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Preface

A wide range of mathematical techniques are now available for the so-
lution of problems involving the interaction of waves with structures.
Many of these techniques are described in existing textbooks, but of-
ten not in the context of wave/structure interactions and often without
reference to applications at all. This book draws together some of the
most important of these methods into a single text to form a convenient
reference work for both applied mathematicians and engineers. All of
the techniques are described within the context of wave/structure in-
teractions and are often illustrated by application to research problems.
An advantage of describing a number of methods within the same text is
that, for particular problems, direct comparisons can be made between
them.

The methods described in this book may be applied to a wide variety of
problems from many fields of research including water waves, acoustics,
electromagnetic waves, waves in elastic media, and solid-state physics.
When writing the book it soon became clear that it was impossible to
do justice to all of these fields, and so we decided to focus mainly on
problems that have interpretations within the linearized theory of water
waves. However, we have made extensive reference to applications of
the techniques in other areas, both throughout the text and in extensive
bibliographical notes that are placed at the end of many of the sections
within the book. Our hope is that in this way the book will be a useful
reference work for workers from a wide range of research fields.

The reader is assumed to have a knowledge at an undergraduate level
of multivariable calculus, including the solution of linear partial differ-
ential equations, and complex-variable theory. Detailed explanations
are given of the important steps within the mathematical development
and, where possible, physical interpretations of mathematical results are
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given. The overall aim is provide a pedagogical text that will help read-
ers apply the techniques to their own problems.

In view of our decision to focus on water waves, the first chapter of
the book is concerned with the linearized theory of the interaction of
water waves and structures. One purpose of this chapter is to help those
unfamiliar with the area to appreciate more the applications discussed
in later chapters. We also took the view that it would be convenient
for those who work in water waves to have a fairly detailed account of
background material readily to hand.

Each subsequent chapter deals with a different technique. Chapters 2
and 3 consider the representation of solutions by infinite series of suitably
chosen functions. Chapter 2 first describes the construction of eigen-
function expansions using the technique of separation of variables for
partial differential equations, and then goes on to describe the method
of matched eigenfunction expansions. Chapter 3 deals with so-called
multipole expansions where the basis functions are singular at a point
exterior to the domain of interest. In some simple cases the multipoles
are exactly the eigenfunctions obtained by separation of variables.

Many problems are conveniently formulated in terms of integral equa-
tions and in Chapter 4 some methods for the formulation and numerical
solution of such equations are described. In the water-wave problem
numerical methods based on integral equations obtained from an appli-
cation of Green’s theorem are popular. Crucial to the success of these
methods is the efficient evaluation of the Green’s function and Chapter
4 also describes effective methods for this purpose.

The Wiener-Hopf method and the related residue calculus theory are
important techniques for the solution of problems of wave interaction
with semi-infinite geometries. A detailed exposition of these advanced
techniques is given in Chapter 5. Examples are used to illustrate how
both techniques can be used to obtain approximations to the solutions
of problems involving finite geometries.

Chapter 6 deals with wave interaction with an array of structures and
describes both exact methods and very effective approximate techniques
based on the assumption that the structures are widely spaced compared
to the wavelength. Arrays that are compact or that extend to infinity
in one direction are both treated.

It is often useful to use approximate techniques on difficult problems
in order to gain insight into the physical processes involved. It is with
this in mind that approximate methods are given in Chapter 7 for the
analysis of wave interaction with objects that are small relative to the
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wavelength. In this chapter, the method of matched asymptotic expan-
sions is applied to both small structures and structures with small gaps.
A separate technique for the solution of eigenvalue problems involving
small objects is also described.

Finally, Chapter 8 describes variational techniques that can, for cer-
tain classes of problems, yield very accurate solutions with minimal com-
putational effort. First of all, it is shown how variational methods can be
used to improve the eigenfunction techniques given in Chapter 2, and
then the classical Rayleigh-Ritz method for the solution of eigenvalue
problems is described.

Almost all of the numerical computations reported here were carried
out by the authors specifically for inclusion in this book. We also believe
that some of the material in this book appears in print for the first time.
This includes the multipole solution for oblique-wave incidence on a sub-
merged cylinder in §3.1.1, the development of the wide-spacing approxi-
mation for scattering and radiation by an arbitrary number of structures
described in §6.3, and the higher-order solution to the breakwater-gap
problem by matched asymptotic expansions given in §7.2.3

We are very grateful to Paul Martin and David Porter for answering
our technical queries, and to Maureen Mclver for her critical reading of
the manuscript. Thanks are also due to John Cadby for some of the work
in §3.1.1 and to Matthew Bowen for working through some sections and
weeding out mistakes. Some must remain, and for that we apologise.

C. M. Linton
P. Mclver
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Chapter 1

The water-wave problem

The techniques described in this book have applications in many areas
of physical interest, including the fields of water waves, acoustics, and
electromagnetic waves. However, for definiteness in the interpretation
of both the problems and their solutions, we have decided to focus most
attention on applications in the linearized theory of water waves. Exam-
ples of the application of the techniques to problems in other physical
contexts are referred to, where appropriate, in the text and are also
provided through the extensive bibliographical notes. For the scatter-
ing of electromagnetic and acoustic waves by structures, an extensive
collection of results is given by Bowman, Senior, and Uslenghi (1987).

The present introductory chapter is therefore concerned with the hy-
drodynamics of the interaction of water waves with structures. It in-
cludes the equations that govern the fluid motion as well as definitions
of integrated quantities which are physically important, such as hydro-
dynamic forces and reflection and transmission coefficients.

In §1.1, we begin with brief derivations of the governing equations
and nonlinear boundary conditions for the water-wave problem; the re-
duction to the linearized theory for small amplitude waves is described
in §1.2. When subject to an incident water wave, a structure will in
general scatter the incident wave field, and be forced to move so that
further waves are radiated. On the basis of the linearized theory, the
full problem can be decoupled into a scattering problem and a radiation
problem which are linked by the equation of motion for the structure.
In §1.3 the scattering and radiation problems are described in detail,
and expressions are given for the hydrodynamic forces on a structure in
both problems. Some identities involving these forces, as well as other
integrated quantities, are discussed in §1.4. Finally, in §1.5, the rela-
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tionship between the hydrodynamic forces in the radiation problem and
the energy of the fluid motion is described.

