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Preface

The twentieth century has been witness to a great burgeoning of mathemat-
ics and physics. In the early part of the century the new physical theories
of relativity and quantum mechanics made extensive use of the machinery
of differential geometry and Hilbert spaces. Some time later quantum field
theory began to pose difficult mathematical problems. As a partial response
to this the subject of axiomatic quantum field theory was born. The main
thrust of this approach was to tackle the formidable problems of quantum
field theory head on using the most powerful mathematical tools available;
the bulk of these tools being drawn from analysis. More recently there has
been considerable evidence that the way forward in these problems is consid-
erably illuminated if, in addition to analysis, one uses differential topology.
There have also been advances in the differential topology of dimensions
three and four which have drawn extensively on physical sources, the prin-
cipal source being Yang-Mills theories. Thus there has been a genuinely
two sided interaction between the worlds of mathematics and mathematical
physics. This book is intended as an informal introduction to some of these
mathematical and physical ideas. It should be of use to graduate students
and other research workers taking an interest in this material for the first
time.

September 1990 Charles Nash
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CHAPTER I
A Topological Preliminary

§ 1. From homeomorphism to diffeomorphism

In this chapter we survey, in an informal way, some of the principal tech-
niques used in topology. In so doing we both establish some of the basic
notation that we will employ in subsequent chapters and give an account
of certain standard results and constructions that will be in frequent use.
Topology sets itself, as its initial goal, the task of classifying all topologi-
cal spaces up to homeomorphism—two topological spaces X and Y being
homeomorphic if there exist between them continuous maps « and o™ :

a: X —Y a continuous

a’l:Y — X a7l continuous (1.1)

10(1:]

aocal=a"
However this is far too ambitious and, except in certain special cases, the
goal is not reached.

For example, if one works in a low dimension such as 2 and one restricts
the spaces to be compact closed orientable surfaces, M say, then one knows
that M is homeomorphic to a sphere with g handles; and two such M are
homeomorphic if and only if they possess the same number of handles. Such
M are of course the celebrated Riemann surfaces and the number g is called
the genus.

In higher dimensions simple classifications of this kind do not exist—
this is due in part to the fact that in dimension 2 topological phenomena
are somewhat restricted e.g. if a deformation construction involving an M
of dimension 2 encounters a sub-manifold N as an obstacle then necessarily
dim N =1 or 2 and there may simply not be enough room to avoid the ob-
stacle. On the other hand, if dim M >» 2 then a sub-manifold of dimension
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1 or 2 may well be movable to some 2-dimensional subspace of M which is
in a region not involved in the deformation.

Another illustration is provided by the theory of knots: a knot is re-
garded as a map from the circle S to R3; many knots are non-trivial but all
of them can be untied if one simply increases the dimensions by replacing
R3 by R%. More generally, suppose that dim M = n, then at what value
of n should M be deemed a topological space of higher dimension? The
answer seems to be when n is about 5 and we shall say more about this
matter in § 6 of this chapter. All this suggests that we should study a much
smaller class of spaces than the class of all topological spaces.

To this end let us now lower our sights somewhat and announce our
intention to study the smaller class of spaces which are known as topological
manifolds. As the name suggests a topological manifold M of dimension
n is a (Hausdorff) space which is covered by patches U, each of which is
homeomorphic to some open set in R™, and for which the usual transition
functions go3 between a pair of patches U, and Up are homeomorphisms.
Now even this class of spaces is rather abstractly defined and sparsely pro-
vided with concrete mathematical structures. We can do a little to remedy
this. If we bear in mind that algebraic topology often makes use of combi-
natorial and triangulation methods to calculate invariants such as homology
groups, then one can require that the transition functions gog and g;ﬂl are
piecewise-linear or PL. We then have a piecewise-linear manifold of dimen-
sion n. Now the physicist or differential topologist would like to make use of
calculus. Thus we take one further step and require the transition functions
gap to be diffeomorphisms, i.e. both g,z and g;ﬂl are infinitely differentiable
or C*°. Thus M has now become a differentiable manifold of dimension n.

It is important to realise that the distinctions made in describing these
three types of manifold are not purely academic: It might be thought that,
given a4 manifold M, there are always three mutually homeomorphic real-
isations of M as topological, piecewise-linear, or differentiable, which one
could denote by Mrop, Mpy and Mprpr tespectively. This is not so—
there exist topological manifolds which admit no PL structure, i.e. Mrop
exists but not Mpy, also there exist topological and PL manifolds which
admit no differentiable structure, i.e. both Mrop and Mpy exist but not
Mprrr. Further when Mprrr does exist it may not be unique in the sense
that the differentiable coordinates with which it endows M are not unique,
i.e. one can have two Mprpp which are homeomorphic but not diffeomor-
phic. In fact the existence of these results is a sort of raison d’étre for the
singling out of differential topology as an individual branch of the subject
Topology.

The particular properties of manifolds that are described here might be
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thought unlikely to have any relevance for quantum field theory. However,
this turns out to be far from true and we shall have occasion to returm to
this subject both in this chapter and in subsequent chapters.

Despite the above discussion we shall usually deal with differentiable
manifolds. Also in accordance with standard practice we shall simply refer
to a differentiable manifold as a manifold. If the manifold is not differen-
tiable we shall explicitly say so. In the main we wish to make full use of
calculus on manifolds to calculate geometric and topological quantities such
as curvatures and de Rham cohomology groups respectively.

§ 2. Some algebraic topology: homotopy

Recall that the general idea in algebraic topology is to attach to topologi-
cal spaces invariants which can be used to distinguish the spaces one from
another. These invariants can be numbers, such as the dimension of the
space or its Euler—Poincaré characteristic. They can also be mathemati-
cal objects furnished with an algebraic structure like homotopy groups or
homology groups, etc. However, whatever these invariants are, they are
topological invariants—in other words, the invariants for a particular space
are unchanged if this space is traded for another to which it is homeomor-
phic.

We now summarise in brief some of the principal invariants that we
shall have a need for. One of the most powerful notions available is that
of homotopy. While the notion of homeomorphism, viewed as an equiv-
alence relation on the class of all topological spaces, divides these spaces
into equivalence classes, homotopy generates equivalence classes that con-
tain continuous maps: Given two spaces X and Y, let Map(X,Y) denote
the set of continuous maps from X to Y and let consider two maps @ and
3 so that

a € Map(X,Y), B € Map(X,Y) (1.2)

Then a is said to be homotopic to 3, which we write as,
a~p (1.3)
if there is a continuous map
F:0,]]xX —>Y (1.4)
such that for £ € X we have

F(0,z) = a(z) and F(1,z) = B(z) (1.5)
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the map F is then referred to as a homotopy from « to 8. Thus homo-
topy divides Map(X,Y) up into equivalence classes. The set of all these
equivalence classes is denoted by

[X,Y] (1.6)

and the equivalence class in [X,Y] to which a given map o € Map(X,Y)
belongs is denoted in the standard fashion by [a]. If we view [X, Y] as func-
tion of Y with X fixed then it is immediately verifiable that the resulting
collection of equivalence classes is a topological invariant of Y —this is be-
cause the use of a homeomorphism, h say, to change Y for a homeomorphic
copy Y’ induces a canonical replacement of a homotopy F from a to 3, by
the homotopy h o F' from h o a to ho 3. Thus one can canonically identify
[(X,Y] and [X,Y"].

Continuing on our discussion of invariance properties of topological
spaces we come to the definition of homotopy type. A space X is said to be
of the same homotopy type as another space Y if there exists a continuous
map o

a: X —Y

such that a, though not necessarily possessing an inverse, must have a
homotopic inverse, B say. This simply means that if Iy and Iy denote the
identity maps on X and Y respectively then for o and j together we have
the properties

a: X —Y
g:Y —X (1.7
aofi=lIy, Boa~Ix
We shall write this as
X=~Y (1.8)

and since this is clearly an equivalence relation we often refer to X ~ Y as
the statement that X is homotopy equivalent to Y.

Topological invariants such as [X, Y], where one of X and Y is fixed and
the other varies, are also known as invariants of homotopy type. Suppose,
to be definite, that X is fixed, then this terminology means that not only
do we have

[X,Y1=[X,Y'] for Y homeomorphic to Y’ (1.9)
but we also have

(X,Y]=[X,Y’] for Y of the same homotopy type as Y’ (1.10)
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The most commonly encountered topological invariants in algebraic topol-
ogy are invariants of homotopy type. One should realise, however, that to
ask for an invariant of homotopy type of X is to ask for less than an in-
variant of the homeomorphism class of X. For example, the space R™ can
be contracted to a point and so is of the same homotopy type as a point;
and this has the well known consequence that its homotopy and homology
groups coincide with those of a point and are thus trivial. On the other
hand, R™ n > 0, is not homeomorphic to a point, and indeed R" is home-
omorphic to R™ if and only if n = m. Thus the dimension of a space X is
an example of a topological invariant which is not an invariant of homotopy
type.

Returning to the consideration of [X,Y], a particularly important
choice for the fixed space X is the circle S'. Then one is considering ho-
motopy classes of loops on X and one knows that this leads naturally to
the fundamental group 7 (X). However, before we get to the fundamental
group we observe that the loops on X have no obvious composition law
with which to make them a group. Indeed to obtain such a law we restrict
the loops to have a point in common—the point where they all begin and
end. This simple but powerful notion is that of endowing every space with
a base point (often denoted by ), and requiring that maps between pairs
of spaces preserve base points. Because of its importance we expand on this
notion below.

To formalise the notion of base points and their preservation in the way
just described we introduce the space of maps

Mapo(X,Y) (1.11)

which is the space of continuous maps between X and Yin which the base
point of X is mapped into that of Y; we often refer to such maps as based
maps. Thinking homotopically about Mapo(X,Y') leads us straightaway to
introduce the space

(X, Yo (1.12)

which is the space of homotopy classes of Mapo(X,Y). The previous space
[X,Y] is also sometimes called the space of free homotopy classes, and a
free homotopy is one which is not required to preserve base points. An
understanding of the difference between these two kinds of homotopy classes
can be obtained on introduction of the fundamental group—we do this in
the next section and we shall return to this matter there.

A pair {X,x} consisting of a space X together with its base point *
is frequently referred to as a pointed space. Now if we dispense with base



6 Differential Topology and Quantum Field Theory

points temporarily, then, given three spaces X, Y and Z, there is a natural
bijection
i: Map (X, Map(Y,2)) — Map(X x Y, Z) (1.13)

To construct this bijection recall that, set theoretically, the set of all maps
(continuous or not) from X to Y is given by

YX (1.14)
Thus if we consider X, Y and Z we have the obvious bijections
ZxX) o (XY o (2X)Y (1.15)

This means that to establish the bijection ¢ of 1.13 above one simply has to
check that the set theoretic version 1.15 still goes through when the various
maps are made continuous.

Since our interest in groups, such as the fundamental group, leads us
to study spaces with base points we would like to have a similar bijection
for pointed spaces. Such a bijection exists provided we introduce a method
for correctly handling the base points involved. The only space occurring
in 1.13 whose base point is not naturally determined is X x Y. We have
to devise a sensible way of assigning a base point to X x Y. This standard
construction has two parts: first construct what is called the reduced join
of X and Y and is written as

XvY ' (1.16)

This is simply the disjoint union of X and Y with the two base points
identified. Then take the Cartesian product X x Y and quotient out X VY,
i.e. form what is called the reduced product X A Y which is defined by

XxY

XANY =
XvY

(1.17)

X AY is also referred to as the smash product because, in taking the quo-
tient, X VY is smashed to a point, this point becoming the base point of
X AY. In any case our object is achieved in that X A'Y has a base point
which is naturally determined by the base points zo and yo of X and Y
respectively. Having completed our two part construction we can give the
analogue, for pointed spaces, of 1.13: This is that there is a bijection i, of
the form

te 1 Mapo(X, Mapo(Y,2)) — Mapo(X AY, Z) (1.18)
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One very often encounters XAY in the form S'AX where S* is the circle and
X is arbitrary; S! A X is then called the suspension or reduced suspension
of X and is usually denoted by SX, i.e. one has

SIAX =8X

A further piece of notation is that Mapo(S?, X), which is the space of based
maps from S! to X, is also denoted by QX and referred to as the space of
(based) loops on X. So we have that

Mapo(S, X) = QX (1.19)

If the X happens to be a sphere S™, say, then it is easy enough to check,
cf. Whitehead [1], that the suspension of X is (homeomorphic to) a sphere
of one higher dimension. Thus one has

S'A S =S85 ~ gt (1.20)

Finally let us think of the symbols S and Q2 as being operators which act on
spaces, or, to give them their topological name, functors. We shall then see
that they are formal adjoints of one another. In short we have the canonical
bijection (this follows immediately from 1.18 with Y = §1)

Mapo(5X,Y) = Mapo(X,QY) (1.21)

from which one deduces immediately that for the corresponding homotopy
classes we also have

thus displaying the adjoint relationship of S and Q just mentioned above.

It is well known that a group is an extremely valuable structure in
mathematics and this is so also in algebraic topology. A useful way to ap-
proach the various groups such as homotopy groups and cohomology groups
that arise in algebraic topology, is to think of them as groups structures pos-
sessed by the homotopy classes [X,Y]o: this can happen in two ways, the
first occurs when Y possesses an appropriate structure, P say, the second
when X possesses an appropriate structure, P’ say; moreover these two sit-
uations are dual to one another. We now give a short explanation of what
we mean by the structures P and P’.

Beginning with P notice that if the space Y is actually a group G then
it is immediately possible to give a group structure not just to [X, Y], but to



8 Differential Topology and Quantum Field Theory

its precursor Map o(X,Y): todo thisset Y = G, and let o, 8 € Mapo(X, G),
then we denote their group product by a ¢ 3 whose definition is

aef: X — G
(1.23)

2 a(z) « ()

where * stands for the product in G. This product e then induces a product

in [X, G]o (which for convenience we also denote by e) which renders it a

group. However, viewing the product * in G as a map

*x:GxG@— G

one sees that, to obtain a group structure on [X, G]o, it is not necessary that
the map * be a group product, it is sufficient that it beamap*: GxG - G
which descends to a group product on the homotopy classes [X, Go. Given
[X,Y], the existence of such a map * : Y x Y — Y that renders [X, Y],
a group is referred to by saying that Y is a homotopy associative H-space,
or simply a H-space—the réle that the words ‘homotopy associative’ play
is that they remind one that, though the group product on [X,Y]o must of
course be associative, it need not be so on Mapo(X,Y); on Mapo(X,Y) it
need only be associative up to homotopy. Thus Y possesses the property
that we called P above if it is a H-space, and note that then [X,Y], is a
group for any X.

Turning now to P’ is to take the dual approach, thus the multiplication
map * is replaced by a comultiplication map ' by which we mean a map of

the form
X —XVX (1.24)

(Note that X V X occurs in the above where one would expect X x X, this
is to maintain our requirements for base points.) In any case, granted such
a comultiplication ' then it necessarily induces a product law o' on (X, Y]
where o' is given by

o : [X, Y]o X [X, Y]o —_— [X, Y]o (125)

Finally if this product on [X,Y]o renders it a group then our object is
achieved and X is called a homotopy associative coH-space, or simply a
coH-space. We note also that, in a similar fashion to the situation for H-
spaces, when X is a coH-space then [X, Y], is a group for any Y.

We have seen above that a simple example of a H-space is obtained
when [X,Y]o has Y = G with G a group. An example of a coH-space is
obtained when [X,Y]o has X = SZ for any space Z, with SZ denoting the
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suspension of Z. For the details cf. Husemoller [1]. This completes our
summary of the property P’. -

To end this section we point out that it is perfectly possible for the
properties P and P’ to be present simultaneously, i.e. given a particular
[X,Y]o, it may be the case that Y is a H-space and X is a coH-space,
for example one could choose Y = G and X = SZ. When this is so it
would appear that there are two possible group structures on [X,Y]o—in
fact it is an elementary calculation, cf. Spanier [1], that both these group
structures coincide, and that the resulting single group structure is always
commautative. As we shall observe in the next section this means that the
fundamental group of a topological group G (e.g. G is some Lie group) is
always commutative.

§ 3. Homotopy groups

The first homotopy group of a pointed space X is the fundamental group
m1(X) and is defined by
m(X) = [, X]o (1.26)

Thus the fundamental group of X is the homotopy classes of based loops
on X. Because m;(X) is a set of homotopy classes of maps, rather than the
maps themselves, then one does not distinguish loops which are homotopic
to one another. The group product is constructed as follows: let a and 3 be
based loops so that «, 3 € Map(S?, X) = QX, denote their corresponding
homotopy classes in [S, X]p by [a] and 3] respectively, then the product
is written as [o][3]. Suppose [¢]{3] = [v] then the loop 7 is defined by

0= {5y 15iE (1.27)

where the variable ¢ is the coordinate on the circle which we have taken to
be of unit circumference. Also the well known process of checking that the
product defined above is both invertible and associative up to homotopy is
precisely the verification that QX is (another example of) a H-space.

The higher homotopy groups are obtained by replacing the circle S by
the spheres S®, n = 2,3,... and are denoted by m,(X). Accordingly, if we
put all the values of n together we obtain

m(X)=[8"X]o n=12,... (1.28)
Making use of 1.22 we can deduce at once that

[S™, X]o = [$""1,QX]o (1.29)
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But since we have just seen that QX is a H-space then this implies that
[S*~1,0X]o is a group and so the higher homotopy groups 7,(X) n > 2
are indeed groups. The fundamental group (X)) can be non-commutative,
as is the case when X is a Riemann surface of genus g > 2. However, the
higher homotopy groups m,(X) are always commutative. This follows also
from the H and coH properties of [S®, X]: we observe that, since n > 2,
then we can write 7, (X) in the form

Tn(X) =[S, X]o = [S" 7}, 0X]o = [SS™2,0X]o (1.30)

so that m,(X) for n > 2 is expressible in the form [X,Y]q with ¥ = QX
a H-space and X = §S8"~2 a coH-space; thus by our remark at the close
of the last section the group structure on [X,Y]q = m,(X) is both unique
and commutative. We can now use a similar argument to establish our
earlier assertion that the fundamental group of a topological group is always
commutative. Let X = G be a topological group, then we write®

m(G) = [S*,Glo = [$5°,Glo )

and because G is a group, and hence a H-space, and §! = §5° is a coH-
space, then 7, (G) is necessarily commutative.

Next we return briefly to the distinction made in § 2 between free and
based homotopy classes. In summary, given the two sorts of classes [X,Y]
and [X, Yo, there is an action of w1 (Y’) on the based classes [X, Y]o, and on
forming the appropriate quotient one gets the free classes [X,Y]. We write

this as
[X’ Y]O/"rl(Y) ~ [X,Y] (1.31)

To understand all this suppose one has a map a € Mapo(X,Y) that pre-
serves base points and hence determines the class [a] € [X,z0;Y, yolo,
where we have temporarily amended our notation to include the relevant
base points. Then without loss of generality we can leave z¢ fixed and
ask the question: How does [X,zo;Y,y0]o depend on the base point yg?
Well suppose we choose another base point y; then we must now compare
[X,z0; Y, yolo and [X, Zo; Y, y1]o. To do this join yo to y; by a path +, say,
then one can pass between the two sets of homotopy classes by going back
and forth along . Thus we obtain a y-dependent isomorphism ¢, between
[X,z0;Y, %o and [X, zo;Y,y1]o. However, given two paths 4 and 4’ be-
tween yo and y; then we shall have the same isomorphism provided v and

! By analogy with the sphere S™ which has the equation €2+...22 | =1, the sphere
59 simply has the equation z? = 1 and so consists of a pair of points one of which is its

base point.
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4' are homotopic. But the difference between v and 4/ is a loop, i.e. an
element of 71 (Y)—thus we have an action of m(Y) on [X, zo;Y, yo]. Pass-
ing to the quotient then gives the desired result. If it happens that 71(Y)
is zero then the action is necessarily trivial, and so the free and the based
homotopy classes coincide. Note, though, that we must assume that Y is
path-connected, otherwise such 7’s need not exist.

Homotopy groups, though simple and intuitive to describe, can be very
difficult to calculate. Even for the spheres S™ the results are incomplete:
Starting with 5! we have

T (SY) = {g ml (1.32)

While for a general value of n, n > 1, it is also relatively easy, c¢f. Bott and
Tu [1], to deduce that

0 m<n

Tm(S™) = { z e (1.33)

However for m > n the picture is more complicated. For example m,(S?) is
not known for all m. It is known though, (cf. again Bott and Tu [1]) that

a finite group m >n, andnodd
Tm(S™) = < a finite group m>n, and nevenbut m#2n—1
ZxF m>n, nevenand m=2n-1

(1.34)
where F' is some finite group. Despite the intricacy evident in the above
results there are some patterns in the values of 7, (S™). These are known
as stability properties of homotopy groups and emerge when one considers
Tm+n(S™) for large enough n. More precisely, if one calculates T4, (S™)
for fixed m as n increases, then for n > m + 2 the result stabilises and one
has

7Tm+‘n(sn) = 7Tm+n+1(sn+1) =-=Gmn say, n2m+2 (135)
where G, is obtained by setting n = m + 2 so that
G = Tome2(S™1?) (1.36)

The homotopy groups of the classical compact Lie groups G are somewhat
better known than those of spheres. There is also a pattern in the 7,(G)
for appropriate n and G. This is the celebrated Bott periodicity and we
shall encounter it in chapter 3 when we discuss K-theory.
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A much more calculable set of invariants than the homotopy groups
are the cohomology groups which we now consider.

§ 4. Cohomology and homology groups

Cohomology groups can be defined in a variety of ways. However, coho-
mology groups of X are invariants of homotopy type; one particular defi-
nition which brings this out this useful point is the definition via what are
called FEilenberg-MacLane spaces. These latter are spaces with only one
non-vanishing homotopy group. To be exact, an Eilenberg-Maclane space
is denoted by K(G,n) with G a group and n a positive integer. It has the
property that

T (K(G,m) = {& 1= (1.37)

0 otherwise
We already have a simple example: from 1.32 we see that

S' = K(Z,1)

In any case given G and n there always exist such spaces, and, though
not unique, they are unique up to homotopy equivalence. We use them to
define cohomology groups as follows: the n** cohomology group of X with
coefficients in the group G is denoted by H™(X; G) where

H™(X;G) = [X, K(G,n)lo (1.38)

In passing we note that because 7, (X) is always commutative for n > 2 then
the same holds for the group G in the Eilenberg-MacLane space K(G,n) if
n > 2. Now given a K(G,n) it is evident that QK(G,n + 1) satisfies

T (K (G,n+ 1) = { OG ft}’l';;i's‘e (1.39)
In other words, QK(G,n + 1) is also a K(G,n). By our remark about
uniqueness up to homotopy equivalence above we see that QK (G, n+1) and
K(G,n) are both of the same homotopy type—for that matter the spaces
Q™K(G,n+m) m = 1,2,... are also all K(G,n)’s. However, the point
here is that since K(G,n) can be expressed as QY for a suitable space Y,
then K(G,n) is a H-space, and so [X, K(G,n)]o is automatically endowed
with a group structure as befits a cohomology group.
There is also the definition of cohomology via a complex: for this one
needs a collection of spaces E™(X), say, together with maps d,, which con-
nect pairs of spaces

d"__fE'ﬂ—l(X)d"_‘}En(X)iEn+1(X)d"_+} (1.40)
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The complex {E™(X),d,} must have the property that the composition of
two consecutive maps is zero

dpodn-1 =0
This crucial property implies that
Imd,_, Ckerd, (1.41)

If Imd,—, = kerd, for each n then the sequence 1.40 is called ezact—this
is false, in general, and the cohomology groups of the complex are a measure
of how far the sequence is from being exact. The nt* cohomology group of
X associated to the complex above is then given by

kerd,

T (1.42)

HE(X) =

For example, let X be a differentiable manifold; if d is taken to be the
exterior derivative, and E, = Q"(X), where Q*(X) are the n-forms on
X, then the resulting complex is the de Rham complex from which derives
the de Rham cohomology of X which is, of course, isomorphic to the real
cohomology group H*(X;R):

ot g1 x) St gn(x) ey grrt(x) S

kerd, n (1.43)
Hz(X) = IrnTl_HdeRham( )= H*(X;R)

Passing to the dual will generate the corresponding homology groups.
We denote the complex dual to {E™,d,} by {En,0,}; note that the maps
now go in the opposite direction: i.e. from E, to E,_1. In summary we
have

On- On On On
..e__’En_l(X)é__‘E(X)é__ n+1(X)"_+_1"'
ker 8,_, (1.44)

— E —
6,,_1 o an = 0, IZIﬂ (X) = Imaﬂ

We can choose {E,, 8, } to be the singular chain complex for X—this means
that F, denotes the singular n-chains on X and &, is the corresponding
boundary map. The homology of the complex is the well known singu-
lar homology group, and is isomorphic to the integral cohomology group
H,.(X;Z).
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Finally we recall a few well known and useful facts. Homology and
cohomology groups are finite in number and can be non-trivial only for
0 < n < dim X. For cohomology the sum of all the groups H(X) forms a
ring which is denoted by Hz(X). The product in the ring Hz(X) is known
as the cup product and is written as U. For example, if we take the de
Rham complex, where the cup product U coincides with the wedge product
A, then one has

Hj rham(X) = H*(X;R) = @ H"(X;R)
n>0
U:H™(X;R) x H*(X;R) — H™"(X;R) (1.45)
(W), W]) = WU ] = [w A

where, in the above, [w] and [v] represent cohomology classes in H™(X; R)
and H™*(X;R); these in turn are determined by w and v which are closed
differential forms belonging to Q™ (X) and Q"(X) respectively.

Homology and cohomology groups are usually much easier to calculate
than homotopy groups—we have seen that the homotopy groups, 7, (5"),
for spheres are still not fully known. In contrast, for the less refined homol-
ogy and cohomology invariants, a simple calculation yields the result

n. n.oy _ 2 ifm=0orn

H™(5%2) = Hn(5";2) = {0 otherwise (1.46)
There is, though, an important relation, between the homotopy and the
homology of X, known as the Hurewicz isomorphism. This is the statement
that the first non-vanishing homotopy and homology groups of a path con-
nected X occur at the same dimension and are isomorphic. One should add
to this that homology (and cohomology) groups are always commutative,
but homotopy groups m,(X) are only necessarily commutative for n > 2;
should it happen that the first non-vanishing homotopy group of X is a non-
commutative m1(X) (e.g. X is a Riemann surface of genus 2 say), then the
Hurewicz isomorphism statement above is modified to say that Hy(X;Z)
is isomorphic to the commutative part of m;(X)—the commutative part of
m1(X) is constructed by taking the quotient of m1(X) by its commutator
subgroup [m1(X),71(X)]. In short one has

H(X;Z) = m(X)/[m(X), m1(X)]

§ 5. Fibre bundles and fibrations

The notion of a fibre bundle derives directly from naturally occuring struc-
tures in mathematics and in this section we just wish to recall, for the
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convenience of the reader, some of the standard properties, cf. Nash and
Sen [1] and Husemoller [1] for more details.

One of the most basic examples is the tangent bundle TM to a differ-
entiable manifold M. The tangent bundle T'M is the collection of all the
tangent spaces to M and is given by

™ = | T,M
PEM

where T, M is the tangent space to M at the point p. Every bundle has
fibres, a total space, and a base space. For the tangent bundle the fibres
are the vector spaces T M, the total space is TM, and the base space is
M; when the fibres are vector spaces the bundle is often referred to as a
vector bundle; and the fibres always have the same dimension. In this case
the dimension is n = dim M and T'M is called a vector bundle of rank n.
One can go on to consider vector bundles of various ranks, for example new
bundles can be constructed by carrying out the standard operations of linear
algebra on the fibres of TM: one can form direct sums, tensor products,
pass to the dual, and so on. Underlying such bundles is a principal bundle
P with total space P, base M and fibre G where G = GL(n,R), this group
being the group which transforms the fibres of the various vector bundles
into one another. Every fibre bundle is locally trivial, this means that, given
a bundle E with fibre F', projection 7 and base M, there is a covering of the
base by open sets {O4} such that over each O, the bundle is homeomorphic
to a direct product, i.e.

17 H04) =~ O x F (1.47)

An important property of bundles is their behaviour under the oper-
ation of pullback—recall that the notion of pullback is often used when
dealing with the cohomology groups H™(M;G) of a space M—the princi-
pal ingredient in any pullback calculation is a map f : N — M, then if
w € H™"(M;G) one can ‘pull back’ w to f*w, so that f*w € H*(N;G).
Thus any knowledge of the cohomology ring H*(M; G) on M induces, via
the pullback, some knowledge of the cohomology ring H*(N;G) on N, this
knowledge being expressible as the object f*H*(M;G). In the case of bun-
dles one pulls back bundles instead of cohomology groups. Thus if E' is a
bundle over M then f*FE is a bundle over N. Also, as is the case for cohomol-
ogy, two homotopic maps produce identical pullbacks: i.e. if fi, fo : N — M
and f1 ~ f, then the two pullback bundles are isomorphic

flE~fiE (1.48)
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The notion of pullback also plays a key réle in the classification of
bundles. This is because there exist so called universal bundles Eg over
a base space BG, known as a classifying space; and any bundle E with
structure group G, over a space M, arises as a pullback f*Eq for some
map f: M — BG (this classification of bundles is treated in Nash and Sen
[1], and at greater length in Husemoller [1] and Bott and Tu [1]) Since ho-
motopic maps produce indistinguishable pullbacks, the set of (isomorphism
classes) of bundles over M with group G is in one to one correspondence
with the homotopy classes

[M, BG] (1.49)

and as [f] € [M,BG] runs through all possible choices then f*E¢g runs
through all possible bundles E over M with group G. In practice one needs
some means of detecting the non-triviality of a bundle E—the construction
of E via a classifying space provides us with just that: The point is that
the cohomology of the classifying spaces BG is well known for the various
commonly encountered groups G. Thus if a map f : M — BG is used to
construct the bundle E = f*FEg, then this same map f can be used to pull
back elements of H*(BG) to H*(M). More precisely the generators, c; say,
of the cohomology ring H*(BG) are called universal characteristic classes,
and their pullbacks f*¢; are the characteristic classes which belong to the
bundle E = f*Eg. We have therefore

f*:H (BG)*——> H*(M) (1.50)
ci— e

If one chooses the base space M to be a real or complex differentiable
manifold, then the structure group G for a bundle E is naturally U(n) or
O(n) respectively, where n is the real or complex dimension of M, whichever
is appropriate. The corresponding characteristic classes f*c; € H*(M;Z)
are the Pontrjagin classes in the real case and the Chern classes in the
complex case and they are determined ultimately by H*(BO(n);Z) or
H*(BU(n); Z) respectively. In the real case one also considers cohomology
classes with Z, coefficients, these are the universal Stiefel-Whitney classes
which belong to H*(BO(n);Z,); finally, in the case where the structure
group reduces from O(n) to SO(n) with n even, there is an extra class—the
celebrated Euler class.

A bundle E with fibre F, base M, and a projection m which preserves
base points, is often represented by

FSESLM (1.51)
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where ¢ denotes inclusion. From this follows the valuable fibre homotopy
(exact) sequence

v — T (F) — mp(E) — mp(M) — iy (F) — iy (E) — - -+

e 1T0(F) — 1T0(E) — 1T0(M) — 0
(1.52)
This sequence contains extremely useful information relating the homotopy
groups of the total space, fibre and base—for a trivial bundle F one has
E = M x F which implies immediately that m,(E) ~ m,(M) + m, (F).
In general this is false and one must fall back upon the fibre homotopy
sequence. Unfortunately there is no simple relation between the cohomology
groups of E, F and M; these latter have a much more complicated inter-
relationship which is expressed by spectral sequences, cf. Bott and Tu [1].
An extremely fruitful generalisation of the idea of a fibre bundle is that

of a fibration. The term fibration is applied to a map = of the form

m:E— M (1.53)

when 7 possesses the homotopy lifting property. The content of this is as
follows: take another space F' and a map f : F — E, this map f can
immediately be composed with 7 to give the map g =mo f: F — M. This
gives the situation

N (1.54)

and one refers to f as the lift of g. Now suppose that one extends g to a
homotopy class of mappings g; such that go = g, and suppose also that this
homotopy of g lifts to give a corresponding homotopy f; of f, with fo = f,
then 7 : E — M has the homotopy lifting property. We can summarise all
this in the diagram below

Nl (1.55)

go=9 fo=f g=mofy

If E happens to already be a fibre bundle with projection m, then = is
automatically a fibration, albeit a locally trivial one. Above each point
T € M lies the fibre at z given by 7~ 1(z)—the fibre above the base point *
is known simply as the fibre F' of the fibration. Thus one has F = 7~ (x).
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The various fibres m~(z) of a fibration need not all be homeomorphic, as
they are for a fibre bundle; they are, however, all of the same homotopy
type.

Such fibrations F' — E — M also satisfy an exact fibre homotopy se-
quence identical to the one already given above. In addition the cohomology
groups of E, F and M are also related via spectral sequences.

An important example of this latter kind of fibration is the path fibra-
tion: Take as total space E the based paths on M and denote this space by
PM; the precise definition of PM is that if I = [0, 1] then

PM = Map, 1, M] (1.56)

and the relevant base point information is that 0 is the base point on [0, 1]
and x is the base point on M—thus an element of PM, or a based path, is
a map from [0,1] to M which maps 0 to *. Each such path has an end point
z, say, and this suggests at once that the fibration 7 be defined as the map
which assigns to each path its end point. So far then we have the picture

PM
l" (157)
M

The fibre 77!(z) above a point z € M is obviously all the paths from the
base point * to z. However, a fuller description is possible: if one chooses
at the beginning one fixed path, po(z) say, then one can describe any other
path p(z) in 77 1(z) by saying how it differs from po(z). But a pair such as
po(z), p(z) join naturally to form a loop through *, and so they determine
an element of the loop space QM. Finally, although one can see that one
does not obtain all elements of QM in this way, it is now possible to prove
that, up to homotopy, m#~1(z) ~ QM: this just requires two observations.
First note that if we consider two different fibres 7~1(z) and 7~!(y) then
one is homotopic to the other, i.e. 77}(z) ~ 7~ 1(y); secondly notice that
the fibre above the base point * is simply the loop space LM, hence we
have our result. Thus the fibre F above the base point is QM and we can
complete the picture of the fibration to give

OM — PM
ln (1.58)
M

The map 7 can be easily seen to have the homotopy lifting property so that
m is indeed an example of a fibration. This encoding of QM as the fibre of
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a fibration turns out to be a crucial step in calculating its cohomology via
the technique of spectral sequences.

§ 6. Differentiable structures for manifolds

In §1 we distinguished three types of manifold M: Mrop, Mpr and
Mprrp. It is possible to describe the more important differences between
these three types using the topological techniques introduced in the previous
sections.

Consider then a manifold? M of dimension n. The type of M is de-
termined, as we saw in § 1, by examining whether the transition functions3
Jap are homeomorphisms, piecewise-linear maps, or diffeomorphisms. Now,
since the transition functions are maps from one subset of R™ to another,
we introduce the groups TOP,, PL, and DIFF, which are all the homeo-
morphisms, piecewise-linear maps, and diffeomorphisms of R™ respectively.
We can consider these three groups as functions of n, then as n increases
we are naturally led to write down three sets of inclusions:

TOP, ¢ TOP, C --- C TOP, C
PL, ¢ PL, C - C PL, C - (1.59)
DIFF, c DIFF, C .- C DIFF, C

For each of the three sets of inclusions we pass to the largest limiting space—
this is known as taking the direct limit “—and construct the three limiting
groups

TOP, PL, DIFF

With these three groups are associated the classifying spaces BTOP, BPL
and BDIFF—these are just like the classifying spaces BG introduced in
the previous section to classify fibre bundles over M with group G. In the
case at hand the transition functions g, are those of the tangent bundle to
M; and there are three possible tangent bundles depending on the type of
M. We denote these tangent bundles by TMrop, TMpr, and TMprrF in
an obvious notation. We can use the classifying spaces BTOP, BPL, and

2 In this section M will always be assumed to be compact, connected and closed
unless we indicate the contrary.

3 Of course in the PL case we assume that a PL map has a PL inverse

4 The direct limit, or inductive limit, is a standard notion which is used in topology.
It is defined for a sequence of objects O; connected by maps ¢; which satisfy appropriate
properties. It is denoted by lim O;. By taking the dual of everything one obtains the
corresponding inverse limit, or projective limit, which is written as lim O;. for more

details see, for example, Spanier [1].
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BDIFF to determine the tangent bundles TMrop, TMpr, and TMprpp:
one simply selects an element of the homotopy classes

[M,BTOP] [M,BPL] and [M,BDIFF]

respectively.

It is now natural to ask when can one ‘straighten out’ a topological
manifold to make it piecewise-linear; and also, when can one ‘smooth’ a
piecewise-linear manifold to make it differentiable? Both these questions
can be answered using fibrations.

Taking the first of them, so that we are comparing piecewise-linear and
topological structures on M, consider BPL and BT'OP. One can fibre the
first space over the second, it is possible to check that the fibre over the
base point * is then simply TOP/PL. The fibration is therefore of the form

TOP/PL — BPL
lﬂ (1.60)

BTOP
A possible method for ‘straightening out’ a PL manifold is now apparent:
select a topological manifold by choosing a map o : M — BTOP, now if

we can factorise o through BPL then M acquires a PL structure. We show
this below

BPL
a: MLBPLLBTOP  _ 6 5 ia
with a=7op M - BTOP

In other words, the existence of the map 8 : M — BPL satisfying a = 703
provides M with a PL structure and is a lifting of the map a from the
base BTOP to the total space BPL. Actually this method does work
provided dim M > 5, cf. Kirby and Siebenmann [1].> This recasting of a
factorisation problem as a lifting problem is standard in homotopy theory.
The techniques for analysing it belong to what is called obstruction theory,
for which two very good references are Steenrod [1] and Whitehead [1].
It is then standard that one can proceed as follows: If one has a fibration
F — EX B and one wishes to lift a map a : M — B so that we have again

. MALELB E
a: E = B |n (1.61)
with C!=7T°,B M a B

5 We also assume that M is closed. If M has a boundary then we require dim M > 6.
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then the obstructions to the lifting are cohomology classes of the form
H" Y M; 1, (F)) = H" Y M; 70, (F)) (1.62)

In 1.62 above 7, (F) denotes cohomology with what are called local co effi-
cients, but, as the equation indicates, the coefficients may be taken® to be
just mn(F). Thus in our case the obstructions are in

H™Y(M; r,(TOP/PL)) (1.63)

Fortunately, due to the work of Kirby and Siebenmann, it is known that
only one of these cohomology classes is non-zero, for they found that

Z, ifn=3

1.64
0 otherwise (1.64)

a (TOP/PL) = {

In other words, TOP/PL has only one non-trivial homotopy group
and this group is known to be Z,. The actual cohomology class, e(M) say,
forming the obstruction to the lifting is therefore an element of 7

HYM;Z,)  dimM >5 (1.65)

Now if the class e(M) vanishes then the map [ exists and furnishes M with
a PL structure; and it is natural to go on to ask how many such B’s exist?
More precisely, since it is the homotopy class in [M, BPL] that provides M
with its PL structure, we ask how many distinct homotopy classes of such
('’s are there? This is also a standard question of obstruction theory and the
answer is that the relevant homotopy classes are just the whole cohomology
group

H*(M;r,(TOP/PL)) (1.66)

However, in our case we have seen that the only non-trivial case occurs
for n = 3. Thus we see that if a closed topological manifold M, with

6 The point at issue is that the local coefficients 7, (F) are really a set of copies of
7mn(Fy) with F} the fibre above the point b € B; these homotopy groups are all isomor phic
since all fibres have the same homotopy type. However there is no natural isomorphism
between them unless the fundamental group ) (B) acts trivially on them, for details cf.
Whitehead [1] and Steenrod [1].

7 One could also work with an element d € H“‘(BTOP; Z,) where d is such that it is
pulled back to e(M) by the map a, i.e. a*d = e(M), then d is referred to as the universal
obstruction for the lifting problem.
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dim M > 5, acquires a PL structure by the lifting process just described,
then the possible distinct PL structures are isomorphic to

HY(M; Z,) (1.67)

which is not zero in general. The fact that there can be distinct PL struc-
tures on the same topological manifold M is sometimes referred to as saying
that the Hauptvermutung is false. This result is of course very important:
it means that one can construct distinct PL manifolds which, though they
are all homeomorphic to one another, possess no invertible PL maps taking
one into the next. Also if the Kirby~Siebenmann class e(M) € H*(M; Z,)
does not vanish then the topological manifold M cannot be given any PL
structure.

If dim M < 5 then all the interest lies in dimension 4. For dim M < 2
Rado [1] proved that the notions PL and TOP coincide, while for dim M = 3
this same fact was established by Moise [1]. Finally if dim M = 4 then
these notions do not coincide. However, before commenting further on this
case we wish to give an account of the smoothing problem.

Similar ideas are used to address the question of smoothing a piecewise-
linear manifold—however the results are different. Let us assume that M
is a closed PL manifold with dim M > 5. This time the fibration is

PL/DIFF — BDIFF
1, (1.68)
BPL
The smoothing of a piecewise-linear M can be handled with obstruction the-
ory and leads us immediately to the consideration of the homotopy groups

mn(PL/DIFF) But the non-trivial homotopy groups of the fibre are much
more numerous than in the piecewise-linear case. In fact one has

(0 ifn=25,6
Z28 fn=7
Z2 ifn=28
ma (PL/DIFF) ={ . ; (1.69)
Z992 ifn=11

From 1.69 above we see that if we choose M = S7 then the first non-triviality
occurs when n = 7 and so the obstruction to smoothing S7 lies in

H8(S";m7(PL/DIFF)) (1.70)
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which is of course zero for elementary dimensional reasons—this means that
S7 can be smoothed, a fact which we know from first principles. However,
by the obstruction theory introduced above, the resulting smooth structures
are isomorphic to

H7(S7;m7(PL/DIFF)) = H"(87; Zys) = Zos (1.71)

Hence we have the celebrated result {cf. Milnor [1] and Kervaire and Milnor
[1]) that ST has 28 distinct differentiable structures 27 of which correspond
to what are known as ezotic spheres.

Now if dim M < 3 then there is a bijection between PL and DIFF
structures on M, cf. Kirby and Siebenmann [2] and Kuiper [1]—this leaves
us with the case towards which we have been working in this section, namely
dim M = 4.

In four dimensions there are phenomena which have no counterpart in
any other dimension. First of all there are topological 4-manifolds which
have no smooth structure, though if they have a PL structure then they
possess a unique smooth structure. Secondly the impediment to the exis-
tence of a smooth structure is of a completely different type to that met in
the standard obstruction theory—it is not the pullback of an element in the
cohomology of a classifying space, i.e. it is not a characteristic class. Also
the 4-dimensional story is far from completely known. Nevertheless, there
are some very striking results dating from the early 1980s onwards.

In Freedman [1] all, simply connected, topological 4-manifolds were
classified by what is known as their intersection form ¢. We must define
g and this can be achieved in more than one way, from which we choose
the following: in brief q is a certain quadratic form constructed from the
cohomology of M. Take two elements « and 3 of H2(M; Z) and form their
cup product a U 8 € H*(M;Z); then we define g(a, 3) by

q(e, 8) = (a U B)[M] 1.72)

where (a U 8)[M] denotes the integer obtained by evaluating a U 3 on the
generating cycle [M] of the top homology group Hy(M;Z) of M. Poincaré
duality ensures that such a form is always non-degenerate over Z and so has
detq = F1; ¢ is then called unimodular. Also we refer to ¢, as even if all
its diagonal entries are even, and as odd otherwise. The result of Freedman
leads to the following:

Theorem (Freedman) A simply connected 4-manifold M with even inter-
section form q belongs to a unique homeomorphism class, while if q is odd



24 Differential Topology and Quantum Field Theory

there are precisely two non-homeomorphic M with q as their intersection
form.

This is a very powerful result—the intersection form ¢ very nearly deter-
mines the homeomorphism class of a simply connected M, and actually
only fails to do so in the odd case where there are still just two possibilities.
Further every unimodular quadratic form occurs as the intersection form of
some manifold.

An illustration of the impressive nature of Freedman’s work is rather
easy to provide. Let us choose M to be the sphere S%, since S* has triv-
ial cohomology in two dimensions then its intersection form ¢ is the zero
quadratic form and is of course even; we write this as ¢ = §. Now recollect
that the Poincaré conjecture in four dimensjons is the statement that any
homotopy 4-sphere, Sf say, is actually homeomorphic to §%. Well, since a
homotopy 4-sphere has the same homotopy type as S%, and since a man-
ifold with the same homotopy type as S* has the same cohomology, then
it follows that any Sf also has intersection form ¢ = §. But Freedman’s
result says that for a simply connected M with even g there is only one
homeomorphism class for M, therefore Si is homeomorphic to §* and we
have established the conjecture. Incidentally this means that the Poincaré
conjecture has now been proved for all n except n = 3—the case originally
proposed by Poincaré.

There also spectacular results for smoothability in four dimensions
which we will now sketch—we will have cause to return to them in a later
chapter. First, following Freed and Uhlenbeck [1], we point out that Freed-
man’s result combined with a much earlier result of Rohlin [1] gives us
an example of a non-smoothable 4-manifold: Rohlin’s theorem asserts that
given a smooth, simply connected, 4-manifold with even intersection form
g, then the signature® a(q) of ¢ is divisible by 16. Now if we set

2 -1 0 0 0 O 0

0
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0 0 0 0
0 0 -1 2 -1 0 0 0
=19 0 0 -1 2 -1 0 -1|=Fs (1.73)
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 0
0 0 0 0 -1 0 0 2

(Eg is actually the Cartan matrix for the exceptional Lie algebra es) then, by
inspection, ¢ is even, and by calculation, it has signature 8. Thus by Freed-

8 The signature of ¢ is defined to be the difference between the number of positive

and negative eigenvalues of g.
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man’s theorem there is a single, simply connected, 4-manifold with inter-
section form ¢ = Fg. However, by Rohlin’s theorem it cannot be smoothed
since its signature is 8.

The next breakthrough was due to Donaldson [1]. Donaldson’s theo-
rem is applicable to definite forms g, which by appropriate choice of orien-
tation on M we can take to be positive definite. One has:

Theorem (Donaldson) A simply connected, smooth 4-manifold, with pos-
itive definite intersection form q is always diagonalisable over the integers
to ¢ = diag(1,...,1)

Immediately one can go on to deduce that no, simply connected, 4-manifold
for which ¢ is even and positive definite can be smoothed! For example
the manifold with ¢ = Eg ® Ejg has signature 16 and so gets by Rohlin’s
theorem. But since Fj is even then so is Eg® Fg and so Donaldson’s theorem
forbids such a manifold from existing smoothly. Before Donaldson’s work
surgery techniques had been extensively used to try to construct smoothly
the manifold with intersection form Eg & Eg. We can now see that these
techniques were destined to fail.

In fact, in contrast to Freedman’s theorem, which allows all unimod-
ular quadratic forms to occur as the intersection form of some topological
manifold, Donaldson’s theorem says that in the positive definite, smooth,
case only one quadratic form is allowed, namely I.

One of the most striking aspects of Donaldson’s work is that his proof
uses the Yang-Mills equations. Since these equations will figure largely in
this book we shall only outline what is involved here; also the book Freed and
Uhlenbeck [1] is devoted to a detailed exposition of Donaldson’s theorem.

In brief then let A be a connection on a principal SU(2)-bundle over
a simply connected 4-manifold M with positive definite intersection form.
If the curvature 2-form of A is F then F has an L? norm which is the
Euclidean Yang-Mills action S. One has

S=|F|? = - /M tr(F A +F) (1.74)

where *F is the usual dual 2-form to F. The minima of the action S are
given by those A, called instantons, which satisfy the famous self-duality

equations
F =xF (1.75)

Given one instanton A which minimises S one can perturb about A in an
attempt to find more instantons. This process is successful and the space of
all instantons can be fitted together to form a global moduli space of finite
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dimension, cf. chapter 8. For the instanton which provides the absolute
minimum of S, the moduli space M is a non-compact space of dimension
5.

We can now summarise the logic that is used to prove Donaldson’s the-
orem: there are very strong relationships between M and the moduli space
M, for example, let ¢ be regarded as an n x n matrix with precisely p unit
eigenvalues (clearly p < n and Donaldson’s theorem is just the statement
that p = n), then M has precisely p singularities which look like cones on
the space CP2. These combine to produce the result that the 4-manifold
M has the same topological signature Sign (M) as p copies of CP?; now p
copies of CP? have signature a — b where a of the CP?'s are oriented in the
usual fashion and b are given the opposite orientation. Thus we have

Sign(M)=a-b (1.76)

Now the definition of Sign (M) is that it is the signature o(g) of the inter-
section form g of M. But since, by assumption, g is positive definite n x n
then o(g¢) = n = Sign (M). So we can write

n=a-—b (1.77)

However, a + b = p and p < n so we can assemble this information in the

form
n=ga-b, p=a+b<n (1.78)

but one always has a + b > a — b s0 now we have
n<p<n=p=n (1.79)

and we have obtained Donaldson’s theorem.

A final word about non-compact manifolds. There is a result due to
Quinn [1] which says that non-compact manifolds are always smoothable.
However, if we choose M = R™ then, for n # 4 there is only one smooth
structure; but for n = 4 there is an exotic differentiable structure on R, i.e.
there exists a smooth R* which is homeomorphic, but not diffeomorphic,
to the standard R*. This is a consequence of Freedman’s and Donaldson’s
work, cf. Gompf [1] and Freed and Uhlenbeck [1]. An exotic R* is referred
to as a fake RY. It is now known, Gompf [2], that there is a continuum
of exotic differentiable structures that can be placed on R*. This is in
sharp contrast to the finite discrete number of exotic structures that arise
in the use of obstruction theory with compact manifolds. It is clear that
this section shows that four dimensions is special in very many ways, and
that, as yet, much remains to be understood; a useful reference is Kirby

[1].



CHAPTER II
Elliptic Operators

§ 1. The meaning of ellipticity

In this chapter we shall discuss elliptic operators; and we shall see that
these operators may be standard differential operators, or more generally,
pseudo-differential operators.

In the next paragraph we meet our first elliptic operator but we begin
with some introductory remarks. The property of ellipticity for an oper-
ator is of great importance in the theory of partial differential equations.
This importance continually carries over into other branches of mathematics
because of the appearance there of elliptic differential operators. For exam-
ple, when these differential operators also carry some geometrical structure,
e.g. the Laplacian on a compact Riemannian manifold M (which requires a
metric for its definition), then both geometry and analysis come into play.
Further, we can proceed from the geometrical to the topological because the
Laplacian is also a source of topological information about M via Hodge-
de Rham theory which provides us with the celebrated result (to which we
return in § 3 of this chapter) that

dim ker A, = dim H?(M; R) (2.1)

where A, is the Laplacian on p-forms. This in its turn can be thought
of as a point of departure for the immensely powerful Atiyah—Singer index
theory for elliptic operators on compact manifolds which we shall discuss
in chapter 4. Thus the theory of elliptic operators is central to differential
topology.

We begin the process of defining ellipticity by taking some simple clas-
sical examples; we go on then to try and abstract from these examples what
is essential to the notion of ellipticity. This motivates the formulation of
a much more general definition which we shall need for this book. Begin
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then with the Laplacian A on the Euclidean space R®. To conform with
common practice in differential geometry we multiply it by a minus sign so
as to make A a positive operator. Thus we define

02 0?

A=—eg =i

o2 a2 (2.2)

Under Fourier transformation! this operator becomes simply multiplication
by the expression

Pt +ph (2:3)
where py ...p, are the variables conjugate to z;...z,. Notice that 2.3 is
simply a quadratic form, ¢ say, in the p; and if we set 0 equal to a constant
we obtain a sphere. Now if we generalise the Laplacian slightly by making
changes of scale on the z;, we obtain the operator L given by

o2
== Z aiw (24)

Under Fourier transformation L acts as multiplication by the quadratic form
a(L) where

o(L) = Zail’? (2.5)

and on setting o(L) equal to a constant ¢ we obtain the equation
alp% + “en + a“"p?l = (2.6)

This represents an ellipsoid in R™ if the quadratic form o(L) has signature
+n. If that is the case the operator L is called elliptic. We can now proceed
to examine the beneficial properties that ellipticity bestows on L.

The most important property is that if f is a C* funetion then the
function u which is the solution to the equation

Lu=f (2.7)

is automatically C*°. It is instructive to follow an outline proof of this
statement: if G(z) is a Green’s function (also referred to as a fundamental
solution in the mathematical literature), then we have the solution formula

uz) =Gxf where LG(z) = §(z)
= | Glz-y)f(y)dy

R»

(2.8)

1 We define the Fourier transform F(f) of a function f(z) by the formula F(f) =
U_}F)T fexp(ip:::)f(x) d"z
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Given this solution formula, then one knows that the presence of the Dirac
delta function 6(z) in the equation for G(z) means that G(z) is not C* at
z = 0; however, provided G(z) is C*® for z # 0, then it is easy to check,
e.g. by attempting to differentiate the formula above, that u(z) is indeed
C°°—it remains to establish that G(z) is C* for £ # 0 and to do this we
write —ipa]
exp[—ipz
G(z) o S i dp (2.9)

Now the denominator of the above integral contains the quadratic form
S aip? = o(L), and, by the assumption of ellipticity, o(L) only vanishes
at the origin p; = 0. Finally, by changing the scale of the variables p; by
a; to P; say, and then using n-dimensional spherical polar coordinates, one
sees that the only important integral is that over p = / 521 + .-+ p2 which
is done by appropriate use of Cauchy’s theorem. Moreover, the fact that
P only vanishes at the origin (ellipticity again) means automatically that
the Cauchy integral G(z) is singularity free, and well behaved as |p| — oo
for £ # 0. Thus G(z) is C* for z # 0 as required. Notice, though, that
had the quadratic form o(L) vanished away from the origin then the whole
argument would have failed. Let us move on to look at such cases.

Suppose then that the quadratic form 3~ a;p? = o(L) has signature
n—2, i.e. it has n—1 positive eigenvalues and 1 negative eigenvalue, then the
associated operator L is termed hyperbolic. For an example of a hyperbolic
operator consider the wave equation—more precisely set n = 2 and set

2 o
" 62 9c}

= o(L) = p? — p}

Thus the so-called level sets or level curves of L, given by the equations
o(L) = constant, are now hyperbolae rather than ellipses. We also expect
that the solutions to Lu = f, with a smooth f, may contain singularities.
We expect, too, the origin of these singularities to be traceable to singular
behaviour of the Green’s function G(z).

All this is true and is rather well known: let us replace (zy,z;) by
the more common variables (z,t) and examine the situation in some more
detail. A Green's function for L is given by

1 ifz>0

0 ifz<0 (2.10)

G(z,t) = %9(:1: +t)6(z—t) where 6(z)= {

and G(z,t) is thus singular everywhere along the lines z = Ft. Also, if
we make the simple C™ choice f = 0 for f, then among the solutions to
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Lu=f=0is
u(z,t) = (z +t)3/? (2.11)

which is also singular along the line 2 = —t (e.g. its third derivative is
infinite when z = —t). To define precisely the RHS of 2.11 we choose the
principal branch of the fractional power which corresponds to (z + t)3/2
positive, for (z + t) positive, and to (z + t)3/? being pure imaginary with
positive imaginary part for (z + t) neagative. Then u(z,t) is only C? but it
does obey the wave equation.

In fact the solving of the wave equation is a Cauchy problem, and
it requires the specification of the usual Cauchy data for u and its first
derivative at some initial time ty. Consider then the general wave equation
L.e.

Lu=f with L= ———5—-— i (2.12)

the lines £ = F¢ become the familiar light-cones of an (n + 1)-dimensional
Minkowski space. We can now characterise the circumstances under which
Lu = f can have a singular solution: let the Cauchy data be specified as just
described and let this data be singular somewhere on its support2. Next
consider the solution u(z, t) at some later time ¢, and for (z,t) belonging to a
set 2 say, then u(z, t) will be singular in Q if the light-cones passing through
Q extend back to the initial time ty and also pass through the singular part
of the support of the Cauchy initial data. Extensions of this Cauchy problem
discussion to include the non-singular support of u depend on the value of
n. However, for n = 3,5,... the support and the singular support of the
Green’s function G(z,t) actually coincide, Treves [1], and are thus light-
cones—since the Green’s function is responsible for the propagation of the
wave, such waves therefore do not diffuse and this fact is often referred to as
Huygens' principle. For all other values of n the singular support of G(z, t)
is a cone, but the non-singular support is the whole interior of the cone.
Let us use the 1-dimensional wave equation to illustrate an important
point. Because of the formal similarity between the Laplace equation and
the wave equation in R?, one might replace ¢ by iy in 2.11 and then go on to
claim that the resultant function u(z,y) = (z +4y)%? is a singular solution
to the Laplace equation—thus contradicting its supposed ellipticity. This is
not correct. The point is that the function u(z,t) is single valued and C?
in the whole of the (z,t) plane; however if u(z,y) = u(z + iy) = 252 then
u is only single valued on the (z,y) plane minus some branch connecting
zero to infinity. Hence u = 25/2 fails to be a solution in any neighbourhood

2 As usual the support of a function is the closure of the set on which it is non-zero.
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intersecting the branch; indeed z5/2 is not differentiable on the branch since
it is discontinuous there.

As well as elliptic and hyperbolic equations there are also parabolic
equations. An example of a parabolic equation is the Schrédinger equation

Ou  O%u
'—’t—a—t' - a—zz- =Lu=0 (213)

Under Fourier transform in R* L becomes multiplication by o(L) where
o(L) = —p1 + 1} (2.14)
and the level curves o(L) = ¢ give the parabola
pa-pr1=c (2.15)

Despite the appearance of the equation for a parabola in 2.15 above, the
actual definition of a parabolic equation does not require this: in fact the
classification of L as parabolic is made by only examining the Fourier trans-
form of the highest order derivatives in L—all derivatives were of the same
order in the previous examples so this fact did not emerge until now.

It is now possible to give one definition for all three types of equation:
Let L be the constant coefficient 2"¢ order operator

2

0 0
L=- Z aij—a.”ciazj + Xl:b,a—zl +c (216)

2Y)

Fourier transforming only the highest order derivatives gives the quadratic
form

oa(L) =Y ai;pip; (2.17)
i’]‘

Then we say that

elliptic if 09(L) has signature Fn
hyperbolic if det (a;;) # 0 and o2(L) has signature F(n — 2)
parabolic  if det (a;;) = 0 i.e. 02(L) has at least one zero

eigenvalue
(2.18)

We would like to pursue further the connections between the smoothness
of f and the smoothness of u for an equation of the form Lu = f. This
leads to two things: the enlargement of the notion of ellipticity to operators
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of arbitrary order with variable coefficients, and the introduction of the
attractive property of hypo-ellipticity.

§ 2. Ellipticity and hypo-ellipticity

Let us now suppose that L is a linear differential operator on R" of arbitrary
order m with possibly variable coefficients ao(z). Let us also employ the
compact multi-index notation so that

L= )" as(z)D" (2.19)

lal<m

The explanation of the notation in 2.19 is quite straightforward: the
symbol a is called a multi-index and is simply an n-tuple of integers
a = (ai,...,a,) and a; > 0 (notice that some of the a; may be zero);
|a| is the length of the multi-index o and is given by |a| = ) ay; also
p® = pdt ... p%n; finally D* = (—i)l®l(8/8z1)* - -+ (8/8x,)*", and the in-
clusion of the factor (—i)°l is a convenience which removes it from expres-
sions obtained later by Fourier transformation. Thus 2.19 is short for the

expression
L el 00 0% 2.20
= Z a(a;,...,an)(x)( i) axclx,' W (2.20)

lal<m

Using Fourier transformation we can represent the operation of L on
u(z) via the action induced on its Fourier transform F(u(z)) = @(p). The
result is that we can write ’

Lu@) = Y aale)Du(@) = 3 aalo) [ “exol-ipalp®ale) dp
lal<m lal<m Re
= [ o@,)ito) expl-ipaldp
(2.21)
where the definition of o(x, p) is, as might be anticipated,

o(z,p) = Z ao(z)p® (2.22)

la]<m

The function o(z, p) defined by the summation in 2.22 is called the symbol of
the differential operator L, and a vital part in the properties of L is played
by the last term in the summation; this term is denoted by o, (z, p) where

U'm(xap)= Z aa(x)pa (2‘23)

|aj=m
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Thus opm(z,p) is built from only the highest order derivatives of L, i.e.
those of order m, and o, (2, p) is called the leading symbol of L (the terms
principal symbol and highest order symbol are also used). Clearly, different
operators of order m which have the same highest order terms but differ in
lower orders will have the same leading symbol ., (2, p), but they will have
different (complete) symbols o(z,p). In any case it is the leading symbol
which appears in the definition of ellipticity for a general operator L.

Definition (Ellipticity) A differential operator L = Z|a|<m aq(z)D™ of
order m is called elliptic if its leading symbol o,,(x,p) is always non-zero
for non-zero p.

One can think also of ellipticity for L as being characterised by the in-
vertibility of the leading symbol of L, or the invertibility of L itself modulo
lower order terms; this point will be developed further when we discuss
vector bundles below.

We have seen in the previous section that the benefit of ellipticity is
to give smooth solutions to Lu = f given a smooth f. It is not necessary
for an operator to be elliptic for this to be true—some parabolic equations
possess this property, an example being the heat equation, see later in this
section. This motivates the following definition of hypo-ellipticity:

Definition (Hypo-ellipticity) A differential operator L is hypo-elliptic if
the condition Lu is C™ in an open set ) implies that u is C™ in .

Thus when one solves Lu = f for a hypo-elliptic L, f smooth implies the
solution u is smooth. Clearly all elliptic operators are also hypo-elliptic but
there are non-elliptic, hypo-elliptic operators: an example being the heat
equation in R®*! where we have

=2 % i (2.24)

The Green’s function G for L is easily calculated by Fourier transformation

to be
1

G =G(z,t) = ———6(t)ex [—Z’”?] (2.25)
=Y = dmye P T ‘

Now the formula 2.25 for G(z,t) can be seen to give a singularity at z =

= 0, i.e. at the origin of R™!. However, all other partial derivatives
of G(z,t) converge (strongly) for z # 0 and ¢t > 0, and vanish (because
of the 4(t)) for z # 0 and ¢t < 0, so G(z,t) is C* in R™*! except at the
origin—thus by the same proof as we sketched in § 1 for the elliptic operator
L=-Y%,a;0%/022, the solutions to Lu = f will be smooth given a smooth
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f. Hence L is hypo-elliptic even though the heat equation is parabolic
rather than elliptic. Let us examine two more well known equations for
hypo-ellipticity.

The two equations are the Schrédinger equation, which we have already
introduced as an example of a parabolic equation, and the Cauchy—Riemann
equation.

As regards the Schrédinger equation we can prove that it is not hypo-
elliptic despite its similarity to the heat equation. As usual we take the
formula for the Green's function, which, in the Schrédinger case in R™?,

is
1 S x2
G(z,t) = 1(2\/@)" 6(t) exp [ yen ] (2.2?)

Now it is easy to see that because of the presence of the presence of the factor
exp[— Y x2/4it] in 2.26 which behaves monstrously on the hyperplane ¢ = 0,
then G(z,t) is not C*® anywhere on this hyperplane—the corresponding
factor for the heat equation vanishes on this hyperplane, hence the difference
between the two cases. In any event, because of the non-smooth behaviour of
its Green'’s function the Schrédinger equation is definitely not hypo-elliptic.
We move on to the Cauchy-Riemann equation.

The Cauchy-Riemann operator in the complex plane C is usually de-
noted by 8 and so we set

L=§=2 1(a+_a) (2.27)

oz 2\oz 'y

where (z, y) are the coordinates of C. The Green’s function, G(z) = G(z, )
say, of 0 obeys the equation

: (a% N zb%) Glz,y) = 8(z,) (2.28)

which has a solution given by

1 1
G(.’E,y) = m = o, = G(Z) (229)
Notice that G(z,y) is perfectly well behaved away from the origin in C,
and, as we have seen already, this is a property of elliptic operators. We
can easily verify that the Cauchy-Riemann operator is elliptic for, using the
definition of ellipticity introduced on p. 33, and denoting the the Fourier
transform variables by p; and py, we find that the leading symbol is

oi(z,p) = %(pl +ip) (2.30)
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and since a1(z,p) # 0 for p # 0 then J is elliptic, it is also, of course, hypo-
elliptic. Indeed G(z) is actually real analytic for z # 0; this means that
du = f will have analytic solutions u given an analytic f; such operators are
called analytic-hypo-elliptic. It is not difficult to check that the Laplacian
is another example of an analytic-hypo-elliptic operator but that the heat
equation is hypo-elliptic but not analytic-hypo-elliptic3

We end this section with a short discussion of ellipticity for ordinary
differential equations or ODEs for short. Roughly speaking, all ODEs are,
either elliptic, or only depart in a rather obvious way from ellipticity. The
same general definition of ellipticity given on p. 33 applies to ODEs. Sup-
pose then that an n** order ODE Lu = f, with smooth coefficients a;(z)
and a smooth f, is given by

d™u(z du
i@ 1o+ @) bl = f) 23

Then the leading symbol of L is just
on(z,p) = an(z)p" (2-32)

so that L is elliptic on R provided a,(z) is non-vanishing on R. We see
immediately that examples of elliptic ODEs are easy to obtain: all ODEs
with constant coefficients are elliptic; further it is well known that such
equations have smooth solutions. A typical non-elliptic ODE is Bessel’s
equation of order A

22 d?u(z) +r du(z)

2 _ )2 -
72 I +(z* - 2)u(z) =0 A€ER (2.33)

The solutions to Bessel’s equation are not, in general, C*® because they
can misbehave at = 0 where one has u(z) — =¥ or u(z) - z¥ In(z);
Bessel’s equation is then cited as an example of an equation with a regular
singular point, this point being the origin. Of course the leading symbol is

o2z, p) = z2p? (2.34)
which vanishes at x = 0, hence the non-ellipticity.

3 The relevant point for the heat equation is that, in R"+! — {0}, the Green’s function
G(z,t) = (27;7)—"8@) exp [-2 xf/t] is C™ but not analytic—it is analytic, though, off
the hyperplane in R™t! given by t = 0.



36 Differential Topology and Quantum Field Theory

Another non-elliptic example in one variable is Gauss’s hypergeometric
equation

d;’l;(:') + {’7 _ (a +08+ 1)}du_) — a,Bu(:v) =0 (235)

z(l—-=x) d(;

whose leading symbol o2(z, p) is given by
o3(z,p) = (1 — z)p? (2.36)

The zeros of o9(z,p) at 0 and 1 render it non-elliptic; and the well known
hypergeometric function F(a,(,~;z), which is one of the solutions to the
hypergeometric equation, is not smooth at x = 1 having a branch there,
and there is a second solution singular at the origin.

In the case of one variable it is both easy and instructive to verify the
smoothness of the solutions to elliptic equations. Suppose one takes the
general ODE 2.31 and assumes it to be elliptic, then since we know that
an(z) # 0 we may divide by it on both sides of 2.31 to obtain

d™u(z) .t ay(z) du(z) + ap(z)

_ f(z)
dzm an(z) dx an(z) w(=) (237)

" an(z)

Then the existence of 2.37 implies that u(z) is C™, but the non-vanishing
of the denominator a,(z) and the smoothness of the ¢;(z) implies that one
may differentiate both sides and infer that u(z) is C™*!; induction then
establishes that u(z) is C*° as required.

§ 3. Ellipticity and vector bundles

In this book the more common setting for the various differential operators
that arise will be one in which vector bundles are present. More precisely,
the general setting which we require is the following: Let U and V be vector
bundles of rank ¢ and p, respectively, over a compact manifold M. Denote
by I'(M,U) and T'(M, V') the spaces of smooth sections of the respective
bundles, then we wish to work with linear differential operators L of order
m that map one space of sections into the other. Thus we can write

L:T(M,U) — T(M,V) (2.38)

and when no confusion can arise we shall abbreviate I'(M,U) and I'(M, V)
to simply I'(U) and I'(V').

The motive for requiring that I'(M, U) and I'(M, V') should be spaces of
smooth sections is simply that we are working within the field of differential
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topology. Further, given this choice of spaces, it is natural to expect that
elliptic operators L will a play a prominent part in their study; this is
because we have seen that when L is elliptic the smoothness of its image
implies the smoothness of its inverse image; thus since the image of L lies in
the space I'(M, V'), which is smooth by definition, then the inverse image of
L is guaranteed to be in the other smooth space I'(M, U). Before going on
it is clearly necessary for us to extend our definition of ellipticity to cover
the case at hand. This can be accomplished in the following manner.

The space of smooth sections I'(M, U) can be thought of loosely as a
space of vector valued functions on M; thus an operator L which acts on
T'(M,U) can be thought of as a matrix valued operator. To make this rnore
concrete in the case at hand we choose an open set §2 C M above which the
bundle U is, of course, locally trivial and possessed of the local coordinates
(z,u), where z is a local coordinate for ), and u a local coordinate for a g¢-
dimensional vector belonging to the fibre R? of U. Using these coordinates,
a section in I'(M, U) is represented by the vector valued function u(z) and
an expression for Lu is provided by

(Lu(z))i =Y Y a(@)D; i=1,...p (2.39)

J=1|a|<m

Referring to 2.39 we can confirm that the coefficients aq(z) have become
p X ¢ matrices, and that u(z) and Lu(z) have become vectors of dimension
g and p respectively. The symbol of L is also matrix valued and is given by
o(z, k) where

o(z,k)= Y aal(z)k® (2.40)

|a|<m

and the k¥ denotes the Fourier transform variable; actually the local co-
ordinates (z,k) should be regarded as belonging to the cotangent bundle
T*M of M. As might be anticipated, the leading symbol o, (z,k) of L is
a p X ¢ matrix or linear map between the fibres of U and V of the form
om(z, k) : Uy = V; where 0,,(z, k) is given by *

om(z, k) = Z aq(z)k® (2.41)

la|=m

4 Strictly speaking, since the functions aff(:z:) clearly will change by a Jacobian-typt
transformation if we change local coordinates, we should write something like ag_n(z) to
display a dependence on 2. This should also be done for the symbol which could more
properly be written as o (z, k); we omit all this to relieve the burden of too cumbersome

a notation.
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In the above we think of o (z, k) for each z and arbitrary k as a map
between the appropriate fibres. It is also useful to work globally and avoid
having to mention the local coordinates (z, k). Todo thislet 7 : T*M — M
be the projection for the cotangent bundle 7* M. Then, since U and V are
bundles over M, the map 7 can be used to pull them back to bundles over
T*M itself. The resulting bundles are of course #*U and n*V respectively;
since they are pullbacks they will have the same fibres as before but these
fibres now sit over the base T7*M. Finally the map o, (x, k) is equivalent
to a map which we write simply as o,,, where o, : #*U — #*V is a bundle
homomorphism between n*U and n*V.

Let us just elucidate this last assertion. To say that a map between
vector bundles is a bundle homomorphism means that, for each point p
in the base manifold, it induces an ordinary vector space homomorphism
between the fibres above p. Now in the case at hand the base is the cotangent
bundle T*M and a point p in the base is given by p = (z, k); the fibre above
such a p is U; for #*U and V; for n*V; thus a bundle homorphism o,,
between 7*U and n*V is given by supplying a linear map, which it is natural
to denote by o, (z, k), between U, and V;. However, this is precisely what
we did when we first introduced o, (z, k) and so our assertion is established.

We have seen that ellipticity is concerned with the invertibility of
o(x,k) for k # 0. We can delete k¥ = 0 from the picture by replacing
the cotangent bundle 7* M with the bundle of non-zero cotangent vectors,
i.e. we delete the subset of T*M with local coordinates (z,0); since such a
subset is what one obtains when one writes down the zero section of T* M
this is often called deleting the zero section.

With these facts in place we now have the ellipticity definition

Definition (Ellipticity, vector bundle case) The mt* order linear differ-
ential operator L, defined as described above, is elliptic if, for any open set
Q0 C M, its corresponding leading symbol 0,,(x, k) is invertible for k # 0.
Thus when L is elliptic we see at once that the bundles U and V must have
the same rank, i.e. p = g—also in the coordinate free method of dealing
with symbols we can equivalently define L as being elliptic as follows.

Definition (Ellipticity, more abstract definition) The m'* order linear
differential operator L : T'(M,U) — I'(M, V) is elliptic if

Om U - n*V
is a bundle isomorphism off the zero section of T* M. 1t is clear, too, that the
definition of the ellipticity of L as being the invertibility of its leading symbol
is the natural linear algebraic generalisation of the previous definition which
simply required it to be non-vanishing.
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To illustrate the vector bundle case we choose a specific example. Let
M be a compact Riemannian manifold of dimension n with metric g;;, and
d be the usual exterior derivative, then the Laplacian A, on p-forms QP( M)
is given in terms of d by

A, = (dd* +d*d), (2.42)

where the suffix p on the RHS is simply used to denote restriction to p-
forms, and, as usual, d* denotes the adjoint of d relative to the standard
inner product on p-forms, whose definition in turn requires use of the Hodge
x. For future use it is convenient to summarise some of this information
below

<w,u>=/ wAxv w,vENP(M)
M

<wdp>=<d*w,up> weQP(M), peQPY (M)
d: QP(M) — QPFY (M) = d* = (=1)"PH+1 4 gy
x: QP(M) — Q"P(M) = (—1)p(n=P)
w= whmipd:v"‘ A...Adz'
\/£7 1.8

* W= € Py Wiy i, TP A LA det
p+l-tniL.p
(n—p)!

(2.43)

where the last two expressions in 2.43 are valid for local coordinates in
some open set 2 C M, also we have assumed that the metric is Riemannian
positive definite—some signs would change if the metric was Lorentzian.
Now, from the bundle standpoint, Nash and Sen [1], a p-form is a section
of a bundle over M, the bundle being APT*M, i.e. the pt* anti-symmetric
power of the cotangent bundle T*M. Thus over {2 we can pass to the
appropriate sections and write

A, : T(M, APT* M) —s T'(M, APT* M) (2.44)

An instructive way to calculate the leading symbol o2(z, k) of A, is to em-
ploy the following result: let P and @ be two differential operators of order
i and j,with leading symbols denoted by ¥ (z, k) and G'jQ(.’E, k) respectively.
Then their product P o Q is of order (i + j) and has leading symbol given
by an appropriate product of the individual leading symbols. The reader
can easily verify that one has

PoQ:T(M,U)-ST(M, V)T (M, W)

ob (@, k) = of (2,k)0? (z, k)

(2.45)
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Thus if we choose P = d and @ = d* then the symbol of the Laplacian
obeys the equation

UQA"(Q:, k) = od(z, K)ol (z,k) + 0¥ (z,k)od(z, k) (2.46)
Another easily verifiable property of symbols is that the symbols of an mt*
order operator L and its adjoint L* are related by

(z,k) = {ok(z,k)} (2.47)

Because we are working with differential forms we represent the Fourier
transform variable k by k = k;dk*, with this done it is immediate that, if
v € APT*M, then we have

od(z, k) : APTIM — APTITEM '
(2.48)
v— kAv
On the other hand, since the action of o¢(z, k) is just wedge product with
k, then we know that its adjoint is interior product with k, i.e. v — kv.
An elementary calculation then gives the expected result for the symbol of

the Laplacian:
27 (z, k) = K21 (2.49)

where I represents a unit matrix in the vector space APT; M. We note that
the symbol of Ap, though a matrix, is a multiple of the identity, however,
the symbol o¢ (z,k) is a non-square matrix. Various generalisations of
the Laplacian can be formed by tensoring the bundle APT* M with another
vector bundle E, and by studying the equations of motion for Yang—Mills
theories, we shall encounter these examples in later chapters.

The kernel of A, plays a distinguished part in the theory of the Lapla-
cian; the recognition that this is so and the subsequent development of
the relevant results is due to Hodge. These results are particularly well
known and are fortunately rather easy to describe. We shall now give a
brief summary—for a proof the reader can consult Wells [1].

First we suppose that w is a harmonic p-form on a compact manifold
M so that Apw = 0. Thus we can make the following simple argument

<w,Apw >=< w,(dd* + d*d)w > =0
= <d'w,d'w>+ <dw,dw>=0
= |d*w|? +|jdw]* =0

= d'w=dw=0

(2.50)
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It is at once clear that
weEkerd, <= d'w=dw=0 (2.51)

If we combine this with the construction of the de Rham cohomology groups
(cf. p. 13 eq. 1.43) then we have

kerd

w € kerd, = w] € — Tmd _ ldeRham

(M) (2.52)
The force of Hodge’s result is that the two spaces in the equation above are
actually isomorphic, giving us the powerful theorem

Theorem (Hodge) On a compact closed Riemannian manifold there is pre-
cisely one harmonic p-form w in each cohomology class [w] of HP(M;R).

This of course implies immediately a formula for calculating Betti numbers
by as we quoted at the beginning of this chapter, i.e. we have

dimker A, = dim H?(M;R) = b, (2.53)

Note that although the Laplacian depends on a choice of a Riemannian
metric the theorem remains true regardless of which metric is used; indeed
the Betti numbers are topological quantities which do not require a metric
for their definition. The theorem of Hodge above generalises to include cases
where the exterior derivative d is replaced by other differential operators.
This generalisation and the whole question of kernels of elliptic operators is
resumed in chapter 4 when we discuss index theory for elliptic operators.

§ 4. Pseudo-differential operators

We are now ready to introduce our most general kind of elliptic operator:
this is what is known as an elliptic pseudo-differential operator. First we
must define the term pseudo-differential operator.

We accomplish this by abstracting to a more general situation the main
properties of the symbols of standard differential operators. If P is a general
operator defined via its symbol o(z,p) by the equation

Pule) = [ ole,p)ilp) expl-ipz] ds (2.54)

then P is said to be a pseudo-differential operator of order m if its symbol
o(z,p) belongs to an appropriate space of symbols which we denote by
S§™(§2). It remains to define the space S™({2); and to do this we simply try
and imitate the standard situation where one thinks loosely of the symbol
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as being a polynomial of degree m in p with z-dependent coefficients. A
definition that turns out to work is the following:

Definition (Symbol Space) Given an open set @ C R", there is a symbol
space S™(Q), with m € R, which consists of those functions o(z,p) which,
for (z,p) € K x R", with K a compact subset of Q, satisfy the condition

|DgDEo(z,p)| < Cap(K)(1 + |p))™ 1P (2.55)

where Co g(K) is a constant.5 Before taking the next step and defining a
pseudo-differential operator we have some observations.

First we point out that the intended definition of a pseudo-differential
operator P has as its main idea that P is pseudo-differential of order m if its
symbol o(z, p) belongs to S™({2). Next notice that we have defined S™(Q2)
for all real m, thus the order m can be non-integral or negative etc; in fact
we shall also encounter examples with infinite m. Thus we will be able to
deal with operators of any real order, finite and infinite. Observe too that
if o(z, p) belongs to S™(Q) it also belongs to S™*(Q2). Thus if an operator
is of order m it is also of all higher orders—this suggests that the order be
defined as the lowest possible such m: the infimum say. We do not do this
because this infimum may not be attained, i.e it is possible to encounter
cases where an operator is of order m + ¢ for all strictly positive ¢, but we
cannot pass to the limit where ¢ = 0, c¢f. the example in 2.62 below.

We can now give our general definition of a pseudo-differential opera-
tor.

Definition (Pseudo-Differential operator of order m) Let M be a compact
n-dimensional manifold, and U and V be vector bundles of rank s and r
respectively over M. Denote the corresponding spaces of sections by (M, U)
and T'(M,V) respectively. Then P : T(M,U) — T'(M,V) is a pseudo-
differential operator of order m if, for any choice of open set @ C M with
local coordinates (z,p), all the entries of the r X s matriz symbol o(z,p)
belong to S™(Q2).

With this very general definition we also have to say what is meant
by the leading symbol om(z,p) when o(z,p) € S™(2). Having in mind
the case of differential operators of order m where the leading symbol is

5 Thereisa larger symbol space than the one that we have just defined here—it is ob-
tained by replacing the condition 2.55 by ‘Dg‘ Dga'(z,p)| < Co p(K)(1 +|p|)mHolal-slBl
and this space is denoted by S;']'é(ﬂ), 0 < p, 0 < 6. Clearly our space S™() is simply
ST().
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homogeneous of order m as a function of p, we are led to make the following
definition

Definition (m!* order symbol) If P is a pseudo-differential operator of
order m then its mt* order symbol o,,(z,p) is given by the limit

Um(m)p) = “1520 0.(%"{1‘?)' (2'56)
We wish to point out that in this definition p is positive; thus o, (z,p)
satisfies om(z, up) = p™om(z,p) for positive p but not necessarily for
negative p. For example, o, (z,p) could be the function [p|™ and then
P would be a pseudo-differential operator similar to the example consid-
ered in 2.61 below; however, if P is a differential operator then we will
have o, (z, pp) = p™om(z, p) regardless of the sign of p. If necessary we
shall refer to this homogeneity property possessed by the leading symbol of
pseudo-differential operators as positive homogeneity.
It is also now possible to define ellipticity in the pseudo-differential
case. No new idea is needed and so we proceed at once to the definition

Definition (Ellipticity, pseudo-differential case) Suppose that in the above
definition the vector bundles U and V have the same rank, r say, then the
pseudo-differential operator P : T(M,U) — T'(M, V) is elliptic of order m
if, o(z,p) € S™(Q), and if, for any choice of open set & C M with local
coordinates (z,p), its mt* order symbol o, (x, p) is an invertible r x r matriz
forp#0.

Just as in the case of a differential operator we can give a more compact
definition which we shall make use of in our subsequent treatment of index
theory:

Definition (Ellipticity, pseudo-differential case, alternative definition) The
pseudo-differential operator P : T'(M,U) — I'(M, V) is elliptic of order m
if

Om U -1V

s a bundle isomorphism off the zero section of T*M.

Notice that ellipticity of order m does require the existence of the mt*
order symbol a,,(z, p); also, although an elliptic m** order operator is also
of order m+1, it is not elliptic of order m + 1 since the hypothesis o(z, p) €
S™(Q) implies that its (m + 1)** order symbol oy 41(z,p) has to be zero
and hence non-invertible.
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Of course any differential operator of order m is automatically pseudo-
differential of order m, this follows directly if one substitutes the relevant
symbol expression 2.22 into the symbol space definition 2.55.

Examples of pseudo-differential operators which are not differential op-
erators can arise when we try to solve integral equations of the form

Pu(z) = - K(z,y)u(y) dy = f(z) (2.57)

where f and K are known. If we write this as

Pu(z) = L" o(z,p)i(p) exp[—ipz]dp = f(z)

with o(z,p) = (2%)" Ln exp[—ip(y — z)|K (z,y)dy

(2.58)

then P is pseudo-differential for suitable o(z,p). Let us be specific: choose
n =1 and let

1
o(z,p) = (a®+p%)*, a#0 - 5 <A<O (2.59)

Such a symbol clearly belongs to the symbol space S2* so that P is pseudo-
differential of order 2\. The solution of the integral equation is easily given
provided one can evaluate the appropriate Fourier transforms. Having car-
ried out the transforms we can quote the equation and its solution together;
this yields the rather complicated expressions

_ it Ky (a(z ~y) _
=Tk @i R u(y) dy = f(z)

21-2gi—2 Ky y(a(z —y))
)= T O 240

Tl’ ] : -2l .
where K)(2) = Zsin(Am) [e%’”J_)‘(zz) —e? J,\(zz)] ,

Pu(z)

Ja(2) is the usual Bessel function of order A, and we take an appropriate
definition of the fractional powers. In fact we chose the above example
because it has a particularly simple form and interpretation if a = 0. In
this case the symbol o(z,p) = p?* and thus P is just fractional integration
of order —2), and the solution can be thought of as the corresponding
fractional derivative of order —2). The reason that we did not deal with
this simpler form in the first place is just a technical one: when a =0, P is
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not a pseudo-differential operator due to its singular derivatives at p = 0;
however the integrals giving the equation and its solution are nevertheless
still perfectly well defined and so we can write

_ 1 u(y) _
= V2cos(Am)T(=2)) Jr (z —y)+2 W =71z)
) @) (2.61)

wz) = \/§cos(/\7r)F 2)) Jr (z -yt~ - W
Also, whether a = 0 or not, the operator P does possess one of the essential
properties of a derivative: to see this denote P temporarily by P,, then it
is easy to verify that we have PyP, = Py,. Moreover, even when X is such
that the integrals are not convergent Py can be defined in the distributional
sense; cf. Gel’fand and Shilov [1] for the necessary distribution theory of
these sort of integrals.

The next example is one where the operator has order 2) + € for all
positive ¢ but we may not set ¢ = 0. Let P be given by the equation

Pu(z) = /R(a2 + p?)* In(a? + p?)i(p) dp (2.62)

with a and X as before. The symbol o(z,p) of P is just (a + p?)* In(a? +
p?), thus o(z,p) € S2*¢ provided ¢ > 0; the presence of the logarithm
prevents the passage to the limit ¢ = 0. It is even possible to write P in
convolution form should it be necessary; all one has to do is to differentiate
the operator of preceding example with respect to A, a procedure which is
in fact permissible if one uses distribution theory. This gives the rather
formidable looking result

Pu= / (a? + p*)* In(a? + p?)i(p) dp
R

= / G(z - y)u(y) dy
R

A+l 442 Ky 1(a2) (2.63)

a d
ith G(z) = ——==——1{In(2 lnI‘ )3T
w (2) \/2—7&_‘(_,\) { (2a) - (- )} b
2)‘+1a’}+)‘ d
\/2_7rl"( ,\)z5+A {EXKFA(GZ) - Kjﬁ_,\(az) lnz}
Next let us take the much simpler integral operator defined by the equation
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Because of the particularly simple Gaussian kernel the symbol of P is again
Gaussian and is given by o(z,p) = exp[—p?/2]/v2r. However, we now
make the elementary observation that, for appropriate constants Cr,, we
have

L [—‘Pi] <Cn(l+p™ Vm

= o(z,p) € S™(Q) m=...2,1,0,—-1,-2,...

Thus P is in fact of order —oo, or equivalently we write o(z,p) € S7(Q).
Such a P is called a smoothing operator since it has an effect on u(z) like that
of integrating it an infinite number of times: i.e. it produces the function
Pu which is always C*™ even though u(z) may be not even be differentiable.
To check that Pu(z) is indeed C*, one only has to differentiate under the
integral sign in 2.64 and note the convergence of the resulting integrals.

One could go on to construct more examples of smoothing operators
with the Gaussian kernel replaced by a general kernel K(z,y). Sufficient
conditions on K(z,y) to render P of order —oo are that it be smooth in
z, and compactly supported in y—actually the Gaussian kernel does not
have compact support so these conditions are clearly not necessary, in prac-
tice though we most frequently work with compact manifolds where the
condition of compact support is trivially satisfied.

Our final example is a differential operator raised to a complex power.
To describe this example we let A denote the Laplacian in R™ and a be a
real constant, then the desired pseudo-differential operator P is given by

(2.65)

P = (a®>+ A)*, zcomplex (2.66)

Thus P is clearly a complex power of the positive elliptic operator (a2 + A).
We can deduce immediately the symbol o(z,p) of P sb that we have

o(z,p) = (a2 +1)2)z (2.67)

Of obvious interest is the order, m say, of P; m can be easily calculated
from the definition of S™(Q2) that we gave above, c¢f. 2.55. Applying this
definition with @ = 8 = 0 and letting 2z = u + iv we see that o(z, p) must
obey
lo(z,p)| < C(L+[p)™
=[(a® +p*)*| < C(L+[p)™ (2.68)
=|(a® +p*)[* < C(1 + p)™

where we have used the fact that |(a? + p?)!?| = 1. Thus the order of P
is simply 2u; also, since its symbol is non-vanishing, P is elliptic. Thus we
can say that (a2 + A)?, z € C is an elliptic operator of order 2Re z.
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Notice that, unlike differential operators, pseudo-differential operators
are not, in general, local operators—by locality® of an operator P we mean
that the support of Pu is contained in the support of u, or supp Pu C suppu
(this is often stated as: differential operators preserve supports). If we
choose one of the examples above where the pseudo-differential operator P
is an integral operator it is obvious that P is not local.

Instead of locality, pseudo-differential operators possess a property
known as pseudo-locality. This is simply the property

sing supp Pu C sing suppu (2.69)

where, if f is any function, sing supp f stands for the subset of supp f on
which f is singular 7 (one can say that pseudo-differential operators preserve
singular supports). Now it may happen that sing supp Pu and sing suppu
coincide so that we have

sing supp Pu = sing suppu (2.70)

Then it is clear that the property Pu is smooth (i.e. sing supp Pu = 0)
implies that u is smooth, i.e. P is hypo-elliptic; this can be thought of as a
characterisation of hypo-ellipticity.

It is useful to have available an analytic description of the sort of spaces
of functions that arise when studying pseudo-differential operators. Such a
description can be constructed by using Sobolev spaces; we now give a short
account of some of their more important properties.

