Rewrite the equations for these lines in O’s coordinates:

z =0 becomes sz —svt = 0,
T = a/2 becomes sz—sut = af2, (5.9)
T = a becomes sr—svt = a
by Formulas 5.8.
Let
¢ = velocity of light

~ 186,000
sec

A light signal traveling from the origin towards £ = a/2 follows the line
z = ct, and meets the halfway point Z = a/2 at the event*

(t,2) = (QS(Ca— v)’ 23(:6_ ”)) '

(To see this, solve the equations z = ¢t simultaneously with the second
Equation in 5.9.)

A light beam traveling in the opposite direction through this event moves
along a line with slope —c; 1t satisfies the equation

and meets the line T = a at the event

(t,z) = (S(Czaf v?)’ s(ci’aiz vz))

by the third of Equations 5.9.
This event is the event F'. Since the line connecting F' to the origin is
the Z axis, it follows that the Z axis satisfies the equation

2
Z axis: £ = t—t. (5.10)
)

“Here, and in the rest of this argument, we assume that a is positive.
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Returning to the calculation of the constants in Equations 5.4 we have

t=0 ifandonlyif z = —pt/q
ifand only if z = c?%t/v.

by Formulas 5.8 and 5.10. Hence —p/q = ¢?/v, so ¢ = —pv/c?, and Equa-
tions 5.8 become:

- pv
t = pt— 2t (5.11)
T = sz —sutl
Now
Z = ct if and only if z = ct (5.12)

because the speed of light equals ¢ for both observers ® Substituting in
Equations 5.11, Formula 5.12 becomes:

st — svt = cpt — cp;sz if and only if z = ct. (5.13)
c

Solve the left hand side for z:

cp + svt

-, pv

s+ B

Now comparing the left and right sides of the statement in Equation 5.13,

we have
cp + sv

St ©
Multiply through by s + pv/c to clear the fractions, then simplify to get:
plc—v) =s(c—v).

v # ¢ since no physical observer can travel at the speed of light. Hence

p=s,
and Equations 5.11 become
- v
t = pt— p—z:c and (5.14)
c
T = pz—put.

It remains only to calculate p.
Imagine an experiment where each observer holds up a ruler that is one
foot long for the other observer to measure as he passes by. Both of the

®And because we have assumed that their x axes are o{iented the same way.
If their x axes were oriented in opposite ways then £ = —ct.



164 5. Special Relativity

observers perform the same experiment: measure the length of a one-foot
long ruler that is moving with velocity v. By the principle of relativity both
observers should get the same result.

To measure the length of the moving ruler each observer records the
positions of its endpoints at one particular time, then finds the difference
between them. Since the ruler is moving it is important that he record the
location of the endpoints at one particular time, for if he recorded where
the endpoints were at different times the difference in the positions would
reflect how far the ruler had moved in the interim in addition to its length.

Suppose that O measures the length of O’s ruler at time t = 0. The
endpoints of O’s ruler are at Z = 0 and Z = 1. In O’s coordinates these
equations become

pr —pvt = 0 and pz — pvt = 1

{by Equations 5.14). Substituting in ¢ = 0 we find that the endpoints of
O’s ruler are located at

:c:Oand:c:1
P
Tl

when { = (. Thus according to O

the length of O’s ruler is % (5.15)

Next we calculate the length of O’s ruler when it is measured by O at
time t = 0. The endpoints of O’s ruler are at £ = 0 and =z = 1. First
substitute ¢ = 0 into the first of Equations 5.14 and get 0 = pt — (pv/c?)z,

SO
v

c
Then plug this result back into the second of Equations 5.14 and get

N v2
zT=p l—c—2 z.

