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Introduction

This book is concerned with two areas of mathematics, at first
sight disjoint, and with some of the analogies and interactions between
them. These areas are the theory of linear differential equations in one
complex variable with polynomial coefficients and the theory of one-
parameter families of exponential sums over finite fields.

The simplest example of an exponential sum over a finite field is
this: take a prime number p, a polynomial f(X) in Z[X], and form the
sum

) exp(2mif(x)/p).
x inFp
By letting the polynomial f(X) vary in a one-parameter family
f.(X) € Z[t, X], eg., the family f,(X) = tf(X), one is led to one-parameter

families of exponential sums.
The above exponential sum is formally analogous to a complex

path integral
Ief(")dx.

And if we let the polynomial f(X) vary in a one parameter family
f(X) € ZIt, X], eg., the family f(X) := tf(X), the resulting integral, eg,

I etf(x)dx'

formally satisfies a differential equation with respect to the variable t.

There are four basic questions about this concrete situation with
which the book is concerned:

(1) For given p, how do the above exponential sums vary as t varies? Is
there a "Sato-Tate law” which governs their distribution, and if so what
is it? Thanks to Deligne, we know that under mild hypotheses there is
such a Sato-Tate law, and that it is in turn governed by a certain

complex semisimple algebraic group Ggeom P’ the "geometric
monodromy group” attached to our situation in characteristic p. So this
question is essentially "What is Ggeom,p?"'

(2) How does the answer to (1) depend upon p? How does Ggeom,p

depend upon p? In practice, one finds that whenever one can compute
Ggeom,p' its identity component, and often Ggeom,p itself, is

independent of p >> 0. Can one prove this in general?
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(3) What is the differential galois group Ggq] of the the differential
equation satisfied by the integral?
(4) What is the relation of Ggal to the common value of the groups

Ggeom,p
practice that when one can compute Ggall and when Ggal turns out to

(or of their identity components) for p >> 07 It turns out in

be semisimple, then for p >> 0 the groups Ggeom,p are all equal to Ggal'

Can one prove this in general?

There are of course more general sorts of exponential sums, and
we will deal with them systematically in the course of the book. The
reader should keep in mind that already the simple ones above
illustrate the essential phenomena and contain the essential difficulties.

The book is arranged in four parts, in a diamond pattern of logical
dependence

Part |
v N

Part I1 Part III
N v

Part [V,

Part I (Chapter 1): results from representation theory

Part II (Chapters 2,3,4,5,6): results about differential equations and
their differential galois groups Ggal'

Part Il (Chapters 7,8,9,10) : results about one-parameter families of
exponential sums and their geometric monodromy groups Ggeom-

Part IV (Chapters 11,12,13,14): comparison theorems relating Ggq) and

Ggeom ©f suitably “corresponding” situations.

We have tried to strike a balance of emphasis between the
underlying general theory and its application to concrete problems, in
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such a way that the two complement each other, with the applications
serving both to illustrate and to motivate the general theory. The
reader will judge how well we have succeeded.

Parts Il and III especially are written in this spirit of "applied
mathematics”; there is a strong emphasis on the effective
calculation of the groups Ggal and Ggeom respectively, when one is

given a concrete differential equation, or a concrete one-parameter
family of exponential sums. .

The effective calculations in Parts II and III ultimately rely on the
general representation-theoretic results of Part I. However, in order to
be able to bring these results to bear, we make essential use of some
recent developments in the theory of differential equations and in the
theory of one-parameter families of exponential sums.

In the case of differential equations, there are four essential
ingredients. The first is the theory of the "slopes”, or “breaks”, of a
differential equation on an open curve at one of the points at infinity.
The second is the general theory of holonomic D-modules on curves,
especially the theory of the “middle extension” and the structure
theory of irreducible D-modules. The third is the theory of the Fourier

Transform of D-modules on Al. The fourth is the idea of the (derived
category) convolution of holonomic D-~modules on both the additive

group Al and on the multiplicative group G,,. [There is also a natural

notion of convolution of holonomic D-modules on elliptic curves, which
seems well worth exploring]

What happens in the case of one-parameter families of
exponential sums? Roughly speaking, studying a "one parameter
family” means studying a lisse ¢-adic sheaf on an open curve over a
field of postitve characteristc p # L. In this case as well there are four
essential ingredients, which are closely analogous to the D-module
ingredients discussed above. The first is the the theory of "breaks” (in
the sense of the upper-numbering filtration) of ¢-adic representations
of inertia groups at the points at infinity. This theory was in fact the
inspiration for its DE. namesake. The second is the theory of perverse
t-adic sheaves on curves, especially the structure theory of
irreducibles. This theory is analogous to the theory of holonomic D-
modules on curves over €. The third is the theory of the ¢-adic Fourier
Transform for perverse sheaves on Al over a field of positive
f:haracteristic p = L. In the ¢-adic case, we have much more precise
Information about Fourier Transform than we do in the D-module
case, thanks to Laumon's “principle of stationary phase’, which
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(d/d=z)" - plm)(z; L),
where d/dz is the invariant derivation, and where p(m)(z; L) is the
m'th derivative of the Weierstrass P~function p(z; L)? And what is the
differential galois group of such an equation? Same questions for
equations of the more general form

Pp(d/dz) - (an elliptic function with poles only in L),

where P, is a constant coefficient polynomial in one variable.

Our results on Ggeom for t-adic hypergeometric sheaves in
characteristic p were only valid for large p. For small p, can Ggeom be
an “interesting” group? In any case, what is it?

The ¢-adic hypergeometrics we construct in characteristic p live
naturally on G,,. Up to a multiplicative translation and a shift, they
are precisely those of the form R(p!'f, for some integer n 2 0, some
homomorphism of tori

¢ (G = Gy,
and some lisse rank one sheaf ¥ on the source (G,,)" of the form

F = I'q;(Zaixi)o(@iI'xi(xi))'
There is an obvious generalization of this sort of object on G, to a class
of "hypergeometric objects” on tori T of arbitrary dimension. One
considers Rq:!'f, for some integer n 2 0, sone homomorphism of tori

¢ (G) > T,
and T on the source as above. This class of "hypergeometrics” on tori is

stable by | convolution, by external product, and by | direct image by
homomorphisms of tori, and for G, gives back the original notion. One

can also pursue the obvious holonomic D-module analogue of this
generalization, obtaining hypergeometric holonomic D-modules on tori
of arbitrary dimension over €. This notion of hypergeometric in several
variables can be viewed as an algebraic incarnation of the classical
definitions [Er, 58] of hypergeometric functions of several variables as
inverse Mellin Transforms of monomials in ['-functions. What is the
relation between this point of view and the current work of the Gelfand
school [Gel] on the general theory of hypergeometric functions?

My interest in the generalized hypergeometric differential
equation as a beautiful "test case” for the study and calculation of
differential galois groups was aroused by the paper [B-B-H] of Beukers,
Brownawell, and Heckman. Many of the results of the book were
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worked out with the collaboration of Ofer Gabber, whose contribution
cannot be overestimated. It was Bill Messing who first posed the crucial
question “If the groups Ggeom,p are independent of p >> 0, what is an a

priori description of the group to which they are all equal?”.

It is a pleasure to acknowledge the support of the John Simon
Guggenheim Memorial Foundation, the I HES., the University of Paris
at Orsay, the National Science Foundation, and Princeton University
during the writing of this book. It is also a pleasure to thank Benji
Fisher for his meticulous proofreading of the entire manuscript, and his
many helpful comments, corrections, and suggestions.

I respectfully dedicate this book to my teacher Bernard Dwork,
who discovered the intimate relations between the p-adic theory of
classical differential equations and the p-adic variation with
parameters of zeta and L-functions. In particular, he was the first
person to understand (cf [Dw]) that classical differential equations with
irregular singularities had deep meaning in arithmetic algebraic
geometry. (The prevailing dogma held that only equations with regular
singular points should have meaning.) Indeed, he showed that in many
cases the p-adic variation with parameters of exponential sums was
controlled by the p-adic theory of precisely the differential equations
with irregular singularities whose Ggal's play such a crucial role in this

book.



CHAPTER 1
Results from Representation Theory

Throughout this chapter, we work over an algebraically closed
field € of characteristic zero. We fix an integer n22, and denote by V an
n-dimensional C-vector space. We suppose given a Lie-subalgebra ¢ of
End(V) which is semisimple and which acts irreducibly on V. We first
give a fundamental “torus trick” (Theorem 1.0) of Ofer Gabber which is
extremely useful in diverse contexts. We then give a sequence of
criteria (Theorems 1.1-16), some classical and some new, which insure
that ¢ is either 3L(V) or 30(V) or (for dimV even) 3®(V) or that dimV
is 7,8, or 9 (and we give the list of possible ¢'s for these). The basic tool
in most of these proofs is that of "chains” of weights in representations;
I am indebted to Ofer Gabber for having explained to me both this
method and most of the criteria discussed below.

Theorermn 1.0 (Gabber). Let 4 be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that a diagonal subgroup K of
GL(V) normalizes . Let %1, .., Xn be the n characters of K defined by

the diagonal matrix coefficients; i.e, k = Diag(¥ 1(k), ... ,X 1(k)) for k in K.

Consider the "torus” 7 in End(V) consisting of those diagonal matrices
Diag(X1,..,Xn) whose entries satisfy the conditions

£X;=0
Xj - Xj = Xk - Xm whenever Xj/Xj = Xk/%Xm on K.
Then T lies in ¢.

proof Consider the action of K on End(V) by conjugation. By
assumption ¢ is stable under this action. For any character p of K, the
p-eigenspaces of § and of End(V) are related by 3(p) = ¢ n End(V)(p).
Because K is diagonal, we have

% =9,3(p), EndV)s= @, End(V)(p).
Now in End(V), the line Ei,j of matrices whose only possibly nonzero
entry is in the (i,j) place transforms under K by %i/ X Therefore
End(V)(p) = 0 unless p = X/ X j for some (i,j), and for such p we have

End(V)(p) = ©; j such that p = X% Ejj
Now consider a diagonal matrix X = Diag(Xy, .., X). Acting on End(V),
ad(X) stabilizes each line E; j, and multiplies it by ¥X; - Xj. So if X
satisfies the condition

X - Xj = Xk - Xm whenever Xi/Xj =2 Xk/%m on K
then for any p with End(V)(p) 2z 0, ad(X) acts on End(V)(p) by a scalar
Xp (namely Xp = Xj- Xj for any (i,j) with p = X/X j). Therefore ad(X)
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maps $(p) to itself (since ad(X) maps every subspace of End(V)(p) to
itself), and hence ad(X) maps ¢ to itself. Because ad(X) is a derivation of
End(V), it must be a derivation of the subalgebra 4. Because ¢ is
semisimple, every derivation of ¢ is inner, so there exists an element Y
in ¢ such that, on ¢, ad(X) = ad(Y); this means precisely that X-Y in
End(V) is an element which commutes with ¢. Since ¢ acts irreducibly
on V, X - Y is necessarily a scalar. This scalar is necessarily
(1/n)trace(X-~Y). Because Y is in the semisimple ¢, trace(Y) = 0. So if
trace(X) = 0 in addition, then X - Y = 0, whence X lies in §. QED

In the following discussion of “recognition criteria“ for the
standard representations of the classical groups, we will sometimes
abbreviate as "std’ the standard representation of 3L(V), 3P(V), 30(V)
on V.

Theorermn 1.1 (Kostant [Kos]) Let ¢ be a semisimple Lie-subalgebra of
End(V) which acts irreducibly on V. Suppose that with respect to some
basis of V, ¢ contains the diagonal matrix h :=Diag(n-1, -1,.., -1). Then
9 is 3L(V).

Theorem 1.2 (Kostant [Kos], Zarhin [Za-WS, A2.1]) Let § be a
semisimple Lie-subalgebra of End(V) which acts irreducibly on V.
Suppose that with respect to some basis of V, 4 contains the diagonal
matrix h := Diag(1, 0, .., 0, -1). Then ¢ is either 8L(V) or 89(V) or (for
dimV even) 3P(V).

Theorern 1.3 (Gabber) Let § be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that with respect to some basis of
V, § contains the “G2 torus” consisting of all diagonal matrices of the
form

h(x,y) := Diag(x+y, x, v, 0,...,0, -y, -x, -x-y).
Then ¢ is either 3X(V) or 30(V) or (for dimV even) 3P(V) or we have
one of the following exceptional cases:

n=7:9 = Lie(G2) in the 7-dim'l representation of G2

n=8:¢ = Lie(SO(7)) in the 8~dim’]l spin representation

9 = Lie(SL(3)) in the adjoint representation

9 = Lie(SL(2)xSL(2)xSL(2)) in stdestdestd
9 = Lie(SL(2)xSp(4)) in stdestd
9 = Lie(SL(2)xSL(4)) in stdestd

n=9: ¢ = Lie(SL(3)xSL(3)) in stdestd.
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In fact, one uses the full strength of having a G, torus only to take care

of the non-simple cases; the simple case is handled by

Theorem 1.4 (Gabber) Let ¢ be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that ¢ is simple and that with
respect to some basis of V, ¢ contains the diagonal matrix
h:=Diag(1,1,0,..,0,-1,-1). Then ¢ is either 3L(V) or 30(V) or (for dimV
even) 3P(V), or we have one of the following exceptional cases :

n=7:9 = Lie(G2) in the 7-dim’l representation of G2

n=8: ¢ = Lie(SO(7)) in the 8-dim’] spin representation

9 = Lie(SL(3)) in the adjoint representation.

Remark 1.4.1 If in Theorem 1.4 we no longer assume that ¢ is simple,
the non-simple possibilities are the image of 8L(3)x 3L(3) in stdz®stds,

and, for every k22, the image of
BZ(2)x(8L(k) or 88(k) or (for k even)3P(k)) in stdy @std).

Remark 1.4.2 In the simple case, there is an asymptotic result [Za-
LS.Thm. 6] of Zarhin which gives Theorem 1.4 as soon as the dimension
of the representation is sufficiently large. Zarhin proves that if § is a
simple irreducible subalgebra of End(V) and if there exists a semisimple
element h in ¢ which has dim(h(V)) = d, then ¢ is 3L, 3P or 30
provided that dimV > 72d%. This given Theorem 1.4 (whose h has d= 4)
as soon as dimV > 72x16.

Theorermn 1.5 (Kazhdan-Margulis, Gabber, Beukers-Heckman [B-H]) Let
¢ be a semisimple Lie-subalgebra of End(V) which acts irreducibly on V
Suppose that ¢ is normalized by a pseudo-reflection ¥ in GL(V). Then ¢
1s either 3L(V) or 80(V) or (for dimV even) 3P (V). Moreover,

if det¥ = +1, then ¢ = 3L(V);

if det¥ = +1, then ¢ = 3L(V) or (for dimV even) 3P(V);

if det¥ = -1, then ¢ = 3L(V) or 36(V).
Theorem 1.6 (Gabber) Let ¢ be a semisimple Lie-subalgebra of End(V)
which acts irreducibly on V. Suppose that dimV is a prime p. Then 9 is
Ei'ther 3L(2) in SymP~1(std), or 8L(V) or 36(V) or, if n=7, possibly
Lie(G2) in the seven-dimensional irreducible representation of G3.
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1.7 The proofs

Notice that in Theorems 1.1, 12, 13, 14, 15, 16 the cases listed
can be easily checked to have the property in question; the problem is
to show that these are the only cases. In doing this we will make
explicit use of classification, via the Bourbaki tables. Notice also that the
" ¢ simple” case of Theorem 1.3 is a trivial consequence of Theorem 1.4.

Before beginning the proofs of Theorems 1.1 to 16, we need to
review some basic facts, which are certainly well-known to the experts
but for which we do not know a convenient explicit reference.

Lemma 1.7.1 Let 4 be a semisimple Lie subalgebra of End(V), ¥ a
Cartan subalgebra of ¢, and h in ¥ an element with rational
eigenvalues. Then there exists a Weyl chamber such that for the
corresponding notion of positive root, we have «(h) 2 0 for any positive
root «.

proof The Q-dual of the Q-span of the roots is a Q-form Hg of #, and h
lies in ®q. Picking a vector-space basis of X which starts with h, we

get a lexicographic order on the Q-span of the roots, so a notion of
positive root, such that if « is a positive root, then «(h) 2 0. One knows
that this notion of positive root is the one associated to some Weyl
chamber ([Bour L6}, 1, 7, Cor 2 of Prop 20). QED

Suppose that (, ®) is a split semisimple Lie algebra over €, and
that we have chosen a Weyl chamber. Thus we may speak of positive
roots, simple roots, et cetera. We denote by wg the unique element of
the Weyl group which interchanges positive and negative roots. Recall
the notion of a "chain” between two weights p and 2 of a finite-
dimensional representation M of ¢; this is a sequence of weights of M
starting with 4, ending at 2, such that each successive weight in the
sequence after the first is obtained from the previous one by
subtracting a simple root. We will make essential use of the fact that

Lemma 1.7.2 Any two weights u and A of M such that p - A is a
nontrivial sum Zng« of simple roots with integral coefficients ny 2 0

can be joined by a chain.

proof The proof is by induction on £ngy, the case Zng = 1 being trivial.
In terms of a W-invariant inner product on the Q-span of the roots, we
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write

0 < (-2, u-a) = (-2, Engx) = Tng(p-a,«).
Since all the ng 2 0 and at least one is >0, we see that for some simple
« we must have (pu-2,x)>0, ie., (n,«) > (A,x). Therefore either (u,«) > O
or 0 > (3,x). Now for any W-invariant inner product, we have, for any
root « and any ¢ in the Q-span of the roots

2(o,x)/(x,x) = o(Hg).

Thus we have that either p(Hg)>0 or A(Hy)<0. In the first case p-« is
also a weight, and in the second case A + « is also a weight ([Bour L8],
7, 2, Prop 3(i), page 124 ). Now by induction on £ny, we can pass from
M- to A, or from M to a+x. QED

Corollary 1.7.2.1 Let M be an irreducible representation of 4. There
exists a chain going from the highest weight to any given weight of M,
and there exists a chain from any given weight to the lowest weight.

Given an irreducible representation M of ¢, denote by A and v its
highest and lowest weights respectively. For any chain a=2a4, 25, An=v
from A to v, with successive drops the simple roots «j := Aj = Aj4q for i
= 1,.,n-1, we have

AmvE Ty e ®i 7 Inge
This shows that the multiplicity n, with which a given simple root «

occurs as drops in such a chain is independent of the chain. Moreover,
the length of any such chain is 1 + &n_.

Lermnma 1.7.3 For a faithful irreducible representation M of 4, every

simple root occurs as a drop in every chain from highest weight to
lowest. '

proof If M is faithful, then every root, and in particular every simple
root p, is a difference of two weights of M , say o and T: o = T - p. So
if we take a chain from a to T and concatenate to it a chain from o to
v we get a chain from A to v in which p occurs as a drop; therefore

Np > 0 and hence p occurs as a drop in every chain from X to v. QED

Using ([Bour L8], 7, 2, Prop 3(i), page 124 ), one sees

I-°ltnma 174 For a fundamental representation M of.g, with highest
weight w, sither

1) « is an isolated point of the Dynkin diagram, the representation is
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the standard representation of the corresponding AL(2) factor, and the
only chain from highest weight to lowest is Wy, Wx~x.

or
(2) « is not isolated, every chain from highest weight to lowest begins
We, We=%, W ~%x—P,
where p is any simple root adjacent to « in the Dynkin diagram, and
every chain ends
¥ -wolax) + wolwy), ~wolx) + wolwey), wolwe),
where ¥ is any simple root ad jacent to -~wg(«) in the Dynkin diagram.

(1.7.5) We now take up the proofs of Theorems 1.1, 12, 13, 14. We will
consider successively the three cases

9 non-simple

9 simple but V not fundamental

¢ simple and V fundamental.

We begin by considering the non-simple case. In Theorems 1.1, 1.2,
we are given a nonzero diagonal element h which has an eigenvalue of
multiplicity one on V. Therefore if V = V1V3 with each factor of

dimension at least two, then V4 cannot be the trivial representation of

h (otherwise all its weights in V would occur with multiplicity divisible
by dimV4). By symmetry, h is also non-trivial on V5 .

In Theorem 1.3, we are given commuting diagonal elements h(1,0)
and h(0,1), each of which has an eigenvalue of multiplicity two.
Therefore if V = V4 ®V5 and dimV4 2 3, then each of these h's is

nontrivial on V4 (for otherwise all its weights in V would occur with
multiplicity divisible by dimV4). If dimV4 = 2, then the sum h(1,0) +
h(0,1) is nontrivial on V4 (since it has an eigenvalue with multiplicity
one) and hence at least one of the h's is nontrivial on V4. Since dimV,
= dimV/2 23, both h's are nontrivial on V5. Therefore at least one of
the two elements h(1,0) or h(0,1) must be nontrivial on both V4 and on
V.

Thus if V = V{®V3 in Theorems 1.1, 12, or 1.3, we have a
diagonal element h of § which acts nontrivially on both V4 and on V.

This h is Xe1 + 1Y with both X and Y non-trivial; both X and Y have
at least two distinct eigenvalues (because they are semisimple and
their traces are zero). Let X resp. Y denote the finite subset of Q
consisting of the distinct eigenvalues of X resp. Y. Then the set of
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distinct eigenvalues of h = X®1 + 1®Y is the set X + Y = { x+y| x in X,
v in Y). Then by the Card(X + Y) > CardX + Cardy - 1 inequality (valid
in any Q-vector space), and the fact that CardX and Cardy are both
»2, we arrive at a contradiction in Theorem 1.1 (where h has only two
distinct eigenvalues) and in the other cases we see that X and Y each
have exactly two distinct eigenvalues. Thus we have X=Diag(a,. ,a,b, ,b)
and Y = Diag(c,...c.d,...,d); with a>b, a with multiplicity A, b with
rultiplicity B and c>d, ¢ with multiplicity C, d with multiplicity D.

To discuss Theorems 1.2 and 1.3 simultaneously, we introduce the
parameter k such that the nonzero eigenva&es of h =Xe1 + 1¢eY are 1
and -1, each with multiplicity k. Thus k=1 is Theorem 12, and k=2 is
Theorem 1.3. The highest weight in X1 + 1Y is a+c, hence AC=k.
Sirilarly we have BD=k. Thus A<k with equality iff Cz1, and B¢k with
equality iff D=1. Thus dimV4 = A + B ¢ 2k, with equality iff dimV; =
C+D = 2. So either we have (2 dim')®(2k dim'l) or both V; have

dimension in [3, 2k~1]. For k=1 this means (2dim)®(2dim), so the
standard representation of 30(4) ~ 3X(2)x38X(2). For k=2, this means
that either we have (2 dim, Diag(1/2,-1/2))® (4 dim, Diag(1/2,1/2,-
1/2,-1/2)) or (3dim)®(3dim). This last case can only be 3L(3)x38X(3) in
(std or its dual )®(std. or its dual). In the penultimate case, the only
possibility for the four dimensional faithful representation is one of the
three classical groups 8L£(4), 3P(4), or 80(4) in std. or its dual (in the
representation Symm3(std2) of 8L(2), the element Diag(1,1,-1,-1) is not
in the image of 3L(2)).

We now turn to Theorems 1.1, 1.2, 14 in the case when ¢ is
simple, but where V is not fundamental. We pick a maximal torus
containing the given element h and a Weyl chamber such that «(h) 2
0 for all positive roots «.

In Theorem 1.1 this case does not arise (V is automatically
fundamental if h has only two distinct eigenvalues). In Theorems 1.2,
1.4, where the element h has exactly three eigenvalues, if V is not
fundamental then its highest weight is a sum of two fundamental
weights, in both of whose representations h has exactly two
eigenvalues. [For suppose that the highest weight of V is the sum of two
dominant weights » and »" If # and ¥’ are the weights occurring in V,
and in V,- respectively, then the set of weights of V545 is ¥ + H' ([Bour
L8}, 7, 4, Prop. 10), hence the same is true of the sets of h-weights.
_De“°te by X = h(!), Y := h(®") these sets of h-weights, and apply the
Inequality

Card (X + Y) + 1 2 Card(X) + Card('y).
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Because h is diagonal 20 and the representations are faithful (3 being
simple), we have Card(X), Card(y) both 2:2.If h has only two distinct
eigenvalues on V, then Card (X + Y) = 2, and we have a contradiction,
whence V was fundamental. If h has three distinct eigenvalues on V,
then Card (X + Y) = 3, and hence Card(X) = Card(}}) = 2, whence by
the preceding argument both a and »' must be fundamental weightsl

We now use the additional fact that if if W, denotes the set of
weights with multiplicity of V5 then A" + W, occurs in W, ;' ([Bour
L8], 7, exc. 21). Passing to $he opposite (wg) Weyl chamber, if we denote
by a"the lowest weight in V,', it follows that A" + W, occurs in Wy,
(In fact, the argument suggested in the Bourbaki exercise shows that if
¢ is any weight of V', then & + W, occurs in W, +3) Using this, we can
bound the pairs of fundamentals » and x' for which an h in ¢ acts on
V,ﬁ,\- as

Diag(1,..,1 repeated k times,.some 0's., -1,.,-1 repeated k times).
Let X and Y be the diagonal matrices of trace zero with exactly two
eigenvalues (necessarily rational) by which h acts on V, and on V'

respectively; say X = (a rep A times, b rep B times) with a>0>b, and
Y = (c rep C times, d rep D times) with ©>0>d . The highest weight space
of V5 ' must have h-weight ¢ (rather than d). Because

(h-weight a on V,)®(highest wt a')

appears weightwise with rmultiplicity in V45, we conclude that the
h-weight a+c occurs with multiplicity > A in Vy45°, whence Atk. We
claim that in fact Ack-1if C22.For if C22, there is a second h-positive
weight in Vy', and taking a chain from ' to it we find an h-positive
weight of V,* of the formn 2" - u for u a simple root. Now use the fact
that

(any wt of V,) + (any wt of Vy1)
occurs as a weight in V,4+,'. We claim that among the weights

(a wt where h=a on V,) + (a' =),
there is at least one which is not of the form

(a wt where h=a on V,) +a',
for if this were not the case then the set of weights occuring in (h=a on
V,) would be closed under subtracting p, which is absurd. Thus we

have
A ¢k and A ¢ k-1ifC> 1.
Similarly arguing with the lowest weight, we obtain
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B ¢ k, and B ¢ k-1 if D »1.
putting this together, we see that A+B ¢ 2k, with equality if and only if
Cc=D=1. Thus either (i) one of our fundamentals is two-dimensional and
the other has dimension 2k, or (ii)both have dimension 3¢ dim ¢ 2k-1.

For k=1, only the first case is possible, and it is the case of 30(3)
in its standard representation.

For k=2, neither of the fundamentals has dimension 2 (§ would be
A8L(2), which doesn't have a fundamental of dimension 2k for k22) so
each of the two fundamentals is three-dimensional, each with a
Diag(x,x,y) element, so by a trivial case of Kostant's theorem each is a
fundamental representation of 3L(3). So the two possibilities are
SymmZ(std. rep. or its dual of 8L(3)), which by inspection does not
contain a G2 torus, or even a Diag(1,1,0,0,~1,-1), and the ad joint

representation of 8L(3), which does by inspection contain a Gy torus.

We now turn to the case when ¢ is simple and V is fundamental.
Agein we pick a Cartan subalgebra containing h and a Weyl chamber
such that if p is a positive root, then p(h) 2 0. We denote by wg the

unique element of the Weyl group which interchanges positive and
negative roots. Because V is fundamental, its highest weight a is wy for

some simple root «, and its lowest weight v is wglwg) = “Wowgle): By
our choice of Weyl chamber we have

a(h) 2 any h-eigenvalue on V 2 wv(h),
SO

a(h) = the highest h-weight = n-1 in Thm 1, =1 in Thm's 2,4,
v(h) = the lowest h-weight = -1.
Pick a chain of weights 2= 24, A2, .., Aq = v from the highest to the
lowest, and consider the sequence 2;(h) of h-weights. This is a non-

increasing sequence of integers, whose successive drops are the integers
«i(h), where o := aj - Ajeq.

In Theorem 1.1, this sequence is n-1,-1,..,~1, and hence «(h)=n
(from the first step Wy to wy -a«); after this first drop the h-weight
stays -1, so p(h) = O for p simple, pzo. So in Theorem 1 the situation is

Wg = WogWg = « + a sum of the other basic roots;
the only case is (Ap, std.or its dual) as may be checked from the
Planches in [Bour L6]. This concludes the proof of Theorem 1.1.

b In Theorem 12, either § is 3L(2) or every chain from top to
Ottom has at least three terms ( 2 1 + rank, since every simple root

oceurs) so has h-weights 1,0,..,0,-1. Looking at the beginning and ending
steps we see
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Wy = WoWeg = &« + (- wplx + other basic roots.
If « = (- wg)x, then this is the Theorem 1.1 situation above, while if
= (- wg)x then
Wg = o« *+ others, « = (- wpl«.
This occurs only for B,3, C,2, Dy4, std., again by checking the Planches,

in [Bour L6]. This concludes the proof of Theorem 1.2.
We now cons1der the situation of Theorem 1.4, where the element‘
h is Diag(1,1,0,..,0,~1,-1). Since the highest weight 3 and the lowest
weight v each occur with multiplicity one, we see that there is a
unique weight (say 22) other than the highest weight for which

az2(h) = 1, and this weight occurs with multiplicity one. Similarly thers!

Ao R VR

is a unique weight a4q-1 other than the lowest one with ag-1(h) =

Al i 2L

Taking a chain passing through 12, we see by looking at the h—weights
that a2 must be the immediate successor of A; similarly, looking at the,

h-weights in a chain passing through ag-1 shows that its immediate

!
successor must be v. Therefore ( by Lemma 4) every chain has the |
form A, A2, 777, Ag-1, ¥ 5

3

If A, A2, Ag-1, v is a chain, then there are no other weights in V

a‘
i
]
more simple roots, and hence could not be a simple root itself). As thesJ‘_
weights occur with multiplicity one we see that dimV = 4; among ’
fundamental representations of simple ¢‘'s, the only
possibilities are 3L(V) and 3WP(V) (this last is spin for 30(5)).
In case A, A2, Ag-1. v is not a chain, then every chain has the

(ctherwise some chain would exhibit it, and such a chain would have
intermediate terms; therefore 22 - Ag-1 would be the sum of two or

form 2a, A2, 7?77, Ad-1, v with at least one ? term. In this chain, the
sequence of h-weights is 1,1,0,..,0,~1,-1 with at least one intermediate !
zero. Therefore the simple roots p have p(h) = 0 or 1, and in writing 2
v as anb, either there are exactly two simple roots p with p(h)=1,

b

each with coefficient ng= 1, or there is a unique one, with coefficient
np=2. But we have seen (Lemma 1.7 4) that any simple root adjacent

to « passes from second to third place in some chain, and similarly any
neighbor of -wp(x) passes from third last to second last in some chain.

So any neighbor p of « occurs in A-v, as does any neighbor of -wg(«x).

This means there are at most two distinct simple roots §,¥ with
g(h) =1 =¥(h). If there are precisely two, then
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We - WOWe = B + ¥ + others,
p adajcent to o,
¥ adjacent to ~wp(x), and
{simple roots adj to «} v {simple roots adj to ~wg(x)} = {p, ¥}.

If there is only one such, then it is the unique neighbor of « and the
unique neighbor of -wg(«), and we have

Wy =~ WOoWeg = 2p + others,

p the unique neighbor of «,
p the unique neighbor of -wq(«).

At this point one must patiently check the Bourbaki tables! To do
this easily, we break up into four cases, depending on whether p=Y or
not, and on whether or not « is self dual.

If p=¥, then both « and -wg(«) have unique neighbors, so both
are extreme points of the Dynkin diagram. If « and -wg(«) coincide,
then « is a self~-dual extreme point and we have

Wwe = § + others, « a self-dual extreme pt, p its unique

nbr.

Among the exceptional groups, inspection shows that only G2, w1
qualifies. The classical self-dual extreme points are none for Ap,2, w1
and wy for By and Cy, w1 for Dodq. w1 and the two spins for Deyen.
For wy in B,C,D the coef of «2 is 1, so these occur. For wy in By the
coef of «xg-1 is (£-1)/2, which is 1 only for £=3, corresponding to the 8-
dim spin rep of 30(7). For wy in Cy, the coef of xy-1 is ¢-1, only 1
for 8=2, corresponding to the standard rep of 30(S5). For either spin
In Deyene the coef of xg-2 is (8-2)/2, which is 1 only for £z4, in which
case by triality the image of the rep. is 30(8) in its standard
representation.

If « and -wg(«) are distinct in the case ($=Y), then p has two
extreme point neighbors, so one end of the diagram looks like the end of
the Dy ,3 series, and & is odd because the two ends « and -wp(x) are
distinct. This means we can only have one of the spin representations,
but for these the sum wy-1 + wy contains «y-2 with coefficient -2,
which is never 2 since ¢ is odd. So this case does not exist.

If we are in the case p2Y, and if p is the unique neighbor of «,
then « is extreme and hence so is -wo(x) ; similarly if ¥ is the unique
neighbor of -wg(«) then ~wg(«) is extreme and hence so is «. This then
means that both « and -wg(«) are extreme, and have different
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neighbors, so « cannot be selfdual and

Weg -~ WOWwe = B + ¥ + others, « nonselfdual extreme.

The possibilities here for nonselfdual extremes are only Ay, w1 and wy;
Dodd. spin; Eg, w1 and wg. The D case is ruled out by the requirement
that the unique neighbors of the duals be distinct. The Eg case is ruled
out because w1 *+ wg has all coef's 22. The case of the standard
representation wjq of Ay and its dual w, is fine for 224 ( since
Witwp = X X2+ L+ o).

If pzY¥,we see as above that if « (and hence -wg(x)) is not
extreme, each of « and -wg(«) has both p and ¥ as neighbors. As there
are no closed diamonds in the diagram, it must be that « = -wg(«);
then « has exactly two neighbors p and ¥ and

weg = 1/2( p + ¥) + others, « selfdual with nbrs 8,¥
Again by inspection the exceptional groups are ruled out (no w, has
1/2 as any coef). In the A series, the only selfdual is wy for A2k-1, and
this only works if k=3, corresponding to the standard representation
of 30(6). In the B and C series, no w, has two coef's 1/2. In the D
series, those with exactly two neighbors are w2 through wj-3, and

none of these has any coef. 1/2. This concludes the proof of Theorem
14, and with it, Theorem 1.3. QED

(1.7 6) We now turn to the proof of Theorem 15. We begin with the
case when ¢ is normalized by a reflection ¥. If the automorphism Ad(¥)
of the corresponding connected semisimple group G in GL(V) is inner,
then G contains the diagonal (in a suitable basis of V) matrix

A = Diag(-a,a,a,..,a)
for some nonzero a. (Therefore ¢ 2 3P(V) if dimV 2 4, because the
group Sp(V) does not contain Diag(-a, a,..a); in Sp(2d), the 2d
eigenvalues of any element can be grouped into d pairs of inverses.) .
Taking a maximal torus T of G which contains A, and fixing some Weyl
chamber, we see that the (~a) eigenspace of A is a multiplicity one
weight space for T, say with weight ©. Therefore there exists a simple
root &« with «(A)=-1 (any simple root « that takes us to or from ¥ in a
chain of weights which passes through t). Now consider the

corresponding 8X(2) for this simple root. For any weight space V?,
X V2 is in V2*® and X V> is in V2~%_ So if we write V = Vg ® V_g

as the sum of the n-1 dimensional a-eigenspace for A and of the one
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dimensional (-a)-eigenspace for A, then X4 maps Vg to V-g, and it
maps V-g to Vq. Therefore

Image(Xy) = XyVg B XyVog € V.g ® X V_q
has dimension at most two.

If dim Image(Xy) ¢ 1, then dim Image(Xy) = 1 since the
representation is faithful. So the 3X(2)-representation we have is the
direct sum of the standard one and a trivial one, and so the element
H is Diag(1,-1,0,..,0). Now apply Theorem 12.

If dim Image(Xy) = 2, then X Vgq=V_q and Xy V.q = 0, so

(X )2 # 0. Since dim Image(Xy) = 2, when we write our 81(2)
representation as a direct sum of SymmnPi(std)'s, we have Zn; = 2.
Since (X‘,,,)2 z 0, we cannot have std®std®triv, so we must have

Symmz(std)Qtriv, and Hy is Diag(2,-2,0,.,0). Now apply Theorem 12.
Next we consider the case when ¢ is normalized by a reflection ¥,
but the automorphism o = Ad(¥) is not inner. (Here 8% is also ruled
out, because every automorphism of it is inner.) Any automorphism o
of the corresponding connected semisimple group G stabilizes some Borel

subgroup B (look at the coherent cohomology HI(G/B, §) of G/B, which

vanishes except for HO = ¢, and use the Lefschetz fixed point formula).
If o is an involution we claim it stabilizes sorne maximal torus T in B.
For if we pick one maximal torus T in B, then o(T) is another maximal
torus in the same Borel, so it is conjugate to T by an element u of the
unipotent radical U of B: ¢ T = uTu~1. Moreover, the element u in U is
uniquely determined, since inside B, T is its own normalizer. We need to
find an element v in U such that a(vTv~1) = vTv™! ,ie, an element v
in U that satisfies o(v)u = v. Since 62 =1, we know o2(T) = T and
hence a(u)u =1, or ul = gu. So if we write u = 2 with u in U, then
ul= gy gives u=2 = (ap)2, so both u~1 and o are square roots in U
of the same element. By the uniqueness of square roots in U we have
"1 = gu. Then (em)u = u~lu = y, so uTu~1 is the desired o-stable
maximal torus.

Once o stabilizes a pair (B, T), it induces an automorphism of the
pynkin diagram. This automorphism is necessarily nontrivial (lest o be
lr}ner) and of order two, so a nontrivial involution of the Dynkin
diagram. Consider the action of & on the weight spaces of our"
Tepresentation; it must permute them nontrivially (otherwise it fixes
the weights, so fixes pointwise the Q-span of the weights, so fixes all
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roots, so would be inner). This means that the matrix of the reflection ¥
is a permutation-block shaped matrix. But the eigenvalues of a
permutation-block shaped matrix with cycles of length d; are the

various dj'th roots of the eigenvalues of the what the d;'th power

induces on any block in the orbit.
Since Y has eigenvalues {-1,1,1,..,1}, a set which contain no
clumps of size d; which are principal homogenous under multiplication

by the d;'th roots of unity with d; > 1 except possibly for a single one of
size dj = 2, we conclude that o permutes precisely two weight spaces,

each of which is of multiplicity one, and stabilizes all the others.
Consider the Q-span S of those weights fixed by o; S must be a proper
subspace of the Q-span of the roots (because o does not fix all the roots,
not being inner), and hence we can find a 1-parameter torus in T
whose h kills S. This h, acting on V, acts as zero on the sum of all the
non-permuted weight spaces, which is of codimension 2 in V. By
faithfulness of V, h must act on V as Diag(x,-x,0,..,0) with x20. Now
apply Theorem 1.2.

If 4 is normalized by a unipotent pseudoreflection u, then its
logarithm N:= log(u) lies in ¢ (because every derivation of ¢ is inner,
compare the proof of Theorem 0). As endomorphism of V, N has rank
one. Using Jacobson-Morosov to complete N to an 3X(2)-triple (N, h, ?)
in 4, we get a semisimple element h in § which in a suitable basis of V
is Diag(1,0,..,0,~1). Again apply Theorem 2. We have ¢ =z 30(V) simply
because 30(V) doesn't contain any nilpotent N of rank one.

If § is normalized by a pseudoreflection ¥ whose determinant g is

not 1, then in a suitable basis of V, ¥ is Diag(x,1,..,1). Because & 2 t,'i,
Gabber's Theorem 0 shows that ¢ contains Diag(n-1, -1, .,-1), whence ¢
is 3L(V) by Theorem 1.1. This concludes the proof of Theorem 15. QED

(1.7.7) We now turn to the proof of Theorem 1.6 on prime-dimensional
representations. First of all, ¢ must be simple since dimV is prime. If ¢
has rank one, we have the 3XL(2) possibility. Assume now that ¢ has
rank at least two. Pick a Cartan subalgebra ®, a Weyl chamber, et
cetera. The Weyl dimension formula for dimV in terms of the highest
weight A of V and p = Zfd wts = (1/2)Z pos rts is

dimV = T roats o [(3 + p, H)/ (p, Hool
The two key observations are that for ¢ simple, and V irreduible with
highest weight 2,

(1) the largest single term in the formula is the term (a+p, Hpignest),
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where Hpighest is the highest root of (ie, highest weight of the ad joint
representation of the algebra corrsponding to) the dual root system,
and this term is strictly larger than any of the other terms.

(2) We have the inequality
(3+p, Hyjghest) ¢ dimV.

If we grant both of these points, the first of which is obvious, and
the second of which will be proven below, then for dimV = p, we find
that (A+p, Hpijghest) =dimV (otherwise every single term in the formula
is < p and hence prime to p). We will then examine those irreducible
representations V of simple ¢'s for which

(3+p, Hpjghest) = dimV.

To prove (2), consider the highest weight of the restriction of V to
the principal 3L(2) in ¢; this is one less than the dimension of its
biggest irreducible, so we have

dimV 2 1 + highest weight of the principal 3XL(2).

In virtue of ([Bour L8], 11, 4,Prop. 8 (i) and 7, 5, Lemma 2), the highest
weight under the principal 8X£(2) is

(», the element hO in # such that b(h0)=2 for all simple p),
and hO = Zpo, « H ("the sum of the positive roots is twice the sum of
the fundamental weights" for the dual root system). Thus

dimV 2 1 + highest weight of the principal 3X(2)
1+ (, Zpeea Ha)

Now pick some simple « such that a(Hy) > 0, and pick a chain which
runs from Hy up to the highest dual root Hy .. We get

0o

1+ (a, Zoos « Ho)
=1+ (O, Hhighest) M zo‘ pos, Hy not highest (x, Hoc)
21+ (3 Hpyjgpes) * Z

chain omitting Hhi‘hest (>, Hin chain)
21 + (

Atp, Hhighest) - (Pl Hhighest.)+ Z<:hain omitting Hhighest (>, Hin chain)‘
Now we will estaklish that in fact

+ .
1+ Zehain omitting Hhighest (X, Hin chain) 2 (P, Hiighest)

Writing Hhighe,t = Zsimple N anb as a sum of simple dual roots, and

recalling that p is the sum of the fundamental weights, we see that
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(p. Hhighest) = an = the "length” of Hpighest:

so what is to be proved is

1 + Zchain omitting Hp;gnese (3+ Hin chain) 2 length of Hpjghest.

This inequality is obvious, because the length of any chain from the
simple root Hy to Hpjepese = zsimple s npHp is obviously the length IZnp of

Hpighest. @nd o« is chosen so that every term (, Hi, chain) is at least one.

Thus we have established the inequalities

dimV 2 1 + highest weight of the principal 3X(2)
= 1+ (A, Lpos ¢ Ha) =1 + (3, Hpjghest) * £ o pos,not highest (3, Hoo)
21+ (%, Hhighest)* Zchain omitting Hyigheqe (*7 Hin chain)
2 (A, Hpjghest) * length of Hyjgnes

(a+ pP. Hhighest) .

Now suppose we have the equality
dimV = (a+p, Hpjgnest).
Then we see, from the top end of the inequality, that V is irreducible
when restricted to the principal 8X(2). By [Ka-GKM, 116], the only
possibilities outside 3X£(2) are 3L, 3P, and 80(odd) in their standard
representations and Lie(G3) in its seven-dimensional representation.

QED

1.8 Appendix: Direct sums and tensor products
Let Gj, i=1,2, be connected semisimple groups over € whose Lie

algebras are simple, and let p;: G; = GL(V;), i=1,2, be faithful irreducible
representations of the G; on finite-dimensional C-spaces V;. We say that
(G4, V1) and (G2, V3) are Goursat-adapted if either

(a) the Lie algebras of G4 and G are not isomorphic, or

(b) for any isomorphism ¥ : Lie(Gq) = Lie(Gy), at least one of the
following two conditions holds:

(b1) there exists an isomorphism A: V4 = V3 such that, viewing

Lie(G;)CEnd(V)), we have ¥(X) = AXA™1 for every XeLie(Gq). [If this A
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exists, then g+ AgA“1 defines an isomorphism from Gy to Gy

(b2) there exists an isomorphism A(V41)* = V, from the dual of V4 to

V2 such that, viewing Lie(G;) € End(V)), we have ¥(X) = A(-Xt)A_1
every Xe€Lie(Gq), where Xt e End((V4)*) denotes the intrinsic transpose

of X[If this A exists, then g+ Ag'tA'1 defines an isomorphism from Gy
to Go |

Examples 1.8.1 If both (G;, V;) are isomorphic to (G, std,,) where G is

one of the classical simple groups SL(n 2 3), SO(odd n 2 3), Sp(even n 2
2), S0(even n 2 6) and std,, is its standard n-dimensional

representation w4, then only for (SO(8), stdg) does Goursat-adapted fail

Indeed, every automorphism of SO(odd n 2 3) or of Sp(even n 2 2) is
inner, the only nontrivial outer automorphism of SL(n 2 3) is the

Cartan involution X —~ Xt and every automorphism of SO(even n 2 6,
n 7 8) is induced by conjugation by an element of O(n).
If both (G;, V;) are isomorphic to (G, V), where G is a connected

sernisimple irreducible subgroup of GL(V) such that Lie(G) is simple and
such that every autormorphism of Lie(G) is inner (types B, C, F4, E7, Eg,

Gz) then they are automatically Goursat-adapted, whatever the

particular irreducible representation V.

Proposition 1.8.2 (Goursat-Kolchin-Ribet, [Koll, [Ri]) Let G be an
algebraic group over €, n 2 2 an integer, and pi: G = GL(V)), i=1, ., n, a

set of n finite-dimensional irreducible representations of G whose direct
sum @,V is faithful. For each i, let G; := pj(G) be the image of G in
GL(V})). Suppose that

(1) for each i, G;0.der gperates irreducibly on Vi, and Lie(Gio-der) is
simple.

(2) for iz j, (g 0.der, V) and (G O, der v. j) are Goursat-adapted.

(3) for izj, and for any character % of G the representations p; and

X® pj of G are not isomorphic.

(4) for iz, and for any character X of G, the representations (p;)* and
A® Pj of G are not isomorphic.
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Then GO.der g the subgroup n'GiO,der of TTGL(V)).

proof By definition, G maps onto each Gj:= p;(G). Therefore g0 maps onto
each Gio, and GO.deF maps onto each GiO,der_ By faithfulness we have

an a priori inclusion G ¢ T1;G;, so g0.der ¢ TTGiO'der. Notice that G is
reductive (it has a faithful completely reducible representation) and
hence GO.9€r s semisimple.

We first reduce to the case where G=G0.der and G; = GiO,der for
each i. Replacing G by g0.der does not change GiO,der = pi(G)O'der=
pi(G0.der) Each v, is G0.deT-jrreducible, since it is G;0-9€T-irreducible. If

hypotheses (3) and (4) hold for G then they hold for G0.der [Indeed if H
is any normal subgroup of G, and if two H-irreducible representations
V and W of G become isomorphic on H, then Homy(V, W) is a one-

dimensional representation of G/H, and Homyx(V, W)®V = W as G-
representations]

So we may assume that G=G0.der ang G = GiO,der for each i. By
Lie theory, it suffices to prove that Lie(G) = TTLie(G;) inside TTEnd(V,).
Each Lie(G;) being simple, it suffices by [Ri, pp. 790-791] to show that
for any two indices iz j, Lie(G) maps onto Lie(Gi)xLie(GJ-). So (replacing G
by (pix Pj)(G) )we are reduced to the case n=2.

When n=2, Lie(G) is a Lie-subalgebra of the product
Lie(G4)xLie(Gy) which maps onto each factor, so by Goursat's Lemma,

either Lie(G) is the product Lie(G4)xLie(G3), or it is the graph of an
isomorphism ¥: Lie(G4) > Lie(G3). In this second case, we will derive a

contradiction, by using the Goursat-adaptedness, which tells us that
either

(bl) there exists an isomorphism A: V4 > V2 such that ¥(X) = AXA™1
for every XeLie(Gq), or

(b2) there exists an isomorphism A: (V4)* = V3 such that for every
XeLie(Gy), ¥(X) = A(-XHA T
Since Lie(G) is the graph of ¥, we conclude that G is the graph of

an isomorphism from G4 to G2 either of the form g— AgA'i, which
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contradicts (3), or of the form g~ Ag'tA'i, which contradicts (4). QED

The following standard lemma is stated for ease of reference.
Lemma 183 Let Gq, .. .G, be connected semisimple linear algebraic

groups over € whose Lie algebras ¢; are simple. Then
(1) if o is any automorphism of TT§;, there exists a permutation
i = s(i) of the index set {1, .., r} and isomorphisms o) ; : (i) = %
such that

o(g1. 82, - 8r) = (95(1),1(85(1)). T5(2),2(85(2)): -+ Ts(r),r(Bs(r))-
(2) if o is any automorphism of TTG;, there exists a permutation i — s(i)

of the index set {1, .., r} and isomorphisms g(;) ; : Gg(j) — Gj such that

o(g1, 82. . 8r) = (1) 1(8s(1)). o5(2),2(85(2)) - as(r),r(gs(r)»

proof To prove (1), it suffices to note that the individual factors ¢; of
the product ¢ = TT; are intrinsically the minimal nonzero ideals of ¢,
hence are necessarily permuted by any automorphism of ¢. To prove
(2), denote by o the automorphism induced by o on the universal
covering TT G, and by Lie(o) the automorphism induced by o on
Lie(TTG;) = TTLie(Gp). By (1) applied to Lie{o), and the equivalence of
categories between connected simply connected complex Lie groups and
finite dimensional Lie algebras over €, we infer that there exists a
permutation i & s(i) of the index set {1, .., r} and isomorphisms
Ts(i),i és(i) - éi such that

(81, 82, - &) 7 (Ts(1),1(85(1)) Fs(2),2(85(2)): ~ + B s(r),rBs(r))-
But as ¢ is induced by the automorphism o of TG, o maps the finite
covering group Ker( TT&; = T7G;) = T(Ker(&; — G;)to itself. Therefore
each ‘;s(i),i : és(i) - éi maps Ker( és(i) — Gg(j)) isomorphically to
Ker(G; — Gj), whence each Es(i) i: és(i) - éi descends to an
isomorphism Fs(i),i - Gs(i) — Gj. That o is

(81, 82. . &) (gg(1) 1(8s(1)), Ts(2),2(85(2)): -+ Ts(r),r{Bs(r))

follows from the fact that this automorphism of the connected group
TTG; induces Lie(o) on the Lie algebra. QED

Lemma 1.8.4 Let V be a C-vector space of dimension n > 2, and let
G € GL(V) be one of the following groups:
SL(n).



28 Chapter 1

Sp(n) if n is even,
SO(n) if n is odd.

Let I' denote the image of GxGx..xG in GL(V®N). Then the normalizer of
[ in GL(V®™) is the semidirect product G 'XS,,, where S, acts on V®R
by permuting the factors.

proof Suppose A in GL(V®DN) normalizes '. The automorphism .
o :=Ad(A) of I lifts to an automorphism o of GxGx..xG in each of the
cases envisioned (for SL or Sp, GxGx..xG is the universal covering of I,
and for SO(odd), GxGx..xG = I'). Any automorphism of GxGx..xG is the
composition of a permutation of the factors with an automorphism of
the form Tlo; : (g;); ~ (oi(gi)i, where for each i, g; is an automorphism

of G.

If G is Sp or SO(odd), each o is inner, say o; = Int(g;). Then
successively correcting Ad(A) by the permutation it induces of the
factors and by Int(g4, .., g,). we obtain an element of the centralizer
of [' in GL(V®N). But ' acts irreducibly on V@1 (since G acts irreducibly
on V), so this centralizer consists of the scalars G,.

If Gis SL(V) with n = dimV 2 3, then an automorphism & of G is
inner if and only if the given representation p of G on V is equivalent to

(ie., has the same trace function as) p"' = peo . Similarly, an
automorphism Ta; : (gj); ~ (o(g;)); of GxGx..xG is inner if and only if

p®p®..®p has the same trace function on GxGx..xG as
(pec1)®..®(pec ). The given representation p®P of ' on VO™ s the
restriction to ' of the standard representaion of GL(V®1), which is
tautologically equivalent to its transform by Ad(A) for any A in

GL(V®DN) Applying this both to our A which normalizes I" and to the
permutation it induces, we see that Ad(A) is the composite of a
permutation and of an inner automorphism of GxGx..xG, as above. QED

Lemma 185 Let r 2 2, and pick r distinct integers n;,
25n1<n2<...<nr.
For each i, let G; be one of the groups
SL(ni ).
Sp(n;) if n; is even,
SO(n;) if nj is odd 2 7,
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S0(3) if n; = 3 and no n;j is 2,
SO(5) if n; = 5 and no n;j is 4.

and denote by G the image of TTG; in ®stdni. Then the normalizer of G
in GL(@stdni) is G,,G.

proof For each i, let p; denote the standard representation st‘.dhi of Gj. If

Gj is SL(n; ), an automorphism o of Gj is inner if and only if (p;)%i is
equivalent to p;. For the other possibilities, every automorphism o; of G;
is inner. So in all cases an automorphism o; of G is inner if and only if
(py)91i is equivalent to p;.

Suppose A in GL(@stdni) normalizes G. Denote by o the

automorphism Ad(A) : g—= AgA~1 of G it induces, and by Lie(o) the
automorphism ¢ induces of Lie(G) = TTLie(G;). Since the Lie(G;) are

pairwise nonisornorphic, Lie(o) = TTLie(a')i where Lie(a‘)i is an
automorphism of Lie(G;). Because Gj is either simply connected or
adjoint, any automorphism Lie(d); of its Lie algebra is of the form
Lie(g;) for some automorphism o of G;. Therefore o is induced by the
automorphism o := TTo; of TIG;. The representation p = ® p; of TIG; is
tawutologically equivalent to p? (by the intertwining operator A), and
PO’
Restricting both sides to the subgroup G; of TTG; and comparing

is equivalent to ®(p;)7i. Therefore ® p; is equivalent to ®(p;)7i.

characters, we see that pj is equivalent to (p;)?i. Therefore each S'i is
inner, g = Mo, is inner, and hence o = Ad(A) is inner. Since G acts
irreducibly on (®stdni), we find A € G,,G, as required. QED

Lemma 1.8.6 Let r 2 2, and pick r distinct integers n;,
2 $ngd<nz¢..<ng.
For each i, let G; be one of the groups
SL(ni ),
Sp(n;) if n; is even,
50(n;) if n; is odd 2 7,
5Q(3) if n; = 3 and no nj is 2,
30(S) if n; = 5 and no n;j is 4.
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For each i=1, . ,r, pick an integer m; 2 1, denote by (Gi)mi the m; fold
product Gjx..xGj, and denote by G the image of TT(G,)™i in
GL(@i(stdni)"mi). Then the normalizer of G in GL(@i(stdni)"mi) is the

semidirect product (GmG)IXTTiSmi, where TTiSl,ni acts on ®;( stdn.l)"mi by

permuting the factors.

proof Since the Lie(G;) are pairwise nonisomorphic, any automorphis-m
of Lie(G) is of the form Tli(an auto. of Lie((G;)™i)). Now Gj being either
simply connected or adjoint, any automorphism of Lie((G;)™i) is induced
by an automorphism of (G))™i. Exactly as above, any automorphism of
(G))™i is the composition of a permutation of the factors and of an
automorphism of the form TTj=1.___‘mia'i’J-, where Ti,j is an automorphism
of G;.

Suppose now that A in GL(@i(stdni)"mi) normalizes G. Modifying A
by the element of TTiSrni that Ad(A) induces on the factors of each

Lie((G;)™i), we may suppose that there exist automorphisms o j of G
such that the product automorphism ni,j oj,j of T, ; Gj induces Ad(A)
on the Lie algebra. Denote by éi the universal covering of Gj, and by

Ei,_j the automorphism of éi induced by gj,j- Since ”u G; is connected,
s

its Lie algebra. But ni.j él is also the universal covering of G, so by

s'i,j is the unique automorphism of TTLJ- éi which induces Ad(A) on
uniqueness we conclude that Ad(A) acting on G induces ”u Eij on its
universal covering. Therefore TTLJ. Ei,j stabilizes the two finite central
subgroups of TT, ; G; corresponding to the two quotients T, ; Gj and G of
T, ; & Therefore the action of T, ; oij

of the canonical projection ni,j G; — G, and induces Ad(A) on G.

on TTI.‘-i G; is stable on the kernel

So if we denote by Pi,j the standard representation of Gj, then the

tensor product representation ®ij Pi,j

ei,j (Pi,j"a'i,‘j)‘ Just as above, we infer that each %3, is inner. QED

of ni.j G, is equivalent to



CHAPTER 2
D.E.’s and ©-modules
The basic set-up and the Main DE. Theorem
We will apply the representation-theoretic results of the last
chapter to the calculation of some differential galois groups. Let us first
recall the basic setup (cf [Ka-DGG, 1.1]).
(2.1) Let K be a field of characteristic zero, and X be a smooth
geometrically connected separated K-scheme of finite type with X(K)
nonempty, and w a K-valued fibre functor on the category D E.(X/K)
(for instance w ="fibre at x" for any K-valued point x of X). We denote

by n'ldiff(X/K,w) the affine pro-algebraic K-group-scheme Aut®(w).
The fibre functor w defines an equivalence of ®-categories
DE(X/K) = (fin ~dim'l K-reps of vidiff(X/K,w)).

Given an object V in DE(X/K), denote by «V> the full subcategory
of DE(X/K) whose objects are all subquotients of all finite direct sums

of the objects V®R@®(VV)®™ all n,m 2 0. The restriction to <V> of w is a

fibre functor on <V>. The K-group-scheme Aut®(w | <V>), denoted
Ggal(vr w), is by definition the differential galois group of V; it is a

Zariski-closed subgroup of GL{«w(V)). The restriction to <V> of the
functor w defines an equivalence of ®-categories
W (fin-dim K-reps of Ggq)(V, w)).

If we view V as a representation py of vidiff(X/K,w) on w(V), then

Ggql(V. w) is none other than the image under py of vidiff(X/K,w) in
GL{w(V)).

2.2 Torsors and Lifting Problems
(22.0) What about the interpretation of hommomorphisms of

TTf““(X/K,w) to a linear algebraic group H over K other that GL(n)?
There is a "general nonsense” interpretation of homomorphisms
¥ Tridlff(X, x) — H as (isomorphism classes of) triples (P, 0, P, * H)

consisting of a right (etale) H-torsor P on X, an H-equivariant
Integrable connection 0 on P as X-scheme, and a trivialization of Py as

right H-torsor. Let us briefly sketch this interpretation. Suppose we
begin with the homomorphism ¢ : widiff(x, x) = H View H as a closed

subg!'.ov.xpsclmame of some SL(N). Denote by A the coordinate ring of H,
and filter it as K-vector space by the finite dimensional subspaces
An := the functions on H which are the restrictions of polynomials of

degree ¢< n in the functions Xj, j (:= (4,))'th matrix coefficient) on the
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ambient SL(N). Then A is stable by both the right and left translation
actions of H on its coordinate ring. Via the left action, and the given
homomorphism f : vidiff(x, x) = H, we may view A, as a finite-
dimensional representation of vidiff(x, x). By the main theorem of
Tannakien categories, this representation corresponds to a DE. (A,0)
on X together with an isomorphism w,(A,) = A, The right action of B

on A, commutes with its left action, so it commutes with the left

action of vidiff(x, x), and thus gives a horizontal right action of H on
An. The multiplication maps AL® A, = Ap,y are both right and left

H-equivariant, so we get horizontal multiplication maps
AL®gA L, = AL, Which are right H-equivariant. Thus if we define A

to be the direct limit of the A, (via the inclusions A= A,
corresponding to A, — Ap,), then P := Spec(A) is an affine X-scheme

endowed with a right action of H, an integrable connection O for which
this H-action is horizontal, and whose fibre over x is given as
Py = Spec(A) = H. It remains to verify that P is in fact a right H-torsor

on Xg:. Indeed, P is faithfully flat over X [each A, is a locally free Oy~
module of finite rank, and the inclusions A, = A,., being horizontal,
have cokernels which are Gy-locally free as well, taking n=0 and

passing to the limit over m, we see that Oy — A has Oy-flat cokernel,

so for any Oyx-module TN, the map M - MO OXA is injective]. To show

that the map HxgP — PxyxP , (h,p) & (p, ph) is an isomorphism of X-
schemes, it suffices that the corresponding map AGOXA — A®yA be

an isomorphism of O0y-modules. But this is a horizontal map of ind-

objects of the category DE(X/K), whose fibre over x is an isomorphism,
so it is an isomorphism. Thus P is a right H-torsor on Xtpqc - and as H is

smooth over K, P is consequently a right H-torsor on X4 as well.

In the opposite direction, suppose we start with data
(P, 0, Py ¥ H). Let A denote the sheaf of Oy-algebras whose Spec is P.

Because P as right H-torsor is etale locally trivial, we see by descent
that there exists a unique filtration of A by locally free O y-modules A,

of finite rank, which, after any etale E— X such that PgxHxyE,
corresponds to the filtration of A® yOg by the A, ® ;Op. The connection
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0 on P is an integrable connection on A for which the multiplication
meap and the right action of H are both horizontal. Looking at O after
etale localization, we see that the A, are horizontal. We are given an

isomorphism A(x) * A compatible with the right H-actions on both A
and A, so the tautological action of widiff(X, X) on A respects both its
ring structure and the right H-torsor structure of Spec(A):=H. Therefore

the action of vidiff(x, x) on A must be through left translations by

elements of H; this is the required homomorphism ¢ of vidiff(x, x) to H

It is clear that these two constructions are mutually inverse.

(22.1) Let p : G = H be a finite etale homomorphism of linear
algebraic groups over K, whose kernel I' is a finite etale central
subgroup of G (e.g, SL(n) = PGL(n)). Suppose we are given a
homomorphism
¢: widlff(x, x) - H

of algebraic groups over K. We look for homomorphisms

G :vidiff(x, x) » G
with ¢ = p@, and we call such a 6 a lift of ¢.

Proposition 2.2.2 The obstruction to the existence of a lifting of ¢ lies

in HZ(Xet, '), and (if a lifting exists) the indeterminacy in a lifting is

the group H1(X,,, 1.

proof This is best seen in terms of the associated torsors with
connection.

Using this interpretation, we argue as follows. Suppose we are
given a right G-torsor P on X. Denote by pP the right H-torsor on X
gotten from P by the change of structural group p:G— H. Given a right
G-equivariant ( resp. integrable) connection O on P, there is a natural
right H-equivariant ( resp. integrable) connection pa on pP. We claim
that the construction o — pO is a bijection; in other words, right H-
eq.uivariant ( resp. integrable) connections pP lift uniquely to P.[To see
th_ls Unicity of lifting, it suffices by etale descent to treat the case when
P is the trivial torsor Gx kX on an affine X. Denote by A the coordinate

ring of G. Then a right G-equivariant connection on Gx kX. ie, on
A®Kﬁx, is a rule which to every K-linear derivation d of Ox to itself
8ssigns a K-linear derivation 0(3) of A® KO x to itself which prolongs a
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and which is right G-equivariant; to give such 0(d) it suffices to specify
the right G-equivariant derivation of A to the A-module A® Gy given

by a = 0(3)(a®1), and this is none other than an element Dg(y) of
Lie(G)® kO x (where Lie(G) is viewed as the right G-equivariant K-linear
derivations of A to A). The mapping 3 + Dg(a) is Ox-linear, so all in all

our connection on P is an element w of Lie(G)@Kﬁix/K. The induced
connection on pP = HxygX = Spec(B®KOy) is & — 0O(d) restricted to the
subalgebra B® yOy of A® O x. Since A is finite etale over B, this

restriction is the same element w viewed in Lie(H)® 21 , when we
K< X/K

identify Lie(G)xLie(H) by p. The connection is integrable if and only if
for any pair of commuting derivations 9j, i=1,2, of Oy the derivations

0(3;) of A® Oy commute, or equivalently if their restrictions to
B® Oy commute. ]

So the problem of lifting ¢ to a ¢ is that of lifting a given H-torsor
P (which happens to have an integrable connection) to a G-torsor P
(which will then have a unique connection which lifts the given one).
In terms of the short exact sequence on Xg of algebraic groups/X

1-orl'>G6G->H- 1,
the cohomology sequence
Hi(Xgp, I = HUXgp, @ = HU(Xgy, H) —» H2(Xgq, I
shows that the obstruction to lifting (the isomorphism class of) a given

H-torsor P is in HZ(Xet, '), and the indeterminacy in lifting it is in

H1(X, ). QED

Corollary 2.2.2.1 If K is algebraically closed and if X/K is an open
curve, then liftings exist.

(22.3) Suppose now that K is €. The exact tensor functor V — van
from D.E(X/C) to DE(X®P) x Rep( m4'OP(X®N, x)) defines a

homomorphism 1 : 74*P - ﬂidiff from the topological w4 of the
complex manifold X8 to vidiff(x, x). With respect to this

homomorphism 1 : w1 *°P - vidiff, we have the following variant of
the lifting problem:
Let ¢yop = ¢t be the restriction of ¢ to 4P  We look for liftings
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(;top of Ptop ie, for homomorphisms Gtop : 1r1t°P(Xan, x) = G with
Ptop P‘Ptop‘-_ _ _

Of course, if ¢ is a lift of ¢, then (‘P)top = e is a~1ift of~(pt°p. _
Proposition 2.2.4 When K = €, the construction ¢ - (‘P)top = et
defines a bijection {lifts of ¢} = {lifts of ‘Ptop)-

proof The analogous short exact sequence on X, of algebraic groups
1->I' G- H—-1,
and its cohomology sequence
Hl(xan, ) - Hl(xen, @) —» Hl(xan, H) —» H3(Xan, )
analyses the problem of lifting P®%; here the obstruction is in
HZ(Xan, I, and the indeterminacy in Hi(Xan, I'). By the comparison of
etale and classical cohomology with finite coefficients, we have
Hi(Xg¢, ') = Hi(X8D, T) for all i.
Therefore the liftings of the H-torsor P to a G-torsor P are equivalent
(by the functor P = (F)an) to the liftings of P&N to a G-torsor on X&N,
When P8™ has an integrable connection, its sheaf of germs of
horizontal sections (in its coordinate ring) is a principal H(C)-bundle on
X8N and this construction is an equivalence of categories
{right H-torsors on X8R with H-equivariant integrable connection}
2 (principal right H(C)~-bundles on X80}
Now look at the exact sequence on X8R of constant groups
1 - - G(C) - H(C) — 1.
The cohomology sequence here gives the obstruction and indeterminacy
for lifting corresponding principal H(C)-bundle to a principal G(C)-

bundle as again being the same elements in HZ(X8N, T'), and H1(x8n,
I'). But this lifting problem is that of lifting the map 9top- Thus we find
the asserted equivalences. QED

Corollary 2.24.1 Suppose that the topological fundamental group
m1YOP(X8N x) of XN is a free group (e.g., X an open curve or an Artin

;ood neighborhood). Let p : G = H be a surjective homomorphism of
linear algebraic groups over €, whose kernel I" is a finite central

subgroup of G. Then any homomorphism ¢: widiff(X, x) = H of

algebraic groups over C lifts to a homomorphism ¢ :vidiff(x, x) » G
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with ¢ = pfﬁ.

Remark 2.2.4.2 Here is a slightly more cohomological formulation.
Given a field K of characteristic zero, and a smooth X/K, we have the .
“crystalline-etale site” of X/K. noted (X/K)crys-et- Its objects are the

pairs (U/X, 1: U—T) consisting of an etale X-scheme U/X and a closed
K-immersion 1 of U into a K-scheme T such that U is defined in T by a
nilpotent ideal of OT. The morphisms are the obvious commutative

diagrams, and a family of objects (U;/X, 1: Uj—=T;) over (U/X, 1: U-T)
is a covering if and only if the T; = T are an etale covering of T.

Given any smooth K-groupscheme G, we get a sheaf, still noted G,
on (X/K)crys-et by the rule (U/X, 1: U= T) = G(T). It is essentially

tautological that a right G-torsor on (X/K)crys-et is the same as a right
G-torsor on Xg; endowed with a right G-equivariant integrable
connection. Now suppose that X(K) is nonempty. In view of the above
discussion, we see that the set Hi((X/K)crys-etv G) of isomorphism

classes of right G-torsors on (X/K)crys-et' is none other than the

quotient set HomK_gpsch(ﬂ'idiff(X, x), G) modulo the conjugation action
of G (this action because we have not specified the trivialization over x)
In other words, we have

HU(X/K)erygs-et. @ % Homg-gpsch(m19i(X, x), @)/g,

so that vidiff(x, x) is a kind of “fundamental group” of (X/K)crys-et-
The point is that if we have p: G = H as above with finite etale
central kernel I, then we can use the standard cohomological setup on
(X/K)crys-et to investigate our lifting problem. Consider the exact
sequence of sheaves on (X/ K)crys-et
1-TI'->G6G-H-1,
which gives rise to an exact sequence of cohomology

HU(X/R)crgs-et. 1) = HU(X/K)grys-et, & =

- Hi((X/K)crys-etv H) - HZ((X/K)crys-etv .
By its very construction the site (X/K)crys-et maps to (both the
crys: and to) the etale site X,,. The Cech-

Alexander calculation (cf. [Gro-CDR, 5 5], [Bert, V, 12]) of the
cohomology shows that for any etale (resp. and commutative) K-
groupscheme [ , the canonical maps

HI(X/K)grys-et, [) = Hi(Xgy, 1)

usual crystalline site (X/K)
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are isomorphisms for i=0,1 (resp. for all i). On the other hand for the
smooth groups G and H, the canonical maps

Hi((X/K)crys-et' G (resp. H)) = H1(X., G (resp. H))

correspond to the map “forget the connection™. Thus we find once again
that the obstruction and indeterminacy in our lifting problem lie in

H(Xgt. [) and Hi(Xet, ') respectively, and are the same as the

obstruction and the indeterminacy in the lifting problem for the
underlying "naked” torsors without connection.

2.3 Relation to Transcendence

We now turn to a brief discussion of the relation between the
differential galois group of a DE. and the transcendence properties of its
power series solutions. This material is “well-known”, indeed it was a
large part of the basic motivation for the classical differential galois
theory, but it does not seem to be written down anywhere in the
Tannakian context (however cf. [De-CT, 9] for a Tannakian proof of the
general existence of Picard-Vessiot extensions).

Proposition 2.3.1 Let V be a DE. on X/K, G = Ggal(vl x) its differential

galois group, v € V,, and Ve V®(Ox x)”~ be the corresponding
horizontal section. Suppose that K is algebraically closed. The the
transcendence degree over K(X) of the coefficients (with repect to any
K(X)-basis of V® OXK(X)) of ¥ is the K-dimension of (the closure in V,
of) the G-orbit Gv.

proof Inside V¥, the annihilator of v is a horizontal submodule W, so it
corresponds to a G-stable subspace W, of (V,)Y¥ which lies in the
annihilator of v. Being G-stable, W, must annihilate the entire G-orbit
of v, so Wy is contained in the annihilator S, of Gv; this S, is a G-stable
subspace of (Vy)Y, so it corresponds to a sub-DE. S of V¥ . Since S is
horizontal, and Sx annihilates v, S annihilates v. Thus S € W, and as
Wy C Sx we have S = W. Therefore the K-dimension of the space Sy of
K-linear forms on Vy which annihilate Gv is the same as the Ox-rank
of W, ie, the same as the K(X)-dimension of the space W® OXK(X) of
K(X)-linear forms on VGOXK(X) which annihilate v.

Applying this equality of dimensions to the situation
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QJSnSymmJ(v) € @jinSymmJ(V)x, for all n, we obtain equality of the

corresponding Hilbert polynomials, whence the asserted equality of
dimensions. QED

Corollary 2.3.1.1 Suppose K algebraically closed. The transcendence

degree over K(X) of the (rank(V))2 matrix coefficients of any
fundamental solution matrix at x is the dimension of Gga1~

proof Simply apply the above result to the internal hom DE.
W := Hom(V,® g0y, V), whose fibre W, is End(V,) with G acting by

right translation. Fundamental solution matrices at x are precisely
those horizontal w's in W®(0yx x)~ whose value w at x lies in GL(Vy).

Since G acts freely on GL(V,), the orbit dimension is dimG. QED

Remark 2.3.2 Here is a slightly more precise version of the above
numerical result. Consider the right G-torsor P on X corresponding to

the homomorphism widiff(x, x) = G which “classifies" the DE. V. An a

priori description of it is this. Consider the subcategory <V> of DE(X/K).
On it we have two obvious Oyx-valued fiber functors, namely

wy WP W, 00y,

wiq 1 W~ W as Ox-module.
It is essentially tautological that P is the right G-torsor
Isom®'<v>(wx, wjq). The horizontal sections of P over (Sy ,)" are

precisely the set (actually a right G(K) torsor) S of those fundamental
solution matrices w which have the following property: for every
“construction of linear algebra” Constr(V), and every sub-DE. W of
Constr(V), the induced horizontal section Constr(w) of
Isom(Constr(V), ® g0y, Constr(V)) maps W,®rOyx to W. We claim that
if G(K) is Zariski dense in G (e.g, if K is algebraically closed), then this
set S is Zariski dense in P. Indeed, this is more general nonsense:
Suppose that G(K) is Zariski dense in G, Then for any right G-torsor
P on X with right G-equivariant integrable connection, the set (actually

a right G(K) torsor) S of its horizontal sections over (O )~ is Zariski

dense in P. [proof: the annihilator ideal I of S in A is horizontal, the
union of the DE’'s INnA,, so determined by its fibre at x. But at x it

annihilates all the K-rational points G(K) of G = P,, and as these are

Zariski dense 1 = 0]
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Corollary 2.3.2.1 Suppose K is algebraically closed. The algebraic group
G acts transitively on V, - {0} if and only if for every nonzero v € Vy,

the corresponding horizontal section v has its n=rank(V) coefficients
algebraically independent over K(X).

proof If G acts transitively, then for each nonzero v, the orbit Gv is n-
dimensional. Conversely, let v20. If Gv is n-dimensional, then Gv must
be all of Vy - {0}, simply because Gv is constructible. QED

2.4 Behavior of @;q) under 3pecialization

Let K be a field of characteristic zero, t an indeterminate, R the
ring Kl[tl], X/R a smooth separated R-scheme of finite type with
geometrically connected fibres, and x€ X(R). Suppose we are given a
locelly free Oyx-module V of finite rank n together with an integrable

connection 0 : V —» V® 0x91X/R relative to the base R. Let us denote

by n: R = K((t)) the inclusion (generic point of Spec(R)), and by
s: R = K the specialization map t—0 (special point of Spec(R)). Via these
extensions of scalars, we obtain DE’s V() on Xn/K((t)) and V(s) on

Xs/K, and rational points Xp € Xn(K((t))) and x5 € X(K). Thus we can
speak of the differential galois groups Ggal(V(n), xp) € GL(V(“)xn) and
Ggal(V(s), xg) € GL(V(s)xs)
Specialization Theorem 2.4.1 (Ofer Gabber) Let G/R be the closed R-
flat subgroupscheme of GL(V,) * GL(n)/R obtained as the schematic
closure of Ggal(V(n), xn), and let Gg denote its special fibre. Then there is
natural inclusion Ggal(V(s), xg) C Gg (inside GL(V(s), ) * GL(n)/K).

s

proof Denote by A the coordinate ring of GL(V,), by Ay C A the R-
submodule of those functions which are the restrictions of polynomials
of degree ¢ d in the n? matrix coefficients Xi,j and the function
l/det(Xi'J-), and by I, € Ay the ideal defining Ggq)(V(n), xy) in GL(V(n)).
Then the schematic closure G of Ggal(V(n), xyp) in GL(V,) is defined by
the ideal InNA. Since A is noetherian, this ideal is generated by InnAg
for sufficiently large d.

