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Introduction

What is “Analysis on Fractals”? Why is it interesting?

To answer those questions, we need to go back to the history of fractals.

Many examples of fractals, like the Sierpinski gasket, the Koch curve and
the Cantor set, were already known to mathematicians early in the twenti-
eth century. Those sets were originally pathological (or exceptional) coun-
terexamples. For instance, the Koch curve (see Figure 0.1) is an example of
a compact curve with infinite length and the Cantor set is an example of an
uncountable perfect set with zero Lebesgue measure. Consequently, they
were thought of as purely mathematical objects. In fact, they attracted
much interest in harmonic analysis in connection with Fourier transform,
and in geometric measure theory. There were extensive works started in the
early twentieth century by Wiener, Winter, Erd6s, Hausdorff, Besicovich
and so on. See [181], [32] and [124]. These sets, however, had never been
associated with any objects in nature.

This situation had not changed until Mandelbrot proposed the notion of
fractals in the 1970s. In [122, 123] he claimed that many objects in nature
are not collections of smooth components. As evidence, using the exper-
iments by Richardson, he showed that some coast lines were not smooth
curves but curves which have infinite length like the Koch curve. Choosing

Fig. 0.1. Koch curve



2 Introduction

.V.

Fig. 0.2. Sierpinski gasket

words more carefully and accurately, we need to say that some coast lines
should be modeled by curves with infinite length rather than (compositions
of) smooth curves.

Mandelbrot coined this revolutionary idea and introduced the notion of
fractals as a new class of mathematical objects which represent nature. The
importance of his proposal was soon recognized in many areas of science,
for example, physics, chemistry and biology. In mathematics, a new area
called fractal geometry developed quickly on the foundation of geometric
measure theory, harmonic anslysis, dynamical systems and ergodic theory.
Fractal geometry treats the properties of (fractal) sets and measures on
them, like the Hausdorff dimension and the Hausdorff measure. From the
viewpoint of applications, it concerns the static aspects of the objects in
nature.

How about the dynamical aspects? There occur (physical) phenomena
on those objects modeled by fractals. How can we describe them? More
precisely, how does heat diffuse on fractals and how does a material with a
fractal structure vibrate? To give an answer to these questions, we need a
theory of “analysis on fractals”. For example, on a domain in R”, diffusion
of heat is described by the heat (or diffusion) equation,

Ju
ot

where © = u(t, :r:) t is time, = is position and A is the Laplacian de-
fined by 37, A2 3——, If our domain is a fractal, we need to know what the

= Au,
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Fig. 0.3. Approximation of the Sierpinski gasket by graphs G

“Laplacian™ on it is. This problem contains somewhat contradictory fac-
tors. Since fractals like the Sierpinski gasket and the Koch curve do not
have any smooth structures, to define differential operators like the Lapla-
cian is not possible from the classical viewpoint of analysis. To overcome
such a difficulty is a new challenge in mathematics and this is what analysis
on fractals is about.

During the 1970s and 1980s, physicists tried to describe phenomena on
fractals. They succeeded in calculating some of the physical characteris-
tics of fractals, for example, the spectral exponent, which should describe
the distribution of the eigenstates. (See, for exawmple, [118] and [75] for
reviews of studies in physics.) However they did not know how to define
“Laplacians™ on fractals. Sce Notc and Refcrences of Chapter 4 for details.

Motivated by studies in physics, Kusuoka [106] and Goldstein [51] in-
dependently took the first step in the mathematical development. They
constructed “Brownian motion™ on the Sierpinski gasket. Their method
of construction is now called the probabilistic approach. First they con-
sidered a sequence of random walks on the graphs which approximate the
Sierpinski gasket and showed that by taking a certain scaling factor, those
random walks converged to a diffusion process on the Sierpinski gasket. To
be more precise, let us define the Sierpinski gasket. Let {p;,p2,ps} be a set
of vertices of an equilateral triangle in C. Dcfine f;(z) = (z — p;)/2 + pi for
i = 1,2,3. Then The Sicrpinski gasket K is the unique non-empty compact
subset K of R that satisfies

K = fi(K) L f2(K) U f3(K).

See Figure 0.2. Let V, = {p),p2.ps}. Definc a scquence of finite sets
{Vin }m>o0 inductively by Vi,y1 = fi(Vin) U fo(Vin) U fa(Vin). Then we have
the natural graph G,,, whose set of vertices is V;,,. (See Figure 0.3.)
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For p € V,,,, let V,, , be the collection of the direct neighbors of p in V,,.
Observe that #(V,,,,) =4 il p ¢ Vo and #(V,, ) = 2if p € Vi, where #(A)
is the number of elements in a set A. Let X ,{m’] be the simple random walk
on G,,. (This means that if a particle is at p at time ¢, it will move to
one of the direct neighbors with the probability #(V,,,)~! at time ¢t + 1.)
What Kusuoka and Goldstein proved was that

X("‘) - X,

6t

as m — oo, where X, was a diffusion process, called Brownian motion,
on the Sierpinski gasket. In this probabilistic approach, a Laplacian is
the infinitesimal generator of the semigroup which is associated with the
diffusion process.

Barlow and Perkins [20] followed the probabilistic approach and obtained
an Aronson-type estimate of the heat kernel associated with Brownian mo-
tion on the Sierpinski gasket. See Notes and References of Chapter 5.
Then, in [116], Lindstrem extended this construction of Brownian motion
to nested fractals, which is a class of finitely ramified self-similar sets with
strong symmetry. See 3.8 for the definition of nested fractals. {Roughly
speaking, finitely ramified self-similar sets are the self-similar sets which
become disconnected if one removes a finite number of points. See 1.3 for
details.)

On the other hand, in [82], a direct definition of the Laplacian on the
Sierpinski gasket was proposed. Under this direct definition, one could de-
scribe the structures of harmonic functions, Green’s function and solutions
of Poisson's equations. This alternative approach is called the analyti-
cal approach. Instead of the sequence of random walks, one considered
a sequence of discrete Laplacians on the graphs and then proved that by
choosing a proper scaling, those discrete Laplacians would converge to a
good operator, called the Laplacian on the Sierpinski gasket. More pre-
cisely, let £(V,,) = {f : f maps V,, to R}. Then definc a linear operator
Ly : €(Vin) — £(V;,) by

(L)) = D (u(g) - u(p))
9€Vin p

for any u € £(V,,,) and any p € V,,,. This operator Ly, is the natural discrete
Laplacian on the graph G,. Then the Laplacian on the Sierpinski gasket,
denoted by A, is defined by

5" (Lmu)(p) — (Au)(p)

as m — o¢. This A is now called the standard Laplacian on the Sierpinski
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gasket. (Of course, it needs to be shown that A is a meaningful operator
in some sense with a non-trivial domnain, as we will show in the course of
this book. Also we will explain why 5™ is the proper scaling. See 3.7,
in particular, Example 3.7.3.) This analytical approach was followed by
Kusuoka [107] and Kigami [83], where they extended the construction of
the Laplacians to more gencral class of finitely ramified fractals.

Since those early studies, many people have studied analysis on fractals
and obtained numerous results using both approaches. Naturally the two
approaches are complementary to each other and share the same goal. In
this book, we will basically follow the analytical approach and study Dirich-
let forms, Laplacians, eigenvalues of Laplacians and heat kernels on post
critically finite self-similar sets. (Post critically finite self-similar sets are
the mathematical formulation of finite ramified self-similar sets. Sce 1.3.)
The advantage of the analytical approach is that one can get concrete and
direct description of harmonic functions, Green’s functions, Dirichlet forms
and Laplacians. On the other hand, however, studying the detailed struc-
ture of the heat kernels, like the Aronson-type estimates, we need to employ
the probabilistic approach. (Barlow’s lecture note [6] is a self-contained and
well-organized exposition in this direction. See also Kumagai [104] for a
review of recent results.) Moreover, the probabilistic approach can be ap-
plied to infinitely ramified self-similar sets, for example, the Sierpinski car-
pet (Figure 0.4) as well. In the series of papers, (7, 8, 9, 10, 11, 12], Barlow
and Bass constructed Brownian motions on the (higher dimensional) Sier-
pinski carpets and obtained the Aronson-type estimate of the associated
heat kernels by using the probabilistic approach. Except for Kusuoka and
Zhou [109}, so far, the analytical approach has not succeeded in studying
analysis on infinitely ramified fractals.

One may ask “why do you only study sclf-similar sets?”. Indeed, sclf-
similar sets are a special class of fractals and there are no objects in nature
which have the exact structures of self-similar sets. The reason is that
self-similar sets are perhaps the simplest and the most basic structures in
the theory of fractals. They should give us much information on what
would happen in the general case of fractals. Although there have been
many studies on analysis on fractals, we are still near the beginning in
the exploration of this field. We hope that this volume will contribute to
fruitful developments in the future.

The organization of this book is as follows. In the first chapter, we
will explain the basics of the geometry of self-similar sets. We will give the
definition of self-similar sets, study topological structures of self-similar sets
and introduce self-similar measures on them. The key notion is the self-
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Fig. 0.4. Sierpinski carpet

similar structure which is a purely topological description of a self-similar
set. See 1.3. Also, we will define post critically finite self-similar structure
in 1.3, which will be our main stage of analysis on fractals.

In Chapter 2, we will study analysis on finite sets, namely, Dirichlet forms
and Laplacians. The important fact is that those notions are closely related
to electrical networks and that the effective resistance associated with them
gives a distance on the finite set. Getting much help from this analogy with
electrical networks, we will study the convergence of Dirichlet forms on a
sequence of finite sets. This convergence theory will play an essential role
in constructing Dirichlet forins and Laplacians on post critically finite self-
similar sets in the next chapter.

Chapter 3 is the heart of this book, where we will explain how to con-
struct Dirichlet forms, harmonic functions, Green’s functions and Lapla-
cians on post critically finite self-similar sets. The key notion here is the
“harmonic structure” introduced in 3.1. In this chapter, we will spend
many pages to argue how to deal with the case when a harmonic struc-
ture is not regular and also when K\Vj is not connected, where K is the
self-similar set and Vj corresponds to the boundary of K. These cases are
of intercst and sometimes really make a difference. However one would
still get most of the essence of the theory by assuming that the harmonic
structure is regular and that K\V; is connected. So the reader may do so
to avoid too many proofs.

In Chapter 4. we will study eigenvalues and eigenfunctions of Laplacians
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on post critically finite self-similar sets. We will obtain a Weyl-type es-
timate of the distribution of eigenvalues in 4.1 and show the existence of
localized eigenfunctions in 4.4,

In the final chapter, we will study (Dirichlet or Neumann) heat kernels
associated with Laplacians (or Dirichlet forms). In 5.2, it will be shown that
the parabolic maximum principle holds for solutions of the heat equations.
In 5.3, we will get on-diagonal estimates of heat kernels as time goes to
Z€ero.

This book is based on my graduate course at Cornell University in the
fall semester, 1997. 1 would like to thank the Department of Mathematics,
Cornell University for their hospitality. In particular, I would like to express
my sincere gratitude to Professor R. S. Strichartz, who suggested that I
wrote these lecture notes, and gave me many fruitful comments on the
manuscript. I also thank Dr. C. Blum and Dr. A. Teplyaev who attended
my lecture and gave me many useful suggestions. I am also grateful to the
Isaac Newton Institute of Mathematical Science, University of Cambridge,
where a considerable part of the manuscript was written during my stay.
I would express my special thanks to Professors M. T. Barlow and R. F.
Bass who carefully read the whole manuseript and helped me to improve
my written English. I would also like to thank all the people who gave
me valuable comments on the material; amnong them are Professors M. L.
Lapidus, B. M. Hambly, V. Metz, T. Kumagai, Mr. T. Shimono and Mr. K.
Kuwada. Finally I would like thank the late Professor Masaya Yamaguti,
who was my thesis adviser and introduced me to the study of analysis on
fractals.



1
Geometry of Self-Similar Sets

In this chapter, we will review some basics on the geometry of self-similar
sets which will be needed later. Specifically, we will explain what a self-
similar set is (in 1.1), how to understand the structure of a self-similar
set (in 1.2 and 1.3) and how to calculate the Hausdorff dimension of a
self-similar set (in 1.5).

The key notion is that of a “self-similar structure” introduced in 1.3,
which is a description of a self-similar set from a purely topological view-
point. As we will explain in 1.3, the topological structure of a self-similar
set is essential in constructing analytical structures like Laplacians and
Dirichlet forms. More precisely, if two self-similar sets are topologically the
same (i.e., homeomorphic), then analytical structure on one self-similar set
can be transferred to another self-similar set through the homeomorphism.

In particular, we will introduce the notion of post critically finite self-
similar structures, on which we will construct the analytical structures like
Laplacians and Dirichlet forms in Chapter 3.

1.1 Construction of self-similar sets

In this section, we will define self-similar sets on a metric space and show
an existence and uniqueness theorem for self-similar sets. First we will
introduce the notion of contractions on a metric space.

Notation. Let (X,d) be a metric space. For x € X and r > 0,

Be(z)={y:y€ X,d(z,y) <7}

Definition 1.1.1. Let (X,dx) and (Y,dy) be metric spaces. A map f :

8
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X — Y is said to be (uniformly) Lipschitz continuous on X with respect
todyx,dy if

[— dv(f(z), f(y))

sup < 00.
e X . z2Ay dX (J: J)

The above constant L is called the Lipschitz constant of f and is denoted
by L = Lip(f).

Obviously, by the above definition, a Lipschitz continuous map is con-
tinuous.

Definition 1.1.2 (Contraction). Let (X,d) be a metric space. If f :
X — X is Lipschitz continuous on X with respect to d and Lip(f) < 1,
then f is called a contraction with respect to the metric d with contraction
ratio Lip(f). In particular, a contraction f with contraction ratio r is called
a similitude if d{f(z), f(y)) = rd(z,y) for all z,y € X.

Remark. If f is a similitude on (R", dg), where dg is the Euclidean distance
on R", then there exist a € R", U € O(n) and r > 0 such that f(z) =
rUz + a for all z € R™. (Exercise 1.1)

The following theorem is called the “contraction principle”.

Theorem 1.1.3 (Contraction principle). Let (X,d) be a complete met-
ric space and let f : X — X be a contraction with respect to the metric d.
Then there exists a unique fized point of f, in other words, there exists a
unique solution to the equation f(x) = x. Moreover if z, is the fized point
of f, then {f"(a)}n>0 converges to z. for all a € X where f* is the n-th
iteration of f.

Proof. If r is the ratio of contraction of f, then for m > n,

@™ (6) S A @) S @) + -+ U 0, )
< (4 (e, f(@) € (e S(a))

Hence {f"(a)}.>0 is a Cauchy sequence. As (X,d) is complete, there
exists z, € X such that f*(a) — z, as n — oo. Using the fact that
F+tD(a) = f(f(a)), we can casily deduce that z, = f(z.).

Now, if f(2) = z and f(y) = y, then d(x,y) = d(f(x), f(y)) < rd(z,y).
Therefore d(z,y) = 0 and x = y. So we have uniqueness of fixed points. [

Remark. In general, for a mapping f from a set to itself, a solution of
f(z) = x is called a fixed point or an equilibrium point of f.
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We now state the main theorem of this section, which ensures uniqueness
and existence of self-similar scts.

Theorem 1.1.4. Let (X.d) be a complete metric space. If f; : X — X is
a contraction with respect to the metric d fori = 1,2,... ,N, then there
exists a unique non-emply compact subset K of X that satisfies

K= fi(K)u---U fn(K).
K is called the self-similar set with respect to {f1, f2,... . fn}-

Remark. In other literature, the name “self-similar set” is used in a more
restricted sense. For example, Hutchinson [76] uses the name “self-similar
set” only if all the contractions are similitudes. Also, in the case that all
the contractions are affine functions on R", the associated set may be called
a self-affine set.

The contraction principle is a special case of Theorem 1.1.4 where N = 1.
In the rest of this section, we will give a proof of Theorem 1.1.4. Define

Fay= |J 54
1SN

for A C X. The main idea is to show existence of a fixed point of F. In
order to do so, first we choose a good domain for F, defined by

C(X) = {A: Ais a non-empty compact subset of X}.

Obviously F is a mapping from C(X) to itsclf. Next we define a metric é
on C(X), which is called the Hausdorff metric on C(X).

Proposition 1.1.5. For A, B € C(X), define
8(A,B) = inf{r > 0:U.(A) 2 B and U,(B) 2 A},

where U.(A) = {z € X : d(z,y) < r for some y € A} = UycaB-(y). Then
6 is a metric on C(X). Moreover if (X,d) is complete, then (C(X),6) is
also complete.

Before giving a proof of the above proposition, we recall some standard
definitions in general topology.

Definition 1.1.6. Let (X,d) be a metric space and let K be a subset of
X.

(1) A finite set A C K is called an r-net of K for r > 0 if and only if
UrGABr(J") 2 K.

(2) K is said to be totally bounded if and only if there exists an r-net of
K for any r > 0.
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It is well-known that a metric space is compact if and only if it is complete
and totally bounded.

Proof of Proposition 1.1.5. Obviously, we see that é(A,B) = 6(B,A) > 0
and 6(A, A) =0.

6(A. B) =0 = A = B: For any n, Uy,,,(B) 2 A. Therefore for any x € A,
we can choose x,, € B such that d{r.z,) < 1/n. As B is closed, ¢ € B.
Hence we have A C B. One can obtain B C A in exactly the same way.
Triangle inequality: If r > §(A,B) and s > 8§(B.C), then U,_,(A) 2 C
and U, ,(C) 2 A. Hencer+s > 8(A.C). This implies §(A, B) +8(B.C) >
(A, Q).

Next we prove that (C(X).é) is complete if (X,d) is complete. For
a Cauchy scquence {Ap}nz1 in (C(X).8), define B, = Ugs,Ax. First
we will show that B, is compact. As B, is a monotonically decreasing
sequence of closed sets, it is enough to show that B, is compact. For any
r > 0, we can choose m so that U,,,(A,,) 2 Ax forall k > m. As A,, is
compact, there exists a r/2-net P of A,,. We can immediately verify that
UzepB,(x) 2 Uy 2(Am) 2 UkzmAx. AS UrepB, () is closed, it is easy
to see that P is an r-net of B,,. Adding r-nets of A, A4,... , A1 to
P, we can obtain an r-net of B,. Hence B; is totally bounded. Also, B,
is complete because it is a closed subset of the complete metric space X.
Thus it follows that B, is compact.

Now as {B,} is a monotonically decreasing sequence of non-empty com-
pact sets, A = N,,>B,, is compact and non-empty. For any r > (], we can
choose m so that U, (A} 2 A for all k > m. Then U,(Ay) D B 2 A
On the other hand, U,(4) 2 B,, 2 A,, for sulliciently large 1. Thus we
have 8(A, A.) < r for sufficiently large m. Hence A, — A as m — oc in
the ITausdorff metric. So (C(X).6) is cowmplete. 0O

Theorem 1.1.4 can be stated in the following way using the Hausdorff
metric (C(X), 6).

Theorem 1.1.7. Let (X, d) be a complete metric space andlet f; : X — X
be a contraction fori = 1,2,...,n. Define F :C(X) — C(X) by F(A) =
Ui<i<n fi(A). Then F has e unique fired point K. Moreover, for any
A e C(X), F*(A) converges to K as n. — oo with respect to the Hausdorff
metric.

Lemma 1.1.8. For A, A2, B,, B; € C(X),

6(A| UAg, By UBg) < max{é’(A;,Bl),b'[Ag.Bg)}
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Proof. If r > max{8(A,, B,),6(A2, Ba)}, then U,(A,) 2 B; and U,.(A2) 2
B>. Hence U,.(A; U A2) 2 B; U B;. A similar argument implies U, (B, U
B;) D Ay U A;. Hence r > 6(A, U Az, By U By). This completes the
proof. O

Lemma 1.1.9. If f is a contraction with contraction retio r, then, for any
A, B € C(X), 6(f(A), f(B)) <ré(A, B).

Proof. 16 Up(4) 2 B and U,(B) 2 A, Upr(f(4)) 2 f(Us(4)) 2 £(B). Also
the same argument implies U, (f(B)) 2 f(A). Therefore, 6( f(A), f(B)) <
rs and this completes the proof. O

Proof of Theorem 1.1.7. Using Lemma 1.1.8 repeatedly, we obtain

8(F(A), F(B)) = 6(Ui1<;<n fi(A), Uicien f;(B)) £ IISI}%XN‘S(fj(A)Jj(B))-

By Lemma 1.1.9, 6(f;(A), fi(B)) < r;6(A4, B), where r; is the contraction
ratio of f;. If r = max;<i<y 7i, then 6(F(A), F(B)) < ré6(A, B). Therefore
F turns out to be a countraction with respect to the Hausdorff metric. By
Proposition 1.1.5, we see that (C(X),d) is complete. Now the contraction
principle (Theorem 1.1.3) implies Theorem 1.1.7 immediately. O

1.2 Shift space and self-similar sets

In this section, we will introduce the shift space, which is the key to un-
derstanding the topological structure of self-similar sets. In fact, Theo-
rem 1.2.3 will show that every self-similar set is a quotient space of a shift
space.

Definition 1.2.1. Let N be a natural number.
(1) For m > 1, we define

WN¥ =1{1,2,... N} ={wywa... wm : w; € {1,2,... ,N}}.

I

w € W is called a word of length m with symbols {1,2,... ,N}. Also,
for m = 0, we define W' = {8} and call @ the empty word. Moreover, set
W¥ =U,;>oWN and denote the length of w € WX by |w|.

(2) The collection of one-sided infinite sequences of symbols {1,2,... ,N}
is denoted by XV, which is called the shift space with N-symbols. More

precisely,
sV ={1,2,... NN ={wwws...:w; € {l,... ,N} fori € N}.

For k € {1,2,...,N}, define a map o : ZV — E¥ by ox(wiwows...) =
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kurwows . ... Also define o : BN — &V by o(wywows ...) = wowswy .... @
is called the shift map.

Remark. The two sided infinite sequence of {1,2,... ,N},
{1,2,... ,N}z = {...w_gw_lwowlwg... cWwy € {1,2,... ,N} for 1 € Z}

may also be called the shift space with N-symbols. If one wants to distin-
guish the two, the above £V should be called the one-sided shift space with
N-symbols. In this book, however, we will not treat the two-sided symbol
space.

For ease of notation, we write W,,, W. and T instead of W, W¥ and
TV,

Obviously, o is a branch of the inverse of ¢ for any & € {1,2,... ,N}. If
we choose an appropriate distance, it turns out that oy is a contraction and
the shift space ¥ is the self-similar set with respect to {¢1,032,... ,0n}.

Theorem 1.2.2. Forw, 7T € L withw # 7 and0 < r < 1, define b,(w,7) =
74(0.7) | where s(w,7) = min{m : Wy # Tm} — 1. (i.e., n = 3(w, 1) if and
only ifw; =1; for 1 <i<n and wnsy # Tnt1.) Also define §,(w,7) =0
if w = 7. 8 48 a metric on £ ond (X,6,) is a compact metric space.
Furthermore, oy is a similitude with Lip(ox) = 7 and ¥ is the self-similar
set with respect to {o1,02,... ,0n}.

Proof. 1t is obvious by the definition that é,.(w,7) > 0 and 6,(w,7) = 0
implies w = 7. As min{s{w,7),8(r, &)} < s{w,k) for w, 7,5 € I, we can
see that 8,(w,7) + 6.(7,K) 2 bp(w, K).

Now for every w = wyws...w, € W,, we define

Yo={w=wwows... ET 1 wjwr...wp = uW2... Wy}

Let {w"}n>1 be a sequence in E. Using induction on m, we can choose
7 € L so that {rn > 1:(w"); =7; for j = 1,2,... ,m} is an infinite set for
any m > 1. So there exists a subsequence of {w"} that converges to r as
n — oo. Hence (X, 4,) is compact.

Finally, it is obvious that o, is a similitude with Lip(ox) = 7. Also we
can easily see that ¥ = 1(E)U--- U on(Z). This implies that X is the
sclf-similar set with respect to {¢,,02.... ,05}. O

¥ is called the (topological) Cantor set with N-symbols. See Exam-
ple 1.2.6.

For the rest of this section, we assume that (X,d) is a complete met-
ric space, f; : X — X is a contraction with respect to (X,d) for ev-
ery i € {1,2,...,N} and that K is the self-similar set with respect to
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{Ni.foe... S} Also, for A € X, the diameter of A, diam(A), is defined
by (ham(A) = SUpP, e 4 d(2.y).

The following theorem shows that every self-similar set is a quotient
space of a shift space by a certain equivalence relation.

Theorem 1.2.3. Forw = wyun ... w,, € W, set fo. = fu, 0wz 0--.0 fun
end Ky = fo(K). Then for anyw = wiwaws ... € X, Ny 1 Koyws..w,, CON-
tains only one point. If we define® : L — K by {7(w)} = N1 Kurwg.oom s
then 7w is a continuous surjective map. Moreover, for enyi € {1,2,... N},
noo, = fiom.

Proof. Note that

k’u.'lk-"_r...'..),,.u,‘,,, i1 le‘ﬂ" a)rn(fwm-i-l (K)) C jﬂ)l“"? '-Um(K) wl-"? & ¢

As Koy w18 compact, Ny > Ky oy, IS & NON-empty compact set. Set
R = max;<icn Lip(fi). Then it follows that diam(f;(A)) < Rdiam(A).
Hence diam(K,, ., ) € R"diam(K). So diam(Mpm>1 Kowy.. w,,) = 0.
Therefore My, > Ko oq..w,, should contain only one point.

If §-(w.7) < r™, then ﬂ(.u),vr(‘r) € Kuwa..wm = Ke,55...7,,. Therefore
d(m(w), (7)) < R™diam{K). This immediately implies that 7 is continu-
0118,

Using

{ﬂ(d.‘(‘w’]}} = mmzll\’iulwz...um = nm?lf:(l\,ulwz...w".] = {fi("(‘-‘-’))}a

we can easily verify that ooy = fiom.
Finally we must show that = is surjective. Note that

m(E) =m(a1(E)U--Joan(X))
=m{o(E)U---Un(on(X)) = filn(E))U--- U fx(m(X)).

As m(X) is a non-empty compact set, the uniqueness of sclf-similar scts
(Theorem 1.1.4) implies that 7(X) = K. O

Proposition 1.2.4. Define u: = wunw ... if w € W, and w # 0. Then
w(r) is the unique fized point of f,..

Proof. As [, is a countraction, it bas a unique fixed point. By Theo-
rem 1.2.3, #w(ui) = w(ww) = fu(m(w)). Hence w(w) is the fixed point
of fu. O

Using the above proposition, we see that (v, v2 ... vw) = f,(pw) where
weW, w#d v=nure.. v €W, and p,. is the fixed point of f,.
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This relation helps us to understand = in many examples. Moreover, since
periodic sequences are dense in X, we have

K = {p,:weW. w#d}

In fact, # determines a topological structure on self-similar sets.

Proposition 1.2.5. Suppose f; is injective for every i € {1,2,... ,N}.
Then, m(w) = n(7) for w # 7 € £ if and only if #(c™w) = w(c™7), where
m = s(w, 7).

Proof. If w = wywe...wym = T1T2...Ty, then w(w) = fu(w(e™w)) and
(1) = fu(n(c™7)). As [, is injective, we have m(w) = n(7) for w,7 € X
if and only if 7(¢™w) = w(c™7). The other direction is obvious. O

Note that if n(w) = #(7), then w(e™(w)) = =(e™(7)) € Ck, where
m= 8(w, ?‘) and Cx = U15g<)'51v(.K,' N K,)

Example 1.2.6 (Cantor set). Let X = [0,1]. Choose positive real num-
bers a and b 5o that e + b < 1. Define fi(x) = ax and fo(zx) = b(z - 1) + L.
If K is the self-similar set with respect to {f), fo}, K1 C [0,q] and K> C
[1 —&,1). Hence Cx = K1 N K2 = 0. Therefore 7 : £ — K is injective.
By Theorem 1.2.3, = is also surjective and hence it is a homeomorphism
between ¥ and K. In particular, if a = b = 1/3, K is called the Cantor
ternary set or the Cantor middle third set.

Example 1.2.7 (Koch curve). Let X = C. Suppose that a € {z: z €
C, |z + |1 - 2|2 < 1}. Set fi(2) = aZ and fo(z) = (1 —a)(z — 1) + 1.
Let D be a triangle domain with vertices {0, a, 1}, including the boundary.
Then it follows that fi(D)U f2(D) € D and fi(D) N fo(D) = {a}. See
Figure 1.1. Hence K(a) C D, where K(a) is the self-similar set with
respect to {fi,f2}. Also note that f,(0) = 0, f2(1) = 1 and f2(0) =
fi(1) = a. Denoting * = 7, we obtain that 7, (1) = 0,74(2) = 1 and
7a(12) = %o(21) = a. Moreover, Cx = K; N Ky = {a}. Hence we can
deduce that 7o(w) = 7o(7) and w # 7 if and only if there exists w € W,
such that {w,7} = {w12,w2i}. In particular, K(1/2) = [0,1] and K(a)
is called the Koch curve if o = § + -ﬁ\/—_l See Figure 0.1. Note that
Ta 0Ty s2” 1 is a homeomorphism between [0, 1] and K(a).

Example 1.2.8 (Sierpinski gasket). Let X = C aund let {p,,p2,p3} be
a set of vertices of an equilateral triangle. Define f;(2) = (2 — p;)/2 + p;
for j =1,2,3. The self-similar set with respect to {fi, f2, f3} is called the
Sierpinski gasket. It is easy to see that 7(j) = p; for j = 1,2,3. Let T be
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a = 7(12) = #(21)

0 = =(i) la]? 11— al? 1==n(2)

Fig. 1.1. fi{D)U f2(D) (a = 0.4 + 0.3/=1)

pr = 7(1)

q1 = 7(23) = n(32)
g2 = 7(13) = =(32)
gz = m(12) = =(21)

p2 =m(3) a ps = 7(3)

Fig. 1.2. Topological structure of the Sierpinski gasket

the equilateral triangle with vertices {p,,p2,p3}, including the boundary.
Then fi(T)U f2(T)U f3(T) C T. Hence K C T. Also fi(K) N fo(K) =
f1(T)N f2(T) and this set contains only one point, which is denoted by {q3}.
Then 7~ !(g3) = {21,12}. In the same way, if f2(K) N f3(K) = {;:} and
fs(K)NAi(K) = {g2} then 7~} (q1) = {23,32} and 77" (g2) = {31, 13}. See
Figure 1.2. By those facts, if m(w) = 7(7) and w # 7, there exists w € W,
such that {w,7} = {w12, w21} or {w23,w32} or {w3i,w13}.

Example 1.2.9 (Hata’s tree-like set). Let X = C. Set f1(z) = cz,
f2(2) = (1 - |d]?)z + |¢|?, where |c|,|1 = ¢| € (0,1). The self-similar set
K with respect to {f1, f2} is called Hata’s tree-like set. Let A = {t :
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c=n(12)
fi(A)
lc]? = #(112) = =(21)
@
0=n(l) f2(A) 1=mn(2)

7(212)

Fig. 1.3. Hata’s tree-like set; fi(A) U fa(A)

Fig. 1.4. Hata’s tree-like set(c = 0.4 + 0.3y/—-1)

0<t<1}uU{te,0 <t < 1}. Then it follows that fi(A)U fo(A4) D A.
Hence if A,,, = Uyew,, fw(A4), then {A4,,}m>0 is an increasing sequence and
K = Up>0Am. Also we can easily observe that fi(K) N f2(K) = {|c|*},
f1(0) = 0, fo(1) = 1 and fi(f1(1)) = f2(0) = |c[*. Hence x~}(0) = {i},
7-1(1) = {2}, #~Y(c) = {12} and 7 }(|c|?) = {112,2i}. Sece Figure 1.3.
Moreover, if 7(w) = #(7) and w # 7, there exists w € W, such that
{w,7} = {wl12,w?2i}.

1.3 Self-similar structure

From the viewpoint of analysis, only the topological structure of a self-
similar set is important. For example, suppose you want to study analysis
on the Koch curve. Recalling Example 1.2.7, there exists a natural home-
omorphism between [0, 1] and the Koch curve. Through this homeomor-
phism, any kind of analytical structure on [0,1] can be translated to its
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counterpart on the Koch curve. So it is easy to study analysis on the Koch
curve.,

The notion of self-similar structure has been introduced to give a topo-
logical description of self-similar sets.

Definition 1.3.1. Let K be a compact metrizable topological space and
let S be a finite set. Also, let F; be a continuous injection from K to itself
for any i € S. Then, (K,S, {F;}ics) is called a self-similar structure if
there exists a continuous surjection 7 : ¥ — K such that F;onr = woo0;
for every i € S, where £ = SN is the one-sided shift space and 0; : & — &
is defined by o;(wywows...) = iwywpws ... for each wywowy... € L.

¥ is called the shift space with symbols §S. We will define W,, = S™,
W, = Up>Wm, o : X — X and so on in exactly the same way as in 1.2.
Also the topology of ¥ is given in exactly the same way as in 1.2. If we
need to specify the symbols S, we use X(S), W,,(S) and W, (S) in place of
¥, W, and W, respectively. In many cases, we think of $ = {1,2,... , N}.

Obviously if K is the self-similar set with respect to injective contractions
{fi.fz-..  In} then (K, {1,2,... , N}, {£i}X,) is a self-similar structure.
It is possible that two different self-similar sets have the same topological

structure. For example, the self-similar structures corresponding to the
self-similar sets K (a) in Example 1.2.7 are all essentially the same. More
precisely, they are isomorphic in the following sense.

Definition 1.3.2. Let £; = (K, S;, { Fi(j )}ieS_,) be self-similar structures
for j = 1,2. Also let m; : £(S;) — K; be the continuous surjection
associated with £; for j = 1,2. We say that £, and £, are isomorphic
if there exists a bijective map p : S — S, such that mp0¢,0m =t is a
well-defined homeomorphism between K2 and K, where ¢, is the natural
bijective map induced by 7, i.e., t{wiwa...) = p(w1)p(ws)....

We say that two self-similar structures are the same if they are isomor-
phic.

Proposition 1.3.3. If (K, S, {F;}ies) is a self-similar structure, then 7 is
unique. In fact,

(7@} = (] Farwream K)

m>0

Jor any w = wwe... € L.

Proof. By the above definition, we have F,, om = 7o o, for any w € W,.
Hence, 7(w) € Nm>0Fu ws..wm (K). For £ € Np>oFiuwg..w,. (K), there
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exists Ty, € Ly uy..w., Such that m(zm) = z. Note that 7 is continuous.
Since ,, — w a8 m — oo, it follows that = = #(z,,) — 7(w) as m — oo.
Hence z = w(w). O

Definition 1.3.4. Let £ = (K, S, {F;};es) be a self-similar structure. We
define Cr g = Ug'jes'i;ej(F,'(K) N FJ(K)), Cr = W—I(CC'K) and P, =
Un>10"(Cc). Cc is called the critical set of £ and P, is called the post
critical set of £. Also we define Vy(L) = w(Pr).

For ease of notation, we use C, P and V; instead of Cz, Pz and Vp(L) as
long as it can not cause any confusion.

The critical set and the post critical set play an important role in de-
termining the topological structure of a self-similar set. For example, if
C = 0, (and hence P, Vj are all empty sets), then K is homeomorphic to
the (topological) Cantor set ¥.

Also V} is thought of as a “boundary” of K. For example, define F\(z) =
1z and Fy(z) = 3z + § and recall Example 1.2.7. Then we find that
C = {12,2i} and P = {i,2}. Hence Vp = {0,1}. See also Exercise 1.3 for
another example.

Proposition 1.3.5. Let £L = (K, S,{F;}ies) be a self-similar structure.
Then

(1) =~ 1(V) =P.

(2) IfEZ,NE, =0 forw,veW,, then K,NK, = F,(V,)NF.(VW), where
K, = F,(K).

(3) C =0 if and only if m is injective.

Proof. (1) If m{w) € Vj, then there exist 7 € C and m > 1 such that
w{o™7) = m(w). Set W’ =717y ... Trw. Then

®(W) = Fryryor (A1) = Fr oy 1 (®(0™ 7)) = 7(7) € Cex.

Hence o’ € C and w € P.

(2) It is obvious that F,,(Vp)NF, (Vo) C K NK,. Forxz € K,NK,, we can
choose w, T € £ s0 that z = 7(ww) = w(v7). As £, NI, =0, there exists
k < min{jw|, |v[} such that wywsz...wx = vive... vk and wiy) # Vkey. As
F o .0y 1S injective, it follows that w(o*(ww)) = w(a*(vr)). Hence we
can conclude that o*(ww), 0% (vr) € C and therefore w, 7 € P.

(3) If 7 is injective, then K is homeomorphic to £ and hence C = §). Con-
versely, if 7 is not injective, we can use the same argument as in Proposi-
tion 1.2.5 to show that C # 0. O

The following proposition describes the local topology of a self-similar
structure.
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Proposition 1.3.6. Let L = (K, S, {F,}ics) be a self-similar structure.
For any x € K and any m > 0, define

Km‘z == U Kw-
wGWm :IGKW

Then {Km.z}m>0 i3 a fundamental system of neighborhoods of x.

Proof. Let d be a metric on K which is compatible with the original
topology. First we show that max,ew,, diam(K,) — 0 as m — oc.
If not, there exists {w(m)}m>o such that w(m) € W, for any m, and
infm>o diam(Ky(m)) > 0. Choose w(m) € Eym) for any m > 0. Then
since I is compact, there exists a subsequence {w(m;)}i>, which converges
to some w € ¥ as i — oo. Note that diam( Ky, w,...w,) < diam(Ky,w,...w,)
if m > n. It follows that liminf,, .. diam(K,, u,..w,) > 0. This contra-
dicts Proposition 1.3.3.

Secondly, we show that K, ; is a neighborhood of z. Let {z,,}m>1 be a
sequence in K which converges to x as m — oco. Choose w™ € 7~ !(z,,) for
any m > 1. Then there exists a subsequence {w™};>; that converges to
some w € ¥ as i — oc. Since 7 is continuous, 7(w) = z. Hence z,,,, € K1y ¢
for sufficiently large i. Therefore Ky, ; is a neighborhood of z.

Combining the two facts, we conclude that { K z }m>0 is a fundamental
system of neighborhoods of z. |

A self-similar structure (K, S, { F;}ics) may contain an unnecessary sym-
bol. For example, let K = [0,1] and define § = {1,2,3}, Fi(z) = %x,
Fy(z) = 3z + 3 and F3(z) = 3z + ;. Then obviously K = Fi(K)U F3(K)
and we don’t need F3 to describe K. This example may be a little artificial
but there are more natural examples. To explain such examples, we need
to introduce some notation.

Let £ = (K,S,{F;}ics) be a self-similar structure. Let W be a fi-
nite subset of W,\Wy. Then (W) = WN can be identified as a sub-
set of £(S) = SV in a natural manner. Set K(W) = x(X(W)). Then
(K(W),W,{Fy}wew) is a new self-similar structure. We denote this self-
similar structure by £(W).

Using this notation, we can rephrase the above example as K({1,2}) =
K(S). The following is a more natural example.

Example 1.3.7. Let K = [0,1] and define S = {1,2}, Fi(z) = 3z and
Fy(z) = 3z + . Then £ = (K, S, {F}, Fz}) is a self-similar structure. Set
W = {11,22). Then K(W) = K because K = Fy;(K) U Fpp(K). This
means that to describe K, we don’t need the words {12, 21}.
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You may notice that this kind of unnecessary symbol (or word) occurs
when the overlap set Cr x (or equivalently C. ) is “large”. The following
theorem justifies such an intuition.

Theorem 1.3.8. Let L = (K, S,{F;}ics) be a self-similar structure. The
Jollowing conditions are equivalent. If L satisfies one of the following con-
ditions, we say that L is minimal.

(Mil) If 7(A) = K for a closed set AC L, then A= L.

(Mi2) For any w € W,, K, is not contained in Uyew, \{w}Kv, where
m = |w|.

(Mi3) If K(W) =K for W C Wy, then W =W,,.

(Mid) K, s not contained in C¢ g for any w € W..

(Mi5) int(Cc) = 0.

(Mi6) int(P.) =0. (Mi6*) P #EL.

(Mi7) int(Vp) = 0. (Mi7*) VW # K.

As we can see from (Mi3), & minimal self-similar structure does not have
any unnecessary symbol (or word). It is easy to see that the self-similar
structures corresponding to the self-similar sets in 1.2 are all minimal.

Proof. (Mil) = (Mid4) Assume that C O K,, for some w € W.. Let
k € S be the first symbol of w. Then for any z € K,,, there exists some
J # ksuch that z € K;. If m = |w| and A = Uyew,,\{w} v, then A is
closed and 7(A) = K.

(Mi4) = (Mi5) Assume that int(C) # 8. Then C O Z,, for some w € W,.
Hence C D K,,.

(Mi5) = (Mi6*) Assume that P = £. Then as P = U,,>10™C, Baire’s
category argument shows that int(e™C) # 0 for some m. (See, for exam-
ple, [186] about Baire’s category argument.) Hence, 6™C 2 X,, for some
w € W.. Therefore 0*C = T for k = m+|w|. Now 0*C = Uyew, 0*(Z,NC).
Again using Baire’s category argument, it follows that ¢*(Z,NC) 2 X, for
some v € Wy and u € W,. Therefore C 2 X,...

(Mi6*)=> (Mi6) Assume that int(P) # @. Then P D £, for some w € W,.
Since o™P C P for m = |w|, we have ¥ = P,

(Mi6) = (Mi7) As 7~!(Vp) = P, we have 7~ !(int(Vp)) C int(P).

(Mi7) = (Mi7*) = (Mi6*) This is obvious by the fact that 7~ (V;) = P.
(Mi6*) = (Mi2) Assume that K, € Uyew,,\{w}Kv for some m and
w € W,,. Then for any w € X, there exist v € W,,\{w} and 7 € ¥
such that m(ww) = w(vr). As w # v, we can choose k < m 30 that
WW2 ... Wk—y =V V2... Uk 80d wg # V. Since Fy,w,..w,_, IS injective,
we see that o*(ww) € C. Thereforew € P. So P =X.
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(Mi2) = (Mil) If there exists a closed subset A C ¥ with #(A) = K, then
A€ is a non-empty open set and so it should contain ¥,, for some w € W..
Since A D Uyew,,\{w}Zv. where m = |w|, we have Ky, € Upew,,\{w) K-

(Mi2) = (Mi3) Let W be a proper subset of W, and assume K(W) = K.
Then for w € W,,\W, K, C K = U,ew K,. Hence (Mi2) does not hold.

(Mi3) = (Mi2) If K, C Upew,,\(v} Ky where m = |w|, then K =
Upew Fu(K), where W = W, \{w}. Hence, for any r € K, there exists
w € (W) such that n(w) = x. Therefore K(W) = K. O

Remark. It seems quite possible that the condition int(Ce k) = 0 is also
equivalent to those conditions in Theorem 1.3.8. Unfortunately this is not
true. In fact, there is an example where int(Cc x) = @ but int(Cz) # 0.
See Exercise 1.5.

Definition 1.3.9. Let S be a finite set. We say that a finite subset A C
W.(S) is a partition of £(S) if £, NX, = @ for any w # v € A and
Y = Uypealy- A partition A is said to be a refinement of a partition A,
if and only if either £, C X, or X, NXE, =0 for any (w,v) € A} x As.

W is a partition for any m > 0 and W, is a refinement of W, i (and
only if) n > m.

Lemma 1.3.10. Let £ = (K, S,{F.}ics) be a self-similar structure. De-
fine V(A, L) = UyecaFu(Vo) if A is a partition of £. Then V(A(,£) 2
V(A2, L) if A\ is a refinement of As.

Proof. Assume that A, is a refinement of Ay. Set x = 7(uww) for w € A,
and w € P. Then there exists v € A, such that v = ww)...wi. As
Wrk+1Wk+2 - - - € P, we can see that z = n(uww) € V(A,, £). O

Lemma 1.3.11. Let £ = (K, S,{F;}ics) be a self-similar structure. De-
fine Vo (L) = V(Wi £). Then Vi (L) € Vi1 (£) and

Vm-‘rl(ﬁ) = UiGSFt'(Vm(L))-

Furthermore, set V, (L) = Um>oVm(L). If Vy # 0, then V(L) is dense in
K.

Proof. The proof of the first statement is immediate fromm Lemma 1.3.10.
If z = n(w) € K, then for 7 € P, z, = w(w...w,T) converges to z as
n — 0. Hence V,(£) is dense in K. O

We write V(A), V,, and V, instead of V(A, L), V,,(£) and V,(L) respec-
tively if no confusion can occur.
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Let A be a partition of £(S). If £ = (K, S, {Fi}ies) is a self-similar
structure and A # Wp, then we can define a self-similar structure £(A) =
(K(A),A, {Fiy}wea) as before. (See the definition of L{W') between Propo-
sition 1.3.6 and Example 1.3.7.) Immediately, by Definition 1.3.9, it follows
that K(A) = K and X(S) = £(A). (More precisely, £(A) can be identified
with £(S) in a natural manner.) Of course, the topological structures of
K and K(A) are expected to be the same since they are virtually the same
self-similar structures.

Proposition 1.3.12. Let £ = (K, S, {F;}ics) be a self-similar structure
and let A be a partition of X(S). Then Pr 2 Pr(a), where we identify
¥(S) and X(A) through the natural mapping. Furthermore, if A = W,,,(S)
Jorm > 1, then Pg = Pra).

Proof. let a@ = ajaz... € Pgia), where a; € A. Then there exists
BiBa...0m € Wo(A\WH(A) and ¥ = 712 ... € E(A) such that #(3) =
n(v) and 3, # v, where 3 = $318:...8ma € L(A). Hence, if 5) =
wiwy ... Wy € Wir(S) and 1 = vv;...v, € Wy(S), we can find £ so
that wywse ... wx = vyve ... vk and wiy, # vi41. Therefore, as elements in
£(9), m(0*B3) = n(6*v) and hence %3 € C¢. This implies that o € Pe.
Next let A = W, for m > 1. For w = wjws... € Pr, there exists
w € W, (S)\\Wy(S) and 7 € £(S) such that r(ww) = #(7r) and w, # 71.
Now we can choose v € W,(S) so that vw = 3,0;...5; and vr =1 72...
with G;,vs € Aand 8) # 7. fw = aja3..., where a; € A, then it follows
that 3,0, ... ﬁjalag e € CC(A)- Therefore w = ajas... € 'Pg(,\). [

Even if A # Wi (S), Pga) often coincides with Pe. In general, however,
this is not true. See Exercise 1.6 and 1.7 for examples.

Finally, we will give the definition of post critically finite (p. c. . for short)
self-similar structure, which is one of the key notions in this book.

Definition 1.3.13. Let £ = (K, S, {F.}ics) be a self-similar structure. £
is said to be post critically finite or p.c.f. for short if and only if the post
critical set P, is a finite set.

If £ = (K,S,{Fi}ics) is post critically finite, V,,, is a finite set for all
m. In particular, K, N K, is a finite set for any w # v € W,,,. Such a
self-similar set is often called a finitely ramified self-similar set. Obviously,
a p.c.f self-similar set is finitely ramified. The converse is, however, not
true.

Later, in Chapter 3, we will mainly study analysis on post critically finite
self-similar sets.



24 Geometry of Self-Similar Sets

Lemma 1.3.14. Let £ = (K, S, {Fi;}ies) be post critically finite and let
p€ K. If Fy(p) = p for some w € W, and w # 0, then 7~ 1(p) = {w}.

Proof. Obviously, w € ©~!(p). First we consider the case when w = k €
W). Assume that there exists 7 = 372... € X such that n(7) = p and
7 # k. Without loss of generality, we may suppose that - # k. Let
7" = (ok)"7 for any n > 1. Then 7" € 7~ '(p) and hence 7~ 1(p) is an
infinite set. On the other hand, since p € Kx N K,,, 7~ !(p) is contained in
the critical set. As 7~1(p) is an infinite set, this contradicts the fact that
L is post critically finite.

Now for general case, let w € W,,. Then by Proposition 1.3.12, £,, =
(K,Wm,{Fe}vew,,) is also post critically finite. So applying the above
argument to L,,, we see that 7~ !(p) contains only one element. Hence

n~Hp) = {v}. =

Example 1.3.15 (Sierpinski gasket). Let K be the Sierpinski gasket
defined in Example 1.2.8. Then £ = (K, S, {fi:}ies), where S = {1,2,3}
and the f; are the same maps as in Example 1.2.8, is a post critically finite
self-similar structure. In fact, Cz x = {q1,42,93}, Cc = {12,2i,23,32,31,
13} and PE = {112’3} Also Vp = {Pth,Pa} and V; = U {QI’Q%Q:‘)}‘
See Figure 1.2.

Example 1.3.16 (Hata’s tree-like set). Let f), fo and K be the same
as in Example 1.2.9. Then £ = (K, {1,2},{f1, f2}) is a p.c.{. self-similar
structure. In fact, Cex = {|c?|}, Cc = {112,21} and P, = {12,2,1}. See
Figure 1.3. Hence Vg = {c,0,1}. Also V; = {c,0, 1,|c|?, f2(c}}. Note that
self-similar structures are isomorphic for all ¢ with |¢], |1 — ¢] € (0,1).

Of course there are numerous examples of non-p. c. f. self-similar struc-
tures. One easy example is the unit square. (See Exercise 1.3.) Another
famous example is the Sierpinski carpet, which may be thought of as the
simplest non-trivial non-p. c. f. self-similar structure.

Example 1.3.17 (Sierpinski carpet). Let p; = 0, p» = 1/2, p3 = 1,
pa=1+vV=-1/2,ps =1+VvV-1,ps=1/2+ V-1, pr = v-Tand ps =
Vv-1/2. Set fi(2) = (z—p;)/3 +p fori = 1,2,...,8. The self-similar
set K with respect to {f;}i=1,2...,8 is called the Sierpinski carpet. See
Figure 0.4. Let L be the corresponding self-similar structure. The L is
not post critically finite. In fact, Cz g, Cc and P, are infinite sets. In
particular, V; equals the boundary of the unit square [0,1] x [0, 1].
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1.4 Self-similar measure

In this section, we will introduce an important class of measures on a self-
similar structure, that is, self-similar measures. First we will recall some
of the fundamental definitions in measure theory.

(X, M) is called a measurable space if X is a set and M is a o-algebra
whose elements are subsets of X. A measure ¢ on a measurable space
(X, M) is a non-negative o-additive function defined on M.

Definition 1.4.1. Let (X, d) be a metric space and let x4 be a measure on
a measurable space (X, M).

(1) The Borel o-algebra, B(X, d), is the minimal o-algebra which contains
all open subsets of X. An element of B(X,d) is called a Borel set. If no
confusion can occur, we write B(X) instead of B(X,d).

(2) p is called a Borel measure if M contains B(X).

(3) u is called a Borel regular measure if it is a Borel measure and, for
any A € M, there exists B € B(X) such that u(A) = u(B) and A C B.
(4) We say that u is complete if any subset of a null set is measurable,
ie, BeEMif BC A€ M and u(A) =0.

(5) p is called a probability measure if and only if u(X) = 1.

The following proposition is one of the most important facts about Borel
regular measures. See, for example, [124] and [158].

Proposition 1.4.2. Let (X,d) be a metric space and let u be a Borel reg-
ular measure on (X, M). Assume that u(X) < co. Then, for any A € M,

pu(A) =inf{u(U) : U is a open set that contains A}
= sup{u(F) : F is a closed set that is contained in A}

Proposition 1.4.3 (Bernoulli measure). Let S be a finite set. Ifp =
(Pi)ies satisfies Y ;cspi =1 and0 < p; <1 for anyi € S, then there exists
a unique complete Borel reqular measure uP on (T, MP), where & = SN,
that satisfies pP(Xy) = Pu,Puy - - - Puw., fOr any w = wvywe...w,, € W,.
This measure uP is called the Bernoulli measure on ¥ with weight p.

Remark. In this book, all the measures we will encounter are supposed to
be complete unless otherwise stated.

Also the Bernoulli measure with weight p is characterized as the unique
Borel regular probability measure on ¥ that satisfies

p(A) = pin(o(A))
icS
for any Borel set A C X.
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Proposition 1.4.4 (Self-similar measures). Let £L = (K, S, {F;}ics)
be a self-similar structure and let = be the natural map from X to K asso-
ciated with L. If p = (p;)ics € RS satisfies diesPi=1and0 < p; <1 for
any i € S, then we define vP by vP(A) = pP(v~1(A)) for A€ NP = {A:
AC K,m"1(A) € MP}. Then, vP is a Borel regular measure on (K,N?).
VP i3 called the self-similar measure on K with weight p.

It is known that P is the unique Borel regular probability measure on
K that satisfies

v(A) = pv(F1(4))
i€S
for any Borel set A € K. See [34, Chapter 2] and [76] for the proof of this

fact.
By definition,

V(Kw) 2 PunPus - - Pum (1.4.1)

for any w = wywe...w,, € W,. Intuitively, it seems that equality holds
in (1.4.1) rather than inequality if the overlapping set C¢ is small enough.
More precisely, we have the following theorem.

Theorem 1.4.5. Let L = (K, S,{F;}ics) be a self-similar structure and
let w be the natural map from X to K associated with L. Also letp = (p;)ies
satisfy 3 .cspi=1and0 < p; <1 for anyi € S. Then
Vp(Kw) = Pw,Pw; -+ - Puy,

Jor any w = wyw; ... wy, € W, if and only if u?(Zo) = 0, where

Too = {w € X : #(r~ L (m(w))) = +00}.
Remark. We will show that Z,, € MP. '
Lemma 1.4.6. For any A € MP, define

A, = {w € T : oc™w € A for infinitely many m € N.}.

Then A, € MP and pP(A,) > uP(A). In particular, if A € B(X) then
A, € B(Z).

Proof. Define o, = 0y, ©--- 00y, for w =ww,...w,, € W,. Set A, =
Uyew,,0w(A). Then A, = limsup,,_,,, Am- Hence A, € MP and by
Fatou's lemma, we have pP(A,) > limsup,,_ ., #?(Am). (Note that yP is
a finite measure.) On the other hand, p?(An) = Y e, #P(0uw(4)) =
Y wew.. PuttP(A) = uP(A), where py = pu,Pu, - - - Pu,,- Hence it follows
that pP(A,) > uP(A). O
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Lemma 1.4.7. Define I = {w € £: #(r~}(n(w))) > 1}. Then T € B(T),
Too € MP, I, C T €T and pP(Zo) = pP(Zeo) = pP(Z).

Proof. Set I, = Uy tvew..(KwNKy). Then it follows that I, is closed and
Z = Um>17~(Im). Hence Z € B(Z). Now if w € Z,, by using induction,
we can choose {my}k>1, {nx}xz1 and {w® }is, {T¥) }4>1 C L 50 that

1<m<np<Mme<ne< - <M <N <Mpy <+,
o™w e T, 0™w # ™ (0™ w) = n(r¥),
w("] = W2 .. .wm,“r("),wlwg oWy = w(kllw(k)g .e -w(k)m._l

and wp, # w®,, . This implies that 7(w*)) = m(w) and hence w € .
Thus we have shown that Z, C Z,o € Z. By Lemma 1.4.6, u*(Z) <
uP(Z,), we can see that uP(Z) = uP(Z,). As P is complete, Z, € MP and
#P(Zoo) = pP(Z). O

Proof of Theorem 1.4.5. By the definition of Z, we can ecasily see that
p?(Z) = 0 if and only if uP(Z,) = v?(K,) = py for any w € W,. This
along with Lemma 1.4.7 implics the theorem. O

Remark. It is well-known that uP is ergodic with respect to the shift map
o. This means that if A € MP and 6~ 1(A) = A then uP(A) = 0 or 1.
Since 0~ (Z,) = I,,, uP(Zo) = uP(Zso) = pP(Z) =0 or 1.

Corollary 1.4.8. If #~1(z) is a finite set for any z € K, then vP(Ky) =
Puw for allw e W,.

Since T = Uypew.0w(Cz), pP(Cz) > 0 implies uP(Z) > 0. Hence by
Theorem 1.3.8, we have the following corollary.

Corollary 1.4.9. If v?(K,) = pu for any w € W,, then L is minimal.

Although the next theorem does not directly relate to self-similar mea-
sures, it tells us a useful fact: two Borel regular measures on a self-similar
set are comparable if they are comparable on K, for all w € W,.

Theorem 1.4.10. Let £ = (K, S, {F;}ics) be a self-similar structure. Let
g and v be Borel regular measures on (K, M(u)) and (K, M(v)) respec-
tively. Assume that v(K) < oo and v(Z) = 0. If there ezists ¢ > 0
such that u(K,) < cv(K,) for any w € W,, then u(A) < cv(A) for any
A € M(u)NM(v). In particular, u(T) = 0.

Proof. Let U be an open subset of K. Set W(U) = {we W, : K, C U}.
For w,v € W(U), we define w > vifand only if £, 2 £,. Then > is a
partial order on W(U). If W*¥(U) is the collection of maximal elements in
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W (U) with respect to this order, then U = U,ew+v)Kw and KyNK, CZ
for w # v € W*(U). Therefore

pU)< Y pEw)<e Y v(Ky)=e(U).
weW+(U) weW+(U)

Now, by Proposition 1.4.2, for any A € M(u) N M(v), there exists a
decreasing sequence of open sets {Ox}i>1 such that A C O, for any k,
#(Nk>10k) = p(A) and v(Ni>10x) = v(A). As u(Ox) < cv(Ok), we have
1(A) < ev(A). O

1.5 Dimension of self-similar sets

In this section, we will introduce the notion of the Hausdorff dimension
of metric spaces and show how to calculate the Hausdorff dimension of
self-similar sets.

Definition 1.5.1. Let (X,d) be a metric space. For any bounded set
A C X, we define

H3(A) = inf{)_ diam(E;)* : A C Usp1 E;, diam(E;) < 8},

i>1
where diam(E) is the diameter of E defined in 1.2. Also, we define H*(A) =
lim sup6lo Hg (A).

It is well-known that H® is a complete Borel regular measure for any
s > 0. See Rogers [157] and Falconer [32] for example. H?’ is called the
s-dimensional Hausdorff measure of (X, d).

Lemma 1.5.2. Let (X,d) be a metric space. For 0 < s < t,
H5(E) < 6'~*H3(E)

forany EC X.

