NORTH HOLLAND SERIES IN
Probability and Applied Mathematics

A. T. Bharucha-Reid, Editor
Wayne State University

AN INTRODUCTION TO STOCHASTIC PROCESSES
D. Kannan

STOCHASTIC METHODS IN QUANTUM MECHANICS
S. P. Gudder

APPROXIMATE SOLUTION OF RANDOM EQUATIONS
A. T. Bharucha-Reid (ed.)



An Introduction
to Stochastic
Processes

D. KANNAN

Department of Mathematics
University of Georgia

%E
NORTH HOLLAND « NEW YORK
New York « Oxford



Elsevier North Holland, Inc.
52 Vanderbilt Avenue, New York, New York 10017

Distributors outside the United States and Canada:

Thomond Books

(A Division of Elsevier/North-Holland Scientific Publishers, Ltd.)
P.O. Box 85

Limerick, Ireland

Copyright © 1979 Elsevier North Holland, Inc.
Library of Congress Cataloging in Publication Data

Kannan, D
An introduction to stochastic processes.
(North Holland series in probability and applied mathematics)

Bibliography: p.

Includes index.

1. Stochastic processes. 1. Title. II. Series.
QA274 K35 519.2 79-11
ISBN 0-444-00301-0

Manufactured in the United States of America



Contents

Preface
Acknowledgments

|
|
|
|
|
1
l
|

to to e tat

L]
V2
(3R}

ST AN

. Introduction

Notion of Stochastic Processes

Probability Space

Random Variables and Distribution Functions
Expectation and Moments

Conditioning and Independence

Convergence Concepts

Transforms

Limit Theorems

. Random Walk
2.1.

Introduction

Gambler’s Ruin

Expected Duration of the Game
Recurrence and First Passage
Two Examples

Exercises

. Markov Chains
Definitions, Simple Consequences, and Examples
n-Step Transition Matrices

Strong Markov Property

xi
xiii

I

W W -

14
14
16

19

19
22
28
29
34
37

39
39
47
50



viii

3.4. Decomposition of State Space
3.5. Recurrence and Transcience
3.6. Stationary Distribution

3.7. Branching Chain

Exercises

Poisson Processes

4.1. Definition and Examples

4.2 Basic Properties of Poisson Processes

4.3 Some Generalizations of the Poisson Process
Exercises

. Purely Discontinuous Markov Processes

5.1. Kolmogorov- Feller Equations
5.2. Birth—Death Processes (A)

5.3. Birth—Death Processes (B)

5.4. Recurrence and Ergodic Properties
Exercises

Calculus with Stochastic Processes
6.1. Introduction

6.2. Continuity

6.3. Differentiability

6.4. Integration

Exercises

Stationary Processes

7.1. Definition and Examples

7.2. Spectral Representation

7.3. Ergodic Theory of Stationary Processes
Exercises

Martingales

8.1. Definition and Examples

8.2. Martingale Convergence Theorems
8.3. Optional Sampling Theorem
Exercises

Brownian Motion and Diffusion Stochastic Processes

9.1. Random Walk to Brownian Motion
9.2. Browntan Motion

9.3. Some Fundamental Path Properties of Brownian Motion

9.4. Examples and Further Properties
9.5. White Noise and Stochastic Integrals

Contents

54
57
67
79

83

87

87
92
99
103

105
106
11
120
131

137

143
143
148
153
154

162

165
165
173
185
192

195
195
208
219
224

227

227
229
236
243
251



Contents

9.6. Diffusion Process and Kolmogorov Equations
9.7. First Passage Time

Exercises

Bibliography

Index

ix

259
275
283
287
291



Preface

Stochastic processes play a basic role in several problems of many branches of
physical, biological, and social sciences, business and economics, and engineer-
ing. Having recognized the applicatory value of the theory of stochastic pro-
cesses, almost all colleges and universities offer a course on this subject at least
for a semester or quarter to suit the needs of students majoring in various areas.
This textbook is based on my lectures given at the University of Georgia and
University of Guelph. The composition of my classes varied from year to year
with students from the junior level to the first year graduate level and majors in
mathematics, statistics, physics, chemistry, zoology, ecology, and business.
With the exception of a couple of sections, all the material in the book has been
covered at one time or another.

The book treats most of the major areas of stochastic processes. The first
objective of the book is to present various techniques used in the study of stochas-
tic processes. The notion of stopping time is introduced at a very early stage
¢Chapter 2) and is used throughout the book. At several places we have
cxplained the intuition behind these techniques. The material covered in this
book will prepare a student for further advanced study of stochastic processes.
Our next objective is to point out the applicatory value of this area of mathema-
tics. Almost all the topics have been motivated and illustrated by drawing exam-
ples and applications from various branches of sciences.

Chapter | gives the prerequisite material from probability theory at a level
higher than what is needed in the following chapters. Chapter 2 treats random
walk and introduces and uses stopping time. An instructor who may not have
c¢nough time to cover all the material in the book can start his or her course with
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Chapter 3 on Markov chains. There, too, random walk is discussed and stopping
time introduced. Strong Markov property is pointed out, recurrence, transcience,
and stationary distribution are studied in some detail, and elements of branching
chain are presented. Chapter 4 is an introduction to Poisson process pointing out
its potential value in application. Chapter 5 studies essentially the birth—death
processes. In addition to several examples, recurrence and transience are dis-
cussed. Chapter 6 is written in the spirit of calculus. It presents sample path
properties such as continuity, differentiability, and integrability. Stationary pro-
cesses are the subject matter of Chapter 7. Spectral representation and ergodic
theorems are treated there. Chapter 8 gives a detailed account of martingales.
Optional sampling theorem and convergence theorems are presented. Chapter 9
is on Brownian motion and diffusion stochastic processes. Path properties of
Brownian motion are given in detail, certain diffusion equations are solved, and
hitting time distribution is studied. Numerous examples are provided in each
chapter to illustrate the theory and to point out possible applications.

This book is meant as a textbook for the senior undergraduate and first year
graduate level students. A potential reader should have had calculus, probability
theory, and differential equations. The entire book can be covered in a one-year
course. For a two-quarter or one-semester course, several plans are possible
using this book. Interdependency between various chapters is kept at a minimal
level. Selecting basic material from each chapter one can offer a one-quarter
course. | feel that every course should cover Chapter 3, 5, and 7-9.
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Introduction

1.1 Notion of Stochastic Processes

The origin of the theory of stochastic processes can be traced into the field
of statistical physics. The first examples and several basic concepts of
stochastic processes were initially considered in statistical physics at the
turn of this century. These examples arose and further examples still arise
as a consequence of fluctuations and noises of different types in the physical
system. A physical process is a physical phenomenon, the evolution of which
is studied as a function of time. Consider the position X(¢) and velocity
V(¢), in the X-direction and at time ¢, of a tagged particle that is undergoing
an observable motion in a fluid due to almost continuous bombardment by
the molecules of the media. Then (X (¢), V(¢)) is a physical process. Because
of the randomness involved in the collisions, (X(f,w)V (¢, w)) is a random
vector for each t. Here w is a sample point. Thus the randomly evolving
physical process (X (¢, w), ¥(t,w)) is a family of random vectors indexed by
the time parameter ¢, where ¢+ > 0 or —oo <t < oo, say. A family of
random variables indexed by a parameter set is roughly known as a
stochastic process.

The theory of stochastic processes can be considered as a mathematical
foundation of statistical physics. The modern quantum field theory depends
heavily on (noncommutative) stochastic processes. In an axiomatic ap-
proach to the quantum field theory (based on the concepts of observables),
one takes the random variables as axiomatic elements, and the so-called
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weak stochastic processes form the founding elements. (However, this text
introduces the reader only to the mathematical theory of stochastic
processes and its applications.)

Stochastic processes arise not only in physical systems, but also in
engineering, biological, medical, and social systems. It is increasingly
becoming a dictum that models must be stochastic and not deterministic.
This stresses the importance and applicatory value of the theory of
stochastic processes.

We described the motion of a tagged particle as a stochastic process
with “time” ¢ as the indexing parameter. But the index ¢ need not
necessarily denote the time. Consider now a geological study of rock
formation. Here X (f,w), t = 0, 1, 2, ..., may denote the rock component
(e.g., lignite, shale, sandstone, siltstone) of the rth layer of the rock. Here ¢
is a space variable and is discrete. As another example, consider the
fluctuation problem of electron—photon cascade. Let X(e; ?,w) denote the
number of particles (photon, electron, etc.) with the energy value less than
e at an arbitrary thickness ¢ of the absorber (matter). Here ¢ is a continuous
variable.

Next we present some examples of a stochastic process in its rough sense
(as a collection of random variables). Here the index set could be any one
of 0<1r<oo, —0<t<o0, t=n=0=1,22,...,n=01,...,
and so on.

1. The family {X(¢),¢ > 0} denoting the number of impulses registered by
a Geiger-Muller counter during the period [0,¢) is a stochastic process.

2. The process T,, n = 0, 1, ..., denotes the time elapsed between the
(n — )st and nth registration of impulses in the example in the
preceding paragraph.

3. Let X(¢) be the fluctuating voltage across the end of a resistor in an
electric circuit at time ¢ > 0. The fluctuation arises due to the random
motion of conduction electrons, and the process X(¢) is called the
thermal noise.

4. 1n a unimolecular reaction, we can take X () to denote the concentration
at time ¢ > O of a reactant p that is irreversibly converted into a product
.

5. (Enzyme amplifier system). In the gellation process of blood clotting, the
conversion of proenzymes to the final stage of enzyme fibrin occurs in
several stages. Let X(¢) denote the concentration of fibrin at time ¢ > 0.

6. In an insect, animal, or human population, the population size fluctuates
randomly due to environmental stochasticity in birth, death, immigra-
tion, and emigration rates. Take X(r) as the population size at time
t > Oor at generation? = 1, 2, ....
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7. Consider a predator learning to hunt advantageously in a model-mimic
system. Let X(¢) denote the last encountered prey (a model or a mimic)
before or at time ¢ > 0. Then X(¢) is known as the predator encounter
process.

8. (Epidemiology). In the stochastic theory of epidemics one considers a
vector process (S(2), I(t), R(t)), t > 0, where S(¢), I(), and R(¢) denote
the numbers of susceptibles, infectives, and removed, respectively, at
time ¢.

9. (Genetics). Consider a randomly mating population of N diploid
parents. Let the alleles 4 and a occur with frequencies x and 1 — x,
respectively, where x varies in [0,1]. Define a process X(f) = the
frequency of allele A. A problem of interest is the probability of fixation
of allele A.

10. (Congestion). In a queuing system the following processes arise, among
others: X(¢) is the number of customers who arrived during [0,¢) at a
service counter, and Y(¢) is the number of customers served during the
period [0,¢). (Such counting processes arise in various fields. In nuclear
physics, for example, one considers the occurrences of collisions be-
tween beam particles and target particles in an ideal accelerator
bombardment of an amorphous target.)

We conclude this list of general examples here and give further examples
later under proper setup. In the remainder of this chapter we review very
briefly the necessary background material from probability theory.

1.2. Probability Space

Probability theory is concerned with the study of experiments whose
outcomes are random; that is, the outcomes cannot be predicted with
certainty. The collection § of all possible outcomes of a random experiment
is called a sample space. An element w of Q is called an elementary event (or
a sample point).

Definition 1.2.1. A collection @ of subsets of Q is called a o-algebra if (a)
Q € @ (b) 4 € @implies that its complement A € @ and (c) for any
countable collection {4,,n > 1} C @ we have U, 4, € Q The ele-
ments of @ are called events.

If @ is a o-algebra of events, then (1) ¢ € @ and (2) N, 4, €E @
whenever 4, € @foralln > L.

Given an arbitrary collection € of subsets of (2, there is at least one o-
algebra, namely, the power set of £, which contains & The smallest o-
algebra o(C) that contains Cis called the o-algebra generated by C.
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Definition 1.2.2. Let & = R. The o-algebra generated by the collection of
all half-infinite intervals (— oo, x) is called the Borel o-algebra on R. The
sets belonging to this Borel g-algebra, denoted by R or B(R), are called
Borel sets.

Now let @ = R”. Arbitrarily fix a point x° = (x?,...,x%) € R". The
set of all x = (x,...,x,) € R" such that x, < x{, 1 < k < n, is called
the open negative orthant at x°. Let © denote the collection of all open
negative orthants as x° varies in R”. Then a(0) is the Borel ¢-algebra on R".

If © is an at most countable set, we shall always take the power set of
2 as the associated o-algebra.

Definition 1.2.3. Let  be a sample space and & a g-algebra of subsets of §2.
A function P(-) defined on @ and taking values in the unit interval [0,1]
is called a probability measure if (1) P(R) =1, (2) P(4) > O for all
A € @ and (3) for an at most countable family 4,, n > 1, of mutually
disjoint events, we have

PRI UA, =3 P(4,).
n21 n>1

The triple (2, @, P) is called a probability space. The pair (R,&) is called
a probabilizable space.

The first basic properties of a probability measure are collected in the
following theorem.

Theorem 1.2.4. (i) If A and B belong to @ then P(A U B) + P(4 N B)

= P(4) + P(B).

(i) If A,B € @ and A C B, then P(4) < P(B) (the monotonicity
property).

(iii) If4, B € @and A C B, then P(B\A) = P(B) — P(4).

(iv) If 4, € @ n > |, then P{U,5, A,} < 2,5 P(4,) (subadditivity).

(v) Ifd, € Qand A,V A, that is, A, C A,.,n > 1, and U, A, = A,
then P(A) = lim,_, ., P(A,) (continuity from below).

(vi) IfA, € Rand A, | A, that is, A, D A,.,,n> l,and N, A, = A,
then P(A) = lim,_, , P(4,) (continuity from above).

Definition 1.2.5, Let 4, € @ n > 1. The set of all w that belong to
infinitely many of the sets 4, is called the /imir superior of the sets 4,
and is denoted by lim sup 4,. More precisely,

o0

o0
limsupA, = N U A4,.

n—+o0 k=1n=k
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The limit inferior of the sets 4,, denoted by lim inf A4,, is the set of all w
that belong eventually to 4,, for all large n. That is,

o0

o0
liminf 4, = U N 4,.

n—oo o k=1n=k "

Theorem 1.2.6. (First Borel-Cantelli lemma). Ler {4,}, n > 1 , be a
sequence of events and A = lim sup A4,. If 2, P(4,) < oo, then
n—oo

P{4,10} = P(4) = 0,

where 10 represents infinitely often. (Sometimes the notation {4,10} is
used to denote the set lim sup A4,,.)

To avoid some undesirable situations, one completes a probability
measure as follows. Let 9 be the family of all subsets of @ that are
contained in the P-null events, that is, in the events of probability zero. The
o-algebra generated by the collection {@, 9} is called the completion of & and
is denoted by @ Every set B in & can be written as B = 4 U N with
A €@QNE€EIN and A N N = ¢. Now extend P to & by defining

P(B) = P(4 U N) = P(4).

It is easy to verify that P is a probability measure on @ The set function P
is called the completion of P. A probability space (2,&,P) is called a
complete probability space if every subset of a P-null event is also an event.
Throughout this textbook we assume that P is a complete measure.

1.3. Random Variables and Distribution Functions

Let (2,& P) be a (complete) probability space and (S,S) an arbitrary
probabilizable space.

Definition 1.3.1. A function X: & — § is called a random element in S (or
a random variable in case S = R and § = Q) if

{w: X(w) € B} €@  forevery B € S.

Recall that if S is discrete (i.c., at most countable), then S = 25, the
power set of S. Now a mapping X: @ — S is called a (discrete) random
variable if

{we & Xw=s)€@ foreverys € S.
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We abbreviate the term random variable by RV,

Definition 1.3.2. Two RVs X and Y are said to be equivalent if P{w
€ 2 X(w) # Y(w)} = 0.

We do not distinguish between two equivalent RVs.

Let A4 be an arbitrary subset of Q. The function defined by I,(w) = 1 if
w € A, and 0 otherwise, is called the indicator function of A. Let now
A € @ Then I,(w) is clearly an RV. If 4 & @ then I, is not an RV. Thus
there are real-valued functions on {2 that are not RVs.

Theorem 13.3. The following statements are equivalent:

X is a real-valued RV.

{w: X(w) > a) € Qforalla € R.
{w: X(w) >a} € @foralla € R.
{w: X(w) < a} € @foralla € R.
{w: X(w) < a} € @foralla € R.

€

M AN

It is customary to shorten the notation {w € ©: X (w) < a}, say, by
{X < a}. We follow this practice here.

Theorem 1.3.4. (i) If X and Y are two RVs, then the sets (X < Y},{X < Y},
(X =Y},and {X # Y}all liein @ (ii) If X and Y are two RVs, then so
are X + Y and XY. (iii) If{X,} is a sequence of RVs, then sup,X,,, inf, X,
lim sup X, lim inf X, are all RVs.

n—o0 n—o

A mapping X:  — R represented by X = (X, ..., X,), is called a
random vector if for every k, 1 < k < d, and every a € R the set
{Xi(w) < a} € @ A complex-valued RV Z is defined as the linear combi-
nation X + /Y of two real RVs X and Y.

Given an RV X, it induces a o-algebra on £ as follows. The o-algebra
induced or generated by X is the smallest o-algebra that contains all the sets
of the form {X < a}, a € R. This o-algebra is denoted by o(X). A similar
definition is obtained for the o-algebra o(X|, ..., X,) generated by the RVs
Xis - o ov X

Let X: @ — S be a discrete RV and {s.s,, ...} an enumeration of the
points of S. Define a sequence { p;} of reals by p, = P{X = s, }. Then
0 < p, < land 2, p, = 1. The sequence { p; } of probabilities is known as
the probability distribution of X. Now, let X: @ - R%and X = X Xy).
The (d-variate) distribution function of X or the joint distribution function
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of X, ..., X;is defined by
F(xl,...,xd) = P{Xl < xl,...,Xd < xd}

ford > 1, x, € R, 1 < k < d.(The term distribution function is abbreviat-
ed DF))

Theorem 1.3.5. If F(x,, ...,x,) is a joint DF, then
(i) F(x;,...,xg) is monotomically increasing in each argument.
(ii) F(x;,...,xy) is right continuous in each argument.
(iii) forany b, > 0,1 < k < d,
0 < F(xl +h|,..-,xd+hd)
n
- kzl F(xl + hl' ey Xp— + hk_l,xk,xk+| + hk+l’ ey Xy
+ hy)
+E 2 F(xl +h|,...,XJ,...,xk,...,xd+hd)
J<k

— E‘<,2'<k2 F(x +hl,...,x,»,...,xj,...,xk,...,xd+hd)
i

+o+ (DR, xg).

If f(x),....x5) = (39F/dx, ---9x,) exists for all (x,...,x,) € R,
then the function f(x[,...,x;) is called the joint density function of
F(.x', e ,xn) or of (X|, e ’Xd)‘ and

x Xn
F(xl,...,xd) =f—olo "'j-_oof(tl,...,t")dtn "'dtl.

Let F(x,...,x;) be the joint DF of X, ..., X, and 1 < k; <k,
<+ <k, < d. Then the marginal distribution 4 (x,...,x) of
(X, - - -+ X,) is defined by
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1.3.6. Some Standard Distributions
1. A probability distribution { p|, . . .,p,} is called (discrete-) uniform if

P = /n, k=1,...,n

2. Fix an n and 0 < p < 1. A distribution {p,}, 0 < k < n, is called
binomial with parameters n and p, if

n _
pk=(k)p"q"", g=1-p, 0<k<n
3. A geometric distribution { p;}, k > 1, is given by

p=p""", k>

4. A Poisson distribution {p;), k > 0, with mean parameter A > 0, is
pr =€ WSk k=01,
5. A (continuous) uniform dtstrzbut:on on [a,b)] is defined by its density
function f(x) = [6 — a]™', on @ < x < b, and O elsewhere.
6. A normal dens:ty (with parameters i and o) is defined by (0\/2—77)
- exp[—(x — ) /202] x € R. To say that an RV X is normally or

Gaussian distributed, we use the notation X € N(u, 62).
7. A gamma density with parameters a > —1 and A > O is given by

MT(@+ DJAx)*e™, x>0
o) = { Ve o) >0
0, x<0
where T is the gamma function
o0
T'(x) =f0 e”?y'dy,  x>0.

8. Leta = 0 and A > 0in (7). The resulting density

_ Ae M, x>0

ey = {0, x<0

is known as the exponential density.
9. Take a = (n — 2)/2, where n is a positive integer, and A > 4 in (7).
Then the density

f(x) = [2"2T(n/2)] ' xD2e=%2 x>0

is known as the x2-density with n degrees of freedom.
10.Let p = (., ..., py), T as positive definite symmetric matrix of order d,
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and |Z| the determinant of Z. A density function f(x,, . ..,x,) on R?is
called a d-dimensional normal density if f is given by

61, oxg) = @) VE Pexp[—dx — ) 27 (x - ).

1.4. Expectation and Moments

Definition 1.4.1.

1.

The expectation E[X] of a discrete RV X taking the values {s, } is
defined by

E[X] = Zskpk _Esk PX = 5},

provided that =|s; | p, < oo.

The expectation E[X] of an RV X: & — R with DF F(x) is defined
by

E[X] =f_°:o xdF(x) =f_°:° xf(x)dx,

provided that 23 |x|dF(x) < oo.

Letg: R - R9 be a Borel measurable function and F(x,...,xy)
the DF of (X}, ...,X,). Then

Elg(X;,....X)] = fR fR g(xy, .. xg)dF(x,, . .., xp).

In (3) choose g(Xj,...,X;) = XX Xk k; >0,1 <i<d.
Then E[X - .- X} is called the (k,...,k;)-moment of (X,,...,
X;).

The klh central moment of an RV X is defined by m, = [z (x
— pwkdF (x), where p = E[X]. The second central moment is called
the variance of X and is denoted by o instead of m,.

For any two RVs X and Y with finite variances 0)2( and of,, the
correlation of X and Y is defined by E[XY], and the covariance

cov(X, Y) is defined by cov(X,Y) = E[(X — puy)(Y — py)].

By (), p > 1, we denote the collection of all (equivalence
classes of) RVs such that E[| X|?] < oo.
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The moments m; of a RV X can also be defined in terms of the
probability measure P. Let us now recall the theory of integration with
respect to P.

A simple function h on  is a finitely valued nonnegative function. If h
is a simple function, then there are real values g, > 0, | < k< n,and a
partition 4, € @ 1 < k < n, of  such that h = Zf'a, I, . (By a “parti-
tion” we mean sets A, such that 4; N A;=¢, ifi+#j,1<ij<n and
Ul 4, = Q.) Let S denote all simple functions h: @ — R_.If h € S, define
its integral with respect to (abbreviated WRT) P by

[ hdp = 2: a, P(4,) = E[h].

The integral f hdP is independent of the representation =;_,a, I, of h.

Let {h,} be an increasing sequence in S, and & an element of S such that
h < sup, h,. It can then be shown that

E[h] = fg hdP < sup, fﬂ h,dP = sup, E[h,].

Consequently, if g, and h,, n > 1, are increasing sequences in S, then
sup,g, = sup, h, implies that sup, Elg,] = sup, Elh,].

Let S* be the collection of all numerical functions X > 0 on Q for
which there is an increasing sequence h, € S such that X = sup, h,. Then,
by the preceding remark, 0 < sup E[h,] < oo. Now define

E{X] = sup Efh,].

This expectation of X is independent of the choice of the increasing
sequence {h,}. The following result holds: S* is the collection of all
nonnegative RVs on (.

Let X be an arbitrary RV on . Define

X* = max(X,0) and X~ = —min(X,0).
Note that X* > 0, X~ >0, X =X"—X",and |[X| = X* + X~. Now
the E[X] of X is defined by E[X] = E[X*] — E[X].
A property IT of points of Q is said to hold almost surely (abbreviated AS)

or with probability one if the set of all w for which the property II does not
hold is of probability zero.

Theorem 1.4.2.

(i) Let X € S*. Then E[X] = O if and only if X = 0 AS.

(ii) If E[X] exists, that is, { |X|dP < o0, and Y = X AS, then E[Y]
exists and E[X] = E[Y].

(i) If X and Y are two RVs such that E[Y] exists and |X| < Y, then
E[X] exists.

10
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(iv) If E[X] exists, then X is finite AS.
(v) If X is nonnegative integer valued, E{X] = =, P{X > n)}.

Theorem 1.4.3. (B. Levi’s monotone convergence theorem). Let {X,} be an
increasing sequence in S*. Then
sup X, € S* and  E[sup X,] = sup E[X,].
n n

Consequently, =° X, € S* and E[Z* X,] = =P E[X,], for every se-
quence {X,} C S*

Theorem 1.4.4. (Fatou’s lemma). For any sequence {X,} C S* we have

Ellim inf X,] < lim inf E[X,] < lim sup E[X,] < E[lim sup X, ].
n—o0 n—o0

n—oo n—oo

Theorem 1.4.5. (Lebesgue’s dominated convergence theorem.) Let {X,} be a
sequence from [P () that converges AS on R, and Y a nonnegative function
from 1P such that |X,| < Y for all n > 1. Then there is an RV X on Q
such that X, (w) = X(w) for almost all w, X € [?, and E[| X, — X|”]
— 0,as n —> oo.

1.5. Conditioning and Independence

Let B be an event, that is, B € @, such that P(B) > 0. Then the mapping
Pg(): @ — [0, 1] defined by

Pg(4) = P(A N B)/P(B)

is a measure on @ such that Pg(B) = 1, even though P(B) need not be
equal to one. The value Pg(A) is called the conditional probability of A given
B and is customarily written as P(A|B).

Formula of Total Probability 1.5.1. Let {B,} be a partition of £ such that
P(B,) > Ofor alln. If A € @ then

P(4) = % P(B,)P(A|B,).

Bayes®’ Formula 1.5.2. If P(4) > 0, then under the total probability formu-
la, we have

P8, 1) = [P(B)PAIB/ (S PBIPUAIBY | n> 1.

11



1. Introduction

The conditional expectation of X given an event B with P(B) > 0 is

defined by

E[X|B] = [ XdPy = [P(B)]™" fBXdP = [P(B)]" E[XI,).

Theorem 1.53. Let X be an RV with E[|X|] < oo. Then, for every o-

subalgebra B C @, there exists AS a unique RV X * with E[|X*|] < o
and such that X* is a B-RV, that is, {X* < a} € B for alla € R and
E[X*13] = E[XIg] for all B € %. This RV X* is called the conditional

expectation of X given B and is denoted by X* = E[X|®]) = Eg[X]. Now

fB E[X|®]dP = fB XdP forall B € ®.

Theorem 1.5.4.

() E[E[X|B]] = E[X], if X is integrable (i.e., X € L.

(i) If X is a B-RV, then E[X|®] = X, AS, (X € L").

(iii) If X = Y AS, and is integrable, then Eq|X] = Eg[Y], AS.
(iv) Ifa,b € Rand X, Y € L', then

(V) IfX,Y € L'and X < Y AS, then Eg X < Eg Y, AS.

(vi) If X,, n > 1, is an increasing sequence of nonnegative of RVs, then
Eg[sup, X,] = sup, Eg[X,], AS.

(vii) If{X, } is a sequence of RVs such that X,(w) = X(w) for all w except
for a set of probability zero and there isa Y € L' () with |X 2 <Y
for all n, then lim,_, , Eq(X,) = Eg(X), AS.

(vii))If B, and B, are two o-algebras of subsets of Q such that B, C B,

C @, then

Eq (Eq)(X)) = Eq,(Eq (X)) = Eg (X), AS.

Definition 1.5.5. Let f(x|,...,x;) be the joint density function of the RVs

X,, ..., X;. The conditional density fi  ,(u,...,u| X y,...,Xxz) Of
X, ..., X given X, ..., X, is defined by
.fl """ k(ul,.-.,uk,xk+],-..,Xd)
f(ul,...,uk,ka,...,xd)

fR "'fkf(yl‘."'yk’xk+"'"xd)dy| . e d)"k



LS. Conditioning and Independence

Definition 1.5.6.

1. A family {4,,i € I} of events from & is called an independent
family (WRT P) if for every finite subset {i,...,i;} # ¢ of I, we
have

k k
P{iDIA,-j = 11 P4y (1.5.1)

2. Afamily {&;,i € I} of sub-g-algebras of @is said to be independent
if for every finite subset {i;,...,i,} of I and A,-j € @i,- we have
relation (1.5.1).

3. A family {X;,i € I} of RVs on @ is said to be independent if the
family {a(X;)}, i € I, is independent.

It is easy to show that the RVs X|, ..., X, are independent if and only
if their joint distribution function factors as

F(X|,...,x") = FX](xl)” 'F)‘("(xn).

Theorem 1.5.7.

(i) Let X, ..., X, be independent and belong to L. Then E[II} ., X,]
= Iz, E[X,].

(i) Let X,,...,X, € I?> and be independent. Then var(Z]X,)
= 3['var(X,), where var (-) denotes the variance.

Second Borel-Cantelli Lemma 1.5.8. If {4,} is a sequence of independent
events with ={° P(A,) = oo, then P{4,10} = 1.

Definition 1.59. Let X,, n > 1, be a sequence of RVs. Let ®, = o[X,,
X415 - - -] be the 6-algebra generated by X, , X, .|, . ... The sequence %,
is nonincreasing. The intersection § = N, B, is called the fail o-
algebra of the sequence {X,,}.

Theorem 1.5.10. (Kolmogorov’s Zero—One Law). The probability of any
event belonging to the tail 6-algebra of a sequence of independent RVs is
either O or ).



1. Introduction
1.6. Convergence Concepts

Definition 1.6.1.

1. A sequence {X,} of RVs is said to converge almost surely to an RV
X if
Plw € Q: X(w) = lim X,(w)} = 1.
n—oo

2. A sequence X, of RVs is said to converge in probability to a RV X
if, for every ¢ > 0,

lim P{|X,—X| >¢ = 0.

3. A sequence {X,} C I”, (p > 1), is said to converge in pth mean to
X e I?if

lim E|X, - X|? =0.
n—oo

4. Let X,, n > 1, be a sequence of RVs with DFs F,, rgspectively. The
sequence X, is said to converge in distribution if there is a distribu-
tion function F(x) such that

lim F(x) = F(x)
n—co
at all continuity points x of F(-).

Theorem 1.6.2.

() If X, > X AS, then X, = X in probability. The converse need not
hold.

(i) A sequence X,—> X AS if and only if, for every real ¢ > 0,
lim,_, ., P{sup,>,|X, — X| > ¢ = 0.

(i) A sequence X,, — X in probability if and only if every subsequence of
{X,} contains a further subsequence that converges AS to X.

(iv) Convergence in the pth mean implies the convergence in probability.
The converse is not true.

1.7. Transforms

In this section we collect some basic properties of the Fourier transform
(characteristic function), the Laplace-Stieltjes transform, and the probabil-
ity-generating functions of a distribution or an RV,

Definition 1.7.1. The characteristic function (CF) of an RV X or its DF F(x)

14
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is defined as the Fourier transform
J(6) = E[e'®X] = fR €% dF (x)

= u(®) + iv(f) = fR cos @xdF(x) + ifR sin 8x dF(x).

Theorem 1.7.2. Let f = u +iv be the CF of an RV X. Then (i) f is
continuous, (i) f(0) = 1, (iii) | f(8)| < 1 for all 8, (iv) the CF of aX + b
is € f(aB), (v) u(9) is even and v(8) is odd, (vi) } is real if and only if F is
a symmetric distribution, (vii) |f(8,) — f(8))I° < 2{1 — w(8, — 8,)), and
(viii) 12(0) < 27'[1 + u(20)].

Theorem 1.7.3.

() If f, and f, are the CFs of the independent RVs X, and X,, then the

CF of X, + X, is fy 5.
(ii) Distinct DFs have distinct CFs.
(iii) For any two continuity points a and b of F we have

F(b) - F(a) = Jim o [ (0 [ — ~%]f(6)db.

(iv) A continuous function that is the pointwise limit of a sequence of CFs
isa CF.