For each d, there is a natural “construction of linear algebra”
Ay = Constry(V) whose pullback (Ay )x by the section x is Ag. Since the

'ntersection Inn(Ag)y is tautologically Ggal(V(n), xy)-stable, it makes
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sense to speak of the horizontal submodule My of A4(n) whose xy~fibre
is InN(Ag)y. Let My denote the intersection MgN A inside Ag(n). Then
My is visibly horizontal, R-flat, and O y-coherent. Hence it is O k-locally
free, as results from

Lemma 2.4.2 Let X/R as above. Let (J, 0) be an Oyx-coherent module
TN together with an integrable connection O: N — meexﬂix,R
relative to the base R. Then

(1) M is Oyk-locally free if (and only if) it is R-flat.

(2) If there exists a section x€X(R), then T is Oy-locally free if (and
only if) it M, = x*M is R-flat.

proof of Lemma The “only if" is trivial, since X/R is flat. Because N is
Ox-coherent and is endowed with an integrable connection, it is

automatically locally free on X,. Suppose that Il is R-flat. To prove (1),

n
it suffices to show that I is locally free over the local ring OX,p of X at

every closed point p of the special fibre. Since finite extensions of K are
harmaless, we may assume that p is K-rational. By faithful flatness of
the completion, it suffices to treat the formal case, where X is the spec
of Rllxq, .., xull. But for any noetherian Q-algebra R, the functor

“"horizontal sections”, U — MO defines an equivalence of categories
{coherent Rl[x4, .., xpll-modules with integrable connection over R} %

~ {coherent R-modules},
whose_inverse functor is
M — Millx4, ... xll with the trivial connection 1®d.

From this explicit description of the inverse, it is obvious that for R
local we have

M is R-flat ¢ OB is R-flat & MO is R-free & M is Rllxq, .., x,ll-free.

Supose that there exists a section x€ X(R), and denote by p the
point x5. Working at p as above, we see from the explicit description

that MNP is R-isomorphic to x* M. So if x*M is R-flat, then M is R-flat
in a neighborhood of p in X. But the locus of non R-flatness of JNl is the
support of Ker( Left(t): M — IM); but this is a coherent Oxs-module

with integrable connection, i.e, a DE. on X /K, so it is Oxs-locally free;

as it vanishes near p, it must be zero. QED

By the definition of My C Ay, the quotient Ay/My is R-flat.
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Therefore it too is Ox-locally free; in other words, M4 is locally a
direct factor of Ay. Pulling back by the section x, we find that (MNg),
is a direct factor of (Ag),. = Ag. As the generic fibre of (M), is
Inn(Ad)ﬂ’ we conclude that (TMy)y is InNAg

Now consider the special fibre G of G. It is defined by the ideal
(Inn A)g of Ag. Since InﬁA is the union of the InnAd: and each InnAd is
a direct factor of Ay, we see that (I“ﬁA)s is the union of the (Iq”Ad)s-
But (InnAd)s is the x4-fibre of (My)(s). Since M is a locally direct
factor of Ag, (MN3)(s) is a sub-D.E. of (A4)(s), and therefore its x-fibre
(I Ag)s is a Ggal(V(S)' Xg)-stable subspace of (Ad)xs = (Ag)s. Therefore

the entire ideal (I“r\A)s of Ag is Ggal(V(S)' xg)-stable. As this ideal kills
the identity element in GL(n), it kills all of Ggal(V(s), Xs). This means
precisely that Ggal(V(S)' xg) C Gg. QED

Corollary 2.4.3.1 Hypotheses and notations as in the specialization
theorem 2.4.1 above, we have the inequality of dimensions
dimp(Ggq)(V(s), x4)) ¢ dimg((4))(Ggal(Vn), xp)).

By successive specialization, we find
Corollary 2.4.3.2 Let K be a field of characteristic zero, R a smooth
geometrically connected affine K~algebra or a power series ring in
finitely many variables over K, X/R a smooth separated R-scheme of
finite type with geometrically connected fibres, and x€ X(R). Suppose
given a locally free Oy-module V of finite rank n with an integrable

Connection 0 : V = V® 0x91X/R relative to R. Let n be the generic
point of Spec(R), and s any closed point of Spec(R). Then we have the

inequality of dimensions
dimK(s)(Ggal(V(S)' Xg)) ¢ dimK(n)(Ggal(V(“)' Xn)).

Remark 2.4 4 Although the differential galois group Ggal "decreases
under specialization®, it is not true that Ggal is algebraically
constructible in a family. Consider for example over the ground ring
R:=¢C[t] the scheme X:=(Gp)R = Spec(RIx, x'1]), on X the rank one Oy~
module Oy with the connection (relative to R) given by a(D)(f) = D(f) +

tf, where D is xd/dx. For any irrational value of t, Ggal is Gpp, while if t
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is a rational number in lowest terms a/b, then Ggal is up,.

2.5 Specialization of Morphisms

Let K be a field of characteristic zero, R a discrete valuation ring
with residue field K, uniformizing parameter , and fraction field L.
Denote by n: R = L the inclusion {generic point of Spec(R)), and by
s: R & R/wR = K the specialization map (special point of Spec(R)) Let
X/R be a smooth separated R-scheme of finite type with geometrically
connected fibres. Given a locally free Oyx-module V of finite rank n

together with an integrable connectiona : Vv = V® 0x91X/R relative
to the base R, we obtain DE.'s V() on Xﬂ/l‘ and V(s) on X /K by

restriction to the two fibres of X/R.

Proposition 2.5.1 On X/R as above, let V and W be two locally free
Ox-modules of finite rank together with integrable connections relative

to the base R. If H°mD.E.(xn/L)(V(“)' W(n)) is nonzero, then
H°mD.E.(X,/K)(V(S)' W(s)) is nonzero.

proof Suppose that ¢: V(n) = W(n) is a nonzero horizontal morphism.
Since V and W are locally free of finite rank, Hom0 (V, W) is a torsion
X

OXn(V(n), W(n)). So
multiplying ¢ by a suitable power of T, we may suppose that ¢(V) C W
and (V) ¢ wW. This ‘new"” ¢ is still nonzero and horizontal (7 is a
“constant”) on XW/L' Therefore ¢ is horizontal as a map V = W on X/R

free R-module and Hom0 (V, W)1/7] = Hom
X

(because the obstruction to its horizontality lies in the torsion free R-

module Homox(V, W@exﬂix/R)) . Its special fibre ¢ is therefore a

horizontal map V(s) = W(s) on X /K, which by construction is nonzero.
QED

One variant of this gives a sort of “Brauer theory”:
Variant 2.5.2 (0. Gabber) On X/R as above, let V and W be two locally
free O yx-modules of finite rank together with integrable connections

relative to the base R. Denote by V(s)5S and by W(s)3® the
sermisimplifications of V(s) and of W(s) respectively in the category
DE(X¢/K). If there exists an isomorphism V(n) * W(n) as DE's on Xn/l_,

then there exists an isomorphism V(s)$% * W(s)3S as D.E's on X /K.
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proof Let ©: V(n) S wW(n) and ¢: W(n) = V() be inverse isomorphisms.
View V (resp. W) as an Ox-submodule of V(n) (resp. W{(n)). Then for n »

0, mRe(V) € W, and wPy(W) C V. Now identify V(n) to W(n) by means
of ¢ and §; V and W then appear as horizontal Ox-submodules of their
common generic fibre V(n) = W(n) with

(r)VV C W, (rP)W C V.
For each pair of integers (a,b), let us denote

M(a,b) := 78V + vPW, an O x-submodule of V(n) = W(n).

This M(a,b) is Oy-coherent (a quotient of V®W), horizontal, and R-flat
(being & submodule of V(n) = W(n)), so by 2.4.2 M(a,b) is Oy-locally free.
Its generic fibre M(a,b)(n) is V(n) = W(n). Clearly we have

V = M(0,n), W = M(n,0).
So it suffices to show that the isomorphism class of M(a,b)(s)5S is
independent of (a,b). For this it suffices to compare (a,b) to both (a+1,b)

and to (a,b+1). By symmetry, it suffices to compare (a,b) to, say,
(a+1,b). We have
wM(a+1, b) € wM(a,b) = M(a+1, b+1) C M(a+1,b) C M(a,b) .
Thus we are reduced to treating universally the case in which
TWCrVCcwcCyVv,
In this case we have short exact sequences of DE.'s on X /K
0> W/nV - V/aV > V/W -0,
D ->wV/"W =2 W/tW = W/tV = 0,
po
V/w
which show that V(s) := V/7V has the same semisimplification as

W(s) := W/TW, namely (W/7V)SS & (V/W)SS, QED

In the case of several parameters, we have only the weaker
Theorem 2.53 (Specialization of (Iso)morphisms) Let K be a field
of characteristic zero, R a smooth geometrically connected affine K-
algebra or a power series ring in finitely many variables over K, X/R a
S'rnooth separated R-scheme of finite type with geometrically connected
fibres. Suppose given locally free Ox-modules V and W of finite rank
with integrable connections relative to R. Let n be the generic point of
Spec(R), and s any closed point of Spec(R). Then
(1) 1f H°mD.E_(x,1/K(n))(V(“)' W(n)) is nonzero, then

HomD.E_(xs/x(,))(V(s), W(s)) is nonzero.

(2)If there exists an isomorphism V() * W(n) as DE’'s on Xn/K(n), and
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if at least one of V(s) or W(s) is irreducible as D.E. on X¢/K, then there

exists an isomorphism V(s) * W(s) as DEs on X4 /K(s).

proof Assertion (1) is immediate from the Proposition above by
successive specialization. For (2), notice that if V() * W(n) then V and
W have the same rank, and hence V(s) and W(s) have the same rank.
So if either V(s) or W(s) is irreducible as DE,, any nonzero map between
them as DE's is an isomorphism. QED '

For the rest of this chapter we will take K = € unless there is
explicit mention to the contrary.

2.6 Direct Sums and Tensor Products

Proposition 2.6.1 (Goursat-Kolchin-Ribet, [Koll, [Ri]) Suppose that Vi,
..Vharen 2 2 DE's on X/C, w a C-valued fibre functor on DE(X/C).
Suppose that for each i, V; has rank n; 2 2, and that its differential

galois group G;j := Ggal(vi' w) € GL(n;) has GiO,der one of the groups
SL(n;), any n; 2 2,
Sp(ny, any even n; 2 4,
50(ny, nj = 7or any n; 2 9,
50(3), if nj = 3 and no n; 2,
S50(5), if nj = 5 and no n; 4,
S0(6), if n; = 6 and no n;j
G2 € 50(7), if nj = 7,
Spin(7) € 50(8) if n; = 8, and no nj= 7.

Suppose that for all izj, and all rank one DE s L on X, there exist no

isomorphism from V;j to either L® Vjor to L®(VJ-"). Then the

i

1l

u
o

differential galois group G of & V; has gO.der - TTGiO:der, and

(consequently) that of ®V; has G0.9€T = the image of TTG;0.der in
®stdni.

proof This is an immediate application of 1.8.2, taking G := Ggal(evi, w)
and p; := the action of G on w(V}), since we have eliminated SO(8), the

nonsimple SO(4), the nonsemisimple SO(2), and the repetitions of
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isornorphism classes of simple Lie algebras A1=B4, B,=C5, Az=Ds. QED
2.7 A Basic Trichotomy

We say that V is irreducible on X if it is irreducible as an object
of DE(X/C). This is equivalent to saying that w(V) is an irreducible
representation of Ggal(vv w), or equivalently that it is an irreducible

representation of vidiff(X/C,w).

In analogy with the case of ¢-adic sheaves (cf [Ka-MG, Part 1]), we
say that V is Lie-irreducible if w(V) is an irreducible representation

of the identity component (Ggal(V, w))0 of Ggal(v' w). In view of [Ka-
DGG,1254 and 1.4.4], V is Lie-irreducible if and only if for every

connected finite etale covering m.Y— X, the inverse image 7 *(V) on Y is
irreducible on Y. Clearly V is Lie-irreducible if and only if its restriction
to some, or to every, finite etale connected covering is Lie-irreducible.

Rigidity Lemma 2.7.1 Suppose that V and W are Lie-irreducible DEs
on X/C, and that 7m: Y — X is a finite etale connected galois covering on

which T*V = w*W. Then there exists a rank one DE. L on X with w*L
trivial and an isomorphismn W = V®L on X.

proof Denote by G the widiff of X, and by H that of Y. Then His a

normal subgroup of G, and V and W are two representations of G whose
restrictions to H are both irreducible and isomorphic to each other. But
whenever H is a normal subgroup of G, two representations V and W of
G whose restrictions to H are both isomorphic and irreducible differ by
the character Homy(V, W) of G/H, ie, V®Homyx(V, W) * W. qpp

We say that V is induced if there exists a connected finite etale
Covering m:Y— X of degree d22 and an object W in DE(Y/C) such that V
X 7 ,(W); equivalently(cf [Ka-DGG, 146, 1.4.7], V is induced if and only
if the representation w(V) of Ggal(v' w) is induced from a
representation of an open subgroup H of Ggal(v: w) of finite index d22.
Proposition 2.7.2 (compare Prop. 1 of [Ka-MG]) Suppose that the

topological fundamental group of the complex manifold X2 is a free
group (e.g,X an open curve). Then for any irreducible object V in
:‘.E.'(X/C), either V is induced, or V is Lie-irreducible, or there exists a
visor d22 of the rank n of V,and a factorization of V as a tensor
Product V = W®K where W is Lie-irreducible of rank n/d. and where K
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is an irreducible of rank d which becomes trivial on a finite etale
covering of X.In this last case, the pair (W, K) is unique up to replacing

it by (WX, K®L") with £ of rank-one and of finite order (ie, £
corresponds to & character of finite order of vidiff(X/C,w)).

proof Let us denote by G the differential galois group Ggal(v' w), and

by a0 its identity component. Because &P is a normal subgroup of G, we
have the customary dichotomy: an irreducible representation M of G'is

either isotypical when restricted to GO, or M is induced from a

’

representation of a proper subgroup H of G which contains &0, Apply

this to M=w(V); if either M is irreducible on GO, or if M is induced,
there is nothing further to prove.

The troublesome case is that in which the restriction of M to GO is
isotypical but not irreducible, say M x d copies of an irreducible

representation Mg of G0 with d » 2. In terms of differential equations,

this means there exists a connected finite etale galois covering of X, say
.Y =X with galois group H,such that on Y

w¥(V) * d:2 copies of a Lie-irreducible W on Y. :
By Jordan-Holder theory, the isomorphism class of W must be H- 1
invariant (in the sense that for every h in H, there exists an !

isomorphism of h* W with W). We now apply the following N
Lemma 2.7.3 Suppose that the topological fundamental group of the

complex manifold X80 js a free group (e g.,X an open curve). Let mY— X
be a connected finite etale galois covering of X with galois group H, and:
W an irreducible object of DE(Y/C) whose isomorphism class is H- 5
invariant. Then there exists a connected finite etale covering p : Z—Y"
P n "
Z Y -» X
such that Z is finite etale galois over X and such that p*(W) on 2
descends to an object W on X. Moreover, W is Lie irreducible on X if W
is Lie-irreducible on Y. p
proof of Lemma For each h in H, choose an isomorphism - b

A(h):W = h*W. For each g in H, the pullback g*(A(h)) is an

isomorphism from g*W to g*h*W. If A(hg) were equal to g*(A(h))e A(g)
for all pairs (g, h) of elements of H, we could interpret our choice of _
A(h)'s as descent data for W relative to the covering 7, and our W :

would descend to X. At worst there exists a C* factor a(h,g) with )
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a(h,g) =(A(hg) ™1 g*(A(h))-A(g),
simply because the right hand side is an automorphism of the

irreducible object W. This a(h,g) is a two-cocycle on H with values in €*
(with trivial H-action). If its cohomology class were trivial, say a(h,g) =

b(hg)/b(h)b(g) for some €*-valued function b on H, then h = b(h)A(h)
is descent data, and W descends to X.

Because HZ(H, €*) is killed by N :=Card(H), the Kummer sequence
shows that every element of HZ(H, €*) is in the image of H2(H, Kry(C).
So we may correct the choice of the A(h)'s by scalar factors so that
a(h,g) lies in pp(C).

Because the topological fundamental group m4 of X2 is free, any
subgroup F of 74 is also free. So for any finite abelian coefficient group
A (eg, rN(C)) with trivial action of 74, and any normal subgroup F of
finite index in w4, the Hochschild-Serre spectral sequence

E,2b = Ha(my/F, HP(F, A)) = H®B(my, A)
has E,b = 0 for b20,1. Any element of H1(F, A) dies when restricted to
a smaller normal F of finite index, so the direct limit over all normal

F's of finite index of these spectral sequences has E,%.P=0 for bz0. Thus

H*(mq, A) = lim H*(H, A).

finite quotients H of
For any 122, we have Hi(wr 1, A) = 0, so in particular the direct limit

lirn H2(H, A) must vanish.

finite quotients K of L8

Therefore any given element in HZ(H, Mup(C)) dies in H2(H, Mupy(C)
for some larger finite quotient H of 4. The covering Z of X defined by
such an H sits in a diagram

P ™
Z - Y - X
When we pull back W from Y to Z , and denote by h—h the canonical

Projection of H onto H,the dying means precisely that the choice of
Isomorphisms on 2

A(R) := p*(A(h) : p*W - R*p*W = p*h*W
can be corrected by invertible scalars to give descent data on p*W for
the covering Z ~ X. Finally, if W is Lie-irreducible on Y, then p*W is

]_‘ie‘il"rEducible on Z, so any descent W of p*W to X is itself Lie-
Irreducible, QED
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We now return to the proof of 2.7 2. Applying the lemma to W on
Y.we see that at the expense of enlarging the covering group H, there
exists a Lie-irreducible W on X and a connected finite etale galois
covering m:Y— X with galois group H such thaton Y

w*V=x d copies of T*W.
Denote by Homy(W, V) the subobject of the internal hom object
Hom(W, V) on X obtained by descending through 7 the Oy-span of the

global horizontal sections of the internal hom Hom(w*W, w*V)

( = w*Hom(W, V)) on Y. [Because W and V are each irreducible on X,
their internal hom Hom(W, V) is completely reducible on X (being a
representation of the reductive group Ggal(we V, w)), and so

m* Hom(W, V) is completely reducible on Y. We are descending its
trivial isotypical component] We have a canonical morphism of DE.'s
on X

W®Homy(W, V) =V, (w, ¢) = olw)
which becomes an isomorphism on Y, so must already be an
isomorphism on X.

This is the desired factorization of V as W®K, with W Lie-
irreducible of rank n/d and K of rank d becoming trivial on a finite
etale covering of X (K must be irreducible because W®K is). To see its
essential uniqueness, suppose that W4 ®K, were another. Pulling back
to a sufficiently small connected finite etale galois covering Z of X, V
becomes isomorphic to d copies of the Lie-irreducible W, and to d4

copies of the Lie-irreducible W4 . By Jordan-Holder theory, we must

have d = dq, and the two Lie-irreducible representations W and W4 of

vidlff(x/c,w) become isomorphic irreducibles on the open normal

subgroup vidiff(Z/C,w). Therefore W and W4 are projectively
equivalent as representations of vidiff(X/C,w), and hence W1 = W®ZX

for some character of vidiff(X/C,w)) which is trivial on vidiff(Z/C,w).

QED

Remarks 2.7.3 (1) The two non-Lie-irreducible cases of the Propositiol
are not mutually exclusive. Indeed, if W is Lie-irreducible, and if K is
an irreducible which is induced from a KO on a connected finite etale

w:.Y— X such that Kg itself becomes trivial on a finite etale covering of
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v, then W®K is also the induction m,(r*(W)®Kq). Of course this is a

reflection of the fact that already for a finite group G with a normal
subgroup H, the “dichotomy” for irreducibles of G to be either induced or
H-isotypical is not a true dichotorny; for H = {e}, every representation is
H-isotypical.

(2) One could also give a proof of this proposition which is analogous to
the proof of Prop. 1 of [Ka-MGlI, by using the fact (2.2.4.1) that when the

topological 74 is a free group, any projective representation of widiff

can be linearized.

Corollary 2.7.4 (compare [Ka~MG], Cor.3) Suppose that X is an open
curve, and that V is an irreducible object of DE(X/C). Suppose that the
rank of V is a prime p. If det(V) is of finite order, then V is either Lie-
irreducible or induced or it becomes trivial on a finite etale covering.
proof Indeed if V is neither induced nor Lie-irreducible, it is a tensor
product W®K of a Lie-irreducible W of rank one and of an irreducible K
of rank p which becomes trivial on a finite etale covering. So
det{V)xWeP®det(K), with det(K) of finite order. So if det(V) is of finite
order, W is of finite order, whence V = W®K is trivial on a finite etale
covering. QED

Corollary 2.7.5 Suppose that X is an open curve, with complete
nonsingular model X, and that V is an irreducible object of DE(X/C). At
each point at infinity e; € X - X, let the slopes of V, written in lowest
terms, be the rational numbers ai,j/bi,j , with multiplicities nj, jbj ;.
Suppose that gcdi’j(all ni,j) = 1. Then V is either induced or V is Lie~
irreducible.

proof If V is neither induced nor Lie-irreducible, then for some integer
d22 we have a factorization of V as W®K, where K is a rank d object
which becomes trivial on a finite etale covering of X. Such a K is
entirely of slope zero at any e ( cf [Ka-DGG, 2 6.2]). Therefore the slopes
with multiplicity of V at o ; are the slopes with multiplicity of W at oo,
repeated d times. In particular, d divides every nj,j- QED

Remark 2.7.6 This slope criterion for “"induced or Lie-irreducible” is
Zery easy to verify when it applies. The problem comes after, in

. eciding which of the two cases one is in. Only on Gy, Where “induced”
‘: ;lffciessarily "Kummer induced’, does one know a manageable

ufficient conditions that a DE. V not be induced (namely that there
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exist no integer d22 such that both V| Ig and V| I, are induced from
the unique subgroups of index d in Ig and I, respectively). Ignoring

this problem for a moment, we state a quite general result.
28 The Main DE. Theorem

Main D.E. Theorem 2.8.1 Suppose that X is an open curve, with
complete nonsingular model X, and that V is a Lie-irreducible object of
DE(X/C) of rank n. Suppose that at some point at infinity o € X - X,
the highest slope of V, written a/b in lowest terms, is > 0 and occurs
with multiplicity b. Let G C GL(w(V)) denote the differential galois
group of V, GO its identity component, and G0.9€T the commutator

subgroup of G0. Then GO is equal either to g0.der or to GmGO'der, and

the list of possible G0.9€T is given by:
(1) If b is odd, GO,deT js SI(w(V)); if b=1, then G is GL(w(V)).
(2) If b is even, then either G0.der i5 sI (w(v)) or SO(w(v)) or (if n is
even) SP(w(v)), or b=6, n=7,8 or 9, and G0.der s one of
n=7: the image of G2 in its 7-dim’l irreducible representation
n=8: the image of Spin(7) in the 8-dim’] spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stde®stde std
the image of SL(2)xSp(4) in stde std
the image of SL(2)xSL(4) in stdestd
n=9: the image of SL(3)xSL(3) in stdestd.

proof Since V is irreducible, a0 is reductive, its connected center
20 = (2(69))0 is a torus, its derived group G0.9€r s semisimple, and
G0 = z0g0.der Because V is Lie-irreducible, G0 acts irreducibly on w(V),

and therefore its center Z := 2(G0) acts as scalars. Since w(V) is a

faithful representation of GO, it follows that Z and a fortiori Z0 are
contained in the scalars. Since 20 is a torus, either 20 is trivial or it is
Gyn,- Because G0 = 20g0.der g¢¢s irreducibly on w(V), already g0.der

acts irreducibly on it. Therefore ¢ :=Lie(G0.9€F) js a semisimple Lie-
subalgebra of End(w(V)) which acts irreducibly on w(V). By its very
construction, ¢ is normalized by any subgroup K of G.

We now use the slope hypothesis that at some point at infinity oo
the highest slope is a/b in lowest terms and its multiplicity is b to
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construct a diagonal subgroup K of G, to which we will then apply
Gabber’'s “"torus trick” Theorem O.
As a representation of [, V is the direct sum

V = Va/b ® Vea/p = (slope a/b, rank b) & (all slopes < a/b).
In order to describe the representation Vgq/y, of 1, explicitly, fix a

uniformizing parameter 1/x at o . This identifies the e -adic completion
of the function field of X with the Laurent series field K:=€((1/x)). Fix a
b'th root t of x, and denote by K}, the Laurent series field €((1/t)). In

this setting, [, is the local differential galois group I(K/C), and I(K},/C)

is its unique closed subgroup of index b (cf [Ka-DGG, 2.6.3]). The
representation Vg/}, of I(K/C) is irreducible [Ka-DGG, 259 2], so it is the

direct image from K, of a rank-one DE. of the form (K}, td/dt + Pg(t)),
where Pg(t) is a polynomial in t of degree a (cf [Ka-DGG, proof of 2.6 6]).
Therefore after pullback to K, we have :
Va/b®Kp = By, (Kp, td/dt + Palzt)
V. a/p®Kp = all slopes < a.

At the expense of scaling the parameter 1/x, we may assume that
Pg(t) is monic, say t® + f o(t), with f o(t) a polynomial of degree strictly
less than a. As DE. on Ky, we have

(Kp, td/dt + Pg(3t)) = (K, td/dt + (3)B)® (K, td/dt + £ (gt)).
We will now analyse V as representation of the upper numbering
subgroup (I(Kb/C))(a) of I(K},/C). Because (K}, td/dt + f o(3t)) has slope

< a, it is trivial as a character of (I(Kb/C))(a). Therefore V as

representation of the upper numbering subgroup (I(Kb/C))(a) of I(Kp/C)
is given by

V| (I(Kp/€))(@) Y@ ey (Kp. td/dt + 22 (trivial of rank n-b).

Because gcd(a, b) = 1, as ¢ runs over Mp(C) the t®'s are just a
Permutaion of the ¢'s, so we may rewrite this as
v (I(Kb/C))(a) z®§€l-lb (Kp, td/dt + §t®) & (trivial of rank n-b).
For each £ in € we denote by
Xx = the character of (I(Kb/C))(a) given by (Kp,,td/dt + £t®).
The key observation is that for ¥, v in € we have
XegXy = Xgay,



52 Chapter 2

Xy is trivial on (I(Kp/€))(®) iff £=0.
Let
K = the image of (I(Kp/€))(®) in G.

Then K is a diagonal subgroup of G, and the diagonal entries of K are the

n characters
the b characters X g @s § runs over ub(C),

n-b repetitions of the trivial character Xg. _
We now apply the “torus trick” 1.0 to K. If b=n, we must find all
relations of the form _
x“/xb = Xy/%s onK, where «, 8, ¥, § lie in ub(C),

or equivalently all relations of the form

Rel(b = n){C) «-p=YY-5 where «, p, ¥, b lie in ub(c).

If b < n, then we must find all relations of the form

Rel{b < n}C) ax -p=Y-5, where «, p, ¥, § lie in ub(C) u{o}.

Lemma 282 If «, p, ¥, § are complex numbers of absolute value one
which satisfy « - p = ¥ - §, then we are in one of the following three
cases:

(1) «x= p and ¥= &

(2) x= Yy and p= §

(3) x=-5 and p=-¥.
proof Here is a geometric argument. Suppose that we are not in case

(1). Then the line segment «— p is an oriented chord of the unit circle, l

and Y—§ is a parallel oriented chord of the same circle having the same:

length. So either the two chords coincide (this is case (2)) or they are

symmetric with respect to the unigque diameter to which they are both

parallel (this is case (3)) QED
Corollary 2821 If o, p, ¥, § in pp(C) satisfy « - 8 = ¥ - §, then

either

(1) x= p and Y= §
or (2) x= ¥ and p= §
or b is even and (3) x=-5 and p=-¥.

Lermnma 283 If «, B, Y are complex numbers of absolute value one

which satisfy «-p=Y¥, then «/p is a primitive sixth root of unity, and

¥/p is (/p)2. o

proof Applying complex conjugation, x-p=Y¥. Since «, p, ¥ are on the
- g1

unit circle, we can rewrite this as o~ p™+ = ‘(_1. Then

|

et 1
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(=Bl - p~ =gy 1=1,
which simplifies to («/p) + (x/8)"1 = 1, ie. to (x/p)2 - (ax/p) + 1 = O,
Therefore o«/f is a primitive sixth root of unity, and ¥/p = (e«/p) -1 is
equal to (G’./ﬂ)z QED
Corollary 2831 If «, B, ¥ in pR(C) satisfy a-p=1Y¥, then 6 divides b,
«/p is & primitive sixth root of unity, and +y/p is (x/8)2.

Using these two corollaries, we can compute explicitly the torus
T which Theorem 10 assures us lies in .

If b=n, then the torus T is obviously contained in the set Bb of all

diagonal matrices (X,) of trace zero whose entries are indexed by the
b'th roots of unity in €. The relations defining T in 3}, are
X - Xp = Xy - Xg whenever «, p, ¥, § € Mp(C) and & - § = ¥ - 6.
By 2.8.2 .1, these relations are of three types:
(1) Xy - Xy = Xy - Xy for all &¥
or (2) X - Xp = R - Xb for all a,p
or if b is even (3) X - Xp = X -p - X .o for all o p.
Of these, only type (3) relations impose any conditions, and these are
ifbiseven, Xy +X _4 =X + X.p forall «p.
Since the trace is zero on 3}, the common value of X, + X _, can only
be zero, and so type (3) relations are equivlent to
if bis even, Xy + X _o = 0 for all «.
Case(b=n, b odd) T is all of 8}; thus T contains Diag(n-1, -1,..,-1),
whence § is 8L(w(V)) by Theorem 1.1.
Case (b=n, b even) T consists of those elements of 3;, whose entries
satisfy Xg + X -g 7 0 for every ¢ in MR(C). In particular, T contains

Diag(1,-1,0,..,0), and so § is 8L(w(V)) or 86(w(V)) or 3P(w(V)) by
Theorem 1 2.

If b <n, T is obviously contained in the set 3y, ,, of all diagonal
Mmatrices of trace zero of the form
(X¢'s indexed by ¢ in pb(C),XO repeated n-b times).
[Use the observation that in applying the torus trick, whenever two of
the characters X and % j of K are equal, then the corresponding entries
¥; and Xj are equal, simply because ¥ ;/ Xj = Xi/%j on K; apply this to

t _ .. .
he n-b trivial characters of K to see that "their” entry Xg is repeated
n-b times]
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The relations defining T in 3, ,, are
XG - Xb = Xx - Xs
whenever «, g, ¥, § in up(C)U{0) and « - p = ¥ -5,
To analyse these relations, it is best to distinguish cases according to
how many of «, 8, ¥, § are nonzero. When all four are nonzero, we are
in the (b=n) case above; we get conditions on T only for b even, in
which case the relations imposed are :
(if b even) o * X = Xp * X . forall«,pin Mp(C).
If exactly one of «, f, ¥, § is zero, say ¥ or §, we get relations
X = Xb = X¥ - Xg if «,p,¥ in up(C) have x-p=¥,
X ™ Xp = Xg ~ Xg if «,p,8 in ML(C) have x-p=~§.
By 2.8.3.1, such relations exist only if 6|b, in which case «/p is a
primitive sixth root of unity and ¥/p (resp. -6/p) is (oc/p)2.
If exactly two of «, B, ¥, § vanish, we get either a trivial relation
X - X = Xg - Xg if @ in pp(C)
or, for b even, the nontrivial relation

(if b even) X ~Xo = Xg - X - if & in pp(C)

which we rewrite as

(if b even) X * X .o = 2Xg if @ in pp(C). ;
Since the trace vanishes on Bn'b, we see that in fact J
(if b even) X * X - = 0= Xg if & in up(C). 'i

If exactly three of «, p, ¥, 6 vanish, there are no relations, and if all

four vanish there is only the trivial relation Xg - Xg= Xg - Xg. L
Case (b < n, b odd) T is all of 3}, ,,; T contains Diag(n-1,-1,..,-1), ani
‘ A

1

3

so ¢ is 3L(w(V)) by Theorem 1.1.
Case (b < n, b even not divisible by 6) T consists of those elemen!
of zb,n whose entries satisty Xg = 0, and X, + X _,. = 0 for every ¢ in
Mp(C). In particular, T contains Diag(1,-1,0,..,0), and so ¢ is BL(w(V)]
or 30(w(V)) or (if n is even) 3P(w(V)) by Theorem 1.2. :
Case(b ¢ n, 6 divides b) In this case, it is most convenient to choosej
coset representatives a's for up(C) modulo pug(C), and a primitive sixtl

root of unity ¢ Then T consists of those elements of ‘Sb,n which satis
Xg=0, and, for each coset representative «, the relations

o = Kyp * g2 = 0,

X + X =0,

g * Xog = 0. ’a
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X g2+ X p2=0.

In this case, the set of elements of T with X§=0 whenever 562 lisaG;
torus. So by Theorem 1.3, either 4 is 3L(w(V)) or 30(w(V)) or (if n is
even) 3P(w(V)), or nis 7,8,or 9 (and so b =6, since 6lb and b < n) and %
is one of the exceptional cases of Theorem 1.3. This concludes the proof
of the Main DE. Theorem 2 8.1, except for the fact that if b=1, then G is
GL(w(V)). But in this case, the highest slope a/b > 0, which occurs with
multiplicity b=1, is the slope of det(V), so det(V) is necessarily of infinite
order. QED

2.9 Generalitiss on D-modules on curves

We now turn to the explicit examination of some DE.'s on Al and
on open sets of Al Recall (cf. [Ka-DGG, 1.2 5[) that the differential galois
group of a D.E. on Al is always connected, so any irreducible V in

DE(AL/C) is automatically Lie-irreducible. In general, the theory of D-
modules provides us with reasonable sufficient conditions for the
irreducibility of D.E's on open sets of al (though not for their Lie-
irreducibility; this seems a much more difficult problem).

It will be convenient first to recall some of the basic facts about
D-modules on open curves. Thus let X/C be a nonempty smooth
connected affine curve with coordinate ring 0 = Cy. For simplicity of

exposition we assume that the invertible O-module Derg(Q, O) is O-
free, and we pick an U-basis 9 of it . [For example, if X is an open set of
Al Spec(C[x[), then d/dx is such a basis; if X is an open set of G,
then xd/dx is such a basis; if X is an open set of an elliptic curve E :
Y2=f3(x), then yd/dx is such a basis |

We denote by D = Dy the ring 0[3] of all differential operators on

X. The adjoint L* of an element L = Zfiai of D is defined by

L* = £ (-9)if;. The map L= L* is a ring isomorphism of D to the opposite

ring DOPP, whose “square” is the identity.

Attached to an operator L in D is the left D-module D/DL; it is
holonomic so long as Lz0. Attached to any point « in X(C) is the "delta-
module supported at «”, the holonomic left D-module §4 :=D/Dl,,

where [« CO is the ideal of functions which vanish at o.

Recall that if TN is any holonomic left D-module, then its intrinsic
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dual MY is the right D-module E"tlleftD-mOd(m:‘D)' where the right

D-module structure is via the right structure of the second argument.
If M is D/DL, its intrinsic dual is D/LD (calculate the ext using the
resolution Right(L):D—.D of M). Formation of this intrinsic dual is an
exact equivalence of categories from the category of holonomic left D-
modules to that of holonomic right JD-modules; it is involutive in the

sense that its inverse is n"’ExtlrightD-mod(:n"D)-

Recall how one passes from right D-modules back to left ones, by
using the G-invertible right D-module w::le/c. In terms of the
chosen 9, w is D/3D. For any two right D-modules Ry and Ry, the O-
module Hom@(R 1, R3) carries a canonical structure of left JD-module
for which (d¢Xrq) = ¢(rq9) - (¢(rq))9; applying this with Ry = w and a
variable R=R3, we obtain a left D-module Rleft:=Hom0(w,R). If Ris
D/LD, then Riqg is D/DL*. Another way of describing the functor
R~ Rjeft is to view right D-modules R as left D°PP-modules, and then :

to use the adjoint isomorphism L—L* to identify D to DOPP.
If we apply the construction R—Rjg¢t to MY we obtain a left D- |

module N *:= (M), called the adjoint of MN. Formation of this

adjoint is a contravariant involution of the category of holonomic left
D-modules, which commutes with Zariski (indeed, with etale) .

localization on X. If M is D/ DL, its adjoint M* is D/DL*. The delta .
module &, is its own adjoint. i

For purposes of later globalization, it is important to keep in mmd‘

that the notion of the adjoint JN*of a holonomic left D-module M is an
intrinsic one which does not depend on the auxiliary choice of 9,

namely it is MM Homg(w, Extib(m D)). On the other hand, the notlon

of the adjoint L* of an operator L in D does depend on the choice of a,

only the associated D-~module D/DL* = (D/DL)* is intrinsic.
Suppose that U is a nonempty open set of X, j:U— X the inclusion..

SRR A R X

Lo ek

There is a natural inverse image functor j* from D-modules on X to
those on U, namely M~ Dy® pM = j*M, via the canonical inclusion of

A

rings D— Dyy.There is a natural direct image functor j, from left D- |

modules on U to those on X, which is right adjoint to j*: given V on U, i
J&V is the D-module on X obtained by using the canonical inclusion of -
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rings D= Dy to view the Dyy-module V as a D-module. By Bernstein's
theorem ([Ber], [Bor)),. if V is holonomic on U then j,V is holonomic on
X. The restriction of j,V to U is just V again. However, there is a

"petter” prolongation of a holonomic V on U to a holonomic on X, the
“middle extension” jI'(V). It is defined as follows. On U, form the adjoint

v* of V and take its direct image j,(V*); its adjoint (j,(V*))* is called
Ji(V). This j(V) is also a prolongation of V (because formation of the
adjoint commutes with Zariski localization), so adjunction applied to
the resulting isomorphism j* j(V) * V gives a canonical map

JiV)=j,V, whose image is defined to be j, (V).

More generally, for any holonomic 1 on X whose restriction to U
is V, from j*N1x=V,we get by adjunction N—j, V. If N1 =N, is any map

of such prolongations of V which is the identity over U, then by
functoriality of the adjunction map the commutative diagram

j*N1—j* Ny gives the commutative diagram N 17N 5.
N N
v Js V.
For example, if we take for 1l the module j,V, the adjunction map is
the identity. For the prolongation jV of V, the adjunction map is the
canonical map j|(V)— j,V above. Therefore if we have any prolongation
N of V which sits in jV—=N = j,V then the adjunction maps sit in
JV=R= g, v
canN | =
Ja V.
and the rightmost arrow down is the identity, while the first one is the
canonical map j(V)— j,V.In other words, to identify the middle
extension ,ie, the image of j(V)—j,V, we have only to find an I which
extends V and which is simultaneously a quotient of j(V) and a
subobject ofj, V. Using this, we can easily prove

tGmma _2 8.1 (characterization of middle extensions) Given a
olonomic left D-module M on X, a nonempty open set U of X and

JU=>X the inclusion, then M % jl'(j*m) by an isomorphism which is

the identity on U if and only if M satisfies
Homp(M, 8,) =0 = Homp(6,, M) for every « in X-U,
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or equivalently (by duality), if and only if M satisfies

Homp(M, &) =0 = Hom p(M*, 8,) for every « in X-U.
or equivalently (by duality), if and only if TN satisfies

Hom (6o, M) =0 = Hom (6, M*) for every « in X-U.

proof. We denote j*M by V. Notice that j,V has no nonzero O-torsion
outside of U, while any §-module consists entirely of -torsion. Thus we
obviously have Hom p(84.j (V))=0 for any « in X-U. Applying this to
V*, we see that Hom p(6,, j'(V'))=0 for any « in X-U, so by duality
Hom p(j(V),$4)=0 for any « in X-U. Since jl'(V) is both a subobject of |
J,(V) and a quotient of J(V), we have
Hom p(6, _j!'(V)) 0= HomD(j!'(V), 8,) for any « inX-U.
Now suppose we are given any holonomic Il on X whose
restriction to U is V, and which satisfies the two conditions !‘ﬂ
Hom p(6,, N) =0 = Homp(6,, N*) for every « in X-U.

We claim that N is necessarily_jl'(V). From the given isomorphism

J*N -V we get by adjunction a map 1= j, V. This map is injective
(because being an isomorphism on U its kernel can only be a successiv

extension of 6-modules supported in X-U, but in view of 0 = ;
Hom (6, .N) for « in X-U, Nl contains no 6-modules supported in X- U')

Similarly, the adjoint 1* restricts to V*, and the natural map of

adjunction 1*— j (V*) is injective (its kernel is punctual, now use tha}

vanishing of Hom (6, ., *) for « in X-U). So by duality Nl is a quotxentg
of j(V), as well as a subobject of j, V. As explained above, this aj
completes the proof QED B
Corollary 2 9.1.1 If the holonomic left J-module M on X lies in 13
i

DE(X/C), then for any nonempty open set jU—=X, M = jl'(j'fm.).

proof For M in DE(X/C), viewed as coherent locally free C-module

with integrable connection, the adjoint JN* is also in D.E(X/C), being
the dual O-module with the dual connection. [To see this, we may
Zariski localize and suppose TN is C-free of rank n, with connection

matrix A € Mu(Q), so M = DN/ DN(d - A), whence ExtileftD_mod(m,D
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is DB/(d - A)DN, and so M* is DN/DN(-3 - AY)] Therefore both N and

TM* are torsion-free O-modules, so Homp(5,, M) =0 = Hom p(6,, m*)
{or every « in X-U. QED

Corollary 2.9.1.2 Given a nonempty open set j;U— X, formation of the
middle extension jl* commutes with formation of the adjoint.

proof Indeed, given a holonomic left D-module V on U, its middle
extension Jl satisfies Hom (6, M) =0 = Hom p(6, Jn') for every « in

¥X-U; as this condition is symmetric in N and M*, we see from the

characterization of middle extensions that N* = jl'(_j'(m')). But

j*(MN*) is canonically (j*(M)* = V*, whence M* x 3, (V*). QED

Corollary 2.9.1.3 Given a nonempty open set jJU— X, and M,N
holonomic on U, the restriction map defines an isomorphism of Hom
groups

Hc’:rnD-mod on X(-j!'l:m'l j!ln) = HomD-mod on U(m' n).
proof The quotient j, /j, N is punctual with support in X - U, so we
have HomD-mod on X(.j!ljn" j!l:n') = HomD-modm X(-j!'l'ml Jl:n) = (by

adjunction) = Homyp_,.oqon uli®J1e M N) = Homyg_ oy on (M, N). QED

Lemma 29.2 Let « in X(C), and j : X-{«} — X the inclusion. Suppose
that L is a nonzero element of D. The following conditions are
equivalert:
(1) the natural map

D/DL - j,(j*(D/DL))

is an isomorphism.

(2) L* operates bijectively on the delta-module & .

Proof The question is Zariski local around « in X, so by shrinking down
wWe may assume that the ideal defining « in X is principal, with
generator denoted x. By definition we have j,(j*(D/DL)) = (D/DL)1/x]

39'(1) is equivalent to the statement that the operator Left(x): A+ xx is
bijective on D/DL.
~ To say that Left(x) is injective on D/DL is to say that if a,b in D
Seat‘xsfy xa=bL in D, then there exists ¢ in D such that a=cL; if this ¢
Xists, then xcL=bL in D, so b=xc. Read backwards, this is precisely the
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condition that Right(L)a+ L is injective on D/xD.

To say that Left(x) is surjective on D/JDL is to say that for any a
in D there exist b and c in D such that a=xb+cL in D. This is precisely
the condition that Right(L) is surjective on D/xJD.

Therefore Left(x) is bijective on D/DL if and only if Right(L) is
bijective on D/xD. Passing from right modules to left, this is in turn

the same as saying that Left(L*) is bijective on D/Dx := §,. Thus (1)
and (2) are equivalent. QED

Lemma 29.3 Let « in X(C), and j : X-{x} = X the inclusion. Suppose
that L is a nonzero element of D. The following conditions are
equivalent:

(1) the natural map

Ji(G*(D/DLY) - D/ DL

is an isomorphism.
(2) L operates bijectively on the delta-module §

proof The map (1) is the dual of the map (1) of the preceding Lemma
with L replaced by L* QED

Lemma 29.4 Let « in X(C),and j : X-{«x} = X the inclusion. Choose a
formal uniformizing parameter x at «, ie., an isomorphism C[[x]] = )
(GX o) )™ . Let L be a nonzero element of D of degree n 2 0 in 9, which ;

satisfies the following condition (#):

(#) viewed in ClIx]l® gD = ClIx]lld/dx], L lies in the subring C[[x]][xd/dx]
say .!
L = Z,,q x}Py(xd/dx), ‘
where the {P;(t)};,q are a sequence of polynomials in Clt] of degree ¢ n.
Then the following conditions are equivalent: ' ’

(1) L and L* both operate injectively on §,. i
(2) L and L* both operate bijectively on §,

(3) The “indicial polynomial” Pg(t) has no zeroes in Z.
(4) D/DL % j;,j*(D/DL).
(5) jy(j*(D/DL) = D/DL = j,(j*(D/DL).

proof We have already seen that (1) (4) and that (2) e (S), and
(2)=(1) is trivial. So it remains to show, under the hypothesis () made'
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on L, that (1)=(2) & (3). Let us denote by ] the ideal which defines « in
X.L acts on Oyx_{,} = U, 1" Intrinsically, the hypothesis (#) is that L,

acting on Cy_(4}, maps every power I of I to itself. Thus for every

neZ, L induces a C-linear endomorphism gr,(L) of the one-dimensional

¢-space 1n/17*1 This endomorphism grn(L) is none other than
multiplication by Pg(n).

This shows both that (#) is independent of the choice of formal
parameter x, and that, when it holds, the condition (3) is also
independent of this choice. This allows us to choose the formal
parameter x in a convenient way. We will adopt its choice to the
derivation d used in the explicit definition of the adjoint,by requiring
that a(x)=1.[This is clearly possible, since for any initial choice of
formal parameter x, d is f(x)d/dx for some unit f(x) in C[[x]]. The

required parameter is then [, dt/f(t)] With this choice of x, the
adjoint of xd/dx =xd is ~9x=-1-xd = -1-xd/dx, and so the formal
expansion of the adjoint L* is

L* = 5,0 Pi(-1-xd/dx)x} = £, xIP{(- 1-i-xd/dx).
Thus L* also satisfies (#), and its indicial polynomial is Pg(-1-t).

Now consider the delta-module §, :=D/DI; it is isomorphic to
C((x))/ClIx]], by the D-linear map 1+ 1/x. By the hypothesis (), each

of the finite-dimensional subspaces F_,, := x " PCl[x]l/Cl[x]], n21, is stable
by L (resp. L*); as 6 is their union, we see that L (resp. L*) is injective
on b, if and only if it is injective on each F_,,. Since F_,, is finite-
dimensional, L (resp. L*) is injective on F_, if and only if it bijective on
F_h Thus if L (resp. L*) is injective on 8, it is bijective on each F_y,, so
Sur jective on 6, and hence bijective on §,. Thus (1)=(2).

It remains to see that (2) & (3). Since L (resp. L*) is stable on each

F_n. and induces multiplication by Pg(-n) (resp. Pg(-1+n)) on F_,,/F1_,

We see that L (resp. L*) is bijective on F_,, if and only if Pg(-t) (resp.

Pg(-1+t)) has no zeroes in {1,2,..n}. Thus L and L* are both bijective on
8« if and only if Pg(t) has no zeroes in Z. QED

Remark 29.4.1 The proof as given shows that one has the slightly
More precise
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Lernma 2.9 5 Hypotheses and notations as above, the following four
conditions are equivalent:

(1) L* (resp. L) operates injectively on & .

(2) L* (resp. L) operates bijectively on §,.
(3) The "indicial polynorial® Pg(t) has no zeroes in Z g (resp. in Z,q).

(4) j(3*(D/DL)) * D/DL (resp. H/DL = j, (3*(D/DL)).

Corollary 2.95.1 Let j: Gy, — Al the inclusion, @ = d/dx, D = xd.
Then
(a) j1j*C = D/Dxd = D/DD.

(b) j,j*C = D/Dax = D/D(D + 1).
proof On Gy, both D/DD and D/D(D + 1) are isomorphic to j*C =

Clx, x"1], by the D-linear maps 1 = 1 and 1 ~ 1/x respectively. So (a)
and (b) result from the above lemmma’s (3) & (4), applied to the
operators D and D + 1 respectively. QED

(2956) One knows that in the category of holonomic left JD-modules,
every object is of finite length, and that the irreducibles are of two
kinds:

(1)for each « in X(C), the delta-module &, is irreducible.

(2)for each nonempty open U in X, with ji;U— X the inclusion, and each
irreducible object V in DE(U/C), j|,(V) is irreducible.

Recall that for an object V of DE(U/C), any subobject N of V as
holonomic (or even as G-quasicoherent) D-module is itself an object of
D.E(U/C), simply because DE(U/C) is precisely the category of G-
coherent D-modules. This means that for an object V of D.E(U/C), the
notions of "irreducible as D.E" and of “irreducible as holonomic D-
module” coincide. Recall also that if an object V in DE(U/C) is
irreducible, then its restriction to any nonempty open set U' of U
remains irreducible in DE(U'/C) ("birational invariance of the
differential galois group, cf [Ka-CAT, 42]).

Therefore, given an irreducible N on X which is not a delta-

module, then for any nonempty open j:U—X such that j*IN lies in
DE(U/C), j*M is irreducible in DE(U/C) and M is jj,(j*IMN).
Thus we find
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Corollary 2.96.1 Let M be holonomic left D-module on X whose
support is not punctual. Then M is irreducible if and only if there exists
a nonempty open jU—X such that

j*M is an irreducible object in DE(U/C) and M= j,j* M.

Moreover, if this condition holds for some U, then it holds for any U
such that M|U is in D.E(U/C).

Corollary 2.9.6.2 Let f, g € O, with f20. The first order operator L :=
fd + g has J/DL an irreducible D-module on X if and only if the
following conditions hold:

(1) at every simple zero « of f, the ratio g{«)/(3f)(x) is not in Z.

(2) at every multiple zero « of f, g{x)=0.

proof On the open set U where f is invertible, we have a rank one DE,
which is automatically irreducible. We must show that D/JDL is a
middle extension from U. At a zero « of f, choose a formal parameter x
with dx=1. Formally at «, d is d/dx and so the operator L is f(x)d/dx +
g(x) = ((af)(«) + higher terms)xd/dx + g(x). Therefore 294 applies. The
indicial polynomial at « is Pg(t) = (3f)(¢)t + g(x), so the conditions (1)

and (2) just amount to requiring Pg(t) to have no roots in Z. QED

Lemma 2.9.7 (Pochammer) Let « € X(C), U:= X-{x} jjU = X the
inclusion. Choose a formal parameter x at «, i.e, an isomorphism

Clix]] = (OXIO,.)A. Let L:=Zf;d! be a nonzero element of D of degree n » 1
In 9, whose leading coefficient f,, has a simple zero at «, and is
invertible on U:z-X-{x}. Let M:=D/DL. Then

(1) j*M and j*M* each lie in DE(U/C), and as DE. on U each has a
regular singular point at «.
(2) if the formal parameter x is convergent, ie., if x € Gxan'a, every

solution of Le=0 ( resp. of L*=0) in C((x)) is convergent in a punctured
(classical) neighborhood of 0 in C.

(3) the equations L¢=0 and L*¢=0 have the same number 2 n-1 of C-
linearly independent solutions in C((x)), i.e.,

dimgHomp(IM, €((x))) = dimgHomp(M*, C((x))) 2 n-1.
Moreover, at least one of M or M* has dimgHom (M, C[[x]]) = n-1.
(4) If M = ji,(j*IM), eg., if M is irreducible, then every solution of Le=0
(resp. of L* ¢=0) in C((x)) lies in C[[x]], and
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dimgHom (M, €((x))) = dimgHomp(M*, ¢((x))) = n-1,

ie. local monodromy around « is a pseudoreflection.

proof Notice first that the hypothesis on L is also satisfied by L*; its
leading coefficient is (-1)P f,,. Because f,, is invertible on U:=X - {«},
both j*M and j*JM* lie in D.E(U/C), and as DE’s on U both visibly

(Fuch's criterion) have a regular singular point at «. This proves (1),

and (1)=(2). Let us denote X8" - {«} by U, and denote by £ and L*
the dual local systems on ‘U of germs of holomorphic solutions of L and

L* respectively. Because j* T and j*MNM* both have a regular
singularity at «, their spaces of C((x))-valued solutions are the
invariants of "local monodromy around «” in these dual local systems.
Looking at the Jordan normal form of local monodromy around « on
I, we see that it and its contragredient have equal-dimensional spaces
of invariants. This proves the “"equal dimension” part of (3).

To prove the rest of (3), we argue as follows. The dimensions in

question depend on what happens over (OX,OL)A % ClIx]] and over Cy _

(a)G(OXla)A X C((x)). Therefore we may and will choose the formal

parameter x so that d is d/dx. Then in C[Ix}l[9}, we can multiply L by a
unit u(x) in C[[x]] so that it is of the form

u(x)L = xdN + lower terms in 9, coef's in C{[x]],

= xdn + (p+ higher terms in x an-1 4 ij_l f_ja-j, fJ'eC[[x]].

One readily computes that (-1 u(x)L* is of the form

xd" + (n-p + higher terms in x)an~1 Zin-1 gja.j, gj€C[[x]]_

Let us admit for a moment

(#) if p is not in Z g, then dimgHom p(M, Cl(x})) = n-1.
Then we may complete the proof as follows. At the expense of
interchanging L and L* we may suppose that p is not in Z g. Then by
(*) we trivially have dimgHom p(M, €((x))) 2> n-1. This proves (3).
Finally, if M = j;,(M), then Hom p(M, 5,)=Hom p(M*, §,)=0, so (4)
follows from (#*) and (3) by applying the functors Hom p(JM, ?) and
Hom p(M*, ?) to the short exact sequence of D-modules
0 = cCllxll = ¢((x)) = 8, — O.
It remains to prove (#). Now Homp(M, Cl[x]D) is precisely the
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kernel of L on Cl[x]]. Because Cl[x]] is an integral domain, this kernel is

the same for L and for (x® 1u(x))L. This operator is readily seen to lie
in the subring ClIx]l[xd/dx] of C[[x]lld/dx], and its expansion (cf 2.9 4)

(x""1uG)IL = £, xIPy(xd/dx)
has Pg(T) = T(T - 1XT - 2)....T - (n-2))(T - (n-1-p)), as one sees using
the identity

xX(d/dx)k =(xd/dx)(xd/dx - 1)(xd/dx - 2)...(xd/dx -(k-1)).
Therefore

(xP"1u(x))L acts stably on each ideal of ClIx]l, and, because (n-1-B) is
not in Z,,,_1, it acts bijectively on (xn~ Lyclix]]. The snake lemma for
the short exact sequence
0 = (xn"heglix]] - cllx]] = clix]l/(xn " Delxll - o

then shows that (x""1u(x))L has isomorphic kernels on Cl(x]] and on
clix)l/(xP~Dyellx]]. But

(xP"1u(x))L = (x" 1) an endomorphism of Cl[x]l )
so it kills C[[x]l/(x™~1)C((x]]. This concludes the proof of (#). QED
Remark 2.9.7.1 The indicial polynomial of x® lu(x)L at « has roots

0,1,2,..n-2, and n-1-p, while that of xP"1u(x)L* has roots 0,1,2,..,n-2,
and p-1. So if either p is a noninteger or if p lies in {1,2,.,n-1}, then M

T j1+(M). [For then both xN"1u(x)L and x""1u(x)L* act bijectively on
5«. and hence L and L* are injective on §, ] In any case, if N x

J1s(MN), then the determinant of the pseudoreflection which is its local

monodromy at « is exp(2mWip).

Proposition 2.9.8 Let « € X(C), Uz X-{«} jjU = X the inclusion.
Choose a formal parameter x at «, i.e.,, an isomorphism

Clx]] = (OXIQ)A. Given a holonomic M on U, denote by Solny the

finite-dimensional C-vector space Soln, := Hom (T, (GX'a)Allfx]) =
Hom p(M, €((x))) = Hom p(M®gC((x)), C((x))) of its formal meromorphic
solutions at «. Consider the tautological short exact sequence on X
0= j,,M-=jMm-;m /.i!ijn' - 0.
The quotient j, TN /j;, M is the punctual D-module
JeM 7§, M = 8, ® cHomg(Soln,, , C).
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proof The question is Zariski local on X around «, and independent of
the choice of the uniformizing parameter x. So we may and will
assume that x is a function on X with a simple zero at « and no other
zeroes. Admit for a moment the following assertion (x):
(») Hom p(j, M, (O o)) = 0 = Extl p(j, M, (Ox o))
In the short exact sequence

0-j,M-jMm-;m /jis M - 0,
the quotient j,M /j;, M is holonomic and supported in «, so

necessarily of the form 6, ®¢V for some finite-dimensional C-space V.

Apply the functor Hom p( ?, (OX,oz.)A) and look at the long exact

cohomology sequence for this exact sequence. In virue of (#), the
coboundary induces an isomorphism

Hom p(j1s M, (O o) ") = Extlp(j, M/j, M, (Cx o))

124

Extl p6o ®¢V, (O o))

24

Homg(V, ©)® ¢Extln(s,, (Ox o) ).

The same consideration with TN replaced by the trivial J-module @
shows that Extlb(sa, (GX,ot.)A) is canonically €. Therefore
Homp(j1s M, (O )" ) = Homg(V, €).
From the short exact sequence
0= (Oxa) = (Oxe) (1/x] = 64 = 0
and the vanishing of Hom p(j;,TN,6,) we obtain

Hom p(jie M. (O o)) = Homp(j M, (Ox o) " [1/xD),

(by adjunction) = Hom p(M, (OX'a)Alllx]) = Soln,,.
Thus we find Soln, * Homg(V, C), as required.
It remains to prove the assertion (#). The vanishing of
Hom p(j, M, (OX'OL)A) is obvious, for already Homg(j, M, (Oxla)")zo,
simply because every element of the source j, T is infintely x-divisible,

A

while no nonzero element of (OX,oz.) % C[[x]] is infinitely x-divisible.

To prove the vanishing of Extl j(j, M, (OXIO,,)A), we will use the

unique x-divisibility of j,IM to show that any such extension splits (the
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splitting is unique if it exists, because Hom p(j, M, (O X,a)A) = 0)..Thus
suppose we have any short exact sequence of D-modules

0 (0ge) AT B-0
in which B is a D[1/x]-module. Denote by C € A the intersection
c=N n » 0 XPA. Clearly C is a D-submodule of A (as 3(x"A) € xP1a
forn 2 1), and C n (OX,oz.)A = 0 (for if f€(0xla)A lies in xA, say

f=xPa, then 0=7(f) =xPw(a) in B, so w(a)=0, so a€(0x'a)'\, and so we

find fe xn(OX'a)A). To split m, it suffices to show that m maps C onto B.

A

(For w|C : C — B is automatically injective, as C N (O o) = 0)

Given an element p of B, choose for each n 2 0 an element x €A

which lifts x"1p. For each n 2 0, let f;, = & - x®pn,s1. Then w(f,)=0,s0

fne(GX'a)A. The series &, ,q xPf, converges in (OX'O,.)A, say to F. Now
define new liftings ¥,,€ A of the x™1p by ¥, := oy, = F. With this choice,

the differences c,, =

n ¥n ~ X¥p4q Arecp = fr, - (1-x)F, so 1, x7c, = 0.

For each n:0, define C,,€(Cy °,.)A to be Cy, = Zi,0 xici+n. Then
Yo~ x5 Tieg pxi = ~Ejnet x5 xPtICH,
and so ¥g = x""’l(’(n+1 -Cp+1) lies in xn*1a for every n : 0, and hence

¥g € Cis a lifting of p to C. QED

This Proposition leads immediately to the following D-module
complement to Deligne's Euler-Poincare formula [De-ED,I], 6.21], which
was suggested to me by Ofer Gabber. Recall that for a holonomic D~
module MM on X, we define

*(X, M) 1= x(H*pR(X, M) = £(-1)idimgHipp(X, M).

Cerollary 2.9.8.1 Let j : U = X be the inclusion of a nonempty open
set. Let M be a holonomic J-module on U. For each € X-U, denote by
Soln,, the finite~dimensional €-vector space of formal meromorphic
solutions of M at «. Then

XX, j1, M) = x(U, M) + £_ o dimgSoln,, .
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proof Because TN is G-quasicoherent, Hpp(U, M) * Hpp(X, j, M), and so
(U, M) = (X, j,M). The short exact sequence on X
0= j,M-jM->jm /51, M = 0

has

j;m /-j!ijn'

144

O cx-u 84 ®cHomg(Soln, , ©),

So

XX, G, T = (X, j, M) - I 4y dimg(Solng )% (X, 54).
But %(X, 84) = -1 (the map d/dx : C((x))/C[[x]] = C{(x))/Cl[x]] is visibly
injective with one-dimensional cokernel). QED

(2982) Denote by X the complete nonsingulat model of X. For each x
in X, denote by Irr (M) the irregularity (sum of the slopes with

multiplicity) of M at x. Deligne’s formula asserts that if N is a DE. on
X, ie, if M is O-locally free of finite rank, then
(X, M) = rankg(M)x(X) - T, 5z x Irry(IN),

where X (X) := 2-2g(X) - Card(X - X) is the topological Euler
characteristic of X. Combining this with the above corollary, we obtain

Theorem 2.9.9 (Deligne, Gabber) Let j : U — X be the inclusion of a
nonempty open set, X the complete nonsingular model of X. Suppose M
is a D.E. on U. For each «x€ X-U define integers

dropy = rank(l) - dimgSoln,,

totdropy, = Irrg (M) + drop,, .
These integers are nonnegative, and
XX, j)1s M) = rankg(M)x(X) - T g« Irr (M) - Z_ ., totdrop,,.
proof That drop,, 2 0 is the fact that a rank n DE. on €((x)) has a

solution space of dimension at most n. The irregularity is by definition
nonnegative. The ¥ -formula is a trivial concatenation of the previous
corollary with Deligne's formula for % (U, M). QED

Lemma 2.9.10 Let « in X(C), U = X - {«}, j;U—=X the inclusion, N a
DE.on U of rank r 2 1. Then the following conditions are equivalent:
(1) j4,M is a DE. on X.

(2) totdrop, = 0.
(3) drop,, = 0.

proof Pick a formal parameter x at «. The quantities totdrop, and
drop,, depend only on M@®gC((x)). If N := j;,M is a DE. on X, then
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N®gClixll is spanned by its horizontal sections, so N®gCllxllx (CI[xIDT.
As T = j*N, M GT((x)) = (C((x)T, so obviously (1)=(2)=(3).

If dropy, = 0, then M@ GC((x)) = (C((x))F. It suffices to extend M
toa DE N on X, ie, to a D-module N on X which is a locally free G-
module of rank r (for then j;, M = j,j*N = N by 29.1.1). Now C-

lecally free extensions of Jl as @-module to X are in bijective
correspondence with Cl[x]l-lattices in N® gC((x)), and the corresponding

locally free extension is JD-stable (inside j, M) if and 6nly if its Cl(x]]-
lattice is D-stable (inside M®gC((x))). Since MB®gC((x)) = (CUxMNT, we

have only to take for Cl[x]]-lattice (C[[x])¥ € (C{((x)))¥ to produce the
required . QED :

Corollary 2.9.10.1 Let « in X(C), U = X - {«}, jU—X the inclusion, M

a holonomic D-module on X such that j*M isa DE. on Uof rank r 2 1.

Suppose x is a function on X which has a simple zero at « and which is
invertible on U. Then M is a DE. on X if and only if the following three
conditions hold:

(1) the map Left(x) : M — MM is injective, 1.e, Homp(§,, M) =0.

(2) the map Left(x) : M* — M* is injective, ie, Homp(s,,, m*) =o.
(3) dimg(M/xM) = r, or equivalently
(3 bis) The function on X(C) given by
B~ dimc(mllbm), Ip := the ideal sheaf of p,
1s constant.

proof The conditions listed are trivially necessary. To show that they
are sufficient, we argue as follows.
The first two conditions together imply

m = j!*(j'm).
in virtue of 2.9.1. Using this, 2.9.8 gives a short exact sequence
0->M —=j,j*M - §,8cHomg(Soln,, , ) = 0.
Now apply the snake lemma to the endomorphism Left(x) of this short

exact sequence. Since Left(x) is bijective on j,j*M, the coboundary

defines an isomorphism
Homg(Solng, , €) = M/xM.

So by (3), we see that dimgSoln, = r. By 29.10,(1) & (3), we conclude
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that j, (j*M) isa DE. on X, whence M = j (j*M) is a DE.on X. QED
‘J!i s

(29.11) We next recall what the general global duality theorem (for
coherent D-modules with respect to projective morphisms) gives in our
situation. Thus suppose M is a holonomic left D-module on the smooth

connected curve X. The de Rham cohomology groups Hipg(X, M) can
also be described as the global Ext groups ExtiD(O, M). Passage to
ad joints gives ExtiD(O, m) = ExtiD(fm', C). We have a natural pairing
Extipn(Q, M*) x Extip(M*, 6) —» Exti*ip(e, ©),
which via the above isomorphisms becormes a pairing
HipR(X, M*) x HIpp(X, M) — HI*Jpp(X, ©) = Hi*-iDE(X)A
The global duality theorem {(cf. {Ber], [Bor]) asserts that if X = X i1s a
complete nonsingular connected curve, then for any holonomic M on
X, the pairings
HipR(X, M*) x HZ™ipp(X, M) - H2pR(R) = ¢

are perfect dualities of finite-dimensional C-vector spaces.

To conclude this section, we give elementary Euler characteristic
formulas for the special case of D-modules of the form D/DL on Al
and on G, .

Lemma 2.9.12 On Al with parameter x, write d for d/dx, and
consider a nonzero operator L := Zaijxiaj. Define the integer d = d(L) by

d = max(i-j|aj ;= 0).

Then x(Al, D/DL) = -d.

proof We have
x(Al, D/DL):= x(Ext (S, D/DL))=x(Extp(D/DL*, 9)),

= dim(Ker) - dim(Coker) for the map L* : C[x] - C[x].
Now L* = Zai’j(—a)jxi, and each operator (-3)Jx! is homogeneous of
degree i-j when it acts on the graded ring C[x]. Moreover, the
associated graded map
(-9)Ix! : (degree n) — (degree n*i-j)
is given by a nonzero polynomial Pi'j(n) in n of degree j, namely
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(-a)xHxP) = Py j(n)x*1"J, where P; j(t) = (1T, o (t+i-k).
So by definition of the integer d, there exists a nonzero polynomial P(t)
(namely P := Z; ;.4 &, jPj ;) such that L* acting on Clx] maps
(degree ¢ n) to (degree ¢ n+d), and induces x" = P(n)x"*d on the
associated graded. So if we denote by K,, the complex
L*: (degree < n) = (degree < n+d),
then the inclusion of K,, into K, .1 is a quasiisomorphism if P(n+1)=0.
The direct limit K, of the K, is the complex which calculates the Ext
groups, so if n is larger than any integer zero of P we have
H*pr(Al, D/DL) = H*(K,) = H*(K,).
But for n large enough that n+d > 0 we have
%(Kp) = ®IL*: (degree ¢ n) - (degree <« n+d)] = -d. QED

Lemma 2.9.13 On G,,, with parameter x, write D for xd/dx, and

consider a nonzero operator L := inPi(D). Define integers a, b, d by
a:=max(i|P;20), b:= min(i|lP;z 0), d= a-b.
Then X (Gyy,, D/DL) = -d.
proof. The proof is exactly analogous to that given above, taking for K,
the subcomplex
L* :( -n ¢ degree ¢« n) = ( b-n ¢ degree ¢ a+n)
of the complex L* : Clx, x"1] = ¢€Ix, x"1]. QED

210 Some equations on Al, with a transition to Q.

(2.100) We now turn to the special case where X is Al we will
write d for d/dx. Thus O is the polynomial ring C[x] and D is the Weyl
algebra O[d] = €[x,d] The Fourier Transform FT(L) of an element L =

Zf(x)d! of D is defined by
FT(L) = X £;(a)(-x)1.
The map L FT(L) is a ring isomorphism of D with itself, whose square
is [-1)*:
for L = Zf(x)al, FT(FT(L)) = [-1]*L = Sf;(-x)(-d).
Notice that FT and adjoint nearly commute: one has
(FT(L)* = [-11*(FT(L*)) = FT([-1]*(L*)).

Given a left (resp. left holonomic) D-module M on Al, its Fourier

’
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Transform FT(M) is the left (resp. left holonomic) D-module D@Dm,

where in forming the tensor product the leftmost D is viewed as a
right D-module by the ring isomorphism FT:D—D.If M is D/DL, then
FT(M) is D/DFT(L).

Example 2.10.1 (1) Let j: G, = Al the inclusion. Then
FT(j1j*0) = j.j¥C, FT(j,j*0) = jjj*C.

Indeed, by 295.1, j;j*0 = D/Dxd, and j,j*C = D/Dax. Visibly we

have FT(xd) = -dx, FT(dx) = - xd.

Example 2.10.1 (2) For « in €, the delta module §, is D/D(x-). Its
FT is D/D(d-«), which is isomorphic to the D-module e*XC[x] by

means of the D-linear map 1—e%X,

(2102 Thus M= FT(M) is an exact autoequivalence of the category
of left (resp. left holonomic) D-modules. If we iterate FT, we find
FT(FT(M)) = [-1]* ().

A key point for later applications is the apparently trivial consequence
that a holonomic left D-module M is irreducible if and only if FT(IM) is
irreducible. Here is a simple illustration :
Theorem 2.10.3 Let P:=P,(x) = £ pixi and Q:=Qu(x) = & qixi be
nonzero polynomials in C[x], of degrees n and m respectively, and
suppose that

(1) if & is a simple root of Q, then P(x)/Q(«) is not in Z.

(2) if o is a multiple root of Q, then P(«)20.
Denote by L the operator L := P(2) + xQ(3) , M :=D/DL. Then
(1) M is an irreducible D-module on Al
(2) If n> m, M is a Lie-irreducible object of D,E.(A1/C), whose largest
slope at o is (n+1-m)/(n-m), with multiplicity n-m.

(3a) If n ¢ m, then for « = -p,./q,,, M| Al - {«} is an irreducible
object of DE(Al - {«}/C). Its local monodromy at « is a
pseudoreflection of determinant exp(-2wip), where p is given by
2
B = (Pm-19m ~ Pmdm-1) /{am)"-

(3b) If n < m and if either m=2 or exp(2wip)z -1, then M | Al - (x)is
Lie-irreducible.
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proof The operator L is the FT of the first order operator -3Q(x) + P(x)
= -Q(x)d + P(x) - Q(x) to which we apply 296.2 to get the irreducibility
(1). (2) is obvious from the definition of L, and the fact that Lie-

irreducibility on Al results from irreducibility(1). (3a) is just the
spelling out of 29.7 (4) and 29.7.1. For (3b), we argue as follows (cf. [Ka-
Pil,Cor 6 and Criterion 7). By additive translation, we may suppose that

« =0, so Al - {x)is G,y,. But an irreducible DE. on Gy, is either Lie-

irreducible or it is Kummer induced. If it is Kummer induced and
regular singular at zero, then its exponents at zero in €/Z are Kummer
induced. The exponents mod Z are { 0 repeated m-1 times, -8}, which
are visibly not Kummer induced unless m=2 and p=1/2 mod Z. QED

Remark 2.10.3.1 Another way to state the hypotheses on P and Q is
to say that P and Q are relatively prime and that the partial fraction
expression of P/Q is

P/Q = Zaj/(x - &p) + g(x),

where g(x) in €(x) blows up at those «; for which ajisin Z
Notice that L = P(d) + xQ(9) is the FT of P(x) - dQ(x), annihilator of

(1/Q(xNexp(J(P/QXB)AL) = (1/QUx)NTT(x - «;)*i)e8(X),
and L* = P(-3) + Q(-9)x is the FT of P(~x) - Q(-x)9, annihilator of
exp(J(P/Q)(-8)dt) = (TT(x + ;) *i)e &%),
Conversely, if we begin with a function of the form (TT(x - ot.i)"i)eg(x)
with g(x) a rational function which blows up at those «; for which 1, is
in Z, we recover P and Q by writing P/Q = £ 3;/(x -~ «j) + g(x) with
(P,Q)=1. If g=0, then n=m-1; otherwise m-1-n = ord(g). We will see

below that already the sequence of functions x'i/zexp(—xn/n) leads to
some surprises.

Theorem 2.10.4 Let P:=P,(x) = £ p;x! and Q:=Q,(x) = £ g;x! be
nonzero polynomials in C[x], of degrees n and m respectively, and
Suppose that

(1) if « is a simple root of Q, then P(x)/Q(«) is not in Z.

(2) if & is & multiple root of Q, then P(x)20.
Suppose n > m. The differential galois group G of P(3) + xQ(3d) on Al is
connected and reductive. If Pn-1 = 9n-1 = 0, then G = g0.der; otherwise

G = 6,,60.der. The possibilities for G0.9eT are given by:
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(1) If n-m is odd, G0.9€T¥ is SL(n); if n-m=1, then G is GL(n).
(2) If n-m is even, then either GO d€r js SL(n) or SO(n) or (if n is even)
SP(n), or n-m=6, n=7,8 or 9, and GU.9€F is one of
n=7: the image of G in its 7-dim’l irreducible representation
n=8: the image of Spin(7) in the 8-dim’l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stdestde std
the image of SL(2)xSp(4) in stdestd
the image of SL(2)xSL(4) in stdestd
n=9: the image of SL(3)xSL(3) in stdestd.
proof In view of 2.10.3(2) above, this is just the Main D E. Theorem
281 on Al with a/b = (n+*1-m)/(n-m), together with the remark that
on Al one has detG ={1} or G, and detG ={1} if and only if the

coefficient of aN~1 yanishes. QED

To give a concrete illustration of this theory, let us compute G for
the operator AN - xd - 1/2, whose FT defines x 1/Zexp(-(-x)"/n).
Theorem 2.10.5The differential galois group G of 3™ - xd - 1/2 on Al is

GL(2) for n=2,

SL(n) for n even 2 4,

SO(n) for nz7 odd 2 3,

Gz for n=7.

proof This is an instance of the above theorem with P(x)= xP - 1/2,
Q(x) = x, m=1. For n even, n-m = n-1 is odd, and so G is SL(n) or GL(n);
locking at the an-1 term, we see that G is inside SL iff n > 2. If n is odd,
this operator is self-adjoint (up to a sign), and as n is odd the resulting
autoduality is necessarily symmetric. Therefore G is inside SO(n) for
n:3 odd; in view of the limited possibilities for G, it must be SO(n)
except for n=7, where the (only) other possibility is G>. That it is G in
this case results from the following

G, Theorem 2.10.6 For any polynomial f in C[x] of degree k prime to

6, the differential galois group G of a7 - fa - (1/2)f on Alis Gso.

proof We first prove that the DE.on Al

M= D/DL, L:=2a7 -1 - (1/2)f
is irreducible. Its o -slopes are 1 + (k/6) with multiplicity six and one
slope 0. Since (k, 6)=1 by hypothesis, the I, -representation is the direct
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sum of an irreducible of dimension 6 and a tame character. So if M is
reducible on Al, its Jordan-Holder constituents must be an irreducible

DE. N on Al of rank six and a rank one DE. £ on Al which is regular
singular at o, and therefore isomorphic to the trivial D-module 8. So
either O is a quotient of TN, or it is a subobject. Since M is self-adjoint,
and Nl and @ are nonisomorphic irreducibles, M = 1 ® O. Therefore O
is a quotient of M. This means that the equation Ly=0 has nonzero

solutions in Clx]. But L acts injectively on Clx]; indeed if f = AxK +._,

then L maps x9d + lower terms to (-d - (1/2)k)Ax9*k"1 + Jower terms,
and as k is odd (being prime to 6), (-d - (1/2)k) is nonzero for all d€Z.
Therefore M is irreducible.