§ 5. Pseudo-differential operators and Sobolev spaces

Sobolev spaces provide a natural framework within which to study differ-
ential or pseudo-differential operators. A Sobolev space is one for which a
function and all its derivatives up to some order, k say, belong to a desired
space. For example, if we were working in the Hilbert space L(R"), then
we might require, of a function f : R — C, that all its derivatives up to
order k belong to L?(R"™)—more formally we could demand that

s EH e T L

la|<k lal<k

2
dr < 00 (2.11)

oz

6 This definition of locality can be seen to correspond to the usual intuitive idea of
locality if one applies it to a few examples taken from the various operators considered
in the previous sections of this chapter; locality can even be regarded as an abstract
definition of a differential operator, cf. Peetre [1,2].

7 More precisely singsupp f can be defined as the complement of the open set on
which f is smooth
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If we replace L2(R"™) by LP(R") then we demand instead that

> ).

la|<k

a £ |P
% dz < 0o (2.72)

A suitable definition which allows us to work with these sorts of functions
is the following:

Definition (Sobolev Space for k = 0,1,...) Let Q be an open set in R™,
then the Sobolev space L () consists of those functions f : @ — C for
which the norm || f||k,p 18 finite where

Z aaf P 1/p

1o = Y { [ | 5] ao)

<k Wre | Oz (2.73)
with k=0,1,2,... and 1<p<

Evidently the case when p = 2 is special for then we have a Hilbert space
rather than just a Banach space. For this special value of p the notation
conventionally used for the Sobolev space is H*(Q), i.e. we have

H*(Q) = L} (D) (2.74)

It is rather important to note that the derivatives must be understood in
the distributional sense.

Notice, too, that if k = 0 then the space H* becomes the ordinary
space L?(Q) of square integrable functions on 2—we then have the equalities
Li(Q) = H°(Q) = L%(f2), but we shall usually use the notation H°. Also, if
M is an arbitrary manifold, then by carrying out the standard procedure of
taking a partition of unity and its associated open covering, we can define
Sobolev spaces of L}-functions on M; we denote these spaces by Li (M) or
H*(M) whichever is applicable. Still more generally if E is a vector bundle
over M we can define Sobolev spaces of L{-sections of E over M denoted
by L} (M, E)—these latter can be thought of as vector valued functions on
M. When the context is sufficient to resolve any ambiguity the notation in
these various cases may be abbreviated to just L% or HE.

Thus far we have only defined the Sobolev spaces L} for integral k
(and 1 € p < 00), in fact they can be defined for all real k: to extend the
definition the natural tool is the Fourier transform F. Using F we formulate
the following definition:
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Definition (Sobolev space for general k) Let Q be an open set in R", then
the Sobolev space L% (Q) consists of those functions and distributions f for
which the norm || f||x,p is finite where

v
||fnk,,,={ | |f(s><1+sz>'°/2|"ds} " withk€R, and 1 <p < oo
Rn

(2.75)
Notice that we have now allowed f to be a distribution as well as a function,
we show that this is a natural thing to do in the next paragraph when we
discuss H* for negative k. First, though, it is necessary to check that, for
non-negative integral k, this definition coincides with our first one. To this
end let k be a non-negative integer so that we can make the finite expansion

L+ =Q+&++)F= ) at® (2.76)
lof <2k

for suitable positive constants a,. Using this expression, and setting p = 2
so as to deal with the H*, we can write

1/2

I fllk,2 = aq | €°|f (€))7 d¢
’ |a§2k /!;‘"

U (2.77)

=4 % wa [ Do)

lal<k

and the convergence of the integrals with respect to z implies the con-
vergence of the previous defining expression 2.73 above—hence the two
definitions do indeed coincide for non-negative integral k and p = 2; the
straightforward extension to p # 2 we leave to the reader.

We shall deal mainly with the case p = 2 so that our spaces will be the
Hilbert spaces H* for various k. We wish to give some more details about
the H* for a general k € R, in particular we wish to discuss the case of
negative k. It turns out that one passes between positive and negative k
by the action of taking the dual—if (H*)* denotes the dual of H* then we
now demonstrate that

H—k = (Hk)w

Recall that distributions can be regarded as linear functionals acting on
appropriate spaces of functions, i.e. distributions belong to the dual of the
function space. Now the standard definition of dual says that, for f and g
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complex valued functions on R™, then g can be regarded as being that linear
functional on f, which when evaluated on f gives the complex number g(f)
where

9(f) = - f(z)3(z)dz =< f,g >

with the obvious definition for < f,g >. Suppose, then, that kK > 0 and
f € HF; then, setting h*¥ = (1 + £2)%/2 we can write

9(f) =< fg>=<f,§>= f(E)?J(E) d¢
(2.78)

= [ fea+ 52)‘”2@(5)(1 + €37k de =< fhk ghk
Rﬂ

Next we use the Schwarz inequality on < fh*, gh~* > and so obtain

l9(F)l = | < FR*,gh™* > | << fhE, fh¥ >V2< gh=*, gh=k 5172

{[ vearerre) ([ s reyep)

= || fllx,2llgll-&.2
(2.79)

Thus, since by assumption f € H*, and this means that ||f||k 2 < oo, then
9(f) <0 < |gll-k2 < o0, i.e. <= g € H™* and so we have shown
that H—% = (HF)*.

The previous discussion was for p = 2. For a general p we simply quote
the easily obtainable result: the dual of the Sobolev space L} is given by,
cf. Treves [1],

(L2 = LMD keR, 1<p< oo (2.80)

Having seen that the H~* for negative k are naturally distributions,
we make use of this opportunity to expand a little on the sorts of functions
and distributions that can belong to the H* for various k.

We assume for simplicity that everything is defined on R™—we have
already indicated the formalism required to adapt properties valid on R"™
to compact manifolds M and vector bundles over M.

There are three standard spaces of functions that occur, these are §, D
and & with the following definitions (o« and 3 are arbitrary multi-indices)

D if f(z) is C* with compact support
f(z)e{ 8 i f(z)is 0 and lim |o|*|D7f(z)| -0 (2.81)

& if f(z) is simply C°°
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The space §, introduced originally by Schwartz, is often referred to as the
space of smooth functions rapidly decreasing at infinity; the space D is also
known as the space of test functions; finally the space € is also denoted by
C°. It is also clear that each these spaces satisfy D C 8 C € so that, passing
to distributions, their duals® D/, §' and &', possess the same property with
the order reversed. In other words we have

Dcscée (2.82)
g€csc? ’
Another point of nomenclature is that the distribution space 8’ is commonly
known as the space of tempered distributions. Now the space § is certainly
contained in L? = H° so we can write § C L2, and taking duals gives
(L?*) c 8. However, as is well known, a Hilbert space is isomorphic with
its own dual; if we use this isomorphism to identify L? and (L?) we can

then write
§cL*cé¥ (2.83)

This identification is exactly what is commonly employed when a function
is regarded as being a distribution.

Returning now to the H* themselves we point out that the H* increase
in size as k decreases, and vice versa. Thus we have

.CH*CH'cH°cH'cH?C.- (2.84)

and in general we have H* ¢ H*' if k > k' with k, k' € R. This being so it
is of interest to identify both the largest and the smallest of the H*. To do
this we define the spaces H*® and H~* by

H*=(|H* and H™™=|]H=(H®) (2.85)
kER keR

We display the hierarchy of inclusions connecting these various spaces below

DcScH®cC.---Hfc..-H'cH'cH*c..H>®c§cD
(2.86)
The definition of the space $ and its dual 8 requires us to work in R™;
however, if we omit § and §' from 2.86 then 2.86 is still valid for the Sobolev
spaces H*(Q) with © an open set in R™. Also, instead of functions on M,

8 Usually we denote the dual of a vector space E by E*; here we follow the common
practice and replace the asterisk by a prime.
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we can consider sections of a vector bundle E over a compact manifold M
with its associated Sobolev space denoted by H*(M, E). Then 2.86, with §
and 8 omitted, will again be valid.

There is a very useful result which relates the L} to the space C'
where C*' denotes the space of I-times differentiable functions with continu-
ous derivatives. It is summarised in the following theorem

Theorem (Sobolev (i)) If M is an n-dimensional manifold with M = R™
or M compact, the space LY is contained in the space C' if k ~n/p > 1 or

L2 cctif (k - %) > 1 (2.87)

Thus if k is big enough L sits inside the space C'; in fact when this is
so the inclusion map from L} to C'! is a compact operator.® We can also
compare two different Sobolev spaces and show that one can be embedded
inside the other, the precise result is that

Theorem (Sobolev (ii})) If M is an n-dimensional manifold with M = R™
or M compact, then the spaces L}, and L} possess the property that

LEcL! if k>1 and (k—%)z(l—g) (2.88)

In this case, the natural injection from Lf to L] is a compact operator if the
inequalities are strict. These two results are usually known as the Sobolev
embedding theorems. We can indicate a simple proof of Sobolev (i) for the
case p = 2 without too much difficulty, cf. Wells [1]. Suppose that f € Hi
and f € C'. Then we may represent D' f by the Fourier transform formula

D'f = [ expl-igale!f(e) de (2.89)

and the convergence of this integral implies that D'f both exists and is a
continuous function. But with judicious use of Schwarz’s inequality we can

9 A compact operator T is one for which the image of the unit ball has a compact
closure. It is perhaps helpful to note that an operator whose range R(T) is finite di-
mensional is automatically compact. Further, though a compact operator can have an
infinite dimensional range it can always be approzimated by a sequence of operators with
a finite dimensional range.
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write

V exp[—i€x]€' f(¢ dc‘} U exp[—i€z] f(£)(1+ ¢ )k/z(lfw df‘

<[ oo err] a} 2{/ T df}m

“istea{ [ ot}
(2.90)

However, since f € H*, then ||f|lx,2 < 00, 8o we just require convergence
of the explicit integral in 2.90; but power counting shows that the integral
converges when 2! — 2k +n < 0 or (k—n/2) > [ just as the theorem states.
Thus we have proved Sobolev (i) for the case M = R™ and p = 2; it is easy
enough to extend to the case where M is compact. For the case p # 2 it
is easy to provide evidence that the condition of the theorem is a necessary
one: choose a perfectly good C' function such as f(z) = (1+z?+---+z2)"/?
and observe that ||f|lxp, < oo requires (k — n/p) > l—for a full proof cf.
Adams [1].

An instructive way to think about the result H* C C' if (k—n/2) >1
of Sobolev (i) is to think of it as indicating the amount of smoothness
possessed by the elements of H*: if ¢ > 0 and k is a non-negative integer
we can restate the theorem as

HE+e ¢ gk=n/2 (2.91)

This means that, rather than the elements of H**® being C*, they are
less differentiable, being only C¥~"/? (a similar formula applies to the L?:
one has LY, C C C*~"/P). Thus, in general, the Sobolev spaces L? contain
functions with a deficit in their smoothness measured by the number n/p,
this being ultimately due to the distributional nature of the derivatives in
the definition of the norm || ||,

We are now able describe the connection between pseudo-differential
operators and Sobolev spaces; we shall limit ourselves to remarks about the
H*. If P is a linear pseudo-differential operator of arbitrary real order m
then P may be realised as a linear map between Sobolev spaces (which we
also denote by P) of the form

P:H* — HF™ (2.92)

for all k € R. If P is a differential operator then the order m will always
be a non-negative integer, but we have given examples in §4 where m is



54 Differential Topology and Quantum Field Theory

fractional or negative, and we can see from 2.92 above that the use of a P
with a fractional m requires the existence of a H* with fractional k. Also
we have encountered smoothing operators which have order —oo. Suppose
that P is a smoothing operator, then 2.92 becomes

P:H* — H® c(C® (2.93)

Thus we see that, as we pointed out at the time, a smoothing operator maps
any function onto a smooth function hence justifying its name.

If P is an elliptic m** order differential operator on a compact manifold
then P has a finite dimensional kernel, but P elliptic implies P* elliptic
(recall from § 3 that the leading symbol of P* is the adjoint of that of P
so the invertibility of the leading symbol of P implies the same thing for
P*) and so P* also has a finite dimensional kernel. Thus we can say that
P has the property of possessing a finite dimensional kernel and cokernel.
When P is viewed as an operator between Sobolev spaces this remains true,
but bounded linear operators between Hilbert spaces with this property are
called Fredholm operators. Thus elliptic P are also Fredholm when realised
on Sobolev spaces. It is of interest, though, to verify that such elliptic P
are bounded operators on Sobolev space; this is because a typical elliptic
P, such as A, has a spectrum tending to infinity, which might be thought
to indicate unboundedness. We can show that this is not so in a simple
example which also serves to illustrate the mechanism which operates to
ensure boundedness. Let M be the circle S' with local coordinate 6, and
P be the operator —d?/df*> = D2. Note that the spectrum of P is just
0,1,2%,...n2%,... with eigenvectors exp[Finf] = e, and so the spectrum
tends to infinity. Now in general if L is some linear operator between Hilbert
spaces L : H — H then the norm of L is defined by

Lv
12 = sup 1201
veEH H “

v#0

(2.94)

Thus if L had a sequence of eigenvectors v, whose eigenvalues A, tended to
infinity it is evident that we would have ||L|| = sup,{\n} = co. However,
our situation is a little different: since P = D} is of order 2 we have

Pul|)-
P: Hk — Hk—2 = ”P” = sup || v“k 2,2
verr  Vlk2
v#0

(2.95)

Thus we can take the supremum over the eigenvectors e, of P, and if we
denote the ordinary L? norm by || ||, then the norm of P is therefore given
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by the expression

|Peallizz _ o Zymo " ID3(Dfea)ll _ 3% [1Djeal
sup —— —== = sup = s —.— =
n ”e"”k 2 " Zj:(] ”Deen” Z HD‘;CnH

(2.96)
Thus the norm of P is indeed finite as befits a Fredholm operator. A
further well known property of Fredholm operators is that they are invertible
modulo a compact operator. This is nothing other than the Sobolev space
version of the property that elliptic operators possess of being invertible
modulo a smoothing operator.

An inverse in this sense for an elliptic operator P is called a parametrix
for P. More generally, if P is an elliptic pseudo-differential operator of order
m realised as P : H¥ — H*=™ then Q is a parametrix for P if there are
compact operators K; and K, such that

POQI—K]_:IHk andQOP-—K2=IHk-m (2.97)

where Iyt and Ie-m denote the identities on H* and H*~™ respectively.

We shall return to elliptic operators in chapter 4; in the next chapter we
turn our attention to cohomology properties of vector bundles and introduce
the very useful notion of a sheaf.



CHAPTER III
Cohomology of Sheaves and Bundles

§ 1. Sheaves

Sheaves are mathematical objects designed to deal with the problem of how
to pass from local data on a space to global data on that space: it may
sometimes be the case that something which is locally true is also globally
true, for example if the dimension of an open set of a closed manifold is n
then the manifold as a whole has dimension n; on the other hand the scalar
curvature on a Riemannian manifold can be locally constant without being
globally so.

A particular sheaf usually singles out some specific local property such
as continuity, differentiability or holomorphicity and incorporates this into
its definition; the non-triviality or otherwise of the passage from the local
to the global is typically measured by what is called a sheaf cohomology
group.

We turn now to the definition of a sheaf—the reader should not be
unduly put off by its rather abstract appearance—we shall proceed quickly
to some concrete examples.

Definition (Sheaf) A sheaf F over a topological space M is an assignment
to each open set U C M of a group F(U), known as the sections of F over
U, which possesses the following two properties
(i) Given two such open sets U and V, with U C V there exist what are
called restriction maps v} : F(V) = F(U) which satisfy

rY = identity and f UCV C W thenrll =ri¥ or)

(If a section s € F(U) then one should think of r}; (s) as the restriction
of s from V to its subset U. Thus the first property just says that the re-
striction of s from U to U leaves s unchanged, the second property says
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that the restriction of s from W to U may be done via an intermediate
subset V.)
(it) Let U be expressed as a union of open sets according to U = | JU; then

given two sections s,, sz € F(U) rg‘.(sl) = r&(sz) Vi, = 5, = 82
e U U; .
7/f Tg:nt(Sl‘) = rU:ﬂUj(sj)v V'l,],

then there is a unique s € F(U) such that rg‘.(s) =s;
(3.1)

(The first property here asserts that if the restrictions of two sections always

agree then the two sections are identical; the second one says that if sections
s; and s; always agree on their overlap U; N U; then one can assemble one
global section s out of the local data given by the s;.)

These two properties are somewhat complementary to one another.
The latter shows that a section over U may be assembled from local data
on subsets of U, it thus represents the passage from the local to the global.
The former illustrates the fact that a section over U is determined by all its
restrictions to subsets of U; it thus represents the passage from the global
to the local.

Having in mind the remarks we made above contrasting the local and
the global we see that, in general, the spaces of sections F(U) get smaller
and smaller as U gets bigger. Conversely, as U shrinks down to a point the
F(U) get bigger. This leads to the idea of a stalk F, at z. Using a direct
limit we set

Fz = lim F(U) (3.2)
zelU
Stalks are used when we discuss sheaf cohomology. We are now ready to
look at some examples. '

Loosely speaking one can think of a sheaf as a kind of parametrised
family of functions. Beginning with a differentiable manifold M of dimen-
sion n we have the sheaf of C* functions on M which we denote by £: in
this example the sections £(U) over U are just the smooth functions defined
on U, these are required by the definition of a sheaf to be a group and the
(Abelian) group operation is simply that of addition of functions; finally the
maps 1) : £(V) — £(U) are simply the ordinary restrictions of a smooth
function from an open set V' to an open subset U.

The verification of the definition for £ is a simple task which we leave
to the reader as an exercise; a further simple exercise for the reader is to
check that this example gives rise to two more examples: we obtain the
first by replacing the property of smoothness by that of real-analyticity, the



58 Differential Topology and Quantum Field Theory

resulting sheaf is denoted by .4; we obtain the second by requiring M to be
a complex manifold of complex dimension n and replacing the property of
real-analyticity by that of holomorphicity, and this sheaf is denoted by O.

Sheaves in analysis are of considerable value. They can be used on
non-compact manifolds and also on complex analytic spaces in which singu-
larities are allowed. Because such spaces do not have good systems of local
coordinates, there are problems using differential forms in such contexts.
However the methods of partial differential equations, which are essentially
local, are applicable; and combining these with sheaves gives a theory which
can tackle problems which occur in this wider class of spaces.

Now we have that met some sheaves on M we give an example (cf. Wells
[1]) of an object which fails to be a sheaf on M. Let M be the complex plane
and try to define a sheaf F by defining F(U) to be all holomorphic, bounded
functions on U, where U is an open set in M. Then F fails to satisfy the
definition of a sheaf, in particular it fails to satisfy the very last property of
the definition. To see this we observe that there are many different bounded
holomorphic functions possible if one chooses varying open sets U in the
complex plane. However the last part of the definition asserts that we can
always find a global function on the complex plane which coincides locally
with all the local versions. This we know to be impossible since Liouville’s
theorem tells us that there is only one bounded holomorphic function on
the entire complex plane, namely the constant function. Hence F is not a
sheaf. The reason for this failure should be quite clear: we have seen that
a sheaf on M is a bearer of localised information about M; however, the
boundedness requirement in F is not a sufficiently local property for the
definition to work.

Having constructed £, A, and O one can easily manufacture more
sheaves over M. To accomplish this all one has to realise is that a great
many sheaves originate naturally as spaces of sections of vector bundles. To
see this let E be a vector bundle over some manifold M. Then, if I'(M, E)
denotes the sections of F over M, we simply define these to be the sections
of a sheaf F, with the sections F(U) over U being given in an obvious way
by setting F(U) = I'(U, E), and the restriction maps r}; being given by re-
striction of sections from V to U; the word restriction now being understood
in its natural sense rather than an axiomatic one. We can immediately sin-
gle out inside I'(M, F) the sheaves of continuous, differentiable, or, when
M is complex, holomorphic sections over M.! Some of the most important
commonly occurring sheaves have a geometric origin, i.e. the bundle E is

1 The stalks Fr of F are often called the germs of F at z; consequently F is sometimes
referred to as a sheaf of germs of differentiable or holomorphic sections over M.
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chosen to be a bundle reflecting the geometry of M. Let us take E to be
the cotangent bundle T* M of a smooth real manifold M. Thus

I'(M,E) = (M, T* M)

and so the smooth sections of E comprise the sheaf of smooth 1-forms over
M; also, by taking the p*™ exterior power of 7* M, we obtain I'(M, APT* M)
which are the sections of the corresponding sheaf of p-forms over M for which
we use the notation £?. Replacing M by a complex manifold, and setting E
equal to the holomorphic cotangent bundle T* M, we obtain the sheaf Q2 of
holomorphic p-forms over M—note that 20 = O, the holomorphic functions
over M. Another useful example is the sheaf O* of non-zero holomorphic
functions over M; obviously addition and subtraction of sections does not
preserve positivity, this means that O* must be viewed as a multiplicative
sheaf, the group operation on the sections being multiplication.

We can also combine these geometric sheaves with an additional vector
bundle which we still denote by E. This process is called taking coefficients
in E. For example, the sheaf £P(F) is known as the sheaf of smooth p-forms
with coefficients in E. More precisely £P(E) is the sheaf whose sections are
given by the space

I'(M,NPT*M Q E) (3.3)

In other words the coefficients are generated by tensoring with F; one can
think of the sections of £P(FE) as being vector valued p-forms—indeed for
an open set U over which the vector bundle E is locally trivial the sections
EP(E)(U) are precisely vector valued p-forms. In an exactly similar way
one can construct the sheaf of holomorphic p-forms with coefficients in E,
which we write as QP(E). Continuing in this faghion we can manufacture
new vector bundles by employing the operations of direct sum and tensor
product. Using the vector bundles E and F this results in new sheaves of
the form E(EQ F), O(E® E& ) and so on.

§ 2. Sheaf cohomology

As we mentioned at the beginning of this chapter the non-triviality of pas-
sage from what is local to what is global is often measured by a sheaf
cohomology group. We can now have a look at sheaf cohomology. First
of all recall that in the ordinary cohomology theory of a manifold M one
computes H*(M;G) where G is some Abelian group such as Z, R, Q, etc.
In sheaf cohomology the coefficients are taken, not in G, but in some sheaf
such as £ or O. Before being more precise about this it is useful to point
out that the two sorts of cohomology theories have some overlap. This is
because one can think of R as being the sheaf of constant functions on
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a manifold M—the corresponding sheaf cohomology group is just the real
cohomology group H'(M; R).

Since cohomology is a measure of how far some sequence is from being
exact, then to define sheaf cohomology we introduce exact sequences of
sheaves. Let £, F and G be sheaves over M which are connected by two
maps e and f as shown below

e=rig (3.4)

Next we require the maps e and f to be sheaf morphisms—a map m between
two sheaves A and B stands for a collection of maps between sections of the
form my : A(U) —» B(U) with my a homomorphism between the groups of
sections A(U) and B(U). We say that m is a sheaf morphism if it renders
the following diagram commutative

AV) =% B(V)
Iy 7y UcVcM (3.5)
AU) 2% BU)

Finally the sequence of maps
ertg (3.6)

is called ezact if e and f are sheaf morphisms and they induce maps e, and
fz which are exact on the stalks i.e. the following sequence is exact

£ F, G, zeM (3.7)
An example of a sheaf exact sequence is easily found. Consider the sequence
0—Z-50Z80" —0 (3.8)

where i denotes inclusion and exp is a map which sends f(z) to exp[27if(2)].
Here Z is a constant sheaf and the exactness follows trivially from the
elementary fact that, if n € Z, then (expoi)(n) = exp[2min] = 1, where
we also recall that O*, being a multiplicative sheaf, has the unit constant
function as its ‘zero’.

One should realise, though, that if one encounters a short exact se-
quence of sheaves over M

0—ertig—o (3.9)
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then the exactness of this sequence does not imply the exactness of the
corresponding global sections over M; i.e. the sequence

0 — E(M) 2 FM) %G (M) — 0 (3.10)

need not be exact and sheaf cohomology can measure any obstruction to
exactness. However, there is a circumstance which can render the sequence
3.10 exact. This can be seen in the following way. First of all it is easy
to check that the sequence 3.10 can only fail to be exact at its right-hand
end, i.e. at G; in terms of maps we can say that the map ejr need not be
gurjective. Secondly suppose the sheaf £ possesses the property that any
section over a set U C M can always be extended to a section over the
whole of M; again in terms of maps this is the statement that the maps

rif D E(M) — E(U) (3.11)

are surjective for all U. Then it is easy to show, cf. Wells [1], that the
sequence 3.10 is now exact. In fact sheaves with the property 3.11 of al-
ways possessing global sections are called soft sheaves. As one might ex-
pect, the cohomology of soft sheaves is always trivial—we do not include
a proof of this fact here but the proof is quite simple; see, for example,
Wells [1]. In any case, the sheaf cohomology groups which we are about
to construct are denoted by H9(M;F) and have the property that F soft
implies HY(M;F) = 0, for ¢ > 0. Standard examples of soft sheaves are £
and the p-form sheaf £P. In fact these sheaves are an important subclass of
soft sheaves which are called fine—a sheaf is called fine if it admits a locally
finite partition of unity.

To construct sheaf cohomology we use a cochain complex and a
coboundary operator. Let F be a sheaf over M and O = {04} be an
open covering of M. Take a collection (Oy,...,0q41) = A of ¢ + 1 of the
O, and require them to have a non-empty intersection which we denote by
A. Then we define the set of all g-cochains C?(0, F) by

C%(0, F) = F(A) (3.12)

Next, let f(A) € C9(O,F), and define a coboundary operator d between

the cochains by
q+1

df(8) =Y (-1)'r5if(A) (3.13)

1=0

where 72" is the usual sheaf restriction mapping and A; is given by A; =
A y
(01,...,0i-1,0i41,...,0q41). 1t is straightforward to verify that d> = 0
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8o that d is a true coboundary operator. This allows us to construct the
complex

dg—2 q—1 dg-1 q dq q+1 dg+1
We define the cohomology group for the complex {C?(0,F),d,} by the
usual construction, i.e. we set

ker d,

HY0;F) = 70—
o

(3.15)
Notice that we write H4(O; F) rather than H?(M; F). This is to draw at-
tention to the fact that our construction could depend on the covering used.
In fact, to prevent this, finer and finer coverings? are used and HY(M; F) is
defined to be what is obtained as the limit of this process. Thus we define
HI(M; F) by

HY(M;F) = lim HY(O; F) (3.16)

o

the limit being taken over the coverings O. Then HI(M;F) is referred to
as the sheaf cohomology group of M of degree g with coefficients in F. A
useful fact which can be deduced directly from the cochain definitions above
is that, for any sheaf F over M

HY(M;F)=T(M,F) (3.17)

That is the zeroth cohomology group of M with coefficients in F is sim-
ply the global sections of F over M. Our definition of sheaf cohomology
has used the techniques of Cech cohomology; there is also an alternative,
more abstract, definition of sheaf cohomology using what are called sheaf
resolutions, cf. Wells [1]. These two sorts of sheaf cohomology coincide if
M is paracompact, something which is true for any manifold, cf. Spivak
[1]—paracompactness for a space X is the property that any open cover
O = {04} of X has a locally finite refinement; that is, any point z € X has
a neighbourhood which intersects with only finitely many of the sets in the
cover.

To calculate sheaf cohomology in practice requires a little more than
just the definitions that we have presented above. One of the most fun-
damental calculational tools is the following: Given the short exact sheaf

sequence

0—ertg o (3.18)

2 Given two coverings O = {Oa}aer and O’ = {O%}ger then O' is finer than, or is
a refinement of, O if for each @ € I’ there is an a € I such that OE C Oq.
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then the cohomology sequence below is also ezact

0 — H(M;£) — HO(M;F) — H(M;G)
— HN(M; ) — HY(M; F) — H'(M;G) — --- (3.19)

— HI(M; ) — HY(M; F) — HI(M;G) — -

Let us apply this result. Returning to the sheaf £? of p-forms over M,
we observed on p. 61 that £7 is a soft sheaf, thus its higher cohomology
groups vanish so that HI(M;EP) = 0 for ¢ > 0. Denote by ZP the sheaf
of closed p-forms and by d the exterior derivative, and note, in passing,
that Z° = R. Then we can immediately write down a series of short exact
sequences of sheaves, and, to each, we can apply the result 3.19 above and
the softness of £2. We record below the results.

0 — R-%60-4,21 = HI"Y(M; 2') ~ HY(M;R)

0— 2151922 o H-Y(M; 22) ~ HY(M; 2Y) 3.20)
. : 3.20

0 — 2p-Sgr L Zr41 o HOU(M; ZPHY) = HI(M; 2P)

Applying a little induction to the cohomology results above yields the for-
mula

HY(M;R)~ HT"Y(M; 2") ~ HI"*(M; 2%) ...~ H'(M; 297!) (3.21)

But, since H°(M;£P) # 0, we cannot conclude that H(M;Z971) #
HO(M; 2ZP). Instead we have

1 .zq—1 )

However, the RHS of the last equation is just the closed p-forms on M
modulo the exact ones, i.e. it is the ¢ de Rham cohomology group. Thus
we have the well known result that

Hq(M’R) = H:ileRha.m(M) (323)

There is a version of this result for complex manifolds which is also of
some importance. To derive it we use an identical technique. We take a
complex manifold M of complex dimension n and replace real differential
forms by complex differential forms. In this latter connection we need to
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display the type of a complex differential form. To this end let w be a
differential form on M written in local coordinates (2%, 7') as

W= Wigeoipjyj 820 A AdZ'? NdZ A AdEY (3.24)

Such an w is obviously a (p + ¢)-form but is also known as a form of type
(p,q). Having defined the type of a differential form it is appropriate to
introduce the operators 0 and 8 which are given in local coordinates by

a Z 821'
0= Z —dz

(3.25)

The familiar Cauchy-Riemann equations for a holomorphic function f are,
of course, simply the statement df = 0. One should also note the various
relations between the operators d, 0 and 0, which are

d=0+0 and d?=0°=00+00=0 =0  (3.26)

Using the notion of type we decompose the complex differential forms of
degree n according to the sum

@ £ra (3.27)

p+q=n

where £P7 is the sheaf of complex differential forms of type (p, ¢). It is also
a fine sheaf.

Now we return to our cchomology calculation. Let ZP? be the sheaf of
0-closed differential forms of type (p,q). Notice that since holomorphic p-
forms on M are necessarily of type (0, p), then the sheaf QP of holomorphic p-
forms on M is the same as the sheaf ZP.°. We replace the exterior derivative
d by the operator 0 and take the series of short sheaf exact sequences

0 — Qp_g,gp.f)_g,zp,l

0—s 2p1 2,6p1.2 292 (3.28)

0 — 2ra-2,6p.0_ 8, zpa+1



Cohomology of Sheaves and Bundles 65

Then, the vanishing of the higher cohomology of the fine sheaf £79, and an

exactly similar inductive argument to that used in the de Rham case pro-

duces the result H9(M;QP) ~ HI"}(M; ZP1)... ~ HY(M; ZP9~1). Once

again we stop before we get to HO(M; ZP7). But we can say instead t hat
HO(M; 2P9)

1 L ZPa-1y o
H\(M; Z )_Im'EHO(M;éfM_l) (3.29)

Also we know that the zeroth cohomology group was identified in 3.17 as the
global sections of the sheaf in question. Applying this fact to the numerator
and denominator of the preceding equation gives

H°(M: ZPa) B ker (_5 CEPY gp.q+1)

— = 3.30
ImdHO(M;EPa~Y)  Im (5 cEpa-1 gp.q) ( )

Following the usual practice we shall denote the RHS of 3.30 by H%‘Q(M ).
Thus we have proved the following theorem.

Theorem (Dolbeault) If M is a complex manifold then

HY(M; Q) = HZ(M) (3.31)

HP2(M) is known as a Dolbeault cohomology group; as we have just seen,
it 18 what the de Rham construction produces when one replaces, a real
manifold by a complex one and the exterior derivative by the & operator.
Dolbeault’s theorem will be of use later on in this book.

§ 3. K-theory

In this section we would like to consider a cohomology theory for vector
bundles known as K-theory. K-theory emphasises features which become
prominent as the rank of the vector bundles become large. In this sense
it is therefore a kind of linear algebra for large matrices. It is probably
the most important example of a generalised cohomology theory. The word
generalised refers to the fact that K-theory does not satisfy the axiomatic
definition of a cohomology theory given by Eilenberg and Steenrod [1];
the particular axiom that is not satisfied being the dimension axiom which
defines in advance the cohomology of a space consisting only of a point.
Let us consider real or complex vector bundles over a space X, which we
may as well take to be a manifold M. We use I’ to denote a trivial bundle of
rank j over M so that 7 ~ M x R in the real case and I/ ~ M x C in the
complex case. K-theory considers all vector bundles over M and assembles
them into two sorts of equivalence classes. We shall consider the first sort
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now: two bundles E and F are equivalent if the addition of a trivial bundle
I’ to each of them renders them isomorphic. That is, one has

Eell=Fgl* (3.32)

where the relation ~ denotes isomorphism; and we do not assume that j = k
so that E and F are allowed to have differing ranks. It is easy to verify
that 3.32 is an equivalence relation and when it is obeyed the two bundles
FE and F are called stably equivalent. We write this as

EXF (3.33)

The corresponding equivalence classes are called stable equivalence classes.
Note that vector bundles have the property that

E®G~FaG#AE~F (3.34)

A well known counter example is used to illustrate this point. Let T'S™ and
N(S™) denote the tangent bundle and normal bundle to S™, respectively.
Notice that N(S™) is a line bundle and has an obvious global section given
by an cutward-pointing normal vector. A single non-vanishing global section
is enough to trivialise a line bundle, c¢f. Nash and Sen [1], thus N(S") is
isomorphic to the trivial bundle I. Further, if we decompose any vector in
R"™*! into a normal and transverse part, then we can record this elementary
decomposition in a bundle-theoretic manner as the equation

TR™! ~TS" g N(5™) (3.35)

Clearly TR™*! is a trivial bundle so that TR™*! ~ I**!. Thus we can
write
TS"e NS Y=I"oI (3.36)

since both sides are the trivial bundle /®*!. However, it does not follow
that TS™ is trivial. Indeed TS™ is known to be trivial only for the case of
parallelisable spheres which correspond to n = 1,3, and 7; see, for example,
Nash and Sen [1]. However, 3.36 also shows that 7'S™ is stably equivalent
to the trivial bundle ™. If a bundle is stably equivalent to a trivial bundle
it is called stably trivial.

In fact it is generally true that if E, F and G are related as in 3.34
then F is stably equivalent to F. Thus we have the following theorem

Theorem (Stable equivalence) If E, F and G are vector bundles over M
satisfying E® G ~ F © G then E and F are stably equivalent, that is

ERF (3.37)
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Proof: Let G’ be a bundle such that,? for some n,

GoG ~I (3.38)
Then observe that

EeG=FeG=>E0GoG ~FoeGad

s (3-39)
2EeI"~FolI"=3 E~F
K-theory associates to the vector bundles over M two groups, K(M)
and K(M ). We are now ready to construct these groups. We shall see that
K(M) and K(M ) provide us with a systematic way of handling the vector
bundle properties that were developed in the preceding discussion.
Now let Vect(M) denote all vector bundles over M and look again at
3.34, which stated that

E®0G~FOGAE~F (3.40)

One way of viewing this is to say that, although the direct sum operation
@ provides Vect(M) with an addition, there is no subtraction defined for
vector bundles. In group-theoretic language we say that Vect(M) is an
(Abelian) semi-group rather than a group. However an Abelian semi-group
can always be completed to an Abelian group; this can also be done in such
a way as to define a kind of subtraction for vector bundles. This group is
easy to define. Suppose, for a moment, that S is any semi-group. Then
form the Cartesian product S x S and quotient S x S by the equivalence
relation ~ which is defined by

(s1,t1) ~ (82,t2) <= Ju € Ssuchthat sy +ta+u=s2+¢ +u (3.41)

The resulting group, G(S) say, is given by G(S) = (S x §)/ ~ and, in
G(S), a pair (s,t) should be thought of as the (formal) difference s — t.
An exactly similar method is often employed to construct the integers
{...,-1,0,1,...} = Z from the natural numbers {1,2,...} = N. Returning
to the case at hand we have S = Vect(M) and addition is given by & the
direct sum. The equivalence relation becomes

(E,F)~(G,H) <= 3J € Vect(M)suchthat Ee HoJ~GoFeaJ
(3.42)

3 We assume M to be Hausdorff and then such a G always exists, cf. Atiyah [1].
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Finally in the quotient G(S) = (Vect(M) x Vect(M))/ ~ we denote the
equivalence class corresponding to a single bundle E by [E]; more generally
we write an arbitrary element of G(S) as [E] — [F] and this corresponds to
the formal difference E — F. We have now constructed the group K (M)
and so proceed to its formal definition
Definition (K(M)) The group K(M) of equivalence classes of formal dif-
ferences of vector bundles over M 1is given by

K(M) = (Vect(M) x Vect(M))] ~ (3.43)
This equivalence class of formal differences is the second set of equivalence
classes whose existence we briefly alluded to on p. 65 at the beginning of
the section. There is a close relationship between stable equivalence classes
and equivalence classes of formal differences. We pass now to its discussion.
First notice that any element [E] — [F] of K(M) can be written in the
form [H] — [I"] for some bundle H and integer n. To prove this we let F’
be a bundle such that F & F’ ~ I"™. Then we write
[E]-[Fl=([E]+ [F'D) = ([Fl+[F])=[E® F'|-[F & F]
=[E® F]-[I"]=[H]-[I"]
Next we define the virtual dimension of [E] — [F] by the difference of the
ranks of E and F. Let vk (E) denote the rank of a vector bundle E. Then
we have
Definition (Virtual dimension) The virtual dimension of [E] — [F] is the
integer Tk (E) — rk (F)
Clearly the virtual dimension can be positive, negative or zero. Note that,
because of 3.44, we can express the virtual dimension by
rk(E)—rk(F)=rk(H)—n (3.45)
We shall now show that there is an isomorphism between the set of stable
equivalence classes of Vect(M), and, the subgroup of K (M) whose elements
have virtual dimension zero. The isomorphism is defined by assigning a
vector bundle E of rank m the element [E] — [I™] of K(M). To prove this,
first suppose that E,, and F, are two vector bundles, of ranks m and n
respectively, which give rise under this isomorphism to the same element of
K(M), ie. [En]—[I™] = [Fn] — [I"]. Then we must show that they are
stably equivalent. We write,
[B\] = 1™ = [F] - 1]
SEn®I"dK~F,®I" @ K for some K

(3.44)

s o (3.46)
=3E,®I"~F, ®I™ by the theorem above

=FE, A F,, by definition
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To prove the converse suppose that E,, and F, are stably equivalent, then

En®l=F,0I*
= [Em @ ] = [I™"] = [Fp @ I¥] - [I"*H]
But [Em @ ]~ [I™*9] = [Em] = [I™)] (3.47)
and  [F, @ I*] - [I"F] = [F,] - [I¥]
= [Em] — [I™] = [Fa] - [I"]
and thus we have established that the isomorphism maps E,, and F, onto

the same element of K(M), which has indeed vanishing virtual dimension.
We can now define what is sometimes called reduced K-theory.

Definition (Reduced K-theory) The set of all stable equivalence classes of
Vect (M) over M form the reduced K-theory of M which we write as
K(M) (3.48)

If we pursue further the notion of virtual dimension in K (M) then we can
define an obvious map Rk : K(M) — Z by

Rk: K(M) v/
([E] = [F)) — (rk (E) = rk (F))

(3.49)

The kernel of this map, by what we have just proved, is clearly K (M).
There is another way of looking at this which allows us to prove the very
useful result that

KM)=KM)oZ (3.50)
A short argument indicates how to prove this. Recall that if N and M are
two manifolds connected by a continuous map a : N — M, then a induces
the map a* which pulls back cohomology on M to that on N, i.e. we have
a* : H*(M;Z) - H*(N;Z). Further, we know that if F is a bundle over
M then o pulls back F to the bundle E over N where E = o*F (note that,
following conventional practice, we are using the same symbol a* to denote
the pulling back of both cohomology classes and bundles; the context should
prevent any confusion). Since K-theory is a cohomology theory of vector
bundles it is very easy to check that a induces a map, which we continue
to denote by a*, between the respective K-theories. Thus we write

o K(M) — K(N) (3.51)

Now let N be the very modest manifold consisting of just a single point
which we can take to to be the base point mp of M. Having made this
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choice N = {mg} we make the natural choice for o, namely that o is the
inclusion i of mg in M. We write then

1: {mo} — M
. (3.52)
i* : K(M) — K({mo})

Since the space {mo} consists of a single point all vector bundles over it are
trivial and so are of the form I¥; and thus they are completely determined

by this integer k which is their rank.4 Thus

K({mo}) = Z (3.53)

By comparing with the definition of Rk above we can also verify that
keri* = K({mo}). There is a natural (right) inverse for i* which we write
as ¢* where ¢: M — {my} is the collapsing map which maps every point
of M onto its base point mg. So, if I denotes the inclusion of K (M) in
K (M), we can write down the exact sequence

KM LK (M) 5K ({me}) — 0 (3.54)
which splits, that is ¢* is a right inverse for 7*. It is immediate that
K(M)=keri* ® K({mo}) = K(M) & Z (3.55)

and so we have the desired result. _

So far we have shown that K{M) and K (M) are additive groups. They
also possess a multiplication which is distributive over the addition; thus
they are actually rings. This multiplication is simply the operation induced
in K(M) by the tensor product E ® F of two bundles. This existence of a
multiplication is another sign that we are dealing with a cohomology theory,
as such theories have a ring structure.

In § 5 of chapter 1 we used classifying spaces to discuss bundles. This
can be done in K-theory too. The K-theory state of affairs is fairly simply
described. Before giving this description we need to give some preliminary
information on vector bundles and their classifying spaces. The reader will
find more details in the references already cited in this chapter.

Let Fx be a real vector bundle of rank k over a real manifold M whose
dimension is n. Then Ej has structure group Gl(k,R) which is reducible

4 Here we are assuming that M is connected
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to the group O(k) on choosing a metric on M. The classifying space for E,
is the Grassmannian Gr(k, m,R) where

O(m)
O(m—k) x O(k)

Gr(k,m,R) = (3.56)

There is a universal bundle Q(k,m,R) of rank k over this Grassmannian
whose pullbacks generate bundles such as Ei. More precisely we say that

If f:M— Gr(k,m,R) andifm>(n+k+1)

Then f*Q(k,m,R) ~E; for some f (3.57)
and if there is another map g : M — Gr(k,m,R) which is homotopic to
f the bundles g*Q(k,m,R) and f*Q(k,m,R) are isomorphic—thus only
homotopy classes in [M,Gr(k,m,R)] are important. If we hold k fixed
but increase m then observe that we have a sequence of inclusions for the
Grassmannians

Gr(k,m,R) C Gr(k,m+1,R) C Gr(k,m+2,R) C--- (3.58)
and passing to the inductive limit we can define the infinite Grassmannian

Gr(k,o0,R) = JGr(k,m,R) (3.59)

Now, whatever the dimension n of M, the bundle Q(k, o0, R) will be uni-
versal for E,. We summarise this by writing

Vectp (M) ~ [M,Gr(k,o,R)] (3.60)

where Vecty(M) stands for all real vector bundles of rank k over M. Refer-
ring back to the discussion on classifying spaces BG in chapter 1 we rewrite
the above equation as

Vecty (M) ~ [M, BO(k)] (3.61)

Thus we have identified BO(k) the classifying space for bundles with group
O(k).

Now we return to the main discussion and consider the properties of
vector bundles as the rank k is increased—what actually happens is that
things simplify somewhat. To discover the details we must use the following
vital theorem concerning Vecty(M).
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Theorem (Stable Range) If Ey € Vecty,(M) is a real vector bundle of rank
k over the n-dimensional manifold M then, if k > n, Ey is tsomorphic to
F, ® I*=™ for some bundle F,; and when k > n such a bundle Ej, is said
to be in the stable range.

The proof is by induction on k, cf. Husemoller [1]. In any case the impor-
tance of this theorem for us is that, in the language of K-theory, it says that
a vector bundle E} in the stable range is stably equivalent to some other
bundle F,, of lower rank n where n = dim M + 1. It therefore belongs to
the same stable equivalence class as F;, and corresponds to exactly the same
element of K(M). In other words, as far as the K-theory is concerned, there
is nothing to be gained by considering bundles of very high rank because, as
soon as the stable range is reached, no new K-theory elements are obtained
by increasing the rank. Notice, too, that, in the stable range, two isomor-
phic vector bundles are necessarily stably equivalent; the converse, though,
is clearly false since two bundles of differing ranks can be stably equivalent.
However, if we stick to bundles of the same rank, then, in the stable range,
two bundles are stably equivalent if and only if they are isomorphic. We
can present this more concisely by writing

If k > dim M, K(M) ~ Vecty(M)

- (3.62)
or K(M)=[M,Gr(k,o0,R)]
This K-theory result can be thought of as expressing a kind of simplification
which occurs in the linear algebra of ‘large-dimensional’ vector bundles.
We can put the preceding result 3.62 to immediate use in actual calcu-
lations. To see this we take M to be the sphere S™. Therefore we have

~ 1, (Gr(k,o0,R))
where we still demand that k > n. We also make the minor technical
point that we have identified the homotopy group 7, (Gr(k, 0o, R) with the
free homotopy classes [S™, Gr(k, 0, R)] rather than the more correct based
homotopy classes [S™, Gr(k,c0,R)]o. This amounts to choosing a fixed
trivialisation over the base point of S™.

Now to calculate the relevant homotopy groups we employ a use-
ful technique (cf. for example Nash and Sen [1]) for classifying bun-
dles over spheres: Let E be a vector bundle of rank k in the stable
range over S™. Cover S™ with two overlapping ‘hemispheres’ U and V.
Then the contractibility of U and V implies that E is trivial over each
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hemisphere and so is determined by the single transition function g de-
fined on the overlap U N V. But the overlap is homotopic to the equa-
tor S®~! so g determines a map from S™~! to O(k), i.e an element of
mn—1(O(k)). It is this element of 7,_;(O(k)) which determines the bundle
E € Vecty(S™) and, via 3.62, an element of K(S™)—we digress briefly to
point out that, for a general group G, this result amounts to the assertion
[S™, BG] ~ [S™1,G], but [S™, BG] = [SS™~}, BG] = [S™~},QBG] by 1.22;
thus [S"~1,G] =~ [S"~1,Q2BG] for each n and actually even more is true, in
fact the space BG is of the same homotopy type as G. In other words we
can write QBG ~ G and think of the loop space operand ) as being a kind
of homotopic inverse to the classifying space operand B. In any case we
have found that

K(S™) = mao1(O(K)), k>n (3.64)

Fortunately the homotopy groups of classical Lie groups such as O (k)
have been extensively studied. Also, though 7,_;(O(k)) is not known for
all n and k, it is precisely in the stable range k¥ > n that we have com-
plete information. Referring, for example, to Husemoller [1] we find that
Tn-1(0(k)) = mn—1(O(k + 1)) - for k > n. If we want to find K(S™) for
n=0,1,...,4, say, then we are immediately able to do so. By thinking of
SO as two points it is clear that K(S°) = Z. For the other S™ we must use
the homotopy properties of O(k). Displaying the information in a list we
obtain

K% =2
1o(Ok) =Zy, k>1 = K(SY)=12Z,
m(OKk) =2y, k>3 = K(52) =12, (3.65)
m(0k) =0, k>4 = K(S)=
m3(0k)=2Z,k>5 = K([SY=2Z

So far we have only given explicit details for the K-theory of real vector
bundles. We would like to remedy this omission now. As well as the real
bundles there are complex and quaternionic vector bundles. In these latter
two cases, for a vector bundle of rank k, the fibre RF of the real case is
replaced by C* and H* respectively (H stands for the quaternions). The
place where the discussion needs to be altered is only from 3.56 onwards.
First of all, the real Grassmannian must give way to a complex or quater-
nionic one with a corresponding change in classifying space. Secondly, the
theorem above about the stable range undergoes a little change.

For complex and quaternionic vector bundles we use the Grassmannians
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Gr(k,m,C) and Gr(k,m,H) which are given by

U(m)
Ulm — k) x U(k)’

Sp(m)
Sp(m — k) x Sp(k)
(3.66)
where U(k) and Sp(k) are the usual unitary and symplectic groups. Now
let F stand for R, C or H so that we can introduce the convenient notation
Vecty, (M, F) to denote real, complex or quaternionic vector bundles of rank
k. Proceeding in analogy to the real case we have the following

Vecty (M, C) ~ [M, Gr(k, o0, C)]
Vecty (M, H) ~ [M, Gr(k, 00, H)]

Gr{k,m,C) = and Gr(k,m,H) =

(3.67)

In the classifying space language this amounts to saying that BU(k) =
Gr(k,o0,C) and BSp(k) = Gr(k,o0,H). Next we have the theorem that
describes the stable range for the complex and quaternionic cases.

Theorem (Stable range: complex and quaternionic case) Let ES and EP
be compler and quaternionic vector bundles of rank k respectively over a
manifold M of real dimension n. Let [m] denote the integral part of m
(z e. the largest integer not greater than m), and let k(c) = [(n +1)/2] and
(h) = [(n +1)/4]. Then, if E{ has k > k(c), Ef is zsomorphzc to F .y @

Ik—k@ for some bundle F,; and if Ey has k > k(h), E}} is isomorphic to
Finy @ I¥=k(h) for some bundle Feiny

Thus to be in the stable ranges in the complex case and quaternionic cases
it is sufficient to require k > n/2 and k > n/4 respectively. To distinguish
the K-theory in the three possible cases we introduce the notation KO for
the real case, and KU and K Sp for the complex and quaternionic cases
respectively. Using the above theorem in exactly the same manner as we
used its counterpart in the real case we obtain

Veeto(M,C) =~ KU(M), fork > =
2

_ - (3.68)

Vecty(M,H) ~ KSp(M), for k> 1 :

We can also carry out the calculations of KU (M) and KSp(M ) when M =
S™. As should be expected, all that one needs are the relevant homotopy
groups of the unitary and symplectic groups. The formulae that we need
are
KU(S™) = maci(U(K)) k> 2

_ 2 (3.69)
KSp(S™) = mp—1(Sp(k)) k> 1
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Inserting the appropriate homotopy groups we find, cf. Husemoller [1], that

KU(8% =2 KSp(S%) =12
KU(SY) =0 KSp(§Y) =0
KU(S*) =1Z KSp(8?) =0 (3.70)
KU(S8%) =0 KSp(S?) =0
KU(SY) =12 KSp(S%)=1Z

We point out that the K U(S™) exhibit a periodicity of 2 in n in the above
list. This periodicity is genuine and persists for all n. It is an expres-
sion of the property known as Bott periodicity to which we now turn our
attention.

§ 4. Bott periodicity

The word periodicity here refers to a periodicity in the homotopy of the
classical Lie groups. First we shall describe what is meant by this statement.
Then we shall go on to show how to obtain a K-theoretic version of Bott
periodicity.

For convenience we shall temporarily restrict ourselves to complez vec-
tor bundles. At the end of the discussion we shall describe the analogous
situations for the real and quaternionic cases. Drawing on the previous sec-
tion we have the fact that KU(S™) = m,—1(U(k)) for k > n/2. Passing to
the limit k — oo we have

KU(8™) = mtp_1(U(c0)) (3.71)

where U(oco) = UgU(k) is the infinite unitary group. However, the peri-
odicity theorem of Bott [1] says that the homotopy groups of U(co) are
periodic with period 2, i.e.

Tn(U(00)) = 7n42(U(c0)) (3.72)
Therefore this implies immediately that
KU(S™) = KU(S"+?) (3.73)

as we claimed above. One way of thinking about this result is via the
properties of the loop space QX of a space X. Recall our discussion of
homotopy groups in chapter 1 where we deduced that

Tn(X) = mn-1(QX)

= 71, (X) = Tp-a(Q2X) (3.74)
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Applying this to the case in hand means setting X = U(o0). The periodicity
theorem is then the statement that Q20/(oco) has the same homotopy groups
as U(oo) itself. This is indeed the case and can be established by proving
that Q2U(oo) has the same homotopy type as U(c0), cf. Bott [1].

We begin our account of the K-theoretic formulation of the periodicity
theorem by introducing, for each space X, the spaces SX, S2X,... where
SX denotes the reduced suspension of X that was defined in chapter 1.
Next we define the group KU~"(X) by

KU ™(X)=KU(8"X), n=0,1,2,... (3.75)

Remembering that if X is a sphere S™ we have SS™ ~ S™+! we deduce
that _ _
RU-™(S™) = RU(S™*) (3.76)

We have referred already to the existence of a product in KU(X),
this product being induced by the tensor product of vector bundles. This
product can be viewed as a map® §: KU(X) ® KU(X) — KU(X). There
is also another product called the external product which involves two spaces
X and Y rather than one space X. Thus we have a map «, say, of the form

a: KUX)® KU(Y) — KU(X x Y) (3.77)

We shall now define the map a: Let a,b € KU(X) and write their product,
computed using (3, as a b so that a # b € KU(X). Next consider the
natural projections from X x Y onto each of its factors. These are the maps
7x : X xY - X and my : X xY — Y under which (z, y) is mapped onto z
or y respectively. These projections induce maps between the K-rings over
X,Y and X x Y: in the notation of 3.51 we have

1% : KU(X) — KU(X x Y) and 7} : KU(Y) — KU(X x Y) (3.78)

With these preliminaries out of the way we define a by choosing ¢ € KU(X)
and d € KU(Y) and writing

a:KU(X)® KU(Y) — KU(X x Y) (3.19)
c®dr— 1x(c) e 73 (d) ’

5 Usually one thinks of a product on an arbitrary space S as beingamap S xS — S

rather than a map of the form S x § — S. The appearance of the tensor product in the

present case is because KU(X) is a ring.



Cohomology of Sheaves and Bundles 77

We shall see that the relevance of this to the periodicity theorem is
that if we choose Y = S? then « is an isomorphism, cf. Husemoller [1]. In
other words

KU(X)® KU(S%) ~ KU(X x §?) (3.80)
To show that this is related to our earlier statement of periodicity requires
us to rewrite this isomorphism in terms of KU. This is simply done: Use
KU(X) = KU(X) ® KU({zo}) and a similar equation for Y. Then note
that
KU(X)® KU(Y) = (KU(X) ® KU({z0})) ® (KU(Y) ® KU({30}))
= (KU(X)® KU(Y))® KUX)® KU(Y)® Z
(3.81)
where we have used some simple properties of the product which the reader
may verify for interest. What we have just done relates the LHS of the map
a to KU. We now do the same for the RHS. The reduced join X VY defined
in chapter 1 can be viewed as a subset of the Cartesian product X x Y. This
inclusion X VY C X x Y suggests that we write down the natural set of
maps (i denotes inclusion)

~ b'e
XVY—’»XxY—»X—:::=X/\Y (3.82)

This induces a sequence of maps in the K-theory which go in the reverse
direction:

0— KU(XAY) — KU(XxY) — KU(XVY)—0  (3.83)
Moreover, this sequence is exact, cf. Husemoller [1] for a proof. Using the

exactness of the sequence, and assuming the isomorphism KU(X VY') =
KU(X)® KU(Y) (cf. Husemoller [1]), we can say that

KU(X xY)=KU(XAY)® KU(XVY)
=KU(XAY)® KU(X)a K(Y)

This completes our work on the LHS and RHS of a and on substitution we
can rewrite o as the map

a: (KUX)® KU(Y))®R — KU(XAY)®R (3.85)

(3.84)

where, for shorthand, we have written R = I~{U(X) ® K(Y)® Z. Now
the point is that since R occurs on both sides we can eliminate it by an
appropriate restriction. This provides us with the simpler looking map &

a:KU(X)® KU(Y) — KU(X AY) (3.86)
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Then, as before, if we make the choice Y = S? Bott periodicity tells us that
the resulting map is an isomorphism. We make this choice and also replace
X by §™X, i.e. we have

KU(S"X) ® KU(8%) ~ KU(S"X A §?)
= KU™(X)® KU(S%) ~ KU(S™*? A X) (3.87)
= KU™™(X)® KU(S?) ~ KU~ (+2(X)

As a final step we define the map v : I?U‘"(X) - I?U‘("”)(X) as follows:
we know already that KU(S?) = Z and that any element of KU(S?) is of
the form [E] — [I"*(E)]. If we take E to be the line bundle 7 associated to
the famous Hopf fibration of S over S (7 is the canonical line bundle over
CP! and this fibration is also the one that gives the Dirac monopole) then
[E] = [I™*®)] = [n] — [1], and [n] — [I] actually generates this Z. Now let
a € KU™™(X) and denote [n] = [I] by b, then the map « is defined by

v:KU™™(X) — KU~(+2)(X)

~ (3.88)
a— a(a®b)
and + is an isomorphism, i.e.
KU™™(X) = KU-("*3(X) (3.89)

This is the K-theoretic statement of periodicity that we have been after—if
we let X = S° we regain the original periodicity result that we had in 3.73.

We simply quote the corresponding facts for the real and the quater-
nionic cases. Both theories possess periodicities and these can be traced
back to the stable homotopy of the infinite orthogonal and infinite symplec-
tic groups respectively. In summary we have

Tn(0(00)) = mp48(0(00)) and I?O‘"(X) = f{o—n—s(x)

= ~ (3.90)
Tn(Sp(00)) = mn44(0(c0)) and KSp™™(X) = KO_"“‘(X)

There is now enough information to calculate any of K o(s™), KU(S™) or
KSp(S™) for all n.

§ 5. Some characteristic classes

In this section we shall discuss characteristic classes beginning with the
Chern character and the Todd class. The Chern character is an extremely
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valuable tool in K-theory. Before we discuss its connection with K-theory
we briefly review its basic properties when viewed purely as a characteristic
class—further background can be found in Bott and Tu [1] and Nash and
Sen [1]. The Chern character can be used to provide a link between the
ring K (X) and the cohomology ring H*(X). We shall see in chapter 4 that
this link is vital in providing a practical formula for calculating the index of
elliptic operators. The Todd class also turns up in this index formula and
so it is convenient to discuss it here as well.

To introduce the Chern character we consider Vect(X,C) the set of
complex vector bundles over X. A bundle E € Vect(X, C) possesses Chern
classes ¢;(E) which belong to the cohomology group H?(X;Z). If we sup-
pose that F has rank k and thus group U(k), then these ¢;(E) are the
pullbacks by the map f: X — BU(k) of the cohomology of the classifying
space BU(k) for U(k) bundles. Using the notation of chapter 1 we have
that Ey k) is the universal bundle over BU(k) and

f:X — BU(k), E = f"Eyu,
H*(BU(k);Z) has the even dimensional generators ¢;(Ey(x))
where ¢;(Ey ) € H*(BU(k); Z)

so that ¢;(E) = f*(ci(Euw))), 6(E) € H¥(X;Z), i=1,...,k
(3.91)
A convenient device when working with Chern classes is the total Chern
class ¢(E) defined by

(EY=1+4c1(E)+ca(E)+ - +c(E) (3.92)

A key property of ¢(E) is its behaviour with respect to Whitney sums. This
is that if E, F € Vect(X, C) we have

c(E® F)=c(E)c(F)

This property can be proved using a technique known as the splitting prin-
ciple to which we now devote some remarks.

The splitting principle uses the fact that in order to prove an identity
for characteristic classes it is sufficient to prove it only for bundles E which
decompose into a sum of line bundles, i.e. if F has rank k and Ly, La,. .. Lg
are line bundles then E is expressible as

E=0L1®L,®---® Ly

The validity of identities true for such E follows from the fact that if F is
any rank k bundle over X, and F is not necessarily a sum of line bundles,
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then F can always be regarded as the pullback of another rank k£ bundle E
over Y which is a sum of line bundles. For a detailed account see Bott and
Tu [1].

If we calculate the total Chern class of E in 3.93 then, since L; is a line
bundle, ¢(L;) = 1 + ¢1(L;) and we find that

Al ®Ly--- @ Ly)

k k
Hc H (1 + z;), where z; = ¢1(L;)
i=1

i=1

c(E)

(3.93)

If we now compare the two formulae 3.92 and 3.93 we obtain expressions
for the Chern classes ¢;(E) in terms of the z;. These are

= in, co(E) = Zx,-xj,
i i<j
(3.94)
CJ(E):' z LipTig o+ Tiyy  oe ck(E)=x1$2“'l‘k
i1<ip <<

and we see that the c;(E) are the elementary symmetric functions in the
z;. The formula 3.93 above can be used in general for doing algebra with
Chern classes. The definition of the Chern character of a rank k bundle E
is that ch (E) is given in terms of the z; by

k
=y e (3.95)
i=1

One can view this expression for ch (E) as a kind of generating function. An
important fact about ch (E) is that it is a rational linear combination of the
z; with coefficients 1/i!. The fact that the coefficients are rational rather
than integral means that ch (E) is only a rational cohomology class instead
of an integral one; as a consequence ch(E) cannot detect any torsion in
H*(X). Thus we write

ch(E) € H*(X;Q) ! (3.96)

If we use the relation above between the Chern classes and the z; we can
write the Chern character in terms of the ¢;(E) and we obtain thereby

L (R(E) - 2e2(E)) + - - (3.97)

ch(E) = k+ci(E) + 5
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The Chern character is well behaved with respect to both sums and prod-
ucts. It is straightforward to check that it satisfies

ch(E® F) =ch(E)+ch(F)

ch(E ® F) =ch(E)ch(F) (3.98)

We now return to K-theory. Next we use the Chern character to define
a map between K(X) and H*(X) (in this section K(X) denotes complex
K-theory). We denote the map by ch and define it as follows. Let [E] — [F]
be an element of K(X) where E and F are complex vector bundles. Then
define the map ch by

ch: K(X) — H*(X;Q)

[E] — [F] — ch(E) — ch(F) (3.99)

It is necessary to check that ch is well defined. This amounts to verifying
that

[E]-[F]=[G]-[H] = ch(E)—ch(F)=ch(G)—ch(H) (3.100)
This follows rather easily since using 3.42 we have

[E]-[F]=[G]-[H]>EeHeJ~GCGoFaJ
>ch(E@H®J)=ch(GOFaJ)
=>ch(E)+ch(H)+ ch(J)=ch(G)+ ch(F)+ch(J)
=ch(E) —ch(F) =ch(G) —ch(H)

(3.101)

Not only is the map ch well defined but, because of its good behaviour 3.98
for sums and products, the ring structure of K (X) is mapped into that of
H*(X). That is to say ch is a ring homomorphism and we can write

ch: K(X) — H*(X;Q) (3.102)

Actually, since the Chern classes c;(E) are all even dimensional, we can
refine this slightly by writing

ch: K(X) — @)H%(X;Q) (3.103)

A point to bear in mind when using the Chern character is that, when
evaluating the rational cohomology class ch(E) on some cycle of X, the
answer need only be rational rather than integral.
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We now come to our second class: The Todd class. The Todd class is
defined by another generating function formula. Let E be a complex vector
bundle of rank k, then the total Todd class of E is written as td (E) where

k
td(E)=]] I_JET (3.104)
=1

For Whitney sums the splitting principle shows that the Todd class behaves

multiplicatively
td(E® F) =td(E)td(F) (3.105)

If we wish we can expand td (E) in terms of the Chern classes ¢;(E) and
obtain

LB+ a(B) + 2cu(E)ea(E) + - (3.106)

1
d(E)=14 —c;(E) +
td(E) =1 ci(E) 12 2

2
It is clear, too, that td(E) is a rational cohomology class.

We move on to give a brief summary of a few useful properties of real
and complex vector bundles and their characteristic classes.

Firstly let E be a complex vector bundle of rank k. The bundle E
possesses a dual E*. We remind the reader that E* is the bundle obtained
by replacing the transition functions g, say, of E by their inverse transpose,
i.e. by (g71)T. Next consider the conjugate bundle E of E. The conjugate
E is obtained by applying complex conjugation to the coordinates of the
fibres C* of E ; in terms of transition functions this is equivalent to replacing
the transition functions g by their complex conjugates § (g is the matrix
whose entries are the complex conjugates of those of g). However, for a
complex vector bundle of rank k we have g € U(k) so that g, being unitary,
satisfies § = (g7!)T. Thus the transition functions of the dual and the
conjugate bundles coincide or

E*~E

We will normally make use of this isomorphism to identify ® such bundles.
Let us consider only complex line bundles rather than vector bundles
of any higher rank. Line bundles are rather special because the tensor

6 This identification is made possible by the choosing of a Hermitian inner product
on the fibres of E. It is with respect to this choice of metric or inner product that the
transition functions are unitary; this same choice is what permits the reduction of the
structure group of the bundle from Gl(k, C) to U(k).
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product of two line bundles is another a line bundle. This means that they
form an Abelian group with the group multiplication being tensor product;
the inverse of a line bundle L is clearly its dual L*; this is because the
transition function of one is the inverse of the other. One can emphasise
this group property by writing L™! instead of L*, or L™ (and even nlL)
instead of ®"L.

Now let V be a real vector bundle of rank k over X. The choice of
a Riemannian metric reduces the structure group from Gli(n,R) to O(n).
The dual of V* of V is a bundle with transition function (g~!)T where g
is the transition function of V. However, since g € O(n), the transition
functions of V and V* coincide. Hence we shall almost always identify V
and V* when V is a real vector bundle; also, because V' has real fibres, it
is automatic that conjugation has no effect on V, i.e. V = V. However,
though V and V* coincide topologically it can be important to distinguish
them analytically. For example, let V = TX be the tangent bundle to a
real manifold X, then V* is the cotangent bundle T* X and we usually wish
to differentiate T'X from 7™ X in this case.

It is useful to be able to construct a complex vector bundle from V
by the process known as complexification. The complexification of V' is the
bundle over X formed from V by replacing its fibres R* by R* @y C = CF;
the transition functions g are still real valued matrices but now they act
on C* instead of R¥; more concisely, if g is a map g: RF - RF, the
complexification process changes g into the map g ® C : C¥ — CF. We
denote the complexification of a real vector bundle V by V @g C. If we
construct the dual or conjugate of V ®g C then we obtain nothing new. To
see this think of C as R @ iR, then V ®@g C and its conjugate are given by

VerC=V® (R®iR), and VErC=V®R®-iR) (3.107)

Also, since the transition functions g of V ®g C are still real valued, then
they remain the transition functions of the conjugate. Thus the conjugation
of V®g C just amounts to the complex conjugation on the fibres; but this a
linear map transforming each fibre into itself and so is a bundle isomorphism.
In sum we have that if V' is a real vector bundle then

V ®rC ~ VRC ~ (V ®gC)* (3.108)

Complex vector bundles can also be complexified by first converting
them into real vector bundles and then complexifying the result. To see
how this works let E be a complex vector bundle of rank k over X. Denote
the underlying real vector bundle (of real rank 2k) by E,. Then complexify
the result to obtain

Er ®RC
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This unwieldy looking bundle has a rather simple structure, which we can
easily discover: use again the decomposition C = R & iR so that we get

E.®rC=E,® (R®iR) ‘ _ (3.109)
=(E,®R)® (E,®iR)~E® E

where in the last step we restore the complex structure to the two sum-
mands. The isomorphism that we have uncovered is thus the following: if
E is a complex vector bundle of rank k then the complexification of its
underlying real bundle E, is given by

E,®rC=E® E (3.110)

and is thus another complex vector bundle of twice the rank of E.

Having discussed complexification of real vector bundles we can intro-
duce the Pontrjagin classes of a real vector bundle. Let V be a real vector
bundle of real rank k over X. Form the complexification V ®g C which we
denote by V.. Then the Pontrjagin classes of V' are defined in terms of the
Chern classes of V;. More precisely the i** Pontrjagin class p;(V) of V is
defined by

pi(V) = (=1)'cai(Ve) (3.111)

Note that since the Chern classes ¢; are even dimensional cohomology classes
then the p;(V) are cohomology classes in dimension 4, 8, etc. That is
pi(V) € H¥(X;Z). The total Pontrjagin class p(V) is defined in the usual
way by

P(V) =1+ p1(v) + -+ ppeya) (V) (3.112)

where [k/2] denotes the largest integer not greater than k—the reason that
the top Pontrjagin class is pjx/5(V) is that the top Chern class for V¢ (since
Ve has rank k) is cx(V;) and we have p;(V) = (=1)'cai(Ve). Of course, in
general, both the top Chern class and the top Pontrjagin class might vanish
for elementary dimensional reasons; this would happen if the dimension of
X were too small to give non-zero cohomology in the dimensions in which
these characteristic classes live. The Pontrjagin classes are not quite as well
behaved as the Chern classes under Whitney sums: if V and W are two real
vector bundles over X then we have

p(VoW)=pV)p(W)+r (3.113)

where r is an element of order 2 in H*(X;Z) so that 2r = 0. Clearly, if
the cohomology of X has no torsion then such elements r do not exist and
the Pontrjagin class behaves well under Whitney sums; moreover, if one
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just uses de Rham cohomology to calculate characteristic classes then the
presence of such an r cannot be detected and again we have a well-behaved
Pontrjagin class. Summarising, we write

p(Ve W) =p(V)p(W) modulo elements of order 2 in H*(X;Z) (3.114)

Example The Pontrjagin classes of spheres

A simple illustration of K-theory and characteristic class theory is provided
by calculating the Pontrjagin classes of TS™. Firstly, since the cohomology
of S™ is torsion free, then real vector bundles over S™ satisfy p(V & W) =
p(V)p(W). Secondly, the Pontrjagin classes p;(T'S™) (conventionally often
written just as p;(S™)) all vanish. This triviality of the Pontrjagin classes
follows from the stably trivial nature of TS™. In 3.36 we had

TS" e N(S")=I"@oI~I"!
Thus
p(TS" ® N(S™) =p(I" @ I) = p(I"*") =1 (3.113)
But the LHS of 3.115 is equal to p(T'S™)p(I) = p(T'S™), therefore p(T'S™) =
p(S™) =1 so that p;(S™) =0 for i > 0.

Though Pontrjagin classes are defined at the outset for real vector bun-
dles their definitions are always extended to cover complex vector bundles.
We explain this now dealing first with the Pontrjagin case. If E is a com-
plex vector bundle of rank k over X then the total Pontrjagin class of E
is defined to be the Pontrjagin class of the underlying real bundle of (real)
rank 2k. This means that

p(E) = p(E;)
Applying the definition of the p; to real bundle E, gives
pi(E) = pi(E;) = (~1)'cai(Er ®RC) = (~1)'cai(E® E)  (3.116)
But since ¢(E ® E) = c¢(E)c(E) we get
(E®E)=(1+ci(E)++ck(E)) (1—c1(E)+- -+ (-1)kex(E)) (3.117)
If we multiply out the above expression only the even Chern classes survive

and we can pick off the expressions for the Pontrjagin classes in terms of
the Chern classes. In this way we get

p1(E) = c3(E) - 2c2(E), p2(E) = c3(E) — 2¢1(E)ca(E) + 2c4(E),
and p;(E) = c?(E) —2¢i—1(E)ei1(E) + -+ (—1)i262,‘(E)

2
= Z(—l)k—ick(E)Czi—k(E)
k=0 (3.118)
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Alternatively if we use the splitting principle to calculate ¢(E) and c(E)
then we obtain the equivalent formula

(3.119)
If we consider real vector bundles V of even rank over an orientable
space X then there is an extra characteristic class that can exist; this is the
Euler class. The origin of this extra class is that if X is orientable then a
choice of orientation reduces the structure group of V from O(k) to SO(k);
if, in addition, k is even then the transition functions of V' are even dimen-
sional matrices and so have the property that their determinants possess an
SO(k)-invariant square root known as the Pfaffian (cf. for example Nash
and Sen [1]). We shall write the Euler class of V as e(V). For a more
detailed account of e(V) see also Bott and Tu [1]. Here we shall only define
e(V') up to a sign; that is we just use the fact that the square of e(V') is the
highest Pontrjagin class py/2(V') of V. In other words e(V') obeys

e (V) = pij2(V) (3.120)

Thus (V') can be thought of loosely as the ‘square root’ of px/2(V'). Because
pe(V) € H¥*(X;Z) then for the Euler class we have

e(V) € H*(X;Z) where V has rank k (3.121)
The Euler class behaves well under Whitney sums. One has
e(VeW)=c¢e(V)e(W) (3.122)

where V and W are two real vector bundles over X.

We can also define the Euler class of a complex vector bundle E: we
repeat the procedure used in the Pontrjagin case: that is the Euler class of
E is defined to be the Euler class of the underlying real bundle E,. In other
words

e(E) = e(E;) (3.123)
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Let E have rank k; then we can show that the top Chern class ¢ (F) and
the Euler class are equal. We just use the fact that e?(E) = px(E) and re fer
to 3.119, from which we obtain

2

ck(E) =1, Tk, Pk(E)=$¥"‘xk
= e(E) = cx(E)

(3.124)

where the choice of sign implicit in the taking of the square root can be
justified—cf. Bott and Tu [1] and Milnor and Stasheff [1].

In conclusion we recall that characteristic classes are often calculated
using curvature methods; we shall often use these methods in subsequent
chapters. Further background can be found in Nash and Sen [1] but the
main idea is the following. Let F' be a curvature form on a rank k vector
bundle with group G, G being U(k), O(k) or SO(k) whichever is appropri-
ate. Such an F is a 2-form with values in the Lie algebra of G. Consider
the invariant polynomial P(t) given by

P(t) = det (u + ’51-;) (3.125)

Evidently P(t) is a polynomial of degree k in the variable ¢ whose coefficients
are differential forms. The important point is that these differential forms
are closed and so determine elements of the de Rham cohomology of the
base X. These forms are just the characteristic classes of F; moreover, P(t)
provides a formula for these classes in terms of polynomials in the curvature.
If E is a complex vector bundle then P(¢) determines the Chern forms ¢;(.F')
according to

P(t) = det (tl + ;) = Zt"ck_,-(F) (3.126)
j

Any expression obtained using splitting methods has an analogue written
in terms of curvature: for example, the splitting principle gives the Chern
character of F as

k
ch(E) = Z e
i=1

Assume that the curvature form F, viewed as a k x k matrix in the Lie
algebra u(n), is diagonal, i.e.
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Then the curvature version of the Chern character is ch (F') where
iF |
h(F) =t — 3.127
ch(F) = tr exp > (3127)

More generally, suppose that f(z1,...,zx) is some expression obtained us-
ing the splitting principle. To produce its curvature counterpart one simply
replaces the variables z; by the curvature variables iF; /2. The validity of
deriving properties of such functions f(x,,...,zx) using only diagonal ma-
trices (Eguchi, Gilkey and Hanson [1]) is that such results can be viewed
as continuous functions on the space of matrices: but, since diagonalisable
matrices can be used to approximate any matrix, the diagonal matrices are
dense in the space of all matrices; and if a property of a continuous function
is verified on a dense subspace then it extends to the whole space. Thus
we have a kind of linear algebraic analogue of the validity of the sphttmg
principle.

§ 6. Fredholm operators and K(X)

We end this chapter with a description of K(X) which can be made using
Fredholm operators. Let F denote the space of all Fredholm operators then
consider the space of homotopy classes [X,F]. Now since the product of
two Fredholm operators is also Fredholm, this product induces a product in
[X, F] so that [X, F] is a semi-group. Actually it can be shown that [X, F|
is isomorphic to the group K(X). Then in the trivial case where X is a
point, and thus K(X) = Z, this isomorphism is just the assignment of a
Fredholm operator F' to its mdex, that is to the integer

dim ker F — dim coker F (3.128)

Since elliptic operators are Fredholm operators when viewed as operators
in Hilbert space, one might expect K (X) to turn up in a discussion of the
index of elliptic operators. We shall see that this does happen in our next
chapter, which is concerned with index theory.



CHAPTER IV
Index Theory for Elliptic Operators

§ 1. The index of an elliptic operator

We have already discussed elliptic operators in chapter 2 where we saw that
such operators have finite dimensional kernels and cokernels. This being so
one can define the index of an elliptic operator O by the usual expression

index O = dim ker O — dim coker O (4.1)

so that index O is always a well-defined integer. Let this operator O act
on a topological space X—in practice X will usually be a compact real or
complex manifold. For the moment we require X to have no boundary;
later we shall come to situations in which X has a boundary.

We would like to describe roughly what the Atiyah-Singer index theo-
rem says and the strategy employed in its proof. Firstly the index theorem
says that if O is an elliptic differential or pseudo-differential operator then
the integer index O, as well being calculable by computing dim ker O and
dim coker O, can also be calculated using a purely topological formula con-
sisting of characteristic classes. The index is also stable under perturbations
of the operator O by a compact operator. The strategy of the proof is to
give two apparently different definitions of an ‘index’ for O—these defini-
tions are formulated so that the task of proving the theorem is equivalent
to showing that these two definitions coincide.

These two definitions are referred to as the analytical index and the
topological index. Before giving an account of them we need a little pre-
liminary discussion designed to allow us to exploit some K-theory. In our
earlier definition of K-theory the essential step was to point out that the
vector bundles Vect(X) over a space X form an Abelian semi-group under
the operation of direct sum. This semi-group can then be completed to a
group which is thereafter denoted by K(X)—in this chapter we shall use
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the notation K(X) rather than KU(X), KO(X), or KSp{X); the context
should prevent any confusion.

For index theory we require an alternative definition, Segal [1], in which
direct sums of vector bundles are replaced by direct sums of complexes. To
this end consider the complex E below

O—»EoﬂaElﬂv---—E&EnH—ﬁO

250G =0 (4.2)
where, in the above, the E;’s are vector bundles over X and the «;’s are
homomorphisms between them. We want to consider all such complexes
over X. However we do not want to distinguish complexes £ and F' which
are homotopic to one another. Homotopy between complexes is defined in
an obvious way: two complexes E and F are homotopic if there exists a
complex G over X x [0,1] such that G|X x {0} ~ F and G|X x {1} ~ F.
We denote all the homotopy classes of complexes over X by C(X). Then
the direct sum operation @& of vector bundles induces an addition between
complexes which renders C(X) an Abelian semi-group. To complete this
semi-group to a group we define the support of a complex E to be the set’
of z € X for which the sequence at z

0— EQ 2 El 2, ... 2y gl (4.3),

fails to be exact.! Now if we consider all complexes in C(X) with empty
support, i.e. support ¢, then these also form a semi-group Cy(X), say, and
clearly Cy(X) C C(X). It transpires, Segal [1], that forming the natural
quotient provides us with a group which is precisely K(X). That is we have,

{

c(X) (4.4)

G

K(X)

In imitation of our previous K-theory notation, if £ is a complex over X, we,
denote the corresponding element of K(X) by [E]. Also when X is compact-
there is an important formula which gives [E] in terms of the elements [E?]
of K(X); it is the alternating sum formula

[E] =) (-1)'[E] (4.5)

]

1 Should X be non-compact we restrict ourselves to complexes with compact support.,
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The relevance of the preceding discussion to index theory is that K-
theory arises when one considers certain complexes which are natural to the
elliptic theory. If D is an elliptic operator on a (compact closed) manifold
X then we shall see that it is the K-theory of T* X, i.e. K(T*X), rather
than that of X itself, that we encounter in index theory.? Returning to
the occurrence of complexes in the theory of elliptic operators, consider the
bundles E* again. Then form a complex I'(X, E) by letting a sequence
of differential or pseudo-differential operators d; connect their respective
spaces of sections I'(X, E*) so that we have

0 — I(X,E% 2 1(x, EY) & ... 2o (X, E™Y) — 0

4.6
diodi—1 =0 46)

We also require the d;’s to be operators of the same order m—one can allow
operators of different orders, Atiyah and Bott [1], but we do not need to
do that here. Granted this state of affairs we can use the results on p. 38
of chapter 2 to construct the leading symbols ¢,,(d;) of the d;’s and write
down the associated symbol complex, which we denote by o(E). This is the
complex

am(do)

m(d: m (dn
0 —s 7 EO W*Ela(l).“a( )

™ E"! —0 (4.7)

Now, though the complex I'(X, F) has no particular reason to be exact,
we shall require its associated symbol complex ¢(E) to be exact. Since
complexes of this kind are important we describe them in a definition

Definition (Elliptic complex) A4 compler T'(X, E) of sections of vector
bundles over X of the type shown in 4.6 s called elliptic if its associated
symbol complex o(E) over T*X is exact off the zero section of T*X.
Notice that if this elliptic complex had only two non-trivial terms, so that
there was only one differential operator dy, then this definition would just
be that of ellipticity for dy. In general this is not so but, nevertheless,
underlying each elliptic complex E is a single elliptic operator D. To see
this consider the two vector bundle direct sums
E+=E0@E2@~~-
(4.8)
E-=F'¢Fe. ..
2 The bundle T*X is non-compact because its fibres are vector spaces and so we
take K(T*X) to mean K-theory with compact supports. What we mean by this is that
for a non-compact space S, say, one calculates the reduced K-theory of its one-point
compactification S, i.e. K(S) denoctes I?( S); alternatively one uses 4.4 and complexes

with compact support.
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The next step is to introduce metrics on the bundles E* so that the adjoints
of the d;'s can be defined: using d; and d} we construct the single operator
D by writing

D:I(X,E*) —T(X,E7)  where D= (dy; +d3iy,)
i (4.9)

that is D(ey, e, €4, ...) = (doeg + diea, daex + dieq, ...)

To prove that D is elliptic we write down the complex connecting E* to
E~ together with its associated symbol complex. This yields

0 —TI(X, E*)- (X, E7) — 0
oo (D) (4.10)

0 —>mEt — 1*E- — 0

Now it follows at once from the fact that d; od;—; = 0 that d}_; od} =0
and so D? = 0 as it should. More to the point, though, is the fact that the
exactness of the original symbol complex o(E) of 4.7 implies the exactness
of the present symbol complex for D. But, since this complex is of length
one, exactness is simply the statement that ¢,,(D) is an isomorphism (off
the zero section of T*X). This is precisely the definition of ellipticity so
that D is elliptic as claimed.

Having obtained an elliptic operator D from our elliptic complex E we
are ready to examine its index. To do this we employ the standard device
of introducing the Laplacians A;(E) given by A;(E) =d} od; +d;—10d}_;.
Just as in chapter 2 the kernels of these Laplacians are characterised by

A1(E) e; =0 die; = d:_lei =0
It is also natural to construct the operators A*(E) and A™(E) where

A+(E) =D'D=Ao(E)®Ay(E)® - (4.11)
AT(E)=DD*=A\(E)® As(E) & - '
The kernels of A*(E) and A~ (E) are now determined and we have

ker AT(E) = @ ker Ay, ker AT(E) = @ ker Agiqy (4.12)
i>0 i>0

But if e € ker AT (E) then D*D e = 0 so that

<e,D*De>=0+=><De,De>=0<=De=0 (4.13)
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Thus ker D = ker A*(E); similarly ker D* = ker A~(E). We have there-
fore reduced the‘computation of the index of D to counting harmonic sec-
tions over the E*. More precisely we can write that

index D = dim ker D — dim ker D* = dimker A*(E) — dim ker A™(E)
= " dimker Ay — Y dimker Agiyy
i i

= Z(—l)i dim ker A;
i

(4.14)
However, we already know from the Hodge theory of chapter 2 that the de
Rham complex is elliptic and that its cohomology is given by the harmonic
sections. It is now time to quote the generalisation of this result to any
elliptic complex. The theorem we need (cf. Wells [1]) is

Theorem (Hodge, general case) Let E be an elliptic complez over a compact
closed manifold X. Define the standard cohomology H*(E) of the complez
by H'(E) = kerd;/Imd;—,. Then the H'(E) are isomorphic to the spaces
of harmonic sections, that is

HY(E) ~ ker A, (4-15)

Thus we have an alternative way of expressing the index of D. In summary
we have dim H*(E) = dim ker A;. So if we define the generalised Euler char-
acteristic of the complex by x(E) = Y (—1)* dim H*(E) the index formula
becomes

indez D = x(F) {4-16)

Having reached this point we can put together the definition of K-
theory via complexes of vector bundles and that of an elliptic complex to
obtain the definition of the analytical index of an operator. Given an elliptic
complex the symbol complex o(E) provides us straightaway with a complex
of vector bundles over T* X:

* +UT"(D) * -
00— rm"ET —— r'E” — 0 (4.17)

This means that the leading symbol o, (D) of D determines an element
[om(D)], say, of K(T*X). It is also known that two elliptic D with the same
leading symbol have the same index. Thus we can think of the process of
calculating the integer index D = dim ker D — dim ker D* as being a map
from K(T*X) to Z. This map is none other than the analytical indez.
Turning to its definition we have
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Definition (Analytical index) For an elliptic complez E, with associated
elliptic, m** order, pseudo-differential operator D, the analytical index ind,
18 the map

ind, : K(T*X) — Z
[om(D)] — indez D

It should be mentioned that it is tacit in the above definition that all ele-
ments of K(T*X) arise as [gm(D)] for some D. It turns out, though, cf.
Atiyah and Singer [2], that we can represent all of K(T™* X) by working only
with the symbol complexes of elliptic differential {and pseudo-differential)
operators. Thus the analytical index ind, is well defined.

Our next task is to introduce the topological index. This requires two
things: the idea of a tubular neighbourhood and the homomorphism known
as the Thom homomorphism. We shall explain them briefly, much fuller
accounts can be found in Bott and Tu [1] and Atiyah and Singer [2].

Consider a curved length of string S in R3. Imagine that this string is
embedded in a thick tube U. This tube U is called a tubular neighbourhood
of S in R3. One can think of U as being made up of a union of cross-
sectional discs each of which is perpendicular to the string at its centre.
This amounts to saying that such a union of normal discs is homotopic to
the normal bundle N(S) of § in R®. More generally one has the result that
if S is a sub-manifold of M, then there is an tubular neighbourhood U of S
in M and U is identifiable with the normal bundle N(S) of S in M.

To describe the Thom homomorphism we start with a complex vector
bundle F over X. The Thom homomorphism is a certain map ¢ between
the K-theory of X and that of F itself. It is thus of the form

(4.18)

¢: K(X) — K(F) (4.19)

Now to define ¢ we take the exterior algebra A*F = @; A* F of F and use
it to define a complex. Since A*F is mapped into A*t1F by the action of
the wedge product then we have the following complex over F

0— A F AR A0 (4.20)

Further, this complex is exact (off the zero section)—this follows at once
from the linear algebraic fact that if v is an i-form, and k = k;dk* # 0,
then kAv=0= v =k Aw, where w is an (¢ — 1)-form. Let us call this
complex the exterior complex and denote it by A(F). The complex A(F') is
a complex over F, it therefore determines an element of K(F), an element
which we denote by Ap. Now Ap € K(F) can act by multiplication on
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K(X) giving another element of K(F). This multiplicative action viewed
as a map from K{X) to K(F) is the Thom homomorphism ¢

¢: K(X)— K(F) (4.21)

The definition of ¢ can also be extended (Atiyah and Singer [2]) to the case
when X is non-compact; we shall actually use this fact below because we
shall use ¢ with X replaced by T*X.

Actually the map ¢ is an isomorphism and, in the case where X = {z¢}
and V is the trivial bundle V' = C", this statement is just the Bott period-
icity result in the form K(S?") = Z. To see this recall that K({zo}) = Z
and K(C") ~ K(R™) = K(S) = Z; note that in calculating K(C™)
we followed the instructions of the footnote on p. 91, that is we first com-
pactified C™ using C™ U {oo} =~ R*" U {o0} ~ S?" and then used reduced
K-theory.

We also need a simple property of inclusions of an open sub-manifold S
in another manifold M. Let i : S — M be such an inclusion. Consider the
de Rham cohomology of S and choose a p-form w € QP(S). This p-form w
can be extended to the whole of M by the simple device of letting it be zero
outside S. In this way we obtain a map from H%, p, —(S)to HS .. (M);
consideration of all values of p provides a map between the cohomology
rings Hj, ppam(S) and H}, pom(M). Finally the same idea applied to a
generalised cohomology such as K-theory provides a map between K(S) and
K(M). This natural map we write as ¢.. In summary, then, we have the

two maps
i:S— M and i,: K(S) — K(M) (4.22)

We are now ready to apply the maps ¢ and i. to construct the topo-
logical index. Let D be an elliptic operator on X. Embed the manifold
X in R™ for an appropriate n. Construct an open tubular neighbourhood
N(X) of X in R™. Notice that embedding X in R"™ also induces an -embed-
ding of T*X in T*R"™. The tubular neighbourhood N(T*X) of this latter
embedding is just T*N(X) and can be thought of as two copies of N (X)
sitting over T* X—that is, they are the pullback under 7 : T*X — X of
N(X)® N(X) from X to T*X. We wish to render this pullback a complex
vector bundle and so we impose the identification of N(X) & N(X) with
N(X)®iN(X). But N(X)®iN(X) ~ N(X)®RC. Thus the complex vec-
tor bundle which is the tubular neighbourhood of T* X in R™ is actually the
bundle 7*(N(X) ® rC) over T*X. Next we use the Thom homomorphism
with F = 7*(N(X) ®RC). This is therefore a map

¢: K(T*X) — K(F)), (F =m*(N(X)®RrC)) (4.23)
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Having introduced ¢ we recall that F is the tubular neighbourhood of T* X
in T*R™, therefore it is contained in T*R™. So using this simple inclusion
we have our second map

in : K(F) — K(T*R") (4.24)

Putting these two maps ¢ and i, together we get a homomorphism from
K(T*X) to K(T*R"™) which we denote by 4. This yields

i K(T"X)-5K(F) XS K(T*R™), iy =io¢, (F=m"(N(X)®rC))

(4.25)

To construct the topological index we need one further map j, which we

now introduce. Let P stand for the space {zo} consisting of a single point

which we take to be the origin of the space R™. Consider the inclusion of
P in R™ and denote this second inclusion by j so that we have

j:P S R® (4.26)

Associated to j is its Thom homomorphism which we denote by ji.
Displaying 4, and j: together gives us the diagram

K(T*X)-5K(T*R™) <= K (T*P) (4.27)
The topological indez is the map
() toiy: K(T*X) — K(T*P) (4.28)

Before commenting further on the topological index we wish to calculate
K(T*P) and K(T*R"). In fact we shall find that K(T*P) = K(T*R") =
Z. We begin with K(T*P). Since P is a point, T*P ~ P and so K(T*P) =
K(P) = Z from chapter 3. Moving on to K(T*R") we can use the following
argument. The bundle T*R", having a contractible base, is trivial; thus
T*R™ = R"” x R" = R*. But, as we saw on p. 95 K(R*") = Z. In other
words we have shown that

K(T*R™) =1Z (4.29)

as claimed. We finish by defining the topological index.

