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Preface

These lecture notes are an expanded version of the series of
lectures I gave, by invitation of the Accademia Nazionale dei
Lincei, at the University of Florence in November 1988. They
have also benefited from the seminar I ran in Oxford during
that Autumn term. I am grateful in particular to Graeme Segal,
Nigel Hitchin and Ruth Lawrence who helped me to run that
seminar and to clarify many of the issues involved. I would
also like to thank the mathematicians in Florence for providing
such a receptive audience.

Sometimes a series of lectures may be the culmination of
many years of work on a topic. In that case lecture notes may
take on a definitive form, providing a careful treatment of the
subject. On other occasions the lectures may come at the
beginning of some new development, in which case they
provide an introduction to current and future work. This is
the case with these present lecture notes. The subject they
deal with is just opening up and is now developing at a rapid
rate. Moreover the area lies at the crossroads of mathematics
and physics. This adds greatly to its interest but increases the
difficulty of presentation. In due course a coherent and pol-
ished mathematical account will emerge but these lecture
notes make no pretence to fulfill that role.

I have to a great extent followed the lines of the lectures
as they were delivered. This means I have emphasized motiva-
tion and ideas at the expense of technicalities and formulae.
As a result the reader will find no theorems even formulated,
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let alone proved, in the text. However, I have provided an
extensive list of references where many of the relevant details
can be found.

The material presented here rests primarily on the pioneer-
ing ideas of Vaughan Jones and Edward Witten. 1 have
benefited greatly from extensive discussions with both of them
and I hope these notes may serve a useful purpose by introdu-
cing their magnificent ideas to a wide mathematical public.

Oxford, September 1989
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History and background

1.1 General introduction

In recent years there has been a remarkable renais-
sance in the interaction between geometry and physics. After
a long fallow period in which mathematicians and physicists
pursued apparently independent paths their interests have
now converged in a striking manner. However, it appears that
parallel problems were being investigated in the past but a
common language and framework were missing. This has now
been rectified with gauge theory (alias the theory of connec-
tions) providing the common ground.

In earlier periods geometry and physics interacted at the
classical level, as in Einstein’s theory of general relativity,
with gravitational force being interpreted in terms of cur-
vature. The new feature of the present interaction is that
quantum theory is now involved and it turns out to have
significant relations with topology. Thus geometry is involved
in a global and not purely local way.

A somewhat surprising feature of the new developments is
that quantum field theory seems to tie up with deep properties
of low-dimensional geometry, i.e. in dimensions 2, 3 and 4 [3].
Thus the exciting new results of Donaldson [10] on four-
dimensional manifolds, and the associated theory of Floer
[13] on three-dimensional manifolds, are intimately linked to
Yang-Mills theory. This has been made even clearer by Witten
[35], where the Donaldson-Floer theory is interpreted as a
topological quantum field theory in 3+1 dimensions.
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A slightly different case arises from the recently discovered
polynomial invariants of knots by Vaughan Jones [17]. These
are related to physics in various ways but the most funda-
mental is due to Witten [36] who has shown that the Jones
invariants have a natural interpretation in terms of a topologi-
cal quantum field theory in 2+ 1 dimensions. My purpose in
these lectures is to present this new theory of Witten. Shortage
of time and the present novelty and incompleteness of the
theory mean that this is not a definitive treatment. Rather it
is an introduction to Witten’s ideas, presented from the mathe-
matical point of view. The whole subject is still developing
rapidly and a provisional account accessible to mathema-
ticians may serve a useful purpose.

1.2 Gauge theories

The prototype of all gauge theories is electro-
magnetism. From the geometrical point of view the electro-
magnetic potential a, (u =1, ..., 4) defines a connection for
a U(1) bundle over Minkowski space M. The field is the
corresponding curvature

fur=0,a,—d,a, (3,=03/4x,).
Maxwell’s equations in vacuo take the form
df=0, d*f=0

where f is now viewed as a 2-form, d is the exterior derivative
and d* is its formal adjoint (relative to the Minkowski metric).

Non-abelian gauge theories are obtained by replacing U(1)
with a compact non-abelian Lie group G, e.g. SU(n). A
potential is then a connection A over Minkowski space, with
components A, in the Lie algebra of G, and the field is the
curvature F with components

F,. =d8,A,-3,A,+t[A,., Al
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The most straightforward generalization of Maxwell’s
equations are the Yang-Mills equations

dF =0, d*F=0.

Gauge theories possess an infinite-dimensional symmetry
group given by functions g: M—> G and all physical, or
geometric, properties are gauge invariant.

To specify a physical theory the usual procedure is to define
a Lagrangian or action L. This is a functional of the various
fields obtained by integrating over M a Lagrangian density.
For example, for a scalar field theory where the only field is
a scalar function ¢, the simplest Lagrangian is

Lie)= j lgrad o] dx
M

where the norm and volume are those of Minkowski space.
For Yang-Mills theory the Lagrangian is

L(A) =J' | Fal? dx

where the norm here also uses an invariant metric on G.

Having fixed a Lagrangian L(¢) the ‘partition function’ of
the theory (by analogy with statistical mechanics) is the
Feynman functional integral

Z= J' exp (iL) De.

More generally, for any functional W(¢), the unnormalized
expectation value of the ‘observable’ W is defined by the
integral

(W)= J' exp (iL(¢)) W(¢) De.

These Feynman integrals are not very well defined mathemati-
cally but they can, when used skilfully, be a useful heuristic
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tool. In particular, perturbation expansions can be computed
explicitly.

The Feynman integral provides a relativistically invariant
approach. This is its main purpose. In a non-relativistic treat-
ment a quantum field theory is described by a time-evolution
operator €' in a certain Hilbert space #. The infinitesimal
generator H is the Hamiltonian of the theory. There are formal
rules which, starting from the Lagrangian formulation via the
Feynman integral, produce the Hilbert space # and the
Hamiltonian H. The fundamental relation between the two
approaches rests on the formula

(exp (iTH)@o, ¢1) = J exp (iL(¢)) D¢

where ¢,, @1 are scalar fields on R* (space) and the Feynman
integral is taken over all fields ¢(x,¢) which interpolate
between ¢, = ¢(x,0) and ¢ = ¢(x, T) for 0=t= T. In par-
ticular

Trace exp (iTH) = J' exp (iL(¢)) Do (1.2.1)

where, in the Feynman integral, ¢ is a function on R’x S%
where S’ is the circle of length T.

Witten'’s version of the Jones theory is defined by a suitable
choice of Lagrangian in 2+ 1 dimensions and this will be
described in Chapter 7. Until then we shall be following the
non-relativistic Hamiltonian approach, which is mathemati-
cally more rigorous.

In gauge theory, classical fields of force are described in
terms of curvature. However, gauge theories have global
features which can be non-trivial even when all curvatures
vanish. This is fundamental for the relations with quantum
field theory which are our basic interest. The prototype of this
is the Bohm-Aharonov effect in the quantum theory of the
electron. This concerns a solenoid with an interior magnetic
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flux but with no external magnetic field. A beam of electrons
travelling past the solenoid produces interference patterns
indicating a phase-shift. This physical effect takes place even
though the electrons travel in a force-free region.

Electron —» —
—, Solenoid — | Diffraction
Beam —» —

Mathematically the wave-function of the electron in the
external region is a section of a flat line-bundle, with non-
trivial holonomy round the solenoid.

In non-abelian gauge theories wave-functions are sections
of vector bundles and the holonomy lies in a non-abelian
group. This is the starting point for the relation between
topology and quantum field theory that is embodied in the
Jones-Witten theory.

1.3 History of knot theory

The study of knots (and links) in ordinary three-
dimensional space is the archetype of a topological problem.
Knots are remarkably complicated things and, even with all
the sophisticated techniques of modern topology, they have
resisted a definitive treatment. The remarkable developments
growing out of the Jones polynomial are an indication of the
subtlety of knot theory.

A knot is by definition a smooth-embedding of a circle in
R3. Two knots are equivalent if one knot can be deformed
continuously into the other without crossing itself. A link is
an embedded finite union of disjoint circles.

Knot theory has an interesting history. In the nineteenth
century physicists were pondering on the nature of atoms.
Lord Kelvin, one of the leading physicists of his time, put
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forward in 1867 the imaginative and ambitious idea that atoms
were knotted vortex tubes of ether [32].

The arguments in favour of this idea may be summarized
as follows.

(1) Stability. The stability of matter might be explained by
the stability of knots (i.e. their topological nature).

(2) Variety. The variety of chemical elements could be
accounted for by the variety of different knots.

(3) Spectrum. Vibrational oscillations of the vortex tubes
might explain the spectral lines of atoms.

From a modern twentieth-century point of view we could, in
retrospect, have added a fourth.

- (4) Transmutation. The ability of atoms to change into other
atoms at high energies could be related to cutting and
recombination of knots.

For about 20 years Kelvin’s theory of vortex atoms was
taken seriously. Maxwell’s verdict was that ‘it satisfies more
of the conditions than any atom hitherto considered’.

Kelvin’s collaborator P. G. Tait undertook an extensive
study and classification of knots [31]. He enumerated knots
in terms of the crossing number of a plane projection and
also made some pragmatic discoveries which have since been
christened ‘Tait’s conjectures’. After Kelvin’s theory was dis-
carded as an atomic theory the study of knots became an
esoteric branch of pure mathematics.

Despite the great strides made by topologists in the twen-
tieth century the Tait conjectures resisted all attempts to prove
them until the late 1980s. The new Jones invariants turned
out to be powerful enough to dispose of most of the conjec-
tures fairly quickly.

One of the early achievements of modern topology was the
discovery in 1928 of the Alexander polynomial of a knot or a
link [1]. Although it did not help to prove the Tait conjectures
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it was an extremely useful knot invariant and greatly simplified
the effective classification of knots. The Alexander polynomial
arises from the homology of the infinite cyclic cover of the
complement of a knot. Equivalently it can be derived from
considering cohomology of the knot complement with
coefficients in a flat line-bundle. This is very much the context
of the Bohm-Aharonov effect.

For more than 50 years the Alexander polynomial remained
the only knot invariant of its kind. It was therefore a great
surprise to all the experts when, in 1984, Vaughan Jones
discovered another polynomial invariant of knots and links.
As already mentioned, this turned out to be extremely useful
and enabled several of Tait’s conjectures to be established.

In the next section we shall briefly summarize some of the
key facts about the Jones polynomials. For an excellent and
thorough presentation the reader is referred to the account
by Jones in [17].

14 The Jones polynomial

The Jones polynomial is a polynomial in 7t

assigned to a knot K in R’. It is denoted by Vi(t). It is
normalized so that V(¢)=1 for the unknot (the standard
unknotted circle in R®). Moreover it has the key property

V(1) = Vi (1) (1.4.1)

where K* is the mirror image of K. Simple examples show
that V(1) need not be invariant under ¢- t™', so that the
Jones polynomial can sometimes distinguish knots from their
mirror images. For example the right-handed trefoil knot has

V(ty=t+t£ -t

and so is distinguished from its mirror image. The Alexander
polynomial on the other hand always takes the same value
for a knot and its mirror image.
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The Jones polynomial can be defined (as a Laurent poly-
nomial in ¢'/?) generally, for any oriented link L (i.e. each
component of L is oriented). Reversing the orientation of all
components leaves the Jones polynomial unchanged. This
explains why, for a knot, the orientation is irrelevant.

If we represent a link by a general plane projection with
over/under crossings the Jones polynomial can be character-
ized and computed by a skein relation. Given any oriented
link diagram L, and a crossing point, we can alter the crossing
to produce three different diagrams as indicated

XXX

+ - L,

Let V., V_, V, denote the Jones polynomials of these links.
Then the skein relation is

TV -tV ==V Y, (1.4.2)

The skein relation is, in a sense, deceptively simple. There
is no obvious reason a priori why this relation should define
a link invariant: it might depend on the plane presentation.

The way the Jones polynomial was originally discovered
was via braids and representations of the Hecke algebra. A
braid is a collection of strands as depicted below.

