Numerical
Methods
and
Software

David Kahaner
National Institute of Standards and Technology
(National Bureau of Standards)

Cleve Moler
Ardent Corporation

Stephen Nash

George Mason University

Prentice Hall, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

KAHANER, DAVID.

Numerical methods and software / David Kahaner, Cleve Moler,
Stephen Nash.

Bibliography: p.

Includes index.

ISBN 0-13-627258-4

1. Engineering matt ics—Data prc
I Nash Stephen. III. Title.
TA345.K34 1989

620'.0042—dc19 88-15540

ing. 1. Moler, Cleve B.

Editorial/production supervision and

interior design: BARBARA MARTTINE
Cover design: EDsAL ENTERPRISES
Manufacturing buyer: MARY ANN GLORIANDE

© 1989 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

Previously published as Forsythe, Malcolm and Moler’s
COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS
© 1977 by Prentice Hall

If your diskette is defective or damaged in transit, return it directly to Prentice Hall at the address
below for a no-charge replacement within 90 days of the date of purchase. Mail the defective diskette
together with your name and address.

Prentice Hall
Attention: College Software
Englewood Cliffs, New Jersey 07632

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY:

The author and publisher of this book have used their best efforts in preparing this book and
software. These efforts include the development, research, and testing of the theories and programs
to determine their effectiveness. The author and publisher make no warranty of any kind, expressed
or implied, with regard to these programs or the documentation contamed in this book. The author
and publisher shall not be liable in any event for incidental or in with,
or arising out of, the furnishing, performance, or use of these programs

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 65 432

ISBN 0-13-kL27258-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

CONTENTS

Acknowledgments

1 Introduction

—) —
Nooh wiho

_

—_
© oo

WHY A NEW BOOK? 1

THE SUBROUTINES 4

MATHEMATICAL SOFTWARE—AN EXAMPLE:
SQUARE ROOT OF SUM OF SQUARES 7

PORTABILITY 9

SOFTWARE DESIGN: ERROR HANDLING 10

SOFTWARE DESIGN: SCRATCH STORAGE 11

HISTORICAL PERSPECTIVE: BACKUS AND THE
FORTRAN LANGUAGE 12

OTHER USEFUL SOURCES OF INFORMATION 13

PROBLEMS 15

Computer Arithmetic and Computational Errors

INTRODUCTION 17

REPRESENTATION OF NUMBERS 21

MACHINE CONSTANTS 24

ERRORS IN SCIENTIFIC COMPUTING 27
EXTRAPOLATION 31

HISTORICAL PERSPECTIVE: EKERT AND MAUCHLY 33
PROBLEMS 35

17

vi

Contents

3 Linear Systems of Equations 41
3.1 INTRODUCTION 41
3.2 LINEAR SYSTEMS FOR STORED MATRICES 44
3.3 SUBROUTINE SGEFS 54
3.4 HISTORICAL PERSPECTIVE: J.H. WILKINSON 57
35 COLUMN-ORIENTED ALGORITHMS 59
*36 MORE ABOUT CONDITION NUMBERS 61
*3.7 NORMS AND ERROR ANALYSIS 66
*3.8 ESTIMATING THE CONDITION NUMBER 68
3.9 FURTHER IDEAS 70 .
3.10 PROBLEMS 75
4 Interpolation 81
41 INTRODUCTION 81
4.2 POLYNOMIAL INTERPOLATION 87
43 USING OTHER BASIS FUNCTIONS 89
44 HOW GOOD IS POLYNOMIAL INTERPOLATION? 93
45 HISTORIAL PERSPECTIVE: RUNGE 95
46 EVALUATION OF POLYNOMIALS 96
47 PIECEWISE LINEAR INTERPOLATION 97
4.8 PIECEWISE CUBIC FUNCTIONS 100
4.9 PCHIP, PIECEWISE CUBIC HERMITE INTERPOLATION
PACKAGE 104
*4.10 CUBIC HERMITE INTERPOLATION—DETAILS 106
4.11 CUBIC SPLINES 108
4.12 PRACTICAL DIFFERENCES BETWEEN SPLINES AND
. CUBIC HERMITES 110
4.13 BEZIER CURVES 114
*4.14 B-SPLINES 120
4.15 PROBLEMS 125
5 Numerical Quadrature 138
5.1 INTRODUCTION 138 '
5.2 ONE DIMENSIONAL QUADRATURE RULES AND
FORMULAS 140
53 CHANGE OF INTERVAL 148
54 COMPOUND QUADRATURE RULES AND ERROR
ESTIMATES 149
55 GAUSS-KRONROD QUADRATURE RULES 153
56 AUTOMATIC AND ADAPTIVE QUADRATURE
ALGORITHMS 155
57 SUBROUTINES QIDA AND QKI5 157
58 DATA INTEGRATION 160
5.9 INFINITE AND SEMI-INFINITE INTERVALS 163
*5.10 DOUBLE INTEGRALS 169
5.1 MONTE CARLO METHODS 176
5.12 HISTORICAL PERSPECTIVE: ULAM (1909-1984) AND
VON NEUMANN (1903-1957) 179
5.13 PROBLEMS 181

Contents

vii

6 Linear Least-Squares Data Fitting 190
6.1 INTRODUCTION 190
6.2 EXPLORING DATA 196
6.3 THE NORMAL EQUATIONS 201
6.4 ORTHOGONAL FACTORIZATIONS 203
6.5 SUBROUTINE SQRLS 210
6.6 HISTORICAL PERSPECTIVE: GAUSS 212
*6.7 DEGENERATE LEAST-SQUARES PROBLEMS 214
*6.8 THE SINGULAR-VALUE DECOMPOSITION 218
*6.9 THE NULL-SPACE PROBLEM 223
6.10 PROBLEMS 226
7 Solution of Nonlinear Equations 235
7.1 INTRODUCTION 235
7.2 METHODS FOR COMPUTING REAL ROOTS 239
7.3 SUBROUTINE FZERO 248
7.4 HISTORICAL PERSPECTIVE: EVARISTE GALOIS 251
7.5 SYSTEMS OF NONLINEAR EQUATIONS 253
7.6 SUBROUTINE SNSQE 258
7.7 PROBLEMS 260
7.8 PROLOGUES: FZERO AND SNSQE 264
8 Ordinary Differential Equations 272
8.1 INTRODUCTION 272
8.2 STABLE AND UNSTABLE EQUATIONS, NUMERICAL
METHODS 280
8.3 STIFF DIFFERENTIAL EQUATIONS 284
8.4 EULER'S METHOD 285
8.5 ACCURACY AND STABILITY OF NUMERICAL
METHODS 287
8.6 ORDER OF AN INTEGRATION METHOD 294
8.7 SUBROUTINE SDRIV2 295
8.8 IMPLICIT METHODS 298
89 MULTI-STEP METHODS 303
*8.10 ORDER AND ERROR OF A MULTI-STEP METHOD
304
8.11 STABILITY FOR MULTI-STEP METHODS 306
8.12 FUNCTIONAL ITERATION AND NEWTON'S METHOD
FOR SOLVING THE IMPLICIT EQUATIONS 306
*8.13 OZONE IN THE ATMOSPHERE—A STIFF SYSTEM
311
8.14 MULTI-VALUE ‘METHODS 314
8.15 AN EXAMPLE OF MULTI-VALUE 317
8.16 OTHER MULTI-VALUE METHODS 319
8.17 RELATION OF MULTI-STEP AND MULTI-VALUE
METHODS 321
*8.18 ATTRACTIVE CHARACTERISTICS OF MULTI-VALUE:
STEP SIZE AND ORDER CHANGING 322
*8.19 TAYLOR SERIES AND RUNGE KUTTA METHODS 325

viii

*8.20 SOME TOPICS OMITTED 329
8.21 PROBLEMS 331
8.22 PROLOGUE: SDRIV2 341

9 Optimization and Nonlinear Least Squares

9.1 INTRODUCTION 347

9.2 ONE-DIMENSIONAL OPTIMIZATION 350

9.3 SUBROUTINE FMIN 361

9.4 OPTIMIZATION IN MANY DIMENSIONS 363

9.5 SUBROUTINE UNCMIN 370

9.6 NONLINEAR DATA FITTING 372

9.7 HISTORICAL PERSPECTIVE: SIR ISAAC NEWTON
(1642-1727) 374

9.8 FURTHER IDEAS 376

9.9 PROBLEMS 377

9.10 PROLOGUES: FMIN AND UNCMIN 381

10 Simulation and Random Numbers

10.1 INTRODUCTION 385
10.2 RANDOM NUMBERS 387
10.3 GENERATION OF UNIFORMLY DISTRIBUTED
NUMBERS 389
10.4 APPLICATIONS OF RANDOM NUMBERS:
BROWNIAN MOTION AND FRACTALS 392
10.5 CONGRUENTIAL AND FIBONACCI
GENERATORS 395
10.6 FUNCTION UNI 397
10.7 SAMPLING FROM OTHER DISTRIBUTIONS 397
10.8 FUNCTION RNOR 400
*10.9 EXAMPLE: RADIATION SHIELDING AND REACTOR
CRITICALITY 403
*10.10 PROBLEMS 404
10.11 PROLOGUES: UNI AND RNOR 410

11 Trigonometric Approximation and the Fast
Fourier Transform

11.1 INTRODUCTION 413

11.2 FOURIER INTEGRAL TRANSFORM, DISCRETE-
FOURIER TRANSFORM, AND FOURIER
SERIES 414

11.3 ENERGY AND POWER 417

11.4 HISTORICAL PERSPECTIVE: FOURIER
(1786-1830) 421

11.5 PRACTICAL COMPUTATION OF FOURIER
COEFFICIENTS; THE DISCRETE FOURIER
TRANSFORM 422

11.6 SUBROUTINES EZFFTF AND EZFFTB 427

Contents

347

385

413

Contents

11.7

Vs

ix

TRUNCATED FOURIER SERIES AS AN
APPROXIMATION 430

RELATIONSHIPS BETWEEN FOURIER
TRANSFORMS AND FOURIER SERIES 437

119 LEAST SQUARES APPLICATIONS: EL NiNO 441
11.10 THE FAST FOURIER TRANSFORM 445
*11.11 COMPLEX REPRESENTATION 448
*11.12 TWO-DIMENSIONAL TRANSFORMS 454
*11.13 CONVOLUTION AND CORRELATION 458
*11.14 HISTORICAL PERSPECTIVE: THE FAST FOURIER
TRANSFORM 465
11.15 PROBLEMS 466
11.16 PROLOGUES: EZFFTF, EZFFTB, CFFTF, CFFTB AND
CFFT2D 470
Bibliography 476
Index 483

ACKNOWLEDGMENTS

The numerical analysis and mathematical software communities are not large. Never-
theless they are blessed with men and women who understand the need to provide the
highest quality algorithms and software to other parts of the scientific world. During the
writing of this book we have had enthusiastic help and advice from many of these gifted
people. The chapters have been scrutinized and the programs tested by specialists. Specifi-
cally we would like to note our special appreciation and thanks to Javier Bernal, James
Blue, Tom Booth, Ralph Byers, George Byrne, Paul Calamai, Alfred Carasso, Janet
Donaldson, Graeme Fairweather, Fred Fritsch, Michael Greene, Mark Johnson, W.
Kahan, Bruce Kellogg, Randall Leveque, Daniel Lozier, George Marsaglia, John Nash,
Roger Pinkham, Philip Rabinowitz, Bert Rust, Robert Schnabel, C. Dexter Sutherland,
Paul Swarztrauber, Skip Thompson, Layne Watson, and H. Joseph Weaver for their com-
ments and ideas. We have tried to incorporate as many of their suggestions as was
possible, but of course, any errors, omissions or inconsistencies are entirely our own
responsibility. A special note of thanks is due to Gerald Candela who helped to generate
many of our figures. In addition we would like to thank the management of the Center for
Computing and Applied Mathematics, National Institute of Standards and Technology
(National Bureau of Standards), particularly, Paul Boggs, Burton Colvin, Glenn Ingram,
and Francis Sullivan for providing the kind of nurturing environment in which mathem -
atical software is a legitimate discipline.

A major motivation for writing this text was to update and expand the material in the
book by G. Forsythe, et al., (1977). We liked its philosophy and informal style as well as
the inclusion of programs. Our original intent was to produce a revision of that book but
with Forsythe deceased and Malcolm involved in other activities the current authors
decided to begin afresh. The publisher granted us permission to extract those portions of

xi

xii Acknowledgments

the original book that seemed appropriate. In practice this meant that several of the
problems have been retained. The text is almost all new, although we were certainly
inspired by the original. We would also like to acknowledge our debt to all those authors
who have written on this subject before us; perhaps we may have made a few matters a little
clearer or a little sounder.

Finally, to our long suffering families, thanks for the support and patience.

Davib KAHANER
CLEVE MOLER
STEPHEN NASH

Introduction

1.1 WHY A NEW BOOK?

Computers are changing rapidly. The mainframe computer with its traditional one scalar
operation at a time is giving way to a plethora of different architectures. Vector computers
such as the Cray 1, CDC Cyber 205, or ETA 10 can now manipulate arrays, take
dot products, and do several operations in parallel with a single machine instruction.
Multiprocessors provide up to a few thousand highly connected computers that can work
more or less independently on different aspects of a single problem. Many researchers
are trying to take advantage of these new computer architectures.

The way scientists and engineers communicate with computers is changing too.
The slow link between user and remote computer is being replaced by the personal
computer or workstation with its high data transmission rate. This in turn is fueling the
development of highly interactive and graphically oriented applications requiring little
programming effort.

Together with these developments better numerical methods are also appearing.
Because of the rapid changes there is a gap between the computational techniques taught
in physics, chemistry, and engineering courses and the software that will confront a
practising scientist. What is needed is a text in tune with current numerical methods that
recognizes the new developments in hardware and communications, but still suitable as
a first course. This book fills this role. We give four simple examples. If the terms used
below are unfamiliar be assured that they will be explained in the subsequent chapters.

(1) “Splines” are often recommended for fitting a smooth curve through accurate data,
but the best current software uses “Hermite cubics.” For interactive design, such

1

2 Introduction Chap. 1

as in Computer Aided Design and Computer Aided Manufacturing (CAD/CAM),
“Bézier” curves are also a good choice.

(2) Programs for matrix manipulation, such as linear system solvers, can be organized
to run very efficiently on both vector and scalar computers by implementing the
algorithms in terms of lower level “Basic Linear Algebra Subroutines” (BLAS).

(3) “Adaptive” methods are recommended for the evaluation of definite integrals, but a
heavily used software package gets much better results by incorporating “Kronrod”
formulas into them.

(4) “Runge Kutta” methods have largely been replaced by “multi-value” methods in
modern software for solving differential equations.

The book discusses the topics which we feel are among the most important for a
scientist who will be doing numerical computation. This includes many standard items
such as solution of systems of linear equations, interpolation, fast Fourier transform,
evaluation of integrals and differential equations, optimization, and simulation. In each
case we have attempted to bring the discussion into conformance with what people are
actually doing in the field. This is illustrated by the examples above. Every chapter
also includes as many up-to-date ideas as is practical to present. For example, the
linear equations chapter describes column-oriented algorithms, the optimization chapter
explains the use of quasi-Newton methods, the simulation chapter introduces fractals,
etc.

The book can be used for a one-semester course in numerical methods by following
the plan given below. Each chapter has been organized to permit students to get to the
software as rapidly as possible. The fundamental ideas on each major topic have been
presented early in the chapter so that the section describing the software can provide
a convenient stopping point. Later sections cover more advanced material and may be
used selectively as time allows.

PLAN FOR A ONE-SEMESTER COURSE

Chapter 1

Chapter 2: Sections 1-4 Computer arithmetic and computational errors.
Chapter 3: Sections 1-3 Solving stored linear systems of equations.
Chapter 4: Sections 1-9 Polynomial and piecewise polynomial interpolation.
Chapter 5: Sections 1-7 Quadrature and adaptive quadrature.

Chapter 6: Sections 1-5 Solving linear least squares problems.

Chapter 7: Sections 1-3 Solving a single nonlinear equation.

Chapter 10: Sections 1-6 Random numbers (time permitting).

The chapters need not all be taught, and need not be taught in order. In particular,
once the first seven chapters have been covered, the final four chapters may be taught in

Sec. 1.1 Why a New Book? 3

(O —Cr—G (s)—(¢)

Note: 1. Chapter 9 Section 6 depends on Chapter 6
2. Chapter 8 Section 12 depends on Chapter 7

Figure 1.1 Chapter Dependencies

any order. A more detailed picture of the dependencies among the chapters is given in
Figure 1.1.

The one-semester course plan covers only the most important topics in Chapters
1-7. In a two-semester course an instructor may choose to cover the basic material in
the remaining four chapters, or to teach fewer topics in more detail.

Some sections have been marked with a x because of the somewhat higher level of
mathematical sophistication required. These sections may be skipped without interrupting
the flow of material. Even with these omissions, there is enough basic material for a
two-semester course. We have deliberately omitted some important topics either because
they are too advanced to treat in a single chapter (partial differential equations) or seem
of more specialized interest (eigenvalues).

This book is written for students of science and engineering. It is intermediate
between a cookbook and a numerical analysis text. The reader is assumed to have
completed two years of university mathematics including differential and integral calculus
as well as a little matrix theory and differential equations. The reader is also assumed
to have access to a computer and have rudimentary knowledge of the Fortran language.
At the conclusion of a course organized around this text, a student will

4 Introduction Chap. 1

(1) understand the capabilities and limitations of the techniques used in numerical
scientific computing,

(2) have used more than a dozen of the most highly regarded subroutines implementing
these algorithms,

(3) have sharpened Fortran programming skills, ample for “real” applications.

1.1.1 COMMENTS ON THE ENCLOSED FLOPPY DISK

A 5.25 inch floppy disk has been included with this text. It contains the source of all the
Fortran routines that are discussed, as well as subsidiary routines and data files associated
with the problems. The disk contains a READ-ME.NMS file which explains in detail
how the files are organized. The disk has a double-sided 360KB format readable by any
personal computer with an MS-DOS 2 or 3 operating system, such as the IBM PC/XT
or PC/AT. Questions regarding the software may be directed to

David Kahaner or Stephen Nash

NBS, Center for Applied Mathematics George Mason University
Technology Building, Room A151 Operations Research Department
Gaithersburg, MD 20899 Fairfax, VA 22030

The same software is also available for a fee in other formats and precisions. For
information contact one of the authors.

1.2 THE SUBROUTINES

A significant part of this book is a set of Fortran subroutines. In fact, the book might well
be regarded as an extensive “user’s guide” for them. These are not simple illustrative
programs, but rather are representative of the state of the art in current mathematical
software. Together they form a useful software library. For the areas of computation
discussed here there exist well written and documented routines which are in worldwide
use because of their robustness and ease of application. They appear in collections
such as Linpack, Quadpack, Minpack, SLATEC, and others, which are known and used
throughout the scientific community. From these we have selected what we feel are
the most useful for inclusion. Further, we have resisted the temptation to write our
own versions. Thus the student derives the double benefit of having access to some of
the best routines available and having the satisfaction of knowing that they will appear
again in later professional activities. The only exceptions are (a) we have standardized
the documentation of each routine to agree with the conventions of the Department
of Energy SLATEC Library, widely used within many U.S. national laboratories, and
(b) in those cases when experience suggests that a particularly popular subroutine will
substantially benefit from a simple user interface, this has been written on top of the
original. The main reasons for designing a text around these routines are to (a) avoid
“reinventing the wheel” in writing software for well understood mathematical problems,

Sec. 1.2 The Subroutines 5

and (b) to promote quality software that has been carefully engineered, documented, and
tested (Gaffney, 1987).

We provide here a list of the routines which have been included. More complete
information about their origins can be found in the Bibliography.

Linear Systems of Equations

SGEF'S:
For solving Az = b with accuracy estimation, from the SLATEC library. This
is a driver for the Linpack subroutines SGECO and SGESL.

Interpolation
PCHEZ

PCHEV:
For spline and visually pleasing piecewise polynomial manipulation, includ-
ing interpolation. These are easy to use drivers for the PCHIP package,
which is in the SLATEC library.

Quadrature

Q1DA:
For evaluation of one dimensional integrals adaptively, including singular
integrands. This is an easy to use driver for Quadpack subroutine QK1 5.

QK15:
For quick estimates of one dimensional integrals, without adaption. Uses a
fifteen point Gauss Kronrod quadrature rule. From Quadpack.

PCHQA:
For integration of data in one dimension. This is an easy to use driver for
the PCHIP package, which is in the SLATEC library.

Linear Least-Squares Data Fitting

SQRLS:
For finding the least squares solution to a system of equations. This is an
easy to use driver for routines from the SLATEC library. The latter in turn
call routines from Linpack.

Solution of Nonlinear Equations

FZERO:
For solving f(z) = 0 in one dimension (a single equation). This is from the
SLATEC library.

SNSQE:
For solving f(z) = 0 in n dimensions (a system of equations). This is an
easy to use driver for Minpack routines. It is from the SLATEC library.

6 Introduction Chap. 1

Ordinary Differential Equations

SDRIV2:
For solving ¥’ = f(t,y), including stiff equations. This is an easy to use
driver from the SDRIV package from the program library at Los Alamos
National Laboratory.

Optimization and Nonlinear Least Squares

FMIN:
For finding min F'(z) in one dimension, by Brent (1973).

UNCMIN:
For finding min F'(z) in n dimensions. This is an easy to use driver for a
routine from the paper by Schnabel, Koontz and Weiss (1982).

Random Numbers and Simulation
UNI
RNOR:
For generation of uniform and normal random numbers, from the SLATEC
library.
Trigonometric Approximation and the Fast Fourier Transform
EZFFTF
EZFFTB
CFFTF
CFFTB

CFFT2D:
For easy to use real and complex fast Fourier transforms (one and two di-
mensions), from the SLATEC library.

Many of these routines are intricate, and to describe in detail how and why they
work would require much longer than most students can spend on this type of material.
(See, for example the following section.) Hence it is necessary to treat them as black, or
perhaps grey, boxes. This is consistent with the trend to think in terms of modules, sys-
tems, or transforms which convert input into output according to well defined rules. Most
programmers already treat the standard functions (SIN, EXP, etc.) in exactly this way
without understanding them in detail. These are accepted as primitives and are expected
to work. As the underlying algorithms become more reliable they (1) become primitives
of the language rather than subroutines which must be added, (2) are implemented in
hardware for more efficient operation, and (3) disappear from elementary texts. This
is exactly the situation with the algorithms for the arithmetic of floating point numbers
(i.e., “real” as opposed to integer) and the computation of the standard functions. It is
beginning to occur with algorithms for random numbers, fast Fourier transforms, and
linear systems of equations.

For the more complicated algorithms it is not sufficient to simply explain how to
call each subroutine and say they “usually work.” There are many pitfalls in numerical
computation and students must be properly warned of these, so that they can correctly

Sec. 1.3 Mathematical Software—An Example: Square Root of Sum of Squares 7

diagnose symptoms of numerical ill health. This requires a certain level of understanding
of the methods employed; see Chapter 10 for an example of the effects of a poorly
designed random number algorithm.

We often consult with scientists who are anxious to study the source text of a
subroutine so that they can modify it for some special purpose. In our experience this
desire is common, but the need is not. Usually, a well designed subroutine is already
capable of dealing with most situations and it is unnecessary and unwise to modify
it frivolously. A better approach is to consult with a local expert who might suggest
alternatives. For this reason, and also because of the complex nature of the routines, we
do not provide listings in the book, but only the subroutine documentation. We hope this
will encourage a cautious attitude toward modification. The complete programs as well
as the sample problems are available on the disk that is included in the insert at the end
of the text, and we expect that readers will copy these onto their computer in order to
be able to work the problems in the chapters.

Note that mistakes in programs can take a long time to be uncovered, but because
the software in this book is widely used all the known errors have been corrected. The
authors will try to fix any new errors that are reported to them. Finally, we emphasize
that the development of algorithms continues at a rapid pace and readers are encouraged
to check with the program library at their institution for the newest routines.

1.3 MATHEMATICAL SOFTWARE—AN EXAMPLE: SQUARE ROOT OF
SUM OF SQUARES

To illustrate some of the issues which must be dealt with in designing a piece of software
suitable for inclusion in a heavily used library, or reliable enough to put on' a space
vehicle, we consider the problem of computing the Euclidean norm (length) of an array
a=(ay,...,a,), defined by

llall, =

Such a calculation is required by many of the subroutines in this book. It appears easy,
and a Fortran Function to compute it might look like

REAL FUNCTION SNORM (N, A)
[
C Computes the square root of sum of squares of array A,
C of length N. (VERSION 1)
C
REAL A(N)
INTEGERN, I

SNORM = 0.0

8 Introduction Chap. 1

DO 20 I =1, N

20 SNORM = SNORM + A(I)**2
SNORM = SQRT (SNORM)
RETURN
END

SNORM is a straightforward implementation of the formula defining ||al|,, but it
doesn’t always work. Even if a; is not too large, its square a? may be too large to store
in the computer and the program will abort: an overflow occurs. We discuss this topic
more carefully in the next chapter. On the other hand if a; is near zero, its square may
be too small to represent and underflow will occur. Underflows are often set to zero
automatically. As long as some of the other a;’s are large enough, then ||a||, will be
correct, but if all the components of a are small then SNORM will return zero.

One way to overcome this problem is to find the largest component of a and divide
every component of the vector by it. This scaled vector will have its largest component
equal to 1 and the computation of the norm can then be carried out safely. This is
illustrated below. Notice that the program also works when a =0 or when n = 0.

REAL FUNCTION SNORM (N,A)

C
C Computes the square root of sum of squares of array A,
C of length N. (VERSION 2)
C Assumes that underflows are set to zero.
C

REAL A(*), AMAX

INTEGER N, I
c

SNORM = 0.0

IF (N .LE. 0) RETURN

AMAX = 0.0

DO 10 I =1, N

10 AMAX = MAX (AMAX, ABS(A(I)))

c

IF (AMAX .LE. 0.0) RETURN
DO 20 I =1, N

20 SNORM = SNORM + (A(I)/AMAX)**2
SNORM = AMAX*SQRT (SNORM)
RETURN
END

This function is more reliable, but it can still be improved. If the vector a has
components that are neither too big nor too small, the scaling is not necessary, and
the above program does twice as many calculations as it should. A more complex
algorithm which deals with these and other problems was given by Lawson (1978) and
is implemented as routine SNRM2 in the Linpack collection mentioned above. SNRM2
is included on the disk at the end of the text. It is not necessary to study this routine in

Sec. 1.4 Portability 9

detail in order to understand the major point: building efficient reliable programs, even
for simple tasks, requires careful engineering combined with computer understanding.

1.4 PORTABILITY

A portable program is one that runs on a variety of machines without any alterations,
and produces identical results. This is a goal, but it is rarely possible to achieve. The
Fortran program you write for one computer might not work when you try to move it to
another.

(1) The program may not compile. Even though Fortran originated in the 1950’s,
a precise definition of the language didn’t exist until recently. Each computer manu-
facturer provided a compiler with different features, or sometimes equivalent features
with different syntax. All the programs in this book have been written in Fortran-77, a
modern and carefully defined dialect. Every computer vendor catering to scientists pro-
vides a Fortran-77 compiler. Although extensions and extra features are permitted, such
a compiler is required to flag all non-standard usages. In this way we can hope that our
programs will move easily. However, even a program written using Fortran-77 syntax
is not guaranteed to compile. For example, the span of computable numbers is not part
of the standard. Thus the statement X=1.E50 will compile on a CDC Cyber but not on
a VAX 11/780; VAX Fortran does not normally permit values greater than about 108,
Similarly, maximum array lengths are not standardized but are determined by hardware
restrictions and software organization. On IBM personal computers some Fortran com-
pilers require arrays to be shorter than 64K = 64 - 1024 = 65536 bytes (1 byte = 8 binary
digits).1 This normally means that a matrix A (I, J) must be smaller than 128 x 128,
if each element occupies 4 bytes. Sometimes a program will fail to compile for more
idiosyncratic reasons; the compiler has a defect or the language definition is not precise
enough. These are not trivial problems. One commercial library vendor has estimated
that almost 40% of their routines, written in “standard” Fortran, fail to compile correctly
on one or more of the machines they support. The subroutines provided in this book
have been tested on a variety of computers, including IBM personal computers, VAX,
CDC Cyber, and Sun computers.

(2) The program may compile but abort during execution, or execute but produce
different answers. Variability in computer hardware is reflected in fundamental differ-
ences in accuracy. Thus Cray 1 hardware produces about 12 decimal digits accuracy
on X=SQRT (7.) but Sperry Univac hardware only gives about 7 digits. Of course,
arbitrary accuracy is possible on any computer, but only by using sophisticated software
that will run slowly. The job of writing portable programs is further complicated by
the fact that many programs make use of machine-dependent constants. The commonest

1 The notation 64K for 64 - 1024 was a computer-era idea inspired by the use of binary numbers for
addressing memory. However, the approximation K = 1024 = 1000 = kilo has at least one earlier usage—in
cooking. Puff pastry can be made by rolling out dough, spreading butter on it, folding it in half and repeating
the procedure, typically 8-10 times. This produces 28210 layers. In France, puff pastry is the basis for the
dessert “mille-feuille”="1000 leaf.”

10 Introduction Chap. 1

machine-dependent parameter found in mathematical software is the machine epsilon.
This number, which will be defined in Chapter 2, is related to the accuracy of floating
point arithmetic.

1.5 SOFTWARE DESIGN: ERROR HANDLING

Errors will occur when using software. Asking for the square root of a negative number
or the tangent of /2 are obvious examples. A robust software package should check
its input for validity. For example, it will not be possible to find the intersection of two
parallel lines, and a routine that is asked to do that should generate an error message.
Other errors might occur during the computation; for example, a subroutine might not be
able to solve a problem to the requested accuracy. Designing a mechanism for reporting
errors to users is both boring and challenging: boring because most users do not expect
to make errors, and ~lgorithm designers don’t want to think about all the combinations
of unusual situations which can occur; challenging because the design should be simple,
efficient, and flexible.

The easiest way to deal with errors is to ignore them; a routine which develops an
error will either abort, or continue with whatever bad data are in place. Some errors can
be processed by making some decision and continuing, such as returning a fixed large
number for tan(7/2), or taking the absolute value of all arguments to SQRT. Sometimes a
routine will write a message such as “ERROR: Square root of negative number,”
and either continue or stop. More sophisticated programs might also return an error
code, which is keyed to a list of error messages given in the documentation. But this
won’t work for every routine: would you expect to compute a square root by calling
SQRT (X, IERROR) ?

The environment you are working in determines your attitude toward errors. Also,
there are several types of errors: serious (where the program cannot determine how to
proceed, and which may indicate a fundamental flaw in the problem), warnings (such
as that the problem has multiple solutions), while others are merely informational (for
example, that the solution is valid but trivial). For simple programs with one or two
subroutines, printed error messages are adequate. But for large programs with thou-
sands of pieces, printed messages might go unnoticed, especially if they are brief and
overwhelmed by other output. Similarly you probably would not want to see a warning
message in the middle of an otherwise elegantly formatted tabulation, or in the center of
a plot.

It is frustrating to run a large program and get a message such as “Bad argu-
ments,” but not know where it came from or how to turn it off. Among professionals,
there is general agreement that error codes are convenient but may not be flexible enough,
and that error messages generated by WRITE or PRINT statements should never appear
in a subroutine unless an input parameter allows them to be skipped.

Most large collections of programs try to adopt a consistent approach to error
processing. A typical example of this is XERROR (Jones et al. (1983)), the set of
subroutines developed for the SLATEC library. Some of them are used in this text. The
philosophy of the package is that all error output goes through one routine, which is

Sec. 1.6 Software Design: Scratch Storage 11

the only place where there are WRITE statements. Thus the SLATEC library with more
than 200,000 lines of Fortran has only two WRITE statements, both in XERROR. The
disadvantage of such an error package is the need for extra routines.

Errors are classified by the library software writer, for example, fatal, recoverable,
warning, etc., and some flexibility is provided to the general user. Thus the user can
decide that a recoverable error such as “Too much accuracy requested” is fatal
for a specific case, or that warning mess:zcs should not be printed. There is also the
provision for routing the error messages to selected files so that they all appear in a
convenient place. Since the library writer builds the error message, specific problem-
dependent information can be included which is difficult to provide with error codes.
Some writers will use both XERROR and error codes.

1.6 SOFTWARE DESIGN: SCRATCH STORAGE

Many of the programs in this book require extra storage for intermediate calculations.
This is often called work or scratch storage. If the amount of storage is fixed then
internal declarations suffice. But if the amount is dependent on input parameters, for
example on the number of data points, or the size of a matrix, then a mechanism must
be available for providing the required space. There are three common approaches.

(1) Have the called subroutine declare and dimension an array of fixed size. A
routine MAT that manipulates matrices might have an internal array declared REAL
ATEMP (500), restricting the maximum size of the problem which can be solved. This
is effective as long as a call to MAT with a larger problem results in an error indication.
The disadvantages are that all users pay the storage costs for the largest allowable prob-
lem, and that MAT must be altered internally for larger cases. In your own software this
is easy, but in most computing facilities the software libraries are precompiled and made
available for all users. To discourage multiple copies, the computer center usually does
not make source text available. For proprietary libraries it may not be allowed to do so.

(2) Some coordinated software collections such as the PORT library? simulate
dynamic storage allocation. One large array, W, is declared in a general utility routine.
When any subroutine in the library such as MAT needs work storage, it calls a storage
allocator with a request for a specific amount of space. The allocator returns to MAT
an address inside W of the beginning of a block of unused space of the correct length.
Before MAT returns to the user it calls a deallocator to turn back the now unneeded
storage for other routines to use. The main disadvantages are that (a) everyone pays
the storage costs for the large storage array, (b) extra routines are needed to manage the
storage allocation, and (c) there is a complex interrelationship among the library routines
making it more difficult to extract individual programs. On the other hand, because the
scratch array is large it is unlikely that problems will exceed available space. Also, in a
complicated multi-routine software project, managing all the scratch storage in one place
can be more efficient than having each routine deal with it separately.

2 The PORT Mathematical Subroutine Library, AT&T Bell Laboratories, 600 Mountain Ave., Murray
Hill, NJ 07974

12 Introduction Chap. 1

(3) A subroutine like MAT needing work storage can require that the calling program
declare and dimension an appropriate sized array W, and pass it to MAT as a parameter.
Inside MAT the array has an unspecified or “dummy” declaration, such as REAL A (*),
allowing MAT to be written for problems of arbitrary size. With this approach MAT may
require LENW in the call sequence, the exact number that the user has specified in the
DIMENSION for W. MAT can check LENW against the input problem size to verify that
the dimensioned array is large enough. (Recall that in Fortran there is no automatic
way for the called routine to know the array’s length.) The disadvantages are the need
for extra arguments in the call sequence, and the possibility that MAT will write past
the end of W destroying other data if the user both under-dimensions W and incorrectly
specifies LENW. Advantages are generality and independence of different routines. Most
mathematical software is written using this technique and you will see several examples
in this text.

1.7 HISTORICAL PERSPECTIVE: BACKUS AND THE FORTRAN
LANGUAGE

In university computing science curricula today it is fashionable to teach programming
via Pascal, C, APL or some other “structured” language. Little or no time is spent on
Fortran which is usually described as old-fashioned, and unstructured. Fortran was the
first high level language though, developed in the mid 1950s by an IBM team led by
John Backus and is still the scientific computing language; all others taking a minor back
seat.

From World War II through 1954 almost all programming was done (mostly by
women) in machine language or assembly language. Programmers thought of themselves
and their work as a creative process akin to art, and much clever effort was devoted to
overcoming the difficulties caused by computers of that era. There were already a few
semi-automatic programming languages such as Autocode, Speedcoding, and Dual, but
they were not very efficient. For the most part this didn’t matter because inefficiencies
in coding logic for looping/testing and computing addresses were masked by the large
amount of time spent simulating floating point operations by software. The introduction
of the IBM 704 with built-in hardware for floating point and indexing, radically altered
the situation; inefficient code now had nowhere to hide. For this reason, programmers
were skeptical of techniques to automate programming, and Backus was convinced that
the only way for such a system to be accepted was for it to translate reasonable scientific
source programs into object programs which ran no more than half as slowly as a hand
coded counterpart. To this day he feels that modern languages suffer from too much
emphasis on language design and not enough on the generation of efficient programs.

Fortran was never really designed. In fact Backus states that “We did not regard
language design as a difficult problem, merely a simple prelude to the real problem;
designing a compiler which would produce efficient programs ... We knew nothing of
many issues which were later thought to be important, e.g., block structure, conditional
expressions, type declarations—it seemed to us that once one had the notions of the
assignment statement, the subscripted variable and the DO statement in hand then the

Sec. 1.8 Other Useful Sources of Information 13

remaining problems of language design were trivial.” (Backus (1979)) Fortran ignored
blanks; it still does. This was criticised but was included because keypunchers had
difficulty recognizing and counting blanks and this caused many problems. The team
thought that Fortran “should virtually eliminate coding and debugging” and not much
thought was given to catching syntax errors.

Originally, the reception to Fortran was only lukewarm, but by 1958 over half the
IBM 704 installations were using it for more than 50% of their work, and several for over
80%. Today all large scientific computer centers support Fortran, much improved but still
resembling the original, as their main language for scientific computing. For example,
the US National Center for Atmospheric Research (NCAR) in Boulder, Colorado is
“exclusively a Fortran shop,” and at Lawrence Livermore National Laboratory (LLNL)
in California, “almost all computation done on our mainframes is done in Fortran, it’s
still the best language for physics.”* Backus believes that structured programming “can
be viewed as a modest effort to introduce a small amount of order into the chaotic world
of statements ...New programming styles one day will offer far greater intellectual and
computational power. Fortran is a good language for some applications. As a language
of the future, however, we ought to do a lot better. The problem is, we haven’t.”

The current investment in Fortran programs guarantees that the language will be
around perhaps even until the next century. But changes are being made. The Fortran
8X committee is developing a standard for a new revision, which will probably appear
around 1990. Extensions to the language are planned in order to make it more suitable for
array processing and graphics, two areas where Fortran-77 is lacking. Other extensions
are designed to strengthen its numerical computations, add derived data types and give
its syntax a more modern look. Cynics claim that thirty years from now the language
of scientific computing will look very different from anything we have today, but it will
still be called Fortran.

1.8 OTHER USEFUL SOURCES OF INFORMATION

In any text of this type we are only able to cover a small portion of the material which is
available. In some cases you may discover that another introductory book explains some
topic better, or that a more advanced book goes into more depth. Ultimately, journals and
monographs provide the most up-to-date presentation. This section lists several specific
references along with brief descriptions to place them in context. Complete citations can
be found in the bibliography.

3 J. Adams, chair of the ANSI Fortran committee and consultant for NCAR.
4 C. Hendrickson, assistant associate director for defense systems computing at LLNL.

14

Introduction Chap. 1

CHAPTER 2—COMPUTER ARITHMETIC

. The IEEE Floating-Point Standard. A standard for computer arithmetic, specifying

precision, rules for rounding, evaluation of special functions, and many other topics.

. Rounding Errors in Algebraic Processes by J.H. Wilkinson. A discussion of

rounding-error analysis applied to various computation problems.

. Handbook of Mathematical Functions by M. Abramowitz and I.A. Stegun. A

comprehensive collection of mathematical tables, identities, and other information
on special functions and constants.

. A History of Computing Technology by M.R. Roy.

CHAPTER 3—LINEAR EQUATIONS AND
CHAPTER 6—LINEAR LEAST SQUARES DATA FITTING

. The Linpack Users’ Guide by J.J. Dongarra et al. The manual for the Linpack

collection of linear algebra subroutines.

. Matrix Computations by G.H. Golub and C. Van Loan. A comprehensive discus-

sion of numerical linear algebra.

. Computer Solution of Large Sparse Positive Definite Systems by A. George and

J.W. Liu. A discussion of direct methods for sparse matrices.

. Matrix Iterative Analysis by R.S. Varga. A discussion of iterative methods, espe-

cially useful for those systems that arise when solving differential equations.

. Solving Least Squares Problems by C. Lawson and R. Hanson.

CHAPTER 4—INTERPOLATION

. A Practical Guide to Splines by C. de Boor. This contains a careful but readable

theoretical development as well as many examples and programs.

. Interpolation and Approximation by P. Davis. This is not really a text on numerical

methods, but it provides the theoretical background for most forms of interpolation.

CHAPTER 5—QUADRATURE

. Methods of Numerical Integration by P.J. Davis and P. Rabinowitz. This is the

most comprehensive survey of the field and also has the best bibliography. It
contains many numerical examples.

. Quadpack: A Subroutine Package for Automatic Integration by R. Piessens et al.

The manual and explanation for the one-dimensional Quadpack subroutines.

CHAPTER 7—NONLINEAR EQUATIONS

. Iterative Solution of Nonlinear Equations in Several Variables by J.M. Ortega and

W.C. Rheinboldt. An extensive discussion of methods and theory.

. User Guide for Minpack-1 by J.J. Moré, B.S. Garbow, and K.E. Hillstrom. Manual

for the subroutine SNSQE.

Sec. 1.9 Problems 15

CHAPTER 8—ORDINARY DIFFERENTIAL EQUATIONS
1. Numerical Solution of Ordinary Differential Equations by L. Lapidus and J. Sein-
feld.

2. Computational Methods in Ordinary Differential Equations by J. Lambert. Both
these references contain an abundance of mathematical and computational details.

CHAPTER 9—OPTIMIZATION AND NONLINEAR DATA FITTING

1. Algorithms for Minimization Without Derivatives by R.P. Brent.
2. Practical Optimization by P.E. Gill, W. Murray, and M.H. Wright.

CHAPTER 10—RANDOM NUMBERS AND SIMULATION
1. The Art of Computer Programming: Volume 2, Seminumerical Algorithms by D.E.
Knuth. An extensive discussion of algorithms for generating random numbers.

2. Simulation and Monte Carlo Method by R. Rubinstein. Contains algorithms and a
good bibliography.

CHAPTER 11—TRIGONOMETRIC APPROXIMATION AND THE FAST FOURIER
TRANSFORM
1. Applications of Discrete and Continuous Fourier Analysis by H.J. Weaver.
2. Digital Picture Processing by A. Rosenfeld and A. Kak.
3. Fundamentals of Digital Signal Processing by L. Ludeman.
4. Fourier Analysis of Time Series: An Introduction by P. Bloomfield.

1.9 PROBLEMS

P1-1.-The error function is an important function in many branches of applied mathematics. It
is defined by an integral,

erf(z) = % /O exp(—tz) dt.

The integral cannot be expressed in terms of more elementary functions. Each chapter of this book
will include a problem relating the material in the chapter to some aspect of the error function.
We begin with
(a) Find a table of erf(z) and look up the value of erf(1.0).
(b) Is there a function or subroutine available on your computer for evaluating erf(z)? If so,
find out how to use it, print out the value of erf(1.0), and compare it with the value obtained

from the table. (A program to evaluate erf(xz) has been provided on the software disk that
accompanies the book.)

16 Introduction Chap. 1

(c) If the formula for erf(z) cannot be expressed in terms of more elementary functions, how
is it possible for a subroutine to compute its values?

P1-2.-In 250 B.C.E,, the Greek mathematician Archimedes estimated the number 7 as follows.
He looked at a circle with diameter 1, and hence circumference «. Inside the circle he inscribed
a square; see Figure P1.2. The perimeter of the square is smaller than the circumference of the
circle, and so it is a lower bound for 7. Archimedes then considered an inscribed octagon, 16-gon,
etc., each time doubling the number of sides of the inscribed polygon, and producing ever better
estimates for 7. Using 96-sided inscribed and circumscribed polygons, he was able to show that
223/71 < 7 < 22/7. There is a recursive formula for these estimates. Let p, be the perimeter of
the inscribed polygon with 2™ sides. Then p, is the perimeter of the inscribed square, p, = 2V/2.
In general

Pn+1 =2n\/2(1 — /1 —=(pn/2™)?)

Compute p, for n = 3,4,...,60. Try to explain your results. (This problem was suggested by
Alan Cline.)

9l®

Figure P1.2

2

Computer Arithmetic
and Computational Errors

2.1 INTRODUCTION

Humans have been calculating for thousands of years. The Pythagorean formula, an early
landmark of mathematics, is a computational formula. In ancient Greece, Archimedes and
others approximated w. Hundreds of years ago mathematical tables were used in warfare
and navigation. And yet the field of Numerical Analysis only came into being about
forty years ago, just after World War II. How did the human race avert computational
disaster for all those centuries?

Even though Numerical Analysis as a separate topic is relatively new, the under-
lying ideas and goals are not. It is only with the invention of the electronic computer in
the 1940’s that large-scale automated calculations became an important tool for science
and technology. This invention has two implications for us.

(1) Computer arithmetic is not the same as “pencil and paper” arithmetic. In hand cal-
culations, it is possible to monitor the intermediate results and adjust the accuracy
of the calculation as required. With computer arithmetic, each number has a fixed
number of digits which in some cases may be inadequate for a calculation.

(2) A hand calculation will usually be short, whereas a computer calculation can in-
volve millions of steps. Tiny errors that would be negligible in a short calculation
can be devastating when accumulated over a long calculation. Also, methods that
are perfectly adequate for a small problem may be hopelessly inefficient when
scaled to a large problem (see the discussion of Cramer’s rule in Section 1 of
Chapter 3).

17

18 Computer Arithmetic and Computational Errors Chap. 2

In this chapter we will be mainly concerned with (1): the properties of computer
arithmetic. The differences between computer arithmetic and “real” arithmetic may seem
subtle, but their effects are not. To illustrate this, we begin with some simple examples.

Example 2.1 Taylor Series for e”.

We know the Taylor series for e” converges for all finite values of z

I 22
e =1+1‘+E+§+"'-

Below we list a Fortran program for summing this series.

WRITE (*,*) ’ENTER X’
READ (*,*) X

SUM = 1.0
TERM = 1.0
I =1
1 TERM = TERM * (X/I)
IF (SUM+TERM .EQ. SUM) THEN
WRITE (*,*) 'E(X) = ', SUM, EXP(X)
STOP

C STOP SUMMING WHEN THERE IS NO FURTHER CONTRIBUTION TO THE SERIES.

ELSE
SUM = SUM + TERM
I =I+1
GO TO 1

ENDIF

END

Notice the test which terminates the sum. This relies on the fact that computer arithmetic is
only approximate. The expression SUM+TERM will have the same value as SUM if TERM
is small enough. (We discuss these ideas more fully in Section 3.) If we run this program
on a VAX computer for various values of z we get the numbers listed below. For z > 0
these results are what we would expect, but for x < O they are not.

Sec. 2.1 Introduction 19

z E(X) e®
2.718282 2.718282
5 148.4132 148.4132
10 22026.47 22026.46
15 3269017. 3269017.
20 4.8516531 x 108 4.8516520 x 108
-1 .3678794 .3678795
-5 6.7377836 x 1073 | 6.7379470 x 10—3
—10 | —1.6408609 x 10~* | 4.5399930 x 10~3
—15 | —2.2377001 x 10~2 | 3.0590232 x 10~
—20 1.202966 | 2.0611537 x 10—°

For = > 0 these results are what we would expect, but for z < 0 they are not. Even the
signs of the answers are incorrect in some cases. ll

Example 2.2 Difference Quotient for a Derivative.
The derivative of f at x is defined by

1oy _ s J@+h) = f()
f(z)_ilzllno h ’

so if h is “small,”

fet+h - @)
3

The table below shows the results of this calculation with f(z) = e® to compute f'(z)|q=1 =
e =2.71828175 on the same VAX.

flx) ~ = Anf(z).

h Apf(l) e error

100 4.67077446 | 2.71828175 1.95 x 10°
10-! 2.85884380 | 2.71828175 1.41 x 107!
10-2 | 2.73191929 | 2.71828175 1.36 x 102
103 | 2.71987939 | 2.71828175 1.60 x 103
10~4 | 2.72035623 | 2.71828175 | 2.07 x 10~3
10—3 2.71797204 | 2.71828175 3.10 x 10—
1076 | 2.62260461 | 2.71828175 | 9.57 x 102
10-7 | 4.76837206 | 2.71828175 | 2.05 x 10°
10~ | 0.00000000 | 2.71828175 | 2.72 x 10°

We see that as h decreases, the difference quotient approximation improves but then begins
to get progressively worse. The result in the final row indicates that we have reached the
limiting accuracy of the arithmetic. B

20 Computer Arithmetic and Computational Errors Chap. 2

Example 2.3 Two Linear Equations.

Solve the system of two equations

780z + .563y = 217,
A57z + 330y = .127.

Using the standard techniques (described in Chapter 3) and working in three-digit decimal
arithmetic, we get the solution

z= 171,
y=—1.98.

If we take these numbers and substitute them back into the equations, we get

780 * (1.71) 4 .563 % (—1.98) — .217 = 0.00206,
457 % (1.71) 4 .330 % (—1.98) — .127 = 0.00107.

The difference between the right and left sides, called the residual, is satisfyingly small.
Nevertheless the exact solution to this system is

Texact = 1.000,
Yexact = —1.000.

While this example is contrived, it does illustrate that the computed solution can be very
different from the exact solution (the computed values do not look like the exact values) but
can behave like the exact solution (the computed values almost “solve” the equations). H

Arithmetic on computers only approximates what we know as ordinary arithmetic.
The differences account for the seemingly strange values illustrated in these examples.
More complete explanations will be given later.

Good numerical methods must take into account the effects of computer arithmetic.
Even so, it is not always possible to compute an accurate solution to a problem. In
Example 2.3 above, the algorithm used to solve the problem is of high quality, yet the
computed solution is inaccurate. This is not the fault of the algorithm. This particular
problem is ill-conditioned, badly posed, or sensitive, meaning that tiny changes to the
coefficients of the problem produce large changes in the solution. You should not expect
an algorithm to perform well on an ill-conditioned problem.

In the case of Example 2.1, we will see below that there are effective ways of
computing e® for all values of z, but that using the Taylor series is not one of them. In
this case the algorithm is at fault; it is unstable. Unstable algorithms should be avoided.

This leads to the question of what is meant by a “solution” to a numerical problem.
As in Example 2.3 it may be unreasonable to expect that the computed solution be close
to the true solution of the problem. However, for a stable algorithm, we will often be
able to guarantee that the computed solution exactly solves a perturbed problem, that
is, a problem where the coefficients have been slightly modified. If the problem is also

Sec. 2.2 Representation of Numbers 21

well-conditioned this will mean that the computed and true solutions are similar (the
computed solution is a good approximation of the true solution). For an ill-conditioned
problem this will probably not be true, although it will often happen that the computed
solution behaves like the true solution, as in Example 2.3.

2.2 REPRESENTATION OF NUMB@/

Computer calculations can involve two types of numbers: integer (whole numbers) and
“floating point” (real numbers). When computers were first developed, only integer
arithmetic was available. Fractions were represented by inserting an imaginary decimal
point at some fixed position within the integer (four digits from the left, say). This
was referred to as “fixed point” arithmetic. But in 1954 IBM began development of
the 704 computer which implemented all the algorithms for floating-point arithmetic as
machine instructions, greatly simplifying the use of non-integer arithmetic. Fixed-point
arithmetic is not common anymore, except in certain special-purpose devices such as
graphics terminals. Today hardware floating-point arithmetic is often available, at least
as an option.

Most computers represent numbers internally in binary representation, i.e., as a
sequence of 0’s and 1’s. This is convenient for the technology, but unnatural for humans
who learned to count on ten fingers. In order to make the ideas about computer arithmetic
clear, and to separate them from the details of computer hardware, most of our discussion
will be based on decimal arithmetic rather than binary.

We sketch below the important properties of computer arithmetic, to the extent
that they are required for better understanding of numerical computing. These will be
illustrated primarily using decimal examples, but essential details about binary arithmetic
are also given, based on the IEEE Standard for Binary Floating Point Arithmetic (1985)
which is discussed below.

Other forms of arithmetic could also be used for computer calculations. A few
computers have been designed with base 3 arithmetic. Even humans have used other
bases, such as 20. Recall Abraham Lincoln’s “four score and seven years ago” with
1 score = 20, a word derived from the beginnings of the stock market, when stocks
(sticks) were scored to record financial transactions. Or notice the traces of a counting
system based on 20, in such French words as quatre-vingt for 80, which is literally
“four-twenty;” or even the way we count in English, with special words like “twelve”
and “sixteen” instead of the more consistent “ten-two” and “ten-six” in analogy with
“twenty-two” and “fifty-six.”

2.2.1 Computer Representation of Integers

Computer integers are represented by a finite number of digits. To illustrate, suppose
we have six decimal-digit integers. Each integer will also have a sign + or —. This
means that there are only finitely many integers, in this case the smallest integer will be
—999999 and the largest will be 999999. An integer outside this range does not exist as
far as the computer is concerned.

22 Computer Arithmetic and Computational Errors Chap. 2

If we calculate with integers well within the computer’s range, integer arithmetic
works as expected, so that 547 = 12, 8 — 27 = —19, and 27x3 = 81. Integer division
produces an integer result, with the quotient retained as the answer and the remainder
discarded. This means that 1/3 — 0,4/2 — 2, 7/(-3) — =2, etc.

If the result of an integer calculation is too big or too small for the computer, then
unpredictable things can happen. On some computers, an error message will be printed
and the calculation will be terminated abruptly. On others, the calculation will “wrap”
around without any error indication. For example, in our case 999999 4+ 1 = —999999.
It is not good practice to rely on any results that go outside a computer’s range.

These comments apply equally to integer calculations performed in binary arith-
metic, although the actual values of the largest and smallest integers will vary. On
many common computers, an integer is stored in 32 binary digits, with one of the
digits being allocated for the sign of the number. In this case, the largest integer is
231 _1=2,147,483,647 and the smallest is —23!.

2.2.2 Computer Representation of Real Numbers: Floating Point
Arithmetic

A decimal floating point number is a number represented in the form ax 10%; a is called
the mantissa and b is called the exponent. Usually b is an integer, and a is a number with
one digit to the left of the decimal point. Both a and b only have finitely many digits.
Because of this, there are only finitely many floating point numbers, and in particular
there are largest and smallest floating point numbers.

To illustrate in more detail we consider a system of floating point arithmetic where
a has four and b has two decimal digits. Some floating point numbers are:

4.678x10% =4.678, —3.355x10% = —3355., 9.876x10™'2 = .000000000009876..

In this system, the smallest and largest numbers are —9.999x 10%° and 9.999 x 10°°. There
is also a gap between zero and the smallest positive number, 0.001x10~% = 10~102,

Numbers in this floating point system do not always have a unique representation,
since

1.000x 10% = 0.100x 10°'.

To avoid this ambiguity, it is usual to insist that the first digit in the mantissa a be
non-zero, so that the second representation here would not be allowed; this is called nor-
malization. One exception is the representation of zero: 0.000x 10%. In a normalized
floating point number system there are fewer numbers. For example, in our system the
smallest positive floating point number is now 1.000x 10~ = 10~%.

We have already mentioned that there is a largest floating point number. If a
calculation goes outside this range, an overflow occurs and on most computers the
calculation will be terminated. If a calculation results in a number that is too close to
zero (in our case smaller than 10~%°) then underflow occurs. This is generally less
disastrous than overflow, and many computers will declare the answer to be zero without

Sec. 2.2 Representation of Numbers 23

any indication that anything out of the ordinary has occurred. Nevertheless, there are
computations where underflow is not benign. See for example, problem P2-6.

Floating point calculations typically do not produce an exact result. As an example
consider in our system

1.234x10% 4-5.678 x 10~ = 1.234 + .0005678 = 1.2345678

where the answer cannot be represented exactly as a floating point number, but must
be reduced to four digits. If we chop the answer then the final digits are discarded
giving 1.234x10%. It is preferable to round to the nearest floating point number, giving
the more accurate result 1.235x10%. The difference between the true answer and the
floating point answer is called the rounding error regardless of which rule is used.

On a computer which uses binary arithmetic, floating point numbers are typically
represented in memory by 32 binary digits or bits. In the IEEE Standard, 24 bits are set
aside for the mantissa and 8 bits for the exponent; these bits must also store the signs of
the mantissa and the exponent. The number is assumed to have 1 as its leftmost bit and
this is not stored. Also, for technical reasons, the exponent is stored as an integer in the
range [0, 255]; to get the actual exponent, 127 is subtracted from the stored value. The
exponent value 255 is reserved to represent infinity and improper results such as square
roots of negative numbers; an improper result is called a “not a number.” This means
that the largest floating point number is

+1.1---1, x 2177 =~ 10%8.