(v) Continuity theorem. A sequence{F,} of DFs converges to a DF F(x) if
and only if the corresponding CFs f, converges at all 8 to a function f

that is continuous at 0. Moreover, § is the CF of F.

Theorem 1.7.4. (Bochner.) A function g on R is a characteristic function if and
only if it is nonnegative definite and continuous.

Definition 1.7.5. The Laplace transform of a DF F(:) is defined by
&(0) = fR e % dF(x) = E[e™®X], 8> 0,
wherever the integral exists.

In discussing Laplace transforms, let us assume that the DF is concen-
trated on [0, co).

Theorem 1.7.6.
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(i)
(ii)

(iii)
(iv)

v)

Distinct DFs have distinct Laplace transforms.

The nth derivative ¢"™(0), n>1, is given by ¢» @)
= (=1)" f5° e ¥ x"dF(x).

52 e [1 = F(x)]dx = 671 — ¢(8)).

A function ¢ on (0, 00) is the Laplace transform of a DF F if and only
if $(0) = 1, the derivatives ¢(” of all orders exist, and (—l)"¢(")(0)
> 0.

Inversion formula. If ¢ is the Laplace transform of a DF F, then at all
points of continuity of F, F(x) = lim,_,, 2, < ax(n!)-l(—a)"¢(”)(a).

Definition 1.7.7. The (probability) generating function (PGF) g(s) of a
probability distribution { p, } is defined by

fis) = = pis*.
P

Theorem 1.7.8.

@
(ii)
(iif)

(iv)

Let { p;,k > 0} be the probability distribution of a nonnegative RV.
Then the corresponding PGF g(s) converges for all s with |s| < 1.
Ifg, ..., g, are the PGFs for n independent RVs X, ..., X, then

the PGF of X, + -+~ + X, is g - - &,

Let {X,}, n > 1, be a sequence of nonnegative integral-valued RVs
with the probability distributions {p}(")} and PGFs {g,(s)}. For a
random index Z(w), that is, for an RV Z with values in {1,2, ...},
define Y(w) = Xz, (w). Let {q ) be the probability distribution of Z.
Then the PGF of Y is given by gy(s) = 22 4, 8:(5),0 < s < 1.
The limit limyy, d"g /ds" and the sum 3, 5, (k! p,/(k — n)!) are either
both finite or both infinite. If they are both finite, they are equal.

1.8. Limit Theorems

Theorem 1.8.1. (Generalized Chebyshev Inequality.) Let X be an RV and f
an even nonnegative function on R such that f(-) is nondecreasing for x > 0

and E[f(X))] exists. Then for any a > 0, the following inequality holds:

By choosing f(x) = |x

P{Xx| > a} < [f@]""ELF(X)].

% a > 0, one obtains the Markov inequality

P{IX| > a) < a“E[|X|*], a>0.



1.8. Limit Theorems

Theorem 1.8.2. (Weak Law of Large Numbers.) If {X,} is a sequence of
independent and identically distributed (11D) RVs with mean p and

variance o*, then

lim P

n—oo

n
Y Xk—u‘><}=0
K=1

for every € > 0.

Theorem 1.8.3. (Kolmogorov Inequality.) Let X, ..., X, be independent
real L>-RVs. Then, for every a > 0,

P{ sup
1<ksn

where p;, = E(X;).

ﬁ(x - ')‘ > a} <a? é var(X))
i K Z N Peaet] k />

i=

Theorem 1.8.4. (Kolmogorov’s Strong Law of Large Numbers.) Ler {X,} be
an independent sequence of [*-RVs. If 2,5 n~? var(X,) < oo, then

lim n~! kgl Xy — EX,) =0, AS.

n—oo

Definition 1.8.5. We say that the central limit theorem holds for an
independent sequence of I2-RVs with var(X,) > 0 if the sequence K,
of DFs of the sums

S = ar(x + -+ X 3 (6 = EXY)

converges to the DF of N(0, 1).

Theorem 1.8.6. Let {X,} be a sequence of IID RVs with a finite, positive
variance o*. Then

st (3 0) -] <2} 0o
where n = E[X,].

‘Theorem 1.8.7. (Lyapunov.) Let {X,} be an independent sequence of RVs with
mean zero and such that for some a > 0, the moments E| X, |**® exist and

n —(2+a)/2 n
lim [2 Esz] S E|X [P =o0.
0

n—oo |

Then the central limit theorem holds for the sequence {X,,n > 1}.
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Random Walk

2.1. Introduction

The first mathematical foundation of the theory of random walk (RW)
seems to be due to Pearson, who in 1905 posed an RW model of a motion
similar to that of the bacterium Escherichia coli. The general theory was
initially developed by Markov, Smoluchowski, and Polya, among others.
Currently the field of RW has a rich theory (Spitzer 1964). One can find
applications of RW theory in such diverse areas as polymer physics, solid-
state physics, kinetic theory of chemical reactions, astronomy, population
growth, neural networks, carcinogenesis, stockmarket trends, business risk,
and storage theory. This chapter presents an introduction to such an
important area of study. For most part we study only the simple lattice
model.

Let us motivate the definition by means of two examples. Consider a
gambler starting out with an initial fortune X;. At the end of each game he
either wins or loses a dollar with probabilities p (a measure of his gambling
skill) and g, respectively, where 0 < p, ¢ < 1, p + ¢ = 1. Each game is
played independently of other games. Let J,, n > 1, denote the gambler’s
winning in the nth game. Then J;, J;, ... are independent and identically
distributed (IID) random variables (RVs) with the common distribution

P{y,=1}=p, PlU=-l}=¢q p+qg=1

iet X,=(Xo+ 4 + -+ +4) Then {X,,n > 0} is a discrete-time, dis-
crete-space stochastic process denoting the gambler’s cumulative fortune at
the end of game n, n 2 0.
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Next consider the example of the escape of comets from the solar
system (Kendall 1961). Consider the motion of a comet around the earth.
During each revolution, the energy of the comet undergoes a change due to
the penetration and passage through the planetary zone. In successive
revolutions the changes J,, n > 1, in the energy of the comet are assumed
to be IID RVs. If X; denotes the initial energy of the comet, then
X, = Xy +J; + - -+ + J, denotes the energy of the comet at the end of nth
revolution. The problem studied by Kendall is that of the escape of the
comet from the solar system. For positive energy the comet is bound and
follows an elliptical orbit. Once the energy hits the level 0, the comet
escapes from the solar system (which automatically kills, for our purpose,
the process {X,} at this random time of hitting 0). Here X = {X,,n > 0} is
a discrete time and continuous-state space stochastic process.

All our RVs can be defined on a supporting probability space (2, &, P).
We often suppress the sample variable w in X(w), w € £, and simply write
X. Abstracting the ideas common to the preceding examples, we have the
following definition.

Definition 2.1.1. Let {J,,n > 1} be a sequence of IID RVs taking values in
the d-dimensional Euclidean space R? and X, a fixed vector in R%. The

stochastic process X = {X,,n > 0} defined by
X, =Xo+J+- -+, n2l,

is called a d-dimensional random walk. If the vector X; and the RVs J,
take values in /9 where I is the set of all integers, then {X,} is called a
d-dimensional lattice random walk. In the lattice walk case, if we allow
only the jumps J, from x = (x|, ...,xy) toy = (x; + €,...,x; + €),
where x € I9 and ¢, = —1 or 1, 1 < k < d, then the corresponding
walk is called a simple random walk. If each of the 2d moves at any given
jump in a simple RW occurs with equal probability p = (1/2d), then X
is called a symmetric random walk. In all these cases, if the jumps J, are
only independent but not necessarily identically distributed, then X is
called a nonhomogeneous random walk.

We study only the simple one-dimensional lattice walk in this chapter.

Examples 2.1.2

EXAMPLE 1. Photosynthesis. Consider the photosynthesis in plants. This is
the use of light energy for the production of sugar and carbohydrates from
CO, and H, O. This photosynthetic reaction takes place in the so-called
photosynthetic unit, which contains a lattice of chlorophyll molecules. In
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2.1. Introduction

his study of exciton trapping on photosynthetic units, Montroll (1969)
treated the transfer of exciton as an RW from one chlorophyll molecule to
a neighboring one on the lattice. Consider the lattice of chlorophyll
molecules with one trap for every T molecules. In the photosynthetic
reaction, the photon is absorbed (with equal probability) by any chlorophyll
molecule and then walks on the lattice by exciton transfer until it hits a
trap, at which time it triggers the chemical reaction. For further details, see
Montroll (1969). A similar situation is described in Example 2.

EXAMPLE 2. Spike Activity of a Neuron. The excitability of a neuron is the
ability of the neuron to respond to stimuli. An excitation with sufficiently
strong stimuli is propagated along the nerve fiber (a motion of ions along
the axon membrane). This propagation is called impulse, and the corre-
sponding electrical manifestation is known as the action potential. Here we
describe an RW model of the spike activity of a single neuron; the electrical
state of polarization of the (somatic — dendritic) membrane of the neuron
is specified by a single number. As the electrical state of the membrane
varies (relative to time), the state point walks (back and forth) along a line.
Fix a point on this line as a resting potential. Fix another point, called
threshold level, a constant unit away from the resting potential. Once the
electrical state reaches the threshold, the neuron fires, producing an action
potential. Let each incoming excitatory postsynaptic potential (resp. inhib-
itory postsynaptic potential) move the state point one unit toward (resp. one
unit away) from the threshold. Let the steps toward and away from the
threshold occur with equal probability (). Once the state point hits the
threshold, it returns to the resting potential and begins its walk afresh. For
further details, see Gerstein and Mandelbrot (1964).

ExaMpLE 3. Radiation Damage. Bharucha-Reid and Landau (1951) have
suggested an RW model for the transmission of radiation damage through
a biological system. The proposed physical mechanism is as follows. A
control molecule is present in an organism, and chain macromolecules are
connected to the control molecule. A kit in this control molecule causes the
initial damage that is transmitted through the system by the chain depoly-
merization of the macromolecules. The complete depolymerization of the
macromolecules is assumed to be responsible for the observed damage to
the system. This depolymerization process is treated as an RW on the state
space S ={0,1,...,D}. Initially the macromolecules are assumed to be
intact (ie., state 0). Following a hit, the system is in state 1 and the
transmission begins. A unit step forward describes further depolymeriza-
tion, and a unit step backward describes recovery. State D denotes the
completion of the depolymerization and thereby causing an observable
damage. The return to O represents complete recovery.

2]
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ExAMPLE 4. Storage. In this example we treat the content of a dam as a
random walk. Let X, denote the amount of water in a dam at the end of
kth day. During day k£ + 1 a random amount /, ,; units of water flow into
the dam due to rainfall and so on. If X; + I is larger than a fixed amount
a, then a units of water is released during the day. If (X + ;) < a, the
dam is drained. To accommodate the overflow, let ¢ denote the full capacity
of the dam. If (X, + I, — a) > ¢, an overflow occurs. Let J, = (/, — a).
Then X, = (X,-, +J,) for 0< X,_, +J,<b, X, =0 for (X,_, +,
< 0), or X, = c in the case of overflow. If {J,} is a sequence of IID RVs,
then {X,,n > 0} is an RW.

2.2. Gambler’s Ruin

Let Jy be a fixed positive integer and J,, n > 1, be the independent and
identically distributed jump variables in a random walk {X,,n > 0} such
that

Xn =J0+J| +'+Jn
The random walk {X,,,n > 0} is called a simple random walk provided that
1 with probability p

—1 with probability g,
0 with probability
where (p+g+r)=1and 0<p,g<1,0<r<1. Whenp=j=gq

(so that r = 0) we call it a symmetric random walk. Throughout this section
we consider only the simple random walk on the integer lattice.

J,

n

Proposition 2.2.1. Let X = {X,;n > 0} be a (simple) random walk and
vy > 0 a fixed integer. Define

Y={X,=X,,+,,-X,,, n>0}

Then, Y is also a (simple) random walk. This proposition says that an
RW starts from scratch at any given time .

PrOOF. By definition, ¥; = 0 and
Y, =X, — X, =0+J*+1" +---+J*F

where J* = J;,,. Since the RVs J, are independent and identically
distributed (IID), the J* are also independent and identically distributed.
Therefore, Y, is the sum of n IID RVs for every n. Hence {Y,,n > 0} is a
(simple) random walk. |
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2.2. Gambler’s Ruin

Consider a gambler, call him Tom, with initial fortune of $a > 0
playing against a gambling house with initial fortune $6 > 0. We view the
game in terms of Tom so that X, will denote the cumulative fortune of Tom
at the end of game n. Tom’s winnings in each game will be either 1, —1, or
0, so that {X,,n > 0} is a simple RW. The game ends whenever either Tom
or the house goes broke. In physical terms, the particle is absorbed either
at O or at a + b. To analyze the situation, define the time of absorption or
the time of ruin as follows:

T=min{n >20:X,<0 or X,>a+ b}

We assume throughout that 0 < r < 1, (P(J; = 0) < 1).

A random or stopping time T with respect to {X,} is an extended positive
integer-valued RV such that, for each n, the event {T = n} depends only on
{X;,...,X,}. Clearly, the absorption time T is a stopping time. (See also
Section 3.4).

Proposition 2.2.2.
(i) P{T< 0} =1.
(i) E[T] < oo.

In other words, with probability 1 eventually Tom either goes broke or
breaks the house. The expected duration for absorption is finite.

PrROOF. Let A be the event that T = oo; that is, 4 is the event that
0 < X, < (a + b) for every n > 0. We show that P(4) = 0. Define

A, ={0< X <a+b0<k< n.
Then,4A = N A, and P(4) < P(A,)for everyn > 0. Putc = (a + b) and
S = Xie = X-1)e = Ie-c+1 + "+ die-

Since &,y = [hert + +** + Jys1) ), it follows from the fact that J, are IID
RVs that §;, k > 1, are IID RVs. Now, noting that X; = J, = q,

P{X,,p > 2a+b or X, < -b
=P{U=1 foral0< k<a+b

orJ,=-1 forall0 < k < a+ b}
= potb 4 g9 = pc 4 g(= d, say),

and consequently P{§, > 2a + bor § < —b} = d(< 1). Then,
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P(A,) =P {kfjl{o <X, <a+ b}}
<P {kél{o < Xe<a+ b}}

n
<P{Ab<t<u+b}
—(-ay =y,
where s = 1 — d < |. Hence
0 < P(A) < P(4,.) <s", foreveryn,

and consequently (as n = ), P(4) = 0. This proves (i).
For every n > 0, there is a k > 1 such that (k — 1)c < n < kc. Then,

P{T > n) = P(4,) < P(A;,_) < s .
Since T is nonnegative integer valued,

BT =SPI>n<c 3¢ =< .
n =1

This proposition tellsus an important fact; that Tom eventually either
goes broke or breaks the house AS. So we have Theorem 2.2.3.

Theorem 2.2.3. (Gambler’s Ruin). Let Tom and Dick be two gamblers
starting a game with initial fortunes a and b, respectively. The game is such
that the sequence {X,,n > 0} of cumulative fortunes of Tom, say, is a
simple random walk. Let the probability that any given game ends in a tie
be strictly less than 1, (0 < r < 1). Then the probability of either one of
them ever breaking the other is 1. The expected duration of the game is

finite.

Proposition 2.2.4. (Wald’s First Identity). Let the jump variates J, have a
(common) mean p, (E[J;] = p), and r < 1. Then

E[XT] =a+ P'E[T],

where a = Xo = .,0.

ElX,] = E[a + é. .4.]
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2.2. Gambler’s Ruin

o0
=a+ E [ J 1 ],
/El (751
where [, is the indicator RV of the event {T" > n),
[o o]
=q + kzl E[JI(I{T>I(}]’
where the interchange of E and 3 can be justified,

=a +k§|E e (1 = Iy < 13)]

[e o]

=a+ k§ l E[R]El — Iy < ) since {T<k} is determined
by J, ..., J—1, which are independent of J,,

o0

=a+ 3 Wl - PT<K)
o0

—a+p S PT>k)

K=1

= a + pE[T], since T is (> 0) integer valued.

If Tom and Dick gamble, it follows from Theorem 2.2.3 that one of
them will eventually be ruined. Let {X,,n > 0} be Tom’s random walk
(gambling). Next, we find the probabilities of Tom breaking Dick and Tom
going broke.

Theorem 2.2.5. (Probability of a Gambler’s Ruin). Let a and b be the initial
fortunes of Tom and Dick, respectively,and {X,,n > 0} be the random walk
corresponding to Tom’s cumulative fortune. Let r < 1. If p = q, then:

(i) P{Xr = a + b} = P{Dick is ruined} = a/(a + b).
(i) P{X; = 0) = P{Tom is ruined} = b/(a + b).

If p # q, then:
(i*) P{X; = a + b} = (1 — s%) /(1 — s7*?).
(ii*) P(Xp = 0} = (s* — s**®)/(1 — s***), where s = (q/p).
PrOOF. Because of Theorem 2.2.3, it suffices to prove (i) and (i*). Noting

that X; = 0 or X = (a + b), we have

E[X;] =0 - P{X; = 0} + (a + b)P{X; = a + b}.
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Let p=gq. Then, p= E[}] = 1P{J, = 1} + (-1)P{J; = —1) + OP{j,
= 0} = p — g = 0. Consequently, from Wald’s first identity,
a = E[Xy] = (a + b)P{X; = a + b},

from which (i) follows.

Now let p # q. Then, p = p — q ¥ 0 and Wald’s identity cannot be
used because we do not have an expression for E[T], the expected duration
of the game. The method utilized below is illustrative of the use of
difference equations in random walk problems.

For J; = a, an integer in [0,a + b], define m(a) as the probability that
X7 = a+ b. Then

ma) = P{Xy =a+b)
= pP{X; =a+blJ; = 1} + qP(X; = a + blJ, = -1}
+ rP{Xr = a + b|J, = 0},

by the so-called first step decomposition method. Because the game starts from
scratch every time (Proposition 2.2.1), Tom effectively starts from a + 1
provided J; = 1. Therefore, we have P{X; =a + b|J, = 1} = m(a + 1)
and similar expressions for the cases J; = —1 and J; = 0. Hence, n(a)
satisfies the following difference equation:

ma) = pm(a + 1) + gmla — 1) + ra(a), 0<a<a+b (221)
We need to solve this equation with the obvious boundary conditions
m0) =0; ma+b) =1 (2.2.2)
From (2.2.1) and p + ¢ = (1 — r), we get, setting (¢/p) = s,
ma + 1) — m@) = s[n(a) — m(a — 1)), 0<a<a+b (223)

Let a = 7(1) = #(1) — m(0) [see boundary conditions (2.2.2)]. Then, from
2.23),

ma + 1) — ma) = s{n(a) — m(a - 1)]

= 2ra - 1) - mla —
= s°[r(a - 1) — m(a — 2)] (2.2.4)

= s?[n(1) — m(0)] = as”.
Next, from (2.2.4) we get
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2.2. Gambler’s Ruin

) = n(a) = n(0) = 'Z. fmx + 1) = o)

| . (2.2.5)
a— —_
=Eas"=g§:—ﬂ, 0<a<a+hb.
x=0 -
Because m(a + b) = 1, from (2.2.5) we get
_ 1l—s
a= 1 — sa+b
and hence,
_ _ 1=
P{XT—a+b}—7r(a) —]_—SWE'D
This proves (i*) and hence the theorem. ]
Corollary 2.2.6. (i) If p = q, then E[X;] = a. (ii) If p # q, then
@+ b0 -5 q
il =" T
ProOE.
(i) E[X7] = a+ pE[T]. If p = ¢, then p = O and E[X;] = a.
(i) E[X;] = 0- P{X; = 0} + (a + b)P{X; = a + b}
= @+ B(1- /(1 - 577 o

Next let us consider Tom’s luck while he plays against an infinitely rich
house. So, we let b — co. Then it is not hard to see that P{X; = a + b}
converges to P{X,, > 0, for all n > 0}. It follows from Theorem 2.2.5 (i*)
that

— a .
P{X, > Oforalln > 0} = {(1) (¢/p) f: q ; r
i q )4

If p = g, then from Theorem 2.2.5 (i),
P{X, >0 foralln > 0} =0.

Similarly, one can consider P{X, < a + b for all n > 0}. We summarize
these observations in the following proposition.
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2. Random Walk
Propesition 2.2.7. For 0 < a = Xg:

i _[1-G@p" ifg<p
(i) P{X,>0,n >0} = {0 ifg >p
b .
@)PH;<a+an>o}={1—(ﬁﬂ ifp<q
0 ifp>q

2.3. Expected Duration of the Game

In Proposition 2.2.2 we have shown that E[T] < co. In the present section
we want to find an expression for the expected duration of the game. Let
p ¥ q. From the Corollary 2.2.6 and Wald’s first identity (Proposition 2.2.4)
we get, noting p = p — g,

EIT) = S(ElX7] - @)

1

1 -5 q
=Fl[(a+b)l—s“+b—a]’ T

If p = ¢, then p = 0, and we cannot use Wald’s first identity. To remedy
the situation, we proceed to Wald’s second identity.

Proposition 2.3.1. (Wald’s Second Identity). Let o° be the common variance
of the jump variates J,, n > 1. Then,

var(Xy) = o?E[T] = (1 — r)E[T).

PROOF. When p = ¢, p = E[J,] = 0, and E[X7] = a. Now we proceed
as in the proof of Wald’s first identity.

El(Xr — @] = E[(lél A I{T<k}))2]

v o (2.3.1)
=2 jg} E[J(1 = Iz )i (1 = Ipe )]
First let i = j. Then, for eachi > 1,
E[A(1 = Ipe )] = EV2Q — Ipe )]
= E[Z1EIQ — L)) 232)

= var(J)(1 — P{T < i})
= o?P{T > i).



2.4. Recurrence and First Passage
Now let i #j and i <, (the case j < i follows similarly). Because

Ji(1 = Lz (1 - 1{T<;) is determined by J;, ..., J_;, which are inde-
pendent of .1 and E[J;] =

E[X,(l - 1{T<i})Xj(l - 1{T<j})] = 0. (2.3.3)
From (2.3.1)«2.3.3)
var(Xy) = i o’ P(T > i} = *E[T].
O

Theorem 23.2. Under the conditions of a simple random walk and that r < 1,
we have

: _a+b 1-@/p)' _ a
O =5 1= (g/p)* P~

(i) E[T] = ab/(1 — r),  provided that p = q.

provided that p #* q.

Proor. We have proved (i) already. Now, if p = ¢,
var(X;) = E[X?] - a®,  from Corollary 2.2.6 (i),
=0%. P{XT 0} + (a + b)*P(X; = a + b) — &
2, from Theorem 2.2.5 (i),

= ab.
Hence, from Wald’s second indentity,

ab

E[T] = var(X7) = -9 0

(1=7)

2.4. Recurrence and First Passage

First we answer the recurrence problem for the one-dimensional RW. We
defer a complete solution until we talk about the recurrence of Markov
chains. Next we give some sample first passage properties for the RW. The
first passage problems are very basic in the theory of stochastic processes,
and we see more of them in the following chapters. In developing this
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2. Random Walk

section we use the intuition from gambling and physical motion of a
particle. For simplicity, we take Jy = X, = 0. (Then X, denotes the
cumulative winnings, rather than the cumulative fortunes.) Let r = 0.

Theorem 2.4.1. (Recurrence). Let {X,,n > 0} be a simple random walk.
Then

P(X, = alO} = 1, (24.1)

for any integer a, if and only if the walk is symmetric (p = } = q).

ProOF  (Necessity). Assuming the contrary, let p # ¢, p+ ¢ = 1, and
a = 0. Define 4,, = {X,, = 0}, n > 0. The event A, occurs iff there were
n jumps each to the right and left. Hence

P{X;, =0} = (zn)p"q"- (24.2)

n

(We need this expression later.) Using Stirling’s formula (i.e., n!
~ \2mnn"e™", for large n), (2)p"q" ~ (wn)_'/2(4pq)", as n = co. Conse-
quently, since p # } and hence pg < i, we have

S PU) ~ 3 @) apg) < oo, (243)

=1
Therefore, from the first Borel-Cantelli lemma,
P{X,, = 010} = 0,
contradicting (2.4.1). O
ProoF  (Sufficiency). For integers m,n > 0, define
A,,={X,=a andexactly((m—1)of X,k =1,...,n—1,

are equal to a}

Ap= U Ap, and A= 04,
Under the assumption p = g = 3 we can show that P(4) = 1. (By
Proposition 2.2.1 we can take a = 0.) From Section 2.2 we see, for a simple
symmetric random walk, that P(4,) = 1. To proceed inductively, let
P(4,,) = 1. Then
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2.4. Recurrence and First Passage
P{Am+l} = §] P{Am+l N Amn}
n

= Y P{d4,,and ¥, =X, , — X, = 0forsomek > 1}
nzl

= 3 [P{A,,) — P{A,,, and Y, # O for all &k > 1}]
n2l

= 3 P{4,,}, since P{Y; # Oforallk > 1} = 0,
n>1

from Section 2.2,
= P{4,,} = 1
Hence, noting 4,, | 4,
P(A) = lim P(4,,) =1,
n—»oo
and this completes the proof. m|

Relation (2.4.2) gives the probability that at time 2n the particle is at 0.
It is interesting and important to find the first passage probability that the
particle returns to O for the first time at time 2n.

Theorem 2.4.2. Let {X,,n > 0} be a simple random walk (p +q = 1,r
=0, X, = 0). Then

P{X;, = 0,X, # 0,1 < k < 2n)

2pq3 3 e ifn=1 (2.4.9)
=41 n — 3 (4pq .
337 T2 oy fn2?

Consequently, the probability that the particle never returns to 0 is
(1 - 4pg)"2.

ProoF. Since we are talking about the first return, set p
= P{the particle returns to 0 at n = 0} = 0. Let p,, denote P{X,, = 0,
X, # 0,1 < k <2n} and 4,, denote the event {X,, =0, X, # 0 for
0 < k< 2m,and X,, = 0}, 1 < m < n. Then A4,, are disjoint and

2n — 2m e
P{A4,,} = ( " —m )p" Mg Do - (24.5)

Consequently, (2.4.2)(2.4.5) and P{X,, = 0} = P{U},_, 4,,} imply
2n n 2n — 2m - -
(n )p"q" = 2]172,,,( ” )p" Mg (24.6)

n—m
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2. Random Walk

Equation (2.4.6) reduces to the (renewal equation) form

n 2n
= m2=0 bman—m9 a, = ( n )pnqn’ bm = Pam> n 20,

so that we can write
Y ax'=4 3 b, x"} > a,x" }, (2.4.7)
n>1 n>1 n>0

where each of the series converges for |x| < 1. Let |x| < 1. Then |2pgx|
< 1 and

2 -
> a,,x"= > ( n)p"q"x"=(l _4qu) 1/2.
n>0 n>0 \ 1

Using this in (2.4.7), we obtain
(1 - 4pgx)™"? — I byx }{1 — 4pgx)™",

which, on multiplying both sides by (1 — 4pgx)"?, gives
2 pZnX" = 2 bnx’l
n>1

n>1

=1 - (1 - 4pqn)"”? (2.4.8)

_ —pgx 1 l(4qu) L1 13 (4pgx)’
21y 2 2! 2 22 3

by Maclaurin’s expansion for (1 — 4pqx)l/ 2 Equating the coefficients of
equal powers of x on both sides, we get (2.4.4). Finally,

P{the particle never returns to 0}

= 1 — P{the particle returns to 0 at some time}
=1- Epz,,=1—[2 Pz,,x":l
n>1 n>l x=1

= (1 — 4pq)"?, from (2.4.8).

This completes the proof. O

Next result computes the probability of the maximum winnings in the
first n games and this has an important application.
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2.4. Recurrence and First Passage
Theorem 2.4.3. Let {X,,n > 0} be a symmetric simple random walk and

M, = max{Xy,...,X,},n > 1. Then for all positive integers n and a we
have

P{M, > o} = P{X, > a} + P{X, > a}. (2.4.9)

Proor. First we note that

P{M, > a} = P{M,
- P,

a,X, > a}+ PM, > a,X, < a}
a} + PM, > o, X, < a} (2.4.10)

Vv

To show that the second term is equal to P{X, > a}, we follow Kolmogo-
rov’s idea (used to establish Kolmogorov’s inequality). Define 4, = {X;
> a X, <al<m<<k-1},1 <k <n. Clearly, the events A4, are
disjoint and {M, > a} = U;_, 4;. Now

PM, > o X, < o} = é] P{4y, X, < o}
= é. P{4,, X, — X, < 0}
= é. P(A4,)P{X, — X, <0}  (why?)
= él P(4;)P{X, — X, >0}  (why?)

n
= E. P{4,, X, — X, > 0}
= P{X, > a}.
Using this in (2.4.10), we obtain (2.4.9). |
Definition 2.4.4. Let {X,,n > 0} be a symmetric simple random walk on

the integer lattice and a be any integer. The hitting time of a or the first
passage time through «a is defined by

min{n > 1: X, = a} if the minimum exists;

“ 00 otherwise .

Clearly, T, is a random time. From (2.4.1), P{T, = o0} = 0.
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2. Random Walk

Theorem 24.5. Let {X,,n > 0} be a symmetric simple random walk on the
integer lattice and T, be the first passage time through . Then

(i) the probability generating function of T, is Z,50p,5" = (2¢5)°

= —4pg?) 0 <s < 1.
(ii) for x > 0, lim,_,, P{T, < a*x) = 2[1 — ®(x"V2)], where ® is the
standard normal distribution.

Proor. We postpone the proof of (i) until we establish the optional
sampling theorems for Martingale processes [see Example 8.3.6 (2)]. To see
(i), first observe that P{T, < n} = P{M, > a}, (the gambler’s cumulative
winnings at or prior to the nth game would have reached « iff the maximum
cumulative winnings at the end of the nth game were at least a). Let
n = [a?x], where [] is the greatest integer function. Appealing to the
central limit theorem, we have from Theorem 2.4.3 that

P(T, < n} = P{M, > a}
= P{X, > o} + P{X, > o)
= P{n"V2x, > nV2a) + P(n"V2x, > n"2q)
- [1-dx""Y2)] +[1 — d(x"?)].

This completes the proof. O

2.5. Two Examples

The two examples presented here are chosen to illustrate the methods of
generating functions and characteristic functions. The RWs considered are
more general than the simple walks we studied in the last three sections.

2.5.1 A Random Walk in Carcinogenesis

A cancer-inducing agent is called a carcinogen. In the study of carcinoge-
nesis, a hit refers to the interaction between the carcinogen and the normal
cell, which results in the mutation of that normal cell to a cancer cell. The
transmission of a normal cell to a (malignant) cancer cell need not occur in
one hit or one stage. The number of stages is the number of mutations
required to produce a cancer cell. A mutation is said to occur in a given
stage if during that stage the mutated cell is subject to reproduction, death,
further mutation to the next stage, and so on. To study a simple multistage
RW model, let S§ = {0,1,...,N} be the number of stages. Here O repre-
sents the state of complete recovery. In a multistage model one postulates
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2.5. Two Examples

several successive mutations, each producing a clone of mutant cells. The
state N denotes the completion of the mutation process resulting in
malignant cells. Let {X,}, n > 0, denote the RW corresponding to the
mutation process. A step forward implies further mutation to the next stage
and the backward step implies a move toward recovery. Let these transi-
tions occur with the following probabilities.

P{x >x+1} = PR =x/N forx =12,...,N—1
Pix—>x-1}=gq,=(N-x)/N forx=12...,N—1.
PIN>N}=1=P0-0}; Px>x}=0 forx=12...,N—1

The states 0 and N are absorbing states.