Proof. If E C U;»E; and diam(E;) < é for any 4, then

> diam(E;)' < ) diam(E;)*"*diam(E;)* < 6** ) _ diam(E;)".
i>1 i>1 i>1

By Lemma 1.5.2, we can obtain the following proposition.
Proposition 1.5.3. Forany E C X,
sup{s : H*(E) = oo} = inf{s : H*(E) = 0}. (1.5.1)
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Proof. By Lemma 1.5.2, if s < ¢, then H*(E) < oo implies H*(E) = 0 and
also H*(E) > 0 implies H*(E) = oco. Now it is easy to see (1.5.1). |

Definition 1.5.4 (Hausdorff dimension). The quantity given by the
equality (1.5.1) is called the Hausdorff dimension of E, which is denoted
by dimyu E.

Remark. The Hausdorff measure and the Hausdorff dimension depend on
a metric d. In this sense, if we need to specify which metric we are looking
at, we will use the notation of dimy (E, d) instead of dimy E.

The following lemma is often useful to calculate the Hausdorff dimen-
sion of a metric space. It is often called “Frostman’s lemma”. See, for
example, Mattila [124]. It is also called the “mass distribution principle”
in Falconer [33].

Lemma 1.5.5. Let (K,d) be a compact metric space. If H*(K) < oo and
there exist positive constants ¢, lop and a probabdility measure p on Ksuch
that

u(Bi(z)) < cl®
Jorallz € K and any l € (0,1), then
1(A) < cH*(A)
for any Borel set A C K. In particular, 0 < H*(K) < o0.

Remark. According to the discussion of Moran [134], the converse of the
above lemma is true: if 0 < H*(K) < o0, then there exists a probability
measure z on K such that, for some ¢ > 0,

u(Bi(x)) < cl®

for all z € K and ! > 0. Moran proved this fact if K was a compact subset

of Euclidean space. His argument, however, can be easily extended to this
case.

Proof. For U ¢ K and z € U, note that U C Byjam(v)(z). Hence, if
A C UU;, then

u(A) < Zﬂ(Bdaam(U.)(-Ti)) < CZ diam(U;)®,

where z; € U;. Therefore p(A) < cH{*(A). Letting { — 0, it follows that
1(A) € cH*(A). O
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Now let (K,{1,2,...,N},{Fi}1<i<~) be a self-similar structure and let
d be a metric on K which is compatible with the original topology of K.
In general, it is not easy to evaluate the Hausdorff dimension dimy(K, d).
Moran [134] introduced what is now called “the open set condition”, which
ensures that the intersections K;NK fori # j € {1,2,... ,N} are “small”.
Under this condition, he gave a formula for the Hausdorff dimension of K
when K was a subset of R¥, d was the Euclidean metric on R* and F; were
similitudes with respect to d. See Proposition 1.5.8 and Corollary 1.5.9 for
Moran's result. His result is useful in calculating the Hausdorff dimension
of many well-known examples of self-similar sets. See Exercise 1.9.

Remark. Moran published his paper [134] long before the notion of “frac-
tal” existed. Of course, he didn’t use the terminology “self-similar set”
but he had exactly the same notion of self-similar set as we have today.
Hutchinson [76] rediscovered Moran’s result about 40 years later and in-
troduced the name “open set condition”.

Unfortunately we can apply Moran’s result only when K is a subset of
R*, d is the Euclidean metric on R* and the F; are similitudes with respect
to d. Later in this book, a metric called an effective resistance metric,

which satisfies none of those requirements, will become important from
the analytical point of view. Here, we will introduce an extended version

of Moran's theorem (Theorem 1.5.7) that can be applied in more general
situations.

Definition 1.5.6. For r = (ry,72,...,ry) where 0 < 7; < 1 and for
O<eac<l,

Aria)={w:w=wws...wn € Wy, Ty ws.om_y > Q2 Tuh
where ry, =7y, 1y, ... 1y, for v =vyvz...vx € W;.

Remark. A(r,a) is a partition of £.

The following is our main theorem. This theorem was introduced in [88].
The ideas are, however, essentially the same as in Moran [134].

Theorem 1.5.7. Assume that there ezist r = (r1,72,... ,rn) where 0 <
ri; < 1 and positive constants ¢, ¢z, ¢. and M such that

diam(Ky) € 17w (1.5.2)
Jor allw e W, and
#{w:we A(r,a),d(z,Ky) €a} <M (1.5.3)
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for any x € K and any a € (0,c.), where d(x, Ky) = infyex, d(z,y). Then
there exist constants c3,cq > 0 such that for all A € B(K,d),

csv(A) £ H*(A) < csv(A), (1.5.4)

where v is a self-similar measure on K with weight (ri®h<i<n and a is
the unique positive number that satisfies

.ZT‘,'O = 1. (155)

t=1
In particular, 0 < H*(K) < oo end dimy (K, d) = a.

Remark. Under the assumption (1.5.3), it is easy to see that #(n~1(z)) <
M for any r € K. Hence, by Corollary 1.4.8,

V(Ky) = ry®
for any w € W,. Also v(Z) = 0.
Proof. We write A, = A(r,a). First we show that H*(K,) < (¢1)*v(Ky)
for all w € W,. For w = ww,...w, € W,, we define A,(w) = {v =

ViV2... U : WU € Ay}, Where wv = wwz ... wnv1V2...v. Then we can
see that A,(w) is a partition for sufficiently small ¢. Hence

re % = Z rovt- (1.5.6)
vEAL(w)
By (1.5.2), it follows that diam(K,,,) € ciryy € 16 for v € Ag(w). Also
note that K., = Uyea, (w) Kwv- Then
nga(Kw) <a” Z Twe” = (clrw)°~
UEAQ(W)

Letting @ — 0, we obtain
H*(Ky) < (61)%re® = (a)*v(Ky).

Next we show that v(K ) < Mca7*H*(K,). Let 4 be the Bernoulli mea-
sure on ¥ with weight (r;®)i1<i<n. For every zr € K,

1N Bea(z)) € |J Zw,
w€A, 2

where Aqz = {w: w € A,,d(z, Ky) < cza}. Hence it follows that

U(Beyo(@)) € Y 1(Tuw).

wEAa.x
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Since p(E,) = r? < a® and #(A, ) < M by (1.5.3), we have
¥(Bg;a(z)) < Mez™%(c20)".
Lemma 1.5.5 implies that
v(A) € Mca"*H*(A).
for any A € B(K,d). Hence there exist c3,c4 > 0 such that
cav(Kw) € H(Ky) € cav(Ky).
By Theorem 1.4.10, we can verify (1.5.4). O

In the rest of this section, we show that the open set condition implies
(1.5.2) and (1.5.3) of Theorem 1.5.7.

Proposition 1.5.8. Suppose K is a subset of R¥, d is the Euclidean metric
of R* and F; : R* - R* is an r;-similitude fori =1,2,... ,N with respect
to d. If the open set condition holds, i.e., there exists a bounded non-empty
open set O C R* such that

N
|UFR(O)cO and F(O)NF;(0)=0 fori#j,

i=1
then there exist constants ¢;,ca2, M > 0 such that

diam(K,) < ¢)7y
Jor all w € W, and
#{w:we A(r,a),d(z,Ky) < c2a} < M
forall0<a<1landze K.

Proof. We can see that K, C Oy, for any w € W,, where O, = F,(0).
(By Exercise 1.2, it follows that O 2 K.) Without loss of generality,
we may assume that diam(QO) < 1. Then, for all w € W,, diam(K,) <
diam(O,) < ry,. Let m be the k-dimensional Lebesgue measure and let
Ayz = {w : w € A(r,a),d(z,K,,) < a}. Then Uyea, ,Ow C Ba2a(z).
Since the Oy, are mutually disjoint, we have 3_ .5 m(Oy) < m(Bz(x)).
Hence it follows that #(A, 2)r,*m(0) < 2%¥Ca*, where C = m(unit ball).
Since r,, > aR where R = min{r;,r2,... ,rn}, We see that #(As,z) <

25CR~*m(0)-1. m]

Corollary 1.5.9 (Moran’s theorem). If K satisfies the open set condi-
tion, then dimy(K,d) = «a, where a is given by (1.5.5) with r; = Lip(F;).
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1.8 Connectivity of self-similar sets

Let (K, S, {Fi}ies) be a self-similar structure. In this section we will give
a simple condition for connectivity of K and also show that K is connected
if and only if it is arcwise connected. As a reminder, the definition of
connectivity is as follows.

Definition 1.6.1. Let (X,d) be a metric space.

(1) (X,d) is said to be connected if and only if any closed and open subset
of X is X or the empty set. Also a subset A of X is said to be connected
if and only if the metric space (A, d|4) is connected.

(2) A subset A of X is said to be arcwise connected if and only if there
exists a path between = and y for any z,y € A: there exists a continuous
map v : [0,1] — A such that 4(0) = z and 4(1) =

(3) (X,d) is said to be locally connected if and only if, for any z € X
and any neighborhood U of z, there exists a connected neighborhood V of
zwithV CU.

Of course, arcwise connectivity implies connectivity, but the converse is
not true in general. Now we come to the main theorem of this section.

Theorem 1.6.2. The following are equivalent.

(1) Foranyt,j € S, there exists {ik}k-—o 1,...n C S such thatio =1, 1, = j
and K;, NK;, ., #0 for any k =0,1,... ,n—1.

(2) K is arcwise connected.

(3) K is connected.

Proof. Obviously (2) = (3). So let us show (3) = (1). Choose i € S and
define A C S by

A ={j € S : there exists {ix}x=0.1....n» C S such that
,H,#-@foranyk 0.1,...,n-1}.

U =UjesK;and V =UjgaKj, then UNV =0and UV = K. Also
both U and V are closed sets because K; is closed and A is a finite set.
Hence U is an open and closed set. Hence U = K or U = @. Obviously
K; C U and hence U = K. Therefore V = 0 and hence A = §.

To prove (1) = (2), we need the following lemma.

Lemma 1.6.3. For a map u: [0,1] — K and for t € [0,1), we define
D(u,t) = sup{limsupd(u(t,),u(s,)) : lim t, = lim s, =t}.
n—00 n—oQ

n—00
If fa:[0,1) — K is uniformly convergent to f : [0,1] - K asn — oo and
limy, oo D(fn,8) =0, then f is continuous at s.
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Proof of Lemma 1.6.3. Let d be a metric on K that is compatible with the
original topology of K. If t,, — s and s, — s as n — oo, then

d(f(tn); f(3n)) S d(f(tn): fra(tn)) + d(fm(tn), fm(8a)) + d(fm(sn), f(sn))-

Set r,y = sup{d(fm(t),f(t)) : 0 < t < 1}. Then the above inequality
implies D(f,3) < 2rn, + D(fm,8). Now letting m — oo, we can see that
D(f,s) = 0. Hence f is continuous at s. O

Now we return to the proof of (1) = (2). Define

P={f:K*x[0,1 — K : f(p,q,0) = p and
f(p.q,1) = ¢ for any (p,q) € K?}.
Also for f,g € P, set

dp(f, 9) = sup{d(f(p.q.t),9(p.q,t)) : (p.q,t) € K* x [0,1]}.

Then (P,d,) is a complete metric space. By (1), for any (p,q) € K2, we can
choose n(p,q), {tk(P. @) }o<k<n(p.q)-1 € S and {zx(p, @)}o<k<n(p,q) € K s0
that zo(p,q) = P, Tu(p,g)(P,q) = q and zk(p,q), Zk+1(P,q) € Ki\(p,q) for
k=0,...,n(p,q) — 1. For f € P, define Gf € P by, for k/n(p,q) <t <
(k + 1)n(p, g),

(G, g, t) = Fy (p,0(f(uk(p, 9), 2e(p, @), n(p, 9)t — K)),

where yx(p, q) = F;_(, . (zk(p,q)) and ze(p,q) = F_ i, \(<k+1(p,q)). Then
it follows that dp(G™f,G™g) < r,, where r,, = max,ew,, diam(K,).
Since r,, — 0 as m — 00, there exists f, € P such that G™f — f, as
m — oo in P. Also set D(f) = sup{D(fp.q),t) : (P.q.2) € K? x [0,1]} for
[ € P, where f,(t) = f(p,q,t). Then D(G™f) < r,D(f). Hence by
Lemma 1.6.3, f.(p,q,?) is continuous with respect to ¢t. As f.(p,q.,t) is a
continuous path between p and q, K is arcwise connected. O

Proposition 1.6.4. If K is connected, then K is locally connected.

Proof. By Proposition 1.3.6, { Km z}m>0 is a system of fundamental neigh-
borhoods of z. If K is connected then K, is connected for any w € W,.
Hence K,, ; is connected. O

For p. c. f. self-similar structures, Theorem 1.6.2 can be written as follows.

Corollary 1.6.5. If (K,S,{F;}ies) is post critically finite, then K is con-
nected if and only if, for any p,q € V1, there exist {pi}o<ci<m C Vi and
{ki}ocicm-1 € S such that po = p, pm = ¢ and p;,pit1 € Fi, (Vo) for
i=0,..., m-1,
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In the rest of this section, we study connectivity of K'\V; for a connected
p. c. f. self-similar structure.

Proposition 1.6.6. Let (K, S, {Fi}ics) be a connected post critically finite
self-similar structure. Let C' be a connected component of K\Vy. Then C
is arcwise connected. Moreover, for any x € C and any p € C, there exists
a path between z and p in C' U {p}.

Proof. Let £ € C. Note that K,, , is arcwise connected. (See Proposi-
tion 1.6.4 and its proof.) Since C is open, K,, . is contained in C for suf-
ficiently large m. Hence if O = {y : y € C, there exists a path between z
and y in C}, then O is open. Therefore, O = C. So C is arcwise connected.

Let p € C. If p € C, the statement is obvious because C is arcwise
connected. So assume that p € V. Choose m so that K, , N Vy = {p}.
Let y € K p NC. Since K, is (arcwise) connected, there exists a path
between y and p. This path is included in C U {p}. Also there exists a
path between x and y which is included in C. Joining those two paths, we
obtain the desired path between x and p. O

Proposition 1.6.7. Let (K, S,{F.}ics) be a connected post critically fi-
nite self-similar structure. Let p be the fized point of F;. If C is a con-
nected component of K\{p}, then CNVy # 0. In particular, the number of
connected components of K\{p} is finite. Moreover, let {C;}j=12,...m be
the collection of all connected components of K\{p}. Then there erists a
permutation of {1,2,... ,m}, p, such that F;(Cx) = Cpxy N K.

Proof. Suppose that Uy, ... ,U) are connected components of K\{p}. Then
we may choose n so that U; is not contained in F;™(K) forall j =1,2,... 1L
By Proposition 1.3.5-(2), U,NF"(Vp) # Bforany j = 1,2,... ,l. Therefore
I €< #(Vy). This implies that the number of connected components of
K\{p} is finite,

Now, let Cy,... ,C,, be the collection of all connected components of
K\{p}. Note that F;(C;) is connected and UJ_, F;(C;) = K;\{p}. There-
fore, there exists p(7) such that F;(C;) C C,;;. Lemma 1.3.14 implies that
Ki1p = K;. Hence C N K; # 0 for any k and there exists j such that
C; N F;~1(Cy) # 0. This implies that p is a permutation of {1,2,... ,m}.
As Ki\{p} = UTL,(Ki N C;), we sec that K; NCy(y) = Fi(C;) for any j.

Next choose n so that C; is not contained in F;"(K) for any j. Then,
it follows that Cynipy N Fi"(Vy) # 0 for any k. Since Cpn(gy N F;™ (Vo) =
F;"(Vo N Cy), we obtain Cy NV, # O for any k. O

Proposition 1.6.8. Let £L = (K, S,{F;}ics) be a connected post critically
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finite self-similar structure.

(1) For any p € Vy, let J(p) be the collection of all connected components
of K\{p}. Then J(p) is a finite set.

(2) The number of connected components of K\Vj is finite.

(3) Forp € Vp, define

J(p, Vo) = {C : C is a connected component of K\Vy,p € C}.

Set m(p, Vo) = #(J(p, Vo)) and m(p) = #(J(p)). {f p € Vo is a fized point
of F, for some w € WA\W,, then m(p, Vo) = m(p).

Proof. (1) Suppose that J(p) is an infinite set. Let {C;};>\1 be a collection
of connected components of K\{p}. Assume that C; # C; if i # j.
Claim 1. #{j : diam(C;) > €} < oo for any ¢ > 0.

Suppose that diam(C};,) > € for any k > 0. Then for any k, there exists
zx € Cj, such that d(p, zx) > ¢/2. Since K is compact, we may choose a
subsequence {xzk, }n>1 80 that zx, — rasn — oo forsome z € K. Let C be
the connected component of K\{p} with x € C. Since C is a neighborhood
of z, x5, belongs to C for sufficiently large ». This contradicts the fact
that each x;, belongs to a different C;. Hence we have the claim.

Now since £ is p.c.f., we may write 7~ !(p) = {w(1),... ,w(m)}. Then
there exists k such that, for any j = 1,2,... ,m, w(j) = w(j)v(‘j) for some
w(j) € Wi and some v(j) € W,. Let p; = w(v(j)) for j = 1,2,... ,m.
Note that p; € Vp and F;(p;) = p for all j. Also, by Proposition 1.6.7,
the number of connected components of K\{p;} is finite. (We may change
the self-similar structure to £, = (K, Wy, {Fu}wew,), where n = |v(j)|.
Then apply Proposition 1.6.7 to p;, which is a fixed point of Fi(;y.) Since
Ki.p = UTL) Fy(5)(K), it follows that the number of connected components
of Kxp\{p} is finite. (See Proposition 1.3.6 for the definition of Kj p.)

By the way, since Ky p is a neighborhood of p, Claim 1 implies that Ky,
contains infinitely many connected components of K\ {p}. This contradic-
tion shows that the number of connected components of K'\{p} is finite.
(2) Suppose that the number of connected components of K\Vp is in-
finite. Then there exists p € V, such that J(p,Vp) is an infinite set.
By the same discussion as in the proof of (1), it follows that, for any
e > 0, #{C|C € J(p,Vy),diam(C) < €} = co. On the other hand, let
€ = minge v, (p) d(p: ¢)/2 and assume that C € J(p, Vp) and diam(C) < «.
Then C is a connected component of K\V,. By (1), {C|C € J(p. V),
diam(C) < €} is a finite set.

(3) Let £k = m(p,V) and let U = (UCGJ(p,Vo)C) J{p}. Then U is a
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neighborhood of p. Hence, if w(n) = w...w, then K, C U for suffi-

n times
ciently large n. Therefore if £’ is the number of connected components of

Komy\{p}, then k' > k. Since m(p) = k', we see that m(p) > m(p, Vo).
On the other hand, a connected component of K\{p} contains at least
one C € J(p, Vy). Hence m(p) < m(p, Vp). O

The next proposition also concerns a connected p. c. f. self-similar struc-
ture. It gives a sufficient condition for K\V; to be connected.

Proposition 1.6.9. Let (K, S,{F;}ics) be a connected post critically fi-
nite self-similar structure. Assume that, for any p,q € Vo, there erists a
homeomorphism g : K — K such that g(Vo) = Vo and g(p) = q- Then
K\Vy is connected.

If a connected p. c. f. self-similar structure satisfies the assumption of the
above proposition, we say that the self-similar structure is weakly symmet-
ric.

To prove the above proposition, we need the following lemmas.

Lemma 1.6.10. Assume the conditions in Proposition 1.6.9. Let C be a
connected component of K\Vo. Then #(CNVp) > 2.

Proof. Suppose that there exists a connected component of K\ Vj satisfying
#(CNVy) = 1. Let py be the unique py € V, with py € C. For any
p € Vp, there exists a homeomorphism ¢ : K — K such that g(pg) = p.
Letting Cp = g(C), we scc that C,, is a connected component of K\V; and
C,NVy = {p}. Then it follows that C}, is a connected component of K\{p}.

Now, since £ is post critically finite, there exists p € Vy such that p is
a fixed point of F,, for some w € W, \Wy. Let m = |w|. By exchanging
the self-similar structure £ with £, = (K, Wn, {F, }vew,.), we can use
Proposition 1.6.7 and obtain that C;, N Vp # 0. This contradicts the fact
that Up N Ve = {p}. O

Lemma 1.6.11. Assume the conditions in Proposition 1.6.9. Then,for all
p € Vo, m(p, Vo) = m(p).

Proof. Since £ is weakly symmetric, m(p) and m(p, Vo) are independent
of the choice of p € V3. Hence, as in the proof of the last lemma, we
may assume that F,,(p) = p for some w € W.\Wy. Then the statement is
immediate by Proposition 1.6.8-(3). O

Proof of Proposition 1.6.9. Let J be the collection of connected compo-
nents of K\Vp. Define V = VouJ and E = {(p,C) : p € Vo,C € J(p, )}
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Let G = (V, E) be a undirected graph, where V is the set of vertices and
E is the set of edges. Note that G is connected.

First we show that this graph G contains no loop. Suppose that there
cxists a loop in G : there exist {p;}i=12...,n C Vo and {Ci}liz12..... €T
such that (p;, C;), (pi+1,Ci) € Efori =1,2,... ,n, where p,4+1 = p;. Then
C; and C;,, are connected components of K\ V, whose closures contain p;.
Let A = U?_,(C; U {p;}). Then for any i, A\{p;} is connected and is
contained in one connected component of K\{p;}. Hence, C; and C;,, are
contained in the same connected component of K\{p;}. This contradicts
Lemma 1.6.11.

Since G contain no loop, G is a trce : for any z,y € V, there exists
a unique sequence of edges from x to y. Hence G has an end point, i.e.,
there exists £ € V such that #{y € V : (z,y) € Eor (y,z) € E} = 1.
By Lemma 1.6.10, we see that z € V5. Hence m(z,Vp) = 1. Therefore,
m(p, Vo) = m(z,Vo) = 1 for any p € V. On the other hand, if #J > 2,
then there exists p € Vj such that m(p, Vy) 2> 2 because G is connected.
Hence #J = 1. O

Notes and references

The general references to this chapter are Falconer(32, 33] and Yamaguti
et al.[184].

1.1 The notion of self-similar sets could be traced back to the Cantor set,
which is the first mathematical example of what are now called “fractals”.
In [134], Moran considered a class of sets which are extension of the Cantor
set and calculated the Hausdorff dimensions of them. His class includes,
for example, the Koch curve and the Sierpinski gasket. After Mandelbrot
proposed the notion of fractals in [122, 123}, Hutchinson[76] formulated
the mathematical definition of self-similar sets, which is more restrictive
than what we call “self-similar sets” in this book. See the remark after
Theorem 1.1.4. Theorem 1.1.4 was essentially obtained in [76]. See also
Hata[64] for an extension of Theorem 1.1.4.

1.2 The shift space £ and the shift map o are important concepts in dy-
namical systems. For example, they play an essential role in the study of
interval maps. See [133] for example. Theorem 1.2.3 was essentially ob-
tained in [76].

1.3 Partly motivated by Kameyama[80], the notion of the self-similar
structure was introduced in (83].

1.4 Hutchinson has given the definition of self-similar measures in [76).
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1.5 See Rogers[157] for details on the Hausdorff measures. See also [124]
for results from the view point of geometric measure theory.

1.6 Theorem 1.6.2 was obtained in [64]. The results after Proposition 1.6.6
are new.

Exercises

Exercise 1.1. Let f : R™ — R" be a similitude with Lipschitz constant r.
Show that there exist a € R” and U € O(n) such that f(z) = rUz + a for
all z € R".

(Hint: if g(z) = (f(z) — £(0))/r, one can see that |g(z) — g(y)| = |x — |-
This implies that the natural inner product of R” is invariant under g. Also
one should show that g is a linear map.)

Exercise 1.2. Let (X,d) be a complete metric space and let f; : X —
X be a contraction for ¢ = 1,2,...,N. For A C X, define F(A) =
Uir<icn fi(A). Let K be the self-similar set with respect to {f1, f2,... , fx}.
Then

(1) Suppose A # 0. Show that A D F(A) implies A D K.

(2) Show that for any x € X, B.(z) 2 F(B,(x)) for sufficiently large r.

Exercise 1.3. Define Fj(2) = 3(z — pi) + p; for i € {1,2,3,4}, where
pp=0,p2 = 1,p3 = (1 ++v-1) and p; = V—-1. Let K be the self-
similar set with respect to {F, Fa, F3, F4}. Prove that Vj coincides with
the topological boundary of K.

Exercise 1.4. Let K = [0,1] and let § = {1,2,... ,N}. Set Fi(z) =
a;ix +b; fori € S. Assume that 0 < a; < 1 for any ¢ € S and that
KN= UiesFi(K). Prove that (K, S, {Fi}ics) is minimal if and only if
Ei:l a; = 1'

Exercise 1.5. Define fi(z) = z/3 and f2(x) = 2/3 + 2/3. Let K be the
self-similar set with respect to {f), f2}. (K is the Cantor middle third set.)
Set g; = fio fi fori = 1,2. Let K' be the self-similar set with respect
to {g1,92}. The natural map from X({1,2}) — K (resp. I(S) — K') is
denoted by 7 (resp. #'). Note that both = and #n’ are homeomorphisms.
Set fs= fron’om™ 1.

(1) Show that f3 is a contraction on K.

(2) Let £ = (K, {1,2,3},{f1,f2,fs})- Show that int(C;) # @ and
int(Ce x) =9.
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Exercise 1.6. Prove that Pgs) = Pc for any partition A for the self-
similar structures corresponding to Example 1.2.7, 1.2.8, 1.2.9 in the last
section.

Exercise 1.7. Let S = {1,2,3}. Set w ~ 7 if and only if {w,7} C
{w1212,w31} for some w € W.(S) or w = 7.

(1) Let K = X(S)/~ with the quotient topology. Also define F;: K — K
by Fi(z) = n(oi(x~1(x))) for € K. Then prove that £ = (K, S, {F;}ies)
is a self-similar structure.

(2) Let A ={1,21,22,23,3}. Prove that Pg(,) is a proper subset of Pg.

Exercise 1.8. Let £ = (K, S, {F;}ics) be a self-similar structure and let
A be a partition of £(S5). Show that £ is post critically finite if and only if
L(A) is post critically finite.

Exercise 1.9. Evaluate the Hausdorff dimensions of the self-similar sets
introduced in Examples 1.2.6-1.2.9 under the Euclidean metric.
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Analysis on Limits of Networks

In this chapter, we will discuss limits of discrete Laplacians (or equivalently
Dirichlet forms) on a increasing sequence of finite sets. The results in this
chapter will play a fundamental role in constructing a Laplacian (or equiv-
alently a Dirichlet form) on certain self-similar sets in the next chapter,
where we will approximate a self-similar set by an increasing sequence of
finite sets and then construct a Laplacian on the self-similar set by taking
a limit of the Laplacians on the finite sets.

More precisely, we will define a Dirichlet form and a Laplacian on a finite
set in 2.1. The key idea is that every Dirichlet form on a finite set can be
associated with an electrical network consisting of resistors. From such a
point of view, we will introduce the important notion of effective resistance.
In 2.2, we will study a limit of a “compatible” sequence of Dirichlet forms
on increasing finite sets. Roughly speaking, the word “compatible” means
that the Dirichlet forms appearing in the sequence induce the same effective
resistance on the union of the increasing finite sets. In 2.3 and 2.4, we will
present further properties of limits of compatible sequences of Dirichlet
forms.

2.1 Dirichlet forms and Laplacians on a finite set

In this section, we present some fundamental notions of analysis on a finite
set, namely, Dirichlet forms, Laplacians and effective resistance.

Notation. For a set V, we define (V) = {f : f maps V intoR}. If V
is a finite set, £(V) is considered to be equipped with the standard inner
product (-,-) defined by (u,v) = 3 .y u(p)v(p) for any u,v € {(V).

First we give a definition of Dirichlet forms on a finite set V. In B.3, one

41
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can find a definition of Dirichlet forms for gencral locally compact metric
spaces.

Definition 2.1.1 (Dirichlet forms). Let V be a finite set. A symmetric
bilinear form on £(V'), € is called a Dirichlet form on V if it satisfies
(DF1) E(u,u) > 0 for any u € &(V),

(DF2) E(u,u) =0 if and only if u is constant on V

and

(DF3) For any u € £(V), E(u, u) > €(@, ), where @ is defined by

1 if u(p) 2 1,
a(p) = Cu(p) if0< u(p) <1,
0 ifu(p)<0.

We use DF(V) to denote the collection of Dirichlet forms on V. Also
DF (V) is the collection of all symmetric bilinear forms on £(V) with (DF1)
and (DF2).

Obviously DF(V) C E'F(V). Condition (DF3) is called the Markov
property.

This definition is a special case of Definition B.3.2 when X is a finite set
V and the measure p is the discrete measure on V.

Notation. Let V be a finite set. The characteristic function x} of a
subset U/ C V is defined by

1 ifgeU
Vi — '
xv(9) {0 otherwise.

If no confusion can occur, we write xy instead of x. If U = {p} for
a point p € V, we write x, instead of x(p3. If H : &(V) — 4(V) is a
linear map, then we set Hpy = (Hxq)(p) for p.q € V. For f € V),
(HI®) = Locv Hpaf(@).

Definition 2.1.2 (Laplacians). A symmetric linear operator H : (V) —
£(V) is called a Laplacian on V if it satisfies
(L1) H is non-positive definite,
(I.2) Hu =0 if and only if u is a constant on V/,
and
(L3) Hpg 20O forallp#£qgeV.

We use LA(V) to denote the collection of Laplacians on V. Also LA(V)
is the collection of symmetric linear operators from £(V) to itself with (L1)
and (L2).
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Obviously LA(V) € LA(V).

There is a natural correspondence between DF(V) and LA(V). For a
symmetric linear operator H : {(V) — £(V), we can define a symmetric
quadratic form Ex(-,-) on (V) by Ex(u,v) = —(u, Hv) for u,v € €(V). If
we write m(H) = &y, it is easy to see that 7 is a bijective mapping between
symmetric linear operators and syminetric quadratic forms.

This correspondence between Dirichlet formns and non-negative symmet-
ric operators is a special case of the correspondence described in Theo-
rem B.3.4.

Proposition 2.1.3. 7 is a bijective mapping between a(V) and ﬁ(V).
Moreover, n(LA(V)) = DF(V).

Proof. It is routine to show w(LA(V)) = ﬁf{V]. To show #(LA(V)) =
DF(V), first note that Ey(u,u) = 33, o Hpglu(p) — ulg))?. By this
expression, it is casy to see that #(LA(V)) C DF(V). Now suppose H €
EA(V)\CA(V). So there exist p # ¢ € V with Hy, < 0. We can assume
that H,, = —1 without loss of generality. Set u(p) = z,u(q) = y and u(a) =
z for all @ € V\{p,q}. Then we have £y (u,u) = a(z - 2)% + 3(y — z)* —
(x — y)?. As € is non-negative definite, a and 3 should be non-negative.
Ifx=12=0and y <0, then Eg(u,u) =a—-1+2y+ (8 - 1)y* and
Ey(n,u) = a—1. If |y| is small, we have Eg(u,u) < Ey(a,iz). Hence €y ¢
DF(V). This shows that 7#(H) € DF(V) if and only if H € LA(V). D

Example 2.1.4. Let V be a set with three elements, say, pi,p2, p3. Set

—(14¢) 1 €

H = ( 1 -2 1 ) Then £y(u,u) = (x —y)% + (y — 2)% +
€ 1 —(1+e¢)

e(x — 2)%, where £ = u(p;),y = u(p2) and z = u(p3). Letting X =z ~ y

and Y =y - z, we have

En(uu) =X2 4+ Y2 L e(X +Y)?
=(1+2)(X2+Y?) —e(X -Y)?

So it is clear that if ¢ > —.%, then H € a(VJ and if ¢ > 0, then H €
LAWV).

If V is a finite set and H is a Laplacian on V| the pair (V, H) is called a
resistance network (an r-network, for short). In fact. we can relate an r-
network to an actual electrical network as follows. For an r-network (V, H),
we will attach a resistor of resistance rpq = I-I,,q‘l to the terminals p and ¢
for p,q € V. Also the plus-side of a battery is connected to every terminal p
while its minus-side is grounded so that we can put any electrical potential
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on each terminal. For a given electric potential v € ¢(V'), the current i,
between p and ¢ is given by i,y = Hpg(v(p) — v(g)). So the total current
i(p) from a terminal p to the ground is obtained by i(p) = (Hv)(p).

Let (V, H) be an r-network and let U be a proper subset of V. We next
discuss the proper way of restricting A onto U/ from the analytical point
of view.

Lemma 2.1.5. Let V be a finite set and let U be a proper subset of V.
For H € LA(V), we define Ty : €(U) — &U), Jy : {U) — &V\U) and
Xy : QV\U) — {V\U) by

Ty Yy
H= (Ju XU) '

where Jy is the transpose matriz of Jy. ( When no confusion can occur,
we use T, J and X instead of Ty;, Ju and Xy.) Then, X = Xy is negative
definite and, for any u € £(V),

8}1(‘!&,1!.) = Sx(m + X_lJuo,u; + X_IJ'Uo) + gr-tjx—xJ(uo,uo),
(2.1.1)

where up = uly and u; = uly\y.

Proof. For v € £(V\U), define ¥ by #|ly = 0 and #|y\y = v. Then
Ex(v,v) = Ex(9,9) > 0. By (L2), we see that if £x(v,v) = 0 then ¥
should be a constant on V. This implies v = 0. Hence £x is positive
definite. By the definition of £x, X is negative definite. Now (2.1.1) can
be obtained by an easy calculation. O

Theorem 2.1.6. Assume the same situation as in Lemma 2.1.5. For
u € {U), define h(u) € &V) by h(u)ly = u and h(u)|y\v = —X~"LJu.
Then h(u) is the unique element that attains minyeg(v),vjy=u E1 (v, v). Also
define Pyy(H) =T —JX1J. Then, Pyy : LA(V) — CA(U) and

Epy iy (u u) = Eg(h(u), h(x)) = et %iﬁum Ex (v, v). (2.1.2)

Moreover, if H € LA(V), then Py y(H) € LA(U).

Proof. By (2.1.1), minyeg(v),v|y=u €5 (v, v) i5 attained if and only if v|y\y +
X ~'Ju = 0. Hence we have the first part of the theorem.

Next we show that Py y(H) = T — tJX-1J € LA(V). By (2.1.1), we
can verify (2.1.2). Hence, £p, ,(4) is non-negative definite. By (2.1.2),
Epy.y (1) (1, u) = 0 implies that h(u) is a constant on V' and therefore « is

a constant on U/. Thus we can show that Py (H) € E;I.(U).
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Finally, if H € LA(V), then
EPV.U(H)(uau) = SH(h(u)9h(u)) 2 8”(%1 r’“))

As h—(lT)IU =u, we obtain gﬂ(ms m) 2 EPV,U(H) (ﬂ'v '&) Hence EPV,u(H)
has the Markov property. By Proposition 2.1.3, Pyy(H) € LA(U). O

The linear operator Py y(H) may be thought of as the proper restriction
of H onto U from the viewpoint of electrical circuits. In fact, H and
Py y(H) give exactly the same effective resistance (which will be defined
in Definition 2.1.9) on /. When no confusion can occur, we write [H]y in
place of Py y(H)-

Remark. In general, Py is not injective. For example, set V = {p,, p2,p3}

—(1+¢) 1 €
and U = {p1,p2}. If H, = 1 -1 0 | fore > 0, then H, €
€ 0 —e¢

CAV) and [H]y = (‘1‘ _11)

Note that h(u) is the unique solution of (Hv)|y\v = 0 and v|y = u.
Therefore, if we think of U/ as a boundary of V, h(u) is called the harmonic
function with boundary value u € é(U). For a Laplacian H on V', we obtain
the following maximum principle for harmonic functions.

Proposition 2.1.7 (Maximum principle). Let V be a finite set and let
H e LA(V). Also let U be a subset of V. Forpe V\U, set

U, = {q € U : There ezist py,p2,... ,pm € V\U withp; =p
such that Hp.p,., >0 fori=1,2,... ,m—1 ard Hp_ 4 > 0}.
Then if (Hu)|y\y = 0, then, for any p € V\U,

;leli(;; u(g) < u(p) < ;%%’:U(Q)-

Moreover, u(p) = maxgeu, u(q) (or u(p) = mingey, u(q)) if and only if u
ts constant on Up,.

Proof. For p € V, set N, = {q: Hpg > 0}. Also dcfine
W, = {q € V\U : there exist p;,p2,... ,pm € V\U with p; =p
and p,, = g such that Hy,, ., >0fori=1,2,...,m -1}

and V, = W, U U,. First assume u(p,) = max,cy, u(q) for p. € Wp.
Then Np, C Vp and (Hu)(p.) = Yycn,. Hp.q(u(a) — u(p.)) = 0. Since
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Hp o > 0 and u(q) — u(p.) < 0 for any ¢ € N,_, we have u(q) = u(p.)
for all ¢ € N, . Iterating this argument, we see that u is constant on V.
Using the same argument, it follows that if there exists p, € W, such that
u(p.) = mingcy, u(g), then u is constant on V,,. Hence,

min u min v <u < max u(g) = max u(q).
main ulg) = min u(g) < ulp) < maxulg) = maxu(q)

The rest of the statement is now obvious. a

The following corollary of the maximum principle is called the Harnack
inequality.

Corollary 2.1.8 (Harnack inequality). Let V be a finile sel and let
H € LA(V). Also let U be a subset of V. Assume that A C V\U and

that V, = V,, for any p,q € A. Then there exists a positive constant ¢ such
that

<
ggic u(p)<c uém u(p)

for any non-negative u € {(V) with (Hu)|y\v =0.

Proof. Let V' = V, for some p € A. (Note that V' is independent of
the choice of p € A} Set A = {u : (Hu)y\v = 0,mingev u(p) 2
0, max,e v u(p) = 1}. By Proposition 2.1.7, minpe 4 u(p) > 0 for u € A.
If Ay = {u|y: : u € A}, then A, is a compact subset of £(V’). Therefore,
¢ = inf{minyeq u(p) : u € Ap} > 0. By the definition of Ay, it follows
that ¢ = inf{min,e 4 ¥(p) : © € A}. This immediately implies the Harnack
inequality. O

Next, we define effective resistances associated with a Laplacian or,
cquivalently, a Dirichlet form. From the viewpoint of electrical circuits,
the effective resistance hetween two terminals is the actual resistance con-
sidering all the resistors in the circuit.

Definition 2.1.9 (Effective resistance). Let V be a finite set and let
H € LA(V). For p # g € V, we define

Ry(p.q) = (min{€x(u,u) : u € &V),u(p) = 1,ulg) = }) (2.1.3)

Also we define Ry(p,p) =0 for all p € V. Ry(p,q) is called the effective
resistance between p and ¢ with respect to H.

By Theorem 2.1.6, if U = {p, q}, then it follows that

[H]y = m (“11 _11) : (2.1.4)
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Definition 2.1.10. Let V; be a finite set and let H; € Z:i(V,-) fori=1,2.
We write (Vl,Hl) < (Vz,Hz) if and only if V) C V; and PV,,V.(Hz) = H,.

The next proposition is obvious by the above definitions.

Proposition 2.1.11. Let V; be a finite set and let H; € a(V,-) fori=
1,2. If (Vi, Hi) < (Vo, H2), then Ry, (p,q) = Ru,(p,q) for any p.q € V1.

In fact, the converse of the above proposition is also true if both H; and
H; satisfy (L3). This fact is a corollary of the following theorem, which
says that a Laplacian is completely determined by its associated effective
resistances.

Theorem 2.1.12. Let V' be ¢ finite set. Suppose Hy,H, € LA(V). Then
Hy = H; if and only ¢f Ry,(p,q) = Ry,(p.q) for anyp,qe V.

Proof. We need to show the “if” part. We use an induction on #(V'). When
#(V) = 2, the theorem follows immediately by (2.1.4). Now suppose that
the statement holds if #(V) < n. Let V = {p1,p2,... ,pn}. We write
h,‘j = (17[1),,‘,,J and H,'J' = (Hz)p.p). Also let V; = V\{p.;} and let

D} = Ti - “Ji(X}) ' g

for k = 1,2, where T} : &(V;) — €(V;),J} : £(V;) — £&({p:}) and X} :
€({p:}) — &({p:}) are defined by

(TR i
me= (G )

Since (V;,Di) < (V,Hy), RD;‘(P,Q)_ = RD;(p,q) for all p,q € V;. By
the induction hypothesis, D] = D). Now define D* = D} = Dj and
di; = (D%),,p,- Calculating directly and then using the fact that hy = hy,
and H;; = Hy;, we obtain

diy = kit — hixhi/hii = Hu — HicHi/Hys.
In particular,
dhs = hax — hii/hi; = Hix — Hi/Hy. (2.1.5)

Exchanging k and i, we see that dﬁ/d};k = hy;/hxx = H;;/ Hix. Therefore,
there exists ¢ > 0 such that Hy; = th;; for i = 1,2,... ,N. Again, by
(2.1.5), we have

(hik)z = hrhii — d;;k’lxi
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and
(Hix)? = HixHis — dii His = t2hiihs; — tdighis.

—hiek =) \/ hikhii — diehii = Y \/ hixhii = dihii/ft.
inigk itk

As a function of ¢, the right-hand side of the above equation is monotoni-
cally increasing. Hence the above equality holds only for t = 1. Therefore
we obtain H; = Hj. O

Corollary 2.1.13. Let V; be a finite set and let H; € LA(V;) fori=1,2.
Then (i, H1) < (Va,Hz) if end only if Ru,(p,q) = Ru,(p,q) for any
Pq€EV.

Remark. 1t is reasonable to expect that Theorem 2.1.12 remains true even
if we only assume H;, H; € LA(V). However, the above proof cannot be
extended to such a case, because it uses the fact that Hp,, > 0. Unfortu-
nately, we don’t know whether such an extension is true or not.

One reason why effective resistance is important is that it is a metric on
V if H € LA(V). This metric, called the effective resistance metric, will
play a crucial role in the theory of Laplacians and Dirichlet forms on (post
critically finite) self-similar sets.

Theorem 2.1.14. Let V be a finite set and let H € LA(V). Then Ry(-,*)
is a metric on V. This meiric Ry is called the effective resistance metric
on V associated with H.

Remark. Not every metric on a finite set V' corresponds to an effective
resistance metric with respect to a Laplacian H € LA(V). See Exercise 2.1
and Exercise 2.2.

We need the following well-known formula about electrical networks to
show Theorem 2.1.14.

Lemma 2.1.15 (A-Y transform). Let U = {p1,p2,p3} and let V =
{r} UU. Set Ri; = H,,, for H € LA(U), where we assume that
Hp,p, > 0. Define

_ R12R31 Rz — R23R12
Ri2 + Rz + Rar’ Ri2 + Rz3 + Rsy’

Ray Roa

R = .
! Ri2 + Ra3 + Ray

R3
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P 41
®
Ry
Rj2 Ry
Ry ~po\_Hs
y 7] Ros P3 P2 p3
A-circuit (upside-down) Y-circuit

Fig. 2.1. A-Y transform

If H' € LA(V) is defined by

g B =0,
pip, .
0 othewise,

fori<j, then [H'|y = H.

A direct calculation shows this formula.

As we mentioned before, we can associate an actual electrical circuit with
a Laplacian. In the above lemma, the circuit associated with H € LA(U)
has three terminals {py,p2,ps} and the terminals p; and p; are connected
by a resistor of resistance R;;. Let us call this circuit a A-circuit, which
reflects the triangular shape of the circuit. At the same time, the circuit
associated with H' € LA(V') consists of four terminals {po, p1,p2,p3} and
each terminal p; is connected only to pg by a resistor of resistance R; for
t =1,2,3. po is a focal point of the circuit. Let us call this circuit a Y-
circuit because of its “upside-down Y” shape. The A-Y transform says that
the A-circuit and the Y-circuit are equivalent to each other as electrical
networks. See Figure 2.1.

Proof of Theorem 2.1.14. Definition 2.1.9 and (2.1.4) imply that Ry(p, q)
> 0 and that Ry(p,q) = 0 if and only if p = q. Next we must show the
triangle inequality. We may assume that #(V) > 3. For U = {p,,p2,p3} C
V,let H' = [H]y. By Proposition 2.1.11, we have Ry (p;,p;) = Ru(pi, p;)-

First assume that H, . > 0 for any m # n. Then the A-Y transform
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shows

Rij(Rix + Ryy)
Ri2+ Rys + Ry’

where R, = (H, , )~ and {i,4,k} = {1,2,3}. Hence we easily see that

Ry (p1,p2) + Ru(p2,p3) = Ru(p1,ps).
Next, suppose H.

7 ,ps = 0 for instance. Then RH"(Pl,Pz) RlZaRH’ (p2,p3)
= Rp3 and Ry(p1,p3) = Ri2 + Ra3, where R;j = (H, ij . So we can
verify the triangle inequality. 0

Ry (pi,p;) = (2.1.6)

Ry (-,-) is not a metric on V for general H € LA(V). In fact, if #(V) > 3,
there ex1sts H ¢ LA(V) such that Ry(-,-) is not a metric on V. (See
Exercise 2.4 and Exercise 2.5.) As we will see, however, \/Ry (-, ) is always

a metric on V for all H € LA(V).
The following is an alternative expression for the effective resistance.

Proposition 2.1.16. Let V be a finite set and let H € EZ(V). Then, for
any p,q €V,

Ru(p,q) = max{'“g(“(‘” cu € lV). Enluu) £0)).  (2.17)

)

Proof. Note that |u(p) — u(g)I?/Ex(u,u) = lv(p) — v(q)|*/En(v,v) if v =
au + 8 for any a, G € R with a # 0. For given u € £(V) with u(p) # u(q),
there exist o and 3 such that v(p) = 1 and v(q) = 0, where v = au + 8.
Hence the right-hand side of (2.1.7) equals

5}1[11,11) v € {V),v(p) = 1,v(q) = 0}.

Now (2.1.3) immediately implies (2.1.7). 0O

max {

Applying (2.1.7), we can obtain an inequality between |u(p) — u(q)|,
Ry(p,q) and Ey(u, u).

Corollary 2.1.17. Let V be a finite set and let H € LA(V). For any
p,q €V and any u € £(V),

lu(p) — w(9)* < Ru(p, q)u(u, u). (2.1.8)

This estimate will play an important role when we discuss the limit of a
sequence of r-networks in the following sections.

As another application of Proposition 2.1.16, we can show that \/Ry(:,")
is a metric on V.
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Theorem 2.1.18. Let V be a finite set and let H € LA(V). Set R} *(p,q)
= VRu(p,q). Then Rllz( ') is @ metric on V.

Proof. We only need to show the triangle inequality. By (2.1.7),

RY*(p,q) = mu{lﬁ%_ _))I u € &V), Ex(u,u) # 0}

This immediately implies the triangle inequality for R};’z( ‘) O

2.2 Sequence of discrete Laplacians

In this section, we will discuss the limit of r-networks on an increasing
sequence of finite sets that satisfy a certain compatible condition, namely:

Definition 2.2.1. Let V,, be a finite set and let H,, € LA(V) for each
m 2 0. {(Vim,Hm)}m>o is called a compatible sequence if (Vim,Hm) <
(Vin+1, Hmy) for all m > 0. Let S = {(Vin, Hm)}m>0 be a compatible
sequence. Set V, = Uy,>o0Vin and define

F(S) = {u:u € (V.), lim En,(ulveulv,) <0}, (22)
Es(u,v) = Jim Ex., (U, Vv )s (2.2.2)

for u,v € F(S). Also, for p, g € V,, define the effective resistance associated
with S by

RS(p q) = Ry, (p, Q)o (223)

where m is chosen so that p,q € V,,.

In the next chapter, we will approximate a self-similar set by a sequence
of increasing finite sets. Then we will construct Dirichlet forms and Lapla-
cians on the self-similar set by taking a limit of a compatible sequence of
r-networks.

Throughout this section, S = {(Vin, Hm)}m>o is assumed to be a com-
patible sequence.

Let us regard V;, as a boundary of V.. Then for any u € £(V,,), we
consider a minimizing problem of £s(-, -) under the fixed boundary value u
as follows.

Lemma 2.2.2. There exists a linear map hy, : (Vi) — F(S) such that,
Jor any u € &V,,), hm(u)|v,, = u and

En,, (u,u) = Es(hm(u), hm(u)) = Ve g.ivvam . Es(v,v). (2.2.4)
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Moreover, if v € F(S) with v|y,, = u attains the above minimum then
v = hpy(u).

Proof. As [H,|v,, = Hy, for n > m, we can apply Theorem 2.1.6 with
V=V, U=V, and H = H,. Set hy, ,, = h where h is the linear map
&U) — £(V) defined in Theorem 2.1.6. Then define h,,(u)|v, = hn m(u).
For any n > m, this definition is compatible and h,,(u) € £(V,) is well-
defined. By (2.1.2), we have

Ex, (u,4) = Ex, (A (u)v, s e (W)lvs, )

for all n > m. Therefore h,,(u) € F(S). Also (2.1.2) implies (2.2.4)
immediately. O

Let us fix m. Then h,,(u) is also characterized as the unique solution of

{(H,.v,,)mwm =0 foralln>m,

vlv,, = u,

where v € £(V,) and v, = v|y,. So An,(u) may be thought of as the
harmonic function with boundary values u € V;,. If H,, € LA(V,,;) for
all m > 0, we can show the following maximum principle for harmonic
functions.

We will sometimes regard £(V;,) as a subset of F(S) by identifying £(V;5)
with hp,(€(Vin)) through the injective map h,,. With this identification,
one can write £y, _ (u,u) = €s(u, u) for any u € €(V,,) C F(S).

Lemma 2.2.3 (Maximum principle). Assume H,, € LA(V,,) for all
m > 0. If v € &V.) satisfies (Houn)|v,\v.. = 0 for all n > m, where
Un = vy, then

min v(g) £ v(p) < max v(q)

Em q m

foranyp e V,.

Proof. This follows immediately by the maximum principle for harmonic
functions on a finite set, Proposition 2.1.7. O

Next we discuss the effective resistance Rgs(-,:). As in the case for finite
sets, v/ Rs(-,) is a metric on V..

Proposition 2.2.4. If R;./Z(-, ) = /Rs(-,-), then Rg/z 18 a melric on V,.
Moreover if Hp, € LA(V,,,) for allm > 0, then Rs is a metric on V,.

Proof. This is an casy corollary of Theorem 2.1.14 and Theorem 2.1.18
along with Proposition 2.1.11. |
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The following lemma follows immediately from its counterpart, Proposi-
tion 2.1.186.

Lemma 2.2.5. For any p,q€V,,

Rs(p,q) = (min{Es(u, u) : u € F(S), u(p) = 1,u(g) = 0}) '

_ |lu(p) — u(g)i®
= max{ Es(u, u)

: u € F(S),Es(u,u) > 0}. (2.2.5)

This lemma implies that

|u(p) — u(g)|? < Rs(p,q)Es(u,u) (2.2.6)

for any u € F(S) and p,q € V.. By (2.2.6), F(S) C C(V,,R;"z). For a
metric space (X, d), C(X,d) is the collection of real-valued functions on X
that are uniformly continuous on (X,d) and bounded on every bounded
subset of (X, d).

Next we present important results on the limit of compatible sequences.
In the following chapter, the results will be applied in constructing Dirichlet
forms and Laplacians on a self-similar set.

Theorem 2.2.6.

(1) F(S) c C(V.,RY?).

(2) &s is a non-negative symmetric form on F(S). Moreover, Es(u,u) =0
if and only if u is a constant on V..

(3) Define an equivalence relation ~ on F(S) by letting u ~ v if and only
if u — v is constant on V,. Then s is a naturally defined positive definite
symmetric form on F(S)/~ and (F(S)/~,Es) is a Hilbert space.

(4) Assume that Hy, € LA(V) for allm > 0. If u is defined as in (DF3)
Jor any u € F(S), then 4 € F(S) and Es(u, 1) < Es(u,u).

Proof. Every statement but (3) follows easily from the results and discus-
sions in this and the previous section. We will use £ and F in place of
&s and F(S) respectively. To show (3), first note that £(u, u) = E(v,v) if
u ~ v. Hence £ is a well-defined positive definite symmetric form on F/~.
Choose any p € V, and set F, = {u: u € F,u(p) = 0}. Then (F/~,E) is
naturally isomorphic to (F,,£). Hence it suffices to show that (F,,£) is a
Hilbert space. Now let {vn}n>0 be a Cauchy sequence in (F,,£) and let
U = hpy(Unly,, ). Then by Lemma 2.2.2

E(vg - v{",v;" - v{") < E(vk — v, v — vp).

Note that p € V,, for sufficiently large m. Hence £ is an inner product
on F, N €(Vy,), where £(V,,) is identified with k,,(£(V;;)). So there exists
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v™ € F, M E€(V,y) such that v]' — v™ as n — 0o. As v™ |y, = v™, there
exists v € £(V.) such that v|y,_ = o™,

On the other hand, let C' = sup,,~4 £(vn, vn). Then we have £(v™,v™) <
sup, ., E(vyt,vp') = C. Hence v € F.

Now, we fix ¢ > 0. Then, we can choose n so that £(v,, — vk, v, —vi) < €
for all k > n. Also, we can choose mn so that

(v, — vovm — 1) — E(vp' — ™, v —v™)| < €.
Furthermore, we can choose & so that k > n and
|E(7 — vt vt — o) —EQT — 2™ v -0 < e

AsE(WT -vl vl —vlt) € E(vn—vk, tn—1k) < €, we have E(vn —v, v, —v) <
3e. Thus we have completed the proof of (3). O

Finally we show two examples. The first one is related to one of the most
basic examples in probability theory.

Example 2.2.7 (Simple random walk on Z). Let V,, = {i € Z: |i| <
we} and let H,, € LA(V,,) be defined by (Hp)yy; = 1if[i-j] =1, (Hy)i; =
0if |t = j| > 1. Then S = {(Vi. Hi)} 1 is a compatible requence. We
can easily see that V, = Z, Rq(i, j) = [§ - j| and

Esluv) = (u(i + 1) = u(i))(w(i + 1) - v(i)).
L
Also we can see that (Es, F(S) N L2(Z, ;1)) is a regular Dirichlet form on
L3(Z, ) for every Borel measure p on Z that satisties 0 < p({i}) < o
for all i € Z. (See Definition 13.3.2 for the definition of a regular Dirichlet
forin.)
Define a linear operator 4, on [L2(Z, u) by

(A1) () = (i)~ (uli + 1) + u(i = 1) - 2u(i)).

Then A, is a non-positive self-adjoint operator on L3(Z, p). Also Domn(A,,)
C F(S)N 13(Z, ;) and

Es(u,v) = —/‘MA,,mlu
7

for any u.v € Dom(4,,). From this fact, 4, is identified as the self-adjoint
operator associated with the closed form (s, F(S)NL3(Z, p)) on L3(Z, p).
(Sce B.1 for more information about closed forms and their associated self-
adjoint operators.)

Now if v(i) = | for all ¢ € Z, then A, is the self-adjoint operator
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associated with a simple random walk on Z in the following sense. Let
ug € Dom(A,) and think about the following evolution equation with dis-
crete timen =0,1,2,...:

Uns1 — Uy = A u/2.

One can easily see that u, = (I +A, /2)"ug for any n. Fori € Z, if up(i) = 1
and up(k) = 0 for any k # i, then u,(j) is the transition probability from
i at time 0 to j at time n for the simple random walk on Z.

The next example is an extreme case where Rg is the trivial metric on
V..

Example 2.2.8 (Discrete topology). Let V,; = {1,2,... ,m} and let
H,, € LA(V;;) be defined by (Hp)i; = 2/m for i # j. Then § =
{(Vin, Hm) }m>2 is a compatible sequence. We can easily verify that V, = N
and Rs(i,7) = 1 for i # j. This metric Rs induces the discrete topology
on N. As x; € F(S) for all ¢ € N, (s, F(S)) is a regular Dirichlet form on
L?(N, u) for every Borel measure u on N that satisfies 0 < u({¢}) < co for
all i € N. In particular, if u({i}) =1 for all ¢ € N, then L?(N, ) = £2(N).
We see that £2(N) N F(S) = £2(N) and, for all u,v € £(N),

Es(u,v) =2 / uvdy.
N

2.3 Resistance form and resistance metric

In the previous section, we constructed a quadratic form (£s, F(S)) and a
metric Rs from a compatible sequence of r-networks S = {(Vin, Hm)}m>o0.
In this section, we will give characterizations of the form (€s, F(S)) and the
metric Rs and show that there is an one-to-one correspondence between
such forms and metrics.

First we give a characterization of quadratic forms.

Definition 2.3.1 (Resistance form). Let X be a set. A pair (£,F) is
called a resistance form on X if it satisfies the following conditions (RF1)
through (RFS).

(RF1) F is a linear subspace of £(X) containing constants and £ is a non-
negative symmetric quadratic form on F. £(u,u) = 0 if and only if u is
constant on X.

(RF2) Let ~ be an equivalent relation on F defined by v ~ v if and only
if u — v is constant on X. Then (F/~,€) is a Hilbert space.
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(RF3) For any finite subset V C X and for any v € £(V), there exists
u € F such that u|y = v.
(RF4) For any p,q € X,

sup{ qug(; t;()q)lz cu € F,E(u,u) > 0}

is finite. The above supremum is denoted by M(p, g).
(RFS) If u € F, then 4% € F and &(%, %) < £(u,u), where @ is defined in
the same way as (DF3) in Definition 2.1.1.

We use RF(X) to denote the collection of resistance forms on X. Also
we define

’Rﬁf'(x ) = {(€,F) : (€, F) satisfies the condtions (RF1) through (RF4)}.

The condition (RF5) is called the Markov V_property.

Let V be a finite set. Then (£,{(V)) € ’R.F(V) (or (£,£(V)) € RF(V))
if and only if £ € D]-'(V) (or £ € DF(V) respectively.) Also, immediately
from Theorem 2.2.6, (€5, F(S)) belongs to RF(V,) for any compatible
sequence S = {(Vmm, Hm)}m>0. Moreover, if Hy, € LA(Vy) for all m, then
(€s, F(S)) is a resistance form on V..

Next we consider a characterization of metrics.