The smallest positive floating point number is approximately 10~38. A mantissa of
24 bits corresponds to about 7 decimal digits. The IEEE Standard also recommends
that computers perform arithmetic in higher precision even though the final result will
be stored in 32 bits. Computers supporting the Standard often have all floating point
arithmetic implemented internally in 80 bit form.

All Fortran compilers also support a double precision floating point number which
uses twice as many bits as floating point to represent each number. Unless this is
supported in hardware, double precision calculations will be much slower than floating
point. Most computers that conform to the IEEE Standard provide hardware double
precision, at least as an option. Fortran also supports complex floating point and complex
double precision arithmetic using a pair of floating point or double precision numbers,
but this is rarely supported in hardware; complex arithmetic must be done by software.

Designing computer hardware to perform reliable floating point arithmetic has
proven to be difficult. There are numerous examples of ordinary calculations which give
incorrect results, with potentially serious consequences. W. Kahan, at the University
of California, Berkeley, has taken a major role in pointing out difficulties with the
arithmetic on most existing computers. He has also led in the establishment of a well
defined standard, referred to as the IEEE Floating Point Standard. This document has
enabled computer manufacturers to build hardware floating point chips which perform
intelligently and reliably. The IEEE Standard states exactly how rounding should be
done, and what to do if a calculation results in a potential over/underflow or negative

24 Computer Arithmetic and Computational Errors Chap. 2

argument to a square root. Several computer chips, including the Intel 8087/80287/80387
chips and the Motorola 6888X series, incorporate the Standard and are used in common
personal computers and workstations.

2.3 MACHINE CONSTANTS

When floating point numbers of different magnitudes are added, the result of the cal-
culation may be exactly equal to one of the summands. For example, in our four-digit
floating point arithmetic

1.000x 10% + 1.000x 10~* = 1.000 + .0001000 = 1.0001 — 1.000x 10%.

The smaller number might as well have been zero. The smallest floating point number
that we can add to 1.0 and obtain a floating point result larger than 1.0 is called machine
epsilon, written €.,,.,. The actual value of €y,,., depends upon whether arithmetic is
rounded or chopped. On our four digit machine €,.p = 001 = 1.000x10~% if the
arithmetic is chopped, and €., = -0005 if it is rounded. In either case, the addition of
a floating point number to 1.0 will only be accurate to the third decimal place.

Machine epsilon determines the relative accuracy of the computer arithmetic. If
z,y are two positive floating point numbers = > y, then their sum can be written

x+y=x(1+g).
T

We can see that unless y/z > €,.p the floating point sum of z and y will be z. A
more careful argument shows that the relative error in the floating-point sum can be as
large as €y ach-

For 32-bit floating point arithmetic, €0, = 272 ~ 1.2- 1077 if rounding is used.
Thus it is hopeless to expect more than seven decimal digits accuracy from any floating
point calculation, nor can we resolve relative differences finer than that level. Several
subroutines in this book have an input parameter €, representing desired accuracy. It is
unreasonable to choose € < €y ach-

The act of reading a decimal number, such as 0.3, into the computer causes an
error, because 0.3 does not have an exact floating point representation. If the input/output
routines provided by the Fortran compiler work correctly the error is in the last bit. We
sometimes express this as

Tgtored = (1 + 6z), or Tstored — € = T, 6| < €mach>

meaning that the stored floating point approximation to x can have a relative error of up
10 €mach- . . .

We can use this to understand the concept of catastrophic cancellation, the error
growth due to subtraction of nearly equal numbers. Consider our model computer with
€mach = 0-0005, anq let Tstored = I.QOI, Ystored = 1002 The difference ygioreq —
Zgtored = -001, even in floating-point arithmetic. However, in general we cannot assume

Sec. 2.3 Machine Constants 25

that Tgioreq and Ygiored are'exact. They will normally be the stored versiqns of other
numbers z, y and have relative errors 6, and 6, of up to €mach- The relative error in
the true difference ygigreq — Tstoreq €an be estimated by

Wstored — Tstored) =W —) _ b6y — b,
y—z .001

The magnitude of the right hand side can be as large as

2¢ ch
% ~ 2000€mach =1.0.

Thus the difference can be wrong in every digit.
Example 2.4 Further Analysis of the Taylor Series for e”.

Consider Example 2.1. In computing e ™' by Taylor series we have

e =1-154... —312540.3 +334864.6 — - - -.

This is much easier to understand if we write out the values of these terms to all the digits
that are computed on the VAX.

n n-th term in Taylor Series
0 1.000000
1 —15.00000
2 112.5000
3 —562.5000
13 —312540.3
14 334864.6
15 —334864.6
16 313935.5
17 —277001.9
18 230834.9
19 —182238.1
20 136678.6
21 —97627.55
51 —0.00000061660813
52 0.00000017786773
53 —0.000000050339924
54 0.000000013983313
55 —0.0000000038136312
56 0.0000000010215083
57 —0.00000000026881800

26

Computer Arithmetic and Computational Errors Chap. 2
Note that some of these terms and hence intermediate sums are much larger than the final
answer (= 1077). When we subtract one of these large terms from the evolving sum the
difference is small and has a large relative error. Ultimately the differences have no digits
of accuracy. This is another example of the catastrophic cancellation described above. One
solution to this problem is to use a computer with a smaller €., The table below gives
the results of the same program as in Example 2.1, but run on a CDC Cyber 855, which
has €qach & 107"

T E(X) e®
2.718282 2.718282
5 148.4132 148.4132
10 22026.47 22026.46
15 3269017. 3269017.
20 4.8516520x 108 4.8516520x 108
-1 .3678794 .3678795
-5 | 6.7379470x10~3 | 6.7379470x103
—10 | 4.5399952x10~° | 4.5399930x 103
-15 3.0508183 %107 3.0590232x10~7
-20 3.865358x 107 2.0611537x10~°

Note that the answers are better than before, but there are still difficulties when z < —10.
In Example 2.8 we will see another solution to this problem. B

The most important points about floating point computation are summarized below.

The specific numbers listed are for the IEEE binary 32-bit floating point Standard. Also,
problem P2—4 will help you gain familiarity with floating point numbers.

@
@)
3)
@

®)

(6)

Q)

There are finitely many floating point numbers, about 23! of them.
There is a largest floating point number, OFL = overflow level ~ 10%.
There is a smallest positive floating point number, UFL = underflow level ~ 10~%.

The floating point numbers between 0 and OFL are not uniformly distributed.
There are 222 floating point numbers between each power of 2, e.g. 2% between
27128 and 21?7 as well as between 2!% and 2'?’. Thus, floating-point numbers
are concentrated near zero.

Arithmetic operations on floating point numbers cannot always be represented ex-
actly, and must therefore be chopped or rounded to the nearest floating point
number.

€mach 18 the smallest floating point number such that 1.0 + €y, > 1.0 in floating
point arithmetic; €. ~ 10~7 on a 32-bit computer. It represents the relative
accuracy of computer arithmetic.

OFL and UFL are determined mostly by the number of bits in the exponent, whereas
€mach 18 determined by the number of bits in the mantissa. Thus they measure
different parts of the floating point representation. 0 < UFL < €y, < OFL.

Sec. 2.4 Errors in Scientific Computing 27

The software in this book sometimes needs to know the value of machine constants
like €50 and OFL. The programs obtain their values from the Machine Constants
Package, originally developed at AT&T Bell Telephone Laboratories (Fox (1978)). This
consists of three Fortran functions, I1MACH (K), RIMACH (K), and D1MACH (K) which
have a single integer argument, K, and return an integer, a floating point or a double
precision number, respectively. By definition, RIMACH (1) = UFL, RIMACH (2) =
OFL, and R1IMACH (4) = €mach- Other values are defined similarly. The advantage
of this approach is that it localizes all machine dependent data in a standardized way
rather than having them appear in individual subroutines. The disadvantage is the need
for extra routines.

Sometimes users will insert specific constants into their programs, for example the
values PI=3.14159, or SQ2=1.414. This is portable, but may not be as accurate
as possible. A better way is to place the burden on the compiler whenever possible,
PI=ATAN(1.0) *4, or SQ2=SQRT (2.0). The standard Fortran functions like SQRT
or ATAN usually provide results that agree with “exact” values to within one bit because
they have been written carefully.

It is possible for the computer not only to perform floating-point calculations, but
also to keep track of the rounding errors that have been made, and then to provide bounds
on the errors in a calculation. This is called interval analysis, and is described in more
detail in the book by Moore (1979).

2.4 ERRORS IN SCIENTIFIC COMPUTING

If the results of our floating point computation differ from what we expect, we have an
error,

error = true value — approximate value.

Another term we often use is relative error,

. error
relative error = ———,
true value
which is defined as long as the denominator is nonzero. Relative error is often a more
useful measure of accuracy since it is less dependent on the way the numbers are scaled.
For example, if we decide to measure our data in grams instead of kilograms, the relative
error remains the same, but the error is magnified by 1000.

Errors arise due to

(1) Machine hardware malfunctions. These are very rare today but were common in
the early days of computing when the mean time between failures was only a few
minutes.

(2) Blunders. Programming the wrong formula, etc.

(3) Experimental error. This occurs when the data are acquired by a means which has
limited precision, for example via an instrument.

28 Computer Arithmetic and Computational Errors Chap. 2

(4) Ignoring a significant feature of the problem. If we use the first 5 terms in the
Taylor series as an approximation for e®, then independent of what computer or
precision we use, there is some irrevocable “truncation” error. See Example 2.5.

Example 2.5 Truncation Error for a Difference Quotient.

Consider Example 2.2. If we expand f(z + h) in a Taylor series about z, the right hand
side of the difference quotient becomes

fa+h) - f@) _ f@+hf' @+ @ - f@)
h - h

= f@+ 2O, s <E<zth,

Apf(z) =

hence the truncation error in this approximation is 2 f”'(¢).

Often in numerical analysis an error depends upon a parameter such as kA above. In many
cases it is enough to display the dependence of the error on that parameter without giving
the expression in more detail. Then the “big oh” notation developed by Bachmann and
Landau in 1927, will be used, O(h), meaning only that the truncation error goes to zero no
slower than h does. More precisely, we will write

p(t) = O(q(t)), as t—oto

to mean that |p(t)/q(t)| is bounded for ¢ sufficiently close to to. We will see more examples
of this useful notation later. W

(5) Numerical or rounding error. This is due to a combination of
(a) 11l conditioning or sensitivity of the problem.
(b) Stability of the algorithm.

It is sometimes said that truncation error arises from the terms we exclude and that
rounding error from the terms we include. See the examples below.

Example 2.6 An Ill-conditioned Problem: Roots of a Quartic.

Compute all four roots of x* — 42> + 822 — 16z 4 15.99999999 = (z — 2)* — 1078 = 0.
The roots satisfy (z — 2)? = £107*, and hence z — 2 = £/+10—% = £1072 and +107%.
The roots are =; = 2.01, 22 = 1.99, 3 =2 4 .013, x4 =2 — .01:. If we use a computer with
€mach > 1071 the quartic’s constant will be rounded to 16.0. From the perspective of the
computer we are now solving the problem

x-2*%=0.

This new problem has four equal roots at 2.0 which differ from the roots of the original
quartic by 0.5%. In this problem small changes in the data (such as changing a coefficient
by 10~®) result in much larger changes in the solution independent of the method used to
compute the solution. Such problems are termed ill conditioned. There is no computational
trick we can use to reduce this sensitivity; it is associated with the problem, not the method.
]

Sec. 2.4 Errors in Scientific Computing 29

Example 2.7 Taylor Series for ¢”: A Better Algorithm.

Consider Example 2.1 for z < 0. Since the series approximation works well for positive z,
we expect that
1 1

€ =—

e* 1+1'+§—?+"'

can be used for negative values. The program in Example 2.1 was modified to compute e®
for x < 0 by the formula above, and the table below lists the results, computed on a VAX.

T E(X) e’
2.718282 2.718282
5 148.4132 148.4132
10 22026.47 22026.46
15 3269017. 3269017.
20 4.8516531x 108 4.8516520x 108

-1 .3678794 .3678795

-5 6.7379461x 103 6.7379470x 103
—10 | 4.5399924x10~5 | 4.5399930x10~3
—15 | 3.0590232x10~7 3.0590232x10~7
—20 | 2.0611530x10~° | 2.0611537x10~?

Now the results are almost completely accurate. In this case the fault was not with the
problem but rather with the algorithm we chose; direct summation of the series is an unstable
algorithm for negative z. B

Example 2.8 Roundoff Error for a Difference Quotient.

Consider again Example 2.2. We can analyze the effect of rounding on the computation
of f'(z). Assume no errors are made in forming x or z + h and that the only error in
evaluating f occurs when it is stored. Then it can be shown that the rounding error in the
difference quotient A, f(x) is bounded by 2| f(z)|each/h- Thus the rounding error in the
difference quotient grows as h decreases. From this and Example 2.5, we see that the total
error, truncation plus rounding is bounded by

[Error| < Eyoq) = glf"(£)| + %emachlf(a:ﬂ =O(h)+ O(1/h).

This expression shows the same behavior as the numbers in Example 2.2, initial decrease
and eventual increase. If we differentiate E;,.,) with respect to h and set the result equal
to zero, we see that the value of h which minimizes this expression is

'f(m)lemach
h=24/——==.
V. 1F7©)

30 Computer Arithmetic and Computational Errors Chap. 2

If |f| = | f"|, we get the rule of thumb

h = \/€mach

as a good choice to minimize F,;,). B

To obtain more accurate estimates of the derivative we can work on either the
rounding or the truncation error. If we can reduce the former, perhaps by computing on
a machine with a smaller €,,.},, then we can carry the computation to smaller values
of h (giving smaller truncation error) before rounding becomes dominant. This, in turn,
will result in a smaller E,,;. To illustrate, we repeat the calculation of Example 2.2,
but on the Cyber used in Example 2.4. The results are

h Apf(l) e error
100 4.67077427 | 2.71828183 1.95 x 10°
101 2.85884195 2.71828183 1.41 x 10~!
102 | 2.73191866 | 2.71828183 1.36 x 10~2
1073 | 2.71964142 | 2.71828183 1.36 x 10~3
104 | 2.71841775 | 2.71828183 1.36 x 10~*
10—5 | 2.71829542 | 2.71828183 1.36 x 10~3
10—% | 2.71828318 | 2.71828183 1.36 x 10~
107 | 2.71828199 | 2.71828183 1.62 x 1077
10-8 | 2.71828213 | 2.71828183 | 3.04 x 10~
10—2 2.71826650 | 2.71828183 1.51 x 10~3

For the VAX and Cyber approximate values of , /€1, are 4 10~* and 8- 108 respec-
tively. Note in Example 2.2 and in the table above that these values of h give accurate
estimates of f'(1).

An alternative approach to more accuracy is to reduce somehow the truncation
error for the same values of h. One obvious way is to use a more accurate formula. For
example, if we estimated the derivative by a “centered” difference quotient,

f@+h)— fix—h)

onf(x) = h

then exactly the same type of Taylor series manipulation as in Example 2.5 shows that

5 _ h'_2 1")+h_4f(5)()+
nf@=f@+cf"@+ 55 P@+,

Sec. 2.5 *Extrapolation 31

and the truncation error is then O(h?). As an example, we use the Cyber to approximate
€’(1) but this time with the centered difference approximation.

TABLE 2.1. CENTERED DIFFERENCE APPROXIMATION

h Dy f(1) e error
10° 3.194528049 | 2.718281828 | 4.76 x 107!
107! 2.722814564 | 2.718281828 | 4.53 x 1073

1072 2.718327133 | 2.718281828 | 4.53 x 107°
1073 2.718282285 2.718281828 | 4.53 x 1077
107* | 2.718281833 | 2.718281828 | 4.62 x 10~°
1075 | 2.718281829 | 2.718281828 | 8.58 x 107'°
107 | 2.718281820 | 2.718281828 | 8.38 x 10~°
1077 | 2.718281849 | 2.718281828 | 2.00 x 10~%
1078 2.718282133 | 2.718281828 | 3.04 x 1077
10~° | 2.718266501 2.718281828 1.53 x 1073

Example 2.1 illustrates how a badly conceived algorithm can get a poor answer to
a perfectly well posed problem; the difficulty was corrected by changing the algorithm.
Example 2.6 shows that for certain problems, “good” answers cannot be obtained by
any algorithm because the problem is sensitive to small errors made in the data and the
arithmetic. Remember, we are talking about the result of performing the calculation on
a computer; in a theoretical analysis there are no rounding errors. It is important to
distinguish between these two classes of pitfalls because there are unstable algorithms
and ill-conditioned problems in nearly all branches of numerical mathematics. Once you
become aware of their symptoms these problems are fairly easy to diagnose. With respect
to Example 2.8, we mention that computing derivatives is not necessarily sensitive, but
most algorithms involving difference quotients are unstable for small h.

*2.5 EXTRAPOLATION

The centered difference quotient illustrates one approach to reducing truncation error. A
second, widely used technique is extrapolation. It is applicable to many diverse problems
including evaluation of integrals and solution of differential equations. The key step in
the use of extrapolation is to express the truncation error in a series expansion. The
truncation error for a difference quotient is an ideal example. Looked at directly, the
series for the centered difference tells us that if we compute the centered difference using
h and h/10, the error for /10 should be about 1/100-th the error for h. This is exactly
what Table 2.1 above shows, at least until roundoff error begins to dominate. Because
our truncation error involves higher order Taylor series terms we can extract much more

32 Computer Arithmetic and Computational Errors Chap. 2

information from this table. Abbreviating 65 f(x) by ép

& = /() h_2 III()+h_4 (5))+
h_fw+6f z 120f (1")

h? h4
— £ - ® e A .6 .
Onj10=f(x)+ 1006 (@) + 10,000 120f @) +---.
If we combine these estimates
1006 -6
RO T TR) — @)+

99 100 - 120

The expression on the left is an estimate of f'(x). Its truncation error begins with a
higher power of h, O(h*), and at least for small A this estimate ought to be better. We
have taken two estimates with different values of h and combined them to get a third
estimate which is more accurate than either. In practice, the left hand side above is
usually calculated by rewriting it as

On/10 — 6n

)
h/10)

which is less susceptible to roundoff error. In numerical computing generally, it is
usually advisable to organize formulas so that they express the desired quantity as a
small correction to a good approximation.

To illustrate, we consider the centered difference Table 2.1. The table below is
similar except that the E’ (1) column contains the extrapolated estimates. An element
in the extrapolation column is the result of combining two estimates from the original
centered difference column according to the rule above. For example, the first entry
in the E’ (1) column is computed from the first two entries in the 8 f(1) column by
2.722815 +(2.722815 — 3.194528)/99 = 2.718050. The error column shows that the
extrapolated estimates improve very rapidly, each by about a factor of 10,000, until
roundoff appears. This is consistent with the O(h*) truncation error we have predicted.

h E’ (1) e error
10! 2.71804978127 | 2.71828182846 | 2.32 x 10~*
10—2 | 2.71828180580 | 2.71828182846 | 2.27 x 108
10—3 | 2.71828182845 | 2.71828182846 | 9.08 x 10~12
10— 2.71828182855 | 2.71828182846 | 9.44 x 10~!!
10-3 2.71828182928 2.71828182846 | 8.20 x 10~10
10—6 2.71828181999 | 2.71828182846 | 8.47 x 10~°
10~7 2.71828184879 | 2.71828182846 | 2.03 x 10~3
10-8 2.71828213559 | 2.71828182846 | 3.07 x 10~7

The best extrapolated estimate, with error 9.08 x 10~!2, is several orders of magnitude
better than any of the non-extrapolated estimates.

Sec. 2.6 Historical Perspective: Eckert and Mauchly 33

It is possible to generalize these ideas. For example, the extrapolated estimates
themselves have a truncation error which is given by a series in powers of h, beginning
with h*. Thus we should be able to combine several of these estimates to get even better
approximations. The literature on the subject of extrapolation is vast, see for example
the article by Joyce (1971). You should always be alert to the possibility of such a
technique whenever a sequence is being generated; individual elements of the sequence
may be approaching a limit slowly, but by combining the elements in a careful way you
can often generate a new sequence which approaches the same limit much more quickly.

2.6 HISTORICAL PERSPECTIVE: ECKERT AND MAUCHLY

In 1971 the New York Times stated that is was a “gross injustice” that the names of
Eckert and Mauchly “were not likely ever to become household words on a par with the
Wright Brothers or Thomas A. Edison, let alone the Beatles.” John William Mauchly
(1907-1980) and John Presper Eckert (1919-): who were these unknown men?

In 1940, Mauchly, a physics professor at Ursinus College in Pennsylvania, became
interested in a better way to perform the complex calculations involved in solving meteor-
ological equations. Mechanical calculators existed at that time, but were too slow for
the applications he had in mind. In December of that year, he met John Atanasoff
at a scientific meeting, and visited him at Iowa State College the following summer.
Atanasoff, together with his graduate student Clifford Berry, were building an electronic
calculator using vacuum tubes, which had the potential to be several orders of magnitude
faster than anything then in existence. Mauchly returned from his visit immensely excited
by what he had seen. At about the same time, he attended a summer course at the Moore
School of Electrical Engineering at the University of Pennsylvania, to learn more about
electronic devices. The staff was impressed with his abilities and asked him to stay on as
an instructor. The Moore School had a contract with the Ballistics Research Laboratory
(BRL) to produce range tables which were essential to aim and fire new artillery and
Mauchly was naturally drawn into the computational problems.

At that time Eckert, a graduate student in electrical engineering, was working
on improving the “differential analyzers” which were then used for these ballistic cal-
culations. By incorporating several hundred vacuum tubes into the machine he was
able to increase its speed and accuracy by a factor of ten, but it was clear that fur-
ther improvements would not be successful. Independently, Eckert and Mauchly had
built electronic counter circuits, and this along with the electronic experiences of the
differential analyzer impressed them with the future potential of electronics in comput-
ing. They proposed to the U.S. Army Ordinance Department to build a general-purpose
digital machine. In 1943, Mauchly as principal consultant, and Eckert as chief engi-
neer, were empowered to design and build a device based on many of these ideas;
this was the ENIAC (Electronic Numerical Integrator And Computer), the first elec-
tronic digital computer. ENIAC was completed, amidst front page publicity, in 1946.

34 Computer Arithmetic and Computational Errors Chap. 2

It was too late to help in the war effort, but it was put into service at BRL, and remained
in continuous use until it was shut down for the last time in 1955. It has been said that
ENIAC, in the ten years it was in operation, did more calculations than had been done
by the entire human race up until 1945.

The ENIAC was a breakthrough but it had many deficiencies—it was physically
large (8 feet high, 3 feet wide, and 100 feet long, arranged in a horseshoe shape), had a
small memory (20 ten-digit numbers), and was programmable only by manual external
setting of switches. Eckert and Mauchly began thinking about a new computer, to be
called EDVAC, in the winter of 1943—-1944. It was to have a 1000-word memory, use
mercury delay lines for storing data, but most significantly it would have its program
stored in the computer memory. John von Neumann joined the project in September 1944
as a consultant, and assisted with the later design of the machine. Von Neumann described
the work in “First Draft of a Report on the EDVAC” in June 1945. Unfortunately for
Eckert and Mauchly, this “draft” became widely circulated shortly after it was written.
Because only von Neumann’s name appeared on the report, and because von Neumann
was a famous mathematician, it was assumed that all the ideas in the report were his,
even though the most important idea (the stored program) had been developed before he
joined the project.

The report also ruined any chances for a patent. In 1946, before the EDVAC
was finished, Eckert and Mauchly left the Moore School over a controversial school
patent policy. The university felt that all patents should belong to the school, whereas
Eckert and Mauchly thought that the inventors should get them. After leaving, Eckert
and Mauchly applied for a patent for their computer design. The application was turned
down in 1947: lawyers declared that the “First Draft ...” constituted publication of the
ideas, and thus they were in the public domain and not patentable. In addition, there
was controversy over which ideas could be attributed to Atanasoff.

Out in the private sector they formed a partnership for the purpose of designing a
commercially successful computer. Mauchly was president and was responsible for the
logic design; Eckert, preferring to remain behind the scenes, was vice president and chief
engineer. (During the period 1948-1966 Eckert was granted 85 patents by the U.S. Patent
Office.) The Census Bureau and the National Bureau of Standards were to be the first
recipients of this new machine, dubbed the UNIVAC. Like high technology companies
today, theirs was continually in need of additional capital and although the UNIVAC
was a success, financial troubles forced them to sell the company to Remington Rand in
1950. Both Eckert and Mauchly continued to work there until nearly 1960. Remington
Rand merged with Sperry in 1955 to form Sperry Rand. In 1986 Sperry Rand was
purchased by Burroughs Corporation; the combined corporation was renamed Unisys
and has marketed a computer line under the Sperry name.

Computers captured the public imagination, thanks in part to television. In 1952,
CBS arranged to have a UNIVAC computer predict the outcome of the presidential
election as part of the election coverage. Programs were written, with the runs to be
made on the fifth UNIVAC, which was still sitting on the factory floor. In the studio
in New York, a dummy control panel was shown, with the control lights hooked up to
Christmas tree lights. After only a few polls had come in, UNIVAC predicted a landslide

Sec. 2.7 Problems 35

victory for Eisenhower over Stevenson. Since this was unexpected, it was assumed that
there was a bug! in the programs, and the algorithms were manipulated several times to
make them predict a narrow victory for Eisenhower. As more polls came in, though, it
became obvious that UNIVAC had been right all along; a little after nine o’clock that
evening, Walter Cronkite admitted the fakery to the viewers.

2.7 PROBLEMS

P2-1.-The Taylor series for the error function is

l)n 2n 41

2 (-
erf(z) = Z nent 1)

The series converges for all . Write a program to evaluate erf(z) using this series. Use as many
terms in the series as are necessary so that the first neglected term does not alter the accumulated
sum when it is added to it in floating point arithmetic. Since this is an alternating series, the error
caused by truncating the infinite sum will then be less than the roundoff error. Investigate the
effect of roundoff error by comparing the computed sum with the value obtained from a table of
erf(z) or the value obtained from a reliable subroutine (see Problem P1-1). Try z = 0.5, 1.0, 5.0
and 10.0. Explain your results. Hint: The inner loop of your program might look something like
this:

10 OLDS = S
EN = EN + 1.0
T = -XSQ*T* (2.0*EN-1.0)/(EN* (2.0*EN+1.0))
S=858+T
IF (OLDS .NE. S) GO TO 10

What values should be assigned to T, S, EN, and XSQ before entering this loop? Do not
forget the 2/,/ factor.

P2-2.-Consider the following two Fortran programs:

EPS = 1.0
10 EPS EPS/2.0
WRITE (*, *) EPS
EPSP1 = EPS +1.0
IF (EPSP1 .GT. 1.0) GO TO 10
STOP

1 The term originated in 1947 at Harvard during the days of the Mark computer. The project was

proposed and run by strong-willed Howard Aiken (referred to as “Commander” by junior faculty and students)
who continually emphasized reliability over speed. The electro-mechanical Mark II computer was experiencing
inexplicable malfunctions. Finally, a researcher opened the cabinet and there, lodged between two relay
contacts, was a dead moth. Grace Hopper, who later became instrumental in the development of COBOL,
retrieved the moth and pasted it in her logbook, alongside a notation about the “bug” that caused the trouble.

36 Computer Arithmetic and Computational Errors Chap. 2

END

EPS = 1.0
10 EPS = EPS/2.0
WRITE (*,*) EPS
IF (EPS .GT. 0.0) GO TO 10
STOP
END

Run the programs on your system, and explain the differences in the output. If you have
access to an IBM personal computer with a math chip run the programs there too, and
explain the results.

P2-3.-Write a program to evaluate the infinite sum for = = 0.0,0.1,...,1.0,

d 1
d(x) = ; St

with an error less than 0.5 - 107%. Note: this requires both human analysis and computer power,
and neither is likely to succeed without the other. Above all, do not waste a years’s computer
budget trying to sum the series by brute force. Hint: Use the fact that

S S
kk+1) k k+1

to prove that ¢(1) = 1. Then express ¢(z) — ¢(1) as an infinite series which converges faster than
the one defining ¢(z). You will have to repeat this trick before you get a series for computing
¢(z) that converges fast enough. Reference: Hamming (1962), pp. 48-50.

P2-4.—Consider a fictitious floating point number system composed of the following numbers
S'={ £bi.baby x 2¥ : by, b3,y =0o0r 1, and by = 1 unless by =by=b3 =y =0}.

(a) Draw a portion of the real axis and plot the elements of S.
(b) Show that S contains twenty five elements. What are the values of OFL, UFL, and

€mach’
P2-5.-Consider trying to approximate the derivatives of the following functions
fi(z) =sinz, at z =1,
f2(z) =10000sinz, at z =1,
fi(x) =tanz, at z = 1.59.

To estimate the first derivative we will use the central difference quotient, and for the second
derivative we will use

f@+h -2f@+f@—h)

f@) ~ s

Sec. 2.7 Problems 37

(a) Estimate the first derivatives of the three functions as indicated. Typically we would
choose h & Y/€q,cp to obtain the most accurate estimate of the first derivative. Try
the central difference formula for h = 1Ok\3/€m with k= -2,-1,0,1,2.

(b) Now estimate the second derivatives. In this case the traditional choice of A is
h = Yemach- Try using h = 10* we o with k = —2,—1,0,1,2 on the three
functions.

In each case, compare the computed derivative estimate with the actual derivative. Can you
explain how the choice of the best h is affected by the behavior of f(x) near the point z?
(c) Use the techniques of extrapolation (Section 5) to improve your estimates in (a) and

(b).

P2-6.-The task is to write a program to compute
X(p,k, N) = (1;’);:’“(1 N 0<p<1,0<k <N <2000

which occurs frequently in statistical studies. The symbol (’Z) is the binomial coefficient

N\ _ NI _N(N-1)---(N-k+1)
k)~ kAN =k~ k(k—1)---2-1

Consider the following Fortran program fragment to compute X (p, k, N)

Q=1.0 -P
X =10.0
DO 1J=1,K
1 X = X* (N+1-J)
DO 2 J = 1,K
2 X = X/J
DO 3 J = 1,K
3 X = X*p

DO 4 J = K+1,N
4 X = X*Q

38 Computer Arithmetic and Computational Errors Chap. 2

(a) Using this program try to compute X(0.1,200,2000) =~ 0.03. Comment on the
difficulties you encounter.

(b) One approach is developed in the book by P. Sterbenz (1974). Let B be a large
power of 2 chosen so that 2000B will not overflow and B/2000 will not underflow.
For example B = 2'®. If X becomes larger than B we shall divide it by B. Then the
true value we are computing is represented by X-B. If we use a counter I to count
the number of times we divide by B the correct output is

Xp,k,N)y=x-(B)!, I>0.

Similarly set S = 1/B. If X becomes smaller than .S, multiply X by B and subtract
one from I. At the conclusion of the computation if I < 0 we may be able to divide
X by B I times without underflow and get a meaningful answer. Otherwise the best
answer we can get is zero. Modify your program and try it on the problem in (a).

P2-7.-The formula derived in Problem P1-2 to estimate ,

DPn+1 =2"\/2(1 — /1= (pn/27)?),
P =2V2,

fails due to a combination of underflow and catastrophic cancellation.
(a) Explain the failure in the formula.
(b) The formula can be improved so that the subtraction is eliminated. First write pp, 4 1

as
Pn41=2"Tax1,
where
Fat1=2(1— /1= (pa/27)?), 13=2/Q2+V2).
Show that

Tn
Thil = ——.
T VA,

Use the last iteration to calculate r, and p, for n =3,4,...,60. (This revision was
suggested by W. Kahan.)

(c) Eventually, 4 — r,, will round to 4, and so the formula derived in (b) is still affected
by rounding errors for large values of n. Should this concern us?

P2-8.-Archimedes’ method for estimating 7 can be derived in a different way. Let P(h) denote
the perimeter of the n-sided inscribed polygon, where h = 1/n.
(a) Using geometry, show that

P(h) = (1/h) x sin(wh).

Write a program to evaluate this function for n = 3,6, 12,24,48 and 96. Print your
estimate and the error for each value of n.

Sec. 2.7 Problems 39

(b) By expanding sin(z) in a series show that

st (=1)y 7% +!

P(h) = —_—
W=+ 2 g

In other words, P(h) = ® 4+ O(h?). Modify your program to see if the convergence
is really O(h?). Do this by printing the ratio of the error on one step to the error on
the preceding step. What limit does the ratio approach? Why?

(c) Since we know that the error in P(h) is O(h?), extrapolation can be used to improve
the estimates. Show that the new sequence

4P(h) — PQ2h)

Poy(h) = 3

should converge to 7 with an error that is O(h*). Rewrite the formula in the form of
a correction as described in Section 5, and modify your program to calculate these
numbers. Are they more accurate than P(h)? Hint: Both your understanding and
the computations are aided if you construct a table with P(h) in the first column and
Pyy(h) in the second. It will also help if you perform these computations in double
precision.

(d) Show that the numbers

2*Puy(h) — Puy(2h)
24 — 1 ’

2°Pg)(h) — Pa)(2h)

Poy(h) =
@(h) 2%]

Pyy(h) =

converge like O(h®%) and O(h®) respectively. Rewrite the formulas as in part (c),
compute these numbers, and add them as third and fourth columns in your table.

(e) Develop the formulas for columns five and six and compute these numbers. Where
in the table is your best estimate and how much better is it than Archimedes’ (see
Problem P1-2)? Is there any evidence of roundoff error?

P2-9.-Fortran compilers are not required to supply a function to evaluate the cotangent function.
Instead you might write your own using COT (X)=COS (X) /SIN(X). There are many ways
to check on the accuracy, but one simple test is to compare COT (X) against (COT (X/2) -
1.0/COT (X/2)) /2.0, which is mathematically equal to the cotangent. Write a program to
evaluate both functions for 2000 points in the interval (67,257 /4). Print the average error and
the maximum error. How satisfactory are the results? How do you know whether the errors you
observe are from the computation of the COT (X) or from the subtraction in the second expression?
As a check use double precision to compute the latter.

P2-10.-This problem concerns some details of floating point arithmetic.
(a) If T and J are integers explain why the Fortran expression (I+J) * (I-J) is preferred
to I*I-J*J. Do the same reasons apply if I and J are real?
(b) Write a program to estimate OFL in both single and double precision, and to determine
the largest integer on your computer. What happens if you exceed any of these values?

P2-11.-The examples in Section 4 suggest that an unstable algorithm results because of cancella-
tion. This need not be the case as the following problem (due to W. Kahan) illustrates. Let N be
the number of bits in the floating point word that your computer/compiler uses. (On a DEC Vax,
IBM PC, Sun, or Apple Macintosh, N = 32.) Consider the Fortran function

40 Computer Arithmetic and Computational Errors Chap. 2

REAL FUNCTION F (X, N)
REAL X
F = ABS(X)
DO 10 I = 1,N
F = SOQRT (F)
10 CONTINUE
DO 20 I = 1,N
F = F*F
20 CONTINUE
RETURN
END

If there were no rounding errors we should get F = ABS (X), but this is not what happens.
Experiment with this function for several values of X, both |X| < 1 and |X| > 1. Explain your
results. Set your compiler options so that underflows are set to zero.

Linear Systems of Equations

3.1 INTRODUCTION

One of the most frequent problems encountered in scientific computation is the solution of
a system of simultaneous linear equations—usually with as many equations as unknowns.
Such a system can be written in the form

where A is a given square matrix of order n, b is a given column vector of n components,
and z is an unknown column vector of n components.

Linear equations arise directly in many applications, such as in the bridge engineer-
ing problem at the end of the chapter. They also arise indirectly as a step in the solution
of a more complex problem. Systems of nonlinear equations, such as those arising in the
design of integrated circuits, are solved via a sequence of linear approximations, hence a
sequence of linear equations; these are discussed in Chapter 7. Boundary value problems
in differential equations are often handled by seeking the solution only at a finite set of
points, leading in many important cases to the solution of linear equations. An example
application of this is given in Section 9.2.

Data-fitting problems can also lead to systems of linear equations. Consider Ex-
ample 3.1.

Example 3.1 Data Fitting via Linear Equations.

Suppose we wanted to fit a quadratic polynomial to the data-
(1) 0)) (2) - l)) (3) 2)'

41

42 Linear Systems of Equations Chap. 3

We seek a polynomial of the form
p(x) = a+bx+cz2
satisfying
p(1)=0, p2)= -1, p(3)=2.
Writing out these three conditions

a+ b+ c= 0,
a+2b+4c=-1,
a+3b4+9= 2,

we obtain a system of three linear equations in three unknowns, which in matrix/vector

notation has the form
1 1 1 a 0
1 2 4 bl=]|-1].
1 3 9 c 2

a=5b=-7,¢c=2.

The solution is

It is easily verified that the polynomial p(x) = 5 — 7z + 2z fits the data as required. This
subject is discussed in much more detail in Chapter 4. W

Many methods have been proposed for solving linear equations. A famous one
is Cramer’s rule, where each component of the solution is determined as the ratio of
two determinants. If you tried to solve a system of 30 equations using Cramer’s rule,
you would need to compute 31 determinants each of order 30. If computed in the
straightforward way, solution of the linear system takes 31 x 30! x 29 multiplications,
plus a similar number of additions. On a very fast computer doing 1,000,000, 000
multiplications per second, near the limits of current technology, the multiplications
alone would take about 7,556,414,967,271,268,000 years, which is more time than
we would really care to spend on this problem. (Of course, this example doesn’t give
Cramer’s rule a fair chance. The determinants were computed in the worst possible way.
There are much better ways to compute determinants; however, with a good method it is
possible to solve a linear system in about the time it takes to compute one determinant.
Cramer’s rule has at least one attractive property: it computes every element of the
solution independently. For this reason, it can be a practical method for some special
linear systems on parallel computers.)

Another approach with mathematical appeal but computational pitfalls writes the
solution to Az = b as z = A~'b, where A~! is the inverse of A. However, in virtually
every application it is unnecessary and inadvisable to compute A~! explicitly. As an
extreme but illustrative example, consider just one equation

Tz =21.

Sec. 3.1 Introduction 43

The best way to solve this “system” is by division,

<R

r=%=3.

Using the matrix inverse gives

z=(1"1Q21)
= (.142857)(21) = 2.99997.

The inverse requires more arithmetic—a division and a multiplication instead of just a
division—and produces a less accurate answer. However, the extra arithmetic is the main
reason we avoid computing the inverse. Similar considerations apply to systems of more
than one equation. This is even true in the common situation where there are several
systems having the same matrix A but different right-hand sides b. Consequently, we shall
concentrate on the direct solution of systems of equations rather than the computation of
the inverse.

The methods developed in the next section have five advantages over computing the
inverse: (1) they are cheaper by a factor of 3, (2) they generally produce more accurate
answers, (3) they are more flexible, in that they put the matrix in a form such that Ab,
A=, ATb, and A~Tb can all be easily computed for any vector b, (4) in general they
are better at preserving the “structure” of the matrix A (even if A has many zero entries,
A~! can have none), (5) they are more informative, in that they provide estimates of the
accuracy of the solution. Instead of forming the inverse, the methods factor the matrix
A into the product of matrices of simpler form.

It is important to distinguish between two types of matrices:

1. A stored matrix is one for which all n? matrix elements a;; are stored in the
computer memory. This limits the order n to be a few hundred on medium-scale
computers and about a thousand on larger computers.

2. A sparse matrix is one for which most of the matrix elements are zero, and the
nonzero elements can be either stored in some special data structure or regenerated
as needed. This type of matrix often results from finite-difference and finite-
element methods for partial differential equations. The order n is frequently as
large as several tens of thousands and occasionally even larger. An example of a
sparse matrix for which the elements can be easily regenerated is

4 1 00 00O

410000
0141000
0014100
0001410
0 00O0T1 41
0 00O0OT1 4

These two types overlap somewhat. A stored matrix may have many zero elements
and hence also be sparse, but if the zero elements are stored explicitly in memory, the

44 Linear Systems of Equations Chap. 3

sparsity is not important. A large but non-sparse matrix may be stored in secondary
memory such as disk or tape and thereby require more elaborate data-handling tech-
niques. A band matrix is one for which all the nonzero elements are near the diagonal,
specifically a;; = 0 for all 4, j with |¢ — j| > m, where m < n. The band width is said
to be 2m + 1, and the nonzero elements are situated on 2m + 1 diagonals. The matrix
shown above is a three-band matrix, called a tridiagonal matrix, and satisfies the above
conditions with m = 1.

Some of the computational techniques appropriate for stored matrices are quite
different from those appropriate for sparse matrices. The stored matrix methods are
the most basic and will be emphasized here. The methods can be modified to handle
matrices in secondary storage, band matrices, and other types of large or moderately
sparse matrices.

Let z* be the computed solution to the linear system Axz = b. There are two
common measures of the discrepancy in =*: The error

e=z—zx*
and the residual
r=b— Az* = A(x — z=*) = Ae.

The residual measures the amount by which the computed solution, when substituted
into the equations, differs from the right-hand side. Matrix theory tells us that, since
A is nonsingular, if one of these is zero the other must also be zero. But they are not
necessarily both “small” at the same time, as we will discuss. The methods presented
in this chapter will produce an accurate answer in the sense that the residual will be
“small.” It will not be possible to guarantee in advance that the error will also be small.
Thus, the computed solution will “nearly solve” the equations, but it might not resemble
the true solution. For many applications this will be adequate. When the matrix A is
nearly singular (i.e., when a small change in the equations will make the system singular),
tiny changes in the coefficients of the system can produce large changes in the solution,
even ignoring rounding errors. Thus, for these systems of equations it is unreasonable to
expect that * will be accurate. If it is known that the matrix is far from being singular,
then both the residual and the error will be satisfyingly small. It is possible to estimate
how close A is to being singular as a byproduct of solving Ax = b, and so the accuracy
of z* can be estimated if desired.

3.2 LINEAR SYSTEMS FOR STORED MATRICES

In this section we shall consider the solution of a linear system of algebraic equations
Az =D

with a stored, n-by-n matrix A and n-vectors b and . We assume that A is a nonsingular
matrix. If A is singular, in principle this will be revealed during the computation, but

Sec. 3.2 Linear Systems for Stored Matrices 45

in practice it may be difficult to decide. (By the way, a singular matrix A is one that
does not have an inverse. Equivalent definitions are that the determinant of A is zero,
that the rows of A are linearly dependent, and that there exists some non-zero vector z
such that Az = 0. From this last definition we can see that if A is singular and Az = b
for some vector x, then A(z + az) = b for any « and hence the solution of the linear
system is not unique. It is also a consequence of these definitions that Az = b will not
have any solution for certain values of the right-hand side b if A is singular.)

The algorithm that is almost universally used is one of the oldest numerical
methods—the systematic elimination method, generally named after C. F. Gauss. In
the late 1940’s, soon after the development of the electronic computer, it was one of
the first algorithms to be analyzed with regard to its behavior when programmed in
finite-precision arithmetic. The results that John von Neumann and others obtained were
considered pessimistic, in part because of their technical complexity, but also because
their point of view emphasized some of the worst aspects of the method. Gaussian elim-
ination fell into disfavor. Around 1960, primarily through the work of J.H. Wilkinson,
the method was revealed to be a nearly ideal algorithm, producing solutions that were
as good as any conceivable algorithm for the problem. Gaussian elimination has had a
central place in numerical analysis ever since.

Modern research on Gaussian elimination has revealed the importance of two ideas:
the need to pivot, and the interpretation of rounding errors. Gaussian elimination and
other aspects of matrix computation are studied in detail in the book by Golub and Van
Loan (1983). The reader who wishes more information than we have in this chapter
should consult this reference.

Gaussian elimination is based on the idea of reducing a general system of equations
to one of simpler form, one that is easier to solve. Here, “simpler” is taken to mean
“triangular,” as discussed in Example 3.2.

Example 3.2 Solving a Triangular System of Equations.
Consider a system of the form

102y — 7224+ 0xz3 = 7,

2.52, 4+ 523 =2.5,

6.2.’E3 =6.2.
In matrix form this is

10 -7 0 T 7
0 25 5 n|=125],
0 0 62 T3 6.2
and the non-zero elements all occur in the upper-right “triangle” of the matrix. This system
is easy to solve. From the last equation
6.223 =6.2,

we determine that z3 = 1. This value is substituted into the second equation:

2.5z2+(5)(1)=2.5.

46 Linear Systems of Equations Chap. 3

Hence x; = —1. Finally the values of x3 and z; are substituted into the first equation:
10z +(=N(=D+O0)1) =7.

Hence x; = 0. This solution can be easily verified using the original equations. H

This technique of solving triangular systems of equations is called back substitution.
For a general upper triangular system:

ailr ap - - - aln T b
ayp - ¢+ - G T by

= b
Ann Tn bn

the solution can be obtained from the following formulas

bn/ann, ifi=mn;
;= .
v (b; — Z?:i +1 aijacj)/aii, otherwise.

This is an efficient algorithm, requiring about n?/2 multiplications (note that there are
about n? /2 non-zero elements in the matrix). Also, the algorithm can be applied when-
ever a;; 7 0 for all . If some a;; = 0, then the matrix is singular. (Why?).

Back substitution is the second half of Gaussian elimination. The first half, the for-
ward elimination, takes a general non-singular matrix and reduces it to upper triangular
form. This algorithm is illustrated in Example 3.3.

Example 3.3 Gaussian Elimination.

Consider the following example of order 3:

10 -7 0 T 7
-3 2 6 | =|4].
5 -1 5 T3 6

This represents the three simultaneous equations
10z, — Tx> = 7,
=321+ 2z, + 623 =4,
Sz; — x2+4+5z3=6.

The first step uses the first equation to eliminate x; from the other equations. This is accom-
plished by subtracting —0.3 times the first equation to the second equation and subtracting
0.5 times the first equation to the third equation. The quantities —0.3 and 0.5 are called the

multipliers.
10 -7 0 z1 7
0 —-01 6 2 |=]61].
0 25 5 T3 2.5

Sec. 3.2 Linear Systems for Stored Matrices 47

The second step might involve using the second equation to eliminate z, from the third
equation. However, the coefficient of z, in the second equation is a small number, —0.1.
Consequently, the last two equations are interchanged. This is not actually necessary in
this example because there are no roundoff errors, but it is crucial in general for reasons

discussed below.
10 -7 O T 7
0 25 5 | =]25].
0 -0.1 6 3 6.1

Now, the second equation can be used to eliminate x, from the third equation. This is
accomplished by subtracting —0.04 times the second equation to the third equation. (What
would the multiplier have been if the equations had not been interchanged?)

10 -7 0 T 7
0 25 5 2 |=125].
0 0 62 T3 6.2
This is the same upper triangular system we examined earlier. B

In general, the forward elimination consists of n — 1 steps. At the k-th step,
multiples of the k-th equation are subtracted from the remaining equations to eliminate
the k-th variable. If the coefficient of z; is “small,” it is advisable to interchange
equations before this is done. The back substitution consists of solving the last equation
for x,, then the next-to-last equation for x,,_;, and so on until ; is computed from the
first equation.

At the k-th step of Gaussian elimination, the elements of the matrix A are modified
according to the following formula

a;j — a;; — (Qik/akk)ak;-

This calculation is carried out for ¢ > k and j > k. The term (a;x/axx) is referred to as
the multiplier.

We have already noted that the back substitution requires about n?/2 multiplica-
tions. A similar analysis can be performed on the forward elimination process. This
shows that about n*/3 multiplications are required for that step. For all practical values
of n the forward elimination dominates the computation. In analogy with Example 2.5
of Chapter 2, we often write that Gaussian elimination requires O(n®) operations.

The entire algorithm can be compactly expressed in matrix notation. It corresponds
to the factorization of A into simpler matrices: A = PLU, where L and U are triangular
and P is a permutation matrix that records the row interchanges. For the above example,

10 =7 0 1 00 1 0 0 100 -7.0 0.0
(—3 2 6) = (0 0 1) (0.5 1 0) (0 25 5.0) .
5 -1 5 010 -03 -004 1 0 0 62

The matrix P is just a rearrangement of the rows of the identity matrix, and records that
rows 2 and 3 of A were interchanged during the forward elimination. The matrix U

48 Linear Systems of Equations Chap. 3

is the final upper triangular matrix obtained at the end of the forward elimination. The
matrix L records the multipliers used during the forward elimination.

The factorization A = PLU is called an LU factorization or triangular fac-
torization of A. It should be emphasized that no new algorithm has been introduced.
Triangular factorization is simply Gaussian elimination expressed in matrix notation.

This factorization can be formed without knowledge of the right-hand side b. The
linear system Az = b can be solved by solving a sequence of simpler linear systems:
first solve Pz = b by reordering the elements of b; next solve Ly = z using “forward”
substitution; finally obtain = by solving Ux = y which is also a triangular system, via
back substitution. Mathematically,

z=U1ly=U"'"L72=U"L7'P o= (PLU) b= A",

so this is equivalent to solving the original system. When we apply these ideas to the

example above, we obtain
7
Pz=b: z= (6)
4

7.0
Ly=z: y= (2.5)
6.2
0.0
Uz=y: = (—1.0)
1.0
which is the same as before.

The diagonal elements of U are called pivots. The k-th pivot is the coefficient of
the k-th variable in the k-th equation at the k-th step of the elimination. In the example,
the pivots are 10, 2.5, and 6.2.

The subroutine SGEF'S in this chapter takes advantage of the fact that elimination
and back substitution can occur independently. The user’s input matrix is overwritten.
In place of the original matrix, U is stored in the upper triangle. Returned in the lower
triangle is the “below the diagonal” portion of L. This information, along with one extra
array that describes the sequence of pivots, is sufficient to allow the solution for any
right hand side b as we have just illustrated.

Both the computation of the multipliers and the back substitution require divisions
by the pivots. Consequently, the algorithm cannot be carried out if any of the pivots are
zero. Intuition should tell us that it is a bad idea to complete the computation if any of
the pivots are nearly zero. To see this, consider Example 3.4.

Example 3.4 Near-zero Pivots.

Let us change our example slightly to

10 -7 0 T 7
-3 2099 6 2 | =1 3901 |.
5 -1 5 T3 6

Sec. 3.2 Linear Systems for Stored Matrices 49

The (2,2) element of the matrix has been changed from 2.000 to 2.099, and the right-hand
side has also been changed so that the exact answer is still (0, —1,1)7. Let us assume that
the solution is to be computed on a hypothetical machine which does decimal floating-point
arithmetic with five significant digits.

The first step of the elimination produces

10 -7 0 T 7
0 —-1.0x1073 6 z | =| 6.001 |.
0 2.5 5 z3 2.5

The (2,2) element is now quite small compared with the other elements in the matrix.
Nevertheless, let us complete the elimination without using any interchanges. The next step
requires adding 2.5 x 10° times the second equation to the third. On the right-hand side,
this involves multiplying 6.001 by 2.5 x 10, giving 1.50025 x 10*, which cannot be exactly
represented in our hypothetical floating-point number system. It must either be chopped to
1.5002 x 10* or rounded to 1.5003 x 10*. The result is then added to 2.5. Let us assume
chopped arithmetic is used. Then the last equation becomes

1.5005 x 10*z3 = 1.5004 x 10*

and so

_ 1.5004 x 10*

= m = 099993-

z3

Since the exact answer is x3 = 1, it does not appear that the error is too serious. Unfortu-
nately, x> must be determined from the equation

—1.0 x 10~z 4(6)(0.99993) = 6.001,
which gives

1.5%x 1073
I = =

= Toxi0 -

Finally z, is determined from the first equation,
10z +(=7)(—1.5) =17,
which gives
z1 = —0.35.

Instead of (0, —1, 1)7, we have obtained (—0.35, —1.50,0.99993)7. W

Where did things go wrong? There was no ‘“accumulation of rounding errors”
caused by doing thousands of arithmetic operations. The matrix is not close to singular.
The difficulty comes from choosing a small pivot at the second step of the elimination.
As a result, the multiplier is 2.5 x 10°, and the final equation involves coefficients which
are 10° times as large as those in the original problem. Roundoff errors which are small

50 Linear Systems of Equations Chap. 3

when compared to these large coefficients are unacceptable in terms of the original matrix
and the actual solution. ’

We leave it to the reader to verify that if the second and third equations are
interchanged, then no large multipliers are necessary and the final result is satisfactory.
This turns out to be true in general: If the multipliers are all less than or equal to 1
in magnitude, then Gaussian elimination is a stable algorithm, producing a computed
solution likely to be as accurate as that produced by any algorithm for this problem.

Keeping the multipliers less than one in absolute value can be ensured by a process
known as partial pivoting: At the k-th step of the forward elimination, the pivot is taken
to be the largest (in absolute value) element in the unreduced part of the k-th column.
The row containing this pivot is interchanged with the k-th row to bring the pivot element
into the (k, k) position. The same interchanges must be done with the elements of the
right-hand side b. The unknowns in x are not reordered because the columns of A are
not interchanged.

The rounding errors introduced during the computation almost always cause the
computed solution—which we now denote by z*—to differ somewhat from the theoret-
ical solution z = A~!'b. In fact, it must differ because the elements of x are usually not
floating-point numbers.

The following example illustrates that the residual and the error, two common
measures in the accuracy of our solution, need not both be small at the same time.

Example 3.5 Errors and Residuals.
We now examine Example 2.3 of Chapter 2 in more detail. Consider the problem
(0.780 0.563) (3:1) _ (0.217)
0.457 0.330) \z2 0.127 /"
What will happen if we carry out Gaussian elimination with partial pivoting on a hypothetical

three-digit decimal computer which rounds? First, the multiplier

0.457
0.780

is computed. Next, 0.586 times the first row is subtracted from the second row to produce

the system
(0.780 0.563) (zl) _ (0.254)
0 0.0000820 z2) \ —0.000162) °

Finally the back substitution is carried out:

=0.586 (to three places)

—0.00162
Iy = m =—-1.98 (tO three places),
4 = [0217 - 0.563z3]
' 0.780

=1.71 (to three places).

*_(1.71)
T =198

Thus the computed solution is

Sec. 3.2 Linear Systems for Stored Matrices 51

To assess the accuracy without knowing the exact answer, we compute the residuals (ex-
actly):

_ . _ (0.217 — [(0.780)(1.71) +(0.563)(—1.98]
r=b-dz = (0.127 — [(0.467)(1.71) +(0.330)(—1.98)])
_ (—0.00206)

=\ -0.00107)"

The residuals are less than 1072, We could hardly expect better on a three-digit machine.
However, it is easy to see that the exact solution to this system is

_ (1.000)
=\ -1.000/"
So the error is almost as large as the solution. l

Were the small residuals just a lucky fluke? First, the reader should begin to realize
by now that this example is highly contrived. The matrix is incredibly close to being
singular and is not typical of most problems encountered in practice. Nevertheless, let
us track down the reason for the small residuals.

If Gaussian elimination with partial pivoting is carried out for this example on
a computer with six or more digits, the forward elimination will produce a system
something like

0.780000 0.563000 T\ _ 0.212000
0 0.000140 zy)~ \ —0.000140 /

Now the back substitution produces

—0.000140

2= —5 000140 ~ 100000,
0.217 — 0.563z,

I = W = 100000,

the exact answer. On our three-digit machine, x, was computed by dividing two quan-
tities both of which were on the order of rounding errors. Hence x, can turn out to be
almost anything. In fact, if we use a machine with nine binary digits, we shall obtain a
completely different value. Then this completely arbitrary value of x, was substituted
into the first equation to obtain z;. We can reasonably expect the residual from the
first equation to be small—z; was computed in such a way as to make this certain.
Now comes a subtle but crucial point. We can also expect the residual from the second
equation to be small, precisely because the matrix is so close to being singular. The two
equations are nearly multiples of one another, so any pair (1, x2) which nearly satisfies
the first equation will also nearly satisfy the second. If the matrix were known to be
exactly singular, we would not need the second equation at all—any solution of the first
would automatically satisfy the second.

52 Linear Systems of Equations Chap. 3

Although this example is contrived and atypical, the conclusion we reached is not.
It is probably the single most important fact which people concerned with matrix com-
putations have learned in the past 40 years: Gaussian elimination with partial pivoting
is guaranteed to produce small residuals.