Let =y, my, and m, denote respectively the probabilities of complete
recovery, absorption into the cancerous state N, and the absorption into the
cancer state N given that the initial mutation state is x, | < x < N — 1.
Using the first step decomposition [see the proof of Theorem 2.2.5 (i*)], we
obtain the difference equation

S (1 - ,iv),x_., I<x<N-1, @51

which we consider with the boundary conditions

m =0 and ay = L (2.5.2)

Let g(s) = =, m, s* be the (probability) generating function of {m}. Now
rewriting (2.5.1) as

x+1 1 . x -1 1
T = TN Txtl T NTx+l +\1- N )1 T NTx-1»

we obtain, taking my ., = 1, k > 0,

X x—1 1 x—1 1 x+1 x+1
g(s)__. XE: —qaq. 5 _Nws + l_.]_v ‘”Xs —_— —aa. s Y

which yields the differential equation

[g@)] 'dg/ds =s + Q=)'+ N =DA +5)7". (254

Solving this differential equation, we see that

gs) = Cs(1 + )M (1 - 97" = Cs[Nil C(N; l)s"] §0 s?, (2.5.5)
y

x=0
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where C is the constant of integration. Using the boundary conditions
(2.52), weget 1 = CZ}(N,") = C2V71, and hence

x—1 N-1 —N
T = 27N 0<x<N. (2.5.6)
y=0 Yy
After the initial hit by the carcinogen, the state of the mutation process is
normally assumed to be 1. Therefore

TN = m(N(_)- I)ZI_N =2V (2.5.7)
Since the walk is simple,
m=1—my=1=2"V (2.5.8)
(see Proposition 2.2.2 and Theorem 2.2.3).

2.5.2. Random Flights

By random flights we mean the motion of a particle that undergoes a
sequence of displacements x,, ..., X,, ..., such that the magnitude and
direction of each displacement are independent of all the preceding
displacements, and the density function f(x;) of each displacement is
assigned a priori. A natural question here is: What is the probability p,(x)dx
that after n transitions the particle is in the interval (x,x + dx) ?

Polymer physics provides us with an example of random flights. A
polymer is a molecular chain of monomers. These repeating monomers may
be identical units as in the case of polyethylene or nonidentical (but
chemically similar) units as in nucleic acids and proteins. In organic
carbon-chain polymers, side groups such as hydrogen atoms are attached to
carbon atoms. In a carbon—carbon bond there is a considerable rotational
freedom, constrained by side groups and multibonds, and this freedom
allows the polymer chain to assume numerous configurations in space. Any
sample of a polymer consists of a set of heterogeneous chains, each with a
varying number of monomers. This phenomenon, known as polydispersity,
can be thought of as a random flight. Consider a polymer of N monomers.
This can be treated as a random flight of N steps each of length |, say. Let
the successive monomers be independent of each other, randomly oriented,
and represented by a vector I;,, 1 < i < N. The length of the chain is given
by

N
LN = 'Zl l,'.
i=
One of the most important problems in polydispersity is finding the
distribution of Ly. Using the characteristic function method, we can solve
this problem.
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Let f(x,) be the density function of 1, x, = (x},...,x{) € R?

< k < N. Let y,(t) be the characteristic function of f,. Then the

characteristic function ¥y of Ly is

W) = T w@®= T [ [ e“Ppmax - axf,

where {t,x) is the inner product in R% Inverting the Fourier transform
given above and denoting the density of Ly by py(x) we get

d [® o _
pv(x) = @~ [ e e Ow (ar e

Exercises

1.

Our gambler Tom makes a series of bets of $1. He has decided to quit playing
soon after a net winning of $20 or a net loss of $10. He has a probability of
for each event of winning or losing any given game. Find (a) the probability that
he will have won $20 when he quits, (b) the probability that he will have lost $10
when he quits, (c) the expected duration of the game, (d) his expected winning,
and (e) his expected loss.

Do Exercise 1 now with probability 17/36 of winning and probability 19/36 of
losing a game.

A particle starting from the origin performs a symmetric unrestricted RW.
Consider only the first 10 steps. Compute (a) P{X, < 3}, (b) P{Xs = 0 but X,
<Oforn=1,...,4}, (c) P{Xs < 0and X,g <0}, (d P{X, >0 for some
k|X,o = —1}, (¢) P {first return to the origin occurs at time n = 6}, (f)
P{X,>01< k< 8)

Consider a general RW X, = xq + J; + --- + J, where the jumps J; are IID
RVs following N(uo®). Find the distribution of X,,n> 1, and P{X,
< x and X, < y}, where n < m.

Consider the RW of Exercise 4 with x, = 0and pu # 0. Leta > 0and -6 < 0
be two absorbing barriers for this particle. Show that:

(a) the probability p, of absorption at a is

~ 1= expQub/a’)
P2 = exp(~2pa/o®) — exp(2pb/o®)’

(b) the probability p_, of absorption at —b is

Po= exp( 24m/nz) - exp(2p.b/oz)'



2. Random Walk

(c) the expected duration E[T] for absorption is

(a + b) — a exp(2ub/o®) — b CXp(—Zya/oz).
exp(—2pa/o?) — exp(2pb/o®)

E[T] =~

6. Consider a simple RW X,,n > 0. Let 4 be the event that X, = 0 for some
n > 1. Show that P(4) =1 —|p — q|.

7. Establish the following assertion. By doubling the stakes while keeping the initial
capitals unchanged, the probability of gambler’s ruin is decreased for the weak
player whose probability of success p < % and the same increases for the strong
player.

8. Consider a general RW X, = (xg + J; + - - - + J,), where the jumps J, are IID
RVs following a probability distribution {p;}, kK = 0, =1, ...; that is, the
particle jumps from x to x + k with probability p,. Let Ty 0 < Xo < a, be the
probability that the particle assumes some position < O before taking any
position > a. Set m, =1 if x < 0 and @, = 0 if x > a. Then show that

n, = Zm Py, In particular, take p_, = p_; = p = p, = }. Now show that

oo g %o, QX a6~ of) - ol ~ 507
o @ alla+2)(s§ - o) - als§? - 5T}

where sy = 57! = (=3 +1/5)/2and 5, = 55" = (=3 — \/3)/2.

9. Consider a simple unrestricted RW on the one-dimensional lattice. For any set
A of lattice points and, x & 4 and y & 4, let 4 p(x,y) denote the probability of
a particle starting from x will hit y before hitting any state in 4, and let ;m(x, y)
be the mean number of such visits to y.

If p= ¢ =} and a < b, show that

Ry-a@-y)-G-al/Ay-a)b—y) ifx=y

@y Px.y) = { (x —a)/(y — a if x < y.
b-x)/0-y) ifx>y
Ry-a@-y)-@G-al/b-a) ifx=y
(@pymx.y) ={ Ax - a)(6 — »)/(6 — ) ifx<y.
Azy—a)b—x)/(b-a) if x>y

10.In how many different ways can a particle perform a symmetric RW such that
X(©0) =0 = X(10) and X(k) # Oforallk =1,2,...,9?

11.Consider a simple RW X, =Jj+ - +J, with PU =1} =p=1-P{J
=-1}=1—-gq. Let pypyy = P{Xyps; = land X, < 1for0 < &k <2n+1}.
Show that :

Paney = [4n+ D743 (f+n— 18P g,



Markov Chains

3.1. Definitions, Simple Consequences, and Examples

Several physical, biological, and social systems behave as follows. The
system evolves with respect to time. If the present state of the system is
given, then the past and future are (conditionally) independent. Such a
behavior is called the Markov property of the system. In this chapter we treat
such systems evolving in a discrete (atmost countable) state space with
respect to discrete time. Let T = {0, 1,2, ...} be the set of time points
indexing a sequence of random variables and S be the state space, where
the elements of S are denoted by sy, 51, ...,0rx, », ....

Definition 3.1.1. A discrete-time stochastic process X = {X,,n > 0} is
called a Markov chain (MC) if, for any sequence {xgy,X;,...,X,.1} of
states,

P{X'H'l = x’l+l|Xk = xk’O k< n) = P{Xn+l = Xn+llxn = xn}'
G.11)

We denote the probability on the right-hand-side (RHS) of the defining
relation (3.1.1) by p(n, x,,, x,,,,)- The probabilities p(n, x,y), (x,y € §), are
called one-step transition probabilities at time n. Fix an n € T. Then the
transition probabilities p(n, x,), (x,y € §), can be treated as the elements
of a matrix

M(n) = [P(nv x'y)]x.yGS'
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M(n) is called the one-step transition matrix at time n.

Because of the dependence of p(n, -, ) on n, the MC is temporally
inhomogeneous. Many of the isolated dynamical systems are inhomoge-
neous MCs. An important subclass of dynamical systems is the class of
conservative systems. Here, if the particle is in state x at time s and moves
to state y at time s + ¢, then the motion of the particle is the same as its
motion from its initial (s = 0) position x to state y at time ¢. If the MC {X,, }
has this stationarity then p(n, x, y) is independent of n.

Definition 3.1.2. A Markov chain {X,,n > 0} is called a (temporally)
homogeneous Markov chain or a Markov chain with stationary transition
probabilities if the one-step transition probabilities p(n, x,y), (n € T; x,y
€ S), are independent of n; that is, M(n) = M = [p(x,y)] for all
neT.

For the most part we study only the homogeneous case. Whenever we
treat the inhomogeneous case it is explicitly stated or is clear from the
notations. So, by a Markov chain we essentially mean a temporally
homogeneous MC. The matrix M = M(n) is called the transition matrix of

= {X,}. Let { po(x),x € S} denote the initial distribution of X; that is,
po(x) = P{XO = X}, x € S. (3.].2)
Next, we state some easy consequences of these definitions. For the sake of
quick reference, we formulate them in the form of a lemma.

Lemma 3.1.3. Let X = {X,,n > 0} be a Markov chain. Then
() px.y) >0, (xy€S); Eyp(x,y) =1Lx €S
(i) po(x) >0, x €8; Z pplx) =

(i) P{Xp = x0, X = x1,...,X, = x,,} = Py(xg)p(xg, %) - - - PAx,_1,
Xp)-

(iv) Relation (3.1.1) is equivalent to P{(X, =x, |X, =x,,0<k
<nyp=PX, =x |X =x, }for n> O, Vk e T, e < vap
x, €85 0<k<n

(v)P ,,A, n+1 <A< n+mX, =x,, 0<A<n
—P? w n+1<A<n+m ”"=x,}foralln>0m

1V0<V| ---<1;,+m,x,,AES,O<)\< + m.

i) P{Xy = %, X, =x,0< k<nn+2<i<n+mX,
= Xun1} = P{X, = xk’o <k <nlX, = xp1} PIX; = x;,n

+2<i<n+mX, = x4}
(vii)Time reversibility. For a11 nz20m21,x, €S, n+1<k<n
+ m, P{X—xle—xkn+l k<n+m)=P{X,,
nI nel = xn!l}'
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The proof is a simple and useful exercise.

Lemma 3.1.3 (jiii) shows that the joint distribution of X, ..., X, is
determined by the initial distribution py(x) and the transition probabilities
Xx,y), x,y € S. The equation in Lemma 3.1.3 (iv) seems to be more
general than (3.1.1) while it is actually equivalent to (3.1.1). Lemma 3.1.3
(vi) is a consequence of (v) and is equivalent to the Markov property.
[Lemma 3.1.3 (v) follows, by induction, from Lemma 3.1.3 (iv).] A matrix
M = [p(x,y)], (x,y € §), satisfying the relations in Lemma 3.1.3. (i) is
called a stochastic matrix.

An MC defines an initial distribution py(x) and the transition matrix
M = [p(x,y)]. Conversely, given a stochastic matrix [ p(x, y)] and an initial
distribution py(x), one can construct a corresponding Markov chain. This
will establish the existence of Markov chains. More precisely, we have the
following theorem.

Theorem 3.1.4. Let {M(n),n > 0} be a sequence of stochastic matrices, where
M(n) = [p(n,x,y)], (x,y € S). Then there exists a probability space
(2,8, P) and a (inhomogeneous) Markov chain {X,,n > 0} defined on Q
with state space S and transition matrices {M(n),n > 0}.

Any reader who knows Kolmogorov’s consistency theorem or the
corresponding result of Ionescu Tulcea can easily prove this theorem
(Chung 1967).

Examples 3.1.5

EXAMPLE 1. Sequence of Independent Random Variables. If X = {X,,n > 0}
is a sequence of independent random variables, trivially X is an MC.
Actually the notion of an MC is a generalization of a sequence of
independent random variables.

EXAMPLE 2. Random Walk. Let I = {---,—1,0,1,...} and 19 for a
positive integer d, be the d-dimensional integer lattice. An MC X
= {X,,n > 0} with state space S = I?is called a homogeneous d-dimension-
al lattice random walk if the transition probabilities p(x, y) depend only on
y—x=( —x,...,0 — xz), that is, p(x,y) = py — x). This definition
looks different from our earlier Definition 2.1.1 (d = 1). But actually the
following theorem holds.

Theorem 3.1.6. An MC X = {X,,,n > 0} is a d-dimensional lattice random
walk if and only if it is an 1%-valued MC with independent and identically
distributed increments {X,, - X,, ,}.n > 1.
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3. Markov Chains

Proor. Define J, =X, - X,_;,n > 1, Jo=X,. If x, x, €I, 0< k
< n, and X constitutes a d-dimensional lattice walk, then

Pl = x|k = x,,0 < k < n}
n
= P{X"_H = X + kgo xlek =

n
= P{Xn+l =X+ 2 xklxn = xk}
k=0 k=0

= p(x).

Therefore, the increments {J,} form a sequence of independent RVs
identically distributed according to P{J, = x} = p(x ), x € I This proves
the necessity.

To prove the sufficiency, let

n
Xn=X0+k2ley n>0,

where X, is independent of the increments J;, which are independent and
identically distributed according to p(x), x € 1%, (p(x) > 0, =,  ;ap(X)

=1).
Then:

P{Xn+l = yIXn = X} = P{Jn+l =Y- xan = X}
=Pl =y-x=py-x),
so that {X,} is an RW. This proves the sufficiency and hence the theorem.
O

Examples 3.1.7

EXAMPLE 1. Simple Random Walk. Let {X,,n > 0} be a simple one-
dimensional lattice walk (see Section 2.2). It is clear that {X),} is an MC. The
transition probabilities p(x, y) are given by

plx,x + 1) = p, plx,x — 1) =g, plx,x) =r,
where 0 < p,q,r < Lp+q+r =1

EXAMPLE 2. Random Walks with Barriers. We now consider the lattice walk
of a particle on I under certain constraints. Let B be a subset of I. The
elements of B are called barriers. If Tom is playing against an infinitely
wealthy opponent, B = {0}. If the initial fortunes of Tom and Dick are a
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and b, respectively, then B = {0,a + b}, and so on. Let {X,,n > O}be an
MC with state space I, B C I, and transition probabilities defined as
follows: for x & B, p(x,y) is the same as in Example 1, and for x € B

px,x+1)=p, px,x—1)=gq, px,x)=r,

where 0 < p,, 9., < 1, p, +q, + r, = 1. Now we define the random
walk with barriers as follows.

Definition 3.1.8. The MC {X,,n > 0} with transition probabilities defined
as above is called a random walk with:(1) absorbing barrier at b € B if,
n, = 1, (2) right-reflecting barrier at b € B if p, = 1, (3) left-reflecting
barrier at b € B if q, = 1, (4) right-elastic barrier at b € B if g, = 0
and p,n, > 0, (5) left-elastic barrier at b € B if p, = 0 and g, 5, > 0.

Note thatan RW with barriers no longer has independent increments. It
is easy to write down the transition matrices in the preceding barrier cases.

Examples 3.1.9

EXAMPLE 1. Absorbing Barriers at 0 and b.

01 2 3 b-2b-1 b
o[1000 0 0 O]
1 qg r poO 0 o0 O
2 0 q rop 0 0 O
M= ,
b—1 0 0 0 O q r D
b 0000 0 0 1

where S = {0,1,...,b}.
EXAMPLE 2. Right-Reflecting Barrier at 0.

012
1

N - O
o O

0
p
r

" OO W

| s={012,...}.

Q
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EXAMPLE 3. Right-Elastic Barrier at 0.

0 123 4
o[, pop 0 0 0 i
Illg r p 0O
2| 0 :
m=4% 420 |os={012...).

EXAMPLE 4. Birth—Death Chain. This is a discrete time version of birth and
death processes. (The continuous time version is more realistic; see Chapter
5.) An MC with state space S = {0, 1,2, ...} is called a birth-death chain if
its transition probabilities are given by

px,x +1) =p,, px,x — 1) =gq,, px,x) =r,

where 0 < p,, ¢, < 1, p,+q, +r, =1 x €S. If at any time n the
population size is x, then at time (n + 1) there will be birth with probability
P, a death with probability ¢g,, or no change in the population size with
probability r,, and these are the only possibilities. These probabilities
depend on the state of the system.

ExXAMPLE 5. Branching Chain. In 1873 Galton posed the following demogra-
phy problem. If a man of a given family has the probability p(k) of
producing k male offsprings, k > 0, what is the probability that the family
name will eventually die out? Let X, = 1; that is, the initial generation
consists of the given man. Let X,, n > 1 denote the size of the nath
generation of descendants. The family line dies out at the nth generation if
X, >0,0< k < n-—1,and X, = 0. We formulate an MC {X,,} as follows.
If at a certain time n the number of males is i, that is, if X,, = i, then each
one of them independently produce offspring with the same probabilities
p(k), k > 0, so that there will be J; + J, + - - + J, males in the (n + 1)th
generation, where Jj, ..., J; are independent RVs with the same distribu-
tion P{J = k} = p(k). Hence the transition probabilities are given by

p(x’y)=P{Jl+"'+Jx=y}s 2 lLy>2 OP(OO)—I

An expression for p(x, ) is given by Selivanov (1969). This expression is not
easy to work with, and generating function is the tool used in the
investigation of branching chains.
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EXAMPLE 6. Ehrenfests Diffusion Chain. A quandary arose, at the turn of
this century, when Boltzmann attempted to explain thermodynamics on the
basis of kinetic theory. On the one hand, a conservative system is time
reversible and, as the system evolves, it should return infinitely often to the
neighborhood of any initial state, irrespective of the distance between the
initial and equilibrium states. On the other hand, experimental observations
and thermodynamical considerations say that, starting with any initial
state, the system will move irreversibly toward equilibrium. So it appears,
as remarked by Zermelo, that the “irreversibility” from the thermodynam-
ical considerations and “recurrence” property of conservative dynamical
systems are irreconcilable. Ehrenfests (and Smoluchowski) clarified this
situation. Consider the following Ehrenfests urn model, where 2N balls,
numbered 1, ..., 2N, are distributed among urns I and II, say, x in [ and
(2N — x) in II. At time n randomly choose an integer among 1, ..., 2N.
Find the ball with that number on it and transfer it to the other container.
Continue this process indefinitely. Let X, denote the number of balls in urn
I after the nth transfer. Clearly, {X,,n > 0} is an MC with state space
S =1{0,1,...,2N}. Let us compute the transition probability p(x,y).
Suppose that there are x balls in urn I at an arbitrary time n. The
probability of any one of these balls being selected for transfer to urn II is
x/2N. There are (2N — x) balls in urn II. The probability of one of them
being transferred to urn I is (2N — x)/2 N. Therefore,

p(x,x—l)=%v, p(x,x+l)=l—%v.

(The states 0 and 2N are reflecting barriers.) Let x be the initial number of
balls in urn 1. If the process of transferring balls as described above is
continued indefinitely, it is at least intuitively clear that the associated MC
{X,} will visit x, and for that matter every possible state, infinitely often.
Note also that N is the equilibrium level. Assume that the initial state x is
far removed from N. As noted above, no matter how far removed x is from
N the chain will visit x infinitely often. But if one computes [as we do later:
see Example 3.6.5 (2)] the expected return time between any two visits to x,
one can see that this expected time is too large to obviously imply the
recurrence. How about the experimental verifications? With large number
of balls and with one transition per second, one can show that the expected
return time can run into billions of years, and consequently the process
appears irreversible. This explains the seeming contradiction. A continuous
time version of this model can be found in Bellman and Harris (1951).

ExXAMPLE 7. Pdlya Urn Model. Polya proposed his urn model as a discrete
scheme for the spread of an epidemic. Consider a population initially with
i infected and s susceptibles. An infected person adds, by contamination, a
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more individuals to the list of infected. As a mathematical expediency we
induce a symmetry by assuming that each susceptible increases the chance
of a susceptibles. Then, {X, = number of infected at time n, n > 0}
becomes an MC. This scheme is described by an urn model as follows.
Consider an urn containing r red and g green balls. Draw a ball at random
from the urn and note its color. In addition to returning this ball to the urn
add a balls of the same color. Continue this process indefinitely. Let X, be
the number of red balls at the end of the nth trial. Let X, = x,x € §
={0,1,2,...}, x > r. Irrespective of how we reached state x, the system
will be in state x + a or x at time (n + 1). Clearly, {X, } is a Markov chain.
Actually, it is a temporally inhomogeneous MC, as we can see by
computing its transition probabilities:

P{Xn+l =y|X0=x0""’Xn—l = Xn_1, Xy = x}
x/(r + g + na) ify=x+a
={(1-{x/(r+g+na} ify=x
0 otherwise

Note that this transition probability depends on the (present) time n and,
of course, on the present state x.

ExAMPLE 8. A Queuing Chain.Queuing theory is a well-developed branch of
stochastic processes. We give here a very simple discrete queuing system.
Consider a port where cargo ships arrive for service. Assume that it takes
one unit of time (a day or a week) to service each ship. During the service
time of a ship more ships may arrive and join the waiting line for their
turns. Let J, be the number of cargo ships arriving during the nth unit of
time, where we assume that the J,, n > 1, are [ID RVs with values in
{0,1,2,...}. Define a chain {X,,n > 0} as follows: X; = the initial number
of ships waiting to be served and, for n > 1, X, = number of ships waiting
in the line at the end of servicing n ships. Then X, = J,, if X, = 0, and
X1 = X, + Jp1 — 1 if X, > 1. Clearly, {X,,n > 0} is an MC with
S ={0,1,2,...}. If p(x), x € {0,1,...}, denotes the common distribution
of the RVs J,, then the transition probabilities p(x, y) are given by

ply—x+1) ifx>1

x,y) = i .
P(x.y) () ifx=0

EXAMPLE 9. A Two-State MC. This is one of the simplest kind of Markov
chains. Nevertheless, such chains occur in practical situations. Consider, for
example, two competing grocery stores located in a shopping mall. Due to
competition and special sales, the customers are influenced and switch
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between stores (randomly). If a customer shops in store I (resp. II) any
given week, he or she will shop in store II (resp. I) the next week with
probability p (resp. ¢). Then the one-step transition matrix is given by

I II

M= 1[1 -p P ]
Il gq 1 —g¢q

A similar situation arises in the study of the learning strategy for a predator
preying on a model-mimic system. Huheey, in his study of warning
coloration and mimicry, proposed a two-state MC model which corre-
sponds to the following encounters of predators with models (unpalatable
prey) and mimics (palatable prey that mimics the models to derive
protection). Here, taking S = {I = encountering a mimic, II = encounter-
ing a model}, define X, as the nth encounter, and

p=PX.,, =X, =1, q¢=PX,, =IX =II).

Then, the one-step transition matrix of this MC is given as above. We call
this two-state MC the predator-encounter chain.

3.2. n-Step Transition Matrices

Let X = {X,,n > 0} be a (temporally homogeneous) MC with state space
S. We have seen in Section 3.1 that this chain is completely determined by
its one-step transition matrix M = [p(x,»)], (x,y € §), and an initial
distribution { py(x)}, x € S. The so-called n-step transition matrices, n
> 0, play a central role in further analysis of an MC; for example, the
probability distribution p,,(x) = P{X,, = x} of X,,, m > 1, can be com-
puted from { py(x)} and the m-step transition matrix M) = [ p™(x,y), x,y
€ S). Define

1 ifx=y

MY = [p'(x,)] = [p(x)] = M (32.)

M(n) = [pn(x,y)] = [P{Xm+n = yIXm = X}], nz2

Thus p”(x.y) is the probability of transition from state x to state y in n-
steps, and is called the n-step transition probability.
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3. Markov Chains

Theorem 3.2.1. Let {X,,n > 0} be an MC with an initial distribution { py(x)},
x € S, and n-step transition probabilities p"(x,y), (x,y € S,n > 0).
Then

(i) P{X, =y} = xgs Po(x)p" (x,). (32.2)

(i) Chapman-Kolmogorov relation:

Pxy) = 3 pm(x,20p"(z,0). (3.23)
ZES
PROOF.
PX,=y} = 3 P{X,=yXy= x}
xXES
= Z P = x}PX, = X = x)
= 2 po(x)p"(x,y).
xES
pn+m(x’y) = P{Xﬂ+m = leO = X}
= 2 P{Xm = Z’Xn+m =y|X0 = X}
zES
= 3 PX, =z|Xy = X} PX,om = ¥| Xo = x.X,, = 2}
ZES
= > p"(x, 2P Xpom = V| X, = 2}
zeS
= 3 p"(x2)p"() -
zeS

In terms of matrix multiplication, the Chapman—Kolmogorov relation
becomes M+ — MW A" Taking n =1 = m, we have M?)
= MM = M? so that, in general, M) = M" and M™™ = M"M™,

Example 3.2.2 The predator-encounter chain (two-state MC) is one of the
very few examples for which one can compute M" easily and explicitly. To
do this, let p + g > 0 in Example 3.1.9 (9). Before computing M", we
compute p,(x), x = I, IL.

PX,p1 =1} = PIX,,, = LX, = 1} + P{X,,, = LX, = 1I)
= P{X, = I} P{X,,, = 1| X, = 1} + P{X, = 11} P{X,,, = 1|X, = II}
= P(X, = Dp(l1) + (1 — P(X, = I})pILI)
=(l-p-q)P{X,=1}+4q

48



3.2. n-Step Transition Matrices

Repeatedly using this recursive relation, we have

PX =1} =q+(1—-p—q)P{X,=1)
=q[l+(-p—@l+(1-p-q’PX,_, =1

2
=q 2 (-p-9 +(1-p-9a’PX, =1

—¢ 3 (-p=af+(1-p— gV Pt = 1).

Hence

and similarly

P{X, = II} = }%‘, +(1—p-— q)"[po(ll) —p—ﬁ;]. (3.2.5)

Now, to compute p"(I,I) and p"(I,II), let py(I) = 1. From (3.2.4), we
obtain

P(LI) = P{X, —IIXo—I}—p—+( -P- q)p+q

and from (3.2.5)

PO = F (1 p g
Similarly,
PLY = e = (- p —q)
PALI = —f (L= p—q)
and hence

n -—
M = _,l__[qp] +U=p=q) [p p]'
ptqlgp ptgq -9 q
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3.3. Strong Markov Property

In all our expressions thus far we have suppressed the sample variable
w € . We continue to do so except in places where the sample paths have
to be emphasized or where it will help intuition. Let (2, @, P) be (the basic)
complete probability space and {X,,n > 0} an MC with state space S. Let
@" = o{X,,m < k < n} be the o-algebra generated by the events {X,
€ B}, B € S = 25, the power set of S, and m < k < n. Then @ contains
all the information about {X,,,...,X,} part of the MC. Let @ = @7,
. = @ and, @ 2 &°.

Definition 3.3.1. A random variable t: @ > T, where 7 = {0,1,2,...}
U {0}, is called a stopping time (random time or Markov time) relative to
{x,} if, for each integer n > 0,

{w: t(w) = n} € &,,

that is, the event {t = n} is determined by (as a function of) X, . . ., X,
Examples 3.3.2
ExampPLE 1. The deterministic time t = k is a stopping time, for

1 ifn=k
LyeryXos -, Xp) = {o ifn#k

ExaMPLE 2. Let A € §. The hitting time t 4 of the set A4 of states is defined
by t4(w) = min{n > 0: X,(w) € A4}, and t, is a stopping time because

Iy, =Ko, - - .. X,)
_{1 if X, € Afork=0,...,n—1,and X, € 4

0 otherwise

ExampLE 3. Let 7, be the time of last visit to state x. Then 7, is not a
stopping time because, to determine whether 7, is the last visiting time, one
has to know the entire future.

Let us arbitrarily fix a K > 0 and define Y,

\ = Xy, n > 0. Then
{Y,,n > 0} is an MC. For
P =yY%=yo - s Yoy =0, 1y = %)
= P{Xksnet =Xk =05 - -, Xiin-1 = YK +n~1 Xk 1n = X}
= P{Xk+nt1 = ¥|Xk4n = x}, by Lemma 3.1.3,

= P{Y =Y, = x}.
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The Markovian motion (Y,} is the same as observing the MC {X,}, from
scratch, beginning a deterministic time K. It is natural to ask whether the
Markov property is preserved if the fixed time K is replaced by a stopping
time t. The answer to such a question is in the affirmative. This is known as
the strong Markov property.

Theorem 3.3.3. Let {X,,n > 0} be an MC with state space S and m-step
transition probabilities p™(:, -), and t be a stopping time relative to {X,}
such that t(w) < oo for all w € Q. Define Y,(w) = X‘(w)ﬂ(w), n>0.
Then Y = {Y,,n > 0} is an MC and, for 0 = ny < ny < --- < n,,
XQs Xy - ooy Xy € S, we have

1

P(Y() = %0 < &k < m) = go(xo) TL P (o esy). (331)

where qq is the initial distribution of Y.

ProoF. Define @, = {4 € @ 4 N {w: t(w) < n} € @,}). Then @, is a o-
algebra. Let ® = o{Y,,n > 0}. For 4 € @, there is an 4, € @, such that
AnNn{t=n=4,Nn{t=n. If B="_{Y(n) = x,} and B, =
Ny, {X(n +ng) = x;}, then B € %, B, € @, and B N {t =n} = B,
N {t = n}. Now

P{4 N B)
=3, S, P N =n 0 =x) N B
= 3 3 Pl N =0 (X, = x)}PB,IX, = x)

by the definition of t and Markov property,

m~—1
= w1 M , Pl{A t = X =
2 2o L7 M rexi DPA O =m0 0 = %))

m—1
= 3 I p™ "0, xe ) P{A N {T = xo}).
X ES k=0
Since the event {¥, = xy} € @,, now choose 4 = {¥, = xo}. This yields
(3.3.1) and proves the Markov property of {Y,,n > 0}. a

We remark here that this theorem does not extend to, say, a continuous
time, continuous-state space Markov process. It is very useful for the
students to learn to work with the stopping time as early as possible. So we
consider few examples here. To simplify writing, we use P.(-) to denote the
probability of various events (-) determined by an MC starting at x, and we
use E_ to denote the expectation (integration) with respect to .
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Examples 3.3.4

ExampLE 1. Let {X,} be a predator-encounter chain. Compute Pi{t; = n),
n>0.

We want to compute the probability of the event that a predator who
encountered a mimic initially will encounter again a mimic only at time n.
This event is equivalent to the event that the predator encounters a model
at time n = 1 and after (n — 1) units of time will encounter a mimic for the
first time, (this is the method of first-step decomposition). Therefore

P{t, = n} = p(LID Py{t; = n— 1)
= p(l, II)p(H, II)P"{t] =n- 2} = .-
= p(LID[A(IL "2 P{ty, = 1)
= p(LID[p(IL IN]" 2 p(IL 1) = pg(1 — q)" 2.

ExampLE 2. Following the first-step-decomposition argument, we see that
for a general MC we have

Bit,=n+ 1} = 3 p(x,2)B{t, = n},
zF#y
ZES

where t, = toyp the hitting time of state y. We leave it as an exercise to
show that

R{t, < n+ 1} =p(x,y) + = plx,2)B{t, <n}, n>0.
z#y

ExaMpLE 3. Noting that the birth—death chain is an extension of simple
RW, one can pose the following problem. If {X, } is a birth-death chain on
the state space {0, 1,...,b}, what is the probability of hitting one of the
boundaries before hitting the other? In the RW case this corresponds to the
gambler’s ruin problem. Let t; and t, be the hitting times of the boundary
points 0 and b, respectively. Find B{t, < t,},0 < x < b.