1.1 Introduction

Here a brief introduction is given to the standard equations of invis-
cid water-wave theory. For a more complete account the reader might
consult Chapter 1 of the book by Crapper (1984) or of that by Johnson
(1997).

For all of the water-wave problems discussed in this book, a Cartesian
coordinate system (z,y, z) is adopted with the z-axis directed vertically
upwards and with z = 0 in the plane of the undisturbed free surface.
For purely two-dimensional motion the dependence on y will be omitted
and, throughout, time is denoted by t.

The fluid is assumed to be inviscid and incompressible and its motion
to be irrotational. For irrotational motion the fluid velocity u may be
expressed as the gradient of a scalar velocity potential ®(x,y, z,t), that
is u = V®. Conservation of mass requires that the divergence of the
velocity is zero so that ® satisfies Laplace’s equation

V2 =0 (1.1)

throughout the fluid.
The vertical elevation of a point on the free surface is written

z =n(z,y,t). (1.2)

The kinematic condition that fluid particles cannot cross the air-water
interface is obtained by equating the vertical speed of the free surface
itself to that of a fluid particle in the free surface to get

on  ovon o8on _ 00

ot " owor " oyoy 0z e=n@y,t).  (13)

If surface tension is neglected (this is valid for waves longer than a
few centimetres), the pressure must be continuous across the interface,
and at any point in the fluid Bernoulli’s equation,

0P

S+ |V<I>|2+I—;+gz:0, (1.4)
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holds where p is the fluid density, g is the acceleration due to gravity and
p is the pressure in the fluid relative to atmospheric pressure. Because of
the comparatively small density of the air its motion may be neglected
and the pressure along the interface taken to be constant. Bernoulli’s
equation evaluated at the interface, where p = 0, then gives the dynamic
condition
0P 2
5 T2IVel +gn=0 on z=n(zy,1). (1.5)
When there is an impermeable sea bed so that the local fluid depth
is h(z,y), then there must be no flow normal to the bed and hence
0P
= _90
on

where n is a coordinate measured normal to the bed.

on z=—h(z,y), (1.6)

1.2 The linearized equations

For sufficiently small motions relative to the wavelength, the above
nonlinear free-surface conditions (1.3) and (1.5) may be linearized about
the undisturbed state. The linearized theory requires the amplitude of
the fluid motion to be small compared to the wavelength throughout
the fluid domain including the vicinity of any structures, and hence
the amplitude of any structural motions must also be small relative to
other length scales. It is consistent with the linearization to apply the
free-surface boundary conditions on z = 0, in which case the kinematic
condition (1.3) becomes

on 0P
_— e — = ]..
5 =5, O ¢ 0 (1.7)
and the dynamic condition (1.5) becomes
i
aa—t—l—gn:O on z=0. (1.8)

These two conditions may be combined by differentiation of (1.8) with
respect to t and substitution for 9n/dt from (1.7) to get the linearized
free-surface condition

9’ 9%

- — = =0. 1.9
8t2+gaz 0 on z=0 (1.9
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All of the results, here and in subsequent chapters, are based on the
linearized theory and relate to time-harmonic motion with a specified
frequency. Corresponding results for more complicated motions such as
the response to a random sea may be constructed by Fourier analysis (see
for example Faltinsen 1990, Chapter 2). For time-harmonic motions of
radian frequency w, time may be removed from the problem by writing

®(z,y,2,t) = Re {4(z,y,2) e_i“’t} , (1.10)

where ¢ is a complex-valued potential and Re denotes the real part.
This is a convenient way of extracting the time dependence in time-
harmonic problems as only a single function need be solved for. A more
cumbersome alternative is to write

®(z,y,2,t) = ¢z, y, 2) coswt + ¢i(z, v, 2) sinwt, (1.11)

where ¢, and ¢; are the real and imaginary parts of ¢, and then to solve
for the two real-valued functions ¢ and ¢; separately. A comparison
of (1.10) and (1.11) shows that ¢ contains information about both the
amplitude and the phase of the motion.

From equation (1.1) it follows that ¢ satisfies Laplace’s equation

Vi =0 (1.12)

throughout the fluid domain. In terms of ¢, the linearized free-surface
condition (1.9) becomes

0p B
E_qu on z=0, (1.13)

where K = w?/g, and the bed condition (1.6) becomes

o= 0 on z=—h(z,y). (1.14)

For deep water, characterized by the limit h(z,y) — oo for all z and y,
the condition (1.14) is replaced by

[Vd| =0 as z— —o0. (1.15)

The potential ¢ must also satisfy boundary conditions on any structures
within the fluid and radiation conditions at large horizontal distances;
these will be discussed in §§1.3.1-1.3.3.
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We will only consider the cases of deep water and constant finite
depth in any detail. A great deal of work has been done on scattering
problems in which h is variable; for a recent review of two-dimensional
problems of this type, see Porter and Chamberlain (1997). In the case
of constant finite depth A, one solution of (1.12)—(1.14) is a plane wave.
With horizontal polar coordinates (r,6) defined by

x=rcosf), y=rsinb, (1.16)
a plane wave of amplitude A and wavenumber k propagating in the
direction # = 3 has a potential

by = igA
I " Ucoshkh

corresponding to a free-surface elevation given, from (1.8) and (1.10),
by

ek c0s(9=8) cosh k(z + h), (1.17)

n = Aelkreos(=F) (1.18)

The wavenumber & is the number of wavelengths in a distance 27, meas-
ured in the direction of wave propagation, and so the wavelength of such
a disturbance is A = 27 /k. If the wave is propagating in the direction
of # = 0 along the xz-axis, then the exponential factor in (1.17) and
(1.18) reduces to €*2. The potential ¢; identically satisfies (1.12) and
(1.14) and will satisfy (1.13) provided K = w?/g and k are related by
the dispersion relation

K = ktanhkh. (1.19)

The solutions to this equation will be discussed in detail in §2.1. Here
we just note that for a specified frequency w the equation determines
the wavenumber k.