Definition (Topological index) Let E be an elliptic complex and D its
associated elliptic operator as already introduced above. Then the topological
indez ind, is the map (1)~ ! o1, that is

ind; : K(T*"X) — Z

[O'm(D)] — ((j!)—l o Z')([Um(D)]) (430)
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Since the construction of the topological index uses embeddings and a tubu-
lar neighbourhood it is necessary to show, Atiyah and Singer [2], that ind,
is independent of the particular embedding and neighbourhood chosen. Ac-
tually the map ji is a ring isomorphism from Z to Z and it is an elementary
fact that it is therefore the identity; nevertheless, we include j in our def-
inition of ind; because it is needed in the more general case of the index
theory for elliptic operators invariant under a compact Lie group G, cf. § 6
below.

With the two vital index definitions in place we can give the Atiyah-
Singer index theorem itself. As we have already explained the theorem is
now the assertion:

Theorem (Atiyah-Singer) The topological and the analytical index are
equal.

The proof of this theorem is carried out in an axiomatic fashion whose
logical structure is as follows. The topological index is defined and shown
to be the unique map which satisfles a certain set of index axioms. The
analytical index is then introduced and, after considerable amount of work,
it is proved to obey these same axioms. The uniqueness then establishes the
theorem. Slightly more concretely one can draw on an earlier proof (Atiyah
and Singer [1]) of the index theorem and view the task of proving it in the
following way. Firstly we should think of the index theorem as providing
a topological formula for the index of a general elliptic operator D on a
general manifold X. This is a formidable task as both the operator and the
manifold are unrestricted. The way round these two obstacles is to show
that, as far as the calculation of index D is concerned, both D and X may
be replaced by much simpler counterparts. For X this is achieved by the
inclusion i : X — R™; X’s counterpart being R™ which gets compactified
to a sphere in the details of the calculation. For D we now only have
to work on a sphere and one shows, Atiyah and Singer [1], that any D is
somehow equivalent to a classical operator known as a generalised signature
operator {(of which more in § 3). The remaining work then is to show by
explicit calculation that the index theorem is true for classical operators on
spheres.

§ 2. Some examples

When calculating index D in practice one can make very profitable
use of a certain index formula. This formula expresses the index in terms of
characteristic classes and so is cohomological in content. Thus far we have
a K-theoretic formulation of the index. A key part in producing the index
formula is played by the Chern character. What is required is a mechanism
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for passing from K-theory to cohomology. But we saw in chapter 3 that
precisely this property is possessed by the Chern character ch and it was
used there to construct a homomorphism ch : K(X) — H*(X;Q).

To obtain this cohomological formula for the index is a slightly lengthy
but routine exercise in the translation of a K-theory formula into a coho-
mological formula. The details are in Atiyah and Singer [3] and they show
that, if [TX] denotes the fundamental homology class of TX, the integer
indez D is given by

indez D = (=1)" {ch ([om(D)]) - td (T Xc)} [T X] (4.31)

where D is an elliptic operator of order m, n is the dimension of X, T X, =
TX ®r C denotes the complexification of the tangent bundle TX, and
ch and td denote Chern character and Todd class respectively. A similar
formula with the same combination of the Chern character and Todd class
already occurs in earlier work on the Riemann-Roch theorem cf. Hirzebruch
[1].

Notice that the cohomological formula 4.31 expresses the far from ob-
vious fact that the RHS (=1)™ {ch ([om(D)]) - td (T X¢)} [T X] is an integer:
since it is an expression in rational cohomology it might have been expected
only to be rational.

It is useful to note that, for X a real manifold, T X, is the complexifica-
tion of a real vector bundle, and we saw in 3.108 of chapter 3 that this means
that T X¢ is self-dual. Thus its odd Chern classes vanish, and the expansion
3.106 of the Todd polynomial converts into a useful expansion in terms of the
Pontrjagin classes of TX via their definition as p;(TX) = (—1)*co; (T X¢).
This expansion is easily found to be

L

1
td(TXe) =1- 5pi(TX) + =5

12 (3p} = P2)(TX) + - (4.32)

We can now put the index formula to use in some specific examples. The
first two of these are special cases where geometry plays no particular réle.
We begin by dealing with the calculation of the index when the manifold X
is odd dimensional.

Example The indez when dim X is odd

If X is odd dimensional and D is elliptic then it turns out that index D = 0
when D is a genuine differential operator. However the same is not neces-
sarily true if D is only a pseudo-differential operator.

The idea behind the calculation is to reverse the orientation on the
cotangent bundle T*X. Then, in the differential case, this will imply that
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index D = —indez D thus forcing the index to vanish. Suppose, to begin
with, that D is a differential operator of integral order m with leading
symbol o,,(D). We know that locally o,,(D) is described by a function of

the form
D

Um(z’p)= Z aa(l‘)pa

le|=m

so that o2(z,p) has the homogeneity property o2(z,\p) = A™o2(z,p).
Now subject T*X to the antipodal map R under which p — —p. Note
that R reverses the orientation on T X because its volume element is given
locally by dz! Adz?...Adz™ Adp' Adp?...Adp™ and a change of sign in all
the p* produces the factor (—1)", which is of course a change of sign for n
odd. A change of orientation produces a change of sign of the correspondmg
fundamental class so that [T X ] becomes —[T X|. The effect of R on o2 (z,p)
is simply that we have

om(z,—p) = (=1)"om(z,p) (4.33)

Now at the K-theory level this means that the element [o,,(D)] € K(T™ X)]
is replaced by [(—1)™om(D)] € K(T*X)] but these elements are the same
since multiplication by the constant {—1)™ does not change the equivalence
class of [om(D)] in K(T*X). The net effect of R on the index is therefore
the following.

indez D = (~1)™ {ch (jom(D)]) - td (T Xe)} [T X]
use of R = index D = (=1)" {ch([(-1)™om(D)]) - td (T Xc)} {-[TX]}
=—(— "{ch([om(D)]) - td (T Xc)} [TX]

= —index D
(4.34)
Thus we have established that

index D =0

Suppose now that D is a pseudo-differential operator of order mn—
where m may or may not be integral—then the above argument fails. This
is because under the antipodal map the symbol need not cbey a symmetry
relation such as 4.33. For example, let us choose X to be the circle S?, with
local coordinate 8, then there is an elliptic pseudo-differential operator of
order 1 given by

D = exp[—if] (-—iaa + —352> - (35 + —352>

= oD (8, p) = exp[—ib](p + |p|) + (p — |p|)

(4.35)
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The symbol oP (8, p) is clearly that of an elliptic operator since it is non-
zero away from p = 0. Applying the antipodal map R we obtain no simple
relation between oP(6,p) and oP (8, —p); in fact D has indeed a non-zero
index, cf. Eguchi, Gilkey and Hanson [1].

Example The index when D acts on functions

For this example we consider an m*-order elliptic (differential or pseudo-
differential) operator D : I'(X, E) — ['(X, F) in the case where the vector
bundles £ and F are both trivial. This means that D is just acting on a
system of functions. This system of functions has a dimension equal to the
rank of E (this is of course the same as the rank of F' since D is elliptic)
which we take to be k. The leading symbol of om(D) of D is now literally
a matrix valued function of z and p. In local coordinates we write o, (D)
as o2(z,p) and, by definition, o2 (z, p) is positively homogeneous of degree
m in p; this means that its p-dependence is determined by its values on
the unit sphere in the variable p—in bundle theoretic language we say that
om(D) is determined by its restriction to the unit sphere bundle S(X) of
T*X. In any case we can now think of om(D) as a map,

om(D) : S(X) — Gl(k,C) (4.36)

The topological content of om(D) resides in its cohomological properties
which are contained in the pullback

ot (D) : H*(GI(k,C); Z) — H*(S(X);Z) (4.37)

However, U(k) is a deformation retract of GI(k,C) and so H*(Gl(k, C); Z)
can be replaced by H*(U(k); Z). Next let us simplify matters considerably
by specialising to the case £ = 1; this corresponds to the operator D act-
ing just on functions rather than a system of functions. Having done this
U(k) becomes U(1) = S! and so H*(U(k); Z) = H*(S*;Z) has a single 1-
dimensional generator which we denote by A. We can now argue informally
that, with one exception, index D = 0. We proceed as follows. The index
formula can now be evaluated on S(X) rather than TX and we have

index D = (=1)" {ch ([om(D)]) - td (T Xe)} [S(X)] (4.38)

But the 1-dimensionality of H*(S;Z) means that ch ([om(D)]) must be
proportional to the 1-dimensional pullback o (D)h € HY(S(X);Z); also,
using 4.32, the Todd class can be expanded in terms of Pontrjagin classes
which are all in dimensions divisible by 4; note too that the sphere bundle
S(X) has dimension one less than T'X, i.e. it is of dimension 2n — 1.
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Applying all of these dimensional facts to the formula for index D means
that the cohomology class on the RHS has dimension 4i+ 1, for some 4, and
that evaluating this class on S(X) requires

di+1=22m-1=3n=2i+1 (4.39)

Thus X is odd dimensional, but we have just seen that differential operators
have zero index for dim X odd, hence we infer that indez D = 0 when D
is a differential operator. Hence we have established that the indez of an
elliptic differential operator acting on functions is always zero.

If D is pseudo-differential rather than differential we know from our first
example that the result is false when dim X = 1; however, this is the only
exception to the vanishing of index D. To see this we only have to observe
that the Pontrjagin classes of dimension 4i occuring in the expansion of
td(TXc) have a maximum possible dimension of n. Thus we can replace
4.39 by the stronger statement that

0<4i<n, n=2+1 (4.40)

and this forces n = 1. Thus we have the result that the indezx of a pseudo-
differential operator acting on functions is always zero if dim X > 1.

If D acts on a k X k system of functions with £ > 1 then these results
no longer hold—however, there are still vanishing statements for indez D
for a certain range of k and n (Atiyah and Singer [3]).

For the remainder of this section we shall impose a slight restriction on
the manifolds and the elliptic operators that we consider. On the manifold
side we shall insist that X be orientable; on the operator side we shall only
allow differential operators.

A benefit that derives immediately from the orientability is that the
fundamental cycle [X] of X now exists; we can use this fact to transfer the
evaluation of the index from [T X] to [X].

We proceed then to the variant of the index formula that results when
we transfer the evaluation to [X]. The standard map employed to pass
between homology on a bundle E and that on its base X is the Thom
isomorphism for homology. We denote this map by % to distinguish it from
the corresponding map in K-theory for which we use the symbol ¢. In
the case at hand the bundle £ is the tangent bundle TX with projection
7 :TX — X so that ¢ is a map of the form ¢y : H*(X;Z) - H*(TX;Z).
More precisely, let u denote the generator of H*(T'X;Z), then the pullback
m* and the generator u combine to give the usual definition of ¢. This is
that 9 is the composition of 7* with the action of cup product with u:

¥ H'(X;Z) 2S5 HY(TX; Z)-H*(TX; Z)

Y(e)=7"(a)-u, a€H'(X;Z) (4.41)
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Actually it is clear that we must apply not 3 but ¢~! to achieve our end.
On applying 9! to the RHS of the index formula we obtain

P~ [(=1)" {ch([om(D)]) - td (T X¢)} T X]]
= (=M D2y {ch ([om(D)]) - td (T Xe)} [X] (4.42)
= (=" eh ([om(D)])} - td (T Xc)[X]
The central object to calculate in the above formula is the part that comes
from the elliptic operator D. In other words we need to compute [o (D)),

which belongs to K(T™ X). To accomplish this we recall the expression 4.5
for K-theory elements in terms of complexes 0 — E® — E! — ... which is

[E] =) (-1)'[EY] (4.43)
For an elliptic operator we have

0— I(X,E% 2 (X, EY) 45 ... 2 (X, E") — 0

and the all important symbol complex

C’m(dﬂ)

0— "B’ —— = a(i“‘a( )

! s mE"H 0 (4.44)

We know that it is the symbol complex which determines the K-theory
element [o0,,(D)]; and comparing this complex with 4.43 shows that, in the
symbol complex, the E* of 4.43 is replaced by 7*E*. Thus we have

[om(D)] = (1" EP]

P

= ch([om(D)]) = ch () (~1)?[r" E7]) (4.45)

P

=*ch () _(~1)P[E?])

4
Inserting this into our index calculation gives

(=128 {ch (lom(D))} -t (TXe)IX]
= (-1 it ch (S (1P B} ta(TX)x]  (446)

P
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Using the definition of ¢ it is then possible to verify, Atiyah and Singer [3],
that

u

v = . weH(IXZ)
ch (¥ (~1)P[EP (447)
= ¢ ' ch (Y (-1P[EP])} = (Epe((x)) ol

P

where ¢(X) (also more accurately written as e(TX)) is the Euler class of
the tangent bundle 7X of X—since e(X) is non-zero only if X is even
dimensional we assume this fact whenever using the above expression. In
any case we have already seen that, for differential operators, the index
vanishes when X is odd dimensional. Thus, since we have just restricted
ourselves to differential operators, we only have a need for 4.47 when X is
even dimensional. Putting these various results together provides us with
our second index formula which is

o2 (Sy(-17E7)
e(X)

index D = (—1) ~td (T Xe)[X] (4.48)

which is applicable to elliptic operators on even dimensional, orientable
manifolds. We now move on to consider examples in which we use this new
formula 4.48.

These remaining examples are four classical elliptic complexes where
both geometry and topology play an essential part. The simplest of them
is the de Rham complex.

Example The de Rham complez

We consider the usual de Rham complex with the single change that we
take the n-forms to be complex valued instead of real valued. The reason
for this is that the index theorem uses the Chern character, for which we
need complex vector bundles. The manifold X is not assumed complex,
however. We do not alter our notation so that the (complex valued) we
Rham complex is

dpt1

OP(X) L Xy —— ..
(4.49)
with d, denoting the exterior derivative on the p-forms QP(X). In the
language of sections we can express the space QP(X) of complex valued
forms as QP(X) = I'(X, APT* X.), where T* X = T* X ®RC, that is to say

N dp—_2 QP_I(X) dp_1
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the complexification of the cotangent bundle. It follows that the associated
symbol complex is given by

(dy_1) (dp) (dp+1)
D R APT Xe) = (NPT X ) s . (4.50)

and this complex is exact by the same argument that we gave for 4.20. We
know, therefore, that the de Rham complex is an example of an elliptic
complex. Its underlying elliptic operator is the map from the even forms to
the odd forms given by restricting d + d* to the even forms—cf. the general
explanation in 4.9. For convenience we shall denote it by d and so we have

d: (X))o P(X)e--) — (X)) B(X)®-) (4.51)
and since H¥(E) = H'(N'T* Xc) = Hi, ppam(X)
indezd =Y _(—1)'dime Hj, pram(X) = Y _(~1)'b = x(X)  (4.52)

where b; are the Betti numbers® and x(X) is the usual Euler-Poincaré
characteristic of X.

On the other hand we shall now show that if we use the index formula
4.48 to calculate index d we get

indezd=Ae(X) (4.53)

where e(X) is the Euler class of X. Thus the index theorem applied to the
de Rham complex gives the famous Gauss-Bonnet theorem

/ e(X) = x(X) (4.54)
X

To obtain this result is an instructive exercise in manipulating characteristic
classes. Turning to the index formula 4.48 and the symbol complex it is
evident that we have to compute

ch(lo1(d)]) = ch (D _(=1)P[E?]), = Y _(~1)Pch(EP), with EP = APT" X,

4 4

(4.55)

3 Because we used complex valued forms we ha\lre H;e Rham(X) = HY(X;C); as
a consequence the Betti number b; denotes dime H*(X; C) the compler dimension of
Hi(X;C), we still agree with the usual definition since it is clear that we can write
b; = dim H*(X;R) = dime H(X; C).
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To compute ch (APT*X.) we employ the splitting principle. Suppose, to
begin with, that a vector bundle F is a sum of n line bundles Ly, Lo, ... L,.
If we now wish to compute APF then it is a standard linear algebraic fact
that

F=L& 6L, =>ANF= o) Ly ®--®Li)) (4.56)
1<i1<ig < <ip<n

Applying the Chern character to APF and using its properties 3.98 under
direct sum and tensor product gives

ch (NPF) = > ch(Li,)eh (Liy) -+ ch (L) (4.57)
1<41 <2< <ip<n

But for a line bundle L; we have ch(L;) = e, where z; = ¢1(L;) so that
we obtain
ch (NPF) = Z eTigTia ... e%ip
1<41<i2 << ip<n

— Z el@ig o tzip)

1<i; <ig <+ <ipg<n

(4.58)

Finally we need an expression for 3_ ,(—1)Pch (APF), which is given by

n n

Y (=1)Pch (NPF) =Y (~1) 3 o (@i ++2i,)

p=0 p:O 141 <2< <ip<n (459)
= H(l —e™)
i=1

But we should now notice that the RHS of 4.59 is reminiscent of the ex-
pression that defines the Todd class. Let us recall that the Todd class of a
bundle E of rank k& was defined in 3.104 by

k A ko
td(B) =] : _Ie’_z'. = td(E") = (-1)*[] o

i=1 =1

where we take advantage of the occasion to quote td (E*) as well—the ex-
pression for td (E*) follows at once from the splitting principle because
taking the dual simply changes the sign of the x;. If we use this defini-
tion, together with the fact that the splitting principle says that the top
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Chern class ¢, (F) of F is given by ¢, (F) = z1Z2 -+ Tn, meaning also that
en(F*) = (—1)*z125 - - - T, then we find that

Y (=1)Peh(APF) =[] (1 —e*)
p=0 =1
= (-1)"z172 -z ()" | (1;—61) (4.60)
i=1 i
F#
=>Z )Pch (APF) tdEF*;

ThlS completes our characteristic class manipulations. All that remains
is for us to return to the de Rham calculation and apply 4.60 and 4.48 with
F = T*X.—the distinction between F and F* will not matter now since
F is the complexification of a real bundle and we saw in 3.108 of chapter 3
that this implies F = F*. When we do this we discover that

; —(_1\n/2 cﬂ(TXC)
indezd = (—1) o(X) td (TX2)
= a(TXe)
T e(X)
However, bearing in mind the relation 3.124 between the Euler class and the
top Chern class, we have ¢, (TXc) = (-1)"2e(TX ® TX) = (—1)™2e?(X)
so that we obtain immediately

2
indez d = (~1)"2(-1"* 8 1x) = e(0x) = [ e(x) = x(%)
e(X) X
(4.62)
where we have represented the evaluation of the Euler class on [X] as an
integral over the Euler form for which we use the same symbol e(X). We
have thus accomplished our task of showing that the index theorem applied
to the de Rham complex is equivalent to the Gauss-Bonnet theorem.-
Example The Dolbeault complex
Let us now suppose that X is a complex manifold of complex dimension
n/2 so that n is even as usual. We saw in chapter 3 that the Dolbeault
complex is a kind of complex-analytic version of the de Rham complex with
the operator & substituted for the exterior derivative d. The Dolbeault
complex and their attendant cohomology groups are given by

td (T Xe)[X]
(4.61)
(X]

Bp.q-1 8,
o e P epatl

. £p4 Pq+1
H%q(M)zker@.S — EPatl)
Im (8:£pa-1 — £pa)

(4.63)
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It is also easy to verify that the symbol complex is exact. The abowe is
actually a separate complex for each value of p. It is common practice to
set p = 0. Let us do this; then we can write the index of the resulting
complex in terms of the index of the appropriate elliptic operator. It is
natural to denote this operator by 8 so that we have

index d = Z 1)?dim H3Y(X) = ) (~1)%ho, (4.64)

q

where hy, o = dim H29(X). So if we denote the Dolbeault complex by £ we
have found that its %uler characteristic is given by

indezd = Z 1)%hg,q = x(&) (4.65)

The integer x(&) is also called the arithmetic genus of the complex manifold
X. Turning to the index formula 4.48 allows us to express x(£) as the integer
obtained by evaluating a cohomology class. This is a calculation very like
the one just carried out for the de Rham complex.

The symbol complex for the Dolbeault case is

Bo.q- Bo.0) .
.al( 0,9-1) w'(AO’qT*X) o1(80.4 7|-'(/\0’q+1T'X) ‘M? <o+ (4.66)

where A®97* X is the bundle whose sections are forms w, say, of type (0, q):
a typical w in local coordinates is written as w = w;,...;, dZ** A+ -+ AdZz'; this
means that A%9T*X is the ¢** anti-symmetric power of the bundle T*X,
i.e. the anti-holomorphic cotangent bundle. Since the conjugate and the
dual bundle of a complex vector bundle coincide it is clear that T*X is
isomorphic to the holomorphic tangent bundle T°X, i.e. the bundle whose
sections are of the form a;(21,...2,)0/02. For the index calculation we
need to compute

— n/2 Cn/g(F*)
q=0

Still maintaining F = TX we get

indez d = (—1)™/2 G/

;()—(Iz) td (T Xe)[X] (4.68)
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But

cn/2(F*) = (_1)n/26n/2(F) = (_1)n/23(X)a
and td (TXe)=td(TX ® TX) (4.69)
=td(TX)td(TX) = td(F)td(F*)

so that the index reduces to

_ —1)"/2¢
inder 0 = (—1)"/22—(%td(p‘) td (F*)[X] =td (F)[X] (4.70)

We follow the usual convention and abbreviate td (T'X) by td (X). Thus we

obtain _
indez 0 = td (X)[X] (4.71)

Finally, if we combine this with the calculation indez 8 = x(£) computed
above, we have

/ td(X) = x(&) (4.72)
X

and this is the seminal Riemann-Roch theorem proved now for an arbitrary
complex manifold. Note that we have again represented the evaluation of
the relevant characteristic class as an integral in the standard fashion.

If we wish we can ignore the complex-analyticity of X and apply the de
Rham complex to calculate its Euler characteristic x(X). Since d = 8 + 0
then the usual Hodge theory arguments show directly that the classical Betti
numbers b; and the integers hp ; (which we shall now call Hodge numbers)

are related by
x(X) = Z("l)qbq = Z(‘l)p+th,q (4.73)

Pa

thus showing that the Hodge numbers h, , are a refinement of the Betti
numbers b,.

Example The signature complez

The signature complex is defined when the manifold X is orientable and
has even dimension, but before writing down the complex itself we have
something to say about the signature Sign (X) of X.

Since n = dim X is even then set n = 2/. This means that, in the
sequence of cohomology groups H°(X;Z),H(X;Z),... H*(X;Z), there
is a middle cohomology group H'(X;Z). This fact allows us to use the
cohomology cup product to provide a pairing between elements of the middle
cohomology. That is we take u,v € H(X;Z) and form u Uv which belongs
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to H?(X;Z). If we evaluate u Uv on the generator of Hyi(X;Z) then this
defines the quadratic form g(u,v) over the integers given by

q(u,v) = (u U v)[X], u,v € H(M;Z) (4.74)

(For the case dim X = 4 we have already met g(u, v) in chapter 1.) The form
g is non-degenerate and so has only non-zero eigenvalues. Let the nurber
of its positive and negative eigenvalues be b* and b~ respectively. The
difference b* — b~ is called the signature of X and is denoted by Sign (X).
That is

Sign (X)=bt - b~ (4.75)

Now, if ! is odd then g(u,v) is anti-symmetric since the standard symmetry
properties of the cup product (which are identical to those of differential
forms because of the existence of de Rham theory) give

q(u,v) =uUv = (—1)’21; Uu = (—-1)Pq(v, u) (4.76)
But a real anti-symmetric form has no positive or negative eigenvalues, thus
Sign (X) is automatically zero for [ odd. From now on we assume that [ is
even, which means that n is divisible by 4.

The signature Sign (X) will change sign if the orientation of X is re-
versed, thus Sign (X) is a topological invariant of an oriented X. Sign (X)
can be expressed as the index of an appropriately chosen elliptic operator.
To describe this operator we return to the complex valued forms QP(X) of
the de Rham example. To define the signature complex we wish to intro-
duce an operator T which maps QP(X) into Q"P(X); 7 is actually just a
certain multiple of the Hodge star *. We define 7 as the map

T:{P(X) — Q" 7P(X)

W —s jPE=1+n/2) w, w € P(X) (4.77)

The Hodge *, for complex valued differential forms, is defined via the Her-
mitian inner product by

<w,u>=/ w AV, w,v € QP(X)
b

This implies that *?> = (—1)P which in its turn implies that 72 = 1. To
check this set A(p) = (p(p— 1) + n/2) and observe that, if w € QP(X), then

4.78
=P w =P (~1)Pw=w (4.78)
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Since 72 = 1 it has eigenvalues F1 and we wish to decompose the exterior
algebra into the corresponding pair of eigenspaces. Thus we write

CX)=DPX) =0t 0" (4.79)
P

Next we need an elliptic operator whose index gives the signature Sign (X).
The appropriate choice turns out to be a restriction of d+d* to a well chosen
subspace of *. To find this subspace notice that 7d, = —d4+7. This anti-
commuting property means that d + d* maps Q% into Q™ and vice versa.
Thus we define the operator d as the restriction of d + d* to Q%. That is,

we have
dy QT (X)) — Q7 (X) (4.80)

The adjoint of dy is easily seen to d—, by which we mean the restriction of
d+d* to Q™. Recall that QP(X) are the sections of the bundle APT* X ®g C;
in the same way the spaces QF are the sections of two bundles which we
denote by ATT*X @rC. With this notation the signature complex is thus
the two term complex

0 — (X, A*T*X ®RC) T(X,A"T*X ®rC) — 0  (4.81)

and its associated symbol complex is

(ds)
0 — 7° A* T* X ®@RC — s 7* A~ T* X @RC — 0 (4.82)

Finally we have to show that the index of this complex is Sign (X).
Since d is elliptic we can use Hodge theory to identify the cohomology
of the complex with the harmonic sections. Let

kerd; . ¥ . _
Tmds and dimH¥(X;C)=hz (4.83)

H*(X;C)=H"(X;C)® H (X;C)

H¥(X;C) =

Then the index of the complex is given by simply
index d+ = h+ - h_ (484)

We need to refine somewhat the decomposition of H*(X; C) into the spaces
H*(X;C). To accomplish this consider the spaces I? where

IP = H?(X;C)® H"?(X;C), 0<p<n/2 (4.85)
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Poincaré duality asserts that the two summands H?(X; C) and H""P(X; C)
have the same dimension; also I? is invariant under 7 and the action of 7
on I? is simply to exchange HP(X;C) with H"P(X;C). The upshot of
this is that I” decomposes into two eigenspaces I% according to

P=rPel’, and diml} =diml? (4.86)
Notice that I? is only defined for 0 < p < n/2; if p = n/2 the natural object

is just H™2(X; C) itself. Let us decompose H™/?(X; C) into the subspaces
on which 7 is positive or negative. To this end let

H"*(X;C) = HY*(X;C)®H™*(X;C) and dimHY?*(X;C)= a2/

(4.87)
By representing the cup product as the wedge product it is possible to check
that the signature Sign (X) of the quadratic form g is just the difference

hi/ 2 _ h"/2. Putting together these various decompositions we can write
H*(X;C)=H'X;C)®---® H*(X; C)
='¢-..¢I"* ' H*}X;C)
=Pel’ oM 'er" e HY*(X;C) 0 H"*(X; C)
= H*(X;C)® H™(X;C)
n/2-1
> he=hY"+ 3 dimI2
p=0
(4.88)

Then, since dim I} = dimI”, we can immediately verify that the index of
d4 is given by

indezd, = hy — h_ = b/ — 1'% = Sign (X) (4.89)

Having shown that the index of d, is Sign (X) we wish to calculate indez d
using the index theorem. Since the symbol complex for the signature is just
the two term complex 4.82 above, this means that the usual alternating sum
has reduced to just two terms and we just have to compute

ch(o1(dy)) = ch (ATT*X QrC) —ch (A"T*X ®RrC) (4.90)

This computation (cf. Atiyah and Singer [3]) requires the combining of
the splitting principle with a little group theory for the group SO(n). The
result is that
n/2
ch (A*T*X ®RC) — ch (A"T*X ®rC) = [J(e™ — ™) (4.91)

i=1
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We now insert this into the index formula 4.48 while also applying the
splitting principle to express e(X) as e(X) = z, -+ Zp 2. For the term in
the Todd class we use td (T Xc) = td (TX)td(TX). In this way we obtain

n/2

: n e"% —e% —Ti
indezdy = (~1) /2{H< T; l—e% 1—e—")}[X]

i=1

T Ti(e® +1) (4.92)
i It

_ 77 Zicosh(zi/2) n zi/2
H sinh(z;/2) X] =2 /ZHtanh (zi/2) X]

The polynomial [] (z;/2)/ tanh(z;/2) is denoted by L. Thus our result can

be summarised as
indez d, = 2"2L(X)[X] (4.93)

We shall denote the integer 2*/2L(X)[X] by L(X); it is known as the L-
genus of X.

There is some variation in the way the L-polynomial is defined: an
alternative definition (Hirzebruch [1]) is to replace the polynomial L by
[Tz:/ tanh(z;); it is easy to see that if one expands this latter expression to
order n/2 then its n/2-order term coincides with ours. Since it is precisely
this term which is evaluated in L(X) above, then either definition would
do there. On the other hand, any use of the lower order terms would be
sensitive to which definition was used, and, in such situations, one of the
definitions has to be discarded. We shall illustrate this point in §3 below.

Thus our application of the index theorem to the operator d+ has es-
tablished the following result.

Theorem (Hirzebruch signature theorem) Let X be a compact oriented
manifold of dimension n where n is divisible by 4. Then Sign (X), the
signature of X, is given by

L(X) = Sign(X) (4.94)

As before if we represent the characteristic classes using curvature forms
then we have the usual formula

/ 2"/2L(X) = Sign (X) (4.95)
X

where the symbol L(X) when placed under an integral sign stands for the
same characteristic class expressed in terms of curvature.
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Example The Dirac operator

We now come to the calculation of the index of the Dirac operator ). This
is an elliptic differential operator which acts on spinors and to describe it
we introduce the spin complex over a spin-manifold X.

Spinors first arise when one encounters the universal cover Spin{n) of
the orthogonal group SO(n). If X is an oriented n-dimensional manifold
then the structure group of its tangent bundle TX reduces to SO(n); if, in
addition, this structure group can be lifted to the univeral cover Spin(n)
then X is said to be a spin-manifold and the particular choice of lifting is
called a spin structure. Thus the existence of a spin structure requires of X
two things: X should be orientable and the structure group of its tangent
bundle lifts to Spin(n). These two requirements are met by the vanishing
of the first two Stiefel-Whitney classes w, (X ) and wy(z) of TX. In fact we
have

wi1(X) =0+ X is orientable

4.96
wz(X) = 0 < spinors are globally defined on X (4.96)

Each choice of a spin structure determines an element of H!(X; Z;), and vice
versa, so that the set of spin structures are parametrised by H!(X;Z3). In
the event of H!(X; Z,) vanishing the spin structure is unique—for example,
such is the case if X is simply connected. On the other hand, if X =
CP", then w(CP™) =0 <= n is odd. Thus only ‘half’ of the complex
projective spaces are spin-manifolds.

There is a well known basic representation of Spin(n) called the spin
representation, we denote its representation space by S. This representation
has dimensions 2*/? and 2(*~1)/2 for n even and odd respectively. For odd
n the representation S is irreducible but for n even S is reducible into two
irreducible components of equal dimension. Denoting these components by
ST we have

§=8%*® 85", where dimS =2"? and dimST = 2"/2-1)  (4.97)

When 7 is even, which we shall assume from now on, spinors on X are built
out of St and S~: one starts with the principal SO(n)-bundle P, say, of
TX. Next we lift P to its double cover, which we denote by P. Then the
spinor bundles E and E¥ are the associated complex vector bundles defined
by

E* = P Xgpintny ST, B~ =P xXspinmyS~, E=Et0E~ (4.98)

Sections of E and E¥ are called spinors over X.
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The construction of the Dirac operator requires the famous Dirac -
matrices. These are a set of n anti-commuting 2"/2 x 2"/2 matrices which
generate the Clifford algebra of Spin(n). Central to the index problem for
the Dirac operator is the chirality operator (for whose existence we need n
to be even) which as usual we denote by «vs5; we give its definition below
together with the anti-commutation relation of the y-matrices

Yo¥b + YoYo = {7ay 'Yb} = —260p1

vy = ’i"("+l)/2‘71 Y, note ,752 - I, and {75’7“} -0 (499)
The ~«-matrices act on the sections of F, and the composition of this Clif-
ford multiplication with covariant differentiation is the Dirac operator ).
More precisely, introduce the usual orthonormal frame (vielbein) of tangent
vectors e#(z) at z, and let w denote the Riemannian spin connection on X
with 0 + w the corresponding covariant derivative. The Dirac operator]) is
then given by the map

D :T(X,E) — I'(X, E) withD = v%e4(z)(0, + w,)

R ) ar s b (4.100)
and e;;(z) satisfies €}, (z)e, (2)6ab = g (2)
where g,,(z) are the components of the Riemannian metric on X. We
employ the standard conventions that Latin and Greek letters label flat
space and curved space indices respectively.
The chirality operator 75 anti-commutes with J) and satisfies v = 1
so that, with respect to the fibrewise decomposition E, = EF @ E, the
chirality operator is block diagonal of the form

s = (g _OI) (4.101)

Thus the restriction to E1 can be achieved by multiplying expressions in-
volving y-matrices by the projection operator (1 + «s)/2. In any case the
chiral Dirac operator @ is given by @ =ID(1+ vs5)/2 and is a differential op-
erator connecting the sections of E¥ and E~. We define the spin complex
as the two term complex which records this fact; writing down this spin
complex, together with its associated symbol complex, we have

0 — I'(X, E*) . I(X,E") —0

#
¢ 0—>W‘E+i1r*E‘—>0

(4.102)
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The Dirac operator is elliptic because its symbol is given locally by the
matrix o} (z,p) = iy*e#p, and the inverse of this matrix is iy*e#p, /p?,
which exists for all p # 0; note that we need to use the Euclidean signature
of the metric here: in a space of Lorentzian signature the Dirac operator is
not elliptic. If we interchange E* and E~ in the definition of § we obtain
a second elliptic operator, which we denote by @*. It is clear that, with
respect to the natural inner product on the fibres of E¥, * is the adjoint
of #. The index of the spin complex is given by

index @ = dim ker § — dim ker §* (4.103)

If a spinor % satisfies §yp = 0 then we shall call it a harmonic spinor. Let us
denote the space of harmonic spinors by ¥. We can decompose ¥ into its
subspaces U+ and U~ of positive and negative chirality respectively, giving

=0t - (4.104)

Also let us define n¥ by n¥ = dim ¥U¥F. If we make our usual use of Hodge
theory then we have

kerd="T%, kerd” =0~ - (4.105)

Then we can write
indexd=n" —n~ (4.106)
Thus indez @ can also be thought of as measuring the difference between the
numbers of harmonic spinors of positive and negative chirality respectively.
Finally we wish to find a formula for indez @ in terms of characteristic
classes. As usual the object to compute is the appropriate Chern charac-
ter. In this case some properties of the characters of the maximal torus
of Spin(n) are required. The details are in Atiyah and Singer [3] and the

result is that
n/2

ch(01(P)) = ch (E+ —ch(E™) H(e 2 gmai/2) (4.107)

and on inserting this into the index formula we obtain

n/2 , or)2 —z;/2
. — (12 g%/ — g~ % z; —z;
index = (-1) H ( P T p— X]

i=1

.1
e (4.108)

= (—1\"/2 .’L‘,/2
(=1) E(sinh(zi/2)) [X]
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We now define the A polynomial by

n/2

2 15/2 15/2
A= — | =det | ——— 4.1
E (sinh(z.- /2)) e (sinh(zi /2)) (4.109)
The A polynomial has an expansion in terms of Pontrjagin classes given by
A(X)—l—-:—l— (X)-i—L(?z— X))+ (4.110)
= 24P1 5760 by — P2 .

Note that the presence of the Pontrjagin classes means that indez@d = 0
unless n is divisible by 4; and if n 4s divisible by 4 then the factor (—1)"/2
may be omitted. We shall denote the integer A[X] by A(X); it is known as
the A-genus of X. The index theorem for the Dirac operator can now be
stated in the more concise form

indez § = {A(X) if dim X = 0 mod 4 (4.111)
0 otherwise

§ 3. Twisted complexes

The examples of the previous section can be generalised to include elliptic
operators with coefficients in an auxiliary bundle. This is a simple idea and
we shall illustrate it by taking some examples.

Return to the de Rham complex which we used to compute indez d
where d is the restriction of d + d* to even forms. The de Rham complex is

dp-2 dp-1 dp dp+1

L2 orY(X) QP(X) —— QPFL(X)

(4.112)
where (X)) = I'(X, A’PT* X.). Now in physical applications we often need
to consider matriz valued differential forms. These will be sections, not
of APT*X., but of F @ APT*X. where F is a vector bundle of rank m
(m gives the size of the matrices in question). If we introduce the notation
QP(X; F) =T(X, FRAPT* X,) then we obtain the twisted de Rham complex

dp- - d
i QP—I(X;F)L_.QP(X;F)LQPH(X;F)L...
(4.113)

Once we have obtained this twisted de Rham complex the calculation
of the index can proceed just as before. The index of this new complex
gives the index of d + d* restricted to even forms with coefficients in F. We
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denote this new operator by dg while continuing to denote its untwisted
version by d. The formula for indez dp is closely related to that for indez d.
This relationship is easy to discover. Remember that the formula we used
to calculate index d was
—1\?[EP
n/2 Ch(z"( DPIED td (T Xc)[X], with EP = APT* X,
e(X)

’ (4.114)
The only change needed on passing from d to dp is that EP is replaced by
F ® EP. We can immediately calculate indez dr and the result is that

indexd = (—1)

T (4.115)

where we have used the property ch (A ® B) = ch(A)ch (B) of the Chern
character. We see that the new bundle F enters multiplicatively in a rel-
atively uncomplicated way. This has the elementary consequence that the
calculation of inder dp can proceed in an almost identical manner to that
of indezx d, providing us with the result that

indez dp = ch (F)e(X)[X] = / ch(F)yAe(X) (4.116)
X

However, because the Euler class e(X) is an n-dimensional class then the
product ch (F)e(X) is rather simple—all the higher terms in the expansion
ch(F)=m+c1(F)+--- give contributions above dimension n and so must
vanish. The final formula for indez dp is therefore just

indezdp = m/ e(X) = m(indezx d), where m = rk(F) (4.117)
X

We move on to the other examples where the same technique is used but
with more interesting results. If we take the Dolbeault complex then EP is
now A%PT* X where X is now a complex manifold. To twist the Dolbeault
complex we consider matrix valued complex forms of type (0,p); we met
these already in chapter 3 where they were called the sheaf of holomorphic
p-forms with coefficients in F' and were denoted by QP(F). The twisting
causes EP to be replaced by F ® EP. The index of the twisted Dolbeault
operator Op is easily verified to be

indez O = ch (F)td (X)[X)] =/ ch(F)Atd(X)=x(X,F) (4.118)
X
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where the integer x(X, F) is the Euler characteristic of the sheaf of holomor-
phic sections of F. In this case since both td (X) and ch {F) are polynomials
then ch (F') makes its presence felt in a non-trivial way. For example, let X
have complex dimension 2 and use the expansion

S(EE) ~ 2e2(F)) +-)
(4.119)
X)+c X)) +--)

ch (F)td(X) = (rk (F) + c1(F) +

1 1

1+ 501(X) 12( (

To evaluate this expansion on X means picking out the terms of real di-
mension 4 and this gives the result

1(X) + (X))}

(4.120)
/{c1 F) = 2co(F)+ ci(F) Aer(X)}

and the non-trivial effect of the bundle F is self-evident.

The signature complex and the spin complex can be subjected to the
same treatment with similar results.

For the signature complex, tensoring with the auxiliary bundle F gives
rise to the generalised signature operator di. The appropriate index calcu-
lation can be readily carried out and yields the formula

index df = 2m/2 / ch (F) A L(X) (4.121)
X

An important consequence of this formula is that, in contrast to the ordinary
signature operator d, which has zero index in dimensions not divisible by
4, indez d¥ can be non-zero in any even dimension.

Finally the twisted spin complex has a Dirac operator with coefficients
in F. This Dirac operator will contain a covariant derivative extended to
take account of the bundle F. In local coordinates it will be of the form
yees(z)(0y + wy + A, ){(1+ v5)/2 where A, is a Yang-Mills connection. If
we denote this Dirac operator by @r we find that

index §p = (~1)"/? f ch(F)ANA (4.122)
X

It is also clear that this latest Dirac operator @p, unlike its untwisted coun-
terpart, will have a non-zero index in dimensions not divisible by 4 (thus
the factor (—1)™2 mentioned on p. 116 has now reappeared); in addition,
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even in dimensions which are divisible by 4, it can happen that indezd =0
but at the same time indez §p # 0.

§ 4. The index theorem for families of operators

In this section we suppose that we have not one elliptic operator but a
family of elliptic operators parametrised by the elements of a set Y. This
means that instead of a single operator D we have the family {D,, y € Y}
where each D, is a separate elliptic operator acting on a manifold X. We
shall defer giving examples of such families until chapter 10.

We can consider an index problem for elliptic families except that we
no longer have a discrete object such as an integer for the index, rather
we define a mathematical quantity which measures the difference between
ker D, and coker D, as y varies over Y. Since ker D, and coker D, are
vector spaces parametrised by y then we expect that they can be considered
as vector bundles over Y; given this state of affairs, and the fact that K-
theory is a theory of differences of vector bundles, it is natural to define this
‘difference’ as an element of K(Y'). This leads us to define an analytic index
for the elliptic family {D,, y € Y'} in the following manner. Let ker D and
coker D denote the vector bundles | J, ker D, and |, coker D, respectively,
and denote the analytic index by index D. Then we define

indez D = [ker D] — [coker D] (4.123)

so that sndez D € K(Y). Now ker D and coker D will only be vector
bundles over Y provided both dim ker D and dim coker D are constant as
y varies; in practice the dimension of ker D, can jump at certain y so that
ker D is not a vector bundle over Y, nevertheless, the definition of indez D
can be generalised slightly so as to deal with this eventuality, cf. Atiyah
and Singer [4].

A further important point about elliptic families is that we have as-
sumed that all the operators D, act on the same manifold X. This as-
sumption is unecessary and the proper thing to do is to allow Dy to act on
a manifold X, which varies with y, the dimension of X,, however, remain-
ing fixed. It is natural to allow the X, to form a fibre bundle Z, say, over
Y. Thus each D, is a pseudo-differential elliptic operator of the form

D, :T(X,,E,) — I'(X,, Fy) (4.124)
where E, and F, are vector bundles over the manifold X, and the manifolds

X, are the fibres of the bundle Z over Y. Also E,, F, and X, vary contin-
uously with y. The generalisation made by the introduction of the bundle
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Z does not drastically complicate things since, locally, Z is a product over
Y and the analysis is hardly altered. However, to make proper invariant
sense of any local calculations, the content of these calculations must be
invariant under diffeomorphisms of the manifold X. This requirement can
be encoded into the fibration of Z over X if we demand that the structure
group of the fibration be Dif f (X): the diffeomorphisms of X.

Granted an elliptic family of the kind just described then there is an
index theorem, Atiyah and Singer [4], which provides a topological formula
for indez D. The main ideas used in the proof run along the same lines
as the index theorem for a single operator: one gives two definitions of
the index—one analytical, and one topological—and then shows that they
coincide. Nevertheless, the introduction of the new spaces Z and Y and the
elliptic family {D,, y € Y’} does produce some new features, which we now
describe.

There is a leading symbol ,,(D,) for each operator D, on X,, but
recall that the symbol class [om (Dy)] defines an element of K(T*X,); and,
since X, is a fibre of the bundle Z, then it is useful to introduce the
(co)tangent bundle along the fibres of Z, by which we mean {T*X,, y € Y}.
We denote this bundle by TrZ. The leading symbols o, (D,) determine an
element [0 (Dy)] of K(TrZ) which we denote by [om(D)]. The analytical
index is then a homomorphism

ind, : K(TrZ) — K(Y)

[em(D)] — indez D (4.125)

The topological index is defined using an embedding just as in the single
operator case: the main difference is that, instead of embedding the manifold
X into the Euclidean space R", one embeds Z into the space Y x R" for
some n. When the topological index has been defined as a homomorphism
ind : K(TrZ) — K(Y) it is shown (Atiyah and Singer [4]) to coincide with
the analytical index in the axiomatic manner described in § 1.

There is also a cohomological formula for the topological index which
is obtained, as it was in the single operator case, by applying the Chern
character to the K-theory definition. The formula for families does not
compute an integer, rather it computes an element of the cohomology ring
H*(Y;Q): let index D € K(Y) be the index of an elliptic family then the
cohomological formula for index D says that

ch (indez D) = (—1)", {ch ([om(D)]) - td (Tr Zc)} (4.126)

where Ty Z. is the complexification of Tz Z and 7. denotes integration along
the fibre of Z. Integration along the fibre should be viewed as a map
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which decreases cohomology dimension by the dimension of the fibre: if
we represent a typical element of the (compactly supported) cohomology
of TrZ by the class [w], where a w is a closed p-form w € QP(TFZ), then,
bearing in mind that the fibres of Z are copies of X and that dim X = n,
we have

e :H*(TrZ) — H*(Y)

4127
W] — [v], where v =/ w, sothat ve QP (Y) ( )
x

Note, too, that the formula only computes the rational cohomology class
ch(index D) € H*(Y; Q) rather than index D € K(Y); thus we lose any
torsion that may be present.

§ 5. The index for real families

So far we have considered fairly general elliptic families. We now want
to draw attention to a rather special type of family consisting only of
real elliptic operators—by a real elliptic operator D we mean an operator
whose symbol, expressed in local coordinates, satisfies the reality condition
&P(x,p) = oP(z,—p) where bar denotes complex conjugate; in the case
where D is a differential operator this just means that it has real coeffi-
cients. A family {D,, y € Y} of elliptic operators is said to be real if the
operators D,, are real. If the family is not real we call it complex.

First of all, to obtain something new about the index of real elliptic
operators it is not sufficient to consider just one operator. This is because
if D is a single real elliptic operator its symbol complex will consist of real
vector bundles over T*X. It is then straightforward to check that one can
always calculate the index of this complex by first complexifying everything.
However, for an elliptic family this is not so. The point is that the map
that assigns the index of a real family to that of its complexification is
not injective. Thus one loses information if one only works with complex
families.

The index of a complex elliptic family {D,, y € Y’} belongs to KU(Y')
the group of complex vector bundles over Y (until now in this chapter we
have written K(Y) for simplicity). To define the index of a real elliptic
family {D,, y € Y} one might expect that KU(Y) would be replaced by
KO(Y)—this is not so. Instead of KO(Y') the appropriate K-theory to use
is KR(Y') (Atiyah [2]). We shall not describe KR(Y') here except to say
that it is the K-theory to use when Y is a space with an involution—should
the involution be trivial then KR(Y) can be identified with the standard
real K-theory KO(Y). The origin of the involution in the case of real
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elliptic families is that the reality condition &°(z,p) = o?(z, —p) leads to
consideration of the antipodal involution p — —p on the bundle TrZ; this in
turn leads to the construction of a real symbol class belonging to K R(TrZ)
instead of K(TrZ), and so the topological index naturally becomes a map

of the form
indy : K(TrZ) — KR(Y)

An important class of real elliptic operators is the class of real differen-
tial operators of odd order. These operators are automatically skew-adjoint
and so, taken singly, have index zero. Nevertheless, the kernel of a fixed
skew-adjoint operator D does contain interesting topological data,; it is just
that the relevant object to compute is dim ker D mod 2 rather than indez D.
From now on it is convenient to follow Atiyah and Singer [6] and use the
notation ind; D is to denote dimker D mod 2. Moreover, this quantity
ind, D is a deformation invariant just like the ordinary index. It is this
invariance of ind;.D under (continuous) deformations that suggests that it
might be computable topologically from data determined by its symbol. In
fact the point of mentioning this deformation invariant of the single real
operator D in the present context is that it can be shown to be equal to
the index of an associated real family D where D is a family of real elliptic
operators parametrised by the circle S*. The family D has an index which
we denote by indez D and, from our previous paragraph, we know that

indez D € KR(S")

However, it is known that indez D lies in the reduced part of KR(S!), i.e
in KR(SI) it is also known that KR(S‘) Z,. Let us denote the generator
of K R(SY) by [n], say, then indez D must be a multiple of [n], thus

index D = mln], meZ , (4.128)

A simple calculation given in Atiyah and Singer [5] shows that m =
dim ker D; but, since [7] is the generator of Z2, the above formula for
indez D only computes the dimension of ker D mod 2. Thus, identifying
[n] with the generator of Z,, we can write

indez D = dim ker D mod 2 = indy D (4.129)

where the LHS is the index of a real family D and the RHS is the mod 2
index of a single skew-adjoint operator D.

In view of the existence of cohomological expressions for computing the
index it might be expected that the index of real families over Y might be
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expressible directly in terms of the mod 2 cohomology of Y. Unfortunately,
indez D is an element of KR(Y) rather than H*(Y). Also, in the present
case this element is a torsion element. Therefore the standard application of
the Chern character to pass between the K-theory of Y and its cohomology
will just give zero, since the Chern character only produces elements of the
rational cohomology group H*(Y; Q).

§ 6. Index theory and fixed points

Fixed points play an important role in topology. The extent of this im-
portance can be eloquently illustrated by showing that, in suitable circum-
stances, the index theorem can be interpreted as a fixed point theorem. In
fact, if one considers the index of an elliptic operator D invariant under a
compact group G, then a more general index theorem holds and this latter
theorem can be interpreted as a generalised fixed point theorem. Such gen-
eralised fixed point theorems are often referred to as generalised Lefschetz
fixed point theorems; the main results were obtained in Atiyah and Bott
[1,2]. The index-theoretic formulation is in Atiyah and Segal [1]. In this
section we give a brief account of some of the relevant index theory.

We first recall the classical Lefschetz fixed point theorem: Let g : X —
X be a continuous map. If HP(X;Z) is a cohomology group then g induces
pullback maps g, between the cohomology groups of X. If we give a basis
to the HP(X;Z) then the pullbacks g; can be represented as matrices (with
integer entries) and so one can compute their traces tr(g,). The alternating
sum of these traces is necessarily an integer and is known as the Lefschetz
number L(g) of g. In summary, we have

g:X — X, and g, : H*(X;Z) — H?(X;Z)

with L(g) = Z(—l)”tr(g;) (4.130)

p=0

Then when L(g) # 0 the map ¢ has at least one fixed point. For example, if
g is just the identity map then gy is the identity matrix acting on H*(X; Z),
so tr(gy) = dim H*(X;Z) = b,. Thus we have

n

L(g) = Y (~1)b, = x(X) (4.131)

p=0

showing that the Lefschetz number of the identity map is just the Euler
characteristic of X—actually since g, is only sensitive to the homotopy
type of g then we know that L(g) = x(X) for any map homotopic to the
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identity. In addition, if x(X) # 0, such maps have at least one fixed point;
and if we assume that the fixed points are isolated then x(X) is equal to
the number of fixed points.

Now we know that the Euler characteristic x(X) is the index of an
elliptic complex, namely the de Rham complex. This suggests that there
may be a more general fixed point result obtained by passing from the de
Rham complex to a general elliptic complex. To this end let E be the usual
elliptic complex

0 —T(X,E%) & T(X, B o ST, B — 00
diodi—1 =0

Assume that the map g : X — X induces maps T;, say, between each space

I'(X, E*) and itself. We shall say that the complex E is invariant under a

map g if the T; commute with the elliptic operators d;. That is we require

0 — I'(X, E%) 2 (X, By 2 ... S (X, E™Y) 0

o ' (4.133)
P(X, E") - (X, E"), and d,'T,' = T,'+1d,'

Then, denoting the cohomology of the elliptic complex in the usual way by

HP(E) and the corresponding pullbacks by g;(E), we define L(g, E), the

generalised Lefschetz number of the g-invariant elliptic complex E, by

n

L(g,E) = ) (~1)tr(g}(E)) (4.134)

p=0

We want to enlarge the number of maps g under consideration. A good
way to do this is to let a (compact) group G act on X. This action is a
continuous map ¢ : G x X — X, and so for each fixed g € G we get a
continuous map from X to X. Next we require the complex E to be G-
invariant; this means that F is invariant under all ¢ € G. Thus we can define
a Lefschetz number L(g, E) for each g € G. Now a trace function tr(g; (E))
considered as a function of the group element g is a little reminiscent of
the character of a group representation. This turns out to be a fruitful
observation: the Lefschetz number* L(g, E), for g € G, can be regarded as
a character valued index.

4 The maps g are all invertible and tied together by their common membership of G.
In general fixed point theory we would not impose such restrictions on the maps allowed.
However, when a group G is naturally present index theory provides a powerful method
for calculating Lefschetz numbers.
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The way to formulate an index theorem for such G-invariant elliptic
complexes is to combine the relevant group theory and bundle theory into
a K-theoretic framework. This is accomplished by defining an equivariant
K-theory (Segal [1]) which takes into account the group action of G on
X. The K-theoretic object that we wish to define is denoted by Kz (X)
and is defined as follows. Let us call X a G-space if it is provided with a
continuous action of G on X. A vector bundle F over X will be called a
G-vector bundle if it also possesses a continuous action by G subject to two
natural conditions. These conditions are that the action on F commutes
with the bundle projection 7 : F — X, that is m(g - f) = g - 7(f) (the dot
denotes the group action both on F or X); and that the group action on X
induces a linear map between the fibres of F, that is the map

Fp— F,,p (4.135)

is linear. Given all the G-vector bundles over a G-space X we can imitate
the ordinary K-theory construction using equivalence classes of G-vector
bundles. The resulting object is what we call Kg(X) and is a ring just like
its counterpart K(X).

There are two rather simple cases for which it is easy to identify K (X)
in terms of something familiar. These occur when we take either G or X to
be trivial. If we take G to be trivial, i.e. G consists of just the identity e,
then Kg(X) reverts to K(X)

Kie}(X) = K(X)

If we take X to be the trivial space consisting of a single point then, referring
to the condition 4.135 above, we see that an element of Kg(X) is just a
finite dimensional representation of G; thus we can identify Kg(X) with
the character ring R(G) of G

Ke({zo}) = R(G)

Passing on to index theory we introduce the analytic index in this
G-invariant framework. We take a general elliptic operator D with symbol
complex ¢(E) over T*X. Assume that we have smooth actions of a compact
Lie group G on X and the vector bundles over X. Then if the symbol
complex o(E) of D is G-invariant it gives rise to an element of K¢(T™*X)
which we write as [0,,(D)] in the usual way. Now consider the two null
spaces ker D and coker D; because of the action of G on vector bundles
these spaces carry (finite dimensional) representations of G. If we denote the
corresponding characters of these representations by [ker D] and [coker D]
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respectively then we can compute their difference which is also an element
of R(G). That is we have

([ker D] — [coker D]) € R(G) (4.136)

Then we replace the integer dim ker D — dim coker D, used in the definition
of the non G-invariant index, by the difference [ker D] — [coker D]. This
gives the definition of the G-invariant analytical index ind, as the map

ind, : Kg(T*X) — R(G) (4.137)
[6m(D)] — [ker D] — [coker D]
The topological index ind; for the G-invariant case can also be defined
using a construction very close to that of §1. Some noteworthy differences
are that the embedding of X into R™ must be replaced by an embedding
into a representation space V of G—the map i : X — R" of § 1 now becomes
i1: X — V, while the map j : P — R" of 4.26 becomes a map of the form
j: P — V where P is a point. Provided we use these new versions of
the maps ¢ and j the definition of the topological index ind; is otherwise
unchanged. Thus we still write ind; = (ji)~! o 4. Displaying both of the
maps 41 and ji together we have an analogous diagram to that of 4.27

Ko(T*X) S Kg(T*V)E-Kg(T*P), and indy = (1) oi  (4.138)

But P is a point so that 7* P ~ P, and we know that Kg(P) = R(G) rather
than Z, so we see that R(G) naturally enters the picture, thus rendering the
topological index character valued. The topological index is now the map

inds : Kg(T*X) — R(G)
[7m(D)] — (3" o i) (lom(D)])

Finally the Atiyah-Singer index theorem (Atiyah and Singer [1]) still asserts
that the topological index and the analytical index coincide.

We can now return to the fixed point situation. It is shown in Atiyah
and Segal [1] that the generalised Lefschetz number L(g,E) for a G-
invariant elliptic complex E is given by evaluating the (character valued)
index of its symbol complex at the element ¢ € G. That is to say, if
[0(E)] = u is the element of Kg(T*X) determined by the symbol complex
of E then ind;(u) is an element of R(G), and evaluating this character on
the element g gives

(4.139)

L(g,E) = x(g) with x = ind;(u) and u = [¢(E)] (4.140)



Index Theory for Elliptic Operators 127

Finally there is a cohomological formula for the index character, albeit
a relatively complicated one. We shall not be making any explicit use of this
formula so, rather than quote it, we refer the interested reader to Atiyah
and Singer [3]. We limit ourselves to a few observations.

Recall that the cohomological formula for the ordinary integer index
consists of characteristic classes evaluated on TX. Now from the present
group-theoretic point of view the ordinary index is obtained by choosing the
group G to be trivial and, in that case, there is only one map g: X — X
given by g = e, the identity of G. Thus, if we define X9 to be the fixed
point set of a map g, then the fixed point set of g is the whole space X
or, X9 = X. Therefore we can think of the cohomological formula as an
evaluation on the space TX9. This is also what happens in the case where
G is non-trivial: the cohomological formula for L(g, E) = (ind(u))(g) is an
evaluation on TX9Y where X9 is the fixed point set of the map g : X — X.
For a given g the fixed point set X9 may be a finite set of points or a set
of positive dimension. In the cases where X9 is a finite set of points the
formula for L(g, E) will be much simpler.

§ 7. Index theory for manifolds with boundary

In this section we allow the manifold X to have a non-empty boundary. We
can still study elliptic operators acting on X but we will now have to supply
appropriate elliptic boundary conditions.

The search for appropriate boundary conditions is central to the study.
The main problem here is that, if one chooses a specific elliptic operator
and desires to impose certain boundary conditions, such boundary condi-
tions may not be allowed because of the presence of topological obstructions
to their existence, cf. Atiyah and Bott [3] and Palais et al. [1]. In partic-
ular one may have to abandon local boundary conditions in favour of global
ones. A general index theorem for manifolds with boundary will involve
the relative K-theory K(X,0X) rather than K(X) and has to provide for
non-local boundary conditions.

Boundary conditions for many of the classical partial differential elliptic
problems are indeed local. For example, if we choose our elliptic operator
to be the Laplacian A acting on an open set 2 in R™ then the Dirichlet
problem requires us to solve

Ay =0, subject to u = g on 82 (4.141)

the Dirichlet boundary condition being the requirement that v = g on 92.
Let n be the normal to the boundary 8§2, then we can change the problem
to

Au =0, subject to g—s = g on 92 (4.142)
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and we have the Neumann problem where the boundary condition is the first
order equation Ju/0n = g on Of2. Clearly both the Dirichlet and Neumann
problems have local boundary conditions.

Now suppose that we replace the Laplacian A by the signature operator
d; :T(X,A*T*X®RC) — I'(X, A~ T* X ®RC) acting on a manifold X with
boundary. We would like to specify boundary conditions so that the index
of d.. gives the signature of X. This is possible but only if we use non-local
boundary conditions. Let us look briefly at what is involved.

Near the boundary we use local coordinates, one of which is the inward
normal n to the boundary, and then we shall assume that d+ can be written
as the sum of a normal and a tangential part

3]
dy=A—+B-d¥ 4.143
+ 6” + ( )
where the symbols A and B are matrices, and d_{ is the tangential part of
d.. Note that d_T‘_ acts entirely on the boundary 0.X. Ellipticity guarantees
that A is invertible so that we may rewrite the above as

dp = A (ai +47'B- di‘)
a” (4.144)
=A (a—- +L) where L = A"lB-dz
n

We assume that L is independent of n; this assumption, together with
the observation that L is self-adjoint, means that L is an elliptic opera-
tor on 0X. Thus we can use its eigenfunctions as a basis for the space
L*(8X,A*T* X ®RC) of square integrable sections on X. Let H; and H_
denote the spaces of non-negative and negative eigenfunctions respectively.
Now the appropriate elliptic boundary conditions for the index of d. to give
the signature of X are that the solutions u satisfy

ulox € H- (4.145)

Let II denote the orthogonal projection onto the space H,, then this bound-
ary condition should be viewed as the equation

MMv=0,ve H  ®H_ (4.146)

We can see that I is a zerot"-order pseudo-differential equation in the follow-
ing way. First we make an invertible operator from L by defining M = L+N
where N is the projection onto the null space of L. This new operator M
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is therefore invertible. We can also raise positive pseudo-differential ellip-
tic operators such as M to arbitrary powers (cf. p. 46 of chapter 2 and
Seeley [1]) so that, in particular, the operator v/ M? is defined—we shall
take the positive value of the square root and so use the more suggestive
notation |M| to denote v/M2. Then it is easy to check that II is given by
the zerot"-order pseudo-differential combination

-1

M
H—z

In addition, the boundary condition 4.146 is non-local because the action
of projection onto the space of positive eigenvalues is non-local. However,
as far as the index is concerned we need only consider the homotopy class
of the symbol o§(z,p) of L: indeed if we could find a homotopy of o§(z, p)
which deformed it into a function of z only, then it would be homotopic
to the symbol of a multiplication operator which is local. Unfortunately,
a homotopy of this type does not exist, in this case, because of the non-
vanishing of the topological obstructions described in Atiyah and Bott [3].

Now we shall investigate how the index of an elliptic operator with el-
liptic boundary conditions might depend on dX. We start by considering
the Gauss—Bonnet theorem since this is a case where something is already
known about the réle of boundary corrections. If we take X to be a smooth
surface with boundary then the Gauss-Bonnet theorem determines the Eu-
ler characteristic and we have

/ R B _yixy (4.148)
X

—2; ax 2T

(M + |M]) (4.147)

where R is the curvature of X and Ry is the geodesic curvature of 0X
in X. The presence of the boundary integral in the above expression is
not mandatory—if X is isometric to a product near its boundary, i.e. X
is isometric to X x R¥, then the boundary integral vanishes; this means
that, for such surfaces, the Euler characteristic is given by the same integral
as in the case without boundary, that is

E_ x(X) for X isometric to 6X x R* near X (4.149)

X 27
However, the Euler characteristic is a less subtle invariant than the
signature Sign (X); and if we examine the formulae for Sign (X) when X
has a boundary a new feature is revealed: Let us first take a four dimensional
orientable manifold X without boundary. Then we know from §2 that the
formula for Sign (X) is

Sign (X) = /} ™2 (X) = % /} p1(X) (4.150)
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where p;(X) is the four dimensional term picked out from the expansion
of L(X) in terms of Pontrjagin classes. Now if we take a four dimensional
manifold X, with a boundary, and with X isometric to a product near its
boundary, we find that 4.150 does not hold any longer. In fact explicit

calculation shows that we can define a real number 7(8X) by

Sign(X) - 3 /X pi(X) = Son(0X) #0 (4.151)

The factor —1/2 in front of n(8X) is included for later notational conve-
nience. The interesting point is that the difference 7(0X) only depends
on the boundary X and not on X itself; that is, if we take two different
manifolds X and Y with the same boundary then the difference n(8X) is
equal to 7(9Y). In sum

X #Y but X =Y

then Sign(X) - 3 [ m(X) = Sign(¥) =3 [ mer) 41

3 Jx 3Jy
This can be proved by constructing a new closed manifold Z by glueing X
to Y along their common boundary and then applying the formula 4.150 to
Z. The precise nature of the difference n(8X) is difficult to anticipate—it
is not a local geometric object, instead it is constructed entirely from the
spectrum of the operator L and so is a global object (cf. Atiyah, Patodi
and Singer [1-4]). To define n(8X) let {A,} be the spectrum of L and
consider the function n(s) where

n(s) =Y, %2 (4.153)
An#0 n

The series defining 7(s) converges if Res is large enough; it can also be
analytically continued to define a meromorphic function of s with simple
poles. Further, though one might expect 7(s) to have a simple pole at
s = 0, the residue of this pole vanishes in the present case so that 7(0) is
finite. The connection of n(8X) wilh n(s) is just that

n(8X) = n(0) (4.154)

Thus the formula for Sign (X) when 8X # ¢ can be written as

Sign(X) = /X pi(X) = 29(0) (4.155)
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Moreover, Sign (X) is the index of the signature operator d+ on X subject
to the global boundary conditions introduced above.

The properties of the spectral function n(s) are worthy of further dis-
cussion. We discuss first the continuation of n(s) to arbitrary values of s
and then give an example of the calculation of 7(0).

The continuation of 7(s) can be done using the zeta function of a pos-
itive elliptic operator in the following way. Let P be an elliptic pseudo-
differential operator of positive order on a closed compact manifold. Sup-
pose also that P is self-adjoint and positive with spectrum {u,}, then it is
known (Seeley [1]) that the function

(p(s) =) ni*' (4.156)

is a meromorphic function of s with simple poles and that {p(0) is always
finite—for Re s large enough the series defining {p(0) is convergent and can
be thought of as ¢tr (P™%). We can define 7(s) in terms of two such zeta
functions (Atiyah, Patodi and Singer [4]). We define two elliptic operators
Lz by
Le=Sn+in,  1o=3i-1i (4.157)
T2 27 T2 2 '

If we denote the positive and negative eigenvalues of L by {A}} and
{A;} respectively, then the eigenvalues of L, and L_ are clearly the pairs
{22+, ~A5} and {A}, —2);} respectively. Note that L, and L_ have been
constructed so as to be positive, thus their zeta functions ¢z, (s) and (¢ _(s)
exist as meromorphic functions of s. It turns out that their difference de-
termines 7(s), for

I

()= (=192 (2)\1:5)8 > (—,\1;)3
An

Ar

1 1
-1 (Af)s + ; (=227)°

A

(4.158)
- _ BES o S S
i %(A:r §<—A;>s
= (27" = 1)n(s)
= () = = {1:(5) — Co_(3))

@ -1
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Thus the analytic continuation of the zeta® functions induces the analytic
continuation of 7(s). Also 7(s) can be thought of as a trace: for Re s large
enough it is the trace of the operator L|L|~*~1.

If one examines the definition of 7(0) it appears to be some kind of
regularised measure of the asymmetry between the positive and the negative
eigenvalues of L. An explicit calculation of 7(s) helps to bring this to the
fore. We shall calculate 7(0) for the operator id/df + t acting on the circle
S! with local coordinate 6 and 0 < t < 1. Calculating the eigenvalues we
find that

m=n+t,n=...—2,-1,0,1,2,...
[oo} .
sign{n + t) (4.159)
2= 2 T
n=-00

Clearly n(s) can be reduced to an expression involving the generalised Rie-

mann zeta function
=1

(ts) =Y — (4.160
( zo: (n+t) )

Then we can compute 7(0) by expanding this expression about s = 0 and
using the fact (Whittaker and Watson [1]) that ((¢,0) = —t + 1/2. The
result is that

7(0) =1 -2t (4.161)

This shows that 1(0) is indeed a measure of the asymmetry of the eigenvalues
n + t about 0—note that precisely when ¢t = 1/2 there is no asymmetry in
the eigenvalues and 7(0) vanishes as it should.

This discussion of the index problem for the signature operator d4
generalises to other elliptic boundary value problems. We now take a general
linear first order elliptic operator D : I'(X,E) — I'(X, F) where E and F
are vector bundles over a general manifold X with boundary. We assume
that, in a neighbourhood X x R of the boundary, D has a form analogous
to 4.144. We also impose the same type of global boundary conditions. This
means that we have

D:T(X,E) — T(X,F)

on
and iy =0, ve L*8X,E)

D=A (i + L) near 0X x R* (4.162)

5 1t is also possible to relate ¢p(s) to the kernel of the heat equation du/8t = Pu
and use this fact to compute the index of D where P = DD*. In this way one obtains a
heat equation derivation of the index theorem, cf. Atiyah, Bott and Patodi [1].
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where L is an operator solely on X and II is the usual spectral projection
onto the positive eigenvalues of L. So far the zero eigenvalue of the operator
L has not figured in the discussion. This is not typical: Suppose that L has
a non-empty kernel and define h and 7(s) by

on(An
h = dimker L, n(s) = E % (4.163)
An#0 n

Then we have the following result.

Theorem (Index theory for boundary value problems) The index of the
operator D for the elliptic boundary value problem 4.162 is given by

h+7(0)
2

where P is the differential form representing the combination of character-
istic classes which occurs when indez D is calculated on a closed manifold;
since P is expressed in terms of the curvature R we can write P = P(R).

We have seen that choosing D = d¥, the signature operator, provides
an example where these boundary corrections are non-zero. On the other
hand, we also saw in 4.149 that, at least for surfaces, the Euler characteristic
of X can be calculated by the same formula as the case without boundary.
This result extends to higher dimensional X; thus we can say that the
index of the de Rham complex does not depend on non-local boundary con-
ditions. To see another boundary value problem where non-local conditions
are needed we move on to the next example.

inder D = / P- (4.164)
X

Example The 8 operator

We take a closed Riemann surface £, of genus g and give it a boundary by

deleting from it p discs Dy,...,Dp. Thus X is a complex manifold whose
boundary 0X consists of p disjoint circles. The two manifolds £, and X
are clearly related by

P
X=%,-|JD (4.165)
i=1
To satisfy the condition that X should be isometric to a product near its
boundary we assign coordinates 2i,...,2p to the discs Dy,..., D, so that
2; = 0 corresponds to the centre of the disc D;; then we choose a metric on
X which satisfies

2
ds? = 4z , near the boundary of D;, i=1,...,p (4.166)

Zi
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Note that this metric would be singular on X, but is perfectly regular on
X. As elliptic operator we take the & operator. If we use polar coordinates
(r;,6;) instead of z; it is easy to verify that, near each piece OD; of the
boundary, d has the desired form

=~ €% 19 i 0

This shows that the tangential operator on each piece of the boundary is
(—1/r;)8/06;. To apply theorem 4.164 we have to calculate n(0) and h for
each disc; but the contribution from each disc is identical, thus we obtain
the formula B 0

indesd = / td(X) -p(—+2"—()) (4.168)

X .
where we have also set the function P of theorem 4.164 equal to td (X ) since
(as we showed in 4.72) this is the characteristic class in the formula for the
index of 9 on closed manifolds. However, if we use the expansion 3.106 of
td (X) in terms of Chern classes and the relation 3.124 of the top Chern
class to the Euler class we find that
c1(X)

td(X)=1+ — and ¢1(X) = e(X) (4.169)

So the index of & can be expressed as

indezd = % /x e(X) — pﬂ+2’7—(°)) (4.170)

Next we observe that the operator (—i/r;)d/06; has h = 1 since its only zero
eigenfunction is the constant function; further, we can see that its 7-function
has 7(0) = 0 since the non-zero eigenvalues are just the non-zero integers
which are symmetrically distributed about zero. Now we can evaluate the
integral. We write

/X e(X) = /E , e(zg)—ij / (D) (4.171)

But we can apply the Gauss-Bonnet theorem to both parts of this expres-
sion: For the Riemann surface £ we have immediately the statement

[ ez =x(zg) =22 (4172)
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while for the disc D; we use the version 4.148 of Gauss—Bonnet for a surface
with boundary and thus obtain

R
/D‘ e(D;) + /aD‘ 2—; =x(D;) =1 (4.173)

However, with the metric that we introduced above, the boundary integral
is zero. Thus we can straightaway deduce that

-1

indez 8 = 5 {x(Zg) - px(D3)} - T
1. p (4.174)
_2(2 29 —p) 5

The requirement that X be isometric to 8X x R¥ near the boundary
can be relaxed. If we omit this requirement then the formula for index D
acquires an extra term which is an integral over the boundary. We shall
briefly indicate the origin of this extra term.

The manifold X is assumed to be a Riemannian manifold with metric
g determined locally by an expression of the form ds? = ¥ g;;dz*dz?. If
we restrict to the boundary, the metric g induces a metric A, say, on 8X.
Near 0X we introduce coordinates y*, i = 2,...,n for X, giving coordi-
nates (n,y*) for X where n is the normal to the boundary. The isometric
requirement discussed above means that near the boundary g is a product
metric with h. Then using these coordinates we can write

ds® = gridn® + ) hijda'de? (4.175)
4,522

With this product metric on X we can calculate the Riemannian connection
T of g on X and verify that it has no normal component on the boundary.
Now we return to the Gauss-Bonnet example 4.148 which, in general, has
a boundary integral involving the geodesic curvature Rgy; this term, when
calculated, is found to be proportional to the normal component of I' and
therefore vanishes if g is a product metric. More generally, if we consider the
index of the operator D then there should be an integral over the boundary
O0X .However, this integral vanishes if the normal component of the connec-
tion I' vanishes on the boundary. If we decompose I' into tangential and
normal components on 8X according to I' = I'"” + I'* then the normal
component T't is called the second fundamental form.
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We can see that if we use two different Riemannian connections on X
then the difference that this produces to the calculation of indez D is in gen-
eral a boundary integral. Let g and ¢’ be two metrics on X with associated
connections I' and I respectively. For each connection we have a character-
istic polynomial P(R) or P(R'), and we know (Nash and Sen [1]) that the
difference between two such polynomials is exact so that P(R)—P(R’) = dQ
for some differential form Q. If we choose one of these connections to be
that due to a metric which reduces to a product near the boundary, then
Q will be proportional to the second fundamental form of the other one.
Integrating this statement we obtain

/X P(R) = A P(R) + /X dQ = A P+ [ @ (4.176)

Thus a more general index formula for D would be of the form

indez D = /X PR)+ [ o- @ (4.177)

ax 2

for an appropriate @ expressed in terms of the second fundamental form
rt.

The validity of the index theorem above implies that the n-function
associated to the operator L has the property that 7(0) is finite. One could
consider any elliptic self-adjoint operator B, say, on a (closed compact)
manifold Y, and construct its n-function ng(s). If we do this it is not
immediately clear whether ng(0) is always finite, as is the case for {p(0); in
fact there are certain features special to the index theorem. These are that
L is an operator on a manifold Y which is the boundary of another manifold
X, and also that D is related to L by the decomposition D = A(8/dn+L).
Nevertheless, it can be proved that n5(0) is finite if Y is odd dimensional,
and also for even dimensional Y if B is a differential operator of odd order.

Part of the delicacy involved in proving finiteness can be understood
by realising the following: if one thinks of ng(s) as tr (B|B|~°"!) then the
operator B|B|™°~! can be defined for arbitrary s by analytic continuation.
When this is done, one can produce an example (Atiyah, Singer and Patodi
[4]) where the operator has a pole at s = 0 with a non-vanishing matriz
valued residue; however, the trace of this matrix valued residue is zero,
giving a finite np(0).



CHAPTER V

Some Algebraic Geometry

§ 1. Algebraic varieties

Algebraic geometry can be regarded as the study of algebraic varieties. An
algebraic variety is a space whose points are the set of zeros of a finite or
infinite collection of homogeneous polynomials. These zeros are taken as
belonging to some fixed field K; we shall always take K to be the field of
complex numbers C—that is, we limit ourselves to the study of complex
algebraic varieties.

There is a close connection between algebraic varieties and complex
projective spaces. This is because algebraic varieties are defined as the
zero locus of homogeneous polynomials and the complex projective spaces
CP" are endowed with homogeneous coordinates. As far as CP™ is con-
cerned we write its homogeneous coordinates as (21, 23,...,2n,2,+1) and
recall that these are thought of as representing a line in C"*'. The
important fact is that a point p in CP™ is determined by a set of ra-
tios: for example, if z,4+1 # 0, then we can consider points such as
(21/2zn+1, 22/ Zn+1, - - -y 2n/ Zn+1, 1); and, in general, ratios of this type pro-
vide CP™ with a set of local coordinates. These coordinates are complex
and they make it possible to check that it is a compact complex manifold of
complex dimension n. Now let us take a typical homogeneous polynomial
P(zy,23,...,2n,2n+1) of degree d, say, then we know that

P(A\zy,...,AZnt1) = A%P(21,...,2n41), AEC, A#0 (5.1)
If we suppose again that z,., # 0 we obtain
P(zy,...,2n,2n41) = 0= P(21/2n41, .., 2n/2n+1,1) =0 (5.2)

Thus the zero locus of the polynomial P(z), z,...,2s+1) is some subset of
CP™. Applying this idea to a collection of such polynomials shows that an
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algebraic variety V can be thought of as being given by an embedding into
some projective space CP™ and we write V C CP™.

In general an algebraic variety V' C CP™ will not be a sub-manifold of
CP", this is because V may have singular points. Singular points can be
detected in the following way. The idea is to use the Jacobian of the embed-
ding of V into CP™. Recall that if f : M — N is a smooth map between
two manifolds M and N which maps the local coordinates (zy,...,Zm) of
M onto the coordinates (yi1,...,¥s) of N, then the Jacobian J(f) is the
matrix given in local coordinates by [0y;/0%Z;]nxm. Now let V C CP™ be
specified by the zero locus of the k polynomials Py,..., Py. Then if the
Jacobian matrix of the underlying embedding e : V — CP" always has its
mazimal rank, namely k, the variety V has no singular points. On the other
hand, if there are any points in V for which the rank of J(e) is less than k
then these are called singular points. In the cases where the variety V' does
turn out to be a complex sub-manifold of CP™ then V is called an algebraic
sub-manifold of CP".

Another interesting property of complex sub-manifolds M of CP" is
that if one takes a general analytic embedding e : M — CP" but does not
insist that e is specified by the zero locus of a collection of homogeneous
polynomials, then M is in fact an algebraic sub-manifold—that is, e is, after
all, specified by a collection of homogeneous polynomials and M is thus a
non-singular algebraic variety. This result is known as Chow’s theorem and
is proved in Griffiths and Harris [1].

A general criterion for determining when a compact complex manifold is
an algebraic variety is provided by what is known as the Kodaira embedding
theorem, which we now quote.

Theorem (Kodaira) A compact complez manifold M is an algebraic variety
if and only if it has a closed, positive 2-form w of type (1,1) such that the
cohomology class [w] determined by w belongs to H*(M; Q).

The point to note about the cohomology class [w] is that it automatically
belongs to H2(M;R) but not necessarily to H?(M; Q); also of relevance in
the proof of the theorem (cf. Griffiths and Harris [1] or Wells [1]) is the fact
that if w does belong to H%(M;Q) then some multiple of [w] will actually
belong to H*(M; Z).

An important class of complex manifolds which are algebraic varieties
is formed by the compact Riemann surfaces of genus p which we denote * by
Zp. Riemann surfaces are complex manifolds of (complex) dimension one
and are therefore often referred to as algebraic curves. Most of the remainder

1 In this chapter we shall use p to denote genus rather than g; this is because we wish
to use g to denote a metric on the surface Ip.
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of this chapter will be concerned with algebraic geometry in dimension one,
that is with Riemann surfaces.

§ 2. Riemann surfaces and divisors

A compact closed Riemann surface ¥, is topologically a compact closed
orientable surface and is thus a sphere with p handles; but, because it is
also an algebraic variety, it can be embedded in CP™ for an appropriate
n which depends on its genus p. If p = 0 then we know that X, is the
Riemann sphere, which is identical to CP'; thus, in this case we somewhat
trivially have n = 1. If p = 1 then any ¥, can be represented by a cubic
curve in CP? of the form

z(z—1)(z—A)—y*=0; Xaconstant, A € C (5.3)

with z and y local (complex) coordinates in CP2. For p = 2,3, - any p
can be embedded in CP?.

When the genus p is greater than zero there is not just one Riemann
surface but a family of possible surfaces each with a distinct complex struc-
ture. For the case when p = 1 this family is one dimensional with local
coordinate the A appearing in 5.3 above. For genus p > 1 this family has
complex dimension 3p — 3 and is known as the moduli space M,; closely
related to M, is its covering space, the Teichmiiller space T,. We shall st udy
both these spaces in §4 and §5 below.

Complex manifolds M, say, are often studied by constructing holomor-
phic bundles over M. A distinguished holomorphic bundle over such an
M is what is called the canonical bundle Kps. This is defined as follows.
The canonical bundle Ky of a complex manifold M of dimension n is the
maximum non-trivial exterior power of the holomorphic cotangent bundle,
that is, Kjs is the bundle A®T*M. Note that because T* M is a holomor-
phic vector bundle of rank n then Kps = A®T*M has rank 1, thus Ky is
always a line bundle. The canonical bundle can be made more concrete by
realising that a holomorphic section of Kz is just a holomorphic n-form of
type (n,0),i.e. an element of the sheaf Q™ introduced in chapter 3; note too
that a holomorphic section of a bundle E is an element of the sheaf O(FE),
thus we observe that when E = K)s we have O(K ) = Q™.

Applying the preceding paragraph to the case where M is a Riemann
surface ¥, we see that, since £, is of dimension 1, T*%, is already a line
bundle and hence Ky, coincides with T*X,. Now in general one has to
consider many holomorphic line bundles on ¥, and holomorphic line bundles
on algebraic varieties can be studied by the closely related notion of divisors.
We shall now examine some of their basic properties.
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Consider an arbitrary holomorphic line bundle L over ¥, and a mero-
morphic section s of L. Such a section s will have some zeros and some
poles at a set of points {P;} , say. Each zero or pole at P; has an order
which is an integer n;—we take the convention that the order of a pole is a
negative integer. The divisor associated to the section s is the formal finite
linear combination div (s) where

div (s Z n; P; (5.4)

The degree of div (s) is the integer deg (div (s)) defined by

deg (div (s)) Z n; (5.5)

Now if we replace the section s by a meromorphic function f on ¥, then we
can also construct the divisor div (f). However, div (f) necessarily has zero
degree because the number of poles and zeros of a meromorphic function on
a Riemann surface, counted with their multiplicity, are always equal. We
digress briefly to remind the reader of the argument that establishes this
fact.

Consider the standard integral (1/21) [, df / f which measures no—n,,
the number of zeros of f minus the number of poles inside C. For p = 0
we choose the contour C on the Riemann sphere X so as to enclose all the
zeros and poles of f—this is always possible because ¥ is compact and so
the zeros and poles form a finite set F, say. Having done this observe that
the combination df/f is invariant under coordinate transformations and is
therefore a closed differential form defined on the set ¥o — F. This means
that the integral depends only on the homology class of C, and, since C is
homologous to a point on ¥ — F, the integral vanishes. For p > 0 we use
the standard representation of ¥, as a polygon having 4p sides which we
write out in order as ay, by, aflbl' sy Gpy bpy G ,b; where a; is identified
with a; ! and b; with b;'*; also the minus one in a;"! means that it has the
opposite orientation to a;. For p = 1 the reader can immediately verify
that this gives a rectangle with opposite sides identified—that is, a torus.
We can assume without loss of generality that the sides of the polygon do
not pass through any zeros or poles; in addition, we can always ensure that
C contains all the zeros and poles of f by pushing C close enough to the
sides of the polygon. Then we consider the limit where the contour expands
80 as to coincide with the sides of the polygon. The integral now vanishes
since the contribution from each side is cancelled by another of opposite
orientation.
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Now suppose that we take a different section s’ of the same line bundle

L, then s’ will be proportional to s via a meromorphlc function f. Thus we
write

& =fs, f a meromorphic function (5.6)

It is clear from the definition of a divisor that
div (8') = div (fs) = div (f) + div(s) (5.7
However taking the degree of both sides we find that

deg (div (8')) = deg (div (f)) + deg (div (s))
= deg (div (3))

gsince f is meromorphic. Thus div(s') and div (s) have the same degree,
and, because of this, we define two divisors Dy and D, to be equivalent if
D, — Dy = div (f) for some meromorphic function f. This means that the
line bundle L gives rise to just one divisor modulo this equivalence.

Conversely, given any divisor D over X, it gives rise to a holomorphic
line bundle over £,, which we denote by [D]. We have

D=) nP (5.9)

(5.8)

Now let {U,} be a covering of X, then the restriction of D to any Uy is a
meromorphic function f, on U,. Further, in the overlap U, N Us the two
divisors div (f,) and div (f3) coincide; as a consequence the ratio

fa
fs

is non-vanishing and holomorphic on Uy N Us. This means that we can
define the holomorphic line bundle [D] over ¥, by defining its transition
functions g,g to be this ratio. That is, we define

fa

Jag = f_ﬁ (510)

The basic invariants of divisors and line bundles are their degree and
first Chern class respectively. It is useful to note that if we take the divisor
D and its associated line bundle [D] then these two invariants are the same,

or, in short
¢1([D]) = deg (D) (5.11)
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This can be proved by starting with D and constructing its transition func-
tion according to 5.10; then one applies the usual curvature formula to
calculate the first Chern class. Another useful fact about divisors which is
easily checked is that, if deg (D) > 0, then its associated bundle [D] has
a global holomorphic section and vice versa. Of course such a section will
vanish somewhere, otherwise the bundle [D] would be trivial.

This whole discussion shows that one may work either with (equivalence
classes of) divisors or with holomorphic line bundles depending on which is
more natural for the problem at hand.

A sheaf theoretic viewpoint can be deployed to formulate a divisor
as an element of an appropriate sheaf: let M* be the sheaf of non-trivial
meromorphic functions on ¥, where the group operation is multiplication
of sections. Then if we take the other multiplicative sheaf that we have
encountered, namely O*, we can form their quotient D given by

M*
D=
04

(5.12)

A section of this sheaf D is a divisor D. Hence if we let Div (M) be the set
of all divisors on M then we have

Div (M) = H*(M; M*]0O*) (5.13)

If we replace the Riemann surface ¥, by a complex manifold M of
dimension n greater than one then we can still define divisors. Instead of
taking formal linear combinations of points we take formal linear combina-
tions of analytic subvarieties V; which have dimension n — 1. Thus we write
a divisor D as

D=Y"nVi, meZ (5.14)

In general the term codimension of a variety V' is used to denote dim M —
dim V. The subvarieties V; have codimension one and so in the Riemann
surface case they are just points.

One can also represent D locally by a meromorphic function just as
we did in the Riemann surface case—a meromorphic function in n complex
variables is defined as the ratio of two holomorphic functions, its singular
set will generally have codimension one. We see that when dim M is large
the use of divisors requires us to consider singularities which are not just
points or lines but have codimension one. This has its unfortunate aspect—
we would expect fewer technical problems to be caused by singularities of a
higher codimension.
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Moving on to the homology of the Riemann surface we recall that
because X, is topologically a sphere with p handles then its first homology
group is given by Hy(Xp; Z) = Z&- - -®Z (2p times). A standard basis or set
of generators for Hy(Xp; Z) consists of p pairs of 1 cycles (a1,by),. .., (ap,bp)
where a typical pair (a;, b;) encircles the i** handle of £, so that a; intersects
b; orthogonally. This means that the intersection number of any two of these
cycles is particularly simple: denoting the number of intersections of two
oriented cycles a and b by (a,b) we have

(ai,a5) = (bi,b5) =0

(aiy b5) = —(bi, a5) = 6y
Next we pass to the dual and introduce a basis for H(,; Z) consisting of p
holomorphic 1-forms? w;,...,wp, and their complex conjugates @1, ... , Wp.

These homology and cohomology bases are used to construct a p x 2p matrix
Q known as the period matrix and defined by

(5.15)

o w1 “eu fap wy fbl wh e fbp wi

Q= (5.16)

fa,l wp - fu,p Wp fbl wp v fb w

p P

PXx2p

The 2p columns of €2 are referred to as periods. Each column can
be regarded as a p-dimensional vector II; with II; € C? and, when this
is done, it can be verified that the II; are linearly independent over R.
Now we specialise from real linear combinations of the II; to integral linear
combinations. In this way we construct the lattice A of all integral linear
combinations of the II;. This lattice is a subspace of the vector space C?
and so we can form a complex torus by passing to the quotient. This torus
is called the Jacobian variety J(Xp) of ;. We have

Cr
A={mIl + - +mgpllyp: m; €Z} and J(Zp) = e (5.17)

Actually there is still some freedom left to simplify the bases chosen
somewhat: the ‘a-periods’ correspond to a p X p sub-matrix consisting of
the first p rows and columns of © and this sub-matrix is invertible; this
allows us to normalise the a-periods so as to satisfy

/‘ w,- = 6,’,]' (518)

2 Holomorphic 1-forms are also known as Abelian differentials or differentials of the
first kind.



144 Differential Topology and Quantum Field Theory

The period matrix can now be written in the form
1 -+ 0 fbl wy - fb,wl

o b : (5.19
0 1 fywp o fywp o )

= (Ipxp ﬁPXP )px2p

where is the matrix of b-periods and can also be referred to as the period
matrix. € has the property that it is symmetric and possesses a positive
imaginary part. Two Riemann surfaces with the same homology basis are
isomorphic if their period matrices are equal.

