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PREFACE

The present book consists of an introduction and six chap-
ters. The introduction discusses basic notions and defini-
tions of the traditional course of mathematical physics and
also mathematical models of some phenomena in physics
and engineering.

Chapters 1 and 2 are devoted to elliptic partial differen-
tial equations. Here much emphasis is placed on the Cauchy-
Riemann system of partial differential equations, that
is on fundamentals of the theory of analytic functions,
which facilitates the understanding of the role played in
mathematical physics by the theory of functions of a com-
plex variable.

In Chapters 3 and 4 the structural properties of the
solutions of hyperbolic and parabolic partial differential
equations are studied and much attention is paid to basic
problems of the theory of wave equation and heat conduc-
tion equation.

In Chapter 5 some elements of the theory of linear integral
equations are given. A separate section of this chapter is
devoted to singular integral equations which are frequently
used in applications.

Chapter 6 is devoted to basic practical methods for the
solution of partial differential equations. This chapter
contains a number of typical examples demonstrating the
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essence of the Fourier method of separation of variables,
the method of integral transformations, the finite-difierence
method, the method of asymptotic expansions and also the
variational methods.

To study the book it is sufficient for the reader to be
familiar with an ordinary classical course on mathematical
analysis studied in colleges. Since such a course usually
does not involve functional analysis, the embedding theo-
rems for function” spaces are not included in the present
book.

A.V. Bitsadze
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INTRODUCTION

§ 1. Basic Notions and Definitions

1°. The Notion of a Partial Differential Equation and Its
Solution. Let us denote by D a domain in the n-dimensional
Euclidean space E, of points x with orthogonal Cartesian
coordinates z;, ..., z, (n > 2).

Let F(x,...,Di,...iny---) be a given real function of
the points z belonging to the domain D and of some real
variables p;,.. i, with nonnegative integral indices i, ...

n

. in(E ijzk; k=0, ..., m; m>>1). We shall suppose
oF

that for ZL =m at least one of the derivatives S
i= « ln

of the functmn F is different from zero.

An equality of the form
dhu

F(x,...,m,...\)zo (1)
is called a partial differential equation of the m~th order with
respect to the unknown function u (z) = u (24, . . ., Z,),

z € D; the left-hand member of this equality is called
a partial differential operator of the m-th order.

A real function u (z) defined in the domain D, where
equation (1) is eonsidered, which is continuous together
with its partial derivatives contained in the equation and
which turns the equation into an identity is called a regular
solution of the equation.

Besides regular solutions, in the theory of partial dif-
ferential equations an important role is played by certain
solutions which are not regular at some isolated points or
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on some manifolds of a special type. The so-called funda-
mental (elementary) solutions which will be considered later
belong to this class of solutions.

Equations encountered in the applications of the theory
of partial differential equations possess solutions (asa rule,
they possess not one solution but families of solutions).
However, there also exist partial differential equations
whose sets of solutions are rather poor; in some cases these
sets may even be void. For instance, the set of the real
solutions of the equation

n 0 9

U u

2 () =0
=1

consists of the function u () = const while the equation

n
du \2
2 () +1=0
=
has no real solutions at all.
An equation of form (1) is said to be linear when F is
a linear function with respect to all the wvariables

in(Zl =k; k=0, ..., m). When the function F is

llnear w1th respect to the variables p; .. .;, only for

Ezj—m, equation (1) is called gquasi-linear.

A linear partial differential equation Lu = f (z) is said
to be homogeneous or non-homogeneous depending on whether
the right-hand member f (z) is equal to zero for all z € D
or is not identically equal to zero (here L symbolizes a linear
partial differential operator).

It is evident that if two functions u (z) and v (z) are
solutions of a non-homogeneous linear equation Lu = f
then their difference w = u (z) — v (z) is a solution of the
corresponding homogeneous equation Lw = 0. If uy ()
(k =1, ..., 1) are solutions of the homogeneous equation

1

then so is the function u = D) cpuy (z) where ¢, are real
=1

constants.
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A linear partial differential equation of the second order
can be written in the general form

n

S .,aff‘;,]+2 =t Cu=f )

i, j=1

where A,,, By, C and f are real functions of the variable
point z in the domain D.

At those points x € D where all the coefficients Ay
(i, j =1, ..., n) turn into zero relation (2) is no longer
a partial diﬁerentml equation of the second order because
at these points the order of equation (2) decreases (the equa-
tion degenerates). In what follows we shall always assume
that the order of equation (2) is equal to two throughout
its domain of definition.

2°. Characteristic Form of a Linear Partial Differential
Equation. Classification of Linear Partial Differential Equa-
tions of the Second Order by Type. We shall assume that
the function F possesses continuous partial derivatives of

the first order with respect to the variables by
n

cip

2\ iy = m; under this assumption, we shall define the
=1

characteristic form corresponding to equation (1) (it plays
an important role in the theory of equations (1)) which
is the following multilinear form of order m with respect
to real parameters A,, ..., A,

n
—M, o M Sh=m (3)

i=1

K(A'l.’ A n)"‘Zap

In the case of a second-order partial differential equation
of type (2) characteristic form (3) is a quadratic form:

Qhy +evs An) = ,Zz,A”(z) hidy

For each point x € D the quadratic form Q can be brought
to its canonical form with the aid of a nonsingular (non-
degenerate) affine transformation of variables A; = 4, (§,, . . .
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o &) (=1, ..., n)
Q= Za.Ez

where the coefficients a; (i = 1 ., n) assume the values
1, —1 and 0. As is known, the number of the nonzero coef-
ficients (the rank of the quadratic form), the number of
the positive coefficients (the index of the form) and the
number of the positive coefficients diminished by the num-
ber of the negative ones (the signature of the form) are
invariants of the non-degenerate affine transformations.

When all the coefficients «; (i = 1, ..., rn) are equal
to 1 or to —1, that is when the form Q is positive definite
or negative definite respectively, equation (2) is said to be
elliptic at the point z € D. If one of the coefficients o;
is negative while all the others are positive (or vice versa),
then equation (2) is said to be hyperbolic at the point =z.
In the case when I (1 <<l << n — 1) coefficients among a;
are positive while the other » — I coefficients are negative,
equation (2) is called wultrahyperbolic. Finally, if at least
one of these coefficients is equal to zero (in the case under
consideration all coefficients o; cannot turn into zero simul-
taneously because we have excluded the decrease of the
order of the equation), equation (2) is said to be parabolic
at the point z.

We say that equation (2) is elliptic, hyperbolic or parabolic
in the domain D where it is defined (or that (2) is of elliptic,
hyperbolic or parabolic type in D) if this equation is elliptic,
hyperbolic or parabolic, respectively, at each point of that
domain.

An equation of form (2) is said to be uniformly elliptic
in the domain D of its definition if there exist two nonzero
real numbers k, and k, of one sign such that

n n
bo 3 MO Oy -y h)<hy I

for all z € D (in this case the partial differential operator
n

ou
"21 llﬂziazj+z fazj+€u
1, )=
is said to be uniformly ellzptw)
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The example of the equation

o%u v 0%u 0
Tn gz + %
=2

shows that an equation which is elliptic in the domain of
its definition must not necessarily be uniformly elliptic.
The last equation is elliptic at every point belonging to the
half-space z, > 0 but it is not uniformly elliptic in that
half-space.

In the case when equation (2) is of different type in dif-
ferent parts of the domain D we speak of (2) as a mixed
partial differential equation in that domain. The above
example demonstrales an equation which is mixed in any
domain D of the space E, whose intersection with the
hyperplane z, = 0 is not void.

In what follows, when speaking of a definite quadratic
form, we shall always mean a positive definite form (because
a negative definite quadratic form goes into a positive
definite one after it has been multiplied by —1).

Without loss of generality, we can assume that the form
Q is symmetric, that is A;; = Ay (i, j = 1, ..., n); then
we can use the Sylvester theorem in order to determine
the type of equation (2) in D without reducing the quadratic
form Q to its canonical form; in particular, for the form Q
to be positive definite (that is, for equation (2) to be elliptic
in the domain D) it is necessary and sufficient that all
principal minors of the matrix

Ay, oy Aip
A= oo ...
Apgy ooey Apn
should be positive.
3°. Classification of Higher-Order Partial Differential

Equations. In the case of a partial differential equation
of order m having the form

am i
2“1....m (x)m-l'hu':f, Dlig=m (4)
n —

2=-0598
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where L, is a partial differential operator of an order lower
than m, characteristic form (3) is written as

n
KAy ooy hp) =D a,. .in (@) Ms ... Ain, Z}‘i,=m (5)
)=

If for a fixed point z € D there exists an affine transfor-
mation of variables A; = A; (uy, - - &y W) G =1, ..., n)
under which (5) reduces to a form containing only I, 0 <<
< Il << n, variables p; we say that equation (4) is paraboli-
cally degenerate at the point z.

When there is no parabolic degeneration, that is when
the manifold

By v A =0 ()

(which is a cone in the space of the variables ll, Ce ey n),
has no real points except the point A, =0, vy My
equation (4) is said to be elliptic at the pomt z. Further
we say that equation (4) is hyperbolic at the point z if in
the space of the variables A;, . . ., A, there exists a straight
line such that when it is taken as one of the coordinate
axes along which new variables u,, ..., u, are reckoned
(the new variables p,, ..., u, are obtained from A, ...
. «., Ap by means of a non-degenerate affine transforma-
tion), then the transformed relation (6), considered as an
equation with respect to the coordinate varying along that
axis, has exactly m real roots (simple or multiple) for any
choice of the values of the other coordinates p.

In the case of a non-linear partial differential equation
of form (1) the classification by type is carried out in an
analogous manner depending on the properties of form (3)

oku
in which p; ..., are replaced by oI, e ;‘—21 ij=F;
k=20, ..., m. Since in the non-linear. case the coefficients

of form (3) depend not only on the point z but also on the
sought-for solution and on its derivatives, this classification
by type makes sense only for that particular solution.
4°, Systems of Partial Differential Equations. When F
is an N-dimensional vector F = (F,, ..., Fy) with com-
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ponents
Fi(@y ...y Diy...ins-+-) (i=1,...,N)
dependent on z € D and on the M-dimensional vectors
Piy...in={(Di,.. in> -+ +» pi.‘f_”in)

the vector equality of form (1) is called a system of partial
differential equations with respect to the unknown functions
Uy, ..., Uy or, which is the same, with respect to the
unknown vector u = (&, ..., Uy). The highest order of
the derivatives of the sought-for functions contained in
a given equation belonging to the system is referred to as
the order of that equation.

In the general definition of a system of partial differential
equations it is not required that the number N of equations
and the number M of the unknown functions should be
equal or that all the equations belonging to a given system
should be of the same order.

In the case when M = N and the order of each of the
equations forming system (1) is equal to m we can form the
square matrices

The expression

aF;
apgl.. .in

n
KAy oy Ay)= ——— M AR, Dlip=m
h=1
(7
which is a form of order Nm with respect to the real scalar
parameters A, ..., A,, is called the characteristic determi-

rant of system (1).

Systems of partial differential equations of form (1)
are classified by type depending on the properties of form (7)
in just the same way as in the case of one differential equa-
tion of order m considered above.

The variables on the left-hand side of equation (1) may

be complex; then, for z, = y, + iz, by % is meant the

Q%
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7] .
e | o
(1), iu the complex case, is obviously equivalent to a system
of partial differential equations.

1 : . .
operalor 7( );under this convention equation

§ 2. Normal Form of Linear Partial
Differential Equations of the Second Order
in Two Independent Variables

1°. Characteristic Curves and Characteristic Directions. As
was mentioned in Sec. 2°, § 1, the quadratic form Q can
be reduced to its canonical form for every fixed point z
of the domain D where partial differential equation (2)
is defined. Therefore for any fixed point x € D there always
exists a non-singular transformation of the independent
variables z; = z; (yg, . . -, Yyp) (I = 1, . . ., n) under which
equation (2) is reduced, for that fixed point, to its normal
form

n

RCT §j§+ﬁ, 2 )+ w=>5

i=1
where the constants o; (i =1, ..., n) assume the values
1, —4 and O,

v(y) =ulz @], 6() = flz @)l

and the functions f; and y are expressed in terms of the
coefficients of equation (2).

It should be noted that it is by far not always possible
to find a transformation of independent variables which re-
duces equation (2) to the normal form even in the neighbour-
hood of a given point of the domain in question. An excep-
tion to this general situation is the case of two independent
variables, to whose investigation we now proceed.

In the case n = 2, using the notation

Iy = T, Ty = Y
Ay=a(@y), Ap=4 =10 (z, y), Ay =c(z,y)
Bl=d(x,y), Bz=e(x,y),0=g(x,y), f=f(.1:, y)
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we can write equation (2) in the general form

%u u ?u ou ou |
aa_xﬂ'i"%—ax—ay-l'c ay2+dﬁ+ea—y+gu=f (8)

A curve described by an equation of the form ¢ (z, y) =
== const where ¢ is a solution of the equation

a( L) +2pSL oo (SLY —0 (9)

is called a characteristic curve (or, simply, a characteristic)
of equation (8), and the direction determined by the infini-
tesimal vector (dz, dy) where dz and dy are specified by
the equality

ady* — 2bdydz+cdz®? =0 (10)

is referred to as a characteristic direction. Equality (10)
is an ordinary differential equation describing the character-
istic curves.

As was stated in Sec. 2° § 1, equation (8) is elliptic,
hyperbolic or parabolic depending on whether the quadrat-
ic form a dy® + 2b dy dx -+ ¢ d2? is definite (that is a posi-
tive definite or a negative definite form), indefinite (that
is a non-degenerate form of alternating sign) or semi-definite
(degenerate). Accordingly, equation (8) is elliptie, hyper-
bolic or parabolic depending on whether the discriminant
b? — ac of the quadratic form a dy? -+ 2b dy dr + ¢ dx® is
less than, greater than or equal to zero respectively. It fol-
lows that in the domain of ellipticity of equation (8) there
are no real characteristic directions whereas for each point
of hyperbolicity of the equation there exist two different
real characteristic directions; as to the points of parabolicity,
for each of them there exists exactly one real characteristic
direction. Consequently, if the coefficients a, b and ¢ are
sufficiently smooth the domain of hyperbolicity of equa-
tion (8) is covered by a network consisting of two families
of characteristic curves while the domain of parabolicity
is covered by one such family.

As an example, let us consider the equation

ou

y" 012 + ay? =0
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where m is an odd natural number. In this case equality (10)
has the form y™ dy? + da? = 0, whence it is seen that the
above partial differential equation has no real characteristic
directions in the half-plane y > 0 while at each point of
the straight line y = 0 and at each point in the half-plane

il

Fig. 1

y << 0 it has one and two characteristic directions respec-
tively. On writing the equation of the characteristic curves
dz 4+ (—y)™?*dy = 0 and integrating, we conclude that
the half-plane y << 0 is covered by two families of charac-
teristic curves (see Fig. 1) described by the equations
m+2

r— —y) 2 =const

2
m--2 (
and
m+2

2 nre
m—_l_z(—y) 2 =const

2°, Transformation of Partial Differential Equations of
the Second Order in Two Independent Variables into the
Normal Form. Under the assumption that the coefficients
a, b and ¢ of equation (8) are sufficiently smooth it is always
possible to find a non-singular transformation & = g (z, y),
N = 1 (z, y) of the variables z and y which reduces this
equation, in the given domain, to one of the following
normal forms:

9 a2 0 o
%_{.#-{-ATE—I—B-{)—%—}—CU—_—H (11)
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in the elliptic case,

Syt A+ Bg+ Co=H (12)
or
gt A+ B+ Co=H, (12))
in the hyperbolic case and
9"; + A2 5 —|-B——[—Cv_ (13)

in the parabolic case.

It is rather difficult to prove that equation (8) can be
brought into normal form (11), (12) or (13) throughout the
domain D of the definition of the equation (or, as we say,
that the equation can be brought into the normal form “in
the large”). The argument showing that this possibility
can be realized is considerably simplified if we limit our-
selves to the consideration of a sufficiently small neighbour-
hood of an arbitrary point (z, y) of the domain D. Indeed,
under the change of variables £ = & (z, y), 1 = n (2, y)
the partial derivatives of the first and of the second order
with respect to z and y are transformed in the following way:

0 0 a a
=Exa_§+nxa_n, _=§y g-l-ﬂyﬁ
61’ _Ex agg +2§xnx 6';', 011 _l‘n +Ex.r 8§ +nxx 6'!']

02 a a
+nxny 6_1]2+Exy a_g_"nxyﬂ

and

92 9
2 =&z agz + 28my H"‘ N 3vz 971 + &y ag + My 57 an

where § and n with the indices z and y denote the correspond~

. . . . 17 0
ing derivatives, for instance, §, = %, B = ag,, etc.

Therefore, after the transformation of variables equation (8)
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takes the form
a2 % 82 av G}
a13§—Z+2blﬁ+cla—n’§+d1§g+el%+g1v=f] (14)
where
ay (8, m) = a&% + 2685, +-c&) (15)
by (8, M) = a8 + 0 (Emy + Ens) + gy (16)
¢ (8 m) = ank + 2bmemy + ony
v(g M) =ulz(E n), yE )l (17)
and £ =z (§, n), y = y (&, 1) is the transformation inverse
to E =& (z, ¥), n =1 (2, y)- We do not write down the
expressions for the other coefficients of equation (14) since
they are of no interest for our present aims.
Now, let equation (8) be elliptic, that is let b2 — ac <C

<< 0; then we take as & (z, y) and n (z, y) solutions of the
system of partial differential equations of the first order

aB.+ bE, + V ac—Fen, =0

- (18)
anx+bny_ ‘/ac——-bz Ey =0
for which the Jacobian is different from zero:
a, m =0 (19)

a(z, ¥)
By virtue of (15), (16), (17), (18) and (19), we have

(B+n) 0 and b,=0

On dividing all the terms of equation (14) by the expres-
sion

ac—b?

a,=c =
1=60 p

ac—b?

(&} + i)

which is different from zero we arrive at (11).

It should be noted that system (18) is equivalent to
equation (9). This can readily be shown if we use the nota-
tion @ = § -+ in (where i* = —1).

Now let b2 — ac > 0 and let the functions & (z, y) and
N (z, y) be solutions of equation (9) satisfying condition (19).
Let us suppose that a %40 (if a = 0 and ¢ 540 the argu-

a
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ment below can be adeguately changed in an obvious man-

ner). In this case, by virtue of (9), we obtain from (15),

(16), (17) and (19) the relations a; = ¢; = 0 and b, =
ac —

== ———’-Jigy'qy % 0, whence it follows that equation (14)

a
assumes form (12) after it has been divided by the function
2b,. Further, the new change of variables a = § -} 1,
p = & — n brings equation (12) to form (12,).

It now remains to consider the case when 4% — ac = 0.
In this case we take as the function & (z, y) a solution of
equation (9) different from a constant while the function
1 (z, y) should be chosen so that the condition ani -+
4 2mmy + enj 40 holds. By virtue of the equality
at} + 2bE.E, + c&) = 0, we conclude from (15) and (16)
that a, = b, = 0. Consequently, after all the terms of
equation (14) have been divided by an? -+ 2bm,m, + cn
we obtain (13).

In the case when b* — ac > 0 equation (9) is equivalent
lo the system of two linear partial differential equations

s+ (b+ V0¥ —ac) 9, =0, ag.+(b—Vb2—ac) ¢, =0
while in the case b — ac = 01it is equivalent to one equation
ag, + bq)y =0

Consequently, we can assume that for 562 — ac > 0 the
functions & (z, y) and v (z, y) are solutions of the equations

a&x‘l‘ (b + Vbz—ac) gy = 0'; anx_l' (b - V bz_ac) Ny = 0
(20)

and that for 2 — ac = 0 one of these functions, for instance
E (z, y), is a solution of the equation

af, + bE, =0 (21)

The problem of the existence of solutions of linear partial
differential equations of the first order is closely related
lo Lhe theory of ordinary differential equations of the first
order. As is known from the theory of ordinary differential
equations, if the functions a, b and ¢ are sufficiently smooth,
the system of linear partial differential equations (18) and
linear equations (20) and (21) possess solutions of the re-
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quired type in a neighbourhood of every point (z, y) of the
domain D of definition of equation (8). This proves the
possibility of reducing equation (8) to normal forms (11),
(12), (12,) and (13) in a neighbourhood of (z, y) (as we say,
the possibility of reducing to normal form “in the small”).

§ 3. Simplest Examples of the
Three Basic Types of Second-Order
Partial Differential Equations

1°. The Laplace Equation. Let us denote by A the partial
differential operator of the second order of the form

. "
A= 2
=1 0x;
which can also be written as the scalar product by itself
of the first-order vector partial differential operator

n
a
V= 2 li 0_1‘,
im1
(called the Hamiltonian operator or nabla or del) where
l, (i=1,... n) are unit mutually orthogonal vectors

along the coordinate axes x;. The differential operator A
is called Laplace’s operator and the equation

Au=0 (22)
is termed Laplace’s equation.

Characteristic quadratic form (3) corresponding to equa-
tion (22) is

n
Q=M
i={
The form Q is positive definite at all the points of the space
E,. Consequently, this equation is elliptic throughout E,.
Moreover, it is obviously uniformly elliptic in E,.
A function u (z) possessing continuous partial derivatives
of the second order and satisfying Laplace’s equation is
called a harmonic function.
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It can be checked directly that the function E (z, §),
dependent on the two points z and §, which is determined
by the formula

1 -n
E (z, §)={ g |8—af" for n>2

(23)
—In|E—z| for n=2

where | ¢ — z | is the distance between z and §, is a solu-

tion of Laplace’s equation for x % & both with respect

to z and with respect to E. Indeed, for 2 & we derive

from (23) the expressions

9*E

Py = —|t—z| "+ nt—z|"2(E—2)2 (i=1,...,n)
(24)
., ) given

by formula (24) into the left-hand S1de of (22) we obtain
AE= —n|t—z|"+n|f—z| "2 igi (8 —z;)2=0

Since the function E (z, E) is symmetric with respect
to z and &, we conclude that it satisfies Laplace’s equation
with respect to & (§ £ ) as well.

The function E (z, &) determined by formula (23) is
referred to as the fundamental (or elementary) solution of
Laplace’s equation. For n = 3 this function represents the
potential of unit charge localized at the point z (or at ).

Let S be a smooth hypersurface (closed or non-closed) in the

space E, and let p (§) be a real continuous functwn defined
on S.

The expression

u@=| E( Huds (25)

E)

where ds; is the element of area of the hypersurface S whose
position on the hypersurface is determined by the variable of
integration &, is a harmonic function with respect to x for
all the points x of the space E, not lying on S.
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This assertion follows from the fact that, as was shown
above, the function E (z, &) is harmonic with respect to z

2
for £ = E and that when the derivatives g—'; i=1,..., n)
iz

2
are computed the operation of differentiation 5% on the
i

right-hand side of (25) may be written under the integral
sign.
An expression of the form
22k
@ =3 (=" G A @ ey )+
R0 ’
L2+

+ o A @ -z | (26)

where the operator A" is defined by the relation A* = A (A*-Y),
and T, v are arbitrary polynomials in the variables z,, .

-+ <y Zy_y, is also a harmonic function (a harmonic polyno-
mial) with respect to the variables zy, . . ., z,

Indeed, since the sum on the rlght-hand side of (26) is
finite (because beﬁmmng with a certain value of k, all
the expressions A"t and A*v under the summation sign
are equal to zero), we have

2k 2Rh+1
6“u_ __A\R ZTn R %t z R 02\’
73"‘30( 1 [(21:); A~ Py (2k—|—1)lA oxi J

i=1,...,n—1
and
2h 2h+1

a x
_= -2 (= “h[(zzc)' (2k—|—1)'

R0

Ah+1vJ

whence it follows that

It can be analogously proved that the sum u (z) of the
series on the right-hand side of (26) is a harmonic function
in the case when the functions v and v are continuously
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differentiable, the series is convergent and it is legitimate
to differentiate the series term-by-term twice with respect
to z; (i =1, ..., n).

2°. Wave Equation. The partial differential equation

n—1

S Mg @7)

6:5? 6xi
i=1

is known as the wave equation. This equation is frequently
encountered in various applications. In the case n = 4
this equation can be written in the form

%u *u o%u

1:2 + oz + o ory  o1% =0 (28)

if we denote z, = t (it is meant that the unit of time ¢
is chosen in the appropriate manner). Equation (28) describes
the phenomenon of propagation of sound in the three-
dimensional space E3 of the variables z;, z,, z; (see below
§ 5, Sec. 2°.

Characteristic quadratic form (3) corresponding to equa-
tion (27) has the. canonical form

:21 A2 — A2

and, consequently, according to the definition stated in
Sec. 2°, § 1, this equation is hyperbolic throughout the
space E,.

It can be verified directly that the function

u(z) = [@TMA"T(% ey Tpg)
h=0 22kt

(2k+1)! A (zy, ..., x,,_l)] (29)

where v and v are arbitrary infinitely differentiable funetions,
is a solution of equation (27) provided that series (29) is uniform-
ly convergent and that the series obtained from (29) by differen-
tiating it term-by-term twice with respect to z; (i = 1, . . ., n)
are also uniformly convergent. In the case when v and v are
polynomials the terms of the series on the right-hand side of
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(29) are equal to zero beginning with some value of the index
k; in this case the sum u (z) of the series is a polynomial
solution of equation (27).

Now let us consider the function

u(z, t)= 5 “(73—”"%) ds, (30)
8

where |y — x| is the distance between the points z =
= (T4, %3, 23) and y = (Y1, Y3, Ys), S is the sphere |y —
— z |2 = ¢* and p is an arbitrary real twice continuously
differentiable function defined on §. We shall show that
function (30) is a solution of equation (28).

Indeed, the change of variables y; — z; = &; (i =
=1, 2, 3) brings expression (30) to the form

u(z, t) =1 S W (T 4+t Tyt tEy, Tt tE)doy  (31)

ds d
where 0 is the unit sphere |§|=1 and dc;:t—ﬂy=|y—__-si—2
is an element of area of the unit sphere. From (31) we
obtain

3
%u 9%
=t —d 2
2 aa:, igi ] oy (32)
Besides, we have
L S B (24181, Zp 418, 254-1Es) dog +
[
u 1
—{—tSZ o da=4+r1 (3
g i=1
where
op ap o
e A A C
3

and v(y)= (v, Vs, V) is the outer normal to S at the
point y.
On differentiating equality (33) we find

%u u , 1 ou 1 1 oI
at? 2t at 12 I l t at
u 1 u I 1 6[ 1 oI
12 l t (t ) tﬂ . Tt 8t (35)
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From mathematical analysis it is known that for real func-
tions A; (z) (i =1, ..., n) continuous together with their
partial derivatives of the first order in a closed domain D |J S
with a smooth boundary S there holds the Gauss-Ostrogradsky
formula

n

{3 i —52 (v Wdsy,  (6O)

D i=1 i=1

where dt, is an element of volume and v = (vy, .. ., v,)
is the outer normal to S at the point y € S.

The application of formula (GO) makes it possible to
transform the right-hand member of (34) into an integral
over the sphere |y — z |2 << t%

I= 52 iy (36)

where dt, is the element of volume whose position is speci-
fied by the variable of integration y. On passing from the
Cartesian coordinates y,, ¥, y; to the spherical coordinates
o, 8, ¢, we bring expression (36) for I to the form

t I 21
I= S dp S e S Aup?sin 0 dg
0 0 0

where p? sin 6 do df dp = dt,. Now, since sin 0 d0 dp =
= dog, we find

ol n 2n 3 .
. a
W—tzj‘ do S Ap,smﬁdcp:tz S 2 -ay—};dcra
0 0 o i=1
Consequently, by virtue of (35), we can write
3
u
W:ts R ay, L o (37)
g i=1

By virtue of (32) and (37) we conclude that the function
u (z, t) represented by formula (30) is a solution of equa-
tion (28).
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3°. Heat Conduction Equation. The equation

n—1 a2

o U ou ‘
2l T — g =0 (38)
i1

is an equation of parabolic type because characteristic
form (3) corresponding to it is written as

n—1
0= M
i=1

In the special case when n = 4, on condition that ¢t = x,
and that the unit of time is chosen in the appropriate way,
we obtain from (38) the equation

0%u ou
61% at

=0 (39)

i=1

which describes the phenomenon of the conduction of heat
in a body lying in the space E; of the variables z,;, x,, z,.
That is why (39) is referred to as the heat conduction equa-
tion (see below § 5, Sec. 3°).

Like in the cases of equations (22) and (27), direct
calculations readily show that the expression

hk
u(@)= 3 A (zy, ., 2an) (40)

h>=>0

where T is an arbitrary infinitely differentiable real function
of the variables x,, . . ., x,_, satisfies equation (38) provided
that the series on the righi-hand side of (40) and the series
obtained from it by the termwise differentiation once with
respect to x, and twice with respect to x; (i =1, ..., n — 1)
are all uniformly convergent. The function

i-n n—1 .
E (z, &) = (zn—§,) ® exp [—m 2 (xi"_‘gi)zJ (41)
1=1

where §,;, ..., &, are real parameters and z, > &,, is also
a solution of equation (38).
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Indeed, we have

= T P D B D
(i:i, ceey n—1)
and
l"In—- (In—E)E( ,§)+ 4 (zp _E )ZZ (I E)
whence it follows that
Y9E 0B
20 92 8zn

i=1

The function £ (2, &) specified by formula (41) is called
the fundamental (elementary) solution of equation (38).

4°, Statement of Some Problems for Partial Differential
Equations. When we derive partial differential equations
proceeding from general laws governing the natural phenom-
ena in question, there arise some additional conditions
imposed on the sought-for solutions. The proof of the existence
and the uniqueness of the solutions satisfying the additional
conditions plays an important role in the theory of partial
differential equations. When it turns out that small varia-
tions of the data contained both in the equations and in the
additional conditions produce small variations of the solu-
tions satisfying them or, as we say, when the sought-for
solutions are stable, we speak of well-posed (or correctly set)
problems; if otherwise, the problems in question are referred
to as improperly posed (not well-posed). It should also be
noted that the conditions of the problems which must be
satisfied by the sought-for solutions are essentially lependent
on the type of the equations under consideration.

Let us state some problems whose well-posedness will
be proved later.

Let the boundary S of a domain D in the space E, be
a smooth (n — 1)-dimensional hypersurface. In what follows,
by a surface in the space E, we shall understand an (n — 1)-
dimensional hypersurface of that very kind.

3—0598
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Let us state the following problem: if is required to deter-
mine the solution u (z) of equation (22) regular in the domain D,
continuous in the closed region D |J S and satisfying the
boundary condition

limu(z)=¢(y); z€D, y€S (42)

x>y

where @ is a given real continuous function defined on S.
The problem we have stated is referred to as the first
boundary-value problem or the Dirichlet problem.

Let us denote by G a domain in the space E,_; of the
variables z,, ..., z,_; and state the following problem:
it is required to find the regular solution u (z) of equation (27)
satisfying the conditions

u (xl’ sy Tpaps 0)=(P (.Z)

ou(xy, ..., rp)

(43)
oxy, x,, =0 =“'p (‘T)

for x € G where @ and  are given real sufficiently smooth
functions defined in G; this problem is referred to as the
Cauchy problem (or the initial-value problem). Conditions (43)
are known as the Cauchy conditions (¢ and { are usually
referred to as the Cauchy data) or the irnitial conditions.
Further, let D be a domain in the space E, bounded by
a cylindrical surface whose generators are parallel to the
z,-axis and by two planes z, = 0 and 2, =k (b > 0).
Let us denote by S the boundary of the domain D without
the upper base z, = h. We state the following problem:
it is required to find the solution u (x) of equation (38) regular
in the domain D and satisfying the boundary condition
limu(z)=¢(y); z€D, y€sS (44)

X .
where ¢ is a given sufﬁciéntly smooth real function defined
on S (the function ¢ specifies the prescribed (limiting)
values of the solution u (z) on S; we shall refer to ¢ as the

data prescribed on S). This problem is also called the first
boundary-value problem for equation (38).
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§ 4. The Notion of an Integral Equation

1°. Notation and Basic Definitions. Let us denote by a (z)
and K, (z, y, 2) given real functions dependent on the
points z and y, ranging in a domain D in the space £,
and on a real (scalar) variable z. T.et z be a function z =
= ¢ (y) of the point y € D; we shall suppose that the integral

S KO [-Z', Y, @ (y)] dT!/

D
taken over the domain D exists. Then an equality of the
form

(@) ¢ @)+ | Kolz,y, 9 ()1 dr, =0, z€D  (45)
D

is referred to as an integral equation with respect to the
urnknown function ¢ (z), z € D.

Integral equation (45) is said to be linear when the func-
tion K, (2, y, z) depends linearly on 2z, that is when

Ko (z, y, 2) = K (z, y) 2 + K° (2, )
A linear integral equation can be written in the form

a(@) ¢ @)+ | K@ p)owdy,—=](), 2€D (46)
where i

f(z)= —S Ko(z, y)dv,, z€D
D

is a given function.

Linear integral equation (46) is called homogeneous or
rnon-homogeneous depending on whether f(x) = 0 for all
z €D or f(z) is not identically equal to zero.

The function K (z, y) is called the kernel of integral
equation (46) and the integral

[ K@ nowar,
D

on the left-hand side of (46) is referred to as an integral
operator defined for the class of functions to which the
unknown function ¢ (2) belongs.

3¥
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2°. Classification of Linear Integral Equations. When
the domain D is bounded, the function a (z) is continuous
and the kernel K (z, y) is also a continuous function of the
points z, y €D |JS (or when the function K (z, y) is
bounded and integrable in the ordinary sense) where S
is the boundary of the domain D, integral equation (46)
is called the Fredholm equation.

Equation (46) is called a Fredholm equation of the first,
second or third kind depending on whether the function
a (x) is identically equal to zero, is identically equal to 1 or
is neither identically equal to zero nor to 1, respectively.

In case a (z) 0 throughout D |J S Fredholm’s integral
equation of the third kind can be reduced to Fredholm's
integral equation of the second kind by dividing all the
terms of the former by a (z).

In what follows we shall only deal with Fredholm’s
integral equations of the second kind. The proof of the
basic propositions of the theory of Fredholm’s integral
equations will be presented for the case when the domain D
coincides with an interval (a, b) of the real number axis,
the kernel K (z, y) is a function continuous with respect
to the point (z, y) for e <<z <<h, a<<y<<b and § (x)
is a continuous function in the closed interval a << x << b.
For this case we shall write Fredholm’s integral equation
of the second kind in the form

b

9@~ K@ powdy=1(2), a<z<b (47)

a

where A is a real parameter.

In the case when the function K (z, y) tends to infinity
for | z — y | > 0 at the same rate as the function |z — y | ™o
where ny<<n and n is the dimension of the domain D,
the integral equation

o(@)—2 | K(z, 1) o) dr, = 1 (2)
D
can be reduced to an equivalent Fredholm integral equation

of the second kind with a continuous kernel; therefore the
above equation is also referred to as a Fredholm equation.
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If the kernel K (z, y) of Fredholm’'s integral equation of
the second kind (47) is identically equal to zero for y > z
we arrive at an integral equation of the form

X

o@)—2 | K (@, y) o) dy=7 (2) (48)

a

which is a special case of Fredholm's equations. Equation
(48) is called Volterra's integral equation of the second kind.

All the assertions concerning integral equation (48)
remain valid for the class of the integral equations of the
form

X Yy
oz =2 | dt | Kz, y; t, 0ot 1) di—
a b

x
—u | Koy ot yyar—

Y
—vS Ky (z, 45 ©) @ (z, 1) dv=f (2, y)
b

which are also alcled the Volterra integral equations of the
second kind.

By the equations of mathematical physics are usually meant
not only partial differential equations but also integral
equations. _

Integral equations play an important role in various
divisions of mathematics. In particular, the theory of
integral equations is widely used in the investigation of
differential equations, both ordinary and partial.

§ ©. Simplified Mathematical Models
for Some Phenomena
in Physics and Engineering

1°. Electrostatic Field. Here we shall limit ourselves to
the consideration of a plane electrostatic field by which is
meant a two-dimensional medium for whose every point P
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a two-dimensional vector E (the field intensity) is defined.
Let the coordinates of the variable point P be denoted as z
and y and the components of the vector £ along the coor-
dinate axes as £, and E, respectively. We shall suppose
that the functions E, and’ E, are continuous together with
their partial derivatives of the first order at all the points P
of the field. )

Let D be an arbitrary domain lying within the electro-
static field under consideration, its boundary S being

sufficiently smooth. By |D |, v = (cos vz, cos vy) and

s = (cos sz, cos sy) we shall denote the area of the domain D,
the outer normal to S and the unit tangential vector to S
in the positive direction along S (as usual, the positive
direction along S is defined as the one possessing the prop-
erty that when S is described in that direction the interior
of the domain D always remains on the left). The compo-
nents of the vectors v and s are connected by the obvious
equalities

—~

—~ —~ -~
C0S VX = COS 8y, C€OS vy = —COS §T
The expressions

N=§ Evds and A= gg Esds

where Ev and Es are the scalar products
Ev = Excosx/’;c—l—E,,cos;?/
and
Es=FE, cos sz + E, cos?y =E, cos v — E, cos/v\y

are called the flux of the vector E through the contour § and
the circulation of E over S.
According to formula (GO), we have

N [ (2 v )da dy

and A= S ( aali-" a:;x )dx dy
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On contracting the domain D to the point P, we obtain

the limiting relations

. N oE, oE, .

llm —_— —=d1 FE

papiDl oz + dy v
and

. A __8E, oE,

lim 157~ 52— %5 = (ot £):

where (rot E), is the projection of the vector rot £ on the
z-axis orthogonal to the zy-plane.
By definition, we have N = 4me and lim I—Jl!),_l = 4qp
D~ P
where e is the total charge lying within D and p is the
surface charge density at the point P, and therefore we
can write
9E;  0E,
oz + ¥R =43T,p (49)
Since A is equal to the work of the force E along the
path § and the field in question is stationary, the law of
conservation of energy implies A = 0, whence

9E,  OE,
o — =0 (50)

For the case when there are no charges in the field we
obtain from formula (49) the equality
dE.  OE,
ox + dy =0 (51)
Equalities (50) and (51) show that the expressions E, dxr -+
+ E, dy and E, dz — E, dy are total differentials. Let us
introduce two scalar functions v (z, y) and u (z, y) defined
by the formulas

dv = —E,dx — E,dy and du= —E,dr+ E,dy

These formulas mean that
du __ o du v (52)

ax oy oy oz

The functions u (z, y) and v (2, y) are called the force
function and the potential (the potential function) of the
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field respectively, and system of two equations (52) (satis
fied by these functions) is referred to as the Cauchy-Riemann
system of partial differential equations.

Thus, the investigation of a plane electrostatic field can be
reduced to the investigation of the system of partial differential
equations (52).

As will be shown later (see Chapter 2, § 2, Sec. 5°), the
functions u (z, y) and v (z, y) which are regular solutions
of system (52) possess partial derivatives of all orders. On dif-
ferentiating the first equation of that system with respect
to z and the second equation with respect to y and adding
together the results, we see that Au = u,, 4+ u,, = 0,
which means that u (z, y) is a harmonic function. In a
similar way we readily show that the function v (z, y) is
also harmonie.

2°. Qscillation of a Membrane. By a membrane is meant
an elastic material surface which takes the form of a plane
region G when it is at rest and whose potential energy E,
gained in the oscillation process is proportional to the
increment of the area.

Let us suppose that the domain G lies in the planefot the
variables z and y and, that the transverse deflection
u(z, y, t) of the membrane, that is the vertical displace-
ment of the point (z, y) € G, is a sufficiently smooth func-
tion. We shall assume the oscillation of the membrane
to be small in the sense that in the calculations it is legiti-
mate, to within the appropriate accuracy, to neglect the
powers of the quantities u, u,, u, and u; higher than the
second.

The area o of the membrane at time instant ¢ is given
by the formula

0= S‘ VIiFuifuldzdys S (1-}-% ui—!—-%u;) dx dy
G G

and the area of the membrane when it is at rest is equal to

|G|=C5dxdy
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Therefore the potential energy E, is expressed as

Epzép. S(u§+u§)dxdy
¢

where the proportionality factor p is the temsion per unit
length,

The kinetic energy E, of the membrane is expressed by
the formula

E’k—:% Spu?dxdy
G

where p is the area (surface) mass density of the membrane
and u; is the speed of the displacement of the particle of the
membrane.
According to Hamilton’s principle, the integral
iy ty

{E—mya=7 [ aftoi—poa+up)dedy  (53)

t it G

where (2,, t,) is the time interval during which the oscilla-
tion process is observed, must assume a stationary value.
Consequently, the function u (z, y, t) must satisfy Euler’s
equation corresponding to the variational problem for
integral (53):

3 ? d
¢ (Pue) — 7 (wits) — w7 (W) = 0

If we assume that p and p are constant then this equation
takes the form

uy—Au=0 (54)

where a2 = p/p. The constant a is referred to as the speed
of sound.

When investigating equation (54), we may assume, without
loss of generality, that @ = 1, because the simple change
of the variable ¢ according to the formula t = at and the
transformation u (z, y, t) = w (z, y, v/a) = v (z, y, 1) of
the unknown function bring equation (54) to the form

Vg — Av =20
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Now let us consider the special case when u is independent
of ¢, that is when the membrane, after being bent, is in
a state of equilibrium described by an equation of the form
u = u (z, y). For this case equation (54) implies Au = 0.
We see that in the case under consideration Laplace’s equation
we have obtained for the function u serves as Euler's equation
of the variational problem for the so-called Dirichlet integral

D(w)= @ +u)dzdy

G

The expression D (u) describes the potential energy of the
membrane when it is in the equilibrium state with the irans-
verse deflection described by the function u (z, y).

Indeed, let us suppose that the displacement of the
boundary § of the domain G (of the edge of the membrane)
is equal to a given function ¢ defined on S:

ulz, y) =@ (@ yES (55)
Let the function u (z, y) receive a variation du = ev where
¢ is an arbitrary real number and v is an arbitrary suf-
ficiently smooth function satisfying the condition

vz, y) =0, (& yES (56)

Then the corresponding variation 8D = D (u + &) — D (u)
of Dirichlet’s integral is expressed by the formula

8D = 285 (Uxy + uyvy) dz dy + 825 (v +vi)dzdy
é é

Therefore the necessary condition for Dirichlet’s integral
to assume a minimum (stationary) value has the form

S(uxvx-i—uyvy) drdy=0 (57
G
Further, taking into account the relation
Uy + Uy = (Ub)y + (uyv), — v Au
and the fact that formula (GO) and conditions (56) imply
the equalities

[ 1w)e+ ()1 da dy = 5 v 2 gs—0
G S
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we obtain from (57) the equality
SvAudxdy:O (58)

G

Finally, since v is an arbitrary function defined in G, equa-
lity (58) implies that Au = 0.

Hence, the deflection u (z, y) of the membrane in a state
of equilibrium is the solution of Dirichlet problem (55) for
the Laplace equation.

3°. Propagation of Heat. The process of propagation
of heat in a medium filled with a mass distributed with den-
sity p and having specific heat ¢ and the coefficient of thermal
conductivity k can be described mathematically in the fol-
lowing way. Let u (z, t) be the temperature of the medium
at the point z at time ¢ and let D be an arbitrary domain
within that medium containing the point 2. By § we shall
denote the boundary of the domain D. Let ds and v be the
element of area of S and the outer normal to S respectively;
then, under the assumption that the function u (z, ) is
sufficiently smooth, the amount of heat Q flowing into D
through S during a time interval (¢, t,) is given by the
formula

|2
0— S di Sk 2 ds
6 8

expressing the Fourier law of heat conduction.

Due to the inflow of the amount Q of heat the temperature
receives an increment u (z, t + dt) — u (z, t) ~ u,dt, and
therefore

iy
Q= S dt \'cpu,dr ,

i D
where dt is an element of volume.
Consequently,
i, P i,
S dt S k2L ds= S dt Scpu,d’c
i 8 t, D
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We shall limit ourselves to the case when the quantities
k, ¢ and p are constant, then

ty iy
det[j—jds=cdetSutdr (59)
& 8 &t b
By virtue of formula (GO), we have

ou \
5 ¥ ds = \ Audr
S b
Therefore equality (59) can be written in the form
1,
S dt S (cpuy—kAu)dv=0
&, D

Now, since the time interval (¢, ;) and the volume of
the domain D are quite arbitrary, we conclude that the
equality

cpuy —kAu=0
must hold; it follows that

—1-u1—Au=0
a

where a = c’:) . It is evident that without loss of generality

we may assume that in this case a = 1 as well.

If we prescribe the values of the function u (z, t) at
every point & of the medium at the initial instant ¢ = {,
(that is if we set the initial conditiorn) and also the values
of u (z, t) at each point of the boundary of the medium for
all values of ¢ belonging to the interval ¢, <<i<< T for
a constant T (the boundary condition), we arrive at the
corresponding boundary-value problem of type (44).

4°, The Motion of a Material Point under the Action of
the Force of Gravity. Let us consider a vertical plane with
orthogonal Cartesian coordinates £ and y. Suppose that
a material point M (z, y) moves in that plane under the
action of the force of gravity from a position (§, 1), n > 0,
to another position (§qy, 0), §, = &, the time ¢ of the motion
being a given function ¢ = t (n) of the coordinate 1 reckoned
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along the vertical direction. It is required to determine the
trajectory of motion of the point M (z,y) (this is the so-
called tautochrone problem).

As is known, the square of the absolulte value v of the

velocity vector (3—“:, Z—"t’) of the point M (xz, y) satisfies the
equality

=2g(n—yp) 0y (60)
where g is the acceleration of gravity. Let us denote as a (x, ¥)
the angle between the velocity vector and the positive

direction of the z-axis, the angle o being reckoned counter-
clockwise. Then, by virtue of (60), we can write for the

derivative Z—f the equality

W —ysina=V 2% m—psina (61)
Since the trajectory £ = z (y) is unknown so is the quan-

tity

1

)= ez, vl (62)
On the basis of (61) and (62) we obtain
n
£ ) = — 9 (y) dy
™ i V2gtn—y)
that is
{ owad
pdy 63
5) L~} () (63)
where

fmy=—V2¢t(n)

Consequently, the function ¢ (y) must be a solution of
integral equation (63) known as Abel’s integral equation.
Relation (62) shows that only those solutions ¢ (y) of
equation (63) have a physical meaning which satisfy the
condition | ¢ (y) |> 1. If we manage to find the solution
¢ (y) of equation (63) satisfying that condition, the geo-



46 INTRODUCTION

metrical equality

Z_;;cota=Vcscz°‘_1:V(p2(y)_1

makes it possible to immediately express in quadratures
the equation of the sought-for trajectory:

x:.S V @*(z)—1dz

0



CHAPTER 1

ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

§ 1. Basic Properties of Harmonic Functions

1°. Definition of a Harmonic Function and Some of Its
Basic Properties. According to the definition stated in
Sec. 1°, § 3 of Introduction, @ function u () is said to be
harmonic in a domain D if it possesses continuous partial
derivatives up to the second order inclusive in D and satisfies
Laplace's equation in that domain,

If u (z) is a harmonic function in D then so is the func-
tion u (ACz + h) where A is a scalar constant, C is a constant
real orthogonal matrix of order n and h = (hy, . .., ky)
is a constant real vector provided that the points z and
ACz -+ h belong to the domain D.

This assertion readily follows from the obvious equality

n . n "
zmu()\.c‘t—f—h):hzz 352 u(y)
i i1 i

=1
where y = ACz + h.
For arbitrary constants ¢, (k =1, ..., m) there holds

the equality
m m
A Z Cply, (x) = 2 Cp Auh (x)
k=1 h=1

and therefore if u, (z) (k = 1, ..., m) are harmonic func-
tions then so is the finite sum

u (@)= 2 chlin (2)
h=1
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We can also verify directly that if u (z) is a harmonic
function in a domain D then the function

v@) =z u (57 )

is also harmonic at all the points where it is defined.

In the case when the domain D contains the point at
infinity the definition of a harmonic function needs some
additional stipulation because the notion of the derivative
at the point at infinity does not make sense.

We shall say that a function u () is harmonic at infinity,
or, more precisely, in the neighbourhood of the point at
infinity (by which is meant the exterior of a ball |z | < R
of a sufficiently large radins R), when the function

() =1y " u (T4 )

(this expression makes sense for all y 540) whose value at
the point y = 0 is defined as lim v (y) is harmonic (in

y-0
the ordinary sense) in the vicinity of the point y = 0.

The transformation y = of the variable y results

=z
[z]?
in the formula

u(.?:)=|.7:|2‘"v( |:|2)

Accordingly, by a solution u (z) of Laplace’s equation regular
at infinity we shall mean a function which is harmonic through-
out the neighbourhood of the point at infinity except the
point at infinity itself and which remains bounded for | x | —
— 00 in the case n = 2 and tends to zero not slower than
|z |2~ in the case n > 2.

Let D be a domain in the space E, having a sufficiently
smooth boundary S and let u (z) and v (z) be two real har-
monic functions defined in D -and continuous in D | S
together with their partial derivatives of the first order.

Integrating over the domain D the identities

2 01,( 61,) § =

i=1
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and
n

N 0 ou ov \ _
Z‘ amt (U a.’ti —u 01i )—O

i=

—

and using formula (GO) (see Introduction), we obtain the
formulas

[v 5L as=3 [ Zgeam.
S i=1 D

and '
S [I) (y) a”(y) ( ) a”(y)]dsy=0 (2)
S

respectively. In formulas (1) and (2) and henceforth we
shall mean by v ithe outer normal to S.

For formulas 1) land (2) to remain valid in the case when
the domain D lymg in the space E, contains a point at
infinity, it i natural to require that the integrands in these
formulas ishould be absolutely 1ntegrah1e (or isummable in
the case when the oxpressions Jon the left-hand and the
right-hand sides of formulas (1) ‘and (2) are understood as
the Lebesgue integrals).

Formulas (1) and (2) make it possible to readily establish
a number of elementary properties of harmonic functions:

(1) If a function u(z) is harmonic in a domain D and con-
linuous in D |J S together with its first-order partial deriva-
tives and is equal to zero on the boundary S of the domain D,
then u () = 0 for all x € D |J S (this property is known
as the uniqueness theorem for harmonic functions).

The indicated property follows from equality (1) if we
put u () = v (z) in it. Indeed, since u (y) = O for y € S,
formula (1) implies

n
Ou \ 2 ou
3 (2) - fun sl o
8

i=1 D
and therefore

ZS )? dr.=0

i=1 D
4—-0598
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Consequently, a —O (i=1, ..., n), z€D, that is

u (z)|= const for all 2 € D. Now, since u (y) = 0 for y € S,
by v1rtue of the continuity of u (z) in the closed domain
D |US, we conclude that u (z) = 0 for all z€D |y S.
(2) Let u (x) be a harmonic function in a domain D contin-
uous throughout D \J S together with its partial derivatives

of the first order; if the normal derwatwe T(y) is equal to

zero on the boundary S of the domain D, then i (z) = const
for all z €D.

This property of harmonic functions is proved in exactly
the same way as the forégoing property; to this end it is

sufficient to take into account that 6au(y) 0 in (3) for all
yES. "

(3) Again, let u (z) be a harmonic function in a domain
D continuous in D |J S together with its first-order partial

derivatives, then the initegral of the normal derivative %u_\(,yl
taken over the boundary S of D is equal to zero. Y
Indeed, on putting v (z) =1 for all z € D, we obtain

17}
S gvf:) ds, =0 @

2°, Integral Representation of Harmonic Functions. For
a function u (x) harmonic in a domain D with boundary S
apnd continuous in D |J S together with its partial derivatives
of the first order there. holds the integral representation

wie)=o- [ E@ 0 58 dsy— o= [uw H2las, ()
S S ’

where E (z, y) is the fundamental (elementary) solution of
Laplace’s equation considered in Sec. 1°, § 3 of Introduction,

r(z
and T |is Euler's gamma function.
To derive formula (5) let us choose an arbitrary point z
in the domain D and consider a closed ball |y —z | ¢
of radius &£ > 0 such that it lies entirely inside D. The part

2n"2 is.the surfdce area of unit sphere in E,
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of the domain D lying outside that ball will be denoted D..
On applying to the domain D, bounded by the surface S
and by the sphere |y — z | = ¢, formula (2) in which
we put v (y) = E (z, y), we obtain

[7] OE (x,
(£ @2l —up) S ] ds, =
) .