The computation of this probability is another illustration of the
method of difference equations that we used for a RW case in a similar
problem. The one-step transition probabilities of the above birth—death
chain are given by

px,x + 1) =p,, Ax,x—1)=gq,, plx,x) =r,
q0 =0, pp =0, and Petq.+r=1, x € S.
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Define f(x) = R{ty < t,}, 0 < x < b. Let x be the initial state. From the
first-step-decomposition argument,

f =pfx+1D)+q fx—-1D+rflx), 0x<<b

or
fx+1) —f(x) =Z—:‘[f(x)—f(x— )], sincer, =1—-p. —gq,

_ 9x . 9x21 — 1) = f(x —

= & D=l (x - 1) = f(x - 2)]

_ 9x9x-1 " "4 _

= Sl A1) - f0))
Set a, = (qqu—l o 'ql/pxpx—l v 'pl)’ ap = 1, f(O) =1, and f(b) = 0.
Then:

f) —f(x+1) =a[f0)-f(1)], 0<x<b. (33.2)

Now summing over x = 0, 1, ..., b — 1, we get

b—1
L =1(0) = f6) = (f©O) = f(1) % a..

Using this in (3.3.2), we get

b-1
SO =fx+ ) =a,/ 3 a,.
y=0

b—1 b-1 b—1
S fx) =2 (W -fy+1))=2a,/ X a,.

y=x y=x y=0

Hence
b-1 b1

Pito<t) = 3 a, / 3 a (333)
ExAMPLE 4. Show that
Pl(x,y) = él Bi{t,=mp""(y,y), n2>1L (3.3.4)

P'(xy) = P{X, = y|Xg = x} = R{X, = y}
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n n
-2{ 06 -mx =0} = 3 B, = mx, =)
pt _
the first-entrance decomposition,

n
= 21 P{t, = m|X, = x} P{X, = y| Xy = x,t, = m}
me

n
= 2 P{ty=m|Xo=x}
m=1
XP{X,=y|X=xX #y,0<k<m—-1X, =y}

= 3 Rl = mp" ().

There are several interesting RVs defined in terms of the MC or the
associated stopping times.

EXAMPLE 5. Fix an x € S. For each w € €, let t!(0w) < t3(w) < - -~
< t7(w) < --- be an increasing sequence of all values of n > 1 for which
X,(w) = x. Then each t is a stopping time known as the mth hitting time

of x, m > 1. The RV p = ¢7*! — ¢ is called the mth return time to x.

ExampLE 6. Define »(x) = »(x;w) = 2,51 (X,(w)). Then x) is a RV
and denotes the number of visits to the state x. Let »(x,n) = Z}_ I.(X;).
Then »(x,n) defines the number of visits to x in the first n transitions. The
term occupation time is often used in place of “number of visits.”

3.4. Decomposition of State Space

Definition 3.4.1. We say that a state x /leads to state y and write x — y if
there is a positive probability that in a finite number of transitions the
Markov particle moves from x to y, that is, if for some n > O,
P"(x,y) > 0.If x > yand y — x, we say that x and y communicate, and
we write x <> y.

Proposition 3.4.2. The relation “communication” is an equivalence relation
in the state space S and hence decomposes S into equivalence classes of
states that communicate with each other.

PrOOF. The reflexivity and symmetry of « is trivial. To see the transitiv-
ity, let x & y and y « z. Then there are integers m, n > 0 such that
7", »)p"(y,2) > 0. From this and Chapman-Kolmogorov relation, we
get

P (x,2) = ugs Pl uw)p"(u.2) 3 p"(x,»)p"(y,2) > 0.
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Hence x — z and, similarly, z — x. This completes the proof. (]

Definition 3.4.3. A set C of states is said to be (stochastically) closed if
p(x,y) =0, for all x € C and any y & C; that is, once the particle
enters C, it stays there forever. A closed set C is called irreducible if it is
an equivalence class. An MC is called irreducible if its state space is
irreducible.

Proposition 3.4.4. (i) Two states x and y communicate if and only if
Bft, < o} B{t, < oo} <O0.
(i) The states x and y communicate if and only if B.{i{(y) > 1} B{i(x)
> 1} > 0, where »(x) is the number of visits to x.
(iii) A set C is closed if and only if B{t, < o} = 0, for x € C and
y & C.

(iv) Aset C is closed if and only if p"(x,y) = 0,forx € C,y & C, and
alln > 1.

ProoF. Criteria (i)—(iii) are clear. In (iv), take n = 1 to prove the
sufficiency. To prove the necessity, note that, from the definition, the
condition is true for n = 1. To proceed inductively, let p™(x,y) = 0, for
x €C,y& C.Then,if x € C,y & C,

Pxy) = ugsp’"(x, wplu,y) = ugc Pr(xu)p(u,y) = 0.0

In the following four examples we decompose the state spaces of the
MC:s corresponding to the given transition matrices.

Examples 3.4.5

ExAMPLE 1.
| 2 3 4 5

02 03 05 00 00
0.7 03 00 00 00
00 10 00 0.0 00
00 00 00 04 06
00 00 00 10 00

WV A W N —

From the directed graph we see that the state space decomposes into two
classes C, = {1,2,3}and C; = {4,5). Also, forx € C;and y € C,, we see
that x - y or y + x. Therefore, C| and C, are closed sets of states.
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EXAMPLE 2.
1 2 3 4

1100 00 1.0 0.0
2/ 1.0 00 00 00
3103 07 00 0.0
406 02 02 00

The state space decomposes into C = {1,2,3} and 4 = {4). Hence, C is
closed and A4 is not closed.

EXAMPLE 3. Random Walk with Absorbing Barriers at 0 and b.

0123 4 - b=2 b-1 b
o1 0000 0 0 0 |
1 g r p 00 o 0 O
2 |0 g r p O 0O 0 O
b—110 0 0 0 O qg r p
b 100000 0 0 1 |

The state space decomposes into {0}, {1,2,...,b — 1}, and {b}, where {0}
and {b} are closed.

ExAMPLE 4. Consider N balls numbered 1 through N and two urns, I and
II. Perform an experiment as follows. Select a number from {1,2,..., N} at
random (all selections equally likely) and then draw the ball corresponding
to the selected number. Next select an urn at random, where urn I (resp.urn
II) is selected with probability p(resp.g = 1 — p). Complete the trial by
inserting the drawn ball into the selected urn. Repeat this trial under
identical conditions. Let X,, denote the number of balls in urn I at the end
of trial n. Then {X,,} is an MC with state space S = {0,1,2,3,...,N}. Once
we compute the transition probabilities, one can see that {X,} is an
irreducible MC. Let X, = x. At the end of the next trial the state will be
x + 1, x or x — 1. The transition from x to x + 1 occurs if we have drawn
a ball from urn II and selected urn I for the transfer. Since there are
(N — x) balls in urn II, the selection of a ball from this urn occurs with
probability (¥ — x)/N. Hence the transition from x to x + 1 occurs with
probability p(N — x)/N. Similarly, the transition from x to x — 1 occurs
with probability gx/N. There will be no change in the number of balls if a
ball is selected from either one of the urns and is inserted back into the
same urn. This event occurs with probability (px/N) + (g(N — x)/N).
Each state communicates with every other state and the MC is irreducible.
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3.5. Recurrence and Transience

Corresponding to an MC {X,,n > 0} with state space S, we define the
following probabilities: (1) f"(x,y) = BR{t, = n}, (2) f*(x,») = B{t,
< oo}, and (3) g(x,y) = P{v(y) = oo}. Then f"(x,y) gives the conditional
probability that the first passage from x to y occurs in exactly n steps,
f*(x,y) gives the conditional probability of ever visiting the state y starting
the motion from x, and g(x,y) is the conditional probability of infinitely
many visits to the state y for the motion starting from x. These conditional
probabilities are assumed to exist.

Definition 3.5.1. A state x € S is called recurrent if f*(x,x) = 1; that is, x
is recurrent if with probability one the MC, having started from x, will
eventually return to x. A state x is called transient if f*(x,x) < 1.
[Recurrent states (resp. transient states) are also called persistent states
(resp. nonrecurrent states).]

Theorem 3.5.2. Let x,y € S. Then

(i) f*(xp) = nglf”(x,y)- (3.5.1)
(ii) g"(x,y) = B{p(y) = n} = F* )1 = F* ()

n >l (3.5.2)
(i) g(x,y) = f*(x.»)g(y.»)- (3:5.3)
(i) g(x,x) = lim [f*(x,x)]". (3.5.4)

(v) For any x, either g(x,x) = 1 or g(x,x) = 0.
(i) g(x,x) = 1 ifandonly if f*(x,x) = 1.
(vii) g(x,x) =0 ifandonly if f*(x,x) <1.

PRrROOF.
(i) f*0ey) = Blt, <o} =R{U {t, =n)} = X Rit, = n}
= 2 f"(xp)
n>1
(ii) First we claim that
Piny) > n) = fXOnf* . (3.5.5)
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Forn =1, B{W(y) > 1} = B{t, < oo} = f*(x,y). Next, for n = 2,

B{n(y) > 2} = B{t, < 0} B{H{y) > 1} = f*(x, ) f* (1))

Since R{r(y) > n} = R{t, < o} B{W(y) > n — 1}, inductively we ob-
tain (3.5.5):

g"(x,y) = B{W(y) = n} = én P{W(y) = Kk} — k)Em R{Ay) = k)

— By > n - By >n+1)
= OO = Al

(ili) Using the method of first entrance decomposition (see Example
3.3.4(4),) we have:

gxy) = 2 B{t, = n} B{v(y) — W(y,n) = oo}
= gl f"(x,y)B{n(y) = o}  (by homogeneity of the MC),

= f*(x,»)g(»y).

(iv)Taking x =y in (3.5.5), we see that g(x,x) = P{x(x) =0}
— lim, .o B{(0) > ) — lim, oo [f* (5 0T

Statements (v)—(vii) follow from (iv). This completes the proof. O

Next we give some criteria in order that a state x be recurrent or
transient. In establishing the criteria we need a lemma that we state without
proof.

Lemma 35.3. Let {a,,n > 0} be a sequence of nonnegative reals such that
either Za, < oo or, 2a, = oo and a, is bounded. Also let {b,,n > 0} be
a convergent sequence of reals with limit b. Then

b= lim [éo akbn_k] / [éo ak] } (3.5.6)

Theorem 3.5.4. A state x is recurrent or transient according as Z,5,p"(x, x)
diverges or converges.
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Proor. First we claim that, for x, y € S, we have

e = gim{[ £ ren] /[ £ ron]} e

From (3.3.4) we have
1

N n—
2 20 };{ty =n- m}Pm(y’y)

n=1 m=

N-1 N
= 3 ") S )

N
3 ()

N-1 N—m
m§0 Pm(».y) El f(x).

To apply Lemma 3.5.3, take n = N, a,, = p"(x,x), by = 0, and b,
=S¢ f4(y) = Zf_ B{t, = k). Now, (3.5.7) follows from Lemma
3.5.3. Next taking x = y in (3.5.7) we obtain the theorem from the
definition of recurrence. O

The example of Ehrenfests’s chain emphasizes the importance of the
notion of recurrence in an MC. Several physical, biological, and social
processes are modeled to possess Markov property, and the recurrence
notion is basic there. Next we present some fundamental properties of
recurrent states. By u(x, y) we denote the expected number of visits to y for

an MC starting at x, that is, u(x,y) = E, [/(»)].

Theorem 3.5.5. Let x be a recurrent state. Then g(x,x) = 1 and u(x, x)
= o00; that is, if the particle starts at a recurrent state x, it returns to x
infinitely often. If f*(u,x) = 0, then p(u,x) = 0; that is, if the particle
starts al some state u, it is possible that the particle may never hit x. But if
f*(u,x) > 0, then w(u,x) = oo; that is, if a particle starting from a state
u could hit the recurrent state x at some time, it visits x infinitely often.

PROOF. Since x is recurrent, f*(x,x) = 1. From Theorem 3.5.2 (iv), it
follows that g(x, x) = 1, that is, B{{(x) = oo} = 1. Noting that /x) = o0
with full probability, we have that u(x,x) = E, [1{(x)] = oo. Next let
f*(u,x) = 0. Then f"(u, x) = 0 for all n, and hence from (3.3.4) we see that

p"(u,x) = 0 for all n. Now

=]

wun) = £, £ 1060 = £ 2K, =5 = 5 rwn =0

-] n=
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(See also the Example 3.5.14.) Finally, let f*(u,x) > 0. From Theorem
3.5.2 (iii) and g(x, x) = 1, it follows that

Bf{v(x) = oo} = g(u,x) = f*(u,x) > 0.

Thus »(x) = oo with positive probability, and hence p(u, x) = oo. O

Theorem 3.5.6. Let x be a transient state. Then

*
f*(u,x)
1 - f * (X s .X)
That is, if x is a transient state, then no matter where the particle starts, it

visits x only a finite number of times and the expected number of visits is
also finite.

Pivx) < o0} =1, and  pm(u,x) = < oo,u € S.

PrROOF. Let x be transient. Then 0 < f*(x,x) < 1 and consequently,
from Theorem 3.5.2 (iii)(iv),

B{(x) = o0} = g(u,x) = f*(,1)g(x,%)
= /* () lim [1* G 9" = 0.
This gives P{»(x) < oo} = 1. Now using Theorem 3.5.2 (ii),
pu, x) = g.l nB{v(x) = n}

== nf* (u, X)[f* (e, )1 = £*(x, )]
1 _ [t
[1—f*G,0P 1 —f*(xx)°

= f*u,x)[1 - f*(x,x)]

O

Theorem 3.5.7. (i) Let x,y € S and x — y. If x is recurrent, then y is
recurrent and f*(x,y) = 1 = f*(y, x).

(i) Let X = {X,} be an irreducible MC with finite state space S. Then X
is a recurrent chain; that is, all states of the chain are recurrent.

ProoF. (i) Let x be recurrent and x — y. There exists an m > 0 such that
p"(x,y) > 0. Let M > 0 be such that M = min{m: p”(x,y) > 0}, and
PX(x,y) =0 for 0 < kK < M. (Such an M exists.) Now we claim that
f*(y,x) = 1. Assume the contrary. Then the particle starting from y has a
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positive probability (1 — f*(y, x)) of never visiting x. Therefore, if the MC
starts from x, then p(x, x;) - - - p(xps—; ) (1 — f*(»,x)) > O gives the prob-
ability of visiting states x;, ..., X, y successively in the first M transi-
tions and never returning to x after these M steps. This contradicts the
recurrence of x and hence f*(y,x) = I. This gives an N > 0 such that

pY(y,x) > 0. Therefore

N+n+M(y

P y) = uésp’v(y, u)p" (u,v)p™(v,y)

> pN(y, x)p"(x, x)pM(x,y)

so that

18

o0
20 P"(ry) > = pNtrM(y,y)
n=

n=0
N M o
> p"(y,x)p™(x,y) Eop"(x,X)
n=

:w’

as follows from p¥(y, x)p™(x,y) > 0 and Theorem 3.5.4. Appealing again
to Theorem 3.5.4, we see that y is recurrent.

(ii) Since X is irreducible, each state x € S communicates with every
state y € §. Now part (i) will complete the proof once we show that S
contains at least one recurrent state. Suppose on the contrary that all the
states are transient. Now from Theorem 3.5.6,

o0 o0 o0
o> w0 = B[ £ 400)] = £ 20, =0 = £ 50)
n= n= n=
so that lim,_, , p"(x,y) = 0. Therefore
0= 3 lim p"(x,y) = lim R{X, € S} = lim 1 = 1.
yES > ® n—o0 n—c0

This contradiction implies that not all the states are transient. By irreduci-
bility, X is a recurrent MC. O

Next we proceed to a finer classification of recurrent states into positive
recurrent and null recurrent states. First some notations are in order. Recall
from Example 3.3.4 (6) that »(x,n) denotes the number of visits by the
particle to the state x during the first » transitions. Set

W) = Bl = B p()
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Then n'lv(x, n) is the proportion of the time, during the first » transitions,
spent by the particle in state x. Let x be a recurrent state and denote by
w(x) the mean recurrence time E [t ] of state x for a particle starting from x.

Definition 3.5.8. A recurrent state x is called positive recurrent (resp. null
recurrent) if p(x) < oo (resp. u(x) = o0).

Theorem 3.5.9. (i) Let x be a transient state. Then lim,_, . v(x,n) = Kx)
< o0 and lim,_,,n"'v(x,n) = 0, AS. [Recall AS = almost surely (=
with probability one).] Also, lim,_, o p"(u,x) = w(u,x) < o0 and
lim, o n~'p"(u,x) =0, u € S.

(i) Let x be a recurrent state. Then lim,_, on~'v(x,n) = ,;(x)_I Ly <oop
AS, and lim,_, ,n~' u"(u,x) = f*(u,x)/u(x), u € S.

(iii) Let C be a closed equivalence class of recurrent states. Then
lim,_, . n~ ' u"(x,y) = 1/u(y), x, y € C. If, furthermore, the particle
starts its motion from C AS, then lim,_, nx,n) = 1/u(x),

x € C, AS.

(iv) If x is a positive recurrent state, then lim,_, n~ ' u"(u,x) = 1/p(x)
> 0.

(v) If x is a null recurrent state, then lim,_,  n~'y"(u,x) = 0, u € S.

Part (i) follows from Theorem 3.5.6. Parts (iii}{v) follow from part (ii)
of the theorem. As a rigorous proof of (ii) is slightly involved, we omit it.
But (ii) is intuitively clear and says the following: once the particle reaches
the recurrent state x, it returns to x on the average every u(x) units of time.
If the particle starting at u ever reaches x, then for large n, the proportion
of time during the first n transitions that the particle spends in state x is
approximately [u(x)]”".

Theorem 3.5.10. (i) Let x, y € S and x — y. If x is positive recurrent, then y
is also positive recurrent.

(ii) Every irreducible finite MC is a positive recurrent chain.

Proor. (i) As shown in Theorem 3.5.7 (i), there are integers M, N > 0
such that pM(x,y) > 0 and p™(y,x) > 0. Also

PN My > pN(y, )P (x, x)pM (x, ).
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Summing this relation over m = 1, ..., n and dividing by n, we get

n VM 0y — N My, 0] = PN (3, 0)pM (x, y)n " (x, x).

Letting n — oo, we get

O™ = )" 2V (3, x)pM(x,7) > 0.

Therefore, u(y) < oo, and hence y is positive recurrent.
(ii) First note that

= Tl =, 3 S ) = 3 )
m=1y€ yES

From (i) it suffices to show that there is at least one positive recurrent state
in S. Assume the contrary. From Theorem 3.5.9 (v) we have

Pt

= ] -1 n - 1 -1 n o
0 ygs "lLrgo n= ' (x,y) nlg{.lo g: n”~ W (x,y) lim 1

This contradiction completes the proof. O

Examples 3.5.11

ExAMPLE 1. Let X = {X,,n > 0} be an MC on S = {0,1,2,...} with
transition p(x,y) given by p(x,x + 1) = p and p(x,0) = ¢, where 0 < p
< land p + g = 1. Show that X is a recurrent chain.

First observe that X is an irreducible chain. Let x and y be two arbitrary
states. If x <<y, then x Hx+1 5 ... & y— 15y [f x >y, then
xH05H1L5 ... 85 y— 145y Thus x -y and, similarly, y - x.
Hence X is an irreducible chain. Consequently, if one of the states, say, 0,
is recurrent, then X is recurrent. Now

f*(0,0) = ,,§| Po{to = n} = "gl qpn—l = l_ﬁ; = 1.

Hence X is a recurrent chain.

ExAMPLE 2. A Markov particle moves on the state space S = {1,2,...,a,a
+ 1,...,a + B}, where a and B are positive integers. Starting from one of
the first a states (resp. last B states), the particle jumps in one transition to
a state chosen uniformly from the last B states (resp. first a states). The
transition matrix M is given by
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1 23 a atl o2 - - a+f

1 Tooo 0 p »p P

2 0 0O O p »p p

3 0 0O 0O p p p
M=« 0 p P p
a+ 1l ¢ ¢q 0 0 0
a+2 q q ¢q g 0 O 0
a+pBl 9 9 q g 0 0 0 |

where p = (1/B8) and ¢ = (1/a). Let x and y be any two arbitrary states,
andS—{lZ waf, Sg={a+1,...,a+ B} If x €S, and y € Sp,

then x %> y. Ifx ES and y € Sa,thenx——>y Ifx,y € S, (resp. Sﬁ)
then x %5 z L y, forsomez € Sy, (resp. x 5 2 L5y, forsomez € S,
Hence x — y and, similarly, y — x. Therefore, the chain, being irreducible

and with finite state space, is a recurrent chain.

ExaMPLE 3. Let X be an MCon S = {0,1,...,6} with transition matrix

o 1 2 3 4 S 6

0f0o4 0 02 02 02 00 00]
1100 0 1.0 00 00 00 00
2000 0 00 1.0 00 00 00
M=300 1 00 00 00 00 00
400 0 00 00 07 00 03
5100 0 00 00 05 05 00
600 0 00 00 00 04 06|

Determine the recurrent, and the transient states.

From the directed graph it is clear that the state 0 leads to every state
in S, whereas no state x # 0 leads to 0. Also C; = {1,2,3} and G,
= {4,5, 6} are irreducible closed sets of states. Hence O is transient and the
rest of the states are recurrent.
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EXAMPLE 4. Birth—Death Chain. Returning to Example 3.3.4 (3), we have
seen that

b—1

b—1
f;{to < tb} = 2_: a“ 20 au, (3.5.8)

where a, = (919, - - - q,/pP2 - *P,) and ay = 1. Consider this chain X
={X,,n>0}on S={0,12,...} with0<p, x>0and 0<gq,, x
> 1, so that the chain becomes irreducible. Let us find conditions under
which X becomes a recurrent chain. Toward this let X; = 1, AS, and

= {w € Q: ty < t,},n > 1. Then, clearly, 4, T {ty < oo}, and hence

-1
Pi{ty < o0} = 11m Pi{A,} = 11m E ak/ 20 a;

-1-[&a]

Since the chain is irreducible, if state 0 is recurrent, the chain is then
recurrent. Hence we find conditions that will render the state 0 recurrent.
To find a necessary condition, let O be recurrent. Then from Theorems 3.5.2
and 3.5.5 we see that P,{t, < oo} = f*(1,0) = 1. Hence from (3.5.9) we
get

(3.5.9)

oo =3Bk (3.5.10)

Let us check whether (3.5.10) is a sufficient condition for the recurrence of
state 0. From (3.5.10) and (3.2.9) we get f*(1,0) = 1. Therefore, from the
first-step decomposition,

f*(0,0) = p(0,0) + p(0, 1) f*(1,0) =y + po = 1,

and hence 0 is recurrent. Thus we have established that an irreducible birth-
death chain on {0,1,2, ...} is recurrent if and only if the following relation
holds:

g [Z%%:] = . (3.5.11)

To further illustrate this example, first let g, = p, k?/(k + 1)2, k>1
Then the LHS of (3.5.11) is

0
i+—+lz+~--+=2k‘2<oo (why?).
K=2
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In other words, the chain is transient. Next let ¢, > py, K > 1. Then the
series on the LHS of (3.5.11) is minorized by the divergent series £ 1,
and consequently the corresponding chain is recurrent.

ExaAMPLE 5. Random Walk. In Section 2.4 we showed that a one-dimension-
al unrestricted simple random walk is recurrent iff it is a symmetric walk.
Let us consider the d-dimensional unrestricted lattice walk X = {X,,n
> 0} [see Example 3.1.5 (2)]. Here we present a criterion for the recurrence
of the random walk X. Let J, denote the nth jump. Then X, = X + J
+ -+ + J, where the jumps J, are independent and identically distributed,
say, according to p(x) = P{J, = x}, where x € I, the d-dimensional
lattice, and n > 1. Let ¢(s) be the common characteristic function of the
RVs J:

os)= > p(x)ex {'ixs} = (s s;) € R?
-—xeldl’ P ’k=l kSk > S 15+ ++25q .

Let X, = O. Then p"(0,x) = Po{X, = x), and the characteristic function
of X, is

d
0 = 3 rONepli 3 5}

From this it follows that

PON = af e r@ep{~i 3 xis Jds

where C is the cube with side 27 and center at O. According to Theorem
3.5.4, X will be a transient walk if and only if p(0,0) = =,,p"(0,0)
< co. Noting that u(0,0) = lim,,; (2, 507"(0,0)z" (by Abel’s lemma),
we see that, for 0 < z < 1,

K0,0) = lim 3 [2n]™ 2" [ 4"(s)ds

2>1-0 >

] _13110[2w]_d fc [1 = zo(s)] ' ds

~ lim [27] fc A1 — ze(s)] " ds,

where 0 < z < 1 and R denotes the real part. From this we have the
following criterion.

Theorem 3.5.12. A (temporally homogeneous) d-dimensional unrestricted lat-
tice walk is transient if and only if

,ljmo.f(‘ K[l — zg(s)] ' ds < 0.
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Theorem 3.5.13. Let X be an unrestricted d-dimensional lattice walk such that
p = E[] = =, o «xp(x) exists (absolutely), that is, E[|J}|] < oo. If
i # 0, then the random walk X is transient. Consequently, a one-
dimensional lattice walk is recurrent if and only if p = O.

PROOF. Let A, = {w: [n"'X, — p| > |u|/2}, n > 1, where || is the stand-
ard Euclidean norm in RY. Since X, is the sum of IID RVs, it follows from
the strong law of large numbers that Po{hm sup 4,} = 0. Noting that the

event {X, = 0} implies (i.e., C) the event A,,,we get Po{hm sup X, = O}
= 0. Therefore, the state O and hence the RW are transnent

Example 3.5.14. We illustrate here the second statement in Theorem 3.5.5.
It states that if x is a recurrent state and the particle starts its motion
from some state u # x, it is possible that the particle may never hit x.
Consider an RWon § = {---,—1,0,1,...} with the following type of
jumps. If the particle is in state x € S, then P{x > x+4} =}
= P{x - x — 4}. That is, P{J = 4} = } = P(J = —4}. Therefore, p
= E[J] = 0 and by Theorem 3.5.17, the RW is recurrent (i.e., every
state is recurrent). Let X, = 1. Then, with probability one, the particle
never hits 0. This is due to the fact that the particle performs its walk
only on a subset of S that depends on the initial state.

3.6. Stationary Distribution

Consider a Markov particle beginning its motion from an arbitrary state x.
In studying its subsequent motion, we would like to ask what could be said
about the motion after an elapse of a large number of steps. In physical
terms, this is a question about the asymptotic stability of the motion; that
is, we want to look at the limiting steady-state distribution—irrespective of
the initial position of the particle.

Letp,(x) = P{X, = x},x € S,n > 0. Thenp,(x) > 0and =, c5p,(x)
= 1,n > 0. Also

Peem(¥) = Z P DP"(y,%), xE€S, mnm>0. (367
y€ES

If the absolute distributions p,(x) are independent of n, say

px) = P{X, = x}, x€S, n>0,

then the probability distribution { p(x),x € S} is called the steady-state
distribution of the MC {X,,,n > 0}. From (3.6.1) we have

plx) = ugs pwp"(u,x), x€S8  n3>0. (3.62)
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Now it is natural to expect that the existence of a steady-state distribution
is related to a nontrivial and nonnegative solution of

7(x) = ugs (1) p(u, x), x € S. (3.6.3)

Definition 3.6.1. If 7(x) > Ofor all x € §,and =, cgm(x) = 1 and satisfies
relation (3.6.3), {m(x),x € S} is then called a stationary distribution.

We are also interested in the behavior lim,,_, ., p"(x,y), which is partially
related to the existence of stationary distributions.

We have seen earlier that the steady-state distribution of an MC is a
stationary distribution. If a stationary distribution #(x) is the initial
distribution py(x) of the MC {X,}, it is easy to see that m(x) = py(x) is the
steady-state distribution of {X,}. Now the physical relevance of stationarity
or the steady state is clear. Consider a large number N of particles
performing independent Markov motions on the same state space S. If
{m(x)} is the steady-state distribution, then at any time n the expected
number of particles in state x is Nm(x), a constant. Thus observing the
system as a whole, we see that a state of macroscopic equilibrium is
maintained even though individual particles might spend a disproportion-
ately large part of their time in a particular (large) subset of S.

Definition 3.6.2. A state x € S is called a periodic state if its period d(x)
defined by

d(x) = GCD{n > 1: p"(x,x) > 0} (3.6.9)

is greater than 1 (GCD = greatest common divisor). If d(x) = 1, then
x is called aperiodic. A positive recurrent aperiodic state is called ergodic.

Theorem 3.6.3. Let {X,,n > 0} be an MC with state space S and x € S be
a periodic state. Then:

(i) If x © y, then y is also periodic and d(x) = d(y).

(ii) The state x is an aperiodic state of the MC {Xnd(x) ,n > 0} whose one-
step transition matrix is [ p?™ (x,y)].
(iii) An irreducible MC is aperiodic if p(x, x) > 0 for some x € S.

ProoF. Exercise. O



3.6. Stationary Distribution
Theorem 3.64. Let X = {X,} be an irreducible aperiodic MC.
() If X is a positive recurrent chain, then
lim p'(x,y) = 7(y) >0, xy €S, (3.6.5)

where:

I
(a) mlx) = o’ (3.6.6)

the reciprocal of the mean entrance time, (b) {m(x),x € S} is a
probability distribution that is uniquely determined by the system of
equations (3.6.3), (¢) {m(x)} is the only stationary distribution of the
MC X, and

@) lim p,(x) = m(x), x € S. (3.6.7)
n—o0
(ii) If the states are null recurrent or transient, then:
(@) lim p"(x,y) =0;  (b) lim p,(x) =0 (3.6.8)
n—oo n—oQ

for all x, y € S, and no stationary distribution exists.
Now let X be an irreducible positive recurrent periodic chain with period
d. Then for each pair x,y € S there is an integer k, 0 < k < d such that

(a) lim p**"(x,y) = dn(y), (3.6.9)
and

(b) p"(x,y) = 0  unless m = Nd + k, for some N. (3.6.10)
ProoF. The proof is divided into several steps.

Step 1. Let X be an irreducible positive recurrent MC with a stationary
distribution #(x). Then =(x) is given by relation (3.6.6).
By induction on (3.6.3), we see that «(x) satisfies (3.6.2). From (3.6.2) we

have, rewriting p"(x,y) as p(n, x,y),

o) =} 3 S apn) = 3 an” uln ).

Taking limits on both sides as n — oo, we get from Theorem 3.5.9 (iii),

= [ - L
w9 = [l S ) = .
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Step 2. The function 7(x) given by (3.6.6) is a stationary distribution.
Case i. Let S be a finite state space. Recalling again that lim,,_, ., p(n, u,

x)/n = 1/u(x), and since 1 = =, p(u, x) for all i, we get

1 Z i Lo l

Hence {I/u(x)} is a probability distribution. Similarly, summing the Chap-
man-Kolmogorov relation p'*!(u,y) = 2, p'(u, x)p(x,y) overi =1, ..., n
and dividing by n, we get

S n7 wnu, 0)p(x,y) = 07w + Luy) — pwy)l  (36.11)
X
Letting n — oo in this relation, we see that

2 p(x,y)

> ") (3.6.12)

Case ii. Let S be a countably infinite state space: Let S, be an arbitrary
finite subset of S. Then

S nlunu,x) <1, u€ S, and hence I [p,(x)]—l <1
XES, x€ES,

Since S, is arbitrary, we get

1

2400 <L (3.6.13)

Similarly, from (3.6.11),
SED . xes. (3.6.14)

u€S

We want equality to hold in (3.6.13). Suppose, on the contrary, that we have
only the strict inequality. Then, summing on x in (3.6.14),

Swr' >3 300

=2 ()™ gp(u,X) = % [w@)] ™",
a contradiction. Hence {[u(x)]”'} satisfies (3.6.12). Now set (i/a)

= 3, 1/u(x). Then from (3.6.12), m(x) = a/u(x). But, by Step 1, = 1. This
proves Step 2.
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3.6. Stationary Distribution

Step 3. Let X be an ergodic chain (= irreducible positive recurrent
aperiodic chain). We claim that for every pair x, y € S, there is an integer
ng > 0 such that p"(x,y) > 0 for all n > n,.