Thus when z = 0 we have # = 0 and when z = 1 we have Z = p(1 —v?/c?),
so

2
the length of O’s ruler is p (1 - 3—2) . (5.16)

Since both observers performed the same experiment the principle of
relativity says that their results (Equations 5.15 and 5.16) must be the
same. Hence

It follows that
pP= —————. (5.17)

Plugging Equation 5.17 into Equations 5.14 we arrive at our final result:
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Theorem 5.4.1 Lorentz Transformations.®
Let O and O be a pair of inertial observers traveling with relative velocity
v. Let (t,z) and (L, Z) be their respective inertial coordinate systems. Then
there are constants g, To, and = +1 such that

- t— %z
= —£— +1ig, and
vz
Tz
. T — vt
z = f————+ xo.
62

The constants g and z¢ ’ivn the statement of Theorem 5.4.1 take care of
the possibility that O and O might not have the same origin, and 3 takes
care of the fact that they might not orient their x axes the same way. Figure
5.6 shows how O’s and O’s coordinates compare when they are related by
a Lorentz transformation.

X A X
- Y- 2 ~
2 _+© ~to
— %=1
x=1 —| i
7 o X=0 o
x=
t A T
=1 t=2 t=3 T=1 T=2 T=3
O's coordinates O's coordinates

FIGURE 5.6. Lorentz transformations.

5.5 Relativistic Addition of Velocities

Definition 5.5.1 Minkowski Spacctime.”

A Minkowsk: Spacetime is a spacetime in which the coordinates of differ-
ent inertial observers are related by Lorentz transformations. A Minkowski
observer is an inertial observer in a Minkowski spacetime.

Proposition 5.5.1 Addition of Velocities in a Minkowski Space-
time. Let A, B, and C be objects in a Minkowski spacetime. If B is travel-
ing with velocity v relative to A and C is traveling with velocity w relative

®Named after their discoverer, Dutch physicist Hendrik Antoon Lorentz (1853-
1928).

“Hermann Minkowskj (1864-1909), German mathematician who reformulated
Einstein’s Special Realtivity Theory in geometric language.
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to B then C is traveling with velocity

v+
1+

~

v

ol
S

relative to A.

Proof. Over a sufficiently short interval of time we may assume these ob-
jects have constant velocity, so we may regard them as Minkowski observers.
Let (¢,z) and (¢, Z) be the inertial coordinates of A and B, respectively.

Since C is traveling with velocity w relative to B, C’s worldline satisfies
an equation of the form

7 =wl+ 7o

in B’s coordinates, where Zo i1s a constant. Plug in the Lorentz transfor-
mations and this becomes

r — vt + t—:—,:c+
R — o= w —_
1-2 \/1_%;

Simplifying, we get an equation for the worldline of C in A’s coordinates:

z= (lv—:';‘,”) t + (constant).

to + Zo.

Exercise 5.5.1 a) A train is moving at 60 mph. A child on the train runs
forward at a speed of 10 mph relative to the train. How fast is she moving
relative to the ground?

b) Rework part a) assuming that the train is moving forward at 50% of
the speed of light and the child is running forward at 90% of the speed of
light relative to the train.

Exercise 5.5.2 The ‘Light Barrier’.

a) Let A, B, C, v and w be as in proposition 5.5.1. Show that if —c <
v,w < ¢ then the relative velocity of C and A is less than the speed of
light.

b) Show that it i1s impossible in a Minkowski spacetime for an object
that is initially travelling slower than the speed of light to accelerate con-
tinuously, in a finite amount of its own time, to a speed greater than or
equal to the speed of light. (Hint: if O’s acceleration, measured by himself,
is continuous, then it is bounded over any finite interval {; < { < t; of his
time. Thus over any sufficiently small period A of time the change A7 in
his velocity, measured by himself, is less than the speed of light. Now use
part a of this exercise, with w = Av.)
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5.6 Lorentz-FitzGerald Contractions®

Moving Clocks Run Slow

One of the strange effects predicted by special relativity is that if two
observers are in motion relative to one another then each perceives the
other’s clock to be moving slower than his own.

Example 5.6.1 The Twin Paradox.

On their twenty-first birthday Paula leaves her twin brother Peter and
embarks on a trip at the terrific speed of (24/25)c. After traveling for
seven years she turns back and returns to Peter at the same speed. Paula
1s 21 4+ 2 x 7 = 35 years old when she rejoins her twin brother. How old is
Peter?