‘

;

Note that all strands move upwards. Two braids can be
composed in an obvious way, giving the braid group on n
strands B,. Formally we can define B, as the fundamental
group of the configuration space C, of n distinct points in
the plane. The usual picture of a braid can then be viewed as

p
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the space-time graph (with time vertical) of motion along a
closed path in C,,.

Given a braid 8 we can form an oriented link ﬁ by closing
up the braid in a standard way (see below).

/ \

| % |

! i

i

1l i
AW
V)

Conjugate elements in B, give rise to equivalent links.
Moreover increasing the number of strands in a braid by a

simple twist, as shown,
. K/\ (143)

does not affect the corresponding link. A classical theorem of
Markov asserts that these two moves generate all equivalences
between the resulting links.

Thus to produce an invariant of oriented links one need
only produce a class function on all B, which is unchanged
by the move (1.4.3).

Since class functions arise naturally as characters of rep-
resentations this suggests we start by considering representa-
tions of the braid groups. In fact Jones used representations
which came from the Hecke algebra H(n,q). This is the
quotient of the group algebra of B, obtained by requiring the
generator o (a single twist of consecutive strands) to satisfy
the quadratic relation

(o0 —gq)Xoc+1)=0.
If g=1 so that o°=1 we get the group algebra of the

symmetric group S,. It follows that, for generic values of g,
H(n, q) has the same irreducible representations as S,,.



10 History and background

For each Young diagram (parametrizing an irreducible
representation of S,) we then get a character of B, which
depends on g (as a Laurent polynomial in g"?). The Jones
polynomial (with t=gq) is a suitable combination of these
characters. In fact only the two-rowed Young diagrams are
needed.

The Jones polynomial has been generalized in a variety of
ways. One way, described in detail in [17], gives a two-variable
polynomial. This also satisfies a skein relation and can be
constructed from representations of the Hecke algebra, but
now using all Young diagrams.

Another, and more fundamental, way involves choosing a
compact Lie group G and an irreducible representation. A
polynomial invariant of oriented links is then constructed by
using solutions of the Yang-Baxter equations. The original
Jones polynomial corresponds to taking G = SU(2) with its
standard representation on C’. Taking G = SU(n) for all n,
together with their standard representation on C", gives poly-
nomials which, taken together, are equivalent to the two-
variable polynomial of [17].

Witten’s approach, which we shall be describing, also in-
volves a choice of group G and a representation. It produces
the relevant polynomials in a more direct and natural manner.
Moreover, in Witten’s theory, we get invariants for links in
arbitrary compact 3-manifolds alone (taking the empty link
with no components). This is a major advantage and is a
convincing demonstration of the naturality of Witten’s
method.

It is perhaps worth emphasizing that the algebraic or com-
binatorial definition of the Jones polynomial is quite elemen-
tary and rigorous. It lacks, however, any clear conceptual
interpretation. This is precisely what Witten’s theory provides,
although there are still technical difficulties in developing this
side of the theory in all its aspects.
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While the Alexander polynomial can be understood in terms
of standard algebraic topology (homology theory) and has
analogues in higher dimensions, the Jones polynomial is best
understood in terms of a purely three-dimensional quantum
field theory. There are some indications (discussed in Chapter
6) that the quantum field theory may be related to more
standard geometric constructions but this has yet to be worked
out.



2

Topological quantum field theories

2.1 Axioms for a topological QFT

The notion of a topological quantum field theory
(QFT), i.e. not depending on any background geometry, is
one which has emerged recently in the work of Witten [35]
[36]. The Jones polynomial fits into such a theory so we shall
begin by reviewing briefly what is meant by a topological
QFT. It is convenient to give an axiomatic approach since
this emphasizes the mathematical structures involved. The
physics can be viewed as motivating background.

A more extensive treatment of topological QFTs can be
found in [2]. The reader may also wish to consult [3] and,
for closely related ideas on conformal field theories, the treat-
ment in [29] may be helpful.

A topological QFT in dimension d is a functor Z which
assigns
(1) a finite-dimensional complex vector space Z(X) to each

compact oriented smooth d-dimensional manifold X,
(2) avector Z(Y)e Z(X) for each compact oriented (d +1)-
dimensional manifold Y with boundary 3.
This functor satisfies the following axioms.
Al (Involutory) Z(3*)=2Z(Z*), where
3 * denotes X with the opposite orientation and
Z(X)* is the dual space.
A2 (Multiplicativity) Z(3,03,)=
Z(3,)®Z(X,), where u is the disjoint
union.



2.1 Axioms for a topological QFT 13

A3 (Associativity) For a composite cobordism
Y=Y, us Y,

2, 2, 2,

Z(Y)=Z(Y>)Z(Y,)e Hom (Z(Z,), Z(Z,)).

[Note: In this associative axiom we have used the previous
two axioms to view Z(Y;) and Z(Y,) as homomorphisms
Z(2))-» Z(3,) and Z(2,)> Z(X;) respectively.]

In addition we impose the non-triviality axioms.

A4 Z(J)=C for the empty d-manifold.

A5 Z(Z xI) is the identity endomorphism
of Z(X).

The functoriality of Z together with AS imply homotopy
invariance. This means that the group Diff” (3) of orientation-
preserving diffeomorphisms of X acts on Z(X) via its group
of components I'(X).

For a closed (d + 1)-dimensional manifold Y the boundary
is empty and so, by A4, the vector Z(Y) is just a complex
number. Thus such a topological QFT assigns numerical
invariants to closed (d + 1)-dimensional manifolds. Moreover
cutting Y along a d-manifold ¥ and applying A3 (with
3, =3,=() we see that

Z(Y)=(Z(Y)), Z(Y3)), (2.1.1)

the pairing (,) being between the dual spaces Z(X) and
Z(3*). Thus the numerical invariants of a closed (d+1)-
manifold can be computed from any decomposition Y =
Y, usYs.

The character of this representation of I'(X) on Z(X) is
determined by the axioms. If fe Diff" (3) we can form the
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manifold 3, from the product I x I by using f to identify
I x0 and X x 1. Formula (2.1.1) then implies that

Trace Z(f)=Z(3,) (2.1.2)

where Z(f) is the induced transformation on Z(X'). In par-
ticular, taking f to be the identity

dim Z(Z)=2Z(Z x S"). (2.1.3)

These formulae should be compared with the Feynman
integral formula (1.1.1) in the physical interpretation which
we come to next.

At this stage it may be helpful to make some remarks on
the physical interpretation of our axioms. The idea is that,
for a closed (d+1)-manifold Y, the invariant Z(Y') is the
partition function given by some Feynman integral as dis-
cussed in Chapter 1. Of course only very special Lagrangians
will give rise to topologically invariant partition functions.
The vector space Z(X) is then the ‘Hilbert space’ of the theory
on the ‘space’ 3. The endomorphism of Z(X) given by
Z(X x I) should be the ‘imaginary time’ evolution operator -
e" ™ (where T is the length of the interval I), but axiom A5
implies that the Hamiltonian H =0. Thus, in a topological
QFT there is no dynamics. All states are ground states and
this is related to the finite dimensionality of the ‘Hilbert space’
Z(X). Although there is no interesting propagation along a
cylinder there is interesting propagation across a non-trivial
cobordism, i.e. across singular surfaces which change the
topology of X. This ‘topological propagation’ is the essential
content of the theory from the Hamiltonian point of view.
Relativistic invariance asserts that the final numerical
invariants, such as Z(Y), are independent of the time variable
which one may pick to slice Y.

We are now going to concentrate on the situation that is
relevant to the Jones-Witten theory. In particular we will put
d =2 so that X is a surface. In fact we need to refine and
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supplement the basic axioms above in a number of ways. In
the first place our theory will be a unitary one. This means
that the vector spaces Z(2Y) all have natural Hermitian metrics
(i.e. they are finite-dimensional Hilbert spaces) and if Y =
3,u X ¥ the linear maps

Z(Y): Z(2)~> Z(2y)
Z(Y*): Z(2)> Z(2)

are adjoints of each other. In particular, for a closed 3-
manifold Y, when Z(Y) is just a complex number,

Z(Y*")=Z(Y).

It is this property which eventually explains the ability of the
Jones polynomial to distinguish mirror images.

So far we have axiomatized an ‘absolute’ theory and this
will lead to Witten’s invariants for closed 3-manifolds.
However, to get invariants for links in 3-manifolds, and hence
the Jones polynomials, we have to relativize our axioms. We
therefore consider a pair (Y, L) where Y is an oriented 3-
manifold as before and L< Y is an oriented 1-manifold. If
Y has boundary X then L is assumed transversal to 2 and
so L < X is an oriented 0-manifold, i.e. a collection of signed
points. A typical picture is depicted below.

If Y is closed then L is just an oriented link in Y.
Our link L, and hence its boundary, is also assumed to
carry some further information. In an abstract form this could
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be just an index from some given indexing set I This is the
formulation given in [29] for conformal field theories.
However, for the concrete case of the Witten-Jones theory, I
is just the set of irreducible representations of the compact
Lie group G. Thus for each component of L (or to each signed
point in 3) we assign an irreducible representation A of G.
Reversing the orientation of the component and simul-
taneously replacing A by its dual A* we regard as giving
equivalent data.

In this framework our topological QFT is a functor Z which
assigns a vector space Z(Z, P, A) to each surface 3 with points
P=(P,,..., P,) marked with representations A =(A,...,A,).
Note that we can give each point P; a + sign by picking A;
or A¥ as necessary. If Y is a 3-manifold with an oriented link
L marked with representations u, then Z assigns a vector

Z(Y,L,ip)eZ(3,0L,0p)

where A =3u is the induced marking on the signed set of
points P=0L.

The axioms for Z have to be modified in a relatively obvious
manner. Note that, for a closed 3-manifold Y with a marked
link L we get a numerical invariant

Z(Y,L p)eC

Taking Y=8°, G=SU(2) and p; the standard two-
dimensional representation this invariant will eventually be
identified with a certain value of the Jones polynomial. Note
that the group of components of Diff" (S°, P) acts on the
vector space Z(S°, P, ), provided all u, are equal. This is
closely related to the braid group representations of the Jones
theory. In fact B, is the group of components of orientation-
preserving diffeomorphisms of S with n+1 marked points
P,,...,P,,, where P,,, =00 is distinguished and kept fixed,
while the others are permuted.
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There is a final refinement which is necessary for the Witten
theory and that concerns framings, i.e. trivializations of the
tangent bundles of Y. These are necessary in order to pin
down scalar factors in the theory. Without framings only the
projective spaces of Z(2) are well defined. We shall not enter
into these questions but refer to Witten [36]. See also [4] for
supplementary comments on framings.

2.2 Canonical quantization

Our aim is, in due course, to show how to construct
the Witten functor Z(X) axiomatized in the preceding section.
We shall build up to this in stages, beginning first with a
review of standard quantization and its application to the
homology of surfaces.

Given a compact oriented surface I of genus g, its
cohomology group H'(ZX, R) is a real vector space of
dimension 2g endowed with a symplectic form w. This is given
by the cup product, followed by evaluation (integration) on
the fundamental cycle. If we fix a Riemannian metric on X,
then H'(3, R) can be identified with the space of harmonic
1-forms, and so can be thought of as a space of classical fields
on 3. Thus we have a functor, constructed from classical
fields, which assigns a symplectic (linear) manifold to 3 and
is additive under disjoint sums.

We can now quantize the symplectic manifold H'(Z, R).
This will produce a Hilbert space #(X) of quantum fields
which will be a multiplicative functor, i.e.

H(Z 0 2,)=H(2,)Q H(2,)

when ® denotes the completed tensor product of Hilbert
spaces.

Let us review the rudiments of this quantization process.
Explicitly we can construct #(2) as follows. First pick sym-
plectic coordinates p,,..., P, qi,---,q; for H'(Z, R), so
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that the symplectic form w is

g
qi A Di-
=1

Note that such coordinates arise naturally by viewing X
explicitly as a connected sum of tori, and picking the standard
basis for each torus. We now take (%) to be the Hilbert
space of square-integrable functions of ¢, .. ., g;. The p; and
g; then act on (X) in the well-known way: the g; by
multiplication and p; by i9/dq;. These satisfy the Heisenberg
commutation relations

[P, ] =10

Because of the Stone-von Neumann uniqueness theorem
the projective space of #(X) is independent of the choice of
symplectic coordinates. Equivalently #(X) is a projective
representation of the symplectic group.