= | [EGnTHE—uw 250 s~
ly—x|=e
= E(z, )= a"(y) ds,—
ly—x|=2

E
- [u(y)—u(x)}‘ia‘T‘:i’dsy—
ly—x{=¢e

E (z,
—u@ [ s, ()
fy=x|=¢

Further, for the sphere |y—a|==¢ we have

1
E(x,y)—_-{ (n—2)en? for n>2
—lIne for n=2

a
Vy ——:— for n=2

1
oE (z, y) { T for n>2

lim S [u(y)—u(x)]—aE—"’—-")-ds,,_o
e-~0
ly—xl=e
and
dsy
8n_~1=(')n

ly-x|=¢

Therefore, by virtue of (4), we obtain from formula (6)
in the limit, for ¢ —> 0, integral representation (5) (see
Fig. 2).

3°. Mean-Value Formulas. If a ball |y — x| << R lies
entirely within the domain D of harmonicity of a functwn

b
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u (z), then the value of that function at the centre of the ball
is equal lo the arithmetic mean of its values on the sphere

Fig. 2
Indeed, since for the sphere |y — z | = R we have the
equalities
1
E(z, y>={ g for n>2
—InR for n=2
and

vy 1

1
e { e for 2
-5 for n=2

it is readily seen that, by virtue of (4), formula (5) results in

v@) =g | u@ds, (7)

ly—x|=R
On writing formula (7) for the sphere |y —z | = p << R
in the form
n-1 1
P () =4 S u (y) dsy
fy—xl=p
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and integrating the last equality with respect to p over
the interval 0 <{p<CR, we obtain

u@ = | u@dy (8)

ly—xI<R

where dt, is the element of volume whose location within
wpR7
n

D is specified by the variable y and is the volume of

the ball |y — 2z | < R.
Formulas (7) and (8) are known as mean-value formulas
for harmonic functions, for a sphere and for a ball respectively.
Using polar coordinates in the case » = 2 and spherical
coordinates in the case n = 3 we can rewrite formula (7)
in the forms

2n
(24, T) = 5 { u(21+ Reos®, z,+ Rsin0)dd  (9)
0
and

n 25
1 .
u(2q, g, .1:3)=—ES a0 S u (x4 Yy, Z3+ Yo, T3+ ys)sin0dy
0 0

where y, = Rsin®cosyp, y, = RsinBsiny and y; =
= R cos 0.

4°. The Extremum Principle for the Dirichlet Problem.
Uniqueness of the Solution. Given a harmonic function
u (z) in a domain D, we shall denote by M and m the supre-
mum and the infimum of the values of the function respec-
tively.

Proceeding from formula (8) we can readily establish
the following property known as the exiremum principle for
harmonic functions: a function u (z) harmonic in a domain D
and not identically equal to a constant can assume neither
the value M nor the value m at any point x € D.

When M = 400 or m = —oo the assertion we have
stated is evident because the function u (x) can take on only
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finite values at every point of the domain D. Let us suppose
that M £ 4oo and that u (zg) = M where z, € D. We
shall consider a ball |z — z, | << & (¢ > 0) lying entirely
inside D. Then for each point of that ball we must have
u () = M. Indeed, if the inequality u (y) << M held at
a point y such that |y — xz, | << & then, by virtue of the
continuity of u (z), this inequality would hold throughout
a neighbourhood | & — y | << 6 (6 = 0) of the point y (the
inequality w (y) > M is impossible). Therefore the appli-
cation of formula (8) to the ball | z — z, | << & would result
in the inconsistent inequality M << M. Hence, it follows
that u (z) = M throughout the ball |z — z, | << &. Now,
let z be an arbitrary fixed point]of the domain D and let I
be a continuous curve lying within D and joining the points z
and z,. Let the number ¢ be less than the distance between
the boundary S of the domain D and the curve l. Next,
imagine that the centre y of the ball | — y | << ¢ is moved
along the curve J{from the point z, to the point z; using
the fact that for every position of the point y we have the
equality v = M inside that ball, we conclude that u (z) =
= M. Consequently, u () = M everywhere in the domain D.
We have thus arrived at a contradiction, which proves the
first part of the assertion we stated above. The other part
of the assertion concerning m is proved analogously.

Further, if it is additionally known that the function u ()
harmonic in D is continuous in D | S, then this function must
necessarily assume its mazimum (minimum) value at some
point 2z, €D (J S. By virtue of the property of harmonic
functions we proved above, it follows that the point of
extremum z, cannot belong to the interior of the domain D,
and consequently z, € S.

The extremum principle for harmonic functwns implies
that the Dirichlet problem stated in Sec. 4°, § 3 of Introduction
cannot possess more than one solution. Indeed, if we suppose
that u (z) and v (z) are two solutions of that problem (see
boundary condition (42) in Introduction), then their dif-
ference w (x) =u (z) — v(z) is equal to zero on the bound-
ary S of the domain D, and therefore, by virtue of the
extremum principle, w (z) = 0, that is u (z) = v (z) every-
where in D |J S.
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§ 2. The Notion of Green’s Function. Solution
of the Dirichlet Problem for a Ball
and for a Half-Space

1°. Green's Function of the Dirichlet Problem for the Laplace
Equation. By Green's function of the Dirichlet problem for
the Laplace equation in a domain D is meant the function
G (z, &) dependent on two pointsx €D |JS and E€D |y S
which possesses the following properties: (1) this function
has the form

G(z, ) = E (z, &) + g (2, ¥) (10)

where E (z, §) is the fundamental (elementary) solution of the
Laplace equation and g (x, &) is a harmonic .function both
with respect to x € D and with respect to & € D; and (2) when
the point x or & lies on the boundary S of the domain D, the

equality
Gz, &) =0 (11)
is fulfilled.

It can easily be seen that G (z, &) == 0 throughout the
domain D. Indeed, let us denote by Dg the part of the
domain D lying outside a ball |y — E | << 8, E€D of
a sufficiently small radids, 8§ > 0. Since lim G (z, &) =

. s
= 400, we must have, for a sufficiently smaigl §, the ine-
quality G (z, &) > 0, when |z — & | << 6. Consequently,
G (z, E) = 0 on the boundary of the domain Dy and there-
fore, by the extremum principle, G (z, &) == 0 for all x € D,
whence we conclude that G (x, &) > 0 everywhere in D |J S.

Next we state the symmetry property of Green's function
G (z, y) with respect to the points x and y:

Gz y) =Gy, v) (2 y€D)

To prove this property, let us remove the points z and
y belonging to the domain D from that domain together with
the closed balls d: |z —z |<<8 and d': |z—y |6
of a sufficiently small radius 8§ > 0; the remaining part
of the domain D-will' be denoted Dy (see-Fig. 3).

The functions v (z) = G (z, y) and u (z) = G (3, x) -are
harmonic withid the domain D outside-the- balls d’ and d
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respectively. On applying formula (2) to the domain D,
we obtain the equality

Gz, y) —5— 0G = "C) —G(z, x)M ds, —
6va
= [G(z, NLLD G, 0) LD g
cC

S (66 0D g3, o) D gy,

where v, denotes the outer normals to S and to the spheres
Iz—xl——G and C': |z2—y | =06 at the points z.

Fig. 3

By virtue of the equalities G (z, z) =G (2, y) =0, z € S,
the last formula can be rewritten as

006062 —6 0 262 -
c

Y aG M
={[66 %20 6, ) B | ds,
Cl

Finally, using the relations
G (z, z) = E (3, 2) + g (3, )

G y) =E(z, y) + g (3 ¥)

and
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where g (z, z) and g (z, y) are harmonic functions, we
obtain on passing to the limit for § — 0 (like in the deriva-
tion of formula (5)), the equality G (z, y) = G (y, x), which
is what we intended to prove.

Now, let u (x) in equality (5) be the solution of the Dirich-
let problem for Laplace’s equation and let us substitute
G (z, &) for E (z, y); then the repetition of the argument
used in the derivation of formula (5) and the application
of (10) and (11) lead to the formula

u(z)= —o- | D o @) ds, (12)
S

where @ is a given real continuous function.

When Green’s function is known, formula (12) expresses
the solution of the Dirichlet problem stated in the following
way: it is required to find the function u (x) harmonic in the
domain D, continuous in D |) S and satisfying the boundary
condition

limu(z) =9 (20); 2€D, z,€8 (13)

x>y

The harmonicity of the function u (x) expressed by formu-
la (12) follows from the fact that Green’s function G (z, &)
is harmonic with respect to z for a2 4 & However, the
fact that this function satisfies boundary condition (13)
as well requires special proof.

2°. Solution of the Dirichlet Problem for a Ball. Poisson’s
Formula., In this section we shall construct explicitly
Green’s function for the case when the domain D is a ball:
for this special case we shall prove that the harmonic func-
tion u (x) represented by formula (12) does in fact satisfy
boundary condition (13).

So, let the domain !D be the ball |z |[< 1 and let z
and & be two interior points of that ball. The point &' =
= E/| E |? is symmetric to the point & with respect to the
sphere S: |z | = 1. Let us show that Green's function
G (z, &) of the Dirichlet problem for the ball |z | << 1 has
the form

G 8 =E (2 Y—E (12| & 1o7) (14)
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Indeed, since
28— '*H$F|EP—2¢+4P”:’lmx—“éT’:
-—IE|| |§|a lelﬁ |, (15)

we conclude that the function g (z, &) = —E (I z | &, III)

is harmonic for |2 | << 1, | € | << 1 both with respect to x
and with respect to §. Further, for | & | = 1 we have

|E—z|=[|z|2—2254+ 1]/ =
——-|l§|x—%]=||x|§—|7”|| (16)

Consequently, the function G (z, &) expressed by formu-
la (14) satisfies all the conditions enumerated in the definj-
tion of Green’s function.
By virtue of (16), for | & | =1 we obtain
1—]z|2

{El(gt—xl) —lxlgl (|z|gl
g

-— n
[E—2 | ’ |z 5_
whence it follows that in the case under consideration for-
mula (12) takes the following form:
w@=o | TEore®ds (17)
T on | E,—I I 5
1E1=1
Formula (17) is known as Poisson’s formula.
Using spherical coordinates in the case n = 3 and polar
coordinates in the case n = 2 we can write Poisson’s for-
mula in the form

lxl

G (z, &)
6\2&

I
z

F

i=1

1— |z |2

1 .
U(Zyy Ty L) = 27— S dBS A=37zlcos 717 Ia)m(psmedq)
0 o

(P:(P(Ep Eza g'&)
|z|cosy==xE, & =sin0cos
g, =sinOsiny, Ey=cosO



THE NOTION Of GREEN'S FUNCTION 59

and

u(xy, Z2) =
L 2n 1-—|x|2

=7:?S T—2T=Tcos O—p T PCOS¥, siny)dy  (18)
0

Zy=|xz|cosB, z,=|z]|sinO, E =cosyP, E=siny

respectively.

We have derived formula (17) for the unit ball with
centre at the point 2 = 0. Now let us consider a more gener-
al case when the function u (z) is harmonic in a ball | 2 | <<
<< R, continuous in the closed ball |z | < R (where R >0
is an arbitrary number) and satisfies the boundary condition
lim u(z) =9 (), |z|<<R, |y|= R. In this case the

x>y
function v (z) = u (Rz) is harmonic in the ball |z | <1,
continuous for | 2 | << 1 and satisfies the boundary condition

limv(z)=0q(Rt), |z|<<1, |t|=1
21

Therefore, by virtue of formula (17), we have

v@)=o | T e(RYds

On
|&f=1
whence
R—|z|2

1' n-1
u@)=v(5)=5z Elsi R B (RE) dsy
1El=

On making the change y=— RE, we obtain the formula

1 S R*— |z |2

v@ =gy | L2l o) ds, (19)

[yl=R

Now let us proceed to the case of an arbitrary ball |z — z 4| <<
<< R. Let the function u (z) be harmonic in that ball
|z — 2, | << R, continuous in the closed ball |z — z, | <
<< R and satisfy the boundary condition lim u (z) =

x>y

=@, lz—2z, | << R, |y — 25 | = R. In this case the
function w (z) = u (z -}- z,) is harmonic in the ball |z | <<
<< R, continuous for |z | <C R and satisfies the boundary
condition lim w(z) =@ (t+ 2,), |z|< R, |t]|=R.

z-t
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Therefore, according to (19), we can write
1 R*— |z |2
w(z)_mnR | t—z " (p(t_'_xO)de

whence readily follows Poisson’s formula for the ball | z —
—zy | < R: . . a

— | T— X
v =ve—m) =g xS, e e®ds (@0

For z = z, we obtain from (20) formula (7) expressing
the mean-value theorem.

3°. Verification of Boundary Conditions. Now we shall
show that the function u (z) specified by Poisson’s formula
satisfies boundary condition (13); this will mean that Poisson’s
formula expresses the solution of the Dirichlet problem whose
statement was given at the end of Sec. 2°, § 2.

For the sake of simplicity we shall limit ourselves to
the case n = 2 (that is we shall investigate Poisson’s for-
mula for the circle). Since u (z)= 1 is a harmonic function
satisfying the boundary condition lim u (z) =1, |z | <1
where z, is an arbitrary fixed point “on the circumference
|z | = 1 of the circle | z | << 1, formula (17) implies that
for all the points z lying in the circle | z | << 1 the equality

2n

1 1— .

2m TE I:':llz dil’:i, £, =cos, §2=51n1p (21)
0

holds. On the basis of formulas (17) and (21) we can write

25
1 1—
u (@)~ (20) =5 | Teetr [9 (5)— @ (20)] dp,
0
lz]<<1 (22)
Since the function ¢ is uniformly continuous on the
circumference |z | =1 of the circle |z | < 1, for any

given ¢ > 0 there exists a number 8 (¢) > 0 such that for
all ¢ and v, satisfying the condition |¢Pp — P, | << & the

inequality

1o (B) —o(x) [< e (23)
is fulfilled where &, = cosv, &, = sin ¢, z;, = cosPp, and
T30 = Sin Py (here zp = (210, 250) and & = (&, &)
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Let us rewrite expression (22) in the form
u(@) — o) =1+1,

where
wﬂ
h=§;5 L ) — o @)y
and e
g e 1—|z|®
L= § T 0 () — o (@0 dp+

2
+or | T e ®—o (e di

Vo6
From (21) and (23) we conclude that |/, | < &.
After the number § (&) has been chosen we can take a point
z lying so close to z, that the inequality

z |?

25
1—|z|2 qE _
+AJ§ W<Jr (M= max |o®))

holds, that is | 7, | << &. Consequently, | u (z) — ¢ (z,) | <
< 2¢, and hence
limu () =9 (z0), |z|<1, |zo|=1

4°. Solution of the Dirichlet Problem for a Half-Space.
Let us consider the case when the domain D is a half-space;
for definiteness, let D be the half-space z, > 0. Here we
shall require that the sought-for solution of the Dirichlet
problem should be bounded. Let 2 and & be two points
belonging to that half-space and let us take the point &' =
= (&, ..., Ep_1, —En) Symmetric to the point & about
the plane 'é = 0. Since the function g (z, §) = —F (z, &)
is harmonic both with respect to 2 and with respect to §
for z, >0, £, > 0, and, besides, £ (z, &) — E (z, &') = 0
for &, = 0, the expression

G(z, 8) =E (z, &) — E (, &) (24)

is Green’s function for the half-space in question.
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We shall assume that in the case under consideration the
sought-for solution u (x) of the Dirichlet problem can be
represented in form (12). This assumption is sure to be
fulfilled if the inequalities

] ou, A .
ol ST (= 1h000m)
hold for all z € D when | z | - oo, where 4 and 4 are some
positive constants. Accordingly, ‘the function o (Y, - -
» Yn-1) defined on the plane y, = 0 must satisfy the
condltlon

A
|u(x)|<w and

| o |<_Gi,,
1/2
for sufficiently large values of 6 = ( 2{ H
i=
On substituting the expression of G (z, &) specified by
formula (24) into the right-hand side of formula (12) and
taking into account the fact that

dG (z, E) — 3G (z, &) _ En—2zn Entzn .

vy B [E—z]n [E—z|®

2z,
n—1 n
[ 3 @sintat] &

for £, = 0, we arrive at the formula

n
r (7) z Q(Err -1 En) ag,...dE,,

n—1i n/2

n? En=0 [ 12:‘1 (Et—ii)’+1r’n:|

(25)

Formula (25) expresses the solution of the Dirichlet problem
with the boundary condition

lxim;’u'(x):q)(ylv v Ynm)i 2 >0, y,=0 (26)
for the half-space x, > 0; this formula is also called Pois-
son’s formula.

The fact that the function u (z) determined by formula (25)
satisfies boundary condition (26) can be proved in exactly
the same way as it was done above in the case of the Dirichlet
problem for a circle.
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The solution of the Dirichlet problem for an arbitrary

half-space specified by a general relation hZ', 1a,,w,, —b>0
reduces to the special case considered above; to perform the
reduction one should take into account that if u (z) is a har-
monic function then so is the function u (ACz + h) where A
is a scalar constant, C is a constant orthogonal matrix and h
is a constant vector (see Sec. 1°, § 1 of the present chapter).

5°. Some Important Consequences of Poisson’s Formula.
Theorems of Liouville and Harnack. Formula (19) implies
the following proposition: if a function u (z) harmonic
throughout the space E, is nonnegative (or nonpositive) every-
where in E, then it is identically equal to a constant.

Indeed, if u (z) = 0 then, since for [z |<< Rand |y | =
= R the inequalities R — |z | < |y —z | << R+ | x|
hold, formula (19) implies, by virtue of (7), that

n— R
Bt e u O <w@ <R FEEE w0 @)

for any R > 0. Now, fixing an arbitrary point z € E,, and
making R tend to infinity, we see that the function u (z)
satisfies the equality u (z) = u (0) for every point z of
the space E,,.

Formula (27) directly implies the following proposition
known as Liouville’s theorem: if a function u (x) is harmonic
throughout E, and is bounded above (or below) then it is
identically equal to a constant.

Indeed, let, for definiteness, the function u (z) satisfy
the inequality u (x) <C M for all x € E, where M is a con-
stant. Since the function M —u (z) is harmonic in E, and
is nonnegative, it follows, according to what was proved
above, that M — u (z) = M — u (0), that is u (z) = u (0).

Liouville’s theorem implies the following property: the
Dirichlet problem for the half-space x, > 0 which was consid-
ered in the foregoing section cannot have more than one
solution in the class of bounded functions.

Indeed, if u, (z) and u, (z) are any two solutions of that
problem, then their difference v (z) = u, (z) — u, (z) satis-
fies the boundary condition v (z) = 0 for z, = 0. Let us
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construct the function

U (&g, ooy p) for z,>=0

w@={""

—U(Xgy + -y —&,) for z,<0
The function w (x) is harmonic both for z, > 0 and for
z2,<<0. Moreover, the funetion w(z) is harmonic through-
out the space E, because, for any R > 0, it coincides
within the ball |z | << R with the harmonic function
w* (x) satisfying the boundary condition w* (z) = w (z) for
| z | = R. By the hypothesis, the function w (x) is bounded,
and therefore Liouville’s theorem implies that it is identi-
cally equal to a constant. Finally, we have w () = 0 for
z, = 0, whence it follows that w (z) = O everywhere in
E,, and consequently, u, (z) = u, ().

Using the extremum principle for harmonic functions and
Poisson’s formula (20) we can easily prove the following
proposition (Harnack's theorem). if u, (x) (k =1, 2, ...)
are harmonic functions in a domain D which are continuous

in D \J S and if the series D, u, (z) is uniformly convergent

on the boundary S of the dom;in D then this series is uniformly

oo

convergent in D |J S, and its sum u (x) = D, uy (z) is

a harmonic function in D.

00

Indeed, the uniform convergence of the series Z uy (y)
h=

exists an index N (&) such that the inequality
i=1

for y € S implies that, given an arbitrary e>0 there
)|<
< ¢ holds for all p > 1.
Y4

Since the finite sum ) uy4; (z) is harmonic in D and
i=
continuous inD (J S, it follows, by the extremum principle,

that

2“’N+i x)l<e for all z belonging to D (J S.

As is known from the course of mathematical analysis, the
last inequality is a necessary and sufficient condition for

[~

the series D' u, (z) to be uniformly convergent in D |J S.
E=1
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Let 2, be an arbitrary point of the domain D and let
|y — x4 | << R be a ball lying entirely inside D. Each
harmonic function u, (z) (¢ =1, 2, ...), can be repre-
sented in that ball using Poisson’s formula (20):

S R—|z—ap|?

1
up () =5x —z]

ug (y) dsy
|y—xo | =R
Consequently, since a uniformly convergent series can
be integrated term-by-term, we can write

o0
1 R —|z—z, |2
u(@=3 5x TTy—ap ) ds=
k=1 | y—xo | =R
1 R2—|z—az|?
=o.R L u (y) ds,
| y=%o | =R

whence follows the harmonicity of the function u (z) in the
ball |z — z, | << R. Since z, is an arbitrary point belong-
ing to the domain D, we conclude that u (z) is harmonic
everywhere in D.

§ 3. Potential Function
for a Volume Distribution of Mass

1°. Continuity of Volume Potential and Its Derivatives of
the First Order. Let us consider the expression

u(x)=15;E(x. £ (8) dre (28)

If the integral on the right-hand side of formula (28) is con-
vergent, the function u (x) determined by that formula is
called the potential function for a volume distribution of mass
(or, simply, a volume potential) with (volume) mass density p
in the domain D.

In what follows we shall assume that D is a bounded
domain.

Since E (x, &) is a harmonic function for z 4§, the
volume potential u (z) is a harmonic function for the points z
lying outside D |J S where S is the boundary of the do-
main D. Besides, in the case n > 2 the function u (z) tends
to zero for |z |- oo.
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Let us prove the following proposition: if the function
B is continuous and bounded in D, the volume potential u (x)
is a continuous function possessing continuous partial deriva-
tives of the first order everywhere in E, which are expressed
by the formulas

__S e E@Or@dy (=1,...,n)  (29)

Let e > 0 be a given sufficiently small arbitrary positive
number. Let us consider the function

Ue (2) = 5 E,(z, &) p (8) drs (30)

D

where E, (z, &) is a continuously difierentiable function
in E, coinciding with E (z, &) outside the closed ball
|8 — 2z |<< e For n>2 (here we limit ourselves to the
consideration of this very case) we can, for instance, define
E, (z, §) in the ball | £ — z | << € by means of the formula

E, (z, E):-Z(n——i?.m l:n—(n—2) IE;;zIS'J (31)

It is evident that the function u,. () expressed by for-
mula (30) is continuously differentiable throughout E,.
By virtue of (28), (30) and (31), there holds the equality

|ue () —u (z)| <0, M S [Ee(z,8) + E (2, 8)] p™idp=
0

- nt6 .2
‘”“’an(n—s_z;y e

where M = Sup | w (8) |. Therefore the function wu, ()
tends to u (z), for e — 0, uniformly with respect to z,

whence it follows that the function u () is continuous in E,.
Further, since

OE, (2, ]
&faex(,.x) =S ;ff O u@dv @(=1,...,n)

and since the improper integral

vi@)=| 25 "E(”E’ w(@®de. (i=1,....n)
D
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is uniformly convergent, the difference

2y, (2)= ia% [Ee (2,8) — E (2, §)] p (8) d

satisfies the inequality

oug (x) - . n+2
;_Zt :c)l a),,MS e"+pn— ) dp=w,M n T ®

which holds uniformly thh respect to . Now, as above,
taking into account the continuity of the functions a;;(:) ,
we conclude that the function u (x) possesses continuous
partial derivatives of the first order for all z € E,, and they
can be computed using formula (29).

2°, Existence of the Derivatives of the Second Order of
Volume Potential. Now we can easily prove that if the
mass density p possesses continuous partial derivatives of the
first order which are bounded in D, then volume potential (28)
possesses partial derivatives of the second order in D.

Indeed, using the equality aEa(: §_ _ 9 a‘g '8 we can
rewrite formula (29) in the form '

axi Sp’ (E) a& E (.’E, g) dti

On performing 1ntegrat10n by parts, we obtain

57'1= i (as,?é.)p»(E)cosvg?é.:ds;+SaIé (z,E)dv;  (32)

where v is the outer normal to S at the point &.

The first summand on the right-hand side of (32) pos-
sesses continuous derivatives with respect to z; for z € D,
and these derivatives can be found by performing the dif-
ferentiation under the integral sign. Since the derivatives

% are bounded and continuous in the domain D, the

second summand on the right-hand side of formula (32)

also possesses continuous partial derivatives of the first
order:

9 f o _ { on OE(z,E) .
ax‘gag E(x,E)dtg—lj;ag 2B gry i=1,...yn
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We have thus proved the existence of continuous partial
derivatives of the second order of the function u (z) for
z € D, and they are expressed by the formulas

E (z, E (z,
%}: 56 (2, §) u () cos'vgg,dsﬁ-s o 9 a(:,g) dty=

E (z, /\
= S—aa(%g) u (E) cos v¢&; dsg —

— oy aE(z,g) :
5)6&: —ag, 9w (

Consequently, for z€ D we have

Au = S 5 LD aE(z,E) 1t (E) cos Vet ds; — SZ ap- aEa(gl.s) drg —
S i=1 D i=1

SaE(xyg) E) ds§ th 2 aI‘- 6E(x,§) dTa (33)

s

where D, is the part of the domain D lying outside the
closed ball [E—z | <e.

n n
Since 2 aﬁE;g,g) =0 for Es£2z, we havez gg gg
=

_Z r ( M3, ) and therefore, using formula (GO), we

obtam

. 0E(n,b)
S Z 95 o dn=

e i=1

—fe@EElae— | weelas (39
i)

[§—x|=e
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On the basis of (33) and (34) we derive for 2z € D the
relation

Au = lim S p.(E) aEa(—:E'E)dS%=

e-+0

| E—x|=¢
T () ds
=—tm | O
|E—x|=¢e
= —lim %d.% lim “‘éﬁf ==
&0 1p %= &0 | %=

— —o.p(@) (35)

In these calculations we have assumed that the bound-
ary S of the domain D is a smooth surface. However, this
additional assumption may in fact be dropped. To this
end we represent the function u (z) in the form

u@)= [E@op®dnt+ | E@bhe®dunzeDd
Dp

| §—x| <R

where | & — 2 | << R is a ball lying inside the domain D
and D p is the part of D lying outside that ball |§ — z | <<
<< R. The first summand on the right-hand side of the last
formula is a harmonic function inside the ball |§ — z | <
<< R, while the second summand is obviously such that the
above argument may be applied to it.

In the case n = 2 we can analogously derive the formula
Au = —2mp (2).

3°. The Poisson Equation. On the basis of formula (35)
we conclude that the function u (z) specified by the formula

u(g)=— o S G(2,8)f (B dr (36)

where G (z, &) is Green's function of the Dirichlet problem
for harmonic functions in the domain D ard f (x) is a bounded
function possessing continuous first-order partial derivatives,
bounded in D, is a regular solution of Poisson's equation

Au=f(z), z€D (37)
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Let us show that the function u (x) satisfies the boundary
condition
lim u(z)=0, 2z€D, =z,€S (38)
x—+2g
It should be noted that the passage to the limit under
the integral sign on the 1ight-hand side of formula (36)
is not legitimate here because, although Green’s function

Fig. 4

G (z, &) tends to zero when z— 1, € S, this passage to
the limit is not uniform with respect to & € D. That is why
we shall use another technique.

Let us represent the function u (z) in the form _

1 1
u(g)=——| 6@ E)f(&)dr'—m—ngG(x, 81 (8) dre
e e

where d, = D N {| z — z, | << &} and D, is the part of D
lying outside the ball | & — z, | << & (see Fig. 4).

It is evident that

lim S G (z,8) f(8) dtg:j lim G (z, &) f (8) dig =0
x>, B, x->Xg

D
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If we manage to show that for all = € d, there holds the
inequality

SG(z, &) d1, < N (e)

dg

where lim N (¢) = 0, then, since the function f(z) is

e->0

bounded, the validity of equality (38) will be proved.

Let us denote by Sy a sphere |y — & | = R with centre
at a point £ € D whose radius R is 8o large that this sphere
contains entirely the domain D for any & € D. Let us denote
Q (i, §)=E(‘Z7 E)—E(yv g), |y_§|=R It is ob-
vious that the function Q (z, &) is nonnegative within the
ball |¢ — z |<< R and that on the boundary S of the
domain D we have

G(z, §) —Q (z, <O

Now, taking into account the harmonicity of the difference
G (z, &) — Q (2, &) in the domain D, we conclude, on the
basis of the extremum principle, that

Q (z, ©)>6 (z, >0

everywhere in D. From the inequalities we have derived
immediately follow the inequalities

Sa(x,g)drgggg(x,g)drggN(e), z€d,
dB dB

we are interested in because the integral of the function
Q (z, &) over the domain d. is uniformly convergent.

Thus, if Green's function G (z, &) is known, the volume
potential u (z) determined by formula (36) in the domain D
gives the solution of homogeneous Dirichlet problem (38)
for Poisson’s equation (37).

On substituting expression (14) of Green’s function
G (z, &) into the right-hand side of formula (36), we obtain
the expression in quadratures for the solution of the homo-
geneous Dirichlet problem (38) for equation (37) in the case
of the unit ball.

Now, instead of a homogeneous boundary condition of
type (38), let us consider a non-homogeneou: boundary
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condition of the form
lim u(z)=9(zy) (x€D, 2z,€S8) (39)

X-+Xo
If v (z) is a harmonic function in D satisfying boundary

condition (39), that is

limv(z)=9(z,) (z€D, z,€S)

XX
and if u (z) is the sought-for solution of non-homogeneous
Dirichlet problem (39) for equation (37), then the difference
u () — v () = w (z) is a regular solution of the equation

Aw = f (.’[), z€D
and w (z) satisfies the homogeneous boundary condition
lim w(z)=0 (x€D, =z,€8) (40)

X%

Thus, the problem of the determination of the solution
u (z) of non-homogeneous Dirichlet problem (39) for equation
(37) reduces to the determination of the solution w (z) of the
same equation satisfying homogeneous boundary condition (40).

4°. Gauss Formula. For our further aims it is necessary
to prove the formula

l‘—mn for ted
S—a%;E(x,E)dsx=i—%mn for EEo (41)
¢ Lo for E€C(d|o)

where d is an arbitrary bounded domain with a sufficiently
smooth boundary ¢ and C (d |J o) is the complement of
d |J o with respect to the whole space E, (see Fig. 5).

The validity of the equality S—E (z, ) ds, tor EE

€ C (d U o) (the third jpart of (41)) follows from formula (4)
because the function E (z, g) is harmonic with respect to z
when 2 5£E. Next let us consider the case when § €d |J o;
we shall denote by d, the part of the domain d lying outside
the intersection of the closed ball | — z |<{e with the
union d |J 6. For a sufficiently small ¢ > 0 the set d, is
a domain whose boundary consists of the following parts:
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(1) the surface ¢ for & € d or its part oy lying outside the ball
|E —x|<<e for E € 0 and (2) the sphere |[E —z | = ¢
for & € d or the part] o, of that sphere lying within d for
E € 0. In the case under consideration, by virtue of the

Fig. 5

harmonicity of the function E (z, E) for £ s4E and on the
basis of (4), we can again write

S aEa(:; 3] ds,= — S Sf_xl = —w, t€d (42
o | x—E| =e
and ‘
AE (zx, ds,
| tdse=—{ 5. seo (43)
O,y [

When writing the last equality we have taken into account
the fact that formula (4) remains valid in the case when
the boundary of the domain is a piecewise smooth surface.
Equality (42) is the first part of formula (41), and the pas-
sage to the limit in equality (43) for & — O leads to the
second part of] (41). This completes the proof of (41).
From formula (41) we easily derive the Gauss formula for
the potential function u (z) for a volume distribution of
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mass with density p over a domain D:

a
S 26 g5, — —op, S w (E) ds (44)
o * Dhd
where d is an arbitrary domain with a sufficiently smooth
boundary ¢ lying in the space E,. '
Indeed, since

ad oE (z,
= ne el i
we have
ou (z) - dE (z, E) _
§ ok dsx—§dsxiu(§>Txdtg—
0FE (z, &
=(n@an| 52D as,—
D c

9 (z, §)
+ dj p@dv | ZE2Das,  (45)
1 o}
where d, is the part of D lying outside d |J o.
By virtue of (41), the second summand on the right-hand
side of (45) is equal to zero while the first summand coincides
with the right-hand member of formula (44).

§ 4. Double-Layer and Single-Layer Potentials

1°. Definition of a Double-Layer Potential. Let D be a
bounded domain in the space E, with a sufficiently smooth
boundary § and let p be a real continuous function defined
on S.

By a potential function for a double layer of distribution
of dipoles on the surface S (or, simply, a double-layer potential)
is meant the function

1 0E (z,
u(e) = | 0@ 2D ds, (46)
8
where pis the moment per unit qrea of the dipole disiribution,
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Since & € S, the function E (z, §) is harmonic for z £ §,

and aEa(ng’g) tends to zero for |z | = oo, we see that the

double-layer potential u (z) specified by formula (46) is a
harmonic function throughout the space E, except the points
belonging to the surface S, and it tends to zero for | x | > oo.

The domain D and the complement C (D |JS)of D U S
with respect to the whole space E, will be denoted as D*
and D - respectively. The integrand expression on the right-
hand side of formula (46) has a simple physical meaning in
the case » = 3. Namely, let £’ and &” be two points on the
normal v; to the surface S at the point § which are located
symmetrically with respect to & and & €D* E"€D-.
Let us suppose that at the points &’ and §” there are (concen-
trated) electric charges —p, and p, respectively such that
when |E” — &’ | > O the equality

po | 8" — & | = n (B)

permanently holds. The potential of the field generated by
these charges at a point z 54§ has the form

Ho . )
87—z [€" —z |

The limiting configuration of the charges (for [£" — &'| —
- 0) is called a dipole, and p and v; are referred to as the
polarization (the dipole moment) and the azxis of the dipole
respectively.

On the basis of the definition of a directional derivative
along a given direction, we readily conclude that

. 1 1
l&"lg?-»op'o( [E—z] ~ & —=] )—
. 4 4 1 s
=4 L, TE=E (e=r—7==7) =t E= D

Let us investigate the behaviour of the function u (x)
when the variable point z passes from D* to D-. We shall
limit ourselves to the consideration of the case of two inde-
pendent variables, that is the case when

u(@)=—gr | RO p-In|E—zldy  (40)
) _
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We shall assume that S in (47) is a simple closed Jordan
curve possessing continuous curvature and that p is a twice
continuously differentiable function.

The curvilinear coordinates of two points z° and & on
S (which are the arc lengths reckoned along S in the coun-
terclockwise direction from a fixed point belonging to S to
the points z° and E respectively) will be denoted as s and ¢.

Let us show that formula (47) expressing the double-layer
potential makes sense for x = z° as well. Indeed, for the func-
tion

K (s, t)_ﬂln|§—zo|

we have

2

1 aE; a

nK (s, 1) = oy O e = 2~ 706, 1)

i=1

(48)

h
wiere (E_zo).va

COSP =T
and

— Es—3
0 (s, t) =arctan —

It can easily be seen that K (s, t), considered as a function
of the two variables for s € S and t € S, is continuous with
respect to the point (s, t).

Indeed, let us denote

a (s, z)=w and B (s, 1) = L= 0

t—s

It is evident that .
B, () —2°(s) = (t—>3) § Y lt+(s—1)]dv

and 1
B () —a3 ()= (t—s) | Bilt+7(s—t)dv

0

where
=02, ¥ =y:(2), 0<<zI
are parametric equations of the curve S and / is its arc length.
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By virtue of (48), we have

1 Poi—ap;
K (s, )= —igp—
whence it follows that
0’ o 0 » K
ltL?K(s' t)— z’ (s) zz‘l)(‘s3+:§'2(s) z{" (s) — 2:(:)

where K (s) is the curvature of the curve S.
Let us define the value of K (s, t) for ¢t = s by putting it
equal to

lim K (s, 1) = =)

t>s

Since the curvature of the curve S is continuous, the functions
a, B, a; and B; are continuous with respect to (s, t); besides
a? + B2 £0 for all the values of s and ¢ on S. Therefore the
assertion we have stated is in fact true.

From the continuity of the function K (s, £) it follows that
the expression

w(e) = —gx | T H ) do (49)

of double-layer potential (47) makes sense for z° € S and
that u (z) is a continuous function on S at every point z = z9,
x° € S.

2°. Formula for the Jump of a Double-Layer Potential.
Reduction of the Dirichlet Problem to an Integral Equation.
Let us denote by d a circle |z — z° | << & (with centre at
a point z° € §) of a sufficiently small radius ¢ > 0 and by
S’ the part of S lying inside d (see Fig. 6). By v (z) we shall
denote a function which is continuous together with its par-
tial derivatives of the first and of the second order in the

domain d' =d 1 D* including its boundary and satisfies
the conditions

v@)=p(2), HL=0, z€s (50)

Let o be the part of the contour | x — 2° | = ¢ lying in
the domain D* (Fig. 6).
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Let us integrate the identity
2
i}
Z (lnlg a& —0Eln|§—z|)=

=In|E—2z|Av—vAln|E—z|

over the domain d’ (in the case when z belongs to d’'|J S’
the point z should be deleted from d'|J S’ together with
a closed circle | — z |<C8 of a sufficiently small ra-
dius 8 > 0, the integral should be taken over the remaining

Fig. 6

part of the domain d’ and then 8 should be made to tend to
zero). On performing this integration and taking into account
equalities (50), we can write

[l

+S (ln |§—x|aa—\:;—va—3é-ln|§—:c|) dsg +

33

+e@v@=|In|t—z|vdy (1)

d’

2n  for z€d’
q(z)= { n  for z€S8' (52)

0 for xeD-

where
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Next we write expression (47) of the double-layer poten-
tial in the form

1 a
u (2) = __2“_55,, pyr 10| E— 2] dsy—

1 a
_?SS’ b 5o In|E—2]dst

where S” is the part of § lying outside the circle d, and
use equality (51), which yields

1 9
u(z)= ——2;85” M Fvp In|g—z|ds;+

1 a a
+o | (”—avg In|t—z|—In|E—z |5 ) dsg +
o

tg | InlE—z|Avdn—q@v (@) (53)
&

The terms on the right-hand side of (53) involving inte-
gration vary continuously when the point z passes from the
domain D+ to the domain D~ through the point z°. Taking
into account what has been said and equality (52) we con-
clude that the expressions

u (29), u*(2%) =lim u (z) and u” (29)=:
x->x0
x€D+

=lim u (z) (z°€S)

s
satisfy the relations
u* (29) —u (2%) = — 3 u(2%) (54)
and
u (2%) —u (%) = 5 p (29) (55)

Thus, we have come to the conclusion that double-layer
potential (47) suffers jumps expressed by formulas (54) and
(55) for z—>2a%€ S.
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Since the integral terms on the right-hand side of (53)
are continuously differentiable when the point z passes from
D* to D- through the point z°, we conclude, on the basis
of (50) and (52), that there exist the limits

. ou ou \+ . ou ou \-
,lcil,[:o 55; - (on) and }C{g:o vy = ( T )
xeDt x€D~

and that
(7o) =(ms)

(that is the normal derivative of u (z) is continuous on pass-
ing through z%.

The properties of the double-layer potential we have
established also remain valid when the boundary S of the
domain D and the function p satisfy some weaker require-
ments; for instance, when the boundary is not very smooth
and the function p satisfies only the condition of continuity.

Now let us construct the solution u (z) of the Dirichlet
problem for Laplace’s equation in the domain D+ with the
boundary condition

u* (%) = g @), 2°€S§ (56)

under the assumption that the curvature of the curve §
and the function g (z°) are continuous) in the form of a double-
layer potential (47) with the unknown moment per unit
area .

According to (48), (49) and (54), for the function u (z)
expressed by formula (47) (this function is harmonic in the
domain D) to satisfy boundary condition (56), the equality

pe)+ | K uwde=—2() (57)
S

must hold. Equality (57) is a Fredholm linear integral equa-
tion of the second kind with respect to the unknown function
p. Thus, the Dirichlet problem reduces to integral equation
(57).

In Sec. 1°, § 3 of Chapter 5 we shall prove that integral
equation (57) possesses a single solution p. This means that
double-layer potential (47) with the function pn satisfying in-



DOUBLE-LAYER AND SINGLE-LAYER POTENTIALS 81

tegral equation (57) is the solution of the Dirichlet problem
with boundary condition (56); this proves the existence of the
solution of that problem.

3°. Single-Layer Potential. The Neumann Problem. Let
us consider the expression

u(z)—-m SE(a: £) p (B) ds; (58)
S

The function u (z) determined by formula (58) is referred to
as a potential function for a surface distribution of mass (or,
simply, a single-layer potential) with surface density of mass
n. This function is harmonic at all the points x of the space
E, not belonging to S, and in the case n > 2 it tends to zero
as |z | > oo. In the case n = 2 the s1ng1e—1ayer potential
has the form

u(x)z%i In!”; 1 (B) dsy (59)
that is
=~ B L uaat o | e w
S S

whence it follows that lim u(z) =0 only when the con-
x|-»o00

dition !
| ne@ s
s

is fulfilled.

We shall limit ourselves to the investigation of the pro-
perties of a single-layer potential only for the case n = 2,
under the assumption that the curvature of the curve S is
continuous and that the function p is twice continuously
differentiable.

Let us repeat the procedure used above in the derivation
of formula (53) with the only distinction that in the case
under consideration the function u (z) is specified by for-
mula (59) and that the function v (z) satisfies, instead of
(50), the conditions

v(z)=0 and a—gx—v(x)=p(a:), zeS' (60)

6—0598
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This results in

{mjg—ap@as+
3
+S (ln]E—xl%—v%ln] E,—xl) dsy+

[y
.l_g,(x)v(x)zj1n|g_ac|Avah5 (61)
&>
From formula (61) we obtain the following expression for
single-layer potential (59):

u(@) = — 5 | InE—2z[pE) ds—
1 8"
ﬂ

S (ui‘ﬁa\i‘___ln[g_x oy )dsg—l—

U

o q(x)v(a:)——-S In|t—z|Avds, (62)
dl

Since the integral terms on the right-hand side of (62)
are continuously differentiable everywhere in E, except the
points belonging to the ares S” and o, we conclude, taking
into account equalities (52) and (60), that wher the point
z passes from the domain D* to the domain D~ through the
point 2° € S, single-layer potential (59) remains continuous

R . . 0 ,
whereas its normal derivative —— suffers a jump so that

vy
() =g 1) (63)
and
(Fo) — k= —7p () (64)
In formulas (63) and (64) the directional derivative
% is expressed by the formula
%0
0 —z0) v
T =%§ T 0 %=

=%5 K*(s, yp(t)dt  (65)
8
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where

1 @ —x)

K* (s, t) =———-arctan é:—-:?a (66)
Let us define the value of K* (s, ¢) for s = ¢ as being equal

to lim K* (s, t); in the same way as it was done in Sec. 1°

s—~1

where the function K (s, ) was considered we can readily

check that the function K* (s, ?) thus extended is continuous

with respect to the point (s, ) (x € S, ¢t € S).

The Neumann problem (also called the second boundary-
value problem) of the theory of harmonic functions is stated
in the following way: it is required to find the function u ()
harmonic in the domain D* which is continuous together with
its partial derivatives of the first order in D+|) S and satisfies
the boundary condition

(P2) =g, %S (67)

\ oV

where g (z°) is a given function defined on S.

If u (z) and u, () are two solutions of the Neumann prob-
lem, their difference u (z) — u, () = w (z) satisfies the
condition Z—vw =0, z € § (this follows directly from (67)).

x
From this condition, by virtue of Property (2) of harmonic
functions proved in Sec. 1°, § 1 of the present chapter, it
follows that w (z) = const, that is u, (z) = u (z) + C.

If a function u (z) is a solution of the Neumann problem then
o is the function u (z) + C where C is an arbitrary real con-
stant.

From formula (4) expressing property (3) of harmonic
functions, by virtue of (67), it follows that for the Neumann
problem with boundary condition (67) to be solvable it is neces-
sary that the condition

S g(s)ds=0 (68)
s
should be fulfilled.
Now let us represent the solution u (z) of the Neumann

problem in the form of single-layer potential (59) with an
unknown density p; then, by virtue of (63), (65) and (67),

[LJ
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we obtain for the determination of the function p Fredholm’s
integral equation of the second kind

p(s)+ | K* s, ity ar=2g(s) (69)
8

whose kernel K* (s, t) is expressed by formula (66). Thus,
the Neumann problem reduces to integral equation (69).

As will be shown later (see Chapter 5, § 3, Sec. 1°), con-
dition (68) is not only necessary but also sufficient for the solu-
tion of the Neumann problem to exist.

4°, The Dirichlet Problem and the Neumann Problem for
Unbounded Domains. Boundary-value problems can be stated
not only for bounded domains but also for unbounded ones.
For instance, the Dirichlet problem for the unbounded do-
main D~ with boundary S which was considered in Sec. 1°,
§ 4 of the present chapter is stated as follows: it is required to
find a regular harmonic function u (z) in D~ which satisfies the
boundary condition

u(y) =9, y€ES (70)

where ¢ is a given real continuous function.

The boundary-value problem stated in this way is called
the exterior Dirichlet problem (for the unbounded domain
D~) in contradistinction to the Dirichlet problem for the
bounded domain D * which is referred to as the interior Dirich-
let problem.

As was already mentioned in Sec. 1°, § 1 of the present
chapter, the regularity of a harmonic function u (z) in a
domain of the type of D~ is understood in the sense that in
the case n > 2 this function tends to zero not slower than
| z 2" for |z | > oo and in the case n = 2 it tends to a
finite limit for |z | = oo.

Now we note that under the transformation of inversion
expressed by the formula z’ = z/| z |? the domain D~ with
boundary S goes into a bounded domain D’ with a boundary
S’ lying in the space E, of the variables z;, . . ., z,. Without
loss of generality we can assume that the point z = 0 is
contained in the domain D*.

Let us consider the function

(@) =] [ (o)
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which is harmonic in the domain D’. According to (70),
the function v (z) satisfies the boundary condition

v@)=ly' e (hw) . veSs (71)

We see that if the functiorn v (z') is the solution of the Di-
richlet problem in the domain D’ satisfying boundary condi-
tion (71), then the function

u(z)=|z["v (,I—IP)

is the solution of the exterior Dirichlet problem satisfying boun-
dary condition (70).

From what has been said it follows that in the case when
D~ is the exterior of the closed ball | x |< 1 the solution of the
exterior Dirichlet problem satisfying boundary condition (70)
on the sphere |y | = 1 is given by the formula

1 |z |2—1

It is obvious that the Dirichlet problem stated above can-
not possess more than one solution.

If we seek the solution of the exterior Dirichlet problem
in the form of double-layer potential (47), this results, by
virtue of (55), in a Fredholm integral equation of the second
kind for the determination of the unknown function p.

The Neumann problem for an unbounded domain (the
exterior Neumann problem) can be stated thus: it is required
to find a regular harmonic function u (z) in the domain D-
satisfying the boundary condition

() =0@, =z€s

where v is the normal to S and ¢ is a given real continuous
function defined on S.

It should be noted that the exterior Neumann problem
cannot be reduced to an analogous problem for a bounded
domain (in contrast to the exterior Dirichlet problem for
which such a reduction was demonstrated above). However,
if we try to find the solution of the exterior Neumann prob-
lem in the form of a single-layer potential of type (59),
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this will result in a Fredholm integral equation of the sec-
ond kind for the determination of the unknown density
p (this follows from (64)).

§ 5. Elements of the General Theory
of Elliptic Linear Partial
Differential Equations of the Second Order

1°. Adjoint Operator. Green’s Theorem. Let us consider
a linear differential Operator of the second order

i, j=1
defined in a domain D of the space E,.

If the coefficients A;; possess partial derivatives of the
first order, the operator L can be rewritten in the form

n

Lu= Z ax (A,jaa_;:) + 2 1] ;—:—I—Cu (72)
i=1

i, j=1

where
< 0A;; .
ei(x)::B,—ZTj’ (i=1,...,n) (73)
j=1
If the functions e; (z) (i = 1, . . ., r) possess partial deriv-

atives of the first order, the notion of the adjoint operator
L* may be introduced:

av < a
L*y—"z 6:::} (Alj-a_x;)_-s—l: a—ﬂ-(eiv)-l—Cv (74:)
j=1 1= A
An operator L is said to be self-adjoint if the equality Lu =
= L*u is identically fulfilled.
From (72), (73) and (74) it is obvious that an operator L
of form (72) is self-adjoint if and only if the conditions
o 04 .
N—GL=Bi(x) (i=1,...,n)
=1
hold throughout the domain D.
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Let us suppose that the differential operator L is uniformly
elliptic and that the boundary S of the domain D is suffi-
ciently smooth. If u () and v (z) are two sufficiently smooth
functions, then, by virtue of formula (GO), the integration
of the identity

n

/] l7/ 0
ULu—uL*U= 2 Ff A”(a_:,v—a_;u)]_‘_

1, =1
A
+ wrn (esuv)
i=1
over the domain D results in the formula
S (vLu—ulL*v) dt, = S [ av o5 — quv] dsg
b s
where
Qw—a- b (75)

N is the unit vector (the cornormal) at the point § € § with
direction cosines

/N n /\
cosNE,:% 2 AjjeosvE; (i=1,...,n)
Jj=1
and v is the outer normal to S at the point &, the expres-
sions a and b being given by the equalities

n n n
/N2 /\
a?= > (2 Aijcosvgj) and b= D) e; cosvE;
=1 =t i=1

The formula

S (vLu—uL*v) dt, = S l— v——quv] dsg
b 3

we have derived expresses Green's theorem.

Since the operator L is uniformly elliptic, the vector N
does not lie in the tangent plane to S at any point & € S,
and a 0.
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2°, Existence of Solutions of Elliptic Linear Partial Dif-
ferential Equations of the Second Order. We shall denote
by a;; (i, j = 1, . . ., n) the ratio of the cofactor of the ele-
ment A;; of the determinant 4 = det || A;; || of the matrix
|| 4;; || to that determinant. Let us consider the function

n

o (z, g)‘—‘i JZ=1 a;;(z) (z; —E&;) (z;—E;)

where # and & are two arbitrary points of the domain D.
We shall assume, without loss of generality, that o (z, §) >
>0.

By the uniform ellipticity of the operator L, there exist
two positive constants %, and %, such that

ko lz — & P<o(z, Ok |z —E P

We shall suppose that the functions A;; and B; possess
continuous partial derivatives of the third order in the
domain D () S and that the function C possesses continuous
partial derivatives of the first order in this domain..

Let us construct the function

2-n
n_i_zo,, (E) 0% for n>2
P (2, &) = \ (76)
—0,(8)Inc? for n=2
where
00 (g) :mn ];A—(E)

For x = E the partial derivatives of the first and the second
order of the function ¢ (z, &) specified by (76) are given by
the formulas :

2 0y (B (n—2)0 3 ay(2) (2, — )+
i=1

+Py(z, &) (n>2) (77)
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and
n+2

T =0 ® (=20 7 [ —a, @0 B+

+n S (@) e (@) (@ —5) @—8) [+ Py (2, B (78)
k, =1

where the expressions 2; (z, §) and P;; (z, §) tend to infinity
for |2 —E|—>0 at the same rate as |z —§ [2-™ and
| z — E [*™ respectively.