§ 3. Serre duality, line bundles and K#hler manifolds

In this section we do not restrict ourselves to Riemann surfaces and the
symbol M denotes a closed compact complex manifold of any complex di-
mension n.

The first topic that we deal with is a generalisation of Poincaré duality
which is appropriate for sheaf cohomology. This is known as Kodaira—Serre
duality or Serre duality for short. The statement of Serre duality is as
follows: Let QP(E) denote the sheaf of holomorphic E-valued p-forms over
M for some vector bundle E—we know from chapter 3 that this is the sheaf
whose sections are given by the holomorphic elements of T'(M, APT* M Q E).
Then, if M has complex dimension n, Serre duality is the isomorphism

HP(M,Q%(E)) ~ {H?(M, Q" Y(E*))}’ (5.20)

where, on the RHS, * denotes the dual of any object to which it is applied.
Notice that, when p is zero or n, referral to the space of sections which
defines §2P(E) shows that

Q%E)=0(E) and O"(E) = O(Ky ® E) (5.21)
This gives us an alternative way of stating Serre duality when ¢ = 0 namely
HP(M,0(E)) ~ {H" P(M,O0(Km ® E*))}’ (5.22)

The detailed construction of the Serre dual uses wedge product and inte-
gration over M in the following fashion. Suppose that

8 € H?(M,Q4(E)) and v e H*P(M,Q " 9(E*))
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Then using the Dolbeault isomorphism

HP(M) = HU(M, 07 (E))
we can realise § and v as appropriate bundle valued forms on M. Having
done this the action of the Serre dual is that the form v acts on the form 6
to produce the complex number

/ <8,v>
M

where the inner product < , > denotes evaluation with respect to the Her-
mitian inner product used to define the ordinary dual E* of a bundle E.

The language of sheaf cohomology used for the discussion is also suited
to examining line bundles. This is particularly so if we wish to expose the
difference between holomorphic line bundles and ordinary differentiable line
bundles. We shall have a brief look at this topic. A complex line bundle
L over a smooth real or complex manifold M is completely determined by
its transition function g,g. This transition function satisfies the cocycle
condition gaggsy = gay = 9 and so provides an element [gag], say, of
the cohomology group H!(M;E*) where £* is the sheaf of smooth non-
vanishing sections of M. We can insert £* into a sheaf exact sequence in
order to relate the transition function of L to its Chern class ¢;(L). This
exact sequence is )

0 —Z-5eZBer —o (5.23)

According to the sheaf cohomology treated in chapter 3 this exact sequence
induces a cohomology sequence of the form

.o — HY(M;E) — HYM;EY)HHY(M;Z) — HY*(M;E) — - -+
(5.24)
However, we saw in chapter 3 that £ is a fine sheaf and therefore has
H(M;E&) =0 for i > 0. Hence we have the isomorphism

HY(M; ") ~ HX(M; Z) (5.25)

Furthermore this isomorphism is realised by assigning each cocycle class
[9ag] in HY(M;E*) to its Chern class ¢;(L) in H*(M;Z). This means
that all smooth complex line bundles L are completely determined, up to
a differentiable isomorphism, by their Chern class ¢;(L). Thus if ¢;(L) =0
then L is trivial. Note that there is no such simple property possessed by
vector bundles of higher rank: it does not follow that a vector bundle E of
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rank k > 1, all of whose Chern classes vanish, is a product. Still more to
the point, in this chapter, a line bundle L with ¢,(L) = 0 is differentiably
(and topologically) trivial but not necessarily holomorphically trivial. We
can delve deeper into this question using sheaves if we replace the various
sheaves of differentiable objects by their holomorphic counterparts.
Carrying out this replacement produces the two exact sequences

0 —>Z-502R0 —0

— HYM;Z) - H(M;0) —» H'(M; 0*) 25 HY(M; Z) — H*(M;0) —
(5.26)
However, O is not a fine sheaf and so, in general, H*(M; O) # 0; thus, for a
given M, H'(M; O*) need not be isomorphic to H?(M; Z). Now let us take
the transition function g,g to be holomorphic rather than just smooth; that
is, L is a holomorphic line bundle. Then L is not holomorphically deter-
mined by its Chern class ¢;(L). Moreover, holomorphic line bundles with
vanishing Chern class, though topologically and differentiably trivial, can
have rich holomorphic properties: for example, thinking of a holomorphic
line bundle L as a divisor, we saw in section § 2 that a global holomorphic
section of L is a meromorphic function, and this is not holomorphically
trivial.
The set of all holomorphic line bundles forms a subgroup of the group
of all smooth line bundles. This group is called the Picard group and is
denoted by Pic(M). From the above arguments it is clear that

Pic(M) = H'(M;0%) (5.27)

The group of smooth line bundles is of course H!(M;&*). The Picard
group itself has a subgroup Picy (M) which consists of those holomorphic
line bundles with zero Chern class. Using the exact sequence 5.26 above
enables us to identify Picy (M). We have

1 .
Picy (M) = % (5.28)

We now turn our attention to Kahler manifolds. Manifolds of Kahler
type occupy an important position in the theory of complex manifolds. We
shall first give their definition and then consider some examples.

Definition (Kéihler manifold) Let M be a complez manifold with a Her-
mitian melric g expressed locally in the form ds? = g,-jdz‘ ® dzl; us-
ing the metric we form an associated 2-form w of type (1,1) defined by
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w = (i/2)gijdz* Adzi. Then M is called Kihler if there ezists at least one
metric of this kind for which the 2-form w is closed. That is, if

ds® = g;;dz* ® d7, w= %gijdli A dz? (5.29)
and dw=0

A metric for which w is closed is called a Kahler metric; if J is the usual
matrix associated with the complex structure on M then w can also be
defined using the expression w(X,Y) = g(JX,Y) where w(X,Y) denotes w
evaluated on any two vector fields X and Y on M. Since w is a closed non-
degenerate two form it is symplectic; thus Kéahler manifolds are examples
of symplectic manifolds.

A simple example of a Kéhler manifold is a complex torus C*/Z" fur-
nished with the Euclidean metric g;; = 6;;—of course in this case w trivially
satisfies the closure requirement. Another easy class of Kihler manifolds to
identify are the Riemann surfaces X;. These are all automatically Kahler
because dw will always be zero, being a 3-form.

A less obvious example of a Kéhler manifold is the projective space
CP” when it is given the Fubini-Study metric. To define the Fubini-Study

metric g;; let (20, 21,...,2,) be homogeneous coordinates on CP™ and let
us use local coordinates z;/z for i = 1,...,n; on setting 29 = 1 these coor-
dinates become (zy,...,2,). The Fubini-Study metric g;; is the Hermitian

metric on CP™ defined by

ds? = gijdz; @ dz; = %3,5,- In(1 + zf 4o zf,) dz; ® dz;
i&,’,j(l + |Z|2) - z,-Z,-
2 Q+1PP (5.30)
. n
: d01n(1 + |2|?) where |z]* = szzk
k=1

= gij =

W=

N

It is immediate that the form w is closed. It is interesting to note that the
Fubini~-Study metric may be written as g;; = 8;; + hi; and, when this is
done, hji; is of order 2 in the coordinates z;. This is a general property of
Kéhler metrics and is even enough to characterise them. More precisely, if a
complex manifold M has a Hermitian metric g;; which, in some coordinate
system, can be written as g;; = &i; + hij, with hj; of order 2 in these
coordinates, then this metric is Kahler, rendering M a Kahler manifold.

If we embed a manifold M in a Kahler manifold N then the Kahler
metric on N induces a metric on M. It is not difficult to check that the
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induced metric on N is a Kahler metric—all one has to do is to check that
the induced 2-form w on N is closed. Thus N is also Kahler. It therefore
follows that any complex manifold embeddable in projective space CP" is
automatically Kéahler.

Kahlerity implies certain facts about the cohomology of M which are
expressed in terms of Hodge theory. In Hodge theory one uses operators
of Laplacian type to investigate cohomology. For a complex Hermitian
manifold the three differential operators d, & and 8 give rise to three separate
Laplacians, namely

Ag = (dd* +d*d), Ap= (00" +0"9), Az=(00"+0"9) (5.31)

There is no particular relation between these Laplacians but on a Kihler
manifold they are identical up to an innocuous factor of 2. One has (Wells
[1])

Ag =205 =243 (5.32)

In chapter 4 we encountered the Hodge numbers h, , defined by
hp,q = dim Hg‘q(M) (5.33)
Let us decompose the cohomology of M according to

H{(M;C)= @ H®9(M;C) (5.34)

ptg=i

Now if we apply Hodge theory in the usual way to represent the above
cohomology using harmonic forms, and combine this with the Laplacian
properties just mentioned, we obtam some strong results. Among these are
the following
(1) bi = 2p+q— h’P q
ii) by is always positive
iii) bpiy; is always even
(iv) hpq = hqp
) h

p.p is always positive.
§ 4. The Teichmiiller space T,
We have already referred to the existence of families of Riemann surfaces

with the same genus; that is to say, families of Riemann surfaces with differ-
ent complex structures. In this section we initiate a study of these families.
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To do this consider an arbitrary Riemannian metric on a Riemann surface
Y, i.e. specify?
ds? = Adz? + 2Bdzdy + Cdy?

It is always possible to rewrite ds? in terms of z and z as

ds? = \(dz + pdz)(dz + fidz)

= \|dz + pdz|? (5.35)
for some appropriate functions A and u where A > 0. Thus a metric also
determines a complex structure on the Riemann surface.

Now our object is to single out distinct complex structures on %; and
here we point out that there is a one to one correspondence between complex
structures and conformal equivalence classes of metrics. This is because
a conformal change of metric consists merely of multiplying the function
A of 5.35 by some positive function f, say, and this leaves the complex
structure unchanged. Consequently, this means that if we have a second
metric specified by

ds? = Ay |dz + pydz)?

then when u = p; these metrics are in the same conformal equivalence class.
Thus the parameters u label the complex structures on ¥ and comprise the
space which we wish to investigate.

Now let us see in a more geometric fashion what this space looks like.
Let Met(X) denote the space of metrics on X. Now if two metrics g; and
g> are conformally equivalent it means that gy = fg, for some positive
function f. If we define C3°(X) to be the space of all smooth positive
functions on ¥ then C3°(X) is a group that acts on Met(X) and we wish to
form the quotient of Met(X) by this action. We shall denote this quotient
by Conf(Z) and we summarise the definition of this action, which we call
A, and the definition of Conf(X) below.

A:CP(Z) X Met(Z) — Met(X)

(f(2),9(2)) — f(z)g(2) (5.36)
_ Met(X)
)

Conf(%)

In searching for metrics on X, we do not wish to count two metrics as
different if one is mapped into the other under a diffeomorphism. To ensure

3 From now on we often simplify the notation and denote 2 Riemann surface by £
rather than Xp.
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that this does not happen we shall replace Conf(X) by the space that
results when we quotient out by the action of such diffeomorphisms. It is
natural to restrict ourselves to orientation preserving diffeomorphisms. This
is because we are studying distinct complex structures and an orientation
reversing diffeomorphism will change the complex structure to its complex
conjugate structure.

To this end we introduce the notation Dif f¥(X) to denote the space
of orientation preserving diffeomorphisms of ¥. This space Dif f*(Z) has
a normal subgroup consisting of those diffeomorphisms continuously con-
nected to the identity and we denote this subgroup by Dif fo (). For the
moment we temporarily restrict ourselves to only those diffeomorphisms in
Dif fo (£); we shall lift this restriction in §5. The quotient that we obtain
is well behaved if the genus p of the Riemann surface ¥ is 2 or more; and
in that case we have indeed obtained the space of complex structures on X:
the Teichmiiller space T,. Thus we have

Conf(Z) _
Diffo () Tpo P22 (5.37)
Unfortunately, for p < 2 this quotient is singular because, for these values
of p, Diffo (X) does not act freely? on Conf(X). The existence of fixed
points for the action of Dif fo () on Conf(X) is sometimes referred to as
the existence of conformal Killing vectors on ¥. Geometrically speaking,
these fixed points correspond to metrics which are mapped onto a confor-
mally equivalent counterpart under the action of a (non-trivial) coordinate
transformation in Dif fo (¥).

We can resolve this difficulty by giving an alternative definition of T,
valid for all p. The key to our being able to do this is that, for each
g € Met(X), there exists a constant curvature metric g, conformal to g.
Also, if p # 1, this metric g. is unique, and when p = 1 we supply an addi-
tional condition which brings about uniqueness. These constant curvature

4 As usual a free action of a group G on a manifold M is one for which there are no
fixed points. More precisely, if we represent the action by the smooth map A: G x M —
M, and use the customary notation to write A(g,z) = g-z, then A must satisfy e-z ==z
where e i8 the identity in G and (gh)-z = g:(h-z). The action Ais freeifgz =z =>g=e.
The quotient M/G is the space of orbits and has dimension dim M — dim G. If the action
A i8 pot free consider the following ezample of what can go wrong: A has at least one
point zg with a non-trivial stability group Gp C G and we may have dim Gp > 0. In this
case zp belongs to an orbit of dimension dim M — dim G — dim G and this renders the
orbit space M /G singular since it 13 no longer of the same dimension everywhere.
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metrics g. are obtained by using the property of Riemann surfaces known
as Riemann uniformisation.

Riemann uniformisation can be introduced as follows. Any compact
Riemann surface ¥ always has a simply connected universal cover ¥. Also
the standard theory of covering spaces tells us that X is realised as the quo-
tient of ¥ by a discrete group which must be isomorphic to its fundamental
group m1(X). In short

S =5/m(%) (5.38)

However, uniformisation says that there are only three simply connected
(compact or non-compact) Riemann surfaces ¥ and that each of them has
a unique complex structure, this complex structure being determined by a
metric of constant curvature. We display below these three simply connected
surfaces X together with the Riemann surfaces ¥ that they cover. We have

- 5% ifp=0,ie T =52
E=¢C ifp=1,ie &=T?
H? ifp>2,ie ¥ is homeomorphic to a sphere with p handles
(5.39)
where H? is the hyperbolic plane (or Poincaré upper-half-plane) given by
Im z > 0. The constant curvature metrics possessed by the ¥ are

for S? the natural metric that S? acquires on being embedded in R®

for C the ordinary flat Euclidean metric on the plane

for H? the usual hyperbolic or Poincaré upper-half-plane metric,

i.e. the curvature —1 metric determined by ds? = dzdz/(z — z)?

(5.40)

Thus, no matter what the genus of ¥, its universal cover must be one of the
¥ just described; also, the covering projection 7 : ¥ — ¥ induces a constant
curvature metric on X.

Now we take a section s of Met(X), considering the latter as a bundle
over Conf(X). The definition of s is that each conformal equivalence class
c € Conf(X) has

5(c) = g € Met(Z)- (5.41)

where each g, is required to have constant curvature equal to: +1 for p = 0,
0 for p =1, and —1 for p > 2—note that the existence of such an s follows
straight from the statement of Riemann uniformisation. Also g. is not yet
unique—it can still be changed by an element of Dif fo (¥). Thus, using
R(g) to denote the Gaussian curvature of a metric g, we define the space
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Metco,m (2) by,

3

{g € Met(S) : R(g) = 1}, ifp=0
Metoonst (3) = { {9 € Met(2): R(g) =0,v0l(2) =1}, ifp=1 (5.42)
{g € Met(%): R(g) ——1} ifp>2 o

¥
where the specification vol(Z) = 1 for the p = 0 case is because in that case
¥ is the torus T2. But T2 has zero Euler characteristic x and therefore the
Gauss—Bonnet theorem imposes no normalisation restriction on its volume.
Finally, our alternative definition of Tp, valid for all genera p, is simply

—- Metconat (2) _
Tp = Diffo(3) p=0,1,... (5.43)'

§ 5. The moduli space M,

In this section we no longer restrict the space of diffeomorphisms to the
connected component of the identity but consider all orientation preserving
diffeomorphisms. In short we use the group Dif f* () instead of its normal
subgroup Dif fo (). If we make this sole change in the definition 5.43 above
then the new space that we obtain is the moduli space M,,. Displaying the
Teichmiiller space and the moduli space together we have

Metcon st (2) Met ongt (2)

g, = Hlleonat (2) g Meleonst \ 1) 5.44
= Dith(® 7 D (544
In addition it is useful to define the mapping class group I's by taking the
quotient of Dif f¥(Z) by its normal subgroup Dif fo(X). Then we can
exhibit the following relationship between the Teichmiiller space and the'

moduli space. .
A _ Diff*(s) |
M=ty T Difp® (545)

The mapping class group I'y is a discrete group; more abstractly, I'y is the
group of connected components of Dif f¥(Z).

The moduli space is the complete space of complex structures on %;
however, it is not a manifold since, as we shall see in this section, I'y does
not act freely on T, but has fixed points—equivalently one could say that
Diff*(X) does not act freely on Meitcons: (¥). A singular quotient space
such as My, which fails to be a smooth space of orbits, is referred to as an
orbifold.
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We can obtain some insight into the structure of M,, by using the notion
of Riemann uniformisation as we did for J,. We know from the previous
section that any ¥ is given by a quotient of the form

(5.46)

To construct the RHS of 5.46 we need an action of 7, (X) on £. This action
must satisfy two requirements. To ensure ¥ is a smooth manifold this action
must be free (no fixed points); and to provide ¥ with a complex structure
this action must also preserve the complex structure on T. We satisfy these
two requirements by demanding that the action be a holomorphic isomor-
phism of ¥. Thus, all possible ¥ are constructed by finding all possible
group actions of this kind. The space of all these group actions will be the
moduli space. 5
Let us start with genus zero. Then ¥ and ¥ coincide, which is consistent
with the fact that 7,(S?) = 0. On the other hand, elementary complex
analysis tells us that there are no holomorphic automorphisms of S? without
fixed points; thus the moduli space at genus zero consists of a single point.
Moving on to genus one, the covering space ¥ is the complex plane C
and ¥ is the torus T? whose fundamental group is Z @& Z. Now an obvious
way that we can make Z @ Z act holomorphically and invertibly on C is
to let Z ® Z act as a pair of translations. We can always adjust one of
the translations to be unity; the remaining translation A, say, is a local
modular parameter and labels complex structures on the torus. It is easy
to check that we can take Im A > 0. A general translation is now of the
form z — z+m+ n), with m and n integers, and A € C* where C* is the
upper-half-plane of C. This space C* is actually the Teichmiiller space for
genus one, that is
T, =Ct (5.47)

However, we have not yet proved that distinct complex structures on a
torus correspond to distinct A—in fact there is still some freedom to change
A without changing the complex structure. This freedom exists because
there are discrete automorphisms of the torus and we shall now find these
automorphisms.

Let T2 and T2 be two tori with complex structures labelled by A, and
A2 respectively. Suppose the complex structure on T? is mapped into that
on T2 by a conformal map

f:T:— T2 (5.48)
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Lift f to the covering space of each torus; it then becomes a conformal map
f : € — C which will be required to commute with the covering projections
py and pa, say, of T2 and T2. It is immediate that f(z) = pz + ¢ since any
conformal map of C is of this form. This gives us the commutative diagram

c L,

Jf’l
f

T12 —>T22

l . withfop =paof

and f(z) =pz+gq (549)

Now let us denote the groups of translations on the tori T2 and T? by Gy
and G, respectively. These two groups are, of course, both isomorphic to
the fundamental group Z& Z of an abstract torus; the difference between G,
and G in the present context lies in their actions on C. A general element
of G; acts on C as a translation z — z + m + nA; and the corresponding
element for G, is of the form z — z + m + nAy. The way we progress to
something concrete is to observe that the condition 5.49 above on the map
f becomes more explicit when stated in terms of group actions. We have
the following: given a g2 € Ga, and denoting each group action by a dot,
we can say that :

flgr-2)=go- f(z

fg:-2) g~2_1f( ) - for some ¢, € G, (5.50)
=>q-z=f"(g92-f(2)

Now let us choose g5 to be the two generators z+— z+ A2 and z — 2+ 1 of

G5 in turn. This prpvides us with two equations, namely

{pzta)+ra—q} A

p p .
with a,b,¢,d € Z (5.51)
_{pztg+l-gp 1
p p

z+b+ar =

Z+d+CA1

We can straightaway deduce that

_G.Al'l'b
2T o+ d

a,bc,d€Z (5.52)

But the invertibility of f imposes the restriction

a b
det (c d) #0 (5.53)
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Now if we note that this determinant is an integer, and the symmetry be-
tween T2 and T demands the same of its inverse, then it follows that
(ad — bc) = F1. Furthermore, if we evaluate the imaginary part of both
sides of 5.52 and use the positivity of Im A; and I'm A3, then we find that
(ad — be) = +1.

Thus we have found a criterion for testing whether two toroidal complex
structures, labelled by A;, A2 € C*, are the same. The criterion is that A
and ), are related by

a/\1+b

= o td with a,b,¢,d€Z, andad-bc=1 (5.54)

2

The maps defined in 5.54 generate the modular group SL(2,Z)/{FI}—
the modular group is a discrete subgroup of the group of Mdbius transfor-
mations which are the set of transformations

az+b

Ztd a,be,de€C,ad—-bc=1 (5.55)

Z

All the signs of a,b,c,d can be changed in the above definition without

changing the transformation. Therefore the Mdbius group is isomorphic

to SL(2,C)/{FI}; we can now see that the modular group is the discrete

subgroup of the Mdbius group obtained by restricting a, b, ¢, d to be integers.

Having obtained the full description of the complex structures on the
torus we can display the moduli space at genus one. We have

T ct

M= T SIE DD

(5.56)
The mapping class group of the torus has now been identified: we have
Ir2 ~ SL(2,Z)/{FI}. We also know that the non-triviality of the mapping
class group means that the torus has non-trivial discrete automorphisms, i.e.
those automorphisms which, considered as elements of Dif f*(X), belong
to a disconnected component. We can write down these automorphisms:
Let (z,y) be coordinates of a point on the torus considered as a square with

opposite ends identified; then the discrete automorphisms of T? are just the
maps :

(z,y) — (az + by, cz + dy), a,bje,d€Z, ad-bc=1 (5.57)

When we identify A’s which differ by a modular transformation we con-
vert Ty into M;. The actual identifications are that A is identified with —1/X
and also with A + 1 (actually the maps A — —1/\ and A — A +1 generate
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the modular group, they are commonly denoted by S and T respectively:
also, the inversion carried out by S has the effect of interchanging the two
radii of the torus.). Furthermore, in carrying out this quotient of C™ by the
modular group we can easily check that the transformations A — —1/X and
A+ (1 -1/)) each have a fixed point. These fixed points are responsible
for giving M; the singularities to which we alluded above. The resulting
moduli space M; has cusps or point singularities.

Notice that these discrete automorphisms also possess fixed points when
they act on the space Metonet (£). For example, represent T2 by a unit
square provided with the Euclidean metric §;;. Subject T2 to the discrete
automorphism which corresponds to A — —1/A. Referring to 5.54 and 5.57
we see that we must select a = d = 0 and b = —¢ = 1, and, having done
this, we find that (z,y) — (~y, —z). However, this latter automorphism of
T? is an isometry since it preserves the Euclidean metric; therefore 6;; is a
fixed point of this automorphism. Thus we see again that the quotient

Met onst (TZ)/Diff+ (T2) =M

is an orbifold.

For a general genus p 2 2 a similar situation pertains. The group
of automorphisms of the hyperbolic plane H? is SL(2,R)/{FI} acting on
z € H? by

az+b
——

—, a,bc,deR, ad-bc=1 (5.58)
cz+d

To produce a Riemann surface of genus p > 2 we select a discrete fixed point
free subgroup G, say, of SL(2, R)/{¥I} and form the quotient H?/G. These
G are called Fuchsian groups. Now if we consider the moduli space we know
that the existence of Riemann surfaces with metrics possessing a discrete
isometry group gives rise to the singularities in the moduli space M,. As
the genus p increases, things improve somewhat and it is known (Griffiths
and Harris [1]) that, for p > 3, the singularities of M, have codimension
at least two. In addition, the total number of automorphisms possible is
no longer infinite and can be bounded from above. More precisely, if p > 2
then this bound is the number 84(p — 1).

As well as M, being an orbifold it also possesses non-trivial topol-
ogy. For example, M; = T,/I'r2 from which it follows that m (M) =
SL(2,Z)/{FI}. When p > 2 the Teichmiiller space ’.T is a contractible
non-compact complex manifold homeomorphic to C373; it is also the uni-
versal covering space for the moduli space M,.

In general the mapping class group of a Riemann surface ¥ can be
generated by a series of 27 rotations known as Dehn twists. To define
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a Dehn twist we take a simple closed curve C on ¥ and thicken it to a
neighbourhood of C; then we excise this neighbourhood, give one of its
boundaries a 27 rotation, and glue it back in again. The result is a surface
diffeomorphic to ¥ and the diffeomorphism is a Dehn twist. The set of all
these Dehn twists generate the mapping class group of ¥ although they are
clearly not a minimal set of generators. Important curves are those which
are not contractible, such as those which encircle a handle of ¥, or, in the
case of punctured Riemann surfaces to which this result extends, curves
which enclose a puncture.

We shall return to both the moduli space and the Teichmiiller space in
chapter 9 when we discuss string theory. In that discussion we shall supply
TJp with a natural metric known as the Weil-Petersson metric. This metric
is rather special since it turns out that, with respect to this metric, J, is
actually a Kahler manifold.

§ 6. The dimension of the moduli space

Having defined M, in a geometrical way we now set ourselves the task of
calculating its dimension. This will entail a return to complex analysis and
cohomology techniques. We have already seen that the metric on ¥ can be
written as

ds? = A|dz + pdz|? (5.59)

and that the function p labels the possible complex structures on ¥. We
begin our task by perturbing the metric g on ¥ and in so doing produce a
perturbation éu in the parameter u. This perturbation éu will belong to the
tangent space TigM, to M, at [g] ([g] denotes the conformal equivalence
class of the metric g). Hence if we can calculate the dimension of this
space of §u’s we have calculated the dimension of T[4/ M,, which is the same
as dimM,. To make progress we shall need to know the transformation
properties of A and y under a coordinate change. The invariance of ds?
under such a change allows us to deduce their transformation laws from
that of the metric. If f is a holomorphic coordinate change then we find
that _
A(f(2)) f2fz = Az)
f ' 5.60

W) = uo (560
[z

The obvious geometrical invariant quantity determined by u is given
by the expression

u(z, Z)% ®dz (5.61)
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which is known as a Beltrami differential (Incidentally for a general metric
parametrised by A and u, a diffeomorphism f(z, Z) is conformal 1f fz/fa=
This is called the Beltrami equation.).

We begin the calculation of dimM,, by perturbing the metric gq» by
an amount §g,.p- To carry out this calculation we express gqp in isothermal
coordinates. These are coordinates which have the property that, in some
patch on ¥, the corresponding line element takes the form

ds? = Mdz|?
The infinitesimally perturbed line element, d3? say, is
di? = (A 4 6))|dz + 8udz|?
Thus the perturbation from which one obtains g, is simply
6(ds?) = d3? — ds?
If we neglect higher order terms then we obtain
6(ds®) = 6Adzdz + Nudzdz + NSpdzdz

a formula from which one can read off §gsp. It is now clear that we simply
require the component §g;zz and in fact

by = ng" (5.62)

Also, if we write §gap = €hgp where ¢ is small and h,) is another symmetric
tensor, then 5.62 becomes

hEE
gzz
and so the perturbation §u is determined by the ratio hzz/gz.. But this
ratio has the same tensorial structure as u itself and so determines a tensor
like that in 5.61. In other words, we can represent it by the tensor

(5.63)

bu=c¢

v(z, 2)% ®dz (5.64)

for some functlon v. It is now opportune to demonstrate that this tensor

belongs to ker BK’ o This is because the space ker 5&?3’ consists of &-

closed forms of type (0,1) on ¥ with coefficients in K3,. Now ¥ has complex
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dimension 1, so Ky = T*¥. Thus it follows that K3 = TX; and, for the
same reason, all 1-forms of type (0,1) on ¥ are d-closed. Also a (0,1) form
with coefficients in Ky, = TY is simply a vector valued form representable
in local coordinates as

vdz = v(z, 2)622 ®dz (5.65)

Thus any element of ker 5&?;) gives rise to a perturbation in p.

But from our work earlier in this section we know that we must quotient
the space of §u's by the space Dif fo (X) of diffeomorphisms. Let us now see
how this is done. To make progress we need a more explicit description of the
group Dif fo (¥). This is found by considering the Lie algebra of Dif fo (Z).
The Lie algebra of Dif fo (X) is just the space of smooth vector fields on
¥; we write this space as vect (X) (not to be confused with Vect(X) which
is the set of vector bundles over ). To check this fact let V € vect (X),
then we can exponentiate to Dif fo (X) to obtain the one parameter family
a; = exp[tV] of diffeomorphisms. The meaning of the map a; is that it
represents the flow on X of the vector field V: consider the integral curve
of V that passes through a particular point z, and let z(t) be the point
labelled by t on this curve. Then «; is defined by

X — 3
o (5.66)

z — z(t)

This map «; induces an action A, say, on Met(X) via a push-forward, i.e.
via (a;).. For notational convenience we summarise this below
A¢ :Diffo (Z) x Met(X) — Met(X)

(ce,9) e g (5.67)

with (o - 9)(z) = ((ae)49)(z) = glae(z)) = g(z(t)). Now denote the metric
ay-g by g(t), which can be thought of as an integral curve on Met(%). Then

we have
9(t) = g(0) + tLyg(0) + - -- (5.68)

where Ly denotes the Lie derivative with respect to V. Thus
9'(0) = Ly g(0) (5.69)

and ¢'(0) is the set of components of a tangent vector to Met(X) (compare
the finite dimensional case where we replace g(t) by z(t) an integral curve
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on the manifold 5 generated by a tangent vector Y = Y%(8/0z'). Then

Lyz? =Yz = Y¥(8z7/8z') = Y7). In any case we have found that®

s

Lvgas € TyMet(S) (5.70)

Applying this to the calculation at hand means that we must quotient
out those §u whch are obtained from any 6g,5 of the form

69ab = Ly gap
This means that éu takes the form

_ Ly gz
Gzz

The formula for the Lie derivative of a tensor gives

00ab . ,; ovi ov?
9a5(0) = Ly gap = £ =Vt 9o prri iy (5.71)

Thus we find for éu the equation

 A{922,:VZ 4+ 9222V + 925VE 4+ 92:VE + 92 VE + g3z 2}
gzz

But a glance at ds? shows that the only non-zero components of gqp are gz,
and so we obtain the simple result that

ou=2V5 (5.72)
= 23;Vz

Thus we must quotient by those §u of the form 8;V? for any vector field

V = V*0/08z + VZ9/8z (the factor 2 in 5.72 is not of course significant).

But V#0/08z is just a sectlon of the bundle TY = Ky.. Thus a éu given by

5.72 is just the image under 8 of a section of Ky; that is, it is an element of

(0 0)

Imdy (5.73)

5 In general if a metric g satisfies Lxg = Cg, for some C, then K is an example of a
conformal Killing vector for the metric g.



Some Algebraic Geometry 161

It is therefore expressible locally as V#9/0z ® dz. The cohomological inter-
pretation of the u perturbations can now be given since we have identified
the space of infinitesimal §u’s to be the quotient

ke 1'601)

— Fs_ (5.74)
Im3gy)

However, this is immediately recognisable as a Dolbeault cohomology group.
In terms of Dolbeault cohomology we have

(0 1)
k‘ er 6
(0,1)
B I 6(0 0) (5.75)
In view of the fact that this space is also the tangent space to the moduli
space we write

H"(E) = Ty My (5.76)
E

where, as before, [g] denotes the point in moduli space determined by the
conformal equivalence class [g] of the metric g.

We have just seen that the Beltrami differentials form the tangent space
to M,. The cohomology language that we employed therein is of great help
in identifying the corresponding cotangent space TLg]MP All we have to do
is to use Serre duality.

First of all we have the sheaf cohomological fact (cf. chapter 3) that

H(9) = H'(S, 0(Kp) = (5, 0°(K)

and, since dim¢ ¥ = 1, its Serre dual as given by 5.20 and 5.22 is

HY(,0(Kx)) = H'(, O(K}))
= H{(2)

2
KE

(5.77)

So the tangent and cotangent spaces to the moduli space are given by

TigMy = Hy')(E)  and  TjyM, = HYO(E) (5.78)
= hs!

This space H%O'S) (¥), which is dual to the space of Beltrami differentials,
K

z
is known as the space of (holomorphic) quadratic differentials. Quadratic
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differentials are easily represented using local coordinates. Let ¢ be a holo-
morphic quadratic differential, then in local coordinates we must have®

o= ¢(2)dz®dz
and 8¢ =0

Before continuing with the calculation of dim M, we take time off to
consider an example of Serre duality in action. We have just used the
appropriate definitions to deduce that the spaces of quadratic differentials
and Beltrami differentials are dual to one another. This can be examined
in a bit more detail.

Example Serre duality end gquadratic differentials
Let us take a Beltrami u and a quadratic differential ¢ so that

0 -
b= u(z,2)5- ®dz

¢ = ¢(2)dz2® dz

Serre duality gives the action of ¢ on u as
_ 0 _ .
<p,p>= | wlz,2)¢(2) < —Rdz,dz®@dz >
b pX 0z
= [ wz,219(e)dadz
T

using the usual rules for evaluating inner products on tangent spaces. Fur-
ther, had u been of the cohomologically trivial form V%(z,2)0/0z ® dz then
the above calculation would have given the answer zero. This is indeed so,
for we would then have

/ < p,p >= 861/:‘ (z,2)¢p(2)dzdz = —/ V*(2,2)0¢(z)dzdz = 0
b r 02 b

by holomorphicity of ¢. Thus we see that x and ¢ do have encoded into
them the some of the properties that the validity of Serre duality requires.

8 For ¢ to be invariant it is clear that under a holomorphic transformation z — h(2z) we
require ¢(z) = $(h(2))(h'(z))>—more generally if ¢ = ¢(z) ®9dz, then ¢ is a holomorphic
g-differential, i.e. ¢(2) = ¢(h(2))(k'(2))?. Further, if a discrete automorphism group T’
such as a Fuchsian group acts on ¥ and leaves ¢ invariant, then ¢ is a I-invariant
holomorphic g-differential and is called an automorphic form of weight ¢; when I' is the
modular group SL(2,2)/{FI}, ¢ is known as a modular form of weight q.
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Returning now to the main discussion we observe that it is obvious that

HPO(S) = ker Bx (5.79)

2
KE

This observation is a key one for us since it immediately allow us to expresses
the dimension of M, as the dimension of the kernel of an elliptic operator.
The precise statement is clearly

dim M, = dim Tj;M, = dim ker Oz (5.80)
It is at once tempting to try and use the Atiyah-Singer index theorem
to derive an expression for dim ker 8,@ . This does indeed work and we
proceed at once to the calculation. Referral to 4.118 of chapter 4 shows

that we require the Riemann-Roch theorem for an elliptic operator of the
form Op. In our particular case the index formula says that

indez Oy = dimker Oxa — dim ker 5;@
(5.81)
= / ch(K%) A td(TE)
T
But the bundles K3, and TE coincide, and K2 is a line bundle, so that
1
ch(K3)=1+eci(K3),  td(TE)=1d(K}) =1+ s (Kp)
1
= ch(KE) Atd(TE) = (1+ c1(KE) A (1+ 51 (K3))
1
= (1+cx(Kg) + 5eu(Kg) +- )
1
= (1+2c1(Kg) = ze1(Kz) +-+)

=1+ gcl(K,;)+..-)

= indea:éxg = g/ c1(Kx)
T

(5.82)
However, the Gauss-Bonnet theorem determines this integral according to
[akz)=2-2=- [ as) (5.83)

T by

so we have as an immediate consequence

= 3
index Oz = —=(2—-2p) =3p—3 (5.84)
£ 2
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To complete our task all that remains is to compute dim ker 5;@ . We shall
show that, provided p > 2, ker 5;@ vanishes; if p < 2 then ker 5;(% does
not vanish and we shall use a slightly modified argument to deal with these
cases. The main tool is the Kodaira vanishing theorem. This is a theorem
concerned with positive line bundles (positive meaning ¢;(E) > 0) which
states that

Theorem (Kodaira) If E ts a positive line bundle then

HP(M,QYE))=0, p+q>n (5.85)

The proof of this theorem uses what is called a Weitzenbick positivity
argument. We shall briefly summarise the logic of the proof since variations
of it are found in other cohomology vanishing theorems. The cohomology
group H?(M,Q4(E)) is expressed as the kernel of an appropriate Laplacian
in the standard Hodge fashion. This Laplacian can be expressed as the sum
of the ordinary Euclidean Laplacian plus a curvature term. Then the Chern
class ¢;(F) is written in terms of the curvature. Finally, the positivity of
¢1(E) implies the positivity of the Laplacian’s curvature term; and thus the
Laplacian itself is positive and so has a vanishing kernel.

Before we can use this theorem we must interpret ker 9% k2 @8 a sheaf
cohomology group. This is a straightforward application of Hodge theory
from which it is immediate that

ker 8%, ~ HOY(x
kg = Ha, i (%) (5.86)
~ H(S, O(K2))

We would like to apply this to the case above where we have E = K% and
n = 1; but the condition p + ¢ > n is not fulfilled. However, Serre duality
comes to our rescue since, when applied to H(Z, O(K32)), it yields

ker 83z = H'(S, O(K})) = {H°(S,0(K5* ® Kg)}
~ {H°(Z,0(K3))} (5.87)
o~ {ker Ok; }"
This has the effect of replacing the bundle E = K2 by the bundle K3 and
the latter will be negative because the former is positive. There is now a
vanishing theorem for negative line bundles, which we obtain by applying

Serre duality to the vanishing theorem above. The result of this is clearly
the statement: if E is a positive line bundle then

HPP(M,Q"9(E*)) =0, p+q>n (5.88)



Some Algebraic Geometry 165

But this is equivalent to
Theorem (Kodaira) If E is a negative line bundle then

H'(M,Q(E)=0, i+j<n (5.89)
Now if we consult 5.87 we have E = Kg, i =j =0,and n =1, so
HY(Z,0(K%) =0 (5.90)
provided ¢, (Kg) < 0. But
a(Kg)=2-2p (5.91)
so we deduce that
HY(Z,0(K3)) =0, p>2 (5.92)

thus _
ker 0xa =0, p>2

Therefore we have the result
dime M, =3p -3, p>2 (5.93)

For the remaining two cases we have to make separate arguments. We deal
first with p = 0. In that case Riemann-Roch says that

index Oxz = —3 (5.94)

so clearly this time dim ker 5;(2 > 0. Now we apply the Kodaira vanishing
_ £
theorem to ker Oy itself. We have

ker Oxa = H(Z, O(K$)) (5.95)

but now the criteria of 5.89 are satisfied since, for genus zero, K3 is a

negative line bundle. Thus _
ker 3;@ =0 (5.96)

and so”
dimeM, =0, p=0 (5.97)

7 In this case we have a 3-complex parameter family of conformal Killing vec-
tors for the Riemann sphere S%2—these are given by the action of the M&bius group
SL(2,C)/{FI} (which is of the correct dimension) on the complex plane.
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Finally, for genus p =1

indez Ogz = 0 .
o ~ (5.98)
= dim ker 8}}; = dim ker Ok

Thus the only question remaining is what are the sizes of the kernels in
5.98. Note that vanishing theorems are useless here since now K2 is trivial
and so is neither positive nor negative. However, in §5 we have already
constructed T, for the case p =1 and found it to be 1-dimensional. Hence
this is also the dimension of M, when p = 1.

Nevertheless, the index theorem is still of some value when p = 1 since
dimM,, = 1 implies that dim ker 0 ki = = 1. But the space ker 3" k2 is the dual
of the space of conformal Killing vectors. To see this consider a perturbation
of the metric which is only a conformal change of metric, that is, impose the
restriction §p = 0. Now we have seen that, locally, §u = 8;V*(z,2) with
V'# one of the components of a vector field V. The restriction §u = 0 is
therefore just 9;V*(z, z) = 0. In other words, V* must be holomorphic and
can be thought of as a holomorphic section of the bundle TY = K§,. This
space of sections is the cohomology group H%(Z, O(K$)) and we showed in
5.92 that this group is isomorphic to the dual of ker 5}}; . Hence our result
follows and the index theorem has shown us that the space of conformal
Killing vectors is 1-dimensional for genus one.

We have completed our calculation of dime M, for arbitrary genus p.
In summary, we have found that

0, if p = 0 (in this case M, has just one point)
dime M, =< 1, ifp=1
3p-3, ifp>2
(5.99)

§ 7. Weierstrass gapé and Weierstrass points
A particularly interesting property of meromorphic functions on a Riemann
surface is the nature of their singularities. On the Riemann sphere a mero-

morphic function f with a single pole at the point zy may have leading
behaviour, near zp, of the form

f@) = —— +- (5.100)
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with no restriction on n8. For a surface of higher genus p there are restric-
tions on the values of n allowed. What happens depends on the point z,
where the pole is located. For most points zp on ¥ a pole at z; has n > p;
but there are certain special points of ¥ at which poles may have n < p.
These points are always finite in number and are called Weierstrass points.
However, even if a pole does occur at a Weierstrass point, not alln < p
are allowed, an example being n = 1. In general an integer n; which is not
allowed is called a Weierstrass gap for the point z5. The following theorem
describes the general situation.

Theorem (Weierstrass gap theorem) Let ¥, be a Riemann surface of genus
p, and let f be any meromorphic function whose only singularity is at z
where it has a pole of order n. Ifp = 0 then f may have a pole of any order n
at any point zg. If p > 1 then a pole of f at zy always has order n > p except
at a finite number of zo’s known as Weierstrass points. For a general point
zg there are p gap values ny,...,np satisfyingl =n; <na <---<np < 2p
such that none of the integers n; may be the order of the pole at 2y of the
meromorphic function f.

The first gap value n; is always 1 and this is easy to understand: the
sum of the residues of a meromorphic function on a Riemann surface %,
of positive genus is always zero. This is because we can use a variant of
the argument of p. 140 where we represented X, as a 4p-sided polygon.
Using the same contour C, applied to f rather than df/f, shows that the
sum of the residues of f is zero. Hence if the function has only one pole its
residue must vanish. Of course for zero genus this is not true: the function
f(2) = 1/z is an example of a meromorphic function on the Riemann sphere
with just a simple pole. In other words, there are no gap values for genus
ZEro.

Points which are not Weierstrass points are referred to as normal points,
the gap values for normal points are the simple sequence 1,2,...,p. Notice,
too, that the theorem asserts that for genus p = 0 and p = 1 there can be
no Weierstrass points.

We can outline a proof of the Weierstrass gap theorem by applymg the
Riemann-Roch theorem to divisors at zg.

Let a divisor D be given by

D = nz, withn >1 (5.101)
8 In this section we shall call the positive integer n the order of the pole. This is the

opposite convention to that used in § 2 when we discussed divisors; in that discussion the

order of a pole was a negative integer.
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Note that deg (D) = n which is positive. Now consider the line bundle
[D] associated to D. Then, because the degree of D is positive, [D] has &
global holomorphic section. This being so let us write down the space of all
holomorphic sections of [D]; sheaf cohomology identifies this straightaway
as

HO(Z,; O([D])) = H(Zp; O([n20])), since D =nz (5.102)

Let s be that holomorphic section such that, in the patch U, containing zy,
it has a zero of order n (s is really the localisation of the divisor D to U,).
Now multiply s by a meromorphic function f whose sole singularity (if it
has one) is a pole at zp. Then, as long as the order of this pole is at most n,
the product fs is another holomorphic section; also all holomorphic sections
are obtained in this manner. Thus we can identify II°(3,; O([nzo])) with
the space of all meromorphic functions whose sole singularity is a pole at
zo of order at most n. Let us denote this latter space by L(nzp).

Note that a function f € L£(nz,) does not have to be singular at zg; but
if f is holomorphic at zp then it is holomorphic everywhere on ¥, and is
thus a constant. Note, too, that if all of the f € L(nz) were holomorphic
everywhere, and thus constant, then dim £(nzo) would have attained its
minimum value, namely 1.

Now if f € £(nz) then we can expand f in a Laurent series about zg
8o that near zy we have
ay On

(Z—Zo)+m+(z—"zo)_"

f(2) = ap + (5.103)

Since this expression depends on n+1 parameters we might conjecture that
dim L(nzp) = dim H°(Z,; O([nz])) =n + 1 (5.104)

However, the Weierstrass gap theorem contradicts this conjecture. For ex-
ample, if n < p, and zg is not a Weierstrass point, then the theorem tells us
that

dim L(nz) =1 (5.105)

More generally, if n > (2p — 1), there are p gaps in the parameters a;, i.e. p
of them are zero; in terms of dimensions, this is the assertion that

dimL(nzy) =n+1-p (5.106)

which should be contrasted with our conjecture 5.104 above.

Now since £(nzo) = H°(E,; O([nzo))), and H®(Z,; O([nz))) is the sort
of space to which the Riemann-Roch theorem applies, it is sensible to use
the Riemann-Roch theorem here.



Some Algebraic Geometry 169
The Riemann—Roch theorem for the operator 5[MD] says that

indez O} 5,) = dim ker O} 5, — dim ker 5[*"“] = L ch([nzo]) A td(TE,)

14
(5.107)
However, using the same algebra as we did in our calculation of the dimen-
sion of the moduli space, we find

ch([nzo]) A td(TEp) =(1 + c1([n2o])(1 + %cl(TEP))

s 1
= index Ojpz,) = /2 a([nzo]) + 5 /2 ci(TEp) (5.108)

14 P
1
=n+§(2—2p)=n+1—p

Now we can identify ker 5[*"20] with H'(2,;O([nzo])). Then, using Serre
duality, and the Kodaira vanishing theorem for negative line bundles, we
find

Serre = H! O([nz0])) = {H’(Ep; O(Kg, ® [nzo]‘))}*
Kodaira = H° O(Kg, ® [nz]*)) =0, ifn>(2p-1)
The inequality n > (2p — 1) comes from satisfying the criterion for the
vanishing theorem, which says that the bundle Ky, ® [nzo]* must have
negative Chern class. But ¢;(Kg,®[nz]*) = c1(Kg,)+c1([n2zo]*) = 2p—2—
n and our inequality now follows. Thus we have found that, for n > (2p—1),
dim H%(Z,; O([nz0])) = dimL(nz) =n+1-p (5.110)

in agreement with 5.106 above.
The statement that the number of Weierstrass points is finite can be
phrased as

(Ep;
5.109
=, (5.109)

ifn>p, dimL(nz) > 1 for a finite number of 2 (5.111)

This can be proved (Griffiths and Harris [1]) by counting singular points
on certain algebraic curves associated to X,.

Instead of considering functions we can also consider meromorphic g-
differentials; a very similar proof establishes that these also have Weierstrass
points. The main difference in the proof is that the sheaf O([nz]) is replaced
by O(K} @ [nzo]).

The number of Weierstrass points on X, is finite and any automorphism
of ¥, permutes its Weierstrass points. This fact can be used to show that,
if p > 2, a Riemann surface has only a finite number of automorphisms,
cf. Griffiths and Harris [1]. Indeed, as we mentioned at the end of §5, the
number of automorphisms for p > 2 is at most 84(p — 1).



CHAPTER VI

Infinite Dimensional Groups

§ 1. Some infinite dimensional groups

Finite dimensional groups are widely used in mathematics and physics. In
dimension zero we have finite and infinite discrete groups; if the dimension
is positive then we can turn to Lie groups and obtain thereby a multitude
of important compact and non-compact groups.

Physicists have made extensive use of finite discrete groups in crys-
tallography. Infinite discrete groups also occur—for example, there is the
modular group SL(2,2)/{FI} which is fundamental to string theory. The
continuous groups used by physicists are usually non-Abelian simple and
semi-simple Lie groups and the Abelian group U(1). On the compact side,
the five exceptional groups Eg, E7, Eg, Fy and G5, and the various classical
groups U(n), O(n) and Sp(n) are frequently symmetries of the action of
some quantum field theory. It is also necessary to use non-compact, locally
compact, groups. For instance the group SL(2,C) is needed in order to
construct Lorentz-invariant quantum field theories.

The representations of these finite dimensional groups have been sys-
tematically studied and, especially in the compact case, an extensive theory
has been worked out. However it is also the case that various infinite di-
mensional groups occur naturally in physics.- This being so they ought to
be studied and the construction of their representation theory is an im-
portant part of any such study. In this chapter we give some examples
of infinite dimensional groups, largely restricting ourselves to those groups
which occur in subsequent chapters. We shall also say a limited amount
about representations. These infinite dimensional groups also provide us
with various concrete examples of infinite dimensional manifolds. We shall
see that most of these examples are, at least locally, of the form Map(X,Y)
for appropriate finite dimensional X and Y.
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The infinite dimensional groups that we shall study can be given a
smooth structure and, when this is done, they become infinite dimensional
smooth manifolds.

An infinite dimensional manifold M is defined in a similar way to the
finite dimensional case: M is a topological space which is sewn together from
open sets of some infinite dimensional topological vector space E; then M is
said to be modeled on E. In finite dimensions E is just R™ or C™ but in the
infinite dimensional case E is a topological vector space such as a Hilbert
space, a Sobolev space, a general Banach space, or some other locally convex
space. One then refers to M as a Hilbert manifold, or a Sobolev manifold
and so on. In finite dimensions if a manifold is a Lie group then its Lie
algebra, which is also a vector space, is the model space R". In infinite
dimensions if M is a Lie group its Lie algebra is also the model space E.
The interested reader can find a detailed account of infinite dimensional
manifolds in Hamilton [1], Milnor [2] and Abraham and Marsden [1].

Example The group Map(X,G)

A very easy infinite dimensional group to describe is the group of smooth
maps from a compact space X to a finite dimensional Lie group G. In
accordance with the notation used in chapter 1 for spaces of maps we denote
this group by Map(X,G). Actually in chapter 1 on p. 8 we introduced
the closely related group Mapo(X, G) which just consists of the base point
preserving maps in Map (X, G). In order to make Map (X, G) into a group
we have to define the group operation, but to do this we can repeat the
‘pointwise evaluation’ definition used for Mapo(X,G). This means that if
a, B € Map(X,G) we denote their product by a 8 which we define by’

aef: X —G

z — o(z) * B(z) (6.1)
where * stands for the product in the finite dimensional group G.

The product (a,3) — a e 3 is a smooth map as is the operation of
inversion a — a~!. This means that Map (X, G) is an infinite dimensional
Lie group. The smoothness of Map(X,G) means that we can construct its
tangent space at the identity. This tangent space T.Map (X, G) is its Lie
algebra. It is not difficult to check that this tangent space is defined in
terms of the tangent space T.G to the finite dimensional group G. This
means that, denoting the Lie algebra of Map(X,G) by .CMap (X,G), and
that of G by g, we have

£Map (X, G) = Map (X, g) ' (6.2)
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Thus the Lie algebra of Map (X, G) is also given by a space of maps.

The group Map(X,G) can be rather complicated if dimX > 1; for
example, Map(X,G) generally has more than one connected component.
To see this we compare Map (X, G) to the group of based maps Mapo(X, G).
Now, for each g € G, let @y € Map (X, G) denote the constant map defined
by ag(x) = g,Vz € X. Now suppose that an arbitrary « € Map(X,G)
maps the base point 7o of X to g € G, i.e. a(zq) = ¢g. Then a can be
written in a unique way as a product of a constant map and a based map:
one simply writes a = ago(c 1 e a). This shows that, viewed as topological

spaces rather than groups, we have
Map (X,G) ~ G x Mapo(X,G) (6 3)

The connected components of Map (X, G) are given by mo(Map (X, G)) and
S0 we obtain

mo(Map (X, G)) = mo(G) ® mo(Mapo(X, G))
But mo(Mapo(X,G)) =[S°, Mapo(X,G)]o (6.4)
= [.":70 AX,Glo using 1.18
Now if we take the specific example where X = S™ and G = U(n) we know
that mo(U(n)) = 0 and [S° A X, G,]o = [S™,U(n)]o = ®m(U(n)). Thus we
find that, if X = S™ and G = U(n), then
wo(Map (X, G)) = 7 (U(n)) # 0 in general (6.5)

More specifically still, we can set S™ = S3; then, using the standard fact
for U(n) that w3(U(n)) = Z, n > 1, we deduce that mo(Map (X,U(n))) =2
and so Map (X,U(n)) has infinitely many components.
Slightly more generally we can replace S™ by any manifold X but keep
G = U(n). Then we find that
mo(Map (X,U(n)) = [S° A X, G,]o
=[S°AX,QBU(n)]y cf p. 73
= [SX, BU(n)]o (6.6)

= RU-Y(X) it n > 90X

cf. pp. 74 and 76

The non-triviality of KU~1(X) in general ensures that Map (X,U(n)) has
many components. *

1 Actually a K-theoretic calculation shows that I?U"‘(X) =Z®:---®Z®T whereT
i3 a torsion group; also if there are m copies of Z in the summation then m = by +ba+---
where the b; are the Betti numbers of X.
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For our next example we select a group of the form Map (X, G) where
X is just one dimensional. The group in question is known as the loop

group.
Example The loop group
The loop group LG is the group Map(X,G) when X = S!. That is

LG = Map(S*, G) (6.7)

It is clear that, for simply connected G, LG has only one component. The
loop group is of considerable interest to both mathematicians and physicists.
For a very good mathematical account of LG and its representations the
reader should consult Pressley and Segal [1].

The Lie algebra of LG is the space

Map(S*,9) (6.8)

It has been extensively studied via its representation theory. All the inter-
esting representations are actually representations of a central extension of
Map(S*,g). We denote this central extension of LG by LG. The resulting
algebra has generators T, which satisfy the commutation relations

(T8, T2 = if*®Ts ., + kmé®6y —n, m,neZ (6.9)

where k is the central term and f2%¢ are the structure constants of the Lie
algebra g of G. Notice that the generators {7} form a finite dimensional
sub-algebra isomorphic to g; these are the generators of the constant loops
in the product 6.3 above. These commutation relations are those of an
(untwisted) affine Kac-Moody algebra. A useful basis for the algebra is
given by

T = exp[inf] T (6.10)

where 6 is a coordinate on the S! contained in Map(S?',g). The mathe-
matical theory of Kac-Moody algebras, as well as being of interest in its
own right, has connections with other branches of mathematics such as in-
tegrable systems, the theory of modular forms and the representations of
finite simple groups such as the Monster group. A few useful references
are Kac [1], Segal and Wilson [1], Mason [1] and Conway and Norton
[1]. The physical applications are also numerous and have close ties with
the mathematical ones. Areas of application include statistical mechanics,
conformal quantum field theories, current algebra and string theories. Some
of these are described in Lepowski, Mandelstam and Singer [1], Goddard
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and Olive [1] and Mickelsson [1]. Another important application of loop
groups is in the construction of knot invariants via conformal quantum field
theory—cf. chapter 12.

Example The diffeomorphism group
The diffeomorphisms of a manifold X form a group which we denote by

Diff(X). The product o e 3 of two diffeomorphisms «, 3 € Dif f (X) is
just their composition as maps. That is we have

aeff: X — X
z — a(f(z))

\
Diff(X) is a Lie group and its Lie algebra is identified as follows. Let V-
be a (smooth) vector field on X with integral curves v(t); then flowing X a
distance ¢t along these integral curves produces a family of diffeomorphisms
o, labelled by t. This identifies the Lie algebra of Dif f (X) as the smooth
vector fields on X which we write as vect (X). That is

(6:11)

LDiff (X)) = vect (X) (6.12)

In local coordinates we can write

0
V= Z ’Ui%, Qp = exp[tV] (613)

The Lie bracket of vect (X) corresponds to the ordinary Lie bracket for
vector fields.

Example The Virasoro group

A special case of Dif f (X) is the group obtained when X = §. This group
Diff(S') is fundamental to string theory (Green, Schwarz and Witten
[1,2]). More precisely the group of importance in string theory is a central
extension of Diff (S') known as the Virasoro group which we write as
Diff(S'). In this case the Lie algebra is the famous Virasoro algebra
(Virasoro [1] and Gel'fand and Fuks [1]). Its commutation relations are

usually quoted in the centrally extended form
[Lm, Lp] = (M = n)Lmyn + ém(m2 —1)6m,—n, m,n€Z (6.14)
where c is the central element also known as the central charge.

The Virasoro algebra is closely connected with conformal invariance:
In two dimensions, unlike the case in higher dimensions, the conformal
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group is infinite dimensional because any holomorphic or anti-holomorphic
transformation preserves angles and hence is conformal. Holomorphic trans-
formations can be determined by their boundary values on the unit circle
and thus by maps from S* to S*. The Lie algebra of the conformal group
is thereby easily calculated by a Fourier expansion on S! and is found to
consist of two commuting (¢ = 0) Virasoro algebras, cf. Green, Schwarz and
Witten [1]. In this way one can find a formula for the generators, which is

d
L, = —z""'la = exp[in@]i% on S! (6.15)

Example The group of gauge transformations

The term gauge transformation is well known to physicists and a typical
gauge transformation is often written as g(z) where z is a point on X and
g(z) is an element of G. This suggest that, at least locally, gauge trans-
formations are elements of Map(X,G). However, gauge transformations
are not globally elements of Map(X,G) and some additional structure is
required in order to construct the group of gauge transformations—a group
that we shall denote by G.

The additional structure referred to above is simply a fibre bundle.
Suppose that we have a G-connection A over X, then we know that this
is constructed over a principal G-bundle P on X (Nash and Sen [1]). Any
bundle automorphism of P produces a bundle with identical physical con-
tent, and so such automorphisms are symmetries of physical theories. These
automorphisms are essentially the gauge transformations.

A short-account of G is as follows. Let Aut (P) denote the group of
smooth bundle automorphisms of P: a bundle automorphism a € Aut (P)
is a map which commutes with the defining group action on P, i.e. it leaves
the fibration intact. This means that

a(g9-p) = g-a(p) (6.16)

where the group action on P is denoted by a dot. For a principal bundle P
the group G acts on the right and therefore consists of group multiplication
by ¢%; that is, we have

9-p=pg} (6.17)

Using this in our equation for a, with g interchanged with ¢! for conve-
nience, gives

a(pg) = a(p)g (6.18)
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The group product in Aut (P) is given by composition: (aef)(p) = a(8(p)).
Now, since the elements of Aut(P) are fibre preserving, we can use the
bundle projection 7 : P — X to project them onto the base X. This gives
us a group of smooth coordinate transformations of X into itself. This
group is none other than Diff(X). On the other hand, this projection
is actually a group homomorphism h, say, and so its kernel ker h is also a
group; ker h is the group of gauge transformations. It will be convenient
in chapter 8 to distinguish between the group of all gauge transformations
ker h, and a subgroup which is defined by imposing a base point condition.
This condition is that each of its elements « satisfies a(po) = I (the identity)
for some fixed pg € P. We shall use 5 to denote ker h, and G to denote its
subgroup. Let 7(po) = ¢ so that the fibre of P to which pg belongs is Py,
then G is characterised by the property that it acts as the identity on Py, .

It can be seen from the preceding discussion that the group of bundle
automorphisms Aut (P) contains the two classes of invariance possessed by
the action S of a gauge invariant quantum field theory. Further, Aut (P)
provides a natural division of this invariance into the following two classes.
The first class is made up of the group of gauge transformations G or ker h—
the elements of which correspond mathematically to transforming the fibres
of P in some appropriate way. The second class is that introduced by
Einstein, and is the group of coordinate transformations Dif f (X)—whose
elements correspond mathematically to transforming the base space X of P
in an appropriate way.

The Lie algebra of G can be easily constructed. In order to do this
we introduce a more explicit description of Aut(P): Take the principal
bundle P and form its associated adjoint bundle Ad P. The bundle Ad P
is the associated bundle over X where each fibre is an isomorphic copy of
the group G but the action of the group is conjugation rather than right
translation; we write this as Ad P = P x 44¢ G. We shall now show that G
is given by all the smooth sections of Ad P with the group product being
pointwise evaluation of sections. To this end let o € Aut (P); then, since o
takes fibres of P into themselves, we can introduce a map @ : P — G which
we define by

a(p) = pa(p) (6.19)

Next we impose the equivariance requirement 6.18 which then becomes

(pg)a(pg) = pa(p)g

- L (6.20)
= &(pg) = g~ a(p)g

Now we project & onto the base as we did above; those @ in the kernel of the
projection will correspond to the @ which are gauge transformations rather
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than diffeomorphisms of the base. The effect of this projection is simply
to replace an &@ : P — G by a map ax : X — G. Having done this we
introduce local coordinates on P and write p = (z,¢) and, in terms of these
coordinates, we find that

a(pg) = (z,8x(z)g) = (z,97'@x(z)g) (6.21)

But this immediately identifies @x : X — G as a section of a bundle over X
whose fibres are copies of G subject to the adjoint action. In other words,
ax determines a section of Ad P. Thus the group of gauge transformations
G can be viewed as the space of sections of AdP.

Finally we check that, under the transition from Aut (P) to sections of
Ad(P), the group product in G changes from composition of automorphisms
to pointwise evaluation of sections. If a, 8 € Aut (P) then

a(B(p)) = a(pBx (p)) = (PBx (p))ax (pBx (p))

S bt _ (6.22)
= pPx (p)Bx’ (p)ax (p)Bx (p) = pax (p)Bx(p)
That is we have shown that
o(8(p)) = PAx () 6m)

where  Fx(p) = ax(p)Bx (p) = (Gx ® Bx)(p)

as required.

With the alternative description of G in place its Lie algebra £G is rather
naturally defined as the space of smooth sections of the corresponding Lie
algebra bundle ad P. This latter bundle is obtained from Ad P by replacing
all the fibres G by copies of the Lie algebra g, thus ad P = P X a4¢ @
Summarising, we have

G =T(X, Ad P), 26 =T'(X,ad P)

AdP = P x 446 G, 6dP =P X440 8 (6:24)

Example Current algebra
One of the earliest occurrences of an infinite dimensional algebra in physics
was the current algebra motivated by the quark model (Adler and Dashen
[1] and Gell-Mann and Ne'eman [1]).

A concrete example i8 available in two dimensions. We take space-time
to be two dimensional and periodic in space. Then we use the Kac-Moody
algebra to define a a current 5%(6) by

7%(6) = Z T? explinb] (6.25)
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The commutation relations of the currents j*(#) are then the equal time
current algebra commutation relations

[1%(8), 5°(#)] = if **°j°(6)6(8 — ¢) + icE*8'(6 — ¢) (6.26)

Notice that the central term of the Kac-Moody algebra has emerged as the
well known Schwinger term of the current algebra.

Before leaving these examples we wish to remark upon the analyticity
of the groups that appear in them. All the groups are Lie groups and are
smooth infinite dimensional manifolds. However, even stronger analyticity
properties are possessed by some of the groups. The group Map(X,G)
is smooth but the target space G in Map (X, G) is a finite dimensional Lie
group, and is therefore analytic. This analyticity of G induces an analyticity
for the infinite dimensional group Map(X,G). The mechanism whereby
this comes about is easy to pinpoint. The group Map (X, G) is topologised
by using the topology of uniform convergence: one says that the sequence
a@n € Map (X, G) converges to an element « if o, (z) and all its derivatives
converge uniformly to a(z). Thus the rdle of the analyticity of G is brought
to the fore. In any case the analyticity of Map(X,G) means that it has
an atlas of analytic coordinate charts which can be represented by Taylor
series with no remainder.

By contrast, however, the group Diff (X), though smooth, has no
particular reason to be analytic and indeed it is not analytic (Milnor [2]).
The lack of analyticity of Dif f (X) has consequences for the exponential
map from its Lie algebra to itself, i.e. the map ezp : vect (X) — Diff (X).
For an analytic Lie group G the exponential map ezp : g — G provides,
in a canonical way, a local coordinate system on G near the identity. But
for Dif f (X) the map ezp does not give canonical local coordinates near
the identity; also ezp is not locally a homeomorphism because one can
produce examples of elements of Diff (X) which, though arbitrarily close
to the identity, are not on any one parameter subgroup. There also elements
which lie on two or more one parameter subgroups (Milnor [2]).

§ 2. Group extensions

In the previous section we quoted two sets of Lie algebra commutation
relations in a centrally extended form. These group extensions are of con-
siderable mathematical interest and play extremely important part in ap-
plications to quantum field theory. Before dealing with particular examples
we give a brief summary of the properties of group extensions.

Recall that extensions G of a group G by a group H are summarised
by an exact sequence of group homomorphisms of the form

1— HSLG-26—1 (6.27)
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The group H is called the kernel of the extension and is a normal subgroup
of the group G; the quotient G/H is the original group G. If the exact
sequence splits—i.e. 3 has a right inverse—then we say that the extension
G is the semi-direct product of H with G and we write G = H>< G. If H
is contained in the centre of G then we have a central extension.

A corresponding Lie algebra statement is that g, considered as a vector
space rather than as an algebra, is the direct sum g §. The content of the
extension lies in the relation of the Lie bracket of g to those of g and h. We
shall write an element of § as (U,V) with U € gand V € h. Then the Lie
bracket can be written

(U1, V1), (U2, V2)] = ([U1, V2], (U1, Ua)) (6.28)

where ¢(Uy,U,) is a G-invariant anti-symmetric form on g, c: gx g — b.
The need for the Lie algebra g to satisfy the Jacobi identity imposes the
usual cyclic permutation restriction

c([U, V], W) + c([V, W], U]) + ¢([W, U], V) = 0 (6.29)

But this is also the condition for a G-invariant bilinear form on g to deter-
mine a Lie algebra 2-cocycle. Hence Lie algebra extensions are classified by
an element ¢ € H2(g; h).

For cohomology calculations it is useful to know that the de Rham
cohomology of G and g coincide when G is compact. This is because if w is
a form belonging to the de Rham cohomology of G then w can be assumed to
be left invariant; but the left invariant forms on G are precisely the elements
of the de Rham cohomology of the algebra g, hence H*(G; R) = H*(g; R).
When G is replaced by a non-compact infinite dimensional group this is no
longer generally true. Nonetheless, for LG we do still have H*(LG;R) =
H*(Map(S?, g); R). However, for the group Map (X, G) with dim X > 1 the
result no longer holds. This is because there are some cohomology classes
in H*(Map(X,G);R) which cannot be made left invariant; the upshot is
that H*(Map (X, G);R) is smaller than H*(Map (X, g); R).

If one has a Lie algebra extension it need not give rise to a corresponding
group extension (Pressley and Segal [1]). For example, let a cocycle ¢ specify
a Lie algebra extension of Map(S',g) by R. Represent ¢ using de Rham
cohomology as a differential form? w/2m ; then the corresponding group
extension LG of LG by S exists if and only if w /27 determines an integral
cohomology class on LG. The integral class w/27 can also be thought of

2 The denominator factor 27 is recognisable as the standard normalisation used when
representing characteristic classes as differential forms.
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as the first Chern class of a U(1) bundle: the point is that, topologically
speaking, LG is a principal U(1) bundle over LG and it is completely
characterised by its Chern class which is w/27. If w/27 does not determine
an integral class then Map(S?, ) ® R is an example of a Lie algebra without
a corresponding Lie group.
To gain some insight into the quantum theoretic aspects we start with
a classical theory that has a symmetry group G. Then the generators T of
the Lie algebra of G will enter the classical theory via the Poisson bracket
relation ) ‘
{T°, T} = fobeTe (6.30)
where {T°,T%} denote the Poisson bracket of 7% and T®. The quantised

version of this theory is obtained by replacing T* by ¢AT°. The resulting
quantum commutation relations are of the form?

[T, T%) = ik febeTe (6.31)

However, in quantum field theory we have to consider corrections to these
commutation relations which are higher order in Planck’s constant A. This
leads us to the equation

[T, T?) = ihfT¢ + O(h?) (6.32)

In the case where the correction is just of order A%, and is proportional to
the identity, the quantum corrected commutation relations are

[T®, T?] = ihfob°T° + ih%cs?® (6.33)

and this is a central extension of the Lie algebra of G. We would like to
replace the finite dimensional algebra by the algebra of LG. This can easily
be done and gives us the central extension of Map (S, g) that we had above

(T2, T = ik fobeTs . + emh26%%6, (6.34)

The centrally extended Virasoro algebra is at the heart of string theory
and the central term gives rise to a conformal anomaly unless the space-time
has a certain critical dimension. We shall return to this matter of a critical
dimension when we discuss anomalies and strings.

Another important property of the Virasoro algebra is that it is inti-
mately related to the affine Kac-Moody algebra. More precisely, there is a

3 We normally work in units where A = 1 but this is not sensible if one wants to

compare a quantum theory to its classical limit.
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Virasoro algebra naturally associated with every Kac-Moody algebra. This
Virasoro algebra has its origin in the fact that the group Diff*(S!) acts
(projectively) on the loop group LG as an automorphism group. A conse-
quence of this is that one can obtain a Virasoro algebra from a Kac-Moody
algebra by the Sugawara construction (Sugawara [1], Goddard and Olive
[1], Segal [2]). The idea is to form the generators of the Virasoro algebra
by taking a carefully constructed expression which is bilinear in the Kac-
Moody generators. Sugawara proposed that the energy momentum tensor
T, be bilinear in the currents and of the form (from now on £ = 1)

Tuw = G50 — 222555 (6.35)
But since the currents are proportional to the T then this produces a quan-
tity bilinear in the Kac-Moody generators. Sugawara’s original suggestion
was to work in four dimensions but two dimensional examples have the
most interesting properties for us. A specific example is provided by a two
dimensional sigma model with a Wess-Zumino term included (Witten [1]).
In any case the generator L, is given by

1

L,=—+—— °TATs . ;
2k+C(G) Z on n—mo (6 36)

meZ

where ¢(G) is the value of the Casimir operator for the adjoint representation
of G (c(G) = f¥f3%/dimG) and ST2T2° is the usual normal ordering
defined by

emamas _ | T, ifm2>0,
InTnc = {T“T“ if m < 0.

mon?}

(6.37)

These L, satisfy the Virasoro algebra with a predetermined value for the
central term. We find that

2kdim G

mm(m2 —~D)bm—n  (6.38)

[Lm,Ln) = (m —=n)Lyyn +

The physical reason for the appearance of normal ordering is the farnil-
iar quantum field theoretic need to regularise operator products A(z)B(y)
when z — y; in this case it is the energy momentum tensor which requires
attention.

The mathematical origin for the normal ordering of the expression for
the Virasoro generator may also be uncovered (Pressley and Segal [1]). The
key observation is that a formal Casimir operator for the loop group algebra
Map(S*,g) can be written down just as in the finite dimensional case but
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the expression now contains a divergent infinite sum. We define the Casimir
operator A for a finite dimensional Lie algebra with basis {T%} by

A = T%(T?)* (6.39j

where (7%)* is the adjoint of 7* with respect to the standard inner product
Now for the Kac-Moody algebra the corresponding expression is ;

A= S THT2) = S TAT) + SOTHTY + TH(TE)" (640
neZ n>0 n<o

To expose the divergence we use an orthonormal basis for Map(S?,g) in

which (T2)* = T, (this amounts to a unitary representation of LG). Then

we have '
ST =Y (TeTe, + T2, T2) + TeTe (6.41)
neZ n>0

Now the commutator can be employed to write
TeT®, =T, T2 +[T2,T%,] = T2, T2 +if**°T¢ + kns®®, by 6.9

= (T2T%, + T°,T2) = 2T2T2, + kndim G

= A= "oTeTe, + T¢TS + kdlmGZn
n>0
(6.42)

But the last term contains the divergent sum ), n, hence our difficulty. If
we had used normal ordering the commutator would never have appeared
and this infinite term would be absent. With this motivation we define the
operator Ay in which the last term is simply discarded

Ao = oTiTe, (6.43)
n>0

This new operator Ag is not yet a Casimir operator for the Kac-Moody
algebra because one can check that it does not yet commute with all the
generators. A straightforward calculation of commutators shows that

[T2,Aq] = ~n(2k + ¢(G))T? (6.44)

where we have assumned for simplicity that G is simple and, as before, c¢(G)
is the value of its (finite dimensional) Casimir in the adjoint representa-
tion. The true Casimir operator is obtained by adding a multiple of the
operator (id/df) to Ag. To find this multiple we make use of the basis
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T¢ = exp[inf]T® for the Kac-Moody algebra that we introduced above.
We can verify that

a . d _ a
I:Tn,’l,@] = nTn (6.45)

Thus the Casimir operator we seek is simply

Ko + (2% + ¢(G))i%

= (6.46)

The geometric origin of this Casimir can be elucidated a little. The
group Diff*(S') acts on LG and LG, by reparametrising the loop. A
subgroup of this Dif f*(S!) is the (one parameter) group of rigid rotations
of the loop through some fixed angle; this subgroup is evidently isomorphic
to S1. The Lie algebra corresponding to this one parameter group is just
(id/d#). This widens the group under consideration to be the semi-direct
product S >< LG whose Lie algebra is R @ R & Map(S*,g). The ‘regu-
larised’ Casimir operator for this algebra is then nearly correct since it is of
the form Ag + a(id/df), with o a constant; however, we cannot select the
precise coefficient of (id/df) without further computation.

Finally the commutator of 7> with the operator A, defined by A, =

Zmez mT: ms T # 0is
[T, An] = 12k + (@) T} (6.47)

It follows immediately that the operators L, defined by

ZT“T,‘: my M#EO

n

T % +eG) +¢(G
(6.48)

Ly = 2k+ E2T“ A+ TETE)

obey the Virasoro algebra

2k dim G

@k @) ™™ " Vomon  (6:49)

[LmsLa] = (m — n)Lm4n +

in agreement with the normal ordered Sugawara expression above.

In addition to central extensions of LG we can consider central exten-
sions of Map(X,G) for dim X > 1. Actually all such extensions come from
the loop group LG rather than the group Map (X, G) itself (Pressley and
Segal [1]). Let us explain how to construct these extensions. We work at the
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Lie algebra level. Suppose to begin with we only have a central extension
of Map (S, g) specified by ¢ € H?(Map (S',9); Z), and let f be a map

f:8' —Xx (6.50)

Then f induces a map f : Map (X,8) — Map(S',g) which we can use to
pull back the cocycle ¢ from Map (S, g) to Map(X,g). The definition of f

18
L

f:Map(X,g) — Map(S',p)

oo f (6.51)

Thus f*c is an element of H2(Map (X, g); Z) and so determines a central
extension of Map(X,g), and all central extensions are obtainable in this
fashion.

The preceding result suggests that, when dim X > 1, we should con-
sider non-central extensions of Map (X, G). We proceed to do this in the
following way. Let dim X = n and w be an (n + 2)-form on the group G.
We can use w to obtain a 2-form on Map (X, G) by using an evaluation map
Ev defined by

Ev:X x Map(X,G) — G

(z,0) — a(a) (6.52)

The pullback Ev*w is an (n + 2)-form on the product X x Map (X, G) and
the desired 2-form ¢, say, on Map(X, G) is got by integration over X. We
have therefore

c= / Ev*w, [c] € H*(Map (X,G);R) (6.53)
X

where [c] is the cohomology class determined by the 2-form ¢. This 2-form
¢ determines a Lie algebra cocycle which takes values in the space H of
functions on Map (X, G): the Lie algebra cocycle is defined by the map €

€:Map(X,g) x Map(X,9) — H

(0, 8) — clax ) (6:54
where c(a, 3) denotes the value of the 2-form ¢ on the two elements a,
of the Lie algebra Map(X,g). Note that ¢(ea, ) is a O-form or function
on Map(X,g). Thus we have extended the Lie algebra Map(X,g) by the
space H where H = Q°(Map (X, g)); the corresponding Lie algebra cocycle
€ belongs to H%(Map (X,g); H).
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As a specific example we take G = SU(N), N >3 and X = 53. Now
if P is an SU(N)-bundle over S% and A is a connection 1-form on P, then
we can take a, 8 € Map (X, g) and write

c(a,B)=C | tr(daAdS A A), C a constant (6.55)
8§83

Actually, in this particular example, c(a, 3) takes values in the space of
functions on A (recall that A denotes the connections on X) rather than
in H. Thus the Lie algebra cocycle is an element of H?(Map(X,g);€)
where £ = Map (A, R). Now since the Lie algebra of S* is R the Abelian
group Map (A, S*) has Lie algebra Map(A; R). Thus in terms of groups we
have a non-central extension—the Mickelsson-Faddeev extension—of the
group Map (X, G) by the group Map (A, S*). These non-central extensions
are responsible for the Schwinger terms in the current algebra in higher
dimensions and have been considered in varying contexts by various authors
(cf. Faddeev [1], Mickelsson [2], Pressley and Segal [1] and references
therein). They shall also turn up in our discussion of anomalies in chapter
10.

§ 3. Representations

The representation theory of infinite dimensional groups is still under con-
struction and the theory is nothing like as highly developed as that of finite
dimensional semi-simple Lie groups. Nevertheless, for particular groups
such as the loop group LG and the Virasoro group Diff (S') there is a
substantial representation theory. Much less is known about representa-
tions of Map(X,G) when dimX > 1; for a summary of what is known
cf. Pressley and Segal [1]. For a systematic account of the representation
theory of groups such as LG and Diff (S!) we refer the reader to the ref-
erences cited in this chapter; we shall limit ourselves to some remarks on a
few salient features. We begin with the Virasoro group but we shall actually
describe the representations of the algebra instead of those of the group.

Example The Virasoro algebra

The Virasoro algebra is the centrally extended form of the Lie algebra
vect (§1). In fact there are physical reasons to attach more importance
to the central extensions of vect (S*) rather than to vect (S!) itself. The
point is that, in applications, the spectrum of the operator L is an energy
so that Ly has a lower bound. In that case we shall see below that all
the non-trivial irreducible representations are representations of a central
extension of vect (§'). In group theoretic terms the non-trivial irreducible
representations are all projective representations.
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Recall that if unitary operators {T,} form a projective representation
of a group G then
TgTh = c(g, h) Tgh (656)

where the projective multiplier ¢(g, h) is a complex number of unit modulus.
Of course a projective representation of G is a true representation of the
extension G.

An irreducible representation, with Lo bounded below, is called a high-
est weight * representation and is specified by a pair of non-negative numbers
(¢, k). The number c is the central coefficient already introduced and 4 is
the lowest eigenvalue of Ly. The eigenvector for % is thus the ‘vacuum state’
and is usually denoted by |h). The representation has the property that

Lolh) = h|h) = Lo k) =0, n>1 (6.57)

The reason that we must have L, |h) = 0, n > 1 is that otherwise L, |k)
would be an eigenvector of Ly with eigenvalue (h — n), and this would
contradict the assumption that h is the lowest eigenvalue. On the other
hand, L_, |[h) # 0, n > 1, as may be seen by applying the commutation
relations.

Only certain values of (c,h) can occur. If we restrict ourselves to uni-
tary representations then the possible values of (c, h) were found by Friedan,
Qiu and Shenker [1,2]. The allowed values are

c>1, h >0,
or
. _# =19 (6.58)
CERCE) m—1,2,...
p=1,4,...,m
h={(m+2)p—(m+1)CI}2‘1 g=12,...,p

4(m+1)(m+2)

Representations for all these allowed values can be constructed, cf. God-
dard, Kent and Olive [1,2]. We note that the unitary representations with
¢ < 1 form a discrete series. Examples of these discrete series representa-
tions occur in conformally invariant statistical models, cf. chapter 11. In

4 This terminology, though commonly used, is far from ideal since |h) is actually a
lowest weight vector; the terms anti-dominant weight and positive energy representation
are also used. Some difficulty with terminology seems inevitable; however, in the physical
context, the interpretation of |h) as a lowest energy state renders it natural to use |h) in

the description of representations.
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contrast the Sugawara construction provides an example of a unitary repre-
sentation of the opposite type since its ¢ value is 2k dim G/(2k + ¢(G@)) and
this is never less than one because it is bounded below by the rank of G.

If the representation is a true representation rather than a projective
one, then ¢ = 0; actually this also implies A = 0 (Goddard and Olive [1]).
Now we can calculate |L_, |h) ||, n > 1 and discover that

|Z=n |h) ||2 = (h| LoL_, |h) since L* . = L,
= (h|[Ln,L-n]|h) since L, [h) =0, n > 1 (6.59)
=0 sincec=h=0

But the vacuum |h) is clearly a cyclic vector; that is, the representation
space is spanned by vectors of the form LZ}L%% - L2 |h), therefore the
representation is the trivial one in which all the L,’s are represented by
zero. Thus we see that all non-trivial highest weight representations are
necessarily projective.

Example The Kac-Moody algebra

Moving on to the loop group LG we find a rather similar picture. It is
convenient to do as we did for the Virasoro group and describe the rep-
resentations of the algebra rather than the group. A similar boundedness
criterion is used to select representations; we obtain this criterion as follows.
In the previous section, while carrying out the Sugawara construction, we
constructed a representation of the Virasoro algebra from the Kac-Moody
algebra. If we use this Virasoro algebra again here we can take things a
little further and work out the commutators of the L,’s with the T2’s. We
find easily that the complete commutation relations are

2%dimG (m?
12(2k + ¢(G))
[T2, T8 = ifeb°Te .. + km8®®6p _n
[LmT:l] = _mT:+m’ [Lmk] = [T:’k] =0

[Lm,Ln] = (m —n)Lmtn + = 1)bm,—n

(6.60)

Now we simply demand, as before, that the spectrum of Ly be bounded
from below, and this is our boundedness criterion. Let |h) be the vacuum
state for Lg, then the commutation relations allow us to deduce that

Lolh) = h|h) = Ly |h) =0, T® |h) =0, n>1 (6.61)

and this describes a highest weight representation of the Kac—-Moody al-
gebra. We can easily verify that there are no non-trivial highest weight



188 Differential Topology and Quantum Field Theory

representations of the algebra Map (S?, g) itself and so we only consider the
centrally extended algebra—the Kac—-Moody algebra.

Now when introducing Kac-Moody algebras we remarked already that
the generators {T§} form a representation of g. For a highest weight repre-
sentation of the Kac-Moody algebra this representation of g is irreducible.
But, for a highest weight representation, the commutation relations show
us that the vacuum is cyclic; and thus we can construct the representa-
tion space by application of polynomials in the generators to the vacuum
state [h). This means that we can characterise irreducible highest weight
representations by just two things: the central term k and this irreducible
representation of the finite dimensional algebra g. Equivalently we can say
that the representation is characterised by the central term and a highest
weight A, say, and we write this pair of objects as (k, A). However, just as
in the ¢ < 1 Virasoro case, the central term k can only take certain discrete
values. If ! denotes the length of a long root of g then these values are
determined by the condition ‘

Ne€Z, whereN= ?—Zk (6.62)
This integer N is called the level of the irreducible representation. For
further details of the description of the representations in terms of high-
est weights and levels we refer the reader to the references already cited.
We now turn briefly to an alternative approach to representations which
emphasises the group rather than the algebra.

Example The Borel-Weil construction

This alternative approach is the Borel-Weil construction of irreducible rep-
resentations. In its original formulation (Borel and Weil [1], Bott [2]) it was
applied to finite dimensional compact Lie groups, but it has been extended
to infinite dimensions so as to include loop groups, cf. Pressley and Se-
gal [1]. Loosely speaking the Borel-Weil theory constructs representations
as Hilbert spaces of functions or sections. This is rather analogous to the
way representations occur in quantum theory and this apparently rather
abstract analogy can be put to use in conformal quantum field theories.

To describe the Borel-Weil construction we start with a compact finite
dimensional group G and summarise the standard description of an irre-
ducible representation. Next choose a maximal Abelian subgroup or torus
T and an irreducible unitary representation of G. This representation is
determined by the action of the torus T on the representation space. Since
T is Abelian, and the representation is unitary, this action is one in which
an element of T is represented by a diagonal matrix whose diagonal entries
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are complex numbers of unit modulus. Consider the action of T on each
basis vector v; of the representation; this gives us a homomorphism from
T to U(1), that is a map A; : T — U(1), and A; is simply the weight of
the vector v;. Since the representation is irreducible then one of the ); is a
highest weight and it is this highest weight that characterises V. For sim-
plicity, from now on, we shall denote a weight by just A and we shall write
the representation space or module as V.
Now G forms a principal T-bundle over the homogeneous space G /T.

T — G

l" (6.63)
G/T

This means that, given the homomorphism provided by choosing any weight
A: T — U(1), we can construct an associated complex line bundle Ly over
G/T. Now we want to show that Ly is naturally a holomorphic line bundle.
For this to be even possible the base space G/T must be a complex manifold.
This is actually well known to be the case: if G is the complexification of
G it has a subgroup B known as a Borel subgroup and we have

Gc/B=G/T (6.64)

Then the fact that the LHS of 6.64 is naturally a complex manifold renders
the RHS one also. A further fact about the complex manifold G/T is that it
is a Kahler manifold to which the Kodaira vanishing theorem can be applied
to show that the sheaf cohomology groups H*(G/T;0), 1 > 1 vanish, i.e.

HY(G/T;0)=0, i>1 (6.65)

The significance of this is found by referring to § 3 of chapter 5 where we
showed that the difference between holomorphic and differentiable line bun-
dles over a complex manifold M is measured by the sheaf cohomology groups
HY2(M;0). When these groups vanish, we have H(M;0*) ~ H3(M; Z),
thus holomorphic line bundles over M are determined by their first Chern
class in H?(M; Z) just as in the differentiable case. Since a holomorphic line
bundle over M is determined by an element of H!(M;O*), then it follows
at once that the isomorphism H'(M; 0*) ~ H?(M;Z) implies that any line
bundle over M has a unique holomorphic structure. Hence we see that our
line bundle Ly over G/T can be taken to holomorphic. Finally we can state
the Borel-Weil theorem.

Theorem (Borel-Weil) The space of holomorphic sections of the line bundle
Ly over G/T s non-trivial if and only if A is the highest weight of an
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trreducible representation of G. When X is a highest weight then this space
of holomorphic sections is a realisation of the representation space V).

To make this theorem plausible we must describe the complex structure on
G/T in a more explicit way. This description exploits the Lie algebras of
G and T. Using the action of T we can decompose the Lie algebra g in the
standard fashion as

g=tdh (6.66)

where § denotes the sum of the root spaces relative to T. To obtain complex
coordinates on G/T we first complexify this decomposition, yielding

ge =te ® b (6.67)

But we can express f), as a sum of the spaces h¥ of positive and negative
roots (relative to some Weyl chamber) whose bases are the familiar step
operators. We write

8c =tc ®HE B b (6.68)

We give complex coordinates to the G/T in the following manner. First
note that the complex space h, can be thought of as the complezification
of the tangent space of G/T. Now assign complex coordinates to G/T itself
by identifying its tangent space as the summand h? in the decomposition of
he- In fact the summand hf can be thought of specifying the holomorphic
directions with the other summand b specifying the anti-holomorphic ones.
These complex coordinates on the tangent space to G/T must be shown
to be integrable to G/T itself; but they are automatically so because the
positive root space h? is closed under Lie brackets.

Having provided a more explicit notion of holomorphicity on G/T we
now turn briefly to the Peter-Weyl theorem for representations of compact
Lie groups. This theorem decomposes the Hilbert space L?(G) under right
translation (f(g) — f(gh) for f(g) € L*(G) and h € G) and expresses it as
a sum of irreducible representations of G. We have

L*G) = @ eaVa (6.69)

where c¢) measures the multiplicity of the representation A. However, we
could also have obtained an isomorphic decomposition of L?(G) using left
translation (f(g) — f(h~!g) for f(g) € L*(G) and h € G) instead of right
translation; identifying these two decompositions gives us the Peter-Weyl

form
LX) =@ VoV (6.70)
A
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where * denotes dual and this form shows that the multiplicity of an irre-
ducible representation V) equals its degree dim V).

Returning to the line bundle of the Borel-Weil theorem we let f be
a holomorphic section of Ly; f can be thought of as a holomorphic map
f:G/T — C. The action of G on f is by left translation and so the space
of holomorphic sections I'(G /T, O(L,)) forms a representation. Now f can
be pulled back from G/T to G using the projection 7 : G — G/T. On G we
denote f by f and f = 7*f, note too that f is an element of L?(G). But
f is a pullback of a T-invariant quantity, so under left translation by a Lie
algebra element Y € t it is just multiplied by a constant, i.e. f — A(Y)f
with A(Y)) € C. Also f is holomorphic so it is annihilated by all W € bg;
pulling this statement back to G we find that such W annihilate f. However,
these two properties mean that f € L*(G) is a lowest weight vector for
an irreducible representation. Referring to the Peter-Weyl decomposition
permits us to identify I'(G/T, O(L,)) as V.