In the case of deep water the dispersion relation reduces to K = k
and a plane wave making an angle # = 0 with the positive = axis has
the form

¢I — _% elKrcos(O—ﬁ) eKz, n= AelKrcos(O—ﬁ) ) (120)
|

1.3 Interaction of a wave with a structure

On the surface of a structure, the normal component of the structural
velocity must equal the velocity component in the same direction of an
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adjacent fluid particle. In terms of the velocity potential ® introduced
in §1.1, this requires

o®
2 _v,. 1.21
o = (1.21)

where V,, is the component of the structural velocity in the direction of
the normal coordinate n directed out of the fluid. In the linearized theory
this condition is applied on the equilibrium surface of the structure which
will be denoted by Sg.

A wave train incident upon a floating structure will be diffracted to
produce a scattered wave field and also set the structure in motion to
produce a radiated field. By linear superposition, the velocity potential
may be decomposed into two parts as

d = dg + Oy. (1.22)

The potential ®g is the solution of the scattering problem in which the
structure is held fixed in the waves and it may be further decomposed
as

&g = o)+ Pp (1.23)

where ®1 represents the incident wave train and ®p, the diffracted waves.
Because the structure is held fixed, the appropriate boundary condition
is

0%s 0 0%p _%
on on  On
The potential ®g is the solution of the radiation problem, in which the

structure is forced to oscillate in the absence of an incident wave, and
satisfies

on Sg. (1.24)

% =V, on Sp. (1.25)

In general, the normal velocity V, is found from the equation of motion

of the structure (see Mei 1983, §7.2, or Newman 1977, Chapter 6) and

will depend, in particular, on the forces that result from any incident
waves.

Following (1.10), for time-harmonic motions with radian frequency w,

the time variation in the scattering potential is separated out by writing

®s = Re {(¢1 + ¢p) e}, (1.26)
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where, for constant finite depth, the incident wave ¢ has the form (1.17)
(or (1.20) for deep water). Similarly, for the radiation potential the time
variation is separated out by writing

®p = Re {pre ™} . (1.27)

Both ¢p and ¢r are complex-valued functions of position only.

1.3.1 The radiation condition

To obtain a unique solution, the diffracted field ¢p and the radiated
field ¢r, defined in equations (1.26) and (1.27), respectively, must each
satisfy a radiation condition specifying that the waves corresponding
to these potentials propagate away from the structure. For w equal to
either ¢p or ¢r the radiation condition can be written

. ow
i (a F 1’“") =0 (1.28)
in two dimensions and
ow
li V2 (22 = .
Jim 7 (67‘ 1kw> 0 (1.29)

in three dimensions, where k is the wavenumber introduced in §1.2 and r
is the horizontal polar coordinate introduced in equation (1.16). In three
dimensions a radially spreading cylindrical wave of decreasing amplitude
is obtained and energy conservation arguments require the factor of 7172
in (1.29). The role of the precise form of the radiation condition (1.29)
in formulating integral equations is demonstrated in §4.2.1.

Here it is assumed that there are no ‘trapped-mode’ solutions at the
frequency of interest. A trapped mode supported by the structure is a
free oscillation of the fluid that has finite energy. The existence of such
a mode would mean that the radiation condition no longer guarantees
the uniqueness of the solution. Uniqueness has been proved for certain
classes of geometries; for example, uniqueness of the solution is estab-
lished for surface-piercing structures which have the property that any
vertical line emanating from the free surface does not intersect the body
(John 1950), or two-dimensional structures which are contained within
lines which emanate from the free surface at a certain angle (Simon and
Ursell 1984). On the other hand, trapped modes have been proved to ex-
ist for certain surface-piercing structures in the two-dimensional water-
wave problem by Mclver (1996a) and in the three-dimensional problem
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by Mclver and Mclver (1997). Their existence for certain submerged
structures has been demonstrated by Mclver (2000a). The implications
of the existence of trapped modes for the solutions of the boundary-value
problem are discussed by Mclver (1997), while the implications for the
hydrodynamic forces, defined later in §1.3.4, are discussed by Newman
(1999).

1.3.2 The scattering problem

In the scattering problem, the solution ¢p for the diffracted wave field,
defined in equation (1.26), is a solution of Laplace’s equation within
the fluid domain and satisfies the free-surface condition (1.13), the bed
condition (1.14) (or (1.15) for deep water), and

otn _ O
on on
As noted in §1.3.1, to ensure a unique solution the diffracted field must

also satisfy a radiation condition in the form of either (1.28) or (1.29)
with w = ¢p.

on Sg. (1.30)

1.3.3 The radiation problem

To fully describe the position and orientation of a rigid structure, six
coordinates, corresponding to six modes of motion, are required. In
naval hydrodynamics, the translational modes are called surge, sway,
and heave for the motions parallel to the z-, y- and z-axes, respectively,
and the rotational modes are called roll, pitch, and yaw for motions
about these axes. In general, the motion of the structure will be a
combination of movements in all of these directions and the velocity of
a point on the surface, measured normal to the surface, may be written

Vo =Un+Q.(r X n), (1.31)

where r is the position vector of the point measured from the centre of
rotation and n is a normal vector to the structure’s surface directed out
of the fluid. Here, the translational velocity vector

U = (U, Uz, Us) (1.32)

has components corresponding to surge, sway, and heave motions, re-
spectively, and the rotational velocity vector

Q = (Us,Us, Us) (1.33)
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has components corresponding to roll, pitch, and yaw, respectively. The
normal velocity V, given by (1.31) may be rewritten as

6
Vo= Uwny, (1.34)
p=1

where {n,;u =1,2,3} are the x,y, z components of the unit normal tc
the structure defined by the direction cosines

ny = cos(n,z), ng=cos(n,y), ng=cos(n,z), (1.35)

while {n,; u = 4,5,6} are the corresponding components of r x n. If a
point on the structure’s surface has coordinates (z,y,z) and (2',y', 2')
is the equilibrium position of the centre of rotation, then

ng = (y—y)ns — (z — 2')na,
ns = (z — 2")ny — (z — 2')ng, (1.36)
ne = (x — ' )nz — (y — y')ny.