From (78) it follows that when n > 2 and z 5% § we have
the equality

n
iz Az] (.Z‘) 611 6z ) Z . Aij (x) Pij (1‘, E) (79)
J=1 1, J=
From (76), (77), (78) and (79) we conclude that when
| £ — & | > O the function Ly (z, &) tends to infinity at the
same rate as |z — E '™
For the case n = 2 we can assume, without loss of general-
ity, that a;; =0 for i 54j and a;; =1 (i, j = 1, 2), and
then, for r &, we obtain the equality

S‘ A (2)—2— a =0
i, f=1
Let us introduce the function

w@={ v HrEdn

Dy

where D, is a subdomain of the domain D with a boundary
S,; the function w (z) is referred to as a generalized poten-
tial function of a volume distribution of mass over the domain
D, with density p.

Under the assumption that the function p (£) is continuous-
ly differentiable in D, |J S, we can repeat the arguments
given in Secs. 1° and 2° in § 3 of the present chapter, which
leads to the conclusion that

Lo@=—p@+ | Lp@ @iy (80)

Do
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where the second summand on the right-hand side is an or-
dinary improper integral.
Let us construct the solution u (z) of the equation

Lu = f (z) (81)

in the form

u@=0 @+ | v HuE dy (82)

D,

where o (z) is an arbitrary real function continuous in
D, U S, together with its partial derivatives up to the third
order inclusive and p is a real function yet unknown.
According to formula (80), the function u (z) expressed
by formula (82) is a solution of equation (81) if and only if

@+ | K (2, Bn(®dn=F @) (83)
where o
K@ §=—ILy(@ 5 and F@)=Lo (@) —1(@)

Equality (83) is Fredholm’s integral equation of the
second kind with respect to the unknown function p; as will
be shown in Chapter 5, at least in the case of a domain D,
of a sufficiently small diameter integral equation (83) always
possesses a solution.

Since o (z) is an arbitrary function, it follows that equa-
tion (81) possesses a family of regular solutions in a sufficiently
small neighbourhood of each point of the domain where the
equation is defined.

In the case when @ = y (z, y) the right-hand member of
integral equation (83) tends to infinity for |y — 2z [0
at the same rate as the expressmn | y — & [*-™; nevertheless,
according to the remark in Sec. 2°, § 2 of Chapter 5, we can
repeat the above argument and thus conclude that in this
case formula (82) gives the furndamental (elementary) solu-
tion of equation (81):

B y) =1 )+ | v Bp®dy
D,
3°. Boundary-Value Problems. Let p; (z) (i= 1, ..., n),
g (x) and r (z) be real functions defined on the boundary S
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of a domain D. The following Poincaré linear boundary-
value problem embraces a wide class of problems for equation
(81): it is required to find a regular solution u (x) of equation
(81) in the domain D which satisfies the boundary condition

z pi (@) B2 4 g@u@=r(@), €S (84

t=1

where by the values of um and u(z) at the points € S

are meant the limits of these functions for the case when the
variable point approaches the boundary S from the interior
of the domain D.

In the case when p; () = 0( =1, ..., n)and ¢q (z) %0
everywhere on S, boundary condition (84) can be rewritten

in the form
u(z) = g (2) (85)

g (z) = r (2)/q ()

Problem (81), (85) is referred to as the Dirichlet problem
or the first boundary-value problem (for equation (81)).

When g (z) = 0 on S the Poincaré problem reduces to its
special case known as the problem with oblique derivative
boundary condition:

where

zmm%cm»ws (86)
i=1
In case we have

pi(x)=cosJ\7?ci (i=1, ..., n)

everywhere on S in boundary condition (86), we arrive at
the special case of the problem with oblique derivative
boundary condition which is referred to as the Neumann
problem or the second boundary-value problem (for equation

(81))*.

* When p; (z) = cos 1\/5:, (i=1,...,n) and ¢%0on S in bound-
ary condition (84), the Poincaré problem reduces to the so-called
third boundary-value problem or the mized boundary-value problem.— Tr.
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4°. The Extremum Principle. The Uniqueness of the Solu-
tion of the Dirichlet Problem. In the theory of elliptic
partial differential equation (81) an important role is played
by the following extremum principle: if the inequality

c(2)<0 (87)

holds everywhere in the domain D, then a solution u (z) of the
homogeneous equation

Lu=0 (88)

which is regular in that domain can attain at any point x € D
neither a negative relative minimum nor a positive relative
maximum.

Let us prove this extremum principle. If we suppose that
the function u (z) attains a negative relative minimum at
a point z € D then we can write

ou

EZO (i:l,...,n) (89)
and
S_‘J Fergas Mk =0 (90)
i, j=1
where A,, ..., A, are arbltrary real parameters.

The quadratic form Z A;jhihj [is  positive |definite,
1. J—

and therefore it can be written in the form
n n n 2
Aij"'il'j: Z (E ghﬂ"l)
1 k=1 I=1

for every point 2 € D; hence the coefficients 4;; can be re-
presented as

y J=

Ai1=s§1 8sifs; (i, i=1....,n) (91)

From (90) and (91) we derive

n

n
d%u u
2 AU dz; 0xy :‘ 2 e oz gszgsj>0 (92)

i, j=1 i, J, s=1
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Finally, taking into account the inequality u (z) < 0,
we obtain, by virtue of (87), (89), (90) and (92), the inequal-
ity Lu > 0, which contradicts equality (88). We have thus
arrived at a contradiction, and hence the assumption that
the function u (z) attains a negative relative minimum at a
point z € D is wrong.

The fact that a regular solution u (z) of equation (88)
cannot attain a positive relative maximum at a point 2 € D
is proved quite analogously.

The extremum principle implies that Dirichlet problem
(81), (85) cannot have more than one solution when condition
(87) is fulfilled.

Indeed, the difference u, (r) — u, () = u {z) of any two
solutions u, (z) and u, (z) of problem (81), (85) satisfies
the conditions

Lu(z)y =0 for z€D and u(y) =0 for y€S

Since we have max |u (y) | = O on S, the extremum prin-
ciple implies that u (z) =0, that is u, (z) = u, (z) every-
where in the domain D.

It can also be easily proved that if the condition

n

2

>0 everywhere in D (93)

is fulfilled, Dirichlet problem (81), (85) cannot have more than
one solution.

Indeed, for the difference u, (z) — u, (2) = u (z) of any
two solutions u, () and u, () of equation (81) there holds
the equality

n

n
a a 1 a
S Ayt (DA —2C)ur =

1, =1 i=1

n
' ou 1 AN a 9
13 . 61: ( it 6zj)+_§—‘4Ji axy (es?)
1= i=

On integrating this equality over the domain D and using
formula (GO), we obtain, by virtue of the equality u (z) = 0
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(z € D), the relation

n

S[E Ai,j—;j—:ﬁ%( S 2L — 9C) u2 | dr, =0
D i, j=1 i=1

n
Taking into account that the quadratic form ) A;;A:A;

i,7=1

is positive definite and using condition (93), we Jconclude
from the last relation that u (z) = 0 throughout D, that is
Uy (2) = u, (2).

5°. Generalized Single-Layer and Double-Layer Poten-
tials. In Sec. 2°, § 5 we proved the existence of the elemen-
tary solution of equation (81) for a domain of a sufficiently
small diameter.

Let us consider the case when the coefficients of equation
(88) are sufficiently smooth functions defined throughout
the whole space E,; it can be proved that if the conditions
(a) C (z)<<0in the domain D where the solution of the equa-
tion is sought, and (b) C (z) << — k? outside a bounded do-
main containing the domain D where k is a nonzero constant
are fulfilled, then equation (88) possesses the so-called principal
elementary (fundamental) solution E* (z, &) defined for all
points x and & belonging to the space E,. The distinction be-
tween the elementary solution considered in Sec. 2° and
the principal elementary solution E* (z, §) is that the latter
possesses the following two additional properties:
(o) E* (z, E) is a solution, with respect to & for & £z, of the
adjoint equation L*E* (z, §) = 0 and (B) for |2 — & | —>
— + oo the function E* (z, &) and its partial derivatives
8E*
dz;
a positive number

It can be verified directly that the principal elementary
solution of the Helmholtz equation

Au — A*u =0, A= const 540

(i=1, ..., n) decrease like e—Bl*—& where R is

is the function E* (z, &) = A" %¢, (M) where r = | § — z |
and ¢, (r) is a solution of the ordinary linear differential
equation

rogn + (n — 1) ¢on —re, =0
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In particular, for n = 2 and n = 3 we have

@y (r) = 2—1,{ 5 ‘/e';_d—t_‘
and -~

Pa(r) = o0 <
respectively.

Let u, () be a regular solution in a domain D of non-
homogeneous equation (81) with a sufficiently smooth bound-
ed right-hand member f (z) and let u, (z) be the generalized
volume potential with density function f (E):

uy(2) = | E (@, 81 (F) dr

D

Then, by virtue of (80), the sum u, (z) + u, () = u (2)
satisfies the equation

Lu = Lu; + Lu, =f(z) — f(x) =0

Consequently, in the theory of equation (81) we can assume,
without loss of generality, that f (z) = 0 everywhere in the
domain of definition of that equation.

When the coefficients of equation (88) are sufficiently
smooth functionsin the domain D, and C (z)<(0 everywhere
in D, it is always possible to define these coefficients outside
D so that they remain smooth functions in such a way that
outside a wider domain containing D the condition C (z) <<
<< — k* will hold. Consequently, we can assume that in this
case the principal elementary solution of equation (88) exists.

Let S be a sufficiently smooth surface bounding a domain
D+*. The functions

u@)=| B (@, Hu(®ds, (94)

and g
v (@)= | 0uB* (2, D1 (8) dsy (95)

S

where the operator Q¢ has form (75), and p and A are suf-
ficiently smooth real functions defined on S, are called the
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generalized potential function for a surface distribution of mass
and the generalized potential function for a double layer of
distribution of dipoles on S respectively. Both these poten-
tials are regular solutions of equation (88) at any point z of
the space E, not belonging to S, and when the point z passes
from the domain D * to the domain D~ = C (D *|J S) through
the surface S the potentials behave in just the same way as
the harmonic single-layer and double-layer potentials.

The generalized double-layer and single-layer potentials
make it possible to reduce the Dirichlet and the Neumann
problems for equation (88) to Fredholm’s integral equations
of the second kind.



CHAPTER 2

CAUCHY-RIEMANN SYSTEM

OF PARTIAL DIFFERENTIAL EQUATIONS.
ELEMENTS OF THE THEORY

OF ANALYTIC FUNCTIONS

§ 1. The Notion of an Analytic Function
of a Complex Variable

1°. Cauchy-Riemann System of Partial Differential Equa-
tions. As was already mentioned in Sec. 1°, § 5 of Intro-
duction, the system of linear partial differential equations
of the first order in two independent variables of the form

ou ov ou ov

F i i —67+—ax_=0 (CR)

is referred to as the Cauchy-Riemann system of partial differ-
ential equations.

According to the classification of partial differential equa-
tions (see Sec. 4°, § 1 of Introduction) a system of the form

AZ+B g—;: 0
where
A‘* “ All AIZ :” Bll B12
i AZI A22 ' B21 BZZ
is called elliptic when the quadratic form
A117"l+ BIIAZ AIZA’I + BIZ}"Z
Ap 4+ Byha  Agphy + Byyhy

is positive (or negative) definite.
In the case of system (CR) we have u = u;, v = u,,

and  w=(uy, u,)

Q (A, Ay)=det

Ay =43 =—B, =By =1 and By, = A4,, =4, =
= B,, = 0, and the corresponding quadratic form
' 1 A
0O (A, hy)=det =A2L A2
}‘12 }\"]_ 1 2

is positive definite, therefore system (CR) is elliptic.
7-0598
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If o (z, y) isan arbitrary harmonic function in two variables
z and y then the pair of the functions u = g—(;), V= — 3—;
is a solution of system (CR).
Indeed, we have
ou__ o o oo
o dy ~ ox? ' oy2

and
ou v 220 920

By ' 9z ozoy  oyoz

The last equality is written on the basis of the well-known
fact that the mixed partial derivatives are independent
of the order of differentiation provided they are conti-
0 _ de
Bz oy 0y oz

2°, The Notion of an Analytic Function. An expression
of the form u (z, y) + iv (z, y) = f () where u (z, y) and
v (z, y) are real functions of the real variables z, y and
i is the “imaginary unit” (that is {2 = —1), is called a func-
tion of the complex variable z = x + iy.

Let us regard the real variables z and y as the orthogonal
Cartesian coordinates of the point (z, y) on the Euclidean
plane E,; the point (z, y) will be considered as representing
the complex variable z = 2 + iy (and the plane E, will be
referred to as the complex plane). The domain D where the
functions u (z, y) and v (2, y) are defined serves as the do-
main of definition of the function f (z).

Using the representation of the complex numbers with
the aid of the Riemann sphere and postulating the existence
of the single point at infinity oo, we shall refer to the com-
plex plane to which the point oo is added as the extended
complex plane. ’

When speaking of a function w = f (z) of the complex
variable z we shall usually mean (provided the contrary is
not stipulated) that to each point z belonging to the domain
of definition D of the function there corresponds a definite
point w on the plane over which the values of f (z) range,
that is, generally speaking, we shall consider one-valued
functions. (However, it is sometimes necessary to consider
many-valued functions as well.)

nuous:
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We say that a number wy, = u, + iv, is the limit of a
function / (z) = u (z, y) + i (z, y) for 2— 24 24 + iYo,
2z 5124, if

lim u(z, y)=u, and lim  v(x, y)=uv,

(x, ¥)~>(%o, Yo) (s ¥)->(x0, Yo)

A function f (z2) = u (2, y) + iv (z, y) is said to be con-
tinuous at a point z € D if the functions u (2, y) and v (2, y)
are continuous at the point (z, y) €D (z = z + iy). For
the modulus of the difference f (z) — f (z,) we can write the
expression
1f(2) —1(z) | =

= {lu (@, y) — v (@, Yo)I* + W (2, y) — v (20, yo)I*}'/2
and therefore the definition of the continuity stated above
is equivalent to the following definition: the function f (2) is
said to be continuous at a point 24 € D if, given an arbitrary
¢ > 0, there exists a number 8 > 0 such that the inequality
|z — 24 | << 8 implies the inequality |f (z) — f (z) | << e.

Let Aw = Au + iAv be the increment f(z + Az) —
— f(2) (z + Az, z € D) of the function f (z) corresponding
to the increment Az = (z + Az) — z of the independent
variable z.

If the limit lim % = w' (2) = f' (2) exists and is inde-

Az-0
pendent of the path along which Az tends to zero, f (z) is
called a monogenic function of the complex variable at the
point z.
Let us first put Az = Az and then Az = i Ay; according

to the definition, for a function f (z) monogenic at a point z
we have

Aw

, T  1i Aud-iAv  du . v
R T AL T
— ljm Qutidv 0w | Oy
Ay—o tA¥ dy 9y
that is
du v ou ov
or ~ oy ' oy = oz M)

We see that equality (1) expresses a necessary condition for
the function f (z) to be monogenic at tha point z = 2  iy.

T*



100 CAUCHY-RIEMANN EQUATIONS. ANALYTIC FUNCTIONS

These equalities are nothing other than the Cauchy-Riemann
system of partial differential equations.

A function f(z) monogenic at each point z € D is said
to be analytic in the domain D.

Now we remind the reader that a pair of functions u (z, y),
v (z, y) is a regular solution of system (CR) if they are con-
tinuous together with their partial derivatives of the first
order in their domain of definition D and satisfy that system
in D. Consequently, if u (z, y), v (z, ¥) is a pair forming a
regular solution of system (CR), then the function w = f (2) =
= u (z, y) + iv (z, y) iscontinuous in the domain D. More-
over, the continuity of the functions u (z, y) and v (z, y) and
of their first-order partial derivatives implies the existence
of the total differentials

ou au v av
duzm—dx—l—sy—dy and dv:Ec—dx—}—a—y-ay

that is
a 0
Au:-a—l;Ax—f—a—l;Ay—l—o(Az) o
ov ov
Av= —a;AJ:—}-EAy—}—o (Az)
where o (Az) denotes an infinitesimal of order higher than
Az.
According to (2), we can write for Aw = Au + i Av the
expression

ou au . Ov ov
AU’:EA’H‘TA-‘/”Ha_xAx+la—yAy+o(Az) 3

y
Further, using (1) and (3) we can wrile
du Az + -glf- Ay—i glf-Az—}—i a—liAy-f—a (Az)
W = (@)= lim WA -
My Aot ihy
i [ o] o o
- i;-»mo [ oz oy Az 1= 3z 'y (4)

This means that the function f (z) is monogenic at each
point z € D.

Thus, we have arrived at the conclusion that a function
f (z) whose real part u (2, y) and imaginary part v (z, y)
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form a regular solution of system (CR) in a domain D is ana-
lytic in that domain.

Let us sum up what has been established: conditions (CR)
are necessary for the function f(z) = u (z, y) + v (z, y) to
be analytic in the domain D; if the additional requirement that
the partial derivatives of the first order of the functions u (z, y)
and v (z, y) should be continuous is fulfilled then conditions
(CR) are also sufficient for the analyticity of the function f (z) =
=u(z, y) + iv(z, y) in the domain D.

Expression (4) obtained for w’ = f’ (z) is called the deriv-
ative of the function f (z) analytic in the domain D, and the
principal linear part of Aw (with respect to Az and Ay),
that is the expression
dw:%Aw—{—%Ay—{—i%Az—’f—iz—; Ay =

] . 3 /
= (0_;‘_16_';) Az=f (2)Az  (5)
is called the differential of the analytic function f (z) at the
point z.

In the case when f (z2) = w = zwe have f’ (z) = lim—ﬁé =

Az -0

= 1, and therefore, in accordance with (5), dz = Az. Using
the equality we have obtained we can write differential (5)
in the form dw = f' (z) dz, which accounts for the notation

d ’ )
=1 (2) (6)
On denoting

L= (a—ig) ad Z=p(Z+il) O

we can rewrite system (CR) in the form

2w (2)=0 8)
0z
Consequently, analytic functions w = f (z) of the complex
variable z always satisfy equation (8). Taking into account
equality (8), we see that notation (6) for the derivative
f (2) of an analytic function f (z) in a domain D is in a com-
plete agreement with notation (7).
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3°. Examples of Analytic Functions. The class of analytic
functions is rather wide. In particular, if o (z, y) is a
harmonic function of the real variables z and y in a domain
D then the function w = f (z) = g—:— i%is analytic in
that domain.

Let f (z) and ¢ (2) be two analytic functions defined in D.
Using the usual technique applied to the investigation of
differentiable functions of one real variable in the course of
mathematical analysis, we can easily prove that, for such
functions f(z) and ¢ (z), the functions f (z) & o (2),

f(2) o (z) and f(2)/e (2) (9 (z) %0) are also analytic
in D, and

fExo)=f+9¢, (f-9)=f9+f¢, (%) = fcpcp;f(p
(9)
Since -3—221, formulas (9) imply that every polynomial
n
P, (z) = 2 akzk
k=0

is an analytic function throughout the whole complex plane
of the variable z, and

n
P.;II 2 kahzk"
E=1
It also follows that every linear-fractional function

v@=ir (24— %) (10

where a, b, ¢ and d are some constants, is analytic everywhere
in the complex plane of the variable z except the point z =
= — dfe, and

ad—bc
(ez+d)? °

Let us consider a power series

!
w =

d
Zryé——'z—

S (z) = goahzh (11)
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which is convergent in its circle of convergence |z | << R
(R > 0), the function S (z) being the sum of series (11).
We shall show that the sum S (2) of the power series is an ana-
lytic function in the circle of convergence |z | << R.

First of all we note that if R is the radius of convergence
of series (11) then the radius of convergence of the series

8o (2) = hg.ikahzk" (12)

is also equal to R. Indeed, according to the well-known
Cauchy-Hadamard formula proved in the course of mathe-
matical analysis, the radii of convergence R and R, of se-
ries (11) and (12) are expressed by the formulas R = 1/1
and R, = 1/l respectively where
1 i

l=1lim|a,|* and I,=Tim(k|a,|)* !
Therefore the equality R = R, follows from the obvious
relations

i 1 SR V. S 4
lim (k | ay |)*- 1=11m kk- 1(|a,@l | & )k—izlimlak | ®
h— 00 R—>o0

Here 1lim symbolizes the limit superior.

As is known, a power series is absolutely convergent in-
side its circle of convergence. The absolute convergence of
series (12) for |z | << R implies that for any & > 0 there
exists a natural number N such that

D klan|t<s (13)
k=n+1

for all »n > N provided that r << R.
It is obvious that

S (24-42)—S(2)
| Az z)|<
<| 2 oy [(z4 A2 ... 2Pt — kgt |+

+| 2 ap (24 Az)* 1+ .. +zh-1]|+ 2 kakzh‘l (14)
=n+1 k=n+1
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If the increment Az is sufficiently small and if
|z|<< rand |z -+ Az | << r, then, since the first term on the
right-hand side of (14) is continuous and inequality (13) holds,
we can write the relation

S —S8
Set 2 =5@ _ g, ()| < 24 £ 45 =

The last inequality means that

lim JCEA=30 g7 (5) = 5, (3)
Az=0 z

Consequently, power series (11) can be differentiated term-
wise inside its circle of convergence, and the sum of the differen-
tiated series is equal to the derivative of the sum of the original
series.

From this assertion it readily follows that the elementary
functions &%, cos z, sin 2z, cosh zand sinh z are analytic through-
out the complex plane of the variable z, and the following
formulas hold:

o0 oo
ar -y zk . gh—1 RN zk B
(e)_(._JTg')_Z Y] D e
h=0 = k=20
iz —iz \ '/ jeif — je—iz iz . iz .
(cosz)’:(e _;e ) =2 2” =2 2; = —sinz
. ' elz _g-iz \’ _ iei2—|— ie—iz_ eiz+e—iz .
(sin z) _( > ) = o = o =C0S3Z
z -z ’ Z. =2
(cosh 2)" = (£L° ) =5 —sinhz
and
N AN z ~2
(sinh z)’ = ( ° 2e ) =1 —ze —cosh z

4°. Conformal Mapping. Given an analytic function
w = f(2) in a domain D, to each point z £ D there corre-
sponds a definite point on the complex plane of the vari-
able w. If this correspondence between the points z € D and
w € D, (where D, is the range of the function w = f (2))
is one-to-one, the function w = f (2) is called one-sheeted
(or univalent). In the case of such correspondence between
the points of the domains D and D, determined by the func-
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tion w = f (z) we say that there is a mapping of the domain D
onto the domain D,. The point w € D, is called the image
of the point z € D; and the point z is called the pre-image
(or the inverse image or the original) of the point w.

In this section we shall study mappings specified by ana-
lytic functions.

Let
w=7{()=uly + v,y (15)
be an analytic function in a domain D satisfying the con-
dition
" (z0) 0 (16)
at a point z, € D. Condition (16) is equivalent to the require-
ment that the Jacobian ZE:’ Z; should be different from
zero at the point z,:
u ou
2
RS e RO e
dx 8y

for z=z2,

Consequently, by virtue of the well-known theorem on
implicit functions, we can assert that the system of equalities
u=ufr,y), v=uv(z, y) can be uniquely resolved with
respect to x and y in some neighbourhood of the point z, € D
provided that the partial derivatives of the first order of the
functions u (z, y) and v (x, y) are continuous (as will be shown
later, the real and the imaginary parts of an analytic func-
tion possess partial derivatives of all orders). In other words,
every point z, € D at which condition (16) is fulfilled has
a neighbourhood in which the function w = f (z) is one-
sheeted, and the inverse function z = f~! (w) is analytic in
some neighbourhood of the point w, = f (z,); besides, it
can easily be seen that

. Az . 1 1 ,
lim = lim —=—+—=[fY(w
Awsg AW Az-{l(] Aw 7' (2) [ ()]
Az

Let 9 be a smooth Jordan curve passing through the point
2y and specified by an equation z = z (¢); this means that
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z =z (t)and y = y (t) for a<<¢<CP. The curve y possesses
a tangent at the point z, = z (¢,), that is

2’ (t,) 50 (17)

The image of y under mapping (15) is an arc I' = f (y)
passing through the point w, = f (z,), the equation speci-
fying that arc being w = f [z (1)]. Besides, we have w’ (f) =
= f' (z) z’ (), and, by virtue of (16) and (17), the condition

w' (tg) = ' (20) 3 (tp) 7= 0 (18)

holds. Condition (18) means that the arc I' also has a tan-
gent at the point wj.

From (18) we conclude that, to within a summand of the
form 2kn where k£ = 0, +1, ..., the relation

arg ' (2) = arg w' (1) — arg 2’ (1) (19)

is fulfilled, that is the argument of the number f (z,) is
equal to the angle through which the arc y passing through
the point z, is turned under mapping (15).

Now let us consider another smooth Jordan curve y,
(different from y) specified by an equation z, = z; (1) (o, <<
< t<<Ph,) and passing through the point z,, and let I';, =
= f (v,) be the image of y, specified by the equation w, =
= f [z, (V)] (21 (7g) = zy).

On repeating the argument presented above, we obtain
arg f' (z0) = arg w; (7o) — arg z; (T,) (20)
Equalities (19) and (20) imply
arg w' (t,) — arg w; (o) = arg z’ (t,) — arg z, (7,)

This means that the angle between the curves y and y, at
the point z, is equal to the angle between their images I'
and T'; at the point wy, = f (z,). In other words: for each point
2, at which the condition ' (z5) =£0 is fulfilled, mapping
(15) possesses the angle-preserving property (the mapping
preserves both the magnitude of the angles and the directions
in which they are reckoned; see Fig. 7). Since

| dzg | = V ()2 + (y;)? dt = ds;
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and

| dwy | =V (4)>+ (v;)2 dt = doy
are the elements of lengths of the curves y and I at the points
zo and w, respectively, and (%)z=zo = f' (z,), we have

' _ldwy| _ dop
,f (Zo)|— |dzo| —dso

This means that the modulus of the derivative of an analytic
function w = f (z) at a point z, for which condition (16) is
fulfilled is equal to the magnification factor (of the element of

YA Ly
L, /////////,
arg w'-arg w/
Yo L
V/j z J u
Fig., 7

length) under mapping (15), the magnification being uniform,
that is one and the same for all directions passing through the
point z,*.

A one-to-one mapping of form (15) of a domain D lying
in the complex plane of the variable z onto a domain D,
lying in the complex plane of the variable w under which at
cach point z, of the domain D the angle-preserving property

* Tlere the word magnification is understood in a general sense
and can correspond to stretching il | f' (z¢) | > 1 or shrinking if
[ /° (z0) | <1 (or neither if |f' (z)| = 1).— Tr.
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holds and the magnification factor is one and the same for
all directions is called a conformal mapping.

What was established above shows that a mapping specified
by an analytic function w = f (z) is conformal in a sufficiently
small neighbourhood of each point z € D for which the condi-
tion f' (z) %0 holds.

In the theory of conformal mappings a fundamental role
is played by the following four theorems which we state
below without proof.

Theorem on conformal mapping determined
by a univalent function: if f (z) is a univalent (one-
sheeted) analytic function in a domain D then its derivative f’ (z)
does not turn into zero at any point of the domain D, and the
function f (2) specifies a conformal mapping of its domain of
definition D onto a definite part D, of the complex plane of the
variable w, the inverse function z = f~' (w) being analytic
in D,.

The repetition of the well-known argument on the differ-
entiability of a composite function used in the course of
mathematical analysis leads to the following conclusion:
if a function w = f(z) analytic in a domain D specifies a con-
formal mapping of the domain D onto a domain D, of the com-
plex plane of the variable w and if =@ (w) is an analytic
function defined in D,, then the composite function § =
= ¢ [f (2)] is analytic in the domain D and

L 1 @1f @

Riemann’s conformal mapping theorem: for any
simply connected domain D in the complex plane of the vari-
able z whose boundary consists of more than one point there exists
an analytic function w = f (z) specifying a conformal mapping
of the domain D onto the interior of unit circle D, lying in the
plane of the complex variable w; under the additional require-
ment that this mapping should transform a given point z, € D
and a given direction passing through that point into a given
point wy € D; and a given direction passing through wy, the
function f (z) is determined uniquely.

T heorem on the corresponrdence of boundaries:
let a function w={ (2) specify a conformal mapping of a domain
D onto adomain D, the boundaries of these domains being two
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closed Jordan curves T and T'; respectively; then the function
w=f{f (z) determines a one-to-one and continuous correspondence
between D JI' and D,|JT,, and under this correspondence the
direction in which T and I'| are described is preserved.
Theorem on one-to-one correspondence: let the
boundaries T and T'; of two simply connected domains D and
D, be closed piecewise-smooth Jordan curves and let a function
w = f (2) analytic in D specify a one-to-one and continuous
mapping of T onto T'; with the preservation of the direction
in which these curves are described; then this function determines
a conformal mapping of the domain D onto the domain D,.
5°. Conformal Mappings Determined by Some Elementary
Functions. Inverse Functions. The Notion of a Riemann
Surface. As was already mentioned in Sec. 3°, § 1, linear-
fractional function (10) is analytic in the plane of the com-
plex variable z everywhere except the point z = —d/ec.
It can easily be seen that for linear-fractional function
(10) which is not identically equal to a constant to be univalent
(one-sheeted) it is necessary and sufficient that the condition

ad — be =0 (21)
should hold.

Indeed, when considering linear-fractional function (10),
we naturally exclude the case in which the constanis ¢ and
d are simultaneously equal to zero. For all the other cases
the violation of condition (21) means that the function w
is identically equal to a constant, which is impossible by the
hypothesis.

Under the mapping specified by (10) the points z = —d/c
and w = oo and also z = o0 and w = a/c are in one-to-one
correspondence respectively. Further, if z,54 —d/c and z, £
== —d/c are two different values of the variable z, the differ-
ence between the corresponding values w, and w, of the -
function w is equal, by virtue of (10), to the expression

(ad—be) (20—2)
(cz1+d) (cz,+ )
If follows that condition (21) guarantees the univalence of

mapping (10) on the extended complex plane of the variable
2, and

Wy — Wy =

_ dw—b
T —cew-ta
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In particular, for ¢ = 0 and d = 1 formula (21) implies
the condition ¢ £ 0 which guarantees the univalence of 1he
linear function w = az -+ b whose inverse function is

w b

Zom———

a a

In the case when the coefficients a, b, ¢ and d satisfying
condition (21) are real, linear-fractional function (10) deter-
mines a one-to-one mapping of the real axis Im z = 0 onto
the real axis Im w = 0; under this mapping the direction
in which the axis is traced is preserved when ad — bc > 0
and changes to the opposite when ad — be << 0. Indeed, for
the real values of z, by virtue of the formula

dw ad —be

dz - (czFad)?

we have%—> Oforad — bc>0and—‘i—': < Oforad — be <

<< 0. By the above theorem on the one-to-one correspondence,
it follows that in the case under consideration linear-fractional
function (10) specifies a conformal mapping of the upper half-
plane z*: Im 2z > 0 (of the lower half-plane z=: Im z << 0)
onto the upper half-plane w*: Tm w > 0 (onto the lower half-
plane w-: ITm w << 0) for ad — bc > 0 and of the upper half-
plane z* (the lower half-plane z~) onto the lower half-plane w-
(onto the upper half-plane w*) for ad — be << 0.
The linear-fractional function

w=ei0 2~ (22)

2—2Zp
where 0 is a real constant and z, is a complex constant with
Im 2z, > 0, possesses the property that

z—zg | _ | z—zp | =1

w|=]¢e*]

z2— 7 lz—zg |

for Im z = 0 and that the point z = z, goes into the point
w = 0 under the mapping specified by (22) . This means that
the function w defined by formula (22) specifies a mapping
under which the points of the real axis Im z = 0 are in
one-to-one correspondence with the points of the contour
|w | =1, and consequently, by virtue of the theorem on
the one-to-one correspondence, this function performs a con-
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formal mapping of the upper half-plane z* (of the lower half-
plane z~) onto the interior of the circle | w | << 1 (onto the
exterior of the circle | w |<{1). In the case Im 25 << 0 the
function w determined by formula (22) specifies a conformal
mapping of the half-plane z+ (z~) onto the exterior of the cir-
cle | w | <1 (onto the interior of the circle | w | < 1).

It can readily be verified that under mapping (22) any

two points z and z which are symmetric about the real azisIm z =
= 0 go into two points w and wy = 1/w which are symmetric

with respect to the circle | w | = 1.
Now let us consider the linear-fractional function
we=e® ETB_ g < (23)
1—2zg2

Since for |z|=1 and 0<{p<<2n we have
. io__ i9_ .
le::lez@, € _Z.O =|B. Zl)l:-i, 7 — @i®

1—z.oe"p | e"w-—zo |

the repetition of the argument presented above shows that
function (23) specifies a conformal mapping for the circle
| z | << 1 onto the circle |w | << 1.

In the case | 25 | > 1, formula (23) determines a conformal
mapping of the exterior of the circle | 2 |< 1 onto the interior
of the circle |w | < 1.

Each of the linear-fractional functions we considered above
(they specify conformal mappings of the upper half-plane
Im z > 0 onto the upper half-plane Im w > 0, of the upper
half-plane Im z > 0 onto the circle | w | << 1, and of the
circle |z| << 1 onto the circle |w| << 1 respectively) involves
three real parameters; these parameters are determined
uniquely when one of the following conditions is fulfilled:
(1) three given boundary points z,, z, and z; go into three
given boundary points w,, w, and w,; (2) an interior point
2, and a boundary point 2, go into an interior point w, and
a boundary point w, respectively; (3) an interior point z,
and a given direction passing through it go into an interior
point w; and a direction passing through it respectively.

Let us consider the power function

w = 7" (24)
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where n is a natural number. As a domain of univalence of
function (24) we can take any angular region D, with vertex
at the point z = 0 enclosing an angle of 2n/n. Indeed, for
any two different values z, = rei®:r and z, = rei®: of the
independent variable z we have w, = r"e"® and w, =
= r"in®2 whence it follows that w, — w;, = r" (ein®2 —
— in®1) = yhein®1 (pin@2—@1)) — { £( provided that
n(py, — @) 520k (=0, &1, ...), that is w, s2w,
for | @, — ¢, | << 2n/n. The function z = f~! (w) inverse
to w inside the angle D is denoted as

1

Z:szu;"

and
1
dz 1 1 1 —-1
dw — dw :nzn-l__r;wn (25)
dz

Under the mapping specified by the function w defined
by formula (24) the rays arg z = ¢ go into the rays arg w =
= n@; in particular, the ray argz = 2kn/n (k>0) goes
into the positive real axis Im w = 0, Re w >0, and the
ray arg z = 2 (k + 1) n/n also goes into the positive real
axis Im w = 0, Re w > 0. Therefore this function specifies

a conformal mapping of the angular domain 2an< arg z <<

<3(k;}"¢ onto the complex plane of the wvariable w‘

with a cut made along the real semi-axis O0<Cu <C oco.

On denoting the variables z and w as z = re® and w =
= peiv we obtain from (24) the equality peiv = rPein®,
whence r* = p and rng = ¢ 4 2kn that is

1
rmpm, o=YEBT . 40 4f, .., 0<y<2n

Thus, for each of the angular domains

2(k+1)n (=0, .

Dy: —<arg2< -y n—1)

we can write the equality
1 b2k

z=—pre n  (k=0,...,n—1) (26)



ANALYTIC TUNCTION OF A COMPLEX VARIABLE 113

for the inverse function (whose derivative is expressed by
formula (25)).

It is inconvenient to consider cach of the quantities z
as a separate function of the variable w because, for instance,
in the domain D: m/n <C arg z<C 3mn/n the inverse func-
tion z = wl/™ coincides with z, for n/n < arg z << 2n/n

and with z, for 2Tn< arg z << 3n—n Therefore we speak of

the many-valued function inverse o (24), and each function
2z, (k= 0, ..., n— 1) isreferred Lo as a branch of the many-
valued function z = w'/™.

Consequently, the inverse function z = w'/™ whose deriva-
live is given by formula (25) is not one-valued. When the point
z runs once throughout the complex plane z, the point w
representing the inverse function runs through the complex
plane w not once but n times. Therefore function (24) is
said to be n-sheeted, and the inverse function (whose branches
are determined by formula (26)) is called n-valued.

A mapping specified by a many-sheeted function can be
interpreted as a one-to-one mapping of the domain of
definition of that function onto the so-called Riemann sur-
face. We shall demonstrate what has been said by the exam-
ple of the function

w = z? (27)

To this end let us consider two replicas £* and E- of the
complex plane w with cuts made along their positive real
semi-axes. When the point z runs through the half-plane
z* the point w runs through £*. When the point 7 passes
from z* to 2z~ across the negative real axis Imz = 0, Re 2 << 0,
the point w passes from the lower edge of the cut made in
FE* to the upper edge of the cut in £-. Let us “stick together”
the lower edge of Lhe cut in E* and the upper edge of the
cut in £~. Further, when z runs throughout 2~ and approaches
the positive real axis, the point w runs through E- and
approaches the lower edge of the cut made in E-. Let us
identify the points belonging to the lower edge of the cut
in £~ with the corresponding points belonging to the npper
edge of the cut in £+ (in the real three-dimensional space in
which the planes £* and £~ lie it is impossible to realize the
sticking of these edges); this will result in a two-sheeted Rie-
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mann surface (see Fig. 8) onto which function (27) maps
the complex plane z in a one-to-one manner.

Relation (27) specifies a one-to-one correspondence be-
tween the points of the extended complex plane of the va-
riable z and the points of the Riemann surface on which
the function z = w'/? is defined, the mapping determined

U

ENEY)

SY

T
Fig. 8

by (27) being conformal everywhere except the points z = 0
and z = oo. The points w = 0 and w = oo corresponding
to the points z=-0 and z= oo possess the following prop-
erty: if we deseribe closed contours about these points in the
counterclockwise direction once, starting with a fixed point
w, then the corresponding point z passes from one branch
2, to the other branch z, when the point wreturns to its orig-
inal position. That is why the points w = 0 and w = oo
are referred to as the branch points of the function z = w'/2,

In just the same way the notion of the branch points of
the function z = w'/™ is introduced; these branch points are
w=0and w= oco.

Now let us consider the exponential function

w=¢ (28)

As its domain of univalence can serve any strip D of width 2n
parallel to the real axis Im z = 0. This follows from the fact
that for two different points z; and z, (z; # 2,) the equality
est = ¢?2 is only possible when 2z, — 2z, = 2kni (kK = 0,
+1, ...).

The inverse function z = f~! (w) of (28) considered in
the strip D is called the logarithmic functiorn and is denoted

as
z=Ihw (29)
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The derivative of (29) is given by the formula

4 1t _ 1
dw = dw ~ et w
dz

From the equality w = u + iv = pel¥ = ¢* = ¢’ we
find that p = €¢* and iy = i} -+ 2kni, that is z = In p and
y = ¢ + 2kn. Consequently, in each strip D,: 2kn <<
<Imz< 2k +1)n we have z, = In |w | + i argw +
-+ 2kni, O<argw < 2n (=0, =1, ...) for function
(29). The value 2z, =1n |w |+ i argw, 0<<argw << 2n
of z is called the principal value of logarithmic function
(29). Since under the mapping specified by function (28)
the straight lines Im z = const go into the rays arg w =
= const, this function specifies a conformal mapping of each
of the strips Dy (k = 0, +1, .. .) onto the complex plane
of the variable w with a cut made along the nonnegative
real axis. Consequently, exponential function (28) is infinite-
sheeted, and logarithmic function (29) is infinite-valued.

The logarithmic function makes it possible to define the
power function w = z* for any exponent o by putting w =
= ein2%* = guinz and the exponential function w = o
for any base o by putting w = ene® = gzino,

In order to state the definition of the function z=arcsin w
inverse to
elz__g-iz

2i
let us rewrite the last relation in the form of a quadratic
equation with respect to e*:
s — Qiwel? — 1 = 0
The solution of this equation is the function
e =iw+ )1 —w?
It follows that, since Ine“=iz=In (iw + }/ T—u?), the
variable z is expressed as

w=sinz=

z = arc sin w:j_—ln (iw+ YV 1—u?)

and the derivative of z with respect to w is
dz 1 1 1 1

dw T dw ~ cosz T VYi—sintz V1wt
dz

B*
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§ 2. Complex Integrals

1°. Integration Along a Curve in the Complex Plane. Let
S be a piecewise smooth (closed or non-closed) Jordan curve,
and let f (§) = u (§, m) + iv (§, 1) be a continuous function
of the variable { = § + in defined on S.

Since the line integrals

Sudg—vdn and Sudn-l-vdg (30)
S S

exist, and since
f(5) de=(u-+iv) (dE+ i dn) = udE—v dn+ i (u dn-v dE)

the expression of the form

judg_vdn+i5udn+vdg:5f(;)dg (31)

S S S

is naturally called the complex integral of the function f (L)
along the curve S.

In the case when the curve S is a closed contour we say,
when the point { ({ is the variable of integration along S)
traces the contour §, that § is desecribed, in positive
(negative) direction if the finite domain D whose boundary
is the contour S always remains on the left (on the right).
Accordingly, we speak of a positively oriented contour S* = §
and of the negatively oriented contour S-. When the integra-
tion goes in the negative direction along S we pul, by defini-
tion,

{ra=-{roa (32)
5~ 5

When the curve S is non-closed and is specified by a par-
ametric equation of the form { = { (¢) where ¢ is a real
parameter, the positive direction along S is the one corre-
sponding to the increase of ¢.

Below we enumerate the basic properties of integral (31)
which are direct consequences of the corresponding proper-
ties of real line integrals (30).
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() If £, (8 (=1, ..., m) are continuous functions
defined on § and ¢, are given constants then
[ S an@da=3alfhod (33)
8 r=t k=1 8
(2) 1t S is a curve consisting of m arcs Sy, ..., Sp
then
froa=3 o« (34)
5 k=t §,

where we assume that the integration along each are S,
is in the direction generated by the direction of integration
along S.

Let S be a collection of pairwise disjoint closed curves

So,» S1v - .., Sy which form the boundary of an (m + 1)-
connected bounded domain D and let S,, ..., S,, lie in-

side the bounded domain D, whose houndary is §, (see
Fig. 9); then

[ 1@ds={ r@a— [ roa (35)

5 So k=15,
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(3) If a continuous function f({) is integrable over S
then so is the function |f(Z)|, and

|[roal<ironai<im) i@l @6
5 'S tes
where [ is the length of S.
(4) If fo (%) (=1, 2, ...) are continuous functions
defined on S and if the series hE_lfh (&) (the sequence {f» (L)})

is uniformly convergent on S, then the sum f () of that
series (the limit f ({) of that sequence) is continuous on S,
and we have

)2

in the case of the series and

lim { £ @ az={ 70z (38)
) 5 5

(2.4

h@d=3 | nod (37)

1 k=1 8

/i 8

k

in the case of the sequence.

(5) The change of the variable of integration in complex
integral (31) is performed according to the same ordinary
rules for the change of variable in the real line integrals on
the left-hand side of formula (31).

2°. Cauchy’s Theorem. If f (z)=u (z, y) + v (z, y) is
an analytic function in a bounded domain D with a piecewise
smooth boundary S and the functions u (z, y) and v (z, y)
are continuous in D |J S together with their partial derivatives
of the first order then

S fQdz=0 (39)
S

Indeed, on transforming line integrals (30) with the aid
of formula (GO), we obtain

iu®@= §[ﬁ+ L ti(Se— %) ] dgan
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whence, since the functions u (§, ) and v (E, 1) satisfy
system (CR) in the domain D, we see that equality (39) does
in fact hold.

It should also be noted (this remark will be used in what
follows) that Cauchy’s theorem also remains true when S and
f (L) satisfy some general (weaker) requirements. In particular,
equality (39) also holds when it is only required that the
function f (z) analytic in the domain D should be continuous
in D |JS.

Cauchy’s theorem directly implies that if a function
f (2) is analytic in a simply connected domain D, and z, and
z are two points belonging to D, then the integral

{iwa (40)

assumes one and the same value for all the curves joining 2z, and
z and lying within D, that is the value of integral (40) does
not depend on the path of inlegration (it is meant that inte-
gral (40) is taken with respect to { in the direction from z,
to z).

Indeed, let S and S; be two curves lying in D and joining
the points z, and z. By virtue of formulas (32) and (39),
we have

froa=-froa
and = ”

froa+froa={roa-|i@ada=o
S St S 8
whence it follows that
{rwa=rwa
S St )
Let S be the circle | { | = R; then for the integral expo-
nents n of the power function " we have
(:"dgz{ 0 for ns=—1

41
2ni for n= —1 (31)

ltI=R
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Indeed,
25 25
;"dézg (Rei®)" i Reiv dcp:iR“”S cos (n+1) @ dop—
I8I=R 0 0
25
0 for n=%t—1
— n+14 > -
R S sin (n+1) ¢ dg {2m‘ for n= —1

4

Now let us consider the integral

frra

S

where n is an integral number and S is a piecewise smooth
contour bounding a (finite) domain D.

In the case n>>0, by virtue of the analyticity of the func-
tion z" and on the basis of (39), we have

[ traz—o (42)

)

irrespective of whether the point z -= O belongs or does not
belong to D |J S; in the case n <Z 0 we have the same equal-
ity provided that the point z = 0 does not belong to D.-|J S.

Now let n << 0 and let z = 0 € D. On deleting the point
z = 0 together with a closed circle | z | <C ¢ of a sufficiently
small radius ¢ > 0 lying within D from the domain D, we
can write, by virtue of formulas (36), (39) and (41), the re-

lation

0 f —1 )

o [ oanf 0 oasot
s 1El=¢e 2ni for n=—1

From (42) and (43) it follows that for all integral exponents
n %= — 1 the value of the integral

z
{era (44)
zp

is one and the same for all the curves connecting the points

2z, and z and not passing through the point z = 0 when
n< — 1.
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To compule integral (44) for n>0, let us take as the path
of integration the line segment £ = 2, + (z — 2zy) ¢, 0<C? <
<<1. Then, by virtue of (31) and (33), we obtain

1

5 "df = S (294 (2 —2) 2" (2—2,) dE =

P2 0

é ( ) (z—2z,)"*! § " dt -
0

h=0

1 < (n+t \
=n—+1§0(:+1) M-zt =

n-t1

= n-iu [go (n-H) n- h+1(z—z0)h—-z(rf+1;|=
gl "'H
== e o CO)

3°. Cauchy's Integral Formula. In this section we shall
prove Cauchy’s integral formula
1 Y f(;)d;={ 0 for zeD- (46)
i ) Lz f(z) for z€D*

where D* is a finite domain bounded by a piecewise smooth
contour S, D~ is the complement of D* |J S with respect to
the whole complex plane and f(z) is a function analytic
in D* and continuous in D+ |J S.

Let z € D-; in this case, by the analyticity of the function
F(D)/(T — z) with respect to { in D+ and by its continuity
inD* |J 8, the first equality (46) is nothing other than equal-
ity (39). If z € D* then we remove the point z from the do-
main D+ together with a closed circle | { — z |[<C¢e of a
sufficiently small radius & > 0 lying in D*; taking into
account the analyticity of the function f'(L)/({ — 2z) with
respect to { in the remaining part D, of the domain D*
and the continuity of this function in the domain D* in-
cluding its boundary, we obtain, by (39) and (35) (see



122 CAUCHY-RIEMANN EQUATIONS. ANALYTIC FUNCTIONS

Fig. 10), the equality
1 g f@ag _ 1 " f@dr

2ni ) [—z 2mi - t—z
—z|=¢
_ 1 F(©—71(2) 1 ac
T 2mi S {—z dt+ 27t f(2) S {—:z
f—z|=¢ [E—z|=¢

From this equality, on the basis of (41) and the obvious
equality
: 1@Q—1@) —
D M =t
1L-21=¢
we derive, on passing to the limit for ¢ — 0, the rela-
tion

1 d
~ SS % 1), zeDr (47)

It is evident that formula (47) also remains valid when D *

Fig. 10

is an (m + 1)-connected finite domain whose boundary S con-
sists of closed pairwise disjoint piecewise smooth curves S,,
St .+ ., Sm. In particular, if the bounded domain D,
with boundary §, contains the curves S;. ..., S, we
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can write, by (35), the formula

L Qe w1 [ iQd .
[(z)= 21t S t—z PE) g {—z z2€D (48)
So k=1 Sy

Let f (z) be an analytic function in a simply connected
domain D; then, as was already shown above, integral (40)
depends solely on the position of the points z, and z inside
D, whence it follows that for a fized z, the expression

F@=|r@©d
z0
is a one-valued function of the complex variable z in the do-
main D. Moreover, for the ratio AF/Az we can write the
expression

AR 1 R : |
S=x(§ roa-lrowa)=2 | rode

where, for sufficiently small nonzero values of |Az|, we
can assume that the integral is taken along the line segment
§ joining the points z and z 4+ Az.
According to formula (45), we have
z4-Az

S At = Az
and therefore
z4-Az

AF .
3 1@ =5 | 1©—7@1d|[<max 1@~

z

Since max |f() —f(z) | >0 for | L — z | > 0, the last
inequality implies that

AF ’
AIJL‘I)WZF (2)=1(2)
The family @ (z) of analytic functions in the domain D
whose derivatives are @' (z) = f (z) is called the indefinite
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integral of f (z) (each of the functions @ (z) is called an an-
tiderivative of f (z)).

For the difference @ (2) — F (3) = ¥ (2) = u (2, y) +
-+ iv (z, y) we have the equality ¥’ (z) = @' (z) — F' (z) =
= f(z) — f (3) = 0 everywhere in the domain D, and there-
fore Y il S _ v _ 0, whence it follows that

x dy oz ay
u (z, y) = const and v (z, y) = const, and consequently
® (z) = F (z) + C where C is an arbitrary (complex) con-
stant. Since @ (z)) = F (zy) + C = C, we obtain the for-

mula
z

{710 dt=D @) — D (3)
Z0
for the computation of integral (40) which is known as the
Newton-Leibniz formula.
4°. The Cauchy-Type Integral. Let S be a closed or non-
closed piecewise smooth Jordan curve and let f () be a
continuous function defined on S.
For a fixed value of z not belonging to S the expression

¢ (z, §) Z%(:C)Z considered as function of [ is continuous,
and therefore the integral

1 1 (©)dt
F)= o S Lo (49)
exists and is a one-valued function of z. Expression (49) is
called the Cauchy-type integral.

If S is a closed contour bounding a finite domain D and if
the function f (z) is analytic in D and continuousin D |J S,
the right-hand member of (49) coincides with f (z) at each
point z € D, and in this case (49) is nothing other than
Cauchy’s integral-formula (47).

Since for { € S the expression ¢ (z, &) = f (/(L — 2)
considered as function of z is analytic at each point not be-

longing to S, that is —:—_ ¢ (z, ¢) =0, and since the operation
zZ

2 can be written under the integral sign on the right-hand

z
side of (49), we conclude that agfz) = (. Consequently,
z
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the function I (z) is analytic on the complex plane of the va-
riable z everywhere except the points belonging to the curve S.
Further, since for { € S |the expression ¢ (z, () considered
as function of z possesses the derivatives

an
Ziw @ (% §)=n!_(§_%

of any order n at each point not lying on S and since the
operation d"/dz" can be written under the integral sign on
the right-hand side of (49), we see that the function F (z)
represented by Cauchy-type integral (49) possesses derivalives
of all orders at the points 2 not belonging to S, and

d
P (2) = j LOE  n=t,2,... (50

From the property of the Cauchy-type integral we have
just established it follows that if f (2) is an analytic function
in a domain D then it possesses derivatives of all orders in that
domain. Indeed, let z, be an arbitrary point in the domain
D and let |z — 2z, |[<Ce be a circle of a sufficiently small
radius ¢ > 0 lying inside D; then, by virtue of Cauchy’s
integral formula (46), we have

1 f ()t
(@)= S T lr—al<e (51)
1&—z0l=¢
The right-hand member of (51) is a special case of the
Cauchy-type integral, and therefore the function f (z) possesses
derivatives of all orders in the circle |z — z, | << €; since
the point z, is quite arbitrary, we see that the assertion stat-
ed above is in fact true.
5°. Conjugate Harmonic Functions. Morera’s Theorem.
If f(z) is an analytic function, then its derivative
' ou . Ou
[ (z)= 2z ¢ ¥l
is itself an analytic function in the domain D where f (z)
is defined, and therefore the functions Ju and g—; possess the

oz
. . . 02u %u 0%u
partial derivatives of the first order B 5oy ' By or
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92 . \rs
and 0;: . Further, according to condition (CR), we have
FPu P v u
0x® ~ Az dy~  dydr dy?
and
Pu _ Pu v
dox oy ~— dyoxr oy o2

We have thus proved the existence of partial derivatives of
the second order of the functions u (x, y) and v (z, y) and also
the harmonicity of these functions in the domain D. The re-
petition of this argument shows that the functions u (z, y)
and v (x, y) possess derivatives of all orders in the domam D
of analyticity of the functzon f ().

