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PREFACE

This book contains a revised and expanded version of
the lecture notes of two seminar series given during the
academic year 1976/77 at the Department of Mathematics and
Statistics of the University of Calgary, and in the summer of
1978 at the Institute of Theoretical Physics of the Technical
University Clausthal. The aim of the seminars was to present
geometric quantization from the péint of view-of its applica-
tions to quantum mechanics, and to introduce the quantum
dynamics of various physical systems as the result of the
geometric quantization of the classical dynamics of these
systems.

The group representation aspects of geometric quantiza-
tion as well as proofs of the existence and the uniqueness of
the introduced structures can be found in the expository
papers of Blattner, Kostant, Sternberg and Wolf, and also in
the references quoted in these papers. The books of Souriau
(1970) and Simms and Woodhouse (1976) present the theory of
geometric quantization and its relationship to quantum mech-
anics. The purpose of the present book is to complement the
preceding ones by including new developments of the theory and
emphasizing the computations leading to results in quantum
mechanics.

I am greatly indebted to the participants of the
seminars, in particular John Baxter, Eugene Couch, Jan
Tarski, and Peter Zvengrowski, for encouragement and enlighten-
ing discussions, and to Bertram Kostant, John Rawnsley and
David Simms for their interest in this work and their very

helpful suggestions. Special thanks are due to Liisa Heikkila,
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Pat Dalgetty, and Katherine MacDougall for careful and patient
typing and retyping of the manuscript, and to Mark Gotay for
editing the final draft of this work.

The work on this project was started during the 1976
Summer Research Institute of the Canadian Mathematical Con-
gress (Victoria branch) and it was partially supported by the
Natural Sciences and Engineering Research Council of Canada
under grant No. A8091. During the summer of 1978 the author
was a guest of the Institute of Theoretical Physics of the
Technical University Clausthal and the hospitality of Prof.
H.D. Doebner in Clausthal is gratefully acknowledged. The
work on the final draft of the manuscript was facilitated by
a Killam Resident Fellowship held by the author at the

University of Calgary in Fall 1978.

Calgary, September, 1979 Jedrzej éniatycki
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1. INTRODUCTION

1.1. Background

A classical system is described by the Poisson algebra
of functions on the phase space of the system. Quantiza-
tion associates to each classical system a Hilbert space &
of quantum states and defines a map 2 from a subset of the
Poisson algebra to the space of symmetric operators on X
The domain of 2 consists of all "Z2-quantizable" functions.
The definition of £ requires some additional structure on
the phase space. The functions which generate one-parameter
groups of canonical transformations preserving this additional
structure are 2-quantizable. They form a subalgebra of the
Poisson algebra satisfying

[.Qfl, .sz] = ing2 [fl,fz] s
where [fl,le denotes the Poisson bracket of fl and fz.

Two quantizations 2 and 2' of the same classical
system are equivalent if the domains of 2 and 2' coincide
and there exists a unitary opérator % Dbetween the corres-

ponding representation spaces such that, for each quantizable

function f,
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%(2f) = (2'£)% .

In physics, one is not interested in the whole Poisson algebra
but rather in its subset consisting of functions with a definite
physical interpretation, e.g., energy, momentum, and so on.
Therefore, one may weaken the notion of equivalence of quantiza-
tions by requiring only that the physically interesting func-
tions be contained in the intersection of the domains of 2
and 2', and that the operator % intertwine the quantiza-
tions of these functions. This weaker notion of equivalence
depends very much on our knowledge of the physical system
under consideration and our judgement as to which functions
are physically important.

There is a striking similarity between the canonical
quantization of classical systems and the orbit method of
construction of irreducible unitary representations of Lie
groups. This similarity was recognized by Kostant, who wrote
in the introduction of his 1970 paper entitled '"Quantization
and Unitary Representations'":

. « . We have found that when the notion of what

the physicists mean by quantizing a function is

suitably generalized and made rigorous, one may

develop a theory which goes a long way towards
constructing all the irreducible unitary repre-
sentations of a connected Lie group. In the com-

pact case it encompasses the Borel-Weil theorem.

Generalizing Kirillov's result on nilpotent

groups, L. Auslander and I have shown that it

yields all the irreducible unitary representa-

tions of a solvable group of type I. (Also a
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criterion for being of type I is simply expressed

in terms of the theory.) For the semi-simple

case, by results of Harish-Chandra and Schmid,

it appears that enough representations are con-

structed this way to decompose the regular

representation.

The geometric formulation of the canonical quantiza-
tion scheme in physics was studied independently by Souriau.

A comprehensive presentation of Souriau's theory of geometric
quantization is contained in his book entitled "Structure des
Systémes Dynamiques' published in 1970. The works of Kostant
and Souriau are the sources of the geometric quantization
theory, also referred to as the "Kostant-Souriau theory."

The next fundamental development of the geometric
quantization theory was due to Blattner, Kostant, and Sternberg
[cf. Blattner (1973)]. It consists of the construction of a
sesquilinear pairing between the representation spaces of the
same classical system, usually referred to as a '"Blattner-
Kostant-Sternberg kernel." 1In some cases the pairing leads
to the operator % intertwining the quantizations. As a re-
sult, one obtains a larger class of quantizable functions and
the means of studying the equivalence of quantizations.

Geometric quantization is essentially a globalization
of the canonical quantization scheme in which the additional
structure needed for quantization is explicitly expressed in
geometric terms. The theory, only about a decade old, is at a
preliminary stage of its development. At present, it provides
a unified framework for the quantization of classical systems

which, when applied to most classical systems of physical
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interest, yields the expected quantum theories for these sys-
tems and removes some of the ambiguities left by other quantiza-
tion schemes. It enables us to pose questions about the
quantum theories corresponding to a given classical system

and gives some partial answers. However, many issues re-

main unresolved. Among them are basic questions about the
structure of the representation space, the search for appro-
priate conditions guaranteeing the convergence of the inte-
grals involved in the Blattner-Kostant-Sternberg kernels and the
unitarity of the intertwining operators defined by these ker-
nels, etc. On a more specific level, there are cases when the
geometric quantization of functions of physical interest

poses such technical or theoretical difficulties that the
corresponding quantum operators remain ambiguous. Some of
these problems will be solved within the framework of the
present theory. The others might require a modification of

the theory; there are already indications that some modifica-
tions of the theory are inevitable.

The aim of this book is to present the theory of geo-
metric quantization from the point of view of its applications
to quantum mechanics, and to introduce the quantum dynamics
of various physical systems as the result of the geometric
quantization of the classical dynamics of these systems. It
is assumed that the reader is familiar with classical and
quantum mechanics and with the geometry of manifolds including
the theory of connections. The proofs of the existence and
the uniqueness of the structures introduced are omitted. On the
other hand, all of the basic steps involved in computations

are given, even though they may involve standard techniques.
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A chapter by chapter description of the contents of
the book follows.

1.2. Hamiltonian dynamics

A comprehensive exposition of classical mechanics con-
taining references to the original papers is given by
Whittaker (1961). The modern differential geometric approach
adopted here follows Abraham and Marsden (1978).

The phase space of a dynémical system is a smooth man-
fold X endowed with a symplectic form w defined by the
Lagrange bracket. To each smooth function f on X, there
is associated the Hamiltonian vector field Es of f, defined
by

Ewa = -df,

as well as the one-parameter group ¢ft of canonical transfor-
mations of (X,w) generated by f which is obtained by inte-
grating the vector field Ef. Define local coordinates

(ql,...,qn,pl,...,pn) on X, where n = % dim X, such that
w =] dp, Adqi.
§ i

In such a "canonical" chart, the integral curves of Ef satisfy
the canonical equations of Hamilton with the Hamiltonian f.

The mapping f ~ £. pulls back the Lie algebra struc-
ture from the space of smooth vector fielqi on X to the
space of smooth functions on X. The space)of smooth func-
tions on X with this induced Lie algebra structure is called
the Poisson algebra of (X,w).

The Hamiltonian formulation can be extended to

relativistic dynamics. The Hamiltonian vector field of the
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mass-squared function yields the covariant form of the equa-
tions of motion. The interaction with an external electro-
magnetic field f 1is taken into account by adding the term
ef to the symplectic form, where e 1is the charge of the
particle. This approach to the relativistic dynamics of a
charged particle is due to Souriau (1970). It has the advan-
tage that it enablgg one to discuss the Hamiltonian dynamics
of a relativistic charged particle without any reference to
the electromagnetic potentials.

The evolution space formulation of Newtonian dynamics
is due to Lichnerowicz (1943). For time-dependent dynamics,
the evolution space formulation is more appropriate than the
phase space formulation which requires a time-dependent
Hamiltonian. The evolution space formulation of single
particle dynamics is' given following §niatycki and Tulczyjew

(1972); see also Souriau (1970).

1.3. Prequantization

In the first step of geometric quantization one as-
sociates, to each smooth function f on X, a linear operator

P such that %1 is the identity operator and

[ P, Fl = in PI£,g].

This is done by introducing a complex line bundle L over X
with a connection V and an invariant Hermitian form <,>
such that

curvature V = -k la,

Such a line bundle exists if and only if hnlw defines an

integral de Rham cohomology class. This condition, referred
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to as the prequantization condition, gives rise to the quanti-
zation of charge in Sec. 10.1 and spin in Sec. 11.2. The
operators %f act on the space of sections of L as follows.
The one-parameter group ¢ft of canonical transformations
generated by f has a unique lift to a one-parameter group
of connection preserving transformations of L which defines
the action of ¢ft on the space of sections of L. The

operator %f is then defined by
Y | t
FEN = in S0 | oo

This definition also makes sense if f defines only a local
one-parameter group of local canonical transformations.

For a function f on X such that the Hamiltonian
vector field Ef is complete, the one-parameter group of
linear transformations A » ¢ft preserves the scalar product
given by

n .

<hqlry> = fx<A1,A2> w .

Hence, the operator %f, defined originally on smooth sections
of L, extends to a self-adjoint operator on the Hilbert

space of square integrable sections of L. However, if we
wanted to give a probabilistic interpretation to the scalar
product by associating to <A,A>(x) the probability density of
finding the ''quantum'" state described by A in the classical
state described by the point x in the pgase space X, we
would violate the uncertainty principle sihce square integrable
sections of L can have arbitrarily small support. The space
of all square integrable sections of L 1is too "big" to serve

as the space of wave functions.
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The prequantization of symplectic manifolds has been
studied independently by Kostant (1970a) and Souriau (1970).
Some physical implications of prequantization are discussed by
Elhadad (1974), Kostant (1972), Rawnsley (1972; 1974), Renuard
(1969), Simms (1972, 1973a,b), Souriau (1970), Streater
(1967), and §niatycki (1974). See also Slawianowski (1971,
1972) and Weinstein (1973).

The formulation of the theory of connections in complex
line bundles given in Sec. 3:1 follows the general theory of
connections given in Kobayashi and Nomizu (1963), modified by
the identification of the complex line bundle without the
zero section with the associated principal fibre bundle. The
presentation of prequantization given in Sections 3.2 and 3.3
follows essentially the exposition of Kostant (1970a), where
one may find the proofs of the theorems regarding the existence

and the uniqueness of the prequantization structures.

1.4. Representation space

In order to reduce the prequantization representation
one has to introduce a classical counterpart of a complete
set of commuting observables. A first choice would be a set

of n independent functions f .,fn on X satisfying

100"

[£5,£51 = 0 for 4,5 =1,2,...,n

such that their Hamiltonian vector fields are complete.

The complex linear combinations of the Hamiltonian vector

fields gfl,...,gf give rise to a complex distribution F
n

on X such that
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[F,F] < F
dimc F =% dim X
w|F x F = 0.

For many phase spaces of interest there does not exist such a
set of functions. If one drops the assumption that the fi
be real and globally defined one is led to the notion of a
polarization of (X,w), that is, a complex distribution

F on X satisfying the conditions given above. For techni-

cal reasons we assume that

FnFnox

o
(]

and

[es]
"

(F+F) nIx

are involutive distributions on X, and that the spaces X/D
and X/E of the integral manifolds of D and E, respectively,
are quotient manifolds of X with projections ™ and Tg.
A polarization F satisfying these additional conditions is
called strongly admissible.

Given a polarization F of (X,w), one could take the
space of sections of the prequantization line bundle L which
are covariantly constant along F to form the representation
space. However, if A and Az are sections of L covari-
antly constant along F, their Hermitian product <A1,A2>
is a function constant along D and its integral over X
diverges unless the leaves of D are compact. Thus, we should
integrate <A1,A2> over X/D, but we do not have a natural
measure on X/D. In order to circumvent this difficulty, one

introduces a bundle VA"F sections of which can be paired to

yield densities on X/D. The bundle VA"EF leads also to
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the correct modifications of the Bohr-Sommerfeld conditions
and to unitary representations of groups of canonical trans-
formations generated by certain dynamical variables.

The representation space & consists of those sec-
tions of L ® VA"F which are covariantly constant along F
and square integrable over X/D. The sections of L ® VA'E
covariantly constant along F have their supports in a sub-
set S of X determined by the Bohr-Sommerfeld conditions;
we will refer to S as the Bohr-Sommerfeld variety of the
representation. If the Bohr-Sommerfeld conditions are non-
trivial, one has to deal with distributional sections of
L ® VA"F; this requires some further modifications of (the
scalar product.

If F 1is a real polarization, i.e.,

F=F-=0C

and the Hamiltonian vector fields in D are complete (com-
pleteness condition), the structure of the representation
space & 1is as follows: to each connected component Sq of
the Bohr-Sommerfeld variety S, there corresponds a subspace

ag of & consisting of sections with supports in S , and

&= o, .

The representation space is trivial, &= 0, if and only if the
Bohr-Sommerfeld variety is empty.

The structure of the representation space for a non-
real polarization has not been completely analyzed as yet.
One has the following problem. Let M be an integral mani-
fold of E contained in S. The restriction of L ® VA"F to
M induces a holomorphic line bundle iM over nD(M) in such

a way that, to each section of (L ® VAnF)|M covariantly
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constant along F|M there corresponds a unique holomorphic
section of iM‘ Let S' be the union of all integral mani-
folds M of E contained in S such that the holomorphic
line bundle iM admits holomorphic sections which do not
vanish identically. Then, every (discontinuous) section of

L® VAnF, provided its restrictions to integral manifolds of

E are smooth and covariantly constant along F, vanishes out-
side S'. Under what conditions on the polarization F

will the space of such sections admit a subspace of square
integrable sections so that the resulting Hilbert space of

wave functions is non-trivial if and only if S' # ¢? The
conditions we are looking for are complex analogues of the
completeness condition.

The notion of a real polarization was introduced inde-
pendently by Kostant and Souriau. It corresponds to the
Lagrangian foliation of a symplectic manifold studied by
Weinstein (1971). Complex polarizations were used by
Streater (1967), Shale and Stinespring (1967), and Kostant
and Auslander (1971). The bundle VARE  is closely related to
the bundle of hal-forms normal to F introduced by Blattner
(1973). The presentation of the structure of VARE given in
Sec. 4.2 is patterned after Blattner's account of the structure
of half-forms. The result that a strongly admissible polariza-
tion can be locally spanned by complex Hamiltonian vector
fields follows from the complex Frobenius theorem of Nirenberg
(1957). The completeness condition used here corresponds to the
Pukansky condition in Auslander and Kostant (1971). The
interpretation of the Bohr-Sommerfeld quantization conditions

as conditions on the supports of the wave functions was
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given in §niatycki (1975a). The structure the representation
space defined by a complete strongly admissible real polari-
zation, given in Sec. 4.5, follows from the results of

$niatycki and Toporowski (1977).

1.5. Blattner-Kostant-Sternberg kernels

Let F1 and F be two polarizations of (X,w) and

2
ﬂq and ﬁ% the corresponding representation spaces. Under
certain conditions there exists a geometrically defined
sesquilinear map % ﬁ% x ﬁ% + € called the Blattner-Kostant-
Sternberg kernel. The kernel % induces a linear map

% .d/z *d/l such that
%(01302) = (Ull %02)9

where (+]|+) 1is the inner product on .dﬁ. If % is unitary,
the representation spaces ﬁq and ﬂ% are said to be
unitarily related.

The construction of the Blattner-Kostant-Sternberg
kernel requires the existence of a metaplectic structure for
(X,w), which is equivalent to the vanishing of the characteris-

tic class in HZ(X,Z of the bundle of symplectic frames of

2)
(X,w). The set of all metaplectic structures for (X,w), pro-
vided it is not empty, can be parametrized by Hl(X,ZZ), cf.

Kostant (1973). A metaplectic structure on (X,w) gives rise

to the line bundle VA"F for each polarization F satisfying
the positivity condition

in(w,w) > 0
for all w € F.

The kernel J%Iol,oz) is defined by the integration of a

density depending locally on the sections 9 and 0, The
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problem of determining appropriate conditions which guarantee
the convergence of the integrals involved is as yet unsolved.
The defining density is constructed here for pairs of positive

polarizations F1 and F2 such that

Dj, =Dy Dy
and

Ej, = E +E

are involutive distributions, and the spaces X/D12 and
X/B12 of integral manifolds of D12 and BlZ’ respectively,
are quotient manifolds of X.

The Blattner-Kostant-Sternberg kernel was introduced
for transverse pairs of real polarizations in Blattner
(1973). The definition for real non-transverse polarizations
is due to Blattner (1975b). The construction of the kernel
for regular pairs of positive polarizations was given also by
Blattner (1977).

The definition of the positivity of a polarization
used here is opposite to that of Blattner because the pre-
quantization condition adopted in Chapter 3 requires that the
curvature of the prequantization line bundle be -h'lw,
rather than w as in Blattner's papers. In the case of
transverse pairs of positive polarizations, we follow the pre-
sentation of Blattner with obvious modifications due to some
differences in teérminology. We also allow for non-trivial
Bohr-Sommerfeld conditions. For non-transverse pairs of

positive polarizations our assumptions are more restrictive

than the condition of regularity assumed by Blattner.
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1.6. Quantization

Let & be the representation space corresponding to a
polarization F. That is, & consists of sections of
L & VA'F covariantly constant along F. Let f be a func-
tion on X such that its Hamiltonian vector field is complete,
so that f generates a one-parameter group ¢ft of canoni-
cal transformations of X. 1In quantizing f we have to dis-
tinguish two cases depending on whether or not ¢ft preserves
F.

If ¢ft preserves F, its action can be lifted to the
space of sections of L ® VAPE covariantly constant along
F. The quantum operator 2f corresponding to £ 1is defined
by

2501 = ih $(6. 0) te0

for each o € &. Since the action of ¢ft on ¢ preserves
the scalar product, 2f is a self-adjoint operator on &
The definition of 2flo] given here also makes sense if the
Hamiltonian vector field of f 1is incomplete, provided the
support of ¢ projects to a compact set in X/D. Thus, the
quantization of functions with incomplete Hamiltonian vector
fields leads to densely defined symmetric operators on <.
The existence of a self-adjoint extension for such an operator
has to be studied separately.

The functions f such that ¢ft preserves F form
a subalgebra of the Poisson algebra satisfying the commuta-
tion relations

[£2f1,£2f2] = ihﬁ?[fl,le.

There is an ideal of this subalgebra consisting of functions

f such that the Hamiltonian vector fields Ef are contained
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in the polarization. For such a function f, the quantum
operator 2f is the operator of multiplication by the function

£: 9f[0] = fo

for each 0 € & The spectrum of Z2f is contained in the
image f(S) of the Bohr-Sommerfeld variety S wunder the
mapping f: X + R.

If ¢ft does not preserve F, assume that it trans-
forms F to a polarization i7¢ft(F) such that, for some
€ > 0, the polarizations F and .9%ft(F) satisfy the condi-
tions for the existence of the Blattner-Kostant-Sternberg ker-
nel .ﬁé: éﬂ’xﬂé; + € whenever 0 < t < e, Here we have de-
noted by ﬂ% the representation space corresponding to the
polarization _7bft(F). For each t € (0,e) there exists a

linear map @%: & » & satisfying

%(o,ct) = (o l%tot)

for all o € & and Oy G.QQ. The one~paraﬁeter group ¢ft

of canonical transformations of X generated by f acts on
sections of L ® VA"'F mapping them to sections of

L ® VAQ9bft(F). The quantum operator Zf corresponding to f

is then defined by

f(6] = in dit(%twfto) =0*
If, for each t € (0,e), the operator %& is unitary, then
9f is self-adjoint. In practice it may be difficult to
verify the unitarity of %, but one may still use the expres-
sion for 2f[c] given here to evaluate 2f on a dense domain

and investigate the existence of a self-adjoint extension

afterwards.
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The representation space & is the direct sum of the
subspaces ﬁ% consisting of sections with supports in the con-
nected components Sa of the Bohr-Sommerfeld variety S. If
f 1is a function preserving F then, for each connected com-
ponent Sa of S, ¢ft(Sa) = Sa and the operator 2Zf maps
& to itself. If f does not preserve F but is quantiz-
able by means of the Blattner-Kostant-Sternberg kernels, 2f
also maps ﬁ% to itself; this can be seen as follows. Let
o be an element of d% with support projecting onto a compact
set in X/D. Then, for each component S of S different

B8
than Sa’ there exists &8 > 0 such that

t -
¢f (support o) n SB = ¢
for all 0 < t < §. Hence,
(%09 to|o') =0
t 'f

for all o' € ﬁ% and t € (0,8). Differentiating this equa-

tion with respect to t and setting t = 0 we get
(2flol]o') = 0

for each o' E<§%. Hence
£2f[¢ﬂ&] c %,

for each connected component Sa of S.

Thus, if all the observables in the quantum theory des-
cribed in terms of the representation space & are obtained
by the quantization of functions on X in the manner des-
cribed here, we are led to superselection rules. The
representation space decomposes into a direct sum of ortho-

gonal subspaces corresponding to different components of the
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Bohr-Sommerfeld variety, and all observables commute with the
operators of projection onto these subspaces.

The presentation of geometric quantization given here
essentially follows that of Blattner (1973). Superselection
rules in geometric quantization are discussed in §niatycki
(1978b).

The assumptions on the polarizations F and .9$ft(F)
made here are somewhat too restrictive from the point of
view of applications. In certain cases of physical interest
the intersection F n.9$ft(f) is not a distribution, and
one will have to extend the construction of Blattner-Kostant-
Sternberg kernels to cover this situation.

If a function cannot be quantized in the representation
given by the polarization F, one can quantize with the help
of an additional polarization. Let f be a function quanti-
zable in the representation given by a polarization F'. We
denote by &' the corresponding representation space and by
2'f the operator on &' corresponding to f. Suppose fhe
polarizations F g;d F' allow for the existence of the
Blattner-Kostant-Sternberg kernel %#:&" x & + C, which in
turn yields a linear isomorphism %: &'+ &. Then %(.Q'f)%’l
is a linear operator on ¢& which could be taken for the
quantum operator corresponding to the classical variable f.
It should be noted that the operator ?k@?'f)%fl will depend
in general on the choice of the auxiliary polarization F',
and it need not be self-adjoint if % is not unitary. This
technique has been used by Rawnsley (1977b) in the quantiza-

tion of the geodesic flow on spheres.
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1.7. Schrodinger representation

The Schrodinger representation is given by the polariza-
tion F spanned by the Hamiltonian vector fields of the posi-
tion variables. For a single particle, there exists a sec-
tion Ao ® vz of L ® VA3F covariantly constant along F

3

such that every element o € & is of the form

o = ¥(@Ar, ® v,
where Y(q) 1is a square integrable function of the position

variables g, and the scalar product on & is given by
_ - 3
(B (@A, ® VgV (@A, © vp) = fst(%)w'(g_)d q.

This establishes in isomorphism between the representation
space & and the space of square integrable complex-valued
functions on RS.

The physically interesting dynamical variables pre-
serving the polarization F are the components of the position

vector ¢, the momentum vector p, and the angular momentum

vector J. We obtain

thlw(g)ko ® VE] qiw(g)AO ® Vi

Zp; (@A, @ Vgl P

. 3
-ih EI\I)(Q)AO ® Vv

. j 3
23, (@1, ® vp) = -ik jEk €5 k% 5:112‘“(9“0 ® vi

in agreement with the Schrddinger theory. The energy

H = RZ/Zm + V(q)

generates a one-parameter group ¢Ht of canonical transforma-
tions which does not preserve the polarization. Hence, the

quantization of H requires the existence of the Blattner-
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Kostant-Sternberg kernels .2;: ﬁ?xa%.* c, where ﬂ% is the
representation space associated to the polarization :7¢Ht(F).
Denoting by %&: ﬂ% +& the linear map. induced by 54, we

obtain
Yoo, [W(@)2, ® vl = | fR,d’qow(go)K(go;t,g_)}xo ® vg,

where the integral kernel K(g,;t,q) is given by the Van
Vleck approximation
2 .
K(ay:t,q) = (-ih)’s/z{det[a_s(gﬂ;’_ﬂ)_ }!iexp[ih-ls(o,go;t,g_)].
3q” 9q,
Here S(O,go;t,g) is the classichl action between the points
9, and g during the time interval [0,t]. Differentiating
Q%5¢Ht with respect to t and setting t = 0, we obtain

the Schrddinger expression for the energy operator
(@A, © vyl = [(-22/2m)a + V(Q1¥ (DA, ® vg.

On the other hand, iteration of the expression for
QQ°¢Ht[w(g)lo ® v;] leads to the Feynman path integral.
These results can be extended to a system of m particles
with constraints. The phase space of the system is the contan-
gent bundle space Z*Y of the configuration manifold Y c R3m

defined by the constraints. The Lagrange bracket is given by
w = dey,
where by is the canonical 1-form on 9*Y defined as fol-

lows. For each x € 9*Y and each vector u in the tangent

space j@L?*Y), set

by (u) = x(Im(u)),

where w: 9*Y » Y is the cotangant bundle projection and
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In: (F*Y) + 7Y 1is the derived map. The polarization F is
spanned by the vectors tangent to the fibres of m: J*Y » Y.

The dynamical variables of physical interest are the
energy H, the canonical coordinates ql,...,qn, and the corres-
ponding canonical momenta PyseeesPp- However, the canonical
coordinates and momenta are defined only locally. Since the
geometric quantization scheme applies only to globally de-
fined functions, we have to redefine our notions of the canoni-
cal positions and momenta. The characteristic property of the
canonical coordinates ql,...,qn is that they are constant

along the fibres of *Y., Thus, we say that a function q

on 7*Y is of "position type" if

q = gem
for some function ﬁ on Y. If g is a smooth vector field

on Y, we define a function p, on 7*Y by

P, (x) = x(£(r(x)))

for each x €9*Y. In particular, when ¢ = a/adi, P,
coincides with the canonical momentum p;- For this reason
we refer to p, as ""the canonical momentum associated to the
vector field ¢g." The kinetic energy K of the system de-

fines a Riemannian metric g on Y such that

K(x) = 3 g(x,)

for each x € 9*Y. If the potential energy is given by a

function V: Y » R, the total energy is
H =K + Vorm.

There exists a section A, ® vg of L ® VA"F covari-

antly constant along F such that every section o € &
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is of the form

g =Y ®1, ® vg,
where ¥ 1is a complex-valued function on Y square integrable
with respect to the density |det g|% on Y defined by the

Riemannian metric g. The scalar product on & is given by
= v 3
(¥; ®A ®"g|“’z ® A, ®vg) IY \l’l‘l’zldet gl*.

Hence, the mapping associating to each o =¥ ® 1, ® vg the
function ¥ on Y is a unitary isomorphism of the representa-
tion space & with the space of complex-valued functions on
Y square integrable with respect to the density |det glk.

The quantization of a position type function q = {§em
yields

2qly ® X ®vg]=q‘!’ ® A A

For each smooth vector field ¢ on Y, we obtain
2r ¥ @), ® vg] =-in[gy + %(Div C)¥] ® A, ®© Vg

where Div ¢ denotes the covariant divergence of the vector
field r. We see that the operator of the momentum associated
to a vector field ¢ <corresponds to -i? times the operator

of differentiation in the direction ¢ if and only if
Div ¢ = 0.

This condition is equivalent to the condition that the local
one-parameter group generated by ¢ preserve the metric
density |det g|%. The quantization of energy proceeds, as
before, via the Blattner-Kostant-Sternberg kernels. It
yields

2
=r7. & !
2H ¥ @)\o ®\)g] =[ T(A\l’ z RY) + VY] ¢ )\0 ® \)g
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where A is the Laplace-Beltrami operator defined by the
metric g and R is the scalar curvature of the metric
connection on Y. It should be noted that the validity of
this result depends on the convergence of the integrals defin-
ing the Blattner-Kostant-Sternberg kernels, and thus places
some restrictions on the geometry of the configuration space.
Iteration of the one-parameter family of transformations of
& given by the Blattner-Kostant-Sternberg kernels leads to
the Feynman path integral as in the case of a single particle.

The geometric quantization of the energy of a free
particle in the Schrddinger representation is due to Blattner
(1973). It led him to introduce the bundle of half-forms
normal to the polarization in order to obtain the correct
cancellation of factors in the method of stationary phase.
The quantization of the kinetic energy of a system with a
Riemannian configuration space was studied by Blattner (1973)
and by Simms and Woodhouse (1976). The result obtained here
differs from both their results by the correction term -R/6
to the Laplace-Beltrami operator which is due to the half-form
nature of the wave functions. The appearance of a correction
term proportional to the scalar curvature was first derived by
DeWitt (1957). The computations in terms of normal coordinate
systems used here follow those of Ben-Abraham and Lonke (1973),
but the physical interpretation of the result is different.
The properties of normal coordinates essential for our
computations can be found in Schouten (1954), pp. 155-165.

The relationship between geometric quantization and

the Feynman path integral formulation of quantum mechanics
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was studied by Blackman (1976), Gawedzki (1977) and Simms
(1978b). A comprehensive discussion of quantum mechanics on
a manifold from the point of view of the Feynmann path inte-
gral formalism can be found in Dowker (1975); see also the

references quoted there.

1.8. Other representations

The choice of representation is determined by the
choice of polarization. In the Schrédinger representation
the polarization is spanned by the Hamiltonian vector fields
of the positions. The momentum representation corresponds to
the polarization spanned by the Hamiltonian vector fields
of the momentum variables. The Blattner-Kostant-Sternberg
kernel between these representations corresponds to the
Fourier transform.

The Bargmann-Fock representation is given by the polari-
zation Fy spanned by the Hamiltonian vector fields of the

complex coordinates
= o7k .k

Zy = 2 (pk + iq).

There exists a section Al ® Vg of L ® VAsFB covariantly
z

constant along Fy such that each element o of the repre-
sentation space ﬁ% can be written

o = V(E)Al ® vzz,
where ¥ is a holomorphic function of the complex coordinates
z = (29,2,,25). The scalar product on ﬁ% is given by

(g @ v ¥, 0 v ) = fR.v/(m'(a)exp(-lalz/n)d’pd’q.

Hence, the representation space ﬂﬂh is isomorphic to the
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space of holomorphic functions on c3 with the scalar product
given by the right hand side of the above equation.

As in the’case of the Schrddinger representation, the
components of the position, the momentum, and the angular
momentum vectors preserve the polarization. Their quantiza-
tion yields

=-o"% 3
YA ® ~ —2 h A
Q%pk[ 1 v;al [(zy * azk)vlkl ® vgz

Q%qk[WAl ® Vv~ ] =-12-%[(zk - h 5%—)?]11 ® Vv
EZ k Ez

s oY
23, ¥A @ % ] = iR ; €xjm 2§ 3z M1 ® vg
z Jm m z

where we have used the symbol .Q% to denote the quantization

in the Bargmann-Fock representation. The energy

1 k.2
H=31 @9+ %
k
of a harmonic oscillator with unit mass and spring constant
also preserves the polarization FB. Its quantiiation yields

2HIVA, eval=n(] z. &+ 3 v, & v .
B 1 E) 2
£, Kk oz 17,

The eigenvalues En of .QEH are easily found to be of the
form

E = (n+ %)n for n = 0,1,2,...

It should be noted that the ground state energy 3n/2 is due
to the transformation properties of the bundle VAsFB under
the one-parameter group of canonical transformations generated
by H.

The polarization FB is transverse to the polarization
F which gives rise to the Schridinger representation. The

Blattner-Kostant-Sternberg kernel defined by the polarizations
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F and FB induces a unitary isomorphism @% between d%
and the Schrddinger representation space & which intertwines
the quantization of positions, momenta, angular. momenta, and
harmonic oscillator energy.

The representation of the canonical commutation rela-
tions on the space of holomorphic functions on the phase
space was introduced by Fock (1928). The mathematics of this
theory and its equivalence to the Schrddinger representation
were analyzed by Bargmann (1961). An approach to the representa-
tion on the space of holomorphic functions from the standpoint
of geometric quantization can be found in Guillemin and
Sternberg (1977) Ch. V, §7.

The energy H of a one-dimensional harmonic oscillator
can be quantized in the representation given by the polariza-

tion F, spanned by the Hamiltonian vector field gH of H.

H

Since vanishes at p = q = 0, the distribution spanned by

&y
EH has a singularity at the origin. At present we have no
theory of quantization for polarizations with singularities,
so in order to avoid the singularity we remove the origin from
the phase spaee. The representation space ﬁfﬁ consists of
The

sections of L ® VAlF covariantly constant along F

H H*
supports of such sections are contained in the Bohr-Sommerfeld
variety S, which is the union of those concentric circles

Sn satisfying the modified Bohr-Sommerfeld conditions

{ pdg = (n + %)h.
S
n

The correction term %% 1is due to the choice of the
trivial metaplectic structure for X and the fact that it

induces a non-trivial metalinear frame bundle for F. For
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each n = 0,1,2,..., the subspace & of & consisting of
sections with supports in Sn is one-dimensional and is

the eigenspace of the quantized Hamiltonian corresponding to
the eigenvalue (n + %)n.