Now that we have stated it so strongly, we must make a couple of qualifying
remarks. By “guaranteed” we mean it is possible to prove a precise theorem which
assumes certain technical details about how the floating-point arithmetic system works
and which establishes certain inequalities which the components of the residual must
satisfy. If the arithmetic units work some other way or if there is a bug in the particular
program, then the “guarantee” is void. Furthermore, by “small” we mean on the order
of roundoff error relative to three things: the elements of the original coefficient matrix,
the elements of the coefficient matrix at intermediate steps of the elimination process,
and the elements of the computed solution. If any of these are “large,” then the residual
will not necessarily be small in an absolute sense. We can say this roughly as

Size of residuals o Size of solution x Size of A X €,ch

However, even if the residual is small this does not imply that the error will
be small. The relationship between the size of the residual and the size of the error is
determined in part by a quantity known as the condition number of the matrix, cond(A),
in roughly the following way,

Size of error in solution o Size of solution x cond(A) X €y ach

The condition number is an inherent property of a matrix and has nothing to do
with how we solve a system of equations. Matrices with larger condition numbers result
in larger errors when we solve Az = b. One useful interpretation of the condition number
is that its logarithm approximates the number of digits which will be lost while solving
Az = b. Thus if cond(A) = 10° and if machine epsilon is 10~8, then the best we can
expect is that the solution will be accurate to about three digits.

What is the condition number and why does it play such an important role? We
show in Section 6 that cond(A) measures how close A is to being singular, and more
to the point it measures how sensitive the solution of Az = b is to changes in A and
b. The coefficients in the matrix and right hand side of a system of equations are
rarely known exactly. Some systems arise from experiments, and so the coefficients are
subject to observational errors. Other systems have coefficients given by formulas which
involve roundoff error in their evaluation. Even if the system can be stored exactly in
the computer, it is almost inevitable that roundoff errors will be introduced during its
solution. Thus knowing how the solution is affected by changes in A and b is useful, but
more importantly it can be shown that roundoff errors in Gaussian elimination have the
same effect on the answer as roundoff errors in the original components. We discuss these
ideas in detail in Section 6, but the two results above concerning the size of residuals
and errors are the key points you need to remember to effectively use the software in
this chapter.

Sec. 3.2 Linear Systems for Stored Matrices 53

The above results can be misleading when the solution is badly scaled, that is,
when the components of = vary widely in size. An example of a badly-scaled vector
would be

x = (10°,10"%T.

When z is the solution to a system of linear equations, the errors in x will usually be
proportional to the largest component of z, in this case 10°. If x; were accurate to four
decimal digits, the error in z, would be approximately 10° x 10~* = 10!, and thus it would
be unreasonable to expect that z; had any correct digits. This problem can sometimes
be corrected when setting up the system by changing the units of measurement.

Some software for solving linear equations attempts to perform this rescaling au-
tomatically. Unfortunately, automatic methods are not guaranteed to be successful, and
can sometimes increase the error in the computed solution. For this reason, the software
in this chapter does not attempt to scale the equations.

3.2.1 Vector Norms

A discussion of Gaussian elimination is clarified and made more precise by introducing
the idea of a norm of a vector or a matrix. This will allow us to compare the sizes of
vectors and matrices. To compare numbers, we use the absolute-value function | - |, so
that

[7] > |5 and |-3|>|-1.5|.

A vector norm is a single number which measures the general size of the elements of
a vector x. This is written ||[z||. There are many ways to do this. Theoretically, any
function which satisfies the four conditions below is an acceptable norm. Most theorems
which are couched in terms of norms are true regardless of the precise norm that is
being used. Consequently, you can comfortably read these results by replacing the norm
symbol ||z|| by “size of z.” However norms also occur within computations and then
the particular norm being used matters a great deal. The most common vector norm is
the Euclidean length, or 2-norm

1

o

2

el = (Z |xi|2) -
1=1

This has the advantage that it corresponds to our intuitive notion of distance. It will be
used extensively in Chapter 6. However, when it is used to study linear equations, the
2-norm leads to expensive computations. Instead, in this chapter, we define the norm of
a vector with n components to be

n
lzll, = ll,
T =l

54 Linear Systems of Equations Chap. 3

which is called the 1-norm. This is sometimes referred to as the “Manhattan distance”
since ||z — y|| measures the number of blocks you would walk to get between two
locations x and y in the city. The Euclidean length is “as the crow flies.” A third
commonly used norm is the max-norm or co-norm,

[l = max fa;].
When we need to distinguish between these we will use subscript notation

el lzlly, or el -

If we omit the subscript the 1-norm is being used.
To return to the earlier point, a norm is any function satisfying

llz|| > 0if z #0,

o] = o,

llez|| = |c| - ||z|| for all scalars c,
Iz +yll < llll +llyll -

Thus a norm has many of the analytic properties of Euclidean length. Some of the
geometrical properties of Euclidean length are lost, but they are not too important.

3.3 SUBROUTINE SGEF'S

Almost any computer library has subroutines based on variants of Gaussian elimina-
tion with partial pivoting for solving systems of simultaneous linear equations. The
implementation details of various subroutines are quite different. These details can have
important effects on the execution time of a particular subroutine, but if the subroutine
is properly written, they should have little effect on its accuracy.

In this section, we shall describe one such subroutine, SGEF'S that is built upon
routines from Linpack library developed at the Argonne National Laboratory. Linpack
contains routines for solving linear systems of equations and related matrix computations.
The algorithms are based upon Gaussian elimination, sometimes adapted to systems hav-
ing special form, such as banded or symmetric systems. Each routine has four variants,
for real single, real double, complex single, and complex double precision arithmetic.
Linpack has a set of core routines, called the Basic Linear Algebra Subroutines (BLAS),
which perform routine tasks such as computing the norm of a vector. When Linpack
is installed on a special computer, such as a vector or parallel machine, a version of
the BLAS specially designed for the machine can be used, and the programs will run
at near-optimal efficiency. Without this modular construction, Linpack would have to
be rewritten for the special computer at great cost. The BLAS have been so useful that
an extended set of basic subroutines is now being developed to perform more powerful
matrix operations.

Sec. 3.3 Subroutine SGEF'S 55

SGEFS handles both the factorization of the matrix, and the back-substitution; if
it is necessary to solve additional systems of equations where only the right-hand side
changes, then the factorization need only be done once. SGEFS also returns an estimate
of the number of accurate digits in the solution, derived from an estimate for the condition
number of the matrix. If the matrix is computationally singular, an error code is returned.

The subroutine parameter IND returns an estimate of the number of accurate digits
in X. IND is computed from RCOND, an estimate for the reciprocal of the condition
number. 1/RCOND is a lower bound for the actual condition, but it is computed in such
a way that it is almost always within a factor of n of the actual condition, and it is usually
much closer. In other words, for almost all matrices the estimate RCOND satisfies

cond(4) < < cond(A).
n RCOND

In those situations where 1/RCOND < cond(A)/n, it still measures the sensitivity of
solutions for most right-hand sides.

Roundoff error usually prevents SGEF'S, or any other Gaussian elimination subrou-
tine, from determining whether or not the input matrix is singular. If a computed pivot is
exactly zero during the elimination, SGEFS sets an error code and does not attempt the
back substitution. However, the occurrence of a zero pivot does not necessarily mean
that the matrix is singular, nor does a singular matrix necessarily produce a zero pivot. In
fact, the most common source of zero pivots is some kind of bug in the calling program!

It should be realized that with partial pivoting, any matrix has a triangular factor-
ization. SGEFS actually works faster when zero pivots occur because they mean that
the corresponding column is already in triangular form. The only difficulty with a zero
pivot is that back substitution will fail.

To comment upon some details in SGEFS, we need to examine how Fortran systems
store matrices. If a program contains the dimension statement

DIMENSION A(3,5)

then 3 x 5 = 15 locations will be reserved in memory for the elements of A. They will
be stored in the following order:

A(l,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2) A(1,3)

In other words, the elements of each column are stored together. The elements of each
row are separated from each other by a number of locations equal to the first subscript in
the dimension statement. This convention has been written into the American National
Standards Institute specifications for Fortran.

Most, but not all, Fortran dialects have provision for variable dimensions in arrays
which are subroutine parameters. In a main program, one may specify

DIMENSION A (50, 70)

but intend to actually work with an N X N matrix where N may vary from problem
to problem. Subroutines such as SGEFS need both NV, the actual working order, and

56 Linear Systems of Equations Chap. 3

the quantity 50 used in the dimension statement because that is the memory increment
between successive elements of a row. This dimension information is called LDA in
SGEFS, and is an acronym for Leading Dimension of A.

SGEFS can be used to compute determinants. This is possible because of three
basic properties of determinants. Subtracting a multiple of one row from another row does
not change the determinant. Interchanging two rows changes the sign of the determinant.
The determinant of a triangular matrix is simply the product of its diagonal elements.
Thus, except for the sign, the determinant is the product of the diagonal elements of the
output matrix. One annoying feature of computing determinants is that the intermediate
products, and often the determinant itself, tend to be very large or very small numbers and
consequently may easily cause floating-point overflow or underflow. One easy remedy
is to compute the logarithm of the absolute value of the determinant as the sum of
logarithms of its factors. Linpack contains routines for computing the determinant and
the inverse of a matrix; it is recommended that these be used when determinants are
required.

The complete documentation for SGEFS can be found in Section 11. The following
main program illustrates the use of SGEFS. Note that LDA = 10, the declared dimension
of the array A, while N = 3, the actual order of the matrix. In our experience, improper
setting of LDA is a frequent source of error. We have set up the matrix and right-hand
side using assignment statements simply to avoid worrying about the format of the data.

The example is the one used in Section 2. The output is

COEFFICIENT MATRIX =
10.000000 -7.000000 0.000000
-3.000000 2.000000 6.000000
5.000000 -1.000000 5.000000
RIGHT-HAND SIDE =
7.000000 4.000000 6.000000
NUMBER OF ACCURATE DIGITS = 6
SOLUTION =
0.000000 -1.000000 1.000000

Here is the program:

C SAMPLE PROGRAM FOR SGEFS

C
PARAMETER (LDA=10)
REAL A(LDA,LDA), B(LDA), WORK(LDA), RCOND
INTEGER IWORK(LDA), I, J, N, ITASK, IND
C
C SET UP PROBLEM
C
N = 3
ITASK = 1
A(l,1) = 10.0

A(2,1)

-3.0

Sec. 34 Historical Perspective: J.H. Wilkinson
A(3,1) = 5.0
A(1,2) = -7.0
A(2,2) = 2.0
A(3,2) = -1.0
A(1,3) = 0.0
A(2,3) = 6.0
A(3,3) = 5.0
B(1) = 7.0
B(2) = 4.0
B(3) = 6.0
C
C PRINT PROBLEM INFORMATION
c
WRITE (*,*) ' COEFFICIENT MATRIX =’
DO 10 I = 1,N
WRITE (*,800) (A(I,J), J = 1,N)
10 CONTINUE
WRITE (*,*) ’ RIGHT-HAND SIDE =’
WRITE (*,800) (B(J), J = 1,N)
o
C SOLVE LINEAR SYSTEM
o
CALL SGEFS (A, LDA, N, B, ITASK, IND, WORK, IWORK,
C
C PRINT RESULTS
o
IF (IND .EQ. -10) THEN
WRITE (*,*) '/ ERROR CODE =’, IND
ELSE IF (IND .LT.0) THEN
WRITE (*,*) ’ ERROR CODE =’, IND
STOP
ELSE
WRITE (*,*) ’ NUMBER OF ACCURATE DIGITS =’, IND
END IF
o
WRITE (*,*) ' SOLUTION ='
WRITE (*,800) (B(J), J = 1,N)
C
STOP
800 FORMAT (4X, 3F12.6)
END

3.4 HISTORICAL PERSPECTIVE: J.H. WILKINSON

57

RCOND)

The work of James H. Wilkinson (1919-1986) has completely altered our perception
of computer algorithms. Up until the 1950’s the performance of a numerical algorithm

58 Linear Systems of Equations Chap. 3

would be determined by the accuracy of its solution; that is, we would assess an algorithm
by asking, “How big iS Zcomputed — Ttrue?” This seems like a reasonable question, in
fact it seems like the only reasonable question to ask of an algorithm.

Before the invention of the electronic computer, algorithms were rarely judged
in terms of rounding errors. When working with pencil and paper, the accuracy of
calculations can be adjusted to suit the circumstances, potential difficulties are handled
almost instinctively, and the total number of calculations is small, so rounding errors
are not an issue. However, when calculations are automated, arithmetic operations are
done using a fixed and finite number of digits, and the number of calculations can stretch
into the thousands and millions. The early inventors of the computer realized this, and
began analyzing the rounding-error properties of algorithms in the 1940’s, as soon as the
machines were available.

The first problem examined was the solution of Az = b using Gaussian elimina-
tion. Alan Turing in Britain and John von Neumann in the United States among others
discovered that the computed solution might be quite different from the true solution
for general systems of equations. The 2 x 2 matrix in Example 3.5 illustrates this. The
results were complicated because they had to take into account the technicalities of the
computer arithmetic, and were mysterious because of a strange factor that arose in the
results. This “strange factor” was the condition number, which was not well understood
at that time. The results seemed to imply that for many systems of linear equations,
rounding errors would overwhelm the calculation and the computed solution would be
of no value.

James Wilkinson had been involved in ballistics calculations during World War
II. The computer was not available in Britain until the late 1940’s, and so calculations
were done by people (often women since men were taken for military service) with desk
calculators. At various times, Wilkinson had had to solve systems of linear equations
this way, with as many as 12 variables. This is well over 1000 hand calculations, since
each calculation would have to be checked for correctness. As one final check on the
solution, he would compute the residual b — Az, which would always be gratifyingly
small.

This experience made Wilkinson suspicious of the pessimistic rounding-error anal-
ysis of Gaussian elimination. It was not that the theoretical results were wrong. As
our example illustrated, the computed solution need bear no relation to the true solution.
This will happen whenever the matrix is nearly singular. Instead, it was that the wrong
question was being asked. It is not fair to expect that an algorithm will produce an
accurate solution when the solution is not well determined by the data for the problem,
i.e., when the problem is nearly the same as one with multiple solutions.

Wilkinson had been educated at Trinity College, Cambridge, as a mathematician;
after the war, he could have returned there, but instead in 1946 went to work at the
National Physical Laboratory. Half of his time was assigned to desk machine calculations,
but the other half was spent assisting Alan Turing in the design of the ACE (Automatic
Computing Engine), one of the first British computers. Turing was already at work
at version V of his design, an outgrowth of his wartime work in deciphering German
military codes. Turing was brilliant, and quickly moved on to versions VI, VII, and

Sec. 3.5 Column-oriented Algorithms 59

VIII. However, he was also eccentric and sometimes difficult to deal with, and he left
the Laboratory to work at Cambridge before a machine could be built. The Laboratory
continued to develop a computer under different management, but for practical reasons
the project was scaled back. Version V of the ACE was simplified, and was built as the
Pilot ACE.

Wilkinson had stayed on the project, and gained his first computing experience
with this machine. To test the arithmetic of the Pilot ACE, he wrote a program to find
the roots of polynomials, and tried it out on some examples where he knew the answers.
One of his first tests was finding the roots of

p@)=(@—1)z—2) - (x —20)=22 - 2102 +...=0.

To his surprise, the computed roots weren’t even close to the true roots. Since the
machine was experimental, he assumed the problem must be in his program, or in the
hardware, but a week’s search left him back where he started.

The only thing left to consider was the problem itself. He discovered that the roots
of this polynomial are incredibly sensitive to changes in the coefficients. In other words,
even though the computed roots seem inaccurate, they are still the roots of a polynomial
that is close to the original one. This throws the difficulty back on the problem, and
allows us to consider the method more objectively.

Wilkinson later applied this point of view to the solution of Az = b. As he
reasoned, the computed solution from Gaussian elimination may not be accurate, but it
is the exact solution to a nearby problem. What more could you want? Almost any
problem, just by storing it in the finite precision arithmetic of the computer, is changed
to some nearby storable problem. So in general, no algorithm can be expected to exactly
solve a set of linear equations. But a good algorithm will always exactly solve a slightly
altered problem. Another way of putting this is that the computed solution will “behave
like” the true solution. In our case, this means that the residuals will be small, that the
computed solution will nearly solve the equations.

This point of view has pervaded numerical analysis. The techniques Wilkinson
used are now referred to as “backward” error analysis. A good algorithm is one that is
good in this “backward” sense.

3.5 COLUMN-ORIENTED ALGORITHMS

Many of the common matrix operations are most naturally described in terms of rows.
For example, in Gaussian elimination, a multiple of one row is subtracted from another
row. When implemented in Fortran, such operations typically have the innermost loops
varying the second index of arrays. Since Fortran stores matrices by columns, this has
two potentially adverse effects on program efficiency: (1) Subscript calculations may be
more costly. (2) Operating systems which automatically move data between high-speed
and secondary memory units during computation may have to do an excessive amount
of work. For these reasons, in SGEFS Gaussian elimination has been implemented in a
somewhat unconventional manner with all the inner loops varying the first index. Such

60 Linear Systems of Equations Chap. 3

an implementation can be significantly more efficient with some operating systems. This
is especially true on certain “supercomputers” such as the Cray computers that have
special hardware instructions to move consecutive cells in memory quickly. It is also
true when the matrix is so large that it will not fit in the high-speed memory of the
computer and must be moved in pieces to and from other devices.

We will illustrate the ideas on a simpler algorithm, the multiplication of a vector
by a matrix. Consider the following 3 x 3 problem

1 2 3 10
Compute b= Ax = (4 5 6) (11) .
7 8 9 12

The traditional formulas for this calculation would compute b as follows

1-10 + 2-11 4+ 3-12 68
b=(4-10 + 5-11 + 6-12)=(167).
7-10 + 8-11 + 9-12 266

When carried out in this way, the calculation uses the matrix A by rows; that is, the
elements of A are used in the following order: 1, 2, 3, 4, 5, 6, 7, 8, 9. To use A by
columns (that is, in the order 1, 4, 7, 2, 5, 8, 3, 6, 9) we rearrange the computation in

the form
1 2 3
b=10 (4) +11 (5) +12 (6) .
7 8 9

This gives the same solution as before. In fact, it gives exactly the same rounding errors
as before, so that even on a computer the two answers will be the same.

More generally, if we are trying to compute the product b = Ax for arbitrary A
and z, the traditional formulas are

n
bi= E ai;Tj.
J=1

To obtain a column-oriented method, let a; be the j-th column of the matrix A, so that
A=(a; ay - ayp).

The revised but equivalent formula is then

n
b= E z;a;.
i=1

Converting from a row-oriented computer program to a column-oriented one is
often easy. In this case, the row-oriented program is

DO 20 I = 1,N

Sec. 3.6 *More about Condition Numbers 61

B(I) = 0.0
Do 10 J = 1,N

B(I) = B(I) + A(I,J)*X(J)
10 CONTINUE
20 CONTINUE

The column-oriented program is

DO 5 I = 1,N
B(I) = 0.0
5 CONTINUE
DO 20 J = 1,N
DO 10 I = 1,N

B(I) = B(I) + A(I,J)*X(J)
10 CONTINUE
20 CONTINUE

The only significant change is the reordering of the DO loops; the arithmetic in the pro-
gram remains the same.

*3.6 MORE ABOUT CONDITION NUMBERS

To understand cond(A) we have to make the idea of “nearly singular” precise. If A is
a singular matrix, then for some b’s a solution x will not exist, while for others it will
not be unique. If this is not familiar, review the definition of a singular matrix at the
beginning of Section 2. If A is nearly singular, we can expect small changes in A and
b to cause large changes in . On the other hand, if A is the identity matrix, then b and
x are the same vector. So if A is nearly the identity, small changes in A and b should
result in correspondingly small changes in z.

At first glance, it might appear that there is some connection between the size
of the pivots encountered in Gaussian elimination with partial pivoting and nearness
to singularity, because if the arithmetic could be done exactly, all the pivots would be
nonzero if and only if the matrix is nonsingular. To some extent, it is also true that if the
pivots are small, then the matrix is close to singular. However, when roundoff errors are
encountered, the converse is no longer true—a matrix might be close to singular even
though none of the pivots are small.

To get a more precise and reliable measure of nearness to singularity than the size
of the pivots, we need to utilize the concept of a vector norm introduced in Section 2.1.
Multiplication of a vector x by a matrix A results in a new vector Az which may have
a different norm from z. This change in norm is directly related to the sensitivity we

62 Linear Systems of Equations Chap. 3

wish to measure. The range of the possible change can be expressed by two numbers,

A
M = max I z||’
= =]
_ min 142l
m = min :
= |l

The max and min are taken over all nonzero vectors. Note that if A is singular, then
m = 0. The ratio M/m is called the condition number of A,

Ax
MaXz

. |Az| *
Mg g

cond(A) =
Consider a system of equations
Az =b
and a second system obtained by altering the right-hand side:

Az + Az) = b+ Ab.

We think of Ab as being the error in b and Ax as being the resulting error in x, although
we need not make any assumptions that the errors are small. Since A(Azx) = Ab, the
definitions of M and m immediately lead to

[l < M |||
and
|Ab]| > m Az .
Consequently, if m #0,
Al _ o aea 1200
] 18]

The quantity ||Ab]| /||b|| is the relative change in the right-hand side, and the quantity
[|Az|| / ||| is the relative error caused by this change. The advantage of using relative
changes is that they are dimensionless.

This shows that the condition number is a relative error magnification factor.
Changes in the right-hand side may cause changes cond(A) times as large in the so-
lution. It turns out that the same is true of changes in the coefficient matrix.

The condition number is also a measure of nearness to singularity. Although we
will not develop the mathematical tools necessary to make the idea precise, the condition
number can be thought of as the reciprocal of the relative distance from the matrix to
the set of singular matrices. So, if cond(A) is large, A is close to singular.

Sec. 3.6 *More about Condition Numbers 63

Some of the basic properties of the condition number are easily derived. Clearly
M > m, and so

cond(A) > 1.

If P is a permutation matrix, then the components of Px are simply a rearrangement of
the components of z. It follows that || Pz|| = ||z|| for all z, and so

cond(P) = 1.

In particular, cond(/) = 1. If A is multiplied by a scalar ¢, then M and m are both
multiplied by the same scalar, and so

cond(cA) = cond(A).

If D is a diagonal matrix, then

cond(D) = M 1]
min |d;;|
Thus for the matrix
1
2
D= 3
4
5

we have M =5 and m =1 so that cond(D) =5/1 =5.

The last two properties are two of the reasons that cond(A) is a better measure of
nearness to singularity than the determinant of A. As an extreme example, consider a
100 x 100 diagonal matrix with 0.1 on the diagonal. Then det(A) = 10~!% which is
usually regarded as a small number. But cond(A) = 1, and the components of Az are
simply 0.1 times the corresponding components of z. For linear systems of equations,
such an A behaves more like the identity than like a singular matrix.

The following example illustrates the condition number.

Example 3.6 The Condition Number.

Consider the linear system with

Clearly Az = b, and

llofl =13.8, [|lz|| = 1.

64

Linear Systems of Equations Chap. 3

For this example it is possible to compute the condition number, although we will not work
out the details here,

cond(A) =2249.4.

(Normally this can only be estimated.) Recall that this means, roughly, that a relative change
in the right-hand side propagates into a relative change in the solution about four orders of
magnitude larger. To test this, we change the right-hand side to

,_ (9.70
b ‘(4.11)’

. (0.34)
*=\o97/)"

Let Ab=b—1b' and Az =z — z'. Then

the solution becomes

|Abl| =001, [Az|=1.63.

We have made a small perturbation in b which completely changes z. In fact, the relative
changes are

[Ab]|
l[oll

|Az|
[l

The ratio of these is 1.63/0.0007246 = 2249.4, i.e., exactly equal to cond(A). Of course,
this doesn’t usually happen. We know for sure that
|| &bl

|Az]|
< cond(A)———,
llzll 1]

=1.63.

= 0.0007246,

but for this example, we have carefully chosen b and Ab to illustrate the worst-case behav-
ior. However, if b and Ab had been chosen randomly, similar behavior would have been
observed. l

It is important to realize that this example is concerned with the exact solutions to

two slightly different systems of equations and that the method used to obtain the solutions
is irrelevant. The example is constructed to have a fairly large condition number so that
the effect of changes in b is pronounced, but similar behavior can be expected in any
problem with a large condition number. This is an ill-conditioned problem.

Suppose we wish to solve a problem in which a;,; = 0.1, all the other elements of

A and b are integers, and cond(A) = 10°. Suppose further that we have a binary computer
with 24 bits in the fraction and that we can somehow compute the exact solution to the
system actually stored in the computer. Then the only error is caused by representing
0.1 in binary, but we can expect

[|[Az]]

=8~ cond(A) x 27 =~ 6 x 1073,

k4l

Sec. 3.7 *Norms and Error Analysis 65

In other words, the simple act of storing the coefficient matrix in the machine might
cause changes in the third significant figures of the true solution. We may summarize all
these ideas in a practical rule of thumb; in solving a linear system of equations, relative
accuracy in the solution is proportional to relative accuracy in the coefficient matrix or
right-hand side, with constant of proportionality as large as the condition number.

The condition number also plays a fundamental role in the analysis of the roundoff
errors introduced during the solution by Gaussian elimination. Let us assume that A
and b have elements which are exact floating-point numbers and let z* be the vector of
floating-point numbers obtained from a linear equation solver such as the SGEFS. We
also assume that exact singularity is not detected and that there are no underflows or
overflows. Then it is possible to establish the following inequalities:

|b— Az*||

T < Ce ,

[A]l - fJz*]| =~ “mach
% < C cond(A)epach-

Here €p4ch s the machine epsilon discussed in Section 5 of Chapter 2. The constant C
is discussed further below, but it usually is not much larger than 1.

The first inequality says that the relative residual will usually be about the size
of roundoff error, no matter how badly conditioned the matrix is. This was illustrated
by Example 3.5. The second inequality requires that A be nonsingular and involves
the exact solution x. It follows directly from the first inequality and the definition of
cond(A) and says that the relative error will also be small if cond(A) is small but might
be quite large if the matrix is nearly singular. In the extreme case where A is singular
but the singularity is not detected, the first inequality still holds, but the second has no
meaning.

The basic result in the study of roundoff error in Gaussian elimination is due to J.
H. Wilkinson. He proved that the computed solution z* exactly satisfies

(A+ E)z* = b,

where E is a matrix whose elements are about the size of roundoff errors in the elements
of A. Thus all the rounding errors can be lumped together and considered as a single
perturbation made when the matrix is stored in the computer, with no errors thereafter.
Since storage of almost any matrix in the computer will lead to perturbations the size
of E, this is the best that can be said about any algorithm for solving linear equations.
Thus in this sense Gaussian elimination is an ideal algorithm for solving Az = b.

To be more precise about the constant C and the perturbation matrix F, it is
necessary to introduce the idea of a matrix norm and establish some further inequalities.
For those readers who are interested, this is discussed in the next section.

66 Linear Systems of Equations Chap. 3
*3.7 NORMS AND ERROR ANALYSIS

In this section, we examine more carefully the Gaussian elimination algorithm, especially
the effect of rounding errors on the accuracy of the computed solution. As above with
vectors, we require some measure of the size of a matrix, that is, we need to define a
matrix norm. We could define a matrix norm || A|| in the same way we defined a vector
norm, for example

1A= laij]-
i=1 j=1

It would have all the properties of a vector norm and would allow us to compare the sizes
of matrices. However, since we are working with linear equations, we will be interested
in measuring ||Az||, and so it would be desirable if

Azl < 1Al - [l=]I,

and that || Az|| = ||A|| - ||| for some particular . To permit this, a different norm will
be used. We will define the norm of a matrix to be the quantity M defined earlier. Thus

|A]l = M = max ||A$”
0 ||z

This has all the properties of a vector norm as well as the extra properties mentioned
above. Because of our particular definition of ||z||, it is not hard to show that if A has
columns a;, then

41l = max la; .

If we had chosen to use the Euclidean length of a vector, then ||A|| would be more
expensive to compute.

We now return to Wilkinson’s result that the computed solution z* exactly satisfies
(A+ E)x* = b, where E has elements at roundoff level. There are some rare situations
where the intermediate matrices obtained during Gaussian elimination have elements
which are larger than those of A, leading to especially large rounding errors, but it can
be expected that if C is defined by

]
= o
4]l €mach’

then C will rarely be much bigger than n.
From this basic result, we can immediately derive inequalities involving the residual
and the error in the computed solution. The residual is given by

b— Az* = Ex*,

Sec. 3.7 *Norms and Error Analysis 67

and hence
6 —Az™| = ||[Ez*|| < | E| ||l=*|-

The residual involves the product Az*, so it is appropriate to consider the relative residual
which compares the norm of b — Az* with the norms of A and z*. It follows directly
from the above inequalities that

b — Az*||
—— < (Ce .
PANER] mach

When A is nonsingular, the error can be expressed using the inverse of A by
z—z*=A"1(b— AzY),
and so
e —z*|| < AT IE] =] -

It is simplest to compare the norm of the error with the norm of the computed solution.
Thus the relative error satisfies

[l — =]

[l

It turns out that ||A~!|| = 1/m, and so

< ClAll ”A—l” €mach-

cond(4) = [|A] ||A7"]| .

Thus
lz —=*||

[Eagl

The actual computation of cond(A) requires knowing A~!. If a; are the columns
of A and &; are the columns of A~!, then in terms of the vector norm we are using

< Ccond(A)emach-

cond(A) = max ||a;|| - max ||a;]| -
J J

It is easy to compute ||A|, but finding || A~'|| would roughly triple the time required for
Gaussian elimination. Fortunately, the exact value of cond(A) is rarely required. Any
reasonably good estimate of it is satisfactory.

The subroutine SGEF'S described in Section 3 estimates the condition of a matrix
by solving two auxiliary systems of linear equations. With a factorization of A already
available, this only requires O(n?) arithmetic operations, and thus is inexpensive when
compared with the cost of solving the original system of equations. Some details of how
the estimate is computed are given in Section 8.

68 Linear Systems of Equations Chap. 3

*3.8 ESTIMATING THE CONDITION NUMBER

After we have solved a system of linear equations, we would like to be able to estimate
how accurate the computed solution is. Our earlier analysis shows that the error in the
solution can be bounded in terms of the condition number of the matrix in the linear
system. Recall that the condition number is defined by

llA=z|
max
2 =l

min _Ln |

This is mathematically equivalent to the following

cond(A) = || 4] - [|A7-

cond(A) =

For convenience, we have used the 1-norm. If a; is the j-th column of the matrix A,
then the norm is defined by

141l = max ;] .

This is fine for computing || Al|, in fact we will use this formula in our estimate of the
condition number. However, if we were to use it to compute ||A~!|| then we would
have to know A~! explicitly. Computing A~! would be more expensive than solving
the system of linear equations in the first place, and so this is undesirable.

Instead, we will attempt to estimate ||A~!|| using far fewer calculations. Our
estimate will not be accurate for every matrix A, but in virtually all cases it will produce
a condition number estimate that has the correct order of magnitude. Since we are
primarily interested in the condition number to estimate the accuracy of our solution, this
will allow us to estimate the number of accurate digits in our solution, which is adequate
for most applications. The cost of the estimate will be O(n?) arithmetic operations, about
the cost of a couple of back-substitutions, and much lower than the total cost of O(n®)
operations required to factor the matrix.

To estimate ||A“1 || we return to the first definition above

-1
= = 1 min 1A g Bl _ 147"y
T Azl v lyll
where we have made the change of variables y = Az. To estimate this quantity, we
will carefully pick a vector y, solve Az = y via back-substitution, and use ||z|| / ||y|| =
| A=yl / llyll as our estimate of | A~
If the vector y were chosen at random, then there is a small chance that we might

severely underestimate ||A~'||. To reduce the possibility of failure, the vector y is
selected in a more elaborate way. One approach is to first solve
ATy =c

where c is a vector with entries c; = 1. The signs of the components of c are chosen to
make y large (recall that we are trying to guess the solution to a maximization problem).
This approach is illustrated in Example 3.7.

Sec. 3.8 *Estimating the Condition Number 69

Example 3.7 Estimating the Condition Number.
Consider the following 2 x 2 example (see Section 6 above)

A_(9.7 6.6)_(1 O) (9.7000 6.6000)
T\41 28/ \.4227 1 0 0.0103 /-

To get the vector y we solve ATy = ¢ for the special ¢ mentioned above. This is done via
UT(LTy) = c. The first component of c is arbitrary and we choose ¢, = 1. We will choose
c2 = 1 so that LTy is as large as possible:

(LT = ¢1/Un = 1/9.7 = .1031,
(LTy)2 = (c2 — Un(L™y)1)/Un = (£1 — (6.6)(.1031))/.0103.

This is larger when ¢; = —1. With this choice of ¢, LTy = (.1031, —163) and thus
y = (—163,69)T.

If we now solve Az =y we obtain z = (12690, —18640)7, and thus our estimate is

- 12690 + | — 18640 _ 31330
A L2l = = 163.
I+~ 19l | = 163] + (69| 232

As before || A|| = 13.8, so our condition number estimate is
cond(A4) =~ 13.8 x 163 = 1863.

The actual value is cond(A) = 2249.4, and so our estimate is accurate to within 17%, which
is easily within one order of magnitude. B

Routine SGEF'S uses a more elaborate technique than this to estimate the condition
number, but the underlying principle is the same. The estimate produced will always be
a lower bound for the actual condition number, but there is some theoretical basis for
expecting it to be an accurate estimate in all but very rare cases.

One subtle point remains. Since the condition number estimate is based on the
factors from Gaussian elimination, we are in fact estimating the condition number of a
perturbed matrix A 4+ E and not the original matrix A. This is not a serious difficulty.
Let € = |E|| /||Al|; for many problems € ~ €;,cp- As long as cond(A)e < 0.1, roughly
speaking if even one digit of our solution is correct, then the following result is valid

8 cond(A+E) 10
Sl < T o 7 .
o0 =9 — @ SoU+9

This means that the condition number of the perturbed matrix is almost the same as the
condition number of the original matrix. Thus, even though we are working in rounded
arithmetic, we are still estimating the condition number of the original exact problem.

70) Linear Systems of Equations Chap. 3
3.9 FURTHER IDEAS

In this section are mentioned a few more advanced ideas with references to more detailed
discussions in other sources.

*3.9.1 Updating Solutions

Suppose that a particular set of linear equations Az = b has been solved, but that it
is discovered that some of the entries in the matrix are incorrect, or that new data are
available. This is especially common in data-fitting problems, where new data may be
generated over time and a model is continually re-evaluated to reflect the new information.
Of course, it is possible to re-solve the system of equations each time a new piece of
data appears, but this is unnecessarily expensive. It is possible to modify the solution in
much less time.

The basic formula used is the Sherman-Morrison formula. Suppose that we
have computed A~! for some matrix A. As always, we do not recommend that A~! be
explicitly computed; here we use it temporarily to simplify the derivation. Suppose that
A is changed to

A=A- w7,
where u and v are n-vectors. Then A~! can be computed from
A=A oA w)TATY,

where a = 1/(1 —vTA~'u). This would cost O(n?) arithmetic operations, as opposed to
om?) operations to compute the new inverse from scratch.
To show the use of this formula, consider the following example.

Example 3.8 The Sherman-Morrison Formula.

Suppose that

1 2 3 —-0.6667 —1.3333 1.0000
A=14 5 6 A= | —0.6667 3.6667 —2.0000 |,
7 8 10 1.0000 —2.0000 1.0000

and that the modified matrix is
1 2 3 0 0
A=|4 5 6|, u=| 0], v=[0].
7 8 12 -2 1

-2
A—‘u=(4), wTAT =(1 =2 1), a=1/(1-(-2)=1/3~ .3333,

Sec. 3.9 Further Ideas 71

and the Sherman-Morrison formula gives

—0.6667 —1.3333 1.0000 -2
Al = (—0.6667 3.6667 —2.0000) 4(0.3333) (4) (1 -2 1)
1.0000 —2.0000 1.0000 -2
(—1.3333 0.0000 0.3333)
. A

0.6667 1.0000 —0.6667
0.3333 —0.6667 0.3333

If linear equations are being solved, so that the solution of Az = b must be
converted to the solution of A% = b, then the Sherman-Morrison formula can also be
used. Suppose that we have a routine like SGEF'S that can solve linear systems involving
A or AT. From above,

A b=A"Tp+ aA " wwTA™ .

The solution of the modified system can then be obtained from the following algorithm:

1. Solve Az = b for z, so that z = A~'b.

2. Solve Ay =u for y, so that y = A~ u.

3. Solve ATz = v for 2, so that zT=vTA™!.

4. Form a = 1/(1 — vTy).

5. Form 3 = 27b.

6. Form i = z + afy, the solution of A% = b.
This only requires back-substitutions and inner-products, so that the cost is only O(n?)
operations; it also avoids the explicit computation of the matrix inverse, an undesirable
operation.

It is also possible to update the A = PLU triangular factorization when A is

modified. For further information on this and related topics, see the paper by Gill,
Golub, Murray, and Saunders (1974).

3.9.2 Sparse Systems—Elimination Methods

When a linear system has a large number n of equations and variables it may be impos-
sible to store a full square matrix of n? elements. Typically such problems arise in the
discretization of differential equations or from problems involving network structures.

Example 3.9 A Simple Two Point Boundary Value Problem.

Consider the solution of the boundary-value problem
u(z)= f(z), w0)=1, w(l)=2,

on the interval [0, 1]. Split the interval into n + 1 equal pieces each of length h = 1/(n+ 1)
and define u; = u(ih), i = 1,..., n, the value of the solution at the end of the ¢-th subinterval.
Instead of solving for the function u(z) we will approximate the solution at n discrete
points. Note that the values of up = «(0) and u, 41 = u(1) are determined by the boundary
conditions.

72 Linear Systems of Equations Chap. 3

One approximation to u"(x) is

" w(x — h) — 2u(z) + u(x + h)
u(z) = % .

If we let x = ih then

i1 — 2U; + Ui 41
h? '

. u
u'’(ih) =
Substituting this into the original differential equation gives the system of linear equations
iy —2ui+uit1=hfi, i=1,...,n

where f; = f(ih). From the boundary conditions, uo = 1 and u, 41 = 2. Substituting these
values in the first and last equations, and putting the system in matrix form gives

-2 1 Ul R fi—1
1 =2 1 Uy R f
1 -2 1 . .
1 -2 1 Un-—2 h2fn—2
1 -2 1 Un—1 h2fn—l
1 —2 Un h2fn_2

At most three entries in each equation are non-zero. B

Frequently, as in the preceding example, the matrices of these problems are so
sparse that there is plenty of high-speed storage for all the nonzero elements, together
with some coding which represents the location of each element stored. How shall the
associated linear system be solved?

When it is possible, Gaussian elimination remains an economical, accurate, and
useful algorithm. Elimination is possible as long as there is space to store all the nonzero
elements of the triangular matrices associated with the elimination and when the coding
necessary to locate these elements can be programmed. Let LU represent the array whose
lower triangle is the matrix of multipliers and whose upper triangle is the triangularized
matrix. Then LU is usually more dense than A, although it is still a sparse matrix. The
elements of LU that are nonzero in positions where those of A are zero are said to be
filled in by Gaussian elimination.

For certain matrices, the amount of fill-in is easy to bound. One example is a
band matrix A. Let us ignore any zeros within the band. If Gaussian elimination can
be carried out without pivoting, which is safe for certain types of matrices known as
positive definite (see Forsythe and Moler (1967)) then there is no fill-in at all: LU
has the same bandwidth as A. If pivoting is necessary, say for an arbitrary nonsingular
matrix A, then the fill-in is limited to a band three-halves as wide as A.

It is easy to store the band matrix A in a rectangular array of length n and width
equal to the bandwidth, and the wider band array LU can also be stored and handled
easily. As a result, linear systems with band matrices can easily be solved by elimination,

Sec. 3.9 Further Ideas 73

provided that the band array LU can be stored in the high-speed storage. Programs exist
for dealing with band matrices, for example those in Linpack; these are comparatively
simple modifications of such elimination programs as SGEF'S.

For more general sparse matrices, it is more difficult to apply Gaussian elimination.
In this case, algorithms examine the pattern of zero and non-zero elements in the matrix
before beginning the elimination. By re-ordering the equations and rearranging the
variables, it is often possible to reduce the amount of fill-in that will occur during the
LU factorization. Finding the perfect rearrangement, the one that leads to the least fill-in,
is expensive for general matrices, so algorithms use heuristic techniques to find a good
rearrangement. Software that incorporates these ideas can be found in Sparspack, the
Yale sparse matrix package, and the Harwell software library. For more information, see
the book by George and Liu (1981).

Sometimes a full matrix, or even a band matrix, is too large to keep in the high-
speed storage. If so, it is necessary for part of it to be in secondary storage—on the disks
or magnetic tape. If a problem is that large, Gaussian elimination is still possible, but
the sheer volume of computation makes it rather expensive. The execution time required
for the arithmetic operations is usually substantially larger than the time required for
transferring parts of the matrix to and from the secondary store. It is therefore important
for economy’s sake to organize the computation or the operating system environment in
such a way that the processor is never waiting for input/output. This can be done in
various ways. Programs will not be found on the shelf, although most large installations
have had experience with the solution of such large systems.

A good deal of systems effort has gone into giving the programmer the illusion of
having a very large (so-called virtual) high-speed memory available for data, although in
fact the data are grouped into pages or segments which are constantly being swapped in
and out of secondary storage. The presence of the virtual memory keeps the programmer
from having to worry about input/output of data. However, this freedom from worry
may come at a large price depending on the paging strategy: If the program is forced
to wait while the swapping mechanism retrieves each new row of the matrix, then the
execution time can go up prohibitively for a large matrix. However, the virtual memory
is usually coupled with multiprogramming, and the processor will usually take up another
program during the page swap. With many operating systems, one is not charged for
this interrupted time, even when another program is not ready. Hence the “cost” of
executing a matrix program remains approximately the same, whether or not there is
page swapping. However, whether one is charged or not, swapping prolongs the elapsed

/t{nge until the program is completed.

*3.9.3 Sparse Matrices—lterative Methods

There is a substantial class of linear equation systems for which the elements of A
are known by some simple formula and so can be generated as needed. This is true
for example 3.10. The elements never need be stored but instead can be generated as
needed. Moreover, often the orders n are so large that it would be impossible to store
the filled-in array LU.

74 Linear Systems of Equations Chap. 3

It is desirable to solve such linear systems Az = b by methods that do not factor
the matrix A and never require storing more than a few vectors of length n. (Note that
b must usually be stored, as well as x.)

Methods for this purpose exist and are called iterative. One starts with a trial
solution vector (? and carries out some process using A, b, and (@ to get a new vector
(. Then one repeats. At the k-th stage, one uses the iterative process to get z¥) from
A, b, and z*~D. Under appropriate hypotheses, the vectors z(¥) converge to a limit
as k — oo. There is a wide variety of such iterative processes. The most successful
of them are closely coupled with the actual problem being solved. Even though the
iterative process may be mathematically simple, the structure of the matrix A is likely
to be intricate and special to the problem. It is not usual to find library subroutines
for iterative solution methods. However, a collection of such routines can be found in
Itpack, described in the paper by Kincaid et al. (1982).

In the first days of computing iterative methods were of much more interest than
Gaussian eliminatior, or so-called “direct” methods. Early computers had limited storage
capacity (a few dozen words for data was common) and iterative methods are very storage
efficient.

One simple iterative method is discussed in Section 24 of Forsythe and Moler
(1967): the method is known as the Gauss-Seidel or successive displacements method.
In it, the basic iterative step is to solve the ¢-th equation for the i-th component z; of the
new vector x, using for each other component of z its most recently computed value.
It can be proved to converge for various types of matrices, including any symmetric
positive-definite matrix A. However, convergence is ordinarily slow.

With many iterative processes in numerical analysis, convergence is so slow that the
most important problem is to find a way of accelerating the convergence—e.g., of z(*) to
the solution. Indeed, algorithms for accelerating the convergence of sequences form an
important part of numerical analysis. The method of successive over-relaxation (SOR)'
is one type of acceleration of the Gauss-Seidel process. It can speed up the convergence
to the point where the SOR method is widely used in solving finite-difference equations
that model elliptic boundary-value problems in two dimensions. Software for these
methods is less frequently found in program libraries.

There is a family of iterative methods known as the methods of conjugate gra-
dients or conjugate directions. A good explanation of the algorithms can be found in
the book by Golub and Van Loan (1983). These methods are applicable to symmetric
positive-definite matrices and involve no assumptions on the structure of the matrix A.
In exact arithmetic, they converge in a finite number of iterations, but on a computer they
must be considered as general iterative algorithms because of rounding errors. There are
a number of published algorithms for the conjugate-gradient method.

In many cases, a given set of linear equations can be approximated by another
system that is much easier to solve. For example, if the linear system arose when
solving Laplace’s equation on an irregular region the problem could be approximated
by Laplace’s equation on a square, for which there are special algorithms. It would

! The term comes from its first application, in structural engineering.

Sec. 3.10 Problems 75

be useful to take advantage of this approximation when solving the problem. Many
iterative methods can do this, and the effect on the performance of the algorithms can
be dramatic. This idea is called preconditioning. For a discussion of this idea applied
to the conjugate-gradient method, see the paper by Concus, Golub, and O’Leary (1976).

3.10 PROBLEMS

P3-1.-Use SGEF'S to solve the 3-by-3 system

1.00 0.80 0.64 T erf(0.80)
1.00 0.90 0.81 z2 | = | erf(0.90) | .
1.00 1.10 1.21 T3 erf(1.10)

See Problem P1-1 for the definition of erf. Print out the estimated accuracy of the solution (IND)
and the solution z, z2, z3. Also print out the sum z; + x; + x3, and compare it with erf(1.00).
Why are the two close to each other? If you cannot answer this last question, see Section 1.

P3-2.-The inverse of a matrix A can be defined as the matrix X whose columns z; satisfy
A:cj = €5,

where e; is the j-th column of the identity matrix.
(a) Write a subroutine with the heading

SUBROUTINE INVERT (A, LDA, N, X, IND, WORK, IWORK, RCOND)

which accepts a matrix of order N as input and which returns a matrix X, an approxi-
mation to the inverse of A, as well as the condition estimate and the pivot information.
Your subroutine should only factor the matrix once, on the first call to SGEFS, and
on the remaining N — 1 calls should only do back substitution, once for each column
of X. Leave X undefined if SGEF'S detects singularity. Test your subroutine on some
matrices whose elements can be exactly represented as floating-point numbers and
for which you know A~!,
(b) There are several measures of the accuracy of the results:

lAX — 11,
IxA-1],
1 =47

You might also use INVERT twice, once to invert A and a second time to invert X.
The result is a matrix Z which would be equal to A if there were no roundoff error.
So, another measure of accuracy would be

1Z - All.

Can you derive an inequality involving C, cond(A), and €y, ., Which predicts how
large ||Z — A|| might be? (See Section 6.)

76 Linear Systems of Equations Chap. 3

0.1 02 03 0.1
A=[04 05 06|, b=]03].
0.7 08 09 0.5

(a) Show that the set of linear equations Ax = b has many solutions. Describe the set of
possible solutions.

(b) Suppose SGEFS were used to solve Az = b on a hypothetical computer which does
exact arithmetic. Since there are many solutions, it is unreasonable to expect one
particular solution to be computed. What does happen?

(¢) Use SGEFS to compute a solution on a computer that uses binary arithmetic. Since
some of the elements of A are not exact floating-point numbers on such a computer,
the matrix which is given to SGEFS is not exactly singular. What solution is obtained?
Why? In what sense is it a “good” solution? In what sense is it a “bad” solution?

P3-3-Let

P3-4.-The following tridiagonal matrix occurs in the interpolation of data by cubic splines, as will
be discussed in the next chapter

1 4 1

1 4
1 -
What special properties does the factored array returned by SGEF S have? How might the Gaussian
elimination algorithm be simplified for this special case? How would you solve a large linear
system involving this matrix? Use SGEFS to solve a linear system with this matrix and right-hand
side b=(1,...,1)T. How does RCOND change as the number of equations 7 increases?

P3-5.—Consider the linear system Az = b with

7 9 2 6
A=|6 4 1], b=|4a].
3 9 3 2

(a) Solve this linear system using SGEF'S.
(b) Suppose that the right-hand side is changed to

-0)

Use SGEF'S to solve the modified system, without refactoring the matrix A.

(c) Suppose that it was discovered that a mistake had been made when collecting data
for the matrix A, and that the (3,3) entry should have been As; = 4. Using the
Sherman-Morrison formula together with routine SGEF'S, determine the solution of
the modified system without refactoring the matrix A.

Sec. 3.10 Problems 77

P3-6.-1It is required to determine the member forces in the 17-member plane truss in Figure
P3.6. The members of the truss are assumed to be joined at the joints by frictionless pins. A
theorem of elementary mechanics tells us that since the number of joints j is related to the
number of members m by 2j — 3 = m, the truss is statically determinant. This means that
the member forces are determined entirely by the conditions of static equilibrium at the nodes.
Let F denote horizontal force components and F;, denote vertical force components. If we let
a = sin45° = cos45° and assume small displacements, then these equilibrium conditions are

o Yo Fr=—afi+ fatafs=0,
Jomt2{ZF —af: f:—afs— 0:
joint 3 {%iy:f_ﬁtofﬁa

joint 4 {%5 ::;:ffs_

.- Y F.=—afs— fs+afo+ fi=0,
Joint 5 {EF =afs+ fi+afs—15=0;
L. SN F=—fs—afo+ futafis=0,
joint 6 EF —afs — fu —ofis = 0;

joint 7 %§=zflf‘gfl4—
L Y Fo=—fu+afis=0,
.lomtS{EF —Tis — afie = 0;

=—afis — fu+ fiz=0
_]01nt9{EF —Otf13+f15—10 0;

_]01nt 10 {ZFI = —Otf16 - f17 =

Write a Fortran program which uses SGEF'S to solve this linear system of equations for the member
forces. Is the matrix of the linear system well conditioned?

© ® ®

4 8 12
1 3 5 7 9 11 13 15 16
@ 2 6 10 14 17 :
dr @) ©® @ ® &
10 tons 15 tons 10 tons

Figure P3.6

78 Linear Systems of Equations Chap. 3

P3-7.-A paint company is trying to use up excess quantities of four shades of green paint by
mixing them to form a more popular shade. One gallon of the new paint will be made of xz;
gallons of paint 1, z; gallons of paint 2, etc. Each of the paints is made up of four pigments, and
they are related by the following system of linear equations

80 0 30 10\ /a 40
0 8 10 10| [z | _|27
16 20 60 72) |z | = | 31
4 0 0 8/ \z 2

Each number represents a percentage; for example, paint 4 contains 72% of pigment 3, and the
more popular shade should contain 27% of pigment 2. Solve this system using SGEFS.

P3-8.—-As was illustrated in Example 3.5, the error in the computed solution z can be large even
though the residual is small. Sometimes it is necessary to accurately determine z, and in such
cases a technique known as iterative improvement can be used. For this to be effective, you
must be able to do a portion of the calculation in double precision. Consider the system of linear
equations Az = b with

210 67.0 88.0 73.0 141.0

A= 760 63.0 7.0 20.0 and b = 109.0
0.0 85.0 56.0 54.0 218.0

193 43.0 302 294 93.7

The solution of this system is z = (1, 1,1, 1)7.
(a) Use SGEF'S to solve the linear system in single precision.
(b) Use double precision arithmetic to form the residual » = b — Az. Remember that
SGEFS destroys the original coefficients in A.
(c) Use SGEFS to solve the linear system Ae = r for e. Since the matrix is the same as
in (a), there is no need to refactor A. The vector e will be an estimate of the error in
z, and so an improved estimate of the solution can be obtained by setting

r—T+e.

The process can then be repeated starting with step (b) if more accuracy is desired.

3.11 PROLOGUE: SGEF'S

SUBROUTINE SGEFS (A,LDA,N,V, ITASK, IND, WORK, IWNORK, RCOND)
C***BEGIN PROLOGUE SGEFS
C***DATE WRITTEN 800317 (YYMMDD)
C***REVISION DATE 870916 (YYMMDD)
C***CATEGORY NO. D2Al
C***KEYWORDS GENERAL SYSTEM OF LINEAR EQUATIONS,LINEAR EQUATIONS
C***AUTHOR VOORHEES, E., (LOS ALAMOS NATIONAL LABORATORY)
C***PURPOSE SGEFS solves a GENERAL single precision real
C NXN system of linear equations.

Sec. 3.11 Prologue: SGEF'S 79

C***DESCRIPTION

QOO0 a0000a00000000000000000000000000000000000000a0an

From the book "Numerical Methods and Software"
by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

Subroutine SGEFS solves a general NxN system of single
precision linear equétions using LINPACK subroutines SGECO
and SGESL. That is, if A is an NxN real matrix and if X
and B are real N-vectors, then SGEFS solves the equation

A*X=B.

The matrix A is first factored into upper and lower tri-
angular matrices U and L using partial pivoting. These
factors and the pivoting information are used to find the
solution vector X. An approximate condition number is
calculated to provide a rough estimate of the number of
digits of accuracy in the computed solution.

If the equation A*X=B is to be solved for more than one vector
B, the factoring of A does not need to be performed again and
the option to only solve (ITASK .EQ. 2) will be faster for

the succeeding solutions. In this case, the contents of A,
LDA, N and IWORK must not have been altered by the user follow-
ing factorization (ITASK=1). IND will not be changed by SGEFS
in this case. Other settings of ITASK are used to solve linear
systems involving the transpose of A.

Argument Description ***

A REAL (LDA, N)
on entry, the doubly subscripted array with dimension
(LDA,N) which contains the coefficient matrix.
on return, an upper triangular matrix U and the
multipliers necessary to construct a matrix L
so that A=L*U.
LDA INTEGER
the leading dimension of the array A. LDA must be great-
er than or equal to N. (terminal error message IND=-1)
N INTEGER
the order of the matrix A. The first N elements of
the array A are the elements of the first column of
the matrix A. N must be greater than or equal to 1.
(terminal error message IND=-2)
v REAL (N)
on entry, the singly subscripted array(vector) of di-
mension N which contains the right hand side B of a

[=]
o

QOO0 0000000000000 000000000000000000000000000000n0naO0n

C

Linear Systems of Equations Chap.

system of simultaneous linear equations A*X=B.
on return, V contains the solution vector, X
ITASK INTEGER
If ITASK=1, the matrix A is factored and then the
linear equation is solved.
If ITASK=2, the equation is solved using the existing
factored matrix A and IWORK.
If ITASK=3, the matrix is factored and A’x=b is solved
If ITASK=4, the transposed equation is solved using the
existing factored matrix A and IWORK.
If ITASK .LT. 1 or ITASK .GT. 4, then the terminal error
message IND=-3 is printed.
IND INTEGER
GT. 0 IND is a rough estimate of the number of digits
of accuracy in the solution, X.
LT. 0 see error message corresponding to IND below.
WORK REAL (N)
a singly subscripted array of dimension at least N.
IWORK INTEGER (N)
a singly subscripted array of dimension at least N.
RCOND REAL
estimate of 1.0/cond(A)

Error Messages Printed **x*

IND=-1 fatal N is greater than LDA.
IND=-2 fatal N is less than 1.
IND=-3 fatal ITASK is less than 1 or greater than 4.
IND=-4 fatal The matrix A is computationally singular.

A solution has not been computed.
IND=-10 warning The solution has no apparent significance.

The solution may be inaccurate or the matrix
A may be poorly scaled.

***REFERENCES SUBROUTINE SGEFS WAS DEVELOPED BY GROUP C-3, LOS ALAMOS

SCIENTIFIC LABORATORY, LOS ALAMOS, NM 87545.

THE LINPACK SUBROUTINES USED BY SGEFS ARE DESCRIBED IN
DETAIL IN THE *LINPACK USERS GUIDE* PUBLISHED BY

THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS
(SIAM) DATED 1979.

C***ROUTINES CALLED RI1MACH, SGECO, SGESL, XERROR
C***END PROLOGUE SGEFS

4.1

Interpolation

INTRODUCTION

In the years 1913-1923, long before the development of computers, Sir Edmund Whit-
taker lectured to undergraduate and graduate students at the University of Edinburgh
on Numerical Mathematics. Many of his students and disciples have gone on to play
important roles in this field. One of them, G. Robinson, transcribed his notes and with
Whittaker published what we now consider the first modern numerical analysis text in
1924. Their explanation of interpolation is as cogent today as it was then.