The real and the imaginary parts u (z, y) and v (z, y) of
a function f (z) analytic in a domain D are called conjugate
harmonic functions.

Now let us suppose that the real part u (x, y) of an ana-
lytic function f (z) = u (z, y) + iv (z, y) in a simply con-
nected domain D is known. Then we can easily reconstruct
the function f (z) itself. Indeed, we have

v ov ou ou
dvzﬁdx+0—ydy:——a—ydx—|-ﬁdy (52)

The expression for dv we have obtained (see (52)) is a total
differential bhecause of the condition

0 ou 0 ou
"oy (0_y) ~or (0—1)
which holds since the function w(z, y) is harmonic in the
domain D. Consequently,

(>, ¥) P 5
v(z, y)= S — 2 do+ 5L dyC
(x0, Yo)

where C is an arbitrary real constant, and the integral on
the right-hand side is independent of the path of integration
connecting the points (z,, y,) and (z, y) and lying in the
domain D.

Thus, we arrive at the conclusion that a function f (2)
analytic in a simply connected domain D can be reconstructed
to within an arbitrary pure imaginary constant iC from its
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given real part u (z, y):
(x.¥) s P
. u u -
f(z)=u(z, y)+i S —y @ty +iC (53)
(x0. Yo)

Now let us prove the converse of Cauchy’s integral theo-
rem known as Morera’s theorem: if f(2) is a continuous
function in a simply connected domain D and if the integral
of this function along any closed piecewise smooth Jordan
curve lying in D is equal to zero, then the function f (z) is
analytic in D.

Indeed, by the condition of the theorem, integral (40) of
the function f({) depends solely on the position of the
points z, and z and is independent of the shape of the path
of integration joining z, and z. Further, as was seen, for a
continuous function f () this property of integral (40) is
sufficient for the function F (z) defined by the formula

2z

Fe)= | r@ad

20

to be analytic in D and for the equality ¥’ (z) = f (z) to
hold. Finally, since the derivative of an analytic function
is itself an analytic function, the equality F’ (z) = f (2)
implies the analyticity of the function f (z).

§ 3. Some Important Consequences
of Cauchy’s Integral Formula

1°. Maximum Modulus Principle for Analytic Functions.
Let f (z) be an analytic function in a domain D, and M be
the supremum of |f(z) | for z € D.

The maximum modulus principle is stated thus: if the
function f (z) analytic in the domain D is not identically equal
to a constant in D, then the modulus of this function cannot
assume the value equal to M at any point in that domain.

If M = oo, this assertion is obviously true because at
any point z € D the function f (z) can only assume a finite
value. The case M = 0 can be excluded from the considera-
tion since this means that f (z) = 0. Now let us suppose that
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the number M is finite and that there is a point z, € D for
which the equality | f (z,) | = M takes place. Let us con-
sider a closed circle |{ — z, |<(6 lying within D. By
Cauchy’s integral formula (47), we have

21
fa)=a | AOE = [ f(a 409 a0

2mi L—z,
[E—z0|=b0 0

§—1zy = 0ei0

whence, according to the hypothesis, it follows that

25
M < {173+ 8e1%)| a6 (54)
0

Inequality (54) implies that | f (£) | = M everywhere on
the circumference | { — z, | = 0 of that circle. Indeed, sup-
pose that there is a point {, = &eif for which the inequality
| f (&o) | << M holds (the opposite inequality | f (L)) | > M
is impossible). Then, since the function |f (Z)|is conlin-
uous, the inequality |f () | << M must also hold for an
interval 6, — £ << 08 << 8, + ¢, and therefore (54) leads
to the inconsistent inequality M << M. Consequently,
| F(2) | = M for all the values of 8 (0<C8<§,), that is
this relation holds throughout theneighbourhood | z — z, | <<

< 8, of the point z. Since In | (2) | = 5-In f (2) 7 (&), we
have

=N

0 _ 1/ 0 -

for all the values of z in the circle |z — z, | < §,, that
is f' (z2) = 0 everywhere in this circle, and consequently
f (z2) = const. Now we can repeat the corresponding part
of the argument used in Sec. 4°, § 1 of Chapter 1 for proving
the extremum principle for harmonic functions, and thus
come to the conclusion that f (z) = const everywhere in D,
which is impossible. Hence, the assumption that | f (z4) | =
= M for z, € D leads to a contradiction, which proves the
maximum modulus principle.
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If f(z) <0 everywhere in D and m is the infimum of
| 7 (2) | for z € D, then we can apply the maximum modulus
principle to the function 1/f (z) which is analytic in the
domain D, whence it follows that the function |f (z) | can-
not assume the value equal to m at any point belonging to
the domain D. Consequently, in the case under consideration
the modulus of the function f (z) analytic in the domain D
can attain its extremum only on the boundary of the domain D.

2°. Weierstrass’ Theorems. Weierstrass' first theo-
rem: if a series of the form

2 fx(2) (55)
E=1
where fy, (2) (k =1, 2, . . .) are analytic functions in a domain

D, is uniformly convergent on any closed subset of the domain
D, then the sum f (z) of this series is an analytic function

00

in D, and for every natural number p the series 2]’“” (2)

whose terms are the derivatives of the p-th order of the junctwns
fu (2) is uniformly convergent on any closed subset of the
domain D and

1 (z) = Z 12 (2) (56)

To begin with, we shall prove that the function f (z) is
continuous in the domain D. Let z, be an arbitrary fixed
point belonging to the domain D. Since series (55) is uni-
formly convergent, given an arbitrary & > 0, there is a
natural number N (e) such that |f (z) — Sy (2) | << /3 for
all the points z belonging to a circle |z — z, | << §, lying

N

within the domain D; here Sy (z) = D) fx (3). Since the
k=1

finite sum Sy (z) is continuous, there exists a number
8, () >0 such that | Sy (z) — Sy (z0) | < ¢/3 for all
the points z belonging to the circle |z — 2z, | << §,. Con-
sequently, for all z belonging to the circle |z — z, | < §
where § = min (§;, 8,) we can write, on the basis of the

9—-0598



130 CAUCHY-RIEMANN EQUATIONS. ANALYTIC FUNCTIONS

inequalities we have derived, the following inequalities:
L f(2)—f(z0)|=
=|f(8)—f (20) + Sn (2) = Sn (2) + Sn (30) — Sn (zp) | <
< (2) —Sn (2) [+ 1f (20) = Sw (20) |+ Sn () — Sy (20) [ <

<ztst+z=¢

The last inequality means that the function f (z) is con-
tinuous at the point z,; since z, is quite arbitrary, it follows
that f (z) is continuous throughout the domain D.

Now let us consider a closed circle |z —z, | < § lying
inside the domain D. On integrating the equality

'1 1 1 0
2m g_(f)z = 2ni [—z Z -fh(g)a IZ—ZOI<6
h=1

over the circumference | { — z, | = 8 of that circle and
using Property (4) of complex integrals proved in Sec. 1°,
§ 2 (which is expressed by formula (37)) and Cauchy’s inte-
gral formula (47), we obtain the equality

1 d
= | RE z fa(@®)=1(2)
IL—z01=0
for all the points z of the circle | z — z, | << 8. Now, taking
into account the analyticity of the Cauchy-type integral,
we conclude that the function f (z) is analytic in the circle
| 2 — 2, | << 8 and, in particular, at the point z,. Since z,
is an arbitrary point of the domain D, we see that f (z)
is analytic everywhere in D.
On integrating the uniformly convergent series

_p f )
2:u z fr (©) (c__z)pﬂ— 2ni  (L—z)pH

over the contour [ { — z5 | = §, we conclude, by virtue of

(50) that 2 fi? () = f® (z) for the points of the circle

|z — 3z, |< 6 and hence the last equalitv holds through-
out the domam D.
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From the uniform convergence of series (55) on the con-
tour | { — 2z, | =38 it follows that, given au arbitrary
€ >0, there is a natural number N (¢) such that

| N fasr (B) ‘< g for all n > N. Therefore for all the
E=1 :
points z of the circle | z — z, | << 8/2 the inequality

12 fatn z)|: B S 2 fren (O (t—z)"“ 21’;‘5!6
h=1

1T-2z9|=0 k=1

holds. This means that the series on the right-hand side of
(56) is uniformly convergent in the circle |z — z, | << 8/2.
From this fact, using the well-known finite covering theorem
proved in mathematical analysis, we conclude that series
(56) is uniformly convergent on every closed subset of the
domain D (for our aims the following statement of the
finite covering theorem is sufficient: every covering of a closed
set by open circles contains a finite subcovering of that set).

Weierstrass' second theorem: if series (55) consisting
of functions fy (z), which are analytic in the domain D and con-
tinuous in D |J S, is uniformly convergent on the boundary S
of the domain D, then this series is uniformly convergent in
D (ys.

This theorem can be proved in exactly the same way as
Harnack's theorem (see Sec. 5° § 2 in Chapter 1). Indeed,
from the uniform convergence of series (55) on S it follows
that, given any & > 0, there exists a natural number N (g)

P
such that i M fvan (1) [< e for any p > 1 and for all
YE=t ]

14
L €S. Since the modulus of the finite sum 2 fy+r (2)

of the functions f, (z) analytic in the domam D attalns its

maximum on the boundary S of D, we have | V fN_,_h (2) | <

< e, for all z€D |JS, which means that ser1es (95) is
|1niform1y convergent in D |J S.

3°. Taylor’s Series. As was already shown in Sec. 3°,
§ 1 of the present chapter, the sum § (z) of a power series

yx
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of the form

[+~

2 an(z—2p)" (57)

is an analytic function inside the circle of convergence
|z — 2o | << R (R >0) of the series.

It turns out that the converse proposition known as
Taylor’s theorem is also true: if f (z) is an analytic function
in a domain D, thenr every point z, € D possesses a neighbour-
hood within which the function f (z) can be represented as the
sum of a power series:

f(z)= kZO a (2—2,)"* (58)
The radius of convergence R of this series is not smaller than
the distance 8, from the point z, to the boundary S of the
domain D.

Indeed, by Cauchy’s integral formula (47), for any point
z belonging to a circle |z — 2, | << 6 << 8, we have

1 (7f@dg_ 1 5‘ 1 F(€) ¢

IO =g ) 7= " ) T=a _imm
) _

v =
4w (s \k QAL
== | 3 (=0) 5 @
Y k=0
z—2,

where y denotes the contour |{—z,| =28 and
=¢<<1, {€Yy. Since the series
> (5=2) =t
;_zo 1— 2—2
k=0 E—1z

is uniformly convergent with respect to { on vy, the series
on the right-hand side of (59) can be integrated term-by-
term, which makes it possible to rewrite (59) in form (58)
with

L—2y

1 1©dg — '
ak-—zni im (k——-O, 1,...) (60)
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Now, taking into account (50), we arrive at the formula
)
a=1-0) (k—0,1,...) (61)
Since series (68) is convergent in every circle |z — z, | << &
where 6 is an arbitrary number belonging to the interval
0 << 8 <« §,, the radius of convergence of series (58) is not
smaller than §,.

Power series (57) whose coefficients a, are expressed in
terms of the function f (z) by formulas (60) and (61) is called
Taylor’'s series (Taylor’'s expansion) of the function f (z) at
the point z,.

From formula (61) follows the uniqueness of Taylor’s
expansion of f(z) in the neighbourhood of the given point
20 €D.

4°. Uniqueness Theorem for Analytic Functions. Liou-
ville’s Theorem. Taylor’s theorem implies the following
uniqueness theorem for analytic functions: if f(z) is an
analytic function in a domain D equal to zero on an infinite
set of points E belonging to D and the set E has a limit point z,
lying in D, then f (z) = O everywhere in D.

Indeed, let d be a circle |z — z, | << & lying in D. By
Taylor’s theorem, for d we can write expansion (58). Let
us denote by z, (k= 1,2, ...) a sequence of points belong-
ing to E () d which converges to z,. By the condition of

the theorem, we have f (z,) = 2 an (3, — 2,)" = 0, whence,

on passing to the limit for zk—>z°, 2 %3, Wwe obtain

ay = 0. In just the same way from the equality - AC "zo
= 2! an (2n — Zo)n'—l = 0 we obtain ¢, = 0, and so on.
n=1

Consequently, a, = 0 for all k=0, 4, ..., and hence
f () = 0 in the circle d. Now let z* be an arbitrary point
of the domain D. Let us connect the points z, and z* by a
continuous curve ! lying within D, and let §, be the distance
between ! and the boundary S of the domain D. Let us make
the centre of the circle |z — | << 6 << 6, move from the
point z, to the point z*; using the fact that for every position
of the centre { on ! the equality f ({) = 0 holds, we conclude
that f (z*¥) = 0, that is f (z) = O throughout D.
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A point 2z, € D at which f (z,) = 0 is called a zero (or
a root) of the function f (z). If z, is a zero of an analytic
function f (z) in a domain D, then, by virtue of (58), we
have

oo

f(z): 2 ah(Z—Zo)ka n>1, an:#o

R=n

If n = 1 the zero z, is said to be simple, and if n > 1 we
call z, a multiple root (zero) or an r-fold root or a root of order n
or of multiplicity n. From (61) we see that for z, to be an
n-fold zero (root) of f (z) it is necessary and sufficient that the
conditions

J9(2) =05 k=0, ..., n—1 ™) 5£0

should hold.

Another consequence of Taylor’s theorem is the following
proposition known as Liowuwille’s theoren: if f (z) is an
analytic function bounded throughout the whole complex plane
of the variable z, then f (z) is identically equal to a constant.

Indeed, by virtue of (60), we have

1 | T 1869 dp 2“ » _ M

— igy _ t0¢ GV 1 :

lan] =55 5 f (8e™®) SRR DR | S5 S I ok < m
0 0

k=0,1,...

where M is the supremum of |f (z) | on the z-plane and 8§
is an arbitrary positive number. On passing to the limit in
the last inequality for & — oo, we obtain @, =0 (k =
=1, 2, ...), which means that f (z) = e, = const.

5°. Laurent Series. Let us consider the series

- 00

X anlz—z) 2 (62)

involving the negative powers of (z — z,): (z — z))* (k =
= —1, —2, ...). Each term of series (62) is an analytic
function of the variable z for 0<C | z— 3z, | << oo0. The change
of the variable z — z, = 1/{ brings series (62) to the form
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of a power series:
P (63)
K=1

On putting { = 0 for z = oo, we readily see that if
| § | << r, is the circle of convergence of series (63), then
series (62) is convergent outside’the closed circle | z—z, [ <C
< r = 1/ry. Since for any p > r series (62) is uniformly
convergent outside the circle |z — z, | << p, we conclude

that, by virtue of Weierstrass’ first theorem, the sum S, (z) =
1

= S*( — ) of this series (where S, () is the sum of
%0
series (63)) is an analytic function at all points z satisfying
the condition |z — 3z, | >r.
If a series of form (62) is convergent to its sum S, (2)

[~
for |z —z,|>r, and a power series S, (z2) = 2 a; X
h=0
X (z — zq)* is convergent in a circle | z — z, | << R where
oo

R > r, then the series ) o, (z — z,)" is convergent in

Re=a—o00
the annulus K: r<< |2 — 2, | << R, and its sum S (z) =
= 84 (3) + S, (2) is an analytic function in K.

The converse proposition known as the Laurent
theorem also takes place: if f (z) is an analytic function in
an annulus K: r << | 2 — 2z, | << R, then at every point z € K
this function can be represented in the form of the sum of
a series

fo= 3 aG—mu) (64)
where
1 f(g) dC _
and v is an arbitrary circle | { — 25 | = 8§ with a radius

8§ >0, r<d<RA.
To prove this theorem, let us consider the annulus
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(see Fig. 11). For any arbitrary point z € K; we can write,
using formula (48), the equality

_1 () dt 1 F(g)dt
fe) =55 S T—z  2m S t—z
1t—21=R, | E=zo|=ry
1 1 1
=m L—z, 1 z—2, f(C) dc+
1L=2, |meR =y
1 1 1
e e A S
[=Zol=r =
Since the series
?‘ 2— 2z h_ 1
(=2)'=—= (67)
R=0 £—zo
and
oo . . ‘
—3
2 =)= (68)
r=0 ~u—z,

are uniformly convergent when the point { lies on the circles
|t — 2, =Ry, and | £ — 2z, | = r, respectively, we can
substitute (67) and (68) into the right-hand side of (66); this
results in an equality of form (64) in which

1 { f(B) dt
ap = —— L= for k=0,1, ... 69
k= omi tes |, (L —z,)k* (69)
and
E e .
a‘h_mlt _ m for k= '1, 2, e (70)

Since f (%) (L — zo)~®-! is an analytic function of § in the
annulus K, Cauchy’s theorem implies that the integrals on
the right-hand sides of (69) and (70) can be regarded as
being taken over the contour | { —z,| =6, r<<8 << R.

The expression on the right-hand side of (64) is called
the Laurent series (or the Laurent expansion) of the function
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f (2); the series

oo

g ar (2—20)* = f1 (3 —2,) (71)
and
S aon (G — 20 = o 725 (72)
=1

are called the regular part and the principal (singular) part
of series (64) respectively. A Taylor series is obviously a
special case of a Laurent series.

We can easily prove the uniqueness of Laurent expansion

Fig. 11

(series) (64) in the given annulus. Indeed, if there are two
such expansions, that is

f(2)

we can multiply both sides of equality (73) by (z — zo)‘"‘l
and integrate the result over the circle y, whence, by virtue
of equalities (43) which can be written in the form

S dz _{ 0 for k=41
G—zpk | 2mi for k=1

00

S ae—zr= 3 wG—w ()

h=— = — 00

(74)

Y
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we obtainYa, = b, (n =0, 1, ...). This proves the
uniqueness of expansion (64).

6°. Singular Points and Residues of an Analytic Function.
If a function f (z) is analytic in a neighbourhood |z — 2z, | <<
<< 8 of a point 2z, in the complex plane of the variable z
except the point z, itself (at that point the function may not
be defined), z, is called an isolated singular point (or, simply,
an isolated singularity) of the amalytic function f (z).

By virtue of Laurent’s theorem, the function f (z) can be
expanded into Laurent series (64) in an annulus 0 << r <C
< |z — 2z, | < 8. Next, making r tend to zero, we see that
Laurent series (64) obtained for f (z) is convergent for all z
satisfying the condition 0 << |z — z, | << 6.

Depending on whether the collection of the nonzero coef-
ficients among a, (k¥ = —1, —2, . . .)in Laurent expansion
(64) is void, finite or infinite, the isolated singular point z,
is called a removable singular point, a pole or an essential
singular point respectively. The point z, is called a pole
of order n >0 if a_, 0 and a_, = 0 for all k > n, if
n = 1 the pole is said to be simple.

Laurent expansion (64) shows that if z, is a removable
singular point of f (z) then lim f(z) = a,, and if 3z, is

z=20

a pole then lim f(2) = oo.

The deﬁnitionos of a zero and of a pole imply that if a
point z, € D is a zero of multiplicity n (a pole of order n) of
a function f (z) analytic in the domain D, then this point is
a/p(ole of order n (a zero of multiplicity n) of the function
1/f ().

Indeed, there is a neighbourhood of the point z, in which
the function f (z) can be expanded into a series of the form

f@= 3 ae—z)f ans0

where m = n or m = —n depending on whether the point
2, is a zero or a pole of f (z). Therefore

1 m 1 _ < . k-
@ =" where ¢ (z) = > ay (z—z)* ™

h=m
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ﬁ=ai#=0, the function 1/¢(z) is analytic
0 m

in the vicinity of the point z,, and therefore it can be
represented in the form of the sum of a power series:

Since

oo

1 1
o Z by, (2—2,)", bo=m?ﬁ0
h=0
Consequently,
1 o -m
o= 2 =)t

h=0

It follows that the point z, is a pole of order r or a zero of

multiplicity n for the function 1/f (z) depending on whether
m=n or m= —n.

It can similarly be shown that if z, is @ removable singular

point of an analytic function f (2), then z, is a removable sin-

gular point of the function 1/f (z) in case lim f (z) =0 and

220

a pole of 1/f (2) in case lim f(z) = 0.

If z, is an essential singui)ar point of f (z) and if f (z) %0
in a neighbourhood of that point, then for the function
1/f (z) the point z, is an isolated singularity. Moreover, since
7, can be neither a removable singular point nor a pole of
1/f (z) (because, if otherwise, z, would be a removable sin-
gular point or a zero of f (z)), the point z, is an essential
singular point of 1/f (2).

The behaviour of f (z) in the vicinity of its essential sin-
gularity is characterized by the following Sokhotsky-
Weierstrass theorem: if z, is an essential singular point
of the function f (z) then for any complex number a there exists

a sequence of points z, (k =1, 2, ...) convergent to z,
such that lim f (z) = a.
Zh—->20

We shall begin with the case when & = oo. Let us repre-
sent the function f (z) in the vicinity of the point z, in the
form

F(2) =11 —20) + o ()

20
where f, and f, are expressed by formulas (71) and (72) re-
spectively. Since the series on the left-hand side of (72) is
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convergent for |z — z, |>0, the function f; (%) =
1 1 . . .
= f, (Z_ZO), b= (whlch is the sum of the series

) a_, i* convergent for all the pointsoft he complex {= plane )
k=1

cannot be bounded. Indeed, if otherwise, Liouville’'s theo-
rem would imply that f, ({) is identically equal to a constant,
that is there would be no principal part in the Laurent
expansion, which is impossible because z, is an essential
singular point of f (z). Thus, the function f, ({) = f, (Z_iz )
cannot be bounded in the vicinity of the point z, (Whigh
corresponds to { = oo), and therefore there exists a se-
quence & (k=1, 2, ...) divergent to oo such that
lim  f, (§3) = oo. Consequently, the sequence z, =

Ch—»on

= z, +C_1h (k =1, 2, ...) which converges to z, is such

that  lim fe( ! )———oo. Since lim f; (2, — 3,) =

Zp=Zo p—3 2y, ~2g
= a,, we conclude that lim f(3;) = oo.
7,129

Now we shall consider the case when a is a finite number.
Let us take the function f (z) — a for which z, is obviously
an essential singular point. If in every neighbourhood
| 2z — 24 | << 1/k of the point z, there is a point z, at which
f (z,) = o we shall have lim f(z,) = a. In case the

2y =2

point z, has a neighbourhood in which f (3) 5= @, then, as
was already mentioned, z, will be an essential singular point
for the function 1/[f (z) — «] as well. Consequently, in the
latter case there exists a sequence of points z, (k = 1,2,...)
convergent to z, such that

lim

Zp=~%p
and consequently, lim f(z;) = a.

Zh-'Z

We say that z = oo is'an isolated singular point at infinity

of an analytic function f (z) if { = 0 is an isolated singular
point for the function ¢ () = f (1/%). Since the Laurent
expansions of the functions ¢ (£) and f (z) (z = 1/{) in the

-
flap)—a —
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neighbourhoods of the points { = 0 and z = oo are connect-
ed by the relationship

oo

<P(§)=h2mah§k=f(z): hz a2

== - 00

it is possible to classify isolated singular points at infinity

depending on the character of the collection of the nonzero

coefficients among a, (k = —1, —2, . ..) in the Laurent
o

expansion f (z) = D! axz~". Namely, depending on whether

h=—o00
the set of these coefficients is void, finite or infinite, the
isolated singular point at infinity z = oo is called a remov-
able singular point, a pole or an essential singular point.

A function f (z) analytic throughout the whole complex
plane of the variable z is called an entire function. Depending
on whether the point at infinity z = oo is a removable sin-
gular point, a pole or an essential singular point of an entire
function f (z), this function is identically equal to a constant,
is a polynomial or, as we say, is an entire transcendental func-
tiorn. A function f (z) having only poles in the extended com-
plex plane of the variable z is called a rational function.
The ratio f (2)/¢ (z) of two entire functions f (z) and ¢ (z) is
called a meromorphic function. An example of a meromorphic
function is the function sin z/cos z = tan z.

Let a function f (z) be analytic in a domain D everywhere
except an isolated singular point z, € D, and let 9 be a piece-
wise smooth closed Jordan curve which lies inside D to-
gother with the domain D, bounded by it, the point 3z,
belonging to D,. By Cauchy’s theorem, the value of the
integral

o7 | 1@ dz

Y

taken over y in the positive direction (for which the finite
domain D, always remains on the left) is one and the same
for all y; this value is called the residue of the function f (z)
at the singular point z,. The residue is denoted as

% g f (z) dz=DRes f (z) (75)

; =12,
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When the residue is computed we can obviously take as ¥
a circle |z —z, | = 8 of a sufficiently small radius (see
Fig. 12).

On substituting Laurent expansion (64) into the left-hand
side of (75) and using equality (74), we obtain

Res f(z)=a_,

In the case when z, is a pole of order n the residue a_; can be
found with the aid of the obvious formula

1 . dn—l
= (n—1)! 1}»12 -1 [(z2—20)" ] (2)] (76)

Let a function f (z) be continuous in D |J S and analytie
in D everywhere except isolated singular points z, € D

Fig. 12 Fig. 13

(k =1, ..., m), and let the boundary S of the (finite) do-
main D be a piecewise smooth closed Jordan curve. Then
formula (48) implies

o= | 1 (z)dz_sz ( (z)dz—S‘Resf(z) (77)

2mi J =
S |z— zhl-ﬁ h= 12 r

Formula (77) makes it possible to easily compute some
definite integrals.
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For instance, if it is known that a function f (z) is con-
tinuous for Im z > 0 and is analytic for Im z > 0 every-
where except a finite number of igsolated singular points
2, >0, Imz, >0k =1, ..., m), and if

]f(z)|<%, M = const >0 (78)

for sufficiently large | z |, we can apply formula (77) to the
domain D of the form of a semi-circle |z | << R, Imz >0

containing all the points z, (k= 1, ..., m); then (see
Fig. 13) we obtain
R by m
S f(z) dz+ 5 f (Rei%) i Rei®d0 = 25i ) Res (z)  (79)
By 0 B=17""h

When R — oo the second integral on the left-hand side of
(79) tends to zero (this follows from (78)). Therefore we derive
from (79) the formula

év_’ﬁg

R m
f@)dz = lim _SR f (@) dz = 2mi 3 Res f(2)

h—t 2=k

7°. Schwarz’s Formula. Solution of Dirichlet Problem.
Let us consider the following problem: it is required to
find a function f (z) analytic in the circle |z | << 1 whose
real part u (z, y) is continuous for | z |<J1 and assumes the
limiting values u* ({), described by a (known) continuous
function o (), as the variable point z tends to the circum-

ference | § | = 1 of the circle |z | << 1 from its interior:
ur () =9(), [T]1=1 (80)
For the points belonging to the circumference | { | = R

of the circle |z | << R of radius R << 1 we have [ (%) +

4 7 () = 2u (£). On multiplying both members of this
equality by 1/2 ni ({ — 2) (|2 | << R) and integrating over
the contour | { | = R, we obtain, by virtue of Cauchy’s
integral formula (47), the relation

d
- [ 0L p<r @
itf= [¢1=R
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Let us consider Taylor’s expansion
oo
f(z)= 2 aps*
A=0
in the circle |z]<<1; on denoting { = Rei® for |{|=R
-]

(then Z=R€‘i°=%), we can write m=22’£k=

k=0
= 2 ak . Therefore the second summand on the left-

hand sule of (81) can be written in the form

1 foad k ag
= al art | . <R
2mi ICIS=R {—z 2m R IL|S=R th (L—2) o
(82)
From formula (74) we obtain
1 dat

To compute the integral on the right-hand side of (82)
we apply formula (77) with k& > 0'

1 dg

g min T e + Res sy 9

The residues on the right-hand side of (84) are found
using formula (76):

Res 1 ! lim di 1 (g1 )=__i

1m0 SFE—2)  (e—DI g dFF \ T—z P
and
1 1
Res =o' FT=9 =lim 7=
Consequently
! dg 1,1
o R +—5=0 (85)
Iti=R

[z|<R; k=14, 2,...
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Using formulas (83) and (85) we bring (81) to the form

1 di -
1= | *8E_7 (86)
lti=R
where a, = f (0) = u (0, 0) — iv (0, 0). Further, taking
into account condition (80), we pass to the limit for R — 1
in (86) and thus find
1 .
fz)=—=- S E;(_C_)j_@_u(o, 0)+iv @, 0)  (87)
lgi=1
For z=0 we obtain from (87) the equality
i 1 f)d
1O +7O) =220, =5 | Q&
IE1=1
whence

1 d
.
1=

On substituting the value of u (0, 0) expressed by (88)
into (87) we arrive at Schwarz’s formula:

fO) = | Pre@do+ic (89)
[Gi=1
t=ei, C=v(0,0)

This formula makes it possible to reconstruct a function f (z)
analytic in the circle | z | << 1 from the boundary values of its
real part on the circumference | { | = 1 of that circle to within
an arbitrary pure imaginary constant.

Since for the boundary | ¢ | = 1 of the circle |z | << 1
we have

L4z 1—[z[242iImTz

—z [E—z]?
Schwarz’s formula (89) implies Poisson’s formula
" ‘2:: 1= (s
— __ —1z i0
u(@)=u(z, y) = 5,eie_z.zq’(" )do  (90)

0
10—-0598
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which expresses the solution of the Dirichlet problem for
harmonic functions in the circle |z | << 1 (cf. formula (17)
in Sec. 2°, § 2 of Chapter 1).

Using Riemann’s theorem, the theorem on the correspon-
dence of boundaries and formula (90) we can prove the existence
of the solution of the Dirichlet problem stated in the following
general form: for a domain D in the complex plane of the
variable § = § + in bounded by a closed Jordan curve S it is
required to find the harmonic function uy, (8) = uy (§, 1)
which is continuous in D |J S and assumes on S given values
described by a continuous function g (L).

Indeed, the sought-for harmonic function u, (&, 1) must
be the realypart of a function F ({) analytic in the domain D.
Further, there is a function z = f (%) specifying a conformal
mapping of the domain D onto the circle |z | << 1; the
function u (z) = u (z, y) = Re F [f~! (z)] is harmonic in that
circle and is continuous in the closed circle |z |<<1, on the
boundary | 2 | = 1 of that circle it assumes the values de-
scribed by the continuous function ¢ (z) = g {f™ (z)]. The
function u (z, y) = u (2) is found with the aid of formula
(90); finally, the sought-for harmonic function is expressed
in terms of u (z,[y) in the form u, () = wylf (O)I.

§ 4. Analytic Continuation

1°. The Notion of Analytic Continuation. Let D, and D,
be two domains in the plane of the complex variable z, and
let their intersection d = D, ) D, be also a domain in the
z-plane. Let us consider a function f, (z) analytic in the
domain D,. If there exists an analytic function f, (2) in D,
coinciding with f, (z) in d, we say that the function f, (2) is
the analytic continuation of the function f, (z) from the domain
D, to the domain D, across the common part d of these domains.
The uniqueness theorem for!analytic functions obviously
implies that,if the analytic continuation exists then it
must be unique (Fig. 14).

2°, The Continuity Principle. Let us suppose that two
simply connected domains D, and D, are such that their
boundaries have a common part which is a smooth Jordan
curve v, the intersection D; ) D, being void.
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By the continuity principle for analytic functions is meant
the following proposition: if f, (z) and f, (z) are analytic
functions, in the domains D, and D, respectively, which are

Fig. 14 Fig. 15
continuous including the arc v, and if il is additionally known

that
i (z) = f,(2) for z€vy
then the function
fi(z) for z€D,
f(z) = f2(2) for z€D,
f1(2) =Js(z) for z€7w
is analytic in the domain D = D, |JD, |J v (in the case
when the curve y is non-closed we suppose that its end
points are excluded from it; see Fig. 15).
The continuity principle will follow from Morera’s theo-
rem if we manage to show that the integral of f (z) over
any closed piecewise smooth Jordan curve S lying in D

is equal to zero.
In the case when S lies in D, {J y or in D, |J y the equality

S f(z)dz=0

S
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follows from Cauchy’s theorem. Now let us consider the case
when S is the boundary of a domain Dg whose intersections
with both D, and D, are not void. According to Cauchy’s
theorem, the integrals of f(z) taken over the contours
Ds 1 D, and D ) D, are equal to zero; in the sum of these
integrals the parts of the arc y contained in the contours
Ds N D, and Dg ) D, are described by the point z (z is the
variable of integration) twice in opposite directions, and
therefore in the case under consideration the integral we are
interested in is also equal to zero.

3°. The Riemann-Schwarz Symmetry Principle. Let a
part y of the boundary of a simply connected domain D
lying in the upper or in the lower half-plane be a segment of
the real axis Im z = 0, and let f (z2) = u (z, y) -+ iv (z, y) be

YA
p/
7 _ z
7
Fig. 16

an analytic function in D continuous including the line
segment y; further, let the imaginary part v (z, 0) of this
function be equal to zero on y: v(z,0) = O forz € y. Riemann
and Schwarz proved the following proposition known as the
Riemann-Schwarz symmetry principle (also called
the reflection prineiple): let D be the domain symmetric
to D about vy; then under the conditions stated above, the
function f (z) can be continued analytically from D to D, and
if 2 €D then f (z2) = f (2) (see Fig. 16).

To prove this principle we shall use the fact that in a
neighbourhood of any point 2z, € D we have f(z) =
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ay (z — z)". It follows that the series ) a, (z — z,)* =
R =)

=

I
| L NZE:

= f (z) is also convergent. By f(z) = f (z) we shall mean
the analytic function in the domain D equal to the sum of

the power series Y, a, (z — z,)* (z, € D). Since Im f (z) = 0
K=0

for Im z = 0, we have f (z) = f () when z € y.
The function
f(2) for z¢D
F(z)={ f(x)=f(x) for xz€9y

f(2) for z€D
is analytic in the domain D |y D v, which follows from the
continuity principle; hence, the Riemann-Schwarz symmetry
principle has been proved.

Now let us consider a domain D a part y, of whose bound-
ary is an arc of a circle C; let D, be a domain lying outside
D, adjoining v, and symmetric to D with respect to C.
As is known, there exists a linear-fractional function speci-
fying a conformal mapping under which the image of y,
is a segment y of the real axis. Therefore the Riemann-
Schwarz symmetry principle can also be stated thus: if a
function f (3) is analytic in the domain D and continuous in-
cluding the arc y,, and if Im f (z) = 0 on y,, then the function

f (2) can be continued analytically from the domain D to the
domain D, across v, and for z € D, the equality

f(2) = F(z)

holds where z, is the point symmeiric to z about C.

§ 5. Formulas for Limiting Values
of Cauchy-Type Integral
and Their Applications

1°. Cauchy’s Principal Value of a Singular Integral. Let
S be a closed piecewise smooth Jordan curve, and let f (2)
be a continuous function defined on S. In Sec. 4°, § 2 of the
present chapter wg showed that Cauchy-type integral (49)
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of the function f (¢) along S is an analytic function at every
point z not lying on S. For z € S the Cauchy-type integral
obviously does not exist in the sense of the ordinary defi-
nition; however, under some additional assumptions con-
cerning the function f (¢) and the curve S, this definition
can be generalized in a proper manner.

Below we shall suppose that the curvature of the curve S
is continuous. Let t, € S and let y be the circumference of the
circle |t — t, | << & of a sufficiently small radius & > 0;
by S, we shall denote the part of S lying outside the closed
circle |t — ¢, |<Ce.

It is obvious that the integral

. f(@)de
Ie_g 1—1,

SE
exists in the sense of the ordinary definition.
If the limit
lim I, (ty) =1 (¢y)
£-0
exists, it is called Cauchy’s principal value of the singu-
lar integral

S f () de
—1g
S
and is denoted
d
I(to):v.p.j ’t(‘_)t: (91)
S

where v.p. is the abbreviation of the French valeur principal
prineipal value.

Let us show that if f (¢) satisfies Hélder's condition, that is
if there exist constanis A >0 and 0 << h<C1 such that

1F ) —Ft) ISA Tty — 1, | (92)

for any t,, t, €S, then integral (91) exists in the sense of
Cauchy’s principal value.

Indeed, on the bhasis of Cauchy’s integral formula (46),
we can rewrile the expression of 7, in the form

It = | FO=2O) ar - omif (1) — £ (1) |

Se Vi

di
t—1tg
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where 7y, is the part of the contour y lying outside the finite
domain D with boundary S.

By condition (92), we conclude that the improper integral
5 F(®)—1 (t) dt — 1lim 5 [O—F @) g4
t
5

t—1tp e0 — iy

8¢

is uniformly convergent and is a continuous function of i,
On the other hand, we have

lim S Y Yim i S dp=mni, t—1t,=eei®
e=0 o I~ e->0
1 vl.
Consequently, on passing to the limit for ¢ — 0 in the
expression of I, (t;) obtained above, we arrive at the relation

lim I, (tg) = | L0 i (1) 4 [ TO—L) gy (g3
20 S‘ 0 éJ [
In the case when the curve S is non-closed, under the as-

sumption that ¢, € S is not an end point of S, Cauchy’s prin-
cipal value of the singular integral

f(t)dt
t—1,

can also be defined as the limit of the expression

L= { L= ary j gy [ 2

t—1p
S8 Se

for ¢ > 0, and this limit is sure to exist when the function
f () satisfies Holder’s condition.

2°. Tangential Derivative of a Single-Layer Potential.
In Chapter 1, § 4, Sec. 3°, when studying single-layer poten-
tial (59), we used representation (62) in which the function
v (z) satisfied conditions (60). Since the integral terms on the
right-hand side of (62) are continuously differentiable func-
tions when the point x passes from D* to D~ through an
arbitrary point z° € S, formulas (52) and (60) of Chapter 1
imply that the tangential derivative of a single-layer potential
exists and is continuous when the point z passes from D* to D~.
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Let us write the expression of a single—layer potential in
the form
u(z) = ——S In|t—z|p(@)ds, z=x+1iy

125
5

to show that
du(to) _ to OB _l__LS
ds, 3 t—1p 21
5 S

for z = t, € S where s and s, are the curvilinear coordinates

(reckoned as the arc lengths along S) of the points ¢ and ¢,

, di = 1 .

t, = d—s(‘: , U= @ and 0 (¢, ty) = arg (t —t,). The integral
ds

in the first summand on the right-hand side of (94) is under-

stood in the sense of the definition of Cauchy’s principal
value while the integral in the second summand is under-

d
00 tds  (9%)

stood in the ordinary sense because the denvatlve 0 (z, t,)

is a continuous function (see Chapter 1, § 4, Sec 1°).
Let us denote by ¢, and ¢, two points on S whose curvilinear

coordinates along S are s, — ¢ and s, -+ & respectively

where ¢ > 0 is a sufficiently small number; the part of the

curve S lying outside the arc t,¢,t, will be denoted S,.
It is evident that for

e (t0) = — 5z | In|t—1t, | (6)ds (95)

S

we have hm ug () = u (t,) where the passage to the

limit is unlform with respect to Z,. Differentiating both
members of (95) with respect to s,, we obtain

dug (1 1 d
Liss—f)l))z _ESS a0 [t —to [p(t) ds+
-]
1 1
Since
p.(tz) lnltz—tol—‘p.(tl) lnltl—tol =

= [ (1) = () In | o —tp| —p (1) In =)
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and

lim |t1—to| —
>0 Itﬂ_tOI

and since the function p possesses a continuous derivative
of the second order, we have

lain;ll[p,(tz) In|ty—tg|—p () In|t; —t,]]=0

On the other hand, the equality
|6 to] = (1 —1g) =0 .
implies that

d - th . d
E1n|t——to|—— i ! T]E[;e(t, to)

for €S, and hence

1 ¢ d
"%SS g inli—t|n (@) ds=

€
[ Yu@)dt i S d
_ES t—1g + o dsg 0, to) ds
SG SB
Taking into account the fact that the function t'p (t) is
sure to satisfy Holder’s condition (92) we obtain, by virtue

of the definition of Cauchy’s principal value of a singular
integral, the relation

T (5) dt __:5 T () de

1i
m t—1g i—1g

e—~0
e
Therefore, passing to the limit in equality (96) for ¢ — 0
we obtain

, ) ; d
lim 2t — i [ TROS L L T2 02, 1) ds
€0 o 3 0 g o

and the passage to the limit in the last relation is uniform
with respect to t,, whence, on the basis of the well-known
theorem proved in mathematical analysis, we conclude that
the tangeptial derivative of a single-layer potential can be
represented in integral form (94).
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3°. Limiting Values of Cauchy-Type Integral. We shall
suppose that the Cauchy-type integral

F(3) =5 | 102 (97)

2mi t—z

is taken over a contour S which is a closed Jordan curve
possessing continuous curvature, and that the function f (f)
is one-valued and twice continuously differentiable.

Under these assumptions expression (97) can be written
in the form

F(z) = u'2) + v (2) (98)

where

u(z)=%§ f(t)a—ztlnlt—z|ds, t=f(s)  (99)
S

is the double-layer potential with the “dipole moment per
unit length” f(f) and

v (8) =57 | F(O) = In|t—z|ds=— 5= { In|2—z]f,ds (100)
S

8

is the single-layer potential with density %f’ (s).

According to what was shown in Secs 2° and 3° § 4 of
Chapter 1, the function v (z) is continuous throughout the
whole complex plane of the variable 2z, and the limiting
values of u (z) for z tending to ¢, € S from D* and D~ are
expressedfby the equalities

u(to)—ZnSf(t) Injt—to]ds+f(t)  (101)
and

W (o) = S(t)—ln[t——tolds—%f(to) (102)
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respectively (see formulas (54) and (55) in Chapter 1).
Besides, from (100) we obtain

v (L) = —5— S‘ In|t—to|f (s)ds=
5

- —Hth In|t—1t|f' (s)ds==

1 . [0
gl {) Finlenl 0 b
SE

—|-f(t2)1ﬂ|tz'—to|—f(t:.) 111|l‘1—l‘o|}

where S, is the part of S considered in the foregoing section.
Since

o 0 , 0
ﬁ1n|t——toilen(t—to)—zge(t, ty) =

t , 0
=g iy 0 )

and
Lim [f () In|tya—tg|—f(2) In|t,— 24, |1=0
£~0

we obtain for v(Z,) the expression

1 t) dt 1
v(t) = | B — o (200 W) F ()
S S

21
S

=L,S 2 n|t—1,) ] (t)ds (103)

From (101), (102) and (103) we conclude that there exist
limiting values F* (ty) and F- (i,) of Cauchy-type integral
(97) when z tends to t, € S from D* and D~ respectively which
are expressed by the formulas

F* (to) =5 1 (o) + = Sf(t) In|t—to| ds -+

1 3]
+2—m55§1n|t—t0|f(t)ds

S
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and

F(t) = — 51 ()t | 105 In]t—t, | ds+
S

+2isj S5 Injt—to| f(0) ds

From these formulas, using the obvious equality

a . 0 ¢
%lnit_lﬂl_l_ta—\?tlnlt—t()l:tfto

we obtain
F* () =5 1 (1) + 5 | TEE (104)
and i
F-(tg) = — | (to) + 5 | L2 (105)
5
From (104) and (105) immediately follow the equalities
F* (o) — F~ (to) = f (o) (106)
and
F* (t) + F- (to) == 5 ft‘i—)t‘i‘ (107)
8

known as the Sokhotsky-Plemelj formulas.

4°. The Notion of a Piecewise Analytic Function. The
conclusions drawn in Secs 1°, 2° and 3° of § 5 also remain
valid for some more general conditions on the curve S and
on the functions f () and p (¢) defined for ¢t € S. In partic-
ular, formulas (104), (105), (106) and (107) remain valid
when the function f (¢) satisfies Hélder’s condition and S
is a Lyapunov curve, that is a curve for which the function
0 (f) describing the dependence on t of the angle between the
tangent line to S at the point t and some constant direction
(for instance, the direction of the real axis in the complex
plane of the variable z) also satisfies Holder’s condition.

From representation (93) of the singular integral under-
stood in the sense of Cauchy’s principal value and from
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formulas (104) and (105) it obviously follows that F* (¢,)
and F~ (t,) are continuous functions. Moreover, if f (t) satisfies
Hilder’'s condition of order h, 0 << h << 1, then so are the
limiting values F* (t;) and F~ (t,). Below we shall make
use of this assertion (but its proof will not be presented).

A function @ (z) defined in a domain D is said to be
everywhere continuously extendible to the boundary S of D
if the limit

lim® (z), z€D
2t
exists for every ¢ € S.

The argument given above implies that, under the con-
ditions imposed on S and f, the function represented by the
Cauchy-type iniegral is continuously extendible to S both
from D+ and from D-,

A function @ (z) which is analytic both in D+ and in D~
and which can be extended continuously everywhere to the
boundary S of these domains will be referred to as a piecewise
analytic function on the plane of the complex variable z.
The conclusions drawn in the foregoing section imply that
if the function f (t) in Cauchy-type integral (97) satisfies Hil-
der’s condition, then the function F (z) represented by formula
(97) is piecewise analytic.

The difference @* (1) — @~ (t) = g (t) will be referred
to as the jump of the piecewise analytic function ® (z).

In the case when ®* (¢) and @~ (¢) are continuous func-
tions and g (1) = 0 everywhere on S, the continuity prin-
ciple proved in Sec. 2°, § 4 implies that @ (z) is an analytic
function throughout the whole complex plane of the variable z,
and hence, by virtue of Sec. 6°, § 3 of the present chapter, the
function @ (2) is either identically equal to a constant (in
particular, to zero) or is a polynomial or an entire transcen-
dental function.

5°. Application to Boundary-Value Prohlems. In applica-
tions the following boundary-value problem is frequently
encountered: it is required to find a piecewise analytic function
® (z) satisfying the boundary condition

O () — O~ (1) =g(@), t€S (108)

where g () is a given function satisfying Holder's condition.
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In the case when S is a closed Lyapunov curve, formula
(106) implies that one of the solutions of problem (108) is
expressed by the Cauchy-type integral

g (t)dt
(I)(Z) ,ZmS t—z

S

Let ® (z) denote the general solution of this problem;
then, by (108), for the difference @ (z) — @, (z2) = Q (z) the
relation

Q*()—Q- @) =0, teS
holds, and consequently Q (z) = P (z), that is

© () = g7 | FOL 4P (z) (109)

N

where P (z) is an arbitrary entire function.

If we require additionally that the solution @ (z) of
problem (108) should have a pole of order n, n > 1 at in-
finity, or should be bounded, then in formula (109) we must
write, instead of an arbitrary entire function P (z), an ar-
bitrary polynomial of the nth degree or an arbitrary constant
C respectively.

According to (109), in the neighbourhood of the point at
infinity we have

[¢ <]

S e [ e trar+ Py ()

k=0 S

and therefore the solution of problem (108) having a zero of
multiplicity n at infinity always exists for n = 1, and for
n > 1 il exists only when the conditions

Sg(t)t"dt:O (k=0, ..., n—1)

8

1
27

D(z)= —

hold; in both cases the solution is unique and is expressed by
formula (109) in which P (z) = 0.

The solution of the problem of determining a piecewise
analytic function ¥ (z) satisfying the boundary condition

() 4+ U () = g ()
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is obviously given by the formula
M(z) lor zeD*
vo={ 40 €D
—®(z) for z2€D

where @ (z) is the solution of problem (108).

In the case when S is a straight line, say the real axis, and
D* andj D~ denote the upper and the lower half-plane
respectively, the solution of problem (108) bounded throughout
the whole complex plane z is given by the formula

1 0o
D (z) = S gt(_t_—);“{—c (110)

— 00

where C is an arbitrary constant.
To prove the assertion we have stated let us consider the
function
z—i

- 241

specifying a conformal mapping of the upper half-plane D*
onto the circle | w | << 1 (see Sec. 5°, § 1 of the present
chapter).

If @ (z) denotes the solution of problem (108) in the case
under consideration, then the function

F )= (i 1+”’) (111)

1—w

w

is the solution of the boundary-value problem
Fr() —F- () =g (v), |7]|=1 (112)

where

f(m=g (i 12<)

By virtue of (109), the bounded solution of problem (112)
has the form

F (w) = 2:” S £ @at | o (113)

T—w
|T)|==1
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where C, is an arbitrary constant. By virtue of (111), we
obtain from (113) the expression

oo

. z—iy A z--i g () di
(D(z)_F( z2-41i )_ 2mi 5 14 t—2 _l_C

- 00

1 (ewa
 2mi S t—z +C

— 00

where

o0

—C,— 1t g@) dt
C=0Cy 2 S 1+
The integral on the right-hand side of formula (110) is
understood as the limit of the expression

N” .
| ez (114)
N’

when the positive constants N’ and N” independently tend
to infinity. It is evident that in this case we must require
that the function g (f) should have the form

g(t)=0/I", h>0

for sufficiently large | ¢ | where O (1/| t |") denotes an in-
finitesimal of the same order as 1/| ¢ |* for t — oo. In the
case when

g (t) =const + 0O (/| t |, h>0, const =0

for sufficiently large | ¢ | we should put N' = N” in expres-
sion (114), that is the integral on the right-hand side of
(110) should be understood in the sense of Cauchy’s principal
value.

Using solution (110) of problem (108) we can easily derive
Schwarz's formula

F(2)=—— 5 CLENT (115)

— 00

which determines, to within a pure imaginary arbitrary additive
constant iC, a bounded and analytic function F (2) = u (z, y)+
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-+ iv (z, y) in the upper half-plane D* which is continuous
including the real azxis y = 0 and satisfies the boundary con-
dition
ReF (t) =f (), —oo << t< 00 (116)
where f (t) = O (1/| t |*) (b > 0) for sufficiently large values
of | t].
Indeed, let us write condition (116) in the form

Fry4+ Fr (1) =2f(t), —oo<t<<oo  (117)
and let us construct the function

F (z) for z¢ D*
G (Z) == { _— —
—F(z2)=—F(z) for z€D"

The function G (z) can be extended continuously to the
whole real axis both from D+ and from D-. Since ¥ (z) =
=u(z, —y) — iv(x, —y) for z € D-, condition (117) is
equivalent to the condition

G (D) —G (1) =2 (1), —o0<i< oo
Therefore, by (110), we have

00

G(Z)=:+t 5 “t)dt—q—const

t—2z

— 00

The function F (z) = G (2) is obviously the solution of prob-
lem (116) when const = iC where C is an arbitrary real
constant.

It should be noted that formula (115) also gives the solution
of problem (116) in the more general case when the function
f (t) has a finite number of singularities on the real axis but
is integrable over that axis.