The quantization of the position and the momentum vari-
ables, which is so straightforward in the Schrddinger and the
Bargmann-Fock representations, cannot be obtained at present
in the energy representation for the following reason. Let

¢P
transformations generated by the canonical momentum p; it is

t denote the local one -parameter group of local canonical

only a local group since we have removed the origin from the

phase space. The transformations ¢ t correspond to transla-

P
tions along the q-axis. Since the integral curves of 3
are the circles p2 + q2 = const., the distributions FH and

_9%pt(FH) do not intersect along a distribution. Hence, the
polarizations Fy and .9%pt(FH) do not satisfy the conditions
necessary for the construction of the Blattner-Kostant-
Sternberg kernels. It may be that this is only a technical
difficulty and in the future one will be able to generalize the
construction of the kernels to the case of polarizations with
singular intersections. However, if this generalization is
local, i.e., the kernel J%(cl,cz) is the integral of a con-
comitant <01,09> depending locally on the sections o and
0,, then the resulting operator .th would commute with .QﬁH
according to the argument leading to the superselection rules.
Thus, either the generalization of the Blattner-Kostant-
Sternberg kernel used for quantizating the momentum in this
energy representation is non-local or the operators .th and

Q%H commute, in which case the energy representation is
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inequivalent to the Schrdédinger representation. The same argu-
ment is valid for any dynamical variable f.

The Blattner-Kostant-Sternberg construction leads to a
linear isomorphism % Dbetween .ﬂ% and the Bargmann-Fock
representation space for one degree of freedom. The operator
% intertwines the energy quantizations, but it fails to be
unitary. One could make % unitary by redefining the scalar
product in dﬁr

The geometric quantization of the harmonic oscillator in
the energy representation was analyzed by Simms (1975a). The
argument that one should use the trivial metaplectic structure
induced by the unique metaplectic structure on R2 is due to

Blattner.

1.9. Time-dependent Schrddinger equation

The canonical formulation of dynamics is the usual
starting point for the quantization of a classical system.
However, in the case of non-relativistic dynamics the phase
space of the canonical formulation is defined in terms of an
inertial frame. Hence, one has to investigate the Galilei co-
variance of the theory. The evolution space formulation of
non-relativistic dynamics allows for an intrinsic formulation
of quantum dynamics independent of any inertial frame.

The Galilean space-time Y 1is a 4-dimensional affine
space. The notion of simultaneity defines an affine mapping
7: Y » T, where T 1is a l-dimensional oriented affine space
representing absolute time. Each fibre of Tt is a
3-dimensional Euclidean space. The translations in Y induce
isometries of the fibres of +t. An inertial frame corres-

ponds to an affine trivialization of 1t which yields
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isometries of the fibres.

For each t € T, the fibre Yt of T over t repre-
sents the physical space at time t. The phase space at time
t 1is the cotangent bundle space j?*Yt of Yo and the Lagrange
bracket is given by the canonical 2-form of j?*Yt denoted W,
The evolution space I is the union of all phase spaces at a
given time t as t varies over T,

Z= U 17*Yt.
teT

The Newtonian dynamics of a system is determined by an
extension of the collection {mtlt € T} of forms on the
fibres of Z + T to a 2-form Q on Z. Let N denote the

characteristic distribution of @,
N={vegz | v_|a =0}

The distribution N 1is one-dimensional, hence involutive.
For each z € Z, the evolution of the classical state 2z is
given by the integral manifold of N through =z. This descrip-
tion of dynamics can be put into Hamiltonian form if and only
if Q@ 1is closed. In the following we therefore assume that
the dynamics under consideration is given by a closed form
Q.
We consider a complex line bundle L over Z with a

connection V and an invariant Hermitian form such that

-1

curvature V = -h “Q.

For each t € T, the restriction of L to j?*Yt is a pre-
quantization line bundle for (:7*Yt,mt). We denote by 54
the Schrodinger representation space for (jV*Yt,mt). The

quantum evolution space is the union of the representation
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spaces corresponding to all t € T,

¥= v &, -
t€T

It is a bundle of Hilbert spaces over T. The quantum dynamics
of the system is given by a trivialization of this bundle.

In order to describe the quantum dynamics induced by
the classical dynamics defined by Q, consider a vector field
¢ in N which projects onto a constant vector field on T.
The choice of ¢ 1is equivalent to fixing the time scale.

The vector field ¢ is complete, and we denote by ¢s the
one-parameter group of diffeomorphisms of Z generated by z.
The group ' preserves £ and it induces a one-parameter
group of translations of T denoted by t » t+s. For each

t €T and s € R, the transformation ¢ induces a unitary
isomorphism ¢ts: ﬂ%-s - Qés, where ﬂ%s is the representa-
tion space for (EV*Yt,wt) corresponding to the image of the
Schrédinger polarization under the transformation ¢°. Pair-
ing the representation spaces ﬂ% and ﬁqs by means of the
Blattner-Kostant-Sternberg kernel, one obtains a linear map
2% &S +%. Let o : #+%¥ be the bundle map such that,

t,s' "t t
for each t €T,

- s
¢s|‘¢¢t-s Q&,s ° %

The quantum dynamics is given as follows: a section o of
¥ describes a dynamically admissible history of the quantum

system under consideration if and only if

d
(%59 |s=0 = O
Introducing an inertial frame, one can show that this condition

is equivalent to the time-dependent Schr8dinger equation
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provided the conditions for the existence of the Blattner-
Kostant-Sternberg kernels are saticsfied.

The geometric quantization of time-dependent Hamilton-
ian systems was first studied by Simms (1978a). The intrinsic

formulation given here follows that of §niatycki (1978c).

1.10. Relativistic dynamics in an electromagnetic field

The relativistic dynamics of a particle with charge e
in an external gravitational field represented by a metric g
and an external electromagnetic field f 1is described by the

phase space (17*Y,we), where Y is the space-time manifold,

w, = deY + en*f,

and T7*f denotes the pull-back of the 2-form f on Y to
I*Y. Let L, be a prequantization line bundle corresponding

to the symplectic form w,. The prequantization condition

curvature V = -h-lwe

can be satisfied if and only if the de Rham cohomology class
in HZ(Y,R) defined by h'lef is integral. This implies
that, for each compact oriented 2-surface I in Y with

empty boundary, the number

is an integer. In the presence of magnetic charges the form
f representing the electromagnetic field ceases to be closed.
Therefore, the geometric quantization scheme applies only to
the part of the space-time free of magnetic charges. Since
the flux of the electromagnetic field f through I is d4nm
times the total magnetic charge ms, surrounded by I, we

obtain the Dirac quantization condition
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Zemh_1 = integer

for the elementary magnetic charge m.

We choose the polarization F 1leading to the Schrodin-
ger representation. The line bundle L, over Z*Y induces
a complex line bundle Le~ over Y with a connection ¥~

and a connection invariant Hermitian form <,>” such that
~ R |
curvature V- = -ieh " f.

There is a bijection A #» A7 between the space of sections A
of Le covariantly constant along F and the space of sec-
tions A~ of Le~. The bundle VA4F admits a trivializing
section vg which is covariantly constant along F. Hence,
each section o in the representation space ﬁé is of the
form

c=2x9® vg,
where the section A of Le is covariantly constant along

F. The scalar product on ﬁ% is given by
= ~ ~ - b
(A, ® vglxz ® vg) = [Y<11 A, 7> det g7,

Hence, the representation space ﬂg is isomorphic to the
space of square integrable sections of Le~ with the iso-
morphism
A ® Vg » A7,

Each linear operator A on ﬁé induces a linear operator A~
on the space of sections of Le".

The fundamental dynamical variables of physical inter-
est are the position type functions q = {Jom, where d is a
function on Y, the momenta P, associated to vector fields

¢ on Y and the mass-squared function N defined by
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N(x) = g(x,x).
The quantization of these dynamical variables yields
(2972 = ax”
(2p,)7A" = -in(V."+ % Div 2))"
(272~ = -hZ(a” - 1/6 R)AT,

where A~ denotes the Laplace-Beltrami operator defined in
terms of the metric g on Y and the connection V™ in Le".
The interpretation of N as the square of the mass and

the expression for (Z2N)~ given here shows that the Klein-
Gordon equation

22 (A" - 1/6 R)A™ = mPr”

can be interpreted as the equation for determining the eigen-
vectors of the mass-squared operator.

The formulation of relativistic dynamics presented
here treats the mass and the charge asymmetrically. The mass
is a dynamical variable while the charge is a fixed parameter
in the theory. This asymmetry disappears in the five-dimen-
sional theory of Kaluza [see Bergmann (1942)]. In the gener-
alized Kaluza theory the configuration space Z 1is a
Tl-principal fibre bundle over the space-time manifold Y, where

Tl

is the multiplicative group of complex numbers with ab-
solute value 1. The Lie algebra of T1 is identified with

the real numbers R by associating to each number r the

one -parameter group t = exp(ieort/h), where e, is a para-
meter interpreted as the elementary charge. There is a
Tl-invariant metric k on Z such that the fundamental vector
field n, on Z corresponding to the real number 1 has unit

length. This structure induces a connection in Z the
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curvature of which is interpreted as the electromagnetic field
f. The horizontal part of &k gives rise to a metric g on
Y which represents the gravitational field.

The phase space is the cotangent bundle space 9*7Z of
Z with the Lagrange bracket given by the canonical form dez.
The canonical momentum pnl in the direction of ny is inter-
preted as the charge Q. With this interpretation, the
Hamiltonian vector field of the pull-back to Z of the mass-
squared function N gives rise to the equations of motion of
a particle with arbitrary mass and charge moving in the exter-
nal electromagnetic field f and the gravitational field g.

We study the quantization of this system using the
polarization ﬁ spanned by the Hamiltonian vector field EQ
of the charge Q and the Hamiltonian vector fields of the
pull-backs to J*Z of the position type functions on Z*Y.
Since the integral curves of EQ are periodic, we have non-

trivial Bohr-Sommerfeld conditions. For each integer n,
_ a1
S, = Q “(ney)
is a connected component of the Bohr-Sommerfeld variety, and
we denote by !I/n the subspace of the representation space &

consisting of sections with supports in Sn. The representa-

tion space is the direct sum of the ag,

- e’nez d/n

According to the general argument leading to the superselec-
tion rules, for each function f quantizable in this repre-
sentation the quantum operator 2f maps each of the sub-

spaces ﬁ% to itself. Hence, 2f is completely specified

by the collection of its restrictions éaf to ﬁ%. Each
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subspace ﬂ% is the eigenspace of the charge operator cor-

responding to the eigenvalue

e = ne,.
Moreover, there is a unitary isomorphism @%:Jﬁ% > ﬂ%, where
ag is the representation space corresponding to the charge e
introduced before, which intertwines the quantizations of the
positions, momenta and the mass-squared function. Hence,

the quantization of the Kaluza theory in the representation
given by the polarization £ gives rise to the relativistic

quantum dynamics of a particle with arbitrary mass and

charge.

1.11. Pauli representation

As the last illustration of the relation between geo-
metric quantization and quantum mechanics, we discuss the
Pauli theory of spin. The presentation given here uses the
results of Souriau (1970) and Baxter (in preparation).

A classical interpretation of spin is that of an inter-
nal angular momentum. Thus, a classical state of a non-
relativistic particle with spin r > 0 is specified by the

position g, the momentum P and the spin vector S such that

In the presence of a magnetic field B = (BI’BZ’BS)’ the
Lagrange bracket is given by
i -2
w =7 dp.adq’ - €..,5.dS.AdS
E Pjrdd T igk 1jx°19°54%k

j k
+ ... B.dq’ .
ke igk e;5xB;:9a Adq

The classical dynamics is given by the Hamiltonian vector
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field EH of the energy function
H = BZ/Zm + eV(q) - (e/mc)S-B(q).

A prequantization line bundle L with a connection V¥
satisfying the prequantization condition exists if and only
if

r = sh,
where 2s 1is a positive integer. Thus the prequantization
condition leads to the quantization of spin. We choose a
polarization F spanned by the Hamiltonian vector fields of
q and the complex coordinates
S1 182

Zi:ﬁ'

A section X of L is covariantly constant along £, if and

I+ 41

*
only if it is holomorphic in the complex coordinates z_.

The space of sections holomorphic in z admits 2s+l

+

linearly independent sections AO""’AZS such that each sec-

tion XA of L covariantly constant along F is of the form

=T (@A,
Em’“(ﬂ)‘“

where the wm(g) are functions of the position variables only.

According to the general principles of geometric quanti-
zation, the representation space should consist of sections of
L ® VA4F covariantly constant along F. However, this would
give a (2s+2)-dimensional space of spin states. In order to
circumvent this difficulty, we choose instead the space of sec-
tions of L ® \/ASDc covariantly constant along F to form the
representation space @& This choice is justified by the agree-
ment between the quantum theory it engenders and the Pauli

theory of spin. It requires certain modifications to the
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quantization procedure, the theoretical significance of which
has yet to be studied.
The bundle \/A3Dc admits a section vi covariantly

constant along F. Hence, each element o of the representa-

tion space & is of the form
=1 v (A © vi.
n m m g
The scalar product on & is given by
= e 3
Glon) = 1 [ p(@F, @a%.

The quantization of the position and the momentum variables

yields

2q* [2 V(@A) @ v ] 1 qiwn(g)xn ® vg
n 2

£2pj[£ vp(@Ar ® v~] 2{[ lh—_T - eA (q) [v (g)}x ® v§

n aq

where A = (Al’AZ’AS) is a vector potential for the magnetic

field B:

B = curl A.
The quantized spin operators .Qsi are given by (2s+1) x
(2s+1) matrices Qi with entries di' n such that

sy

EQSi[g wn(g)ln ® vi] =Ig ism, nw (g)k ® V~,

and the quantization of the total angular momentum vector J

yields
23, [2 ta(@2, © ve]
= E{}&eijqu[-ihgif - eAk(ﬂ)]wn(g)}ln ® Vi

mzn 4 im,n¥n(@2, © Vg
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Finally, the quantization of the energy H by means of the

Blattner-Kostant-Sternberg kernels gives the result

£2H[§ YA, @ vg] = (-e/mc)§ Bj£25j[§ YA, ® vg]

' l)‘:].{[- % jzk($ ) ieh-lAJ’)(# i ieh-lAk%eV]wn}}‘n ® Vg

For spin s = %, the equation for the eigenstates of ZH

corresponds to the Pauli equation, cf. Fermi (1961).



2. HAMILTONIAN DYNAMICS

The phase space description of classical mechanics due
to Hamilton is the starting point of the geometric quantiza-
tion scheme. A brief review of Hamiltonian dynamics, formu-
lated in the language of differential geometry, is given here

in order to establish the notation.

2.1, Poisson algebra

The phase space of a dynamical system is represented
by an even dimensional manifold X endowed with a symplectie
form w defined by the Lagrange bracket. The 2-form w is
closed:

do = 0, (2.1)

and non-degenerate:

Elw=0=£ =0, (2.2)

Here, J denotes the left interior product defined by

(] w)(2) = w(E,2) (2.3)

for any two vector fields & and ¢ on X.

A canonical transformation is a w-preserving diffeomor-

phism of X onto itself. Infinitesimal diffeomorphisms
38
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are given by vector fields; in particular, a vector field §
on X corresponds to an infinitesimal canonical transformation
if and only if the Lie derivative of w with respect to ¢§
vanishes:

.%Em = 0. (2.4)

The Lie derivative, exterior derivative, and the left in-

terior product are related by the formula

Sw = £ ]dw + d(E]w). (2.5)

Since w 1is closed, it follows that a vector field & corres-
ponds to an infinitesimal canonical transformation if and
only if £ |w is closed.

Let f be a smooth function on X. Since w is non-

degenerate there exists a unique vector field g satisfying
%Jw=-ﬁ. (2.6)

The vector field ¢ satisfying Eq. (2.6) is called the
Hamiltonian vector field of f. We denote by ¢ft the local
one-parameter group of local diffeomorphisms of X generated
by Ef. Since the diffeomorphisms generated by Hamiltonian
vector fields preserve w, we refer to ¢ft as the local one-
parameter group of local canonical transformations generated
by f. If the vector field €f is complete, then ¢ft is a
one-parameter group of canonical transformations.

If Ee and Eg are the Hamiltonian vector fields of
f and g, respectively, then their Lie bracket [£f,6g] is

the Hamiltonian vector field of w(af,eg),
[if,ig]Jw = 'd(“’(Ef’Eg))- (2-7)

The function -w(Ef,Eg) is called the Poisson bracket of f

and g and will be denoted by [f,g]l. The following
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identities are useful in computation:

[£,8] = -w(EgE)) = w(E,,8p) = -&e8 = £ f. (2.8)

One can rewrite Eq. (2.7) in terms of the Poisson bracket as
follows:

[gfsgg] = -g[f,g]' (2.9)

Since w is closed, the Poisson bracket satisfies the Jacobi

identity
(f,[g,k11 + [k, [f,g]]l + [g,[k,f]1] = O. (2.10)

Hence, the space C”(X) of all smooth functions on (X,w)
is a Lie algebra under the Poisson bracket operation. It is
called the Poisson algebra of (X,w).

Equation (2.9) implies that the mapping which associates
to each smooth function f its Hamiltonian vector field Ef
is an antihomomorphism of the Poisson algebra into the Lie
algebra of all smooth vector fields on X. The kernel of this
antihomomorphism consists of all functions constant on X; we

assume X to be connected.

2.2. Local expressions

In most applications the dynamical system under con-
sideration has a physically distinguished configuration space

Y, i.e., X =7*Y. The Lagrange bracket is given by

w = deY, (2.11)
where GY is the canoniecal 1-form on 7*Y defined as follows:

for each x € Z*Y and each u € j§~9*Y, set

By (u) = x(Im(u)). (2.12)

Here, m: J*Y + Y denotes the cotangent bundle projection and
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In: TI*Y »9Y is the derived map of w. Using coordinate
systems on Y one can construct canonical coordinate sys-
tems on 9*Y as follows. If (U,al,...,an) is a coordinate

1(U) can be written uniquely

system on Y, then each x € m
as

n R
= g1
X izl pi(x)dqn(x). (2.13)

This gives rise to a coordinate chart (w_l(U),ql,...,qn,

pl,...,pn) on Z*Y, where q' = alow. With respect to this
chart we have
n .
i
oy = .Z p;dq (2.18)
i=1
and
o i
w = Z dpi A dq (2.15)
i=
For each function £ on Z*Y, its restriction to
n-l(U) can be expressed as a function of the coordinates
(ql,...,qn,pl,...,pn) which will be denoted f£f(p,q). The

restriction to n-l(U) of the Hamiltonian vector field Eg

of f can be expressed in terms of the vector fields

9 3

— T i=1,...,n, as follows:
aq ap;
n
e R Sl ek (2.16)
i=1 Bpi aq 9q Bpi

Note that —QT is the Hamiltonian vector field of the coordi-
aq
nate function P> and - 3%— is the Hamiltonian vector

. i
field of q'. A curve vy: (a,b) +»9*Y, such that
Imy c w'l(U), is an integral curve of &£, 1if and only if it

satisfies the canonical equations of Hamilton

& o) = o (2.17)
1

and
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2
3
1,2,...,n. The Poisson

é% p; (v(t)) jl(Y(t)) (2.18)

for each t € (a,b) and each i
bracket of two functions f(q,p) and g(q,p) 1is given on

w-l(U) by the standard expression

n
£ g £ 9
[£,81(a,p) = ] [¥5 -2 2 ) (2.19)
i=1t3q™ 3p; api 3q

2.3. Relativistic charged particle

As an example of the phase space formulation of dynamics,
let us consider the relativistic dynamics of a particle with
charge e acted on by external gravitational and electromag-
netic fields. In this case Y 1is the space-time manifold.

We denote by g the metric on Y, with signature (-,-,-,+),
which describes the gravitational field, and by f the closed
2-form on Y characterizing the electromagnetic field. The
phase space is the cotangent bundle space of Y, X = J*Y,

and the Lagrange bracket is

w, = deY + em*f, (2.20)

where e is the charge of the particle and =*f is the pull-
back of the 2-form f to Z*Y. The incorporation of the
electromagnetic field strength into the expression for the
Lagrange bracket enables one to discuss the Hamiltonian
dynamics of a relativistic charged particle without any ref-
erence to the electromagnetic potentials.

The metric g on Y defines a vector bundle isomorphism
JY »9*Y and induces a symmetric bilinear form on Z*Y which
we also denote by g. Let N be the function on J*Y

defined by

N(x) = g(x,x) (2.21)
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for each x € *Y, If N(x) > 0, then M(x) = VN(x) 1is the
mass of the particle in the classical state x. The dynamics
of a massive particle is given by the Hamiltonian vector field
EM of M. However, from the computational point of view,
it is more convenient to work with the Hamiltonian vector
field EN of N which is parallel to EM. It is known in
differential geometry that the Hamiltonian vector field of
N, defined with respect to the symplectic form dey, yields
the equations of the geodesics in X. The correction en*f
in the symplectic form w, gives rise to the Lorentz force.
We demonstrate this by direct computations in terms of
the local chart (n'l(U),ql,...,q4,p1,...,p4) on 7*Y in-
duced by the chart (U,ﬁl,...,ﬁ4) on Y. The metric g de-

fines a matrix-valued function (g..) on U such that

glu=1 ngq ® d3i. (2.22)
ij

Similarly, the restriction of f to U can be expressed in

terms of its components fij as follows:

flo=% 1 7, dq add? . (2.23)
Therefore i
N« oy = Z(g ov)p p; (2.24)
ij 3’

where (glj) is the inverse of the matrix (gij), and
wIm (W) = ] dp;ada’ + /2 ] (£ emdatadg’ (2.25)
i ij
Equations (2.24) and (2.25) yield the following local expres-

sion for the Hamiltonian vector field EN of N:
1
ij a (2.26)

- i§k[(gij,kon)pip + 2e(fyom) (g Iomp; |2

eyln T = 2 ] (g Temp; -

»

Py
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where
ij ag'
g 7oy T % (2.27)
3q
The orbits of the one-parameter group ¢Nt of diffeomorphisms

of J*Y generated by EN satisfy the equations

Lialogy® = 2 gt(gijow)pj1o¢Nt (2.28)
and
Lip,o0H = '}il(g’k’i°")Pjpk +
Kj t
+ ze(fki”T) (g °")Pj]°¢N . (2.29)

Introducing the Christoffel symbols of the metric con-

nection in Y defined by

i ij -
T = % § 97 smn * Y5n,m " Imn, i) (2.30)
where
ag
.= _omn
gmn,j : aqj , (2.31)

we can rewrite Eqs. (2.28) and (2.29) as a second-order equa-

tion
2 . .
t d t
“tatesy) ¢ 1y, Temeay F G P G W

- 2e}£[(9ijfjk)°ﬂ°¢Nt] CRT NN (2.32)
Since
g, = (2 lgy (2.33)
for N > 0, the parameter s along the integral curves of Ey
is related to t by

ds = 2Mdt. (2.34)

If +vy(s) 1is the projection onto Y of an integral curve of

EM’ Eqs. (2.23) and (2.34) yield
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2 . .
-4 &)y + 1 toeng o) v |

ds
(2.35)

A UONNION - Foesn.
J

The left hand side of Eq. (2.35) is the absolute derivative

of the tangent vector to vy(s) multiplied by the mass M

(the mass is constant along vY(s)), while the right hand side
is the Lorentz force. The dynamics of the relativistic

charged particle described here will be geometrically quantized

in Chapter 10.

2.4, Non-relativistic dynamics

In non-relativistic dynamics the phase space is de-
fined in terms of a chosen inertial frame. The absolute time
of Newtonian dynamics can be represented by a one-dimensional
affine space T endowed with a translation invariant 1-form
dt corresponding to a fixed time scale. To each t € T,
there is associated the phase space (Xt,wt) at the time t.
The collection

Z= UX, (2.36)
teT

of all the phase spaces at all times t is called the evolu-
tion 8pace of the system. Let <t: Z - T denote the projec-
tion map defined by tml(t) = Xt for each t € T. An inertial
frame defines a trivialization of <t which induces symplectic
isomorphisms of the fibres with a typical fibre (X,w). It

is this typical fibre which is used in the Hamiltonian formu-
lation of non-relativistic dynamics. In order to have a clear
understanding of the set-up described here, we discuss below

the non-relativistic ‘dynamics of a single particle.
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The Galilean space-time, which we denote also by Y,
is a 4-dimensional affine space. The notion of simultaneity
defines an affine mapping +t: Y + T. Each fibre of 1 is a
3-dimensional Euclidean space, and the translations of Y
induce isometries of the fibres of r.

For each t € T, the fibre Y = r-l(t) represents the
physical space at time t. The phase space at time t 1is the

cotangent bundle space of Yt,

X, =T, (2.37)
and the Lagrange bracket on Xt is given by
we = deYt. (2.38)

The Newtonian dynamics of a single particle is deter-
mined by an extension of the collection {wt | t € T} of
forms on the fibres of t: Z + T to a 2-form © on Z such
that w, = QIXt. Since this description of dynamics can be put
into Hamiltonian form if and only if @ 1is closed, we assume

that

e = 0, (2.39)

Let N denote the characteristic distribution of Q,

N = {v €7z|v_|a = 0}. (2.40)

The distribution N 1is one-dimensional and involutive. For
each z € Z, the evolution of the classical state 2z is
given by the integral manifold of N through z. Let ¢ be

the vector field spanning N normalized by

t*dt(g) = 1. (2.41)
The vector field ¢ 1is complete and we denote by ¢5 the one-

parameter group of diffeomorphisms of Z generated by z.
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Since ¢ Q2 =0 and @ is closed, it follows that the dif-
feomorphisms ¢s preserve §. The normalization of ¢ given

by Eq. (2.41) implies that each ¢° preserves the fibre

bundle structure of Z given by +t: Z » T and that ¢s in-

duces a translation of T denoted by t & t+s. For each

t € T, we denote by ¢ts:17*Yt ->.‘7*Yt+ the diffeomorphism

s
obtained by restricting ¢°  to J?*Yt. Since ¢° preserves

*
Q it follows that ¢ts Wegg = Weo Thus, the non-relativistic
dynamics of a particle can be represented by a family of
canonical transformations ¢t5 between the phase spaces

(57*Yt,wt) and (7*Y which satisfy the composition

t+s’wt+s)
law

s s+s'!

s' = 6,5, (2.42)

Ores P

A canonical transformation ¢ts::7*Yt +‘7*Yt+s can be

described in terms of a generating function Sts: Yt x Yt+s + R

provided, for each vy € Yt and y' €Y there exist

t+s?

z 6:7*Yt and z' €.7‘Yt+ projecting onto y and y', res-

s
pectively, such that z' = ¢ts(z). This condition is usually
satisfied in non-relativistic dynamics, at least for suffici-
ently small values of the parameter s. To determine Sts,
note that the assumptions that @ 1is closed and Z is con-

tractible imply the existence of a 1-form © such that

Q = de. (2.43)
Moreover, we can choose © so that, for each t' € T,
(2.44)
This restriction defines © wup to a differential of a func-

tion on T.

For each vy € Yt and y' € Yt+s’ we set
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$.°(y,y") = f 0, (2.45)
Im vy

where vy is the integral curve of ¢ such that 2z = y(0)
projects onto y and z' = y(s) projects onto y'. It can be
shown that the function St5 is well-defined by Eq. (2.45)

and that

S 7 G *
ds, |(J& Y. © T MY

e = (F2) @2t (2.46)

An inertial frame is given by specifying a product structure
of the space-time, Y = ExT, where E is a 3-dimensional Euclidean
space. The inertial frame induces a product structure of the evo-
lution space, Z *J*E x T, with the projections v: Z +Z*E
and T: Z + T. The symplectic manifold (57*E,deE) is the
phase space defined by the chosen inertial frame.
of 6

The pull-back v*@ is a 1-form on Z such

E E

that, for each t €T,

v*eL |57*Yt =9 (2.47)

Te

Eqs. (2.47) and (2.44) imply that © and u*eE differ by a
1-form vanishing on the fibres of <t: Z » T. Hence, there

exists a unique function H: Zz » R such that

0 = vte, - B de. (2.48)

The function H 1is the (time-dependent) Hamiltonian, rela-
tive to the chosen inertial frame, of the dynamics described
by ©. Since © 1is determined by Eqs. (2.43) and (2.44) up
to a differential of a function on T, it follows that H
is determined by the dynamics @ and the chosen inertial
frame up to an arbitrary smooth function on T.

If the Hamiltonian M is constant along the fibres of

v: Z »J*%E, it projects to a function H:Z*E +» R such that
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H = Hov. In this case, the projections to J*E of the inte-
gral curves of ¢ in Z can be represented by the integral
curves of the Hamiltonian vector field EH of H in the
phase space (:7*E,deE) defined by the inertial frame.

The choice of an initial time yields an affine iso-
morphism T + R such that, if we denote by t: Z + R its
pull-back to Z, the 1-form dt corresponding to the choice
of a time scale coincides with the differential of the func-
tion t. Let ql,qz,q3 denote the pull-backs to Z of some

Cartesian coordinates on E, and P1sP,,Pg denote the con-

jugate momentum functions. Then,

vReL = g p;da (2.49)
o= pdgt - Hdt (2.50)
1
and
2 = | dp;adq’ - dfiadt. (2.51)
i

In the coordinate system on Z given by the functions pi,qi
and t, the vector field § can be written
r - z(ﬁﬁ_ 2. EET _ﬁ_) P (2.52)
i api aq aq Bpi at

Thus, the integral curves of ¢  satisfy the usual Hamiltonian
equations of motion with the time-dependent Hamiltonian H.

The generating function St5 defined by Eq. (2.45) can
be expressed in terms of a function S depending on the para-
meters t and t+s, the coordinates g = (ql,qz,qs) of a
point y € Yt’ and the coordinates gq' = (ql',qz',qsl) of a

point y' € Yt+s:

S (y,y') = S(t,g;5 t+s, g'). (2.53)
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Let p = (pl,pz,ps) denote the momentum coordinates of
z € j?*Yt and p' = (p'l,p'z,p's) the momentum coordinates

of z' € j;,*Y , Where z' = ¢ts(z). We can rewrite Eq.

t+s
(2.46) in the familiar form

ggf S(t,q; t+s,q') = P> ;é%; S(t,q; t+s,q') = pi'. (2.54)
The Hamiltonian formalism for non-relativistic dynamics
presented here extends, with obvious modifications, to the
dynamics of a system of particles subject to time-independent
holonomic constraints, e.g., a rigid body. The modifications
consist of the interpretation of Yt as the configuration
manifold at time t, so that Y = U Yt represents the con-
figuration space-time. An inertiaiegrame induces a product

structure of Y, Y ®* W x T, where W is the configuration

manifold defined by the inertial frame.
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The aim of this chapter is to construct a linear
monomorphism from the Poisson algebra of (X,w) to the
space of linear operators on an appropriate Hilbert space,
associating to each function f on X a linear operator

Pf, so that the commutation relations
[ £, Pg] = inPlf,g] (3.1)

are satisfied for each pair of functions f and g on X.
It should be noted that the mapping f & (h/i)Ef satisfies
(3.1) but it fails to be a monomorphism since its kernel con-
sists of the space of all constant functions on X. Thus, we
need a central extension of the Lie algebra of Hamiltonian

vector fields on X by the additive group R of real numbers.

3.1. Connections in line bundles

We begin with a review of some basic results in
the theory of connections in complex line bundles. In the
following ¢ denotes the multiplicative group of nonzero
complex numbers. The Lie algebra of ¢ is identified with

C by associating to each complex number ¢ the one-parameter

51
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subgroup e2n1ct of ¥,

Let L be a complex line bundle over X and L* the
bundle obtained from L by removing the zero section. L
is the Cx-principal fibre bundle over X associated to L.
The fact that L* is contained in L substantially simpli-
fies the presentation. We Aenote by w the fibre bundle
projections L + X and L + X.

The space of sections A of the line bundle L is
isomorphic to the space of complex-valued functions A on

L satisfying the conditions

Aezy = e hite) (3.2)
for each c € ¢ and each z € Lx; the isomorphism A# oA
being given by

A(r(2)) = At (2)2 (3.3)

for each z € L™, If, for some x € X, A(x) # 0, then

A(x) € L and (3.3) implies that A(x) = A#(A(x))k(x). Hence
AMea =1 (3.4)
for each non-vanishing local section X of L. For every

c € c, we denote by n. the fundamental vector field on L

corresponding to c¢. That is, for each z € Lx, nc(z) is

the tangent vector at 2z of the curve t & ezﬂiCtz. Hence,
for each complex-valued function f on Lx,
(n ) (2) = & £(e?mict 2| ¢=0- (3.5)

For each function satisfying (3.2), we can compute the

action of n. on explicitly. We have

S (T R
>

(A (2)

#_ 2mict
(e 2) |t=0

e-anctx#(z)|t=0 = -Znicl#(z)o
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Hence,

—2micat, (3.6)

3
>
n

For each function f on X we define a vector field ng on
L by
nf(z) = nf(ﬂ(z))(z) (3.7)

for each z € L™. Then,

nedt = -2mi(gomyat. (3.8)

Let o be a connection form on Lx, that is, a

c*-invariant complex-valued 1-form a on L™ such that
a(nc) =c (3.9)

for each ¢ € C. The connection form o defines the horizon-

tal distribution hor JL in L™ given by
hor L = {u € 9L™ | a(u) = 0}. (3.10)

The vertical distribution ver IL° in JL™ consists of all
vectors tangent to the fibres of m: L X, and IL* is the

direct sum of the horizontal and the vertical distributions
L = hor 91" @ ver IL*. (3.11)

For each vector field ¢ on L* we denote by hor ¢z and
ver § its horizontal and vertical components, respectively.