There is another way to construct #(2) involving complex
coordinates which is very important and particularly relevant
here. Putting z;=gq;+ip; we can identify #(3) with an
appropriate completion of the space of polynomials in
Zyyens Zge

More intrinsically we pick a complex structure on H'(Z, R)
so that the symplectic form comes from a Hermitian metric.
There is then a holomorphic line-bundle L with connection
on H'(Z, R) whose curvature is the 2-form iw. The square-
integrable holomorphic sections of L then give the required
model of #(Z). Again the projective space of H(ZX) is
independent of the complex structure chosen.

The choice of admissible complex structure on H'(Z, R)
depends on a point o of the Siegel upper half space & (the
homogeneous space Sp(2n, R)/U(n)). The family %, of
holomorphic Hilbert spaces just described forms in a natural
way a bundle of Hilbert spaces over . Naturality means that
the symplectic group Sp(2n, R) acts on the bundle. The fact
that the projective spaces of the ,, can be naturally identified
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means that the bundle of Hilbert spaces has a natural connec-
tion which is projectively flat. Alternatively, tensoring the
bundle by a suitable line-bundle over &, we get a flat connec-
tion. The required line-bundle L is actually K "/? where K
is the canonical line-bundle of &.

For a full treatment of the quantization process we refer
the reader, for example, to [14] or [38].

Notice that a natural way to get a complex structure o on
H'(Z, R) is to fix a complex structure 7 on 3. This enables
us to identify

H'(%, R)=H'(3,0)=H"(3),

the dual of the space of holomorphic differentials on 3. The
complex structures on X modulo the identity component of
Diff" (2) are parametrized by the Teichmiiller space  and
7 o defines an embedding J - ¥, essentially the period
mapping. The quantizations we are now discussing can be
carried out over the whole of &, but in the non-abelian
situation to be discussed later this will no longer be true and
we shall be restricted to J.

If, in all this story, we rescale the symplectic form w by a
factor k then nothing essentially alters except that the Heisen-
berg commutation rules now pick up a similar factor. Physi-
cally k plays the role of the inverse of Planck’s constant #.
Geometrically, however, our compact surface X provides a
natural normalization for the 2-form . This normalization
becomes more significant when, in the next section, we intro-
duce the integer lattice H'(Z, Z) and the associated @-func-
tions. The factor k can then only take integer values and is
called the level of the theory.

23 @-functions

We now introduce the integer lattice

A=H'(3,Z)cH'(3, R)
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and correspondingly the quotient torus
H'(Z, U(1))

where we identify U(1) with R/Z in the standard way by
6 - exp (27i8). Roughly speaking quantizing the torus should
be the same as taking the A-invariant part of the quantization
#(Z) of the vector space H'(Z, R). The difterent models of
(3) then lead to different models for the quantization of
the torus.

The complex quantization is in many ways the easiest to
understand and is the most relevant for our purposes. For
this we pick a complex structure o on H'(3, R), which might
come from a complex structure 7 on X itself. This makes the
torus H'(Z, U(1)) into an abelian variety A,, which is the
Jacobian J, if o = 7. The complex line-bundle L on H (2, R)
with curvature 27iw descends to become a holomorphic line-
bundle on A, with first Chern class represented by . This
has ‘degree’ 1, in the sense that the Liouville volume

J'g=l. (2.3.1)

The line-bundle L obtained in this way is not uniquely defined
by its curvature since the torus is not simply connected. We
can alter L by tensoring with any flat line-bundle. These
different choices correspond to different actions of A on L,
which we did not specify.

There are various equivalent ways to get rid of this
ambiguity in L. The classical algebro-geometric way, when
o =, is to consider first the degree (g — 1) Jacobian J§7', i.e.
the moduli space of holomorphic line-bundles of degree g —1
over 3,. This has a natural divisor D given by the image of
the (g — 1)st symmetric product. This divisor, called the ‘theta-
divisor’, represents line-bundles of degree g —1 on X, which
have a non-zero holomorphic section. The line-bundle [ D]
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on J¢! defined by this divisor is then unambiguously defined.
Moreover it has the correct first Chern class. To shift back to
J. (i.e. the degree 0 Jacobian) we have to pick a base point
on J¢7'. This can be done by choosing a spin structure on 3,
or equivalently a square root of the canonical line-bundle.
Having chosen such a spin structure we shift [ D] back to J,
and this becomes our choice of L.

To quantize J, we then take the space of holomorphic
sections of L. This is just one-dimensional, corresponding on
J& ! to the section of [ D] vanishing on D. This also follows
from the Riemann-Roch theorem using (2.3.1).

Quantizing at level k means replacing L by L* and, again
by Riemann-Roch, we get a space of dimension k2.

The basic section of L is given transcendentally by the
classical @-function. This is obtained by considering directly
the action of A on the holomorphic sections of L and finding
the unique fixed vector. Note that this is not strictly a vector
in the Hilbert space #(%): it is holomorphic but not square-
integrable.

More generally the sections of L* are given by the @-
functions of level k. If the complex structure o = 7 is repre-
sented in & by the g x g complex symmetric matrix Z (with
positive definite imaginary part), and u < C#, then

On(,Z)= T exp [%‘a, Z+ 2], u)]

leZ

I=m mod k (2.3.2)
is the explicit formula for the basic @-functions of level k.
Here me (Z/k)® runs over the k® basic elements and the
torus A, is the quotient of C# by the g basis vectors and the
g columns of Z.

Although we concentrated on the case of the Jacobian, i.e.
for complex structures o = 7, formula (2.3.2) defines @-func-
tions for general o (i.e. for general Z).

Thus the quantization of H'(X, U(1)) at level k produces
a vector space V,, of dimension k%, for each o € &. These form
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a holomorphic vector bundle V over &. As with the quantiz-
ation of a linear space we expect all the projective spaces
P(V,) to be naturally isomorphic. If V, was actually a sub-
space of the Hilbert space H,(ZX) (at level k) this would be
automatic. Unfortunately, as was pointed out earlier, V, lies
in some completion of H,. However, the explicit formulae
for @-functions can be used to derive the necessary iden-
tifications. The result is that the vector bundle V over & has a
natural connection which is projectively flat. Moreover the cen-
tral (scalar) curvature can be computed explicitly.

The connection arises from the fact that the @,, of (2.3.2)
obviously satisfy a differential equation

1 §0, 00,

- =2 i 1+6, .
k ou; oy i ’)az,..

This shows that the @,, are covariant constant sections of a
connection over & This connection is not however totally
‘natural’; it is not invariant under the action of Sp(2g, Z).
The natural connection differs by a central factor.

The projective flatness of the spaces P(V,) can also be
interpreted as a cohomological rigidity. In fact we can form
the finite Heisenberg group Iy from the Z/k-module
H'(Z, Z,) and P(V,) is essentially the Heisenberg representa-
tion of Iy.

We now have at least the beginnings of the data needed
for a topological quantum theory as described in § 2.1. We
have associated a projective space to each oriented surface
3. The next set of data would be to show how a 3-manifold
Y with 3 Y = X picks out a point in this projective space. Now
it is not hard to see that the image of

H'(Y,Z/k)>H'(Z,Z/k)

is a Lagrangian sub-module W (i.e. a maximal sub-module
on which the symplectic form vanishes). We could now use
this Lagrangian subspace to construct the Heisenberg rep-
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resentation of I, and W would then define a natural ‘vacuum
vector’ in this space.

This would be the outline of the abelian theory where
G = U(1). We shall not pursue this (rather uninteresting) case
in further detail. Instead we move on to study the non-abelian
case, beginning in Chapter 3 with the classical theory gen-
eralizing that of the Jacobian.
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Non-abelian moduli spaces

31 Moduli spaces of representations

In Chapter 2 we studied the torus H'(Z, U(1)) which
parametrizes homomorphisms

T (2)-> UQ1).

We shall now consider the space H'(Z, G) which parametrizes
conjugacy classes of homomorphisms

m(2)-> G

where G is any compact simply connected Lie group. For
simplicity we shall frequently work with the special case
G=SU(n).

Now 77,(%) has generators A,, ..., A,,..., B;,..., B, with
the one relation

f[ [A, B]=1. (3.1.1)

It follows that H'(Z, G) is the quotient by G of the subset of
G”® lying over 1 in the map G? x G2~ G given by [][A,, B].
This shows that H'(Z, G) is a compact Hausdorff space. More
precisely it is a manifold of dimension 2(g —1) dim G at all
irreducible points (i.e. where the image of 7,(2) generates
G). This follows by examining the linearization of (3.1.1).
This has been examined in great detail by Narasimhan and
Seshadri [22] and also by Newstead [23].

If a: m,(X)-> G is irreducible then the tangent space to
H'Y(3,G) at a can be identified with H'(3,g,), the
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cohomology of 3 with values in the flat Lie-algebra-valued
bundle associated to a.

We now fix, once and for all, a G-invariant metric on the
Lie algebra of G. We assume that this is integral in the sense
that the corresponding element of H’(G), represented by the
invariant 3-form (&, [n, {]), is integral. For simple G there is
only a scalar factor to be fixed and we can normalize this by
requiring that we get a generator of H*(G, Z). For SU(n)
this is given by the standard metric: Trace A”.

Using this metric and the cup product then gives a symplec-
tic structure to H'(Z, g,). In fact, as we shall see in the next
section, this makes the irreducible part of H'(X, G) a symplec-
tic manifold. This generalizes the symplectic structure of the
torus H'(Z, U(1)) which we studied in Chapter 2.

Note that g = 0, 1 are special cases since all representations
are then reducible. Where these low values of g cause prob-
lems we will usually assume g =2.

Although we have, for simplicity, introduced =,(%), which
requires a choice of base point, the space H'(Z, G) is indepen-
dent of this choice. This is because we factored out by conju-
gation.

It follows that the group Diff" (X) acts on H'(3, G) and
it preserves the symplectic structure.

We shall discuss briefly the generalization of all this for a
surface with marked points as previewed in Chapter 2.

Given a marked point P on 3 we associate to it a conjugacy
class C of G of order k. Thus, if G=SU(n), C is the class
of a matrix with eigenvalues

27iA;
exp( T: ’), A; integral, ¥ A;=0.

Given marked points P,,..., P, on X and associated con-
jugacy classes C,, ..., C, we consider homomorphisms

(3 —(PLuPyu---UP))>G
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such that the loop around each P, goes into C,. Factoring out
by conjugacy gives us a moduli space generalizing H'(Z, G).
We might denote this by H'(3, P, G, C).

These more general moduli spaces have been studied by
Seshadri and others [30] [20]. They share the general proper-
ties of the earlier moduli spaces. In particular they are sym-
plectic manifolds with singularities. For example if X =S’
then 7,(3 —(Pyu---uU P,)) is free on r—1 generators, and
the moduli space is the quotient by G of the fibre over 1 in
the multiplication map

C,xCyx--xC,>G.

The dimension of the generalized moduli space is, in general,
given by the formula

2(g —1)dim G+} dim C;.
j

The symplectic structure is, as we shall see in § 3.2, partly
derived from that of H'(Z, G) and partly derived from the
symplectic structures of the homogeneous spaces C;.

32 Moduli spaces of holomorphic bundles

In the abelian case we have already used the classical
result that H'(Z, U(1)) can be identified with the Jacobian
of 3., once a complex structure 7 has been fixed on 3. Similar
results hold in the non-abelian case. First, however, we have
to describe the analogues of the Jacobian. These are the moduli
spaces of holomorphic G° bundles over X,, where G° is the
complexification of G. For simplicity we shall restrict our-
selves here to the case G= SU(n) and refer to [5] for the
more general case.