For time-harmonic motions, each velocity component may be written

U, = Re {u, e '} (1.37)

and hence by linear superposition the radiation velocity potential, de-
fined in equation (1.27), may be decomposed as

6
SR = uudy (1.38)

p=1

where u,, is the complex amplitude of the oscillations in mode p. The
potential ¢, describes the wave field due to oscillations in mode p with
unit velocity amplitude. The boundary condition (1.25) on the struc-
tural surface Sg, with V;, given by (1.34), is satisfied provided that

09
on

Hence, ¢,, is a potential satisfying Laplace’s equation within the fluid,
the free-surface boundary condition (1.13), and the structural boundary
condition (1.39). To obtain a unique solution, the radiated field must
also satisfy a radiation condition in the form of (1.28) or (1.29) with
w= @,

=n, on Sg, pu=12,...,6. (1.39)
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1.3.4 Hydrodynamic forces and moments

A structure immersed in water will be subject to forces due to the
pressure from the surrounding fluid. From Bernoulli’s equation (1.4),
after linearization, the pressure at any point in the fluid, relative to that
of the atmosphere, is

0P
P=—pgz—pg- (1.40)

The first term is the pressure associated with the submergence of the
measurement point, while the second term is the hydrodynamic pressure
due to the motion of the fluid. Here, we are concerned only with the
latter. The force on a structure is found by integrating the pressure
multiplied by the unit normal vector over the surface of the structure
and so, from (1.40), the u component of the hydrodynamic force due teo
the fluid motion is given by

Fult)=—p / / %I)n” ds, (1.41)
S

where the integral is taken over the mean wetted surface Sg for con-
sistency with the linearization and n, is the generalized normal defined
in §1.3.3. For time-harmonic motion of angular frequency w the time-
variation in the potential is removed as in (1.26) and (1.27) so that

Fu(t) =Re{F, e}, (1.42)
where from (1.41),
F, = iwp// ¢n, dS. (1.43)
SB

As explained previously, the velocity potential describing the fluid
motion may be decomposed into two parts representing the scattered
and radiated wave fields. The total hydrodynamic force on the structure
due to these wave fields is decomposed similarly by writing

6
Fu=Xu+Y wfop, (1.44)

v=1
where the component of the so-called exciting force due to the scattered
wave field is

X, = iwp / / (¢1 + ¢p)n, dS (1.45)
Ss
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and the component of the force resulting from forced oscillations in
mode v is

fuu = iwp//ﬁt’yn#dS- (1.46)
SB

It is conventional to further decompose the latter force into real and
imaginary parts by writing

fop =iw | ay +lb”“ : (1.47)
B L w

The first term is that part of the force in phase with the acceleration in
mode v, and the second term that part in phase with the corresponding
velocity. The real quantities a,, and b,, are termed the added mass
and radiation damping (or just damping) coefficients and they may be
considered as properties of the structure and, in general, are functions
of frequency. From (1.46) and (1.47),

b,
Qv + lw” = p// $um,, dS. (1.48)
Sg

Further details of forces and moments and the equations of motion of a
structure are given by Mei (1983, §7.2) and Newman (1977, Chapter 6).

1.3.5 Limitations of the inviscid, linear theory

The linearized theory assumes that the wavelength is much greater
than the wave height (that is, the wave slope is small). The fluid motion
generated by any moving structures must also be correspondingly small.

Figure 1.1 roughly indicates the region of validity of the inviscid linear
theory described in this chapter. Here H is the wave height (trough to
crest), D is a typical diameter of a structure and A is the wavelength.
When H/D is large, so that particle paths are long compared to the
structural diameter, low separation occurs and this changes substan-
tially the flow from that predicted by the inviscid theory. This is the
region marked ‘viscous’ in figure 1.1. When A/D is large, so that the
wavelength is much longer than typical structural dimensions, the wave
field is little modified by the structure and wave diffraction is relatively
unimportant. For moderate A/ D the wave field is significantly modified
by the presence of the structure and wave diffraction effects must be
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FIGURE 1.1

Regimes of importance for viscous and diffraction forces.
(Adapted from Figure 1.6 of O. M. Faltinsen, Sea Loads on
Ships and Offshore Structures, Cambridge University Press,
1990.)

included. As the fluid particle paths are now small compared to the
size of the structure, separation will not usually occur and the inviscid
theory may be used as viscous effects are confined to the thin bound-
ary layers on the structure’s surface. Thus, the primary application of
the theory is to the parameter regime marked ‘diffraction’ in Figure 1.1.
For further discussion of viscous effects see, for example, Sarpkaya and
Isaacson (1981, Chapter 6).

1.4 Reciprocity relations

There are some very general identities relating the quantities that
have been introduced which enhance our understanding of the physical
meaning of these quantities. They also provide checks that can be used
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on analytical or numerical work and help reduce the effort required to
calculate the quantities related by them. One way of deriving these
identities is to use Green’s theorem (see §4.2) which, for two harmonic
potentials ¢ and 1 both satisfying the free-surface and bottom boundary
conditions (1.13) and (1.14) (or equation 1.15), implies that

] (65 i) oseam [f (452 -v5)as-o. 0o

where Sg is the wetted surface of the structure, Sx is a vertical circular
cylinder of radius X, and as usual the normal is directed out of the fluid
region. In two dimensions Sy is replaced by two vertical lines at z = £ X
and following the standard convention we write S, for limx_,. Sx-

By substitution of various radiation and scattering potentials in place
of ¢ and ¥ in (1.49) many useful results can be obtained. This was
first done systematically by Newman (1976), though many of the results
were known much earlier. The method of generating these so-called
reciprocity relations is now standard and only brief details will be given
here. A more thorough account, including references to the original
derivations of the results, can be found in Mei (1983, §7.6), though some
more recent results are described at the end of this section.