Finally we mention the case of the loop group. In the extension of the
Borel-Weil construction to LG the homogeneous space G/T of the finite
dimensional case is replaced by the space LG/T. The highest weight rep-
resentations of the central extension LG of LG are realised as spaces of
holomorphic sections of line bundles over LG/T.



CHAPTER VII
Morse Theory

§ 1. The topology of critical points

The aim in Morse theory is to study the relation between critical points
and topology. More specifically one extracts topological information from a
study of the critical points of a smooth real valued function

f:M —R (7.1)

where M is a compact manifold usually without boundary. For a suitably
behaved class of functions f there exists quite a tight relationship between
the number and type of critical points of f and topological invariants of
M such as the Euler—Poincaré characteristic, the Betti numbers and other
cohomological data. This relationship can then be used in two ways: one
can take certain special functions whose critical points are easy to find and
use this information to derive results about the topology of M; on the other
hand, if the topology of M is well understood, ene can use this topology to
infer the existence of critical points of f in cases where f is too complex, or
too abstractly defined, to allow a direct calculation.

Successful applications of Morse theory in mathematics are impressive
and widespread; a few notable examples are the proof by Morse [1] that
there exist infinitely many geodesics joining a pair of points on a sphere S™
endowed with any Riemannian metric, Bott’s [1,3] proof of his celebrated
periodicity theorems on the homotopy of Lie groups, Milnor’s construction
[1] of the first exotic spheres, and the proof by Smale [1] of the Poincaré
conjecture for dim M > 5. An excellent mathematical reference is the classic
of Milnor [3]. Morse theory has also found a variety of applications in
physics; this is not too surprising in view of the central position occupied
by the variational principle in both classical and quantum physics. Some of
these are described in Nash and Sen {1] which contains a short introduction
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to the subject. In this book we shall be interested in some of the more
recent applications involving quantum mechanics and Yang-Mills fields.

We begin with some fundamental results of the theory. The setting is
very simply described. One takes the smooth function f : M — R of 7.1
and solves the equation for its critical points, namely

df =0 (7.2)

We assume that all the critical points p of f are non-degenerate; this means
that the Hessian matrix H f of second derivatives is invertible at p, or

det Hf(p) #0  where Hf(p)=[aﬁf/ax‘axf|p] )

Each critical point p has an index A, which is defined to be the number
of negative eigenvalues of Hf(p). In a neighbourhood of a non-degenerate
critical point p of index A, we can represent f as

Ap terms
A

fle)=f(p) -2t —23 — -~ 2}, +25 1+~ +2; (7.4)
N —

‘n—\p terms

for suitable coordinates (z1,...,Z,). The nullity of p is defined to be the
integer dim M —rank H f(p). Clearly all non-degenerate critical points have
nullity zero.

For the present we shall only deal with functions whose critical points
are all non-degenerate; these are called Morse functions. We can then as-
sociate to the function f and its critical points p the Morse series M;(f)

defined by
M,(f) = Zt)‘P—th' (7.5)

all P

The sum will always converge since it only contains a finite number of terms;
this is because the non-degeneracy makes the critical points all discrete and
the compactness of M permits only a finite number of such discrete points.
The topology of M now enters via P,(M): the Poincaré series of M. This
is the following polynomial constructed out of the Betti numbers of M ; we
have

P, (M ZdlmH“ (M;R)t Zb tt (7.6)

=0 1=0
The fundamental result of Morse theory is the statement that

My(f) 2 P(M) (1.7)
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In fact we can state this result using cohomology with coefficients in a
general field F, giving us

My(f) > P(M;F) where Py(M;F)=> dimH'(M;F)t (7.8)
1=0
If we substitute the relevant polynomials into this inequality then we deduce

that
Mi(f) > P(M)

= > mit >3 bt (7.9)
i i=0
=>m; >b;,1=0,...,n

Actually Morse obtained a strong result about what happens when one
subtracts the smaller polynomial from the larger: setting A(¢) = My(f) —
P,(M) Morse found that A(t) always contains the factor (1+¢) and that the
remaining polynomial R(t) has only non-negative coefficients. Summarising,
we have

M(f) - P.(M) = (1 +1)R(t)

where R(t) = Z rtt with 7 >0,i=0,...,n (7.10)

This is also true for any coefficient field F. With this stronger statement we
obtain a more powerful set of inequalities. We use (1+#)7! = 1—t+2~—- ..,
and write

(M:(f) — P(M))

(1+1) = &)
= ) (mi—b)t' D (-1)¢ >0
=0 3=0 (7.11)

= Y (1) (mi = b+ 2 0

i3
= (=1 (mo — bo) + (=1) " (m1 — b)) + -+ + (m; — b;) 2 0
= (mj —mj—1 +mj—g —---T=mg) > (b; —bj—1+ - F bo)

These results 7.7-7.11 are known as the Morse inequalities. Note that the
number m; is just the number of critical points of f of index 4; adding these
all together we find that

M;(f)|,=, = the total number of critical points of f (7.12)
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Thus M;(f) is a strongly f-dependent quantity. On the other hand, if we
set t = —1 in 7.10 then we find that

n

M_y(f) = Py(M) = izZO(—l)“bi 113)

= x(M)

Hence M;i(f), being the Euler Poincaré characteristic of M, is completely
independent of f. This last result shows some of the power of the stronger
version 7.11 of the Morse inequalities; further evidence of their power is
provided by the next result which is

Theorem (Morse’s lacunary principle) If M,(f) has no consecutive powers
of t then, whatever the coefficient field F, the polynomial R(t) is identically
zero so that

Mi(f) = P.(M;F) (7.14)

If we use 7.11 this is easy to prove: Let t* be the first non-zero power in
M,(f)), then, because m; > b;, t* is also the first non-zero power in the
difference M;(f) — Py(M). Thus t' occurs in the product (1 + t)R(¢). But
(1 + t)R(t) = T rj(t# + t911) thus if R(t) # 0 then #*! also occurs in
the product (1 + ¢)R(t), and so too in M,;(f) — P.(M). However this last
fact is impossible because #'*! does not occur in M;(f) by our lacunary
assumption and it cannot occur in P;(M) either because this would violate
miy1 > bi+y. Hence R(t) must vanish.

A function f for which M;(f) = P,(M; F) for every F is called a perfect
Morse function. It follows that if M;(f) = Py(M;F) for all F then the
cohomology ring H*(M;Z) must be free of torsion. Clearly it is no use
looking for perfect Morse functions on any manifold we know to possess
torsion.

A proof of the Morse inequalities, such as that in Nash and Sen [1],
usually uses the level surfaces of the function f—the level surfaces of f are
just a higher dimensional analogue of the level curves of chapter 2; they are
the sets {z € M : f(z) = c}. Rather than give another proof we shall just
explain the part that they play in determining the topology of M. In Morse
theory one constructs a half space M, out of level surfaces where

={z€M: f(z)<c} (7.15)

Some of the topology of M begins to emerge when we consider M, as a
function of ¢. What happens is that, as ¢ varies, the topology of M, is
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unchanged until ¢ passes through a critical point, when it either acquires or
sheds a cell of dimension A where A is the index of the critical point. More
precisely we have

Theorem (Bott-Morse-Smale) M, is diffeomorphic to My if there is no
critical point in the interval [a,b]. Alternatively, if (a,b) contains just one
critical point of index A then My, ~ M, Ue,.

The notation M, Ue) means that a cell of dimension A has been attached to

M,; also M ~ M, Ue) means that the two spaces have the same homotopy
type. Thus, as far as the homotopy type of M is concerned (and this will
be sufficient for computing the cohomology of M) one can think of M as
being ‘decomposed’ into a set of cells

M=|]e ©(7.16)
A

The number of these cells being equal to the number of critical points and
the dimension of the cells being given by the index of the critical points.
This decomposition is known as a stratification of M.

Example The height function on T2

A well known example in Morse theory is given by taking M to be the two

dimensional torus 72. Then, if T2 is regarded as a doughnut standing on its
end, f : T? — R is defined by setting f(z) equal to the height of the point
z off the ground. It is easy to see that f is a perfectly good function with
4 non-degenerate critical points: a maximum and minimum and two saddle
points given by the two distinguished points on the inner circle. The indices
of saddle points are both 1 and those of the maximum and the minimum
are clearly 2 and 0 respectively. Therefore M;(f) is given by

M(f)=1+2+1¢ (7.17)
We can immediately verify that

M_y(f)=1-2+1=0

(T (7.18)

as it should. We move on to another example.

Example The cohomology of CP™

The lacunary principle is often employed to compute the cohomology of
CP™. To do this we use the fact that CP" is the quotient of the odd sphere



Morse Theory 197

S§?n+1 by an action of S*. Let us recall how this works. We use the complex
numbers (21, z, ..., 2n+1) SO that the equation of §2**! is

z21Z1+ 2220+ + Zpp1Zpp1 =1 (7.19)

If €' is an element of S, the S! action is given by defining
e‘e . (Z]_, ey Zn+1) = (CMZ]_, ey ewz,.+1) (7.20)
Since (21,...,2n+1) are also homogeneous coordinates on CP™ we see that
the orbits of this action are the space CP". Now we select (n + 1) real
numbers {a;} such that a; < a3 < +++ < ap4; and define an §2"*!-function
f by -

f=a1z1Z1 + - + @py12Zn41Zn41 (7.21)
The function f is invariant under the S action and so gives a function
on CP™ which is our desired function f. There are clearly (n + 1) critical
points of f, one for each direction z;. We must not forget that, despite our
use of complex coordinates, f is a real valued function; when the Hessian
is calculated, and viewed as a real matrix, each negative eigenvalue occurs
twice corresponding to the two real variables in z;. Now the a; get bigger
as 1 increases and it is a straightforward piece of calculus to check that the
ith critical point has index 2i, giving

M(f)y=1+8+t*+.. 41> (7.22)
The lacunary principle immediately implies that
P(CP") =14+ +tt+. .. 44" (7.23)

and so we know the Betti numbers of CP™. This also illustrates the point
that we can use Morse theory on complex manifolds even though f is a real
valued function.

Returning to the height function we can generalise the situation by
replacing 72 with a Riemann surface £, of genus p with p > 1. Thus we
have

Example The height function on X,

In this case we stick p doughnuts together, place the resulting surface on
its end and define the same height functions as for T'2. It is clear that there
are now 2p + 2 critical points comprised of 2p saddle points, a maximum
and a minimum. The Morse series is

M,(f) =1+ 2pt + t* (7.24)



198 Differential Topology and Quantum Field Theory

allowing us to correctly deduce that x(X,) = 2 — 2p.

So far we have insisted that our critical points be non-degenerate; but
we would also like to investigate some of the properties of the degenerate
case. The Morse inequalities show that, in the non-degenerate case, a func-
tion on X, has at least (2p + 2) critical points. However, even when p > 1,
it is possible to reduce this number to just four, of which two are saddle
points and the remaining two are a maximum and a minimum. When this
is done the function f can still be taken to be the height function but
the surface ¥, has to be appropriately deformed. Of course some of the
critical points must now be degenerate. The two saddle points are degen-
erate while the maximum and the minimum are not. Near a saddle point,
whose (z,y) coordinates are (0,0), f can be represented by the function
Re (z +1y)P*! = Re 2Pt ,

This dramatic reduction in the number of critical points raises the
question of whether there is any other topological lower limit on the number
of critical points of a general smooth f. The answer is in the affirmative: for
each manifold M there is a positive integer cat (M) known as the Lusternik-
Schnirelmann category of M; in brief, if {M),..., M)} are a collection of k
closed contractible subsets of M such that M = M; U--- U M, then the
smallest integer k for which this is true is cat (M). Every smooth f has at
least cat (M) distinct critical points and, in fact, cat (M) is a topological
invariant of M. It is not particularly easy to compute cat (M) but in two
dimensions we have the result that

cat($?) =2 and cat(%,) =3, forp>1 (7.25)

When M = S? we can see at once that the lower bound of cat (S?) = 2
critical points is actually realised by the height function. When M = %,
with p > 1, the lower bound, which is now 3 critical points, can also be
attained but not by any embedding of ¥, in three dimensions.

We return to our degenerate height function with its four critical points.
The degeneracy is easy to remove by applying a small perturbation to f.
Under this perturbation zP*! changes to the product (z — €1) -+ (z — €p41)
where the €; are all distinct. This perturbation achieves a bifurcation of
the p-fold degenerate z = 0 critical point into p non-degenerate critical
points. In this manner we can deform f into a good Morse function with
non-degenerate critical points. ,

However, there are circumstances where a simple perturbation will not
remove degenerate critical points. Examples of this can occur when the
critical points of f are no longer discrete but form a set of positive dimension.
We turn to this topic in the next two sections.
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§ 2. Critical sub-manifolds

The easiest way to begin the discussion is by giving an example which
illustrates the nature of the problem.

Example The height function on T? revisited

We choose f to be the height function and M to be T'2. But, this time, 72
is oriented at an angle of 7 /2 relative to its position in the example on p.
196; regarded as a doughnut it sits as it would on a dinner plate. The height
function f now has two extrema but they are now circles instead of points.
These two circles are parallel to each other and one is a maximum, the other
a minimum, there are no more extrema. For Morse theory to deal with this
case we have to be able to treat functions with critical sub-manifolds rather
than just critical points.

The quantity to focus on is the Morse series M;(f). In the ordinary
case each critical point p contributes a term t* to M,(f). If f is critical
on a whole sub-manifold C, say, then one feels that C must make a more
substantial contribution to M;(f). It turns out (Bott [4]) that C contributes
a whole polynomial to M;(f) instead of a monomial ¢*». Proceeding to the
details we pass from the notion of a non-degenerate critical point to that
of a non-degenerate critical manifold: A (connected oriented) sub-manifold
C C M is a non-degenerate critical manifold of M if df = 0 everywhere
on C and the Hessian Hf is non-degenerate in the directions normal to
C. In linear algebraic terms this says that det H f(p) is non-vanishing when
restricted to the normal directions. In terms of the normal bundle N(C)
of C, non-degeneracy is the statement that det H f(p) is non-vanishing on
N(C).

We also have to define an inder for a critical sub-manifold. To do this
we give C' a Riemannian metric and then, using the eigenvalues of Hf,
we make an orthogonal decomposition of N(C) into positive and negative

parts. We write
N({C)=N*(C)a N~ (C) (7.26)

where NF(C) correspond to the spans of the positive and negative eigenval-
ues of Hf. This achieved, the index of the critical manifold C is the integer
Ac where A¢ is the rank of the negative bundle N=(C).

Lastly we must give the contribution made by C to the Morse series
M,(f). This contribution is the polynomial

t*eP,(C) (7.27)

where P;(C) is the Poincaré polynomial of C; when C collapses to a point
p this polynomial reduces to the monomial #** as it should.
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We can now write down the full Morse series M;(f) and apply it to our
current example. The new definition of M;(f) is just

M(f) =) t*P(C) (7.28)
alle

We have seen already that there are two identical critical sub-manifolds both
of which are circles. Let us call these C and C’ where C is the maximum
and C’ is the minimum. It is then immediate that

P(C)=P(C") =1+t
Ac=1 and Ao =0
> M(f)=0Q+t)+t(1+1) (7.29)
=(1+2t+1?)
= P(T?)

Thus, when we apply the correctly formulated Morse theory for critical sub-
manifolds, the height function is restored to perfection. Finally we should
say that the Morse inequalities hold for the extended case, that is

My(f) > P(M;F) where My(f)= Y  t*°Pi(C;F) (7.30)
allc

We have not yet verified the (1 +1¢)R(t) structure in the Morse inequal-
ities. This requires us to select an example with a non-perfect function. We
do this now.

Example The square of the height function on S2
Let

M=8={(z,y,2): 22 +y> +22 =1} and f(z,y)=2> (7.31)

Notice that f is the square of the height function on S§2. Evidently f has
three extrema. These have the following structure: there are two critical
points which are the maxima at 2 = F1 and so have index 2, then there
is a minimum consisting of the circle of critical points given by z = 0
and this has index 0. According to our extended Morse theory the two
points each contribite #2 to the Morse series while the circle contributes

t°P,(S') = (1 +t). The Morse series is therefore

M,(f)=1+t+28 (7.32)
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But the Poincaré series of S? is P;(S?) = 1 + ¢ and so f is not perfect. If
we calculate the difference we find that

Mt(f) — Pt(SZ) =t+ t2
=(1+1¢) (7.33)
> R(t)=t

Thus we have verified that, M;(f) — P;(S?) is divisible by (1 +t), and that
R(t) has non-negative coefficients. In our next example we investigate the
situation where f is invariant under some Lie group G which acts on M.

§ 3. Equivariant Morse theory

Example The height function on S?

Let us stay with the manifold S? but take f to be simply the height function
on 52, that is we choose

M=8%={(z,y,2): 22 +y*+22=1} and f(z,9)=2 (7.34)

Now f has two critical points given by the north and south poles of the
sphere. It is also easy to check that f is perfect. However, f is invariant
under the group U(1) realised by the rotations about the z axis. This gives
us hope that we might be able to use Morse theory to study the cohomology
of the quotient S2/U(1). This hope is dashed because the quotient is

S2/U(1) ~ [0,1] (7.35)

and the cohomology of the interval [0,1] is trivial, ie. P(S%/U(1)) = 1.
We shall see below that the reason for this failure is that the U(1) action
on 52 is not free. The fixed points in this case are actually the two critical
points z = F1. The remedy for our difficulty is that we have not used the
right cohomology theory; we need a cohomology theory which takes proper
account of the group action. This is equivariant cohomology.

When group actions are not free we have seen (cf. chapter 5) that the
resulting orbit spaces are not smooth manifolds; this is actually the source
of our difficulty and the use of equivariant cohomology can get round it.
First let us be clear that if f is a G-invariant function f : M — R on
M and G acts smoothly and freely on M then there is no problem. The
invariance of G means that it induces a well defined smooth function fg
on the necessarily smooth space of orbits M/G. The Morse theory of the
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function fG M/G — R on the manifold M/G has then no reason to be
pathological and is the appropriate one to use in such a case. With this
remark understood, let M be a manifold with a non-free action of a Lie
group G. In equivariant cohomology we manage to replace M by a closely
related space on which the action of G s free; having done this we can pass
to the quotient and calculate as usual. This is done in the following way
(Atiyah and Bott [4]).

Let BG be the classifying space for G-bundles. We know from chapter
1 that BG is the base space of a universal bundle whose total space is Eg
and G must act freely on Fg because of the principal fibring over BG. Now
we have two spaces on which G acts, namely M and Eg, thus G also acts
on the Cartesian product M x E¢ via the diagonal action

Gx(MxEg)— M x Eg

(g,z,€) — (92,9 -¢€) (7.36)

Happily the action on the product is also free and so it is sensible to form
the quotient Mg where

Mg = (M x Eg)/G (7.37)

which is a well behaved space called the homotopy quotient of M by G.
Incidentally, when the action of G is free, Mg has the same homotopy type
as M/G and so we automatically revert to the situation described in the
previous paragraph. Another fact used in calculations is that Mg is fibred
over BG with fibre M itself, that is we have

M — Mg
l" (7.38)
M

The equivariant cohomology of M is simply the ordinary cohomology
of Mg. We write the equivariant cohomology as H¢ (M) so we have

Hg(M;F) = H*(Mg; F) (7.39)

Equivariant cohomology is highly non-trivial even when M itself is topolog-
ically trivial. For example, if M is the space {p} consisting of a single point

then we have
Mg = ({p} x Eg)/G ~ Eg/G = BG (7.40)

Hence
Hg({p}) = H*(BG) (7.41)
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That is, the equivariant cohomology of a point is the ordinary cohomology
of the classifying space BG and this latter is highly non-trivial.

We can now give the equivariant version of the Morse inequalities be-
tween M;(f) and P,(M). The equivariant Poincaré series PZ(M) is ob-
tained by substituting equivariant cohomology for ordinary cohomology.
Thus we define

: . . (7.42)

The equivariant Morse series for f is the ordinary Morse series for the
function that f induces on Mg; we call this function fg. If f has critical
manifolds then this must be taken account of just as in the ordinary case.
If N is a non-degenerate critical manifold then fg will be critical on its
homotopy quotient Ng; the index of fg on Ng will be the same as the
index of f on N. The equivariant Morse series in this general situation is

thus
MtG(f) = E PtG(N)t'\N
ol (7.43)
=" P(Ng)t™
N
and the equivariant Morse inequalities are
MtG(f) - PtG(M) = (1+t)R(t) (7.44)

and these hold for Morse functions f : M — R which are G-invariant.
Now we return to the height function f of our example above. First we
must compute the equivariant Poincaré series of S2, that is, the quantity

PE(5%) = P,(S§%2) where G=U(1) (7.45)

To carry out this computation we observe that the fibration Mg of 7.38 is
that of an S2 bundle over BG; this in turn means that S% comes from a rank
3 vector bundle over BG. Since an odd dimensional vector bundle Va1,
say, has vanishing Euler class, the Leray-Hirsch theorem (Bott and Tu
[1]) asserts that the cohomology of the associated sphere bundle S(Vak+1)
factorises into a product of the cohomology of its fibre S2* and that of its
base M. In short, we can write

H*(8(Vak+1)) = H*(5%) @ H*(M) (7.46)
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Applying this to the present case where k£ = 1 gives

H*(Sf)) = H*(S*)® H*(BU(1))
= Pi(Sf ) = P(S*)P,(BU(1))
=(1+2)A+2+14+--2) (7.47)

_1+#
T 1t

where we have used P,(BU(1)) = (1/(1 — t?)), and we digress briefly to
prove this fact: Return to our example on p. 197 where we used the lacunary
principle to compute the cohomology of CP™. If we pass to the limit n — oo
we obtain the result !

P(CP®) =14+t +¢tt+... = =) (7-48);
But in this example CP™ is expressed as the quotient of S2"+! by U(1);
moreover, the action of U(1) on $2**! is free. However, S?"*! only has
non-trivial cohomology in dimension (2n + 1), so that, in the limit n — oo,
all its Betti numbers are zero. In fact S is contractible and hence the U(1)-
fibration of S°° is universal and so its base is a classifying space. Therefore

BU(1) = CP*® (7.49)

as we require. We now return to the function f.

To compute the Morse series for f we recall that it has two critical
points, each of which contribute a Poincaré series term of the form P;(BG)
to ME(f); adding to this the information that the indices of these points
are zero and two we find that

ME(f) =) PE(N)~
N

= PtG({P}) + t2PtG({P})
= (1 +t*)P,(BG) (7.50)
1+ t2 '
Ti-e
=P, tG(S 2)
Thus the height function is equivariantly perfect.

Before leaving this topic we may as well look at the equivariant situation
for the other function that we studied on S2, namely f = z2. The Poincaré
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series is unchanged so we only have to compute the Morse series. We found
above that the three extrema on S? two are the points z = F1 and the circle
z = 0. The two points, being maxima, have index 2 and so contribute, to
ME(f), the amount

2t2

2t2P,(BU(1)) = -z (7.51)

However things are different for the circle. The circle is a sub-manifold of S2
on which U(1) acts freely; thus, using our remark above that Mg ~ M/G
when G acts freely, we see that

Sty = 8'/UQ1) =~ {p} (7.52)

In other words the z = 0 extremum, whose index is 0 since it is a mini-
mum, only contributes the constant term ¢° = 1 to MZ(f ). The complete
equivariant Morse series is therefore given by

#1448

G =
M (f)=1+{—pm=1-p

(7.53)

Thus f = 2?2 is equivariantly perfect; we learn, too, that equivariant perfec-
tion does not imply perfection in the ordinary sense.

In all our examples the manifold M has been finite dimensional, equiv-
alently our functions f : M — R have depended on finitely many variables.
Actually the original geodesic problem of Morse is one where M is infi-
nite dimensional. Since in subsequent chapters we encounter applications
of Morse theory to Yang-Mills theories, all of which involve infinite di-
mensional M, we close this section by commenting briefly on the infinite
dimensionality in the geodesic problem.

The function used by Morse to study geodesics is the energy functional

dt

E defined by
1
B = [
0
d() ()

1
= [ w080,

where (t) is a parametrised path on M with end points p and g labelled
by 0 and 1, and g;; is the Riemannian metric on M. We keep the metric
¢i; and the manifold M fixed; this makes E a function or functional of ().
Hence E is a positive real valued function on the space PM(p,q) of paths
on M from p to q. Slightly more formally we can represent F as

E:PM(p,q) — R
v+— E(v)

2

dy(2) it

(7.54)

(7.55)
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The space PM(p, q) is of course infinite dimensional. The extrema of E are

easily seen to be the geodesics joining p to g. They have the usual equation
d?yt  _; dz? dz*
bl L = 7.56
@ T g d (7.36)

where I";'.k are the components of the Christoffel symbol for the metric g;;.
When E(y) is a minimum it coincides with the square of the integral L(vy)
giving the length of the geodesic joining p to g¢; that is, we have

~ a geodesic = E(y) = L?(y)

1 ¢ 7.57
where L(y) =/ ﬂ—)‘ dt (7.57)
0 dt
For a general v we have the inequality
E(y) > L*(y) (7.58)

To consider closed geodesics we simply require v to be a closed path, or
loop, on M; this means that we take elements of Map (S, M) instead of
PM(p,q). Now we regard E as a functional of the form

E: Map(S*,M) — R (7.59)

We note, in passing, that U(1) acts on Map(S?, M) by rotating the S*; thus
the equivariant theory with G = U(1) should have some relevance here. To
tackle the infinite dimensionality of Map(S*, M), in the case where M is
a sphere S*, Morse approximated the loops by geodesic polygons with n
vertices py, ..., n. This makes E(y) a function of the n variables py,...,p,
instead of y, i.e. E = E(p1,...,pn); these variables are also subject to some
geodesic criterion. If we denote the space of these {p;} by Map,(S*, S¥)
then Map, (S, S*) is to be viewed as a finite dimensional subset of the
infinite dimensional Map (S, S*). The idea then is to compute the topology
(e.g. to compute P;(Map,(S*, S¥))) of Map,(S*, S*) and to understand its
dependence on n. This allows the passage to the limit n — oo where
one eventually deduces results such as the existence of an infinite number
of closed geodesics on S* and that E is a perfect Morse function. This
considerable piece of work is described in much greater detail and generality
in Klingenberg [1], where further references are also to be found.

We already know that the topology of the space Map (S*, M) is closely
related to that of the space QM of based loops. Granted the success of Morse
theory in linking the critical points of E to the topologies of Map (S*, S*)
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and QS*, it is possible to imagine replacing S* by a Lie group G and
trying to use Morse theory to discover topological information about QG.
This strategy was very successfully employed by Bott in the proof of his
periodicity theorems.

§ 4. Supersymmetric quantum mechanics and Morse theory

We end this chapter by giving a quantum mechanical account of Morse
theory due to Witten [2]. Witten’s paper provides a new way of looking at
Morse theory which has proved very influential. It also provides a point of
departure for the Floer theory discussed in chapter 12. We shall see that
an important extra feature of the quantum mechanical proof of the Morse
inequalities is that, as well as establishing a connection between critical
points and the Betti numbers of a manifold M, the cohomology of M is also
explicitly constructed.

We begin by introducing the supersymmetry needed in the present
context. Supersymmetric quantum theories are theories which are possess
symmetry properties under the exchange of Fermions and Bosons. When
Fermions are present in a quantum theory there is always an anti-symmetric
structure. In the case of supersymmetry one has N supersymmetry gener-
ators Q1,...,Qn which all anti-commute with each other, giving

{Qi,Q;} =QiQ; +Q;Qi =0, for i#j (7.60)

The above algebra does not yet constrain the squares of the generators so
this has be done next. We consider a two dimensional theory with space
and time both being one dimensional. We can then take N = 2; and, with
this choice, the squares of the two supersymmetry generators are expressed
in terms of the momentum P and the Hamiltonian H by the equations

QP=H+P, Qi=H-P (7.61)

If we combine this with the anti-commutation relations above we discover
that

QuH=0 and H=1(Q}+@)) (7.62

showing, on the one hand, that the Q; are bona fide symmetry operators,
and on the other that the Hamiltonian H is non-negative.

To distinguish Fermions from Bosons we can introduce the ‘mod 2’
counting operator (—1)¥. It has the usual properties when it acts on particle
states, these are

—|P) if P is a Fermion

('1)F|P>={ |P) if P is a Boson (7.63)
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More explicitly we have the following. If H; denotes the Hilbert space of
one particle states we can decompose H; into a direct sum of a Bosonic and
Fermionic part, giving

H, = HE ¢ HF (7.64)
The counting operator (—1)F will be block diagonal with respect to a basis
of HF and Hf and we will have

7= (5 ) (7.65)

Supersymmetry generators are created with the express intention of inter-
changing Fermions and Bosons; thus they must anti-commute with (—1)"‘7
and so they are block off diagonal with respect to this one particle basis.

We have QBF
0 i )
Q; = (QiFB 0 ), 1=1,2 (7.66)

The operators QPF and QFB transform one type of particle into the other.
Their action is summarised in the maps below

QPF :HF — HP and QFB:HE — HF, i=1,2 (7.67)

This completes the supersymmetry information that we require.

To make contact with Morse theory the next step is to construct an
example of this supersymmetry algebra making use only of data provided by
some manifold M. It turns out that M should also be Riemannian. Having
selected a Riemannian M all one needs is the exterior derivative d and its
adjoint d*. The supersymmetry quantities introduced above are now very
simply constructed via the following definitions

Q=(d+d) Q2=i(d—d")
HE = @ a¥?(M) HF = @ o+ (u) (7.68)

p20 p>0

We see that a particle is a p-form and the parity of p determines whether it
is a Boson or a Fermion. The supersymmetry algebra 7.60 is obeyed because
the identities d2 = (d*)2 = 0 imply that

Q1Q2 = i(d +d*)(d — d*) = i(d* + d*d — dd* — d*d*)
i(d*d — dd*)
i(d—d*)(d +d*) = i(d*> — d*d + dd* — d*d*) (7.69)
—i(d*d — dd*)
—-Q1Q2

and Q20
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The Hodge Laplacian provides us with the Hamiltonian since we have

2 2
=t dd* +d*'d= @ A, (7.70)

2 p>0

Actually one can also verify that Q% = QZ, so that in this non-relativistic
model the momentum P is zero. Thus far we have introduced a Riemannian
manifold, but to study critical points we must have a function as well.

A Morse function f can be incorporated into this model without chang-
ing the supersymmetry algebra. This was done in Witten [2]. The technique
is to replace d by d; where

dy = e ftdeft (7.71)

With this simple but effective change we get a family of supersymmetry
algebras parametrised by t; if we note that d} = eftd*e~ft then the new
generators are given by

Qu(t) = (de +d7),  Q2(t) = i(d: — dy) (7.72)

It is a routine matter to verify that this conjugation of d by e/ leaves the
algebra unchanged. The proof of the Morse inequalities rests on an analysis
of the spectrum of the associated Hamiltonian, which is now

He = did; +did; = @D Ap(t) (7.73)
p20

The easiest part of the spectrum of H; to analyse is the null space. Hodge
theory tells us that the Betti numbers of M are given by

b, = dim ker A, (7.74)

Now, though conjugation by ef* means that the spectrum of #, depends on
t, the null spaces of H; and H clearly coincide. Thus we still have a Betti
number formula, namely

bp = dimker A, (t) (7.75)

To understand the nature of the rest of the spectrum we expand H; about
t = 0 and this necessitates a few technical preliminaries about differential
forms. Let {e;} and {e}} be bases for the tangent space and cotangent
spaces To M and T;M; now the operations of exterior multiplication and
interior multiplication are dual to one another, so, if a; denotes interior
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multiplication of a form by e;, the corresponding exterior multiplication by
e; is given by a}. In quantum field theory ai and a; usually denote cre-
ation and annihilation operators; this notation is chosen here (Witten [2])
because, in this geometric realisation of supersymmetry, there is a formal
equivalence between exterior and interior multiplication and Fermion cre-
ation and annihilation. We also need the second order covariant derivative
of f, which we write as D2 f/DziDz7; the index of a critical point is given
by the number of its negative eigenvalues. Having dealt with the prelimi-
naries we return to H;. Because (dd* + d*d) is a second order operator the
expansion terminates at the ¢ term, providing us with the formula

Hy = dyd} + didy = e~ (dd* + d*d)e

D 5 01 0f (7.76)

— L L _(a*. a. 2/ 1 L
dd” + d+tDz"DxJ[a“aJ]+t (9 Ozt Oz’ »

=A+V

where the last line of 7.76 is intended to suggest that H, be viewed as an
operator of Schrédinger type with the obvious potential term V. If this
view is taken then the crucial observation for the Morse theory of f is that
one should investigate H; for large t. When t is large the ‘potential’ is
dominated by its ¢? term, whose coefficient, we note, is (grad f)?; that is,
we have

V — t*(grad f)? (7.77)

If we think of the term V¢ in the Schrodinger equation then we see that
this enormous growth of the potential energy, if not stopped, will force the
eigenfunctions H; to be zero. However, at a critical point, grad f vanishes
and so the coefficient of #? is zero. Thus the actual state of affairs is that,
for large t, the supports of the eigenfunctions of H; are concentrated at
the critical points of f. Hence this analysis suggests that to obtain Morse-
theoretic results one should approximate quantities by taking ¢ large and
expanding about the critical points.

Following Witten we expand the metric about the critical point to make
it flat to order two in the coordinates. Then we use our standard expansion
of the form 7.4 for f in the neighbourhood of a critical point. This gives

f(z) = f(0) + (uzi + = + Anz) (7.78)

the factor 2 in the denominator is just chosen for convenience; also the ),
are all F1 and so only serve to determine the index of the critical point.
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The approximated Hamiltonian H, is then expressible in terms of the simple
harmonic oscillator Hamiltonian plus a finite correction. We obtain

2

H, = Z{_%+t2z?+tz\i[a§,ai]} (7.79)

the correction being the linear term in {. But the harmonic oscillator con-
tribution to H; commutes with the correction terms A;[a}, a;] and we know
that these latter terms have the simple spectrum F1. Thus we can write
down the spectrum of H;. Each harmonic oscillator piece contributes a term
of the form ¢(1 + 2n;), with n; a non-negative integer and so the spectrum
of H, is

tZ{(l +2n;) + Aje;},  where ¢; = F1 for each 4 (7.80)
i

Now we want to make contact with Betti numbers, so we restrict H,
to p-forms and look for the zero eigenvalues of this restriction. The first
objective is achieved by restricting to only those terms which have precisely
p positive €;’s; and, since the n; are the only terms which can be bigger
than one, a zero eigenvalue is only obtained if all the n; are zero. If we
insert this information into 7.80 it is not difficult to check that, to obtain a
zero eigenvalue, we are forced to set €; = +1 precisely when A; = —1. This
argument has provided us with a single zero eigenvalue corresponding to a
p-form where p is the index of the critical point. Thus the total number
of these zero p-forms is equal to the number of critical points of index p;
also, if our approximation were exact we would know that the number of
these zero p-forms is equal to the Betti number b,. Taking into account the
approximation means that some of the zero p forms may disappear in an
exact calculation. In other words, we have shown that

by < my

which is the weak form of the Morse inequalities. This is as far as one gets
with the present asymptotic analysis in t. Our next goal is to prove the
stronger form of the Morse inequalities.

To attain this goal requires some additional mathematics and some ad-
ditional physics; we explain the mathematical part first. The additional
mathematics is a result which says that if one can form a cohomology com-
plex from the set of critical points of f then this gives the cohomology of M
and also implies the strong form of the Morse inequalities. In more detail
the result is the following. Let

Cp = {The set of all critical points of index p} (7.81)
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Included in Cp are integral linear combinations of critical points. Now if
we can find a coboundary operator § : C, — Cp41 which also obeys §2 = 0
then we can form the cohomology complex C* below

ORI, SNV, 2 U (7.82)

Having succeeded in defining §, the cohomology of C* coincides with that of
M and the Morse inequalities are also valid. Thus, as far as the mathematics
is concerned, we just have to construct 4.

The additional physics turns out to be just what is needed to construct
§. Tt all comes from the consideration of quantum mechanical tunnelling be-
tween critical points, that is tunnelling between the minima of the potential
t2(grad f)?. The advantage of tunnelling is that, unlike our spectral anal-
ysis, it is not limited to working in the neighbourhood of only one critical
point.

For the remainder of the argument we want to consider all the critical
points; the method of steepest descent provides a framework within which
one can do this. To construct the paths of steepest descent on M we first
consider grad f as a vector field on M. The integral curves of this vector
field are paths (of steepest descent) y(s) on M which are solutions of the
differential equation

D) . _grad 1(x(s) (789)
3

We could also call this the descending gradient flow of f on M. But when
grad f vanishes we have a critical point and so there are critical points at
the ends of the paths. We shall see below that such paths are precisely the
instantons which tunnel between the minima of the potential. In any case,
in our desire to define a map between C? and CP*!, let us consider just
those paths which connect pairs of critical points whose degree differs by
one. Now we have to give the definition of §.

First let vqp be a steepest descent path between the critical points a
and b whose indices are p and (p + 1) respectively. Note that this means
that f(b) > f(a), so the flow is from b to a. We need to define a crucial
sign e,,, associated with this flow. This sign is determined by comparing
the orientation of appropriate tangent spaces. Let T,” M be the (p + 1)-
dimensional space corresponding to the (p + 1) negative eigenvalues of the
Hessian Hf at b, and let Tpy,p be the tangent space to the path v,p at
b. We can decompose T,” M into Tpyap plus an orthogonal complement Oy,
say, giving

T, M = Tyvap @ Op (7.84)
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Now, using the critical point b thought of as a (p+ 1)-form to orient T,” M,
we can induce an orientation Op by interior multiplication with any tangent
vector in Tpygp. Next we flow the p-dimensional Oy to a and compare its
orientation with the orientation of the p-dimensional space T, M. When
these orientations agree we define ¢,,, to be +1 and when they disagree we
define it to be —1. In general there will be more than one path of steepest
descent from b to a; the (finite) sum over all these paths gives us our final
number ¢(a, b), which we define by

@)= D e (7.85)

all Yab

All our signs are now determined and we can finish the definition: if a € C?
and b is a typical basis element of CP*! then we define

§(a)= Y e(a,b)b (7 .86)

beCr+l

Finally we must make sure that §2 = 0. A direct calculation with the
present combinatorial definition is difficult. The way round this difficulty
is to return to the quantum mechanical framework of instantons and tun-
nelling. The point is that, up to some factors which will be calculated below,
we achieve the property 62 = 0 by defining é to be the large ¢ limit of an
operator whose square is zero, namely d;. In doing this we discover that §
has a physical origin.

Bearing in mind the remark just made we must turn our attention to
the operator d;. This operator will map a critical point of index p to one
of index (p + 1) and also satisfies d? = 0. The relevant physical quantity to
calculate is the amplitude

(bl d; [a) (7.87)

We must resort to some approximation method to calculate this amplitude
and what we do is to take ¢ large and sum over the instanton or tunnelling
configurations connecting a and b. The equation for these paths is obtained
by taking a Euclidean action for our quantum mechanical system and finding
the minima. The action is S where '

_1 ”da:"dz" 2 i Of Of
5_2/{guds ds+t ozt I
DY 1 D?h
+ 1 Ds +4Rkah/)¢' VI +t DaiDai ds

(7.88)



214 Differential Topology and Quantum Field Theory

with z* now counting as a Boson field and Rijr1 the curvature tensor of the
Euclidean metric g;;. The instantons of this action are got by just varying
the Bosons and so we only have to minimise the Bosonic action, which we
write in inner product form as

2

sp= L]l £]2f
B=31ds 2 ||8z
) (7.89)
1 dz_HBf _t<dz 6f> ‘
=32 Bz ds’ Oz

By changing f to —f, if necessary, we can assume that the inner product
~((dz/ds), (f/z)) is positive; this then provides a lower bound for Sp
and the minimum is attained when

(7.90)

which, after identifying z with ~,5 and absorbing ¢ in a redefinition of s,
is our equation of steepest descent. We have thus found the connection
between instantons and the paths of steepest descent. At a minimum the
action for a path from b to a is therefore

t<3$ gf> “t/ 3(:2 38;, (f(b) = f(a)) (7.91)

The standard WKB semi-classical approximation now gives the contribution
of this path to the amplitude (b|d; [a) as

det Fyp exp[—t(f(b) — f(a))] (7.92)

where det F,y is the determinant coming from the Gaussian integration over
the fluctuations about the instanton. However, in this supersymmetric the-
ory F,p contains Fermionic and Bosonic contributions which mutually can-
cel; all that is left is the sign of det Fyp, the WKB calculation determines
this sign and it is actually equal to ¢,,,. Having dealt with det Fyp, and es-
pecially its sign, we can add together all the contributions to the amplitude
(b] dy |a). Our final expression for the large ¢ behaviour of the amplitude is

therefore
(bldela) =) €y, exp[—t(f (a))] (7.93)
Yab
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This would be consistent with the action of d; on |a) being given by

dyla) =) exp[—t(f(b) — f(a))]ey,, [b)  for t large (7.94)

Yab

It would now appear natural to define § by setting é(a) = d |a), but Wit-
ten [2] points out that the exponential factors are inessential and can be
discarded. This then dictates the choice of definition

§(a) = _e(a,b)b (7.95)

b

which is just what we had in 7.86. Thus we see that the vanishing of the
square of § is really a consequence of d> = 0 and that the origin of § itself,
which is the key ingredient of the whole construction, is intimately tied to
the physics of instantons.

Thus with é defined we have both constructed the cohomology of M and
established the Morse inequalities. The instanton ideas employed for this
purpose will be useful again in the somewhat analogous infinite dimensional
Floer theory discussed in chapter 12.



CHAPTER VIII

Instantons and Monopoles

§ 1. The topology of gauge fields

In this chapter we wish to discuss instantons and monopoles. Our interest,
in the main, is in geometrical and topological properties of the fields and the
various solution spaces; however, many explicit solutions are known, cf. for
example Nash and Sen [1] and references therein. We begin with an account
of some of the general topological properties of the space of connections.

The space of all connections A is an affine space, i.e. it is a vector
space once it has had an origin chosen: Think, for example, of expressing
an arbitrary connection A in terms of a fixed connection Ag according to
A = Ag +a, a is then a vector referred to the origin Ag. Alternatively, note
that if A, and A, are two connections then so is the combination

(1 —‘t)Al +tA2 (81)

i.e. one can draw straight lines through 4. A simple, but important, con-
sequence of this is that 4 can be contracted to a point and is thus homo-
topically trivial.

Any connection is acted on by the group of gauge transformations.
Actually, in chapter 6, we distinguished between two gauge transformation
groups G and G but favoured the former since it acts freely on the space
A. We can now prove this assertion. The proof follows fairly easily from
the fact that the operations of parallel transport and gauge transformation
commute with one another.

We begin by describing the formulation of parallel transport that is
most suitable for our present argument. Let P be a principal G-bundle over
M endowed with a connection A. Next we take a pair of points @ and b on
the base M. These points are joined by a smooth path

Yab(t) : [0,1] — M with Yab(0) = a, Yap(1) = b (8.2)



Instantons and Monopoles 217

Parallel transport associates the path «,,(t) to a lifted path F,4(¢) on P.
We describe this using local coordinates. If (z,g) are local coordinates on
P then, with respect to these coordinates, the lifted path is expressed as

aab(t) = (7ab(t)’g(t)) (83)

where g(t) is required to satisfy the standard parallel transport equation
(Nash and Sen [1])

dg(t .

—Z(t )4 Aiung(®) =0 (8-4)
The initial value g(0) of the solution to this differential equation is arbitrary
but, since the equation is first order, once g(0) is chosen the final point g(1)
is determined. This means that the initial point of the lifted path can be
any point in the fibre of P above a. In local coordinates, we have

Yab(0) = (a, 9(0)) (8.5)
Passing to the final point we similarly have
Yab(1) = (b, 9(1)) (8.6)

where g(1) is computed from the solution to the parallel transport equation.
The foregoing description makes it evident that, if we exercise our freedom
to vary g(0), parallel transport provides us with a map from the fibre P,
above a to the fibre P, above b. If we denote this map by PT, ,(A) then
we can write
PT,,(A):P, — B,
9(0) — g(1)

Next we bring in the group of gauge transformations G. Recall from chapter
6 p. 176 that G acts as the identity on the fibre above some point mg of M.
Now we choose o € G and consider its restriction to a fibre P,. Denoting this
restriction by a,, the commutativity of gauge transformations and parallel
transport becomes the statement

(8.7)

apo PT,,,(A) = PT,,,(a- A) o, (8.8)

where o - A is the gauge transform of the connection A. To show that A
acts freely on A, let A be a fixed point of A and let a = mq. Then we know
that

a-A=A and a, =1

8.9
oy 0 PT,,(4) = PTy,(A) (82)
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In other words, ap is the identity map on P,. But if M is path connected
(which we now assume) then all points b can be joined to the base point g
by some path «v,5 and « is the identity everywhere on M. Thus G acts on
A without fixed points and the action is free.

Closely related to this discussion is the notion of the holonomy group
of the connection A. This is obtained by joining the ends of the path ~,,
so as to produce a loop 4,, say, beginning and ending at a. The paralle]
transport map will still be non-trivial but is now a map from F, to itself

PT,,(A): P. — P, (8.10)

As ~, varies over all the loops based at a the set of all the PT, (A) form a
group known as the holonomy group of A at a; for a path connected M the
holonomy groups at different points a will be isomorphic. By its definition
the holonomy group of A is clearly a subgroup of the structure group G.
If this subgroup actually coincides with G itself then the connection A is
called irreducible; alternatively, if the holonomy group is a proper subgroup
of G then A is called reducible.

Having established that G acts freely on A we pass to the quotient A/G
and thereby obtain a bundle

G — A

l (8.11)
A/G

Since A is also contractible it follows that A4 is the total space of a universal
G-bundle; hence A/G is the classifying space for G bundles, or

A/G = BG (8.12)

A/G is also the space of gauge orbits and is the space of physically
measurable fields: the configuration space. In quantum field theory the
partition function Z and its associated correlation functions are expressed
as functional integrals over 4. In the absence of anomalies, which we discuss
in chapter 10, the gauge invariance of the theory means that these integrals
project onto the quotient .4/G. This process requires gauge fixing and the
introduction of the familiar Faddeev—Popov ghost Jacobian. The bundle
A — A/G is in general non-trivial (Singer [1]). To see this we suppose A is
trivial, then '

A=Gx(A/G) (8.13)

and hence

T;(A) = 7;(G) + 7;(A/G) (8.14)
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But the LHS of 8.14 is zero since A is contractible, while on the RHS,
reference to 8.23 below shows that G possesses non-zero homotopy groups.
We conclude that A is non-trivial and has, therefore, no global continuous
section; the equivalent physical statement is that no continuous choice of
gauge exists; this is known as the Gribov ambiguity, cf. Gribov [1], Singer
[1] and Mitter and Viallet [1]. The topology of the configuration space
plays an important part in the theory of these integrals.

To calculate the topology of BG we choose M = S™ and return to the
principal bundle P. The bundle P is completely characterised by the degree
k of a homotopy class in m,—;(G) (Nash and Sen [1]). Further, if n is even,
k is given by evaluating the Chern class ¢,/ on S™. This k-dependence of P
applies also to A, which splits into components Ag; displaying the various
k-dependencies together we have '

G — P G — A
gn BG, (8.15)
cnj2(Pe) = k Gr C Aut (Py)

Fortunately, as far as our topological calculations are concerned, this de-
pendence of Py on k does not live on in BG. The reason for this is that the
homotopy type of BGy is independent of k (Atiyah and Jones [1]). Thus we
can even take k = 0 so that Py is trivial, yielding

Pp=GxS"
n n (8.16)
= Go = Mapo(S™,G) = Q"G
It is then immediate that, up to homotopy, we have
gk ~ gk__]_ ~ Q"G (8.17)

Since we only want to calculate the homotopy and cochomology of Gx and
BGy we can drop the k from our notation. Thus we write

G=Q"G (8.18)

However, if we use the inverse relationship between the operands ( and B
(cf. p. 73), we find that

BG = BQ"G ~ BQO™ G

8.19
~ Q"G ( )
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We can also see that q

Q™16 ~ Q" 0BG b
~ Q"BG
~ Mapo(S™, BG)
= BG ~ Mapo(S™, BG)

k1

(8.20')‘

e

Continuing in this fashion we have

Q™" BG ~ Q™Q"BG ~ Mapo(S™, BG)

= MGPO(S"’Mapo(Sm,BG)) ~ Mapo(Sm,Bg) (821)

Bearing in mind the fact that elements of Mapo(X, BH) correspond to H-
bundles over X, this last result suggests that a G bundle over a sphere S™
is rather like an n-parameter family of G-bundles over S™. Precisely this
property is of importance when studying anomalies—cf. § 6 of chapter 10.
Summarising the situation for G and BG we have shown that

G =Q"G and BG =Q"'G (8.22)

The first topological consequence of 8.22 is that the homotopy groups of G
and BG are now easily determined by expressing them in terms of those of
G. We have

ﬂ'm(g) = ﬂ'm(QﬂG) = ﬂ'm-{»ﬂ(G)
Tm(BG) = Tn(@1G) = TniG (8:23)
and Tm(BG) = Tm-1(9)

Many of these homotopy groups are non-zero: for example, if M = §* and
G = U(N) then

0, N=1
m (BG) = m4(G) = { Z,, N=2
0, N>3 .
o N=o1 (8.24)
ﬂ’g(Bg)=ﬂ’5(G)= {Zg, N=2
Z, N>3

with the same results applying to mo(G) and m1(G).
Next we wish to calculate cohomology rather than its homotopy; work-
ing with G this time we turn our attention to the cohomology ring H*(G).
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Let us also assume that n is even. In this chapter we shall simplify matters
by only calculating the free cohomology; the more difficult task of detect-
ing the torsion in H*(G) is addressed when we deal with anomalies. With
this simplification understood, we draw on the property possessed by Lie
groups G which says that, up to rational homotopy, G is a product of odd
dimensional spheres. When G = U(N) we obtain

G~S %8 x...x§W-1 (8.25)

where ~ denotes rational homotopy equivalence. This information is enough
to enable us to calculate H}, gpom (G). In fact we can straightaway deduce
that

H;eRha.m(U(N)) = H;eRha.m(Sl) ® H;e Rham(Ss) ®-+® H;eRham(SzN—lg

8.26
and so we can pick off the generators of the LHS from those on the RHS—for
each sphere S* we shall have just one generator w; in dimension i. To use
this information to calculate the cohomology of G we bring in the evaluation
map Ev (cf. 6.52). With z € S™ and a € G we define

Ev:8"xGg — G

8.27
(@,2) — afz) (820
The last step is to use Ev to pull back the cohomology of G to that of
S™ x G, and then one ‘divides out’ the cochomology of S™ leaving behind the
cohomology of G. More precisely, let w; be a closed i-form on G representing
a generator of HY, p. . (G), then

Ev*w; € HY, ppam(S™ X G) (8.28)

Now we integrate the ¢-form Ev*w; over S™ and obtain a closed (1—n)-form
on G, we denote this form by y;—,. Hence p;_, represents a cohomology
class in G and we have

Hi-n =/ Ev*w; € Hi % (G) (8.29)

where for simplicity we use the same notation for the cohomology class as
the form. Each generator w; can be treated in this way and the collection of
Hi—n SO created generate an exterior algebra. The following argument shows
that this exterior algebra coincides with the cohomology ring H}, pram (9)-
We saw in chapter 1 that a topological group Gisa H-space; this leads
to a standard result of Hopf that H *(Q Q) is determined by the rational



222 Differential Topology and Quantum Field Theory;

homotopy groups 1r,~(§ )®Q. H* (Q\ : Q) is then an example of a Hopf algebrar
and, when G is connected, this Hopf algebra can be expressed (Whitehead:
[1]) as the product of a symmetric algebra S(A) and an exterior algebra

A(A). If A* = m:(6) ® Q one has
) A) = ®S(4%)
H*(G;Q) = S(ARA(4) with {/\(A) _ é A (4%1)

~ (8.30)
In our case, where G = G, we know that '

¢ ~Q"G and G~S'x 8% x--.x §N-1 (8.31)

therefore
N . N ) R
m(6)® Q= Bmayi(S¥ )@ Q> GH"(S¥HQ) (8.32)
Jj=1 j=1

However, since n is even it is immediate that 7;(¢) ® Q is only non-zero
when 1 18 odd and given by the non-negative values in the sequence

i=2-n-1, j=1,...,N (8.33)

Referring to 8.30 we see that there is no symmetric algebra piece and that
H*(G; Q) is an exterior algebra generated by odd dimensional elements of
dimension i with ¢ belonging to the sequence 8.33 above. These elements
are the ones that we constructed using the evaluation map and we can now
conclude that the p;_n generate Hj, pp...(G).

In a similar way we can apply this technique to calculate the cohomol-
ogy of BG using the homotopy equivalence

BG ~ Mapo(S™, BG) (8.34)

We use the same notation as before and define another evaluation map Ev
by
Ev:8™ x Mapo(S™, BG) — BG

(z,a) — a(z) (8:35)

Luckily the generators of the cohomology of BG are well known: they are
the universal Chern classes ¢; € H3: p.. (BG). Thus the generators of
H}, pham(BG) are represented by the forms

Vi = / B0 € B30 (BG) (8.36)
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If we set n = 2m we can write

Hi-2m € ;eg{}?am(g) Vyi—om € H::;Z%::m(Bg) (8‘37)

In contrast to our discovery above that the generators of ;eggm(g) are

all odd dimensional we note that the generators of H}, pj.m(BG) are all
even dimensional. Let us now observe how H}, p,...(G) varies as the N in
the U(NV) increases. For definiteness choose m = 2 so that n = 4. Then the
need to maintain i — 2m positive shows that:

U(1l) has Hi, pham(G)  all zero
U(2) h Hi G) all zero
( ) as . zieRha.m( ) (8.38)
U(3) hasjust Hj, ppem(9) #0
. U(4) has jUSt H;eRha.m(g) # 0, ng Rha.m(g) 9,: 0

and so on. For H}, p,..(BG) it is clear that U(3) also provides the first
non-trivial case; notice, too, that there is no sensitivity to the difference
between U(N) and SU(N) here.

§ 2. Secondary characteristic classes

We can obtain explicit formulae for the cohomology classes p2;—1 and vs;
using the theory of secondary characteristic classes.

We must begin with a brief explanation of the construction of secondary
characteristic classes—for a full account, cf. Chern [1]. The central point
is that the vanishing of a standard characteristic class gives rise to the
existence of a new characteristic class known as a Chern—Simons secondary
characteristic class. Suppose that P is a bundle over the manifold M.

P

l« (8.39)
M
Let ¢;(F) be a 2j-dimensional characteristic class expressed in the usual

way as an invariant polynomial in the curvature F' of a connection A. It
will be useful below to write this in the form

¢j(F)=P;(F,F,...,F) (8.40)
| ——
j entries
where P;(F,F,...,F) denotes the invariant polynomial. If we use 7 to

pullback ¢;(F) from M to P then, viewed as a 2j-form on P rather than
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M, it becomes exact (Nash and Sen [1]). There is a standard formula

(Chern [1]) for this pull back which is obtained by using the curvature F,
of a family of connections A, where

Ag=tA

2 (8.41)
F,=tdA+t*ANA
The formula that one obtains is
n*ci(F) = dTP;(A), with TP;(A) € Q¥~1(P)
(8.42)

1
and TPJ(A)=]/ dtPj(A,Fg,...,Fg)
0

where d denotes the exterior derivative acting on P and the notation T P;(A)
is used to signify that T is the transgression operator acting on P. Now we
consider what happens if ¢;(F) vanishes. In that event 8.42 asserts that

dTP;(A) =0 (8.43)

In other words, T P;(A) is closed and thus it determines a cohomology class
on P. Since TP;(A) is a (2¢ — 1)-form it is an odd dimensional cohomology
class, that is

TP;(A) € H*1(P;R) (8.44)

It is TP;(A) that is known as a secondary characteristic class. It should
be noted that TP;(A) is only a real cohomology class on P, unlike ¢;(F)
which is an integral class on M. However, if we project TP;(A) onto the
base M it becomes another cohomology class T\Pj(A), say, on M but with
R/Z coefficients. Summarising this cohomology information we have

c;(F) € H¥(M;Z), TP;(A) € HY~'(P;R), TP;(A) e H¥ Y(M;R/Z)

(8.45)
where in each case we have simplified matters by using the same notation to
denote the differential form and the cohomology class it represents. In prac-
tice the R/Z-valued nature of the class TP;(A) can be seen if one calculates
T\Pj( A) in two different gauges: unlike the situation for the ordinary charac-
teristic class ¢;(F'), the two classes will differ but their difference will be an
integral class which projects to zero when we impose R/Z coefficients. We
shall encounter examples of this phenomenon in 8.62 below and in chapter
12.
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We are now ready to apply the preceding construction to H*(G). We
start with another use of the evaluation map, applied, this time, to the

product G x P, giving B
gxP = P

(a,p) — afp)
l" (8.46)
Sﬂ

Next let TP;(A) be the secondary characteristic class on P; we pull this
back to G x P where it becomes

Ev*TP;(A) (8.47)

Then we restrict Ev*TP;(A) to G x S™ C G x P; denoting this restriction
by EU*TP,-(A), we integrate over S™ and obtain a closed (2j — 1 — n)-form
f2j—1-n ON G which represents a cohomology class. Using the same notation
for the cohomology class as the form, we write

H2j—1-n € H¥71"MGR),  pojoi-n = /S Ev'TP;(4)  (8.48)

We have not yet checked that the characteristic class ¢;(F) vanishes but it
turns out that this is automatic. To see this we simply observe that, for
l2j—1-n t0 be non-trivial, 25 — 1 — n has to be non-negative. Thus we must
require

2j=1-n20=2j2>2n+1 (8.49)

But
¢c;(F) € HY¥(S™;2) (8.50)

and so ¢;(F) does indeed vanish when 2j > n. Moving on to the vo;, which
represents cohomology classes on BG, we can relate the v3; to the ps;; by

using the fibration c 4
—

J"rr (8.51)
Bg
To do this we pull back vy; from BG to A where it is exact. This gives us

7'("1/2]' = dfj, for some fj € Q2j_1(.A) (8.52)

But the fibre of A is G and so if we restrict f; to a fibre—i.e. an orbit
G- A with A € A—we obtain a closed (25 — 1)-form on G which one can
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easily check coincides cohomologically with po;-1. Hence, adjusting indices
a little, we have

p2j-1 = /S" Ev*TPji(n/2)(4)

= ijG-A

with 7'('*1/2]‘ = de

(8.53)

Let us now set j to a specific value and display the resulting formula
for paj—1. In our work on anomalies in chapter 10 the cohomology group
HY(G;R) is of central importance, for this reason we calculate p;. First we
must commit ourselves to a particular Lie group G and a value of n; we
choose G = SU(N) and n = 4. With this data in mind we refer to 8.48
which says that

H2j—1-n = /54 Ev*TP;(4) (8.54)
Thus, for u;, we require
2j—1—-n=1
. 2+n (8.55)
=27 = =3
2
With j = 3 we have
1
TP3(A) = 3/ dtP3(A,Ft,F¢) (856)
0

But for SU(N) the invariant polynomial P3(F, F, F) is given by

Py(F,F,F) = -—2;?tr(F AF A F) (8.57)

Putting all this together yields the following formula for p;
. 1
1= __‘L_/ dt/ tT(A/\th\F't), with Ft = tdA+t2A/\A (858)
(2m) Jo st

where A and F now denote the connection and curvature on §4. We see that
combining connection and curvature with secondary characteristic classes
provides us with an explicit formula for the cohomology of G. It is also clear
that if py is exact the same is true for vy, conversely, using our formulae it
is straightforward to verify that if v, is exact then so is y.



Instantons and Monopoles 227

Another interesting example where a secondary characteristic class ap-
pears is the 3-dimensional gauge theory of Deser, Jackiw and Templeton [1]
and Schonfeld [1]. In 3-dimensions G is disconnected: we have G ~ Q3G
and the number of connected components is counted by

mo(G) =m3(G) = Z (8.59)

where G is a compact connected simple Lie group. The action S for this
3-dimensional gauge theory contains the usual ||F||? term as well as a sec-
ondary characteristic class contribution of the form aTP,(A). If M is the
3-dimensional manifold on which the theory is defined, the actual expression
for S is

S = ||F|?> + «TPy(4) (8.60)
If we take G = SU(N), for which we know that Py(F) = (—1/8x2)tr(FAF),

we can easily compute T P;(A) which is known as the Chern-Simons 3-form.
Using 8.42 we find that

1
TPy(4) =2 [ dtPu(4,F)
0

2
872

1 2
—*S—ﬂftT(A/\dA'l'gA/\A/\A)

1
/ dttr {AN(tANdA+EANANA)} (861
0

Having calculated the Chern-Simons term, the detailed expression for S is
S=—tr/ {(FA*F)+%((1A/\A+3AAAAA)} (8.62)
M 8~ 3

However, S is not gauge invariant because of the lack of gauge invariance
of the Chern-Simons form. Nevertheless, because TP2(A) changes by an
integer under a gauge transformation, the physically measurable quantity
exp[iS] will be gauge invariant provided o satisfies the quantisation con-
dition o = 2mn where n is an integer. This condition has an important
physical interpretation since o has the dimension of a mass: we obtain a
3-dimensional gauge theory with a quantised mass. Also G is disconnected
for all the larger odd values of dim M.

§ 3. Instantons and their moduli

In this section we want to calculate the dimension of the moduli space of
instantons. The setting is a very specific one: we have a non-Abelian gauge
theory with G a compact simple Lie group and action

S=S(A)=|F|? = - /M tr(F A % F) (8.63)
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with M a closed four dimensional orientable Riemannian manifold and * the
Hodge dual with respect to the Riemannian metric. Instantons are those A
which correspond to critical points of S. To fix our conventions, and for the
sake of completeness, we review briefly some basic properties of S relevant
for a study of instantons—for additional background, cf. Nash and Sen [1].

First we should obtain the Euler-Lagrange equations of motion, i.e.
the extremum condition. Let A be an arbitrary connection through which
passes the family of connections

At =A+ta (8.64)
The curvature and action for this family are

F(At) =dAt+At/\At

8.6
S(Ar) = |F(AQ|? =< F(Ay), F(Ay) > (8.65)

Expanding in the vicinity of ¢ = 0 gives

S(A0) =< F(4), F(A) > +t% < F(A0), F(A) >|yg + -
and F(At)=F(A)+t(da+A/\a+a/\A)+t2a/\a
= F(A) +tdgqa +t’aAa
= S(A;) = ||F(A)|1? + t{< daa, F(4) > + < F(A),daa >} + -
=S(4)+2t < F(A),dga > +---

(8.66)
A is a critical point if
dS(A)
= 8.67
dt  |,— 0 (8.67)
That is, if
F(A),dga>=0
<F(4),dga (8.68)
2>< dyF(A),a>=0
But a is arbitrary so our equation for a critical point is
dyF(A) =0 (8.69)

However, F(A) = d4 A also satisfies the Bianchi identity d4F(A) = 0 and
so we have the pair of equations

daF(4) =0, 44 F(A4) =0 (8.70)
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This is similar to the condition 2.50 for a form w to be harmonic, which is
dw =0, d*w=0 (8.71)

It should be emphasised, though, that the Yang-Mills equations are not
linear; thus they really express a kind of non-linear harmonic condition. The
most distinguished class of solutions to the Yang-Mills equations d% F(A) =
0 is that consisting of those connections whose curvature is self-dual or anti-
self-dual. To see how such solutions originate we first prove that, on 2-forms,
d% has the property that

dl = — xdsx (8.72)

To prove this we take a p-form w and a (p — 1)-form 7, both forms being
matrix valued. Using w and 7 we construct the (n —1)-form tr(w A *n) and
observe that, since M is closed, we have

/ ditr(wA *xn)=0
M (8.73)
=->/M tr(daw A *n)+(—1)”/M tr(wAda*xn)=0

But, from 2.43, we know that, on p-forms, x* = (—=1)?("~?) and so
/ tr(daw A xn) + (—-1)"““"’”’/ trlwA*xxdgxn)=0
M M

= <dgw,n > +(=1)P" ¢ PP <y adyxn>=0 (8.74)
= <w,dyn > +H(=1)P U PP cw xdy xn>=0
=>dy = (_1)1+p—(4—p)p n
On setting (p — 1) = 2 this is the property that we require; when we make
use of it the Yang-Mills equations become
da*xF(A)=0 (8.75)
Thus if F = F x F the Bianchi identities immediately show that we have
a solution to the Yang-Mills equations—we have managed to solve a non-
linear second order equation by solving a non-linear first order equation.
We shall now show that these critical points are all minima of the action S.
First we decompose F into its self-dual and anti-self-dual parts F+ and
F~, giving
1 1
F = §(F+*F)+§(F—*F)
— F+ -
=F"+F (8.76)
= S=|(F*+F)?
= [|F*|* + | 7|2
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where the crossed terms in the norm contribute zero. The instanton number
k is minus cy(F) so that, for SU(N),

1
—8? MtT(F/\F)

=L / tr{(F* + F~) A (F* + F7)} (8.77)
872 [
_ 1P - F)?
87\'2 K

The inequality (a? + b?) > |a? — b?| shows that, for each k, the absolute
minima of § are attained when

S = 82|k (8.78)
and this corresponds to F¥ = 0 or equivalently
F=%xF (8.79)

and we have the usual self-dual and anti-self-dual conditions. Changing the
orientation of M has the effect of changing the sign of the * operation and so
interchanges F* with F~. Hence there is no essential distinction between
self-duality and anti-self-duality. For convenience we deem all our minima
to be self-dual instantons.

If we think of the Yang-Mills equations as a non-linear generalisation
of Hodge theory we expect that these equations are elliptic as is the case
for Laplace’s equation. Actually the Yang-Mills equations 8.69 are not yet
elliptic as they stand. The reason for this is that they are the equations
for the critical points of a function which possesses an invariance group.
From a physical perspective this is very easy to understand: it is just the
statement that the action S(A) is invariant under gauge transformations.
The non-ellipticity is easy to demonstrate: gauge invariance gives the Yang-
Mills operator d%d4 a non-invertible symbol, whose kernel is parametrised
by the space of gauge transformations. Further, suppose A is a smooth
solution to

dydaA=dyF(A) =0

then so is 4, = g~'Ag + g~'dg. But A, need not be smooth if g is not
sufficiently smooth. To obtain an elliptic problem we have to choose a
(local) gauge. We shall do this by imposing a gauge condition. To find this
gauge condition we have to look at connections in a neighbourhood of A.
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Consider a small perturbation of A in a gauge direction; that is, subject A
to an infinitesimal gauge transformation g by writing

g = exp[tf] ~ I +tf, for t small
so that Ag=g"'Ag+g g
~(I—=tfHAI +tf) + (I —tf)d(I + tf) (8.80)
~ A+ t[A, f] + tdf
=A+tdaf

Taking the derivative at ¢ = 0 shows that the tangent to A at A is just d4 f.
However, this is a tangent in a gauge direction and, using standard linear
algebra, we can decompose the tangent space according to

TpA=Imdy & kerd} (8.81)

This makes it clear that the non-gauge directions are given by ker d%: the
orthogonal compliment to Imd4. This analysis suggests a natural gauge
condition to impose on perturbations of A to a nearby connection A + a,

namely the condition
dya=0 (8.82)

Also if G - A is the orbit under G of the connection A then it is clear that
To.aA~Imdy (8.83)
and so we can also write
TaA=T; ., A®kerd (8.84)

Having provided A with a gauge condition we can say that Yang-Mills
equations are elliptic when restricted to the non-gauge directions ker d.
More concretely, the equations

* F(4) =0, *a=0 (8.85)

form an elliptic system of non-linear partial differential equations with only
smooth solutions. This completes our review of basic properties of the
Yang-Mills action and we can now turn to the matter of the moduli space.

Let A be a self-dual connection of instanton number k. When gauge
equivalence is taken properly into account, the space of such A form a finite

dimensional space .
My (8.86)
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which we call the instanton moduli space. The moduli space should be
viewed as a finite dimensional subspace of the infinite dimensional configu-

ration space Ay /Gx
My C Ai/Gx (8.87)

However, we have not quite dealt with all the gauge invariance present in
the theory (cf. Atiyah and Jones [1]). There is a remaining invariance
present because a purely physical quantity, such as the Yang-Mills action
S(A), does not depend on our choice of base point py € P,; recall that py
is the base point used in the definition of §. Now if pj € P, is another
base point, then py = pog for some g € G. Thus by acting with G we can
move from one base point to another. This action extends to Ay /G but:
unfortunately it is not a free action.

To obtain a good moduli space we have to cut down both the config-
uration space and the group G slightly: G is simple and so has a discrete
centre Z(G) and all the elements of Z(G) leave the points of Ay /Gy fixed:
this is because, if g € Z(G), then dg = 0 and g~'Ag = g~1gA = A, thus
g~ (A +d)g = A. To get round this problem we factor out the centre by
replacing G by its adjoint AdG = G/Z(G). To cut down A /Gi we restrict:
to the subspace of irreducible G-connections. The reason for this is that a
given connection A may be a fixed point for some elements of Ad G but such
an A is necessarily reducible (cf. next paragraph). Hence AdG acts with-
out fixed points on the irreducible connections and so our new configuration
space is therefore the quotient

(AI™*/G,)/(Ad G)  (888)

Before continuing with our investigation of moduli we elucidate the
relation between the action of AdG and reducible connections. We return
to the parallel transport formula 8.8, which is

&y 0 PTy, (A) = PT, (- A) o aq (8.89)

Reducibility has to do with holonomy so we set a = b and replace PT,,,(A)
by PT., (A); if we further suppose that & € Ad G and that A is a fixed point
of a then the formula becomes

ao PT, (A)=PT, (A)oa (8.90)

Thus those a which fix A—the stability group of A—commute with the
elements of the holonomy group of A and so belong to its centraliser. Now
if A is irreducible its holonomy group is G and the centraliser is just Z(G),
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the centre of G; but Z(G) is discrete and does not belong to Ad G, hence
the stability group is trivial. Thus a connection with a non-trivial stability
group must be reducible. A simple means of detecting the existence of a
non-trivial stability group for A is to see whether there are any covariantly
constant sections f of ad P, that is, any f satisfying

daf=0 (8.91)
Given such an f, the gauge transformation g = exp[tf] leaves A fixed since

A = exp|~tf|(A +d) explt]

2
= A tdaf + Sldaf, S+ (8-92)
=4

If we were to allow reducible self-dual connections then the moduli
space would be singular at the reducible points. We shall continue with
our study of My, which we take to be the space of equivalence classes of
irreducible self-dual connections. If we do not divide by Ad G, then, inst ead
of My, we obtain a space M, and this space is fibred over M with fibre
AdG. Our next task is to find the dimension of M.

We employ a similar technique to that used in chapter 5 when calcu-
lating the dimension of the Riemann moduli space M,. The main idea is to
work infinitesimally, by which we mean to work with the tangent space to
M. The advantage of doing this is that the dimension of the tangent space
can be calculated using the index theorem. Let A + ta be a one parameter
family of smooth connections. Hence, by construction, a is a tangent to this
family at ¢t = 0, so that

a €Ty A (8.93)

We wish to produce, from a, a corresponding tangent to the moduli space.
If we use [A] to denote the point in the moduli space to which A corresponds
then we wish to produce an element of

TimMy (8-94)

To do this we must do two things: firstly we must render this family self-
dual, and secondly we must project out those a which correspond to gauge
directions; in geometrical language this latter condition means those a which
belong to the tangent space in the orbital directions, i.e. to T, ,A4. To
achieve our first goal we introduce 7_, which is the operator which projects
a 2-form w onto its anti-self-dual part, i.e.

T = %(w — *w) (8.95)
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Our self-duality equation is now ”
m-F(4)=0 (8.96),

and substituting A + ta into this equation gives :
n_F(A+ta)=0 (8.97)

But )

F(A+a)=d(A +ta)+ (A +ta)A(A +ta)
=F(A)+t(da+aAA+ ANa)+t2aAa (8.98)
= F(A) +tdaa +taAa

The connection A + ta is self-dual, so

n_(F(A) +tdaa +t*aha) =0

8.99)
= n_(F(A)) +tr_(daa +taAa) =0 (8.99)

Thus, at the point ¢t = 0, the tangent a satisfies
w-(daa) =0 (8.100)

For convenience we define the operator d by d; = m-od, and then 8.100

becomes
dza=0 (8.101)

To achieve our second goal we must identify those a which differ by an
element of T;.,,A. But, since T;., A ~ Imd,, the two requirements we

demand of a are met if
kerd,

Imdy

This has an obvious cohomological interpretation, an interpretation which
we now exploit so that we can use the index theorem.

A more detailed description of the Lie algebra valued 1- forms a is that
they are sections of the bundle

(8.102)

a €

adPRA'T*M - (8.103)

The first factor in 8.103 (which was defined in 6.24) ensures that a has
the cotrect behaviour under gauge transformations, namely a — g~lag;
the second factor is simply because it is a 1-form. Let us use the notation
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(M, ad P) to denote the various spaces of sections where Q*(M,ad P) =

I'M,adP ® A'T*M); the natural elliptic complex to use for our index
calculation is

i 0 da 1 a, 2 LR
0 — Q°(M,ad P) — Q' (M,ad P) — Q* (M,ad P) —— 0

It is necessary to check that 8.104 is a complex in the sense that (8104
djoda=0 (8.105)

To do this let f € Q°(M, ad P), and so we must show that
m_dadaf =0 (8.106)

This is guaranteed to be true since we can reason as follows: Recalling our
identification in 8.80 of d4f as the change in the connection A under an
infinitesimal gauge transformation, we see that d4d4 f is the corresponding
change in the curvature F(A) under this gauge transformation; but the
self-duality equation F = xF is clearly gauge invariant, thus the gauge
transformed curvature must also be self-dual. In other words, we have

m_(F(A)+dadaf) =0
= W-(F(A)) +m_dadaf =0 (8.107)
= n_dadaf =0

as required. Thus we do have an elliptic complex. It is instructive to check
this explicitly. To do so we write!

daf =df +[A4, f]
= dadaf =d(df +[A, f]) + AN +[A f)+(df +[A fDAA
=dAf—AANdf —df NA— fdA+ANdf+ ANAS
~AANFA+AfANA+AfANA-fANA
=F(A)f - fF(4),
= w_dadaf = n_(F(A))f — fr_(F(A))
=0
(8.108)
and so our check has been successful.

1 For this, and similar calculations, it is useful to recall the formula dqgw = dw + AA
w+ (—1)P*1w A A where w is an ad P-valued p-form.
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Let us use the notation Q_(M,ad P) to denote the complex. The cob
homology data for this complex is

HY(Q_(M, ad P)) = ker d, dim H°(Q_(M,ad P)) = ho
ke'r dA . 1 _
H'(Q-(M,ad P)) = = T dimHY(Q-(M,ad P)) =h1 4,0,
1
H(Q_ (M, ad P)) = FET T+ dim H?(Q_(M, ad P)) =
Imd,

where the notation d(" ) denotes the exterior covariant derivative acting o’
ad P ® APT*M. Only one of these dimensions is required for our moduli
space calculation, this being h;; in other words, we wish to compute

hy = dim T yM; = dim M, (8.110)
However, the index of the complex is the alternating sum |
ho = h1 + hy (8.111)

Nevertheless, we shall still be able to calculate h; because it turns out that’
ho = he =0, aresult we now prove before using the index theorem itself. hq,
coming from a cohomology group in dimension zero, is the dimension of a
space of sections. More precisely it is the dimension of the space of sections
of ad P which are covariantly constant. But from our earlier discussion of
reducible connections we know that the irreducibility of the connection A
means that this space is empty, hence hop = 0. To deal with hy requires:
a vanishing theorem. This is done by a Weitzenb6ck positivity argument:
one proves that H2(Q_(M, ad P)) is trivial by showing that the associated
Laplacian

AD = d;(d7)* +memt (8.112)

is positive definite and hence has no kernel; the term 773 is just zero and
computing the remaining term in local coordinates shows that

A® = %dg‘)(dﬁ))* + % —w. (8.113)

where R is the scalar curvature of M and W_ the anti-self-dual part of its
Weyl tensor. Positivity will result if we assume that W_ is zero; that is,
M is what is known as a self-dual manifold, and the scalar curvature is
positive. Following Atiyah, Hitchin and Singer [1] we now make these two
assumptions.
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As usual in such calculations we can also compute the index by using
the elliptic operator

D: Q°(M,ad P) © Q2 (M, ad P) —— Q' (M, ad P)

8.114
where D = {d(o) + (d3)*} ( )
Since hg = hy = 0 we have
index D = —h, = — dim My (8.115)
After complexification we can use our index formula 4.48, which is
ch 1)P[EP
indez D = (—1)"/? (2, (CLPIED - td (T M¢)[M)] (8.116)

e(M)
In the present case, n = 4, and the E? are given by

E’=adcP@A'T* M., E'=adcP@A'T*M,, E?=adc.P® A T*M,

(8.117)
with ad¢P the complexification of the adjoint bundle ad P. This rather
formidable looking formula can be dealt with fairly easily: Substituting in
the expressions for the EP, and using the multiplicative property of the
Chern character, gives

indez D = ch (adcP) E (M)[M]
= ch (X, (=1)?P[E”))
where EM) = (1)
and E°=AT*M,, E'=A'T"M., E’=AT*M,
(8.118)

Since M is only four dimensional the Chern character ch (adc P) need only
be expanded to its first three terms, consequently we have

 td (TMy)

%(cf(ach) —2c2(adcP)) (8.119)
But, drawing on § 5 of chapter 3, we can reason as follows. Because ade P i8
the complexification of a real bundle, it is self-conjugate and has only even
dimensional Chern classes; also it is clear that rk (ad¢ P) = dim G. Finally
we can employ Pontrjagin classes to write p; (adeP) = —2cz(adcP). This
gives the result that

ch(adeP) = rk (adeP) + c1(adeP) +

ch(adeP) = dimG + pl(ach) (8.120)
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To deal with the rest of the formula we note that inspection of 8.118 shows
that the complex which defines E (M) is got from a certain truncation of
the de Rham complex. The de Rham complex has been truncated in two
ways: its last two terms are missing and the middle dimensional term is
A2T*M, instead of just A2T*M.. But the missing terms in the de Rham
complex contribute the same amount as the first two by Poincaré duality,
while the difference between the present middle dimensional term and its
usual de Rham form is measured by the signature 7(M). Indeed, if b; are
the Betti numbers of M, we note that the index of this complex is

bo — by + b5 (8.121)
However, the Euler characteristic and the signature of M are given by

X(M)=bo—bl+bz—ba+b4

8.122
(M) = b — b N
Thus we have
x(M) =bg —by + by — b3 + by

= 2by — 2b; + by by Poincaré duality

= 2b0 —2b + 2b2— + (b2 - 2b2_)

= 2by — 2by + 2b7 + (bF + by —2b3) (8.123)

= 2by — 2by + 2b; + T(M),

_ 1
= bo = b1+ by = 5(x(M) — 7(M))

and this gives the four dimensional contribution from E (M). Putting this
together with the contribution for ad. P we find that the dimension of M
is given by the four dimensional part of the expression

{dij + %pl(ach)} {2 - %(X(M) - r(M))}

. (8.124)
dim G
2

= dim M = p;(adeP) —

(x(M) - 7(M))

This formula is valid when M is self-dual with positive scalar curvature R,
and when G is compact and simple; in Taubes [1] the formula for dim My
is also established for a class of non-self-dual manifolds. It is now possible
to make specific choices for G and M and work out the details.
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Example SU(2) instantons on S*

SU(2) is compact and simple and S* both has positive scalar curvature and
is conformally flat, so we can apply our results. The Euler characteristic
and signature for $* are given by

x(8%) =2, (8 =0 (8.125)

and so

dim My, = p;(adcP) — 3 (8.126)
It remains to calculate p;(adcP). Let E be the SU(2) bundle which gives
the instanton number k, i.e.

k = ~cy(E) (8.127)

Then E carries the fundamental two dimensional representation of SU(2)
and, if we tensor E with itself, there is a natural decomposition of this ten-
sor product bundle into three dimensional and one dimensional parts cor-
responding to the three dimensional and one dimensional representations.
However, because £ ® E is quadratic in E, it is clear that the elements
+g of the fundamental representation are both mapped onto the same el-
ement in the tensor product; hence the representations carried by £ ® E
are representations of SU(2)/Z; = Ad SU(2). Thus the bundle ad.P is the
appropriate three dimensional part of the tensor product £ ® E. This three
dimensional part is easy to find: We decompose E ® E into the sum of a
symmetric and an anti-symmetric piece

E®E =5*E® ANE (8.128)

Here S?E denotes the symmetric square of E. Clearly A*E has rank (3)

and is a line bundle while S?E has rank (2.3/2) = 3 and is, in fact, adeP.

Now we are just left with a little manipulation of characteristic classes.
Applying the Chern character to 8.128 gives

ch(E)ch (E) = ch(ad¢P) + ch (A2E) (8-129)

If we expand both sides we get
1 1
2 +ei(B) + 5(ci(B) - 2c2(E)))? =3 + 5P1(adeP) +1+ci(E) (8.130)
But on §* we need only keep cohomology in dimension 4 so that
1
4—4c(F) =4+ Epl(ach)
= p1(adcP) = —8¢2(E) = 8k

(8.131)



240 Differential Topology and Quantum Field Theory
Thus the dimension of the SU(2) moduli space on S* is given by
dim M = 8k -3 (8.132)

If we keep the group SU(2) but replace M by a simply connected
manifold with positive definite intersection form, then we will still have an
(8% — 3)-dimensional moduli space. To prove this we only have to refer to
8.123, where we had

-1
bo—by +b5 = §(X(M) - r(M)) (8.133)
But by = 1, and the simply connectedness and positive definiteness give
b, = 0 and b; = 0 respectively, so

S0M) = 7(M)) =1

= dim My =8k —3

(8.134)

as claimed. Referring to chapter 1 we see that simply connected M with
positive definite intersection form are precisely the class of M to which
Donaldson’s theorem applies.

We have a final remark about reducible connections for G = SU(2).
If an SU(2) connection is reducible then all the bundle E can do is to
decompose into the sum of two line bundles

E=LoL™! (8.135)

the choice of L and L~! being necessary to maintain c;(E) = 0. Since
c1(E) = 0 and c3(E) = —k we have

¢(E)=c(L® LY
= (1+c(E)) = A +ca@)(1+er(L7Y) (8.136)
= c3(E) = —ci(L) Ver(L) = —glcr(L), e (L)) = —k

where ¢ is the intersection form. Thus for £ and L to be non-trivial we
require H2(M;Z) # 0. It now follows easily that there are no non-trivial
reducible connections on S*, but CP>—which is simply connected and has
an intersection form that can be taken to be positive definite—is not simi-
larly excluded. ‘

We return to the matter of moduli spaces in general. As we have made
manifest above, the Atiyah-Singer index calculation is an infinitesimal one.
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It assumes that we have an instanton A and then provides us with the
dimension of the tangent space to My at [A]. Before we can be sure that
we have global moduli space, three conditions must be met: at least one
instanton must be found; the infinitesimal coordinates at the point [A] € M
must be extended to a neighourhood of [A]; finally the resulting system
of local coordinates must be shown to fit together form a global moduli
space. The first condition is easily met as many instantons are known.
The last two conditions are analytic rather than topological in character.
The second condition is an integrability question similar those that arise in
complex analysis when passing from an almost complex structure to a full
complex structure. What is needed here is to prove that every element in
the ‘deformation space’ H'(ad P ® A_T*M) comes from a one parameter
family A + tA; this is done in Atiyah, Hitchin and Singer [1], who also
show that the third condition is met, ensuring that M, exists as a global
(Hausdorff} manifold.

We can also consider groups other than SU(2) and the corresponding
computation of dim M can be done with the addition of some group theory,
cf. Bernard, Christ, Guth and Weinberg [1] and Atiyah, Hitchin and Singer
[1]. In this context a point worth noting is that the need to make sure that
the instanton is irreducible becomes more pressing. This is because, unlike
SU(2), for G large there may be many subgroups H to which a self-dual
connection might reduce. For the convenience of the reader we provide a
table of moduli space information for various Lie groups G and M = §*

G dim My Irreducibility restrictions
SU(N) 4Nk - N? +1 k> N/2
Spin(N) 4(N - 2)k— N(N -1)/2 k>N/A/N>T
Sp(N) AN+1)k—-N(@2N+1) k>N
Es 48k — 78 k>3
E, T2k — 133 k>3
Eg 120k — 248 k>3
Fy 36k — 52 k>3
G, 16k — 14 k>2
(8.137)

When M = S* the SU(2) moduli space M, is five dimensional; this is
the space used in the proof of Donaldson’s theorem. M, is a non-compact
space with boundary S*; in fact M), is the five dimensional hyperbolic space
HS. 1t is also true that the boundary of M; is M for SU(2) instantons on
the other M to which Donaldson’s theorem applies. Donaldson’s theorem
can be viewed as a kind of analogue to Teichmiiller theory. In the latter
the moduli of a linear elliptic operator—the 8-operator—are used to deduce
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topological information about Riemann surfaces, the main result being that
dim M, gives the genus of the Riemann surface. In Donaldson’s theorem the
moduli of a non-linear elliptic operator—the operator d%d4—are used to
deduce differential-topological information about 4-manifolds; for example,
we have the smoothability results described in chapter 1. |

The instanton moduli spaces also carry interesting topological informa-
tion about the configuration space .A/G. This is more easily described using
the moduli space M}, introduced on p. 233. For SU(2) instantons on §*
the homology of M}, approximates that of .4/G more and more closely as
k increases. Atiyah and Jones [1] show that the inclusion map

i(k) : M, — A/G (8.138)

has the property that, for k large enough, i(k) induces a projection of the
homology of M), onto part of the homology of A/G. It then follows that,
since M} is growing in dimension as k increases, more and more of the
homology of A4/ is captured by that of M},. Thus, homologically speaking,
in the large k limit instantons give a kind of approximation to the physical
configuration space A/G.

§ 4. Monopoles and symmetries of instantons

The Yang-Mills equations d% F = 0 change considerably when the dimen-
sion of the manifold M is changed. In this section M is three dimensional
and our interest is in magnetic monopoles. Monopoles are static, finite en-
ergy, objects which give the critical points of the energy of an appropriate
system of fields defined on a three dimensional M. Like instantons they
possess a discrete topological invariant k¥ which can be normalised to be an
integer; unlike instantons monopoles are trivial if M is closed and compact.
In fact the usual choice for M is the non-compact space R3. Analysis on
a non-compact M introduces some new technical difficulties but these have
not proved insurmountable.

The physical system studied consists of Yang-Mills G-connection A and
a Higgs scalar field ¢ transforming according to a representation of G. We
make the usual choice and take this to be the adjoint representation of G.
From the point of view of quantum field theory, a natural physical system
with these fields is characterised by specifying that their energy E is given
by the expression

E= % / {~tr(F AxF) — tr(dag A xdad) + A * (> — C?)?} (8.139)
M
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where |¢|2 = —2tr(¢?). However, the field equations for the critical points
of this system are the second order system
WF = [dag, ¢, “dad = 408(|¢? — C?) (8.140)

and these equations are difficult to solve explicitly, cf. Jaffe and Taubes
[1]. The limit in which many explicit solutions are available is the Prasad-
Sommerfield limit where the scalar potential term vanishes. This is achieved
by setting A = 0. The energy is now

E=E(48)= —%/ {tr(F AXF) + tr(dad A xd )}
) M (8.141)
= §{IIFII2 + [ldadll*}
and the field equations are
dyF = [dad, 4], wdad =0 (8.142)

These equations can be solved by imposing the first order Bogomolny equa-
tion (Bogomolny [1])
F =xdu¢ (8.143)

To see this we substitute into the LHS of both field equations and note that
the second equation just becomes the Bianchi identity

daF =0 (8.144)
while the LHS of the first equation becomes

U xdag = xda(de + [4, ¢])

«{d(d¢ + [A,¢]) + AN (db + [A, 8]) + (do + [4,¢]) A A}
»{dAp—ANdp—dpANA—pdA+ ANdp+ AN AP
—ANPA+dpANA+APANA—pAN A}

{F¢ — ¢F} = {dadp — ¢dad}

[dAa ¢]

(8.145)
and thus we do indeed have a solution to the field equations. Actually it is
much easier to see this by completing the square in the expression for the
energy by writing

1
E = S{<F Fxds¢,F F xda¢ > £2 < F,xdy¢ >}
(8.146)

1
= —2-{||F F xdsd||®? £2 < F,xda¢ >}



244 Differential Topology and Quantum Field Theory

This shows that the absolute minima of E are attained when the pair (A4, ¢)

satisfy
F=Fx dA¢ (8.147)

which is the Bogomolny equation; we see, too, that there is a solutxon
whatever the sign in front of the term *d4¢. The expression

‘J
< Fyxdgd >= — / tr(F A dg) (8.148),
M

is the absolute minimum and looks like a topological charge. However, we
must be careful because

dtr(F¢) = tr(daF A ¢) + tr(F A dad)

8.149
=tr(F Adag) ( )i
Thus if M is compact and closed Stokes’ theorem gives
< F,xdpd >= —/ dtr(F¢) =0 (8.150)
M
from which it follows that the energy FE is zero. Hence we have
1
E = ={|F|* + ||da¢|*} =
SUIFI? + ldagl? =0 150

=>F=dA¢=O . g

and this means that A is a flat connection; its only departure from triviality
lies in its holonomy, which relies on 7(M) to be non-vanishing. Thus if M
1s simply connected the ground state of our system is entirely trivial. We
can avoid this state of affairs by choosing M to be non-compact or to have
a boundary. We shall consider two situations where the Yang-Mills-Higgs
monopole system has non-trivial ground states: the first is when M = R3
and the second when M = H3 where H3 is three dimensional hyperbolic
space.