Definition 2.3.2 (Resistance metric). Let X be a set. A function R :
X x X — [0,+00) is called a resistance metric on X if and only if, for any
finite subset V C X, there exists Hy € LA(V) such that Rlyxv = Ry,
where Ry, is the effective resistance with respect to Hy. The collection
of resistance metrics on X is denoted by RM(X). Also we define

W(X) ={R: X xX — R, : for any finite subset V C X, there exists
Hy € LA(V) with Rlyxv = Ry, and Hy, = [Hy,]v, if V; C V).

Remark. Recall that [Hy,]v, = Py, v, (Hy,) by definition. Notice that by
Corollary 2.1.13, the condition Hy, = [Hy,]v, is satisfied for a resistance
metric R. If we could extend Theorem 2.1.12 to LA(V), which is quite
likely, then we could remove the assumption Hy, = [Hy, ]y, from the defi-
nition of RM (X).

Since Ry, is a metric on V, a resistance metric R is a distance on X.
Also, for R € ‘RM(X) VvR(:,-) is adnstance on X.

Let V be a finite set. Then R € RM(V) (or R € RM(V)) if and only if
R = Ry; for some H € LA(V) (or H € LA(V) respectively). Furthermore,
it is natural to expect that Rs is a resistance metric for a compatible
sequence S. More precisely, we have the following proposition.
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Proposition 2.3.3. If§ = {(Vin, Hn)}m>0 i a compatible sequence, then
Rs € RM(V,). In particular, if H,, € LA(V) for all m, then Rs is a
resistance metric.

Proof. Let V be a finite subset of V.. Then V C V,, for sufficiently large

m. If Hy = [Hy)v, then Ry, = Rg|lvxv- The rest of the conditions are
obvious. (|

There is a natural one-to-one correspondence between resistance forms
and resistance metrics. First we will construct a resistance metric from a
resistance form.

Theorem 2.3.4. If (£,F) € RF(X), then
min{E(u,u) : v € F,u(p) = 1,u(q) = 0}

exists for any p,q € X with p # q. If we define R(p,q)™" to be equal to the
mintmum value, then R € RM(X) and

R(p,q) = max{ '“(’2(;';()‘*'”2 . u € F,E(u,u) > 0). (2.3.1)

Moreover, if (E,F) € RF(X), then R € RM(X).

To prove the above theorem, we need the following lemma.

Lemma 2.3.5. If (€,F) € ’RNJ?(X ) and V is o finite subset of X, then
there exists a linear map hy : {(V) — F such that hy(u)|ly = u and

E(hv(u),hy(u)) = ue%m E(v,v). (2.3.2)

Furthermore, hy (u) is the unique element that attains t{‘ﬁ, above minimum.
Also set £V (u1,u2) = E(hy (1), hv(u2)). Then EV € DF(V). Moreover,
if (£, F) is a resistance form, then EY € DF(V).

Proof. For pe V, let P = {u: ¢ € F,u|y\{p) = 0}. Then by (RF3), F?
is not trivial. By (RF2), (¥7,£) is a Hilbert space. Define ¢, : F? — R
by ®,(u) = u(p). Then by (RF4) we have, for ¢ € V\{p}, |®,(u)|® <
M(p, q)€(u,u) for all w € FP. Hence ®, is a continuous linear functional
on (FP,£). Therefore there exists g, € FP such that for all u € FP,
E(gp,u) = ¥y(u) = u(p). Noting that E(gp,9,) = gp(p) > 0, we define
Yy = 9p/9p(D).

Now for any u € &(V), define hv(u) = 3 .y u(p)yy. If v € F with
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vly =u, set ¥ =v - Ay (u). Then

E(v,v) =E(2 + Ay (u), T + hy(u))
= E£(3,8) + 26(5, hy (u)) + E(hy (w), by (u)).

As E(U, hy (u)) = 3° ey u(p)(p)/9p(p) = 0, we have
E(v,v) = E(D,D) + E(hy (u), kv (1)) 2 E(hyv(u), Av ().

Equality holds only when # is constant on X and so 9 =0 on X. Itis
easy to see that £Y € DF(V). Also the Markov property (RF5) of (£, F)
implies the Markov property (DF3) of €Y. Thus we have completed the
proof. O

Proof of Theorem 2.3.4. By Lemma 2.3.5,
min{€(u,u) : v € F,u(p) = 1,u(¢q) =0}

exists for any p,q € X with p # q. Now define Hy € LA(V) by £V = €y, .
If V; C V,, then

g[Hvzlv, (llu U) = th(VIS-.iﬁW u £(hy,(v), th (v))

e, L ) = B ()
Hence [Hv,)v, = Hy,. This fact also implies that Ry, = R|yxv. There-
fore we see that R € RM(X). If (£,F) € RF(X), then Hy € DF(V)
and hence R € RM(X). The same argument as in the proof of Proposi-
tion 2.1.16 implies (2.3.1). O

__Theorem 2.3.4 says that each (£,F) € 'Rf(X ) is associated with R €
RM (X). So we can define a map FMy : RF (X) — 'RM(X ), which is
called the “form to metric” map, by R = FMx((€£,F)). This form to
metric map is, in fact, bijective: we can construct the inverse of FAx.

Theorem 2.3.6. For R ¢ RM(X ), there exists a unique (€, F) € RF(X)
that satisfies (2.3.1). Moreover, if R € RM(X), then (E,F) € RF(X).

Assuming the above theorem, we can define the “metric to form” map
MFx : 'RM(X ) — 'R}'(X ). It is casy to sce that M Fx is the inverse of
FMy.

We will only present the proof of a special case of Theorem 2.3.6, namely
Theorem 2.3.7. Theorem 2.3.6 can be proven by using routine and tedious
arguments aba about limiting procedures similar to the special case.

IfR € T\’,M(X) RY2(...) = /R(,,-) is a metric on X. Assume that
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the metric space (X, R1/2) is separable. Equivalently, there exists a family
of finite subsets {Vip}m>o of X that satisfy V,, C V.41 for m 2 0 and
Vo = Um>0Vim is dense in X. Set H,, = Hy,. Then H,, € LA(Vn)
and [Hms1)v,, = Hm by definition. Hence (Vin, Hm) < (Vina1: Hms1)
and so § = {Llfm,Hm)}mZu is a compatible sequence. We know that
(&s, F(S)) € RF(V,). Also it is obvious that R = Rs on V.. Now as
F(S) € C(V,.,R}gﬂ), u € F(S) has a natural extension to a function in
C(X, RY?). We will think of F(S) as a subset of C(X.R'/?) in this way.
Then it is casy to sce that (€g, F(S)) satisfies (RF1) and (RF2). This
(€s,F(S)) is the candidate for (£, F) in Theorem 2.3.6. The problem is to
show (RF3) and (2.3.1) for any p,q € X. (We already know that (2.3.1)
holds for p,q € V, by Lemma 2.2.5.) We do this in the next theoremn.

Theorem 2.3.7. For R € RM(X), assume that (X, R'/?) is separable.
Let {Vin}m>0 be a family of finite subsets of X such that V,,, C Vi for
anym > 0 and that V, = U0 Vin is dense in X. Set S = {(Vins Hm) }m>o
where Hy, = Hy, . Then (Es, F(S)) € RF(X) and

) _ 2
“(?S(u"‘_lf‘)m cue F(S).Es(uw) > 0]  (233)

for all p.q € X. Moreover, (£s.F(S)) is independent of the choice of
{Vm}mzo. Also if R € RM(X), then (Es.F(S)) € RF(X).

R(p,q) = max{!

Before proving the theorem, we need two lemmas.

Lemma 2.3.8. Let (€, F) € ﬁ(X ) and let {V,,} be a sequence of finite
subsels of X such that V,, C Vopy for m 2 0 and that V, = Uy>oVie
is dense in (X, R'/2), where R = FMx((E.F)). If 8§ = {(Vin, Hm)}m>0
where Hy,, = Hy,_, then (€s,F(S)) = (€, F).

Remark. In this lemma, again we regard F(S) as a subset of C(X, R}/2)
because R = Rg on V, and F(S8) C C(V., R}Sﬂ).

Proof. First we show that F(S) € F and €s(u,u) = E(u,u) for u €
F(S). Let u € F(S). Set u,, = hy,(uly,,), where hy, is defined in
Lemma 2.3.5. As &y, (u|v,,,tlv,.) = E(Um,Um), we obtain &(um, uy) <
E(um+1.Ums1) < Es(u,u). Now without loss of generality we may assume
that u(p) = 0 for some p € V. (We can just replace u by u — u(p).) Note
that (&, — u,)|v, = 0 for m > n. Then, recalling the definition of hy in

the proof of Lemma 2.3.5, it follows that
E(Upy — Un,Uty) = z (Uem(p) — uu(]’))u(l’)/gp[p) =0

PE Vn
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for m > n. Hence E(u,;, — Up, Uy — ) = E(Um,Um) — E(Un,un) — 0 as
m,n — 0o. Therefore {u,, }m>0 is 8 Cauchy sequence in (Fp,£). As (Fp, E)
is complete by (RF2), there exists u, € Fp, such that £(u, —tm, 4y —tp) —
0 as m — oo. So E(ua,u,) = lim,, .00 E(Um,um) = Es(u, ). For ¢ € V,,
we have

lu*(Q) - um(‘])lz < R(p’ Q)g(u* — U, Us — Um).

Letting m — oo, we obtain uly, = u,|v,. As v and u, are continuous on
X with respect to R!/2, it follows that ¥ = u,. Thus we have shown that
u € F and €(u, u) = Es(u, u).
Secondly, for u € F, define u,, exactly the same as before. Then
E(tm Um) = min  &(v,v) < E(u,u).
vEF vy, =uly,,

Hence u € F(S). Now using the argument of the latter half of this proof,
we see that Es(u, u) = E(u,u). O

Lemma 2.3.9. Let (£, F) € ﬁ(Y) and let (Y, Rllz) be the completion
of (Y, R'/?), where R = FMy((€,F)). Then, for anyp,q€ Y,

|u(p) — u(g)*

R(p,q) = max{ o) :u € F,E(u,u) > 0}.

Proof. First we will show that

R(p,q) = sup{ '“(’2 (;";()‘I)lz .u€ F,E(u,u) > 0}. (2.3.4)

We will denote the right-hand side of (2.3.4) by M(p, q). Choose {p,},{g:}
C Y so that p, — p and ¢, — ¢ as n — oc. Note that,

R(pm gn) = max{ |u(p"g(;'i:‘()q“)|2 :u € F,E(u,u) > 0}' (2'3'5)

Hence, we have [u(p,) — u(gn)|* < R(Pn,¢n)E(u,u) for any u € F. Letting
n — oo, we obtain |u(p)—u(q)|?> < R(p, ¢)€(u,u). Hence M(p,q) < R(p, q).
Suppose M(p,q) < R(p.q). Then we can choose ¢ so that for all u € F,

lu(p) - u(g)l < (\/R(p,q) - 5e)V/E(u, u).

On the other hand, since R(pn,q,) — R(p,q) as n — oc, using (2.3.5),
there exists {u,} such that £(u,,,u,) = 1 and |u,(pn) —un(g.)|? — R(p,q)
as n — oo. For sufficiently large n, we have

[ (Pn) — nlgn)l > ( R(}J, q) —¢€)



2.3 Resistance form and resistance metric 61

and R(pn,Pm), R(Gr,qm) < € for all m > n. Furthermore, we can choose
7n 80 that mm > n and

|un(pm) - uﬂ(p)l <e and |uﬂ(q'n) - uﬂ(Q)l <e€

Now we have

|un(pn) - un(Qn)l < |un(pn) - un(pm)l + Iun(Pm) - un(P)l
+ [un(p) — un(@)| + 2n(q) — wu(gm)| + [n(gm) — un(ga)|

< |ta(Pn) = Ua(Pm)| + [tn(gn) — tnlgm)| + ({/ R(p,q) — 3¢).

Hence |un(pn) — tn(pm)| = € or |un(gn) — un{gm)| = €. This contradicts
the fact that R(p,,pm), R(¢n,qm) < €2. Therefore we have shown (2.3.4).

Now using the same argument as in the proof of Lemma 2.3.5, it follows
that there exists ¥ € F such that ¥(p) = 1, ¥(gq) = 0 and ¥ attains the
supremum in (2.3.4). O

Proof of Theorem 2.3.7. As we mentioned before, (£s, F(S)) (recall that
we think of F(S) as a subset of C(X, R'/?)) satisfies (RF1) and (RF2).
To show (RF3), set V, = V,, UV for a finite set V C X. Let H], =
Hy: and let 8’ = {(V;;, H},)}. Then for any u € €(V), there exists v €

(S’) such that v|y = u. As (Vs Hm) < (VL HL), En,, (Vv vlv,) <
Ex: (vlve ,vlve ) € €s:(v,v). Hence limy, . Ex,, (Vlv,, vlv,,) < Esv(v,v).
Therefore v € F(S). This shows (RF3).

Next, applying Lemma 2.3.9 to the case that Y = V., we obtain (2.3.3)
because X C Y. This implies (RF4). Thus we have shown (€5, F(S)) €
RF(X). Furthermore, (2.3.3) also implies R = FMx((€s, F(S))).

Let {U,,} be a sequence of finite subsets of X that satisfies the same con-
dition as {V;,} and let S; be the compatible sequence associated with U,,.
Then, applying Lemma 2.3.8, we can see that (£s, F(S)) = (€s,,F(S1)).
Hence (£s, F(8)) is independent of the choice of {V,,,}.

Finally, if R € RM(X), then Hy, € LA(V,,). Hence (£s,F(S)) has
the Markov property. O

Using the discussions in this section, we can show another important fact
about resistance forms and resistance metrics. If S = {(Vin, Hm)}m>o0 is
a compatible sequence, then (£s,F(S)) € RF(V.) and Rs € W(V.).
The space V., is merely a countable set. So if we constructed analyti-
cal objects like Laplacians or Dirichlet forms from (s, F(S)), we would
end up with analysis on a countable set. That is hardly what we want!
One way of overcoming this difficulty is to consider the completion of



62 Analysis on Limits of Networks

V. with respect to the metric R}S/ I (QS,R}S’ ?) be the completion
of (V., R§?). Then (Qs, Ry?) might be an interesting uncountably infi-
nite set. As we mentioned before, F(S) can be naturally regarded as a
subset of C(f2s, Rfs/ *). Hence (s, F(S)) can be considered as a quadratic
form on (Qs, R;/ 2). There is, however, a delicate question about this com-
pletion procedure. Is the extended Rs in RM(Q2s)? Equivalently, do we
have (£s, F(S)) € RF(X)? This is not a trivial problem. In fact, this is
not true in general, See Exercise 2.7 for a counterexample. Fortunately, if
we assume the Markov property, i.e., H,, € LA(V,,) for all m > 0, then it
follows that RY* € RM(fs) and (€5, F(S)) € RF(Qs) by virtue of the
next theorem.

Theorem 2.3.10. Let (£,F) € RF(X). If (X,R) is the completion of
(X,R), where R = FMx((€,F)), then (€,F) € RF(X) and R € RM(X).

Proof. (RF1), (RF2) and (RF5) follow immediately. Also (RF4) is an
obvious consequence of Lemma 2.3.9. Instead of (RF3), we will show the
following (RF3*).
(RF3*) For each finite subset V C X and for each p € V, there exists
u € F such that u|y = xp, where X, is the characteristic function of the
one point set {p}.

We use an induction on #(V) to prove (RF3*). If #(V) =2,say V =
{p,q}, then by Lemma 2.3.9, there exists u € F such that u(p) # u(q). If
we set f = (u — u(q))/(u(p) — u(g)), we have flv = x,.

Next suppose (RF3*) holds for #(V) < n. Let V = {p),p2,-.. ,Pn}-
Then by the induction hypothesis, there exists u € F such that u(p,) =1
and u(p;) =0 for 7 > 3.

Case 1. If u(p;) < u(p), then for some a,8 € R, v = au + 3 satisfies
v(p1) = 1 and v(p;) < 0 for j > 2. Define © as in (DF3) of Definition 2.1.1.
Then by the Markov property (RF5), we have # € F. Obviously 3|y = xp, .
Case 2. If u(p,) = u(py), then choose f € F that satisfies f(m) > f(p2)
and | f(p;)| < 1/2foralli=1,2,... ,n. Forsomea,B € R.v=alu+f)+8
has the same properties as v in Case 1.

Case 3. If u(p1) < u(p2), then using the same argument as in Case 1, we
can find v € F that satisfies v|y = xp,. Thus if f = u — u(ps)v, then
flv = Xp1 -

Thus we have shown that (RF3*) holds for #(V) = n. O
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2.4 Dirichlet forms and Laplacians on limits of networks

In the last section, we studied relations among a compatible sequence of
r-networks, a resistance form and a resistance metric. In this section, we
will take a first step to establish an “analysis” on limits of networks. In
particular, we are interested in constructing a counterpart of the Laplacian
defined as a differential operator in classical calculus. By the results in
the last section, it is reasonable to start from a compatible sequence of
r-networks S = {(Vin, Hm)}. (We are not concerned with how to obtain
a compatible sequence of r-networks in this section.) Then we obtain a
resistance form (£, F) and a resistance metric R by taking a limit of S.
Naturally, the resistance form (£, F) and the resistance metric R are im-
portant clements in our *“analysis”. However, those are not enough. We
need to introduce integration, that is, to introduce a measure on the space.
The following is a general result concerning a resistance form, a resistance
metric and a measure,

Theorem 2.4.1. Let R € ‘RNM(X) and suppose that (X, R?) is sepa-
rable. Set (€,F) = MFx(R). Also let pn be a o-finite Borel measure on
(X.RY?). Define

Er(u,v) = E(u.v) +/ u(x)v(z)u(dz)
X
foru,v € LA X, p)NF. Then (L3(X, ) NF, &) is a Hilbert space. More-
over, if u(X) < oc and [, R(p,p.)u(dp) < o for some p, € X, then the
identity map from L*(X,p)NF with £ -norm to L*( X, p) with L*-norm is
a compact operator.

Proof. Let {u,}.>0 be a Cauchy sequence in (L%(X,p) N F,£,) and let
Up = Up — u,(p) for p € X. Then by (RF2), there exists v € F, such that
E(va — v, v, — v) — 0 as n — oc. By (RF4), we have

lun(q) - 'U(Q)lz < R(p,q)E(vn — v,un — V). (2.4.1)

Since g is o-finite, there exists { Km}m>o such that K, C X is bounded,
0 < i(Kewm) < 0o and U,,,>0K,, = X. By (2.4.1), we see that v,, — v
as n — oo in L¥(Kp, |k, ). Also {unlk.. }n>0 is a Cauchy sequence in
L3 (Km,plk,.)- As ua(p) = (un — vn)|k,.. there exists ¢ € R such that
u,(p) - casn— . If welet u =uv+c¢, then £(u — uy,u — u,) — 0 as
n — 0o0. Also, uy|k,. — u|lk,, asn — oo in L2(Kn, plk..)

On the other hand, {u,}.>0 is a Cauchy sequence in L%(X, u) and so
there exists u* € L2(X, ) such that u, — u® as n — oc in L?(X, ). As
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Wk, = ulk,, in L2(Km,plk,.), v = u* in L3(X,u). Hence u, — u as
n — oo in (L3(X,u) N F,&).

Now suppose u{X) < oo. Let U be a bounded subset of (L3(X,u) N
F,&). If C = sup,¢y & (u,u), then

|u(p) - w(g)}* < C R(p,q) (2.4.2)

for all u € U and all p,g € X. Let V be a countable dense subset of
X. Note that {u(p)}ucu is bounded for any p € V by (2.4.2). Hence,
by standard diagonal construction, we can find v € £(V) and {v,} C U
satisfying v,(p) — v(p) as n — oo for all p € V. Using (2.4.2), we see that
v satisfies (2.4.2) for p,q € V. Therefore v extends naturally to a function
v € C(X,RY?) and it satisfies (2.4.2) for all p,g € X as well. For any
p € X, choose {p,} C V so that p, — p as n — oc. Then

lvk(p) — v(p)| < [vi(p) — v (Pa)] + [vk(Pn) — v(Pn)| + [v(pn) — v(p)|
<2y/C R(p,pn) + |vk(pn) — v(pa)l-
Hence v,(p) — v(p) as n — oo for all p € X. By (RF4),

|(vx(p) — wi(p)) — (vk(P.) — v (pa))|? < E(vr — v, ve — v)R{p, pa)-
As £(vp, v,) € C, the above inequality implies

lvie(p) — vi(p)l < v4C R(p, p.) + [ve(ps) — vi(p.)l-

Letting { — 0o, we have |vg(p) — v(p)|® < 4C R(p,p.) + 1 for large k. Since
Jx R(p,p.)u(dp) < oo, it follows that vy — v in L?(X,u) as k — oo by
Lebesgue’s dominated convergence theorem. O

Now we have collected enough facts to use some abstract theory from
functional analysis. In fact, by Theorem 2.4.1, we can apply the well-
developed theory of closed forms and self-adjoint operators, which is intro-
duced in Appendix B.1.

Theorem 2.4.2. Let R € 'RW(X) and suppose that (X, RY?) is sepa-
rable. Set (E,F) = MFx(R). Also let u be a o-finite Borel measure on
(X, R'2). Also assume that L3(X, u)NF is dense in L3( X, u) with respect
to the L?-norm. Then there ezxists a non-negative self-adjoint operator H
on L?(K,pu) such that Dom(H'/2) = F and E(u,v) = (H?u, H'/2v) for
all u,v € F. Moreover, if u(X) < oo and [, R(p,p.)u(dp) < oo for some
p. € X, then H has compact resolvent.

Proof. Set H = L%(X,u), Q(-,-) = € and Dom(Q) = F. Then The-
orem 2.4.1 along with Theorem B.1.6 immediately implies the required
results. O
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Assume that R € RM(X). Also, in addition to the assumptions of
Theorem 2.4.2, let us assume that X is a locally compact metric space.
Then (€, F N L?(X, p)) is a Dirichlet form on L?(X,u). Moreover, if
FNL}(X, p)NCo(X) is dense in Co(X), then (£, F N L3(X, u)) is a regular
Dirichlet form. (See B.2 for the definition of (regular) Dirichlet forms and
Co(X).) In fact, if (€,F) comes from a regular harmonic structure, which
is defined in 3.1, we can verify all the conditions above and get a Dirichlet
form and a Laplacian immediately from the theorems in this section. See
the next chapter for details.

From an abstract point of view, the self-adjoint operator — H should be
our Laplacian. However, this abstract construction is too general to study
detailed information about our Laplacian. For example, it is quite difficult
to get concrete expressions for harmonic functions and Green's function
from this abstract definition. So, we also need to construct a Laplacian on
a self-similar set in a classical way, specifically as a direct limit of discrete
Laplacians. See Chapter 3, in particular 3.7.

Example 2.4.3. Let K be any closed subset of R. We can always find
an increasing sequence of finite sets {Vi,}m>o that satisfy Vi, C V4, and
Un>oVm = K. If Voo = {pmi}im and pm,i < Pm,i+1 for all 7, then we
define H,, € LA(V,,) by

Pmi = Pmyl™t W |i-j] =1,
HenJom.om.s = {0 otherwise,

for i # j. Then {(Vin, Hm)}m>0 i8 & compatible sequence. Also if R is the
effective resistance defined on Um>oVy,, then R coincides with the restric-
tion of the Euclidean metric. Let (£, F) be the corresponding resistance
form and let u be a o-finite Borel regular measure on K. First note that
f|x belongs to F for any piecewise linear function f on R with supp(f)
compact. (supp(f) denotes the support of f.) By this fact, it follows
that F N L3(K, u) is dense in L2(K, 1) with respect to the L2-norm. Set
Fi1 = Fn L*(K,u). Then (€,F)) is a local regular Dirichlet form on
L*K, ).

This example containg many interesting cases. The most obvious one is
the case where K = R. In this case, F; coincides with H!(R), which is the
completion of

{ue C'(R): / w'(7)%dz < 0o, supp(u) is compact.}
R
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with respect to the H'-norm || - ||, defined by

||y = \/ R(u(ﬂv)2 + u/(x)?)da.

Also E(u,v) = [pu'(z)v'(z)dz. If p is the Lebesgue measure on R, then
the non-negative sclf-adjoint operator H coincides with the standard —A =
—d?/dz?.

One of the other interesting cases is the Cantor set. Let K be the Cantor
set defined in Example 1.2.6. Let ¢ be a self-similar measure on K. (See 1.4
for the definition of self-similar measures.) Then (€, F) is a local regular
Dirichlet form on L?(K,pu). By Theorem 2.4.2, we obtain a non-negative
self-adjoint operator H. Set A, = —H. Then A, may be thought of as a
Laplacian on the Cantor set K. In [39, 40], Fujita studied the spectrum of
A, and the asymptotic behavior of the associated (generalized) diffusion
process on the Cantor set.

Notes and references

Most of the contents in_this chapter are taken from [87]. New aspects
are the introduction of DF(-), LA(-), 'RM( ) and RF(-). Indeed, in [87],
condition (DF3) was forgotten in the definition of the Dirichlet forms. (The
author thanks V. Metz for having pointed this out.) This motivated the
author to study what would happen without (DF3).

The relation between electrical networks and Dirichlet forms (or Lapla-
cians) on graphs is a classical subject. See, for example, Doyle & Snell {31].
2.1 The operator Py vy appearing in Theorem 2.1.6 is known as the trace
of Dirichlet forms. In 2.1, we only treat the special case of Dirichlet forms
on finite sets. See [43, §6.2] for the definition of the trace of Dirichlet forms
for general cases. This operation has been known in various areas. For ex-
ample, it is called the shorted operator in electrical network theory and is
an example of a Shur complement. See Metz [127] and Barlow [6, Remark
4.26| for details.

Exercises

Exercise 2.1. Show that every metric on V coincides with an effective
resistance metric associated with a Laplacian H € LA(V) if #(V) =
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Exercise 2.2. Let V = {p;,p2,p3,p4} and let d be a metric on V defined
by
L if (4.5) # (1.2) and i # j,
d(pi’pj] =<z if (1~J) = (1,2),
0 ifi=j,
for some z with 0 < z < 2. Show that there exists a Laplacian H € LA(V)
such that Ry = d if and only if = < 3/2.

Exercise 2.3. Verify that the A-Y transform remains true even if H €
LA(V).

Exercise 2.4. Show that if #(V) =3, H € LA(V) if and only if Ry(,")

is 8 metricon V.
Exercise 2.5. Let V = {p1,p2,p3,p4}. For i # j, sct

g U G AL,
PP —e i (5g) = (1,4),

where ¢ > 0. Show that if ¢ is sufficiently small, H € LA(V) and Ry (-, )
becomes a metric on V.

Exercise 2.6. Let V = {p;,p2,p3}. Define

—(1 +m) 1 +2m —-m
Hpo=\| 142m -2(14+2m) 1+4+2m |.
-m 1 +2m —(1+m)

Show that Ry, (pi,p;) converges as m — oc. Also show that there exists
no H € LA(V) such that R = Ry, where R(p;, p;) = limm_. Ry, (pi.p;).

Exercise 2.7. Let X = {a,b} U {pm}m>1. Define R(a,b) = 2, R(a,pm) =

R(b,pm) = (1 +m)/(1 + 2m) and R(p;,px) = |k - jI/(1 + 2k)(1 + 2j).

(1) Show that R € RM(X). _

(2) Let (X, R!}/?) be the completion of (X, R!/2). Show that R ¢ RM(X).
(Hint: see Exercise 2.6.)
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Construction of Laplacians on P. C. F.
Self-Similar Structures

In this chapter, we will construct the analysis associated with Laplacians
on connected post critically finite self-similar structures. In this chapter,
L = (K,S,{F;}ies) i8 a post critically finite (p.c.f. for short) self-similar
structure and K is assumed to be connected. (Also in this chapter, we al-
ways set S = {1,2,... ,N}.) Recall that a condition for K being connected
was given in 1.6.

The key idea of constructing a Laplacian (or a Dirichlet form) on K
is finding a “self-similar” compatible sequence of r-networks on {V;,}m>o0,
where V;,, = V,,(L) was defined in Lemma 1.3.11. Note that {V,}m>0 is
a monotone increasing sequence of finite sets. We will formulate such a
self-similar compatible sequence in 3.1. Once we get such a sequence, we
can use the general theory in the last chapter and construct a resistance
form (£, F) and a resistance metric 12 on V,, where V, = Up,>0Vin.

If the closure of V. with respect to the metric R were always identified
with K, then we could apply Theorem 2.4.2 and see that (£,F) is a reg-
ular local Dirichlet form on L?(K, u) for any self-similar measure » on K.
Consequently, we could immediately obtain a Laplacian associated with
the Dirichlet form (£, F) on L?(K, u). Unfortunately, as we will see in 3.3,
in general, the closure of V, with respect to R is merely a proper subset
of K in certain cases. In spite of this difficulty, we will give a condition
on the probability measure p which is sufficient for (€, F) to be a regular
local Dirichlet form on L?(K, p) in 3.4.

As was mentioned in 2.4, there is an abstract way of constructing the
Laplacian from a Dirichlet form (£, F) on L?(K, u). (See B.1 for details.)
However, we will develop our analysis on a p.c.f.self-similar set K in a
classical and explicit way similar to that of the ordinary Laplacian d?/dx?
on the unit interval. In 3.5, the Green’s function will be given in a construc-
tive manner. In the following sections, we will study some counterparts of

68
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classical analysis on Euclidean spaces, for example, Green’s operator in 3.6
and Gauss-Green's formula in Theorem 3.7.8. Finally, we will define a
Laplacian as a scaling limit of discrete Laplacians on V,, in 3.7.

Throughout this chapter, d is a metric on K which gives the original
topology of K as a compact metric space. Also we write C(K) = C(K,d).
Since (K, d) is compact, C'(K) is the collection of all real-valued continuous
functions on K.

3.1 Harmonic structures

In this section, we start constructing Dirichlet forms and Laplacians on
K. As was mentioned above, the basic idea is to find a “self-similar”
compatible sequence of r-networks on { Vi, },m>0 and to take a limit. (Recall
that V;, C Viu4 by Lemma 1.3.11.)

For any initial D € LA(Vp), we can construct a sequence of self-similar
Laplacians H,, € LA(V,,) as follows.

Definition 3.1.1. If D € LA(V,) and r = (ry,re,... ,7x), where r; > 0
for i € S, we define £(™ € DF(V;,) by

S(m)(u,v)= Z ib’p(quw.vo1"',,,)

r
we W, w

for u,v € £(V,,). where ry, =7y, ... 1y, for w=wyws ... w,, € W,,. Also
H,, € LA(V,,) is characterized by £(™) = £ .

It is easy to see that
N
(m+1) N Loy ,
£ (u,v) §r.£ (uo Fi,vo F}) (3.1.1)

for u,v € €(Vin). Also Hn =3 ,cw., ;‘;‘RwDR@, where R, : &(V,,) —
€(V,) is defined by Ry, f = fo F, for w € W,,. We write &, = ™
hereafter.

Considering (3.1.1), we may regard (V,,, Hy,) as a self-similar sequence
of r-networks. If it is also a compatible sequence, then it is possible to
construct a Laplacian on K using the theory in the previous chapter.

Definition 3.1.2 (Harmonic structures). (D,r) is called a harmonic
structure if and only if {(Vin, Hm)}m>0 i & compatible sequence of r-
networks. Also, a harmonic structure (D,r) is said to be regular if
O<ri<lforallze€s§.
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Once we get a harmonic structure, we can use the general framework in
Chapter 2 (in particular, Theorem 2.2.6, Theorein 2.4.1 and Theorem 2.4.2)
to construct a quadratic form (£, F) on Vi, = U;>0Vim and an associated
non-negative self-adjoint operator H on L%(, i), where Q is the completion
of V, under the resistance metric associated with (£, F) and y is a given
o-finite Borel regular measure. This H should be our Laplacian. It seems
easy but there remains a “slight” problem: the topology on V., given by
the resistance metric may be different from the original topology of K. In
such a case, 0 does not coincide with K. In fact, we will see in the next
section that 2 = K if and only if the harmonic structure is regular.

Another important problem is whether there exists any harmonic struc-
ture on a p.c.f{. self-similar structure. By virtue of the self-similar con-
struction of H,,. we can simplify the condition for harmonic structures as
follows.

Proposition 3.1.3. (D.r) is a harmonic structure if and only if (Vo, D) <
(‘/l * Hl ) .

Proof. Assume that (V,—1, Hyu—1) < (Vi Hy). Then, for any u € £(V,,),
we have &,,_1(uo Fj,uo F;) = min{€,(vo Fi,vo F;) : v € {(Vipy1 ), v, =
u}. Hence, by (3.1.1), &,,(u, 1) = min{&n1(v.v) : v € {(Vipg ) vy, =
u}. Therefore (Vip, Hm) < (Via1, Hm41)- So, by induction, if (Vp, D) <
(Wi, Hy), then (V,,, Hy) € (Vinstr Hmg)) for any m > 0. The converse is
obvious.

O

For given r = (ry,r2,... .75), define R, : LA(Vp) — LA(Vp) by
RT(D) = [HIIVD-‘

where H; € LA(V,) is given by Definition 3.1.1. R, is called a renormal-
ization operator on LA(V;). By the above proposition, D is a harmonic
structure if and only if D is a fixed point of R,. Also, it is easy to see that
Rar(aD) = (A) 'aR(D) for any a, X > 0. Hence, if D is an eigenvector
of R, i.e.,R.(D) = AD, then D is a fixed point of Rj.. So, the existence
problem of harmonic structures is reduced to a fixed point problem (or
eigenvalue problem) for the non-linear homogeneous map R,. In general,
this problem is not easy and we do not fully understand the situation yet.
For example, it is not known whether there exists at least one harmonic
structure on a p.c.f. self-similar set. The only general result on existence
of a harmonic structure is the theory of nested fractals by Lindstrem [116].
Nested fractals are highly symmetric self-similar structures. (See 3.8 for
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the definition.) We will present a slightly cxtended version of Lindstrom'’s
result on the existence of a harmonic structure on nested fractals in 3.8.

Example 3.1.4 (Interval). Set Fy(x) = «/2 and Fo(x) = x/2 + 1/2,
Then £ = ([0,1],{1, 2}, {F\. F2}) is a p.c.{ self-similar structure. We see
that V;,, = {i/2™},=0,1,... 2~. Let us define D € LA(V,) by

u=(']1 _1]).

Then (D, r) is a harmonic structure on £ if r = (r),r2) satisfies r; + 73 =1
and 0 < r; < 1fori=12 Also, it is eany to see that those are all the
harmonic structures on L.

Example 3.1.5 (Sierpinski gasket). Recall Examples 1.2.8 and 1.3.15.
The Sierpinski gasket is a p. c. . sclf-similar set with Vo = {p1, p2.p3}. De-

fine D € LA(Vp) by
2 1 1
D= 1 -2 11.
1 1 -2

Alsoset r = (3/5,3/5,3/5). Then we see that (D, r) is a harmonic structure
on the Sierpinski gasket. (D, r} is called the standard harmonic structure on
the Sierpinski gasket. There are other harmonic structures on the Sierpingki
gasket if we weaken the symmetry. Sce Exercise 3.1.

Example 3.1.6 (Hata’s tree-like set). Let £ be the self-similar struc-
ture associated with Hata's tree-like set appearing in Examples 1.2.9 and
1.3.16. Then Vp = {¢,0.1} as in the previous example. Define D € LA(V)

by
—-h h 0
D=| h —(h+1) 1].
0 1 -1

and define r = (7,1 — r?) for r € (0,1). If th = |, then (D, r) is a regular
harmonic structure on L.

So far we have presented examples of regular harmonic structure. Of
course, there are many examples of non-regular harmonic structures.

Example 3.1.7. Set F\(2) = 2/2, Fo(z) = 2/2+1/2 and F3(2) = v-12/3
+1/2. Let K be the self-similar set with respect to {Fy, F3, F3} and let
L =(K,{1,2,3},{F\, F;, F3}). Then L is a p. c. f. self-similar structure. In
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fact, Cc = {12,21,31},P, = {i,2} and Vo = {0,1}. If D = (_11 _11)

and r = (r,1—r,s) for r € (0,1) and 8 > 0, then (D,r) is a harmonic
structure on £. Obviously, (D,r) is not regular for s > 1.

See Example 3.2.3 and Exercise 3.2 for a more natural example of non-
regular harmonic structures.

Proposition 3.1.8. For w € W,, let 1 denote the periodic sequence in X
defined by v = www.... Let (D,r) be a harmonic structure and let w € P
Jor w € W,. Thenr, < 1. In perticular, there exists i € S such that
T < 1.

Remark. If (K, S,{F;}ies) i8 a p.c.{. self-similar structure, then the post
critical set P consists of eventually periodic points: for any w € P, there
exist w € W, and m > 0 such that o™w = .

Corollary 3.1.9. Let (D,r) be a harmonic structure. If ry = .-+ = ry,
thenr; < 1 for any i € S. In particular, (D,r) 18 a regular harmonic
structure.

To prove Proposition 3.1.8, we need the following lemina.

Lemma 3.1.10. Let V be a finite set and let H € LA(V). SupposeU C V
and p € U. If there exists q. € V\U such that Hpq, # 0, then —hy, <
—H,,, where (hx)riev = [H]y.

t
Proof. H can be expressed as (’I; j(]), where T : §U) — &U),J

{U) — &V\U) and X : €(V\U) — ¢(V\U). Then [H]y = T - UX-1J.
Now let ¥, = —X~!Jx, where x5 (z) = 1ifz =pand xJ (z) =0ifz # p
on U. It follows that

hpp = Hpp+ ) Hpotp(q)-

QEV\U
As H,, # 0, the maximum principle (Proposition 2.1.7) implies that
¥p(g.) > 0. Therefore 3° .y Hpe¥p(q) > 0. 0O
Proof of Proposition 3.1.8. First we assume that
#(F(Vo)nW) <lforallie§. (3.1.2)

AS H[ - Zl—l . R'DR', we have (Hl)pp Z(q i):q€Vp, Fq)=p 7, qu Set
p—1r(u'J) where w = wyw2...wm € W, and v € P. ByLemma1314

~Hm(w)) = {w}. Hence, {(¢,%) : ¢ € Vo,Fi(q) = p} = {(n(ow), w1)}.
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Therecfore, (Hy)pp = qu, where ¢ = w(o). So, letting p; = w(o* 1)
fori=1,2,. m+1 thcn (H1)pips = 2 Dpyorpesys Where we set wm4q =

w;. Now by (3 1.2), we can apply Lcmm'1 3.1.10 and obtain —Dy,, p,,, <
_(Hl)l’o+lpl’+l So we have H Hl)p,p. < rtb_l l_[:_ (Hl)PiHPiH'
Hence r, < 1.

If (3.1.2) is not satisfied, we replace the original self-similar structure

= (KsS’{F;}iGS] b.V Cm = (K9 W"’l’{FW}wEWm)' Then, by PI‘OPO-
sition 1.3.12, P = P.,.. Also, it is casy to sce that (D,r,,), where
rm = (Yu)wew,., i$ a harmonic structure on £,,. For sufficiently large
m, L, satisfies (3.1.2) and hence we can apply the above argument to the
harmonic structure (D, r,,,). Therefore (r,)™ < 1. Thus we obtain that
Ty < 1. O

3.2 Harmonic functions

Let (D, r) be a harmonic structure on a connected p. c. f. self-similar struc-
ture £ = (K, S, {Fi}ics), where § = {1,2,... ,N}. Then {(Vim, Hm)}m>0
is a compatible sequence of r-networks. So we can construct (£,F) as
in (2.2.1) and (2.2.2). By Theorem 2.2.6, (£,F) € RF(V.), where V, =
Um>0Vin. In this section, we consider harmonic functions associated with
(E,F). The arguments in the last chapter, in particular Lemma 2.2.2,
imply the following result.

Proposition 3.2.1. For any p € £(V). there erists a unique w € F such
that u|y, = p and E(u,u) = min{&(v,v) : v € F,v|y, = p}. Furthermore,
u 8 the unique solution of

(Hu)lv,\vy, =0 forellm>1,
v, =p.

The function u obtained in the above theorermn is called a harmonic func-
tion with boundary value p.

(3.2.1)

Corollary 3.2.2. Let u be a harmonic function. Then, for any p € V
and any m > 0, (Hmu)(p) = (Du)(p).

Proof. By Lemma 2.2.2, £(u, u) = €y, (u.v) for any m > (. Hence, ifvisa
harmonic function, then £(u,v) = €4, (u, v) for any m > 0. Now let vy, =

Xp- Then 8(’1&. 'U) = 8!!,.. (ua ‘L‘) == qu V, 'U(Q)(Hmu)(Q) = (Hmu)(p) O

Example 3.2.3. Let {p),p2,p3} be the vertices of an equilateral triangle
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in C and let

1 1 1 1
ps = 5(1)2 + p3)ps = 5(1)1 +p3),pe = §(p1 + p2)ypr = 5(?1 + p2 + pa).

Let S = {1,2,...,7}. Fori € S, let Fi(z) = B:i(z — p;) + pi, where
h=B=Kk=08,3=0=0=1-23,8=1-38fr 1/3<8< 1/2.

If K is the self-similar set with respect to {F;}ics, then the self-similar
structure (K, S, {F;}ics) is independent of the value of 3 and is post criti-
cally finite. In fact

3
C=J{tk.(k+3)k} u |J {(ki,mk mi ik},

k=1 k<l<m
k+{+m=9

P ={1,2,3} and px ==(k)

for ¥ = 1,2,3. Define ¢ = x(Tk) = 7((k + 3]1'5) for k = 1,2,3. Also
let i = w(md) = w(k), gk = w(kl) = w(mk) for (k,!,m) such that
k<l<mandk+1+4+m=29. See Figure 3.1.

Define
-2 1 1
D=1 =2 11.
1 1 -2

and r = (1,1,1,1,1,1,¢) for t > 0. Considering the symmetry of (D,r)
and K, we see that R.(D) = AD for some A. (Note that R, preserves
the symmetry of D.) So (D, Ar) is a harmonic structure. Now let us
calculate the value of A by using Corollary 3.2.2. Let u be the harmonic
function that satisfies u(p2) = u(ps) = 0 and u(p;) = 1. (Note that the
harmonic function u is independent of the value of A because it is the
solution of (3.2.1).) Taking the symmetry into account, we deduce that

u(g16) = u(q1s), u(gee) = u(gas), u(g2) = u(gs), u(ga4) = u(gaq). By (3.2.1),

wlgre) = B oy A 3t4S
Ne) = 15 U900 = s W2V T s
t+5 t+3
) = 7775 Ua2e) = 7w

By Corollary 3.2.2, (Du)(p1) = —2 = A~ 12(u(q16)—1) = (Hhu)(p1). There-
fore, we obtain A = (3t + 7)/(7t + 15). Note that 0 < A < 1 for any ¢ > 0.
However, At > 1 if t > v/5. So the harmonic structure (D, Ar) is regular
if and only if 0 < ¢ < /5. Note that (K, S, {Fi}ics) is an affine nested
fractal. (See 3.8 for the definition of an affine nested fractal.)
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™

p2 924 Ps 434 Ps
Fig. 3.1. pi.g¢:i and g;;

Let R be the resistance metric on V, associated with (£,F). Then,
by (2.2.6), © € C(V.,R). Note that V. is a countable subset of K and
the topology of (V., R) may be different from that of V, with the relative
topology from the original metric on K. We will see, however, that a
harmonic function has a unique ¢xtension to a continuous function on K.

Now recall that d is a metric on K which is compatible with the original
topology of K.

Theorem 3.2.4. Let u be a harmonic function. Then there exists a unique
2t € C(K) such that uly, = ilv,.

Remark. As is shown in 3.3, the closure of (V,, R) equals K with the orig-
inal topology if and only if (D, r) is regular harmonic structure. In such a
case, the above theorem is obvious.

Proof. Let u be a harmonic function with boundary value p. Set H; =

t
6 ;) where T : £(Vo) — &(Vo).J : &Vo) — &(Vi\Ve) and X :

£Vi\Vo) — &(V1\W). Then it follows that

(wo Pl = Retuv) = Bs (%1 ).

As F,, is a bijective mapping between Vo and £, (V) for w € W,, we will
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identify £(Va) and €(F,,(Vp)) through F,,. Define a linear map A; : £(V) —
£(Fi(Vo)) = (Vo) by

h— B P
Aip = R; ( y-1 7p) . (3.2.2)
Then

Ul (Vo) = Awm Aum_y - - Aun (3.2.3)

for w =wywsy...w,, € W, and
(Ai)pg >0 foranyp,geVp and A;|:|=]|:]. (3.2.4)

First we prove the theorem assuming (3.1.2).
Claim 1. Set v(f) = max, 4ev, | f(P) — f(q)| for f € é(Vo). Then v(A;f) <
v(f) if u(f) #0.

Proof of Claim 1: If nglvl\vo = 0 and gIVo = f, then A,‘f = glFi(Vo)'
Applying the maximum principle (Proposition 2.1.7) and taking (3.1.2)
into account, we can see that maxe r,(v,) 9(9) — minge Fi(vp) 9(9) < v(f)-
Hence v(A;f) < v(f).

Claim 2. There exists ¢; such that 0 < ¢; < 1 and v(A;f) < ¢;v(f) for any
f € €(W).
Proof of Claim 2: Define Q : £(Vp) — &(V) by

(QN)p) = fip) - #(Vo)™* ) _ fla),

q9€Vo
then v(f) = v(Qf) and v(A, f) = v(A;Qf) for any f € £(V;). Hence

sup{”f,?}f T e V), o(f) # 0} = sup ST 1 € ), 0(1) # 0}
—wp{% s et T 1@ =0.0(0) =13

q€Vo

As {f € &(Vo) : X 4cv,, f(9) = 0,v(f) = 1} is compact, the above supremum
is less than 1.
Now by Claim 2 and the maximum principle,

vu(u) = sup{| f(p) — f(@)| : p,q € Ku NV} < c™v(p)

for any w € W,, where ¢ = max;es ¢c;- Hence, if {p;}i>1 is a Cauchy se-
quence with respect to a metric on K which is compatible with the original
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topology of K, then {u(p;)}i>1 is convergent as ¢ — oc. Using this limit,
we can extend u to a continuous function ¢ on K.

Next if (3.1.2) is not satisfied, we can exchange the harmonic structure as
in the proof of Proposition 3.1.8. Then again we can use the result under
a new self-similar structure £,, and harmonic structure (D,r,,). Note
that harmonic functions remain the same after we replace the harmonic
structure. a

Hereafter, we identify u with its extension @ and think of a harmonic
function as a continuous function on K. Immediately, by Lemma 2.2.3, we
have the maximum principle for harmonic functions.

Theorem 3.2.5 (Maximum principle: weak version). Let u be har-
monic. Then, for any uw: € W,,

min u(p) <ulz)< max u
pcFu(Vo) (p) < u( )"peF..,(vo) (p)

foranyz € K,,.

This maximum principle is a little weak because we say nothing about
the case when u(x) attains the maximumn. We will give a stronger version
of the maximum principle in Theorem 3.2.14.

Example 3.2.6 (Sierpinski gasket). Let us calculate the stochastic ma-
trices {A; }ics for the standard harmonic structure on the Sierpinski gas-
ket given in Example 3.1.5. Recall that Vo = {p;.p2,p3}. See Figure 1.2.
It follows that Vi = {pi,q:}ies. where § = {1,2,3}. Now let f(p;) =
a, f(p2) = b and f(p3) = ¢ and solve the linear equation (H, f)(g;) = 0 for
i € S. Then we get f(q1) = (26 + 2¢ + a)/5, f(g2) = (2¢ + 2e + b)/5 and
f(ga) = (2a + 2b + ¢)/5. By this result,

1 5 0 0 i 2 21 1 2 1 2
A1=5 2 2 1 A2=5 ¢ 50 A3=§ 1 2 2].
2 1 2 1 2 2 0 0 5

It is easy to see that the eigenvalues of A, are 1,3/5,1/5. Note that the
second eigenvalue 3/5 is equal to r,. In fact, this is not a coiucidence.
(Recall that r = (3/5,3/5,3/5).) In A.1, we will give a general result on
the second eigenvalue of A;.

See Exercise 3.3 for more examples.

The stochastic matrices {A;}ics determine the harmonic functions
through (3.2.3). The behavior of a harmonic function around a point #(w)
for w € £(S) is given by the asymptotic behavior of (3.2.3) for m — oo.
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This is the problem of random iterations of matrices and, in general, it is
very difficult. Even in the above example, we do not know how to calcu-
late the behavior of A,, A, _,...A., a8 m — oo unless the sequence w is
(eventually) periodic. Kusuoka used {A;}ies to construct Dirichlet forms
on finitely ramified self-similar sets in Kusuoka [107] and obtain some result
about almost sure behavior of the random iteration of {A;}:cs.

An important property of harmonic functions is the Harnack inequality,
which follows from the discrete version, Corollary 2.1.8.

Proposition 3.2.7 (Harnack inequality). If X is a compact subset of
K that is contained in a connected component of K\Vy, then there exists
a constant ¢ > 0 such that max.¢x u(z) < c¢min,ex u(z) for any non-
negative harmonic function u on K.

Proof. Set Xy = Uyew,,:konx#0Kw. Then we can choose m so that
XnNVyg=0. Nowset V=V,,,0 =Vp, H=Hp, and A = X,,NV,,. The
Harnack inequality (Corollary 2.1.8) implies that there exists ¢ > 0 such
that max,ec 4 u(p) < cminye 4 u(p) for any non-negative harmonic function
u on K. By using the maximum principle, it follows that max e x u(x) <
maxpe A u(p) and minge 4 u(p) € minge x u(z). Hence we have shown the
required incquality. O

For p € Vp, let 4, be the harmonic function that satisfies ¥,|y, = x}°. It
is easy to sce that {¥;}pcv, is a partition of unity on K: Zpe ve ¥p(x) =1
for any r € K.

Theorem 3.2.8. let p € V, and let £ € K\Vy. Then yp(z) > 0 if and
only if there exists C € J(p, Vo) which contains x.

Recall that J(p, Vp) is the collection of all connected components of K\ Vy
whose closure contains p.

Definition 3.2.9. (1) For p,q € Vp,, {pi}L, is called an H,,-path be-
tween p and q if p; € V,;\V for any i = 1,2,...,n, (Hu)pp, > 0,
(Hm)p.q > 0and (Hp)p.p,,, >0foranyi=12,... ,n -1

(2) For p,q € V\Vy. we write p ~q if and only if there exists an H,,-path
between p and g.

The notion ~ will not appear later in this section. It plays, however, an
m
important role in 3.5, where we will show that p ~q if and only if p and ¢

belong to the same connected component of K\Vy by using the results in
this section.
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NOte t}lat (Hm)pq - ZW:P.QQ Fw(vfl) (','uv) -1 D(I."c)— ] (p](Ftr) )} (q). Sill(',e D i.S
a Laplacian on Vj, we may immediately verify the following lemma.

Lemma 3.2.10. Let w € W, and let p,q € F,(Vp).

(1) If Fu(Vo) N Vo = @, then there erists an H,-path between p and q
contained in F, (Vo).

(2) If Fu(Vo) NV = {q} and p # ¢, then there erists an H,, -path between
p and q contained in F,(Vp).

Proof of Theorem 3.2.8. First assume that z € C € J(p,Vb). Then, by
Proposition 1.6.6, there exists a path v : [0,1] — C U {p} between x and p.
Choose m so that

sup diam(K,, (1) < dist(y({0,1]), Vo\{p}),

te[0,1)
where dist(A, B) = infzcayep d(z,y). Let {p1,... .pa} = Via N([0,1]),
where p; = p(t;) and ¢; < t2 < --- < tn, = 1. Note that p,, = p. Then there
exist w(0),... ,w(n—1) € Wy, such that z,p, € K,y and p;,pis1 € Ky
for all i = 1,2,...,n -~ 1. Note that K,,;; " Vo C {p} for any ¢. Let
j=min{i : K, N Vo = {p}}-

Suppose ¥,(z) = 0. Then, by Theorem 3.2.5, there exists g € Fy, ) (Vo)
such that ¥,(q) = 0. Let ¢ = py. Then, by Lemma 3.2.10, there exists
an H,,-path between p, and p;y, for any ¢ = 0,1,... ,7 — 1. Also, by
Lemma 3.2.10, there exists an H,,-path between p; and p. Joining those
H,..-paths, we may construct an H,,-path between ¢ and p. Let V =V,
and let U = Vj. Then the maximum principle, Proposition 2.1.7, implies
that ¥p(q) > 0. Therefore, ¥,(x) > 0.

Next let C be the connected component of K\V,. Assume that p ¢ C.
We show that y,(q) = 0 for any ¢ € CNV,. Let ¢ € CNV,. Define
Um = U, cyync (Km,y N Vin). Since ¥, is continuous and yp(y) = 0 for any
p € Vyn C, it follows that max.cp,, ¥,(2) — 0 as m — oo. Also g ¢ Uy,
and p ¢ U, for sufficiently large m. Now apply the maximum principle,
Proposition 2.1.7 with V = V,,,, U =U,, UV, and H = H,,. Since p ¢ C,
any Hp,-path between p and g must intersect U,,. Hence U, C U,,, where
U, is defined in Proposition 2.1.7. So 0 < ¥,(g) € max.cp,, ¥p(2). Letting
m — oo, we see that ¥,(q) = 0. Since C' NV, is dense in C, it follows that
Yolc =0. a

By the above theorem, we get a relation between the topological prop-
erties of K and the positivity of the elements of D, where (D,r) is the
harmonic structure.
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Theorem 3.2.11. Let (D,r) be a harmonic structure. Then Dpg > 0 if
and only if J(p, Vo) N J(q, Vo) # 0.

The condition that J(p, Vo) N J(q, Vo) # @ is equivalent to the one that
there exists a connected component of K\Vy whose closure contains both
p and q.

Proof: Part I. Let (£,F) be the resistance form associated with (D, r).
Then it follows that D,,, = —&(¥plvy, ¥ylve) = —Em(Wplv,,+ Yelv.,)- Hence

Dyq = (Hmp)(q) = (Hmiq)(p)- (3.2.5)

Assume that J(p, Vo) N J(q, Vo) = B. Since Ky g € Uces(q.v,)C for suffi-
ciently large m, Theorem 3.2.8 implies that ¥,|x,. , = 0. Hence, by (3.2.5),
Dpe =0. O

To prove the rest of this theorem, we need the following lemmas.

Lemma 3.2.12. Let p and ¢ belong to V. If Dy, > 0, then there exists a
path v : [0,1] — K between p and q that satisfies ¥((0,1)) C K\Vp-

Proof. By the above proof of Theorem 3.2.11, if Dy > 0, then J(p, Vo) N
J(q, Vo) # 0. Let C € J(p, Vo)NJ(q. Vo). Then, by Proposition 1.6.6, there
exists a path v : [0,1] — C U {p,q} with v(0) = p and (1) = ¢. O

Lemma 3.2.13. Let p and q belong to Vy,. Let {p;}i=12,...n be an Hp,-
path between p and q. Then there erists o connected component of K\Vy,
C, such thatp; € C foralli=1,2,... ,n,peC andqeC.

Proof. For each i € {1,2,...,n — 1}, there exists w € W,, such that
Pi,Piv1 € Ky and D(p,)-1(p,).(Fu)-'(pi.1) > 0- By Lemma 3.2.12, it follows
that there exists a path «; between p; and p;,, that satisfies v;((0,1)) C
K\V;,,. Hence there exists a connected component of K'\Vy which contains
both p; and p,,1. Inductively, we see that the connected component, say
C, contains all p;. By the same argument as p; and p;+1, we may find a
path v between p and p, that satisfies v((0,1)) C K\Vj,. So it follows
that ({0, 1)) C C. Hence p € C. Exactly the same argument implies that
g € C as well. O

Part II of the proof of Theorem 3.2.11. Assume that J(p, Vo) N J(q, Vp) #
@. Let C € J(p, Vo) N J(q, Vo). Then, by Proposition 1.6.6, there exists
a path v : [0,1] — C U {p.q} with v(0) = p and (1) = ¢. Now by the
same argument as in the proof of Theorem 3.2.8, we may construct an
H,,-path between p and ¢ from the continuous path 4. Let {p;}; be the
H,,-path between p and q. Then, by Lemma 3.2.13, p; belongs to C for
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all i =1,2,...,n. Since (Hp)p,q > 0 and w,(pa) > 0, (3.2.5) implies that
Dyq = (Hm'l’p)(Q) 2 (Hm)PnQ(wp(pn) —(q)) > 0. d

By the above discussion, we also obtain a stronger version of the maxi-
mum principle.

Theorem 3.2.14 (Maximum principle: strong version).
Let x € K\V} and let C be the connected component of K\V, with 2 € C.
Then, for any harmonic function u,

min _u(p) < u(z) < max_u(p).
peVonT pe VonC

Moreover, if any of the equalities holds, then u is constant on C.

Proof. First assume that z € V,,, for some m. Then the same arguments
as in the proof of Theorem 3.2.8 imply that, for any p € C N Vp, there
exists an H,,-path between z and p. Conversely, by Lemma 3.2.13, if there
exists an H,,-path between z and p € Vj, then p € C N V. Hence, let
V = Vn, U=V, and H = H,, and apply Proposition 2.1.7. Then U, =
C N Vy. Therefore, the desired results are immediate from the conclusion
of Proposition 2.1.7.

Next if z ¢ V,, then choose w € W, so that z € K, C C. Then, by the
weak version of the maximum principle (Theorem 3.2.5),

semin ule) Su(x) < max | wlq).

Also, if u(x) = maxger, (v,) u(g). then u(z) = u(q) for some ¢ € F,, (Vo).
Since F,, (Vo) C C NV, where m = |w)|, the first part of this proof implies
the desired results for this case as well. O

Next we define the notion of piecewise harmonic functions. The following
is an immediate corollary of Theorem 3.2.4.

Corollary 3.2.15. For p € (Vy,), there exists a unique continuous func-
tion u on K such that uly,, = p and E(ulv.,uly.) = min{€(v,v) : v €
f’ vlvm = p}'

u in the above corollary is called an m-harmonic function with boundary
value p. Another characterization of m-harmonic functions is that u is an
m-harmonic function if and only if uo F,, is a harmonic function for any w €
Wyn. For p € Vi, define ¥ to be the m-harmonic function with boundary
value x,‘,"'". Then any m-harmonic function u is a linear combination of
{¢p'}. Infact, u = 3 .\ uw(p)yy’. For u € £&(V.), we define P u by
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Pohu = ZPGVm u(p)t. If we write uy = Pnu, then En,(uly,,,ulv,,) =
E(Um, Um).