The important notion here is that of stability of holomorphic
bundles. A holomorphic vector bundle E over a Riemann
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surface X, is said to be stable if, for all holomorphic sub-
bundles F, we have
deg F degE
rank F rank E’

(3.2.1)

Here degree means the value of the first Chern class. For an
SL(n, C)-bundle ¢;=0 and so (3.2.1) simply amounts to
deg F < 0. Semi-stable bundles are defined similarly by requir-
ing deg F=0.

A theorem of Narasimhan and Seshadri [22] asserts that
the isomorphism classes of stable holomorphic bundles of
rank n form a non-singular Zariski open set M (n) in a
projective algebraic variety M(n). Moreover M(n) is obtained
from the semi-stable bundles by an equivalence relation
(stronger than just isomorphism).

Since every flat bundle is automatically holomorphic it is
not surprising that there is a natural map

H'(Z, SU(n))> M(n).

The main theorem of Narasimhan and Seshadri [22] is that
this map is a homeomorphism. The significance of this result
will become clearer in Chapter 4. At the level of tangent
spaces, at an irreducible point a, it corresponds to the natural
isomorphism

H'(Z,End, (E))> H'(Z,, End, (E)) (3.2.2)

where End, denotes trace-free endomorphisms and the two
sheaves are:

End, (E)=locally constant skew-Hermitian
endomorphisms
End, (E) =holomorphic endomorphisms.
This is the obvious generalization of the result used in Chapter

2 for the Jacobian. However, in that case, since the manifold
is a torus, the whole map is linear. Here the manifolds are
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non-linear and only the linearized tangent map can be easily
identified by sheaf cohomology.

From (3.2.2) it is clear that the complex structure induced
on H'(Z, SU(n)) by a complex structure on X depends only
on the isomorphism class of 3 (modulo the identity com-
ponent of Diff* (X)), i.e. on the point 7 in Teichmiiller space.
This is the generalization of the fact that the complex structure
on H'(Z, U(1)) depends only on the period matrix of the
Riemann surface. This gives a certain rigidity to our moduli
spaces, a property not shared by the family of Riemann
surfaces.

The moduli space M(n) has a natural holomorphic line-
bundle L and the space of sections of L* will give the quantiz-
ation at level k. We shall postpone a discussion of these
questions until Chapter 5 where they will appear in proper
context. However, it may be worth remarking at this stage
that L generates the group of holomorphic line-bundles on
M(n) as shown by Drezet and Narasimhan [12]. Unlike the
Jacobian case there are no flat line-bundles and for this reason
spin structures on X are not needed.

There is a generalization of stability and of the moduli
space M(n) to take account of marked points. This is due to
Seshadri [30] and involves assigning weights a,,..., «, at
each marked point. Seshadri proves that his moduli space
(for given weights) is naturally homeomorphic to the space
of unitary representations of 7,(3 —(P,u- - - U P,) where the
loop around a marked point P is represented by a matrix with
eigenvalues

exp 2wie;), j=1,...,n

This is the moduli space of representations we met in the
preceding section, except that we restricted the eigenvalues
to be kth roots of unity, i.e.

a;=—, A; integral.
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In addition we described the case of SU(n), rather than U(n).

All these moduli spaces have a natural line-bundle L, whose
holomorphic sections give the quantization at level k. Note
that here the moduli space itself depends on k, whereas in
the absence of marked points the moduli space is independent
of k and L, = L* is the kth power of a fixed line-bundle L.

As an example we give Seshadri’s definition of stability for
a rank 2 vector bundle with just one marked point P. There
are just two weights (assumed distinct) and we choose them
so that

0=, <a,<l.
We first define the degree of E, relative to these weights a, by
deg, E=deg E+a,+a,.

Next we fix a line L (one-dimensional subspace) of the fibre
E, which we regard as part of the structure of E. Given any
holomorphic sub-line-bundle F of E we then define

deg F+a, if Fp=L

d F=
€8a {deg F+a, otherwise.

E (or better (E, L)) is then defined to be stable, relative to
a, if for all F

deg , F<}deg, E.
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Symplectic quotients

4.1 Geometric invariant theory

This chapter is in the nature of a digression to discuss
the formation of quotients in algebraic geometry and its rela-
tion to corresponding notions in classical and quantum
mechanics. In the next chapter we shall apply these ideas in
an infinite-dimensional context in order to get a better under-
standing of the moduli spaces discussed in the last chapter.

We begin by reviewing classical invariant theory and its
geometric interpretation as developed by Mumford [21].

If A is a polynomial algebra (over C) and G is a compact
group of automorphisms then the algebra A% of invariants is
finitely generated. More generally the same applies if A is
replaced by a finitely generated algebra, i.e. a quotient of a
polynomial algebra.

There are graded and ungraded versions of invariant theory.
Geometrically these correspond. to affine and projective
geometry respectively. We shall be interested in the graded
projective case.

If A is the graded coordinate ring of a projective variety X
then its subring of invariants A should be the coordinate
ring of some quotient projective variety. This quotient should
be approximately the space of G-orbits in X, where G° is
the complexification of G. However, since G° is non-compact
its orbit structure can be bad and the precise nature of the
quotient construction is slightly subtle. Mumford’s geometric
invariant theory makes this precise, and we shall now rapidly
review the main features.
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Abstractly we start from a smooth projective variety X with
an ample line-bundle <, i.e. such that some power of £ defines
a projective embedding of X. We assume G (or G°) acts on
X and on . Mumford then defines a Zariski open set X, of
X consisting of stable points. The G°-orbits in X, are closed
and the quotient space Y,= X,/ G° is a well-defined smooth
quasi-projective variety. To get a natural projective compac-
tification Y of Y, Mumford defines the subset X, of semi-
stable points in X, and Y is obtained from an equivalence
relation on the G®-orbits in X,,. In fact Y can be identified
with the closed G°-orbits in X, .

In the best cases stable points have a trivial isotropy group.
In such cases the line-bundle £ descends naturally to a
line-bundle L on Y, and then can be extended to Y. Almost
equally good is the case when the isotropy groups are finite.
Then, for a suitable integer k, £* descends to give a bundle
on Y, and then on Y.

In the free case (trivial isotropy on X,) a G°-invariant
section of & on X, descends to give a section of L on Y,.
Moreover sections which extend to X correspond to sections
which extend to Y.

4.2 Symplectic quotients

In classical mechanics one deals with a phase-space
which is a symplectic manifold X. If a compact Lie group G
acts symplectically on X then (under mild assumptions) there
is a moment map

u: X > Lie (G)*

taking values in the dual of the Lie algebra. If £ Lie (G)
then (u(x), &) is the Hamiltonian function which generates
the flow given by the action of £ on X. As the terminology
suggests the moment map generalizes the classical notion of
angular momentum.
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The space
Y=up"(0)/G

is called the reduced phase-space or symplectic quotient. It
is a manifold (with singularities) and inherits a natural sym-
plectic structure. Its dimension is, in general, given by

dim Y =dim X-2dim G

To distinguish it from the ordinary quotient X/ G (which is
not symplectic) it may be denoted by X /G. The good case
(leading to the dimension formula above) is when the generic
G-orbit is free (or has only a finite isotropy group).

There are more general constructions of symplectic
quotients of the form

Y,=n"'(1)/G

where A is a G-orbit in Lie (G)*. These are related not to the
invariant subring but to the part that transforms according to
a given irreducible representation of G. In particular, if G is
abelian, different integral points A in Lie (G)* correspond to
different characters of G.

A basic example is given by taking G= U(1) acting by
scalar multiplication on C" = X. Giving C" the symplectic
structure from the standard Hermitian metric we find

p(z)=|z"

It follows that the symplectic quotient w~'(1)/ U(1) is the
complex projective space P,_,(C) with the symplectic struc-
ture of its standard Kéhler metric.

Note that P, ,(C)=(C"—-0)/C*, the natural complex
quotient by the group C* (complexification of U(1)). Thus
P,_,(C) occurs both as asymplectic quotient and as a complex
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algebraic quotient. This is in fact a typical story as we shall
explain.

Return now to the situation of the preceding section with
a compact Lie group G, and its complexification G°, acting
on an algebraic variety X with its ample line-bundle £. We
can fix a G-invariant connection on % and its curvature will
then be a type (1,1) form corresponding to a G-invariant
Kahler metric on X. For example, fix a G-invariant metric
on the space of sections of £* with k large, to give a projective
embedding of X. The Kahler metric of X defines a G-invariant
symplectic structure. We can therefore form both the Mum-
ford quotient of X by G° and the symplectic quotient X /G.
It is a general theorem (see [18]) that these coincide and the
symplectic structure of X /G is defined by a Kihler metric
on the Mumford quotient. The key step in this identification
is to show that every closed G°-orbit in X, contains a G-orbit
in u7'(0).

The advantage of the symplectic quotient X /G is that it
is obviously compact, and we do not need to worry about
stable or semi-stable points. On the other hand the complex
structure is not obvious and for this the Mumford quotient is
needed.

4.3 Quantization

The identification between the Mumford algebro-
geometric quotient and the symplectic quotient is a ‘classical’
one. It has a quantum counterpart relating the G-invariant
algebra A to the quantization of the symplectic quotient,
which we shall now explain.

In order to quantize a symplectic manifold X the symplectic
form w (divided by 27) has to be integral, so that iw is the
curvature of a line-bundle £. One way to quantize X is (if
possible) to pick a complex Kihler structure (so that w is the
(1, 1) form defined by the Kahler metric). This makes £ into
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a holomorphic line-bundle (with metric) and the quantum
Hilbert space # is then taken to be the space of square-
integrable holomorphic sections of %.

This was precisely the procedure described in Chapter 2
when X = C". Moreover we saw that the projective space
P(%) depends only on the underlying symplectic structure
of X and is independent of the choice of complex structure.
Equivalently the bundle of Hilbert spaces #,,, with o € & the
Siegel upper half space, has a natural connection which is
projectively flat.

Inthe case when X is a compact symplectic manifold arising
from a projective variety X with an ample line-bundle £ the
holomorphic sections of ¥ will define a finite-dimensional
quantum Hilbert space . However, the dependence of this
on the choice of complex structure on X has to be investigated.
There is no guarantee that we will get a projectively flat bundle.
Good cases (giving flatness) include projective spaces and
more generally homogeneous symplectic manifolds, ‘co-
adjoint orbits’, of compact Lie groups.

Given an action by a compact group G on (X, £), preserv-
ing the complex Kéhler structure, the G-invariant part of the
quantum Hilbert space  is then (in the generically free case)
the same as the quantum Hilbert space of the Mumford
quotient.

If we can start from an X where the projective Hilbert
space P() is independent of the choice of complex structure
then it will follow that the same is true for the G-invariant
part. Thus, in this case, we get a well-defined quantization of
the symplectic quotient X /G.

Decomposing the graded rings A, A into their homo-
geneous components

A=@Ak,
k

A =] A7,
K
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we see that A can be interpreted as the quantum Hilbert
space of the symplectic quotient X /G atlevel k (i.e. replacing
L by L¥). Note however that the algebra structure of A€ is
not a symplectic invariant of X / G. In fact the algebra deter-
mines the complex manifold structure of X /G as the maximal
ideal space.

The non-compact linear case X = C" leads of course to
infinite-dimensional Hilbert spaces and possibly non-compact
symplectic quotients X /G. The flatness here follows from
that for C", by just restricting to the G-invariant part.

One important warning should be made at this stage.
Although the G-invariant part of the space # of holomorphic
sections of £ on X can be identified with the holomorphic
sections of L on X /G the inner product cannot easily be seen
on X /G. By definition the norm of a section s of £ is defined
by integration over X. A G-invariant section is determined
by its restriction to u~'(0), since this meets the generic G°-
orbit. However, the norm involves a double-integral, first over
the G°-orbit and then over X/ G. The integration over the
G°-orbit (which contributes the volume of the orbit) cannot
be seen on the quotient space.