Solution. (See Fig. 5.7). We shall assume that Peter and Paula are in-
ertial observers throughout the first leg of Paula’s trip. Let (¢, z) be Peter’s
coordinate system and let (£,%) be Paula’s. Let (0,0) = (¢,z) = (,z) at
the event of Paula’s departure, so that 0 = tg = z¢ in the Lorentz trans-
formations.

The first leg of Paula’s trip ends at (f,z) = (7,0). Plug (¢,z) = (7,0)
and v = (24/25)c into the Lorentz transformations:

_ 24z
7 _ 25¢
24)\2
1-(%5)
24
O _ l'—ﬁft
= ———-4 =,
2
1- (%)

* (t,z) = (25, 24c)

at the end of the first leg of Paula’s trip. Therefore the first leg of Paula’s
trip takes twenty five (of Peter’s) years. The second leg takes an equal
amount of time so Peter is 21 + 2 x 25 = 71 years old when Paula returns.

Although it seems strange that twins could have different ages, there is
nothing contradictory about the “twin paradox”. Experiments show that
the world really works this way. One might ask, why can’t the same argu-
ment be used to prove that Paula is older than Peter, since she sees him
traveling away from her? The answer is that the realtion between Peter
and Paula is not really symmetrical: Paula experiences a terrific accelera-
tion when she turns around and heads back, but Peter does not.

8George FitzGerald (1851-1901), Irish physicist who first proposed that ob-
jects contract in the direction of their motion.
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5 10 15 20 25 30 35 4045 5

Peter

FIGURE 5.7. Twin paradox.

Excrcise 5.6.1 Assume that it took Paula a negligible amount of time to
reverse her direction of travel and start back.

a) An instant before Paula turned back, how old was she according to
Peter and how old was he according to her?

b) An instant after Paula turned back, how old was she according to
Peter and how old was he according to her?

¢) According to Paula how much did Peter age while Paula was turning
around? How much did Paula age according to Peter?

Moving Rulers arc Short
Another affect predicted by special relativity is the contraction of space
in the direction of motion. The argument leading to Equation 5.17 shows
that if a ruler L feet long 1s moving with velocity v relative to an observer,
then the observer will measure its length to be
02

L l—c—2

feet long.®

Example 5.6.2 The Einstein Train. A train whose length is 200 m.
according to an observer on the train passes through a station whose
length i1s 100 m. according to an observer in the station. The speed of
the train is (v/3/2)c. To a man in the station the length of the train is

2
(200m.)4/1 — (@) = 100m. So the train has the same length as the sta-

tion and the two fit together perfectly. But to a man on the train the station

2
of the train, so the station is too short to hold the train

f 2
1s (100m.)4 /1 — (‘/—3) = 50m. long. This is only one quarter of the length

®This contraction is only in the direction of motion. Lengths perpendicular to
the direction of motion retain their original size.
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5.7 Minkowski Geometry

The Dot Product
The dot product of two vectors =" = (z),...,ZT,) and ¥ = (Y1,---,Yn)
in R" is defined by the formula

T Y =ty a2yt + Tayn

The dot product computes lengths and angles:

7| = V7.7, (5.18)

Ty
(T, Y) = arccos( — _’),
Ay

and it is preserved by Euclidean isometries. In fact it is not hard to prove
that a function f : R® — R" is a Euclidean isometry if and only if

F(AYf(B) - f(C)f(D) = AB - CD for all points A, B,C,D € R". (The
proof is left to the reader).

The dot product is so fundamental for the Euclidean geometry of R™
that it is often said that Euclidean geometry is simply the geometry of the
dot product.

The Minkowski Product
Minkowski Geometry is the geometry of the Minkowski product.

Definition 5.7.1 The Minkowski product T * 3y of two vectors T =
(s,71,Z2,...,2n) and ¥ = (¢, %1, Y2, . - ., ¥n) in R™*! is defined by

T Y =—-st+Tyr + T2+ + Tpyn

where ¢ is a constant!?.

A n+1 dimensional Minkowski space M™*! is R™*! together with the
Minkowski product. Physically ¢t and x;,...,z, are regarded as inertial
coordinates. From now on we will concentrate on MZ2.