Thus for each 1z € L

t(z) = hor t(z) + ver t(z). (3.12)

where hor g(z) € hor j;Lx and ver g(z) € ver szx. A vector
field on L* 1is called a horizontal (vertical) vector field

if its vertical (horizontal) component vanishes identically.
The horizontal lift of a vector field & on X is the

unique horizontal vector field E# on L projecting onto &,
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i.e., the unique vector field E# satisfying

aefy = 0 and et (2)) = £(niz)) (3.13)

x

for each z € L".
The covariant derivative of a section X of L in
the direction of a vector field £ on X, defined by the con-

nection in Lx, is the section VEA of L given by

VeA(n(2)) = GO (3.14)

for each 1z € Lx, where E# is the horizontal 1ift of ¢§

and A# is the function on L* satisfying (3.2) and (3.3).
Clearly, VEA depends linearly on & and on A, and
VfEA = fVEA (3.15)
VE(fA) = (Ef)r + fVEA (3.16)

for each function f on X.

The covariant derivative of a non-vanishing section A
can be related directly to the connection form o as follows.
Since A is a map from X to L® such that m o A = identity,
it follows that for each x € X, JA(E(x)) is a vector in
5§(X)Lx and consequently can be decomposed into horizontal

and vertical components

FAE(X)) = hor FA(E(X)) * ver FA(E(x))
= £ 0 * gy e y) PO
Hence,
chh o = afefoen
#

e #

But, af (Ae(x))) = (A fen)) (x) which vanishes by (3.4),

and
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# _ #
Dy (A (e (x))) PN = Mygxy)* ) ()
-2mia (A (6 () (v x))

-2mid*a(E(x)).

Therefore, (E'A')(A(x)) = 27i A*a(&(x)) which implies that
VEA(x) = 2miA*a(E(x))A(x). Hence, for each non-vanishing

section A of L,

VoA = 2mid*a(E)A. (3.17)

For any two vector fields & and &' on X and any

non-vanishing section A of L we have

- v, - = iA* A, .
(VeTp Vg1V = Vg p1))) = 2TiA*da(E,E')) (3.18)
The 2-form doa is the curvature form of the connection in
L* defined by a. Since a(nc) = c, the curvature form

satisfies

nc_lda =0 and é%cda =0 (3.19)

for each c € €. Hence da 1is the pull-back by m of a closed

complex-valued 2-form on X.

3.2. Prequantization line bundle

A prequantization line bundle of a symplectic mani-
fold (X,w) 1is a complex line bundle L over X with a
connection V such that the connection form o satisfies

the prequantization condition

1

da = -1 “mhw, (3.20)

where % is Planck's constant. Such a line bundle
exists if and only if. h'lw defines an integral de Rham

cohomology class and, if this condition is satisfied, the set
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of equivalence classes of such line bundles with connection
can be parametrized by the group of all unitary characters

of the fundamental group of X. Further, we shall assume that
there exists a V-invariant Hermitian structure <,> on L,
where V-invariance of <,> means that, for each pair of

sections A and A' of L and each vector field £ on X,

E<A,A'"> = <V_A,A'> + <A,V

. At>, (3.21)

13

A V-invariant Hermitian structure on a line bundle with a

connection form a exists if and only if

2ri(a - @) is exact, (3.22)

and it is determined by o wup to a multiplicative positive
constant.
Let ¢ be a real vector field on L™ preserving a,

that is,

t_|da + d(a(z)) = &éa =0, (3.23)

Evaluating (3.23) on n. and taking into account the fact
that n_|da = 0, we find that
n.(a(z)) =0 (3.24)

for all c € €. Hence, a(z) is constant along the fibres of
m: L » X and consequently there exists a function f on X,

possibly complex-valued, such that
a(z) = -k lfor, (3.25)

Here, a factor involving Planck's constant % has been
introduced in analogy with the quantization condition (3.20).

Eq. (3.25) determines the vertical part of ¢ giving
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ver ¢ = '"f/h’ (3.26)

where the right hand side is defined by Eq. (3.7). Substitu-
ting (3.25) back into (3.23) one gets

hor g_| m*w = -d(fem). (3.27)

Hence, f is a real-valued function and hor ¢ is the hori-

zontal 1lift of the Hamiltonian vector field Ef of f,

hor ¢ = £'. (3.28)

We denote by e the vector field determined by (3.26) and
(3.28), i.e.,

#
Te = Ep t Ngspe (3.29)

The association f & cf is a linear isomorphism of the
Poisson algebra of (X,w) onto the Lie algebra of real
connection-preserving vector fields on L. Each vector field
Le is c¢”-invariant and therefore we can define its action on

the space of functions af satisfying A#(cz) = c-1

z, and
hence its action on the space of sections of L. Taking into

account (3.8) and (3.14) we obtain, for each section A of L,

et = v, a s w/ment (3.30)

e
where 7 = n/2m.

3.3. Prequantization map

Let f be a function on X such that its Hamiltonian
vector field s is complete. Then f generates a one-para-
meter group ¢ft of canonical transformations of (X,w).

The group ¢ft induces a one-parameter group ¢§t of connec-
tion-preserving diffeomorphisms of L* such that, for each

t € R,
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T oo ¢§t =0t e (3.31)

The group ¢§t is generated by the connection-preserving vec-
tor field t, defined by Eq. (3.29). Since each ¢§t pre-
serves the connection form a, it commutes with the action of

c® on L% Hence, for each t € R and each section A of

L, the function A# ° ¢2-t defines a section of L which we
denote by ¢ftx,
t,,# # #-t
(62" =27 o 6o . (3.32)

The mappings

# # -t
A AT e o (3.33)

form a one-parameter group of linear transformations on the
space of functions on L* satisfying Eq. (3.3). Therefore,
the mappings

R} (3.34)

form a one-parameter group of linear transformations on the
space of sections of L. The prequantized operator Pf
corresponding to f is defined to be the generator of this
one-parameter group:
PEO i= i (0, |- (3.35)
The operator £ can be expressed directly in terms

of e Since Te generates ¢zt, Eq. (3.32) yields

IOV NP VAE (3.36)

Hence,
(EPf[Al)# = -ihcfk#. (3.37)

Eq. (3.37) could be used as an alternative definition of <f.
In particular, it can be used to define %f when the vector

field cf is incomplete and ¢ftx need not be defined.
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Taking into account Eq. (3.30) we have

PEA] = [-ihVE + f1A. (3.38)
£

If f is a constant function, then £ = 0, and Pf  is the
operator of multiplication by f. Thusz the map f » Pf is

a linear monomorphism of the Poisson algebra of (X,w) into
the algebra of differential operators on the space of sec-
tions of L. Using the commutation relations for the covari-
ant derivatives, Eq. (3.18), and the properties of the Poisson

bracket one can easily verify that Eq. (3.1) is satisfied.
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4.1, Polarization

In quantum mechanics one can represent the Hilbert
space of states as the space of square integrable complex
functions on the spectrum of any given complete set of com-
muting observables. In the process of quantization, however,
one has only the classical phase space (X,w) to work with,
and one has to find a suitable classical counterpart of the

notion of a complete set of commuting observables. A natural

choice is a set of n = %dim X functions fl,...,fn on X,
independent at all points of X, satisfying
[fi,fj] =0, i,j € {1,2,...,n} (4.1)

such that their Hamiltonian vector fields Efl,...,gfn are
complete. However, for many phase spaces of interest there

does not exist such a set. If one drops the assumption that

the fi be real and globally defined, one is led to the

notion of a '"polarization" of (X,w). Note that the Hamiltonian
vector fields Efi, i € {1,...,n} span over C an involutive

distribution F on X such that

60
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dimF = %dim X, (4.2)

and also that w restricted to F vanishes identically,
wlFXF=0. (4.3)

A complex distribution F satisfying (4.2) and (4.3) is
called a complex Lagrangian distribution on (X,w).

A polarization of a symplectic manifold (X,w) is a
complex involutive Lagrangian distribution F on X such
that dim{Fx n F .} is constant, where F denotes the complex
conjugate of F. The complex distributions FnF and F +F
defined by a polarization F are the complexifications of cer-
tain real distributions which we denote by D and E res-

pectively: _ c _ c
FNEF=0D and F + F = E”. (4.4)

For each x € X, the vector spaces Dx and Ex are related

to each other as follows:

E = {u€ gX | wCu,v) = 0, for all v € Dx} (4.5)
and

D, = {v € ZX | w(u,v) = 0, for all u € E }. (4.6)

The involutivity of F implies that D is an involutive
distribution so that D defines a foliation of X. We denote
by X/D the space of all integral manifolds of D and by
L X » X/D the canonical projection. A polarization F is
said to be strongly admissible if E is an involutive distri-
bution, the spaces X/D and X/E of the integral manifolds
of D and E, respectively, are quotient manifolds of X

and the canonical projection X/D + X/E 1is a submersion.

For a strongly admissible polarization we denote by

X+ X/E and 7

T ED’ X/D + X/E the canonical projections.

E:
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Let F be a strongly admissible polarization. Then,
for each integral manifold A of D, the tangent bundle A
of A is globally spanned by commuting vector fields. This
defines a global parallelism in A in which the parallel vec-
tor fields are the restrictions to A of the Hamiltonian

vector fields in D. Furthermore, each fibre M of has

ED
a Kdhler structure such that FlﬂD'l(M) projects onto the
distribution of anti-holomorphic vectors on M. In the remainder
of this section we outline proofs of these statements.

Let f be a function on X such that uf = 0 for
each u € E. Then (EfJ w)(u) = -df(u) = -uf = 0, and Eq. (4.6)
implies that gf(x) € Dx for each x € X. Therefore, the
Hamiltonian vector fields of functions constant along E are
in D, and they commute since the Poisson bracket of functions
f and g constant along E vanishes: [f,g] = ~Eeg =0 for
Eg(x) €D <E.. Conversely, if £¢ 1is the Hamiltonian vec-
tor field of a function £ such that Ef(x) € Dx for each
x € X, then f 1is constant along E. Given an integral mani-
fold A of D, let x be any point of A and (V;ﬁl,...,ﬁd),
d = dim D = codim E, a chart on X/E at HE(x). The Hamil-
tonian vector fields & ;,...,& 4 of q1 = ﬁlon
qd = ﬁdonE, respectively, commute and span D|nE'
tangent bundle A is therefore globally spanned by
gq1|A,...,qu|A. The global parallelism in A thus defined is
clearly independent of the choice of chart on X/E. Now, let

M be a fibre of The projection onto M of F|nD-1(M)

ED’
is an involutive complex distribution FM on M such that
Fy + ?M = 7%, EBach vector in IM can be expressed in the

form .9%D(w + w) for some w € F. Let Ayt M > IM and

hM:.gM x9M + ¢ be defined by
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AT W + W) = - T (v + TW) (4.7)
and

hy (I (w + W), Ip(w' + W')) = 2ie(w',w). (4.8)

Then ‘/h is an integrable almost complex structure such that
FM is the distribution of anti-holomorphic vectors, and hM
is a Hermitian form on M with the associated Kidhler 2-form

given by
wy ( T, (v + W),.?ﬁD(w’ + W) = oW +w', w+w. (4.9)

Hence, M has a canonically defined Kdhler structure, as re-
quired.

A polarization F 1is said to be positive if
iw(w,w) > 0 for each w € F. For a strongly admissible posi-
tive polarization the K&hler metric h defined on the fibres

M

M of Tep' X/D + X/E is positive definite. A polarization
F is said to be real if F = F. C(Clearly, a real polariza-

tion is positive.

4.2. The bundle VA"E

Given a polarization F of (X,w), one could take the
space of those sections of the line bundle L which are co-
variantly constant along F to form the representation space.
If Al and AZ are two such sections of L, their product
<A1,A2> is constant along D and consequently the integral
IX<A1,A2> w? diverges unless the leaves of D are compact.
Since <A1,A2> defines a function on X/D, one could define
a scalar product on X/D if one had a suitable measure. How-
2>
defined a density on the manifold X/D, rather than a scalar

ever, X/D has no canonically defined measure. If <A1,A
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function, then one could integrate this density over X/D
thereby defining an appropriate scalar product for wave func-
tions. Such a modification can be obtained by using the covari-
antly constant sections of the tensor product of L with the
bundle VA"F which will be defined presently. We shall see
later that the bundle VAnF, apart from providing a suitable
scalar product, leads to the correct modifications of the Bohr-
Sommerfeld conditions and enables one to obtain unitary repre-
sentations of groups of canonical transformations generated by
certain dynamical variables.

Let F be a polarization of (X,w). A linear frame of
F at x 1is an ordered basis w = (wl,...,wn) of Fx' The
collection of all linear frames of F forms a right principal
GL(n,C) fibre bundle PHF over X called the bundle of linear
frames of F. Associated to 4F 1is the complex line bundle
A"F over X, the n'th exterior product of F. The space of
sections u of A"F is isomorphic to the space of complex-

valued functions u# on 4F such that
W wo) = getcHfw (4.10)

for each w = (wl,...,wn) G.Q&F and each C € GL(n,c); the

isomorphism u# » p being given by

#
p(x) = n (wl,.,,,wn)wlA...Awn. (4.11)

Let ML(n,C) denote the double covering group of
GL(n,C) and p: ML(n,C) + GL(n,C) the covering homomorphism.
ML(n,C) 1is called the complex n x n metalinear group. A
bundle of metalinear frames of F is a right principal
ML(n,C) fibre bundle PF over X together with a map

T: YF »BF such that the following diagram commutes:
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@F x ML(n,0) ————> HF

| o |-

@F x GL(n,c) ——> PF ,

where the horizontal arrows denote the group actions. The
existence of a metalinear frame bundle of F is equivalent
to the vanishing of a class in HZ(X,ZZ) characteristic of
PF, while the number of distinct metalinear frame bundles is
parameterized by the cohomology group Hl(X,ZZ). Let
x: ML(n,C) =+ C be the unique holomorphic square root of the
complex character det o p of ML(n,C) such that x(i) =1,
where i denotes the identity of ML(n,C). The bundle VATE
is the fibre bundle over X associated to #F with standard
fibre C on which ML(n,C) acts by multiplication by x(é),
Q € ML(n,C). The space of sections v of VAnF is isomorphic
to the space of complex-valued functions ot on EaF satis-
fying the condition

Wt = x@ et (4.12)
for each i €FF and each Q € ML(n,C). Consequently, by re-
stricting to fﬁFx, we see that elements v € VAan can be

identified with functions vx#:ﬁaxF + C such that

v - x@he (4.13)
for each w €§Fx and Q € ML(n,C).

A strongly admissible polarization F can be locally
spanned by complex Hamiltonian vector fields. Let {El,...,En}
be a set of complex Hamiltonian vector fields spanning F on
some open set W < X, and let §&: W +PF denote the frame field

defined by E(x) = [EY(x),...,E"(x)] for each x € X. Suppose

that W is contractible so that there exists a 1lift of §
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to a metalinear frame field é: W +9PF. Let vi be the
unique section of VAF over W such that
vt o £ -1, (4.14)
£ s

Then, every section v of VA"F can be represented on W as

vlw = ovf o By (4.15)

g.
Complex Hamiltonian vector fields in F commute; this
can be established by the same argument we used in the previous
section to show that Hamiltonian vector fields in D commute.
Hence, if & and &' are two linear frame fields for F con-
sisting of complex Hamiltonian vector fields defined on some
open set W, then E&'(x) = £(x)C(x) for some function
C: W+ GL(n,C) constant along F|W. If E and g' are 1lifts
of & and §g', respectively, to metalinear frame fields for
Flw, then E' = §6 where C: W =+ ML(n,C) 1is constant along
F|W. This observation enables us to define an operator V
of partial covariant differentiation in the direction F
acting on the space of sections of VA"F as follows. A local
section v of VA'F over W is said to be covariantly con-
stant along F if v# ° g is constant along F, where E
is any metalinear frame field for F projecting onto a linear
frame field consisting of complex Hamiltonian vector fields
spanning F|W. Since there exist nonvanishing local sections
of VA'F covariantly constant along F, e.g., the section vg

defined by Eq. (4.14), and since every section v of VAlE

can be represented in the form (4.15), we define V,v by

- LA
(Vuv)|w = u(v o g)vi (4.16)

for each u € F|W. This definition does not depend on the



4.3. Square integrable wave functions 67

choice of g projecting to a local linear frame field for F
consisting of complex Hamiltonian vector fields, and it satis-
fies all the rules of covariant differentiation if one re-
stricts them to vectors in F. In particular, if & and &'
are vector fields in F, then [£,£'] is in F and, for

each section v of VAnF,

(Ve¥r = V¥ = Vpp o)V = 0. (4.17)

4.3. Square integrable wave functions

The connection in L and the operator of partial co-
variant differentiation of sections of VA™F in the direction
F induce an operator of partial covariant differentiation of
sections of L ® VA"F in the direction F. The quantum
states of the system under consideration are represente& by
those sections o¢: X + L ® VA"F which are covariantly constant
along F. For each complex-valued function ¢ on X/D such
ED' X/D +> X/E
are holomorphic with respect to the complex structure defined

that the restrictions of ¢ to the fibres of =

by Eq. (4.7), the section (y o nD)o of L ® VA"F 1is also
covariantly constant along F. Thus, the quantum states are
represented by sections of L ® VA"F which are covariantly con-
stant along D and holomorphic along the fibres of TED*
Assume that F 1is a positive polarization, that is,
iw(u,u) > 0 for each u € F. To each pair (01,02) of sec-
tions of L ® VA'F covariantly constant along F we associate
a complex density <°1’°2>X/D on X/D as follows. For each
point in X there exists a neighborhood V of this point
such that the sections o and 9, restricted to V are of

the form
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01|V = A, ®v and 02|V =X, ®v

1 1 (4.18)

2’
where Al,Az are covariantly constant sections of L|V and

vy,v, are covariantly constant sections of VAnF|V. Given a

point x € V, consider a basis

(ViseresVys ul""’un-d’ﬁl""’an—d’ WiseeosWy) (4.19)

of 5§CX such that

(vl,...,vd) is a basis of D (4.20)

b= (vl,...,vd, ul,...,un_d) is a basis of Fy (4.21)

and, for each 1i,j € {1,...,d} and each k,r € {1,...,n-d},

m(vi,wj) = 6ij (4.22)
iw(u,U) = 8,0 (4.23)
m(uk,wj) = w(wi,wj) = 0. (4.24)
The basis (4.19) projects to a basis
C?ﬁD(ul)""’jﬁD(un-d)’j7hD(El)"'LE%D(ﬁﬁ—d)’
(4.25)
.9%D(w1),...,§ﬁD(wd))
of j?ﬁD(x)X/D. The value of the density <°1’°2>X/D on the
basis (4.25) is defined to be
A ), B, B (4.26)

where E €£5XF is a metalinear frame of F at x projecting
onto the linear frame b €<Q&F given by Eq. (4.21). It can be
easily verified that the value of <A1(x),kz(x)>vl#(§)v2 (§)

depends only on the sections oy and o, and the basis

(4.25) of FL X/D. Hence (4.18) - (4.26) define a demsity
D
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on X/D which we denote by <o Note that

1°92”x/D"
<°1’°2>X/D depends linearly on o1 and antilinearly on Oy
and that

<0,0%y,p 20 (4.27)

for each covariantly constant section ¢ of L ® VAR, Hence,

the sesquilinear form
(0,]0,)  := I <0,,0,> (4.28)
1'7270 X/D 1°°2°X/D

defines a Hermitian scalar product on the space of sections of

L ® VA'F covariantly constant along F. We denote by &° the
completion of the pre-Hilbert space of those covariantly constant
sections o for which (o|o)° is finite. The space &° s
the subspace of the representation space corresponding to the
continuous part of the spectrum of the complete set of commut-
ing observables defining the representation.

If the polarization F is real, F=F = Dc, and the
integral manifolds of D are simply connected, then the space
&0 s equal to the representation space & In this case one
can give the usual local descriptions of sections in &° in
terms of square integrable complex functions on X/D. Let
(V,ﬁl,...,an) be a coordinate system on X/D. For each
i € {1,...,n}, we denote by qi the pull-back of ai to X,

that is, q* = §* » T wD’l(V) + R, The Hamiltonian vector

1

fields & ;,...,&€ | span FlﬂD' (V). We denote by & the
q q -

linear frame field of F|WD'1(V) consisting of the Hamiltonian
vector fields of ql,...,qn,
= (8 15..-5,8 1)y (4.29)
q q

and by ; a metalinear frame field projecting onto £.
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The section vz of VA"F defined by

£

\’~# °

&

is covariantly constant along F.

Jevee

=1 (4.30)

Let Ao be a nonvanishing covariantly constant local

section of L such that

<A°,A°> = 1. (4.31)

Each smooth section o €&° with support in nD’l(V) can be

represented in the form

o = val,...,a"g © v, (4.32)

where V¥ is a smooth function on R" with support contained

in the range of the coordinate chart (ﬁl,...,&n): v -~ RrT,

The coordinate functions ﬁl,...,dn define a density d"3
on V given by
a3 = |dgta...add"|. (4.33)

This density coincides with the density <A° ® vy

B %o © P/
defined by Eq. (4.26). Hence, the scalar product (4.28) of two

A ®
o

. 1 n
sections o, = wl(q yeeesq )Ao ® vg and

1 n . . -1 .
o, = ¢2(q soeeesd )Ao ® vg with supports in V) is

D
given by

Wy lat,ena™ng @ vg | ¥,0at,..qha, @ vp)
= (4.34)
- [V n @ L 8T, e

Thus, the sections o €X° are represented locally by square

integrable functions on open sets in X/D.
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4.4. Bohr-Sommerfeld conditions

The complement of #° in the representation space &
is spanned by generalized (distributional) sections of
L ® VA"F which are covariantly constant along F. The supports
of these sections are restricted by the Bohr-Sommerfeld condi-
tions as we now explain.

Let A be an integral manifold of D. The operator
V of partial covariant differentiation of sections of
L ® VA"F in the direction F induces a flat connection in
the restriction (L ® VA"F)|A of L ® VA"F to A. The
holonomy group Gy of this connection is a subgroup of c”.
Elements of GA can be obtained by the multiplication of the
elements of the holonomy groups of L|A and VA"F|A which
correspond to the same loop in A. If o 1is a section of
L ® VA'F covariantly constant along F containing A 1in its
domain of definition, then o|A is a covariantly constant sec-
tion of (L ® VA"F)|A. Parallel transport in (L ® VA"F)|A
along loops in A results in the multiplication of o|A by
the elements of Gy On the other hand, since o|A is a co-
variantly constant section, it does not change under parallel
transport. Hence, either o|A 1is the zero section, or the
holonomy group G, is trivial, i.e., GA = {1}. The union of
all integral manifolds A of D such that Gy = {1} con-
stitutes the Bohr-Sommerfeld variety S. For each x € X,
we denote by Ax the integral manifold of D passing through
x. Then, we have

s=1{xex| G ={1}}. (4.35)
X

In particular, S = X if each integral manifold A of D is
simply connected. The preceding discussion implies that the

covariantly constant sections of L ® VA"F vanish in the
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complement of S.

To relate the definition of the variety S to the
Bohr-Sommerfeld quantization conditions, consider a contrac-
tible open set U in X such that L|U admits a trivializ-

ing section Ao. Then,

= -1 -1
VA, = -ine @ A (4.36)

for some 1-form 6 on U satisfying

w|U = de (4.37)

[cf. Egqs. (3.17) and (3.20)]. For each loop vy: [0,1] + U,
the element of the holonomy group of the connection in L
corresponding to vy 1is given by exp(ih-1 I 6). If Imy
is contained in an integral manifold A of I'B,Ywe denote by
exp(-ZﬂidY) the element of the holonomy group of the flat
connection in VAPE|A corresponding to Y, where the number

dY is defined up to an arbitrary integer. Thus, for each

A = U, the condition GA = {1} is equivalent to
8 = (n_ +d)n (4.38)
[ NCREES

for each loop Yy in A, where nY is an integer. Since

0 = Zpidqi for some functions pl,...,pn,ql,...,qn on U,
Eq. (4.38) expresses the Bohr-Sommerfeld conditions corrected
by the numbers dY corresponding to the holonomy group of

VARE|A.
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4.5. Distributional wave functions

Alpolarization F of (X,w) 1is said to be complete
if the Hamiltonian vector fields contained in D are complete.
In this section we analyze the structure of the representation
space for a complete strongly admissible real polarization.
Simple examples of the general framework presented here are
provided by the quantization of a harmonic oscillator in the
energy representation and the quantization of charge.

Let F be a complete strongly admissible real polariza-
tion of (X,w). The integral manifolds of D are isomorphic
as affine manifolds to .the products of tori and affine spaces.
For each k € {0,1,...,n}, we denote by Xy the subset of X

consisting of all integral manifolds of D isomorphic to the

product of the k-torus Tk by the affine space R"K:
_ - 1K n-k
X, = {x € X | A =T xR }, (4.39)
and set
Sp = 5 N Xp. (4.40)

The elements of the structure of the Bohr-Sommerfeld
variety S necessary for the definition of a scalar product
on the space of the generalized section can be characterized
as follows. For each x € Sk’ there exists an open neighbor-
hood V of nD(x) in X/D and a k-codimensional submani-

fold Q of V such that

T (X)) N Qe m(Sy) (4.41)
and

m(S) NV Q. (4.42)

Also, for k > 1, there is a canonically defined k-dimensional

involutive distribution K on nD'l(Q) contained in
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DIWD'I(Q), the integral manifolds of which are diffeomorphic
to Tk. The distribution K is endowed with a density «,
invariant under the action of the Hamiltonian vector fields in
DIND'I(Q), which associates to each integral manifold of K
the total volume 1.

For each k € {0,1,...,n}, consider the space of (dis-

continuous) sections o of L & VA'F satisfying the follow-

ing conditions:

support ¢ < §;, (4.43)

for each x € Sk’ the restriction of o to

"D'I(Q), where Q satisfies (4.41) and (4.42),

n 1 (4.44)
is a smooth section of (L ® VA F)lnD Q
covariantly constant along FlnD'l(Q), and
the projection to X/D of the support of o}
(4.45)

is compact.

In this space we introduce a scalar product as follows. Let

o and o be two sections satisfying the conditions (4.43),

1 2
(4.44) and (4.45). The condition (4.45) implies that there

exists a finite number of pairwise disjoint submanifolds

Ql""’Qs of X/D satisfying (4.41) and (4.42) such that
s
the supports of o, and o, are contained in U 1(Q.).
1 2 i=1 D i
The pair (ol,oz) of sections induces on each Qi a density

<01’°2>Q which will be defined presently. The scalar
i
product of oy and O, denoted by (olloz)k, is given by
I
(011050 = f <0.,0,> . (4.46)
1727k . & 1°72°Q,
i=1 Qi i

We denote by g(k the completion of the space of all sections

o satisfying (4.43) - (4.45) with respect to
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the scalar product (4.46). For k = 0 it coincides with the
space &° of square integrable sections introduced in Sec. 4.3.
In order to define the density <01,02>Q_, for k >1,
. i -1 . 1
consider a point x € HD (Qi) and a basis (wl,...,wn,
o
vl,...,vn) of J&X such that

(wl,...,wk) € Kx and K(wl,...,wk) =1 (4.47)

W = (Wp,...,% ) €BF (4.48)

(4.49)

The basis (wl,...,wn, vl,...,vn) induces a basis

7z G .
(_/ﬂD(vk+1),...,./%D(vn)) of ng(x)Qi' The sections 9y
and o, can be expressed in a neighborhood of x as tensor

products of sections of L and VAnF,

A, ® v and

0, = X 1 = A, ® V,. (4.50)

92 2 2
The value of the density <01’GZ>Q- on the basis
i
(_7%D(vk+1),...,.93D(vn)) is given by
(o7 Cfw
<°1’°2>Qi£/hD(Vk+l)"""/"D(Vn))

(4.51)

= x0T,

where W €_§&F is a metalinear frame for F projecting onto
the linear frame w given by Eq. (4.48). It can be verified
that Eq. (4.51) defines a positive semidefinite density on Qi
which depends linearly on 91 and antilinearly on g, Hence,
Eq. (4.46) defines a positive definite scalar product.

The full representation space & is the direct sum of

the spaces ka,
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Dok
H= o I, (4.52)
k=0
Elements of & are sums of sections in the dfk's,
i.e., c € H 1is given by o = o® + ol oL, 4 on, where

oK € &%, The scalar product on & 1is given by
n
k k
(olloz) :=k20 (o |o2 i+ (4.53)

To each connected component of the Bohr-Sommerfeld variety
S there corresponds the subspace of & consisting of sec-
tions with supports in this component, and & can be decom-
posed into the direct sum of such subspaces. Clearly,

dim & = 0 if S 1is empty. Conversely, if S 1is not
empty, the representation-space is nontrivial, i.e.,

dim &> 1.



5. BLATTNER-KOSTANT-STERNBERG
KERNELS

Let F and F be two polarizations of (X,w) and

1 2

ﬁq and ﬂé the representation spaces corresponding to F1

and E, respectively. For strongly admissible pairs (Fl,Fz)
of polarizations there is an intrinsically defined sesqui-
linear map 2%2: ﬂ%_X-dé + C, called the '"Blattner-Kostant-
Sternberg kernel." The kernel .ﬂaz induces a linear map

%12: 17/2 ->s§£/1 such that

#2001505) = (071%50) (5.1)
for each o) €<¢q and o, € d%. If Qﬁz is unitary, the

representation spaces ﬁ% and dé are said to be "unitarily

related."

5.1. Transverse polarizations

Consider first a pair (Fl,Fz) of complete strongly

admissible positive polarizations such that

F, + F, =7°x, (5.2)

1 2

Each pair (01,02) of sections of L ® VA"F and L ® VAan,

1
respectively, gives rise to a function <0,,0,> on X defined

77
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as follows. Given a point x € X, let
- 1 n _ 1 n
W, = (wl yeeeaWy ) G_Q&Fl and W, = (w2 seeeaWy ) E‘Q&Fz

be such that, for each r,s € {1,...,n},
io(w,T,w,%) = nets (5.3)
1 2
where & 1is Plack's constant; the existence of such a pair
of linear frames follows from the transversality condition

(5.2). In some neighborhood of x we can factorize o and

[} so that

2

g, = A, ®V and 0, = A, ® V

1M ey 2 7 X (s.4)

2’

where A and A, are sections of L, and v and v are

1 2

sections of VA"F and VAan respectively. Let, for each

1

j =1,2, ij €5?ij be a metalinear frame for Fj projecting

onto Ej' We claim that the expression
$ ~ T F =~
Aq(x)52, (x)>v, " (W) v, (Wy)

is defined by al(x) and cz(x) up to the factor 1. It is

clearly independent of the factorization of 9y and 0y-

over, let il' €.9&Fl and iz' €5ZXF2 be such that the pro-

jections w;' of Ql‘ and w,' of iz' satisfy the condi-

tion (5.3). Then, there exist A, A, € ML(n,¢) such that

Taking into account Eq. (4.12),

~ _ o~ ~ o ~
¥t = WAy and Wyt o= WA,

we have

R A S RV s P WS PRI C A LT

Since x 1is the holomorphic square root of det o p: ML(n,C)

it follows that X(A"l) = x(det A_.-l)!i where Aj = p(éj).

Hence, x(él'l)x(éz' ) = t(det Al)' (det Ez)'%. On the other

hand, Eq. (5.3) implies that Altgz = I, where Alt denotes

the transpose of A;, so that (det A,)(det A) =

l,
(det Alt)(det Ez) = 1 which proves our assertion.

If there was a way of restricting the arbitrariness in

S

More-
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the choice of the metalinear frames ¥, and %, such that
their projections W, and oW respectively, satisfy Eq. (5.3),

one could define a function <01,0,>: X + ¢ by setting

<01,0,2(x) = <A (), 4, (x>, F (v, @, (5.5)

Such a restriction is provided by lifting Eq. (5.3) to the
metalinear frame bundles. This will be done in terms of the
metaplectic structure introduced in Sec. 5.3. In the mean-
time we assume that <0,,0,> is defined by Eq. (5.5), where
il €.§&F1 ‘and iz €£§XF2 satisfy condition (5.80) of

Sec. 5.3.

1 1
Let Ly = (gy ,...,5") and I, = (3;7,...,5,") be
local linear frame fields for F1 and FZ’ respectively,
which consist of (complex) Hamiltonian vector fields, and let

éi be a 1lift of Z; to a metalinear frame field for F,.

Assume that the factorizing sections vy and v, in

Eq. (5.4) are chosen so that
022 = 1. (5.6)
For each j,k € {1,...,n} set

% = (/me,?,T,Y. (5.7

The matrix (djk) is non-singular and we denote by (dy.)

the inverse matrix so that
x .
E al a, = 8,7, (5.8)
The frame fields 19) for Fl and

- k— k—
52' O (1{. ';2 dkl""’lé CZ dkn) (5-9)

for F2 satisfy the condition (5.3) at each point of their
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common domain. Let gz' be a lift of 52' to a metalinear

frame field for FZ‘ We have

# ~ T F =L -y

(vl ° 51)(v2 ° T, ) = det(djk) , (5.10)
where the ambiguity in the sign is absorbed in the choice of
the branch of the square root. Taking into account Eqs. (5.6),

(5.7) and (5.8), we can rewrite Eq. (5.5) in the form
<o, ,0,> = (i/h)n/z[det w(z, I, k)];’q U (5.11)
1’72 1°°2 12727 ° :

It is apparent from Eq. (5.11) that <01,0,> is a smooth
function on X if the sections 9, and o, are smooth.

For o, € aq and o, € ﬁ%, the kernel .ﬁaz(ol,cz) is

2
defined by the integration of the function <01,0,>. Con-

sider first the case when o and o, are square integrable

1
sections, i.e., o, € g%O and o, € ﬁ%o. Then

jfiz(ol,oz) = IX<01,02>|wn|, (5.12)

where |w"| is the canonical density on X defined by the
n'th exterior power of w. In order to ensure the conver-
gence of the integral in Eq. (5.12) one needs some additional
assumptions on the polarizations Fl and Fz. We shall not
deal with this problem here. - .