Using this remark we shall show that Schwarz’s formula
(115) makes it possible to express in quadratures the solu-
tion of the following boundary-value problem: it is required
to find a function @ (z) which is analytic in the upper half-
plane D* and continuous including the real axis except two
points z = —a and z = a at which it may turn into infinity
but is integrable over the real axis, has a simple zero at infinity

11—0598
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and satisfies the boundary conditions

Red (t) =f(@), —a<it<a, a>0 (118)
and

Im® (@) =0, —oo<i<—a a<<t<<oo (119)

where f (t) is a given real function in the interval —a < z << a
satisfying Hilder’s condition.
Indeed, let us choose a one-valued branch of the function

1V @* — 2® which assumes real values for —a << z << @ and let
us consider the new function

F(z)=Va2—3z% ®(3)

where @ (z) is the sought-for solution of problem (118), (119).
The function F (z) is analytic and bounded in the upper
half-plane D+ and satisfies the boundary conditions

Var— f(t) for —a<t<a
ReF(t)._{ 0 for —oo<t<<—a,
a<<t<{o

This function is given by formula (115):

F(z)-—j ‘/“’—‘ @) dt+iC

-0

whence we find

. a?—1? f(t)dt iC
Q(a)= S l/-a’——z’ t—z Vaa_za (120)

The constant € can be chosen so that the function @ (z)
is bounded at one of the end points of the interval (—a, a).
For instance, if we take

1 SV“z 2 f(t)(ait
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then formula (120) expresses the uniquely determined solu-
tion

1 (/@I E—5] a4t
(D(Z)Zb?u'— _S V (a—1t) (a+32) t—z (121)

of problem (118), (119) which is bounded at the point z = a

‘;12 is meant the branch of the function

turning into i for z — oo.

where by

§ 6. Functions of Several Variables

1°. Notation and Basic Notions. An ordered n-tuple z =
= (2, . . ., 2,) of the values z,, . . ., z, of the complex varia-
bles zp, = xp + iyr (k= 1, ..., n) will be referred to as a
point of the n-dimensional complex vector space C™. The space
C" can be interpreted as the 2n-dimensional Euclidean space
of the real variables z;, . . ., Zp} U1, - - s Yn-

A set of points z € C™ satisfying the conditions

|zk_z?zl<rk k=1, ... n)

where r, are positive numbers is called an open polycylinder
of radius r = (ry, . . ., rn) With centre at the point z° and is
denoted C (r, z°); a set of points z € C" satisfying the con-
ditions

Izh——z%lgrh (k:l, ey n)

will be called a closed polycylinder and will be denoted
C (r, z%. The points z € C* for whiech the equalities
|z, — 2% | =ry (k= 1, ..., n)are fulfilled form the skele-
torn of the polycylinder C (r, 29.

The concept of a polycylinder makes it possible to intro-
duce the notions of a neighbourhood of a given point, of an
interior point, of a limit point and of an isolated point for
a set £ of points belonging to the space C™, and also the
notions of an open set, of a closed set and of a bounded set
in C™.

Let E and E, be some sets lying in C" and in the complex
plane of the variable w respectively. In the case when there

11*
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is a law according to which to every value z € £ there cor-
responds a definite value w € E,, we say that w is a one-
valued function of the variable z or, equivalently, a one-valued
function of several complex variables z,, . . ., z,; in this case
we write

w=7[@)=f(z ..., 2z)

A function f (z) of several variables defined on a set £

is said to be continuous in the variables z;, . . ., z, at a limit
point z° € E of that set if, given an arbitrary number ¢ > 0,
there is a system of positive numbers § = (§;, ..., §,)

such that for any two points z' € £E N C (8, 2° and 2" €
€E NC (5, 2% the inequality | f(z') — f (z")] << e holds.

The definitions of uniform continuity of a function f (2)
defined on a set £ and of convergence and uniform conver-
gence of a sequence of functions f, (z2) (n =1, ...), 2€E
are stated in just the same way as in the case of a function
of one complex variable.

A finite sum of the form

P ahl,_,knz’i“ cor =Py (2)

where ay, ..., are given complex numbers with indices
ki, . . ., k, assuming nonnegative integral values such that

n
2 ky = m, is called a homogeneous polynomial of degree

=1
m in the variables 24, . - - 2, It is evident that Py, (3) is
a continuous function for all finite values of z.

2°, The Notion of an Analytic Function of Several Varia-
bles.Letw=f@E)=u(@,y)+ vy (= (2,... ),
vy= W, .- Yn)) be a function defined in a domain D
of the space C™ whose real and imaginary parts considered
as functions of the real variables z;, ..., Z,; ¥1, -« ., Un
are continuous together with their partial derivatives of the
first order in their domain of definition.

Let the variables z, receive some increments Az, (k =
=1, ..., n). Then the corresponding increment Aw of the
function w = f (z) can be written in the form

Mw=3, (5o Ant-Ain) +o(las)  (122)

h=1
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where

9 _1(a . 8 9 Ay a8 . @
dzy, —f(azh_layh)’ a;h_2(6zh+l0yh)

Azh = A.’Kh + i Ayhi A;h = Axh — i Ayk
and o |Az |) is an infinitesimal of a higher order than

[Az|= 2 | Azy |-
If the part

i ( of Az + Azh)

0zp
h=1

of increment (122) of the function f (z)is a linear form depend-
ent solely on Az, (k = 1, . .., n) at each point z € D, that
is if for every point z € D the equalities

% 0 (k=1,...,n) (123)
0zh

hold, the function f (z) is said to be aralytic in the domain D.
Relations (123) are the complex representation of the
following systems of equalities involving real quantities:

ou o

Equalities (CR) are called the Cauchy-Riemann system of
partial differential equations for several independent variables
corresponding to an analytic function f (z) of several varia-
bles.

The expression
dw—df = 3 <L dz, (124)

k=1

is called the total differential of the analytic function f (z).

The above definition of an analytic function f(z) =
= f (24, . . ., 2,) implies that f (z) (considered as a function
of several variables z;, . . ., 2z,) is continuous in the variables
%y, - - -, 2p in the sense of the definition stated in Sec. 1°,
§ 6 of the present chapter; it also follows that f (z,, . . ., 2,)
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is analytic with respect to each of the variables z, separately
in the sense of the definition of an analytic function of one
independent variable (see Sec. 1°, § 1 of the present chapter).
It turns out that the converse proposition is also true: if
the function f (z) is analytic with respect to each of the variables
2, (k =1, ..., n)separately in the domain D then it is analy-
tic in z € D in the sense of the definition of an analytic function
of several complex variables. This proposition is known as
Hartoges' theorem; its proof will not be presentedihere.

The coefficient 8f/9z, in dz; on the right-hand side of
formula (124) is called the partial derivative of the analytic
function f (z) with respect to the variable z;, and it can be
computed using the formula

Fy oees2ntHAZRy coesZn)—F (245 oo vy 2Ry o - ey zn):
Oz Az >0 Azp

, ou v
yn Yn

ou . Ov
o T T

It can readily be checked directly that every polynomial
in the variables z,, . . ., z, is an analylic function.

3°. Multiple Power Series. A functional series in several
variables of the form

DT SR (125)

where a,, ... r, are given numbers and the summation is

carried out over all the values of the indices k; (j = 1,. . ., n)
ranging from zero to infinity is referred to as a multiple
power series or a power series in several variables z,, . . ., z,.

From the course of mathematical analysis we know that
if a power series

(o<
> apz®
=0

in one complex variable z is convergent at a point z, =0 of
the complex z-plane then this series is absolutely convergent
in thecircle | z | << | 24 | (thisis Abel’s theorem). It turns
out that for general series of form (125) this proposition is
not true. However, if the coefficients o, ... v, of power series
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(125) satisfy the additional requirements

] g
|“h1...hn|<rT—;;n—, ri>0 (126)
Mo,
for all values of the indices where g is a positive number inde-
pendent of ky, . . ., k, then this series is absolutely convergent

in the open polycylinder C (r, 0), r = (ry, . . ., 1), and the
convergence of the series Is uniform in every closed bounded
subset of points belonging to the polycylinder C (r, 0).

Let us consider the series

> g

k120, ..., R, =0

zy |k

Ty

Zn r‘n

n

n

for z € C (r, 0); its terms form a multiple geometric progres-
sion whose sum is equal to the expression

1=ty ()

If conditions (126) are fulfilled then each of the terms of
series (125) satisfies the inequality

k
Ry Rh1 zn |*n
|ak1whnz1 e .

(127)

From (127) follows the proposition stated above.

Since series (125) satisfying conditions (126) is absolutely
convergent in the polycylinder C (r, 0), we can group its
terms so that the series takes the form

"20 P, (2) (128)

where P,, (z) are homogeneous polynomials of degree m
in the varlables 21y . ey By

Since series (128) is unlformly convergent on each closed
subset of the polycylinder C (r, 0) and the polynomials Py,
are analytic fnnetions with respect to each of the varlables
z, (k =1, ..., n) we conclude, on the basis of Weierstrass®
first theorem (see Sec. 2°, § 3 of the present chapter), that
the sum s (z) of the series is analytic with respect to each
of these variables; if, for instance, we differentiate series
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(128) once with respect to the variable z;, the resultant
(differentiated) series possesses the property that its every
term does not exceed in its modulus the corresponding term
of the geometric progression whose sum is the expression

g [2:] \~1 |zn | \—2 [zn] |1
(=) (=0T ()
Consequently, by Hartogs’ theorem, the sum s (z) of power
series (125) is an analytic function in the polycylinder C (r, 0).
All that was established above remains true for a power

series of the form

k R
2 ahl...hn (Z]_—Zg) 1., (zn—z%) n

where 20 = (2, . . ., 23) is a finite point of the space C™.

4°, Cauchy’s Integral Formula and Taylor’s Theorem.
Let f (z) be an analytic function in a domain D — C™ and
let z° be a point belonging to D. For sufficiently small
Ty, . . ., 'y the polycylinder C (r, 2% lies inside D. Let us
choose, for k& =4j, some fixed values of the variables z,
belonging to the circles | z; — z} | << ry; then f(z) consid-
ered as an analytic function of the variable z; in the circle
| z; — 2} | << r; can be represented in the form

f(Z) 2m 5 flagy vustyy oovy2p) dtj

t —_—
tj=2=r,; 1=
with the aid of Cauchy’s formula (47).
On repeating this argument for all j =1, ..., n, we

conclude that for all z € C (r, 2% the following Cauchy inte-
gral formula takes place:

(o= [ e

[t1—2fl=ry
f () din
S (t;—21) «.- (En—2n) (129)

0
Ity=zpl=ry

The integration on the right-hand side of formula (129)
can be carried out in any order because the integrand expres-
sion is continuous as a function of the point t = (¢,, . . ., t,).
Arguing like in Sec. 4°, § 3, we conclude from formula (129)
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that an analytic function f (z) possesses derivatives of all orders
with respect to the variables z,, . . ., z,; by Hartogs’ theorem,
these derivatives are themselves analytic functions in the poly-
cylinder C (r, z%. Since the point z, € D has been taken quite
arbitrarily we have thus proved the existence and the analy-
ticity of all derivatives of an analytic function f (z).

For z € C (r, z°) we have

1 —
(ti—21) ... (tn—2n)
T (=29 ... (tn—123) 2, —2 Zn—12% \
' (1_ ti—z_)“'(i_ tn—z‘,’,)

. 1 2y —29 \R1 2n—12% \Fn
T (=) . (tn—2) 2( ty—z{ ) (tn—Z% )
and the series on the right-hand side is uniformly convergent

with respect to the point t on the skeleton of the polycylinder
C (r, 2°); therefore from formula (129) we obtain the equality

F(2) = S Bryny (B — 2™ o (2o —22)™  (130)

where
1
ﬁhl...hn =Ty 5 at, ...
It1—2z{|=r1
t) dtp
S f(t)de m— (131)

It =23 (t—aPtt L (g —2) "

n= =T

From formula (131) we derive
- M

‘ 5h1...hn ’§ r'{l rhn

where M = max |f (z) | for z € C (r, 2°), whence it follows

that the power series on the right-hand side of (130) is abso-

lutely and uniformly convergent in any polycylinder

C (p, 2°) where p = (py, - - ., Py P <<t k=1, ..., n).

We have thus proved the following T aylo» theorem: a
function f (2) of several variables analytic in a domain D can
be represented in a neighbourhood of every point z° € D in the
form of the sum of absolutely convergent power series (130)
whose coefficients are computed according to formula (131).
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By virtue of formula (129), we have

lf(zy I
L= fan... | an.
|t1——zi’|=r1 Ith—zg|=1-h
5 f(t)din
(t1i—2z1) oo (tr—zp)"* ... (th—2n)

Iin—2ﬂ|=fn
and therefore for the coefficients ﬁhl-nhn given by formula
(131) we also have the expression
Ritoothyy

1 9
Bro oy = ( R ) (132)
z=20

.31 n
9z3 ... 0z

The properties of power series we have established and
Taylor's theorem allow us to conclude that the definition
of an analytic function given in Sec. 2°, § 6 of the present
chapter is equivalent to the following definition: a one-valued
function F (z) defined in a domain D is called analytic if for
each point z° € D there is a neighbourhood in which F (z) can be
represented in the form of an (absolutely) convergent power
series

F(@)=2 Yu..n, (2 —2)™ ... (z,—z8)"  (133)

Using Cauchy’s integral formula, we can show directly
that the coefficients y,,. ., are uniquely determined by
formulas (131) and (132) in which the function f should be
replaced by F. In the case of real variables z;, . . ., 2, this
definition of an analytic function coincides with the well-
known definition of an analytic function of several real
variables stated in the course of mathematical analysis.

5°. Analytic Functions of Real Variables. A function
f (z) defined in a domain D of the Euclidean space E,, is said
to be analytic in D if for each point z° € D there exists a
parallelepiped |z, — 2z} | <8, (k =1, ..., n) within
which f (x) can be represented in the form of the sum of an
absolutely convergent power series

f(x)= 2 Qpy..n (xl—z‘l’)h‘ . (xn—x%)k" (134)
Ri=0, .o k=0

n
Uy eeny n/



FUNCTIONS OF SEVERAL VARIABLES 174

It is evident that the coefficients of this series are expressed
in terms of f () by the formulas

a — 1 girt Hhns
R A azit oz™n 0
PR X=X

n

The class of analytic functions is rather wide. In particular,
it includes the harmonic functions. When the analyticity
of harmonic functions is proved, Poisson’s formula (see
formula (20) in Chapter 1) is used. Here we shall limit our-
selves to the consideration of harmonic functions for the
case n = 2,

Thus, let T =z, &y = Yy and 27 = zo, T 3 = Yy, and let D
be a domain i in the complex plane of the variable z = z -+ iy
in which a harmonic function u (z, y) is defined. Let us con-
sider a circle |z — z, | << R where z, = z, + iy, is an
arbitrary fixed point belonging to D and R is a positive
number smaller than the distance from the point z, to the
boundary of the domain D. In this circle the function
u (z, y) can be represented with the aid of Schwarz’s formula
(see formula (86) in the present chapter):

u(z, y)=Re (ﬂLl S “d | c) (135)
[t—z9/=R
Since for |z—z,|<<|t—z,| we have

formula (135) implies

u(z, y)= BeV Br (2 —2,)" (136)
where
! u(t)dt
BO“H t—3zg +C
|t—2¢l=R
and

1 t) dt
Br = S U"+’O)H (k=1,2,...)
it—z0l=R
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On regrouping the terms on the right-hand side of (136)
in the appropriate manner (this operation is legitimate since
the power series is absolutely convergent), we arrive at a
series in powers of (z — z,) and (y — y,):

o0

u(z §)= ]Z:o Yoy (& — o) (y — Yo’ (137)

The coefficients of the last series are computed with the aid
of the formula

1 ohrtiy
Vrj = kljl (.6zh6y5 )z=zo

The series on the right-hand side of (136) being convergent
for | z — z, | << R, power series (137) converges ahsolutely
in the parallelepiped |z — 2z, | <<ry, | ¥ — Yo | << Iy wWhere
ri (—{— r; << R?, whence follows the analyticity of the function
u(z, y).

Since series (137) is absolutely convergent in the poly-
cylinder C (r, z,) lying in the complex space C? of the vari-
ables 2z = z + iz’, 2, = y + iy’ for ¥ + r! < R?, its sum

U(zy, 22) = N ;_0 Vry (Zl—xo)k (zz—yo)j

which is an analytic function in C (r, z,) (see Sec. 3°, § 6
of the present chapter) can naturally be called the analytic
continuation of the harmonic function u (z, y) from the
parallelepiped |z — z, | <7y, |y — ¥y | << 7p to the poly-
cylinder C (r, zg).

6°. Conformal Mappings in Euclidean Spaces. Let us

consider a system of real functions y; = y; (x,, ..., z,)
(i =1, ..., n)defined in a domain D of the Euclidean space
E, of the points z = (z;, . . ., z,). We shall suppose that

these functions are continuous together with their first-order
partial derivatives and that they specify a one-to-one map-
ping of the domain D onto a domain D, < E,.

Using vector notation we can write the function specifying
this mapping in the form

y =y (138)
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The squares | dx |*> = dx dz, | dy |* = dy dy of the distances
between the points z, £ + dz and y, y + dy (the squares of
the elements of length) will be denoted as ds® and do® res-
pectively.

Function (138) is said to specify the Gauss conformal map-
ping if there exists a scalar function A (z) such that

do® = A de® (139)

In other words, the conformality of the mapping specified
by (138) means that under the mapping there is uniform
magnification (of elements of length)* for all directions is-
sued from the point =z.
Condition (139) is equivalent to the equalities
Oy _oy oy oy

ik k; (i, k=1,...,n)

Under the mapping specified by (138) two infinitesimal
vectors dz and Oz starting from a point z go into two vectors
dy and 8y starting from the point y = y (z). Since

n n
a [/}
dy, = 2 a:—:dxh and &y;= 2 aTy:‘th
h=1 k=1
we obtain, by virtue of (139), the relation

o dy 8y dz 86z
cos &y & = 3y [Toy 1= [&1167]

Consequently, a characteristic feature of a conformal map-
ping is the angle-preserving property.

The following simple transformations are examples of
conformal mappings in space: a parallel translation y =
=z + h, a transformation of similitude y = pz and an
orthogonal transformation y = Cx where h = (hy, . .., h,)
is a constant vector, p is a constant scalar and C is a constant
orthogonal matrix. In the first and the third of these exam-
ples we have A = 1, and in the second example A = p2

The mapping specified by the function

N
= cos dz Oz

x

* See footnote on page 107,— Tr.
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is defined for all finite values of z different from z = 0;
this mapping is called the inversion or the reflection of the
space E, in the unit sphere |z | = 1 or the symmetry trans-
formation of E, with respect to the unit sphere.
On multiplying scalarly both members of equality (141)
by z, we obtain
zy =1 (142)

From (141) and (142) we conclude that |z | | y | = 1, that is
under the inversion two points z and y corresponding to each
other belong to one ray starting from the point z = 0, the
product of the distances from these points to the point 2 = 0
being equal to unity. Since 1/|z 2 = |y |?, we directly
derive the formula expressing the one-valued mapping inverse
to (141) for 2 50, y 5= 0:

Y
[y

For 2540 the differentiation of equality (141) results in
|z|2dz—2(zdz) z

r=

W=z
and therefore | dy |> is expressed by the formula
dx |2
jayp=liof

This means that the inversion specified by formula (141)
is a conformal mapping for z 520, and A = 1/|z |*
In the case n = 2 system (140) is equivalent to one of the
following two linear systems of partial differential equations:
o Oya -0 6y1 + Oyy =0

oz,  0zg dr,

and

0y1 Oy __ 3y, Oys __
P Pl U et Pl

Consequently, in this case the theory of conformal mappings
reduces completely to the theory of one-sheeted analytic
functions of one complex variable z = z, + izy or z =
= z, — iz, respectively.
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In the case n > 2 system of equations (140) is non-linear
with respect to y,, . . ., ¥n, and the number of the equations
in the system exceeds that of the sought-for functions.

The extent to which system (140) is overdetermined is
characterized by the following Liouwville theoremne: for
n > 2 the conformal mappings in the Euclidean space E, are
exhausted by a finite number of superpositions of the following
four types of mappings: the parallel translation, the
transformation of similitude, the orthogonal transformation and
the inversion (also called, as was already mentioned, the
symmetry transformation with respect lo unil sphere or the
reflection in unit sphere). Here we shall not present the proof
of this theorem.



CHAPTER 3

HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS

§ 1. Wave Equation

1°. Wave Equation with Three Spatial Variables. Kirch-
hoft’s Formula. Below we shall suppose that in the space
E, ., of points (z, t) the symbol z denotes the collection of
the spatial variables z,, . .., 2, and ¢ denotes time.

It was proved in Sec. 2°, § 3 of Introduction that if a
function p (2, x4, x3) defined in the space Eg of the variables
Zy, To, Ly possesses continuous partial derivatives of the second
order, lhen the function

u (T, Ty, 23, 1) = tM (1)
where
M= | p(@tit, sotthy, o+ityde (1)
IE1=1
is a regular solution of the wave equation with three spatial
variables:
u 2u o2u ?u
01‘3 + %2 ox} T oz} e 0 (2)

Since the element of area ds, of the sphere |y — z |2 = #?
is equal to 1% do; where do; is the element of area of the
unit sphere | & |2 = 1, the expression

1 1 -
=MW=rm | B wdsy, G

ly—x[2=t2

is the integral mean of the function p (z;, z,, Z;) over the
sphere |y — z |2 = #2.

It is evident that as well as tM (u) the function 8/8t X
X [tM (p)] is also a regular solution of equation (2) provided
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that the function p (z;, x,, T3) possesses continuous partial
derivatives of the third order in the space E3 where it is
defined.

It can easily be shown that the function
1 1 @
u (xl’ Loy T3y t)= An tM (TPH‘ in of [tM ((P)] (4)

is the regular solution of the Cauchy problem for wave equation
(2) with initial conditions
u’(xlv Zyy T3 O)=Cp(.’l:1, Za» -773) (5)
and
ou (z;, x4, T3, t)

ot — VP (£15 Zg, T3) (6)

where @ (z,, 2y, 23) and P (2y, Z,, Z5) are real functions defined
in the space E; of the variables x,, x,, z; and possessing con-
tinuous partial derivatives of the third and of the second order
respectively.

Indeed, as was already mentioned above, each summand
on the right-hand side of (4) is a regular solution of equation
(2) for all points (zy, z,, z3, ?) belonging to the space E,
of the variables z,, z,, 25, t. From (1) and (4) it follows that
for ¢t = 0 we have

1
u (.21, Ly, X3, 0) ZTT-(— S P (xla Zay za) dO'g=CP (zla Tas 13)
&=t
Further, since

ou (x4, Tqy T3, t)=
ot

1 o 1 02 02 o2
=g M W+t (5 T 5 o) M @
we have
2 —
Wu(xn Zy, T3, t) It=0—

: 1
=Tan S P (T, Tay T3) dOg =1 (21, Tp, T3)

lEl=1
Equality (4) expressing the solution of Cauchy’s problem

(5), (6) for wave equation (2) in the case of three spatial
variables z,, z,, z; is known as Kirchhoff’'s formula.

12—0598
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The physical phenomenon described by a solution u (z, f)
of the wave equation is spoken of as propagation of a wave,
and the solution u (z, t) is often referred to as a wave.

Formulas (33) and (34) established in Introduction imply
that

[/} 1 [/}
S tM (9) =M (@) -+ | 5= ds,
S

where v is the outer normal to S at the point y, and therefore
Kirchhoff’s formula implies that in the case of three spatial
variables the wave corresponding to Cauchy’s problem (5), (6)
is completely determined at the point (z,, x,, z3, t) of the space

E, by the values of o, g%) and  assumed on the sphere

(y1— 21)* + (Y2 — 22)* + (ys — z5)* = ¢* of radius | t | with
centre at the point (z,, x4, 3). In the theory of propagation of
waves, and, in particular, in the theory of sound, this fact
is known as Huygens' principle.

2°, Wave Equation with Two Spatial Variables. Poisson’s
Formula. Let us consider the wave equation with two
spatial variables:

0%u u %u
Bat T a1 o 0 @
The solution u (z,, z,, £) of the Cauchy problem for this
equation with the initial data

u (.21, Zas 0) =@ (21, 22) (8)
and

=1 (‘zl’ ‘7:2) (9)

a
ot u (.21, Zas t)

t=0
can be derived from Kirchhoff’s formula (4) provided that
the functions ¢ and + possess continuous partial derivatives
of the third and of the second order respectively.

To obtain the solution we use the fact that when the
functions ¢ and ¢ on the right-hand side of formula (4)
depend solely on the two variables z; and z, this formula
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gives the function

U (zy, Zy, t):Zai'c_t S Y (214 Y1y T2+ Y2) dsy+

|y |2=12

+%%[%‘S @ (214 Y1, 2o+ Y2) dSyJ (10)

Ly fr=t1

which is independent of z; and satisfies both equation (7)
and initial conditions (8), (9).

As is known, the projection dy, dy, of the element of area
ds, of the sphere |y > = 2 on the circle y} + yi<e? is
expressed in terms of ds, by the formula dy, dy, = ds, X

N
X cos (i, V) = i’T‘I ds, where i, is the unit vector along the

zj-axis and v is the normal to the sphere | y |* = #? at the
point (y;, Yo, ¥s). To compute the integrals on the right-hand
side of formula (4) we must project on the circle y; + y2<¢?
both the upper hemisphere (y; > 0) and the lower hemisphere
(ys << 0) of the sphere |y |> = t3; therefore formula (10)
can be written in the form

_ l Y (Y15 Y2) dy1 Ay -
U (Zys gy t) = 2ndS V 22—y —21)* —(yz—22)°
R @ (1> ya) dys Ay, 11
-+ o1 atdS V2—(yy—2,)2 — (ys— 2)? an

where d is the circle (y; — ;)% + (Y, — )22
Equality (11) is called Poisson’s formula. This formula
shows that in order to determine the wave u (z;, z,, t) at a
point (z,, z,, {) we must know not only the values of the
solution and of its time derivative described by the functions
@ (21, z,) and ¥ (z,, z,) on the circumference (y; — z,)® +
(ys — z3)® = 1? of the circle d but also the values of the
functions ¢ (z,, z,) and  (z;, z,) at all the points inside the
circle d. This means that in the case of the two spatial variables
z, and x, Huygens’ principle does not apply to wave processes.
3°. Equation of Oscillation of a String. D’Alembert’s
Formula. Let us consider the case when the initial data
¢ and v depend solely on one spatial variable z = z,. For

12+
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this case formula (11) yields

: vt
u(x, t)_‘_S\p(x"l—Th)dT]l S #-}-
Voow Vi—ni—
=V tt-m
* Voo
1 ang
T Stcp e 1/5 Va—ni—n —nz—nz
s i
t —
= % S Y (z+ m,) arcsin 7;;'2__’{& 1;;:’-11:’% dn, +
—t _ —~
t —
+ zi_n St(P (z+m,) arcsin 1/7'—_" 11/1:—1: d
hd 7 T

.
1

t
=5 S ¢(x+n)dn+%,,it5 ¢ (z+4m)dn=

-t -t

x4+t
=30G@+D+3o@—n+g | v@dr
x-t
The formula
{ 1 ‘ x4-1
u(z =50 @+)+3oE—D+7 | v@d (12)
x=t

expresses the solution of the Cauchy problem for the equation
of oscillation of a siring

P Py
G — o =0 (13)

with the initial data
a
u(z, O)=@(z) and Sru(z,?) A 1 C))

Relation (12) is called D’Alembert’s formula.
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4°. The Notion of the Domains of Dependence, Influence
and Propagation. In Secs 1°-3°, § 1 of the present chapter
we considered the Cauchy problem in which the initial data
were prescribed throughout the whole space E, of the vari-
ables z = (z, ..., z,).

The set of points belonging to the space E, which posses-
ses the property that the value of the solution u (z, t) of
the wave equation at the point (z, ) of the space E, ,, is
completely determined by the values of the functions ¢ (z)

A ﬂ(l,t)

Domain of dependence
(z~t,0) (x+t,0)

Fig. 17

and v (z) assumed on that set is called the domain of depend-
ence corresponding to the point (z, ¢). Those points for
which the corresponding values of ¢ (z) and ¢ (z) do not
affect the value of u (z, ) at the point (z, t) are not of course
included in the domain of dependence (Fig. 17).

As was already mentioned, in the cases n = 2 and n = 1
the domains of dependence corresponding to the point (z, t)
are the circle |y — z 2<% and the line segment |y — z 2<C
< #? in the space E, respectively, and in the case n = 3 the
domain of dependence is determined according to Huygens’
principle.

Now let us suppose that the initial data are prescribed not
in the whole space E, but on some domain G lying in E,,
that is
w(z, 0)=@(2), &0 _y@) for =0, 266 (14)

As is seen from formulas (4), (11) and (12), the values of
¢ (z) and ¢ (z) prescribed on G affect the values of u (z, ?)
assumed at all those points (z, #) of the space E, ., which



182 HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

possess the property that the intersection of the two sets G
and {| y — 2 [*<{¢*} is not void. The set of all such points
is usually referred to as the domain of influence (see Fig. 18).

The set of points (z, t) € E,, 4, for which the corresponding
values of u (z, ¢) are completely determined by the given

4

\ Y7
4%

A propagatio

Fig. 18 Fig. 19

values of ¢ (z) and 1 (z) on G is called the domain of propa-
gation of the wave u (x, t) with the initial data prescribed on G
(Fig. 19).

Formulas (4), (11) and (12) show that for initial data (14)
the domain of propagation of the wave u (z, ) consists of
those and only those points (z, ) of the space E,; which
possess the following property: for n = 3 the sphere | y—z|2=
= {2, which is the intersection of the characteristic cone
|y — z | = (v — ?)? with vertex at the point (, ¢) and the
hyperplane t = 0, belongs to G, for n = 2 not only the
contour |y — z |2 = # (which is the intersection of the
characteristic cone | y — z |2 = (t — )2 with vertex at
the point (2, ) and the plane T =0), but also the whole cir-
cle | y — z [2<(4% belongs to G and, finally, for n = 1 not
only the points x — ¢t and x + ¢ at which the characteristic
straight lines y —z =1 — ¢ and y — 2 =t — 1 (these
lines form the degenerate characteristic cone (y — x)? =
= (t — 1)?) passing through the point (z, t) intersect the
straight line T = 0, but also the whole line segment between
these points belongs to G. )
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§ 2. Non-Homogeneous Wave Equation

1°. The Case of Three Spatial Variables. Retarded Potential.
Let the initial data be prescribed not on the plane : = 0
but on the plane ¢ = t, where 1, is a parameter. We shall
denote by v (2,, %5, z3, ¢, T;) the solution of wave equation
(2) satisfying the initial conditions

D(.’l‘l, Loy T3y Ty, Tl) =0

d (15)
el (%15 Zgp 3, £y Ty)

t=11=g (%4, T3, 23y Ty)

where g (z,, x5, 3, T;) is a given real function possessing
continuous partial derivatives of the second order.

On replacing ¢ by ¢ — t;, we obtain from Kirchhoff’s
formula (4) the following expression for v:

1
v (2:1, Lo,y T3y tv 11) =4ﬂ (t—’l?l) S g (yla yz, Y3y T1) dsy
ly—xi=l1-74]

Let us show that the function
¢

U (2, Zoy gy )= Sv(xl, Ty T3y t, T,) dTy (16)
0

is the solution of the Cauchy problem with the data
0
U (24, 25, 23, 0) =0, i ¢ (Z1y Zay T3, t) 10 =0 (17)

for the non-homogeneous wave equation

u o%u 0%u o%u
wtamta—m - @ amand (18

Indeed, by virtue of (15), it is readily seen that the func-
tion w (r,, z,, z3, t) satisfies initial conditions (17).
Further, from (15) and (16) we derive

d%u t 9
S =£ (23, 22, Z2, t)-|—S o v (21, X2, Tay B, T) AT (19)
T 0
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Fina].]y, from (16) and (19) it follows that
b Fia b
a_xug"'” az’ + 6::; at: = — (20, 23 Ty D+

£ ” ” .
+ S( oz} Bt o 0z} +a 9x§ o8 ) VU (Zy, T3y T3y t, T)dT=

= _g(xl, Zyy X3, t)

which proves the assertion stated above.
The change of the variable ¢ — 1, = t© brings formula
(19) to the form

t

! d
(@, t)“_‘ZESTdT S g (Y1» Yoo Yo t—7) o=
0 r2—g2
1
= In S g (y1s Yoy Yg» t—T1) d'vy (20)
rigi? r
where r = |y — 2 |.

The function u (z, t) defined by formula (20) coincides
with the potential function of a volume distribution of mass
over the] sphere r*<C1* with density] g (y1, ¥y Ysr £ — 1)
and is the solution of problem (17), (18) The function g
in formula (20) involves the values of time ¢ — r preceding
the instant £’at which the wave is observed; that is why ex-
pression (20) is called the retarded (or the delayed) potential.

2°. The Case of Two, or One, Spatial Variables. The above
procedure of constructing the solution of the Cauchy problem
for equation (18) can also be applied to the case of two, or
one, spatial variables.

Since, by virtue of (11), the function

Y _ i g (¥1s Yo, T) 8y1 dy,
v (-131; Lo, t, T) T 2; S V(t_T)’—(yl_Il)"—(yg—zg)’

is the solution of equation (7) satisfying the conditions

8
u(x}, z,7,7)=0 and Wv(x,, Zyy £, T) =8 (zyy 25, T)
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we see that the expression
1 i
u (xy, Ty, t) =3z S dt
0
where d is the circle (x; — ¥1)? + (2, — ¥.)2<<(t — 7)%,
is the solution of the Cauchy problem for the non-homoge-
neous wave equation
Mu %u ®u
2% U 9xz3 817

g (Y11 Y2, T) AY1 dyg 921
25 V(t—T)’—(yl—31)’—(!/2_552)2 ( )

=-—g ('7:11 Ly t) (22)
with the initial conditions
l/]
U (g, 23, 0)=0 and i (21, Zg, )| 1=0 =0

It can similarly be shown that the function
x+1-7
v(z,t, r)=% S g(ty, T) d1y
x—t+7T
is the solution of equation of oscillation of a string (13)
satisfying the initial conditions

v(z, T, T)==0 and %—v(x, L) t=c=g (2, 7)

and that the function

t t x+i-1
u(z,t)y= S.v (z,t,T) dr:—;— S dt S g (1, 1)dt, (23)
0 0 x"t+z
is the solution of the non-homogeneous equation
%u 92
= —2(z,1) (24)

satisfying the initial conditions

Here we suppose that the functions g (z;, z,, t) and
g (z, t) in equations (22) and (24) (and, consequently, in
formulas (21) and (23) as well) possess continuous partial
derivatives of the second and of the first order respectively.
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§ 3. Well-Posed Problems for Hyperbolic
Partial Differential Equations

1° Uniqueness of the Solution of the Cauchy Problem. We
shall show that the Cauchy problem stated above for the wave
equation (both homogeneous and non-homogeneous) carnot have
more than one solution. For the sake of simplicity, we shall
limit ourselves to the investigation of the case of one spatial
variable z; = z.

Let us suppose that u, (z, t) and u, (z, t) are two selutions
of the Cauchy problem for equation (24); then their differ-
ence u, (z, t) — u, (z, ) = u (z, t) is the solution of equa-
tion of oscillation of a string (13) satisfying the initial con-
ditions

u(@,0)=0 and —>u(z,t)|i—o=0 (25)

Hence, we must prove that homogeneous equation (13)
cannot possess a nonzero solution satisfying homogeneous
initial conditions (25). On integrating the obvious identity

_9 v 62u_62u)_
6t(ax’ )=

d ( du du d (du\2 a (ou
=2 () (5) 5 (5) =0
over the triangular domain A with vertices at the points

A(z—1t,0), B(z-+t, 0) and C (z, t), and using formula
(GO), we obtain

[[=2 (% 50+ () 3 ()] en=

du du

= S —2—62—75-111.'—( v)* dg— (g ) dE=0 (26)

AB4+BC+CA

By (25), the equalities du/dt = 0 and du/dt = 0 hold
along AB. Besides, since the line segments BC and CA
are described by the equations £ = —t 4+ 2z + ¢ and § =
= 1+ x — ¢, we have for these line segments d = —dt
and d§ = dt respectively. Therefore equality (26) can be
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rewritten in the form

BSC (Z—g—%:—)zdr—ci(%g——k %"—)2 dt=0
that is

1 t
{0 s { (g 22)"oemo
0 0

. ou ou ou ou
whence it follows thata_g_a_—:zo on BC anda—§+a—1=

=0 on AC. Consequently, at the vertex C (z,t) of the tri-
angle A the equalities 2-— 2* =0 and 5= 42 =0 hold,
that is Z—:=O and%:O.

Since the point C (z, ) has been chosen quite arbitrarily,

the equalities %’—; =0 and %’i =0 hold throughout the
whole plane of the variables z, t. This means that u (z, t) =
= const. Finally, from (25) it follows that u (z, 0) = 0,
whence we conclude that w (z, #) = 0 everywhere.

Now let us suppose that u, (z, t) is the solution of non-
homogeneous equation (24) satisfying the non-homogeneous
initial conditions

u (,0)=9 (@) and 2-u (2, B)|mo=p() (27)

We shall denote by u, (z, t) the solution of homogeneous
equation (13) satisfying non-homogeneous initial conditions
(27) (as is known, this solution is expressed by D’Alembert’s
formula); then the difference u, (z, 1) — uy (z, t) = u (2, 1)
is obviously the solution of non-homogeneous equation (24)
satisfying homogeneous initial conditions (25). Such a
reduction is often used in practical problems.

2°. Correctness of the Cauchy Problem for Wave Equation.
We shall show that the Cauchy problem stated for the wave
equation is well-posed (correctly set). In other words, #o
small variations of the initial data ¢ and { and of the right-
hand member g of the wave equation there corresponds a small
variation of the solution of the Cauchy problem. This follows
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from Kirchhoff’s, Poisson’s and D’Alembert’s formulas and
also from formulas (16), (21) and (23).

For the sake of simplicity, we shall limit ourselves to the
proof of this assertion for the case of homogeneous Cauchy
problem (25) for non-homogeneous equation (24). Without
loss of generality we may assume that > 0.

If the difference g, (2, ) — g, (z, t) = g (z, 1) between
the right-hand members of the non-homogeneous equations

Mu uy Mu %u
6:c’1 _W= — & (I, t) and 6122 - 6t’2 = —§2 (I, t)

is sufficiently small, that is | g (z, t) | << €, then, for the
difference u, (x, t) — u, (z, t) = u (z, t) between the solu-
tions u, (z, t) and u, (z, f) of these equations satisfying homo-
geneous initial lconditions (25), we obtain, by virtue of
formula (23), the inequality

t  xtt-s 1
1 \ 12
|u(x,t)|=? Sdr 5 g (Ty, T) d7q <eS(t—1:)d1:=e—2—-
0 X147 0

Consequently, 2o a small variation of the right-hand member
of non-homogeneous equation (24) in the domain of definition
of that member there correspondsa small variation of the solution
of Cauchy problem (24), (25) provided that this domain is
bounded with respect to the variable t. Taking into account
the uniqueness property of the solution, we conclude that
the Cauchy problem for the wave equation is well-posed.

3°. General Statement of the Cauchy Problem. Up till
now we investigated the case when initial data (27) were
prescribed on the hyperplane ¢ = 0 in the space E, 4, of the
variables z,, . . ., Zn, t. In this section we shall consider a
more general case when the data are prescribed ona mani-
fold L different from ¢t = 0; we shall also investigate the
form of the initial data themselves for which the resultant
problem is well-posed. For the sake of simplicity, we shall
limit ourselves to the example of equation (13).

Let us denote by D a domain in the plane of the variables
z, t bounded by a piecewise smooth Jordan curve S. By
u (z, ) we shall denote a regular solution of equation (13)
in the domain D possessing continuous partial derivatives
inD |S. )
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On integrating the identity
3 (o) = () =0 (28)
over the domain D and using formula (GO), we obtain
].5 [5‘1—1 (06—:1)_ azl at1 ]dx‘ dty =
=§ ;T'i dtl—l—g—t‘idxl:O (29)

Let L be a non-closed Jordan curve with continuous curva-
ture satisfying the following two requirements: (a) every

£ A L
A
V4
7
C(x,2)
v/ 2
Fig. 20

straight line belonging to one of the two families 2 + t =
= const and x — ¢ = const of the characteristics of equa-
tion (13) intersects the curve L at not more than one point;
(b) the direction of the tangent line to the curve L does not
coincide with the characteristic direction corresponding to
equation (13) at any point belonging to L.

Let us suppose that the characteristics z;, —z =1, — ¢
and z, — x = t — t, issued from a point C (z, ) intersect
the curve L at two points A and B (see Fig. 20). On applying
formula (29) to the domain bounded by the arc AB of the

curve L and the segments of the characteristics CA and CB,
we obtain

a dty 4 2= - dz, =0 (30)

AB+BC+CA
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Since for CA and BC we have dz, = dt, and dz, = —dt,
respectively, formula (30) can be written in the form

S "—”dt1+g_: dzy— 2u (C)4u (A) +u (B)=0
A

dxy

whence we find

(@)= u)+guB)+y | ot +aeds (31)
AB

If the solution u (z, ) of equation (13) satisfies the con-
ditions

ou

ulr=eo, WL:‘p (32)

where @ and ¢ are given real functions which are continuously
differentiable twice and once respectively and [ is a vector

zA C(z,t)

Fig. 21

defined on L such that it varies sufficiently smoothly and
does not coincide with the tangent to the curve L at any
point, then, on determining du/dz, and Ou/dt, from the
equalities

du dz, du dty  de ou dzy; ju_ﬁ_\p

o s Ton ds & om A T an dl

where s is the arc length of L, and substituting the given
values of u, du/dz, and 0u/dt, into the right-hand side of (31),
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we obtain the regular solution of equation (13) satisfying
conditions (32).

The problem of determining the regular solution of equa-
tion (13) satisfying conditions (32) is also called the Cauchy
problem. The argument presented above shows that the
Cauchy problem stated in the indicated way possesses a single
stable solution.

4°. Goursat Problem. Now let L consist of two line seg-
ments OA and OB lying on the characteristics z; — ¢; = 0
and z; + t; = 0 respectively. The two characteristics
2, —x =1t— 1t and 2 — 2 = {; — t issued from the point

C (z, t) intersect 04 and OB at the points 4, (’%‘, x-;—t)

and B, (f_—zz_t, —x%t) respectively (see Fig. 21).
The application of formula (29) to the characteristic
rectangle OA,CB, results in

—dt, —|— de =10
OA,+A,C+C.B‘+B,O

that is
du ou ou u
S a_xldxl'*'éil—dtl— S a—ﬁd-ﬁ-l—a—tldtrf—
0A, A,
+ S %dwi—l—g—z dt,— 5 :T"ldz1+27'j_dt1=
CB, B,0
=2u (A;)—2u (0) — 2u (C) + 2u (B,) =0
whence we obtain
u(C) =u (4, + u(B) — u(0) (33)
If it is known that
Uloa=0@), ulog=v(), ¢(@©)=b(0) (34)
then we obtain from (33) the expression

u(e, =9 (55 )+o(E)—e @ (35

The problem of determining the regular solution of equa-
tion (13) satisfying conditions (34) is veferred to as the
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Goursat problem. The single stable solution of this problem is
given by formula (35). In the Goursat problem the data (the
“Goursat data” or the “Goursat conditions”) are prescribed
on characteristic curves (straight lines) of equation (13).

5°. Some Improperly Posed Problems. Since formula (35)
determines uniquely the solution of Goursat problem (34)
in the characteristic rectangle OAO,B with the data pre-
scribed on the two adjoining sides OA and OB of the rectangle
we cannot additionally prescribe arbitrary values of u (z, 1)
on the sides 0,4 and O,B. It follows that the Dirichlet
problem (in which the data are prescribed on a clesed con-
tour) for a hyperbolic partial differential equation is im-
properly posed (not well-posed).

With the aid of a simple example it can also be shown that
the Cauchy problem for the Laplace equation

u %u
-7 T = 0 (36)

is improperly posed.

Indeed, let us consider the following problem: it is re-
quired to find the regular solution u (z, y) of equation (36)
satisfying the initial conditions

u(z,0)=1 (z)=0, 2~

sin nz
0y ly=0

=v(z) =3

Since A*v (z) = % v (z) = (—1)kn2t* s’i:—;w , we find, using
formula (26) established in Introduction, the expression

oc

aR+1 .
(@)= 3, (1) iy (— e S
h=0
__ shnysinnz (37)

= )

Taking sufficiently large » we can make the function
v (x) become arbitrarily small, while the corresponding
solution of form (37) of the Cauchy problem for equation
(36) is unbounded for n — oo. Consequently, the solution
we have obtained is unstable, and hence the problem under
consideration is not well-posed. This example was suggested
by I. S. Hadamard.
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The Cauchy problem and the Goursat problem are also well-
posed for more general hyperbolic partial differential equations
of the second order.

§ 4. General Linear Hyperbolic Partial
Differential Equation of the Second Order
in Two Independent Variables

1°. Riemann’s Function. In Sec. 2°, § 2 of Introduction
we proved that under some general assumptions concerning
the coefficients of a linear hyperbolic partial differential
equation of the second order there exists a non-singular
transformation of the independent variables which brings
the equation to the normal form

%uy o%u,
dx? oy

+A (e, y) G+ B (2, y) S
+C(x,y)u1=F1(x,y) (38)

Equation (38) can also be written in terms of the charac-
teristic variables ‘é =zr+yandn=z—y

ou ou
where
ba=A+B, 4b—=A—B, 4e=C, 4F=F,

w(E, n=u ( £+ §2n )
It is evident that the charaeteristic curves of equation (39)
are the straight lines § = const and n = const.
Under the assumption that the coefficients a and b of
equation (39) are differentiable we can define the adjoint
operator of L denoted as L*:

% 0

L'y = — FEom (av) — —(bv)+cv
The solution v (§, 1) of the adjoint equation
9
L*=——+ 5 z;)n ag (av)— (bv) +cv = (40)

18 -0598
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which satisfies the conditions

b (&, M) =exp | a (B, no)dn,

Se_—3

=y

(41)

v (8, m)=exp \ b(&, M) dE,

(S——

@
-

on the characteristics £ = &, and 1 = n, where (§;, 1,) is
an arbitrary fixed point of the domain D of definition of
equation (39), is called Riemann’s function.

Let us show that when the additional requirement that the
functions daldt, db/on and c should be continuous is fulfilled
Riemann’s function exists.

Indeed, the integration of equation (40) results in

U(E» n)_v(ga nl)_v(gl, "])+V(§1, 7l1)_
3 n

— [ b vt Wdt—[at mvE mdn+
31 m
§ 1 £
+ § dga { e (B mv (o M) et | B (e v (B m)al +
E1 m 131
n
+ [ ao mvE, mdn=0  (42)
m

Since, by virtue of (41), we have

13

v (& 1) | b (B m)o (L, M) dE=1
€1
n

v (B m— | @ (B Mo i, me) dm=1
m

and
v (El’ rll) =1
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equality (42) can be written in the form of Volterra’s linear
integral equation of the second kind with respect to v (€, n):

& n
v (& = | B Mo (B Mdl— | e (B M)V (E ) dnyt
131 1
§ n "
+ k(e mv e myan =1 (43)
31 n

In Sec. 4°, § 2 of Chapter 5 we shall prove that equation
(43) possesses a uniquely determined solution, and therefore
we can consider the existence of Riemann’s function to be
proved.

Since Riemann’s function depends not only on the vari-
ables &€ and 1 but also on §; and n; we shall denote it

U= R (E’ n, Els nl)
From (41) we obtain

R (& ;]n S gk, ) R(E, M 8y, 1) =0

oR (E, nalé €1y M) —bE N)RE Ny &, m)=0 (44)
REy, ms &, m)=1

and

oR (, an;;la, W gk n) R ;& 1) =0

PEAI N b, mRE G W=0  (45)
R(E m; & n)=1

If u (E,, n,) is a sufficiently smooth function defined in
the domain D, then the obvious identity

e [ By ) R (B, s & ) —
_R(Eh U ga "]) Lu’(&h 7]1)]=
0 oR ’ 0 oR
holds.
13%
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On integrating (46) with respect to §, and with respect to
n; over the intervals §,<CE; <C £ and 7, <2 n,<\n where
(Eq, Mo) is an arbitrary point belonging to the domain D,
we obtain, by virtue of (44), the equality

u(&, n)=u(§0’ ﬂo)R (Em MNo» g, 11)+

E N
+§ R g o [ 2G4 h e, myu s, ) |at+

=)

R (&, ni B m) [ 25t a (G, mo) u (B, ) | dmt

_.l._
fL’a:

3 n
+ | ag | R (& & om) Lu (e, myang (A7)
§ Mo

S0

Let us put u (§, n) = R (£, Mo & 1) in (47), according to
(45), this yields

o
[ de | R ms & LR G moy By m)dm =0 (48)
Eo Mo

Identity (48) implies that Riemann’s function R(E, n; &1, 1)
is a solution of the homogeneous equation

LR(§ n & m) =0 (49)

with respect to the last two variables &, and 1,.

On the basis of (45) and (49) we can directly check the
following property: for a continuous right-hand member
F (&, n) of equation (39) one of its particular solutions is the
function

Uy (Ev )=

e,
S S T

n
 d5 | B (8, m & 0) F (5, m)dny
Mo

2°. Goursat Problem. Let us take as u (§, v) in identity
(47) a solution of equation (39); then the integration by
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parts results in

LL(&, 7]) :‘R(Es 7]0; E) n)u(gv 7|o)+
"'_R(Eos UH Es TI) u(go, TI)—R(go» MNos E\ n)u('éo, 7]0)—{"

+ g [b(t, M) R (¢ o3 & W) — 55 R (2, M &, n)_] X

£
n
xut, mydt+ | [a (&, v R (G, w5 & W) —
Mo
— 5= R w & ) |u(, DT+
g n
+ S dtS R(t, ©; &, MF( ©)dv  (50)
o Mo

The properties of Riemann’s function enumerated above
obviously imply that if u (§, n,) and u (Eq, m) in formula (50)
are replaced by arbitrary continuously differentiable functions
and u (Eq, m,) is replaced by an arbitrary constant, we obtain
a regular solution u (&, 1) of equation (39).

Consequently, the Goursat problem for equation (39) with
the conditions

u(€ m) =9 (), ulepm=1vMm

where ¢ (§) and ¢ () are given continuously differentiable
functions satisfying the equality ¢ (E;) = ¥ (no), has «a
uniquely determined stable solution u (§, m) which is expressed
by the formula
u(E m=~R(E n; & M) e(§)+
+ R Ep s & v —R(E, 0 & m) oG+

£
+§ [0 m) R o & m—— R (2 g &) @) dt

o

=

+{ (e DRE © & D— s R (G © &0 ] b(@dr +

(XY

3

dit

+ R(t, t; § m)dt

Doyt
See—. 3
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3°. Cauchy Problem. Let us denote by ¢ a non-closed
Jordan curve with continuous curvature lying in the domain
D and possessing the property that it is not tangent to
characteristic curves of equation (39) at any of its points.

Let us suppose that the characteristics § = E and n; = 7
issued from a point P (&, ) intersect the arc o at two points
Q' and Q respectively, and let us denote by G the finite
domain in the plane of the variables &, v bounded by the
part QQ’ of the arc o and by the segments PQ and PQ’Fof
the characteristics.

For arbitrary twice continuously differentiable functions
u (&, my) and v (§;, n,) defined in the domain G there holds
the identity

ou v
2(wLu—ul*) = T (ag a—glu—l—Qbuv) +
0 ou |
+ 0%, ( m )

On integrating this identity over the domain G, we obtain,
using formula (GO), the relation

2 \n (vLu —uL*v) dE dn= s. ( ou )d”ﬂl—
5

a
& i

ou ov [
_ (a_gl"_a_gl u+ Qbuv) dt, '(51)
where S is the boundary of the domain G.

Let u (§;, M) = u (P’) in formula (51) be a solution of
equation (39) and let v (§;, my) = v (P’) = R (§;, 1y &, ) =
= R(P', P) where P = P (&, n). Then identity (51) yields

u(P)=+u(Q)R(Q, P)+5u(Q)R(Q, P)+

+ [ PPy R(P, Pyt dn—
G

1 ou (P’ ’  OR(P', P) -
—75[ L) R (P, P)—u(P) LRELP) o —

S a(P) 2k b (P) M R(P', Pyu(Pydop (52)
QQ’
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where

a 0% o an, 0@
ON ~ 3v on, av 8L,

and v is the outer normal to the curve g at the point P’.