In the rest of this section, we will give an expansion of u € £(V,) in a
piecewise harmonic basis {),}pev,, where ¥, = ¥ if p € Viu\Vin_.

Lemma 3.2.16. Let u be an m-harmonic function. Then E(u. f) =0 for
fe€Fifflv, =0.

Proof. For n > m, we have (H,u)(p) = 0 if p € V,\V,, and f(p) = 0 if
p € Vin. Hence £, (u, f) = = 3_ oy f(p)(Hau)(p) = 0. O

Lemma 3.2.17. Foru € F, E(u — upm,ut — Up,) — 0 as m — oc, where

Uy, = Pru.

Proof. By Lemma 3.2.16, £(u — ty,. uym) = 0. Hence, E(u —uy,u —u,,) =
E(u,u) — E(Um,um) = E(u, u) — En(u, u). O

Definition 3.2.18. Let v € ¢(V.). For p € V;\Vi_1, define ap(u) =
Um (P) — Um-1(p). (ap(u) = u(p) if p € Vp.) Also define ay(u) = U4 ©
F, —u, oF, forw e W,,.

Note that ap(u) = u(p) - upm-1(p) for p € Vu\Vin_1. By the above
definition,

Upy = Z op(u)y, and u= Z ap(u)yy,
PEVm PEV.

where the infinite sum in the latter equality is pointwise convergent. (In
fact, it is a finite sum for each p € V..) This is the expansion of a function
on V, in the piecewise basis {y,}pev..

Also, by Definition 3.2.18, a,,(u) is a 1-harmonic function and a,, (u)|v, =
0. Using a,(u), a,(u) is given by

a(w) = Y ap, ) (u),. (3.2.6)
pcVi\Vo
Proposition 3.2.19. Foru € €(V.), u € F if and only if
1
Eoluu) + ) D —Elaw(u)au(u)) < x. (3.2.7)
m20wEW,, | ¥

Moreover, if u € F, then the sum in (3.2.7) is equal to E(u, u).
Proof. By Lemma 3.2.16,

m-—1

Em(u,u) = Z 1 (Up1 — Uk, upoy — ug) + Eolu, u).
k=0
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By the sclf-similarity of &5, we obtain

1
Exv1(Up4) — Up, Ugy) — Ug) = Z r—gl(aw(u),aw(u)).
weW,
Combining the above two equalities, we easily verify the statement of the
proposition. O

3.3 Topology given by cffective resistance

As in the last section, we assume that (D, r) is a harmonic structure on
L= (I\’, S, {F,'},‘es), where § = {1,2, vee .'\'.}. Let {(Vm,H,n)}mzo be the
compatible sequence induced by (D, r). Then, there exist (€. F) € RF(V.)
and R € RM(V,) associated with {{V,,,, Hp)}m>o. Moreover, if (2, R) is
the completion of (V,, R), the results in 2.3 and 2.4 imply that (€, F) €
RF().

In this section, we study the difference between 2 and K, in other words,
the difference between two topologies on V,. One is given by the resistance
metric R and the other is given by the relative topology from the original
metric space (K,d). Roughly speaking, it turns out that §2 can be always
identified with a subset of K and that @ = K if and only if (D. r) is regular.

First, we observe an important property of (£,F), that is. the self-

similarity of (£, F).

Proposition 3.3.1. For enyu € F andi € S, uo F; € . Moreover,
nY 1
WUy = —C\ }"n 'F'l'
E(u,v) ;ric‘:(uo vo Fy)

for any u,v € F.

The above proposition is easily verified by (3.1.1). Moreover, if A is a
partition of ¥ = SN, then an inductive argument on #{A) shows that

E(u.v) = Z TLS(uo Fu.vo ). (3.3.1)
wenr ¥

Now we start to study the difference between ? and K.

Proposition 3.3.2. There erists a continuous injective map 8 : } — K
which ts the identity on V..

Lemma 3.3.3. If F,(V,) N F,(V.) = 0 for w,v € W,, then inf{R(p,q) :
pe€ F,(V,).q€ F.(V.)} > 0.
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Proof. Choose m > 0 so that w,v € W,,. Define p € €(V,,) by

(a) = 1 fge F,(V.)NVy,,
P 0 otherwise.

Then p|f,(v.)nv,, = 0. Hence, if u is the m-harmonic function with bound-
ary value p, then u|g (v.) =1 and u|g,(v,) =0. By (2.2.6), if p € F, (V)
and ¢ € F,(V.), then

lulp) —u(@)® S 1
E(u,u) 8 (u,u)’

R(p,q) >

O

Recall that d is a metric on K which is compatible with the original
topology of K. Note that (K, d) is a compact metric space.

Proof of Proposition 3.3.2. Step 1: Construction of 8
Let {p;} be a Cauchy sequence in (V,, R). By Lemma 3.3.3, defining 6,
by

w.ueWm,F,:?llffl)nF‘,(V.)=0 (pEFw(V. ),.9EFo(V2) (p,q))

then we have é,, > 0. Choose n(m) so that R(px,p1) < é,, for k,l > n(m),
then there exists w € Wy, such that px € Uyew,..r,(v.)nF.(v.)z0 Fu(Ve) for
k > n(m). As maxyew,, diam(K,,,d) — 0 as m — oo, {p;} becomes a
Cauchy sequence in (K, d). (diam(-,d) means the diameter with respect to
a metric d.) So let p be the limit point of {p;} in (V., R). Then we define
8(p) by the limit point of {p;} in (K,d). It is routine to show that § is a
well-defined continuous map from 2 to K and 8|y, is the identity.
Step 2: 8 is injective.
Assume that 8(p) = 6(q) for p,q € Q. If R(p;,p) — 0 and R(g;,q) — O
ag ¢ — 00, then the discussion in Step 1 shows that d(p;,f(p)) — 0 and
d(¢;,0(¢q)) — 0 as i — 0o0. Let v be an m-harmonic function on V,. Since
v can be extended as a continuous function on both (K, d) and (2, R), we
see that v(p) = lim; .o v(p;i) = v(8(p)) = v(6(g)) = limi_, 0 v(g:) = v(9).
Now, for u € F, by (2.2.6)

Jum () — w(P)? < E(um — 1, um — u)R(p, py),

where pyp € Vy. (Recall that u,, is an m-harmonic function defined by u,, =
> zev,, W(z)¥r,.) Hence, using Lemma 3.2.17, we have limy, .o Um(p) =
u(p). In the same manner, we can also show that lim,, .., un(¢) = u(q).
Since, u,, is a m-harmonic function, it follows that um(p) = um(g). Hence
u(p) = u(g). Therefore, using (2.3.1), we can conclude that p = q. O
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By virtue of Proposition 3.3.2, we will identify 2 with () and think of {2
as a subset of K.

Now we ask when 2 is equal to K. The answer is given by the following
theorem.

Theorem 3.3.4. The following are equivalent.
(1) Q=K.
(2) (Q, R) is compact.
(3) (2, R) s bounded.
(4) For any u € F, sup,.q |u(p)| < oc.
(5) (D,r) is regular.
Moreover, if (D, r) is reqular, then R is a metric on K which is compat-
tble with the original topology.
To prove the above theorem, we need the following lemmas.

Lemma 3.3.5. For any w € W, and for any p,q € ,

TwR(p,q) 2 R(Fy(p), Fi.(9))- (3.3.2)
Proof. By Proposition 3.3.1,
E(u,u) = Z Tw 1E(uo Fyr,uo Fy) > 1y, 1€(uo Fy,uo Fy)
weEWn,

for w € W,,. Therefore, we have

r lquw(p)—"“on(Q)lz> u(F,,(p)) — u(Fy(q )|2
Y EuoF,uok,) = E(u,u)

Hence, by (2.3.1), we obtain (3.3.2). O

Lemma 3.3.6. Let w = wiwa ... € . Assume that
lim sup min 6(c™w,w’) > 0, (3.3.3)

m—oc W'EP

where & i3 any of the metrics &, on ¥ defined in Theorem 1.2.2. If
lim mfr,,,u,, wa >0,

m—eol

then w(w) ¢ Q.

poF, Yzx) if £ € K.,
Pw (.’I:) = .
0 otherwise,

for w € W,. By (3.3.3), there exist 7 € E\P and {mp}a>1 C N such
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that m,, < muy; forany n > 1 and 0™ w — 7 as n — 0. Set w” =
WiwWe ... W, and define u =Y ., n" . Then

() R
au(u) =
“ 0 otherwise.

Note that liminf, .. 7+ > 0. Hence

Eoluuw)+ ) ) —el(aw(zo aw ()

m>0 we€ vau

= Eo(u,u) + Z

n>1

51904P)<°°

By Proposition 3.2.19, we see that £(u,u) < oc and u € F.

Now we assume (3.1.2). Then, by Lemma 1.6.10, o(x) > O for any x €
K\Vy. Since 7 ¢ P, we can choose m 2> 0 so that C = minsek.,,,.. ., ¥(Z)
> 0. Without loss of generality, we may assume that ¢™ w € Z, ., . -,..
So, if w(n) = w"ri72... Tm, then w(n) = wyws ... .wy,, +m and

R, P ) = i ) =

Hence inf{u(z) : 2 € Kyn) NV.} > 3on) C/k — oc as n — 0. Suppose
that 7(w) € Q. Then there exists {p;}i>1 € V. such that p; — x(w) as
i — o0 in (2, R). Since 8 is continuous, it follows that p; — w(w) as i — oc
in (K,d) as well. Therefore, p; € Ky for sufficiently large i. Hence
u(p;) — o0 as i — oc. On the other hand, u is a continuous function on
(82, R). Hence {u(p;)}i>1 converges to a finite limit as i — oc. Thus we
conclude that =(w) ¢ Q.

If (3.1.2) is not satisfied, again we may repeat the same arguments as in
the proofs of Proposition 3.1.8 and Theorem 3.2.4. O

Lemma 3.3.7. If (D,r) is not regular, then 2 # K. Also there erists
u € F such that sup,cy, |lu(p)| = oc

Proof. If (D,r) is not regular, there cxists rx > 1. Let w = k. Then
Proposition 3.1.8 implies that w ¢ P. Hence w satisfies the conditions in
Lemma 3.3.6. So w(w) €  and 2 # K. Also, by the proof of Lemma 3.3.6,
we can find u € F that is unbounded on V.. O

Proof of Theorem 3.5.4. Assume that (D,r) is regular. Then Lemma 3.3.5
implies that { F}};es is a system of contractions on a complete metric space

(Q R). Hence, by Theoremn 1.1.4, there exists a non-empty compact subset
K of (Q, R) such that K = U;csF;(K). As 6 is continuous, K is also a
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compact subset of (K,d). For z € K, Upcw. F,(z) is a subset of K. Itis
easy to see that Uycw, Fu(z) is dense in (K, d). Hence K = K. Therefore
= K, (©, R) is compact, and 8 is a hommeomorphism between ({2, R) and
(K,d).

Obviously (2) implies (3). Also as {u(p) — u(g)|> < &(u,u)R(p,q) for
u € F, we can see that (3) implies (4).

The above discussion with Lemma 3.3.7 completes the proof of Theo-
rem 3.3.4. O

Next, we consider how large Q is in K if (D,r) is not regular. For
instance, we will calculate u(§2) for a self-similar measure x on K.

Theorem 3.3.8. Let ji be a self-similar measure on K with weight (u;)ies.
(1) If [Lieg(m:i)* <1, then u(2) = 1.
(2) If [Ties(rs)® > 1, then u(92) = 0.

Remark. A. Teplyaev showed that if [];c(ri)*: = 1, then p(82) = 0.

This thcorem is somewhat intriguing, in particular, in the second case
where p(2) = 0. As is shown in the next section, even in such a case,
if rju; < 1 for all i € S, then (£,F) is a local regular Dirichlet form on
L3(K,pu). So u € F is originally a continuous function on (V,, R) and it
can be extended to a continuous function on (€2, R). This is not surprising.
But, despite the fact that © is a null set in K, u can be extended to an L2-
class function on a far larger space K. This fact might suggest that some
of the analysis on a large (higher dimensional) space could be determined
by information on a small subset of the space.

Lemma 3.3.9. Let w = wywe... € X. If ngorwlw---wm < 00, then
m(w) € Q.

Proof. Let 7 € P and set p,, = w(ww2...wmT). Then p, € V,,, and,
using Lemma 3.3.5, we see that

R(pmspm-i-l) = R(P:ulw:..-um (pO)? lewz---wm (me_‘ 1 (pU)))

S rulug...um :'.22{(’1 R('r! y)'
Hence {p,} is a Cauchy sequence in (§2, R). Let p be its limit. On the
other hand, d(p,,, 7(w)) — 0 as m — o0o. Hence 8(p) = w(w) € Q. O

Proof of Theorem 3.3.8. Set ny,(t,w) = #{j : w; = i,1 € j < m} for
we€X, i €8 and m > 1. Define

T (1, w)
m

N={weX: lim =u; forallieS}).
m—»o0
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Then the strong law of large number implies that u(N) = 1. Note that
L 108 Twyws.om = Dics %’—“’2 log ;. Hence, for w € N,

Now, if [T,es(ri)* < 1, then ¥, 50 Twws.wm < 00 for w € N, Therefore,
Lemma 3.3.9 implies 7(w) €  for any w € . Hence p() = 1.

Next, suppose [[;cs(ri)* > 1. Let Py = {wiwz...wm : w € P}. Then
we can choose m so that #(Pm) < #(Wp,). Set

By = {w € X wrwhs1 .. Wktm—1 € P}

and A = liminfy_ oo Bx. If min,egpéb(o”w,7) — 0 as n — oo, then,
for sufficiently large k, wiwi+1..-wWk4m—1 € Pm. Hence w € A. Now,
as Byxymi for | = 1,2,... are independent and u(Bix) = p(Br+mi) <
1, we see that u(N;>cB;) = 0. Hence u(A) = 0. So u(N N A°)
1. Assume that w € NN A%. Then limsup,,_ . min.ep §(c™w, )
0. Also, iminf—oo Twyuwg..wm > 0 because limy, oo [Tuyws..om /™
[Tics(ri)* > 1. Hence, by Lemma 3.3.6, m(w) ¢ Q. As p(N N A°) =1, it
follows that u(2) = 0. |

n v

3.4 Dirichlet forms on p.c. {. self-similar sets

In this section, we continue with the assumptions of the previous sec-
tion: (D,r) is a harmonic structure on (K, S, {F;}ies)- Then we have
(E,F) € RF(Q), where (£, F) is the natural limit of the compatible se-
quence {(Vin, Hn)}m>o. If the harmonic structure (D,r) is regular, it was
shown in Theorem 3.3.4 that K = Q. Then, results from Chapter 2, in par-
ticular, Theorems 2.2.6, 2.3.10 and 2.4.1, immediately imply that (£, F) is
a local regular Dirichlet form on L2( K, p) for any Borel regular probability
measure u on K. See B.3 for the definition of Dirichlet forms.

On the other hand, by Theorem 3.3.4, § is a proper subset of K if
(D, r) is not regular. In this case, functions in F may not be extendable to
continuous functions on K. (In fact, F turns out to contain an unbounded
function by Theorem 3.3.4.) In this section, however, we will show that F
can be embedded in L2(K, u) for a certain measure y and that (£,F) is a
local regular Dirichlet form on L?(K, p).

Let M(K) be the collection of all Borel regular probability measures on
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K. Also we define

M(K) ={p € M(K): u(V.) =0 and p(0) >0
for any non-empty open set O C K.}

Of course, all self-similar measurcs belong to M (K).

The following sufficient condition for g to be in M(K ) is sometimes
useful.

Lemma 3.4.1. Let y € M(K). If there exists v > 0 such that yu(Ky) <
p(Kyi) for any (w,7) € W. x S, then p € M(K).

A measure satisfying the condition in the above theorem is called a ~-
elliptic measure.

Proof. If we choose m large enough, then for any w» € W,,, there exists
w' € W, such that K, N K, = 0. So, changing the self-similar structure
L = (K,S {F;}ies) to L, = (K. W,,,, {Fu}wew,,) if necessary, without
loss of generality we may assume that for any ¢ € S, there exists j € S
such that K; N K; = 0. Then 1 = u(K) > u(K;) + p(K;) > 2v. Therefore
v<1/2. Let 6=1-+. Then 0 < § < 1. Now, for any w € W, and any
i€ S,

(Kw) 2 p(Kwi) + 1(Ky;j) = p(Kus) + 78(Ky)

where we choose j € S so that K; N K; = 0. This implies that p(K,:) <
Su(Kyw). Hence v < u(Ky,) < 6™ for any w € W,,. This inequality
implies that u(p) = 0 for any p € K and that u(O) > 0 for any non-empty
open subset O C K. O

Asin 3.2,set Py : F — C(K) by Phu= Zpev.,. u(p)vy’. (In 3.2, Pru
is denoted by u,,. We also use this notation in this section.) Recall that u,,
is an m-harmonic function and it can be regarded as a continuous function
on K. Also, define Hy,0 = {u: u is a 1-harmonic function and u|y, = 0}.

Lemma 3.4.2. Then there exists ¢ > 0 such that (u,u), < c€(u,u) for
any u € H, o and for any p € M(K), where (u,v), = [ uvdp.

Proof. Note that both (., ), and € are inner-products on a finite dimen-
sional vector space Hyo. As u = zpeVl\Vo u(p)y, for any u € H, o, we
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have

S gkl <y Y (u)? +u(@?)

paeEVI\Vo reeVi\Vo

= #(Vi\o) D ulp),

PEVI\ Vo

(u,u),

where apy = [ ¥p¥,dp. (Since 0 < ¥,(z) < 1 for any x € K, we have
0 < apg < 1.) Also there exists ¢ > 0 such that #(Vi\Vo) 30 v\, w(R)? <
c€(u, u) for any u € H; ». This proves the lemma. O

Lemma 3.4.3. Let p € M(K). Define Ry (p) = maxyew,, rwu(Ky). If
Y m>0 Rm (1) < 0o, then {Pu} converges in L*(K,u) asm — oc for any
ue F.

For ease of notation, we write R, instead of R,,(u) if no confusion can
OCCUT.

Prooj For w € W,, define u* by u“(A) = p(F.(A))/u(Kw). Then
w ¢ M(K). Note that Ji foFudu® = Nfl\’—w) 1} k, fdu. Now, by Propo-
smon 3.3.1 and Lemma 3.4.2, it follows that, for u € F,

g(“m-{-l = U, U1 — uvn)

1
= > =E&((Ums1 — Um) 0 Fu (Ums1 — Um) 0 Fu)
weW,, Tw
_ 1 w
2c ! Z 1'_ K(('um+l - 'Uvn) o Fw)2dﬂ
weEW
¢! Z / (41 — um)zdﬂ
vl #»(K K,
1
>c! B (Uma1 ~ um)2dy.
mJK

Hence cRuE(Um41 = Um Ums1 = Um) 2> [[Umi1 — um||Z, where [Jul|2 =
_fKu.de. So

n-1

Ve Z VR VE(urs1 — iy i1 — uk) 2 |[ttn — tm |y
k=m

for n > m. By Lemma 3.2.16, we have Z:;ln E(Ugy) — Uk, Uk — Ux) =
E(u" = Um,Up — u,n)n HODCG

1
Z JE(Un — U, Un — Bim) 2 ||Un — uml|2. (3.4.1)
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This shows that {tm}m>n is a Cauchy sequence in L2(K, ). O

Define ¢, (u) for u € F as the limit of {5} m>0 in L2(K, 1) as m — .
Then ¢, : F — L2(K, ) is a lincar map. ¢, will be shown to be an injective
map.

Lemma 3.4.4. Let p € M(K). If sup,ew. X Bm(e®) < 00, then
tu: F — L*(K, p) is injective.

Proof. By (3.4.1), we have
c( Z Rk)E('u — Uy U — Uyy,) 2 |[eu(u) — u,,.||i. (3.4.2)
k>m

Note that c¢ is independent of u. First we will show the following claim.
Claim: There exists ¢; > 0 such that, for any g € M(K) and for any u € F
with ¢, (u) =0,

max{1, %Rm(uns(u..w > ¢1 max |u(p)|?. (3.4.3)

Proof of Claim. Let S = max{1,3 - Rm(n)}. T ¢u(u) =0, set m =0
in (3.4.2). Then we have

cSE(u,u) > cSE(uy, ug) +/ |luo|2dye
K

> o€ (uo, uo) + / lwo2du > c&luo, uo) + (@),  (3.4.4)
JK

where ity = [, uodp = ZpGVo u(p) [y wpdp. Let Hy be the collection of
all harmonic functions. If ap > 0 and }_ .y, ap = 1 for a = (ap),ev,, we
define N,(v) = \/cf)(v, v) + (3 ,ev, @p¥(p))? for v € H. Then N, is a
norm on Hy. Since the parameter space « is compact, there exists ¢; > 0

such that N, (v) > ¢ maxyev;, |v(p)| for any v € Hy and for any o. Hence,
it is easy to see that (3.4.4) unplies the clain. O

Now we prove Lemma 3.4.4 by using the claim. If ¢,(u) = 0, then ¢,u (o
F,) =0 for w € W.. Hence, applying (3.4.3) to u* and uo F,,
ca€(uo Fy,uo F,) > max |u(p)?
pEFu-(Vn)

where ¢3 = ¢; ~! max{1,sup ¢y, ZmZO R..(p*)}. Note that c3 is inde-
pendent of w € W.. Since €(u,u) > ry, '€(uo Fy,uo F,), we have

carpE(u,u) > max |u(p)|®

() 2 max fulp)
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So if p = w(w) € Vi, then

c3'rw1w3...wm£(u7 U) 2> lu(p)lz

Using Proposition 3.1.8, we see that r,,.,..w., — 0 as m — 0o. Hence
u(p) = 0 for any p € V.. Therefore u = 0. O

Now we may identify F as a subset of L?(K, y) through ¢,,.

Lemma 3.4.5. Let u € ﬂ(K). Assume sup,.cw. ngoRm(#w) < oo. If
Ee(u,v) = E(u,v) + [, uwvdp, then v, is a compact operator from (F,E.)
to (Lz(K' #)' ('1 )u)

Proof. By (3.4.2),

,c Z R 2 [|tuv — Pru||u/ v Ea(u, u).
k>m

Hence ||I,” — m”(}‘.g_)_.LZ(K|u) — (0 as m — 00. Since P, is a finite rank
operator (Definition B.1.9), Proposition B.1.10 and Theorem B.1.11 imply
that ¢, is a compact operator. O

Now, we are ready to show that (£, F) is a local regular Dirichlet form
on L2(K, u). Sce Definitions B.3.1 and B.3.2 for the definitions concerning
Dirichlet forms.

Theorem 3.4.6. Assume supycw, 3,50 Bm(u™) < co. Then (£,F) is
a local regular Dirichlet form on L?(K,u). The corresponding non-negative
self-adjoint operator Hy on L?(K, 1) has compact resolvent.

Remark. If p is a self-similar measure with weight (u;):cs, then the condi-
tion sup,ew, 2,50 Bm(u™) < o0 is cquivalent to riu; <1 foralli € S.

Recall that Hy is characterized as a non-negative sclf-adjoint operator
on L*(K,p) that satisfies £ = Qy, and F = Dom(Hy'/2). Existence of
such a self-adjoint operator is ensured by Theorem B.1.6. In other words,
for u € F, u € Dom(Hy) if and only if there exists f € F such that
E(u,v) = (f,v), for any v € F. In this case, f = Hyu. The subscript “N”
in Hy represents the first letter of “Neumann” because —Hy corresponds
to the Laplacian with Neumann boundary condition. We call —Hy the
Neumann Laplacian. See 3.7 for details.

As we mentioned at the beginning of this section, the above theorem is an
casy corollary of theorems in Chapter 2 if (D, r) is regular or, equivalently,
K = Q. In such a case, the condition sup,cw. 3,50 Bm(#*) < oo is
automatically satisfied by any u € M(K) because r; < 1 for any i € S.
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Proof. Closedness: Note that L2(K, ) C L'Y(K, ). Set

F={u:u Gf,/ udp = 0}.
K

Then £ is an inner-product on F and (F, £) is complete. For u € F, define
% =u— [ udp. If {un}n>o is a Cauchy sequence in (F,£,), then {in}nz0
is a Cauchy sequence in (F,&). Hence (i, — v, @tn — v) = 0asn — 00
for some v € F. Using the fact that [, w?du = [, a®du+ ([, udu)?, we see
that { [, undu}s>0 is & Cauchy sequence. Let ¢ be the limit of [, undu as
n — oo and let u = v+c¢. Then it is easy to see that {u,},>¢ is convergent
to u in (F,E,) as n — oo. Hence (F.£.) is complete.
Regularity: Set H. = {u : u is an m-harmonic function for some m > 0}.
Then H. C C(K). The maximum principle shows that {P,u},n,>p con-
verges to u uniformly on K for u € C(K). Hence H, is dense in C(K).
Also, H. is dense in (F,£.). Thercfore H, is a core for (€, F).
Markov property: For u € F, define % in the same way as in (DF3) of
Definition 2.1.1. As (£.F) is a resistance form, &« € F and £(a,4) <
E(u,u). We need to show that ¢, & = z,u. This is obvious for any u €
FNC(K) because {Ppu}m>o converges to u uniformly on K as m — oc.
Therefore, (€, F NC(K)) has the Markov property. Since FNC(K) D H,,
it follows that (£, F) is the minimal closed extension of (£,F N C(K)).
Therefore, by [43, Theorem 3.1.1], (£, F) has the Markov property.
Local property: Assume ¢,(u) =0onaopenset O C K. For any p € QNO,
there exists w € W. such that p € K, C O. Then (y«(uo Fyp) = 0. As
¥ satisfies the condition of Lemma 3.4.4, it follows that uo F,, =0 in F.
Hence u = 0 on 2N 0. Now if supp(c,(u)) Nsupp(cu(v)) = 0 for u,v € F,
then supp(u) Nsupp(v) = B. Since &,,(u,v) = 0 for large m, we obtain
E(u,v) =0.

Finally, by Theorem B.1.13, Lemma 3.4.5 shows that H has compact
resolvent. n

As an easy corollary of Theorem 3.4.6, we also have the Dirichlet form
which corresponds to Dirichlet boundary conditions.

Corollary 3.4.7. Define Fg = {u : u € F,u|ly, = 0}. Suppose that
SUPyew. X m>o Bm{u®) < oo. Then (€,Fy) is a local regulor Dirichlet
form on L*(K, u). Moreover the corresponding non-negative definite self-
adjoint operator Hp on L2(K,u) has compact resolvent. The operator
—Hp is called the Dirichlet Laplacian.

Remark. Strictly speaking, as Fq is not dense in C(K) with respect to the
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supremum norm, (£, Fy) is not a regular Dirichlet form on L2(K, ). It is,
however, a regular Dirichlet form on LZ(K\Vy, p).

As with Hx, we see that Hj is characterized by €|z, xx, = @y, and
Fo = Dom(Hp''?). Also v € Dom(Hp) if and only if there exists f € Fo
such that £(u,v) = (f,v), for any v € Fp. In this case, f = Hpu.

Proposition 3.4.8. Hp is invertible, Moreover. Gp = (Hp) ™! is a com-
pact operator on L*(K,u) characterized by E(Gpf,v) = (f,v), for any
v € Fy and for any f € L*(K, u).

G p will be called the Green’s operator. See 3.6 for details.
We will give two proofs of this proposition below. For those who are not
familiar with the subjects in B.1, the second proof may be more accessible.

Proof. Note that (Fo, ) is a Hilbert space. First we will give a proof using
some general theory. Since £ is positive definite on Fg, 0 is not an eigenvalue
of Hp. As Hp has compact resolvent, Gp = Hp™! is a compact operator.
As &(u,v) = (Hpu,v), for any u € Dom(Hp) and for any v € Fg, we have
E(Gpf.v) = (f,v), for any v € Fp and for any f € L2(K, p).

Next we give another proof, which is less abstract. By (3.4.2), we have
c€(u,u) > (u,u), for any u € Fy. Hence, for any f € L3(K, ), |(u, /)4 <
Hella 1y £ \/cmllfu,, for u € Fo. This means that u — (u, f), is
a bounded functional on a Hilbert space (Fp,£). Therefore, there exists
h € Fy such that £(u, h) = (u, f), for any u € Fy. It is easy to see that h is
uniquely determined by f and the correspondence f — h is linear. Hence
we write h = Gp f. Since

(GDf1 f]p = g(GDf‘ CDf) 2 C(Gva GDf);u (345)

we have ¢||Gpfll, < ||/|ls- So Gp is a bounded operator from L2(K, p)
to itself. It is obvious that Gp = Hp~'. Moreover, we also see that
Wfll. = VEGRHS,Gnf) by (3.4.5). Hence Gp is a bounded operator from
L%(K, u) to (Fo.£E). So, if U is a bounded subset of L*( K, ), then Gp(U) is
a bounded subset of (Fp, £). Now, by Lemma 3.4.5, ¢, : (F,€) — L2(K, 1)
is a compact operator. Hence Gp(U) = ¢,(Gp(U)) is a relatively compact
subsct of L%(K, ). Therefore Gp : L?(K,u) — L*(K,pu) is a compact
operator. O

3.5 Green's function

We continue to assumne that (D, r) is a harmonic structure on a connected
p.c. f. sclf-similar structure (K, S, {Fi}ics), where § = {1.2,... ,N}. In



3.5 Green’s funclion 95

this section, we will construct the Green'’s function for (€, F) derived from
the harmonic structure (D, r).

The Green’s function will be the integral kernel of Green’s operator in
the next section. Roughly speaking, the Green’s operator is the inverse of
the Dirichlet Laplacian, Gp = (Hp)~!. given in Proposition 3.4.8. More
precisely,

(Coul(e) = [ o yputy)es
for u € L?(K, i), where g is the Green’s function which we will define in this
section. The above relation is justified in 3.7, in particular, Lemma 3.7.10
and Theorem 3.7.14.

Recall that Hy, : €(Vin) — (Vi) is given by Hm = ey, o 'Ru DRy,
where R, : £(V,) — €(Vp) is defined by R,u = uo F,. Also, H, can

t

1;'" ;’"), where T, @ €(Vo) — €(Vo).Jm : €(W) —

1241 m
{(Vin\Wo) and X, : €V \Vo) — (Vi \ Vo).

First we will study a discrete version of Green's function —X;!. For this
purpose, we need the following lemma.

be expressed as (

Lemma 3.5.1. Let X = (X;;) be a symmelric n x n real matriz. Assume
that X satisfies the following four conditions.
(1) X, <0 foranyi=1,2,... ,n.
@) Xy 20ifi #j.
3) XL, Xy <0 foranyj=1,2,....n and this sum is negative for some
Jj-
(4) If i # j, then there exist m > 1 and ig,... ,i;, € {1,2,... ,n} such
that ip = ¢, iy = and Xg4,,, >0 forallk=0,... ,m—1.

Then X is invertible. Moreover, if G = (Gi;) = (=X)}, then

Gii 2Gi; >0
foranyi je{1,2,... ,n}

Proof. Define an n x n diagonal matrix A by A;; = —X;;. Also define an
n x n symmetric matrix B by B;; = X;; if i # j and B;i = 0 for any
i =1,2,...,n. Then —XA~' = I — BA™!, where [ is the n X n unit
matrix. Let C = BA~!. Then C;; = B;;/A;, > 0. By the assumption (3),
we see that 0 < 377, Ci; < 1 for any j = 1,2,...,n and that this sum is
strictly less than 1 for some j, say, l € {1,2,... ,n}.

Set |z] = 3o, |xi| for £ = (2:)i=12.....n € R*. Then || is a norm of



96 Construction of Laplacians on P. C. F. Self-Similar Structures

R". It follows that

ICz| < Zcuw = Z(Z Cij)lees| < |z
=1 =]
and that |Cz| < |z| if 2; # 0. For j € {1,2,...,n}, define ¢; € RV by
(e;), = 65 foralli € {1,2,... ,n}, where é is Kronecker’s delta. By the as-
sumption (4), we see that there exist m; and ig,i1,... .im, € {1,2,... ,n}
such that igp = {,i,,, = jand C,;,_, >O0forany £ =0,1,... ,m; — 1. This
implies that (C™+¢;); > 0. Hence it follows that |C™7le;| < |C™ie;| <
le;/] = 1. Let s = maxjepn2,.. . nym; + 1. If £ € R” and x # 0, then
|C?x| < 30, |x,[IC%,| < |z|. Hence it follows that ||C*|| < 1, where
||C?|| is the operator norm of C? with respect to the norm |- | on R".
Hence —XA™! = I —C isinvertibleand (I - C)"' =T+ C+C%? +--.
This implies that X is invertible and that
Gij = (Au) "' (6;; + Z Z Cioir Ciriz * " iy _yin )
m2>1 (ig,-.. imESm(¥,3)

where

Sm(i,j] = {(io,. .. ,im) itg =1, im = J and {ik}kzo'_,, m C {1,2, ces ,n}}.

By condition (4), we see that G,; > 0 for any ¢,j € {1,2,... ,n}.
Now define M; = maxg=12... . Gik. Suppose that G;; = M; and that
¢ # j. Then

Cij= Y Gul-Xi;/Xj;).
kik#j
By condition (3), it follows that 3, ,.; —Xk;/X;; < 1. Hence Gix =
G;; for any k with X; > 0. This implies that G = M; if there exists
m > 1 and ig,... ,im such that iy = k, i, = j and X;;,,, > O for any
!l =0,...,m—1. By the condition (4), it follows that Gy = M; for any
i=1,2,... ,n. Hence G;; > G;; for any 1, j. O

Lemma 3.5.2. X,, is negative definite. If G, = — X!, then (Gm)pp =
(Gm)pq 2 0 fO!‘ any p.q € Vm\VOs where Gm = ((Gm)pq)p.qé‘/m\vo- More-
over, for p,q € V,\Vo, (Gm)pq > 0 if and only if p ~ q.

Recall Definition 3.2.9 for the definition of ~.

Proof. Let (V\Vo)ix = {Vi,..., Viff}, where each Vi) C Vn\Vb is an

equivalence class. Then X, is decomposed as X\ : (VY = Vi) for
i =1,2,...,k. Applying Lemma 3.5.1 to each X%, we obtain the first
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half of the lemma. Also, by Lemma 3.5.1, it follows that (G)pq > 0 if and
only if p ~q. O

Set X = X;, qu = (Xl)pq, G = G, and qu = (G])m for any p,q €
Vi\Vo.

Definition 3.5.3. Define ¥(x,y) = 3_, cvi\v, Cra¥p(Z)t(y) for 2,y €
K. Also for w € W,, define

¥((Fu) ™ (2), (Fu)"'(y) if z,y € Ko,

Velz,y) =
w(2,) {0 otherwise,
for z,y € K. Write ¥*(y) = ¥(z,y) and VZ(y) = ¥, (z,¥).

¥,, is a8 non-negative continuous function on K x K. ¥Z is an m + 1-
harmonic function if w € Wp,.

Lemma 3.5.4. For any u € F,

£(9%,u) = {r'"-l(u'"“(x) - um(z)) ifz € Ku,

0 otherwise.
Proof. For u € F,
(V) =E(¥"u-uo) =~ 3 XpgU*(p)(ulg) - uolg))
PqEVI\ Vo
= ) (u(g) — uo(@)we(x) = us(z) - uo(z).
geVi\Vo

Therefore, if x € K, w € W, and z = F(z), then

E(TZ,u)= Y 1, 'E(¥L 0 F,,uoF,) =7, 'E(¥*,uo F,)
vEWn
=rw (w0 Fy)i1(2) - (¥o Fu)o(2)) = ry ™ (tm+1(2) — um(z))-

O
Set

m-1
Im(z ) =D D ToVul(z,y)

k=0 weW,

and set ¢%.(y) = gm(z,y). Then g%, is an m-harmonic function and g7, (y) =
0if y € V. By Lemma 3.5.4, we see that

E(g5,,u) = upm(z) — up(x) (3.5.1)
for any u© € F. Therefore, gm(z,y) = Zp.qevm\vn(Gm)m'p;'(x)‘b? (y)-
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Now note that ¥, (z,y) > 0. Hence {gm(z,y)}m>0 is a non-decreasing
sequence. Therefore the following definition makes sense, allowing oo as a
possible value of the limit below.

Proposition 3.5.5. For z,y € K, define

g(z,y) = "!!_[noc Im(T,y) = w::d/, TwWu(T, y).
Then g is continuous on {(z,y) € K x K :  # y}. Moreover,
(1) Let x,y € K\Vy. Then g(x,y) > 0 if and only if z and y belong to the
same connected component of K\Vy.
(2) If (D,r) is regular, then g is a continuous function on K x K.

g is called the Green's function associated with the harmonic structure
(D,r).
We need the following lemma to prove this proposition.

Lemma 3.5.8. For any p,q € Vm\'Vo, the following three conditions are
equivalent.

(1) p and q belong to the same connected component of K\Vy,

(2) p~aq

(3) (Gim)pg > 0.

Proof. By Lemma 3.5.2, we immediately see that (2) and (3) are equiv-
alent. Also, Lemma 3.2.13 implies that (2) = (1). Now the remaining
part is to show that (1) implies (3). Let C be the connected component
of K\Vy which contains both p and ¢. Then since C is arcwise connected
by Proposition 1.6.6, there exists a continuous path - such that ¥(0) = p,
~(1) = q and ¥([0,1]) C C. Let {p1.p2,-.-,px} = Vn N ¥([0,1]), where
pi=pt;)and 0=t <ty < .-+ <t = 1. Note that p, = p and p; = ¢.
Then there exist w(0).... ,w(k — 1) € W, such that p;,p;;1 € K, for
all i = 1,2,... ,k — 1. For sufficiently large n, it follows that Kw(,-) ccC
fori=1,2,... ,k—1. By Lemma 3.2.10-(1), there exists an H,,-path be-
tween p; and p;.; for any ¢ = 1,2,... ,k — 1. Combining those H,-paths,
we have an H,-path between p and q. Hence (Gn)pe > 0. Note that
(Cm)pg = gm(p1q) = gn(P.q) = (Gn)pg if m < n and p, q € V;,,. Therefore
we see that (Gm)pg > 0. This completes the proof. O

Proof of Proposition 3.5.5. Set K p = Upew,. pek.Kuw for p € K. If
x # y. then K., ; N K, , is empty for sufficiently large n. Hence the
sum in the above definition is really a finite sum if £ # y. Since ¥,, is
continuous, we can verify that g is continuous on {(z,y) € K x K : = # y}.
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(1) Choose m so that Kp, , NVp = K,y NVo = 0. Set V. = K, 2 N
Vm and Vi, y = Ky N V. Since K, and K, , are connected, there
exist connected components Cy and C; of K\ such that XK, ; € C; and
K.y € Ca. Note that if ¥} (a) >0, then p € Vi, , for a = xz,y.

First assume that C; = C2. We may choose p € V,,, ; and g € V;,, , that
satisfy ¥5'(z) > 0 and ¥;*(y) > 0. Then Lemma 3.5.6 implies (Gs)pq > 0.
Therefore,

gm(z,y) 2 (Gm)pq‘r’m(-f)vm( ) > 0.

Next suppose that Cy # C,. If ¥;'(2) > 0 and ¥'(y) > 0, then p € Vi, ¢
and ¢ € V;,,,. So p and ¢ belong to different connected components of
K\V,. Hence, by Lemma 3.5.6, (G,)pq = 0. Thercfore gm(z,y) = 0 for
sufficiently large m. This immediately implies that g(z,y) =

(2) As (D,r) is regular, 7 = max;esr, < 1. There exists C > 0 such that
Sup, ek Zwé“’m roPe(z,y) < Cr™. Since ZwGWm ro ¥, is continuous,
9= m>0(Lwew,, Tw¥w) is continuous. O

If (D,r) is not regular, it could happen that g(x,z) = . In fact, we
will show that g(z,z) < oc if and only if = € Q.

Theorem 3.5.7. The following three conditions ere equivalent.
(1) g(z,z) <0
(2) 9° € F, where g*(y) = g(z.y)
(3) z €.
Moreover, if any of the above conditions is satisfied, then £(¢*,u) =
u(z) - up(z) for any u € F.

Lemma 3.5.8. There exist ¢;,c2 > 0 such that, for any w € X,

&1 Y. T wm@(m(0™ ) < gla(w), m(w))
m2>0

S C2 Z rw|w‘2...wm99(7r(o,'lw))2v

m20

where 9 =3 pev\v, ¥p:

Proof. Let z = w(w). Then g(x,x) = 3 - Twiwswm Parwy.wm ().
Note that there exist ¢;, ¢ > 0 such that, for any u € £(V\Vp),

al D @< 3 Guuplulg) < Y. lup))? (35.2)

PEVI\V p9EVI\V PEVI\V,
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Note that W, ,u;..wnm (T:F) = 205 sevi\vy Cra¥p(T(0™w))¥y(x(0™w)) and
Y, 2 0. Also, by the definition of ¢, (3.5.2) implies

‘:199(77{0"‘“)))2 < \I’wlwg...wm (:17, CC) < Cz‘P(W(UmW))z-
W

Proof of Theorem 3.5.7. (3) = (2): Set Fo = {u € F : u|y, = 0}.
Then (Fo,E) is a Hilbert space. If z € 2 and p € Vp, then |u(z)]? <
E(u,u)R(x,p) for u € Fg. This shows that u — u(r) is a continuous
functional F¢ — R. Hence there exists h € Fg such that £(h, u) = u(z) for
any u € Fo. Now E(hpm, u) = E(h, um) = um(z) = €(g%,, u) for any u € Fo.
Hence hy, = gZ,. So h = g% and ¢* € Fo.

(2) == (1): This is obvious by the following equality.

£(g*,9%) = lim &(gn.gn) = lim gm(e,2) = g(z,2).

(1) = (3): U g(z,z) < o0, then, by Lemma 3.5.8, 3 50 Tw,ws...wm P(Zm)?
< oc, where 7(w) = z and T, = 7(0™w). Hereafter we will use ¥™ and
r(m) to denote ¥, u,.. .w,. ADd Iy w, w0, respectively.

First, if limm e @(m) = 0, then min,ep §(c™w,7) — 0 as m —
o0, where é is a metric on X. Then, by Proposition 3.1.8, we see that
Y m>oT(m) < oo. So, Lemma 3.3.9 implies that z € 2.

Next assume that Lim SUP,—oc P(Zm) > 0. Choose {m;}i>o so that
m; < miyy and P(Lm,) = limsup,, . 9(zm)/2. We may assume that
o™w — 7 € X\Pasi— 00. Set ¢ = n(r). Then we can choose k so
that Kiq = Uwew.:gek. Kw does not intersect Vp. Also we may assume
that z,,, € Ki, for all ¢ > 1. Choose ¢, € Ky 4N Vi and define p; =

Fww:---w..., (g.).
Claim 1: There exists ¢; > 0 such that

V" (pi,pi) < ¥ (z,z) and ¥™(p;,z) < 1 V™ (z, )

for any 7 and for any m € [0,m; — 1)U [m; + k, 00).

Proof of Claim 1: If m > m; + k, then Y™ (p;,y) = O for any y € K.
So the claim is obvious in this case. Assume that m < m; — 1. If u(y) =
Y™ (P, Furw...um, (¥)), 6 is 8 non-negative harmonic function for any p € K.
Set X = Ki 4. Then the Harnack inequality (Proposition 3.2.7) implies
that there exists ¢ > 0 such that u(y;) < cu(y2) for any y;,y2 € X. Hence,
we sec that ¥™(p,z;) < c¥™(p,x2) for any x1,Z2 € F, uy..w (Kkq)-
Therefore

U™ (i, pi) < O™ (pi, z) < AV™(x, x).
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This immediately implies the claim.

Claim 2: Let Ny = U;»{m;,... ,m; + k—1}. Then ZmeN, r(m) < oc.
Proof of Claim 2: Since liminf; o #(2m;) > 0 and 3, 7(m)p(zm)? <
o0, it follows that 3., r(m;) < co. So

Y rm) <) (1+ R+ R* 4.+ R* )r(my) < oo,
meN, 21

where R = maxX,cs Ts-

Claim 3: lim;_. g(pi,pi) = lim;—o g(ps. x) = g(z, 2).

Proof of Claim 3: Define

SUp, ek Y{z,y) ifmeN,,

U™z, 1) otherwise.

Gm = (M) X {

Then Claim 2 along with the fact that g(x, z) < oo implies )", @m < 0.
Also, by Claim 1, it i3 easy to see that Y™ (p;,p;) < a,, and \Ilm(});. z) < apm
for al m. As ¥™(z,z) = lim;—.co ¥™(p;,pi) = lim;j—oo ¥Y™(p;i, T), the
dominated convergence theorem proves the claim.

Claim 4: There exists ¢z > 0 such that

R(z,y) < 269" - ¢, - ¢*) + camax v(2) - vp(y)>.

for any 2,y € fd.
Proof of Claim 4: Since u(2) - u(y) = £(g* — ¢¥,u) + (uo(x) — up(y)) for
any u € F, we have
lu(2) - w(@)|® < 26(g% — g¥,u)? + 2lun(z) — up(y)|?
<2(g° — 9%, 9" — ¢¥)E(uw) + 20 [u(p) — u(p)ll¥p(2) — ¥p(¥)])?

reVo
<26(g° — g%\ 9" — ¢*)E(u, ) + 2(M max fu(p) - u(pa)ll¥p(2) - w2,

where p, € Vp and M = #(Vp). Also recall that £(ug,uo) = Eolu,u) =
Ep(ulvystly, ), where D € LA(V). So there exists ¢ > 0 such that

(max |u(p) — u(p.)|)? < c€(uo, uo) < cE(u,u)
PEVL

for any u € F. Hence we have

ju(2) — u(y)? 2
< Z_a¥. a® - a¥ . { _ )
) 2(9° - g9 —g') + s ;lé%)élvp(z) Vp(v)]

This immediately implies the claim.
Claim 5: {p;}i>1 is a Cauchy sequence in (2, R).
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Proof of Claim 5: Note that {p;}:>, is a Cauchy sequence in (K, d), where
d is a metric on K that is compatible with the original topology of K.
Hence max,cy, [¥,(pi) — ¥p(p;)] — 0 as 1,j — oco. Also, by Claim 3, as
i — 00,

E(g" —¢*.g" — %) = 9(pi, i) — 29(ps, 2) + g(z,T) — 0.

As E(u —vou—v) € (VE(m—h,u—h) + \JE(h—v,h —v))?, it follows
that £(gP* — gP+, 9" - ¢gP7/) — 0 as i,j — oo. Therefore, by Claim 4, we
have R(p;,pj) — 0 as i,j — 2¢. So {p;}i>1 is a Cauchy sequence in (2, R).

Now as lim;_., d(x,p,) = 0, the limit point of {p;} in (€2, R) is identified
with z. (Recall that 2 is identified as 8(2) C K. See Proposition 3.3.2.)
Hence x € Q2. O

Remark. The idea of using the Harnack inequality is originally due to Dr.
A. Teplyaev.

3.6 Green’s operator

As in the previous sections, (D.r) is a harmonic structure on a self-similar
structure (K, S, {Fi }ies), where § = {1,2,...,N}. In the last section, we
defined the Green's function g. In this section we define the (extended)
Green's operator G,, which is an integral operator whose kernel is the
Green's function.

Let u € M(K).

Theorem 3.6.1. Define R! (4) = maxwew,, rwp(Kw)'* for 1 <t < oo.

(If t = oc, R}, = maxuew,, Tw.) Assume 3 -, R, (1) < oco. If s is the
constant (including oc) that satisfies 1/t + 1/s =1, then for f € L*(K, p),

(Gof)(z) = /K olz. v) [ (v)uldy) (3.6.1)

is well-defined for ol x € K and G,f € C(K) N Fo. Moreover, G, :
LY(K.u) — C(K) is a compact operator. Also

E(u,Guf) = /;{(u — ug) fdu (3.6.2)

Jor any u € F. The operator G, is called the (extended) Green's operator.

Remark. If p is a self-similar measure with weight (z3.p2,... ,n), then
the condition Y ., R%, (1) < oc is equivalent to r;(u;)!/* < 1foralli € S.
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Remark. If (D,r) is regular, then g is a continuous function on K x K.
Therefore the above theorem is almost obvious in this case. In particular,
we see that ) .o R < co0. Hence G, : L'(K,pu) — C(K).

Comparing the above thcorem with Proposition 3.4.8, we see that G, =
Gp = Hp™! if supycw. Y mso Rm(p®?) < oc. More precisely, (3.6.2) im-
plies that G,f = Gpf for f e L*(K,p) N L3(K,u). Hence, if t > 2,
then the (extended) Green’s operator GG, is really a natural extension
of the Green’s operator Gp and Gp(L*(K.u)) ¢ C(K) N Fo. Hence
Dom(Hp) € C(K)N Fo. Also, if 1 £ t £ 2, then Gp|+(x.u) = Gu
and Gp(L*(K, u)) c C(K)N Fo.

To prove Theorem 3.6.1, we nced several lemmas.

Lemma 3.6.2. If )", - R, (1) < o0, then g* € L'(K,p) forany z € K.
Moreover, £ — g* is a continuous map from K to L*(K, ).

For u € L*(K, p), we set ||u|ua = (fi |ul*dp)'/e.

Proof. For z = w(wws...), ¢ (y) = Zmzoru,wa_._wm\Pu,u,,_,wm(x,y).
Hence

“yI”p.t S Z Twlwg u,m“‘Ilw,..-: u,“”;t,t

m>0
1 ;
< Z Tuwyws.. """'lp(K*'!“"l Wm / < Z R (’l’
m>0 m2>0

Hence ¢* € L'(K, ). Note that

lg® — @¥pe < lgm — g8 llut + ligm — ¢ e + 1% — ¥l

Since ||gZ, — §%|ue < Zkzmﬂ R; (y1) and gm is continuous on K x K, we
see that [g% — gVl — O if d(z,y) — 0. ' 0

I;emma 3.6.3.
H,)peg%(y) = w"l(y) if p € Viu\Vo,
qezvm( )pqg (y) { p (y) + wp(y) lfp € V.

Proof. Note that £(¥p',u) = Em(vy',u) = —(Hmu)(p) for any u € F.
Since £(g7, u) = u(p) — uo(p), it follows that

ECS” (Hm)pog® ) = (Hmt)(p) = (Hmuo)(p) = E(~9) ) + E(WT o).

pEVin

Since ug is harmonic, Lemma 3.2.16 implies £ (§5* — i, ua) = 0 for p € V4.
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Also (Hug)(p) = 0 for p € V,,,\Vy. Hence we have

E(-yg',u iprVm Vo,
&( Z (Hm)pqg?, u) ={ ( ™ ) . \Wo
PEVom 5(—19,, +yy,u) fpeVy
for any v € F. This implies the desired equality. 0
Lemma 3.6.4.

— [ ¥ fdp if p € Vi\ W,
H.(G =
( ( uf))(p) {_ fK(wrr,n - u"p)fd"" ifpe V.

Proof. Note that

(Hn(Guf)®) = 3 (Himde [ ofdu= [ (3 (Huoag")

The result follows by Lemma 3.6.3. 0O

Proof of Theorem 3.6.1. By Hélder’s inequality,

|(Guf)(1') - (Guf)(y)l < ".qz - gy“p.t”f”#,a-

Hence Lemma 3.6.2 implies that G, f € C(K). Let {fn}n>1 be a bounded
sequence in L*(K,u). Then {G,fn}n>1 is uniformly bounded and equi-
continuous. So, by Ascoli-Arzeld’s theorem, {G, fn}n>1 contains a subse-
quence that is convergent in C(K). Hence G, is a compact operator from
L*(K, u) to C(K).

By Lemma 3.6.4,

n(0.Guf) = = 3 wp)Hn(CulNE) = [ (um —wolfdu.  (363)

pEVm
Set u =G, f. Then

Em(Cof G, f) = [K (GufImfdn < [1llus 392 (G @)

(Note that (G, f)o = 0.) Hence £(G,, f,G,f) < oo and G, f € Fy. For any
u € F, letting m — oo in (3.6.3), we obtain (3.6.2). O

Next we study the n-th power of the Green's operator G, for n € N.
The integral kernel (™ for G} is given by the following inductive formula.
Set ¢\V(z,y) = g(z,y) and

g (z,y) = / gz, 2)g"™ (2, y)n(dz)
K

forne Z.
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Theorem 3.6.5. Assume that sup,cw, Y-, 50 ftm (1Y) < oc. Then, for

any n, there exist ¢, > 0 and \Pg‘)(:c, y) such that Wi is continuous on

KxK,

Mz y) = D r"u(Ky) P (2, y), (3.6.4)
weW,
and
0< ‘I’t[;l)(x* !j) < Cn XK, (I)XK..-(!/) (365)

for any w € W.. Moreover, if i is a self-similar measure on K, then there
erists a non-negalive continuous function ¥ on K x K such that

VHFZ Y e), Fgl(y)) fz,y € Ky,

¥ (z,y) = {0 (3.6.6)

otherwise.

From the above theorem, it is easy to see that ¢g!® is continuous on
{(z,y) : z,y € K,z # y} because the sum in (3.6.4) is, in fact, a finite sum
if z # y. Note that ¢g{!) = g is independent of u but this is no longer true
ifn>2.

Corollary 3.6.6. Assume that sup,cw. 50 Bm(#®) < oo. If there
etists t > 1 such that 3, .o R%.(1) < 00, then, for any n > (1 - 1/t)71,
g™ is continuous on K x K and G, is extended to a compact operator from
LY (K, p) to C(K). In particular, suppose that u is a self-similar measure
with weight (ui)ics which satisfies pir; < 1 for anyi € S. Then g™ is a
continuous function on K x K for any n > max;eg log t; / log ;.

Remark. If p is a self-similar measure with weight (u,)ies, the quantity
max;c s log p; / log pir; coincides with dsg(u, 1)/2, where dg is the unique
positive number that satisfies 3. o(u;7:)95/2 = 1, v is a self-similar mea-
sure with weight ((u;r;)%5/2);cs and (v, 1) is the distortion between v and
4 defined in Proposition 4.5.2. In 4.1, dy is called the spectral exponent and
it determines the asymptotic behavior of the eigenvalue counting function
of the Laplacian. See Theorem 4.1.5 for details.

Proof of Corollary 3.6.6. Set

Rz y) = Y re"p(Kw)" O (z,y).
weWw,,

Then 'Y is continuous on K x K and | (::)(:c, y)| < ca(RY, (1)), where
' =(1-1/n)"'. As1 > 1/n+ 1/t, it follows that ¢ < t and hence

Emzﬂ R:r’z(”') < oo. So zm.zocn(R::;(#))" < Cn(z:mgo R:,’,(ﬂ,))" < ©oQ.
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Therefore 3,50 h.s,?] is uniformly convergent on X x K. Hence g™ is
continuous on K x K. The rest of the statement is straightforward. O

Proof of Theorem 3.6.5. The proof is by induction on n. For n = 1, we

have g(z,y) = ¥ ,ew. Tw¥u(z,y) and 0 < ¥y (z,¥) < cixk., (T)xk. (¥),
where ¢; = max, yex ¥(z,y).

Next assume that the claim of the theorem is true for n. Set \I’("“)

Ty Yalz, 2) \Il("](z y)u(dz) for a, 3 € W,. Note that

Talz, 2) U5 (2,) < cr1eax K (T)XKanks (2)X ks (W),

Hence we have

0 < U7 (z,9) < crcap(Ka N Ks)x k. ()xks (4)- (3.6.7)

Now, let hy,m(Z.¥) = X ew., rwru.7"u(Kw.,)"“‘Ilf",'$.l.,)( y). By (3.6.7),
0 < ¥E ) (2.v) < crcau(Kuy)Xk. (2)XK,, (y). Therefore,

lhw,m(z,¥)| < clCnrw'”-lﬂ(-Kw)'l Jgﬁ}x (Y (K4))"
= clcnrwn+lﬂ(Kw)n(an(#w))n-

Since 3 ,,5o( Rm(n”))" < M™, where M = supyew. ;>0 Rm(p®), we
see that Zmzo By m is uniformly convergent on K x K. Hence, if by (z,y) =
2 m>0 hw,m(Z.¥), hy is continuous on K x K. Also

0 < hy(z,¥) < c1eaM™r," P (K ) x k. () XK. (9)- (3.6.8)

Next define fu,m(Z,4) = 3 cw,, TwyTu"B(Kw)*" 1\11("“)(:::,31). Similar
arguments to those given above for hy n» will show that fu =3 5, fum
is continuous on K x K and that

0 < fulz,y) € crcaMry, " u(Ky) " xk. (z)xK. (). (3.6.9)

So define Ui+ by r, 2+ (K, )"\Il("“] g) w(Z, ¥)+ fu(z,y). Then,
by (3.6.8) and (3.6.9), it follows that wi+t e contmuous on K x K and
that 0 < \II(J'“)(.?:. Y) < eni1XK. ()X, (¥), where cpyy = ciei(M™ + M).
Now by definition, 3

()= Y rars™u(Ks) ¥V (2,y)
aBeW,

= Z (hu'(x’y)'*'fw(xvy)) = Z rwn+lu(K‘”)nq’g‘+l)(x’y)'

UJELV. wGW.

9
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Finally assume that u is a self-similar measure. Note that (3.6.6) is true
for n = 1. So suppose (3.6.6) is true for n. Then

\I,("+1 ( y) — (n+l](F (ZE), th](y)) lf I,y € Kws
AN 0

3.6.10
wenw otherwise. ( )

Recall that r,"*1 (K )" W5 V(. y) = hu(z,y) + fu(z,y). By (3.6.10),
routine calculations show that (3.6.6) is true for n + 1. O

Obviously, ¢{™(z,y) is non-negative by definition. Moreover, Theo-
rem 3.6.5 implies that ¢{™)(z,y) > 0if x and y belong to the same connected
component of K\Vy. More precisely, we have the following result.

Corollary 3.6.7. Let

=3 Y ru K ey)

k OwCW;,

for any m,n € N. If x and y belong to the same connected component of
K\Vy, then there exists m > O such that gm)(:c y) > 0 for enyn > 1.