Definition 5.7.2 Generalized Lorentz Transformation. A general-
ized Lorentz transformation’! on M? is a function of the form

t— sz T — vt
t,z) = | o—5—= + tg, fr—
f(¢,z) — b Bri——am

+ T

'%¢ = speed of light.
!'"The definition is generalized to include functions like f(t,z) = (—t,z) that
reverse the direction of time.
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where
tg, g, and — ¢ < v < ¢ are constants

and
o, = +1.

Proposition 5.7.1 Gencralized Lorentz Transformations arc Min-
kowski Isometrics.

If A, B,C, D are any cvents in M? and f is a generalized Lorentz trans-
formation then

f(A)f(B) * f(C)f(D) = AB + CD.
Proof. Set

AB = (t,z), CD = (t',z"),
f(AfB) = .z, fOFD) = &)

If A= (t),zyand B = (t2,z2) then AB=B—Aso
(t,.’l?) = (tz —tl,:L'z—:L‘l).

If f is a generalized Lorentz transformation

f(A)f(B)

f(B)— f(A) (5.19)

(a t— 5z g :L'F—vt )
02 v2
Vi-s i-%
for some constant a, 3 = %1 and v. (The constants ¢p and z¢ 1n definition
5.7.2 cancel out when you subtract f(A) from f(B)). Similarly,

FOM(D; = (a —ot pr ) . (5.20)

Plugging in Equations 5.19 and 5.20 and multiplying out, we have
— %t + 77 = -2t + z2, (5.21)

which proves the proposition.

(The converse to Proposition 5.7.1 is also true: if f preserves the Min-
kowski product then f is a generalized Lorentz transformation. We will
not use this fact but the interested reader may wish to prove it for her- or
himself.)
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Corollary 5.7.1 The Minkowski product has the same form in any inertial
coordinate system.

Proof. This is Equation 5.21.

Whereas there is only one type of nonzero vector in Euclidean geometry,
Minkowski geometry has three:

Decfinition 5.7.3 A nonzero vector A € M?is
— —

1) spacclike if A x A >0,

. . - - _) bnd

11) lightlike if A x A =0,

e . . - —_ —

1i1) timelike if A + A <0.

Every timelike vector has a time orientation which determines whether
it points toward the future or toward the past.

Definition 5.7.4 Time Oricntation.
A timelike vector (¢, z) is
1) future pointing if t > 0,
11) past pointing if t < 0.

For example the vector (0, 1) is spacelike, (1, c) is lightlike, and (1, 0) is
timelike and future pointing. More generally, a vector is timelike if it is
parallel to the time axis of some observer, spacelike if it is parallel to the
space axis of some observer, and lightlike if it is parallel to the worldline of
a light ray (Fig. 5.8).

spacelike

lightlike lightlike

timelike,
future pointing

timelike,
past pointing

spacelike

FIGURE 5.8. Time orientation.

Definition 5.7.5 The worldline of a material particle in Minkowski space
1s a parametrized curve whose velocity vectors all are timelike and future
pointing.

Material particles have timelike velocity vectors ¥ = (t,z) since their
speed |z/t| is less than |c|.
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. - v —_ — . .
Exercise 5.7.1 Show that if A, A,,...,A, € M? are timelike future
pointing vectors then X; + A—z' + -+ fT,: also 1s a timelike future pointing

vector.

- — . . . - -
Exercise 5.7.2 a) Prove that if A is a timelike future pointing vector then
the t coordinate of A is positive in any inertial coordinate system. (Hint: use
Corollary 5.7.1.) State and prove a similar result for past pointing vectors.

-
Conclude that if ee’ is a timelike future pointing vector then every observer
says that the event e occured before the event ¢’.

pE—

b) Show that if ee’ is spacelike then some observers say that e occurs

before €’, others say the two events occur at the same time, and still other
observers say that €’ occurs before e.

—
Exercise 5.7.3 Two timelike vectors A and B have the same time ori-
entation if both of them are future pointing, or both are past pointing. Let

A and B be timelike vectors. Show that A and B have the same time

orientation if and only if both vectors are timelike and A+ B < 0.

Length

Definition 5.7.6 Length. The length of a vector A in Minkowski space
e —_— —
is|A|= V|4 *x Al

(This 1s a funny kind of “length” since lightlike vectors have zero length
even though they are not zero).