Conversely, if u and du/dN on the right-hand side of for-
mula (52) are arbitrary sufficiently smooth functions defined
on 0, then the function u (P) determined by this formula is
a solution of equation (39).

If the sought-for solution u (P) of equation (39) and its
derivative du (P)/dl, where | is a vector defined on ¢ such
that it is not tangent to o at any point, are known as funec-
tions defined on o, that is

u(P)=o@p), 20

=¥ (P), Pc€o (53)

where @ and ¥ are given twice continuously differentiable
and once continuously differentiable functions respectively,
the derivative du/dN can always be determined uniquely.

Consequently, formula (52) gives the solution of Cauchy
problem (39), (53). The process of the derivation of formula
(52) obviously shows that the solutiorn of this problem is
unique and stable.

Besides the problems considered in the present chapter,
an important role is also played in applications by the so-
called mized problems for hyperbolic partial differential
equalions, but here we shall not dwell on them.



CHAPTER 4

PARABOLIC PARTIAL
DIFFERENTIAL EQUATIONS

% 1. Heat Conduction Equation.
First Boundary-Value Problem

1°. Extremum Principle. The simplest example of a para-
bolic partial differential equation is the heat conduction
equation:

u ou

7 o = (1)

Since the differential equation describing the characteris-
tic curves corresponding to equation (1) has the form df?* = 0,
equation (1) possesses only one family of characteristic curves
t = const which are straight lines parallel to the z-axis.

Let us consider a domain D in the plane of the variables
z, t which is bounded by segments OA4 and BN of the straight
lines ¢ = 0 and ¢ = T respectively where I is a positive
number and by two curves OB and AN each of which inter-
sects any straight line ¢+ = const at one point; we shall also
suppose that if the equations of these curves are given in
the forms z = a (¢) and x = P () respectively, then a (2) <
<B@)for 0Lt T

Let us denote by S the part of the boundary of the domain
D consisting of OA, OB and AN; here we suppose that
B €S and N €S (see Fig. 22).

A function u (z, t) possessing continuous partial deriva-
tives 9%u/9z® and Ou/dt on theset D |J BN and satisfying
equation (1) in the domain D will be referred to as a regular
solution of that equation.

The extremum principle: a regular solution u (z,t)
of equation (1) which is continuous in D |J S| BN attains
its extremum on S.
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Here we limit ourselves to proving this principle for the
case of maximum.

We shall denote by M the maximum of u (z, t) on the
closed set D|J S|UBN. Let us suppose that the function

¢ B N

y

75

A
7 Az

Fig. 22

u (z, t) attains its maximum M not on S but #t a point
(g, to) €D BN. It is easy to show that this assumption
leads to a contradiction.

Indeed, let us construct the function

vz, t) =u(z, &) +a(T — 1) (2)
where a is a positive constant. Since 0 <7 ¢ < 7, formula
(2) implies that

o ulz, <o )<u(z, t) + al (3)
everywhere in D |J S|J) BN.

Let MS and M?® be the maxima of u (z, t) and v (z, 1)
on S respectively. By the hypothesis, M5 <M. Let us
choose the number a so that the inequality

M—mS
acc 220 (4)
holds.

From (3) and (4) we obtain

M—MS
My My+al <M+ —5—T=M =
" =U(Zoy o)<V (%o, 1)
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It follows that the function v (z, £) cannot attain its maximum
on S. Consequently, the maximum of this function on
D) SU BN is attained at a point (z, t;) € D |J BN.

Let us first suppose that (2, t,) € D. Since (z;, t,) is a
point of maximum of the function v (z, )y on D U § U BN,
we have 0v/dt = 0 and 9%/322< 0 at that point, that is

B 0?2
- — >0 (5)

Now let (z,, t,) € BN. Since the function v (z, #) attains
its maximum on the set D (J S| BN at the point (z,, 1,),
there must be dv/dt > 0 at that point. Further, since (z,, T)
is the point of maximum of v (z, T) considered as function
of z, we must have "’"’(;—;;;T)go. Consequently, inequality
(5) is fulfilled at the point (z,, T) as well.

On substituting the values of dv/dt and §%/dx® found from
equality (2) into the left-hand side of (5), we derive

du 8%u
a—t—a—-m>0 for z=2,, t=¢,

whence, since u (z, t) is a solution of equation (1), we ob-
tain —a > 0, which is impossible because a > 0.

The contradiction we have arrived at proves the assertion
of the extremum principle for the case of maximum. The
case of minimum is considered ‘quite analogously.

2°. First Boundary-Value Problem for Heat Conduction
Fqgwvation. Tl'e extremum principle proved in the foregoing
section makes it possible to establish the uniqueness and the
stability of the solution of the following problem called the
first boundary-value problem for the heat conduction equation:
it is required to find the regular solutiorn u (x. t) of equation
(1) in the domain D which is continuous in D) S BN and
satisfies the conditions

Ulop =P @) ulanv=10(8), uloa=0() (6)
P (0) = @ (0), Py (4) = 9 (A)

where Py, P, and @ are given real continuous functions.
Indeed, let ns suppose that u, (2, ) and u, (z, t) are two

rogular solutions of equation (1) satisfying houndary con-

ditions (6); then the function u (z, t) = u, (2, £) — u, (2, 1)
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is a regular solution of equation (1) which turns into zero
on S. Consequently, according to the extremum principle,
we haveu (z,t) = 0in D |J S| BN, whence it follows that
the solution of the first boundary-value problem (1), (6)
is unique.

Now let us suppose that the absolute value of the difference
between the boundary values on S of two regular solutions
u, (z, t) and u, (z, t) of equation (1) is less than & (e > 0).
Then, by virtue of the extremum principle, we must have
|u, (x, t) —u,(z, ) | < e everywhere in D SU BN,
which means that the solution of the first boundary-value
problem depends continuously on the boundary data pre-
scribed on S, and hence we have proved the 'stability of the
solution of this problem.

Now we shall prove the eristence of the solution of the
first boundary-value problem for equation (1) under the
assumption that OB and AN are the segments of straight
lines connecting the points O (0, 0), B (0, T) and 4 (I, %)
N (I, T) respectively and that

u(@©, =0, u(l,t)=0 0<<t<T (7)
and
u(z, 0) = @ (2), 0Ll (8)

where ¢ (z) is a continuously differentiable function defined
in the interval 0<C{z<C! which turns into zero for 2 = 0
and for z = L
As is known from the course of mathematical analysis,
in the interval 0 < z<C! the function ¢ (z) can be expanded
into absolutely and uniformly convergent Fourier's series
q)(:z:)———Z‘I ahsinul—kx 9)
h=1
where

!
ah=—3-5cp(:c)sinn—lkxdx (k=1,2,...)
0

Using formula (40) established in Introduction in which

we put n =2, 2, =2z, z, =t, 1, (z) = sin JITk:z: we obtain
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the regular solution

2 1 Tk
up (z, t)y=e-"RU/ P gin —

z (10)
of equation (1) satisfying the boundary conditions
up (0, t)==u(l, t)==0, uy (z, 0)=sin “Tk:c

It is evident that the function u (z, t) represented as the
sum of the series

oo  m2hy .
u(z, t)= Z ae ! sin “T:c (11)
R=1
is the sought-for solution of boundary-value problem (1),
(7), (8). For ¢t > 0, the absolute and uniform convergence
of series (11), in the neighbourhood of the point (z, ), and
of the series obtained from (11) by means of the differentia-
tion with respect to z and with respect to ¢ any number of
times, follows from the fact that
q2R2
lim (8™ 0 (m=0.1,...)
h=+o00

When initial data (8) are prescribed on a segment of the
straight line ¢t = t, and when ¢, <C ¢ < T in condilions (7)
the solution of the first boundary-value problem in the rec-
tangle 0 <<z << I, t, << t << T is also expressed by formula
(11) in which ¢ should be replaced by t — ¢,.

It should be noted that the series on the right-hand side
of formula (11) may not make sense at all for f << ¢,. That
is why the first boundary-value problem for equation (1)
is not stated when t << t, where ¢ = £, is the set on which
the boundary data are prescribed.

All that was established above obviously remains valid
in a more general case when the number of spatial variables
exceeds unity; the only distinction is that in this case we
should take multiple series instead of one-fold series (9)
and (11).

§ 2. Cauchy-Dirichlet Problem

1°. Statement of ¢auchy-Dirichlet Problem and the Proof
of the Existence of Its Solution. Let D be the infinite strip
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—oo <<z <Coo, 0T t<{ T where T is a fixed positive
number, the case T = oo not being excluded (see Fig. 23).

A bounded and continuous function u (z, t) defined in the
strip D, possessing continuous partial derivatives 6%u/dx?

A

Fig. 23

and du/dt inside D and satisfying equation (1) will be referred
to as a regular solution of that equation.

The Cauchy-Dirichlet problem is stated thus: it is requlred
to find the regular solution u (z, t) of equation (1) in the strip D
satisfying the condition

u(z, 0) = ¢ (2), —o0o <<z<< o0 (12)

where @ () (—o0 < z << 00) is a given real bounded con-
tinuous function.
As was already mentioned in Sec. 3°, § 3 of Introduction,
the function
q _(E-x)?
E(J}, g, t, 0) :-_172_8 it , t>0 (13)

satisfies equation (1) at all the points (z, t) of the half-plane
t>0.

Let us prove that the function u (x, t) determined by the
formula

1 ¥ _(B—x)? A
i
sy )o@ T (14)
is the solution of the Cauchy-Dirichlet problem.

From the course of mathematical analysis it is known that
the integral on the right-hand side of (14) is uniformly con-

u(z, t)=
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vergent in a neighbourhood of any interior point (z, t)
of the strip D. _

The change of the variable of integration € =z + 2q } ¢
brings formula (14) to the form

oo

u(z, t)=% _qu, (z+2mV 1) e dn (15)
Since sup | ¢ () | << M where M is a positive num-
— oo x< 00

ber and since the integral on the right-hand side of (15)
is absolutely convergent, we have

|u(z, t)|<% S e="% dn)

whence, since
S e~ dn=} 7 (16)

it follows that
|u(z, t)|I<M

The integrals resulting from the differentiation any
number of times of the integral on the right-hand side (14)
with respect to 2 and ¢ under the integral sign are uniformly
convergent in a neighbourhood of every point (z, t) (¢ > 0),
and the function E (z, &, ¢, 0) satisfies equation (1) for
t > 0; this leads to the conclusion that the function u (z, t)
determined by formula (14) satisfies equation (1) in the
strip D.

Finally, on passing to the limit for ¢ —» O (this operation
is legitimate because the integral converges uniformly in
a neighbourhood of every point (z, 0) for ¢ > 0), we obtain
from (15), by virtue of (16), the limiting relation

limu (z, t)=¢ ()
t>0

2°. Uniqueness and Stability of the Solution of Cauchy-
Dirichlet Problem. The uniqueness and the stability of
the solution of the Cauchy-Dirichlet problem are immedi-
ate consequences of the following proposition (the extremum
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principle for a strip): a regular solution u (z, t) of equation (1)
in the strip D satisfies the inequalities
m<u( )M (Y]
where
m = infu(z,0), M =supu(z,0), —o0 <2< o0

To prove the first inequality in (17) let us consider the
function v (z, t) = 22 + 2¢ which is a solution of equation
1. -
We shall denote by n the infimum of u (z, t) for (z, t) € D
and consider the function

= - vy
w(z, t)y=u(x, t)y—m-+te 5 @e o) (18)
where € is an arbitrary positive number and (z,, ¢,) is an
arbitrary fixed point inside the strip D.

The function w (z, t) expressed by formula (18) satisfies

equation (1); for ¢ = 0 we have

z2
w(z, 0)=u(z, O)—m—|—sm>0 (19)
and for ]x|=|x0[+]/(m—_w we have
wE,t) =>u(@ t)—n>=0 (20)

Inequalities (19) and (20) together with the extremum
principle proved in the foregoing section (which should be
applied to the rectangle

0T, —|m|—)/ Bt B ogsy|+
+‘/(m—n)Z($Oi tO)

containing the point (z,, t,)) imply that
W (Zgy Ly) = U (Zgy Lg) —m + =0

that is u (24, ¢;) = m — €. Since € is quite arbitrary, it
follows that u (zq, t;) = m. Thus, u (z, t) > m everywhere
in D.
Replacing u (z, t) by —u (z, t) and repeating the above
argument, we readily prove the second inequality in (17).
Problem (1), (12) is called the Cauchy-Dirichlet problem
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because, if the variable ¢ is interpreted as time, relation (12)
can be regarded as an initial condition. [However, this rela-
tion can also be considered as a boundary condition set for
the boundary { = 0 of the upper half-plane ¢ > 0 of the
variables z, t.

3°. Non-Homogeneous Heat Conduction Equation. In this
section we shall consider the non-homogeneous equation
*uldx? — du/dt = —g (x, t) where g (z, t) is a given real
bounded continuous function defined for —oo0 << 2 << o0,
0 <t << 0. Let the initial data be prescribed on the straight
line ¢ = © (instead of ¢ — 0) where © is a fixed positive
number. For the function
1 1 [ - (f(_x)z)‘ d

———— | e -7 ) dE, t>7
2VE Viss _L g Mk, 1>
we can readily show in just the same way as in the fore-
going section, that

%

0z%

From these equalities we conclude that the function

t

u(z, ty= S v(z,t, 1)dt
0
is the solution of the non-homogeneous heat conduction equation

a%u ou
i e A G

vz, t, 1)=

—%:0 for t>< and v(z, T, 1)=g(2, T)

satisfying the condition u (x, 0) = 0.

§ 3. On Smoothness of Solutions of Partial
Differential Equations

1°. The Case of Elliptic and Parabolic Partial Differential

quations. As was already proved in Sec. 5°, § 6 of Chap-
(?er 2, a harmonic function u (z, y) in a domain D is an
analytic function of the variables z and y in that domain.
Moreover, it can be proved that the solutions of linear ellip-
tic partial differential equations with analytic coefficients
are analytic functions in the domain where they are regular.
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From Poisson’s formula (see Sec. 2°, § 2, Chapter 1) it
follows that the solution u (z, y) of the Dirichlet problem
for Laplace’s equation in the circle | z | << 1 is an eralytic
function of the real variables x and y for | z | << 1 when the
only requirement that the function g describing the boundary
values should be continuous on the contour [z | =1 is
fulfilled (even when g is continuous on |z | = 1 but is not
differentiable at any point of the contour).

In Sec. 2°, § 1 of the present chapter it was shown that the
solution u (z, t) of the first boundary-value problem (7), (8)
for heat conduction equation (1) possesses partial deriva-
tives of all orders with respect to the variables z and ¢ in the
domain D: 0 <<z << I, 0 << t << T provided that the first
derivative of the function u (z, 0) = ¢ (z) is continuous.
Similarly, in Sec. 1°, § 2 of the present chapter we concluded
from formula (14) that the boundedness and the continuity
of the function ¢ () = u (z, 0) (—oo << z <C o) guarantee
the existence of partial derivatives of all orders of the solu-
tion u (z, t) of Cauchy-Dirichlet problem (12) for equation
1).

2°, The Case of Hyperbolic Partial Differential Equations.
The assertions of the foregoing section are not valid for the
Cauchy problem and the Goursat problem for the equation
of oscillation of a string.

For instance, formula (35) of Chapter 3 implies that the
type of smoothness of the solution u (z, t) of Goursat problem
(13), (34) is the same as that of the functions ¢ (z) and P (z)
describing the given date, that is for the partial derivatives
of the %th order of the sought-for solution u (z, t) of this
problem to exist we must require that the derivatives of the
kth order of the functions ¢ (z) and ¢ (z) should exist. The
function u (z, ) determined by this formula is called, irre-
spective of the type of smoothness of the functions ¢ (z) and
VP (z), the generalized solutiorn of problem (13), (34) stated
in Chapter 3. If the function ¢ (z) (or ¥ (z)) has a discon-
tinuity for x = , then the function u (z, t) also has a dis-
continuity on the characteristic z + t = 2& (or z — t = 2§),
that is the discontinuities of the functions @ (z) and ¢ (z) de-
scribing the given data generate discontinuities of the wave
u (x, t) on the characteristics of the equation of oscillation of
a siring.

14—-0598



CHAPTER 5

INTEGRAL EQUATIONS

§ 1. Iterative Method
for Solying Integral Equations

1°. General Remarks. In this chapter we shall study the
Fredholm integral equations of the second kind

o()—h | K@@, oW dy=f@), z€D (or 2€S) (o)
D(8)
where the integral is taken over a bounded domain D of the
Euclidean space E, or over its smooth boundary S, the
kernel K (x, y) and the right member f (z) are given real
continuous functions of the points z and y, @ (z) is the
unknown function and A is a real parameter.
The integral equation

@0 (z) — A 5 K(z, ) ¢°(y)dy=0 (1)
D(8)
is called the homogeneous integral equatior corresponding to
the given Fredholm integral equation of the second kind of
form (»). Further, the homogeneous integral equation

p@)—4 | K@ 29@ay=0 )
D(8)
ig referred to as the homogeneous integral equation adjoint
to (or associated with) integral equation (1).
Below we state and prove the basic propositions of the
theory of integral equations for the special case when D
is a finite interval (e, b) lying on the real axis, that is for

the equation \
o@)—A | K@ powdy=1() (3)
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We shall also consider the integral equation with a variable
upper limit of integration:

2@ = | K(z, powdy=f(2), e>a &

Equation (4) is called Volterra’s integral equation of the
second kind.

It can easily be seen that the general solution ® (z) of the
Fredholm integral equation of the second kind, provided it
exists, has the form

D (z) =9 (@) + ¢ (2) ©)

where @° (z) is the general solution of homogencous equation
(1) corresponding to (3) which in the case under consideration
has the form

b
¢ (@)~ | K@ »)e* @) dy=0 (6)

and ¢ () is a particular solution of non-homogeneous equation
3

Indeed, if ® (z) and @ (z) are the general solution and a
particular solution respectively of non-homogeneous equa-
tion (3), then their difference ¢° (z) = @ (z) — ¢ (z) satis-
fies equation (6), which proves equality (5).

2°. ‘Solution of Fredholm Integral Equation of the Second
Kind for Small Values of the Parameter Using Iterative
Method. In the case when the parameter A satisfies the condition

M <of (M

where M is a positive number such that
b
(1K@ pidy<M, e<a<co (8)

a

the solution @ (z) of equation (3) exisis and can be constructed
using the iterative method (the method of successive approxima-
tions).

14
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The idea of this method is that the function ¢ (x) is con-
structed as the limit of the sequence of functions
b

% (@)=f(@) o@=f@+r|K (@ Pora@)dy (9)

n=1, 2, S

As is known from the course of mathematical analysis,
the convergence of sequence (9) is equivalent to the conver-
gence of the series

Do (x) +n§i [an (x)—‘-pn—l (x)] (10)
From (8) we obtain the inequalities
| 9o () I<m
[@n ()= Pna (@) [S<m|A"M" (n=1,2,...) (11)
where m= max |f(z)|.

assX
Thus, the absolute value of every term of series (10)
does not exceed the corresponding term of the positive

oo
number series Y, m | A |* M™, the latter being convergent

n=0
by virtue of inequality (7). Consequently, series (10) is
uniformly and absolutely convergent; therefore sequence
(9) of continuous functions is also uniformly and absolutely
convergent, its limit being a continuous function ¢ (z):

¢ (x) =,{}.r2 Pn (1:) = Qo (x) +n§i [Pn (x) — Pna (.’L‘)]

Passing to the limit for n — oo in the equality

b
90 @) =1 @)+ | K (2, 9) o () dy
(all conditions guaranteeing that this operation is legiti-
mate are fulfilled) we obtain
b
9@ —1@)+1 | K@ 9)o @) dy
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which means that the function ¢ (z) is a solution of integral
equation (3).

It can easily be shown that equation (3) has no solutions
other than the functior ¢ (z) we have constructed. Indeed,
let us suppose that not only the function ¢ (z) is a solution
of equation (3) but another function ¢ (x) is also a solution.
Then the difference 0 (z) = @ () — ¢ () of these solu-
tions must satisfy homogeneous equation (6), that is

b
0(z)="2 SK(x, y) 6 (y) dy

whence we find that
0o |M MO, where 0,= max |6(z)]

a<x<<h

The inequality we have obtained contradicts inequality
(7) when

0, 0
eo=0

and therefore 0 (z) = 0 that is, P (z) = ¢ ().

3°. Volterra Integral Equation of the Second Kind. On
repeating the above argument in the case of Volterra’s inte-
gral equation of the second kind (4), we obtain

Consequently,

9%0(2)=f(@), en(@)=F@)+h[K(z Yoy (12)

and

19n (2)— Qnoy (2)| <m AMEC—A g 9 (13

m = max|f (z)[, M,=max|K (z, y)|

Since the functional series

m 2 IM"MZ' ($~a) — meMMa (x—a)
n=0

with positive terms is uniformly convergent for any finite
value of the parameter ), inequalities (13) imply that sequence
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of functions (12) is uniformly convergent, and therefore the
function

¢'(2) =lim ¢, (z)
is a solution of integral equation (4).

Let us prove that for any fized value of the parameter A
equation (4) cannot possess more than one Solution.

To this end let us suppose that ¢ (z) and P (z) are two
continuous solutions of equation (4). Then the difference
0 (z) = ¢ (#) — P () of these solutions must satisfy the
homogeneous equation

x

8(z)=> | K (2, no @) dy (14)

and consequently
16 (@) I<|A | Mymy (z — a) (15)

where M, = max | K (z, y) | and my = max |0 (z) |. From
(14), by virtue of (15), we derive the inequality

18 (2)] < |AI2M2m, =0

On repeating this procedure n times we arrive at the
inequality

—gagln
18 (2)] < |A"Mym, L9 (16)
which holds for any natural n. From inequality (16) we ob-
tain, on passing to the limit for n — oo, the equality 8 (z) =
= 0, which means that 1V (z) = ¢ ().

Thus, we have come to the conclusion that Volterra's in-
tegral equation (4) has a uniquely determined solution for any
finite value of the parameter A on condition that its kernel
K (z, y) and its right member f (z) are continuous. Here lies
the essential difference between Volterra's integral equation
of the second kind and Fredholm's integral equation of the
second kind: later we shall show that Fredholm’s equation
may not possess solutions for some values of A and that for
some other values of A it can have several solutions,
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§ 2. Fredholm Theorems

1°. Fredholm Integral Equation of the Second Kind with
Degenerate Kernel. The kernel X (z, y) of integral equation
(3) is said to be degenerate when it has the form

N _
K (z, y)= 2; pi () g1 (¥) (17)

where p; (z) and ¢, (y) ({ =1, ..., N) are given real con-
tinuous fuuctions defined in the intervals a<Cz<Cb and
a<{y<Cb respectively. Without, loss of generahty, we can
assume that the systems of functions {p: (z)} and {g; (¥)}
are linearly independent.

Let us consider Fredholm’s integral equation of the
second kind

N b
o@—2 X [p@awewmay=f@ (18

i=l a

Integral equation (18) can be written in the form

N
(@) =f()+4 2 epi (@) (19)
where
b
e={awewady, i=1,...,N (20)

are some unknown constants.

Let us try to choose the constants ¢; (i =1, ..., N) so
that the function ¢ (x) specified by formula (19) satisfies
integral equation (18). To this end we substitute expression
(19) of ¢ () into the left-hand side of (18). After some simple
calculations we obtain

N b N b
Ept(x)[ci—fqi(y)f y) dy— h25c,q,(y )Py (y )dy]:O

i=1 a i=1
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whence, since the functions p; () (i = 1, . . ., N) are linear-
ly independent, it follows that

b N b
a—fawtwaw—123e{awr@a-o
a j=1 a
Hence, we have
Y
e —A Dy ayyey =y, i=1, ..., N (21)
j=1

where
b b
a={ampwa mt w={rwaway ©

Thus, the problem of the determination of the solution
@ (z) of integral equation (18) has been reduced to the solu-
tion of the system of algebraic linear equations (21).

The homogeneous integral equation corresponding to (18)
has the form

b N

@@= Irn@a@e@d=0 @3
a i=t1
and it can be in just the same way reduced to the
homogeneous algebraic linear system
N
e} —A D) aye =0 (24)
i=1
corresponding to (21).
As is known, in the theory of algebraic linear systems of
form (21) the fundamental role is played by the matrix

{—Xletyy, —Adyy ...  —Aoyy
M (7\') — - 7\.&21 1. _ )\.“22 e -_ }\IZZN
"—‘7\4aN1 ——MZNZ PR 1—7»(Z,NN

In linear algebra it is proved that when the condition
det M (M) 520 (25)
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is fulfilled, system (21) is always solvable (for any right
members y;) and that its solution is unique.

The expression det M (A) is a polynomial of the Nth
degree with respect to A, and consequently condition (25)
may be violated only for a finite number of values of A:
My .« oy Ay (m<KN). The numbers 4, . . ., A,, are the zeros
of the polynomial det M (A); they are called the characteris-
tic values (numbers) of the kernel K (z, y).

Thus, for every finite value of A different from A, (k =
=1, ..., m)system (21) possesses a single solution ¢, . .

.o On substituting the solution c¢,, ..., ¢y found
from system (21) into the right-hand side of formula (19),
we obtain the solution ¢ (z) of integral equation (18). We
have thus proved the following theorem: if A is not a charac-
teristic value of the kernel K (z, y), integral equation (18) is
solr able for any continuous right member f (z), and its solution
is unique (this is Fredholm’s first theorem).

According to formula (1), the adjoint integral equation
corresponding to (23) has the form

P@—23 { p@) o @@ dy=0 (26)

i=1 a

Equation (26) is equivalent to the homogeneous alge-
braic linear system

N
di—l E aﬁd]-=0 (27)
i=1

where
b

di= (P o@dy i=t, ..., N

a

System (27) is the adjoint algebraic system corresponding
to (24).

IfA=MM (=1, ..., m)and if the rank of the matrix
M ()) is equal to r, then, as is known from linear algebra,
homogeneous system (24) and its adjoint system (27) have
N — r linearly independent solutions each:

ci”, ...,c?vf (=1, ...,N-—-T)
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and
di, ..., dy (i=1,...,N—7)

On substituting the solutions of systems (24) and (27)
thus found into the right-hand sides of the formulas

ﬁ.Eclpl l=1,...,N—r)
and
N
w:(x)=x‘§diqi(x>, (=1, ..., N—r7)

we obtain N — r linearly independent solutions of homo-
geneous integral equation (23) and of equation (26) re-
spectively. Hence, homogeneous integral equation (23) corre-
sponding to (18) ard adjoint (homogeneous) integral equation
(26) corresponding to (23) kave exactly N — r linearly inde-
pendent solutions each (this is Fredholm’s second theorem).

The functions ¢? (x) (I =1, ..., N — r) are called the
eigenfunctions of the kernel K (x, y) corresponding to the
characteristic value M\y.

From linear algebra it is known that for A = Ay (k =
=1, ..., m) system (21) may not be solvable for some
right members. For the system to be solvable it is necessary
and sufficient that the numbers y; (i = 1, ..., N) should
satisfy the conditions

N
]Elwd§=0, (=1, ...,N—r) (28)

By (22), conditions (28) are equivalent to the system of

equalities

b N b

@ dz=2 N di|a@ 1@ de=0,  (29)
i=1 a

a

=1, .., N—r
Thus, we have come to the conclusion that for integral
equation (18) to be solvable for A = A, (kK =1, ..., m)itis

necessary and sufficient that iis right member f (z) should be
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orthogonal to all the solutions ¢, (x) (=1, ..., N—r) of adjoint
homogeneous integral equation (26) corresponding to (23)
(this is Fredholm’s third theorem).

2°. The Notions of Iterated and Resolvent Kernels. In
Sec. 2°, § 1 of the present chapter we proved that when ine-
quality (7) holds successive approximations (9) converge to
the solution ¢ (z) of integral equation (3) (we supposed that
the functions K (2, y) and f (z) were continuous).

The functions

b

Ko (@ 0)= [ K(@ p) Kna g 9)dyy (n=2, 3, ...)

a

are called iterated kernels.
Using iterated kernels we can rewrite successive approxi-
mations (9) in the form

b n
on@=1@+1 | 3 VK (2, ) 1WAy (30)

a j=1

The repetition of the argument which was used in Sec. 2°,
§ 1 of the present chapter in the proof of the convergence of
sequence (9) shows that if condition (7) is fulfilled, the series

AM1K  (z,

S VK (= 1)

is uniformly convergent for a<iz<<bhb, a<<y<<bh. The
sum R (z, y; A) of this series is called the resolvent kernel
corresponding to the kernel K (z, y) (or to integral equation
(3)). From equality (30) it is obviously seen that the resol-
vent kernel makes it possible to rewrite the expression for
the solution ¢ (x) of equation (3) in the form

b

o@=f@+r [ R@ mMrma G

a

It should be noted that the function R (z, y; A) is con-
tinnous with respect to the variables z, y in the square
a<z<bh, a<y<<b (and is'analytic with respect to A
for all values of A, both real and complex, belonging to the
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circle | A | << 1/M). Therefore from formula (31) it follows
directly that if f (x) is a continuous function then so is the
solution @ (x) of equation (3).

3°. Fredholm Integral Equation of the Second Kind with
an Arbitrary Continuous Kernel. Now let us proceed to
study integral equation (3) for the general! case when con-
dition (7) must not necessarily be fulfilled.

From the course of mathematical analysis it is known that
if K (z, y) is a continuous function in the square a<Cx<Cb,
a<ly<b, then, given an arbitrary number s>0 there
exist linearly independent systems gp, (z)}, a<<z<D,
and {g; ()}, e<<y<<b (i =1, ..., N) of continuous func-
tions such that

N
K(z,y)= igi pi(2) q: (y) + Ke(z, y) (32)

where K. (2, y) is a continuous function satisfying the con-
dition
(b—a) | Kelz,p) [<e a<z<sh, asy<h (33)

In particular, according to Weierstrass' theorem proved
in mathematical analysis, as functions p; (z) and ¢; (y) can
serve some polynomials.

Let us represent the kernel K (z, y) of equation (3) using
formula (32) and rewrite that equation in the form

b

(@)= Kela, o) dy=F (2) (34)
where ’
N b
=f@+13 [p@amoewd (35

Let A be an arbitrary ﬁnlte fixed value; we can choose
a number £ > 0 so small that the inequality
1
<+ (36)

holds.
According to (33) and (36), condition (7) is fulfilled for
integral equation (34), and therefore this equation can be
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uniquely resolved with respect to ¢ (). Let R, (z, y; A) be
the resolvent kernel corresponding to K, (z, y); then equa-
tion (34) can be written in the form

b
(@) =F @)+ 1 [ Rela, 3 M F () dy (37)
After some simple calculations, the substitution of ex-
pression (35) of F (z) into the right-hand side of (37) yields

b N
P@—A | Srn@a@ewdy=g@ (38
where s ,
ri (@)=pi () +A | Re(a, 15 1) pi () dp
and !

b
g@=1(@)+A[ Ry M) dy

a

Thus, for any finite fixed value of A integral equation (3)
is equivalent to Fredholm’s integral equation of the second
kind (38) with a degenerate kernel.

Now, using the Fredholm theorems proved in the fore-
going section for an integral equation with a degenerate
kernel, we arrive at the so-called Fredholm alternative: for
every fized value of M, either homogeneous integral equation (6)
corresponding to (3) has no solution different from zero (and
then equation (3) always has a uniquely determined solution
for any right member f (x)) or homogeneous equatior. (6) pos-
sesses solutions not identically equal to zero (and then both
homogeneous equation (6) and its homogeneous adjoint equa-
tion possess an equal number of linearly independent solutions
each); in this case equation (3) may not be solvable for some
functions f (z): for non-homogeneous equation (3) to be solvable
in this case it is necessary and sufficient that its right member
f (x) should be orthogonal to all the solutions of the homogeneous
adjoint equation corresponding to (6), that is

b

Sf(x)'lp,(x)d:c=0 I=1,...,p)

a
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where P; (z) (I =1, ..., p) are all linearly independent
solutions of the homogeneous adjoint equation corresponding
to (6).

The function which is identically equal to zero obviously
satisfies both homogeneous equation (6) and the adjoint
equation corresponding to it. In what follows, when speaking
of a solution of a homogeneous integral equation (or of the
adjoint equation corresponding to it) we shall always mean
a solution which is not identically equal to zero.

A number A for which homogeneous equation (6) posses-
ses solutions ¢; (z) ({ =1, ..., p) will be called, like in
Sec. 1°, § 2 of the present chapter, a characteristic value (or a
characteristic number) of the integral operator with the kernel
K (z, y), and the functions ¢; (r) will be called the eigenfunc-
tions of that kernel (or of that operator) corresponding to (or
associated with or belonging to) the characteristic value Ao

It should be noted that if we write equation (3) in the form

b

oW —A[ K@, Do d=f©)

a

and then multiply its both members by AK (z, y) and
integrate the result from a to b, this will yield
b

o (2)— W[ Ky (z, 1) @ (1) dt =1, (3)

where

b
fa(@) =1 (@) + A K (2, 4) f () dy
Continuing this process, we obtain the relations
b
0 (@) =" K (2, 1) 0 9) dy = (2)

where

b
fm @) = Fuer @)+ K (@ ) s @) Yy F1(@) = (@)
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Thus, we have arrived at the conclusion that if A is a
characteristic value of the kernel K (x, y) and ¢ (z) is an
eigenfunction associated with A, then A™ is a characteristic
value of the iterated kernel K,, (z, y) and @ (z) is an eigen-
function of that kernel belonging to the characteristic value A™.
The converse proposition is also true but here we shall not
dwell on its proof.

All the propositions concerning equation (3) which were
stated and proved above can be immediately extended to
the case of general equation (¥) with a continuous kernel
K (z, y) and a continuous right member f (2) (z, y € E,).

Moreover, proceeding from the remark made above, we
can conclude that these propositions also remain valid in
the case of a kernel of the form

K*(z, y)
fz—y |*

K(z, y)= I<a<n,

where K* (z, y) is a function continuous with respect to the
variable point (z, y) = (xy, - . .y Zp, Y1y - - -» Yn) and n,
denotes the dimension of the domain D or of its boundary S.
This can easily be shown if we take into account the fact
that the kernel K,, (z, y) of the integral equation

0 @—" | Kn(z, 1) 0 0)dy=fn ()
D(S)

obtained from the kernel K (z, y) by means of m-fold itera-
tion is a continuous function of the point (z, y) for a suffi-
ciently large value of m.

It is also evident that if the function f (z) is continuous
everywhere except a finite number of points or of smooth
manifolds whose dimensions are less than r,, and if f (z)
is absolutely integrable over the domain D (or over its
boundary S), the Fredholm alternative remains true. It is
this class of equations to which belong the integral equations
mentioned in Sec. 2°, § 5 of Chapter 1; to the latter integral
equations were reduced the problems concerning the existence
of the solutions (including the elementary solutions) of gen-
eral elliptic partial differential equations of the second order.
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For these integral equations the value of the integral

(1K@ vy

D
can be made arbitrarily small for a domain D of a sufficiently
small diameter, and therefore condition (7) of Sec. 2°, § 1
of the present chapter may be regarded as being fulfilled;
consequently for the domains of this kind the existence of the
solutions of the indicated integral equations is guaranteed.

4°. The Notion of Spectrum. The set of all characteristic

values of an integral equation with a kernel K (z, y) is
called the spectrum of this kernel. The investigation of the
spectrum plays an important role in the theory of integral
equations.

As was shown earlier, the spectrum of the kernel of Vol-
terra’s equation is void (see Sec. 3°, § 1 of the present chap-
ter), and in the case of a degenerate kernel of Fredholm’s
equation the spectrum consists of a finite number of charac-
teristic values (see Sec. 1°, § 2 of the present chapter). Among
the other kernels whose spectra are thoroughly investigated
it is advisable to mention the so-called symmetric real
kernels.

A (real) kernel K (z, y) is said to be symmetric if the
equality K (z, y) = K (y, z) holds for all the values of z
and y belonging to the domain of definition of the kernel.

It can easily be seen that if ¢, (xr) and @, (z) are two eigen-
functions (of a symmetric kernel K (z, y)) corresponding to two
different characteristic values A, and M\, respectively, then

b

[o1@ 0y (z)dz=0
Indeed, the kernel K (z, y) being symmetric, we have
b b b

(M—2a) {0 (2) 02 (2) do =1ada [ s (2) d2 | K (2, 9) @ () dy—
a b b a a
— ks [ 02(2) dz [ K (2, y) 01 (1) dy =

b b

Ao {01 (2) d [ 1K (2, 1) — K (0, 2)) 0 () dy =0

a a
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whence, since A; 5% A,, it follows that the assertion we have
stated is true.

In its turn, this assertion implies that the characteristic
values of an integral operator with a symmetric kernel cannot
be complex.

Indeed, let us suppose that a characteristic value A and
the corresponding eigenfunction ¢ (z) are complex, that is

A=A+ iky, @) = @ (z) + iq, (2)

Then A =M — ik, and ¢ (z) = ¢, (2) — i@y (z) are also
a characteristic value and an eigenfunction corresponding to
it respectively.

If A, =0, then, as was already proved, we have

b b
[o@ 9@ da=[1gde=0

It follows that ¢ (z) is identically equal to zero, which is
impossible by virtue of the definition of an eigenfunction.
Hence, A, = 0, that is A is in fact a real number, which is
what we intended to prove.

Among the other important properties of a symmetric
kernel we shall mention the following one: the spectrum of
an integral equation with a symmetric real kernel is not void.
Here we shall not prove this property because we do not
need it for our further aims.

5°. Volterra Integral Equation of the Second Kind with
Multiple Integral. The application of the argument given
in Sec. 3% § 1 of the present chapter to an integral equation
of the form

£

n
o - a[KEn LYot vdr=1E 0D (39)
£1 Ny

where K (E, n; ¢, 7) and f (§, 1) are given real continuous
functions, leads to the conclusion that this equation pos-
sesses a single solution for any fixed value of the real para-
meter A. That is why equation (39) is also called the Volterra
integral equation of the second kind.

15—0598
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The one-to-one transformation

v(& m=w(E )+
+ Ew(t, n) b (2 n) eXP( fb(t:h ) dt1) dt+
E1 t

.
T

L n
+ Sw(g, 7)a (8 7) exp ga(g, v)dv,) du
N

of the unknown function v (€, 1) in equation (43) of Chapter 3
to the new function w (§, 1) reduces this equation to an
integral equation of form (39):

n
w (&, n)+§dt51<o(g, 0ty Y w(t, 1) dr=1
Ex m

where

a(t, 'rl)dtl) —

At s

Ko (&, m; t,T)=c(t, ©)—b(, n)a(t, 1) exp(

—a (& 7)b (2, v exp ( fb(tl, ©)dn ) +
t
1

+b(t, t)fc (24, T) exp (Sb(tz, T) dtz) dty+

13 t
1 T,
+a(t, t)Sc(t, T,) exp ( Sa(t, T,) d‘tz) dt,

6°. Volterra Integral Equation of the First Kind. Let us
consider the Volterra integral equation of the first kind

x

(K@ yewdy=1(

whose kernel K (z, y) and the right member f (z) satisfy
the following conditions: (1) the derivatives K, (z, y) and
f' (x) exist and are continuous functions, and (2) the expres-
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sion K (z, z) does not turn into zero for any value of z. The
differentiation of this equation with respect to z brings it
to the Volterra integral equation of the second kind

x

0@+ (K@ e dy=1*(2)
a
where
K ’ !
K* () ==l and 1 (2) =412
In the case when the above conditions do not hold the
investigation of the Volterra integral equation of the first
kind is rather intricate. However, for some special cases it
is possible to elaborate methods with the aid of which the
solutions of the equations can even be expressed in quadra-
tures.
For instance, let us consider the integral equation

3@‘y)d”_f(x), 0<a<i, >0
(z—y)*

whose right member f (z) is a continuous function; it is
known as Abel's integral equation. Let us rewrite the equa-
tion in the form

t
WAy _ .,
é(t_y)a i)

On multiplying the last equality by the kernel (;_—:)1_—0; and

integrating with respect to ¢ from zero to z, we obtain the
identity
x t x
dt ?(v) dy =‘\' 1@)at
i (:l:—t)1_a J (t—y)a J (.z:—t)l"a

Now, taking into account the relations

f d_ j“"(y)d”—jw(y) yS &

J @—n!™® »* —y!me—p*

15*
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and

14
S(z—i)i “(1—y)*  sinaa

we derive from the above identity the equality

(P(x):sinna_d_i‘c f(t)de
(z

14 dz __1)1—“
0

In case the function f (z) is continuously differentiable we
can rewrite the last expression in the form

o (z) = sin i [ f(0) S:c f(3) dt ]

e 1:1—(1 . (z_t)1—a

In particular, putting a=1/2 we obtain the solution of
integral equation (63) of Introduction which is encountered
in the study of the tautochrone problem:

-
SENA IO
(p(x)_ n dré. }/_t

§ 3. Applications of the Theory
of Linear Integral Equations
of the Second Kind

1°. Application of Fredholm Alternative to the Theory of
Boundary-Value Problems for Harmonic Funetions. In Sec.
2°, § 4 of Chapter 1 we proved that if the solution of the
Dirichlet problem is constructed in the form of double-layer
potential (47) then the function p must satisfy the Fredholm
integral equation of the second kind of form (57):

pe)—A [ K@ p@®di=—2(s), r=—1 (40)
S

If we manage to show that A = —1 is not a characteristic
value of the kernel K (s, t), the Fredholm alternative will
imply that integral equation (40) is solvable for any right
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member. This will imply the solvability of the Dirichlet
problem with boundary condition (56) stated in Chapter 1.

The homogeneous equation corresponding to (40) has the
form

o () —A [ K (s, 2) po () d2 =0 (41)
§
For A = —1 this equation has in fact no solutions different

from zero. Indeed, let us suppose that p, is a solution of
equation (41). The double-layer potential u, (z, y) cor-
responding to p, possesses the property

ui () =0, 2()€S

which follows from formulas (54) in Chapter 4 and formula
(41) written above.

When the variable point (z, y) tends to the boundary S
from the interior of the domain D* the limit of the function
Uy (z, y) is equal to zero, and therefore, by the uniqueness
property of a harmonic function, the equality u, (z, y) = 0
must be fulfilled for all (z, y) € D*. Consequently, for the
value of the normal derivative du,/0v on S we have

(aau«? )+=0 (42)

Now, by virtue of the property of the normal derivative
of a double-layer potential expressed by the equality

duy \ + dug \—
( avo) =( a«;))
(see Sec. 2° § 4 in Chapter 1) and by virtue of equality
(42), we conclude that

()7 =0 (43)

Like in Sec. 3°, § 4 of Chapter 1, it can easily be shown
that the function u, (z, y), which is harmonic in D-, repre-
sents a double-layer potential and satisfies condition (43), is
identically equal to a constant. Finally, since u, (z, Y)
turns into zero at infinity there must be u, (z, y) = O every-
where in D-.
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Now, using again formulas (54) and (55) in Chapter 1.
we can assert that

— Mo (8) =1y (8) —ug (5)=0

This proves that A = —1 is not a characteristic value of the
kernel K (s, t).

It can be proved that the kernel K* (s, t) of Fredholm’s
integral equation (69) in Chapter 1 to which Neumann prob-
lem (67) was reduced has the characteristic value A = —1;
however, in this case condition (68) is fulfilled, and therefore
the Fredholm alternative guarantees the solvability of this
equation.

But here, in order to prove that condition (68) is suffi-
cient for Neumann problem (67) to be solvable, we shall
use another technique.

Let u (z, y) bei the sought-for solution” of the Neumann
problem in the domain D+, and let v"(z, y) be the harmonic
conjugate function to u (z, y).

Since the derivatives du/dz and du/dy are supposed to be
continuous functions in D* |J S, condition (CR) and (67)
imply the following expression for dv/ds:

oo O dz v dy 0w dr | bu dy
s~ fzr ds ay ds gy ds ' Bz ds

ou "dy du dxr _ du
= T = =80

It follows that

v (8) = Sg(t)dt—i—C, 0<s<!
0

where [ is the length of contour S bounding the domain D*.
Since

l
v(0)=C and v()={g@)dt+C

we see that for the function v (s) to be continuous at the
points s = 0 and s = [, that is for the equality v (0) = v (I)
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to be fulfilled, the function g (¢) should satisfy the condition
1
S g(t)dt=0
0

which exactly coincides with condition (68) indicated in
Chapter 1.

The existence of the function v (z, y) harmonic in the
domain D* and satisfying the boundary condition

vis={ewat+c

0

was proved above (as has just been proved, the Dirichlet
problem is solvable).

The harmonic function u (z, y) (the sought-for solution of
the Neumann problem) can be constructed using v (z, y)
with the aid of the method indicated in Sec. 5° § 2 of Chap-
ter 2.

2°. Reduction of Cauchy Problem for an Ordinary Linear
Differential Equation to a Volterra Integral Equation of
the Second Kind. Let us consider the ordinary linear dif-
ferential equation of the nth order

n—1

dany dk
T T Au@) =) (@<a<h) (44

h=0
whose right member f (z) is continuous and whose coeffi-
cients ap (z) are continuous functions possessing the con-
tinuous derivatives d*a,/dz* (k =10, 1, ..., n —1). For
this equation we shall consider the Cauchy problem

dky

dak |x=x®

=y (k=0,...,n—1); a<z,<b (45)

where yf (¢ =0, ..., n — 1) are given real constants.
The polynomial

n—1
2(2)= ) = U8 (e —zo)*
k=0
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satisfies conditions (45), and the function u (z) = y (z) —
—z(z) is a solution of the ordinary differential equation

n—14
-y dh
o +z a (2 >—=f<x>~ 2 an(@)—
h=0
and satisfies the mmal conditions
dkuy
=0 (k=0,...,n—1)

dzh lx=x,
Therefore, without loss of generality, we can assume that in
conditions (45) all the numbers y} are equal to zero, that is
k
Dyl =0 (k=0,...,n—1) (46)
dxk x=x,
On integrating n times equality (44), we obtain, by virtue
of (46), the relation

n—1 x Xy xp—

y(x)—{—}‘_, Sd:c15dxz.. { ah(t) dt~-
h=0 x, Xo xn
x xy Xn—1
:deisdxz... Sf(t)dt (47)
Using the identity .o -
Xi— X
S dz; SF (t) (; — £)7" dt =
X0 X0
*ig *i-1 1 i1
= S F (1) dt 5 (21— )7 day = S (23-1— t) F (1) dt
X0 t xXg

(which is known from mathematical analysis and holds for
any continuous function F (f)), we can rewrite equality (47)
in the form

n—-1 1 x
!/(x)-i-ZWS( O ay (t) dt—

A=0

xo
x

~ =TT S (z—ty =t f()dt (48)

<0
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Next we perform integration by parts in the left-hand side
of (48); by virtue of conditions (46) this results in

n-—1 x

v @)+ gt =10 [ ) toa ) @ — 7=

Xo

= | (=t ()t

that is

y@+ | K@y di=F () (49)
where “
n—1

K (2, )= pr ) (— 1) (@ (1) (e — )

R=0
and

F(2)=Gepr | (=t f (0 dt

are given continuous functions.

Thus, problem (44), (46) has been reduced to the equiva-
lent Volterra integral equation of the second kind of form
(49) whose kernel K (z, t) and right member F (z) are con-
tinuous functions.

Finally, the existence and the uniqueness of the solution
of Volterra’s integral equation of the second kind proved in
Sec. 3% § 1 of the present chapter imply the existence and
the uniqueness of the solution of Cauchy problem (44), (46).

3°. Boundary-Value Problem for Ordinary Linear Dif-
ferential Equations of the Second Order. In the theory of
ordinary differential equations, besides the Cauchy problem,
an important role is also played by]the so-called first bound-
ary-value problem (the Dirichlet problem). Let us state this
problem for the case of a linear equation of the form

d2y

oA @) y=1(2), a<z<b (50)
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It is required to find the solution y (z) of equation (50) which
is regular in the interval a <<z << b and continuous for
a<z< b and satisfies the boundary cornditions

y(a)=A, y(b) =18 (51)

where A and B are given real constants.

Like in the study of problem (44), (45), we can assume,
without] loss of generality, that 4 = B = 0; in other
words, we shall consider boundary conditions (51) of the

form
y(@) =y () =0 (52)

Let us suppose that p (z) and f (z) are given continuous
real functions defined for a<Cx<Cb and that A is a real
parameter.

For our further aims we construct Green's function

(t —b) (r—a)
Git,z)=] °°

N N )
b—a

for =<t
for z>t

which possesses the following properties: (1) it is conti-
nuous in the square a<Czx<<bh, a< t<<h; (2) in the intervals
a<<z<<band a<<t<b, for t =7, it possesses second-
order derivatives both with respect to ¢ and with respect to
z, the derivatives being equal to zero; (3) there holds the
limiting relation

G G
o=t et
t>x <x

On integrating the obvious identity

B6 (2 dy 3G
G(t,2) T —y () LEGD & (¢ Uy 55

over the intervalsa <<t <z — e and z + & << t << b where
e is a sufficiently small positive number, adding together
the results and taking into account (50), (52) and Properties
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(1), (2) and (3) of the function G (¢, z), we obtain the relation

x—£

few ai—rmym+7md+

a
b

+ SG(” ) [—Ap @)y () +f (D] dt=

x+e

=G (x—e¢, :c)

dt t=x+E& T

LQG t .Z:)

, 1y
t—=x— B—G($+b x)_dTl
—p@—ey LDy ere

Now, passing to the limit for £ — 0 in the ld.\t relation,
we obtain

t=x—¢&

b b
yo=—rfet,apwymat et arma (3

that is
b

y@ =2 K@ yma=r@ (54)

a

where
b
K(z,0)=—G@,z)p() and F(x SG(t, z) f(t)dt

It can easily be seen that the solution y (x) of integral equa=
tion (b4), provided it exists, satisfies differential equation (50)
and boundary conditions (52)
Indeed, since y (x) is a solution of integral equation (54),
or, which is the same, of equation (53), we can write
b

v@={ 6w ai—teym+iwa (55

whence

(¢ ﬂ)(1~b

y(z)= [—?wp(t)y(t)Jrf(t)] dt+

ey

b
S (g d y(8)-+F (1)) dt
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From the last expression we find

b—a

By @ 1d+

b
+{ = r =A@y )+ (@ de

and
By I @)y @)+ ()] —
2 p (@) Y (@) + (@] = —Ap (D) ¥ (2) -+ ()

Further, since the function G (¢, z) is continuous, the
passage to the limit in (55) for + — a and 2 — b results in
y (a) = y (b) = 0 because we have the equalities G (¢, a) =
=G (t, b) =0.

Thus, problem (50), (52) has been reduced to the equiva-
lent Fredholm integral equation of the second kind of form
(54). Consequently, the propositions proved in §§ 1 and 2
of the present chapter make it possible to judge upon whether
the problem under consideration is conditionallyor uncondition-
ally solvable and upon the number of linearly independent
solutions of the problem. -

The theory of integral equations presented above readily
shows the essential difference between the Cauchy problem
and the Dirichlet problem for ordinary differential equations.

§ 4. Singular Integral Equations

1°. The Notion of a Singular Integral Equation. In the
case when the kernel K (x, y) of an integral equation turns
into infinity for £ = y so that the integral exists only in the
sense of Cauchy’s principal value, the eguation is referred
to as a singular integral equation.