In the next chapter we shall meet an infinite-dimensional
version of the story described in this chapter. This is the
version required for the Jones-Witten theory and it has
features which are not present in the finite-dimensional case.
In particular it starts from a linear case (as for C") but the
symplectic quotient is compact. The present chapter provides
a general background and introduction to this infinite-
dimensional case.

44 Co-adjoint orbits

We conclude this chapter with some additional
remarks about the generalized symplectic quotients

Y, = M_I(MA)/G
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where M, is a co-adjoint orbit, i.e. a G-orbit in Lie (G)*.
According to a well-known general result of Kirillov these
co-adjoint orbits are the homogeneous symplectic manifolds
of G. They are of the form G/H where H is the centralizer
of a torus in G. Moreover they have natural complex Kiéhler
structures which for ‘integral’ A are projective algebraic. Their
quantizations give the irreducible representations of G and
so the set of integral orbits may be identified with G. If A*
denotes the representation dual to A then one can verify that

MA*= _MA.

The moment map for M, is just its natural embedding in
Lie (G)*. Now compare the moment maps

w: X > Lie (G)*

and

tas: X X My«>Lie (G)*.
Clearly

pr=(0) = u™H(M,),
and so

Y, =u"'(M,)/G=u-(0)/G.

Thus the quantization of Y, should be the G-invariant part
of the quantization of X X M, . But this is just the A-covariant
part of the quantization # of X, i.e. Homg (A, #).

Thus, analysing the moment maps over the different integral
orbits of L(G)* is the classical counterpart of decomposing
the quantization of X as a G-module.
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The infinite-dimensional case

5.1 Connections on Riemann surfaces

We now come to the infinite-dimensional case of
symplectic quotients and their quantization which is relevant
to the Jones- Witten theory. This case was studied, for other
purposes, in [5] and we refer the reader there for other details.

Given a compact oriented surface 3 and a compact Lie
group G we consider the infinite-dimensional affine space <
of G-connections on the trivial bundle over 3. Note that, if
G is simply connected, for example SU(n), all G-bundles
over X are trivial. The space & has a natural symplectic
structure. If A€ o, a tangent vector at A is a Lie-algebra-
valued 1-form o. Hence, for two such tangent vectors a, 8,
we can define the skew pairing

(a, B) =J —Tr(a A B).

Here we have written the formula in the case G = SU(n). In
general we replace —Trace by the fixed G-invariant inner
product on Lie G.

The group ¢ of gauge transformations, i.e. the group of
smooth maps I - G, acts naturally on & preserving its sym-
plectic structure. An elementary calculation [5; p. 587] shows
that the moment map

u: A > Lie (9)*

is just the curvature u(A) = F,. Note that F,, a Lie-algebra-
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valued 2-form, gives a linear function on Lie (9), the space
of Lie-algebra-valued 0-forms, by using the inner product on
Lie (%) and then integration over 3. Hence the symplectic
quotient

A)G=pn"'(0)/9

is the moduli space of flat G-connections on X, or equivalently
the moduli space of homomorphisms (up to conjugacy)
m(Z)~ G. This was the moduli space denoted by H (2, G)
in Chapter 3.

For an irreducible homomorphism =, (X)-> G the only
gauge automorphisms that preserve it are the constant central
automorphisms arising from the centre of G.

For semi-simple G this is finite so that we are, at least
formally, in the ‘good’ case for the G-action. An abelian factor
in G causes only minor differences because of the first Chern
class.

We now turn to the holomorphic view-point by fixing a
complex structure 7 on 2. This induces a natural complex
structure on & so that we have an infinite-dimensional
analogue of the linear situation discussed in Chapter 2.
Moreover by taking the (0, 1) part d’; of the covariant deriva-
tive d, of a connection A we can identify & with the space
€ of holomorphic structures on the trivial bundle X x G° [5;
Chapter 7]. Also the complexification §° of ¥, given by
smooth maps of X - G°, acts naturally on €. The moduli
space M, of holomorphic G°-bundles over X, is the analogue
of the Mumford quotient of Chapter 4. It contains as an open
set the subspace parametrizing stable G°-bundles.

In fact we can do a little better. There is actually a holomor-
phic line-bundle ¥ with connection over € whose curvature
is —2i times the Kihler form, and ¥° acts naturally on &
with G preserving its metric and connection. This line-bundle
is the Quillen line-bundle whose fibre at Ae o/ = € is

gA = det HI(Z,, EA)®[det HO(ZT, EA)]*
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where E, is (for G = U(n) or SU(n)) the holomorphic rank
n vector bundle defined by d, and det denotes the highest
exterior power. The metric on £, is defined by regularized
determinants of Laplacians and Quillen [25] proved that this
gives the right curvature. For general G there is a Quillen
line-bundle for each representation (pull back from U(n) by
G- U(n)), and in particular for the adjoint representation.
In general these will give powers of the desired line-bundle %,

The constant centre of G acts trivially on & and its action
on the fibres of £, is given, for G=SU(n), by the scalar
action of nth roots of 1 on the sheaf cohomology of E,. But,
since the first Chern class is zero,

dim H%(2,, E,)—dim H'(Z,, E.)=n(1—-g)
so that the scalar actions cancel. Thus ¥ acts on (A, ¥)
through the quotient i by the constant centre. This shows
that the line-bundle £ descends (without resorting to powers)
to give a line-bundle L on the moduli space M, at least on
the stable part.

A more careful examination shows that the line-bundle L
extends to the whole of M,, the essential point being that the
semi-stable bundles which are identified to give a single point
of M, differ by extensions so that the determinant line %, is
the same for all.

Just as for the finite-dimensional case discussed in Chapter
4, we now have a map

H'(Z,G)» M,

which we expect, by analogy, to be a homeomorphism. This
is the content of the Narasimhan-Seshadri theorem [22]
already mentioned in Chapter 3. There is a direct proof by
Donaldson [11] which is more in the spirit of our present
context.

So far we have just described the classical picture leading
to moduli spaces as quotients. We now take their quantiz-
ations, which is what we are really after.
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We want to consider the quantization of the symplectic
space & and then take its ¢-invariant part. We expect this to
be the same as the quantization of the symplectic quotient

4 )%6=H'(Z,G).

To define this quantization we will pick a complex structure
7 on Y and use the Narasimhan-Seshadri theorem to replace
H'(Z, G) by the moduli space M,. Now we quantize this, at
level k, by taking the space of holomorphic sections of Lk
over M,. We expect this to be projectively independent of 7.

In the next chapter we shall discuss the various methods
that can be used to establish this key result. At this stage we
merely note that & is too infinite-dimensional to have a
genuine quantization of the right kind. This is why we make
the reduction to the finite-dimensional (and compact)
quotients.

52 Marked points

As we mentioned in Chapters 2 and 3 it is necessary
for the Jones-Witten theory to generalize to the case of sur-
faces X with marked points. The situation of the previous
section has a natural generalization as follows.

Given the moment map

w: o> Lie (9)*

defined by the curvature we can pick other orbits than zero
in Lie (9)*. In particular, given a point P on 2 we have an
evaluation ep: ¥ - G and hence, dually, an embedding

8p: Lie (G)* > Lie (9)*.

The image consists of delta functions on P with values in
L(G)*. In particular a G-orbit M, in L(G)* defines a G-orbit
8p(M,) in Lie (%9)*.
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Now fix points P,,..., P, on X and integral orbits (or

G-representations) A,,..., A,. This defines the G-orbit
M(P,A)=Y 8,(M,) < Lie (9)*.

We can therefore, for each integer k, look at the generalized

symplectic quotient

[ " (M(P,A)/K))S (5.2.1)
This consists of connections which are flat outside the P; and
have appropriate -function curvatures at the P,. A local
model for a connection near P;, with P, as origin of polar
coordinates (r, 8), is A; d@ where A; is in the conjugacy class
of the G-orbit (1/ k) M, (and we identify L(G)= L(G)* using
our invariant metric). The monodromy around P; of such a
connection is just exp (27iA;) and is a kth root of unity. Thus
our symplectic quotient (5.2.1) is just the moduli space
of representations which we denoted in Chapter 3 by
H'(Z, P; G, C), the C; being conjugacy classes of order k
in G.

Once we pick a complex structure 7 on 2 we again have
the identification of this space of representations with a moduli
space of holomorphic bundles. This was described in Chapter
3. Again a proof along the lines of Donaldson [11] would be
most natural.

As explained in § 4.4 we can replace the generalized sym-
plectic quotients by the usual ones. Thus consider the product

B =kt X[| My
J

where ko stands for o with its symplectic form multiplied
by k, or equivalently £ replaced by ¥* The symplectic
quotient B /% can then be identified with (k times) the
quotient in (5.2.1). Moreover the quantization of % J 4§ should
pick out that part of the quantization of ks&f which transforms
according to the representation

@ e,l';j(/\j)
J
of 4.
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To summarize, for each k, we have a moduli space M;
(depending on k) with a line-bundle L,. The space
H%M,, L,) is the ‘multiplicity space’ for the representation
@, e%(1;) of ¢ in the quantization at level k of the space .

Thus even if the quantization of & is not too well defined
we have given a meaning to that part of it that transforms
according to ‘evaluation representations’ of ¥. Of course we
still have to investigate the role of the complex structure
chosen, but this question is postponed until the next
chapter.

53 Boundary components

Working on Riemann surfaces with marked points is
the natural algebro-geometric approach to the subject. Having
marked points allows ‘poles’. There is another approach which
involves working on Riemann surfaces with boundary. This
requires the use of complex analysis and associated boundary-
value problems. We can pass from a surface with marked
points to a surface with boundary simply by cutting out small
discs around the marked points.

Each method has its own advantages. Thus surfaces with
boundary can be glued together along a common boundary
and this is an important operation in the theory. The analogue
for marked points is to allow an algebraic curve to acquire
singularities (double points). These questions will be taken
up later.

Naturally the theory for surfaces with boundary requires a
preliminary investigation of gauge theory on a circle. In fact
this is the way conformal field theory enters the picture, and
the representation theory plays an important role. We shall
begin therefore by a rapid review of some basic aspects of
the subject, referring for fuller details to [24].

Let S be the standard circle and let &5 denote the affine
space of G-connections for the trivial bundle over S. The
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gauge group
9Ys=Map (S, G)=LG

is the loop group. It acts affinely on s with orbits of finite
codimension. The orbits are determined by the monodromy
of the connection around S: this is a conjugacy class in G.

LG has (for each integral k =1) a central extension (by the
circle) LG. The co-adjoint action of LG on the dual of its
Lie algebra preserves hyperplanes (codimension 1) and s,
together with its LG-action, can be identified with one of
these. Thus the orbits of LG in & are co-adjoint orbits, and
‘integral’ orbits lead, by quantization, to irreducible rep-
resentations of LG (i.e. projective representations of LG).

Now let us consider a surface X with boundary S (for
simplicity we discuss only one boundary component, but the
results are quite general). As before we consider the space
#As of G-connections on X and the group % of gauge
transformations on X. The symplectic structure on s is
defined as for closed surfaces and again we have a moment
map

My ﬂz - Lie (ng)*.

This time, however, the moment map picks up a boundary
term and one finds the formula

}Lk(A)zFA_As. (5.3.1)

Here Ag is the restriction of A to S in the following refined
sense. The restriction homomorphism

ng_)fgs

actually lifts naturally to the central extension LG =%s of
LG = %;. Passing to the Lie algebras and dualizing gives a map

(Lie %5)* > (Lie %5 )*.
Combined with the hyperplane inclusion
sts - (Lie §g)*
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this associates to any Ae s the element of (Lie 9s)* we
have denoted simply by Ag.

Now pick a G-orbit W, in &g, corresponding to the con-
jugacy class C, of G. We can then form the generalized
symplectic quotient

«=pi (W) %.

In view of the formula (5.3.1) this symplectic quotient can be
identified with the moduli space of representations introduced
in Chapter 3. It parametrizes representations of 7,(2 —P)
whose monodromy around P lies in the conjugacy class C,,.

As for the case of marked points we can now restrict C,
to consist of kth roots of 1 and then quantize X, at level k.
(Note that the natural line-bundle L, on X, gives k times the
standard symplectic form.)