The length of a spacelike vector measures distance, but the length of a
timelike vector measures time.

Proposition 5.7.2 Let e, e’ € M2.

— —
a) If e’ is parallel to the time azis of some observer then (1/c)|ee’| is
the time between the two events for that observer.

— —
b) If e’ is parallel to the space azis of some observer then |ee’| is the
distance between the two events for that observer.

e ~ -_ ~ -
Proof. If ee’ is parallel to the ¢ axis then ee’ = (¢,0) for some ¢, and
- —_—
its length 1s /| — c?t?2 + 02| = c|t|. If e€’ is parallel to the & axis then
—
ee’ = (0, z) for some z and its length is \/| — 202 + z2| = |z|.

Decfinition 5.7.7 A is perpendicularto B in M2 if A% B = 0 (Fig. 5.9).
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perpendicular
f _ 7 vectors
/<
VI
/
t

FIGURE 5.9. Minkowski-perpendicular.

Exercise 5.7.4 The Minkowski “Pythagorean Theorem?”.

173

Let z_‘f, ?, C be the sides of a triangle in Minkowski spacetime. Suppose

A s timelike, B is spacelike, and A s perpendicular to B. Show that

—|A]* +|B|* = |CJ*
(see Fig. 5.10).

AN

2 2 2
s N et
spacelike N

-

A
timelike

FIGURE 5.10. Minkowski’s Pythagorean Theorem.

Exercise 5.7.5 The Minkowski “Triangle Inequality”.

— — .
Let A and B be future pointing timelike vectors. Prove that

|A + B|>|A|+|B|

with equality if and only if A and B are parallel. What would be different
about this result if the triangle were in Euclidean space? What does the

triangle inequality have to do with the twin paradox (Example 5.6.1)7

(Hint: see Fig. 5.11. Let (a,b) = A + B be O’s coordinates. By exercise
5.7.1 —c < b/a < ¢, so there exists an observer O who is traveling with

. . —_— - . -~ .
velocity v = b/a relative to O. Check that A + B is parallel to O’s time
axis. If you write the vectors out in O’s coordinates the exercise will be

easy.)
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A+B

B [Vl

(all timelike, future pointing)

F1GURE 5.11. Minkowski’s Triangle Inequality.

5.8 The Slowest Path 1s a Line

The Length of a Worldline

Let a(s) = (1(s),z(s)), a < s < b, parametrize the worldline of a (not
necessarily inertial) observer. As s ranges over an infinitesimally small in-
terval As, the event a(s) is displaced by an amount

Aa(s) =~ d(s)As.

Over a small enough interval we can treat the observer as an inertial ob-
server since his velocity changes by a negligible amount. Thus by part a) of
Proposition 5.7.2 the amount of time that elapses on the observer’s clock
as s varies over the interval As is

1
At = —|Ac|

c
1 ’
x~  —|d(s)|As
c
with equality in the limit as As — 0. Hence the total time that elapses
on the observer’s clock between the event a(a) where s = a and the event

a(b) where s =b1s

T

1t
= [ os (5.22)
= %(length of the worldline).

Time Maximization

The worldline of an inertial observer is a straight line in Minkowski space.
In Euclidean geometry straight lines minimize length, but in Minkowski
geometry straight lines pointing in a timelike direction mazimize time.

Proposition 5.8.1 The Generalized Twin Paradox. An inertial ob-
server takes longer to get from one eveni to another than any other ob-
server.

Proof. Let O and O be observers whose worldlir_lves contain the events e
and e’. Assume that O is an inertial observer and O is not.
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In O’s coordinates let
e = (10,0) and €' = (¢,,0)
with tg < t;. In O’s coordinates, let
e = ({0,0) and ¢’ = (¥,0).

We must prove that L
|t1 — tol > |t1 - tgl.

To compute |{; —tol, let a(s) = (¢(s),z(s)), a < s < b, be a parametriza-
tion of O’s worldline between e and ¢’. Then

t(a) =to and t(b) = t4,

and, since the velocity vector (t'(s), z'(s)) of the worldline of a material
particle is a future pointing vector (Definition 5.7.5), we also have

t'(s) > 0 for all s.
By the length formula (Equation 5.22),

b
-l = < [l
b
= = / I(t'(s), 2'(5))Ids.