Let S be a closed or non-closed Lyapunov curve. A one-
valued function K (¢, t,) defined on § is said to satisfy
Hilder's condition if for any two pairs of points ¢, £, and
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t’, t, belonging to S the inequality
[K (8, t)— K (', ) |[<A(t—t' [+ |to—t. ™)

holds where A, 4, and A, are positive constants, and k,<C1,
hy 1.
In applications a singular integral equation of the form

a(to>tp<to>+5 LW g@ydt=f(t), €S  (56)

is often encountered where o, K and f are given functions
and ¢ is the sought-for function, all the functions satisfying
Holder’s condition (for a function of one variable Hélder’s
condition was stated in Sec. 1°, § 5 of Chapter 2).

Generally speaking, Fredholm’s theorems do not hold in
the case of a singular integral equation. The theory of sin-
gular integral equations of form (56) satisfying the require-
ment that the functions a (¢,) and B (¢,) = K (¢,, #,) should
not simultaneously turn into zero at any point ¢, € S was
elaborated by N. I. Muskhelishvili in his book Singular
Integral Equations (Moscow, 1968, in Russian).

Below we shall consider some special classes of singular
integral equations whose solutions can be expressed in quad-
ratures.

2°. Hilbert's Integral Equation. In Sec. 7°, § 3 of Chapter 2
we derived Schwarz’ formula (89) representing in the integ-
ral form an analytic function

f)=u(z y + vz y)

in the circle | 2 | << 1 in terms of the boundary valuesu (¢)
of its real part u (x, y) under the assumption that the latter
is continuous in the closed circle | z | < 1.

We shall suppose that the function u (¢) = u (¢,) (t, =
= e'¢, 0 p<<2n) satisfies Holder’s condition. Let us
write Schwarz’ formula in the form of formula (87) of
Chapter 2:

1

d ,
1= | 22 —u©, 0+w©,0  (57)
1t=1
From (57) we conclude that the expression

fft)=u(@)+iv(e), Lh=e? 0<e<2n
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exists, and, by virtue of formulas (104) and (88) of that
chapter, we have

[ty =u(9)+iw(e)=
—u(@)+ar | A2, 0+ (0, 0=

=t

—u(p)+4 | 20— e S 2O 40, 0)=

Jt=1 =1
2

S u () cot¢—;$d¢+iv ©, 0) (58)

0

=u(Q)+5=

2mi

where

V—Pgp—ttt 3 i
cot = dp= i T t=e

The property of the limiting values of the Cauchy-type

1SM:

integral of the form -— — with a function f () satis-

27

S
fying Hélder's condition (see Sec. 4°, § 5 of Chapter 2)
allows us to conclude from formula (58) that if u (¢,) = u (¢)
satisfies Holder's condition on the circumference |t, | = 1 of
the circle |z | << 1, then so does the function f* (t,).
According to the mean-value theorem for harmonic func-
tions, we have the equality

2n
v (0, 0)= 3= | o) dp
- 0

and therefore formula (58) implies the equality

2w

v (@)= = | u(9) cot T3 a4 5= 'S V(B b (59)
0

0

where the first integral on the right-hand side is understood
in the sense of Cauchy’s principal value.

The function % f (3 = v (z, y) — iu (z, y) analytic in the
circle | 2 | << 1 can be represented in terms of the boundary
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values v () of its real part v (z, y):
1 1 t)d .
Tie=2 S 283, (0, 0)—iu(0, 0)
[H=1

Using this representation we obtain the integral representa-
tion of the function f (z) in terms of the boundary values
v (8) of its imaginary part v (z, y):

fa=% | 2%~ 0)+u (@, 0)

;
=1

As above, from the last equality we find the expression
f* (to) = u (9) + v (¢) =

2n 2n

:iv((p)—{—z—ln Sv((')) cot 9—2—q> de+2in S u(0)do, t=e
0 0
whence
1 f 6 1 F
u(g) =5 | v(8) cot 25 d0+ o Su(e)de (60)
0 0

Consequently, if it is known that the function u (@) satis-
fies Hilder's condition, then the function v (9) also satisfies
Hilder's condition, and these functions are connected by rela-
tion (59). Conversely, if v () satisfies Hélder's condition, then
so does the function u (@), and the relationship between these
functions is expressed by formula (60). This means that for-
mulas (59) and (60), connecting the boundary values of the
real part and of the imaginary part of a function f(z) analyt-
ic in the circle |z | << 1 and satisfying Hélder’s condition
in the closed circle | z |<{1, are equivalent.

In the case when it is additionally known that

2n
{ e +ivwrap=0 (61)
0
formulas (59) and (60) take the form
2n
v(@)=—35 | ul) ot L5 dy (62)

(1]
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and’
1 2n
z?S (8) cot 2

0

Y 40 =u () (63)

respectively.

Let us consider equality (63) under the assumption that
u (@) is a given real function and v (¢) is the sought-for real
function, both functions satisfying Holder’s condition and
condition (61). Then this equality is a singular integral equa-
tion of the first kind whose solution is given by formula (62).
Equation (63) is called Hilbert’s integral equation, and (62)
is the corresponding irversion formula.

On substituting the expression of v (8) given by formula
(62) into (63) we obtain the following composition formula
for singular integrals:

1
(2m)?

2n 5 2n 0
Scot —zlp dGSu((p)cot (pz— dop= —u(}p)
0 0

The functions t—_l_—t and cot 1%’ are called Cauchy’s

kernel and Hilbert's kernel respectively.
3°. Hilbert Transformation. Let us consider the singular
integral equation
1 T o at
n S t—zx

=u(z), —oo<<i&<oo (64)

- 00

where u (z) is a given real function and v (z) is the unknown
real function; we shall suppose that u (z) and v (x) satisfy
Holder's condition and that for large values of |x | the
inequalities

A
(@) <2

where A >0 and 6>0

are fulfilled.
Let us denote by F (z) the Cauchy-type integral involving
the function v (i):

and |U(x)|<|—6

z)— t—2z

So v (t)dt
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According to formulas (106) and (107) of Chapter 2, we have

F*r(zy — F~ () = v (2) (65)
and

0

@)+ @=m | 205, —co<as<o (66)

- 00

From (64) and (66) we conclude that the function F (z)
must be the solution of the boundary-value problem

F* () + F~ (@) = 22

By virtue of formula (110) of Chapter 2, the solution of
this problem turning into zero at infinity has the form

¥ ®(z) for Imz>0 .
@2{—®m for Tmz< 0 (67)
where
1 ¢ u@d
O=—g | 427 (8

Since, by (67) and (68), we have

o0

' - " _ 1 t) dt
F'(@)—F ()= 0" (2) + O (3) = — | L0
the sought-for solution v (z) of equation (64) is given by
formula (65), that is

00

1 dt
v(@)=—5 | 525 (69)

Formula (64) expressing the function u (z) in terms of the
function v (x) specifies Hilbert's transformation; formula (69)
giving the solution of integral equation (64) expresses Hil-
bert's inverse transformation (it is also referred to as the in-
version formula for Hilbert’s transformation).

4°, Integral Equation of the Theory of the Wing of an
Airplane. In the theory of a thin wing of an airplane an

16—-0598
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important role i played by the integral equation

a

220 _u@), —a<a<a, O<a<o (70)

-a
where v (z) and u () are real functions satisfying Holder’s
condition in the interval —a << z < a.
For the limiting values
Fr(z)=1lim F(z), Imz>0,
z>X
and
F-(z)=1im F (z), Imz<O,
of the function

_ ¢ v(t)dt
F(z)= Zm S t—z

we have the formulas
F+ (@) —F~ (2) =v (2) (71)
and

F(2) 4+ F~(2) = == S rOd | s<z<a (12
-a

which follow from formulas (106) and (107) of Chapter 2.
Equalities (70) and (72) imply that the function F (z) must
be the solution of the boundary-value problem

Pr@)+F(@=22 _a<z<a (73)
Fr(2)—F (£)=0, —oo<z<—a, a<ae<<oo (74)
According to (73) and (74), the function
Q(z)=V a:—2F (3) (75)
satisfies the boundary conditions

1 =
Q+(x)+g_(x):{—il/a —z2u(z) for —a<z<a (76)

0, —co<<z<<—a for a<<z<<o0
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As was already shown in Sec. 5°, § 5 of Chapter 2, the
solution of problem (76) is given by the formula

Q ®(z) for Imz>0 -
(z)—{—d)(z) for Imz<<O ()
where

O(2)= — e S —V“’—t‘_’; UL (78)

—-a

and C, is an arbitrary constant.
Let us compute the expressions Q* (z) and Q- (x) using
formulas (77) and (78):

+ . Val—z? 1 ¢ Var—t2u@)dt , C
Q* (2) = —i———5—— u(2) —5 5—4——2"—

t—zx
and
VP I CVRE—Bud C
0 ()= —i LE= g gy 4L SW“T"

-a

From these expressions, by virtue of (71) and (75), we di-
rectly derive the inversion formula for integral equation (70):

e =Y c
U(CC)——? Sl/-a,z—x"‘ I—x + ]/a’—x"’- (79)

-—a

where C = Re C,,.
On taking as C the value determined by the formula

C— S Va2 g ubat u.(t) dt

—a

we obtain from (79) the solution of equation (70) which is
bounded in the neighbourhood of the end point a:

o 1 ¢ (a1t) (e—=z) u(t)dt
v(z)= I S (a—1) (a+2) t—= (80)

-a

Formula (80) expresses Hilbert’s transformation on a finite
interval (—a, a).

1%
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5°. Integral Equation with a Kernel Having Logarithmic
Singularity. In continuum mechanics an integral equation
of the form

L lmt—zjvwai=u@), —a<z<a (8

]
et )

where u (z) and v (z) are real functions is frequently encoun-
tered.

Let us assume that the function u () is dlﬁerentiable and
that the function v (z) and the derivative & ( 7) satisfy Hol-

der’s condition for —a << z < a; then we can repeat the
argument presented in Sec. 2°, § 5 of Chapter 2, differentiate
equation (81) and write it in the form

a

_:[_ SM:_u'(x), —a<z<a (82)

t—zx
—-a

where the integral is understood in the sense of Cauchy’s
principal value.

Formula (79) implies that the general solution of equation
(82) is the function

a —_—
I l/aﬂ—tz u’ () dt c
v(x)—? S a?—z? t—z + Vai—2o

-a

where C is an arbitrary real constant.

As was already mentioned in the foregoing section, the
solution of equation (82) which is bounded in the neighbour-
hood of the end point a is expressed by the formula

a -
1 (at+t)(a—z) u'(t)dt
v@ =% |V ehers T

In applications it is sometimes necessary to find the solu-
tion v (z) of equation (82) which is bounded at both end
points of the interval (—a, ). It is evident that this solu-
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tion can only exist when the equality

¢ u' (t)dt
_Sa =0 (83)

holds; in this case the solution has the form

v(z)"‘%Sl/aLx’ wld L _sce<a

a?—1t? t—zx [}
—-a
In particular, condition (83) holds in the case when u (z)
is an even function.



CHAPTER 6

BASIC PRACTICAL METHODS
FOR THE SOLUTION OF PARTIAL
DIFFERENTIAL EQUATIONS

§ 1. The Method of Separation of Variables

1°. Solution of Mixed Problem for Equation of Oscillation
of a String. In the theory of oscillation of a string an im-
portant role is played by the solutions of the equation

%u u
0z ot =0 )

(the equation of oscillation of a string) which can be repre-
sented in the form

uz, t)y =v(x) w(l) (2)

,Such solutions are called standing waves, and their construc-
tion lies in the foundation of the method of separation of vari-
ables (also referred to as Fourier's method).

The substitution of expression (2) of u (z, t) into the left-
hand side of equation (1) results in

VE@yw (@) —v@E@w () =0
whence

v (2) _ w' (1)

v(z) ~ w() &)

Since the left-hand side of (3) is independent of ¢ and the
right-hand side is independent of z, there must be

v(z) _ w'()
v(z) — w()

=consi (4)

On denoting by —A the constant on the right-hand side
of (4), we can rewrite these equalities in the form

v (@) + W (2) = 0 (5)
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and
w" (1) + o (&) = 0 (6)

Equalities (5) and (6) are ordinary linear differential equa-
tions of the second order with constant coefficients.

From the theory of ordinary differential equations it is
known that the general solution » (z) of equation (5) has
the form

V=02 + ¢y (M)
for A = 0, the form .
v=c,co8 VN ztc,sin VX z (8)
for A>0, and the form
v=rceVAx e~ VA= (9)

for A << 0 where ¢, and ¢, are arbitrary real constanis.
Similarly, for A = 0, A > 0 and A << 0 the general solu-
tion of equation (6) has the form

w=cgl+c,
w=cycos )/ Mi+ec,sin )Nt (10)
we=cyeVht 4 co-V Rt

respectively where c¢; and ¢, are real arbitrary constants.

Let us find a non-trivial (that is not identically equal to
zero) solution u (z, t) of equation (1) which is regular in
the half-strip 0 << z << =, £ > 0 and continuous for 0Tz <C
«n, t>=0, and satisfies the boundary conditions

w(0, 8 =0, u(n t)=0, t>0 (1)

We shall construct the solution of problem (1), (11) as a
standing wave of form (2). Then the functions v (r) and
w (t) must satisfy equations (5) and (6) respectively and the
conditions v (0) w (t) = v (n) w () = 0 whence it follows
that -4
v(0) =0, v(n)=0 (12)
The problem of determining a non-trivial solution v (z)

of equation (5) satisfying conditions (12) is a special case of
the so-called Sturm-Liouville problem.



248 SOLVING PARTIAL DIFFERENTIAL EQUATIONS

A number A for which equation (5) possesses a non-trivial
solution v () satisfying conditions (12) is called an eigen-
value, and the solution v (z) itself is called an eigenfunction
corresponding to (or belonging to or associated with) the eigen-
value A.

Problem (5), (12) possesses no non-trivial solutions of
form (7) and (9); indeed, the substitution of expressions (7)
and (9) of v (z) into (12) results in cqg =0, ic; + ¢, = 0 and
¢ ey =0, eV,  e-V-Fe, = 0 respectively, that
is¢; =¢3=0in both cases. Now let us substitute expression
(8) into (12); this yields ¢, = 0 and ¢, sin /A n =0, whence
it follows that problem (5), (12) possesses a non-trivial
solution of form (8) if and only if

sin )/ An=0
Thus, the solutions of form (8) of problem (5), (12) exist only
when A = n? where n is a nonzero integer. _

Since the functions sin nx and sin (—n) z = —sin nzx are
linearly dependent, it is natural to confine ourselves to the
consideration of the natural values 1, 2, . . . of n.

Thus, we have come to the conclusion that the numbers
A=n¥(n=1,2,...) are the eigenvalues of problem (5),
(12), the corresponding eigenfunctions being ¢, sin nx (n =
=1, 2, . ..) where ¢, are arbitrary real constants different
from zero.

In what follows we shall suppose, without loss of general-
ity, that ¢, =1 (n =1, 2, ...). Accordingly, the system
of the eigenfunctions will be written in the form v, (z) =
= sin nz (n =1, 2,..".). Consequently, homogeneous prob-
lem (1), (11) possesses an infinitude of linearly independent
solutlons u, (z, t) = sin nx- Wy, (t) where, by virtue of (10),

w, (&) = a, cos nt + by, sin nt

and a,, b, are arbitrary real constants.
The system of solutions

sin nz (a, cos nt -+ b, sin nt) n=1,2 ...) (13)
of equation (1) we have constructed makes it possible to solve
the following mized problem (the boundary-initial-value prob-
lem): it is required to find the solution u (z, t) of equation (1)
which is regular in the half-strip 0 < z < =, t > 0 and con-
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tinuous for 0<lz<m, t > 0, and satisfies boundary condi-
tions (11) and the initial conditions
. du(z, t) _

u (.Z', 0) =Q (‘Z)r —at_ =0 \P (:C) (14)
where ¢ (z) and P (x) are given sufficiently smooth real func-
tions.

We shall construct the solution u (z, ¢) of problem (1), (11)
and (14) in the form of a series
u(z, t)= 2 sinnz(a, cosni- b, sinnt) (15)
n=1
It is evident that if the series on the right-hand side of
formula (15) is uniformly convergent, the function u (z, ?)
specified by that formula satisfies boundary conditions (11)
For this function to satisfy initial conditions (14) as well,
we must have

D apsinnz=q (z), ) nb,sinnz=1y(z) (16)
n=1 n=1

whence

2
an

1 I
a, = -i— S ¢ (z)sin nzdx and b, = S P (2) sin nz dz
0 0

From the theory of Fourier’s series it is known that the
continuity of the functions ¢” (xr) and ¢’ (z) in the inter-
val 0<Cz<{n and the conditions ¢ (0) = ¢ (n) =P (0) =
=1 (n) = 0 guarantee the validity of representation (16)
and the uniform convergence of the trigonometric series on
the right-hand side of (15). Besides, in this case the sum
u (z, t) of series (15) is a continuously differentiable function
for 0<{az<Cm, t > 0, satisfying conditions (11) and (14).

If it is additionally known that the functions ¢ (z) and
P (z) are coniinuous in the interval 0<Ca<Cm together
with their derivatives up to the third and the second order
inclusive, respectively, and if ¢ (0) = ¢" (0) = @ (%) =
= @" (m) =0, P (0) = ¥ (n) = 0 then the function u (z, )
represented by formula (15) possesses partial derivatives up
to the second order inclusive, and these derivatives can be
computed by means of term-by-term differentiation of the
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series on the right-hand side of (15). It is evident that under
these assumptions the sum u (z, 1) of series (15) is the sought-
for solution of the mized (boundary-initial-value) problem (1),
(11), (14). Each of the summands

sin nx (a, cos nt -+ b, sinnt) (n == 1, 2, ...)

on the right-hand side of (15) is called (in the theory of prop-
agation of sound) natural oscillation (or a harmonic) of the
string whose end points (0, 0) and (zt, 0) are fixed.

Let us prove the uniqueness of the solution of mixed prob-
lem (1), (11), (14). To this end it is sufficient to show that
for ¢ (z) =9 () =0, 0<<z<{m problem (1), (11), (14)
possesses only a trivial solution (i.e. the solution identical-
ly equal to zero).

As was already proved in Sec. 1°, § 3 of Chapter 3, the
solution u (z, t) of the homogeneous Cauchy problem
u (z, 0) =0, au(r’ ) —o = 0, 0Ca<<m, for equation (1)
is identically equal to zero within the right triangle with
vertices at the points 4 (0, 0), B (w, 0) and C (n/2, n/2). It
can easily be seen that the solution u (z, t) of equation (1)
which is equal to zero on thelinesegments AC and AD where
D = D (0, n/2) turns into zero everywhere in the triangle
ACD. Indeed the integration of the identity

ou odu 0 ou \2
—25 ax (6.1: T)""at (ax) +6t( at) =0
over the triangular domain AC.D., where C. = C, (T, 7)

and D, = D, (0, 1), for any fixed 1, 0 < 7 < n/2, yields,
by virtue of formula (GO), the equality
du Ju du
2 oL dt+ (e \ dz +( ) dz =0

AC +C D +D A

Since u = 0 on the line segments AC, and D4, we derive
from the last equality the relation

J[(5) +(5) ] aa=0

‘ECT

which means that 6"(;: ) _ au(;t’ B~ 0 on D.C,; it fol-

lows that u (z, t) = 0 in the triangle ACD. It can similarly
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be proved that we also have u (2, ) = 0 everywhere in the
triangle BCD, where D, = D, (m, n/2).

Since the function u (z, t) satisfies the homogeneous ini-
tial conditions u (z, ) = au(;t’ Y —0for t = /2, 0L
< @, the consecutive repetition of the above argument leads
to the conclusion that u (z, ) =0 at all the points belong-
ing to the strip 0<Cae<Cm, t > 0.

2°. OQOscillation of a Membrane. The oscillation of an
elastic membrane whose edge is fixed along a curve C lying
in the plane ¢z = 0 and bounding a finite domain G in that
plane is described by the solution of the wave equation with
two spatial variables z and y (the equation of oscillation of a
membrane)

0%y 9% 8%u
Fr i e (17
This solution satisfies initial conditions of the form
du(r, y, t
u(z, y, =0, y), 2ELD| -

=y (r, y), (z, Y)EG (18)
and the boundary condition
u(z, y, ) =0, t>0, (z, y€C (19)

Using the method of standing waves which was considered
in the foregoing section, we conclude, in an analogous man-
ner, that for an expression of the form

u(z, y, ) =v pwl (20)

to satisfy equation (17), the functions v (z, y) and w () must
be solutions of the equations

Av (z, y) + M (z, y) =0 (21)
and
w @)+ @)=0 (22)
respectively where
A= — Av(z, y) _ __ @) = const

vz, v) w (1)
and A is Laplace’s operator 9%/dz% 4 3%/dy®.
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On substituting the expression of the function u (z, y, t)
given by formula (20) into boundary condition (19), we
obtain

vz, w (@) =0, (=, »€C, t>0
The last relation is equivalent to the boundary condition
vz, y) =0, (z,y) €C (23)

for the function v (z, y).

A number A for which Dirichlet’s homogeneous problem
(23) for Helmholtz’' equation (21) possesses a non-trivial
solution v (z, y) is called an eigenvalue, and the function
v (z, y) is called an eigenfunction corresponding to (or asso-
ciated with) A.

Let us suppose that the contour € bounding the plane
region G is a piecewise-smooth Jordan curve and that v(z, y)
is an eigenfunction of problem (21), (23) associated with
an eigenvalue A.

On integrating the obvious identity

(%) + () =5 (5) 5 (v ) —vaw

over the domain G and using formula (GO), we obtain, by
virtue of (21) and (23), the relation

a
S i+v))dzdy= S va—: ds—SvAvdxdy:l 5 v2dz dy
G ¢ ¢ G

From this relation we conclude that the eigenvalue A must be
positive. Therefore we can use the notation A = p? wherep
is a real number. Accordingly, by virtue of (10), the general
solution of equation (22) can be written in the form

w (£) = c3 cos pt + ¢, sin pt (24)

Formula (24) implies that w (t) is a periodic function
with period 2m/p.

For some general assumptions concerning the domain G it
can be proved that there exists a countable set of the numbers
1> Was . - . and the corresponding countable set of eigenfunc-
tions v, (z, y¥), vy (z, ¥), . .. . Below we shall prove this
fact for the special case when the domain G is a circle.
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The solutions of equation (22) having form (24) and cor-
responding to p, (n = 1, 2, .. .) can be written in the form
wy, (1) = a, cos pu,t + b, sin p,t where a, and b, are arbit-
rary real constants; the corresponding system of solutions
of equation (17) is

un (2, Y, t) = vy (z, Y) (an COS pnt + b, sin pnt) (25)
n=1,2,..

If vy, and v, are two eigenfunctions corresponding to A, and
Am (Ap 55A,) then

[ o @ yvm (e ydzdy=0, kstm (26)
G
To prove equality (26) it is sufficient to integrate the

identity
i 6vm 61);; ) 6vm 61);;)
oz (v" 5z Umgz +35 ay (v" 3y Umgy ay
=V AV, — U AV,

over the domain G and then make use of formula (GO) and
the equalities

Avh = —}»hvh, Avm = —Kmvm, (.1:, y) E G
v, (z, Y) = Vm (z, y) =0, (x, y) €cC
This results in

S (Vn AV — U AVy) dz dy = (A — M) S vy, dz dy =0
G G

whence, since Ay 5 A, follows formula (26).
We shall construct the solution u (z, y, t) of problem (17),
(18), (19) in the form of a series

0o

u(z, y, t)= 21 vy (2, ) (@, COS pt+ by sinpgt)  (27)
i
where a, and b, (n = 1, 2, ...) are some real constants.

Let us suppose that the series on the right-hand side of
(27) is uniformly convergent and that it is legitimate to
differentiate it twice term-by-term; then the sum u (z, y, 1)
of that series will satisfy equation (17) and boundary condi-
tion (19).



PTA SOLVING PARTIAL DIFFERENTIAL EQUATIONS

For the function u (z, y, t) to satisfy initial conditions (18)
as well, the coefficients a, and b, must be such that the
equalities

nzi anVy (2, y) =0 (x’ y)’ 21 Rabay (xv y)=1v% (.Z‘, y) (28)
= e
hold, whence, taking into account (26), we find

1
an:"NT({,'J 5;(13(3% Y) Uy (z, y)dz dy

1 (29)
bnzm i VY (z, y) VU, (2, y) dz dy
where
N @) =( | vh(z. vy dzay)™” (30)

£

The number N (v,) determined by formula (30) is called
the norm of the function v, (z, y).

3°. The Notion of a Complete Orthonormal System of
Functions. Real functions v, (z, y) (k = 1, ..., n) defined
in a domain G each of which is not identically equal to zero
are said to be linearly independent if there are no real con-
stants ¢, (k=1, ..., n) among which at least one is differ-
ent from zero such that

n
2 own (@, 9)=0, (2, )€E
An infinite system of functions

U (2, y) (k =1,2, .. -) (31)

is called linearly independent if any finite system of functions
vn (z, y) chosen from system (31) is linearly independent.

We shall suppose that the functions vy, (z, y) (k=1,2, .. .)
are square integrable in the domain G. A linearly independent
system of form (31) is said to be orthogonal if

{ o0 (2, 9 vm (2, Y dzdy=0, k#m (32)
G
An orthogonal system of form (31) is called orthonormal if
N@)=1k=1,2,...)
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It is obvious that, given an orthogonal system of form
(31), we can always make it orthonormal by dividing its
every member v, (z, y) by the corresponding number N (v}).

Let ¢ (z, y) be an arbitrary function defined and square
integrable in G, and let system (31) be orthonormal. Then
the numbers

ah=5(p(:c,y)vh(z, Ydzdy (k=1, 2,...) (33)
é

are called Fourier's coefficients of the function ¢ (z, y) with
respect to orthonormal system (31).
n

An expression of the form Ylov, (2, y) where o, are real

constants will be referred to as a linear combination of the

functions v, (z, y) (k =1, ..., n).
The number
= 2
M:S(cp—z oawn ) dzdy (34)
G hmi

is called the mean square deviation of the linear combination

Z, AV (z, y) from the function ¢.
By virtue of (32) and (33), formula (34) implies that

n

M= Nz(‘P—FZo (op — a)? Z at =0

whence it follows that for a fixed value of n mean square
deviation (34) attains its minimum when a, = a; (k =

=1, ..., n).
n

For the linear combination »!a,v, (z, y) we have the in-
h=1
equality
. 2
S (cp— ahvh) dz dy =0
G h=1
which implies that

D <N (@) (35)
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for any n. Consequently, the number series whose terms are
the squares of Fourier’s coefficients of the function ¢ (z, y) is
convergent, and the inequality

24 G N2 (@) (36)

is fulfilled. Relation (36) is called Bessel’s inequality.

An orthonormal system of form (31) is said to be complete
(in the function space to which ¢ (z, y) and vy (z, y), k =
=1, 2, ..., belong) if

lim (cp—éakvk )2d:cdy=0
1

n=->00
G

or, which is the same,

’éiaﬁ = N2(9) (37)

Condition (37) expressing the completeness of system (31)
by far not always guarantees that the function ¢ (z, y) can
be represented as the sum of the first series (28);

@ (z, y)= gi apvy (Z, Y) (38)

If the function ¢ (z, y) is continuous together with its partial
derivatives up to the second order inclusive, representation (38)
is sure to hold.

If we assume that the functions ¢ (z, y) and ¢ (z, y) are
continuous together with their derivatives up to the second
order inclusive, the series on the right-hand side of (27) whose
coefficients a, and b, are determined by formulas (29) is
uniformly convergent. To guarantee the possibility of term-
by-term differentiation of that series in order to compute
the derivatives up to the second order we should addition-
ally assume that the derivatives of ¢ (z, y) and ¢ (z, y)
up to the fourth and the third order respectively are contin-
uous. Under these assumptions the sum u (z, y, t) of series
(27) will be a regular solution of equation (17).

This assertion can be proved using the theory of the Fred-
holm integral equations, but here we shall not dwell on
the proof.
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4°. Oscillation of Circular Membrane. In the study of
the oscillation of a circular membrane we shall assume, with-
out loss of generality, that in the state of equilibrium the
membrane occupies the circle z? + y® < 1 in the zy-plane.

In this section, besides the orthogonal Cartesian coordi-
nates z, y, we shall also use the polar coordinates r, 6 which
are connected with z and y by the equalities z = r cos 0
and y = rsin 0.

When we pass from the orthogonal Cartesian coordinates
to the polar coordinates, Laplace’s operator is transformed
according to the formula

1
273?"'3—;/2 ar’+ roor + 2 562

Therefore in the polar coordinates equation (21) is written as

9% 1 ov 1 9%
o T T T =0, pr=A  (39)

r oar

For a function v (r, 0) of the form
v(r, 8) = R ()0 (6) (40)

to be a solution of equation (39), the functions R (r) and
© (0) should satisfy the equations

PREM +rRR N+ W — )R =0 (41)
and

8" () + wd (6) =0 (42)

respectively where @ is a real constant:
8"  r®R"4rR'+r*p2R
e R

From (40) it follows that for the function v (r, 6) to be one-
valued, the function ® (6) must be one-valued, that is
© (0) must be a periodic function of period 2n. It follows
that in equation (42) the constant o must be equal to n:
® = n? where n is an arbitrary integer. Accordingly, the
general .solution of equation (42) takes the form.

® (6) = a, cos nb + B, sin nB (43)
where a, and B, are arbitrary real constants.
17—0598

o= — = const
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If R (r) is a solution of equation (41) which is regular for

0 << r << 1 and continuous for 0 <Cr <C 1, and satisfies the
condition

R(1) =0 (44)

then, in the case under consideration, the function v (r, 6
represented by formula (40) is a solution of problem (21), (23).

On changing the variable r with the aid of the formula
pr = p and transforming the unknown function according to

the formula R(r) =R (%) = J (p) we bring equation (41)
to the form
" 1 5 n? |
@)+ @+(1—55) T @)=0  (45)

In what follows we shall assume that the integer n satisfies
the condition n > 0.
Let us consider the power series

< —_ Rk _—zzk_ 46
D (= m e TR (46)

Rex(

13
Since (kN)2e= [ j(k—j+1)>k*, we have
j=1
1
PR ()]~ KR kh
for k>0, and therefore

1im l/ 23kg) (n-l—k)!

R-—+o0

Now, taking into account the Cauchy-Hadamard formula,
we conclude that the radius of convergence of power series
(46)}is infinite, whence it follows that the sum of series (46)
is an entire function of the variable z.

The last fact makes it possible to verify directly that the
entire functions

oo

pnnh

T @)= 2 (=0 gyt =01, --) (47)

k=0

satisfy equation (45), that is the functions R (r) = J, (ur)
are solutions of equation (41) for o = n2
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The functions J, (p) (» =0, 1, . ..) determined by for-
mula (47) are called Bessel’s functions (of the first kind); they
satisfy equation (45) which is referred to as Bessel’s equation.

It can be proved that Bessel's function with a nonnegative
integral index n possesses an infinite (countable) set of real
zeros. We shall denote them as pp, ,, (m = 1,2, ...).

The eigenvalues p? of problem (41), (44) should be found
from the equalities

R =Jn(@)=0 (n=0,1,...)

Consequently, the eigenvalues of problem (41), (44) are the
squares of the zeros of Bessel's functions, that is

M?n = p?l.m *0

From (40) and (43) it follows that the eigenfunctions as-
sociated with these eigenvalues have the form

Un,m (r, 8) = Jn (Pn.m T).\(Cln cos nf + ﬁn sin n0) (48)

On substituting the expression of v, ,, (r, 8) given by (48)
into the right-hand side of formula (25), we obtain the solu-
tions

Un, m (Z, Yy 1) = Iy (On,m T) (0tx cOS RO +

+ Pn sin nB) (@n, m €0S Pn, mt + bn, m SiD po, mt) (49)
n=0,1...;,m=1, 2

of equation (17) satisfying boundary condition (19); each of
these solutions describes natural oscillation of a circular
membrane with a fixed edge.

For the case under consideration, the family of solutions
(49) of equation (17) makes it possible to construct the solu-
tion of problem (17), (18), (19) using the scheme indicated
in Sec. 2° § 4 of the present chapter.

Equation (21) is called the metaharmonic equation, and its
regular solutions are termed metaharmonic functions.

On substituting the solutions J, (ur) and cos n0, sin né,
p?=124,n=0,1, ..., of equations (41) and (42) into the
right-hand side of (40) we obtain the metaharmonic func-
tions J, (ur) cos n6 and J, (ur) sin n@. The first of these

functions turns into zero on the circles r = p"p:”‘ and on the

476



260 SOLVING PARTIAL DIFFERENTIAL EQUATIONS

rays 0 = (nk + = )/n while the second function turns into

zero on the circles r = 222 and on the rays 6 = nk/n,

m=1,2,...;k=0,1,..., n—1; these circles and
rays on which the functions turn into zero are called rodal
lines.

As we know, the Dirichlet problem for Laplace’s equation
is always solvable and its solution is unique; for metahar-
monic equation (21) an analogous assertion may not hold.
For instance, as was mentioned above, homogeneous Di-
richlet problem (23) for equation (21) possesses the linearly
mdependent solutions J, (p,, m r) cOs n6 and J, (pn. mr) X
X sin nB in the circle r << 1 for A = PA. m whereas, as it
turns out, in some cases the non-homogeneous Dirichlet
problem has no solutions.

5°. Some General Remarks on the Method of Separation
of Variables. The Fourier method of separation of variables
can be successfully used for constructing solutions of a wide
class of partial differential equations.

Let us consider an equation of the form

Z A“( B:L't 6.1:] + Z ax +C (z)

i, j=1

—a ()2t 1p (1) Ay ()u (50)
For a function u (z, t) of the form
u(z, t) =v(z) w(2) (51)

to satisfy equation (50) the functions v (z) and w () must
satisfy the equations

D Ay (@) ax,az,'*'z By ( 93)

t, f=1
+IC (@) +Mv(@)=0 (52)
and
a@w () + B @w @)+ [v () + Al w()=0 (53)

respectively where A=const.
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When the number of spatial variables is n = 1, that is in
the case of the equation

A@) 24 B@) 2y C@)u=
—a () T p )2y yu (54)

the corresponding equation of form (52) for the function
v (x) is written as

A@v' +B@)v +[C@)+Av=0 (55)

Both equations (53) and (55) are ordinary linear differential
equations whose solutions can be investigated in a rather
simple way. However, the construction of the complete sys-
tem of solutions ofj form (51) for equation (54) and the proof
of the possibility of the representation of the solution u (z, ¢)
of mixed problem (18), (19) for this equation in the form of
the sum of a series with respect to solutions (51) cannot be
performed without resorting to the spectral theory of linear
operators.

The investigation of this problem becomes very compli-
cated when there are separate points’in the] interval of
variation of the independent variable z"(or t) at which the
function A (z) (or the function a (f)) turns into zero. Howe-
ver, it is these cases that are most frequently encountered
in applications. To investigate problems of this kind it be-
comes necessary to consider the so-called special functions.

In the case when 4 (z) = 2% B (z) = z, C (z) = 2%, A =
= —p? equation (55) is Bessel’s equation

2"+ v+ (@22 —pHv =0
which we considered earlier. The solutions of this equation
are called Bessel's (or cylindrical) functions. Bessel’s func-
tions J, (z) with nonnegative integral indices n were used
in the foregoing section.

In the case when 4 (z) =1 — 2%, B (z) = —=z, C (z) =
= 0, A = n? equation (55) is Chebyshev's equation

@—22)v" —a' +nw =0
Chebyshev's functions

T, (z)=%[(x—|—i V1—a2)" + (x—i I/i—zz)n]
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and
u, (x)=—§i— (z+iVI=2)"—(z—i Y T—22)"]

(r = 0,1, ...) are solutions of Chebyshev’s equation; it is
obvious that the functions 7, (x) are polynomials (they are
called Chebyshev's polynomials).

Laguerre's equation

2w+ 1L —2)v +Mw=0
is also a special case of equation (55).
6°. Solid and Surface Spherical Harmonics. By virtue

of formula (26) of Introduction, the homogeneous poly-
nomials

u;n (xa Y, ) ‘J (_1) (2n)l A" (xay o‘) (56)

nz=0

o=0,...,m
and

um+ﬂ+1(~"«', Y, z)= 2 (=" (2 ‘l‘i)! A™ (xPym-B-1) (57)

n=0

p=0,...,m—1
o2 02

of the mth degree (where A=+ ay2) are harmonic

functions; they are called solid spherical harmonics.
Formulas (56) and (57) give all linearly independent solid
spherical harmonics of degree m, their total number being
2m 4+ 1.
For instance, putting m = { in formulas (56) and (57)
we obtain
1

1 __ 1 —
U=y, u =2 Uuy=3z

and putting m = 2 we obtain
W=y —2, ul=uay, ul=a2-722
u; = a3y, u, = ar
If we pass to the spherical coordinates r, ¢, 6 which are

connected with the orthogonal Cartesian coordinates z, y, 2
by means of the relations

g=rcosesin®, y=rsingsin0, z=rcos0
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the solid spherical harmonics u} (z, y, 2z) take the form
up (z,y, 2)=r"Yh(p, 0), k=0,...,2m (58)

where the expressions Y% (¢, 0) are called Laplace’s surface
spherical harmonics.

As was already mentioned in See. 1°, § 1 of Chapter 1,
the harmonicity of functions (58) implies the harmonicity
of the functions

1
Lup (&, K, 5) = V(0. 0), k=0,...,2m (59)

r

Let us write Laplace’s equation u,, + u,, + u,, = 0 in
spherical coordinates:

a ou 1 ?u i} . ou
Br (r “or )+ sin? 0 4q? + 51n9 EL) (sme-%) =0

If we require that a function u (z, y, 2z) of the form

ulz, y, 2) =Y (g, 8) w(r)
should be harmonic, the separation of variables yields

d d
+ (r ) —hw=0 (60)
and
1 02y 1 i}
sin2 0 adg? + sin® 40 (Sme )‘+ AY =0 (61>
where A = const.

In particular, for A = m (m + 1) equations (60) and (61)
take the form

L () n ) =0 (62)

and

1 i)' a
sin? 0 6cp’+ €1n6 ¥ (SInO )+m(m+1)Y 0 (63)

The factors ——— and Y7, (¢, ) in expressions (59) for
z oy

. . 1 z .
the harmonic functions — uZ’(—z, ==, —2) are solutions
r r r r

of equations (62) and (63) respectively.
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For a function Y (¢, 0) of the form
Y (¢, 6) = D (9) 8 (8)

to be a solution of equation (63), the functions @ and ©
must satisfy the equations

. O 4 pd® =0, (64)
and

s o (sin8 5) +[mm 1) —hp]8=0 (85)

respectively where g = const.

The condition that the function Y (¢, 0) is periodic with
respect to ¢ with period 2m implies that the constant p
in equation (64) must be equal to the square of an integer:
w = n? where n is an integral number. Accordingly, using
the notation cos © = ¢ and © (0) = © (arecos ) = v () we
rewrite equation (68) in the form

(1~ — 20’ + [ m (m 1) — 1j’t,]u=o (66)

Frém equation (66), for » = 0, we obtain the equation
A= —200'+m@m +1)v=0

known as Legendre’s equation. The linearly independent
solutions of this equation are called Legendre’s functions of
the first and of the secord kind and are denoted P,, (cos 0)
and Q,, (cos 0) respectively.

As to the linearly independent solutions P}, (cos 8) and
0%, (cos 0) of equation (66), they are called Legendre’s asso-
ciated functions of the first and of the second kind.

7°. Foreed Oscillation. The non-homogeneous equation

Au %u

F—W"—_f(x! t) (67)

where f (z, t) is a given real continuous function, is referred
to as the equation of forced oscillation of a string.

In the case when f (z, t) = f, (¢) sin nz it is natural to
construct the solution u, (z, t) of equation (67) in the form
U, (z, t) = w, (t) sin nz. From (67) we obtain the ordinary
linear differential equation

wy () + nPw, () = —f, (1)
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for the determination of w, (2); it is obvious that the func-
tion

t
w‘,’,.(t)z ———:— S fo(t)sinn(t—1)dt
0

is a particular solution of this equation. Consequently, the
general solution of this equation has the form

i
w, (t) = a, cosnt -+ b, sin nt—% S fon(z)sinn(t—r7)dt
0

where a, and b, are arbitrary real constants.
The system of solutions

Up(z, t)=
. . 1 : .
= sin nz [an cosnt4- b, sin nf—— S fa(t)sinn (t—1) dr]
' 0

n=1,2, ...

of equation (67) makes it possible to investigate mixed prob-
lem (67), (11), (14).
Let the functions ¢ (z) and ¢ (z) be the sums of series (16)

and let f(z, t) = X} f, (t) sin nz. Under the assumption
n=1

that these series can be differentiated and integrated term-
wise, the solution u (z, t) of mixed problem (67), (11), (14)
can be written in the form
u(z, t)y= Z sin nx [an cos nt+ b, sin nt —
n=1 i
L
_TS fn(%)sinn(t—w) dr]
0

It should be noted that if the boundary conditions are
non-homogeneous, that is if instead of (11) we have v (0, t) =
= o (t) and u (%, £) = B (£) where o () and B () are twice
continuously differentiable functions, the transformation
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u(z, ty=v(, t)+a(@)+ %[B (t) — a ()] of the un-
known function u (z, t) in equation (67) results in the equa-
tion

8%

T = (2, o () + (B () — o ()]

for the new unknown function v (z, t); the new boundary
conditions are homogeneous: v (0, 1) = v (%, t) = 0. The
initial conditions for the function v (z, t) are obtained by
changing in the corresponding manner the initial conditions
for u (z, t).

Forced oscillations of a membrane can be investigated in a
similar way.

§ 2. The Method of Integral Transformation

1°. Integral Representation of Solutions of Ordinary Linear
Differential Equations of the Second Order. The class of
differential equations whose solutions can be expressed in
terms of elementary functions is rather narrow.

In the foregoing section we used the method of separation
of variables in order to construct solutions of partial differ-
ential equations as sums of infinite series. However, it is
sometimes convenient to represent the solution of a differ-
ential equation under consideration in the form of an inte-
gral involving some known functions and also solutions of
some simpler equations.

Let us consider an ordinary homogeneous linear differen-
tial equation of the second order of the form

Lp=pr@y +q@Yy +r@@y=0 (68)

whose coefficients are analytic functions defined throughout
the whole complex plane of the variable z.

We shall seek the solution y (z) of equation (68) in the form
of the integral

y@=| K@ Yo d (69)
¢
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where C is a piecewise smooth contour, v ({) is an analytic
function (yet unknown), and K (z, {) is an analytic function
with respect to the variables z, { satisfying an equation of
the form

PG+ et r () K=a () S5 +5(0) E e @) K
(70)

the coefficients a (g), b () and ¢ () being some given ana-
lytic functions.

The calculations below are carried out under the assump-

tion that all the operations we perform are legitimate. From
(69) we obtain

L= | LEyv@)d

c

Taking into account (70) we can rewrite this relation in
the form

L) =| mmoea (71)

Cc

where the symbol M under the integral sign denotes the
differential operator on the right-hand side of (70): M =

— a (8) g+ b (D) 55 + ¢ (D).

Let us perform integration by parts in (71). Then, assum-
ing that in the resultant expression all the terms not involv-
ing integrals turn into zero, we obtain

Lw=| K@ oM wa (72)
where ¢

M* (v)={;Lgﬁ (av)—:—g(bv)—l—c(g)v

is the (Lagrange) adjoint differential operator of M.
In case the function v satisfies the equation

M* (v) =0 (73)

the function y (z) expressed by formula (69) is obviously a
solution of differential equation (68), '
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To demonstrate the application of this technique let us
consider Bessel's equation (45) which we shall write in the
form

2y oy +(—n)y=0 (74)

We shall construct the solution y(z) of equation (74) using
formula (69) in which we put

K(z, 0)=7F —e'" sinfg
In this case we have
L(K)=2K,,+ 2K, + (2* —n®) K = —Ky; — n’K
and therefore equalities (71) and (72) are written in the form
L) =— | Ku+nK)v (@) di=
¢

=+ % 5 (vge + n2v) e=tz5n T 4L
c

From the last relation we conclude that M* = — Z{% — n?,
that is equation (73) has the form
d€2 _|_ Zv_.

The solutions of this equation are the functions exint.
Consequently, the functions determined by formula (69)
in which

K(z, ) =F —e-i=snt and v (g)=eirt
are solutions of Bessel’s equation (74).
All the operations we have performed are legitimate if

we suppose that Re z > 0 and if, for instance, we take as
the contour of integration C in formula (69) the broken line

E=0, —o< <=0, —an<ELO;
E=—n, 0< 1< (75)
(see Fig. 24) or the broken line
E=0, —oo<<0;n=0,0<E < m;
=u,0<,___q<oo.§=§+ir. (76)
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Let the path of integration C be broken line (75) and let
K (3, §) = —~ e =sint. We shall denote by b (z) the cor-

A

-t < J] —®

Y

Fig. 24

responding solution of equation (74) defined by formula (69)
in the half-plane Re z > 0:

0
0, (z)= —-i; S exp ( —iz sinin—nmn) dn—

«
4
19

exp ( —izsin E+ nki) dt —

|
ot—ay

-._;— exp (izsin in —nn— ani) dy (77)

St 3

In the case when the path C coincides with broken line
(76) and K (2, §) = %e“’ sint we shall denote the corre-
sponding solution as H3 (2):

0
H%(z)=-t? S exp (—izsinin—nn) dn+

- 00

+% 5 exp (—izsin §+- nki) dE+
1}
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—|—Lﬂ S exp (iz sin in— nn - nni) dy (78)
0

Taking into account the relation

sin in=—e 5 = ————Sin?n
we can rewrite formulas (77) and (78) (after some simple
transformations) in the form

0

H, (3) :_nit— S exp (z sinh n—nn) dn-4-

- 00

0
4= S (—izsin &+ in &) dt+
-%
—|—-:—15 exp (—zsinhn—nn—mnni)dn  (79)
0
and
0
Hj (2) = —nLi S exp (z sinh n—nn) dn--
) JT
+_1t_S exp (—izsin 4 in k) dE—
0
— ,: Sexp(—zsmhn—nn—}—nm)dn (80)
0
respectively.

The solutions of Bessel's equation (74) specified by formu-
las (79) and (80) are called Hankel's functions (they are also

referred to as Bessel’s functions of the third kind). Their linear
combination

J o (3) =5 [H} (2)+ H3 (2)] (81)

is Bessel’s function (of the first kind) and the linear com-
bination

Ny (2) = [} () — H3 (2)] (82)
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is called Neumann's function (also referred to as Bessel's
function of the second kind).
From (79), (80) and (81) we obtain

7

J,,(z):%— S exp(—izsin§+ink)dE—

S exp (—zsinh n—nn)dn (83)
0
In the case when » is an integer the second summand on

the right-hand side of (83) vanishes, and the expression for
J, (z) takes the form

I

T (2) = = S oxp (— iz sin 4 in ) dt =

-7

sin nn
n

n
1 .
- 5 cos (zsin E—nE) dt  (84)
0
From formula (84) it follows that for an integral value of

the index n the expression J, (z) is an entire function of the
complex variable z, and, besides,

J_, (2) =—1“— cos (z8in §+ nk) dE =

oty

=—i-S cos [z8in (n—t)+n(n—1t)jdi=
0

E1
=(—1)"% S cos (zsint —nt)dt = (—1)"J, (3)
0

It can be proved that the solutions of Bessel's equation (74)
determined by formulas (719) and (80) in the half-plane Re z >
> 0 can be continued analytically to the half-plane Re z << 0
for any value of the index n and that when the number n is
ron-integral the points z=0 and z= oo of the complex vari-
able z are branch points for the analytically continued func-
tions.
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Besides, the functions J, (z) and N, (z) are linearly inde-
pendent, and they can be represenited as the sums of the series

had 1 z \n+2k
In (Z):Z (—1)* FIT (n k1) (7) (85)
B=0
and
_ Ja(a)cosnn—J_p (2)
N" (Z) - sin ©tn -
respectively.

The fact that the function J, (z) determined by formula
(85) satisfies equation (74) can easily be verified directly if
we take into account the well-known property of Euler’s
gamma function: T (k 4 1) = kT (k).

2°. Laplace, Fourier and Mellin Transforms. Let f () be
a real or a complex function of the real variable t, 0 <C t <<
<C oo, satisfying the following conditions: (1) the function
f (¢) is continuous everywhere except, possibly, a finite
number of points of discontinuity of the first kind, and (2)
there exist constants M > 0 and &, > 0 such that | f (¢) | <<
< Meébot for all £

Under these assumptions the integral

F)=| f@ewat (86)
0

exists for all values of £ whose real parts satisfy the inequal-
ity Re L > &, and is an analytic function of the complex
variable { = & + in in the half-plane Re § > &,

The function F ({) determined by formula (86) is called
the Laplace transform (or image) of the function f (), and
the function f (f) itself is referred to as the original (or the
Laplace inverse transform or the inverse image of F (§)). The
transformation from f (¢) to F () is called the Laplace trans-
formation.

In applications we frequently encounter the problem of
inverting equality (86); in other words, it is sometimes nec-
essary to express the original f (f) in terms of its Laplace
transform F () (this operation is referred to as the Laplace
inverse transformation).
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It can be proved that if (1) the function F () is analytic
in the half-plane Re §{ > E;, (2) for Re { == a where a is
any number exceeding &, the function F () tends to zero as
£ — oo uniformly with respect to arg C:

lim F ({)=0
t—+oo
and (3) the integral

S F(a+in)dn
is absolutely convergent, then the Laplace inverse transform of

the function F (0) exists, and the transformation inverse to
(86) has the form

fO) =g | Fletimecrman (87)

where the integral on the righi-hand side is understood in the
sense of Cauchy’s principal value.
Using the notation

git)y=f@tye™ and G()=—= 1/— F(a+in)
we can rewrite formulas (86) and (87) in the following way:
1,
— —-int
6=~ joe g (t)dt (88)
and
g )= J e dn (89)

The function G (n) defined by formula (88) is called the
Fourier transform of the function g (f) (formula (88) itself
expresses the Fourier transformation from g (z) to G (n)).}In
case g (f) = 0 for — oo << £ << 0 the lower limit of inte-
gration on the right-hand side of (88) can obviously be taken
equal to — oo.

Accordingly, formula (89) expresses the Fourier inverse
transformation from G (n) to g (t), and g (f) is the original

18—~0598
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(or the Fourier inverse transform or the inverse image) of G (n).

If the function g (2) is defined everywhere for — oo < ¢ <<
< oo (it must not necessarily be equal to zero for — co <<
< t << 0), by the Fourier transform of this function is meant
the integral

S e-intg (1) di (90)

- 00

G ) =—7=

For Fourier transform (90) to exist it is sufficient that the
function g (¢) should satisfy the following conditions: (a)
g (t) has a finite number of extrema, (b) it is continuous every-
where except, possibly, a finite number of poinis of disconti-
nuity of the first kind, and (c) the integral

o0

| gwar

- 00

is absolutely convergent; in this case the transformation inverse
to (90) is expressed by formula (89).

Although the proof of this fact does not require intricate
mathematical techniques, we shall not dwell on it here.

The replacement of the variable of integration v by —n
readily shows that formula (89) can be taken as the original
definition of the Fourier transformation for which transforma-
tion (90) plays the role of its inversion.

The Mellin iransformatior from a function f () defined
for 0 Ct<< oo to a new function F () of the complex
variable { is specified by the integral

P ={ 17 ¢y dt (91)

where { is a complex variable and #-! is understood as the
one-valued function

£l — p&-Diny

in whose expression by In ¢ =log, ¢ we mean the principal
value of the logarithmic function.
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For { = a — iz, the change of the variable of integration
t = et brings formula (91) to the form

Fa—it) = 3 eute =115 (e8) dE (92)

- 00

Under the assumption that the function e"f (et) satis-
fies conditions guaranteeing the existence of its Fourier trans-
form, we derive from (92), using (89), the equality

e"gf(e§)=2in 5 F(a—it) ettvdt

-0

Further, on returning to the variable ¢t = ¢%, we obtain the
expression

()= 5 F (a— it) t-(=i0 dy (93)

Consequently, the transformation inverse to (91) which
expresses f (¢) (the Mellin inverse transform or the original)
in terms of 7 ({) (the Mellin transform or image of the func-
tion f (#)) is given by formula (93) expressing the Mellin
inverse transformation. This formula can also be written as

a+ioo

fO=3r | @ (9%)

a—joo

The theory of the Laplace, the Fourier and the Mellin in-
tegral transformations (and of integral transformations of
other kinds) is the subject of one of the divisions of applied
mathematics which is called the operational calculus.