Once M is irreducible, it is Lie-irreducible (we are on Al). Its co-
slopes qualify it for the Main D.E. Theorem. Because it is self-adjoint,
the only possibilities are G; or SO(7). It thus suffices to rule out SO(7).

Because As(std—,) is irreducible for SO(7), it suffices to show that T has

a nonzero horizontal section in AST. We can view M as the free O-
module with basis eq,.., eg, where d acts by

de; = ej4q for i=0,1,..5 deg = (1/2)feq + feq.
Then one readily verifies that in A3M the element
egregqn~eg + epaezaey + 2eq~epaeg
-~ ej~ezaeg . egaez~€g - fegreq~ep

is killed by d. QED

Theorem 2.10.7 Let P:=P,(x) = £ pjx! and Q:=Q(x) = I g;x! be

nonzero polynomials in C[x], of degrees n and m respectively, and
suppose that

(1) if & is a simple root of Q, then P(«x)/Q(x) is not in Z.

(2) if « is a multiple root of Q, then P(«)20.
Suppose m : n. Define

2

%= “Pm/dm, B = (Pm-19m =~ Pm9m-1)/(dm) -
Suppose that either m 2> 3 or m=2 and exp(2wip)# -1.Then the
differential galois group G of xQ(d) + P(3d) on Al - {x} is reductive. If
9m-1 = 0 and B € Q, then GO = G0.der gnd detd is the cyclic subgroup

of G, generated by exp(2wip); otherwise GO = GmGO'der. The group

GO,.der is either SL(m) or SO(m) or (if m is even) Sp(m). Moreover,
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(1) if exp(2wip) = +1, G0,der= sL.(m);
(2) if exp(2wip) = +1, G= G0 and @0.der = SI(m) or (for m even) Sp(m);
(3) if exp(2wip) = -1, g0.der - s1(m) or SO(m).

proof For any Lie-irreducible DE, G is reductive, g0.der s semisimple
and irreducible in its given representation, and G0 = g0.der or

GmGO'der, depending on whether detG is finite or not. Here detG is the
differential galois group of d + (qy,-1/dy,) + B/(x - «) on Al - (). For

any first order DE. on any nonempty open set of P1, the differential
galois group is finite if and only if all the singularities are regular and
at each the exponent is rational. So detG is finite if and only if q,,_1 =

0 (so that o is regular singular) and B€Q, in which case it is the cyclic
subgroup of G, generated by exp(2mip).

The local monodromy around « is a pseudoreflection ¥ of
determinant exp(-2wip). As G contains the monodromy group (cf. [Ka-

DGGI, 12.2.1), G and hence G0.deF are normalized by ¥. The result
follows from the Pseudoreflection Theorem 1.5, except for the
connectedness of G when exp(2wip) = +1. If exp(2wip) = +1, then ¥ is

unipotent, and, as as we are on Al - {«}, whose 1 is generated by
local monodromy around «, Gy,ono 1S connected, whence G is connected
(cf. [Ka-DGG]1.2.5). QED

(2.108) We now return to the general properties of Fourier
Transform. We recall for later use the "Fourier integral” interpretation

(cf. [Ka-Lau, 7.1.4, 7.5]) of FT(M) as [M(x)e*Ydx; one takes on
A2:=Spec(CIx,y]) the D-module prq* () (this is the term M(x) in the
integral), one tensors it over @ with the D-module .D/.D(ax -y, ay- x)

[which is the D-module eXYC[x,y] by means of the D-linear map
1~ eXY] (this is the term eXY in the integral) and one takes the relative

HiDR for the map prj : A2 Al (this is the meaning of [dy; the other
HipR vanish).

(2.10.9) Given a D-module M on Al, and x€C, we denote by M®e*X
the D-module M®g(D/D(d-«)). An alternate description is this. For
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each x€C, there is a C-linear ring automorphism A, of D which sends
x— x and which sends 9~ d-« . (This automorphism is the Fourier
Transform of the automorphism of D induced by the automorphism

x— x-oc of Al) One could also describe M®e** as the D-module
D® pM obtained from M by the extension of scalars A, :D—D.

Lemma 2.10.10 If M is a non-punctual holonomic D-module on A1,
all of whose slopes at « are ¢ 1, there exists an «€C such that M®e*X
has some oo -slope < 1

proof If TN has some slope < 1, there is nothing to prove. If N has all
slopes 1, we use the following local

Break Depression Lemma 2.10.11 (compare [Ka-GKM, 85.7.1]) Let
n : 1 be an integer, and V a nonzero DE. on €((1/x)), all of whose

. n
slopes =n. Then there exists an «€C such that V®e*X " has some -
slope < n.

proof This is obvious from Levelt's structure theorem (cf. [Ka-DGG,
222)). For the assertion is invariant under extension of scalars from

C((1/%)) to C((1/x1/M)) (with n replaced by nm). But after such an
extension, any D E. becomes a successive extension of rank one D.E.s. So
we reduce to the case when V is rank one and slope n, so isomorphic to

the DE. for x8eP(X) where P(x) is a polynomial of degree n, and the
assertion is obvious; take for ~« the leading coefficient of P(x). QED

Lemma 2.10.12 Let M be an irreducible holonomic D-module on Al,
all of whose slopes at « are ¢1.1f M is in DE(A1/C), then M is the D-
module D/D(3-«) corresponding to e*X for some x€C.

proof Twisting by a suitable e*X, we reduce to the case where all oo-
§lopes of M are ¢ 1, and at least one slope is < 1. Therefore its
Irregularity Irr., (M) is < rank(M). By Deligne's Euler-Poincare formula
for a DE. Mon Al/c,

dimHOpp(Al/C, M) - dimHlpR(Al/C, M) = rank(M) - Irr (M)

is strictly positive. Therefore HODR(A1/C, M) = Hom p(8, M) is nonzero,
and this contradicts the irreducibility of M unless M is G itself. QED
Corollary 2.10.12.1 Let M be a holonomic D-module on Al all of

Whose slopes at « are < 1. If M is in DE(A1/C), then M is the trivial D-
module HOpp(Al/C, M)® 0.

r . . . ) o
Proof By the previous Lemma, M is a successive extension of trivials.
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Since Extlb(G, e = H1DR(A1/C, G) = 0, the extensions are themselves
trivial. QED

Corollary 2.10.12.2 Let TN be a holonomic J-module on Al all of
whose slopes at « are ¢ 1.1f Tl is in DE(AL/C), then M is the direct
sum @, HOpR(ALl/C, M@e *X)® ¢(D/D(3-x)).

proof Again by the previous Lernma, N is a successive extension of the
D/D(3-«)'s, and again the extensions are trivial because

Ext! p(D/D(3-«),D/D(3~p)) = Hipp(Al/C, D/D(3+x-p)) = 0. QED

Proposition 2.10.13 Suppose that L = Zfi(x)ai is a monic polynomial in
J of degree n 2 1 with coefficients fi(x) in C[x]. Suppose that the highest
slope at « of L is a/b in lowest terms, with multiplicity b, and a/b > 1.

Then M := D/DL is irreducible on Al if any of the following conditions
holds:
(1) Every other slope » of L at o« satisfies 0 < < 1.

(2) Every other slope » of L at « satisfies A < 1, and neither L nor L*
has any nonzero polynomial solutions.

(3) Every other slope » of L at « satisfies 2 ¢ 1, and neither L nor L*

has any nonzero solutions in e**C[x] for any « in C.
(4) Every other slope x of L at o satisfies » ¢ 1, and FT(L) is a middle

extension, ie., for _j:U—'A1 the inclusion of any nonempty open set on
which FT(M)=D/DFT(L) is a DE, FT(M)= j,(j* FT(M)).

proof The slope hypotheses assure in the break decomposition of M as
I, -representation, M =M,/ @M 4, the term Mgy, is 1, -irreducible.

Therefore if M is reducible, it has either a nonzero subobject or a
nonzero quotient Nl all of whose o -slopes are ¢ 1. At the expense of

switching Jl and MN*, we may assume the existence of such a quotient

N.In view of 2.10.12, N itself has a quotient e*XC[x] for some « . The
sufficiency of (1), (2), (3) is now obvious, and (3)&(4) by Fourier
Transform. QED

Examples 2.10.14 In the examples below, P, and Q,, denote
polynomials in C[x] of degrees n and m respectively.
example of (1): L = P,,(3) + xa™ with 2 ¢« m ¢ n and P(0)=0; its slopes



D.E.’s and 2-modules 79

are 1 + 1/(n-m) with mult. n-m, and 1 - (1/m) with mult. m.

example of (2) : L = Pp(d) + Q,(x3) with m ¢ n, (n,m)=1, P,(0) = 0, Q,,
has no zeroes in Z; its slopes are 1 + m/(n-m) with mult. n-m, 0 with

mult. m. Because P(0)=0, L(x9 + lower terms) = Qm(d)xd + lower terms,

so L is injective on C[x] if Q,,(x) has no zeroes in Z, . The adjoint L" is
Ph(-9) ¢+ Q(-1-x3), which will be injective on C[x] if Q,(-1-x) has no

zerces is Z,q.

example of (3) via (4): L =P,(3) + xQu(3), n > m, (n,m) =1, where at
simple roots of Q, P/Q has non-Z values, and P is nonzero at multiple
roots of Q. Let x9 be the highest power of x which divides Q. The

slopes are 1 + 1/(n-m) with mult. n-m, 1 with multiplicity m-d, and, if
d=0, 1 - 1/d with multiplicity d. This is the case we have already
discussed at some length, without the extra hypotheses on n and m.

Notice that taking Q to be 9™ gives back our example of (1).

So only example (2) is really new. An alternate and more fruitful
approach to it comes by noticing that L:= Pn(a) + Qm(xa) is the Fourier

transform of K:= Qm(-l-xd/dx) + Pn(x), a "Kloosterman operator of

bidegree (m,n)" in the terminolgy of [Ka-DGG, 4.4]. The = -slopes of K are
all n/m, so D/ DK is irreducible on G,,, (because (n,m)=1), and on Al
is the middle extension of (D/DK) | G, (because Q has no zeroes in Z).
So in fact L= Pn(a) + Qm(xa) defines an irreducible D-module on Al
whether or not n » m.

If m> n, L gives a DE. on Gyy,, which is regular singular at « and
whose 0-slopes are n/(m-n) with multiplicity m-n, and 0 with
multiplicity n. It is Lie-irreducible as well. Indeed, if (D/DL) | G,,, were
Kummer induced of degree d, then d would divide the multiplicity of
each O-slope, and these multiplicities (m-n and n) are relatively prime.

Applying the Main DE. Theorem 2 8.1, we find
Theorem 2.10.15 Let P=P(x) = £ pjx! and Q:=Qu(x) = £ qix! be

Nonzero polynomials in C[x), of degrees n and m =z n respectively, and
Suppose that

(1) Qm(x) has no rocts in Z, and Pg(0)=0.
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(2) (n,m)=1.
Denote by G the differential galois group G of P(d) + Q(xd) on Al (if
n > m) or on Gy, (if m > n) and define N:= max(n,m). Then
(case n > m) G is connected. If p,,.1 = q,-1 = 0, then G = GO,der;
otherwise G = GmGO'der_
(case m > n) If m-n=1, then G is GL(m). If m-n 2 2 and q,,,-1/9,, € Q,

then G0 =G0.der and detG is <exp(2miq,_ 1/qm)?; Otherwise
p 9m-1/9m
_ 0,d
G=G,y, G0 der.

In both cases,the possibilities for gO.der gr¢ given by:
(1) If n-m is odd, G0.der is SL(N); if In-ml=1, then G is GL(N).
(2) If n-m is even, then G0 der js SL(N) or SO(N) or (if N is even) SP(N).
or In-ml| = 6, N=7,8 or 9, and g0.der js one of
N=7: the image of G2 in its 7-dim’l irreducible representation
N=8: the image of Spin(7) in the 8-dim’l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stde@stdestd
the image of SL(2)xSp(4) in stde std
the image of SL(2)xSL(4) in std®std
N=9: the image of SL(3)xSL(3) in stdestd.

Location of the singularities of a Fourier Transform

We conclude this section with a general result on the location of
the singularities of a Fourier Transform. Recall that any holonomic D-

module M on Al is a DE. on some dense open set of Al Therefore it
makes sense to speak of the «o-slopes of JMN.

Theorem 2.10.16 (compare [Ka-GKM, 8 58]) Let M be a holonomic D-
module on Al Then
(1) FTM is a DE. on Gy, if and only if Jn. has no «-slope =1.
(2) FTM is a D.E. near « if and only if M®e*¥ has all w-slopes 2 1.
(3) FTM is a D.E. near « if and only if the function € — Z
B — Irr (MeePX)
is constant in a neighborhood of «.
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proof We first show that (2) implies (1). Indeed, if M has no c-slope
=1, then for any « z 0, M®e*X has all w-slopes > 1 (cf. [Ka-DGG,
22114)). Conversely, if L has some «-slope =1, apply the "slope
decomposition” [Ka-DGG, 2.3.4] to N®gC((1/x)) and then apply the
Break Depression Lemma 2.10.11 to its "slope =1" part to produce an «
such that MNM®e*X has some c«-slopes < 1.

To prove (2) and (3), we may, by additive translation, reduce to
the case « = 0. Thus we must show that FTIl is a DE. near zero if and
only if M has all «-slopes 2 1. By Levelt's structure theorem [Le-JD], M
has all «-slopes 2 1 if and only if the function

I 4
o = Irr (M@e*X)
is constant in a neighborhood of « = 0.[Indeed, if Nl has «-slopes A1, ..

, Ay, then lrr (M) = I; a;, while for all but finitely many « = 0,

Irr o, (M®e*¥) = L; max(xj, 1)] So (2) and (3) are equivalent.

We may further reduce to the case in which M is irreducible. For
in any case TN is a successive extension of finitely many irreducibles
m;, and FTIM is a successive extension of the finitely many irreducibles
FTIN;. Now FTIM is a DE. near zero (ie, is O-coherent near zero) if and
only if each of its Jordan Holder constituents FTTN, is a D.E. near zero
(ie., is O-coherent near zero). Clearly the condition (2), that Ml have all
c-slopes » 1, holds for T if and only if it holds for each ;. Thus it

suffices to treat the case when TN is irreducible.

We first check by hand a few special cases.

If M is a delta module & . then it has no «-slopes, and
FTIM = D/D(d-«) is a DE. on all of Al.

If M is the constant JD-module O = D/Da, whose unique  -slope
1s 0, then FTM is 8g, which is not a DE. near zero.

‘ If M is the D-module D/D(d+x) = e" *XC[x] with « # 0, whose
unique co-slope is 1, then FTIM is 8. which is a DE. near zero.

Suppose now that M is irreducible, not punctual, and not of the
form D/D(3+«) for any « in €. For every « in C we have

HOpR(Al, M®e*X) = Homp(D/D(d+a), M) = 0.

The adjoint M* of M is of the same type, as is its pullback by x = -x,
[-11*M*, 50 we also have
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HOpR(AL, [-1]*M* ®e*X) = Homp(D/D(3+a), (-1]*M*) = 0.
If we denote by U = Al -5sa nonempty open set of Al on which M is a
DE, then M = j,j*M (since M is irreducible nonpunctual). The Euler-
Poincare formula for M = j;,j*M on Al gives
x(Al, M@®exx) =
= rankou(j'm@e“x) - Irr (M®e*X) - I, o totdropp(M@e™X).
Because e*X is a rank one DE. on all of A1, it is formally trivial at each

point B € S, so we can rewrite the above formula as
x(Al MEexx) = rank@U(j'fm) - Irrg, (M@®e™X) - I, g totdropg(M)

= (function of TN alone) - Irr (M@ e*X).

We now express this information in terms of the De Rham
complexes of M®e*X, and of [-1]*N* @e*X, which we view as the two-
term complexes (in degrees 0 and 1)

d+ o d+ o
m m, [-1]*M* [-1]**.
We are told that both of these arrows are injective for all « in €, and
that

dimg(M/(9+x)TN) = Irr (M@ e*X) - (function of M alone).

In terms of the Fourier Transforms FTMN and FT([-1]*M*) = (FTM)*,
this says precisely that the two arrows
-X + & X+ &
FTM ——— FTM, (FTI)* ——— (FTM)*,
are both injective for all « in €, and that
dimg (FTIN/ (x-x)FTM) = Irr, (M®e*X) - (function of M alone).

According to 29.10.1, FTM is a DE. near zero if and only if the
following three conditions hold:
(1) the map Left(x) : FTTL — FTIN is injective.

(2) the map Left(x) : (FTM)* — (FTM)* is injective.
(3bis) the function & = dimg(FTN/(x - «)FTM) is constant near « = 0.

Thus for M is irreducible, not punctual, and not of the form
D/D(d+«) for any « in €, FTTN is a DE. near zero if and only if the

function &« — Irr  (M®e*X) is constant for « near zero. QED

2.11 Systematic study of equations on @,,
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(2.11.0) We now turn to the systematic study of equations on
G, = Spec(Clx,x"1]). We write

9 = d/dx, D = xd/dx.
The ring DGm on G, is Clx,x"1,Dl = ¢lx,x1,3] = D,tl1/x]. The

multiplicative inversion "inv” on G, interchanges x and x'1, and sends
D to -D. Because we will sometimes want to think of G, as sitting in

Al, we will use the induced notion of adjoint 3 -9, which sends D to
-1-D. Every element of DGm is the (right or left) product of a power of

x, which is a unit in DGm' and of an element of the subring C[x,D]. We

will generally write elements of DGm in the form ¥ xiPi(D), where the
P,(t) are polynomials in C[t].

Given a JD-module M on €,, and an x€C, we denote by M x>
the D-module M® g(D/D(D-«)). Notice that D/D(D-«)x x*Clx,x 1] by

the D-linear map 1~ x%. For each x€C, there is a C-linear ring
automorphism B, of D which sends x~ x and which sends D= D-«. One

could also describe M®x* as the J-module obtained from M by this
extension of scalars By :D—D.

Lemma 2.11.1 Let M be a holonomic D-module on G,y,. Then for any
« € C, X(Gy,, MBx*) = % (G, M.
proof This is immediate from the Euler-Poincare formula, because

x*C(x,x"1] is a rank one DE. on Gy, of slope zero at 0 and « . QED

Lemma 2.11.2 Let V be a nonzero object of DE(G,,/C) all of whose
slopes at both 0 and « are zero. Then V is a successive extension of
cbjects x*C[x,x1].

pProof Since V is regular singular at both 0 and ¢, it is uniquely

determined by the monodromy representation it gives of the topological
“1(Gm) X Z. As Z is abelian, V is a successive extension of rank one

DE’s on Gy, which are regular singular at 0 and «. So we are reduced
to the case when V is O-invertible. As O = Clx,x 1 is a principal ideal

demain, V is free of rank one over 0, say V = C[x,x'1]e0 with Deg=feq,
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so VX D/D(D-f) for some feClx,x " 1]. In terms of f, the slopes of V at 0
and « are max(0, -ordg(f)) and max(0, -ord.,(f)) respectively. As V has

slope zero at both 0 and o, f is constant. QED

Here is a formal version of this, in a form which inductively
isolates the entire slope zero part from the rest.
Factorization Lemma 2.11.3(cf. [Mal]) Consider an element L of
Cl[x]l[D] of the form

L = £,,, x}A(D)
where the Aj(t) are polynomials in C[t] of uniformly bounded degree.
Put N :=supj(degAj). Suppose that Ag is nonzero and that we are given
a factorization of Aq,
Aq(t)=P(t)Q(t), such that for all n > 1, gcd(P(t+n), Q(t)) =1.

Denote by M the degree of P. Then in C[[x]][D] there exists a unique
factorization of L

L = ( £, xIP{(D) )( £,, x¥Qy(D) )
such that
Pg = P, deg(P)) <M fori>0

Qg = Q deg(Q) ¢« N - M for i> 0, with equality if deg(Aj)=N.

proof If such a factorization exists, then equating like powers of x and

using the commutation relation Pi(D)xj = xJPi(D*_j), we find
An(t) = Iy, ., Pilt+)Qj(t) =
= P(t"n)on(t) + Pn(t)Q(t) + Zi'_j:n, 1¢i,jen-1 Pl(t"J)QJ(t)
If we rewrite this as
An(®) - Zyiin 1 ent PICEHIIQ;E) = P(Esn)Qu(t) + Pp(t)QL),
we see that P,, and Q,, are obtained inductively by using the relative

primality of P(t+n) and Q(t) to write the left hand side as lying in the
ideal (P(t+n), Q(t)) they generate, in such a way that the coefficient Py

of Q is of lowest possible degree. This shows the unicity, and also gives
an inductive proof of existence. QED

Isomorphism Lemma 2.11.4 (cf. [Ma]) Suppose that P(t) in C[t] is a
polynomial of degree N 2 1 which satisfies
for alln > 1, gcd(P(t+n), P(t)) =1.

Suppose that L = I, xiP;(D) in ClIx]][D] satisfies
Pg = P, and for i21, degP; ¢ N.



D.E.’s and ®-modules 85

Then there is a unique isomorphism of C[[x|l[D]-modules

clix]l[D)/ ClIxNIDIL = Cl{x]lID]/Clx]NIDIP(D) which modulo (x) is the
identity on C[D]/C[D]P(D).

In particular, the two D-modules on €{(x)), C((x))[D]/C((x))ID]JL and
c((x)ID]I/C((x))IDIP(D) are isomorphic.

This is a special case of
Isomorphism Lemma bis 2.115 (cf. [Ma]) Suppose that V is a finite-
dimensional C-vector space, and that V' :=V® ¢ Cl[x]] is endowed with a

structure of C[[x]][D]-module. Write the action of D on elements of V:

D(v) = Z;,4 xiAi(v), for unique elements A; in Endg(V).
Suppose that the distinct eigenvalues of Ag are incongruent mod Z.
Denote by V4 the Cl[x]l[DI-module whose underlying Cl[x]]l-module is
V@ ¢ Clix]l but where D(v) = Ag(v) for v in V. Then there exists a unique
isomorphism of Cl[x]][D]l-modules from V1 to V' which is the identity
modulo (x).

proof We must show that there is a unique sequence of elements
{B;}j,0 in End(V) such that Bg=1 and such that in V', we have
D(Z;,ox1Bj(v)) =Z,,oxIBj(Ag(v)).
The desired isomorphism is then the unique C[[x]]~linear one which
maps vHZi_,oxiBi(v). Expanding the left side we find
D(Z50 "iBi(V)):Zizo ix1By(v) + Zizo"izj.»o xjA_jBi(V)v
Comparing coefficients of like powers of x, we find, for each n : 1,
BnAg = nBp *+ AgBj, ¢ ij An—ijt which we rewrite
-lAg, Byl - nBpy = T, An_jB;
But the hypothesis on the eigenvalues of Aq is precisely that the
endomorphism ad(Aqg) of End(V) has no nonzero eigenvalue in Z.
Therefore this last equation allows us to solve uniqely for B,
inductively. QED

E_Xt Lemma 2.11 6 (cf. [Ma]) Suppose that V and W are finite-
dimensional C-vector spaces, and that U :=V® ¢ C[[x]] and
w W®¢Cllx]] are endowed with the structure of C[[x]l[D]-modules.

Write the actions of D on elements of V and W:

D(v) = £,,, x}A(v), for unique elements Aj in Endg(V),
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D(w) = £,,4 xiBi(w), for unique elements B; in Endg(W).
(1) If dim(V) > 0, and det(T - AglV) = TI(T - «;), then V is a successive
extension of the objects Cl[x]I[D}/CIx]I[DID ~ «;).
(2) Suppose that Ag and Bg have no common eigenvalues mod Z. Then

Homg (4 )[D(V11/x], W1/x]) =0= Extg((x)) DKV 1/x], WI1/x]).

proof (1) Intrinsically, V is a CIl{x]][D] module which is C{[x]]-free of
some finite rank r » 1, V is the r-dimensional €-space V/xV, and Ag in

Endg(V) is the induced action of D on V' /xV . To prove (1), it suffices (by
induction on r) to exhibit an eigenvalue « of Ag and an element v, of
1V such that both of the following conditions hold:

Ve mod XV is nonzero in V,

DUy = &V in V.
For such an element v, defines an injective mapping of C[[x]l[D]-

modules

ClxIDI/ClxNDID - «) = V
whose cokernel is C[[x]]-free of rank r-1. To do this, pick for « any
eigenvalue of Ag whose real part Re(«) is minimal, and any nonzero

eigenvector vgg in V with eigenvalue «: Agvgg = «vgq. Because Re(x)
is minimal, for every integer n 2 1, x~n is not an eigenvalue of Aq,
and consequently Ag - « * n is bijective on V, for every integer n 2 1.
Using this bijectivity, one shows that there exists a unique sequence of
elements v; in V/x1*11V which satisfy the three conditions

vgo = Voo,

Vi+1 = vj mod xi*ly,

Dvj = «vj mod x*1p
The inverse limit of the v; is then the desired element v,.

(2) Applying (1) to both V' and W, we reduce immediately to the
case where V and W are one-dimensional, and D(v)=av, D(w)=bw with
a-b not in Z. Then the Hom and Ext in question are just the kernel and
cokernel of D+b-a on C((x)); as a-b is not an integer, this map is
bijective. QED

Corollary 2,117 Let L = X;,, xiAi(D) be an element of C{[x])[D] of
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degree N in D, and suppose that Ag is nonzero of degree M. Let V be the
DE. on C((x)) given by L. Then in the the slope decomposition of V as

vslope=0 &8 Vslope)o' we have
rank(vslopg:Q ) =
If M»> 0, and Ao(t) = (CX factor)TT“(t _ a)n«' then stope - is a

successive extension of the rank one objects x*€C((x)) with multiplicity
« - Moreover, if the distinct zeros of Ag(t) are incongruent mod Z, then

Viopesa T CUODI/CIxDIDIAGID) & @ o E((xDIDI/E((x)IDID-0) .

proof If M = 0, it is clear that all slopes are strictly positive. If M > O,
then by the Factorization Lemma, we may reduce to the case N=M
with the same Ag. If Ag has its distinct zeroes incongruent mod Z,

apply the Isomorphism Lemma, and then the Ext Lemma to separate
the roots. If not, successively apply the Factorization Lemmma to the «'s
in increasing order of their real part, to express Vilope=0 @S @ successive

extension of rank one equations of the form D - f, where f=« + higher
terms in x. To each of these apply the Isomorphism Lemma. QED

To put this into perspective, recall that one always has
Formal Jordan Decomposition Lemma 2.11.8 Let V be any DE. on
€{{x)) which is entirely of slope zero. Pick any fundamental domain in
€ for C/Z. Then

(1) V is isomorphic to a direct sum of indecomposables of slope zero.
(2) Any indecomposable of slope zero is isomorphic to

Loc(e, ng) = C((x)ID]/C((x)D}(D-e) =,

for some unique « in the chosen fundamental domain, and some
integer n > 1. We call such an indecomposable "of type « mod Z".

(3) Given two indecomposables Loc(«, ny) and Loc(p, mp), we have
Hom p(Loc(ex, n), Loc(p, mp)) = 0 unless « = p mod Z, in which case
the Hom has dimension min(n,, mp).

(4) Given an «x€C, the number of indecomposables in V of type « mod Z
is the C-dimension of the space

HomD(V, x°"13((x)))-l-{on'1.D

of C((x))-valued solutions of V®x~*.
Proof One knows that the restriction functor

DE(811/C)Rs at 0,00 ~* DELCU(x))/Cgjgpe=q

is an equivalence of categories. In view of the topological interpretation

(V®x~%, C((:)))
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of the source as the category of representations of Z, this lemma
amounts to Jordan normal form. QED

We now return to the global theory on G,,.
Proposition 2.11.9 Let (d,n,m) be a triple of nonnegative integers with
d 2 1, ntmz=0 and gcd(d,n-m)=1. Suppose the operator L = T xiPi(D)

satisfies the following three conditions:
(a) P; =0 except for i=0,..,d; Pg and P4 are nonzero.

(b) degPqg = n, degPq = m, and min(n,m) 2 degP; for 0<icd.
(c) Pg and P4 have no common zeroes mod Z (ie, if « is a zero of Pg
and B is a zero of Py, then «-p is not in Z).

Put M:= D/DL. Then
(1) If nzm, M is an irreducible object of DE(G,,,/C). If n>m (resp. if

mdn), M is regular singular at 0 (resp. ©), and at o (resp. 0) its slopes
are d/|n-ml| with multiplicity [In-ml| and 0 with multiplicity min(n,m).
It is Lie-irreducible unless there exists a divisor D > 1 of gcd(n,m) such
that both the roots mod Z of Pg and the roots mod Z of Py are

Kummer-induced of degree D.
(2) If n=m,(so d=1) write Pix) = Zpi'jx-j for 1=0,1 and define
%= -pg n/P1,n U = Gy - («}, j: U = Gy, the inclusion.
Then j*TM is an irreducible object of DE(U/C) and anjhj*m. Local

monodromy around « is a pseudoreflection.

proof The adjoint of an L which satisfies (a), (b), (c) is another one,

with the same (d,n,m), as is, for any 2€CX, its pullback by
multiplicative translation T, : x=ax. And if L is such an operator, then

xd

inv*(L) is one of type (d,m,n).
So to prove (1) it suffices (by an inversion) to treat the case n>m.

Then L is (up to a C* factor) monic in D of degree n, so M is certainly a
DE. on G,y,. The calculation of the slopes at zero and « is immediate

from (b). Because ged(d, n-m) = 1 by hypothesis, as ], -representation
I is the direct sum of an irreducible of rank n-m and of a tame 1~
representation of rank m. So if m=0, M is already 1, -irreducible. If

m>0 and MM is reducible, it has either a nonzero subobject or a nonzero
quotient 1 in D.E(G,,/C) all of whose slopes at both zero and « are 0.
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Replacing M by its ad joint if necessary, we may assume that it has
such a quotient. But such an  is itself a successive extension of JD-
modules of the form x*Clx,x 1], so M would admit some x*C[x,x”1] as
a quotient. Concretely, this means that L kills some nonzero element of

x*Clx,x"1], say x*f(x) where f = £ kixi is a Laurent polynomial of

iza,..b
bidegree (a,b). Looking at the highest order term in L(x*f)=0, we see
that Pg(x+b)=0; looking at lowest order terms we see that Pg{x+a)=0,

contradicting (c). Thus M is irreducible.
If M is not Lie-irreducible, it is Kummer induced of some degree
D > 1. Looking at the slope decompositions of the Ig- and I~

representations, we see that every slope=1 component of each
decomposition is itself Kummer induced of degree D. Therefore D must
divide the multiplicities with which any of the slopes occurs, whence D
divides gcd(n,m). Looking at the semisimplification of the slope=0 part
at zero (resp. «), we see that the roots mod Z of Pg (resp. Py) are

Kummer induced of degree D. This concludes the proof of (1).

We now turn to the proof of (2). It is clear that j*MN isa DE.on U,
which is regular singular at 0, «, and . Let us admit temporarily that

% jjxj* M. Then from Pochammer’'s Lemma 2.9.7 we see that local
monodromy around « is a pseudoreflection. So if j*TM is not irreducible,

it has either a nonzero subobject or a nonzero quotient N1 in D.E(U/C)
which is regular singular at 0,«,0 and whose local monodromy at « is

trivial. Such an 7l is a successive extension of j*(x*C[x,x 1])'s, and
hence, at the expense of replacing M by its adjoint, we may assume

that j*M has a quotient j*(x*C[x,x™1]). This means that M= j, j*M
has a nonzero map to j!,j'(x“C[x,x'll) =x*C[x,x"1], which means

precisely that L kills a nonzero element of x*C[x,x™1]. Exactly as above,
this contradicts (c), and so establishes the irreducibility of j*TN. Again
using M= j), j*M, we find that M itself is an irreducible J-module on
L
Thus it remains only to establish that M= j;, j*M in case (2). This
;neans showing that both L and L* act injectively on the delta-module
o« As the hypotheses are self-ad joint, it suffices to prove this for L. At

the expense of a multiplicative translation, we may assume that «=1.
We write



90 Chapter 2

L= P(D) - xQ(D) with both P, Q of degree n 2 1.

Passing to the formal parameter t at « =1 such that x= et, our operator
becomes

L=P(d/dt) - e*Q(d/dt),
and we must show that this operates injectively on 5g = C((t))/C[[t]).
This is the Fourier Transform of the equivalent problem of showing
that, denoting by Sub = exp(-d/dt) the endomorphism of C[t] given by
t—t-1, the operator P(t) - SubeQ(t) is injective on C[t]. But if f(t) is a
nonzero polynomial which satisfies

P(t)f(t) = Q(t-1)f(t-1), ie, f(t)/f(t-1) = Q(t-1)/P(t),
then for each k 2 2 we have

f(t)/ f(t-k) = [Q(t-1)Q(t-2)..Q(t-k))/[P(t)P(t-1). P(t-(k-1))).
By hypothesis (c), the right hand fraction is in lowest terms, which
implies that f(t-k) has at least nk zeroes. Therefore no such nonzero f
exists. QED

Applying the Main DE. Theorem 2.8.1 in the case nzm, (we will
take up the case n=m further on, in 35, 358) we obtain
Theorem 2.11.10 Let (d,n,m) be a triple of nonnegative integers with

d 2 1, nzm and gcd(d,n-m)=1. Suppose the operator L := inPi(D)

satisfies the following four conditions:
(a) P; =0 except for i=0,..,d; Pg and Py are nonzero.

(b) degPg = n, degPyq = m, and min(n,m) 2 degP; for Oc¢icd.
(c) Pg and P4 have no common zeroes mod Z (ie., if « is a zero of Pg
and p is a 2zero of Py, then «-p is not in 2Z).

(d) There exists no divisor D > 1 of ged(n,m) such that both the roots
mod Z of Pg and of P4 are Kummer induced of degree D.

Let N:=max(n,m) be the order of L. Then the differential galois group G
of M:=D/DL on Gy, is reductive. If detJNl is of finite order then
G0=g0.der; otherwise G0 = 6,,,G0-9€T The possibilities for GO.der are
given by:
(1) 1f In-ml is odd, GO.der i SI(N); if In-ml=1, then G is GL(N).
(2) 1f In-ml is even, then G0.der js SI(N) or SO(N) or (if N is even) SP(N),
or In-ml=6, N=7,8 or 9, and G0.der is one of

N=7: the image of G2 in its 7-dim’l irreducible representation

N=8: the image of Spin(7) in the 8-dim’'l spin representation

the image of SL(3) in the adjoint representation
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the image of SL(2)xSL(2)xSL(2) in std®stde std
the image of SL(2)xSp(4) in stdestd
the image of SL(2)xSL(4) in stdestd

N=9: the image of SL(3)xSL(3) in stdestd.
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CHAPTER 3
The Generalized Hypergeometric Equation

The generalized hypergeometric equation

We now turn to the detailed study of the case d=1, which is the
case of the classical "generalized hypergeometric equation”. My interest
in this case was aroused in 1986 by the paper [B-B-H] of Beukers,
Brownawell, and Heckman, concerned with the case d=1, nzm (cf. also
the recent paper [B-H] of Beukers and Heckman devoted to the case
d=1,n=m).

(3.1) Let (n,m) = (0,0) be a pair of nonnegative integers. Given nonzero
polynomials P:= Py, Q= Q, in Clt] of degrees n and m respectively, we

define the hypergeometric operator Hyp(P,Q) in D to be

Hyp(P,Q) := P(D) - xQ(D).
We call it a hypergeometric operator of type (n,m). We define the
hypergeometric D-module #(P, Q) on Gy, by

?(P, Q) := D/DHyp(P,Q).
Of course this D-module does not change if we multiply Hyp(P,Q) by a

C* factor. This permits us when convenient (which it is not always) to
suppose that Q is monic.

It will sometimes be convenient to have a notation which makes
explicit the factorizations of P and Q. Suppose

P(t) = pTT(t - ;), with peC*,
Q(t) = glT(t - bJ-), with qeCX*,
ax = p/q.

In terms of the the n roots (with multiplicity) «; of P, the m roots
(with multiplicity) Bj of Q, and the scaling factor » in €*, we define
Hyp, («is; By's) := aTN(D - ocy) - xTH(D - ;) = (1/q)Hyp(P,Q),

Ay (xy's; pj's) = D/ DHyp, (x;'s; Bj's) = D/ DHyp(P,Q).

The effect of the operation M M@ xY¥ is particularly easy to see:
Holey's; b_j's)@x‘ x Ay(4ray's; ¥+pj's),
as is the behaviour under multiplicative translation:
[x> ux]* Ay (ay's; py's) ® Ay/yley's; By's),
[xb—bux],xk(o&i's; bj's) x xku(d‘i'S; bj's).
The behavior of the operators under multiplicative inversion and
passage to adjoint is given by
inv*Hyp(P(t), Q(t)) = inv,Hyp(P(t), Q(t)) = (-1/x)Hyp(Q(-t), P(-t))
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Hyp(P(t), Q(t)* = Hyp(P(-1-t), Q(-2-t)).
In the A,«,p notation this gives

inv*¥, (ecy's; b_i's) T inv, A, (xji's; bj's) =~ K(_i)mm,x(-bj's; -ji's)

Mylay's; y)* = M jynem(-1-ais; -2-Bj's).

Proposition 3.2 Suppose that A, (xj's; bj's)= A(P,Q) is an irreducible
D-module on G,,. Then

(1) For fixed a, the isomorphism class of K,‘(ot.i's; bj's) depends only on
the «; and the pj mod Z.

(2) P and Q have no common zeroes mod Z, ie, for any root «; of P

and any root b_j of Q, ot.i-bj isnotinZ.

proof (1) We must show that if ®,(x;'s; pj's) is irreducible, then for
any choice of &.i's; Sj's which are congruent mod Z to the «j's; bj's,
M)\(&i's; Sj's) is irreducible and isomorphic to #, (e ;'s; pj's)_ Using the
fact that rultiplicative inversion interchanges the role of o’s and p’s,
and proceeding step by step, it suffices to treat the case when all «’s
and p's are equal to their respective «’s and B’'s except for 1 and « 1,
which differ by 1. Passing to the adjoint if necessary, it suffices to treat
the case where in addition &1 is @1 - 1. Writing simply « for =, the
situation is that

o is a root of P, say P(D) = (D-x)R(D).
The commutation relation

[(D-x)R(D) -xQ(D)I(D+1-) = (D-)[(D+1-«)R(D) -xQ(D)]
shows that Right(D+1-«) defines a map of JD-modules

Right(D+1-«) : ®(P,Q) — N((D+1-x)R(D), Q).

This map is nonzero (otherwise D+1-« € DI(D+1-«)R(D) -xQ(D)]; looking
at degrees in D we infer that D+1-« = f(x)[(D+1-a)R(D) ~xQ(D)] for some
f(_x) in Clx,x"1]. Looking at x-degrees now leads to a contradiction.).
Since its source is irreducible, it is injective. If nzm, both source and
target are O-locally free D-modules on G,y, of the same rank
max(n,m), so our map, being injective, is an isomorphism.

If n=m, then our map is an isomorphism on G, - {3}, and it is

Injective on all of G,y  So if it fails to be an isomorphism, its cokernel is

a Successive extension of delta-modules 85 . In particular, (D+1-«)R(D) -
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xQ(D) operates noninjectively on §,. By a multiplicative translation, we

may assume that A=1. Exactly as in the proof of 2.11.9 above, this
noninjectivity then means that there exists a nonzero f(t) in C[t] such
that

(t+1-)R(L)f(t) = Q(t-1)f(t-1).
Multiply both sides by (t-«):

(t-x)R(OF(E)(t+1-x) = Q(t-1)f(t-1)(t-),
which says precisely that F(t):= f(t)(t+1-«) satisfies

P(t)F(t) = Q(t-1)F(t-1),
which in turn says that Hyp(P,Q) acts noninjectively on 1. But this is
not the case, because X(P,Q), being an irreducible D-module on Gy, is @
middle extension across 1. This completes the proof of (1).

To prove (2), simply observe that in virtue of (1), any irreducible

Ny (xi's; bj's) is isomorphic to one all of whose «'s and p's lie in any
prechosen set of coset representatives for C/Z (eg., in 0 ¢ Re(z) < 1). For
one of these, «; - bj € Z implies «; = bj, whence D - «; is a right

divisor of Hyp, (e j's; bj's), contradicting irreducibility. QED

Corollary 3.2.1 # = A, (xj's; pjs): H(P,Q) is an irreducible J-module
on Gy, if and only if P and Q have no common zeroes mod Z.
proof This is immediate from 3.2 and 2.11.9. QED

Corollary 3.2.2 Suppose that X = A, (x;'s; bj's)= H(P,Q) is an
irreducible hypergeometric D-module on G, of type (n,m) (ie., P=Pp
and Q=Q,,, have no common zeroes mod Z).

(1) The formal Jordan decomposition of (K ®gC((x)))p.-q is

M BGCXNMslope=0 ¥ Bgeretoret CUXNDI T((x))DKD- )
and n, is the number of «; which are congruent mod Z to «.
(2) The formal Jordan decomposition of (H®gC((1/x)))ggpe-q is

(M@ GCUL/x))slope=0 = Bgereprar CH1/xNIDI/C(1/x)DID-p)"p
and np is the number of bj which are congruent mod Z to B.

(3)1f n 2 m (resp. if m : n) the local monodromy at the regular singular
point 0 (resp. «) has eigenvalues with multiplicity {exp(27ix)}p()=0

(resp. (exp(-Znib))Q(p)=0). It has a single Jordan block for each distinct

eigenvalue, of size the multiplicity of that eigenvalue (ie, the minimal
polynomial is the characteristic polynomial).
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proof To prove (1) and (2), use the irreducibility and the previous
Proposition to reduce to treating the case when all the «; and the bj
have real part in [0,1), in which case it follows immediately from
2117,

To prove (3), we may, by inversion, suppose n 2 m. That the local
monodromy around zero has the asserted eigenvalues is standard from
the classical theory of the indicial polynomial at a regular singularity.
Using the irreducibility, we may as above assume that all the «; have

real part in [0,1). Twisting by x¥, it suffices to show that if 0 is the only
integer root of P(t), then the unipotent part of the local monodromy
consists of a single Jordan block. Because we are at a regular
singularity, the number of unipotent Jordan blocks (which is always
the dimension of the space of single-valued solutions in a punctured
classical neighborhood of the singularity ) is the dimension of the space
of C((x))-solutions. It follows from the shape of the formal

decomposition that this dimension is one; alternately, if Zaixi =xd+

is killed by P(D) - xQ(D), then looking at the lowest degree term we see
that P(d)=0, whence d=0 since 0 is the only integer root of P. The
coefficients a,, are subject to the two term recursion

P(n)ay, = Q(n-1)a,-1.
Since P(0)=0, all 8neg vanish, and the positive coefficients a,,q may be

determined uniquely by this recurrence, since for n > 0 the factor P(n)
does not vanish. QED

Lemma 3.3 Suppose that #:=#,(x;'s; pj's) is a hypergeometric D-
module on Gy, of type (n,m). Then its isomorphism class as JD-module
on Gy, determines the type (n,m), the set (with multiplicity) of the o;

med Z, the set (with multiplicity) of the b_j mod Z, and, if either n=m

or if ® is irreducible, the scalar xeC*.

Proof Denote by r the generic O-rank of . At least one of zero or o is
8 regular singularity. Performing a multiplicative inversion if
necessary, we may assume that zero is a regular singularity. Then n=r
and m is the dimension of the slope zero part at c. The «; mod Z and
the B; mod Z are determined by the formal Jordan decompositions of
the slope zero parts at 0 and o respectively.

lf n=m, then 2 is the “other" singularity of #, ie, it is the unique
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point « in G, such that, denoting by O~ the complete local ring at «,

either X or its adjoint #* has dimgHom p(H, 0°) = n~1 (by
Pochammer's Lemma 2.9.7).

If nzm, we do not know any a priori description of », but we can
prove its unicity as follows when X is irreducible. If A is not unique,

then for some uz1 in C* there exists an isomorphism of { with its
pullback by the map x> ux. Then each piece of the slope decomposition
at o is isomorphic to its pullback by this map. Since
(K@C((l/x)))slopem has irregularity one, this contradicts [Ka-DGG,

238]. QED

Remark 3.3.1 If we knew that the isomorphism class of the
semisimplification of ¥ as D-module on G,,, depended only on the

data («; mod Z, bj mod Z, 1), then at the last step we could replace

"isomorphism" by "isomorphism of semisimplifications™. This would still
be adequate to show u=1, using [Ka-DGG, 2.3.8].

Duality Recognition Theorem 3.4 Suppose that H:=¥, (x|'s; bj's) is
an irreducible hypergeometric D-module on G,y of type (n,m). In order

that there exist an isomorphism of ¥ with its adjoint, it is necessary
and sufficient that the following three conditions hold:

(1) n-m is even.

(2) there exists a permutation i—i of [1,..,n] such that «; + «; € Z.

(3) there exists a permutation j— j of [1,.,m] such that b_j' + b_j € Z.

Moreover, if these conditions are satisfied, then the resulting
autoduality of { (on the dense open set where X is a D.E) is alternating
if and only if

max(n,m) is even, and ¥:= ZbJ- -Zaj €Z;

otherwise (ie., if max(n,m) is odd or if ¥ € 1/2 + Z) it is symmetric.
proof Indeed, the adjoint is ";(-m'm('i'“i's" -Z-pj's), so the first

assertion is obvious from 3.2 and 3.3. Because H is irreducible, it has at

most one autoduality (up to a C* factor) <x,y>, which is either
alternating or symmetric.

If the generic rank max(n,m) of ! is odd, the autoduality has no
choice but to be symmetric. The only problem comes when max(n,m) is
even. At the expense of an inversion, we may assume n > m.

If n=m, then local monodromy at x is a pseudoreflection of
determinant exp(2wiy). If ¥€Z, this is a unipotent pseudoreflection, and
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so <x,y> cannot be symmetric. [For denoting by N the log of this
unipotent pseudoreflection, <Nx, y> + <x, Ny>=0, so if <x,y>=<y,x>, we
find <Nx,x>=0. Since N has one-dimensional image, say Ce, we have
<e,x>=0 if Nx20, and then for all x, whence e=0, contradiction]
Conversely, if ¥ € 1/2 + Z, then we have a true reflection, which lies in
no symplectic group (in Sp(2d), the eigenvalues of any element can be
grouped into d pairs of inverses).

If n > m, and both n and n-m are even, then detH is a rank one
DE. cn G, which has slope zero at both 0 and « (because all the co-

slopes of # are 1/(n-m) < 1). So detX must be of the form x8C[x,x"1] for
some §. Looking at the slope decompositions of { at both 0 and «, and
at the formal Jordan decompositions of the slope zero parts, we see
that

det(X®C((x))) = x*C((x)) for & =¥,

det(HX®C((1/x))) = det((H® C((1/X)))y,00,0) ® xPC((1/x)) for p=Zp;.
Comparing these local expressions for det¥d with x8C[x,x"1], we see first
that 5=« mod Z and then that

det((MB®CU(1/x)))y5000) T % ¥CUL/x)).

So det((K@C((l/x))),lopem) is either trivial or of order two, depending on
whether ¥€Z or not.

On the other hand, our autoduality of X must induce an

auteduality on A®C((1/x)), which in turn induces an autoduality on
each piece of the slope decomposition. As (H®C((1/x)))g 0.,

irreducible (because it has rank n-m and all slopes 1/(n-m)), it has at

o 18

most one autoduality (up to a C* factor), say (x,y), and that
autoduality has a sign (i.e, is either symmetric or alternating) which
must be the same sign as that of our global one <x,y>. So our sign rule
follows from the following

Lemmia 3.4.1 Let d > 2. Let W be a DE. on €((1/x)) of rank d all of
whose slopes are 1/d.

(1) The isomorphism class of W is determined up to a multiplicative
translate by the isomorphism class of det(W).

(2)W is self dual if and only if d is even and det(wW)®2 is trivial, and
the duality is alternating if and only if det(W) is trivial.
Proof Any DE. W on C((1/x)) of rank d all of whose slopes are 1/d is a

multiplicative translate of one of the form ([dl, L)® x> where L is the

rank one DE. for eX, and » €C. Notice that the isomorphism class of
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(ld}, 2)®x> = [d],(Z®x9*) depends only on dx mod Z. Now
det(([d], L)®x>) = det(ld], Z)®x9>* visibly determines dx mod Z.

Because [d], L has all slopes ¢ 1, its determinant is of the form xMC((x)),
so the isomorphism class of det([d], L) is translation invariant.

Therefore the isomorphism class of det(W) is translation invariant, and
hence det(W) determines d)x mod Z. Therefore det(wW) determines the
isomorphism class of W itself, up to a multiplicative translation. This
proves (1).

We next observe that if d is odd, then W cannot be self dual,
because W®W has all slopes 1/d for odd d. [To see this, use the fact that

[d]* W as representation of the upper-numbering subgroup (150)(0%) s,

for some a€CX*,

[d]* W1 (1) 0) = @ ey Xap

where X gqp I1s the character of (lw)(0+) given by the rank one DE. for
el ]
If W is self dual, so is det(W), whence det(W)®2 is trivial. Suppose

now that det(W)®?2 is trivial. We argue globally as follows. Consider a
Kloosterman equation of even rank d,i.e,, a hypergeometric equation of

type (d,0), say #,(aq,.., aq; #). Since d22, its determinant is xaC[x,x"1]

for a=%a;, so over C((1/x)) we obtain a W as above with det(W) =

x®C((1/x)). As » varies over C*, but the aj remain fixed, we obtain all

translates of this W. So it suffices to analyse the sign of the autoduality

for the two particular Kloosterman equations of even rank d
1,0, 0, 1/(d-1),.., (d-2)/(d-1); &),

n,(1/2, 0, 1/(d-1),.., (d-2)/(d-1); &).

Consider for each the d-1'st power of local monodromy at zero. For the
first, it is a unipotent pseudoreflection (not in any O(d)), and for the
second it is a true reflection (not in any Sp(d)). QED

Corollary 3.4.1.1 Hypotheses and notations as in the above lemma,
denote by L the rank one DE. for eX. Then
(1) det(ldl, L) = x(d=1)/2¢((1/x)).

(2) W ¥ a multiplicative translate of [d] , £ if and only if we have

det(W) = x{d=1)/2¢((1/x)).
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(3) 1f d is odd, then the dual of [d], L is[x = -x]*([d], L).
proof To prove (1) and (3), we use a global argument. L is #1(0; &). As
will be shown later in 356 (but with no circularity), we have the

formula
[dl,#4(0; 2) = nq(0, 1/d, 2/d, .., (d-1)/d; #).

Clearly det(# (0, 1/d, 2/d, .., (d-1)/d; &)) = x8¢(x, x~ 1, simply
because its slope is 0 at zero and ¢ 1/d < 1 at o, so also 0 at «. To
evaluate §, we look at local monodromy at zero; this shows § = (d-1)/2.
Now looking over C({1/x)) we get the asserted formula for det([d], L).

That (1) = (2) was proven as part (1) of the previous Lemmma. To prove
(3), notice that for d odd, the dual of #4(0, 1/d, 2/d, .., (d-1)/d; #) is

its multiplicative translate by -1. QED

(3.5) We now study the Lie-irreducibility of the hypergeometric
equation in the case n=m. Our analysis is a geometric version of the
more group-theoretic one of [B-H, 5 8].

Given a pair (a,b) of strictly positive integers, and x in €%,
consider the “Belyi polynomial”

Belg p 5(x) := kua’bxa(l-x)b, where ug , = (a+b)a*b/qapb.

We call it the Belyi polynomial because of the brilliant use Belyi makes
of it in [Bel, Part 4], It is a morphism of degree n:=a+b from Pl to P1,
which induces a finite etale covering

P! - {0, 1, a/(a+th), @} — PL-(0, 2, «)
whose ramified fibres are

over 0: exactly two points; one with mult. a and one with mult. b,

over o : exactly one point,

over iA:exactly n-1 points.
We call this covering the Belyi covering of type (a,b). The covering
defined by 1/Bel, ,,,~1(x) we call the inverse Belyi covering of type (a,b).

Lemma 3.5.1 Over €, any finite etale connected covering X— Pl - (o,
2, =} of degree n such that the induced map of complete nonsingular
mOd’els m:X>P1l has exactly n-1 points in the fibre over i is isomorphic
to either a Belyi covering or an inverse Belyi covering of type (a,b) for
Some partition of n =a+b as the sum of two strictly positive integers.
Proof Since X - n~-1(0, A, ) is finite etale over P1 - {0, », w0} of degree
N, and we are in characteristic zero, the Euler characteristics multiply:
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2 - 2g(X) - Card(w~1(0)) -card(n~1(x)) - Card(n 1(w)) = -n.
By assumption, Card(r~1(x)) = n-1, so we find
2 - 2g(X) - Card(n~1(0)) - Card(n~1(»)) = -1, which we rewrite

2g(X) + Card(m~1(0)) + Card(n () = 3.
Since each of Card(w~1(0)) and Card(w ™ 1(e)) is 2 1, and g(X) 2 0, we see

that g(X) = 0, and Card(m~1(0)) + Card(r~1(e0)) = 3. After a
multiplicative inversion on the base, we may assume that

Card(w~1(0)) = 2, Card(m 1)) = 1.

Since X is a noncanonical P1, we may decree that o is the unique
point over o, and that the two points over 0 are 0 and 1. That « is the
unique point over « means that our covering is given by a polynomial
of degree n, and looking at the fibre over 0 shows that its only zeroes

are 0 and 1. So our covering is given by «x®(1-x)P for some « in C*.
The critical point a/(a+b) is mapped to «/pg |, 50 x/Mg |, = . QED

Proposition 3.5.2 Suppose that H.=¥1, (o 's; bj's) is a hypergeometric
D-module on Gy, of type (n,n). Suppose that the DE. ¥ | Gy, - {2} is

induced, i.e, it is the direct image of a DE. 1V on a connected finite etale
covering w: X — Gy, - {3} of degree d 2 2. Then either the covering w

is isomorphic to a Kummer covering (ie., the restriction to G, - {3} of
the d-fold Kummer covering of G, by itself) or d=n and the covering is

1somorphic to either a Belyi covering or an inverse Belyi covering of
type (a,b) for some partition of n =a+b as the sum of two strictly
positive integers. Moreover, in the case of a Belyi or inverse Belyi
covering, local monodromy of # around 1 is a true reflection.

proof Suppose that the fibre of m over A consists of points p; with
multiplicities e;. Then X ®C((x-1)) is the direct sum of the e;-fold
Kummer inductions of the V' ®C((x-p;)):
HBCU(x-2)) = B; [ejl,(VBC((x-p;).

Because A ® C({x~2)) is of slope zero, with local monodromy a
pseudoreflection, we see all the terms [e;l, (U ® C((x-p;))) are of slope
zero, exactly one of them (say i=1) has local monodromy a
pseudoreflection, and all the others have trivial local monodromy.

Now in order for [e1],(V ®C((x-p1))) to have local monodromy a

pseudoreflection, either eq = 1 and V' ®C((x-pq)) itself has local
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monodromy a pseudoreflecton, or e; = 2 and V is of rank one with
trivial local monodromy around pj.1n this second case, notice that the

pseudoreflection is a true reflection.
If [ej] , (V' @ C((x-p)) with i 2 2 is of slope zero and has trivial local

monodromy, then e; = 1, and V is of slope zero at p; and has trivial
local monodromy around p;.

If all the e; = 1, then our covering is unramified over i, so it is
the restriction to G,,, - {3} of a d-fold connected finite etale covering of
Gy, necessarily the d-fold Kummer covering of Gy, by itself.

If e = 2 and all e;,5 = 1, then VU has rank one, whence d=n, and

there are n-1 points in the fibre over i, so our covering is either Belyi
or inverse Belyi. QED

Belyi Recognition Lemma 3.5.3 Suppose that ®:=H,(x|'s; bJ-'s) is an
irreducible hypergeometric D-module on G,y of type (n,n). Then # is
Belyi induced (resp. inverse Belyi induced) of type (a,b), with a 2 1, b2
1, n= atb, if and only if its exponents mod Z at 0 and « are Belyi
induced (resp. inverse Belyi induced) of type (a,b) in the following sense:
there exist A, B € € such that the sets of «;'s and of bj's mod Z (with
multiplicity) are given by

{xi's) (resp. {bj's}) = {(A+i)/a g oq VY {(B’j)/b)j:o,...,b-i mod Z.
{By'st (resp.{oj'sh) = { (A+B+k)/nly.q .y mod Z.
proof By multiplicative inversion, it suffices to treat the case of Belyi
induced. If # is Belyi induced, then the inducing equation is a rank one

DE. on P! - {0, 1, ») which has only regular singularities. Any such
DE. is of the form (O, d - Adx/x - Bdx/(x-1)) * #(A; A+B) Looking at
the exponents of its Belyi induction at 0 and « gives the formulas for
the «; mod Z and the p; mod Z. So far we have not used the
irreducibility of #. This is needed only for the converse.

Conversely, suppose that the exponents of H:=¥, (x;'s; bj's) are
Belyi induced. We claim that X is the Belyi induction, say V', of the
corresponding H(A; A+B). We know that V is a D.E. on @y, - {3} of
Order: n with regular singular points at 0, 3, =, whose local monodromy
at X is a true reflection, and whose exponents mod Z at O (resp. «) are
the i (resp. the —bj). Because # is irreducible, no xjis a b_j mod Z, and
benCe (exactly as in the proof of 2.119, (2)), we see that V is
irreducible on Gy, - {»). We must show that V is isomorphic to # on
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Gy, - (3}, Because both V' and ! have regular singular points, it suffices

to show that on (G, - {3})8" they give rise to isomorphic local systems.

This is given by the following rigidity theorem 35.4. QED

The rigidity of the hypergeometric equation in the case n=m is
given by the following theorem. In the case n=2 it goes back to
Riemann (his “P-scheme”; the point is that for n=2, we may always

twist by some (x-2)¥ to make local monodromy around x a
pseudoreflection). Levelt gave a simple group-theoretic proof [Lev-HF) in
the general case (cf [B-H, 3.5]). The proof we give below is due to Ofer
Gabber.

Rigidity Theorem 354 Let ¥ and § be two irreducible local systems
on (@), - {(x}))87 of the same rank n 2 1, and suppose that

(a) the local monodromies at x of both ¥ and ¢ are pseudoreflections.
(b) ¥ and § have the same characteristic polynomial of local
monodromy at 0.

(c) ¥ and ¢ have the same characteristic polynomial of local
monodromy at oo.

Denote by j: Gy, - 3} Pl the inclusion, and by Hom(%,3) the
internal hom local system ¥~ ®$3 on Gy, - {3} Then

(1) x(PL, j, Hom(F,3)) = 2> 0.

(2) There exists an isomorphism ¥ = §.

proof Let us first prove that (1) = (2). Since X = h0 + he - hl, the
positivity forces at least one of hO or h? to be nonzero. By duality,
HZ(p1, jsHormn(F,9)) is dual to HO(IPl, js Horn(3,7)), so at the expense
of interchanging ¥ and $, HO(P1, j, Hom(%,$))=HO(G - (3}, Hom(F ,3))

= Hom(7%,%) is nonzero. Since ¥ and ¢ are irreducible, any nonzero hom
is an isomorphism. [t remains to prove (1). For this it is convenient to
give the following Lemma.

Lemma 355 Let T be an irreducible local system on (G, - {x})81 of
rank n 2 2, whose local monodromy at i is a pseudoreflection. Then
(1) %(@pp, JuFl Gy = -1.

(2) Hic(Gm, i« ¥l G,y,) vanishes for iz 1, and for i=1 it has dimension 1.
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(3) the local monodromy of ¥ at 0 (resp. ) has a single Jordan block
for each distinct eigenvalue, ie, its characteristic polynomial is its
minimal polynomial. Moreover, if exp(2wi8) is an eigenvalue of local
monodromy at 0 (resp. o) then exp(-2mi8) is not an eigenvalue of local
monodromy at o (resp. 0).

proof Let us denote by h: @,, - {3} Gy, and by k: 6,,— Pl the
inclusions (so j=kh). We have an exact sequence on G,

0> h¥ - h,¥ ->h,¥/h)F - 0, and

h,F/h¥ is the punctual sheaf Flx at x.

By hypothesis, Flx has dimension n-1. But
%G W F) = (G, -(a}, F) = rank(F)x (G, -(3}) = -n,
so (1) is obvious.
For (2), the irreducibility of ¥ forces the vanishing of the Hzc, and

the fact that j, ¥| G,,, has no punctual section on the affine curve G,

forces the vanishing of the Hoc. That ch has dimension 1 now results
from (1).

For (3), consider the short exact sequence
0 - kh,F = k,h, T 2Flo 8 Tl - 0.

The long exact cohomology sequence on Pl nas HO(P!, k.h,¥F)=0 by the
irreducibility of ¥, so the coboundary gives us an injection

0- Flo ® Flw - HUPL, kh,F) = H1 (G, j, Fl Gppy) = 1-dim'l.
Therefore at most one of F!o or Fle is nonzero, and if nonzero is one-
dimensional. This means that if 1 is an eigenvalue of local monodromy
at either 0 or «, then it occurs at only one of 0 or o, and local
monodromy there has a single Jordan block which is unipotent.
Applying this to all twists T ®x¥ of T, we get (3). QED

We now return to the proof of the rigidity theorem. Let us denote
by X the internal hom sheaf Hom(¥,3). The short exact sequence on
pl

0> jiX= j,X - Xod Xle ® XIn -0

gives

x(PL, j,X) = -n2 + dimXlo ¢ dimXle + dimXla.

Now for any of the missing points p = 0, », or &, Xlp is the space
Homlp('f,%) of Iy-equivariant maps.
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If pis 0 or o, then denoting by T the local monodromy, and by
P(T) its characteristic polynomial, we have proven that both ¥ and ¢
as C[T] modules are isomorphic to €[TI/(P(T)). So HomIp(T,g) is just
Homg [)(CITI/(P(T)), CITI/(P(T))) = CITI/(P(T)), which is n-dimensional.
So dimX!p = n for both p=0 and p=o.

At 2, both local monodromies T are pseudoreflections. Their
determinants are equal, because they are determined by the
determinants of the local monodromies at 0 and o . If their common
determinant is £=1, then both ¥ and 4 as C[T]-modules are

® . 1 copies CITI/(T-1) @ CITINT-3),
whose space of C[T|-endomorphisms has dimension (n-1)2 + 1.If their
common determinant is 1, then both ¥ and ¢ as C[T|-modules are

® CITI/(T-1) & CITI/(T-1)2,

n-2 copies
whose space of C[T|-endomorphisms has dimension (n-2)2 + 2 + 2(n-2).
So in both cases we find miraculously that dimX!lx = n2 -2n + 2. Adding

up the contributions from 0, «, and A we find x(l?l, J:«X) = 2. QED

Recall that this discussion of rigidity grew out of our desire to
recognize which hypergeometrics of type (n,n) are induced. For the
sake of completeness, we state the following
Kummer Recognition Lemma 356 Suppose that H: =¥, («|'s; bj's) is

an irreducible hypergeometric D-module on G,,, of type (n,m). Let
d 2 2 be a divisor of both n and m. Then the DE. X | G, - {2} is
Kummer induced of degree d if and only if there exist Ay,.., A /4 and
B4,., Byn/d in € such that the sets of «;'s and of bj's mod Z (with
multiplicity) are given by

{xi'st = ((4;- j)/d )i=1,...,n/d;j= 0, .d-1 mod Z,

(bj's) = {(B; + j)/d Y1, m/a: j=0, a-1 ModZ.

proof If X is Kummer induced of degree d, then looking at the effect of
Kummer induction on the slope zero parts at 0 and e shows that the
«;j and the pj mod Z are of the asserted form. Conversely, if the «; and
the pj mod Z have the asserted form, then we may, by the
irreducibility of ¥, suppose that the «; and the pjare given exactly
(not just mod Z) by the above formulas (with the asymmetry in the

sign of +j). Denote by ueC* any solution of the equation
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(udn-m)d = .
We will establish the following Kummer Induction Formula:
(356.1) K,\(oci's; bj's) = [d],xu(Ai's; Bj's).
Notice first that Ku(Ai's; BJ-'s) is irreducible, for if A; = Bj + r for some
r€Z, then dividing by d we would find that some «; is congruent to
some B j mod Z, contradicting the irreducibility of #,(«;'s; bJ-'s). Notice
next that by Frobenius reciprocity, [d],# (Aj's; Bj's) is irreducible (on

Gy - {3} if n=m, on Gy, otherwise), because
[d]*[d],Ku(Ai's; Bj's) X ettud [ngx]'Ku(Ai's; Bj's)
x em‘d A /elAfs; Bj's)
is a direct sum of d pairwise-nonisomorphic irreducibles (on G,y ~{umg}
if n=m, on G, otherwise).

So it suffices to construct a nonzero map of J-modules from
Mylej's; Bj's) to [dl ¥, (Af's; Bj's). We will do this explicitly. It will be
easier to see what is going on if we denote by P(t) and Q(t) the
polynomials

P(t) = “ni=1,...,n/d('r - A, , Q) = ﬂj=1,...,m/d(T_Bj)'
For each integer k 2 1 we denote by Py(t) and Qi(t) the polynomials
(note the asymmetry in the sign of ¢j)

Pp(t) = Tj=g,. kx-1P(t - J), Qglt) := TTj=q,  k-1Q(t +j),
and by Hypy (P, Q) the operator

Hypy(P, Q) := Py (D) -xKQy(D).
Thus Hypy (P, Q) for k=1 is just the operator Hyp(P,Q) defining
K (AS's; Bj's) = D/DHyp(P,Q). One verifies easily by induction on k that
when Hypy (P, Q) acts on the left D-module JD/DHyp(P,Q), it kills the
image of 1. Now the operator Hyp (P, Q) lies in the subring

Dy = ¢lxk, xk, D = kDyl, where Dy = xkd/dxk,
and so there is Dy-linear map

Dy /Dy Hyp(P,Q) = D/DHyp(P.Q), 1~ 1.
This map is obviously nonzero. But for any D-module M, the k-fold
Kummer induction [k], M is precisely M viewed as a Dy-module. So we
have constructed a nonzero map

D/ DyHypy(P,Q) — [k],(D/DHyp(P,Q) = [kl H (Aj's; Bj's).
Write the operator Hypy(P,Q) in Dy in terms of t:=xX and Dy = td/dt,
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and view Dy as isomorphic to D by t—x, D= D. Then for k=d,
Dy/ DxHypy(P,Q) is none other than X, («;'s; bj's). QED

Lemma 3.5.7 Suppose that K:=K,‘(ot.i's; bj's) is an irreducible
hypergeometric D-module on G,y of type (n,n). Then either

(1) # | Gy, - {2} is Lie-irreducible, or

(2) | Gy, - {2} is induced, or

(3) X | Gy, - {2} is the tensor product W®K of a D.E. W of rank one with
an irreducible DE. K of rank n whose Ggal is finite. If in addition det# is

of finite order, then ¥ | Gy, - {1} itself has Ggal finite in case (3).

proof By 272 we know that if X | @,,, - {2} is neither Lie-irreducible

nor induced, it is W®K for some Lie-irreducible W of rank d < n with
dIn, and K some irreducible DE. of rank d' := n/d whose Ggal is finite.

Therefore local monodromy at x is of the forrn A®B with A in GL(d)
and B in GL(d'). But if both d and d' are 2 2, no pseudoreflection can be

of this form. Therefore d=1, as required. Then detX = W®N®@detK, with
detK of finite order, so W is of finite order if and only if det# is of finite
order; if it is, then ¥ = W®KX itself has Ggal finite. QED

Theorem 3.5.8 ([B-H], 65]) Suppose that #:=:,(x's; Bj's) is an
irreducible hypergeometric D-module on @y, of type (n,n) which is

neither Kummer induced nor Belyi induced nor inverse Belyi induced.
Denote by G the differential galois group of # | G,, - {3}, by ¥:=ij-2a,’.

(1) The group G is reductive. If ¥, £x;, and ij are all in Q (ie, if det¥
is of finite order), then GU =GU.der Otherwise, G0 = GmGO'der.

(2) The group GU.der s either {1}, SL(n), SO(n), or (if n is even) Sp(n).
(3) if exp(2wiy) = +1, GO.der=z (1} or SL(n).
(4) if exp(2miy) = -1, G0,der = {1} or SL(n) or SO(n}.

(5) if exp(2mwiy) = +1, g0.der = s1(n) or (for n even) Sp(n).

(6) if ¥ is irrational, G=GL(n).

proof The local monodromy around X is a pseudoreflection of
determinant exp(2mi¥). So if # | Gy, - (2} is Lie irreducible, the theorem
is an immediate consequence of the Pseudoreflection Theorem 15.In
view of the preceding Lemma, the only other case is when # | @, - (3}
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is the tensor product W®K of a D.E. W of rank one with an irreducible
DE. K of rank n whose Ggal is finite. In this case GO is either {1} or Gy,
depending on whether or not W, or equivalently det¥ | G, - {3}, is of

finite order. So (1) through (4) hold (trivially) in this case. If ¥ is either
in Z or is irrational, then we cannot be in this case, for then local
monodromy around 2 is a either a unipotent pseudoreflection or is
Diag(exp(2wi¥), 1, 1,.., 1), no power of which is scalar. QED

We can be more precise about the distinguishing the the various
Lie-irreducible cases. (We will discuss later, in 5.4-5.5 and then again in

8.17, how to detect the case when gl.der j5 (1})
Corollary 3.5.8.1 Notations and hypotheses as above, suppose further

that G0-der 2 (1) Then G0.der js SO(n) (respectively Sp(n)) if and only if
there exists 6€C such that X ®xb =q, (g + 8's; pJ- + §'s) is self dual and

its autoduality pairing is symmetric (resp. alternating).

proof Notice that GO.der is the same for any twist #®x® as for ¥, So if

some twist X®x® is self dual, then G0.der is contained in SO(n) or
Sp(n), depending on the “sign” of the autoduality. In view of the paucity

of choices for GO.der, g0.der st he SO(n) or Sp(n).

Conversely, suppose that g0.der {5 50(n) (so n » 3 since SO(2) is
not semisimple) or Sp(n). We must distinguish several cases.

1f g0.der js sp(n), then G must be contained in the normalizer in
GL(n) of Sp(n), which is @;,Sp(n). Since the only scalars in Sp(n) are 1,

we can construct a character ¥ of G by writing an element of G as tA
(t in Gyy,, A in Sp(n)) and defining x(g)=x(tAa) := t2. This character of G

corresponds to a rank one D.E. which is in the tensor subcategory <H>.
Now ¥ has regular singularities at 0,3, and o, and its local monodromy
around 2 is a unipotent pseudoreflection (otherwise we can't have
G0.der - sp(n)). Therefore every object in <H> is regular singular at 0,
2, and o and has unipotent local monodromy at a. Therefore the rank
°ne DE. on G,y - {2} corresponding to ¥ is regular singular at 0, a2, and

® and has trivial local monodromy at 3, so it must be the DE. for x®

for some §. Then #®x8/2 has its differential galois group inside +Sp(n)
= 3p(n), as required.

1f GO.der j5 SO(n), n 2 3, then G must be contained in the
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normalizer in GL(n) of SO(n), which is §,,0(n). As O(n) contains no

scalars except 1, so we get a character % of G,,0(n) by x(tA):= t2. The

corresponding rank one D.E.is in <#>. But ¥ has regular singularities at
0.3, and o, and its local monodromy around x is a true reflection

(otherwise we can't have G3,der = 50(n)), so any object in H> is
regular singular at 0, 3, and . Let us denote by T, the local

monodromy of ¥ around 1. If we can show that %x(T,) = 1, then just as
above  corresponds to the D.E. for some %%, and A®x8/2 has its
differential galois group inside +O(N) = O(N), as required. To show that
x(T,) = 1, suppose not; then x(T,) = :2, where £4 z 1. This means that

T,‘:{'lA with A in O(n). But in a suitable basis eq,.., e, of the
representation space, the reflection T, is Diag(-1, 1,.., 1). So we find

that the matrix A:=Diag(-x, &,.., &) € O(n) for some nondegenerate
quadratic form <, >. To see that this is impossible for n > 3, we argue as
follows. Denote by V the line Ceq, and by W the C-span of e5,.., €.

Writing vectors in the form v+w, with veV and weW, we have A(v+w)
= -pv + rw. As A€O(N), we have

utw, v+wd = CAlutw), A(U+W)> = ¢~V + 2W, —EU + EW).
Expanding out, we find

(U, U> + 2¢U, WO + <KW, W = g2<v, w - 2z2<v, wy + g2<w, w).

Taking v=0 (resp. w=0), we see that x2 z 1 forces <w, w> = 0 =<v, W
Therefore V and W are totally isotropic, and so WNi(V) = 0. But both
W and 1(V) are codimension one subspaces, so WN1(V) = 0 is impossible
ifn 2 3. QED

In the case nzm, we have
Theorem 36 Suppose that =¥, (x;'s; pj's) is an irreducible

hypergeometric D-module on Gy, of type (n,m), n # m, which is not

Kummer induced. Let N:=max(n,m) be the rank of ®, and G its
differential galois group. Then
(1) G is reductive. If det¥ is of finite order (ie, if In-m| > 1 and if

Zx;j €Q when n > m (resp. ij €Q when m > n)) , then GO =g0.der;
otherwise GO = GmGOJder.

(2) If In-ml is odd, G0-9€r is SL(N). If In-ml| = 1 then G is GL(N).