As before we can, at least formally, interpret the resulting
space as a ‘multiplicity space’. It gives the part of the quantum
Hilbert space of k&fy which transforms according to the
representation e$(A) of Y. Here eg: 95 ~ &, is the lift of the
restriction or evaluation map and A denotes the irreducible
level k representation of s parametrized by the relevant orbit.

Although we shall not pursue this boundary case any farther
we should point out it is, in a sense, slightly ‘less singular’
than the case of marked points. Analytically, taking a boun-
dary value on a codimension one circle is less singular than
evaluation at a point. This can have technical advantages.
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Projective flatness

6.1 The direct approach

We have seen in Chapter 4 that to each complex
Riemann surface X, group G and integer k we can associate
a vector space V(2,, G, k). We recall that this is defined as
the space of holomorphic sections of the line-bundle L* on
the moduli space M. of holomorphic G°-bundles on X,. The
main result about these spaces is their projective flatness with
respect to the parameter 7 in Teichmiiller space J. This means
that the vector spaces V, form a holomorphic vector bundle
V over 9 and that this has a natural connection whose
curvature is a scalar.

In this chapter we shall review several different approaches
to this basic question. We begin in this section by describing
the ‘direct approach’, i.e. the one which most naturally fits in
with the quantization ideas we have been discussing.

The idea follows on naturally from the discussion in Chap-
ter 4 and may be summarized as follows.

As we have seen in Chapter 5 our moduli space M is a
symplectic quotient of an infinite-dimensional affine space. If
it were the symplectic quotient of a finite-dimensional affine
space the result would be clear. Quantizing M is just taking
the invariant part of the quantization of the affine space. Since
this quantization is (projectively) independent of the choice
of complex structure the same follows for the invariant part.

The difficulty is therefore entirely attributablé to the infinite-
dimensionality of the space & of connections. If we write
down the various formulae that express the projective
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independence of the quantization ¥ of & we will find that
they are obviously divergent. However, we only want to make
sense out of them for the %-invariant part of ¥. Our task
therefore is to consider these restricted formulae and make
sense out of them by appropriate regularization.

This method has been developed by Hitchin [15] and, along
slightly different lines, by Axelrod, Della Pietra and Witten
[7]. Both versions have in particular to deal with the following
two difficulties.

In the finite-dimensional case (and assuming the group is
unimodular) the first Chern class of the complex moduli space
is necessarily trivial. In the infinite-dimensional case this is
not true because of an anomaly. This produces a shift in the
formulae with the level k in appropriate places being replaced
by k+n (for SU(n)). We shall see this shift again in the
Feynman integral calculations of Chapter 7.

The second difficulty relates to the inner product on the
Hilbert spaces. The reasons for this difficulty (already present
in finite dimensions) were mentioned in Chapter 4. Although
unitarity is not strictly needed for the purpose of defining the
Jones polynomials, it is a significant aspect of the theory, and
a good proof is certainly desirable.

This ‘direct proof” has of course to be generalized to include
the case of surfaces with marked points. However, no essen-
tially new features enter for this generalization. Roughly
speaking the generalized moduli spaces differ from the simple
moduli spaces by incorporating copies of the homogeneous
symplectic manifolds of G, and these are well understood.

6.2 Conformal field theory

The second approach to the projective flatness is to
fix a point P on the surface X and cut out a small disc D
around P. The general idea is that questions on X can be
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reduced to studying the surface 3 — D which has a boundary
circle S, together with appropriate local data on the disc D.
We have already seen in Chapter 5 how this brings in the
representation theory of the loop group LG.

There are two key steps in developing this approach. In the
first place the representations of LG admit a natural action
of the group SO(2) of rotations of the circle. However, closer
examination shows that this action can be extended to
Diff* (S), the “Virasoro algebra’ of physicists. This is all care-
fully explained in [24].

The next step is to observe that elements of Diff* (5) can
be used to glue back the discinto 3 with a twist, thus obtaining
a new complex Riemann surface. In factall complex structures
can essentially be obtained this way.

Putting these two facts together one can deduce the projec-
tive flatness.

The role of Diff* (S) in this proof becomes clearer if we
note that the projective flatness of our Hilbert spaces can be
reformulated as follows. Using a given complex structure =
on the Riemann surface to construct the corresponding Hilbert
space (sections of L* over the moduli space M,) it is clear
that any automorphism of the complex structure 2, will act
on the Hilbert space. The projective flatness asserts essentially
that Diff* (2) acts (projectively). This is just the two-
dimensional counterpart of the one-dimensional version
asserting that Diff" (S) acts (projectively) on the representa-
tions of the loop group.

The generalization to allow for surfaces with boundaries is
quite natural in this approach and brings in no really new
features.

6.3 Abelianization

The third approach to projective flatness is much
more far reaching than the previous two but it has not yet
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been worked out in detail and remains somewhat conjectural
at the present stage. Nevertheless it is potentially very impor-
tant because it will in principle reduce the whole non-abelian -
theory to the elementary abelian case which was discussed in
Chapter 2. Thus what is being proposed here is an abelianiz-
ation procedure. This should be compared with the rep-
resentation theory of compact Lie groups. As is well known
this theory can, in a sense, be reduced to that of the maximal
torus together with the action of the Weyl group. In our case
there will also be a discrete group that plays the role of the
Weyl group.

The whole programme envisaged here rests on the funda-
mental paper [16] of Hitchin, so we begin by reviewing this
very briefly. For simplicity we shall discuss only the case
G = U(n) or SU(n), but the extension to general G is fairly
routine.

Hitchin introduces moduli spaces which generalize those
introduced in Chapter 3 and which have both a holomorphic
and a representation theory description. The holomorphic
description starts from a complex Riemann surface 3, and is
concerned with ‘Higgs bundles’ over .. These are pairs (V, ¢)
where V is a holomorphic rank n vector bundle and ¢ (the
‘Higgs field’) is a holomorphic section of (End V)® K, where
K is the canonical line-bundle of X._.

There is a natural notion of stability for Higgs bundles and
a corresponding moduli space # (depending still on 7). There
is a natural embedding M - # given by bundles with zero
Higgs field. Moreover the cotangent bundle T* M, of the stable
points M gives a natural open set in J, with the Higgs field
being the cotangent vector. In particular this shows that
dim 4 =2 dim M.

The characteristic polynomial of the Higgs field ¢

det(A—¢)=A"+a A" "'+ -+a, (6.3.1)

has coefficients a;€ H°(Z,, K'). Altogether these define a
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holomorphic map
x: M~>@ HYZ,,K')=W
i=1

with the following properties:

(i) x is proper,

(ii) the generic fibre is an abelian variety,
(iii) dim 4 =2dim W,
(iv) M is an irreducible component of x~'(0).

The equation det (A — ¢) =0 defines an algebraic curve ,
3. cT*s,

which is an n-fold branched covering of X, depending on a
parameter we W. The fibre of x over a generic point w of W
is the Jacobian of 3,. Note that the fibre over w =0 is very
degenerate and in particular M is a multiple component.

Thus our moduli space M appears in a degeneration of a
family of abelian varieties. Moreover there is a natural line-
bundle £ on # whose restriction to M gives our standard
line-bundle L over M.

Taking the sections of ¥* over the fibres of x we then get
a vector bundle over the regular points of W, i.e. over W—D
where the discriminant locus D consists of we W for which
the characteristic polynomial (6.3.1) has a double root.

Sections of L* over M can be pulled back to T*M, and
then extended to all of # (provided the exceptional set has
codimension =2, which holds for g>>2). We can therefore
identify our Hilbert space H°(M, L*) as a space of sections
of the vector bundle over W — D.

Now this bundle has the projectively flat connection of the
abelian case (given by O-functions as in Chapter 2). Our
aim should be to identify H°(M, L¥), at least projectively,
with the covariant constant sections of the bundle over
W—D. Equivalently H°(M, L*) should be the part of
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H°(x"'(w), £X) left fixed by the monodromy group IT=
(W — D, w) based at a generic point we W— D,

If established this would constitute our abelianization, with
IT (or rather its image in the symplectic group associated to
the abelian variety) playing the role of the Weyl group.

The projective flatness as we now vary 7€ J would follow
as a corollary from that of the abelian case. Note that there
are two types of variation of abelian variety being used here.
First the branched cover f, of X, varies with the branch points
depending on we W,. Then there is the variation of 7 itself.
The ‘Weyl group’ should therefore be the group (independent
of 7) arising from the universal space

w=UWw,

and the universal discriminant

@ =\D..

Hitchin’s moduli space £ has many other beautiful proper-
ties which are likely to repay further study. In particular .4
has a description (as a real manifold) by representations,
namely as a moduli space of representations m(X)-
GL(n, C). This generalizes the description of the modulispace
M as the space of unitary representations of 7,(X).

To deal with the case of surfaces with marked points, the
notion of a Higgs bundle has to be generalized by requiring
the Higgs field ¢ to have simple poles, at the marked points,
with nilpotent residues.

6.4 Degeneration of curves

By whatever method, the conclusion of the preceding
sections is that the Hilbert spaces Z,, given by H(M,, L¥),
form a holomorphic vector bundle Z over Teichmiiller space
g with a projectively flat connection. Since this is natural it
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is acted on by I, the group of components of Diff" (3). If
we factor out by I we get the moduli space

M=T|T

of curves of genus g =genus 3. We cannot quite divide Z by
I to get a bundle over # because of the presence of fixed
points. However, there are standard ways to rigidify curves
to get around this problem and we shall ignore it. Technically
Z is a I'-equivariant vector bundle over the I-space 7, but
it is easier to think in terms of bundles over /.

Now ( has a natural compactification # obtained by
allowing curves with double points. A key result in our theory
is that the vector bundle (obtained from Z) over  extends
to a bundle over M. This has been established by Tsuchiya,
Ueno and Yamada [33] who also investigate the behaviour
of the connection near the ‘boundary’ 4 — .#. Roughly, they
prove that it has a simple pole (regular singular behaviour),
but technically it has to be phrased in the language of D-
modules.

If the abelianization programme of Hitchin can be carried
through, then the extension to .# should follow from the
abelian case by examining O-functions for generalized
Jacobians.

The behaviour of our bundles Z at the boundary is closely
related to the conformal field theory approach of gluing along
boundaries of surfaces, and the resulting Verlinde algebra
[34]. It would be instructive to see this correspondence
examined in detail.



7

The Feynman integral formulation

7.1 The Chern—-Simons Lagrangian

So far we have presented the Jones-Witten theory
from the Hamiltonian point of view. This gave functors

surface 3 - finite dimensional vector space Z(2X)

3-manifold Y with 3 =9Y
>vector Z(Y)e Z(2)

starting from the data of a compact Lie group G and an
integer, k, the level.

This Hamiltonian approach is mathematically rigorous,
although it is not yet entirely developed.

In this chapter we shall present Witten’s Feynman path-
integral approach. It is not mathematically rigorous, but it is
conceptually simple, and provides a natural starting point for
the theory.

Fix a compact Lie group, G, which for simplicity we take
to be SU(n). In the Feynman approach, one uses the Chern-
Simons Lagrangian. Let Y be a closed oriented 3-manifold.
Consider &, the space of all G-connections on the trivial
G-bundle over Y.

For any connection A its curvature F, is a Lie-algebra-
valued 2-form. In three dimensions, the dual to a 2-form is a
1-form, i.e. *F, is a 1-form. However, & is an affine space,
and so its tangent space at any point consists of Lie-algebra-
valued 1-forms.
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Thus F is a 1-form on «. Its value on a tangent vector to
A is given by multiplying by F, and integrating over Y,
contracting on the Lie algebra variables. Let

% = group of gauge transformations

= Map (Y, G).

Clearly ¥ acts on &; and F is %-invariant. Moreover in the
fibration (with singularities)

oA

l@
/9

F vanishes in the vertical (fibre) direction, and thus comes
from the base. So F is a well-defined 1-form on &/ %

Also dF =0, i.e. F is a closed 1-form. Thus one would
expect that F can be expressed in the form

F=df

for some function f, where f is a %-invariant scalar-valued
function on & determined up to a constant. One can fix this
constant by requiring that

f=0

on the trivial connection.