Suppose now that o and o, are distributional sec-

tions with supports in the manifolds ™ -l(Ql) and ™ -l(Qz)
1 2

respectively, where, for each i = 1,2, Qi satisfies the con-

ditions (4.41) and (4.42) for the polarization Fi' The

Blattner-Kostant-Sternberg kernel .ﬁiz(ol,oz) is defined by
. . -1 -1
the integration of <0,,0,> over "Dl (Ql) n “DZ (QZ)

with respect to a density 6 (which will be defined

QQ,
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presently):

}qz(ol,oz) 1= I<°1’°2>6Q (5.13)

1%
The value of ﬁﬁz on an arbitrary pair of elements of
ﬂq x ﬂ% can be obtained from Eqs. (5.12) and (5.13) by
linearity.

To define GQIQZ’ let us consider a point

x € "Dl-l(Ql) n "DZ'I(QZ) and a basis of
-1 _1
‘g}-([TrDl (Ql) n Tr1)2 (QZ)] of the form

1 2
1 k 1 k
(EI’EZ’X) = (wl eeeaWyT SWy e, Wy ,vl,...,vm), (5.14)

where k1 = codim Ql’ k2 = codim QZ’ and m = Z(n-kl-kz),
such that
1 1
wll,...,wlk € Kl and Kl(wll,...,wlk ) =1 (5.15)
and
2 2
wzl,. ,wzk € l(2 and Kz(wzl,...,wzk ) = 1. (5.16)
Here, for i = 1,2, K; is the distribution on m 'l(Qi)
. i
such that its integral manifolds are k*-tori and Ky is
1

the density on Ki introduced in Sec. 4.5. Let ull,...,u1 ,

1 K2

UyTheeesly be vectors in E;X such that

T s, _ TS
w(wi Uy ) = Gijs

for all 1i,j € {1,2}, r,s € {1,...,k1} and p € {1,...,m}.

r s, _ T -
and tu(ui ,uj ) = w(ui ,vp) 0 (5.17)

The value of the density § on the basis (w,,w,,v) is
Q,Q, F10%20 %
defined to be the absolute value of ™ on the basis
1 2
1 k 1 k
(Elal",z:x’gl’gz) = (wl ,---owl ywz ,--o’wz ’Vl:"-avm»
1 2 (5.18)
k 1 k
UpTheea,Uy U7, ,Uy )
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.= n
6Q1Q2("_"_1’V_"_2’K) . |w (El,ﬂz,lyglrgz) | . (5-19)

5.2. Strongly admissible pairs of polarizations

Let Fl and F2 be complete strongly admissible posi-

tive polarizations. Set

D12 = D1 nobD and E = E, + E_. (5.20)
Then

1 0 Fp =Dy 17 B (5.21)

This can be seen as follows. If we F, nF then, by the posi-

1 2
tivity of F; and F,, jw(w,w) > 0 and iw(w,w) > 0. Hence
w(w,w) = 0 so that w € ch and w € ch. Thus w € D12c
- c . . c = . )
and L F, e Dy The inclusion D12 = F1 nF, is ob

vious. Similarly, the inclusion Fl + FZ

and the equality follows from the fact that at each point

c . .
E12 is obvious,

in

x € X,

. - . €4 ooC
dlmc(F1 + FZ) = codlmc(F1 n FZ) = codlmch2 dlmcE12 .

The pair (Fl,Fz) of polarizations is said to be
strongly admissible if E12 is an involutive distribution on
X and the spaces X/D12 and X/E12 of integral manifolds of
D12 and E12’ Respectively, are quotient manifolds of X.

We denote by LO X » X/D12 and

12
canonical projections.

: X » X/E the
E12 12

In this section we restrict our attention to a strongly
admissible pair (Fl,Fz) of polarizations. Let ﬁ% and ﬁ%
denote the representation spaces associated with the polariza-
tions F1 and Fz respectively. Given a pair of sections

o, € ﬂ% and o, € ﬁ%, we will construct a density
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8(0,,9,) on X/D;,. The kernel .ﬁﬁz(ol,oz) will be given

by the integration of this density over X/Dlz’

J%iz(ol,oz) 1= IX/D 6(01,02). (5.22)
12
Consider a basis of 5;CX of the form

(¥,u;,4,,4,,4,,t), where

v 1is a basis of D12 (5.23)
w, = (x,gl) € BxFl’ w, = (x,gz) € Bsz (5.24)
io(uJ, 5,5 - nelk (5.25)
wvh,t5) = §T° (5.26)

0y ?,t%) = w@?,t%) = w,’,t%) = w@,?,t%) = 0(5.27)

for j,k € {1,...,n-m}, r,s € {1,...,m}, and m = dim D),

This basis gives rise to a basis

of EZC(X/DIZ), where 2z = wlz(x). We choose the factoriza-
tion of the sections 91 and 9, given by Eq. (5.4), and a
pair El and EZ of metalinear frames for F, and F,, res-
pectively, such that il projects onto W, and EZ projects

onto W,. We define the density 6(01,02) by the formula
- # o~ Fo~
8(01,0,) (b)) := A" Teag (XY, A (x)>v " () v," (H,)  (5.29)

since, for m = 0, 6§(0;,0,) coincides with \<ol,02>|wn|.
We now show that Eq. (5.29) does indeed define a density
gC ~'=~~ Moo= A
6(0y,0,) on FT(X/Dy,). If W, WA, and W, W,A, are
another pair of metalinear frames such that their projections

= L. s P
W' = WA and w, w,A, satisfy the conditions (5.23),
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(5.24) and (5.25), and t' is defined by Eqs. (5.26) and
(5.27) with v, u, and u, replaced by v', u,' and u,’,

we obtain a new basis b' of _9;C(X/D12). To see how b' is
related to b, notice that Eqs. (5.23), (5.24) and (5.25) imply

that A, and A, are in the block form

B D
A; = I, (5.30)
J 0 C.
=J
where B € GL(m,R) and gl,gz € GL(n-m,C), and
t= .
c,'C, = I. (5.31)
Thus
b' = b-M, (5.32)
where
¢, 0o 0 0 0
0 g, o o0 o
M= |0 o T o o . (5.33)
0 0 0 C 0
=2 ty-1
0 0 0 0 (B)

On the other hand, the same argument that was used in Sec. 5.1

shows that
oo TFoT - N S P
v v, @) = 2ot A Hedet B 7o v, @y
= zaet B I v,y = rer mv Py, @y,

Hence, the right hand side of Eq. (5.29) transforms, up to

sign, as a density. The choice of sign is determined by 1ift-

ing the conditions (5.23), (5.24) and (5.25) to the bundles of

metalinear frames, and will be discussed in the following section.
It remains to show that the right hand side of

Eq. (5.29) is independent of the choice of x in the fibre

wlz'l(z). Let & = (El,...,Em). be a linear frame field for

D consisting of Hamiltonian vector fields, and let

12
1 n-m

1 n-m
Cl ,...,Cl ,Cz ,...,cz

be (complex) Hamiltonian vector
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fields such that

1 -
SN CAPUIN-L TE N A

: (5.34)

is a linear frame field for Fi in some neighborhood of x.

Let B8

j be a lift of gi to a metalinear frame field for

Fi’ and assume that the factorizing sections vy and v, of

o and

1 respectively, are chosen so that

02,
Vl#(él) = \’2#@) = 1. (5.35)

Then, V19V, and Al,xz are covariantly constant along F12'

Let, for each j,k € {1,...,n-m},
A% = mue T, (5.36)

The matrix (dJk) is non-singular and we denote by (dy,)

the inverse matrix so that

n-m ik .
kzl a?dy =67, (5.37)
The frame fields gl for F1 and
U | m k 5 k=
By = (&7,...,E, E Ty dpqaeees E FACH. (5.38)

for F satisfy at each point the conditions (5.23), (5.24)

2
and (5.25), with uiJ replaced by CiJ and v’ replaced by

Jme

EJ, i=1,2,3j=1,...,n-m. Let be a 1ift of gé to a

]
2
metalinear frame field for FZ' We have

o TF =
vy By, By = raa 0> Tdet(d 017 (5.39)

The frame fields gl and gé define a frame field on

JC(X/D Since the left hand side of Eq. (5.39) is supposed

12)-
to be the value of the density 6(01,02) on this frame field,
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the right hand side must be constant along D The first

12°

factor <A A,> is constant along Dy, since A, and Az

1’
are, by hypothesis, covariantly constant along F1 and

F2 respectively. Thus, Eq. (5.29) defines a density on

X/D12 if and only if det(djk) is constant along D12’
which is equivalent to the condition

T j =k _

g |det w(gy”,z,)| =0 (5.40)

for each r € {1,...,m}. However, for each i,j € {1,...,n-m}

and T € {1,...,m},
£ [wt,7,5,5] - o

since Er, clj and Ezk are Hamiltonian vector fields, and
the Hamiltonian vector fields contained in a polarization
commute.

We have shown that Eq. (5.29) defines, up to a sign,
a density on X/Dlz' We shall fix the sign by setting some
additional restrictions on the choice of W, and W,; this
will be done in the last paragraph of Sec. 5.4. Making use
of Egqs. (5.35), (5.36), (5.37) and (5.39), we can rewrite
Eq. (5.29) in the form

6(01,0,)(B) (5.41)

= (im) (M2 ger w(;lj(x),fzk(x))]%<xl(x),k x)>,

where the ambiguity in the sign is absorbed in the choice of

the branch of the square root.
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5.3. Metaplectic structure

A symplectic frame at x 1is an ordered basis
(ul,...,un;vl,...,vn) of ﬁgx, denoted in the following by

(u;v), such that

w(ui,vj) =8.., m(ui,uj) = w(vi,vj) =0 (5.42)

ij
for i,j € {1,...,n}. The collection of all symplectic frames
at all points of X forms a right principal Sp(n,R) bundle
2% over X, referred to as the symplectic frame bundle of
(X,w), where Sp(n,R) denotes the n x n symplectic group.
The group Sp(n,R) can be realized explicitly as the subgroup

of GL(2n,R) consisting of matrices of the block form

I I

1 2
s (5.43)
I, I,
where I 12, 13, 14 are n x n matrices satisfying
t _ ot - t _ ot t P
1411 1213 l’ 1113 1311 ’ 1214 1412 * (5.44)

Here, the superscript t denotes transposition. Sp(n,R)

is homeomorphic to the Cartesian product of the n-dimen-
sional unitary group and a Euclidean space. Hence, its
fundamental group is isomorphic to the additive group 2z of
integers.

Let Mp(n,R) denote the double covering group of
Sp(n,R) and p: Mp(n,R) +~ Sp(n,R) the covering homomorphism.
The group Mp(n,R) is called the n x n metaplectic group.
A metaplectic frame bundle of (X,w) 1is a right principal

Mp(n,R) bundle 3569Y over X together with a map
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T BIX +£?ﬁ9i such that the following diagram commutes:
w

29X x Mp(n,R) —>BIX
T xop lt . (5.45)

Qw_%( x Sp(n,R) -—)Q‘J%(
The horizontal arrows denote the group actions. The existence
of a metaplectic frame bundle of (X,w) 1is equivalent to the
vanishing of a class in HZ(X,ZZ) characteristic of 3%7X,
and the set of all Mp(n,R)-equivariant equivalence classes of
metaplectic frame bundles, provided it is not empty, can be
parametrized by Hl(X,Zz).

The purpose of introducing metaplectic frame bundles is
to allow as to assign metalinear structures to all positive
polarizations simultaneously. In other words, the choice of a
metaplectic frame bundle uniquely determines a metalinear frame
bundle for each positive polarization. This is accomplished
via the intermediary of the "bundle of positive Lagrangian
frames", which we now define.

A positive Lagrangian frame at x € X 1is an ordered
n-tuple w = (wl,...,wn) of vectors in .9;CX such that
Wiseee,W are linearly independent over € and

w(wj,wk) =0 and iw(wk,ﬁk) >0 (5.46)
for all j,k = {1,...,n}. If F is a positive polarization,
then each element of #HF is a positive Lagrangian frame of
(X,w). The collection of all positive Lagrangian frames at
all points of X forms the bundle of positive Lagrangian
frames Eféﬁ of (X,w). We now describe the structure of
5%9?. Given a symplectic frame (u;v) at X, each positive

Lagrangian frame w can be uniquely expressed as

w =

U+yVs= (g;z)[ %]. (5.47)

=
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where U and V are complex n x n matrices such that

rank[ % ] =n, gtg = !t! (5.48)
and
+ + . .. . .
i(VU - UV) is positive semidefinite, (5.49)
t_ gt

Let P denote the set of complex 2n X n matrices
[ % ] such that (5.48) and (5.49) are satisfied. The symplec-

tic group Sp(n,R) acts on P on the left by matrix multi-

plication
L, T u Liu+ I,V
1= 1= 71 2 (5.50)
I, I, ||V IU + I,V

Eq. (5.47) defines a bijection between E%Jix and P. More-
over, if

T. T
(sy) = (wy| 1 72

(5.51)

is another symplectic frame at x, then

I_J 1
asv) |y (5.52)

- 1 =2 i (5.53)
v I, I, v

w =

=
<
+
1<
i<
[
(o
(=4
<
-

where
1

=)
=
._]
[}
o
1=

Hence, the bundle of Lagrangian frames 9&9X is a fibre

bundle over X with standard fibre P and structure group
Sp(n,R), acting on P according to (5.50), which is associated
to the bundle of symplectic frames 5257X. Eq. (5.47) also
estaﬂlishes a bijection between the space of positive
Lagrangian frames w at x € X and the space of functions
ﬂ#:_éhjzx > P such that, for each (u;v) €4 %X and each

g € Sp(n,R)
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11# (u;v), (5.54)

# -
w ((usv)g) = ¢
given by

w = (u3v) V_w#(g;x)- (5.55)

In the following we shall identify positive Lagrangian frames
with the corresponding functions on the fibres of the bundle
of symplectic frames.

Since elements of 9%9? are complex linear n-frames,
there is a right action of GL(n,C) on 9%9X such that, for
each w ; (Wysenes¥) i £%9X and each C = (cij) € GL(n,C),
w(-= (121 wicil,...,.l w.c. ). The action of GL(n,C) on

= . i in
= i=1
P corresponding to this action on #£JX is given by

C .
( [ % ],g) - [ % T ]. For each [ % ] € P, the relations

(5.48) and (5.49) imply that the matrix C defined by

C=U- iV (5.56)

is non-singular, i.e., C € GL(n,C), and that the matrix W
defined by

W= (Ui - it (5.57)
is symmetric. Moreover, it follows from (5.49) that

Wil <1, (5.58)

where ||W|| denotes the operator norm of W. Let B denote
the closed unit ball in the space of complex symmetric n X n

matrices, i.e.,

B={Wech”| wto= W, W] < 1}. (5.59)

The mapping [ v ] + (W,C) defined by (5.56) and (5.57) is
a bijection from P onto B x GL(n,C) with inverse given

by
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(L+we,  ¥=3zI-wWC (5.60)

N =

H:

We shall use this bijection to identify P with B x GL(n,C).
The action of GL(n,C) on B x GL(n,C) corresponding to the

action of GL(n,C) on P is given by

((W,0)C") » (W,CcC). (5.61)

Thus, the bijection P = B x GL(n,C) exhibits in P the
structure of a GL(n,C)-principal fibre bundle over B.

The left action of Sp(n,R) on P transferred to B x GL(n,C)

T T
takes on the following form, for each g = -1 =2 in
I, I,
Sp(n,R) and each (W,C) € B x GL(n,C):
g(]'l:g) = (gV_V,a(g,ﬂ)g) (5.62)

where

g = [(T,+iT;) (I+W) - (T,-iT,) (1-W)]
(5.63)

. . -1
x [(T,-1iT,) (I+W) + (T ,+iT I-W)]
and (I;-1T3) (I+W (_4 iT))(I-W)

ag,W) = F0(T;-iT5) (I+W) + (T,+iT,) (I-W)] € GL(n,c). (5.64)

The mapping o: Sp(n,R) x B + GL(n,c) defined by Eq. (5.64)
satisfies

@(g18,,%) = algy,g,Walg,,W). (5.65)

The group U(n) of n x n unitary matrices can be im-
bedded in Sp(n,R) as follows:

S

T

T
U(n) 3 S + iT » { —}estm, (5.66)
- S

where and T are real matrices satisfying §t§ + Itl =1,

S
and §tl = ltg. If g € Sp(n,R) 1is the image of a unitary

matrix S + iT under the imbedding (5.66), then
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a(g,W) = § + iT. (5.67)

There exists a unique lift a: Mp(n,R) x B + ML(n,C)

of a such that the diagram
Mp(n,R) x B ——§—> ML(n,C)
o x id p (5.68)
Sp(n,R) x B —% >  GL(n,C)

commutes and, for each W € B, &(€,W) is the identity in
ML(n,C), where & denotes the identity in Mp(n,R). Let
P =B x ML(n,C). Then P is a trivial principal ML(n,C)
bundle over B, and there is a left action of Mp(n,R) on P

defined by & as follows:

g,0) = (p(2IW, a(8,WD) (5.69)

for each g € Mp(n,R) and each (W,0) € B. P 1is a double

covering space of P with covering map T: P-rp given by

TW,0) = [ v ] where U = 2(1 + W)p(3) and

The bundle of metalinear positive Lagrangian frames
§Q7X is the fibre bundle over X with typical fibre P,
on which Mp(n,R) acts by (5.69), associated to the meta-
plectic frame bundle éaf?x. That is, a metalinear Lagrangian

frame W € §Zjix can be identified with a function

W :me;(x + P such that, for each metaplectic frame
(uiv) EQNZ(X and each g € Mp(n,R),
~ N ~-1 #_
i (i = g . (5.70)

The bundle §%9? is a double covering of the bundle #IX of
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positive Lagrangian frames with covering map T!é%i?X -+ E%ﬁ?
given as follows: for each W e_ézﬁix, w = T(W) is

the unique element of 5zj§X such that the following diagram

commutes
o
~ w ~
o
B, 9% —> P
TJ lr . (5.71)
Wt
BIX —> P

The right action of GL(n,C) and the left action of Sp(n,R)
on P commute with each other. Similarly, the right action
of ML(n,C) on P commutes with the left action of Mp(n,R)
on B. Therefore, §%9X inherits a right action of ML(n,C)

and the diagram

ﬁﬁi7x x ML(n,C) ———~>§237X

l“‘" l“ (5.72)

%75( x GL(n,C) qgﬁ)ﬁx

in which the horizontal arrows denote the group actions,
commutes.

Let F be a positive polarization of (X,w). The
bundle #F of linear frames of F is a subbundle of 9&9X
invariant under the action of GL(n,C). The inverse image
of @F under the double covering t: éwﬁx -+ 9(57)( is
a subbundle HF of Aéhgi invariant under the action of
ML(n,c), and T restricted to #F defines a double
covering denoted by t: @F > BF. It follows that ZF

principal ML(n,c) fibre bundle and that the following diagram
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commutes

#F x ML(n,C) —> BF

lT x p lr, (5.73)

PF x GL(n,C) ——> DPF

where the horizontal arrows denote the group actions. The
bundle 4F is the metalinear frame bundle of F <induced by
the metaplectic frame bundle gédgi. In the following we as-
sume that we have chosen a metaplectic frame bundle for (X,w)
and, for each positive polarization F, we consider only the
induced metalinear frame bundle.

We can extend the condition (5.3) to arbitrary positive
Lagrangian frames Wy = (wll,...,wln) and W, = (wzl,...,wzn),

obtaining a relation in 9&9? given by

iw(w, ), W, - B85 (5.74)

U.

for all j,k € {1,...,n}. Let (u;v) € Q&9X and T lep
V.
—i

be such that w, = ul., + vV, for i = 1,2. Then Eq. (5.74)
reads

fu, - ufv. = -in 1. (5.75)

V.5 -5y

2

if (ﬂl,gl) and (ﬂz,gz) are given by

. . -1
W. = (U, + DU, - . .= U.
%5 (_J 1!J)(_J IKJ) and QJ QJ

condition (5.75) transferred to B x GL(n,c) takes the form

- iVy, § = 1,2, the

- W,'W

1. -1
= 2 .

to-
L = 2R, e (5.76)

Let B0 be the set of all n x n complex matrices S such
that ||S|| < 1 and such that 1 is not an eigenvalue of S,

and consider the map
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Y: B > GL(n,c): S» I - S. (5.77)

Since, for any n x n complex matrix S, ||S|| < 1 implies
that 1 is not an eigenvalue of S, B, is contractible and

consequently there exists a unique map Y: Bo + ML(n,C) such that

|12
.

P oY=y and ¥(0) = (5.78)

We are now in a position to 1lift the condition (5.76),
and hence the condition (5.3), to the bundle of metalinear
Lagrangian frames. Let Ql and EZ be two positive meta-
linear Lagrangian frames, (ujv) a metaplectic frame and, for
each 1i=1,2,

U

;L85 = ¥ (Wiw. (5.79)

The condition (5.76) is lifted to the bundle 5%97 by re-
quiring that
~ + _ Fi-1x -1
YW, W) = 2n(€, ") < . (5.80)
Note that operations of Hermitian conjugation and multiplica-
tion by a positive real number in GL(n,c) 1lift to ML(n,C)
so that the right hand side of Eq. (5.80) makes sense. More-
over, if g is an element of the kernel of p: Mp(n,R) + Sp(n,R)
so that e = p(g) is the identity in Sp(n,R), we
have &(g,W) = g for each W € B and
~ o~ ~ -1 ., ~ -1 ~ -1~ (-1
20GENNEN N @I = 2eEeyH et
afy-1,% ty-1% -1=-1 ~-1,.% ty-1% -1~-1
= 2NN et - et Eh e T
_ ~ Fy-1lx -1
= Z(Ez ) gl .
Therefore, Eq. (5.80) is invariant under the action of the
kernel of p: Mp(n,R) + Sp(n,R). Furthermore, Eq. (5.80) pro-

jected to GL(n,C) yields Eq. (5.76) which is invariant under
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the action of Sp(n,R). Hence, Eq. (5.80) is invariant under
the action of Mp(n,R) so that it defines a relation in

éagx independent of the metaplectic frame used in Eq. (5.79).

5.4. 1Induced metaplectic structure

Let (Fl,Fz) be a strongly admissible pair of complete
strongly admissible positive polarizations such that the dis-

tribution D is orientable. For each integral manifold M

12

of E.,, its projection N = (M) to X/D is a submani-
12 D12 12

fold of X/D12 endowed with a symplectic form w such that

N
the restriction of w to M is equal to the pull-back of

wy to M by the map |M: M+ N,
12

N

N (5.81)

w|M = (7 M*
D12|
The metaplectic structure on (X,w) induces a metaplectic

structure on (N,w which will be used to 1ift the condi-

N)
tions (5.23), (5.24) and (5.25) to the bundle of metalinear
Lagrangian frames.

Given a point x € X, let Qzlzjgx be the collection

of symplectic frames in 59_9;X of the form

w
(s,u;t,v) = (sl,...,sm,ul,...,un'm; (5.82)
tl, ,t, v, R
such that
sh,...s" €D, (5.83)
and
sl,...,sm,ul,...,un-m, vl,...,vn-m €E (5.84)

12°

The collection of all the symplectic frames of the form (5.82)

which satisfy (5.83) and (5.84) is a subbundle
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21l%9% = U 2 12~'fx (5.85)
w xex ¢

of the symplectic frame bundle Q%ﬁ?. It is a principal fibre
bundle with structure group G consisting of all matrices in

Sp(n,R) of the form

A" B C D
0 T E T
TR (5.86)
0 0 A 0
o I3 E I,
where A € GL(n,R) and T » T T3 I, are (n-m) x (n-m)

129%  the

matrices satisfying Eq. (5.44). We denote by £§
inverse image of .Qb1%7x under the covering map r:gﬂw7x +.§m§§
and by G the inverse image of G wunder p: Mp(n,R) + Sp(n,R).
For n >m, G is a connected subgroup of Mp(n,R).

The bundle 2 129%

is a right G-principal fibre bundle.
Let G0 be the subgroup of G consisting of matrices

of the form

1>
|
10
(I~}

o
|~
|t
=

1 . (5.87)

o |o
o lo
ez P
= o

It is a normal subgroup of G and the quotient G/G0 is
isomorphic to Sp(n-m,R). Each loop in G0 is contractible
in Sp(n,R), hence p_l(GO) < Mp(n,R) has two connected com-
ponents. We denote by 50 the connected component of p'l(Go)
containing the identity element. It is a normal subgroup of

G and the quotient group 5/&0 is isomorphic to Mp(n-m,R),

for n > m.
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Let & be a Hamiltonian vector field in D and ¢t

12
the one-parameter group of canonical transformations generated

by &. Each ¢t induces a mapping ¢#t: 3%9? +.9%9X, defined

by

#t

ot = wtah,... %t

n

W™ Zteh), . LB, (5.88)

which commutes with the right action of Sp(n,R). Since ¢t

and E, it follows that ¢#t maps _5%1%9X

. # .
onto itself. The one-parameter group ¢ t lifts to a one-

preserves F

=

parameter group 5#t of automorphisms of the bundle _éng of
metaplectic frames. Since each ¢#t maps _gh1%7x onto it-
self, each $#t maps _éhl%9x onto itself.

The actions 0n_9b1%7x of the one-parameter groups of
canonical transformations generated by the Hamiltonian vector

fields in D and of the group G lead to an equivalence

12 o
relation ~ in 4 '29%. Given b,b' €4 ‘%%,

b-b' = b=¢TFme (5.89)

for some one-parameter group ¢t of canonical transformations
generated by a Hamiltonian vector field in D12 and some

g € Go' The quotient space £3w1%7k/~ is a right principal
Sp(n-m,R) fibre bundle over X/Dlz. The relation (5.89) can

be lifted to walzfx as follows:

|o*e
2

ot
3

|oe

=¢" “(b")g (5.90)

for some one-parameter group ¢t of canonical transformations
generated by a Hamiltonian vector field in D12 and some

g€ Go' The quotient space £§w1%9X/~ is a right principal
Mp(n-m,R) fibre bundle over X/D12 covering .9%1%9?/~.

For each integral manifold M of ElZ’ the restriction
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of .2%1%9R/~ to N =m, (M) 1is isomorphic to the bundle
12
5%.7N of symplectic frames of (N,wN), and we shall identify
N

these bundles. The restriction of _5%1%7X/~ to N defines
a bundle 5§m§7N of metaplectic frames for (N,wN). Let
91&?N be the bundle of positive Lagrangian frames of (N,wN)
and 9%ﬁ9N the bundle of metalinear positive Lagrangian

frames of (N,w defined in terms of 5§w.9N. The bundles

)
o N N
%ﬂ and 9w7N can be represented as quotient spaces
N N ~
of subbundles of 5%9? and 5759X respectively. Let 5%1%9X

be defined as follows:

1255 _
P = {(v,u) € PIX | v €2D,,} (5.91)

and
2 ox = o H @), (5.92)

We have a mapping wv: 931%9R|M - 52.9N defined by
N

v(v,u) = I, () (5.93)

which 1ifts to G:.é%lggilM +_§L:7N.
N
We are now in a position to lift the conditions
(5.23), (5.24) and (5.25) to the bundle of metalinear frames.
First,we notice that the conditions (5.23) and (5.24) imply
2

that Wy = (11,1_11) and W, = (!1,9_2) belong to _‘%1.7)(. The
condition (5.25) can be extended to a relation in 9%1%7X
given by

i, 5,5 = nelk, (5.94)

If M denotes the integral manifold of E12 passing through
the point x at which the frames w; and w, are attached,

we can write Eq. (5.94) in the form
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. j —k ik
1mN(%12(u13), Ty, (@) = et (5.95)

Eq. (5.95) means that the projections u(y_l) and U(EZ)

satisfy the relation (5.74) in %Nﬂ\l We can restrict the
choice of the metalinear frames El and 22 to be used in
Eq. (5.29) by requiring that T)(il) and \")(iz) be related

in §?wa by the condition (5.80).
N



6. QUANTIZATION

We describe here the process of quantizing func-
tions f on (X,w) which generate one-parameter groups
¢ft of canonical transformations such that the pair

(;?¢ft(F),F) of polarizations is strongly admissible.

6.1. Lifting the action of ¢ft

We have gathered together all the ingredients of the geo-

metric quantization scheme. These are: a metaplectic frame bundle
j?i?k, an associated bundle 9%97 of positive metalinear
Lagrangian frames, a complete strongly admissible positive
polarization F, and a prequantization line bundle L with a
connection satisfying Eq. (3.20) and an invariant Hermitian
form. The metalinear frame bundle HF of F is defined by
§&9? as follows:

4F = 11 @F), (6.1)

where T: 5%9& +_939? is the double covering map. The repre-
sentation space & consists of sections of L ® VA'E covari-
antly constant along F, where VA'F is associated to the

bundle F given by Eq. (6.1).

101
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Consider a function f on X such that the Hamiltonian
vector field Ef of f 1is complete, and let ¢ft denote
the one-parameter group of canonical transformations generated
by Ef. For each t € R, the image of F under the derived
mapping .?bft is a complete strongly admissible positive
polarization _9¢ft(P) of (X,w). The one-parameter group
¢ft of transformations of (X,w) 1ifts to a one-parameter
group ¢f#t of diffeomorphisms of 5%9? which preserves the
structure of the bundle of positive Lagrangian frames: for
cach w € (wy,...,w) € 29K, ¢/ w) = B v, T ()
There exists a unique 1ift of ¢f#t to a one-parameter group
$f#t of structure preserving diffeomorphisms of .5%9?. For
each t € R, the bundle .é%?? induces a metalinear frame
bundle of . (F) given by @R "(F) = 1@ (F) and,
if @ €QF, then 3. (M) €% S(F). Thus, 3.'" restricted
to #F yields an isomorphism of the ML(n,C)-principal fibre
bundles BF and @I "(F). Let VA% (F) be the fibre
bundle associated to 5196ft(F) with typical fibre C on
which ML(n,C) acts by multiplication by x(C), C € ML(n,C).
We denote by dé the J?ﬁft(F)—representation space consisting
of those sections of L ® VAngft(F) which are covariantly con-
stant along ﬁ%ft(F). If v 1is a local section of VAnF, then
for each t € R, we have a section ¢ftv of VA99$ft(F)
defined by

G @ - VS (6.2)

for each W €£§9ﬁft(F). If v 1is covariantly constant along
F, then ¢ftv is covariantly constant along _9%ft(F).

For each element o € & which can be factorized,
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A®v, (6.3)

Q
]

we define ¢fto by

A

A ® 4.y, (6.4)

where ¢.°A is defined by Eq. (3.32). The definition (6.4)
extends by linearity to all sections in &. The map

¢ft: .&-»_d/t is a vector space isomorphism with inverse
defined in terms of ¢f't. Moreover, for each t € R, the
scalar product on .aq is defined intrinsically in terms of
w, L,,§h9ﬁ and .9%ft(F), cf. Chapter 4. Hence,

¢ft: ﬁ?».ﬂ{ is a unitary map.

6.2. Polarization preserving functions

In this section we assume that

_7¢ft(F) = F (6.5)

for all t € R. This is equivalent to the condition that, for
each complex vector field & in F, the Lie bracket [Ef,E]

be in F. In particular, if

g= e (6.6)

is a local frame field for F consisting of complex Hamilton-
ian vector fields defined in an open set U < X, there exists
a matrix valued function x » (aij(x)) on U such that
i no .
[Eg &1 (x) = jzl ' (08 (). (6.7)

Eq. (6.5) implies that ﬂ% =¢& for all t € R. Hence,
the function f generates a one-parameter group ¢ft: -
of unitary transformations of ¢4 The quantum operator 2f

on & associated to f is defined by
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25101 = in Foo L], g (6.8)

for each o € &;it is a self-adjoint first-order differential
operator.

We can give a local description of Zf as follows.
Let E be a metalinear frame field on U < X projecting onto

& given by Eq. (6.6), and vz the local section of VA'E

£
defined by
vg E=1. (6.9)
The restriction of o to U can be factorized by Vgs
olU=2r®v (6.10)

|evve

for some covariantly constant section A of L|U. We have

. d .t
2f[A ® vz] = (in at %¢ A)It=0 ® vz

1
- £ (6.11)
cq d
+ A ® (in It ¢ftv§)|t=0'
The first term on the right hand side is “f[A] ® vy, cf.

Eq. (3.35). Thus it remains to evaluate the secondéferm. Let
¢ft§ denote the local metalinear frame field for F defined
by

8eTE() = b (ECo T ). (6.12)

The frames ¢ft§(x) and i(x) are related by an element
Cy(x) € ML(n,C),

e E) = E()E (). (6.13)
We have
Coevp & = vi' Gt Eeon
K

vi' (0. "RG0 )

vi' o T (o7 )
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= XUE_ (0 1 v Breg F )
= XU (o 1 Ivg" Bo,
where the last equality follows from Eq. (6.9). Hence

¢V (x) = x{IE_¢ (o "1 My () (6.14)
and

F 000 [ 1og = d XUE_ G PN T (Lovp ). (6.19)
But C°(¢ft(x)) = 1, so that
B 0,7 01 (g = o XE 00171 g (6216)

Let Ct(x) be the projection of Et(x) to GL(n,R),

Ce(x) = p(Cr(x)). (6.17)
Then
¢ft£(x) = E(x)C (x) (6.18)
and
x{IE_ (172 = fdetic_ ()1 1A (6.19)
This implies that
£ 1, 017 |y = 3 4% {detiC_ (x)]'1}|t=0
_14d
= It [det Ct(x)]|t=0

N[ N[

tr Ct(x)]|t=0,

where tr denotes the trace of a matrix. Substituting this

result into Eq. (6.15) we get

i%(¢ftv§(X)) =0 ° 5 tr[dt t(x)]’t 0V () (6.20)

To evaluate the trace of the derivative of Ct(x),
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differentiate Eq. (6.18) with respect to t and set t = 0:

O ANOI M é%(¢ft§(x))|t=0

é% (¢ft€1(x);°"’¢ft€n(x))|t=0

- 1E0 8 1 (X ,e - EL,ER ()

n . n .
(- I awdm,...- 1 amedm),
j=1 J j=1 J

where the last equality follows from Eq. (6.7). Hence
erlS C.(x)] - -V al (6.21)
dt "t t=0 jap 3 :

Substituting this result into Eq. (6.20) we get
4., tv~(x)| e VAt e, (6.22)
dt "f “g t=0 je1 3 &

This, together with Eqs. (6.11) and (3.35), yields

2f[x ® vg] = [(9% - %ih.glajj)k] ® vi. (6.23)

= J
Taking into account Eq. (3.38), we can rewrite Eq. (6.23) in
the form
n .