“If a function y of an argument z is defined by an equation y = g(z), where
g(x) 1s an algebraical expression involving only arithmetical operations such as squaring,
dividing, etc., then by performing these operations we can find accurately the value of
y, which corresponds to any value of z. But if y = log,,x (say), it is not possible
to calculate y by performing simple arithmetical operations on x (at any rate it is not
possible to calculate y accurately by performing a finite number of such operations), and
we are compelled to have recourse to a fable, which gives the values of y corresponding
to certain selected values of x. The question then arises as to how we can find the values
of the function log,, = for values of the argument x which are intermediate between the
tabulated values. The answer to this question is furnished by the theory of interpolation,
which in its most elementary aspect may be described as the science of “reading between
the lines of a mathematical table.”

Interpolation is a common operation both in everyday life and on computers. For
example, if the speedometer in our automobile is between the marked lines we mentally
interpolate to estimate our speed. If we have computational data that has been obtained
at great expense at a few points we may want to determine values between the data
points. Census data which are only available every ten years is an example of this.

81

82 Interpolation Chap. 4

The easiest case is that of univariate interpolation. We are given data points
(z;,y:;), 1 =1,...,n and are required to find a function f(x) which passes through the
data, i.e.,

f(:L"i):yi» i=17"'7n'

The function f is said to interpolate the data and f is called an interpolant or interpo-
lating function. As Whittaker explained, we usually perform the interpolation because
we need values which are not among the (z;,y;), for example for plotting, or for an-
other calculation which requires a continuous function. Although the definition does not
require it, the interpolant f(z) is usually a function which can be computed at any x of
interest. Thus log,, = certainly interpolates in a table of logarithms, but Whittaker would
have said that it was not a very suitable interpolant, and should be replaced by another
that is easier to compute.

In the years since Whittaker, mathematicians have extended their use of the term
interpolation to include any process which determines a function that agrees with certain
given “data.” To return to the example of y = g(x) = log,,x we recall that ¢'(z) =
(log,, €)/x. Since division is a simple arithmetic operation we might augment our table
by including not only values of x and log,, z, but 0.4342944819/x = d as well. Then
for each z; our “data” are a pair of numbers (y;,d;) and we want to find an easily
computable function f(x) which satisfies

flx:) =y, and fl(x:) =d;.

In that case f is called an osculatory or Hermite interpolant. (“Osculari” means “to
kiss” in Latin.) Intuition and analysis tell us that since this function agrees not only with
the values of log,, = but also with its derivatives it should do a better job approximating
values between those in the table.

You are already familiar with an even more general case of this kind of interpola-
tion. The Taylor expansion for g(x) is

(n+1) n+1 (%)
(@) = Zazz+ (é)w o g =t ©)

1!

The finite sum, Y a;z%, is a polynomial of degree n which interpolates in the sense
that it and its first n derivatives agree with those of g at zero, i.e., the “data” are
9(0),i =0,...,n. Such a polynomial interpolant is an excellent approximation to g(x)
near z = 0, but deviates more and more as x moves away from the origin.

Interpolation can also be performed in more than one dimension. If our data were
the temperatures 7' of a gas at accurately measured values of pressure P and volume V,
we could look for a bivariate interpolant f(P, V') so that

T = f(P;, V).

There are many other possibilities, but the essential point is to find a function which
matches some given information.

Sec. 4.1 Introduction 83

This chapter is entirely concerned with univariate interpolation. Sections 2—7 deal
with polynomials, Sections 8—14 discuss piecewise polynomials, cubic splines, and Bézier
curves. The latter are not always interpolants, but play an important role in computer
aided design, and fit nicely into the general discussion of this chapter.

In Figure 4.1 we show several data values and three different interpolants. If the
data represent some physical process each of the three can be viewed as an approximation
to the underlying process. From this we see that

Figure 4.1 Three Different Interpolants to the Same Data

a) The data alone cannot determine the interpolant. There are arbitrarily many inter-
polants to a data set.

b) Interpolation can be useful only if the data are free of error. Experimental data,
contaminated with errors, need to be approximated in some other way. Figure
4.2 shows experimental data and a function which “represents” the data better
than any interpolant. In this chapter we assume that (x;,y;) are exact values of
the function we want to approximate. Least squares approximation is the most
common technique to use with data containing errors, and is considered in Chapter
6.

84 Interpolation Chap. 4

Figure 4.2 Non-Interpolant Represents Inaccurate Data

Assume that £; < 3 < --- < x,. Our task is to find an interpolant f which
provides reasonable values when & # x;. This can never be made perfectly rigorous,
since it depends upon the process which generated the data, our expectation of “good-
ness,” etc. The standard approach is to decide on a set of basis functions in advance,
bi(x), by(x),...,b,(x). These can be selected by experience, recommendation, or math-
ematical or physical insight, but are thought of as known. The basis functions are
combined to form a model

f@ =Y a;bi(@)

j=1

where the numbers «; are unknown and are determined to make f an interpolant. Thus
the model must satisfy the interpolation properties

n
f@y=y: or Y abi@)=yi, i=1l...,n.
j=1

Sec. 4.1 Introduction 85

This represents a system of n linear equations for the a’s with coefficient matrix
B =[b;;], bij = bj(zs), i,j=1,...,n.

If we have chosen the b’s judiciously we will be able to solve the system for the unknown
a’s and hence find the interpolant f. Since Chapter 3 has discussed solution of linear
equations you might wonder if the observation that interpolation leads to such a system
is all there is to say about the subject. This chapter considers two different sets of basis
functions—polynomials and piecewise polynomials. For each of these the matrix B is so
special that by taking advantage of it we can find the interpolant much more efficiently.
Furthermore, just knowing that we can compute the unknown «’s doesn’t give us any
information about whether the interpolant does a good job. The essence of the chapter
then is to develop methods for the efficient computation of interpolants, and insights into
selection of the most appropriate tool for each particular problem.

Before leaving this introductory section we wish to repeat that interpolation is only
one way to approximate data. In (b) above, we mentioned that for data with significant
errors the least squares approach is preferred. In other situations different methods are
required. For example, consider the problem of writing a subroutine for a computer
manufacturer that will provide approximations to sin(z). We can probably assume that
z is in some fixed interval, say 0 < z < 7/2, because other values can be obtained from
these. But within this interval all z’s are equally likely to be arguments. There is no
reason to select a particular set of x; and force our approximate function to interpolate
sin(x;) at these points. What we would prefer is that the approximate function never
have an error of more than one or two in the last place, for all z in the interval, although
it need not be exactly correct i.e., it need not interpolate, at any specific . This type of
approximation requires more sophisticated mathematics and will not be discussed here.
Interested readers are referred to the book by Davis (1963).

Finally readers should appreciate that depending upon the problem, there are two
distinct goals for interpolation or any data fitting process.

(1) To determine the unknown coefficients «; and make inferences about them. The
methods we will discuss solve a system of equations for the coefficients. If the
matrix is ill conditioned these will be inaccurate.

(2) To evaluate the interpolant f(z) for plotting or for other reasons. Recall from
Chapter 3 that solving a set of linear equations with an ill conditioned matrix re-
sults in inaccurate solution components, but small residuals. Inaccurate solution
components mean that the interpolation coefficients «; will have little or no accu-
racy; small residuals mean that Ba = y. The effect of this on the value of the
interpolant) a;b;(x) at an arbitrary x can be inferred by considering evaluating
it at one of the z;. But this is exactly equivalent to asking for the residuals in the
equations, and we have observed that these will be small. Thus if values of the
interpolant are of main interest, even fairly large condition numbers are acceptable.
Of course, it is always a good idea to go for the lowest condition numbers possible,
and as we will see in Section 3, there are often several different basis functions
that lead to the identical interpolant. For a concrete example see problem P4-2.

86 Interpolation Chap. 4

4.1.1 Historical Perspective: Table Making

As Whittaker has observed, the most common form of interpolation occurs when we
seek data from a table which does not have the exact values we want. Methods for
interpolation were often tested on tables and developed simultaneously with them. For
several centuries one of the most important applications of numerical analysis was making
tables of special functions, such as trigonometric functions like sinz. Mathematics of
Computation, the first modern journal devoted to numerical methods, was originally
entitled Mathematical Tables and Other Aids to Computation. The name was changed in
1960. It is only in the last forty years, and especially since the invention of the pocket
calculator, that these tables have gone out of use. Their primary application was in
ocean navigation, where they were used to determine latitude and longitude. A scientist
of the late eighteenth century might well own over a hundred volumes of tables to aid
in calculations.

Creating a comprehensive set of tables was a monumental task. After the French
Revolution, the French government produced such a set, made necessary by the newly
invented metric system, but also motivated by the glory attached to such a project. It
was supervised by the country’s best mathematicians, but much of the tedious work was
done by unemployed hairdressers. Many of the fashionable heads that wore elaborate
powdered wigs had been lost to the guillotine.

More often, a set of tables was produced by plagiarism, copying numbers wholesale
from earlier work. This meant that most tables were unreliable. Not only were the
original calculation errors reproduced, but new errors were introduced with every new
edition. It was an attempt to solve this problem that led Charles Babbage (1792-1871) to
invent his “difference engine.” The Cambridge-educated mathematician was convinced
that a mechanical computer could be built using gears and levers and programmed by
punched cards. For a while he was supported by the British government, but he financed
most of the development with his personal fortune and that of his sponsor, Ada Augusta,
Countess of Lovelace and daughter of Lord Byron. To generate more income he and
Lady Lovelace tried to invent a system that would pick horse race winners. Although
his computer was never finished, Babbage is regarded as the grandfather of modern
computing.

Most numerical analysis textbooks published through the mid 1970s still contained
several sections devoted to generating tables and finding errors. Some of the error
detection techniques were very clever, involving differences (or differences of differences,
etc.) of successive entries, and are worth reading about if you are ever confronted with
a suspicious table, or would like some hints to assist you in debugging programs with
tabular output.

One final burst of table making occurred in the United States several decades ago.
In an attempt to ameliorate the unemployment problems of the Depression, the federal
government formed the Works Progress Administration (WPA). The WPA had many
programs; construction, sewing, photography, painting, etc. One of the lesser-known
was the Mathematical Tables Project, started shortly before World War 1II.

Sec. 42 Polynomial Interpolation 87

One of its goals was to hire out-of-work mathematicians but, as with the French
project, much of the work was done by people with no special training. In fact, many of
the employees could do little more than add. Even negative numbers were a mystery. To
overcome this last difficulty, red and black pencils were used, red for negative numbers
and black for positive. Around the workroom were giant propaganda-like posters saying,
“Black + Black = Black,” and more controversially, “Red x Red = Black.”

These limitations did not restrict the goals of the project. One of the first tables
produced was for e*. The calculations were based on Taylor series expansions, sometimes
to as many as fifty terms, and interpolation. The work was broken down into simple
steps on worksheets, something like computer programs. If a particular step required a
more advanced operation like multiplication, it was assigned to a higher-level employee.
Many of the computations were done by hand since even simple adding machines were in
short supply. Much effort was expended to ensure the accuracy of the results, with every
calculation being done at least twice, selected entries being computed in two independent
ways, and extensive proof-reading. The printed tables were possibly the most accurate
ever produced, being almost completely free of errors.

During the war, the Tables Project was involved in special projects for the Depart-
ment of Defense, being used like a slow programmable calculator. By 1945 the Project
had been absorbed by the National Bureau of Standards, and with the invention of the
electronic computer, it was in many ways obsolete. However, the tables it produced con-
tinued to be of value, and many of them were collected in a book by Milton Abromowitz
and Irene Stegun that is still in print and in worldwide use.

42 POLYNOMIAL INTERPOLATION

For historical as well as pragmatic reasons, the most important class of interpolating basis
functions is the set of algebraic polynomials. Polynomials have the obvious advantage of
being easy to evaluate directly. (See Section 7.) They can be easily summed, multiplied,
integrated, or differentiated.

Of course, a class of functions can have all of the above properties and still not be
satisfactory at approximating functions. Fortunately, we have good reason to believe that
any continuous function g(zx) can be closely approximated on a closed interval by some
polynomial p,,(z). This follows from an early result of approximation theory known as
the Weierstrass approximation theorem:' If g is any continuous function on the finite
closed interval [a,b], then for every € > O there exists a polynomial p,(x) of degree
n = n(e) such that

max |g(z) — pa(2)| < €.
z€la,b]

1 Karl Theodor Wilhelm Weierstrass (1815-1897), the most important ninteenth-century German math-
ematician after Gauss and Riemann, also taught botany, geography, history, German, gymnastics, and callig-
raphy. He developed the fundamental concepts of the theory of functions. Among his many students were
Frobenius, Gegenbauer, Klein, Lie, and Minkowski. He considered geometric proofs in bad taste and rarely

used a diagram to clarify a point.

88 Interpolation Chap. 4

The reader is referred to either of the books by Ralston (1965) or Wendroff (1966) for a
detailed proof of this and other results on polynomial interpolation.

Although some proofs of Weierstrass’ theorem are constructive, the resulting poly-
nomial is generally of such high degree that it is impractical to use. Furthermore,
Weierstrass’ theorem tells us nothing about the existence of a satisfactory interpolating
polynomial for a given data set. And while it is comforting to know that some polyno-
mial will approximate g(x) to a specified accuracy throughout the interval [a, b], this is
no guarantee that such a polynomial will be found by a practical algorithm.

If we select for our basis functions the monomials

bi(z) = z* 7!, i=1,....,n
then the model becomes
Pn-1(T) = a1 + T+ +anz"",

with matrix B

1 T iL‘l—
1 = T, !

B=) .
n—1

1 2z, - a

Example 4.1 Linear Interpolation.

The unique linear interpolant through (x1,y:1) and (x2, y2) is given by
pi(z) = a1 + oz,

where a; and a; satisfy the two equations

. 1 z
al +axz =y and al + a2z = Y2, ie., B= (1 x;) .

As long as x; # z; the matrix B is nonsingular and we can solve for a; and a;. We get

1T2 — YPT1 | Y2 — Y1
y Y + z.
T2 — Ty T2 — T

pi(z) =

As a specific instance of this, the linear interpolant to g(x) = \/ based on its values at z = 0
and z =0.25 is pi(z) = 2z. At z = 1/9 the interpolation error is |p1(1/9) — g(1/9)| = 1/9.
|

Sec. 4.3 Using Other Basis Functions 89

Example 4.2 Quadratic Interpolation.

Find the quadratic interpolant to (—1,2), (1, 1), and (2, 1). The interpolant is
p2(z) = a1 + arz + sz’

The a’s are obtained by requiring p, to pass through the three points above, leading to the
system of equations

a— ot a3=2 1z o 1 -1 1
ar+ a4+ az=1, B=|1 =z :L‘% =11 1 1].
2
1 + 200 +das = 1 1 z3 zj 1 2 4
You can verify that the determinant of B,
det(B) = (z3 — z2)(x3 — z1)(T2 — T1) = 6,
so B is nonsingular. Solving for the a’s gives the interpolant

flx) = 2. |

Wl
(<Y

Ly

In the two examples above the coefficient matrix B is nonsingular because we have
explicitly solved the system. But in general how do we know if it will be possible to do
this? For polynomial interpolation, it can be shown that the matrix B satisfies

det(B) = H ;=) = (@0 —T 1N Tn—T2) * - (Tn—Tpn—1) - - - (X3 —T1)(X3—T2)(T2—T1)
1<i<j<n

which is never zero if the z; are distinct. Notice that the matrices in Examples 4.1
and 4.2 follow this pattern. Thus as long as no two abscissas are equal the equations
for polynomial interpolation always have a nonsingular coefficient matrix, and hence a
unique solution. Since a mathematical function must be single valued (it cannot take on
two y’s for the same x), this condition is perfectly reasonable.
Summarizing

Given n points in the plane with distinct abscissas, there is a unique polynomial
of degree at most n — 1 passing through these points.

43 USING OTHER BASIS FUNCTIONS

In Example 4.1 consider what will happen if we select as basis functions

bi@) = —2 bya)= — L,

Try — X2 . X2 — I

90 Interpolation Chap. 4

The matrix B then becomes

p= (b bz(l'l)) - <1 0)
bi(z2) bo(z2) 0 1
i.e., B is the identity, B = [and the equations Ba = y are solved by a1 = y; and ap = v2.
We know there is only one linear polynomial interpolating two distinct points, and since

both b;(z) and by(z) are linear the interpolant formed from them must be identical to
pi(x) in Example 4.1. Thus we can write p;(z) either as in Example 4.1 or as

— T2 .’I?—.’El'

p1(@) =y ad (/7] ;
Ty — T2 T2 — I
one is simply an algebraic rearrangement of the other.

Other changes we can make are to interchange b, and b, so that b;(x) = x, by(z) = 1,
or to replace b; and b, with their sum and difference, x 4+ 1 and x—1. Any replacement of
the b’s by another independent set which is a linear combination of the first has no effect
on the resulting interpolant and is termed change of representation or change of basis.
Changing representations can be useful if it makes the task of generating the interpolant
easier or provides special insight. The monomial basis, b;(z) = z7~! is intuitive but
requires solving a system which can often be ill conditioned. In Figure 4.3 we show
some of the monomial basis functions, ¥, k=0,...,20 on [0, 1]. On this interval the
functions z'8, z'° and z?° are almost identical hence the associated columns of B will be
nearly equal. Equal columns correspond to a singular matrix so a high condition number
is expected. We might also expect it because the b;; are of very different magnitude,
varying from 1 to z}°, which can be very small. The Lagrange? basis, b;(z) = l;(z),
defined below is a representation change which generates exactly the same polynomial
interpolant but for which the interpolation matrix B reduces to the identity. Thus solving
the equations becomes trivial.

Assume we have a set of functions [;(x),...,[,(z) each of which is a polynomial

of degree n — 1 and also has the property that

1 ifi=y;
Li(z;) = D
3@ 0 otherwise.

That is, [; takes the value 1 at the point z; and is zero at all the other x;. (Notice that
by and b, displayed at the beginning of this section satisfy these properties.) Any linear
combination of the /;’s is still an (n — 1)-st degree polynomial. In particular consider

Prn—1(x) = yil1(x) + 12b(@) + - - + ynln ().

2 Joseph Louis Lagrange (1736-1813), an Italian from Turin, spent most of his productive life in Paris
and Berlin. He was one of the earliest developers of the calculus of variations (a term coined by Euler)
and made monumental contributions to mechanics (including the three body problem), theory of numbers,
and differential equations. He was sufficiently well regarded that in 1793 he was retained as chairman of
the commission to standardize weights and measures (metric system) after Lavoisier, Laplace, Coulomb and
Brisson were purged because of the political climate.

/

Sec. 4.3 Using Other Basis Functions 91

10 T I T j T ‘ T T

Figure 4.3 Some Monomial Basis Functions on [0,1]

By the properties of /; it is obvious that
Pr—1(:) = yili(@) + 2o (@) + - - - + Yuln(z) = yili() = yi-

Thus p,,_; above is an interpolating polynomial, and since we saw that such a polynomial
is unique this is equivalent to solving the linear system. The method hinges on finding
the [;’s, but these are easy to write:

@—z)@—22) (@ —2;)@ —Tj4 1) (T —Zn)
(@; =z)@y —x2) - (x5 — - 1)@ — T 1) (T — Tn)

=[I @-=/] @i -2

i=1,isj i=1,i%%

l](.’b) =

Example 4.3 Lagrange Interpolation to Three Data Points.

Repeat Example 4.2 using the Lagrange representation. We find that

L @-De-2 | @+D@-2 (@+Da-1)
P@=2Tr oy T lara—o Terne-

The reader should verify that this simplifies to the quadratic of the previous example. B

92 Interpolation Chap. 4

Figure 4.4 shows plots of the first five Lagrange basis functions. We must specify
the z; and for illustration these have been taken to be five equally spaced points on [0,1].
To repeat, the Lagrange basis is different for each set of distinct x;, but the interpolant
is identical to that produced by the monomial basis, which is independent of the x;. For
the Lagrange basis the condition number of B is one.

Figure 4.4 Five Lagrange Basis Functions on [0,1]

In general the Lagrange basis is easier to write but more difficult and less efficient
to compute with than the monomial basis. But the matrix B associated with monomials
is often badly conditioned. Other important changes of representation have different
properties. For example, some are designed for the situation in which we get additional
data after the interpolant has been formed, and would like to incorporate this in an
efficient way.

Usually, the monomial representation of a polynomial interpolant is stored in an
array containing its coefficients with respect to the monomial basis. The Lagrange
representation of the same interpolant is stored in a pair of arrays, one containing the
z;’s which are required to compute /;(x), and another containing the data values y;
which are the coefficients of I;(x).

Sec. 4.4 How Good is Polynomial Interpolation? 93

In Example 4.1 if we replace b;(z) = 1 by bi(z) = €® we will get an entirely
different interpolant, a; + aze®. For the two data points of Example 4.1 you can easily
check that a; = —0.25/(exp(0.5) — 1) = —0.3853736, ; = —a;. This is no longer a
straight line, and is not even a polynomial. In this case we say that we are changing the
model. Both change of basis and change of model occur frequently, and it is important
to be able to distinguish between them.

44 HOW GOOD IS POLYNOMIAL INTERPOLATION?

How should we assess the quality of an interpolant? Once we have computed the
coefficients o; one step is to evaluate the interpolant at the data points x; and verify that
the y; are reproduced to within rounding error. If this fails, either B is ill conditioned
or there is a bug in our program. But, in use, an interpolant will probably be evaluated
at many other points and it is not possible to determine its general behavior by knowing
only that it reproduces the input data. The best way, short of analysis, is to evaluate The
interpolant at many more points and print or plot the results.

In some situations though, the quality of the interpolant can be analyzed. Let us
suppose that the values y; are exact values of a known function g(z) at the points z;.
Let p,_1(z) be the unique (n — 1)-st degree polynomial interpolating these n points
(z;,¥:), i=1,...,n. Suppose g has n continuous derivatives for all z. Then it can be
proved that for any x

g™(&)

n!

9(x) — pn_1(x) = @ —z)T —732) - - (T — Tp),

where £ is some unknown point between z; and z,,. As a practical matter this expression
is only useful for simple cases; it sometimes provides an error bound, but mostly it gives
us insight and helps to justify the conclusion we make below.

Example 4.4 The Error in Polynomial Interpolation to In z.

The function g(z) = Inz is interpolated by a cubic at points = 0.4, 0.5, 0.7, and 0.8. We
wish to bound the error in the interpolant at the point z = 0.6.

The Lagrange form of the cubic is

(z — .Sz — Tz —.8) (z — dH(- Tz —.8)

P@) =TT =38 T "G TG o G o)
(x — 4)(x — .5z - .8) (x — 4)(z - .5=x-.7
RSy v v S G v v

and p3(.6) = —0.509975. The error expression gives

6 1

In(.6) — p3(.6) = _Fﬂ(b — .4)(.6 — .5)(.6 —.7)(.6—.8), 4<E< 8

94 Interpolation Chap. 4

So the error is less than

6 1

7 §0.0004 =~ 0.0039.

The actual error is |[p3(.6) — In(.6)| = 0.000851. For some problems, though, even the error
bound provides no information. Example 4.1 is such a case when y; = \/z;. B

Now consider what happens if we interpolate at more and more points on a fixed
interval from a known function g(x). We hope that the interpolation estimate at other
values of = will improve. The error expression is composed of three distinct parts; the
factorial and product of point spacing cause the error to decrease with increasing n,
but the order of the derivative is increasing. For “most” functions, derivative values
increase faster than n!. As a result, polynomial interpolants rarely converge to a general
continuous function. The mathematically inclined student can consider whether this
flies in the face of the Weierstrass Theorem. The practical effect is that a high degree
polynomial interpolant can have very bad behavior for z’s other than the x;’s and is
almost never used above degree 4 or 5.3

High degree polynomial interpolation is a bad idea
Example 4.5 Runge’s Function.

A detailed analysis of the dangers of polynomial interpolation was first published by C.
Runge in 1901. He attempted to interpolate the simple function

1
@ = 1552
on the interval [—1, 1] with polynomials and equally spaced points. He discovered that as
the degree n of the interpolating polynomial p,, tends toward infinity, p,(z) diverges in the
intervals 0.726... < |z| < 1. This phenomenon is shown graphically in Figure 4.5. Note

that in this case, polynomial interpolation worked well in the central portion of the interval.
n

There are several ways to understand why polynomial interpolation fails for Runge’s
function. The most direct is to notice that the successive derivatives of R(z), which ap-
pear in the expression for the interpolation error, grow rapidly with n. Another way
is to consider R as a function of a complex variable. This function has a singularity
wherever 1+25z% = 0, or at +i/5. These singularities lurk just off the interpolation
interval [—1, 1], close enough to affect the interpolant.

If the data abscissas are not equally spaced, but rather placed nearer to the ends
of the interval, then the problem with Runge’s function disappears. The resulting poly-
nomial interpolants converge to R(z) for every x in [—1, 1] as n approaches infinity.
Unfortunately, this trick does not work in general. A theorem of Faber says that there
is no point-placement rule which will work for every continuous function g. For any

3 High degree polynomial interpolation works well if the data points are the values of a function f(z)
like sinz or e* with the special property that for each fixed z, | fP(2)/p!| < M, p=0,1,....

Sec. 4.5 Historical Perspective: Runge 95

particular function, though, some specific spacing might work. It is also possible to find
a general placement rule which will work for all functions with at least two continuous
derivatives. For more dé¢tails see the text by Davis.

Figure 4.5 Polynomial Interpolation to Runge’s Function

45 HISTORICAL PERSPECTIVE: RUNGE

Carl David Tolme Runge (1856-1927), was born in Bremen Germany, the fourth and
youngest son of a prosperous merchant family. His parents spent most of the 20 years
preceding his birth in Havana, Cuba and then retired to Bremen. English was their
language of choice and they imbued their son with a British view of the world, particularly
an empbhasis on sport, self-reliance and fair play. As a young man Runge cut a striking
figure, tall, lean with a large and finely sculpted head and with exceptional skill as an ice
skater. He spent all of his professional life in Germany—Munich, Berlin, Hanover and
finally Gottingen. Max Planck was a warm and close friend through all of Runge’s life,
but intellectually Runge thought of himself as a disciple of Weierstrass. His early work
was under Leopold Kronecker in function theory but he soon after immersed himself in

96 Interpolation Chap. 4

problems of spectroscopy and astrophysics where he spent most of his career. Almost all
of Runge’s important papers were in these areas but he never ceased to regard himself
as a mathematician. His interests gradually focused on precision of data, data reduction,
and manipulation.

“Applied Mathematics” as understood and practiced by Runge was different from
that of his contemporaries. He was not at all concerned with the rigorous mathematical
treatment of models derived from the physical world, and little concerned with the
mathematical methods then used in technology. Primarily he wished to treat the theory
and practice of numerical computation, with a great deal of emphasis on practice. Some of
his methods are still in use today, notably the Runge-Kutta method for solving differential
equations. Nevertheless he was not recognized by mathematicians as one of their own,
nor by physicists as one of theirs either. As a result Runge did not obtain a worthwhile
academic appointment until late in his career. In 1904, after intense lobbying by Planck
and Felix Klein, he was appointed to Goéttingen as the first (and last) occupant of the
first full professorship in Applied Mathematics in Germany. In some sense he was the
inventor and at that time the sole practitioner of his discipline. His credibility with
professional colleagues increased despite his liberal political views during World War I,
and in 1920 Peter Debye recommended him for successor to the chair he was vacating
because Runge was “the only person in Gottingen capable of managing the physical
institute.”

Runge retired in 1925 without ever having a talented student who wished to study
his form of applied mathematics, what we would today call numerical analysis. He
remained in vigorous health until his death in 1927, leaving two sons, four liberated
daughters, and a recollection by his family of grandfather doing handstands at his sev-
entieth birthday party.

4.6 EVALUATION OF POLYNOMIALS

Polynomials are so pervasive in mathematics that one is often faced with the task of
evaluating them rapidly from their coefficients. The polynomial

p@) = a1z" + @z -+ an

can be evaluated by the Fortran program segment

P = A(N+1)
DO 10 I = 1,N
P = P + A(I)*X**(N-I+1)
10 CONTINUE

which takes n multiplications, n exponentiations and n additions. A simple technique
called Horner’s rule rewrites p(z) as

P(T) = an 41 +2(0n + T(an—1 +2(-- (a2 + a1T) - - +))).

Sec. 4.7 Piecewise Linear Interpolation 97

The Fortran for this is

P = A(1)
po 10 I = 1,N
P = P*X + A(I+1)
10 CONTINUE

Horner’s rule takes only n multiplications and n additions, and might be familiar to
you as “synthetic division.” W. G. Horner’s name is attached to this method because he
presented the rule in a paper (on another subject) in 1819. Actually, the rearrangement
was published over 100 years earlier by Isaac Newton. Several generalizations have
been published since then, see for example the book by Knuth (1969). Horner’s rule
should be the method of first choice for evalqution of polynomials at arbitrary points.
However, if p(x) is to be evaluated at a sequence of equally spaced points, for example
for plotting, other methods are more efficient. See problem P4-10.

4.7 PIECEWISE LINEAR INTERPOLATION

Polynomial interpolation is global, i.e., we use one polynomial function to pass through
all the data. Adding data points requires us to increase the polynomial degree and leads
to difficulties as we have seen. One alternative which has been popular since the mid
1960’s is to use piecewise polynomials functions. In this section we introduce these and
subsequently generalize the concept to include cubic splines and Hermite cubics which
are the most useful of all. A valuable expository and reference text on splines is the book
by C. de Boor (1978).* In addition to interpolation, which is the topic of this chapter,
splines are often used in solving differential equations. For that, a readable introduction
is the book by P. Prenter (1975).

In the context of piecewise polynomials the data abscissas are called knots, joints
or breakpoints. There are some technical differences, but the three terms are often used
interchangeably. A linear piecewise polynomial function L(z), is a function defined
for all with the property that L(x) is a straight line between z; and x; 1. The
definition allows L(z) to be different lines between each pair of adjacent knots. Figure
4.6 illustrates one linear piecewise polynomial. Note that any linear combination of these
is still a linear piecewise polynomial.

A linear piecewise polynomial interpolant to the data set (x;, y;) is a linear piece-
wise polynomial with the property

L(z;) =y: i1=1,...,n.

Figure 4.7 shows a linear piecewise polynomial interpolant. It is exactly the “dot to dot”
drawing we did as children. Notice that the definition does not say anything about L(x)

4 Carl Wilhelm Reinhold de Boor, a brilliant East German immigrant, spent the years 1960-1964 as a
research mathematician for General Motors developing a mathematical description of automobile panel shapes.
He formulated the concept of B-splines and discovered many algorithms now in worldwide use at CAD
installations. He now teaches at the University of Wisconsin in Madison.

98 Interpolation Chap. 4

4 1 , 1 | 1 | | ‘ 1 ‘ | | 1
20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Figure 4.6 A Linear Piecewise Polynomial Function

for x < x; or £ > x,. Thus there are many linear piecewise polynomial interpolants
to the same data with different properties on these exterior intervals. Nevertheless on
[x1,z,] the interpolant is unique. We will restrict our attention to this interval.

Piecewise polynomials may seem unusual, but they are perfectly ordinary functions.
For example, it is easy to write a rule for the evaluation of L(x). From Example 4.1 we
have

T —T; —Z;
L)=y,—————+yir1—— ifx; <z <ux 1=1,2,...,n—1.
() yl-'l?i—xi+1 yl+1$i+1_$i, 7> > L4,)~y 9

A linear piecewise polynomial interpolant has the desirable property that if the y;
are values of a known, continuous function, g(x), and if we add more points between x;
and z,,, the interpolant gets better, i.e., converges to the original function. Furthermore
if the data y; are values of a function g(z) which has a continuous second derivative
then it can be proved that

L) — g@)| < g max g @)| = O(h2)

Sec. 4.7 Piecewise Linear Interpolation 99

13 T T T T T T T T T T

4 | | 1 | 1 | 1 I; 1 | 1 | |
20 25 30 35 40 45 50. 55 60 65 70 75 80 85 90

Figure 4.7 A Linear Piecewise Polynomial Interpolant

where h is the maximum spacing between adjacent knots. The importance of this result
is that only the second derivative occurs in the error expression, independent of the
number of knots. If the knots are equally spaced and we double their number, then the
error in the new interpolant should be about 1/4 the error in the old one. Thus we can
make the interpolation error as small as we like by taking sufficiently many knots. In
practice, of course, we seldom know the underlying function, and rarely have the luxury
of adding more points. Nevertheless, convergence results like this give us confidence
in the method, especially when contrasted with the “non-convergence” of polynomial
interpolation.
Because L(z) is linear between the knots it can be differentiated there. We get

L’(x)= Yi + Yit+1 =yi+1_yi

s if.’L‘i<.’L‘<iL‘i+1, i=1,2,...,n—1.
Ty —Ti4+1 Ti41—Ti Ti4p1 — Ty

This is the difference quotient approximation to a derivative which is probably familiar
to you. It can be applied everywhere except at the knots and provides good estimates of
the derivative. It can be proved that

IL'(x) — ¢'(@)| = Oh), z#uzs.

100 Interpolation Chap. 4

Thus the derivative of the interpolant estimates the derivative of the function which
generated the data. This is in marked contrast to polynomial interpolation.

Example 4.6 The Error in Piecewise Linear Interpolation to R(z).

How many equally spaced knots are required to generate a linear piecewise polynomial
interpolant which has error less than 10~ for Runge’s function? We have that

"no_ 2. =2 —1001‘2
g" = —50(1 +252%) [(1+25x2)+1},

and by direct computation |g”| < 50. Thus using the expression for the error above we
have that h should be chosen so that

%SOhZ <1073,

or h < .0013. As h=2/(n — 1), about 1540 knots are needed.

4.8 PIECEWISE CUBIC FUNCTIONS

Piecewise linear interpolation solves one problem with polynomial interpolation— con-
vergence, but introduces a separate problem—Iack of smoothness; L(z) has corners.
To look for an interpolant which is smoother we consider using higher degree piecewise
polynomials. We will see that this leads to practical results, as contrasted to polynomials.
Piecewise quadratics are considered in problem P4—6, but more useful is the piecewise
cubic. A piecewise cubic is a function defined for all £ which is a cubic polynomial
between adjacent knots. A piecewise cubic interpolant C(x), is a piecewise cubic which
interpolates our data. Figure 4.8 shows two piecewise cubic interpolants. In this case we
see that even inside [z, x,] the interpolant is not unique. Requiring that the piecewise
cubic pass through the data is not enough, but by demanding some smoothness we can
obtain a unique result.

Between the knots C(x) is a cubic. It may be differentiated as often as neces-
sary. If there is any lack of differentiability it must occur at the knots. C(z) is already
continuous everywhere because it interpolates (see Figure 4.12). A smoother interpolant
would have one or more continuous derivative on [z, z,]. An Hermite cubic inter-
polant’ is a piecewise cubic interpolant with a continuous derivative. A cubic spline is

5 Charles Hermite (1822-1901), was a French mathematician who worked in many diverse areas including
elliptic functions, number theory, quadratic forms, approximation of functions, and differential equations.
Although he is less well known today than some of his contemporaries, during his lifetime he exerted a
great scientific influence by his correspondence with other prominent mathematicians and was considered
an inspiring figure. An honorary member of a great many academies and learned societies with numerous
decorations, he spent most of his professional life at the Ecole Polytechnique in Paris. His textbooks in analysis
became classics, famous even outside France, and it was his habit to disseminate his knowledge lavishly in
correspondence, courses, and short notes. One of the best known facts about Hermite is that he first proved
the transcendence of e and provided the basic technique which was ultimately used to prove the transcendence
of w. Another indication of the breadth of his interest was that he also studied Sanskrit and ancient Persian.

Sec. 4.8 Piecewise Cubic Functions 101

Figure 4.8 Two Piecewise Cubic Interpolants

a piecewise cubic interpolant with two continuous derivatives. Both types are important
in applications. In the engineering and science community the term spline was originally
synonymous with cubic spline. Today, splines of higher and lower order are known
and used. Nevertheless cubic splines are still the most popular and we will restrict our
attention to them.

What about requiring three continuous derivatives? Since the third derivative of
a cubic is a constant it is easy to show that any piecewise cubic with three continuous
derivatives at every knot must be exactly the same cubic in each interval. Since a
single cubic can never interpolate more than four points we cannot use this as a general
interpolation process.

On each interval [z;,z; +1] C(z) is a cubic and can be represented by four coef-
ficients. A program using this representation would require an array for the x;’s, and
four arrays, a, b, ¢, and d, for the coefficients of the cubic in each subinterval. We call
this the piecewise polynomial representation. For our development we prefer to use a
different representation which is more insightful. We will define 2n basis functions, c;(x)
and ¢;(x), ¢ = 1,...,n. Each will be a piecewise cubic with a continuous derivative on
[z1,z,]. Thus any linear combination of them has the same properties. Our definition

102 Interpolation Chap. 4
will guarantee that
CZ(.’EZ) = 1, Ci(.'L'j) =0] 9{2, and 6,(.'13]) = 0, all Z,]

This being the case, the function

n

C@) =) (vici(@) + dii(x))

i=1

Figure 4.9 Two Hermite Cubic Interpolants with Different Slopes

is an Hermite cubic interpolant for any choice of the d;. We will also arrange that
cjx)=0 alli,j and &(z;) =1, é(x;))=0 jHi.

Then

n

C'(ar) = Y (vici (@) + didi(@r)) = dii(x) = di.

i=1

Sec. 48 Piecewise Cubic Functions 103

Figure 4.10 shows a typical ¢; and é;. With these things in place it is easy to imagine
different Hermite cubic interpolants C'(x). They all are piecewise cubics which interpolate
the data and have one continuous derivative. At the data values these derivatives are
given by d;. An interpolant in this form is particularly useful if we know the values of
the slope of the underlying function at the data points, in addition to the data values. In
that case the natural choice for the d; are exactly these given slopes. Figure 4.9 shows
two different C'(z), one with all the d; = 1 and the other with d; = 0. These are probably
not of practical interest, but illustrate the effect that ¢é; has.

Example 4.7 Hermite Cubic Interpolation to R(z),d; = R'(z;).

Determine an Hermite cubic interpolant to Runge’s function R(z). Use R'(z,) for d;. We
omit the details and display the interpolant below. B ,

1.0 - T : | ' | ']

0.0 0.1 0 2 03 0 4 05 0.6 0.7 0.8 0.9 10

If we do not know the d;, taking a cue from the the fact that d; = C’(z;), we can
try to estimate them from the data. For example, there is a unique quadratic through
(@i—1,¥i-1), (Ti, ¥:), and (z; 4 1,¥; 4 1)- Its derivative at z; is

Azh; 1+ A;_1h; Yit1 — Vi
b; = wher A= —2,
¢ hi—l + hi ’ cre t hi
We can use §; to approximate dp,...,d,_;. For d; and d,, we can use A; and A,,_;,

or a more accurate formula such as the derivative (at x;) of the above quadratic. There
are many other ways to estimate derivatives as well.

104 Interpolation Chap. 4

Example 4.8 Hermite Cubic Interpolation to R(z),d; ~ R'(x;).

If we determine an Hermite cubic interpolant to Runge’s function R(x), but use the approxi-
mations above for the d;’s we will find that the plot of the interpolant cannot be distinguished
from the one in Example 4.7. Of course not all data sets give such good results. B

This representation requires three arrays, one each for the z;, y;, and d;, and is
called the Hermite cubic representation. This is only three-fifths the storage required
for the piecewise polynomial representation we mentioned earlier, but since n is rarely
more than a few hundred, storage is not a significant consideration. The main advantage
of the Hermite cubic representation is the intuitive nature of the coefficients. But when
the interpolant is to be evaluated many times (for instance, for plotting) the piecewise
polynomial representation may be preferred. In either case, a subroutine which evaluates
the interpolant at an input point x must first locate = within one of the subintervals.
If the piecewise polynomial representation is being used it is then only necessary to
evaluate the cubic whose coefficients are given in that subinterval. If the Hermite cubic
representation is used the evaluation routine first decides which c; and ¢&; will be nonzero
in that subinterval (there are normally two of each) and evaluates them at z. Thus
evaluating the Hermite cubic representation is slower than the piecewise polynomial
representation. Packages for manipulation of piecewise cubics often provide conversion
routines from one representation to another.

Routines for piecewise cubic interpolation usually come in pairs. The first computes
whichever unknown parameters, d;’s, are required. This routine is normally called only
once for each data set. The second routine, the evaluator, can be called as many times
as necessary to evaluate C'(x) at a point, or sometimes at a sequence of points. Often the
evaluator will also return values of the first and/or second derivative at the input point(s).

Summarizing

There is no unique Hermit cubic interpolant. Instead, there is an n parameter
family of such functions, i.e., piecewise cubics that interpolate n given data values and
also have one continuous derivative. The subroutine PCHE Z, described below, can select
a member of this family that is “visually pleasing.” A discussion and motivation for this
idea is presented in Section 12.

4.9 PCHIP, PIECEWISE CUBIC HERMITE INTERPOLATION PACKAGE

PCHIP is a set of subroutines designed by Fritsch and Carlson (1980) to be a flexible
tool for manipulating Hermite cubic and spline interpolants. In this section we present
two easy-to-use drivers for PCHIP

PCHEZ: generates a visually pleasing Hermite cubic interpolant or a cubic spline
interpolant.

PCHEV: evaluates the interpolant and derivative of the function generated by
PCHEZ.

Sec. 4.9 PCHIP, Piecewise Cubic Hermite Interpolation Package 105

These routines are designed to be easy-to-use, so they are not exceptionally flexible. But
the PCHIP package contains many other routines that can be customized to particular
applications. PCHIP also contains routines for the integration of a piecewise cubic. In
the example below you will see a call to PCHQA but we defer a discussion of it until
Section 9 of Chapter 5. For additional details consult the reference above.

To illustrate we consider the problem of generating an interpolant to Runge’s func-
tion, similar to the one we displayed in Example 4.7. The abscissa and ordinate values
are in arrays X and F, and the intermediate output array D contains the derivatives of the
Hermite cubic interpolant or the spline. Once the derivatives have been found, one call
to PCHEV will allow evaluation of the interpolant (and its derivative) at an array XE of
points, with values returned in the array FE.

REAL X(21), F(21), D(21), WK(42), FE(101), XE(101), FD(101)
LOGICAL SPLINE

c
C Arithmetic statement functions for Runge’s function and derivative.
C
R(U) = 1.0/(1.0+25.0*U*U)
RP (U) = -50.0*U*R (U) **2
C
C Compute Runge’s function at 21 points in [-1,1].
C
DO 1 I=1,21
X(I) = -1.0 + (I-1)/10.0
F(I) = R(X(I))
1 CONTINUE
N = 21
NWK = 42
SPLINE = .FALSE.
C
C Compute cubic Hermite interpolant because SPLINE is .FALSE.
C
CALL PCHEZ (N,X,F,D,SPLINE, WK, NWK, IERR)
IF (IERR .LT. 0) THEN
WRITE (*,*) 'AN ERROR CALLING PCHEZ, IERR= ', IERR
STOP
ENDIF
C
NE = 101
C
C Evaluate interpolant and derivative at 101 points from -1 to O.
C
DO 2 I=1,NE
XE(I) = -1.0 + (I-1.0)/(NE-1.0)
2 CONTINUE

CALL PCHEV (N,X,F,D,NE,XE,FE,FD,IERR)
IF (IERR .NE. 0) THEN

106 Interpolation Chap. 4

WRITE (*,*) ‘AN ERROR CALLING PCHEV, IERR= ', IERR
STOP
ENDIF
C
DO 3 I=1,NE
ERROR = FE(I) - R(XE(I))
ERRORD = FD(I) - RP(XE(I))
WRITE (*,*) XE(I),FE(I),ERROR,ERRORD
3 CONTINUE
C
C Compute integral over the interval [0,1]
C
A = 0.0
B=1.0
Q = PCHQA (N,X,F,D,A,B,IERR)
WRITE (*,*) 'INTEGRAL FROM 0 TO 1 AND IERR ARE ’,Q,IERR
C
STOP
END

*4.10 CUBIC HERMITE INTERPOLATION—DETAILS

Let h; = z; .1 — x;. On each of the subintervals [z;,z;4+1], 4 =1,...,n — 1 we define
four cubics
i 2 2 i At 1 2
co(@) = ﬁ(w —Ziy1)(z -z + 3), o) = ﬁ(x —)T — Ti+1),
i i
. 2 h; " 1
d@ =-S5 —z)@—zip1— =), 8@ = @ —z)(x — ziy1)
h; 2 h?

Now define c;(x) and &;(x) as

1) Al .
_J ¢ on [z, z2); 4 ez =d G onlz,]
CI(m) {0 on [1'27$n]; an Cl(m) 0 on [.’1,‘2,.’1,‘.,1].

Fori=2,3,...,n—1

0 onlz,zil]; 0 on[z,zi];
ei(@) = Czl—l on [x;_1,T:]; and &(z) = (:Ji_l on [zi_1,Z;];

g on[x;,T;iqp1l; & on [z, xiy1];

0 on [Z;41,%.]; 0 on [z;41,%x];

and fori=n

0 on [z, Tn_1]; 0 on [z1,Tn-1];
cn(x) = - and Cn(®) =< an—1 .
n(@) {C? : on [T,_1,Ts]; (@) C? on [T,_1,Ts].

Sec.4.10 *Cubic Hermite Interpolation—Details 107

Finally, define

C@) =) yici(@) + diéi(@).

i=1

Figure 4.10 shows a typical c; and é;.

T T T T T T T T T
(1| 10 |
e (0 11 1 I co(x) |]
| |

A Lo ah. &4 & Lo o

T T T T T T T T A ¥
[L _

. _ \

¢y (x) L -~

A

| | cs(x)

A VU Ll A I Lo

Figure 4.10 Typical Hermite Cubic Basis Functions

Let us try to illustrate the properties of these functions by looking at ¢;(x). By the
definitions above, ¢;(x) is identically zero when z < zg or x > 3. For z¢ < z < z7,
&(x) = &8(z) = (x — 6)*(x — z7)/hg. For a7 < z < x3, &(2) = &) = (z — 27)(@ —
xg)?/h3. From these expressions we see that & (z) is well defined for all z and is a
piecewise polynomial. Further it is zero at each of the knots. At x¢ it has a double zero
from the left, and at =3 a double zero from the right. Hence its derivative is zero at these
points too. At x7 we can compute the derivative by one of two formulas depending on
whether we approach z; from the left or right. From the left we have

N . N . 1
&(x7)= lim &(z)= lim [&(x)) = lim —[(z— z6)? + 2(z — z6)(x — 7)) = 1.
T, T, Tz, Y6
From the right

c‘f,(x;“ = lim+ &) = lim+[é(7)(m)]' = lim+ i[2(:1: — z7)z — z8) +(z — zg)*] = 1.

h2
T, o, z—z,; 17

108 Interpolation Chap. 4

Since the derivative is the same from either side this shows that &;(z7) = 1.

With patience it is possible to check that the functions c¢; and ¢&; have all the
propetties listed in Section 8. In particular, they each have one continuous derivative;
C(x) does too and is therefore an Hermite cubic interpolant. Actually, C(x) is easy
to compute if we know the values of d;. To evaluate it at any fixed £ we note that
the functions ¢; and ¢&; have at most two intervals as support. So most of the terms in
the sum are identically zero; at most four contribute. Thus evaluating C' involves first
locating x in an appropriate interval, say between z; and z; ., evaluating the terms
Ci, Ci+1, Ci, €;+1, multiplying by the requisite y’s and d’s, and adding.

4.11 CUBIC SPLINES

Another approach to dealing with the d;’s is to force the function C(z) to satisfy ad-
ditional conditions. This will effectively reduce the number of free parameters. A
reasonable requirement is that C' be smoother, i.e., that the individual polynomial pieces
join together at the knots to give a second continuous derivative. We will see that there
are more than enough free parameters to satisfy these requirements, and the process leads
to cubic spline interpolation. We know from our derivation of Hermite cubic interpola-
tion that C(z) has a continuous derivative on [z, z,] independent of the d;. For many
applications this is enough, but for others it is not. Furthermore the flexibility afforded
by the arbitrariness of the d;’s can also cause difficulties; every problem requires decid-
ing how to set them. Let us see if it is possible to select the d; so that C(z) has two
continuous derivatives. Rather than deriving the formulas for spline interpolation we
must first decide if our expectation is realistic. One technique is to count the number of
conditions we want C'(x) to satisfy and see if there are at least that many free parameters
available. This does not prove anything, but the numbers will give us insight. There are
n — 1 subintervals z; < --- < z,,. On each, C'(x) is a cubic defined by four coefficients
regardless of which representation we use, or a total of 4(n — 1) parameters. In each
subinterval [z;, z; 4 1] there are two constraints on C'(x) because of the interpolation; re-
member that C(x;) = y; and C(z; +1) = y; + 1. Requiring C’ to be continuous adds n —2
constraints (one at each interior knot). The difference between the number of parameters
and constraints is 4(n — 1) — 2(n — 1) — (n — 2) = n. Thus an Hermite cubic interpolant
ought to have n free parameters and this is indeed exactly equal to the number of d; at
our disposal. Requiring C” to be continuous adds n — 2 constraints. Thus we conclude
that asking for cubic spline interpolation ought to be feasible and in fact, should still
leave us with two free parameters.

The preceding counting argument does not tell us how to find a spline interpolant,
only that it is plausible that one exists. The mechanics of deriving the interpolant are
more complicated and usually involve two steps.

(1) Write the general expression for C”(x). This will involve the unknown d;’s.

(2) Write analytically the requirement that C”(x) be continuous at the n — 2 interior
knots. This will lead to a system of linear equations for the d;.

Sec. 4.11 Cubic Splines 109

If the system can be solved we will have found the spline. As we anticipated this

leads to an underdetermined system, i.e., there are only n — 2 equations to find the n

di’S.

There are several ways to uniquely specify the spline. The choices you will find

most often in subroutine packages involve restricting the behavior of the spline at the
endpoints z; and x,,. We list some possibilities below. Note that subroutine PCHEZ
which is discussed in Section 9 automatically selects item (e) if the input parameter
SPLINE is . TRUE.

(a)

(b)

(c)

(d)

(e)

Specify the derivative of C'(x) at ; and z,. That is, set d; and d,, to known
values or to zero. This is called a complete cubic spline interpolant. In many
problems, physical considerations enable the endpoint derivatives to be known a
priori, so this is often a useful option.

Estimate the derivatives from the data and use these values for d; and d,,. This
has to be done with care. We have known scientists to ruin a spline by using
crude guesses for the endpoint derivatives. An acceptable approach is to derive the
formula for the cubic polynomial which passes through the first four data points,
then differentiate it at z; and use that value for d;. Similarly at x,,.

Force the second derivative of the spline to agree at x; with the second derivative
of the cubic from (b). Similarly at z,,.

Force C"(x;) = 0 = C"(x,). This is called a natural spline interpolant. Phys-
ically this means that the graph of the spline is a straight line outside the data
interval [z, z,].

Force the not-a-knot condition: from the construction we know that C" will be
continuous at all the knots (that’s what is meant by a spline) but that C""’ need not
be. We can require that C'"/(x) be continuous at ;. This is equivalent to insisting
that the cubic on the first and second subintervals be identical. It is also equivalent
to eliminating the knot at x, but still requiring that the single cubic between x;
and z3 interpolate at the endpoint as well as at z;. Thus z; is an interpolation
point but it is not a knot. Similarly at z,,_;.

If we use one of these options the system of equations for the d;’s has a matrix of

the following form

X X
X X X
X X

X X
X X

it is symmetric, tridiagonal, nonsingular and can be shown to be well conditioned for
any reasonable choice of knots x; < z; < ... < T,. We can solve it using SGEFS of
Chapter 3. However, because of the special properties of the matrix, it can be shown that

110 Interpolation Chap. 4

pivoting is unnecessary when Gaussian elimination is used to solve the system. Also,
because it is tridiagonal we need not store the full n X n matrix. Spline programs always
take advantage of these facts and do not utilize a general linear system solver. Instead
they incorporate a special one.

Symmetric tridiagonal systems which can be solved without pivoting occur fre-
quently in several areas of numerical mathematics. Take a few moments to reflect on
the elimination process for such systems. At each stage little work is required: only one
element must be eliminated and only one element must be modified. For the usual full
systems, elimination requires O(n>) arithmetic operations; for these special systems this
is reduced to O(n). As a result, even the largest systems can be solved quickly.

Some spline programs allow the user to specify other options such as

(a) Forcing C(z) to be periodic, i.e., C(z;) = C(z,), C'(z1) = C'(z,) and C"(z)) =
C"(xy).

(b) Forcing the integral of C(z) to take on a specific value, often one,

1=/ " C@) da.

1

Options such as these can destroy the symmetric tridiagonal structure of the matrix
for the d;’s and usually are only found in more advanced packages. For most problems
there is no best way to choose the extra conditions. On the other hand many data sets
produce interpolants which look almost the same regardless of which choice is made.

Once the unknown spline coefficients d; have been calculated, the spline is com-
pletely determined and may be evaluated at any x. These values of d; are precisely those
which give C'(z) two continuous derivatives. One point of confusion often occurs when
the data y; are values of a known smooth function g(z), for example Runge’s function.
It might be expected that the computed d; would be identically g’(x;). There is no reason
for this to happen. The only time this expectation is fulfilled is in the unusual case when
g(z) is itself a spline. In fact in Example 4.7 the Hermite cubic interpolant is definitely
not a spline, i.e., it does not have two continuous derivatives.

Example 4.9 Spline Interpolant to R(x).

The spline interpolant to Runge’s function (with equally spaced knots and default boundary
conditions) looks very much like the one in Example 4.7. For this data almost any reasonable
piecewise cubic interpolant can be used. But recall that polynomial interpolation is not
satisfactory (Figure 4.5). H

4.12 PRACTICAL DIFFERENCES BETWEEN SPLINES AND CUBIC
HERMITES

Given a specific data set to interpolate, a few general guidelines can be suggested for
deciding between these two similar piecewise polynomial interpolations. Of course, if

Sec. 4.12 Practical Differences Between Splines and Cubic Hermites 11

smoothness of the second derivative is required then splines are selected, but usually
this is not demanded explicitly. For “nice” data sets there is little qualitative difference
between the two interpolants. But it is sometimes possible to notice that the cubic
Hermite is less smooth. To obtain a spline we must solve a system of equations for
the coefficients. This is fast as mentioned above, but the system must be set up and
the time and effort required should be considered. An Hermite cubic interpolant is also
defined by coefficients, but these are obtained without solving a linear system. Usually
though, the choice between spline or Hermite cubic interpolation does not depend upon
the amount of work to compute the d;. This is because in practical problems the resulting
piecewise cubic is evaluated at many points and this is the most significant part of the
total work. Of course, the evaluation time is exactly the same for a spline as for an
Hermite cubic. If the derivatives of the interpolant or model are known then these may
be easily incorporated into the Hermite cubic but not easily into the spline, unless the
derivatives occur at the endpoints. If the derivatives are not known then various estimates
of them can be computed and used; effort is required here too.

As we have seen, every spline is underdetermined by the requirements of interpola-
tion; extra information must be supplied. All too often programs for spline interpolation
do not allow the user to supply this and one may be led to believe that it is not necessary.
Rather, the code has built in specific assumptions; a natural spline is the easiest choice,
but others are possible too. For example, a program may estimate first derivatives at the
two ends from the data and use these for d; and d,,. When not required to give any
extra conditions, the user should be alert to study the program documentati)ﬂn to discover
which defaults are being used.

The theoretical error in either spline or Hermite cubic interpolation can be measured
by comparing the interpolant C'(z) with a known function which generated the data, much
as we did for polynomial or piecewise linear interpolation. If the data y; are values of a
function g(z) which has a continuous fourth derivative, then

/

|C(z) — g(z)| < const - h* max |g¥(z)| = O(h%),

where C(z) can be either the cubic spline or the Hermite cubic interpolant based on the
same set of knots. We have left unspecified the value of the constant which depends
on whether C is a spline or Hermite cubic interpolant, how the two extra conditions are
specified in the former case and how the d; are selected in the latter. The inequality
above holds as long as reasonable choices are made for the unspecified values. (Recall
that h is the maximum spacing between adjacent knots.) The essential points are that the
interpolation gets better as the number of knots increase and their spacing decreases, and
that the rate of improvement is proportional to the fourth power of the the knot spacing,
much faster than for piecewise linear interpolation. This expression justifies our interest
in these piecewise polynomials, but it does not imply that C(x) will always look exactly
the way we want between our data points. In most problems one set of data values are
given, their number can not be increased to study convergence. Only one interpolant is
generated and it is either satisfactory or not.