Suppose ¢ = ¢, ¥ = ¢, are two radiation potentials corresponding
to two different modes of motion as defined in (1.38) and (1.39). It
follows from (1.49) that the added mass and damping matrices given by
(1.48) are symmetric. If we use ¥ = ¢,, the complex conjugate of ¢,,
in (1.49) and make use of this symmetry and the radiation condition
(1.29), we can relate the damping coefficient to the far-field form of the
radiation potentials through

by = pwks/w/ ¢, dS. (1.50)

If we restrict attention to the situation in which far from any structures
the depth has a constant value, &, then in two dimensions we can assume
(see equation 1.17) that

+ :l:lka: cosh k(z + h)
O~ A cosh kh

for some constants Aff, which represent the amplitudes of waves radiated
to oo, and then (1.50) gives

as x — %oo, (1.51)

b = pKcg(A7 Ay + AT AD), (1.52)
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where

v w 2kh
_Qw_ w2 .
T3 2% < + sinh 2kh) (1.53)

is the group velocity for waves in water of depth k. (The group velocity
is the velocity at which energy is propagated.)
In three dimensions we can assume that

2 N2 ., . . coshk(z+h)
~ _“ ikr—in/4
Pu ~ Au(0) < ) ¢ cosh kR

- as r—oo (1.54)

(this will be explained in §2.3.4 below), where A,(6) is some function
which represents the angular dependence of the amplitude of the radi-
ated waves in the far field and then the damping coefficients satisfy

_ 2pKey [T

b = A, (0)A,(6) do. (1.55)

0
It will be shown in §1.5 that this implies that the damping coefficients
by, are proportional to the energy radiated to infinity by a structure
oscillating in mode pu.

Next we examine what happens if we use two scattering potentials in
(1.49). Suppose ¢ = ¢, 9 = ¢@ with 9™ /on = 8¢ /on = 0 on
Si. In two dimensions we can characterize such a potential by

¢(j) ={4,,B;;C;,D;}, j=12, (1.56)

implying that

0 ) i )
Substitution of this into (1.49) gives the simple formula
A1By — B1A2 = C1Dy — D1Cs. (1.58)
A plane wave of unit amplitude incident from £ = —o0 and scattered by
a structure is characterized by
oW = {1, Ry; 1,0} (1.59)
whilst if the incident wave is from = = 400 we have
¢? = {0,Ty; Rz, 1}. (1.60)
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where R; and T;, i = 1,2, are known as reflection and transmission
coefficients, respectively. Substituting these forms into (1.58) shows that

T, = Ts. (1.61)

This is a remarkable result. It states that the transmission coefficient is
independent of the direction of the incident wave regardless of the shape
of the structure (or indeed the number of structures).

Instead of using 1 as above we can use ¢ = ¢(1) = {R;,1;0,T1} and
then (1.58) gives

1—|Ri]? = |Th)? (1.62)

which is a statement of the conservation of energy. Similarly 1—|R5|? =
|T2|? and combining these equations with (1.61) shows that

|y | = | Rl (1.63)

Thus the modulus of the reflection coefficient, though not necessarily the
phase, is independent of the direction of the incident wave. (Equality of
the phases occurs if the structure has symmetry about z = 0.) Informa-
tion about the phase of the reflection and transmission coefficients can
be obtained by taking ¢ = ¢ and ¢ = ¢(2). If we write

T=|Tle®, R;=|Rle™, j=12 (1.64)
then (1.58) reduces to
81 + 6y =20 £ . (1.65)

Similar results can be obtained for the three-dimensional case. A
general scattering potential due to an incident wave of amplitude A,
making an angle 3; with the positive z-axis, has the far-field form

, igAcoshk(z+ h) | ik 3 2 \'? . ikr—i
¢ ~ = wcosh(kh : lek B (7r—kr) AT

(1.66)
where we note that the normalized scattering amplitudes AU)(9) (like

R and T in the two-dimensional case) are non-dimensional, unlike the
functions A,(¢) defined in (1.54) (and AE defined in equation 1.51)
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which have the dimensions of length. Two results that can be obtained
are

AW (B +7) = AD(By + ) (1.67)
and
1 27
AW (By) + A () = —~ / AD (6YA®) () 4. (1.68)
0

Returning to the two-dimensional case, we can obtain further results
by considering the potential ¢ = —igw='(¢, — ¢,.), where ¢, is a radi-
ation potential whose far field is given by (1.51). Since on the structure
O0¢n/0n = ny,, which is real, it is clear that 8y /0n = 0 on Sg and so ¥
is a scattering potential characterized by

Y= {-Az, A5 Af, AL} (1.69)
With ¢ = ¢V = {1, Ry; T, 0}, (1.58) gives
AL + RiA; + TAL =0, (1.70)
and with ¢ = ¢ = {0, T; Rz, 1} we obtain
A+ RAL +TAL = 0. (1.71)

These results are known as the Bessho-Newman relations. For the case
of a structure that is symmetric about a vertical plane making symmetric
(heave) oscillations we have

Al = A7 = A, = |A] &, (1.72)

say, whilst for such a structure making antisymmetric (surge or roll)
motions

Al =—A; = A, = |A,| €, (1.73)

say. Noting that Ry = Ry = R in this case, we see that the Bessho-
Newman relations show that

R4+ T = —AjjA, = — e R—T=—A,/A4, = —e¥% . (1.74)

In three dimensions the Bessho-Newman relations are

- 1 2r ]
Au(By) + Ap(Bi +m) + —/ AL (0)AY)(9)do =0 (1.75)
™ Jo
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and they reduce to particularly simple expressions when the structure is
axisymmetric (Davis 1976). For such a structure the scattered field due
to an incident wave making an angle 3; with the positive z-axis is an
even function of § — 3; and so we can write the scattering amplitude as

oo
AV () = Z %" cm cosm(0 — f3;) (1.76)
m=0
for some set of unknowns ¢,,,, m =0,1,2,.... Here ¢, is the Neumann

symbol, defined by €9 = 1, €, = 2, m > 1 and the factor €,/2 is
introduced for convenience. The angular dependence of the radiated
waves in mode p can be written in the form