2f[\ ® vg] = [(-ihvgf + £ - %ihjzlan)A] ® VE. (6.24)

Eq. (6.24) can also be used to define 2f for a.func-
tion f with incomplete Hamiltonian vector field Ef, in which
case ¢ft is only a local one-parameter group of local canoni-
cal transformations. However, in this circumstance the problem
of the self-adjointness of 2f has to be studied separately.

Suppose that f is a function constant along F so

that the Hamiltonian vector field Ef of f is contained in
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F. Since the Hamiltonian vector fields contained in a polari-
zation commute, the matrix (aij) defined by Eq. (6.7) vanishes
identically. Moreover, for each local section X of L co-
variantly constant along F, ngk = 0. Thus, we can rewrite

Eq. (6.24) in the form

21 A ®\)§] = fA ®\>§. (6.25)

Since the form of the right hand side of Eq. (6.25) is inde-

pendent of the factorization (6.10), we have
2f [0] = fo (6.26)

for each o € & and each function f constant along F.
Hence, the operator Zf corresponding to a function f con-
stant along F acts on quantum states o by multiplica-
tion by the function £, and the spectrum of 2f is contained
in the image £f(S) of the Bohr-Sommerfeld variety S wunder
the function f: X » R.

Clearly, the mapping f ~» 2f given by Eq. (6.24) is
a linear monomorphism from the space of polarization preserving
functions to the space of symmetric linear operators on &
Moreover, if f and g preserve F, then so does their Poisson
bracket [f,g]. Using Eqs. (6.23), (6.7), (3.38), (3.1) and

(2.10), we obtain by direct computation the commutation relations
[2f, 2g] = in2(f,g]. (6.27)

6.3. Quantization via Blattner-Kostant-Sternberg kernels

We assume here that there exists an e > 0 such that the
pair (th%ft(F)) of polarizations is strongly admissible for
0 <t < e, and that the integrals in Eqs. (5.12) and (5.22)

defining the Blattner-Kostant-Sternberg kernel .21: ﬂ% x +C
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converge, so that there exists a linear map Q%: ﬁ% -4
satisfying Eq. (5.1). For each t € (0,e), we define
¢t:w+_& by

_ t
8, =% o 0., (6.28)

If the curve t & ¢t is differentiable, we can define the

quantum operator 2f corresponding to f by

iy 4
2f = ih gr 0|0 (6.29)

If, for each t € (0,e), the representation spaces ﬁ% and &

are unitarily related (that is, %% is unitary), then ¢, is
unitary, which implies that Zf is self-adjoint. In prac-
tice it may be difficult to verify the unitarity of %, but
one still may use Eq. (6.29) to compute 2f on a dense domain
and investigate the existence of a self-adjoint extension
afterwards.

In many applications to quantum mechanics, the polariza-
tion F is real, the leaves of D are simply connected, and
the polarizations F and E@ft(F) are transverse, cf.

Eq. (5.2). Under these conditions, one can give a useful

expression for 2f[c], where o 1is a smooth section with

sufficiently small support. Let V be a contractible open
1

set in X/D such that on “D- (V) there exist n real-valued
functions ql,...,qn such that their Hamiltonian vector fields
-1 .
qu,...,iqn span FITrD (V). Let py,...,p, be functions
on WD-l(V) such that
o := J p.dg) 6.30
§ p;da (6.30)
satisfies
wlry "ty = ae. (6.31)

Then
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gqipj = 655, 4,3 € {1,...n) (6.32)
Let A : nD-l(V) + L be a section such that
v = -in"le ® 2 (6.33)
o o
and
Agrr> = 1. (6.34)

We denote by & the linear frame field for FInD-l(V) con-
sisting of the Hamiltonian vector fields of ql,...,qn:

E= (& 15--s8 ) (6.35)
q q
and by g a metalinear frame field projecting onto £. Let

vE be the section of VA"F over ﬂD-l(V) defined by the

condition
Yg# o £ =1, (6.36)

Then, Ao ® Vg is covariantly constant along F and each

smooth section A ® v in <, the support of which is contained

in ﬂD'l(V), can be represented as

A® v = w(ql,...,qn)xo ® ve, (6.37)

n

where ¢ is a smooth complex-valued function on R~ with

support contained in the range of the mapping
(ql,...,qn): nD_l(V) > R,
The functions ql,...,qn are constant along the fibres
of Lo and they define coordinate functions ﬁl,...,ﬁn on
V  such that

qt = & o Ty, io=1,...,n. (6.38)

The coordinate functions ﬁl, i=1,...,n, define a density

a3 = |dgqta...addq? (6.39)
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on V. The sections Ao and v are chosen so that

3

Ay B Vp,A_ 8 vp> = daq, (6.40)

where the left hand side is defined by Eq. (4.26). The scalar
product on & restricted to sections of the form (6.37)

can be expressed as

vl n - 1
(b (@ s-enaMhg @ VElv(aT, .. ,qMA @ vp)
(6.41)
- fv vEh, L amEEh L

Taking into account Egs. (5.1) and (6.28), we can write

ORI PYRFI gloch@a, . ,aMn v 2)
(6.42)

= (0@l 0 e vg, vlateer F L a e, e Mmooy,

where ¢ftxo is defined by Eq. (3.32) and ¢ftv is given

3

by Eq. (6.2). Let ¥ be defined by

t
o, (i@, . ,aMA, @ vp) = d(al,.,aMhg @ Vg (6.43)

Substituting this into Eq. (6.42) we obtain, with the help of

Eqs. (5.11), (5.12) and (6.41),

fw'( $( L aMa
v
= (1/h) f det w(& ,¢f k)]‘E (6.44)
q
x <Ao,¢ftko>w'(q1,.--,qn)i(q1°¢f-t,-.-,qn°¢f-t)}dnpdnq,
where

pdq = | (ulmy TP, (6.45)

Hence, for each point y € V, we have
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S I LS DI e {[eet wee j,0.% ]
q q

T ()
t 1 -t -t
x <o nu(aton, S ahe D, (6.46)
where
d%_ :=|(dp;A...adp ) |1 "t (y) ] (6.47)
y. 1 oo pn D y .

is a density on WD-l(y).

Using the results of Sec. 3.3 we have

4 <¢ftk

dt ’)‘o> = (ih)_1<¢ft( ngD‘o])’)‘o>

o
1

(1) 7o " (27 #0252

@m Tep L((-0(E+EIN) A >

RGO R (SIS TR TE P RV WP
Therefore one has, by integration,
t _ . t -s
4oy = ep{/m [t -fe0tes) (6w

Substituting this result into Eq. (6.46) we find

vl «n s a4 -N/2 t L
NG CoIRRR LSO PRI EE) o Aleet wee 0.5 p]*
¢ an lcy){[ o7 Tk )

(6.49)

t
. - -t -
x exp[(l/h)fo(e(gf)'f) °¢f SdS]‘P(q1°¢f :""q.n°¢f t)}dnpy'
According to Eqs. (6.29) and (6.43), we therefore have

- iy 4 -
2f A, ®vgl = inFp wt|t=0}‘° ® Vg, (6.50)

where wt is given by Eq. (6.49).
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6.4. Superselection rules

Let F be a complete strongly admissible real polari-
zation. In Sec. 4.5 we observed that to each connected compon-

ent S, of the Bohr-Sommerfeld variety S there corresponds

a
a subspace &, of the representation space & consisting of
sections with supports in S . The subspaces & and ﬁ%

corresponding to different components Sa and SB are
orthogonal, and

L= o . (6.51)

If f is a function on X preserving F then, for
each component Sa of S, ¢ft(sa) = Su and the operator 2f
defined by Eq. (6.8) maps ﬁ% into itself. Suppose that f
is a function such that (F,.9Eft(F)) is a strongly admis-
sible pair of polarizations for 0 < t < €, and let o be a
section in ﬁ% such that ﬂD(support o) 1is compact. Then,
for each component S8 of S different from Su’ there

exists & such that 0 < § < € and
¢ft(support o) N SB = ¢ (6.52)
for all t € (0,8). Hence,
(¢to|o') =0 (6.53)
for all o' G.Q% and t € (0,8).
Differentiating Eq. (6.53) with respect to t, we obtain
(Zflol|o') =0 (6.54)

for each o' € &, where § is any component of S differ-
B

B
ent from Sa' Since the space of sections o in ﬂ%, such
that ﬂD(support o) 1is compact, is dense in ﬁ%, it follows

that 2f maps Q% into itself. Hence, for each function f
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which can be quantized according to the prescriptions given

in this chapter, we have

21w < %, (6.55)

for each connected component Sa of S.

Thus, if all the observables in the quantum theory des-
cribed in terms of the representation space & are obtained
by the quantization of functions on X in the manner des-
cribed above, we obtain superselection rules. The repre-
sentation space decomposes into a direct sum of orthogonal
subspaces corresponding to different components of the Bohr-
Sommerfeld variety, and all the observables commute with the

operators of projection onto these subspaces.
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7.1. Single particle

The phase space X of a single particle is isomorphic

to R6. An isomorphism X =+ RS

is defined by the components
ql,qz,q3 of the position vector g and the components Pys
P,,P3 of the linear momentum p with respect to some in-

ertial frame. The Lagrange bracket is given by

w = | dp;adq’. (7.1)
i
Let
o =] pidql (7.2)
1

so that w = d6. The position repregsentation is given by the

polarization F globally spanned by the linear frame field

_ ) ]
£ = (apl’ 3p,’ 3p3)' (7.3)

Since X 1is contractible, all the additional structure needed
for quantization exists and is unique up to isomorphism. Thus,
the bundle @F of metalinear frames for F is trivial, and

we denote by g a metalinear frame field for F projecting onto

114
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&. The section of VASF such that v~#o§ =1 trivializes

VE
the bundle VASF. The bundle L 1is also trivial, L = X x C,
with a trivializing section Xo: X+ L given by Ao(x) = (x,1)

for each x € X, The connection in L is defined by

I |
VA, = -in7e @A, (7.4)

and the connection invariant Hermitian form is normalized by
Agsr> = 1. (7.5)
The representation space & consists of sections of
L ® VASF of the form
g = w(g)xo ® vi, (7.6)

where ¥ 1is a square integrable complex function on R3.

The functions f on X of the form

£= ] a'@p; * 2@, (7.7)
1

where al,az,a3 and a are smooth real-valued functions on

R3, generate canonical transformations ¢ft which preserve

F. We have

. i

£ = Z(al 81 ) Bal ) ) _ Z, BaJ P 3 (7.8)
i aq 9q Bpi i,j 9q apj
Hence,
i
[Ef, _2_] -1 22? 9 (7.9)
p; 1,J 397 93py
and the matrix (alj) defined by Eq. (6.7) is given by
al. = aai
j BqJ . (7.10)

Since VE Ao = (—i/h)e(Ef)Ao, we obtain from Eq. (6.24) an ex-
f

pression for the action of Z2f on A, ® Vg
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_ . Baj -
EZE[AO ® vg] = (a - Lih § ;;T)AO ® vé. (7.11)

If y 1is a smooth function on R3, the action of Z2f on

\UXO ® vg is
3
éﬁ[wlo ® v;] = [-ihifw + (a—%ih § %i;)w]ko ® vy, (7.12)

where Ef is given by Eq. (7.8). Of special importance in
quantum theory are the components qi of the position vector,
the components P; of the linear momentum vector and the com-
ponents J, = zjkeijkquk of the angular momentum vector.

Here, eijk is the permutation symbol equaling 1 if (1,2,3) +
(i,j,k) 1is an even permutation, -1 if it is an odd permuta-

tion and 0 if some of the indices 1i,j,k are equal.

In these cases, we obtain from Eq. (7.12) the standard

results
2971, @ Vil = (@0, @ v, (7.13)
i 1= oipd .
2" 02, ® Vi) = ( m;fi-)xo ® v (7.14)
and
. i 9
25, ® vyl = (-mzjkeijqu - )X, © Vg (7.15)

Since the Hamiltonian vector fields of qi, p; and J; are
complete, the operators £2qi,£2pi and £2Ji generate one-
parameter groups of unitary transformations of .

The energy of a non-relativistic particle of mass m

in an external potential V(q) is given by

H = p%/m + V(Q), (7.16)
where

p_z =] p-z. (7.17)
1
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The Hamiltonian vector field of H is

£y - z(m'lpi 288 ). (7.18)
i aq 3q api

The local one-parameter group ¢Ht of canonical transforma-
tions generated by H does not preserve F. However, for a
large class of potentials .93Ht(F) is transverse to F if t
is sufficiently small. We assume this transversality condition
and proceed to quantize H in the manner of Sec. 6.3. From

Eqs. (6.29) and (6.43) we have
- ip 4 -
£2H[wk0 ® v§] = in ggv, Ao ® Vg’t=o’ (7.19)

where Ve is given by Eq. (6.49) which, in this case, takes

the form
- 3
@ = w2 Ra[de" ‘*’“q:"d’ntqu)]

t
x exp{ih'l fo[e(EH)-H1o¢H'sds} x w(¢Htg)d’p. (7.20)

Here ¢Htg = go¢H't is expressed as a function of p and g,

and the integration is taken over the values of the components

of the linear momentum p for a fixed position vector (.
Since

6(6y) - H=H - 2V(g) = L (7.21)

is the Lagrangian corresponding to the Hamiltonian H, and as

H is invariant under ¢Ht,

ftl (€,) -Hled, °d o, )d
6(&,)-Hlod s tH —2[ ] S
o H H o Hd (7.22)

t
tp/2m + tV(Q) - z[ V(o a)ds.
0

Substituting this expression back to Eq. (7.20), we obtain



118 7. SCHRODINGER REPRESENTATION

-3/2

. -1 t -1t s
b (@ = (i) 3 Zexplitn vcg)lfR,w(¢H Q) expl-2in [OV(¢H a)ds]

x exp(itEZ/th){det w(&j,¢HtEk)}%dap, (7.23)

where we have set £J = T Changing the variables of inte-

J
gration from p = (pl,pz,ps) to u = (ul,uz,us) given by

u = tp, (7.24)
we get

_ _ _q ¢t
V(@ = (in) ¥ Zexplitn 1v(g)1fRaw(¢Htg)exp[-21h 1[OV(¢Hsg)dsl

x t expliu®/2tmn) [det w(El, 0,5 651 %" v, (7.25)

The derivative of wt(g) with respect to t can be
evaluated at t = 0 by taking into account the facts that,
for a real variable s and each a > 0,

lim t Zexp(ias?/t) = (n/a)%e ™ %s(s) (7.26)
t+0+
where 6(s) 1is the Dirac distribution, and

2
9 . 9 - .
(—3:7 + 4ia ﬁ)t %exp(lasz/t) = 0. (7.27)

We shall see that the asymptotic behavior of

[det w(g?,¢,%6)1% as t >0 is given by (t/m>/? plus
higher-order terms. Hence, the second line in Eq. (7.25)
leads to a distribution proportional to

32

88w = J = [8(up)8(uy)8ug)l. (7.28)
1

3ui
This implies that in order to evaluate the derivative of the
right hand side of Eq. (7.25) with respect to t at t =0
it suffices to approximate the integrand up to order 1 in

t and order 2 in u, and to neglect terms involving
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the product tu and higher-order terms. Since u = tp it
follows that it suffices to approximate the integrand in

Eq. (7.23) up to order 1 in t and order 2 in tp, and
to omit terms involving tZR and higher-order terms.

Eq. (7.18) yields the equations of motion

d i -1 t
Sr@eo N =npe0y (7.29)
and
d v t
af(pio¢Ht)= - ;;T(qio¢ﬂ ). (7.30)
Hence,

¢thl = qlocbﬂ-t =q" - m'ltpi + higher-order terms. (7.31)

Moreover,
tyi Lt _ -
T R Y S S (7.32)
q ¢Hq q°¢H
so that
¢Ht€1 = Ei - m-ltip + higher-order terms. (7.33)
i
Therefore,
w(ij,¢Ht€k) = m-ltéjk + higher-order terms (7.34)
and
{det w(&j,¢Ht£k)}% = (t/m):()/2 + higher-order terms. (7.35)
Also,
t
J V(¢Hsg)ds = tV(q) + higher-order terms. (7.36)
0

Substituting the approximations given by Eqs. (7.31), (7.35)

and (7.36) into Eq. (7.25) and taking into account Eq. (7.24),

we find

. d . d . 3/2 sl

lim == ¢_(q) = lim a—{(-l/mlﬂ exp[-it? “V(q)]
t+0+ dt t 1 t+0+ t P 9)
(7.37)

/2

x I . ’i‘(ﬂ*m_lg)t-3 exp(igz/Ztmh)d’u},
R
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which leads with the help of Eqs. (7.26) and (7.27) to
%ig+ i% v (q) = ih"lV(g)w(g) + (in/2m)Ay(q). (7.38)
->

Comparison of Eqs. (7.19) and (7.38) yields the standard

expression for a quantized non-relativistic Hamiltonian

2
£2H[w(g)lo ® v;? ={[(-n /2m)A+V(g)]w(g)}xo ® vg. (7.39)

Thus, we have recovered the correct operator expressions
for the fundamental dynamical variables, cf. Eqs. (7.13),
(7.14), (7.15) and (7.39). For each function on the phase
space, which can be quantized via the Blattner-Kostant-
Sternberg kernels, one obtains a well-defined operator and con-

sequently there is no ambiguity in the ordering of operators.

7.2. System of particles

Let us consider a system of m interacting particles.
The constraint part of the interaction defines an n-dimensional
configuration manifold Y embedded in RSQ and the kinetic
energy of the system defines a positive definite metric g on
Y. The phase space of the system is the cotangent bundle space

%Y of Y and the Lagrange bracket is

w = dey, (7.40)

where by is the canonical 1-form on Z*Y defined by
Eq. (2.12).

The dynamical variables of physical interest are the
energy H, the canonical coordinates ql,...,qn, and the corres-
ponding canonical momenta Pyse+esPp- The canonical coordinates
and momenta are defined on an open set n'l(U) c J*Y, where

U is the domain of a coordinate system on Y and
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m:9*Y - Y 1is the cotangent bundle projection, cf. Sec. 2.2.
Since the geometric quantization scheme applies to glo-

bally defined functions only, we have to redefine our notions
of the canonical positions and momenta. The characteristic
property of the canonical coordinates ql,...,qn is that
they are constant along the fibres of the cotangent bundle

projection. Indeed,

qt = qter, i€ {1,...,n} (7.41)

where (ﬁl,...,ﬁn) are coordinate functions on Y. Thus, we

say that a function f on J*Y is of position type if it is
constant along the fibres of w: 9*Y » Y. We shall denote the
position type functions by q. For each smooth vector field

z on Y we define a function p; on 7*Y by

pc(x) = x(z(m(x))) for each x €9*Y. (7.42)

If ¢ = 3/, then Eqs. (7.42) and (2.13) yield
pc(x) = pi(x). For this reason we shall refer to pc as the
momentum associated to a vector field ¢. The Hamiltonian vec-

tor field of P, projects onto ¢, i.e., for each x € 9*Y,
J7ﬁ(€p (x)) = g(m(x)). (7.43)

4
Using Eqs. (2.7), (2.8), (2.14) and (2.16) one can verify by

direct computation that, for each pair (g,n) of smooth vec-

tor fields on Y and for each function § on Y,

g ,8 1 =2¢ (7.45)
Pr Py Plz,nl
(Ep 2%aen! = Frgyon (7.46)
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Let D denote the vertical distribution on 7*Y de-
fined by
D = {v € 99*X| In(v) = 0}. (7.47)

The complexification F of D - is a complete strongly admis-
sible real polarization of @9‘Y,d9Y). The space X/D of
integral manifolds of D is diffeomorphic to Y, and we shall
identify X/D with Y. The polarization F 1is locally
spanned by the Hamiltonian vector fields of the canonical co-

ordinate functions. The functions f of the form
f = Jom + Prs (7.48)

where i is a function on Y and ¢ 1is a vector field on
Y, generate the canonical transformations preserving F.
Eqs. (7.45) and (7.46) imply that the functions f given by
Eq. (7.48) form a subalgebra of the Poisson algebra of
@9‘Y,d9Y).

We assume that the configuration space Y is orient-
able. The choice of an orientation of Y induces a metaplectic
structure on L?*Y,deY) which leads to a trivial bundle

VAPE as follows. Let {Va} be a contractible covering of

Y by domains of oriented charts { = (ﬁal,...,ﬁan): v, R™,

We denote by 4, = (qal,...,qan) the pull-back of ia to

ﬁnl(Va), i.e., for each i € {1,...,n}

a," = d Mo, (7.49)
and by p = (Pyqs---sPy,) the map from ﬂ"l(Va) to R"

defined by
pgy(X) = x| . (7.50)
q(!

W(X)]
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The ordered set of vector fields

(8 & ) = (E R S R ) (7.51)
99 Ry qal’ ’ qan pal’ "“Pan
on "-I(Va) forms a symplectic frame field such that
g, = (5 1ot p) (7.52)
o Vg, %
is an oriented frame field for F. For each x € n'l(Va n VB)

there exist n x n matrices Aas(x) and BaB(x) with

det Ayg(x) > 0 (7.53)
such that
Ayg(x)  Byg(x)
gaB(X) = € Sp(n,R) (7.54)
0 TYRIC I I
aB
and

(€ﬂ8(x);ERB(X)) = (Eﬂa(X);EEa(X))gaB(X)- (7.55)

The collection G of matrices of the form (7.54) satis-
fying (7.53) constitutes a subgroup of Sp(n,R) which can be
continuously deformed in Sp(n,R) to the identity element.
Therefore, its preimage p'l(G) in Mp(n,R) under the cover-
ing map p: Mp(n,R) +» Sp(n,R) has two connected components.

Let G denote the component of the identity element in p-l(G).

The transition functions ﬂhl(Va n VS) + G < Sp(n,R) have

gaB:
the unique lifts §a8: n-l(Va n VB) + G c Mp(n,R) defining a
metaplectic frame bundle for L?*Y,deY) which induces a meta-
linear frame bundle #F for F. Let VA'F denote the complex
line bundle associated to 4F corresponding to the character ¥
of ML(n,c). Each w'l(va) is contractible so that £5F|w'1(va)

is trivial and admits a section Eﬂa projecting onto &

"
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We denote by Vo n'l(Va) + VAF  the local section such that

vier =1, (7.56)

¢ a
The metric g can be used to define a global nonvanish-
. R n
ing section vg of VA'F. For each chart (Va’ﬂa)’ g de-

fines a matrix-valued function g, = (g ) on Va such that

aij
b4 i v j
glv, = iZJ_ 941548,  © ag,’. (7.57)

Let Ly = (;al,...,;an) be an oriented orthonormal frame

field for j?Va. Expressing the vector fields ¢ . in terms

of the frame field (a/aaal,...,a/aﬁan), we obtain

j 9
c.=3c . ) - (7.58)
ai j ol aan ’
where C, = (Caij) is a matrix-valued function on Va such
that
det Ca >0 (7.59)
and
t =
(Cagaca )ij = Gij‘ (7.60)
It follows that
- -3
det C, |det gal . (7.61)
Let n, = (nal”°”nan) be the frame field for
F|ﬂ"1(Va) defined by
Nei Pr . = Gij’ i,j € {1,...,n}. (7.62)
aj
. _ k :
Since p;aj = E(Caj ° Mpy,» it follows that
= t -1 (7.63)
n, - gﬂa(c" o M) T, .
Let ﬁa be a metalinear frame field for F projecting onto Ny
and v the local section of VAMF defined by

a
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= 1. (7.64)
Eqs. (4.12), (7.56), (7.63) and (7.64) yield

L
Vg, t](det g ) o [%v,. (7.65)

m wlew, n Vg) Eas. (7.54) and (7.55) imply

' P T
4t = g daAet, 1€ (1., (7.66)

Hence, the matrix-valued function AaB = (AaBji) is constant

along the fibres of m, so that there exists a function Aaﬁ

such that
A

on Va n VB

= A

aB aB o . (7.67)

Eqs. (7.57), (7.66) and (7.67) yield

v

-5 t. X
9y = Aygtaghyg (7.68)

Therefore, up to a factor 1, we have

\Y

s[(det g ) o m|% = £|(det g.) o 7|¥(det A_ )%
9q Yo : 98 a8) Vo

% =
+| (det gg) °© m| vg ivgB.
Since Y 1is orientable, there exists a global section vg

of VA"F such that, for each V_,

a
-1 _
vg|w (Va) = tvga. (7.69)
Comparing with Eq. (7.65) we get
Imhv) = ¢ (det g ) o | %y (7.70)
Vgl a + 9y o .

Since Vg is covariantly constant along Fl"-l(va)’ it follows
that vg is covariantly constant along F.
Since w = deY is exact, the prequantization line

bundle L is trivial. We set L =9*Y x ¢, and define a
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trivializing section AO:.7*Y + L by Ag(x) = (x,1). The
connection ¥V in L satisfying the prequantization condi-

tion (3.20) is defined by

A = -in'le, ® A

o y © Ay (7.71)

and the connection invariant Hermitian form is normalized by
> = 1. .
N 1 (7.72)

The section Ao is covariantly constant along F, and each
section ¢ of L ® VA"'F covariantly constant along F can

be uniquely expressed in the form

o=Ye® AO ® vg, (7.73)

where ¥ 1is a complex-valued function on Y. Since the inte-
gral manifolds of D are simply connected, the Bohr-Sommerfeld
variety S coincides with the entire phase space 7*Y, and

the scalar product on the representation space &, given by

Eq. (4.28), reduces to

(Y

- v ]
182, ® vg|\v2 ® 2 ® vg) [levzldet gl=. (7.74)

Here, |det glsi is the density on Y defined by

ldet ¢|* ( 2., =22 n) = |det g |* (7.75)
aqa aqa

for each coordinate system §a: Va + R™. In the derivation of

Eq. (7.74), we have taken into account Eqs. (4.26), (7.56)

and (7.65). Eq. (7.74) shows that the mapping

574-L2(Y,|det glk): vear ® v, ¥ is an isomorphism of the

representation space & with the Hilbert space of complex-

valued functions on Y square integrable with respect to the

1
density |det g|?2.
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The quantization of functions of the form (7.48)
proceeds via Eq. (6.24). For a function q = {em, the corres-

poinding operator is given by

2q1Y ® A, ® vg] = (q¥Y) ® Ay ® Vg (7.76)

If (support ¥) < V,, the operator £?p; acting on ¥ ® A ® Vg

can be expressed with the help of Eq. (7.65) as follows:

|%

SQpC[W|det gol* ® Ao ® Va] (7.77)

) 5 n . s
= -1h{[;(?|det gal Jlom + %jzl(an)u[(W|det ga|4)°ﬂ]}ko ® Vv,

where the matrix (a1 )a is defined in terms of the local

j .
frame field Eﬂu by Eq. (6.7). In order to compute (alj)

be the components of ¢ with

a
explicitly, let (zal,...,zan)

respect to the frame field (—JLT yeoes 9 ) ,

33, aaan
j 2
glv, =1z == (7.78)
o ;e aun
Eqs. (7.46) and (7.49) yield
[ z azal
R R SRR | (S
Pr 9 (zd,dem  z tem  Flag ] a,’
i azai
Hence, (a j)a = (Bﬁ 3 on) and
o
ch[w ® A, ® vg] ' (7.79)
et 0,1 7¥2(2) —2r + 5 22 (vlaer 4"
=-in|det g [ (z —+ & ———v) (Y|det g )] ® A ®v .,
[+ 3 J o aan Ban Q o g

The term in the square bracket is a local expression for the
. . . 4 .
Lie derivative of the %-density V¥|det g|® with respect to

the vector field ¢z,
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[ ZL(¥ldet g|1(2 ..., =2

g "
o .ota (7.80)
i oz ) %
=Z(z +;§__°L,.)(\y|detg 1%y
5 \Te 553 28 J a
qa a

This can be written as follows:

Z(¥|det g1%) = |det g|¥ [y + % (Div D)V¥I, (7.81)

where Div ¢ 1is the covariant divergence of the vector field

z. Thus
g@;[w ® Ao ® vg] = -inly + % (Div g)¥] @ Ao ® Vg. (7.82)

We see that the operator of the momentum associated to a vec-
tor field ¢ corresponds to -ikh times the operator of dif-

ferentiation in the direction ¢ if and only if
Div ¢ = 0. (7.83)

Eq. (7.83) is equivalent to the condition that the local one -
parameter group generated by ¢ should preserve the metric
density |det gla. This holds in particular when ¢ 1is a
Killing vector field, that is is, ﬁ%g = 0.

We denote by K(x) the kinetic energy of a state

X € 9*Y; it is determined by
K(x) = % g(x,x). (7.84)
If the potential energy of the system is given by a function
V: Y » R, the total energy is
H(x) = K(x) + V(7 (x)). (7.85)

The quantization of H proceeds in a manner analogous to that

employed in the previous section. We have
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=0 (7.86)

= ijp 4
QHIY @ A 8 v ] = ih gz o (Yo A, ©® v,)
If the support of ¥ is compact and contained in some coordinate

neighborhood Vu’ we can write
¥y ® Ao ® vg = w(ga)lo ® Voo (7.87)

where ¢y 1is a function on R® with compact support contained
in the image of the chart gﬁ: Vu > R, Comparing Eqs. (7.87)
and (7.70) we find, for each y € Vu’

VE)) = £¥(y) [det g () %, (7.88)

Similarly, for sufficiently small t € (0,¢),
2, (¥® 2, ® V) = b (a ), @ v, (7.89)

where by is given by Eq. (6.49).

In the following we work with a fixed coordinate sys-
tem (w'l(Va),ga,Ra) on 7*Y. In order to simplify the nota-
tion we drop the index o distinguishing the various
coordinate systems. Thus we write (q,p) 1instead of (qa,pa),
gij instead of gaij’ etc. With this notation we can write
by in the form

. - (in -n/zf t [ ¢ .t ]%
v (E() = (iR er*Yau(ch D[ det wie 5 ay°C )
t (7.90)
RS -s n
x exp{lh I [eY(EH)-H] ° oy ds}d py.
0
To evaluate the derivative of ¢, at t = 0 we
approximate the right hand side of Eq. (7.90) up to the first

order in t. As in Sec. 7.1 we have, if x € ﬁ;*Y,
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t s t s
[ ot o 4 %00s = [ m2vem + 4yt Goas

t
- ) - 2 [O Vn (o, S (x))ds

. t
=3 1 dPoieiey ¢ V) - 2 | VirCe S m0)as
1] ) 0
-t ij :
=3 I ¢ (p;p; - tV(y) + higher-order terms.
ij I

Moreover, Eqs. (7.31) and (7.33) imply that the approxima-
tions needed in the first two factors under the integral sign
in Eq. (7.90) are insensitive to the choice of the potential
V. Consequently, in these terms we can replace ¢Ht by the
one-parameter group ¢Kt generated by the kinetic energy K.
Hence,

-n/2

b @0 = 0 a1 Vo[ vt

y
t 5 : jk n
x |det w(§ .,0, & 1) | Lexp(it/zn) [ 2 (y)pip }d p, (7.91)
j*7K k K itk y
q q jk
+ higher-order terms.
The kinetic energy K(x) 1is % times the square of

the covector x. Hence, the orbits of the one-parameter group

t
o
those used in Sec. 2.3 with N = 2K and e = 0 yield

project onto geodesics in Y. Computations analogous to

Felatoog D = TrcgTemyp 100, ” (7.92)
J
and
Fp;00.5 = - }i[(ng,i,n)pjpk],¢Kt, (7.93)

Here, ng’i denotes agjk/adl. Differentiating Eq. (7.92)
with respect to t and taking Eq. (7.93) into account we

obtain
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2 . s
:—tz(qlo%") - -mzn(rmnlovr»¢K‘)a%(qmo¢xt)a%(q“°¢xt), (7.94)

where the Christoffel symbols ani are given by Eq. (2.30).
The integral in Eq. (7.91) can be simplified if the coordinates
ql,...,a" are normal at y. In this case the functions qi
depend linearly on the parameter t along the geodesics ori-

ginating at vy,

atos, t(x) = tates l(x) (7.95)
for each x € 5§*Y, and
gij(Y) = Gij' (7.96)

Eqs. (7.94) and (7.95) imply that the Christoffel symbols of

the metric g vanish at vy,

i -
T () =0, (7.97)

which is equivalent to the vanishing at y of the first deri-
vatives of the components gij of the metric tensor. Dif-
ferentiating Eq. (7.94) we get, with the help of Eqs. (7.95)

and (7.97),

m m m -

rij ’k(Y) + Fki ’j(Y) + ij ,i(Y) 0. (7.98)
Here, rijm’k is the derivative of Fijm with respect to
ak

Using Eqs. (7.92) and (7.93) we approximate the inte-
grand in Eq. (7.91) so that the integration will give results
accurate to first order in t. For this, it suffices to
approximate the integrand up to order 1 in t and order 2
in tpi and to omit terms of order tzpi and higher.

Eq. (7.92) yields
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atet, "t = alx) - ] ¢ (r)py 0
J (7.99)
+ higher-order terms.