112 Interpolation Chap. 4

It is often justified to use the derivatives of a spline or Hermite cubic interpolant as
approximations to the corresponding derivatives of the underlying model. It is possible
to show thai if the data come from a function which is sufficiently smooth,

|C'(@) — ¢'@)| = O(RY), |C"(z)— ¢"(x)| = Oh?), and |C"(x)— g¢""(x)| = O(h).

If C(x) is a spline the first two expressions hold for any = and the last only if z is distinct
from a knot. If C(x) is an Hermite cubic interpolant the second and third expressions
hold if x is distinct from a knot. Of course, these theoretical results, like the others,
also have to be taken with a grain of salt. For example, in Section 9 we saw how to
compute a spline interpolant to twenty one equally spaced points from Runge’s function
R(z) (h = 0.1). In that example, the maximum error in the interpolant is about 0.003
and the maximum error in the derivative is about 0.08. We recommend that whenever
possible every interpolant be plotted to confirm that it has the physical properties which
are desired. The injunction to examine a plot is even more necessary if one is going to
differentiate it. (For more detail, see the book by Schultz (1973).)

A tremendous market has been created for spline interpolation algorithms because
most users have obtained satisfactory interpolations. These programs have, however,
been somewhat oversold. There are many examples of data sets for which spline in-
terpolation (with any set of extra conditions) gives a poor “fit.” This occurs mostly in
cases where the data undergo rapid changes in a small interval. Figure 4.11 illustrates
such a set and shows the natural spline interpolant to it. In this particular case the data
were known to come from a physical process which was increasing on the interval, a
characteristic lacking in the spline. There is no contradiction between the convergence
result given in the preceding paragraph and the practical result shown in this figure.

There are several ways around this problem; we describe briefly two popular meth-
ods.

(1) Consider an Hermite cubic interpolant to the data of the previous paragraph. As
you now know there exist many possible interpolants, with different d;’s. It might
be possible to select from among those one which is always increasing. More
generally, papers by Fritsch, Carlson, Brodlie, and others have considered the
problem of selecting an Hermite cubic interpolant which is “visually pleasing” in
some intuitive sense. An algorithm to do this is comparable in effort to computing
a spline. But often the resulting interpolant is much more useful. Figure 4.12
illustrates one of these interpolants to this data. The derivation guarantees that if
the data are monotonic the interpolant will be too. If the data are not monotonic
(such as the samples from Runge’s function) these algorithms allow various options
to deal with the region where the data change direction. In that case the computation
of the d;’s may not be optimally accurate. Thus this method might be a poor choice
for non-monotonic data if the interpolant is to be differentiated.

(2) The original use of the word spline came from the drafting community. There, a
spline meant a flexible rod which could be fixed at specific points (called knots)
along its length. The draftsman forced the spline to pass through positions on the
drawing table by fixing the knots, and then traced the shape of the curve onto

Sec. 4.13 Bézier Curves 113

90

80

70

60

50

40

30

20

Figure 4.11 A Spline Interpolant to Monotonic Data

the drawing. Our definition of a spline is a mathematical approximation to this
physical device. Between 1966 and 1974 Cline and others went back to rethink this
approximation with an eye to eliminating some of the problems we have observed.
They were guided by the physical notion of an elastic band which goes through
rings at the interpolation points, and which can be pulled by its ends to eliminate
all unnecessary wiggles. If the pull is strong enough the result is the broken line,
or piecewise linear interpolant. Their approach leads to what they have called
a “spline under tension.” This seems to do a good job interpolating awkward
data, and has the further advantage of requiring one intuitive, user-set parameter
o, the “tension.” The resulting interpolant is no longer a piecewise polynomial,
but involves exp(czx) and exp(—ox). This is not a disadvantage, for piecewise
polynomial functions are rather arbitrary too. The interested reader can consult the
paper by A. Cline (1974).

With either of these techniques it is important for a user to be aware that no

interpolation (spline, Hermite cubic, tension spline, etc.) should be treated as a “black
box.” We repeat the suggestion to examine a plot of the interpolant whenever possible.

114 Interpolation Chap. 4

90 T T T T T T T I T T T T

80r

50r

401

30—

20F

Figure 4.12 Visually Pleasing Interpolant to Monotonic Data

4.13 BEZIER CURVES

An important problem in computer aided design (CAD) is to find a functional form for a
curve (or surface) that is given graphically. This is often done interactively; a designer
sits at a graphics terminal and tries various parameter values until the resulting function
appears “right.” In 1962 Bézier and de Casteljau independently developed a method for
doing this while working on CAD systems for the French car companies, Renault and
Citroen. The Renault software was soon described in several publications by Bézier and
is the reason the underlying theory bears his name. These methods are now established
as the mathematical basis of many CAD systems and have also become a major tool in
computer graphics. The book by Bartels et al (1987) is a good introduction.

We start by studying a simple set of functions called Bernstein basis functions.®
Assume that all the data are given in the interval ¢ < z < b. The i-th Bernstein basis

6 Sergei Natanovich Bernstein [1880-1968], son of a physiology lecturer from Odessa, was educated in
Paris but returned to Russia where he taught in the Ukraine and later in Leningrad and Moscow. His master’s
and Ph.D. theses solved the nineteenth and twentieth problems of a famous set by Hilbert. He mainly worked
in partial differential equations, approximation (where he coined the phrase “constructive theory of functions”),
and probability. Bernstein’s name is also linked to the Weierstrass approximation theorem because this can be

Sec. 4.13 Bézier Curves 115

function is a polynomial of degree n is defined as

ney_ (7 (b—)" (z — a) .
Bi(w)—(i) ®—ar , 1=0,...,n.

Here the notation (7) is the binomial coefficient,

(n) - n!
i) T tm=D

For example, for n = 3 the four cubic Bernstein basis functions are

(b-zy

(b-2)*(z —a) (b-z)(T —a) (x —a)’
(b—a)®’

2
3 —
G-ap b—ap B@O=G o

To actually compute the value of a Bernstein basis function at z we do not use the
definition. Rather, we use the iterative algorithm

Bi(x) = Bl(x)=3 B(z)=3

B)x)=1, B"(z)=0,
(b — £)B} (z) +(z — a) B} (2)

Bi'(z) = b—0 .

0<i<n
By 1(@)=0

which is less prone to the growth of roundoff error. We show a subroutine for the
evaluation of Bl*(x) when a = 0, b =1 (this is the most important case as we will see
below).

SUBROUTINE BP (N, B,X)

[
c Computes values (at X) of the N+1 Bernstein basis functions
C of degree N on [0,1]
[
C Input: N (integer) .GE. 0
C X (real) Abscissa for evaluation of polynomials
C Output: B(0:N) (real array)
¢ B(I)= N!/(I!*(N-I)!) * (1.-X)**(N-I) * X**I
C 1=0,1,...,N
C
INTEGER N,C,R
REAL B(0:N),X
[

IF (N .EQ. 0) THEN
B(0) = 1.0

proved by a clever use of the classical probability theorem, called the Weak Law of Large Numbers. The key
step in the short proof is to use the binomial distribution, which turns out to be a Bernstein basis function in

disguise.

116 Interpolation Chap. 4

ELSE IF (N .GT. 0) THEN

DO 2 C=1,N
IF (C .EQ. 1) THEN
B(l) = X
ELSE
B(C) = X*B(C-1)
END IF
C
DO 1 R=C-1,1,-1
B(R) = X*B(R-1) + (1.0-X)*B(R)
1 CONTINUE
C
IF (C .EQ. 1) THEN
B(0) = 1.0-X
ELSE
B(0) = (1.0-X)*B(0)
END IF
2 CONTINUE
END IF
RETURN

END

Since each B} is a polynomial of degree n, so is the linear combination

Pu(z) =) piB} @),
=0
and we can try to find the p; so that P, interpolates at n + 1 points, P,(z;) = y;. (In this
section we assume that there are n + 1 rather than n data points, and number them for
convenience from O to n.) This can be done by solving a set of n + 1 equations for the
p; as described in Section 1. Using these B*(x) instead of the monomial or Lagrange
basis, we have a change of basis in the sense of Section 3.

What is the relation between the coefficients p; and the y;? Using the monomial
representation, the coefficients of z¢ have no simple relation to the data. To say this
another way, it is difficult to guess the appearance of a high degree polynomial, such as
3 — z+22% +2° +42* — 1.325, by looking at its coefficients. In the Lagrange repre-
sentation the coefficients are exactly the ordinates of the data points but even this does
not help us guess its appearance since we know that a polynomial can fluctuate wildly
between the interpolated values. For P, (x) the first and last coefficients (py and p,,) are
also equal to the data values; because B}'(a) = 0 if ¢ > 0 and Bg(a) = 1, pp must be
equal to yo. Similarly, p, = y,. The fascinating thing about this representation is that
the remaining coefficients p; are almost as simply related to the data y; and can be easily
used to guess the shape of the curve. The relationship is so strong between p; and the
curve’s shape that it has been exploited to make these curves major design tools. By that
we mean that if p; is obtained in any way, even by guessing, we can predict intuitively
what P, (z) will look like before we evaluate it. For polynomial interpolation knowing

Sec. 4.13 Bézier Curves 117

that the interpolant passes through the data is not a good predictor of the appearance
of this function. Now we can generate the interpolant by guessing at the p;, and then
looking at P, (x). If it is not satisfactory we make minor adjustments in the p; and repeat.
The advantage of this approach is that it can be applied even when interpolation is not
the final goal. In many cases the CAD designer does not have any data to interpolate,
but only a general idea of what shape curve is desired.

How should we guess at the p; which will generate an acceptable shape? The
basic idea is to specify the p; graphically. (Refer to Figure 4.13.) To this end we
associate each p; with a point in the plane, (¢; , p;), called a control point, and we define
t; = xo + iz, — T0)/n = a+i(b — a)/n, so the t; are equally spaced on the interval of
interest. Notice ¢y = x¢ and t,, = x,, but the remaining ¢; are not usually equal to x;.
For each trial set of control points we can form the Bézier polygon; starting with (¢o, po)
connect successive control points with straight line segments and finally connect (¢,,, p,,)
back to (tg, po). It can be shown that this polygon provides a rough idea of the shape of
P,(x). It is also known that P, (x) is variation diminishing. That means that if the p;
are monotonic, so is P,(xz); if they are convex (concave) so is P,(x). In addition, P, (x)
lies entirely within the convex hull formed from the control points. (A set S is convex
if a line from any two points in S remains in S. The convex hull is the smallest convex
set containing all the control points.) Often the convex hull is the same as the region
enclosed by the Bézier polygon. Thus moving a control point up or down has a direct
and intuitive effect on the function P,,.

Usually the number and position of control points is not known in advance but
only decided by the minimum number required to get a satisfactory curve. This is not
an interpolation because we cannot tell in advance exactly J&hat points P,(x) will pass
through, except the endpoints. But in practice we can make P,(z) pass through any point
we like by adjusting the control points. If the designer actually wants the curve to pass
through a specific point he locates its position graphically and some minor extensions to
the theory will force the curve to interpolate there.

Figure 4.13 illustrates a Bézier polygon formed from some control points and the
resulting P, (x).

One difficulty with this approach is that it is not possible to move the control
points to the right or left. Once n is chosen, t; is fixed at ¢; = a +i(b — a)/n. This is
counterintuitive to the designer, who sees the natural effect of up/down movements and
wants the analogous ability to move the control points in any direction. To allow this
we require a generalization. Let p; be a point in the plane, and define the vector Bézier
curve

P.(x)=) p:B](@.
=0

As z varies from a to b, P;(x) follows a trajectory in the plane beginning with py and
ending at p,. In this form p; can be an arbitrary point. There is no need to assume
anything about the ¢;, or even that p; lies to the left of p; ;. Thus P, (z) can describe
a much more complicated shape. For example, if pg = p,, then P,(z) will be a closed

118 Interpolation Chap. 4

0 55F
0.50r
0 45

0 40F

0 25r

0.20F

0 15

0 05r

O.OOL

—-0.05 | L | L | I L |

Figure 4.13 Control Points, A Bézier Polygon, and P, (z).

curve. For a vector Bézier curve the numbers a and b are arbitrary and are usually taken
to be 0 and 1. In other words x is simply a parameter that varies along the length of the
curve. In the literature, the adjective “vector” is usually omitted. Figure 4.14 illustrates
such a Bézier curve.

Example 4.10 P, versus P,.

The three quadratic Bernstein basis functions on the interval [0, 1] are (1 — z)%, 2z(1 —)
and z2. Consider the three values po = 1,p; = 0,p = 1. In the case of P,(x) these are
associated with the control points, (0, 1), (1/2,0), (1,1) and give

Pz)=(1—-2+0-22(1 —z)+2° =1 -2z +22°.

Note that when z = 3/4, P,(xz) = 20/32. On the other hand, for P,(z) there are no
constraints on the control points, and for illustration we take po = (0, 1), p: = (3/4,0), and
p2 = (1, 1). Then the Bézier curve is

Py(z) = (0-(1—1‘)2+3/4-2x(1—1‘)+1-3:2, (1—.1:)2+1'2) = (1—.r/2—3:2/2, 1—2x+2z2).

When z = 3/4, Py(z) = (27/32,20/32), which does not have abscissa value 3/4. In this
form z is only a parameter; P,(x) traces a curve between the first and last control point.

Sec.
0

0
0.
0.
0.
0
0
0.
0
0
0
0.
0.
0.
0.

-0.

4.13

Bézier Curves

119

70
65
60
55
50
45
40
35
30
25
20
15
10
05

00

T T T T T T T T

05

Figure 4.13 (cont.) Control Points, A Bézier Polygon, and P, ().

120 Interpolation Chap. 4

Figure 4.14 A Bézier Curve

In fact, when P, has abscissa value 3/4, its ordinate value is about 0.536. The two curves,
P, and P, are plotted in Figure 4.15. On each curve we indicate the point on the curve
corresponding to = = 3/4. Finally, we plot the convex hulls formed from each of the two
sets of control points. As a check of your understanding, compute P,(z) with the control
points (0, 1), (1/2,0), (1,1) and verify that the curve traced out by P,(z) is identical to
Py(z). R

*4.14 B-SPLINES
From Section 11 we know that a spline interpolant can be written
C@) = yic@) + dii(a),

where the d; are obtained by solving a system of linear equations. But note that neither
the c;(z) nor the ¢;(x) are themselves splines because they are not twice differentiable.

Sec. 4.14 *B-Splines 121

O N T l T —[T I T | T
A
/
N
ol \\\ /_
N [
3 ‘t
N 4
A /
8 \\\\ /// -
\\\\ ///
NN a
AN !
7r R ??\ S 7
NN \% 4 /
N ~ Q?‘ 4 /
« ~_ b A ’
6 2. \€CTO d //
N \\\'? 2 / T
N S~ - /
~~ o _ - /
.5r \\\ ~-----" / B
« /
N !
N !
4 AN / —
N !
\\ !
L \ ’
/ _
3 \\\ ,
N I
N /
N
L2 . /’ -
N !
S f
/
1F AN S 4
\\ /
N
‘O | | 1 | 1 \r:(I
00 0.1 0 2 0.3 0 4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.15 P, (z) versus P, ().

For many applications it would be useful to be able to write the interpolant as a linear
combination of functions which are also splines

C(x) = Z aiN?(x).

The most heavily used and flexible way to do this is when the N;(z) are B-splines.
The superscript 3 refers to “cubic” B-splines; there are other types and this is a common
notation. The graph of a B-spline resembles the graph of one of the c;(x) in Figure
4.10 in that it is zero on most of the interval, and that each B-spline looks like a shifted
version of any other if the knots are uniformly spaced. Figure 4.16 shows typical B-
splines. Notice that a B-spline is always non-negative and is nonzero over at most four
intervals. Thus for any fixed = the above sum for C(x) contains at most four nonzero
terms. This leads to banded matrices in applications. For example, the spline interpolant
C(zx) can be found in terms of B-splines, with the coefficients a; found by solving a
banded system similar to the one mentioned in Section 11.

A cubic B-spline is a spline. Thus it is a piecewise polynomial with two continuous
derivatives. For some applications it is essential to master the details of the construction

122 Interpolation Chap. 4

Figure 4.16 Typical Cubic B-splines With Distinct Knots

of B-splines. But in this text we shall discuss them in a more superficial way, and refer
the interested reader to either of the references above.

Subroutines which manipulate B-splines usually require as input an array of knots.
Setting these is one of the most confusing aspects for most users. The confusion stems
from the fact that the definition of a B-spline allows several knots to coincide. While
this may not seem natural for a problem in interpolation it allows the theory to deal with
functions with fewer than two continuous derivatives. If C(x) is a linear combination
of B-splines with two equal knots, say at the point 7, then C is a function with two
continuous derivatives everywhere except at 77 where it has only one. If three knots are
at 77 then C(z) is only continuous there, and if there are four knots at n then C(z) has a
jump. Using this generalization allows B-spline interpolation programs to deal with the
important problem of forming an interpolant composed of two smooth sections joined at
a point which is less smooth, for example an automobile body panel which has a crease.
Figure 4.17 shows some B-splines in cases where some of the knots are coincident.

The rules for using knots with B-splines are not difficult. To find a cubic spline
interpolant through n data points by the use of B-splines you will need n + 6 knots.
There is some flexibility in selecting the knot positions, but a common approach is to

Sec. 4.14 *B-Splines 123

o
o
o

Figure 4.17 Typical Cubic B-splines with Coincident Knots

place four knots at each endpoint, x; and z,,, and one knot at every interior data point.
If your interpolant is to have fewer than two derivatives at a point, add one or more extra
knots there. There will be four fewer B-splines than knots, (thus at least 7 4+ 2 B-splines)
and the output of the interpolation routine will be an array a; of the same number of B-
spline coefficients. The interpolant will pass through the data, have the correct number of
derivatives and also satisfy two extra conditions. If there are no coincident interior knots
the spline obtained in this way will have two continuous derivatives and be identical
to the one derived from the Hermite cubic representation if the same extra conditions
are used. The coefficients of these B-splines are found by solving a system of linear
equations similar to the one in Section 11.

One of the most interesting things about B-splines is that there is a remarkable
relationship between B-splines and Bézier curves, and the B-spline coefficients have a
physical significance that is analagous to the coefficients of a Bézier curve. Specifically,
in analogy with Section 13, Bézier-B-splines are defined as

n+1

B(2)=) piVi(@),

=0

124 Interpolation Chap.

1.0 . ; , . T . I ;

Figure 4.17 (cont.) Typical Cubic B-splines with Coincident Knots

Sec. 4.15 Problems 125

where p; are arbitrary points in the plane and the B-spline knots are equally spaced in the
interval [0, 1]. Now plot the control points p;, i =0,...,n + 1 and form the convex hull,
first of pg, p1, P2, P3, then of p;, P2, P3, P4, and so on, in each case using four points,
adding one new point on the right and deleting one on the left. The curve of B(z) can
be shown to lie in the union of these polygons. Figure 4.18 shows some control points,
the region described by these polygons, and the B-spline curve B(z). Thus altering the
B-spline coefficients has an effect exactly similar to that of altering the control points in
a Bézier curve. (See the book by Barnhill and Riesenfeld (1979).)

0.05r 4

-0.05F .

-0.20r J

-0.25r 4

-0.30— |

—-0.40F B

-0.45

Figure 4.18 Bézier B-spline

415 PROBLEMS

P4-1.-Generate n = 11 data points by taking

z; = =l
10 i=1,...,11.
yi = erf(x;)

126

Interpolation Chap. 4

Obtain the values of erf(x) from published tables or a subroutine on your system.

(a)

(b)

Try to interpolate the data using a tenth degree polynomial. Set up the matrix as described in
Section 2 and use SGEF'S to estimate its condition. Even if the condition number is large and
the coefficients are innacurate, it is still possible that values of the interpolating polynomial
will not be badly contaminated with roundoff. Why? Find the interpolating polynomial
and use Horner’s method to evaluate it at points between the data points. Repeat using the
Lagrange representation instead. Compare the values in both cases with those of erf(z).
What is the maximum error?

Use PCHEZ to interpolate using both a cubic Hermite and a cubic spline interpolant. Use
PCHEV to evaluate these interpolants at the same points as in (a) and compare your results.

P4-2.-The following figures from the US Census Bureau give the population of the United States

(a)

(b)

Year Population

1900 75,994, 575
1910 91,972,266
1920 | 105,710,620
1930 | 122,775,046
1940 | 131,669,275
1950 | 150,697,361
1960 | 179,323,175
1970 | 203,235,298

There is a unique seventh degree polynomial interpolating the data. We consider four
representations of this polynomial

> et S byt — 1900
S ot —1935)7, S d; ((t —1935)/35))" .

In exact arithmetic it doesn’t matter which is used, but some of these are computationally
more satisfactory than others. For each of these polynomials set up the 8 by 8 matrix to
find the coefficients and estimate the condition of the matrix using SGEFS. If the matrix
is not too ill conditioned, use SGEFS to find the coefficients. How well do the computed
polynomials reproduce the original data? Explain why plots of the last three polynomials
may look similar even if the coefficients have little or no significance (IND=-10).

Interpolate the data by the best-conditioned polynomial interpolant found in (a) and also by
a cubic Hermite using PCHEZ. Plot the polynomial and the piecewise polynomial at one
year intervals between 1900 and 1980. They should agree fairly well up to 1970 but their
character between 1970 and 1980 is quite different. The 1980 census figure is 226,547,082.
Which interpolant gives the most accurate prediction?

Sec. 4.15 Problems 127

P4-3—Here are the data that were used in Figure 4.11.

8

Y

10.0
10.0
10.0
10.0
10.0
10.0
10.5
15.0
50.0
60.0
85.0

—_— O 00 A W W N O

—_— =
LV IR SN]

Interpolate them with a cubic spline using PCHEZ. Is the interpolant monotonic? Repeat with
SPLINE = .FALSE.

P4—4.-Parametric interpolation: In computerized typography we are faced with the problem of
finding an interpolant to points which lie on a path in the plane, for example a printed capital
S. Such a shape cannot be represented as a function of z because it is not single valued. One
approach is to number the points Py, ..., P, as we traverse the curve. Let d; be the (straight-line)
distance between P, and P, 4, i =1,...,n — 1 and let ¢, = Z;: d,, i =1,...,n. That is,
t1 = 0,t2 = di,t3 = di +ds, etc. If P, = (x.,y.), consider the two sets of data {(¢.,z.)} and
{(t:,y0)},2=1,...,n. We can interpolate each of these independently to generate the functions
f(t) and g(¢) respectively. Then P(¢t) = (f(¢),9(t)), 0 < t < t, is a point in the plane and as ¢
increases from O to t,, P(¢) interpolates the data and, with luck, reproduces the shape of the letter
too. We can think of ¢ as a parameter that varies as we move along the curve.

Using drafting paper draw an S and measure eight points P, from it. Interpolate the data
by PCHEZ

(a) with SPLINE = .FALSE.
(b) SPLINE = .TRUE.

Plot the results and see how faithfully they follow the letter. If the shape were a closed
curve, for example the letter O, better results would be obtained by requiring the interpolant to be
periodic.

P4-5.-Suppose you were given n data points, (z,, f(z,)), i =1,...,n, and desired to find points
where f'(z) =0.
(a) Why would it not be a good idea to interpolate by p(z), a polynomial of degree n — 1, and

then solve p’(z) = 0?

(b) Describe an efficient algorithm for solving this problem using cubic interpolatory splines.
(c) Write a program using your method and PCHEZ. Try your program on the data in Problem

P4-3.

P4-6.-This problem shows why piecewise quadratics are not much used. A piecewise quadratic
function QQ(x) is a function defined for all x which is a quadratic between adjacent knots. If the

128 Interpolation Chap. 4

knots are r; < z; < --+ < T, then between z, and z, +1, Q(z) is defined by three parameters
and can be written as

Qr)=a,+b(x —)+l —)T — T 41) zi<z<zip1, t1=1,...,n—1.
Requiring Q(z) to interpolate at each knot, e.g., Q(z,) = y, determines a, and b,.
(a) Show that Q(z) will interpolate if it can be written in each subinterval as

Q) =yi+ %(x —zi) tcile —)T - Tiy),

and conclude that Q(z) is continuous for all z.

(b) Show that the interpolating () will also have one continuous derivative if

1
C = — [Cz—l(l'z —Zi—1)+ s
Ty — Ti41 T

v Y1 Yitl —yi]
2 — Ty Ti4+1 — T

t1=2,...,n—1.

If we specify c; this uniquely determines all the other ¢, and hence Q(z).

(c) Consider using such a technique to interpolate two data sets differing only in the first data
value, y; and §;. Call the interpolants Q(z) and Q(zx). If we use the same value for ¢; in
both and if the z; are equally spaced, show that

& =i, a,=cl+<—1)"(”',;”'), i=2,...,n—1,

and thus that

Q@) = Q@) +(~1)’ (%) @)@ —zi41), @<z<Tign,

i=1,2,...,n—1.

(d) Conclude that a small change in the first data value propagates its effect, undiminished,
through the entire domain of the interpolant. Although this can be avoided, see de Boor
(1978), p. 75, piecewise quadratics are used far less frequently than piecewise cubics.

P4-7.—~Inverse Interpolation: In the usual setting for interpolation you are given values ., y, and
try to find a function y = f(z). However, if the y, were monotonic you could just as readily find
a function x = g(y). Once such a function were determined it would then be easy to estimate
values of x corresponding to “special” values of y, for example the = corresponding to y = 0.
This technique is called inverse interpolation.

For use in statistical computations it is desired to compute a table of the percentiles of the
error function erf(x), that is, numbers z, so that

) .

I = erf(x,), 0<171<10.

Obtain sixteen values of erf(z) for 0 < z < 1.5 from published tables or from a subroutine.
By looking at the numbers estimate the nine percentiles. Use PCHEZ to obtain a cubic spline
interpolant in the form = = g(y). Graph this function. Then use PCHEV to evaluate g(y) at
y=0,.1,.2,...,.9. Compare these results to your earlier estimates.

Sec. 4.15 Problems 129

P4-8.-Bézier curves.

(a) Using the iterative algorithm given in Section 13, compute and plot the four cubic Bernstein
basis functions on [0, 1].

(b) Write a program to plot a Bézier curve P,(z) from given points in the plane. If you have
access to a graphics terminal try to write your program so you can enter the control points
graphically. Use your program to approximate the shape of capital S of P4—4.

P4-9.-The techniques in this and the next problem would be of special interest to anyone who
wanted to draw circles quickly, for example in a heavily used graphics package, or in a hardware
implementation. The task is to generate two arrays X (I), Y(I), I=1,...,N, of points on the
first quadrant of the unit circle. A program segment which does this is:

N = 90
R = PI/180.0
DO 1 I=0,90

RAD = R*I
X(I) = COS(RAD)
Y(I) = SIN(RAD)

1 CONTINUE

but this requires the evaluation of both a sine and a cosine for each point on the circle. As
an alternative consider the four Bézier control points, po = (1,0), p: = (1,0.552), p; =
(0.552,1), p3 =(0,1).

(a) Show that the associated vector Bézier curve is

P(t) = (1 — 1.344¢% + 0.344¢>,1.656t — 0.312¢* — 0.344t%).

(b) As t varies from O to 1, P(¢) traces a curve in the plane which approximates a quarter
circle. Using Horner’s rule evaluate P(¢) at 100 points in [0, 1] and compare the values
with those on an exact circle. What is the maximum error? Since the parametric value ¢ is
not proportional to angle some thought is required to decide how to measure error. Is this
method faster than the program given above? Why?

P4-10.-The purpose of this problem is to show that if a polynomial is to be calculated at an
sequence of equally spaced points there are methods which are much faster than Horner’s rule.
From a table of N equally spaced values (z;, f,) we can compute N — 1 first differences Af, =
fi+1— fi. From these we can compute N — 2 second differences A’f, = Af, +1 — Af,, etc.

130

Interpolation Chap. 4

These are often arranged in a table such as this one

TABLE 4.1 TYPICAL DIFFERENCE TABLE

x f(x) Af-10% AZf 100 A3f 107 A*f - 101
20 | 0.229314955248
701747247
22 | 0.230016702495 .602297
702349544 —.1944
24 | 0.230719052039 .600353 4
702949897 —.1940
26 | 0.231422001936 .598413 3
703548310 —.1937
28 | 0.232125550246 .596476
704144786
30 | 0.232829695032

(a) Write a program that will verify the last four columns of the table above.

(b) Difference tables can be used to look for errors in tables. In that case the data available

correspond to the columns labelled z and f(x) above. For this problem f(x) is a polynomial
and we are instead given the upper diagonal of the table, and we are asked to fill in the
remaining entries. We can get the elements on the next diagonal with only additions,

fi=fo+Afo, Afi=Afo+ A fo,....
If f(t)=a+bt+ct>+dt’ and f, = f(zo+i - &) show that if 29 =0
Afo = b6+ c8® +dés*
A?fy = 2¢6% + 6d6°
Ao = 6d6°
A'fo=0, 1> 3.
(In general if f, are equally spaced values of a polynomial of degree p then the differences

above the p-th are zero.) Use these formulas to compute the top diagonal for the cubics in
the preceding problem. Take § = 0.01.

(c) Once this diagonal is computed, show that P(¢) from problem P4-9 can be evaluated at

equally spaced points with only additions, in a loop of the form

f—f+Af,
Af — Af+ A*f,
A — AfF+ A3F.

Compare the work to Horner’s rule.

Sec. 4.15 Problems 131

P4-11.-The following scheme combines interpolation and the flavor of Bézier approximation. Let
us consider a set of n 4 5 points in the plane, and denote them p;, i = —2,...,n+ 2, p. = (x., yi)-
Define new points p; 4 /2 by

Pit12=1/24+w)P:+Pe+1) — WPea1 + Pt 2), i=-1,0,...,n, w > 0.

Add these points to the original set, throw out the first and last points, p—2 and p, 4 2, renumber
the points from —2 to 2n + 2 and repeat. It has been shown that if 0 < w < 0.25, the set of
points approaches a smooth curve. Since the original data points are always retained (except for
the first and last points), the curve interpolates the data.

(a) Implement this algorithm on the twenty one points from Runge’s function. Generate enough
extra points so you can produce a smooth plot of the resulting curve.

(b) Repeat (a) with the data from problem P4-3. The number w is something like a “tension;”
w = 0 generates the straight line segments between the points, w > 0 “loosens” the curve
although it still interpolates the original points. A minor difficulty with this algorithm is
that it does not generate new points near the ends of the data. You can get around this
for Runge’s function by adding points to the left and right of your original data. Another
possibility is to replicate the first and last data point so that they each appear twice among
the p..

(c) Repeat (a) with your data from problem P4—4. (The paper by Dyn (1987) gives much more
mathematical detail on this algorithm.)

P4-12.-This problem illustrates two dimensional interpolation on a grid. Suppose we are given
a set of data values g,; =~ g(z.,¥;),1 < 4,7 < N, and wish to find a bivariate function f(z,y)
such that f(z,,y;) = ¢.;. A simple technique is given here. Find an interpolant for each row,
that is for each fixed ¢ find a function f,(y) satisfying f.(y,) = g.;,5 =1,..., N. To evaluate the
bivariate interpolant at a point (r, s) first evaluate each of the one dimensional interpolants at s,
e.g., compute f,(s),z2=1,..., N. Then find the interpolant through (z,, f.(s)),: =1,..., N, and
evaluate that function at the point . Use this technique on g,, = exp(z? - y,), =, = 1 /10, y, =
j/10, 4,5 =0,...,10. Evaluate the interpolant at the midpoints of all the grid squares and print
out the interpolation error.

P4-13.-The Chebyshev Polynomials. Let us consider polynomial interpolation on a fixed interval,
say —1 < z < 1, to a given function, for example Runge’s function R(x), with a fixed number of
points n. The interpolation error (see Section 4) is composed of a part that involves R™, the n-th
derivative of the underlying function, and a part that involves the product (x — z)(z — z2) - - - (x —
Zy). The latter is independent of R but depends upon the points. Suppose that a priori we want to
bound the error that will occur when we evaluate the interpolant at an arbitrary point on [—1, 1].
This can be no larger than

max |R™(€)|- max |z —zi)---(x — za)|/n!.
—-1<¢£<1 —1<z<L1

The only term that we can control is the point spacing, so let us consider moving the points z; to
reduce this product.

(a) Let n = 21 and take the points z; to be equally spaced on [—1,1]. Plot the polynomial
tn(z) = (x — z1)(@ — x2) - - - (z — zo) and find its maximum absolute value. Experiment
with different values for the z; and see how much you can reduce the maximum value of
|tn(-75)|-

132 Interpolation Chap. 4

(b) Consider the following two sequences of polynomials To(z) = 1, Ti(x) = =, Tn 41(x) =
2xT,(x) — Th—1(x), n > 0, and Tn(x) =Tn(z)/Q""). The T, are called the Chebyshev
polynomials. Compute and plot fo, cey i’ﬁ(z).

(c) By using trigonometric identities show that cos(n + 1) = 2 cos 8 cos nf — cos(n — 1)6. By
formally setting « = cos 6 and cos né = Ty, (z), verify that this is the same as the recursion
in (b). This suggests that another definition for 7, (z) is Tn(x) = cos n(arccos z). Using
this expression compute and plot To, e ,Tﬁ(x) and verify that you get the same values as
in (b).

(d) Show that T, (x) has simple zeros at the n points xx = cos[(2k — I)7/2n)], k=1,...,n.
Using these points plot ¢, (z). Why must its maximum absolute value be 2'~™? It is known
that no other selection of points yields a ¢, with smaller maximum absolute value.

(e) Use the zeros of T51(x) as interpolating points for Runge’s function and plot the resulting
interpolant. Is there an improvement over using equally spaced points?

P4-14.-B-splines: Let t,...,t14 be fifteen knots on [0, 1], four at each end and the remaining
seven at i/8, i=1,...,7. Define NJ(x) as

o, v_[1, <<ty .
Nz(a:)—{o, clsewhere i=0,1,...,13.
(If t, = t, ;| we take NP(t;) = 1.) Define N}(z) as
0 NO
N:(x)z(x—tl)M+(ti+z—z)ﬂ, i=0,1,...,12.
tiv1— b tog2—tigi
Define Nf(a:) as
N| N|
M@=@)@ @ oy
tigy2—t; tits —tig1
Finally define N>(zx) as
N? N?
NS(z):(z—tl)&Jr(tiH—x)—-—Jf‘—(’i)—, i=0,1,...,10.
tiys—ti tiya—tig

(a) Use the definitions above to compute and plot the eleven cubic B-splines. Remember to use
the convention that whenever 0/0 occurs in the definitions above, the fraction is set to zero.

(b) Pick control points p; in the plane sco that

10
> piN@)
=0

approximates e”. Plot the control polygon.

Sec. 4.16 Prologues: PCHEZ, and PCHEV 133

416 PROLOGUES: PCHEZ, AND PCHEV

SUBROUTINE PCHEZ (N, X,F,D,SPLINE, WK, LWK, IERR)
C***BEGIN PROLOGUE PCHEZ
C***DATE WRITTEN 870821 (YYMMDD)
C***REVISION DATE 870908 (YYMMDD)
C***CATEGORY NO. EIB
C***KEYWORDS CUBIC HERMITE MONOTONE INTERPOLATION, SPLINE

C INTERPOLATION, EASY TO USE PIECEWISE CUBIC INTERPOLATION
C***AUTHOR KAHANER, D.K., (NBS)

C SCIENTIFIC COMPUTING DIVISION

C NATIONAL BUREAU OF STANDARDS

C GAITHERSBURG, MARYLAND 20899

C (301) 975-3808

C***PURPOSE Easy to use spline or cubic Hermite interpolation.
C***DESCRIPTION

C

C PCHEZ: Piecewise Cubic Interpolation, Easy to Use.

C

C From the book "Numerical Methods and Software"

C by D. Kahaner, C. Moler, S. Nash

C Prentice Hall 1988

C

C Sets derivatives for spline (two continuous derivatives) or

C Hermite cubic (one continuous derivative) interpolation.

C Spline interpolation is smoother, but may not "look" right if the
C data contains both "steep" and "flat" sections. Hermite cubics
C can produce a "visually pleasing" and monotone interpolant to

C monotone data. This is an easy to use driver for the routines

C by F. N. Fritsch in reference (4) below. Various boundary

C conditions are set to default values by PCHEZ. Many other choices
C are available in the subroutines PCHIC, PCHIM and PCHSP.

C

C Use PCHEV to evaluate the resulting function and its derivative.
C

C _________________________________ - - -
C

C Calling sequence: CALL PCHEZ (N, X, F, D, SPLINE, WK, LWK, IERR)
C

C INTEGER N, IERR, LWK

c REAL X(N), F(N), D(N), WK(LWK)

C LOGICAL SPLINE

C

C Parameters:

C

C N - (input) number of data points. (Error return if N.LT.2 .)

134

OO0 0000000000000 00000000000000000000000000000000a0a0

Interpolation Chap. 4
If N=2, simply does linear interpolation.

X - (input) real array of independent variable values. The
elements of X must be strictly increasing:
X(I-1) .LT. X(I), I = 2(1)N.
(Exrror return if not.)

F - (input) real array of dependent variable values to be inter-
polated. F(I) is value corresponding to X(I).

D - (output) real array of derivative values at the data points.

SPLINE - (input) logical variable to specify if the interpolant
is to be a spline with two continuous derivaties
(set SPLINE=.TRUE.) or a Hermite cubic interpolant with one
continuous derivative (set SPLINE=.FALSE.).

Note: If SPLINE=.TRUE. the interpolating spline satisfies the
default "not-a-knot" boundary condition, with a continuous
third derivative at X(2) and X(N-1). See reference (3).

If SPLINE=.FALSE. the interpolating Hermite cubic will be
monotone if the input data is monotone. Boundary conditions are
computed from the derivative of a local quadratic unless this
alters monotonicity.

WK - (scratch) real work array, which must be declared by the calling
program to be at least 2*N if SPLINE is .TRUE. and not used
otherwise.

LWK - (input) length of work array WK. (Error return if
LWK.LT.2*N and SPLINE is .TRUE., not checked otherwise.)

IERR - (output) error flag.
Normal return:
IERR = 0 (no errors).
Warning error:
IERR.GT.0 (can only occur when SPLINE=.FALSE.) means that

IERR switches in the direction of monotonicity were detected.

When SPLINE=.FALSE., PCHEZ guarantees that if the input
data is monotone, the interpolant will be too. This
warning is to alert you to the fact that the input data
were not monotone.
"Recoverable" errors:
IERR -1 if N.LT.2
IERR -3 1if the X-array is not strictly increasing.

IERR = -7 if LWK is less than 2*N and SPLINE is .TRUE.
(The D-array has not been changed in any of these cases.)

NOTE: The above errors are checked in the order listed,
and following arguments have **NOT** been validated.

Sec. 4.16 Prologues: PCHEZ, and PCHEV 135

C***REFERENCES 1. F.N.FRITSCH AND R.E.CARLSON, ’"MONOTONE PIECEWISE
CUBIC INTERPOLATION,’ SIAM J.NUMER.ANAL. 17, 2 (APRIL
1980), 238-246.

2. F.N.FRITSCH AND J.BUTLAND, ‘A METHOD FOR CONSTRUCTING
LOCAL MONOTONE PIECEWISE CUBIC INTERPOLANTS,’ LLNL
PREPRINT UCRL-87559 (APRIL 1982).

3. CARL DE BOOR, A PRACTICAL GUIDE TO SPLINES, SPRINGER-
VERLAG (NEW YORK, 1978). (ESP. CHAPTER IV, PP.49-62.)

4. F.N.FRITSCH, 'PIECEWISE CUBIC HERMITE INTERPOLATION
PACKAGE, FINAL SPECIFICATIONS’, LAWRENCE LIVERMORE
NATIONAL LABORATORY, COMPUTER DOCUMENTATION UCID-30194,

C AUGUST 1982.

C***ROUTINES CALLED PCHIM,PCHSP

C***END PROLOGUE PCHEZ

C

Q

Q00000000

SUBROUTINE PCHEV (N, X, F,D,NVAL, XVAL, FVAL, DVAL, IERR)
C***BEGIN PROLOGUE PCHEV
C***DATE WRITTEN 870828 (YYMMDD)
C***REVISION DATE 870828 (YYMMDD)
C***CATEGORY NO. E3,H1
C***KEYWORDS CUBIC HERMITE OR SPLINE DIFFERENTIATION,CUBIC HERMITE

c EVALUATION, EASY TO USE SPLINE OR CUBIC HERMITE EVALUATOR
C***AUTHOR KAHANER, D.K., (NBS)

C SCIENTIFIC COMPUTING DIVISION

C NATIONAL BUREAU OF STANDARDS

C ROOM Al61, TECHNOLOGY BUILDING

[GAITHERSBURG, MARYLAND 20899

C (301) 975-3808

C***pPURPOSE Evaluates the function and first derivative of a piecewise
C cubic Hermite or spline function at an array of points XVAL,
C easy to use.

C***DESCRIPTION

C

PCHEV: Piecewise Cubic Hermite or Spline Derivative Evaluator,
Easy to Use.

From the book "Numerical Methods and Software"
by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

Evaluates the function and first derivative of the cubic Hermite
or spline function defined by N, X, F, D, at the array of points XVAL.

This is an easy to use driver for the routines by F.N. Fritsch
described in reference (2) below. Those also have other capabilities.

O 000 Q000000000

136 Interpolation Chap. 4

@]

Calling sequence: CALL PCHEV (N, X, F, D, NVAL, XVAL, FVAL, DVAL, IERR)

INTEGER N, NVAL, IERR
REAL X(N), F(N), D(N), XVAL(NVAL), FVAL(NVAL), DVAL (NVAL)

Parameters:
N - (input) number of data points. (Error return if N.LT.2 .)
X - (input) real array of independent variable values. The
elements of X must be strictly increasing:
X(I-1) .LT. X(I), I = 2(1)N. (Error return if not.)
F - (input) real array of function values. F(I) is

the value corresponding to X(I).

D - (input) real array of derivative values. D(I) is
the value corresponding to X(I).

NVAL - (input) number of points at which the functions are to be
evaluated. (Error return if NVAL.LT.1)
XVAL - (input) real array of points at which the functions are to

be evaluated.

NOTES:

1. The evaluation will be most efficient if the elements
of XVAL are increasing relative to X;
that 1is, XVAL (J) .GE. X(I)
implies XVAL(K) .GE. X(I), all K.GE.J

2. If any of the XVAL are outside the interval [X(1l),X(N)],
values are extrapolated from the nearest extreme cubic,
and a warning error is returned.

FVAL - (output) real array of values of the cubic Hermite function
defined by N, X, F, D at the points XVAL.

DVAL - (output) real array of values of the first derivative of
the same function at the points XVAL.

IERR - (output) error flag.
Normal return:
IERR = 0 (no errors).
Warning error:
IERR.GT.0 means that extrapolation was performed at
IERR points.

OO0 0000000a00anaqn

Sec. 4.16 Prologues: PCHEZ, and PCHEV 137

C "Recoverable" errors:

C IERR = -1 if N.LT.2

C IERR = -3 1if the X-array is not strictly increasing.

C IERR = -4 if NVAL.LT.1

C (Output arrays have not been changed in any of these cases.)
C NOTE: The above errors are checked in the order listed,
C and following arguments have **NOT** been validated.
C IERR = -5 1if an error has occurred in the lower-level

C routine CHFDV. NB: this should never happen.
C Notify the author **IMMEDIATELY** if it does.
C

c ______ - e e Em er Em e o e e Em e e e = - s - -

C***REFERENCES 1. F.N.FRITSCH AND R.E.CARLSON, ’'MONOTONE PIECEWISE
CUBIC INTERPOLATION,’ SIAM J.NUMER.ANAL. 17, 2 (APRIL
1980), 238-246.

2. F.N.FRITSCH, ’'PIECEWISE CUBIC HERMITE INTERPOLATION
PACKAGE, FINAL SPECIFICATIONS’, LAWRENCE LIVERMORE
NATIONAL LABORATORY, COMPUTER DOCUMENTATION UCID-30194,

C AUGUST 1982.

C***ROUTINES CALLED PCHFD

C***END PROLOGUE PCHEV

Q0000

5.1

Numerical Quadrature

INTRODUCTION

In this chapter we will be interested in solving the following,

b
Evaluate I = / f(x) dx.

This is one of the two fundamental problems in calculus. It is closely related to the
problem of solving a differential equation (see Chapter 8), and the techniques used are
based on interpolation (Chapter 4).

As an example of where such a problem might arise, consider the analysis of mea-
surement errors in scientific experiments. Suppose that a surveyor is measuring mountain
terrain as part of a highway construction project. The equipment is accurate (say) to the
nearest foot. What is the probability that a particular measurement overestimates the true
value by less than 2 feet? If the measurement errors have a standard normal distribution,
i.e., they follow a “bell” curve, then the desired probability is given by

1 /2 ey
— € Z.
V21 Jo

This problem is closely related to the computation of the error function, erf, which we
have seen in preceding chapters. There is no closed form expression for the value of
this integral, and it must be estimated using numerical methods.

The evaluation of integrals is called quadrature, a word that comes from the
Latin quadratura, meaning the act of making square or squaring. An ancient geometry

138

Sec. 5.1 Introduction 139

problem, quadrature of the circle, was to construct a square with area equal to that of a
given circular area. The solution had to be obtained in a finite number of steps by drawing
pictures with a straight edge and compass. About two thousand years later it was realized
that this could not be done and the name was attached to any difficult or time-consuming
activity, “as hard to find thy cure As circles puzling Quadrature” (1652). Subsequently,
quadrature became synonymous with finding areas and volumes. In this and subsequent
chapters we will use this term. The word integration is reserved for the solution of
differential equations or the evaluation of an indefinite integral. The two problems share
some common ideas. However, an integral is a single number representing an area or
volume and has no directionality, whereas the solution of a differential equation is a
function, and often represents an evolutionary process, such as marching forward from
an initial point.

The techniques used to solve quadrature problems are often based on interpolation.
Instead of trying to evaluate f: f(x)dx directly, suppose that we first evaluate f(x)
at selected points z; € [a,b]. Let p(x) be the interpolating polynomial for the points
(z;, f(z;)). Then if p(x) =~ f(x), it should also be true that f(f p(x)dr =~ fab f(x)dzx.
Since it is easy to integrate polynomials and interpolation techniques are available (see
Chapter 4), this is a computationally feasible and efficient approach.

Methods differ in the way they select the points z;, in the number of points selected,
and in the way the points are used to construct interpolating polynomials. For example,
some methods split the interval [a,b] into pieces, and work on each piece separately.
The simplest rules use equally-spaced points, but much more effective techniques can be
obtained through more elaborate schemes. In certain problems, the value of the function
will only be known at certain prespecified points; in this case no choice of x; will be
possible (see Section 8).

A good piece of quadrature software should not only evaluate the integral I, but
should also estimate the error in the result. The error estimates are not only of value to
the user of the software, but they also can assist in the evaluation of the integral. The
error estimate can indicate that the function f(x) is changing rapidly in one portion of
the interval [a, b] and thus guide the software into working harder to evaluate that portion
of the integral. This topic is discussed in Section 6.

The above remarks apply mainly to the case of a problem on a finite interval,
where the function f(z) is continuous. If the function is not continuous, and especially
if it has a singularity (such as f(z) = Inz at £ = 0), then it will not be possible to
accurately approximate f(z) by a polynomial. Also, if the interval is infinite, then the
integral of any non-zero polynomial over that interval will be infinite. In these cases
special strategies must be employed to solve quadrature problems. These are discussed
in Section 9.

So far we have only mentioned quadrature problems in one dimension. Integrals in
two, three, or higher dimensions are also common, but are more difficult to evaluate. In
two or three dimensions, the above techniques can be adapted, but the resulting methods
are more complex. They are also much harder to derive. These approaches are discussed
in Section 10. For high-dimensional problems it is usually necessary to use Monte Carlo

140 Numerical Quadrature Chap. 5

methods, based on random selection of the points z;. Such methods do not converge
rapidly, but their cost does not depend heavily on the dimension of the problem (see
Section 11).

In elementary courses in calculus, the evaluation of integrals is one of the most
important topics. The emphasis there is on techniques for obtaining closed-form expres-
sions for indefinite integrals. The computer analogue of this is symbolic computation,
that is, to have the computer produce a formula in terms of the endpoints a, b and the
subexpressions of f. There has been remarkable progress in this area. The Macsyma
system, J. Moses (1971), is an excellent tool for those problems for which explicit ex-
pressions exist for the integrand and for which closed form solutions, if they exist, will
be especially insightful. For example, Macsyma will discover that

b dt V2 (1, [BP+V2b+1 V2b
4—=—— —ln ——F | + arctan —2 .
o t*+1 4 \2 |- V2b+1 1-b

However, for many engineering problems efficiency is essential, and we may find that
evaluation of the right hand side for a particular b is more expensive than approximating
the integral by a well chosen method. This chapter only deals with approximate numerical
methods.

5.2 ONE DIMENSIONAL QUADRATURE RULES AND FORMULAS

We derive here the simplest quadrature rules, based on interpolation at a few points.
First we summarize the terminology we will use. An n-point quadrature formula is

b n
1= [@ da=Y wif@)+ Ro.

i=1

The w; and z; are called quadrature weights and nodes, and R,, the remainder or error.
The weights and nodes depend upon a, b and n but not f. The sum above is thought of
as an approximation to [and is often called a quadrature rule. To estimate an integral
we evaluate only the rule, since the remainder term usually involves expressions which
are not available to us, for example derivative values of the integrand f(z). An important
property of our formulas is that they are linear. By that we mean that the rule estimate
of the integral of f 4 g can be obtained by adding the rule estimates of the integrals of
f and g.

A quadrature rule is a generalized Riemann sum. Recall that a Riemann sum is
obtained by dividing [a, b] into n subintervals of width A;, evaluating f(z) once in each
subinterval and forming " A;f(z;). The quadrature rule above looks like a Riemann
sum if we identify w; with A;. Looks can be deceiving however, as we have not said
that w; need to be positive or even that x; are required to be in the interval [a, b]. For
the most part these distinctions are only of intetest to specialists and all the rules we will
discuss are Riemann sums. On the other hand a few practical and famous rules are not;
for example, some w; can be negative (see problem P5-6).

Sec. 5.2 One Dimensional Quadrature Rules and Formulas 141

Over the years, thousands of quadrature rules have been studied. In Section 2.1 we
discuss the three simplest: midpoint, trapezoid and Simpson’s rules. You may have seen
them before in an elementary calculus book; they are easy to derive but are rarely used
directly. Mostly they are generalized or used in concert with some more sophisticated
strategy, such as compounding or adaption, which are discussed in Sections 4 and 6.
But these rules are far from the best. In Section 2.1 we also discuss the more effective
Gauss rules, but delay the most effective Gauss-Kronrod rules to Section 5. As both of
these are more difficult to derive and their derivations are not of much practical use, we
will omit the details and suggest that interested readers consult the references.

With so many rules coming and going, it is difficult to know which to select for any
particular problem. The main focus of this text is that practical scientists should use the
general purpose software included here for the majority of their tasks. Thus it is unlikely
that you will program your own application of any of these rules when a subroutine like
Q1DA is appropriate (see Section 7). But to understand why this routine works as well as
it does, you must appreciate that its underlying rules are fundamentally of high quality.
Of course, in those special cases where you need to program your own algorithm it will
be necessary to have a basic grasp of which rules are the best to use. Finally, as general
purpose software is scarce for infinite regions, several rules are presented in Section 9
for such cases.

5.2.1 Elementary Formulas: Midpoint, Trapezoid, Simpson and Gauss

The formulas presented here are elementary. They are not useful directly, but many
practical methods are based upon them. They can also be interpreted geometrically, and
you should refer to Figure 5.1 while you read this section.

The midpoint and trapezoid formulas are derived as follows. The area under f(x)
on the interval [a,b] may be approximated by the area under the line segment joining
(a, f(a)) with (b, f(b)). This line has equation

—b —
@) = flaye— + fO 7 —

and the area of the trapezoid formed by the four points (a,0), (b,0), (b, f(b)), (a, f(a))
is

b—a b—a
> fa)+ > fb

This is a quadrature rule obtained by simple geometric reasoning. We now derive it
again, by a method which also gives an expression for the error.
Expand f(x) in a Taylor series about the midpoint m = (a + b)/2

f@) = fm) + fOm)x — m) + fPm)x — m)?/2
+ fOm)x —m)* /6 + fP(@ —m)*/24+---.

142 Numerical Quadrature Chap. 5

Integrating this from a to b gives

5
= fomb -+ P 4 ot

This is called the midpoint, or one-point rectangle formula. Now in the Taylor expansion
set £ = a, then £ = b and add the two series. The odd-order derivative terms drop out.
Rearranging to solve for f(m) gives

1
fm) = 1@+ O] = fPm)b =) /8 = fOm)(b — 0)* /384 + -
Substituting this into the midpoint formula and combining like terms gives

b 5
I=(——[f(Y4+ FO)] = [P _ gy @0) T

This is the two-point trapezoid formula, which has nodes z; = a, £ = b and weights
w; = wy = (b— a)/2, and is the same as the rule derived geometrically above.

The three-point Simpson’s rule can also be derived by geometrical reasoning akin
to that for the trapezoid rule. From Section 3 of Chapter 4 the quadratic Q(z) through
the three points (a, f(a)), (m, f(m)), and (b, f(b)) is

m)(z — —a)z — —a)(z —m)

Q) = f(a)T+f() a)m +f() “ob-—m)

Integrating Q from a to b gives

b
/ Q(z) dz = f(a)w + f(m)w, + f(bws,

b
_ (x — m)(x — b)
where w; =) —(a e —b dzx, etc.

You should check that
b—a 4(b — a) b—a
= wy = w3 =
6 y W3 6 '
which is Simpson’s rule. Also note that once we have integrated (), the formula for Q(x)
is no longer needed. Simpson’s rule was first given by Cavalieri in 1639, and later by
James Gregory (1668) and Thomas Simpson (1743). It is also known as the parabolic
rule.
Figure 5.1 illustrates the midpoint, trapezoid, and three-point Simpson rules.
Just as for the trapezoid rule, we can also get Simpson’s formula, which includes

the error term, by a more algebraic approach. Add two times the midpoint formula to
the trapezoid formula and divide the result by three to get

@ —a®
- Y (m) T

Sec. 5.2 One Dimensional Quadrature Rules and Formulas 143

Figure 5.1 Rectangle, Trapezoid and Simpson’s Rule

Example 5.1 Estimating erf(1) by Various Rules.

We will estimate erf(1) with the midpoint, trapezoid and Simpson rules
1
I=erf(l) = i/ exp(—t%) dt = .84270079294971484
VT Jo

The one point midpoint, two point trapezoid and three point Simpson’s rule estimates are

Bl

2

I~ ——¢"%=.8788...
Vo

I~ 2 (1) [1+e '1=.7717433

~ 7= 3 =,
2 1 1 —1

I —=(=)[1+4e 2 = .84310283...
ﬁ(6)[+de "t +e]

respectively. l

144 Numerical Quadrature Chap. 5

We note that if we apply the trapezoid rule to a linear polynomial f(x) = a + Gz,
then

(b—0a)

I=
2

[f(@)+ f(B)].

In this case the remainder is zero. This should be expected because of the way we
introduced this rule at the beginning of the section. Similarly the error in the three-point
Simpson’s rule is zero if f is any cubic polynomial.

An n point quadrature rule is said to be of polynomial degree d if its remainder
R, is zero for every polynomial of degree d, but not for some polynomial of degree
d + 1. The trapezoid and midpoint rule are of polynomial degree one. Simpson’s rule is
of polynomial degree three.

A quadrature rule is seldom used to integrate a polynomial, but we expect that rules
of higher polynomial degree are better, at least if our integrand is polynomial-like. Thus
high-degree rules are preferred, but in practice the details of strategy and implementation
are often more important than the specific rule that is used.

Our first appreach to deriving Simpson’s rule illustrates a general technique which
is useful for deriving many other quadrature rules: the function f(z) is replaced by an
interpolant. The interpolant is integrated analytically, resulting in a quadrature rule. This
can then be used without explicitly having an expression for the interpolant.