First fix an « € S and let 4 = {n > 1: p"(v,u) > 0}. Since X is
aperiodic, GCD 4 = 1. From p™*"(u,u) > p™(u,u)p"(u, u), it follows that,
if m, n € A4, then (m + n) € A. From these two properties of the set 4, we
can find an integer N > 0 such that n € 4 for all n > N, that is,
p"(u,u) >0,n > N. Now let x, y € S be an arbitrary pair. From the
irreducibility of the chain, we can find integers K, M > 0 such that
pX(x,u) >0 and pM(u,y) >0, so that pK+*M(x ) > pK(x,u)p"(u,
u)pM(u,x) > 0, for all n > N. This proves Step 3.

Next introduce an MC {(X,,, ¥,),n > 0} on the state space S> = SX §
with one-step transition matrix defined by ¢((»,v),(x,»)) = p(u, x)p(v,y) so
that {X,,n > 0} and {¥,,n > 0} are each an MC with transition p(-, -). The
transitions of X, and Y, are chosen independently of each other.

Step 4.2 = (X, Y,) is an ergodic chain on § 2

Let (4,v), (x,y) € S2. By Step 3, there exists an integer N, > 0 such
that, for n > Ny, p"(u,x) > 0 and p"(v,y) > 0 and, consequently, ¢"((«,
v),(x,») = p"(u, x)p"(v,y) > 0. This proves that Z is irreducible and
aperiodic.

Now let m#(x) be the stationary distribution of X. Define #(u,v)
= q(u)n(v). Then = is a stationary distribution, because:

w(u) = ) = { S wpi0 {3 w(r)0) |
= 3 S na)r(3)ate ) p(10)
= 2 *7x)e((x),wv)).

(x,»)€S

By Steps 1 and 2, Z is a positive recurrent chain. This proves Step 4.

Let D denote the diagonal of S2: D = {(x,») € §%: x = y}. Let t, be
the hitting time of D for the MC Z. Since Z is a recurrent chain, it is easy
to see that P{t;, < oo} = 1. Since the chains X, and Y, are indistinguish-
able after tp, it is clear that

PX,=xtp <ny=P{Y,=xtp,<n, x€S8 (36.15)
Step 5. We shall now show that

Jim [P{X, = x} - P{Y, = x}] =0, xE€S. (3.6.16)
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3. Markov Chains
From (3.6.15) we have:

P{X, = x} = P{X, = x,tp < n} + P{X, = x,tp, > n}

= P{Y, = x,tp < n}+ P{X, = x,tp >n} (3.6.17)
< P{Y, = x} + P{tp, > n}

Similarly, relation (3.6.17) holds with X, and Y, interchanged. Hence, for
n> 1, |PX, = x} — P{Y, = x}| < P{tp, > n}. Noting that P{t; < oo}
= 1, and passing to limit in this inequality, we obtain (3.6.16).

Step 6. Relation (3.6.5) holds: Let P{X, = u} = 1, for an arbitrarily
fixed u € S, and =(y) be the initial distribution of {Y,}. Then

PX,=x}=p"(u,x) and P{Y,=x}=a(x)) xE€ES.
From this and Step 5 we see that

i (5"(ex) = 70} = Jim (P(X, = x) = P(Y, = 9} = 0.

To complete the proof of Theorem 3.6.4 (i), it remains to show that (3.6.7)
holds. From (3.6.1) we get p,(x) = Z,py(»)p"(y,x). Now from what we
have seen so far [especially relation (3.6.5)], we get (3.6.7).

Step 7. Proof of Theorem 3.6.4 (ii). Let x be transient. From the criteria
for transience (Theorem 3.54), p"(x,x) > 0 as n - oo. Let x be null
recurrent. Then from Theorem 3.5.9 (v) we have n 'p(n,x,x) = 0, as
n — 0. Consequently, this holds if x is either transient or null recurrent.
Then, as observed from the proof of Step 1, m(x) = lim,_, =, 7(u)n" " u(n,
u,x) = 0. This implies that p,(x) = 0 as n = co0. From (3.6.2) it is clear
that no stationary distribution exists.

It remains to establish the periodic case. Let X be an irreducible positive
recurrent periodic chain with period 4 > 1.

Step 8. Relations (3.6.9) and (3.6.10) hold:

First observe that Theorem 3.6.4 (i) can be restricted to an ergodic class
C. Also, from Theorem 3.6.3 (ii) the chain ¥, = X, , n > 0, is aperiodic. If
the chain X, and hence the chain Y, start from an x € S, then X, returns
to x, for the first time at kd, for some k > 0. Therefore, the expected return
time to x for the Y chain is 4~ ' u(x), where u(x) is the expected return time
to x for the X chain. Let g(-, -) denote the transition probability of Y. It
follows, from what we saw in Theorem 3.6.4 (i), that

Jim Pr(x.x) = Jim " (x,x) = dlpx)]™" = dnix).  (36.18)
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3.6. Stationary Distribution

First we establish (3.6.10). Let, for any given pair x, y € S, M = min{n:
p"(x,y) >0}). If m >0 is an integer such that p™(y,x) > 0, then
pM™(3,») > p™(», x)pM(x,y) > 0, and hence M + m is an integral mul-
tiple of d. Same is the case for any n with p"(x,y) > 0. Therefore,
n — M = Kd for some K > 0. Hence we can find an integer N such that
M= Nd+k 0< k<d and p"(x,y) =0 unless n = Nd + k. This
proves (3.6.10).

To complete the proof of Step 8 and hence the theorem, it remains to
establish (3.6.9). Now from (3.6.10) and (3.3.3) we have

Py = BRI, = id+ KPTM(). (36.19)

If i > n, redefine p"~ )d( »,¥) = 0. Then, passing to the limit in (3.6.19) as
n — o0, and using (3.6.18),

ot .
lim p"**(x,y) = 3 Rft, = id + k} lim p"~(y,y)
n—oo i=0 n—o0
o0
= dn(y) 3 Bit, = id + k)
= dn())B(t, < ) = dn(y).
This completes the proof. a

For further criteria for the ergodicity of an MC, we refer the interested
reader to Foster (1953).

Examples 3.6.5

ExampPLE 1. Let X = {X,,n > 0} be an MC on § ={1,...,5} with
transition matrix

1 2 3 4 5

05 05 0.0 00
00 00 0.2 038
00 00 04 06|
00 0.0 0.0 0.0
00 0.0 0.0 00

I
DN BN -
—_—-— O O O

It follows from the directed graph or from the transitions 1 - 2 - 4 — 1,
| 3 >54->1,1 >3 —> 5> 1 that X is an irreducible chain. Since S is
finite, X is a recurrent chain. From the transitions shown from state 1 back
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to itself, it is clear that the period of state 1 is 3. As it is irreducible, it
follows from Theorem 3.6.3 that X is periodic with period 3. To find the
stationary distribution {m(x)} of X, we use the defining relations of
7(x): m(y) = Z,m(x)p(x,y). Then from matrix M,

m(1) = =(1)p(1,1) + 7(2)p(2, 1) + 7(3)p(3,1) + (4)p(4, 1) + 7(5)p(5, 1)
= 7(4) + 7(5)
m(2) = 0.57(1) = =(3), =(4) = 0.2m(2) + 0.4n(3),
m(5) = 0.8m(2) + 0.67(3).
Solving this set of equations along with
(1) + 7(2) + 7#(3) + 7(4) + =(5) = 1,

(since {m(x)} is a probability distribution), we obtain
7= {64 1.3} = {n(x),x € S}.

EXAMPLE 2. Ehrenfests Chain. From the discussion of Example 3.1.9 (6), the
transition matrix M of the Ehrenfests chain X = {X,,n > 0} is given by

0 1 2 3 2N-22N-1 2N
o [ o 1 0 0 0 0 0 |
I ilTv 0 2’;;' 0 O o0 0

2 0 %v 0 21\;;2 0 0 0

2N-1| 0 2’;;‘ 0 oo
2 [ 0 0 0 0 0 1 0 |

Clearly, X is an irreducible recurrent chain. If the chain is in state x at a
certain time, then it takes even number of steps to return to x. Also,

2 (XY +1, x( x—1
”("*")‘(‘ 2N) IN +2N(‘ z~)>°'
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3.6. Stationary Distribution

Therefore, x is a periodic state, and hence X is a periodic chain, of period
2. Next let us compute the stationary distribution of the Ehrenfests chain.
Using the defining relations (3.6.3) we obtain the set of equations

2N —-x+1 x + 1 .
W(X)=W(X—I)T+W(x+l)2_1v, l<x<2N—l,
(1 7(2N — 1

Solving these equations recursively, we see that

(x) = (25 >ﬂ(0).

Using this with the fact that {#(x),x € S} is a probability distribution, we
get

1= w(o)jé:vo (zf) — 22V.0),

Hence the stationary distribution of the Ehrenfests chain is given by the
binomial distribution B(2N,3):

m(x) = (Z;V)T”, x=0,1,...,2N. (3.6.20)

While introducing the Ehrenfests chain we remarked that following the
work of Boltzmann and Gibbs an irreconcilable situation arose regarding
the recurrence and the thermodynamical irreversibility of a conservative
dynamical system. Now we can address to this quandary. We have seen
that the Ehrenfests chain is an irreducible recurrent chain. From (3.6.20)
and Theorem 3.6.4 it follows that the expected return time to a state x is

u(x) = 22"'% < co. (3.6.21)

It also follows from (3.6.20) that, regardless of the initial composition of
urn I, after a long time the probability of finding a specified number of balls
in urn I is nearly the same as if the 2V balls had been distributed randomly
(i.e., each ball having probability } of being in urn I). For large N we see
that, by passing to normal approximation to the binomial if necessary, we
can certainly find about half of the particle in each one of the urns. So it
looks as if we are moving toward the equilibrium state N. This can be
expected even by looking at the transition matrix M. Farther the particle
away from the state N, larger is the probability of moving toward the
equilibrium. This is the so-called diffusion with central force.
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3. Markov Chains

To reconcile between the recurrence and equilibrium, we have to appeal
to the mean return time. First we note that, from (3.6.21),

Mz;;) (1+N){ (36.22)

This shows how rapidly the expected return time increases as the chain
moves away from the equilibrium position N. State 0 is the farthest from
state N. Note that the expected return time is 22V, Therefore, for large N,
it is no wonder the process looks irreversible.

ExampLE 3. Let X = {X,,n > 0} be the MC introduced in Example 3.5.11
(1). We have seen that X is an irreducible recurrent chain on S
= {0,1,2,...}. Let us compute the stationary distribution of X. Using
Definition 3.6.1,

n0) = g[p0) + (1) +---] = g,
wx) = pplx — 1) = pPu(x = 2) = --- = p*p(0) = gp*, x> L

Hence {u(x),x > 0} = {gp*,x > O}.

ExampLE 4. Let X = {X,,n > 0} be the MC introduced in Example 3.5.11
(2). This is an irreducible chain on a finite state space S = {1,2,...,a,«
+ 1,...,a + B}. We compute the stationary distribution {u(x),x € S} of
X. If 1 < x < a, then

a+f3
ux) = 2 p)p(u,x) = a”! 2 Hw,
so that
p) =+ = e = a1 = 3w

Fora+ 1<y <a+p uy) = B '8, u(u). Therefore,

al—pul) fl1<x<a

a/}"y(l) fa+tl1<x<a+pB

Let x = 1. Then p( 1) = a™" — u(1) and hence u(1) = [2a] . Consequent-

ly, w(x) = 2a)~" for 1 < x < &, and p(x) = 2B) ' fora+1<x< a

+ B.

EXAMPLE 5. Birth-Death Chain. Let X = {X,} be a birth—-death chain on
={0,1,2,...} with transition probabilities, p(x,x + 1) = p,, (x > 0),

px,x) =r, (x 2 0), and p(x,x — 1) = q,. (x > 1), where p,,q, >0,

ulx) =
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3.6. Stationary Distribution

and p, + g, + r. = 1. Then X is an irreducible MC. Define

ao=l’ and a ZM,_X}l

x qQ 4y

We claim that X has a stationary distribution if and only if Z2_ga, < o0.
From Definition 3.6.1, we have

70) = #(0)ry + 7(1)g,,
m(x) = a(x — Dp,_; + #(x)r + m(x + g4, x
Becausep, + g, + 1, = 1,

q17m(1) — pym(0) = 0

\Y,

qx+17r(x + l) —pr(X) = qx'”(x) _px—]‘”(x - l), X > l’
so that, by induction, we get the recursive relation
-1
a(x) = M_), x > 0.
9x
coa) =Plae ) = o = PO Pl gy a, m(0).
9 x Q" 4x

Since {7(x)} is a probability distribution,

-1
|- Sa) =) Ta, o m0) = [z ax]

X

Consequently,

w(x)=ax/2au, x> 0.

Now it is clear that the stationary distribution exists if and only if
2a, < oo.
As a special case of this example, let py = 1, p, =p > 0,q, = g > 0,
(x 2 1),and p + g = 1. Then
1

2= 2”; =r 2 [(1fp)]x

If p <3, then 0 < p/(1 —p) < 1 and the geometric series converges.
Letting p < 1, we see that

1=2p 5 0= 2p)p*”!

70) =50 =p A -

v
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ExaMPLE 6. Find the stationary distribution concentrated on each of the
irreducible closed sets of the MC whose transition matrix is given by

0 1 2 3 4 5 6

[0.1 0.1 02 02 04 00 00]
00 00 0.5 05 00 00 00|
00 00 00 10 00 00 00
00 1.0 0.0 00 00 00 0.0
00 00 00 00 05 05 0.0
00 00 00 00 05 00 05
Lo.o 00 00 00 00 05 0.5

A N b W -0

From the directed graph of transitions we see that the two irreducible
closed sets are C, = {1,2,3} and C, = {4,5,6}. On C,, the distribution
{m(x)} satisfies

n(1) = =(3), m(2) = 0.5n(1), 73) = 0.5[=(1) + =(2)},

from which the stationary distribution = corresponding to class C is given
by m = {0,%,1,%,0,0,0). Similarly, the stationary distribution correspond-
ing to class C, is given by m = {0,0,0,0,},1,1).

EXAMPLE 7. Predator- Encounter Chain. For the predator-encounter chain we
have shown [see equations (3.2.4) and (3.2.5)] that

P{X, =1} =#+ (1-p- q)”[po(l) —1%]],

P, = 1) = 2 (1= p - a [ - 2]

This chain is clearly an irreducible aperiodic recurrent chain. Let us find the
stationary distribution of this chain. Let 0 < p, ¢ < 1. Then |1 — p — q|
< 1. Letting n — oo in the preceding probabilities, we get

i = =~L' i = =l—
lim P(X, =1) Sigs Jm Px, =10) T

So, from Theorem 3.6.4 (i) [see relation (3.6.7)], the stationary distribution
{m(x),x = 1,11} is given by

=_9 = _P_
{"([)_p+q' M = s
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3.7. Branching Chain

As pointed out in Section 3.2, study of the branching chain began with
Galton’s work on the survival of family names. One can now find a wide
range of applications of these chains in physics and biology. For example,
consider the study of neutron transport where we are concerned with the
prediction of neutron population in a reactor. A neutron, as a result of
collision with a nucleus, is either scattered, absorbed, or multiplied by the
process of fission. Since the neutrons move in a bounded region, there is an
upper bound on the time for birth of a neutron counted in any generation.
We obtain a branching chain as follows. Let X; = 1. This neutron, when it
collides with a nucleus, splits the nucleus and the resulting fission produces
a random number of new neutrons, thereby forming the first generation.
Each of these neutrons, moving independently of each other, may hit some
other nucleus and produce more neutrons. This process continues forming
different generations of a neutron branching chain. If X, denotes the
number of neutrons in the nth generation, then {X,,n > 0} is a branching
chain.

A similar situation arises in the study of electron multipliers, which is a
device that amplifies a weak current of electrons. In the path of electrons
one sets up a series of plates. As an electron hits the first plate, it generates
a random number of electrons. These secondary electrons hit the next plate
and produce additional electrons. The process continues. If X, denotes the
number of electrons emitted from the nth plate, then clearly {X,,n > 0} is
a branching chain.

Definition 3.7.1. Let J, n > 1, be a sequence of IID RVs with values in
S ={0,1,2,...} and the common distribution given by p, = P{J
=k}, k > 0. An MC {X,,n > 0} is called a branching chain with state
space S if its transition probabilities are given by

pley) = P(X, =y|X,_, = x} = P{j+ -+ J, =y}, 311

forx > land y > 0, and p(0,0) = 1.

Theorem 3.7.2. (Watson). Let f(s) = 320 p;s', |s| < 1, be the probability
generating function of J,, and define inductively

fols) = 5, fi9) =f(s), f(s) = f(fimr(s)), n2>1. (3.72)

Then f,(s) is the generating function of X,, n 2 0.
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Proor. Let g,(s) be the generating function of X,. Clearly, g,(s) = s and
8(s) = f(s). Now

gn+l(s) = 2 P{Xn+l = x}sx
x20

= 2 2 P{Xn+l = XlX,, =y}P{Xn =y}sx

x>0 y2>0
= 2 s 3 PX, =P+ -+ J =x}
x20  y2>0

=2 PX,=y) Z P+ -+ =x}s"
y>0 x20

= 3 P{X, = »})[f(s)]”, since the RVs, are IID,
y20

= 2,(f(5)) = g,(g(s)).

Since gy = fy and g = f), it follows by induction that g, = f,. This
completes the proof. O

By iteration one can show that f,(s) = f,(f,(s)). In particular,

S1(8) = £(f(5))-

Example 3.1.3. Let m = E[X;] < 0 and ¢* = var(X;) < oo. Show that

2 n—1 n .

-1 -1 f 1

E[X,] = m"; var(xn)={°;n o = D/m=1) itmA
no lfm =1

Since E[X,] = f,(1), we differentiate the relation £, ,(s) = f,(f(s)) and
sets = 1:

o1 ) = £L(SD)Y Q) = £,(D)f ().
By iteration:
Sorr(D) = £ O OF = - = £iOFO)F = [FOFr.
Since f(1) = E[X;] = m, we get E[X,] = m".
Next note that var(X,) = £7(1) + £,(1) = [f,(1)]%. Now
Fra @) = 7 OIFHOP + £ f5(1).
But

fM=m and f'()=de*+m?-—m,
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and hence
” l —_ 2 2 — 2n ” l
ne1(1) = (6° + m™ — mIm™ + mf (1).
Set a = o> + m*> — m. Then by induction
() = a(m™ + m®= 1) + mifr (1) = -
=a(m™ + m* ' + ...+ m"),

from which

2n
var(X,,,) = (6? + m* — m)( > m") + mt — 22
k=n
= aoZm"(m™!' - 1)/(im—=1) ifm#1

var(X,. ) =(n+ 1) a?ifm=1

Theorem 3.74. Let X,, n > 0, be a branching chain such that p, = P{J
= 1} # 1. Then all nonzero states x(# 0) are transient, and

lim P{X,=x}=0,x #0.

n—» o0

PrOOF. First note that the state x = 0 is the absorbing state of the chain
and hence is positive recurrent. Let x # 0. We claim that f*(x,x) < 1 so
that x is transient. Now

f*(x,x) = B{X, = x forsomen > 1}.
If py = 0, then f*(x,x) = p* < 1. If py > 0, then f*(x,x) = 1 — p(x,0)
= 1-pk < 1. This proves the claim. Since all the states x # 0 are
transient,

P{X, =x}=p"(1,x) >0 asn— oo,
by Theorem 3.5.4. O

Before discussing the existence of a stationary distribution for X, let us
study the probability of extinction of a population. Let g denote this
probability; then ¢ = P{U,5 {X, = 0}). Since 0 is an absorbing state,
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g=P(Y K =0) = lm PO (X =0}
= lim P{X, = 0} = nl_lglof,,(O)

Note that £,(0) is a nondecreasing function of » and hence 0 < f£,(0)
< A0) < +-- < g = 1lim,_, . £(0) < 1. Since f,,,(0) = f(£,(0)), we get
q = f(q); that is, ¢ is a fixed point of f(s).

Let m < 1. Then f(0) > 0and f'(s) < f(1) =m < I, for0 < s < 1.
Using the mean-value theorem to express f(s) in terms of f(1), we obtain
f(s) >sfor0 < s < 1. Hence if m < 1, then g = 1.

Let m > 1. The mean-value theorem then implies that f(s) < s for all
s € (1 — ¢ 1), € > 0 sufficiently small. But f(0) > 0. Thus f(s) has at least
one fixed point in [0,1). Here we get the uniqueness due to the strict
convexity of f, for if there were two fixed points, say, s and ¢ with
0 < s <o < 1, then by Rolle’s theorem there exist a and b, s < a < o
< b < 1, such that f’(a) = 1 = f’(b), which is impossible due to strict
convexity of f.

Now we claim that g < 1. If ¢ = 1, then f,(0) — 1 as n — oo, and from
what we saw above, we would have

S1(0) = f(£0)) < £,(0),

contradicting the monotone increasing nature of the sequence £,(0).

In 1874 Watson established that g is the unique fixed point of f(s) but
failed to observe that ¢ < 1 if m > 1. Steffensen gave a complete solution
for the extinction problem. Summarizing the preceding arguments, we
obtain Theorem 3.7.5.

Theorem 3.7.5. (H. Watson, J. Steffensen). If m = E[X]] < 1, then q
= 1.Ifm > 1, then q is the unique nonnegative solution in [0,1) of

s = f(s).

In view of Theorem 3.7.4, it is easy to see that the branching chain has
a unique stationary distribution (1,0,0,0, ...) concentrated at 0 if p; > O.
Instead of requiring a stationary distribution, if we seek for a stationary
measure, we have the following theorem due to Harris.

Theorem 3.7.6. If {X,,) is a branching chain with 0 < py < 1, then it has a
stationary measure {m} such that 2,5 m = co. Let m(0) = =, m, 0%,
the generating function of m,, and q the extinction probability of {X,}. Then
m0) is analytic in |0 < q and satisfies the functional equation =(f(0))
= 1+ m(8), |0] < q, provided that n(p,) = 1.
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Exercises

Examples 3.7.7

ExampLE 1. Consider a branching chain with py =14, p =%, p, = &,
P3 = 15, and p, = O for k > 4. Find the probability ¢ of extinction.
First note that

1 3 1 17

Hence by Theorem 3.7.5, ¢ < 1 and is the fixed point of s = f(s). Now
f(s) =1+ 1s + &5 + L5’ Let us solve f(s) = s.

1
m=EX =0 7+1-

fl6) =s=>s>+3s2-8s+4=0
or (s—1D(E*+4s—4)=0
so thats = 1,5 = —2 — 2y/2,0rs = —2 + 21/2, and hence the extinction
probability ¢ = 2(/2 — 1).

ExampLE 2. Let f(s) = (as* + bs + ¢) with ¢ >0, 5 >0, ¢ > 0, and
S(1) = 1. If the probability of extinction ¢q is such that 0 < g < 1, show
that g = (c/a).

By assumption ¢ € (0, 1). So we are looking for the unique fixed point
of f(s).

fls)=s=as’ +(b—Ds+c=0.
If f(1) = 1, (s — 1) is a factor of as®> + (b — 1)s + c. Then
O=as?’+(b-—Ds+c=(—Das+@+b—-1]=0
and consequently ¢ = 1 — a — b. Now

_l-a—-b_

a

¢
q a’

Exercises

1. Consider a sequence of independent tosses of a fair die. Let X, denote the
maximum of the outcomes in the first n throws. Find the transition probability
matrix of this MC {X,,,n > 1}.

2. Consider a sequence of independent tosses of a pair of fair coins. Let X, denote
the number of heads in 7 tosses. Find the state space and the transition matrix
of this MC {X,,,n > 1}.
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. Consider two urns and 2N balls, of which N are red and N are green. Start an
experiment with N balls in each urn. At each trial choose a ball at random from
each urn and interchange the balls in the opposite urns. If X is the initial
number of red balls in urn I and X),, n > 1, is the number of red balls in urn I
at the conclusion of the nth trial, find the transition matrix of the MC
{x,,n > 0}.

. Consider an RWon0, I, ..., N with O as a reflecting barrier. Let N be a sticky
boundary in the following sense: the particle that is stuck at N is released and
thrown to state N — 2 two time units after it hits N. Find the transition matrix
of such an RW.

5. Find M 2, the two-step transition matrix, in each of the above Exercises 1-4.

. A Markov particle moves on points 0, 1, and 2 arranged in a circle in the
clockwise direction. A step in the clockwise direction occurs with probability p,
0 < p < 1, and a step in the counter-clockwise direction occurs with probability
1 — p. Prove that

P\n P P3n
M" = | p3, Pin Pan
P Pin Pin

where py,, + wpy, + w2py, = (1 — p + pw)”, with w denoting the primitive cube
root of unity.

. Consider a sequence of independent tosses of a biased coin having probability p
for heads. For n > 2, X, = 0 or 1 accordingly as the (7 — 1)st and nth tosses,
both resulted in heads. Prove that {X,,} is not an MC.

. Determine the classes and classify the states into transient and recurrent states
for an MC with transition matrix:

[00 1.0 00 00 00
10 00 00 00 00
(@01 o1 03 05 00 (b)
03 0.7 00 00 00
|03 04 02 00 01

02 00 00 038
1.0 00 00 0.0
00 1.0 00 00
00 00 1.0 00

0.1 09 00 00 00 0.0]
1.0 00 00 00 00 0.0
10 00 00 00 00 00
00 02 08 00 00 00
03 00 00 00 03 04
|00 00 00 07 03 00|

04 05 0.1 00 00
00 03 02 05 00
(d)} 00 10 00 00 00|
10 00 00 00 00
03 0.7 00 00 00

(0
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9. Let x and y be two states of an MC such that f*(x,y) = 1 = f*(y,x). Then
show that x and y are recurrent states.

10. Consider a simple symmetric RW on the three-dimensional lattice. Find a set A
in this lattice such that f*((0,0,0), 4) = 1.

11.Let {Y,},n > 1, be a sequence of IID RVs with the common probability
distribution { p; )}, k = 0, 1,22, .... Set X, = ¥+ --- + ¥, Let E|Y| < oo
and E[Y,] = m for all n. Show that the MC {X,}, n > 1, is recurrent if and only
fm=0.

12.Let {a,}, k = 0, 1, ..., be a positive sequence and {X,,} an MC, the transition

probability matrix of which is given by p(k,0) = g, and p(k, k + 1) = 1 — q,,
0 < a; < 1. Prove that this MC is transient if and only if @y + a; + - -- < o0.

13. Consider an irreducible birth-death chain on {0,1,...} such that p, < g, x
> 1. Show that the chain is recurrent.

14. Consider the birth—death chain on S = {0,1,...} such that p, = (x +2)/2(x
+ 1) and g, = x/2(x + 1), x > 0. Show that this chain is transient. Also

compute P{t, < t,}fora < x < b and f*(x,0), x > 0.
15. Consider an MC with N states. (a) If p(m; x,y) > 0, show that 0 < m < N — 1.

(b) If x is a recurrent state, show that one can find an g, 0 < a < 1, such that
forn > N, B{t, > n} < a"

16. Let x be a recurrent state of an MC {X,.n > 0}. Show that
1\}1—‘20 P{X,#*xn+1<m<n+tN}=0.

Prove also that the convergence shown above is uniform in 7 if x is positive
recurrent.

17.Let m,, x € S, be a stationary distribution of an MC and x, y € S be two
arbitrary states such that 7{x) > 0 and x — y. Show that n{y) > 0.

18. The transition probabilities of an MC on § = {0,1,...} are given by p(x,0)
= (x+1)/(x + 2) and p(x,x + 1) = 1/(x + 2). Determine whether this MC is
positive recurrent, null recurrent, or transient. If it is positive recurrent, find its
stationary distribution.

19.Now do Exercise 18 with p(x,0) = 1/(x +2) and p(x,x + 1) = (x + 1)/(x
+ 2).

20. Following are the transition matrices of some MCs. In each case find the
stationary distribution concentrated on irreducible closed sets. Also find the
mean first passage time m(x,y) = Z,51nf"(x,y) for all communicating recur-
rent states x and y.

{(a)«d) The transition matrices in Exercise 8.
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1.0 00 00 00 00 0.1 01 01 03 04
03 04 03 00 00 00 07 03 00 00
(e)j 00 03 07 00 00 (f)) 00 00 01 02 07
00 00 02 00 038 03 01 0.1 04 0.1
00 00 00 00 1.0 00 00 03 03 04

21. Find the stationary distribution of the MC described in Exercise 3.

22.Let {X,} be a birth-death chain on S = {0,1,...} such that py = 1,p, = p
>0,x>1,and g, = g =1— p, x >. Find the condition under which (X}
possesses a stationary distribution and find that distribution.

23. Consider a branching chain {X,}, n > 0, with generating function f(x) = (1 — b
o)/ —c)+(bs/1 —¢cs5), 0<c<b+c<I,with(l—b—-c)>cl-c),
and X3 = 1. Show that

lim P{X, = x|X, >0) = (1 —r"")'*,
n—o0

where r = (1 — b — ¢)/c(1 — ¢).

24. Let {X,) be a branching chain with p, = p(1 — p)*, k > 0, where 0 < p < L. If
q is the probability of extinction, then show that ¢ = 1 if p > 4 and ¢

=p/(1-p)ifp <}
25.Let {X,}, n > 0, be a branching chain with X; = 1. Show that

P{X, > N for some 0 < n < m|X,, = 0} < [P{x,, = 0})".

26. Initially start a blood culture with one red cell. At the end of a unit time the red
cell dies and is replaced either by: (a) two red cells, (b) one red and one white
or (c) two white cells with probabilities }, 4, and' {5, respectively. Subsequently,
each red cell reproduces this way and each white cell dies at the end of one unit
of time without reproducing. Show that the probability of extinction of the entire
culture is }.

27. Consider a society in which each man has exactly two children. Each child is a
boy or a girl with equal probability (}). Let {X,} be a branching chain
representing the number of males in the nth generation. Show that the male line
is sure to extinct. Show that the probability of extinction of the male line is
g = /5 — 2 if each man has three children instead of two.



Poisson Processes

4.1. Definitions and Examples

Poisson processes are found to yield accurate models in several applications
from such diverse areas as physics, geology, biology, nuclear medicine,
anthropology, astronomy, and geography. In this chapter we study certain
basic properties of this process, not only because it arises very naturally in
several applications, but also as it is a very simple continuous-time
stochastic process and a prototype of more general jump Markov processes
and processes with independent increments. Poisson processes arise in
situations where one is interested in the total number of occurrences of a
“specified type” of event up to a time point ¢ > 0, such as the number of
successive occurrences of events of the following type: arrival of telephone
calls, emission of a-particles by radioactive substances (each monotonically
increasing with time), flaws in a material, stars in space, and skulls in an
ancient burial ground (each monotonically increasing with d-dimensional
volume, d = 2 or 3). Such processes are actually known as counting
processes (and the Poisson processes are defined by additional restrictions).
Let (2,@, P) be the basic probability space on which the RVs X(z, -),
t > 0, of the stochastic process X(f,w) are defined. A continuous-time
stochastic process {X(¢),# > 0} with values in the state space S = {0, 1,
2,...} is called a counting process if X(f), for any ¢, represents the total
number of “events” that have occurred during the time period [0, 7].

Definition 4.1.1. A stochastic process X(¢), ¢ > 0, is said to have indepen-
dent increments if for alln 2 | and time points 0 € 1, < ;, < --- < ¢,
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the increments X(z) — X(0), X(,) — X(%), ..., X(z,) — X(t,_,) are
stochastically independent RVs. A process X(¢) is said to possess
stationary increments if the distributions of the increments X (z) — X (s),
s < t, depend only on the length (¢ — s) of the time interval [s,¢] over
which we have taken the individual increment.

Recall that a RV X: € —{0,1,2, ...} is called a Poisson RV with rate
A >0, if the probability distribution of X is given by P{X = x}
=M\ /x!,x=0,1,2,....