Since the ﬁl are normal at vy, we get, for each x € j@*Y,

atot t(x) = -t § gV mp; 0. (7.100)
Moreover, !
t
e s qu°¢K_t (7.101)
so that
WE £ (x),0, 5 (X)) = (€ . 1d% - t J(g¥tem)p.13(x)
@ K "qk Q) i i (7.102)

+ higher-order terms = t gjk(y) + higher-order terms.
Taking into account Eq. (7.96), we thus have
t % n/2 .
[det w(g j’¢K g k)] =t + higher-order terms. (7.103)
q q

Substituting Eqs. (7.96), (7.100), and (7.103) into
Eq. (7.91), we obtain

-n/2

¥, (0) = (ih) expl-ith lv(y)]

X

M2 IRnw(-tH)exp[(it/Zh)z p; %1% (7.104)
+ higher-order terms. :

Changing the variables of integration from P; to

u. = tp., (7.105)

J J
Eq. (7.104) becomes

“n/2 exp[-ith-1V(g)l

wt(g) = (ihn)
-n/2 _ . 2,.n
x t f 2w exp[(i/2tn)] u.“ld"u (7.106)
R j 3
+ higher-order terms.
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Taking into account Eqs. (7.26) and (7.27) we obtain
2
: d N § : 3
lim 57 ¥.(0) = -in “V(y)v(0) + (in/2)} ——‘LZ(Q)- (7.107)
t+0+ dt "t m 3u
Eqs. (7.88), (7.95), (7.96) and (7.97) yield

2
.% :u 7@ =21 ") %# [¥|det g|*1(y) (7.108)
n mn

where, according to our convention, we have suppressed the

subscript o designating the chosen coordinate system. Per-
forming the differentiation of the product on the right hand
side of Eq. (7.108) and using Eqs. (7.97) and (7.98), we can

rewrite Eq. (7.108) in the explicitly covariant form

2
124 - tldet gONI*WYE) - ROIYO). (7.109)
m ou

m

In Eq. (7.109) A denotes the Laplace-Beltrami operator given

by

aY = § g™y vy (7.110)
mn mn?

where Vm denotes covariant differentiation in the direc-
tion 3/9%™, and R is the scalar curvature of the metric

connection in Y defined by

R= ] g"ri . (7.111)
imn mni’
where
k - k k j k k., k
R mni I‘mn ’i I‘mi m " E(Pmn I'ji - Tni I‘jn ). (7.112)

Differentiating Eq. (7.89) with respect to t and
setting t = 0 we obtain, with the help of Eqs. (7.87),
(7.88), (7.107) and (7.109)
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d
It (Y @ A ®v )‘ -
t o Tg7lt=0 (7.113)

P | in 1
= {-in "VY + > [aY 6R‘l’]}®)\o®vg

Since 2H = in é% ¢t~t=0 we have finally

2
= h 1
ZH[Y ® Ao ® vg] = {- > [aY - g RY] + VY¥} @ Ao ® vg. (7.114)

As in the case of a single particle, we have obtained
operator expressions for the basic dynamical variables of the
theory, cf. Eqs. (7.76), (7.82) and (7.114). The expression
(7.114) for the energy contains an additional term propor-
tional to the scalar curvature of the configuration space.

It should be noted that the validity of the result for ZH
obtained here depends on the convergence of the integrals
defining the Blattner-Kostant-Sternberg kernels, and this
poses certain restrictions on the geometry of the configura-

tion space.

7.3. Blattner-Kostant-Sternberg kernels, quasiclassical

approximation, and Feynman path integrals

In the previous sections of this chapter we obtained
the quantum operators corresponding to all the fundamental
dynamical variables of the theory with the exception of the
square of the angular momentum vector. Among these dynamical
variables only the energy required the Blattner-Kostant-
Sternberg kernels for its quantization. In this section we
want to examine the relation of the Blattner-Kostant-
Sternberg kernels to both the quasiclassical approximation and
quantization by means of the Feynman path integrals.

Let us look back at the technique employed in the



7.3. BKS kernels, WKB approximation § path integrals 135

quantization of the energy. Eqs. (7.86) and (7.89) yield

d

QHW Ao ® va] =ih it wt Ao ® Vv (7.115)

al|t=0"

where V¥ is given by Eq. (7.90). Changing the integration

t
variables from p| M to

q, = ¢Htglﬁ§*Y, (7.116)

we can rewrite Eq. (7.90) in the form

be(q) = JR“ dnqow(go)K(go;t,g), (7.117)

where

K(g,:t,9) :=(ih)'n/2[det w(#:qj,athEqk)];2

x exp{in'l I; [eY(zH)-H]o¢H‘5ds} [det(ggif)]. (7.118)
(o]

The integral in the exponent in Eq. (7.118) is the action
S(O,go;t,g) along the trajectory of the system starting at

q, = q»¢1H't at time 0 and ending at g at time t:

t -s

[OIeY(EH)-H]°¢H ds = S(O,go;t,g). (7.119)
This result becomes obvious when one notices that

L= 6y(g) - H (7.120)

is the Lagrangian corresponding to the Hamiltonian H. Eq. (7.119)

can also be obtained by direct computation from Eq. (2.53) if
one takes into account Eqs. (2.45), (2.50) and (2.51) with H
replaced by the time-independent Hamiltonian H discussed

here.
. £ t
Since . = - — and = we have on
qu %p; by Eqk E¢thk,
the fibre 9;*Y
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te 5 -
det (€ oyt ) - det[(gq)

q ol )55

J

H
» 3¢thk
= et(- = )
j
k
3q
= det(- —B-L)
Pj
=(-lflketCEiE)Tl
qu
But Eq. (2.54) yields
5
p; = 55; 5(0,9,:t,9); (7.121)
hence
2
t n 3°S -1
det w(E {,¢,5€ 1) = (-1) [det(——-— . (7.122)
@ B Tk anaqok>]

Similarly, the Jacobian of the change of integration variables

is given by

ap. 2
det(——lE) = det(—37§——g). (7.123)
aqo 3q 8q°

Substituting Eqs. (7.119), (7.122) and (7.123) into Eq. (7.118)

we obtain
2
- 3°5(0,9,5t,9) 1%
K(gyit0) = (30 ™ faee[ — o)
947 2q, (7.124)

x exp[ih_IS(O,go;t,g)].

We see that, apart from the factor (-ih)'n/z,

the
right hand side of Eq. (7.124) corresponds to the quasiclassi-
eal approximation to the time-dependent Schrddinger equation:
the exponential factor gives the W.K.B. approximation, and the

Van Vleck determinant is a solution of the corresponding

transport equation. Thus, the one-parameter family 0, : .24
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defined by the Blattner-Kostant-Sternberg kernels corresponds
to the quasiclassical evolution of states. Each oy is an
integral operator with kernel K(go;t,g) given by

Eq. (7.124),

0, (W(@Ar, ® v,) = {IRn d“qo w(go)l((go;t,g_)})\o ®v . (7.125)

The quantum Hamiltonian ZH is given by Eq. (7.86),

that is,

PHIY(DA, © v ] = in % o, (W(DA, ® V) (7.126)

t=0"

Let exp(-ith'1£2H) denote the one-parameter group of unitary
transformations of & generated by ZH. For each smooth
function ¢ with compact support in’ Rn, the curves in &
given by t » exp(-ith 1. 2H)[¥(9)), ® v,] and

t~ Qt[w(g)xo ® va] are tangent at t = 0. Therefore, by
interating Qt’ one can express exp(-ith'1£2H) as follows.
Divide the interval [0,t] into N equal subintervals. For
large N, exp(-i(t/N)h°1ﬁ2H)[w(g)lo ® v, ] can be approxi-
mated by ¢t/N[w(g)Ao ® va] and exp(-ith‘%QH)[w(g)Ao ® vl

can be approximated by

N _ n n
[0y N WA, ® v 1 = {IRnN d'q, ... d7qy_;¥(q,)

(7.127)
x K(go;t/N,gl) X...% K(gN_l;t/N,g)}Ao ® Vo

If the left hand side of Eq. (7.127) converges to
exp(-ith'1£2H)w(g)A° ® v, as N+ =, then Eq. (7.124) yields ,
for each x €.9*Y,
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se-l - 13 _iyy-NN/2 n n
lexp(-in "t 2H)¥(q)A @V ] (x) éiﬂ{( in) J nNd Ay --d7ay_¥(q,)

R
2

N-1 37S(0 ;t/N, )\q%
x [ I det( ’&rk drel )] (7.128)

r=0 aquaq 1

N-1
-1 .

< empfint T s(0,g,5t/m8,0) [P0 @ vy,

where gy = g(x).
For a fixed point x € X and fixed values of the in-
tegration variables 935975+ +2dy-1° let y: [0,t] = X be the

piece-wise continuous curve defined by the conditions

alv(rt/n)) = g, (7.129)

and

Y(-s+rt/n) = ¢H'S(Y(rt/n)) (7.130)

for each r € {0,1,...,N} and each s € [0,t/N]. Egs. (7.119),
(7.120), (7.129) and (7.130) yield

N-1

$(0,9,5t/N,9,.,.1)

N-1 /N

= 1 80,04 " "aly(r+1)t/N))5t/N,q(y((r+1)t/N)))

r=0

r=0

. Nil ft/N

Legy (Y((r+1)t/N))ds
r=0

)

r=0

N-1 ,t/N
[ L(y(-s+(r+1)t/N))ds

N-1 ((r+1)t/N t
J L(v(s))ds = JO L(y(s))ds.

r=0 ‘rt/N

On the other hand, the Van Vleck determinant can be approxi-

mated for large N by CNt'nN/Z,

cf. Eqs. (7.103) and
(7.122). Here, CN is a normalization constant depending

on the kinetic energy of the system, e.g., for the single
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. . : _ . 3N/2

particle discussed in Sec. 7.1 we would have CN =m .

Thus, Eq. (7.128) can be rewritten, for each x € j@*Y, in

the Feynman path integral form

1

[exp(-in~ tﬁ?H)w(g)ko @ v 1(x)

(7.131)
- {[ avaer ) exp[1n7? f:L(v(s))ds]}xo(x) ® vy (x),

where vy is a path in X such that q(y(t)) = q(x), ¥ is
the projection of y onto Y, ¥ = moy, and 9[Y] is the
Feynman pseudomeasure [cf. Eq. (7.140)] on the space of paths

¥: [0,t] » Y satisfying

Y(t) = y. (7.132)

The results of the preceding paragraph are valid only
in the domain of the coordinate system (p,q) on Z*Y. 1In
particular, they are applicable globally if and only if the
coordinates 4 on Y define a diffeomorphism of Y with R™.
To globalize these results we must rewrite their derivation
in terms of geometrically defined objects. Eqs. (7.87),
(7.88), (7.89) and (7.117) yield

- n % ) }

o, (¥YOA By ) = {fRnd a,¥(q,) [det g, (a,) | *K(a,;t,a)
-y (7.133)

x |det ga(g)l & ® Vgr
where we have put 9, Bas the argument of ¥ to represent the
point in Y corresponding to the coordinate 9,- Since
dnqoldet gct(g.o)lli corresponds to the density |det gll2 on
Y [cf. Eq. (7.75)]1, we have, for each x € j@*Y,
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Qt(w ® Ay ® vg)(x)
-{J

where the integration is taken with respect to the argument

(7.134)

%
yOeyldet g(yy) | W(yo)Kt(yo,y)} @ A, (x) & v (x)

Yo- Kt(yo,y) is a two-point function, that is, a function on

a neighborhood of the diagonal in Y x Y, and is defined by

K, (v5,7) = ldet gy )| *K(alyy) st,a(y)) det g(y)| %, (7.135)

where the function K is given by Eq. (7.118). Taking

into account Eq. (7.124) we can write

K (¥4Y)
= im M2 det glr,) | et DD S F(rg, )1 et g(y) | ¥
(o]
x exp{(in sty .M}, (7.136)

where Sot(yo,y) is the action integral defined by Eq. (2.45)
and related to S(O,go;t,g) by Eq. (2.53), and

det D_D_ S t(yo,y)

Y ¥ O
2
9 S(O’ﬂo;t’ﬂ)
= det — T . i . (7.137)
q°3q, 9,"4(v4)» a=a(y)

The function Sot(yo,y) is a scalar two-point function, so
that DyDYOSOt(yO,y) is a two-point covector field. There-
fore, under coordinate transformations Kt(yo,y) transforms
as a scalar two-point function on Y. Hence, Eq. (7.134)
expresses ¢, as an integral operator with a scalar kernel
Kt(yo,y) given by Eq. (7.136), where the integration is per-
formed with respect to the metric density |det g|%.

To obtain an expression for the Feynman path integral

we have to iterate Eq. (7.134). Instead of Eq. (7.127) we
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obtain, for x € 7 *Y,
y

N
[¢t/N] (Y © Ao ® vg)(x)

-]

x W(Yo)Kt/N(yo,yl)X---th/N(yN_Py)}®AO(x)@vg(x). (7.138)

ldet g(y_)|"x...x|det g(yy_ ;)™
(v Y1) EXN otl N1
ooy

Following the same steps which led to Eq. (7.131) we obtain

1

[exp(-ik "t ZH)Y ® A, ® vg](x)

- {fgz[vlw(y(O))exp[ih'lsz(y(s))ds]}®xo(x)®vg(x), (7.139)

where vy is a path in Y satisfying Eq. (7.132). The curve
y: [0,t] + 9*Y is obtained from Y by the Legendre trans-
formation, and 92[?] is a pseudomeasure on the space of paths

satisfying Eq. (7.132) which can be formally expressed as

N-1
g,y = lin (-in) W2 no{[det gy (rt/N)) ¥

N0 r=

X [det Dy runye/my Py e/ Sot T TE/N) ¥ ((re1)t/N)) 1%

x [det g(y)1 %. (7.140)
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The choice of representation is determined by the
choice of polarization. The polarization spanned by the
Hamiltonian vector fields of the position functions gives
rise to the Schrodinger representation. The momentum repre-
sentation corresponds to the polarization spanned by the
Hamiltonian vector fields of the momentum variables. The
Blattner-Kostant-Sternberg kernel between these representations
reduces to the Fourier transform. In this chapter, we describe
the Bargmann-Fock representation defined by the polarization
spanned by the Hamiltonian vector fields of complex coordin-
ates on the phase space as well as the harmonic oscillator

energy representation.

8.1. Bargmann-Fock representation

Let (X,w) be the symplectic manifold introduced in
Sec. 7.1 which represents the phase space of a single particle.
The Bargmann-Fock representation is given by the polarization
FB spanned by the Hamiltonian vector fields of the complex

coordinates Zy defined by

142
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-1
2, = 2% (py + igk). (8.1)

Denoting by Ek the complex conjugate of z,,

- - .k
7 = 2Py - 14, (8.2)
we can write
w=-i]} d?k A dzy. (8.3)
k

The Hamiltonian vector fields of the coordinates z; can

then be expressed as

, =i R A _EE). (8.4)
k sz 3Py 3q
We have
in(g, ,E ) =1 (8.5)
zk’ 2y ’
so that the polarization FB spanned by the frame field
£ = (& LE L,E ) (8.6)
z 21772, 723
is positive. Since
— = = c
FB nNFp =0 and Fy + Fy "X, (8.7)

the polarization Fp is obviously strongly admissible and com-
plete, cf. Sec. 4.1. The contractability of X implies

that the bundle jﬁFB of metalinear frames for Fg is trivial.

We denote by Ez a metalinear frame field for FB covering
Ez and by vz the section of VASFB defined by
- z
ve e B = 1. (8.8)
€, z

Let (L,v,<,>) be the prequantization structure intro-
duced in Sec. 7.1. That is, L is the trivial line bundle,
L = X xC, with a trivializing section Ao: X + L: x+= (x,1)

such that
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-1
v, = -in (E pkqu) ® A, (8.9)
and

<A0,Ao> =1, (8.10)

We introduce a new trivializing section Al of L defined by

A, = expl-(4m) L T1a %)% 2ip. K11 . (8.11)
1 " k k o
By direct computation we obtain

IS |
VA = -ikTT e @ A, (8.12)

where

;=i % dezk. (8.13)

Eqs. (8.12) and (8.13) imply that Al is covariantly constant
along Fp. Hence, every section o of L ® VASFB which is

covariantly constant along FB can be expressed in the form

o = W(E)Al ® Vg » (8.14)
z

where V¥ is a holomorphic function of the complex coordinates
z = (2,25,25).
We denote by ﬂ% the representation space defined by
. . . c _ T o= -
the polarization FB. Since DB = FB n FB 0, the Bohr
Sommerfeld variety S is equal to the entire phase space X
and X/DB = X. Therefore the scalar product on .ﬂg is given

by Eqs. (4.28) and (4.26), and can be written in the form
= v 3 3
(Wlkf8vzz|wle®vzz) = [R‘ wl(g)w2(£)<x1,xl>d pdiq. (8.15)
Taking into account Eqs. (8.11) and (8.10), we see that

aprp = expl-2m 7t 112 ¢ Y (8.16)
k

which can be written as
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Aparp> =exp(-lzl?/m, (8.17)

where

[z|% = 3 T2y - (8.18)

Hence, we have the following expression for the scalar product

on ﬁ%:
(wlxlmgzlwle@vzz) - [R‘wl(iﬁz(gexpmgZ/h)d’pd’q.(s.lg)

Eqs. (8.14) and (8.19) establish an isomorphism of the repre-
sentation space ﬂfB with the space of holomorphic functions
¥ on c3 with the scalar product given by the right hand
side of Eq. (8.19).

As in the case of the Schrddinger representation, the
components of the position, the momentum, and the angular
momentum vectors preserve the polarization. Hence, they are
quantized in the manner described in Sec. 6.2. In terms of
the complex variables L and Ek defined by Eqs. (8.1)

and (8.2), we have

-1 —
A ) (8.20)
qF = -iz“’ﬁ(zk -7 (8.21)
and
J.o=i ) €,.2.7 . (8.22)
k im kjm™j"m

Using the expression (8.3) for w we can write

9 &l

g, =27 ) (8.23)
k sz azk

£, = 272 2 (8.24)
q 32y sz

and
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2 .3

3

£y = -1 €1im (%5 —). (8.25)

]
k jm z

m

Substituting Eqs. (8.23), (8.24) and (8.25) into Eq. (6.24),

we obtain

[

-1 8
2P, ¥A, @ vil=2"7[(z, + A =—)Y¥]1A, ® vz (8.26)
Bk E, k 3z, 1 E,

]

k - Sk - op B -
g%q [le ® vy ] i2 [(zk h 8Zk)‘{’])\1 ® Vv (8.27)

£, £,
23 [¥r, @ vz 1=ih § e . z. = A @ v: R (8.28)
B k 1 52 in kjm”™j Bzm 1 Ez

where we have used the symbol .Q% to denote quantization
in the Bargmann-Fock representation.
The Bargmann-Fock representation is particularly con-
venient for quantizing the harmonic oscillator. Let
H be the Hamiltonian of a harmonic oscillator with unit mass

and spring constant,
H=% El(qk)2 + (pk)zl. (8.29)

In terms of the complex coordinates Zy and Ek we have

H = % 232y (8.30)
Therefore,
. ) - 3
£, =1} (2, — - 2, —=) (8.31)
H & k azk k azk
and
(., 1 = i _ . (8.32)
H 2y zk

Thus, &y preserves the polarization FB and the matrix aJk

defined by Eq. (6.7) is

Jooo q4d
aly = 187, (8.33)
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Substituting Eqs. (8.31) and (8.33) into Eq. (6.24) we obtain

sz F’z

Y 3
.QBH[‘PA1 ® vzz] = a(E Zy * 7V ®vg (8.34)

Let us consider an eigenstate of £2BH with eigenvalue

E. Eq. (8.34) yields

Y 3 _
h(%zkwk*'z—‘l/)-ﬁ‘y,

which is equivalent to

12( 2, g‘;’—k = (E/h - Y. (8.35)

Eq. (8.35) implies that ¥ 1is a homogeneous function of Zy
of degree (E/% - %). Since Y 1is holomorphic it follows
that (E/% - %) is a non-negative integer n so that the
spectrum of é%H is given by E = (n + %)h for
n=0,1,2,... . It should be noted that the ground state
energy 3h/2 is due to the transformation properties of the
bundle VASFB under the one-parameter group of canonical
transformations generated by H, cf. the derivation of
Eq. (6.24).

The polarization FB is transverse to the polarization
F introduced in Sec. 7.1 which gives rise to the Schrddinger
representation. Hence, we can construct the Blattner-Kostant-
Sternberg kernel using the technique developed in Sec. 5.1.
Substituting Ez for 19 and £ given by Eq. (7.3) for
g, in Eq. (5.1:), we obtain

<Y(Q)r, @ vg,?(g)kl ® Vg >
= z
= (8.36)

= (ih)'3/22'3/4exp{-(2h)-1[Igl2 + ip-ql}¥(2)¥(q).
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Substituting this result into Eq. (5.12) we get

.ﬁa(wxo ® Vi, YA, ® Vg

_E_’ )

&, (8.37)

- (i/h)3/22-3/4JR‘exp{-(2h)-1[|3|2+12-g)]}W(g)w(g)d’pdaq.

The kernel -2% induces a linear map @%: ﬂ% ~ & defined by
Eq. (5.1) which can be written with the help of Eq. (7.7) as
follows:

%, @ vgz) (8.38)

= m V2| ept-om 2l ip @t @ v
R =
Let U denote the linear operator from the space of
holomorphic functions on C3 square integrable with the
weight exp(-lilz/h) to the space of square integrable func-

tions on R3 defined by

¥ (@) = (ih)“3/22'3/4f ,exp{-(4n) T (p%+a?-2ip-q)}

,%R ) , (8.39)
x ¥(2 *(p+iq))dp.
We can now rewrite Eq. (8.38) in the form
2y (¥(2)r © vzz) = (U @i, ® Vg (8.40)
Making use of the identity
¥(c) = (2m) 3 fR‘ eS'Z W(g)e-lilzdapd,q (8.41)

valid for each holomorphic function ¥ on c3 and each
c € CS’ one can verify that U is invertible with inverse

given by
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wly@
(8.42)

- Cim¥ I et ety -1t ey,
R

The mapping ul corresponds to the unitary transformation of
Bargmann from the space of square integrable functions on R3
to the space of holomorphic functions on c3 square inte-
grable with respect to the weight exp(-lglz/h). Hence,

@% : ﬁﬂé +& is unitary and the Bargmann-Fock representation
is unitarily related to the Schrédinger representation. More-

over, if 2f denotes the quantization of a function £ in

the Schrddinger representation we have
(2£Y%y = % (Zf) (8.43)

for f -equal to qi, p;» Ji or the harmonic oscillator
energy H.

All the preceding discussion was restricted to the case
of three degrees of freedom. Clearly, one can introduce the
Bargmann-Fock representation for an arbitrary number of degrees

of freedom provided the phase space is an affine symplectic

space.

8.2. Harmonic oscillator energy representation

Let us consider a one-dimensional harmonic oscillator

with the energy
+ q7). - (8.44)
The Hamiltonian vector field of H with respect to the symp-
lectic form

w = dpadq (8.45)

on R2 is given by
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£y =P 35 - 435 - (8.46)

To quantize this system in the representation in which the
energy is diagonal we require a polarization containing ey
However, the distribution spanned by EH has a singularity
at the origin since EH =0 when p =q = 0. Since at
present we have no theory of quantization for polarizations
with singularities, it is necessary to remove the origin and
take X = R% - {(0,0)} as the phase space of the harmonic
oscillator. Since X is open in R2 we do not introduce
special symbols for the restrictions of w and EH to X.
Let DH denote the real distribution on X spanned
by EH. Since all the integral curves of EH are periodic
with period 2w, the integral manifolds of DH are isomorphic

1

to T°. The space X/DH of integral manifolds of Dy is

therefore a quotient manifold of X diffeomorphic to Rl.
Hence FH = DHc is a complete strongly admissible real polari-
zation of (X,w). Since the integral manifolds of DH are
not simply connected, it follows from the general theory
developed in Secs. 4.4 and 4.5 that the Bohr-Sommerfeld
variety S 1is a proper subset of X and that the representa-
tion space ﬂ%i will consist of distributional wave functions.
In the terminology of Sec. 4.5, we have X = Xl [cf. Eq. (4.39)],
and the manifolds Q < X/DH intorduced in Eqs. (4.41) and
(4.42) will be single points. In fact, the projection NDH(S)
of the Bohr-Sommerfeld variety to X/Dy is a sequence {Q,}
of isolated points.

The phase space X 1is not contractible and the addi-
tional structure needed for quantization is not unique. In

order to obtain results comparable to those derived in the
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Bargmann-Fock representation, we choose the trivial metaplectic
structure on (X,w) which is induced by the unique metaplec-
tic structure on (Rz,m). That is, the bundle 55&7X of
metaplectic frames of (X,w) is the restriction to X of the
bundle _QwYRZ. The bundle QMFX induces a metalinear frame
bundle £§FH of FH in the manner described in Sec. 5.3. We
now study the bundle £?FH in some detail.

The symplectic frame bundle 5%91 has a trivializing

section

g = (a—aﬁ;;—q). (8.47)

Let B be a trivializing section of é%éﬁ projecting onto
B. The sections B and § determine isomorphisms
9%9? = X x Sp(l,R) and £§w9i = X x Mp(l,R) respectively.

According to the results of Sec. 5.3, every Lagrangian frame

[=

at x can be identified with a mapping

w':@ 77X+ B xGL(L,C) satisfying Eq. (5.54), where B is
given by Eq. (5.59) and the action of Sp(1,R) on B x GL(1,C)
is defined by Eqs. (5.62), (5.63) and (5.64). Similarly, a
metalinear Lagrangian frame at x is given by a mapping
#': 3, 7x + B x ML(1,C) satisfying Eq. (5.70). The
Hamiltonian vector field EH spans FH’ hence it defines a
mapping from X x Sp(1,R) to B x GL(1,C) which behaves
appropriately under the actions of Sp(1,R) and GL(1,C).

Let wu: X + GL(1,C) be the mapping obtained by restricting

X x Sp(1,R) + B x GL(1,c) to X x {e} and projecting the
result to GL(1,C). Making use of Eqs. (5.47), (5.56), (8.46)

and (8.47) we can compute u explicitly:

u(x) = -q(x) - ip(x) € GL(1,C)
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for each x € X. The bundle ngH is trivial if and only if
there exists a 1ift {§i: X + ML(1,C) of wu. Let us consider
a curve vy: [0,27] + X such that q(y(t)) = -cos t and

p(y(t)) = -sin t. Then

u(y(t)) = elt

for each t € [0,27], and the curve wey: [0,27] + GL(1,C)
generates the fundamental group of GL(1,C). Hence the 1lift
of pey to the unique curve in ML(1,C) originating from the
identity and covering Moy 1is not closed. Therefore, the
map wu: X + GL(1,C) cannot be lifted to a map 1fi: X + ML(1,C)
which implies that £3FH is not trivial.

Consider a covering of X by contractible open sets

v’ and V7, where

vi= {xe X | £q(x) > 0 or p(x) # 0}. (8.48)

+

The restriction of ﬁ?FH to V is trivial and we denote by

EHt a lift of gHIVi to a section of £3FH|V1. Moreover,

we assume that

£, 7(x) = ;7 (x) when p(x) >0 and q(x) = 0. (8.49)
This implies that
EH*(x) = EH-(x)j when p(x) < 0 and q(x) = 0, (8.50)

where J is the element of the kernel of p: ML(1,R) + GL(1,R)
such that

X(3) = -1. (8.51)

The representation space ﬂﬁﬁ consists of the space

of sections of L ® VAlF covariantly constant along F,, where

H H?
L is the trivial complex line bundle over X. We choose a
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trivializing section Ao such that

A°> =1 (8.52)
and

= _ip-1
Vho = -ip “pdq ® Ao. (8.53)

+

Let v denote the sections of \/AlFH|Vi defined by
v, ey = 1. (8.54)

Then, every section o of L & VAlFH can be expressed

locally as follows:
+ + *
o|V: = pT (A V) @ v, (8.55)

"
where Y~ are complex-valued functions on Vi. If ¢ 1is to

. +
be covariantly constant along FH, the functions ¢~ must

satisfy the differential equation

3 Byt g
(0 55 - a gV - in p? vt =0 (8.56)

together with the boundary conditions

v (x) = v (x) when p(x) >0 and q(x) = 0 (8.57)

-y (x) when p(x) <0 and q(x) =0 (8.58)

e

which follow from Eqs. (8.49) and (8.50), respectively.

Introducing an angular variable ¢ such that
2 . 2 2.4
p= %+ a9 %in ¢, q = (p° + a®)%os ¢, (8.59)
we can write the solutions of (8.56) in the form

v o= atexpl-in Y(He - %pq)] for -m < ¢ <7 (8.60)

and
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v o= a-exp[-ih-l(H¢ - %pq)] for 0 < ¢ < 2m, (8.61)

where a® are amplitudes depending only on H. Taking into

account the boundary conditions (8.57) and (8.58) we have

a* explin ™ Hn/2] = a expl-in YHm/2] (8.62)
and
a* exp[ih'lﬂ(-ﬂ/z)] = -a’ exp[-ih'IHSﬂ/Zl. (8.63)
Hence
at = a” (8.64)
and
a*(H) expl-in tH2m]l = -a*(m) (8.65)

which implies that a*(H(x)) = 0 wunless H(x) = (n + %)n
for some integer n. Thus, the supports of the covariantly
constant sections of L ® VAlFH are contained in the Bohr-

Sommerfeld variety
S = {x € X|H(x) = (n + %)n, n € Z}. (8.66)

This result could be obtained directly from Eq. (4.38) by sub-
stituting % for dY on account of non-triviality of £§FH.
The Bohr-Sommerfeld variety S consists of a sequence
of concentric circles H'I[(n + %)n]. Hence, the scalar pro-
duct on & is given by Eq. (4.46) with k = 1. For each
non-negative integer n, we denote by o, 2 covariantly con-

stant section of L ® VAlFH|H'1[(n + %)n] such that

(onlon) = 1. (8.67)

For each x € H-l[(n + )nln V¥ we can write

o, (x) = c exp{-i(n+}) [, (x)-}sin 2¢, (X)TIA;(x)@v, (x), (8.68)
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where ¢*(x) and ¢_(x) are the values of the variable ¢
satisfying Eq. (8.59) corresponding to the point x € X

and contained in the intervals -m < ¢ _(x) < 7 and

0 < ¢ (x) < 2m.

The value of the normalization constant ¢, can be
obtained from Eqs. (4.46) to (4.51). Since the integral curves
of EH are periodic with period 2w, we have K(EH) = (211)'1
so that k() =1 for £ = ZﬂEH. Let Qn be the projection
of th[(n + %)nl to X/DH and x any point in
Hl[(n + 5)nl. Eqs. (4.51) and (8.68) yield

—

12 v ey, G, (8.69)

<0_,0. >~ = |c
n’’n Qn

n
where E(x) is a lift of E(x) to £§FH. As  g(x) = 2mEy(x),
we obtain from Eqs. (4.12), (8.54) and (8.69)

2
I

<op,02q = lc (zmy L. (8.70)

n n
Since Qn is a point in X/DH, there is no integration in-

volved in Eq. (4.46) and we have
(onlon) = <on,an>Qn. (8.71)

Taking into account Eqs. (8.67) and (8.70), we see that we can
choose

c = (2m)%. (8.72)

The sequence (on) of sections in ﬁﬂé forms an orthonormal
basis of ﬂﬂé; the orthogonality of o and o with m#n
is obvious since (support on) n (support om) = ¢. Hence,

each o Eﬂﬂh can be written

(8.73)
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where the a are complex numbers, and the scalar product on

ﬂ%{ is given by

(121 anonl El bo) = rzl anFn. (8.74)

Thus, the basis (on) establishes an isomorphism between ﬂq&
and the Hilbert space of square summable sequences.
The quantized Hamiltonian .QhH in the energy representa-
tion ﬂ% acts by multiplication by H, i.e., for each
o € ¥y,
éaﬂ[o] = Ho (8.75)

[cf. Eq. (6.26)]. Hence, the vector oL is an eigenvector of
Q%H with eigenvalue (n + %)%, and the spectrum of .QhH is
given by the image under H of the Bohr-Sommerfeld variety S
defined by Eq. (8.66). The quantization of the position and the
momentum variables, which is straightforward in the Schrddinger
and the Bargmann-Fock representations, cannot be obtained at
present in the energy representation for the following reason.

t

Let ¢p denote the one-parameter local group of local canoni-

cal transformations of (X,w) generated by p; it is a local
group since the Hamiltonian vector field of p 1is not com-

plete in X. The transformations ¢pt correspond to transla-
tions along the q-axis. Since the integral manifolds of Dy

2

are the circles p2 + q° = const, the distributions F, and

H
ﬁ@pt(?h) do not intersect along a distribution. Hence, the

polarizations F, and _7bpt(?ﬁ) do not satisfy the condi-

H
tions necessary for the construction of the Blattner-Kostant-
Sternberg kernels. It may be that this is only a technical
difficulty and in the future one will be able to generalize the

construction of the Blattner-Kostant-Sternberg kernels to the
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case of polarizations with singular intersections. However,
if this generalization % is local in X, i.e., if JiTol,oz)
is an integral of a concomitant <0,,0,> depending locally
on the sections % and o, as in Eq. (5.11), then the re-
sulting operator .th would commute with £2HH according to
the argument in Sec. 6.4. Thus, either the generalization of
the Blattner-Kostant-Sternberg kernel used in the quantiza-
tion of the momentum in the energy representation is non-local
or the operators .th and .QhH commute, in which case the
energy representation is inequivalent to the Schrdodinger
representation. The same argument is valid for any dynamical
variable f on X.