For example, if we integrate the Lagrange representation of the polynomial in-
terpolant p,,_;(z) through the points (x;, f(x;)), ¢ = 1,...,n we get (see Section 3 of
Chapter 4)

b n b
/ Pn—1(x) dx = Zf(zi)wi, where w; = / li(x) dx.
a l=1 a

Rules of this type are called interpolatory. A famous example of an interpolatory rule
occurs when we take the x; to be equally spaced on the interval of integration; the
quadrature rule obtained in this way is called a Newton-Cotes rule. The trapezoid and
Simpson’s rule are low degree Newton-Cotes rules. Unfortunately, high-degree rules
of this type have negative weights; see Problem P5-6. This is usually considered an
undesirable property because the integration of a positive function can lead to catastrophic
cancellation, as discussed in Section 4 of Chapter 2. This ought not to come as too much
of a surprise; we saw in Chapter 4 that high-degree polynomial interpolants can look bad
and the integral of such an interpolant is not likely to produce a good approximation to
the integral we desire. On the other hand interpolatory quadrature can be useful when
the interpolant is not a polynomial of high degree. We will use this technique in Section
8 to derive a quadrature formula based on an Hermite Cubic interpolant for use in data
integration.

We now sketch a derivation of the two-point Gaussian rule. Any two point rule
has the general form

I = wi f(z1) +wa f(x2).

Sec. 5.2 One Dimensional Quadrature Rules and Formulas 145

Among all such rules can we find one with the highest polynomial degree? The trapezoid
rule is one candidate, but we can do much better. We guess that if w;, wp, ; and x,
are at our disposal we can find some selection of these numbers allowing us to integrate
an arbitrary cubic, which has four coefficients. If this is successful then that rule will
exactly integrate each of the particular cubics, f(z) = 1 = (x — m)°, f(x) = (x — m),
f@) = (x — m)? and f(z) = (x — m)*, where m = (a+b)/2. Conversely, because the
rule is linear, if it is exact for these four integrands, it is exact for any cubic, i.e., is
of degree 3. Thus we ask that the approximate equality ‘~’ be replaced by equality
whenever f(x) is one of these functions. This gives

f@=@-m° = (b-a)=w+w
f@=@-m' = 0=wlz—m)+wz,—m)
_ 3
fl@)y=(x— m)? = ® 12a) =wi(x; — m)? + wy(xz — m)?
f@=@-m?® = 0=w(z—m)’+wiz, —m)

This is a system of four equations for the four numbers w;, w,, 1, . The equations are
nonlinear and cannot be solved by the methods of Chapter 3. A general set of nonlinear
equations might not have any solution, or there might be many solutions. If there is a
solution, there is no reason to think that the numbers we get for z; need be real, because
note that these quantities appear as squared terms. Even if there is a real solution the
x; might lie outside the interval [a, b] or the w; might be negative. Fortunately, for this
particular system none of these terrible things occur. The unique solution can be shown
to be

m_a+b+b—a x_a—}-b b—a _ _b-a
1 D) 2\/57 2) 2\/57

which is the two-point Gaussian quadrature rule

b—a a+b b-a at+b b—a
a2t [(-5 (45

This rule is of polynomial degree three.

Example 5.2 Gauss Rule Approximation to erf(1).

This gives
1 1 1]? 1 17?
erf(1) = 0.8427007929 ... ~ G, = —ﬁ {exp (_Z [l — %]) + exp (_Z [1 + ﬁ])]
=.84244189....

Notice that this is more accurate than the three point Simpson rule. l

146 Numerical Quadrature Chap. 5

As mentioned in Section 2 a two-point formula is not often useful. But the idea
behind the two-point Gaussian formula can be extended to any number of nodes. That
is, we try to find a formula

b n
/ f@dz =) wif@:)+ Rn,
a =1

where neither the x; nor the w; are prescribed in advance, but determined so that the rule
is exact for polynomials of as high degree as possible. A unique Gaussian quadrature
formula exists for every n. It is of polynomial degree 2n — 1 and there is no other
n-point formula of higher degree. In this sense it is the best n-point formula. R,, can
be shown to be

B (b— a)2n+1(n!)4 an
ST TR

which applies as long as f(z) has 2n continuous derivatives on [a, b]. The number £ is
unknown, except that a < £ < b. Gaussian rules are among the most useful in practice.
We list some of their properties below.

1. The weights and nodes are irrational numbers, with a few exceptions. We have
seen that when n = 2 the weights are w; = w, = (b— a)/2. In addition when n is
odd there is a node at the midpoint, (a + b)/2. Gaussian rules are usually provided in a
subroutine which has them precomputed for a selection of n’s. The book by Abramowitz
and Stegun (1965) gives them in tabular form. Table 5.1 lists three Gaussian rules for you
to examine. In a hand calculation Gaussian rules are difficult to use, but on a computer
there is no reason to require simple numbers for the weights or nodes.

2. Gaussian rules are “open.” That is, no node occurs at either endpoint a or b.
This property is shared by the midpoint rule, which is the one-point Gauss rule. This is
convenient because integrand difficulties are usually at endpoints. For example

1 1 ..
1
Il=/ exp <——2) dz, 12=/ AT e
0 T o T

involve perfectly well-behaved integrands, but some special programming would be re-
quired to use any quadrature rule which evaluates f(0). Strictly speaking, the integrands
above are singular because they are not defined at = 0. But in both cases lim,_,¢ f(x)
exists, respectively zero and one, and serves as a reasonable definition for the integrand
at the left endpoint. Such a singularity is called “removable.”

3. The sets of nodes of two Gaussian rules are almost disjoint. That is, the nodes
for an n-point rule are distinct from those for an m-point rule. The exception is that
whenever n is odd there is a node at the center of the interval.

4. The derivation of Gaussian rules suggests that if f(z) is like a polynomial, a
Gaussian rule will do a good job integrating it. In fact, it can be shown that among all

Sec. 5.3 Change of Interval 147

rules using n function evaluations, the n-point Gaussian rule is likely to produce the most
accurate estimate, at least if the integrand is smooth. It is also true that Gaussian rules
work well even for integrands with non-removable singularities in the function or one of
its derivatives. The function f(x) = 2?In2 has an unbounded second derivative on the
interval [0, 1]. The expression for the error in (G, given above provides no information
because it involves f® which does not exist at z = 0. But that should not be taken to
mean that the error is large. An easy calculation shows that G, = —.1085. .., with error
.0023.... The two-point trapezoid and three-point Simpson rules have errors .1111...
and .0044. ...

5. Gaussian rules are interpolatory. That is, if we take the n nodes z; from an
n-point Gaussian formula, and the n associated function values f(z;), and form the
unique n — 1 degree polynomial which interpolates these data, the number obtained by
integrating this interpolant on [a, b] is identical to the value obtained by applying the
Gaussian formula to f. This is a case where interpolatory quadrature works well and
is related to the fact that the Gaussian nodes bunch up near the endpoints and are non-
uniformly spaced on [a, b]. It is possible to prove that the weights in Gaussian quadrature
are always positive, and increasing the number of points almost always improves the
accuracy of the estimate.

6. There is an intimate relationship between Gauss quadrature and orthogonal
polynomials, a topic of great interest to physicists. The n Gauss nodes are the zeros
of the n-th Legendre polynomial. In fact, what we have termed Gaussian quadrature is
often referred to as Gauss Legendre quadrature because of this association.

TABLE 5.1 SOME GAUSSIAN QUADRATURE
RULES FOR [f(z) dz

Nodes Weights

n=2

40.577350269189625 1.000000000000000

n=4

+0.861136311594052 0.347854845137454
10.339981043584856 0.652145154862546

n=28

+0.960289856497536 0.101228536290376
+0.796666477413627 0.222381034453374
+0.525532409916329 0.313706645877887
$0.183434642495650 0.362683783378362

Gaussian quadrature is much more general than our presentation might lead you to
believe. Two particularly useful generalizations are given in Sections 4 and 9.4.

148 Numerical Quadrature Chap. 5

5.3 CHANGE OF INTERVAL

A computer subroutine which applies a quadrature rule usually allows the user to input
the interval endpoints a, b. But tabulated rules such as those in Table 5.1 will only be
given for a fixed interval, often either [0, 1] or [—1,1]. Assume we have a tabulated
formula

ﬂ n
[1@ de=3 wis@o+ Ro.

@ i=1
(In Table 5.1, a = —1, 3 = 1.) If the integral to be evaluated is over the interval [«, (]
then the tabular values can be used exactly as they appear. On the other hand, suppose

what is required is an estimate of
b
I= / g) dt

on some other interval. We can still utilize the tabulated values after making a change
of variable from [¢, 5] in x to [a,b] in t. As long as «, §, a, and b are finite, set
t=[(b—a)x+af —bal/(B — a). Then

_(b—a p (b—a)r+af — ba
1=(5ma) [o (e
_(b—a ~ A (b—a)x; +af — ba
_<ﬂ_a);wzg(i—a >+Rn.

The change of variable from ¢ to = transforms the interval [a, b] into [, 3]. There
are many different transformations that could have been used, although this one is ex-
ceptionally simple because it is linear. If P(t) is a polynomial of degree d in ¢ then
P([(b — a)z +aB — ba]/(B — a)) is a polynomial of the same degree in x. Thus this
change of variable does not affect the polynomial degree of the formula. If R, is zero
when f(z) is a polynomial of degree d, then R,, is also zero when g(z) is a polynomial
of degree d. In later sections we will see some examples of nonlinear transformations.

Example 5.3 Changing Intervals.

Compute the four point approximation to

2
I=/ % dzx
1

using Table 5.1. With a = —1,8=1,a=1,b=2, and g(t) = t*, we have

4 4
1 z; +3 _1) z: +3
INzZ]“”g(2)"2_2_;“”(2

with w;, z; from Table 5.1 (n=4). B

(x; +3)/2
) =2.05044 ...,

Sec. 5.4 Compound Quadrature Rules and Error Estimates 149
54 COMPOUND QUADRATURE RULES AND ERROR ESTIMATES

We stated in Section 2 that one, two, or three point rules are seldom used directly. They
are usually applied by combining them, as we now illustrate. Let [a, b] be divided into s
subintervals, called panels, by the points a =ty <t} <t < --- < tg3—1 <tz =»b. Since

b s—1 atipy
- [t@d=Y [@ s
a i=0 Yt

we may estimate [by applying a quadrature rule to each panel. If the same rule is
used on each, and if the points ¢; are uniformly spaced on [a, b] the result is called a
compound quadrature rule. Any rule can be compounded, but the two most popular are
derived from the trapezoid and Simpson formulas.

We now develop the compound trapezoid formula. Let h = (b — a)/s be the panel
width. Then t; = a+¢h. Applying the two point trapezoid formula to the intervals
[a+ih,a+(+ 1)k] and adding gives a rule with s + 1 points,

f(a)

/f()dl' h[—+f(+h)+ fla+2h)+-- -+ f(b— h)+f(2b)

h3
— 3 [P+ fPm) +--+ fOm)] +
or
I=T, +1+ R, +1

where m; = (t;—; +1t;)/2. In practice only the rule T is computed. At best the
remainder can be estimated, but rarely by computing the derivatives which appear. If
f® is smooth enough we can approximate the sum of second derivatives by s - f®(£)
and then

Do,

h3
Ryp1~ = [sfPO1+ - =~
12
We will shortly present one method to estimate this without computing .
The compound Simpson formula follows in a similar way. We set h = (b — a)/2s,
t; = a+ 2th, and obtain

= g[f(a)+4f(a+h)+2f(a+2h)+4f(a+3h)+---+4f(b—h)+f(b)]

—(b— a)— W
(b—a) 180f &) +-
This is a rule with 2s + 1 points.
In the literature the term “trapezoid rule” can refer to either the two-point or the
compound rule. The context makes clear which is to be considered. A similar remark

150 Numerical Quadrature Chap. 5

applies to Simpson’s rule. Finally, notice that the polynomial degree of a compound rule
is the same as that of the basic rule.

There are several ways to estimate errors in compound rules. A quadrature rule is
not useful unless there is some way to estimate or bound the remainder R,,. For simple
integrals like the one defining erf(x) the first few derivatives of the integrand are easy to
obtain. Thus the error in the compound trapezoid rule when it is used to estimate erf(1)
is

1 1 2 1
1252 \/_ 1252 \/_ 332\/7?'
If we use a 100-point rule the integral estimate will be in error by no more than 10~
Of course, the actual error might be much less than 10~* (see Example 5.4).

For complicated problems it can be inconvenient or difficult to compute high-order
derivatives. The example above might give the reader a false impression about the
usefulness of remainders containing derivatives. In any realistic problem, the remainder
must be estimated from numerical data. A typical error estimation algorithm is described
below, and another is given in Section 5. Error estimates derived analytically are too
complicated or too pessimistic. In many applications the integrand is not even given by
a formula, but its values are obtained from a lengthy computation which is impossible
to analyze.

A common procedure is to estimate a remainder by combining two or more quadra-
ture rules. In the simplest case we apply the two rules and take the absolute value of
the difference as an estimate of the error in the less accurate one. For example, we
could apply the compound trapezoid rule and the compound Simpson’s rule and use
the difference to estimate the error in the former. There are many other possibilities.
The discussion below shows how to use two trapezoid rules with different numbers of
panels. In the next section we consider two more rules, a Gauss-Kronrod pair. The two
important ideas are

|Rs 11| = et g2 - 2)| <

(a) Error estimation procedures have a large heuristic component. Selecting and com-
bining two rules is as much an art as a science.

(b) It is significantly more expensive to obtain both an integral estimate and an error
estimate than it is to obtain only the integral estimate.

Compound rules are useful because they offer a simple method for obtaining rules
with any number of nodes. The advantage of these rules stems from the effect on the
remainder of increasing s. Examining R, ., for the compound trapezoid rule we see
that increasing the number of panels changes h = (b — a)/s and also changes the point
¢ at which f@® is computed but does not change the order of the derivative. There is
a similarity between this discussion and the one in Section 5 of Chapter 2 where we
introduced the concept of extrapolation. The same ideas can be used here. Thus if we
apply the compound trapezoid rule twice, first with s and then 2s panels, the remainders

are
h 2

b
|Rs+1| = |f(2)(§1)|, |R23+1|

Sec. 5.4 Compound Quadrature Rules and Error Estimates 151

Assuming the values of f@ are equal at &, &,

|RS+I|

|Ras 41| = 2

Doubling the number of panels results in an approximate fourfold reduction in the error.
Because of the h? term this formula is called “second order.” The compound Simpson’s
rule is “fourth order.” Doubling the number of panels reduces the error by a factor of
about sixteen. We saw a similar reduction in the interpolation error when we studied
piecewise polynomial interpolation in Sections 8 and 11 of Chapter 4. Indeed, there is an
intimate relationship between piecewise polynomial interpolation and quadrature rules.
We carry this further in Section 9.

Example 5.4 Compound Trapezoid Rule Estimate of erf(1).

Table 5.2 illustrates the compound trapezoid rule for a few values of s when applied to the
integral for erf(1). It also gives the factor by which the error is reduced as s is doubled.
This number should be about 0.25. B

TABLE 5.2 COMPOUND TRAPEZOID RULE ESTIMATES OF erf(1)

No. of intervals s Trap. Rule Error, Rs 4 1 Ry 1/Rys 41

2 .82526295 1.74 x 10~2 -

4 .83836777 433 x 1073 .2485

8 .84161922 1.08 x 10~3 .2496

16 .84243051 2.70 x 10—* .2499

32 84263323 6.76 x 10~3 .2500

64 .84268390 1.69 x 10—3 .2500

128 .84269657 422 x 10~ 2500

One practical application of these ideas is to error estimation. If we compute
two estimates using the compound trapezoid rule with s and 2s panels, we expect that
|Ras +1| = | Rs 4 1|/4. Denoting by T 1 1, T»s 4 1 the computed compound trapezoid rule
estimates,

I=T; 1 +Rs;1=Ths 11+ Rps 4
we have
3
|Ts+1—Tas+1|=|Rs41 — Ros 41| = Z|Rs+1|-

Thus 4/3 of the difference between two successive estimates provides an estimate of the
error in T 4 1. We would expect 15, + 1 to have about 1/4-th this error. A practical, but
conservative procedure would then use T3, | as an integral estimate but ‘31|Ts +1=Tas 41|
as an error estimate.

152

Numerical Quadrature Chap. 5

There are several issues associated with developing a reliable computer program

using this technique.

@

@

3)

The trapezoid and Simpson formula are “closed,” requiring f(a) and f(b). They
cannot be applied to integrals which have non-removable singularities, such as

1 1 es'm x
/ In z cos % dx or / dzx.
0 0o VT

Both integrals exist, that is, the area under each curve is finite, even though the
integrands become infinite at the left endpoint. Many practical problems involve
integrable singularities such as these. This difficulty could be avoided by using the
compound midpoint rule (see Problem P5-2b), or a compound Gauss rule.

Look back at the derivation of the trapezoid or Simpson’s rule in Section 2.1. The
argument hinged on the existence of a Taylor expansion. If f has a singularity
on [a,b], such as f = /z on [0, 1], a Taylor expansion will not be valid on
the whole interval and the derivation of the error, i.e., the trapezoid formula is
unjustified. A similar remark applies to the compound rules, but for these there
is the further assumption that it is reasonable to approximate the sum of a large
number of derivative terms by s times a derivative at one point. In fact, the error
estimation procedure above requires that f does not change much for different
values of &;. If f has large oscillations or other rapid changes this assumption is
invalid. For either of these two cases (f® does not exist on all of [a, b] or it varies
dramatically) we can still apply the compound trapezoid rule, but cannot make
the same inferences about the error. In general, a Riemann sum quadrature rule
such as the trapezoid rule leads to a Riemann sum compound rule. Such rules can
be made arbitrarily accurate as we increase the number of nodes. But the rate of
convergence depends on the smoothness of f. Specifically, doubling the number
of panels may not decrease the error by a factor of four.

If we already have a compound trapezoid estimate requiring n nodes (n — 1 panels)
and we want a more accurate estimate there are three natural choices.

(a) Increase the number of points by one, T, 1 (n panels).
(b) Double the number of points, 75, (2n — 1 panels).
(c) Double the number of panels, T5,,—; (2r — 2 panels).

Of these, T, +1 is only slightly more accurate than 7T;,, while T3, and T5,_;
are about four times as accurate (for smooth f). However, a quick sketch will
convince you that given T;,, computing T}, ; ; requires n — 1 new evaluations of
f» T»y, requires 2n — 1, but T, only requires n — 1. In fact, if h is the spacing
between the nodes of T,

1 h h 3h 3h h
Tn-1= 5T+ 5 |flat D+ flat)+ + fo =)+ fb—).

Thus software which implements the compound trapezoid rule almost always uses
(c) along with the formula above.

Sec. 5.5 Gauss-Kronrod Quadrature Rules 153

During the 1960’s subroutines based on compound rules were developed which
dealt with difficulties (1) and (2). One of the most prolific lines of research used ex-
trapolation techniques applied to the error expansion of the compound trapezoid rule and
may be found under the heading “Romberg” quadrature in several of the references given
in Chapter 1. But since 1970, the adaptive quadrature algorithms described in Section
6 have become the most popular methods for general subroutine use. The interest in
extrapolation has not faded though, and more advanced techniques have been described
which can be used in concert with adaptive algorithms. See for example the paper by E.
De Doncker and I. Robinson (1984).

55 GAUSS-KRONROD QUADRATURE RULES

In Section 4 we saw that for the compound trapezoid rule, doubling the number of panels
gives us two estimates, T,, and T3,_;. For smooth functions 75, _; is about four times
as accurate as T, with a total amount of work equal to 2n — 1 evaluations. In Section
2.1 we pointed out that Gauss formulas are “best” for a given number of nodes, and we
wonder if it would be possible to generate a pair of them to produce somehow both an
integral and an error estimate. If G, denotes the n point Gauss rule, we expect that
G>p,—1 will be far more accurate and we could use |G,, — G2,,—1| as an error estimate.
But we remarked earlier that none of the Gauss rules share nodes except at the midpoint.
Thus the total work for G,,, and G, _1 is 3n — 1 evaluations (or 3n — 2 if n is odd).
A similar situation occurs using G, and G,,. If we use G,, and G, 1 the total work
is 2n + 1, comparable to the compound trapezoid rule, but G, - is only slightly more
accurate than G,,.

In 1965 the Russian computer scientist Kronrod considered the problem of esti-
mating errors in Gaussian quadrature rules in this spirit. Kronrod’s idea was to start with
G, and find a new formula which used all of these same evaluation points as well as
some others. If

Gn =) wif(z),

i=1

Kronrod considered

n n+1
Kony1=Y aif@@)+ Y bjf@)).
1=1 j=1

Notice that both G, and Kj3,, ;1 share n nodes. The latter has n 4 1 additional ones, and
all different weights, a;, b;. The Gaussian rule G, is of polynomial degree 2n— 1. Kron-
rod found the 3n +2 a’s, b’s and y’s so that K5, . ; was of degree 3n + 1. Table 5.3 lists
K5 to 15 digits. The two rules (G, K>, +1) are called a Gauss-Kronrod pair. The
cost to compute the pair is 2n + 1 function values. This is the same as for G5,, +.; which

154 Numerical Quadrature Chap. 5

TABLE 5.3 THE (7,15) GAUSS-KRONROD PAIR

$0.74153 11855 99394
10.40584 51513 77397
=£0.00000 00000 00000

ON [-1,1].
Seven-Point Gaussian Nodes Weights
+0.94910 79123 42758 0.12948 49661 68870

0.27970 53914 89277
0.38183 00505 05119
0.41795 91836 73469

Fifteen-Point Kronrod Nodes

Weights

+0.99145 53711 20813
10.94910 79123 42759
+0.86486 44233 59769
+0.74153 11855 99394
+0.58608 72354 67691
+0.40584 51513 77397
+0.20778 49550 07898

0.00000 00000 00000

0.02293 53220 10529
0.06309 20926 29979
0.10479 00103 22250
0.14065 32597 15525
0.16900 47266 39267
0.19035 05780 64785
0.20443 29400 75298
0.20948 21410 84728

is of degree 4n + 1 but provides no error estimate. It is also the same cost as the
two rules G,, and G,, +; which do. But K3, ;; should be much more accurate than
G, +1. We could take as an error estimate for G,, the difference |G,, — K>, +1| and
return K>, 4+ as an integral estimate. This is a perfectly reasonable approach. However,
experience has shown that this difference severely overestimates the error in the far more
accurate K», + 1. Experimentation has suggested that

Integral Estimate = K>, 4

Error Estimate = (200G, — K25 4+ 1 |)1'5

is realistic, but still conservative. (Actually, most computer implementations scale the
error estimate slightly to reflect the magnitude of f, but for f ~ 1 the error estimate given
here is correct.) At first glance the error estimate might appear larger than |G,, — K2y, + 1,
but the latter is usually much less than 1.0 and the 1.5 power makes it smaller yet.

If we apply a double precision implementation of this rule to estimate erf(1), after
transforming the interval from [—1, 1] to [0, 1], we find that

G7 =0.842700792948824892
K5 =0.842700792949714861

(200|G7 — K5))!° =2-10713,
The actual error in K5 is about 2 - 10~!7. By comparison, the compound trapezoid rule

is far less accurate. In Table 5.2 of Example 5.4 the least error is 4 - 1076 and this
requires 128 evaluations.

Sec. 5.6 Automatic and Adaptive Quadrature Algorithms 155

A Gauss-Kronrod pair, along with the above error estimate, is currently one of the
most effective methods for calculating general integrals. The pair (G7, K;s) is standard.
When combined with an adaptive quadrature algorithm we obtain reliable and efficient
general purpose subroutines.

The positive remarks above notwithstanding, readers should be aware that a totally
numeric estimate such as this one can still be wrong. There exist relatively well behaved
functions for which both these estimates are arbitrarily bad, that is, of a wrong order of
magnitude and of a wrong sign. Changing to another rule or another error estimate or
both may reduce the likelihood of a poor result but cannot eliminate the possibility.

56 AUTOMATIC AND ADAPTIVE QUADRATURE ALGORITHMS

An automatic quadrature algorithm takes as input f, [a, b] and an accuracy request €
and produces a result () and an error estimate £ which we hope will satisfy

Q-Il<E<e.

No explicit assumptions are made about f except that an external procedure is provided
to calculate f(z) for any given x. Most scientists would prefer that an algorithm attempt
to satisfy a relative error request

Q-I|<E-|I]<e-|]]

and many programs, such as Q1DA in this chapter, try to do this. But some special logic
is required in case I ~ 0, and in this text we discuss only the first, or absolute error
request above.

An automatic quadrature algorithm can be developed from the compound trapezoid
rule. Compute T, with s = 1,2,4,8,16,... until %|T23+1 — Ts4+1| < e. For this
automatic quadrature algorithm the evaluation points of f are uniformly spaced on [a, b].
Different integrands only cause the algorithm to terminate earlier or later.

Automatic quadrature algorithms are always expensive to use compared to the best
that can be achieved by studying the particular problem and taking advantage of its
features or the intended use of the calculation. Several hundred percent extra work is
common, and an order of magnitude or more can also occur. But they are convenient and
for many problems the total computer time is still small enough to justify the expense. In
particular this often occurs at the initial stages of a computational project. As the project
progresses, an assessment needs to be made of the benefit in human and computer time
of additional analysis.

An adaptive automatic quadrature algorithm is a special kind of automatic
quadrature algorithm which seeks to tailor the evaluation points to each individual inte-
grand. The two important components of this are a “local quadrature module” (LQM)
and an overall strategy.

An LQM is a procedure with inputs f and an interval [o, 3], and outputs Q(q g
and Ej, g which we refer to as the local quadrature and local error estimates. The
examples below illustrate two distinct ways to provide local quadrature and local error
estimates.

156 Numerical Quadrature Chap. 5

Example 5.5 A Simple Local Quadrature and Local Error Estimate.

Qo8 = Tis

4
Eia, = §|T15]

The local error estimate is based upon the derivation in Section 4. l

Example 5.6 A Realistic Local Quadrature and Local Error Estimate.

Qla,o = Kis

Bla,n = (200/G7 — Kis|)"”

This local error estimate is based upon the formula given in Section 5. H

Local quadrature modules need to be reliable. Usually they have some technique
to analyze roundoff or other pathological behavior. Nevertheless they are thought of as
“building blocks” rather than as complete algorithms. i

One of the best overall strategies, called globally adaptive, operates as follows.
The initial interval [a,b] is sent to the LQM. If Ej, 5 < € we quit, returning @ =
Qrap» £ = Elgp. Otherwise subdivide [a,b] in half sending each to the LQM. If
E= E[a’%b] + E[%._bM < € quit returning £ and Q = Q[mﬂzi] + Q[%",b]' Otherwise
subdivide the half with the larger local error estimate. At a general step in the algorithm
the original interval [a, b] has been replaced by a set of subintervals of different sizes.
If the sum of all the local error estimates exceeds ¢, the subinterval with largest local
error estimate is subdivided. Eventually the sum is less than ¢, in which case we quit,
returning the sum of the local quadrature estimates as the result (), and the sum of the
local error estimates as E.

This strategy follows from the premise that on a small enough subinterval the
integrand will be well behaved and the local quadrature module will give an accurate
local quadrature estimate and small local error estimate. When f(x) is badly behaved
at xo that point will become trapped in smaller and smaller subintervals. On such
subintervals the local quadrature estimate will eventually be small too, proportional to
the size of the subinterval.

In a practical algorithm some provision is required for preventing intervals from
getting too small, either by limiting the number of halvings or by more sophisticated
strategies. It is also necessary to consider the effect of roundoff error in the evaluation
of the integrand, which can occur even on a large subinterval. Attempts to detect this
are largely ad hoc and differ from one routine to another. A good general reference for
these algorithms, which also contains programs is the book by R. Piessens (1983).

Sec. 5.7 Subroutines Q1 DA and QK15 157

The value of an integral will not be altered by changing the integrand at a finite
number of points. Nevertheless the value returned by an automatic quadrature algorithm
is completely determined by the integrand values at some finite set. No program of this
type can rigorously guarantee that either its integral or error estimate have any accuracy.
It is easy to find a problem which will cause any particular routine to either give up or
produce incorrect results. This can happen if significant integrand features are missed
by the sampled values f(z;). For example, suppose we wish to estimate

1 200,000 , R
I= —/ t°exp(—t°/2) dt =~ 1.0.
V2T J 200,000
This will result in an underflow error in the EXP routine (—10'° is too small an argument
for any exponential subroutine). If we get around this by setting underflows to zero our
routine will ultimately almost certainly return with an integral estimate of 0. On a total
interval of length 400, 000, the integrand is essentially zero on all but one hundredth of
one percent. Unless serendipity comes to our aid the automatic quadrature algorithm will
not sample there. There is no substitute for an alert user! (See also Problem P5—4).

5.7 SUBROUTINES Q1DA AND QK15

The automatic quadrature subroutine Q1DA is designed for general problems. The user
must provide a main program that calls Q1DA and also provide a Fortran function named
F defining the integrand. Q1DA is part of a set consisting of Q1DA, Q1DAX, and GL15T.
The latter routine requests the evaluation of F at appropriate points on the integration
interval. Q1DAX is a globally adaptive quadrature algorithm calling the local quadrature
module GL15T. Q1DA is a “driver” for Q1DAX. No computation is done by Q1DA;
its function is to set certain variables and arrays to standard, default values and then
call Q1DAX. The use of drivers is common in mathematical software. Q1DA returns a
quadrature estimate Q, an error estimate E, an error flag signifying success or failure,
and a count of the number of integrand evaluations, KF. The count measures the amount
of work that was required.

Often physical insight suggests a “natural frequency” for the problem which can
be directly related to expected work. If we wish to integrate e® sin? 100z on [0, 7], there
are 50 cycles of the sine. Even the most optimistic user would expect a few evaluations
in each cycle. Thus if KF is returned as 100 or less, something is probably wrong either
in the problem set-up or the use of the program.

Q1DA follows the general outline given in Section 6 with two enhancements.

(1) Randomization. The algorithm described in Section 6 has the interval [a, b] halved
at the first subdivision. Q1DA selects the first subdivision point randomly, near
but not at (b+a)/2. All subsequent subdivisions are bisections. This causes all
the integrand evaluation points to be slightly different each time the program is
called. If the integrand has sharp spikes, calling Q1DA two or three times and
comparing the results is a good way to reduce the possibility of missing some
important feature.

158 Numerical Quadrature Chap. 5

(2) Singularity weakening at endpoints. Practical integrals often have singularities.
Most of these occur at endpoints. One of the best ways to deal with these is to
make a transformation of the variable of integration. If we make the change of
variable x = p(t), dz = p'(t) dt then we have

b B B
1= [@ do= [oo = [oo
a « «
where p(a) = a, p(8) = b. Although the integral value, I, is the same for the

integral of f as it is for g, the latter can be easier to evaluate numerically. Q1DA
uses the following for p(t),

p(t) = b— (b — a)u’RQu+3), with u = ;

—a

Note that p(a) = a, p(b) = b, and p'(a) = p'(b) = 0. If f(z) has a singularity at a or
b, g(t) may not. For example, if f(z)=Inz, [a,b] =[0,1]

1 1
/ Inz dz = / In[¢2(3 — 20)16t(1 — t) dt
0 0

Even though it is more complicated, the second integral is easier to evaluate nu-
merically. Q1DA makes this change of variable automatically. If f is not sin-
gular at an endpoint changing variables does not have much effect. Also, since
P'@®)| < p'((a+b)/2) = 3/2, the new integrand is slightly amplified near the
midpoint at the same time that it is damped at the endpoints.

Q1DAX has a few extra features which Q1DA does not take advantage of. These
include the ability to call the subroutine again and ask for more accuracy without repeating
the preceding calculation, and to initialize the computation with more than one interval
(useful if the integrand has a jump within the integration interval-normally Q1 DAX would
waste a great deal of time trying to locate this special point).

A global adaptive quadrature algorithm has one drawback—the number of intervals
grows. Storage must be provided for these intervals and a difficult problem can use up all
the available space. When that happens there are likely to be subintervals which already
have small local error estimates and are not going to contribute much to further progress.
In fact it is possible these will never be subdivided further. Recall the interval to be
subdivided is that one with largest local error estimate. Q1DAX throws out intervals with
small local error estimate when it runs out of space. This is often just enough to allow a
computation nearing completion to finish. Q1DA allocates space for 50 intervals, enough
for many practical problems. The user can specify this value explicitly in Q1DAX.

Q1DAX also provides as output the largest and smallest values of the integrand
which it encountered. This can be useful if you would like to generate an integrand plot.

Sec. 5.7 Subroutines Q1 DA and QK15 159
The following program illustrates the use of Q1DA.

C Typical problem setup for QlDA

C
A =20.0
B=1.0

C Set interval endpoints to [0,1]
EPS = 0.001

C Set accuracy request for three digits
CALL Q1DA (A,B,EPS,R,E,KF, IFLAG)
WRITE(*,*) A,B,EPS,R,E,KF, IFLAG
END

FUNCTION F (X)
C Define integrand F
F = SIN(2.*X)-SQRT (X)
RETURN
END

For this sample program the output is

Q0 QO

0.0 1.0 .001 .041406750 .69077E-07 30 O

For many quadrature problems it is unnecessary or undesirable to use a sophis-
ticated strategy. What is often needed is a routine which is simple and hence quick.
QK15 is an local quadrature module which is an implementation of the (G, K5) Gauss
Kronrod pair described in Section 5. QK15 is from Quadpack, a unified collection of
subroutines for one dimensional quadrature, that is described in the book by Piessens
(1983). Quadpack contains subroutines for automatic quadrature as well as implemen-
tations of six different Gauss Kronrod pairs. QK15 returns a local quadrature estimate
RESULT, and local error estimate ABSERR, for an arbitrary function f and finite interval
(a,b). The transformations of Section 3 are performed internally, relieving the user of
doing them. One advantage of such a local quadrature module is that it will always use
a predictable amount of work, fifteen integrand evaluations. QK15 also uses these values
to provide estimates of two other related integrals,

b b
/|f|d:c, and z/

QK15 is like Q1DA in that it requires that the user write a Fortran function which will
evaluate the integrand for an arbitrary . Q1DA does not allow the user to select the
function name, it must be F. But QK15 is more flexible. (Q1DAX has similar flexibility.)
You can select any name for this function, but your choice must appear in at least three
places, (1) in an EXTERNAL statement in the routine which calls QK15, (2) as the name
of the function that you write, and (3) in the argument list of each call to QK15. In

RESULT

dzx.
b—a o

f

160 Numerical Quadrature Chap. 5

Fortran, if one of the arguments to a subroutine or function is the name of a routine, this
must be handled differently than other types of parameters, and the EXTERNAL statement
warns Fortran to do this. Here is an example of the use of QK15 which illustrates the
EXTERNAL statement.

C Compute erf(l), i.e. integral of 2/sqrt(pi) * exp(-x*x) from 0 to 1.0

EXTERNAL FUNC
REAL A, B, RESULT,ABSERR, RESABS, RESASC,PI

C
A = 0.0
B =1.0
PI = 4.0*ATAN(1.0)
CALL QK15 (FUNC, A, B, RESULT, ABSERR, RESABS, RESASC)
WRITE (*,*) ' QK15 ESTIMATE OF ERF(1) '
WRITE (*,*) ’ 2.0/SQRT (PI)*RESULT, ABSERR’
WRITE(*,*) 2.0/SQRT(PI)*RESULT,ABSERR
STOP
END
C
REAL FUNCTION FUNC (X)
REAL X
FUNC = EXP (-X*X)
RETURN
END
C
C Output (from IBM PC/AT) is
C
C QK15 ESTIMATE OF ERF (1)
C 2.0/SQRT (PI) *RESULT, ABSERR
C 0.842701 0.50229e-4
Cc

Notice that each evaluation of the integrand requires a call to the function FUNC.
A more efficient way is to make FUNC a subroutine and pass to it an array of abscissas.
This replaces fifteen function calls by one subroutine call. Then, in FUNC the evaluation
at each abscissa is independent, and on some computers the Fortran compiler may be able
to organize the calculation to compute several of them in parallel. Unfortunately, none
of the available general purpose quadrature software has been written to take advantage
of this, and we will continue to use the traditional mechanism here.

5.8 DATA INTEGRATION

Suppose we are given a sequence of (z,y) pairs

(s, 91), T <x2 < < Ty

Sec. 5.8 Data Integration 161

which are thought of as accurate values of some (unknown) function f(x),
f@:) =y

The problem is to compute

I=/ " f(z) dz.

As the data are accurate, a reasonable approach is to interpolate to the data in the sense
of Chapter 4. That is, to construct a known function g(z) such that g(z;) = y; and then
compute

Tn
I~TI =/ g(z) dz.
g

The most heavily used interpolants are polynomials and piecewise polynomials, such as
piecewise linear polynomials, Hermite cubics or splines. Piecewise polynomials lead
to simple expressions for the quadrature rule. These are worked out below. However,
if the data contain substantial amounts of experimental or computational error, then
interpolation is inappropriate and the techniques described in Chapter 6 are recommended
instead.

Let g(x) be the function that connects each pair of data points with a line segment.
This is the piecewise linear interpolant defined in Section 7 of Chapter 4 and denoted
L(z) there.

Tp n—l Lz
IzI'=/ g(.z‘)dx:Z/ g(z) dz.
@ =1 JTi

C1
Since g is linear between z; and z; ; it can be integrated exactly, giving

n—1

InI'=3% @iv1 —T)@i+Yis1)

=1
= 2(z2 — 2y Has — x)y2 +H(@s — T)ys + -+
Hxp — Tn_2)Yn—1 HTn_1 — Tn)Ynl.

Note that if the x; are equally spaced this is the compound trapezoid rule, otherwise it
is a more general trapezoid rule. We can interpret this rule as giving the exact integral
of the function g(z) which is the piecewise linear interpolant through the data.

*5.8.1 Data Integration: Hermite Cubic Quadrature

If we use as an interpolant the Hermite cubic c(z) defined in Section 10 of Chapter 4,

9(@) = c(@) = Y yici(@) + diéi(@),

i=1

162 Numerical Quadrature Chap. 5

then

Tn

1 zI':/’n o(z) dz = Zyi/,n Ci(I)+di/ &;(x).
z i=1 o z

C1 U1

Because formulas for the ¢; and ¢; are known explicitly it is possible to compute these
integrals in closed form. The result can be shown to be

n
I'= Z o;y; + Bid,

i=1

where
(x2 — 21)/2, ifi=1;
Q; = (.’l?i+1—.’l7i_1)/2, ifi=2,...,n—1;
(@Tn — Tn-1)/2, ifi=mn,
and
(z2 — 21)?/12, ifi=1;
B = @Tip1 — - @iy — 2z +xi-), ifi=2,...,n—-1;
—(Tn — Tp_1)*/12, if i=n.

In practice we do not know the d;’s. But if these are determined by either spline
interpolation as in Chapter 4 or by another method, then this rule provides accurate
estimates.

We can interpret the formula for Hermite cubic quadrature as follows. Note that
the first sum above, Y a;y;, is exactly the generalized trapezoid rule. That represents
the area under the straight line segments connecting the y;’s. Hermite cubic interpolation
is smoother. Between the line connecting y; with y; . ; and the cubic connecting them
is a small cap (or cup). The second sum) §;d; is the area of these regions.

The only important special case occurs when the data are equally spaced. All the
B;’s will be zero except for 3y, Bn, and > o;y; becomes the compound trapezoid rule.
Thus we have the important result that for equally spaced data

2
I'= R [f@)/2+ f@)+ -+ [@n)+ [@n)f2] + 1 (s — d)

Compound trapezoid rule + two end corrections = Hermite cubic quadrature.

Note that any set of interior derivatives d; produces identical integral estimates although
different interpolants.

If the physical model suggests that the underlying function f(zx) is periodic with
f'(x1) = f'(zy), then the end corrections disappear leaving exactly the compound trape-
zoid rule. The derivation in Section 4 gives no hint that periodicity of f(z) is a distin-
guished case. It can be shown that the compound trapezoid rule is often exceptionally
accurate in the special situation when the integrand is a smooth periodic function which
is given at equally spaced points.

Sec. 5.9 Infinite and Semi-Infinite Intervals 163

Example 5.7 Compound Trapezoid Rule for a Periodic Function.

The function f(z) = 1/(1+ .5sin107z) is periodic, of period one fifth. This is not a
data integration problem per se, i.e., we can evaluate f(x) everywhere. But its periodicity
suggests that equally spaced evaluations and the trapezoid rule would be a good bet. The
compound trapezoid estimates for the integral on [0, 1] with 2, 4, 8 and 16 points are 1.0,
1.16666650, 1.15476180 and 1.15470050. The last estimate is in error by 4 in the last place.
The Gauss quadrature estimates of this integral with the same numbers of points are far less
accurate. ll

5.8.2 Subroutine PCHQA

For many problems the formulas in Sections 8-8.1 are sufficiently simple that it is pos-
sible to program them directly. But because the integration depends upon manipulation
of Hermite cubics, the PCHIP package which was described in Section 9 of Chapter 4
provides subroutines for this purpose too. In this text we have included an easy-to-use
driver PCHQA. This subroutine requires that the user provide input arrays containing the
abscissas and data values as well as the derivatives d; at these points. It also must be
given an interval [a, b], contained within the data, z; < a < b < z,, on which to perform
the integration. Thus you can use PCHQA even if your integration interval does not
begin or end exactly at a data point. Usually, you will call PCHEZ first to compute the
unknown devivatives (see Section 9 of Chapter 4) but PCHQA can also be called directly.
In the common situation when the data are equally spaced and [a, b] = [z, z,] we know
from Section 8.1 that dj, ..., d,_ are not involved in the integral estimate and they can
be safely set to zero. One disadvantage of PCHQA is that the data are always treated as
if they were unequally spaced, and you must input all the abscissas. An example of its
use can be found in the sample program in Section 9 of Chapter 4.

59 INFINITE AND SEMI-INFINITE INTERVALS

The Quadpack subroutine QAGTI can evaluate many infinite integrals. It is one of only a
few pieces of quality software for infinite intervals, and none are as reliable or general as
finite interval routines. The best choice of technique depends heavily on the characteris-
tics of the particular problem under consideration. The basic methods described here are
in common use, with Truncation (Section 9.1) and Weight Functions (Section 9.4) the
most popular. Unfortunately it is not possible to cite one technique or rule which works
so well that it can be used exclusively.

5.9.1 Truncation
If either endpoint a, b or both can be infinite, a common approach is to truncate the

limits and use a standard method on the finite part. Sometimes it is possible to analyze
the tails of the integrand and show that their contribution is negligible, but more often

164 Numerical Quadrature Chap. 5
several different intervals are selected and it is verified computationally that the finite

integral estimate is not changing. This can give wrong answers in a general situation,
but often works if some physical insight can be brought to the problem.

Example 5.8 An Infinite Integral by Truncation.

Compute
I= / exp(—z) cos’(z”) dz = 0.70260.. ..
0
We have (denoting this integrand by f(x))
A 0o)
I- / flx)dz = / f@)dz < / exp(—z) dx = exp(—A).
0 A A

Thus the error in neglecting the tail is no more than exp(—A). Figure 5.2 shows this
integrand, and illustrates the effect of truncating the interval. ll

Figure 5.2 Integrand of Example 5.8

Sec. 5.9 Infinite and Semi-Infinite Intervals 165
5.9.2 Transformation

By setting = = p(t) we can transform the interval. Typical p(t)’s for the interval [0, co)
are = —Int or z = t/(1 — t). For the former we get

00 0 1
/ f(z)dac=—/ f(—lnt)£=/ f—np 2.
0 1 t 0 t

For Example 5.8 this is

1
I= / cos?(In® t) dt.
0

This integrand oscillates infinitely often between the values O and 1 on any interval
containing the origin. If instead we had used the transformation z = p(t) = —2Int,
the integrand would be 2t cos2(4 In® t). This also oscillates, but it is modulated by the
line y = ¢ and hence goes to zero at the origin. Ignoring a small interval [0, €] leaves
us with a more tractable problem. On the other hand, Q1DA can do either of these
transformed integrals about equally well. For example, asking for five digits in the first
transformed integral on [0, 1], Q1 DA estimates I = 0.702601346-10~% with 870 integrand
evaluations. Using the second transformation, the estimate is I = 0.7026032 + 7 - 10~6
with 930 function evaluations.

Transformations must be applied with great care or the result will not be an easier
integral, only a finite one. On the other hand, judicious transformations can make almost
magical improvements. This is still an active research area. The paper by K. Murota
(1982) is a useful reference on these techniques.

*5.9.3 Trapezoid Rule for an Infinite Interval

If we select a spacing h, the trapezoid rule for semi-infinite and doubly-infinite intervals
is

/ f@ydz~ Ry fkh),
0 k=1

/ f@ydz~h Y flkh).

k=—o00

In practice we must not only pick A but also a finite limit N for the sum. One strategy
is to compute a sequence of estimates with decreasing h and increasing NV, in such a
way that Nh? is approximately constant. These rules are remarkably efficient for many
problems, and in particular for those integrands which decay rapidly to zero at —oo and
+ 0o. For example, if we consider the problem I = 1//7 ffooo exp(—z?) dz, picking
N =10 and h = 1/+/N, the trapezoid rule estimate is accurate to 2 - 107, On the
other hand for the integrand 1/(1 + 10z%), N = 100 produces an estimate which is only
accurate to 0.01, and N = 1000 is accurate to 6 - 10~3.

166 Numerical Quadrature Chap. 5

The success of the method depends upon the endpoint behavior of the integrand
f(x). Consequently, several researchers have proposed using a change of variable z =
p(t) which leaves the interval infinite but forces the new integrand p’(¢) f(p(¢)) to go to
zero more rapidly at the endpoints. This is similar in philosophy to the transformation
used in Q1DA. Recall there, p’(a) = p'(b) = 0. For example, the change of variable

z = p(t) = exp(t) — exp(—t)

transforms the interval (—oo,c0) into itself, but may cause more rapid decay of the
integrand at +oo. The integral becomes

/00 f(z) dz = /OO (et +e B f(et —et) dt.

If we apply this transformation to the integrand 1/(1 + 10z?) and then use the trapezoid
rule, 100 points gives an estimate which is accurate to 8 - 1073, and N = 1000 gives 15
digits. Sometimes this transformation can be applied more than once.

5.9.4 Weight Functions and Gauss Laguerre Quadrature

Certain functions commonly turn up as part of the integrand in infinite intervals. Two of
the most frequently occuring are exp(—z) and exp(—z?). Denote by q(z) either of these
two. The weight function technique is to find formulas of the form

/ oD@ dr =3 wif(@) + P

i=1

The limits a, b may be finite or infinite. Thus the weights and nodes are thought of as
incorporating analytic information about g(x). This generalizes Section 2.1 where we
implicitly took g(z) = 1.

As an example of the weight function approach we look for a rule of the form

/ exp(—z) f(z) dz = wy f(z1) + wz f(x2).
0

As in Section 2.1, we think of the two nodes and two weights as unknowns and seek
to find them so that the approximation is an equality for f(z) = 1, z, z* and 2. This
leads, as in that section, to a system of four nonlinear equations

o0
il= / exp(—z)z’ dz = wi(z))' +wy(zz)* i=0,1,2,3.
0

These equations have a unique solution. Many of the same conclusions apply as in
Section 2.1. For the two-point rule we find

+\/_ 2\/_

/ - exp(—z) f(z) dz ~ fQ-vV2)+ fQ+V2).
0

Sec. 5.9 Infinite and Semi-Infinite Intervals 167

This is the two-point Gauss Laguerre quadrature rule because the nodes are the zeros of
the quadratic Laguerre polynomial!. Three of these quadrature rules are listed in Table
5.4, but most scientific program libraries provide a subroutine that will generate the rules
for arbitrary n.

Similar rules for arbitrary n and general weight function g(z) have been derived,
and there is a complete theory, at least if g(x) is always positive. These rules work well
if f can be approximated by a polynomial, and sometimes in more general situations.
For other examples of these formulas see the book by P. Davis and P. Rabinowitz (1984).

Example 5.9 Infinite Integral by Gauss Laguerre.

Compute approximately

I= 1.046...=/ exp(—z)z'? dz.
0

The two point Gauss Laguerre rule gives

I~ 2+4\/§(2_ V2)'? 4 2_4\/5(24_ Vv2)'?=1.089.... |

*5.9.5 The tanh rule

The infinite trapezoid rule works so well that a realistic approach to evaluating an integral
on a finite interval is to convert it to an infinite interval in such a way that the transformed
integrand dies out at the infinite endpoints! One specific transformation which has been
studied is

et/2 _ o—t/2

t
= p(t) = tanh(5) = pETpanpeyE

which leads to

1 o0 . 00 1 et/2 — e t/2
=/_1 f(x)dx:/_oof(p(t))p(t) dt=2/_oo (et/2+e—t/2)2f(et/2+e—t/2> dt.

This is then approximated by

1 kh/2 —kh/2
INhngp(kh)f(p(k’h)) 2h Z (kh/2+e—kh/2)2f (6kh/2+€_kh/2)

! Edmond Nicols Laguerre (1834—1886), was a French mathematician, who spent all of his professional
career at the Ecole Polytechnique in Paris. Most of his work was in what we now call analytic geometry
although he made important advances in analysis. In addition to the quadrature formula above there is a class
of differential equations associated with his name. He was said to be a quiet, gentle man who was passionately
devoted to his research, his teaching, and the education of his two daughters.

168

Numerical Quadrature

TABLE 54 SOME GAUSS LAGUERRE QUADRATURE
RULES FOR fooo exp(—z)f(z) dz

Nodes Weights
n=2
0.585786437626905 0.853553390593274

0.341421356237310 x 10!

0.146446609406726

n=4

0.322547689619392

0.174576110115835 x 10!
0.453662029692113 x 10!
0.939507091230113 x 10!

0.603154104341634
0.357418692437800
0.388879085150054 x 10~!
0.539294705561327 x 103

n=_8

0.170279632305101

0.903701776799380

0.225108662986613 x 10!
0.426670017028766 x 10!
0.704590540239347 x 10!
0.107585160101810 x 102
0.157406786412780 x 10?
0.228631317368893 x 10?

0.369188589341638
0.418786780814343
0.175794986637172
0.333434922612157 x 10!
0.279453623522567 x 102
0.907650877335821 x 10—4
0.848574671627253 x 10~°
0.104800117487151 x 10~8

Table 5.5 tanh

with a suggested step

QUADRATURE NODES
AND WEIGHTS FOR N=5

Nodes Weights

0.000000 .893459
+0.713098 439127
+0.945434 .094844
+0.990649 .016631
+0.998428 .002807
+0.999737 .000471

2[o
2|~

Chap. 5

Sec. 5.10 *Double Integrals 169

This is a strange transformation, as the resulting rule on [—1, 1] is not exact for any
polynomials—not even constants—for any positive h and finite N. Nevertheless it is
remarkably accurate. To give a feeling for the numbers we consider N = 5, h = 71/0.4.
Table 5.5 lists p(kh) and 2hp’(kh) which are the quadrature nodes and weights. Note
that the rule has 2V + 1 nodes. These are symmetric with respect to the origin, and the
origin is itself a node.

We see from the table that most of the nodes cluster near £1. This can lead to
computational pitfalls: integrands which contain factors such as 1 —x may be impossible
to evaluate directly, on some machines, because of underflow; and many integrands will
need special evaluation at nodes near £1 to avoid excessive loss of significance.

Example 5.10 Finite Integral by tanh Rule.

Compute by the tanh rule

1
/ cxp(—zz)ln(l —) dz.
-1

We get the following results for various values of N and h.

N h Rule

5 1.787 —.306715
10 1.304 —.315748
20 0.943 —.316688
30 0.778 —.316713
40 0.677 -.316714

The estimate for NV = 40 (81 integrand evaluations) is correct to all the digits printed. ll

*510 DOUBLE INTEGRALS

If D is a domain in the z-y plane, we often want to compute

I=//Df(z,y)dA.

This is a much more difficult problem than the evaluation of a one-dimensional integral.
It is still an active research topic and many gaps remain in our knowledge.
In analogy to the definition in Section 2, an n-point quadrature formula is

I= Zwif(wiyyi)‘F R;.

i=1

170 Numerical Quadrature Chap. 5

The formula is of degree d if R, = 0 whenever f is any bivariate polynomial of degree
d, but is nonzero for some polynomial of degree d + 1. A bivariate polynomial of degree
d is a linear combination of terms zPy? with p+ ¢ < d.

If D is a rectangle, triangle, circle or other standard domain, families of quadrature
formulas exist as we will illustrate in Section 10.1. More general domains sometimes
can be dealt with by one of the following techniques.

(1) Embedding the domain in a larger rectangle and altering the definition of f(z,y) so
it is zero outside of D. Then the integral on the rectangle is equal to the integral on
D. Unfortunately, the new integrand now has a jump discontinuity when thought
of as a function on the rectangle.

(2) Approximation of D by the union of triangles. If the boundary of D is nonlinear
we may need a large number of small triangles. Since there will be some error on
each triangle, the trick is to leave out enough of D so that the omission error is
the same magnitude as the quadrature error on the union of triangles.

(3) Transforming D into a more standard region. This is less general, but in the next
section we show how an integral on a triangle can be transformed into one on a
square.

*5.10.1 Product Rules for Rectangles and Triangles

If
/ f(x) dz = sz f)+ Ry
i=1
and
/ 9(y) dy = Zp]g(y])+Rz,
=1
then

b B b
// f(w,y)dwdy=/ [sz‘f(xhy)"‘Rl] dy
b b
=Y i [@y [Ridy

m b
w; ijf($i,yj)+R2 +/ R, dy

1 j=1

M-

(2

b
wzpjf(a:z,yj)+zszz+/ Ry dy

1 i=1

.
Ms

©
Il
—

<.
Il

wzp]f(xuy])"'R

v
Ms

.
1l

—_
<.
1l

—_

Sec. 5.10 *Double Integrals 171

This is called a product formula because it uses nm integrand evaluation points. Figure
5.3 shows a 2 x 3 = 6 point product rule on a rectangle formed from a three-point Gauss
quadrature and a two-point Gauss quadrature. The quadrature weight associated with a
node in the plane is the product of the two one-dimensional weights.

Figure 5.3 Product Rule Composed of
Two-Point and Three-Point Gauss Rules

If the one-dimensional formulas are of polynomial degree d; and d; then the
product formula will integrate polynomials zPy? with p<d;, ¢<d,. Thus a product
formula is exact for all bivariate polynomials of degree min(d,,d), although it will
also integrate some polynomials of degree d; + d,. Product rules are easy to derive and
hence are popular. Their disadvantage is the requirement of a larger number of nodes
than necessary. For example, a product rule using two three-point Gaussian rules has
nine nodes and is of bivariate degree five. A non-product rule of degree five exists with
only seven nodes.

A surprising number of regions can be transformed into a rectangle. Sometimes
other difficulties are introduced but the technique is still valuable. To illustrate, suppose
we want to compute the integral on a triangle

1= [[s@wdas a={@p:0<s<i0<y<al.
A
Let us make a change of variable

u=z, v=y/z

Then the original integral becomes

1 = 1 gl
I=/ / flx,y) dy da:=/ / fu,uv)u dv du.
o Jo o Jo

172 Numerical Quadrature Chap. 5

We can now apply a product rule for the integral on a square. This is an algebraic trick,
but as with all transformations its usefulness depends upon the problem. For example,
Figure 5.4 illustrates the nodes on the triangle when the three-point Gaussian quadrature
rule is used in each dimension. Such rules place a large fraction of the nodes in the
upper portion of the triangle leaving the lower portion sparsely sampled. For this reason
triangle product rules with large numbers of points are seldom used.

Figure 5.4 Product Rule on Triangle

5.10.2 Using One-Dimensional Programs for Double Integrals

Until recently, there were no high quality subroutines for double integrals, but for some
time we have had good one-dimensional routines. Thus it was natural to ask if the one
dimensional routines could be used to evaluate a double integral. In this section we
describe a technique which is still in widespread use.

Assume we have two subroutines for one-dimensional quadrature
SUBROUTINE Q1 (G,Al,Bl,EPS1,RES1,ERR],KF1,IFLAG])
SUBROUTINE Q2 (F,A2,B2,EPS2,RES2,ERR2,KF2, IFLAG2)

In problem P5-11a you will use Q1DA and a copy which you rename Q1, but the method
works with any two reliable routines. Our task is to figure out what functions to take for
the one dimensional integrands F and G and how to set the input error requests EPS1
and EPS2. If I can be written in the form

s [8
I=/ [/ f(:v,y)dy] dz,

we can think of the term in brackets as a function g(z),

b 8
I=/ g(z) dz, g(m)=/ f(z,y) dy,

Sec.5.10 *Double Integrals 173

and can use the two subroutines together to evaluate the double integral. Given z, we
can use Q2 to evaluate the integral defining g(z). We will get

RES2 = g(x) — F»,
with, we hope,
|Ez| < ERR2 < EPS2.