3°. Application of the Method of Integral Transformations
to Partial Differential Equations. In integral representation
(69) of the solution y (2) of ordinary differential equation
(68) the kernel K (z, ¥) satisfies linear partial differential
equation (70).

In Sec. 1° we took a definite solution K (z, {) of equation
(70) and used it to construct solutions of equation (68). In
the present section we shall consider a procedure which is in
a certain sense reverse to the above.

i8%*
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Let it be required to find a solution u (2, t) of a linear
partial differential equation of the second order of the form

a(@)Th b (@) Tt fe(@) Rt d (@) Lo (m)u=0 (95)

which is regular in the half-strip O <<z <<, t>0 and
continuous for 0 <z << I, t >0, and satisfies the initial
conditions

u(z, )= (z), 20 b () (96)

ot =0

and the boundary conditions
u(0,8) =71 @), u(, t)=/(@1 (97)

the coefficients of the equation depending solely on the spa-
tial variable z.

Let us suppose that the class of solutions of equation (95)
we deal with and the complex parameter { are such that the
integrals

vz, {)= 5 u(z, t) e~% dt (98)
0

and

0o

Fy(0)= S u(0, t)e-tdt, Fy(L)— S w(l, tye-ttdt (99)
[i] 0

exist and that the operations

du(r D S 5u(r t) e=tt dt (100)
(i]
82 ¢ ot (z,
D[ 2 e o
0
SﬁL(g;—‘)e-ti dt=1{ S u(z, t)e-ttdt-+u(x, t)e® ';°=
0 0

= (z, H)—u(z 0) (102)
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and

00

ik 9 0 U
[ Luled pvar=tw (e, f)—tu (e, 0)—-222 0| (103
0

are legitimate.

On multiplying both sides of equation (95) by e~% and
performing the integration with respect to ¢ from £ = 0 to
t = co we obtain, by virtue of (96), (97), (98), (99), (100),
(101), (102) and (103), the equalities

av” + v’ + (e +di + bW v =
= be (z) L+ by (z) + do (x) (104)

v (0, § = Fi (8, v(, §) = Fy (L) (105)

Thus, we have reduced the solution of (mixed) boundary-
initial-value problem (95), (96), (97) to the determination
of the solution v (z, ) of boundary-value problem (105) for
ordinary differential equation (104).

It should be noted that the existence of the solution of
problem (104), (105) by far not always guarantees the pos-
sibility of the inversion of Laplace transformation (98).

If problem (104), (105) is solvable and its solution v (z, {)
is unique, and if the inverse transform corresponding to
Laplace transform (98) exists, that is

0

u(z, 1) = 5 v (2, at- i) e@tint dy (106)

and

-0

it is evident that problem (95), (96), (97) cannot possess
more than one solution. In the case when the function
u (z, t) specified by formula (106) is continuous together
with its partial derivatives up to the second order inclusive,
it will be the sought-for solution of problem (95), (96), (97).

The determination of the function u (x, t) with the aid of
formula (106) involves rather lengthy calculations; therefore
the Fourier transformation is more preferable for solving
partial differential equations encountered in concrete physi-
cal problems. Besides, the conditions sufficient for the ex-
istence of the Fourier inverse transform are more often
naturally fulfilled.
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4°. Application of Fourier Transforination to the Solution
of Cauchy Problem for the Equation of Oscillation of a String.
Let it be required to find the solution u (z, ) of the equation
of oscillation of a string

o%u . ou -0 (107)

oz? o132
salisfying the initial conditions

ou (z, 1)

w@, O)=q(@), 28D —p@  (108)

t=
which is regular in the half-plane ¢ > 0, the functions ¢ (z)
and 1 (x) being given and sufficiently smooth.

Let us suppose that the function u (z, t) and its partial
derivatives up to the second order inclusive are continuous
and tend to zero for x? - £ — oo sufficiently fast so that
the Fourier transformation

v (t, g):712=n S u(z, t)e-ixt dz (109)

makes sense. We shall also suppose that the operations below
are all legitimate:

1 S %u (z, 1) e— 1% o —
Vin dx?

—cC

PO S u(z, tyetdr = —Ew(, &) (110)

- 00

8

1 Pu(z, 1) . 42 (8, &
Vin S ua(:; L emith da = ld(;z ) (111)

- 00

1r .
_—— 3 y O —LE-’X‘d S
v (0, E) o _‘L u(z, O)e x

= Viz_n | o@em =0 112)
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and
dv(t, &) 1 N ou (x, 1) ixE .
—& ™ om | g e da=

— 1 —ixE —
1ﬁﬁiwme dz=¥ (8 (113)
where @ (8) and W (E) are the Fourier transforms of the
functions ¢ (x) and {™(z) respectively.

Let us multiply both sides of equation (107) by e~i*t and
perform integration with respect to z from — oo to oo; by
virtue of (110), (111), (112) and (113), this results in

v (8, B) + B (2, E) =0 (114)

and
v (0, ) = @ (), v, (0, §) = ¥ (§) (115)

Let us write the general solution v (¢, §) of ordinary differ-
ential equation (114) in the form

v =1c; (§) e’ + c, () et (116)

where ¢; and c, are arbitrary expressions independent of ¢
and dependent solely on the parameter .
From (115) and (116) we obtain

¥ ()

ei+c=® () and ¢, —cy= 3

whence it follows that
1 1 1 1
=5 PE+5r Y (E) and =5 E)—5z ¥

The substitution of the values of ¢; and ¢, we have found
into the right-hand side of (116) yields the solution

D (t, §) =5 D (8) (5 em5) o W (F) (6B —emiby)  (417)

of equation (114) satisfying initial conditions (115).
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Applying inversion formula (89) to Fourier transformation
(109) we obtain

u(z, t)= S v (2, E)leits dt

1
Vi

whence, taking into account (117), we derive the formula

S [eiE@+D 4 pitx=0] D (B) dE -+

u(x, t)=

21/
1
+2V§:}_

By virtue of inversion formula (89), the rightmost equal-
ities (112) and (113) take the form

o0

S [eig(x+t)_e‘i§(x-t)]%llf(§) dt (118)

?(E) =

1/155 _S @ (1) ei% dv

and

V(€)=

1 ¢ ,

— ¥ (1) eité d
Voa _L (%) *
respectively, and hence

oo

Viﬂ S e+ (1) dr == @ (24 1)
= (119)
1/12—n 5 et"x=-D (t)di =g (x—1)
and
Vlﬁ 5 v é‘) [eiTx+D) — git@=1] dy =
- 1 x+t x4+t
=ﬁ5 v@do | edi= | y@az (20

-0 x=1 x=1
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From (119) and (120), using formula (118), we readily
derive D’Alembert’s formula for the solution of problem (107),
(108):

. b
u(e )=glo@+n+o@—+5 [ vEaE @20

x—t

(this solution was already obtained in Sec. 3°, § 1, Chap-
ter 3).

5°. Convolution. By the convolution (or German faltung)
f * @ of two functions f () and ¢ (z) defined in the interval
— o0 << x < oo is meant the integral

fro= | tOo@—1at (122)

dependent on z as a parameter.
If the Fourier transforms

FE)=

S f)e-ittds, @ ()= 1/1:: S o (1) et dt

]/:1:

-~ 00

(123)

and the inverse transforms

f(t)= j PO pl)=— | O e at

(124)

]/n ]/2

exist, convolution (122) can be written in the form
fro= | F(®®@etd (125)

Indeed, the substitution of the expression ¢ (z — t) found
from (124) into the right-hand side of formula (122) results in

1 ( r (x—
f*cp=ﬁ_jmf(t)dt_jm®(§)e‘ 0% g
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whence, assuming that it is legitimate to change the order
of integration, we find

[+

1 ¢ ix -4
f*(p_—_ﬁjmm(g)e §dE S f (t) e-i% dt

Finally, on replacing the second integral on the right-
hand side of the last equality by ¥ (£), we obtain, according
o (123), formula (125).

Using the Fourier transformation and formulas (122)
and (125) expressing the convolution we can easily obtain
the solution

— 00

. ® _(§Z:c)‘=
e, )= 5= Smcp@)e dE (126)
of the Cauchy-Dirichlet problem
ulz, O)y=g (), —cc<<z<<oo (127)
for the heat conduction equation
R A LA (128)

in the half-plane ¢ > 0 (this solution was already derived
in Sec. 1°, § 2, Chapter 4).

Indeed, let us suppose that the functions u (z, t) and ¢ (z)
are sufficiently smooth] and: that for 2% + 1 > oo they de-
crease so fast that the Fourier transforms

1 N —ikx
vt H=—r _Smu(.r, t) e~ 15 dy (129)
and
O (E) = —igx g
®) =5 S ¢ (z) e~ da (130)
exist and the operations
1 ¢ Qu(z, t) . __av(t, E)
o S @D g-tixdgp— 2L B (131)
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and
1 RPu(z, ) ey .
e S g€t dr =
S 1;22_:; —Swu(x, tye it dr— —EW (1, £) (132)
are legitimate.
On multiplying equation (128) by 1/12_ e~ and inte-
n

grating with respect 1o z from — oo to oo, we obtain, by
virtue of (127), (129), (130), (131) and (132), the equalities

& pew=0 (133)

and
v (0, §) = @ (§) (134)

Further, we write equation (133) in the form

dv 9

- = —8a
and integrate it, which immediately yields the general
solution

v (L, E) = ce-® (135)

where ¢ is an arbitrary expression dependent solely on E.

On substituting expression (135) of v (¢, &) into (134), we
find ¢ = @ (§). Consequently, the solution of ordinary differ-
ential equation (133) satisfying condition (134) is the

function
v(t, &) = D (E) et

Knowing the function v (¢, &) we can rewrite (129) in the
form

00

D (E) -8t = Viﬁ Su(x, 1) e-it* dz (136)
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Finally, applying inversion formula (89) to (136) we
obtain

g | @@t (137)

—00

u(z, t)y=

The Fourier transform of the function e~ (with respect to
the variable &) for the positive values of ¢ is the function

oo x2

1 Se—l;ﬁeixl;dg: 1w

f(x’ t) = .‘/'2—5 ]/-Z—t

(the last formula can easily be verified; by the way, there
exist extensive tables of the Fourier transforms of the func-
tions most frequently encountered in applications in which
the Fourier transform we are interested in can be found).

Next, on applying formulas (122) and (125) to the convo-
lution f » ¢, we derive from (137) the expression

— 00

oo

u(zx, t)= Viﬁ S@(E)e*%zteixédg_—_
L[ e@ie—tna——— [eme T a
—vE | Pt od=us |

which is what we intended to prove.

6°. Dirac’s Delta Function. In Sec. 2° § 2 of the present
chapter we imposed certain conditions on the function g (z)
which guaranteed the existence of Fourier transform (90).

Unfortunately, Fourier’s transformation does not make
sense for a rather wide class of functions. For instance, even
for the function G () = const 540 the integral on the right-
hand side of (89) is divergent. However, we can formally
consider the Fourier transform of the constant G = 1/} 2x.
By definition, this transform is called Dirac’s delta function
(6-function):

8 (2) = o | emsag (138)

- 00
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We can also (formally) consider the Fourier inverse transform
corresponding to (138):

0o

= ) S et (139)

The formal equality (139) can be written in the equivalent
form

[~}

S 8 (&) e~ixt dE — 1

Let us suppose that f (z) is a function defined for — oo <<
<<z <<oo and satisfying conditions which guarantee the ex-
istence of the (mutually inverse) transforms

oo

1 —ix
F(0) =~/ _Smf(E)e 8 dt (140)
and
1 ¢ x
1@ =7 | Foestar (141)

Taking into account formulas (122), (125), (139), (140)
and (141) we obtain for the convolution f x § the expression

00

| Feyemas=(a)

— 00

L
Von

Thus, we have arrived at a very important conclusion: the
convolution f» 0 is equal to the value of the function f at the
point x:

fro=| io@—nar=

f+6=7f(2) (142)

Formula (142) makes it possible to considerably simplify
some lengthy calculations, particularly those encountered
in quantum mechanics.

In the special case when f () = 1 (— oo << & << o0) for-
mulas (142) and (122), after a simple change of the variable
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of integration, lead to the formula
S S (tydt=1 (143)

Dirac’s 6-function is sometimes (formally) defined as a
function which is equal to fzero for all the values of ¢
different from zero and is equal to oo for £ = 0 with the ad-
ditional requirement that equality (143) should hold.

This definition of the 6-function is inconsistent from the
point of view of classical mathematical analysis. A rigor-
ous definition of the, 6-function and of the above operations
on it is given in the modern theory of generalized functions.

§ 3. The Method of Finite Differences

1°. Finite-Difference Approximation of Partial Differential
Equations. In applications it is sometimes necessary to
find an approximate, in a certain sense, solution of a con-
crete problem of mathematical physics. Below we briefly
discuss one of the methods of constructing approximate solu-
tions of partial differential equations known as the method
of finite differences (or, simply, the finite-dijference method).

Let us consider a linear partial differential equation of the
second order in two independent variables

a (@, y) T +b(2, ¥) Tt (2, ¥) et
+d(z, y) G te(a Pu=f(z,y) (144)

The variables x and y will be interpreted as orthogonal
Cartesian coordinates in the plane. Let us cover the zy-plane
with the square grid of pointsz = m-h,y = n-h(m,n =
=0, &1, ...), where h is a given positive number. The
vertices of each square cell are referred to as grid-points,
and the number % is called the grid-size.

On the basis of the definition of partial derivatives, we
can write for every grid-point (z, y) the following approxi-
Ou(z, y) oulz,y) u(z,y)

ox

mate expressions for the derivatives R TR
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A%u(x,

and Ty) (under the assumption that the five points (z, y),

(x — h, y), (x + h, y), (x, y — k) and (z, y -+ k) belong to
the domain of definition D of equation (144):

du(z, y) _ vz, y)—u(@—h, y)
~ h

oz
ou(z, y) . u(@ y)—u(@ y—~)
. " 145
Pule,y) _ w(eth Dhul—h )—2u(z y )
Ax? ~ 5
a“u(z, y) ~ u(z, y+h)+u(x, y_h)'—'zu (.’C, y)
oy? ~ h2

This makes it possible to replace partial differential
equation (144)ateach grid-point byits finite-difference approx-
imation which is an algebraic linear equation of the form

a(z,y)[u(x—{—h,y)—l—u(.z—h,y)—.?u(.z,y)]—i—
+b@ ylu(@ y+h+u(x y—h —
—2u@ Pltel YhivE y) —ul@z—h yl+
+d@ yhilu(x, y) —u(x, y —h)l +
+ he (x, y) u (z, y) = h* (z, y) (146)

involving u (x, y), u{x — h, y), u (x + b, y), u(z, y — h)
and u (z, y + h) as the unknowns.

Making the variable point (z, y) range over the set of the
grid-points belonging to D, we obtain an algebraic linear
system of equations of type (146) with respect to the values
of u (z, y) at the grid-points. Some of these unknown values
either can be determined independently of system (146) on
the basis of the initial and boundary conditions or are con-
tained in the algebraic linear equations generated by these
conditions, and these additional linear equations together
with system (146) form the finite-difference approximation
to the whole original problem. The solution of the system of
algebraic linear equations obtained in this way is taken as
an approximation to the exact solution of the problem in
question.

2°, Dirichlet Problem for Laplace’s Equation. Let us con-
sider the application of the finite-difference method to the
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approximate solution of the Dirichlet problem

ul(z, y) =@y, (z, Y€ES (147)
for Laplace's equation
%y A2y

in a domain D with boundary S.
In this case the system of equations of form (146) is writ-
ten as

u(+h y)tul@@—nh y+
+u(@x,y+h) +u@, y—h) —b4u(z, y) =0 (149)

Let us denote by Qs the set of the square cells of the grid
lying within the domain D such that at least one of the

YA
07
‘ WA %
/ 7 2717
v,
N,
%%
7 %
05/ A /
77 Y, 7
0 7 z
§
I—
Fig. 25

vertices of each square lies at a distance not exceeding a
given number 8 > % from the boundary S of the domain D
(see Fig. 25).

For each grid-point which is a vertex of a square cell be-
longing to Q, we take as u (x, y) the value of the sought-for
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harmonic funetion prescribed by condition (147) at the
point belonging to S which is the nearest to that grid-point
(z, y) (there can be several such points on S; in this case we
arbitrarily choose one of the values of ¢ prescribed at these
points and take it as u (z, y)).

As to the values of u (z, y) at the other grid-points belong-
ing to D, it can be proved that system (149) can be resolved
with respect to these unknown vabues and that the solution is
unique and tends to the sought-for solution of problem (147),
(148) for 8 — 0.

3°. First Boundary-Value Problem for Heat Conduction
Equation. Using formulas (145) we can write the finite-
difference analog of the heat conduction equation

0%u

F—Z—Z=0 (150)
in the form
u(x-+h yytu@—nry —

—2u (z, y) —hu(z, y) +hu(z, y —h) =0 (151)

Let D be the domain in the plane of the variables z and y
bounded by the line segments O4 and BN lying on the

A

; N
A7 \
7 qb .V/
7
% %
% 2 %
GHHHY -
V/j LA z
Fig. 26

straight lines y = O and y = H (H > 0) and by two smooth
curves OB and AN each of which meets every straight line
y-= const at not more than one point (see Fig. 26). We shall

19—0598
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denote by S the part of the boundary of the domain D con-
sisting of OB, OA and AN.
Next we shall discuss how the boundary condition

u@, y)=17f(x y), (z, y) €S

should be taken into account in the determination of the
approximate solution of equation (150) in the domain D.
Let us denote as Q, the set of the square cells of the grid

which do not fall outside the closed domain D, and let 8Q,
be the boundary of Q. By ¢, we shall denote the collection
of those squares belonging to Q, which do not lie inside the
uppermost row adjoining the line segment BN and such
that at least one of the vertices of each square lies on 3Q,
(see Fig. 26).

For a grid-point (z, y) which is a vertex of a square be-
longing to g, we take as u (z, y) the value of thefunctionf
assumed at the point lying on § which is the nearest to that
grid-point. The unknown values of u (z, y) at the other grid-
points lying in D are found by solving the corresponding al-
gebraic linear system of equations of type (151).

4°, Some General Remarks on Finite-Difference Method.
Let us consider an arbitrary (non-linear, in the general case)
partial differential equation:

F,y, u,u,,, ...)=0
On replacing the partial derivatives contained in the equation

by their approximate values (145) we readily pass to the
finite-difference approximation to the given equation:

F(:c, Y, u(z, y) u(z, y)—z(x—h, y) , “_)=U

However, when the boundary and the initial conditions are
replaced by their finite-difference approximations, there may
arise some difficulties, particularly when the conditions
contain partial derivatives of the sought-for solution; these
difficulties are by far not always easy to overcome.

Further, after the finite-difference scheme has heen elab-
orated, the approximate solution is found using modern
electronic computers. These compvters, however perfect,
have limited computation speed, and even in the case of a
linear equation, the number of algebraic linear equations
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becomes very large for sufficiently small %; therefore the
appropriate choice of the finite-difference approximation to
the boundary and initial conditions plays an extremely im-
portant role.

§ 4. Asymptotic Expansions

1°. Asymptotic Expansion of a Function of One Variable.
Let f () and S, (2) (r = 0, 1, . . .) be functions defined in a
neighbourhood of a point 2z, in the complex plane of the
variable z, and let £ be a set of points, belonging to this
neighbourhood, for which z, is a limit point.
If the functions S, (z) (»n =0, 1, .. .) satisfy the con-
ditions
lim [Sn (z)_‘Sn—l (Z)]:O, Sn%‘sn—l
z-2p
and
s f(&—=S8Sa(a)
m 5 =% @ — O
and if the behaviour of these functions in the neighbourhood
of the point z, is known, then, for every fixed n, we obtain
certain information on the behaviour of the function f (z)
near the point z,.
As the point z, is often taken the point at infinity in the
complex z-plane, and as S, (z) are taken the functions

n

Sa(2)=> 2 (n=1,2,...)

zk

z€E

k=0
where a, are some given numbers.
If
lim 2" [f (2)— S, (2)] =0, z€E (152)

for any fixed n, the series
ao+%+...+‘:_g (153)

is said to represent the asymptotic expansion of the function
f (2) on E irrespective of whether it is convergent or not; in

19%
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this case (153) is called an asymplotic series, and we write

flay~ 2 —

k=0

If condition (452) holds, we obtain from (152) the follow-
ing expressions for the coefficients a; of series (153):
a,=lim f (2)

flad ]

an=}ir‘2 zn[f (z)_Sn-l (Z)] (n= 1’ 2’ . ') . (154)
We have thus established the uniqueness of the asymptotic ex-
pansion of the function f (2) provided that it exists.

This conclusion does not contradict the fact that a given
series of form (153) can serve as an asymptotic expansion
for different functions on one and the same set E. For in-
stance, according to (154), the asymptotic series for the
function f (z) = e~ on the set E: {0 << z << oo} has all its
coefficients equal to zero: a, =0 (k =0, 1, .. .). At the
same time, it is evident that this series represents the
asymptotic expansion of the function f (z) =0 as well.

This example shows that even when the asymptotic series of
a function f (z) is convergent the sum of the series must not
necessarily coincide with f (z).

Let us consider the function f (z) expressed by the mtegral

f(2)=Se’“f—:t—. 0<z<<oo (155)

2
where the integration goes along the part z << ¢ << oo of the

real axis.
The integration by parts in (155) yields

o0
z-1 dt

f(z)=%—S e

z

On repeating this process n» times we obtain

n-1
F@ =3 (- (—w'nlSe’-‘ i (156)

k=0
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From (156) it readily follows that the series

—1)!
L (= (157)
gives the asymplotic expansion for the function f (z) determined
by formula (155), the set E coinciding with the positive real
axis.

Indeed, let us denote by S,(z) the sum of the first » terms
of series (157): .

S by (—1)1
Sn(z)_éi(—i) iz—h
By virtue of (156), we obtain

f(2)—Sn(5)=(—1ynt | o=t 2~

2

= (=15l [ s — (1) fez-' t,‘%] (158)

Now, taking into account the inequalities

¢ —t dt 1 1
0< S e jn+s < nt-1  zh+l

z

we conclude that
lim 2" [f (z) — S, (2)] =0

for any n on the indicated set E.

Although series (157) is divergent for any z, 0 << z << oo,
by virtue of (158) it follows that the values of S, (z) are very
close to the values of f (2) when z is sufficiently large for any
fixed n > 1.

As is known, if the point at infinity in the complex z-plane
is a removable singularity of an analytic function f (z),
then in the neighbourhood of the point at infinity there holds
the expansion

00

f(z)=> :_: (159)

h=0 |
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It is evident that in this case the expression on the right-
hand side of equality (159) is an asymptotic series for the
function f (z) on any set E of points, belonging to the neigh-
bourhood of the point z = oo, for which z = oo is a limit
point.

Using the symbolic notation ¢ (z) = o (™) for the rela-
tion lim z"¢ (z) = 0 we can easily prove that if

Z—»00

f@~ 2 and gm~> 2 (160)
r=0 k=0
on one and the same set E then
f@) g~ 2Tt (161)
k=0
and
f@) g5~ % (162)
k=0

on that set E where ¢, = apby + ajbpy + ... + apb,.
Indeed, let

Stz = &, S (2)= D)
h=0 h=0

Sp(2)=8n(2) £ S0 (3),  Op(z)=2)
It is obvious that

Sz (2):Sn () = o, (2) + 0 (z7") (163)
By virtue of (160), we have
f(z) = Sn(2) - o (z™) and g (z) = Sn (3) + o (z7") (164)
From (163) and (164) we conclude that

f(2) £ g (z) = S, (8) + 0 (z7™)

f(2)-g (2) = on (2) + 0 (z7™)

and
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which proves the validity of asymptotic expansions (161)
and (162).
Let us prove that if f (z) is an integrable function for 0 <
< z < oo and if
f(a)~ ) =% (165)
k=2
on the set E: {0 <<z<<oo}, then
froa~3 S
z k=1
on that set where the path of integration coincides with the part
2 < Lt << oo of the real axis.
Indeed, from (165) we conclude that, given an arbitrary
e > 0, there exists a number z, > 0 such that
nt1
[fo—3 &

h=2

< et (166)

for all ¢ > z,.
Further, under the assumption that z > z,, using ine-
quality (166), we obtain
0o n
| § [ —

z k

+

1

N ay &
s

nzn
2

whence

0o n
: n ape1 | __
lim 2 { f(1)di—3) St | =0
z h=1
which is what we had to prove.
Generally speaking, the existence of an asymptotic expan-
sion
ap
f(z) ~ D -
k=0
does not guarantee the existence of an asymptotic expansion
for the derivative f' (z). For example, the function f (z) =
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= e~? sin ¢* has an asymptotic expansion of form (153) for
0 << z << oo whose all coefficients are equal to zero: a, = 0
(k=0,1, ...). At the same time the derivative

f(g) = —e?*sine® +cose?, 0<<z<<o®

of this function possesses no asymptotic expansion because
it does not have a limit for z - oo.
It should be noted that all that was said above remains
true when in the definition of an asymptotic expansion, in-
o0

stead of series (153), we take a series of the forth apz~%
=0

where {;} is an arbitrary inereasing sequence of nonnegative
real numbers (which must not necessarily be integers).

Below we present some methods which can be successful-
ly applied for the eonstruction of asymptotic expansions
for some classes of functions.

2°. Watson’s Method for Asymptotic Expansion. Let us
consider the function

N
F(_z)=S ™o (1) e=#% dt (167)
0

where 0 < N <L o0, & >0, m > —1, 2 >0 and the path
of integration coincides with the line segment 0 <t << N.

Watson's lemma: if the function ¢ (t) can be
represented as the sum of a power series

Q@)= enth, eo5%0 - (168)
h=0
for an interval 0 < t << by < N and if
N
5 ™| ()| e~ dt < M (169)

0%
for a fized value z=12y> 0, then

F(z) ~ i %I‘(_’"Lﬁ.)z

o
h=0

_mtht1
o

(170)

for 3> 00, 0 <2< 00,
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Indeed, let us represent the function F (z) determined by
formula (167) in the form

h N
F(z)= S 1™ () e~ 1% dt 4 5 ™ (t) e-%dt, 0<<h<<hy
0 h

Since
e—(z— P79 hat < e—(z—zo)ha

for z > 2z, and t > h, by virtue of (169) we have

|7 ()~ § 7 (t) =% dt | =

0

N
= | S t™ (1) e-#%dt | < Mewnh%-22%  (471)
h

On the basis of (168),

h n

[ tmo ) e-ar=3 5 meko- sty 4
0

h—O

h
4+ S 1™, (t) e— 2% dt
0

where @; (1)= ' cp+rst", the expression max |, (2)]
R=0 <i<h
being finite. '
Let us introduce the new variable of integration v = zi%
this results in

h \ myhtd h% miptt .
S tmrho—zt® dt:?z o S T @ e~ vdt =
) .

z%z——"’ﬁf—“[r( m+k+1 S‘Dr

zh®

m+h+1 _

e~ " dr]

(172)
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Further, taking into account the fact that for z — oo the
expression

00

[ wteran= [ @anyp-tete-ntar <
0

zh®
Zh® 00
< 9pg-zh® S (zh*)P~1 e~5 df + e~ =h"QP S EP-1o-8 dt <
0 0

< 2Pe=h% [(zh*)P1 - T (p))
tends to zero faster than any power z-©, we conclude, on the
basis of (171) and (172), that

mtn41 n m4htt
. _— k+1\ -
limz @ [F(z)—z %‘I‘(m——l_a——i_-)z @ =0

Z—>00 h=0

for any n, whence follows the validity of asymptotic expan-

sion (170).
Now let us consider the function
N 1
F (z) = S o) e T dt, 4>0, N>0, z>0 (173)
—A

We shall suppose that in some neighbourhood —4, <<t << k,,
hy << N, of the point ¢ = 0 there holds representation (168)
and that the integral on the right-hand side of (173) is abso-
lutely convergent for z = z, > 0.
Writing the function @ (z) = F (22) in the form

N -A
® () = S ¢ (¢) e~ df — S O (t) e~ dt =

0 0

N

A
= S @ () e~z dt + S Q(—t)e-2dt
0

0

and taking into account the fact that

cp(t)+cp(—t)=2h§0 Cont?
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and

1-,( 2k2—|—1 ) ':-V-T? 1.3 ...2522k—1)

for 0 <t<<h, h<<h,, h<<A, we obtain, on the basis of
(170), the relation

Ead 2R+1
: 241 | -2
@ () ~ 3 el ( )T =
k=0
1 o0 2h+4-1
- -1 —4.3... (k—1 _ At
=cVnz 2+ Vn—iz—(h—)czuz 2
h=1

whence it follows that

i 00
F(z).—_d)(-;—)~co Vaz 242 3 1-3...
k=1
2R 1

oo Q=) ez 2 (174)

3°. Saddle-Point Method. Let it be required to find the
asymptotic expansion of the function

Fz)= S o () e/ O dt (175)
c
for z — o0, 2 > 0, where ¢ (£) and f (¢) are analytic functions
of the complex variable ¢ = z - iy and the path of inte-
gration C recedes to infinity in both positive and negative
directions.

If the function u (¢) = Re f (¢) attains its maximum value
on C at a point ¢, € C and if for ¢ tending to infinity in both
directions from ¢, this function tends to minus infinity,
then, since the function eiz(®, where v (¢) = Im f (¢), is
bounded, the main part of the value of F (z) for large values
of z corresponds to the integration in (175) over a small part
C, of the path C containing the point ¢, inside.

Since the function u (¢) cannot have a local maximum at
any point of the domain of its harmonicity, the path of in-
tegration C in expression (175) may not possess the indicat-
ed property. However, according to Cauchy’s theorem, we
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can change the path of integration € in an appropriate man-
ner without falling outside the domain D of analyticity of
the functions f (¢) and ¢ (), the value of F (z) remaining
unchanged.

In order to find in the domain D a curve C and a point ¢,
possessing the indicated properties we shall use the follow-
ing procedure. Let us consider the level line u (¢) = u (,)
of the harmonic function u (¢) passing through the point £,.
The curve C passing through the point ¢, must have at the

point ¢, the direction coinciding with that of the vector

grad uz(% R z—:) beeause it- is this vector that determines

the direction of the fastest change of the function u (£) whose
maximum on C is attained at the point ¢,

Aecording to the Cauchy-Riemann conditions z'; z; ,
rg—;: —%, the scalar product grad u gradv is equal to
Zero;

du v du ov

bx 0z+ 8y 8y =0

grad u grad v =

Further, the vector grad v coincides with the normal to the
level line v (f) = v (¢,), whence we conclude that at the

point ¢, the curve C must go in the direction of the tangent

line to the curve v (£) = v (¢,). Since % = g; 'Z + z; % =
= (0 everywhere along the curve v () = v (¢;) and since at
the point ¢, where the functfion u (t) attains its maximum on
du ou dz dud
C the equality rrimir s + a_yd_ys}
have f' (¢,) = 0.

Thus, the point t, must be such that f' (t,) = 0 and the curve
C possessing the required properties should be sought among
the curves v (1) = v (t,).

Let us suppose that the point £, and the curve C posses-
sing these properties are found. Since in a neighbourhood
|t — t, | << hy of the point ¢, on C there holds inequality

= 0 must hold, we

f (&) —filte) = &ﬂ (b=t ... <0, n>2  (176)
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the change of the variable of integration ¢ = ¢ (§) where ¢ (§)
is determined by the equality

f(&)—1 (fo) = — 5 &2 (177)
brings expression (175) to the form

Fymeswo | pre()e T St (178)
¢

Now, using the expansions of the analytic functions
¢ [t (8)] and dt/dE = + (&) in the vicinity of the point & = 0
into power series, we directly obtain the sought-for asymp-
totic expansion of the function F (z) with the aid of for-
mula (174).

The point #, at which ' (¢,) = 0 is a saddle point of the
surface u = u (z, y); that is why the method discussed above
is referred to as the saddle-point method.

The saddle-point method involves the determination of ¢
as function of § from equation (177), and therefore the prac-
tical application of this method is connected with consid-
erable difficulties even after the appropriate point ¢, and
the appropriate path of integration C are found.

However, in applications it is often sufficient to find only
the first (principal) term of the asymptotic expansion which
can easily be constructed.

Indeed, let us suppose that f” (f,) %<0 and let us limit
ourselves to the consideration of the first term in expansion
(176). Instead of (177) we introduce the variable

B = —(t — )2 " (20) (179)
In the vicinity of the point ¢, let us replace the part of the
path of integration C by the line segment ¢ — t, = sei®
where 20 = n — arg f” (¢,) so that the inequality
(t — )" (£0) = %™ (2) < O
holds along that segment. Then from (179) we obtain

E=+sV [ ()] (180)
that is

et S YT G =t eV T (@) |
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From the two values of 6 determined by the last relation
(they differ by ) we shall choose the one for which the var-
iable £ in (180) becomes positive when the point ¢ passes
through ¢, in the integration process along C, that is we take

the value of 0 specified by the equality % =e~0)/ | f(t,)]-
Hence, by virtue of (174) and (178), for the first term of

the sought-for asymptotic expansion we obtain the expres-
sion

— 2t /57 peittergit 184
Vlf”(to)IV ey
As an example, let us consider the Hankel function
H(z) = _% S e—izsin tgint gy (182)
c

where the integral is taken along broken line (75) considered
in Sec. 1° of § 2.
The only point on that broken line at which f' (,) = —i X

X costy=0ist,= ——g—;

through that point: Im f ({) = —sin z cosh y = 1. From
them, as a new path of integration C in (182), we shall choose
i

the one for which 6:%11 and arg f” ( 5 ) =arg (—i) =

there are two level lines passing

= — % because it is this level line along which the function
u (t) = Re (—isin t) = cos z sinh y tends to minus infini-
ty when the point ¢ recedes to infinity.

zf(—i . 1 _inZ
Since e 2)——~e“ and (p(—%)z——n—e 2 for-

y

mula (181) implies the expression
S .5, S 2 W
l/—e“e (7)) 2
i

for the first term of the asymptotic expansion of the function
H}, (z) for z— oo, 0 << 2 << oo.
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§ 5. Variational Methods

1°. Dirichlet Principle. In many cases encountered in ap-
plications the partial differential equations under consider-
ation are Euler's equations for some variational problems.
For instance, as was mentioned in Sec. 2°, § 5 of Introduc-
tion, Laplace’s equation Au (z, y) = O serves as Euler’s
equation corresponding to the minimum problem for the
Dirichlet integral

D(w)= | (u+u})dedy (183)

D

taken over a domain D with boundary S.

The continuous functions defined in D |J S and possessing
piecewise continuous first derivatives in D for which the
Dirichlet integral is finite and which assume given values
described by a continuous function ¢(z,y) on S as the var-
iable point (z, y) approaches the boundary S from the in-
terior of D will be referred to as admitted functions.

There is a close relationship between the Dirichlet prob-
lem on the determination of the function u (z, y) harmonic
in the domain D, continuous in D |J S and satisfying the
boundary condition

u@ Y=oy, @ yes (184)

and the so-called first variational problem on the determina-
tion of the function, belonging to the class of the admitted
functions, for which Dirichlet integral (183) attains its
minimum,

If the function ¢ (x, y) defined on S is such that the class of
the admitied functions is not void, the Dirichlet problem and
the first variational problem are equivalent.

We shall prove this assertion under some additional as-
sumptions,

Let u (z, y) be the solution of the first variational prob-
lem. We shall represent the class of the admitted functions
in the form u (z, y) + eh(z, y) where ¢ is an arbitrary con-
stant and A (z, y) is an arbitrary function belonging to the
class of the admitted functions and satisfying the condition

h(z, y) =0, (z, y)€S (185)
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It is evident that
D (u + eh) = D (u) + 2eD (u, k) + 2D (h) =0 (186)

where

D(u, k) =1§ (b + Uyhy) dz dy

Since u (z, y) is the minimizing function and & is an arbi-
trary constant, relation (186) implies that

D k) =0 (187)

We shall suppose that the functions u (z, y) and % (x, ¥)
and the contour S are sufficiently smooth so that the iden-
tities

ugh, + uyhy = (uh), + (uyh), — h Au
and

D(u, h)= 5 hg—':ds—i h Audz dy (188)
S

hold for them where v is the outer normal to S.
By (185) and (187), we obtain from (188) the equality

S hAudzdy=0
b

whenece, under the assumption that Au is a continuous func-
tion in D, since h (z, y) is arbitrary, we conclude that
Au(z, y) = 0. Consequently, under the assumptions we have
made, the solution of the first variational problem is the
solution of the Dirichlet “problem.

Now let us suppose that u (z, y) is the solution of the Di-
richlet problem with boundary condition (184) for Laplace’s
equation, and let, as above, u (z, y) + ek (2, y) be the class
of the admitted functions, formula (188) holding for the
functions u (z, y) and & (z, y). From formula (188), by virtue
of (185) and by the harmonicity of u (z, y), follows equality
(487). Therefore from (186) we obtain

D (uy <D (u + eh)
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which means that the function u (2, y¥) minimizes the Di-
richlet integral, and hence it is the solution of the first
variational problem.

There are also a number of other boundary-value problems
for Laplace’s equation to which correspond equivalent varia-
tional problems for the Dirichlet integral. For instance,
among them we can mention the Neumann problem.

The idea of the reduction of a boundary-value problem for
Laplace’s equation to the variational problem equivalént to
the former was suggested by G.F.B. Riemann. This idea is
usually referred to as the Dirichlet principle.

2°. Eigenvalue Problem. In Sec. 2°, § 1 of the present
chapter we considered the eigenvalue problem: for a bounded
domain D with piecewise’ smooth boundary S it is required to
find the eigenvalues and the eigenfunctions of the equation

Au—+ M =0, (z; yy €D, X = const (189)

that is to determine the values of A for which this equation pos-
sesses non-irivial solutions in the domain D satisfying the
boundary condition

u(z, ) =0, (x, €S (190)

and to construct these solutions.
The solution of this problem can be obtained when the
solution of the following second variational problem is known:

it is required to find among the admitled functions satisfying
condition (190) the one for which the functional

_ D)
J (u)= @)
assumes its minimup value where

H (u)= S utdz dy
)
Indeed, let us suppose that u (z, y) is the solution of the

second variational problem, the minimum value of J (u)
being positive:

J (u) = };i“; A>0 (191)

For the class of the admitted functions u (z, y) + ek (z, ¥)
where & is an arbitrary constant and % (z, y) is an arbitrary

20—-0598
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admitted function satisfying condition (185) we have

_ D(u+teh)  D(u)+2eD (u, h)+€2D(h)
F (&)= Frateny = W) T2l (u WLl iy =

where

H (u, h)= S uh dz dy
D
Since the function F (e) attains its minimum for e =0,
we have
H (u) D (u, hy— D (u) H (u, h) =0
H? (u) -
whence, by virtue of (191), it follows that
H (u) [D (u, h) — AH (u, )] =0
Since H (u) 540, this implies
D (u, h) —AH (u, B) =0 (192)
Let us suppose that the functions u (z, y) and 2 (z, y) and
the contour S bounding the domain D are sufficiently smooth

so that formula (188) applies to them; then we can rewrite
equality (192) in the form

H (Au + M, ) =0

whence, like in the foregoing section, it follows that the
function u (z, y) satisfies equation (189).

If A* is an eigenvalue of problem (189), (190) distinct from
A and u* (z, y) is an eigenfunction corresponding to A*,
then, by virtue of (188), we have

H (Au* + A*u*, u*) = —D (u*) + A*H W*) =0

This equality shows that among the eigenvalues of problem
(189), (190) the number A is the minimum one.

~ All that was said above remains true when instead of the
Dirichlet integral we consider a general quadratic functional
of the form

E (u)= S [p (w3 + ul)+ 2auu, + 2buu, 4 cu?] dz dy
D

F'(0)=2

p>0, <0
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whose integrand is a quadratic form with sufficiently smooth
coefficients satisfying the condition

p (8% + % + ¢l + 2a8L + 2bmE = p? (B2 + n?)

where . is a real constant.
Euler’s equation corresponding to the funetion £ (x) has
the form

2 (pux)x + 2 (puy)y +
+ 2 (au), + 2 (bu), — 2au, — 2bu, — 2cu = 0
It can be written as

(puy)s -+ (puy)y —c*u =20
where
c* =c—a,— b,

3°. Minimizing Sequence. If the class of admitted func-
tions {u} is not void, the corresponding set of the values of
the Dirichlet integral D (u) has an infimum d. Although in
the general case we do not know whether the functional
D (u) attains its infimum d for an admitted function belong-
ing to that class, it is evident that there exists a sequence
u, (n =1, 2, ...) of admitted functions such that

lim D (u,)=d (193)
n—>oo
A sequence u, (r = 1, 2, ...) for which relation (193)
holds is called a minimizing sequence.
What has been said also applies to the functional J (u).
The existence of a minimizing sequence does not necessar-
ily mean that the variational problem in question is solva-
ble. In this connection the following questions should be
subject to further investigation:
(1) How can a minimizing sequence be constructed?
(2) Is the minimizing sequence (provided it exists) conver-
gent?
(3) Is the limit of the minimizing sequence u = lim u,

7=~ 00

an admitted function?

A thorough investigation of these questions requires the
introduction of some function spaces whose elements in-
clude, in particular, the members of the minimizing se-

20%
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quence. After the convergence of the minimizing sequence
with respect to the metric of these spaces has been estab-
lished, it is desirable either to show that the corresponding
limit is the solution of the variational problem stated above
or to generalize in an appropriate manner the notion of the
solution itself. In each such case it is necessary to prove that
the solution of the variational problem is the solution of
the boundary-value problem either in the ordinary or in
the generalized sense.

In variational calculus there are various methods for
constructing minimizing sequences. In the application to the
problems concerning partial differential equations these
methods are usually referred to as variatiornal or direct me-
thods. It is important to note that some of the variational
methods make it possible to construct approximate solutions
of the problems under consideration. Below we discuss two
such methods.

4°. Ritz Method. The idea of the variational method
suggested by W. Ritz is the following. Let us consider the
minimum problem for a functional @ (x). We shall denote by
v, (n =1,2, ...) a complete system of admitted functions
for the functional M (u) and consider the sequence u, =

n

=Nepp (=1, ...) where ¢, are some constants yet
A=1

unknown.

Let us determine the coefficients ¢, (k =1, ..., n)-so
that the expression ¢, = @ (u,) considered as a function
of ¢4, ..., ¢, attains its minimum.

For some classes of functionals W. Ritz proved that {u,}
is a minimizing sequence which is convergent and whose lim-
it is the solution of the problem under consideration.

As an example, let us consider the second variational prob-
lem on the minimization of the functional J (u) for the case
when the domain D is the square 0 < z << @, 0 <<y < m;
without loss of generality we shall assume that

H () = C(194)

As the complete system of admitted functions indicated
above we can take the system

sinkzsinly (¢, 1 =1, 2, ...)
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Let

Uy = 2 t?i cpSinkzsinly (m, n=1,2,...)

The functions u,,, (z, y) obviously satisfy condition (190).
Besides,

2 m n
n =D (Upin) = D) D) cha (k*+12) (195)
k=1 I=1
and

H(upmy) = n’ S‘ Z chi

h—i =1
According to the Ritz method, by virtue of (194), we must
find the minimum of expression (195) on condition that

m n

I (196)

Solving conditional extremum problem (196), (195) we find
that all the numbers cy;, except ¢y, are equal to zero for
any m and n and that

2
CIIZT’ dmn=2

whence

li 2

im U, =u(z, Y) ~—smxsmy

m-+oo

n-—-oo
and

lm By =D (u)=A=2
it _
5°. Approximate Solution of Eigenvalue Problem. Bubnov-
Galerkin Method. The Ritz method makes it possible to
eonstruct an approximate solution of eigenvalue problem
(189), (190). Indeed, as an approximation to the solution of
the second. variational problem on the minimization of the
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functional J (z) under the condition
H@u) =1
we can take the function
n
Un (z, y) = hgi CrUk (Z, y)

indicated in the foregoing section where the coefficients

ex (k =1, ..., n)are found by solving the following prob-
lem on conditional minimum;
d, (¢q, -« ., cn) =D (u,) = min

P (crs -« s Cn) =H(un) =1

Hence, it is natural to take the function u, (z, y) thus
constructed as an approximation to the eigenfunction of
problem (189), (190), and the formula

Ay =D (un)

will give an approximation to the eigenvalue of the same
problem.

Here the Bubnov-Galerkin method should also be mentioned
which may be successfully used to construct an approximate
solution of an eigenvalue problem. In this method as an
approximate expression of the eigenfunction of problem (189),
(190) the function

Up (.’E, y)= snj Crln (.‘l:, y)

R=
is taken whose coefficients ¢, (k = 1, . . ., n) are found from
the equalities

SUH (Avy + Moy, vp)er=0 (m=1,...,n) (197)
h=A

which form a homogeneous linear'system of algebraic equa-

tions. As is known from linear algebra, this system posses-

ses non-trivial solutions if and only if A satisfies the equation
H (Avy + My, vy) ... H (Av, 4 Ay, )

det || . .. .. o e e =0

H (Avy + Moy, ) « .« H (Avy, 4 Avg, vn) (198)
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The values of A found from equation (198) are taken as
approximations to the eigenvalues of problem (189), (190).
As was already mentioned, the approximate expressions for
the eigenfunctions corresponding to A are given by the for-
mula

n
Up (2, y) = hgi cuoy (2, ¥)

where ¢, (k = 1, . . ., n) are the solutions of system (197)
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Hilbert's 240
with kernel having logarithmic
singularity 244
linear 35
homogeneous 35
non-homogeneous 35
singular 236f
with logarithmic singularity
2441
of the theory of the wing of
an airplane 242
Volterra's 37
of the first kind 226
with multiple integral 225
of the second kind 37, 211
Integral operator 35
Integral representation of a har-
monic function 50f
Inverse function 105, 113
Inversion 84, 175
Isolated singular point 138
at infinity 140
Tterative method (or method of
s%%(f:?ssive approximations)

Jordan curve 76

Kernel of an integral equation 35
Cauchy’s 240
degenerate 215
Hilbert’'s 240
iterated 219
resolvent 249
symmetric 224
Kirchhoff's formula 177

Lagrange adjoint operator 267
Laguerre’s equation 262
Laplace's

equation 26

SUBJECT INDEX

nverse transform (or inverse
image or the original) 272
operator 26
surface (spherical) harmonics
263
transformation 272
inverse 272
transform (or image) of a
function 272
Laurent’s expansion (series) 136
principal (or singular) part
of 137
regular part of 137
theorem 135
Lebesgue’s integral 49
Legendre's
equation 264
functions 264
associated 264
Limiting values of Cauchy-type
integral 154ft
Linear partial differential equa-
tion 14
Linear-fractional function 102
Liouville’s theorem
for analytic functions 134
for harmonic functions 63
Lyapunov curve 158

Maximum modulus principle 127
Mean-square deviation 255
Mean-value formula

for a ball 53

for a sphere 53
Mellin's

transformation 274

transform of a function 275

inverse 275

Meromorphic function 141
Metaharmonic equation 259
Metaharmonic function 259
Method(s)

finite-difierence 286ff

of integral transformations

2661t
saddle-point 301
of separation of variables (or
Fourier's method) 246ff

variational 303ff

Minimizing sequence 307
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Mixed partial differential equa-
tion 17

Mixed problem (or boundary-ini-
tial-value problem) 248

Monogenic function of a complex
variable 99

Morera’s theorem 127

Neumann's
function (or Bessel’s function
of the second kind) 271
problem (or second boundary-
value problem) 83, 85
Newton-Leibniz formula 124
Non-homogeneous linear partial
differential equation 14
Non-singular (or non-degenerate)
affine transformation 15
invariants of 16
Norm 254
Normal form of partial differenti-
al equations in two inde-
pendent variables 20it

Operational calculus 275
Orthonorznal system of functions
25

Oscillation

of a circular membrane 257{f

of a membrane 251ft

small 40
of a string 246ff

Parabolic degeneration 18
Parallel translation 173
Partial differential equation 13
domain of ellipticity of 21
domain of hyperbolicity of 21
elliptic 16, 18
uniformly 16
hyperbolic 16, 18
mixed 17
order of 13
parabolic 16
solution of 13
existence of 33
fundamental (or elementary)
14, 27, 33

37

regular 14
stability of 33
uniquencss of 33
ultrahyperbolic 16
Partial differential operator 13
linear 14
uniformly elliptic 87
Piecewise analytic function 157
Piecewise analyticity of Cauchy-
type integral 157
Poincaré problem 91

Poisson’s
equation 69
formula 58

for solution of Cauchy prob-
lem for wave equation
involving two spatial var-
iables 179
for solution of Dirichlet prob-
lem in a ball 57ff
for solution of Dirichlet prob-
lem in a_circle 59
for solution of Dirichlet prob-
lem in half-space 62
Pole of an analytic function 138
order of 138
Polycylinder 163 -
Potential of a field 139
Potential function
for a double layer of distribu-~
tion of dipoles on a surface
(or a double-layer potenti-
al) 74fi
for a surface distribution of
mass (or a single-layer
potentialy 81if
for a volume distribution of
mass (or a volume potenti-
al) 65if
Power series 102ff
multiple (in several variables)
1664

Quadratic form 15

canonical (or standard) form
of 15

index of 16

negative definite 16

positive definite 16

princifpa} minors of the matrix
of 17
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rank of 16
signature of 16
symmetric 17
Quasi-linear partial differential
equalion 14

Radius of convergence 103

Reconstructing an analytic func-
tion from boundary values
of its real part 145

Regular solution 13

Removable singular point 138

Residug[‘of an analytic function

1
at a pole 142

Retard(ied (or delayed) potential

84

Riemann's
conformal
108
function 194
surface 113
Riemann-Schwarz
principle (or
principle) 148
Ritz method 308

mapping theorem

symmetry
reflection

Saddle-point method 301
Schwarz’ formula 145, 160
Second boundary-value problem
(or Neumann’s problem)
83, 85
Self-adjoint operator 86
Singular integral equation 236
Sokhotsky-Plemelj formulas 156
Sokhotikg-Weierstrass theorem
3
Solid spherical harmonics 262
Special functions 261
Specific heat 43
Spectrum 224
of an integral equation with
symmetric kernel 225
Speed
of disfplacement of a particle
of a membrane 41
of sound 41
Sturm-Liouville problem 247
Sylvester theorem 17

SUBJECT INDEX

System of functions
complete 256
linearly independent 254
orthogonal 254
orthonormal 254

Tautochrone problem 45, 228
Taylor’s
series (expansion) 133
theorem 132
for analytic functions of sev-
eral variables 169
Theorem
on conformal mapping of do-
mains 108
on one-to-one correspondence
109
Riemann’s 108

Uniformly elliptic partial differ-
ential equation 87
Uniqueness theorem
for analytic functions 133
for harmonic functions 49

Variational methods 303ff
Variational problem

first 303

second 305
Volterra’s integral equation

of the first kind 226

of the second kind 37, 211

with multiple integral 225

Watson’s
lemma 296
method for asymptotic expan-
sion 296
Wave equation 29
non-homogeneous 183ff
with three spatial variables 176
with two spatial variables 178
Weierstrass’ theorems 129, 131
Well-posed (or correctly set) prob-
lem 31, 186fi

Zero of a function 134
multiple 134
of order n (or n-fold) 134
simple 134
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