This works if &/ % is simply connected. Otherwise, one can
only expect f to be locally defined and, globally, it will be
multi-valued. In fact, &£/ % is not simply connected, and f is
well defined only up to integral multiples of some constant.
This f is the Chern-Simons functional It is well defined
modulo integers, and is $-invariant.
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Explicit formula

Define
1

L(A) =——-" Tr(AAdA+3AAANA)
4qr Y

where Ae & Here L is a multiple of f: the notation L has
been used to be consistent with Witten [36].
One now verifies that L is invariant under the subgroup

Y=Y

given by the connected component of 4 containing the iden-
tity. Here %, %, differ by a copy of Z; and, under a generator
of $/%,, L is not invariant: it picks up a multiple of 2.

Thus e'*“* is a well-defined function of A, for ke Z
Witten’s invariant of 3-manifolds is now defined formally as
the ‘partition function’:

Z(Y)= J exp (ikL(A)) 2A.

This is a very elegant definition provided one believes that
the integral makes sense! More generally, we consider a closed
oriented curve

ccyY

and fix an irreducible representation, A, of G, in addition to
the data required previously: G, k.

A connection A on Y then defines a parallel transport along
any curve in Y. In particular, around C, one obtains a mono-
dromy element Mon, (A). Then

Tr, Monc (A)= Wc(A),
evaluated by taking the trace in the representation A. Here

Wc(A) is known as a Wilson line. Define

Z(Y, C) =I exp (ikL(A)) - W-(A)DA.
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This is a generalization of Z(Y'). In physicists’ language,
Z(Y)=(1)
Z(Y, C)=(W(A))

where (,) denotes the (unnormalized) expectation value.

Of course, one can similarly deal with several components
C,,...,C,, to each one associating a different irreducible
representation of G. Then

Z(Y, Cy,...,C)=(W(A)W(A) - - - W, (A)).

It is important to notice that the above definitions involve
no metrics or volumes. This is an indication that we have
defined topological invariants.

7.2 Stationary-phase approximations

To see if the above definitions make any sense, we
first of all consider the stationary-phase approximation k - .
One should think of the parameter k as something like 1/#
where # is Planck’s constant. The classical limit comes from
h-0.

For the rest of this section we shall only be concerned with
Z(Y): the generalizations Z(Y, C,,..., C,) are similar, and
only slightly more complicated.

In the stationary-phase approximation, the dominant part
comes from the stationary points of the exponent. That is, at
points where

d#=0
= F,=0, by definition of f,

i.e. Ais a flat connection and thus corresponds to a representa-
tion of 7 (Y):

a: 7(Y)>G.
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Then, the stationary-phase approximation to Z(Y) gives a
sum of contributions, one from each of the representations
a. Thus we need only look at the integral for Z(Y) locally.
Suppose « is a flat connection, and

A=a+p

where B is ‘small’. Then
1
L(A)=L(a)+— J Tr(B A d,B) + cubic terms.
47 Yy

There are no linear terms, since d.¥ =0 at a. Here, d,B is the
covariant derivative of B with respect to the connection a.

Define Q(B) =(1/4m7) jy Tr (B A d,B). This is the quadratic
term in the expansion of L(A) above. One can think of Q as
a quadratic form in an infinite number of variables. Here:

QB) =~ 5= (B.+d.B)
m

where (,) is the inner product on Lie-algebra-valued 1-forms:

{a, B)= —Trj a Axf.

Thus Q is given by a self-adjoint operator, —*d,. This Q
is related to the de Rham complex with respect to the
coefficient system given by a. Let g, be the flat G-bundle on
Y given by the connection «, with fibre the Lie algebra g.
Then we have a de Rham complex:

d d d

09— 0L —5 02— 2.

Since a is flat, d%=0.

We shall assume for simplicity that a is a non-degenerate
representation; i.e. that the above complex has no
cohomology:

H*(Y,g,)=0.
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Since H?, H? are dual to H°, H', these conditions essentially
reduce to

H°=0, H'=0.

Here H°(Y,g,)=0 corresponds to o being an irreducible
representation and H'(Y,g,) =0 corresponds to this rep-
resentation being isolated (since dim H' is essentially the
number of deformation parameters of the representation).

In this case, Q is degenerate on d{23, since *d, vanishes
on the image of

d,: 2°->0!.

This corresponds to the fact that f is invariant under 4; dn®

corresponds to infinitesimal gauge transformations. Factoring

out d2°, we find that Q is non-degenerate on 2'/dQ25.
Let us now digress to discuss classical Gaussian integrals.

We start with the one-dimensional integral:

[* dx ) 1

| v SR

Continuing analytically, and putting u = —iA, we obtain

(* o

dx

J oV

The n-dimensional form of this is as follows. Suppose Q
is a non-degenerate quadratic form in x,, ..., x,. Then

i
exp (iAx?) = || exp (% sgn /\) .

_[ exp (iQ(x)) ;d,.%= det Q|2 exp (%1 sgn Q)-

This holds for non-degenerate quadratic forms only (no zero
eigenvalues).

Suppose we have the action of a compact group G (e.g.
S") on a Euclidean space, X, and Q(x) is a G-invariant
quadratic form. Take a transversal slice of the space for the
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G action. We must take into account some form of Jacobian:
in fact, the appropriate quantity is the volume of an orbit.

transverse section

Now G acts on X. At a point x€ X we have a map:
G-X
g~ g(x).

This gives a map, B, from the tangent space of G at the
identity to the tangent space of the orbit at x. The Jacobian
of the map corresponds to the volume of the orbit. Thus

vol. of orbit

B*B)'*=
(det ) vol. of G

is the appropriate scaling factor.
Hence we obtain the modulus

(det B*B)'/?

(@ Q™ v

and

i
phase factor exp (% sgn Q). (ii)
Application to our situation

In our case,

B = (infinitesimal map from Lie algebra
to tangent space of manifold)
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= (da: 02>0)

= B*B=d*d,=4°,
the Laplace operator on 29 .

Now Q is given by —*d, on £2'/dQ°. Consider the self-
adjoint operator

P=¢g(d, *+=*d,)
acting on odd forms 23** where e=—1 on ) and e=+1
on 3. By duality one can replace {22 by 20, and thus P
can be thought of as acting on 22® 2.,. P is closely related
to Q.

We can think of 2} = V® W where

V=Im(d,: 2°> Q')

and W=V"* in 2.. Then Q acts on W; and P acts on
Q°®V® W by

0 -B* 0

-B 0 0
0 0 Q
n()

a« ———

d, Q
- T %_—acts here
Imd, =V (Imd,) =W

Iy
7

A quadratic form of the type

[
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always has zero signature. Of course, in this case, we have
not assigned meanings to det Q or sgn Q; but in any ‘sensible’
definition one would hope that

sgn P =sgn Q,
|det P|=(det B*B)|det Q| (iii)
So, if we can make sense of det P, det B*B, then we can write
down the local contribution to the stationary phase approxi-
mation.
Here we have so far left out the level k. In finite dimensions,

such a factor changes the resultant integral by an appropriate
power of k, which we will later see in our case is zero.

Regularization of determinants and signatures

Let 4 be a Laplace operator, with positive eigenvalues
A. Then we can define the zeta function:

TrA* =Y A" ={(s).

The function {(s) is a meromorphic function, defined in the
first instance for Re (s) sufficiently large. It can be analytically
continued to the whole complex plane, having isolated poles.
Here s =0 is not a pole, and £(0), ¢'(0) are well defined.
Formally, £(0) is the dimension of the Hilbert space. In
odd dimensions, £(0)=0.
Following Ray and Singer [26] we define

det 4 =exp (—¢'(0)).
Formally, one sees that
£'0) =Y d/ds(A %) 0
A

=§(—log A)

and thus exp (—£'(0)) =1, (A) =det 4.
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The above definition makes sense as a real number, and is
used by physicists to make sense of Gaussians occurring in
QFT. We wish to do this for the Laplacian with twisted
coefficients A . This makes det (4%) well defined, and thus
gives the B*B term.

Similarly, P>=A4°®4', the direct sum of the Laplace
operators on 2°, Q'. Thus

(det P)>=(det A2)-(det 4})

and hence |det P| is well defined, giving |det Q|, from (iii).
Thus one can evaluate (i), obtaining

(det 4%)**
(deta!)V*"

Ray and Singer [26] proved that

T _ (detdd)?
* " (detd,)"?

the square of the above expression is independent of Rieman-

nian metric. The Riemannian metric is used to obtain a

*_operator, which is necessary to make sense of the divergent

quantities.

To prove independence of metric, one differentiates T, with
respect to the metric as parameter, and shows that this
vanishes. Ray and Singer conjectured that T, was the classical
Reidemeister torsion. This conjecture was proved (indepen-
dently) by Cheeger and Miiller. This is the first concrete
encouragement for the Witten formula for Z(Y'): the absolute
value of the limit k-0 can be regularized, and the result is
metric independent. This observation relating Ray-Singer tor-
sion to the abelian Chern-Simons theory was made by
Schwarz [28] in the late 1970s (and it extends fairly easily to
the non-abelian case).
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Phase factor

We now consider the phase factor as given by (ii).
This involves sgn Q, which is related to sgn P, and was studied
by Atiyah, Patodi and Singer [6].
Consider the situation where P is a self-adjoint operator
with both positive and negative eigenvalues, and

A=P.
Define
n(s)= Y (|A["sgna).
A#O

Once again, n can be analytically continued, and 7n(0) is well
defined. Formally,

n(0) = (No. of positive eigenvalues)
—(No. of negative eigenvalues)

and it is thus natural to define sgn P= 1(0). Note however

that this quantity is a real number, not an integer. Thus the

resulting phase in (ii) will not be a root of unity in general.
Then we have (cf. Proposition 4.20 of [61)

sgn Q =n,(0)
where 7, is the n-function associated with P,. We now have
to investigate how sgn Q. depends on the metric.
Here a is a representation of (M), with no cohomology.
Consider the trivial representation, and put

7o (0) = 2(0) — 14(0)
where n, =dn, and 7, corresponds to ordinary differential
forms, without group fibres; d is the dimension of our Lie
group. Then:
(1) 7, is independent of metric,
(2) 7.(0)=(4/m)8(G)L(a),
where 8(G) is a numerical invariant of G (it is n for SU(n):
in general it depends on the value of the Casimir in the adjoint
representation) and L is the Chern-Simons functional.
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Thus we obtain from the stationary-phase formula:

a

Y. (contributions at a) = C (i)

a

where C is a fixed multiplier, coming from 7, and C contains
the only metric dependence in the formula; ia is metric
independent. The phase factor is independent of G and the
chosen representation, but depends on the choice of ground
metric. The above formula for 7,(0) leads to a shift

ikL(a) i(k+8)L{a)

€ =€

in the exponential multiplier arising from the value of the
action at the critical point a. Such a shift is well known to
physicists in various guises.

If we had succeeded in making an expression for Z(Y)
independent of metric, we would have shown, for large k,
how to make sense of the determinants and signatures by
regularizing. This is very nearly true, but not quite — we have
a phase ambiguity.

For this reason Witten has to choose a framing of the
3-manifold. For related reasons to define the invariants for
links we have to choose (normal) framings for each com-
ponent of the link. We shall say more about these framings
in the next section.

7.3 The Hamiltonian formulation

We shall now indicate why the Chern-Simons
Lagrangian is supposed to lead to the Hamiltonian version
of the theory which we have been developing in earlier
chapters.

To go from the path-integral to the Hamiltonian formula-
tion we have to separate out space and time. We therefore
consider a 3-manifold of the form X x R To get the Hilbert
space of the theory we are supposed to quantize the space of
‘classical solutions’, i.e. critical points of the Lagrangian. But
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these are just gauge equivalence classes of flat connections
and so give us the moduli space of flat G-bundles on YXR
However, these are the same as the flat G-bundles on 2. These
are the moduli spaces we met in Chapter 3 whose quantiz-
ations give the (finite-dimensional) Hilbert spaces we have
been studying.