Definition 4.1.2. A counting process {X(z),z > 0} is said to be a Poisson
process with rate A > 0 if: (1) X(0) = 0, (2) X(¢) is a process with
independent increments, and (3) the number of events in any interval of
length 7 is Poisson distributed with rate A, that is, for all s, # > 0,

PX(t+s)—X(@)=x}=eMA)"/x!, x=0,12.... (4L1)

We see below that this definition of a Poisson process is equivalent to
the following one.

Definition 4.1.3. A counting process {X(z),t > 0} is said to be a Poisson
process with rate A > 0 if: (1) X(0) =0, (2) X(¢) is a process with
independent and stationary increments, and (3) relations (4.1.2) and
(4.1.3) hold:

PX(t+h) —X@) =1} =Ah+oh), (4.1.2)
PX(t + h) — X(1) > 2} = olh), @.1.3)
where a function f(x) is said to be of order o(h) if lim,_f(h)/h = O.

Next we give several counting processes that are modeled and studied
as Poisson processes.

Examples 4.1.4

ExAMPLE 1. Radioactive Decay. Due to decay, certain radioactive substan-
ces emit y-photons at a rate varying with the amount of the substance
present. Let X(7) represent the number of y-photons reaching a registering
counter during the time interval [0, 7]. By using Definition 4.1.3, {X(¢)} can
be modeled as a Poisson process.
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ExAMPLE 2. FElectron Emissions. Let the heating element in a vacuum tube
be energized at time ¢ = 0. Then an electron, after being emitted from a
cathode, travels to the anode. One obtains a Poisson process, as in Example
4.1.4 (1), by taking X (¢) to represent the number of electrons emitted during
the time 0 < s < ¢

A similar process arises in optical detection. Consider a photodetector
(e.g., an avalanche photodiode) having a photoemissive surface. An optical
field incident on the photodetector results into the emission of a stream of
photoelectrons at the detector output. The number X (¢) of emissions during
0 < s < t can be modeled as a Poisson process (see Karp, et al. 1970).

EXAMPLE 3. Neuron Spike Activity. Let us insert a microelectrode into an
exposed auditory nerve fiber. [This is a standard procedure in auditory
electrophysiology; see Siebert (1970).] In response to an acoustic pressure
stimulus applied to the outer ear, this microelectrode detects the electrical
activity in the nerve in the form of randomly occurring spike activity. A
Poisson process can be used to model this spike activity by taking X () to
represent the number of spike discharges until time .

EXAMPLE 4. Spatial Distribution of Random Points. Models of Poisson
process X(#) where t is a space variable arise in disciplines such as
astronomy, bacteriology, and ecology. In ecology, one assumes that the
number of animal litters in a plot follows a Poisson process with intensity
proportional to the area ¢ of the plot. Along the same lines, consider the
photograph of a Petri plate with bacterial colonies that one can observe
under a microscope (these are visible as dark spots). The bacterial count on
the Petri plate is modeled as a Poisson process with intensity proportional
to the area. Next, consider the distribution in space of the centers of gravity
of stars. This spacial distribution of stars is modeled as a Poisson process
with the intensity proportional to the volume 7. A model similar to the Petri
plate in bacteriology arises in electron microscopy. Consider a microscopic
object whose image has to be obtained. In electron microscopy, a flood of
electrons illuminate this object, and the electrons are collected in a
scintillation crystal. The distribution of the electron impacts in the crystal
can be modeled as a Poisson process with the intensity depending on the
area 1.

EXAMPLE 5. Nuclear Medicine. Radioactive tracers are widely used in
nuclear medicine. They provide (relatively) noninvasive diagnostic proce-
dures for clinical medicine. The radioactive pharmaceutical tracer is also
used as a tool in the research of physiological phenomena such as blood
flow rate and lung ventilation. In the static study, one is interested in
obtaining an image of the spatial distribution of the tracer, whereas in the
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dynamical study, one obtains quantitative information about the parame-
ters relating to physiological phenomena. In order to visualize internal
organs a technique used in nuclear medicine is to ingest into them a
radioactive tracer and then monitor the time course of radioactive emis-
sions by an external scintillation detector. The data so collected is a series
of discrete events associated with the emissions of light pulses in the crystal
of the detector. To a first approximation the series of light pulses can be
modeled as a Poisson process X(¢). Here ¢ varies in a region of the product
R, X R?, where s € R, and x € R? correspond, respectively, to the
observation interval [0, s] and to the surface of a scintillation crystal, so that
X(?) is a time-space process. See Jacques (1968) and other articles in
Wagner (1968).

Theorem 4.1.5. The two ways (Definitions 4.1.2 and 4.1.3) of defining Poisson
processes are equivalent.

ProoF. First we show that Definition 4.1.2 implies Definition 4.1.3. From
relation (4.1.1) it follows that the process X () has stationary increments. To
see that (4.1.2) holds, we use (4.1.1):

e M(\h)
It

= )\h[ngo (n—;)\h)"]

= NH[1 = Ak + o(h)] = Ak + ofh).

PIX(t+h—-X@1)=1}=

Similarly,

e M\R)"

PX(t+h) = X() > 2) = D, —— 1 = olh).

n>2

Next we show that Definition 4.1.3 implies Definition 4.1.2. Let f(z, -) be
the probability distribution of X (z,w). We obtain (4.1.1) through solving
some simple linear differential equations:

f(t+ h,0) = P{X(¢t + h) = 0}
= P{X(t) =0,X(t +h) — X(#) = 0}
= P{X(t) = 0} P{X(t+ h)— X(1) =0} (why?)
=f@0)[1 — P{X(e + h) — X(@) > 1}]
= f(#0)[1 — Ak + o(h)]  (why?),
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and thus

R f(t + B,0) — f(2,0)] = —Af(1,0) + h~ ' o(h).

Letting h — 0, we get f'(1,0) = —Af(t,0), which gives f(1,0) = ce”™. But
f(0,0) = P{X(0) = 0} = I; thus

f(2,0) = ™. (4.1.4)
Next, forn > 1,

f@+hn) = P{X(t+h) =n}
—p {kL:JO{X(t =K O X+ R - X() = k}}
= P{(X@) =nX@t+ h) — X() =0}
+PXO)=n—-LXt+h—-X(@) =1}
+ éz PX() = n— kX + R~ X(t) = k)
= f(t,n) f(h,0) + f(t,n — 1) f(h 1) + o(h)
= (1 — AR f(t,n) + Nhf(t,n — 1) + o(h),

from which

RS + hyon) — f(t,n)] = =Af(t,n) + Af(t,n = 1) + b~ o(h).

Letting # — 0 in this expression, we get
f@,n) = —=Af(t,n) + M({t,n — 1)
or, equivalently,
dﬁt[e“f(t, n)] = AeMf(t,n — 1). 4.1.5)
Let n = 1 in (4.1.5) and use (4.1.4). Then
D1eM7(1, 1] = AeMe ™ =,
or

£, 1) = (At + e,

Since f(0,1) =0,c =0 and f(r.1) = Me ™. We claim that f(z,n)
= (e~ M(A#)"/n!). This is true, as seen above, for n = 1. Let it also be true
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for n = m. Then from (4.1.5), (d/d))[eMf(t,m + 1)] = AeMeM(\)"/m!
= N"*1(¢"/m!), and by integration, eMf(t,m + 1) = c + A" /(m
+ 1)!. Since f(0,m +1) =0, ¢ =0, and we obtain our claim. This
completes the proof. a

4.2. Basic Properties of Poisson Processes

In this section we find the distributions of several time characteristics
associated with a Poisson process X = {X(#),# > 0}. These distributions
are of practical importance. Let X (7), ¢t > 0, denote the number of spike
discharges, up to time #, modeled to a first approximation as a Poisson
process. Consider the following diagrams:

t t, t; t, t

n
0 time
axis
wl WZ W; W4 Wn-l W,,
t=Wrw
time
axis
A ¢
w r oW
Here W}, W,, ..., denote the occurrence times of the first, second, ...,

spike discharges, respectively, and t,, n > 1, denotes the time elapsed
between the (n — 1)th and nth discharges. In general, W, (resp. t,), n > 1,
is called the nth occurrence time or the waiting time for the nth event (resp.
nth interarrival time). Waiting time is the terminology used most often
(especially in queuing theory) for the time characteristics W, n > 1, but we
prefer to call them occurrence times. Let ¢t be an arbitrarily fixed time with
the constraint that ¢ # W, for every n > 1. Then ¢, denotes the time
elapsed beginning at 7 until the next occurrence of a spike discharge.
Similarly, /, denotes the time elapsed since the last spike discharge up to
time ¢.

We show below that the interarrival times t,, » > 1, form a sequence
of IID exponential RVs. This is a characteristic property of Poisson
processes. The importance of this result lies in the fact that it provides a
method of testing the hypothesis that a sequence of events randomly
occurring in time are events of Poisson type. This property is useful in
practice for simulating Poisson processes in Monte Carlo studies of
situations that are too complicated for a direct analytical investigation.
Here one proceeds as follows. Using standard algorithms, generate a
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sequence {U,} of 11D RVs uniformly distributed on [0, 1]. Transform these
variables into the sequence {t,} of IID exponential RVs by the transforma-
tion t, = —\"'In(U,). Assigning these t, values as the successive interar-
rival times, one can simulate a Poisson process.

Recall that a continuous RV X with density function given by

Ae A, x>0
fo) = {0, x <0

is called an exponential RV with parameter A > 0. An important property
of an exponential RV is that it is memoryless. A RV X is said to be
memoryless if

PX>s+tX>tp=PX >s} foralls, t>0.

To understand this property, let X denote the lifetime of a light bulb. If the
bulb is burning at time ¢, the distribution of the remainder of its lifetime is
the same as the original lifetime distribution (i.e., the light bulb does not
remember that it has already been in use for a time f). From the definitive
assumptions that a Poisson process has stationary and independent incre-
ments, it follows that the process starts from scratch at any point in time;
that is, a Poisson process has the Markov property and has no memory. In
the light of this property it is no surprise that the interarrival times are
exponentially distributed.

Theorem 4.2.1. Every stochastic process X (t), t > 0, with independent incre-
ments, and hence a Poisson process, has the Markov property; that is, for
allx € Rand 0 < tx < 1, < --- < t, < o0, we have

PiX(t,) < x|X(#;),0 <i<n}=PXQ@,)<xX(@1-)} 421

A SKETCH OF THE PROOF. First observe that the collection of all events
generated (i.e., the o-algebra generated) by the RVs {X(7,),0 < i < n— 1}
coincides with the collection of those events generated by the increments
X (1) — X(0), X(4) — X(1g), ..., X(t,_y) — X(1,_,). Let B denote this
collection (o-algebra), and B € ®. Then it is not difficult to see that

E[Ig P{X(1,) < x|X(@t,-)}] = P{B N {X(,) <x}}, (422)
which is equivalent to (4.2.1). This proves the theorem. a

Theorem 4.2.2. Let X = {X(f),t > 0} be a Poisson process with intensity
parameter \, and let {t,,n > 1} be the corresponding sequence of successive
interarrival times. Then the RVs t,, n > 1, are IID obeying an exponen-
tial density with mean \™'.
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Proor. First we find the probability law of t,. The event {t, > 1} occurs
if and only if no Poisson event has occurred in the interval [0, 7]. Hence for
>0,

Pit, > 1} = P{X(1) = 0} = ™",

so that t; is exponentially distributed with mean I/A. Next

P{tz > T} = E[E[I{‘2>T}

t, = o]] = E[P{t, > 1|t, = o}].
But

P{t, > 1|t; = o} = P{no events in (0,0 + 7]|t; = 0}

= P{X(c + 1) — X(0) = 0} = P{X(1) — X(0) = 0}

— e—)\r,

since X has independent and stationary increments. In general, for n > 1
andt,0,...,0,_; 2 0,

Pit, > 1|t =0y, ...,t,_; = 0,_;}
=PX(r+o,+---+0,_))— X(oy+ - +a3,;) =0}
= P{X(r) = 0} = ¢ M.

This completes the proof. O

Theorem 4.2.3. Let {W,},n > 1, be the sequence of successive occurrence
times (= waiting times) associated with a Poisson process X(f),t > 0.
Then the probability density fy, (¢) of the nth occurrence time W, (n > 1),
is the T-density

(}\t)n—l

fm,(’) = }\e_M(n _ 1)! ’

t>0. 4.2.3)

PrROOF. We need the probability of the event {W, < 7} to obtain the
distribution function Fy, of W,. But the event {W, < ¢} occurs if and only if
the event {X(¢) > n} occurs. Hence

FW"(I) =P(W, <t} =P{X(t) > n = ”En e-)\r(énl!m'



4.2. Basic Properties of Poisson Processes

Differentiating this with respect to f, we get

m—1 m
= At O‘L —_ —M(At)_
fm'(t) m§n Ae (m - l)' mén Ae m!
n—1
— o (N)
AP
and this completes the proof. O

Example 4.2.4 Consider a mechanical device in which “shocks” occur
according to a Poisson process and that fails when a total of K shocks
occur. Find the density function for the lifetime T of the device.

This problem is simply a rewording of Theorem 4.2.3, and hence the
required density is

—t (At)K'l

fr(®) = Ne K-l

Theorem 4.2.5. The distribution F, of ¢, is independent of t and is given by

F(s) =Plp,<sp=1—-e™ s3>0 (4.2.4)

ProoF. Define g(s) = P{¢, > s}. Let 7 be the first time point, after time
t, at which a Poisson event occurs. Then the two events {¢, > s} and
{r > t + s} are equivalent. Therefore, for h | 0,

gs+h =P, >s+h=Pr>t+s+h
= P{r >t+s andnoeventinls+s,7+ s+ h}}
= P{p, > s}PX(t +s + h) — X(t +s) = 0}

= g(s)[1 — Ak + o(h)], (4.2.5)

where we obtain the third equality due to the fact that the event {¢, > s}
= {¢, < s)° refers to what happens during or prior to time 7 + s and is
independent of the increment X(¢ + s + h) — X(r + 5). From (4.2.5) we get

W gG + B - ()] = ~Ag(s) + 2.

Letting A — 0, we get the initial-value problem

g'(s) = —Agls). g(0) = P{¢, >0} = 1
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This yields In g(s) = —As + ¢, or g(s) = Ke™™’, and by g(0) =

g(s) = e or Ffs) =Plp,<s}=1-¢ A5 >0.0

Theorem 4.2.6. The distribution function of I, has an atom at t; that is,
PllL=0>0,and P{, <s)=1-e™0<s<t.

Proof. If no event has occurred in [0, ¢), then:
P,=10 =Pty >t)=eM>0.
Next, if at least one event has occurred in [0, ), then
P{l, > s} = P{X(2) — X(t —5) = 0} = e ™.
Hence the theorem holds. O

Theorem 4.2.7 shows how the uniform distributions are associated with
a Poisson process, and this explains why Poisson processes are often called
“random” or “completely random” processes. First consider the situation
where it is given that exactly one Poisson event has occurred by time 7 and
we have to determine the distribution of time t at which the event occurred.
Since the Poisson process possesses independent and stationary increments,
it is intuitively clear that each interval in [0, 7] of equal length should have
the same probability of containing the event, so that t is uniformly
distributed in [0, 7]. More precisely, for s < 1,

Pt <s|X() =1} =[PX() = )Pt < s5,X()) = 1)

= e M PX () = 1,X(1) — X(s) = 0}
= [}\te_“]—l)\se—“e“x(’—’) =3

t
In general we have the following theorem.

Theorem 4.2.7. Let X(), t > 0 be a Poisson process. If it is given that exactly
n Poisson events have occurred in [0, ], then the n successive occurrence
times W) < W < --- < W, are distributed according to the distribution
of the order statistics U ) of n independent RVs U,, o U
uniformly distributed on [)0 7], where U(,)(w) min{U;(w), ..., (w)}
Ug)(@) = kth smallest in {Uj(),...,U, (@)}, 1 <k <n-1, and
Upy(@) = max{U(w),..., U, (w)}.
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PrOOF. The joint density function g,(y, . ..,u,) of (Uy, ..., U,) is given
by
( ) T" fO<y,...,u, <7
cesU,) = . ;
Enlth " 0 otherwise

and the corresponding joint density g, (x,. .. ,x,) of (U(,), s Ypy) is
given by

( ) nls " fOo< << x, <1
ey X,) = ,
B n 0 otherwise

Now let it be given that exactly n Poisson events have occurred in [0, 7].
Also let {[x;,x; + h],1 < k < n} be a sequence of n nonoverlapping
intervals in [0, 7]. Then

Plxy < WM < x;+hy,...,.x, < W, < x, + h,|X(1) = n}

= [e™O\1)"/n!] AR e M . AR exp[-ANz — By — -+ = h,)]

=nlv"h ---h,. (4.2.6)
But the conditional probability in (4.2.6) is approximately equal to
8&my(@1> -+ %, )y - - - h,. This observation completes the proof. O
Examples 4.2.8

ExaMPLE 1. If it is given that n Poisson events have occurred in [0, 7] and
0 <s < find P{X(s) = k|X(r) = n}for 0 < k < n.

P(X(s) = k|X(r) = n} = [P{X(r) = n)]"' P{X(s) = k,X(r) = n)
= [eMAD)"/n ] PX(s) = k, X(1) — X(s) = n — k)

— n’()\'r) n At _M(}\S) —)\(1 s)[A('T - S)]

qOOIGHE -

which is a binomial distribution with parameters n and s/7.

ExaMPpLE 2. If it is given that n Poisson events have occurred by time 7, find
the density function of the time 7; of the occurrence of the kth event,

k <n.
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Set H(s|n) = P{T; < s|X(r) = n}. We want to find

Holn) = 2 H(slr) = lim k™ P(s < T, < s + HIX(@) = n).

Now, as h — 0,
Ps < T, <s+hX(r)=n}

=[PX(r) = n)]'Pls < < s+ A X() = 1}

=eMAM) "M P K T, <s+hX(x)—X(s+h) =n—k}

=neMA) "Ps < L <s+ MPXE)—X(s+h) =n—k}. (42.7)
Dividing both sides of (4.2.7) by h and letting h — 0, we get

h(s|n) = n! e"’()\f)_"[absolute density of T,]P{X (1) — X(s) = n — k}

n—k
=nle AT (AS) —)\s —Mr=s )[A(T - 3)]
n! e (\1)” A(k D1 e NCE
from Theorem 4.2.3,

n! sk s\
T (k= DI(n— k) A (“«F)

Hence, given that X(r) = n, then T (= W,) follows Beta distribution.

ExaMPLE 3. Let X(¢) and Y(?) be two independent Poisson processes with
rates A and p, respectively. Let W and W* be the times of two successive
occurrences of Poisson events of the process X(f); that is, W < W*,
X(@)=X(W) for W<t < W* and X(W*) = X(W) + 1. Define N
= Y(W*) — Y(W). Find the probability distribution of N.

Set t = W* — W. Then t is an interarrival time and Pt < s} = |
— e, by Theorem 4.2.2. Now

P{N = k} = P{Y(W*)— Y(W) = k}
= E[P{Y(W*) — Y(W) = k|t = s}]

I () LS ME oo o
=j(; e"’TAe ’ds=—Fj;) ske=MH)s g

_L(_ﬂ_)k
T A+p\A+p/)
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4.3. Some Generalizations of the Poisson Process

Definition 4.3.1. A stochastic process X: R, X2 —> S = {0,1,2,...} is
called a nonhomogeneous Poisson process with intensity function A(z),
t >0, if: (1) X(0) =0, (2) X possesses independent increments, (3)
PX(@t+h) —X() =1} =N)h + olh), and (4) P{X(t +h)— X()
> 2} = o(h).

Set A(?) = fy AN(s)ds; A(z) is called the mean value function of the
Poisson process X (z).

Let Y(?), ¢t > 0, be a homogeneous Poisson process with intensity
A(#) = 1. Define X(r) = Y(A(z)), ¢t > 0. Then X(¢) is a nonhomogeneous
Poisson process. Now let X(f) be a nonhomogeneous Poisson process with
intensity function A(¢). The mean-value function A(f) is continuous and
nondecreasing. Let us define the inverse A

A () = minf{t: A(t) > u for u > 0).

Now define a process Y(z) by Y(f) = X(A™'(s)),t > 0. Then Y(z) is a
homogeneous Poisson process with unit intensity. One important applica-
tion of this observation is the simulation of a nonhomogeneous Poisson
process. First simulate a homogeneous process as indicated in the second
paragraph of Section 4.2, and then rescale the time to simulate a nonhomo-
geneous process.

In the examples cited in Section 4.1 we did not give explicitly the
intensity functions of the processes. Actually, all those processes are better
approximated by nonhomogeneous Poisson processes. Here we present
some examples of possible intensity functions.

Examples 4.3.2

EXAMPLE 1. Radioactive Decay. Consider the emission of y-photons by a
radioactive source. This can be modeled to a close approximation by a
nonhomogeneous Poisson process with intensity function A(¢f) given by
A1) = aexp[—Bt],t 2 0, @, B > 0, where « is a parameter depending on
the amount of the radioactive material and 87! is the mean life of the
source. The intensity functions of this form arise in nuclear medicine,
nuclear physics, and geochronology (Evans 1965).

EXAMPLE 2. Electron Emission in Optical Detection. Emission of a stream of
photoelectrons results when an optical field is incident on a photomultiplier.
To a good approximation this can be modeled by a nonhomogeneous
Poisson process. Let the incident light be characterized by the scalar electric
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field e(t,x) = \/2 Re {E(t,x)exp(27i¢t)} at time ¢ and position x. Here
E(t,x) is a complex space-time envelope that is slowly varymg in compar-
ison to the optical frequency ¢. Noting that |E(t, x)|? gives the light
intensity, the rate A® of electron emission is given by A()

= (q/he) S5 | E(t, x)|2dx + Ay, where g is the probability that a quantum of
light energy is converted into an electron, h is Planck’s constant, A, is the
rate of generation of extraneous electrons in the photodetector, and the
integral is taken over the sensitive surface S of the detector.

EXAMPLE 3. Neuron Spike Activity. As seen in Example 4.1.4 (3), the spike
discharges in an auditory nerve can be modeled by a Poisson process, a
nonhomogeneous process for a better approximation. Here the intensity
function can be taken in the form, (Siebert 1970)

Mo = a exp{ B cos(2net + v)},

where the parameters a, 8, and y are connected with the physiological
mechanisms involved in converting the pressure stimulus into electrical
nerve activity and ¢ is the frequency of the applied pressure.

ExaMPLE 4. Nuclear Medicine. We have seen in Example 4.1.4 (5) that the
emission of light pulses in the scintillation crystal can be modeled by a
Poisson process. A form of the intensity function A(?) that is frequently used
is

AND) =ap+ 2 agexp[—ay i t], t20,0,>0,0< k< 2n,
k=1

where the parameters a; arise in clinical studies and A(f) describes the
physiological transport phenomena. Note that the intensity decreases, as a
function of time, which is partially due to the removal of the radioactive
source from the field of view of the scintillation detector by blood flow
(Sheppard 1962).

Theorem 4.33. Let X(t), t > 0, be a nonhomogeneous Poisson process with
mean-value function A(t). Then

PX(t+s)— X() =n} = e‘[A('”)_A(')][A(t L sr)l,_ A(t)]", n 2> 0.

ProoF. Exercise (mimic the proof of Theorem 4.1.5). O
Definition 4.3.4. A stochastic process {Y(z),z > 0} is called a compound
Poisson process if it admits a representation of the form

X(1)

Y(¢) = "gl ¢,
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where X(?) is a Poisson process and {{,,n > 1} is a sequence of IID
RVs such that {X(¢),# > 0}and {¢,,n > 1} are independent processes.

Examples 4.3.5

ExAMPLE 1. Seismic Events. Earthquakes and other seismic events can be
observed on a worldwide basis with an array of seismometers. Let us
observe the occurrences of earthquakes as a Poisson process X(7), with 7
denoting the time. Each earthquake results in some damage §. Let us
assume that the damages £, caused by different earthquakes are indepen-
dent of each other. Then E,’,‘l’f £, gives the total damage caused by all
earthquakes during the period [0, #}. Clearly, Y(¢) is a compound Poisson
process.

EXAMPLE 2. Total Claims on a Life-Insurance Company. Let W), W,, ...
denote the occurrence times of the death of the policyholders of a certain
life-insurance company. Treating these times as the arrival times of
insurance claims, the number of deaths can be treated as a Poisson process
X(1). Let ¢, denote the amount that the policyholder dying at time W,
carries. The Y(7) defined by Y(r) = =X (’? £, and denoting the total amount
of claims that the insurance company will have to pay during the time
period [0, 7] is a compound Poisson process.

ExXAMPLE 3. Prey—Predator System. Consider a parasite system preying on a
host population. Each encounter of the predators with the prey results in
the depletion of prey population by a certain amount §,, and the ingestion
of food results in an increase 7, in the predator system. Let X (¢) denote the
Poisson process modelmF the number of encounters. Define Y(¢)
= E,f’:(’f ¢,and Z(1) = E,,_ n,- Then Y(z) and Z(¢) are compound Poisson
processes denoting the cumulative depletion of the prey and cumulative
increase in the predator population during [0, 7], respectively.

ExXAMPLE 4. Optical Communication System. In optical communication
system, a simple device for sensing optical position of the light beam
arriving at a receiver consists of a photodetector having a photoemissive
surface that is divided into four quadrants. Photoelectron emissions are
observed in each quadrant to sense the position of an incident optical field.
Let us assume that the intensity of the light falling on the device follows a
circularly symmetric Gaussian density y. Let us also assume that the
photoelectron emissions in each quadrant form a Poisson process with
intensity A = k fg vy, where S is the sensitive surface of the detector, and
that the four quadrants operate independently of each other. Then the
photoelectron emissions for the entire sensor can be treated as a compound
Poisson process.
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Theorem 4.3.6. Ler Y(¢) = E,’,"z(’f &, be a compound Poisson process. Then:

(i) The process Y has independent increments.

(i) The characteristic function ¢y of Y(¢) is given by ¢y(,)(u)
= exp{At(¢;(4) — 1)}, where ¢y is the common characteristic func-
tion of the RVs £, and N is the rate of occurrence of Poisson events.

(i) If E[¢%] < oo, then E[Y(1)] = ME[£] and var(Y(r)) = ME[¢?).
ProoF. (i) Let0 < 7, < <--- <1, Then
X(to) X(t)
Y1) = E; £, Y@)-Yu-)= 2 & k=1...m

n=X(t,_)+1

From the basic assumptions on {X(#)} and {£,}, it is not difficult to see (we
omit the details) that Y(¢) possesses independent increments.

(i) ¢y (W) = § E[e“YO|X(t +5) — X(s) = n]P[X(1 + 5) — X(s) = n}

n=0
" —A\t A n

= e Nexp{Aa ()

(ii) Using (ii) one can establish (iii), or proceed directly as follows. Note
that E[Y(?)] = E[E[Y(?)|X(?)]). Now

X(1)
E[Y®)|X () =n] = E[k§=)l £1X@) = n]

where we have used the independence of {£,} and {X (¢)} in the third step
and used identical distribution assumption on all £, in the fourth step.
Therefore,

E[Y(n)] = E[E[Y(@IX @] = E[X()E[¢]] = ME[£]).
Next, note that
var(Y(¢)) = E[var(Y(9)| X(1))] + var(E[Y (9| X (1)]).

Now
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FOIxX@) = m) = var( 'S &1x() = n) = (¢
var = n) = var PR t)—n) var R k)

= nvar(§),
and consequently, var(Y(¢)| X(¢)) = X (¢)var(¢). Therefore,
var(Y(2)) = E[X(f)var(§)] + var[X () E[£]]
= M var(§) + M(E[£])® = Mlvar(€) + (E[¢])°]
= ME[¢2).

Exercises

1. Consider a Poisson process of spatial distribution of points in R? with mean rate
A = 1. With center at each of these points construct spheres of radius r. Let X
denote the number of these spheres that contain the origin. Show that X is a
Poisson RV with mean 4mr3/3.

2. Let X(¢) be a Poisson process in R® with mean rate A and let D the distance from
the origin to the nearest point of the process. Show that the density function of
D is given by 4rAr? exp(—4mAr®/3).

3. Consider the processes {/,} and {¢,} defined in Section 4.2 (see the figure there).
Show that: (a) /, and ¢, are independent and (b) the distribution F of /, + ¢, is
given by

0 forx <0
F(x) = { 1 — e +Ax) for0 € x < ¢
1 - e M1 + M) fort < x < oo

4. Customers arrive at a checkout counter at a Poisson mean rate of 12 per hour.
What is the probability that the interarrival times is: (a) greater than 10 min, (b)
less than 5 min, (c) greater than 5 min, and (d) 2-8 min?

5. Certain nuclear particles arrive at a counter according to a Poisson process with
mean rate A. Each such particle gives rise to a pulse of unit duration and is
registered by the counter if no other pulse is present. Show the probability that
a particle is counted in the interval [1,z + 1}, ¢ > 1, is given by Ae ™.

6. Let X(?) be a Poisson process on [0, c0) with mean rate A, and let T be an
exponential RV with mean » and independent of the process. Let N be the
number of Poisson events in [0, T]. Show that the probability distribution of N
is given by p, = A"/(A + »)™! n > 0.

7. Consider a Poisson process X () with mean rate A. With the kth event associate
a RV ¥, such that the RVs ¥, are independent and exponentially distributed with
mean ». Let Z(1) = Z; ., ¥,. Show that the density function of Z(¢) is given by
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V )% e—}“—"x1|(2\/$tx), x>0,

where J,(-) is a Bessel function.

8. For a Poisson process with mean rate A, let W] be the random time of the
occurrence of first Poisson event. Show that, for0 < s < fandn > 1,

P <slx@®)=ny=1-(1-st7")".

9. Let X(r) be a Poisson process subject to the constraint that following each
occurrence of the Poisson event there is a “dead period” of length T in which no
event can occur. If N(¢) is the number of events occurring in [0, £), show that

PN < x) = XE;;:) e—A«—mw'

10.Let {X(s)} be a Poisson process with mean rate A, W the time until the
occurrence of the first event, and N(W/a) the number of events in the next W/a
units of time. Show that

orr(D)]- & [ ()] -5

11. Let X(¢) and Y(f) be two independent Poisson processes with mean rates A and
v, respectively. Let X(0) = n, Y(0) = m, and N > m, n. Show that the proba-
bility for the Y process to reach N earlier than the X process can reach N is given
by

N—n—1

N-m+k-1 k N—m _ A — 1 _
kgo( k )Pq s P“A+F»‘I—| p.

12. Consider a telephone exchange with an indefinitely large number of switches.
Each call lasts a random amount of time, obeying an exponential distribution
with parameter p. Let the incoming calls form a queue with parameter A, and let
X(t) denote the number of busy lines at time ¢ with X(0) = 0. Set p(t,n)
= P{X(f) = n}. Show that:

@nien) = {500 - e_"')}nexp{—%(l - e""')},

(b) lim pt,n) = l(é)ne-*/ﬂ
>0t nt\ p )

13. Electrons flow from a heated cathode with rate A. The flight times for different
electrons are independent RVs following a common distribution F(x). Let X (¢)
denote the number of electrons between the electrodes of the electronic tube at
time 1. Set p(t,n) = P{X(s) = n). Show that p(t,n) = [A()]"e"2V/n!, where
A(®) = A 5 [1 — F(x))dx.