Because O cannot travel faster than light,
< dz _ dx/ds <ec
dt  dt/ds "

Z_d_tz>$c_2
“\ds ds/)

V1= e(t'(s))? + (2'(9))?]
VeX(t'(s))? ~ ('(s))?

SO

Hence

I(#'(s), 2" ()

< elt'(s)l
= ct'(s)
for every s. It follows that
_ L
i ~tol = — [ |(t'(s),2'(s))lds
1 [,
< — [ t(s)ds
c a

t(b) —1(a)

ty — to
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with equality on the second line only if 2/(s) = 0 for all s. Thus O takes
longer to travel from e to €’ than O does. This completes the proof.

—
Exercise 5.8.1 Let e and ¢’ be any two events such that ee’ is a timelike,
future pointing vector. Show that, given any positive number ¢, there is an
observer traveling slower than the speed of light (although not necessarily
at a constant speed) who gets from e to ¢’ in less than ¢ units of time, as
measured on the observer’s own clock.

Thus, traveling slower than the speed of light, you can get from here to
Alpha Centauri, 4.3 light years away, in less time than it takes to read this
sentence (if you are willing to endure some pretty wild accelerations).

5.9 Hyperbolic Angles and the Velocity Addition
Formula

Definition 5.9.1 A pscudocirele in Minkowski space is a set of vectors A
satisfying an equation of the forin

| Al =r
where 7 is a constant (fig. 5.12).
If 7 # 0 the pseudocircle consists of a pair of hyperbolas

—c%t? 4 2% = &%,

The branch of the hyperbola —c? + 2 = —r? where t > 0 is parametrixed
by

t = Zcosh ¢
c
z = rsinhd.

A radial vector (¢, z) is timelike and future pointing if it extends out to a
point on this branch of the hyperbola. The hyperbolic tangent measures
the velocity of a particle whose worldline is parallel to the vector (¢, z)

tanh ¢ = :_1 - % (5.23)

Definition 5.9.2 Let A and B be timelike, future pointing vectors. The

hyperbolic angle ¢ between A and B is defined up to a =+ sign by the
formula
_A+B

cosh¢p = ————.
c?|AllB|
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AA=c?

— —

AA = -2 > AA- -2

AN

AA =2

FIGURE 5.12. Pseudocircles.

Lorentz transformations preserve hyperbolic angles because they pre-
serve the lengths and Minkowski products that are used to define them. If
— —

A and B are each tangent to the worldline of an observer at some event
¢ then Equation 5.23 says that tanh ¢ is 1/c times their relative velocity,
because one can always regard the coordinates in Equation 5.23 as being

the inertial coordinates of one of the observers.
Given objects A, B, and C let

« = the hyperbolic angle between A’s and B’s worldlines,
B = the hyperbolic angle between B’s and C’s worldlines,
v = the hyperbolic angle between A’s and C’s worldlines.

The Lorentz velocity addition formula (Proposition 5.5.1) says that

ctanho + ctanh g8
1+ tanhatanh g8
= ctanh(a+ f),

ctanhy =

where the second equation comes from the addition formula for hyperbolic
tangents (see Exercise 5.10.1 in the next section). Thus the velocity addition
formula boils down to the statement that

r=a+p.

In this way we recover something very much like the simplicity of the
Galilean velocity addition formula on page 158.
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5.10 Appendix: Circular and Hyperbolic
Functions

If s=1or —1 the curve
?+syf =1 (5.24)
is a circle or a hyperbola in the x,y plane. If s = 1 it 1s a unit circle and

T =cos¢,y=sing¢

where ¢ is the angle between the vectors (1,0) and (z,y), measured in
radians. The area of the circular sector that is subtended by the vectors
(1,0) and (z, y) is given by the formula

area of the sector ¢

area of the circle ~ 27

Hence
¢ = 2(area of the sector) (5.25)

(see Fig. 5.13).

area ={/2

/ (cos ¢, sin ¢)
6.4 .