A,8) = 3 (=)™ (am cos mb + by sin mh) (1.77)

and then (1.75) reduces to

am + (L4 ¢m)8m = 0, m=0,1,2,..., (1.78)

b + (1 4 ¢m)bm =0, m=1,23,..., (1.79)

from which it is clear that each of the coefficients c,, satisfies the equation
1+ cm| =1

Finally, we can take ¢ = ¢y + ¢p, the potential of the incident plus

diffracted field on a fixed structure, and take ¥ = ¢,, the radiation

potential for the forced motion of the same structure in mode u. Since
both ¢p and ¢,, describe outgoing waves at infinity, application of (1.49)

results in
. 19} o
X, = —ipw [ (%2~ 0,58 as (1.80)
Soo

which relates the exciting force in the ut direction, defined in (1.45), to
the far field of the radiation potential for mode p. In the two-dimensional
case we assume (1.51) to hold and if the incident wave has amplitude A
and is from ¢ = oo we obtain

X, = —2iwpcgAAE. (1.81)

In three dimensions, with the incident wave making an angle  with the
positive z-axis we have

X, (B) = —4iwpk Y AAL(B + ). (1.82)
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These are known as the Haskind relations and they show that the ex-
citing force in the put? direction is proportional to the amplitude of the
waves radiated by the forced motion of the structure in mode y, in the
opposite direction to that of the incident wave.

All the reciprocity relations derived above relate far-field quantities,
or quantities such as the damping coefficient which are defined in terms
of integrals of near-field quantities. In two dimensions one can actually
express the scattering potential at all points in the fluid in terms of
the solutions to radiation problems. For example, for a structure which
is symmetric about a vertical plane (and assuming that the scattering
problem possesses a unique solution), McIver (1996b) showed that the
scattering potential due to an incident wave of unit amplitude, ¢(1),
defined in (1.59), can be expressed in terms of the solutions to two
radiation problems. Thus if ¢5 is the solution to the symmetric (heave)
radiation problem and ¢, is the solution to the antisymmetric (surge or
roll) radiation problem, with far-field amplitudes defined in (1.72) and
(1.73), then

won— Ly - Lo — 5
g ¢ - 2A—a(¢a ¢a) 2A—S(¢S ¢S), (1'83)

provided that A, /= 0 andAs /= 0. Note that equation (1.74) follows
immediately from the far-field form of this relation.

Reciprocity relations can also be derived for water-wave problems
other than those described in this section. Thus Srokosz (1980) and
Linton and Evans (1993b) derived relations applicable to a structure
placed in a channel with vertical sides and Linton and Mclver (1995)
and Cadby and Linton (2000) derived relations (in two and three di-
mensions, respectively) applicable to a structure in a two-layer fluid
consisting of a finite fluid layer of one density above an infinitely deep
layer of greater density. Another situation in which reciprocity relations
can be derived is described in §2.3.2. See also the bibliographical notes
at the end of §6.3.

Finally, we note that reciprocity relations analogous to those described
above for water-wave problems can also be derived for acoustic or elec-
tromagnetic waves, see for example Jones (1986, §1.35).
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1.5 Energy of the fluid motion

Here the relationship between the added mass and damping coetfi-
cients, defined in (1.47), and the energy of the fluid motion in a forcing
problem is considered. In particular, it is shown that the damping meas-
ures the energy radiated to the far field while the added mass is related
to the energy of the near field motion.

Consider a radiation problem and let ®(x,y, z,t) be the corresponding
velocity potential. For simplicity a structure oscillating in a single mode
of motion will be considered (the generalization to multiple modes of
motion is given by Falnes and Mclver 1985). Thus, as in (1.27) and
(1.38),

®(z,y, z,t) = Re {up(z,y,z) e} (1.84)

where u is the complex amplitude of the structures velocity. The corre-
sponding added mass and damping coefficients, as defined in equation
(1.47), will be denoted by a,, and b,,, respectively.

1.5.1 Energy radiated to the far field

It has been shown in (1.50) that the damping coefficient is related
to the far-field motion. In fact, it is proportional to the time-averaged
energy Hux of the waves radiating to the far field, as will now be shown.

The rate of working of the hydrodynamic force on an area element
AS is pg AS 0%/0n, where pg = —pOP/0t is the dynamic pressure and
0®/0n is the outward normal component to AS of the fluid velocity.
The total energy flux across S is therefore

0% 0d
E;=— ——dSs. 1.85
f ”// at on 20 (1.85)
Seo
Now
0% 0d ) it 0 it
i _ w —LeTw 1.86
51 Bn Re {—iwuge }Re{uane (1.86)
0P _o 0o
_ 1 2, 7Y 2iwt 1 2,7
= 2u.)Im{u QSane }+ 2u.)Im{|u| QSan} (1.87)
where the result
Rez; Rezo = %RG{Z1Z2}+ %Re{zlz_z}, (188)
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which holds for any two complex numbers z; and z3, has been used. The
average energy flux over one period is therefore

w 2n fw . (95
(B = 5/0 Eydt = —Lpulul //Im{(b%} ds.  (1.89)
Sco

By virtue of the radiation condition (1.29), as the radial coordinate
T — 00

¢ . -
05, ~ —ik¢P (1.90)
and therefore from (1.50)
(Ey) = boulul? [[ 4345 = H1ulb, (L)
Sco

and the time-averaged energy Hlux is proportional to the damping co-
efficient. In other words the damping coetficient measures the energy
radiated away from the structure by the waves.