We begin with the case M = R3 furnished with the Euclidean metric:
and also set G = SU(2). The first consequence of choosing M = R3 is
that we must specify boundary conditions at infinity. This is necessary to
make the integrals for the energy converge and to make the field equation
problem well posed. A standard boundary condition for ¢ is

lim |g] — (C +O(r™%)) (8.152)
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where r is the distance from the origin in R3. This behaviour of @ at
infinity is linked to that of F via the Bogomolny equation; the result is
that it is sufficient to make the energy integrals converge and to render the
Bogomolny equation well posed. The integral 8.148 can now be non-zero
and it does have a topological interpretation which forces it to take discrete
values. More precisely, if k is an integer, then

1
k .
ywrs < Fyxdg¢p >= (8.153)
This integer is the magnetic charge and can be thought of as the Chern class

of a U(1) bundle over a two sphere which is 52, the two sphere at infinity;
setting C = 1 and using Stokes’ theorem, we have

1 1
k= G/Ra tr(F Adag) = E/sgn tr(Fg) (8.154)

The condition || = 1 on the boundary defines an S? inside the Lie algebra
su(2) and (F¢), when evaluated at infinity, becomes the U(1)-curvature of
a bundle over S, and k is its Chern class. Alternatively, one can write k

as the winding number, or degree, of a map ¢ : S2, — S22y 8iving

¢:5%, — S

— ¢
2 90 = g (8.155)
1 ..
and k= —% Sgn tT(¢d¢ A d¢)

This boundary integer k is the only topological invariant associated with the
monopole system; the SU(2) bundle over R® is topologically trivial since
R3 is contractible.

There is an important formulation of the Bogomolny equation as a
variant of the four dimensional self-duality equation. In fact the Bogomolny
equation is simply the static version of the equation F' = xF on R*. This is
not difficult to see. Let A be a connection on R* which we decompose into
its components

A = Agdz® + Aydz! + Aydz? + Asdz® (8.156)

Then, with respect to the Euclidean metric on R*, the self-duality equat ions
for the curvature F of A, when written in component form, are

~

1 ~
F,“, = EE”yagFag (8.157)
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Using Latin indices for the last three components of R* we can separate
this into the pair of equations

~

~ ~ 1 ~
F;j = —E.‘ijkOy Eo = —EE;ijjk (8.158)

Actually both these equations are the same and, settling on the first one,
and recalling our imposition of zy independence, we find that

ﬁ.‘j = —E.'jk(ak/’l\o - aof’l\k + [,Zk, AO])

~ oA (8.159)
= —€ijk(Ok Ao + [Ak, Ao])
Now we define the Yang-Mills-Higgs pair (4, ¢) on R?® by
A= Ards' + Ayds? + Asdz®, ¢ = A (8.160)

With Fj; denoting the curvature of A, the time independent self-duality

equations become N
Fyj = —€ijk(0cd + [Ax, 8]) (8.161)

and this is recognisable as the component form of the Bogomolny equation
=—xdy¢p (8.162)

Thus instantons which are invariant under time translation are monopoles;
of course we are using the term instanton in a loose sense since time indepen-
dent instantons necessarily have infinite action, which we usually exclude.

Time translation invariance is not the only invariance possible for the
self-duality equations. We can also consider rotational invariance, and fol-
lowing this line of investigation leads to monopoles on H* or hyperbolic
monopoles, cf. Atiyah [3,4].

To obtain hyperbolic monopoles we look for axially symmetric solutions
of the self-duality equations. Now consider the flat line element in R*:

ds? = dz3 + dz? + dz3 + dz?

If we choose the rotations to be in the zo — z; plane and let r, 0 be polar
coordinates in that plane, we have
ds? = dr? + r2d6? + dz? + dz3
= fan St Ao 2 3 (8.163)

r2
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Now because of the conformal invariance in R* of the self-dual equations
F = xF a conformal change of metric leaves these equations invariant. T hus
we can as well take
d 2 d 2 d 2
ds? = dg? + T T2 0% (8.164)
T
This is the line element for the space S! x H3 where H? is the 3-dimensional

hyperbolic space
0<r<oo, —00 < Z3 < 00, —00 < 3 <00

with metric determined by 8.164. It is important to note that the H3 metric
is singular at r = 0 and that r = 0 is both a plane R? in R* and the ‘axis’
of the rotation in R*. Therefore, in passing from 8.163 to 8.164, we have
made use of the conformal equivalence

R*-R?~5'x H? (8.165)

For the present we turn to the Bogomolny equation in the hyperbolic
space H3. The equation is

dap=—F (8.166)

and the * operation is with respect to the hyperbolic metric on H® defined
by 8.164. We work throughout with gauge group SU(2). As boundary
condition we require |¢| to be constant on the boundary of H3; we denote
this constant value by |#|,s. The boundary of H? is, of course, the axis
R2. At this point we find it useful to represent H® as the interior of a three
dimensional ball of radius 2. This spherical model of hyperbolic space is
completely equivalent to the ‘upper-half-plane model’ 8.165.The metric of
the spherical model is defined by

2 2 2
ds? = (d2” +dy” + dz ), r=+z24+y2+22 (8.167)
(1—r2/4)

One can now verify that the spherical model is actually isometric to the
upper-half-plane model; the transformation from the former to the latter is

given by T where
T=a""Ba (8.168)

where « is stereographic projection from R3 onto S® — {north pole} and 3
is a certain 7/2 rotation of S? into itself, cf. Nash [1]. It follows that, under
T, the boundary r = 2 of the ball is mapped onto the ‘axis’ r = 0 in R*.
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An important difference between hyperbolic monopoles and monopoles
on R? is that the axially symmetric instanton associated to the hyperbolic
monopole has finite action. This being the case it is not surprising that there
is a relation between the instanton number and the magnetic charge. To
find this relation suppose that A is an axially symmetric SU(2)-instanton
on S* Let V be the associated rank two vector bundle whose Chern class
c2(V) gives the instanton number. Now and consider the action of a rotation
through an angle 6 in the zo — z; plane. Such a rotation also acts on the
bundle V and its base; however, if we restrict to the axis of the rotation
then the rotation only acts on the fibres of the corresponding restricted
bundle V' say. But V' also has rank two and the U(1) action on its fibres
gives a two dimensional representation of U(1). Hence if My denotes the
SU(2)-matrix representing rotation through the angle 8, then we must have

eine 0
Mg = ( 0 e_"n9> y ne€z (8169)

The integer n represents 8/96, the infinitesimal action of the rotation on
the fibres but, since we are on the boundary, the covariant derivative in
the 6 direction vanishes and so the Higgs field, evaluated on the boundary,
generates the rotations. Thus, appropriately normalised, we have |¢|as = n
and |@|qs 18 quantised. In the hyperbolic picture V' is a complex vector
bundle over the boundary 52 of H3. But, from the U(1) action, we see that
V' is a sum of two line bundles, in fact

Vi=LeL™! (8.170)

where L is a line bundle over 8H3 ~ §2. This line bundle is characterised by
its Chern class ¢;(L), which is the magnetic charge k. The topological data
of the hyperbolic monopole is contained in the three integers k, c3(V') and
n; moreover, if we integrate out the redundant variable # in the instanton
action, we can verify that they are related according to

c2(V) = 2nk (8.171)

A further matter of geometrical interest is the role played by the cur-
vature of the hyperbolic space H3. We can import a parameter R into the
metric ds? if we write

r2

d82=ﬁ

2
{R2d02 + % (dr® + dz? + dz%)}
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When we delete the conformal factor this corresponds to working on S*(R)x
H3(R) where S'(R) is a circle of radius R, and H3(R) is a hyperbolic space
of scalar curvature —6/R2. The spherical model for H3(R) is now the
interior of a ball of radius 2R. On S*(R) x H3(R) the Bogomolny equation
in component form is

Dy¢® = (8.172)

p— R .. a

aVTm Ik
where fr = (1 — r2/4R?)~2. But in the limit R — oo, H3(R) becomes the
flat space R, Thus we ought to be able to produce R® monopoles by an ap-
propriate limiting procedure applied to hyperbolic monopoles and, thinking
of hyperbolic monopoles as axially symmetric instantons, this provides us
with a picture of an R® monopole as limits of instantons. This can indeed
be done, cf. Chakrabarti [1] and Nash [1].

Now we return to hyperbolic space H3 and would like to examine the
question of the location of the monopole. This is really the same as dis-
cussing the zeros of the Higgs field ¢. The existence of a zero of ¢ is forced
by the non-vanishing of the magnetic charge k: we know that the magnetic
charge is the winding number of the map

Qg . 3H3 _— S?u(?)

Also, a standard homotopy argument says that ¢ only extends to the interior
of H3 in a singularity free manner if the winding number & is zero. Hence
for k # 0, ¢ has a zero, and in general k counts the zeros of ¢. For the
simplest hyperbolic monopole with k = 1 there is a single zero of ¢ at the
origin of the ball H® (Nash [1]). Then, because of the dual interpretation of
a hyperbolic monopole as an instanton, it is of interest to ask for something
in the instanton picture to which the zero of ¢ corresponds. First of all
the origin of the ball is transformed, under T, to the point r = 2, 2 = 0,
z3 = 0 in the upper-half-plane model. This in turn corresponds to a circle
of radius 2 in R* centred at the origin and lying in the zo — z, plane. If
this correspondence is pursued for R — oo and for larger values of k, one
can obtain a configuration where a ring of instantons corresponds to an R3
monopole (Chakrabarti [2]).

It is natural to consider the properties of a hyperbolic monopole for a
general value of |@|,s. We have seen how axially symmetric instantons cor-
respond to hyperbolic monopoles with quantised |¢|,5. For forbidden values
of ||as the hyperbolic monopole (¢, A) may exist but the corresponding ax-
ially symmetric instanton A’, say, does not. Indeed were A’ to exist it could
have non-integral ¢, and would possess a singularity located on its axis;
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for an example, see Forgics, Horvath and Palla [1]. Thus the notion of a
hyperbolic monopole is wider than that of an axially symmetric instanton.

It is worth noting that the conformal equivalence of 8.165 just a special
case of the more general equivalence :

R"-R™~ S ™1 x H™! m<n (8.173)

To obtain this more general form we ask that a connection in R" be invariant
under rotations specified by ! angles | < n. Then for the line element ds?

in R" we can write (r = /23 + - + 2%, Q represents the solid angle in
R")
ds® =dz? + -+ dzf,| +dzf o+ +dz?
=dr? +r2dQ} + dzf o + -+ +da?
dr?+dz? , + - +dz?
=12 {dnf + 2 . }

r2

(8.1745

i

Deleting the conformal factor 72 amounts to the conformal correspondence
R"-R" "1 ~ §! x H*~!, which implies 8.173. This correspondence would
be relevant if one were to study SO(3)-symmetric instantons. One would
then choose n = 4 and m = 1, giving

R*-R!~5? x H? (8.175)

It also turns out that the dimensional reduction of the SU(2) Yang-Mills
theory from S* to H? corresponds to a Yang-Mills-Higgs system which is
Abelian but has a non-zero, predetermined, value for the coupling constant
A (Jaffe and Taubes [1]).

§ 5. Monopole moduli and monopole scattering

In this section we begin by considering the moduli space for monopoles and
then make some remarks about monopole scattering; the monopoles are all
standard R® monopoles with group SU(2). :

The dimension of the monopole moduli space can be calculated using
index theory methods supplemented by extra analysis to deal with the tech-
nicalities of the non-compactness of R3. We denote the monopole moduli
space by Mj; parameter counting gives its dimension as 4k (Weinberg [1]).
Actually it will emerge below that the true parameter space of gauge in-
equivalent monopoles is a space My whose dimension is 4k — 1. The index
theory part of the calculation proceeds in an analogous fashion to the in-
stanton case. Let the pair (4, ¢) be a solution to the Bogomolny equation,
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which we perturb to the family of solutions (A +ta, #+tn). The Bogomolny
equation gives

F(A +ta)

= F(A) +tdsa+t%aAa

*d(a+10) (¢ + t1)
+{d(¢ +tn) + [A + ta, ¢ + tn]}
= +{d + [A, ¢] + t(dn + [A, 7] + [a, ¢])

+ t*[a, n}
(8.176)
and passing to the tangent at ¢ = 0 yields the equation
daa = *{dan + [a, ¢]} (8.177)

We must also project out those (a,n) which correspond to an infinitesimal
gauge transformation: if g = exp[tf] then the infinitesimal effect on (A, ¢)
is that

The preceding pair of equations suggests the definition of the two elliptic
operators Dy and D,

Do :Q°R3,ad P) — Q'(R3,ad P) ® Q°(R3,ad P)
fr—(daf,[f,¢])
(8.179)
D; :QY(R3,ad P) ® Q°(R?,ad P) — QY R53,ad P)
(a,n) — daa — xdan — *[a, d]

If m denotes the equivalence class of the monopole (A4, ¢) then the tangent
space to the moduli space at m is then expressed as the cohomology group

ker Dl
Im Do

The associated elliptic complex is then

=T, M, (8.180)

; D D
0-50%R3,ad P) — Q'(R?, ad P)oQ°(R3, ad P) — Q*(R?, ad P)—50

(8.181)
Let the cohomology of the complex be given by
HY(Q(R3,ad P)) = ker Dy, dim H(Q(R3,ad P)) = hy
ker D 5
1 3 _ kerl, gyl 3 —
HY(Q(R*,ad P)) = =21, dim H*((R%, ad P)) = hi (g 1g9)
kerm

H*(Q(R3, ad P)) dim H?(Q(R3,ad P)) = hy

= ImD;
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The index of this complex is that of the operator Dy + D} and hence we
know that

index (Do + D}) = dimker (Dg + D7) — dim ker (D§ + D))
= ho — h1 + hg (8.183)
= hg + hy — dim M},

In Taubes [2] it is shown that index (Do + D7) = —4k and a Weitzenbéck
argument is used to prove that

ker (Dj+ D1) = ¢ (8.184)
Thus ko = fzg =0 and we obtain
dim M;, = 4k (8.185)

This index calculation, involving the non-compact space R3, requires
considerable extra analysis. One needs to show that the cohomology above
can be constructed using only square integrable sections and this entails
showing that Dy and D; are Fredholm so that they have finite dimensional
kernels. We can now see why the true moduli space M) only has dimension
4k — 1. The reason is that the Higgs field itself generates a gauge trans-
formation, namely g = exp[t$]; but the boundary condition obeyed by ¢
means that it is not square integrable, hence ¢ is not included in the space
Q°(R3, ad P). However, the image of ¢ under the operator Dy is just the one
dimensional vector (da¢, [@, #]) = (dad,0); this vector is square integrable,
despite its origin, and belongs to Q'(R?, ad P) ® Q°(R3, ad P). Projecting
out this one dimensional subspace gives the moduli space M}, for which we
then have

dim M =4k -1 (8.186)

It is also common to fix the centre of the monopole and thus get rid
of the translational invariance of M ; when this is done the final space M}
is (4k — 4)-dimensional. We can check this for £ = 1: if £ = 1 there is
just a single monopole possible, the Prasad-Sommerfield monopole. It is
spherically symmetric with its Higgs field vanishing at the origin, which
is its centre. In terms of the spaces above we have the simple situation
M} =R?x §', M; = R® and M? = {p}. Thus, after we have assigned the
centre, there is only one k¥ = 1 monopole. More generally, in an analogous
manner to the instanton situation, the space M is fibred over My with
fibre S'; this fibre is the one parameter family of gauge transformations
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generated by the Higgs field ¢. The main properties of the three monopole
space are therefore

st — M ,
M M!
| Mi=2f Mi=g
S'x R (8.187)
M;

dimM, =4k, dimM;=4k—1, dimM? =4k —4

The topology of the extended moduli space M, also has an interesting
structure; it is diffeomorphic to the space of rational functions of degree k
which vanish at infinity (Donaldson [2]). These rational functions can be
written in the form

k-1 R R
Gp—12""1 4. +a1z+ag ay g
= = — 4+ = 8.188
f zk 4 bzl b biz+by 2By z— by ( )

where the numerator and denominator in the first expression are relatively
prime. We note that these functions are specified by 4k real parameters;
the second expression is useful when trying to approximate a monopole of
charge k as a linear superposition of ¥ monopoles of charge 1. If k = 1 then

ag

f= z+ by

(8.189)

and, if ap = 1 and by = 0, this represents the Prasad-Sommerfield monopole
centred at the origin. For larger & we can make the simple choice

f== (8.190)

which corresponds to an axially symmetric monopole of charge k. If we
want to pass to the true moduli space M) we must identify the functions f
and explz6]f.

The space M;, has also arisen as a key element in the scattering of
monopoles on each other. So far we have considered static monopoles and
deduced that the energy of a monopole of charge k is given by

E = 4nk (8.191)

In particular, E is linear in k. Let us consider those k-monopole states
which correspond to k single, well separated, monopoles. The absence of
any dependence of E on distance can be interpreted as the constancy of
the potential energy and means that there are no forces between these
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monopoles. If we bring the monopoles close together this particle inter-
pretation breaks down due to the existence of monopoles whose charge is
greater than one but are localised in their support. This intuition raises the
possibility of describing the coming together of the k single monopoles as
some kind of interaction; if some of the monopoles come apart again then
we have scattering.

In Manton [1] a precise idea of this type is developed: static monopoles
are given velocities so that they come together and, for low velocities, the
subsequent dynamics is assumed to be determined only by their kinetic
energy. Now the kinetic energy T of a monopole (A, ¢) is given by an
expression of the usual quadratic type using a metric on the relevant co-
ordinate space which, in this case, is the Yang-Mills-Higgs space Ay 5 of
all pairs (A, ¢). More precisely metrics are used to form inner products of
tangent vectors to the coordinate space. There is a natural metric available
on Ay and it is defined in the following way. Let m = (A, ) represent
the monopole and T,,, = m!dm/8XT represent a formal tangent vector to
Ay x at m with X! some formal infinite dimensional system of local co-
ordinates. The metric g;; can then be defined by setting A; = A + ta and
¢ = ¢ + tn and writing

<Tm,Tm >= g”mImJ

=<a,a>+<nn> (8.192)
= —/ tr(a A *a) — / tr(n A *n)
RS RS

This metric descends to the configuration space Ay /G if we project onto
those (a,n) orthogonal to the orbit through m = (A, ¢); we shall regard
this projection as understood. The kinetic energy T of a slowly moving
monopole m(t) with m(t) = (A + ta, ¢ + tn), say, is given by

dm dm

T =< i >= _./Ra tr(a A *a) _./Ra tr(n A *n) (8.193)

Now the potential energy is
1
E= —2-{< F,F >+ < Dyd,da¢ >} (8.194)

and both FE and T are functionals on the configuration space Ay, »/G. The
assumptions mentioned above are given substance by assuming that for low
velocities the subsequent motion does not change E much from its minimum
value. Thus the monopole moves approximately on the finite dimensional
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subspace of Ay /G on which E is constant: the moduli space M}. The
equations of motion are then given by the critical points of the kinetic term
T, restricted now to M;. But these equations are just those for the geodesics
on Mj, with respect to the metric induced by grs on its finite dimensional
subspace M} (compare with the geodesics giving the critical points of the
Morse energy functional on p. 206).

To calculate in this approximation of monopole dynamics by geodesic
flow on the moduli space requires us to find the metric on M},. This metric
is of a very special kind—it is hyperkédhler. Recall from chapter 5 that
a Kahler metric gi;; is a Hermitian metric on a complex manifold M for
which the associated two form w = (i/2)gi;dz* A dz7 is closed. For M to
possess a hyperkéhler metric there must be three complex structures on M
specified by the matrices I, J, K, which then satisfy the quaternion algebra
generating relations

PP=J'=K?=1JK = -1 (8.195)

and M must be Kéhler with respect to the three possible symplectic w that
can be constructed using I, J and K. This means that the three forms

wI(X3Y)=g(IXaY)a wJ(X’Y)=g(JX’Y)» wK(X,Y)=g(KX, Y)
(8.196)
are all closed. For a complex manifold M the existence of the matrix J
gives the tangent space the structure of a complex vector space and ensures
that M is even dimensional. If M is hyperkéhler the three matrices I, J
and K give the tangent space the structure of a quaternionic vector space
and ensure that M has dimension 4n.

Actually the reduced moduli space MY, whose dimension is 4k — 4, is
also hyperkihler and the geodesic flow on M], induces geodesic flow on M};
it is the flow on this latter space which contains the interesting scattering
information. The hyperkahlerity of the metric is a key factor in rendering
it computable and, without the metric, the geodesics cannot be calculated,
so that the scattering would be unknown.

For the k = 2 case a detailed picture of the scattering is possible (Atiyah
and Hitchin [1,2]). The space M has dimension 8 which is reduced to 4
after fixing the centre and the gauge. These 4 parameters arise in the
following way. Suppose the two monopoles are far apart so that the particle
interpretation applies. We locate the two monopoles a distance 2|z| apart
by placing one at z and the other at —z; in addition to z we have a unit
vector y perpendicular to z, y is the relative phase of the monopole pair
and, for covering space reasons, y and —y are identified. If |z| is not large
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then we do not think of Fz as the location of the monopoles but the same
parameters apply.

The two most interesting scatterings are where y is fixed and the
monopoles follow a straight line path and have a head on collision, and
where the scattering occurs in the z—y plane. In the first case the scattered
monopoles emerge and recede from one another along a straight line which
is at right angles to the incident line. In the second case, if the monopoles
approach along parallel lines which are close enough together, the emergent
monopoles have spin angular momentum; thus they are now electrically
charged and have become dyons.

§ 6. Critical point theory and gauge theories

So far in this chapter we have considered the critical points of two func-
tionals: the action functional S(A4) of the pure Yang-Mills theory in four
dimensions and the energy functional E(A, ¢) of the Yang-Mills-Higgs the-
ory in three dimensions. In each case all the critical points that we have
studied have been absolute minima. We would now like to consider the exis-
tence of non-minimal critical points and to examine in brief the mechanisms
which determine the type of a critical point.

We know from chapter 7 that, in finite dimensions, functions f : M —
R with non-degenerate critical points have a close link between the number
and type of their critical points and the topology of M. When this link
exists, an M with a rich topological structure will guarantee that such Morse
functions f have a rich critical point structure; in particular one does not
expect the critical points to be limited to just minima. Our present interest
is in knowing how much, if any, of this Morse theory carries over to gauge
theories.

The gauge theory examples are all infinite dimensional and must be
analysed with some generalisation of Morse theory to infinite dimensions
cf. Palais [1,2,3] and Taubes [3]. It turns out that the four dimensional
pure Yang-Mills theory has rather different properties from the Yang—Mills-
Higgs system; in addition the two dimensional Yang—Mills theory has strik-
ing properties. In all of these theories the energy or action functional has
a large gauge invariance and this will have to be factored out equivariantly,
or otherwise, when investigating the topology of the critical points.

We begin with the SU(2) Yang-Mills-Higgs system on R in the
Prasad—-Sommerfield limit. The energy functional

B(A,9) = S{IF(A)? + |dadl?) (8197)
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is a real valued functional on Ayyx whose critical points are given, in
general, by the solutions to

dyF =[da¢, 4], dadad=0 (8.198)

E(A, ¢) descends to a functional on the quotient Ay /G where G are the
base point preserving gauge transformations. The Higgs field ¢ in the space
Ay vy is subject to the usual boundary condition at infinity. This allows
us to decompose Ay, into components A’,SM » according to the value of
magnetic charge k. We write

-AYMH =UA$M}I (8.199)
k

and each AX . contains those (4, ¢) which satisfy
1
— < F,xd =k .2
o < a0 > (8.200)

There is also a corresponding decomposition of the orbits into components
AL n /G* which we denote by Cj. The Cy are topologically non-trivial and,
on each Cy, there are an infinite number of critical points of E(A, ¢); an
infinite number of these are non-minimal and they are distributed so that
there are an infinite number of them with energy larger than any given value.
These results (Taubes [2,4]) establish that E(A, ¢) has the properties of a
good Morse function. The situation for the other gauge theories is different.

Next we take the action functional S(A) for the pure Yang-Mills theory
in two dimensions. The connection A is defined on a Riemann surface &
and the group G is U(n). For S(A) we write

S() = IFIF == [ tr(FAsF) (5.201)
by
and the critical points are given, as usual, by

aF(4) _ g (8.202)

=dyxF(A)

These equations are much simpler than in higher dimensions. To see this,
remember that, in two dimensions, the dual of a 2-form is a 0-form and so
*F(A) is just an ad P-valued function on . More precisely, the Yang-Mills
equations 8.202 simply state that *F(A) is a covariantly constant section
of ad P over ¥ and holomorphic methods can be applied to translate this
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into a holomorphic problem. S(A) is defined on the contractible space A
but it descends to an orbit space whose topology is far from trivial. If the
Riemann surface ¥ has genus zero then T is just S? and then the orbit
space A/G = BG is QG and we know that this space has a rich topology.
In general, whatever the genus of X, a very attractive Morse theory holds
for the functional S(A), cf. Atiyah and Bott [4]. This is that S(A) is
equivariantly perfect where the equivariance is with respect to the group of
gauge transformations G. Using the notation of chapter 7 we record this by
the equality

M$(S) = Pf(A) = P,(BG) (8.203)

The Hessian for S is obtained by expanding the action about a critical
point. Just as in 8.66 we write 4; = A + ta and we have

S(A;) = S(A) + 2t < F(A),daa > +t*{< daa,daa >+ <aAa,F(A) >
+ < F(A),aha>}+---

(8.204)

Since A is a critical point the coefficient of ¢ vanishes while the coefficient of

t? gives the Hessian. More precisely the Hessian is the operator H defined
by

<a,Ha >=<dpa,dga>+<aAha,F(A) >+ < F(A),aNa>

8.205
=< daa,daa > + < a,*(xF(A)a) > ( )

Thus H is the differential operator
H=d%ds+ «(xF(4) ) (8.206)

To investigate the type of the critical points we must find its index i.e. the
dimension of the maximal space on which the quadratic form < a, Ha > is
negative; we must also impose a gauge condition, which we take to be the
standard one, d%a = 0. Hence the index of the critical point is now the
dimension of the maximal negative subspace of ker d%; this is finite because
ellipticity renders ker d% finite dimensional. In fact there are critical points
of arbitrarily large index so that we do not just have minima.

Lastly we come to four dimensions and the SU(2) Yang-Mills action
on S*. In this case no Morse-type results hold; this is just as well because
the configuration space A/G has plenty of cohomology but we only know of
critical points which are absolute minima, i.e. the Hessian has index zero. A
special property of the Yang—Mills theory in four dimensions is its conformal
invariance; the two dimensional sigma model is also a conformally invariant
theory and it, too, only has absolute minima.



CHAPTER IX
The Elliptic Geometry of Strings

§ 1. The Bosonic string

In the present chapter we wish to show how some of the techniques that
we have already developed can be applied to string theory. Our discussion
will be fairly self-contained and will not require an extensive background in
string theory. However, reference can be made, where necessary, to Green,
Schwarz and Witten [1,2], D’Hoker and Phong [1] and the extensive bibli-
ographies therein.

We restrict the discussion, for simplicity, to the Polyakov formulation
(Polyakov [1]) of the closed oriented Bosonic string in d-dimensions. A
string moving in space-time sweeps out a surface ¥ or world sheet in the
same way that a moving particle traces out a world line. The classical
Nambu-Goto action for a free string is a constant times the area of its world
sheet. This means that the critical points of the action are the surfaces of
extremal area. This is in analogy with the fact that the critical points of the
action for a free particle are the geodesics: the curves of extremal length.
Let o and T be coordinates on the surface, and let the position of the string
in space-time M be specified by a function ¢* = ¢# (o, 7), with p = 1,...,d,
then the string action is the expression

a¢“ a¢ a¢" 8¢, _ (0¢" 8y \’
7 [ doar a—aa—; aTaT)‘(a—aaT) (9.1

where T is a constant known as the string tension. We take our string to
be oriented, which has the consequence that, as it sweeps out the surface,
it imparts an orientation to it also; thus ¥ is orientable. The square root
in this formula makes is difficult to use and, following Polyakov, one can
replace it by the action S where

T [ , , 0" 04,
=-= abP_“Th 2
$=-3 f, P ®2)
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The surface ¥ is now equipped with a metric g2® and the coordinates are
denoted by z%, a = 1,2 instead of o and 7. Actually, at a critical point, the
two expressions for the action coincide.

To quantise this string theory we want to use a functional integral
approach. This requires us to sum over all the variables that appear in the
action S. These variables are the metric gq5 on L, and the string’s position
functions ¢# = ¢H(z',z2)—the ¢ should be thought of as specifying an
embedding of ¥ in the space-time M. For this quantisation a fundamental
object of interest is the partition function, a contribution to which is given
by the quantity Z, where

T O¢* O
Z, = /’Dg'Dq& exp [——5 /E deﬁg“bEt%% (9.3)

and Dg and D¢ denote functional integration over the spaces of metrics and
embeddings respectively. We shall usually abbreviate ¢* to ¢ and g to g.

Now a partition function is mathematically a trace; in quantum theo-
retic language it represents a vacuum-to-vacuum amplitude where a quan-
tum object is emitted by the vacuum only to disappear by combining with
itself, thus leaving us with the vacuum again. The consequence of this for
us is that the surface ¥ has no boundary—one can interpret the trace in the
partition function as being the process of taking a surface whose boundary
congists of two circles, an initial and final string state, and then joining the
two circles together so as to produce the closed surface ¥; finally one sums
over all possible configurations by integrating over g and ¢.

Since a closed compact orientable surface with a metric g is just a
Riemann surface with a complex structure determined by g, it makes sense
to use complex coordinates on ¥. As well as doing this we set the string
tension T to unity and write the action in the more concise form

5= (-12) [ <08,08>9=(1/2) [ <6.806>
with < 86,06 >g= g**0,¢*0%p, /Gdzdz, and A, = (00" + 5"9)

where * denotes adjoint with respect to the inner product <, >4 and we
note in passing that the term 89" does not actually contribute anything to
the Laplacian since A, is only acting on functions.

To obtain the complete partition function Z we must sum over all
possible Riemann surfaces ¥ as well as integrating over g and ¢. Each E
has a genus p and so we can write

(9.4)

[e 2]

zZ=)" /ngs exp [—%/E<a¢,a¢ >g] ="z, (9.5

genera p=0
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From now on we simplify matters by choosing space-time M to be
the flat Euclidean space R%. The calculation of the partition function Z
necessitates a proper understanding of the symmetries of the string ac-
tion § = (~1/2) [y < 0¢,0¢ >4. Now ¢ belongs to the space of maps
Map(Z,R?) and g belongs to Met(X); thus we can consider S as a func-
tional S(¢,g) on the string configuration space Map(Z,R?) x Met (%).
It is easy to see that S is invariant under translations in R%; however
there are two further groups that leave S invariant. These groups, both
of which we met in chapter 5, are the orientation preserving diffeomor-
phisms Dif f*(X) € Dif f(¥), and the group of positive smooth functions
C¥(X). An element f € CP(X) just acts on a metric g to give fg; in
contrast, a diffeomorphism a € Dif f*(X) acts on the pair (¢(z), g(z)) to
give (¢(a(z)), g(a(z))). The combined action of the two groups is via the
semi-direct product Dif f*(X) o< CP(X). This is defined by the map A
below where we have set

B = Map(Z,R?) x Met(%)
so that A is the map:

A (Dif f*(2) o< C2(%)) x (Map(E,Rd) x Met(E)) —B
(e, £), (8, 9)) = (¢(a(z)), f(2)9((2)))

The partition function Z, contains two integrations, the ¢ integration,
being Gaussian; can be realised as a suitable infinite dimensional determi-
nant, e.g. by a zeta function expression, since the operator A4 is elliptic.
Thus we have a second formula for Z,:

B det (Ag/2)\ ~%*
Zp_/Met(z)Dg( ) (.7

The notation det in the above expression denotes the zeta function determi-
nant ' and requires the restriction of Ay/2 to its strictly positive subspace.
Alternatively, one can include the zero eigenvalue this will produce a factor
of the ‘volume’ of R%. The removal of this infinity has then to be regarded
as implicit in our formulae for Z,. This removal can be carried out by ap-
plying a compactness cutoff and dividing by the resulting finite volume so

(9.6)

! We introduced the zeta function {p(s) of a positive elliptic operator P in chapter
4; (p(s) is always regular at the origin and this means that a regularised determinant of
P can be defined as exp[—(p(0)].
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that the cutoff may then be discarded. Further, the expression (1,1) is the
total volume of ¥ with respect to the metric g and occurs because of the
invariance of 5 under translations in R%.

§ 2. The space of metrics

The remaining integration in the expression 9.7 for Z, is over the space of
metrics Met(X). The measure Dg on Met(X) is at present a formal object
whose properties we wish to understand. The study of Z, will involve
dividing up the metrics on ¥ into conformal equivalence classes, i.e. it will
involve considering all the complex structures on ¥ for a given genus p—
the moduli space—and then summing over p. It will turn out that, in the
end, Z, can be expressed as a finite dimensional integral over the moduli
space M,. Note that it is relevant here to be aware that the action S is
a conformal invariant only when the dimension d of space-time is equal to
26—when d # 26 the action S has a conformal anomaly. This is something
that we analyse in chapter 10—for the rest of this chapter we set d = 26.

Our next task is to describe in some detail the geometric properties of
the measure on Met(X) that we have so far denoted by Dg. If DMet(X)
denotes a measure on Met(X) then the invariance of the action under C (L)
and Dif f*(X) suggests that a formal specification of Dg is

DMet (%)

P9 = S (CF(E)) vol (DIFFF(E)) 6

where the denominator contains the volumes of the orbits of the invariance
groups. It is clear from the RHS of this formula that such a measure Dg
would be supported on an appropriately defined quotient of Met(X) by
C (%) and Dif f*(X). However, we considered precisely quotients of this
type in chapter 5 when we constructed the Teichmiiller and moduli spaces
of a Riemann surface ¥. We can make use of those constructions here.
In particular we recall that Dif f*(X) does not act freely on Met(X) and
has to be replaced by its identity component Dif fo (X); in addition, the
existence of conformal Killing vectors for genus p = 0, 1 means that one has
to replace Met(X) by the space Met.ona: ().

The preceding paragraph can be taken as an outline of our present
task: we must define a measure DMet(X) on the infinite dimensional space
Met(X), and then use the quotient construction of M, to induce a measure
on this finite dimensional space M.

We can always construct a measure on a finite dimensional Riemannian
manifold by using the metric g: one simply takes a frame or basis {e;},
coordinates {z}, and the corresponding Riemannian-invariant measure is



The Elliptic Geometry of Strings 263

det < e;,e; >gd™r = ,/gd"z. We would like to do the same here and
so we immediately look for a metric on Met(X). In fact Met(X) possesses
a natural metric which we denote by <, >met. To define <, >pet, let
g € Met(X), then turn to the tangent space Ty Met(X) and consider X,Y €
TyMet(X). For X and Y we have the formal local coordinate expressions:

F;} F;}
—_ ) — I v
X —X agI Xa1b1 agilbl
5 5 (9.9)
Y=Y — =Y’

ag.l asby m

where (g7) = (g%,9?,...) are the coordinates in a patch U ¢ Met(X). Our
definition of < , > is that

<X,Y Sme= /2 < XLY1 >, Jido (9.10)

and the inner product <, >4(;) on the RHS is given by

< XL YT >y = g2 (z)g" 2 (2)X] , (2)Y],, (2) (9.11)
Notice that X and Y can be thought of both as tangents to Met(X) and
as tensor fields on X. Met(X) may now to be thought of as an infinite
dimensional Riemannian manifold.
While on the subject of metrics it is convenient to point out for later
use that vect (X) possesses, for each g, a natural metric. If V,W € vect (2)
its definition is

<V, W >pect= / < V(z),W(x) >g(z) Vadz (9.12)
z

and <, >y(z) denotes the inner product in T X.

Having constructed a metric on Met(X) we can straightaway put it to
use to decompose Ty Met(%) in a way which reflects the quotient structure
of the moduli space. To begin this decomposition process we consider the
action of the group Dif fo () on Met(X). If we work infinitesimally we can
use the fact that the Lie algebra of Dif fo (X) is the space vect () of vector
fields. Then as in chapter 5 we can express an infinitesimal displacement of

a metric g as
Lyg (9.13)

where V is a vector field generating the one parameter family of diffeornor-
phisms exp[tV].
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First we restrict ourselves to conformal changes of metrics. Since a
conformal change of metric leaves the action invariant then we would like
to project out the subspace Cy, say, of T, Met(%) which is tangent to those
orbits of C$°(X) that pass through the point g € Met(X)—infinitesimally
speaking, displacements from g along such orbits only multiply g by a func-
tion. To accomplish this we use the metric < , >pe: to make an orthogonal
decomposition of TyMet(X):

T,Met(T) = Cy © Cy (9.14)

To identify these spaces Cy and CgJ* we return to the quantity Ly g and
write, for some function a

Lyg=ag+h; g€Cg,h€CgJ‘
Then because h € C; we have
<9 h>me=0 (9.15)
so that

0—/dxf<g T) >g(z)
- / 4z /G 9% (2)97% () gy by (2) by (2)
/d:c 9622 9%% (z)hayb, (2 /d:c V9% (2)hays, (z)
- L dz \/Gtr (h)

i.e. tr (h) = 0 implies 9.15. With this information we can implement 9.15

(9.16)

by writing
tr (L tr (L

Lvg + {ng_ (2v9)g} + (2v9)g (9.17)

Thus h and a have been determined? according to

tr (L
h=Lyg- —(—2V—g)g
9.18
_tr(Lvg) (918
2

2 These formulae are sometimes written without using Lie derivatives by virtue of
introducing the Levi-Civita connection I' for the metric g. If V denotes covariant
derivative it is a routine tensorial calculation to show that Ly ge = (8V,/0z%) +
(BVa/Bzb) — 2T, V; = VaVh + VyVe; this in turn shows that h and a are given by
hap = VaVp + VpVa — (VEV,)gap and a = VeV,
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Having learned how to project out Cy we move on to Cj. Suppose
h e Cj‘; we can characterise C;- by regarding h as being obtained by the
linear operator Ay defined below:

Ag :vect (X)) — C;‘
tr (L (9-19)
Vi (Lyg —~ (TVQ) 9)
Such h will not be sufficient to span C_j-—instead we have the standard
linear algebraic fact that

Cy = Range Ay © ker A, (9.20)

where the * appearing in A} is defined with respect to the inner products
on <, >met and <, >yeet. Thus we have now decomposed Ty Met (X) into
three orthogonal pieces

T,Met(Z) = Cy ©Cy (9.21)
= Cy ® Range Ay © ker A, '

If we pass to the quotient of Met(X) by C°(X) and Dif fo (X) then the
space that remains is ker Aj; but Ay can be seen to be an elliptic operator
thus ker A is a finite dimensional space. In fact it is easy to see that
ker Aj can be identified with the space of quadratic differentials; in the
physics literature Ay is often denoted by P;.

Now we already know from our study of Teichmiiller space that

Tp = Metonst (2)/Dif fo () (9.22)

and we are now in a position to describe the metric on T}, that is induced by
the Teichmiiller construction. This metric is known as the Weil-Petersson
metric.

§ 3. The Weil-Petersson metric

Since Met(X) is endowed with the natural metric <, >, then viewing
Met onst (¥) as a Riemannian sub-manifold of Met(X) induces a metric on
Met.onst (X) just as it would in a finite dimensional example. This metric is
obtained simply by restricting to Met, 4 (X). We shall denote this metric
by <, >const-
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The vital property of <, >cons: is that the elements of Dif fo (T)
are isometries3 of Metyonst (X). Therefore a metric is also induced on the
quotient Meteonst (X)/Dif fo (¥), i.e. on T, itself. This metric is the Weil-
Petersson metric, which we write as <, >.,. .

We would like to examine < , >, in a little more detail. In terms of
<, >const the definition of the Weil-Petersson metric is as follows: Let 7
be the projection

T2 Meteonst (X) — Meteonst (2)/Diff0 (%) = Tp (9-23)

and let the Dif fo (X)-equivalence class [geonst] denote an element of T,. We
write the tangent space to T, at this point [geons:] a8

T[gcann]TP (924)
Then for U,V € Tjy,,..,.]Tp We define < U,V >y, by
< UV >up=< X, Y >const (9.25)

where U = 7,.X and V = .Y, and of course X,Y € T_,.,, Meteonst (X).
The only thing to check is that, since neither g.ons: nor X and Y are unique
in the above, this definition is indeed independent of the choice made for
these objects. To prove this, suppose

[gcolnsi] = [g;onst] ‘ . (9.26)
= foonst = Oxfeonst, With a € Dif fo (%)

Now if X'\ Y' € Ty, Metconst (X) and also satisfy
MX'=U mnY' =V (9.27)

then it is evident from the fibration 9.23 that

X'=a.X, mY'=V (9.28)
Thus
< XY >eonst =< au X, .Y >const (0 2'9)
=< X,Y >const, since a is an isometry '

3 Note that we specified isometries of Metconst (X) not X; this means that if X,Y €
Tgconn Meteonst (E) and a € Diffo (E)v then < axX,a«Y >eonst=< X,Y >const, this
equality being readily verifiable using the definition 9.10 of < , >met and <, >const

given above.
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and 8o <, >y, is properly defined.

Finally we can write the partition function as an integral over the mod-
uli space. The thing to do is to decompose the measure Dg on Met(X) into
pieces which reflect the decomposition

TyMet(X) = Cg @ Range Ay @ ker A} (9.30)

If the coordinates for Cy, Range Ag, and ker A} are denoted by {o} (for
f=expo, f € CP(X)), {44V}, and {T} respectlvely then we can write

DMet( ) = N(f, AV, T,) Do D(4,V) dT, (9.31)

where N(f, AgV,T}) is an appropriate normalising factor depending on the
frames used. Next we would like to write

D(A,V) = /det (A3 44) DV (9.32)

But this requires the operator A;Ag to be invertible. However, A;Ag is only
positive semi-definite and will only be positive definite, and hence invertible,
if ker Ag = 0. In fact, for p = 0,1 ker Ag # 0: the elements of ker A, are
the conformal Killing vectors, for if V € ker Ag then

AV =0
= Lyg=fg with f=tr(Lvg)
Now since ker Ay C vect (X) then we can use the inner product <, >yeqt
to decompose vect () according to
vect (I) = ker Ay ® ker - A, (9.33)

Remember that vect (£) = T.Diffo (X) so that 9.33 is a decomposition
of T.Dif fo (£). Hence, if p = 0,1, we restrict quantities to ker + Ay and
integrate separately over the conformal Killing vectors, then we can proceed.
We also know that

Do — DMet(X)
9= 20l (CP(T)) vol (Dif f*(2))

and when all this is put together we obtain (cf. D’Hoker and Phong [1])
expressions for the partition function of the form

det (Ag/2 —
A4
|1“|/ (<11>g) det (A34)

(9.34)

(9.35)
Ag)

@ *
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with du(T,) and dp(M,) measures on T, and M, respectively and /ig de:
noting the restriction of Ag needed for p = 0,1. || is the cardinality of
the mapping class group I'y and its presence reflects the difference between
using the space T, and M,,; the restriction of Dif f+(X) to Dif fo (X) when
constructing J, must be abandoned dealing with the full symmetry group
of the action. Thus we have achieved our objective of writing the partition
function Z, as an integral over the finite dimensional moduli space M,. The
operator Ag is a real operator; in terms of the closely related "8-operators
used in chapter 5 it is easy to verify that det(A;A ) = (det (3K,33K:)) .
With this change we can write Z as

det (A -13 o _
Z= ’Z Z, = 2,,: /M, du(M,) (%) det (9. Oxy)  (9.36)



CHAPTER X

Anomalies

§ 1. Introduction

The term anomaly, though not a very precise one, usually has to do with
strange or even pathological behaviour of chiral Fermions when coupled to
gauge flelds. The first anomaly of this kind was the Adler-Bell-Jackiw
triangle anomaly (Adler [1,2], and Bell and Jackiw [1]) in which the group
G i8 just the Abelian group U(1) familiar from quantum electrodynamics.
Subsequently many other kinds of anomalies have been discussed. In this
chapter we shall concentrate on these later developments.

These developments include Yang-Mills theories, theories of gravity
and string theory. The Yang-Mills case represents a natural widening of
the discussion to allow for non-Abelian G. A investigation of gravitational
anomalies involves applying the analysis to the group of general (orienta-
tion preserving) coordinate transformations Dif f*(M) instead of just to
the group of gauge transformations G. In dimensions other than the crit-
ical dimension, the action S of the Bosonic string theory has a conformal
anomaly. In § 6 we shall also examine anomalies from a Hamiltonian stand-
point. In this wider context it is more appropriate to consider an anomaly
as some obstruction to the defining of a quantum theory with the same
invariance groups as its underlying classical theory.

A common feature of many of these anomalies is that this obstruction
has a topological origin. The topology involved is the cohomology of the
invariance groups of the theory: for example, in the Yang-Mills case one
has to consider certain elements of H*(G). In constructing these elements it
is frequently useful to consider families of Dirac operators @4 parametrised
by A € A and look for an obstruction to the existence of a gauge invariant
determinant for @4. The determinant of an operator O vanishes if ker O is
non-empty and so index theory enters; since we have a family of such objects,
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the index theorem for families becomes relevant. In the next section we see
how this comes about.

§ 2. Anomalies and Yang—Mills theories

We shall actually distinguish two sorts of anomalies: local anomalies and
global anomalies. The term global anomaly will be explained in § 5—for
the remainder of this section the word anomaly will mean a local anomaly.
We work with Riemannian manifolds throughout, so that space-time M is
viewed as Euclidean—a Hamiltonian treatment is also possible, cf. § 6.

For the moment we shall assume that the dimension n of M is even and
set n = 2m; we shall come to the properties of odd dimensional n in § 6.
In even dimensions, where the notion of chirality exists, we can couple the
gauge field to chiral Fermions. It is then natural to study a quantum field
theory containing these fields. Let the gauge group be G and the action §
for the theory be given by

S = S(4,9) = IFII* + (¢, pav)

=—tr [ Fask e [ B@m@ + 10+ 40+ 0D
M M

where I', and A, are the Levi~Civita and Yang-Mills connections respec-

tively. Since we are discussing Fermions M must be a spin-manifold so

that we will require the vanishing of the first two Stiefel-Whitney classes

w1(TM) and w2(TM) of M. This is not too severe a requirement and is

true for S™ for example.

The anomaly has to do with chiral Fermions. A compelling way of see-
ing that these Fermions are not being treated even handedly is to compute
the index of the Dirac operator @#4. Since the Fermions are coupled to the
connection A, via a bundle F' say, the Dirac operator is of the form

Pa:T(M,E*® F) —T(M,E”®F) (10.2)
where EF are the chiral spin bundles defined in chapter 4. This means that
we must use the index formula 4.122 for the twisted Dirac operator. For
simplicity we shall take M to be the sphere S*™. If n, and n_ are the
numbers of positive and negative chirality massless Fermions respectively,
we have

indexPa =n, —n_

= A A ch(F)

sam (10.3)
= / ch(F), for spheres

S2m

k
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where we have used the fact that A is expressible as an expansion in Pontr-
jagin classes cf. 4.110; this fact, coupled with the vanishing of all Pontrjagin
classes p;(S™) of spheres (p. 85), implies that A = 1 on S?™. Also k is the
integer ¢ (F) we had in chapter 8 which classifies bundles over S*™—clearly
in four dimensions —k is the familiar instanton number. Thus a non-zero
k, which is the generic situation, produces an asymmetry in the massless
chiral Fermion sector.

To make progress in uncovering the anomaly we examine the partition
function Z which is given by the functional integral

/ DADYDY exp|—||FI? - (1, pav)] (10.4)

We can carry out the Fermionic integration using the expression

/ DYDY expl— (9, Pav)] = \/det (Bfa) (10.5)

This allows us to write

z= / DA, et @P4) exol- | F|] (10.)

The next step in the computation of the functional integral for Z would
be to assume that the integrand is gauge invariant and then Z is naturally
expressed as an integral over the space of gauge orbits A/G = BG. An
anomaly is said to have arisen if this is not the case. Unfortunately, our
assumption requires justification and is generally false: although the ex-
pression || F||? is manifestly gauge invariant, the same cannot be said of the
Fermionic determinant det (§%@4). Indeed, if g is a gauge transformation
under which A — A4 then, in general,

det (95,9, # det (P4P4) (10.7)

This is so despite the fact that, if we change the gauge in an expression such
as (1, §41), we can verify that the Dirac operator transforms according to

Pa, =97 'Pag (10.8)

The point is that we are in infinite dimensions and the Dirac determinant
requires regularisation, ! and, for such determinants, we cannot assume that
det AB = det A det B.

! The regularisation is most conveniently done using a zeta-function (cf. p. 261). If
an infinite dimensional operator A has the property that A — I is of trace class (T" is of
trace class if 7 (VTT*) < oo) then det A exists without the need for regularisation, and
operators of this kind do obey det AB = det Adet B.
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We shall now verify this by direct calculation. Having done this we will
be able to show that the variation the Fermionic determinant under a gauge
transformation has a natural topological interpretation as a cohomology
class in Hée Rham(g)'

Choose g = exp(tf) where t is a real parameter and f € £G. We can
represent f locally by an expression of the form f = t*f%(z) where {t*}
is a basis for the spinor representation the Lie algebra of G. Now take
the Fermionic integral 10.5 with A = A, and calculate the variation by
evaluating

d

The result is a routine calculation and one obtains
d . o vgab;
TV T Pag) o = [ DUDFexpl (0, pa) /S f@VRI @)

where V4 denotes covariant derivative and j2#(z) is the axial current

(@) = 2B+ )t (10.9)
and we have used Stokes’ theorem. In the case where G is the group U(n)
we can restrict ourselves to its U(1) subgroup; this means that t* is a one
dimensional matrix and the covariant derivative expression f“(x)fo’ jg"(x)
reduces to just f(z)8,j%(x). The presence of an anomaly then forces the
non-conservation of the well known U(1), or singlet, axial current j§(z) =
(1/2)67#(1 + 750
If we divide both sides of 10.9 by the standard normalisation factor
Vdet (§%P4) used to eliminate vacuum Feynman graphs (Nash [2]) then
we obtain

\/Tt;—ﬁ% \/det (P00 Paseo )|
J DYDY exp[— (¢, Pay)] [ dz V25 (2) £ ()
det (P4 P4)
The LHS now has the preferred structure and is the infinitesimal variation

of In\/det (§%P4), while the RHS is just the vacuum expectation value of

Vﬁb jg" (z) smeared with an arbitrary f. Hence if In \/det (9% @) really were
gauge invariant we could conclude that

t=0

(10.10)

Vabitt(z) =0 (10.11)
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The catch is that when an anomaly is present the above equation is false.

A direct perturbative way of seeing this is to expand 10.10 in terms of
the coupling constant and calculate the resultant Feynman graphs. If we do
this we find at one loop the celebrated divergent triangle graph whose non-
vanishing implies the existence of the anomaly. Alternatively, from the point
of view of functional integration, since the integrand exp[— (1, Pa%)] of 10.5
is gauge invariant, the lack of gauge invariance of det (#%@§4) must occur
somewhere in the integration process over 1 and . This is demonstrated
by Fujikawa [1], who shows that the Fermionic ‘measure’ DyDv is not
gauge invariant.

The rest of this section is devoted to a topological interpretation of the
anomaly. This is made up of two parts. The first part consists of showing
that the infinitesimal variation 10.10 of In/det (§%P4) can be identified
with an element of the cohomology group HJ, pr.m(G); the second part
is a demonstration that, if one uses the families index theorem, then this
cohomology formulation ties in very naturally with the idea of an anomaly
as an obstacle to the gauge invariance of the determinant det (@%P4).

Next we define the operator T, (Atiyah and Singer [7]) by

Ty = Pafa, (10.12)

The idea now is to define a regularised determinant det T; then, as g varies,
this is viewed as a function on G. The anomaly discussion above suggests
a natural cohomology class associated with det Ty, namely that determined
by the 1-form u; where
ddet T,
p1 =
detT,

(10.13)

and d denotes the exterior derivative acting on the infinite dimensional space
g.

To this end we must first explain how to define det T; this requires a
slightly extended zeta function technique. It is clear that Ty is an elliptic
operator since, if we use @4 g = g~ P49, we can verify that its leading symbol
is just the product of the leading symbols of @% and @4, that is the matrix

Guv?’p’I (10.14)

Ellipticity is immediate since this expression is invertible for g,,p*p* # 0,
which is equivalent to p, # 0 since the metric is Riemannian.

Now, though elliptic, Ty need not be positive despite the fact that its
leading term is positive semi-definite. This is because T, has lower order
terms containing derivatives of g. These lower order terms can perturb the
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spectrum off the non-negative part of the real axis: It is evident that the
spectrum of T, may have a finite number of negative and zero eigenvalues;
but, apart from this finite set, the spectrum of this type of elliptic operator
must lie on or near the real axis, and in any case will be contained in a wedge
shaped region which contains the real axis (cf. Seeley [1]). We want to use
a zeta function to define det T, but the lack of positivity of the spectrum
requires some attention: for those A; in the wedge the zeta function power
A;? = exp[—sln ;] can be defined by taking the branch of the logarithm
outside this wedge. We write the restriction of T, to this subspace as Tgi
Let us temporarily assume that there is no zero eigenvalue. Then if we

denote the set of negative eigenvalues by A;",...,A;, and the remainder of
the eigenvalues by {\;}, we can define
detTy = (AT Ay -+ ,\,;)exp[—cg.g (0)] (10.15)

When Ty = @% P, does have a zero eigenvalue our strategy depends
on whether index @, is zero or not: If index @4 = 0 then, since the in-
dex is a perturbation invariant, we can perturb A to a new connection for
which ker @4 = ¢. Because g is invertible this automatically implies that
ker@a, = ¢; also ker @ is now empty because the index is zero. Thus
T, now has no zero eigenvalue. On the other hand, if index @4 # 0, say
index @4 > 0, then we can perturb A so as to make ker @, empty, but ker 9,4
cannot be simultaneously empty, and this in turn implies that ker @4, is
non-trivial. In this event we restrict Ty to the orthogonal complement of
ker §4, and on this space Ty has no zero eigenvalue (clearly a similar argu-
ment applies if indez @4 < 0). Finally, because we want to consider det T,
as a function of g, we require our arguments to remain valid when g varies;
this is not difficult to check. Note that, as g varies, ker §4, will be a vector
bundle over the orbit A4 of A. In any case our task of defining of det T, has
been accomplished.

We return to the use of det Ty to study the topology of G. Since det T,
is a non-vanishing function of ¢ € G, we can certainly now make proper
sense of the 1-form quoted above in 10.13. We had

ddet T,

= 10.16
H1 det T, (10.16)

This 1-form would be exact and hence cohomologically trivial provided we
could write
p1 =dlIndetTy

But we cannot do this unless Indet Ty exists. Recall now that a necessary
condition for In f to exist, for a map f : W — C — {0}, is that there is
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no loop a in W whose image f(a) circles the origin in C. If W is simply
connected this is avoided. But in our case W is G and

71(G) = mon41(G) # 0 (10.17)

in general. For example if M = S* and G = U(N) then, from chapter 8,
we know that

0, N=1
7l'1(g) = 7l'5(G) = { Zg, N=2 (10.18)
Z, N2>3

Thus, for N > 3, [p1] is a non-trivial cohomology class in H}, pj,m(G). The
final part of the topological argument is to show how the non-triviality of
this cohomology class is related to the anomaly. This is where the families
index theorem comes in.

Let us return to the functional integral for the partition function Z.

We have
z= [ DAfaet @3p0)excl- 1P (10.19)

This expression contains both the Dirac operator @4 and a sum over all
A € A. Thus it is natural to consider the family of elliptic operators given
by @4 as A varies throughout .A. Now for the anomaly we have already
seen in 10.3, and in the construction of det Ty, that index @4 (for a fixed
A) is important; thus, when A varies, we ought to consider the index of the
whole Dirac family.

In chapter 4 we showed that the (analytic) index of a family of elliptic
operators parametrised by a space Y is given by an element of K(Y'). In the
present case Y = A and, denoting the index of the Dirac family by Indez @,
we obtain

Index @ = {kerPs: A€ A} — {kerdy : A€ A}
= [ker @] — [ker §*]

Such a formal difference defines an element of the K-theory K(A) of A
which immediately projects to an element of K(.A/G) because of the gauge
invariance 10.8 of @4.

Now because the anomaly centres round determinants constructed from
the Dirac operator it is natural for us to consider a certain determinant line
bundle det Indez @ associated with Index @. To understand how det Indez @
arises it is helpful to have some preliminary remarks on determinants and
their generalisations.

Let V and W be finite dimensional vector spaces connected by a linear
map O : V — W and suppose that dim V' = dim W = k. Then if we form the

(10.20)
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maximum exterior powers A*V and AW, we induce a map between the one
dimensional spaces A¥V and A¥W which it is natural to call the determinant
of O: that is, we obtain det O : AV — AFW. If we write O € Hom (V, W)
and use the standard linear algebraic isomorphism Hom (V,W) ~V* @ W
then we have

O € Hom(V,W) and detO € (A*V)* @ (\*W) (10.21)

Now we allow V and W to have differing dimensions and use O and O* to
decompose V and W according to

V = Range O* @ ker O, W = Range O & ker O* (10.22)

Using the slightly better notation A™2*V to denote the maximum exterior
power of a vector space V' we find that

det O € (N™*V)* @ (N™**W)

= (A™**(Range O* & ker 0))* ® (A™**(Range O & ker O*))
= (A™**Range O* @ A™*®ker 0)* ® (A™**Range O @ A™**ker O*)
(10.23)
However, in this expression for (A™**V)* ® (A™**W) the inclusion of both
the range and the kernel of O and O* is somewhat redundant. If we project
out the factors containing the range we still obtain a one dimensional vector
space which is a natural measure of the determinant of O. So now we write2

det O € (A™**ker 0)* ® (N™*ker O*) (10.24)

Next imagine that V and W are promoted to be vector bundles over another
space Y and that O is promoted to be a family of operators O,, y € Y
connecting the fibres of V and W. In this case we can replace A™**V
and A™**W by the determinant bundles® det V and det W. If we use the
notation ker O and ker O* to denote the corresponding vector bundles over
Y whose fibres are ker O, and ker O, then det O is replaced by the line
bundle

(det ker O)* ® (det ker O*) (10.25)

2 A little calculation will show that, in the case where det O exists so that A™%%ker O
and A™%Tker O* are both isomorphic to C, this projection amounts to normalising det O
to unity.

3 Recall that if E is a vector bundle of rank k over a space Y, then the determinant
bundle det E is the line bundle over Y whose fibre at y is just the one dimensional space
A¥E, where Ey is the fibre of E at y.
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Proceeding still further we move on from vector bundles over Y to an ele-
ment of the K-theory over Y. Suppose that an element of K(Y) is given
by the formal difference of vector bundles

V] - [W] (10.26)
then the natural line bundle associated with this K-theory element is still
(det V)" @ (det W) (10.27)

The reader can easily check that this line bundle is independent of the way
the K-theory element is written: that is, if [V]—[W] = [V'] = [W’] then the
same line bundle is obtained whether one uses the pair (V, W) or the pair
(V,W").

Applying the preceding discussion to the index of the Dirac family
Index @ = [ker @] — [ker @*] gives us the determinant line bundle det Indez @
over A/G, whose definition is

det Indez § = (det ker §)* ® (det ker §*) (10.28)

One should be aware that, as pointed out in chapter 4, the dimensions of
ker 4 and ker §% can jump at certain A in A; however, the deformation
invariance of the index means that the difference in their dimensions remains
constant and one still obtains an element of K(A) which we then project
onto K(A/G).

Since det Indez @ is a line bundle it is completely characterised by
its Chern class c;(det Index @) € H?(A/G); however, we can calculate
c1(det Indez @) from the standard cohomology formula for the index of fam-
ilies given in 4.126. This formula says that

ch (Indez ) = (-1)" /M {ch([o(P)]) - td (TrZe)} (10.29)

If we note that n is even, and specialise to the spin complex, we obtain
ch (Indez §) = / ch(€)A
M (10.30)
=/ ch (), when M = S™
M

where £ is the appropriate vector bundle over Z = M x A/G. We do
not want ch (Indez @) but rather c¢;(det Indez @); however, if E is a vec-
tor bundle, it is straightforward to verify that ci(det E) = ¢;(E). Thus
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ci(det Indez @) = ¢;(Indez @); and we can obtain our desired characteristic
class by just selecting the dimension two cohomology class in the expansion
of the RHS of 10.30.

Summing up our cohomology calculations we see that we have con-
structed two cohomology group elements, namely

_ ddetT,
H1= et T,

€ Hée Rham(g) and cl(det Index 4'9) € ng Rha.m(A/g)

(10.31)
Actually, drawing on our work on H}, pp.(G) and H3, pp.m(A/G) in chap-
ter 8 allows us to conclude that

p1 =0 <> ci(det Indexd) =0 (10.32)

This same work also enables us to give formulae for y; and c¢q(det Indez @).
For example, if M = S§* and G = SU(N), then, referring to 8.58, we find
that a formula for yq is

. 1 “
= _L/ dt/ tr(ANF,AF,),  with F,=tdA+t2AAA
(2m)3 Jo 54

(10.33)
where the notation is as used in chapter 8; this is the expression for the
anomaly found in Bardeen [1].

The cohomology class c¢;(det Index @) is the one we require for the
anomaly. To see this suppose that there is no anomaly, then det (§304) is
gauge invariant and the partition function descends to an integral over the
orbit space, that is

[ A aet g ei-IF = [ Do Jac VAT @rexi-IFI
(10.34)
where DAg is the measure on the orbits A/G, det (@) denotes det (9% P4)
projected onto A/G and Jac stands for any Jacobian Fadeev—Popov factors.
In this case det (@) is nothing but a global section of the determinant bundle
det Index § over A/G. But a global section of a line bundle trivialises it
and causes ci(det Indez @) to vanish. Thus the presence of the anomaly is
detected by the non-triviality of the determinant line bundle det Indez @.
We see that the index theorem for the Dirac family brings out very succinctly
the anomaly as an obstacle to the definition of a gauge invariant determinant
for @A-
It is convenient here to introduce the distinction between what is
called local cohomology and conventional cohomology. According to 10.18,
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if G = U(1) then m(G) vanishes; hence H}, ppom(G) also vanishes. But we
know from the triangle graph that there is an anomaly in this theory. We
know too that there is no local counterterm (local meaning a polynomial
in fields and their derivatives) which can cancel the triangle graph and re-
move the anomaly. Thus the anomaly is, physically speaking, unremovable.
Mathematically speaking, the vanishing of H}, ps.m(G) means that there
is a counterterm, but it is non-local. This suggest that, using local in the
specialised sense we just had above, one should define a local cohomology
theory for G and A/G as well as the conventional cohomology theory, and
that one should distinguish cases where the two cohomologies differ. A sig-
nificant start in constructing and studying such local cohomology structures
has already been made in Bonora and Cotta-Ramusino [1].

§ 3. Gravitational anomalies

In the previous section we considered anomalies which arise when examining
the properties of det (#% #4) when A undergoes the change of gauge A — A,
with g € §. We discovered a topological basis for these properties which
rests on an element of H3, py.m(G) or, equivalently, of H2, prom(A/G). In
this section we want to show that these properties have a gravitational
counterpart (Alvarez-Gaumé and Witten [1]).

Because we wish to concentrate on purely metrical matters we tem-
porarily omit the Yang-Mills connection A. Thus our interest is in the
properties of the Dirac operator (1/2)y,(6# + T'#)(1 + ~s) under a coordi-
nate transformation h € Dif f* (M) rather than an element of g € G. Recall
that the «v-matrices depend on a choice of metric; the same is therefore true
of the Dirac operator. In order to make obvious our interest in this metric
dependence we denote the present Dirac operator by @, where p denotes
a metric, that is p € Met(M), Met(M) being the space of metrics on M.
Now, as we know from chapters 5 and 9, any h € Dif f+(M) will act on
this metric and thus on @,. If h- p denotes the new metric, then h produces
the usual change in the Dirac operator, that is

Prp=h"1P,h (10.35)

The next stage is to consider the Dirac determinant det(@;8,) as a
function of p and ask whether it is coordinate invariant so that it can descend
to a function on the quotient Met(M)/Dif f*(M).

Actually, just as in chapter 5, the quotient Met(M)/Dif f+(M) has
to be modified slightly as the existence of isometries or Killing vectors for
some metrics in Met(M) means that, in general, Dif f*(M) does not act
freely on Met(M). What we do is to restrict to the identity component of
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Difft(M) and then restrict further to the subgroup which leaves fixed a
basis at one point of M. We shall denote this subgroup by Dif fo(M); the
resulting quotient Met(M)/Dif fo(M) is well behaved.

Having done all this, the analysis is analogous to that of the preceding
section with A4 and A/G replaced by Met(M) and Met(M)/Dif fo(M) re-
spectively. Hence, apart from the proviso above about local cohomology, the
anomaly corresponds to an appropriate element of H}, gpo.m(Dif fo(M)) or
H2 phom(Met(M)/Dif fo(M)). Applying the index theorem to the fam-
ily @, with parameter space Y = Met(M)/Dif fo(M) instead of .A/G, and
denoting the index of the gravitational Dirac family by Indez Pgrq., we have

Index Pgra, = {ker Py : p € Met(M)} — {ker @} : p € Met(M)}
= [ker Pgras] — [ker Pgra.]

considered as an element of K(Met(M)/Dif fo(M)). The corresponding
determinant bundle is

(10.36)

det Index Pgrav = (ker Pgrav)® ® (ker §;,,,,) (10.37)

and, following 10.29, its Chern character is given by

ch (det Indez Pyra) = / A (10.38)
M

Now because the expansion of A only contains Pontrjagin classes, the
only non-zero characteristic classes on the RHS of 10.38 occur in dimension
4k — n, but the non-zero class on the RHS has dimension 2. Thus we only
have an anomaly if 2 = 4k — n or

n=4k—2 (10.39)

Let us adopt the alternative view where the anomaly corresponds to an
element of the group Hj, pram(Dif fo(M)); setting M = S™ and imposing
the restriction on n above, means that we wish to compute an element of
H}, phom(Dif fo(S*=2)). It is known (Alvarez, Singer and Zumino [1])
that this de Rham group is zero for k = 1, and for k > 6, and is conjectured
to be zero for all k. However, as we know, the vanishing of the de Rham
cohomology is not the whole story as to be sure of no anomaly we would still
have to calculate H} _,,(Dif fo(§%~2)), which is not expected to vanish.

There i8 also the possibility of enlarging the gravitational anomaly to
include what may be called a Lorentz anomaly. To understand what this
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means we refer back to chapter 6 and our introduction of gauge transfor-
mations via the automorphisms Aut (P) of a principal bundle P. In that
discussion we obtained Dif f+(M) by projecting the Aut (P) onto the base
M of P; the kernel of this projection was the group of gauge transformations
G, which we then restricted to its subgroup G. Although P is usually used
to discuss Yang-Mills theories, because we are dealing with gravity here we
can take P to be an SO(4k — 2)-bundle. The gauge transformations of this
SO(4k — 2) gauge theory will be written as G, with L standing for Lorentz.
This extension of the invariance group of the problem amounts to replacing
Dif fo(M) by Aut (P), which is the semi-direct product Gr, >< Dif fo(M).
The full anomaly is now a Lorentz anomaly combined with the first gravi-
tational anomaly and requires us to construct an element of H(Aut (P)).
Interplay can now occur between the two kinds of anomaly so that one
can be traded for the other and vice-versa (Alvarez-Gaumé and Ginsparg
[1]). Finally one can now bring back the Yang-Mills field and vary the
Yang-Mills connection, the metric, or both.

§ 4. The critical dimension for strings

For the Bosonic string the critical dimension may be characterised as the
only dimension for which the conformal anomaly vanishes. Instead of hav-
ing a family of Dirac operators one has a family of Cauchy-Riemann oper-
ators. Recall that a conformal anomaly arises in string theory if one cannot
project from the space Met(X) to the space of conformal equivalence classes
Met(X)/CP(T).

Our final expression in chapter 9 for the string partition function is

-13
z=Y 27,= Z/M,, dp(M,) (%}f’fg’) det (9, Bk;) (10.40)

The integral over M, contains the two determinant factors on which we will
focus our interest. In constructing this expression we first projected from
Met(X) onto Met(X)/C® (L) and then onto M,. For the first projection to
be allowed it is necessary that there is no anomaly in the product of the two
determinants considered as a ‘function’ on Met(X)/C3°(X): in other words,
the determinants are invariant under conformal changes of the metric. We
can show that such an anomaly is absent using the families index theorem

4 We know from chapter 5 that the quotient Met (£)/C(%) is singular when T has
genus zero or one. Since we have already explained there how to construct an improved
quotient, we simplify the present discussion by assuming that ¥ has genus greater than

one.
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(Alvarez [1] and Freed [1]). The parameter space Y for the family is the
space Met(X)/C3(Z). To identify the specific family of operators involved;
we proceed as follows. 3

First we change the dimension of space-time from 26 to an arbi-
trary value d; this just changes the first determinant det(Ag/2)~13 tg
det(Ag/2)~ (@/2), The scalar Laplacian Ag/2 is equal to %9 (cf. 5.32);
Then the quantity det(a*a) can be thought of as a section of the deter:
minant bundle det Indez 8 over Met(£)/CP(E). To raise the section to
the power —(d/2) means just to take a section of the bundle obtained by
tensoring the bundle on which 8 operates (the holomorphic tangent bun-
dle K3) with —(d/2)I where I is the trivial bundle. The bundle —(d/2)I
has negative virtual dimension and so must be regarded as an element of
K(Met(2)/CL(E)). We write the & operator with coefficients in —(d/2)I
as 0—(a/2)-

Now the second determinant contains the & operator coupled to K3
hence if we replace the bundle —(d/2)I by the formal difference K3 —(d/2)I
then it is natural to contemplate the operator B(K;:_(d/g) 1) The index
bundle for this latter family of & operators is the one we need. Denoting
this bundle by Index dy, where Y = Met(Z)/C$°(E), we pass straightaway
to its determinant bundle det Indexr dy and compute its Chern character.
Applying the formulae of the previous section to the & complex instead of
the spin complex we have

det Index 8y = / ch (K3 — (d/2)I)td (Z) (10.41)
by

But because K3 is a line bundle, if x = ¢1(Ky) = tr (iF/2m), the splitting
principle expansions for td (X) and ch (K§) give us

td(Z) =td(Ky) = 1+2 5 + ﬁ +-
ch(Ky —(d/2)I) = ch(K3) —ch((d/2)])=(1+z+ 5 o) =
i (10.42)
The Chern character of det Index Oy is given by the dimension two element
obtained from the expansion of 10.41. Hence we find that

d

2

ch(detIndezéy):/(l—g+x+£+ )(1+ +—=+--9)
s 2 2 ezt
_ 26 —
= c)(det Indez Oy ) = 6 d:l:2
s 24

(10.43)
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We notice at once that the determinant bundle vanishes precisely when
= 26 so that we have indeed identified the critical string dimension as
being the one for which the conformal anomaly vanishes.

Another important property of the determinant bundle associated to
the family a O operators is that Quillen [1,2] has used zeta functions so as
to construct a smooth metric and connection on the determinant bundle.
Belavin and Knizhnik [1] have further proved that, in the critical dimension,
the partition function Z, is a holomorphic square on T, i.e. Z, = ff with
f holomorphic; also Manin [1] proves that f can be written in terms of
elliptic ©-functions.

§ 5. Global anomalies

Global anomalies are a further headache in the quest for well behaved quan-
tum theories. Global anomalies enter when G or Dif f*(M) have more than
one connected component. This means that they contain elements not con-
tinuously connected to the identity. Such discreteness is not detectable using
methods of curvature and de Rham cohomology—these methods are only
sensitive to objects in the tangent space. The situation is closely analogous
to the calculation of torsion in homology and cohomology. Unfortunately,
torsion calculations are typically more difficult than free cohomology calcu-
lations for which the de Rham method may well apply. We shall deal first
with examples where G is disconnected and then go on to examples where
Diff*(M) is disconnected. In each case we will be able to interpret any
anomaly as an index of an appropriate elliptic family of Dirac operators.
We start with an example described by Witten [3]. Let us take a Yang-
Mills theory with action S given by 10.1 and group G. We can count the
connected components with 7(G). In this way we have, with M = §?™

ﬂo(g) = ﬂQ(Q2mG)

10.44
= 1am(G) (10.44)

Hence if we take G = SU(2), 2m = 4 we find
m0(0) = 74(SU(2) 0,45

=7,

ie. m(G) # 0, and this was the example taken in Witten [3]. This
means that there are global gauge transformations under which detd,4 is
not invariant—in fact they change the sign of ,/detw:ﬁ,ﬁ. Actually, if
there are p left-handed Fermion doublets then /det (§%P4) enters raised to
the power p. Thus if p is even, the theory is free of global anomalies.
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At the moment we still only have one Dirac operator @4 rather than a
family of operators. We cannot use the same family as we used in § 2 because
the index of that family only detects the local anomaly in H}, pram(G),
which we know is zero for SU(2). A clue to the correct family is present
in chapter 4, § 5 where we discussed families of real elliptic operators. The
point is that, in four dimensions, the full Dirac operator D , = 7, (0# + A#Yy
when coupled to SU(2) doublet can be taken to be a real skew-adjoint
operator. Drawing on chapter 4, § 5 we know that, though the usual index
of a skew-adjoint operator D is necessarily zero, nevertheless dim ker D mod
2 is an invariant. Also this quantity dimker D mod 2 is given as the index
of a real family of operators D parametrised by S!. Witten [3] applies
this analysis to J) , and regards the S' family of four dimensional Dirac
operators as a single five dimensional Dirac operator. The mod 2 index
is then calculated and found to be non-zero. This non-zero value of the
index is shown to be due to the existence of elements of G, not continuously
connected to the identity, which change the sign of \/det(@%04). Two
key techniques employed in the calculation are those of spectral flow and
adiabatic approximation. We shall introduce adiabatic approximation later
in this section; spectral flow will be introduced in the next section when we
examine anomalies from a Hamiltonian standpoint.

Let us see how to obtain this S family. Consider the usual Du‘ac family
parametrised by Y = A/G. Select a map

a:8'-Y

This map pulls back the Dirac family @y on Y to another family @s: on S*;
it also pulls back any bundles over Y to corresponding bundles over S!. To
make it easier to distinguish one family from another we shall now denote
the determinant bundle det Index @ by det Index @y. This pulls back to the
determinant bundle for the S* family, which we write as det Indez @s:: we
have

a*det Indezx §y = det Index @51 = (ker §s1)* ® (ker §5:) (10.46)

However, pullbacks are classified by their homotopy class in [S?, Y], that is
by an element of 71 (Y). We know, too, that
(YY) =m(A/G) = no(G) = Z3, from 10.45
= H,(A/G)=1
But the universal coefficient theorem (Bott and Tu [1]) says that, when

torsion is present, the (finitely generated) homology and cohomology of a
general space M are related by

HY(M:Z) = Fy(M) & T;—,(M) (10.48)

(10.47)
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where the F;(M) and T;(M) denote the free part and the torsion part re-
spectively of the homology of H;(M;Z). Applying this to A/G we see that

F1(A/G) =0, F2(A/G) = 0 (since HZ, pham(A/G) =0), T1(A/G) = Z,
=T%(A/G) = Z,
=>H*(A/G) = Z,
(10.49)
Thus H2(A/G) is pure torsion and the same is therefore true for the Chern
class ¢;(L) of any line bundle L over A/G. Returning to the line bundles
det Index §4/¢ and det Index Ps: we see that the non-triviality of the latter
is measured by an element of Z,.

But this time det Inder @s: is a real line bundle instead of a complex
one. Hence its group is O(1), which is just the group Zz. The only invariant
of a real line bundle over S! is my(O(1)) = Zj; thus when the bundle
det Index Ps1 is non-trivial it has precisely the required properties. Further,
suppose that an anomaly is present but, nevertheless, we still attempt to
construct a global trivialising section ‘det @’ of det Indez @s1. We shall of
course fail. However, the unsuccessful section ‘det®’ will be characterised
by the property that if we go round S exactly once then the section will
not be periodic but will be multiplied by the non-trivial element of the
structure group, i.e. by minus one. Also when this happens it can be
traced back to the non-triviality of the corresponding line bundle over .4/G,
which is in turn due to the determinant det (§%@4) changing sign under
a (necessarily global) gauge transformation. This is just what we argued
above. In addition, if we consider p doublets of Fermions then it is easy to
verify that the effect is to raise the bundle det Indez @s: to the power p,
rendering it trivial precisely when p is even.

We now move on to gravity theory; again there is an important re-
sult due to Witten [4]. We have already seen that global gravitational
anomalies arise when mo(Dif ft(M)) # 0. We shall examine the case where
M = §™. The non-triviality of mo(Dif f*(M)) when M = S™ is extremely
closely tied to the existence of exotic spheres—recall from chapter 1 that
exotic spheres are spheres whose differentiable structure is distinct from the
standard one.

The connection between mo(Dif f*(S™)) and exotic spheres is the fol-
lowing. An exotic sphere S™ can be constructed by an appropriate joining
of two hemispheres: what one does is to cut S™ into two hemispheres H*
and H~ both of which have boundary S™~!; then act on the boundary of
one of them with an element f € Dif f*(S™~!) and rejoin the transformed
hemisphere to its untransformed partner. The resulting n-sphere S}‘, say,
is known to be exotic when f does not belong to the identity component
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of Dif f+(8™1). Further, two such spheres S% and §7 are diffeomorphic
precisely when f and g belong to the same component of Dif f*(S™~1)
(Cerf [1]). In short, the components of Dif f*(S™ ') correspond exactly
to the exotic n-spheres.

In chapter 1 we found that exotic spheres exist for the case n = 7; thus
an example for which Dif f*(S™) becomes disconnected is n = 6. However,
Green and Schwarz [1] have discovered a remarkable cancellation of local
anomalies for V = 1 supersymmetric string theories provided the gauge
group G is one or other of the two 496-dimensional groups Eg x Eg or
0(32), and the dimension of space-time is 10. This seminal result makes it
important to check for the presence or absence of global anomalies in these
theories. This was done in Witten [4] and global anomalies were also found
to be absent.

We would like to describe the method used to verify the absence of
global gauge and gravitational anomalies in 10 dimensions. The vanishing
of any global gauge anomalies is immediate because, if the gauge group G
is Eg x Eg or O(32), we have m3(G) = m10(G) = 0. We are thus left with
the gravitational case.

It is clear that there is something to check because in chapter 1 we
found that there are 991 exotic spheres in 11 dimensions. If we state this
in terms of Dif f+(S™) it is just the assertion that

mo(Dif f¥(5')) = Zoga . (10.50)

Moreover, we can use this assertion to deduce that the parameter space
Y = Met (S'0)/Dif f+(S'¥) satisfies

H*(Y;Z) = Zgg2 (10.51)
The above result follows at once from the fibre homotopy exact sequence

- = mi(Dif f*(8)) — mi(Met (1)) — mi(Met (5'°)/Dif f*(S%))
— iy (Dif fH(S'0) — -
(10.52)
One uses the fact that Met (S'°), being a vector space, is contractible; this
implies that m;(Y) = m;—1(Dif f*(S1°)) and, setting i = 1, we obtain the
desired result by an exactly similar calculation to 10.49 above.
Now we can proceed to the calculation of the global anomaly. Consider
the determinant bundle det Index @4rq, for the gravitational family. This
now has a Chern class which is pure torsion, that is

c1(det Index Pgra,) € H2(Met (S'0)/Dif f+(S0);Z) = Zggz  (10.53)
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In [4] Witten studied the variation of the Dirac determinant det (§;8,) as
the metric p changes to f - p where f is a global diffeomorphism belonging
to some component of Dif f+(5°). The change of p to f- p is accomplished
by using a one parameter family of metrics defined by

pt=Q1—-t)p+tf-p (10.54)

Clearly as t varies from 0 to 1 we have the desired state of affairs.

The next step is to realise that we can produce a one parameter family
of metrics p* on S0 by taking a single metric p on some 11-dimensional
manifold N. Let us do this and also require the line element on N to have
the simple form

ds? =dt? + plde® = (1 —t)p+tf-p (10.55)

where we are using (¢, z) as local coordinates on N. We need to commit
ourselves to a specific manifold N. A desirable feature for N to possess
is that it has encoded into it some data about the diffeomorphism f; in
fact we can construct N entirely from f alone. To do this, first construct
the product S x [0,1]. This manifold has a boundary consisting of the
two pieces S0 x {0} and S0 x {1}; we shall get rid of this boundary by
joining the two together but, before doing so, we act on S0 x {1} with
f so that it becomes S3° x {1}. Having done this the manifold N is the
closed 11-dimensional manifold obtained by identifying 5'° x {0} and §}° x
{1}. Notice that N is actually a fibre bundle over S! with fibre S0 and
structure group Dif f+(S%°). This means that it is classified by an element
of mo(Dif f*(S°)) and so there are precisely 992 such bundles or manifolds
N. Clearly we have elegantly achieved our objective of incorporating the
global diffeomorphisms of Dif f+(S°) into the fabric of N.

A final point about the construction of N is that we can also obtain N
by use of a pullback. Recall that in the setup for the families index theorem
we have the bundle Z over Y with fibre M (note that we called the fibre
X rather than M in the original treatment of chapter 4); also, to maintain
invariance of any local calculations, we required Z to have structure group
Diff (M) or Diff *(M). The significance of Z in the present context is
that if we have a map a : S* — Y then o*Z is a bundle over S* with fibre M
and structure group Diff*(M); in other words, setting M = Dif f*(S19),
a*Z is the same as N.

Let us move in on the global anomaly itself. The presence of an anomaly
is detected by a change in det (@}@,) as p varies from p° to p'. However, it
is far from obvious how to calculate such a change. The successful method
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introduced by Witten [4] is to replace the data on S° by the corresponding
data on N: this means replacing the family p* by the single metric g on the
manifold N, replacing the Dirac operator §, on § 10 by the Dirac operator 3
P on N, and calculating the change in det (§;8,) by using an adiabatic
approximation. In this context the term adiabatic approximation means
scaling the family p' to €p!, where € is small, and then calculating the
spectrum of ) by expansion in e.

When this programme is carried through one finds the beautiful result
that the change in det (@;@,) can be expressed solely in terms of the #-
function of the 11-dimensional Dirac operator J). What Witten shows is
that, for a diffeomorphism f under which p — f - p, we have

det (@, P,) — det (p}.,P5.,) = Cdet (§;8,)

where C = exP[ﬂ'iﬂI}(O)] (10.56)

Now the functional integral contains det (§;@,) in the square root form

\/det (P5P,). Thus the anomaly is absent if

VC = exp [7771;(0)] =1 (10.57)
= ny(0) = 4k

with k an integer. The effective action Sy of the Fermions is In | /det (§58,)
and so we can also state the above condition as

ASy = 2mik (10.58)

where ASy, stands for the change in Sy under the diffeomorphism f.

However, we know that n-functions appear in the index formula for
some elliptic boundary value problems. Referring to the relevant theorem
4.164 we have that, if X is a twelve dimensional (spin) manifold whose
boundary is N, then

h 0
index §x = ./x A- w (10.59)

5 Remember N is an odd dimensional manifold and so, because chirality does not
exist, the chiral Dirac operator is replaced by the full, self-adjoint, Dirac opera.torﬂ)ﬁ

which for simplicity we denote by J); moreover, ) has a spectrum.
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where @x is the chiral Dirac operator on X with respect to a metric on X
which is a product with p near its boundary N. This immediately provides
us with a formula for ng‘(O)—this is somewhat of a vital necessity since

calculating 774‘(0) directly from the spectrum of Jp is not really practical.

Using this formula we find that the change ASy in the effective action is
given by

AS, = i / A — indez px — g} (10.60)
X

Actually in 12 dimensions it is known that the index of the Dirac operator
is always even, thus the term index §x contributes a term of the form 27ik
to ASy and so may be omitted. However, the N = 1 supersymmetric string
theory, which is anomaly free, contains more fields that we have not yet
mentioned. It is necessary to include these fields both to guarantee the
absence of local anomalies (the result of Green and Schwarz) and to cancel
the global anomaly. There are three contributions to the global anomaly
and they come from Dirac spin (1/2) fields, Rarita-Schwinger spin (3/2)
fields and a self-dual tensor field. In general, if the number of each type of
field is n4, n,s and nyq respectively then the total contribution (Witten [4])
to the global anomaly is

%i{nan¢(0) + 7 (r5(0) = 1y (0)) — %n,dm)} (10.61)

where 7,5(0) and 7,4(0) are the n-functions for the Rarita-Schwinger and
self-dual tensor fields respectively.

For the Eg x Eg or O(32) theories we do not have to include the self-
dual tensor fields and we have ng = 495 and n,, = 1. With these values the
formula 10.61 gives the change in the Fermionic determinants under a global
diffeomorphism. A last task in the calculation is to add the corresponding
change in the other terms in the action. When this is done the complete
contribution A5 to the change in the action does indeed satisfy AS = 2rik
and so the theory is free of global anomalies.

There is a geometrical property underlying the formula 10.56 for the
Fermionic determinants. It is that this formula can be interpreted (Bismut
and Freed [1,2]) as giving the holonomy round a loop for a connection A
on the determinant line bundle over Y. If we return to the mapa: S! =Y
introduced above then the holonomy of A round S?! is given by

exp| /S Al (10.62)
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To calculate this holonomy Bismut and Freed [2] use the fact that a*Z is N
and introduce a limiting procedure similar to the adiabatic limit described
above: If ds? is the line element on N then one writes

2
ds? = d— + ptdz? (10.63)

This line element only differs from that used in the adiabatic limit by the
conformal factor €. In this case the metric on S! has been scaled by (1/¢) and
so becomes singular as ¢ — 0; for this reason this mathematical counterpart
of the adiabatic limit is called blowing up the metric. The result of this
limiting procedure is the formula

exp[/s1 A] = (—1)indes o hmexp[m he + Mg «(0)] (10.64)

where indez @, is the index of the ordinary chiral Dirac operator on S0,
and the ¢ on A and ) are reminders that these quantities depend on the
metric on N and thus on e. Thus the holonomy is determined by the global
change in the Fermionic determinant, that is by the global anomaly.

The methods used in this section on S are not restricted to this par-
ticular manifold. The method works equally well for many other manifolds
M of arbitrary (even) dimension n and first order elliptic operators L, say;
in each case the main task is to construct the analogues of the manifolds
N and X. Then one uses an adiabatic limit, or blow up of the metric on
S, to show that the change in the appropriate determinants under a global
diffeomorphism in Diff *(M) is given by (7i/2)nr,(0) where Ly is the
operator on N induced by L.

Example Complez anomalies

We have seen that in considering anomalies of the global type it is neces-
sary to distinguish manifolds (exotic spheres) which are homeomorphic but
not diffeomorphic. A separate point is that in addition to considering dis-
tinct differentiable structures on manifolds one can go one step further and
consider distinct complex structures as we do in string theory. Invariants
in terms of characteristic classes which would distinguish such structures
seem difficult to find. The first examples seem to occur in dimension 10. In
10-dimensions there is a complex manifold

U(4) G

M= o xom =<0 #

(10.65)

Following the technique we introduced when discussing the complex mani-
fold G/T in chapter 6 we can use the roots of G and H, and a decomposition
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into positive and negative parts, to assign a complex structure to M. But
the decomposition into positive and negative parts is done relative to some
Weyl chamber or lexicographic ordering, and is not unique. If we exploit
this fact we can endow M with two distinct complex structures and thus
define two complex manifolds M; and M, both homeomorphic to M. Fur-
ther, the Chern classes distinguish M; from M, for one can show that, Nash
[3],

c; (M) = 4500

10.66
¢} (M) = 4860 ( )

Thus, although M, is homeomorphic to M, their Chern numbers differ.
To see how this can affect physics is quite straightforward; we introduce
a simple model with action S given by

S=(27)5/Nl(t1‘F)

Actually M i3 in fact a Kdhler manifold and F is its curvature form, and
because of this it possesses a metric ¢ with the property that g is invari-
ant under the complex structure selected. The anomaly comes from the
following: The action S is invariant under differentiable coordinate trans-
formations. Now if g and g are the two Kahler metrics associated to the
two complex structures, then these two metrics are differentiably but not
complex analytically equivalent. Thus if we consider a family of metrics gt
parametrised by t, with g = g and g* = §, then the action is not in fact
invariant under this coordinate transformation but changes by an amount
AS where
AS =360

This example is only chosen to illustrate the potential destructiveness of
a complex anomaly and the action S need not be taken seriously as being
that of realistic physical model.