Fi1GURE 5.13. Circular angle.

If s = —1 the curve is a hyperbola. Let (z, y) be a point on the hyperbola
with z > 0. Define the hyperbolic angle ¢ by

6= (area of the sector between the ra-) (5 26)

dial vectors (0, 1) and (z,y)

(see Fig. 5.14), and the hyperbolic cosine, hyperbolic sine and hyperbolic

tangent by
sinh ¢

z = cosh ¢, y =sinh ¢, tanh¢ =
cosh ¢

With these definitions the basic identities

cos? ¢+ sin? ¢ = 1
cosh?¢ —sinh?¢ = 1
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y area = ¢/2

(cosh ¢, sinh ¢y

FIGURE 5.14. Hyperbolic angle.

are an immediate consequence of Formula 5.24.

Decrivatives of Circular and Hyperbolic Functions

Fix a point (zg,y0) on the curve. Let L be the line segment connecting
(0,0) to (zo, yo) and let M be the horizontal line through (zg, yo). The area
between the y axis and the hyperbola as y runs from 0 to yg is

Yo
V1-—sy’dy
0
and the area of the triangle with vertices (0,0), (0,%0), and (zo, yo) is

1
53/0\/ 1— syo?

(Fig. 5.15). The area of the sector between the radial vectors (0,1) and
(z,y) is the difference of these two areas. Combining this with Equation
5.26 we obtain a formula for ¢ as a function of yg:

Yo
#(vo) = 2/ V1 —sy?dy — yo/1 — syo?. (5.27)
0

Proposition 5.10.1

N ds_ 1
dy — J/1—sy?’
dy

b) Eg—l‘,

d
c) == sy
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Y

(xg» ¥g)

FIGURE 5.15. (See Formula 5.27).

Proofs.
a) Differentiate Equation 5.27 with respect to yo.

d¢  1d(area of sector)
dyo 2 dyo

33/02
= 2\ﬁ—sy02—\/l—sy02+

\/1~y02

1
\/l—sygz'

b) By a): dy/d¢ =4/1- sy? = z since z2 + .sy2 =1.
c) Differentiate the formula 22 + sy = 1 implicitly with respect to ¢:

dzx dy
2z— + 2sy— =0
iy + Y35 =0
so by a),
dz
212% + 2szy = 0.
Then solve for dz/d¢.
Corollary 5.10.1
dsing dcos¢ . dsin—’y_ 1
7 = cos ¢, b sin ¢, o =

Proof. Set s = 1 in Proposition 5.10.1. Then y = sin¢, * = cos ¢, and
-1

¢ =smn" y.
Corollary 5.10.2

dsinh ¢ dcosh ¢ ] dsinh™ 'y 1
~————— = cosh ¢, = sinh ¢, = .
a4 d$ N e
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Proof. Set s = —1 in Proposition 5.10.1. Then y = sinh ¢, £ = cosh ¢,
and ¢ =sinh™'y.

Corollary 5.10.3

e? +e?
2

cosh ¢ = , sinh¢=e 5

Proof. Let s = -1, u =z +y, and v = z — y. By Proposition 5.10.1,

du dv
— = u —_—
dp "’ d¢
It follows that u = Ci1e® and v = Cye~¢ for some constants C; and C,.

From Fig. 5.14 1t is clear that s = land y = O when ¢ = 0. Hence u = v =1
when ¢ =0s0o C; =Cy=1. Thus u = ¢® and v = e~ ¢.

= —v.

Excrcise 5.10.1 Use the formulas in Corollary 5.10.3 to prove the addi-
tion formulas for hyperbolic functions:

a) cosh(A + B) = cosh A cosh B + sinh Asinh B,

7/

b) sinh(A + B) = sinh A cosh B + cosh Asinh B,

tanh A + tanh B

<) tanh(A + B) = I B
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addition formulas, 27, 181

addition of velocity, 157, 166, 177

algebraic curve, 140, 141

alternate interior-exterior angles,
18

altitude, 35

angle of incidence, 12

angle of reflection, 12

angle of rotation, 9

angle-side-angle, 28, 61

arc angle, 49

axis of rotation, 10

Brianchon’s theorem, 149

center of rotation, 9

central projection, 66-70, 116, 133-

136
circumscribed circle, 34, 35
coincident lines, 122
complete quadrilateral, 132
conformal map, 72-75
congruence, 3
conic, 83-113

directrix, 90-92

ecentricity, 90
equation in polar coordinates,
99
focus, 86-92, 96-98
projective, 130
singular, 84
smooth, 84
tangent line, see tangent
types of, 84
cross ratio, 126-131
curved space, 19
cylindrical projection, 70-73