The fact that these spaces are independent of the R-variable
(time) shows that the Hamiltonian of the theory is zero (i-e.
that the theory has no dynamics and is topological).

An alternative derivation is to re-interpret a connection A
on I x R as a path A, of connections on 3. This comes by
using parallel transport in the time direction (R) to identify
bundles at different times or, as physicists would say, by
working in a gauge in which A, = 0. This simplifies the Chern-
Simons Lagrangian since the cubic term now drops out and
we simply get

:-—k—J’dtJ' Tr ArdA.
877 >

This is just the classical formula for the action for a path in
the symplectic linear space . It follows that our Hilbert space
should be the 95 -invariant part of the quantum Hilbert space
of ofs. However, as we have argued formally in Chapters 4
and 5, this should be the same as quantizing the symplectic
quotient 5 /%s, i.e. the moduli space of flat G-bundles
over 2.

We shall conclude this chapter with a few brief comments
on the relation between the phase subtleties in the Lagrangian
and Hamiltonian approaches. We recall from § 7.2 that (for
the limit k - ) there was a non-topological term, depending
on a background metric. Witten shows in [36] that, by sub-
tracting a ‘counter-term’ (the gravitational Chern-Simons),
we can recover a purely topological theory. However, for this
one has to pick a framing of the 3-manifold (itself a piece of
topological data).
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In the Hamiltonian version the corresponding difficulty has
to do with the phase ambiguity in our Hilbert spaces: the fact
that the curvature of the bundle of Hilbert spaces (over
Teichmiiller space) is a non-zero scalar.

The relation between these two manifestations of the phase
ambiguity depends on earlier ideas of Witten [37], sub-
sequently given rigorous formulation and proof by Bismut
and Freed [8]. This relates the gravitational n-invariant of
the 3-manifold 3, constructed from fe Diff" (X), with the
monodromy of the Quillen determinant line-bundle. We have
essentially been ignoring these subtleties so it would make
little sense to enter now into an elaborate discussion. We
should emphasize, however, that they are a crucial aspect of
the theory (related also to the central extensions of loop
groups) and refer the reader to the reference above as well
as [36]; see also [4].
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Final comments

8.1 Vacuum vectors

In this final chapter we shall deal rather briefly with
other aspects of the Jones-Witten theory. First of all we want
to discuss how the functional integral, at least formally, gives
the extra data required for a topological quantum field theory,
as axiomatized in Chapter 2.

For a 3-manifold Y with boundary 3 the Chern-Simons
functional L(A) of Chapter 7 is not really a complex number
(modulo 27Z). Intrinsically the exponential ¢'“*’ should be
viewed as a vector in the complex line Z,,, the fibre of the
standard line-bundle &£ over the space 5 of connections on
the boundary I. For the special case Y=2X% xI with the
boundary

Y =3,-3,, Z;=3x(j)
this can be seen as follows.

Using parallel transport in the I-directions we can identify
connections on Y with a path A, of connectionson X, 0=¢=1.
As noted in Chapter 7 the Chern-Simons functional then
becomes the classical action for paths on a symplectic mani-
fold, and its exponential therefore gives the parallel transport

(along the path A, in &/5) from the fibre £, to the fibre Z,.
Thus

Ve LEQL = ZLa,
and, raising to the kth power,

e Me gl .



8.2 Skein relations 67

We shall now show formally how a 3-manifold Y with
dY =2 gives rise to a vector

Z(Y)e Z(2)

in the Hilbert space Z(ZX), as required by the axioms of
Chapter 2. Recall that Z(X) is defined, at level k, by a space
of sections of the line-bundle L% , where Ly is the line-bundle
on the symplectic quotient &5 / 9s. We then define Z(Y) as
the linear function on Z(X*) = Z(X)* given by assigning to
the section ¢ of £3* the Feynman integral

I e (B)DA.

This Feynman integral is over all connections A on Y which
are flat (and equal to B) on X. Intuitively the measure YA
involves the symplectic measure on &~ /%s together with a
measure coming from the interior.

We can make more rigorous sense of this procedure, in the
large k limit, by applying stationary-phase approximation as
in Chapter 7. This reduces the problem to the relevant critical
points which are the flat connections on Y. For example, when
Y is a ‘handlebody’, H'(Y, G) can be identified with a
Lagrangian sub-manifold of H'(Z, G). For a Heegard split-
ting of a closed 3-manifold along a surface X the two
Lagrangian sub-manifolds obtained from the two halves inter-
sect at points corresponding to representations (YY)~ G.
This brings us back to the stationary-phase calculations made
in Chapter 7, and the situation is formally similar to that of
the Casson invariant which is the invariant of another topo-
logical quantum field theory (cf. [2]).

8.2 Skein relations

As mentioned in Chapter 1 the Jones polynomial of
links in S can be characterized by a skein relation. This
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involves comparison of the three links obtained by various
crossing changes at a fixed vertex of a planar diagram. The
identification of Witten’s functional integral invariant (for
G = SU(2) with its standard representation C %) with a value
of the Jones polynomial (¢=2si/(k+2)) rests therefore on
demonstrating that it satisfies the same skein relation.

The fact that Witten’s invariant satisfies a skein relation of
the right form (for SU(n) with its standard representation
C") is an elementary consequence of the fact that the Hilbert
space of Witten’s theory for the 2-sphere S? with four marked
points (two positive, two negative) has dimension 2. In fact
decomposing S into two balls by cutting out a small neigh-
bourhood of the given vertex we get precisely S? with four
marked points as common boundary. In its Hilbert space #
we have a vector, say u, determined by the exterior, and three
vectors, say v,, U_, vp, determined by the three interiors
(depending on the links L., L_, L;). The Witten invariants
for these three links are then the scalar products in #,

(,v4), (4,v), (4, vo).

If dim % = 2 the three vectors v, , v_, v, must satisfy a linear
relation and their scalar products with u then satisfy the same
relation. Note that ¥ and the three vectors v,, v_, v, are
locally determined and are independent of the rest of the link.
Thus the coefficients of the linear relation are universal
(depending only on n and k).

The reason why dim % = 2 is the following. Quite generally
the Hilbert space for S* with points P, (i=1, ..., r) marked
by representations A; of G can (from its definition) be shown
to be a subspace of the G-invariant part of the tensor product

A®: - -®A,.

For large k we always get the whole space. In particular
take r=4 and A, =A,=A¥=Af. Then the dimension of the
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G-invariant part of
/\1®/\1®/\1*®/\1*:End (/\1®/\])

is the number of irreducible summands in A,®A,. For G=
SU(n) and A, = C" this number is 2.

The computation of coefficients of the skein relation (i.e.
the dependence of n and k) is given by Witten [36]. It depends
on algebraic results of Verlinde [34] which Witten reinterprets
in terms of surgery formulae. These ideas will be discussed
briefly in the next section.

8.3 Surgery formula

If we want to compute Witten’s invariant for a 3-
manifold (without links) then we can proceed by using
surgery. This means we consider cutting a tube S 'x D? out
of the manifold, twisting its boundary (the torus S’ x S'), and
then inserting it back into the 3-manifold. Every 3-manifold
can be obtained, starting from the 3-sphere, by a sequence of
such surgeries.

The essential step in computing Witten’s invariant by
surgery is then to know:

(i) the Hilbert space of a torus,
(ii) the action of the modular group SL(2, Z) (the group of
components of Diff* (S x S')) on this Hilbert space.

The Hilbert space of a torus can be computed in various
ways. Since the fundamental group is abelian the moduli space
of representations is easily determined. Thus for SU(n) the
moduli space is the complex projective space P,_,(C) with
its standard line-bundle. Hence the Hilbert space can be
identified with the space of homogeneous polynomials in n
variables of degree k. For n =2 this gives a (k + 1)-dimensional
space.

From the point of view of loop groups the Hilbert space
of a torus can be identified with the representations of LG of
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level k. Moreover this identification is natural once we pick
an interior (solid torus). This gives an explicit basis for the
Hilbert space. The action of SL(2, Z) can be computed by
using the Verlinde algebra. The essential point is to compute
(in the explicit basis) the matrix S representing the element

0 1
[_1 0] of SL(2, Z).

In principle it is also possible to compute the action of
SL(2, Z) from the holomorphic quantization point of view.
Since r, is abelian we only need to know the way @-functions
vary with the modulus of an elliptic curve as explained in
Chapter 2.

84 Outstanding problems

Since Witten’s theory involves the heuristic Feynman
integral, it may be helpful to review here how much of the
theory is on a rigorous basis, and what outstanding problems
remain.

As we have more or less indicated the construction of the
vector spaces Z(2) associated to framed surfaces 2 (with or
without marked points) can be done quite rigorously. The
difficult part of the theory is to construct the vectors Z(Y)¢€
Z(2) associated to framed 3-manifolds Y with boundary 3.
However, the axioms in Chapter 2 give rules governing these
vectors. These rules can be used to evaluate them. The only
difficulty is that the rules might not be consistent. One has
therefore to check consistency.

For the Jones polynomials this was essentially the original
approach of Jones. For the new invariants of 3-manifolds
consistency has been verified by Reshetikhin and Turaev [27].

Essentially the consistency of the Witten axioms (or rules)
involves understanding how the Hilbert spaces Z(X') change
as a surface I acquires a double point. The formulation of
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Tsuchiya and Yamada in terms of the compactified moduli
space g appears to incorporate the relevant properties, but
it would be desirable to elucidate the situation. See also [19].

Defining the vectors Z(Y)e Z(ZX) is, as we explained in
§ 8.1, equivalent to computing certain Feynman integrals.
Since the Chern-Simons Lagrangian is purely topological
there are no real local difficulties of analytical nature in the
Feynman integral. We can therefore view the surgery methods
indicated above as an effective way of computing our Feynman
integral. After all, an integral is simply a linear functional
with certain additive local properties, and the consistency
verification we have alluded to could be construed as checking
these properties.

It would of course be even better if one could define some
purely combinatorial version of the Chern-Simons
Lagrangian as in lattice-gauge theories. Some encouragement
comes from the fact that Reidemeister torsion has such a
definition and this enters into the stationary-phase calculation
for the Chern-Simons Lagrangian described in Chapter 7.
However, this may be too ambitious and we may have to settle
for the surgery approach.

In addition to the Hamiltonian approach using the Hilbert
space Z(ZX) the stationary-phase calculations of Chapter 7
also lead to rigorous formulae. Although we only gave the
leading term it should be possible to proceed further and
develop a fully rigorous series expansion in k' It is then a
challenging problem to show that this does in fact give the
expansion of the Witten invariant computed by Hamiltonian
methods. As yet this problem is very much open. Moreover,
it is not clear what kind of function of k we get in general
from Witten’s theory. For links in S° the Jones invariant is a
polynomial in t =exp (27i/(k+2)), but for general 3-mani-
folds the situation is more complicated. In particular it is not
obvious that the Witten invariant will always be determined
by its k' expansion.
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8.5 Disconnected Lie groups

In describing Witten’s theory we restricted ourselves
to compact connected and simply connected Lie groups G.
The simple connectivity can be dropped without great
difficulty. The main new feature is that there will now be
topologically non-trivial G-bundles over a surface 2.
Remarkably it is also possible to allow disconnected groups
in an interesting way. In particular we can even take G to be
a finite group. In this case the theory becomes totally rigorous
from all points of view (albeit a little dull and less deep than
the original Jones theory). This theory has been worked out
by Dijkgraaf and Witten [9] and is of interest in physics
in relation to orbifolds (quotients of manifolds by finite
groups). The key point is that the level k (or rather the inner
product in the Lie algebra, multiplied by k) should be inter-
preted as an element in H*(BG, Z), where BG is the classify-
ing space of G. For a finite group G this is the same as
H*(BG,R/Z), and a G-bundle over a closed oriented 3-
manifold Y defines a map Y- BG and hence an R/Z-
invariant. This is the analogue of the Chern-Simons function.
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