Proof. By Proposmon 3.5.5-(1), there exists m > 0 such that gm) (z,y) =
gm(z,y) > 0 and gm (a: x) > 0. Suppose that gm)(x y) > 0. By (3.6.4),

/ g (2, 2)90 (2, Par(dz) < g2V (2, ). (3.6.11)

Note that g,,, and g ) are continuous on K x K. Since g, z) > 0 and

g.f,',')(:r:, y) > 0, (3.6.11) implies that q,n“)(:c y) > 0. Now the corollary
follows by induction. 0

3.7 Laplacians

As in the previous sections, (D, r) is a harmonic structure on a self-similar
structure (K, S, {F;}ics), where S = {1,2,... ,N}.

In this section, we define the Laplacian A,, aswuated with (D, r) and pu,
where 4 € M(K). If sup,ew.. 3= m>0 Rm(1”) < oo, we already introduced
in 3.4 non-negative definite sclf-ad:i.oint operators Hy and Hp associated
with Dirichlet forms (£,F) and (€, Fy), respectively, on L?(K,u). (See
Theorem 3.4.6 and Corollary 3.4.7.) We might think of —Hy and —Hp
as Laplacians for the corresponding boundary conditions. However, in this
section, we will give a more direct way of defining the Laplacian. Our Lapla-
cian, A,, corresponds to the classical second derivative and its domain
Dom(A,) corresponds to the C2-class of functions. See Example 3.7.2.



108 Construction of Laplacians on P. C. F. Self-Similar Structures
Definition 3.7.1. Let u € M(K). Define

D, = {u € C(K) : there exists f € C(K) such that
lim max Ip,'n]'p(Hmu)(p) — f(p)| = 0},

m"‘°°P€Vm\Vo

where ytr, , = [ ¥5'du. Then for u € D,, we write f = A u, where [ is
the function appearing in the definition of D,. A, is called the Laplacian

associated with (D,r) and u.

Obviously, A, : D, — C(K) is a linear map and D, = Dom(A,). If u
is a harmonic function on K, then it immediately follows that u € D, and
Ayu=0.

Example 3.7.2 (Interval). Recall Example 3.1.4. Set r = (1/2,1/2).
Then (D, r) is a harmonic structure. For this harmonic structure, if p =
/2™ € V,,, then

u(p+2"")+u(p—2"") -2u(p) ifp#0,1,
(Hmu)(p) = g=m u(2™™) — ¢(0) if p=0,
u(l —27™) —u(l) ifp=1.
(3.7.1)

Obviously, a harmonic function is a linear function. Now let p be the self-
similar measure with weight (1/2,1/2). Then g is, in fact, a restriction of
Lebesgue measure on R to [0,1]. For p € V,,\W, since 47} is a piecewise
linear function, we see that gy, p, = 27™. Hence

b Hr)(?) = 5 (ulp+ 27™) + ulp — 27™) - 2u(p)).

Routine calculus arguments show that D, = C?{[0, 1]) and A, u = d?u/dz?
for u € D,,.

Example 3.7.3 (Sierpinski gasket). Let (D, r) be the harmonic struc-
ture on the Sierpinski gasket given in Example 3.1.5. Define a linear oper-
ator L,, : £(Vin) — €(Vy) by

Laf)®)= D (fl@) - f()),

'Ievm.p

where, for p € V,,,,

Vie,p = {q € Vin : ¢ # p, there exists w € W,, such that p,q € F,,(Vp)}.
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Then H,, = (5/3)™Lm. Note that

4 ifp € Vyn\VO,

#(Vmp) = {2 if p € Vo.

Now let u be the self-similar measure on the Sierpinski gasket with weight
(1/3,1/3,1/3). Then it follows that f, Wydp = 1/3 for any p € Vp. Using
self-similarity and symmetry, we obtain,

2/3m+1 if V. \ Vo,
/ rdy = /3 if p€ Va\Wo
K 1/3m"? if p € Vp\.

Hence
i (o) (@) = 55™ (L) ()

for any p € V,,\Vp. The associated Laplacian A, is called the standard
Laplacian on the Sierpinski gasket.

Lemma 3.7.4. For v € C(K) and u € Dy,

> o) Hnu)p) — [ v

pE Vi \ Vo

as m— 0.

Proof. If fm(Z) = 3 evi\vo V()i (Hmu)(p)¥5(2), then fm — vALu
as m — oc uniformly on any compact subset of K\Vp. Also {fm}m>0 is
uniformly bounded. Hence, [, fmdu — [ vA, udy as m — oo. O

Lemma 3.7.5. For f € D, and p € V),

i ~(Hn f)p) = ~(DNG)+ [ vpBfdn

m—20

¢
Proof. Recall that H,, = (?" ;’"), where Ty, : £(Vp) — €(Vo), Jm :
m m

€(Vo) — (Vi\Vo) and Xm : €(Vim\Ve) — &(Vin\Vo). Note that D =
Trn — U X1 Jrm, hence we have

Tn X (Imfo + Xmf1) = =Dfo + T fo + I f1,
where fo = fly, and f; = fly,\v,- This implies

—Dfo+ (Hmlve = I X (Hm F)lvu\vo-
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Since ('Jm X7 )pg = —¥p(q) for p € Vo and q € Vi \Vp, we have
—~(DA)P) + Haf)P) =~ Y vpl@)(Hmf)a).
€I\

Letting m — oc, Lemma 3.7.4 implies the lemma. O

Definition 3.7.6. For f € D, and p € V;, we define
(df)p = "!i_lgo "(Hmf) (p)-
(df), is called the Neumann derivative of f at p € V.
For the case of Example 3.7.2, (3.7.1) implies that (df)p = —f/(0) and
(dfh = f'(1).
Lemma 3.7.7. Forve C(K) and u € D,,,
lim Em(v,u) = Y v(p)(du)p — f vA, udp.
m =00 peVo K
Proof. Note that
Em(v,u) = D —v(p)(Hmw)(p) = D v(p)(Hnu)(p).
PEVH PEVm\Vo

Apply Lemma 3.7.4 to complete the proof. O

Using the above lemma, we can immediately obtain the following theo-
rem.

Theorem 3.7.8 (Gauss—-Green’s formula). D, C F. For anyv € F
and u € D,,

E(v,u) = > v(p)(du), — / vA udp. (3.7.2)

PEVD K

If both u and v belong to D, then

Y (v(p)(du)p - ulp)(dv),) = / (VA u — uA,v)dy.
pEVL K

(3.7.2) is a counterpart of the Gauss-Green’s formula in ordinary calculus

on R”? and Riemannian manifolds. For example, let U be a bounded domain

in R? and assume that U is a smooth curve. For u,v € C?(U), set

E(v,u) = L(%% + %%)dxdy.
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Then the Gauss-Green's formula says

ou
E(v,u) = v—ds—/ vAudrdy.
() su On v

where Au = g;‘é + g%'é

Next we will study relations between the Laplacian A, and the abstract
non-negative definite self-adjoint operators Hy and Hp.

Theorem 3.7.9. Assume that u € M(K) and SUDwew. 2ms>o Bm(®) <
. IfDpu = {u € D, : uly, = 0}, then Dp,, = Dom(Hp) N D,,,
Hplp, , = —A,lp, , and Hp is the Friedrichs extension of -4, onDp ..

Also define Dy, = {u € D, : (du)l, = 0for all pe Vy}. Then Dy, =
Dom(Hy)ND,, Hyl|py,, = —Aulpy, and Hy is the Friedrichs extension
Of —Ap on 'DN,“.

This theorem shows that —Hy is the Neumann Laplacian associated
with (£, F) and u and that —Hp is the Dirichlet Laplacian associated with
(€,F) and p.

We write Dp and Dy instead of Dp , and Dy, respectively if no con-
fusion can occur.

Lemma 3.7.10. For any f € C(K), G,f € Dp and A, (G,.f) = —f.
Proof. By Lemma 3.6.4, for p € V,,,\Vj,

limipHn (Guf) () + f(P)] € )y /K'l.b"},"(y)if(y) — f(P)u(dy) < em,

where em = maXpev,, (SUPyek,, . |f(y) — F(P)])- As [ is uniformly contin-
uwous on K, ¢,, — 0 as m — x. O

Proof of Theoremn 8.7.9, Part I. Recall that, for v € F3, u € Dom(Hp)
and Apu = f if and only if £(v,u) = (v, f), for any v € Fo. By (3.7.2),
if v € Dp, E(v,u) = (v,—Ayu), for any v € Fy. Hence Dp € Dom(Hp)
and HDlDD = _Aulpo' Since GulC(K) = H51|C(K)1 if u € DD and
—-A, u = f, then G, f = u. Hence Dp C G,(C(K)). On the other hand,
by Lemma 3.7.10, we have Dp 2 G,(C(K)). Hence Dp = GL(C(K)).
Next set Hpu = f for u € Dom(Hp). Then, there exists {f,},.>0 C
C(K) such that f, — f as n — oo in L2(K, u). If u, = G, fu, then u, €
Dp. Recall that Gp = Hp~!. By (3.4.5) (and the discussions following it),
E.(Gph,Gph) < c(h,h), for any h € L?(K, ), where E. = € + (-,-),. As
Gplew) = Gulo(k), we have £, (uy —u, tun ) S (fa—f, fo—f)u — Oas
n — 0o. Hence the completion of Dp with respect to £. contains Dom(Hp).
Now obviously, the completion of Dom(Hp) with respect to £, equals Fy
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because the Friedrichs extension of Hp is Hp and Fy = Dom(Hp'/?).
Therefore the completion of Dp with respect to £, equals F¢. This means
that Hp is the Friedrichs extension of —A,|p, . O

To prove the rest of Theorem 3.7.9, we need several preliminaries. For
f € LYK, p), define Pf = f — [ fdp. Set IP(K,p) = P(LP(K, p)),
F = P(F), Dy = P(Dy) and C(K) = P(C(K)). Note that (.7-' £) is
a Hilbert space, hence (£, F) is a closed form on L%(K, p). Let Hy be
the non-negative self-adjoint operator associated with (£, F) on L2(K, p).
Then, for u € F and f € L3(K,pu), u € Dom(HA) and Hyu = f if
and only if £(v,u) = (v,f) for any v € F. So it is easy to see ' that
Dom(HN) = Dom(Hy) NF and Hy = HNIDom(H nF- Note that Hy is

injective because £ is positive definite on F.
The following lemma is obvious from Lemma 3.6.4.

Lemma 3.7.11. For f € L=(K,p), (d(Guf))p = - [ ¥pfdu for any
pEe V.

Lemma 3.7.12. For any f € Z"’(K, i), there exists a unique u € F such
that £(v,u) = (vo, f), for anyv € F, where vg = > ey, V(P)¥p. Moreover,
define Q : L3(K,u) — L*(K,u) by Qf = u. Then Qf is harmonic and
(d(Qf))p = [y Wpfd for any p € Vp. Also Q : L*(K,u) — L*(K,p) is

compact operator.

Proof. Let a, = [, ¥pfdy for any p € Vp. Then (vo, f)u = X pevy, 2pU(P)-
Since f € L*(K, ), 3¢y, 3p = 0. Choose any g € Q. Then

1S ()l =1 Y ap(elp) —v(@)) € Y lapllv(p) - v(g)]

PEVD veEVD pEVY
< VE(,v) Y lapl VR, 9).
eV

Therefore, v — (vo, f), is a continuous functional on (F.E). Hence there
exists u € F such that £(v,u) = (vp. f) for any v € F. Let u = Qf. Then,

for p € V,\W,
—(Hn(@N)P) = E(Wy, Qf) = E(P(¥p), QS) = (P(¥5))o: flu =0,

because (P(¥7*))o is a constant. Hence Qf is harmonic. Since A,(Qf) =0,
(3.7.2) implies £(v, Qf) = ¥y, v(2)(d(QS)),- Therefore (d(QS))y = ay

Since Qf is harmonic,

&E(QS, Q) = £(QS,QS) = (Qf, Nl S HQSull Sl (3.7.3)
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Let Ho = {Pu : u is a harmonic funtion on K'}. As dlm'ﬁo < 00, there
exists ¢ > 0 such that c(u,u), < E(u,u) for any u € Ho. Hence, by
(3.7.3), we have ¢||Qf]l, < |If|,- Therefore Q : L2(K,pu) — L*(K,p) is a
bounded operator. Also, as dim ‘Ho < oc, @ is a finite rank operator and
hence it i3 a compact operator by Proposition B.1.10. O

Proof of Theorem 3.7.9, Part 2. For f € L*(K, p), define Gy f =
P(Gpf + QFf). Then for any u € F,

E(u, Gy f) = (u— 1o, flu + (%0, fu = (%, f),-

Hence Gy f € Doxn(H,vl and HN(('Nf) f. As Gp and Q are compact
operators, we see that G : . L¥(K, p) — LK, p)is a compact ¢ operator
Since H,v is injective, it follows that H,v is invertible and G N= H3 N Also
we obtain

EGNf,GNnS) = (GCnf, Dy S |ICNSullf 1w < llfII2- (3.7.4)

Next for, u € Dy, (3.7.2) implies that £(v, u) = (v, —A,u), for any vE F.
Also, by (3.7.2), 0 = &(L,u) = — [ Juudp This implies A, u € C(K).
Therefore we have u € Dom(H ~) and H,\.u = ~A,u. Thus we obtain
that DN C Dom(HN) and that H'\"‘D I‘I‘D,s-

On the other hand, for f € C(K), Gnf = P(Guf + Qf). Hence, it
tzgllovf_s from Lg_mma 3.7.11 and Lemma 3.7.12 that Gy f € Dy. Therefore

N (C(K))

Now for u € Dom(H ~) let f=H ~u. Then there exists {fn}a>1 C
C(K) such that f, — f as n — oc in L2(K, ). If u, = G fa, then, by
(3.7.4), E(un—u, 4 —u) < ¢||fn— f||%. This implies that u, — uvasn — oo
in (F,&.). Since u, € f)N, we | have shown that the completion of 5N with
respect to £. contains Dom(H ~N). Since Hy _is itself a non-negative self-
adjomt operator, the Friedrichs extension of H,\, on Dom(H N) is H ~ and
F = Dom(H}v/ ). Hence, the completion of Dom(H ) with respect to £.
equals to F. Therefore the completion of Dy with respect to £, is F.

Finally, note that 7 = F & {constants} and Dy = Dy & {cogstants}.
Also we obtained Hy = Hn|pongp)nze  Since Dy C Dom(Hx) and
HN|D -A |D , we sec that Dy C Dom(Hy) and Hy|py = -A,lpy-
Moreover, since the completion of Dn with respect to £, is ]-' it follows

that the completion of Dy with respect to £, equals . Therefore Hy is
the Friedrichs extension of —A|p,,. O

By the arguments in the above proof, we also see the following fact.
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Corollary 3.7.13. For b= D and N, if f € Dom(H,) and H,f € C(K),
then f € Dom(H,) N D, = Dy,,.

To end this section, we study the Dirichlet problem for Poisson’s equa-
tion.

Theorem 3.7.14. For any f € C(K) and p € £(Vy), there ezists a unique
u € D, such that

{A““ =/ (3.7.5)

‘u|vo = p.
Moreover, u is given by u =3 . p(p)¥p — Gof.

Proof. If u = Y .. p(p)¥p — G,.f. then, by Lemma 3.7.10, u satisfies
(3.7.5).

Assume that both u; and up satisfy (3.7.5); then v = w3 — uz € Dp
and A, v = 0. Since -G, = (A,|p,) !, it follows that v = 0. Therefore
U] = ua. O

Corollary 3.7.15. The collection of harmonic functions on K coincides
with {v:u € D,,,A,u=0}.

Combining Lemma 3.6.4, Corollary 3.7.13 and Theorem 3.7.14, we obtain
the following theorem.

Theorem 3.7.16. Let ¢ € C(K). Then the following five conditions are
equivalent.

(1) u€ D, and A, u = .

(2) u+ G, is @ harmonic function.

(3) For anyz € K,

ulw) = 3 ulp)on(@) - | atenewnldy).

PEVLY

(4) u € C(K) and, for any m > 1 and any p € V,\Vo,
(Hn)p) = [ v
(5) u € F and, for anyv € D, p,

E(v,u) = —/ vodu.
K
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3.8 Nested fractals

In 3.1, we introduced the notion of harmonic structures. In the follow-
ing sections, we then constructed Dirichlet forms, Green’s functions and
Laplacians under the assumption of the existence of a harmonic structure.
In this section, we will show that there exists a harmonic structure on a
class of highly symmetric p. c. f. self-similar structures based on the idea of
Lindstrom [116], where the notion of nested fractals was introduced. Recall
3.1, where we observed that the cxistence problem for harmonic structures
is equivalent to the eigenvalue problem (or fixed point problem) of the
renormalization operator R.. In [116], Lindstrem showed the existence of
a fixed point of a probabilistic counterpart of the renormalization map R,
for nested fractals. In this section, we will extend the notion of nested
fractal and introduce strongly symunetric p. c. f. self-similar structures. In
Theorem 3.8.10, we will show existence of harmonic structures for strongly
symmetric p. c. f. self-similar structures.

Throughout this section, £ = (K, S, {F;}ics) be a connected p. c. f. self-
similar structure, where § = {1,2,... N}

First we introduce the notion of symmetry of a p.c.f. sclf-similar struc-
ture.

Definition 3.8.1. A homeomorphism ¢ : K — K is called a symmetry of
L if and only if, for any m > 0, there exists an injective wmap ¢'™ : W,,, —
W such that g(Fu.(Va)) = Fim(4y(Ve) for any w € Wy,.

In this section we also assume that K C RY and that F; is the restriction
of a similitude with Lip(F;) = ¢; on K for any ¢ € §. Recall that a map
f:RY — RY is called a similitude with Lip(f) = ¢ if there exist U € O(d)
and a € R? such that f(x) = cUz + a for any = € R. See Definition 1.1.2
and the following remark.

Let #(Vo) = M and let Vy = {p;}i=1.... ps. Then. without loss of gener-
ality, we may assume that Z; P =0.

Definition 3.8.2. For z,y € R%, z #£ y. let
Hg, = {ZERd |z — 2| = |y — 2|}

(H.y is the hyperplane bisecting the line segment [r,y|.) Also let g, :
R¢ — R be reflection in Hg,.

Remark. Let g be an affine transformation from R? to itself. Suppose that
glk is a symmetry of £. Then ¢g(V,) = V. Since Z‘_, pi = 0, it follows
that ¢g(0) = 0. Hence ¢ is a linecar transformation.
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Definition 3.8.3. (1) Let m, = #{|lz —y| : 2,y € Vo, z # y}. De-
fine lp = min{|z - y| : .y € Vp,z # y}. Also we define {[;};=¢.... m.—1
inductively by l;41 = min{|z - y| : z,y € Vo, |z — y| > Li}.

(2) Let z; € Vi fori = 1,2,... ,n. Then (z;)i=12,... n is called an m-walk
(between x, and x,) if and only if there exist w!,... ,w™"! € W,, such
that z;,zi4+1 € Fui(Vp) foralli=1,2,... ,n-1.

(3) A O-walk (z;)i=1,2,... n is called a strict 0-walk (between z, and z,,) if
and only if |x; — z;41| ={lp forany i =1,2,... ,n— 1.

(4) G, = {g:9 € O(d), 9|k is a symmetry of L}.

G, is a group with respect to the natural composition.

Recall the remark after Definition 3.8.2. Then g € G, is equivalent to
the condition that g : R — R? is an affine transformation which preserves
the Euclidean metric and g|x is a symmetry of L.

Definition 3.8.4. (1) We say that £ = (K, S, {F;}ics) is strongly sym-
metric if it satisfies the following four conditions:

(SS1) For any x # y € Vp, there exists a strict 0-walk between z and y.
(SS2) If z,y,z € Vp and |z — y| = |z — z|, then there exists g € G, such
that g(z) = x and g(y) = =.

(SS3) For any ¢ = 0,... ,m, — 2, there exist z,y and z € Vp such that
|z —yl = b, |z - 2] = li41 and g.|k is a symmetry of L.

(SS4) V, is G,-transitive, that is, for any = # y € V), there exists g € G,
such that g(z) = y.

(2) We say that £ = (K, S, {Fi}ies) is an affine nested fractal if g |k is
a symmetry of £ for any = # y € V.

It is easy to see that if £ is strongly symmetric, then it is weakly sym-
metric, which has been defined in 1.6.
The following proposition is obvious by (SS4).

Proposition 3.8.5. Let Vo = {p;i}i=12....ar- If L is strongly symmetric,
then |py| = --- = |par|-

It follows that an affine nested fractal is strongly symmetric. In fact, the
conditions (SS2), (SS3) and (SS4) are obvious. We can verify (SS1) as well
by virtue of the following lemma.

Lemma 3.8.6. Let £ = (K, S, {F;}ies) be an affine nested fractal. Then
there exists a strict 0-walk between x and y for any z # y € V.

Proof. For p € Vj, set
B, = {q € V, : there exists a strict 0-walk between p and ¢}.
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Define A = {(z,y) : z,y € V4, B: # By}. (Note that there exists no
strict 0-walk between z and y if (z,y) € A.) Assume that A # §. Set
a = min{|z — y| : (z,y) € A} and choose (z,y) € A satisfying |z — y| = a.
(Note that a > ly.) Let z € B, with |z — z| = lg. Then (z,y) € A
and therefore |y — 2| > |y — x| = a. Since |z —z| =l < |z - y| = ¢,
it follows that z and z belong to the same side of the hyperplane H,..
Hence, if e = (y — 2z)/|y — 2|, then (z,e) < 0. Let ¥ = —(z,e) and let
To = gyz(x). Then |y — zo| = lp and zp € By. Note that zo = z + 2ve.
Using Proposition 3.8.5, we obtain

(y—z,e) =—(z,e)+ (y,e) =7+ (y— (y+2)/2,e) = v+ |y — z|/2.

Therefore,
ly—z|=a>2(y-z,e)=v+|y~-2|/2>~v+a/2 (3.8.1)

This implies that |y — 2| > 2v = |z — 29| 2 a = |y — z|. Therefore
equalities hold in (3.8.1). Thus we obtain that |y — z| = (y -z, ¢) and that
ly—zl=ly—z|. Soe=(y-2z)/ly—z2|=(@-=z)/|ly—=| = (y - z)/ly - 2|
Hence z = z. This contradiction immediately implies that A = . O

So we obtain the following proposition.

Proposition 3.8.7. If L = (K, S, {F;}ics) is an affine nested fractal, then
it ts strongly symmetric.

The converse of the above proposition is not true. See Example 3.8.13
below for an example.

Originally Lindstrgm introduced the notion of nested fractals in [116].
Afterwards, the notion of affine nested fractals was introduced as an ex-
tension of nested fractals in [37]. The definition of (affine) nested fractals
in [116] and [37] contained the following conditions:

Connectivity: For any i,j € §, there exist i,,...,i,, such that i, = i,
im=jand F; (Vo) F, ., (Vo) #@ forany k=1,... ,m — 1.
Nesting: For any m and any w,w’ € W,, with w # w’,

Ky N Ky = Fu(Vo) N Fur (Vo).

Since we assume that K is connected, the connectivity condition is satisfied
by Corollary 1.6.5. Also the nesting condition is immediately verified by
Proposition 1.3.5-(2).

Since the boundary Vj of an affine nested fractal is highly symmetric,
the geometry of V; seems quite restricted. In fact, it is conjectured in [6,
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§5] that Vp is a regular planar polygon, a d-dimensional tetrahedron or a
d-dimensional simplex.

Hereafter in this section, we always assume that £ = (K, S, {Fi}ies) i8
strongly symmetric. We also impose the following assumption on £L:

#(Fi(Vo) N F;(V)) €1 whenever i # j. (3.8.2)

This may be regarded as a technical assumption in order to avoid non-
essential difficulties. The forthcoming results in this section may hold with-
out (3.8.2). In {37], it is claimed that (3.8.2) holds for any affine nested
fractals. However, this does not seem quite clear at this moment. See also
[6, §5] for some comments.

Definition 3.8.8. (1) We define the collection of symmetric Laplacians
on ‘,01 CS(VO)F by

L.(Vo) = {D € LA(Vo) : Dy, = Dy if |z —y| = |’ - ¥/|}.

(2) Let r = (ry,ra,...,7a) € (0,00)Y. We say that r is G,-invariant if
r; =7, whenever there exists ¢ € G, such that g(F;(Vp)) = F;(Vo).

(3) For a symmetry g, D € LA(Vp) is said to be g-invariant if D,, =
Dyiaygy) for any z,y € Vo. Also, if D € LA(V) is g-invariant for any
g € G,, then D is said to be G,-invariant.

Obviously, if r = (1,...,1) then r is G,-invariant.

Proposition 3.8.9. The collection of all G,-invariant Laplaciens equals
ﬁ,(Vg).

Proof. Since G, C O(d), D is G,-invariant for any D € £,(Vy). Conversely,
suppose that D € LA(V,) is G,-invariant. Let z,y,2’,y’ € V, and assume
that |z —y| = |z’ — /|. By (554), there exists g € G, such that g;(z) = z'.
Let y’ = g1 (). Then |2’ — y/| = |2’ — y’|. By (5S2), there exists g, € G,
such that g2(z’) = =’ and g2(y”) = /. Set ¢ = g20¢1. Then g(x) = 2’ and
g9(y) =y'. Hence Dy = Dyyp. So D € Ly(Vp). O

Theorem 3.8.10. Let £ = (K, S, {F.;}ies) be strongly symmetric. Ifr =
(r1,72,....T~8) € (0, o) is G,-invariant, then there exist D € L,(Vo)
and A > O such that (D, Ar) is a harmnonic structure on L. Moreover, the
resistance form (€, F) constructed from the harmonic structure (D, Ar) is
Gs-invariant, i.e., uog € F and E(u,u) = E(uog,uog) forany g € G,
and u € F.

Remark. In 3.1, we have seen that (D, Ar) is a harmonic structure if and

only if R.(D) = AD (or equivalently R.(D) = D), where R, : LA(V,) —
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LA(Vp) is the renormalization map on LA(Vp) defined by R,.(D) = [Hy)v,,.
It is easy to show that such a A is uniquely determined. (i.e., if there exist
D, D’ € LA(V) and A, A’ > 0 such that Ry (D) = AD and R (D'} = N'D’,
then A = A.) Note that R.(L,(Vo)) C £,(Vo), which will be shown in
Lemma 3.8.22. Using Sabot’s arguments in [160], we can also show that
the fixed point of Ra¢|c, (v;) is unique if (K, S, { F\ },es) is an affine nested
fractal. See also Metz [129] for another proof of the uniqueness of the fixed
point of Rrlc, (ve)-

Remark. The harmonic structure (D, Ar) obtained in the above theorem is
not always rcgular. For example, in Example 3.2.3, the self-similar struc-
ture (K. S. {Fi}.es) is an affinc nested fractal and the harmonic structure
(D, Ar) is G,-invariant. In this example, (D, Ar) is not regular if ¢ > v/5.

Example 3.8.11 (Pentakun). Let § = {1,2,...,5}. For k € S, let
pr = ¢*"V=1/5 ¢ C and define a contraction F, : C — C by

Ria) = 252

(2 - pt) + Do

where we naturally identify C with R?. The pentakunt is the self-similar
set with respect to {F, },cs. See Figure 3.2. The self-similar structure that
corresponds to the pentakun is post critically finite. In fact
5
C = Uk - 2Jslk + 1}, [k + 2]s[k — 1]5},
k=1
P = {k}res and pr = w(k) for k € S, where [i]s € S is defined by [i]s = i
mod 5. It follows that Vo = {pi}res is the collection of vertices of a regular
pentagon.
The pentakun is an affine nested fractal. In fact, G, coincides with

{9 € 0(2) : g(Vo) = Vo},

which is generated by the reflections {g., : z,y € Vo,x # y}. Therefore,
D € LA(V,) belongs to £,(Vs) if and only if

a ifli—jl=%x1 mod5
DP-P: = o Is -
b if |1 — j| =+2 mod 5,
where @,b > 0 with a+ b > 0. In this case, r = (7 )x=1.2,... 5 i8S G,-invariant
if and only if r, = --- = rs. Let r = (1,...,1). By Theorem 3.8.10,
there exist A > 0 and D € £,(V) such that R.(D) = AD, or equivalently

t In the same way, wo can also define hexakun, heptakun, octakun and so on. 'kun’ is
‘Mr' in Japanese.
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Fig. 3.2. Pentakun

(D, Ar) is a harmonic structure. In this case, it is also easy to check unique-
ness of such A and D directly. (Use a symbolic calculus program, such as
Mathematica or Maple V.)

Example 3.8.12 (Snowflake). Let py = e**"V-1/6c Cfork=1,...,6
and let p; = 0. We naturally identify C with R2. Define F; : C — C by
Fe(2) =(2—pe)/3+pr for k=1,2,...,7. The snowflake is the self-similar
set with respect to the contractions {Fi}i=12,..,7. See Figure 3.3. The
self-similar structure associated with the snowflake is post critically finite.
In fact, pr = w(k) for k=1,2,...,7,

= |J {7k klk+ 2, klk + 3lg, klk + 4]},

k=1,2,..,8

P = {k}x=12..6 and Vo = {pk}k=12,. .6 Where [i]s € {1,2,...,6} is
defined by [i]¢ =i mod 6.
The snowflake is an affine nested fractal. In fact, G, coincides with

{g € O(2) : g(Vo) = W},

which is generated by the reflections {g., : z,y € Vp,z # y}. In this case,
we see that #{|r — y| : z,y € Vo,z # y} = 3 and hence L,(V}) is a 3-
dimensional manifold. Also r = (ri)k=1,2,...,7 i8 Gs-invariant if and only if
ry=---=r¢ Letr=(1,...,1,t) for £ > 0. Then, by Theorem 3.8.10, for
any t > 0, there exist A > 0 and D € £,(Vp) such that R, (D) = AD, or
equivalently, (D, Ar) is a harmonic structure.
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Fig. 3.3. Snowflake

The next example is strongly symmetric but it is not an affine nested
fractal.

Example 3.8.13. Let (K, S,{F;}ics) be a connected p.c.¥.self-similar
set, where K C R® = {(z,y,2) : 7,5,z € R} and F; : R® — R% We
assume that 1 is the set of vertices of a cube, that is,

Vo = {((-1)%,(-=1), (-1)%) : 4,5,k € {0,1}}.

This case is not included in the class of affine nested fractals, because
9p0(Vo) # Vo if p=(-1,-1,-1) and ¢ = (1,1,1). Let G = {9 € O(3) :
9(Vo) = Vo}. Then it follows that #(G) = 48. We define three subgroups
G% G! and G2 of G. First, let G° be the group generated by the three
reflections in the zy, yz and zz-planes. Then #(G%) = 8. Next, let G!
be the group generated by the four rotations by 27/3 around the lines
T=y=22=y=-2,¢=-y=—-zand z = —y = z. Then #(G*) = 12.
Also let G2 be the group generated by G° and G!. Then #(G?) = 24. Note
that G2 is a proper subgroup of G For example, g, ¢ G2 if z = (1,1,1)
and y = (1,-1,—1). Also the rotation by n/2 around the z-axis does
not belong to G2. Now if G, includes G2, then (K, S, {F;}ics) is strongly
symmetric.

Let us present a concrete example. Let {p;}i=12.... s be the vertices of a
cube. Alsolet pg = 0. Foranyi=1,2,...,9, define Fi(a) = (a—p;)/3+p;
for any a € R3. If K is the self-similar set with respect to {F;}i=12... .9,
then (K, S, {F;}:ies), where § = {1,2,...,9}, is a connected p. c.f. self-
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similar structure satisfying Vo = {pi}i=12,... 8. It is easy to see that G,
contains G2. In fact, G, = G. Moreover, r = (r;)i=1.2,... 9 is G,-invariant if
and only if ry = --- = rg.

In the rest of this section, we will prove Theorem 3.8.10. The idea of the
proof is essentially due to Lindstrem [116).

Lemma 3.8.14. Let £.(Vp) be the collection of symmetric linear operators
D from €(Vp) to itself which satisfy the following three conditions:
(V1) Dy 20 ifz# y and 3_ cy, Dpg =0 for any p € Vo.
(V2) If |z - y| = lo, then Dy > 0.
(V3) If |z - y| 2 |2’ = /| > 0, then Dy < Dy
Then L.(Vo) C L,(Vo).

Proof. Let D € L,(Vp). Let £p be the quadratic form on £(Vp) de-
fined by £p(u,v) = —(u, Dv). Then obviously £p satisfies (DF1) because
Ep(uu) = ) cv, Dpo(u(p) — u(g))?/2. (Recall Definitions 2.1.1 and
2.1.2.) Assume that Du = 0 for u € £(Vp). Then u(p) = u(q) if Dpq > 0.
Now by (SS1), for any z,y € Vj, there exists a strict 0-walk between r and
Y, 88Y, (Z)i=1,2,... n- Then, by (V2), D, .,,, >0foranyi=1,2,... ,n-1.
Therefore u(z) = u(y). This shows (DF2). Obviously D satisfies (L3) and
hence £p satisfies (DF3). By Proposition 2.1.3, it follows that D € LA(Vp).
Moreover, by (V3), Dyy = Dy if |[x~y| = |z'~y/|. Hence D € L,(Vp). O

For (D,r) € LA(Vy) x (0,00)", we defined H, € LA(V,) in Defini-
tion 3.1.1. Recall that the renormalization operator R, is defined by
‘R'f(D) = [Hllvo'

Definition 3.8.15. For any z,y € V, and n > 0, define
Pa(z,y) = {x=(Z0, 21, yZn,ZTn+1) : T0 = T, Tns1 = ¥,
x is a 1-walk between z and y and z, € Vi\Vp forany i = 1,2,... ,n.}

Moreover, let D € LA(Vp). Define h(x) for x = (z9,Z1,... +Zn,Tns1) €
Pﬂ(:n’y) by

h(x) = htotx hntz tCC hzn—lzn h:..z,.“

hz;z; htzzz e h.t..x.. '

where

— (Hl>m ifp#%
rs {-(Hl)w ifp=gq.

In particular, if n = 0, then Po(z,y) = {(z,y)} and h((z,y)) = hsy.
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The following lemma holds for any connected p. c. . self-similar structure
and any (D,r) € LA(Vy) x (0,00)V.

Lemma 3.8.16. For any « # y € Vp,

Rr(D):y = 22—" Z }!.(X).

n>0 xEF.(x.y)

Proof. We decompose H, into the following form:

T J
i = (J \)
where T : g(Vo) - 8(%), J f(Vo) — f(Vl\Vo) and X : €(V1\V0) —
¢(Vi\W). Then, by Theorem 2.1.6, it follows that

[Hl]Vo =T-YX 1

Note that hp, = —(H|)pp > 0 and hy, > hy, for any p,¢ € Vi\Vp. Define
A (Vo) — €(Vp) by App = hpp = —X,p for any p € Vi\p and 4,, =0
if p # q. Also define L : {(V1\Vp) — £(Vi\Va) by L,q = hpq/ by, for any
p,g € \Vo. Then X = -2(I — L/2)A. where I is the identity map.
Therefore, (-X)~! = A=Y (I - L/2)"'/2.

Recall the proof of Lemmma 3.5.1. Let C be the counterpart of the C
defined there. Define an equivalence relation ~ on Vij\V, by p ~ ¢ if and
only if there exists x € U, >0Fn(z,y) such that h(x) > 0. Let (Vp\Vi)~=
{Ur,...,Un}, where U; C W\V) is an equivalence class. Then X and C
are decomposed as X; : £(U;) — €(U;) and C; : £(U;) — €(U;), respectively,
fori =1,2,... ,7n. Then, by the argument in the proof of Lemma 3.5.1, it
follows that ||(C;)™'|| < 1 for some n; € N. This implies that ||C"|| < 1 for
some n. Note that ||C|| < 1. Since L = (€ + I). we obtain |[(L/2)"|| < 1.
Hence,

(—X)-l = A—I(I - L/2)‘1/2 = A~} Z?'“‘H)Lk,

k>0
where L% = I. Hence, for p,q € Vi\V,.
(—X);ql - 2‘;:7 + 22—(k+1) Z h:rxra B 'hh‘-'rknﬂ )
pp k?l (z|)|=l‘2... k+l€Pl;—l(P_-Q} T o FhttIh+
This immediately implies the desired expression of R.(D),,,. O

Remark. Let (K, S, {F;}ics) be strongly symmetric and let D € L.(Vp).
Then we can show that X itself satisfies the assumptions of Lemma 3.5.1.
(This fact is not used afterwards.)
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Lemma 3.8.17. Let D € L.(V) and let z,y,z € F,(Vp) for some s € S.
If ‘1: - yl < |1' - zlv then h:y 2 hye.

Proof. First suppose that £ = y. Then

hzyzh::r:"(Hl)xz: Z: (Hl)p:tZ(Hl):s =hzx-
pEV1I\{x}

Next suppose that * # y. Then, by (3.8.2), there exist xo,y0,20 € Vb
such that F,(zo) = z,Fu(yo) = ¥, Fs(20) = 2,hey = (75)" 1Dy, and
hzr = (rs) "' Dzgzy. Since Doy > Dygsy, it follows that hyy > hy,. O

Lemma 3.8.18. Let w € W,, and let x € K\V,,. Then £ € K,\Fu.(Vs)
if and only if J N V,, = Fy,(Vy), where J is the connected component of
K\Vin containing x.

Proof. Suppose that z € K\ F\,(Vp) and let J be the connected component
of K\V,, containing r. Then, by Proposition 1.6.9, it follows that J =
Ky \Fy (Vo). Hence, J N V,, = Fy, (Vo).

Conversely, if z ¢ K,,\F(V5), there exists w' € W,, such that w # v/
and r € Ky \Fu' (Vo). Then J NV, = Fy(Vp). Hence F,(Vp) = Fur (Vo).
This is impossible because #(F(Vo) N Fur(Vo)) < 1 by the assumption
(3.8.2). O

Proposition 3.8.19. Let g be a symmetry of L. If F,, (Vo) = g(Fu (Vb))
for w,w' € W,,, then K = g(K,).

Proof. Let z € K\ F,,(Vp) and let J be the connected component of K\ V,,
containing z. Then g(J) is the connected component of K\V,, containing
g(zx). Since g(J) NV, = Fu(Vp), Lemma 3.8.18 implies that g(z) € K.
Hence g(K,,) C K. Note that ¢! is also a symmetry and ¢! (F,r (Vo)) =
F(Vb). Using entirely the same arguments, we see that g(K,,) 2 K,-. O

Originally F, was a map from K to itself. From now on, we think of F;
as a similitude on R9,

Proposition 3.8.20. For any w € W, and any g € G,, set
Ugw = F, 'ogoF,,

where w’ € W, is the unique word that satisfies F,. (Vo) = g(F.(Vo)). Then
Ugws € G-

Note that U, 9 = g.
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Proof. By Proposition 3.8.19, we see that g(K,,) = K. Therefore, it fol-
lows that, for any v € W,, there exists v € W, such that g(Fu(V0)) =
Fyv (Vo). This implies that U, ., (F. (Vo)) = F,» (Vo). Hence Uy, is a sym-
metry. Note that U, ., is a linear transformation. Also, from the definition,
U,.w preserves distance. Hence Uy ., € O(d). a

Let A(-,') € DF(Vm). We say that A(,-) is G,-invariant if and only if
A(uog,vog) = A(u,v) for any u,v € {(V,;) and any g € G,.

Corollary 3.8.21. Let D € L,(Vo). Ifr is G,-invariant, then 8‘""(-. ) s
G,-invariant, where £(™) € DF(V,,) is defined in Definition 3.1.1.

Proof. We use induction on m. First £@® = £p is G,-invariant. Now
assume that £(™) is G,-invariant. Let g € G,. By (3.1.1),
N1
Emt(yog,v0g) =Z;—£‘"”(uogoF,-,vogoF‘-) (3.8.3)
1=1 '
for u,v € {(Viny1). Now let g(K;) = K;. Then r, = r; because r is
G,-invariant. Also the induction hypothesis along with Proposition 3.8.20
implies
EM™(uogo F,vogoF) = E™(uo FyoUy,vo FyoUs,)
= 8("')(14 o Fj,vo F;).

Again, by (3.1.1), it follows that £™+tV(uog,uog) = €M+t (yu). O
Lemma 3.8.22. Ifr is G,-invariant, then R.(L,(V)) C £,(Vo).

Proof. Let D € L£,(Vy). By Corollary 3.8.21, H, is §,-invariant. Hence
(H1)pq = (H1)g(p)g(q) for any p,q € V) and any g € G,. Now, as we have
seen in the proof of Proposition 3.8.9, if z,z',5,¥ € Vo and |z - y| =
|’ — y'|, then there exists g € G, such that g(z) = z’ and g(y) = ¥'.
Define g(x) = (9(Zi))i=0.1.... n4+1 for x = (2,)i=0,1,... ,n4+1 € Pa(z,y). Then
g is a bijective mapping between P,(z,y) and P,(z’,y’). Also it follows
that h(x) = h(g(x)) because H, is G,-invariant. Hence, by Lemma 3.8.16,
Re(D)zy = Re(D)ary- O

Lemma 3.8.23. Let p,q € Vp and assume that g,q € G,. If x,y € F,,(Vo)
for some w € W, [z—q| < |z—p| and [y—q} > [y—pl, then gpo(Ky) = Ku.

Proof. Let J = K, \F,(Vo). Then, as K\V} is connected, J is a connected
component of K\Vi,. If gpg(Kw) = Kur, then gpg(J) = Kur\Fu(Vo) and
9gpq(J) is also a connected component of K\Vy,. By Proposition 1.6.6, there
exists a continuous path between z and y contained in J U {z,y}. Since
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z and y belong to different sides of the hyperplane H,,, this continuous
path between x and y intersects Hz,,. Hence JN Hyy # §. By the fact that
9pg (TN Hyy) = JN Hy,, we see that JNg,,(J) # 0. Hence J = gpy(J) and
therefore w = v’'. |

Lemma 3.8.24. Leta; €R fori=1,2,... ,n. Then,

Z l}#mHa —H[l - ;).

J:JC{1,2,... .1 } j€d
Lemma 3.8.25. [fr is G,-invariant, then R, (L.(Vy)) C L.(Vo).

Proof. Let D € L.(Vp). Since D € L,(Vp)., Lemma 3.8.22 implies that
R.(D) € L,(Vp). Therefore we need to show (V3). Now by (SS3), there
exist r,y,z € Vp such that |& — y| = Ik, |xr — 2| = x4 and gy, € G,. Let
V={peR!:|p—y| < |p—2]} and define T : R¢ — R? by

ifpeV,
T(p) = :
yz(p) otherwise.
Note that x € V and T(z) = x. Also for x = (,),=0,... n+1 € Pa(z,2) U
P,(x,z), define T(x) = (T'(xi))i-o... n+1- Then, by Lemma 3.8.23, 7(x) €
Po(z.y). |
Now let x = (2;)i=0,... n+1 € Im7 and let us consider 7 ~?(x). Define
I(x)={ie{l,...,n+ 1} : there exists s € S such that
$i~lagyz($i) € Fs(vﬂ) and r; ¢ Hyz}-

For J <_: I(X), we define T(xa J) = (yi)l'=(),... n+l by Yi = (g:y)u(i)(xi)v where
s(i) = #{j € J:j <i}. Then T(7(x,J)) = x. Moreover,

(T) Yx) N Pz, 2) = {7(x,J) : J C I(x),#(J) is odd}
and
(T)"Y(x) N Pu(x,y) = {T(x,J) : J C I(x), #(J) is even}.

Next, consider h{7(x,J)). Let 7(x,J) = (#)i=o0,... n+1. Note that h; . =
hy.y, because y; = g,.(x;) or y; = x; and H, is g, .-invariant. Also, if i ¢ J,
then (-1, ) = (Z-1:22) OF (gys (2i-1), gys(2e)). Hence ha, yz, = hye g
Therefore, we obtain that

hir{x,J)) = h(x) H a;(x)

jedJ
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where a,(x) = hz,-m,.(z,)/hz,-gﬁ\ Since |z,-1 — z;] < |zj-1 — gye(xj)l,
Lemma 3.8.17 implies that a;(x) < 1. So, using Lemma 3.8.24, we obtain

Y hx)- Y h(x)

x€Pa(zy) XEPn(z,2)
23 Y hrxIN- Y Y h(r(x,J)
x€ImT J:JCI(x) x€lm7T J:JCI(x)
#(J) is even. #(J) is odd.
= Y hx) D ()] ayx)
xEIm T J:JGI(x) ji€J
= Y h(x) J[ 1-a(x))>0.
x€EIm7T Jel(x)

We also see that hyy, > hg;. (If hy; > 0, then z,2 € F,(Vp) for some
s € V. Lemma 3.8.23 implies y € F,(Vp). By Lemma 3.8.17, we obtain
hzy 2 h;,.) Hence, by Lemma 3.8.16, we verify that R,(D);y 2 Re(D)z,.
This immediately shows (V3). g

Proof of Theorem 3.8.10. Choose z,y € Vo so_that |r — y| = lo. Let
L.Vo) = {D € L.(W) : Dy = 1}. Define R(D) = Ry(D)/Re(D)zy.
Then we see that R : £.(Vo) — L.(Vo) and that R is continuous. Now
L. (Vo) is homeomorphic to a compact ball in R™~!, where m = #{|p—q| :
p,q € Vo,p # q}. By Brouwer's fixed point theorem, it follows that R has
a fixed point D € L£,(Vp). Let A = R (D);y. Then R.(D) = AD. Hence
(D, Ar) is a harmonic structure.

By Corollary 3.8.21, £*) € DF(V,,) induced by the harmonic structure
(D, Ar) is G,-invariant for any k > 0. Letting k — oo, we verify that (£, F)
is 0,-invariant. O

Notes and references

The use of Dirichlet forms to study analysis on fractals was first developed
in Fukushima & Shima [44], where they studied the asymptotic behavior of
the eigenvalues of the standard Laplacian on the Sierpinski gasket. Then, in
[107] and {83}, such an approach using Dirichlet forms was extended to more
general classes of (finitely ramified) self-similar sets. See also Fukushima
[41), Kusuoka [108], Kumagai [100] and Metz [125, 128].

Although the main source of this chapter is [83], we add many results
for the case of non-regular harmonic structures.
3.1 The notion of harmonic structures was introduced in [83]. The coun-
terpart of the renormalization map R, on DF(Vp) had already been intro-
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duced in Hattori, Hattori & Watanabe [70], Kusuoka [107] and Lindstrgm
[116). In particular, Kusuoka constructed a self-similar Dirichlet form from
a fixed point of such a renormalization map in [107]. Also, Lindstrem con-
structed a diffusion process (called Brownian motion) on a nested fractal
from decimation invariant random walks in [116].

The fixed point problem of R has been studied by many authors, for
example, Lindstrgm [116], Metz [126, 127, 130, 129] and Sabot [160]. All
of those works focus on (affine) nested fractals. The existence of the fixed
point was shown by Lindstrgm in [116]. Moreover, Sabot proved the unique-
ness of the fixed point in [160]. See Theorem 3.8.10 and the remark after
it. Also, Metz obtained a kind of stability of the fixed point in [129)].

3.2 Theorems 3.2.8, 3.2.11 and 3.2.14 have not been explicitly stated else-
where before.

3.3 Self-similarity of Dirichlet forms, Proposition 3.3.1, was first observed
in Fukushima [41] for nested fractals. Theorem 3.3.4 is an extension of 85,
Theorem 3.1]. Theorem 3.3.8 is a new result.

3.4 The key ideas of the proof of Lemmas 3.4.3, 3.4.4 and 3.4.5 are due
to Kumagai [100]. Those lemmas play an essential role in proving Theo-
rem 3.4.6 when the harmonic structure is not regular.

3.5 The explicit definition of the Green's function (as we see in Proposi-
tion 3.5.5) was given in [83]. Theorem 3.5.7 is a new result. In [94], one can
find a figure of the graph of the Green’s function for the standard harmonic
structure on the Sierpinski gasket.

3.7 The explicit definition of the Laplacian in Definition 3.7.1 was given
in [83). Theorem 3.7.9 has been known to specialists for sometime. In [44],
Fukushima & Shima showed this fact for the standard Laplacian on the
Sierpinski gasket with Dirichlet boundary condition.

Exercises

Exercise 3.1. Let £ be the harmonic structure associated with the Sier-
pinski gasket. (See Example 3.1.5.) Set

-2 1 1
D=1 —(1+h) h
1 h -(1+h)
and r = (s, st, st), where h, s and ¢ are positive real numbers. Show that
if we fix A > 0, there exist unique s and ¢ such that (D,r) becomes a

harmonic structure on the Sierpinski gasket. Also prove that (D,r) is a
regular harmonic structure.
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Hint: let R = 1/h. Then calculate the effective resistances for D and H,
by using the A-Y transform (Lemma 2.1.15). Then apply Corollary 2.1.13.
You will find that the condition for (D, r) being a harmonic structure is

(R+2)* | t(R+1t)
stR+t+R) -t iRrir R !

Exercise 3.2 (modified Sierpinski gasket). Let {p;};=1,23 be the ver-
tices of a regular triangle in the complex plane C. Set p; = (p2 + p3)/2,
ps = (p3 + p1)/2 and pg = (p1 + p2)/2. Choose real numbers a and 8
so that 2a + =1 and a > 3 > 0. We dcfine Fi(2) = a(z — p;) + p; for
t=1,2,3and Fy(z) = B(z—p:)+p; for i =4,5,6. Let K be the self-similar
set with respect to {F;};cs. where S = {1,2,... ,6}.

(1) Prove that the self-similar structure £ associated with K is post criti-
cally finite with Vo = {py, p2,p3}.

(2) Define D € LA(V,) by

s(l +

Let r = (r,r,7,1r8,73,r8) where r,s > 0. Show that if we fix s, then there
exists an unique 7 such that (D,r) is a harmonic structure on £. Is this
harmonic structure regular?

Hint: use the A-Y transform and calculate effective resistances as in
Exercise 3.1.

Exercise 3.3. Calculate A; for the harmonic structures on Hata's tree-like
set (Example 3.1.6) and the modified Sierpinski gasket (Exercise 3.2).

Exercise 3.4 (Neumann problem for Poisson’s equation).
Prove that, for f € C(K) and 5 € £(V}), there exists u € D, such that

Ayu =,
(du)p =n(p) forallpe Vp
if and only if [, fdu = 3"y, 7(p)-

Exercise 3.5. Let V C Vp and assume that V # 0. Define Fy = {u € F:
ulv = 0}

(1) Prove that (Fy,£) is a Hilbert space. Also show that (€, Fy) is a local
regular Dirichlet form on L2(K, u).

(2) Show that, for any f € L?(K,p), there exists u € Fy such that
E(v,u) = (v, f), for any v € Fy. Denote u by Gy f. Then prove that
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Gy is a bounded operator from L?(K,u) to L*(K,u) and Gy = H;;!,
where Hy is the non-negative definite self-adjoint operator associated with
the Dirichlet form (€, Fy) on L*(K, ).

(3) Set Dy = {u € D, : uly = 0,(du), =0 for any p € Vp\V}. Then
prove that Dy C Dom(Hy) and Hy|p, = —A,|p, . Also show that Hy is
the Friedrichs extension of —A,[p, .
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Eigenvalues and Eigenfunctions of Laplacians

In this chapter, we will study cigenvalues and eigenfunctions for the Lapla-
cian A, associated with (D,r) and . In particular, we will be interested
in the asymptotic behavior of the eigenvalue counting function and present
a Weyl-type result (Theorem 4.1.5) in 4.1.

It turns out that the nature of eigenvalues and eigenfunctions of A,
is quite different from that of Laplacians on a bounded domain of R".
For example, we will find localized eigenfunctions in certain cases. More
precisely, in 4.3, we will define the notion of pre-localized eigenfunctions,
which are the eigenfunction of A, satisfying both Neumann and Dirichlet
boundary conditions. It is known that such an eigenfunction does not exists
for the ordinary Laplacian on a bounded domain of R". Proposition 4.3.3
shows that if there exists a pre-localized eigenfunction, then, for any open
set O C K, there exists a pre-localized eigenfunction whose support is
contained in O.

One important consequence of the existence of pre-localized eigenfunc-
tions is the discontinuity of the integrated density of states. See Theo-
rem 4.3.4 and the remark after it.

We will give a sufficient condition for the existence of pre-localized eigen-
functions in 4.4. In particular, we will see that there exists a pre-localized
eigenfunction for the Laplacian on an affine nested fractal associated with
the harmonic structure appearing in Theoremn 3.8.10. See Corollary 4.4.11.

Throughout this chapter, £ = (K, S, {Fi}ics) is a connected p. c. f. self-
similar structure with § = {1,2,..., N} and (D, r) is a harmonic structure
on L, where r = (7,)ies. Also g € M(K) and sup,ew. 2,50 B (BY) <
oc. Note that if p is a self-similar measure with weight (u;)ics. then the
above condition on pu is equivalent to yu;r, < 1 for any i € §S. We use (€, F)
to denote the resistance form associated with (D, r). Also d is a metric on

131
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K that is compatible with the original topology of K. (Note that (K, d) is
compact.)

4.1 Eigenvalues and eigenfunctions

In this section, we first define eigenvalues and eigenfunctions of the Lapla-
cians A,. Then we will define the eigenvalue counting function and present
a theorem which gives the asymptotic behavior of the eigenvalue counting
function.

Definition 4.1.1. Let Ex()) = {0 € Dn : App = —Ap}. If dim Ex()) 2
1, then A is called a Neumann eigenvalue (N-eigenvalue for short) of A,
and any non-trivial ¢ € En(A) is called a Neumann eigenfunction (N-
eigenfunction for short) of A, belonging to the Neumann eigenvalue A.
Also define Ep(A\) = {¢ € Dp : A,p = —Ap}. If dim Ep(A) > 1, then
A is called a Dirichlet eigenvalue (D-eigenvalue for short) of A, and any
non-trivial w € Ep(}) is called a Dirichlet eigenfunction (D-eigenfunction
for short) of A, belonging to the Dirichlet eigenvalue A.

Of course, cigenvalues and eigenfunctions of A, are expected to coincide
with those of the non-negative self-adjoint operator Hy (or Hp, depending
on the boundary condition) associated with the local regular Dirichlet form
(E,F) (or (£,F)) on L3(K,u).

Proposition 4.1.2. Suppose that 3 .., R:.(1) < oo for some t > 0.
Then the following three conditions are equivelent.

(N1) ¢ € Dom(Hy) and Hxyp = Ap,

(N2) € F and E(p,u) = My, u), for any u € F,

(N3) @ € En(A).

Also, the followning three conditions are equivalent.

(D1) ¢ € Dom(Hp) and Hpyp = Ay,

(D2) p € Fq and E(p,u) = A(p,u), for any u € Fy,

(D3) ¢ € Ep(}).

Remark. Let u be a self-similar measure. Then 3., .. Rt () < oo for
some ¢ > 0 if and only if r;u, < 1 for all ¢ € S. See the remark after
Corollary 3.6.6.

Proof. By Corollary 3.6.6, g'*) is continuous on K x K forn > (1-1/¢)"L.
Recall that GplC(K,d) = GDlC(K,d)- Hence,

(Go™u)() = (G, u)(z) = /K o™z, y)uly)i(dy) (4.11)
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for u € C(K,d). Since Gp™ is a bounded operator from L2(K, pt) to itself
and ¢(™ is continuous, it follows that (4.1.1) is true for all u € L2(K, p).
This implies that Gp™u € C(K,d) for any v € L?(K, u).

Now the equivalence between (D1) and (D2) is obvious from the char-
acterization of a self-adjoint operator associated with a closed form in
Lemma B.14. Also, by Theorem 3.7.9, (D3) implies (D1). Now sup-
pose @ € Dom(Hp) and Hpyp = Ap. Then, as A"Gp"yp = ¢, we see that
¢ € C(K,d). Hence AGpy = AG,9 = . So applying Lemma 3.7.10, we
see that ¢ € Dp. Therefore p € Ep(A).

Next we consider the Neumann case. It follows immediately that (N1)
and (N2) are equivalent by Lemma B.1.4. Assume that p € Dom(H y) and
Hnyp = Ap. Let o =3 . ¢(p)p. Then we see that p—po—AGpy € Fo
and that £(¢ — o — AG py, u) = 0 for any u € F4. Hence p = AGpy + .
This implies that ¢ = A*Gp™p + Y r_g A*Gp*g. Now, the rest of the
discussion is exactly the same as in the Dirichlet case. O

By Theorem 3.4.6 and Corollary 3.4.7, the self-adjoint operators Hy
and Hp have compact resolvents. Therefore, N-eigenvalues (and also D-
eigenvalues) are non-negative, of finite multiplicity and the only accumula-
tion point is oc. In other words, for b = D and N, there exist {A\’};>, and
ot € Ep(A?) such that

\b f b
0SAI S-S A S A0 <

and {¢?}i>) is a complete orthonormal system for L2(K,pu). So we can
define eigenvaluc counting functions as follows.

Notation. Hereafter, the symbol b always represents a boundary condi-
tion: b is either N or D, where N represents the Neumann boundary
condition and D represents the Dirichlet boundary condition.

Definition 4.1.3 (Eigenvalue counting function). Define p,(z, ) for
b= Dand N by py(z,p) = 3 5o, dimEy()). ps(z,p) is called the b
eigenvalue counting function.

Obviously, pp(x,s2) = max{k : A2 < z} and py(zx,u) — o0 as z — oo.
For ordinary Laplacians on bounded domains in R", we have Weyl's famous
theorem on the asymptotic behavior of eigenvalue counting functions.

Theorem 4.1.4 (Weyl’s theorem). Let Q be a bounded domain in R™.
Let \; be the i-th eigenvalue of the Dirichlet eigenvalue problem of -A on
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Q, that is,
{ Au=—-lu
i|gn = 0,
where A =37 | 82/0x%. Set p(x) = #{i: \; < «}. Then as x — oo,
p(z) = (27) "By |Qaz™? + o(z™?),
where | - |, is n-dimensional Lebesque measure and B, = |{z : |z| < 1}|a.

Remark. Weyl [182, 183] proved the above result under some extra condi-
tions on the domain D. It is now known that the above result is true for
any bounded domain. See Lapidus [111].

We are interested in an analogue of Weyl's theorem for our Laplacian
A,,, or more specifically, the asymptotic behavior of the eigenvalue counting
functions pp(x. u) as £ — oo. If u is a self-similar measure, we have the
following result.