Dandelin, G.P, 86

Desargues’ theorem, 122, 139
directrix, see conic
dodecahedron, 60

dot product, 26, 169

dual projective curve, 144
dual projective space, 136
dual spherical triangle, 55-59

E", 1

eccentricity, 90
Einstein’s train, 168
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ellipse, 84, 87-88, 93, 98
Euclid, 21, 27
Euclidean motion, 2

Euclidean space, 1
event, 154

focus, see conic

fourth harmonic, 132
function, 2

future pointing vector, 171

Galilean observer, 157

Galilean spacetime, 157

Galilean transformation, 155-159
generator, 83

geodesic, 43-48

geodesic triangle, 44

great circle, 46, 47

hexagon, 147

homogeneous coordinates, 136
homogeneous polynomial, 140
homogenization, 141

horizon, 118

hyperbola, 84, 89-90, 93, 97, 98
hyperbolic angle, 176
hyperbolic functions, 178-181

icosahedron, 62

inertial coordinates, 102, 155

inertial observer, 155

inscribed circle, 33

isometry, 2-17, 36-38, 170
inverse of, 3, 38

isosceles triangle, 28

Kepler’s Laws, 101, 104-108
Kepler, Johannes, 101

law of cosines, 26, 54
law of sines, 26, 34, 62
length
contraction, 168
of a vector in Minkowski space,
172
of a worldline, 174-176

lightlike vector, 171

line at infinity, 117

LORAN, 99

Lorentz transformation, 159-165,
169

Lorentz-FitzGerald contraction, 167

material particle, 171
Mercator, 73

Mercator projection, 73-74
Minkowski geometry, 169-177
Minkowski isometry, 170
Minkowski observer, 165
Minkowski product, 169, 171
Minkowski spacetime, 165
mirror, 12-14, 96-98

Newton’s Laws, 102

orbit of planet, 101-109
orientation, 1, 6, 37
orthocenter, 35

P2 120

Pappus, 22

Pappus’ theorem, 138
parabola, 84, 92, 94, 96, 98
parallel lines, 17

parallel postulate, 17
parallel projection, 116
Pascal’s theorem, 147, 149
perspective, 119
perspective drawing, 115
perspective, in, 122
planimeter, 39-42

point at infinity, 117

polar triangle, 55
Principle of Relativity, 1565
projective duality, 137
projective space, 120
projectivization, 117
pseudocircle, 176
Pythagorean theorem, 22-23, 173
Pythagorean triple, 78-80

R", 1



radial line, plane, 117

rational trigonometric function, 80—
82

reflection, 3-8, 10, 11

right-hand rule, 6, 10

rotation, 9-10, 17

sector, 51

side-angle- side, 55
side-angle-side, 27
side-side-side, 28, 55

similar triangles, 21-22
simultaneous events, 156, 159-160
singular point, 143

spacelike vector, 171, 172
spacetime, 153-154

special relativity, 153-177
spherical coordinates, 47
spherical triangle, 48-66
stereographic projection, 74-82
sundial, 84

tangent
to a circle, 30-33

Index

to a conic, 149

to a hyperbola, 93

to a parabola, 94

to a smooth conic, 93

to a sphere, 31, 33

to an ellipse, 93
time contraction, 167
time orientation, 171
timelike vector, 171, 172
translation, 7-10, 15
triangle, 122

sum of angles, 19, 51
triangle inequality, 173
trigonometry, 23, 25
twin paradox, 167, 174

vanishing point, 118
vector, 5, 7-9
vertex angle, 49-53
vertex half-angle, 83
vertical angles, 18
viewplane, 118

worldline, 154, 171
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