Let FB be the polarization of (X,w) spanned by the

Hamiltonian vector field Ez of the complex coordinate
=27k i
z 2 *(p + iq). (8.76)

The polarization FB gives rise to the Bargmann-Fock repre-
sentation for the harmonic oscillator in the manner described
in Sec. 8.1; the only difference being that now we have one
degree of freedom instead of three. The polarizations FH
and FB satisfy the transversality condition (5.12)

so that we can use Eqs. (5.11) and (5.13) to define the
Blattner-Kostant-Sternberg kernel %H: MB XK/H + €. Since

the normalized eigenvectors of .Q%H form an orthonormal basis
of ﬂ%, we can describe "ZEH by its values Kmn on the energy

eigenvectors in ﬂ% and ﬁqi with the eigenvalues (m + %) R

and (n + %)n respectively:

o= 1
K¢ xBH(am 200, (8.77)
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where L is given by Eq. (8.68) and

om' = Wm(z)kl ® sz. (8.78)

Here, Al is defined by Eq. (8.11) and Wl satisfies the

equation
m _
Z — = mwm (8.79)

which follows from Eq. (8.35) if one takes into account the

fact that we have one degree of freedom only. Thus

y = a M, (8.80)

where the normalization constant ay is determined by the

requirement

(op'lo,) =1 (8.81)

which, in view of Eq. (8.19), is equivalent to

lagl? |

Evaluating the integral,we find that we can choose

2
i, |2] %™ exp(-|z|%/mdpdq = 1. (8.82)

-1
a_ = (2n m! A™h) 7R (8.83)

Substituting Eqs. (8.68) and (8.78) into Eq. (5.11) and

taking into account Eq. (8.11), we obtain

<om',on> = bmn expli¢(n-m)] (8.84)

where the bmn are constants different from zero. The matrix
coefficient Kmn defined by Eq. (8.77) can be evaluated with
the help of Eq. (5.13) where the integration is taken over
H-l[(n + LRl since in this case Q1 = X and Q2 is the
single point in X/DH corresponding to the energy (n + %)h.

The density § in Eq. (5.13) corresponds to integration

QQ,
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with respect to ¢ € [0,27]. Thus Kmn .is proportional to

2w
f exp[i¢(n-m)]1de¢ which implies that
0

Kmn =0 for m # n. (8.85)

Hence, the linear mapping Q%Hzﬁq{-*ﬂ% defined according to
Eq. (5.1) by 4 satisfies

BH
%BH(.QHH) = ( .QBH)%BH. (8.86)
The diagonal elements Kmm are non-zero which implies that
%iH is a vector space isomorphism. On the other hand,
IKmml # 1 so that %%H does not preserve the scalar product

and, therefore, is not unitary.



9. TIME-DEPENDENT SCHRODINGER
EQUATION

Time-dependent Hamiltonian dynamics can be formulated
in evolution space independently of any inertial frame. The
principle of geometric quantization extended to evolution
space yields an intrinsic quantum theory equivalent to that
based on the time-dependent Schrédinger equation. We restrict
our attention to the quantum mechanics of a single particle
with a time-dependent potential.

Following the terminology of Sec. 2.4, we denote by 2

the evolution space of the particle. That is,
Z= y X (9.1)

where T represents absolute time and Xt is the phase space
at time t equipped with the Lagrange bracket P Since we
are dealing with a single particle without constraints, each
Xt is the cotangent bundle space of a 3-dimensional Euclidean

space Yt representing the physical space at time t,

X =j7*Yt, (9.2)
and

w, = deYt (9.3)

160



9. Time-dependent Schrddinger equation 161

where eY is the canonical 1-form on J7*Yt defined by
t
Eq. (2.12).

In each of the phase spaces (Xt,wt) we introduce the
structure leading to the Schrddinger representation, cf. Sec.

7.1. Thus, we have a trivial bundle £§wJ7Xt of metaplectic
t
frames for (Xt,wt) and a polarization Ft spanned over C

by the vectors tangent to the cotangent bundle projection

X, =7*_ > Y_. The bundle & 9X induces a trivial complex
t t t wtt

line bundle VASFt over Xt. Moreover, we have a complex

line bundle Lt over (Xt’wt) with a connection V satisfy-

ing the prequantization condition (3.20) and also a trivializ-

ing section At: Xt > Lt such that

= -] -1
M, = -in oy ® A (9.4)

and

<At,kt> = 1. (9.5)

The representation space defined by this structure is denoted
ié%.

The collection of fibre bundles introduced above
gives rise to fibre bundles. §b97, F, VASF and L over Z

such that, for each t € T,

29L|X, =5§wé7xt (9.6)
F|X, = F, (9.7)
vA3F|xt = VA%, (9.8)
and
LIX, = L,. (9.9)

The sections {At: X, » L t € T} induce a section A: X + L

t t l
such that
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Alxt = A (9.10)

for each t € T. We assume that all these bundles are differ-
entiable and that XA 1is a smooth section of L. The con-
nections in the bundles Ly give rise to a partial connection

in L. We extend it to a connection V by requiring that

A = -inle @ 2, (9.11)

where © 1is a one-form on Z such that

Y (9.12)

o|X, =8
t t

for each t € T, and

Q = do (9.13)

is the 2-form determining the classical dynamics of the
particle in the manner described in Sec. 2.4. The classical
motions are the orbits of the one-parameter group $° of
diffeomorphisms of Z generated by the vector field ¢ on
Z satisfying

e =0 (9.14)

and normalized by Eq. (2.41).
The quantum evolution space ¥ is the union of the

representation spaces ﬂ%,

#= U &,. (9.15)
teT

It is a bundle of Hilbert spaces over T. The quantum dynamics
of a single particle is given by a trivialization of this
bundle: sections of ¥+ T correspond to sections of L ® VASF
which are covariantly constant along F. 1In order to describe
the quantum dynamics induced by the classical dynamics given by

¢s, we shall associate to ¢s a one-parameter family of vector
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bundle maps ® ¥+ ¥, The quantum dynamics is then deter-
mined by ¢s as follows: A section o of % describes a
dynamically admissible history of the quantum system under

consideration if and only if

d _
35959 520 = O 9.16)

Let & denote the space of solutions of Eq. (9.16). For
each t € T, we have the restriction mapping %&:ﬁ¢3>ﬁ4
defined by

%0 = o|X,. (9.17)

We shall see later that Eq. (9.16) corresponds to the time-
dependent Schrddinger equation. Hence, the space & admits
a Hilbert space structure such that all the mappings
%t: M*.&ft are unitary.

Let £ be a function on Z such that, for each
t € T, the restriction ft of f to Xt can be quantized
in the Schrodinger representation giving rise to an operator
th on .ﬁ%. We denote by éaf the one-parameter family of
operators on & defined by

-1
2,f = % " (2£)%,. (9.18)

The operators £2tf do not depend on t € T if, for each t
and t' €T,
-1 -1
(2f)%%. " = 2%, (2£.). (9.19)

In this case there exists an operator 2f such that
.Qtf = 2f (9.20)
for all t € T.

It remains to construct the vector bundle maps

¢s:if->i? which determine the quantum dynamics. The one-
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parameter group ¢s generated by the vector field ¢ satis-
fying Eqs. (9.14) and (2.41) preserves £ and it induces a
one-parameter group of translations of T denoted by

t»t + s. Hence, we can lift the action of ¢° to the
bundle - -

52597 = tt%.gaqut, (9.21)
where ,;%_7Xt is the bundle of positive metalinear Lagrangian
frames for (Xt,wt). We denote by 5#5 the one-parameter
group of automorphisms of 55692 induced by ¢s. The distri-
bution F is not invariant under the action of ¢° and we
denote by _9@S(F) the image of F under $°. For each
t € T, the distribution .97¢s(F)|Xt is a polarization of
(Xt,wt) and

%5 (F) Ix, = IS (F (9.22)

t-s)'

Let, for each t € T, 49%° (F be the bundle of metalinear

t-s)
frames for _935(Ft_s) induced by the metaplectic frame bundle

é%yfit, and VA%?@S(Ft-S) the associated bundle correspond-
t
ing to the character X of ML(3,C). We denote by VA%?BS(F)

the complex line bundle over Z such that, for each t €T,
35S _ 348
VAT (F) X, = VA Te° (F,_ ). (9.23)

For each section v of VASF, we define the Ssection ¢Sv

of VAS $5(F) by
Wt = vt San (9.24)

for each We BR°(F) = U GR°(F ).
teT
In a similar manner we can define the action of ¢5 on
sections of L. Let C# denote the horizontal 1lift of ¢ to

the principal ¢® bundle L™ associated to L
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[cf. Eq. (3.13)], and ¢#s the one-parameter group of diffeo-
morphisms of L generated by c#. For each section A of

L, the section ¢°) is defined by

OOMER I (9.25)

Let ﬁ{s denote the representation space defined by

the polarization .9’65(F)|Xt of (Xt,wt). Each section o

t-s

in & _ can be written
Op s = Mg ® Viogo (9.26)
where At-s is the trivializing section of Lt-s satisfying
Eqs. (9.4) and (9.5) and v is a section of VASF co-

t-s t-s

variantly constant along F The action of ¢s on sec-

t-s°®
tions of L and VA3F yields a unitary transformation

ots: LA ﬁfts defined by

s _ s s
0.5(0,.5) = 652 _ ® ¢%v, . (9.27)

We assume that, for sufficiently small s > 0, the
polarizations.f@s(Ft_s) and Ft are transverse so that one

can construct the Blattner-Kostant-Sternberg kernel

% : & x5+ as in Sec. 5.1. Let 2 _:¥°5 &
t t t,s

t,s t t
be the linear map induced by .2; s such that, for each
’
s s
o, €4 and each o~ €”,
Sy _ s
}Q’S(Ut,ot ) = (Uthi,sot ). (9.28)

s . .

Then Q%,s°°t is a linear map from & . to & . The col-
lection {%%,s°°ts: ﬂ{_s > % | t € T} of linear maps induces
a vector bundle map 05: ¥ +% such that, for each t € T,

= 7 S
LN | &, 2%’5o¢t . (9.29)
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Let Y = E x T be the product structure of the space-
time Y induced by the choice of some inertial frame; it gives
rise to a product structure on Z with the projection
v: Z *9*E and T: Z + T. The choice of an initial time
yields an affine isomorphism t: T + R such that the 1-form
dt, corresponding to the choice of the time scale, coincides
with the differential of the function t. We denote by
q = (ql,qz,qs) the pull-back to Z of cartesian coordinates
on E and by p = (pl,pz,ps) the conjugate momentum func-
tions. We shall also use the letter t to denote the pull-
back of t: T+ R to Z. The functions p, g and t form
a coordinate system on Z. The distribution F 1is spanned

by the linear frame field

£ = (g1et,e%, (9.30)
where
i 98
gt = 3] (9.31)

for i =1,2,3. We denote by % the metalinear frame field

for F projecting onto £ and by Vi the trivializing sec-

tion of VASF such that

#

vi'e £ = 1. (9.32)

fovee

A section ¢ of L ® VASF covariantly constant along F can

be written in the form
o = ¥(e,tIr ® vy (9.33)

where A 1is the trivializing section of L satisfying

Eq. (9.11). Let v be the function on R4 such that

00 = ¥ (q, )1 8 v (9.34)
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Then, using reasoning analogous to that leading to Eq. (6.49),

we obtain

b(@t) = 0732 | fuaer aced, %1

(9.35)
S
x exp[in’ fo o(c)o¢ dufu(aes ™, t-5)}a’p.
If the form © is given by
0 =1 pjdqj - [(Ez/zm) + V(g,t)ldt, (9.36)

J

we can use the arguments leading to Eq. (7.38) to obtain
lim £t v (q,t) = -in7MV(g, ) u(a, t)+ (in/2m) by (g,t)
s»0+ 45 'S
R 53? ¥(g,t). (9.37)

Substituting Eqs. (9.33), (9.34) and (9.37) into Eq. (9.16),

we find

in 53T ¥(a,t) = [-(r%/2m)a + V(q,t)1¥(g,t).  (9.38)

Thus, a section y(gq,t)r @ vz of ¥ describes a dynamically
admissible history if and only if the function Y(g,t) satis-

fies the time-dependent Schrddinger equation.



10. RELATIVISTIC DYNAMICS IN AN
ELECTROMAGNETIC FIELD

10.1. Relativistic quantum dynamics

The relativistic dynamics of a particle with charge e
in an external electromagnetic field f can be described in
terms of the phase space C?*Y,we), where Y 1is the space-
time manifold, w: 9*Y » Y 1is the cotangent bundle projection,

and

w, = deY

+ emhf (10.1)
[cf. Sec. 2.3]. Assuming that Y is orientable, and follow-
ing the reasoning of Sec. 7.2 leading to a metaplectic struc-
ture on c7*Y,d0Y), we obtain a metaplectic structure on
L?*Y,we). The vertical distribution D on *Y tangent to
the fibres of 7w is Lagrangian with respect to the symplectic
form w,s SO that F = D is a polarization of L?*Y,we). The
metalinear structure of F induced by the metaplectic structure
on L?*Y,we) is isomorphic to that induced by the metaplectic
structure on (9*Y,d6y). Hence, we can apply the results of
Sec. 7.2. We denote by #F  the metalinear frame bundle of F
induced by the metaplectic structure and by VA4F the associa-

ted line bundle corresponding to the character x of ML(4,C).

168
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For each local chart (Va,ﬁal,...,aa4) on Y the restriction

of F to n'l(Va) is spanned by the linear frame field

13 = (g 1:---,5 4)- (10.2)
Lo 9 Qo
Note that the Hamiltonian vector field of a function q = Yo,
where q is a function on Y, does not depend on the value
of e in Eq. (10.1). We have a family \ of local sections

of VA4F such that

v "eE =1, (10.3)

where Eﬂa is a 1ift of & to a metalinear frame field.
o
There exists a global trivializing section vg of VA4F

satisfying Eq. (7.70), where ¢ is the space-time metric.
Let Le be a prequantization line bundle correspond-
ing to the symplectic form W, The prequantization condition

(3.20) takes the form

-1
da, = -n TR, (10.4)

where a, is the connection form on Le and n*we denotes
X

the pull-back of W, to Le . It is satisfied if and

only if the de Rham cohomology class [h'lwe] defined by the

symplectic form h'lwe is integral. Eq. (10.1) yields

(nto1 = winlery, (10.5)

where the right hand side denotes the pull-back of the coho-
mology class [h-lef] on Y to Z*Y., Hence, the quantiza-
ler

is an integral class in HZ(Y,R). This implies that, for

tion condition (10.4) is satisfied if and only if [k~

each compact oriented 2-surface I in Y with empty bound-

ary
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[ nler = k€ 2. (10.6)
z

In the presence of magnetic charges the form f representing
the electromagnetic field strength ceases to be closed.
Therefore, the preceding argument applies only if Y repre-
sents the part of space-time free of magnetic charges.

Since

f £ = 4mmg, (10.7)
y

where my is the total magnetic charge surrounded by I, we
have

emy = 4k;n (10.8)

for some integer kz‘ Eq. (10.8) has to be satisfied for
each closed surface I without boundary. This is possible
only if my is an integral multiple of some magnetic

charge m satisfying the Dirac condition

2emh’ ! € z. (10.9)

Since the trivializing section vg of VA4F is covari-
antly constant along F, every section of L ® VA4F covariantly
constant along F is of the form A ® vg, where X is
a covariantly constant section of L,. There is a rela-
tion ~ in Le given by L1~%; if and only if there exists
y € Y such that 21 can be joined to 22 by a horizontal
curve in Lelﬂz*Y. Since, for each y € Y, the connection in
Leljg*Y is flat with trivial holonomy group, the relation
~ is an equivalence relation. The space of equivalence
classes, denoted Le~, has the structure of a complex line

bundle over Y. The canonical projection 1 : Le > Le is an

isomorphism on each fibre and the diagram
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T ~
L, L,
l l s (10.10)
TrY LI Y

in which vertical arrows denote the line bundle projections,
commutes. There is a bijection between the space of sections
A~ of Le~ and the space of covariantly constant sections
A of Le. If X 1is a section of Le covariantly constant

along F, then A Y - Le~ is given by
A(y) = 1 ea(x) (10.11)

for each y € Y and any x € 5§*Y. There is an induced

Hermitian form <,> on Le~ such that

Apady> = <A1“,A "> (10.12)

for each pair (Al,kz) of covariantly constant sections of
L. The representation space ﬁé consists of covariantly
constant sections A ® vg of Le ® VA4F with the scalar

product
~ ~ ~ 1
( ® vglxz ®v) = IY<X1 WA, 7> det g] %, (10.13)

If the form ef 1is not exact, the line bundle Le
does not admit a global nonvanishing section. On each con-
tractible coordinate neighborhood Va in Y there exists a

1-form .2% such that

flv, = e . (10.14)

o
The form of is a local potential for the electromagnetic

field strength f. Let Aa be a local section of

L n'l(Va) such that

el



172 10. RELATIVISTIC DYNAMICS IN AN ELECTROMAGNETIC FIELD

wA, = inTley ¢ emi) 82, (10.15)
where ntﬂ% denotes the pull-back of .Qé to n_l(va), and

Agirg> = 1. (10.16)

The section Aa is covariantly constant along Flﬂ'l(va), and

each section A ® vg € ﬁé can be expressed locally as

-1 _
A ® vg|n (Vy) = ¥, @1, ® Vg (10.17)
where Ta is a complex function on Va' If A and A

1 2
have supports in n-l(Va) then

1
- v 4
(A, ® ngAZ ® vg) fv ¥10¥20 | det g|™2. (10.18)
o
If Vu n VB # ¢ there exists a function

c ,: V. nV, »c* such that
B o B

Ag(X) = c g (m(x)) A (x) (10.19)

for each x € n-l(Va N Vg). Eq. (10.16) implies that |Ca6| =

and, assuming that Va nv is contractible, we can find a

B
real-valued function AaB on Va n VB such that
= FPreet
caB = exp(-ien Aas)’ (10.20)
It follows from Eq. (10.15) that
.ga -J&% = dAaB on Va n VB' (10.21)

Since the sections Aa are covariantly constant along F, they

induce local sections Aa~: Va -+ Le*. For each y € Va nv

Eqs. (10.11) and (10.18) yield

B’

A () = cg(Ag" (1) (10.22)
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so that the Cupt Va n VB + ¢ are transition functions for
the line bundle Le”. Eqs. (10.20), (10.21) and (10.22)

imply that we can define a connection V™ in Le~ by setting
S | ~
v Aa = -ieh .Qé ® A", (10.23)

It follows from Eq. (10.14) that the curvature form of the
connection vV~ in L is given by -eh'lf. Since the

~ o~

transition functions CuB have modulus one and <Aa~,xa >T =1,
the Hermitian form <,>~ on Le~ is V7 -invariant.

The polarization preserving subalgebra of the Poisson
algebra of C?*Y,we) consists of functions of the form
q + pc, where q = om is constant along D and p; is
defined by Eq. (7.42). The quantization of such functions is
given by Eq. (6.24). For q = Qem the corresponding operator
is given by

A = qA . .2
2qlr ® vg] ql ® Vg (10.24)

For a function pc, Eq. (6.24) and the discussion in Sec. 7.2

leading from Eq. (7.77) to Eq. (7.82) yield

ch[k ® vg] = [{-ihVE * Py - %in(Div g)em} Al © vg. (10.25)

Py

If support A ﬂ_l(Va), then we can express A ® vg in terms
of the local section Aa ® vg as Ta ® Aa ® vg, and we ob-
tain, with the help of Eq. (10.15),

.Qp;[‘l’axt)\a@\)g] = {[-ih(vc + %Div ) - e%(;)]wa}ma@vg.(lo.zm

Since the representation space ﬁg is isomorphic to

the space of square integrable sections of Le~ via the
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correspondence A ® vg # A7, any linear operator A on ﬁé
induces a linear operator A~ acting on sections of Le~.
Taking into account Eq. (10.23), we see that the operator

(£2pc)” corresponding to .é?pC is given by

(2p) 1271 = -ir (Y, + % Div D)A. (10.27)
Similarly, we have from Eq. (10.24)

(2p)~IA"1 = g~ (10.28)

for each function q = Jem.
The classical relativistic dynamics of a charged
particle in an electromagnetic field is described by the

Hamiltonian vector field EN of the mass-squared function
N(x) = g(x,x), (10.29)

cf. Sec. 2.3, We are going to derive an explicit expression
for the quantum operator ZN. We shall see that it corres-
ponds to the Laplace-Beltrami operator of the bundle Le~
modified by the curvature term hZR/é, cf. Eq. (7.114). Thus
the Klein-Gordon equation can be interpreted as the equation
for determining the eigenvectors of the mass-squared operator.
The local one-parameter group ¢Nt generated by EN
does not preserve the vertical polarization. Assuming that
EN is complete and that, for small t > 0, the polarizations

t .
F and J7¢N (F) are transverse, we can use the technique

developed in Sec. 6.3 to evaluate ZN. Let o and o'

be two sections in ﬂaf The Blattner-Kostant-Sternberg kernel

5€c: &, x ffet + C is given by

%c(o',sbNto) = f <c',¢Ntc> |‘°e4" (10.30)

T*Y
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where <c',¢Nt0> is defined by Eq. (5.11). If ¢ and o
1

have supports in = (V) for some coordinate neighborhood
V, there exist functions ¢ and ' on R4 with supports
in the image of the chart {§: V -+ R4 such that

o=9(@r®v and o' = Pp'(Qr ® v, (10.31)

where A is a local section of L, satisfying Eq. (10.15)
and v is given by Eq. (10.3).

In the following we shall work in terms of the coordi-
4

w

nates q: V + R chosen above. Hence, we have dropped the
index o labelling different charts. Substituting the
above expressions for ¢ and o' into Eq. (5.11), we can re-

write Eq. (10.30) in the form

, t _ s 2 [ =t
4,00 (@) hev, 6, S (V(@)Aev)) = (i/h) L-l(v)l‘“ (@TCoy D)
. (10.32)
x [det we(E j’¢Nt£ k)] <A,¢Ntk>}dkped“Q:
q q
where
e *= o .

) ; . pJ + a,(zj T (10 33)

and .Q% are the components of the form & with respect to
the basis  dil,...,dq%,

o= aql. (10.34)
J

Eqs. (10.33) and (10.34) imply that

a"'p®d*q = d*pd*q. (10.35)

Taking into account Eqs. (10.18) and (7.70) we can write the
scalar product of the sections o and o' given by Eq. (10.31)

in the form
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(V' (@Arev]|y(g)rev) = fVW'(i)W(i)d“a. (10.36)
This enables us to rewrite Eq. (10.32) as
S, (b (@28, o,  (W(@A8v)) = (¥ (@rov|y (@)hev),  (10.37)
where
v (@) (10.38)
-2 t t ot "
= (ih) L_*Yw(ng @ [det ICRL qu)] <y "1, 0>d"p.
y
According to Eqs. (5.1), (6.28) and (6.29) we have
ONIy(g)rev] = in adT“’t(ﬂ)}‘@\’ltw' (10.39)
The argument leading to Eq. (6.48) yields
- t -
<¢Ntx,x> = exp{ih 1 [OI(GY + eﬂ%&O(EN)-N]o¢N sds} (10.40)

and, taking into account Eqs. (2.14), (2.26) and (10.34), we

obtain
(8y + en®) (£) = 2N + Ze‘z'pi(gij.wj)oﬂ. (10.41)
ij
Hence,

v _ . -2 -t t L
A IED [y*yw(_qu ) [ et RCPRN aqk)]
y
t . (10.42)
x exp{ih-1 [N +27p (ngA.)oﬂ]°¢ 'sds}d“p.
-k J N
0 kj
We must now compute the derivative with respect to
t of the right hand side of Eq. (10.42) at t = 0. This can
be done by approximating the integrand so that the integra-
tion will give results accurate to the first order in t.
From an argument analogous to that in Sec. 7.1, we conclude
that it suffices to approximate the integrand up to terms

of order 1 in t and order 2 in tp;. The computations
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are simplified if we assume that the chart q: V - R4 is

normal at y. In this case,

-1 0 1} 0
N Yo
¢ = |0 L 0 (10.
0 -1 0
0 0 0 1

and, for each x € 5§*Y, we have

qio¢N_t(x) = —th_gij(y)pj(x) + higher-order terms (10.

ij

t 2
[det CHORN sqjcx))] - i(20)

+ higher-order terms (10.

(N + Zejzk P; (gj%)w]wN'S(X)

jk
N(x) + ZejZk p; (X)g” " (NRK () (10

jm k
485jk2mnpj (X)py ())g? " (1) g " (), ()

+ higher-order terms,

where
. 3
m,n ° 3(.in m
Integrating Eq. (10.46) with respect to s we obtain

t .
J [N + 2¢) p. (ngiyk)on]wN‘S(x)ds
0 jk

- NG ¢ 26t 1By (08 e (10.
J

2 jm kn
- Zet ijmn P () (X)g” " ()g™ (Y2ef [ ()

+ higher-order terms.

oL . (10.

177

43)

44)

45)

.46)

47)

48)

Substituting Eqs. (10.43), (10.44), (10.45), (10.46)

and (10.48) into Eq. (10.42), we have
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b @ = 1e02am 2 ez, 20,2605, 2tp,)
TR
R § 2 2 2 2
x explith (‘Pl ‘P2 'P3 +p4 )]
| ik
x expl2ieth = ] pig” ()% (y)] (10.49)
ik
s .2.-1 jm kn 4
x expl-2iet™® " ] pypyg’ (Mg (yheg (1)1pd%p
jkmn ’
+ higher-order terms.
Changing the variables of integration from p; to
i

u; = 2tp; | g (10.50)

and taking into account Eqs. (7.26) and (7.27), we obtain

2 2 2 2
t+0+ 8u2 Buz Bu3 8u4

{w(ul,uz,us,-u4) exp[ieh-l }i ujgjk(y}ﬁi(y)] (10.51)
j
Ls g1 jm kn
x exp [-11eh I wug?™ g (y)ﬂg’n(y)]}‘u=0.

jkmn J

which can be written

lim 9. (0)
t+0+
2
_ mn, . [{_3 P | 3
= 1hn§ng 6] L(——aumaun 2ien Mm(}')_aum_)w(ul’uz ’u3 ’u4) ]1_1.=0

. mn 2,-2 .41
+inlg W[-e2 2 g ) - ten o )]
(10.52)
Introducing the function ¥ on V related to ¢ by

Eq. (7.88), we have

tY @ A ® vg = y(g)r ® v (10.53)
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and can write the term on the right hand side of Eq. (10.52),

which contains second derivations of ¢, in the covariant form

2
! gmn(Y)[Sﬁi§E‘ w(ul’uz’us’“4)]|u=o
mn n
(10.54)
= t|det % meyv v - L rep vl .
et g(y) {[3; g M - % (y)] }(y)

Similarly, the covariant derivative anf of the form

with respect to the vector field —%H is given at y by
3q
- ¥m
(V) () %.g%’n(y)dq (10.55)

since ank(y) = 0. Making use of Eqs. (10.54) and (10.55),

we can write

. d . 4
lim = v, (0) = tin|det g(y)|
a4, © - sin

(10.56)
x {[g; " (V-ien o) (7 -ien Sy - vt

Since

(10.57)

_ .e d
£?N[W®A®vg] = in a?wt(g)k®v =0

for each x € j@*Y, Eqs. (7.88), (10.53) and (10.56) yield

[(£2N)(W®A@~g)1(x)
(10.58)

= {-hz[gggmn(vm-ieh-axa)(Vn-ieh-%zh)- %R]W®A®vg}(x).

The expression in the square bracket on the right hand
side of Eq. (10.58) is an invariant differential operator
which acts on the function ¥ with support in V. Hence,
Eq. (10.58) is valid for all domains V and all x € 7 1(V),
and can be rewritten in a global form in terms of the connec-

~

tion V~ in the bundle Le The operator 2N defines a
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linear operator (2N)~ acting on the sections A~ of L~

as follows:

(2N)~ A1 = -nP(a~ - % R)A™ (10.59)

where A~ denotes the Laplace-Beltrami operator defined in

terms of the metric g on Y and the connection V™~ in
e *
and (10.58).

L Eq. (10.59) is a direct consequence of Eqs. (10.23)

10.2. Charge superselection rules

The formulation of relativistic dynamics presented in
the previous section treats the mass and the charge asym-
metrically. The mass is a dynamical variable while the charge
is a fixed parameter in the theory. This asymmetry disappears
in the five-dimensional theory of Kaluza. One obtains charge
quantization in the generalization of the Kaluza theory which
is briefly outlined below.

In the generalized Kaluza theory the phase space of a
particle in external gravitational and electromagnetic fields
is L?*Z,dez), where 7 is a Tl-principal fibre bundle over
the space-time manifold Y. The bundle Z is endowed with a
Tl-invariant metric k of signature (-,-,-,+,+) such that
the fundamental vector field N corresponding to the real

number 1 in the Lie algebra of Tl, has constant length 1,

that is,
YL k=0 (10.60)
m
and
k(ny,ng) = 1. (10.61)

We identify Tl

with the multiplicative group of complex num-
bers of modulus 1. The Lie algebra of 11 is identified

with R by associating, to each r € R, the one-parameter
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group t = exp(Zﬂieoh'lrt), where e, is a parameter inter-
preted as the elementary charge.

Let o be the 1-form on Z defined by

a(u) = k(n;(z),u) (10.62)

for each z € Z and each u € jiz. Eqs. (10.60) and (10.61)

imply that, for each fundamental vector field n. on Z,

Y a=0 and a(n.) =r. (10.63)
n, T

Hence o 1is the connection form of a connection in Z. The
curvature form of this connection defines a closed 2-form f

on Y such that
do = n*f, (10.64)

where x: Z + Y denotes the Tl-principal fibre bundle pro-
jection. The horizontal distribution hor9Z on Z defined
by

hor 92 = {u € 9Z|a(u) = 0} (10.65)

is orthogonal to the vertical distribution tangent to the
fibres of x. Hence, k decomposes into vertical and hori-

zontal parts
k = ver k + hor k (10.66)

where, for each u,v € jZZ,

ver k(u,v) k(ver u,ver v) (10.67)
and

hor k(u,v) = k(hor u,hor v). (10.68)

Since k is Tl-invariant its horizontal part is also
1. . . : .
T -invariant and there exists a unique metric g on Y such

that
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hor k = x*g, (10.69)

Eq. (10.61) implies that g has the signature (-,-,-,+).
Each x € 5@*2 can be decomposed into its vertical

and horizontal parts
x = ver x + hor x (10.70)

where, for each u € :@z,

(ver x) (u) x(ver u) (10.71)

and

(hor x)(u) x(hor u). (10.72)

Substituting nl(z) for u in Eq. (10.71) and taking into

account Eq. (7.42) we obtain
(ver x)(nl(z)) = pnl(x). (10.73)

Since n, spans the vertical distribution on Z and, accord-

ing to Eq. (10.63), a(nl) = 1, we have
ver x = pnl(x)uz. (10.74)
Let x: 9*Z +9*Y be the mapping defined by

X (X)(Ix(u)) = (hor x) (u) (10.75)

for each x € 9*7 and each u € 5§(x)z. It is a submersion

such that the diagram

A

Tk — XA 5 Tk
™ l T, (10.76)
K
7 — Y

in which the vertical arrows denote the cotangent bundle pro-

jections, commutes.
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The physical interpretation of the theory follows from
the identification of Y with the space-time manifold, g¢
with the gravitational field, and f with the electromagnetic
field. The canonical momentum pnl in the ny direction is
identified with the charge Q. That is, for each x € 9*Z,

the charge in the clagsical state Xx is

Q(x) = pnl(x). (10.77)

For each function f: 9*Y + R, the pull-back
£ = fox (10.78)

of f to 9*Z 1is interpreted as the dynamical variable in the
Kaluza theory corresponding to f. In particular, for each
x €9*7,

R(x) = Nex(x) = k(hor x, hor x) (10.79)

is the square of the mass in the classical state x. As be-
fore, we use the same symbol to denote both the metric and the
induced bilinear form on the cotangent bundle.

The Lagrange bracket is the exterior differential of
the canonical 1-form eZ on Z*Z. Taking into account
Egqs. (2.12), (10.70), (10.74), (10.75) and (10.76), we can

decompose ez as follows:

8, = Q*eY + Qmta, (10.80)

where w*a denotes the pull-back to 9*Z of the connection
form o on Z. Differentiating Eq. (10.80), and substituting

x*f for do according to Eq. (10.64), we obtain

de, = Q*deY + Q(tem)*f + dQ A T*a, (10.81)
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where (x om)*f is the pull-back to 9*7Z of the electro-
magnetic field f on Y. Since the diagram (10.76) commutes,

we can rewrite Eq. (10.81) in the form

de, = x*dey + Qr*mrf + dQ A Tha. (10.82)

Hence, for each function £ of the form given by Eq. (10.78)
we have

(£,Q1 = o. (10.83)

Consider the Hamiltonian vector field gﬁ of the mass-
squared function N defined by Eq. (10.79). Eq. (10.83)
implies that

EgR = 0 (10.84)

so that, for each value of the charge e € R, the vector field
Eq restricts to a vector field EﬁlQ-l(e) on Q-l(e).

Eq. (10.82) implies that x restricted to Q 1(e) maps

Q-l
back of the form w, given by Eq. (10.1). Moreover, Tx maps

(e) onto 9*Y in such a way that delehl(e) is the pull-

£ﬁ|Q'1(e) onto the Hamiltonian vector field gy on T*Y de-
fined with respect to the symplectic form w, which describes
the dynamics of a particle with charge e. Hence, Eﬁ describes
the dynamics of particles with variable charge.

Let D be the distribution on Z*Z spanned by the
Hamiltonian vector field of Q and the Hamiltonian vector
fields of the pull-backs to 9*Z of functions on Y; it is an
involutive Lagrangian distribution on L?*Z,dez). The inte-
gral curves of gQ are periodic, and thus the integral manifolds

of D are diffeomorphic to R4 x Tl. The space 57*2/3 of

A

integral manifolds of D is a quotient manifold of Z*Z with

projection denoted by nﬁ::?*z > 9*7/D. Moreover, F*2/D is
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is diffeomorphic to the product Y x R so that the following

diagram commutes
T*I

xOT

(10.85)

The complexification F = ¢ of D is a complete strongly
admissible real polarization of L?‘Z,dez). Using the nota-
tion of Sec. 4.5 we denote by K the distribution spanned by
the vector field £Q. The integral manifolds of K are
diffeomorphic to Tt and there is a unique density «k on K
which assigns a total length 1 to each integral circle

of K. The relation between the polarization F on T*L

and the vertical polarization F on 9*Y is given by

A

Ix(F) = F (10.86)
and

(ker 9x) n F = KC. (10.87)

If Y 1is orientable then so is Z and L?*z,dez) ad-
mits a metaplectic structure which induces a metalinear frame
bundle PF of ﬁ. We denote by VASE the line bundle as-
sociated to BF corresponding to the character x of ML(5,c).