(3) 1f In-ml is even, then GO.der js SI(N) or SO(N) or (if N is even) SP(N),

or In-ml=6, N=7,8 or 9, and GO0.der 5 one of
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N=7: the image of G2 in its 7-dim’l irreducible representation
N=8: the image of Spin(7) in the B8-dim’] spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stde®std® std
the image of SL(2)xSp(4) in stdestd
the image of SL(2)xSL(4) in stdestd
N=9: the image of SL(3)xSL(3) in stde std.

proof This theorem, "mise pour memoire”, is just the special case d=1
of 2.11.10. QED

The discrimination among the various possible cases is aided by

Corollary 3.6.1 Notations and hypotheses as above, g0.der is contained
in SO(N) (resp. in Sp(N)) if and only if there exists 8€ C such that

B« = A, (xj+ 8's Bj* §'s) is self dual and its autoduality pairing is
symmetric (resp. alternating). Moreover, if N is odd, then g0.der i
contained in SO(N) if and only if there exists 8€ C such that

H®x® = M, (i + 8's; B + 8s) has its Ggq] © SKN).

proof The proof is entirely analogous to that of 35.8.1. If some twist

®® x5 of A is self dual, then gO.der js certainly contained in SO(N) or in
Sp(N), depending on the sign of the autoduality.

1f G0.der ¢ O(N) (resp. Sp(N)) , then G € G, O(N) (resp. G, Sp(N)).
Indeed, if ' is any irreducible subgroup of GL{(N) which respects a
nonzero bilinear form < , >, then its normalizer in GL(N) lies in in the
corresponding similitude group. [For if A€GL(N) normalizes I' then the
form (x,y) = <Ax, Ay> is also '-invariant, so a scalar multiple of <, >]

Now cunsider the character X of G defined by % (g)= x(tA):= t2. The
corresponding rank one DE. on G,y is in <#>. Now In-ml is nonzero (by

assumnption) and even (otherwise GU0.der js SL(N)), hence In-m| » 2.
Thérefore all slopes of X at 0 or = are ¢ 1/In-m| < 1, and hence every
object of <X> has all its slopes < 1 at 0 or «. So any rank one object in
N> has slope zero at 0 and oo, so is the DE. for x® for some §. Taking
the & corresponding to ¥, A®x"8/2 has its differential galois group in
tO(N) = O(N) (resp. in #+Sp(N) = Sp(N)).

1f N is odd, then O(N) is the product {+1}xSO(N), so if Ggal CO(N)
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but Ggq) ¢ SO(N), its projection onto the {+1} factor is a character of
order two corresponding to a rank one object of <¥>, necessarily the
DE. for x1/2. QED

Lemma 36.2 Let H:=H,(x|'s; Bj's) be a hypergeometric D-module on
Gy, of type (n,m), n > m. Then Ggal C SL(n) if and only if n-m 2 2 and
i€ Z.

proof If n-m=1, then detH{ has slope 1 at «, so nontrivial. If n-m 2 2,

then det(H) is necessarily the DE. for x®, some §; looking at zero we see
that § = Yo; mod Z. QED

3.7 Intrinsic characterization of hypergeometric equations

We now turn to the intrinsic characterization of irreducible
hypergeometric D-modules on Gy, among all irreducible JD-modules on
Gy
Theorem 3.7.1 Let M be an irreducible, nonpunctual holonomic D-
module on G,,. Then M is hypergeometric if and only if its Euler

characteristic x(@,y,, M):= x (H* pp(G,y,, M) is -1.

proof It is obvious from the elementary Euler Poincare formula on G,
(2.9.13) that %(G,y,, #)= -1 for any hypergeometric A on G,

irreducible or not.
Suppose now that TN is an irreducible, nonpunctual JD-module on
G,,, with X(G,,, M)= -1. We will make essential use of

Lemma 3.7.2 (compare 355) If N is an irreducible, nonpunctual D-

module on Gy, with X(Gy,, )= -1, then for any twist N® x®,
dimgSolng(M@x8) + dimgSoln (M@ x8) ¢ 1.

proof The twist N® x% is also irreducible on Gy, and its ¥ is the same

as that of MM (this is obvious from the Euler-Poincare formula), so it
suffices to prove
dimgSolng(M) + dimgSoln g, (M) ¢ 1.

Let k: G,y — Pl denote the inclusion. Then by 2.9.8 we have a short

exact sequence on pl
0- k, M- k,M > s3®Homg(Solng, C) & 6, ®Homg(Soln,,, €) = 0

Let us admit temporarily that
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(#) dimgHlpp(PL, k, M) = 1, H2pp(PL, x,, M) =
Then as HIpp(P1, 89) = ¢ = HIpR(PL, §,,), the long exact cohomology
sequence gives us a surjection

H1DR(IP1, k, M) —» Homg(Solng, €) ® Homg(Soln,,, C),

whence the required inequality on dimensions.
To prove (#), we argue as follows. We have

HipR(PL, k, M) = HipR(G,,, M),
and only HO and H! are possibly nonzero. But HO = Hom p(©,M)

vanishes, because if not then M, being irreducible, would be isomorphic
to 0, which is nonsense because %(G,,, O) = 0. This proves that

dimcHlDR(lPl, k,M) = 1. To prove the vanishing of HZDR(IPl, ki, M), it
is equivalent by duality to prove the vanishing of HODR(IPl, ky, (I*)).
But ki, (*)C k,(M*), so HOpp(PL, k;,(M*)) c HOpR(PL, k, (M*) =

HOpR(G,,. M*) which vanishes (otherwise * = © by irreducibility,
whence MM = @, nonsense). QED

Let j-U—-G,, be the inclusion of a dense open set such that j*M is
a DE on U. Because M is irreducible, M = j,j* M. Since %x(6,,)=0, the
Euler-Poincare formula gives

-1 2 Gy, J1e*TN) = -~Irrg(M) -Irr (M) - Zach_U totdrop,,,

Irrg(IM) + Irr (M) + Zace y totdrop, = 1.

As all the lefthand terms are nonnegative integers, there are three
possibilities.
(case 1: reg) Irrg(MM) = G = Irr (M), totdropy = 0 for all x€G,,-U save
one, call it 3, and totdrop, = 1.

In this case, totdrop, 0 forces drop, 20 (by 2.9.10), whence
drop, =1 and Irr, (M) = 0. This means exactly that M | G, - {3} is an

irreducible D E. with regular singularities at 0, 2, o, and its local
monodromy around i is a pseudoreflection.

(case 2: 0-irreg) Irrg(M)=1, Irr(M)=0, totdrop, = O for all x€G,~U.
(case 3: oo- irreg) Irrg(M)=0, Irr (M)=1, totdrop, = 0 for all x€G,,,-U.
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In cases 2 and 3, which are interchanged by multiplicative
inversion, MM is an irreducible D.E. on G,y,. and the sum of its

irregularities at 0 and o is 1.

By multiplicative inversion, we may assume henceforth that we
are in case 1 or case 3, ie, that 0 is a regular singularity. By the
lemma above, the formal decomposition of M@ C((x)) is of the form

MR C((x)) = B, CUxNIDI/C((x)DAD-oc) e,
and that of M®C((1/x)) is of the form
MAC((1/x%)) = B p C((1/x)IDI/C((1/x))[DAD-p)™ b (MC((1/x)))

and no « with n_ #0 is congruent mod Z to any p with mbzo.

slope>0~

Let n be the generic rank of N, and let m be the dimension of its
slope=0 part at o.Let «q, .., %y be the «'s with multiplicitiesn > 0
occuring in M®AC((x)), P(t) := TI(t - «;), and let B1, .., By, be the p’'s
with multiplicity mp > 0 occurring in the slope zero part of
M@ C((1/x)), Qt) := TT(t - pj). We choose all the «i's and all the pj's to
lie in some fundamental domain for €/Z, say in 0 ¢ Re(z) < 1; by this
choice of «'s and p’'s we have

gecd(P(t), P(t+k)) = 1 and ged(Q(t), Q(t+k)) = 1 for any k=0 in Z.
By 2.114, we have

M C{(x)) = C{(x)IDI/C((x))[DIP(D),

MAC((1/x)) = C((1/xN[D]/C((1/xNDIQ(D) & (m®C((1/x))),,°pe)o.

We will show that there exists A€C* such that X:=¥1,(«;'s; pj's) M,
In case 1, one takes for A the unique point in G,,, where Jll is not

a DE. In this case the existence of the isomorphism # = I is given by
354,

In case 3, we will give an algebraic version of the proof of 354 in
the JD-module context. We must first explain how to choose 2 in this
case. We will compare the slope decompositions of M®C((1/x)) and of
Hqlxy's; pj's)OC((llx)). Let us write

W o= (mec(u/x)))ﬂowo, Vo= (K q(ei's; pj's)GC((l/x)))

W and V both have rank d:=n-m, and all slopes 1/d.
DetM has slope zero at 0, and slope ¢ 1 (in fact ¢ 1/d) at o, so it

slope>0-

is the D.E. for xbe¥X, for some §, ¥ €€. Moreover, ¥ =0 if and only if d=1
(if d > 1, then detdN has slope zero at e, while for d=1 it has slope 1).
Looking at the local expression for N near 0, we find § =Zx; mod Z.

Looking near o, we see that det(W)®xZ#; = x5e¥X€((1/x)) as DE's on
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c{(1/x)), ie.,
det(W) = xZoi~ IB;e¥XC((1/x)), with ¥=0 iff d=1.
Repeating this same argument for {q(«xj's; bj's) instead of N, we find

det(V) = xZej - I8;e8'XC((1/x)), with 820 iff d=1..
If d=1, these are expressions for W and V themselves, and they
show that some multiplicative translate of V is isomorphic to W.If
d 2 2, the ¥=6'=0, and det(V) = det(W), so by 3.4.1 some multiplicative
translate of V is isomorphic to W. So in either case, some multiplicative
translate X:=¥,(e;'s; bJ-'s) of Xq(eci's; bj's) has #®C((1/x)) =
M®C((1/x)). This determines x. Of course the choice of the «'s was

made in such a way that ¥®C((x)) = M C((x)).
So it remains only to prove the following

Rigidity Theorem bis 3.7.3 Let N and A be irreducible D.E's on Gy,
such that
(1) %Gy, M) = Y (Gypy, ) = -1,

(2) There exists an isomorphism #®C((x)) = MO C((x)), and M® C((x))
has all slopes zero.
(3) There exists an isomorphism H®C((1/x)) = M C((1/x)).

Denote by Hormn(#, M) the internal hom DE. X*®gM on G,y,, and by
k:G,, P1 the inclusion. Then
(1) x(P1, ky, Hom(®, M)) = 2> 0,

(2) There exists an isomorphism ® = M,

proof To prove (1) = (2), we argue exactly as in the proof of 35 4. The
positivity of ¥ = h0 + h2 - ht implies that at least one of HO or HZ is
nonzero. The HOpp(PL, k,, Hom(X, M) is Hom p(C, k|, Hom(X, M) =
Homp(k,, @, k|, Hom(®, M)) = (by 2.9.1.3) Hom (G, Hom(#, M)) =
HOmD(K, ), any nonzero element of which is necessarily an
isomorphism by irreducibility. Similarly, HZDR(IPi, k| Hom(X, M)) is
dual to HOpp(P1, k|, Hom(M, ®)) = Homp(M, A).

So it remains to show that y(P1, ki Hom(¥X, M)) = 2. By the
Euler-Poicare formula, we have
X(Pl, ki, Hom(t, M)) = -Irrg - Irr,, + dimgSclng + dimgSoln,, .
We_wnl prove that, denoting by n the rank of M, by m the rank of its
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slope zero part at «, and by d:=n-m, we have
(1) dimgSolng = n.

(2) Irrg = 0.
(3) dimgSolng,, = m + 1.
(4) Irr, = d-1 + 2m.

Since n = d + m, this will give x(P1, k,, Hom(X, M) = 2.
First notice that solutions of any D.E. are the same as horizontal

sections of its dual, so we have
Solng = Hom p(M®C((x)), #®C((x))) = Endp(M® C((x))),
Solng, = Homp(M®C((1/x)), H®C((1/x))) ¥ Endp(MAC((1/x))),
the final isomorphisms because by hypothesis we have
MBC((x)) = ©UB®CT((x)) and MB®C((1/x)) * K®C((1/x)). Similarly, the
irregularities in question are those of End(M)®C((x)) and of
End(M)® €((1/x)) respectively.
We have seen that there exist polynomials P = P, and Q = Qpy
such that
M C((x)) = C((x)ID)/C((x)IDIP(D),
M C((1/x)) = €((1/x))IDI/C((1/x))[DIQD) & W,
and such that
ged(P(t), P(t+k)) = 1 and ged(P(t), P(t+k)) = 1 for any kz0 in Z
End p(M®C((x))) is thus the kernel of P(D) acting on the left D-module
C(GOIDI/CUxNIDIP(D) = €((x))® ¢(CID)/C[DIP(D)), and the relative

primality (gcd(P(t), P(t+k)) = 1 for any k=0 in Z) shows that this kernel
is the subspace €[D]/C[D]P(D) of "constant terms”. This proves (1). And
(2) is obvious, because T and hence Endlll have all 0-slopes zero.

To prove (3) and (4), notice that because W has all slopes > 0 and
is irreducible, while €({(1/x))[D]l/€((1/x))IDIQ(D) has all slopes zero, there
are no nonzero homs between them in either direction, so we have
Endp(M®C((1/x))) = Endp(C{(1/x)ID)/C((1/x))IDIQ(D)) & Endp(W).

These two terms have dimensions m (proven just as above) and 1 (by
the irreducibility of W) respectively, which proves (3). To prove (4),
which only concerns slopes, it suffices to write MM®C((1/x)) as

(rank m, all slopes 0) 8 W, W of rank d, all slopes 1/d.
Then EndM®C((1/x)) is

(rank m2, all slopes 0) @ Endw &

@ (rank m, all slopes 0)®W @ W*®(rank m, all slopes 0).
The last two terms contribute 2md slopes 1/d, so a total contribution of

2m. So it remains to see that EndW has d slopes 0 and d? - d slopes
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1/d. For this it suffices to check that [d]*(EndW) = End([d]*W) has d
slopes 0 and d? - d slopes 1. But this is obvious, since for any W of rank
d with all slopes 1/d, by Levelt's structure theorem (cf [Ka-DGG],2.6.6])
there exist §€¢C and ¥ C*such that

[d]I*W = B, . ug (the D.E. for x5ef¥X), and hence

End([d]*W) = & . (the DE. for e{s-W¥x) QED

Tn€M

Remarks 3.7.4
(1) The irreducible, punctual D-modules on G,,, are precisely the

delta-modules §,:= D/D(x-x), A€C*; they also have X(Gy,, §,) = -1. The
operators A-x are precisely the hypergeometric operators Hyp, (& ,2) of
the excluded type (0,0).

(2) The proof given of 3.7.3 is just a D-module translation of the

topological proof of 35.4. Of course one can give a similar D-module
proof of the 3.5.4 itself.

As an application of this intrinsic characterization, we can also
partially analyse the semisimplification of non-irreducible
hypergeometrics.

Lemma 3.7.5 For any holonomic D-module M on Gy, % (G, M) ¢ 0O,
and % (G,,, M) = 0 if and only if M is a successive extension of the
objects x*C[x, x~1].

pProof Any holonomic D-module, having finite length, is a finite
successive extension of irreducible holonomics. By the additivity of ¥,

we are reduced to the case where M is irreducible If M is punctual,
then it a delta-module with y = -1.If M is nonpunctual, then for any

dense open set j: U = Gy, such that j*MisaDE on U, M = Jied*m,
and the Euler-Poincare formula for % (Gyy,, M) = % (Gyy,, ji4j* M) is
%(Gyp,, M) =

=rankg(j* M) x(Gyy,) - ZxcPi—Gm Irr (M) - Zacﬁm'U totdrop,, .

Since X(Gp,) = 0, we see that X (G, M) ¢ 0. By 29.10 we have

equality if and only if M is an irreducible D.E. on G,,, which is regular

singular at both 0 and 0, in which case N is an x*C[x, x~1] by 2.11.2,
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QED

Corollary 3.7.5.1 Let M be a holonomic D-module on Gy, with
X(Gppy, M)= -1,

If M is not irreducible, its semisimplification MSS js the direct sum
N®T where N is irreducible with % (G, N)= -1 and where T is a

direct sum of x*C[x, x~1I's.

Corollary 3.75.2 Let X = X, («;'s; pj's) be a hypergeometric JD-
module of type (n,m) which is not irreducible. Let ¥4,» ¥y be the set

with multiplicity of common exponents mod Z of the «'s and the p's,
ie, the polynomial TT, ., .(t - exp(2mi¥y)) is the gcd of the two

polynomials T, ., ('t - exp(2wixy)) and Ty . (t - exp(2wipy).

Remumber the «’s and the 's so that «;=p;=¥; mod Z for i=1,.., r.

Then for some ueC*, we have

nss = @x¥iClx, x~1] ® xu(“rﬂ: v %Ki Brads - Bp)-
Moreover, if n=m then u=x.
proof Apply the above corollary to . In view of the intrinsic
characterization of:irreducible hypergeometrics, the 71 is an irreducible
hypergeometric. The exponents at 0 and « of 1®T must be those of ¥,
so we get the asserted forms for 1 and T.1f n=m, then u=x because it

is the unique point of G, where # or equivalently X33 is not a D.E.QED

Another application is to analyse behavior under the d’'th power
map [dl: G, = G,y,. The following lemma gives an intrinsic proof of the

Kummer Induction Formula 35.6.1, but without specifying the
multiplicative translates involved.

Lemma 3.7.6 Suppose M is an irreducible holonomic D-module on Gy,
and suppose that ¥ (G,,, M) is relatively prime to d. Then [d], M is
irreducible on G,,,, and X(8y,, [d],MN) = % (G, M).
proof Since [d] is finite etale, for any holonomic D-module M on Gy,
we have

X(Gypy, [dl ) = X (Gpyy, ).
We also have

X(Gypy, [AI*T) = dX(Gyyy, TV,
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say because [d] [d|*M = &; . M® x1/d and M®x* has the same %
as M (211.1).

Now [d]*[d], M = &

o o
teny [x = ¢x]*M is a sum of d pairwise

nonisomorphic irreducibles. [For if M = [x — $x]*TM for some root of
unity § of exact order r | d, r > 1, then TN, being irreducible, descends
through the finite etale map [r]: G,,, = Gy, say M = [r]*, whence
%Gy, M) = rxX(Gpy,, N) is divisible by r, contradiction.] Therefore the
only subobjects L of [d]*[d], N are the partial direct sums of the
objects [x = gx]*M, and of these only 0 and [d]*[d], TN are stable by
L » [x = gx|*L for every § € uq.!f [dl, N has a proper nonzero
subobject X, then [d]*X is a proper nonzero subobject L of [d]*[d], TN

which is stable by L + [x » gx]*L for every § € nqg, contradiction.
QED '

In the same vein, we have
Lemma 3.7.7 Suppose M is an irreducible holonomic D-module on Gy,

with % (G, M) = 0, and that for some ueC* there exists an

isomorphism M = [x ~ ux]*M. Then u is a root of unity of order
dividing % (G, J).

proof If u is a root of unity, say of exact order r, then TN descends
through [r] and hence r divides %X (Gy,, ). If 4 is not a root of unity,

then M has Irrg = 0 = Irr,, (cf. [Ka-DGG, 2.3.8]), and consequently M
must fail to be a D.E. at some points of G,y if it is to have
X(Gm, M) = 0. So the set of its singularities is a finite nonempty subset

of Gy, which is stable by x+ ux, whence u must be a root of unity. QED

3.8 Direct Sums, Tensor Products, and Kummer Inductions

Lemma 38.1 Suppose that X and H' are irreducible nonpunctual
hypergeometric D-modules on G,y of types (n,m) and (n',m")

Tespectively, whose generic ranks max(n,m) and max(n’,m’) are both
22, Suppose that there exists a dense open set j: U -~ G,y,, & rank one
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DE. L on U, and an isomorphism of j*¥® = j*®'®L in DE(U/C). Then

(1) (n,m) = (n",m").
(2) If n = m, denoting by a (resp. 2") the unique singularity of # (resp.
H) in G, we have a = 2"

(3) If (n,m) is not (2,1),0r (1,2) or (2,2), then L is x*0yj for some x€C,

and # = #'®x* as D-modules on Gy, .
proof Both # and #’ have all their slopes at = (resp.0) ¢ 1. Since L is

a direct factor of Hom(j*#', j*#), its slope at o« (resp.0) is ¢ 1, so
either 0 or 1.

Suppose that L has its «-slope 1. Either #' has all its c~slopes < 1
orn'-m' =1 and #' has one =-slope =1 and m’ «-slopes =0. In the
first case, ¥ would have all its s -slopes =1, which is possible only if
(n,m) is (1,0), a case excluded by hypothesis. In the second case, # has
at least m' «-slopes =1. Som' ¢ 1. But m’ 2 1 because #' has generic
rank 2 2, som’'=1, # has exactly m' c-slopes =1, and n' (=1+m’)= 2. So
H has type (2,1), since it has the same generic rank 2 as ¥’ and has a
single w-slope =1. Thus we conclude that (n,m)=(n',m')=(2,1) if L has
its oo -slope 1.

Similarly, if £ has its O-slope =1, then (n,m)=(n',m')=(4,2).

If L has slope =0 at both 0 and =, then # and #' have the same
slopes at both 0 and «, so they have the same types (n,m)=(n',m’). So
(1) is proven in all cases.

If nzm, then both ¥ and #' are DE's on Gy, so jj & isa DE. on

.

Gy, being a direct factor of the DE. j,Hom(j*H’', j*1) = Hom(H', #).

Therefore jj, £ = x*Cix, x™1] for some «. This proves (3) if n # m.

If n=m, then ¥ (resp. #’) has a finite singularity at a unique point
a (resp.1’) in Gp,, and the local monodromy there is a pseudoreflection,
We first show that A = A", For if A # A’, the isomorphism

" x j*uer

shows that j*H1'® L has trivial monodromy at A’, which implies that
j*#' has scalar monodromy at A'. But as the rank is 2 2, no
pseudoreflection is scalar. This proves (2).

If n=m 2 3, then £ must have trivial local monodromy at i’

(since the product tA of a nonzero scalar t with a pseudoreflection A in
GL(n 2 3) has 2 n-1 2 2 eigenvalues t, so cannot be either trivial or a

pseudoreflection unless t=1). So again we find that j,L = x*Clx, x~1)
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for some «. Therefore our isomorphism is j*# = j*(H'®x*). Applying
Jig vields # = H'®x*, as required. QED

Proposition 3.8.2 Suppose that H{, .., H, are n @ 2 irreducible

nonpunctual hypergeometric D-modules on G with #; of rank N; 2 2.

ml
Suppose that
(1) if N; = 2, #; is of type (2,0) or (0,2).

(2)for each i, the differential galois group G; € GL(N;) of #; (restricted to
some dense open U where it is a D.E) has GiO,der one of the groups

SL(N;), any N; 2 2,

Sp(N;), any even N; 2 4,

SO(N;), N; =7 or any N; 2 9,

SO(3), if N; = 3 and no N_j = 2,

S0(5), if N; = 5 and no Nj =4,

S0(6), if Nj = 6 and no N_j = 4,

Gy € SO(7), if Nj = 7,

Spin(7) € S0(8) if N; = 8, and no Nj;= 7

Suppose that for all iz j, and all x € C*, there exist no isomorphisms
from #;®x* to either }{j or to its adjoint (}{J-)', Then the differential

galois group G of ®¥; has g0.der - TTGiO'der, and that of ®; has
gO.der - tpe image of TTGiO'der in ®Stdni~

proof In view of the above Lemma, this is just the spelling out of the
Goursat-Kolchin-Ribet Proposition 1.8.2. QED

Corollary 3.8.2.1 Let #:= H,(x’s; p's) be an irreducible nonpunctual
hypergeometric D-module on G, of rank N » 2. If N = 2, suppose that

¥ is of type (2,0) or (0,2). Suppose that ¥ is self-dual, and that Ggal

(resp. (Ggal)o) is one of the groups G:
Sp(N), if N even,
SO(N), if N = 4, 8,
G, € SO(7), if N = 7,

Spin(7) € SO(8) if N = 8.
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Letd 2 2, and let u4, .., uq be d distinct elements of C*. Then the
direct sum

®; }{,\/Hi(oc's; ps) = @;x —» uxl*n

has Ggq) (resp. (Ggal)o) the d-fold product group G9.

proof Because H is self-dual, each [x = uix]*¥ is self-dual, it suffices
by 382 to check that there exist no isomorphisms

[x » ux]* = #Ox*
for any B = 1, and any « in €. But # and [x = ux}*¥ have the same
exponents at zero (resp. »), so the map x = x + « must map the

exponents at zero (resp. «) to themselves mod Z. But then H®x* = H
and so we obtain an isomorphism

[x » uxi*t = K.
But for 4 2 1, no such isomorphism exists, thanks to 3.7.7. QED

In the case of Kummer induction, 3.8.2 gives:
Theorem 3.8.3 Let H:= H,(«’s; p's) be an irreducible nonpunctual

hypergeometric D-module on G, of rank N 2 2. If N = 2, suppose that

H is of type (2,0) or (0,2). Suppose that ¥ has (Ggal)o,der one of the
groups G:

SL(N),

Sp(N), if N even,

SO(N), if N = 4, 8,

Gz € SO(7), if N = 7,

Spin(7) € SO(8) if N = 8.
Fix an integer d 2 2. Let S € u4(C) be a nonempty subset of u4(C)
which is maximal among all nonempty subsets of u4(C) which satisfy
the following condition:

whenever ¢4 and ¢y are distinct elements of S, and 8 € C, there

exists no isomorphism from K,\gl(ot.'s; 8's)®x5 to either }{RS‘Z(“.S; B's)
or to its adjoint (Kkgz(or.'s; psH*.

Then [d}* X, («x’s; B's) has (Ggal)o,der x G5,

construction-proof For any DE, pullback to a finite etale connected
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covering does not change (Ggal)o- nor a fortiori (Ggal)onder. Now for any
D-module M on G,,, we have

[d]*[d],MN = &, ¢ Mg [x » gx]*M.

Applying this to #, we find that the (Ggal)O,der for {d],# is equal to
that for

Q: € Md }{R:(“ls; b.s).
Since (Ggal)o,der is insensitive to twisting any of the factors by rank

one DE's, the (Ggal)O,der for [d]l,# is equal to that for
Bp ¢ 5 Hyplx’s; B's).
Now apply 3.8.2. QED
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Detailed Analysis of the Exceptional Cases

(40) We now turn to a detailed discussion of the exceptional
possibilities for the differential galois group G of an irreducible
hypergeometric D-module on G, of type (n,m), n # m, which is not

Kummer induced. Let N:=max(n,m). Recell that the exceptional

possibilities for G0.der can occur only for In-ml=6, N=7,8 or 9:
N=7: the image of G2 in its 7-dim’l irreducible representation
N=8: the image of Spin(7) in the 8-dim'l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stdestd®std
the image of SL(2)x Sp(4) in stdestd
the image of SL(2)xSL(4) in stdestd
N=9: the image of SL(3)xSL(3) in stdestd.

By inversion, we may and will assume n > m.

Proposition 4.0.1 (Ofer Gabber) For N=8, neither of the two groups
the image of SL(2)xSp(4) in stdestd
the image of SL(2)xSL(4) in stdestd
occurs as GU-9€r for a hypergeometric of type (8,2).
proof Suppose that G0.der for a hypergeometric # of type (8,2) is one
of the groups
the image of SL(2)x Sp(4) in stdestd
the image of SL(2)xSL(4) in stdestd.
By 18.5, the normalizer in GL(std® std) of this g0.der g GmGO:der, so

we have GU.der ¢ G ¢ GmGO,der_ Therefore the conjugation-induced

action of G on Lie(GD.der) respects each of the two factors , and its
action on Lie(SL(2)) defines a surjection of G onto SO(3). View this

sur jection as an irreducible three-dimensional representation p of G,
and then view p as an irreducible rank three object V in the
subcategory <#> of DE(G,,/C). Because V is in <X>, all its slopes at both

0 and « are ¢ 1/6. Since V has rank three, both Irrg and Irr, are <

3/6 < 1, and hence V is entirely of slope zero at both 0 and . But on
@y, the only such irreducible DE's are of rank one, contradiction. QED
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4.1 The Gy case

This case can arise only for hypergeometrics of type (7,1) or (1,7).
By inversion, it suffices to treat the case (7,1). Notice that an
irreducible hypergeometric of type (n,1) cannot be Kummer induced.

Now Gy C SO(7), so if go.der gor ¢ is Gy, then by 36.1 there exists a
twist H®xd with G € SO(7).

Lemma 4.1.1 Suppose G ¢ SO(7) and GO.der js G2. Then G is Gy.
proof Indeed, Gy is its own normalizer in SO(7) [every automorphism of

Gp is Inner, and SO(7) contains no nontrivial scalars]. QED

Lemma 4.1.2 #,(xq, .., x7; By) is irreducible with Ggal C 50(7) if and
only if there exist x,y,z €C such that after renumbering we have

(xq, .. x7) =(0, x, -x, ¥, -y, 2, -2) mod Z7, and By = 1/2 mod Z, and
none of x,y,or zis = 1/2 mod Z.

proof First of all, such an equation #,(0, x, -x, vy, -y, 2, -2; 1/2) is

irreducible, self dual and of determinant one. If # (1, .., x7; B1) is self
dual, then p; must be 0 or 1/2 mod Z. If Ggal lies in SO(7), then its local
monodromy at zero must lie in SO(7). But the eigenvalues of any
element of SO(7) are of the form (1, a, a™ 1, b, b1, c, ¢ 1) for some a,b,c
in C*. As the eigenvalues of local monodromy at zero are the
exp(ZTriocJ-)'s, we get the existence of x,y,z €C such that after
renumbering we have (x, .., x7) = (0, x, -x, y, -y, 2, -2) mod z7.
Since ¥ is irreducible, p1 cannot be 0 mod Z, so By = 1/2 mod Z.

Irreducibility now insures that none of x,y,z can be = 1/2 mod Z. QED

Lemma 4.13 If H,(x4, .., x7; Bq) is irreducible with Ggal C Gy ¢
SO(7), then there exist x,y €€ such that after renumbering we have
(xq. .., «x7) = (0, x, -x, ¥, -y, x+y, -x-y¥) mod Z7, and py = 1/2 mod Z,
and none of x,y,or x+y is = 1/2 mod Z.

Proof The eigenvalues of any element of Gy in its seven-dimensional

representation are of the form (1, a, a1, b, b™1, ab, (ab)~1) for some

8,b in €*. Proceed as above. QED

In view of the above lemmas, the problem of recognizing which
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hypergeometrics have gl.der - Gy is sompletely solved by

Theorem 4.1.4 Let x,y €C such none of x,y,or x+y is = 1/2 mod Z. For
any a € c"’ Hn o= }{R(O' X, "X, Y, "Y, X+y, “X-Yy; 1/2) has Ggal = GZ

In view of the preceding Lemmmas, this implies
G2 Recognition Theorem 4.15 Let x,y €C such none of x,y,or x+y is
= 1/2 mod Z. Then for any 2 € €%, ® = ®,(0, x, -x, ¥, -y, X+y, -x-y;
1/2) has'Ggq] = G These are all the hypergeometric of type (7,1) with
Ggal = G2. The hypergeometrics of type (7,1) with G0.9€F = G, are

)

precisely the x° twists of these.

proof of 4.1.4 The only two possibilities for Ggal are S0(7) or its
subgroup G5. These two cases may be distinguished by the fact that for

SO(7), A3(std7) is irreducible, while G, has a non-zero (in fact one-
dimensional) space of invariants in A3(std7). Thus we must show that

for ® as above, A3(N) has HODR(Gm, A3(M)) nonzero. Here is a proof
suggested by Ofer Gabber, analogous to the proof of 3.7.3.
Denote by j: Gy, — P1 the inclusion. Since A3(#) is self dual

(because H is), its middle extension _j!,/\:"(}f) is also self dual. By global

duality, the two cohomology groups HiDR(IPl, _j!,/\:"(}f)) for i=0 and i=2
are dual to each other. By 29.13,

HOpR(PL, ji,A3(H)) = Homp(Op1, j,AS(H) =
= Homp(j1.Og_, Jia A3(M) = Homp(Og_, A3H)) = HOpR(@py, AS(H)).

Therefore the nonvanishing of HODR(Gm: A3(R)) will result from the
estimate
w(P1, i, A3 22> 0.
By the Euler-Poicare formula, we have
¥(P1, j, A3(®) = -Irrg - Irry, + dimgSolng + dimgSoln, .
We will show that
(1) dimgSolng 2 5.
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(2) Irrg = 0.
(3) dimgSolng, = 2.
(4).Irr,, = 5.

In order to prove (1), let us denote by T the local monodromy of #
around zero, and by P(T) its characteristic polynomial. We know that
as C[Tl-module, # is CI[TI/(P(T)). In terms of the quantities

a:= exp(2wix), bi=exp(2wiy),
the roots of P(T) are (1, a, 1/a, b, 1/b, ab, 1/ab).

Since ¥ is regular singular at zero, we have

dimgSolng(A3(H)) = dim Ker(T-1 acting on A3(CITI/(P(T))).

We claim that this dimension is 2 5. To see this, we will resort to a
specialization argument to reduce to the case in which P has all
distinct roots. .

We first treat the case where P has all distinct roots. Then T is
diagonalizable, say T = Diag(aq, .., a7), hence AT is diagonalizable
with eigenvalues exactly all triple products ajajag with i ¢ j < k. If we
number the a; so that they are (1, a, 1/a, b, 1/b, ab, 1/ab), then the
five triple products indexed by (1,2,3), (1,4,5), (1,6,7), (2,4,7), (3,5,6) are
all 1, so dimKer(A3(T) - 1) 2 5, as required.

In the general case, we argue as follows. Let us define, for
indeterminates A, B , the polynomial

pA,B(T) = (T -1XT - AXT - 1/AXT - BXT - 1/BXT - ABXT - 1/AB).

Then over the ring R := C[A, Bl[1/ABl, we can form the R[T]-module
M := R[TI/(P4 g(T)), which is free of rank seven over R. The general

case results immediately from the following elementary lemma, applied
to S:=Spec(R), M= A3V, T= AT) - 1.

Specialization Lemma 4.16 Let S be a scheme, J an Og-module

which is locally free of finite rank n, and 7 € Endos(m). For each point

s in 5, consider the induced endomorphism T ¢ of the n-dimensional
k(s)-vector space M. For any integer i 2 1, the set

{s in S where dimKer(T ) 2 i}
is Zariski closed in S.

proof Since dimKer(T ) + dimIm(T g ) = n, this is also the set where

dimIm(T ¢ ) ¢« n-i. But dimIm(T4) ¢ n-i & Al*n'i(‘Ts) = 0. Thus our set
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is the locus of vanishing of all minors of T of a given size. QED

This concludes the proof of (1). Since H is regular singular at zero,
(2) is obvious. We now turn to the proofs of (3) and (4), both of which
are tedious but straightforward. Let us denote by W the six-
dimensional wild part of #®C((1/x)). Since p1 = 1/2,
UOC(1/x) = W ® x1/2¢((1/x)), whence

ASec((1/x))) = A3(W) ® AZ(w)exl/2.
To prove (3) and (4), it then suffices to prove (a) and (b) below:

(a) A3(W) has a 1-dim’l solution space, and irregularity 3.
(b) A2(W)®x1/2 has a 1-dim'l solution space, and irregularity 2.

Since # has trivial determinant, we see that det(W) = x1/2¢((1/x)).

Denoting by L the rank one DE. for eX, it follows from 3.4.1.1 that W is
a multiplicative translate of [6], L. Since the assertions (a) and (b) are

invariant under multiplicative translation, we may assume that
W x [6],L.

(4.1.7) We now explain how to analyse the exterior powers of such
a Kummer-induced W. It will be clearer if we consider a slightly more
general situation. Fix a C-valued fibre functor w on DE. (C((1/x))/C).
For any polynomial f(x) in €[x], define

Li(x) = ef(¥)¢((1/x)) = the rank one DE. for ef(X) over C(1/x)),

and denote by
Li(x) := the one-dimensional C-space w(L¢(x))-

Yy = the corresponding character of I, .
In order to describe [dl (L)), it is equivalent via descent theory to
describe [d]*[d],(Z¢(y)) with its canonical action of the covering group
Mg- Using the canonical isomorphism of functors
[dl*[d](?) = &,

this amounts to making explicit the the natural action of the group g

- *(?
d[x ex]*(?),

on the d-dimensional representation space
Ww(d, f(x)) := ® .. Wy Licexy f Too-

Clearly an element p € ug maps Lt(:x) to L,(Mx), and ud induces the

identity. So there exists an eigenbasis {ep € Ly} of this representation

space W(d, f(x)),
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¥(eg) = gyy¥ley for ¥ € I,
on which p € pg4 acts by
[ul(eg) = e p.

Thus W(d, f(x)) with its action of u g corresponds via descent
theory to [d],(Lg(x)). For any “construction of linear algebra” Constr,
Constr(W(d, f(x))) carries an induced u4 action, and it corresponds via
descent to Constr([d]l,(Lgy))). In order to avoid confusion, we will denote
by [,(d) € I, the two inertia groups in question, and by P (d) = P,
their (common) wild inertia subgroup.

Lemma 4.1.7.1 In terms of the descent dictionary, for any
construction of linear algebra Constr we have

(1) Constr({d],(Lg(x)))Pe = Constr(W(d, £(x)))Peo (¥
(2) Constr(W(d, f(x)))Pe‘® =Constr(W(d, f(x)))le‘? and the action of oo
on Constr([d],(Lf(x)))poo factors through its Mg quotient.
(3) If % is a character of I, which is trivial on P, but which does not
factor through the ugy quotient, then

(Constr(ld], (Lg(,))® x) e = 0.
(4) If % is & character of 1, which factors through the ug quotient,
then

(Constr(ld], (Lgx)))® x)e = (( Constr(W(d, £(x))e P )@ x)Ha.

proof Assertion (1) is a tautology, since P, = P (d) is a subgroup of

lo(d). For (2), the point is that W(d, f(x)) is the direct sum of the

characters Y(ex): For these characters on this form one has
YEHx)Pg(x) = PE(x)+g(x).

Therefore any Constr(W(d, f(x))) is a direct sum of characters of the
form Yg(x) where g(x) is of the form Ef(3;x). Since characters of the

form Yg(x) satisfy
4’g(x) 1s trivial on P (d) & I'g(x) has slope zero &
« g(x) is constant & $g(x) is trivial on I (d),

we obtain (2). Assertions (3) and (4) then follow immediately. QED

We now turn to the explicit analysis of our [6],L, which
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corresponds to W(6, x) with its ug action. Pick a primitive sixth root of
unity ¢, and denote by {ej}; ¢ z/67 8an eigenbasis of W(6, x) with

e € Lgix, and the action of ¢ given by 3(e;) = e;, 1. We will analyse the
exterior powers of W(6, x).

We already know that det(W) = x1/2¢((1/x)), so it must be the
case that det(W(6, x)) is the unique character of order two of Mg We

can see this directly, since ¢ cyclically permutes the e; so maps
e|~eprezaeqregneg to egegneyregregnreq. Since W is self dual,so
are its exterior powers. Therefore if 0 ¢ i ¢ 6, the wedge product pairing

AXW) x AB-i(w) = AB(w)
induces an isomorphism

AB-i(w) = (A w)@x1/2,
This cuts our work in half. However, for increased reliability we will not
use it.

We now systematically list the P, -invariants among the wedge

products of the e;'s in each AJ, and give the action of ¢ on these

invariants. A given wedge expression &y~ eij with

1 ¢1q <ip .. ¢i; ¢ b transforms under P, by the character for a
1<12 J o PY ax

=($)1 + ..+ (3)}j, so it is is P, -invariant if and only if ()it + . + (§)ij =

0; otherwise its irregularity is 1. We write [iq, ... ‘i.i] for &~ .A.Aei‘j:

1 basis of (Ai(W(S, x)))Peo action of ¢ here, and its eigenvalues
1 none. none

2 [1,4], [2,5], [3,6], xP B ¥ -, eigenvalues -ux

3 [(1,3,51, [2,4,6], xPpr «, eigenvalues t1

4 [1,2,4,5], {2,3,5,6], [1,3,4,6], x—p—-¥—«, eigenvalues u3.

5 none. none

Thus we obtain the following table

(4.172)

i ler(A W) dimUAKW) )  dim(A W)@ x17/2)lx)
1 1 0 0

2 2 0 1

3 3 1 1

4 2 1 0

5 1 0 0
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In particular, we see that (a) and (b) in the proof of 4.1.4 hold.
This concludes the proof of the G, theorem 4.14. QED

4.2 The Spin(7), PSL(3) and SL(2)xSL(2)xSL(2) Cases
We now turn to the remaining possible exceptional values of

gO.der ¢or hypergeometrics of rank eight. These can occur only for type
(6,2) (or (2,6), by inversion). Both Spin(7) and PSL(3) are subgroups of
S50(8) € O(8), while (the image of ) SL(2)xSL(2)xSL(2) is a subgroup of
Sp(8), so in virtue of 36.1, a x® twist reduces us to computing g0.der
for those #'s with G € O(8) or G ¢ Sp(8).

Our first observation is that if ¥ has G € O(8), then the question
of whether or not G € SO(8) (ie, whether or not det# is trivial) is
invariant under twisting # in such a way that it stays self dual. This a
general fact about even orthogonal groups.

Lemma 4.2.1 Suppose V is a symmetrically autodual Lie-irreducible
DE. (on any X/C) of rank n: Ggal(V) C O(n). Let L be any rank one DE,
such that V®L is autodual Then L®2 is trivial, and Ggal(V® L) € O(n).

In particular, if n is even, det(V) = det(V®L).
proof Since both V and V®L are self dual, their determinants have

order 1 or 2, so L is of finite order. Denote by % the character of -rr1diff

given by L, and by p the representation given by V. Since V is Lie-
irreducible, so is VO®L, and they define the same (once we fix a basis of
the line w(L), so as to be able to identify w(V) with w(v®L))

representation of the open subgroup Ker(y) of -rrldiffA By Lie-

irreducibility, there is a single (up to a C* factor) nonzero bilinear form
<,>on w(V) = w(vOL) which is invariant by this open subgroup. By
unicity, Ggal(v) C SO(w(V), ¢, »), and Ggal(Vs L) € O(w(v®L), <, »).

So for any ¥ € -rrldiff, both p(¥) and % (¥)p(¥) lie in O(w(v®L), <, >),

whence % (¥), being a scalar in O(w(v®L), <, »), is +1. Therefore L®2 is
trivial. If n is even, det(V®L)=det(V)@L®N x det(V). QED

The next two lemmas show that if G € O(8), then the Spin(7) case
(resp. the PSL(3) case) is possible only for G ¢ SO(8) (resp. G ¢ S0O(8)).

Lemma 4.2.2 if G ¢ O(8) and @0.9€7 = Spin(7), then G = Spin(7) (and
consequently G € SO(8)).
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proof Spin(7) is its own normalizer in O(8). Indeed, every
automorphism of Spin(7) is inner, and the only scalars in O(8), +1, also
lie in the subgroup Spin(7), for instance because Spin(7) has a
nontrivial center. QED

Lemma 4.2.3 If a hypergeometric # has G ¢ S0O(8), then gl.der .
PSL(3).

proof The normalizer N of PSL(3) in SO(8) is +PSL(3). [Indeed, up to
inner automorphisms, the only nontrivial automorphism of 3X(3)
(viewed as 3x3 matrices of trace zero) is the Cartan involution

C:Xm -xt
So if we view O(8) as the orthogonal group of the Killing form on 3XL(3),
the Cartan involution of 3X(3) (now viewd inside Lie(O(8)) by the
adjoint representation) is Ad(C). But det(C) = -1, so any element of N
inducing an outer automorphism must have det = -1. As N € S0(8) by
its definition, every element of N induces an inner automorphism. And
the only scalars in SO(8) are +1. We remark for later use that this
same argument shows that the normalizer of PSL(3) in O(8) is the
semidirect product PSL(3)ix{+1,+C}]

Therefore if G € SO(8) and G0.der - PSI(3), then G € +PSL(3).
Projection onto the 1 is a character of G, so a rank one object of <H>,
so an x5 So after an x® twist, we find an # with G =PSL(3). In virtue of
the fact that one can lift projective representations of -rrldiff of an
gal is SL(3) such
that End%(V) is #. Now the highest oco-slope of # is 1/6. Since the
adjoint representation of SL(3) has a finite kernel, it follows from the
next lemma that the highest oo -slope of V is also 1/6. Since V has rank

three, this is impossible [the multiplicity of a slope is always a multiple
of its exact denominator, (cf. [Ka-DGG],2.2.7 3)]. QED

open, there exists a rank three DE. V on G, whose G

Highest Slope Lemma 4.2.4 Let w be a C-valued fibre functor on
DE(C((1/x))/C), V a DE. on €({(1/x)), p: 1, — GL{w(V)) the

corresponding representation. Suppose that G is a Zariski closed
subgroup of GL(w(V,,)) such that p(l,) € G. Let A: G — GL(d) be any

representation of G with a finite kernel, say I', and denote by VA the

DE. corresponding to the composite representation Ae¢p of 1,,. Then V
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and VA have the same highest slope.

proof For any x 2 0, V has all slopes ¢« x if and only if p((Im)(x’)) = {e},
and VA has all slopes ¢ x if and only if p((Im)(x’)) ¢ T' ([Ka-DGGl],
25.36). Since p((Im)(x’)) is connected ([Ka-DGGI, 2.6.42), these two

conditions are equivalent. QED

Lemma 425 If #,(axq, .., xg; Bq, P2) is irreducible with Ggal C 50(8),
then there exist x,y,2,w €C such that after renumbering we have

(xq, ... xg) = (x, -X, ¥, -y, 2, -2, w, -w) mod 28

(p1, B22= (0, 1/2) mod Z,
and none of x,y,2,w is = 0 or 1/2 mod Z.

proof This is an exercise in the Duality Recognition Theorem 3.4. Since
the autoduality is symmetric, Zoa; - ZpJ- = 1/2 mod Z. Since detH is

trivial, Zaj € Z, and hence p1+p2 = 1/2 mod Z. Since # is selfdual,
while B1*P2 is not in Z, we must have that 2pq and 2py are in Z.
Therefore after renumbering (B4, B2) = (0, 1/2) mod Z. The eigenvalues

of any element of SO(8) can be grouped into four pairs of inverses;
looking at local monodromy at zero thus gives the existence of the
X,v,2,w as asserted. None can be 0 or 1/2 mod Z because of the
assumed irreducibility of ®. QED

Lemma 4.2.6 If #,(xq, ., xg; By, Bp) is irreducible with
Ggal C Spin(7), then there exist x,y,z €€ such that after renumbering
we have

(xq, .., xg) = (x, -x, y, -y, 2, -2, x+y+z, ~Xx-y-2) mod 28,

(pq. B2)= (0, 1/2) mod Z,

and none of x,y,z, or x+y+z is = 0 or 1/2 mod Z.

Proof In the subroup Spin(7) of SO(8), the eigenvalues of any element

are of the form (a, 1/a, b, 1/b, c, 1/c, abe, 1/ abc). Proceed as above.
QED

Lemma 427 If Hy(exq, ... xg; By, B) is irreducible with Ggal € o(8)

and det# nontrivial, then there exist x,v,2,w €C such that after
renumbering we have
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(xy, ... xg) = (0, 1/2, x, -x, ¥, -y, 2, -2) mod Z8,
(B4, B2)= (w, -w) mod Z,
and w # Oor 1/2 mod Z.

proof Since det# is nontrivial, but ¥ is selfdual, detd has order two, so
Taj = 1/2 mod Z. Since the autoduality is symmetric, we must have

Zpj in Z. Autoduality forces the «; to break into pairs of additive

inverses mod Z, and possibly a single (0, 1/2) mod Z. But this (0, 1/2)
nod Z must occur, since Zxj = 1/2 mod Z. QED

43 The PSL(3) Case: Detailed Analysis
Lemma 4.3.1 If # has G:=Gga1 c O(8) and G0.der = psSL(3), then the
quotient group G/PSL(3) is cyclic of order two.

proof The normalizer N of PSL(3) in O(8) is the semidirect product
PSL(3)1x{+1,2C} of PSL(3) with the abelian (2,2) group {£1}x{1,C}. We
have PSL(3) € G € N. Because we are on G,,, whose topological 74 is

cyclic, any finite quotient group of G must be cyclic. Therefore G/PSL(3)
is a cyclic subgroup of the (2,2) group N/PSL(3). Since G ¢ SO(8), this
quotient is nontrivial, so it must be of order two. QED

Lemma 432 If # := H,(ecy, ., xg; By, B2) has G:=Gga1 C 0O(8) and
GO.der - psL(3), there exist x in €, x # +1/3 mod Z, 4 in €%, and an
isomorphism

21* %, (xyq, .., xg, By, B2) ® Endo(}fu(x, -x, 0; 2)).
This x, unique mod Z up to x — -x, is characterized by

(24, 22, .., 2xg} = {0, 0, x, x, -x,~x, 2x, -2x}.
proof Projection of G onto G/PSL(3) is a nontrivial character of order
two of G, corresponding to the two-fold Kummer covering. Therefore
[2]*H has its Ggal = PSL(3). Lifting this projective representation to an
SL(3) representation, we get a rank three DE. V on Gy, with det(V)
trivial and End9(V) = [2]*#. By the Highest Slope Lemma 4.2.4, V has

all its O-slopes =0, and its highest o -slope is 1/3. Therefore all the o -
slopes of V are 1/3. Consequently, V is [, -irreducible, and hence
irreducible. By the intrinsic characterization of irreducible

hypergeometrics, we see that V is a hypergeometric of type (3,0) with
trivial determinant. Therefore V = Mu(x, v, ~x-y; &) for some x,y € C,
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Mecx
Since EndO(V) = [2]* ¥, the isomorphism class of End%(V) is
invariant under multiplicative translation [x— -x]*. Let us define
W= x> -x]* (V).
Then V and W are two rank three D.E’s, both with G
there exists an isomorphism of D.E’s
Endd(V) = Endd(W).

Therefore there exists a rank one D.E. L on &, such that

either VOL = W or VOL = WV,
This results from the (contrapositive of the ) Goursat-Kolchin-Ribet
Proposition 1.8 .2, applied to Ggal(VQW, w) and its two representations

w(V) and w(W), since the possibility that Ggal(VQW, w) =
SL{w(V))x SL{w(W)) is incompatible with the representations
End%(w(V)) and End®(w(V)) of Ggal(VQW, w) being isomorphic. Since

gal = SL(3), and

both V and W have Ggal in SL(3), L®3 must be trivial. So L is x® for
§ = 0or +1/3.
We now analyze the cases. Recall that
V= Ku(x, vy, -x-y,; &), whence
W= Ix= -x]*(V) = H_ (x, y, -x-y; &), and hence
WY = ®,(x, -y, xty; &)
If Ve x® = W, then § # 0 mod Z (if § is in Z, then V = W, whence
M = - by 3.3, and this is'impossible since p is in €*). So § is *1/3 mod
Z Therefore the set {x, v, 2} is stable mod Z by « — «+5. So mod Z it
contains all the 6-translates of say x, and as there are three of these it

must be {x, x+§, x+ 28} = {x, x+ 1/3, x+ 2/3}. mod Z. As these must sum
to0 mod Z, 3x € Z, whence V = KH(O, 1/3, 2/3; &), which is Kummer-

induced, so not Lie-irreducible, contradicting Ggal(V) = SL(3). So this
case cannot arise.
What about the case V®x5 x W¥? We may rewrite this
VOxb x WY = (Ix b -xI* (V)Y = [x = -x]*(VY),
or, tensoring both sides by the translation-invariant x® = (x28)v,
VOx28 x [x » -x]*((V@x28)v).
Replacing V by V®x25, it suffices to find V's such that V = WY [since V
and V®x25 have the same EndO].
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The condition V & WY is equivalent to

{x, v, ~x-y} = {-x, -y, x*y} mod Z,
or that {x, y, -x-y} is stable mod Z by negation. The set {x, y, -x-y}
mod Z is thus of the form (x, -x, 0) for some x. To insure that this V is
not Kummer induced, we need x # *+1/3 mod Z. Because x # +1/3
mod Z, tx mod Z is uniqely determined (since the set {2«;'s} is the set

{0,0,+x,+x,:2x} mod Z, as follows from comparing local monodromies at
zero). QED

Lemma 433 Let # = Ku(x, -x, 0; &), with xinC, x # 21/3 mod Z, u
in C*. ThenEndO(#®) has Ggal = PSL(3), and there exists a
hypergeometric #,(x4, .., xg; B4, p2) and an isomorphism

[2]*®, (g, .. xg; By, B2) = EndO(H).
Moreover, any such #,(x4, .., «g; B4, p2) has nontrivial determinant
and its Ggq] € O(8), with (Gge)0 = PSL(3).
proof Such an # has Ggal = SL(3), being non-Kummer induced of type
(3,0) with trivial determinant, so End9(#) has Ggal = PSL(3). Such an
H has Y = [x » -x]*¥, so End(#) = H®UY = U®([x » -x]*HN) is

isomorphic to its [x = -x]* transform. Now End(#) = End0(X)® (triv)
1s a sum of two irreducibles of different ranks, so by Jordan Holder

theory each is isomorphic to its [x = -x]* transform. Therefore
EndO(#) descends through the two-fold Kummer covering, so is of the

form [2]*(W) for some (necessarily irreducible) D.E. W on G, of rank

eight, whose (Ggal)o is PSL(3), and whose 0O-slopes are all 0.

We now show that this W is hypergeometric. For this, it suffices,
by the intrinsic characterization of hypergeometrics, that X (G,,, W) =

-1, or equivalently that % (G, EndO(®)) = -2. Since EndO(#) has 0-
slopes all 0, we need to see that EndJ(#) has Irr,, = 2. To do this, we

will completely analyze the I -representation of End%(®). In virtue of

3414, # as [, -representation is a multiplicative translate of [3], L,

where L is the rank one DE. for eX.

Lemma 4.3.4 Let V := [3],X. Then as I, -representation, we have
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EndO(V) = (rank 6, slopes 1/3) & x1/3c(1/x) ® x2/3¢((1/x)).
proof This is an easy computation using W(3, x) with its u3 action as

in the discussion 4.1.7. In that approach, once we fix a primitive cube
root of unity g, W(3,x) has an I, -eigenbasis {ej}; p,oa 3. (¥(e)) = ¢ i (¥)e;
for ¥ € [,) on which ¢ acts by e; = e, 1. Similarly, the dual W(3, -x)
has an I, -eigenbasis (fj}; 93, (¥(f}) = ¢_i, (¥)f; for Y€l,) on which ¢
acts by f; = f;,.1. Now End(W(3, x)) is the tensor product W(3, x)®@W(3,
-x), on which ¢ acts by ¢;®f: & ei+1®f_j+1' Among the basis vectors

J
ei®f;, only the (e;®f;}; ,..q3 are P, invariant; the others each have

slope 1 (so slope 1/3 in EndO(V)). This gives the (rank 6, slopes 1/3)
factor.

The three tame vectors {e;®f;}, . are cyclically permuted by ¢,
so after removing the trivial character to come down from End to

Endo, what remains are the two nontrivial characters of order three.
QED

Thus End® has Irr , = 2, and hence that there exists a

hypergeometric #,(x4, .., xg. B4, B2) and an isomorphism
[2]*H,(xy, .., xg; By, B2) = EndO(n).

Consider the group G = Ggal(”)\(“il . %g: By, B2)). It contains
PSL(3) with index dividing two. We have already seen that G ¥ PSL(3)
(cf 43.1). Therefore the index is two. The normalizer in GL(8) of PSL(3)
is PSL(3)X{ G, C}. As €2 = 1 and PSL(3) contains no nontrivial scalars,

G must be +PSL(3) or PSL{3)IX{1, AC} with A = 1. We cannot have G =
+PSL(3) by 4.2.3. Thus G is PSL(3)ixX{1, aC}, » = +1, and this group lies in
0O(8) but not in SO(8). QED

Theorem 4.3.5 Suppose # = H,(xq, .., xg; By, B2) has G:=Ggq] € o(8)

and det¥ nontrivial. Let x in €, x # +1/3 mod Z, u in C*. There exists
an isomorphism

| [2]*#y\(xyq, .., xg; By, BR) = Endo(}f“(x, -x, 0; #))

if and only if mod Z either

{cq, ., g} = {0, 1/2, x/2, (1 + x)/2, -x/2, -(1 *+ x)/2, x, -x} := Al

{B1. B2} = (1/3, 2/3) = B1

or

locy, . og) = {0, 172, x/2, (1 + x)/2, -x/2, -(1 + x)/2, x + 1/2, -x- 1/2}
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= A2
{pq. B2} = {1/6, 5/6} := B2.

proof Suppose first that there exists an isomorphism

[21* Uy (exyq, .., xg; By, B2) = Endo(}fu(x, -x, 0; #)).
We will analyze separately the possibilities for the p’'s, and then for the
«'s. After doing this, we will figure out which pairs of possibilities can
"go together”.

Looking at the slope =0 part of Endo(}fu(x, -x, 0; &)) at o, we
see that {2p4, 2p5} = {1/3, 2/3} mod Z. As B4 *+ By € Z, the only
possibilities for {p4, B2} are {1/3, 2/3} or {1/6, 5/6}.

We now turn to the «j's. Suppose first that x is neither 0 nor 1/2

mod Z, so that the local monodromy at 0 of Ku(x, -x, 0; &) is
semisimple. Then that of Endo(}{u(x, -x, 0; #)), and hence that of

Ho(xq, ... xg; By, B2) is also semisimple. Therefore there can be no

repeats mod Z among the «i's. The 2x{'s mod Z are the exponents at 0

of Endo(}{u(x, -x, 0; &)), namely {0,0, x, x, ~x, -x, 2x, -2x}. Since the
«i's do not repeat mod Z, they must be

{0, 1/2, x/2, (1 + x)/2, -x/2, (1 + x)/2, ?, ??)}.
Since Zaj = 1/2 mod Z, the last two entries sum to zero, so are either

tx or +(x + 1/2), as asserted.
If x=0, then, writing unip,, for an n-dimensional unipotent Jordan

block, the local monodromy of Ku(x, -x, 0; #) at zero is unipg, so that

of Endl is unipg ® unips. Since H,(xq, .., ®g; B4, B2) has at most one

Jordan block for each slope =0 character at zero, its local monodromy
at zero is either

(unipg) @ x1/2®(unip3) or x1/2®(unip5) ® (unips),
as asserted.
If x = 1/2, then the local monodromy of A,(x, -x, 0; &) at zero is
(unipy) ® x1/2®(unip2),
so that of EndU is
(unipy) ® (unipz) & x1/2®(unip2) ® x1/2®(unip2).
So the local monodromy of Hy(aq, ., xg; By, B2) at zero, being self

dual of nontrivial determinant. is either
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(unipy) @ x1/2®(unip3) 2] x1/4®(unip2) 2] x3/4®(unip2)
or

x1/2®(unip1) ® (unipz) ©® x1/4®(unip2) ® x3/4®(unip2),
as asserted.

The situation now is this. Fix x in €, x # +1/3 mod C, u in C*. We
have proven that Endo(}fu(x, -x, 0; #)) descends through [2], and that
any descent is, for some i in €¥, on the following list of four possibilities

KR(Al, B1), 1,(A14, B2), #,(A2, B1), H,(A2, B2).

Now from the definition of the exponent sets Al, A2, Bi, B2, we see
that

®, (A1, B®xY/2 = #,(A2, B2), M,(A1, B2)®x1/2 = A (A2, B1).
On the other hand, the only indeterminacy in descending through [2]
any irreducible DE. on G, is the possibility of twisting by x1/2 (cf

2.7 .1). So the two descents of Endo(}{u(x, -x, 0; &)) through [2] are
either #,(A1, B1) and #,(A2Z, B2), which is precisely what we assert to
be the case, or they are #,(Al, B2) and #,(A2, B1).

If #,(A1, B1) is not a descent of Endo(}fu(x, -x, 0; &)) for any u,

then its G:= Ggq] cannot have G0.der = PSL(3), thanks to Lemma 432.
Since ®,(A1, B1) is irreducible and not Kummer induced, with G ¢ O(8)
and nontrivial determinant, the only other possibility is that G = O(8).
Similarly, if #,(A1, B2) is not a descent of EndJ(% ,(x, -x, 0; #)) for
any M, then its Ggal is O(8). Thus exactly one of #, (A1, B1), #, (A1, B2)

has its Ggq) = O(8), and the others' Gyq] has G0 = PSL(3). So the two

cases are distinguished by the dimensions of their differential galois
groups (dimO(8) = 28, dimPSL(3) = 8).

We will decide which one is which by using the specialization
theorem. Fix A, and regard x as a variable. In other words, denote by K
the field Q(a), and by R the polynomial ring Kix| in one variable x over
K. Then on the scheme (G;,)R. both of our candidates

n, (AL, BY) = M,(0, 1/2, £x/2, (1 + x)/2, +x; 1/3, 2/3),

n, (A3, B2) = U,(0, 1/2, +x/2, £(1 + x)/2, +x; 1/6, 5/6)
make sense as free O-modules of rank eight endowed with integrable
connections relative to the ground ring R.

In order to prove that #,(A1, B1) has G0 = PSL(3) for svery
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x # +1/3 mod Z, it suffices to prove that #, (A1, B1) has dimGgal < 8

for every x; by the specialization theorem it suffices to prove that
#,(A1, B1) has dimGgal < B8 at the generic point. This is equivalent to

showing that #,(A1, B2) has dimGgal > B8 at the generic point. By the

specialization theorem it suffices for this to find a particular x where
H, (A1, B2) has dimGgal > 8. For this, we take x= 1/3. Then

#,(A1, B2)|,.,,3 is the reducible hypergeometric
®,(0, 1/2, +1/6, £2/3, £+1/3; 1/6, 5/6)
whose semisimplification is
x1/6¢ix, x"11 @ x5/6¢ix, x4 @ M,(0, 1/2, £1/3, +1/3; &),
Therefore the Ggal of ©,(0, 1/2, £1/3, +1/3; &) is a quotient of that of
®,(0, 1/2, £1/6, £2/3, £1/3; 1/6, 5/6), hence has lower dimension, But
n,(0, 1/2, £1/3, +1/3; &) has Ggal = O(6) [being of type (6,0),not

Kummer induced, and orthonally self dual with nontrivial
determinant] which has dimension 15 > 8. QED

Thus we find
PSL(3) Theorem 4.3.6 A hypergeometric ® := ®, (x4, .., xg; By, B2) of

type (8,2) has G0,der = PSL(3) if and only if there exists §€C and x€C,
x # t1/3 mod Z,such that, mod Z,we have
{ocj + 8} = {0, 172, £x/2, £(1 + x)/2, *x}, (bi + 8} = {£1/3}).

4.4 The Spin(7) Case: Detailed Analysis
We have already seen (4.2.6) that if a hypergeometric of type

(8,2) has G0.der - Spin(7), then a twist of it is (isomorphic to one) of the
form ®,(¢x, ty, 2, t(x+y+2); 0, 1/2) for some x, y, z €C.

Spin(7) Theorem 4.4.1 Let 2e€C*, x, v,z ¢ C. If
H o= U, (2x, ty, 22, 2(x+y+2); 0, 1/2)

is irreducible and not Kummer induced of degree 2, then Gyq] = Spin(7).

ga

proof This is very similar to the G2 case. Since H is irreducible, not
Kummer induced, and has Ggal C S0(8), the only two possibilities for
Gga] are Spin(7) or SO(8). We may distinguish these by the fact that

A4(stdg) is SO(8)-irreducible, but has a one-dimensional space of
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Spin(7) invariants. So it suffices to show that, denoting by j: Gy — pl
the inclusion, we have % (P1, _j_|,/\4(}f)) 2 2. Since
¥(PL, ji, A4N) = -Irrg - Irr,, + dimgSolng + dimgSoln,, .

it suffices to show that we have
(1) dimgSolng 2 8.

(2) Irrg = 0.
(3) dimgSoln,, = 4.
(4) Irr, = 10.

In order to prove (1), let us denote by T the local monodromy of ¥
around zero, and by P(T) its characteristic polynomial. We know that
as C[T]-module, ¥ is C[T]/(P(T)). In terms of the quantities

a:= exp(2wix), b:zexp(2wiy), c:=exp(2wiz),
the roots of P(T) are (a, 1/a, b, 1/b, c, 1/c, abc, 1/abc).

Since # is regular singular at zero, we have

dimgSolng(A4(H)) = dim Ker(T-1 acting on AX(CITI/(P(T)))).

To show that this dimension is 2 8, it suffices by the specialization
lemma 4.16 to treat the case in which P has all distinct roots.Then T is

diagonalizable, say T = Diag(a4, .., ag), hence AT is diagonalizable
with eigenvalues exactly all quadruple products ajajagan with

i< j <k ¢n.If we number the a; so that they are (a, 1/a, b, 1/b, ¢, 1/c,
abc, 1/abc), then the eight quadruple products indexed by (1,2,3,4),
(1,2,5,6), (1,2,7,8), (3,4,5,6), (3,4,7,8), (5,6,7,8), (1,3,5,8) and (2,4,6,7,)
are all 1, so dimKer(A4(T) - 1) » 8, as required.

Since H is regular singular at zero, (2) is obvious. We now turn to
the proofs of (3) and (4). Let us denote by W the six-dimensional wild
part of #®C((1/x)). Since (B4, B2) is (0, 1/2),

HR®C((1/x) = W & C((1/x)® x1/2¢((1/x)), whence
AMHec((/xM=AY W) & AJw) & Adwiexl/2 & AZ(wiexl/2,
Since # has trivial determinant, we see that det(W) = x1/2¢((1/x)).

Denoting by L the rank one DE. for eX, it follows from 3.4.1.1 that W is
& multiplicative translate of [6], L. Since the assertions (3) and (4) are

invariant under multiplicative translation, we may assume that
w =z [6], L.

From the table 4.1.7.2, we read off that A4 X ®C((1/x))) has Irr,, = 10
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and dimSoln,, = 4, as required. QED

45 The SL(2)xSL(2)xSL(2) Case
We have already noted that if a hypergeometric # of type (8,2)

has GO0.der = (the image of) SL(2)xSL(2)xSL(2), then a twist 1®x® has
its Ggal C Sp(8), so nexd is (isomorphic to one) of the form
H,(tx, ty, tz, £t +w)

for some x, y, 2, t, win C.
We will denote by I' the image of SL(2)xSL(2)xSL(2) in Sp(8),
where Sp(8) is the symplectic group for std>®std,® stdy with the form

x®y®z, uBv®w) = «x,u<y,v><z,w>. The action of the symmetric
group S3 on stdy;®std,® stdy visibly respects the symplectic form, so

we may view Sz as a subgroup of Sp(8). This Sz normalizes ['; as every
outer automorphism of I' is induced by the action of this Sz, we see
that the normalizer of [ in Sp(8) is ['XS3. Therefore if V is any rank
eight DE. with G:= Gyq| C Sp(8) and with G0-9€T = T, then

' c G cTI'xkss.

Lemma 4.5.1 If a hypergeometric # of type (8,2) has G := Ggal € Sp(8)
and G0.der = ' then G is the subgroup I''Ax of I'XS3, and there exist
three rank two DE.'s V4, V2, and V3 on G, each hypergeometric of

type (2,0) with G,q] = SL(2), and an isomorphism

ga
[31*K = Vi®V,8Vs.
proof The quotient G/T is cyclic, because we are on G,,; as G/T is a

subgroup of Sz, this quotient is either A=z, or it has order 1 or 2. So if it
were not Az, then [2]*H has Ggal = I'. Viewing I' as the quotient of
SL(2)xSL(2)xSL(2) by the subgroup of {+1}x{+1}x(+1} of triples with
product 1, we can (by 2.2.2.1) lift the homomorphism -rrldiff - T
corresponding to [2]*# to a homomorphism -rrldiff—' SL(2) xSL(2) x SL(2).
Thus there exist three rank two D.E's V4, V2, and V3 on Gy, all with
Ggal = SL(2), and an isomorphism

2I*® = V4®V,®Vx.
By the Highest Slope Lemma 424, the highest «-slope of V{®V,®Vz is
the same as that of V{®V,@Vx * [2]*H, namely 1/3. But as V; is of
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rank two, it cannot have any s -slope 1/3. Therefore the quotient G/T
must be Ax.

Once G/T has order 3, [3]*H has Ggal =T, and we repeat the
lifting argument to produce three rank two DE’'s V4, V5, and V3 on
Gy 8all with Ggal = SL(2), and an isomorphism

[3]1*H = Vi®V,8 Vs,
. By the Highest Slope Lemma 4.2.4, each V; has its 0-slopes 0, and its
o -slopes ¢ 1/2. So the e -slopes of a given V; are either both 1/2 or
they are both 0. They cannot both be zero, for then V; would be regular

singular at both 0 and e, so reducible, contradicting the fact that its
Ggal is SL(2). By the intrinsic characterization of irreducible

hypergeometrics, each Vj is hypergeometric of type (2, 0). QED

Lemma 4.5.2 Suppose V4, V2, and V3 are three hypergeometrics of

type (2,0) on Gy, such that V{ &V,®V3 has Ggal = SL(2)xSL(2)xSL(2),

and such that for some DE. V on G, there exists an isomorphism
[3]1*V = V1i®V,8 Vs,

Then

(1) V is hypergeometric of type (8,2), and there exists a twist Ve xb of

V with $=0 or #1/3 such that after replacing V —» V® x8 (which

doesn't change [3]*V), Ggal(V) = FD(A::,.

(2)Fix a primitive cube root of unity ¢. After possibly renumbering the

V; and replacing certain of them by their x1/2 twists, there exist

isomorphisms [x— ¢x]*V; * Vi,q, where the index i is read mod 3.

proof The Ggal of any such V obviously has 60 = T, and 6/a0 is cyclic

of order 1 or 3. In particular, V is irreducible. By 424, such a V is
entirely of slope 0 at 0, and its highest c-slope is 1/6. Therefore
%(Gp,, V) = -1, and so V is hypergeometric by the intrinsic

characterization; by its slopes, it must be of type (8,2). By the previous
lemma, some twist of V has its Ggal: ')Az € Sp(8), so G::Ggal(V)C

GmSp(8). The subgroup GO is " ¢ Sp(8), so G C u3zSp(8). Twisting V by
an x8, § =0 or +1/3 puts G C Sp(8), whence G is 'XAx by the previous
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lemma.

Let us denote by T := [x — tx], the multiplicative translation by
the chosen primitive cube root of unity 3. Since V{1 ®V,® V3 descends
through [3], its isomorphism class is invariant under T*. Therefore

Vi®Vo@Va®T*(V1)®T*(V2)®T*(V3)
has Ggal a quotient of . Since both V{®V,®V3 and
THV)BT*(V2)®T*(V3) have Ggal = SL(2)xSL(2)xSL(2), it follows by the
contrapositive of Goursat-Kolchin-Ribet 1.8.2 that for 1 ¢ i ¢ 3 there
exists a rank one DE. L on G,,, an index 1 ¢ j ¢ 3, and an isomorphism
Since both sides have trivial determinant, we see that L®2 is trivial
(ie, Lis x8C[x, x 1] for 6 = 0 or 1/2). We claim that i = j. For if i=j,
then T*(V;) = V;®L, and applying T* again we find
T*T*(V) = T*(V;8L) = V;®L®L x V;. But as V; is irreducible with
¥ = -1, this is impossible by 3.7.7.

Apply this with i=1, and renumber so the corresponding j =2.

Then replace V, by V2®L, and we find
T*(Vq) = V3
Now apply this to i=2. We find
either T*(Vy) = V4®L or T*(V3) x Va®L.
In the first case, this leads to T*T*(V4) = T*(V5) = V4®L, which is

impossible as above. Therefore T*(V,) = V3®L, so replacing V3 by
Vz®L we now find

T'(Vl) = Vz, T*(Vz) = V3.
From this and the fact that T is of order 3 we see that T*(Va) =
T*T*(Vy) = T*T*T*(V4) = V4, as asserted. QED

Theorem 4.53 Let V be a hypergeometric of type (2,0) with Ggal =
SL(2), i.e, V is (isomorphic to) #,(x, -x; &) for some x in €, x # +1/4
mod Z. Let ¢ be a primitive cube root of unity, T := [x = gx]. Then
(H) VO T*V O T*T*V has Ggal = SL(2)xSL(2)xSL(2).

(2) For some peCX, there exists an isomorphism
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VOT*VET*T*V = [31* U (£x/3, £(1 + x)/3, £(2+ x)/3, +x; +1/4),
and this ¥ is the unique descent of VeT*V@®T*T*V whose Ggal © Sp(8).

proof To prove (1), by 1.8.2, and the fact that V is self dual, it suffices
that for any rank one DE. L on G,,, there exist no isomorphism of V®L

with either T*V or T*T* V. Suppose this were not the case. Looking at
determinants, we see that L®2 is trivial. Replacing ¢ by t2, we may
assume VOL = T*V. We must have L nontrivial, by 3.7.7. Thus V® x1/2
% T*V. Comparing exponents at zero, we find that they must be +1/4,
contradiction. This proves (1).

To prove (2), notice that V®T*V®T*T*V is irreducible since
Ggal = T', and its isomorphism class is T-invariant, so it descends

through [3], and the descent is unique up to twisting by x® with
§ =0 or +1/3 (cf. 27.1). By 452, the descended D.E is a hypergeometric
of type (8,2) which may be uniquely ( Sp(8)nuz = {e}) specified by
requiring Ggal C Sp(8). Let us denote by H this choice of descent.

It remains to determine the exponents of this #. The exponents of

VOT*VRT*T*V = [3]*H at zero are {£3x, +x, +x, +x}. Suppose first
that x # 0 or 1/2 mod Z, so that V has semisimple local monodromy at
zero. Then also V®T*V@®T*T*V = [3]*H and consequently H itself have
semisimple local monodromy around zero. Therefore the exponents mod
Z of ® must be, mod Z, {+x/3, +(1 + x)/3, +(2+ x)/3, 7, 77). Because the
local monodromy of # lies is Sp(8) € SL(8), the last two exponents at
2ero are *+?, with ? either x or x + 1/3 or x + 2/3.If x is 0 (resp. 1/2),
then the local monodromy of [3]*# (resp. of (I31*1)®x1/2) at zero is
the tensor product of three unipotent Jordan blocks of size two, so it is
the direct sum of unipotent Jordan blocks of sizes 4, 2, and 2. This
means that the eight exponents at zero of # are all among {0, +1/3}
(resp. among {1/2, +1/6}) and that their multiplicities are, in some
order, 4,2,2. So we see by inspection that our description of the
possbiilities is correct in this case also.

To partially analyse the I ,-representation attached to #, we will

use the descent method 4.17. After a multiplicative translation, V as
loo-representation is (121, L)®x1/4 (since det([2], L) is x1/2, while
det(V) is trivial). Therefore [2]*V as I, -representation is w(z,x)ex1/2,
[21*(T*V) is W(2, £x)®x1/2 and [21*(T*T* V) is W(2, $2x)@x1/2,
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Therefore as I, -representation, we have
[B]1*K = [2]*[3]*HK = [2]1*"(VOT*VOT*T*V)

x W2Z,x)®x120wW2, tx)®x1/2 @ w(z, t2x)®x1/2
2(W(2,x)@W(2, ex)®W(2, t2x))®x3/2
(@ b d )®x3/2
Z(rank 6, slope =1) ® (trivial of rank 2)®x3/2.