Theorem 4.1.5. Let u be a self-similar measure with weight (pt:);=1,2,... N
Assume that p;r; < 1 for all i € {1,2,... ,N}. Let ds be the unique real
number d that satisfies

Yi (4.1.2)

i
[~ %
It
=

where v; = /Tipi. Then
0< hm mf pu(. 1)/ 2%57? < lim sup py(z, u)/2%/% < 00

T — 00

for b= D and N. dg is called the spectral exponent of (€, F,u). Moreover
(1) Non-lattice case: If Z,_ Zlog~; 15 a dense subgroup of R, then the
limit limy _ oo po(x. )/ 2%5/? exists and is independent of the boundary con-
ditions.

(2) Lattice case: If va:l Zlog~, is a discrete subgroup of R, let T > 0 be
its generator. Then, as T — 00,

oz, 1) = (G(log z/2) + o(1))z?s7?,

where G is a right-continuous, T-periodic function satisfying 0 < inf G(x)
< supG(x) < ¢ and o(1) is a term which vanishes as x — >c. Moreover,
the periodic function G is independent of the boundary conditions.

Remark. In the proof, we will get more concrete expressions for the limit
for the lattice case and the periodic function G for the non-lattice case. See
(4.1.4) and (4.1.5).
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Remark. If we use the full version of the renewal theorem (Theorem B.4.3),
we get more detailed information about the error term o(1)z%s/2 in the
lattice case. For example, if the «4; are all equal, then

po(z, 1) = G(log z/2)z“5/% + O(1) (4.1.3)

as £ — 00, where O(1) is a term which is bounded as z — .

Remark. According to [41], G((log z)/2)z?5/? is the integrated density of
states of K associated with the Laplacian A,,.

Example 4.1.6 (Sierpinski gasket). For the standard Laplacian on the
Sierpinski gasket in Example 3.7.3, r; = 3/5 and p; = 1/3 for all i =
1,2,3. Let dg be the spectral exponent. Then, by (4.1.2), we have dg =
log9/log5. In this case, ds is also called the spectral dimension of the
Sierpinski gasket. Note that dg differs from the value of the Hausdorff
dimension of the Sierpinski gasket, which is log 3/ log 2.

Obviously we are in the lattice case. Taking the above remark into
account, we have py(z, 1) = G(logz/2)x~9%/2 + O(1) as £ — oo, where G
is a log 5/2-periodic positive function. Fukushima and Shima [44] showed
that

0 < liminf pp(x, p)/2%5/? < limsup pp(z, p) /2% < 00
T—00 z—oc
by using the eigenvalue decimation method. See Notes and References of
this chapter about the eigenvalue decimation method. Hence we see that
G is a non-trivial (i.e., non-constant) function.

The rest of this section is devoted to proving Theorem 4.1.5. First we
give a comparison theorem for eigenvalues.

Theorem 4.1.7. Let H be a separable Hilbert space. Let & be a closed
form on H for i = 1,2. Assume that £; s an extension of £;. Set F; =
Dom(&;) fori =1,2. Also let H, be the non-negative self-adjoint operator
associated with & for i = 1,2. Assume that H; has compact resolvent
for i = 1,2, Let {\\}n>1 be the set of eigenvalues of H; appearing in
Theorem B.1.13. Then A} < )2 for all n > 1. Moreover, if dim F\/F, <
00, then A2 < Al ,, for alln > 1, where M = dim F, /F>.

Proof. For any finite dimensional subspace L of F;, set

N(L) = sup{&(f, f): f € L.|IfIl = 1},

where || - || is the norm of H. Since £, is an extension of £2, we see that
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AM(L) = M(L) if L C F,. So the variational formula (Theorem B.1.14)
implies AL < A2 for all n > 1.

Next, assume that dim 7, /F2 < oc. Then, for any subspace L C F),
there is a natural injective map from L/(LNF;) — F/(FiNF2) = F/Fa.
This shows dim L N F, > dim L — dim F, /F>. Hence, if

Lii={L: L is a subspace of F,,dim L = k,dim L N F, =},
then
{L:Lis asubspace of F;,dimL =n+ M} =UM Lo Mnsi-
For L € L+ n+i, the variational formula shows that
ALY ALNF) = 2(LnF) = A2, > 2.
Again, by the variational formula, we have Al ,, > A2. |

Immediately, from the above theorem, we have the following comparison
of eigenvalue counting functions.

Corollary 4.1.8. Under the same assumptions as in Theorem 4.1.7, de-
fine pi(z) = #{n : X < z}. IfdimF,/F, = M < oo, then pa(z) <
pi(z) < pa(z) + M for any x > 0.

For ease of notation, we write p,(z) instead of p,(z, u) hereafter.

Lemma 4.1.9. Set My = #(Vi\\Vo) and My = #(Vo). Then, for any
T €R,

N
pp(z) — My <) pp(rimz) < pp(z) < pn(2) < pp(z) + My,
i=l
Proof. First applying Corollary 4.1.8 to (£, F) and (£, Fp), we immediately
obtain pp(r) < pn(z) < pp(z) + Mp.

Next, define 7}, = {u : u € F,uly, = 0}. Then it follows that (£, )
is a closed form on L?(K,u). Note that dim Fo/F; = #(Vo\W1) = M.
Hence, if p, is the eigenvalue counting function associated with (£, F,),
then Theorem 4.1.7 implies pp(z) — M; < p1(z) € pp(z). Let Hy be the
non-negative self-adjoint operator associated with (£, F,). Then Hyju = A\u
for u € Dom(H,) if and only if u € F; and £(v,u) = A(v,u), for allv € F.
By the self-similarity of both £ and u, the last equation is equivalent to
Zi] ri-1€(vo Fuo Fy) = AN ui(vo F;,uo F,),. Hence, it follows
that Hyu = Au if and only if Hp(u o F;) = piriMu o F;) for any i. Thus
pz) = Zf‘;l pp(pirix). This completes the proof. O
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Proof of Theorem 4.1.5. Let R(z) = pp(x) — Z;’il pp(piriz). Then

N
po(z) = ) polwriz) + R(z).
i=1
Defining f(t) = e~%5'pp(e?!), u(t) = e~95'R(e?*) and p; = v;9%, the above
equation hecomes

N
f&)=3_pif(t ~ (~logw)) +ult).
i=1

Note that Z?’;lp,- = 1 by (4.1.2). This is the renewal equation (B.4.1).
Recalling Proposition 3.4.8, we see that the first eigenvalue A, of Hp is
positive. Since pp(z) = 0 for r < Aj, it follows that there exists t. € R
such that f(¢) = R(¢) = 0 for all t < t.. Also, Lemma 4.1.9 implies
that |u(t)| < Mye~9st for any t. Hence all the assumptions of the renewal
theorem (Theorem B.4.2) are satisfied. So, for the non-lattice case, we have

N

10 = (L lognhite) ™ [ Re)a @14)

i=1 R

as t — oc. For the lattice case, we have f(t) — G(t) — 0 as ¢ — oo, where
T is the positive generator of the discrete additive group Z:i ; Zlog i and

N
G(t) = ( Z(— log %:)7:%%) T Z e~ ds(tH3T) Q2+ T)y (4.1.5)
i=1

JcZ

This implies the theorem for the Dirichlet case. The Neumann case imme-
diately follows as well by Lemma 4.1.9. O

4.2 Relation between dimensions

In Example 4.1.6, it was observed that the spectral dimension of the Sier-
pinski gasket is different from the Hausdorff dimension with respect to
the restriction of the Euclidean metric. (Note that so far the terminology
“spectral dimension” is merely a synonym of spectral exponent. Recalling
Theorem 4.1.5, we find that the spectral exponent ds depends on (D,r)
and y. We will define the spectral dimension of the resistance metric (K, R)
later.) In any case, the spectral dimension (exponent) is defined through
the eigenvalue distribution of the Laplacian. Hence we may think of the
spectral dimension as a dimension from the analytical point of view. On
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the other hand, the Hausdorff dimension is a dimension from the geometri-
cal point of view. In this section, we study the relation between those two
dimensions.

Theorem 4.2.1. Assume that (D.r) is regular. Let R be the effective
resistance metric on K associated with (D,r). Let H be the d-dimensional
Hausdorff measure of (K, R). If dy is the unique positive number that
satisfies

A

D (¥ =1, (4.2.1)

i=]

then 0 < H¥ (K) < oc. In particular, dimy(K, R) = dy. Moreover, let v
be the normalized dy -dimensional Hausdorff measure: v = H3% [H3* (K)
and let ju, be the self-similar measure with weight ((r;)%" )ics. Then there
exist postlive numbers ¢, and co such that

c1pe(A) S v(A) < cap(A) (4.2.2)

for any A € B(K). Also, if

2dyy

s = dy + 1° (423)

then there exist posttive numbers c3 and ¢4 such that

ds/2 ds/2

€3T < pplz,v) < g4z
for sufficiently large z.

It is natural to think of ~ as the intrinsic probability measurc on (X, R).
If we define the spectral dimension of (K, R), ds(K, It), by

! ,
ds(K,R) =2 lim 0g PD( U),
n—oo logzr

then dg(K. R) = dgs and (4.2.3) gives the relation between the Hausdorff
dimension and the spectral dimension of (K, R).

In [93], the quantity d given by (4.2.1) is called the similarity dimension
of the harmonic structure (D, r). Also, if we denote the solution of (4.1.2)
by ds(p:), then

ds(K,R) = ds(p.) = max{ds(u) : 4 is a sclf-similar measure}. (4.2.4)

On the contrary, if (D, r) is not regular, then the supremum of the spectral
exponent ds(u) is infinite.
In the rest of this section, we will prove Theorem 4.2.1.
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Definition 4.2.2. Let A be a partition. f € F is called a A-harmonic
function if and only if f o F,, is harmonic for a.nv w € A. For p € V(A),
t,(:“ is the A-harmonic function with z,',p‘|w A) = Xp yA

Recall Lemuna 1.3.10 for the definition of V(A) = V(A, L).

Lemma 4.2.3. Let A be a partition. Set Ay, = {v € A: K. N K, # 0}
Jor any w € A. Then

#(Au) < #(Co)# (W)
for any w € A.

Proof. It is enough to show that #(r~!(p)) < #(Cc) for any p € K becausc
#(Aw) < 2P (ve) #(m~1(p)). For ease of notation. we use C instead of
Cr hereafter. Let k = #(C) and assume that 7 !(p) 2 {w!.... ,w*'1}.
Let

m = min{n : v} # w? for some i,j € {1,... .k + 1}}.

[fv=uwl...w} | and g = F,7Yp). then g € C¢ and 77 (¢) C C. Hence

#(7m~Yq)) < k. Since 7~ g} 2 {o™ wh).... ,e™ AT, it follows
that w' = w? for some i < j. Hence #(x~'(p)) < k. []

Let A(a) = A(r,a), where A(r,a) is defined in Definition 1.5.6. Note
that A(a) is a partition for small a > 0.

Lemma 4.2.4. There ezist positive constants ¢ end M such thel, for
sufficiently small a > 0 and for any z € K,

#{w:we Ala).d(z. Ky) L ca} < M, (4.2.5)
where d(x, Ky) = minyer, R, y).

Proof. For w € A(a), define u = Zp&. P (Vo) u',';,\(a}. Suppose that ©» € A(a)
and Ky, N K, = 0. Then u|g, = 1 and u|g, = 0. Hence Theorem 2.3.4
implies that R(z,y) > €(u.u)~! if x € K, and y € K,.. Recalling (3.3.1)
we have
1 1
E(u,u) = Z ag(uo Frouo Fy) = Z ;S(uo Fi,uo Fy).
ke Afa) heAu(a)
(4.2.6)
where Ap(a) = {h € Ala) : Ku N Ky # B}, Set r = min{r; : i =
1,2,... ,N}. Then it follows that v, > ar for any b € A(a). Also define

= max{é'(z Up, Z ¥"p) : V is a non-empty subset of V;.}
pev pev
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Asuo F = Zpev-q{;p for some V' C V,, we obtain £(uo Fj,uo Fp) < ¢;.
Thus, applying those estimates along with Lemma 4.2.3, it follows from
(4.2.6) that

E(u,u) < #(C)#(Vo)(az) 1.

Using the above estimate, if w,v € A(a), K,NK, =0,z € K, andy € K,,
then we have

R(z,y) = E(u,u)”"! 2 c2a,

where ¢z = (#(C)#(Vo)c1)"'r. Thus we see that for any z € K, if
d(z,K,) < cza/2 for v € A(a), then there exists w € A(a) such that
v € Ay(a) and r € K. Hence, if ¢ = ¢3/2, Lemma 4.2.3 implies

#{v € A(a) : d(z, K,) € ca} < #{w € A(a) : z € K, }#(C)# (V).

As is shown in the proof of Lemma 4.2.3, #(7~(x)) < #(C) forany z € K.
Hence #{w € A(ae) : z € K,,} < #(C). This completes the proof of this
lemma with M = #(C)?#(V). O

Proof of Theorem 4.2.1. We will apply Theoremn 1.5.7 for the first part of
the theorem on the Hausdorff measure. By Lemma 3.3.5, there exists C > 0
such that

diam(Ky) < Cry

for any w € W,. This is the condition (1.5.2). Also, by Lemma 4.2.4, we
can verify the other condition (1.5.3). Hence Theorem 1.5.7 implies the
first part of Theorem 4.2.1.

Next we show the second part of the theorem on the asymptotic behavior
of pp(x,v). Let Ai(u.) and A;(v) be the i-th eigenvalue of —A,, and —A,
with Dirichlet boundary conditions, respectively. By (4.2.2), ¢)||u]|4. 2 <
l{u|le.2 < c2llully. 2. Therefore, the variational formula, Theorem B.1.14,
implies that

(@)?Xi(w) < Xi(p.) < (e2)?Ailv)
for 1 > 1. Hence we obtain

po((c1)’z, u.) € ppla,v) < pp((c2)*z, p.) (4.2.7)

for any z > 0. By Theorem 4.1.5, it follows that

ds/2

0 < liminf pp(z, . )/z%/? < limsup pp(z, . ) /2?2 < oo,

T—O0

where dg is the unique positive number that satisfies (4.1.2). By (4.2.7), the
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above inequality holds if we replace pp(x, 1.) by pp(x,r). Since (u.); =
(r;)%4, we see that ds = 2dy/(dy + 1). O

4.3 Localized eigenfunctions

In [44], it was observed that there exists an eigenfunction of the standard
Laplacian on the Sierpinski gasket whose support is confined in a small sub-
domain of the Sierpinski gasket. Such an eigenfunction is called a localized
eigenfunction, which never appears in the case of the ordinary Laplacian
on a connected domain of R™. So the existence of a localized eigenfunction
is one of the unique features of the Laplacian on fractals. In this and the
following sections, we study localized eigenfunctions of the Laplacian A,,.

Hereafter we assume that u is a self-similar measure on K with weight
(i)ies-

First we give a definition of localized eigenfunctions. It is, however,
difficult to say that the support of an eigenfunction is “small”. So we
define the notion of a pre-localized eigenfunction instead. We will see that
a pre-localized eigenfunction produces genuinely “localized” eigenfunctions
in Proposition 4.3.3 below.

Definition 4.3.1. u € F is called a pre-localized eigenfunction of A,
belonging to the eigenvalue A if u € Ep(A) N Ex(A) and u # 0.

In other words, a pre-localized eigenfunction is both a Neumann and a
Dirichlet eigenfunction of A,:

Ayu= -y, uly, =0 and (du), =0 for all p € V4.
Proposition 4.3.2. Define P, : Fo — F by
{u(Fw-’(x)) if 3 € K,

otherwise.

(Pyu)(x) =

Let u be a pre-localized eigenfunction belonging to the eigenvalue . Set
u, = Py(u). Then u, is a pre-localized eigenfunction belonging to the
eigenvalue A/ ftyTy .

Proof. Let w € W,,. The self-similarity of (£, F) (Proposition 3.3.1) along
with Proposition 4.1.2 implies

i t) = Y —E(uyoFrvoFy)

€W, T

= iE("u,v o Fy) = i(u,v o Fu)u
Tw Tw
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for any v € F. On the other hand,
(Bp )y = Z pr(vy o Frovy 0 F )y = p(u,vo Fy),.

TCW,,

Therefore £(uy,, v) = A(ptwrw) (uw.v) for any v € F. Hence, by Propo-
sition 4.1.2, uy, € Ex((ptyrw) ™' A). Also, obviously u, |y, = 0. This com-
pletes the proof. J

By the above proposition, once we find one pre-localized eigenfunction,
then there exists an infinite sequence of pre-localized eigenfunctions, which
are actually “localized” eigenfunctions.

Proposition 4.3.3. There erists a pre-localized eigenfunction of —4,, if
and ondy if for any non-emply open subset O C K, there erists a pre-
localized eigenfunction u such that supp(u) C O.

Proof. For any non-empty open subset O C K, there exists w € W, such
that K, C O. If there exists a pre-localized eigenfunction u, then u,, is
a pre-localized eigenfunction with supp(v,) C K. € O. The converse
direction is obvious. O

A pre-localized eigenfunction causes several notable phenomena. First
we consider the lattice case in Theorem 4.1.5.

Theorem 4.3.4. For the lattice case, the following four conditions are
equivalent:

(1) There crists a pre-localized eigenfunction of —4,.

(2) G is discontinuous.

(3) For any M € N, there exists a (Neumann or Dirichlet) eigenvalue of
— A, whose multiplicity is greater than M.

(4) There exists a (Neurnann or Dirichlet) eigenvalue of —A, whose mul-
tiplicity is greater than #(Vp).

Remark. Recall that G((log x)/2)x%5/? is called the integrated density of
states. (See the third remark after Theorem 4.1.5.) So if there exists a
pre-localized eigenfunction, then the integrated density of states is discon-
tinuous.

By the above theorem, the T-periodic function G in Theorem 4.1.5 turns
out to be non-constant if there exists a pre-localized eigenfunction. So, we
have the following corollary.

Corollary 4.3.5. For the lattice case, if there does erxist a pre-localized
eigenfunction, then py(x, pu)/x%/? does not converge as x — oo for b =
D.N.
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So far, this corollary is the only known result which can be used to
show that the T-periodic function G is not constant. We will give a proof
of Theorem 4.3.4 after stating another consequence of the existence of a
pre-localized eigenfunction.

The second theorem concerns approximation by polynomials.

Notation. Define spaces of multi-harmonic functions Il,,, for m > 1 in-
ductively by

o, ={ueD,:A,u=0}
Mpyr ={ueD,:Auelly,} form> 1.

AkmtthLD==Uh21Hm.

Obviously, I1; is the collection of harmonic functions. In the case of
the ordinary Laplacian on [0, 1], I, corresponds to the collection of all
polynomials. So we think of u € II,, as a polymonial on K with respect
to the Laplacian A,. By Weierstrass's theorem (sec Yosida [186, §0.2]
for instance), the collection of all polynomials on [0,1] is known to be
dense in L?([0,1]). On the contrary, the following theorem tells us that
a pre-localized eigenfunction cannot be approximated by polynomials in
L3(K,pu). In other words, Il is not dense in L2(K,pu) if there exists a
pre-localized eigenfunction.

Theorem 4.3.6. Let E'°° be the L?-closure of the linear space spanned by
all pre-localized eigenfunctions. Also let Tl be the L3-closure of I1,,. Then
E'°¢ 15 the orthogonal complement of Tl in L3(K, ). so that L3(K, u) =
Mo ® Elec.

The rest of this section is devoted to proving these theorems.

First we prove Theorem 4.3.4. Recall the notation for the lattice case
in 4.1. T is the positive generator of Z:\;lZlog'y.-, where 4, = /T4,
Let m, = —T~!log+, for i € S. Then the m, are positive integers whose
largest common divisor is 1. If we define

k

= keZnT }
Twhw

Mn)=#w=wue...uu e W, :

for n € N, then

I
M(n) = #{w =wws... w EW.:me. = n}.

=1

We also define M(0) = 1 and M(n) = 0 for any negative integer n.
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Lemma 4.3.7. If p = €79, then lim,_oo M(n)/p" = (LN, mip~™)~1.
Note that p~™ = e~™745 = 4,95, Hence 2‘.=, p™ =1

Proof. Let p; = p~™. Set M(n) = M(n)/p" for any n € Z. Then this
lemma follows immediately by Lemma B.4.5. a

Proof of Theorem 4.3.4. We write p(z) instead of py(z, ).

(1) = (2) : Let u be a pre-localized eigenfunction belonging to the eigen-
value k. Then, by Proposition 4.3.2, k,, = ke?™T is a (Dirichlet and Neu-
mann) eigenvalue with multiplicity at least M (n). Hence

p(kn) — plka=) > M(n), (4.3.1)

where p(k—) = limz1x p(z). As lim; .o |p(2)/z%/% - G((logz)/2)| = 0
and log k,, = log k + 2nT, it follows that

Jim (p(ka) = plka=))ka ™45/ < G(@) ~ImG(H),  (432)

where a = jlogk. Combining (4.3.1) and (4.3.2), Lemma 4.3.7 implies
that G(a) — limy1o G(¢) > 0. Hence G is discontinuous.

(2) = (3) : Let G,(t) = p(e2t+7T))/elt+nT)d. for 0 < t < T. Also let
€n = SUPgci<y [Gn(t) — G(t)|. Then, by Theorem 4.1.5, ¢, — 0 as n — 0.
Now, if G is discontinuous at o, then we can choose a,, > 0 and b, > 0
so that lim,, .o @ = iMoo b = 0 and L = liminf,, o |G(a + am) —
G(a - by,)| > 0. It follows that

lénmigfIG,,(a +am) — Gula —by)| 2 L — 2¢,.

This implies that e3(@*+»7) jg an eigenvalue whose multiplicity is no less
than 2el@+nT)ds /[, for sufficiently large .
(3) = (4) : This is obvious.
(4) = (1) : Assume that dim Ex(k) > #(Vp). Define a linear map 7 :
En(k) — €(Vo) by m(u)(x) = u(z) for z € Vy. Asdim Enx(k) > dimé(Vp) =
#(Vb), the kernel of 7 is not trivial. Hence there exists a non-trivial u €
Ex(k) that satisfies u{y, = 0, and so u is a pre-localized eigenfunction.

A similar argument works for the case of D-eigenvalues. O

Remark. Note that the implication (4) = (1) is true even in the non-lattice
case.

Next we prove Theorem 4.3.6.

Lemma 4.3.8. u is a pre-localized eigenfunction if and only if u € (II;)*
and u s a D-eigenfunction.
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Proof. Let u € Ep(A) N Ex(A) for some A > 0. Also, let v be a harmonic
function. Then, by the Gauss—Green’s formula (Theorem 3.7.8),

E(u,v) = z u(p)(dv), —/ uA vdp =0

PEVD K
= > v(p)du)p — [ vAuudp = A(u,v),.
PEVL K

Hence (u,v), = 0. This implies that u € (II,)*.

Conversely, assume that v« € Ep()) and (u,v) = O for any harmonic
function u. Then using the Gauss—Green’s formula in a similar way to the
above, we see that (du), = 0 for any p € V4. Hence u is a pre-localized
eigenfunction. O

Proof of Theorem 4.3.6. Step 1: Gp(Ily,) C I, where Gp = Hp~! is
the Green’s operator defined in Proposition 3.4.8.

Proof of Step 1: Let u € II,. Then there exists {up}n>1 C Il such
that v, — u as n — oo in L?(K,u). By Lemma 3.7.10, it follows that
Gpu, € Il. Since Gp is a bounded operator from L2(K,pu) to itself,
Gpu, = Gpu as n — 0o. Hence Gpu € Il .

Step 2: Gp(TIL) CTIL
Proof of Step 2: Let u € ﬁ;. Note that Gp is symmetric. By Step 1, for
any v € oo, (Gpu,v), = (1, Gpv), = 0. Hence Gpu € T,

Now, by Step 1 and Step 2, it follows that Hp (Tl N Dom(Hp)) = e
and H D(ﬁ:,nDom(H D)) = ﬁ:‘o. Since Hp, is a self-adjoint operator having
compact resolvent, Hp In;Lo ADom(Hp) is a self-adjoint operator from ﬁ:’o to
itself having compact resolvent as well. Hence there exists a complete
orthonormal system {f,}.>1 of ﬁ:’c consisting of eigenfunctions of Hp.
By Proposition 4.1.2, f, is a D-eigenfunction. As f, € ﬁ; c (M),
Lemma 4.3.8 implies that f, is a pre-localized eigenfunction. Hence ﬁ: -
Etec,

Next, let f be a pre-localized eigenfunction belonging to an eigenvalue
A > 0. Then, by the Gauss—Green’s formula,

AT (£0) = =AU, Apv)u = - = (= 1)(f, (Au) ")y =0

for any v € I,,. Hence (f,v), = 0 for any v € I, This implies E‘¢ C
-1
fie. 0
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4.4 Existence of localized eigenfunctions

In this section, we give some sufficient conditions, in terms of the geom-
etry of K, for the existence of localized eigenfunctions. Those conditions
will require a certain kind of strong symmetry for the self-similar set, the
harmonic structure and the measure. This is rather restrictive and seems
a little far from a necessary condition. By using those conditions, however,
we can show the existence of a pre-localized eigenfunction for the symmetric
harmonic structure on (affine) nested fractals obtained in Theorem 3.8.10.
See Corollary 4.4.11 for details.

Notation. If g: K — K i3 a bijection, and f: K — R, define T, f : K —
R by (Tyf)(z) = f(g~'(=)).
Definition 4.4.1. Define G by

G = {g : 9 is a bijective homeomorphism from K to K that satisfies

(1] g: Vo — Vo,

(2) pog™'=u,

(3) Te(F) C F and E(T,u, T,v) = E(u,v) for any u,v € F}.
Obviously, G is a group. G is called the symmetry group of (£, (D,r), u).
Rernark., Note that g € G is not necessarily a symmetry of £ as defined in
3.8.

Let {¥n}n>1 be the complete orthonormal system for LZ(K,u) con-
sisting of the Dirichlet eigenfunctions of A,. Also, let us assume that
¢n € Ep(An). (In 4.1, we used @2 and A2 in place of ¢, and \,, respec-
tively.)

Lemma 4.4.2. Let R = Y|, a;T,y,, where a; € R and g; € G fori =
1,2,... ,n. If Ru#0 for someu € L>(K,u) and R*v € Fp for allv € F,
where R* =37, a;T,-1, then there ezists a pre-localized eigenfunction.

Proof. If Ry, =0 for all n > 1, then Ru = 0 for any u € L?(K, u). Hence
there exists = > 1 such that Ry, # 0. Let v = Ry,,, and note that u € Fy.
Now for all v € F, as R*v € Fo, Proposition 4.1.2 implies

E(u,v) = E(Rpn, v) = E(Pn, RB70) = An(Pns R'0)u = A (U, ).

Again, by Proposition 4.1.2, we see u € Ex(A;). Since u € Fy, it follows
that u is a pre-localized eigenfunction. O

For g € G, set
S(g) = {z € K : g(z) = z}.
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Let + be the identity map of K.
Proposition 4.4.3. (1) If there cxists h € G\{.} such that Vo C S(h),

then there exist pre-localized eigenfunctions.
(2) If #(G) is infinite then there exist pre-localized eigenfunctions.

Proof. (1) Let R = I - T,. As h # , there exists £ € K such that
h(z) # z. Since h is continuous, there exists a neighborhood A of z such
that R(A) N A = 0. Set © = x4, where x4 is the characteristic function of
the set A. Then we have RRu # 0.

As Vg ¢ S(h), h"1(x) =z for all z € V. Hence v — Ty-1v = R*v € Fy
for all v € F. Now the proposition follows from Lemma 4.4.2.
(2) If G is infinite, then, since Vj is finite, a counting argument shows that
there exist distinct elements g;, go of G with the same action on V. Hence
Vo € S(g; 'g2), and the result is immediate from (1). O

There do exist p.c.f. self-similar sets for which G is infinite (the Vicsek
set is one), but this is a little exceptional. We now turn to the more
complicated situation when G is finite.

Theorem 4.4.4. Suppose G is a finite subgroup of G which is vertex tran-
sitive on Vg, and that there exists h € G, h ¢ G, such that

Sa(h) = | S(h7'g) £ K. (4.4.1)
9€G
Then there exist pre-localized eigenfunctions.
Proof. Set R = 3 6Ty = 2gecTg-r: and R = Rg(Ty-1 — I). Let
z € K\S¢(h). Then {g(x) : ¢ € G} is finite and does not contain h(xr).

Hence there exists a neighborhood A of x such that h(A) N g(A) = @ for all
g € G. Set u = xpa. [fy € A, then u(g(y)) =0 for g € G, and so

(Ru)(y) =) _u(h(g(y)) = ) _ ulg(y) = u(h(y)) =
9geG geG

proving that Ru # 0.
Let v € F. As G is vertex transitive, if y € V4 then

(Rao(r) = 3 w(g(w)) #‘G DI
9€C pev

which is independent of y. If x € Vp then h~!(z) € Vo, and therefore
R*v= Ty - I)Rcv € Fo.

Now, using Lemma 4.4.2, we can complete the proof. O
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As the condition (4.4.1) is a little troublesome to verify, one might hope
that this symmetry argument would work under the weaker condition that

G contains a vertex transitive subgroup G and there exists h € G\G.
(4.4.2)

However, it is easy to see that (4.4.1) is equivalent to the statement that
RC(Th—I - I) -',é 0. See Example 4.4.9.

On the other hand, note that if (4.4.1) fails, then S(h~!g) has an interior
point for some g € G. Hence (4.4.2) along with

S(h~1g) has no interior point for any g € G (4.4.3)

implies (4.4.1). In fact we will see below (Lemma 4.4.5-(3)) that for nested
fractals (4.4.3) always holds, so that (4.4.2) is all that needs to be verified.

Next, we will discuss the case where K is a subset of R? for some d € N
and the F; are restrictions of similitudes of R?. In such a case, we can
assume, without loss of generality, that

M
> pi=0, (4.4.4)
i=1

where Vp = {p1,p2,... .par} with M = #(V4), and that
{x-y:z,y€ K} span R (4.4.5)
Under these assumptions,

Lemma 4.4.5. (1) If f is an affine map from R? to itself with f(Vp) =
Vo, then f(0) = 0.

(2) Let f;R? — RY be linear fori = 1,2. If fi|x = fa|k then fi(z) = fa(z)
for all z € R4,

(3) If f : R® — RY? is a linear map with f(K) = K, then f is linearly
conjugate to an orthogonal transformation of R8. Moreover, if f is not the
identity map, then S(f) = {x € K : f(x) = x} contains no interior point
in the intrinsic topology K.

Proof. (1) Let f(z) = Az + b, where A is a d x d-matrix and b € R%. As
Zf’,’:l J(pi) = Zfil p; = 0, we have A(Zf’il p:) + Mb=0. Hence b= 0.
(2) This is immediate from (4.4.5).

(3) As K C Im f and (4.4.5) holds, it follows that f is invertible. Note that
K is bounded. We can easily see that f(z) and f~"(z) remain bounded
as n — oc for any z € R9. Hence, if we extend f to a map from C9 to itself,
f is semisimple and the absolute values of its eigenvalues are all equal to
1. Therefore f is linearly conjugate to an orthogonal transformation.
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Next suppose there exists a non-empty open subset O of K such that
f(z) = z for any x € O. By (4.4.5), there exist z;,y; € K fori =1,2,... ,d
such that (z; — y1,... ,24 — ¥q) is a basis for R%. Now choose w € W, so
that F,(K) C O, and write z; = F,(x;) — Fu(y:); then (21, 22,...,24) is
a basis for R? and f(z) = z; for i = 1,2,....d. Thus f is the identity
map. O

Hereafter, we consider a special subgroup of the symmetry group §G.
Theorem 4.4.6. Define

Go= {9 €G: 9= flx for some linear map f : R® — RY}.

If there exists a proper subgroup G of Go which is vertex trensitive on Vp,
then there exists a pre-localized eigenfunction.

Proof. As G is a proper subgroup of Gp, there exists h € Go\G. By
Lemma 4.4.5-(3), we see that S(h~!g) has no interior point for any g € G.
Hence we can verify (4.4.2) and (4.4.3). As is mentioned above, this implies
(4.4.1). Hence, by Theorem 4.4.4, there exist localized eigenfunctions. O

The corollary below is sometimes easier to apply to examples than Theo-
rem 4.4.6. Let Py, be the group of permutations of V5. We define a natural
restriction map x : G — Py, by x(g) = glv,-

Corollary 4.4.7. (1) If k is not injective then there ezists a pre-localized
eigenfunction.

(2) Set Go = k(Go). If there exists a proper subgroup of Go which is vertex
transitive on Vy, then there exists a pre-localized eigenfunction.

Proof. (1) If x is not injective then there exists ¢ # ¢ € G with g(z) =z
for all £ € Vj. The result is now immediate from Proposition 4.4.3-(1).

(2) We can find a proper subgroup of Gy which is vertex transitive on V;
by using x~!. Then use Theorem 4.4.6. O

Here are some cases where we can apply Corollary 4.4.7-(2).

Example 4.4.8. (1) If Go = Py, and #(V) = 3, then the group of even
permutations is a proper subgroup of Py, which is vertex transitive on ;.
This includes the case of the standard Laplacian on the Sierpinski gasket.

(2) Let V be a regular n-sided polygon for z > 2 and suppose G contains
D,,, where D,, is the symmetry group of the regular n-sided polygon. We
may write Vp = {(cos (275 /n),sin (2mj/n)):j =1,2,... ,n}. Let g be the
rotation by 27/n around (0,0). Then {¢’ : j = 1,2,...,n} is a proper
subgroup of D, and is vertex transitive on V.



150 Eigenvalues and Figenfunctions of Laplacians
Next we give an example where we can apply Corollary 4.4.7-(1).

Example 4.4.9. Set Fy(2) = 3(2+1), F2(2) = 3(2—1), F3(2) = 34E(z+

1) and Fy(z) = @(z —1) for z € C. K is the self-similar set with respect

to {F;}i=1,2,3,4. It is easy to see that (K, S, {F, }.es) where S = {1,2,3,4}

is a p.c.f. self-similar structure. In fact, C; = {0}, C, = n~}(0) =

{21,12,32,41} and P, = {1,2}. Asw(i)=1and 7(2) = -1, Vp = {-1,1}.
Let t € (0,1), and set

-1 1 11
D_(]. _1) and r—(§,§,t,t).

Then (D,r) is a regular harmonic structure. Also let u be a self-similar
measure on K with weight (p;):es, where gy = pp and pz = pg.

The reflections in the real axis and the imaginary axis, denoted by g,
and g, respectively, belong to G, and Gy is the group generated by {g;, g2}-
Obviously x(g;) is the identity map on Vy. Hence, by Corollary 4.4.7-
(1), there exists a pre-localized eigenfunction of —A,,. (Note also that G
contains infinitely many elements, and so the existence of a pre-localized
eigenfunction also follows from Proposition 4.4.3-(2).)

Now let G = {¢,92}, and let h : K — K be defined by h(z) = z for
z € K, UK, and h(z) = g2(x) for x € K3 U K. It is not hard to check
that h € G. Then h ¢ G but Rg(T}-+ —I) = 0. Recall the discussion after
Theorem 4.4.4.

In the rest of this section, we will consider the case of affine nested frac-
tals. Recall Definition 3.8.2. For z,y € R%, z # y, H,, is the hyperplane
bisecting the line segment [z,y]. Also g,y : R — RY is the reflection in
sz.

Theorem 4.4.10. Assume that #(Vy) > 3. If gzy € Go for all z,y € Vp
with x # y, then there exists a pre-localized eigenfunction on K.

Proof. Let G, be the subgroup of Gy generated by {g, : =,y € Vo, z # y}.
In view of Lemma 4.4.5-(2) we may identify g, and gy|x, and so regard
G as a subgroup of O(d), the d-dimensional orthogonal group. Note that,
as gy is a reflection, det g, = —1. Let G2 be the set of g € G; which
are the product of an even number of the g;,. Then every element g of
G2 has detg = 1, and so G2 is a proper subgroup of G;. Furthermore, if
#(Vo) > 3 then G, is vertex transitive. For, if z, y € Vp, let z € Vp\{z, y}:
then g,.9,.(T) = y. The result now follows from Theorem 4.4.6. O

If #(Vo) = 2 then examples show that both possibilities (i.e., existence
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or non-existence of localized eigenfunctions) can arise. Recall the case of
[0,1], Example 3.7.2. If we choose a sclf-similar mcasure y with weight
(1/2,1/2) (n is, in fact, Lebesgue measure on [0, 1]), then obviously go;
belongs to Go. The Laplacian is equal to d?/dz? and of course has no local-
ized eigenfunctions. On the other hand, Example 4.4.9 gives an example
where #(V5) = 2 and a pre-localized eigenfunction exists.

Now let £ = (K, S, {F;}ics) be strongly symmetric. By Theorem 3.8.10,
there exists a harmonic structure (D, r), where D € L£,(Vp), on L ifr is
G.-invariant. (Recall that G, is the group of linear symmetries of £ and
that £,(Vp) is the collection of G,-invariant Laplacians.) Let (£, F) be the
quadratic form associated with the harmonic structure (D,r). Then we
see that (£,F) is G,-invariant by Theorem 3.8.10. Now let u be a self-
similar measure on K with weight (u;)ies. Assume that u is G,-invariant,
that is, g; = g, if there exists g € G, such that g(K;) = K;. Then we
see that G, C Gp. So if £ is an affine nested fractal, the assumption of
Theorem 4.4.10 is satisfied.

Corollary 4.4.11. Let £L = (K, S, {Fi}ics) be an affine nested fractal with
#(Vo) = 3. Let (D,r) be a G,-invariant harmonic structure (i.e., (D,r)
is @ harmonic structure, D € L,(Vp) and r is G,-tnvariant.) Also, let u
be a G,-invariant self-sirnilar measure on K with weight (yt;)ics. Then the
associated Laplacian A, has a pre-localized eigenfunction. Moreover, in
the lattice case of Theorem 4.1.5, it follows that py(x,u)/x?/% does not
converge as x — o0 for b= N, D.

For the general strongly symmetric case, if there exists a proper subgroup
of G, which is vertex transitive on Vp, then the associated Laplacian A,
possesses a pre-localized eigenfunction. For example,

Example 4.4.12. Recall Example 3.8.13, where V; is the vertices of a
cube. In this case, we may write

Vo = {((_l]i’(_l)jv ('l]k) 11,0,k € {Ov l}}

Suppose that G2 is contained in G,. (The group G2 is defined in Exam-
ple 3.8.13.) Let (D,r) be a G,-invariant harmonic structure and let u be a
G.-invariant self-similar measure. Then since G is vertex transitive on Vg,
we see that A, has a pre-localized eigenfunction.

Unfortunately, it is not known whether G, has a proper subgroup which
is vertex transitive on Vj for the gencral strongly symmetric case.
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4.5 Estimate of eigenfunctions

In this section, we will estimate the supremum norm of an eigenfunction
of A, compared to the L2-norm. More precisely, let ¢ € D,, and assume
that A,p = — Ay for some A > 0. Then, if a = max;es(log u;)/(log pi7;),
we will see that

lolloo < eX*2||ipll2, (4.5.1)

where c is a positive constant that is independent of A and ¢, ||¢]|co is the
supremum norm of ¢ and ||y]|2 is the L2-norm of ¢. Later, we will use this
estimate to show continuity of the heat kernel associated with A,.

First we will study measurement of the distortion between two self-
similar measures. Let u and v be self-similar measures on K with weights

(ti)ies and (v;)ies, respectively.
Definition 4.5.1. Define

h(\:v, h(A: vy,
h(A:v,p) = Eﬂ;;nnuw and A(A:vp)= e

where A, \) = {w=wywa... wn € W, 1 vy, wpey > A2 V)

By Definitions 1.3.9 and 1.5.6, A(v, \) is a partition for 0 < A < 1.
The quantities k(A : v, u) and A( : v, 1) measure the distortion between
the two self-similar measures u and v.

Proposition 4.5.2. Set

- log u; min 108K
= é
8w, ) = es log v; and  &(v, p) = s logy;

Then there exists ¢ > 0 such that
AW < RN p,p) < N gnd  eXE) < R(A 1w, p) < AEW)
Jor any A € (0,1).

Obviously, by the definition, 8(v, u) > 1 > 8(v, u) and any of the equali-
ties holds if and only if u = v.

To show the above proposition, we need the following lemma.

Lemma 4.5.3. Let a; and b; be positive numbers fori=1,2,... ,n. Then

b b, +---+by b;
< max —.
i=1,2,...,n a, 01 4+ 4a, T =1,2,..,nQ;

One can easily prove this lemma by using induction on n.
We use h(A),k()),0 and § in place of R(A : v, u), h(A : v, ), 6(v, ) and
o(v, 1) respectively.
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Proof of Proposition 4.5.2. If a = min;eg v;, then v, < A < v, /a for any
w € A(v, A). Hence

(ar)(MoBuw)/logre) < oy < AlloBuu)/ (logry) (4.5.2)

Set ¢ = @®. Then Lemma 4.5.3 implies that cA\® < py < M. Choose
k € S so that § = (logux)/(logvi). Then there exists w, € A(v, \) such
that k € £,,.. Hence w, = k...k. By (4.5.2), eXd < Hy, < A%, Hence
ex? < R(A) € X% for any A € (0,1). Exactly the same argument shows that
e < h(X) < A% O

Now let us return to eigenfunctions of the Laplacian A,. Assume that
p is a self-similar measure on K with weight (u;)ies. Then, recalling
Theorem 4.1.7, we have 3, s(uiri)?s/2 = 1, where ds is the spectral
exponent of (£, F,u). Define v; = (u;7;)95/2 and let v be the self-similar
measure on K with weight (;)ies. The following is the main theorem of
this section.

Theorem 4.5.4. There exist positive constants ¢y and cz2 such that

llelloo S 1A= 5)4 Jul2 (4.5.3)

Jor any u € D, with A,u = —Au and |A| > ¢;. Moreover, if there exists
a pre-localized eigenfunction of A, then (4.5.3) is best possible. More
precisely, there exist {un}n>1 C D\{0} and c3 > 0 such that Ayu, =
—Anln, imy o0 Ap = o0 and

”un”oo > Cal\ndsb(u'p)/.l”un”m

By the definition of &(v, u), it is easy to see that a = dsd(v, p)/2 and
that (4.5.1) and (4.5.3) are the same.

For D-eigenfunctions (and also N-eigenfunctions), (4.5.1) is easily derived
from the Nash inequality (5.3.3) along with Corollary B.3.9.

We need several lemmas to show Theorem 4.5.4.

Notation. Let A be a partition. Foru: K - R, up = Zp&V( A) u(p)wf,‘.
In particular, if A = {0}, we write ug in place of u,.

Recall Definition 4.2.2 for the definitions of V(A) and ¥). u, is the
unique A-harmonic function that satisfies ua|y(a) = u|y(a). In particular,
Ug is the unique harmonic function that satisfies wp|y, = uly,.

Lemma 4.5.5. There exists ¢ > 0 such that
C”f“2 2 min \H-‘w”f”oo
wEA
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for any partition A and any A-harmonic function f.

Proof. Since the space of harmonic functions is finite dimensional, there
exists ¢ > 0 such that c||u||z > ||u||e for any harmonic function u. Now
let f be a A-harmonic function. Then

AfIIE =) pullf o Full3 = ) pullf o Full?,

weA weEA

> mi 2, > (min 2
> min py, ;nfonIIw > (min r,.) max||f o Fulf%
wee

Since ||f]loc = maxyea |f © Fulloo. the lemma follows from the above
inequality. O

By Proposition 3.4.8 and Theorem 3.6.1, it follows that the Green’s oper-
ator G, is a bounded operator from LP( K, u) to LP(K, u) for p = 2,00. Let
IGll, be the operator norm of G, as a bounded operator from LP(K, u)
to itself for p = 2, 00.

Lemma 4.5.6. Set a = max{||G,|l2,||Gullwc}. Ifu € D, and A u =
~Xu and |A| > (2a)~!, then

luallp/2 < |lullp < 2[|uallp
for p = 2,00, where A = A(v, (2a|)|) 95/2).
Proof. Note that |A|y,rpa < 1/2 for any w € A. By Theorem 3.7.14,
uo Fy = MtpruGu(uo Fy,) + (u o Fu)e.
This immediately implies that
wo Fully = 1tz 0 Fulollpl < IMNpurullCallpliu o Full,
for p = 2,00. Hence, if |A|pprea < 1/2,
1w © Fuolly/2 < 1w Fully < 2ll(uo Fuloll,
for p = 2,0c. This implies the desired inequality. O

Proof of Theorem 4.5.4. Let ¢c; = (2a)7! and let A = A(v,(cz/a)¥s/?).
Also assume that v € D, and A, = —au. Then, by Lemmas 4.5.5 and
4.5.6, we have

. _ . /2
Dl < gl < lleaf@)*s/2) 2Ilunlla < 26B((caf) /)2l

where h(:) = h(- : v, 1). Hence, by Proposition 4.5.2, it follows that

[2]loo < e1a?5%/4|u]|2,
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where ¢; = 4c(c2)‘d53/“ and & = &(v, 1). So we have shown (4.5.3).

Next assume that there cxists a pre-localized eigenfunction v and A, u =
—au. Then, as in Proposition 4.3.2, if u, = P,u, Au, = — p‘:",,_ .
Note that ||luy||2 = ellvllz and ||uy|lo = ||u]lc- Choose k so that
6(v,u) = logu;/logy;. Let w(m) =k...k € W, for all m > 0 and let
Pm = Ug(m)- Then AyPm = —CmPm, where am = a(vy)~2™/4s. Also, if

ca = ||ull2/|[tu|oos then ||¢m|loc = ca{ste) ™™ ?|kom|l2. Hence we obtain

|l@mlleo = Ca(am/a)"“‘”“llsomllz-

Notes and references

4.1 Theorem 4.1.5 was obtaincd in [93]. One of the key ideas in proving
this theorem is the use of Dirichlet forms, in particular, the self-similarity of
Dirichlet forms, Proposition 3.3.1. This idea was first used by Fukushima
in [41], where he studied the spectral dimension of nested fractals. See also
Kumagai [100].

There have been a number of related works before Theorem 4.1.5. In
the late 1970s and the early 1980s, physicists studied the integrated den-
sity of states on fractal graphs, in particular, the graphs associated with
the Sierpinski gasket. Although they did not give any precise definition
of Laplacian, they obtained the so called “spectral dimension” of frac-
tals, which is log9/log 5 for the Sierpinski gasket. The spectral dimension
corresponds to the spectral exponent for the standard Laplacian on the
Sierpinski gasket. They also suggested the existence of localized eigenfunc-
tions. See Dhar [30], Alexander & Orbach [1], Rammal & Toulouse [154]
and Rammal [153]. Also see the series of papers by Gefen et al.[47, 49, 48].
One can find a review of those works in [118] and [75].

On the mathematical side, Kusuoka [106] constructed Brownian motion
on the Sierpinski gasket and obtained the value of dg for that case. Also
Barlow & Perkins [20] studied the asymptotic behavior of the heat kernel
associated with Brownian motion on the Sierpinski gasket by a probabilistic
approach. Later, Fukushima & Shima [44] obtained detailed information
about eigenvalues and eigenfunctions for the standard Laplacian on the
Sierpinski gasket by using the eigenvalue decimation method. In partic-
ular, they found localized eigenfunctions and proved that the integrated
density of state is discontinuous. (This result immediately implies that the
periodic function G appearing in Theorem 4.1.5 is discontinuous in this
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case.) Roughly spcaking, the eigenvalue decimation method is based on
the following property.

Eigenvalue decimation property Let ®(z) = z(5 — z). Define
o(Vin) = {1t € E(Vin)  uly, = 0. (We may identify lo(Vom) with €(Vin\Vo)
by restricting the domain of u € £(Vyn) to Viu\Vo.) Also define LD
8o(Vim) — €o(Vin) by letting LY u = (Lmu)lv,\v, for any u € £o(Vin), where
L., is defined in Example 3.7.3. Then, if A ¢ {2,5,6}, LY, ,u = —Xu for
u € €y(Vins1) if and only if LY (ulv,, ) = —®(N)(u|v,,).

See Shima [166] for the proof.

L2 is the discrete version of the Dirichlet Laplacian. By virtue of the
eigenvalue decimation method, we can trace all the eigenvalues of L?,, and
the eigenfunctions starting from m = 1,2. And hence we obtain the exact
locations of the eigenvalues of the standard Laplacian.

In [24], Dalrymple et al. studied (numerically in part) eigenvalues and
eigenfunctions of the standard Laplacian on the Sierpinski gasket by using
the eigenvalue decimation method and obtained figures of eigenfunctions.
See also [50] and [90] for detailed structure of eigenvalues and eigenfunctions
of the standard Laplacian on the Sierpinski gasket.

Unfortunately, the eigenvalue decimation method only works for quite
limited class of Laplacians on p.c.f. self-similar structures. See [169] for
details.

In [44], Fukushima & Shima also studied the spectrum of the standard
Laplacian on the infinite Sierpinski gasket and obtained the discontinuity
of the integrated density of states. Sec also [41] and [45]. In [178], Teplyaev
determined the complete structure of the spectrum of the standard Lapla-
cian on the infinite Sierpinski gasket with Neumann boundary condition.
In particular, he showed that there exists a complete orthonormal system
consisting of localized eigenfunctions and that the spectrum is pure point.
However, this problem is still open in the case of Dirichlet boundary condi-
tion. Recently Sabot extended Teplyaev’s results to infinite nested fractals
without boundary points. See [165] for details.

4.2 The results in this section was obtained in [85].

4.3 and 4.4 The results in those sections, except Theorem 4.3.6, were
obtained in [18]. Theorem 4.3.6 is a new result.

4.5 The results in this section are new.
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Heat Kernels

In this chapter, we will study the Neumann heat kernel py(t,z,y) as-
sociated with the Neumann Laplacian Hy and the Dirichlet heat kernel
po(t, z,y) associated with the Dirichlet Laplacian Hp. Formally, the heat
kernels pp and py are defined as the integral kernels associated with the
semigroups e ¥~ and e~¢H o respectively. More precisely, in the Neumann
case, for example,

(e~ u)(z) = /K palt.z, y)uly)sldy).

In other words, the heat kernels are the fundamental solutions of the heat
equation,

QE = A,u,

ot
with corresponding boundary conditions.

We will first define py and pp as formal sums with respect to the com-
plete orthonormal systems {¢} }i>1 and {¢P}i>) respectively. (See Defi-
nition 5.1.1.) Using estimates in 4.5, the formal expansions are shown to
yield a continuous function on (¢,x,y) € (0,o¢c) x K2. Then py and pp
are shown to be the integral kernels of the semigroups e~~* and e~ "o
respectively.

In 5.2, we will prove the parabolic maximum principle for solutions of the
heat equation. This implies that 0 < pp(t,z,y) < pn(t, z,y) when (D, r)
is a regular harmonic structure. (As we will explain in 5.2, the restriction
that (D, r) is a regular harmonic structure is purely technical. In fact, by
using probabilistic methods or the geueral theory of Dirichlet forms, it is
known that this holds even if (D,r) is not regular.)

In 5.3, we will study the asymptotic behavior of py (t, z, ) and pp(¢, x, x)
as £t — 0. If (D,r) is regular and 4 = u., where u, is the self-similar
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measure defined in Theorem 4.2.1, then our estimate will be sharp. See
Corollary 5.3.2.

As in the last chapter, we suppose that (K, S, {F,}.es) is a connected
p- ¢. f. self-similar structure with S = {1,2,...,N}, (D,r) is a harmonic
structure on £ and 4 is a self-similar measure with weight (4,).cs on K
with r, ., < 1 for any i € S. We use (€, F) to denote the resistance form
associated with (D, r). Also, d is a metric on K which is compatible with
the original topology of K. (Note that (K,d) is compact.) We will use
the convention from the previous chapters that the symbol b represents the
boundary conditions, i.e., b € {N, D}, where N represents the Neumann
boundary condition and D represents the Dirichlet boundary condition.

5.1 Construction of heat kernels

In this section, we will construct heat kernels pp(t,z,y) and px(t,z,y)
corresponding to Dirichlet and Neumann boundary conditions respectively.

By the results in 4.1, for = D, N, there exist {\%}n>1 and {©8}n>1 C
C(K,d) N Dy, such that o € Ey(X8) for all n > 1,

0SA < S S Ay S
and {©} }n>1 is a complete orthonormal system for L3(K, p).

Definition 5.1.1 (Heat kernel). For b = D, N, we define the b-heat ker-
nel py(t,z,y) for (¢,z,y) € (0,00) x K x K by

Pt z,y) = 3 e b (z)b(v). (5.1.1)
n>1
The right-hand side of the above definition is only a formal sum so far.
We will show, however, that the sum converges uniformly on [T, 00) x K x K
for any T > 0. Hence py(t, z,y) is continuous on (0,00) x K x K.
The following gives some important properties of the heat kernels. In
the rest of this section, the symbol b always represents D or N.

Proposition §5.1.2. (1) py(t,z,y) s non-negative and continuous on
(0,00) x K x K.

(2) For any (t,z) € (0,00) x K, define p;'™ by pi*(y) = ps(t, z,y) for any
y € K. Then p;'* € Dom(Hy) N D, = Dy, for any (t,z) € (0,00) x K.
(3) For any (z,y) € K x K, ps(-,z,y) € C'((0,0)).

(4) For any (t,z,y) € (0,00) x K x K,

B2V _ (a,57)0).
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(5) For anys,t >0 and anyz.y € K,

polt+0,9) = [ pult, o puto ' Pl
We need several lemmas to prove this proposition.
Lemma 5.1.3. There exist positive constants ¢; end ¢y such that
en®/ds < )\.,", < ¢on?/ds
forn > 2.

Remark. Recall that Hp is invertible and that AP > 0. Therefore, if b = D,
then the above inequality holds for n > 1 as well. However, this is not the
case if b= N, since A} =0.

Proof. By Theorem 4.1.5, there exist positive constants ¢z and ¢4 such that

ds/2 dg/2

c3x® e < pp(x, pt) < ey

for sufficiently large £ > 0. As n < p(A\8, p) < t:4z\$“ds,2, we have that

cin?/9s € A& where ¢; = ¢4 7%/%s. For any € > 0, ca(Ab — €)95/2 < py(AY -
¢, 1t) < n. Letting ¢ | 0, we sce that A% < c2n?/9s, where c; = ¢37%/4s. O

Lemma 5.1.4. Forany .3 >0 andany T >0, }_ ., nee=""t ig uni-
formly convergent on [T, 00).

Proof. Choose 7n € N so that 3m —a > 1. Let v = fm — a. Since
n-oe®’t = ¥, o nf -tk fk!, we see that n®e~™t < An~" for any t > T
and n > 1, where A = m!T~™. As Y as1 7”7 < 00, the lemma follows
immediately. B O

Now we prove the proposition except the non-negativity of py(t, z, y).
Proof of Proposition 5.1.2. (1) By Theorem 4.5.4 and Lemma 5.1.3,

bl < c(AL)358/4 < 'n¥/2, (5.1.2)

where § = 6(v, ). Again, using Lemma 5.1.3, we obtain
Ot

_ 30 £
e h (2) gk (4)] < (¢)2nlem ",

where 3 = 2/ds and c¢” is a positive constant which is independent of n.
Now, by Lemma 5.1.4, 3, ., (¢ )znée“"""" converges uniformly on [T, 0o)
for any T > 0. Therefore, the right-hand side of (5.1.1) converges uniformly
on [T, >c). So py(t, z,y) is continuous on (0,00) x K x K.
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(2) Note that f = 3,5, aa9h € Dom(H,) if and only if 3,5, [A5aq[* <
oo. Also, if f € Dom(Hp), then Hpf = En>1)‘nan¢n Now, by Lem-
mas 5.1.3 and 5.1.4, 3,5, (Ahe™ "n‘«,oﬁ"(:t:))2 < oc for any (t,z) € (0,00) x
K. Therefore, p;* € Dom(H,) and

(HopE™)(y) = 3 Me~ 24l ()b (y). (5.1.3)

n>l1

The same argument as in the proof of (1) implies that the right-hand side
of (5.1.3) converges uniformly on [T, 00) X K x K for any T > 0. Therefore
Hyp,™ € C(K,d). Corollary 3.7.13 implies that p;™ € Dom(Hy) N D, =
Dy

(3) As the right-hand side of (5.1.3) converges uniformly on [T, 00) x K x K
for any T > 0, we see that

/ 2 —(pr::'x](y)dt = py(t2, T, y) — po(th, Z,¥) (5.1.4)

4

for any t; < t2 and any z,y € K. Therefore py(t,z,y) € C*((0, o0)).

(4) Obvious by (5.1.3) and (5.1.4).

(5) Since the infinite sum in the right-hand side of (5.1.1) converges uni-
formly, a direct calculation shows the desired equality. O

Let Hp = {z € C : Rez > 0}. Then, we can extend the heat kernel
po(t, z,y) to a holomorphic function on Hp as follows.

Proposition 5.1.5. Define py(z,z,y) by substituting = € Hg for t in
(5.1.1). Then py(z,x,y) is a holomorphic function on Hg for any z,y € K.

Later, this proposition will play a key role in proving Proposition 5.1.10,
where py(t, z,y) is shown to be strictly positive for any ¢ > 0.

Proof. Note that
=% _3b
Y le b (m)eh )] € Y e b (n)lleh ),
n>1 n>1
where ¢t = Re z for z € Hgr. The same discussion as in the proof of Proposi-

tion 5.1.2-(1) implies that 3 -, e~ An 200 (2)h (y) converges uniformly on

{z€C:Rez>T)}x K x K for any T > 0. Since e~*=? is holomorphic, it
follows that p(z,z,y) is holomorphic on Hg. a

Next we construct the heat semigroup associated with py(t,z,y). See
B.2 for a definition and basic properties of semigroups.
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Definition 5.1.8. For u € L}(K, u), define

(Thu)(z) = /K Pt Z,y)u(y)(dy).
fort>0and z e K.
Note that L!(K,u) 2 LP(K, us) for p € [1, 00).