1.5.2 Potential and kinetic energy

The potential energy of a fluid column of horizontal cross-section AS
due to the elevation 7 of the free surface is

n
pgAS/ zdz, (1.92)
0

where the potential energy has been taken to be zero in the absence of
waves. The total such potential energy of the Hluid is therefore

V = 1pg //772dS. (1.93)
Sk

From (1.8),
n= % Re {iug(z,y,0) e} (1.94)

and hence by (1.88),

2).,12 2
_ —pwlul — a P 2 —2iwt// 2
V=" //¢>¢>dS 1, Reque $2dS (1.95)
Sk Sg
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and so the time-averaged potential energy
21,12 _
(V) = M//qbqbds. (1.96)
4g
Sy

The total kinetic energy of the fluid motion over the fluid volume 7 is

T = %p///V@-V@dT (1.97)

T

and hence from (1.88),

T = 1pluf // V¢ -Vedr + 1pRe {zﬁe—?m // v¢.v¢d7}.

(1.98)

As ¢ is a solution of Laplace’s equation and by the divergence theorem

///Vfb-VEdT:/T//V-(¢V$)d7=é/¢g—id8, (1.99)

where n is the outward normal coordinate to the surface S surrounding
7 (the bed may be excluded as 9¢/0n is zero there). Thus, the time-
averaged kinetic energy is

(T) = %p|u|2//¢g—gd5’. (1.100)
S
Now by (1.4%), (1.96), and (1.50),
/s/qsg—de:ZB/qsggdS-l—%24/¢5d5+i/¢g—5d5 (1.101)

1 ibw) 4 ib,.,,
L + V) — 1.102
p ( B w p|u|2< > pw ( )

and so from (1.100),

(T) = (V) = Layuul® (1.103)
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added mass

Kc

FIGURE 1.2
Non-dimensional added mass a,,,, /pwc® of a horizontal cylinder
of radius ¢ submerged to a deptﬁ d vs. frequency parameter Kc.

That is, the difference between the time-averaged kinetic and potential
energies is proportional to the added mass coefficient.

Consider the contribution to (T') from the region g bounded by Sk,
a vertical circular at » = R, and S.. If R is sufficiently large for
the asymptotic form of the radiation potential (1.54) to apply then the
integrals over Sg and S, cancel, leaving only the integral over the free
surface. It follows that in the region 7g, (T') = (V) and hence, from
(1.103), the added mass is related to the energy of the near-field motion.
When free-surface effects are dominant, so that V' exceeds T, then the
added mass is negative. This is illustrated in Figure 1.2 for the two-
dimensional problem of an oscillating, submerged, horizontal circular
cylinder in deep water. The added masses in heave and sway are equal
for this geometry and are plotted here against a frequency parameter.
For the deeper submergences the added mass varies with frequency but
is always positive. If the submergence is reduced, so that the cylinder
interacts strongly with the free surface, a range of frequencies appears
for which the added mass is negative. This phenomenon is discussed in
detail by McIver and Evans (1984b).
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Chapter 2

Eigenfunction expansions

The general theory in Chapter 1 shows that a linear water-wave/structure
interaction problem requires the solution to Laplace’s equation in the
fluid domain subject to boundary conditions on the free surface, the
bed, the structure or structures and, if the fluid is unbounded, at in-
finity. The techniques available for the solution of such a problem will
depend on the geometry of the Hluid domain and the geometries of the
structures involved.

Laplace’s equation separates in many different coordinate systems and
if the geometry of the problem allows the boundary conditions to be sep-
arated also, progress can be made by utilizing this separation property.
In this chapter we will investigate problems where the velocity poten-
tial can be written in terms of infinite series of separated eigenfunctions.
This technique can thus be used when all the boundaries fit nicely into a
particular coordinate system and so is fairly restricted in its application.
Nevertheless it can be used to solve a number of basic problems simply
and accurately.

Of course, realistic geometries will rarely have these nice properties
but it will often be the case that away from the bodies under investiga-
tion the fluid domain will be such that eigenfunction expansions can be
used. In such cases the region containing the body can be discretized
using, say, a finite-element technique and this then matched to the ana-
lytic representation in the outer region. This ‘hybrid-element’ technique
is described in detail in Mei (1983, §7.7).
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2.1 Construction of vertical eigenfunctions

In the case where the depth A is finite and constant, equation (1.14)
becomes

o
a—sz on z=—h (2.1)
and separable solutions of equation (1.12) may be sought in the form
P(x,y,2) = W(z,y)Z(2). (2.2)

Substitution of this form for ¢ into Laplace’s equation shows that
1 [0*W N PwW 142,
—_— _— _ = —-—— =
W\ 0z Ay? Z dz? ’
where the separation constant, or eigenvalue, « is to be determined by
the boundary conditions. In this section attention will be paid to the
form of Z, which will be referred to as a ‘vertical eigenfunction’.

In view of (2.1) and (2.3), the general solution for Z(z) may be con-
veniently written as

Z(z) = Ccosa(z + h) + Dsina(z + h). (2.4)

The bed condition (2.1) gives immediately that D = 0 and the free-
surface condition (1.13) is satisfied provided « is a root of

(2.3)

K + atanah = 0. (2.5)

Equation (2.5) has an infinite sequence of positive real roots (see Fig-
ure 2.1} which will be denoted by {k,; n =1,2,3,...}. There is also a

sequence of negative roots {—k,; n =1,2,3,...}, but these lead to ex-
actly the same eigenfunctions and so need not be considered separately.

The nature of these roots can be important in applications. From
Figure 2.1 it can be confirmed that k,h € ((n — 1/2)7,nm) and it can

be shown that as n — oo for fixed Kh,

Kh 1 1\ (Kh\®
On the other hand, as Kh — oo for fixed n we have the behaviour
knh ~ (n—1 14 ! 2.7
oo (=) (U g ¥ R ®7)
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FIGURE 2.1
Intersections of f = —K/a and f = tan ah showing the loca-

tions of the real roots ah of (2.5) in ah > 0. These roots lie in
the intervals ((n — 1/2)w,nxw) for n = 1,2,3,....

and as Kh — 0 for fixed n,

_Kh_ (Kh?

knh ~nm o ()

(2.8)

In addition to the real roots of (2.5) there is also a pair of purely imagi-
nary roots which will be denoted by o = +kg, where kg = —ik, say, and
k is the positive root of the dispersion relation

K = ktanhkh; (2.9)

again it is sufficient to consider only the positive root. As explained
later in §2.2, in regions which are unbounded in a horizontal direction
this last root corresponds to propagating modes while each k&, (n > 1)
corresponds to a decaying or ‘evanescent’ mode.