Because # is hypergeometric of type (8,2) with Ggal C Sp(8), its two oo~

exponents mod Z must be ¢ty for some y. By the above description of

indep. ¢'s “(21 2p +¢2)x

[6]*H as I, -representation, we must have 6y = 3/2 mod Z. So the o-

exponents are either +1/4 or +1/12 or +5/12.

Let us summarize the situation so far. We began with

V= ",(x,-x; &), x # +1/4 mod Z,

and showed that there is a unique symplectic # of type (8,2) for which
[3]*% =VeT*VO®T*T*V, and that this # is, for some peCX, isomorphic
to one of the following nine possibilities:
Poss(i, j):= }{H(tx/l'), (1 + x)/3, £(2+ x)/3, +(x + I/3); +(1/4 + j/3)),
or, what is the same,
Poss(i, j):= }{H(the six roots z of 3z = +x mod Z, +(x + i/3); +(1/4 + j/3))
where i and j run independently over the set {0, ¢+1}.

The correct ® has Ggal = l"D(A3, dimGgal = 9. Moreover, for any
x # t1/4 or +1/12 or +5/12 mod Z, each of the nine possibilities
Poss(i,j) is irreducible, not Kummer induced, and has Ggal C Sp(8).In
view of the general classification theorem, for x # +1/4 or +1/12 or
+5/12 mod Z, each of the nine possibilities Poss(i,j) has Ggal_ either
Sp(8) or I''xAz. We claim that the correct # is the only one of the

nine possibilities Poss(i,j) which has G ['XAx. Indeed, suppose that

gal =
9 were another. By 451 and 452, [3]*9 2UeT*U®T*T* U, for some U
of the form H (+w, @). Comparing exponents at zero, we see that

w = #x, whence some multiplicative translate [x = £x]|*3 of ¢ is also a
symplectic [3]-descent of [3]*#. By uniqueness, we infer that

[x » £x]|*3 = ®. Comparing exponents at both 0 and o, we see that
9 =H.

This being the case, it suffices to show that for any x # t1/4 or
+1/12 or +5/12 mod Z, the first possibility

Poss(0,0) = }{H(the six roots of 3z = +x mod Z, +x; +1/4)

has dimGgal < 9. By the specialization theorem 2.4.1, it suffices to show
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that Poss(0,0) has dimGgal ¢ 9 for generic x. For this, it suffices to
show that each of the other eight possibilities Poss(i,j) has dimGgal 2 10

for generic x. By 2.4.1, it suffices to exhibit, for each of the other eight
possibilities, a single numerical value xj,j of x for which the

corresponding specialized equation has dimGgal 2 10.

Consider first what happens when we specialize x to 1/4.If iz j,
write {0, +1) = {i, j, k}. Then Poss(i,j) specializes to

A, (21712, 2(1/12 + 1/3), £(1/12 - 1/3), (1/4 + i/3); £(1/4 + j/3))
= ¥ (2174 + i/3), (1/4 + j/3), +(1/4 + k/3), £(1/4 + i/3); £(1/4 + j/3))
whose semisimplification is of the form

A (2(1/4 + i/3), £(1/4 + I/3), 2(1/4 + k/3),2) ®

® xb¢ix, x’1] @ x'sd:[x, x~ 1]

for § := 1/4 + j/3. Therefore Gggq) for this specialization admits as
quotient the Ggq| of A, (2174 + 1/3), +(1/4 + i/3), +(1/4 + k/3);2). The

six cases of iz j are (i,k) = (0,1), (0, -1), (1,0), (1, -1), (-1, 1), (-1, 0), and
for these }fu-(t(l/‘l +i/3), £(1/4 + /3), £(1/4 + k/3), %) is respectively

}{H-(tl/‘l, +1/4, +5/12; &)
}{H-(tl/‘l, +1/4, +1/12; &)
A, (£5/12, £5/12, £1/4; &)
A (£5/12, £5/12, £1/12; @)
n,(21/12, £1/12, £5/12; &)
A, (21712, £1/12, £1/4; &).
Each of these is irreducible, not Kummer induced (the exponents are

not stable by « = « + 1/2 or by « = « + 1/3), and symplectically
autodaual, so has Ggal = Sp(6), which has dimension dimension 21 > 10.

Thus the correct possibility has i=j. Now let us consider the effect
of putting xji = 3/4. Then
Poss(i,i) := }{H(the six roots z of 3z = tx mod Z, +(x + 1/3); +(1/4 + i/3))
speciealizes, for i =1, -1, to )
}fu(the six roots of 3z = *1/4 mod Z, +(3/4 + 1/3); +(1/4 + 1/3))
= }f“(tl/lz, +1/4, +5/12, +1/12; £+5/12)
and to
Ku(the six roots of 3z = *1/4 mod Z, +(3/4 - 1/3); +(1/4 - 1/3))
= }f“(tl/lz, +1/4, +5/12, +5/12; +1/12)
Their semisimplifications contain
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M“-(zl/lz, +1/12, +1/4; &)
and
}{H-(zl/‘l, +5/12, £5/12; &)
respectively, both of which have Ggal = Sp(6). So these cases are ruled

out. The only remaining possibility Poss(0,0) must be the correct one.
QED

Combining the above theorem with the two lemmas preceding it,
we obtain
SL(2)xSL(2)xSL(2) Theorem 4.5.4 The hypergeometrics of type (8,2)

whose G := Ggq] has g0.der - T := the image of SL(2)xSL(2)xSL(2) are

precisely the x® twists of those with Ggal = ''kAz, and those with Ggal
= 'k Az are precisely those (isomorphic to one ) of the form
}{M(tx/l'), +(1+ x)/3, +(2+ x)/3, tx; +1/4)

for any p in €%, and any x # *1/4 mod Z.

46 The SL(3)xSL(3) Case
In this section, we will analyze those irreducible hypergeometrics

H of type (9,3) or (3,9) whose G := Gggq has gl.der - (the image of)
SL(3)xSL(3) in SL(9). By inversion, it suffices to treat the case (9,3).
Throughout this section, we will denote by

[' := the image of SL(3)xSL(3) in SL(9).
By 1.8.4, the normalizer of I' in GL(9) is G, 'XS;. Therefore its
normalizer in SL(9) is ug(I'ix{1, -o}), where ~o is the involution of
stdz® stds given by x®y — -y®x [the change of sign achieves
determinant 1]
Lemnma 46.1 If an # of type (9,3) has G0.9eF = ', some x® twist of #
hasT ¢ Ggal € 'x{1, -o}. If ® has Ggal © SL(9), we can take § € (1/9)Z.
proof Given any M of type (9,3), an x® twist of it has Ggal € SL(9) (cf.
3.6.2), and the same G0.d8F For such an #, we have
' c Ggal cug(lC'X{1, -a}). The only scalars in I'X{1, ~o} are uz, so "the
cube of the ug factor” is a character ¥.: Ggal — M3 which is precisely

the obstruction to having Gyq] € I'X{1, -g}. This character of Ggq|

ga
corresponds to the rank one DE. x5¢C[x, x" 1] for § = 0 or +1/3 mod Z. So

#®x 8/ 3hasT ¢ Ggal c I'x{1, -o}. QED
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Lernma 4.6.2 No hypergeometric # of type (9,3) has " C Ggal < Gl
proof If such an H exists, a twist of it has Ggal = I'. The universal
covering of T is its triple covering by SL(3)xSL(3). Lifting the sur jective
classifying homomorphism -rr1diff — T' through this covering, we find
two rank three equations V and W on G,, such that V®W has
SL(3)xSL(3) as its Ggalr and such that V®W = . Now ¥ has highest oo -

slope 1/6, and highest O-slope =0, so by the Highest Slope Lemma 4.2 .4
V® W has highest «-slope 1/6, and highest 0-slope =0. Therefore at
least one of V or W has highest «-slope 1/6, which is impossible as both
V and W have rank three. QED

Lemrma 4.6.3 If a hypergeometric # of type (9,3) has I’ € Ggal € 'x{(1,
-g}, then Ggal = ',{1, -a}. There exist two rank three DE.'s V4 and V;
on Gp,, such that V4 ®V, has SL(3)xSL(3) as its Ggal' each Vj is
hypergeometric of type (3,0) with Ggal = SL(3), and there exists an
isomorphism

21*® x V48V,.

proof By the above lemma we must have G = I'X{1, ~o}.The quotient

G/T is thus cyclic of order two. Therefore [2]*# has Ggal = I'. Lifting its

sur jective classifying homomorphism -rr1diff — T through the universal
covering, we obtain two rank three equations V4 and V, on G, each
with Ggal = SL(3), such that V4 ®V, has SL(3)xSL(3) as its Ggal' and

such that V4 ®V, = [2]*H#. Now [2]* ¥ has highest o« -slope 1/3, and
highest 0-slope =0, so by 4.2.4 V1® V, has highest o« -slope 1/3, and
highest 0-slope =0. Therefore each of V4 and V3 has highest o -slope ¢
1/3, and highest 0-slope =0. In fact, both of V4 and V, must have
highest oo -slope =1/3 [for if V4 had highest o -slope ¢ 1/3, it would,

being of rank three, have all «-slopes =0, so would be regular singular
at both 0 and =, so reducible, so would not have SL(3) for its Ggal]- By

the intrinsic characterization of hypergeometrics, both V; are
hypergeometric of type (3,0). QED

Corollary 4.6 .4 If a hypergeometric # of type (9,3) has
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Ggal = I'X{1, -0},
then #®x1/2 has Ggal = T'x{1, g} = 'XS,, and conversely.

proof # and #®x1/2 poth have G0 = ', and G/GO of order two,
corresponding to the Kummer covering of degree two. So if we view #

and M@xl/z as representations pq and py of vldiff, and denote by %
the unique nontrivial character of order two of -rrldiff, then

p2 = X ®pyq, and Ker(x) = (p1)"1(l") s (pz)"l(l") Let g€ vldiff have
p1(g) = -a. Then % (g) = -1, since -a & I', and so p2(g) = o. Since

w1 dff = Ker(x) U gKer(x), Image(pz) = [ U oT, as asserted. The

converse is proven the same way. QED

Corollary 4.6.5 If # of type (9,3) has gl.der = T' there exists an x®
twist of ¥ which has Ggal = I'ix{1, -0}, and another which has G

r'<{1, o).
proof. This is immediate from the previous four results. QED

gal ©

Lernma 4.6.6 If a hypergeometric # of type (9,3) has Ggal = 'x(1, o},
there exist two rank three DE's V4 and V3 on G;,, such that V{®V,
has SL(3)xSL(3) as its Ggal. each Vj is hypergeometric of type (3,0) with
Ggal = SL(3), and there exists an isomorphism

[21*H = V1®V2.
proof Simply apply 46.3 to 1 ®x1/2 which in virtue of 46.4 has Ggal =
'x{1, -o}, but the same [2]* as #. QED

Lernma 4.6.7 If ® of type (9,3) has G,q] = ['X{1, -0} or I'X{1, o}, then

ga
for 6 = 0 or £1/3 mod Z, Gyt @x®) = Gy (H).

proof For any §, Ggal(}{exs)O.der = I', a group which contains ux. So if
36= 0 mod Z, then Gyq[(Hex®) C Gyq M)z = Gga (M), and Ggq)(H) C

GgalMexO)ug = Gyq (M ex8). QED

Lemma 4.6 8 Suppose V4 and V3, are two hypergeometric of type

(3.0) on Gy, such that V4 ®V; has Ggal = SL(3)xSL(3), and such that
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for some DE. V on G, there exists an isomorphism
[2]*V = V18 V,.
Denote by T := [x = -x}, the multiplicative translation by -1.Then

(1) V is Lie-irreducible, and unique up to V vexl/Z
(2) V is hypergeometric of type (9,3), and there exists a unique twist

V®x* of V with «=0 or 1/2 such that after replacing V — V@®x%*
(which doesn’t change [2]*V), det(V) is trivial (resp. nontrivial). This V
has Gga(V) = I'X{1, -o} (resp. has GgallV) = I'{1, a}).

(2)There exists an isomorphism T*V4 % V2®x8 for § = 0 or £+1/3 mod

Z.
(3) For this choice of §, we have:

(V1®x5) & T*(V1®x®) has Gyq
[21*V = (V1®x8)®@T* (V4 ®x®)
Ggal(v) = 'x{1, -o} if det(V) trivial, Ggal(v) = 'x{1, o} if not.

| = SL(3)xSL(3),

proof The Ggql of such a Vv obviously has GO = T', and G/GO of order at
most two. In particular, V is Lie-irreducible, and (1) follows from 2.7.1.
By 4.2.4, V has highest o« -slope 1/6, and highest 0-slope =0. Therefore
*(Gpy, V) = -1, and so V is hypergeometric by the intrinsic
characterization; by its slopes, it must be of type (9,3). Since [2]*V has
trivial determinant, det(V) is either trivial or is x1/2®[x, x~1]. Since V
has odd rank 9, exactly one of V or V®x1/2 has G := Ggal € SL(9). Since
GY = T and G/G9 has order ¢ 2, while G # " by 462, we must have G/T
of order two. Since G is not contained in G, G must contain a scalar
times -g, say k(-0), and G = ' U T'x(-0). So if G € SL(9), & € Mg. Since
the square of every element of G lies in I, (2(-g))? =22 is a scalar in T,
so &2 ¢ M3. Therefore £ € u3. But U3 C T, so from G =T U Te(-0) we

see that G = ' U ['(-0) = T'X{1, -g} if det(V) is trivial. By the previous
lemmea, it follows that G = T'x(1, o} if det(V) is nontrivial.
Since V1 ®V, descends through [2], its isomorphism class is

Invariant under T*: V1®Vy = TH(V1)®T*(V3). Now consider the two
DE's Vi®V; and T*(V1)@T*(V3). Both have Ggq) = SL(3)xSL(3). As

representations of -rr1diff their isomorphism classes arise from (possibly



150 Chapter 4

different) liftings of the classifying map for [2]* V. From the exact
sequence for H°malg. gp_('rr 1diff, ?) applied to the central extension
0 —» p3 — SL(3)xSL(3) » T -0,
we see that any lifting is isomorphic to one of
Vi®Vy,
(vpexl/3 e (vyex1/3,
(Vpex~1/3 e (vyexl/3

Therefore either

T*(V)®T*(Vy) = V{®V,, or

THV)BTH(Vy) = (VI8x1/3 & (V5)@x"1/3, or

THVBT*(Vy) = (Vex 1/3 & (vy)exl/3,
By Jordan Holder theory, the isomorphism classes of the irreducible
constituents of T*(V4)®T*(V;) are well defined, and they occur in any
decomposition of T*(V1)®T*(V3) into a sum of irreducibles. But
T*(V4)x V4 is impossible by 3.7.7, and T*(V4) = (V1)®x*1/3 would

imply that the exponents of V at zero are stable by « » « + 1/3,
which in turn implies that V4 is Kummer induced of degree three,

which is impossible since Ggal(vl) = SL(3). So either
T*(V4q) x V2, or
T*(Vq) = (V2)®x_1/3, or
T*(Vy) = (V)®x1/3.
This proves (2): T*Vq = V2®x8 for § = 0 or +1/3 mod Z. Assertion (3) is

immediate from (1) and (2), for by (2) we have
(V18x5) & T*(v4®x%) = (V18xb) & (V,®x25). QED

Corollary 4.6.8.1 Let V be hypergeometric of type (9,3) with Ggal =
I'x{1, o}. Then there exists a hypergeometric # of type (3,0) such that
HBT*H has Ggal = SL(3)xSL(3), and such that [2]*V = H@T*H.

proof Simply combine 466 and 46.8. QED

Lemma 469 Let # := H,(x, y, 2; &) be a hypergeometric of type
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(3,0), and T := [x = -x] the multiplicative translation by -1. Then
HOT*H has Ggal = SL(3)xSL(3) if and only if x, ¥, = satisfy the following
conditions mod Z:

(1) x+y+2=0modZ.

(2) {x, y, 2} #{0, 1/3, 2/3} mod Z.

(3)none of x, y, 2is = 0 or +1/3 mod Z.

proof Condition (1) is that det¥ be trivial. Once detH is trivial, (2) is
the condition that # not be Kummer induced. By 3.6 (2), Ggal = SL(3)
(since In-m| = 3 is odd). So (1) and (2) together are equivalent to

Ggal = SL(3).

By Goursat-Kolchin-Ribet via 382, & T*H will fail to have its
Ggal = SL(3)xSL(3) if and only if for some x€C, either ¥ ® x* or its

adjoint #* ®x~* is isomorphic to T*#. We now analyze these cases.
Suppose first that #®x* x T*H. Comparing determinants, we see
that « = Oor +1/3 mod Z.If x = 0 mod Z, then ¥ = T*H, which is

impossible by 3.7.7. Therefore #®x1/3 = T* or #ex"1/3 x T*%.In
either case, the D-exponents mod Z of # are stable by x » x + 1/3, in

which case # would be Kummer induced of degree three, contradiction.
So this case cannot arise.

Suppose now that #*@x~* = T*X. Again « = 0 or +1/3 mod Z. So
(M@®x2%)* = U*@x"2% x T*U@x™* = T*U®xZ* = T*(H®x2%), and
the O-exponents mod Z of # are stable by x = -x -«. The only
possibility for ¥ compatible with (1) is #,(x, -x ~«, «;#), and this #

has #*@x™* = T*H. It is precisely this sort of # which is ruled out by
condition (3). QED

Theoremn 4.6.10 Let # .= H,(x, y, z; @) be a hypergeometric of type

(3,0), and T := [x = -x] the multiplicative translation by -1. Suppose
that x, y, z in C satisfy

x+y+z = 0 mod Z, and none of x, y, zis = 0 or +1/3 mod Z,
le, suppose that #®T*# has Ggal = SL(3)xSL(3).
Then
(1) There is a unique hypergeometric V of type (9,3) with det(V)
nontrivial for which there exists an isomorphism [2]*V * H®T*H.
(2) This V has Ggal(V) = I',x{1, o}.

(3) For some peCX*, V is isomorphic to
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}{H(x, v, 2, -x/2,-y/2,-2/2,1/2 - x/2, 1/2 - y/2, 1/2 - 2/2; 0, +1/3).
(4) Any hypergeometric V of type (9,3) with Ggal = I'x{1, o} is obtained

in this way.

proof Assertion (4), “mise pour memoire" has already been proven

(468.1). Since U®T*H is irreducible on G, and isomorphic to its T*

pullback, it descends through [2], ie, it is of the form [2]*V for some
DE.V on Gp,. Therefore assertions (1) and (2) result from 46 8. The
only subtle point is to compute the exponents mod Z of the unique [2]-

descent V of H®T*H whose determinant is nontrivial. Let us denote by
{xi}i=1, o and {Bj}j=1, 3 the exponents of V at zero and «

respectively. Thus for some p in C*, Vis }{H(oci's; bj's)A Exactly as in the
PSL(3) and SL(2)xSL(2)xSL(2) cases, we will first determine the
exponents up to a few possibilities, and then use the specialization
theorem to eliminate all but one of the possibilities.

Suppose first that x, v, z are all distinct mod Z. Then # and T*#
has semisimple local monodromy at zero, so also [2]*V = H®T*HX and
hence V has semisimple local monodromy at zero. Therefore the
(°"i}i=1,_,_,9 are all distinct mod Z, and their doubles are those of

HOT*H:

(2o iliz1 g = 1{2x, 2y, 22, x+y, x+y, x+z2, x+z, y+2, y+z}.
Since x+y+z = 0 mod Z, we may rewite this

(2“1}1= 1,-.-,9 = (ZX, Zy' 22' _Z, 'Z, -y' ")’: _x' -X}~
Because the (°"i}i= 1 g are all distinct mod Z, the «; must include both
the halves of -x, -y, and -2. The remaining three of them are some
choices

X=xor1/2+x, y=yorl/2+y, z =zoril/2+z
of halves of 2x, 2y, and 2z. Therefore the {«j};= 1,.,0 are

(X,y,2,-x/2,1/2 - x/2,-y/2,1/2 - y/2, -2/2, 1/2 - 2/2}.
Since det(V) is to be nontrivial, det(V) is x1/2C[x, x"1]. As x + y+2z=0
mod Z, we must have x + ¥ + z = 0. This can happen only if either

X=Xx,y=y,z2 =z

or if precisely one among x, y, 2, has t = t, and the other two have
t=1/2+¢

If we no longer assume that x, y, and z are distinct mod Z, no
more than two of them can coincide mod Z, since their sum is 0 mod Z
and none is 0 or £1/3 mod Z. Permuting x, y, and 2, we may assume
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that y=x, 2 = -2x. Then the local monodromy transformation of both #
and of T*X around zero has Jordan normal form
e2TiX@(unipp) ® e 4TiX®(unipy),
where by unip,, we mean a unipotent Jordan block of size n. Therefore
the local monodromy transformation of H®T*# = [2]*V around zero
has Jordan normal form
e4"ix®(unip3) ® e4"ix®(unip1) ® e'z"i"@(unipz) ®
® e_z'"'ix@(unipz) & e'e'".'ixs(unipl).
Therefore V has five distinct mod Z exponents at zero, occurring with
multiplicities 3,1,2,2,1, say {xq, 1, 1, 2, &3, &3, &4, %4, %5}, and
2¢q = 2x mod Z,
2y = 2x mod Z,
2Zxg = -x mod Z,
2¢qg = -x mod Z,
2xg = -4x mod Z.
Since the «; are distinct mod Z, we have equalities mod Z
{g, o, g, ag) = {-x/2, -x/2, 1/2 - x/2, 1/2 - x/2},
{oq, ®q, ®q, x2} = {x, x, x, 1/2 + x}

or = {1/2 +x,1/2 + x, 1/2 + x, x},
«g = -2x or = 1/2 - 2x.
All of these possibilities are obtained from the general case’'s possibilities
by specializing y — x.
Consider now the [, -representation.
Lemmaea 4.6.11 Notations as in the theorem, #¥®T*H = [2]*V as ] -
representation is

(rank 6, slopes 1/3) @& C((1/x)) & x1/3¢c((1/x)) & x2/3¢c((1/x))
proof Denote by W the I, -representation attached to #. Since ¥ is of

type (3,0) with trivial determinant, it follows from 34.1.1 that W is a

multiplicative translate of [3], £, where L is the rank one DE. for eX,

and that T*W is the dual of W. Therefore

WOT*W % End(W) = EndX(W) & (triv),
and so the result has already been proven in 434. QED

From this lemma, we see that the o -exponents B; satisfy
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{(2Bj}i=1,2,3 = (0, 1/3, 2/3}.

So the unique [2]-descent V of H® T*H whose determinant is
nontrivial (resp. trivial) is }{H(ot.i's; bJ-'s), where
{ai's) = (%, v, 2, -x/2, ~y/2, ~2/2, 1/2 - x/2, 1/2 - y/2, 1/2 - 2/2},

X =xor1/2+ x, y=yorl/2+y, z =zorl1/2+az
x+y+z = 0 mod Z,
x+ g+ z = 0 (resp. = 1/2) mod Z,
noneof x, y,zis = 0 or +1/3 mod Z,
(Zbi}i=1,2,3 = {0, 1/3, 2/3},
p1 =0 or 1/2, By = 1/6 or 2/3, p3 = 1/3 or 5/6.

In order to decide which choice is correct, we now embark on a
series of lemmas.
Lemma 4.6.12 Suppose x+y+z = 0 mod Z, and none of x, y, 2is = 0 or
+1/3 mod Z. The set with multiplicity {x, y, 2} mod Z is uniquely
determined by the set with multiplicity S :=(2x, 2y, 2z, -x, -x, -y, -y, ~
2, -2} mod Z.
proof Consider subsets with multiplicity T := {a, b, ¢} mod Z of S such
that a+b+c = 0 mod Z, and such that {a, a, b, b, c, ¢} mod Z is a subset
with multiplicity of S. Clearly {~x, -y, -2} is such a T. We will show it is
the only one.

Suppose first that T is drawn entirely from {-x, -y, -z}, but is not
{~x, -y, -2}. Then T must (up to permutation of x, y, z,) be {-x, -x, -z}
or {-x, -x, -x}. The second case {-x, ~x, -x} is impossible, because none of
x,y,2is=0or +1/3 mod Z, while atbtc = O mod Z if T = {a, b, c}. If T
is {-x, -x, -2}, with x and z distinct mod Z, we claim that ¥y = x mod Z.
For if not, then either y = z mod Z [in which case -x and -y each occur
in S with multiplicity at lease four, so at least two out of {2x, 2y,
2z=2y} are -x mod Z. Therefore 2y = -x mod Z, and our original {x, y,
2} is (-2y, vy, y}. So our T, namely {-x, -x, -z}, is {2y, 2y, -y}; but this T
fails to sum to 0 mod Z, since none of x, y, 2is = 0 or +1/3 mod Z,
contradiction] or x, y, and z are distinct mod Z [in which case at least
two of {2x, 2y, 22} are -x mod Z. By hypothesis, 2x # -x mod Z, so we
must have 2y = 2z = -x mod Z. Then our original {x, y, 2} is {-2y, v, 2},
and as x+y+z = 0 mod Z we see that y = z mod Z, contradictionl].

Suppose now that T is not drawn entirely from {-x, -y, -z}. Then
there is an element of S other than -x, -y, -2 which occurs in S with
multiplicity > 2, and it occurs in T. So at least two out of (2x, 2y, 22}
coincide, and their common value is none of -x, -y, -2 mod Z.

If 2x = 2y = 2z mod Z, then at least two out of x, y, 2 coincide
mod Z; as not all of x, v, 2 coincide mod Z, precisely two of x, y, 2



Detailed Analysis of Exceptional Cases 155

coincide. Permuting x, y, 2, we may assume that y = x, z = x + 1/2
mod Z. Since x+y+2 = O mod Z, x is 1/2 or +1/6 mod Z, whence z is 0
or +1/3 mod Z, contradiction.

Permuting x, y, 2 if necessary, we may assume that 2x = 2y mod
Z, and 2x ¥ 22 mod Z. Since 2x is present in S exactly twice, T is {2x, ?,
??)} where ? and ?? are drawn from {-x, -y, -z}.

If -x, -y, -2 are pairwise distinct mod Z, then none of them can
occur in S with multiplicity > 3, so T is either {2x, -x, -y} or {2x, -x, -2}
or {2x, -y, -2}. Since T sums to 0 mod Z, we find either y = x mod Z or
z=xmod Z or y+z = 2x mod Z. The first two contradict the pairwise
distinctness, and the last forces 3x = 0 mod Z, contradicting that none
of x, y,zis = 0O or +1/3 mod Z.

If two of -x, -y, -2 coincide mod Z, then exactly two coincide
(since x+y+z = 0 mod Z but none of x, y, zis = 0 or *+1/3 mod Z), so
either x = ymod Zor x = 2mod Z or y = 2 mod Z. Since 2x = 2y mod
Z,and 2x # 22 mod Z, we must have x = y mod Z and x # 2 mod Z.
Then z is -2x mod Z, S is { 2x with mult. 4, -x with mult. 4, -4x}, and
the only possible T's are {-x, -x, 2x} or {~x, 2x, 2x}. The second is
impossible since T sums to 0 mod Z, and the first is (-x, -y, -z}. QED

Lernma 4.6.13 Suppose that # («'s; pj's) is any hypergeometric of
type (9,3) such that {2p;};- 1,23 = {0, 1/3, 2/3}, and such that Z«; =
1/2 (resp. Zatj = 0) mod Z.1If G := Ggq) has G0.4F = T, then

Ggal = I'’x{1, o} (resp. Ggal = Cix{1, -a}).
proof By an x1/2 twist the two cases are interchanged, so it suffices to
treat the case in which Z«; = 0 mod Z. Then Ggal C SL(9), so if g0.der
= T, then by 46.1 there exists § € (1/9)Z such that }fu(ot.i's; pj's)sxs
has Gggq) = I''x{1, -~o}. By 46.4 and 46 8.1, there exists a hypergeometric
H of type (3,0) such that A®T*HX has Ggal = SL(3)xSL(3), and such that
[2]'(Ku(o¢i's; pj's)sxs) X UOT*H.In view of 46.11, the = -exponents of
HR®T*HU are (0, 1/3, 2/3}, whence {25 + 2Bi}i= 12,3 = {0, 1/3, 2/3}. By
hypothesis, the (Zbi)i=1,2,3 are themselves {0, 1/3, 2/3}, whence 2§

mod Z is in {0, 1/3, 2/3). Since § has denominator dividing 9, we infer

that 36 = 0 mod Z. By 467, }fu(ot.i's,' pJ-'s) = (Ku(or.i's; bj's)®x8)® x~ 8

has the same Ggal as }fu(ot.i's; bj's)sxs, namely ['x{1, -o}. QED
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Lernma 4.6.14 Suppose that x+y+z = 0 mod Z, and that none of x, v, z
is = 0 or +1/3 mod Z. Suppose that ¥ («;'s; bJ-'s) is & hypergeometric of

type (9,3) whose exponents satisfy
{xi's} = {x, v, 2, -x/2,-y/2, -2/2,1/2 - x/2, 1/2 - y/2, 1/2 - 2/2},

Xx=xo0rl1/2+x, y=yoril/2+y, z =zoril/2+z
x+ y+ 2z = 0 (resp. = 1/2) mod Z,
(zbi}i=1,2,3 = {0, 1/3, 2/3}.

Suppose that G0.4€" = [ Then for some » € CX, there exists an
isomorphism

[21* (| (s, bJ-'s)) T U, (x, v, 2 )BT U, (x, v, 2: ).
proof twisting by x1/2, it suffices to treat the case X+ g+ 2= 0 mod Z.
By the above Lemma, Ku(ot.i's; pJ-'s) has Ggal = I'k{1, o}. By 468.1, and
469, thereexist X, Y, 2in € and i in €* with X+Y+Z = 0 mod Z, none
of X, Y,Zis = 0 or +1/3 mod Z, and there exists an isomorphism

[21* (K (xcis; Bj's) = U\ (X, Y, Z; 2)OT*U,(X, Y, Z; #).
Comparing exponents at zero, we find

{2xjt = (2X, 2Y, 22, -X, -X, -Y, -Y, -Z, -2} mod Z.
Now {2«;} is itself {2x, 2y, 2z, -x, -x, -y, -y, -2, -2}, so by 46.12 it
follows that {x, v, 2} = {X, Y, Z} mod Z. QED

Lemma 4.6.15 Suppose that x+y+z = 0 mod Z, and that none of x, y, 2
is = 0 or £+1/3 mod Z. Suppose that V4 and V, are two hypergeometrics

of type (9,3), of the form
Vi =, (AL BY)
Vg = M, (A2; B2)

where 14 and up are in €*,where Al and A2 are choices of (x;'s}

satisfying

{oy'st = {x, vy, 2, -x/2, -y/2, -2/2,1/2 - x/2,1/2 - y/2, 1/2 - 2/2},
x=xor1/2+x, y=yoril/2+y, =z =zori1/2+z,
x+ y+ 2z = 0 mod Z,

and where Bl and B2 are choices of {p;'s} satisfying

(Zbi}i=1,2,3 = {0, 1/3, 2/3).
If both V4 and V3 have g0.der = ' then V4 is a multiplicative

translate of V5.
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proof By the previous lemma, for i=1,2 there exists A € C* and an
isomorphism

[21* (V) = ”;i(*. v,z #)OT U, (x, v, 2 2).
By a multiplicative translation, we may suppose 24 = A2. Then V4 and
V3 are each [2]-descents of }{,\i(x, v, z; g)@T'Kki(x, vy, 2, &) with

nontrivial determinant, so by the unicity of such a descent V4 and VZ

must be 1somorphic. QED

Corollary 4.6.15.1 Suppose that x+y+z = 0 mod Z, and that none of x,
v, 2is = 0 or +1/3 mod Z. Among all possible (A, B) where A is a choice
of {«x{'s} satisfying . .
{y's) = (X, y, 2, ~x/2, -y/2, -2/2,1/2 - x/2,1/2 - y/2,1/2 - 2/2},
g=~x9vr1/2+x, y=yoril/2+y, =z =zorl/2+z,
x+ y+ z = 0 mod Z,
and where B is a choice of {p;'s} satisfying
(Zbi)i=1,2,3 = {0, 1/3, 2/3},
there is one and only one (A,B) which satisfies the following equivalent
properties:
(1) There exists some p € C* for which }{H(A, B) has G0.der - [

(2) For every u € €%, ¥, (A, B) has g0.der = T

Lernma 4.6.16 Suppose that x+y+z = 0 mod Z, and that none of x, y, 2
is=0or +1/3 mod Z. Let u € C*, and let

A=(x v, 2 ~x/2 -y/2,-2/2,1/2 - x/2, 1/2 - y/2, 1/2 - 2/2},

B = {0, 1/3, 2/3},
Then

(1) KH(A' B) is irreducible and not Kummer induced.
(2) If G := Ggal(}{H(A, B)) has dimG ¢ 16, then G = ['x{1, g}, and for

some x € C*, there exists an isomorphism
[21* (M (e i's; By's)) = Ay(x, v, 2, 2)BT*H,(x, y, z; &).

Proof Since none of x, y, zis = 0 or t1/3 mod Z, a fortiori none of
their "halves" is either, whence the irreducibility. If A (A B)is

Kummer induced, it must be Kummer induced of degree 3 = gcd(9,3),
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in which case the set A is stable mod Z by t » t + 1/3. But then the set
2A of doubles is stable by t = t + 2/3. By the uniqueness 4612, it
follows that the set {x, y, 2} is stable by t » t + 1/3, in which case {(x,
v, 2} would be {x, x + 1/3, x + 2/3}, which is impossible since x+y+z = 0
mod Z, and none of x, ¥y, 2 is = 0 or +1/3 mod Z. Therefore }{“(A, B) is
irreducible and not Kummer induced. From the general classification
theorem 36, it now follows that G0,der is one of I, SO(9), or SL(9). So if

dimG ¢ 16 only the case GU.9€r = T js possible. The rest of assertion (2)
now follows from 46.13 and 46.14. QED

Key Lemma 4.6.17 Suppose that x+y+z = 0 mod Z. Let p € C*. Let
A=(x,v,2 -x/2, -y/2,-2/2,1/2 - x/2,1/2 - y/2,1/2 - 2/2},
B = {0, 1/3, 2/3}.

Then dimGgal(}fH(A, B)) < 16.

proof Since Ggq] i1s Invariant under multiplicative translation, it

suffices to prove this when u = 1. By the specialization theorem, it

suffices to treat the case when x and y are algebraically independent

over Q, and z := -x -y. More symmetrically, we work over the generic

point of the parameter ring Q[x, y, zl/(x+y+2)Q[x, v, z].

In this case, none of x, ¥, 2is = 0 or +1/3 mod Z. So by 46.15.1,

among all possible (A, B) where A is a choice of {«;'s} satisfying

{xi's) = (x, y, 2, -x/2, ~y/2, -2/2,1/2 - x/2,1/2 - y/2, 1/2 - 2/2},
X=xo0rl/2+x, y=yoril/2+y, =z =zorl/2+z
X+ y+ 2= 0 modZ,

and where B is a choice of {p;'s} satisfying

{28}i=1,2,3 = (0, 1/3, 2/3)},

there is one and only one (A,B) for which }{1(7‘., B) has g0.der - T

Since x and y are independent variables, and z= -x-vy, it is clear
that for any of the (A, B) above, Kl(}\, B) is irreducible (indeed none of
the A exponents lies in Q) and not Kummer induced (same argument
as in 46.16 above). In view of the limited possibilities for G :=
Ggal(M1(A, B)), either G0.d€r = T or dim@ > 16.

Therefore among all pgssible (A, B) as above,there is one and only
one (A,B) for which #4(A, B) has dimGgal <16.

We will first show by a symmetry argument that A is the correct
A. Indeed, if ¢ is any permutation of the set {x, ¥, 2}, then ¢ induces
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an automorphism, still denoted o, of the parameter ring R :=
Qlx, y, 2l/(x+y+2)Qlx, v, 2] over whose generic point we are working.
This same permutation induces a permutation, also noted o, of the four
possibles A’s, and it is tautological that #4(ag A, B) is deduced from
}{1(3, B) by the extension of scalars g: R — R. Since the formation of
Ggal commutes with extensions of the ground field, it follows that for
any o, we have '

dimGgal(}{l(cA, B)) = dimGgal(}{l(A, B)).
Since there is a unique (A, B) where this dimension is ¢ 16, its A must
be a fixed under permutation of x, y, 2. Among the the four possibles
A's, only A is fixed.

We next show by a symmetry argument that that correct B is
either {0, 1/3, 2/3} or {1/2, 5/6, 1/6}. Indeed, consider the
automorphism T of the parameter ring R := Q[x, y, zl/(x+y+2)Qlx, y, =zl
given by x = x + 1/3, y » vy +1/3, z —» 2z - 2/3. Let us denote by TA
the image of A under t. Then #4(TA, B) is obtained from Hq(A, B) by
the extension of scalars T, so just as above we have

dimGgal(}{l(rA, B)) = dimGgal(}{l(A, B)).
On the other hand, given any B := {py}. let B+ 1/3 = {p; + 1/3}. Then
Hy(a, B)®x1/3 = #y(zA, B + 1/3). So trivially

dimGgq(M1(A, B)) = dimGyq(M1(tA, B + 1/3)),
while we have seen above that (replacing B by B + 1/3)

dimGgg (M1 (TA, B + 1/3)) = dimGgq(H1(A, B + 1/3)).

Therefore we have

dimGgq(#1(A, B)) = dimGyqe(M1(A, B + 1/3)).

Since there is a unique (A, B) where this dimension is ¢ 16, its B must
be a fixed under B » B + 1/3. Among the possible B's, only (0, 1/3, 2/3}
or {1/2, 5/6, 1/6) are so fixed.

It remains only to show that #4(A; 1/2, 5/6, 1/6 ) has

dimGgal >16; for this is suffices, by the specialization theorem, to
exhibit particular values of x and y where dimGgq] >16. For this, take
x=1/6, y = ~1/6, 2z = 0. Then Hq(A; 1/2,5/6, 1/6 ) becomes

Hq(1/6, -1/6, 0, -1/12, 5/12, 1/12, 7/12, 0, 1/2; 1/2, 5/6, 1/6)
whose semisimplification contains, for some 2 in C%,

H,(0, -1/12, 5/12, 1/12, 7/12, 0; &).
So it suffices to show that H,, -1/12, 5/12, 1/12, 7/12, 0; &) has its
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Ggal of dimension > 16. This is a hypergeometric of type (6,0) which is

(automatically) irreducible and which is not Kummer induced (its
exponents are not stable by « m» « + 1/2 or by « = « + 1/3). It is
symplectic (by the Duality Recognition Theorem 3.4) So its Ggal is Sp(6),

which has dimension 21 > 16. QED

Corollary 4.6.17.1 Suppose that x+y+z = 0 mod Z, and that none of x,

y,zis = 0or +1/3 mod Z.Let p € €%, and let
A={x,v, 2 -x/2,-y/2,-2/2,1/2 - x/2,1/2 - y/2,1/2 - 2/2},
B = {0, 1/3, 2/3},

Then Ggal(KH(A, B)) = T'ix{1, o}, and for some A € C¥, there exists an
isomorphism
[2]‘(}{H(ot.i's; bJ-'s)) T HU(x, y, 2 2)OT*H,(x, v, 2, &).

proof This results formally from the preceding two lemmas. QED

This corollary establishes the truth of 46.10. Thus we obtain
SL(3)xSL(3) Theorem 4.6.18 Hypergeometrics V of type (9,3) with
G := Ggq) = I'x{1, o} are precisely those (isomorphic to one) of the form

}{H(x, v, 2, ~x/2, ~y/2,-2/2,1/2 - x/2, 1/2 - /2, 1/2 - 2/2; 0, +1/3)
for some ueC*, and for some x, y, z in € which satisfy x+y+z = 0 mod
Z, and none of x, y, 2 is = 0 or £+1/3 mod Z. Hypergeometrics V of type

(9,3) with GO.der = T are precisely the x® twists of these.



CHAPTER 5
Convolution of ®-modules

5.1 Convolution of JD-modules; Generalities

(51.1) Given a smooth C-scheme X/C, we denote by JMOD(X) the
abelian category of all sheaves of left .DX-modules on X, by D(X; D) its
derived category, and by DP-h0lo(x) the full subcategory of D(X; D)
consisting of those objects K such that #I(K) is holonomic for all i and

such that #i(K) vanishes for all but finitely many i. For morphisms
f. X = Y between smooth separated C-schemes of finite type, one

knows (cf. [Ber], [Bor], [Ka-Laul, [Me-SO]) that these DP.holo support the
full Grothendieck formalism of the “six operations™. Of these, we will

need only f, and f!, both of which have fairly concrete descriptions.

(The operations f| and f* are defined as the duals of these, and are

consequently less amenable to direct inspection.)
(512) We will need f, primarily when f: X —Y is smooth of

relative dimension d; in this case one has f,K = Rf,(K® GXQ'X/Yj[d], so

except for the dimension shift we are "just” talking about relative De
Rham cohomlogy:

ni—d(¢ K) = HiDR(X/Y, K), with its Gauss-Manin connection.
The deep fact here is that for K a single holonomic left .DX-module,
each of the relative De Rham cohomology sheaves HiDR(X/Y, K), with
its Gauss-Manin connection, is holonomic on Y. The other case of f, we

will need is when f: X =Y is the inclusion of a C-valued point ¥ € Y(C).
Then f,0y is the delta module by

(51.3) For a general f : X = Y, and M on Y, /M is defined as

L
M = Dyy & i-1p,, £ 1MIdimX - dimY],
where Dy _, y is the (Dy, £ 1Dy)-bimodule '
Dy y = DiffOpsf 10y, Oy) = Ox® 14 ¢ 1Dy.

(5.1.4) Here is a more concrete description in some important

special cases. Denote by f*T the naive pullback of N as module with
lntfagrable connection. If f is a flat morphism (eg., if f is smooth), or if
M is a flat Oy-module (eg, if M is a DE. on Y), then
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f'M = f*MIdimX - dimY].
For f etale, fl = f* = f*_ For f smooth of relative dimension d, we have
£* = f{-2d] = £[-dl.

If f is a closed immersion of codimension one, with X defined in Y
by one equation x=0 in Y, then TN is the two term complex
mP xm

m———omn
placed in degrees zero and one.
(51.5) We will also use the following two elementary facts for an
arbitrary f:
(1) (base change) given a cartesian diagram

X— X:M

G

|F £l g, M = F,GM.
g
Y — Y
(2) (projection formula) for any O-coherent D-module £ on Y, denoting

by f*L its naive pullback as a D.E. on X, we have
(f,K)@oYI. X f,(K@@Xf’L).

(5.16) Given two smooth C-schemes X/C and Y/C, "external tensor
product over C" defines a bi-exact bilinear pairing,
DMOD(X)x DMOD(Y) - DMOD(Xx¢Y)

(M, N) » MxN,

which passes to Db.holo
If K and L are objects of DMOD(X), we define their "exotic” tensor

product, denoted K®'L, in terms of the diagonal map A: X = Xxg¢X, by
K®L = AKxL).
(51.7) If G/C is a smooth separated C-groupscheme, we denote by

the group law by
productg : Gx¢G — G.
We define the convolution of objects of pb.holo(g) py
(5.1.71) (K, L) » K«L := (productg),(KxL).
The operation of convolution is associative, and the 6-module §,
supported at the identity of G is a two-sided identity object. [For if we
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denote by 1: e = G the inclusion of the identity, then for any K in
pb.holo(g), e have

K= 0,xKonexgG=z G,

(1xid@) 4 (OgxK) = (1,0)xK = §,xK on GxgG.

Since the composite map (productg)e(1xidg) is idg, the result follows|
If G is commutative, then convolution is commutative as well.
(5.1.8) In general, even if we start with two holonomic D-modules
M and N on G, viewed as objects of Dbrh"lo(G) which are concentrated
in degree zero, their convolution MM is "really” an object of DP.holo(g),
and not simply a single holonomic D-module placed in degree zero. It is
this “instability” of D-modules themselves under convolution that
makes DP.holo the natural setting.
(5.1.9) The following formal properties of convolution are quite
useful.
(1a) If ¢: G—H is a homomorphism of smooth separated C-
groupschemes of finite type, then

9, (Ks+L) = (9,K)+(p,L).
This results from the fact that (¢x¢),(KxL) = (¢ K)x(p,L) (valid for
any ¢) and the fact that productye(px¢) = @eproductg (¢ being a
homomorphism).

In the special case when H is the trivial group, this becomes:
Denote by m:G — Spec(C) the structural map. Then for any two objects
K, L in DR,h0lO(G), we have

m,(KeL) = ('rr,K)@c(‘n',L).

(1b) If » : G = G is & homomorphism, then for any two objects K, L in
Db'h°l°(G), we have
¢ (¢, K)*L) x Kx(o'L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

GxG —— GxG

T idx @ | oxid
prodg | GxG

l ® l prodg

G _— G.
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(1c) If ¢ G — H is a homomorphism, then for K in D®.h0loG) and L in
pb.holo(yy, we have
¢(p,K)sL) = Ka(o'L).

This is base change for the following commutative diagram, whose
outer square is cartesian (verification left to the reader):

GxG — GxH

1 idxe 1 @xid
prodg | HxH

l ¢ | prodH

G _— H

(2) For g € G(C) denote by Ty : @ —G the map x — gx “translation by g,
and by Sg the delta module supported at g. Then for g € G(C), we have
(Tg).(K*L) = ((Tg),K)*L,
(Tg),(L) x (Sg):L.

The first results from TgnproductG = productg (TgXidG). The second is

the special case K = 8¢ of the first, since (Tg),(8¢) = 6, and 8¢ is the

gl
convolutional identity.

(5.1.10) In discussing convolution, it is sometimes convenient to take
a slightly assymmetric point of view. Denoting points of GxG as (x,vy),
we can factor the product map as the composition of pry with the

shearing involution shear: (x,y) = (x”1, xy) of GxG. So we find, in an
obvious notation,
K+L = (productg),(KxL) = (prz),(shear),(KxL) =

(prz),(x(x-i)m_(xy)) = [R(x 1)@ L({xy)dx

(pr2),((prq*inv,K)®(productg)*L).

5.2 Convolution on €,, and Fourier transform on Al

We now turn to the case of particular interest to us, when G is
G-
Lemma 52.1 For x in €, and K, L in Db'h°l°(Gm), we have

(K®x*®)+(L®x*) = (K+L)®x*.
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proof Let T, denote the D-module x*C|x, x"1]. The D-module version
of * (xy)* = (x)*(y)* “ is
product™(T,) = T, xT,,

so the assertion is immediate from the projection formula. QED

(5.2.2) Denote by inv: &, = G, the multiplicative inversion, by
J Gmp Al the inclusion, 0 := d/dx on Al, by L the D-module
D,1/D,1(d - 1) on Al which is the DE. for eX, and by j*I its
restriction to Gp,. Thus j* L = Dsm/DGm(xa - x) = #q9(0; &) = H(t, 1) is
the basic hypergeometric of type (1,0) on Gp,.

Key Lernma 5.2.3 (Compare [Ka-GKM, 8.6.1]) Convolution with
J*¥L = 14(0; &) = H(t, 1) on Gy, and Fourier Transform on Al are
related as follows: for any holonomic D-module N on G,. we have
J*FT(j,inv, () = Msj*L = M+H4(0; &) = MaH(t,1).
proof We have
FT(j,inv (M) = | . (joinv, (M))x)eXYdx
A
= ) (inv (MN(x)L(xy)dx.

A
Denote by

pri: GxG, — Gy, the first projection,
prz. G x6Gy, — Gy, the second projection,
J= (J"idGm) G X6y A1XGm the inclusion,
f)rz : Alem — G, the second projection,
ﬁrl : Alem — Al the first projection
product ! Alem — Al the multiplication (x, a) —» xx.
So with these notations, we can rewite the above FT formula as
J*FT(j,inv,M) = (pry),((j,inv, M)(x)eXY).
Using smooth base change and the projection formula, we find

(f’rz).((j,inv,m)(x)exy) =
= (pr),(pr1*(j,inv,M) ® (product)* L) =



166 Chapter 5

= (pr), J.{prqy*inv, M)®(J)* product*L) =

(pry),((prq*inv, M)® product* j* L) =
= Maj*L. QED

Corollary 5.2.3.1 For any holonomic D-module M on Gy,, we have
inv, j*FT(j, M) = Melinv,j*L).
proof The Key Lemma applied to inv TN gives
J*FT(G,M) = (inv, M)+ (G*L).
Because inv: G, = Gy, is a group homomorphism, we get

inv, j*FT(j, M) = (inv,inv, M)+(inv j*L) = Ms(inv, j*L). QED

5.3 Convolution of Hypergeometrics on G,

We begin by explaining the heuristic motivation. Let P, Q, R, and
S be four nonzero polynomials in C[t]. Recall the hypergeometric
differential operators
Hyp(P, Q) := P(xd/dx) - xQ(xd/dx),
Hyp(R, S) := R(xd/dx) - xS(xd/dx),
and the associated D-modules on Gy

H(P, Q) := D/DHyp(P, Q),
H(R, S) := D/DHyp(R, 9).

A formal series f(x) = ZLap,x™ is killed by Hyp(P, Q) if and only if its

coefficients ap, satisfy the two-term recurrence relation
P(n)a, = Q(n-1)a,_1.
Similarly, a formal series g(x) := Lb,x™ is killed by Hyp(R, S) if and
only if its coefficients by, satisfy the two-term recurrence relation
R(n)by, = S(n-1)by_1.
Thus if f(x) := Layx™ and g(x) := Zb,x™ are formal series solutions of
Hyp(P, Q) and of Hyp(R, S) respectively, then their “convolution”
(f+g)(x) := Ta b, x"

1s visibly a formal solution of Hyp(PR, QS). This suggests that, at least
under reasonable hypotheses, one should have

H(P, Q)+ H(R, S) = H(PR, QS)
as D~modules on G-

Convolution Theorem 5.3.1 Suppose that P, Q, R, and S are four
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nonzero polynomials in C[t], such that the two polynomials PR and QS
have no common zeroes mod Z, ie., whenever (PR){(x) = 0 = (QS)(B), «
- p is not an integer. Then

H(P, Q)+ (R, S) = H(PR, Q5)
as D-modules on G-

proof We proceed by induction on deg(RS).
If deg(RS) = 0, then both R and S are nonzero constants, say r
and s. Then Hyp(R, 5) = r-sx, so #(R, S) = §,/4 is the delta module

supported at r/s. Similarly, we see that H(PR, QS) = H(rP, sQ) =
(Tess)« (P, Q) (cf. 3.1). Since convolution is commutative on Gy, the

assertion to be proven is
(5,78)*N(P, Q) = (Ty/s) . H(P, R),

which is the translation formula 5.1.9 (2) (with g =r/s).
Suppose now that R or S is nonconstant. By multiplicative
inversion, it suffices to treat the case when R has degree 2 1. Twisting

by x*, we reduce by 52.1 to the case where the polynomial R(t) is
divisible by t, say R(t) = tRp(t). By induction, we know that

H(P, Q)+ (Rq, S) * H(PRq, QS).

Since convolution is commutative,we know by induction that
H(Rg, S)s+H(t, 1) = U(t, 1)+H(Rp, S) = H(R, ).

Therefore by the associativity of convolution we obtain
HP, Q+H(R, S) = H(P, Q+H(Rp, S)=H(t, 1) =
= H(PRp, Q)= H(t, 1).
So we are reduced to showing universally that

H(P(L), QN+ A(t, 1) = H(tP(t), QL))

whenever tP(t) and Q(t) have no common zeroes mod Z. By 5.2.3, we
have, denoting by j: Gy, — Al the inclusion,
H(P(t), Q(t))+H(t, 1) = jJ*FT(j,inv, H(P(t), Q(t)))
* J*FT(j, H(Q(-t), P(-t))).
Since Q(-t) has no zeroes in Z, it follows from 2.9.4, (3) &(5) that
J#HQ(-t), P(-t)) = j,j*(D,1/ D, 1Hyp(Q(-t), P(-t)))
= D,1/D,1Hyp(Q(-t), P(-t)),

whence
J¥FT(j,H(Q(-¢), P(-t))) = j*FT(D,1/D,1Hyp(Q(-t), P(-t)))
= j*(D 1/ D, 1FT(Hyp(Q(-t), P(-t))))
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x Dam/DGmFT(Hyp(Q(-t), P(-t))).

It is a simple matter to compute FT, since FT(x) = 9 := d/dx, FT(9) = -x,
and FT(-xd/dx) = ox = 1 + xd. We find
FT(Hyp(Q(~t), P(-t))) = FT(Q(-xd/dx) - xP(~xd/dx))
= Q(FT(~xd/dx)) - OP(FT(-xd/dx))
= Q(1 + xd/dx) -(1/x)(xd/dx)P(1 + xd/dx)
(-1/x)[(xd/dx)P(1 + xd/dx) - xQ(1 + xd/dx)]
(-1/x)Hyp(tP(1 + t), Q(1 + t)).
Therefore we have
Dcm/DcmFT(Hyp(Q(-t), P(-t))) = H(tP(1 + t), Q(1 + t)).

By 32 and 3.2.1, #(tP(1 + t), Q(1 + t)) = H(tP(t), Q(t)). QED
Making this explicit in terms of the exponents, we find

]

Explicit Variant 5.3.2 We have
H,(a's; b's)i}{u(x's, §'s) = }{,m(oc's, ¥'s; p's, §'s)
provided that ”)\u(“'s: ¥'s; p's, b's) is irreducible, i.e., provided that no

element of the set {«'s, ¥'s} is congruent mod Z to any element of the
set {p's, §'s}.

Corollary 5.3.2.1 All irreducible hypergeometrics on G, can be built
out of 64 and #4(0; &), using only the following operations on
holonomic D-modules on Gypy:

(1) convolution

(2) M - (T,), M

(3) M —» Mexb

(4) M » inv*M,

Specializing the Key Lemmma 5.2.3 and its Corollary 5.2.3.1 to the
case of hypergeometrics, we find

Proposition 533 Let ¥ := }{,\(ocl, vy ®%pl Be, s Byn)s with no ®xj - bJ-
inZ.
If no bJ- lies in Z, then
J*FT(,inv H®) = U,(0, xq, ... %p; B, ., Bm)-
If no «j lies in Z, then
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inv, J*FT(j,#) x #_,(xq, ., ®xp; 0, By, .. B)-

Corollary 5.3.3.1 All irreducible hypergeometrics can be built out of
the delta module §1 on G,,, using only the the following operations on

holonomic D-modules on Gm:
(1) M — J*FT(j,inv, M)
(2) M » inv, j*FT(j,M)
(3) M - (Ty), M
(4) M —» Mo x5
(5) M — inv*M.

5.4 Motivic Interpretation of Hypergeometrics of type (n,n)
In our earlier discussion of the determination of (Ggal)O,der for
irreducible hypergeometrics of type (n,n),
H,o(xq, o, %pi By, -y Bp), NO &j - Bj lies in Z,
we put aside the problem of recognizing when Ggal is a finite group. We
now confront this problem. Since Ggal is invariant by multiplicative

translation, it suffices to treat the case a=1. By 3.2.2(3), a trivial
necessary condition for the finiteness of Ggal is that the «'s and p's all

lie in Q. By the convolution theorem 53.1, Hq(xq, .., ®pn; By, ..., By) is
a multiple convolution:

Hqleeq, .., &g By, o Bp) = Hqlaq; Bp)efq(xy; Bl . s Hq(xp; BY).
As we will now explain, this expression for #4(xq, .., ®p; B1, ... Bp)
leads directly to its motivic interpretation.

(5.4.1) The first step, then, is to understand completely #4(x, B),

when «, p €Q and « - B is not an integer. Let N be a common
denominator for « and g, and define integers A, B, C by
A - Nx,B:=Np,C=B-A.

Denote by U the open set €y, - {1} of Gy, and by j: U = G, the
inclusion. Denote by Z the subvariety of UxG,, (coordinates x,y) of
€quation

_ yN = xA(1 - x)C.
This Z is a smooth (v is always invertible) affine curve on which MN

acts (on y). Via prq, Z is a finite etale My ~torsor over G, - {1}. We
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denote by 7 the etale map
miZ 2 G, mX, V) = x

’

which factors through j as

2
U~- Gy

The map 7 1s uy -equivariant, for the given action
(x,y) = (x, ty) on Z, and the trivial action on G,,. Therefore the group
M)y acts on the holonomic D-module 7,07 This action gives a direct
sum decomposition
"102 X 8t:har.‘s X of uy (".Oz)x
into 1sotypical components.
Lemma 5.4.2 For each faithful character ¥, of My,

Xp(e) = ¥ with ged(r, N) = 1,1 ¢ r <N,
the ¥ ,-isotypical component of m ,07 is given by
(Tr,oz)xr T fy(re; rp).
proof Since m = jepry, we have
"102 = jipr].ioZ‘
Because pr4 is py ~equivariant, we have a direct sum decomposition
Pr1:02 = ®cparis x of uy (Pr1.92)x.
whose direct image by j is the decomposition
"102 = 9char.'s X of My ("»Oz)x-
Thus for any character % of My,
("*OZ)X = j.((prl,OZ)x).
As an Oy -module, Oz is freeon 1, vy, ..., yN'l. So for any r we have
(prl‘OZ)xr < erU.
But j*H4(rx, rp) := .DU/.DUHypl(rot., rg) * yf'Oy by the map 1 » y7,
simply because y¥ = x¥*(1 - x)YP"r* and Hypy(r«, rp) is the monic
first order operator on U which kills x¥%(1 - x)TP~Ir* So we have
(prli‘Oz)Xr T j*Hq(re, rp).
If ged(r, N) = 1, then ra- rp, the exponent at 1 of H1(r«, rp), is a
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noninteger, so by 294, H(rx, rp) = j,j*®4(rx, rp). Thus
("*OZ)Xr x j.((prl.oz)xr) x joj*Mqlre, rp) = H4(rx, rp). QED

The next step is to interpret the convolution of two direct images
as a direct image.
Lemma 5.4.3 Suppose that
f: X = G, gY = Gn,.
are two smooth morphisms. Then the "product” morphism
fg i XxgY = Gy, )k, y) = f(x)gly),
is smooth, and there is a canonical isomorphism
(fg)rOchY = (f,03)+(g,0y).
If in addition we are given a finite group G acting f-linearly on X and a
finite group H acting g-linearly on Y, then for any irreducibkle

representations p of G and ¥ of H, the corresponding isotypical
components are related by

(f8) s Oxx oW pox = (Fa030p)+ (g, Oy)y).

proof The map fg is the composite of the smooth map productGm with
the smooth map
fxg : Xxg¥ = GpyxcGpy,
so fg is smooth. Since the trivial D-module OXXCY is the external
tensor product (Oyx)x(Ovy), we have
(fg)iOchY = (productGm).(fx 8) 4 ((O3)x(0y))
= (productGm),((f,OX)X(g,OY))
= (£,0)+(g,0vy).
In the presence of finite group actions, we have
f.0x = ®, (inX)p' 8.0y = &, (g,0y)y.
whence
(f,0)#(g,0y) = QP-X ((inX)p)'((gioY)x)'
and this is visibly the GxH -isotypical decomposition of
(f,0)#(g,Oy) = (fg)iOchY- QED

Theorem 5.4 .4 Let &{, .., % and B4, .., By be 2n rational numbers,
such that for all (i, j), *xj - bj is not an integer. Pick a common
denominator N for all the «'s and B's. For each i = 1. .. . n. define



172 Chapter 5

integers A(i), B(i), C(i) by

A(i) = N«j, B(i) := N, C(@i) = B(1) - A(®D).
Denote by U the open set G,, - {1} of G,,. Denote by Z(i) the subvariety
of UxGy, (coordinates X yi) of equation

wiN = x;Al)(1 - xi)C(i)_
This Z(i) is a smooth (y; is always invertible) affine curve on which pp
acts (on y;). We denote by w(i) the etale, uyy ~equivariant map

w(i) : 2(i) = G, wxy, vy = x5

Denote by
Z:= ZM)xg .. xgZ(n),

and by
™ :Z = Gy, the "product” map m(xq, ¥4, .., Xp, Yp) = T, x;.

Then T is equivariant for the product action of (Mp)™ on Z. For every
n-tuple of faithful characters (xrl, ,xrn) of My, i.e, ged(ry, N) = 1
for each i, the (xrl, ,xrn)-isotypical component of 7,07 is given by
("'02)(Xr1' e Xp) x Mq(rqeq, o, rp®n; r1By, -, rnbn).
Equivalently, for every n-tuple of faithful characters (xrl, ,xrn) of

M. the (xrl, ,xrn)-isotypical component of the relative De Rham

cohomology sheaf HiDR(Z/Gm) = Ri"iQ-Z/Gm with its Gauss-Manin
connection is given by

(H“'loR(Z/Gm))(xrl. v Xpy) T HAT1®, o o T1BY, o P

(HiDR(Z/Gm))(Xri’ wXp) TOifiE oL

proof By 54.2 this is true for n=1. It then follows for general n by
induction, thanks to 5.4.3 and the Convolution Theorem 5.3.1. QED

5.5 Application to Grothendieck's p-curvature conjecture

In 1969, Grothendieck pointed out that, for a general DE. on a
smooth variety Y over €, "p-curvature zero for almost all primes p" of
any arithmetic "thickening” was a necessary condition for the finiteness
of Ggal’ and he asked whether it was also a sufficient condition.

It was proven in [Ka-AS, 57] that the equivalence
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(%) Ggal finite ‘& p-curvature zero for almost all primes p
holds for Picard-Fuchs equations, i.e. for (the restriction to a dense open
set of Y of the) the relative De Rham cohomology sheaves HiDR(X/Y) of

smooth morphisms f: X = Y, endowed with the Gauss-Manin
connection. Moreover, if a finite group G acts f-linearly on X, and if we
pick any irreducible C-representation p of G and denote pq, ..., pq its

distinct conjugates by Aut(€/Q), this equivalence (» #) was proven to
; L (Yl
hold for the direct factor & (H DR(X/Y))PJ'

Let us apply this result to the smooth morphism w:Z = G, the

finite group G = (Mp(CN?, and the one-dimensional representation p of

G defined by p(tq, .., tpn) := TI; g;. Thus in the notations of 544 p is
(X1, -+, %1). d is ¢(N) = Card((Z/NZ)*), and the various p; are the

characters (¥y, .., Xy), as r runs over (Z/NZ)*. We find
p-Curvature Theorem 5.5.1 Let x4, .., %, and By, .., By be 2n
rational numbers, such that for all (i, j), o - b_j is not an integer. Pick

a common denominator N for all the «'s and p's. The equivalence (* )
holds for the (restriction to Gy, - {1}, where it is a D.E, of the) direct

sum
B, mod N, ged(r.N)=1 Hilreyq, .., roey; req, .., rpp).

The interpretation of "p-curvature zero for almost all primes p”,
due to Beukers-Heckman, is given by

Lemma 55.2 ([B-H, 49]) Let x4, .., «, and B4, .., P be 2n rational
numbers, such that for all (i, j), «; - Bj is not an integer. Pick a
common denominator N for all the «'s and p's. Then

nl(“l' s %op; By ey bn)

has p-curvature zero for almost all primes p if and only if the following
two conditions hold:

(1) «yq, .., on; By, -, B mod Z are 2n distinct elements of (1/N)Z2/2.
(2) for each integer 1 ¢ r < N with ged(r, N) = 1, the two subsets
Ap ={reeq, .., ray} mod Z, By := {rpyq, ..., rpp} mod 2

Of (1/N)Z/Z are intertwined in (1/N)Z/Z in the sense that if we
display their images under x = exp(2mix) on the unit circle, then as we
walk counterclockwise around the unit circle we alternately
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encounter one from each subset.

proof We may assume that all the «'s and p's lie in the half open
interval [0, 1). We begin by a direct analysis of the p~curvature. The
operator

Hypq(x's; p's) := P(xd/dx ) - xQ(xd/dx)

P(t) = TI(t - «;), Q(t) := TT(t - gy,

lies in Z[1/Nl[x, xd/dx], so it makes sense to reduce it mod p for any
prime p > N. Notice for any ¥ and § chosen from the set {«'s, p's}, we
have ¥ = § iff ¥ = § mod p (indeed, INy - N§|] <« N < p, so ¥ = § mod p iff
Ny = N& mod p iff Ny = N§ iff y = §).

Sublemma 55.2.1 Let 4, .., «x and B4, .., B be 2n rational
numbers in [0, 1) such that for all (i, j), «; - Bj is not an integer. Pick a

common denominator N for all the «'s and p’s. Then for a fixed prime p
> N,
Hq(xq, .., %pn; By, ., By) Mmod p

has p-curvature zero if and only if the following two conditions hold:

(1) the «'s and p’s have 2n distinct reductions mod p in IFp.
(2) the reductions mod p of the «’s are intertwined in IFp with those
of the p's in the sense that as we walk through IFp in the standard

order 0, 1, 2, 3... we alternately encounter «'s and p’s.

proof To say that the reduced equation has p-curvature zero is
precisely to say that the reduced operator has n solutions in the
rational function field IFp(x) which are linearly independent over the

subfield IFp(xP) ([Ka-AS, 6 05]). So if we view IFp(x) as a p-dimensional
vector space V over the field k := IFp(xP), then Hypq(x's; p's) mod pis a

linear endomorphism L of V, and p-curvature zero means precisely
that this linear endomorphism L has an n-dimensional kernel, or
equivalently that L has rank p~-n. Fix an integer d such that d+p-1 mod
p is one of the B; mod p. As basis of V over k we may take the elements

xd, xd*1  xd+p-1
and on this basis, the operator L = P(xd/dx ) - xQ(xd/dx) mod p acts as
L(x}) = P(i)x! - Q)xi*1 for i= d, d+1, .., d+p-2
= P()x} for i = d+p-1.
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Let us denote by a; (resp by € Z the unique lift of «; mod p (resp. of p;
mod p) which lies in the interval [d, d+p-1]. Renumbering the b's, we
may suppose that there are precisely t » 1 distinct elements among
the b;'s, and that these are

d ¢ by < by <..<by = d+p-1.
Then

Q(byg) = Q(bz) = Q(b) = 0,
and these are all the zeroes mod p of Q on IFp.
The operator L is visibly stable on each of the t subspaces Vg, ..., V¢_q
defined by

Vg := the span of those xJ with d ¢ J < by,

V; := the span of those xJ with b; < j ¢ bjyq fori> 0.
Since V is the direct sum of the V;, we have

dimKer(L | V) = Z; dimKer(L | V}).

Now on each Vj, the matrix of L is of the form

(?000 0000\
+?700 0000
0+70 0000
00s+? 000O

000+ ?000
0000 =700

00000+70
\0 00000=+?
where each subdiagonal * entry is nonzero. Now such a matrix, if of
size d, has rank 2 d-1, since its lower left d-1 x d-1 minor is nonzero.
Being lower triangular, its rank is d < all the diagonal entries are
nonzero. Therefore we find that

dimKer(L | Vp = 1 if P(aj) = 0 for some aj with bj_q ¢ aj ¢ b;,

= 0 if not.

Notice that we cannot have aj = b;, since by hypothesis i * Bj and

we chose p > N to avoid any coalescing mod p of «’s and B’s.
Therefore we have dimKer(L | V) = n if and only if there are precisely
t = n distinct b;'s, and when we walk from d to d+p-1 we alternately

eéncounter a's and b's. QED

SubLemma 5522 Let %4, .., %n, By, .., By be 2n distinct rational



176 Chapter 5

numbers in [0, 1), with common denominator N. Let p > N be a prime,
and denote by r the unique integer r in 1 ¢ r ¢ N with gcd(r, N) = 1 for
which

rp+1 =0 modN.
Then the following conditions are equivalent:

(1) the reductions mod p of the «'s are intertwined in IFp with those

of the p's in the sense that as we walk through F_ in the standard

p
order 0, 1, 2, 3... we alternately encounter «’'s and B's.

(2)the two subsets

Ay ={rxq, .., re,} mod Z, By := {rpq, .., rBp} mod 2
of (1/N)2/Z are intertwined in (1/N)Z/Z in the sense that if we
display their images under x = exp(2wix) on the unit circle, then as we
walk counterclockwise around the unit circle we alternately
encounter one from each subset.

proof For a real number x, we denote by x> its fractional part; by
definition <x> lies in the half open interval [0, 1) and satisfies

<x> = x mod Z. Denote by aq, .., ap, by, .., b, arbitrary integers
whose reductions mod p agree with those of «4, ..., *%n, B1, .., Bp. Then
condition (1) is that in the interval [0, 1), the fractional parts <a;/p> are
intertwined with the fractional parts <b;/p>. And condition (2) is that in
the interval [0, 1), the fractional parts <rap are intertwined with the
fractional parts <rg;.

Notice that each of the <rx{» and each of the <rp;> is one of the
numbers {0, 1/N, 2/N, .., (N-1)/N}. So the minimal distance between
any two of them is 1/N. So if we add to'each of them non-negative real
quantities which are each < 1/N, we will not alter their order in [0,1),
and in particular we will not alter the question of whether or not they
are intertwined. Since p > N, we have 1/p < 1/N. So it remains only to
observe that for each i we have the inequalities

1/p > <aj/p> - <rap 2 O,
1/p > <bj/p> - <rpp> 2 0.
To see this, recall that by the definition of r we have
pr + 1 = 0 mod N;
Let ¥ := C/N be any fraction with C an integer, 0 ¢ C < N. Then
¥ = ¥(1 + pr) mod* p,
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so ¥ mod p is also the reduction mod p of the integer
c:= ¥(1 + pr) = C((1 + pr)/N).
Then
<c/p> = <¥(1 + pr)/p> = <(¥/p) + r¥> = < (¥/p) + <ry».
Since 0 ¢ ¥ ¢ 1, we have 0 ¢ (¥/p) < 1/p; since 0 ¢ <r¥> ¢ (N-1)/N and
(N-1)/N <1 - 1/p, we have
<c/p> = (¥/p) + <r¥>, whence 1/p > (¥/p) = <c¢/p> - <r¥y> 2> 0. QED

These two sublemmmas together prove the lemma, since by Dirichlet’s
theorem, any r in 1 ¢ r < N with ged(r, N) = 1 occurs in 55.2.2 for an
infinity of primes p. QED

Combining this lemma 55.2 with the p-curvature theorem, we
obtain the complete description of irreducible hypergeometrics of type
(n,n) with Ggal finite. This description was obtained independently by

Beukers-Heckman by a different method.

Theorem 5.5.3 (|[B-H], 48) Let x4, .., «p, and pq, .., P, be 2n

complex numbers, such that for all (i, j), «j - pj is not an integer. Let

x € €*. Then
H,(eeq, oo, &pn By, s Bpy).
has Ggal finite if and only if the «’s and B's are all rational numbers,

say with common denominator N, such that the following two
conditions hold:

(1) ®q, .., ®p; By, ..., B Mmod Z are 2n distinct elements of (1/N)Z2/Z.
(2) for each integer 1 ¢ r < N with gcd(r, N) = 1, the two subsets

Ap ={roq, ..., rapy} mod Z, By := {rpq, ... rBy} mod Z
of (1/N)Z/Z are intertwined in (1/N)2/Z

We refer the interested reader to their paper [B-H, 7.1, 8.3] for a
detailed discussion of exactly which finite groups occur as Ggal for

irreducible hypergeometrics of type (n,n).
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Fourier Transforms of Kummer Pullbacks of Hypergeometrics

6.1 Some DE’'s on Al as Kummer Pullbacks of Hypergeometrics

In 2.106, we proved that the rank seven DE. on al

a7 - fa - £/2,

has differential galois group Ggal the subgroup Gy of SO(7), for any
polynomial f(x) of degree k » 1 prime to six. In this section, we will
show that this same result holds for f(x) = xX for any integer k 2 1.

The idea is that equations on Al of the form

P + «xka + pxk-1

are Kummer pullbacks of hypergeometrics of type either (n, 1), if

« z 0, or type (n, 0), for x = 0. As a consequence, one can explicitly
determine the group Ggal for all such equations.

More generally, for any non-negative integer m < n, and any
polynomial Pp,(t) € C[t] of degree m, equations of the form
an + (xk"lyp_(D); D := xd,
are Kummer pullbacks of hypergeometrics of type (n, m); just as above

(the case m = 0 or 1), this leads to an explicit determination of their
Ggal'sA For example, we will find that for any integer s 2 1

38 + x2s"UD+ s)(D -7/2)
has Ggq] the subgroup Spin(7) of SO(8).

’

Key Lemnma 6.1.1 Let ¢ 2 n> m 2 O be integers. Denote by
lql Gy = Gy
the q'th power endomorphism, and by j : G, — Al the inclusion. Then

for any B4, .., By, we have an isomorphism of D-modules on Al

Jallgl*®,(-1/q, -2/q, ..., -n/q; By, -, Byy)) = D/DL
for L the operator on Al
L= 3R - (qP™™M/a)x9"RTT (D - n - qBj).

proof Since ¥ = ®,( -1/q, -2/q, .. -n/q; By, -, Bm) is RS at the origin

with local monodromy of finite order g, its pullback by [q]*H is RS at
zero with trivial monodromy, so it extends uniquely to a D.E. Tl on all
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of AL By 29.11, we have M = J«1(G*IM), so M is the unique DE on Al

with j*T =z [q]*¥. Therefore it suffices to construct on G, an
isomorphism
* ~
On G;y,, we have
Iql*(x) = x4, [gl*(dx/x) = qdx/x, [q|*(D) = D/q,

so direct calculation shows that, as operators, we have

[qI*¥H = ;T[izl, _ a(D/) + i/ - xq-rl-j:i. . m{D/q) - Bj)

u

(;/qn)ﬂ-i:il DD - (1/qm)xq-|_|-j:1, . m(D - qBj)

n

(A/gP)(dnxM) - (1/qm)xq'“(-|-|-j:1‘ . m(D-n- qu-))xn
Le(axT/qM).

So right multiplication by ax™/q™ defines the required isomorphism
DGm/DGmL x [q]*® of D-modules on G,. QED

]

Variant 6.1.2 Let ¢ 2 n > m 2 0 be integers. For any integer « we
have

Jalgl* ¥, (« -1)/q, (« -2)/q, ..., (¢ ~n)/q; By, -, B)) = D/ DL
for L the operator on Al
L:=om - (q“'m/)\)xq'“ﬂj(D * @ - n-qpj).

proof The operator
H(e/q) = Uy« ~1)/q, (x -2)/q, .., (¢ -n)/q; Bq, -, Bpn))
is the x*/q twist of
H=n,(-1/q, -2/q, .., -n/q; pq - */q, ..., B - */Q),
to which the above lemma applies. But [q|*H® = [q]*(#(x/q)). QED

Question 6.1.3 Let q 2 n>m 2 0 be integers. If @4, ..., ®, aren

elements in (1/q)Z which are all distinct mod Z, then for any Bq. -

B lal* ¥y (ocy, &5, ..., %n: B1, .., Bm)) extends to a DE. on Al of rank
. The above variant gives an explicit formula for it when the «jare

Consecutive. Are there similar formulae when the «; are not
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consecutive?