Theorem 5.1.7. (1) T is a bounded operator from LP(K, u) — C(K,d)
Jor any t >0 and anype 1, 00].
(2) TP oT? =T},, for any t,s > 0.
(3) TP(LMK,p)) C Ds,y, for any t > 0.
(4) Letu € L} K, p). Setu(t,x) = (TPu)(z) for (t,z) € (0,00) x K. Then
u(-,z) € C*((0,00)) for any x € K. Moreover,

du(t, x)

ot

for any (t,x) € (0,00) x K, where u, = TPu.

(5) {T?}e>0 is a strongly continuous semigroup on L?*(K,pu). The genera-
tor of {T¢}i>0 is —H,.

= (Auw)(z) (5.1.5)

Proof. (1) This is obvious since py(¢, x, y) is continuous on (0, 00) x K x K.

(2) This follows immediately by Proposition 5.1.2-(5).

(3) and (4) Let u € L(K,pu). Choose ) so that 0 < t; < ¢. Set s =t —1¢,.

Since u; = Tpu € C(K,d) C L*(K,p), we see that u; = 3, -, anip

for some {an}n>1 with 3 5, lan|? < oco. Therefore Tfu = Tiuy =
~A%,

2on>18n€ n 4. Making use of Lemmas 5.1.3 and 5.1.4, we obtain that
>as1(ane” ~Aa2A%)2 < oo. This implies that TPy € Dom(H,) and
Hy(TPu) = ) Mane b
nzl
By Lemmas 5.1.3 and 5.1.4 along with (5.1.2), Hy(T?u) € C(K,d). Now,
Corollary 3.7.13 implies that TPu € D, ,. Also, it follows that

t
- [ @@0)E = @oe - @)

Hence u(t,z) is a C'-class function and (5.1.5) holds for ¢ > ¢,.

(5) If u € L?(K,p), then u = 3° - anyph, where 3° ., |an|* < co. So
TPu = 2 n>18n€ —Axt, Hence HTPull2 < ||ul|2 and [|TPu—ullz — 0ast — 0.
Therefore {T?}¢0 is a strongly continuous semigroup on L3(X, u). Now let
A be the generator of {T?},-o. Then, by the definition of the generator in
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Theorem B.2.2, it follows that ¢% € Dom(A) and Ay’ = —A3ph = —Hyeb.
Since {%}n>1 is a complete orthonormal system for L?(K, ), we deduce
that A = —H,. 0

As the generator of {T?}:>¢ is —Hp, the corresponding closed form on
L%(K, p) is the Dirichlet form (£,F) if b = N or (£,%0) if b = D. The-
orem B.3.4 implies that {7?}:>o has the Markov property. One impor-
tant consequence of this fact is the non-negativity of the heat kernel. See
Lemma B.3.5 and Proposition B.3.6 for further properties of strong con-
tinuous semigroups with the Markov property.

Proof of Proposition 5.1.2-(1). The remaining property is that py(¢,z,y)
is non-negative. By Theorem B.3.4, {T?}:>0 has the Markov property.
Therefore, if v € C(K,d) and u(z) > 0 for any z € K, then (Tu)(z) > 0
for any z € K. This implies that py(t,z,y) > 0 for any (¢, z,y) € (0,00) x
KxK. O

Here we have shown non-negativity of the heat kernels by using the
Markov property of {T}}:>0, more precisely, by Theorem B.3.4. However
in this book we will not give a proof of Theorem B.3.4. There is another
way of showing non-negativity of the heat kernels by using the (parabolic)
maximum principle, as in the classical theory of the heat equation on R™.
See the next section for details. Unfortunately, however, so far this alter-
native proof only works in the case of a regular harmonic structure.

From Theorem 5.1.7, the heat kernel py(¢, z,y) is the fundamental solu-
tion of the heat equation (5.1.5).

Definition 5.1.8. Let u : (0,00) x K — R. For t € (0,00), set us(z) =
u(t,z) for any z € K. u is called a solution of the heat equation (5.1.5)
on (0, 00) if and only if u is continuous on (0,00) x K, u(-,z) € C!((0, 00))
for any 2z € K, u; € D, for any t € (0,00) and u satisfies (5.1.5) for any
(¢,z) € (0,00) x K.

Corollary 5.1.9. (1) Set u(t,z) = (TPyp)(x) for ¢ € L*(K,pu). Then
u(t, z) is the unique solution of the heat equation (5.1.5) on (0, c0) with

lim ||lue — pll =0 ond u(t,p)=0

for any t > 0 and any p € V.
(2) Set u(t,z) = (TNp)(z) for ¢ € L2(K,p). Then u(t,z) is the unique
solution of the heat equation (5.1.5) on (0, 00) with

lim e~ ol =0 and (dur)p =0
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for anyt > 0 and any p € V,.

Proof. We only need to show uniqueness of the solution, which follows from
Theorem B.2.6. O

If ¢ is a continuous function on K, we naturally expect that ||[TPy —
Ollo = 0ast | 0. (If b = D, we need to assume that ¢|y, = 0 as well.)
However, such continuity of a solution up to t = 0 is not straightforward in
general. In the next section, we can show such continuity of a solution only
when (D, r) is a regular harmonic structure. In fact, this problem is closely
related to the proof of the non-negativity of the heat kernels through the
parabolic maximum principle mentioned above. See the next section for
details.

By Proposition 5.1.2, we know that py(f,x,y) > 0 for any (t.z,y) €
(0,o¢) x K x K. In fact, we can show a stronger result as in the next
proposition.

Proposition 5.1.10. (1) pw(¢.2,y) > 0 for any (¢,x,y) € (0,00) X K x
K.

(2) po(t,z,y) > 0 for any t > 0 if 2 and y belong to the same connected
component of K\V;.

In this section, we only give a proof of (1) of the proposition above, while
(2) will be proven in 5.3.

Proof. Step 1: For any z,py € K, there exists t > O such that py(t,z,y) > 0.

Proof of Step 1. Since A = 0 and ¢ =1, it follows that py(s,a,a) > 1
for any (s,a) € (0,0c) X K. Let us fix s > 0. Fore € K, if U(a) = {b €
K : pn(s,a,b) > 0}, then U(a) is a non-empty open subsct of K. As K is
compact and connected, we can choose zp,... ,T, sothat zo =&, x,, =y
and x;+1 € U(x;) for all i = 0,1,... ,m. Applying Proposition 5.1.2-(5),
we obtain

PN (7"‘8r T, y) =
/ pn (8.2, y1)Pn (8, y1,¥2) - - PN (S Yru—1. ¥)(dyn ) pe(dy2) - - - p{dym—1).

Since z;4) € U(x;) for any 1, py (s, ,z)pN (s, Z1,22) - - - pN (8, Tm-1,y) >
0. Hence px(ms,z,y) > 0. O

Step 2: If pn(¢,z,y) > 0 for t > 0, then py(s,z,y) > 0 for any s > t.
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Proof of Step 2. If s > t, Proposition 5.1.2-(5) implies that

pN(8,2,y) = /K pn(s —t,z,2")pNn(t o', y)u(de').

Since py(8—t,z,z')pNn(t,2',y) > 0 for ' = z, it follows that pn(s, z,y) >
0. O

Now, by Step 1 and Step 2, for any x,y € K, there exists T > 0 such that
pn(t,z,y) =0for t € (0,T) and pn(t,z,y) > 0 for t € (T,00). Suppose
T > 0. By Proposition 5.1.5, pn(2, z,y) is a holomorphic function on Hg.
Hence, if py(t,z,y) = 0for t € (0,7T), then py(2,z,y) = 0 for any 2 € Hp.
Obviously this contradicts the fact that py(t,z,y) > 0 for ¢t > T. Therefore
T =0 and pn(t,z,y) > 0 for any t > 0. O

5.2 Parabolic maximum principle
In 5.1, we defined the notion of solutions of the heat equation
ou(t, )
ot

on (0,00) in Definition 5.1.8. In this section, we study the continuity of
the solution to (5.2.1) at t = 0. More precisely,

Definition 5.2.1. Let u : [0,00) x K — R. u is called an L*-solution
of the heat equation (5.2.1) on [0,00) if and only if u is continuous on
[0,00) x K and is a solution of the heat equation (5.2.1) on (0, c0).

= (Auu) (%) (5.2.1)

A remarkable property of an L*°-solution of the heat equation on [0, c0) is
the parabolic maximum principle. In the classical theory of heat equations
on R™, the parabolic maximum principle plays an important role. For
example, it is often used to show uniqueness of a solution of a certain heat
equation. See, for example, {77] and [152] for details.

Theorem 5.2.2 (Parabolic maximum principle).
Let u : [0,00) x K — R be an L>®-solution of the heat equation (5.2.1)
on [0,00). Then for any T > 0,

max u(t,z) = max u(t,z) end min u(t,z)= min u(t,z),
(t,z)eUT (t.z)€BUT (t,x)EUT (t,z)€dUT

where Ur = [0,T] x K and 8Ur = {0} x K U[0,T] x Vo. Moreover, if
u, € Dy, for any t > 0, where uy(z) = u(t,z) for any t € [0,00) and any
z € K, then,

u(t,z) = max u(0,z) and min u(t,z) = min u(0, x).

max =
(t,x)€[0,00) X K (t,.z)e(0,00) X K zeK
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To prove the above theorem, we need the following lemmas.

Lemma 5.2.3. Let « € D,. If (A u)(z) > 0 for any z € K\Vj, then
u(z) < maxyev, u(p) for any T € K.

Proof. By Theorem 3.7.16, we obtain

(Hou)(p) = [ 80y (5.2.2)

for any p € V;,\Vs. By the assumption of the lemma, the right-hand side
of (5.2.2) is positive. Since H,, € LA(V,,), there exists g € V,,, such that
u(g) > u(p). Hence, if u(p.) = maxycv,, u(g) for p, € Vi, then p, € W,
Therefore u(p) < maxgev, u(q) for any p € V,\V.

Now, let = ¢ V.. Choose w € W, so that z € K, and F,(V,) NV = 0.
Using the same argument as above, we have u(p) < max,¢cr, (v;,) %(g) for
any p € K, NV,. Therefore it follows that u(x) < max,er, (v,) (g)- Again
the above argument implies that max.¢ £ (v;) ©(g) < maxyey, u(p). Hence
we obtain u(z) < maxpey, u(p) for any z € K\Vp. a

Lemma 5.2.4. Let u € D,. If u(x) = maxyex u(y) for ¢ € K\Vp, then
(Ayu)(z) £ 0. Moreover, if u € Dy, then the statement above is true for
Tz eV as well.

Proof. Suppose that (A, u)(x) > 0. First assume that € V,. Then, using
(5.2.2) in the same way as in the proof of Lemma 5.2.3, we deduce that
there exists y € V, such that u(y) > u(z). This is a contradiction. Hence
z ¢ V.. Then choose w € W, so that # € K,, and (A, u)(y) > 0 for any
y € Ky. Set v = uo F,,. Then obviously v satisfies the assumptions of
Lemma 5.2.3. Therefore, u(z) < maxpep,(v,) (). This contradicts the
assumption of the lemma.

Next assume that u € Dy, p € Vp and (A u)(p) > 0. Recalling the
proof of Lemma 3.6.3, we see that £(¢2,,u) = —(H,,u)(p). The Gauss-
Green's formnula (Theorem 3.7.8) implics that (5.2.2) holds for any p € V.
Therefore, (H,,u)(p) > 0 for sufficiently large m. Then there cxists ¢ € V),
such that u(q) > u(p). Hence u(p) < maxyex u(y). O

Proof of Theorem 5.2.2. Let u : [0,20) x K — R be an L*-solution of
the heat equation (5.2.1) on [0,0c). For n > 1, define u, by u,(t,z) =
u(t,z) —t/n for any (¢t,z) € [0,00) x K. First, we show the following claim.

max uyl{t,r)= 1max ugx(t,T).
(t.2)eUr n(t,x) (L,2)€AU n(t,7)
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Proof of the claim. Suppose that (t.,p) € Ur\0Ur and that

un(t.,p) = ( max un(¢,x).

t,z)elr

This implies that a—'flé%ﬂ > 0. Note that A,u, = A u and that 2 =
%% —1/n. Since A u = %—‘t‘, it follows that (A, un)(t.,p) 2 1/n > 0. Hence,
Lemma 5.2.4 implies that u,(t.,p) < max,cx u,(t.,x). This contradicts
the fact that u,(¢.,p) = max( z)cvr Un(t, T). |

Now, letting n — oo, we have

max u(f,r) = max u(t, ).
(¢, x)eUy (¢, 2)EQU
The minimum also follows if we apply the maximum case to —u.
If 4 € Dy,, for any t > 0, we may repeat the above argument by
replacing Ur and dU7 by [0,00) x K and {0} x K respectively. O

Later in this section, we will apply the parabolic maximum principle to
show non-negativity of the heat kernels pp(t, z,y) and py(%, z,y). For that
purpose, we need to know whether or not the solutions of the heat equations
constructed by the heat kernels in 5.1 can be extended to L°°-solutions on
[0, 00). More precisely, the problem is whether or not T2y is a L>-solution
of the heat equation on [0, c0). This is still an open problem in general: we
have only a partial answer if the harmonic structure is regular.

Theorem 5.2.5. Suppose that (D,r) is a regular harmonic structure,
(1) Let p € {f € C(K,d) : flv, = 0}. Define u(t,z) = (TPp)(z) for any
(t,2) = (0,0¢) x K and u(0,z) = o(x) for any « € K. Set u,(x) = u(t, )
Jor any (t,x) € [0,0¢) X K. Then u is an L -solution of the heat equation
(5.2.1) on [0, 00) with u,|y, =0 for any t > 0. In particular, ||u, —upljoc —
Oast — 0.

(2) Letp € C(K,d). Define u(t,x) = (TN p)(x) for any (t,z) = (0,00)x K
and u(0,x) = p(x) for any x € K. Set uy(z) = u(?,z) for any (t,z) €
[0,00)x K. Then u is an L™ -solution of the heat equation (5.2.1) on [0, 00)
with (du,)p, = 0 for any (t.p) € (0,20) x Vy. In particular, |12, — ug||oc — 0
ast — 0.

By Corollary 5.1.9, the following proposition immediately implies this
theorem.

Proposition 5.2.6. Suppose thal (D,r) is a regular harmonic structure.
(1) Let p € {f € C(K,d): flv, = 0}. Then ||[TPp ~ pllc = 0 ast — 0.
(2) Let p € C(K,d). Then ||T¥ @ —pllac = 0 ast — 0.
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We need several results to prove this proposition. For the moment, we
show the following special case.

Lemma 5.2.7. Suppose that (D,r) is a reguler harmonic structure.
(1) Let ¢ € Fo. Then ||[TPo — ¢|loo = 0 ast — 0.
(2) Let o€ F. Then ||T 0 — olloc — 0 ast — 0,

To prove Lemma 5.2.7, we need the following lemma.

Lemma 5.2.8. Suppose that (D,r) is a regular harmonic structure. Then
there exists ¢ > 0 such that

lulloc < ev/E(u,u) + clfull2
for anyu e F.

Proof. Since (D,r) is a regular harmonic structure, Theorem 3.3.4 implies
that = K and that (K, R) is a compact metric space. Hence, by (2.2.6),

1F(z) = f)? < E(F, F)R(z,y) (5.2.3)

for any z,y € K and any f € F.
Let v € Fo. Then, by (5.2.3), it follows that

lw(z)|? < €(v, v)R(z, p)
for any ¢ € K, where p € V3. Therefore, there exists ¢ > 0 such that

[2llee < ev/E(w,v) (5.24)

for any v € Fy.
Let u € F. Define ug = 3_ .y, u(p)thp. Then, by (5.2.4),

e~ uoloo € eV E(U — up,u — ug) < c/E(u,u).

Also, there exists ¢ > 0 such that ||ug||eo < ||ue]|2 for any u € F. Also

note that ||u—ug||z € ||u—up||eo- Combining all the inequalities, we obtain
lalloo < Il = tolloo + lualloe < cv/EC,8) + ¢ Iluollz
< evE(u,u) + cllu — uollz + lfull2 < e(1 + )V E(u, u) + ¢/|lufl2.
O

Proof of Lemma 5.2.7. Let b= D or N. By Proposition B.2.4,
ET o — 0,20 - @) =E(TVp — 0, TP0 — ) + IT)p — 2ll3 = 0

as ¢ | 0. Hence, by Lemma 5.2.8, it follows that ||T?¢ — ¢|lcc — O as
t— 0. O
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By Lemma 5.2.7, T2 is a L®-solution of the heat equation on [0, c0)
under the corresponding assumption on ¢ in Lemma 5.2.7. Applying
the parabolic maximum principle to those solutions, we can obtain non-
negativity of the heat kernels without using Theorem B.3.4.

Theorem 5.2.9. For any (¢,z,y) € (0,00) x K x K,

0< pD(ta x3y) < pN(t,IL', y)

In the following, we will prove this theorem assuming that (D,r) is reg-
ular. For the general case, the fact that pp(t,z,y) < pn(t,z,y) can be
shown by considering the Markov processes associated with pp(¢,z,y) and
pn(t,z,y). See A.3 for details.

Proof. First we show that pp(t,z,y) > 0. Suppose that pp(s,a,b) <
0 for some (s,a,b). As pp is continuous, we can choose yY3* so that
pp(s,a,b)y;(b) < 0 and pp(s,a,y)¥; (y) < O for any y € K. Define
u(t,z) = (T}Dwg‘)(:c) for any (t,z) € (0,00) x K and u(0,7) = ¥5*(z)
for any z € K. Then, as ¥' € Fo, Lemma 5.2.7 implies that u is an
L*-solution of the heat equation on [0,00). Note that u|gy, > O for
any T > 0. Hence, by the parabolic maximum principle, we see that
u(t,z) > 0 for any (¢,z) € [0,00) x K. This contradicts the fact that
w(s,a) = [ po(s, e, y)¥; (y)u(dy) < 0. Therefore, pp(t,z,y) > 0 for any
(t,z,y) € (0,0¢) x K x K.

Next let ¢ € F. Define u(t,z) = (TNyp)(z) for (t,z) € (0,00) x K
and u(0,z) = ¢(z) for any x € K. Then u is an L°°-solution of the
heat equation on [0,00). Moreover, by Corollary 5.1.9, (du:), = 0 for
any (¢,p) € (0,00) x Vp. Hence us € Dy, for any t > 0. Therefore, we
can apply Theorem 5.2.2 to u(t,z) and obtain that u(t,z) = 0 for any
(¢,x) € [0,00) x K if ¢(x) > 0 for any z € K. Using entirely the same
argument as in proving non-negativity of pp(¢, z,y), we can verify that
pn(t,z,y) 2 0 for any (¢, z,y) € (0,00) X K x K.

Finally, we show that pp(t,z,y) < pn(t,z,y) for any (t,z,y) € (0, 00) x
K x K. Let ¢ € Fo. Define v(t,z) = (TNy)(z) — (TPyp)(z) for any
(¢,) € [0,00) x K and v(0,z) = O for any = € K. Since

o(z,t) = /K (o (8.2, 3) — Do (.2, 3) o (w)sldy),

v i8 an L*-solution of the heat equation on [0, 00). Suppose that ©(z) > 0
for any € K. Then the above argument implies that TV > 0. Since
TPylo.rxv, = 0, it follows that v|sy, > 0 for any T > 0. Hence, by
the parabolic maximum principle, v(¢,z) = 0 for any (¢,z) € [0,00) x
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K. Taking this fact into account, the same argument as in proving non-
negativity of pp(¢,z,y) implies that py(t,z,y) — pp(t,z,y) > 0 for any
(t,z,y) € (0,00) x K x K. O

Now we are ready to give a proof of Proposition 5.2.6.

Lemma 5.2.10. For any (t,z) € (0,o¢) x K,

lps% 1 < P35I = 1.

Proof. Theorem 5.2.9 implies that [[pj5|[1 < |57 |1 = [ P (2. z, y)u(dy).
Since {2 }n>1 is an orthonormal system of L2(K, u) and ¢ = 1, we see
that f K 99,’:’ dp = 0 for n > 2. Therefore, by the definition of pn(¢, z,y),

, ANy N —
fK pr(tz,yu(dy) = Y et (z /wn (y)u(dy) = 1.

n>1

a

Remark. As in Theorem 5.2.9, this lemma holds even if (D,r) is not a
regular harmonic structure.

Proof of Proposition 5.2.6. Let p € C{K,d) and assume that |y, =0. As
Fo is dense in {u € C(K,d) : uly, = 0} with respect to the supremum
norm, there exists {un}n>1 C Fo such that ||Ju, — ¢|lec — 0 8s 7 — o0.
Note that

”TsD‘P—' ©lloe < ”TtD(‘P' — Up)||oc + ”TtDun — tp|loo + [|2n = @lloc-
(5.2.5)
On the other hand, by Lemnma 5.2.10,

(TP (ur = 2))(@)] < PG [ ][tn — #lloo < Ntn — @0

Hence ||TP(un — ¥)llooc < |[tn — ¢|loc- Combining this with (5.2.5), we
obtain

”TtD‘P — @Plloc < 2[|un - ¥l + ”TtD'un — Un||oo-

By Lemma 5.2.7, it follows that ||TPu, — up||lec — 0 as t — 0. Therefore,
using a routine argument, it follows that ||[T,° o — ¢||oc — 0 as t — 0.
We can repeat exactly the same argument in the Neumann case. O

Remark. The key element of the above proof is that [|T2||e < ||¢||eo for

any ¢ € C(K,d). Even if (D,r) is not a regular harmonic structure, this
follows from Proposition B.3.6, which is a consequence of Theorem B.3.4.

Using Theoremn 5.2.9, we obtain the following corollary of Theorem 5.2.5.
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Corollary 5.2.11. Let (D,r) be regular. For any u € C(K,d), TPu con-
verges to v uniformly on compacts in K\Vy ast | 0.

To prove this corollary, we need the following lemma.

Lemma 5.2.12. Let U be a closed subset of (K,d) and let v € C(K,d).
If supp(u) N = 0, then TPu converges to 0 uniformly on U ast | 0.

Proof. First assume that u is non-negative on X. Then, by Theorem 5.2.9,
(TN u)(x) > (TPu)(z) > 0 for any r € K. Theorem 5.2.5 implies that
TNy — 0 uniformly on U ast | 0. Therefore, T2+ — 0 uniformly on U as
t | 0. For general u, let u, (z) = max{u(z),0} and ¥-(z) = — min{u(z),0}
for any x € K. Then u = u; — u_ and supp(u4+)NU = supp(u_)NU = 0.
So the general case follows on applying the result on non-negative u to u,
and u_. a

Proof of Corollary 5.2.11. Let U be any compact subset of K contained in
K\Vy. Define tn, = oy, w(x)v™. Then supp(um)NU = 0 for sufficiently
large m. By Lemma 5.2.12, TPu,, — 0 uniformly on U ast | 0. Now
TPu = TP(u — un) + TPu,,. By Theorem 5.2.5, TP(u — um) = U — up
uniformly on K as t | 0. Since u,(z) = 0 on U, we see that TPu — u
uniformly on U as t | 0. O

Using Corollary 5.2.11, we obtain an explicit expression for the differ-
ence py(t,xz,y) — pp(t,z,y), which was shown to be non-negative in The-
orem 5.2.9. Recall that p‘b’(y) = pp(t,z,y). Note that pp(¢,z,y) > 0 and
po(t,z,y) =0if x € Vp or y € V. Hence it follows that (dpt['f)q < 0 for
any g € V.

Theorem 5.2.13. Let (D, r) be regular.
(1) For anyzx,y€ K\Vy andt >0,

¢
pN(t$xs y) - p[_)(t, I, y) == Z </0‘ pN(t -8, q)(dey)qu1
9V

where f(; pn(t — s,z,q)(dppY)ods means, in fact, the following limit:

{—e
liu(x)./ pN(t — s,x,¢)(dppY)qds.

€—e

(2) For any q € Vg, any z € K\Vy and any ¢t > 0,
:
| pott.z sty = vo(e) - (- [ piseds)

where [, (dp}”)eds means lim,_q [ (dp}~)qds.
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Proof. First we prove (1). Using the Gauss-Green's formula, we obtain
(T (pp ")) = (TP (5N
= [ pwtt - sz, 2)ep(s, 2 hpld)],

t—¢ a
=/ ([K (-p_.\,-(t—-s,:n.z) gtD (s.z,y)

Bpt\ ——(t — 8,7, 2)pp(s. 2.y)) n(dz)) ds

¢
Zf v(t — s.x,q)(dp3Y )qds.

<V

Applying Theorem 5.2.5 and Corollary 5.2.11,
(TcN(p y))[.c - (Tn(p‘ “ r]){y) - pD(tv T, Y) ~ p,\'(t,.'l', )

as ¢ | 0. Thus we have shown (1).
For (2), by the Gauss—Green's formula,

/K Ba (2N DWDE") (2 Iu(d2) = (dpis™)s-

By integrating this,

t
- [, = (@Pp@) - (TPo)).
€
Applying Corollary 5.2.11, we can immediately obtain (2). O

Summing the ecqualities in Theorem 5.2.13-(2) for all ¢ € Vj, we obtain
the following corollary.

Corollary 5.2.14. Let (D,r) be regular. Then for any x € K\Vy and any
t >0,

57l = [ polt.cpuin) =1~ (- ] (dpsF)ads).

q<Vy

5.3 Asymptotic behavior of the heat kernels

In this section, we will study asymptotic behavior of the heat kernel
po(t,z.y) as t | 0. Recall that v is the self-similar measure with weight
((uir:)¥5/2);c s, where ds is the spectral exponent defined in (4.1.2). Let
6 = 8(v,p) and & = §(v, p), where (v, ;1) and (v, 1) are defined in Propo-
sition 4.5.2.



172 Heat Kernels
Theorem 5.3.1. (1) For b= D,N, there exists ¢c; > 0 such that

sup pu(t,z,y) < clt‘dsx/2 (5.3.1)
z,yeK

for any t € (0,1].
(2) There exists c; > 0 such that

cot~9s8/2 < pn(t, z,x) (5.3.2)
forany t € (0,1] and any z € K.
The following corollary is immediate.

Corollary 5.3.2. If u; = v, for any i € S, then there exist positive con-
stants ¢; and ¢y such that

cat™%"2 < p(t,z,7) < ert795/2
for anyt € (0,1] and z € K.

Since v; = (uir;)%/2, we see that u, = v, for any i € S if and only if the
harmonic structure (D, r) is regular and p; = (r;)%¥ for any i € S, where
dy is defined by (4.2.1). By Theorem 4.2.1, ds = 2dg/(dy + 1). Also, in
such a case, the spectral dimension of (K, R), ds(K, R) equals dg(u). See
(4.2.3).

First, we prove the upper bound (Theorem 5.3.1-(1)) through the follow-
ing Nash inequality (5.3.3).

Theorem 5.3.3. Let 8 = dgé. Then there ezxists ¢ > 0 such that
Ilellz"° < e(€uu) + Il ell”® (5.3.3)
for any f € F.
Lemma 5.3.4. There exists ¢ > 0 such that
[ull3 < e(E(u,u) +|lull?)
foranyu e F.

Proof. Letting m = 0 in (3.4.2), we see that there exists ¢; > 0 such that

|l — uo|l2 < e1v/E(u — ug, u — uo)

for any u € F, where ug = EPEVO u(p)Yp- Also, since the dimension of
the space of harmonic functions is finite, there exists c; > 0 such that
lluo|l2 < calluo||1 for any u € F. Also note that ||ully < ||u||z for any
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v € L?(K, ) and that £(u,u) = £(u — ug, u — up) + &£(up, ug). Combining
those inequalities, we obtain

lfullz € ezlluolls + €1 vV/E(u — ug,u — ug)
< ea(llull + flu = uolli) + e1 v/ E(u — ug, u — ug)
< collufly + (cre2 + €1) VE(u — ug, u - ug)

< eglluf|s + esVE(u,u),

where e3 = max{cz, c1cz + c1}. This implies the desired inequality. O

Proof of Theorem 5.3.8. Let A be a partition of £. Then, Lemma 5.3.4
along with the self-similarity of » and £ implies that

”’“ll%‘: Zﬂw/}('“onlzdP

weA

<) tu(€(wo Fu,uoFy) + |luc Fyll?)
wEA

<e Y (ore)ro ' E(uo Fyuo Fy) +¢ Y uw‘l(uw/ luo Fy|du)’
weA ;EA K
. -1
< e(max pury)é(u, u) + c{min p,) |[us]]7

Let A = A(v, A), which is defined in Definition 4.5.1. Then, by Proposi-
tion 4.5.2,

[el2 <€ A4S E(u, u) + A8 |u]|? (5.3.4)

for any u € F and any A € (0,1).
Now, suppose that £(u,u) > ||u||? and choose A so that A2/ds+é =
||u||3/€(u, ). Then, by (5.3.4),

24+4/0 4/0
llul |34 < ¢ & (u, u)|[u]lY

for any u € F. This implies (5.3.3).
If £(u,u) < ||u||?, then, by Lemma 5.3.4, it follows that

llull3 < (€, u) + ||ull3) < 2¢]|u|l3-
Obviously this suffices for proving (5.3.3) in this case. O

Proof of Theorem 5.3.1-(1). By Theorems 5.3.3 and B.3.7, we know that
there exists ¢ > 0 such that |[T?|l1—c0 < ct=%/2 for ¢t € (0,1]. Since
1T 10 = Sup, ,e i Po(t, T, y), we can immediately verify (5.3.1). O

Now we show Proposition 5.1.10-(2). First, recall that g("')(:z:,y) is a
continuous function for m > dgé/2 by Corollary 3.6.6.
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Lemma 5.3.5. Let m > dsb/2. Then, for any z,y € K,

(m) ! * 1
g (Z, y) = F(fn)/[; t pD(t7x1 y)dtl

where T is the gamma function defined by T'(s) = fo s-le—Zdr,

Proof. Note that AP > 0. Applying Lemmas 5.1.3 and 5.1.4 to the infinite
sum Y-, o, e~ = -XE), P (x)pP(y), we see that

sup e 'pp(t,z,y) < o0
(t.x.y)E[l,c)xKxK
Moreover, by Theorem 5.3.1-(1), supz'yextm”lpp(t,:c, y) < ct=ds8/2-14m
for t € (0,1]. Therefore, if

F(t) = ¢ g L= APt fort > 1,
p=dsd/2-1+m  foro <t <1,

for sufficiently large ¢ > 0, then [~ F(t)dt < oo and t™~!pp(¢,z,y) < F(t)
for any (t,z.y) € (0,00)x K xK. If h(z,y) = T(m)~" [;° t™ 'pp(t, <, y)dt,
then Lebesgue’s convergence theorem implies that h(z,y) is continuous on
K x K. Now, by Fubini’s theoremn and the definition of g™,

/ h(z.y)e? W)a(dy) = ¢2/(AE)™ = /K 0™ (2, )02 (w)uldy)

for any n > 1. As both ¢‘™) and 4 are continuous on K x K, it follows
that g™ (i, y) = h(x,y) for any x,y € K. O

Proof of Proposition 5.1.10-(2). Assume that z and y belong to the same
connected component of K\V,. Let m > dsé/2. Then, by Corollary 3.6.7,
g™ (r,y) > 0. Hence, Lemma 5.3.5 implies that pp(t,z,y) > 0 for some
t > 0. and in particular that pp(t,«,x) > 0. This means that 2(x)2 >0
for some n > 1. Therefore we have that pp(t,z,x2) > 0 for any ¢ > 0. We
have therefore proved the following.
(i) pp(t,x.y) > 0 for some ¢t > 0.
(i1} pp(t,x.x) > 0 for any (t,x) € (0,00) x K\ Vy.

Using these, we can repeat the same argument as in the proof of the
Necumann casc after Step 2 to deduce the desired conclusion. O

Next we prove the lower estimate, Theorem 5.3.1-(2).

Definition 5.3.6. Let A be a partition of £ and let A be a subset of K.
Write
(1) Aa={w:we A K,NA#0B}
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(2) I_VA(A) = UwEAAKw-

(3) Aa =An,(a)\Aa.

(4) Ua(A) = Na(Na(4)). )
(5) QUA(A) = Ua(A) N K\Up(A).

For z € K, we use A;, Na(x) and so on instead of Ay}, Na({z}), etc.

Now let us choose m so that {K,, ,}.ev, are mutually disjoint. (Note
that K, p = Nw,..(p).) Set Ko = K\ Upevy Kmp. Then Ky is a non-empty
compact subset of K. Also define 0Ky by 0Ky = Ko N (Upev, Km,p). Note
that if p,¢g € Vb and p # ¢, then p and ¢ belong to different connected
components of K\93Kj.

Lemma 5.3.7. Fort > 0, define
g(t) = inf / pp(t, z.y)u(dy).
z€Kg K

Then q(t) > 0 for any t > 0 and g(-) is monotonically non-increasing.

Proof. Let u(t,z) = [, pp(t,z,y)u(dy). Then u(t,z) is continuous on
(0,00) x K. By Proposition 5.1.10, we also see that u(¢,z) > 0 for any
z € Kp. Since Kj is compact, it follows that ¢(t) = inf, ¢k, u(t,x) > 0.
Since T2 ,p}” = py° for t > s, Proposition B.3.6 implies that u(s,x) =
P57 = lIp%’Ih = u(t,z). (This can be deduced from Lemma 5.2.10
as well.) Hence, u(t,z) is a monotonically non-increasing function of t.
Therefore g(-) is monotonically non-increasing,. ||

To prove Theorem 5.3.1-(2), we also need results from A.2, where we
study general boundary conditions. Let B be a finite subset of V.. By
Theorem A.2.1, if

Fp={u€F:ulg=0}

then (£, Fp) is a local regular Dirichlet form on L?(K\B,u). As u(B) =0,
L?(K\B, u) can be identified with L?(K,pu). If B = @, then Fg = F and
this is just Theorem 3.4.6. Also, if B = Vj, then this is Corollary 3.4.7. Ex-
actly the same way as for py(t, z,y), we can define the heat kernel associated
with (£, Fp) and u, which is denoted by pg(t,x,y). See Definition A.2.12
for details. For example, the Neumann heat kernel py (¢, x.y) coincides
with py(¢, r,y) and the Dirichlet heat kernel coincides with py;, (t, z. y)-
Let A be a partition of £. We define py(¢.z,y) = py(a)(t. 7, y).
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Lemma 5.3.8.

1 - -1 ; =A, =
pA(t,x,y)={Swpn(t/(“‘"r’”)’F"’ Y(z), Fu ™ () i’f:’rim‘\z Ay,

Proof. Let Hj be the non-negative self-adjoint operator on L2(K,u) as-
sociated with the closed form (£, Fg), where B = V(A). Then, the same
argument as in the proof of Lemma 4.1.9 implies that Hyu = Au if and only
if Hp(uoFy,) = pyrwA(ucFy) for any w € A. Comparing Definition A.2.12
with (5.1.1), we immediately obtain this lemma. O

For z € K, we define pj z(, 2,y) = Pova (=) (¢, 2,¥)-

Lemma 5.3.9.

/ PAz(t, T, y)u(dy) > min  inf / PA(t, z, y)u(dy).
Ua(z) weA, 2€Fw(Ko) JK

We will give an analytical proof of this lemma. However, so far, the proof
works only when the harmonic structure is regular. Using probabilistic

methods, we may prove this lemma even if the harmonic structure is not
regular. See A.3 for details.

Proof. Assume that (D,r) is regular. Let A = U3 Fuw(0Ko) and let
B = AUQ8UA(z). Then for any q € 8Up(z), x and ¢ belong to different
connected components of K\A. Hence, by Theorem A.2.19, there exists a
neighborhood, U, of ¢ € 8Uj(z) such that pg(t,z,y) = 0 for any y € U.
This implies that (dp3”); = 0 for any ¢ € 8Ux(x) and any s > 0.

Since A 2 8Ux(x), by Theorem A.2.16,

pA(t’ 2, y) < pA,:l:(t’ 2, y)

for any ¢ > 0 and any z,y € K. Also note that, for any z € K, ||p§;’||1 is
monotonically decreasing and is no greater that 1 for any ¢ > 0. Combin-
ing those facts with Theorem A.2.18 and (A.2.10), we have the following
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assertion.
/K PAz(t, , y)u(dy)
= / pa(t z,y)u(dy) + / (Pa.z(t,z,y) — pa(t, T,y))u(dy)

~1-% / (~dplYeds + 3 / | Pt = 0. puldy)(ds")ods

qgebB qEA

>1—Z/( dp )qd.s+Z/ / Pa(t = 8,0, )u(dy)(—dpy™)ods

geA gEA

>1+ ) ( /p,x(t g, y)u(dy) - 1) /( dp”)qed

qeA

>1+(mm/ pa(t, ¢, Y)uldy) - 1) Z[( dpg”)eds.

gEA

By (A2.10),0< 3 s Jo(—dp®)eds < 1. Hence

/ PAz(t, T, y)u(dy) > rmn / pa(t, ¢, y)u(dy).

Since pa (¢, z,y) = 0 if y € Us(x), we obtain the desired inequality. [J

Proposition 5.3.10. There exists ¢ > 0 such that

t
q( 2

)" <e¢( max p,)pn(2t,z,z) (5.3.5)
for any r € K and any partition A.

minwe"&! I-Lw'rw e'\(NA( )]

Proof. By Lemma 5.3.8,
[ palt, z,y)u(dy) = [ (1) P0 (t/ (), Fo=(2), Fu ™ (4))e(d)
K Ko
- /K Pt (trw), Fu ™ (2), 0)isldly) 2 9t/ (ra))

for any z € F,,(Kp). Also, by Theorem A.2.16, it follows that

/ pn(t, z,y)u(dy) > / PAz(t, T, y)u(dy).
UA(.'I:) UA[:I:)

Therefore, Lemma 5.3.9 along with Lemma 5.3.7 implies that

i ¢
/U ) p(t,z,y)u(dy) 2 min gt/(pura)) 2 q(minwe:\, “wrw). (5.3.6)
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On the other hand, by Schwarz’s inequality, it follows that
( /:, . )P.«'(L:c,y)u(dy))z < w{Ua(z)) /’ { p(t, x,y)%u(dy).

Now by a similar argument to the one in the proof of Lemma 4.2.3, we
can see that there exists ¢ > 0 such that #(An,(;)) < c for any = €
K and any partition A. Also, by Proposition 5.1.2-(5), we obtain that
S pu(tz )2 u(dy) = px(2t.z, r). Cowbining those facts with (5.3.6), we
obtain (5.3.5). O

Proof of Theorem 5.3.1-(2). Since ¢(-) is monotonically non-increasing,
Proposition 5.3.10 implies that
t
MilyeA PuTw

for any x € K and any partition A. Let A = A(v,)) and let t =
MiNyeA BuTe/2. Then we have

)2 < c{max p, )p(2t, z, x)
weA

Q(1/2)2 < ('-}-"(’\ - Y, ﬂ')pN( min_ Ly T, X)
weEA(¥,A)

for any € K and any A > 0. Using Proposition 4.5.2, we sce that there
exists ¢ > 0 such that ¢ < s95¢/2py(s,z,x) for any z € K and any
s> 0. O

Notes and references

In [20], Barlow & Perkins studied the heat kernel associated with Brow-
nian motion on the Sierpinski gasket, which is the Neumann heat kernel
associated with the standard Laplacian in our context. They obtained a
uniform off-diagonal (Aronson-type) estimate,

ait™ /2 exp (- ea(lz - yi®= /) "N) < py(t,z.p)
< eat™43 % exp ( — ca(|z — y| /)10 1),

where we think that the Sierpinski gasket is embedded in R2, dg =
log9/log 5 is the spectral dimension and d, = log5/log?2 is the walk di-
mension. This result was extended to nested fractals by Kumagai in [99]
and then to affine nested fractals by Fitzsimmons, Hambly & Kumagai in
[37] as follows. Let K be an affine nested fractal. Let (D,r) be the har-
monic structure on K obtained in Theorem 3.8.10. Suppose that (D,r)
is regular. Also let g = u, be the self-similar measure defined in Theo-
rem 4.2.1. Recall that (r;ju;)%/2 = u; and that dg = 2dy /(dy + 1), where
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dy = dimy(K, R). Let pn(t,x,y) be the Neumann heat kernel associated
with (D, r) and ;2. Then there exist constants ¢; such that

, Riz., 9)4 =1 1t
(:M"‘S’uexl)(—cfz( £ !;) )thu ”)SPN(t«i',y)

< ezt~ 2 exp ( — eq( Az, gy )1/(4.,,—1 >)
l
for any (t,x,y) € (0,1] x K x K, where d,, is the walk dimension with
respect to the shortest path metric. See [99] and [37] for the definition of
the shortest path metric. The Aronson-type estimate above is obtained by
a probabilistic approach. In [6], one can find a good presentation of the
probabilistic methods including the proof of the estimate above.

In [60], Hambly and Kumagai have shown that a uniform off-diagonal
estimate as above fails without the strong symmetry that affine nested
fractals possess. Moreover, if u # pu., then limgglogpn(t, z,z)/logt de-
pends sensitively on z and exhibits multi-fractal nature. See [19] and [58].
For example, by those results, it follows that the heat kernel estimates in
Theorem 5.3.1 are best possible. Specifically, define

d(x) = —2lim inf log piv 2, 7, )
ti0 logt

for any x € K. Replacing the limit infimum by the limit supremum, we
also define d(z). Then

dsd = inf d(zx) < sup d(z) = dgé.
reK zeK

Note that Proposition 5.3.10 essentially suffices to show that sup ¢ 4 d(z) =
ds$.

5.1 The cxpression of the heat kernel by using the eigenfunctions of the
Laplacian has been known in many places. See, for example, {6, Theorem
3.44]. The proof of the positivity of the heat kernel, Proposition 5.1.10, is
essentially based on that in [14].

5.3 The essential idea in proving the upper estimate of the heat kernel,
Theorem 5.3.1-(1), is the use of the Nash inequality. This idea is origi-
nally used in {37] in proving the counterpart of Theorem 5.3.1-(1) for the
symmetric Laplacian (corresponding to the harmonic structures obtained
in Theorem 3.8.10) on an affine nested fractal. See also [6, Theorem 8.3].



Appendix A
Additional Facts

A.1 Second eigenvalue of A;

Let (D, r) be a harmonic structure on a connected p. c. f. self-similar struc-
ture (K, S, {Fi}ies), where S = {1,2,... ,N} and r = (ry,ra,...,ry). In
this section, we study the eigenvalues of A;, which were defined in (3.2.2).
Recall (3.2.3). We have

Aiuly, = ulp v

for any harmonic function v and any i € S. So the matrices {A;}ics
completely determine the structure of harmonic functions. The following
proposition follows easily from (3.2.3).

Proposition A.1.1. If k is an eigenvalue of A;, then |k| < 1. Moreover,
if |k| =1 then k =1 and A;u = u if and only if u is a constant on Vj.

We will focus on the second eigenvalue of A; in the rest of this section.
It has been suggested in Example 3.2.6 that the second eigenvalue of A;
equals the resistance scaling ratio r;. We will show that this is true under
some assumptions. Indeed, Strichartz [175] has proved that if K\Vp is
connected, then this is true. In this section, we will give a complete answer
in the general case.

By the proposition above, if we set

A = max{|k| : k| < 1,k is an eigenvalue of A;},

then \; < 1.
For U C K, define

m(U) = the number of connected components of K\U.
U is said to be a non-focal set if m(U) = 1. If U = {p} for p € K, we use
m(p) instead of m({p}). We say that p is a focal point if m(p) > 2.

180
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Now let p be the fixed point of F, for some i. Then, by Proposition 1.6.7,
m(p) < #(Vo). Let {J;};=1.....m(p) be the collection of all connected com-
ponents of K\{p}. Then, again by Proposition 1.6.7, there exists a permu-
tation of {1,... ,m(p)}, 7, such that F;(J,) = K; N J,(;). Define k(p) by
k(p) = min{k : 7% = e}, where e is the identity.

The following is the main result on the second eigenvalue of A,, which
includes information on corresponding eigenvectors and multiplicity of the
eigenvalue as well.

Theorem A.1.2. Let p be the fixed point of F;.

(1) If p € Vp, then A\, = r; and r, is an eigenvalue of A,. There ezists a
non-negative (non-trivial) eigenvector of A; belonging to the eigenvalue ;.
Also, r:*P) is the unique eigenvalue of A,*®) whose absolute value equals
A*P) and

dim E(r'k(p)' Aik(p)) = m(p)s

where E(k, A) = {u € £(Vp) : Au = ku} for any linear map A : £(Vp) —
(Vo).

(2) Assume p € V. If p is non-focal point, then \; < r,. If p is a focal
point, then \; = r; and dimE(rf(p), AP =m(p) - 1.

Remark. In the case (1) of this theorem, one may obtain that dim E(r;, A,)
equals the number of orbits of the action of 7. Specifically, let = be the
permutation appearing in the definition of k(p). We write i ~ j for i,j €
{1,... ,m(p)} if and only if there exists | € N such that 7'({) = j. Then ~
is an equivalence relation on {1,... ,m(p)}. Each equivalence class of ~ is
called an orbit of the action of 7. So, what we mean is

dim E(r;, A,) = #({1,... ,m(p)}/~).

Corollary A.1.3. Let p be the fized point of F;. If p € Vi and p i3 a non-
focal point, then A, = r, and r, is the unique eigenvalue of A; whose absolute
value is A,. Moreover, dim E(r,, A;) =1 and there exists u € E(r;, A,) that

satisfies u(q) > 0 if q¢ # p and u(p) = 0.

To prove the above theorem, we need several lemmas. In the following
lemmas, we assume that p = F,(p) € V.

Lemma A.1.4. For any m > 0 and any u € £(V}),
(D(A; - kI)™u)(p) = (r. — k)™ (Du)(p),
where I is the identity matriz.
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Proof. Let u be a harmonic function on K. By the definitions of H,,
and Ai, (Hmu)(p) = (r:)"™(D(A:i)™u)(p)- Also (Hnu)(p) = (Du)(p) =
—(du),. Hence r;y"(Du)(p) = (D(A;)™u)(p). This immediately implies
the lemna. O

By this lemina, we can immediately obtain
Lemma A.1.5. If A;u = ku for u € é(Vp) and (Du)(p) # 0, then k = r;.

Lemma A.1.6. Suppose that A;u = ku for u € £(Vy) and that u(p) # 0.
Then u is a constant on Vy and k = 1.

Proof. As p is a fixed point of F;, we have (A;u)(p) = u(p). Hence, by
Proposition A.1.1, if u(p) # 0 then £ =1 and u i3 a constant on Vj. a

Recall the notion of an H,,-path defined in Definition 3.2.9.
Lemma A.1.7. Define
Un.a = {y € Vi) : there exists an H,,-path between\:l: and y}

for x € V.. Suppose Fo.(q) € V,,\Vp for q € Vp and w € W Then
(Aw)gq. >0 for q. € Vp if and only if q. € Uy, £, ()

Using Lemma 3.2.13, we see that if & € Vi \Vo, then Uy » = Vo nC,
where C' is the connected component of K\Vj containing g.

Proof. Let C be the connected component of K'\Vj containing Fy;(¢). Then
U (q) = CNVg. Hence, by Theorem 3.2.14, if u is a harmonic function,
then u(Fy,(q)) is determined by u|¢,, ,. ..,- Since (Apu)(q) = u(Fu(q)), we
can verify the claimn of this lemima. O

We also assume that F;(p) = p € Vj in the following three lemmas.

Lemma A.1.8. Set Up = {q: g € Vo,Dpq > 0}. Then, for sufficiently
large m, Uy, o C Uy, U {p} for any g € F;™ (Vo).

Proof. Choose m so that F;”*(Vo)NVy = {p}. Thenp € U, 4if g € F;™ (Vo)
and ¢ # p. lf p. € U, , and p, # p, then combining two H,,,-paths between
p. and g and between ¢ and p, we see that p, € U,, p. By Theorem 3.2.11
and Lemma 3.2.13, it follows that U, , C Up. O

By Theorem 3.2.11, we obtain the following,.

Lemma A.1.9. p is a non-focal point if and only if, for any q1,q: €

Vo\{p}, there exists {p;}i=12....m C Vo\{p} such that p\ = q1, P = @2
and Dpp,,, #0 fori=1,2,... m— 1.
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Lemma A.1.10. If p is a non-focal point, then for sufficiently large m,
Um.q = Up U {p} for any g € ;™ (Vo)\{p}.

Proof. Choose m so that ;" (V,) NV, = {p}. If g € F;"™(V,) and q # p.
then ¢ € V,,\Vo. Hence. by Lemma 3.2.13, U, = Vo N C, where C
is the connected component of K\V, containing ¢. Since there exists an
H,,-path between ¢ and p, Lemma 3.2.13 implies that p € C. Now, by
Proposition 1.6.8-(3), #(C(p, Vb)) = m(p) = L. Therefore C(p, Vp) = {C}.
Hence, by Theorem 3.2.11, we see that U, U {p} = V,NC. O

Proof of Theorem A.1.2. First assume that p € V. Let U = {u € #(V}) :
u(p) = 0}. We identify U as £(Vp\{p}). Note that AU C U. Set B; =
Aily. Then, by Lemma A.1.6, the maximum of the absolute value of the
eigenvalues of B; equals A;. Now, B, is a non-negative matrix (i.e., (B,)pq >
0). Hence, by the Perron-Frobenius Theorem, A; is an eigenvalue of B;
and there exists a non-negative (non-trivial) eigenvector v belonging to the
eigenvalue \;. By Lemma A.1.7 and Lernma A.1.8. we see that (A;")q,. =
0 for ¢. € Z,,, where Z, = Vp\(U, U {p}). Hence, A;™ is expressed by

1 0 0O
Am=1*x Cn 0]. (A.1.1)
* D, 0
where By, : éU,) — &U,) and Cp, : {(U,) — €(Z,) are non-negative
matrices. Hence,
m __ C"’l 0
B,™ = (Dm 0) : (A.1.2)

Note that Cr,u = ku for u € ¢(U,) and k& # 0 if and only if B"v = kv,
where v € £(V,UZ,) is defined by v|y, = u and v|z, = £ Dmu. Now, if v is
the non-negative (non-trivial) eigenvector of B, belouging to the eigenvalue
Ai, then v|yy, # 0. Hence (Dv)(p) = quu, Dy,v(q) > 0. By Lemma A.L.5,
we see that A,‘ =Ty

Next assume that p is a non-focal point. Then, by Lemma A.1.10,
(Ai™)gq. > O for q, € Up U {p} and g € Vp\{p}. Therefore Cy,, and
D,, in (A.1.1) are strongly positive matrices. Hence the Perron-Frobhenius
theorem implies that if £ is an eigenvalue of C,, and |k| = r®, then k = [
and dim E(r;”*, A;”") = 1. Since this holds for sufficiently large m, we
deduce that if k is an eigenvalue of A; with |k| = r;, then k = r; and
dim E(Ti, A,) = 1.

Next suppose m(p) > 1. Let {J;},=1.2....m(p) be the connected compo-
nents of K\{p} and define I; = J;NV,, U} = U, NI and Z) = Z, N I
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for any j = 1,2,...,m(p). By Proposition 1.6.7, I; # @ for any j =
1,2,... ,m(p). In fact, U] # 0. By analogy with Lemma A.1.10, it follows
that Ukpym,q = UU{p} for ¢ € F;*(P™(1;) for sufficiently large m. Hence,

Bni 0 0 c .
k(p)m — ., R , — maj
B; 0 . 0 and By, ; ( Dy 4 0) ’

~

0 0 Bm,m(p)

where By, ; : £(I;) — &(I;), C t(U-" — €(U’) and Dy, ; : £(Ug) —
€(Z}) are strongly positive for any 1=12,. m(p) Applying the same
discussion as in the non-focal case to Em ,j» we see that if k is an eigenvalue
of By j with |k| = 7;*®)™ then k = r*®™ and dim E(r*®)™, B, ;) =1
for all j. Hence, if k is an eigenvalue of B;*®P)™ with |k] = r;¥(®™ then
k = r® and dim E(r;*®)™, B;¥(P) = m(p). Since this holds for
sufficiently large m, it follows that if k& is an eigenvalue of A;*P) with
|k| = r;¥(P), then k = ri*(®} and dim E(r;*®, 4,5P)) = m(p).

Next, suppose p ¢ Vo. Define Vo =VoU {p} and V = UweW,, ! F,(Vp).
Then Vi, C Viy1 for any m > 0. There exists a Laplacian H,, on V,, such
that

Eg (u,u) = min{€(v,v) : v € F,v|;, = u}

forany u € l’(f/m). We write D = Hy. Then the Vy-harmonic function with
boundary value p € £(Vp) is the unique u € F with u|y = p that attains
the following minimum:

min{&(u,u) : u € F,uly, = p}.
In this case, also, there exists A; : £(Vy) — £(V,) such that
uIF"(‘.’o) = Aiul‘:’o’

where we identify €(F;(Vp)) with £(Vp) through the one-to-one mapping F;.
Ngte that a Vp-harmonic function u is a harmonic function if and only if
(Du)(p) = 0. Hence, for any & and n,

E(k,A;") = {u]y, : u € E(k, A™), (Du)(p) = 0}. (A.1.3)

Therefore, if A; is the maximum of the second largest absolute value of the
eigenvalues of A;, then \; > ;.

We can apply exactly the same arguments for A; as for A;, and get
analogous results. So if p is non-focal, then r; is the unique eigenvalue of
A; whose absolute value is A; and dim E(r;, A;) = 1. Also, we can choose
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a non-negative generator of E(r.-,.i,-) that satisfies (Du)(p) > 0. Hence,
there is no eigenvalue of A; whose absolute value equals ;. Hence \; < r;.

Next, if p is a focal point, it follows that dim E(ri*®), A;*®)) = m(p). By
(A.1.3), dim E(r;*(®), A;*(P)) = 7n(p)—1. This also implies that \; = r;. O

A.2 General boundary conditions

In Chapters 3, 4 and 5, we always think of Vp as the boundary of the
self-similar set K. This choice of a boundary is quite natural from the
topological point of view; see, for example, Proposition 1.3.5. From the
analytical point of view, however, we may choose any “small” subset of
K as a boundary and wish to extend all the results in Chapters 3, 4 and
5 to this situation. In this section, we choose an arbitrary (finite) subset
of V, as a boundary of K and present such extensions. One advantage of
such extensions is that we can unify the cases of the Dirichlet boundary
condition, which was represented by the symbol “D", and the Neumann
boundary condition, represented by the symbol “N". More precisely, in the
scheme of this section, if we choose Vp as the boundary, then we get the
statements for the Dirichlet boundary condition, and if we choose the empty
set @ as the boundary, then we get the ones for the Neumann boundary
condition.

Let £ = (K, S, {F:}ies) be a connected, p. c. f. self-similar structure and
let (D, r) be a harmonic structure on £. Also let (£, F) be the resistance
form associated with (D,r). Throughout this section, we assume that g
is a self-similar measure on K with weight (u;)ics and that u,r; < 1 for
all i € S. Let d be a distance on K which is compatible with the original
topology of K. Note that (K,d) is compact.

Let B be a finite subset of V,. We will regard B as the boundary of K
hereafter and define the Dirichlet form, the Laplacian and the heat kernel
associated with the boundary B. Most of the results in this section are
straightforward extensions of the corresponding ones in Chapters 3, 4 and
5. The proofs can be obtained by slight modifications of the original proofs.
So we only present a sketch of the proofs in this section and leave the details
to the reader.

First we introduce the Dirichlet form associated with the boundary B.
The following theorem is an extension of Theorem 3.4.6.

Theorem A.2.1. Define Fg = {u € F : ulg =0} and € = E|rgxrs-
Then (£, FgB) is a locel reqular Dirichlet form on L>(K\B,1). The cor-
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responding non-negative self-adjoint operator Hp on L*(K\B, i) has com-
pact resolvent.

Remark. Since u(B) = 0, we may naturally identify L?(K\B,u) with
L*(K,p). In this manner, we think of Hp as a self-adjoint operator on
LYK, p).

The proof of this theorem is similar to that of Theorem 3.46. If B =
@, then this theorem coincides with the Neumann boundary case, Theo-
rem 3.4.6, while if B = Vj, then this theorem coincides with the Dirichlet
boundary case, Corollary 3.4.7.

Note that if B # 0, then Hp is invertible and the inverse (Hg)™! is a
compact operator on L?(K, u). We write Gg = (Hg) 1.

Next we introduce the Laplacian associated with the boundary B.

Definition A.2.2. Define

'Df = {u € C(K,d) : there exsits ¢ € C(K,d) such that

Jim max (i p) ™ (Hm)(p) — (o) = 0

Furthermore, we define a linear operator Ag,, : 'Df —~ C(K,d) by Ap ,u =
0, where ¢ € C(K,d) is the function appearing in the definition of DZ.
Ap,, is called the Laplacian associated with B.

Lemma A.2.3. Let p € F,,(Vo) for some w € Wy,,. Define (Hp f)(p) =
(Tw) " (Hp-m(f o Fy))((Fuw) ' (p)) for any n > m. Assume that BNK,, C
F.(Vo). Then, for any f € DS,

T (o)) = ~(Hmn)@)+ [ 47 Bpufldn (A21)
Note that, for any p € V,;,,

(Hm f)(p) = Yo (Hauf)o) (A.2.2)
w:w€Wnm ,p€ Fu (W)
Hence, the quantity limp,_.oc —(Hn,wf)(P), which is denoted by (df)w p, is
a kind of directional (Neumann) derivative of f at p.

Proof. Write h = f o F,, and g = (Fy,)~'(p). Then since f € D2, we see
that k € D,. Hence, by Lemma 3.7.5,

lim ~(Heb)(@) = ~(DR)a) + [ Yobuhd
i, ;

Since (Hih)(q) = ro(Hrx4mwf)(p) for any k > 0, the above equation
immediately implies (A.2.1). O
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Choose m so that B C V,,. Then BN K,, C F,(V) for any w € W,,.
Recall (A.2.2). Then, for any p € V, and any f € D2,

n]i-nolo —(an)(p) = Z (df)w,p-

wiwe€Wn, peFu (Vo)
Definition A.2.4. For any f € DY and any p € V., define

(d)p = lim ~(Haf)(@).
(df)p is called the Neumann derivative of f at p.
By the above argument,

(df)p = > (dwp

wweEWp, peF, (Vo)
Also, we immediately obtain the following proposition.
Proposition A.2.5. Assume that B C V,, and that p € V,,. Then, for
any f € DE,

@)y = ~Hn )P+ [ 67 Bnufdn

It is casy to see that (df), = 0 if p ¢ B. Therefore, for any p € V.\B, if
B C Vn,

(Hn0)P) = [ 47 B, 0d (A23)

Conversely, if (df), = 0, (A.2.3) implies that limy, oo (m.p) " (Hm f)}(p) =

(Ap,uf)(p). Hence we have the following fact.