§ 6. Anomalies from a Hamiltonian perspective

We end this chapter by giving some idea of how one sees anomalies in a
Hamiltonian formulation of the quantum field theory. Anomalies should not
disappear in an alternative formulation, though they may manifest them-
selves in slightly different ways.

The central idea is still to use families of Dirac operators. Suppose that
we have a family of Dirac operators on an n-dimensional spin manifold. We



292 Differential Topology and Quantum Field Theory

shall further suppose that this family depends on p parameters and a typlcal
member of this family is denoted by

(n)

ﬁ(tl,...,tp) (10'67)
where (t;,...,tp) = t denotes dependence on the parameters. Using this
family we can always construct a single Dirac operator #("*+?) in (n+p)
dimensions by writing

ﬁ(’l‘H‘P) ((t”:), Lt Z ~i=— at (1068)

The {m,...,7p} are just the extra vy-matrices needed in (n + p) dimen-
sions. Alternatively, if we are interested in a Hamiltonian approach, we can
construct a (p + 1)-parameter family of Dirac operators ﬁt("_l in (n-1)
dimensions, the extra parameter being the time. The main point is that,
though the topology of the anomaly displays itself differently as n and p
vary, the anomaly really only depends on (n + p) rather than on n and p
separately. As we shall now show, the way to prove this last assertion is to
use Fredholm operators.

In chapter 2, § 5 we showed that elliptic operators can be realised as
Fredholm operators on a suitable Hilbert space. Applying this result here
allows us to regard the various Dirac operators as Fredholm operators. We
begin by supposing that H is a (complex) Hilbert space with an associated
space of Fredholm operators F(H). It is now opportune to expand on an
allusion that we made earlier (chapter 3, § 6) to a relation between F(H)
and K(X). The result that we need is the following isomorphism

[X, F(H)] ~ K(X) (10.69)

We can easily give an explicit description of this isomorphism: Let us con-

sider the continuous map
a: X - F(H) (10.70)

Notice that a provides us at once with a family of Fredholm operators
parametrised by X; we shall denote this family by ax. Now, for each z € X,
the image a(z) is a Fredholm operator with kernel and cokernel ker a(z)
and ker a*(z) respectively. As z varies, these (finite dimensional) spaces can
be considered to be the fibres of vector bundles over the parameter space
X. More precisely, we define the vector bundle ker a over X as being that
bundle whose fibre over z is the space ker a(z), with a similar definition for
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the bundle ker a*. The difference of these vector bundles is the K-theory

element
[ker a] — [ker a*] (10.71)

In the terminology introduced in § 2 this element is clearly the index bundle
Indez ax for the family of Fredholm operators a.x. Now we have all that we
need for the isomorphism 10.69—which it is natural to denote by Indez —
proceeding to the definition we have

Indez :[X,F(H)] — K(X) (1072

[a] — [ker a] — [ker a*] = Indez ax %)
This isomorphism can be interpreted as saying that F(H) is a classifying
space® for the functor K. Because of this the homotopy type of F(H) is
determined and, referring to chapter 3, it is easy to verify the existence of
the homotopy equivalence

F(H) ~ QU(00) (10.73)

So far the Dirac-Fredholm operators we have discussed are fairly unre-
stricted. However, because the Dirac operator in odd dimensions is always
self-adjoint, we need a little of the theory of self-adjoint Fredholm operators.
Let F!(H) denote the set of self-adjoint Fredholm operators, then we would
like to know the homotopy type of F!(H). It turns out that F(H) contains
two contractible components usually denoted by F1(H) and F1(H). The
space .F}_ (H) is the space of self-adjoint Fredholm operators whose (neces-
sarily real) spectrum has only a finite number of negative eigenvalues, while
FL(H) is the corresponding subspace of F!(H) whose spectrum has only
a finite number of positive eigenvalues. The remainder of F!(H), that is
the complement of F}(H) and F!(H), is not contractible and is denoted
by F1(H). Hence the homotopy type of F*(H) is carried by F}(H). For-
tunately the homotopy type of F1(H) is known (Atiyah and Singer [8]) to
be that of QF(H). Summarising, we have the homotopy equivalences

FYH) ~F}H) ~ QF(H) (10.74)

Also, since we know that F(H) =~ QU(oc) and that Bott periodicity says
that Q2U(oc) =~ U(oco), then we see that

FHH) = U(cc) (10.75)

6 We have already met classifying spaces for bundles: for example, we know that
the isomorphism [X, Gr(k, 00, C)] ~ Vecty(X,C) of 3.67 means that Gr(k,00,C) is a
classifying space for the functor Vecty.
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We now have in place all the required Fredholm theory which we observeffg
all determined by the space U(oc). Using the information on the penodmt?
of its homotopy groups given in chapter 3 we deduce that B

Z ifk is even 1 0 ifkis e\‘/égiﬂ

i) = { 4 mFE)={3 T
wFED =g itpisoad ¢ ™ EN =7 ks ™
(10.76'-.?

Now we return to anomalies. For simplicity we restnct ourselves to the
case where the parameter space X is a p-sphere SP. If ﬁ o) is a typlcal

family of Dirac-Fredholm operators then

’atnl). ) €F(H)  when nis even

@") y € FH(H)  when nis odd

tly |tP

B

The topological properties of the anomaly reside in the index bundle of thls
family. But using 10.72 with X = SP we see that this index bundle is Just
an appropriate element of the homotopy groups

np(F(H)) ifnis even

mp(FL(H)) ifnisodd (193;731;,

Now suppose that (n + p) is even, then n and p must be either both og
or both even. In either case we can combine the homotopy results 10
and 10.78 to conclude that the relevant homotopy group is Z. On the ot{ T
hand, if (n + p) is odd then n and p form an odd-even or an even-odd pair,
Again we find that the homotopy group for the anomaly is always zero. 12

. %
fact, whatever the values of n and p the anomaly is measured by the sam
homotopy group, namely

Tnsp(QU(00)) (10.79»-

So the only thing that matters is whether (n + p) is even or odd. i
All this applied to the case where F(H) is the space of Fredholm opei %
ators for a complex Hilbert space. However, we know that global anomahes
can involve real Dirac operators and thus real Fredholm operators. Th
thing to do here is to investigate the homotopy type of F(H,) where H, dg—
notes a real Hilbert space. The replacement of H by H, causes the mﬁmtg
unitary group U(oc) to be replaced by the infinite orthogonal group O(oo 00)¢
We can use the real version of the index map 10.72 to show that F(H,) i i
a classifying space for the functor KO. The global anomaly SU(2) that we;
studied § 5 required us to use a single skew-adjoint real Dirac operator. Buﬁj
the space of real skew adjoint Fredholm operators F., ., (H,) has the hom
topy type of O(oo) (Atiyah and Singer [6]). The topology of this anomalé
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T

15 captured by mo(Fpye(Hr)) = m0(O(00)); however mp(O(0)) = Z4 and
so we are in agreement with our previous calculation.

. We can now look at some examples.

‘?Example Spectral flow and an anomaly in two dimensions

-Let us take an Abelian U(1) gauge theory on a space-time which is the two
dimensional torus S! x S!. First we consider it from a non-Hamiltonian

‘standpoint. Since the space-time is even dimensional we have the chiral

Dirac operator 4. But the local anomaly calculated in § 2 is of course

zero; what is left is the fact that there are non-trivial U(1)-bundles over the

torus corresponding to the connection A being an ‘Abelian’ instanton. Our
previous work tells us that these bundles are classified by a single integer,
and this integer is equal to the ordinary integer index of the single Dirac

- operator P4. In terms of the Fredholm treatment we are dealing with the
. case where the parameter space X is a point. This means that the index
 isomorphism of 10.72 reduces to the ordinary assignment of a Fredholm
| operator to its index.

Now we switch to the Hamiltonian view. This time we take space to

 be the circle §* on which is defined a self-adjoint Dirac operator. On S*
-this Dirac operator becomes simply (—id/df). The other S* of the torus is
- no longer a Euclidean time but a parameter which labels a family of Dirac
: operators. Our family of Dirac operators is given by

Pl = —id% Tkt (10.80)

- where k is some integer and the other S coordinate ¢ varies from 0 to 1.
* According to our Fredholm analysis the anomaly is measured by an element
L 1 (FH(H)) = Z. We shall calculate this integer by using the spectral fow
: technique of Atiyah and Lusztig.

Spectral flow is an integer associated to a ‘periodic’ family of operators.

: In the present case the family of operators @} is not periodic in ¢ but i* is
. true that the spectrum of the family is periodic; i.e. the spectra of the
: operators @3 and @] coincide. The power of the concept of spectral flow lies
 in utilising the easily ignored fact that, though these two spectra coincide
 as sets of eigenvalues, the evolution, or flow, of the former into the latter as
- ¢ varies may entail some rich rearrangement of the eigenvalues. It is much
¢ easier to understand this by studying the details of this simple example—
: this example being one in which we can calculate the relevant eigenvalues

explicitly.
The eigenvalues of the operator §; are just A,(t) where

(t)=n+kt, n=...,-1,0,1,... (10.81)
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Thus the spectra of the two operators @} and @} are the pair of sets a
“a
{n:ne2} and {n+k:ne€Z} (10.82)

-

which we observe do coincide. However, when displayed in this exphclt
fashion we also notice the relationship i

An(1) = An(0) + & (10.83)

between the eigenvalues. What has happened is that k of the negatﬁ;é
eigenvalues of § have flowed up and become positive eigenvalues of ﬁl
Notwithstanding this flow, the two spectra still coincide since they are un-
bounded above and below. The spectral flow of the family of operators @} 13
defined to be the number of negative eigenvalues which flow over to posmve
counterparts as ¢ varies from 0 to 1. Note that the spectral flow is just an
integer and in this example it is equal to k. 5
We remarked above that the family of operators @} are not periodic in
t. Nevertheless, we can check that they are related by d

Pl = e~ ik0gliko . (10.84i
)
This relation is just the usual gauge covariance of the Dirac operator. Hence
e'*t is just a U(1) gauge transformation and if we quotient by this gauge
transformation the family @} descends to a periodic family. Having done
this we have a loop on F!(H) or, equivalently, an element of m (F!( ))
The homotopy type of this loop is then given by the spectral flow k. This
integer k is also the index of the chiral Dirac operator @4 en the torus. To
check this explicitly one would have to calculate the null spaces of P4 a.nd
@ on the torus using
9 ¥
3 (1085{)7
The rearrangement of eigenvalues under the flow may be more complex
than the simple shift discovered here. In more general cases there may:
be both positive eigenvalues which flow into negative eigenvalues as well
as negative eigenvalues which flow into positive ones. Thus the general:
definition of the spectral flow of a family is that it is the integer which is
equal to the number of negative eigenvalues which become positive minus
the number of positives which become negative. It is also useful to note
that, for the spectral flow to be non-vanishing, the spectra of the family
must be unbounded: in the present example, if the Dirac operator had a
lowest bound no flow could take place.

Pa=0; +
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Example Fock space and Gauss’s law

In this example we take space-time to be S on which we have a 2-parameter
family of chiral Dirac operators with parameter space S2. The anomaly
then corresponds to an element of mo(F(H)) = Z. On the other hand, the
Hamiltonian viewpoint is to take space to be S% and consider a 3-parameter
family of self-adjoint Dirac operators. Then the anomaly is an element. of
73(F1(H)) which is also Z.

Now the Euclidean S* formulation of this anomaly is essentially the one
that we described in § 2, where the anomaly was evaluated as a Chern class
obtained by restricting to a 2-sphere in .A/G. In the Hamiltonian picture on
53 the cohomology generators shift from even dimensions to odd dimensions
and the 2-sphere in 4/G becomes a 3-sphere. However, we now turn to the
Hamiltonian picture. The interesting feature here is that a non-trivial kernel
for the Dirac operator is an obstacle to the gauge invariant definition of the
Fermionic Fock space.

First we must describe this Fock space (cf. Segal [3] and Pressley and
Segal [1]). Let our P, be the self-adjoint Dirac operator in 3 dimensions
coupled to a connection A. Let H be the Hilbert space of eigenfunctions of
D 4. In general the spectrum of ) ; has a non-empty kernel, but suppose for
a moment that A is such that kerl) , = ¢. In this event we can decompose
H into its strictly positive and negative subspaces H+ and H ™ respectively,
giving

H=H*®oH" (10.86)
Anti-particles are represented by the complex conjugate space H  and to
second quantise the theory we must construct the Fock space. The Fock
space is the anti-symmetrised exterior algebra space defined by

FA)=A"HtoH )=@AN (H")QAN(H) (10.87)

P
where the sum is the usual one over states containing p particles and g
anti-particles. Note that the Fock space depends on A and, as A varies,
the collection {F(A) : A € A} form a bundle F over the parameter space
A. But since gauge transformations act on connections, and thus on J, it is
natural to project F to obtain the bundle F/G over A/G. The two bundles

are thus
F /G
l and l (10.88)
A A/G

The physical states of this theory should then be the space of square inte-
grable sections of the bundle F/G over the gauge orbit space A/G.
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Unfortunately this picture has a flaw: note first that as A varies w"é
cannot always avoid those A for which J) , does have a non-empty kernel
The flaw arises because when]) , has zero eigenvalues the decomposition intg
H* and H~ is no longer defined. Also we cannot expect the Fock spaceg
F(A) to vary smoothly when A passes through one of these troublesome A’y
We shall discover that the most serious consequence of this flaw is that itg
existence leads to the fact that the group G does not actually act on F: to get
a group which does act on F we must pass to a non-central extension G of .
This is the same extension we met in chapter 6 and requires the specificatiogy
of a cocycle in H2(G) which we know corresponds under transgression to af
element of H3(A/G) = Z. This obstruction cocycle is the anomaly. . "3

We finish by describing the emergence of the group extension in the
Fock space picture. It is necessary to return to the matter of the kernel 6f
D ,. Suppose that ), has zero eigenvalues, then we shall decompose the
Hilbert space H of eigenstates slightly differently: We choose a real numbes
€ > 0 which is not an eigenvalue of D) ,; then we define H} to be the spaces
of eigenstates whose eigenvalues are greater than e, similarly H. consist§
of the states whose eigenvalues are less than e. Let us implement these
definitions a second time using another real number ¢ > 0 which is also notj
an eigenvalue. Then we have available two decompositions of H, namely{ s

]
H=H}eH =H}®oH, (10.89),
We now have two possible Fock spaces given by 3‘

T(A)=A(HF o) and Fe(A)=A(HfeH;) (1090
y
Now suppose for definiteness that ¢ > e. Then H} D HE",' and the two
spaces can only differ by a finite dimensional space J¢ ¢, say, so that

iy
Hf=Hl®J. o

10.91%

= H=Hl&Jc0H ( »:)J

Y

Applying this to our Fock spaces gives o
i

3‘ A = /\,‘l HT Je 1] I_{— ’

(A =NHT & Jew © He )__ (10.92)

=A"(Jee) AN (HY @ H,)

Similarly p
Fo(A) = AN (Jee)OA (HS @ H,) (10.93)
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We see that the difference between the two Fock spaces is measured by the
difference between the two spaces A*(Je) and /\*(je,e:). However, these
latter two spaces are almost isomorphic (Pressley and Segal [1]): To see
this let n = dim J, ¢ and let us choose any non-zero element A, say, of the
one dimensional space A™(Je,e ), then we have a A-dependent isomorphism

I* defined by its action on p-forms, that is

I; P AP (Jeer) — AP (Jeer) (10.94
wr— I;‘ (w) where w satisfies I;‘(w) Aw=A 94
But if we were to replace the Fock spaces by their projective counterparts
then all such A € A™(J, ) would be equivalent and trivial; hence the isomor-
phism induced between the projective Fock spaces is independent of A—i.e.
it is canonical. Therefore the projective Fock spaces are identical. Of course
in quantum theory the physical states are identifiable with a space of rays,
and thus we now replace the Fock space F.(A) by its projective version,
which we write as FP(A); note that we drop the e label from the projective
version since it is no longer necessary.
The projective Fock spaces fit together to form the projective bundle

FP = {FP(A): A € A} (10.95)

This time the group G does act smoothly on FP and we have no trouble in
constructing the quotient bundle

FP/G
(10.96)
A/G

The group extension arises in the following way. Choose a Fock space ¥
whose projective version is FP and consider the action of an element g € §
on FP. We can lift this action from FP to a unitary action on F, but on Fit
will only be a projective action: i.e. we must include a projective multiplier
A with |A| = 1. This means that if f4 € F then, under g,h € G, we have

g (h-fa)=AA)(gh) - fa (10.97)

Hence we have an extension of the group G by the group of projective
multipliers A\(A) which clearly belong to Map (A, S'). We recognise this as
being the non-central extension G that we described in chapter 6. When
the current algebra commutation relations are calculated, this extension is
responsible for the Schwinger term.
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Gauss’s law is violated for theories with this anomaly. The reasoy:
for this is that the non-triviality of the extension cocycle means that thé‘
identity of G is covered by a non-trivial element of Map (A, 5). Gauss’s law:
says that the generators of the Lie algebra of ¢ must annihilate the vacuuih:
and this implies that the physical states of the theory must be mvanan{"
under G. However, this is now impossible because the identity element acts

non-trivially and will change the vacuum.



CHAPTER XI

Conformal Quantum Field Theories

§ 1. Conformal invariance and quantum field theory

Conformal invariance is a recurrent topic in theoretical physics. Since a
conformally invariant universe is one with no masses, we do not expect
conformal invariance to be a symmetry of a complete physical theory. Nev-
ertheless, the conformal invariance present in certain physical systems has
proved to be of great value in understanding their structure.

In statistical mechanics as a system approaches a second order phase
transition its correlation length diverges. At the critical point the theory
possesses no dimensional parameter and is scale or dilation invariant; in two
dimensions the field theory describing the critical point turns out to be, not
just dilation invariant, but conformally invariant.

The operator product ¢(z)@(0) of some quantum field theories becomes
independent of mass in the limit of small z. This has led to the suggestion
that the elementary constituents of matter, which are the relevant degrees
of freedom at very small distance, may be described by theories with confor-
mally invariant small distance limits. The short distance behaviour of field
theories is intimately related to their renormalisation properties. The renor-
malisation properties of correlation functions are constrained by the need
to obey the Callan-Symanzik renormalisation group equations, cf. Nash
[1] for a discussion. A necessary, but insufficient, condition for a theory to
possess conformal invariance is that the renormalisation group flow has a
fixed point; this means that the Callan-Symanzik function $(g) has a zero.
Wilson [1] introduced the operator product expansion as a tool to study
the scale invariant properties of such theories. This is an expansion of the
product A(z)B(0) of two local quantum fields. The expansion is valid for
small z and takes the form

A(@)B(0) — 3 Ca(2)04(0
(z)B(0) 2": (z)On(0) 111)

z+—0
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where Cp,(z) are a set of functions, singular at z = 0, and O, are a set of
local operators. If the field theory has a scale invariant small dlstance hrmt
then both sides of the expansion have the same scale dimension;! in thay,
case, if S¢, denotes the strength of the singularity of the function C, so'l

that
Cr(z)

e (11.2)

Cn(Az) =

then
da +dp =do, — Sc,, for each n (11.3)

We shall see below that this operator product expansion plays a prominent
part in the theory of conformally invariant fields in two dimensions.

In general, non-trivial theories with conformal invariant correlatlon
functions are very difficult to find. However, in two dimensions, where the
conformal group is infinite dimensional, the situation is somewhat better;
The central example here is string theory but the other conformally invaris
ant theories in two dimensions are of independent interest; as we have said,
above they occur in the statistical mechanics of critical phenomena, they,
also turn up in the quantum field theoretic approach to knots of chapter 12.
In this chapter we shall limit our discussions to conformally invariant the-
ories in two dimensions; for additional background, see Belavin, Polyakov
and Zamolodchikov [1] and Zamolodchikov [1,2]. b

§ 2. Conformal field theories in two dimensions K
To begin with we consider field theories on the complex plane, or perhaps
on the Riemann sphere; later, in § 5 we shall be more general and consider’
theories defined on a Riemann surface ¥ of genus p. Let ¢(z, Z) be a smooth’
quantum field on C with the tensorial transformation property i

o

=Lt

=7 CL e wems e 23

$(z,2) — ¢/(, 7))

z— 2

h 9= (Y (Y y2.), and mieR
where #(z,2) = (d—z-) (d—i-) #'(z',7z'), an yh €

(11.4)

The field ¢(z, Z) is called a primary field of conformal weight (h,h). The

sum of the weights A + h is the scale dimension of the primary field while

2

1 The scale dimension d4 of a field A is defined by U(MNA(z)U~1(A) = M4 A(Az)

where U()) represents the dilation operator exp[ln A\(zd/8z)]; when the scale dimension

differs from the canonical dimension dS the difference d§ — d4 is usually called the

anomalous dimension of A and is written as y4.
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the difference h — & is the spin; the difference h — h is therefore restricted
to integer or half-integer values.

Example A free Fermion

An example of a primary field is provided by taking the field theory of a
free Majorana (self-conjugate) Fermion % on the complex plane. The action
for this theory is

S = /dzdiw(z)aw(z) (11.5)
For the product of two Fermion fields we have
c

<P >= = (11.6)

where C is a numerical constant. This shows that 1(2) is a primary field of
weight (1/2,0).

It is not sufficient to take any massless theory in order to get a primary
field. The Bosonic counterpart of the previous example is not a primary
field.

Example A free Boson

This time S is the action for a free Boson ¢(z, Z) so that
1 - \5 -
S= yy /dzdz 8¢(2,2)0p(2, Z) (11.7)

The two point correlation function is now
< ¢(z,2)p(0) >= CIn(z2) (11.8)

with C another constant; since the correlation function has no scaling prop-
erties, ¢ is not a primary field. Actually, in two dimensions, a scalar field
is dimensionless so this result might have been anticipated.

On the other hand, if ¢(z,%) is a primary field of weight (h, k), then
scale invariance alone constrains the two point function to be of the form

C

S (1L.9)

< ¢(z,2)¢(0,0) >=

We now want to make contact with the operator product expansion for
a conformal theory. An instructive product to consider is

Tasd (11.10)
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where ¢ is a primary field of weight (h, k) and Ty, is the conserved energyf
momentum tensor. Before calculating the product we need to introduce:
more suitable coordinates to describe T, and, in addition, we must obtam
the Ward identities associated with a conformal transformation. We deal

first with the energy momentum tensor. A
The scale invariance of the field theory means that T, is traceless sot

wit

T +T=0 (11.11)

. . . i)
and, because T, is symmetric, it possesses only two independent compoi‘
nents. Using the complex coordinates z = z; + iz and zZ = z; — iz, we find

that
Tz =Tz =T11+T22=0 o

T, =T — Ty — 21119 (11,12);
Tsz =T — Tag + 2tT2 CH

.7
But the energy momentum conservation condition 0°T,s = 0 implies that :

aETzz = azTEE =0 (11135:
Thus it is natural to define B
T(z) = Tza T (2) = Ts: (11.14)

and observe that T(z) and T (Z) are holomorphic and anti-holomorphic
respectively. Henceforth we shall use T'(z) and T'(Z) to represent the two,
independent components of T,;. Now we turn to the matter of the Ward

identity. \
Let us temporarily use the real coordinates z, = (z1,22) and make the
infinitesimal coordinate transformation

Ty T, =z, + efu(z) (11.15)';
where € is small. The change 6¢(z) in the primary field ¢(z) is ¢/ (z') — B(z)-

It is standard in quantum field theory that the change in the correlation
functions of ¢ is related to the energy momentum tensor by the expression'

Z < @(z1)- - 68(zi)- - d(zn) >
- /R P < T (@)p(m) - 6(w) - 6(en) > 0 f(z)  (11.16)
N / dly, < Tuo(2)p(31) - (zn) > 4 7 (x)
8R
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where R is a compact region co_ntaining the z; and e is the permutation
tensor. Now we change to complex coordinates and specialise to a conforma]
coordinate transformation of the form

z— 2 = z+¢f(2) (11.17)

With this choice of coordinate transformation only the boundary term in
11.16 survives and we thereby obtain

> <z, 721) - 86(zi, %) - §(zn, Zn) >

27rz

—e/ ——<T (21, 21) - B(zi, Z) - $zny Zn) > fw)

+e 2—7” < T (0)p(z1,21) -+ $(2, %) - - §(2n, Zn) > f(0)
c
(11.18)
where C ~ OR is a contour containing the z;. It is natural to separate the
equation into its holomorphic and anti-holomorphic pieces; quoting only
the equation for the holomorphic part 6@ of 6@, we deduce the operator

equation
€

8"¢(z,2) = —— | T(w)d(z 2)f(w) (11.19)

2mi Jo

This completes our use of the Ward identity.

To obtain the operator product expansion we shall have to compute
explicitly the holomorphic properties of both sides of 11.19. First let us
observe that if z — z + €f(2) in the primary field transformation law 11.4,
we obtain

6¢(z,2) = €(h(8:f(2))4(2,2) + f(2)8:4(2, 2)) (11.20)

Hence we have the equality

B0 f(2))$(2,2) + F(2)0,8(2,2) = —— / oz 2)f(w)  (11.21)
Now we require the following expansions

f(2) = fo+ friz+ fazl +---
fw) = fo(z) + fi(2)(w — 2) + fa(z)(w — 2)* + - -

T(w)d(z,2) ="+ T-2(¢) + T-1(4) +To(d) + Th(P)(w—2) + -+~

(w—2)?  (w-2)
(11.22)
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Inserting these into 11.21 gives -
v}

(fo+ fiz+--)0:0 + h(fr + 2faz + - )¢ = T-1($) fo(2) +.T—2(¢)f1(2)’3

4
a

+T_a(@)fa(2) + -

(11.23)

If we work at z = 0, which allows us to use the equality f,(0) = fn, we
discover that .
T-1(¢) = 0.0, T-2(¢) =ho, T-3(¢) =T-4(¢)=0="---  (11.24)

and this establishes the short distance operator product expansion of T'(w)
with the primary field ¢ as

h

T(w)$(0,0) = -56(0,0) + =8:9(0,0) + R(w) (11.25)

s
with R(w) a regular function in some neighbourhood of w = 0. Equivalently,
we can write -

T(w)¢(z, ) = ——”—)—2¢(z, 2+ m+az¢(z, D+ Rw-z) (1..26)

(w— 2z 2)

and the corresponding product of T with ¢ is

ot

T (0)4(2,2) = ——38(2,2) + B:p(2,2) + -+ (11.27)

(w - z) ,

L
(0~ 2)

Next we consider the product of T'(z) with itself. Taking the example of
the free Boson field above, for which T'(z) = —(8.¢)?, it is easy to calculate
that

! 2 T(z)+ !

TW)T(@) = g Y = L

0T+ (11.2§):

where I is the identity operator. Thus T'(z) is not a primary field because
of the presence of the term proportional to the identity. For an arbitrary

conformal field theory this expansion is replaced by the more general form

cl 2

ﬁ@,T(z)+R’(w—z) (11.29)
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with R'(w — z) regular. We shall see below that the number c is actually
the central charge? for a representation of the Virasoro algebra. This op-
erator product expansion of T'(w)T(2) is the consequence of the following
behaviour of T'(z) under the infinitesimal change z — z + ¢f(z)

8T (2) = €(2(0: f(2))T(2) + f(2)0:T(2) + 1%3§3)f(z)) (11.30)

If it were not for the number ¢ then T(z) would be a primary field of weight
(2,0) thus having a non-anomalous scaling dimension of 2. The finite form
of the transformation law for T'(z) is not quite tensorial being

1\ 2 c
T(z) = (3—22) T'() + ﬁ{z, Z'}
IR o) o (11.31)
where {= z}=(dz/dz)_§(dz/dz)
! (dz'/dz) 2 (d7'/dz)?

and {Z/,2} is known as the Schwarzian derivative of 2. The Schwarzian
derivative vanishes if z — 2/(2) is a Mobius transformation. This can be
proved by direct calculation: using the more convenient notation {f, z} we

see that
{f,z}=0
i 3¢ .
#5—5?—0, where g = f
§_39_,
g 29
3 (11.32)
=>1ng—51ng=A
IO
g_(eAz+B)2
az+b
=:’f—Ccz+d

with ad — bc = 1 and C an undetermined constant.

§ 3. Relation to the Virasoro algebra

We know from chapter 6 that the conformal group in two dimensions con-
sists of the group of holomorphic and anti-holomorphic transformations.

2 1t follows that for a single free Boson ¢ = 1; for a free Fermion the reader can check
that ¢ = (1/2); thus the value of ¢ can be used to detect whether or not a theory is free.
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More precisely we can realise the two dimensional conformal group as the
product Dif f (§') x Dif f (S'); one S* corresponds to the boundary valuég
of the holomorphic transformations and the other to the boundary valueg
of the anti-holomorphic transformations. Using the holomorphic and antil
holomorphic energy momentum tensors T'(z) and T (Z) we can construct
the generators of the corresponding algebra. We write !

L)

[e o]
d .
T(z) =Y Lpz~ "2, L, =/ L T(w)yw™H (11.33)
-0 ' %)

21

Y
If we combine this with the operator product expansion 11.29 we can verify
that these generators have the commutation relations '

[Limy Ln] = (M = 1)L yn + 1—c2m(m2 ~ 1)bm—n (11.34)

and thus the {L,} generate a Virasoro algebra, Vir, say, showing that the
number ¢ appearing in 11.29 is indeed a central charge. Clearly if we write

. b
)= Lnz ("*2 (11.35]
= _

then the {L,} generate another Virasoro algebra Vir commuting with the
first.

Each primary field ¢(z) of weight (h,0) can be used to construct an
irreducible representation of the Virasoro algebra; moreover, ¢ and h can be
used to label this representation and, in so doing, they retain precisely the
same meaning as they had in the description of the representations given 111
chapter 6.

A natural Hamiltonian H in a conformally invariant theory is the gen-
erator of dilations Ly + Lo. This change in H from the generator of time
translations to the generator of dilations causes the usual time ordering to

be replaced by radial ordering: the points z;,..., 2, in a correlation func-
tion < @(21,21) * §(2n, Zn) > are ordered by their differences |z; — z;|. Let
the vacuum state for H be |0). We define 3

|h) = $(0) |0) (11. 36)

he

and we can apply the L,’s to |h) to verify that

Loy =h|h), Ln|lh)=0, n>1 (11.37)
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Hence |h) is a highest weight vector and therefore the infinite tower of states
of the form L, L%, ... L% |h) comprise an irreducible representation of the
Virasoro algebra Vir. If we want a representation of both Virasoro algebras
at once—i.e. a representation of Vir&® Vir —we use a single valued primary
field ¢(z, 2) of weight (h,h) and define

|h, k) = $(0,0)|0) (11.38)

and this gives us an irreducible representation of Vir & Vir.

Apart from |h) itself the elements L%} L% --- L% |h) of the tower of
states are referred to as secondary or descendant states. Just as the highest
weight state |h) = ¢(0)|0) is associated with the primary field ¢(z), a
secondary state is associated with a secondary field. For example, a simple

secondary state is
L, |h), n<0 (11.39)

where we note that the condition n < 0 follows from 11.37; the associated
secondary field is

Ln(2)¢(2) (11.40)
where Ly(z) is defined by
Ln(z) = /C %T(w)(w gy (11.41)

with C enclosing the point w = z. As might be expected these, L,(z)
generate a Virasoro algebra; we also have L,(0) = L,. Notice that
L_1¢(z) = 0,¢(z) and so the derivative of a primary field is not primary.
A more general secondary field together with its associated state are

L2y (2) - L2y (2)¢(2), L™ - L™ |h) (11.42)

and the whole collection is sometimes referred to as the conformal family
[#]. Still more generally we can bring in the L,’s as well as the Ly’s
and, applying these to a primary field ¢(z,z) of weight (h,h), we obtain
descendant data of the form

L™(2)- L2(A)L2y(2) - L2y (2)e(2, 2)

-~ -~ - 11.43
Li’l--- LfttLgxl...Lgaa h,h) ( )

A secondary state L% --- L% |h) is an eigenvector of Ly, for it is easy
to use the Virasoro algebra to show that

Lo(L% - L2 |h)) = (h+ ) doq) L2 -+ L% |h) (11.44)
1
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Since the Virasoro algebra representation is unitary, the eigenvectors of L
are mutually orthogonal; hence secondary states with differing values of the.
integer |a| = Zz‘a, are orthogonal. This suggests that |a| can be used tg
provide a grading? of the conformal family [¢]; the integer || is called the
level of the secondary state. %

Descendant states are usually all linearly independent; when this is
not the case—as happens for families [¢] corresponding to certain values
of ¢ and h—there exist non-trivial null states which have zero norm and
are orthogonal to all other states. These null states must be projected out
in order to obtain an irreducible representation of Vir. States of negatlve
squared norm can also occur and are disallowed; the need to construct the
representation on a Hilbert space of positive norm plays an important part
in finding those values of ¢ and h which give rise to unitary 1rreduc1blg
representations of Vir.

Using secondary fields we can identify formally all the terms in the
operator product expansion of T(w)¢(z). Up to now we have just identified

the singular terms. However, making use of the L, (w), we have e
[e¢] 1 M
T(w)¢(2) = nz;; m n(w)$(2) (11.45)

and it is not difficult to check that the singular first two terms of this
expansion agree with those given in 11.26. If we take any two fields A and B
in the same conformal family [¢] then the product A(w)B(z) is expressible in
a like manner over the fields in [¢]. The form 11.29 of the product T'(w)T(2)
shows that the energy momentum tensor T'(z) is a secondary field belonging
to [I], the conformal family of the identity.

A representation of the Mébius algebra si(2,C) is generated by the
Virasoro sub-algebra whose elements are {L_;,Lo,L;}. The vacuum is
annihilated by these elements for we know already that

)

Lo|0) =L, [0) =0 (11.46)

i

and, for L_, |0), we have

IL=110)]1* = (0| LyL_, |0)

= (0| [L1, L—1]]0) (11.47)
= '

3 By a grading of [¢] we mean a decomposition [¢] = @ier[¢]' where I is some
indexing set, which in this case is the non-negative integers.
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Hence the true invariance of the theory is that of the Mdébius group
SL(2,C)/{FI}; in fact if we consider the whole complex plane, i.e. the
Riemann sphere, then the only invertible conformal transformations are
the elements of the Mdobius group. In this connection we note that the
Schwarzian derivative term in the transformation law of T(2) vanishes for
Mébius transformations and, with respect to these transformations, T'(2) is
a true tensor.

We have seen that representations of the Virasoro algebra are an es-
sential ingredient of a conformal field theory. Since Virasoro algebra rep-
resentations occur in a number of different ways, a conformal field theory
may originate in a variety of ways. For example, we know that represen-
tations of Kac-Moody algebras may be used to construct representations
of Virasoro algebras; the conformal field theories corresponding to the level
k representations for various Kac-Moody algebras have been considered by
Gepner and Witten [1]. In addition, supersymmetry can rather easily be
combined with conformal symmetry to give two dimensional superconformal
field theories and these provide another source of conformal field theories
(Friedan, Martinec and Shenker [1]). In the next section we turn to statis-
tical mechanics and obtain an example of a conformal field theory of genus
one.

§ 4. Statistical mechanics

In statistical mechanics the imposition of periodic boundary conditions leads
to partition functions Z defined on a torus; at a second order phase transi-
tion the conformal invariance of the theory means that Z should be invariant
under the modular transformations

ar +b
—

er+d (11.48)

where 7 is the modular parameter for the torus and, of course, (ad —bc) =1
and a,b,c,d € Z. The partition function is a trace over the Hilbert space
®;(H; ® H;) of the theory. Hence it can be written as a sum over the
characters of the representations of the two Virasoro groups

Z(r) =Y my pxa(m)xs(7) (11.49)
h,h

where x» or xj denotes a character and m,, ; is the multiplicity of the
representation. For example, if we choose the two dimensional Ising model
it turns out that the conformal field theory has ¢ = 1/2 and contains only
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three primary fields whose conformal weights* are (0,0), (1/16,1/16) ag ;_
(1/2,1/2). The partition function is By

Z = XoXo + X1/2X1/2 + X1/16X1/16

that

Z(r)y=Z(-1/1)=Z(t+1) 115‘1’)‘ ]

For the Ising model the squared moduli |x4|? can be written in terms of the |
Dedekind n-function, whose definition is

n(r) = exp[mir/12] H (1 — exp[2mnir])

n=1

[o o]
= gl/2 H (1-q™), with g = exp[2niT]

The relation between the characters and 7 is

1 [|n*(7/2) n*(7)
2 2 _ 2
it + sl =3 {| 55|+ [t
2

2 n*(2r)

=9 |12/
|X1/1e| ‘ 772(7) 4

Now the n-function is not actually invariant under modular transformationé} ;

in fact, n?4(7) is a modular form of weight 6. -

We digress briefly to obtain some facts about modular forms: To say |
that f(7) is a modular form of weight k¥ (or dimension —2k) means that '

F(r) = f(r)dr* (11.54) 1

is invariant under elements of SL(2,Z)/{¥I}; thus F is an autommphzc
form of weight k. Hence we have g
b b
F(m(r)) = F(7) where m(7) = Q, ad—be=12

ctr+d
= f(m(r))(m'(r))* = f(r)
= f(m(r)) = (cr +d)* f(r)

4 Using the Virasoro algebra representation formula 6.58 one can check that, if m = 2; 3
then ¢ = 1/2 and h can take the values 0,1/2 and 1/16. i
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Applying this to n?* gives
n*(m(r)) = (cr + d)'2n*(7) (11.56)
Choosing ¢ and d appropriately we find that
(1 +1) = n*(7), n*4(=1/7) = (1) *n*(r) (11.57)
Finally it is easy to see directly from its definition that
n(r + 1) = exp[ri/12]n(7) (11.58)
and some additional work shows that
n(=1/7) = (=ir)}/?n(r) (11.59)

Returning to the formulae 11.53 it is now a routine matter to verify that, if
we add the contributions together, their sum Z(7) obeys Z(r) = Z(-1/7) =
Z(t + 1), thereby establishing the modular invariance of the Ising model
partition function.

In general, modular invariance is a considerable restriction on Z and can
be used to considerable effect, cf. Cardy [1]. Modular invariance has also
been used to obtain a classification of a large class of theories; in addition,
this classification has some intriguing correspondences with pairs of simply
laced simple Lie algebras taken from the Cartan A, D and E series, cf.
Cappelli, Itzykson and Zuber [1,2].

§ 5. Operator products, fusion rules and axiomatics

Let us consider a theory in which there are F' primary fields ¢,,..., ¢r
giving rise to the F conformal families [¢,],...,[¢r]. A theory with a finite
number of primary fields is sometimes referred to as a rational conformal
field theory. The Hilbert space of the theory is the space associated to
the fields in the factorised sum &;(H; ® H;) where the H; and H; are
irreducible representation spaces for the Virasoro group and its complex
conjugate. Let A be a local field belonging to the family [¢;] for some i. If

we introduce the more concise notation L?(z) and L j(;?) where
Lz =14 L4, L'@®=I%.-I% (1160
then we can denote A by (I)f ’j(z, Z) where

&' (2,5) = LI(2) L

3

(2)¢i(2,2) (11.61)
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An arbitrary correlation function of the theory is
I ,j Iny >
<@ (2,21) B2 (2, 20) >

By using the operator product expansions deduced above from the confoR
mal Ward identities this correlation function may be expressed in terms g
the correlation functions < ¢;,(21,21) " @i,(2n, Zn) > which contain only’
primary fields. Hence the < ¢;, (21, 21) * - - ¢i, (2n, 2n) > are the essential ob-
jects to calculate. If we impose crossing symmetry on the correlation funct
tions this implies that the operator product algebra is associative (Belavm,
Polyakov and Zamolodchikov [1]).

When n = 2 or 3 conformal invariance determines the primary ﬁeld
correlation functions up to a numerical constant: using z;; = (z; — z;) and :
Zij = (Z; — Z;) one has

i} i Cis
< ¢i(21, Z2) #j(22, Z2) >= m
212 212
< ¢i(21,22)05(22, Z2)px (23, Z3) >=
Cz]k
hithy—he hxrhi=h; hy+thih, h.+h,—h,,_h,,+h‘ R R+
212 213 223 212 223

By contrast, if n = 4, conformal invariance only determines the corrél_
tion function < d),(zl,zz)¢](zz,z2)¢k(Z3,z3)¢;(z4,Z4) > up to an arbltrallyi
function F of the Mobius invariant anharmonic ratios .

(21 — 22)(23 — 24) - (21 — Z2)(23 — Z4)

L g =BTBER) g
(21 — 23) (29 — 24) 12,34 (Z1 — 23)(22 — Z4) (

212,34 =

Thus for n > 4 further information is required. Some of this informatio
provided if we can compute the operator product expansion of two, possi
distinct, primary fields. That is, we need to know the RHS of

chiL _— ot
¢i(2,2)#;(0,0) ZZ Shithi—he— |L|zh.+h o 2 (0,00 (1163

It is possible (Belavin, Polyakov and Zamolodchikov [1]) to factorise th

constants CkJL L into three factors, the first of which depends only on th
primary fields while the remaining two are determined only by the conformal
weights. This is usually written as .

ij’L'L = Ck 183 ﬂ
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This fact allows us to define the field \Iffj(z, Z,0,0) by

W (2,5,0,0)= 3 o eto0  (Le)

s phith;—he— |L|zh +hi—he—|L|
LL

Having done this we can write the operator product expansion 11.65 as

¢i(2,2)$;(0,0) ch Uk (2,,0,0) (11.68)

We see that \IIfJ (2, 2,0,0) is the contribution of the family [¢«] to the product
¢i¢;. Returning to the 4-point function we have

< ¢i(21, Z2) b5 (22, Z2) b (23, Z3) i (24, 24) >

cn _ _ _ _
= E th+h1—'hm,;—l’_lk+’_lx—’_1m < ¢i(21’22)¢j(12a zz)q)m('z3az3yz41z4) >

= ZCIZI‘ 321 m, Z)gkz(m z)

where
ij sa* L
J =
g;cl(maz) - EL: Zhethi— hm—lle < d’l 00, OO)d)](]. l)q) (0 0)
(11.69)
and we have adjusted the four points (zj,...,24) to have the values

(00,1, 2,0) respectively; we can do this because Mébius transformations en-
able us to fix three of the points. The functions 3‘ 4(m, z) used to construct
the 4-point function are known as conformal blocks

For n > 4 we have a similar result and Mobius invariance shows that
the conformal block will now depend on (n — 3) independent coordinates;
we represent this as

< ¢i1 (Zl, 21) Tt ¢in (Zn’ Zn) >= Z G-I(Zla ey zn—3)hjf§
1.J

(11.70)

with I and J appropriate generalised indices and h;; a Hermitian metric
constructed from the C,kj A general correlation function can be thought
of as defining a function which is finite on the Riemann sphere with n
punctures. But the conformal blocks are conformally invariant and only
depend on the underlying complex structure; thus they are holomorphic on
the Riemann moduli space for this punctured surface. We shall return to

these holomorphic properties below.
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If ¢; and ¢; are two primary fields we have yet to discuss the matl
ter of which primary fields can occur in the expansion of the product
#i(21, 21)p(22, Z2). This can be deduced from a calculation of the 3-point’
function < ¢i(21, Z2)¢;(22, 22) bk (23, Z3) >; a non-vanishing 3-point function
can thought of as a fusing together of three representations of the confor::
mal group. Data that describe which representations can be fused togethé
are called fusion rules. A precise definition of the fusion rules is given’ 155
Verlinde [1] , who introduces the formal product ¢; X ¢; of two primary’
fields; this product is defined by the equation o

¢i x ¢; = NE oy (11725
where summation takes place over the repeated index k and the Ni’;. are
integers which are equal to the multiplicity of ¢ in the operator product
#i¢;. The fusion rules are now regarded as a specification of the formal
product ¢; x ¢;.

A simple example of a fusion rule is available from the theory of a free
scalar field. We have seen already in 11.8 that, in two dimensions, the free’
scalar field ¢ is not a primary field. However, if p € R, the vertex operator
Vo(2,Z) defined by

Vo(2,2) = 3 explipp(z, 2)]3

is a primary field of weight (p?/4, p?/4). Since ¢ is free the operator product
of two vertex operators is easily calculated and we find that

Vo(2,2)V4(0,0) = |2|P9/2) s expli(p + 4)(0,0)] 2 + (1L 7’;}3

= z(pq/4)5(m/4)v;+q(0’ ) m

Hence, if we write ¢, = V}, the fusion rules are simply *%3
‘oW

bp X bg = bpia (11.73)"5

so that Ny, = 6,544 This example has an obvious extension to d—

d1men51ona1 string theory in which V} is given by V, = explip.¢*] and ¢>“T
is now a d-component scalar field. The same operator product applies and:
the fusion rule now has a physical interpretation: it is just the statement: of!
momentum conservation.

In string theory we work on Riemann surfaces of arbitrary genus and
we can do the same here. To come to grips with the non-trivial topologicaJJ
structure of Riemann surfaces of arbitrary genus will reqmre a slightly more!
abstract approach. ;-
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Suppose that our F primary fields introduced above now constitute a
conformal field theory on the surface ¥ of genus p. The various expressions
derived above must now be interpreted as being valid in some neighbourhood
of the origin of a local coordinate on . A general conformal block, which
we write schematically as F (z), is now defined on ¥pn, by which we mean
a Riemann surface of genus p with n distinct punctures. The collection of
linearly independent conformal blocks form a vector space V(%,,). Now
each primary field in the product ¢; x ¢; will give rise to a conformal block
and so, applying this when n = 3, we have

N =dimV(Z,3) (11.74)

If we introduce M, ,—the moduli® space of Riemann surfaces of genus p
with n punctures—then the vector spaces V(Z, ) will vary holomorphi-
cally over M, , and the conformal invariance of the theory means that the
conformal blocks can be considered as holomorphic sections of a vector bun-
dle V, » over the moduli space M,; the bundle V} , being formed by fitting
together the holomorphic family {V(X,.)}. This is the generalisation of
the remark we made on the conformal blocks for genus zero on p. 315.

Verlinde [1] showed that the N}} form a representation of the fusion
algebra 11.71; he then computed the characters of the representation of
the Virasoro algebra and examined their behaviour under the action of ele-
ments of the modular group SL(2,Z)/{FI}. A distinguished role is played
by the element S € SL(2,Z)/{FI}, which we recall from chapter 5 is the
map z — —(1/z). The matrix representing the action of S on the char-
acters can be used to diagonalise the fusion algebra and a simple formula
results expressing ij in terms of matrix elements of S. Further, since
any punctured Riemann surface ¥, , can be assembled by joining together
Yo,3’'s—i.e. Riemann spheres with three punctures—then the fusion rules
all’?w the dimension of a general V' (£, ,) to be determined in terms of the
NE.

! As we observed at the end of § 3, conformal field theories can be ob-
tained from representations of LG or its corresponding Kac-Moody algebra.
We know that a representation of LG requires us to specify a representation
R of G and a level k. For use in the next chapter we shall require some of
the values of dimV/(X, ) for these theories. We only need the case where
% = 5% and we modify the notation V(S2,) to V(8% g ) so that we can

5 We calculated indez 8 for a Riemann surface with n holes in chapter 4; if we combine
this with our result 5.99 for dim M, it is not difficult to show that dim Mp o = 3p—~3 +n
provided this number is non-negative.
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display the representation content of each puncture. The dimensions that
we need are then :

. 1 if R; is the trivial representation

d 5%) =
im V(Sk,) 0 otherwise

dlmV(SR R,) =8i; = NO

1 ifR; =R}
it iio= 2
with  gis 0 otherwise \
and R} is the dual of the representation R;. "532

The Weierstrass gap theorem is a constramt on the nature of the mero-
morphic singularities when p > 0. This is also a constraint on the properties
of some of the correlation functions of conformally invariant theories, cf. for
example Vafa [1] and Alvarez-Gaumé, Gomez and Vafa [1]. M

Axiomatic approaches to conformal field theories have also been de‘ve"l-“ﬁ
oped. We close this chapter with a few remarks about these approaches®:
For a proper account see Friedan and Shenker [1,2] and Segal [4]. G

Friedan and Shenker’s approach is designed to formulate a conformal’
field theory as an analytic geometry over a suitable space R known as the’:
universal moduli space. A conformal field theory constructed in this waj
is called a gauge system. A key application is to string theory, which we"
know to be a conformal field theory with ¢ = 26. To describe the universal
moduli space R we start with the conventlonal Rlema.nn moduli space M;¥

where I, denotes the integrand. The expansion of Z contains only connected
string vacuum diagrams. It is standard in quantum field theory that if we"
form exp[Z] we obtain the set of all string vacuum diagrams, 1nclud1ng th
disconnected ones. We therefore write i

o0 AJ

xp[Z] = ex I S
exp[Z] = exp LZ% /My p} 1{';
> _ 2t
=]l exe [ /M,, Ip} (177

p=0

p=0n=0
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Now Friedan and Shenker [1] define the universal moduli space R by

r=T] { U symn (M,,)} (11.78)
p=0

n=0

where Sym means the symmetrised product of n factors and thus produces
the n! factors in the expansion of exp[Z]. Having defined R the full string
vacuum amplitude can be written as

exp[Z]=/:RI (11.79)

Note that R contains connected and disconnected Riemann surfaces; to
deal satisfactorily with this feature of R it is desirable to allow the theory to
have Riemann surfaces with nodes. This permits one to formulate a natural
factorisation condition for the partition function: this condition asserts that
the partition function for a surface with nodes is the product of the corre-
sponding partition functions of the (possibly disconnected) surfaces that are
created by pinching all the nodes so as to remove them. To include Riemann
surfaces with nodes the moduli space M, is replaced by a compactification®
J_\_j'tp which is called the moduli space of stable Riemann surfaces. The set
Mp — M, is the moduli space of the surfaces with nodes and, since confor-
mal blocks are generically singular on such surfaces, it can be thought of as
a locus of singularities or a divisor; for this reason M, — M, is known as
the compactification divisor. When nodes are included, the corresponding
stable universal moduli space is R and we replace 11.79 by

exp[Z] = /:]_2 I (11.80)

The energy momentum tensor T'(z) is used to define a connection on a
line bundle over M,. This is done by exploiting the fact that T'(z) has the
affine transformation law

T'(2')(d2')? = T(z2)d2* + %{z, 2'}(d2')? (11.81)
Thus the difference of two T'(z)d2?'s is a tensor like the difference of two
gauge potentials. More precisely, after applying Serre duality, this difference

8§ The particular compactification used is quite natural and is described in Friedan
and Shenker [1}
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becomes a 1-form on M, and so T'(z)dz? defines a connection 1-form on on
M,.

Actually T'(2) is a projective connection and gives rise to a projective
line bundle over J_\Ft,, and this in turn induces another projective bundle
E. on the space R; also, since the energy momentum tensor T'(z) is got.
by varying the moduli on which the partition function depends, then Z '
can viewed as being obtained by formally integrating this variation over
R. It turns out that E. = (det T*R)</? and that the partition functlon
can be realised as the norm squared of a holomorphic section of a bundle
V = E.® W over R where W is a certain vector bundle over R furnished.
with a projectively flat Hermitian metric h; for further details see Friedan
and Shenker [1]. In principle, non-perturbative effects may be accessible by.
evaluating a p — oo limit of the theory and then expanding in inverse powers
of p. Thus if R is extended to a space R, which includes surfaces of infinite-
genus it is possible that non-perturbative effects may be incorporated. ,

In Segal’s approach one considers a Riemann surface £ with boundafs;
0% which consists of n circles; homotopically this is the same as a surface-
with n punctures. 'y

From the string point of view it is natural to deem g of the n circles to.
be incoming and r of them to be outgoing. The evolution of the ¢ incoming-
strings into r outgoing ones is meant to be described by an operator

Uses : H® -9 H—H® -0 H (11.82):

o "
q factors r factors

where H is a Hilbert space of states which is defined as follows. Let T,
be a Riemann surface of genus p whose boundary consists of precisely two
circles, one incoming and one outgoing. We can think of the evolution®
from the in-state to the out-state as being given in terms of the loop space’
Map (S, £, 2) = LE, 5: an element of LT, 5 gives a string positioned some-
where on ¥, ; and at the boundary the string is either the in-state or the
out-state. Thus we define

a:[0,t] — LS,, (11.83)

such that a(0) = ap and a(t) = o, give the boundary of £, 5 and the period:
of time over which the evolution takes place is t. LY, is clearly the con-,
figuration space of the system and the Hilbert space H is the correspondmg
space of wave functions

H = L?(LE,,) (11.84):
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Now if S is some conformally invariant action, such as the string action,
then, following Segal, we form the integral

/ exp[—S(a)]Da = K(ag, at) (11.85)
[0, 0]

where [0p, ;| denotes the set of a subject to the boundary condition that
a(0) and a(t) comprise 0%, 5. Having done this the operator Us, , acting
on a wave function v¥(a) is formally defined via a functional integral

Us, »(#(a)) = [ K(ao,a0)p(a)Dex (11.86)

If we join the two boundary circles of 2,, 2 together we get a closed
surface E,, 2; the operator U~ assoc1ated to 2,,,2 is then required to be a

trace so that

ir (U):p,ﬁ) = UE;a,z (1187)
When p = 0, Xo is a cylinder, tr (Us, ,) is a partition function and io,z is
a torus; the conformal invariance of S then implies modular invariance for
the partition function. Alternatively, if two surfaces £p,2 and £, 5, both of
whose boundaries consist of a pair of circles, are sewed together, another
such surface results and this gives rise to a condition on their associated

operators
U.}:J},‘2 o UE;J = /\UE,,JUE;J (1]_,88)

where £, 2 U E;'-‘, denotes the surface obtained by the sewing operation and
A is a scalar multiplier.

The more general operator Us g5 of 11.82 can now be defined in an
analogous manner. Segal uses functorial methods to define a conformal field
theory. The collection of all finite disjoint unions of circles form the objects
of a category €, these are the boundary circles. A conformal field theory
is a modular functor from C to a category H of topological vector spaces
whose objects include the spaces H®---® H. A morphism between a pair
of objects in € is a Riemann surface which joins the two objects such that
they form its boundary, morphisms in 3 are operators of the form Ug 5.
To compose morphisms in € we note that two composable morphisms are
two surfaces with part of their boundaries in common and one simply sews
the two surfaces together along this common part of their boundary; in H
one simply composes the operators. The whole structure can be made quite
concrete and fundamental notions such as conformal blocks and fusion rules
can be identified, cf. Segal [4].



CHAPTER XII

Topological Quantum Field Theqries‘f

§ 1. Introduction

The initial data for the conformal field theories considered in the last chapter
is a Riemann surface £ and its complex structure; once these have been
assigned, the Hilbert space of the particular theory can be constructed.
One can conceive of starting with even less data and trying to construct a
corresponding quantum field theory. An obvious piece of data to attempt to
discard is the complex structure on X; a quantum field theory constructed
from ¥ alone, using neither complex structure nor metric, is a topological
quantum field theory. Without a metric there are no distance measmement$
or forces and so no conventional dynamics. The Hamiltonian H of the
theory has only zero eigenstates and the Hilbert space of the theory, unlike
the conformal case, is usually finite dimensional. The non-triviality of the
theory is reflected in the existence of tunnelling between vacua. .

Topological field theories are not restricted to space-times of dimension
2; when the space-time is 3-dimensional we shall describe a striking appli-
cation to knot theory. We shall see below that there is also an axiomatic
approach which is analogous to that used for conformal field theories. It
turns out that a rather natural topological field theory is encountered in
trying to construct a quantum field theoretic generalisation of the quantum
mechanical Morse theory that we discussed in chapter 7. This forms the
subject of the next section.

§ 2. Floer theory and the Chern-Simons function

In this section we shall meet our first topological field theory. However,
we shall postpone its introduction until the end of the section. In fact the
bulk of the section is taken up with an extremely interesting generahsatlon
of Witten’s Morse theory complex of chapter 7.
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In chapter 7 we used supersymmetric quantum mechanics both to de-
rive the Morse inequalities and to construct the de Rham cohomology of a
manifold M. The Hilbert space of the theory is

H=@ 0°(M) (12.1)

p20

so that H is graded by p with even and odd p corresponding to Bosons
and Fermions respectively. The de Rham complex is realised as the formal
sum of the critical points with instantons being employed to construct the
coboundary operator.

To generalise this example to quantum field theory we replace the finite
dimensional manifold M by the infinite dimensional manifold of gauge orbits
A/G. However, unlike the finite dimensional case, it is too difficult to work
with an arbitrary function f on any A/G; in order to have a tractable
problem it is necessary to make quite specific choices for f and A/G. Floer
[1,2] chooses!

A = {The SU(2)-connections on a closed orientable 3-manifold M }
(12.2)
Before giving the function f considered by Floer we digress briefly
to supply some useful background on principal SU(2)-bundles over 3-
manifolds. Such bundles are classified by elements of [M, BSU(2)]; but
SU(2) are the unit quaternions and so, if HP® is the infinite dimensional
quaternionic projective space, we have BSU(2) = HP® by exactly the same
reasoning that we used in chapter 7 to show that BU(1) = CP*°. We can
also calculate P;(BSU(2)) using the method employed there to calculate
the Poincaré polynomial P;(BU(1)). The result is that

P(BSU2)) =1+t +*+... = 1—1t4 (12.3)
from which we deduce that a cell decomposition of BSU(2) contains cells
only in dimensions divisible by 4. Now we consider [M, BSU(2)], bear-
ing in mind that M is 3-dimensional. The cellular approximation theorem
(Whitehead [1]) says that any map in [M, BSU(2)] is homotopic to a map
whose image is in the 3-skeleton? of BSU(2); we have just seen that this

! We shall also assume that H,(M;Z) = 0 which, by Poincaré duality, means that
Hy(M;Z) =0 and therefore M has the same homology as S3; such manifolds are called
(oriented) homology 3-spheres. This assumption is made to avoid difficulties with re-
ducible connections cf. p. 325

2 The n-skeleton of a CW complex X is the collection of cells whose dimension is at

most n.
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3-skeleton is trivial so that all elements of [M, BSU(2)] are homotopically
trivial. Hence all SU(2) bundles over M are isomorphic to the trivial bun-
dle M x SU(2). This fact has other useful consequences, among which we
mention the following: the group of gauge transformations G is of the un-
twisted form G = Map (M, SU(2)) and the tangent space to A is given by
TaA = QM) x su(2).

Returning now to the Morse theory we must describe the function f
studied by Floer; f is simply the Chern-Simons function obtained by inte-
grating the Chern-Simons secondary characteristic class of chapter 8. We
have

f:A—R
A'_l’f(A) , (12.4)
with f(A)=—8? tr(ANdA + §A/\A/\A)
M

This function f would descend to the quotient A/G if it were gauge invariant;
however, this is not so: instead f satisfies (Nash and Sen [1])

f(Ag) = f(A)+n, n€el (125)

where A, is the gauge transform of A under the gauge transformation g.
However, if we modify the f of 12.4 by composing it with the natural pro-
jection from R to R/Z then the resulting function takes values in R/Z; it
is then gauge invariant and so does descend to A/G.

In the usual way the critical points of f are given by ‘

df (A) =0 (12.6)

where the exterior derivative is now taken to be acting in the space A. If A
is such a critical point then we can write A; = A + ta and obtain

1 2
f(At) = —g;T'E Al tT(At A dAt + gAt A At A At)

=_f(A)—-§7—t"—5/ML‘r{(a/\dA+A/\da)+g(a/\A/\A)
(A/\a/\A)+ (A/\A/\a)}+
=f(A)—#/Mtr(F(A)/\a)+---

(12.7)
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Hence we can conclude that3

F(4)

df(A) =- dn?

(12.8)

and so the critical points of the Chern-Simons function are the flat connec-
tions on M.

If m;(M) # 0 then flat connections on M are not trivial, since they
can have non-zero holonomy round a non-trivial loop on M. The holonomy
of each flat connection is an SU(2) element parametrised by a loop on M;
in this way it defines a representation of 71(M) in SU(2). In fact this is
precisely how these connections are characterised: Representations of 7, (M)
in SU(2) are given by

Hom (m1(M), SU(2)) (12.9)

However, the group Ad SU(2) acts on a representation by conjugation to
give an equivalent one; thus the set of flat connections is the quotient

Hom (m, (M), SU(2))/Ad SU(2) (12.10)

These flat connections are also all irreducible because we required M to
be a homology 3-sphere: A reducible flat connection would give rise to an
Abelian representation of my (M) in a U(1) C SU(2); but, since H,(M;Z) =
0, the Abelian part of m,(M) is zero and so this representation is trivial.

Having found a critical point we would like to calculate its index and so
we must also calculate the Hessian; expanding 12.7 to order #2 shows that
the coefficient of (£2/2) is

—L/ {tr(a/\da)+Etr(a/\a/\A+a/\A/\a+A/\a/\a)}
472 M 3

1
- A
ppe tr{a A (da + 2a A A)}

=—i/ triaAda+aANAANa+aAaAA} (12.11)
4772 M

—Z7r—2 v tr{a A dAa}

= Z7lr—2 < a,xdga >=<a,H(A)a >

8 This means that we should be able to interpret F(A) as a l-form on l_the ‘spa.ce
A. We can indeed do this because a 1-form is a linear functional on the tangent space
TaA; we denote the action of F(A) on an arbitrary a € Tao A by Fa(A) where Fg(A) =
Jug tr(F(A) Aa).
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where H(A) is the Hessian and use of the usual inner product on forms
identifies it as the differential operator (*d4/47?) acting on 1-forms. The
trouble is that the index of a critical point is the number of negative eigen-
values of the Hessian but, in this case, 42 H(A) = *d4 and a first order
linear operator such as this has no upper or lower bounds; thus H(A) has
generically an infinite number of positive and negative eigenvalues, giving
our critical point an infinite Morse index. By contrast the other infinite di-
mensional Morse functions f that we considered—the energy functional for
geodesics and the various Yang-Mills examples—all have a Hessian which is:
a second order operator of Laplace type and this always has a lower bound
and thus a finite Morse index. .
To see how to get round this difficulty we recall how the Morse mdex
enters into the de Rham cohomology construction of chapter 7: Cp, is the set
of critical points of index p and CP? is its dual. The de Rham cohomology of
the relevant manifold is then constructed by defining a coboundary operato;
5 3
Lier Lo L, (12.12)

connecting critical points whose index differs by one. For the present exam-
ple of the Chern—Simons function, Floer bypassed the difficulty of 1nﬁmte
Morse index by just defining the difference of the Morse indices between
a pair of critical points; this relative Morse indez is sufficient to define a
cohomology complex. It is defined using spectral flow and is always finité!
The resulting homology or cohomology theory is of an entirely new kmd
and we shall examine it below.

Before coming to the homology theory we must define the relative
Morse index. In analogy with § 4 of chapter 7 we take two critical points
Ap and Ag and join them with a steepest descent path A(t); that is, A(t)
is a path on A with end points Ap and Ag which obeys the equation

%ﬁt— = —grad f(A(t)) (12.13)
with grad denoting the gradient operator on the space A. If we extend the
definition of the Hessian H(A) to all A on A(t) then 4n2H(A(t)) = *d 4y is
a one parameter family of self-adjoint operators on 4. But drawing on chap-
ter 10, § 6, we consider the spectral flow of H(A(t)) from Ap to Ag. This
is the net number of negative eigenvalues of H(Ap) which flow into positive
eigenvalues of H(Ag). This number is finite and is a ‘renormalised’ measure
of the difference between the Morse indices of Ap and Ag. Denoting the
spectral flow by o(Ap, Ag) we define

Ap,Aq =0(Ap,AQ) (12.14)
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The integer A4, 4, is the relative Morse index and, if the problem were
finite dimensional, we would simply have Ay, 4o = A4p — Aaq-

There can be more than one steepest descent path A(t) from Ap to Ag
and thus it is important to know how o(Ap, Ag) depends on A(t). The dif-
ference between two paths A(t) and A’(t) is a loop, and from chapter 10 we
know that the spectral flow round a loop is given by the Atiyah-Singer index
of an associated elliptic operator; since the index is a deformation invariant
the spectral flow only depends on the homotopy class of the loop. Thus
if A(t) is homotopic to A’(t) then the relative Morse index is unchanged.
However, the Chern-Simons function f is really defined on the quotient .4/G
and when the paths are taken on this space the question arises as to whether
A/G is simply connected or not. In fact? m,(A/G) = Z and so there are
infinitely many homotopically distinct loops passing through Ap and Ag.
Hence o(Ap, Ag) is only defined modulo the flow round loops through Ap
and Ag. The fundamental loop is the one that generates m,(A/G); the flow
round any other loop is just a multiple of the flow round the generating
loop.

Thus, to complete our definition of A4, 4,, We must calculate the
spectral flow round a generating loop and, as we have already observed,
this is an index calculation: the spectral flow of *d 4(;) on M is given by the
index of *d4(;) + (8/0t) on M x S? with t a local coordinate on S*.

This index has an interpretation in terms of instantons which is the
key to its calculation. We return to the gradient flow

%{—) = —grad f(A(t)) (12.15)
To define grad we must supply a metric or inner product on the vector space
T4.A. Since the vectors in T4.A are the su(2)-valued 1-forms on M we have
available the usual metric

<ab>= —/ tr(a A xb), a,b € TaA ~ Q' (M x su(2)) (12.16)
M

With this metric grad f is the vector field on T4.A defined by
< grad f,a >=df,, a€TqA (12.17)

4 This is because G = Map(M,SU(2)) and, since both M and SU(2) are 3-
dimensional, this means that G has infinitely many components with each component con-
sisting of elements of Map (M, SU(2)) with the same degree. Now if we take the homotopy
sequence of the fibration G — A — A/G we obtain 71 (A) — 71(A/G) = m(G) — m(A);
but A is contractible, yielding 7, 2(A) = 0, and hence m1(A/G) = m(G) = Z.
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and on the RHS we have used the notation introduced in the footnote to 5,
325 so that df, denotes the action of the 1-form df on the vector a. But:3}

df = — 563
d 4n? 5}
FG(A) o]
= df, = e b
1 ’q
=—— F(A '
yoo /M tr(F(A) A a) (12.1§}
F(A) H
=< ys) ,xa > 18
*F(A) N
=< gz 12> ‘i
Thus combining the two preceding equations shows that 13
+F(4) o
grad f(4) = —3 (12.19§
and so the gradient flow equation becomes (18
1
dA(t i
—% = —* F(A) (12.20)

where we have absorbed the 472 in a redefinition of t. ol

Now we consider the 4-manifold M x R and extend the connection
A(t) to a connection A on M x R by letting its fourth component be zero,
i.e. the covariant derivative in the R-direction coincides with the partial
derivative (8/8t). Next we give M x R a metric, namely the metric which
is the product of the flat metric on R times the metric on M. This allows
us to define a * operation on the 4-manifold and so we can consider thé

instantons H
F=3+«F (12.21)

where F is the curvature of A on M x R. Actually the gradient ﬁo:_
equation 12.20 is simply the anti-self-duality equation for A: this can easily
be verified by an elementary calculation since the curvature components Fy;
reduce to Fy; = dA/dt. \
Since M x R is not closed, 12.21 needs boundary conditions; the natural
choice is to set i
A(oo) = Ag, A(—o0) = Ap (122%2

These connections Ap and Aq are flat; this is consistent with the fact that
if, as usual, we require the four dimensional Yang-Mills action to be finité
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then the curvature F tends to zero at infinity. Having found the connection
of the gradient flow with instantons we return once more to the matter of
the index of d, ) + (8/8t) on M x S*. In fact we shall show now that
the same operator *d,(;) + (0/0t) turns up in the instanton deformation
problem, i.e. we perturb the instanton A to a new instanton A + ea. If we
do this we get

%(A(t) + ea(t)) = —  F(A(t) + ea(t))
dA(t)  da(t) ‘

=>_dt—-+€.—d—t——=—*F(A)—e*dA(t)a(t)+.“ (12.23)
da(t)
= 7 = — % dA(t)a(t)

to first order in e. Exploiting the instanton interpretation we write the
above equation as

dt

and observe that, after taking proper account of gauge equivalent a's, the
index of the above operator is calculable from formulae 8.115 and 8.124 of
chapter 8. Proceeding to do this we find that

(_d_ + *dA(t)) a(t) = 0 (12.24)

index <% + *dA(t)) = dim My,
dim G

(x(M x §') —7(M x §Y))

(12.25)
But since G = SU(2) and M is a homology 3-sphere for which Hy(M;Z) =0
we see that

=N (ach) -

p1(adeP) = 8k, dimG =3
Hy(M x S') = Hy(M) =0 (12.26)
=>7(Mx8)=0
Also it is an elementary observation that x(M) = x(S!) =0 so

X(M x S§) = x(M)x(S")

0 (12.27)

Thus the index result is ‘
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Moving back to three dimensions we have therefore shown that the

spectral flow round a loop is " 1o
8k (12.29)‘

If follows that k = 1 corresponds to a generating loop of m1(.A/G). T
consequence of all this for the Morse theory construction is that the relatlve
Morse index of the Chern-Simons function is only well defined mod8. 3

This property of the relative Morse index has immediate consequences
for the homology theory constructed from the critical point set Cp. THLé
point is that if C, and C, are two critical point sets, the difference p — 4
is the relative Morse index and therefore p can only take 8 distinct values..
The homology complex is then of length 8

020 205 % 20 20, 50 (12.30)

and there are only 8 homology groups. These are known as the Floer L
mology groups of M and we denote them by HF,(M). We have e
3

ker 8,1 ‘

HF M=_P, =0,...,7 315

M= Tmg, 7 e

crdeg.

Both the definition of the boundary operators J, and the verification thﬁal%1 .
Op-10 0p = 0 can be done (formally) with exactly the same instanton tun-.
nelling method used in chapter 7. Considerable extra analysis needs to be
used to deal rigorously with features present due to the infinite dimension:
ality of the space .A/G; these are dealt with by Floer [1]. 0y
An important point to be clear on is the réle played by the various’
metrics in the construction of the HF,(M). Although use is made of metrics’
on M, M x S' and A, the Floer groups are independent of these metricg
and constitute a new topological invariant of homology 3-spheres. We have.
seen, too, that despite the fact that the homology complex is constructed
on the infinite dimensional space A/G, the complex is of finite length and
is graded by Zg, the integers modulo 8. !
Homology 3-spheres also figure in an integer valued invariant /\(M )

of Casson. The definition of A(M) is complicated (Taubes [5]) but we’
wish merely to note that it involves a signed sum over the 1nequ1va1en’c
irreducible representations of m;(M) in SU(2), i.e. over the elements og
Hom (n1(M),SU(2))/Ad SU(2). Taubes [5] has investigated Casson’s in--
variant using gauge theory methods, and a close relation to Floer homology'
emerges. Taubes defines an BEuler characteristic x (M) for the Floer con-,
plex and finds that i‘,_
xF(M) = 2A(M) (12:32)
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The infinite dimensionality of the space .A/G provides problems for the
definition of xp(M) but Taubes uses spectral flow to overcome these diffi-
culties. In finite dimensions we know that the standard Euler characteristic
of a manifold X can be found using a 1-form on X: the algebraic sum of
its (non-degenerate) zeros is equal to x(X). But in the present situation we
know that the curvature F' can be regarded as a 1-form on A; further, the
gauge properties of F' allow us to project it to a 1-form on A/G. Now the
zeros of F are the flat connections or the elements of

Hom (m (M), SU(2))/Ad SU(2) (12.33)

a set which, when graded, gives the Floer homology complex. Hence their
appropriately signed sum is the Euler characteristic xp(M) of the Floer
complex. Taubes uses a Fredholm perturbation, if necessary, to obtain
non-degenerate zeros and spectral flow to detect any change of sign in the
orientation of the zeros. We notice that xp(M) is always even.

Finally we come to the topological field theory associated with the
Chern-Simons function. The theory has action

1 2

Note that S is constructed out of M and the connection A—there is no
metric. As we have seen already, the critical points of S are given by the

flat connections
F(A)=0 (12.35)

and these need not be trivial if m (M) # 0. However, S is not single
valued since, according to 12.5, it changes by an integer under a gauge
transformation. Nevertheless, if we consider a Lorentzian space-time of
2+ 1 dimensions then the action enters into functional integrals in the form

expliS] (12.36)

which is still multiply valued. But if we replace S by 27kS, with k € Z,
then the exponential becomes

exp [—% /M tr(ANdA + gA ANAAA) (12.37)

which 12.5 shows is single valued; variants of this action are also of some
interest, cf. Nash [5].
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We can go on to construct the field theoretic generalisation of the sull,
persymmetric Hamiltonian of chapter 7. With d now denoting an exterior

derivative acting on A we write 3
H, = did? + did; = e~ f(dd* + d*d)eft e
2f ,.;.I{:
— * » 2 i
dd* +d d+tD ‘DJ[a,,aJ]+t < grad f,grad f > ‘3
. 1 gt
with f——m Mtr(dA/\A+ §A/\A/\A) e

(12.38) 2
To make the expression for H,; more explicit we need to use a functional®
derivative to represent the action of d on the space A. If we refer to equation

12.7 it is clear that d is representable as the operator 3
I )

d= / tr(a /\ — (12.39%
M g

and H; now becomes

').,‘

2

H, = / {—tr (i) —2ttr(a Adaa®) — t*tr(F A *F)} (12.40)13
o 6A .

where a* is a 1-form dual to a. Viewed as operators on A the 1-forms a and +
a* act by wedge product, e.g. a acts on F' (which is a 1-form on A) to give:-
a A F; this is an anti-commutative action: if we decompose a using the su(2)fe
basis {A*} by writing @ = a; A’ then the q; anti-commute and this suggests;.
that we identify a; and a} with Fermions. This is done in Witten [5] but )
we should realise that these Fermions have the unconventional property ofig
possessing integral spin. Pursuing the analogy with chapter 7 we decompose:g

H; according to kg
7

Hi= @ A, (12.41)°

p:O \d

where the Laplacians act on .A. Hodge theory then suggests that the coho d
mology is given by the ground states of the Hamiltonian. Thus the Floer,
groups have a physical interpretation as the quantum ground states of the /}
non-relativistic system whose Hamiltonian is H;. e
There is a relativistic generalisation (Witten [5]) of this system to four i
dimensions which is closely related to some remarkable facts about 1nstan—3i

tons. We turn to these matters in the next section. ;
§ 3. Donaldson’s polynomial invariants n‘
In chapter 1 we described Donaldson’s use of the first moduli space M & ¢

derive smoothability results about 4-manifolds. In addition to this, by usmg’)
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all the moduli spaces My, k = 1,2,..., Donaldson [3,4] has constructed
powerful differential topological invariants of simply connected 4-manifolds.
These can also be approached from quantum field theory by using the rel-
ativistic generalisation we have just referred to at the end of the last sec-
tion. However, we shall begin by describing Donaldson’s invariants from
the purely moduli space point of view.

To this end let M be a smooth, simply connected, orientable four man-
ifold without boundary. Let P be a principal G-bundle over M on which
is defined a connection A. M is endowed with a Riemannian metric g and
this enables us to define a Hodge * and to consider instantons via the anti-
self-duality equation

F=-xF (12.42)

Since M is simply connected the dimension of the moduli space My is the
integer
dim My = p;(adcP) — dim G(1 + b]) (12.43)

in the notation of chapter 8. Now we know already that p;(adcP) =
—2¢a(ad¢ P) so

dim My = ~2c2(adcP) — dimG(1 + b3) (12.44)

and we observe that, no matter what G we choose, dim My is always even
when b7 is odd. The reason that we draw attention to this fact is that
we require dim My, to be even to obtain Donaldson’s invariants. This will
emerge shortly below; in any case, from now on, we shall ensure that dim M,
is even by requiring b3 to be odd.

We also commit ourselves to the choice G = SU(2), for which we know
that co(ade P) = —4k and thus we have

dim My = 8k — 3(1 +b7) (12.45)

Donaldson’s invariants are certain polynomials of degree d in Hy(M; Z);
their construction is easy to describe provided we can simplify matters
slightly by using de Rham cohomology.

A Donaldson invariant g4(M) is a symmetric integer polynomial of
degree d in the 2-homology Ha(M; Z) of M

qd(M):Hg(M)X---XHg(M)—»Z (12.46)
It is defined using a certain map ‘

m : Ho(M) — H?(My) (12.47)
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Let Eg be the universal G-bundle over BG with Chern class Cz(Eg) 3
H*(BG), then for an element a € Ha(M), whose Poincaré dual® is rep,

resented by a 2-form a* € H%(M), we can construct the product T
c2(Eg) Aa” € HS(M x BG) (12.4&;

where, for convenience, we are using the same notation for the form a* andJ
the cohomology class it represents. Since by
My C BG (12.49)

by an appropriate restriction we get an element of H%(M x M) and ﬁnallf
use integration to divide out by a*, thereby obtaining

o]
L

/ calEg) A a* € HA (M) © (12.50§
M
The map m can now be defined by

m : Hy(M) — H*(My)
(12.51)

ar— / C2(Eg) Aa*
M 7S
We use m to define by g4(M) by setting d = dim My/2 and writing ¥
i
ga(M) :Hy(M) x --- x Hy(M) — Z \3
(12.52

X ag — / m(a1) A -+ Am(aq)

df

where M ;. denotes a compactification of the moduli space. We see that the
ga(M) are symmetric integer valued polynomials of degree d in H?(M), i.e.
ga(M) € Sym? (Hy(M)); also, since d = dim My /2, we now understang;
why M} must be even dimensional. ol

The Donaldson invariants are, a priori, not very easy to calculate since,
they require detailed knowledge of the instanton moduli space. However, if
M is a complex algebraic surface, a positivity argument shows that oy

qa(M)#0,  ford>dyo (12.53)

5 If M has dimension n and i : X — M represents the inclusion of the oriented o
dimensional subset X in M then the Poincaré dual of X is the element [w] of H"*~ (M),
defined by [, i*a= [, aAw for all [a] € H"(M). .
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with dp some integer—in other words the gz(M) are all non-zero when d is
large enough. Conversely, if M can be written as the connected sum®

M = My#M, (12.54)
where M; and M, both have b7 > 0 then
g4(M) =0, for all d (12.55)

Witten has shown how to obtain the g4(M) as correlation functions in
a BRST-supersymmetric topological field theory. This theory is the rela-
tivistic generalisation of that described at the end of § 2. We shall only
describe some of its principal features; for a full account, cf. Witten [5].
The action S for the theory is given by

— iD= £l X] = 22 9] = 56lm,7] - 516, A17)

(12.56)
where F,,, is the curvature of a connection A, and (&, A, 7, %y, Xuv) are a
collection of fields introduced in order to construct the right supersym-
metric theory; ¢ and A are both spinless while the multiplet (v, Xxu)
contains the components of a 0-form, a 1-form and a self-dual 2-form re-
spectively. The significance of this choice of multiplet is that the anti-
instanton version of the instanton deformation complex 8.104 contains pre-
cisely these fields. A quantum number U is assigned to these fields with
values (2,—2,-1,0,1,—1) for the fields (¢, A, 7, Ay, ¥u, Xuv) respectively.
This quantum number is not conserved, because of the existence of instan-
tons; however, it is conserved mod 8.

Even though S contains a metric its correlation functions are indepen-
dent of the metric g so that S can still be regarded as a topological field
theory. This can be shown to follow from the fact that both S and its as-
sociated energy momentum tensor T' = (§S5/8g) can be written as BRST
commutators S = {Q,V}, T = {Q,V'} for suitable V and V'—cf. Witten
[5].

With this theory it is possible to show that the correlation functions
are independent of the gauge coupling and hence we can evaluate them in

6 The connected sum X #Y of two closed n dimensional manifolds X and Y is ob-
tained by removing an n-dimensional disc from each of them and then sewing the two
resulting manifolds together along their newly created boundaries.
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a small coupling limit. In this limit the functional integrals are dominated
by the classical minima of §, which for A, are just the instantons

F. =-F, (12.57)

We also need ¢ and X to vanish for irreducible connections. If we expand
all the fields around the minima up to quadratic terms and do the resulting
Gaussian integrals, the correlation functions may be formally evaluated. Let
us consider a correlation function

<P>= / DF exp|—S] P(F) (12.58)

where F denotes the collection of fields present in S and P(F) is a polyno-
mial in the fields. Now S has been constructed so that the zero modes in
the expansion about the minima are the tangents to the moduli space My;
thus, if the DF integration is expressed as an integral over modes, all the
non-zero modes may be integrated out first leaving a finite dimensional in-
tegration over dim My. The Gaussian integration over the non-zero modes
is a Boson-Fermion ratio of determinants, a ratio which supersymmetry
constrains to be F1 since Bosonic and Fermionic eigenvalues are equal in
pairs. This amounts to expressing < P > as

<P>= P, (12.59)
My :

where P, is an n-form over My and n = dim M. The only non-vanishing
correlation functions are those for which P(F) has U quantum number
equal to dim Mj. This is due to the fact that the zero modes in ¢, and A,
are the tangents to the moduli space and therefore impart to its integration
measure a U weight —n; thus to have a non-zero integral P(F) must have U
weight n. If the original polynomial P(F) is chosen in the correct way then
calculation of < P > reproduces evaluation of the Donaldson polynomials.

A modification of the connected sum operation can also be used to
obtain a relation between the g4(M) and Floer homology. The idea is to
cut M into two non-closed pieces M+ and M ™, we write

M=MYU, M~ (12.60)
where the symbol Uy means that the boundaries of M+ and M~ are ho-

mology 3-spheres rather than being ordinary 3-spheres. Such a decompo-
sition is always possible if the intersection form of M splits according to
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g(M) = g(M*) ® g(M~) and both M+ and M~ have b > 0 (Freedman
and Taylor [1]).

Let the homology spheres which form the boundaries of M+ and M~
be N* and N~, then we can consider their Floer homology HF,(N*) and
HF,(N™). Now, for some given topological charge k, we consider instantons
on the 4-manifolds M+ and M~. Just as is was the case in § 2, boundary
conditions are required since the MT are not closed. The boundary con-
ditions are just the specifying of a connection on the boundaries N¥. The
solution set for the two boundary value problems are denoted by C¥; should
a solution on M+ smoothly match up to a solution on M~ then we have a
conventional instanton on the closed manifold M. In this way we see that

CtNC~ =My (12.61)
The boundary conditions allow us to construct two Floer homology classes
[C¥) € HF(NT) (12.62)

By their construction N¥ inherit opposite orientations from M and so the
HF(N¥) are dual to one another; Donaldson shows that the pairing of these
classes using Poincaré duality gives the invariant g4(M), that is

[C*]e[C7] = qa(M) (12.63)

with e representing the pairing of the homology cycles. The simplest exam-
ple of this occurs when d takes its lowest value, namely, zero. In this case the
Donaldson invariant becomes just an integer and, referring to 12.63, shows
that to evaluate g4(M) we must set d = dim M /2. Thus the topological
charge k must satisfy

8k—3(1+bf)=0 (12.64)

and the moduli space, being zero dimensional, reduces to a discrete set of
points. Delving further into 12.63 shows that go(M) is just a signed sum over
the elements in this discrete set of instantons, the signs being determined
to be those of the intersection pairing of the Floer homology. Recall that
in the quantum field theory the calculation of g4(M) is the calculation of a
correlation function < P > of U weight dim My; when d = dim My /2 =0
this reduces to the evaluation of the partition function Z which is thereby
expressed as an algebraic sum over instantons of the form

zZ=Y (-1~ (12.65)
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with i labelling the i** instanton and n; = 0 or 1 determining the sign of its
contribution to Z. Since the intersection form of an n-dimensional manifold
is defined using the homology in the middle dimension (n/2), we can view
the Floer groups as behaving like the ‘middle dimensional’ homology of the
space A/G. -

The Floer-Donaldson relationship 12.63 can be read in either direction:
one make deductions about Floer homology or Donaldson invariants. For
example, if M is a complex algebraic surface we know that gq(M) # 0, for
d > dp; but this implies that the homology spheres NT occurring in the
decomposition M = Mt U, M~ have non-trivial Floer homology groups in
HF,(N¥). On the other hand, should the homology 3-spheres in the de-
composition coincide with a genuine 3-sphere—i.e. MYU, M~ = Mt#M~
with M7 the obvious closed manifolds—then the HF,(N¥F) are automati-
cally trivial and the g4(M) are forced to vanish; of course, this is just what
was asserted in 12.55.

A further point about 12.63 is that it can be regarded as suggesting that
an extension of the definition of g4(M) to manifolds with boundary (such as
M), If this is done then 12.63 shows that the relative Donaldson invariants
for a non-closed manifold are not integer valued, but rather take values in the
Floer groups of its boundary. We can get some idea of what these relative
polynomials look like by applying the decomposition M = M+ U, M~ to
the product

ﬁg(M) X s+ X H2(M)J (12.66)

d factors

Using Ho(M) = Hao(M ™) @ Ha(M ™) on this product permits us to deduce
that the various spaces of symmetric polynomials are related by

Sym (M) = ¥ Sym* (Hy(M*))Sym®~ (Ha(M ™)) (12.67)

This suggests that we introduce a set of polynomials g4(M*) in the variables

Hy(M*) x -+« x Hy(M™) (12.68)
if:c'tora

and similarly for M ~. These polynomials are the relative invariants and, by
combining 12.63 and 12.67, we see that they must take values in the Floer
groups HF(M7) and obey an evaluation rule of the form

d
ga(M) =" gy(M*) e gf (M) (12.69)

i=0



Topological Quantum Field Theories 339

The Donaldson invariants are infinite in number although it is presum-
ably possible that there exist relations among them. It is important to
realise that the Donaldson invariants are independent of the metric required
to define the instantons and to construct their moduli space Mj. In ad-
dition, the g4(M) are invariant, up to a sign, under orientation preserving
diffeomorphisms of M. When the orientation of M is reversed there is no ob-
vious relationship between the two sets of Donaldson invariants. The gq(M)
are differential topological invariants rather than topological invariants; this
means that they have the potential to distinguish homeomorphic manifolds
which have distinct diffeomorphic structures. An example where the g4(M)
are used to show that two homeomorphic manifolds are not diffeomorphic
can be found in Ebeling [1].

§ 4. Knots and knot invariants

This section contains some background information about knots which is
needed for our discussion below of the knot theoretic properties of Chern-
Simons theory, cf. also Crowell and Fox [1], Rolfsen [1] and Birman [1].

Knots are embeddings of a circle S* into a three dimensional space; in
this section we shall take this space to be R? or its compactification S3.
The relation between the embedding and the ‘tangled’ nature of the knot
should be appreciated: All knots are homeomorphic copies of S, it is the
embedding in R® which tangles them up; indeed all knots may be untied in
higher dimensions. More precisely, if we replace R® by R* then all knots
are trivial. More generally we can consider the embedding of S™ in R”
and, if n > 3(m + 1)/2, any knotted m-sphere in R™ can be unknotted;
the embedding of other spaces in R® can also be investigated (Kyle [1]).
Reverting to knots, let us consider several of them at a time. In particular
we shall take p disjoint circles and embed them in R3; some of these knots
may be enmeshed together like the links of a chain and such an object is
referred to as a link L, say, with p components. Hence a knot is a link with
only one component.

Knots are classified into types in the following way: If K, and K, are
two knots then K is said to be equivalent to Ky if there is a homeomorphism
a : R® = R3 under which K; is mapped into Kj; we write

oK, =K, (12.70)

This clearly defines an equivalence relation on the set of all knots and the
elements of each equivalence class are called knots of the same type.
A somewhat finer classification of knots is that by isotopy type: Let

{a}, te[0,1] (12.71)
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be a family of homeomorphisms of R® where a;(z) is continuous in ¢ and
z and oy is the identity; then, if a1 K3 = K, K; and K are said to be of
the same isotopy type.
Evidently knots of the same isotopy type are also equivalent; however
the converse is false. This is because the continuity in t of {a;} causes a]]
the a; to have the same orientation properties, namely they all preserve
orientation since ag, being the identity, does so. Hence isotopic? knots Ky
and K satisfy a1K, = K, where a preserves orientation, but, in genera]
a1K; = K, does not imply that « is orientation preserving. o
If a knot is equivalent to a polygonal knot—i.e. a knot made of stra1ght
line segments—it is called tame, if not it is called wild. We shall only
consider smooth knots and these are all tame. .
The classification of knots proceeds by constructing invariants of knot
type. One of the simplest of these is the knot group. Let K be a krot
and let R® — K be its complement in R3; in general this set has non-trivial
topology and its fundamental group is the knot group, i.e. the knot group
of K is i
T (R3 - K) (12.72)

Another knot invariant is the Alexander polynomial A(t) (cf. Crowell and
Fox [1]). The Alexander polynomial is not strictly speaking a polynomial,
it can contain negative as well as positive powers of ¢; such polynomials
are referred to as Laurent polynomials or L-polynomials. Given a knot K
its Alexander polynomial A(t) is not unique, rather it is only determined
up to a factor ¥t for some positive or negative n. However, A(t) has the
properties e
A1) = F1, A(1/t) = t"A(t) (12.73)

for some even integer n; also the coefficients of A(t) are all integers. This
lack of uniqueness permits A(t) to be adjusted so that it has no negative
powers and has a positive constant term; this is called the normalised form
of A(t) and is unique. When A(?) is written in normalised form the integer
n in 12.73 is positive and is called the degree of A(t); the degree is also
equal to the difference between the largest positive power and the smallest
negative power in any representation of A(t). For example, the familiar
clover leaf or trefoil knot has

AlY) =12 —t+1 (12.74)

7 Note that the definition of isotopy is similar to the more common one of homotopy.
The crucial difference is that, for an isotopy, all of the members of the family {a1} are
invertible as well as continuous; for a homotopy invertibility is not required
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in normalised form. But we could also write

Af)=g-1+1 o Al)=t-1-7 (12.75)
which coincide with 12.74 on multiplication by t2 and ¢ respectively. The
last form of A(t) has the property that it is symmetric under interchange
of t and ¢t~! and satisfies A(0) = 1; the Alexander polynomial for any link
can be written in this form and when we wish to refer to this particular
normalisation we shall write ASY™(¢).