The numbers RES2, ERR2, and F, depend on z. Now use Q1 to evaluate the integral
of g. Of course we are not really integrating g(z) but rather RES2 = g(z) — E,. The
output of Q1 is

b
RES1 =/ [g(z) — Ex(x)] dz — Ej,
a
with
|Ei] < ERR1 < EPSL.

Thus

b b
I=/ g(w)dz=RE81+/ E,(z) dz+ E,.

We want the magnitude of the last two terms to be less than an absolute accuracy e.
Since

b
/ Er(z) dz + E;| < (b — a)EPS2 + EPS1,

any combination of EPS1 and EPS2 making the right-hand side less than ¢ would seem
to be acceptable. Actually we have not taken into consideration the amount of work
being performed by Q1 and Q2. It is intuitively obvious, and can be proven, that if the
inner integral is computed inaccurately then the outer subroutine Q1 will think that it is
integrating a rough function. This will result in extra work and occasionally a complete
failure of Q1. A practical rule of thumb is that the inner integral be computed about a
factor of ten more accurately than the outer. We use

€
EPS1=09¢, EPS2=-— .
€ 1006 —)

Then an error estimate is given by

ERR1 +(b — a) max ERR2.
T

174 Numerical Quadrature Chap. 5

Example 5.11 Double Integral by a Pair of One-Dimensional Programs.

The following program estimates a two dimensional integral on a rectangle.
| 2
I= / / exp(—xzyz) dzx dy.
0 0

C Double integral by two one dimensional subroutines

EXTERNAL G
COMMON ERMAX, XX

ERMAX = 0.0

EPS = 1.E-4

EPS1 = 9.0/10.0 * EPS

Al =0.0

Bl =1.0

CALL Q1 (G,Al,Bl,EPS1,RES1,ERRI,KF1, IFLAGL)

ERR = ERR1+(B1-Al)*ERMAX
WRITE (*,*) RES1, ERR, KF1l, IFLAGI
STOP
END

FUNCTION G (X)

EXTERNAL F
COMMON ERMAX, XX

XX = X

EPS2 = 0.1 * 1.E-4

A2 = 0.0

B2 = 2.0

CALL Q2 (F,A2,B2,EPS2,RES2,ERR2,KF2, IFLAG2)

C Test IFLAG2
IF (IFLAG2.NE.O)
* WRITE (*,*) "ERROR IN Q2, IFLAG, KF2 = ', IFLAG2, KF2

Sec. 5.10 *Double Integrals 175

ERMAX = MAX (ERMAX, ERR2)
RETURN
G = RES2

END

FUNCTION F (Y)
COMMON ERMAX, X

F = EXP (—-X*X*Y*Y)
RETURN
END [|

Notice both the COMMON statement and the assignment statement XX=X within G.
These are needed because F, the integrand of Q2, needs to know the value of X that
is the input to G. Use of COMMON is the closest that Fortran gets to allowing ‘global
variables.” The variables X in FUNCTION F (Y) and XX in the main program and in
FUNCTION G (X) refer to the same memory location. The COMMON is required here
since F only has one argument and we have to get the value of X to it. In Fortran, a
variable cannot be in an argument list and in COMMON, so we declare another variable
XX that is in COMMON and set its value to X.

*5.10.3 Non-Product Rules and Automatic Two-Dimensional Programs

A non-product rule is any quadrature rule which is not the result of applying a one-
dimensional rule to successive dimensions. Non-product rules are usually more efficient
for the same accuracy than product rules, hence there is strong motivation to discover
them. A natural way to look for them is to say: if we use a rule with m nodes how can we
select the nodes and weights so that the rule integrates bivariate polynomials of as high
degree as possible? In one dimension this is the argument we used for Gaussian rules. In
two and higher dimensions the situation is much more complicated. With m nodes there
may be several rules with different nodes or weights which integrate the same degree
polynomial, and no way to integrate higher degree polynomials without more nodes.
For another region, the results might be completely different for the same m. For most
regions we simply do not know what the best rules are. A reference to these techniques
is the book by A. H. Stroud, (1972). Because triangles are important in applications
there are detailed references specific to them. An excellent manual containing advice on
selection and use is the report by J. N. Lyness (1983).

We have seen that Gauss-Kronrod pairs are useful for one dimensional quadrature.
Some work has also been done to extend these ideas to two dimensions. At this time
there is one success to report, Laurie (1980), began with the 7-node degree-5 rule on a
triangle and added 12 nodes (for a total of 19) to obtain a rule of degree 8. It is known

176 Numerical Quadrature Chap. 5

that to integrate all polynomials of degree less than or equal to 8 on a triangle requires
at least 16 nodes, so Laurie’s rules require 3 more nodes but also allows the error to be
estimated. Figure 5.5 shows the placement of the 7-node degree-5 rule and the additional
12 nodes which give Laurie’s degree 8 rule.

The algorithm and program segment in Section 10.2 have been used for many years
because of the availability of one-dimensional automatic programs. Because we now
have some non-product rules which generate error estimates, a few truly two-dimensional
programs have made their appearance. The earliest of these used a rectangle as a basic
region but newer ones utilize triangles instead. The overall strategy is global adaptation.
One of the most attractive features of the global algorithm is that it makes perfectly
good sense in two or more dimensions. Instead of intervals we think of triangles, and
bisection is replaced by some simple scheme for subdividing a triangle into two (or
four) subtriangles. The storage requirements for these programs are substantially greater
than for one-dimensional programs, and are also greater than for the program in Section
10.2. But compared to using two one-dimensional subroutines there is usually an overall
gain in efficiency in terms of the number of integrand evaluations. Furthermore these
programs can handle much more difficult integrals. For a typical and well done program,
see the paper by E. de Doncker and I. Robinson (1984).

5.11 MONTE CARLO METHODS

During World War II the term “Monte Carlo” was introduced by von Neumann and Ulam
at Los Alamos in the context of simulation of neutron diffusion in fissionable material.
The idea was known to statisticians as early as 1910 (e.g. W. S. Gosset who wrote under
the pseudonym “Student”). The name, however, was coined by Nick Metropolis. He
states that Enrico Fermi used the idea, by hand, to predict the results of experiments
to astonished colleagues at the University of Rome in the early 1930’s. The method
was also used to approximate some complicated multidimensional integrals. Since then,
Monte Carlo has been generalized in over 3000 articles and books. We present here a
simple example, based upon the earliest ideas for the approximate evaluation of a one
dimensional integral. For some other illustrations see Section 9 of Chapter 10. Two
good references are the book by R. Rubinstein (1981), and the paper by S. Haber (1970).

We consider sample-mean Monte Carlo, which is easy to describe and implement
if we have a source of uniformly distributed random numbers. The generation of pseudo
random numbers is presented in Chapter 10. We select N random points 0 < U; < 1
and scale each to [a, b], u; = a+ U;(b — a). Then we compute

1 N
Oy =(b—a)g D flw).
=1

This is (b — a) times the average of f. Intuition suggests that this will approximate
the integral / and elementary statistical analysis confirms that. To use Monte Carlo to
estimate an integral on a two dimensional region we compute the average of the integrand
evaluated at NV points randomly chosen in the region and then multiply by the area.

S[SurlIL © 10] 9[MY 10NPOIJ-UON §°§ danBLy

10}

D |NWIO}

D|NWi0}
sepou 7}

G o91bap

Q o99.4bop
fouoctry1ppo

104 sapou /

177

178 Numerical Quadrature Chap. 5

How accurate are these estimates? Since the u; are random there is nothing in
principle to prevent them from all falling into any particular little subinterval of [a, b]
in a single experiment or sampling. Thus all we can say with certainty is that 0 will
lie somewhere between the maximum and minimum values of f—a rather useless fact.
However, it is not likely that all the u; will fall in one small subinterval, particularly if N
is large. Thus there is still the possibility of obtaining probabilistic statements about the
accuracy of §y—for example, statements that with a certain high probability, |y — I|
will be smaller than some given number. In fact, it follows from simple considerations
in probability theory that 8y, which is a random variable, has its mean value equal to
the integral I, while its standard deviation is given by

o(On) = |b— a|N~2a(f),

where o(f) is a constant, which can be estimated, depending on f but not N. Further,
if we suppose, as is commonly done, that 0 is close to being normally distributed for
practical values of N, we may say that there are about nineteen chances out of twenty
that

|On — I| < 2|b—alo(f)N~/2 = O(N~/?).

In this sense we say that the error of A goes to zero like N~!/2 as N increases.

Roughly speaking, to get an extra decimal place of accuracy it is necessary to
increase N by a factor of 100. This does not seem impressive, especially in the light of
some of the examples in this chapter. What is not obvious is that “sample-mean” Monte
Carlo can be applied in more than one dimension to just about any function and region as
long as the volume of the region is known and it is possible to conveniently choose points
randomly inside it. The basic result about N ~'/2 reduction of the error applies without
regard to the dimension of the region, and with few assumptions about the smoothness
of f. All that is required is that all integrals which appear actually exist—f need not
even be continuous.

In one dimension, of course, more rapid convergence than N~/ can usually
be obtained. If the integrand is smooth this can be done easily; and if it is not, its
singularities—which occur at isolated points—may be avoided by various devices. So
Monte Carlo methods are almost never used for one dimension. In two or more di-
mensions, singularities occur not only at points but also along curves or surfaces of
complicated shape and in these cases can rarely be removed. Thus for discontinuous
functions of several variables the Monte Carlo method is one of the few good methods.

1/2

Example 5.12 Monte Carlo Evaluation of a One-Dimensional Integral.

Using sample-mean Monte Carlo, we estimate the integral of Example 5.8, Section 9.1 after
applying each of the transformations x = —Int and x = —2Int.

Sec. 5.12 Historical Perspective 179

N Estimate with Estimate with
z=-—Int xr=-2Int
100 0.713998 0.710285
1000 0.710525 0.734007
10000 0.712493 0.705209
100000 0.700767 0.698311
1000000 0.703014 0.702628

Notice that the Monte Carlo method does not prefer either transformation; after 1,000,000
points both estimates are good to about 3—4 digits, which agrees with N ~'/? convergence.
Recall that 7 =0.70260... . The reader may be shocked to consider that one million points
are required for this problem. Indeed this is excessive for a one-dimensional integral. On
the other hand if the integral were six-dimensional we would expect comparable errors. But
in six dimensions, one million points only amounts to an average of ten per dimension.
Many high-dimensional integrals routinely require millions of evaluations. Hl

Two generalizations of Monte Carlo methods are worth noting here. (1) Even the
earliest practitioners realized that it should be possible to reduce the amount of work
by limiting the selection of points to regions where the integrand was changing most
rapidly. This can be done automatically, and in a sense makes the algorithms adaptive.
Unfortunately, it is much more difficult to write programs to do this than to implement
the basic method and simplicity has always been an attractive feature of Monte Carlo;
hence this enhancement is not always used. (2) Since 1970 there has been active work
in using “quasi-random” or number-theoretic methods for multiple integrals. The idea
is that by picking special points which are not random but have certain other good
theoretical properties it is possible to get estimates which converge like N ~! rather than
Monte Carlo’s N~!/2, The integrand must satisfy certain assumptions which are more
restrictive than before, but in practice this does not seem to be an impediment. Readers
who would like to explore these ideas further can consult either of the two references
given earlier.

512 HISTORICAL PERSPECTIVE: ULAM (1909-1984) AND VON
NEUMANN (1903-1957)

John von Neumann and Stanislaw Marcin Ulam, American immigrants from Hungary and
Poland, had profound effects on our activities during World War II. Working together at
the top secret Manhattan Project on the mesas of Los Alamos, New Mexico, they devised
the Monte Carlo method for finding approximate answers to problems in hydrodynamics
which were too complex for exact mathematical treatment or too time consuming for
traditional computation. The original problem was, “how far would neutrons travel
through different shielding materials?” Most of the basic information was known: a

180 Numerical Quadrature Chap. 5

neutron’s average distance of travel in a given substance before colliding with an atomic
nucleus, its chances of being repelled or absorbed by the nucleus, etc. But it wasn’t
possible to derive a precise equation for predicting the result of a long sequence of such
events, even though the individual probability of each was easily calculable. Ulam and
von Neumann suggested that the answer could be obtained by obtaining a large sample of
neutrons and tracing the passage of each through the shielding material. They proposed
to do this, not by actual experiment, but by the construction of artificial life histories.
A neutron’s journey would be broken into discrete steps such as collision, absorption,
collision, etc. Which one would occur on each step could be calculated by use of a
table of random numbers. The life history would be composed of a number of steps, and
the entire sample would comprise millions of such histories. The calculation had to be
done on a computer, and the development of these machines was proceeding in parallel
with the war effort. Today the Monte Carlo method is still an important tool in studying
nuclear reactors and many other phenomena as well.

Individually Ulam and von Neumann, pure mathematicians with traditional Euro-
pean training, made many other contributions to applied problems. Ulam for instance
is credited with proving the inadequacy of the plan for the first hydrogen bomb and
suggesting the idea that eventually worked successfully. The “inventor” of the digital
computer is still hotly debated, but there is less debate as to who was the first to realize
the full potential of the computer. This was von Neumann’s great achievement. In fact,
Herman Goldstine, a colleague, states that “von Neumann’s great status in the world of
the physical and social sciences was sufficient so that when he told people to compute
digitally ... they believed him [and] that this in large measure accounted for the early
acceptance of the digital computer. He caused it all to happen at a rate which was much
accelerated over what it would have been.” His proposals to use computers in weather
forecasting, oil reservoir study and hydrodynamics, years before it was practical to do so,
had a major impact on the funding for institutions engaged in research on these subjects.

“Johnny” has been called the most important and wide ranging mathematician of
the twentieth century. He certainly was the quickest. His ability to absorb and digest
an enormous amount of extremely diverse information was exceptional. In a profession
where quick minds are somewhat commonplace his amazing rapidity was proverbial.
He has been compared in ability to Gauss and there is hardly a single important part of
mathematics of the 1930’s with which he had not at least a passing acquaintance, and the
same is probably true of theoretical physics. One reliable story describes von Neumann
wandering into a colleague’s office while the latter was discussing with a graduate student
a computation which the student had just performed over the span of several months.
Von Neumann listened to the conversation, thought briefly about the problem and without
realizing it had already been computed explained what the results had to be. The student
stepped in to agree with most of the remarks but to point out that some of the figures
were slightly in error. A moment’s thought forced von Neumann, who normally did not
mind showing off brilliance or special ingenuity, to adjust his figures too, but he left the
office astonished that this new “kid” had duplicated his efforts.

Von Neumann, the son of a well-to-do banker, was privately tutored in mathematics
when his teachers realized that the conventional Gymnasium program was a waste of his

Sec. 5.13 Problems 181

time. His early career involved theoretic studies in logic, formal systems, and foundations
of mathematics, prophetically useful for his later interest in computers. In 1928 he
founded a new branch of science: the theory of games. The conceptual center of the
new discipline was the proof, which he first advanced, that for all games of strategy
in a certain class, there existed at least one optimum line of play that would in the
long run guarantee the greatest possible minimization of loss. As presented and codified
by von Newmann, the theory of games found rapid acceptance and use in economics,
warfare, and many branches of the social sciences. He enthusiastically encouraged the
development of game playing programs—in particular chess. An early one written at Los
Alamos had to be simplified to run on existing equipment. It used a smaller board and
had no bishops. Appropriately, it was called “anticlerical.” During the period 1925-1940
he seemed to be advancing at a breathless pace on all fronts of logic and analysis at once,
not to speak of mathematical physics. Many of his papers in operator theory have yet
to be improved upon and his work in spectral theory is still the basis of nonrelativistic
quantum theory. His work was sufficiently impressive that in 1933 he was invited to join
the Institute of Advanced Study at Princeton University, of which he was the youngest
permanent member at that time.

His health began to fail in 1955. This period was one of great trial for von
Neumann, as his famous mental facilities waned with his illness. He died of cancer two
years later.

513 PROBLEMS

P5-1.-The integral defining the error function

erf(z) = % / exp(—tz) dt
0

is fairly easy to evaluate numerically.

(a) Write a program which uses Q1DA to print a table of erf(z) for x = 0.0, 0.1,0.2, ..., 1.9,
2.0. Take EPS = 10~>. As a rule you should never ask for more accurate answers than the
values of the integrand will permit. The latter is accurate to a small factor (5 or 10) times
€mach- Compare your table with published values or with values available from a reliable
subroutine on your computer. The integral is to be computed for different values of the
upper limit. Each call to Q1DA is independent. A more efficient way is to treat the problem
as a differential equation; see Problem P8-1 of Chapter 8.

(b) Repeat the computations of (a) with subroutine QK15. Compare the accuracy of the results
and of the error estimates.

P5-2.—Compute approximations to 7 from the integral

1
= 4 dz.
, 1+2?

182

(a)

(b)

(c)

(d)

(e)
®

Numerical Quadrature Chap. 5

Use the compound trapezoid and compound Simpson rules with 2, 4, 8, 16, 32, 64 and
128 panels. Tabulate the error in each case. How does the error decrease as the number
of panels is doubled? (The program that you write for the compound trapezoid rule should
make use of remark (3) in Section 4.) Depending on the value of €, ., on your computer,
you may find that there is no further improvement by doubling the number of panels. The
error might even get worse. How could this be possible?

Using the method of Section 4 derive the compound midpoint formula. Compare this with
the compound trapezoid formula with respect to (i) openness, (ii) remainder, (iii) work
(iv) existence of remark analagous to (3) in Section 4. Repeat the computations of (a) with
the compound midpoint rule.

Using the same points as in (a), estimate the integral either by Hermite cubic quadrature or
by using PCHQA. How does the error decrease as the number of panels is doubled? Note:
As the points are equally spaced the only derivatives that are needed are d; and d,. Either
compute them directly by differentiating the integrand or approximate them as explained in
Chapter 2.

Use the 2, 4 and 8 point Gauss quadrature formulas to estimate the integral. Divide the
interval of integration into two equal panels and use the 4 point Gauss rule on each. Compare
the results of this compound rule (using 8 points) with the 8 point Gauss estimate.

Use QK15 to estimate the integral and error. How reliable is your error estimate?

Use Q1DA with various values of EPS. This is an easy integral for the program. As long as
EPS is well above €, 1, the number of integrand evaluations should only depend weakly
on EPS.

P5-3.-Repeat Problem P5-2 for the integral

4 1
——=/ Vzinz dr.
9 Jo

P5—4.-If Q1DA were used to evaluate a function which is identically zero on [0, 1] the result would
be zero. Where will the integrand be evaluated? Try to determine this by using Q1DA on the
function

REAL FUNCTION F (X)
REAL X
PRINT *, X

F=0

.0

RETURN

END

Call the numbers printed x1, z2, ..., xx. What would Q1DA estimate for the integral

1
/ (@ —z) (@ —z2) - (& — k)’ dx?
0

Explain your answer. How does Q1DA try to mitigate this problem?

P5-5.—Consider the following quadrature problems.

Sec. 5.13 Problems 183

(a) Use Q1DA with EPS = 10~ on the integral

1) .
/ f(@) dz, f(z) = {exp(z), ifo<z <
0

sin z, ifr<z<l.

with 7 = 0.5 and 7 = 0.3. Explain the differences (if any) in the amount of work required.
If Q1DA did not randomize but made the first subdivision at the midpoint, would either of
these problems be easier?

(b) In (a) with 7 = 0.3 determine the smallest subinterval used by Q1DA. If all of [0, 1] was
subdivided into intervals of this length what would be the total number of evaluations of
f@)?

P5-6.-The 11-point Newton-Cotes quadrature rule on [0, 1] is

1 10
/ f(z) dr ~ Zwlf(i/IO)
0 1=0
10

with the w, determined by requiring that the sum be exact for f(z) =1, z, z%, ..., ='°.
(a) Use SGEFS to find the weights w,. Is the resulting rule a Riemann sum?
(b) Apply the rule in (a) to the integrals in P5-2, P5-3 and P5-5. This will show you that a
negatively weighted quadrature rule can be useful too.

(c) If you have access to a book of tables, such as Abramowitz and Stegun, compare the values
of the weights that you computed to the exact values. What is the largest error in the
weights? Repeat (b) with the exact weights. How different are the estimates from those in
(b)?

P5-7.—Using the data from problem P4-3, compute an estimate of the integral using

(a) the generalized trapezoid rule,

(b) PCHQA. You will need values for the derivatives d;. Obtain them from the output of PCHEZ.
P5-8.—Select twenty non-equally-spaced points on [0, 1] of the form (z,, erf(z;)).

(a) Use PCHEZ to compute the spline interpolant and then use PCHQA to compute its integral
from z; to z,.

(b) If you did not have PCHQA one possible way to integrate the spline produced in (a) would
be to use Q1DA with each call to the Fortran function F (X) resulting in a call to PCHEV.
Write such a program and compare your results with those in (a). If you have access to
timing routines for your computer, use these to time the two approaches. What conclusions
can you draw?
P5-9.-Which of the following problems would require many function evaluations or result in a
failure for Q1DA with EPS = 10™*? Try to answer first without running the program, then perform
the calculation and compare your results. Call QK15 in the same program. How reliable are the
error estimates which it returns?

(a) fol exp(z?) dz
®) [«® dz

(¢) [, sin50z dz
@ [,Inzds

184 Numerical Quadrature Chap. 5

(e) fol z~ % exp(z?) dx

® [@-1°* @ +D" da
P5-10.—Estimate the value of

/ exp(—zx) cos’ z dx
0

(a) Truncate the integral and use Q1DA on the finite part.

(b) Try the transformation x = — Int on this integral, and use Q1DA on the new integral. Repeat
with the transformation = = ¢/(1 — t) and compare your results.

(c) Use the 2, 4 and 8 point Gauss Laguerre quadrature rules from Table 5.4 to estimate this
integral. Compare your results to (a) and (b).

(d) Use the semi-infinite trapezoid rule. Select several values of N and h.

(e) Make the transformation = = exp(t) and use the infinite trapezoid rule. Select several values
of N and h.

P5-11.—Consider the following:
(a) Compute

//exp(:vzyz)dA D={(z,y):0<z<1,0<y<1}
D

using Q1DA and a renamed copy, Q1. Hints: (1) The sequence of calls will be MAIN, Q1,
..., G, Q1DA, Q1DAX, GL15T, F. Thus Q1 cannot call Q1DAX or GL15T. (2) In addition to
altering the names be sure that Q1 does not call F. (3) Test your program first on a function
whose integral you know, for example f(z,y) = 1.

(b) Using the program in (a) compute the integral of the same function for the domain D that
is a quarter circle,

D={@y:0<a<1,0<y<Vi-a}.

(c) Using Monte Carlo integration compute the integrals of f(z,y) =1, and f(z,y) = exp(:czyz)
on a quarter circle. Compare the number of evaluations and the amount of programming
effort with (a). Hint: Use UNI from Chapter 10. In particular, see problem P10-5.

P5-12.—Verify the values given in Example 5.10. Then use Q1DA on this problem. Which
technique requires more work?

5.14 PROLOGUES: QK15, Q1DA AND PCHQA

SUBROUTINE QK15 (F,A,B,RESULT, ABSERR, RESABS, RESASC)
C***BEGIN PROLOGUE QK15
C***DATE WRITTEN 800101 (YYMMDD)
C***REVISION DATE 870530 (YYMMDD)

Sec. 5.14 Prologues: QK15, Q1DA and PCHQA 185

C***CATEGORY NO. H2AlA2
C***KEYWORDS 15-POINT GAUSS-KRONROD RULES
C***AUTHOR PIESSENS, ROBERT, AND DE DONCKER, ELISE,

C APPLIED MATH. AND PROGR. DIV. - K. U. LEUVEN

C***PURPOSE To compute I = Integral of F over (A,B), with error estimate
C and J = integral of ABS(F) over (A,B)

C***DESCRIPTION

From the book "Numerical Methods and Software"
by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

Real version

PARAMETERS ON ENTRY
F - Real
Function subprogram defining the integrand
FUNCTION F (X). The actual name for F needs to be
Declared E X T E RN A L in the calling program.

A - Real: Lower limit of integration

B - Real: Upper limit of integration

PARAMETERS ON RETURN
RESULT - Real: Approximation to the integral I
Result is computed by applying the 15-POINT
KRONROD RULE (RESK) obtained by optimal addition
of abscissae to the 7-POINT GAUSS RULE (RESG) .

ABSERR - Real: Estimate of the modulus of the absolute error,
which should not exceed ABS(I-RESULT)

RESABS - Real: Approximation to the integral J

RESASC - Real: Approximation to the integral of ABS(F-I/(B-A))
over (A,B)

C***REFERENCES PIESSENS R. ET. AL., "QUADPACK: A SUBROUTINE PACKAGE FOR

C AUTOMATIC INTEGRATION" SPRINGER, BERLIN 1983.

C***ROUTINES CALLED RI1MACH

C***END PROLOGUE QK15

OO0 o0000a00000000000000000000000a0n

SUBROUTINE Q1DA(A,B,EPS,R,E,KF, IFLAG)
C***BEGIN PROLOGUE QI1DA
C***DATE WRITTEN 821018 (YYMMDD)
C***REVISION DATE 870525 (YYMMDD)
C***CATEGORY NO. H2AlAl
C***KEYWORDS ADAPTIVE QUADRATURE, AUTOMATIC QUADRATURE

186 Numerical Quadrature Chap. 5

C***AUTHOR KAHANER, DAVID K., SCIENTIFIC COMPUTING DIVISION, NBS.
C***PURPOSE Approximates one dimensional integrals of user defined

C functions, easy to use.

[

C***DESCRIPTION

C Q1DA IS A SUBROUTINE FOR THE AUTOMATIC EVALUATION

OF THE DEFINITE INTEGRAL OF A USER DEFINED FUNCTION
OF ONE VARIABLE.

From the book "Numerical Methods and Software"
by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

ARGUMENTS IN THE CALL SEQUENCE

A

B (INPUT) THE ENDPOINTS OF THE INTEGRATION INTERVAL

EPS (INPUT) THE ACCURACY TO WHICH YOU WANT THE INTEGRAL
COMPUTED. IF YOU WANT 2 DIGITS OF ACCURACY SET
EPS=.01, FOR 3 DIGITS SET EPS=.001, ETC.
EPS MUST BE POSITIVE.

R (OUTPUT) QIDA’S BEST ESTIMATE OF YOUR INTEGRAL
E (OUTPUT) AN ESTIMATE OF ABS (INTEGRAL-R)
KF (OUTPUT) THE COST OF THE INTEGRATION, MEASURED IN

NUMBER OF EVALUATIONS OF YOUR INTEGRAND.
KF WILL ALWAYS BE AT LEAST 30.
IFLAG (OUTPUT) TERMINATION FLAG...POSSIBLE VALUES ARE
0 NORMAL COMPLETION, E SATISFIES
E<EPS AND E<EPS*ABS (R)
1 NORMAL COMPLETION, E SATISFIES
E<EPS, BUT E>EPS*ABS (R)
2 NORMAL COMPLETION, E SATISFIES
E<EPS*ABS (R), BUT E>EPS
3 NORMAL COMPLETION BUT EPS WAS TOO SMALL TO
SATISFY ABSOLUTE OR RELATIVE ERROR REQUEST.

4 ABORTED CALCULATION BECAUSE OF SERIOUS ROUNDING
ERROR. PROBABLY E AND R ARE CONSISTENT.

5 ABORTED CALCULATION BECAUSE OF INSUFFICIENT STORAGE.
R AND E ARE CONSISTENT.

6 ABORTED CALCULATION BECAUSE OF SERIOUS DIFFICULTIES
MEETING YOUR ERROR REQUEST.

7 ABORTED CALCULATION BECAUSE EPS WAS SET <= 0.0

NOTE...IF IFLAG=3, 4, 5 OR 6 CONSIDER USING Ql1DAX INSTEAD.

WHERE IS Y OUR INTEGRAND?

OO0 00000000000000000000000000000000000000a0

Sec. 5.14

QOO o000 a00000000a00000000a000000000000000000000000000000

YO
TH

TYP

FOR
0.0 1

Prologues: QK15, Q1DA and PCHQA 187

U MUST WRITE A FORTRAN FUNCTION, CALLED F, TO EVALUATE
E INTEGRAND. USUALLY THIS LOOKS LIKE...
FUNCTION F (X)
F=(EVALUATE THE INTEGRAND AT THE POINT X)
RETURN
END

ICAL PROBLEM SETUP

A=0.0
B=1.0 (SET INTERVAL ENDPOINTS TO [0,1])
EPS=0.001 (SET ACCURACY REQUEST FOR 3 DIGITS)
CALL Q1DA(A,B,EPS,R,E,KF, IFLAG)
END
FUNCTION F (X)
F=SIN(2.*X)-SQRT (X) (FOR EXAMPLE)
RETURN
END
THIS SAMPLE PROBLEM, THE OUTPUT IS
.0 .001 .041406750 .69077E-07 30 0

REMARK I.

REMA

A SMALL AMOUNT OF RANDOMIZATION IS BUILT INTO THIS PROGRAM.
CALLING Q1DA A FEW TIMES IN SUCCESSION WILL GIVE DIFFERENT
BUT HOPEFULLY CONSISTENT RESULTS.

R K II.

THIS ROUTINE IS DESIGNED FOR INTEGRATION OVER A FINITE
INTERVAL. THUS THE INPUT ARGUMENTS A AND B MUST BE
VALID REAL NUMBERS ON YOUR COMPUTER. IF YOU WANT TO DO
AN INTEGRAL OVER AN INFINITE INTERVAL SET A OR B OR BOTH
LARGE ENOUGH SO THAT THE INTERVAL [A,B] CONTAINS MOST OF
THE INTEGRAND. CARE IS NECESSARY, HOWEVER. FOR EXAMPLE,
TO INTEGRATE EXP (-X*X) ON THE ENTIRE REAL LINE ONE COULD
TAKE A=-20., B=20. OR SIMILAR VALUES TO GET GOOD RESULTS.
IF YOU TOOK A=-1.E10 AND B=+1.E10 TWO BAD THINGS WOULD
OCCUR. FIRST, YOU WILL CERTAINLY GET AN ERROR MESSAGE FROM
THE EXP ROUTINE, AS ITS ARGUMENT IS TOO SMALL. OTHER
THINGS COULD HAPPEN TOO, FOR EXAMPLE AN UNDERFLOW.
SECOND, EVEN IF THE ARITHMETIC WORKED PROPERLY Q1DA WILL
SURELY GIVE AN INCORRECT ANSWER, BECAUSE ITS FIRST TRY
AT SAMPLING THE INTEGRAND IS BASED ON YOUR SCALING AND
IT IS VERY UNLIKELY TO SELECT EVALUATION POINTS IN THE
INFINITESMALLY SMALL INTERVAL [-20,20] WHERE ALL THE
INTEGRAND IS CONCENTRATED, WHEN A, B ARE SO LARGE.

188 Numerical Quadrature Chap. 5

M ORE FLEXIBILTITY

Q1DA IS AN EASY TO USE DRIVER FOR ANOTHER PROGRAM, QI1DAX.
Q1DAX PROVIDES SEVERAL OPTIONS WHICH ARE NOT AVAILABLE
WITH QIDA.

Qoo o000

C***REFERENCES (NONE)
C***ROUTINES CALLED QIlDAX
C***END PROLOGUE QI1DA

REAL FUNCTION PCHQA(N,X,F,D,A,B,IERR)
C***BEGIN PROLOGUE PCHQA

C***DATE WRITTEN 870829 (YYMMDD)
C***REVISION DATE 870829 (YYMMDD)

C***CATEGORY NO. E3,H2A2
C***KEYWORDS EASY TO USE CUBIC HERMITE OR SPLINE INTEGRATION

o NUMERICAL INTEGRATION, QUADRATURE
C***AUTHOR KAHANER, D.K., (NBS)

C SCIENTIFIC COMPUTING DIVISION

C NATIONAL BUREAU OF STANDARDS

C ROOM Al61, TECHNOLOGY BUILDING

C GAITHERSBURG, MARYLAND 20899

C (301) 975-3808

C***PURPOSE Evaluates the definite integral of a piecewise cubic Hermite

C or spline function over an arbitrary interval, easy to use.
C***DESCRIPTION

C

C PCHQA: Piecewise Cubic Hermite or Spline Integrator,

C Arbitrary limits, Easy to Use.

C

o} From the book "Numerical Methods and Software"

C by D. Kahaner, C. Moler, S. Nash

C Prentice Hall 1988

c

C Evaluates the definite integral of the cubic Hermite or spline

C function defined by N, X, F, D over the interval [A, B]. This
C is an easy to use driver for the routine PCHIA by F.N. Fritsch

C described in reference (2) below. That routine also has other

C capabilities.

C ___________________________________
C

C Calling sequence:

C

C VALUE = PCHQA (N, X, F, D, A, B, IERR)

C

C INTEGER N, IERR

C REAL X(N), F(N), D(N), A, B

Sec. 5.14 Prologues: QK15, Q1DA and PCHQA 189

Parameters:
VALUE - (output) VALUE of the requested integral.
N - (input) number of data points. (Error return if N.LT.2 .)

X - (input) real array of independent variable values. The
elements of X must be strictly increasing:
X(I-1) .LT. X(I), I = 2(1)N.
(Error return if not.)

F - (input) real array of function values. F(I) is
the value corresponding to X(I).

D - (input) real array of derivative values. D(I) is
the value corresponding to X(I).

A,B - (input) the limits of integration.
NOTE: There is no requirement that [A,B] be contained in
[X(1) ,X(N)]. However, the resulting integral value
will be highly suspect, if not.

IERR - (output) error flag.
Normal return:
IERR = 0 (no errors).
Warning errors:
IERR = 1 if A 1is outside the interval [X(1),X(N)].
IERR = 2 if B 1is outside the interval [X(1l),X(N)].
IERR = 3 1if both of the above are true. (Note that this
means that either [A,B] contains data interval
or the intervals do not intersect at all.)
"Recoverable" errors:
IERR = -1 if N.LT.2
IERR = -3 1if the X-array is not strictly increasing.
(Value has not been computed in any of these cases.)
NOTE: The above errors are checked in the order listed,
and following arguments have **NOT** been validated.

OO0 00000000000000000000000000000000000A0

C***REFERENCES 1. F.N.FRITSCH AND R.E.CARLSON, ’'MONOTONE PIECEWISE
CUBIC INTERPOLATION,’ SIAM J.NUMER.ANAL. 17, 2 (APRIL
1980), 238-246.

2. F.N.FRITSCH, 'PIECEWISE CUBIC HERMITE INTERPOLATION
PACKAGE, FINAL SPECIFICATIONS’, LAWRENCE LIVERMORE
NATIONAL LABORATORY, COMPUTER DOCUMENTATION UCID-30194,
AUGUST 1982.

C***ROUTINES CALLED PCHIA

C***END PROLOGUE PCHQA

O oo a0aa0n

6.1

Linear Least-Squares Data
Fitting

INTRODUCTION

Consider the following experiment: Water is being pumped through a container to which
an amount of dye has been added. Every few seconds the concentration of dye is
measured in the water leaving the container. It is expected that the concentration of dye
will decrease linearly over time. The results are graphed in Figure 6.1.

Notice that the data points do not lie on a straight line. This is not so unexpected.
The measuring equipment may not be perfectly accurate, it may not be possible to
interpret the measurements exactly, and the mixing may not behave exactly as predicted.
To determine the rate at which the concentration decreases, the experimenter would have
to approximate the data by a straight line, a line that “best” approximated the data in
some sense. One such approximation is drawn.

Such experiences are common. One reason for wanting to know the mixing rate
is to be able to predict how other experiments will behave. In other circumstances, we
might want to model the inflation rate in the economy, the spread of a disease, or the
population of a country. When the data is “noisy,” that is, full of random errors, then
approximating the data by a simple function allows us to study the trends in the data;
this is called smoothing.

There are two qualitatively different reasons for wanting to find an approximating
line to the data.

(1) The mixing rate, « is needed, for example to determine if the dye injection equip-
ment is being overloaded.

190

Sec. 6.1 Introduction 191

Figure 6.1 Mixing Experiment

(2) The approximating line is needed to predict the concentration of dye at times for
which there are no measurements. In this case we are not particularly interested in
the values of « and 3, only in the values of the fitting function.

In other times, this work was performed by fortune tellers and magicians who would
consult crystal balls and Tarot cards for wisdom. The ancients would ask questions of
the Oracle at Delphi, as described in Shakespeare’s play The Winter’s Tale. Some of the
romance has been taken away from data fitting, but the improved scientific foundations
offer some compensation.

Before we go further, let us make the data fitting problem more explicit. Suppose
that we are given data (¢;,b;), © = 1,...,m, representing some underlying function
b(t) for which b; = b(t;). In the experiment above, the t;’s represent the times where
measurements were taken and the b;’s represent the dye concentration. We assume that
some model for the data is given. In words, we have the relationship

observation = model 4 error.
More specifically, we assume that the model has the form

bi = 2191(8:) + T202(t:) + - - - + TR dn(ty),

192 Linear Least-Squares Data Fitting Chap. 6

where the functions ¢;(t) are the given model functions. In our example where the
model is a straight line, we assume that

b, = x + xat;

so that ¢1(t) = 1 and ¢»(f) = t. The coefficients x; are called the parameters of the
model, and it is these numbers that are to be determined. If the model were perfect
and there were no measurement errors, then we could replace ~ with =; this will rarely
happen.

The model above is called a linear model because it is a linear combination of the
model functions ¢;(t). This does not mean that the model functions are linear. Even if our
data were to be approximated by a quadratic polynomial so that b(t) = x; + z2t + z3t2,
then the model would still be linear even though one of the model functions ¢5(t) = 2
is a nonlinear function of ¢t. The crucial notion is that the model is a linear function of
the parameters z. “Nonlinear” models are also useful, and they are discussed in Chapter
9. A common example is an exponential model such as

b(t) = ze™.

Here the model is a nonlinear function of the parameter x,.

Most of the models discussed so far have polynomial model functions, where the
data are approximated by a polynomial in the variable ¢t. Any functions can be used as
model functions. In the case of cubic-Hermite interpolation, the model functions would
be the piecewise cubics c;(t) and ¢;(t) described in Section 10 of Chapter 4. Models can
also involve more than one independent variable. This can occur, for example, in the
analysis of census data where the independent variables might include a person’s age,
income, and family size. In this case, the model functions would be ¢;(¢;) = age(z),
?2(t;) = income(z), and ¢3(t;) = family-size(s).

We can express our data-fitting problem more concisely using matrix/vector nota-
tion. Define the m x n matrix A by

Aij = ¢;(to),

and let b and x be the vectors of observations and parameters, respectively. Then the
above conditions can be written as

b~ Axr, or b— Ar=0;
b — Az is called the vector of residuals.
Example 6.1 Forming the Data Matrix.

Suppose that the model is a quadratic polynomial b(t) ~ x| + 2t + x3t> and that data are
available for four values of ¢: t; = 1, ¢, = 2, t3 = 3, t4 = 4. The modelling functions are
&1ty =1, da(t) = ¢, and $a(t) = ¢2. Thus the coefficient matrix is

t
tr
ts 8
ta

A=

o f—
H W N -
[« NN =R

1
1
1
1

—_—

Sec. 6.1 Introduction 193

The parameters will be chosen by making the residuals b— Az as small as possible.
A common approach, and the one taken here, is to solve

min) "[(b — Az); 1.

j=1
For the model in Example 6.1 this would take the form

4
min Z[b]- — (T + x84 +x3t§)]2.
j=1

xy,22,T3

Because we are minimizing the sum of squares, this is called least squares data fitting.
Using vector norms (see Section 2.1 of Chapter 3), this problem is equivalent to solving

min ||b — Az||; = (b — Az)(b — Az)

where the Euclidean 2-norm is used.

If there are an equal number of data points and model functions, the matrix A
is square. If A is also nonsingular, the solution to the least squares problem is the
interpolant, i.e., the residual is zero. Thus we see that when posed as a matrix problem,
least-squares data fitting includes as a special case the problem of solving linear equations
Az = b, if A is square and nonsingular. The methods and software described in this
chapter can be used to solve linear equations, but they use about twice as many arithmetic
operations as Gaussian elimination. However, the least-squares techniques will produce
somewhat more accurate solutions in rounded arithmetic. In addition they remove the
need for pivoting, making the algorithms better suited for many parallel and vector
computers. On a parallel computer with many processors the pivoting steps can require
more time than the arithmetic and hence slow down the algorithm.

The least-squares problem can be interpreted graphically as minimizing the vertical
distance from the data points to the model. Underlying this idea is the assumption that
all the errors in the approximation correspond to errors in the observations b;. If there are
also errors in the independent variables ¢; then it may be more appropriate to minimize
the Euclidean distance from the data to the model. This is illustrated in Figure 6.2. This
can be especially useful if the graph of the model is steep, such as near a singularity
in a nonlinear model. This is illustrated in the figure. In this case the steepness of the
model will make the least-squares error large even though the data point is close to the
graph, and the fit will be visually satisfactory. Minimizing the Euclidean distance from
the model is referred to as total least squares or orthogonal distance regression. It is
beyond the scope of this book, but details can be found in Golub and Van Loan (1983).

One final point concerns notation. In this chapter we discuss the least-squares
problem in the form

min [|Az — b,

194 Linear Least-Squares Data Fitting Chap. 6

Vertical Distance Orthogonal Distance

Figure 6.2 Vertical-distance and Orthogonal-distance Models
whereas statisticians use the notation
min X ~ -

The two problems are exactly the same, only the names have been changed: A — X,
z — (3, b — y. Even though this is a simple cosmetic change, it can cause confusion
when trying to learn about data fitting. In this book, the main concern is the computation
of the parameters in the model and not the statistical properties of the solution, so we
use the notation || Az — b||, common among numerical analysts. This notation also helps
to emphasize the relation between data fitting and solving linear equations Az = b.

6.1.1 Weighted Least-Squares Data Fitting

In many applications, the data points will not b¢ equally important. This is often because
some data points are known to be more accurate than others. For example, in an astro-
nomical model of the Milky Way galaxy, it would be easier to get accurate measurements
from our own sun than from stars many light years away.

This information can be incorporated in the least-squares problem by weighting
the data points. Instead of solving

min) "[(b — Ax);]®

J=1

Sec. 6.1 Introduction 195

for the parameters z, we would instead solve

min Y "[w;(b— Az); T’
j=1

where w; is a weight reflecting the importance of the data point. The more important
the data point, the larger the weight. If the error in the j-th data point is approximately
e;, then choose w; = 1/e;. Thus the smaller the error, the larger the weight. Sometimes
the data are all accurate to the same number of digits, i.e., have the same relative error.
In that case a good choice of w; is w; = 1/b;, as long as b; is nonzero. Weighting can
improve the statistical properties of the solution (see Section 2 below).

Any software for solving an unweighted least squares problem can be used to solve
a weighted problem by scaling the observation vector b and the coefficient matrix A. We
multiply the j-th row of A as well as the j-th observation b; by w;, and then solve

mzin [[bw — Aw"”'”; :
The coefficients in the new problem are defined by
(bw)j =w;ib;, (Aw)jk =w;Ajk.
Of course, the parameters obtained from the model will change as the weights change.

Example 6.2 Weighted Least-Squares Data Fitting

Consider the model from Example 6.1, with observations by = 2, b, =7, b3 =9, by = 6.
Suppose that the errors in the data are estimated tobe e; = 1/4, e2=1,e3=1/2,e4=1/3.
If we use the weights w; = 1/e; then the weighted least-squares problem

min ||by, — Aww||§
xr

has coefficients

4 4 4 8
1 2 4 7
Av=|, ¢ 1g| @ bu=| g
3 12 48 18

The weights are w1 =4, wo =1, w3 =2, ws=3. B

*6.1.2 Data Fitting with Other Norms

Least-squares data fitting is based on compromise: it is not possible for the model to
pass through all the data points, and so the 2-norm is used as a mediator to choose the
parameters. Before least-squares techniques were developed, different rules were used to
determine the fit. Many of these rules correspond to using a different norm as a mediator.

196 Linear Least-Squares Data Fitting Chap. 6
Some common choices of norms are

min Z |(b— Ax);j|, (the 1-norm)
=1

and

minmax |(b — Az);]|. (the co-norm)
 j

The optimal parameters for these norms will be different than those for the 2-norm.
Computing with these norms is also more difficult (the solutions can be obtained using
linear programming). They do have useful properties, however. For example, the 1-
norm is less sensitive to the presence of “outliers” (spurious data points). As a result,
they continue to be used for data fitting in certain applications. The different norms are
illustrated in a simple case in Example 6.3.

Example 6.3 Estimation with Different Norms.
Suppose that we are given observations b; and we want to approximate them by a constant
z, i.e., b; = z + error;. The estimators in the three cases are
1-norm: median of the b;’s
2-norm: average of the b;’s
oo-norm: 3 (min; b; + max; b;)
Consider the data set {b; } ={1,2,5,9,12}. The three estimators are
1-norm: 5 (the middle number in the set)
2-norm: 5.8=(14+2+5+9+12)/5
oo-norm: 6.5 = 1(1+12)

Suppose that a mistake had been made collecting the data, so that the fifth number was
thought to be 112 and not 12. Then the estimators are

1-norm: 5 (the middle number in the set is still the same)
2-norm: 258 =(1+2+54+9+112)/5
oo-norm: 56.5 = (1 +112)
Notice that the 1-norm estimate is unaffected by the error. H

The least-squares (2-norm) approach is by far the most commonly used technique
for data fitting. It is the simplest computationally. It also has important statistical
interpretations (in many cases it produces the maximum-likelihood estimate of the pa-
rameters). This is described in more detail in the book by Draper and Smith (1981). For
these reasons it is the approach discussed here.

6.2 EXPLORING DATA

Analyzing data consists of two stages: determining the model and computing the param-
eters. In this book we will be mainly concerned with the second stage, and assume that

Sec. 6.2 Exploring Data 197

the model is available. This is often reasonable. For the mixing experiment above, the
behavior of the dye concentration could be predicted theoretically and only the mixing
rate would need to be determined experimentally.

However in many instances, particularly in the social sciences, the data are used to
help determine the model. For example, a sociologist might collect data from the residents
of a city, such as income, education level, age, sex, weight, race, and occupation. If the
sociologist were trying to study the incomes of the residents, the following model might
be used

income; ~ x;education; + zage; + z3sex; + xsweight, + xsrace; + xcoccupation,.

All the data have been used to set up the model. However, it is not clear that a person’s
weight will have anything to do with their income, and the presence of this term in the
model could affect the values of the parameters x;, and hence distort the conclusions
drawn from the data. The sociologist would like to include in the model only those terms
that are significant, based on the data.

When exploring data, the questions that arise include: (1) Does the model ade-
quately explain the data? In other words, should additional terms be included in the
model? (2) Are any of the model terms redundant, and hence can be ignored? (3) How
accurate are the parameters? (4) How accurate are predictions made from the model?

Answers to these questions are based on statistical tests, some of which are dis-
cussed below. However, they rely on an important assumption about the data: that
the errors in the model are randomly distributed. More specifically, the model errors
should be independent and normally distributed. If this assumption is not satisfied, the
conclusions drawn from the data may be unreliable.

Exploring data can be a challenging and time-consuming project, and may some-
times require the assistance of an experienced statistician. However, many problems can
be detected by examining a plot of the residuals. Such a picture is given in Figure 6.3
for the mixing example above.

Essentially, there should be no patterns visible in the residual plot. The residuals
should have scattered values, and there should not be clumps of residuals. The magnitude
of the residuals should not change within the plot. Loosely speaking, they should look
“random.” Some examples of suspicious residual plots are given in Figure 6.4.

Further information can be obtained by scaling the residuals by their standard
deviation s, a measure of the spread in their values. The standard deviation of the
residuals is defined by the formula

_ llb— Az,
vm—n ’

where z* is the solution of the least-squares problem, and the scaled residuals are then
b— Azx™)/s.

Approximately 95% of the scaled residuals should lie in the interval [—2,2]. If a value
is outside this range, that particular data point should be examined more carefully since

198

Linear Least-Squares Data Fitting

Chap. 6

Increasing Variance

Qutlier

Figure 6.4 Suspicious Residual Plots

Nonlinearity

it may indicate an error in the data or an inadequacy in the model. Points with large
residuals can exert a strong influence on the values of the parameters and so should be

Sec. 6.2 Exploring Data 199

treated with care. Be aware, though, that influential points need not have large residuals.
For the mixing example, s = .993 and so the residual plot is virtually the same as the
scaled residual plot.

If the residuals are not satisfactory, there may be problems with the data or the
model or both. There are many ways to correct these problems. For a thorough discus-
sion, see the books by Chatterjee and Price (1977), and by Belsley, Kuh, and Welsch
(1981).

Statistical software packages will often provide plots of the residuals, and will
perform auxiliary calculations to help determine if the least-squares model is appropriate
for the data. Some of these calculations are discussed below. Many of these calculations
depend on the assumptions about the residuals mentioned above, and the results may not
be accurate in other circumstances.

1. Standard deviation of b—a measure of the variability in the observations b. The
larger the value of the standard deviation, the greater the spread in the values of b.
If the observations were normally distributed, then about 95% of the observations
would lie within two standard deviations of the average value.

2. Standard errors of r—estimates, the same as the standard deviation, of the errors
in the parameters x. The larger the value, the larger the error in the parameter is
likely to be.

3. Confidence intervals—probabilistic bounds on the errors in the parameters. Confi-
dence intervals are determined from the standard errors in the parameters together
with a desired probability that the bounds are correct. Under the assumptions men-
tioned above, the true value of the parameter will lie within the interval with, say,
90% or 95% probability.

4. R?>—indicates how much of the variation in the data is explained by the model.
R? is in the interval [0, 1]. If R? is near 1, then the model appears to be adequate.
A smaller value of R? may indicate that there are terms missing in the model. This
calculation is only meaningful if the model contains a constant term.

5. Normal probability plot of residuals—a graph of the residuals againsi the normal
probability distribution. This helps to indicate if the residuals have the appropriate
distribution for least-squares data fitting. Ideally this graph would be the straight
line y = z. Actual data will not produce this straight line, but should not be too
far from it.

6. Durbin-Watson statistic—can indicate if there is degeneracy in the data (see Section
7). This number is in the range [0,4]. If d = 2 then there is no evidence of
degeneracy. The further d is from 2, the firmer the evidence of degeneracy.

7. Variance-covariance matrix Y —measures the variability and interdependence of
the parameters z. The diagonal entry Y;; is the variance of the i-th parameter z;;
the variance is defined as the square of the standard deviation. The off-diagonal
entry Y;; is the covariance of parameters x; and x;. If the two parameters are
completely independent, their covariance will be zero. If the two are related (for
example, if one increases whenever the other decreases) it will be non-zero. Ide-

200 Linear Least-Squares Data Fitting Chap. 6

ally the parameters will be independent, and the off-diagonal entries will be small.
Computing the variance-covariance matrix is moderately expensive, since it in-
volves the inverse of (ATA) where A is the coefficient matrix in the data-fitting
problem.

These calculations are applied to the mixing experiment in Example 6.4 below.

Example 6.4 Statistical Analysis of Mixing Experiment.

The data for the mixing experiment are given in the table below.

TABLE 6.1 MIXING

EXPERIMENT

t b
1.0 4.0225
20 6.3095
3.0 5.3522
4.0 4.3553
5.0 3.7861
6.0 2.2947
7.0 2.9492
8.0 2.1732
9.0 1.4921

10.0 3.3424

11.0 1.2596

12.0 2.4732

We use the linear model described in Section 1, with model functions ¢;(¢) = 1 and ¢2(¢) = t.
The coefficient matrix A has entries A;; = ¢;(t;) and so

1 1.0
1 20
1 3.0
1 40
1 5.0
1 6.0
1 7.0
1 8.0
1 9.0
1 10.0
1 11.0
1 12.0

Sec. 6.3 The Normal Equations 201

With this model, we obtain the following values for the statistical parameters
discussed above.
standard deviation of b= 1.527,
standard deviation of b — Az* = 0.993,
parameter z; = 5.478,
parameter x; = —0.332,

standard error of x; 0.611,

standard error of > = 0.083,
95% confidence interval for x; =[4.116, 6.840],
95% confidence interval for z; = [—-0.517, —0.147],
R*= 0.616,

Durbin-Watson statistic = 2.090,

0.3735 —0.0448)
—0.0448 0.0069 / -

variance-covariance matrix = (

These results are quite satisfactory. The covariance of the two parameters (—0.0448) is
small as desired. The Durbin-Watson statistic is almost equal to the ideal value 2. The
standard errors in the parameters are not too large relative to their estimated values. The R’
statistic indicates that the straight-line model explains about two-thirds of the variability in
the data. We can conclude that the linear least-squares model is appropriate in this case.

6.3 THE NORMAL EQUATIONS

There are many different algorithms for computing a set of coefficients which give a
minimum sum of squares. One possibility is to use calculus. Writing the problem in
terms of vectors

r? = ||b— Az|? = (b — Az)T(b — Az)
=0T — bTAz — 2TATh + 2TAT Az
=bTb — 2b6TAz + 2TAT Az

Our goal is to minimize this function of z. For this to have a minimum at the solution
the first derivatives with respect to x will be zero. The derivatives of this function are

—2A%b + 24T Az,
and so the solution must satisfy the system of linear equations

(ATA)z = (ATh).

202 Linear Least-Squares Data Fitting Chap. 6

These equations are called the normal equations.!
Example 6.5 Use of the Normal Equations.

As an example, consider fitting a straight line to the data (1, 1), (2, 1.5), (3, .75), and (4, 1.25).
The model is b; ~ x; + z2t; with model functions ¢1(t) = 1 and ¢2(t) = t. Thus

11 1.00
12 po | 150
1 3| 0.75
1 4 1.25

Forming the normal equations gives

T, _(4 10 o\ _ 7, _ [450
AA‘”‘(lo 30) (zz)‘Ab‘(u.zs)'

The solution is = = (1.125,0)7 so that the “best” line through the data has formula b(¢) =
1.125.

The normal equations are a set of linear equations, and so they can be solved
using Gaussian elimination as long as the coefficient matrix ATA is invertible. It is
possible to show that the solutions to the normal equations are exactly the solutions
to the least-squares problem. In principle, the normal equations could be solved using
SGEFS from Chapter 3. But the coefficient matrix ATA is symmetric, and the time and
storage required by SGEFS can be cut in half. Moreover, the matrix can be shown to
be positive definite, and so no pivoting is needed. Consequently, by using a variant
of Gaussian elimination intended for positive-definite, symmetric matrices, the normal
equations can be solved with less than half the effort required by SGEFS.

However, there is a major disadvantage to using the normal equations. It turns
out that the matrix ATA often has a high condition number, so that no matter how the
normal equations are actually solved, errors in the data and roundoff errors introduced
during the solution are excessively magnified in the computed coefficients. As a rule of
thumb, the condition number of ATA is the square of the condition number of A.

As an illustration, suppose that €. = 10~ and that cond(A) = 1000, not
a particularly large value. Then the error in the solution from Gaussian elimination
applied to Az = b would be about 1000 x 106 = 1073, so that about three digits would
be correct. On the other hand, if we try to solve ATAz = AT the error would be about
1000? x 1076 = 1, so that the solution might have no accurate digits.

In the extreme situation where the basis functions ¢;(t) are linearly dependent, it
can be shown that ATA is singular, and the condition number can be regarded as infinite.
Methods which avoid the high condition number inherent in the normal equations are also

L If this is unfamiliar, it can be derived as follows, without matrix/vector notation. The least-squares func-
tion is E::l [b; —le Aj;jx 1%, The first derivative of this function with respect to z, is 2 ZZI (—A;p)b;—

Z;-;l Azl = =2 " (AD)kib; +2 Z:‘ZI(AT)ki[E;;l Agjzil = =23 " (ADgibi +2 " (AT
(Azx);. These two terms are the k-th components of —2ATb and 2AT Az, respectively.

Sec. 6.4 Orthogonal Factorizations 203

methods which can better detect linear dependence among the basis functions. Gaussian
elimination and its variants are not well suited to detecting such linear dependence. The
condition estimation imbedded in SGEF'S is some help, but it can only warn of trouble—it
cannot suggest a cure.

The normal equations are not the recommended approach for general least squares
problems. The most reliable methods are based on matrix factorizations using “orthog-
onal” matrices. These are somewhat more expensive, but in return they produce more
accurate solutions. In addition, they enable the solution of singular systems of equa-
tions and underdetermined systems of equations and have applications to the solution of
constrained optimization problems. These techniques are discussed in the next section.