4

For each chart §a: V, *+ R" on Y, the linear frame field
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sa
£ = (Ega,EQ), (10.88)

where g, = §a°x°"’ trivializes l??|6(°ﬂ)-l(va). The restric-
tion of 4f to (x°ﬂ)-l(Va) is" also trivial, and we denote

by g“ a section of 4F projecting onto g“. Let Ga be the
section of VAS? defined by

Vo o€ = 1. (10.89)

The orientability of Y implies, in the same way as in
Sec. 7.2, the existence of a global section Gg of VASﬁ
such that

Gg|(xon)'1(va) = £ (det g ) exom|%v_, (10.90)

where 94 is given by Eq. (7.57). Clearly, 9 is covariantly

g
constant along F.

Let f denote the trivial complex line bundle over
I*7 with a trivializing section io’ a connection V such
that

A _-‘_1 ~
Vlo = -in GZ ® Ao (10.91)

and a Hermitian form <,> satisfying
x> = 1. (10.92)

The section Xo is not covariantly constant along ?;

Eqs. (10.77), (10.91) and (7.44) yield

Ve A, = -in Q. (10.93)

Since the one-parameter group in T1 generated by 1 € R is
given by t » exp(Zﬂieohhlt), the integral curves of the funda-
mental vector field n, on Z are periodic with period

he -1.

o Therefore, the integral curves of EQ are periodic
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with period heo-l. For each x €9*Z, the holonomy group at
x of Le \/A5ﬁ|A, where A is the integral manifold of )
through x, is therefore generated by exp(Znieo-lQ(x)). Hence,

the Bohr-Sommerfeld set S in Z*Z is given by
s = {x ez |e T € 2}, (10.94)

For each n € Z, let Sn be the subset of S given
by

-1
S, = Q" (ney) (10.95)

and Mn the subspace of the representation space & consist-
ing of sections with supports in Sn. Since Q 1is constant
along f-‘, Eqs. (6.26) and (10.95) imply that Mn is the eigen-
space of the charge operator £2Q with eigenvalue ne . The
representation space is the direct sum of the a/n:

= o an (10.96)
nez

According to the argument given in Sec. 6.4, for each dynamical
variable f on 9*7 quantized in the way described in Chap-

ter 6, the operators 2f and £2Q commute,
[2f,9Q] = 0. (10.97)

Hence, 2f is completely specified by the collection
{.anln € z} of operators on & , where 2 f is the restric-

tion of 2f to x%n,

2. f =2f| & . (10.98)
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10.3. Quantization in the Kaluza theory

Given an integer n, we are going to construct a uni-

tary map %n: _&{1 + Me, where

e = ne,, (10.99)
such that

%ngn(fox) = 9f %n (10.100)

for all the dynamical variables f: 9*Y + R quantized in
Sec. 10.1. This will guarantee the equivalence of the two
approaches to the quantum dynamics of a charged particle pre-
sented in this chapter.

The space d% consists of sections of L ® VAsﬁlsn
which are covariantly constant along §|Sn and square inte-
grable over ﬂﬁ(Sn), where Sn is the component of the Bohr-
Sommerfeld variety given by Eq. (10.95). Since VAS? has a
nonvanishing covariantly constant section Gg’ every section

o E.Q; can be written in the form

g=1e® Gg, (10.101)

where A 1is a section of L|Sn covariantly constant along
F|s_.
n
For each x € Sn, the restriction of L to the fibre
;'1(§(x]) of %:J*Z +J*Y through x has a flat connection

with a trivial holonomy group. Hence, there is an equival-

ence relation ~ in L|Sn given by 2. ~ EZ if and only if

1
El can be joined to Ez by a horizontal curve contained in
iIQ'l(;(x)) for some x € S . The space ﬁn of ~ equival-

ence classes in ﬁISn has the structure of a complex line

bundle over Z*Y. The canonical projection Qn: f,|Sn -+ in

is an isomorphism on each fibre and the following diagram
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Xn ’N
—_—
L|sn L,
l , (10.102)
—_— T
Sn " TrY
x|Sn

in which the vertical arrows denote the line bundle projec-
tions, commutes. The connection in £ induces a connection
in fn, the curvature form of which can be obtained by re-
stricting the curvature form of L to s_. Eqs. (10.82)

n
and (10.99) yield

de,|s, = (i|sn)*(deY + emkf), (10.103)

Thus, the curvature form of the connection in in is the
same as the curvature form of the connection in the bundle
Le introduced in Sec. 10.1. Hence, we can identify Le
with Ln:

£ =1L. (10.104)
Each section A of f.ISn covariantly constant along 1'5|Sn
gives rise to a unique section A of L, such that, for each
x € Sn’
(A(x)) = A(x(x)). (10.105)

X >

n

Similarly, there is a bundle map Qn: VAS? > VA4F such

that

Qn(Gg(x)) - vg(i(x)) (10.106)

~
for each x € Sn' Since vg and vg are nonvanishing sec-

tions of VAsﬁ and VA4F, respectively, ;n: VAsﬁ > VA4F is

an isomorphism on each fibre.
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Let @%: d%}* ﬁg be defined as follows. For each

x € S_, set
n
VA Gg)(i(x)) - (eoh'lf’Qn(i(x)) ® Qn(Gg(x)). (10.107)

Since X(x) and GQ(X) are covariantly constant along ﬁ,
the left hand side of Eq. (10.107) does not depend on the
choice of x € Q'l(ﬁ(x)), and we obtain a section %h(i ® Gg)
of Le ® VA4F which is covariantly constant along F. Since
;n induces isomorphisms of the corresponding fibres, the
linear map %%: ﬂ% *.ﬂg defined by Eq. (10.107) is a vector
space isomorphism.

The scalar product on .ﬁ% is given by Eq. (4.46) with
k =1 and a single manifold Qi = ﬂﬁ(Sn). Since the restric-
tion of prlij*Z/ﬁ +Y to nﬁ(sn) is a diffeomorphism [cf.

diagram (10.85) and Eq. (10.95)], we may identify Qi with Y,

(s.) = Y. (10.108)

v

Let q* Va > R4 be a local chart on Y and
8

(Ry8y): ™ (V) + R

local frame field on Z*Z of the form

the induced chart on Z*Y. Consider a

(heo-ng’ Aa PR Aa Hub 31,”.’ Aaj)’ (10.109)
apal apu4 aqa 3qa

where n is a local vector field on 9*7Z chosen so that the
frame field (10.109) is symplectic. This frame field satis-
fies the conditions (4.47), (4.48) and (4.49). The last four
vector fields in (10.109) project onto a local linear frame

field

( 2 2 4) (10.110)
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for Y. Given two sections il ® V_ and iz ® Gg in &,
the value of the density <i1 ® 9 ,Az ® Gg>Y on the linear

frame field (10.110) is

I 3 3
<A1 [ \’g,kz ® \)g>Y(T,..., " 4)
aqa aqa
(10.111)
-1 ~ ~
= eoh ATy >|det gal%,
according to Eqs. (4.51), (10.11), (10.12), (10.89), (10.90)

and (10.105). Hence, the scalar product on kdg is given by
(.85 |3, 9 ) = enf <x 7,2 ">|det g|%. (10.112)
1 g'"2 g o Y 1’72 . .

This and Eq. (10.13) imply that Q%: d% ».ﬂé defined by

Eq. (10.107) preserves the scalar product; hence Q& is unitary.
Let f be a function on C7*Y,we) such that ¢ft

preserves F. Then, the one-parameter group ¢%t of canoni-

cal transformations of @7*Z,dez) generated by f = fox

preserves F so that
02%(5.) = s (10.113)
f n n :

for all t € R. The following diagram commutes

At
%
Sn Sn
gl l 2 (10.114)
t
¢
gy —E 5 gwy
and, for each x € Sn,
~ Ata _ t ~
% [(0E V) (X)) = (0g7v ) (x(x)) (10.115)
and
XL 0 (01 = (6N (), (10.116)

~

where the sections X,vg and A,vg are related by Eqs. (10.105)
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and (10.106). Hence,
Ll G @3 )100Y = (050 @ v )1 ()). (10.117)

Differentiating Eq. (10.117) with respect to t and setting

t = 0, we obtain

:n{[.@n%(i ® Gg)](x)} = [2f() ® vg)](&(x)). (10.118)

Taking into account Eq. (10.107), we can rewrite Eq. (10.118)

in the form

~

%n.@n?[x ® vg] =.@f%nn ® \)g]. (10.119)

Since Eq. (10.119) holds for all sections i ® Gg in &,

it follows that
%n(gnf) = (Qf)%n. (10.120)

Thus, the unitary operator @%:.ﬂg e dg intertwines the quanti-
zations of the polarization preserving dynamical variables on
(*,v,). In particular, for a position function q = qem,

where § is a function on Y, we obtain
8 ag-l
2 (aox) = % ~(2q) %,, (10.121)

and for the momentum p; associated to a vector field g on
Y we have

& 2 g -l
2,(p, %) =% ~(2p) %,. (10.122)

It remains to verify that Eq. (10.120) holds when f
is replaced by the mass-squared function N. The one-para-
meter group ¢ﬁt of canonical transformations of C?*Z,dez)

generated by N does not preserve F.  Since N commutes

with Q and & is contained in F, the polarizations F

Q

and .9bﬁt(§) intersect along the one-dimensional distribution
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k¢ spanned by EQ. The distribution KX plays the role of
the distribution D12 of Sec. 5.2, where Fl and F2 are
identified with F and <9$ﬁt(ﬁ) respectively. The space
7*%7/K of integral manifolds of K is diffeomorphic to

R x 7*Y and the diagram

T*L
%
K
Q y*Z/Ké TRY >
pPT,
(10.123)

lprl
R

where nK:j7*Z +*7/K 1is the canonical projection, commutes.
Hence, *2Z/K 1is a quotient manifold of Z*Z which implies
that the polarizations £ and _9%ﬁt(f) form a strongly ad-
missible pair. We can therefore use the technique developed in
Sec. 5.2. to evaluate the Blattner-Kostant-Sternberg kernel
5@: o x ﬂ% + C, where we denote by d@ the representation
space defined by the polarization :7¢ﬁt(§).

Let & and & be two eigenvectors of the charge

1 2
operator 2Q with eigenvalues ne and nyel respectively.

Since N and Q commute, ¢ﬁt preserves each component Sn
~ At/\ - . = =

of S, and ‘%2(01’¢N 02) 0 if n, # n,. If n, =n, =n,

Eq. (5.29) defines a density 6(31,¢ﬁt32) on 9*7Z/K. How-

~

ever, 0, and 32 have supports in the submanifold Sn of

7*7 which projects onto the slice {neo} x 7%Y in the product

structure of J*Z/K given by the diagram (10.123). Hence,
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the integral of 6(31,¢ﬁt82) over J*7/K vanishes. To ob-
tain a non-trivial kernel _22, we have to take into account
the fact that we are dealing with distributional wave functions
and modify 6(81,¢&t32) to obtain a density on {neo} x T *Y
analogous to the density used in Eq. (5.13). We shall identify
{neo} x 7*Y with 9*Y and denote the resulting density on
T*Y by 5n(81,¢ﬁt82).

In order to define 6n(81,¢ﬁt82) we combine the argu-
ments leading to Eqs. (5.19) and (5.29). Let 2z be a point
in Sn, and x = przonK(z) its projection to Z*Y. Consider

a basis of ﬁzc(7*2) of the form (v,gl,gz,t), where
v € Kz and «x(v) =1 (10.124)
w = (v,u) €4F and w, = (v,u,) € A" (F) (10.125)

ide, (u 3, 3,5 = nedX anda de,(v,t) = 1 (10.126)
ALY z
and

j - j =
de,(u,?,t) = de,(u,”,t) = 0. (10.127)
It gives rise to a basis
b = Imeluy), Imp(u,), Ime(t)) (10.128)
of j;K(Z)C7*Z/K) and a basis
b' = (I(pryem) (u,), J(pryem) (w,))  (10.129)

of 3§C7*Y). Eq. (5.29) defines the value of the density
A tAa . . ~ tA
6(01,¢N 02) on the basis b. We define én(01,¢ﬁ 02) to

have the same value on b':

~ ta — ~ R
6,001,505 79,)(b") = 8(oy,9570,)(b). (10.130)
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One can verify by direct computation that Eq. (10.130) defines
a unique density on 7*Y.
Let ﬁa: Va » r? be a chart on Y and suppose that

the projections of the supports of 81 and 32 to Y are con-

tained in Va‘ We can factorize & and G as follows:

1 2

Gi =% e Ga, (10.131)

where Ga is defined by Eq. (10.89) and the ii are sections of
f|Sn covariantly constant along E. Eq. (5.41) enables us to

rewrite Eq. (10.130) in the form
6n(81,¢ﬁt82)(§v) = he;I(i/h)z[det de, (g, j,¢ﬁtEA k)]%(z)
qa qa
x <ﬁ1,¢ﬁtxz>(z), (10.132)

where the coefficient heo-l is due to the fact that the

vector v in Eq. (10.124) is given by
_ -1
v = heo EQ(z) (10.133)

whereas the frame field gé which is used to normalize 9
contains the vector field gQ, cf. Eq. (10.88). On the other
hand, we have a density |deY4| on 7*Y which can be written

in terms of the coordinates (Ra’ﬂa) as
4 4 4
|d9Y | =4d pad Q- (10.134)

Eqs. (10.82), (10.126) and (10.129) yield

4

Idey4l(h') =h. (10.135)

Hence, comparing Eqs. (10.132), (10.134) and (10.135)

we obtain
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~ ta -1, 2 %
Bn(ol,¢ﬁ 02)(x) = heo (i/h) [det dez<g j'¢ﬁt€a k)] (z)
a

a
(10.136)
tA
x <ap(2), 04", (2)> d*p ata,
We have
as,(&, 5 055, ) = (2 j.oe ) epryen (10.137)
ZI\"~ j’'N "~ k e j**N k 2 "K .
g a, a, a,
and
S1,0558,> = A, 00", opryomy, (10.138)

where the sections Xi and A; are related by Eq. (10.105).

Therefore,
§_(6.,65%5.) = he ‘1(i/h)2[det w (E o CE )]11
n* 1°'N "2 [¢] e j*UN k
g a
(10.139)
t 4 4
<)‘1’¢N A2> d pad Ao
The Blattner-Kostant-Sternberg kernel J%%: ﬁ?xdﬂi +C
defined by

A At/s _
H (0,,0570,) = J (o 1,¢N a,) (10.140)

7wy *n

can be written

PN T “1,.,..2 t
5@(01,¢N 0,) = heo (i/h) L?*Y{<X1’¢N A,>

(10.141)

x [det we<€ j’¢NtEq k)]%} d4pad4pa

q(! o

Comparing Eq. (10.141) with Eq. (10.32) and taking into ac-
count Eqs. (10.31), (10.35) and (10.107), we see that

A~ A1:/\ _ ~ t ~
#,(51,08 05) = H (%0, %0,). (10.142)
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Differentiating Eq. (10.142) with respect to t and setting

t = 0, we obtain

& g, -1
2N\ = %n (.QN)%n (10.143)

as required.



11. PAULI REPRESENTATION
FOR SPIN

11.1. Classical model of spin

A classical interpretation of spin is that of an inter-
nal angular momentum. Thus, a classical state of a non-
relativistic particle with spin r > 0 is specified by the
position g, the momentum p, and the spin vector S such
that

s? = 12, (11.1)

Hence, the phase space under consideration is
(11.2)

where Sr2 denotes the sphere in R3 of radius r. The

Lagrange bracket for a free particle is

i -2
w, = E dpjadq” - 5T igk eiijideAdSk, (11.3)

where qi and p; are the usual position and momentum co-
ordinates, respectively, and Sk are the components in R3
of the spin vector S.

The rotation group acts on X in the usual way. To

the one-parameter group of rotations around the i'th axis

198
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there corresponds a vector field n; on X given by

j 9 3 3
n, = § e.. (qJ + p. =— + S, ———) . (11.4)
i ik ijk aqE j apk j BSk

The vector fields n; are Hamiltonian with respect to the

symplectic form wy

ni_]wo = —dJi, (11.5)
where
- j
Js ;i €550 Py * S5 (11.6)

is the i'th component of the total angular momentum vector
J=9qxp +S. (11.7)

We consider here the dynamics of a particle with
spin interacting with an external electromagnetic field. The

presence of a magnetic field B = (Bl’BZ’BS) satisfying the

condition
divB =0 (11.8)
leads to the modified Lagrange bracket
w=7 dp.adqt - 5 27 e...5.dS.AdS
{ i 5% 13kTiTTj k
1 (11.9)
j k
+ €..,B.dq’ adq
& eigk ijki ’

where e 1is the electric charge of the particle. The energy

in the classical state (p,q,S) 1is given by
H(p,q,S) = EZ/Zm + eV(q) - (e/mc)S-B(q). (11.10)

One could add to H a term corresponding to the spin-orbit
coupling but this will not be done here. The Hamiltonian vec-

tor field EH’ defined via the symplectic form w, is
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BN 3_ . 2
EH = m E pi a—'i' (e/mc) ZeijkBjSk 'a-s—
i (11.11)

v -1
+ e 2{ +m ;& eijkijk

m) ! ys, -l}
3q* j 3

1
3 aqtap,

The local one-parameter group ¢Ht of canonical trans-
formations of (X,w) generated by EH satisfies the follow-

ing equations:

gee,®) = n lpegyt (11.12)
é%(go¢ﬂt) = - {grad V + m'lgxg - (MC)-lgrad(g-g)}o¢Ht(11.13)
(s00,") = (e/me) (5xB) o0, ", (11.14)

where grad denotes the gradient with respect to the position

variables gq.

11.2. Representation space

Let V, and V_ be open sets in X defined by

V, = {x € X|r + S;(x) # 0}. (11.15)

We denote by z, and z_ the complex functions on V_ and

V_, respectively, defined by

S1 ¥ 182
Zt =-—!'_i-_53_ . (11.16)
In V_ N V_ we have
z,z2_ =1, (11.17)

and the functions 2z, and z_ define a complex structure on

each sphere of constant position and momenta. Solving

Eq. (11.16) for S in terms of z,  and z_, we obtain



11.2. Representation space 201

- - -1
S1 = r(zt+zi)(1+zizt) (11.18)
s, = tir(z,-7,) (1+z,7,) " (11.19)
Sy = r(l-z,7,) (1+2,7,) '. (11.20)

This enables us to express w in terms of the complex co-

ordinates 1z, as follows:

wl|v, = z dpiAdql + Le ‘z eijkBiquAqu
- i ijk
(11.21)
- 2ir(1+2,7,) "% d7, adz,.

Consider the linear frame fields £, on V_ defined

by
£y = (8 1,8 558 5,8, ). (11.22)
- q° q° %t

For each x €V _nV_,

i 0 0 o0
0 1 0 0
(x) = £ () (11.23)
£ =00 o 1 o
0 0 0 -z,7%(x)

Hence, g, and § span a complex distribution F on X.

Eq. (11.21) yields

£;°-—> and g = (2ir) t(ez,7,)%2

(11.24)
q ap; + 9z

+

which implies that the frame fields £, and the distribution

F are independent of the choice of the magnetic field B

and the value of the charge e. For each B and e, the
distribution F 1is a polarization of (X,w). The space

X/D of integral manifolds of D = F n F Nn9X can be identified
with R3 x Srz, and the canonical projection Lt
corresponds to the projection of R3 x (R3 x Srz) onto the

X + X/D
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second factor R3 x Srz. Similarly, the space X/E of inte-
gral manifolds of E = (F + F) n9X can be identified with

R3, and the canonical projection = __: X/D + X/E corresponds

DE
to the projection onto the first factor of R3 x Srz. Moreover,
. = = .2
1“(Ez+'52+) = (1+z,z,)%/2r > 0 (11.25)

so that F 1is a complete strongly admissible positive polari-
zation of (X,w).

Let L be a prequantization line bundle of (X,w).
The prequantization condition (3.20) is satisfied if and only

1ol of -n 1w is inte-

if the de Rham cohomology class [-h~
gral. Since the magnetic field B on R3 is globally de-
fined, Eq. (11.8) implies that there exists a vector potential
for B so that the last term on the right hand side of

Eq. (11.9) is an exact form. Hence,

1

-n el = TR e, 5;d5,AdS, 1. (11.26)

ijk ijk
Integrating the form on the right hand side of Eq. (11.9)

2 ¢ X we obtain 4rrh’l which

over the sphere {0} x {0} x S_
must be an integer if [—h-lm] is integral. Hence, the pre-

quantization condition is satisfied if and only if

2rh € Z. (11.27)
If we write

T = Bs (11.28)
then (11.27) implies that 2s must be an integer,
2s € 2., (11.29)

Thus, the prequantization condition leads to the quantization

of spin. The integer 2s is the Chern clase of the bundle L.
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The restrictions of w to the open sets V+ and V_

are exact:

m|Vi = de,, (11.30)
where
0, = §(pj+eAj(g))dqj - 2ir(1+z,7,) "t 7,4z, (11.31)
and A is a vector potential for B satisfying
B = curl A. (11.32)
Let A, be local sections of L|V, such that
n, = -in’l e, e, (11.33)
In V_ nV_ we have
-in"l(e, - 8) = d log z_27/P, (11.34)

Taking into account Eq. (11.28) we see that the transition

function
2r/h 2s
z =z

(11.35)

is globally defined and single-valued on V_ N V_ since
2s € Z. Hence, we may assume that A, and X_ are norm-
alized so that

A, =z A (11.36)

The connection invariant Hermitian metric on L satisfies the
equation

d<dy,A,> = -im<a A, >(8, - 6,), (11.37)
whence

Ay,r,> = (1+zi?t)_25. (11.38)

The sections A, and X_ are covariantly constant
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along F and consequently each covariantly constant section

A of L can be represented as follows:

AV, = ¥, (a,2,00,, (11.39)

where ¢, 1is a holomorphic function of 1z, . Taking into ac-

count Eqa. (11.36) and (11.17), we obtain the relation

1

v, (4,2,) = z+25w_(g,z+' ) (11.40)

on V_nV_. Since both ¢, and y_ are holomorphic func-
tions of the second argument, Eq. (11.40) implies that they
are polynomials of degree at most 2s in this variable. For

each integer m such that 0 <m

A

2s, we denote by A the

section of L defined by

2 -
AV, = cmz+mx+ and Ap|V_ = c z_ sy, (11.41)

where the normalization constants Cp, are chosen so that
[S 2<Am,xm>w =1 (11.42)

for each sphere Sr2 in X corresponding to constant values
of the position and the momenta variables. The sections Ay
are covariantly constant along F, and each covariantly con-

stant section X of L is of the form

A= T (@, (11.43)
m

where the ¥ (q) are functions of the position variables only.
According to the general theory of geometric quantiza-

tion the representation space should consist of those sections

of L ® VA4F which are covariantly constant along F. Since

the second Chern class of VA4F is 2 the Chern class of
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VA4F is 1. Therefore, L ® VA4F has Chern class 2s+1 and
the space of holomorphic sections of L ® VA4F restricted to
any sphere corresponding to constant values of the position
and momenta variables has dimension 2s+2, cf. Gunning (1966),
p. 111. Hence, the choice of the space of covariantly con-
stant sections of L ® VA4F for the representation space
leads to a wrong dimension for the space of spin states. In
order to circumvent this difficulty we choose the space of

¢ which are covari-

square integrable sections of L ® VASD
antly constant along F for the representation space &
This choice is justified by the agreement between the quantum
theory it engenders and the Pauli theory of spin. It requires
certain modifications of the procedures developed in Chapters
4 and 5, the theoretical significance of which has yet to be
studied.

The distribution D¢ is globally spanned by the frame
field

£ - (E%I’ 335, 332). (11.44)

We denote by E a metalinear frame field for D® which pro-

jects onto £ and by vz the section of VASDC defined by

vg e £ =1. (11.45)
The section vg is covariantly constant along F and thus
every covariantly constant section v of \/A3DC is of

the form

v = v@vg, (11.46)

where Y(q) is a complex-valued function of the position
variables only. The function ¢ does not depend on the com-

plex variables z_ since every holomorphic function on a
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sphere is constant.

The representation space & consists of covariantly
constant sections of L ® VASDC. Taking into account Egs.
(11.39) and (11.42), we see that every section o in &

is of the form
=1 v (QDr_ ® vs. (11.47)
oom Dy &

The scalar product on & is given as follows: for any two

sections o and o' of the form (11.47),

olo") = 1 [, vp(@Ty' @, (11.48)

Thus, the mapping associating to each A ® “E € & the func-
tion  y: RS » CZS+1 such that

v@ = W (@), -,¥, (@1, (11.49)

where wo(g),...,WZS(g) are given by Eq. (11.47), is a unitary
isomorphism of & onto the space of square integrable

CZS+1-va1ued functions on RS.

11.3. Quantization

The canonical transformations generated by the compon-
ents of the position, the momentum, the spin and the angular
momentum vectors preserve the polarization F. Hence they
preserve DC = FnF, and we can use the results of Sec. 6.2
to evaluate the quantum operators corresponding to these
dynamical variables.

Since the position functions q; are constant along
F, Egqs. (6.26) and (11.47) yield

-@qi[gl Va2, © v;] = % AV (DA, ® vg.  (11.50)
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The Hamiltonian vector field of pj is

P P
£ =2+ -¢ 7 e, .. B, 2. (11.51)
i aqd ik iiki 3Py

Taking into account Eqs. (6.24), (11.31), (11.33), (11.39),

(11.47) and (11.51),we obtain

[Z Yo (g)A RV ] E{[ ih —= - eA. (g)]w (gﬁ A ®v~ (11 52)

The Hamiltonian vector fields &, , §& and & can be ex-
S1 S2 S3
pressed with the help of Eqs. (11.18), (11.19), (11.20) and

(11.21) as follows:

? =2 d
E. |V, = - l[(z -1) —=— - (Z,°-1) ] (11.53)
S1| * 2lhe 3z 3z,
e Vo= =3l 2 @B 2] anse
21 = - 3z, - 9z
= d
£ V, = + 1[2 -z ———]- (11.55
S3| * * s Y )

H
I

These equations, together with Eqs. (6.24), (11.31) and (11.33),

yield
951“1 ® v_z_] =rz,}, ® v:é_ (11.56)
25,01, ® v_-g_] = irz,\, ® vE (11.57)
.9283[}\t ® vg] = tri, ® vé. (11.58)
Hence,
= 1 2 )
gsl [w A ®vE] = {[-fh(zi 'l)azt + rzi]wi})‘i’ ® \):E'— (11.59)
|1, 2 .
25, V.2, ] {[,%mut +1)32: + 1rzi]wt}}\i ® vz (11.60)

5253[wiki®v§]

i
——
+
—
'
>
nN

-+
Y]
N |

+ r]wt}xt ® Vi (11.61)
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Applying these results to the basis vectors A_ ® vg

where Am is defined by Eq. (11.41), and taking into accoi;t
the fact that r = s#, we obtain

5281[Am®v§] = —h[(Zs -m)c cmillm+l + mcmc;}lxm_l]®v§ (11.62)
JS [A 8N§ = —1h[(25 -m)c ¢ m11Am+1 - mcmc;%lxm_l]®v§ (11.63)
QB [A 8N£ = h(s-m)r ® v;. (11.64)

For each i = 1,2,3, let Qi be the (2s+1) x (2s+1) matrix

with entries d.. such that, for each m € {0,1,...,2s},
i;m,n g
d = Inas-myc ¢! (11.65)
1;m,m+1 2 m m+l :
- -1
dl;m,m-l 2hmc Cp+l (11.66)
= -1
dz;m,m+1 = —1h(25 m)c cm+1 (11.67)
d = - dimme_c: 1 (11.68)
2;m,m-1 Z m m-1 :
dymn = R(sTm) (11.69)

and all other entries vanish. Then, for each section in &

of the form (11.47), we have

251[% v (@A, ® v~] 1 n,n%m @xr, ® vg (11.70)

for each i = 1,2,3. The quantization of the total angular
momentum vector J is obtained in an analogous manner, yield-

ing
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gUi[% wm(a)lm ® Yg]

- i [0 ~
= % {j{keijqu [1";{? eAk(g)]wm(a)}Am ® \:E (11.71)

+ g; di;m,nwm(a)xn ® vi.

It remains to obtain the quantum operator ZH corres-
ponding to the energy H given by Eq. (11.10). The one-
parameter group ¢Ht of canonical transformations of (X,w)
generated by H does not preserve Dc, and consequently we
cannot apply the technique developed in Sec. 6.2. Since we
are using sections of L ® \/A3DC rather than L ® VA4F to
define the representation space &, we cannot quantize direc-
tly via the Blattner-Kostant-Sternberg kernels defined in
Chapter 5 without first modifying them in order to be appli-

cable in the present situation. To do so we assume that, for

sufficiently small positive t, the distribution

G, =D+ 9%,D (11.72)

has dimension 6, is involutive and, for each integral mani-
fold M of Gt’ the restriction of w to M is a symplectic
form on M. These assumptions are satisfied in the absence

of the magnetic field and we may expect that they will hold for
sufficiently weak magnetic fields. The restrictions of p®

and .7$HtDC to the integral manifolds M of Gt are trans-
verse pairs of real polarizations of (M,w|M). Hence, if

each (M,w|M) is given a metaplectic structure, we can as-

sociate to each pair of sections oy and o of Lo VASDclM

tM
and L ® VA§9th(Dc)|M, respectively, the function <oy,0.,> on

M given by Eq. (5.11). Thus, if o and o, are sections of
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Le® VASDC and L ® VA§9$Ht(DC), respectively, we can associate

to them a function <o0,0_> on X such that, for each M,

[ 4
<o,ot>|M = <OMs Oy (11.73)
where
oy = o|M and TeM = oth. (11.74)

The generalized Blattner-Kostant-Sternberg kernel

*: Mx;%t + C is given by

4
#(0,0,) = f <o,0,>le’]. (11.75)
X

As before, let Q&: ﬂ% +& be the linear map defined by

5t(o,ot) = (ol?&ot), (11.76)

and let @.: &+ & be given by

0, (0) = % (8,"0). (11.77)
The quantum operator ZH corresponding to the classical energy
H is then
21 = in & % e-0" (11.78)
According to Eqs. (11.76) and (11.77) we can write

(El V' (@ *me’vgl%[g b @10vg])
(11.79)

. . . vo “tyg t t .
- (1 vy @ T wnaney ey 00"z )

t . . t
¢H Am is defined by Eq. (3.32) and by vg

by Eq. (6.2). Given 2s+1 functions wm(g), let wtm(g) be

where

defined by
¢t[£ wm(g)kmewi] - 1 bp(@hgevy. (11.80)
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Substituting this expression into Eq. (11.79) and taking
into account Egs. (5.11), (11.73), (11.75) and (11.48), we

obtain

' - 3 o (s 3/2[ t 5
1 by @Fep@a’a = G/m laet ‘*’(qu»"a eqk)]

<1 0> by (@F (asty oM (11.81)
It follows from Eq. (11.21) that

lwt]

v, = d3pd3q|w|sr2|. (11.82)

Hence

Vin(@ = (ih)~3/zLaxs 2{[detm(5 J"‘bl-ltg k)]12
T 1 1 (11.83)

2]

x T<oy " A v (aety O d’plm|S,r
n

Following the arguments leading to Eq. (6.48) and bearing in
mind the results of the quantization of the spin vector

S, we obtain
- t -
<optrnay> = exp{in 1I0[(22/2m)+(e/m)2°-5(a)-eV(a)]°¢H Yau}
t
. -u
x E{exp[(1e/mcn)§ fij(go¢H )du Qj]}nk<xk’xm>’ (11.84)

where the matrices 25 are given by Eqs. (11.65) through
(11.69). The exponential function in the second line is

defined in terms of matrix multiplication, i.e., for any

square matrix C,

exp C = J (n!) ic™. (11.85)
n=0
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Taking into account Eqs. (11.40) and (11.41) we obtain
V(@ = (ih)‘mlz1 [ {exp[(le/mcn)z [ B;(aety au |}
-t t i
x ¥, (gody )[det w(E 5,047 k)] (11.86)
q q

t
< exp{-1n71| (L7 (e/mp-A(@) - V1ot fa"

We can evaluate the derivative of wtm(g) with res-
pect to t at t =0 in the same way as in Sec. 7.1 and
Sec. 10.1. Using approximations analogous to those leading

to Eqs. (7.38) and (10.56), we obtain

. d
lim T wtm(g)

t>0+
- in (e/mc)z Bidyn a¥n(@ - 107 TeV(@ ¥, (@) (11.87)
-1 d .o .-1
+ (lh/Zm)Z(aq - ieh AJ)(B_qE ien Ak)u’m(ﬂ)-

Eqs. (11.78), (11.80) and (11.87) yields

£2H[£ Wm(g)xm®v~] = (- e/mc)mgj 39550, m¥ (@ A8VE .
B R ) - i )@ i@ e

Taking into account Eq. (11.70) we can rewrite Eq. (11.88)

in the form
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£?H[£ wmkm®v§] = (-e/mc)% Bf@Sj[g wmxm®v§]

(11.89)
2
. ]%{[ L j{k(-a% - den tA )(ﬁIE -ieh'lAk}eV]wm}kmmg

For s = %, Eq. (11.89) corresponds to the Pauli equation.
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