The mirror image of a knot is obtained by changing its R® coordinates
from (z,y, z) to (z,y, —z). The clover leaf and its mirror image are equiva-
lent but have differing isotopy types; however, their Alexander polynomials
are the same.

A more powerful knot and link invariant is the Jones polynomial. This
polynomial is an integer L-polynomial and it originated in the theory of
finite dimensional von Neumann algebras (Jones [1,2]). It is also an invari-
ant of isotopy type and is able to distinguish the clover leaf from its mirror
image. If we denote the Jones polynomial for a general link L by V1 (¢) then,
if L is the clover leaf and L its mirror image, we have (Jones [1])

1 1 1
Vi(t) =t +t>—t4, Vit =s+3-% (12.76)

Vi (t) has some interesting properties extending those given in 12.73 for the
Alexander polynomial Ar. These are the following: if L is a link with p
components and mirror image L then

Vi(-1) = A7Y™(-1),  Vi(1) = (=27, Vp=Vi(l/H) (1277)
and if L is just a knot K we have

Vi (e*™/3) =1, dVk(®)|  _ (12.78)

These properties can be easily checked for the case of the clover leaf above.
The Jones polynomial has been generalised to a homogeneous polynomial in
three variables by Freyd et al. [1]; this polynomial—known as the Homfly
polynomial after the initials of its authors—can reduce, in specigl cases,
to the Alexander polynomial and the Jones polynomial. Also, both for
the Jones and Homfly polynomials there exist distinct links on which these
polynomials have the same values, cf. Birman [2] and Kanenobu [1].
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The Alexander polynomial for any link can be computed inductively
as we now describe. Suppose a link has n crossings then we can relate its
Alexander polynomial to that of another link with only (n — 1) crossings.
This is done via the skein relation: Let L., L_ and Lo be three links
which are identical except for the interior of a small disc where they are as

displayed below \ / ’
K X ) ( (12.79)
L L_ -

Lo

Notice that if the Ly have n crossings then Ly has (n — 1) crossings. The
Alexander polynomials of these links are related by the simple equation

Ap, (t) = Ap_(8) + (/2 =7V AL (t) =0 (12.80)

Iteration of this relation expresses any Ap(t) in terms of the Alexander
polynomial for a finite number of unlinked, unknotted circles. Thus it is
only the Alexander polynomial for these latter that we need to calculate. .;

In a similar way Jones [1] has shown that Vi (t) satisfies y

Ve, () =t Vi () + (Y2 =7V Vi (8) = 0 (12.81)

sometimes written diagrammatically as

tx - t'lx + (t1/2—t-1/2)> (:0 (12.82)

Hence V1 (2) is also determined by its values on a finite number of unlinked,
unknotted circles. If we now take this example so that L consists of p
unlinked, unknotted circles then Vi(t) is given by

— -1 p-1 '
Vi(t) = {-M} (12.83)

§ 5. Chern—Simons theory and knots

3

Witten [6,7] has shown how to determine Vi (t) from certain correlation:
functions of the Chern—Simons topological field theory introduced in 12.37.
In this section we discuss Chern—Simons theory and knots; the following'
section will deal with the calculation of Vi (t) itself. Witten’s work has'
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the great benefit of providing an intrinsically three dimensional definition
of the Jones polynomial, something which is otherwise lacking. In fact
many knot calculations are carried out by various projections from three
into two dimensions: this can create a technical problem in that differing
knots may have the same projection, and such calculations must be shown
to be independent of the particular projection used. An interesting feature
of the quantum field theory of the Jones polynomial calculation is that, as
well as the topological Chern—-Simons theory, the machinery of conformal
field theory is an indispensable part of the construction.

From the end of the last section it follows that to verify that a given
function is the Jones polynomial we must check that it obeys the skein rela-
tion 12.81, and show that it takes the same values as the Jones polynomial
on links consisting of unlinked, unknotted, circles.

The correlation functions which determine the Jones polynomial are
those consisting of Wilson lines. A Wilson line W(R,C) is a function de-
termined by a closed curve C and a G-connection A where

W(R,C) = tr Pexp [ /C A] (12.84)

In this notation R stands for an irreducible representation of G, tr is the
trace in the R representation and P is the familiar path ordering symbol.
Clearly C can be a knot and, if we consider p Wilson lines, we have a
p-component link L. The normalised correlation function associated with
these p Wilson lines is

<W(Ry,C1) - W(Ry, Cp) >= %M)/DA

ik
W(Ry,C1) -+ W(Rp, Cp) exp [-’—/ tr(A/\dA+§-A/\A/\A)]
M

4
(12.85)
where Z(M) is the partition function. As we have observed before the
Chern-Simons action is purely a differential topological quantity; intro-
ducing a link L in the guise of Wilson lines does not require any non-
topological data. In this way we see that the Wilson correlation functions
< W(Ry,C)---W(Rp,Cp) > have a chance of being purely topological;
of course, even if this is true, we still need them to be both non-zero and
non-trivial. This will turn out to be so.

As preliminary evidence for the non-trivial topological natyre of the
correlation functions < W(Ry, Cy) - W(Rp, Cp) > we follow Witten [6,7]
and discuss two special cases: the first is an Abelian example where G =
U(1), the second is where G is non-Abelian but the gauge coupling is small.
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Suppose, then, that G = U(1). This renders the Chern-Simons action
quadratic in A and the correlation functions are therefore

< W(Ry,Cy)---W(Rp, Cp) >=

m'/DA W (Ry,C)- - W(R,, Cp) exp [—%/ tr(A/\dA)]

(12.86
Since G = U(1) is Abelian a representation R is just a map of the fom)1
6 — exp[ind], n € Z, and the path ordering and the trace may be dispensed
with. However, before dispensing with the trace, it is necessary to realise
that differing representations can have ‘traces’ whose normalisations dlffer
but have a rational ratio. Thus a Wilson line is now given by “

W) S [m/c A] » €2 (m.s{i

and the correlation function is
<W(n1,C1) - W(ng, Cp) >=

ﬁ /D.A W(ny,Cy) -+ W(ny, Cp)exp [—gr-/ (A /\dA)]

(12. 88)

Now we commit ourselves to the choice M = S3 since this will enable us tg

proceed at once to an explicit calculation; we shall comment on the situation]

for other M later in the chapter. R

The quadratic action, together with the exponential dependence on A

of a Wilson line, allows the entire integrand to be written as a Gaussian

after completing the square. The calculation of the functional integral rests

just on the calculation of a Green’s function which, for §3, is an elementary
computation. The result is that —

< W(ny, Cr)---W(ny, Cp) >=
7
. P k
: i (x—y) (12‘89)A
—€;; m 1 d !
exp 4ke‘1k Z mn /;l dz - 7 PR

I,m=1

D
with z* and 37 local coordinates on the knots C; and C,,. The basic integral
in 12.89 is the linking number L(Cj, Cy,) of Gauss. L(Cj, Cy,) is one of the:
oldest invariants in knot theory and originated, at least in part, in a study:

of Ampeére’s law in electromagnetic theory, cf. Gauss [1]. Its definition is:

)

) k
L(Ci,Cp) = 54;: /C ast | ay? E=Y) (12:90)
1 m )

|z —u®
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and, from Ampere's law, where precisely this integral occurs, it follows that
L(C;, Cp) is an integer.

A difficulty with the linking number arises when [ = m because then the
self-linking integral L(C, C;) has singularities due to points where z — y =
0. Witten regularises L(Cj, C}) by giving the knot a framing: this is the
replacement of the curve C; by a ribbon of positive width; the boundary
of this ribbon consists of two disjoint curves, one of which we identify with
Ci, the other curve is arbitrary and is denoted by C|. Having done this the
self-linking number of C; is defined to be the ordinary linking number of C;
and Cj, that is we define

L(C,C) = L(C,, Gy) (12.91)

A little thought shows that L(Cj, C]) is not unique. There are many such
ribbons we can make with boundaries C; and C; and some of these ribbons
will have many more twists than others. This lack of uniqueness in the
framing of a knot is a familiar feature of knot theory. It does not cause as
much trouble as might be expected provided one always knows how the par-
ticular knot data being computed changes if a different framing is specified.
For example, in the present case, if we express the correlation function in
terms of L(C;, Cm), we obtain

< W(ny,C1)- W(ny, Cp) >= exp %anmL(Cz,Cm) (12.92)

Im

Now if the framing of one of the C;’s is changed this is detected in the RHS
of 12.92 by a change in the number of twists in the ribbon. Supposing the
number of extra twists to be ¢, the self-linking L(Cj, C}) increases by ¢ and
the RHS of 12.92 becomes

s

exp [ . n,zt} exp % anmL(Cz, Cm) (12.93)
Im

Thus the rule for the transformation of the correlation function under a
change of framing is

%nlzt] < W(nla Cl) T W(n’Pa CP) >
" (12.94)
With this first piece of topological evidence uncovered we move on to ex-

amine the small coupling limit.

< W(ny,Cr) -+ W(ngp, Cp) >+ exp [
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The gauge coupling g is usually present in the curvature F(A) as.a
coefficient of the quadratic term; using local coordinates one writes 1

(OuAZ — 8, A% + ig f**°T° AL A )dz* A dz*

(12. 95)
It is more convenient to rescale A}, by a factor g, rendering the coupling sim-
ply an overall factor multlplymg the curvature. The Chern-Simons actxon
is then A

| tr(anaa+ §A AAAA) (12.9@

F(A) = LF® T°dz* A do”

27w

Ml»—a

ik
47r 4rg?

We can now see that the small coupling limit g — 0 is the same as the large
k limit k — oo and, from now on, we shall treat them as equivalent; also,
since small coupling can be achieved by taking k large we shall set g = =1
and just vary k. i1
Take the partition function -

" 5 %

Z(M)=/’D.A exp [—z—-/ tr(ANdA+ -ANANA) (12,97

4 Jm 3 51

"1

For k large the growing oscillations in the integrand cause the functlonai
integral to be dominated by the stationary points of the action, which we

know are the flat connections

F(A)=0 (12.98)

Hence, in the small coupling limit, the principle of stationary phase leads us
to expect that Z(M) can be expressed as a sum over flat connections. The
standard procedure to evaluate in this limit is to expand the action abom;
its stationary points up to quadratic terms; this converts the functional
integral into the exponential of a Gaussian which can be expressed in terms
of determinants. Since we are working with a gauge theory we will also have
to fix a gauge. .
Let S(A) denote the-action with the coefficient —ik/4m factored out.
Then, if Ay is a flat connection, we perturb A according to -

A=As+a ?

= S(A) = S(Af) +2 /M tr (F(Af) A a) + /M tr (a A da,a) +0(a%)

=S(Af)+/M tr(a/\dAfa)-FO(aa) 5T

A

(12.99)
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since Ay is flat. Next we choose a metric on M so that we can impose the

gauge condition
dy,a=0 (12.100)

of 8.82. This condition can be encoded into the functional integral for Z( M)
by the addition of a Lagrange multiplier field ¢; we will also have to include
a Faddeev-Popov ghost term which acts as a Jacobian. The result of all
this is to modify the expression for the partition function to

Z(M) = Zexp[—ilcS(Af)/Mr]f DaD¢DcDe
Ag

exp [—z‘k/41r/ {tr(aAda,a) +2tr (p Ad}y,a) +tr(d,4fé/\d,4fc)}]
M

(12.101)
where we note that ¢ is a 0-form and ¢ is a 3-form. These forms are,
of course, matrix valued and are actually sections of bundles constructed
from the flat bundle E, say, on which the connection Ay is defined. The
appropriate spaces of sections are Q*(M,E) = ['(M,E ® A'T*M). This
formula for Z(M) can be written more compactly using inner products on
these forms. To do this we consider the odd forms by themselves and, on
the odd forms, we define the operator D by

D:QI(M’E)®93(M,E)—’QI(M,E’)@Qa(M,E)
(a,¢) — (xda, +da,*)(a,d) (12.102)

With respect to the vector space decomposition Q*(M, E) & Q3(M, E) we
can write D more usefully in the block matrix form

_ (*da, da,x _ [ *da, da,* ay _
D= (dAf* A where D(a,¢) = dae O p = Dv
(12.103)
This linear algebra enables us to write

<v,Dv>=—/ tr (v A *Dv)
M

—/ tr(aA*szfa+aA*dAf*¢+¢/\*dAf*a)
M
=—/ tr(a Adasa+29Ady a)

M

and < C,d:lfdAfc >= —/M tr (dAfE/\ dAfC)
(12.104)
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The partition function is now expressible as

=" exp[-ikS(Af)/4n]
4 (12. 105?

4

DaD¢pDcDe exp ik <v,Dv>+<edy da,c>
ir $%4f

.'._"[
The functional integral can be written in terms of determinants using zeta
functions and we find that

Cdet (dj;fdA,)
vdetD
(12.106)
where C is a constant to be discussed in a moment and we comment that the
ghost determinant has no square root because of the presence of ¢ as well as
¢. Now we come to the constant C which is used to absorb the dependence
on the factor (ik/4); let us call this factor p for short. This is usually a
routine matter because, as far as the zeta function is concerned, it amounts
to finding the u-dependence in det (uA) where A is the elliptic 0perator
under study. It is easy to work out from the definition det A = exp[ ¢4 (0]
that det (uA) = pé4(©)det A. However, this assumes that A is a positive
operator and, in our case, g is pure imaginary. Thus we can absorb the
dependence on (k/4w) into a constant C but the i-dependence requires
some more work. It is not difficult to see that the i-dependence contributes
a phase factor to C involving the n-function of the first order operator D]
The details are of some independent interest and can be found in Wltten
[7]; we just observe that the phase factor is of the form exp[in7(0)/2] and
hereafter we also absorb this phase factor into the constant C.
The partition function Z(M) has now simplified to "

DaD¢pDcDe exp k(< v,Dv > + <e¢,d} da,c >)
4r AT As

B

= ZCexp[—ilcS(Af)/ém]l—iit\;id'z;_—dDm (12.107)
Ay R

Now the same ratio of determinants occuring in 12.107 also occurs in an
invariant known as the Ray-Singer analytic torsion (cf. Ray and Singer
[1,2]), thus we can regard this formula for Z(M) as further evidence for the
deformation invariance of the Chern-Simons theory.

Before leaving this topic we provide a bit more detail on the relation
between the analytic torsion and the Chern-Simons theory. In the Abelian
case this relation was established by Schwarz [1]. First of all, if we have
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a bundle with a flat connection such as E, then the analytic torsion is the
number T(M, E) where

InT(M,E) =Y (-1)Pplndet AZ, n=dimM (12.108
p )
0

The notation Af stands for the Laplacian on E-valued p-forms and so AZ
is just the operator (d} da, +da,d} ) acting on OP(M,E). When n =3
we find that

T(M, E) = (det AE)~ (det AF)?(det AF)~3 (12.109)

But, since the * operator commutes with the Laplacians, det Af = det Af_p
and so we have
T(M,E) = (det AE)3(det AF) (12.110)

Now if we square our operator D above, a short calculation shows that we

get
D? = *da, da,x *da, dag*) _ Af 0
- dAf* 0 ’ dAf* 0 - 0 AaE

= det D? = (det AZ)(det AF)

(12.111)

Hence, for the ratio of determinants appearing in the partition function, we
have

det (d} da,) (det AE)

VdetD  {(det AT)(det AF)}/4
_ (det AE)34 (12.112)
" (det AE)1/4
=T(M,E)~"/*

and so
Z(M) = Cexp|-ikS(E)/4x] T(M, E)~/* (12.113)
E

where we have replaced the symbol Ay by its associated flat bundle E.
It is worth noting that the final expression for the partition function is
independent of the metric g introduced to carry out the gauge fixing; this
is explicitly checked in Schwarz [1]. A technical difficulty also arises in
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defining the det Af if any of these Laplacians have zero eigenvalues: by
Hodge theory this means that some of the cohomology groups H?(M;E)
are non-trivial. We shall just restrict ourselves to situations where these
cohomology groups vanish.

§ 6. Chern—Simons theory and the Jones polynomial

We now wish to describe the Chern-Simons method for calculating the
Jones polynomial V,(t). To accomplish this task the attractive topological
properties of the Chern-Simons action discussed in the previous sectioj;
need to be supplemented by something further. The main ingredient of
this supplement is the machinery of two dimensional conformal field theory.
Some insight into how the conformal field theory enters can be obtained as
follows. Suppose M is a 3-manifold M inside which there are various knots;
If we consider some two dimensional (Riemann) surface ¥ inside M then,
near ¥, M may look like £ xR and this surface will, in general, be punctured
by some of the knots. Thus the presence of the knots suggests that we
consider, not just ¥, but ¥ with a collection of punctures. But Rlemann
surfaces with punctures constitute the primary data for a conformal ﬁeld
theory; so we are led to quest for a relation between the conformal ﬁeld
theory on ¥ and knots inside M.

The quantisation of the Chern-Simons action suggested by this plcture
can now be pursued. For example, if we choose the Ag = 0 gauge on £ x R
then it becomes natural to regard the phase space as the moduli space M F
of equivalence classes of flat connections on ¥. This space has a natural
symplectic structure and is a compact Kéhler manifold; thus quantising on
this phase space should give finite dimensional quantum Hilbert spaces, Hz;
or Hy, .. These spaces are the sections of the kth power of the determlnant
line bundle over M. The conformal blocks described in chapter 11 are also
spaces of sections and, in the axiomatic approach to conformal theories,
vector bundles on the moduli space Mg also occur. The spaces Hy can
now be identified with the V(X) of the conformal theory on £. A fuller
discussion can be found in Witten [6], cf. also Hitchin [1]. "

To begin our calculations we need a slightly more compact nota—
tion for our Wilson line correlation functions. We introduce the quantlty

W (M, {R}) and write |

W (M, {R})

Z00) where {R}:Rl,...,%,.

(12.114)
The symbol {R} serves to record the representation content of the Wilsori
lines and from now on the group G is taken to be SU(2). If we wish to bé

<W(Ry,Ch) - W(Rp, Cp) >=
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more explicit we may also write out {R} in full; for example, if p = 2, we
could write .
W (M, Ry, Ry) (12.115)

When p = 0 we shall write simply
W(M) (12.116)

which we observe is equal to the partition function Z(M). Finally the
normalised correlation function is written as W (M, {R}) where

_ WM, {R})
W(M,{R}) = Z00) (12.117)
Our first goal will be to derive the skein relation
Ve, (8) —t7VL_(t) + (2 =t 7Y Ve (t) = 0 (12.118)

which, in the quantum field theory approach, amounts to the statement that
any three vectors in a two dimensional vector space are linearly dependent.
To start this derivation we take our manifold M with knots inside and
decompose it as a connected sum

M = My#M, (12.119)

where it is required that none of the knots in M pass through the two
sphere joining M; and M,. This requirement means that we have two=sets
of knots one in M; and the other in M,; we denote these by {R(})} and
{R®} respectively. Next we wish to show that

Z(S¥ W (M, {R}) = W (M, {ROYW (M, {RD}) (12.120)

Now we consider the state of affairs just before the connected sum operation
joins My to M,. M has a disc excised from it giving a manifold A, with
61\7[1 = S§2; when a manifold has a boundary an associated functional inte-
gral is heuristically a wave function on this boundary or, more precisely, an
element of a Hilbert space Hg2 defined on this boundary This space Hs2 is
that for the conformal field theory on S2. A similar remark applies to M,
except that the orientation of its boundary is opposite to that of Ml, which
has the consequence that the two Hilbert spaces are dual to one another. If
we denote the two vectors in the Hilbert spaces by V; and V, then we have

W(M,{R}) =< W,V > (A12.121)
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where the inner product is induced by the dual pairing of the Hilbert spaces,
We can think of this equation as expressing a factorisation of probability
amplitudes similar to that encountered in string theories. This connected
sum process can be applied to S itself in the case where S® has no knots
inside. This gives the equation

Z(8%) =< U,U; > (12.122)

oy

where U; and U, are two more vectors in Hg2. But S? has no marked points

and so corresponds to the trivial representation of G. Thus we know from

11.75 that Hg is one dimensional, so that the inner product is like ordinary
multiplication, and this allows to make the elementary observation that

<U, Uy >< W,V >=< W, U >< U, V3 > (12.123)

Since < Vi, U; > corresponds to M, ‘evolving’ into M, and the same applies
to M>, the RHS is easily seen to be

W (s, (RO T (0, (RO (12.124
and so we have accomplished our task and shown that »
Z(S3W (M, {R}) = W (My, {RO})W(My, {R}) (12.125)
which we rewrite in the form

W(M,{R}) _ W (M, {RV}) W(M,{R?})

7 I O N € (12.12)
We can now contemplate decomposing M many times, yielding
M= M#---#M, (12.127)

where we still insist that no knots pass through any of the joins. Inductlon
then shows that %

4
(12.128)

W(M,{R}) _ WM, {RD}) W, {RP})
(8% —  Z(8%) CZ(89)

This result can immediately be applied to the case where M = S3 and {R}
consists of p unlinked, unknotted circles; in that case it will certainly be
possible to decompose S? into exactly p components each of which is both
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a copy of S® and contains only one circle. This reduces the calculation for
p unlinked, unknotted circles to that for a single unknotted circle; we have

W(S%{R}) _ W(s%R)) W(S%R,)
Z(8%) 2(8% T Z($®) (12.129)
or  W(S3{R})=W(S*Ry)---W(S%R,)

Now we must get to the skein relation itself; this is done by abandoning
our earlier restriction that no knots may pass through the join in the con-
nected sum M) #M,. To this end let we decompose M = M;# M, as before
but this time we suppose that the knots have produced 4 punctures in the S?
joining M to My; we further require all 4 representations at these punctures
to be the 2-dimensional defining representation of SU(2). This means that
the Hilbert space Hs2 g g rRr = Hs2 4 of the 4-fold punctured $? has di-
mension 2—this can be seen by noting that the physical Hilbert space must
be SU(2)-invariant and the trivial representation occurs precisely twice in
the tensor product R® R ® R ® R. Now suppose that we carry out such
a decomposition three times and ordain things so that the only difference
between the three decompositions is that, when we look into Ms, 2 of the 4
strands are arranged ® according to the three skein configurations

X X ) ( (12.130)
Ly L.

Ly

This gives us three equations like 12.121; using +, — and 0 for over, under
and zero crossing we have

M = Ml#M;, M = Ml#Mz_, M = Ml#Mg
W(M,{R*}) =< W, V5t >, W(M,{R™}) =<W,V; >, (12.131)
W(M,{R}) =< W4,V >

But, because Hgz 4 is only two dimensional, the three vectors V,t, V,~ and
V20 are linearly dependent, that is

eVt +aVy +e%V9 =0

—~ —~ —~ (12. 132)

2a"W(M, {R}) + " W(M,{R™}) + «’W(M,{R"}) = 0

8 We choose 4 strands rather than 2 because, to be completely general, we allow each

of the 2 strands displayed in the skein relation to belong to a separate Wilson loop; so

these 2 loops must possess both an entry and exit point on §2, thus we have 4 strands
and a 4-fold punctured S2.
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and this is the skein relation. 3

The values of the constants oF and a® can be found by reference tg
conformal field theory. The point is that judiciously chosen diffeomorphisms
of the punctured S? can change the position of the punctures so that we
can pass between the links RY, R~ and R°. Then, as far as the Hilbert
space is concerned, such diffeomorphisms are matrices acting on Hg2 4. In
fact Witten shows that if we introduce the 2 x 2-matrix B such that

S

VY = BV, (12.133),

then .
Vy” = BVy = BV, (12. 134)

This means that, up to an inessential overall constant, a¥ and a° are de-
termined by the matrix B. In the context of conformal field theories the-
matrix B was extensively studied by Moore and Seiberg [1] and using this,
work we find that® ;

+ [2m’] _ [ 27ri]
o’ = —exp , a =exp|-

k+2 k+2 ‘ "
. . (12.135)
a® = exp A —exp |— m
k+2 k+2
If we introduce the variable
21
t= - 2.
exp [ Py 2] (12.136)

then we have
tW (M, {R*})—t7'W(M, {R™})+(¢/2=t7/2)W (M, {R"}) = 0 (12.137),

§

Finally we are now in a position to calculate W(M, {R}) explicitly for the
case when M = S3. By 12.129 we only need to calculate W (3, {R}) for
a single unknotted circle. To do this we use the skein relation 12.137 with
{R*} representing the single unknotted circle. It is elementary to verify
that this choice has the consequence that {R*} = { R~} while {R} consists
IS}

S This calculation also involves changing the framing of some of the links and we!
recommend reference to Witten [8] for the details. 5
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of two unlinked, unknotted circles; hence, using the normalised correlation
functions, we have

tW(S%, {R*}) =t W(S* {R™}) + (/2 =t/ )W (5%, {R%}) = 0
S(t— " YW(SS {RT}) + (812 = 7V {W(S%, {RT})}* = 0
(t-th
=W ARTY) =~ — =i

(12.138)
It follows from 12.129 that for a link L = {R} consisting of p unlinked,
unknotted circles we have

W(S3,{R}) = {_(t%—:tt_—l_)/z)} (12.139)

Thus if we analytically continue ¢ to real values and write

(tl/z _ t—l/z)

W—W(s% (R} (12.140)

Vi(t) = -

then Vi(t) is the Jones polynomial since it satisfies the skein relation 12.118
and agrees with 12.83 when L consists of p unlinked, unknotted circles.
Finally we must describe the transformation in W(M, {R}) under a
change in framing. Let M = M, Ug M, represent a decomposition of M
obtained by cutting into two so that the boundaries of M; and Ms are
the Riemann surface ¥. Suppose, then, that M has been cut into these
two pieces and a framed Wilson line passes through ¥ at a point P. If we
apply a 2wt Dehn twist around P then the framing of C will change by
an amount ¢t. Hence the procedure for changing the framing of C is to cut
M as instructed and then to apply the Dehn twist to P € M, and then
rejoin M; and Ms. The effect of the Dehn twist is detected as a linear
transformation on the space Hy and, from conformal field theory, we can
calculate that this transformation is just scalar multiplication by the factor
exp[2mithg], where hg is the conformal weight of the primary field in the
R representation. Summarising, the transformation law of W (M, {R}) is

W (M, {R}) — exp[2mithg]W (M, {R}).
§ 7. Surgery and the Jones polynomial

The Jones polynomial was originally defined for links in R2 or S° but,
when quantum field theory is used there is no need to restrict the manifold
containing the links to be S3. All we need to do is to construct the Chern—
Simons theory on the three manifold M of interest. There is a well developed
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surgery theory for three manifolds and, in particular, it is known that after
enough surgery any manifold M can be transformed into S3. Witten used
this idea both to generalise Vi (t) to an arbitrary manifold and also to give
an illuminating recomputation of the Jones polynomial for S3. As well as
considering a general manifold M we shall consider a general G; thus G is
no longer restricted to be SU(2).

The basic procedure is to combine surgery with the conformal block
pairing of the previous section. The rather special surgery employed is
the following: Let C be a curve inside M which we thicken into a tubular
neighbourhood, thereby obtaining a solid torus M», say; next we cut out My
leaving a piece M, behind, then, before gluing the pieces back together, we
act with a diffeomorphism K on the boundary of M,. Note that M, ~ T2
When we glue things back together the result is the manifold M* and we
denote the surgery by writing

= My U M (12.141)

The actjon of the diffeomorphism K on the Hilbert space Hp2 associated
with &M; is that of a linear transformation. Thus the vector V5 of 12.121
becomes K'V; and so the formula for the correlatlon functions of links 1n51de
MX is

W(M¥,{R}) =< W1, KV3 > (12.142)

Thus if we can compute with the surgery matrix K we can do calculations,
on links in M¥X.

To facilitate computations with K we introduce a basis {V7,...,Vp}
for Hyr2 so that dim Hy2 = n + 1. Since Hp: is the Hilbert space for a
conformal block coming from LG, the (n+1) primary fields each correspond
to a representation of G; we choose the basis {V7,...,V} so that each
element corresponds to a Wilson line. Note that the trivial representation
is always one of the representations occurring above and we adjust our
notation so that V) gives the trivial representation. We recall that, on
selecting the trivial representation, the Wilson line tr P exp[ [, A] collapses,
to the identity, i.e. the knot associated to the Wilson line disappears. ,

To work with K we must know its action of the basis of Hr2; in thlS
connection it is useful to define Kj J by .

KV§ = KiV§ (12.143)

Now let us consider some examples. Let M be a manifold contammg
no Wilson lines and with correlation function given by ;

W (M, {R}) =< W,V; > (12.144)
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But, if there are no knots inside M, then W(M, {R}) is just the partition
function Z (M ) and the vector V2 can be taken to be the 1dent1ty basis
element V. In this way we can write

Z(M) =< V;,Vy > (12.145)
Now if we subject M to a surgery using K we obtain

Z(M¥) =< W, KV} >
=< Vi, K9V > (12.146)
=K} <W,V{ >

However, recalling that sz indicates the presence inside M3 of a Wilson line
in the R; representation, we realise that

< Wi, V§ >= W(M,R;) (12.147)

where W(M ,R;) means the correlation function for an M containing a
single Wilson line in the representation R;. Thus we have established that

Z(M¥) = K)W (M, R;) (12.148)

and we note that the LHS is evaluated on M¥ while the RHS is evaluated
on M; in addition, the LHS contains no Wilson line but the RHS does. We
shall see below that this formula 12.148 can be used to recompute the Jones
polynomial for §3.

Another example may be obtained by starting with a Wilson line al-
ready inside M and then doing the surgery. Let there be an unknotted
Wilson line inside the torus M> and parallel to its boundary. This means
that Vo = V3 for some i; thus the new surgery formula is

W(MX,R;) =< WKV} >
=K!<W,V{ > (12.149)
= KIW(M, R;)
To carry out a complete surgery calculation we must commit ourselves
to some specific manifolds M and M¥; we shall do this shortly but first

we want to describe a useful piece of Hamiltonian formalism that will be
required during the calculations.
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Let £ be a Riemann surface propagating statically through time ag:
cording to the Hamiltonian H of the Chern—Simons theory. If the time is
periodic and represented by an S* then the Chern—Simons partition function
of the 3-manifold ¥ x S? is simply

Z(X x S*) = tr (exp[iMt]) (12.150)
But the Chern-Simons theory, being topological, has H = 0 so that tlie;
partition function reduces to the statement

Z(X x §*) = tr (I) = dim Hy (12.151)

If £ has marked points with associated representations {R} then, as ¥
evolves round S?, these points trace out unlinked, unknotted circles and

the correlation function changes to o

W(E x §*,{R}) = dim Hg () (12.152)

More generally, our three dimensional space-time need not be globally
a product of space and time, it may be just locally so. One can achieve this
by letting ¥ evolve into diffeomorphic copies of itself as t progresses: then
after a time interval [0, 1] a point (z,0) in space-time has become (Kz,1)
where K is a diffeomorphism of . Finally, to make time periodic we glue
the points (z,0) and (Kz,1) together giving a 3-manifold £ x g S* which
is a bundle over S!. The partition function is still a trace but we now have

Z(T xk S*) = tr (K expliMt]) (12153
=1ir (K) ';1q

We now begin our surgery calculation by choosing M = 5% x S* and
M¥X = S3. Hence we must explain how to cut a solid torus out of M =
52 x S! and glue it back to get an S3. As explained by Witten, one starts
with a solid torus T, say, embedded in R3. Now we subject R?3 to that
inversion which interchanges the interior of T with its exterior; this will
leave the boundary 8T ~ T? fixed and it also shows that R® U {oo} can be
constructed by gluing together two solid tori. It may be of some help to
think, loosely, of RBU{oo} as being made up of two solid tori linked together,
as if belonging to a chain. In this way we can see that, if the radii of one of
the tori are represented by the pair (a, b), those of the other are represented
by the pair (b,a). This further means that the two solid tori are joined by
gluing them together along their boundaries; both boundaries are ordinary
tori T? and, before gluing them together, one boundary is acted on by a
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diffeomorphism K which interchanges its radii. Now, referring to chapter
5, this interchanging property identifies K as the modular transformation
S € SL(2,Z)/{FI}. But R3U {co} ~ S3 and so S3 is the join of two solid
tori.

Next view the solid torus T as D x S* where D is a two dimensional
disc; if we take two solid tori D x §* and D’ x S? then we can join them by
gluing together the two discs D and D’ along their boundaries, but, since
gluing together D and D’ gives an S?, the resulting 3-manifold is S? x S*.

Hence we have described two ways of gluing solid tori together with
the result being either S% or S? x S*.

The surgery that we require is got by cutting S? x S? into two solid
tori and then acting with the inversion on one of them before gluing the
pieces back together. The result will then be an S and this is the surgery
we desire. We have also identified the diffeomorphism K which acts on
OT ~ T?: it is the modular transformation S.

Thus, with M = $2 x S, K = § and M¥ = 53, 12.148 and 12.149
give us

Z(8%) = SYW (5% x §*, R;)
and  W(S% R;) = SSW(5? x S, R;, R;)

W(S% R) _ S}dimHs: g, R,
Z(Sa) - S_,? dimH_g2'RJ.

(12.154)

= W(S3 R) =

where in the last line we used 12.151 and 12.152. However, from 11.75 we
know that

dimH_g2'Ri = 6]'0, dimHSlehRJ. = Gij (12155)
thus .
579i; _ Soi
3 JjIv 0¢
) = = — 2.
W(S®, R;) 60 = S (12.156)

But the matrix elements S;; of S were studied in Gepner and Witten [1]
and, for level k representations of LG with G = SU(2), which we now
assume, they showed that

[ 2 (G+DE+D)r
Si; = k+2sm< 12 ) 1(1»2.157)

Now for our Jones polynomial calculations the representation R; was the
2-dimensional defining representation of SU(2); this corresponds toi =1 in
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the above notation, hence we have found that, for a single unknotted circle,
B

Lig

W(53 R)= sin(27/(k + 2)) ]

o sin(m/(k + 2)) 5 ot

(t—t-1) (12.158)

_(tl/_z_t—T/z) b

‘i3

in agreement with 12.138. Bt}

When G # SU(2) we obtain a generalisation of the original Jones
polynomial. If G = SU(N) and N is allowed to vary we obtain a two vari
able polynomial whose variables are determined by N and k. On adjusting
the representations of the Wilson lines to be the defining representation: of
SU(N) we can recover the Homfly polynomial of Freyd et al. [1]. s3ig

We have by no means exhausted all the possible topological field théz
ories. We shall just mention two more. In two dimensions there is a topé:
logical sigma model (cf. Witten (8], Floer [1] and Gromov [1]) which,
when quantised, exhibits quantum ground states that are like Floer groups;
In 2 4+ 1 dimensions a Chern-Simons topological theory of gravity can be
written down (Witten [9]) where the group G = IS0(2,1) with IS0(2,1)
denoting the inhomogeneous SO(2,1), i.e. ISO(2,1) is SO(2,1) plus the
translations. Since IS0(2,1) is non-compact, the moduli space of flat
IS0(2,1)-connections is non-compact and the Hilbert spaces are no longer
finite dimensional. This is an example of a gravity theory which is generally
covariant but possesses no metric; nevertheless, it has non-trivial ampli-
tudes which change the topology of space (Witten [10]). More generally, a
axiomatic approach, somewhat analogous to that introduced for conforx}}?j
field theories, can be given, cf. Atiyah [6]. i



References

Abraham R. and Marsden J.
1. Hamiltonian mechanics on Lie groups and Hydrodynamics, Global
analysis: Proc. Symp. Pure Math. 16, edited by: Chern S. S. and
Smale S., Amer. Math. Soc., (1970).

Adams R. A.
1. Sobolev Spaces, Academic Press, (1975).

Adler S. and Dashen R.
1. Current algebras and applications to particle physics, Benjamin,
(1968).
Adler S.
1. Axial-vector vertex in spinor electrodynamics, Phys. Rev., 177,
2426-2438, (1969).
2. Lectures on Elementary particle physics and Quantum field theory,
Brandeis , edited by: Deser S., Grisaru M. and Pendleton H., MIT
press, (1970).
Alvarez O., Singer I. M. and Zumino B.

1. Gravitational Anomalies and the families index theorem, Commun.
Math. Phys., 96, 409-417, (1984).

Alvarez O.
1. Conformal anomalies and the index theorem, Nucl. Phys., 286B,
175-188, (1987).

Alvarez-Gaumé L. and Ginsparg P.
1. The Structure of Gauge and Gravitational Anomalies, Ann. Phys.,
161, 423-490, (1985).

Alvarez-Gaumé L. and Witten E.
1. Gravitational anomalies, Nucl. Phys., 234B, 269-330, (1983).

Alvarez-Gaumé L., Gomez C. and Vafa C.
1. Strings in the operator formalism, Nucl. Phys., B303, 455-521,
(1988).



362 Differential Topology and Quantum Field Theory:

Atiyah M. F. and Bott R.
1. A Lefschetz fixed point formula for elliptic complexes I, Ann. Math
86, 374-407, (1967).
2. A Lefschetz fixed point formula for elliptic complexes II, Ann. Math
88, 451-491, (1968).
3. The index theorem for manifolds with boundary, Differential Analysis
(Bombay Colloquium), Oxford University Press, (1964).
. 4. The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy..
Soc. Lond. A, 308, 523-615, (1982). o8

Atiyah M. F., Bott R. and Patodi V. K. e
1. On the heat equation and the index theorem, Invent. Math., 19@
279-330; (errata 28, 227-280, (1975).), (1973).
Atiyah M. F. and Hitchin N. J. A
1. Low energy scattering of Non-Abelian monopoles, Phys. Leit_'.,,
107A, 21-25, (1985). .
2. The Geometry and Dynamics of Magnetic Monopoles, PrmcetorllYL

University Press, (1988). e
Atiyah M. F., Hitchin N. J. and Singer I. M. 1y
1. Self-duality in four dimensional Riemannian geometry, Proc. Rog/‘*a,
Soc. Lond. A., 362, 425-461, (1978). "
Atiyah M. F. and Jones J. D. S. AT

1. Topological Aspects of Yang—Mills Theory, Commun. Math. Phys")’
61, 97-118, (1978). i

Atiyah M. F., Patodi V. K. and Singer I. M. A

1. Spectral asymmetry and Riemannian geometry, Bull. Lond. Mathg'\
Soc., 5, 229-234, (1973).

2. Spectral asymmetry and Riemannian geometry I, Math. Proc.
Camb. Philos. Soc., 77, 43-69, (1975). 5».“

3. Spectral asymmetry and Riemannian geometry II, Math. Proc
Camb. Philos. Soc., T8, 405432, (1975).

4. Spectral asymmetry and Riemannian geometry III , Math. Proc
Camb. Phil. Soc., 79, 71-99, (1976). A

Atiyah M. F. and Segal G. .
1. The Index of Elliptic Operators II, Ann. Math., 87, 531-545,
(1968). 4
Atiyah M. F. and Singer I. M.
1. The index of elliptic operators on compact manifolds, Bull. Ameri
Math. Soc., 69, 422-433, (1963). :
2. The Index of Elliptic Operators I, Ann. Math., 87, 485-530, (1968).



References 363

3. The Index of Elliptic Operators III, Ann. Math., 87, 546-604,
(1968).
4, The Index of Elliptic Operators IV, Ann. Math., 93, 119-138,
(1971).
5. The Index of Elliptic Operators V, Ann. Math., 93, 139-149, (1971).
6. Index theory for skew-adjoint Fredholm operators, Inst. Hautes
FEtudes Sci. Publ. Math., 37, 305-326, (1969).
7. Dirac operators coupled to vector potentials, Proc. Nat. Acad. Sci.
U. 8. A., 81, 2597-2600, (1984).
Atiyah M. F.
1. K-Theory, Benjamin, (1967).
2. K-theory and Reality, Quart. Jour. Math. (Ozford), 7, 367—386,
(1966).
3. Instantons in Two and Four Dimensions, Commun. Math. Phys.,
93, 437-451, (1984).
4. Magnetic Monopoles in Hyperbolic Space, Vector Bundles on Alge-
braic Varieties, edited by: , Oxford University Press, (1987).
5. New invariants of 3 and 4 dimensional manifolds, Symposium on
the mathematical heritage of Hermann Weyl, edited by: Wells R.
O., Amer. Math. Soc., (1988).
6. Topological quantum field theories, Inst. Hautes Etudes Sci. Publ.
Math. , 68, 175-186, (1989).
Bardeen W. A.
1. Anomalous Ward identities in spinor field theories, Phys. Rev., 184,
1848-1859, (1969).
Belavin A. A. and Knizhnik V. G.
1. Algebraic geometry and the geometry of quantum strings, Phys.
Lett., 168B, 201-206, (1986).
Belavin A. A., Polyakov A. M. and Zamolodchikov A. B.
1. Infinite conformal symmetry in two-dimensional quantum field the-
ory, Nucl. Phys. , B241, 333-380, (1984).
Bell J. and Jackiw R.
1. A PCAC puzzle: 7® — 27 in the o-model, Nuovo Cimento, 60A,
47-61, (1969).
Bernard C. W., Christ N. H., Guth A. H. and Weinberg E. J.
1. Pseudopartlcle parameters for arbitrary gauge groups, Phys Rev.,
D16, 2967-2977, (1977).
Birman J.

1. Braids, links and mapping class groups, Princeton University Press,
(1974).

‘



364 Differential Topology and Quantum Field Theory

2. On the Jones polynomial of closed 3-braids, Invent. Math., 81,
287-294, (1985).

Bismut J.-M. and Freed D. S.
1. The analysis of elliptic families: I metrics and connections on deter-
minant bundles., Commun. Math. Phys., 106, 159-176, (1986).
2. The analysis of elliptic families: II Dirac operators, eta invariants,
and the holonomy theorem, Commun. Math. Phys., 107, 103-163,
(1986).
Bogomolny E. B. i
1. Stability of Classical solutions, Sov. J. Nucl. Phys., 24, 861-870,
(1976).
Bonora L. and Cotta-Ramusino P.
1. Some Remarks on BRS transformations, anomalies and the coho-
mology of the Lie algebra of the group of gauge transformations,
Comm. Math. Phys., 87, 589-603, (1983).
Borel A. and Weil A.
1. Représentations linéaires et espaces homogeénes Kihlerians des
groupes de Lie compacts, Séminaire Bourbaki (exposé par J.-P.
Serre), 100, 1-8, (1954).
Bott R.
1. The stable homotopy of the classical groups, Ann. Math., 70, 313
337, (1959).
2. Homogeneous vector bundles, Ann. Math., 66, 203-248, (1957).
3. An application of Morse theory to the topology of Lie groups, B“”4
Soc. Math. France, 84, 251-281, (1956).
4. Lectures on Morse Theory, New and Old, Bull. Amer. Math. Soc.,
7, 331-358, (1982).
Bott R. and Tu L. W.
1. Differential Forms in Algebraic Topology, Springer-Verlag, New
York, (1982). 3T
Cappelli A., Itzykson C. and Zuber J-B.
1. Modular invariant partition functions in two dimensions, Nucl
Phys., B280, 445-465, (1987).
2. The A-D-E classification of minimal and A(") conformal 1nvar1ant
theories, Commun. Math. Phys., 113, 1-26, (1987).
Cardy J. L. o
1. Operator content of two-dimensional conformally invariant theories,
Nucl. Phys., B270, 186-204, (1986).

e



References 365

Cerf J.
1. La stratification naturelle des espaces de fonctions differentiables
réelles et le théoréme de la pseudo-isotopie, Inst. Hautes Etudes
Sci. Publ. Math., 39, 5-173, (1970).
Chakrabarti A.
1. Instanton chains with multimonopole limits: Lax pairs for non-
axially symmetric cases, Phys. Rev., D28, 989-1000, (1983).
2. Construction of hyperbolic monopoles, Jour. Math. Phys., 27,
340-348, (1986).
Chern S.
1. Complex Manifolds without Potential Theory, ed. 2, Springer-
Verlag, (1979).
Connes A.
1. Non-Commutative Differential Geometry, Inst. Hautes Etudes Sci.
Publ. Math., 62, 257-360, (1986).
2. The Action Functional in Non-Commutative Geometry, Commun.
Math. Phys., 117, 673-684, (1988).
Connes A. and Rieffel M.
1. Yang-Mills for non-commutative two tori, Contemp. Math., 62,
237-266, (1987).
Conway J. H. and Norton S. P.
1. Monstrous Moonshine, Bull. Lond. Math. Soc., 11, 308-339,
(1979).
Crowell R. H. and Fox R. H.
1. An Introduction to Knot theory, Springer-Verlag, (1977).
D’Hoker E. and Phong D. H.
1. The geometry of string perturbation theory, Rev. Mod. Phys., 60,
917-1066, (1988).
Deser S., Jackiw R. and Templeton S.
1. Three dimensional massive gauge theories, Phys. Rev. Lett., 48,
975-, (1982).
Donaldson S. K.
1. An Application of Gauge Theory to Four Dimensional Topology , J.
Diff. Geom., 18, 279-315, (1983).
2. Nahm'’s Equations and the classification of Monopoles, Commun.
Math. Phys., 96, 387-407, (1984). -
3. The Geometry of 4-Manifolds, Proc. of the International Congress
of Mathematicians, Berkeley 1986, edited by: Gleason A. M., Amer.
Math. Soc., (1987).



366 Differential Topology and Quantum Field Theory;

4. Polynomial invariants for smooth four manifolds, Topology, 29, 257~
315, (1990).
Ebeling W.
1. An example of two homeomorphic, nondiffeomorphic complete in-
tersection surfaces, Invent. Math., 99, 651-654, (1990).
Eguchi T., Gilkey P. B. and Hanson A. J.
1. Gravitation, Gauge Theories and Differential Geometry, Phy. Rep.,
66, 213-393, (1980).
Eilenberg S. and Steenrod N.
1. Foundations of algebraic topology, Princeton University Press;
(1952).
Faddeev L. D.
1. Operator anomaly for the Gauss law, Phys. Lett., 145B, 81-84;
(1984).
Floer A.
1. Morse theory for fixed points of symplectic diffeomorphisms, Bull.
A. M. S, 16, 279-281, (1987).
2. An Instanton Invariant for 3-Manifolds, Commun. Math. Phys i
118, 215-240, (1988).
Forgics P., Horvath Z. and Palla L.
1. Exact fractionally charged self-dual solution, Phys. Rev. Lett., 46;
392-394, (1981). ‘
Freed D. S.
1. Determinants, Torsion and Strings, Commun. Math. Phys:, 107,
483-513, (1986).
Freed D. S. and Uhlenbeck K. K. -~

1. Instantons and Four-Manifolds, Sprmger—Verlag, (1984).
Freedman M. H.

1. The topology of 4-dimensional manifolds, Jour. Diff. Geom., 17

357-453, (1982).
Freedman M. and Taylor L.

1. A-splitting 4-manifolds, Topology, 16, 181-184, (1977). .
Freyd P., Yetter D.; Hoste J.; Lickorish W. B. R., Millet K.; and Ocneanu
A.

1. A new polynomial invariant of knots and links, Bull. A. M. S., 12,

239-246, (1985).
Friedan D. and Shenker S.
1. The analytic geometry of two-dimensional conformal field theory,
Nucl. Phys., B281, 509-545, (1987).



References 367

2. The integrable analytic geometry of quantum string, Phys. Lett.,

175B, 287-296, (1986).
Friedan D., Martinec E. and Shenker S.

1. Conformal invariance, supersymmetry and string theory, Nucl.

Phys., B271, 93-165, (1986).
Friedan D., Qiu Z. and Shenker S. H.

1. Conformal Invariance, Unitarity and two dimensional critical expo-
nents, Vertex operators in mathematics and physics, edited by: Lep-
owsky J., Mandelstam S. and Singer I. M., Springer-Verlag, (1985).

2. Conformal Invariance, Unitarity and Critical exponents in two di-
mensions, Phys. Rev. Lett., 52, 15751578, (1984).

Fujikawa K.

1. Path integral for gauge theories with Fermions, Phys. Rev., D21,

2848-2858, (1980).
Gauss K. F.

1. Zur mathematischen theorie der electrodynamischen Wirkungen
(1833), Werke. Koniglichen Gesellschaft der Wissenschaften zu
Gittingen, 5, 605, (1877).

Gel'fand 1. M. and Fuks D. B.
1. Cohomologies of the Lie algebra of the vector fields on the circle,
Funct. Anal. Appl., 2, 92-93, (1968).
Gel'fand I. M. and Shilov G. E.
1. Generalised Functions, vol. 1, Academic Press, (1964).
Gell-Mann M. and Ne’eman Y.
1. The eightfold way, Benjamin, (1964).
Gepner D. and Witten E.

1. String theory on group manifolds, Nucl. Phys., B278, 493—549,
(1986).

Goddard P., Kent A. and Olive D.

1. Virasoro algebras and coset space models, Phys. Lett., 152B, 88-92,
(1985).

2. Unitary representations of the Virasoro and super Virasoro algebras,
Commun. Math. Phys., 103, 105-119, (1986).

Goddard P. and Olive D.

1. Kac-Moody and Virasoro algebras in relation to Quantum Physms,

Int. Jour. Mod. Phys., 1A, 303-414, (1986). ,
Gompf R.

1. Three exotic R*’s and other anomalies, J. Diff. Geom., 18, 317328,

(1983).



368 Differential Topology and Quantum Field Theory

2. An infinite set of exotic R*'s, J. Diff. Geom., 21, 283-300, (1985).

Green M. B. and Schwarz J. H.
1. Anomaly cancellations in supersymmetric D = 10 gauge theory and
superstring theory, Phys. Lett., 149B, 117-122, (1984).
Green M. B., Schwarz J. H. and Witten E.
1. Superstring Theory vol. 1, Cambridge University Press, (1987).
2. Superstring Theory vol. 2, Cambridge University Press, (1987).

Gribov V. N.
1. Quantisation of non-Abelian gauge theories, Nucl. Phys., B139,
1-19, (1978).

Griffiths P. and Harris J.
1. Principles of Algebraic Geometry, John Wiley, (1978).

Gromov M.
1. Pseudo-holomorphic curves in symplectic manifolds, Invent. Math.,
82, 307-347, (1985).
Hamilton R.
1. The inverse function theorem of Nash and Moser, Bull. Amer. Math.
Soc., T, 65-222, (1982).
Hirzebruch F.
1. Topological Methods in Algebraic Geometry, Springer-Verlag, (1965,
(ed. 3) 1966).

Hitchin N. J.
1. Flat connections and geometric quantisation, Commun. Math.
Phys., 131, 347-380, (1990).
Husemoller D.
1. Fibre Bundles, Springer-Verlag, (1975).

Jaffe A. and Taubes C. H.
1. Vortices and Monopoles, Birkhauser, Boston, (1980).
Jones V. F. R.
1. A Polynomial invariant for knots via Von Neumann algebras, Bull.
Amer. Math. Soc., 12, 103-111, (1985).
2. Hecke algebra representation of braid groups and link polynomials,
Ann. Math., 126, 335-388, (1987).
Kac V. G. :
1. Infinite dimensional Lie algebras, Cambridge University Press,
(1985).



References 369

Kanenobu T.
1. Examples on polynomial invariants of knots and links, Math. Ann.,
275, 555-572, (1986).
Kervaire M. and Milnor J.
1. Groups of Homotopy spheres: I, Ann. Math., 77, 504-537, (1963).

Kirby R. C.
1. The Topology of 4-Manifolds, Springer-Verlag SLNM 1374, (1989).

Kirby R. C. and Siebenmann L. C.
1. On the triangulation of manifolds and the Hauptvermutung, Bull.
Amer. Math. Soc., 75, 742-749, (1969).
2. Foundational essays on topological manifolds, smoothings, and trian-
gulations, Ann. Math. Studies, Princeton University Press, (1977).

Klingenberg W. '
1. Lectures on closed geodesics, Springer-Verlag, (1978).

Kuiper N. H.
1. A short history of triangulation and related matters, Proc. of bicen-
tennial congress Wiskundig Genootschap, part I, edited by: Baayen
P. C., van Dulst D. and Oosterholf J., Mathematisch Centrum, Am-

sterdam, (1979).
Kyle R. H.
1. Embeddings of Mébius bands in 3-dimensional space, Proc. Roy.
Irish Acad., 5TA, 131-136, (1955).
2. Branched covering spaces and the quadratic forms of a link, Ann.
Math., 59, 539-548, (1954).
3. Branched covering spaces and the quadratic forms of links II, Ann.
Math., 69, 686-699, (1959).
Lepowsky J., Mandelstam S. and Singer I. M. (eds.)
1. Vertex operators in mathematics and physics, Springer-Verlag,
(1985).
Manin Y. L

1. The partition function of the Polyakov string can be expressed in
terms of theta functions, Phys. Lett., 172B, 184-185, (1986).

Manton N. S.
1. A remark on the scattering of BPS monopoles, Phys. Lett., 110B,
54-56, (1982). ,
Mason G.

1. Finite groups and Modular functions, Proc. of Symposia in Math.,
47, 181-210, (1987).



370 Differential Topology and Quantum Field Theory

Mickelsson J.
1. Current algebras and groups, Plenum, (1989).
2. On a relation between massive Yang-Mills theories and dual string
models, Lett. Math. Phys., 7, 45-50, (1983).
Milnor J.
1. On manifolds homeomorphic to the 7-sphere, Ann. Math., 64, 399—
405, (1956). ‘
2. Remarks on infinite dimensional Lie Groups, Relativity, Groups and
Topology II, edited by: De Witt B. S. and Stora R.., North Holland,
Amsterdam, (1984).
3. Morse Theory, Princeton University Press, (1963).

Milnor J. W. and Stasheff J. D.
1. Characteristic Classes, Princeton University Press, (1974).

Mitter P. K. and Viallet C. M.
1. On the bundle of connections and the gauge orbit manifold in Yang-
Mills theory, Commun. Math. Phys., 79, 455-472, (1981).

Moise E.
1. Affine structures on 3-manifolds, Ann. Math. , 56, 96-114, (1952).

Moore G. and Seiberg N.
1. Polynomial equations for rational conformal field theories, Phys.
Lett., 212B, 451-460, (1988).
Morse M.
1. Calculus of variations in the large, Amer. Math. Soc. Collog. Publ.,
(1934).
Nash C. and Sen S.
1. Topology and Geometry for Physicists, Academic Press, (1983).

Nash C.
1. Geometry of Hyperbolic Monopoles, Jour. Math. Phys., 27, 2160-
2164, (1986).
2. Relativistic Quantum Fields, Academic Press, (1978).
3. A Complex Anomaly, Phy. Lett., B184, 239-241, (1987).
4. Sheaf Cohomology and functional integration, Int. Jour. Mod.
Phys. A, 4, 4919-4928, (1989).
5. Singularly perturbed Chern-Simons theory, J. Math. Phys., 31,
2258-2262, (1990).
Palais R. S.
1. Morse Theory on Hilbert Manifolds, Topology, 2, 299-349, (1963).
2. Lusternik-Schnirelman theory on Banach Manifolds, Topology, 5,
115-132, (1966).



References 371

3. Critical point theory and the mini-maz principle. Proc. Symp. Pure
Math. 15 ; Amer. Math. Soc., (1970).

Palais R. et al.
1. Seminar on the Atiyah-Singer inder theorem, Ann. Math. Stud.
Princeton Univ. Press, (1965).

Peetre J.
1. Une caractérisation abstraite des opérateurs différentiels, Math.
Scand., 7, 211-218, (1959).
2. Rectification & l'article Une caractérisation abstraite des operateurs
differentiels, Math. Scand., 8, 116-120, (1960).
Peter F. and Weyl H.
1. Die Vollstandigkeit der primitiven Darstellungen einer geschlossenen
kontinuierlichen Gruppe, Math. Ann., 97, 737-755, (1927).
Polyakov A. M.
1. Quantum geometry of Bosonic strings, Phys. Lett., 103B, 207210,
(1981).
Pressley A. and Segal G.
1. Loop Groups, Oxford University Press, (1986).
Quillen D.
1. Determinants of Cauchy-Riemann operators over Riemann surfaces,
Funet. Anal. and Appl., 19, 31-33, (1985).
2. Superconnections and the Chern character, Topology, 24, 89-95,
(1985).
Quinn F.
1. Ends III, Jour. Diff. Geom., 17, 503-521, (1982).
Rado T..
1. Uber den Begriff der Riemannanschen Fliche , Acta Litt. Scient.
Univ. Szegd., 2, 101-121, (1925).
Ray D. B. and Singer I. M.
1. R-torsion and the Laplacian on Riemannian manifolds, Adv. in
Math., 7, 145-201, (1971).
2. Analytic Torsion for complex manifolds, Ann. Math., 98, 154-177,
(1973).
Rohlin V. A,
1. New results in the theory of 4 dimensional manifolds, Dok. Akad.
Nauk. U. S. S. R., 84, 221-224, (1952).

Rolfsen D.
1. Knots and Links, Publish or Perish, (1976).



372 Differential Topology and Quantum Field Theory

Schonfeld J.
1. A mass term for three dimensional gauge fields, Nucl. Phys., B185,
157-171, (1981).

Schwarz A. S.
1. The partition function of degenerate quadratic functional and Ray—
Singer invariants, Lett. Math. Phys., 2, 247-252, (1978).

Seeley R. T.
1. Complex Powers of an Elliptic Operator, Proc. Symp. in Pure
Math., Amer. Math. Soc., 10, 288-307, (1967).

Segal G.

1. Equivariant K-theory, Inst. Hautes Etudes Sci. Publ. Math., 34,
129-151, (1968).

2. Unitary Representations of some infinite dimensional groups, Com-
mun. Math. Phys., 80, 301-42, (1981).

3. Faddeev's anomaly in Gauss's law, Ozford preprint, (1985).

4. Two dimensional conformal field theories and modular functors, 1.
A. M. P. Congress, Swansea, 1988, edited by: Davies L., SlmonB
and Truman A., Institute of Physics, (1989).

Segal G. and Wilson G. .
1. Loop Groups and equations of K dV type, Inst. Hautes Ftudes Sci.
Publ. Math., 61, 5-65, (1985).
Singer 1. M.
1. Some Remarks on the Gribov ambiguity, Commun. Math. Phys.,
60, 7-12, (1978).
Smale S.
1. Generalised Poincaré’s conjecture in dimensions greater than four
Ann. Math., T4, 391-406, (1961).
Spanier E. H.
1. Algebraic Topology, McGraw-Hill, (1966).
Spivak M. .
1. A Comprehensive Introduction to Differential Geometry, vol. 1,
Publish or Perish, (1979).
Steenrod N.
1. The Topology of Fibre Bundles, Princeton Umversxty Press, (1970).
Sugawara H.
1. A field theory of currents, Phys. Rev., 170, 1659-1662, (1968).
Taubes C. H.
1. Self-dual Yang—Mills connections on non-self-dual 4-manifolds, Jour;
Diff. Geom., 17, 139-170, (1982).



References 373

2. Stability in Yang-Mills Theories, Commun. Math. Phys., 91, 235
263, (1983).

3. A framework for Morse theory for the Yang—Mills functional, Invent.
Math., 94, 327-402, (1988).

4. Min-Max theory for the Yang-Mills-Higgs Equations, Commun.
Math. Phys., 97, 473-540, (1985).

5. Casson’s invariant and gauge theory, Jour. Diff. Geom., 31, 547-
599, (1990).

Treves F.

1. Basic Linear Partial Differential Equations, Academic Press, New

York, (1975).
Tsuchiya A. and Kanie Y.

1. Vertex operators in the conformal field theory on CP! and mon-
odromy representations of the braid group, Lett. Math. Phys., 13,
303-312, (1987).

Vafa C.

1. Operator formulation on Riemann Surfaces, Phy. Lett., B190, 47—
. 54, (1987).
Verlinde E.

1. Fusion Rules and Modular transformations in 2-d conformal field
theory, Nucl. Phys., B300, 360-376, (1988).

Virasoro M. A.
1. Subsidiary conditions and ghosts in dual-resonance models, Phys.
Rev., D1, 2933-2936, (1970).

Weinberg E.
1. Parameter counting for multi-monopole solutions, Phys. Rev., D20,
936-944, (1979).

Wells R. O.
1. Differential Analysis on Complez Manifolds, Springer-Verlag, New
York, (1980).
Whitehead G. W.
1. Elements of Homotopy Theory, Springer-Verlag, (1978).
Whittaker E. T. and Watson G. N.
1. A Course of Modern Analysis, Cambridge University Press, £1920).

Wilson K. G.
1. Non-Lagrangian models of current algebra, Phys. Rev., 179, 1499-
1512, (1969).



374 Differential Topology and Quantum Field Theory
Witten E.

1. Non-Abelian Bosonisation in two dimensions, Commun. Math.
Phys., 92, 455-72, (1984).

2. Supersymmetry and Morse theory, J. Diff. Geom., 17, 661-692,
(1982).

3. An SU(2) anomaly, Phys. Lett., 117B, 324-328, (1982).

4. Global gravitational anomalies, Commun. Math. Phys., 100, 197~
229, (1985).

5. Topological quantum field theory, Commun. Math. Phys, 117 ,
353-386, (1988).

6. Quantum field theory and the Jones polynomial, 1. A. M. P. Congress,
Swansea, 1988, edited by: Davies I., Simon B. and Truman A.
Institute of Physics, (1989). :

7. Quantum field theory and the Jones polynomial, Commun. Math
Phys., 121, 351-400, (1989).

8. Topological sigma models, Commun. Math. Phys., 118, 411-466,
(1988). g

9. 2+ 1 dimensional gravity as an exactly soluble system, Nucl. Phys

B311, 46-78, (1988/89).

10. Topology changing amplitudes in 2 + 1 dimensional gravity, Nucl ,

Phys., B323, 113-140, (1990).

Zamolodchikov A. B.

1.

2.

Exact solutions of conformal field theory in two dimensions and
critical phenomena, Rev. in Math. Phys., 1, 197-234, (1990). 7
Irreversibility of the flux of the renormalisation group in a 2d field
theory, JETP Lett., 43, 730-732, (1986).



Abelian differential, 143
Abelian gauge theory, 295,
343-344, 348
Abelian group, 170, 185,
Abelian semi-group, 67, 90
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Adiabatic limit, 284, 288, 290
Adjoint bundle, 176
Affine space, 216
Alexander polynomial, 340-342
Algebraic curve, 169
Algebraic varieties, 137-139
sub-manifold of, 138
Ampere’s law, 344-345
Analytic torsion, 348-349
Analytical index, 93, 97, 120,
126
Anharmonic ratio, 314
Anomalies, 269-300,
complex, 290-291
global, 283-290
gravitational, 279-281
Hamiltonian approach to,
292-300
local, 269-283
for strings, 281-283
Anomalous dimension, 302
Arithmetic genus, 107
Atiyah-Singer index theorem,
89, 90-136, see also index of
individual operators
Axial current, 272

Banach space, 48, 171
Base point, 5-6,
and homotopy, 8, 10, 17-18,
20
and K-theory, 69-70, 72
and Map(X,G), 172
and gauge transformations,
176, 232
Beltrami differential, 157, 161
Beltrami equation, 157
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Bessel’s equation, 35
Betti number, 104, 172, 192, 207
of CP™, 197
and Hodge numbers, 108
and the instanton deformation
complex, 238
and Laplacians, 41, 209,
and Morse theory, 194, 211
and the Poincaré series, 193
of §%, 204
Bianchi identity, 228, 243
Bifurcation, 198
Bogomolny equation, 243-246,
in hyperbolic space 247-251
Borel subgroup, 189
Borel-Weil construction,
188-191
Bott periodicity, 11, 75, 78, 95
Boundary conditions, 127
non-local and the index theo-
rem, 128, 131-133
and monopoles, 244
and Floer homology, 328, 337
periodic, 311
Bundle automorphisms, 175 see
also gauge transformations

Callan—Symanzik equations, 301
Canonical bundle, 139 see also
determinant bundle
Cartan matrix, 24
Casimir operator, 181-183
Casson invariant, 330
Categories see also
Lusternik—Schnirelmann
category
and conformal field theory,
321
Cauchy data, 30
Cauchy problem, 30
Cauchy-Riemann operator, 34,
281 ’
Cauchy-Riemann equations, 64
Cauchy’s theorem, 29
Cell decomposition, 323
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Cellular approximation theorem,
323
Central charge, 174
and conformal field theory,
307-308
Central extensions, 179 see also
group extensions
and the loop group, 173, 180,
183, 191
and the Virasoro group, 174
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Characteristic class, 16, 78-79,
82, 85, 108, 112, 133, 239,
278, 280, 290 see also spe-
cific classes and secondary
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and the index formula, 98,
101-103
and invariant polynomials, 87
and obstruction theory, 23
Characteristic polynomial, 135
Chern character, 78-80, 88, 105,
237, 239, 280, 282
and the index formula, 98
and K-theory, 81
Chern class, 16, 79-82, 1051086,
134, 142, 180, 189, 219, 222,
237, 245, 248, 277, 286. 297,
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and line bundles 145-146
and the Euler class, 87
and the Pontrjagin class,
84-85
Chern—Simons, see also knots
action, 331, 342-344, 348, 350,
358, 360
class, 223, 227
form, 227
function, 324-327, 330
Chiral Fermion, 270, 271
Chow’s theorem, 138
Classifying space, 16, 23
and differentiable structures
19

Index

Classifying space (continued):
and equivariant cohomology, ‘.
202-204
and Fredholm operators, 293 -
and vector bundles, 70-71, 74
Clifford algebra, 114
Clover leaf knot, 340-341
Cocycle, 145, 298
and group extensions, 179,
184-185 C—
Cohomology, 3, 12-13, 41, 65
145, 280, 283, 323 326, 333
de R.ham, see de Rham coho—
mology
Dolbeault, see Dolbeault coho—
mology
local 279 ‘
for sheaves, see sheaf cohomol-
ogy
for vector bundles, see
K-theory : A
Cohomology ring, 15-16, 95,
120, 220
and K(X), 79
and torsion, 195
Compact support, 46
and test functions, 50
and K-theory, 90-91
Compactification, 91, 334, 339 "
Compactification divisor, 319
Complex manifolds, 63, 65, 89, - -
117, 189, 255, 290-291 see
also Kahler manifolds
and algebraic geometry,
138-139, 142
and the Dolbeault complex, '
106-108 i
and Morse theory, 197
Complex powers of elliptic oper-
ators, 46
Complex structure, 84, 147, 190,
315, 322
and anomalies, 291
and hyperkéhler manifolds,
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Complex structure (continued ):
of Riemann surfaces, 139,
149-155, 241
and strings, 260~262
and vector bundles, 84
Complex vector bundle, see un-
der vector bundle
Complexification, 83-84, 98, 103,
106, 120, 237
of Lie groups, 189-190
of vector bundles, 83-84
Comultiplication, 8
Configuration space,
for instantons, 218-219, 232,
242, 258
for monopoles, 254
for strings, 261
and conformal field theory,
320
Conformal anomaly, 180, 262,
281-283
Conformal block, 315, 317, 319,
321, 321, 350, 356
Conformal family, 309-317
Conformal field theory, 306—-321
and knot theory, 343, 350,
354-355
rational, 313
Conformal invariance, 174, 247,
258, 301, 311, 314, 317
and conformal field theories,
301, 311, 314, 317
and strings, 281-283
and the Virasoro group, 174
and Yang-Mills theories, 247,
258,
Conformal Killing vector, 159,
262
Conformal weight, 312, 355
Conjugate bundle, 82
Connected sum, 335, 336, 351
Connections, see also instantons
and monopoles
flat, 323-326, 330-331
Levi-Civita, 270
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Connections (continued):
projectively flat, 320
reducible, 232, 240, 323
Yang-Mills, 118, 270, 279, 281

Continuous section, 219

Contractibility, 96, 156, 204,

245,
and universal bundles, 96
218-219, 245, 258, 327
and Fredholm operators, 293
Coupling constant, 273, 335,
343, 345-346
Covering space, 139, 153, 156,
255
Critical dimension, 180, 269, 281
Critical points, 192-201, 204,
206-207, 209-213, 301, 323
see also Morse theory
and flat connections, 323-326,
330-331
and instantons, 228-230
and the Hessian, 193
and monopoles, 242-243,
255-259
non-degenerate, 193
and phase transitions, 301
Current algebra, 173, 177-178,
185, 299 -

de Rham cohomology, 3, 41, 280,
283, 323, 326, 333
and loop groups, 179 -
via sheaves 63, 65, ‘
de Rham complex, 13, 93, 108,
116, 124, 238, 323
index of, 103-104, 106, 116
Dedekind #-function, 312-313.." .
Dehn twist, 156, 309, 355 ;
Descendant of a primary field,
309 ton
Determinant bundle, 139.. . .;
and index theory, 276-278, ' -
283-286 .
Determinant line bundle, see
determinant bundle
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Diagonalisable matrices, 88
Differentiable structure, 2, 23,
26, 338-339
Differentials of first kind, see
Abelian differentials
Dilation, 301-302, 308
Dimensional reduction, 250
Dirac operators, 113-114,
and anomalies, 269-281, 283-296
families of, 275
gauge covariance of, 271
index of, 115-116
index in twisted case, 118
Direct limit, 19, 57
Discrete series, 186
Distributions, 49-51
Divisor, 139-142, 146
and Weierstrass gap theorem,
166-167
and conformal field theory,
319
Dolbeault cohomology, 65, 145
and the Riemann moduli
space, 160
Dolbeault complex 106,
index of, 107, 117
Donaldson’s polynomial invari-
ants, 334, 336, 338-339
Donaldson’s theorem, 25-26,
240-241
Doughnut, 196-197, 199
Dual bundle, 107
Dyons, 256

Effective action, 288-289
Eilenberg and Steenrod, 65
Eilenberg-Maclane space, 12
Elliptic complex, 91-96,
103-104, 124, 126,
and instanton moduli, 235
and monopole moduli, 251
Elliptic operators, 27-55, 162,
327, 348 see also specific
elliptic operators

definition of differential 33, 38,

Index

Elliptic operators (continued ):
as Fredholm operators, 53-55
definition of

pseudo-differential, 42-43
families of, 119
index theory of, 89-136
and instanton deformations,
237
of order 2\ + ¢, 45
and strings, 261-268

Ellipticity, 27-33, see also

hypo-ellipticity

Energy functional, 205, 326
for geodesics, 205
for monopoles, 242, 255-256

Energy momentum tensor, 181,

335
of conformal field theories,
304, 308, 319-320
Equivariant cohomology,
201-203 .
Equivariantly perfect function,
204-205, 258
Euler class, 16, 86-87, 103-106, -
117, 134, 203 '

Euler-Poincaré characteristic, 3

Evaluation map, 221-224

Exceptional groups, 170

Exceptional Lie algebra Eg, 24

Exotic differentiable structure,

23
on R, 26

Exotic sphere, 23, 192, 285-286

Exterior algebra, 94
and Fock space, 297
and Hopf algebras, 221-222

External product, 76

Extremum, 205 see also critical

points

Faddeev-Popov ghosts, 218, 347
Fake R*, 26 B
Families index theorem,
119-122,
and anomalies, 273-296
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Families index theorem (contin-
ued ):
for real families, 121-122, 284
Family, see also families index
theorem
conformal, 309-317
of conformal Killing vectors,
165
of connections, 224, 228, 233,
241, 251-252
of elliptic operators, 119-122,
269, 275-297, 326
of G-bundles, 220
of Riemann surfaces, 139
of supersymmetric algebras,
209
Fibration, 17-19, 120
automorphism of, 175
and differentiable structures
20-22
and homotopy lifting property,
17
of Hopf, 78
Fibre bundle, 14-19, 287
and elliptic families, 119
Fine sheaf, 64, 146
Fixed points, 123-127, 150, 301
and index theory, 123-137
of group actions, 150,
153-156, 201, 217-218, 232
Flat connections, 244, 325,
346-350
Floer homology, 321-331
and Donaldson invariants,
336-338
Fock space, 297-299
Fourier transform, 28, 31-34, 37,
44, 48, 52
Four manifolds, 23-26, 331-338
Fractional integration, 44
Framing of knots, 345, 354-355
Fredholm operators, 54-55,
292-294
from elliptic operators, 53-55
and K-theory, 88, 292
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Fredholm operators (continued)
self-adjoint, 293-294
skew-adjoint, 294

Free action, 150, 232

Fubini-Study metric, 147

Fuchsian group, 161

Functional integral, 218, 321
and anomalies, 271-275, 288
and Donaldson invariants, 336
and knots, 344-348, 351
for strings, 260

Functors, 7, 293-294 see also

modular functor

Fundamental group, 5-6, 9-10,

153-154, 340

Fundamental solution, 28

Fusion rules, 313, 316-317, 321

G-vector bundle, 125
Gauge fixing, 218, 349
Gauge orbits, 218, 271, 323
Gauge system, 318
Gauge transformations, 175-177,
216-217, 234, 257-258, 269,
281, 283, 297
and ellipticity, 230
generated by the Higgs field,
252
Gauss’s law, 297
Gauss—Bonnet theorem, 104,
134, 152, 163
Gerrmns, 58 see also sheaves
Ghosts, 218, 347
Global anomaly, 270, 286-290,
294 see also anomalies
Gradient flow, 212, 327-329
Grassmannian, 71-73
Gravitational anomaly, 280 see
also anomalies
Green'’s function, 28-30, 33—34,
344 .
Gribov ambiguity, 218
Group extensions, 178-185
central, 179-183
non-central, 183-185
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H-space, 8-10, 12
Hamiltonian and anomalies,
291-300
Handle, 1, 139, 143, 156
Harmonic forms, 148
Harmonic oscillator, 211
Harmonic spinor, 115
Heat equation, 33-35
and the index theorem, 132
Height function, 196-204
Hessian, 193, 197, 199, 212
and the Yang-Mills action,
258
unbounded and Floer theory,
325-326
Higgs field, 248, 252-253, 257
Highest weight representation,
186-191,
and conformal field theory,
309
Hodge numbers, 108, 148
Hodge theory, 93, 110, 115,
147-148, 164, 332, 350
Holomorphic sections, 58, 139,
142, 146, :
and the Borel-Weil theorem,
189-191
and conformal field theory,
317 4
and sheaves, 58-59
and the Weierstrass gap theo-
rem, 166-168
Holonomy group, 218, 232
Homeomorphisms, 2, 19, 340
Homfly polyromial, 341, 360
Homology 3-sphere, 323, 325,
329-330, 336-338
Homology sphere, 337-338 see
also homology 3-sphere
Homotopy classes, 5-10, 16, 21,
72, 88, 90
Homotopy equivalence, 4, 12,
221-222, 293

Index:

Homotopy groups, 3, 7, 9-14, see
also Bott periodicity
and gauge transformations,
219-222
and K-theory, 72-75

- and obstruction theory, 21-22

and Fredholm operators, 294
Homotopy lifting property,
17-18
Homotopy quotient, 202-203
Homotopy type, 4-5, 12, 219
and Bott periodicity, 76
and fibrations, 18
and Fredholm operators,
293-294
and Morse theory, 196
of §%, 24,
and spectral flow, 296
Hopf algebra, 222
Hurewicz isomorphism, 14
Huyghen’s principle, 30 -
Hyperbolic equations, 31
Hyperbolic monopoles, see
monopoles
Hyperbolic plane, 151, 156
Hyperbolic space, 247
and instanton moduli, 241
and hyperbolic monopoles,
247-249
Hyperk&ahler manifold, 255
Hypo-elliptic operators, 33
Hypo-ellipticity, 32-35
and supports of
pseudo-differential opera-
tors, 47

Index bundle, 293-294
Index of elliptic operators, 41,
89-136
analytical, see analytical index
cohomological formula for, 98,
103, 237
the d operator, 103, 117
the Dirac operator, 112-116,
118, 270 '
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Index of elliptic operators (con-
tinued ):

the & operator, 106-108, 117

and families of operators,
118-122

and fixed point theory,
122-127

acting on functions, 100-101

and the Gauss-Bonnet theo-
rem, 104-106

and the Hirzebruch signature
theorem, 112

and the Lefschetz fixed point
theorem, 123-126

and manifolds with boundary,
127-136, 288

and odd dimensional mani-
folds, 98-99

and the Riemann-Roch theo-
rem, 108

the signature operator,
108-112, 118

topological, see topological
index

twisted operators, 116-118

Index theorem of Atiyah and

Singer, 97

Inductive limit, 71

Infinite dimensional groups,
170-191

the diffeomorphism group, 174

the group of gauge transfor-
mations, 175-177

the group Map (X,G),
171-174

the loop group, 174-175

the Virasoro group, 174

Infinite dimensional manifolds,

170-171, 178, 323

Instantons, 25-26, 213-215,
227-242, 258 see also
monopoles

axially symmetric, 246-250,
253
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Instantons (continued):
and Donaldson invariants,
332-339
and Floer homology, 327—330
moduli space of, 227-242
and Morse theory, 213-215,
258
time independent, 245-246
Instanton number, 230
Integrable system, 173
Integral curve, 159, 174, 212
Intersection form, 23-25, 108,
240, 338 _
Intersection number, 143
Invariant polynomial, 223, 226
Inverse limit, 19
Ising model, 312-313
Isothermal coordinates, 157
Isotopy, 339-341
Jacobian variety, 143
Jones polynomial, 341-342
and Chern-Simons theory,
343, 350-359

K-theory, 11, 65-75,
and anomalies, 275
and Bott periodicity, 75-78
and the Chern character, 81
and Fredholm operators, 88,
293-294
and index theory, 89-91,
95-96, 101-102, 119-126
Kac-Moody algebra, 173,
177-178, 180-183, 187-188,
311, 317
and current algebra, 177-178
Casimir operator for, 181-183
representations of, 187-188
Kahler manifold, 144-147, 189,
291, 350
Kahler metric, 147, 255
Kernel, 40-41, 46, 54, 69, 89, 92,
122, 132-133, 162-165, 176,
179, 230, 236, 252, 276, 281,
292, 297-298
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Kernel (continued):
Gaussian, 46
of the map Rk, 69
of an elliptic operator, 89, 92,
122, 132-133
and Fock space, 297-298
and gauge transformations,
176 ‘
of a group extension, 179
of Laplacians, 40-41, 92
for a real elliptic family, 122
Knots, 2, 338-360
and Chern-Simons theory,
342-360
mirror image of, 341
and skein relation, 342, 351,
353-355
Knot invariants, 339-340
Alexander polynomial,
340-342
knot group, 340
Homfly polynomial, 341, 360
Jones polynomial, 341-343,
350-359

L-polynomial, 112, 340-341
Lagrange multiplier, 347
Laplacian, 27-28, 39-41, 46,
92-93, 127-128, 148,
163-164, 209, 236, 260, 282,
332, 349-350
and Hodge theory, 92-93
on a Kihler manifold, 148
and Ray-Singer torsion,
349-350
Laurent polynomial, see
L-polynomial
Leading symbol, 33-39, 42, 54,
93, 99-100, 273
Lefschetz fixed point theorem,
123-126
Level,
curve, 29, 31
of a representation, 188, 311,
317, 359

Index

Level (continued):
set, 29
surface, 195
Lexicographic ordering, 291
Lie derivative, 159-160, 264
Lie group, 9, 11, 73, 75, 125,
170-171, 174, 178, 180, 185,
188, 190, 192, 201, 207, 221
226-227, 241
infinite dimensional, 171-191
and instanton moduli, 241
and rational homotopy, 221
Light-cone, 30
Links, 2086, 205, 256, 339,
341-345, 355-356 see also
knots
Liouville’s theorem, 58
local coefficients, 21
Local cohomology, 278, 280
Locally convex, 171
Loop group, 173-174, 181-183,
191 see also Kac-Moody
algebra
representations of, 187-188
Lusternik~Schnirelmann cate-
gory, 198

b

Magnetic charge, 245, 248-249,
257
Magnetic monopole, see
monopole
Mapping class group, 152,
155-156
Minima, 25, 229-230, 244, 256,
258, 336 see also critical
points
and Yang-Mills action, 25,
229-230, 258, 336
and Yang-Mills-Higgs energy,
244, 256
Moébius group, 155, 165,
310-311, 315
Modular form, 161, 312
Modular functor, 321
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Modular group, 155, 161, 170,
317
Modular invariance, 313, 321
Modular transformation, 155,
311, 359
Moduli space, 26, 139, 152-165
of flat connections, 350, 360
instanton, 26, 227-242,
333-339
monopole, 250-256
Riemann, 139, 152-165, 262,
268, 315
universal Riemann, 318-319
Monopoles, 242-250
hyperbolic, 246-250
Prasad-Sommerfield, 243,
252-253
scattering of 250, 253256
moduli space of, 250-256
and Morse theory, 256-257
and rational functions, 253
Morse theory, 192-215
for critical sub-manifolds,
199-201
equivariant, 201-205
and Floer theory, 322,
324-326, 330
and gauge theories, 256-258
and the Morse inequalities,
194-195, 200, 203, 211-212,
215
and the Morse series, 193, 197,
199-200, 203-205
via quantum mechanics,
207-215 -
Multi-index notation, 32

Neumann problem, 128
Normal bundle, 66, 94, 199
Nullity, 193

Obstruction theory, 21-23, 26

Operator products, 181

Operator product expansion,
301-310, 314-315
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Orbifold, 152, 156

Parabolic equation, 31, 33-34
Parallel transport, 216-218
Parametrix, 55
Partition function, 218, 260268,
271, 275
and anomalies, 271-275, 278
and axiomatic conformal field
theory, 318-321
for the Chern—Simons action,
343-351, 357
and Donaldson invariants, 337
and the Ising model, 311-313
for strings, 260-268
Partition of unity, 48, 61
Path connected, 11, 14, 218
Path ordering, 343-344
Perfect Morse function, 195
Period matrix, 143-144
Peter—-Weyl theorem, 190
Pfaffian, 86
Phase space, 350
Phase transition, 301
Picard group, 146
Piecewise-linear manifold, see
PL manifold
PL manifold, 2, 20-22
Poincaré conjecture, 24, 192
Poincaré duality, 23, 144, 238,
337
Poincaré polynomial, 199, 323
Poincaré upper-half-plane, 151
Pointed space, 5-6, 9
Polyakov string formulation, 259
Polygonal knot, 340
Pontrjagin class, 16, 84-85, 98,
100-101, 116, 271
Positive line bundle, 163-164 see
also vanishing theorems
Prasad—Sommerfield ‘monopole,
243, 252-253
Primary field, 302-317
and knots, 355~356
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Principal bundle, 15, 33, 175,
219, 281
Product metric, 135
Projective connection, 320
Projective limit, 19
Projective representation,
185-186
Pseudo-differential operators,
41-44, 89, 91, 94, 131
and Sobolev spaces, 47-55,
on odd dimensional manifolds,
99
Pseudo-locality, 47

Quadratic differential, 161-162

Quantised mass, 227

Quaternionic projective space,
323

Rank of a vector bundle, 15, 36,
38, 42-43, 65, 70-74, 79-87,
100, 105, 116, 138-139,
145-146, 187, 199, 203, 239,
248, 276

and the stable range, 72, 74
and virtual dimension, 68-69

Rarita—Schwinger operator, 289

Rational cohomology, 81, 98,
121, 123

Rational conformal field theory,
313

Rational function, 253

Real vector bundle see under
vector bundle

Reduced join, 6

Reduced product, 6

Renormalisation group, 301

Representations, 185-191

of the fundamental group, 330
of the Kac-Moody algebra,
187-188
of the Virasoro algebra,
185-187, 309-310
. and Wilson lines, 343

Index

Riemann surface, 1, 10, 133-134,
139-144, 147, 148-169, 197,
257-268, 302, 316-322, 350,
358

and Chern—Simons theory,
350, 358

and conformal field theory,
302, 316-322, 350, 358

and the 8 operator, 133-134

and divisors, 139-144

and Kihler manifolds, 147

and moduli space, 152-165

and Morse theory, 197

and strings, 259-268

and Teichmiiller space,
148-151

Yang-Mills theory on,
257-258

and the Weierstrass gap theo-
rem, 166-169

Riemann uniformisation, 150,
152

Riemann-Roch theorem, 98,
108, 168

Rigid rotation, 183

Roots, 190, 290

Root space, 190

Saddle point, 196-198

Scalar curvature, 236, 238-239,
249

Scale dimension, 302

Scale invariance, 303-304

Schrédinger equation, 31, 34,
210

Schwarzian derivative, 307

Schwinger term, 178, 299

Second fundamental form,
135-136

Secondary characteristic classes,
223-227, 324

Self-dual curvature, 25, 229-236,
245-247 see also instantons
and monopoles
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Self-duality equations, see under
instantons
Self-dual manifold, 236
Semi-direct product, 183, 261,
281
Semi-group, 67, 88-90
Serre duality, 144-145, 161-164,
' 169, 319
Sheaf cohomology, 56-57, 59-65,
144-145, 164, 167, 189
Sheaf morphism, 60
Sheaves, 56-59
Sigma model, 181, 258
Signature complex, 108-110, 118
Signature operator, 118, 128,
131-133
Simply connected, 23-25, 113,
150-151, 173, 240, 244, 275,
327, 333
Singular support, 30, 47
Skein relation, 342, 351, 353-355
for the Alexander polynomial,
342
for the Jones polynomial, 342,
351, 353-355
Smash product, 6
Smooth manifold, 23, 26, 152
Smooth section, 37, 59
Smooth structure, 23, 26
Smoothability, 24, 242, 332 see
also Donaldson’s theorem
and Donaldson invariants
Smoothing operator, 46, 54-55
Sobolev space, 47-55
and Sobolev embedding theo-
rem, 52
Soft sheaf, 63
Spectral flow, 284, 295-296,
326-327, 330-331
Spectral sequence, 17, 19
Spin complex, 113-114, 118, 277,
282
Spin structure, 113
Spin-manifold, 113, 270
Split exact sequence, 70, 179
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Splitting principle, 79-80, 82,
8688, 105, 111, 282
Stability group, 150, 232-233
Stable equivalence class, 69, 72
Stable range, 72-74
real, 72
complex and quaternionic, 74
Stalk, 57-58, 60
Stationary phase, 346
Stationary point, 346
Steepest descent, 212-214,
326-327
Stiefel-Whitney classes, 16, 270
Stratification, 196
String tension, 259
String theory, 259-268, 289, 316,
318
critical dimension of, 281-283
Sugawara construction, 181, 187
Supersymmetric field theory, 335
Supersymmetric quantum me-
chanics, 207-215
Supersymmetric string theory,
286, 289
Suspension, 7, 9, 76
Symbol complex, 9194,
102-104, 106-107, 110-111,
114, 121, 126
Symbol space, 43-44
Symplectic group, 74, 78
Symplectic manifold, 147
Symplectic structure, 350
System of functions, 100-101

Tame knots, 340

Teichmiiller space, 148-156, 265

Test functions, 51

Thom homomorphism, 94—96

Todd class, 78-79, 82, 98, 100,
105, 112 R

Topological charge, 244, 337

Topological field theory, 322-360

Topological index, 89, 94, 96-97,
120, 122, 126
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Topological manifold, 2, 20-22,
25
Topological quantum field the-
ory, 322-360
and knots,
Torsion, 283 see also global
anomaly
Torus, 147, 151, 311, 356-358
Teichmiiller space for, 153-156
maximal, 188
Morse theory on, 196, 199
Trace class, 271
Transgression, 224, 298
Transition function, 2, 19,
82-83, 86, 145
Trefoil, 340 see also clover leaf
Triangle anomaly, 269
Tubular neighbourhood, 94-96,
356
Tunnelling, 212-213, 322, 330

Unimodular, 23, 25
Universal coefficient theorem,
284

Vanishing theorem, 163-165, 189
of Kodaira, 163, 189
for instantons, 236
Variety, see algebraic varieties
Vector bundles,
and ellipticity, 36-41
complex, 65, 74, 81-87, 103,
107, 121
and K-theory, 65-75
real, 70-74, 83-86
and stable equivalence, 65-68
quaternionic, 73-74
Vertex operator, 316
Virasoro algebra, 174-175,
180-183
and conformal field theory,
307-311, 317
representations of 185-187
Virtual dimension, 68-69, 282
Von Neumann algebras, 341

Index

Wave equation, 29-30

Weierstrass gap theorem,
167-168, 319

Weierstrass points, 166-169

Weil-Petersson metric, 265-266

Weitzenbock positivity, 163, 236

Weyl chamber, 190, 291

Weyl tensor, 236

Whitney sum, 79, 82, 84, 86

Wilson line, 343-344, 356-357,
360

Winding number, 245, 249

World sheet, 259

Yang-Mills connection, 118, 270,
279, 281

Yang-Mills equations, 25, 229,
230, 242

Yang-Mills-Higgs system, 246,
250, 256 see also monopoles

Zero locus, 137-138

Zero modes, 336

Zero section, 38, 43, 92, 94

Zeta function, 131-132, 261,
273-274, 283, 348