Purely Discontinuous Markov Processes

While introducing the Poisson process we stated that such processes form
a prototype of more general jump Markov processes. Our purpose now is
to abstract and extend the basic characteristics of Poisson processes. Let the
time parameter + € R, = [0,0) and the state space S be an at most
countable set. The processes that we study in this chapter can be described
as follows. A physical system starts its evolution from a state x, € S. It
stays there a random length of time t, and then jumps to another state x;,
where it is a possibility that the system stays at x, forever. After jumping to
X), the system remains there for a random length of time t, and then jumps
to a state x, # x;. As before, it is possible that.t, = oo. The evolution
repeats this process. It is easy to perceive of systems that will make an
infinite number of jumps in a finite time; such important systems do exist.
The time of nth jump is t; + - -+ + t, = W,. So as not to allow an infinite
number of jumps in a finite time, we have to require that W, — oo with
probability one, as n — co. The jump stochastic processes satisfying this
condition are called pure-jump processes or purely discontinuous processes.
Having described the jump motion of the system, we next have to look for
basic mathematical quantities that will succinctly describe the process. The
Poisson events occur with intensity A (in the homogeneous case) or A(?) (in
the nonhomogeneous case), and the system moves by unit steps in the
forward direction. In extending these ideas to the jump process case, we
allow arbitrary jumps and define an intensity function q(t, x) and relative
jump probabilities Q(¢, x,y). Of course, we also need the transition proba-
bilities p(s, x, t,y) of transition from state x at time s to state y at time ¢.
Now, without further ado let us get to the mathematical framework.
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5.1. Kolmogorov-Feller Equations

Let {X(t,w),t € R,,w € Q} be a stochastic process with state space
S = R. By ®(R) we denote the o-algebra of Borel subsets of the real line R.

Definition 5.1.1. A stochastic process X: R, X £ — R is called a Markov
processif, for0 < 1, < 4 < - <, <s<tanyxg, ..., X, x €ER
and B € %(R),

P{X(®) € BIX(t,) = xg, 0<k<n, X(s) = x} -
= P{X(f) € B|X(s) = x). G-1.1)
The function p(:, -; -, -): R, X R X R, X B(R) — [0, 1] defined by

pis,x;1,B) = P{X(H) € B|X(s) = x} (5.1.2)

is called the transition function of the process X(f). Markov processes
are also called the processes without memory or after effect.

It is clear that fg p(s,x;t,dy) = 1. Let the function p(s,x;¢, B) be
continuous in s,  and x. Let s < ¢ < w. Since the system passes from state
X at time s to an intermediate state at time ¢ and from y at time ¢ to B at
time u, we obtain the Chapman-Kolmogorov relation

s, x;u,B) =fp(s,x;t,dy)p(t,y; u, B). (5.1.3)

From the continuity assumption on p we obtain

ltimp(s,x; t,B) = Ig(x) = lintx s, x;t, B). (5.1.4)
—s s>

Definition 5.1.2. A function ¢(t,x), t € R,, x € R, is called the intensity
Sunction of the Markov process if g(t, x)dt + o(df) is the probability that
X(9) will undergo a random change in the infinitesimal interval
(t,¢ + dr) when X (f) = x. The conditional probability Q(¢, x, B) of X(¢)
taking a value in B at time (¢ + dr) given that X(¢f) = x and that X has
undergone a change in (1,7 + dr) is called the relative transition function
of the Markov process X (?) .

It is clear that ¢(t,x) > Oforall fand x, 0 < Q(t,x, B) < 1l forall ¢, x,
and B,  Q(t,x,dy) = 1 for all  and x, and Q(t,x,B) = 0 if x € B.

Definition 5.1.3. A Markov process {X(¢)} is called a purely discontinuous
Markov process if in an arbitrary time interval (¢,¢ + dt) the system X (1)
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undergoes a change with probability q(¢, x)d!r + o(df), remains un-
changed with probability 1 — g(¢,x)dt + o(dt), or undergoes more than
one change with probability o(dr).

Let X(f) be a purely discontinuous Markov process with transition
function p(s, x; ¢, B), intensity function g(¢, x), and relative transition func-
tion Q(4, x, B). Then it is clear that

P(s,x;t, B) = [1 — q(s,x)(t — )] Ig(x) + (t — 5)q(s,x)Q(s, x, B) + oft — s).
(5.1.5)

Theorem 5.1.4. (Feller 1940). The transition probability function p(s, x; t, B)
of a purely discontinuous Markov process X(f) satisfies the following
integrodifferential equations:

(i) Kolmogorov—Feller backward equation:

a—P(s—’{;;t’—B) = q(s,x)[ p(s,x; 1, B)
(5.1.6)
— [ Ps. 3, B)OAs, x, )]
(ii) Kolmogorov—Feller forward equation:
dp(s,x;t, B
% = — [, a0 »)ps, x; 1,d)
(5.1.7)

+ f q(t,)Q(t,y, B)pls, x; t, dy).

PrOOF. From Chapman-Kolmogorov equation (5.1.3) and relation (5.1.5),
we obtain:

pls,x;t, B) = fp(s,x;s + As,dy)p(s + As,y;t, B)
= fp(s + As,y; 1, B)[1 — q(s,x) As + o(As)} I, (x)

+ [ pls + Bs.y:1, B)lg(s, x) As + o{8s)]Qfs, x, &)
= [1 — q(s,x)As] p(s + As, x;1, B)
+ Asq(s, x)fp(s + As,y; t, BYO(s, x, dy) + o(As).

This gives
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5. Purely Discontinuous Markov Processes

&g[p(s + As,x;t, B) — p(s, x; t, B)]

= q(s,x)p(s + As,x;1,B) — q(s,x) fp(s + As,y; t, B)Q(s, x, dy)

o(As)
As
Letting As — O in this relation, we get the backward equation (5.1.6). Next

pls,x; 0 + At B) = [ pls, x; L, dy)p(t,y; t + At, B)
= 11 - a6 ) AdI5 (A5, x; 1, dy)
+ At [ 4(6,)0(,y, BYPls, x; 1,dy) + o{Ar)
= pls,x;,B) — &t | 5 362)Ps, x; 1, dy)

+ At f q(1,y)Q(t,y, B)p(s, x; t,dy) + o(Ar).

Subtracting the term p(s, x; ¢, B) on both sides, dividing by Ar throughout,
and taking limit as Ar — 0, we obtain the forward equation (5.1.7). O

+

Equation (5.1.6) [resp. equation (5.1.7)] is called the backward equation
(resp. the forward equation) since it involves the differentiation with respect
to the earlier time s (resp. the later time 7). Now we specialize the state space
S to an at most countable set. We take the power set & of S in place of
B(R). To fix our ideas, let us take S = {0,1,2,...} or S ={---,—1,0,
1,...}. Now the transition functions p and Q take the forms p(s, x; 1, ) and
Q(1, x,y), and equations (5.1.3), (5.1.5)«5.1.7) take the forms

pls, x;u,y) = zgsp(s,x;t,Z)p(t,Z; u,), (5.1.8)
P, x;t,y) = [1 = qls, x)(t — 5)l5,,,
+ (1 = 5)q(s, x)Qs, x,y) + ot = 5), (5.1.9)
a5, x5 03) = (5, ) (P53 1,))
- zgs s, x,2)pls, z; 1, y) (5.1.10)

d
3 P& X 6) = —q(6,y)pls, x; 1,y)
+ Es q(1,2)Qt,z,y) pls, x; 1, 2). (5.1.11)
zZ€E
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5.1. Kolmogorov-Feller Equations

In the following sections we mainly study the temporally homogeneous
case so that p(s, x; 1,y) = p(t — s, x,y), which gives the probability that the
system moves from state x to state y in a time period of length (1 — s). Set

_ —q(t’ x)’ X =y
alt, x.y) = {q(t,X)Q(t, Xy, X #y (5.112)

The quantities a(t, x,y) are called infinitesimal parameters, and the matrix
A() = [a(t,x,y)), x,y € S, is called the infinitesimal generator of X(f),
t > 0. Most of the time we restrict ourselves to the time-independent
functions ¢(x) = q(t, x) and Q(x,y) = Q(¢, x,y). Kolmogorov’s backward
and forward equations become

SPtxy) = Sa(epltzy), 130, (5.1.13)
V4

%p(t, xy) =3 px,alzy), ¢330, (5.1.14)
Z
respectively.

Examples 5.1.5

ExaMPLE 1. Find the probability py(s, x, f) that a system found in state x at
time s will undergo no change until time ¢.

The absence of any change in the position of the system during the
period (s,f) can occur in two mutually exclusive ways. Either the system
undergoes no change until time 7 and makes a transition in the time interval
(t,t + Ap), or there is no transition until time ¢ + At. Therefore

Pols,x, 1) = po(s, x, )[1 — po(t,x,t + AD] + py(s, x,t + Ar)
= pols, x,)[1 = {1 — q(t, x) At}] + py(s, x, ¢t + Ar) + o(A¢)

so that

+ J—
bRl E B ZPORD - (s ge,0) + A0

Letting Ar — O in this expression, we get

d
&pﬂ(sv X, t) = —pO(sa X, t)q(t) x)'

Solving this equation, we get py(s,x,#) = a exp{— f; q(u, x) du}. Noting
that py(#, x,7) = 1, we obtain @ = 1 and hence

pols,x, 1) = exp{— f; q(u,x)du}. (5.1.15)
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5. Purely Discontinuous Markov Processes

ExaMPLE 2. Let p,(s,x,1), n > 1, denote the probability that the system
found in state x at time s undergoes n transition in the time interval (s, #).
Find a recurrence relation connecting the probabilities p, (s, x,7), n > 1.

Observe that n transitions can occur in the time interval (s, 7) as follows.
First, for s < u < ¢, there is no change until time u [occurring with
probability py(s, x,u)] and a transition occurs in the time interval (u,u
+ Au) [with probability py(u, x,u + Au) = q(u, x) Au + o(Au)]. The jump,
whenever it occurs, takes the system to the state interval (y,y + Ay) C R
with probability Q(u, x,y + Ay) — Q(u, x,y). During the remainder of the
time (v + Au,?) the system undergoes (n — 1) transitions with probability
Pn—1(u + Au,y, t). Noting that ¥ and y vary continuously on (s,7) and R,
respectively, we then obtain that

pals, ) = [ [ pols,x,10a ()P (4., 0Qw, x, dy)
(5.1.16)

t
= fs Pols, x, )q(u, %) | & P13, 0Q(u, x, dy) du,
which is the recurrence relation we are looking for.

ExaMpPLE 3. Let X(¢), t > 0, be a homogeneous purely discontinuous
Markov process with time-independent intensity g(x) and relative transi-
tion Q(x,y). Show that the transition probability p(z, x,y) satisfies the
equation

Pt xy) = e @8, + ] q(x)e—"wf{zgx Qx, 2)plt = s, z,y)} ds.
(5.1.17)

Let t denote the random holding time until the first jump. Noting that
the intensity ¢(x) is independent of time, it follows from Example | that

B{t > 1} = P{no jump until f} = ™90 (5.1.18)
That is, t is exponentially distributed. Now
Pt x,y) = B{X(1) = y}
=EX() =y, t>H+RXO =y t<4g
= e 10§+ B{X() =y, t< 1. (5.1.19)
But

Bt < £, X(1) =y} = § Bit < 1,X(®) =z, X(1) =y}

For a system starting at x, the event {w: t(w) < £, X(t(w), w) = z, X(1,w)
= y} occurs if and only if a first transition occurs at some time s < 7 taking



5.2. Birth—-Death Processes

the system to state z, and then the system moves from state z to state y in
the remaining time (¢ — s). Therefore,

Bt < ,X(1) = y) = ](;' q(x)e~q(x)s{z§x O(x, z)p(t — s,z,y)}ds.

Substituting this in (5.1.19), we get the required integrodifferential equation
(5.1.17).

5.2. Birth-Death Processes (A)

Let X (), t > 0, be a purely discontinuous Markov process with state space
S =1{0,1,2,...} and infinitesimal generator A(f), which we take to be
independent of time.

Definition 5.2.1. Let b(x) and d(x), x € S, be nonnegative numbers with
d(0) = 0. A purely discontinuous homogeneous Markov process X(f)
with state space S is said to be a birth—death process with infinitesimal
birth rate b(x) and death rate d(x) if its infinitesimal generator is defined
by

b(x) fy=x+1
V) ify=x-1
0 ifly—x|>1

We interpret X(¢) as the size of the population at time . If 50) = 0,
there will be no birth, and the state O represents the extinction of the
population. By assuming 5(0) > 0, we can allow immigration to revive the
population.

Definition 5.2.2. A birth—death process X (¢) is called a pure birth process if
d(x) =0, for all x € S, and is called a pure death process if b(x) = 0,
forallx € S.

5.2.3. Backward and Forward Equations

From Kolmogorov equations (5.1.13) and (5.1.14) we obtain the corre-
sponding equations for the birth-death processes. For a birth-death process
the backward equations reduce to

p(tx,y) = dXx)plt,x — 1,y) — [6(x) + d(x)] p(t, x.y) + b(x)p(t, x + 1,)
P(1.0,y) = =6(0)p(1,0,y) + H0)p(1.1.y). x> 1,y >0, (52.2)



5. Purely Discontinuous Markov Processes
and the forward equations take the form
Ptxy) = by — Dplt,x,y — 1) — [H(y) + d(»)]p(t, x, )
+d(y + Dplt,x,y + 1), (5.2.3)
p(t,x,0) = —b(0)p(1,x,0) + d(1)p(t, x, 1), x20,y2>1

5.2.4. Pure Birth Processes

Let X(7) be a pure birth process. The system moves only to the right since
d(x) = Ofor all x > 0, and hence

plt,x,y) =0 forally < xandt > 0. (5.2.9)
The forward equations (5.2.3) reduce to
Pt,x,y) = by — Dp(t, x,y — 1) — by)plt, x, ). (5.2.5)
From (5.2.4) and (5.2.5) we get, under the assumption that 5(0) = 0,
p/(t7x9 .X) = _b(x)p(t’x’x)’

which with the obvious conditions p(0, x,y) = 8,,, ¥ > x, gives

P, x,x) = exp[—b(x)1]. (5.2.6)

[But this is also clear from Example 5.1.5 (1).] Since (5.2.5) is a linear
differential equation, it is also easy to see that

ot x,y) = p(0, x,y)e 2" + f(‘)’ b(y — Ve XN=9Ip(s x,y — 1)ds
=by-1f Lo O (s x,y — I)ds,  y > x. (5.2.7)
In particular, the following recursive formula is useful:
plt,x,x + 1) = b(x) j(;’ e =9 p(s x. x)ds

— b(x) j(;‘ e—(l—s)b(x+l)e—sb(x) ds

528
b(x)[e_’b(x) _ e—zb(x+l)] ) ( )
_ o+ 1) = 50) if b(x) # b(x + 1).

th(x)e~10) if B(x) = b(x + 1)

Better yet, we have the following theorem.
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5.2. Birth-Death Processes

Theorem 5.2.5. (Feller). Let X(¢), t > 0, be a pure birth process with distinct
birth rates b(x) and b(0) > 0. Then the forward equations have the unique
solution given by

S Blkoxy)e )y > x
pt,x,y) = Ci=x Z 7 (5.2.9)

0 y<x

where

B(k, x,y)

_ Bx)bx + 1) - By = 1)
[60) — 60T - -~ bk — 1) — BBk + 1) — BN - - [6(y) — BT
(5.2.10)

PrOOF. Let m(0, x,y) denote the Laplace transform of p(t, x,y), that is,
w0, x,y) = J5° e %p(t, x,y)dt, 8 > 0. First note that
S e dt = e Oplex ) + 8 [ e lple, x,y)ar
= —§,, + 0n(0, x, y). (5.2.11)
Using this in the forward equations (5.2.5), we obtain
=8, + 07(0,x,y) = b(y — Dm0, x,y — 1) — b(y}n(0,x,y),  (52.12)
so that
[0 + b0, x,y) = 8,, + b(y — D8, x,y — 1), y>0. (52.13)
First we note from (5.2.13) that
m0,x,y) =0 fory < x. (5.2.149)
Let x = y. Then from (5.2.14) we get

1
rr(0,x,x) = 0+—b(x)’

from which it follows that fory = x + 1,

&(x)
[0 + b(x)][6 + b(x + 1))

70, x,x + 1) =
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5. Purely Discontinuous Markov Processes

Proceeding successively, we obtain that

B Bx)b(x + 1)+ -b(y — 1)
0.%0) = G heB + bx + 1] - B+ B0 T

(5.2.15)

Resolving the RHS of (5.2.15) into partial fractions, we get

Y
w050 = 2 G Bus) = lim 10+ B0

This gives (5.2.10). But the inverse Laplace transform of [0 + b(u)]™" is
given by exp[—b(u)], ¢ > 0, and hence we obtain (5.2.9). This completes
the proof. (]

While introducing a jump process we remarked that we do not want to
allow the system to make infinite number of jumps in a finite time period.
To clarify the situation, let us consider a deterministic birth process in
which the birth rate (per person) is proportional to the size of the
population. (Treat the population size as a continuous variable.) Now,
b(x) = bx for some constant b > 0. Therefore, the population of size x
increases by an amount bx?As in time Ar. Hence the growth of the
population is given by (dx/df) = bx?, say, with initial condition x(0) = 1.
Then x(t) = 1/(1 — bt) and consequently,

li ) = oo.
lg{}bX() o0

That is, the population size explodes in a finite time period. This type of
growth of a population is called divergent or explosive. This suggests that a
stochastic birth process might become explosive in some sense if the
infinitesimal birth rates &(x) were not properly controlled. That is, with a
positive probability it might happen that there were an infinite number of
transitions in a finite time. Thus the probability that only a finite number
of transitions occur during time ¢ is

> pxy) <1,
y2>x

and 1 — X p(1, x,y) is the probability of explosion. Therefore, it becomes
important to find condition(s) under which the pure birth process will be
nonexplosive. Toward this we have the following theorem.
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5.2. Birth-Death Processes

Theorem 52.6. (Feller-Lundberg). Let X(¢), t > 0, be a pure birth process
satisfying the hypotheses of Theorem 5.2.5. Then, Zp(t,x,y) = 1 if and
only if

L, r

b(x) = b(x + 1)
If (5.2.16) holds, the nth jump time W, — oo with probability one, as
n— .

.= o0. (5.2.16)

ProOF. Define S(t,x,y) = Z)_op(t,x,u). From (52.4), S(t,x,y)
= Z)_ plt, x,u). Using the forward equations (5.2.5), we obtain

S'(t,x,y) = p'(t,x,u)

u

= ugx {b(u — Dp(t,x,u — 1) — bw)p(t, x, u)}

= —b(y)p(t, x, ). (5.2.17)

Let 0(6, x, y) denote the Laplace transform of S(z, x, y). Noting that S(0, x, y)
= 1, it follows from (5.2.17) that

00(0,x,y) — 1 = —b(y)n(8, x,y). (5.2.18)
But from the expression (5.2.15) for m(#, x, y) we see that

o 17" . ]
.,g,[Hb_(“_)] lfzb(—u)<oo
, 1
0 1f2b—(u—)=oo

Hence: (i) lim,_,  80(0, x,y) < 1 if the series Euh[b(u)] < o, or (ii)
lim,_, 0000, x,y) = 1 if S 6] = co. Consequently, X, p(1,x, y?
= lim,_,, S(#,x,y) < 1 or = 1| accordingly as the series 2u>x[b(u)]_
converges or diverges. This proves the first part of the theorem.

Let X(0) = x and W, be the nth jump time W, = t; + -+ - + t,,, where
t, is the interarrival time between (x + k — 1) and (x + k)th births. Since
the times t, are independent and exponentially distributed [see Example
5.1.5 (i) and establish this), the characteristic function y,(8) of W, is

O [1- bi—‘;]",

u=x

X

< M=

lim b(y)m(8,x,y) =
y—o0
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5. Purely Discontinuous Markov Processes

and clearly lim,_, ¥,(0) = 0 if E[b(u)]_l = oo. Therefore, as n — oo,
W, — oo AS. This completes the proof. d

Theorem 5.2.7. (Feller). The solution (5.2.9)5.2.10) of the forward equations
of the pure birth process also solves the backward equations
Pt x,y) = b(x)p(t,x + 1,y) — b(x)p(t, x, ), x>0 (52.19)

This solution, denoted by q(t, x,y), is minimal in the sense that, if p(t, x, y)
is any nonnegative solution of (5.2.19), then

q(t,x,y) < plt,x,y). (5.2.20)

Moreover, (5.2.9)45.2.10) solves uniquely both the forward and backward
equations if 2,‘21,,[b(u)]_l = oo0.

ProOF. Proceeding as we did in establishing (5.2.13), we obtain from the
backward equations (5.2.19) that

[6 + B(x)}n(8, x,y) = &, + B(x)m(0,x + 1,y), x> 0. (5221)

Because of (5.2.4) we set 7(0,x,y) = 0 = Q(8, x,y), for y < x, where Q is
the Laplace transform of gq. Then, from (5.2.15), =0, x,y) = (6, x,y), for
y 2 x, and consequently g(t,x,y) = p(t,x,y) solves the backward equa-
tions (5.2.19).

Next, treating (5.2.19) as a linear differential equation in p(t, x,y), we
obtain

ot x,y) = e_b(")'Sxy + b(x) j;)l e M p(s x + 1,y)ds. (5.2.22)

Now, (5.2.20) is obvious for all x > y. If x = y, then from (5.2.22) and
(5.2.6) we see that p(t,x,x) > e %9 = 4(1,x,x). From this and (5.2.22),
and since q(¢, x, y) satisfies (5.2.22), we obtain

o, x — 1,x) > b(x — l)j;’ e =9 g (s, x, x) ds

= q(t,x — 1, x).

Proceeding recursively, it follows that (5.2.20) holds for all x > 0.
Let Z[b(u)] ! = oo. Then Z¢(1, x,y) = 1 by the Feller—Lundberg theo-
rem, and it follows from (5.2.20) that

S ptxy) > 3 qltxy) > 1.
y>0 y>0
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Therefore, =,50p(1,x,) =1 and consequently q(t,x,y) = p(t,x,y) for
every y. This completes the proof. O

5.2.8. Linear Birth Process

A pure birth process is called a linear birth process if the birth rates b(x) are
given by b(x) = bx, for all x > 0 and some positive constant b. Linear
birth processes are also called simple birth processes or Furry—Yule processes.
Note that

Applying Theorem 5.2.7, the transition probabilities p(t, x, y) are uniquely
determined by (5.2.9)-(5.2.10). But p(t, x,y) can also be easily determined
by treating the forward equation as a linear differential equation. From
(5.2.8),

ptx,x + 1) = xe (1 — ™). (5.2.23)
We claim that, for all y > x, we have

At x,y) = (i )e‘b”(l ety (52.24)

- X

From (5.2.6) and (5.2.23) it follows that (5.2.24) holds for y = x and
y = x + 1. To proceed inductively, let (5.2.24) hold for y = z > x. Then
from (5.2.7) we obtain

o, x,z+ 1) = bz j; e DNtV (g x 2)ds

= bz fol e—b(t—s)(z+l)(z - )]C)e—b:x(l _ e—bs)z—xds

z —

z—1\ _ t —x
- bz(z - x)e b:(z+1)j(‘) PX(eh — 1) % ds

_ l)z-—x+l t

__z-Dt e—bx(z+|)(eb’
(z—x)N(— 1) z—-x+1)

= (z + ; _ x)e_b‘x(l - e-—b[)2+l—x.

Hence (5.2.24) holds for all y > x.

0
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5.2.9. Pure Death Process
Let X (¢) be a pure death process. Since the system moves only to the left,
t,x,y) =0 forally > x. (5.2.25)
From (5.2.3) the forward equations for a pure death process are
Pt x,x) = —d(x)p(t, x, x)

Pxy) = —d(y)plt,x,y) +d(y + Dplt,x,y +1), y<x—1L
(5.2.26)

From (5.2.26) one obtains, as in the case of pure birth process, that
p(’,xrx) = e—d(X)l

Atx,y) =d(y + l)j;’ e MO p(s x.y + Dds, y<x— 1

(5.2.27)
In particular,
plt,x,x — 1)
_ ‘ﬁ)x_)__da[e-td(x) - e-td(x-l)] if d(x) # d(x — l).
( 1d(x)e ™4™ if dx) = d(x — 1)

(5.2.28)

If d(x) = dx for a constant d > 0, the process X(?) is called a simple or
linear death process. In this case it is easy to see that, for 0 < y < x,

plt,x,y) = (;)e'd’y (1 — e ¥)*™, (5.2.29)

5.2.10. Poisson Process

We give a third definition of a Poisson process here. This can easily be seen
to be equivalent to the earlier ones (see Definitions 4.1.2 and 4.1.3). A pure
birth process X () is called a Poisson process if the birth rate is given by

bx) =b>0,x > 0.
Let X(z) be a Poisson process. As a special type of birth process, X (f)
satisfies equation (5.2.4), and (5.2.6) becomes

p,x,x) =e%, >0 (5.2.30)

The forward equations reduce to

P, x,y) = bp(t,x,y — 1) — bp(1,x,y), y#0,t2>0,
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and consequently

t
o, x,y) = e"”sxy + bj(') e N p(s, x,y — 1) ds, t > 0.

In particular, we have from (5.2.4) and (5.2.30) that

x,x+1) = bj(')’ e M= g=bs g — pre b1,

As in the simple-birth-process case, we can now show by induction that, for
0<x<yandt > 0,

e by’

G (5.2.31)

plt,x,y) =

Relations (5.2.4) and (5.2.31) yield spatial homogeneity.
Now let 0 < s < ¢ and n be a positive integer. Then:

PX() — X(s) = n} = 3 PIX(s) = i X() =X () = n)
= z P{X(s) = i} P{X() = i + n|X(s) = i}
= 51_‘, P{X(s) = i}p(t — 5,0,n)
(from (5.2.4) and (5.2.17))
= p(t — 5,0,n)
= e Nt — 5)]"/nt  (by (5.2.31)). (5.2.32)
Let 0< o< <--<t,and xj,...,x, €S. We claim that the

increments X (1) — X(%), ..., X(z,) — X(¢,_,) are independent. [The sta-
tionarity of these increments follows from (5.2.32).]

P{X(tl) - X(’O) = X "'X(tn) - X(‘n—l) = xn}

= ng P{X (1) = x,X(1) — X (%) = x1, ..., X(t,) — X(t,_1) = x,)
= xés P{X(fo) = x}p(tl - tO’O’xl) oo 'p(tn - tn—l’o’xn) (Why?)
= P(tl - tO’O’xl)' : 'p(tn - tn—l’ov-xn)

= P{X(4,) — X(1p) = x;}--- P{X(t,) — X(1,,) = x,,}.
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5. Purely Discontinuous Markov Processes
5.3. Birth-Death Processes (B)

In Section 5.2 we defined the birth—death processes by specifying the
infinitesimal rates and solving the Kolmogorov equations for the transition
probabilities. In modeling several biological and physical processes it is also
customary to formulate the corresponding differential equation for p(t, x)
= P{X({) = x} and work with this equation. This section presents an
introduction to this variant of the above technique.

Let X(7) be a stochastic process on the state space S = {0,1,2,...}.
Under the following assumptions, X (¢) becomes a birth—death process:

1. Let X(¢) = x. The probability of transition x = x + 1 in the interval
(1,1t + At) is b(x)At + o(Ar).

2. The probability of transition x = x — 1 in (1,1 + At) is d(x)At + o(Ar).

3. The probability of transition x — y with |y — x| > 1 is o(Ar).

4. The probability of no change is 1 — [b(x) + d(x)] At + o A?).

State 0 will be an absorbing state. Consider p(t + At,x) = P{X(t + Ar)
= x}. The event {X (¢t + Af) = x} occurs in the following mutually exclusive
ways: (a) there were x — 1 persons in the population at time ¢ and a birth
occurs in the interval (¢,¢ + Ar) with probability b(x — 1)At + o(Ar); (b)
there were already x persons at time ¢ and no change occurs in (¢, + Ar)
with probability 1 — [b(x) + d(x)] At + o(Af); (c) there were x + 1 persons
at time ¢, with one death occurring in (¢, + Ar) with probability d(x + 1) As
+ o(Af), or (d) more than one change occurs in (¢, + Af) with probability
o(Ar). Thus

Pt + AL x) = b(x — Dp(t,x — 1)Ar + {1 — [b(x) + d(x)] Ar} p(t, x)
+ d(x + )p(t, x + 1) At + o(Ar). (5.3.1)

Transforming p(t, x) to the LHS, dividing throughout by Af and taking limit
as At — 0, we obtain, for x > 1,

p(t,x) = b(x — Dp(t,x — 1) — [b(x) + d(x)]p(t,x) + d(x + 1)p(t,x + 1).

(5.3.2)
For x =0,
p(,0) = d(1)p(s,1), (5.3.3)
if O is an absorbing state; otherwise
p'(1,0) = —b(0)p(1,0) + d(1)p(1. 1). (53.4)

120



5.3. Birth-Death Processes (B)
Let X(0) = x,. Then the initial condition used to solve these equations is

pO,x) =8, . (5.3.5)

Example 53.1 Feller-Arley Process. A birth-death process is called a
Feller—Arley process if b(x) = bx and d(x) = dx, where b > 0,d > 0. It is
not difficult to solve equation (5.3.2) in this case. To proceed further one
uses either the probability generating function or the Laplace transform.
We use the former. Let

gt.§) = gop(t,x)ﬁ with g(0,¢) = §*°. (5.3.6)
Then:
dg x—
% x§1 xp(t, x)e 1. (53.7)

From (5.3.2) and (5.3.7), we obtain

g ., 98 _

3~ E-DE—d)z =0 (5:38)
Equation (5.3.8) is a special case of the more general linear equation

n 3
> hk(g,,...,g,,,n)ggl =R, ....£,1), (5.3.9)
k=1 k

subject to suitable boundary conditions. To solve equation (5.3.9), one first
forms the auxiliary equations

dh—f‘=---=%—§'=% (5.3.10)
and finds the n independent solutions of (5.3.10):
& (&, ...,¢&,,m) = constant, 1<k<n (5.3.11)
Then the general solution of (5.3.9) is given by
ws,....8,) =0. (5.3.12)
Therefore, for the Feller-Arley process, equations (5.3.10) become
T e (53.13)
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5. Purely Discontinuous Markov Processes
Fromdg =0, g = ¢,. From dt = —d¢/(¢ — 1) (bt — d), ¢, = €94
X (b¢ — d)/(¢ — 1). Eliminating one of the constants ¢; and c,, we obtain
bt —d _
g(§) = tlf[éje @ ”)’], (53.14)

where the function ¢ is determined from g(0,¢) = £*. Now Y (a) =
[(d - a)/(b — a)]™, and consequently

dle® " — 1] + ¢[b — a0
[be=9" — d] — bg[eb~" — 1]

To simplify expression (5.3.15), define functions @ = aff) and 8 = B(¢) by

g(t¢) = (5.3.15)

g _ E _ e(b—d)l_ 1
d b pelb-ax _ g
Using (5.3.16) in (5.3.15), we get

g(t,¢) = {a i (i - ;ﬁ— B)g}xo (53.17)

Based on the geometric distribution (5.3.17), we can draw some simple
properties of a Feller—Arley process.

(5.3.16)

Proposition 53.2. Let X(7), t > 0, be a Feller-Arley process with initial
population size X(0) = 1. Then

! bt/(1 + br) ifb=d
0) = .
® A.0) [de®=d) — 1)/[be® " —d]  ifb#d
x=1 x+1 : —
) Atx) = ®G)*'/(1 + br) ) ifb=d L
A-a(-8)B*"' ifb+#d
1 if b=d
E[X(0) = .
(s o) {e(b_d)' if b#d
0 ifb<d
lim E[X()] = { 1 ifb=d.
o ifb>d
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5.3. Birth—Death Processes (B)

2bt ifb=d
(iv) var[X(1)] = Z_t j Qo-Difb-dX _ 1} ifp A g

(v) Probability of eventual extinction of the population is

. [ ith<d
Jim p(:,0) = {d/b itb>d

Examples 5.3.3

ExaMpLE 1. Radioactive Transformations. In the theory of radioactive
transformations a basic assumption is that the radioactive atoms are
unstable and disintegrate stochastically (Rutherford et al. 1930). These
disintegrations lead to atoms that are chemically and physically different
from the original atom. Each of these new atoms is also unstable. By the
emission of radioactive particles, these new atoms pass through a number
of transformations on physical states {0,1,2,...,N}. Let b(k) denote the
decay rate from state k to state kK + 1. We can describe the radioactive
transformation as a pure birth process. Denoting by p(t, k) the probability
that the system is in state k& at time ¢ and assuming that in the interval
(¢,¢ + Af) the probability of an atom in state k transforming to state & + 1
is b(k) At + o(Af), we obtain

plt + At,k) = bk — Dp(t,k — 1) At + [1 — b(k) Ad] p(t, k).