Nevertheless, there are situations where the normal equations offer an advantage.
It is tempting to use the normal equations when there are many more data points than
parameters; for example, if there 10,000 data points and only 2 parameters, then ATA
is only 2 x 2 while A is 10,000 x 2. Even though the routine in this chapter requires
that A be stored, the approach based on orthogonal factorizations can be made as storage
efficient as the normal equations.

A decision about which method to use may be difficult to make in advance. The
correct choice may depend on such factors as the condition of the matrix, the size of the
residuals at the solution, and the form of the data. For use in a general purpose software
library, software based on orthogonal factorizations is considered to be the best choice.

64 ORTHOGONAL FACTORIZATIONS

Our goal is to reduce general least-squares problems to simpler ones, where the solution
can be easily computed. Since linear systems of equations are special cases of linear
least-squares problems, it is not surprising that “simpler” has much the same meaning
for both problems.

Example 6.6 Triangular Least-Squares Problem.

Consider the following problem with 3 parameters and 5 observations:

minimize || Az — b||3

where
3 4 1 14
0 2 2 10
A=]10 0 7], b=| 21
0 0O 6
0 0 O 2

Because the bottom part of the matrix A is zero, this problem splits into
2

(022)(=)-(2)] -1

qu—MB=|
2

2
L= | Rz — byll; + [I-bol3

204 Linear Least-Squares Data Fitting Chap. 6

34 1 14]
R=[0 2 2|, by=[10], b(2)=(2).
00 7 21

The second term ||be)||, is independent of x and so cannot be reduced. The first term can
be made zero by by back-substitution on the 3 x 3 system Rx = b, giving

with

x3=21/7=3,
22 =(10 — 2z3)/2=4/2 =2,
X =(14 —4:1,‘2 bl 1.’E3)/3 =3/3 = 1.

Thus z* = (1,2,3)7 is the solution of the least-squares problem. H

If the least-squares problem has a “triangular” coefficient matrix, i.e., a matrix with
zeroes below the main diagonal as in the example above, then it can be solved via back-
substitution. The algorithm is the same as for linear equations. For an m x n system,
the first n components of the residual will be zero and the remaining m — n components
cannot be controlled by the parameters.

Gaussian elimination can be applied to a rectangular matrix A to reduce it to upper
triangular form. However this will not help in solving the least-squares problem since
the solution of the reduced problem will not be the same as the solution of the original
problem. This is illustrated in Example 6.7.

Example 6.7 Gaussian Elimination for Rectangular Systems.

1))

The solution of this problem (obtained via the techniques described below) is * = (1.6, — 2T
and ||Az* — bl|, ~ .63. We can apply Gaussian elimination to this system: subtract 2 times
the first row from the second, and 3 times the first row from the third. The reduced system

(55

with solution Z = (1,1)” and ||AZ — b||, = 2. This is much larger than the optimal value of
.63, and the parameters are far from the correct values. The difficulty arises because elimi-
nation techniques do not preserve the value of the 2-norm; they do not produce equivalent
least-squares problems. Hl

Consider the 3 x 2 problem
2

minimize

2

2

minimize

2

Another type of transformation, called an orthogonal transformation, can be used
here. An orthogonal transformation is an n x m matrix P satisfying PTP = I, where

Sec. 6.4 Orthogonal Factorizations 205

I is the n x n identity matrix. A simple example of an orthogonal transformation is
the identity matrix since 171 = I x I = I. The matrix P need not be square; for
example P = 1(1,1,1,1)7 is orthogonal since PTP = 1(12+ 12 + 12+ 12) = 1. Another
orthogonal transformation is

(3

which is also a symmetric matrix. P is an example of a special kind of orthogonal trans-

formation called a Householder transformation. These are described in the following

section; they are the main tools that we will use to solve least squares problems.
Orthogonal transformations are of value because they preserve the 2-norm:

Pz, = V(P2)T(Pz) = VaTPTPz = VaTlz = VaTz = ||z, -
Since
min || Az — bll, = || P(Az — b)[|, = [(PA)z — (P, ,

our approach to solving a least squares problem will be to find a sequence of orthogonal
transformations P that reduces A to triangular form, A — R, where R is an upper
triangular matrix. Each member of the sequence will be a Householder transformation.
The reduction of A to upper-triangular form can be interpreted as a matrix factorization:
we will factor A = QR as the product of an orthogonal and an upper-triangular matrix.
This is often referred to as a QR factorization.

The most important property of this approach is accuracy—the solutions obtained
via QR factorization will usually be much more accurate than those from the normal equa-
tions. Surprisingly the QR factorization is almost as efficient as the normal equations—if
A is an m x n matrix the QR method requires n?(m — n/3) floating-point operations;

1

to form and solve the normal equations takes fnz(m+n/3) operations. Hence the

improved accuracy of the QR method does not carry a high price.
*6.4.1 Householder Transformations

A Householder transformation P is an m x m matrix of the following form:

T

)
P=1]-2——
vTy

where v is a non-zero m x 1 column vector. See Example 6.8.

206 Linear Least-Squares Data Fitting Chap. 6

Example 6.8 Householder Transformation.

If we construct a Householder transformation using v = (1, 2)” then

P=((1) (1))_2X1~1j—2-2(;)(1 2)
(o 1)-5(3)
=(3/5 —4/5) =

—4/5 3/5)°

It is easily checked that any matrix of this type is symmetric. In addition, any P
of this form is automatically orthogonal:

PTP=pP.P
voT voT
= (1- 2——) (I 2—)
(vTy vTy
B I_4va wT wT
B Ty vy vTw
—I— 4va+ vwTv)wT
- vTy (vTv)?
wT vT
=14
vTv + vTy
=1.

For the 2 x 2 matrix in Example 6.8 a simple calculation shows that indeed P x P = 1.

Householder transformations are important because they make it easy to reduce a
matrix to upper-triangular form. If @ = (a1, ...,a,,)7 is any vector then it is possible to
find a vector v so that the Householder transformation that is constructed from v zeroes
out all but one component of a:

ai Q

az 0
P i =

am 0

Since orthogonal transformations preserve norms, we must have that o = =+ |al|,. We
will describe how to choose v below.
To show how we reduce A to triangular form, suppose that A is a 5 x 3 matrix

X

X X X X
X X X X X
X X X X X

Sec. 6.4 Orthogonal Factorizations 207

where x represents some arbitrary number. If we let a be the first column of A and
choose P as above, then

a X X
0 x x
PA=]10 x X
0 x x
0 x x

The elements marked x have been modified by P.
At the second step choose a as the bottom four elements of the second column of
P A and construct a corresponding Householder transformation P. Then

a X X a X X

1 0 0 x x 0 a x
P1PA=(O 13) 0 x x|=]10 0 x
0 x X 0 0 x

0 x x 0 0 x

To complete the reduction, at the third step choose a as the bottom three elements of the
last column of the transformed matrix and construct a Householder transformation P:

a X X « X X

1 0 O 0 a x 0 a x
P2P1PA=(O 1 0) 0 0 x|[=]0 0 &
00 P 0 0 x 0 0 0

0 0 x 0 0 O

Since P and P are orthogonal, so are P, and P, as well as AP, P. Thus A has been
reduced to upper-triangular form by the premultiplication by an orthogonal matrix.

Before a numerical example can be given, it is necessary to know how to construct
the Householder transformations. Let a be the vector we wish to transform. We desire
that

Pa=o(1,0,...,0)T.

So
voT
Pa = (I - 2m> a
vTa
=a— (Zm) v
= e
where e; = (1,0,...,0)T. Rearranging gives

vTa
2—7:“ v=a— «ey.
VU

208 Linear Least-Squares Data Fitting Chap. 6

In other words, v is a multiple of ¢ — we;. If v is multiplied by a non-zero constant,
then its Householder transformation does not change. (Why?) This means that we can
choose v = a — ae;. Since a = % ||a|l,, v=a F ||a|, €.

Example 6.9 Determining the Householder Transformation.

1
As an example, let a = (3,0,4)”. Then |ja||, = 3* +0*+4%)2 =5 and

-B)-()

There are two choices for the vector v, both of which lead to valid Householder transfor-
mations; in this case v = (—2,0,4)T or v = (8,0,4)T. Since subtraction can sometimes lead
to rounding-error problems, it is safer to choose the sign of ||a||, to avoid subtraction. In
this case we would prefer to choose v = (8,0, 4)”. Forming the Householder transformation

gives
voT —-06 0 -08
P=]-2—= 0o 1 O ,

-08 0 0.6

—06 0 038 3 -5
Pa = 0 1 0 0= 0
-08 0 0.6 4 0

We can now use these techniques to solve a least-squares problem. This is described
in Example 6.10.

and

as desired. H

Example 6.10 Solving a Least-Squares Problem with Householder Transformations.

Consider

min | Az — b,
x

3 -1 0
A=|0o o], b=|18].
4 7 25

First we reduce A to upper triangular form. The first step involves the first column of
A, a = (3,0,4)7, the vector used in the previous example. Applying the Householder

transformation to A gives
-5 =5
PA= 0 0].
0 5

with

Sec. 6.4 Orthogonal Factorizations 209

The second step takes a as the bottom of the second column of PA so that a = (0,5)7.

Then ||a|, =5 and
0 1
vE (5) s (0) '

It doesn’t matter how the sign is chosen in this case; we take v = (5,5)T making the
Householder transformation

= 0 -1

p= (_1 0) .

Applying this transformation to PA gives the upper-triangular matrix

Lo 1 0 0\ /-5 -5 _5 _5
(0 P)PA= 0 0 -1 o o= o =s).
0 -1 0 0 s 0 0

To solve the least-squares problem, the Householder transformations must also be applied
to the right-hand side b:

1 o . o -20 =20
GRG0)- ()
Then the solution is obtained by solving the triangular system
(7o Z)(2)=(5s)
0 -5/ \= —15
via back-substitution, giving z* = (1,3)7. The residual at the solution is Az* — b =

0,-18,0)".

The reduction of A to upper-triangular form can be interpreted as a matrix factor-
ization. At each stage of the reduction, the matrix is multiplied by an orthogonal matrix
built from a Householder matrix. If the final upper-triangular matrix is called R and A
is an m X n matrix then

R=P,P,_,---BPA.
Each of the matrices P; satisfies P; - P; = I so that
A=PP---P,_1P,R.

Let @ = P, --- P,. Since the product of orthogonal matrices is orthogonal, @ is orthogo-
nal, and we have factored A = QR as the product of an orthogonal and an upper-triangular
matrix. In the example above,

3 -1 -06 08 0\ /-5 -5
A=(O 0):(0 0 —1)(0 —5)=QR.
4 7 —08 —06 O 0 0

Although this factorization has been derived here via Householder transformations,
a related result can be obtained using the Gram-Schmidt orthogonalization procedure
applied to the columns of A, an approach discussed in many texts on linear algebra.

210 Linear Least-Squares Data Fitting Chap. 6
6.5 SUBROUTINE SQRLS

Subroutine SQRLS is a driver for routines from Linpack, a collection of subroutines that
is described in more detail in Chapter 3. SQRLS forms the Q) R factorization of an m X n
matrix A and then solves a least-squares problem using this factorization. If several
problems must be solved, all of which have the same coefficient matrix but different
right-hand sides, then A need only be factored once, and SQRLS can be told to skip this
step for the subsequent right-hand sides.

Many of the arguments will be familiar. SQRLS requires the problem data A, M,
N, B, and returns the array of parameters X and the array of residuals RSD. Some of the
other arguments require a bit of explanation.

LDA is the leading dimension of the matrix A as declared in the main program, and
is discussed in Section 3 of Chapter 3. SQRLS requires several extra storage arrays JPVT,
QRAUX, and WORK; the latter is a work array. The output arrays JPVT and QRAUX are
used to store pivoting and other information used in the Q) R factorization; when problems
with multiple right-hand sides are being solved, they must not be modified or used for
other purposes since they are needed to determine the orthogonal transformations used
in the factorization.

The input argument TOL, and the output value KR are related. They are used
to determine if a least-squares problem is degenerate. This decision is based on the
size of the rounding errors which are assumed to be proportional to TOL. To make this
an effective estimate, the elements in the matrix A should be roughly the same size.
One way to ensure this is to divide each row of A by its largest element (note that the
corresponding component of B must also be scaled by this value). If this is done then it
is sensible to set TOL = €. In many least-squares problems the data are inaccurate
since they come from measurement equipment of limited accuracy. In this case the
measurement errors will dominate the rounding errors and it may be sensible to set TOL
to be the relative measurement error of the elements in the matrix A. It may also be
worthwhile to consider orthogonal distance models (see Section 1).

If the input value of TOL leads SQRLS to conclude that the problem is degenerate
then some of the solution coefficients will be arbitrary (the problem does not have a
unique solution). SQRLS will set the arbitrary coefficients to zero and then the remaining
ones will be uniquely determined. The number of uniquely-determined parameters is
equal to the rank of the matrix (the number of independent columns), which is estimated
by SORLS and returned in the argument KR; N — KR parameters are arbitrary and are set
to zero. You should always examine KR after a call to SQRLS. If it is less than N the
model is degenerate. Perhaps the data need to be scaled or the choice of model functions
rethought. It is a source of concern and should not be ignored!

The techniques used in SQRLS are similar to those described in the previous sec-
tions. However, some modifications are made so that degenerate and underdetermined
problems can be solved. We have been tacitly assuming that the number of data points
is greater than the number of parameters (i.e., m > n). This is generally true for data
fitting problems, but there are other applications where m < n and hence the solution is
not uniquely determined; see Section 9. We have also been assuming that the model is

Sec. 6.5 Subroutine SQRLS 211

nondegenerate (that A has full rank, that the upper-triangular matrix from the QR fac-
torization is invertible). The least-squares approach is still sensible for underdetermined
and degenerate problems, and the QR factorization can be adjusted to handle them. The
routine SQRLS can still be used in these cases. For degenerate problems pivoting is re-
quired, much as partial pivoting was necessary in Gaussian elimination. If the coefficient
matrix A changes slightly then it is possible to update the QR factorization much more
efficiently than it is to recompute it from scratch. There are other routines in Linpack
for updating the QR factorization.

The variance-covariance matrix (A7A)~! can also be computed using Linpack
subroutines. If you are working in single precision, the correct routine to use is SPODI.
This is described in more detail in the Linpack manual (see the Bibliography).

A simple least-squares problem is solved below. It is based on the quadratic model
discussed in Example 6.1. The output from the program is

COEFFICIENT MATRIX
1.000000 1.000000 1.000000
1.000000 2.000000 4.000000
1.000000 3.000000 9.000000
1.000000 4.000000 16.000000
1.000000 5.000000 25.000000
RIGHT-HAND SIDE
1.000000 2.300000 4.600000 3.100000 1.200000
RANK OF MATRIX = 3
PARAMETERS
-3.020001 4.491428 -0.728571
RESIDUALS
0.257143 -0.748572 0.702858 -0.188571 -0.022857

The main program is

PARAMETER (MM = 5, NN = 3)

REAL A(MM,NN), B(MM), X(NN), QRAUX(NN), WORK(NN), TOL
INTEGER JPVT (NN)
DATA B/ 1.0, 2.3, 4.6, 3.1, 1.2/
o]
C SET UP LEAST-SQUARES PROBLEM
o] QUADRATIC MODEL, EQUALLY-SPACED POINTS
C
M =05
N =3
DO 10 I = 1,M
A(I,1) =1.0

DO 10 J = 2,N
A(I,J) = A(I,J-1)*I
10 CONTINUE
TOL = 1.E-6
WRITE (*,*) !’ COEFFICIENT MATRIX'

212 Linear Least-Squares Data Fitting Chap. 6

WRITE (*,800) ((A(I,J), J=1,N), I = 1,M)
WRITE (*,*) ' RIGHT-HAND SIDE’
WRITE (*,810) (B(I), I = 1,M)

o
C SOLVE LEAST-SQUARES PROBLEM
o

ITASK = 1

CALL SQRLS (A, MM, M, N, TOL, KR, B, X, B, JPVT, QRAUX, WORK,

* ITASK, IND)
c
C PRINT RESULTS
o

IF (IND .NE. 0) WRITE (*,*) ’ ERROR CODE =’, IND

WRITE (*,*) / RANK OF MATRIX =’, KR

WRITE (*,*) ' PARAMETERS’

WRITE (*,800) (X(J), J = 1,N)

WRITE (*,*) / RESIDUALS’

WRITE (*,810) (B(I), I = 1,M)
o

STOP
800 FORMAT (3F12.6)
810 FORMAT (5F12.6)
END

The documentation for SQRLS can be found at the end of the chapter.

6.6 HISTORICAL PERSPECTIVE: GAUSS

Carl Friedrich Gauss is considered to be one of the greatest mathematicians of all time,
comparable in stature to Archimedes and Newton. Through his publications and note-
books, he transformed nineteenth century mathematics with investigations into number
theory, geometry, and analysis. His fame extended to other scientists with his discoveries
in astronomy, and to the general public with his work in electromagnetism and geodesy.

Gauss was born in 1777 into a poor family. His parents had little education—only
his father could read and write. Gauss was sent to an undistinguished school, but he
astonished the teacher in his first arithmetic class at age 8 by solving instantly a busy-
work problem of summing the first 100 integers. His abilities eventually brought him
to the attention of the Duke of Brunswick, who adopted Gauss as his protegé, financing
his education and continuing to support him until the Duke’s death in 1806 during the
Napoleonic wars.

As a teenager, Gauss made important advances in geometry (solving a 2000-year-
old problem due to Euclid), algebra (providing a rigorous proof of the fundamental
theorem of algebra), and number theory (work published in his Disquisitiones Arith-
meticae or Arithmetical Investigations). In each case, he not only solved a particular
problem, but also gave complete discussions of the topics and new methods of solution
which had a far-reaching influence on mathematics.

Sec. 6.6 Historical Perspective: Gauss 213

In 1801, Gauss became interested in applications of mathematics. Twenty years
earlier the seventh planet, Uranus, had been discovered by Sir William Herschel. The
German philosopher Hegel considered seven to be a philosophically satisfying number,
and sarcastically criticized astronomers who in his view were wasting their time searching
for an eighth planet. Almost as soon as Hegel’s thoughts were published, on January 1,
1801 Giuseppe Piazzi discovered the asteroid Ceres.

Ceres was only visible for forty days before it was lost to view behind the sun. As-
tronomers wanted to know where in the sky it would reappear. At that time, astronomers
could calculate orbits for comets and the larger planets, but their techniques were in-
adequate for predicting the orbit of Ceres. However Gauss, using three observations,
extensive analysis, and the method of least squares, was able to determine the orbit with
such accuracy that Ceres was easily found when it reappeared in late 1801. This work
gave Gauss extraordinary fame among scientists throughout Europe. (There were also
mild side effects in his personal life: Gauss named his eldest son after Piazzi, and his
other children from his first marriage after the astronomers Olbers and Harding.)

Gauss was one of the first to use least-squares techniques, but long before their
invention, scientists were trying to model data. Many of the applications were to as-
tronomy, as here in the study of Ceres. Several estimates of its position were made but,
because the telescopes and other tools were not very accurate, the measurements would
not agree and some approximate value would have to be accepted as the “true” position.

Another common application would be in map-making, where surveyors would
measure the countryside to determine the distances between landmarks. The measure-
ments would not be exact, either because of limitations of the equipment or because of
mistakes made in taking the measurements. This would lead to inconsistencies in the
data which would have to be resolved before the map could be drawn.

Many approaches were suggested, going back at least to sixteenth-century Europe
and probably much earlier. They were generally based on properties of the residuals,
the vector Az — b in our notation. One of the first ideas was to choose the parameters
so that the sum of the residuals was zero. This technique was in use for over two
hundred years, with various embellishments to ensure that the solution was computable
and unambiguous. One idea was to use the 1-norm of the residuals to break ties. In
1783 Laplace suggested using the oo-norm to determine the solution. It is somewhat
surprising that these approaches were the first to be considered. Scientists at that time
were very much concerned with practical calculations, but these norms are difficult to
work with computationally. However, they are intuitively appealing as techniques to
reconcile measurement errors, and this may have made them popular and acceptable.

The concept of a least-squares estimator was first discovered in 1795 by the
eighteen-year-old Gauss. He needed a practical tool for analyzing survey data, and
later used the technique on a regular basis for astronomical calculations. Gauss thought
it such a simple idea that he did not publish it; he assumed that it must have been discov-
ered many years earlier. In fact the first published description of least squares appeared
in 1805, in an appendix of Legendre’s book New Methods for Determining the Orbits of
Comets. Gauss later wrote several times on the properties of least-squares estimators,
justifying their use via newly-developed ideas in probability theory.

214 Linear Least-Squares Data Fitting Chap. 6

When Gauss published a description of his astronomical calculations, Legendre
accused him of stealing his ideas on least squares. Legendre was wrong, but Gauss
refused to provide evidence that he had been using the technique for a decade. This
was not the only time that Gauss anticipated the work of others. Gauss set very high
standards for his own work. He would not publish unless the results were complete and
elegant, the ideas had far-reaching applicability, and the proofs were rigorous. His sons
reported that Gauss discouraged them from going into science because he did not want
any second-rate work associated with his name.

After his death, Gauss’ notebooks and unpublished manuscripts revealed many
results that, had they been circulated, would have saved other scientists decades of work.
During his life, mathematicians would often send Gauss their papers for comment, and
frequently his response would be a polite compliment along with the remark that he had
made the same discoveries himself years earlier. This did not endear him to students
and other mathematicians.

After the Duke’s death, and hence the end of Gauss’ financial support, Gauss
became professor of astronomy at the University of Gottingen, a position he held for the
rest of his life. He took the job in part because he would have light teaching duties.
He was repelled by the idea of teaching mathematics largely because it meant drilling
ill-prepared and unmotivated students in the most elementary manipulations.

His later work included studies in probability, differential geometry (work that later
led to Einstein’s theories of relativity), electromagnetism, non-Euclidean geometry, and
geodesy. As an outgrowth of his work in electricity and magnetism, in 1833 he was the
first to transmit sentences via electric telegraph, five years before Morse.

Gauss married twice, once in 1805 and again in 1810. The death of his first
wife plunged him into a loneliness from which he never recovered. He dominated his
daughters and quarreled with his younger sons, who emigrated to the United States. He
had a robust, long life, but a troubled one. He died on February 23, 1855.

*6.7 DEGENERATE LEAST-SQUARES PROBLEMS

A degenerate least-squares problem is one where the solution is not unique. This is
primarily a problem with the data; it usually means that there are not enough data
points to distinguish all of the model functions. However, it may sometimes indicate a
deficiency in the model. A simple example is given below.

Example 6.11 A Degenerate Least-Squares Problem.
Consider the model
bty ~z-(D+z2- @) +z3- R+ 1).

The third model function 2¢ + 1 is a linear combination of the others so that there will be
infinitely many ways to approximate a given data set. To see this, notice that

o-[1-(D+2-W)-1-2t+1D]=0

Sec.6.7 *Degenerate Least-Squares Problems 215

for any o, and so any set of parameters x = (z1, x2,x3) can be replaced by z 4+ a(1,2, —1)
without,changing the fit. (That is, the value of b(¢) will be unaffected by the particular value
of o chosen.) H

In general, there will be degeneracy if the modelling functions are linearly depen-
dent, i.e., if some non-zero linear combination of the modelling functions equals zero, as
happens for this example. More precisely, the problem will be degenerate if the columns
of the coefficient matrix A are linearly dependent. When the modelling functions are lin-
early dependent, the residuals will still be unique even if the parameters are not uniquely
determined. Thus any solution to the least-squares problem will produce the same fit to
the data. This happens in the simple example above. If the main purpose of the least-
squares approximation is to smooth a data set, then degeneracy may not be a serious
difficulty. When it is important to obtain parameter estimates, however, degeneracy can
be a major problem.

Since degenerate problems have many solutions instead of just one solution, it
might seem that the problem should be easier to solve. In fact, degeneracy makes life
more difficult for us. In exact arithmetic there is a sharp distinction between degenerate
and non-degenerate problems, but in rounded arithmetic it may be hard to decide if
a problem is degenerate or not. If we make a mistake, the parameters will be vastly
inaccurate. Also, the closer a problem comes to being degenerate, the worse the effects
of the mistake will be. If our least squares problem is

(6 10) (2)-(3)

then the solution is = = (1 — 10*, 10*)T. Suppose that these coefficients were obtained
from the QR factorization of another matrix. Then the entry 10~* might only represent
rounding errors from the factorization and so, to within the precision of the computer,
this might be a degenerate problem. If we decided this were the case, then we would

solve instead
1 1 I . 1
00 X 1

This problem has many solutions. Typically we would choose z; = 0 to eliminate the
ambiguity, giving z = (1,0)7. The two solutions are vastly different. As k gets larger,
and hence as 10~* gets closer to zero, the more different they become.

In a sense the difficulty here is not computational. Even if the least-squares problem
is degenerate, there is no problem forming the QR factorization of the coefficient matrix
A. The only difference is that the upper triangular matrix R will no longer be invertible,
since it will have some zero entries on the diagonal. However, we would like to use the
diagonal entries of R to determine if a least-squares problem is degenerate.

min ,

2

min

2

216 Linear Least-Squares Data Fitting Chap. 6
Even in exact arithmetic the QR factorization of a matrix may fail to reveal near-

degeneracy. The n X n matrix

1 -1 -1 -1

1 -1 -1

A= 1 -1
1

is already upper-triangular so it would not be changed by the Q R factorization. It appears
innocuous. The diagonal entries are all equal to one, the determinant is equal to one,
and the matrix is clearly nonsingular. However it is very close to being singular. If we
set A, 1 =272 the matrix becomes singular.

To improve our ability to detect degeneracy we introduce pivoting into the factor-
ization. Row pivoting was used in Gaussian elimination when solving linear equations.
Here column pivoting is used. At the first stage the “largest” column is determined by
computing the 2-norms of all the columns of the matrix. This column is moved to the
front of the matrix by interchanging (pivoting) it with the first column. Then the first
step of the orthogonal factorization is performed, zeroing all but the first element of the
new first column. At the beginning of each succeeding iteration, the “largest” remaining
column (in the 2-norm) is moved to the front of the matrix and then the orthogonal
transformation is applied as usual. At the later iterations only the bottom parts of the
columns are considered. Thus at the second step, we only look at elements 2 through m,
and at the third step elements 3 through m, etc. The resulting matrix R will have diag-
onal entries that decrease monotonically in absolute value, and will be a more accurate
indicator of degeneracy.

Example 6.12 The QR Factorization with Pivoting.

When pivoting is applied to

-1

the last column is the largest, and will be interchanged with the first column at step 1.

Ultimately, the () R factorization produces

—1
-1
-1

1

—1
-1
-1
-1

1

2.2361 0.8944 0.4472 0 —0.4472

0 1.7889 0.3354 0 —0.3354

R= 0 0 —1.6394 0 0.4194
0 0 0 —1.4142 0.7071

0 0 0 0 0.1078

The final diagonal entry is now small (.1078 ~ .125 =2"""2) H

Sec. 6.7 *Degenerate Least-Squares Problems 217

The factorization with column pivoting can be represented as
A=QRP

where P is a permutation matrix that records the column interchanges made. The matrix
R will have the form ‘
_(Ry Ro
R= (0 0

where Ry is upper triangular and R,y is just some non-zero rectangular matrix. The
number of non-zero rows in R is the rank of the matrix A, the number of linearly
independent columns.

This factorization can be used to obtain a reduced least-squares problem

| Az — bl, = ||RPz — QTb|, .

To simplify the formulas, we define new parameters by y = Pz and new data by ¢ = Q7b.
We also split y and c into pieces as in the matrix R, i.e., y = (y1), ¥))T and ¢ = (), c) ™.

Then we obtain
Ra)y Re Y)
Az bl =1/ " >) (-
Az — o] H(o o) ()= ()

2 2
= [|Riyya) + Reyye) — coll; +lI—coll; -

2

The second term —c(;y cannot be affected by the parameters y. However the first term can
be made zero in infinitely many ways. The components of y(;) can be chosen arbitrarily;
then y;) is determined by solving

Ruyyay = cay — Reyyo)-

This is an upper-triangular system and is solved using back-substitution. Typically we
set y2y = 0. In summary:

Factor A = QRP

Form ¢ = Qb

Solve Rgyyqy = ¢y and set y = (yqy, 0)T
Set z = PTy, i.e., re-order the variables.

The algorithm is much the same as in the non-degenerate case. It is applied in Example
6.13.

218 Linear Least-Squares Data Fitting Chap. 6

Example 6.13 Solving a Degenerate Least-Squares Problem.

To illustrate the techniques consider the problem

S

]
SO O s
SO =N
O O W
=N W oo

The matrix A is already in appropriate form and so we will not apply the QR factorization.
The matrices Ry and Ry are

(8 2) na=(2).

To obtain the parameters we solve

4 2 8
Ruyyay = (0 1)3/(!) =cq = (2)

giving yay = (1,2)7 and hence z = (1,2,0). If we were to choose another value for y),
say y) = 3, then we would obtain the parameters from

Rayyay = (3 ?) yay = cay — Reyye) = (g) - (g) 3= (__1;)

giving ya) = (25/4,—13)" and z = (25/4, —13,3)T. In both cases the residual vector is
0,0,-5,-nT. m

*6.8 THE SINGULAR-VALUE DECOMPOSITION

Although the QR factorization with column pivoting is almost always an effective tool
for detecting degeneracy, it is not foolproof. Certain rare nearly-degenerate problems
slip through its grip. The most reliable tool available is the singular-value decomposition
(SVD), another orthogonal matrix factorization. Its reliability carries a price—it requires
5-10 times as many arithmetic operations as the) R factorization. Also, it is not possible
to update the SVD efficiently when the data change. We will only give a brief discussion
here of the SVD and its more interesting uses. For more complete information see Golub
and Van Loan (1983). The routine SSVDC from Linpack can be used to compute the
SVD.
If A is an m X n matrix with m > n then one form of the SVD is

A=UxVT

Sec. 6.8 *The Singular-Value Decomposition 219

where U and V7T are orthogonal and ¥ is diagonal. That is, UTU = I,,,, VVT=1,, U
is m xm, Visn xn, and

g1
02

On—1
On

0

isanm X n dlagonal matrix (the same dimensions as A). In addition oy > g, > --- >
on 2 0. The o;’s are called the singular values of A. The smallest singular value o,
is the distance in the 2-norm from A to the nearest degenerate matrix. The number of
non-zero singular values is equal to the rank of the matrix. Thus if A is singular then
at least o, = 0. In practice, singular values are rarely exactly zero, but if A is “nearly
singular” some of the singular values will be small. The ratio o /o, can be regarded as
a condition number of the matrix A. It is not the same condition number we discussed in
Chapter 3, but it has many of the same properties and is usually about the same order of
magnitude numerically. An example of the singular-value decomposition is given below.

Example 6.14 The Singular-Value Decomposition.
If

—
O NN D=
—_ 00 W N
N NW

then its SVD is

.1409 8247 —.4202 -.3513 25.4624 0 0

_ T_ | 3439 4263 2985 7816 0 1.2907 0
A=URV" = .5470 .0278 .6638 —.5093 0 0 0
7501 —.3706 —.5420 .0790 0 0 0

.5045 5745 .6445
—.7608 —.0571 .6465 |.
4082 —.8165 .4082

For emphasis, the singular values have been printed in bold face. Notice that o3 = 0,
indicating that the matrix is not of full rank. H

The singular-value decomposition is about one hundred years old. It was discovered
independently by Beltrami in 1873 and Jordan in 1874 for the case of square matrices.
The technique was extended to rectangular matrices by Eckart and Young in the 1930’s.
However, its use as a computational tool is much more recent, dating back only to the
1960’s. This is not so hard to understand when it is realized that the computation of
the SVD requires a variety of sophisticated numerical techniques. The development of

220 Linear Least-Squares Data Fitting Chap. 6

the SVD as a practical tool is primarily due to Gene Golub who, in a series of papers,
demonstrated its usefulness and feasibility in a wide variety of applications.

*6.8.1 The SVD for Solving Linear Least-Squares Problems

The SVD has many uses. First of all, it can be used to solve least-squares problems. We
have

Az —b||, = ||[USV Tz — b,
= |UTUEvTz - b)||2 (Since U is orthogonal)
=||zVTz - U, .

Denoting U7b by d and V'z by z, we have

Jg121 —d1
0222 —d2
—d
14z — bl}3 = |2z — dl} = ||| 77 | = e dt oz = d?
n
~dp 42 Floit oty
_dm 9

As long as none of the singular values are zero we can uniquely select the z;’s (or
equivalently the z;’s) to reduce this to its minimum value

Az — bl =%, +- - +d,.

In this case the least squares problem has a unique solution However, if o,, = O then any
choice of z,, is allowed and all choices give exactly the same residual sum of squares

2
|Az = bl = &2, + 5, 4+ -+ b

In that case the least squares problem is not uniquely solvable. Whenever a o; = 0, the
usual convention is to set the corresponding z; = 0 too. It turns out that the singular
values are nonzero if and only if the basis functions ¢; are linearly independent at the
data points. So if some of the basis functions are nearly dependent one or more singular
value will be close to zero. Since a zero singular value implies degeneracy and non-
uniqueness, you should not be surprised to learn that small singular values are a symptom
of ill conditioning. This shows itself in large changes in the computed solution when
either the data or the arithmetic changes a little.

The proper use of the SVD involves a tolerance reflecting the accuracy of the
original data and the floating point arithmetic being used. Any o, greater than the
tolerance is acceptable and the corresponding z; is computed from z; = d;/o;. Any o;
less than the tolerance are regarded as negligible, and the corresponding z; is set to zero.

Sec. 6.8 *The Singular-Value Decomposition 221

The tolerance in the SVD plays a role that is similar to TOL in SQRLS. Increasing
the tolerance leads to larger residuals but gives results that are less likely to change if
we alter the data. Decreasing the tolerance leads to smaller residuals and gives results
that are more sensitive to changing the data. Neglecting o;’s less than the tolerance has
the effect of decreasing the condition number. Since the condition number is an error
magnification factor, this results in a more reliable determination of the least squares
parameters. The cost of this increased reliability is a possible increase in the size of the
residuals.

Example 6.15 Data Fitting with the SVD.

Suppose we want to solve a least-squares problem with the 4 x 3 matrix from Example 6.12
and with right-hand side b = (1, 0,0, 0)”. By observation we see that

0.1409

0.8247
—0.4202)’
—0.3513

UTp =

so if none of the singular values were zero we could reduce the residual sum of squares to
d2, = d2 = 0.35132. But we know that o3 = 0 from the preceding example, so the best we
can do is d5 + d2 = 0.4202? +0.35132. This will occur if z; = di /01, 22 = d2 /02, 23 = 0,
and then V7z = z, or z = Vz. The calculations give z; = 0.005533, 2, =0.6390, 23 =0,

and
—0.4833
zsyp=| —0.0333 |. W

0.4167

A more realistic example occurs using the U.S. Census data from problem P4-2.
There are m = 8 data points. The values of ¢; are 1900, ...,1970, and the corresponding
values of y; in units of a million people, are about 75.99, 91.97,...,203.21. We will
try to fit these by a quadratic,

b(t) = c; + et + c3t?.

Using the single-precision Linpack routine SSVDC on an IBM personal computer with
a tolerance of 0.0 (i.e., include all the singular values) we find that the least-squares
problem has coefficients

e = —0.372 x 10°, ¢ =0.368 x 107, c3 = —0.905 x 1072,
and the 8 X 3 matrix has singular values
o1 =0.106 x 108, 0, =0.648 x 10, 03 =0.346 x 1073,

Using double precision gives about the same singular values, but the coefficients are
found to be about

¢ =0.373 x 10°, e = —.402 x 102, c3=0.108 x 107!,

222 Linear Least-Squares Data Fitting Chap. 6

The signs of the two sets of coefficients do not even agree. In fact, when the
model is used to predict the population in 1980, the coefficients obtained with double
precision predict 227.78 million, whereas the coefficients obtained with single precision
predict 145.21 million. The single precision coefficients are clearly useless, but how
about the others? How reliable are they? For this problem the condition number is
o1/03 =0.306 x 10'!, which is a signal that there is some difficulty. For ¢ between 1900
and 1970, the three basis functions are nearly linearly dependent.

To improve the situation we recognize that o3 =~ 0, and set it to zero. Then the
coefficients we obtain in double precision are

c1 = —0.167 x 1072, e =—0.162 x 10, c3=—0.871 x 1073,
and in single precision
¢1 = —0.166 x 1072, e =—0.162 x 10!, c3=—0.869 x 1073,

Now they are in much better agreement. Moreover, they are much smaller, which
means that there will be less cancellation in evaluation of the quadratic. The predicted
populations in 1980 are 212.91 million and 214.96 million. The effect of single precision
is still noticed, but the results are no longer disastrous. (Another approach to modelling
the census data can be found in Problem P4-2.)

When the least-squares problem is solved using the SVD, the solution zgyp has
a valuable property: it will be the solution of minimal length. That is, if Z is any set of
parameters that minimizes || Az — b||,, then ||zsvpll, < |E|l,.

*6.8.2 The SVD for Data Compression

Suppose that a satellite in space is taking photographs of Jupiter to be sent back to earth.
The satellite digitizes the picture by subdividing it into tiny squares called pixels or
picture elements. Each pixel is represented by a single number that records the average
light intensity of the photograph in that square. If each photograph were divided into
500 x 500 pixels the satellite would have to send 250,000 numbers to earth for each
picture. This would take a great deal of time and would limit the number of photographs
that could be transmitted. It may be possible to approximate this matrix with a “simpler”
matrix which requires less storage. A reasonable meaning of a simple matrix is one of
relatively low rank, that is, with only a few independent columns. In addition to saving
storage, such matrices may provide important insight into particular problems.

Consider this 500 x 500 array of numbers as a matrix A. We will compute its
singular-value decomposition and use it to obtain an approximation to the picture.

To derive the approximation, we let u; and v; be the i-th columns of U and V,
respectively. Then it is not difficult to check that the singular-value decomposition can
be written as

A=UZVT=) ol

i=1

Sec. 6.9 *The Null-Space Problem 223

The matrix u;v} is the outer product of a column of U with the corresponding column
of V. Each can be stored using only m + n locations rather than mn locations. For
Example 6.12 we obtain

3
6

- T
9 =UXV

1
4
A= 7

10 1

2

5

8

1

.1409

.3439

=25.4624 (.5470 (.5045 .5745 .6445)

7501
.8247\
4263
.0278

—.3706}

—.4202\
.2985

+0 6638 (4082 —.8165 .4082).

5420/

+ 1.2907 (—.7608 —.0571 .6465)

To compress the data, the smaller singular values are set to zero. If only 10 singular
values were used, then the approximation would be

n 10
— T T
A= E oiuY; R E OiU; .
i=1 i=1

There is no need to form the approximation matrix explicitly.

We can apply this idea to the satellite photograph. To obtain an approximation to
the picture we set all the small singular values to zero; to maintain an acceptable picture
we might only have to keep the 10-20 largest singular values. The approximate picture
only depends on the first 10-20 columns of U and V and the corresponding singular
values; the rest of the coefficients will be multiplied by zero and can be ignored. Thus
instead of 250,000 numbers, the approximate picture would depend on only 10,000-
20,000 numbers. Many more pictures could be sent to earth. Of course, the usefulness
of this procedure depends on the particular matrix and the distribution of its singular
values.

This idea is discussed in more detail in an article by Andrews and Patterson (1975).
It is illustrated in Figure 6.5.

*6.9 THE NULL-SPACE PROBLEM

Most of our attention has been directed at over-determined systems of equations, that
is, least-squares problems where the number of data points is greater than the number

224 Linear Least-Squares Data Fitting Chap. 6

Original Data (Fingerprint)
- - ?,

A

Figure 6.5 Approximating Pictures with the SVD

of parameters. If the problem is underdetermined and there are multiple solutions to the
system of equations, then it may be important to determine not just one solution but also
to characterize all solutions to the system.

An important application is in constrained optimization. Suppose we had to solve

minimize F(xi, z7),

subjectto x;+xy=1.

The constraint allows us to simplify this by setting x, = 1 — x; giving
minimize F(x;,1 — x;).

Not only is this problem unconstrained, we have also decreased the number of variables
by one.
In general, suppose we wish to solve the n-dimensional problem

minimize F(x),
subject to Az =b.
We would like to reduce this to an unconstrained problem with fewer variables by using

the constraints to determine some variables in terms of the others. .There will usually
be fewer constraints than there are variables, since otherwise the solution would be

Sec. 6.9 *The Null-Space Problem 225

completely determined by the constraints and there would be no need for an optimization
problem. Here we want to determine all points x that satisfy the constraints.

Using routine SQRLS we can find some solution T of Az = b. (If the equations
have no solution, the minimization problem does not make sense.) If Z is any other
solution to Ax = b, then

A@F —)= AT — Ai=b—b=0.

Thus any solution of Az = b can be written as Z = T + d where d satisfies Ad =0. We
say that d lies in the null space of A. The task is to determine all vectors that lie in the
null-space of A.

For the constraint x; + x, = 1 the coefficient matrix is A = (1,1). A particular
solution of the constraint is Z = (0, 1)7. The general solution can be written as = Z + d
where d = (a, —a)T and « is arbitrary. Note that Ad = 0. Our original optimization
problem then becomes

min F(Z + ad) = F(a,1 — a),

an unconstrained problem in one variable a.
Suppose that we have the QR factorization of A”

AT=QR=(Qun Qu) (R(()l)) ;
where Ryj) is a square, upper-triangular matrix. Rearranging this equation produces

AQ=(AQu) AQu)=R"=(R], 0)

and so AQ) = 0. Thus the columns of Q) are in the null space of A. In fact it can be
shown that any vector in the null space of A is a linear combination of the columns of

Q(Z) .

Example 6.16 Determination of the Null Space.

For the constraint matrix

the QR factorization of A7 is

—0.1826 —0.8165 —0.4001 —0.3741 —5.4772 —12.7802
0= —0.3651 —0.4082 0.2546 0.7970 R= 0 —3.2660

—0.5477 0 0.6910 —0.4717 0 0

—0.7303 0.4082 —0.5455 0.0488 0 0

and so Q) is given by the final two columns of Q:

~0.4001 —0.3741
_ 0.2546 0.7970
Qo = 0.6910 —0.4717

—0.5455 0.0488

226 Linear Least-Squares Data Fitting Chap. 6

The calculations were performed using Linpack in 16-digit arithmetic even though only four
digits are given here. To check that the null-space has been correctly determined we form

A Qu = (03551 % 107'° 0.1388 x 10—'6)
@ (0 02776 x 107")

all of whose entries are at the level of round-off.

We now apply this idea to the constrained optimization problem. If we have some
solution Z to the constraint equations Az = b, then the general solution can be written as
Z = T+ Q)p where p is an arbitrary vector. Thus the constrained optimization problem
can be reduced to

min F(Z + Qp)-

If the original problem had n variables and m linearly-independent constraints, then the
new problem would have only n — m variables and would be unconstrained.

Although we have only discussed problems where the constraints are a set of linear
equations, the ideas presented here can also be applied to inequality constraints of the
form Ax < b and hence also to linear programming problems, for example.

6.10 PROBLEMS

P6-1.—Generate 11 data points by taking ¢; = (: — 1)/10 and b; = erf(¢;), i = 1, ..., 11. Compute
erf(t) using the techniques from Problem P1-1.
(a) Fit the data in a least-squares sense with polynomials of degrees from 1 to 10. Compare
the fitted polynomial with erf(¢) for a number of values of ¢ between the data points, and
see how the maximum error depends on n, the number of coefficients in the polynomial.

(b) Since erf(t) is an odd function of ¢, that is, erf(t) = — erf(—t), it is reasonable to fit the
same data by a linear combination of odd powers of ¢,

eff(t) ~ cit +cot’ + - -+ cnt™™ .
Again, see how the error between data points depends on n. Since ¢ varies over [0, 1] in
this problem, it is not necessary to consider using other basis polynomials.

(c) Polynomials are not particularly good approximants for erf(¢) because they are unbounded
for large ¢, whereas erf(t) approaches 1 for large t. So, using the same data points, fit a
model of the form

erf(t) =~ c1 + e_tz(cZ +eiz+ e + C523)
where z = 1/(1 4+ t). How does the error between data points compare with the polynomial

models?

P6-2.-This problem uses least-squares techniques to approximate the census data from Problem
P4-2.

(a) Fit the census data by polynomials of various degrees. Use the fits to predict the 1980
population. How is the predicted population affected by your choice of basis polynomials?

Sec. 6.10 Problems 227

By your choice of tolerance for negligible singular values? By the precision of arithmetic
if you have a choice?

(b) Try to fit the census data by a quadratic
b(t)~ci+et+ C3t2

using the normal equations approach. What is the condition number of the resulting matrix?
What is the predicted 1980 population?
P6-3.—Consider the following data, obtained from a physical experiment at intervals of one second,
with the first observation being taken at time ¢ = 1.0:

t:1-9 t:10—18 t:19—-25
5.0291 7.5677 14.5701
6.5099 7.2920 17.0440
5.3666 10.0357 17.0398
4.1272 11.0708 15.9069
4.2948 13.4045 15.4850
6.1261 12.8415 15.5112

12.5140 11.9666 17.6572
10.0502 11.0765
9.1614 11.7774

|
We will try to fit the data by various models as a way of leaming more about the data.

(a) Fit the data by a straight line using SQRLS. Scale the residuals as described in Section 2,
and plot the residuals (either using graphics software or by hand). One of the data points
has a much larger residual than the others. We suspect that it does not fit with the rest of
the data, that is, it is an outlier.

(b) Discard the outlier, and fit the data again by a straight line. Again, scale the residuals and
plot them. What pattern do you notice in the residual plot? Do the residuals appear random?

(¢) To get rid of the trends in the residuals, fit the data with a new model
yty~ x - 14+x2-t+ 3 -sint.

Plot the scaled residuals. Do they appear random now?

P6—4.—An outlier can sometimes have a dramatic effect on the parameters in a model, and this is
why it is important to check for such points, and determine if they are correct. To illustrate this
point, we will consider the following artificial data set:

t__{i, i=1,2,...,10, __{0, i=1,2,...,10,
t¥120, i=11, YiTAM, i=11.

We will experiment with various values of M. Fit the data to a straight line using SQRLS, for
M =0,5,10,15,20. How rapidly do the parameters change as a function of M? Using a scaled
residual plot, is it possible to identify point 11 as a potential outlier?

228

P6-5.—Consider the following data set:

Linear Least-Squares Data Fitting

t y Error
bound

0.00 20.00 20.00
0.25 51.58 24.13
0.50 68.73 26.50
0.75 75.46 27.13
1.00 74.36 26.00
1.25 67.09 23.13
1.50 54.73 18.50
1.75 37.98 12.13
2.00 17.28 4.00

Chap. 6

Notice that the error bound varies with each data point. Fit the data by a quadratic polynomial
using the weighting technique discussed in Section 1.

P6-6.-The following data represent mortality rates (death rates per hundred thousand) for individ-

uals age 2045 in tumn of the century England (read down each column)

ages ages ages ages

20-26 27-33 34-40 4145
431 499 746 956
409 526 760 1014
429 563 778 1076
422 587 828 1134
530 595 846 1024
505 647 836
459 669 916

(a) Plot the data. Use SQRLS to fit a straight line and plot it along with the data. Do you think
that the data are well represented by a straight line?

(b) The plot suggests that the data could be represented by different straight lines over the age
intervals [20, 28], [28,39], and [39,45]. Use SQRLS again to fit the data to these three
lines, and plot them on the same graph as in (a) Since we have not made any assumptions
about the relationships between these lines you can determine the fits by treating the data
on each subrange completely independently.

(c)

The fit you get in (b) will not be continuous at 28 or at 39. One way to force continuity is to
pick model functions that have this property. Since three straight lines need six coefficients,
and continuity at 28 and 39 imposes two conditions we expect that we will need 6 —2 =4
model functions. The four functions we suggest you use are plotted in Figure P6.6, and are
labelled l;(z), i =1,...,4. Each of these is defined and continuous on 20 < z < 45, and
so any linear combination is too. Using these model functions set up and solve the least

Sec. 6.10 Problems

0] u v {
20 28 39 45
Li(x)

11

0 f —

20 28 39 45
L5(x)

Figure P6.6

square problem with SQRLS. Plot the fit on the
these three produces the best fit?

P6-7.—Consider the following data set

t Y
0.00 | 20.00
0.25 | 51.58
0.50 | 68.73
075 | 7546
1.00 | 74.36
125 | 67.09
1.50 | 54.73
175 | 37.98
200 | 17.28

229

20

39 45
Zz(x)

20

same graph as in (a) and (b). Which of

230 Linear Least-Squares Data Fitting Chap. 6

Suppose we wished to fit the data to the following model
y(t) = x1 - 1 + x28int + x3 cost + x4 sin 2t + x5 cos 2t.
In addition, suppose that the parameters must satisfy the following two linear constraints
T+ T+ Ttz 25 =1,
3z 4+ 2z2 + 3 = 4.

We will use the techniques of Section 9 to solve this problem.
(a) Determine a particular solution Z to the constraints by solving the linear system

1+ z:2=1,

3z + 2z, =4,

using SGEFS, and setting % = (1, z2, 0,0, 0)7.

(b) Let
1 1 1 1 1
B= (3 210 0)
be the coefficient matrix of the constraints. Verify that BT = QR, where

—0.4472141 —0.6902676 —0.3827515 —0.2975130 —0.2975130
—0.4472141 —0.3067856 0.1717229 0.5815458 0.5815458
Q= | —0.4472141 0.0766956 0.8048115 —0.2705498 —0.2705498
—0.4472141 0.4601789 —0.2968903 0.4932585 —0.5067396
—0.4472141 0.4601789 —0.2968903 —0.5067396 0.4932585
—2.2360649 —2.6832657

0 —2.6076736
R= 0 0 ,

0 0

0 0

and where @ is an orthogonal matrix. (This factorization can be computed using the Linpack
routines called by SQRLS.)

(c) The general solution of the constraints can be written in the form
=T+ Q(z)d

using the notation of Section 9. Using this formula, write the original least-squares problem
without any constraints in terms of the new parameters d.

(d) Solve this least-squares problem for d using SQRLS, and then determine the parameters x
that solve the original constrained least-squares problem.

P6-8.—Many cyclic phenomena in nature can be modelled by a sinusoid and its higher harmonics:

- 2
Y=Y Aisin [ﬁ(twi)] .
=1

6.11

Sec. 6.11 Prologue: SQRLS 231

The numbers A;, T, and ¢; are called the amplitude, period, and phase respectively of the i-th
harmonic. Given data, fitting to this model in the least squares sense is a nonlinear problem which
cannot be solved by the methods of this chapter, although techniques we will study in Chapter 9
can be applied. However, in many situations the period T" is known or can be guessed, leaving
only the amplitude and phase as unknowns. This still appears to be nonlinear because ¢; is inside
the sine.

(a) By using a formula for the sine of a sum show that

. 2T 2nt . 2wt
A;sin [(T—/i)(t+¢,-)] = a; cos (T_/z) + b; sin (T_/z> ,

with a; = A;sin(6;),b; = Aicos(6;),0; = 2n¢; /(T /i). Thus if a; and b; can be found
then
T/i

Ai=+/a} + 1, @i = I tan”™ " (a; /bi).

Since the a; and b; appear linearly, SQRLS can be used to find them.

(b) There is interest in studying the affect of the burning of fossil fuels on weather. One
interesting set of measurements is the concentration of carbon dioxide in the atmosphere.
The data file CO2.DAT on the software disk gives the CO, concentration (in parts per
million) as measured at the Mauna Loa Observatory (Hawaii) each month from 1958 to
1974. Plot the data. You should observe that there is a cyclical component of about twelve
months (I" = 12). There is also an upward trend to the data which cannot be captured with
only sines and cosines. Why is this trend reasonable? By examining records of total world
fossil fuel production from the mid 1860s, it has been determined that a suitable model for
the data is

2T

y(t) = B + dexp(at) + Z Aj; sin [(12/1')
i=1

where ¢ is in months,(i.e., ¢t = 1 for the first point, ¢t = 2 for the second, etc.) o =~ 0.0037 /month,
and the other parameters are unknown. Experiment by first fixing n and then use the technique of
(a) and SQRLS to find the other parameters. Plot the fit and the residuals as you vary n < 4. Are
the residuals “random” or do you see some regularity?

PROLOGUE: SQRLS

SUBROUTINE SQRLS (A,LDA,M,N,TOL,KR,B, X, RSD, JPVT, QRAUX, WORK,
* ITASK, IND)

C***BEGIN PROLOGUE SQRLS

C***DATE WRITTEN 870911 (YYMMDD).

C***REVISION DATE 871016 (YYMMDD)

C***CATEGORY NO. D9

C***KEYWORDS LEAST SQUARES, OVERDETERMINED, LINEAR EQUATIONS

232 Linear Least-Squares Data Fitting Chap. 6

C***AUTHOR STEPHEN NASH (GEORGE MASON UNIVERSITY)
C***PURPOSE
C***PURPOSE SQRLS solves an overdetermined, underdetermined or singular

C system of linear equations in least square sense. The
C solution is obtained using a QR factorization of the

C M by N coefficient matrix A.

C***DESCRIPTION

C From the book "Numerical Methods and Software"

by D. Kahaner, C. Moler, S. Nash
Prentice Hall 1988

SQRLS IS USED TO SOLVE IN A LEAST SQUARES SENSE

OVERDETERMINED, UNDERDETERMINED AND SINGULAR LINEAR SYSTEMS

THE SYSTEM IS . A*X APPROXIMATES B WHERE A IS M BY N.

B IS A GIVEN M-VECTOR, AND X IS THE N-VECTOR TO BE COMPUTED.

A SOLUTION X IS FOUND WHICH MINIMIMZES THE SUM OF SQUARES (2-NORM)
OF THE RESIDUAL, A*X - B

THE NUMERICAL RANK OF A IS DETERMINED USING THE TOLERANCE TOL.

SQRLS USES THE LINPACK SUBROUTINE SQRDC TO COMPUTE THE QR
FACTORIZATION, WITH COLUMN PIVOTING, OF AN M BY N MATRIX A
FOR MORE INFORMATION, SEE CHAPTER 9 OF THE REFERENCE BELOW.

ON ENTRY

A REAL (LDA,N)
THE MATRIX WHOSE DECOMPOSITION IS TO BE COMPUTED.
IN A LEAST SQUARES DATA FITTING PROBLEM, A(I,J) IS THE
VALUE OF THE J-TH BASIS (MODEL) FUNCTION AT THE I-TH
DATA POINT.

LDA INTEGER.
THE LEADING DIMENSION OF A

M INTEGER.
THE NUMBER OF ROWS OF A .

N INTEGER.
THE NUMBER OF COLUMNS OF A

TOL REAL.
A RELATIVE TOLERANCE USED TO DETERMINE THE NUMERICAL
RANK. THE PROBLEM SHOULD BE SCALED SO THAT ALL THE
ELEMENTS OF A HAVE ROUGHLY THE SAME ABSOLUTE ACCURACY
EPS. THEN A REASONABLE VALUE FOR TOL IS ROUGHLY EPS
DIVIDED BY THE MAGNITUDE OF THE LARGEST ELEMENT.

OO0 00000000000000000000000000000000000000aagnanoanan

Sec. 6.11 Prologue: SQRLS 233

OO0 000000000000a00000000000000000000000000000000a0q0a0a0n

JPVT INTEGER (N)

QRAUX REAL (N)

WORK REAL (N)
THREE AUXILIARY ARRAYS USED TO FACTOR THE MATRIX A.
(NOT REQUIRED IF ITASK .GT. 1)

B REAL (M)
THE RIGHT HAND SIDE OF THE LINEAR SYSTEM.
IN A LEAST SQUARES DATA FITTING PROBLEM B(I) CONTAINS THE
VALUE OF I-TH OBSERVATION.

ITASK INTEGER.
IF ITASK=1, THEN SQRLS FACTORS THE MATRIX A AND
SOLVES THE LEAST SQUARES PROBLEM.
IF ITASK=2, THEN SQRLS ASSUMES THAT THE MATRIX A
WAS FACTORED WITH AN EARLIER CALL TO
SQRLS, AND ONLY SOLVES THE LEAST SQUARES
PROBLEM.

ON RETURN

X REAL (N)
A LEAST SQUARES SOLUTION TO THE LINEAR SYSTEM.

RSD REAL (M)
THE RESIDUAL, B - A*X . RSD MAY OVERWRITE B

IND<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>