Corollary 6.1.4 Let q > n> m 2 O be integers. Let « be an integer. If
Ky -1)/q, (x -2)/q, ..., (& =n)/q; By, -, Bep)
is irreducible and not Kummer induced, then for L the operator on Al
L:= 3R - (q“'m/x)xQ‘nTTj(D +x-n- qu),
D/DL is an irreducible D-module on Al

proof If ¥ is irreducible and not Kummer induced, it is Lie-irreducible
and hence [q]*# is irreducible on G,y,, which implies that its middle
extension D/DL is irreducible on Al. QED

Corollary 6.15 Let q » n> m 2 0 be integers. Let « be an integer.
Then group Ggal for

", (x -1)/q, (x -2)/q, .., (x -n)/q; By, ..., Bm)
contains that for
L:=on - (qn‘m/k)xq'nn‘j(D +x-n- CIS_j)

as a subgroup of finite index d which is a divisor of q.

proof Ggal for D/DL on Al is the same as Ggal for its restriction to G,

ie, the same as for [q|*#. Now apply [Ka-DGG, 1.4.5]. QED

Examples 6.1.6

We consider first the case of hypergeometrics of type (n, 0). Then
we find

Type (n, 0) Let g > n > D be integers. For any integer « we have
Jreql*Hy (e -1)/q, (x -2)/q, .., (¢ -n)/q; #)) = D/DL

for L the operator of Airy type (cf. [Ka~-DGG, 4.2]) on Al
L:= af - (gqi/a)x9™n,

Type (n, 1) Let ¢ > n > 1 be integers. For any integer « we have
Jia{lal* ¥, (x -1)/q, (x -2)/q, .., (« -n)/q; p)) = D/DL

for L the operator on Al
L=l - (o 1/0)x9" (D + « - n - gp).
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Special Case (7,1), « = 4, p = -1/2: For any integer q : 7,
j!,([q]'n)‘@/q, 2/q, 1/q, 0, -1/q, -2/q, -3/q; -1/2)) = D/DL
for L the operator on Al
L:= a7 - (q8/x)x9"7(D + (q-6)/2).
We have already proven (4.1.4) that
n,(3/q, 2/q, 1/, 0, -1/q, -2/q, -3/q; -1/2)
gal = Gy. So the above corollary shows that
a7 - (q5/x1)xT" (D + (q-6)/2)
has Ggal = Gy for every integer q 2 7.If we define k : = q-6, this gives

has G

Corollary 6.1.7 For any integer k : 1, and any nonzero constant u,
a7 - uxkd - pkxk-1/2
has Ggal = Gz.

Type (n, 2) Let q 2 n > 2 be integers. For any integer x we have
Jra(al*®, ((x -1)/q, (x -2)/q, ..., (x -n)/q: py, B2)) = D/DL
for L the operator on Al
L:= 3l - (q"2/a)x9™M(D+ « - n-qpy XD+ « - n - gpy).

Special Case (8, 2), q = 2r+l, r 2 4, o« = r+5, pq = 0, p2 = 1/2
JieUal* ¥, (r+ 4)/(2r+1), (r+3)/(2r+1), ..., (r-3)/(2r+1): 0, 1/2)) = D/DL

for L the operator on Al
L= 28 - ((2r+1)8/2)x27"7(D + r -3)D -7/2).

This ¥ has Ggal = Spin(7) in SO(8), by 4.4.1. Writing s := r-3, we find

Corollary 6.1.8 For any integer s > 1, and any nonzero constant p,
L= 238 - ux2s"LD + XD -7/2)
has Ggal = Spin(7) inside 50(8).

6.2 Fourier Transforms of Kummer Pulllbacks of
HYPergeometrics: A Remarkable Stability

The following result shows that we can obtain (a Kummer
Pullback of) any (sufficiently general) hypergeometric of type (n, m)
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with n > m as the Fourier Transform of (a Kummer pullback of) a
hypergeometric of type (n, n). We will see later the importance of this
sort of “reduction to the RS case".

Theorem 6.2.1 Suppose that n > m 2 0 are integers. Put d '= n -~ m.
Suppose we are given a hypergeometric of type (n, m),
U= Uy(xyq, .., Xpi BY, ) Bpp) = H(P, Q)
which satisfies the following three conditions:
(i) # is is irreducible (ie, for all i, j, ; - B is not in 2),

(ii) ® is not Kummer induced,
(iii) for all i, dx; is not an integer.
Then we have isomorphisms of irreducible J-modules on Al
(1) jldI* ¥, (o's; By's) = i, ldI* (s pj's) % j ldl*fy (ogs; Bjs),
(2) FT(j,ld]1* ¥, (x's; b_]-'s)) x
X jreldl* (M _y4,,(1/d, 2/4d, ..., d/d, “Bj's: -xi's)).
(3) juldI* My (xi's; By's) =
% FT(,[dI* (M ga,,(1/d, 2/d, .., d/d, -Bj's; ~oi's))

proof On G, ¥ is Lie-irreducible by (i) and (ii), so [d]*¥ is irreducible.

It is RS at zero, and has all exponents at zero nonintegral, by (iii).
Direct calculation gives

M=
[d] DGm/DGmL,
for L the operator
L := [dI*Hyp(P, Q) = P(D/d) -~ xdQ(D/d).
By 294, on Al we have
J!(Dﬁm/DGmL) ¥ D/DL = J'(Dﬁm/DGmL)'
D/DL = j!'(DGm/DGmL).
Therefore D/ DL on Al is irreducible, being the middle extension of an
irreducible D-module on Gp,. This proves (1). Moreover, J/DL has some
(n~m, to be precise) of its o -slopes =1, so D/DL is not the trivial D-
module O p1.
Therefore FT(D/DL) is irreducible on Al, and it is not g, so it is
the middle extension of its restriction to G :
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FI(D/DL) = j,j*(FT(D/DL)).

Now j*(FT(D/DL)) is easy to calculate explicitly:
JYFT(D/DL)) = jHD/DFT(L)) = Dcm/DGmFT(L)-
Since FT(D) = FT(xd) = -9x = -x@ - 1 = -D - 1, we have
FT(L) = FI(P(D/d) - x9Q(D/d))
= P((-1 -D)/d) - 2adQ(-1 -D)/a).
Since x4 is a unit in .D(;m, FT(L) and x9FT(L) generate the same left
ideal, so we have
‘DGm/‘DGmFT(L) = ‘DGm/DGmKr where K is is the operator
K = x9p((-1 -D)/d) - xd3dQ-1 -D)/da)
= [d]*M, for M the operator
M =xP(-1/d - D) - [T .o 4 ,(dD -IQ(-1/d -D).
-M = a9, 4 (D -j/d)Q(-1/d -D) - xP(-1/d - D).
So all in all we have

J*(FTI(D/DLY) = ldI*(Dg_/Dg_M).

If we twist Dg_ /Dg M by x1/d, we do not change its pullback by
6’ 26, g

[d]*, so we have
JYFT(D/DL)) = [d]'(DGm/DGmMi) for M4 the operator

M1 = dd[ﬂj:i,...,d(D 'J/d)]Q(‘D) = xP(-D)
If we return to «, p notation:

P(t) = aTl(t - «j), Q1) = TT(t - pj),
then
2"1-1)0My = Hypya,,(1/d, 2/d, .., d/d, ~Bq, -, ~Byp ~%1, -\ ~%p).
So all in all we have

JYFT(j ld1* K, (ay's; bj's))::

= [d]'(n(‘d)d/)(i/d' Z/d, -, d/d, -bi, e, 'bm, _“1, e, -“n))
Now applying j;,, to both sides yields

FT(aldI* Hy (axi's; By's)) =

X JlaldI* (M _ga,,(17d, 2/4, .., d/d, -pq, .., By "X, s ~%p)),
which is (2). By Fourier inversion, (2) gives
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[x = -x]*(j,ld]*H,(ay's; pj's)) =
X FT(j!,[d]'(n(_d)d/k(l/d, 2/d, .., d/d, -bj's; -Oci'S))),
which is nearly (3). Because [x » -x]* and j, (trivially) commute, we

have
[x = -xI* (G ldI* My (eis; Bys)) = julx = -xI*(d]* H,(xi's; Bj's)

ff

Jalx = 091 ], (s Bi's) = JuldI*[x w (-1)9x]* 1, (x§'s; Bj's)

H

JaldI* ¥ jya\(xi's; By's),
so we have
JaldI*H gya\(xi's; pj's) X
% FT(igld]* (M gd/,(17d, 2/d, ..., d/d, -pj's; ~i's)).
Replacing » by (-1)da gives (3). QED

6.3 Convolution of hypergeometrics with non-disjoint
exponents, via a modified sort of hypergeometric

In this section, we will explore what happens to the convolution
formula 5.3.2 when the exponents are not disjoint.
(63.1) Given a smooth connected C-scheme X, with structural map
m : X - Spec(C),

we say that an object K in DP.holo(x) is PC (for perverse cohomology) if
K is a single D-module, concentrated in degree zero. If X is n-

dimensional, this is the same as requiring that

Hipp(X/C,K) = 0 foriz n.
Lemma 6.3.2 Let G be a smooth connected C-groupscheme of finite
type. The convolution K+L of two PC objects K, L in DP.holo(g) is again
PC. Moreover, if we put n := dimg(G), then

HnDR(G/C, Ks*L) = H'pRr(G/cC, K)® CHnDR(G/ c, L)

proof This is immediate from 5.1.9,(1a). QED

Lemma 63.3 Let N be a holonomic D-module on G, and X a
hypergeometric of type (1, 0) or (0, 1).
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(1) The convolution N+ is a single (holonomic) D-module on G,.

(2) If M is PC on Gp,, then M#+H is PC on G,

proof By multiplicative inversion, we reduce to the case when H is of

type (1, 0). Twisting by x*, we reduce to the case when " is #,(0; @).

A multiplicative translation reduces us to the case when # is #4(0; #).

In this case, assertion (1) results from the formula (5.2.3)
J*FT(j,inv,(N)) = M=+H4(0; ).

Assertion (2) follows from the fact that H is PC on G, (direct

computation), and the above lemma. QED

Lemma 6.3.4 Let M be a holonomic JD-module on Gp, which is PC.

Then the convolution M+*9 of MN.with the “constant” D-module § :=

O¢_ is the constant D~module V®¢0, with V the finite-dimensional C-
m

space HiDR(Gm/C, m) =« M.

proof This is the base change for the cartesian diagram
(x, y) = (x, xy)

GxG » GxG : MNxO
lproduct l pra
G = G. QED

Corollary 6.3.4.1 Let « € €. Let N be a holonomic D-module on G,
such that M@®x~% is PC. Then the convolution M #*(x*0Q) is the D-
module V®¢x*0, with V := Hlpp(6, /¢, M®x"*)= w, M.

proof Indeed, x*®((M®x"*)+0) = M#*(x*T) by 52.1. QED

Key Lemmmae 635 Let x € €. For any 2, 4 € €%, the convolution
Hylx; 2)eH (7 )
sits in a short exact sequence of D-modules on G,
0- Sku - U, (x; g)-nu(g; x) = x*0 - 0.

Proof By 52.1, twisting by x~% reduces us to the case where « = 0. By

519,(2), a multiplicative translation reduces us to the case where u =
2= 1 By 523, we have

J*FT(j,inv, (M) = M+14(0; 2).
Applying this to M = H4(2; 0), we find
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Hy(0; 2)+M1(2; 0) = j*FT(j,inv, N (z; 0))

x J*FT(j,H_1(0; 2)).
Now by inspection we have
H_4(0; #) = Dg /Dg (-x3 -x)
m m

= .Dem/.DGm(a + 1)
J*(Da1/D, 102 + 1))
j*(e7Xc[xD),

so

Ja¥-1(0; #) = j,j*(e7XClx]) = eXC[x, x~1].
Consider the short exact sequence of D-modules on Al

0 = e XC[x] = e XC[x, x~1] = e *¢CIx, x"1//e X¢CIx] - O.
The third term we may rewrite as

e XClx, x"1l/e7*¢Clx] = e™X€((x))/e XCllx]] = C((x))/ClIx]]
~ D/Dx = 80.
So the above exact sequence is
0— D,1/D,1(d + 1) » j,H_4(0; &) > 85 = 0.
The restriction to G, of its Fourier Transform is the required short

exact sequence. QED

(6.36) We now introduce a modified notion of hypergeometric D-
module, which is by its very definition well~-behaved with respect to
convolution. Namely, we define

MU (xq, .., xp; 2) = Hylxq; B)e . s (xy; 2)

MU (2 By, ., Br) = Hq(B: By)e .. s H4(B; Bry)

MU (g, .., ®p; By, -y Bp) =

= Helxq; 2)r L aly(xp; B)eN (@, pIr . 2 H (B Bppy).

For a € €X, we define
MH, (x’s; p's) == [x = ax], MU (x's; B's).

In view of the preceeding lemmas, we see that MH, (x's; p's) is a
single holonomic D-module, which is PC on G, with HiDR(Gm/C, MH,)
one-dimensional (by 3.7.1). The effect of x¥ twisting is given by

xV @MU, (xj's; pj's) & MU, (i + ¥'s; pj + ¥'s).

The effect of inversion is given by
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inv, MH, (x;'s; bJ-'s)) x MK(-1)“’"‘/1( -bJ-'s; ~i's).
By 53.2, we have
MU, («'s; B's) = H,(x's; p's) if H,(x’s; B's) is irreducible.
By the associativity and commutativity of convolution, we have
MH, (x’s; b's)!MKu(!'s; §'s) = MK)‘H(cx's, ¥'s; p's, §'s)
whatever the exponents. In particular, we have
MH, (x's; p's) * Hylx's; g)+H,(2; p's),
expressing every MH as a convolution of irreducible hypergeometrics.
Now the isomorphism class of an irreducible ¥, («’s; p's) depends only

on x and on the classes mod Z of its exponents. So by the functoriality
of convolution, we find that
Scholie 6.3.7 The isomorphism class of MH,(«'s; p's) depends only on x

and on the classes mod Z of the «'s and the p's.

Open Question 6.3.8 If the «'s and B's are not disjoint, is there a
simple expression for MH, («’s; B's)? Is it of the form H,(x's; p's) for

some particular choice of modified exponents (&'s; B's) which are
termwise congruent mod Z to («x's, p's)?

Cancelation Theorem 6.3.9 Suppose given a modified hypergeometric
MH, (xi's; bJ-'s) of type (n, m). Then for any ¥ € C, and any integer d,

the modified hypergeometric MK, («j's, ¥; Bj's, ¥ +d) of type (n+1, m+1)
sits in a short exact sequence of D-modules
0 - MH,(xj's; b_j's) - MH,(xi's, ¥; Bj's, ¥ +d) - V@ (x¥0) — 0,
where V is the 1-dimensional C-space
Vo= HiDR(Gm/C, MU, (% - ¥'s; Bj - ¥'s).
proof We first reduce to the case d=0 by the Scholie above, then write
MH, (s, ¥; Bj's. ¥) = MU, («'s; bj's)!M){i(!, ¥).
By definition, MK 4(¥, ¥) is the convolution #4(¥; #)*H1(#; ¥), which by
§ 3.5 sits in a short exact sequence of D-modules on G,
0 - 81 = Hy(¥; #)eNy(5; ¥) = x¥0 > 0.
Convolving this exact sequence with MH, («;'s; bj's) vields, via 6.3.4.1,
the required short exact sequence. QED
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(6.3.10) In order to formulate the next result, it will be convenient
to introduce the operator Cancel on both hypergeometrics and on
modified hypergeometrics which “cancels” the exponents mod Z
common to numerator and denominator. Given

Ho= Uy(xyq, ., Xp; By, o\ Byp)

MH = MU, (xq, .., &y By, s Byn)
of type (n, m), look to see how many of the «i's are also bj's mod Z.If

there are r such common exponents, renumber so that
%n-k = Bm-x mod Z for k«r,

ociébjmodl if 1¢n-randj ¢ m-r,
and define
Cancel(M,(xq, .., &p; By, -, Bpy)) =
= n)‘(oti, vy Ky BL, e bm_r),

Cancel(MH,(xq, .., &p; By, .., Bm)) =
= MR, (xq, .., ®p-yps B1. s Bm-r)-
Since the result of canceling is irreducible, we always have

Cancel(H) = Cancel(MH),
whatever the exponents.

Semisimplification Theorem 6.3.11 The semisimplification of
MK)‘(«i, s %ns bi, ., bm)
as holonomic J-module on Gy, is the direct sum

Cancel(MH,(xq, .., ®pn; By, - . bm))$(® x<0Q).

commaon expanents o
proof This is immediate from the cancellation theorem 6.39. QED

6.4 Application to Fourier Transforms of Kummer Pullbacks of
Hypergeometrics

Lemma 6.4.1 Let d @ 1 be an integer, and H,(x;'s; bj's) an irreducible

hypergeometric. Then we have an isomorphism of D-modules on G,
JYFT(ldI* My (ey's; y's)) =
x* [dI*MH_ym-ngd/,(17d, 2/d, .., d/d, -Bj's; -xi's).
proof By 523, for any D-module M on G,
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J*FT(j,inv, (M) = M+H4(0; 2).
Applying this to N = inv [d]* K, (x{'s; bj's) = [d]*inv, ", (x's; bj's) gives
JUFT( A * My (xi's; bj's)) x ([d]*inv, ®,(xi's; bj's))lni(O; Z).
By 5.1.9, (1b), for any two JD-modules N and N on G, and any integer
d > 1, we have
(d]*IN)«N = [d]*(MN=(d],N)).
Thus we have
JYFT(L[dI* My (y's; By's)) =
x [dI*((inv K, (x's; bj's))!([d],(ni(O; ).

By the Kummer Induction Formula 3.56.1 we have
ldl,(H4(0; 2)) = K all/d, .., d/d; &)

* MH(1/4d, ..., d/d; 2).
By the inversion formula (3.1), we have
invy,#, (xi's; bj's) X K _gynem ), ( —bj's; -xi's).
Combining these, we find
JUFT( 1A * U (xy's; bj's)) X
2 [dI* (M gynom ) (-By's; ~xi's)e U a(1/d, .., d/d; 2)),

and the result follows by the (tautological) convolution formula for MH.
QED

The following theorem encompasses both 6.2.1 and the irreducible
case of Key Lemma 6.1.1 as special cases.

Theorem 6.4.2 Let d : 1 be an integer, and ¥ an irreducible
hypergeometric of type (n, m),

H o= Uy(xq, oo, ®p; BYs -0 Byn)-
Then we have isomorphisms of D-modules on Al
(1) FT(jy, [d]* Hy(oxy's; Bj's) =
X jiald]*(Cancellt _)nvmq44,,(1/d, 2/4, .., d/d, -Bj's; -xi's)).
(2) 5y, ldI* My lei's; By's) =
X FT(j1,ld]*(Cancel¥, _ ) nvmsd(gyd,,(17d, 274, ..., d/d, -Bj's; —oi's)).

proof The isomorphism (2) is obtained from (1) by Fourier inversion. It
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remains to prove (1),
We first claim that FT(j|,[d]*#, («'s; Bj's)) is a direct sum of

irreducibles, none of which is 5. By Fourier inversion, it is equivalent

to show that ji,[ldl*H, («{'s; bj's) is a direct sum of irreducibles on Ai,
none of which is the "constant” D-module O. Since j,, carries
irreducibles to irreducibles, it suffices to show that [d]*H, (xj's; bj's) is a
direct sum of irreducibles on G,y,, none of which is 0. For this, we argue
as follows.

Since H,(«;'s; bj's) is irreducible on Gy, [d]* ¥, (x;'s; bj's) is
semisimple, a direct sum of irreducibles. These irreducible constituents
are all pg-translates of each other (since ", («;'s; bj's) is irreducible),
and hence if any of them were constant then [d]*H, (x{'s; bj's) would
be constant. But then its Euler characteristic on G, would be 0, rather
than -d (cf. 37.1, 375, proof of 3.7.6).

Therefore FT(j,[d]* X, (x;'s; bj's)) is a sum of irreducibles on A1,

none of which is the delta sheaf §g at the origin. Since any irreducible
M on Al other than 8q satisfies M X ji, j*TN, we have
FT(j),[d]1* 1, (x;'s; bj's)) X e J*FT( ldI* ®, (s bj's)).
So to prove the theorem it suffices to prove that on G, we have
JYFT( 1 [d1* My (x's; Bjs) =
x [dI*(Cancell _ ynem(gd/,(17d, 2/d, ..., d/d, -bj's; -&xi's)).

Since both of these D-modules are semisimple, it suffices to show that
they have isomorphic semisimplifications. For this, we argue as follows.

We have a short exact sequence of D-modules on Al

0 = jialdI*®,(xi's; pj's) = juldI* M, (xis; pj's) = V®¢sg — O,
for some punctual D-module V® ¢80 at zero. In view of the known
structure of the local monodromy at zero of H, (xi's; BJ-'s), we see from

29.8 that V has dimension

r := Card(R),

R := {k in {1, .., d} such that k/d mod Z is among the « mod Z}.
Taking the Fourier Transformed exact sequence, passing to
semisimplifications, and restricting to G, we find
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_j'FT(j,[d]'n)‘(oci's; bj-s))ss x JUFT( . ld]* By (xi's; bj's)) ® Or.
By the above lemmma we have
J*FT(j,[dl*H, (x;'s; pj's)) X
x [dI*MU_ym-ngd/(17d, 2/d, ..., d/d, -bJ-'s; - i's).
By the semisimplification theorem 6.3.11, we have
MK(_i)m-n(d)d/k(i/d, Z/d, ..y, d/d, 'bj's,' -o:,i's)ss = .
Cancel(K(_i)m-n(d)d,k(i/d, 2/4, .., d/d, -bJ-‘s; -~xi's)®

a(D |, x o).

Therefore after [d]* we have

[dI*MH _,ym-ngd,(17d, 2/d, .., d/d, -bJ-'s; -x's)SS x

% [d]* Cancel(®_ ym-n(4d/,(1/d, 2/d, .., d/d, -bj's; -~xi's))® OF.
Comparing these two expressions for j*FT(j,[d]*H, (x]'s; bj's))ss, and
cancelling the common OF, we find the required isomorphism

JYFT( A" My (xy's; bj's)) x

x [d]*Cancel(® _ ,ym-ngd/;(17d, 2/d, .., d/d, “Bj's; -«i's)). QED

Corollary 6.4.3 Let d > 1 be an integer, and H an irreducible
hypergeometric of type (n, m),

® o= Uy(exyq, .., ®p; B, -~ Bpn)-
Suppose in addition that for all i, dxj is not in Z. Then we have

isomorphisms of D-modules on Al
(0) jiu(dl* Uy (axy's; bJ-'s) X jeldl*H,(ay's; bJ-'s).
(1) FT(j,[dI* ®, (x;'s; Bj's) =
% JialdI* (M pynemgyd)(17d, 2/d, ., d/d, -pj's; ~«y's)).
(2) Juldl* ¥, (x's; bj's) x
2 FT(1,1dI* (M jynemed(gyd/,(17d, 2/d, ..., d/d, -Bj's; —xi's).

Proof If no d«; is in Z, then (0) holds by 298, and
U qynemedqyd/,(17d, 2/4d, ..., d/d, -Bj's; ~xi's)

191
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is itself irreducible, so its own Cancel. QED

Corollary 6.4.4 Let d 2 1 be an integer, and # an irreducible
hypergeometric of type (n, m),
Ho= ", (xq, .., Xp. By, . Byn)-
Suppose in addition that
n,(xi's; bj's)
is not Kummer induced of any degree d4 > 1 which divides d. Then
Jieldl* iy (xi's; bj's)
is irreducible on Ai, and consequently the isomorphisms
FT(jildl*#, (x;'s; bj's)) ~
X jizldI*(Cancell, , nvmgd,,(1/d, 2/d, .., d/d, -bj's; -xi's)),
Jraldl* My (xi's; By's) =
X FT(j;,Id]*(Cancell _, nsmediqd,,(1/d, 2/d, ..., d/d, -bj's; -xi's)),

are isomorphisms of irreducibles on Al

proof. Since ® := H, (x's; bj's) is an irreducible D-module, and [d] is
finite etale galois, either [d]*¥# is isotypical or # is induced from an
intermediate covering. So the hypothesis insures that [d]*H is
isotypical. We first show that if [d]*H is isotypical, then it is irreducible

If [d]*¥H is isotypical, say k 2 1 copies of an irreducible X, then
since the isomorphism class of X is M 4-invariant, X itself descends

through the cyclic covering [d], to an irreducible Xg. Therefore the

natural map of J-modules
Xog® Homp(Xg, H) = H,

is an isomorphism. But Hom}p(Xg, #) becomes constant of rank k after

[d]*, so it is & sum of k objects each of the form x*0. with dx € Z.
Since © = Xg® Homyp(Xg, H) is irreducible, we have k = 1, and hence

[dI*¥ is irreducible on G, . Its middle extension ji,[d]*H is therefore

irreducible on A1, QED



CHAPTER 7
The €-adic Theory

7.1 Exceptional Sets of primes

Let b 2 1 be an integer. Recall that in 2.8 we proved the following
two statements:

Corollary 2.8.2.1 If «, p, ¥, 6 in M}(C) satisfy « - p = ¥ - §, then
either
(1) x= pand ¥= §
or (2) x= ¥ and p= §
or b is even and (3) x=-5 and p=-¥.

Corollary 28.3.1 If «, B, ¥ in ub(C) satisfy x-p=3Y¥, then 6 divides b,

«/p is a primitive sixth root of unity, and *¥/p is («/ 2.
For each prime number p, consider the following three assertions:

+(p,b) If x, B, ¥, 6 in ub(ﬁ:_p) satisfy « - p = ¥ - 8, then either
(1) x= p and ¥= §

or (2) x= ¥ and p= §

or b is even and (3) x=-8 and p=-¥.

#+(pb) If x, B, ¥ in ub(Fp) satisfy «-p=2¥, then 6 divides b, x/p is a

primitive sixth root of unity, and +¥/p is («/p)2.
+22(p,b) If x, p in “b(Fp) satisfy « = - B, then b is even and « = p.

Lemma 7.1.1 For each integer b 2 1, there exist entirely explicit
nonzero integers Nq(b) and Ny(b) such that #(p,b) holds for all primes

p which do not divide N4(b), and * #(p,b) holds for all primes p which
do not divide Ny(b). The assertion #*##(p,b) holds if p =z 2.

proof Put g}, := exp(2wi/b) € €. Fix a prime p not dividing b, and fix a
Prime ideal 7 of the cyclotomic integer ring Z[3},] lying over p. If we

View T as a ring homomorphism T : Zlgy]l = Fy, then 7 induces a

_ P
group isomorphism Mp(C) = pR(ZISED = up(F ). So #(p,b) is equivalent
to the following condition:

i‘f(cx, B, ¥, 58)¢€ (ub(Zlgbl))4 is such that such m((x - p) - (¥ - 8)) = 0 in
pr, then either

(1) x= p and ¥= &
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or (2) x= Yand p= &
or b is even and (3) x=-5 and p=-¥.

This may be restated as follows: let Ny(b) € Z[g},] denote the
product TT((« - B) - (¥ - 8)), extended to all quadruples («, B, ¥, §) in
(Mb(d?))4 such that none of the three conditions

(1) x= pand ¥= &
or (2) x= ¥ and p= §
or (3) b is even and «x=-5 and p=-¥
holds. This product is a nonzero element of Z[§)], in virtue of 2821

recalled above. As the conditions (1), (2), (3) are Galois-invariant, Nq(b)

is in fact a nonzero element of Z. Then for a prime p not dividing b, the
condition #(p,b) holds if and only p is not a divisor of N1(b). In fact

#(p,b) holds if and only p is not a divisor of Ny(k), for if ¢|b is any
prime divisor of b, then

(g -1 =(gg-1-(1-1)
and hence ¢ itself is one of factors of Nq(b).

The proof for ##(p,b) is entirely analogous. One considers the
element Ny(b) := bN,N_ € Z[g}] where N, = TI(+ ¥ - («-)), the product
extended to all triples (x, B, ¥) in (Hb(C))3 for which it is not the case
that

«/p is a primitive sixth root of unity, and +¥/p is (x/ )2,
Again N2(b) is nonzero in Z, and for a prime p not dividing b, the

condition # #(p,b) holds if and only p is not a divisor of N,(b).
That the assertion ##+#(p,b) holds if p 2 2 is obvious. QED

Remark 7.12 If b=1, then Nq(b) = -Ny(b) = 1.

Remark 7.1.3 (Benji Fisher) The integer N»(b) can contain very large
primes. The factors of N, include (2 - ¢) = (1 - (¢ -1)) for every

¢ € pp(C), so Na(b) is divisible by 2P - 1, which itself can have rather
large prime factors!

7.2 t-edic analogue of the main DE theorem 2.8.1

(72.1) In this section we fix a prime number p, an algebraically
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closed field k of characteristic p, a prime number tzp, and an algebraic
closure Q4 of Q4. We denote by ¢ a nontrivial Qy-valued additive

character of a finite subfield Fq of k. We denote by l'.q‘ the lisse rank

one 6‘-sheaf on Ai/Fq (= Ga/Fq) obtained from the Artin-Schreier
covering (Lang torsor)

Gq x
Gq x - x9

by extension of structural group via §. For any Fq-scheme Y, and any
function f on Y, we view f as a morphism f: Y — Al = Gq, and we

denote by l'.q‘(f) the lisse rank one 6‘-sheaf £* l'.q‘ onY.
(7.2.2) For Fq any finite subfield of k, and X a 6g-valued character

of (Fq)", we denote by I’X the lisse rank one G_Je—sheaf on 6, ®F 4 =

Spec(Fq[x, x~1]) obtained from the Kummer covering (Lang torsor)

Emefqy x
- X
1-Fg |} (FQ l
€meFg x1-9

of degree 1 - q by extension of structural group via . For any Fq-

scheme Y, and any invertible function f on Y, we denote by I’X(f) the

lisse rank one 6Q-sheaf f'l'.x onY.

Over the algebraically closed field k, any connected finite etale
covering of G, which is tame at both 0 and « is dominated by a
suitable Kummer covering. This allows us to identify

"1(Gm°k)tame = Z(i)not P = li—mﬁnite subfields of k (IFq)x'_
with transition maps given by the norm. For ¥ any continuous Qg-

valued character of 71(G,,@K)t8Me x lim . . eldsof k (Fq)x, (we will
often refer to such a ¥ simply as a “tame character”) we denote by l'.x
the corresponding lisse rank one 6‘-sheaf on G ek. [For ¥ of finite

order, this notion of I’X coincides with the one given abovel] For Y any

k-scheme, and f any invertible function on Y, we denote by I’X(f) the

lisse rank one ﬁg-sheaf f'l'.x onY.
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(7.2.3) Let X/k be a smooth connected affine curve over k, x € X a
geometric point of X, X the complete nonsingular model of X. Let ¥ bea
lisse Qp-sheaf on X of rank n 2> 1. We denote by w4 the fundamental

group m¢(X, x), by p the n-dimensional 6‘-representation
p:wq = GL(F,)
which T “is", and by
Ggeorn = the Zariski closure of p(wy) in GL(¥F ).

For each point at infinity o € X - X, we can speak of the upper-
numbering “breaks” (or “slopes”) of ¥ as I, -representation (cf [Ka-GKM,

Chap. 1]), and of their sum, the Swan conductor Swan(F) €Z of ¥ at
00,
Given F as above, for any linear representation A of G
A: Ggeom — GL(d),
the composite representation
Aep :1wq = GL(d)

gives rise to a lisse (_Jg-sheaf of rank d on X, denoted F(A).

geomn: S&Y

Highest Slope Lermnmea 7.2.4 (compare 4.2.4) Notations as above,
suppose that the kernel " of A: Ggeom GL(d) is a finite subgroup of

order prime to p. Then at every point e € X - X, ¥ and F(A) have the
same highest slope.

proof For any x 2 0, ¥ has all slopes ¢ x if and only if p((l,,o)(’”)) = {e},
and F(A) has all slopes ¢ x if and only if p((lw)(’“)) c I' . Since

p((l,,o)(’“)) is a p-group, and I is prime to p, these two conditions are
equivalent. QED

Lifting Lemmaea 725 (compare 2.2.2.1) Notations as above, let

p:G—- H
be a surjective homomorphism of linear algebraic groups over Qy,
whose kernel I is a finite central subgroup of G. Then any continuous
homomorphism ¢: m{(X, x) = H(Qy) lifts to a homomorphism

(; fTTi(X, x) — G((_J‘)
with ¢ = po.
proof The obstruction to lifting lies in H2(X, I'), which vanishes because
X is an affine curve over an algebraically closed field. QED
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We say that ¥ is irreducible if the corresponding representation p
of mq on Tx is irreducible, or equivalently if the given representation of

Ggeorn On ¥ is irreducible. We say that F is Lie-irreducible if the given
representation of Ggeom on F, is Lie-irreducible, or equivalently if the
restriction of p to every open subgroup of 74 remains irreducible.

The main results on and around Lie-irreducibility and its
alternatives are summarized in the following theorem.

Theorem 7.2.6 (cf [Ka-MG], 2.7 and 3.5) Let X be a smooth connected
affine curve over an algebraically closed field of characteristicp> 0, ¢t a
prime number ¢ z p, T a lisse Q,-sheaf on X of rank n » 1 which is
irreducible.

(1) ¥ is either Lie-irreducible, or induced (ie. the direct image f,$ of a
lisse ¢ on a finite etale connected covering f : Y — X of degree d 2 2) or
is, for some divisor d 2 2 of n, a tensor product $®¥H where ¢ is Lie-
irreducible of rank n/d and where ¥ is irreducible of rank d with
corresponding representation py having finite image. Moreover, this

tensor decomposition is unique up to twisting (3, #) = (3®L, H®L"1)
by some rank one L of finite order.
(2) If X is Al and p > 2n +1, then ¥ is Lie-irreducible.

(3) If X is Al and p > n, then ¥ is not induced.
(4) If X is 6, and p > 2n +1, then T is either Lie-irreducible or is

Kummer-induced (ie., of the form [d],$ for some prime-to-p divisor
d » 2 of n and some lisse ¢ on Gy, of rank n/d, where [d]: G, = G,

denotes the d'th power map).
(5) If X is Gy, and p > n, then if ¥ is induced it is Kummer-induced.

(6)Supppose X is G, - (s} for some s € k¥, and that ¥ has
pseudoreflection local monodromy at s (in the sense that under the
action of the inertia group I(s) on '}'x via p, the space of invariants has
codimension one). If ¥ is neither Lie-irreducible nor induced, then ¥ is
the tensor product L®H of a rank one L with a rank n # whose
Corresponding representation py has finite image. If in addition det(¥)
Is of finite order, then ¥ itself has p with finite image.

(7 Suppose X is Gm. P> 2n +1, and F has pseudoreflection local

monodromy at 0. Then either ¥ is Lie-irreducible or ¥ has rank two
and its local monodromy at 0 is a tame reflection.
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(8) Suppose X is €, - {s} for some s € k*, p> n, and ¥ has
pseudoreflection local monodromy at s. Suppose ¥ is induced, ¥ = £f,9
for a lisse ¢ on a finite etale connected covering f : Y — G, - {s} of
degree d : 2. Then either the covering f is (the restriction to G, - {s}

of ) the Kummer covering of degree d, or d = n and the covering is
either a Belyi covering or an inverse Belyi covering of type (a,b) for
some partition of n = a + b as the sum of two strictly positive integers.
Moreover, in the case of a Belyi or inverse Belyi covering, local
monodromy around s is a tame reflection.

proof Assertions (1), (2) and (4) are proven in [Ka-MG] as Prop.'s 1, 5, 6.
Assertions (3) and (5) are proven in the first paragraphs of the proofs of
[Ka-MG], Prop.'s 5 and 6 respectively. Assertion (6) follows from (1) by
the argument of 35.7.

To prove assertion (7), we argue as follows. By (4), if ¥ is not Lie-
irreducible it is [d] ,$, with § lisse on G,,, and d 2 2 prime to p. We first

observe that 4 is tame at zero. [If exactly M (counting with
multiplicty) of the slopes of ¢ at zero are > 0, then exactly dM of the
slopes of [d],4 = F at zero are > 0. But 7 has at least n-1 of its slopes at

zero =0, so M=0.] Once ¢ is a tame 1(0)-representation, the set with
multiplicity of the characters A occuring in [d],% = F at zero is stable

under A = A® ¥ q for X4 any character of order d. As all but at most

one of the A are trivial, we see first that d = 2, then that n = 2.

To prove assertion (8), we first note that as p > n 2 d, the galois
closure of the covering f is necessarily tame, because prime to p. The
proof is then entirely analogous to that of 3.5.2, making use of the fact
that for p > n, 3.5.1 is equally valid with C replaced by an algebraically
closed field of characteristic p. QED

Main t-adic Theorem 7.2.7 (compare Main DE. Theorem 28.1) Let X
be a smooth connected affine curve over an algebraically closed field of
characteristic p » 0, x € X a geometric point of X, ¢ a prime number

¢ 2z p, ¥ a Lie-irreducible lisse ﬁe-sheaf on X of rank n. Suppose that at
some point e € X - X, the highest slope of ¥, written a/b in lowest
terms, is > 0 and occurs with multiplicity b. If b = n, suppose that p > n.
If b ¢ n, suppose that p does not divide the integer 2aN4(b)N5(b).

Let @ := Ggeom C GL(¥F,) be the Zariski closure of p(my (X, x)) in GL(¥F ),

GO its identity component, and G0.der the commutator subgroup of c0.
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Then GO is equal either to g0.der o to GmGO,der’ and the list of possible
g0.der is given by:
(1) If b is odd, GO.der js SL(7 ).
(2) If b is even, then either g0.der j¢ SL(F ) or SO(F,) or (if n is even)
SP(¥F,), or b=6, n=7,8 or 9, and gO0.der js one of
n=7: the image of G2 in its 7-dim’l irreducible representation
n=8: the image of Spin(7) in the 8-dim'’l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stdestdestd
the image of SL(2)xSp(4) in stde std

the image of SL(2)xSL(4) in stdestd
n=9: the image of SL(3)xSL(3) in stdestd.

proof If n = 1, there is nothing to prove. If b=n » 2, this is proven in
[Ka-MG, Thm.7] under the hypotheses that p > 2n+1 and that det(¥) is
of finite order prime to p. In fact, the proof given there works mutatis
mutandis provided only that p > n and that det(¥F) is of finite order
prime to p. Let us explain how to reduce to this case. Denote by % =
det(p) the character of 74 given by det(%F). The slope of X at e is an

integer s ¢« a/b, and as a/b has exact denominator b » 2, we must have
s ¢ a/’b. We next claim that % has an n'th root. Indeed, the obstruction

lies in HZ(X, M) = 0 (cohomological dimension of open curves), so there

exists a character A such that AR = x'i. We next claim that A has
the same o -slope as ¥ . Indeed, for any real x > 0, a character & of |

has slope ¢ x if and only if g kills the pro-p group 1(x+) s0 raising
characters to prime-to-p powers doesn't change their slopes. Therefore
A has the same slope s < a/’b as %. So T®A has the the same highest
slope a/b, the same rank n, and trivial determinant. Moreover, T® A is
still Lie-irreducible (= irreducible on all finite etale connected coverings)
since this property is invariant under twisting by characters.

It remains only to remark that for any lisse ¥, and any

character A, the group (Ggeom)o,der is the same for ¥ and for F ®A.
Indeed, we have trivial inclusions
Ggeom(¥) € Emlgeom(F®A),  Ggeomn(TF ®A) € GrnGgeom(T).
Passing to connected components of the identity, we see that
G (Ggeom(TND = Gy (Ggeom(F®AND,



200 Chapter 7

and passing to commutator subgroups we find
(Ggeom(g:'))o,der = (Ggeom(g:'@/\))o,der,
as required. This concludes the proof in the case b = n.
We now treat the case b < n. The proof is very much analogous to

that of the Main D.E. Theorem, and we will only indicate what changes
need to be made. Exactly as in the proof of that theorem, we see that

9 = Lie(G0.der) is a semisimple Lie-subalgebra of End(%,) which acts
irreducibly on ¥ ,. By its very construction, ¢ is normalized by any
subgroup K of G.

We now use the slope hypothesis that at some point at
infinity e the highest slope is a/b in lowest terms and its multiplicity is
b to construct a diagonal subgroup K of G, to which we will then apply
Gabber's “torus trick™ 10.

As a representation of 1, F is the direct sum
F = Fop® Fq/p = (slope a/b, rank b) ® (all slopes < a/b).
In order to describe the representation ¥ o/}, of 1, explicitly, fix a

uniformizing parameter 1/x at o . This identifies the o -adic completion
of the function field of X with the Laurent series field K:=k((1/x)). Fix a
b'th root t of x, and denote by K}, the Laurent series field k((1/t)). In

this setting, I := I, is the local galois group Gal(K$€P/K), and

Gal(KS€P/Ky) is its unique closed subgroup I(b) of index b. The
representation Ta/b of 1 is irreducible, and as p does not divide b, it is
induced from a character ¥ of I(b) = Gal(K%€P/k((1/t))) of slope =a (cf.

[Ka-GKM,1.14]). Since p does not divide a, any such character ¥ is, by
[Ka-GKM, 85.7.1], of the form

=L < a-
% ¢(Pa(t))®(a character of slope ¢ a - 1),
where Pg(t) € klt] is a polynomial of degree a. At the expense of scaling
the parameter 1/x, we may assume that Pg(t) is monic, say t® + fg(t),
with f o(t) a polynomial of degree strictly less than a. As I’\P(f(a(t)) has

slope ¢ a - 1, we have
® = Lq‘(ta)@(a character of slope ¢ a - 1).
Therefore the restriction of ¥ 4/}, to I(b) is a direct sum

B, ug(Fy) Lq‘((gt)g)@(a character of slope ¢ a - 1).

Because gcd(a, b) = 1, as ¢ runs over ub(Fp) the ¢®'s are just a
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permutaion of the ¢'s, so we may rewrite this as
;i uy(Fy Lq‘(gta)@(a character of slope < a - 1).
Therefore as a representation of the upper numbering subgroup
1(b){®), we have

1 I I(b)(a) = Qrc “b(ip)

For each & in k we denote by

‘r'\p(gta) @ ( trivial of rank n - b).

Xg = the character of I(b)(a) given by l'.q‘(ﬁta)
The key observation is that for &, v in k we have
XEXQ = XEQ-Q;
% is trivial on I(b)(®) iff 5=0.
Let
I’ := the image of I(b)®) in G.
Then T is a diagonal subgroup of G, and the diagonal entries of ' are the
n characters _
the b characters X ¢ as ¢ runs over ub(k) = ub(Fp),

n-b repetitions of the trivial character ¥ .
We now apply the "torus trick” to I'. The discussion from here on
is exactly the same as in the proof of the Main D.E. Theorem 2.8.1,
except that now one is analyzing all possible relations
Rel(b < n)(Fp) «x -p=¥-85, where «, B, ¥, b lie in ub(Fp) v {0},

rather than in ub(C) U{0}. But our hypothesis on p insures that all

three of #(p,b), # #(p,b), and *# #(p,b) hold, in which case the
analysis is exactly the same as it was over €. QED

Remark 7.2.7.1 We could treat the case b=n by the above method
directly, but doing so would require us to exclude all primes which
divide aN4(n), rather than only those which are ¢ n.

7.3 Construction of Irreducible Sheaves via Fourier Transform
In this section, we will explain the systematic use of the one-
variable ¢-adic Fourier Transform FTq‘ to construct irreducible lisse

sheaves on open sets of Al := Spec(kix]), k a perfect field of
characteristic pz¢. We will make free use of the basic facts about FTq‘

(cf. [Ka-TL], [Ka-GKM chpt 8], [Lau-TF]). Let us recall the basic set-up.
(7.3.1) On any smooth, geometrically connected curve C/k, a
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constructible ﬁl-sheaf F on C is called a middle extension if for some

(or equivalently for every) nonempty open set j: U — C on which j*¥F

is lisse, we have ¥ = j,j*¥. Given a middle extension sheaf ¥ on C, and
a nonempty open set j: U = C on which j*7 is lisse, the sheaf

_j'(_j‘('}')v) (where j*(F)" denotes the linear dual, ie., the
contragredient representation of w1(U, u)) is again a middle extension,

which is independent of the auxiliary choice of the open set U. This
sheaf, denoted D(F), is called the dual of the middle extension F. A
middle extension ¥ on C is called irreducible if for some (or

equivalently for every) nonempty open set j: U = C on which j*¥ is

lisse, j*7 is geometrically irreducible (i.e., irreducible as a
representation of m4(Uek, u), for u € Us k any geometric point).

Lemmea 7.3.2 Let f: X =+ Y be a dominating morphism of smooth,
geometrically connected curves over k. If 7 is a middle extension on X,
then f,¥F is a middle extension on Y.

proof By [De-TF], f,F is constructible. Let j: U — Y be the inclusion of
a nonempty open set where f,¥F is lisse. Because f is dominating, 1)

is a nonempty open set of X; we denote its inclusion by h: FL(U) - x.

Let k: V — £ 1(U) be a nonempty open set of £~ 1(U) where 7 is lisse.
Then we have a commutative diagram

k h
v — i) — x
fyl cart £ |
Uu — Y. '
J

Because T is a middle extension, ¥ = h,k,(k*h*¥F) = h,h*7¥, so taking

f, gives

£,F = f,h h*¥F = j () ,h*F = j,j*f,F. QED

(73.3) For any constructible (_Je-sheaf F on Al, its "naive Fourier

Transform” NFTq‘('}') is the constructible (_Jg-sheaf ¥ on Al defined (in
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terms of the two projections of A2 to Al and the sheaf ‘r'\p(xy) on A2)
as
NFTq,('J") = RiprZ!(pri'T®l'.¢(xy))A _
By proper base change, the stalk of NFTq‘(T) at any point a in Aq(k) is
(NFT(F)q = HI(AI®K, FOL (o)

(73.4) A constructible Q,-sheaf ¥ on Al is called elementary if it
satisfies the following two conditions:

Elem(1) ¥ has no (nonzero) punctual sections, ie., HCO(A1® k, ) = 0.

[Equivalently, for every nonempty open set j: U — Al on which Jj*Fis
lisse, F & j,j*F

Elem(2) for every t € Kk, HCZ(A1® k, Te:’\p(tx)) =0,

(7.3.5) A constructible (_Jl-sheaf F on Al is called Fourier if it
satisfies the following two conditions:
Fourier(1) for some (or equivalently for every) nonempty open set
j: U = Al on which j*¥ is lisse, we have ¥ x j,j*7, ie, ¥ is a middle
extension on Al _
Fourier(2) for every t € k, we have
HO(AL@Kk FO®Ly(1x) = 0 = HAAI®K FOLy(1x)-

Equivalently, for an F that satisfies Fourier(1), Fourier(2) is the
condition that for some (or equivalently for every) nonempty open set
j: U = Al on which j*¥ is lisse, the geometric object j*¥| Uek has no

subsheaf and no quotient sheaf of the form J'L\p(tx)l Uek for any
t € k. Notice that this condition is autodual.

Given a Fourier sheaf ¥, its dual D(F) as a middle extension is
again a Fourier sheaf, called the dual of the Fourier sheaf 7.

§7.3 B6) A Fourier sheaf ¥ on Al is called irreducible if ¥ is
Irreducible as a middle extension, i.e., if for some (or equivalently for
every) nonempty open set j: U = Al on which j*7 is lisse, j*¥ is
geometrically irreducibl_e (ie, irreducible as a representation of
m1(Uek, u), for u € Ue k any geometric point).
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Thus a constructible (_Jg-sheaf ¥ on Al is an irreducible Fourier

sheaf if and only if it satisfies the following two conditions:
IrrFour(1) for some (or equivalently for every) nonempty open set

j: U = Al on which j*¥ is lisse, we have ¥ = j,j*F, and j*¥ is
geometrically irreducible, ie., ¥F is an irreducible middle extension. _
IrrFour(2) ¥ is not geometrically isomorphic to ‘r'q;(tx) for any t in k.

(73.7) If k is a finite field, X/k a smooth, geometrically connected
curve, and T a constructible Qp-sheaf on X, then for E a finite
extension of k, a point x € X(E), and a geometric point ¥ € X(kS®P) lying

over x, the stalk Tg of ¥ at X is a finite-dimensional ¢-adic

representation of Gal(ES®P/E). We denote by Fg the geometric Frobenius

element in this group (ie., Fg is the inverse of « + “Card(E))‘ Thus we
may speak of the trace, characteristic polynomial, eigenvalues, et
cetera of Fg acting on '3";. We define the Q,-valued trace function of ¥

on X(E) by
x € X(E) » Trace( Fg | F ) = Trace(FXE, x).
For a real number w, and an embedding : 63 — €, we say that T is

punctually 1-pure of weight w if for every finite extension E of k, and
for every point x € X(E), the eigenvalues « of Fg on ¥ g all satisfy

l(a)l = Card(E)W/2,
where |al denotes the usual complex absolute value. We say that ¥ is
"pure of weight w" if for some (or equivalently for every) nonempty

open set j: U = X on which j*7 is lisse, we have ¥ = j,j*7F, and j*¥ is

punctually 1-pure of weight w for every embedding 1: Q3 — C.

We can now recall the first basic result (cf. [Ka-Lau, 2.1 and 2 2],
[Ka-GKM, Chpt. 8], and [Ka-TL]) on Fourier Transform.
Theorem 7.3.8 (Brylinski, Deligne, Laumon) Let ¥ be a constructible

Q;-sheaf ¥ on Al
(1) If ¥ is elementary, then NFTq,(T) is elementary, and we have the
inversion formula
[F11*F(-1) = NFTq,(NFTq,(T)).
(2) If F is Fourier, then NFTq‘(T) is Fourier, and
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D(NFTy(¥)) = NFT¢([-11'(D('}')))(1).
(3) If F is irreducible Fourier, then NFTq‘('}') is irreducible Fourier.

(4) If k is a finite field, ¢ a nontrivial additive character of k, and if ¥
is elementary, then for every finite extension E of k, the trace function

of NFTq‘('}') on AL(E) = E is (minus) the finite field Fourier Transform of

that of ¥:
Trace(NFTq,(T))(E, v) = - Z, g YE(yx)Trace(F )E, x),

where yp(a) := $(Traceg;y(a)).

(5) If k is a finite field, and if ¥ is elementary and pure of weight w,
then NFTq,(T) is elementary and pure of weight w+1.

Let us also recall (cf. [Ka-GKMI], Chpt. 8) the numerology of the
Fourier Transform.
Lemma 739 Suppose k is algebraically closed, and that ¥ is
elementary. Denote by rank(F) the generic rank of ¥. Let 4 := NFTq,(T).

For each x € Al(k) = k, put drop,(F) := rank(¥F) - dim(%F ). Then
(1) For each t in Al(k), dim($y) =
= Swane(F®Ly(1y)) - rank(¥) + X
(2) § == NFTq‘(T) has generic rank

= T preaks s of ¥ MaX(0, 2 - 1) + T . (Swan,(¥F) + drop,(¥F)).

(Swan,(F) + drop,(¥)).

x in k

(3) § is lisse at t € Al(k) if and only if all the o -slopes of T@l’.q‘(tx) are
» 1.

7.4 Local monodromy of Fourier Transforms d'apres Laumon
(cf. [Lau-TF], [Ka-TL])

We next review the analysis of the local monodromy of a Fourier
Transform, via Laumon'’s "local Fourier Transform”. For simplicity of
exposition, we will throughout this section suppose that the field k is

algebreaically closed. Let us fix a geometric generic point 7 of Ai, ie,

an algebraically closed overfield L of k(x). Denote by k(x)S€P the
separable closure of k(x) in L. For each point t of P1(k) = Al(k) v oo,
viewed as a discrete valuation of k(x)/k, pick a place t of k(x)S€P lying
over it, and denote by I(t) C Gal(k(x)S®P/k(x)) the inertia group at t.

Given a constructible 6‘-sheaf F on Al jts geometric generic fibre Tﬁ

Is an ¢-adic representation of Gal(k(x)S®P/k(x)). We denote by F(t) the
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I(t)- representation TTT (cf [Ka-TL]). For s in Al(k), we denote by ¥ the

stalk of ¥ at s, viewed as a trivial I(s)-representation. To avoid
confusion with Tate twists, we will denote the latter in boldface, eg.
F(-1) is the Tate twist and F(-1) is the representation of the inertia
group at at he point s = -1,

Theorem of t-adic Stationary Phase 7.4.1 (Laumon) For each

point t in Al(k) Voo, there is an exact functor

FTyloc(t,): (e-adic I(t)-rep’s) —(t-adic I(w)-rep’s)
such that if ¥ is a constructible (_J‘-sheaf on Al which is the extension
by zero of a lisse sheaf on a nonvoid open set Al - Sthereis a
canonical direct sum decomposition of NFTq‘(T)(oo) as 1(e0)-

representation

t in Svoeo

NFT(F)() = D FT yloc(t, e )(F(£)).

The functors FTq‘loc(t,oo) have the following properties:

(1) For an I(o)-representation N, FTq‘loc(oo,oo)(N) = 0 if and only if all
slopes of N are ¢ 1, and FTq‘loc(w,w)(N) has all slopes > 1. FTq‘loc(oo,oo) is

an autoequivalence of the category of ¢~adic I(e)-representation with
all slopes > 1; for N an I(e)-representation with all slopes > 1, we have
the inversion formula

FTyloc(eo, 00 )(FTyloc(eo,00 XN)) = [-1]*N(-1).
If N has unique slope (a+b)/a with multiplicity a, then F'I'q,loc(oo,w)(N)

has unique slope (a+b)/b with multiplicity b. [NB.: We do not assume
here that gcd(a,b) = 1]

(2) For any I{0)-representation M, FTq‘loc(O,oo)(M) has all slopes < 1.

(3) For s in Al(k), denote by Add(s) : x P x + s the additive translation

by s. For L an I(s) representation, let Add(s)*L denote the I(0)-
representation obtained by identifying I(0) to I(s) by Add(s). Denote by
y the Fourier Transform variable. Then

FT¢loc(s, o )(L) = (FTq‘loc(O,oo AdA(s)*L)® ‘r'q;(sy)-

In particular, for s € k*, FTq‘loc(s,oo)(L) hes all slopes =1.
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proof Everything except (3) is proven in [Ka-TL]. For the canonical
extension ¥ of L, we have FTq‘loc(oo,oo)('}'(eo)) = 0 by (1), since F(o) is
tame, so stationary phase gives

NFTq,(T)(oo) % FTyloc(s, e XL).
For this ¥, Add(s)*7¥ is the canonical extension of Add(s)*L, and so by
the same argument we have

NFTq,(Add(s)'T)(oo) X FTq‘loc(O,oo)(Add(s)'L).
Assertion (3) now follows from the fact that for any constructible 6;-
sheaf ¥ on Ai, we have the global formula

~ *
NFTq,(T) X NFTq,(Add(s) T)@Lq‘(sy). QED

Corollary 7.4.1.1 In the stationary phase decomposition, the
individual pieces may be characterized as follows:
(1) FTq‘loc(oo,oo)('}'(oo)) has all slopes > 1

(2) FTq,loc(O,oo)('}'(O)) has all slopes < 1.
(3) For s € k¥, FTq,loc(s,w)('}'(s)) has all slopes =1, and

(FTq,loc(s,w)(?'(s)))@l'.q,(_sy) = FT¢loc(0,°°)((Add(s)"}')(o))
has all slopes ¢ 1.

Corollary 7.4.2 (Stationary Phase bis) Let ¥ be a constructible Q,-

sheaf on Al which has no punctual sections, and which is lisse on a

nonvoid open set Al - S Then there is a canonical direct sum
decomposition of NFTq‘(T)(oo) as I(o0 )-representation

NFT,(F)ee) = FTyloc(oo,)(F(ea)) @ D, 4 FTylocs,e0)F (51/F ).

proof Denote by j: Al - 5 = Al the inclusion. Because ¥ has no
punctual sections, we have a short exact sequence of sheaves on al
0— jjj*F = F = @,,, 4 (Fg concentrated at s) — 0.
Taking Fourier Transform gives a short exact sequence of sheaves on
Al,
0 - B, g '3"596 ‘r-q;(sy) - NFTq,(ij‘T) - NFTq,('J") —+ 0.
)

Restricting to I{c)-representations, we get a short exact sequence
0~ B,ins 15@6 Lytsy)
¢
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~ FTylocteo,)(F () @ B, 5 FTlocls,0)(F(s) » NFT(F)(e0) = 0.
By 7.4.11, the term ¥ ® g ‘r'q;(sy) must land entirely inside in
¢

s in

FTq‘loc(s,oo)('}'(s)). So it remains only to identify F(® g ‘r'q;(sy) with
1)

FT¢loc(s,w)('3"s). But this is immediate from applying the above

considerations to the constant sheaf with value Ts, and S = {s}. QED

We next recall
Theorem 7 .4.3 (Laumon) There is an exact functor

FTq‘loc(oo,O) : (8-adic I(w0)-rep's) — (t-adic I{(0)-rep's)

such that if ¥ is a constructible (_J‘-sheaf on Al with no punctual

sections, there is a four term exact sequence of I{0)-representations

0—H (AL, F)= NFTy,(F)(0) FTyloc(ee 0)(F (o)~ HZ(AL, F)—0.
If N is an I(e)-representation with all slopes 2 1, FTloc(e ,0)(N) = O.

Corollary 7 4.3.1 If ¥ is elementary, and ¢ := NFTq,(T), then
3(0)/%g = FTyloc(ee ,0)(F ().

The fundamental interrelation of FTq‘loc(O,oo) and FTloc¢(oo,0) is
given by
Theorem 7 .44 (Laumon)

(1) FTyloc(0,00) and [-1]'FT¢loc(°°,0)(1) are quasi-inverse equivalences

of categories
(¢-adic 1(0)-rep's) «—— (t-adic I(e)-rep’'s with all slopes < 1);

For M an I(0)-representation, and N an [{(«)-representation with all
slopes < 1, we have the inversion formulas

F'I'q‘loc(oo,0)(FT¢loc(0,°°)(M)) z [-1]*M(-1),
FTq,loc(o,oo)(FTq,loc(oo,0)(N)) = [-1]*N(-1).

(2) For X any continuous 6t-valued character of m((G @ k)tame - ith

inverse character ¥, we have
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FTq‘loc(O,w)(l'.x) Ly, FTq‘loc(oo,O)(l'.x) x Ly,
(3) If M is of the form l'.x®(a unipotent Jordan block of size n), then
FTq‘loc(O,oo)(M) is of the form l'.;(@(a unipotent Jordan block of size n).
If N is of the form l'.x®(a unipotent Jordan block of size n), then
FTq‘loc(oo,O)(N) is of the form L;@(a unipotent Jordan block of size n).
(4) If M has unique slope a/b > 0 with multiplicity b, then

FT¢loc(0,w)(M) has unique slope a/(a+b) with multiplicity a+b.

If N has unique slope a/(a+b) < 1 with multiplicity a+b, then
FTq‘loc(oo,O)(N) has unique slope a/b with multiplicity b.

proof Once (1) is proven, we argue as follows. One checks (2) by direct
global calculation; (3) then follows because the functors carry
indecomposables to indecomposables. They also carry irreducibles to
irreducibles, and (4) then follows from a global calculation of their
effects upon dimensions and Swan conductors.

A weaker version of (1) is proven somewhat clumsily in [Ka-TL,
Prop. 12 and Thm. 13]. Here is a simple proof of it, based on the bis
version 7 4.2 of stationary phase. Choose an auxiliary integer k 2 2
which is prime to p (eg, take k=2 unless p=2, in which case take k=3).

Let us begin with an [(0)-representation M, and denote by M its
canonical extension to G,,, extended by zero to Al Then define
F=MN® I-q,(xk)- Since I—q,(xk) is lisse ( in fact canonically trivial) at the

origin, we have F(0) * M as I(0)-representation. The sheaf ¥ is lisse on
G, and extended by zero across the origin, so it has no nonzero

punctual sections; as all its co-slopes are k > 2, ¥ is elementary. Let
g = NFTq‘('}'), By stationary phase applied to ¥, we have

G(e0) = FT¢1oc(oo,oo)('}’(oo)) ® FT¢1oc(0,w)(M).
Apply FT¢loc(o0,0); since FTq‘loc(oo,O) kills (slopes 2 1), we get
FT¢1oc(oo,0)(9(oo)) x FTq,loc(oo,O)(FTq,loc(O,oo)(M)).
By 7.43.1 applied to 4, if we denote H := NFT,($) = [-1]*F(-1), we
have
H(0)/Hg = FTyloc(ee,0)(F(e0)).
Since # x [-1]*F(-1), we have Hg = 0, and

H(0) = [-1]1*F(0)(-1) = [-1]*M(-1),
SO0 we may rewrite this
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[~11*M(-1) = FTq,loc(oo,O)(Sr(oo)),
whence
(~1]*M(-1) = FT¢IOC(°°,0)(FT¢loc(0,oo)(M)).

Conversely, let us begin with an I(e)-representation N all of
whose slopes are < 1. Let Jl denote its canonical extension to Gy,. Let

9 = J’l@l’.q‘(i/xk), extended by zero across the origin. Then ¢ has no

nonzero punctual sections, and being totally wild at zero it is therefore
elementary. Since I’\p(i/xk) extends across o as a lisse sheaf (which is

even canonically trivial at ), we have 34(») = N as [{e)-
representations. Let ¥ = NFTy($). By 7.4.3.1 we have

F0)/Fqg = FT¢loc(oo,0)(9r(°°))—“~: FT¢loc(w,0)(N).
By stationary phase bis appled to ¥, we have
FTq‘loc(O,oo)(T(O)/To) % the slope < 1 part of NFTq,(T)(w).
But NFTq,(T) x [-1]*9(-1), so NFT¢(T)(M) % [-1]*N(-1) as I(e0)-
representation. As N is entirely of slope < 1, we obtain
FT¢loc(0,oo)('3"(0)/'3"0) x [-1]*N(-1), whence

FTq‘loc(O,w)(FTq‘loc(oo,0)(N)) X [-1]*N(-1). QED

Corollary 745 Let ¥ be an elementary sheaf, $:= NFTq‘(T), and
s € Al(k). Then
(1) 4 is lisse at s if and only if F()® L\p(sx) has all co-breaks 2 1.

(2) ¢ is tame at s if and only if
T(oo)@l'.q‘(sx) % (all co-breaks =0)®B(all co-breaks > 1).

proof By translation, it suffices to treat the case s=0. Since ¥ is
elementary, ¢ is elementary, $g & 4(0), and we have

3(0)/3g = FTyloc(e,0)(F ().
But FTq‘loc(oo,O)(?'(oo)) vanishes (resp. is tame) if and only if the part of
F () of slope < 1 vanishes (reps. is tame). QED

Corollary 7.4.6 (Pseudoreflection Monodromy Criterion) Let F be
a Fourier sheaf, := NFTy(¥), and s € Al(k). Then ¢ has
pseudoreflection monodromy at s (in the sense that the subspace

g () = G of 3(s) is of codimension one in $(s)) if and only if either
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(1) T(oo)®l'.¢(sx) % (1-dim’], oo -break =0)®(all co-breaks 2 1)
* Ly ® (all co-breaks > 1),
in which case I(s) acts on the line 3(s)/3 by the tame character

I—i(x-s)a or
(2) for some integer n 2 1, we have

'}'(oo)®l'.¢(sx) X (n+1 -dim'l, co-breaks =n/(n+1))®(all co-breaks 2 1),

in which case I(s) acts on the line 3(s)/%¢ by a character of slope n. In

this latter case, there exists an element of the wild inertia group P(s)
which acts on 4(s) as a pseudreflection of determinant Sp-

proof By translation, it suffices to treat the case s=0. Since ¥F is
Fourier, ¢ is Fourier. Therefore g = 9(0)1(0), and

9(0)/9q = Frq,loc(oo,o)(?’(oo)),
The cases listed are those where FTq‘loc(w,O)(T(oo)) is of rank one. In

the second case, the character is wild, so its restriction to the pro-p
group P is nontrivial. QED

7.5 "Numerical~ Explicitation of Laumon's Results

In this section we will make explicit the exact relation between
the I(0) and () representations of a pair of Fourier sheaves ¥ and 4
which are Fourier Transforms of each other. The only delicate part
concerns the unipotent part of local monodromy.

We continue to suppose k algebraically closed throughout this
section.

Lemmma 7.5.1 Let ¥ be a Fourier sheaf,
9 = NFTq,(T), [-1]*F(-1) = NFTq‘(Qr).
Then

(1) dim(F(0){0)) = dim(F ).
(2) dim(F (e0)1{*)) ¢ dim(gq)
(3) dim(3(0)!(0)) = dim(gg).
(4) dim(g(e0)I{®)) ¢ dim(F )

proof The first assertion holds because F is Fourier. For the second.
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denote by j: Al o Pl the inclusion, and consider the short exact
sequence of sheaves on pl
0 - ji¥ - j, ¥ — (the punctual sheaf F(o0)l(®) at ) = 0.

We have HO(P1, ja¥) = HO(AL, F) = 0 (since F is Fourier), so the
coboundary of the long exact cohomology sequence given an injection
F(oo)l(®) s Hi(PL, jiF) = H1(AL, F) = 9y,

which proves (2). Assertions (3) and (4) are simply (1) and (2) with the
roles of ¥ and 4 reversed. QED

(75.2) We will use this lemmma in the following way. By part (3),
the number of unipotent Jordan blocks in ¢(0) as I(0)-representation is
precisely dim%q. By part (2), the number of unipotent Jordan blocks in
F (o) is at most dim$ . We will adopt the convention (compare [Ka-
GKM, 713, 75.1.3) that F(e) has precisely dim$q unipotent Jordan
blocks, with the convention that some of these blocks are allowed to be
of size zero. Similarly 3(e) has precisely dim¥ g unipotent Jordan
blocks, with the convention that some of these blocks are allowed to be
of size zero. Using these conventions, we define polynomials in Z[T]
1(dim. of block)’

P(F, 00,1, T) =2, dim$ g unip. blocks in F(e)

P(3.0,1, T = £y 4img g unip. blocks in §(0) T(dim. of block),

and similarly with the roles of ¥ and ¢ reversed. Notice that the
polynomial P(, 0, 1, T) has no constant term, while P(F, o, 1, T) may
very well have a constant term (namely the number of "dummy”
Jordan blocks, dim$q - dim(F (00 )I(e0))) If 90 vanishes, these
polynomials are identically zero. Clearly it is the same to know the
isomorphism class of the unipotent parts of F(e) and $(0) as to know
these two polynomials.

(75.3) For each nontrivial continuous Qy-valued character X of

m1(6,,8 KBME ith inverse character denoted X, we define

polynomials in Z[T]

P(F, 0, X, T) =X ) 1(dim. of block)

all unip. blocks in L y ® Floo
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P(3, 0, X T) = ) unip. blocks in £, 890 T(dim. of block),

but this time with the "naive” convention that we only take the sum
over as many Jordan blocks as there actually are. With this
convention, these polynomials never have a constant term. They can
be identically zero.

These conventions established, we can restate the "numerical”
version of Laumon's results 7.4.1, 74.2, 7.4 4.

Theorem 7.5.4 (Laumon) Let ¥ be a Fourier sheaf, ¢ = NFTq‘(T), (and

hence also [-1]*F(-1) = NFTy(3). Then 3(0) and 94(«) are related to
F(0) and F () by the following rules: Write

F(o0) = F(oo) @ F(o)

slope» 1 slope = 1 tame

® 1(“)0 ¢ slope ¢ 1 @T(oo)

'3"(00)31019e , 1 = ®(slope (a+b)/a, multiplicity a)

F(oo)y slope < 1 = B(slope c/(c+d), multiplicity c+d),

F(0) =F(0) o ®F ()

slope > tame

T(O)slope , 0 = ®(slope e/f, multiplicity f)
Then we have

(1) g(oo)slope , 1 & ®(slope (a+b)/b, multiplicity b).

(2) 3(o0)g ¢ sjope < 1 = B(slope e/(e+f), multiplicity e+f).
(3) P(3, o, X, T) = P(F, 0, X, T) for each nontrivial ¥.
(4) P(§, o, 1, T) = (F, 0, 1, T)/T.

(5) g(o)slope , 0 T B(slope c/d, muiltiplicity d).

(6) P(3,0, X, T) = P(F, oo, %, T) for each nontrivial X.
(M P(3,0,1, T) = TxP(TF, w0, 1, T).

Proof Assertion (1) is 7.4.1 (1). Assertions (2) and (5) are 7.4.4 (4).
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Assertions (3) and (4) are the same as (6) and (7) with the roles of ¥
and 4 reversed, so it remains to prove (6) and (7). From 7431 we
have

3(0)/3g = FTyloc(es,00(F (e0));

taking X-components, we see that (6) is just Thm 7.4.4 (3). As for (7),
write

g(o)unip x @ _, dim$ Unip(n;).
Then taking unipotent components gives
FTyloc(eo ,0)(F (0))URIP) = ($(0)/$)URIP = F(O)URIP /gq =
= g(o)unip /g(0)i0) % Bi-1 o dimg, Unip(n; - 1),
whence by 744 (3) we have
(F(e))UNIP = @, to dim$, Unip(n; - 1),
which is exactly (7). QED

7.6 Pseudoreflection Examples and Applications

In this section we discuss in detail examples of pseudoreflection
local monodromy, and whenever possible apply to these examples the
Pseudoreflection Thm. 15. We continue to suppose k algebraically closed
throughout this section.

Example 7.6.1 ¥ is a Fourier sheaf with
F(o) = (1 dim'l tame) @ (all slopes 2 1)
Then ¢ = NFTq,(T) has pseudoreflection tame local monodromy at zero.
Example 7.6.2 F is a Fourier sheaf and
F(eo) = (1 dim’), slope =1) @ (all slopes < 1).
Then there is a unique s in k* such ‘r'q;(sx)@? is of type (1), and ¢ :=

NFTq‘(T) has pseudoreflection tame local monodromy at s. In this case

g is lisse on Al - (0, s}, and has all its oo -slopes ¢ 1.

Conversely, if 4 is Fourier, lisse on Al - (0, s) with tame
pseudoreflection local monodromy at s, and has all its co-slopes ¢ 1,
then

NFT,,($)(e0) = FTyloc(s, X(3(s)/$s) ® FTyloc(0, =)G(0)/$0)
is of this form. Thus these two classes of sheaves are interchanged by
Fourier Transform. If we add the requirement that ¥ be lisse on Gp,,

this corresponds under Fourier Transform to the requirement that ¢
have all its e -slopes < 1.
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Theorem 7.6.2.1 Suppose ¥ is an irreducible Fourier sheaf which is
lisse on Gy, with

F(o) = (1 dim’], slope =1) @ (all slopes < 1), say

X (Ly(-sx)®Ly) & (all slopes < 1).

Then ¢ := NFTq‘(T) is irreducible Fourier, lisse on Al - (0, s), has

pseudoreflection tame local monodromy at s of determinant X (x-s),
and all its co-slopes < 1. Moeover,
(1) If p> 2rank(¥F) + 1, then ¥ is Lie-irreducible, the upper numbering

subgroup (I(«)){1) acts on F(x) by pseudoreflections of determinant
L y(-sx). and G := Ggeom for F has G0.der = s1(F ).

(2) If § has det($) of finite order, and if ¢ is neither induced nor has
finite geometric monodromy, then ¢ is Lie-irreducible, and for it
G:=Ggeom hes G0.der gne of the groups SL($,), S0(3,), or (if rank($) is
even) Sp($,).

proof For (1), we get Lie-irreduciblity by observing that ¥ cannot be
Kummer induced because it has an c-slope (namely 1) occuring with
multiplicity one. For (2), we have Lie irreducibility by 7.26(6). Now
apply the pseudoreflection theorem 1.5. QED

Example 7.6.3 ¥ is a Fourier sheaf of generic rank one, and the oo-
slope of ¥ is ¢ 1. Then there is a unique s in k such that ‘r'\p(sx)@? is

tame at oo, say ‘r'q;(sx)@? X Ly (x) as I(«)-representation, and ¢ is lisse
on Al - (s} with pseudoreflection tame local monodromy at s whose
determinant is L3 (x-s) @s I(s)-representation. Moreover, at « ¢ has
all slopes ¢ 1. For such a 4, its NFTq‘(gr)(oo) is the single term

FTyloc(s, ©)(3(s)/$s). which is 1-dim'l of slope ¢ 1. Thus these two

classes of sheaves are interchanged by Fourier Transform.

Theorem 7.6.3.1 Suppose that ¥ is a Fourier sheaf of generic rank
one, with eo-slope ¢ 1. Then there is a unique s in k such that
‘r'\p(sx)@?’ X Ly (x) as [(e)-representation,
and §:= NFTq‘('}') is lisse on Al - (s} of rank
rank(3) = £, o1 (dropy(F) + Swan,(F)).
with pseudoreflection local monodromy at s of determinant X(x-s).
Suppose that p > 2rank(3) + 1, and that either rank($) = 2 or that X is
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not the character X, of order two. Then 9 is Lie-irreducible, and for it

G:=Ggeom has G0.der gne of the groups SL(3,), SO(3,), or (if rank(Q) is

even) 5p($,). Moreover,

if X # 1,2, then G0.der = s1(g.);
1, then GO0.der - SL(,) or (for rank($) even) Sp(%,);
%2, then GO.der = S1(3.) or SO(,,).

if ¥
if X

]

proof Notice that such an F is automatically irreducible Fourier
(simply because it is Fourier of generic rank one). Therefore ¢ is
irreducible Fourier. By 7.26 (7), if p > 2rank(4) + 1, then ¢ is Lie-
irreducible unless ¢'s local monodromy at s is a tame reflection (ie.,
‘r'\p(sx)@? x I.X(x) as I{e0)-representation with % the character of

order two) and ¢ has rank two. If ¢ is Lie-irreducible, then 15 gives

the short list of possibilities for G0-4€r Let us calculate the rank of .
By ¥ » ‘r-q;(sx)@?: we may reduce to the case where ¥ is tame at oo,

and ¢ is lisse on Gp,. Since ¢ then has pseudoreflection local
monodromy at zero, we find

rank(3) = 1 + dim3g = 1 + h1 (A, F)= 1 -x (AL, )

1 - (A1) ¢+ Swan (F) + I, o1 (drop,(F) + Swan,(F))
= I, in at (drop,(F) + Swan,(¥F)).QED

Example 7.6 .4 Suppose that C is a connected smooth complete curve
over k, with a marked point . Fix an integer n » 1 such that n and n
+ 1 are both prime to p. Let £ be an t-adic sheaf on C - {e} which is
generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swan (LX) = n. Let f

be a rational function on C whose only pole is at o, of order n + 1. View
f as a finite flat morphism f: C - {0} = Al (Because n+1 is prime to p,
f is generically etale) Then 7 := f,L has generic rank n+1, ¥ is the
direct image of its restriction to a nonempty open set where it is lisse,
and all the s -slopes of ¥ are n/(n+1). By its co-slopes, F is I(o0)-
irreducible. Therefore ¥ is an irreducible Fourier sheaf. Thus ¢ =
NFTq‘(T) is an irreducible Fourier sheaf, lisse on G, with

pseudoreflection local monodromy at zero whose determinant has slope
n.
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Theorem 7.6.4.1 Suppose that C is a connected smooth complete curve
over k, with a marked point . Fix an integer n 2 1 such thatnand n
+ 1 are both prime to p. Let £ be an t-adic sheaf on C - {00} which is
generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. Suppose that Swang (L) = n. Let f

be a rational function on C whose only pole is at o, of order n + 1.
Define ¥ = £, L, ¢ == NFTq‘(T). Then ¢ is an irreducible Fourier sheaf,

lisse on Gy, of rank

rank($) = n + 2genus(C) + I ., «~_ (., (dropy(X) + Swan,(XL)),
with pseudoreflection local monodromy at zero whose determinant has
slope n. If If p > 2rank(}) + 1, then G:= Ggeom for ¢ has g0.der - s1(3,).

proof If p > 2rank($) + 1, then ¢ must be Lie-irreducible (by wildness
of the pseudoreflection, cf. 7.2.6 (7)). In view of 15, we see that ¢ must

have g0.der - SL(3,). Alternatively, once ¢ is Lie-irreducible and p =z 2
we can apply the Main ¢-adic Theorem 7.27 to ¢ at zero, with a/b =
n/1. The conclusion we reach, namely gO.der - SL(3,). is of course the

same.
To see what “p > 2rank($) + 1" means, let us calculate the rank of
9. Since ¢ has pseudoreflection local monodromy at zero,

rank(3) = 1 +dim3qg = 1 + h1 (AL £, 2)= 1 -x (AL, £, L)
= 1 =% (C - {e0), L)
1 - %X(C - {e0}) + Swango (L) + Z, i ¢ . () (dropy(L) + Swan,(X))
2 - X(C) + Swan (L) + £, «_ () (dropy(X) + Swan,(L)).
n + 2genus(C) + & y {(dropy(ZL) + Swan,(L)). QED

x in C - {e

7.7 A Highest Slope Application

We continue to suppose k algebraically closed throughout this
section.
(7.7.1) Suppose that C is a connected smooth complete curve over
k, with a marked point . Fix integers n > 1 and d > 1 such that

ged(n, d) = 1, n 2 d, both n and d are prime to p.