Equations (2.5) and (2.9) are straightforward to solve numerically by
standard methods. However, in applications, computational efficiency is
often important and hence Newman (1990) and Chamberlain and Porter
(1999) have obtained highly accurate approximations to the roots that
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may then be refined by iteration. It is also worth noting that (2.5) and

(2.9) may be solved exactly in terms of integrals (Burniston and Siewert

1973), but this is computationally inefficient for practical calculations.
The vertical eigenfunctions are orthogonal because, for m /=,

0
/ cos k(2 + h) coskn(z + h) dz
—h
ki sin k;hcos kph — ky, sink,hcosk,,h
k2, — k2 -

where (2.5) has been used to simplify the result of the integration. It is
convenient to normalize the vertical eigenfunctions by writing

Yn(2) = N 'cosk,(z+h), n=0,1,2,... (2.11)

and requiring

0, (2.10)

1 o
r [ wn@Pde =1, (2.12)
hJ-n
so that
1 sin 2k, h
2= — . 2.13
N 2(” Sk ) (2.13)
Two other forms for N,, that are sometimes useful are given by
1 sink,h\ 1 K
2 n
= (1= ) (71— 2.14
Mo 2( Kh ) 2( (K2+k3,)h)’ (2.14)

which are equivalent to (2.13) by virtue of (2.5). With the above def-
initions, the orthogonality relations (2.10) and (2.12) may be written
as

0
% /_ (2 (2) 4 = b, (2.15)

where 0,5, is the ‘Kronecker delta’ defined by d.,, = 1 if m = n, and
Omn =0 if m /.

The problem of determining Z(z) from (2.3) subject to boundary con-
ditions on the free surface and bed is of standard Sturm-Liouville type
and so it follows (see e.g. Birkhoff and Rota 1989, Chapter 11, §3) that
the set {¢¥m; m = 0,1,2,...} is complete and any square integrable
function f(z) defined on (—#A,0) can be expanded as

F&)= 3 ombn(a), where an = / J(EYn(2) 5
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2.2 Two-dimensional problems

In two-dimensional problems, where there is no dependence on y,
equation (2.3) has the general solution

W(z,y) = X(z) = Ae”** + Be%*, (2.16)

where A and B are constants to be determined from the boundary condi-
tions. The general solution, or eigenfunction expansion, for the potential
¢ is obtained by superimposing all the possible modes to get

oo

P(x,2) = Y (Ape ™ " £ B, k%) yy (2). (2.17)

n=0

It follows from (1.10) that in this expression the term involving exp(ikz)
(recall that kg = —ik) corresponds to a wave propagating towards large
positive z while the term involving exp(—ikz) corresponds to a wave
propagating towards large negative . Terms which decay as + — —o0
or as x — oo are referred to as evanescent modes.

2.2.1 The wave-maker problem

Consider a semi-infinite tank of Hluid occupying > 0, z € (—h,0).
On z = 0 there is a wave-maker that oscillates with a specified velocity
distribution at an angular frequency w and hence generates waves that
propagate towards large positive . Denote the velocity potential for the
tlow by ®(z, z,t) and suppose that the wave-maker boundary condition
is

o
o U(z) coswt, (2.18)
where the real-valued function U(z) is the imposed distribution of ve-
locity on = 0.

If the time dependence of ® is factored out as in (1.10) the time-
independent potential ¢ satisfies equations (1.12)—(1.14),

o¢

e U(z) on z=0 (2.19)
and a radiation condition
o .
9 ikp -0 as kx— o0 (2.20)
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that requires the solution to be bounded and any waves to be outgoing.
Application of the radiation condition (2.20) to the general solution
(2.17) gives a form for the potential of

d(z,y) = ZA e kT (2). (2.21)

From (2.19), it is required that

¢

Pa), = > Apkntpn(z) =U(2), z € (=h,0), (2.22)

n=0

and the unknown set of coefficients {An; n = 0,1,2,...} can now be
determined by exploiting the orthogonality properties (2.15) of the ver-
tical eigenfunctions. In (2.22) multiply throughout by each of the set
{¥m(2); m=0,1,2,...} in turn and integrate over the depth to get

1 0

Ap = ——
™ kmh

U(2)m(z)dz. (2.23)
The coefficient Ay determines the amplitude and phase of the wave that
propagates to large x.

For the special case of a vertical wave-maker in horizontal motion, so
that U(z) = U, a constant, the coefficients are

Usinknh

Am = —
k2 h Ny,

m=20,1,2,... (2.24)
and the amplitude and phase of the wave propagating away from the
wave-maker can be obtained from

iU sinh kh

Ay = —
0 k2hN,

(2.25)

The force on the wave-maker due to this surge motion can be determined
in terms of the added mass and damping coefficients as described in
§1.3.4, though the damping coefficient can be calculated more directly
via the relation (1.52).

2.2.2 Forced oscillations of a rectangular tank
Another important two-dimensional problem is that of a partially-

filled rectangular tank undergoing forced oscillations. Specifically we
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can consider a container bounded by x = £b, z = —h containing liquid
whose undisturbed free surface is at z = 0 and look at the case of forced
time-harmonic horizontal oscillations of constant amplitude. When the
time variation has been factored out in the manner of equation (1.10),
the boundary conditions on the container walls become

¢

oz
(c.f. equation 2.19 with U(z) = 1) which implies that ¢ must be anti-
symmetric in z.

One possible method of solution is to incorporate the antisymmetry
in z into (2.17) so that

=1 on z==b (2.26)

d(z,2) = ZA sinh k2 ¥ (2) (2.27)

n=0

and then apply the boundary condition on = = b to get

z Apky, cosh kb ¥, (2) =1, z € (—h,0). (2.28)
n=0
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