Proposition A.2.6. If By C B; C Vi, then D51 C D2, More precisely,
Df‘ ={ue€ Df’ : (du)p = 0 for all p € B\By }.

Ifue 'Df‘, then Ap,, u = A, u.

Next we present an extension of Theorem 3.7.8, the Gauss-Green’s for-
mula.

Proposition A.2.7. Df C F. Moreover, for anyu € F and any v € Df ,

E(u,v) = Z u(p)(dv), — /K ©Ap  vdp. (A.2.4)

pEB

The proof of this proposition is analogous to that of Theorem 3.7.8.
We also obtain the counterpart of Theorem 3.7.9.
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Theorem A.2.8. Define Dg,, by Dp,. = {u € D2 : u|g = 0}. Suppose
that B # 0. Then D, = Gp(C(K,d)) C Dom(Hg) and Ap.|lp,, =
—Hpl|pg ,. Furthermore, Hp is the Friedrichs extension of —Ap .|pg . -

Remark. If B = @, then Dg, = D, ny and Hg = Hy. So, by Theo-
rem 3.7.9, we still see that Apu|ps,, = —Hp|pg, and that Hp is the
Friedrichs extension of —Ag 4|pg .-

The key fact in proving the above theorem is the following lemma cor-
responding to Lemma 3.7.10.

Lemma A.2.9. Assume that B # 0. For any ¢ € C(K,d), Gpy € D,
and Ap ,(Ggy) = —p.

Proof. Let u = Gpgy and assurne B C Vi. Then, for any f € Fp, £(f,u) =
(fip). m > k and p € V;,\B, then y* € Fp. Therefore we obtain
EWg,u) = [ ¥ywdu. On the other hand, £(¥p',u) = En(¥p',u) =
—(Hmu)(p). Hence it follows that

(Homs)(p) = — /K ¥ od. (A.2.5)

(This equation is analogous to that of Lemma 3.6.4.) Using a similar
argument to that in the proof of Lemma 3.7.10, we see that

Jlim max ()™ (o) 9) + ()] = 0.

Let w € Wi. Define u,, = uo F,, and ¢, = p o Fy,. Then, by (A.2.5), it
follows that

(Hmuw)(P) = —Twhw L¢:¢wdﬂ

for any m > 1 and any p € V;,\Vb. Therefore, using Theorem 3.7.16, we
obtain

Uy = Z Uw (P)¥p + rwpwGupw (A.2.6)

reVo
and that uy € D, C C(K,d). Hence u € C(K,d) and therefore u € Dpg ,
and AB,u(GB‘P) = —y. O

Given this lemma, a similar argument as in the proof of Theorem 3.7.9
suffices to show Theorem A.2.8.
Using (A.2.6), we may define the Green’s function gg(z,y) as follows.
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Proposition A.2.10. Assume that B # @ and that B C V). Divide Hy
tnto four parts, and write
¢
Hy = (TB JB) ’

JB XB

where Tg : {(B) — £(B), Jp : {(B) — £(Vi\B) and Xp : {(Vi\B) —
&Vi\B). Set GY) = —(Xg)~! and define

ge(z,y) = Y. G @@+ Y rugu(z.y),

P'QGVk\B wewk
where
_ J9((Fu) =), (Fu)~*(y))  if both z and y € K,,
gw(T,y) = .
0 otherwise,

where g is the Green’s function defined in 3.5. Then, for ¢ € C(K,d), the
followring four conditions are equivalent:

(1) uw € Dp,, and A ,u =y,

(2) u= —-GBgey,

() u(z) = — [ 98(x,v)e(y)du for any r € K,

(4) u € Fg and, for any m > k and any p € V,,\B,

(Hmu)(p) = /K Yy pdp.
gB 18 called the Green’s function associated with the boundary B.

Remark. The original Green's function g equals gy, .

Using Lemma A.2.9 and Proposition A.2.10, we can prove Theorem A.2.8
by arguments similar to those in the proof of Theorem 3.7.9.

Next, we discuss the eigenvalues and the eigenfunctions of Ap,. By
Proposition A.2.10, we can verify the counterpart of Corollary 3.6.6, which
was the key fact in proving Proposition 4.1.2. So, in the same manner, we
may obtain the following statement corresponding to Proposition 4.1.2.

Propasition A.2.11. For A € R, define Eg(A) = {¢ € Dp, : Apu =
—Ap}. Then the following three conditions are eguivalent.

(1) ¢ € Dom(Hpg) and Hgyp = Ap,

(2) v € FB and E(p,u) = —A(p,u), for any u € Fp.

(3) ¢ € Eg(A).

Combining this proposition with the fact that Hg has compact resolvent,
we see that there exist a complete orthonormal system {¢2}:>, of L*(K, u)
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and a sequence of non-negative numbers, {/\, }i>1, such that A < ,\,,H
for every i > 1, lim, ..o A2 = 0o and p? € Eg(A\P) for every i > 1.
So, if we define the eigenvalue counting function of AB,,,, pa(z,p), by
pa(z, 1) = ) yc,dim Eg(}), then pp(z, p) = #{n : A B < z}. Note that

po(x, 1) = pn(z, ) and py, (z, ) = pp(a, p).
Since g C F, Corollary 4.1.8 implies that

pn(z, 1) — #(B) < pp(z, 1) < pn(z, ).

Therefore, the asymptotic behavior of pg(z, ) as £ — co turns out to be

exactly the same as that of py(z, 4). More precisely, replacing py(z, u4) by

pp(z, 1), we can immediately verify all the statements of Theorem 4.1.5.
Finally, we discuss the heat kernel associated with the Laplacian Apg ,,.

Definition A.2.12. We define the heat kernel associated with the Lapla-
cian Apg , by

pB(t,:l?, y) = Z e—l,‘,’t"of(x)"of (y)

n>1

Note that the Neumann heat kernel py (¢, z,y) equals pp(¢, z, y) and the
Dirichlet heat kernel pp(t, z,y) equals py, (¢, z,y). Since we have the coun-
terpart of Lemma 5.1.3 for Ag,,, which is shown by Theorem 4.1.5, it
follows that pg(t, z,y) is a non-negative, continuous function on {0, co) x
K x K, like the Neumann and Dirichlet heat kernels. Moreover, replac-
ing ps(t,z,y), &, and Dy, by pp(t,z,y), Ap,, and Dp, respectively, we
can verify Propositions 5.1.2 and 5.1.5. Also define the heat semigroup
{T8}e>0 by

(TBu)(z) = /K pa(t,z, y)uly)u(dy)

for u € L'(K,u). Then we immediately have the counterpart of The-
orem 5.1.7 by using exactly the same arguments as in the proof of the
original theorem.

Definition A.2.13. (1) Let v : (0,00) x K — R. For any ¢ > 0, define
u : K — R by u(z) = u(t,z) forany z € K. If u; € DZ for all ¢t > 0,
u(-,z) € C'((0,00)) for all z € K and
Ju(t,
o0 = (Apuu)(2) (A27)
holds for any (t,z) € (0,00) x K, then u is called a solution of the heat
equation (A.2.7) (associated with the Laplacian Apg ) on (0, 00).
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(2) Let u: [0,00) x K. For ¢ > 0, define u, exactly the same as above. u
is called an L°°-solution of the heat equation (A.2.7) (associated with the
Laplacian Ag ) on [0, 00) if u is a solution of the heat equation (A.2.7) on
(0, 00) and u is continuous on [0,00) x K.

Remark. Suppose that u is a solution of the heat equation (A.2.7) on
(0,00). Then u is an L®-solution of the heat equation (A.2.7) if and only
if ||u, — uglloo = 0 ast | 0.

The next theorem is the counterpart of Corollary 5.1.9 and Theorem 5.2.5
describing the relation between the heat semigroup and solutions of the heat
equation.

Theorem A.2.14. (1) Let ¢ € L?(K,u). Define u(t,x) = (TPu)(z) for
all (t,z) € (0,00) x K. Then u is the unique solution of the heat equation
(A.2.7) on (0, 00) with

1}{{,‘”"‘* —9lle=0 andw|g =0 foranyt>0.

(2) Suppose (D,r) is a regular harmonic structure. Let ¢ € {f € C(K,d) :
fls = 0}. Define u(t,z) = (TBu)(x) for any (t,z) € (0,00) x K and
©(0,z) = ¢(z) for any = € K. Then u is the unique L*-solution of the
heat equation (A.2.7) on [0,00) with w|g =0 for allt > 0 and up = .

From this theorem, the heat kernel pg(¢, x,y) may be thought of as the
fundamental solution of the heat equation (A.2.7).

We can prove Theorem A.2.14-(1) by using the counterpart of Theo-
rem 5.1.7. We need the following version of parabolic maximum principle
to show Theorem A.2.14-(2).

Theorem A.2.15. Let u: [0,00) x K — R be an L™ -solution of the heat
equation (A.2.7) on [0,00). Then, for any T > 0,

max u(t,z)= max u(t,z) end min u(t,z)= min _u(t, ),
(¢, 2)eUr (t.z)edUE (¢, z)eUT (t.x)edUP

where Ur = [0,T] x K and 8UE = {0} x KU [0,T] x B.

The proof of this theorem is analogous to that of Theorem 5.2.2.
The following comparison theorem for heat kernels is the counterpart of
Theorem 5.2.9 and Theorem 5.2.13-(1).

Theorem A.2.16. Let By, and B, be finite subsets of V.. If By C Ba,
then

0 < pB,(t,7,¥) < ps, (¢, ,7) (A.2.8)
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for any (¢,z,y) € (0,00) X K x K. Moreover, if (D,r) is regular, then

bB, (t>x>y) _sz(t)x) y) Z / pBl -3 Q)(de':)q
q€B\ By
(A.2.9)

for any t > 0 and any z,y € K\B».

Remark. As in Theorem 5.2.13, the integral f; PB, (t — s,x,q)(dp‘gg)qu
actually means

t—e
I | pB,(t = 8,2,0)(dpg])gde.

If (D, r) is regular, then this theorem can be proven in an analogous way
to 5.2 by using the parabolic maximum principle, Theorem A.2.15. Even
if (D, r) is not regular, (A.2.8) is still true. However, to prove it, we must
employ probabilistic arguments on the diffusion processes whose tramnsition
densities are pg, and pg, respectively. See Corollary A.3.4.

Also, we can verify the following theorem, which is an extension of Corol-
lary 5.2.14.

Theorem A.2.17. Let B be a finite subset of V.. Suppose that (D,r) is
regular. Then, for any x € K\B,

15|y = / pa(t,z,y)u(dy) = 1 - (- / (dp%)eds).  (A.2.10)

q€B

Moreover, if B # @, then

>y - /0 w(dpg")qu =1. (A.2.11)

q€B

Proof. The arguments are essentially the same as in the proof of Theo-
rem 5.2.13. To obtain (A.2.11), let B; = @ and B; = B in (A.2.9). Then
integrate it on K with respect to the measure u. Using Lemma 5.2.10,
we have (A.2.11). Next, if B # 0, then ker Hg = {0}. Therefore all
the eigenvalues of Hp are positive. Recalling Definition A.2.12, we see
that lim;_. [; pB(t,z,y)u(dy) = 0. Then (A.2.11) is immediate from
(A.2.10). O

Next, we present an upper estimate for the asymptotic behavior of the
heat kernel pg(t,z,y) ast | 0.
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Theorem A.2.18. There exists ¢ > 0 such that

sup pp(t,T,y) < ct~9s8/2
T,y€K

for any t > 0.

To prove this theorem, we first establish the counterpart of the Nash
inequality, Theorem 5.3.3, and apply Theorem B.3.7 as in the proof of
Theorem 5.3.1-(1).

Theorem A.2.19. Let 2,y € K\B and lett > 0. Then pg(t,z,y) > 0 if
and only if z and y belong to the same connected component of K\B.

This theorem is the counterpart of Proposition 5.1.10. To prove this
theorem, first establish the counterpart of Lemma 5.3.5 by using Theo-
rem A.2.18. Then note the following lemma and proceed with the same
argument as in 5.3.

Lemma A.2.20. Let z,y € K\B. Then gg(z,y) > 0 if and only if z and
y belong to the same connected component of K\B.

Proof. We present only a brief sketch of the proof. It is enough to prove
that Zp'qevk\g(Gg‘))mwz(a:)w,’l‘(y) > 0 if z and y belong to the same
connected component of K\ B. This can be shown by an argument similar
to that in the proof of Proposition 3.5.5. |

A.3 Probabilistic approach

In this section, we will briefly present the probabilistic approach to the
heat kernels, pg(¢,z,y). In particular, we will give probabilistic proofs of
Theorem 5.2.9 and Lemma 5.3.9. Recall that our analytical proofs only
work when the harmonic structure is regular.

Let £ = (K, S, {F; }ies) be a p. c. f. self-similar set with S = {1,2,... ,N}
and let (D,r) be a harmonic structure on K. Also let p be a self-similar
measure on K with weight (4;)ics. We assume that y;r; <1 foralli € S.
Then, by Theorem 3.4.6, the resistance form (€, F) derived from (D,r) is
a local regular Dirichlet form on L2(K, p). Set

Q = {u: u is a continuous function from [0, 00) to K}.

Also, for t > 0, define X, : @ — K by X,(u) = u(t). By the general theory
of Dirichlet forms (see [43, Theorem 7.2.1] for example), there exists a
diffusion process associated with the local regular Dirichlet form (€, F).
One may also find a concise exposition on Dirichlet forms and diffusion
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processes in [6, Section 4], in particular, [6, Theorem 4.8]. See also [6,
Section 7]. Using those discussions, we can prove the following theorem.

Theorem A.3.1. There exists a diffusion process (2, {X:}i>0, {Pr}zex)
such that, for any z € K and any f € C(K),

Eo(F(Xe)) = /K o (t,2,9)f (W)u(dy),

where py 18 the Neumann heat kernel defined in Definition 5.1.1.

E.(-) is the expectation with respect to the measure P,, where z is the
starting point of the process.

Remark. By [43, Theorem 7.2.1] and [43, Theorem 7.2.2], there exists a
diffusion process associated with (£, F). This diffusion process is, in gen-
eral, defined only on q.e.starting points. However, since the heat kernel
pn(t,z,y) is continuous on (0,00) x K x K, we can obtain the above the-
orem.

Definition A.3.2. For any A C K, define the hitting time of A, 04, by
oa(u) =inf{t > 0: X;(u) € A}

for any u € Q.

Theorem A.3.3. Let B be a finite subset of V,. Then, for any Borel set

Aof K,

[A p(t, =, W)uldy) = Pu(og > ¢, X; € A),

where pg is the heat kernel associated with the boundary B defined in Def-
inition A.2.12.

By this theorem, we immediately obtain the following fact, which is
(A.2.8).

Corollary A.3.4. Let B, and By be finite subsets of V, with By C B,.
Then, for any t > 0 and any z,y € K,

0 < pa,(t,z,y) < pB, (L, z,Y).
If By = 0 and B; = Vp, then the theorem above is Theorem 5.2.9.
Proof. Since og, 2 0g,, it follows that
P(op, > t,X¢ € A) > P (0B, > t,X; € A)

for any ¢t > 0, any A and any £ € K. Hence Theorem A.3.3 implies the
desired inequality. O
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Next we give a probabilistic proof of Lemma 5.3.9.

Proof of Lemma 5.3.9. Let A=U,;_Fu (0Kj). By Definition A.2.12,

Jim [ pa(t, z,y)u(dy) = 0.
—00 K

This implies that
Y P(X,,=q) = P(0a <o0)=1. (A.3.1)
gEA

Recall that for any p € dUa(z), = and p belong to different connected
component of K\ A. Therefore, any continuous path between p and z must
intersect with A. Hence

o4 < O9UA(z)" (A32)

Using the results above, we have

1- L Pp 2 (t,z, y)u(dy) = Pz("BUA(z) <t)

= Z PI(XO'A = q,08Ux(z) < t)
qEA

< Z Pr(Xo, =0,05u,(z) St+04)
geA

= Z Pr(Xs, = Q) FP(0aup(z) < )
qE€A

< Z Pe(Xos = @)Fg(ov(ay < 1)
qEA

The equality in the fourth line is deduced by the Markov property of the
process and (A.3.2). Again by (A.3.1),

1- / Ph2(t, z,y)(dy) < max Pyloya) < f)
K g€EA

= %a}(l - /K pa(t, ¢, v)u(dy)).

Since [y paz(t, 2, Y)i(dy) = [y, (z) PA=(t, T, y)u(dy), this immediately im-
plies Lemma 5.3.9. O
Comparing the proof above with the one in 5.3, we have the following.
Theorem A.3.5. Suppose (D,r) is regular. Let B be a finite subset of V..

Then, foranyz € K, anyg€ B and any t > 0,

¢
Pi(Xop =¢q,0B < 1) =/(; —(dpgz qd8-



Appendix B
Mathematical Background

B.1 Self-adjoint operators and quadratic forms

In this section, we will introduce basic concepts and results on self-adjoint
operators and non-negative quadratic forms on a Hilbert space. One can
find detailed accounts and proofs of those subjects in Davies [26]. Also one
can refer to classical textbooks, for example, Kato [81], Reed & Simon [156].

Let H be a (real or complex) separable Hilbert space with an inner
product (-,-). A linear map H is called a linear operator on H if and only
if the domain of H, denoted by Dom(H), is a dense subspace of H and
H : Dom(H) — H. In this appendix, we assume that # is a real Hilbert
space for simplicity.

Definition B.1.1. Let H be a linear operator on H.

(1) H is called symmetric if and only if (Hf,g) = (f,Hg) for any f,g €
Dom(H).

(2) H is said to be a self-adjoint operator if and only if H is symmetric
and

Dom(H) = {g € H : there exists h € H such that
(Hf,g) = (f,h) for all f € Dom(H)}.

(3) A symmetric operator H is called non-negative if (H f, f) > 0 for all
f € Dom(H).

Proposition B.1.2. Let H be a non-negative self-adjoint operator. Then
there exists a unique non-negative self-adjoint operator G on ‘H such that
Dom(H) € Dom(G), Dom(H) = {f : f € Dom(G) and Gf € Dom(G)}
and G? = H. We write G = H/2,

Definition B.1.3. Let H be a non-negative self-adjoint operator on H.

196
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The associated quadratic form Qp with domain Dom(H/2) x Dom(H/2)
is defined by Qu(f,g) = (H'/2f, H'/2g) for f,g € Dom(H'/2).

The following lemma is an immediate consequence of the definition of a
self-adjoint operator and the definition of H'/2,

Lemma B.1.4. Let H be a non-negative self-adjoint operator on H. Then

Dom(H) = {g € Dom(H/?) : there exists h € H such that

Qu(f,g) = (f,h) for all f € Dom(H/?)}.
In particular, in the above situation, h = Hg.

Definition B.1.5. Q(-,-) is called a non-negative quadratic form on H if
(QF1) @ : Dom(Q) x Dom(Q) — R, where the domain of @, Dom(Q) is a
dense subspace of H.

(QF2) Q is bilinear and symmetric: Q(af + bg, h) = aQ(f, h) +bQ(g,h) =
aQ(h, f) + bQ(h,g) for any f,g,h € D and a,b € R.

(QF3) Q is non-negative definite: Q(f, f) > 0 for any f € D.

Theorem B.1.6. Let () be a non-negative quadratic form on N with dense
domain Dom(Q). Then the following conditions (1) and (2) are equivalent.
(1) Dom(Q) = Dom(H'/2) and Q = Qpy for some non-negative self-adjoint
operator H on 'H.

(2) Define Q.(f,9) = Q(f,9) + (f,g) for any f,g € Dom(Q). Then
(Dom(Q), Q.) is a Hilbert space.

A non-negative quadratic form @ on H is said to be a closed form if @
satisfies the conditions in Theorem B.1.6.

Definition B.1.7. (1) Let @ and Q' be non-negative quadratic forms on
H. Q is called an extension of @’ if and only if Dom(Q) 2 Dom(Q’) and
Q|Dom(@")xDom(@’) = Q'-

(2) A non-negative quadratic form on # is said to be closable if there exists
a closed extension of Q.

If a non-negative quadratic form @ is closable, then there exists a min-
imal closed extension of Q. Precisely, let (U,Q.) be the completion of
(Dom(Q), Q.). Then define Q(u,v) = Q.(u,v) — (u,v) for any u,v € U.
Then @, whose domain is U, is the minimal closed extension of Q. This Q
is called the closure of Q.

Theorem B.1.8 (Friedrichs). Let H be a non-negative symmetric oper-
ator on H. Define a symmetric bilinear form Q : Dom(H) x Dom(H) — R
by Q(f,g9) = (Hf,g) for f,g € Dom(H). Then Q is closable.
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Let @ be the closure of the symmetric form Q in Theorem B.1.8. Then,
by Theorem B.1.6, there exists a non-negative self-adjoint operator H on
H such that @ = Qy. It is known that H is an extension of H: Dom(H) C
Dom(H) and H|pom(#ry = H. This H is called the Friedrichs extension
of H. In fact, Dom(Q) is the completion of Dom(H) with respect to the
inner product Q.. By this fact, it follows that H is the minimal self-adjoint
extension of H: if H is a self-adjoint extension of H, then Dom(H) C
Dom(H) and HIDom(H) H.

Next we will introduce a non-negative self-adjoint operator with compact
resolvent. For this purpose, we need the notion of compact operators.

Definition B.1.9. Let (B,,||-||:) and (B2,]| - [|2) be Banach spaces.

(1) A linear operator A : By — B; is called a compact operator if and
only if A(U) is relatively compact in B> for any bounded subset U C B;.
(2) A linear operator A : B; — B; is called a finite rank operator if A(B;)
is a finite dimensional vector space.

Remark. A compact operator is bounded and hence it is continuous.

The following are important facts about compact operators.
Proposition B.1.10. A finite rank operator is a compact operator.

Theorem B.1.11. Let A: By — Bz be a bounded operator. If there erists
a sequence of compact operators {An}m>1 such that ||A, — A|| — 0 as
n — oo, where || - || is the operator norm, then A is a compact operator.

Definition B.1.12. A non-negative self-adjoint operator H on a Hilbert
space H is said to have compact resolvent if the resolvent (H + I)7! is a
compact operator, where [ is the identity map.

Theorem B.1.13. Let H be a non-negative self-adjoint operator on H.
Then the following three conditions are equivalent.

(1) H has compact resolvent.

(2) There exists a complete orthonormal basis of H, {¢n}n>1 such that
Hpn = Apop foralln 2 0, 0 € Ay £ - €Ay € Apy1 £ -+ and
lim,, .o A = 00.

(8) Define id : Dom(H'/?) — H by id(x) = z for all x € Dom(H'/?).
Then id is a compact operator from (Dom(HY?),(Qg).) — (H,(--)),
where (Qy). is the inner product defined in Theorem B.1.6.

Remark. By Theorem B.1.6, (Dom(H*/2),(Q4).) is a Hilbert space.
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Theorem B.1.14 (Variational formula). Let H be a self-adjoint oper-
ator on M. Suppose that H is non-negative and has compact resolvent. Let
L be any finite-dimensional subspace of Dom(H'/?). Define

ML) =sup{Qu(f. f): f € L|Ifll =1},

where || f|| is the H-norm of f € H. Also let {An}n>1 be the set of eigen-
values of H appearing in Theorem B.1.1S. Then

An = inf{A(L) : L C Dom(H'/?),dim L = n}
= inf{A(L) : L C Dom(H),dim L = n}.

B.2 Semigroups

In this section, we will briefly introduce basic notions and results on one
parameter semigroup of symmetric bounded operators on a Hilbert space.
See Fukushima, Oshima and Takeda [43] for details and proofs. In the
following, H is a Hilbert space with the inner product (-, ).

Definition B.2.1 (Semigroup). A family of bounded symmetric opera-

tors {T;},>0 from H to itself is called a semigroup (of symmetric operators)

on H if it satisfies the following two properties.

Semigroup property: For any ¢,8 > 0, Tiy, = T, T,.

Contraction property: (Tyu,Tiu) < (u,u) for any u € H and any t > 0.
Moreover, if a semigroup {T:}:>0 satisfies

lgg(Tgu —u,iu—u)=0

for any u € H, then {T;},0 is called a strongly continuous semigroup.

Remark. In [186], the family {T:}:;~0, where the T; are not necessarily
symmetric, but with the semigroup property and strong continuity, is called
a semigroup of class (Co). In addition, if {T;},>0 has the contraction
property, it is called a contraction semigroup of class (Cp).

Theorem B.2.2. Let {T;}:>0 be a strongly continuous semigroup on H.
Set

Tgu.—u

Dom(A) = {u € H : there exists f € H such that Itilrgﬂf— || = 0}
and define Au = limgo(Tu — u)/t for any u € Dom(A). Then A is
e densely defined non-positive self-adjoint operator on H and ImT, C
Dom(A) for anyt > 0. A is called the generator of the strongly continuous
semigroup {T,}+»0. Moreover, for a non-positive self-adjoint operator A
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on H, there ezists a unique strongly continuous semigroup {T;}:>0 whose
generator is A.

By the above theorem, we see that there is a one-to-one correspondence
between strongly continuous semigroups and non-positive self-adjoint op-
erators. Also, by Theorems B.1.6 and B.1.8, there is a one-to-one corre-
spondence between non-negative self-adjoint operators and closed forms.
Combining those two correspondences, we obtain a one-to-one correspon-
dence between closed forms and strongly continuous semigroups as follows.

{(€,F): (€,F) is a closed form on H}
1€=Qn
{H : H is a non-negative self-adjoint operator on H}
| —H is a generator of {T;}:>0.
{{Tt}t>0 : {Tt}¢>0 is a strongly continuous semigroup on H}.

Now let (£,F) be a closed form on a Hilbert space H. Let H be
the self-adjoint operator associated with (£, F). Also let {T}}:>0 be the
strongly continuous semigroup associated with (£,F). We will assume
these throughout the rest of this section.

Lemma B.2.3. Let f and g belong to Dom(H).

(1) —HT,f = =T Hf = limp_,o(Teynf — Tt f)/h for any t > 0, where the
limit is the strong limit in H.

(2) For anyt >0, E(T3f,9) = E(f, Tg).

(3) E(Tif, Tif) is monotonically decreasing on (0,00), and E(T . f, T:f) 1
E(f.f) ast | 0.

Proof. (1) Set fi =T,f. Then

(Tewnf = Tef)/h = T(Thf — f)/h = (Twfe — ft)/h.

Note that f, = T f € Dom(H) by Theorem B.2.2 and —H is the generator
of {T¢}:>0. Letting t — 0, the equality follows immediately.

(2) Let (-,-) be the inner product of H. Then E(T:f,9) = (T2 f,Hg) =
(HT:f,9) = (T:H f,9) = (Hf, Tzg) = £(f, Trg).

(3) Let u(t) = E(Ty/2f, Ty/2f)- Then u(t) = E(f,T.f) = (Hf,T.f). Hence
W(t) = —(Hf, HT.f) = —(Hf, TLHf) = —(Tu2H f, T;/2Hf) < 0. There
fore u(t) is monotonically decreasing. Since T, is strongly continuous,

u(t) = (Hf,T.f) —» (Hf, f) =E(f,f) as t | 0. O

Let &.(u,v) = E(u,v) + (u,v). Then, recalling Theorem B.1.6, we see
that (F,£.) is a Hilbert space.
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Proposition B.2.4. {T,},50 ts e strongly continuous semigroup on

(F,E.).

Proof. The semigroup property is obvious. Note that Dom(H) is dense in
F with respect to £,. Let {f,}n»>1 C Dom(H). If f - fasn — o
in £, for some f € F, then, by Lemma B.2.3-(3), {T.f.}n>: is an &.-
Cauchy sequence. Since {7, fr},>: is an H- Cauchy sequence as well and
Tifn = T, f as n — oc in 'H, it follows that T, f, — T;f as n — o0 in &,.
Hence E(T,f, T f) < E(f, f) for any f € F.

It f € Dom(H), E(Tef — . Tef — ) = ELf.Tf) - 26(Tepaf Topaf) +
E(f,f). Again by Lemma B.2.3-(3), we have £(T,f — f.T,f — f) = 0 as
t — 0. If f € F, an ordinary approximation argument by a sequence in
Dom(H) gives strong continuity. O

Next we give a characterization of a strongly continuous semigroup
{T:}:>0 as a solution of a formal differential equation on a Hilbert space

H.

Definition B.2.5. A map u: [0,00) — H is called a solution of

du
E = -Hu (B.21)

if and only if « : [0,0c) — H is strongly continuous (i.e., ||[u(t + h) ~
u(t)|]| = 0 as h — O for any ¢ > 0), u(¢) € Dom(H) for any ¢ > 0 and
(u(t + h) — u(¢))/h converges to —Hu(t) as h — 0 with respect to the
H-norm for any ¢ > 0.

Theorem B.2.6. For any ¢ € H, there erists a unique solution u : [0, 20)
— H of (B.2.1) that satisfies u(0) = . Moreover, the unigue solution u(t)
is given by u(t) = Typ.

Proof. If u(t) = Ty, it immediately follows that u(t) is a solution of (B.2.1)
with ¥(0) = . Now supposc u(t) and v(t) are solutions of (B.2.1) with
u(0) = v(0) = p. Let f(t) = (u(t) — v(t),u(t) — v(t)). Then we see
that f'(¢) = —2E(u(t) — v(t), u(t) —v(t)) < 0 for t > 0. Hence f(¢) is a
non-negative monotone non-increasing function for ¢t > 0. Since f(0) = 0,
f(t) =0 for any ¢ > 0. Therefore u(t) = v(t) for any ¢ > 0. O

Corollary B.2.7. If o € Dom(H) is an eigenfunction of H belonging to

an eigenvalue A (i.e., Hp = Ap), then Tpp = e,

Proof. As e~*¢ is a solution of (B.2.1), the above theorem implies that

Tip = C—M<p. O
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B.3 Dirichlet forms and the Nash inequality

In this section, we introduce the notion of Dirichlet forms. One can find a
more detailed and well organized account in [43]. We will also introduce the
Nash inequality to study the asymptotic behavior of a strongly continuous
semigroup associated with a Dirichlet form as ¢ | 0.

Let X be a locally compact metric space. Also let i be a o-finite Borel
measure on X that satisfies u(A) < oo for any compact set A and p(0O) > 0
for any nou-empty open set O. Define Co(X) by

Co(X)={f: X = R, f is continuous and supp(f) is compact}.

Definition B.3.1. Let £ be a closed form on L2(X, u). Set F = Dom(€).
(1) Markov property: We say that the unit contraction operates on £ if
and only if & € F and &(a,u) € £(u,u) for any u € F, where @ is defined
in the same way as (DF3) in Definition 2.1.1. (£, F) is said to have the
Markov property if and only if the unit contraction opcrates on €.

(2) Core: A subspace C of F NCy(X) is called a core of (£, F) if and only
if C is dense in F with respect to the &£,-norm and in Cy(X) with respect
to the supremurmn norm.

(3) Local property: (£.F) is said to have the local property if £(u,v) =
0 whenever u,v € F, supp(u) and supp(v) are compact and supp(u) N
supp(v) = 0.

Definition B.3.2 (Dirichlet form). Let € be a closed form on L?(X, p).
Set F = Dom(£). (£, F) is called a Dirichlet form on L2(X, ) if and only
if it has the Markov property. Moreover, a Dirichlet form is called regular
if and only if it possesses a core. Also a Dirichlet form which has the local
property is called a local Dirichlet form.

If (€£,F) possesses a core, F N Cy(X) is also a core. Hence, a Dirichlet
formn (€, F) is regular if and only if F N Cy(X) is a core.

In the rest of this section, we assume that (£,F) is a Dirichlet form
on L?(X,u) and H is the associated non-negative self-adjoint operator.
Then Theorem B.2.2 implies that there exists a corresponding strongly
continuous semigroup {7} }¢>0 whose generator is equal to —H. Since (£, F)
satisfies the Markov property in addition to being a closed form, {7:}:>0
also has the following additional property.

Definition B.3.3. A strongly continuous semigroup {7} on L3(X,pu) is
said to have the Markov property if and only if it satisfies the following
condition: if v € L¥(X,u) and 0 < u(x) < 1 for p-a.e.z € X, then
0 < (Tiu)(x) <1 for u-a.e.x € X and any t > 0.
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Theorem B.3.4. There is a one-to-onc correspondence between Dirichlet
forms on L2( X, u) and strongly continuous semigroups on L*( X, u) with the
Markov property. The correspondence is given by the natural one between
closed forms and strongly continuous semigroups described in B.2.

One can also find details on semigroups associated with Dirichlet forms
(including a proof of the above theorem) in Davies [25].

Next we show that T; can be extended to a bounded operator on LP( X, 1)
for p = 1,. For u-measurable functious f and g on X, we write f > ¢
if and only if f(x) > g(x) for u-almost every £ € X. Also, if no confusion
can occur, we use L? in place of LP(X, pu).

Lemma B.3.5. Let f € L.
(1) [ff 2 0, then th 2 0.
(2) TS Z T2 S

Proof. (1) Let X, = f~!([0,n]) and let f, = f- xx,. where xx, is the
characteristic function of X,. Then f, — f as n — oo in L2. Since
0 € fn £ n, the Markov property of {T}},..y implies that 0 < T, f, < n.
Letting n — oc, we obtain 0 < T, f.

(2) Since —|f| < f < |f|, this follows immediately from (1). O

Proposition B.3.6. For p = 1,00, T,(L*NLP) C LP for anyt > 0 and
1Tt fllp < |Ifllp for any f € L* N LP and for anyt > 0, where || - ||, is the
LP-norm.

Proof. First, we will show the case p = 1. As pu is o-finite, there exists
{En}n>1 € B(X) such that U,», E, = X, p(E,) < < and E, C E,, for
anyn > 1. Let f € L2nL'. By Lemma B.3.5, (|T: f|, x£,.) < (Tif|. xe,) =
(If, Tixe.) < |f|l1, where (-,-) is the L2-inner product. (The last inequal-
ity comes from the fact that 0 < T,xg, < 1.) Hence, we sce that T, f € L!
and |[Tef|[; < [|SH].

Next let p = . By the Markov property, 0 < Ti|f| < |If|| for f €
LZN L=®. Hence Lemma B.3.5 implies that 0 < [T f] € Ti|f] € 1If]loo-
Therefore T f € L™ and ||, f||x < || flloo- m

By the above proposition, for p = l,oc, T} : L2 [P — L? naturally
extends to a bounded operator T,(” ). LP — LP with ||T,“’ )||,, < 1, where
||A|lp is the operator norm of a bounded operator A : L? — L?. (If
u4(X) = oc, then T¢(°°) is a bounded operator from L to L*, where L> iy
the closure of L>*NL? in L™.) Moreover, by the Riesz-Thorin interpolation
theorem ([155, Theorem IX.17], [25]), we can extend this to any p € [1, oc.

If no confusion can occur, we write T; in place of T}p ) IfA:LP — L3
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is a bounded operator, we use ||A||,—q to denote the operator norm of
A:LP — L9,

Now we consider the asymptotic behavior of T; as ¢ | 0 by using an idea
originally due to Nash.

Theorem B.3.7. The following four conditions are equivalent.
(1) There ezist positive constants c; and @ such that, for any f € FN L},

WFIZTYE < ea(ECF £) + NIFIIRMIFIIE. (B.3.1)

(2) For anyt >0, Ty(L!) C L? and T; : L' — L? is a bounded operator.
Moreover, there exists ca > 0 such that

ITell1~2 < cat ™/ (B.3.2)
for any t € (0,1].
(3) For anyt >0, T,(L?) C L™ and T; : L? — L* is a bounded operator.
Moreover, there exists cz > 0 such that

ITel 200 < 3t/ (B.3.3)
for any t € (0,1].
(4) For anyt >0, Ty(L') C L*® and T; : L! — L™ is a bounded operator.
Moreover, there exists ¢4 > 0 such that

I Tell1—00 < cat ™%/ (B.3.4)

for any t € (0, 1].

Remark. As ||T¢||, < 1 for p = 2,00, it follows that ||T}||1—~p < ||T1|l1—p
for any t > 1 and that ||T}|lo~co < ||T1}l2—00 for any ¢ > 1. Hence (B.3.2),
(B.3.3) and (B.3.4) are equivalent, respectively, to

[ITe]|1—2 < ¢2 max{l,t_ol4},

|| Tt]l2—o00 < c3 max{1,¢-9/4}
and

ITell1—o0 < camax{1,¢7/2},

for any t > 0.

(B.3.1) is called the Nash inequality. In [144], Nash used essentially
the same argument as (1) = (4) to study the asymptotic behavior of the
fundamental solution of a parabolic partial differential equation as ¢ | 0.
The present form of the theorem was that essentially obtained by Carlen,
Kusuoka and Stroock [23]. See also Davies [25].
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To prove the theorem, we need one lemma about a dual operator.

Lemma B.3.8. Lel A: L2 — L2 be a bounded self-adjoint operator. Then
the following two conditions are equivalent.
(1) There exists a bounded linear operator B from L' to L? such that
AlLrar2 = Blpiare.
(2) A(L?) c L™ and A is a bounded opcrator from L? to L.

Moreover, if one of the above conditions holds. then ||Alla—.» = ||B]|1-.2-

Proof. (1) = (2) : Since the dual spaces of L' and L? are L™ and L2
respectively, the dual operator of B, B*, is a bounded operator from L? to
L*. lfue L?and v & L' N L2, then

(v, Au) = (Av, u) = (Bv,u) = (v. B*u).

Hence Au = B*u for any u € L% Since ||B||j—~2 = ||B’|l2—~x (see, for
example, [186, VII.1, Theorem 2']), we have {|B||j—~2 = ||4]|2— -

(2) = (1) Let 4* be the dual operator of A: L? — L™, As L! ¢ (L*>)",
we see that 4A*u € L2 for any u € L', Set B= A*|p. fue L and v €
L' N L2 then (u, Av) = (Au,v) = (v, Bv). Therefore, Alpi~p2 = Blpings.
Hence we obtain (1). O

Proof of Theorem B.3.7.
(1) = (2): Let fe€ L2N L with ||f||, = 1. Set u(t) = (T, f, T f). Then,
u(t + h) — u(t)

h

= (Toenf = T f (T — DT f/R)
— —2AT f. HT, f) = -26(1L . 1+ f)
as h — 0. Hence u/(t) = —2E(1f.1,f). Now, by the Nash inequality,
2u(t) 0 < ¢ (—u'(t) + 2T ANV’ < er(—'(8) + 2u(t)),
where we used the fact that ||T: fl; < [|f][y = 1. This implies
e~ Hu(t))(1 20 < 2e "y (1)1 20 < ¢ (e " 2u(t).

Set v(t) = (e~ *u(t))~2/%. Then we obtain v/(£) > 4/(c10). Since v(t) —
u(0)=2/¢ > 0 ast |0, it follows that v(t) > 4¢/(c,8). Therefore

u(t) < ce2tt—9/2
where ¢ = (¢;0/4)%/2. Hence
ITefll2 < cett=%74|fIh

for any f € L2 N L!. This immediately implics (2).
(2) & (3): Apply Lemma B.3.8.
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(2) = (4) As (2) & (3), we see that Tysg : L' — L? and Tyye : L? — L™
are bounded operators. Hence Ty = Tyy2 0 Tyy9 : L! — L™ is a bounded
operator and

T2l < [ITs2lli—2lITejall2—oe < cocst®>.

(4) = (1): Assume that T; : L! — L* is a bounded operator and (B.3.4)
holds for any ¢ € (0,1]. By the remark immediately after Theorem B.3.7,
it follows that ||Ti}i1—ec < csett=%/2 for any ¢t > 0. Let f € FNL'. Then,
if t > € > 0, we have

€ TLN = TN+ [ (Gl L) s
= (e“I.f.f) - / e=*(( + H)T, . )ds.

(4

Now, using Lemma B.2.3 and Proposition B.2.4,

e (I + H)T,f.f) = e-"(T,/Qf, Ts/2f) + e_a(TU?HT’/?f’ f)
= e-s(Taﬂfs Ta/2f) + 6-68(T8/2f' : 3/2f)
< IfI15 + E(f, £).

This, along with the fact that (T f, f) < ||Ti|[1—ool|f||?, implies
callIFE872 2 (e T f, ) = (t = )(|If1Iz + £, 1))-

Letting € — 0, we obtain

allF11E 7272 + (| F113 + E¢F. 1)) 2 117113

It is easy to calculate the value of ¢, > 0 which gives the minimum value
in the left-hand side of the above inequality. Then, substituting ¢, for ¢ in
the above inequality, we immediately obtain (B.3.1). 0

From the arguments in the proof, in particular, for (1) = (2), we see
that the condition (1) can be replaced by the weaker condition
(1)) There exits a positive constant ¢; such that (B.3.1) holds for any
f € Dom(H)N L! with f > 0.

In practice, however, this condition may be no easier to verify than the
original one.

Corollary B.3.9. Suppose that the Nash inequality (B.3.1) is salisfied.
Let o be an eigenfunction of H belonging to an eigenvelue A > 1. Then

lolloe S eA%4|(ip] |2, (B.3.5)

where ¢ > 0 is a constant which is independent of ¢ and .
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Remark. Under the assumptions of the above corollary, if ¢ € L}, we also
obtain

lellz < eX?4llplly and lglleo < *A°2|lpll:.

Proof. By Corollary B.2.7, Ty = e~ * . By Theorem B.3.7, ||Ti||2—oc <
cat~8/4 for t € (0,1]. Hence

e ||¢lloo = ITeplloo < cat™84|||2-

If t =1/) and ¢ = cge, then we get (B.3.5). O

B.4 The renewal theorem

In this section, we will introduce the renewal theorem. One can find the
renewal theorems (in various versions) in many places in the literature, for
example, Feller [36], Rudin {159].

Definition B.4.1. A function z : R — R is directly Riemann integrable
on R if and only if

oo o
g(h) =h su u(t) and o(h)=h inf u(t
®) j;mte[jh.(ﬁ{-l)h] 2 oh) j;,ootébh,(aﬂ)hl (¥

are finite for any h > 0 and tend to the same limit as h — 0.

The following is essentially the renewal theorem (alternative form) in
section XI.1 p. 363 of [36]. We only present the case where the distribution
is atomic.

Theorem B.4.2 (Feller’s renewal theorem). Let t. > 0. Let f be a
measurable function on R such that f(t) =0 fort < t.. Suppose f satisfies
a renewal equation

N
fO) =3 f(t—a)p, +ult), (B4.1)
1=1
where oy, a9, ... ,an are positive numbers, Z;V=1 p, =1 and p, > 0 for all

Jj and u is a non-negative directly Riemann integrable function on R with
u(t) =0 fort < t,.

(1) Arithmetic case (Lattice case): Suppose there exists T > 0 such that
a, = m,T for all i, where my,ma,... ,mpn are positive integers whose
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greatest common divider is 1. Then |f(t) - G(t)] — 0 as t — o0, where
G(t) is a T-periodic function given by

N 00
Gty = () _mip))™' Y u(t+jT). (B.4.2)
J=1 j==—oc
(2) Non-arithmetic case (Non-lattice case): Suppose that E;’i (Za; is a
dense additive subgroup of R. Then f(t) ts convergent as t — 0o and
N o0
: = p. )1
tl-Lno]o f(t) = (Zl a;p;) /:

Feller only stated the case where ¢, = 0. Using a parallel translation,
we can immediately obtain the present version. Also, in Feller’s original
version, the conclusion for the arithmetic case is that

u(t)dt.

(s

lim_f(t+nT) = G(2)

for any ¢t. However, in equation (1.18), p.362 of {36], Feller gives the
following expression for f(¢) :

f(t) = Z u(t — kT )vi,

k>0

where v, — (Z;v:, m;p;) ! as k — o0o. Since u is directly Riemann
integrable, a standard argument in calculus implies that |f(2) — G(t)] — 0
as t — oo.

This version of the renewal theorem suffices to prove Theorem 4.1.5 on
the asymptotic behavior of eigenvalue counting functions of Laplacians on
p. . f. self-similar sets. (The conditions of the renewal theorem in [93] were
unfortunately incorrect. The author thanks D. Vassiliey for having pointed
this out.)

Since Feller’s version of the renewal theorem, much effort has been made
to weaken the conditions, in particular, the condition that f(¢) = u(t) =0
for t < t.. See, for example, M. Levitin & D. Vassiliev [115]|. In [115]. they
proved the same conclusions as in the above theorem under the condition
that |u(t)| decays exponentially as |t| — oc, instead of assuming that u(t) =
0 for ¢t < ¢, and that u is directly Riemann integrable.

The following renewal theorem for the arithmetic case contains informa-
tion on the order of convergence of |f(t) — G(t)| as ¢ — 0. This kind of
error estimate allows us to deduce detailed information about the behavior
of the eigenvalue counting function, (4.1.3).
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Theorem B.4.3. Let [ be ¢ mensuruble function on R with f(t) — 0
ast — —00. Suppose f satisfies a rencwal equation (B.4.1), where there
exists T > 0 such that a; = m; T for all i, where m;,mo,... ,my are
positive integers whose greatest common divisor is 1. Set u;(t) = u(t +
jT) fort € [0,T). If Z;:m o 1 (t)| converges uniformly on [0,T)], then
|f(t) — G(t)] — 0 as t — oo, where G() is a T-periodic function given
by (B.4.2). Moreover, set Q(z) = (1 — Z;V:lpjz’"l)/(l — z). Also define
8 = min{|z| : Q(z) = 0} and m = max{multiplicity of Q(z) =0 at w :
|w| = B, Q(w) = 0}. If there exist C > 0 and a > 1 such that |u(t)] < Ca™*
for all t, then, as t — oo,

O(tm"lﬁ—"'T) if ct:’: >3,
GO - F0)] = { oY) ifa’ = g,
Oe™Y) ifa’ <.

Remark. If Q(z) = 1, then we set 3 = +o00. Since Z?;l p; = 1, Q(z) is
a polynomial. Furthermore, IZ?':lpjzmil < 1lfor {z:|z] <1,z # 1}.
Hence we see that 3 > 1.

In the rest of this section, we will give a proof of Theorem B.4.3.

Lemma B.4.4. Set F(z) = H;-’:l(l —€%2)7, where 0 < 8; < 27 for
F=12,... .k IfF(z) = Yo panz". then |uy| = O(n™!) as n — oo,
where m = max{#{j:0=0;}:0< 0 < 2x}.

Proof. We use induction on k. The conclusion is obvious when k = 1.

Assume that the conclusion holds for k. For F(z) = ]-[j:,l(l —e%z) ! =

Y 0an2", if 8; = 6 for all j then it is easy to see that |a,| = O(n*). If
8, # 8, for some p # q, then (1 — % 2) " 1(1 - e72)~! = 4(1 —e¥rz)~! +
b(1—e*%2)~! for some a,b. Hence the statement follows from the induction
hypothesis. O

Lemma B.4.5. For w = wyws ... wx € Wy, set m(w) = E?____l my; and
Pw = Puw," " Puw,- Define M(k) =3 .cw..mw)=k Pu- Then

N
) _msp;)~! = M(n)| = O™ 37")
=1

as n — o0, where 3 and . are defined in the statement of Theorem B.4.83.

Remark. If {w € W, : m(w) = k} = 0. then we set M(k) = 0. Hence
M({k) =0 for any k < 0. Also we set M(0) = 1.
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Proof. Using the fact that M (k) = Z;'-\;l Mk - m;)p;, we see that

00 N
Z M(n)2* = (1 - Zp,'z""')'l.
n=0 j=1

Note that (Z‘_l mip;) = Q(1). Then we have that R (M ~M(n))z® =
R(z)/Q(z), where M = Q(1)~! and R(z) is a ?olynomml defined by R(z) =
(Q(2)/Q(1) -~ 1)/(1 - 2). If Q(2) = a[[55? (2 - 2;), it follows that

> (M - M(n))z" = R(2)/Q(2) = (Z enz”) [[ z—2)7%

n=0 =0 glz;1=8

where the radius of convergence of Zf:o ¢, 2" i8 greater than 3. Hence, ap-
plying Lemma B.4.4 to [, 51=9(2— z;)~!, we obtain the required estimate
of |M — M(n)|. O

Proof of Theorem B.4.3. By the renewal equation (B.4.1), we have

f(t)= Z f(t — m(w)T)pw + Z Y u(t = m(w)T)pa.

Since lime—. o f(t) = 0 and 3 >, u(t — nT) is absolutely convergent, we
have
f(t) = Z u(t — nT)M (n).
n=0

Hence we obtain

G(t)— f(t) =M Y _u(t+kT)+ i u(t — kT)(M — M(k)). (B.4.3)
k>0 k=0

As M <1and M(k) <1,

oo

IGE) = fa®) €2 D [ur(t)l + D [en—i(®)l|M(k) - M|,
k>n—-m k=m
where f,(¢) = f(t+nT) on [0, T]. For € > 0, choose m so that |M(k)-M| <
¢ for k > m. Then for sufficiently large n, we have 3 . |ux(t)| < e
Hence | fn(t)-G(t)| < (2+A)e, where A = sUpycrcr D g — oo |k (t)|- Hence
fn is uniformly convergent to G as n — oc on [0,T]. So f(t) — G(t) - 0
as t — oo.
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Now suppose |u(t)] < Ca~'. Then, by (B.4.3) and Lemma B.4.5, it
follows that

G(t) - fl Sera™ +pa™ D k" HaT/B) +es Y KmTIgE

0<k<t/T K>t/ T
< cia”t + o™t z k™ HaT /) + et/ TY™ 18747,
0<k<t/T

where ¢;,¢2,¢3 and ¢y are positive constants. From this inequality, it is
easy to deduce the required estimate. In particular, if a7 > 3, we use the
fact that there exists ¢ > 0 such that

Q-—nT Z km—l(aT/ﬂ)k < cnm-lﬁ—n
N<k<n

for any n > 1. O
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Index of Notation

| 1l4,a, 103

(. )y 89

B.(z), 8

Xy, see characteristic function
Xu, see characteristic function
C(K), 69

Ce, 19

C(X,d), 53

A,, 108

&(v, 1), 152

o(v, 1), 152

DF(V), 42

DF(V), 42

diam(-), 14

dimy, see Hausdorff dimension
ds, 134

ds(K,R), 138

ds(u), 138

ED(‘)? 132

E(k,A), 181

En(), 132

Gp, 94

G,, 102

g%, 99

RO\ : v, ), 152

h(\: v, p), 152

H?, see Hausdorfl measure
[H]u, 45

o§v), 41

J(p), 36

J(p, VO)? 36

K(A), 23

=

m,zy 20
(p), 181
LAV), 42
LA(V), 42
L(A), 23
M(K), 89
m(p), 36
m(p, Vo), 36
Vp, 82

Y, 81

Pr, 19

P, 81
Pyy, 44
RF(X), 56
RF(X), 56
po(x, 1), 133
RM(X), 56
RM(X), 56
Ry (1), 90
Ry (), 102
Re, 70

T, 13

Vi, 22
Vo(L), 19
Vo, 19
V(A), 22
V(A, L), 22
Vi, 22

W,, 18
W, 18

o
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Index

affine nested fractal, 116, 117, 150
arcwise connected, 33
arithmetic case, 207

Bernoulli, 25
Borel
measure, 25
regular measure, 25, 26
set, 25
o-algebra, 25
boundary condition, 92, 93
Dirichlet, see Dirichlet bound-
ary condition
Neumann, see Neumann bound-
ary condition
boundary of self-similar set, 19

Cantor set, 15, 39, 66
topological, 13, 19
characteristic function, 42, 203
closable, 197
closed form, 197
compact operator, 92, 94, 198
compact resolvent, 64, 92, 93, 133,
198
compatible sequence, 51, 65, 69
complete measure, 25
connected; 33
arcwise, see arcwise connected
locally, see locally connected
contraction, 9
contraction principle, 9, 10
contraction property, 199

contraction ratio, 9
core, 202
critical set, 19

D-eigenfunction, see Dirichlet eigen-
function
D-eigenvalue, see Dirichlet eigen-
value
A-Y transform, 48, 67, 129
diameter, 14
diffusion process, 66, 193
directly Riemann integrable, 207
Dirichlet boundary condition, 93,
158
Dirichlet eigenfunction, 132
Dirichlet eigenvalue, 132
Dirichlet form, 65, 88, 92, 185,
202
local, see local Dirichlet form
on a finite set, 42
regular, see regular Dirichlet
form
Dirichlet Laplacian, 93, 95, 111
Dirichlet problem for Poisson’s equa-
tion, 114

effective resistance, 46, 51, 65
effective resistance metric, 48, 66,
83, 138
eigenfunction
Dirichlet, see Dirichlet eigen-
function



Index

localized, see localized eigen-
function
Neumann, see Neumann eigen-
function
pre-localized, see pre-localized
eigenfunction
eigenvalue
tounting function, 133, 190
decimation method, 135, 156
Dirichlet, see Dirichlet eigen-
value
Neumann, see Neumann eigen-
value
equilibrium point, 9
extension
Friedrichs, see Friedrichs ex-
tension
of a form, 197

finite rank operator, 92, 198
finitely ramified, 23

fixed point, 9, 14, 70

focal point, 180

Friedrichs extension, 111, 188, 198
Frostman’s lemma, 29
fundamental solution, 162

+-elliptic measure, 89

Gauss—Green’s formula, 110, 145,
187

generator, 199

Green’s function, 95, 98, 102, 188,
189

Green’s operator, 94, 95, 102, 103,
145

extended, 102

harmonic function, 45, 52, 73, 75,
143
harmonic structure, 69, 73, 138

223

regular, see regular harmonic
structure
Harnack inequality, 46, 78, 100
Hata’s tree-like set, 16, 24, 71,
129
Hausdorff
dimension, 28, 29
measure, 28, 138
metric, 10
heat
equation, 162, 164, 190
kernel, 158, 171, 190
semigroup, 190
heat kernel, 152
hitting time, 194

inequality
Harnack, see Harnack inequal-
ity
Nash, see Nash inequality
integrated density of states, 135,
155
isomorphism between self-similar
structures, 18

Koch curve, 15, 17

A-harmonic function, 139
Laplacian, 65, 66, 92, 107, 108,

186

Dirichlet, see Dirichlet Lapla-
cian

Neumann, see Neumann Lapla-
cian

on a finite set, 42
standard, see standard Lapla-
cian
lattice case, 134, 142, 207
L*>-solution of the heat equation
on [0,00), 164
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Lipschitz, 9

Lipschitz constant, 9

local Dirichlet form, 65, 88, 202
local property, 93, 202
localized eigenfunction, 141
locally connected, 33

m-harmonic, 81
Markov property, 42, 56, 93, 162,
202
of a semigroup, 202
mass distribution principle, 29
maximum principle, 45, 52, 76,
77, 81
parabolic, see parabolic max-
imum principle
strong version, 81
weak version, 77
measure
Bernoulli, 25
Borel, see Borel measure
Borel regular, see Borel reg-
ular measure
complete, see complete mea-
sure
Hausdorff, see Hausdorff mea-
sure
probability, see probability mea-
sure
self-similar, see self-similar mea-
sure
minimal, 21
modified Sierpinski gasket, 129,
129
Moran’s theorem, 32
multi-harmonic function, 143

N-eigenfunction, see Neumann eigen-
function

N-eigenvalue, see Neumann eigen-
value
Nash inequality, 153, 172, 202, 204
nested fractal, 117, 146
affine, see affine nested frac-
tal
nesting condition, 117
net, 10
Neumann boundary condition, 92,
158
Neumann derivative, 110
Neumann eigenfunction, 132
Neumann eigenvalue, 132
Neumann Laplacian, 92, 111
Neumann problem for Poissons equa-
tion, 129
non-arithmetic case, 208
non-lattice case, 134, 208

open set condition, 30, 32
operator
compact, see compact oper-
ator
finite rank, see finite rank op-
erator
Green’s, see Green’s opera-
tor
renormalization, see renormal-
ization operator
self-adjoint, see self-adjoint op-
erator
symmetric, see symmetric op-
erator

p. c. f., see post critically finite
parabolic maximum principle, 164
partition, 22, 23, 83, 139, 173
pentakun, 119

piecewise harmonic function, 81
Poisson’s equation, 114, 129



post critical set, 19, 72

post critically finite, 23, 34

pre-localized eigenfunction, 141,
146, 153

probability measure, 25

quadratic form
associated with a self-adjoint
operator, 197
non-negative, 197

r-network, see resistance network
random walk, 54
refinement of partition, 22
regular Dirichlet form, 55, 65, 88,
202
regular harmonic structure, 69,
75, 167
renewal
equation, 137, 207
theorem, 135, 137, 207
renormalization operator, 70
resistance
form, 55, 61
metric, 56, 61, 70, 75
network, 43, 69

self-adjoint operator, 196
self-affine set, 10
self-similar

measure, 25, 26, 105

set, 10, 13

structure, 18, 25, 26
self-similarity of a form, 83
semigroup, 160, 199

of symmetric operators, 199

property, 199

strong continuous, see strong

continuous semigroup

shift

Index
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map, 13
space, 12, 18
Sierpinski
carpet, 24
gasket, 15, 24, 71, 108, 128,
135, 137, 149, 155
similarity dimension of harmonic
structure, 138
similitude, 9, 13
snowflake, 120
solution of the heat equation
L°- see L°°-solution of the
heat equation
on (0,00), 162
spectral
dimension, 135, 137, 138, 155
exponent, 134, 137
standard harmonic structure, 71,
77
standard Laplacian, 109, 135, 149
strong continuous semigroup, 199
strongly symmetric, 116
symbol, 12, 18, 20
symmetric
operator, 196
strongly, see strongly symmet-
ric
weakly, see weakly symmet-
ric
symmetry
group, 146
of a harmonic structre, 115

theorem
renewal, see renewal theorem
Weyl’s, see Weyl’s theorem
totally bounded, 10

unit contraction, 202

variational formula, 136, 140, 198
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Vicsek set, 147

weakly symmetric, 37
Weyl’s theorem, 133
word, 12

empty, 12

length of, 12