Let L be an t-adic sheaf on C - {c} which is generically of rank one
and is the direct image of its restriction to a nonempty open set where
it is lisse. Suppose that Swan (L) = n. Let f be a rational function on C
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whose only pole is at e, of order d. View f as a finite flat morphism

£.C - {0} = Al (Because d is prime to p, f is generically etale) Then F
= f,L has generic rank d, ¥ is the direct image of its restriction to a

nonempty open set where it is lisse, and all the «-slopes of ¥ are n/d.
By its co-slopes, ¥ is I{w)-irreducible. Therefore ¥ is an irreducible
Fourier sheaf. Therefore ¢ := NFTq‘(T) is an irreducible Fourier sheaf. To

analyse ¢ further, we must distinguish cases, according to whether
n>dord> n.

(7.7.2) If n> d, then ¢ is lisse on Al Its rank is therefore equal to
dim$q, so we find
rank($) = dim3g = h1 (Al £, 2)= -x (AL, £, L)

= - % (C - {e}, L)
- %X(C - {e0)) + Swan (L) + T, ¢ () (dropy(X) + Swan, (L))
= n-1+2genus(C) + £, . () (drop,(X) + Swan,(L)).

If p> 2rank($) + 1, then ¢ is Lie-irreducible. As its highest co-slope is
n/(n-d) with multiplicity n-d, we may apply the main t-adic theorem
7.2.7 provided that p does not divide 2nN4(n-d)N5(n-d).

(7.7.3) If d > n, then ¢ is lisse on Gy,. Since 4(0)/4q =

FTq‘loc(oo,O)('}'(oo)) has rank d-n and all slopes n/(d-n), we find

rank(3) =d-n+dim$g=d-n*+ hic(Ai, f,L)= d-n -Xc(Ai, f,L)=
=d - n - %X(C - {e}, L) =

=d-n- X(C-{e)) + Swan (L) + _ «_ (o) (drop, (L) + Swan,(L))=
=d-1+2genus(C) + £ «_(, (drop, (L) + Swan,(XL)).

If p> 2rank(g) + 1, then ¢ is either Lie-irreducible or Kummer-induced.
In fact, 3 cannot be Kummer induced if p > d. [Notice that the condition
p > d is satisfied if p> 2rank(%) + 1, since rank($) > d-1andd> n 2 1]
Once this point is established, we may apply the main ¢-adic theorem
7.2.7 to ¢ (its highest slope at zero is n/(d-n), multiplicity d-n) provided
that p > 2rank(3) + 1 and p does not divide 2nN4(d-n)Na(d-n).

(7.7 .4) We now explain why ¢ cannot be Kummer induced. As 1(0)-
representation, we have
3(0) = 4o ® (rank d-n, all slopes n/(d-n)),
which cannot be Kummer induced unless g vanishes. But
dim%g = n- 1 + 2genus(C) + £ - {w) {dropy (L) + Swany(L)),

x in C
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which can only vanish if all of the following conditions are satisfied:
(1)n =1

(2) genus(C) = 0, ie, C - {oo) is Al

(3) L is lisse on ALl
Therefore if 3g vanishes, L must be ‘r'q;(tx) for some t € kX, fis a
polynomial of degree d prime to p, and ¥ is fi‘r'\p(tx)- In this case, there

is a simple sufficient condition which guarentees that ¢ is not Kummer
induced.
Lemma 7.7.5 Suppose that f(x) € k[x] is a polynomial of degree d,
1<d<p.Then 9 == NFTq,(f,l'.q,(tx)) is not Kummer-induced for any t in
k.
proof We will analyze 3(e). Let us denote by

B1, .-, By the critical values of f.

For each critical value p;, denote by
®j 1, -, %jg(j) the critical points of f (zeroes of f') in £ 1(p).

Since ‘r-\p(tx) is lisse on Ai, F = f!‘r'\p(tx) is lisse outside the critical
values By, ..., By of f. For each critical point «, denote by e(x) its
multiplicity as a zero of f. Then

f(x) - flae) = (x - x)1*e(®)(q function invertible at ).
Since 1 + e(x) ¢ 1 + d-1 < p, we may rewrite this

f(x) - f(a) = (a uniformizing parameter at «)l*e(x)
Therefore if we translate p — 0 the I(p)-representation T(D)/TD we get

an isomorphism of 1(0)-representations
Add(B)*(F(p)/Fp) = By 4y p ([1+ e(x)],Qe)/Qy =

2$“ - B eall yxite(®) - 1y nontriv I”)(,(x).

Since ¥ has all co-slopes 1/d (or 0, if t = 0) < 1, we have
() = By FT¢loc(p, oo)('}’(p)/'}’b) x

= 858“ - B eaﬂ x 1*&(®) = 1, x nontriv L\')(Dy)@Li(y)

If (o) is Kummer induced of degree m 2 2 prime to p, say
3(e0) = [m], ¥ for some I()-representation H,

th_en it is Kummer induced of degree q for any prime divisor q of m
(since [m], #. = [q]l,[m/ql,K), so it suffices to show that 93 (o0) is not
Kummer induced of prime degree m = p. If it were so induced, then



220 Chapter 7

[m]*3(e0) = [m]*Im], ® = By ), My 1Y 7 SV R,
and so in particular ¥ itself is a direct factor of [m]* $(eo)

@ Dea — D@,u X_l’E(“) = 1, X nontriv [m]'(l'.q‘(by)@l'.'i(y))

Therefore H is itself of the form

® beoc L4 Desome x 1+&(®) = 1, ¥ nontriv [m]'(‘r'xp(by)@‘r'i(y))-

By the projection formula, [m],H is

Bp®Bx > pDrame x 1€ = 1, ¥ nontriv (I.q,(by)@l'.i(y))@[m],ﬁg X

&

B beoc [ d De:ome 11‘9(“) = 1, ¥ nontriv I-q;(by)sr'—‘)_((y)@:’p(y),
all p™m = 1

If this is to be the expression of G ()
T DpBy s p Ban yx1*%0) L 1, y nontriv ‘r'q;(by)@‘r'i(y)'
we see that for each critical value p of f, we have
(1) m divides the multiplicity with which L(py) occurs in ¢(e)|P(eo).
(2) the set of characters with multiplicity
“‘(X. - B J"l‘all x 1*&(a) = 1y nontriv X
is stable under ¥ + %p, for any character p of order m.

Fix any critical value p. By (2), given p of order m, p is the ratio of two
characters % 1/ %2 where each % has order dividing 1 + e(x;) for some

«; = p. Therefore as m is prime, at least one of the numbers 1 + e(x)

must be divisible by m, say m | 1+e(x ). But then p'1 is itself a
nontrivial character ¥ of order dividing 1+e(<x1), and the stability

under ¥ H %p implies that the trivial character is a member of the
set in (2), contradiction. QED

Thus we obtain the following theorem.
Theorem 7.7.6 Suppose that C is a connected smooth complete curve
over k, with a marked point o . Fix integersn > 1 and d 2 1 such that
ged(n, d) = 1, n 2 d, both n and d are prime to p.
Let £ be an t-adic sheaf on C - {«} which is generically of rank one
and is the direct image of its restriction to a nonempty open set where
it is lisse. Suppose that Swan, (L) = n. Let f be a rational function on C
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whose only pole is at o, of order d. Define ¥ := f, L, ¢ := NFTq‘(T),
G:= Ggeom for 9.

(case n > d) If n > d, then ¢ is lisse on Al of rank

rank(3)= n - 1 + 2genus(C) + £, _(,, (dropy(L) + Swan,(X)).
Det(4) has finite p-power order q. If p > 2rank($) + 1, then ¢ is Lie-
irreducible, q = 1 or p, and G =quO, with G0 = Goidersemisimple.

(case d > n) If d > n, then ¢ is lisse on Gy, of rank
rank(3) = d - 1 + 2genus(C) + £ . (o) (drop, (L) + Swan,(X)).
If p> 2rank($) + 1, then ¢ is Lie-irreducible.

In either of these two cases, if p > 2rank($) + 1 and p does not divide
2nN(In-dDN5(In-dl), then GO = GO.der s one of

(1) If In-dl is odd, GO.der is SL(3,).
(2) 1f In-d| is even, then either GO.der jg SL($,) or SO(3,) or (if rank($)

is even) SP(%,), or In-dl=6, rank(3)=7,8 or 9, and g0.der s one of
rank(%)=7: the image of G2 in its 7-dim’l irred. representation
rank($)=8: the image of Spin(7) in the 8-dim’l spin representation
the image of SL(3) in the adjoint representation
the image of SL(2)xSL(2)xSL(2) in stdestdestd
the image of SL(2)x Sp(4) in stde std
the image of SL(2)xS5SL(4) in stdestd
rank(3)=9: the image of SL(3)xSL(3) in stdestd.

proof This is the main t-adic theorem 7.2.7. In the case n > d, we also
use [Ka-MG, Prop. 5] to know that if p > 2rank($) + 1, then G =quO,
with G0 = g0.der semisimple. QED

7.8 Fourier Transform-Steble Classes of Sheaves
In this section we will discuss in detail several classes of Fourier

sheaves on Al which are stable under NFTq‘, with particular attention

to “following™ their highest slopes. Basically, all we are doing is spelling
out Laumon'’s general results on the local monodromy of Fourier
Transforms in some special cases where they provide input for the
main ¢-adic theorem 7.2.7. One of the principal applications of the
material in this section will be to the definition and study of the
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characteristic p ¢t-adic sheaf analogue of the generalized
hypergeometric D-modules studied earlier.

In each example below of such a class €, we denote by ¥ and ¢
members of the class T. We write ¥ © 9 to indicate that ¥ and $ are
Fourier Transforms of each other:

Fodg means 9 = NFTq‘(T) and [-1]*F(-1) = NFT($).

We continue to suppose k algebraically closed throughout this
section,

Class (1) The class of lisse sheaves on Al with all co-breaks > 1. Indeed,
any such sheaf is Fourier, and for Fourier sheaves, the two conditions

"lisse on Al and "all co-breaks > 1" are interchanged by Fourier
Transform.

If ¥ © ¢ in this class, then ¥ and 4 have the same number of
distinct oo -breaks, and they correspond as follows:

oo -break multiplicity
¥F (a+b)/a a
9 (a+b)/b b

rank¥ + rank$ = Swan_ (F) = Swan($).

On e« -breaks themselves, the rule is 1+x = 1 + (1/x). So the biggest co-
slope of ¥ becomes smallest co-slope of 4, and vice versa. This class of
sheaves is stable under additive translation and under ®‘r'¢(sx)-

Class (1 bis) The subclass of (1) which have a unique «-break.

Class (1 ter) The subclass of (1 bis) whose unique o -break has exact
denominator the rank of the sheaf. Recall from [Ka-MG, Thm 9] that

for such sheaves, if p > 2rank + 1 we always have G0 = SL or (in even
rank) Sp. :

Class (2) Fourier sheaves which are lisse on G,,. with all co-breaks =1
Indeed for Fourier sheaves, the two conditions “lisse on G,," and “all oo~

breaks #z 1" are interchanged by Fourier Transform.If ¥ © ¢ in this
class, then visibly we have )
Swang(F) + Swane (¥) = Swang(3) + Swan,(3).
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In fact, if we calculate dim$qg = -xc(Ai, ¥F) by the Euler-Poincare
formula, we find
dim¥ g + dim$g

Swang(¥F) + Swan(F)
Swang($) + Swan($).

The polynomials (cf. 752, 7.5.3, 7.5.4) describing the tame parts of the
local monodromies are interrelated by

P(, e, %X, T) = P(F, 0, X, T) for each nontrivial X.
P(g, o, 1, T)=P7%,0, 1, T)/T.
P(3.0, X, T) = P(¥F, oo, X, T) for each nontrivial X.

P(3,0, 4, T) = Tx(F, o, 1, T).

(782.1) Within the class (2) of Fourier sheaves which are lisse on G,

and have all co-breaks z 1, there are various supplementary Fourier-
stable conditions which define Fourier-stable subclasses. Here are two
examples. The parameter k is a nonnegative integer.

(ZCard = k)
Card{distinct 20 co-breaks} + Card{distinct #0 O-breaks} = k,

(ZSwan = k)
Swang(F) + Swan(F) = k.

(7822) Between these conditions there are the obvious implications
(ZSwan=k) = (ZCard ¢ k),
(ZSwan = 0) & (ZCard = 0).
For any k 2 1, and any tame character ¥, the set of irreducible
Fourier sheaves ¥ of class(2) which satisfy (ECard = k) [resp. which
satisfy (ZSwan = k)] is stable by the operation

F _j‘(l'..x@_j'?'),
where j: Gy, — Al denotes the inclusion. (If k=0, the only such
irreducibles are the l'.x with % nontrivial, and the condition "%

nontrivial” is clearly not stable under this operation)
There is another stability property worth noting. For each integer
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n 2 1, denote by [n]: x = x™ the n'th power map of Al to itself.

Lemma 7.8.2.3 (compare 3.7.6) Suppose that ¥ is a Fourier sheaf on
Al which is lisse on G, with k := Swan,(F) + Swang(¥F).Let n > 1 be

an integer which is prime to p. Then
(a) If n> k, then [n], ¥ is Fourier, lisse on G.p,, with all 0-breaks < 1 and

and all «-break < 1, and Swang(In],¥) + Swang(In], %) = k.
(b) If gcd(n, k) = 1 and T is irreducible Fourier, then [n], ¥ is

irreducible Fourier.

proof (a) The condition Fourier(1) is stable by f, for any finite map of

Al to itself as is the condition that HO(Al, F) = 0 = Hzc(Ai, F). That
[n], ¥ is lisse on G, has all breaks ¢ k/n < 1, and has Swan(In],F) +

Swang([n], ¥) = k, is obvious. For t = 0, ([n],'f)@l’.q‘(tx) consequently

has all w-breaks =1, so has vanishing H0 and Hzc. Therefore [n], ¥ is

Fourier.
(b) Suppose F irreducible Fourier. If n=1 or ¥ = 0, there is nothing to
prove.lf n> 1 and ¥ 2 0, then [n],¥F has generic rank > 2, and is the

direct image of its lisse restriction to G,,. So to show that [n], ¥ is
irreducible Fourier, it suffices to show that [n], ¥ | G, is irreducible. By

Frobenius reciprocity, this is the same as showing that ¥ | G, has

multiplicity one in [n]*In], ¥ | 6, = & o [x = ex]*(F | 6). If this

gem,
were not the case, then there would existngzi in pj(k), say of exact
order d » 1, dln, and an isomorphism

FlEmy =[x exI™(F | 6.
Since ¥ | G, is irreducible, this isomorphism allows us to descend
¥ | 64, through the d-fold Kummer covering, whence k := Swan (%) +
Swang(7¥) is divisible by d. But dln, and gcd(n,k) =1. Therefore d=1. QED

Class (3) The subclass of (2) consisting of Fourier sheaves which are
lisse on G, and which have all w-breaks < 1. Indeed for Fourier

sheaves, the condition "all co-breaks ¢ 1" is stable by Fourier transform
If ¥ 9 in this class, then *

¥ has «-break a/(a+b) > 0 with multiplicity a+b &

© ¢ has 0-break a/b > 0 with multiplicity b.
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On breaks themselves, the rule is
o-kreak x > 0 for ¥ & O-break x/(1-x) > O for §.
O-break y > 0 for ¥ & oco-break y/(1+y) > 0 for F.
This rule is order-preserving. so we can read biggest O-breaks in
terms of biggest s -breaks.
In addition to
dim¥ g + dim%q

Swang(¥F) + Swan(F)
Swang($) + Swan,, (%),
we have the additional symmetry
Swan,, (¥) = Swang($), Swan,(3) = Swang(¥).

(78.3.1) Within the class (3) of Fourier sheaves which are lisse on G,

and have all «o-breaks < 1, there are (in addition to (ZCard = k) and
(ZSwan = k)) a few more supplementary Fourier-stable conditions
which define Fourier-stable subclasses. Again the parameter k is a
nonnegative integer.

(Card = k)
Card{distinct 20 co-breaks} = Card{distinct 20 O-breaks} = k.

(ExDenom): both the following conditions:

the highest o -break of ¥, if nonzero, has multiplicity its exact
denominator,

the highest O-break of ¥, if nonzero, has multiplicity its exact
denominator.

(7832) Between these we have the implications

(ZSwan=k) = (ZCard ¢ k),

(ZSwan z 0) © (ZCard = 0)

(ZSwan = 1) = (ZCard = 1) and (ExDenom).
(78.33) For any k 2 1, and any tame character ¥, the set of
irreducible Fourier sheaves ¥ of class(3) which satisfy (ZCard = k)
[resp. which satisfy (ZSwan = k)] is stable by the operation

¥ j,(I.X@j'T),
where j: 6, — A1l denotes the inclusion. The supplementary condition
(ExDenom) is also stable by this operation.

79 Fourier Transforms of Tame Pseudoreflection Sheaves
(79.1) We continue to work over an algebraically closed field k of
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characteristic p > 0. We say that a constructible (_J;'sheaf FonAlisa

tame pseudoreflection sheaf if it satisfies the following three
conditions:

(TPR1) 7 is everywhere tame, ie, for every t € P1, F(t) is a tame
representation of I(t).
(TPR2) for some (or equivalently for every) nonempty open set

j:U = Al on which j*¥ is lisse, we have ¥ = j, j*¥.
(TPR3) For every s in Al(k) at which T is not lisse, F(s)/F 4 is one-

dimensional (i.e, local monodromy at s is by tame pseudoreflections).

(79.2) We say that a tame pseudoreflection sheaf ¥ is irreducible if
in addition it satisfies
(IrrTPR) for some (or equivalently for every) nonempty open set

j:U = Al on which j*7 is lisse, j*¥ is irreducible (as rep'n of mq).

(79.3) Any nonconstant irreducible tame pseudoreflection sheaf is
an irreducible Fourier sheaf, and its set S of points of nonlissity in Alis

a finite nonempty subset of Al(k).

Theorem 7.9.4 Let ¥ be a nonconstant irreducible tame
pseudoreflection sheaf on Al, with set S = {sg, ..., sy} of points of
nonlissity in Al(k) = k. Then

NG == NFTq‘(T) is an irreducible Fourier sheaf which is lisse on Gy, of
rank r := Card(S).

(2) The restriction of (o) to the wild inertia group P(e) is isomorphic
to 8y, Lylsiy):

(3) (o) is not Kummer induced.

(4) ¢ is not Kummer induced.
(5) If p> 2r + 1, § is Lie-irreducible.

proof Since ¥ is irreducible Fourier, so is ¢. Since F (o) is tame, ¢ is
lisse on Gy, and $(e0) X B, FTyloc(s;, oo)(?'(si)/?'si). By hypothesis

1

each '3"(si)/'3"si is of the form I.Xi(x_si), so

Gloo) = B, I’\P(Siy)@ I_ii(y).

This proves (1) and (2). Assertion (3) trivially implies (4), and (1) and
(4) together imply (5). Assertion (3) holds because the distinct I’\P(Siy)
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each occur with multiplicity one, thanks to the following lemma.

Lemma 7.9.5 Let M be an t-adic I(e)-representation whose restriction
to P(e) is a direct sum of r distinct characters L (s.) with
$isiy

multiplicities n;. If M is Kummer induced of degree m, then m divides
every n;. In particular, if gcd(all nj) = 1, M is not Kummer induced.
proof As I(eco)-representation, M is ®,., Lq‘(siy)@(tame of dim. n;). If
M is [m], ¥ for some [(w)-representation #, then (cf. the proof of
78.2.3) K is a direct factor of [m]*M, so of the form

H=x®@,., . Lq‘(siym)@(tame of dim. d; ¢ nyp,

whence [m],® is &, . Lq‘(siy)@(tame of dim. md;). QED

ey

This lemma proves (3), and so concludes the proof of the theorem. QED

Theorem 7.96 Let ¥ be a nonconstant irreducible tame

pseudoreflection sheaf on Al, with set 5 = {sq, ..., s} of points of

nonlissity in Al(k) = k. Supppose that

(1) among the numbers s; € k, there are no relations of the form
$i~Sj =Sk~ Sn

except for the trivial ones (i=j and k=n) or (i=k and j=n).

(2) p>2r + 1.

Then G := Ggeom for ¢ = NFT,(¥) has G0.der = SL(r).

proof Since p > 2r + 1, we know that ¢ is Lie-irreducible. We apply
Gabber's torus trick 10 to the diagonal subgroup which is the image of

P(). The hypothesis (1) of nonrelations then forces Lie(G0.d€r) to
contain the full maximal torus of SL(r). If r ¢ 2, Lie-irreducibilty forces

cO.der - si(r). 1f r » 3, apply 1.2 and then eliminate the other
possibilities SO or possibly Sp because their ranks are < r-1. QED

Here is a minor variant.
Theorem 7.9.7 Let T be a nonconstant irreducible tame

pseudoreflection sheaf on Ai, with set 5 = (sq, .., s} of points of

nonlissity in AL(k) = k. Supppose that
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(1) the numbers s; are all nonzero, the set S is stable under s = -s, and
there are no relations of the form

$j~$j =Sk~ Sn
except for the trivial ones (i=j and k=n) or (izk and j=n) or (s; = -s,
and - sj = sk).
(2) p>2r+ 1.
Then G := Ggeom for ¢ = NFTq‘(T) has GO, der = SL(r) or Sp(r) or SO(r).

proof This time the hypothesis (1) of nonrelations and the torus trick

10 forces Lie(G0.9€T7) to contain the full maximal torus of Sp(r), and we
apply 1.2. QED

7.10 Exemples

We continue to work over an algebraically closed field k of
characteristic p>0.
(7.10.1) (Lefschetz pencils) Start with a smooth connected projective

variety X C PN over k of dimension n 2 2, and consider a Lefschetz
pencil of hyperplane sections XNH, of X, with associated fibration
£: % - pl (ie, 1) = XNH). If p 2 2 or if n-1 is odd, the quotient
sheaf on P1

Evh~1 =Rn-1f Q,/(the constant sheaf HN"1(X, Q,))

is, when restricted to any Al c Pi, an irreducible tame
pseudoreflection sheaf (cf [De-WII).

(7.10.2) (Supermorse functions) This example is a slight
generalization of a Lefschetz pencil of relative dimension n-1 = 0. Let C
be a complete smooth connected curve over k, f a nonconstant rational
function on C, D the divisor of poles of f. View f as a finite flat
morphism
£.C-D — Al

whose degree we denote deg(f). We suppose that the differential df is
not identically zero (ie., f is not a p'th power), and denote by Z € C- D
the scheme of zeroes of df on C - D. We put S := f(Z(k)) ¢ Al(kx). Then f
makes C - D - Z a finite etale connected covering of Al -5

Consider the sheaf f,Q, on Al The trace morphism (for the finite

flat morphism f) is a surjective map Tracef : f,ﬁ,_ - G_J;, whose
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restriction to the subsheaf ﬁl of f,Q, is multiplication by deg(f). Thus
F := Kernel of Traces : f,Qy — Q,

is a direct factor of f, Q of generic rank deg(f) - 1.

Lemma 7.10.2.1 If deg(f) < p, ¥ is a Fourier sheaf.
proof Since ¥ is a direct factor of a sheaf (namely f,Q,) which is the

direct image of its restriction to Al - 5, T shares this property. Since
F (o) is tame (because deg(f) < p), we have

HO(AL, F@®L y(1y)) = 0 = HE(AL, TOL iy
for t = 0 by slopes. For t =0 this vanishing persists. Because C - D is a
smooth connected curve, HO(A1, £,@,) = HO(C - D, Q) = Q,, and

H2 (A1, £,Q,) = H2(C - D, Qp) = Qu(-1), so the inclusion Qp — £,Q,
induces an isomorphism on both HO and HZC. QED

(7.102.2) We say that the function f on C - D is a supermorse function
if it satisfies the following three conditions:

(SM1) deg(f) < p.

{SM2) all zeroes in C - D of the differential form df are simple, ie, the
scheme Z is finite etale over k.

(SM3) f separates the zeroces of df in C - D, i.e,, Card(3) = Card(2).

Lemma 7.10.2.3 If f is a supermorse function, then ¥ is an irreducible
tame reflection sheaf.
proof Since deg(f) < p, f,Q, and hence its direct factor ¥ is everywhere

tame. By (SM2) and (SM3), f, Q, is a pseudoreflection sheaf (indeed a
reflection sheaf). To see that F is irreducible, it suffices to show that on
the open set Al ~ 5 where f,Qy is lisse, Ggeomn for f.Qy is the full
symmetric group G4 in its standard d-dimensional representation. For
then Ggeom for ¥ will be &4 in its augmentation representation, which
is irreducible. _

The group Ggeomn for f, Q, is intrinsically a subgroup I" of & 4,
well-defined up to conjugacy. In terms of a chosen geometric point g of
Al -5 Tis the image of 11'1(A1 - 3, £) acting on the finte set £ 1(x),
corresponding to the fact f makes C - D - Z a finite etale connected

covering of Al - 5 Because C-D- Z is connected, the action of I is
transitive. Because this covering is everywhere tame, I' is generated by
the conjugates of the images of the local inertia groups I(s) for each s in
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S. By (SM2) and (SM3), each I(s) acts by a transposition. Thus [ is a
transitive subgroup of G4 generated by transpositions, hence I is G4

itself. QED

(7.10.3) We now consider in detail the special case of supermorse

functions f on Al ie, supermorse polynomials. We maintain the
notations

¥ := Kernel of Tracey : f,ﬁ,_ - (_J;, 9 .= NFTq‘('}'),
Z = the set of critical points of f in Al(k),
S = #(2) = the set of critical values of f in Al(k).

Lemmae 7.10.4 Suppose that f is a supermorse polynomial in k[x] of
degree n.

(1) $(0) X & ) nontrivial x with x™ = 1 L x-
(2) if = f(z) = 0, then det3lG,, = (X X2)°(n‘1), where ¥ denotes

the tame character of order two.
(3) If n is odd and the function f is odd, then 316, carries a symplectic

2in Z

autoduality.

proof Assertion (1) is obvious from 7.4.3.1 and 7 4.4, since
3o = H1(AL, F) c H1 (AL, £,Q)) = H1 (AL, @) = 0,

and

Floo) = (£,Qp/Q)e0) = @ all nantrivial X with x? = 1 £x-

IfZ, ;.2 f=2) = 0, then by 79.4 (2) det$ is tame at e, and hence det$
is everywhere tame by (1). To evaluate it, we may proceed in two
different fashions. It suffices to show that (det3)® (L X2)°(n‘1) is

unramified either at o or at zero. At zero, this is obvious from (1); if n
1s even, the nontrivial characters killed by n occur in inverse pairs
except for X3, while for n odd they all occur in inverse pairs. At e, we

can use the fact that ¥ is a reflection sheaf to write

3(e) = @, 2 Ly, (x)® L y((2)x)-
which, as £ f(z) = 0, gives det3 (o) = (:_Xz)o(n-i).

2inZ

If n is odd and the function f is odd, then ¢ is self-dual. In view of
the behaviour of duality under Fourier Transform (cf 7.3.8), amounts to
showing that
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_ _ D(F) = [-1]*F.
Since f,Qy * ¥ ® Q, with ¥ irreducible Fourier, it suffices for this to
show that D(f,Q,) = [-1]*(f, Q). Now for any f, f, Q, is self-dual, so it
suffices to note that since f is odd,
[-11%(f, Q) = [-1],(£,Qy) = £,([-1],Qy) ~ £, Qq.
Now let us make explicit exactly what this duality is fibre by fibre. For
t 2z 0 in k, we have Hic(Ai, ‘r-q;(tx)) = 0, so
Ge sHIL(AL FOL(1y) = HILAL (£, Q)@ Ly (1y) = HIAL Zyei))-
The intrinsic dual to ¢, is (up to a Tate twist)
-1*

HI(AL Lyer) = HIGAL Zye-x)) = HILAL Zyceson:
To follow the signs, it is easiest if we view both Hic(Ai, ‘r'q;(:tf(x))) as
direct factors of Hic(w, Q). W the complete nonsingular model of the

Artin-Schreier curve of equation 29 - z = tf(x), where q is the
cardinality of a finite subfield of k over which ¢ is "defined". Because
f(x) is odd, we can, define an involution A of W by A(z,x) = (-2, -x). The
autoduality of ¢, occurs inside the autoduality of Hic(w, Qg) induced
by the pairing
(e, B) := x-A*(B),

where «:p is the cup-product pairing. Since cup-product is alternating,
and A is an involution, we find

(B,x) = prA*(x) = A*(B-A*(x)) = A*(B)x = —~x-A*(p) = -(x,B).
QED

Theorem 7.10.5 Let n be an integer, p> n » 3. Then for anya 2 0 in
k, the polynomial f(x) := x™ - nax is supermorse. Put
F := Kernel of Trace : f,Qy = Q,, ¢ = NFTq‘(T)_
If p> 2n-1 and if the condition *(p, n-1) holds (cf. 7.1), then
(1) If n is even, Ggeom for 9 is the group :SL(n-1),
(2) If n is odd, Ggeom for ¢ is Sp(n-1).

proof Since a z 0 and k is algebraically closed, a = «P~1 ¢or some
« 2 0. Then Z is My -1, and S = f(2Z) is (1-n)axpy_1. Thus f is
supermorse. Sincen » 3,2, , f(z) = 0.
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If If p> 2n-1 = 2(n-1)+1 and if the condition #(p, n-1) holds, then
796 and 7.9.7 apply.

Consider first the case when n is even. Then n-1 is odd, and by
+(p, n-1) we are in the situation of 796. So Ggeom contains SL(n-1). By
7 .10 4, det$ is of order two.

If n is odd, then 7.40.4 shows that G € Sp(n-1), so by the paucity
of choice in 7.9.7, we must have G = Sp(n-1). QED

Theorem 7.106 Let n 2 5 be an integer. Let g(x) € Z[x] be a monic
polynomial of degree n, Q(g)/Q the splitting field of g. Suppose that
Gal(Q(g)/Q) is S,. Let &4, .., x, be the distinct roots of g, and let
f(x) € Qlx] be the unique primitive of g(x) such that I; f{«;) = 0. Then
(1) (n+1)f(x) is monic of degree n+1, with coefficients in Z[1/(n+1)I].
(2) there exists an explicitly computable nonzero element
N(f) € Z[1/(n+1)}] such that for any prime p > 2n+1 which does not
divide N(f), the polynomial fp(x) = f(x) mod p in IFp[x] is supermorse,
and, putting _ _

Tp := Kernel of Tracefp (fp)eQp = Qq, gp = NFTq,(Tp),

Ggeom for gp is
f SL(n) if n even

| +SL(n) if n odd.

proof Let F(x) := _roxg(t)dt. Then (n+1)F is monic with coefficients in
Z[1/(n+1)I]. By galois theory and the monicity of g, ¢ = Ij F(«;) lies in
Z[1/(n+1)]]. So f(x) = F(x) - (1/n)o, and (1) is obvious.

We next claim that f separates the «;. Indeed, if not then after
renumbering the «'s we have f(x1) = f{x3). Applying elements of the
galois group &, we deduce that f(x4) = f(«;) for all i=1, .., n. Since
Zf(x;) = 0, we infer that f(x;) = 0 for all i, whence f is divisible by g,
say (n+1)f(x) = (x-a)g(x). Differentiating, we find

(n*1)g = g + (x-a)g,
whence ng(x) is divisible by g'(x). But g(x) has n distinct zeroes, so this
is impossible.

Once f separates the zeroes of g(x), then for any nonempty subset
Sof {1, 2, .., n}, the subfield Q(all f(«;), i € 3) of Qlall x;, i € J) is in
fact equal to it:
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Q(all f(x;), i€ S) = Q(all x;j, i € S) inside Q(g).
For if © is am element of Gal(Q(g)/Q) which fixes f(x), then T fixes «;,
simply because T{f(«;)) = f{r(x;)), f having coefficients in Q, and, as f
separates thhe «'s, from f(x;) = f(t(x;)) we may infer «; = T(xj).
Now swppose that for four indices i, j, k, m in {1, 2, .., n} we have
a relation
floej) - Haj) = flag) - flapy)
in Q(g), but izj, izk, kzm, and jzm. Then either
i=m: 2if(xy) = f(ocj) + f(x)), whence «; € Q(ocJ-, &)
or izm fl«;) = flay) - flocy,) + flo j), whence oj € Qo j, x, &py).
Applying elements of Gal{Q(g)/Q) = &,,, we conclude that all the «; lie
in Qleq, x2, «3). Since n 2 5 and Gal(Q(g)/Q) = &, this is nonsense.
Therefore if we define N(f) to be the product
NO = Ty iek kem, jem (Flog) - fla ) - (Hay) - Kocpy))),
we see that N(f) is a nonzero element of Z[1/(n+1)!].
Now let A denote the integral closure of Z[1/N(f)(n+1)!] in Q(g).
Then Spec(A) repesents the finite etale & ,-torsor over Z[1/N(f)(n+1)!] of

all n-tuples of everywhere distinct critical points of f, with universal
n-tuple (x4, .., ®p). Spec(A) also represents the the finite etale &, -
torsor over :Z[1/N(f)(n+1)!] of all n-tuples of everywhere distinct critical
values of f, 'with universal n-tuple (f(a), .., f(x,)). By construction,
for each queadruple of indices (i, j, k, m) with izj, izk, kzm, and jzm,
the elementt (f(oj) - f( 1)) - (f(x) - Kxpp)) of A lies in AX.

It is cliear that for any prime p > n+1 which does not divide N(f),
fp 1s superrmorse and 7.9.6 applies to its Tp, Therefore if in addition
P> 2n*1, thien Ggeop, for gp contains SL(n). By 7.10.4 (2), we get

det($,) = (ltXZ)"n, QED

7.11 Sato-Tate Laws for One-Variable Exponential Sums

In this chapter, most of the applications we have given of the
main ¢-adic theorem 7.2.7 have concerned the Fourier Transforms of
S_heaves whiich are essentially of rank one. This means that, over finite
fields k, we are talking about one-variable exponential sums. Let us
Yflake this explicit. Fix a nontrivial additive character ¢ of the finite
field k. For E/k a finite extension, we denote by ¢ the nontrivial

additive character of E given by x $(Traceg/y(x)). If we are given a
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multiplicative character ¥ of k*, we denote by % g the multiplicative

character of EX given by x = x(Normg/)(x)).

In 7631, we are concerned with the Fourier Transform of a
Fourier sheaf T of generic rank one, whose o -break is ¢ 1. The
archtypical example of this is the following. One takes a non-polynomial

rational function f(x) on P1 which has a pole of order ¢ 1 at e, say
f(x) = -sx + holomorphic at oo,

all of whose poles have order prime to p. Let 5 C Al denote the divisor
of finite poles of f; viewing f as a morphism from Al - Sto Ai, it
makes sense to speak of l'.q,(f) on Al - 5. The extension by zero of l'.q‘(f)
to all of Al is then a Fourier sheaf ¥ of generic rank one. For this 7,
$ = NFTy(¥F) has trace function

te E » -Z  p-sm VEHX) + tx).
We can also add a multiplicative character to the story. Let ¥ be a
nontrivial multiplicative character of k*, of order denoted order(+),
and g(x) a nonzero rational function on Pl such that at any zero or
pole of g(x) in Al - S, the order of zero or pole of g there is not divisible
by order(x). Let T denote the scheme of noninvertibility of g in Al - 5.

We may view g as a morphism from Al-5-Tto G, and thus we
may speak of the sheaf I’X(g) on Al -s - T, and of the tensor product
I.q‘(f)@l'.x(g) on Al - S - T. The extension by zero of I.q,(f)@l'.x(g) to all

of Al is then a Fourier sheaf ¥ of generic rank one. For this 7,
% := NFTy(¥) has trace function

te E » - i pogp -np PEEG) + tx) X E(g(x)).

Theorems 76.4.1 and 7.7 6, and the results of the previous section
on supermorse functions are all concerned with the following sort of
situation: a complete smooth geometrically connected curve C over k, a
rational function f on C with polar divisor D, and an L on C - D which
is generically of rank one and is the direct image of its restriction to a
nonempty open set where it is lisse. We are then concerned with the

Fourier Transform either of ¥ := f,L on Al or, when L is the constant
sheaf, with ¥ := Kernel of Traces : f,Qy — Q.

When L is the constant sheaf on C-D, then 4 has trace function
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te BX = -Z, i ap - o PEO)
0 € E — Card(E) - Card(C(E) - D(E)).

In 776, L is nonconstant, D is a single rational point ¢ of C, the
degree d of f is relatively prime to the o -break n of £, and both n and
d are prime to p. The archtypical example of such an £ on C- {e} is
obtained from a rational function h on C with a pole of order n at oo,
and all poles of order prime to p. If we denote by C - S the open set
where h is holomorphic, then the extension by zero from C - S of l'.q‘(h)

isan L.For this £, and ¥ = £, X, & := NFTq,(T) has trace function
t€E — "Zx in C(E) -S(E) \')E(tf(x) + h(x))
Similarly, we can insert a multiplicative character. Let ¥ be a

nontrivial multiplicative character of k*, of order denoted order(%x),
and g(x) a nonzero rational function on C such that at any zero or pole
of g(x) in C - S, the order of zero or pole of g there is not divisible by
order(y). Let T denote the scheme of noninvertibility of g in C - 3. For
L the extension by zero of I'q;(h)@‘r'x(g) from C-S-TtoC- {w), and

F =f,L, G := NFTq,('}') has trace function
te E » I o -sm - e PEHX) + hix)) X glgx)).

In all of these examples, the sheaf ¢ in question is pure of weight
one. For any pure sheaf, we know from Deligne’'s fundamental results in
Weil II that Ggeom is semisimple. So we have determined, in these

examples, (Ggeom)O,dEI" = (Ggeom)o up to a few possibilities. To the
extent that one determines Ggeom precisely (not just up to a few

possibilities for its identity component) for a particular class of
exponential sums, and works out exactly what if any twist will make

all the Frobenii also lie in Ggeom' one has, thanks to Weil 1II, proven an

explicit equicharacteristic "Sato-Tate Law" for the distribution of the
generalized "angles” of the exponential sums in question. Let us recall
the precise statement (cf. [De-WII, 35]).

Theorem 7.11.1 (Deligne) Let C be a smooth geometrically connected
curve over a finite field k of characteristic p, ¢ = p, ¥ a lisse Q, sheaf

on C which is pure of weight zero, p the corresponding representation of
71(C, &), and Ggeom := the Zariski closure of p(w1(Cek, &)) its geometric

monodromy group. Suppose that for every finite extension E/k and

every t € C(E), each Frobenius Frobg ; for ¥ has p(Frobg ) € Ggeom- Fix
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an embedding of @, into €, and a maximal compact subgroup K of the
Lie group Ggeom(C)- The conjugacy class of the semisimple part of each
p(Frobg ;) meets K in a single conjugacy class, denoted 9(E, t). The

conjugacy classes $(E, t) are equidistributed in the space K% of
conjugacy classes of K with respect to normalized Haar measure, in
any of the three senses of of equidistrbiution of ([Ka-GKM, 3.5]).

Taking the direct image by the trace, we get the equidistribution
of the traces.

Corollary 7.11.2 Hypotheses and notations as above, the traces
Trace(p(Frobg t)) := Trace(Frobg ¢ | $)

are equidistributed in € with respect to the the direct image of

normalized Haar measure on K by the trace map Trace: K - C.

7.12 Special Linear Examples

In this section, we give some examples where the Sato-Tate law is
that given by a group containing the special linear group. Suppose we
have a lisse pure sheaf 4 on C/k of rank N whose Ggeom contains SL(N).

If t € C(k) is any rational point, and if we denote by « any N'th root of
1/det(Froby | 3 D). then the arithmetically twisted sheaf x9eg€® ¢ has

all its Frobenii in Ggeom‘ and we may apply Deligne’'s result to ad38®9

and Ggeom-

SL-Example(1) Let C be a complete smooth geometrically connected
curve over k, o« a rational point on C. Take a rational function h(x) on
C with a pole of order n 2 1 at « with n prime to p, and all other poles
also of order prime to p. Take a second rational function g(x) on C
which is nonzero. Take a rational function f(x) on C which is
holomorphic on C - {e} and which has a pole at o of of order d prime
top withd =z n, gcd(d, n)=1.Let j :C - {o0} - S — C - {0} be the
inclusion of the open set of C - {0} where h is holomorphic, and
k:C-{0}-S-T - C- {0} -5
the inclusion of the open set of C - {«} - 5 where g is invertible. Let X
be a nontrivial multiplicative character of k*, of order denoted
order(y), such that at any zero or pole of g(x) in T, the order of zero or
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pole of g there is not divisible by order(x). Take L :=
J-(Lq;(h)@k-‘r-x(g)) onC - {e), ¥ = f,L on Al, and ¢ := NFTq,('J"). Then
G is lisse on G, (indeed lisse on Al if d ¢ n), and its rank N is

N= max(d,n) - 1 + 2genus(C) + Card(S(k)) + Card(T(k)) +

+ Z‘wm poles of h in C - (oo} (order of pole of h).

The trace function of ¢ is
te E » _Zx in C(E) -S(E)-T(E) \')E(tf(x) + h(x))‘)(p_‘(g(x))‘

If n-d is odd, p does not divide 2nN4{In-d)N2(In-dl) and p > 2N + 1,

then Ggeom for § contains SL(N), by 7.7 .6.

SL-Example(2) Let h(x) be a nonconstant rational function on P1

which is holomorphic at «, and has all its poles of order prime to p.

Take a nonzero rational function g(x). Let j : Al -5 > Al be the

inclusion of the open set of Al where h is holomorphic, and
k:al-s-T— Al-s

the inclusion of the open set of Al - 5 where g is invertible. Let X be a

nontrivial multiplicative character of k*, of order denoted order(¥),
such that at any zero or pole of g{x) in T, the order of zero or pole of g
there is not divisible by order(x). Take ¥ :=j,(l'.¢(h)®k,l'.x(g)), and

g = NFTq‘('}'). Then ¢ is lisse on G, of rank N,
N =Card(S(k)) + Card(T(k)) + geam. poles of h in A1 (Order of pole of h).

Denote by r := ord.(g). If X¥ has order 2 3, and if p > 2N + 1, then
Ggeom for ¢ contains SL(N). [Indeed, I(0) acts on $(0) by
pseudoreflections of determinant l'.‘.)‘(r(x), so apply 76.3.1]

SL-Example(3) Let h(x) be a nonconstant rational function on P1
which is holomorphic at «, and has all its poles of order prime to p. Let
j: Al - 5 = Al be the inclusion of the open set of Al where h is
holomorphic, ¥ := _j,l'.q‘(h), and ¢ := NFTq‘('}'). Then ¢ is lisse on G, of
rank ’

IE = X geom. poles o« of h in Al (1+ noc)‘
where for each « € 3(k), ny denotes the order of pole of h at «.

Its trace function is
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te E » -Z i p-xp PE(tx + hi(x)).
The local monodromy of 4 at zero is a unipotent pseudoreflection, and
as I(e0)-representation ¢ is :
egeom. poles « of h in al Zq,(“y)@(rank 1. Ny, slope= noc/(j-*noc))-
Therefore det$, being lisse on Gy, ,trivial at zero and of break ¢ 1 at oo,
must be geometrically isomorphic to l'.q‘(Ay) for some A € k. Looking at

the above expression for 9(o0) we see that
det3 | 6,,®k % I’\P(Ay) with

A=X geom, poles « of h in
Suppose now that the rank N of ¢ is prime to p. Then translating
h(x) by A/N, ie., replacing h(x) by h(x + (A/N)), we may and will
suppose that det$ is geometrically trivial.
If in addition either p > 2N + 1, or N=2, then Ggeom for 316, is

ar{l+ nylx.

either Sp(N) or SL(N). To see this, we argue as follows. Since ¢ | G, is
pure, Ggeom is semisimple. Since the local monodromy at zero is a
unipotent pseudoreflection, we get the asserted possibilities for
(Ggeom)o- [If p> 2N + 1, by the paucity of choice in 76.3.1; if N=2 by
the fact that Ggeom is a semisimple (9 being pure) subgroup of SL(2), so
is either SL(2) or is finite: as the local monodromy at 2ero of ¢ is a
unipotent pseudoreflection, Ggeom is not finite] Since ¢ has

geometrically trivial determinant, if (Ggeom)o is SL(N) we are done. If

(Ggeom)o is Sp(N), then Ggeom C upnSp(N), and the “square of the pupy

factor” is a character ¥ of Ggeom of order dividing N. But as ¢ is lisse

on G, and unipotent at zero, the character ¥ must be lisse on A1; as

its order is prime to p, it must be trivial.
On the other hand, ¢ is geometrically self dual if and only if the

dual Lq‘(_h(x))of I-q;(h(x)) is geometrically isomorphic to ['1]*L¢(h(x))'
ie., if and only if ‘r'lp(h(x)+h(-x)) is geometrically trivial. This function
h(x) + h(-x) has poles of order ¢ supy(ny). Soif p> 2N+ 1, $ is

geometrically self dual if and only if h(x) + h(-x) is constant. So all in all
we get a complete determination of Ggeom for 4, provided only that p >

2N + 1.

Theorem 7.12.3.1 Let h(x) be a nonconstant rational function on P1
which is holomorphic at « and has all poles of order prime to p,
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jial-s— Al
the inclusion of the open set of Al where h is holomorphic,
F = _j,l'.q,(h), and ¢ := NFTq‘(T)‘ For each « € 5(k), let n, denote the
order of pole of h at «,
N:=2 georn. poles o of hin Al 1+ n(X.) €z
A:=Z 1+nyg)x € k.

Then ¢ is lisse of rank N on Gp,.

geom. poles « of h in A 1 (

Suppose that p > 2N+1, and define
H(x) = h(x + (A/N)).
Then Ggeom for 9 is
SL(N) if A = 0 and H(x) + H(-x) is nonconstant,
upSL(N) if A 2 0 and H(x) + H(-x) is nonconstant,

Sp(N) if A = 0 and H(x) + H(-x) is constant,
upSp(N) if A 2 0 and H(x) + H(-x) is constant.

SL-Example(4) Let h(x) be a nonconstant rational function on P1
which has a pole of order n 2 2 at e, with n prime to p, and all other
poles also of order prime to p. Take a nonzero rational function g(x). Let

j: Al -5 o Al be the inclusion of the open set of Al where h is
holomorphic, and

kkAl-s-T- al-s
the inclusion of the open set of Al - S where g is invertible. Let ¢ be a
nontrivial multiplicative character of k*, of order denoted order(x),
such that at any zero or pole of g{x) in T, the order of zero or pole of g
there is not divisible by order(x). Take ¥ := j,(l'.q‘(h)@k,l'.x(g)), and
9 = NFTq‘('}'). Then ¢ is lisse on Al of rank N,

N =n-1+ Card(S(k)) + Card(T(k)) +

+Z peomn. poles of h in A1 (order of pole of h).

We have already seen (SL-Example(1), d=1, C - {00} = Al) that if n-1
is odd, p does not divide 2nN1(n-1)N5(n-1) and p > 2N + 1, then G
for ¢ contains SL(N).

In the special case when n=2, stationary phase shows that
9 (o) = (break 2, rank1)® (breaks ¢ 1),

so the upper numbering subgroup 1(0)(2) acts as wild pseudoreflections
on (o). So if p > 2N + 1, we have Ggeom = MpSL(N).

Suppose henceforth that n 2 3, p > 2N + 1, either n-1 = 6 or

geom
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N ¢ {7, 8, 9}, and also that p does not divide 2nN4(n-1)Ny(n-1). Because
n 2 3, the largest co-break of § is n/(n-1) ¢« 3/2 < 2, and consequently

detd has co-break s 1. Since $ is lisse on Al, there is a unique A in k
such that det$ is geometrically isomorphic to £¢(Ay). Here is the

"formula” for A:
Lemma 7.12.4.1 Write h(x)

polynomial of degree n, P(x)

P(x) +(holomorphic at o), with P a
z.

ol i
i=1, .. n 8" Define

Ay, = (n-1ay_4/na, €k,

Agnite = Lgeom. points o of S (1+nglx + X pointspof T P € K
Then

A=Ay, * Agie
proof of Lernma Since we know a priori that det$ is ‘r'\p(Ay)' A is
characterized by the property that I.q,(_Ay)@det(gr(oo)) is tame at oo.
By stationary phase, ¢ as 1(o)-representation is the direct sum of

three sorts of terms
F'I'q‘loc(oo,w)(?'(oo)) B

3]
& geaom points p of T

Taking determinants, we find
det3 (o) * det(FTyloc(eo,e0)(F(e))®Ly(p, . ()®(tame).

goom. paints « of § LP(xy)®@(rank 1 + ny, slope= ny/(1+ny))

Lq‘(by)@(rank 1, slope= 0).

So we are reduced to computing det(FTq‘loc(oo,oo)(T(oo))). Now F(e) as
I{oo)-representation is l'.q‘(p(x))@(I.X(x))'ordoo(g). So is enough to prove

the lemma for all F's either of the form I—q;(P(x)) (if Xordw(g) is trivial;
strictly speaking we should write this ¥ as ‘r'\p(P(x))@r")((g) with g the
constant function 1) or of the form ‘r'\p(P(x))@‘r'x(x) with nontrivial ¥
(namely % °79eo (&),

For F := ‘r’\p(P(x))' the determinant formula is proven in [Ka-MG,

Thm 17 (3)] under the sole hypothesis that P is a polynomial of degree
n 2 3 prime to p.In the case when ¥ is I-q;(P(x))@‘r-x(x) with

nontrivial ¥, a similar argument works also. Here is a sketch.
We know there exists a constant A € k such that the lisse sheaf

4 = NFT(Ly(p(x))® L x(x)) on Al/k has detG = T y(ay)®xd87C. So A
is determined by knowing det(l"r‘obk‘y | ) for every rational point

y € k, since from the dependence rule
det(l"robk‘y |'9) = $(Ay)det(Froby g | $)
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we may calculate the additive character y = $(Ay) of k, and this
determines A itself. Now for y € k,

det(Froby y, | §) = det(Froby | Hl (6,,®Kk, L p(P(x)+yx)® L 3 (x))
= det(Froby | HL(A1®K, L y(p(x)+yx)® 1L x (x))).
where j| Ly (x) is the extension by zero of L (4) from G, to Al
The L-function L(T) of Al/k with coefficients in L y(P(x)+yx)®J1E % (x)
is a polynomial of degree n, namely
L(T) = det(1 - TFroby | HL(AL® X, Ly (p(x)ryx)® I % (x))-
Therefore (-1)"x det(Frobk‘y | §) is the coefficient of T in L(T). Let us
write explicitly the additive expression of L(T) as a sum over effective
divisors in Al, ie., over monic polynomials f4(x) : = Z(-i)‘i_isd_i(f)xi in
k[x], with Newton symmetric functions Nj(f) of their roots, shows that
for each integer d : 1, the coefficient of Td in L(T) is the sum
monic f of degree d X(Sd(f))q‘(zi:i.---.n aiNi(f) * ysi(f))‘
where % (54(f)) :=0 if S4(f) = 0.

Take d=n, and write the Newton symmetric functions Nj of n
roots as isobaric polynomials in the elementary symmetric functions Sj
of n roots. The top two are, for n 2 3,

Ny, = (--1)“*1nSn + (-1Pn345,.4 + Q

Nn_1 = (-1)n(n—1)Sn_1 + + R,
where Q and R do not involve 5,,_4 or S,,.

So the coefficient of T? in L(T) is

Zs,, ., sp % nW(Tisy 2 &iNj + yS1 *an {Np_1 + anNpy),
and substituting for N,, and N,,_1 this becomes

Zs X (Sp)plan(-1)n*1ns,)x

*Zg,, .. Sp-g ¥ Zic1, n-2 @iNj + y51 + ap_ 4R + a,,Q)x

xLg . ¥lan-1(-1)™n-1)S,_1 + an(-1)"nS;5,-1).
The final term vanishes unless (n-1)a,_j * na,S; vanishes, in which
case it is q:= Card(k). So only terms with 54 1= -(n-1)a,_1/nay, = A,
contribute to this expression, which is consequently
WA )xqx[Zg X(Sp)elan(-1)0*1ns) )]
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X[Zsz, s Sp2 $(Zioq, -2 8iNj * @ap-1R + aQ) IS1:= A,,o’-

The important thing is that it is of the form
(A, y)x(a function of a;'s alone). QED for 7.12.4.1

Replacing (h(x), g(x)) by
(H(x), G(x)) = (h(x + (A/N)), g(x + (A/N))),
we reduce to the case where det$ is geometrically trivial. By [Ka-MG,
Prop. 5] and 7.7 6, Ggeom is then either SL(N) or SO(N) or, if N is even,

Sp(N). But § is geometrically self dual if and only D(F) * [-1]*F
geometrically, i.e, if and only if there exists a geometric isomorphism
I’Q)(-H(x))@‘r’i(('i(x)) X I’Q)(H(-x))@I’X(G('x))' ie., if and only if both of
the following conditions are satisfied:
H(x) + H(-x) is constant, say «,
G(x)G(-x) is an order(y)'th power in k(x).
So if either of these conditions fails to hold, then Ggeom is SL(N).
Let us analyse the sign of the autoduality if both of these
conditions are satisfied. Replacing H(x) by H(x) - (x/2) does not change
9 geometrically, and reduces us to the case when H is odd. Let
r:= order(%), and pick a rational function L(x) with
(L)Y = G(x)G(-x).
Since G(x)G(-x) is even, there is a unique sign ¢ = 1, ¢¥ = 1, with
L(-x) = eL(x).
Denote by X : My(k) = u,(Qy) the unique faithful character of u,(k) for

which the character ¥ of k* is

¥(x) = X(xd), d:= (Card(k) - 1)/r.
The autoduality of ¢ is symplectic if and only if ¢ = 1. To see this,

view 3¢ as the (¢, X)-eigenspace for the action of (k,+)x u, on Hic of

the complete nonsingular model X of the curve in (x, 2, w)-space of
equation (q := Card(k))

29 - 2 = H(x) + tx, wl = G(x),
where (a,8) acts by (x, 2z, w) = (x, z+a, tw). Denote by A the
automorphism of this curve defined by A(x, 2, w) = (-x, -2, L(x)/w).

Notice that A2 is (x, 2, w) = (x, 2, ew). The autoduality of ¢ { is given in
terms of the cup-product «+p on Hic(Xo k, G—J;) as the pairing
(x, B) := x-A*(p)
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on the (¢, X )-eigenspace. If ¢ = 1, then A is an involution, and this

pairing is alternating. If ¢ = -1, then r must be even, (A2)*(x) = -« for
« in the (§, X)-eigenspace, and the pairing is symmetric.
So all in all we get a fairly complete determination of Ggeom-

Theorem 7.12.4.2 Let h(x) be a nonconstant rational function on P1
which has a pole of order n 2 2 at o, with n prime to p, and all other
poles also of order prime to p. Let g(x) be a nonzero rational function,

j:al-s5-> Al
the inclusion of the open set of Al where h is holomorphic, and

k:Al-5-T-> al-s
the inclusion of the open set of Al - S where g is invertible Let ¢ be a
nontrivial multiplicative character of k*, of order denoted order(x),
such that at any zero or pole of g(x) in T, the order of zero or pole of g
there is not divisible by order(). Take ¥ := j,(£¢(h)®k,£x(g)), and
% := NFT(¥). Then § is lisse on Alofrank N,

N =n-1+ Card(S(k)) + Card(T(k)) +

* 2 yeom. poles of h in A1 (Order of pole of h).

(1) If n=2 and p > 2N + 1, then Ggeorn for § is upSL(N).

(2)Suppose n 2> 3, p > 2N + 1, and p does not divide 2nNy(n-1)Ny(n-1).
Write h(x) = P(x) +(holomorphic at o), with P a polynomial of degree n,
P(x) = Z
A = -(n-1a,_q/na, + X

aixi. Define A € k by

i=4, ..,n

1+ noc)“ + deom_ pts pof T B.

geom. pts « of S5 (
Define rational functions H(x), G(x) by
(H(x), G(x)) := (h(x + (A/N)), g(x + (A/N))).
Then we have
(2a) If n-1 is odd, Ggeom for 9 is
SL(N) if A = 0,
upSL(N) if A=z0.
(2b)If either n-1 = 6 or N ¢ (7, 8, 9), then Ggeom for 9 is
SL(N) if A = 0,
upSL(N) if A =0,

unles both of the following conditions are satisfied:
H(x) + H(-x) is constant, say «,
G(x)G(-x) is an order(%)th power in k(x).
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(2c) If either n-1 = 6 or N € {7, 8, 9}, and if both of the above
conditions are satisfied, let r:= order( ), and let ¢ = *1 be the sign in k*
obtained by picking a rational function L(x) with
(L(x))¥ = G(x)G(-x), and writing L(-x) = eL(x).

Then Ggeom for ¢ is

Sp(N) if A=0and ¢ = 1,

ppSp(N) if A2 Oande = 1,

SO(N) if A= 0ande = -1,

ppSO(N) if Az Oande = -1.

7.13 Symplectic Examples

We will now give examples where the Sato-Tate law is that given
by the symplectic group. Let us first explain why this case is
particularly easy to handle. Choose a square root of p in Q,, so for each
n € Z we can speak of the Tate twist sheaves Qy(n/2) on any Fp-
scherne, and of the twists $(n/2) of any given sheaf ¢. In practice,
when one shows that a lisse sheaf ¢ of sorne even rank N which is pure
of weight n has Ggeom = Sp(N), the proof shows that in fact $(n/2) is
itself symplectically self-dual. If this is the case, then it is tautological
that the Frobenii for $(n/2) land in Sp(N), and so we can apply
Deligne's general result directly to $(n/2), with Ggeom = Sp(N).
Sp-Example(1) Let h(x) € k(x) be an odd nonzero rational function
which is holomorphic at « and all of whose poles have order prime to

p- Let g(x) be a nonzero rational function. Let j : Al -5 5 Alpethe

inclusion of the open set of Al where h is holomorphic, and
kal-s-T-o Al-s

the inclusion of the open set of Al - S where g is invertible. Let ¥ be a

multiplicative character of k*, of order r, such that at any zero or pole
of g(x) in T, the order of zero or pole of g there is not divisible by r.
Suppose that there exists an even rational function L(x) such that

L(x)T = g{x)g(-x). Take F := JeZy(n)®ks Ly (g)) 3 = NFT¢(T). Then
3(1/2) is a lisse sheaf on G, which is symplectically self-dual (by the
same “embed in the Artin-Schreier covering” argument as in SL-
Example(4) above) of (even) rank

N = Card(S(k)) + Card(T(k))+Z a1 (order of pole of h).

geom. pales of h in
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and pure of weight zero.The trace function of 4(1/2) is

te E = —(Card(E))’l/ZZx in E -stB-1(p WE(tX + h(x)) X m(g(x)).

If p> 2N + 1, or if N=2, then Ggeom for $(1/2)I6y, is Sp(N). [If N = 2

and p > 2N + 1, by the paucity of choice in 7.6.3.1; if N=2 by the fact
that Ggeom is @ semisimple (3 being pure) subgroup of SL(2), so is

either SL(2) or is finite: as the local monodromy at zero of ¢ is a
unipotent pseudoreflection, Ggeor, is not finite |

Sp-Example(2) Take an odd rational function h(x) with a pole of
order n 2 1 at oo with n prime to p, and all other poles also of order

prime to p. Let g(x) be a nonzero rational function. Let j : Al -5 Al

be the inclusion of the open set of Al where h is holomorphic, and
k:al-s-T- Al-s

the inclusion of the open set of Al - S where g is invertible. Let X be a

multiplicative character of k¥, of order r, such that at any zero or pole
of g(x) in T, the order of 2zero or pole of g there is not divisible by r.
Suppose that there exists an even rational function L(x) such that

L(x)T = g(x)g(-x). Let f(x) be an odd nonzero polynornial of degree d
prime to p with d = n, ged(d, n) = 1. Take L := Ji(L\p(h)@kiLx(g)):
F=fL 9:= NFT¢(T). Then $(1/2) is lisse on G, (indeed lisse on Al s

d < n) and just as above is symplectically self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(k)) + Card(T(k)) +
* L feom. pales of b in a1 (order of pole of h).
The trace function of $(1/2) is

te E = ~(Card(E) 12X o oo s WECEKX) + h(x) X (g(x)).

If p> 2N+1, p does not divide 2nN{(In-dDN3(In-d|), and either N = 8 or

In-d| #6, then Ggeom for 3(1/2) is Sp(N), by the paucity of choice in
776.

Sp-Example(3) Fix n » 3 an odd integer, a € k¥, let f(x) := x™ - nax,
¥ := Kernel of Traces : f, Qy — Qp, 9 := NFT¢(T). Here 4(1/2) | Gy, is
symplectically self dual and lisse of rank n-1. Its trace function is

te EX m  ~(Card(ENY/23 | = yp(tf(x)
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O¢E » 0.
If p> 2n-1 and if the condition #(p, n-1) holds (cf. 7.1), then G

4(1/2) | Gy, is Sp(n-1).

geomn for

7.14 Orthogonal Examples
We now give exarmples where the Sato-Tate law is that given by
the orthogonal group. We work over a finite field k of characteristic

p * 2, and denote by X3 the character of order two of k*.

O-Example(1) Let h(x) € k(x) be an odd nonzero rational function
which is holomorphic at « and all of whose poles have order prime to

p- Let g(x) be a nonzero rational function. Let j : Al -5 Al pethe

inclusion of the open set of Al where h is holomorphic, and
kAl-s-T- aAal-s

the inclusion of the open set of Al - S where g is invertible. Let X be a

rhultiplicative character of k*, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an odd rational function L(x) such that

L(x)¥ = g(x)g(-x). Take F := j:(r';p(h)@kir'x(g)): 9 = NFT¢(T). Then
3(1/2) is a lisse sheaf on Gy, which is orthogonally self-dual (by the

argument in S}—Example(i) above) of rank
N = Card(S(k)) + Card(T(k)) + Z o\, poles of h in a3 (Order of pole of h)
and pure of weight zero.The trace function of 3(1/2) is

te E » '(Card(E))_i/ZZx in E -XE)-T(E) '.PE(tx + h(x))XE(g(x))

If p>2N+1, and N = 2, then Ggeom for $(1/2) is O(N). To see this,
note that Ggeom lies in O(N), so it must be either SO(N) or O(N), by the
paucity of choice in 7.63.1. In fact Ggeom is O(N), because the local

monodromy of ¢ around zero is, by 76.3.1, a reflection. (The odd
rational function L(x) necessarily has odd « -valuation, so from the

equation g(x)g(-x) = L(x)' we infer that ord(g) = (r/2)xodd, so
F o= I.-XZ as [(ew)-representation. Alternately, by 756.3.1 this local
monodromy is a pseudoreflection which lies in O(N), and any orthogonal

pseudoreflection is necessarily a reflection( cf. 15).) It is tautological
that the Frobenii for $(1/2) land in O(N), and so we can apply Deligne’s
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general result directly to 4(1/2), with Ggeom = O(N).

Remark 7.14.1.1 If N = 2 in this example (e.g., h(x)=1/x, g(x) =x,
X = %X2) then Ggeom 1s finite, since it is a semisimple subgroup of 0(2).

O-Example(2) Take an odd rational function h(x) with a pole of order
n 2 1 at e with n prime to p, and all other poles also of order prime to

p. Let g(x) be a nonzero rational function. Let j : Al -5 o Al be the

inclusion of the open set of Al where h is holomorphic, and
kAl-s-T- al-s

the inclusion of the open set of Al - S where g is invertible. Let X be a

multiplicative character of k*, of even order r, such that at any zero
or pole of g(x) in T, the order of zero or pole of g there is not divisible by
r. Suppose that there exists an odd rational function L(x) such that

L(x)¥ = g{x)g(-x). Let f(x) be an odd nonzero polynornial of degree d
prime to p with d = n, ged(d, n) = 1. Take L := _j,(I.Mh)@k,Ix(g)),
Fo=f£LG:= NFT¢(T). Then $(1/2) is lisse on Gy, (indeed lisse on Al if

d < n) and just as above is orthogonally self-dual. Its rank N is
N = max(d,n) - 1 + Card(S(k)) + Card(T(k)) +
+Z geomn. poles of h in a1 (order of pole of h).
The trace function of 3(1/2) is

te E » ~(Card(EN"1/2X . o (o oo $E(EHx) + hix) X E(g(x)).

If p> 2N+1, p does not divide 2nNy(In-d)N3(In-dl), and either
N ¢g({78lorin-dl = 5, then Ggeom for 3(1/2) is either SO(N) or O(N),
by the paucity of choice in 7.7.6.

If in addition n > d, then ¢ is lisse on Al, whence Gpeom
has no nontrivial prime-to-p quotients, so Ggeom is SO(N).
Then det(3(1/2)) is a geometrically trivial character of order one or
two, so it is either trivial or it is (the pullback to Al of) "(-1)4€€ -, the

unique character of order two of Gal(kS®P/k). The question of which
one is arithmetic, and in a given exarnple can be decided by computing
the determinant of Frobenius on $(1/2)g and seeing whether it is 1 or
-1.If we compute this sign +1 and choose an N'th root ¢ of it, then we
can directly apply Deligne's general result to the slightly twisted sheaf

(¢)deg@ 9(1/2) with Ggeom = SO(N). [Another course of action: simply
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replace the given ground field k by its quadratic extension k5, and

directly apply Deligne's general result to $(1/2) on Al/kz with Ggeom =

SO(N) ]
If, on the other hand, d > n, then Gyeom is O(N). To show

that Ggeom is O(N), we make a series of reductions to a case where it is
obvious. First of all, since Ggeom is either SO(N) or O(N), and ¢ is lisse
on G, (say with coordinate t), det(3|€,,,) is geornetrically either trivial
or IXZ("—)' The key point is that these two possibilities on G, are
already distinguished by their I(0)-representations. By 7.4.3.1, we know

that
3(0)/3g = FTyloc(e,0(F ()

as [(0)-representations. Taking determinants gives
det(3)0) = det(FT4,IOC(°°,0)(T(°°)))

as [(0)-representations.
To exploit this, we look closely at F(w) as I(«)-representation. By
definition, ¥ := f,_j,(I_Mh)@k,I,x(g)). Write the odd rational function

h(x) as the sum

h(x) = (an odd polynomial H(x) of degree n) + (a fct. holo. at ).
Then as (e« )-representation, _j,(I_Mh)@k,Ix(g)) is L¢(H)®LX(€)'
From the equation g(x)g(-x) = L(x)¥ we infer that ord(g) = (r/2)xodd,
so LX(g) = IXZ as [(«)-representation and hence

F(eo) = (f,(1¢(H)®IX2(x)))(N).

Therefore det(3)(0) as [(e)-representation is the same for the initial
data (h ,f ,g, X) as it is for the data (H, f, x, X3). We will now treat this

case by a global argument.
For the data (H, f, x, X 2), the lisse sheaf ¢ on G, ®k (with

parameter t) is
t = HlGmek, Ly + efx)® Ly 500
Strictly speaking, we consider the product G,,xG,, with coordinates

(x,t), the lisse sheaf X := I\p(H(x) . tf(x))®r_x2(x) on this product; then

9 is Rl(prz)!(ﬂ(). Now X is tame at zero, and for t in G,y its Swan,, is d

Since the odd polynornial H has degree n < d, it follows from Deligne's
sernicontinuity theorem ([Lau-SCS|) that ¢ makes sense as a lisse sheaf
of rank d on the product space
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(the G, of t's)x(the affine space of all odd polynomials H of degree ¢ n),
say G,,,xE, and ¢ is orthogonally self-dual as a lisse sheaf on &, xE.

Since we are not in characteristic 2, the Kunneth formula shows that
for any point e € E(k), the inclusion of (&,,)® k into (&,,xE)e k by

t » (t,e) induces an isomorphism

HI(G  xE)ek, up) ~ HIG ek, up),
whose inverse is induced by pullback along the projection of (Gme)eE
onto (G, )e k. Therefore det($), viewed on (6., xE)e k, is either trivial or

it is LXZ("—)’ and we can tell which by specializing H to be any

particular odd polynomial of degree ¢ n. We choose H = 0 for this
purpose. _
So now we are reduced to computing the determinant on (&,,)e k

of the lisse sheaf
t - ch(emo k, L¢(tf(x))®l‘.x2(x)).
We know that its determinant is either trivial or is LXZ("-)‘ Since d is
odd, the Kummer pullback [d]*($ | G,,,) has the same determinant. This
pullback sheaf is
¢t~ Hl (G ek, L (ed5x)® £y 5 (x))-
On the fibre Gp,, we perform the automorphism x — x/t; this allows us
to rewrite [d]1*($ | €,,,) as
te I'iic(Gmek' r‘\p(tdf(x/t))@r")(z(x/t)) =
x LXz(t)gﬁic(Gme k, Iq,(tdf(x/t))@r.-x'z(x)).
In other words, [d]*(3 | G,,) is IXZ®K, where ¥ is the lisse,
orthogonally self-dual sheaf of rank d on G,
t = Hl(@pek, Lydse/e))® Ly (x)-
Because d is odd, det([d]*($ | 6,,,)) = det(IXZQK) x I‘.X2®det}€, so it
suffices to show that det¥ is geometrically constant.
Now write f(x) = Zaixi; then

tdf(x/t) = Zaitd'ixi = adxd + (terms of x-degree < d in klt,x]).

By Deligne's semicontinuity theorem, the sheaf # extends to a lisse
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sheaf on Al, which is still orthogonally self-dual. Therefore det¥ is lisse
on Al@Kk of order dividing two, and hence det¥ is geometrically
constant. This concludes the proof that ¢ has Ggeom = O(N) if d > n,

p > 2N+1, p does not divide 2nN4(In-d)Na(In-dl), and either N ¢ {7,8} or
In-d| #6.

We can then apply Deligne's general result to $(1/2) with
Ggeormn = O(N).



CHAPTER 8
€-adic Hypergeometrics

8.1 Rapid Review of Perversity, Fourier Transform, and
Convolution
(8.1.1) Let k be a perfect field of characteristic p = ¢. For variable

separated k-schemes of finite type X/k, we can speak of DbC(X, Q). For

morphisms f: X = Y between separated k-schemes of finite type, one
knows (cf. [De-WII] for the case when k is either algebraically closed or

finite, [Ek], [Ka-Lau], [SGA 4, XVIII, 3]) that these Dbc support the full
Grothendieck formalism of the "six operations”. In this formalism, the
(relative to k) dualizing complex Ky in DbC(X, Qy) is defined as 'n'!ﬁg,
where 7 denotes the structural morphism w: X — Spec(k). In terms of
Ky, the Verdier dual D(L) of an object L of Dbc(X, 62) is defined as
RHom(L, Ky). One knows that L * DD(L) by the natural map. The

duality theorern asserts that for f : X = Y a morphism of finite type
between separated k-schemes of finite type, one has D(Rf|L) = Rf,D(L),

D(Rf, L) = RfD(L). If X/k is a smooth separated k-scheme of finite type
and everywhere of the sarme relative dimension, noted dimX, then KX
is Qgl2dimXKdimX), and so D(L) is RHom(L, Qp)[2dimXI(dimX).
(8.1.2) Given two separated k-schemes X/k and Y/k of finite type,
"external tensor product over Q" defines a bi-exact bilinear pairing,
DPL(X, @y)xDPL(Y, Qp) = DP(XxiY, Qp)
(K, L) » KxL := pri*K®pry*L.
One knows that D(KxL) = D(K)xD(L).
An object K of Dbc(X, 62) is called semiperverse if its

cohomology sheaves XK satisfy
dim Supp(®IK) ¢ -i.
An object K of DP_(X, Qp) is called perverse if both K and its dual D(K)

are semiperverse. If f : X = Y is an affine (respectively a quasifinite)
morphism, then Rf, (respectively f; = Rf)) preserves semiperversity. So

if f is both affine and quasifinite (e.g, finite, or an affine immersion),
then by duality both f| = Rf| and Rf, preserve perversity. If f : X = Y

Is a smooth morphism everywhere of relative dimension d, then f*[d|
Preserves perversity. In particular, if K is perverse on X, then its
inverse irage on Xek is perverse on Xé k. One knows that the full
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subcategory Perv(X) of Dbc(X, Q,) consisting of perverse objects is an

abelian category in which every object is of finite length. The objects
of Perv(X) are sometimes called “perverse sheaves” on X. However, we
will call thern "perverse objects” to avoid confusion with “honest”
sheaves.

(8.1.3) If X is srooth over k, everywhere of relative dimension
dimX, the simplest example of a perverse object on X is provided by
starting with a lisse sheaf ¥ on X, and taking the object F[dimX] of

Dbc(X, 62) obtained by placing ¥ in degree ~-dimX. The object FldimX|

is trivially semiperverse, and its dual D(F[dimX]) = (F V(dimX))[dimX],
being of the same form, is also. If X is connected, and if F is irreducible
as a lisse sheaf, i.e, as a representation of w{(X, x), then FldimX] is a
simple object of Perv(X).
(8.1.4) Given a locally closed subscheme Y of X such that Y is affine,
the inclusion j: Y — X is both affine and quasifinite (factor it as the
open immersion of Y into its closure Y, followed by the closed
immersion of Y into X). So for a perverse object K on Y, both jK and
Rjx K are perverse on X, and as functors from Perv(Y) to Perv(X) both
jiand Rj, are exact. There is a natural "forget supports” map from jK
to Rj K, and as Perv(X) is an abelian category it makes sense to form
J1&(K) := Image(jiK = Rj,K) € Perv(X),
called the "rniddle extension” from Y to X of the perverse object K. The
functor jj, is an exact functor from Perv(Y) to Perv(X), it carries
simple objects to simple objects, and it commutes with duality. [The
middle extension functor j|, can be defined for any open immersion,
not just an affine one, but we will not have need of that more general
case herel
(8.15) One knows that for any simple object S of Perv(X) there
exists an affine locally closed subscheme j: Y = X such that Y is
smooth over k and irreducible, and an irreducible lisse sheaf ¥ on Y
such that 5 is j|,(FldimY)). Given the simple object S, we construct Y
and F as follows: the closure Y of Y is precisely the closure of the
support of QiKiS, Y is any smooth affine open set of Y on which all the
AIS are lisse, and F is ¥~ dimY(s)|y,

An object S of Perv(X) is called geometrically simple if its inverse
image on X@k is simple. Of course "geornetrically simple” = “simple”.

(8.16) Consider the special case when X/k is a smooth,
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geometrically connected curve. Then an object K of DbC(X, Q) is
perverse if and only if l

HIK =0 fori= -1, 0,

%~ 1K has no nonzero punctual sections,

0K is punctual.

We call a perverse object K "nonpunctual” if ®OK = 0.If ¥ is a lisse
sheaf on an open nonempty open set j: U = X, then the middle
extension j|,(F[1]) is none other than (j, F)[1]. It is for this reason that

we adapted the terminology "middle extension” for sheaves of the type
jF with F lisse on U. The dual D(j|,(F[1])) of such a middle extension
is related to the naive dual D(j,F) := j,(F ) defined in 73.1 by

DGie (FIAD) = jip (DCFILD) = j,(F¥(ANI1] = DG, FUDILL.
There are two types of simple perverse object on X:

(1) the punctual ones, whose Y is a single closed point x of X; the
corresponding simple objects are x, ¥, where ¥ is an irreducible

representation of Gal(k/k(x)) [so if k is algebraically closed, only the
delta sheaf 6, :=x, Q, supported at x|.

(2) the nonpunctual ones, whose Y is a nonemnpty open set j: U = X of
X; the corresponding simple objects are (j,F)[1], where ¥ is an

“arithmetically irreducible” lisse sheaf on U, ie. one whose
representation of w4(U, u) is irreducible [so the nonpunctual simples

which are geomnetrically simple are precisely the F[1] where F is an
"irreducible middle extension sheaf” in the terminology of 7.3.1].

(8.17) Consider now the particular case when X/k is Al/k. The
derived category versions of Fourier Transforrm are defined by

FTy «(K) := R(pra) (pri*K®L y(y,))1],
FT¢’*(K) = R(prz),(prl*K®L¢(xy))[1].
Both are exact functors from Dbc(Ai, 63) to itself, which are
essentially interchanged by duality:
D(FTy, 1K)= FT,, ,(I-1]*-DK)(1).
It is easy to prove that FT%! is essentially involutive:
FT¢‘!'FT¢I! = [—1]'('1)}
by duality it follows that the sarme holds for FT¢',.
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The "miracle” of Fourier Transformm is that there is really only one:
the natural "forget supports” map FT%! d FT¢’, is an isomorphism. We

denote it FT¢. As FT¢ (viewed as FT¢',) preserves semiperversity, it

follows from the miracle that FT¢ preserves perversity, and so defines

an exact autoequivalence of Perv(Al) In particular, FT¢ sends perverse

simple objects to perverse simple objects.
The elementary sheaves ¥ of 7.3.4 are precisely those for which
both K:= F[1] and FTy(K) are perverse and nonpunctual. For ¥F

elementary, we have

FT¢(’I[1]) = NFT¢(T)[11
The Fourier sheaves ¥ are those for which both K:= F[1] and FT¢(K) are

perverse and are the middle extensions of their restrictions to all
nonempty open sets. The irreducible Fourier sheaves 7 are those for
which K:= F[1] is a geometrically simple perverse object such that
neither K nor FT(K) is punctual.

(8.18) Suppose G is a sooth separated k-groupscheme of finite
type of relative dimension noted dimG, m: Gx, G — G the rnultiplication

map, e: Spec(k) = G the identity section. Given two objects K and L in
Dbc(G, 62), we define their "compact” or “!“ convolution, denoted K= L,
by

Ke L := Rm((KxL) € DP_(G, @Qp).
We define their “*#” convolution, denoted K= L, by

Ks,L = R, (KxL) € DP(G, Qp).
Duality interchanges the two sorts of convolution:

D(K# L) ® D(K)+ ,D(L), D(K= ,L) = D(K)»D(L).

By the Leray spectral sequence and the Kunneth formula, we have
Gal(k/k)-equivariant isomorphisms of cohomology algebras

Ho*(Gek, KejL) * H *((GxG)ek, KxL)  H.*(Gek, K)®H_*(Gek, L),
H*(Ge k, K+ ,L) * H*((GxG)e k, KxL) * H*(Ge k, KI®H*(Ge k, L).

In general, even if we start with two constructible ¢-adic sheaves
F and ¢ on G, and view them as objects of of Dbc(G, Q,) which are

concentrated in degree zero, their convolutions ¥ *($ and F*,$ are
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"really” objects of Dbc(G, 62), and not simply single sheaves placed in
some degree. [t is this “instability” of sheaves themselves under
convolution that makes Dbc(G, 61) the natural setting for
systematically discussing convolution. _
(8.19) If K and L are semiperverse (resp. perverse) objects on G,
then KxL is serniperverse (resp. perverse) on Gx G. Therefore if G is
affine, and if K and L are both semiperverse on G, then K= L is
serniperverse on G. If K and L are both perverse on G and if moreover
the natural “forget supports’ map is an isomorphism KL * K« L, then
K* (L = K= L is perverse (its dual being D(K)+ ,D(L)).
(8.1.10) The formal properties of the two sorts of convolution are
easily established (cf. the analogous JJ-module discussion in 5.1.8-9).
(1)Each sort of convolutign is associative, and for each the §-sheaf

bg = e,Qy
supported at the identity of G is a two-sided identity object. If G is
commutative, then each sort of convolution is cornmutative as well.
(2a) If ¢: G—H is a homomorphism of smooth separated k-
groupschemes of finite type, then for K and L on G we have

Ry, (K=, L) = (R K)* ,(Ryp, L),

Ry (K# L) = (RyK) = ((Rop,L).
(2b) If p : G = H is a homomorphism, then for K on G and L on H we
have

p*((RpK)x L) = K= ((p*L),

¢'((Rp, K)», L) = Ks ,(¢'L).
These two relations are duals of each other. The first is proper base

change for the following commutative diagram, whose outer square is
cartesian (verification left to the reader):

GxG@ —— GxH

1 idxg 1 pxid
mult | HxH

l P |l mult

G E— H

(3) For g € G(k) denote by Tg:G — G the map x — gx "left translation
by g", and by Sg = (Tg),(se) the delta sheaf supported at g. Then for
g € &(k), we have

(Tg), = R(Tg), = (Tg)! = R(Tg)!
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(Tg)e(Ke, L) = ((Tg)K)x,L,
(Tgy(KeiL) = ((Tg), K= L,
(T o(L) = (5L

Moreover, if G is commutative, then for g, h in G(k), we have
(Tgh). (Ke L) = ((Tg),K)i «(Tp) L),

(Tgp)« (K2 1L) = (T K)x (((Tp,), L.

(4) If G is commutative, geometrically_connected, and defined over a
finite subfield kg of k, then for every Qu-valued character  of G(kg),

the associated lisse rank one I"X on G obtained from pushing out the

Lang torsor by X satisfies m*L, = Ly xLy, whence by the projection

forrula
(KﬂL)@IX x (K@IX)‘!(LQIX),
(K!,L)@Ix X (KQIX)!,(L®IX).

(8.1.11) We now recall (cf. [Ka-GKM, 8.6.1]) the relation between

Fourier Transform on Al and convolution on @, - Denote by

J Gy Al the inclusion,

inv: &, — G, the multiplicative inversion x + x~1
Proposition 8.1.12 (compare 5.2.3) For any object K in Dbc(Gm, 63),
we have canonical isomorphisms in DbC(Gm, 63):

(_j'I¢)[1]i!K X j'FT¢(j!inv*K),

(_j'I'.¢)[1]*,K X j'FTq,(Rj,inv'K),

(j'L¢)[1]i!inv'K X j*FT¢(j!K),

(G*EIle,inv*K = j*FT,(Rj,K),

(inv*j* L)1+ K = inv*j*FT,,(jK),

(inu*j*LM1le K = inv* j*FTy,(Rj, K),
proof The first is a formal consequence of the definitions of #| and of
FT¢'! (cf. 5.2.3) The second is the dual of the first, the third and fourth

are the first two applied to inv*K, and the last two are obtained from

the third and fourth by applying inv* = inv,. QED
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8.2 Definition of hypergeometric complexes and
hypergeometric surns over finite fields

(8.2.1) We work over a finite field k of characteristic p # ¢. We
denote by ¢ a nontrivial 6z-valued additive character of k. Let (n, m)

be a pair of nonnegative integers. Let
(X's) = (X1, . Xp)
be an (unordered) n-tuple of not necessarily distinct ag-valued
multiplicative characters of k*, and let
(p's) = (p1, . Pm)
be an (unordered) m-tuple of not necessarily distinct ﬁg-valued

multiplicative characters of k*.
(8.2.2) Given any such data, we define an object

Hyp(l, ¢; X's; p's) = Hyp(}, ¥; X1, --. Xn: P1s -+ Pm)
in DP_(6,,, Qy) as follows:
(1) if (n, m) = (0, 0), then Hyp(!, §; 2&; &) :
sheaf supported at 1.
(2) if (n, m) = (1, 0), then Hyp(!, §; X; &) = (j'I¢)®Lx[1].

(3) if (n, m) = (0, 1), then Hyp(}, §; &; p) = inv'((_j'Ii,')@I.F)[l].
(4) if (n, m) = (n, 0) with n 2> 2, then Hyp(l, §; X's; &) is the n-fold
mutiple convolution

Hyp(l, ¢; X 41; &)= Hyp(l, §; X2; 2)%) ... « Hyp(l, §; % p; 2).
(S) if (n, m) = (0, m) with m 2 2, then Hyp(}, §; &; p's) is the m-fold
multiple convolution

Hyp(4, §; &; p)= Hyp(l, §; &; pp)=| .. s{Hyp(l, §; &; ppy).
(6) in the general case, Hyp(l, §; X's; p's) is defined to be

Hyp(l, §; X's; &)= Hyp(}, §; &, p's).

§q = 1,62 is the delta

(823) Since ! convolution is associative and commutative, we have
the general convolution formula

Hyp(l, ¢; %'s; p's)= Hyp(l, §; A's; T's) = Hyp(l, §; X's U A's; ps U I''s)

for these objects. [This situation should be contrasted with the D-
module case, where we had an a priori definition of hypergeometric D-
modules "just” by writing down the corresponding DE, but where the
convolution behaviour was a theoremn. Here we lack a “simple” a priori
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definition of hypergeometrics, and we are essentially imposing their
convolution behaviour as the definition.]

(8.2.4) Their behaviour under inversion is given by
inv*Hyp(l, §; X's; p's) = Hyp(l, ¢; p's; X's).

(8.25) Tensoring with a Kummer sheaf L 5 is also extremely

sirnple:

EA®HyYP(!, §; X's; p's) = Hyp(l, §; Ax's; Ap's).
(8.26) For E a finite extension of k, the pullback of Hyp(!, §; X's; p's)
to G,,eE is Hyp(l, 5 Xg's; pE's), where Y (resp. XE PE) is the
additive (resp. multiplicative) character of E (resp. E*) obtained from
(resp. X, p) by composition with Traceg/ (resp. Normg/|). [Indeed the
corresponding pullback of 1'.4, (resp. I'.-x, IP) is I"“E (resp. I"XE’ LPE)’ cf

[Ka-GKM, 4 3], and | convolution commutes with arbitrary base
change]

(8.2.7) The trace function of Hyp(l, §; X's; p's) is easily computed in
terms of "hypergeometric sums”, using the Lefschetz Trace Formula.
For (n, m) = (0, 0),the result is this. For each finite extension E of k,
and each t € E*, denote by

Vi(n, m; t) € (G,,)*"™

the hypersurface in (G,,)™* ™, with coordinates x4, .., Xp, V1, -, Ym.

defined by the equation
TMx; = t(TTJ-yJ').

Define the "hypergeometric sum"” Hyp(y: X's; p's)E, t) € Q(y, X's, p's) to
be the exponential sum

Hyp(y; X's; p's)E, t) := _

Zytn, m; oxp) WECZxj = Z;y % x5 pj gy 50).
Then

Z(-l)iTrace(FrobE‘t | RiHyp(!, ¢; X's; p's))

=(-1)P*MYyp(y; X's; ps)HE, t).

(8.2.8) These hypergeometric surms, which include Kloosterman

sums as the special case n=0 or m=0, when viewed as functions on E*,
are related by multiplicative Fourier Transform to rmonornials in

Gauss sums viewed as functions on the Pontrjagin dual of E*. The
precise relation is this. For each finite extension E of k, and each

multiplicative character A of EX, we have (by elementary calculation)
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Z. ingx NMOHyp(Y; X's; p's)E, ) = (TTie(yE, /\xi,E))(TTJ'g@E, /_\FJ,E))-
By multiplicative Fourier inversion, this gives (q := Card(E))

Hyp(y; X's; p's)E, t) = o
= (1/(q-1Zp on g AT ig4E, A% EN(T jeldE Apj E).

The Plancherel forrmula gives, for any complex embedding of the field
Q(y, X's, p's),
¢ in gx IHYP(Y; X's; p'sHE, OI2 =

= (AAq-IZp o px KTTie00E, A DT je(YE ApjENIZ.

(8.29) From the Kunneth formula (cf. 8.1.8), and the Euler-
Poincare forrnula for the case n+m = 1, we see that

H (6, ®k, Hyp(!, §; X's; p's)) = 1-dim1ifi =0
=0ifi=0.
By the Lefschetz Trace Formula, it follows that for any finite extension
E of k, the action of Frobg on the one-dimensional space
HOC(Gm® kk, Hyp(l, §; X's; p's)) is given by
(8.2.10) Trace(Frobg | HOC(Gm®k]:, Hyp(!, §; X's; p's))
= (Mi(-gE Xi,EINTT j(-($E pj,EN)-
Similarly, for any multiplicative character A of k*, we have
(82.11)  Hi(G,,®k, LA®Hyp(L §; X's; p's) = 1-dim1if i = 0,
=01ifi=0,
and Trace(Frobg | HOC(Gm®kk_, LA®Hyp(, §; X's; p's))
= (MyC-glg, Axi T j(-g(yE, ApjEN-

(8.2.12) In an entirely analogous way, we can use # convolution to
define objects Hyp(s, §; X's; p's) in Dbc(Gm, Qp) by replacing all
occurrences of | by * in the above axiorns 8.2.2 (1) through (6). There is
a natural “forget supports’ map

Hyp(l, ¢; X's; p's) = Hyp(x, §; X's; p's),
which in general is not an isomorphism. Duality interchanges these two
sorts of hypergeometrics:

D(Hyp(!, §; X's; p's)) = Hyp(*, . X's; p's)n+m).
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D(Hyp(x, ¢; X's; p's)) = Hyp(l, ¢; X's; p'sXn+m).

(8.2.13) It will also be convenient to consider systematically the
multiplicative translates of Hyp(l, §; X's; p's) and of Hyp(s, ¢, X's; p's).
For each point A € k*, we define

Hyp, (!, §; X's; p's) := [x = axl Hyp(!, §; X's; p's),

Hyp, (=, ¢; X's; p's) := [x = ax| Hyp(s, ¢; X's; p's).

(82.14) These objects enjoy the following basic properties:
inv*Hyp, (I, y; X's; p's) X Hypy/5(L §; p's; X's).

44

inv*Hyp, (s, §; X's; p's) = Hypy/a(x, §; p's; X's).
ZA®HYp,(, ¢; X's; p's) = (A(X)4EBRHyp, (I, §; AX's; Ap's).
IA®Hyp,(x, ; X's; p's) ¥ (A))IE8@ Hyp, (=, §; AX's; Ap's).
D(Hyp, (!, y; X's; p's)) X Hypa(x, §; X's; p's)n+m).
D(Hyp, (=, 4‘;‘ X's; p's)) = Hyp,(l, $; ;("s; F's)(n-&m)_
Hypa (!, ¢; X's; p's) e Hyp, (!, ¢; A's; T's) =

= Hypy p(l §; X's U A's; p's U T's).
Hyp,a(*, ¢; X's; p's)x Hyp (x, y; A's; ['s) =

= Hypy u(*, §; X's U A's; p's U Ts).

8.3 Variant: Hypergeometric complexes over algebraically
closed fields

(8.3.1) Suppose instead of working over a finite field we work over
an algebraically closed field k. For ¢ a nontrivial Ee-valued additive

character of a finite subfield kg of k, we can speak (cf 7.2.1) of the lisse
rank one sheaf 1'_4, on Alekok, For any tame 6Q-valued character X of
ﬂl(Gmekok), with inverse character denoted X, we can speak of the
lisse, rank one Qg-sheaves L, and I.i on Gmokok.

In terms of these objects, we define objects Hyp(l, §; X's; p's) and

Hyp(s, §; X's; p's) in Dbc(Gmekok, 62) exactly as above.

(8.3.2) For each point A € k*, we define the translated objects
Hyp, (I, ¢, X's; p's) = [x = ax], Hyp(l, §; X's; p's),
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Hyp,(*, §. X's; p's) := [x = ax] Hyp(s, §; X's; p's).
[When the X's and p’s are all of finite order, say all defined over kg,
and a € (kg)*, these objects Hyp, (I, §; X's; p's) and Hyp, (*, §; X's; p's)
are just the pullbacks to Gmekok of the earlier defined objects on
6m/kg with the same names.]
(8.3.3) The properties

inv*Hyp, (I, ¢; X's; p's) © Hypq/5(, ¥; F‘s; x's),

¢

inv*Hyp, (s, §; X's; p's) = Hypy/a(x, §; p's; X's),
EA®Hyp, (L ¢; X's: p's) = Hyp, (), ¢; Ax's; Ap's),
LA®Hyp, (5, y. X's; p's) ® Hyp, (=, §; AX's; Ap’s),
D(Hyp, (!, §; X's; p's)) = Hyp, (=, §; X's; p's)(n+m),
D(Hyp, (=, §; X's; p's)) = Hyp,(, ERY F‘s)(n*m),
Hyp, (!, ¢; X's; p's)= \Hyp (!, §; A's; T's) =

= Hypy u(L ¢ X's U A's; p's U T's),
Hyp,(*, 4; X's; p's)# ;Hyp, (=, §; A's; T's) =

= Hyp)‘p(!, $; X's U A's; p's U T's)

o

hold for these objects.

(8.3.4) "From the general convolution formalism (cf. 8.1.8), and
reduction to the case of hypergeometrics of type (1, 0) and (0, 1), we
see that

HI (6., Hyp,(l, §; X's; p's)) = O for i = O,

HO (G, Hyps(L §; X’s; p's)) is one-dimensional,
and dually

H(Gyy,, Hyp,(*, ¢; X's; p's)) = O for i = 0,

HO(Gm' Hyp,(#, §; X's; p's)) is one-dimensional.

Remark 8.3.5 This situation should be compared to the situation over
C for the hypergeometric D-modules #,(x's; p's). The tame characters

X's (resp. the p's) of w1(6 @ kok) can be seen as playing the roles of the

characters x — exp(2wicx) (resp. x ~ exp(2wipx)) of Z = w1((G,)2M).

Having all the X 's and p's of finite order is analogous to having all the
«'s and b's rational. The choice of a § is required to define the objects
Hyp(l, §; X's; p's) and Hyp(x, y; X's; p's) which are analogous to the D-
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module ¥ 1(x’s; B's). [One might "explain” the fact that in the D-module
case we define X q(«’s; p's) without having to make an analogous choice

by the catch-phrase "there are many 1'.4,, but only one exp(x)"]

8.4 Basic Properties of Hypergeometric Complexes;
Definition and Basic Properties of the Hypergeometric Sheaves
N, §; N's; p's)

(84.1) In this section we will establish the basic goemetric
properties of the objects Hyp, (!, §; X's; p's) and Hyp,(*, §; X's; p's) of
Dbc(Gm, 62). We work over an algebraically closed field k of
characteristic p> 0, p = &.

We say that Hyp, (I, §; X's; p's) and Hyp,(*, §; X's; p’'s) are
defined over a finite subfield kg of k if A € (kg)*, ¢ is an additive
character of kg, and each of the X's and each of the p's is a tame
character of finite order defined over kg (i.e, each of the X's and each
of the p's has finite order dividing Card(kg) - 1).

We say that the %'s and the p's are identical if n = m and if
after possible renumbering we have X; = pj forevery i= 1, .., n.

We say that the X's and the p’s are disjoint if (n, m) = (0, 0) and
if we have x; = Pj foranyi=1, .., nand for any j = 1, .., m.[Thus if
either n = 0 or if m = 0, but ntm = 0, then disjointness holds
automatically ]

We denote by multg(x) (resp. mult(p)) the multiplicity with
which a particular character X (resp. p) occurs among the X's (resp.
among the p's). In discussing &-adic representations of inertia groups,
for any integer n » 1, we denote by Unip(n) a unipotent Jordan block of
size n (i.e, an indecomposable unipotent [and hence tame] n-
dimensional ¢-adic representation of the inertia group in question).

Theorem 8.4.2 Suppose that the X's and p's are disjoint. Then
(1) Hyp, (!, §; X's; p's) is simple perverse and nonpunctual, ie., there

exists an irreducible middle extension sheaf X, (!, §; X's; p's) on G,
such that Hyp, (!, §; X's; p's) = ®, (I, §; X's; p's)[1]. The Euler
characteristic X(Gy,, ¥,(, §; X's; p's)) = -1.

(2) Denote by j: G, — Al the inclusion. Then Je¥5 (L §; X's; p's) is an
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irreducible Fourier sheaf on Al except if (n, m) = (1, 0) and X is trivial
(in which case the sheaf j, X, (!, §; X's; p's) in question is 1'.4,(,‘/)‘)).
(3) If no ¥ is trivial, then

JGCL s Xss p's) T ML (L 4 X's; ps) B RJLHL(L ¢ X's; p's),
whence ji®,(!, §; X's; p's) is an irreducible Fourier sheaf on Al
(4) If Hyp,(l, §; X's; p's) is defined over a finite subfield kg of k, then
H,(, §; X's; p's) is pure of weight n + m - 1.
(5) The natural map Hyp, (!, §; X's; p's) = Hyp, (=, §; X's; p's) is an
isomorphism.
(6) If n> m, the sheaf ¥, (!, §; X's; p's) is lisse of rank n on G,. As [(0)-
representation it is tame, isormorphic to

® L y ® Unip(multg(x)).

As [(e0)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

distinct X's

(dim. n-m, brk. 1/(n-m)) @ D gistinct o I.P® Unip(mult ,(p)).
(7) If n < m, the sheaf ¥, (|, §; X's; p’s) is lisse of rank m on Gp,. As

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(m-n)) @ B Gictinet x's I'..X®Unip(mult0(x)).

As I(e)-representation it is tarne, isomorphic to

B yistinct p's I.P®Unip(mult°°(p)).
(8) If n = m, the sheaf ¥, (!, §; X's; p’s) is lisse of rank n on &, - {a},
from which it is extended by direct image. I(3) acts by tarne
pseudoreflections of determinant L p(x-y). for A = T;pi/TT%;.
As 1(0)-representation it is tame, isormorphic to

B yistinet x'2 L x ® Unip(multg(x)).
As [(e0)-representation it is tame, isomorphic to

D yictinct o's I.P®Unip(mult°°(p)).

proof We proceed by induction on n+m. If ntm = 1, the theorem is
obvious by inspection. Suppose the theorem has already been proven
universally for all (ng, mg) with ng + mg < ntm; we must prove it
universally for (n, m). Notice that assertions (2) and (3) follow from
assertions (1), (6), (7) and (8).

We are thus “reduced" to proving assertions (1) and (4) - (8).By
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multiplicative translation, we may assume 1 = 1. By multiplicative
inversion, we may suppose that n ¢ m, For any tame character A, (1)
and (5) - (8) hold for Hyp4(l, §; X's; p’s) if and only if they hold for
ZA®Hyp4(l, §; X's; p's) ® Hypy(!l, ¢; AX’'s; Ap's). For (4), we have this
same equivalence for any tame character A of finite order.

Suppose first that 0 < n « m. Then by picking A to be the inverse
of one of the % 's we may assume that one of the X 's is trivial, say
%Xpn = 1. To emphasize this, we will write our object of type (n, m) in
the form

Hyps(!, ¢; 1, X's; p's),
where now there are n-1 listed X's in addition to 1.
Since {1, the %'s} and the p's are disjoint by hypothesis, none of
the p's is trivial. Now apply the general formula relating convolution
with Fourier Transform
(j'Iq,)[l]:!K x j*FT¢(j!inv*K)

to the hypergeornetric object K of type (n-1, m)
K = Hypq(l, §; X's; p's).

We find

Hypq(l, §; 1, X's; p's) = j'FT¢(j!inv*K).

44

j*FT¢(j!inv*Hyp1(!, $; X's; p's)
J*FTyGiHyp1(, ¥ p's; X's)).
Since none of the F's is trivial, we have by induction that

14

JHyp (L ¥ p's; X's) = jiq0, ¢ p's; XS]
x ja U (L g p's; XN
is (an irreducible Fourier sheaf)[1]. Thus we find
Hyp1(, ¢ 1, x's; p's)-1] =
x j*FT¢(j,K1(!, g p's; X's)
= JENFT (%10, §: p'si X's)).
The key point is that NFT¢(j,K1(!, §; p's; X's)) is irreducible Fourier.
This shows first that Hyp1(l, §; 1, X's; p's)[-1] is an irreducible middle
extension sheaf on G,,, thus proving (1) and providing the required
Hq(l, ¢; 1, X's; p's). [Because the Euler characteristic of a convolution is

the product of the Euler characteristics of the convolvees (cf 8.1.8),
always X(Gp,, Hyp1(L ¢; 1, X's; p's)) = 1]
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If X401, §; 1, X's; p's) is defined over a finite subfield kg of k, then

by induction it is pure of weight ntm-1 (cf. 7.3.8).
That the local monodromy at zero and at o of ¥4(l, §; 1, X's; p's)

is as asserted in the theorem follows (by induction) from the known
effect (cf. 75 .4) of NFT¢ on the local monodromies at zero and o of

irreducible Fourier sheaves which are lisse on G, .

If n<m, Xq(l, §: 1, X's; p's) is lisse on &y, because by induction it
is the NFT of an irreducible Fourier which is lisse on G, and all of
whose «-slopes are 1/(m - (n-1)) < 1. This gives (7).

If n = m, then there exists a unique s € k* such that on Gy, - {s},
A, §; 1, X's; p's) is lisse of rank n,with tame pseudoreflection local
monodromy at s. [The s in question is the unique element of k* for
which #4(l, §; p's; X's) as P(w)-representation is I¢(_sx)$(trivial).] We
must show that s = 1. If n=m=1, then by definition

Hyll §; p'si X'9) = JHCE B LGy = 3" (L y(-x)® L)
as required.

Suppose now n=m is 2 2. Since ®4(], §; 1, X's; p's) is a middle

extension sheaf, s is the unique point in k* where the rank of its stalk
at s is n-1. Pick a partition n= A + B of n as the sum of two strictly
positive integers, separate the {2, X's} into a collection of A characters
«'s and B characters p's, and then separate the p's into a collection of A
characters ¥'s and B characters §'s. Let

G = Hq(L, g, x's; ¥'s),

B = Hq(, ¢, p's; 8's).
Then by induction @ (resp. B) is an irreducible middle extension sheaf
on G, lisse of rank A (resp. B) on G, - {1}, with tame pseudoreflection
local monodromy at 1 and tame local monodromy at both zero and .
Moreover, we have(by part (1) and the definition of hypergeometrics)

K, g 1, xX's; p's)l-1] = G« B.
This implies that for any s in k*,

dim(Xq (0, ¢; 1, X's; p'sDg = -~ (G, A®Ix » s/x]*B).

The sheaf A®[x — s/x]|*B is tame on Gy, and its only nonlisseness is at
the point 1 (where Q drops by 1) and at s (where B drops by 1). So at

any point s # 1, @®[x — s/x]*B has two distinct drops, at 1 of size B
and at s of size A; thus at s = 1, the Euler-Poincare formula gives
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-X(Gp,, AB[x ~ s/x}*B) = B + A.

But at s = 1, the only drop is at 1, of size AB - (A-1)(B-1) = A+ B - 1,
so Xq(l, g; 1, X's; p's) is nonlisse at 1, as asserted. This proves (8); the

determinant of the tame local monodromy at 1 is forced by what it is
at zero and oo,

To prove (S), it is equivalent to show that under the natural
pairing, #4(, §; 1, X's; p's) and H(}, $; 1, X's; F's) are (up to a twist)

duals. The first is j*NFT(j, # (!, ¥; p's; X's)), and the second is
j'NFT$(J'.K1(!, Y p's; X's)). In view of the duality behaviour of NFT

(and the trivial remark that NFT¢-[-1]* = NFTJ), the result again

follows by induction.
It remains to treat the case in which n=0. In this case we reduce
by twisting by a suitable L A to treating Hypq{(!, §; &; 1, p's). We treat

this case by applying the general formula
(inv*j*1¢)[1]!|_K x inv'j'FT¢(j!K),
with ¢ replaced by §, to the object K := Hypy(l, y; #; p's). We find
Hyp1(L, ¢ 2. 1, p's) = inv* J*FT(jHyp1(!, ; 2; p's)).
The proof by induction now proceeds as in the previous case. QED

Remark 8.4.3 The Kloosterman sheaves denoted
KUY Xq, -+ Xpi 1, o) 1)
in [Ka-GKM] are precisely the sheaves ¥ (|, §; X's; ) of type (n, 0)

above. The systematic use here of Fourier Transform to develop their
basic properties is only hinted at there (cf. [Ka-GKM, Chapter 8]), and is
independent of the method employed there.

(6844) In terms of these Kloosterman sheaves
KKy; x's) =H (L, §; X's; 2),
we can rewrite the definition of the hypergeometric complexes:
Hyp(), . X's; &) := Ky, ¥'s)1]
Hyp(l, §; 2 p's) := inv*KK, p's)li]
Hyp(l, ¢; X's; p's) := KI(p, %X's)1]=)inv*KI(y, p's)l1].
Hyp(x, §. X's; p's) = KI(§, x's)1]* ,inv*KI(Y, FS)[l]
This point of view will be useful now in establishing the perversity of
the objects Hyp(l, §; X's; p's).
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Theorern 8.4.5 The objects Hyp, (I, ¢, X's; p's) and Hyp, (=, §; X's; p's)

of DP_(G,,,, Q) are perverse.
proof By multiplicative translation, we may suppose that a = 1. If
(n, m) = (0, 0), then by definition
Hyp(!, §; 2. #) = Hyp(s, §; &; &) = 8,
is perverse. If (n, m) = (0, 0) but either n=0 or m=0, then the X's and
p's are automatically disjoint, and we may apply the previous theorem
Suppose now that both n and m are strictly positive. Then

Hyp(x, §; X's; p's) := KWy, ')l inv*KI(y, p's)1]

is the * convolution of two perverse objects, and hence (cf. 8.19) is
semiperverse. By the duality formulas (8.3.3)

D(Hyp, (!, §; X's; p's)) = Hyp,(*, §; X's; p's)n+¢m),
D(Hyp, (*, ¢; X's; p's)) = Hyp, (!, §; X's; p's)(nem),

it suffices to establish universally that

Hyp(l, ¢; X's; p's) := KI(y, X's)[1]s)inv*KI(y, p's)1]
is serniperverse. For this we argue as follows. The sheaves Kl(y, X's) and
inv*KI(y, ;'s) are each lisse sheaves on &, which are irreducible and

which have Euler characteristic = -1. Now apply the following theorem.

Theorem 8.4.6 Suppose that ¥ and ¢ are lisse 6Q-sheaves on G, over

an algebraically closed field k of characteristic p # ¢ Suppose further
that ¢ is irreducible and that X(G,,, ) # 0. Then both T[l]iﬂr[l] and

F[1]+,9[1] are perverse.

proof For any two lisse sheaves ¥ and ¢, the objects F[1] and ¢[1] are
perverse, and hence F[1]x,%[1] is semiperverse. So by duality, it

suffices to prove the semiperversity of F[1]#3[1]. Concretely, we must
prove that the object ¥ #|$ has %2 punctual and X1z 0 fori> 2.
For s € k*, we have, by proper base change,
UF % \3)g = Hi(Gp,, FBIx = s/x]*$).
So the vanishing #1 = 0 for i > 2 is obvious. We must show the

vanishing of HZC(Gm, F®[x = s/x]*Q) for all but finitely many values
of s. Writing ¥ as a successive extension of irreducbles, we reduce to
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the case when ¥ is irreducible. Then both ¥ and [x = s/x]*$ are

irreducible, so HZ (&, F®[x = s/x1*$) is nonzero if and only if there

exists an isomorphism ¥~ % [x — s/x]*$. Now KZ(T!!S) is either
punctual, or its stalk at s is nonzero for all s outside some finite subset
T of k*.

So if H2(F = 13) were nonpunctual, the isomorphism class of

[x = s/x]*$ would be independent of s in k* - T. Replacing ¢ by a
multiplicative translate of itself, we may assume that 1isnotin T, ie,

that ¥~ = inv*§. Since k is algebraically closed, k* - T contains roots
of unity of arbitrarily high order. If we take for s a root of unity gy of
order N, then the isormorphism class of inv*$ is invariant under
multiplicative translation by gyy. Since inv*§ is irreducible, it descends

through the N-fold Kumnmer covering of &, by itself, and consequently
X(Gpp, inv*$) = 0 mod N. Since we may choose N arbitrarily large, we

must have %X(Gp,, inv*3) = 0, contradiction. This proves the theorem,
and with it Theorem 8 45 above. QED

Corollary 8.45.1 Hypotheses and notations as in the theorem above,

suppose that no rnultiplicative translate of " is isomorphic to inv*g.

Then F[1]#,3[1] is of the form K[1], for some sheaf A on G, which has
no nonzero punctual sections.

proof Indeed, in this case HZC(Gm, F@Ix = s/x|*$) = 0 for all s, so the
perverse object F[1]#,3[1] is of the form Xl1] for some sheaf ¥ on Gpy,.

Because X[1] is perverse, ¥ has no punctual sections. QED

Returning to Hyp, (!, §; X's; p's) and Hyp, (%, §. X's; p's), we can
be much more precise about their structure.

Corollary 8.4.6.2 Suppose that the X's and p's are not identical. Then
the perverse object Hyp, (!, §; X’s; p's) is nonpunctual, ie,

Hyp, (L, ¢; X's; p's) = H, (L, §; X's; p's)i]
for a sheaf ¥, (!, §; A's; p’s) on G, with no nonzero punctual sections.

proof If n=0 or m=0, this is proven in 8.4.2. By multiplicative
translation, we may assurmne 2 = 1. The Kloosterman expression
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Hyp(!, ¢; X's; p's) = KKy, x‘s)[lli!inv'Kl($, p's)1l,
and 8.46.1 then give the existence of a sheaf X 1(l, §; X's; p's) on Gp,

with no punctual sections such that
Hyp(l, §; X's; p's) = Hq(), §. X's; p's)1]. QED

Corollary 8.4.6.3 Suppose that the X's and p's are not identical. Then
Hic(Gm, Ho (L g, X's; p's) =0 foriz=1,
Hl (6., #, (., §; X's; p's) is one-dimensional.

proof This is just the spelling out of 8.3.4 in the nonpunctual case. QED

Cancellation Theorem 8.4.7 Given arbitrary X's and p’s, and a tame
character A, denote by V the one-dimensional Qg-vector space

V = HO (&, Hyp, (!, ¥; A~ 1x's; A™1ps)).
In the category Perv(Gp,), Hyp, (!, ¢; A, X's; A, p’s) sits in a short exact

sequence
0 = VOIAlLl » Hyp,(, 4; A, X's; A, p's) = Hyp,(, ¢; X's; p's)(-1)— 0.

proof Twisting by LA, we reduce to the case when A is 1. Then by
definition we have

Hyp, (4, ¢; 1, X's; 1, p's) := Hyp, (!, ; X's; p's)# Hypy(l, ¢; 1; 1).
We have the following lemma:

Lemma 8.4.8 (compare 6.35) Denote by k : G, - {1} = G, the
inclusion. Then we have a canonical isomorphism Hypq{(l, §; 1; 1) =
Rk, Qul1]. Writing Rk, Q1] as an extension of its (shifted) cohomology
sheaves gives a short exact sequence of perverse sheaves on G,

0 = Qul1] — Hypy(!, §; 1; 1) = 84(-1) — 0.

proof By the fundamental relation 8.1.12 between Fourier Transform

and convolution, denoting by j: Gy, — Al the inclusion, we have
(j"I¢)[1]!!K X j*FT¢(j!inv*K).
Applying this to K := inv'_j*l'.ﬂl], we find
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Hypg(l ; 1, 1) = J*FTyG* LMD = J*FT(Z 5@ 5iQol1l.
Now FT¢(I$®K) =[x x*l],FTq,(K) for any K on Ai, and it is proven
in [Ka-PES, Prop. A2] (cf. 2.10.1(1) for the D-module analogue) that
FTy(iQe) = Ry, Qy. Thus we find

JFPFTYE QI = j*Ix = x+1},Rj, Qql1] = Rk, Qyl1]. QED

Corollary 8.4.8.1 of Lernma 8.4.8 For any X, the perverse object

Hypy(!, §; X. X) sits in a short exact sequence of perverse sheaves on
€m
0 — Z,[1] = Hyp (L, §; x: x) = 84(-1) = 0.

proof Simply tensor with L. QED

Apply 8.4 8 to calculate Hyp, (], ¢; X's; p's)x Hypy(!, ¢; 1; 1). The
convolution Hyp, (L, ¢; X's; p's)*|Q, is the constant sheaf with value
V= Hoc(Gm, Hypy (L, §; X's; p's)).
The convolution Hyp)‘(l, . X's; p's)x)be(-1) is Hyp, (L, §; X's; p's)(-1), so
we have the asserted short exact sequence
0 — VI1] = Hyp,(L 4. 1, x's; 1, p's) = Hyp,(L ¢; x's; p's)(-1) = 0.
QED

We now develop some of the immediate consequences of the
cancellation theorem.

Cancellation Theorem bis 8.4.9 Given arbitrary X’'s and p's, and a
tame character A, denote by W the one-dimensional Qy-vector space

W = HO(Gy,, Hyp, (!, 4; A”1x's; A™1p's)).
In the category Perv(G.,), Hyp,(*, §; A, X's; A, p’s) sits in a short
exact sequence

0 — Hyp, (%, §; X's; p's)(-1) =2 Hyp, (s, §; A, X's; A, p's) 2 WO I Al1] —0.
proof This is the dual statement, with the dual proof. QED

Semisimplification Theorem B.4.10 Suppose that the X's and p's are
disjoint. Let r > 1, and let Ay, .., A, be r not necessarily distinct tame

characters. In the category Perv(G,,) over the algebraically closed field
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k, the semisimplifications of Hyp, (I, $: Aq, .., Ap, X's; Aq, .., Ap, p's)
and of Hyp,(*, §; Aq, ... Ay . X's; Ay, .., A, p's) are each isomorphic
to the direct sum

Hyp, (), ¢; X's; p's)e ®,., I‘_Ailll.
proof This is obvious by the cancellation theorem and the fact (8.4.2)
that if the X's and p’'s are disjoint, then

Hyp, (L, §; %’s; p's) ® Hypy(x, §; X's; p's)
is simple. QED

Corollary 8.4.10.1 The perverse object Hyp, (!, §; X's; p's) is simple if
and only if the X's and p’s are disjoint.

Theorem 8.4.11 Suppose that the X's and p’s are not identical. Write
Hyp, (L, 4; X's; p's) = ¥, (1, ¢; X's; p'slli]
for a sheaf X, (!, §; X's; p's) on &,,, with no nonzero punctual sections.
The local monodromy of #, (!, §; X's; p’'s) is the following:
(1) If n > m, the sheaf X, (|, §; X's; p's) is lisse of rank n on G.,,. As I(0)-
representation it is tame, isornorphic to
® gistinct x5 L ¥ ® Unip(multg(x)).
As I(«)-representation it has Swan conductor =1, and is isomorphic to
the direct sum

(dim. n-m, brk. 1/(n-m)) @ B gistinct p's Ip®Unip(mult°°(p)).
(2) If n < m, the sheaf ®,(!, §; X's; p's) is lisse of rank m on Gp,. As

I(0)-representation it has Swan conductor =1, and is isomorphic to the
direct sum

(dim. m-n, brk. 1/(rn-n)) @ D yictinct X's I‘_X®Unip(multo(x)).

As I(e)-representation it is tame, isornorphic to

D giatinct P I.P®Unip(mult°°(p)).
(3) If n = m, the sheaf ®,(!, §; X's; p's) is lisse of rank n on Gy, - {3},
from which it is extended by direct image. [(3) acts by tame
pseudoreflections of determinant IA(x-x): for A := TT{%i/ TTipi-
As [(0)-representation it is tame, isomorphic to

B Gistinet x's & x @ Unip(multg(x)).
As [(00)-representation it is tame, isornorphic to

® Jistinct ps I.P®Unip(mult°°(p)).



272 Chapter 8

proof Suppose first n # m. Then it follows immediately from the
cancellation theorem 8.4.7 (and 842 in the case when the X's and p’s
are disjoint) that ¥, (I, §; X's; p's) is lisse of rank max(n, m) on Gy,

and that the description claimed for its local monodromy at zero and oo
is correct up to semisimplification. Similarly, if n=m, we see that the
sheaf #, (!, §; X's; p's) is lisse of rank n on G, - {2}, and that the

description claimed for its local monodromy at zero and o« is correct up
to sermisimplification.

To see that the description claimed for its local monodromy at
zero and o is absolutely correct, we must see that (universally, so
after any LA twist) the local monodromy at zero or at « has at most

a single unipotent Jordan block. This is a consequence of the fact that

H1 (6., ¥,(, §; X's; p's)) is one-dimensional. Indeed, if we denote by
F o= U0, ¢ X's; p's),

and denote by j: G, P1 the inclusion, the coboundary of the short

exact sequence of sheaves on pl
0 jF - j,F—» FllOgsy & FH*)®s,, — 0,
gives an injective map
(FHO) g FHe)y/uO(a,, F) - HlL(G,,, F).
Since HO(Gm, F) injects into either FIHO) o FI() it follows that FKO)

and FI(*) each have dirnension at most one. .
If n = m, it remains to examine the local monodromy at a of the
sheaf F := H,(, §; X's; p's). Denote by k : & - {a} — Gy, the inclusion.

By the Cancellation Theorem 84.7 and 8.4.2, F is lisse on Gy, - {3} of

rank n, and it has a one-dimensional drop at a. Since F has no nonzero
punctual sections, either ¥ has pseudoreflection local monodromy at

and F X k,k*7F, or k,k*7 is lisse on G,,,. In this latter case, k k*¥F
must be a successive extension of LA's, becaue we already know that ¥

is tame at both zero and o . But comparing the local monodromies of F
at zero and ¢, we see that ¥ cannot be a successive extension of IA's.

Therefore T has pseudoreflection local monodromy at i, and
F = k,k*F. Because X(G,,, F) = -1, F must be tame at 1. The

determinant of the tame local monodromy at a is determined by what
it is at 0 and o0, as indicated. QED
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Corollary 8.4.11.1 Suppose that the X's and p's are not identical. Then
there exists a middle extension sheaf ¥, (x, §; X's; p's) on G, such that

Hyp, (=, §; X's; p's) = ®, (s, §; X's; p's)L],
and assertions (1), (2), (3) of the theorem hold for ®,(*, §; X's; p's).
proof Duality. QED

Theorern 8.4.12 If n = m and the X's and the p's are identical, then
(1) the sheaf K'l(Hyp)‘(!, $; X's; X's)) is lisse on Gy, a successive
extension of the L-x's.

(2) K'l(Hyp)‘(!, $; X's; X's)) is isomorphic to
B yistinct x's L x ® Unip(multg(x)).

(3) the sheaf KO(Hyp)‘(!, $; X's; X's)) is a punctual sheaf, concentrated
at i, of rank one.

proof By multiplicative translation, we may assume 2 = 1. Forn = 1,
this is 8.4.8.1. Assertions (1) and (3) in the general case are proven
inductively, using the Cancellation Theorem 84.7.

To prove (2), we use the fact that K'l(Hyp)‘(!, $; X's; X's)), being
lisse on G@,, and tame, is determined by (indeed is the canonical

extension of, cf [Ka-LG, 1.5]) its local monodromy at zero. We must
show that, after any LA twist, this local monodromy has at most one

unipotent Jordan block. As explained above, this follows if we prove
universally that ch(Gm, K'l(Hypk(!, $; X's; ®'s))) has dimension ¢ 1.
To prove this, consider the perverse short exact sequence

0 — ® L(Hyp,(l, ¢; %'s; x'sHI1] = Hyp, (L, ; X's; X's) —(pctl) —0.
The long exact cohomology sequence for Hic(Gm, ?) gives an injection
H1(@p, ™ 1(Hyp, (1, ¢ X's; X'S)) &> HO(6,,, Hyp, (L, ; X's; X's)),
and the target is one-dimensional (cf. 8.3.4). QED

Theorem 8.4.13 Suppose that Hyp, (I, §; X’s; p’s) is defined over a
finite subfield kg of k, that (n, m) = (0, 0), and that the %'s and p's are
not identical. Then the middle extension sheaf ®,(l, §; X's; p's) is pure
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of some weight (necessarily n + m - 1) if and only if the X's and p's are
disjoint.

proof If the X's and p’'s are disjoint, then the middle extension sheaf
Y, (L §; X's; p's) is pure of weight n + m - 1 (cf 8.4.2). By Deligne's main
result 331 in [De-WII], ®, (), §; X's; p’s) is always mixed of weight

¢ n+ m- 1 It suffices to show that if the X's and p's are not identical,
then Hyp, (I, §; A, X’s; A, p's) is not pure of weight n + m + 1, but that

it has a nonzero quotient which is pure of weight n + m + 1.In the
cancellation theorem exact sequence

00— VLA = Y, (L A, X's; A, p's) = K, (L, §; X's; p's)i(-1) = O,
V is the geometrically constant sheaf ch(Gm, H,(L oy A_lx's; A'lp's))A
which is pure of some weight < n + m (since ¥, (!, ¢; A lys; A 1ps) is
mixed of weight ¢ n + m - 1). On the other hand, since the X's and p's
are not identical, we can “extract duplicates” as much as possible from
the %'s and p's and still have some disjoint «’s and p's left at the end.

Iterating the above exact sequence, we see that if after extracting r
pairs of duplicates from the X's and p's, X, (I, §; o&'s; p's)(-1-r) is a

nonzero quotient of X, (I, §; X's; p's)(-1) which is pure of weight n + m
+1. QED

Corollary 8.4.13.1 Suppose that Hyp, (!, §; X's; p's) is defined over a
finite subfield kg of k, that (n, m) = (0, 0), and that the X's and p’'s are
not identical. Then the canonical “forget supports” map

ol s xs; p's) = My, g X's; p's)
Is an isomorphism if and only if the X's and p's are disjoint.

proof If the X's and p’s are disjoint, then the map is an isomorphism.
Conversely, suppose the map is an isororphism. Then ¥, (!, §; X's; p's)

is pure of weight n + m - 1, for X, (l, §; X's; p's) is always mixed of
weight < n+ m - 1, and (by duality) H, (s, §; X's; p's) is always mixed
of weight > n+ m - 1. So the X's and p's are disjoint. QED

8.5 Intrinsic characterization of hypergeometrics (compare 3.7)

(85.1) We continue to work over an algebraically closed field k of
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characteristic p # £¢. We fix a choice of nontrivial 6g-valued additive

character § of a fintite subfield kg of k.

Proposition 8.5.2 Let K be a perverse simple object of Dbc(Gm, Qyp).
Then X (Gp,. K) 2 0, and %(Gp,, K) = D if and only if K = L pl1] for some
tame character A.

proof If K is punctual, then X (G, K) = 1. If K is nonpunctual, then K
of the form F[1] for some irreducible middle extension sheaf ¥ on G,
with X(Gp,, F) = -X(Gpy,, K). In the Euler-Poincare formula for an F
without punctual sections on G,

“%(8p. F) = Swang(F) + Swan,(F) + I, . [drop(¥F) + Swany(¥F)]

all of the terms on the right hand side are non-negative. QED

Theorem 8.5.3 Let K be a perverse simple object of Dbc(Gm, 62)
whose Euler characteristic X(G,,, K) = 1. Then K is hypergeometric, ie,

there exist A € k* and disjoint X's and p's such that
K = Hyp,(l, §; X's; p's).

proof If K is punctual, it is §, for sorme 2 € k*, so K = Hyp, (., ; &; &).

Suppose now that K is nonpunctual. Then K of the form F[1] for
some irreducible middle extension sheaf ¥ on Gy with X (G, F) = -1

We claim that
Hi (6, F) = 1-diml fori = 1,
=0fori=1l.
Indeed, the Hoc vanishes because 7 has no punctual sections, and the
HZc vanishes because 7 has no 62 quotient (otherwise ¥ would be the

constant sheaf, and this is incompatible with its Euler characteristic).
Dually, we have

HUG,,, F) = 1-dim'l fori = 1,
=0fori= 1.
Now denote by k: G, — Pl the inclusion. The long exact cohomology

sequence attached to the short exact sequence of sheaves on P1
0—-KkF - k,F > FHO@sy & Fix)es, — 0,
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gives an injective map
FUO@FIe) — Hl (6, T).

Therefore at most one of FHO) o FI(e) 5 nonzero, and if nonzero its
dirmension is one.

In the Euler-Poincare formula for an ¥ without punctual sections
on Gy

-%(Gpp, F) = Swang(F) + Swan(F) + I, .~ [drop,(F) + Swan(¥F)]

all of the terrns on the right hand side are non-negative. So there are
two possibilities for our F:

(1) ¥ is everywhere tame, lisse outside a single point t in k*, and has
pseudoreflection local monodromy at t.
(2) F is lisse on Gy, and Swang(F) + Swan(F) = 1.

We say that F is of type (n, m) for
n = dimension of FP(0) = the size of the “tame at 0" part of ¥,

m := dimension of FP(*®) = the size of the “tame at o" part of F.

The generic rank of ¥ is max(n, m). The two cases (1) and (2) above
correspond to n = m and to n #z m respectively.
Suppose first that n = m. Tensoring with a suitable LA, an

operation under which the theorem is invariant, we may further
assume that 1 is among the characters which occur in local

monodromy at zero. Denote by j: G, — Al the inclusion. Then j«F is
an irreducible Fourier sheaf on Al (it is an irreducible middle
extension, and as it is not lisse it cannot be L\p(tx) for any t € k). By

the numerology of Fourier Transform, one checks easily that NFT¢(j,T)

(= FT¢(j,T)), itself an irreducible Fourier sheaf on Al, is of the form
0% for ¢ an irreducible lisse sheaf on G, of rank n-1 with
*(6p, ) = -1. Moreover, ¢ is of type (n, n-1). By Fourier inversion, we
have

[x = -x],FI1l(-1) = j*FT¢(j|9[1]) = (j*I¢)(1]*!inv'9[1].
In view of the stability of hypergeometrics, it suffices to show that ¢[1]
is hypergeomnetric. Thus the case n=rm results from the case n = m.

We now turn to the case n # m. We first treat the case when one
of n or m vanishes. In this case, we may, by a multiplicative inversion,
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suppose that m = 0. Then ¥ is tame at zero, and totally wild at o
withe Swan(¥F) = 1. Tensoring with a suitable L A. an operation under

which the theoremn is invariant, we may further assume that 1 is
among the characters which occur in local monodromy at zero. If
n=1,then by the break-depression lemma [Ka-GKM, 85.7] we see that F

is 1'.4,(“) for some t € k*.If n 2 2, then j, ¥ is an irreducible Fourier
sheaf on Al, and NFT¢(j,T) (= FT¢U.T)), itself an irreducible Fourier

sheaf on Al, is of the form 713 for § an irreducible lisse sheaf on G, of
rank n-1 with X(G,,, ) = ~1. Moreover, ¢ is of type (0, n-1). By
Fourier inversion, we have

[x = -xI, FIIC-1) = JPFTLGD = G LI jinv?gl1].

By induction on n, inv*$[1] and hence $[1] itself is hypergeometric,
whence F[1] is hypergeometric.

It rernains to treat the case when n * m and both n and m are
nonzero. By a multiplicative inversion, we may assume that 1 <« n<m,
or what is the same, that T is tame at . Tensoring with a suitable
I'.A, an operation under which the theorem is invariant, we may

further assume that 1 is among the characters which occur in local
monodromy at 0 [it is here that we use n 2 1}. Then j, ¥ is an

irreducible Fourier sheaf on Al, and NFT¢(j,T) (= FT¢(_j,T)), itself an

irreducible Fourier sheaf on Al is of the form J19 for ¢ an irreducible
lisse sheaf on Gy, of rank m with %(G,,, $) = -1. Moreover, ¢ is of type
(m, n-1). By Fourier inversion, we have

[x » -x],FI1}(-1) = j'FT¢(j!9[1]) = (j*I¢)[1]i!inv'9[1].

By induction on min(n, m), inuv*3[1] and hence ¢[1] itself is
hypergeometric, whence ¥ is hypergeometric. QED

Corollary 8.5.3.1 Let ¥ be an irreducible middle extension sheaf on
Gy, whose Euler characteristic X(Gp,, F) = -1. Then there exists a

unique A € k* and unique disjoint sets of X's and p's such that

K= %, ¢ X's; p's).
pProof The existence is given by the theorem. The X's (resp. the p’s)
with their multiplicities are the precisely the tame characters which
occur in the I(0)-semisimplification of ¥ as I(0)-representation (resp. in
the I(e)-semisimnplification of F as [0 )-representation). The
uniqueness of A results from the the following general lemma.
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Translation Lemma 85.4 (compare 3.7.7 and [Ka-GKM, 4.16]) Let ¥
be an irreducible middle extension sheaf on G, whose Euler

characteristic X(Gpy,, F) is nonzero. Suppose that for some a € k* there

exists an isomorphismn ¥ = [x = ax]*F . Then 2 is a root of unity of
order dividing X(Gp,, ¥). In particular, if X(G,,, ) = -1, then a = 1,

ie., F is isomorphic to no nontrivial multiplicative translate of itself.

proof We first show that A must be a root of unity. If ¥ is not lisse on
G, then its finite set 5 of points of nonlissenesss on G, is stable by

s — s, hence A is a root of unity of order dividing Card(S). If F is lisse
on G, but A is not a root of unity, then by Verdier's lemma [Ver,

Prop. 1.1] ¥ is tame at both zero and «, whence % (Gy,, ¥) = 0,

contradiction.

Once 1 is a root of unity, say of order N, then because F is
irreducible it descends through the N-fold Kummer covering, and hence
X (Gpy,. F) is divisible by N. QED

Rigidity Corollary 855 Let ¥ be an irreducible middle extension
sheaf on G,, whose Euler characteristic (G, F) = -1. Then the

isomorphism class of ¥ is determined up to (a unique) multiplicative
translation by the isomorphism classes of the I(0) and I(e)~
semisimplifications of the tame parts of the local monodromy of ¥ at
zero and oo,

Rigidity Corollary bis 8.5.6 Let ¥ be an irreducible middle extension’
sheaf on G, whose Euler characteristic X (G, F) = -1.
(1) If F is not lisse on Gy, the isomorphism class of ¥ is determined by
the following three data:

the I(0)-semisimplification of ¥,

the I{e)-semisimplification of ¥,

the unique point 2 € k* where F is not lisse.
(2) If ¥ is lisse on Gy, the isomorphism class of ¥ is determined by the
following two data:

the I(0)-semisimplification of F,

the I(o0)-semisimplification of F.

proof The first assertion is an immediate consequence of the first
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Rigidity Corollary, since fixing the unique point of nonlisseness in G,

rigidifies the situation entirely.

The second assertion is a bit more delicate. We know that F is a
hypergeometric ¥, (I, §. X's; p's) of type (n, m) with n # m. By
inversion, we may suppose that n > m. Then T as I{(e)-representation
is of the form

FxXT® W = (tame of rank m) ® (rank n-m, all breaks 1/(n-m)).
Since W is the unique wild irreducible I{e)-constituent of ¥, it is an
intrinsic invariant of the the I(«)-semisimplification of F. So it suffices
to show that W “detects” multiplicative translations. This is proven in
[Ka-GKM, 4.16, (3)]. QED

8.6 Local Rigidity
(86.1) We continue to work over an algebraically closed field of
characteristic p # ¢, with £-adic representations of I{c).

We first note the following variant of Grothendieck's local
monodromy theorem [Se-Ta, Appendix].

Theorem 8.6.2 Suppose that (W, p) is an irreducible (o)~
representation. Then an open subgroup of I() acts as scalars. If detW is
of finite order, then p(I(e)) is finite.

proof Clearly the first statement implies the second. To prove the first,
denote by

ty : [(o0) » Z,(1)
the canonical projection defined by the ¢-power Kummer coverings.
Recopying the beginning of the proof of the local monodromy theorem,

one shows that there exists an endomorphism
N € Endg,(W)-1)

such that on a sufficiently small open subgroup I' of I(es), we have
p(¥) = exp(ty(¥)N)

for every ¥ in I'. This N is unique, and by unicity it is I(s)-equivariant.
By irreducibility, N is scalar. QED

Local Rigidity Theorem 8.6.3 Let V and W be I(«)-representations,
each of the same rank d 2 1 with all breaks = 1/d. Then

(DIfax e kX and W = [x = ax]*W, then » = 1.
(2) If d 2 2, and if there exists 2 € k* with V = [x = ax]|*W. then
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detV = detW.
(3) If detV = detW, there exists a unique 2 € k* with V = [x ~ ax]*W.

proof Assertion (1), as noted above, is proven in [Ka-GKM, 4.156, (3)]. If
d » 2, then detW is tame, necessarily some Ly, so its isomorphism
class is invariant by rnultiplicative translation, whence (2). Assertion
(3) is trivial for d=1, and in general the unicity in it results from (1).
The existence for d 2 2 is more delicate. Consider the canonical
extensions (cf. [Ka-LG, 15]) of V and W to G, Both of them are
necessarily hypergeometrics of type (d, 0) (by the intrinsic
characterization of hypergeometrics), say
Vean = ¥all 4, X's; &), Wean = A §; 8's; 2).
Looking at determinants, we see that
TT'X,i = TTal
Replacing W by a multiplicative translate of itself replaces W o by the
corresponding translate, so we may further assurme that A = u. By a
further translation, we may suppose that A = p = 1. The problem now
is to show that for fixed ¢, the isomorphism class of the I{es)-
representation of the Kloosterman sheaf
Kl(y; X's) = X4, ¢, X's; 2)
depends only on T . This is a special case of the following

Change of Characters Theorem 8.6.4 Let X, (I, §; X's; p's) be a
hypergeometric sheaf of type (n, m) with n # m. If n> m (resp. if

n < m), denote by W, (|, §; X's; p's) the wild part of its [(e)-
representation (resp. of its I[(0)-representation). For fixed (a, §), the
isomorphism class of W, (!, §; X's; p's) as I(c0)-representation (resp. as
I{0)-representation) depends only on the tarme character TT;%;/ m pj and

on the integer n-m.

proof The proof proceeds by induction on the quantity In - ml. The
statement is invariant under multiplicative translation, so we may
assume that A = 1. The statement is invariant under multiplicative
inversion, so we may suppose that n > m. The statement is also
invariant under @ L A . Given two W, (!, ¢; X's; p's) and W, (l, §; «'s; p's)
with the sarmne n - m, and with TTi‘xi/TTJ- Pj = TTioci/TTJ-pJ-, twisting by a
sufficiently general LA reduces us to the case where none of the X's
and none of the «'s is 1. By the Cancellation Theorem 8 4.7, the
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staternent is invariant under "cancelling”, so we rnay further assume
that the X's and p’s are disjoint, and that the «'s and p's are disjoint.
In this case, we have (cf. the proof of 8.4.2) equalities of

irreducitble Fourier_shea\ies on Al
Ja?10, $; 1, p's; X's) NFT$(j,K1(!, $. X's; p's)),
Ja¥1lL 5 1, B's; &'s) ® NFTG( R (L ¢ &'s; Bs)).
The sheaves j, ¥ {(!, §; X’s; p's) and j A 1(l, §; «’s; p's) are lisse on

14

G,,. and tame at zero. If n-m 2, all their «o-breaks are < 1, and the
sheaves H4(!, J,’ 1, F's,' X's) and Hq(, \F,’ 1, p's; «'s) are lisse on G, and
tame at o . So by Fourier inversion and stationary phase (74.1.1, 7.4 .2)
we have

12

Wil §; X's; p's) ® FTgloc(0, e )X(W (), ¥; 1, p's; X)),

44

Wl §; «'s; p’s) FT$loc(0, 00 (W4 (], $. 1, p's; &'s)).
By induction on In - ml, Wq(l, ¥ 1, ;'s,' X's) and W (!, J; 1, p's; x's) are
isomorphic, which concludes the proof in this case.

If n-m =1, j, (L ¢; X's; p's) and j, H1(l, §. «'s; p's) have a single
nonzero o -break, which is 1, and the sheaves ¥ (|, @; 1, ;'s; X’'s) and
He(, §; 1, p's; «'s) are lisse on G, - {1}, everywhere tame, with tame
pseudoreflection local monodromy at 1. By stationary phase, we deduce
as in 745.1 that as I(e)-representations

Hi, g X's; p's)ee) = (I¢(x)®IA1) ® (succ. ext. of Ip's),
W1, §; &'s; p's)eo) = (I¢(x)®IA2) ® (succ. ext. of Ip‘s).
for some tame characters A1 and Aj. It remains only to show that
/\1 = TTi')(,i/TijJ-.
Consider I¢(_x)®det}f 1(L §. X's; p's). It is lisse on Gy, everywhere
tarme, so of the forrmn Ir‘ for sorme tame character ['. Looking at zero,
we see that ' = TT;%;, while looking at c we see that [' = /\1TT-pJ';

J
equationg these two expressions for I' gives the asserted formula for A4

QED

8.7 Multiplicative Translation and Change of

(87.1) Let kg be a finite subfield of k over which § is defined. For
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any u € (kg)*, denote by ¢, the additive character of kg defined by
¢H(x) = P(ux).
T heaves L), and £, are related b
he sheav 4‘ 4‘“ v
= * =

14,“ = [x— px] 14, =[x = x/p],1¢.

Similarly, their multipicative inverses on G, are related by
4 ® - % -— - L LS - H ¥ ¥ -—
inv*j 1'.4,“ =[x~ x/pl¥inv*j 1'.4, = [x = px],inv*j 1'.4,.

If X is a multiplicative character of kp, then

Ly ®(x(u)9e8 = [x uxl*Ly =[x = x/ul, Ly

on G, over kg. For X an arbitrary tame character, we have

Ly =[x pxl*Ly = Ix = x/|.11,.4‘lX

on G,, over k.

Lemma 8.7.2 Over an algebraically closed field k of characteristic
p * ¢, for any hypergeometric Hyp, (., §; X's; p's) of type (n, m), and
for any p in any finite subfield of k, we have
Hypa(L ¢ X's; p's) = [x = x/puP M Hyp, (!, ¢; X's; p's)
x [x = xuP M *Hyp, (4, §; X's; p's).
Over a finite field kg of characteristic p # ¢, for any hypergeometric
Hyp,(l, ¢: X's; p's) of type (n, m) which is defined over kg, and for any
M in kg, if we define « € 62" to be
o o= (Myxi/ T 5p X)),
we have
Hypa (L, 45 X's; p's)@ocdeg X [x = x/pP"M] _Hyp,(, §; X's; p's).
x [x = xuP M *Hyp, (1, §; X's; p's).

proof By the interrelation (cf. 8.1.10 (3)) of convolution and translation
we reduce immediately to the case when (n, m) is either (1, 0) or
(0, 1), where it is obvious. QED

Corollary 8.7.3 If p(n-m) is even, then over an algebraically closed
field k of characteristic p # ¢ we have

Hyp, (L ¢: X's; p's) = Hyp,(L ¢; X's; p's).
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If in addition Hyp)‘(!, $.; X's; p's) is defined over a finite subfield kg of k,
and (TT,%;/T; pj)(-l) = 1 (a condition which always holds after passing
to a quadratic extension), then over kg we have

Hypy(l, $. X's; p's) ® Hypy(, §; X's; p's).
proof This is the Lemnma with p = -1. QED

Corollary 8.74 If n = m, then over an algebraically closed field k of
characteristic p # ¢ the isomorphism class of Hyp, (L, §; X's; p's) is

independent of §.
Over a finite field kg of characteristic p #z ¢, for any

hypergeometric Hyp)‘(!, §. X's; p's) of type (n, n) which is defined over
kg, and for any u in kg, if we define « € sz to be

o = (TXi/ T p (W),
we have

Hyp, (L ¢ X's; p's)®xdeg x Hyp, (!, §; X's; p's).

proof This is the lemma with n=m. QED

8.8 Global and Local Duality Recognition

Duality Recognition Theorem 8.8.1 Suppose that the X's and p's are
disjoint. The irreducible middle extension sheaf ®, (!, ¢; X's; p's) is
geomnetrically self-dual (i.e, geometrically isomorphic to its dual), if and
only if the following three conditions hold:

(1) the set of X's with multiplicity is stable under X = X,

(2) the set of p's with multiplicity is stable under p = p,

(3) the product p(n - m) is even.

proof By (842, 8.3.3), the dual of ¥, (!, §; X's; p's) is X, (!, §; X's; p's),
so the conditons are obviously sufficient. In order for ¥, (I, §: X's; p's)
and X, (I, —4:,' X's; F's) to be geornetrically isomorphic, their local
monodrornies at zero and « must agree, whence (1) and (2). If (1) and

(2) hold, then the dual of K, (, ¢ A's; p's) is its rultiplicative translate

by (-1)N"M  to which it is isomorphic if and only if (-1)P"M = 1 in the
field k. QED
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Parity Recognition Theorem 8.8.2 Suppose that the X's and p's are
disjoint, and that X, (!, §; X’s; p's) is self dual. Then on the open set of

G,y, where X, (I, §. X’s; p's) is lisse, the (unique up to a 62"-multiple,
by irreduciblity) autodaulity pairing is alternating if and only if

max(n, m) is even, n - m is even, and TTixi/TTJ- Pj = 1.
Otherwise (ie, if max(n, m) is odd, or or if n -~ m is odd, or if
TTi‘xi/TTJpj = 1) the pairing is symmetric.

proof If the generic rank max(n, m) is odd, the pairing has no choice
but to be syrmmetric.

Suppose now that max(n, m) is even. By multiplicative inversion,
we may suppose that n > m. By multiplicative translation, we may
suppose A = 1.

If n = m, then the character A = TTi‘xi/TTJpJ' is of order dividing

two, because L A(y-1) is the determinant of the (pseudoreflection) local

monodromy at 1. If A = 1, local monodromy at A is a unipotent
pseudoreflection; as O(n) contains no unipotent pseudoreflections (cf. the
proof of 3.4), the autoduality must be alternating. If A is nontrivial,
then the pairing must be symmetric; it cannot be alternating since
Sp(n) ¢ SL(n). :

If n-m 2 1, then as [(e0)-representation we have (in the
notations of the proof of 8.6 .4)

i, g; X's; p's) ® Well, §; X's; p's) ® (tame),
with W4(l, §; X’s; p's) totally wild of Swan conductor 1, and (hence)

1{e0)-irreducible and Jordan-Holder disjoint frorn the “"tarne” factor.
Therefore the global autoduality of X4(!, §; X's; p's) must induce an

autoduality of W1(l, §; X's; p's) as irreducible I(«)-representation. Of

course this local autoduality has the same sign as the global one which
induces it. By 8.6.4, W{(l, §; X's; p's) depends, for fixed §, only upon the

integer d := n - m and the tame character A. Also, the character A has
order dividing two, since by the Duality Recognition Thm 8.8.1 it is
invariant by A = A So we are reduced to proving that the global
theorermn holds for the self-dual rank d Kloosterrnan sheaf
KI(y,; A, d~1 1's).

If d is odd, the duality rmust be symmetric.

If d 2 2, then detKl(y; A, d-1 1's) = LA.So if A is nontrivial (or if
d is odd), the pairing must be symmetric. It remains to treat the case
where d 2 2 is even, and A is trivial, i.e, the case of the Kloosterman
sheaf KI(y; d 1's). We must show that the pairing is alternating in this
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case. This is proven ip [Ka-GKM, 4.2.1 or 55.1]. QED

Local Duality Recognition Theorem 8.8.3 Let W be an [(x)-
representation of rank d 2 1, with all breaks = 1/d. Then

(1) W is self-dual if and only if det{(W) has order dividing two and pd is
even.

(2) If W is self-dual, the autoduality pairing is alternating if and only if
d is even and det(W) is trivial.

proof If detW does not have order dividing two, W cannot be self dual.
So we may suppose henceforth that detW has order dividing two.
Ifd =1, then Wis I.¢®LA, which is self-dual if and only if p = 2

and A is trivial; in this case the autoduality is symmetric, as required .
Ifd 2 2, detW is tarne, say LA- The canonical extension of W is an
H, (L ¢; X's; &) of type (d, 0), which, being the canonical extension, is
self-dual of given parity if and only if W is self-dual of the same parity.
Comparing determinants, we find A = TI,X;.
If pd is odd, then ¥, (), §; X's; &) cannot be self-dual (by 8.8.1), so
we may suppose that pd is even.

By 856.4, W is isomorphic to the [(«)-representation attached to
H,(0, §; A, d-1 T's). So it suffices to show that if

d 2 2, pd is even, and A has order 1 or 2
then A, (I, ; A, d-1 1's) is self-dual, and the autoduality is alternating

if and only if d is even and A is trivial. This is a special case of the 8.8.1
and 882 QED

8.9 Kummer Induction Formulas and Recognition Criteria

Kummer Induction Theorern 8.9.1 Let d 2 1 be an integer which is
prime to p, and denote by [d] the d'th power endomorphism of G,.
Over an algebraically closed field k of characteristic p # ¢, for any
hypergeometric Hyp,(l, §; X’s; p's) there exists an isomorphism

[dl,Hypy(l, $q: X's; p's) =

X Hyp,d(l, §; all d'th roots of allX's; all d'th roots of all p's).

pProof By multiplicative translation, we reduce to the case 2 = 1. Since
[d] is a homomorphism from G, to itself, we have the convolution
relation
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[d], (K» L) = ([d],K)#(d],L).
So we are reduced to the case where Hyp{(!, y4; X's; p's) is of type

(1, 0) or (0, 1). Since {d], and inv* (= inv,) commute, the (D, 1) case
results from the (1, 0) case.
Since every tame character X has a d'th root, say X = ad, our

(1, 0) hypergeometric I¢d®IX may be rewritten I¢d®[d]*15.

Applying [d],, and using the projection formula, we get
[d1, (X, BLy) = (dl (X, NOE,.
So we are reduced to showing that, denoting by
Ay, Az, o Ag
the d tame characters of order d, we have an isornorphism

[d].(1¢d) T KIY; A1, Az, ... AQ.
This is proven in [Ka-GKM, 56.2]. QED

Corollary 8.9.2 (Kummer Recognition) Let d 2 1 be an integer
which is prime to p, and denote by {d] the d'th power endomorphism of
G,,. Over an algebraically closed field k of characteristic p # ¢, an

irreducible hypergeometric Hyp, (!, §; X's; p's) of type (n, m) is

Kummer induced of degree d, ie, of the form {d], K for some K in

DbC(Gm, G_JQ), if and only if the following three conditions are satisfied:
(1) d divides both n and m,

(2) there exists a set of n/d tarme characters «'s such that the X's are
all the d'th roots of all the «'s,

(3) there exists a set of m/d tame characters p’'s such that the p's are
all the d'th roots of all the p's.

Moreover, if these conditions hold, then for any p € k with pd = 2,
there exists an isomorphism

Hypy (L ¢; X's; p's) = [dl Hyp, (L $q; «'s; p's).

proof If any (not necessarily irreducible) Hyp, (I, §; X's; p's) of type
(n, m) satisfies (1), (2), and (3), then by the Kurmmer Induction
Theorem above, for any p € k with pd = a,there exists an isomorphism
Hypy (!, y; X's; p's) = [l Hyp (!, yq; «'s; B's).
Conversely, suppose that an irreducible Hyp,(l, §; X's; p's) is of

the form [d] K for some K in Dbc(Gm, 62). Then [d] K is perverse
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simple with X(G,,, [d],K) = 1. Since [d] is finite, K must be perverse
simple, and X(Gp,. K) =X(Gpy,, [d],K) = 1. Therefore K is itself
irreducible hypergeometric, so of the form Hypp(!, $q. «’s; p's). Looking
at the Kummer induction formula for [d],HypH(!, Yq; «'s; p's), we see
that (1), (2), and (3) hold. QED

Remark 8.9.3 An alternate formulation of conditions (1), (2), and (3) is
this: for some (or equivalently for every) tame character A of exact
order d, both the X's and the p’s as sets with multiplicity are stable
under the operation & — zA,

8.10 Belyi Induction Formulas and Recognition Criteria

Belyi Recognition Criterion 8.10.1 Over an algebraically closed field
k of characteristic p = ¢, let Hyp,(l, §; X’s; p's) be an irreducible
hypergeometric of type (n, n), and suppose that p > n. Then

Hypy (L . X's; p's) is Belyi induced of type (a,b) for some partition of

n = a + b as the surn of two strictly positive integers if and only if the
%X’'s and the p’'s are Belyi induced in the sense that there exist tame
characters « and p, p # 1, such that

(1) {x's} = {all a'th roots of &} U { all b'th roots of B},

(2) {p's} = { all a*+b 'th roots of «8}.

Moreover, if (1) and (2) hold, then
Hyp,(l, §: X's; p's) = [Bel, .1, Hypy(l, ¢ «; «p),
and the local monodromy at A of K)‘(l, §. X's; p's) is a reflection.

proof If an irreducible hypergeometric Hyp, (I, §; X’s; p's) of type (n, n)

is of the form [x = Bel,, ,(x)],K for some K in Dbc(Gm, Q,). then K is
perverse simple, lisse on G, - {1}, and

X(8p, K) = X(Gpy,, [Bel,,,l,K) = 1.
Therefore K is itself hypergeometric of type (1, 1) with singularity at 1,
1e, Kis Hypq(l, §; «; «p),with p = 1 (by irreducibility). Looking at the
local monodromy at zero and e of [Bel, b, ] Hyp1(!, §. «; «p), we see

that (1) and (2) hold. By (7.2 6(B), its local monodromy at a is a
reflection.

Conversely, if (1) and (2) hold, we claim that
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Hyp, (I, 4. X's; p's) = [Bel, ;] Hypy(l, ¢ «; «p).
To see this, we argue as follows. Since Hypq(l, ; «; «p) is perverse with
%(€p,. Hypy(l, §; «, «p)) = 1, and Bel,, , is finite, the direct image
[Bela'b‘l],Hypl(!, y; «, xP