From this we get the system of equations

2.p(1,0) = ~b(0)p(1,0)
(5.3.18)

%p(;,k) = bk — 1)plt, k — 1) — bk)plt, k),

for 1 < k < N, where B(N) = 0. System (5.3.18) is easy to solve and is left
as an exercise.

ExaMPLE 2. Blood Clotting. The kinetic theory of chemical reactions is the
study of the time rates of chemical reactions and of the factors that
influence these rates. In the stochastic theory of chemical kinetics one is
interested in the probability distribution of the concentrations. Below we
model the enzyme reaction of blood clotting as a pure birth process. In
closing a cut, the gelation process of blood clotting is caused by an enzyme

123



5. Purely Discontinuous Markov Processes

known as fibrin, which is formed from the proenzyme fibrinogen. In the
presence of the agent thrombin the conversion occurs at a faster rate. Even
though blood clotting occurs as a waterfall sequence and could be modeled
as in the case of radioactive transformation, we prescribe it as follows.
Consider a large number of samples, each of which initially containing only
one fibrin molecule and a very large number of fibrinogen molecules. Let
X (¢) be the concentration (the number of molecules per unit or constant
volume) of the enzyme system at time ¢. Let b be the reaction rate in each
sample. Then the probability that a conversion occurs in the interval
(1,1 + Af) is bAt + o(Af). Let there be k fibrin molecules in the system at
time ¢. Then it is easy to see that

p'(t,k) = —bkp(t,k) + bk — Dp(t,k — 1),
PO, k) = &,,, if X(0) = x,.

Successively solving these equations, we get

XO b l
This is a negative binomial-type distribution. Hence
E[X()] = xoeb', and var(X(¢)) = xoeb'(eb' —1).

EXAMPLE 3. Unimolecular Reaction. An irreversible conversion of a reactant
p into a product 7 is called an unimolecular reaction p %> =, where d > 0
is the reaction rate. Let X(¢) denote the concentration (the number of
molecules per unit volume) of the reactant p at time . Set X (0) = ny > 0.
Since the reaction is irreversible, X(¢) is a death process. The basic
assumptions on the unimolecular reaction are: (1) the probability of the
reverse reaction # — p is zero, (2) the probability of more than one
conversion in (t,7 + Af) is o(Af), and (3) the probability of a single
conversion of n molecules in (1,7 + Af), when it is known that there were
(n — ny) conversions in the (0,¢], is dnAr + o(Af). Then the probabilities
p(t,n) = P{X(¢) = n}, 0 < n < ny, clearly satisfy

p(t,n) =dn+ D)p(t,x + 1) — dnp(t,n).

Solving this system recursively with the initial condition p(0,n) = Spny We
obtain

n -
pt,n) = ( no)e_"od’(ed' — ) 0<n<n.
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5.3. Birth-Death Processes (B)

[Compare this with equation (5.2.29).] Now

E[X()] = nge® and  var(X(2)) = nge ¥(1 — e %)

ExAMPLE 4. A Stochastic Epidemic. Consider a homogeneously mixing
population of susceptibles. After a susceptible contracts an infectious
disease, the disease develops within the infected person for a period of time
called the latent period. Following the latent period, the infective discharges
the infectious matter during an infectious period, thereby spreading the
disease. After an infective shows the symptoms of disease he is removed
from the population until he recovers or dies. The time period between the
contraction of the infection and the appearance of symptoms is called the
incubation period. For a detailed treatment of stochastic theory of epidem-
ics, the students should consult Bailey (1957, 1963), Bartlett (1960), and
Bharucha-Reid (1957, 1960).

Consider a homogeneously mixing population with a mild infection of
the upper respiratory tract where the time period between the infection of
any susceptible and his removal from the population is sufficiently long. Let
the total size of the population be (n + 1) such that there was one infective
at time 0. Let X(¢) denote the number of susceptibles at time ¢. Then
X(0) = n, and X(¢) is clearly a pure death process with a finite number of
states. Let us assume that the probability of one new infection in the
interval (1,1 + Af) is dx(n — x + 1) Az + o(Ar) when it is known that there
are x susceptibles at time . Here 4 is the contact rate. If p(t,x)
= P{X(t) = x}, then

pt,x) = (x+ D(n—x)plt,x + 1) — x(n — x + 1)p(1, x),
0<x<n—1,
p(t,ny = —np(t,n),  p(0,x) = &,,. (5.3.19)

The death process involved in here is a nonlinear process. A method of
solving Equations (5.3.19) using Laplace transform can be found in Bailey
(1957, 1963).

ExaMPLE 5. Some nonlinear death equations are not so difficult to solve. As
an example, consider the following equations for a death process

p(t,x) =d(x + 1)2p(t,x + 1) — dx?plt, x), 0<x<n
p'(t,n) = —dn®p(t,n),
p@,0) =dp(t,1), pO,x) =4,,. (5.3.20)
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5. Purely Discontinuous Markov Processes

From the second equation and the initial condition in (5.3.20), we obtain
pt,n) = e™¥*!_ Using this in the equation for p(t,n — 1), we get
p(t,n — 1) = dnte™ " — d(n — l)zp(t,n - 1).
This equation, with p(0,n — 1) = §,_, , = 0, gives
pt,n— 1) = -—dnz {e_d"z' - e_d(”")z’}.
d(n — 1) — dn?
We claim that

,

n—i / 12
_— H 4]~2cn_ie—d(n—x) 11
plt,x) = e+ D X (53.21)
=0 Al - (- i)Y
Jj=x
for 1 € x < n, where
n—i
n—x—1 A_H | 41'2(,‘,,_,-
=1 and ¢ =- > . (5322)

=0 - =)

From (53.20), p'(t,x — 1) = dxp(t,x) — d(x — 1)*p(t,x — 1). From
(5.3.21) and (5.3.22), it follows that

plt,x — 1) +dx — l)zp(t,x -1)

n—i .
moxct uy T1 @267 (5509

— 2 —dx?t 2 Jj=x+1
= dx“c,e + dx 2 prar

=0 Il - =)

It is clear that p(t, x — 1) will be of the form

n—x+1

tx—1)= 3 a,edni
i=0
so that
pPit,x — 1) +d(x— 1)2p(t,x -1

n—x+1

= 2 amdlx - )% — (n - i)*Je~d=),
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5.3. Birth-Death Processes (B)

Comparing this with equation (5.3.23), we have for i = n — x + 1 that
a,_dl(x— 1 —(x —1)*)] =0and fori = n — x,
a, d[(x - )2 — x2] = dx’c,,  so that
o = dx’c,
*dx - 1)? - )
n—i
Cp—i ~_1_.[ ‘#2
a = J=x+l 0<i<n—x

n—i n—i—1 ’

s dlj*— (n— i)’

Now it is easy to see that we obtain (5.3.21) and (5.3.22) for (x — 1), thereby
establishing them by induction in general. Therefore, the solution of (5.3.20)
is given by

pt,n) = et

n—i
_d(n—i)? .2
nex1 Cu€ T T

plt, x) = cxe_d"z’ + 2 — j=x+12 R 0<x<n,
=0 TII [j2—(n—i)]
Jj=x

w2 e Vil /- 1Y) TL
p0)=1-—¢ e — 2 n—i—1 =1,
i=0 'Hl %= (n - i)*]
=

where ¢, is given by (5.3.22).

ExXAMPLE 6. A Nonhomogeneous Birth—Death Process. Certain physical
processes such as cascade showers in cosmic-ray theory and telephone
traffic are modeled along birth—death processes with time-dependent infin-
itesimal rates. Let us consider the Feller—Arley process with the rates b and
d depending on time . In place of equation (5.3.8) we obtain

% — - DB - a0V,

8(0,§) = £™. (5.3.24)
The corresponding auxiliary equations are
dt d§ d
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5. Purely Discontinuous Markov Processes

From the first equality in (5.3.25), we obtain (d¢/dr) = (¢ — 1)(d — bt). Set
n = 1/(¢ — 1). Then

M — b(o) ~ [d(o) ~ Bl (5:3.26)

This is a linear equation in n and
ne®t) = fo ’ b(s)e™ ds +
where a(f) = fg [d(s) — b(s)]ds. Therefore, transforming to the variable ¢

and noting that g = constant from (5.3.25), the general solution of (5.3.24)
is

2(1.8) = W — 1) — [ b()e ) ds). (5.3.27)

But £% =g(0,6) = (¢ —17'). Set £=1+¢"'. Then y@) =
[1+ ¢']*. Hence

gE) = (1 +[O¢ -1 - fo ") ds] Y. (5.3.28)

It is not difficult to see, from (5.3.28), that

o= 3 (2)(0F T8 armor

im0 VY *o
X[1 = f(0) — (o)),
p(1,0) = [f()T™, (53.29)
where
1 £2(0)
f(’)=1—m, h(t)=l—ea(—1)+—p(l),

F() = [ bls)e s

But it can be easily seen that
t
O+ Fi) =1+ fo d(s)e) ds.

Using this, we see that the probability of extinction at time ¢ is given by

26,0) = { [ e as /11 + [ de ds]}xo
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5.3. Birth-Death Processes (B)

Since lim,_,, fg d(s)e® ds = oo, the eventual extinction is almost sure.

EXAMPLE 7. A Nonlinear Birth-Death Process in Carcinogenesis. In this
example we consider the growth of tumor as a birth-death process. Let a
tumor be initiated by carcinogenic action with normal cell. A birth in the
population of cancer cells occurs either as the mutation of the normal cell
or as the reproduction by the existing cancer cells. A death of a tumor cell
occurs as a combination of nonimmunological and immunological ele-
ments. Death due to nonimmunological element occurs at a linear rate,
whereas the immunological feedback yields a nonlinear rate. Therefore, the
cumulative death rate is actually a quadratic rate, at least as a first
approximation. Let X (¢) denote the number of tumor cells at time ¢. Under
the condition that there are x cells at time ¢, the probability of a: (1) birth
in (1,1 + Af) due to mutation is m(¢t) At + o(At), (2) birth in (¢, + Atf) due to
reproduction is bx At + o(At), (3) death in (¢, + At) due to a nonimmuno-
logical element is dx At + o(A?), (4) death in (,¢ + Ar) due to immunologi-
cal response is kx?At + o(Af), and (5) no change in (1,7 + Ar) is 1
— [m(r) + bx + dx + kx*] At + oAt), where b,d, k >0, b —d > k, and
m(t) > Oforall 7. Let X(0) = 1. Now the forward equation takes the form,
abusing the notation and taking m(f) = 0,

p(t,x) = b(x — Dp(t,x — 1) — (b + d + kx)xp(t, x)
+ [d + k(x + D](x + Dp(t,x + 1), x> 1, (5.3.30)
p(,0) = (d + k)p(z,1).

Several conventional linearization techniques to solve (5.3.30) fail in the
sense that they lead to contradictory results. We present here a method due
to Dubin (1976). The idea is to linearize the quadratic term in death rate as
x2 = xX(7) [cf. (5.3.32)]. This would linearize the system at the expense of
homogeneity. Example 6 now comes to our rescue. Let y(f) denote the
solution of equation y'(t) = (b — d — ky)y, which describes the determinis-
tic growth of the tumor. Then

(b —d)
1= . 5.3.31
) (b — d — k)e =4 4 k] (5:331)
Now we replace the death rate
dx + kx> by  dx + kyf)x. (5.3.32)

Now appealing to Example 6, we obtain
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_('f,_ k(b —d)
0 fo{d b+[(b—ar—k)e—("—‘”wk]}dy

_ [(6 — d - k)e 9" 1 k]
- log{ ®—-d) }

so that

F() = fol b(s)e? ds = (b — d)”" {bk, + b(b_—__d;k)[l _ e—(b—d»]}

b
Hence
g ~(b—d)
gté) =1+ (b—d){(b d gk)_el K bk
g -1
_ b(bb —dd k)[l _ e—(b—d)tl}

The mean number m(f) of cancer cells is

- b—-d)b—d—k)e b= 4 k17"
=1

m(f) = g—?

The variance is given by

_ [ 3z _fag\’
70 =[-8} .,
_2k[b-d)y+ 1]+ (b —d)b+d+k)—(b+d)(b—d—k)e )
(6 — d — k)=~ + k2P ‘

Also
A1,0) =1 —{(b— d)[k(b — d)(bt + 1)
+(b—d—k)b-de ® .
It is easy to see that

. b—d
fim ) = 5

lim o2(f) = oo
1—00

lim p(t,0) = 1.
11—



5.4. Recurrence and Ergodic Properties

5.4. Recurrence and Ergodic Properties

In this section, which parallels Sections 3.5 and 3.6, we discuss the notions
of recurrence, transience, and stationary distributions associated with a
purely discontinuous homogeneous Markov process. Let X(¢), t > 0, be a
purely discontinuous Markov process with an at most countable state space
S. Suppose that the Markov system is starting from a nonabsorbing state x.
Denoting the first jump time (from x) by t,, define the first return time to x
by

t, () = inf{t > t;(w): X(t,w) = x}
and the first entrance time from x into y, x # y, by
ty (w) = inf{r > t;(w): X (1,0) = y}.

Note that t, = t,,. Set f*(x,y) = P{t,, < oo}.

Definition 5.4.1.

1. A state x is called recurrent if f*(x,x) = 1 and transient if f*(x,x) < 1.
If all the states in S are recurrent (resp. transient), the process X is called
a recurrent (resp. transient) process.

2. Let w(x) = E[t,] denote the mean recurrence time for the state x. A
nonabsorbing state x is called positive recurrent (resp. null recurrent) if
u(x) < oo[resp. u(x) = oo]. The process X () is called a positive recur-
rent process (resp. null recurrent process) if all the states in S are positive
recurrent (resp. null recurrent).

3. A class C of states is called closed if p(t,x,y) = 0 for every x € C and
every y & C and for all # > 0. A closed set C is called minimal if it
contains no closed proper subclass. The process X (¢) is called irreducible

if f*(x,y) > Oforallx,y € S.

Throughout this section the following assumptions hold. The process
X(#), t > 0, is a purely discontinuous homogeneous Markov process with
an at most countable state space S, intensity function g(x), jump probabil-
ities Q(x,y), transition probabilities p(t, x,y), and infinitesimal generator
A = [a(x,y)], (x,y € §), such that ¢ = sup,csq(x) < o0 and lim,_,p(,
x,y) = 8,,. Let Q denote the stochastic matrix of jump probabilities
Q(x,y). By Y,,n > 0, we denote the MC with Q = [Q(x,y)] as its
transition probability matrix. Consider the matrix M defined by M
= (I + g~ 'A), where I is the identity matrix and ¢ = sup, ¢ g¢(x). Denote
the elements of M and M” by p(x,y) and p"(x,y) respectively, where
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M® = /,n > 1. First we note that, from Example 5.1.5 (3) and the
Kolmogorov backward equation (5.1.14), that

axy) = gAtx i and  g(x) = —a(nx) = 3 a(x). (54.1)
y#FEX

From this we obtain that p(x,y) > 0 and 2 p(x,y) = 1, x,y € S. Let
Z,,n >0, denote the MC associated with the stochastic matrix M
[ p(x,y)]. The chains Y = {Y,} and Z = {Z,} are called the embedded Q
-chain and the embedded A -chain, respectively. They are generally called

embedded chains. Now define
p (t x,p) = e ¥ 2 q"tnpn(x )’)

n20

t>0,x,y €S (542)

Using this in the integrodifferential equation (5.1.17), it is not difficult to see
that p* (¢, x, y) solves that equation. Also

qn’n
2 P*(t,x»)’) = e_ql 2 P"(X,)’) = e_q’ - = l.

]
yES n<0 yES a<o

Therefore, it follows, from the Kolmogorov—Feller theorem, that p*(z, x, y)
= p(t,x,y),t > 0, x, y € S, (we omitted several details here). The basic
assumptions following Definition 5.4.1 are not repeated in the statements of
our theorems; they are assumed to hold throughout this section.

Theorem 54.2. (i) The limit lim,_, , p(t, x, x) exists for all x € S.

(i) A state x is transient if and only if f5° p(t,x, x)dt < o0.

Proor. (i) Since p(x,x) > 0 for all x € S, the embedded A-chain Z is an
aperiodic chain. Then it follows from Theorem 3.6.4 (i)(ii) that p"(x, x)
— A(x), say. Then using (5.4.2) for p(1, x, y), we obtain

p(zxx)~x(x)-e'q'2" C("(x,%) — Ax))
i (5.4.3)
vt S T () — M),

n2N+1
We claim that lim,_, , p(t, x,x) = A(x). To see this, fix an € > 0 arbitrarily.
Since p"(x,x) — A(x), choose a sufficiently large N such that |p"(x, x)
— AMx)| < efor all n > N. Therefore, the absolute value of the second term
in the RHS of (5.4.3) can be made arbitrarily small (for all 1). As t > oo,
the first term goes to 0. This proves our claim and part (i) of the theorem.
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(ii) Let F,(¢) be the distribution function of the first entrance time t,, that

is, F, (1) = P{t,, < #}. Then it follows as in Example 5.1.5 (3) that, for

t
pt, x,y) = e"’(")'b‘xy + j;) Pt — 5,99 dFE . (5.4.4)
Let 7(#,x,y) and ¢(, x,y) be the Laplace and Laplace-Stieltjes trans-
forms of p(t, x, y) and E,(¢), respectively. From (5.4.4) it follows that
70, x,x) = [0+ g} '[1 —¢@.x,0]"',  6>0 (545)

An Abelian theorem for Laplace-Stieltjes transforms states that if Iiy(t)
is of bounded variation in every finite interval, the transform ¢(8,x,y) is
convergent and lim,_, ,, F, (1) exists, then

lim (8, x,y) = lim E,(1). (5.4.6)
If x is transient, then, from (5.4.6) and lim,_, . F,, () = f*(x,x) < 1,
;1_1310 (0, x, x) = 'l_lfg E.x(n <1

Now it follows from (5.4.5) that #(#, x, x) approaches a finite limit as
6 | 0. Therefore, fy° p(t, x,x) < oo, as follows from an Abelian theorem
for Laplace transforms, which states that if p(t,x,x) > 0 for t > 0 and
(0, x, x) converges for § > 0, then

. _ o0
lim 7(6,x,%) = [* plt,x,x)a. (5.4.7)

To see the converse, let f3° p(t, x,x)dr < oo. Then another part of the
Abelian theorem states that 7(#, x, x) is uniformly convergent for § > 0,
and (5.4.7) holds. Therefore, it follows from (5.4.5) that £, ()
= lim,_,, F,, () < 1 so that x is a transient state. This completes the proof.

O

Theorem 54.3. (i) If x is a positive recurrent state, then lim,_,  p(t, x, x)
= [g()u(x)]" > 0, where p(x) is the mean recurrence time.

(ii) If x is a null recurrent state, then ,lim pt,x,x) = 0.
—>00

PrROOF. Let x be a recurrent state. Then ¢(d,x,x) > 1 as § | 0. From
Theorem 5.4.2, lim,_, , p(t, x, x) exists and hence from the Abelian theorem
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. ' 1 4
Jim, A0, x,%) = i (6,52 = oo W TG

_ -1 li [i‘p(g )]-I

" q(x) 8.0 L 40 ¥\% 5 *

- lim
q(x) 6i0

_ {[Q(X)ﬂ(x)]_l if p(x) = E [t,] < oo
0 if p(x) = oo

[ e van o, 0> 0

This proves both parts (i) and (ii). a

Theorem 5.4.4. Let {Y,} and{Z,}, n > 0, be the embedded chains associated
with the purely discontinuous Markov process X(t), t > 0. Then:

(1) If x is transient, recurrent, positive recurrent, or null recurrent for one
of the processes X(1), Y,, Z,, it is of the same type in all the three

, I,
processes.

(ii) If C is a minimal closed set in one process, it is so in all three
processes.

PrOOF. Let p,,(t,n) denote the probability that the system originating
from x will be in state y at time ¢ in exactly » transitions. As in Example
5.1.5 (1) it follows that

pxy("o) = sxye_q(x),, X,y (S S, t > 0.

Following arguments similar to that we used in Examples 5.1.5 (2) and (3),
one can show that, for n > 0,

t
pxy(t,n +1) = § ]; Pz (5 n)a(z,y)e_q(yx’—’)ds. (5.4.8)
z#y
Note that p,(#,n + 1) is continuous in #, and
p(t, xa)’) = "§0 pxy(t’ n)a (5.4.9)

which converges uniformly in every finite interval in ¢. This implies the
continuity of p(z, x,y). Now by iteration

I " o mad = S 2D [T (¢ a(z)as

z#y q(Z) 0
(5.4.10)

Q"(X.J’). n > O. X,y e S.



5.4. Recurrence and Ergodic Properties

From (5.4.2), (5.4.9), and (5.4.10) we obtain that

¢ 37 = [T pexnd = 3 [T by
(54.11)
=[O T 2" ()

where all the terms are finite or infinite simultaneously. Then, from
Theorem 3.5.4 and Theorem 5.4.2, it follows by taking x = y in (5.4.11)
that x is recurrent or transient in all the processes X(f), Y,, Z, if it is so in
one of them. From Theorems 3.6.4 and 5.4.3 and the fact that lim,_,, p(t,
x,x) = lim,_, p"(x, x), it follows that x is positive recurrent to X(¢) if and
only if it is so for Z,. To prove (i), it remains to show that x is positive
recurrent in Z, if and only if it is so in ¥,

Since part (ii) is clear let us assume that it holds. Let S be irreducible
(for all three processes). Consider the systems

u(y) = xgs u(x)p(x, y) (54.12)
v(y) = ,gs v(x)Q(x, ) (54.13)

in the unknowns u(x) and v(x), x € S. Using the definitions of M and Q,
we see that systems (5.4.12) and (5.4.13) are equivalent to

a

M) = 3 udasy)  and  v() = w0222,

(
x#y x#y q

respectively. For simplicity, assume that all the states be aperiodic. Now it
follows from Theorem 3.6.4 that if «(x) and v(x) are probability distribu-
tions, then

u(y) = lim p"(x,y) and  »(y) = lim Q"(x,y).

Noting that u(x) is a solution of (5.4.12) if and only if g(x)u(x) solves
(5.4.13), it follows that
g(») lim p"(x,y) = lim Q"(x,y).
n—oo n—o

From this it follows that x is positive recurrent for Y if and only if it is so
for Z.

Part (ii) follows from the observation that p(z, x,y) > 0 iff p"(x,») > 0
iff @"(x,y) > 0. Hence the theorem is proved. O
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5. Purely Discontinuous Markov Processes
Theorem 5.4.5. Let X(f) be an irreducible process. Then the following
properties hold.

(1) If X () is a positive recurrent process, the limit lim,_,  p(t, x, y) exists
and the limit u(y), y € S, say, is a probability distribution that is
uniquely determined by

q(u(y) = XE u(x)a(x,y), y € S.

#y
Also {u(y), y € S} is the only stationary distribution of the Markov
process, and

u(x) = lim p,(3),

where p,(x) = P{X(f) = x}.
(i) If X(¢) is null recurrent or transient, then

lim p(t,x,y) = 0 = lim p,(x), x,y €S.
1—>0 1—>0

PrROOF. We prove the theorem only for the aperiodic case. Applying
Theorem 3.6.4 to the chain Z,, which by hypothesis is positive recurrent, we
obtain that

W(y) = lim plt,x,») = lim p"(x,) > 0

and that {u(x), x € S} is a probability distribution uniquely determined by
the system

u(y) = 2;‘ u(x)p(x,y),

which is equivalent to g(y)u(y) = 2, ., u(x)a(x,y). Now using (5.4.2) it is
easy to show that

u(y) = Zuplt.x.y), >0,y €S.

.

Note that {u(x),x € S} is the only stationary distribution of X(#), 7 > 0,
and that u(x) = lim,_, p,(x) follows from

pl+:(y) = xgs ps(x)p(t’ x,y).

Part (ii) follows by arguing along similar lines. This proves the theorem. O
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Exercises
Example 5.4.6

ExAMPLE 1. Birth—-Death Process. Let X(¢) be a birth—death process with
state space S = {0,1,2,...}. From Theorem 5.4.4 it follows that X(¢) is
recurrent if and only if the embedded chain Y, is recurrent. Therefore,
applying Example 3.5.11 (4) to

d(x) ——
B +de T
(x,y) = b(x) e
m fy=x+1
0 otherwise,

we see that the birth—death process X (¢) is recurrent or transient according
as the series =, - ([d(1) - - - d(x)/B(1) - - - b(x)] is divergent or convergent. Set
a(x) = 1if x = 0 and a(x) = [b(0)-- - b(x — 1)/d(1) - - - d(x)] for x > 1.
Let u(x) denote the stationary distribution of X (). Then

u(1)d(1) — u(0)b(0) =0
u(x + Dd(x + 1) — u(x)b(x) = u(x)d(x) — u(x — Db(x — 1), x> 1

=0.
Hence u(x + 1) = b(x)u(x)/d(x + 1), x > 0, and consequently

_ b(0)---b(x — 1)
ux) = 200y d(x = 1)

u(0) = a(x)u(0).

Now it is clear that the stationary distribution exists (uniquely) if and only
if £,51[6(0)--b(x — 1)/d(1)--d(x — 1)] < oo. If this series converges,
then the stationary distribution is given by u(x) = a(x)/Z,5¢a(y), x > 0.

Exercises

1. The contagion process is a birth process with rate b(x) = (b + cx), where x > 0,
b > 0,and ¢ > 0. Show that the transition probabilities of X (¢), ¢ > 0, are given
by

X
. — p—(btex)
iy = v 57

_b
Ve e
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5. Purely Discontinuous Markov Processes

2. By solving the backward equation for a two-state birth—death process, show that
the transition probabilities are given by

At;0,0) = %ﬁ
Pt 1,0) = %'(:“")‘
A50,1) = %‘ﬁ
A1) = %,

where b = b(0) and d = d(1). [Note that (1) = 0 = d(0).]

3. The Pélya process is a nonhomogeneous birth process having the probability
b(1 + cx)At/(1 + bct) + o(Ar) of a change in the interval (s,¢ + Ar). Here
b,c > 0. Let p(t,x) be the probability that there are x individuals in the
population at time ¢, and let p(0, x) = 8,,. Show that:

(a) p(1,0) = (1 + bet)™
(b) CON ~x=e .
p(t,x)=T(l +bC’) k]_::II(l +Ck), xz2 1
© I pt,x)=1
x20

(@ E[xX()] = bs;
(e) var(X (1)) = be(l + bet);
(f) The Kolmogorov equations are given by

1+ -1
P(I, x,y) + b—%ba)dhx,y -1

1+clx+1)
l, x,y) + bwp(l,x + l,y).

dfp(t xvy) = _bl
l
dtp(’ X)) = l + bct

4., Let X(f) be a birth-death process with rates b(x) = J[N — x] and d(x) =

0 < x < N, and with X(0) = 0. Set p = 5[l — e ®*|/(b + d) and q = 1
— p. Show that

Ao x) = PX() = x) = ( )p"q”"‘ 0< x<N.
5. Investigate in detail the quadratic birth-death process with b&(x) = (bx? + ¢)

and d(x) = (dx? + ) (Karlin and McGregor 1958).
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6. Solve the differential equations for a birth-death process with rates

b+ cx, x>0 d+ ex, x>0
= s d =
bx) {b —*x, x<0 ) {d— e*x, x<O0

and with initial condition p(0,1) = 1. [Hint: Derive the equation for the
generating function g(1,£) of p(t,x) and then apply the bilateral Laplace
transform.]

7. Let X(¢) be a linear birth—death process (b(x) = bx, d(x) = dx) with X(0) = 1.
Show that

X
P{x births before the first death} = —29—.
b+d)

8. Let X(¢) be a linear birth process with X(0) = 1. Let N(¢,a) be the number of
individuals in the population at time ¢ with age not exceeding a. Show that

P{N(t,a) = x} = e (1 - e—ba)x(l —ebay e—br)—x—ll

9. Consider the stochastic epidemic described in Example 5.3.3. (4). Let T be the
random time to complete the epidemic and S, the time spent in state x. Assume
that S, is exponentially distributed with parameter d(x) = dx(n — x + ). Show
that

—oTy _ 1 dx(n —x+ 1)
Ee = I gram—xz 1

x=1

Show also that

2log(n + 1)]

BT =" +n

asn— .

10. Let X;(r) and X;(¢) be two independent linear birth processes with the same
parameter b and with X;(0) = x; and X,(0) = x,. Show that, for x > x; and
N2> X + Xy,

P{X (1) = x1X(0) + X;() = N}

-G/t
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5. Purely Discontinuous Markov Processes

11.Let X(r) be a linear birth-death process with rates b and d and denoting a fish
population in a pond. Assuming, as a first approximation, that the pond has a
constant carrying capacity K, let us set the birth rate as & = 0 whenever the
population size exceeds K. Such a process is called a birth—death process with
carrying capacity (MacArthur and Wilson 1967). Show that:

(a) for any initial population size, there is a nonzero probability of extinction in
at most (K + 1) steps;

(b) with probability one the population eventually becomes extinct;
(c) if T, = E, [time to extinction], then

_ BT, +dT_, +1]

. -1 X -1 -1
i) =05 [(b—d)TK+2|}x ]+[d(K+l)] ,

K —-X K
i) § =57 3 x"(‘g) + %'

12.Let U and R denote the groups of underdeveloped and developed countries,
respectively. Consider a process of population migration from U to R. Let X (¢)
denote the number of individuals in developed countries at time ¢ that have
migrated from U. Assume that at time ¢ = 0 there were « and r individuals in U
and R, respectively. Given that x individuals have migrated in the time period
[0,¢], let p, (¢) At denote the probability that a single individual will migrate from
U to R, and let g, (y,) At denote the probability that y individuals will migrate
from U to R in the interval (1,7 + Af). Assuming that different individuals act
independently of each other, show that

qx(lv’) = px(’)(u - x)At + O(At)
q,(0,0) = 1—gq,(1,9).

Let p,(¢) = f(x) such that (u — y)f(») # (u — 2)f(z), y # z. In this case show
that

A,0) = e ' p,x) = a, k§>:0 c;k' e bt x=1...,n
=z

where

x—1 X
b, = (u— x)f(x), a,= kI;IO by, ¢y = 'I;IO b;=b), Jj<x
i*f

13. A liquid consists of molecules of types A and B that produce a molecule of type
C on collision. Let X(¢), Y(¢), and Z(¢) denote the number of A, B, and C
molecules in the liquid at time ¢, respectively. If X(0) = x, and Y(0) = y,, then
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X() = xy— Z(¢) and Y(¢) = yo — Z(¢). Let ¢ denote the rate of collision
between molecules of types A and B and set h(z) = (xy — z)(yg — z). Show that

z x—1
PZ@O) =z= 3 M 1 k) I [h(k) — KG)™
k=0 k=0 j#k
0<k<:z
forz=0,1,...,(xg A yg) Show also that

e—cxol _ e—cyol
E[z()] =

xale—(‘—xol _yale-t'—yol’
and that E[Z(f)] = xo N\ yp as t = oco.

14.In an epidemic model let S,, I, and R, denote the number of susceptibles,
infectives, and removed at time n, respectively. Let p denote the probability of
contact for each infective. Then Q, = (1 — p)'" = g™ is the probability of no
contact. Note that S, + I, + R, = total population size. Let p"(S, I) denote the
probability of having S susceptibles and I infectives at time n, and let p(R|S ) be
the probability of R removals starting with S susceptibles.

(a) Show that
() P (S, 0) = Q%
(i) P (Spops ) = S, Qa1 (1 = @),
) 218, = hyvrodye) = (7 )O3 010 = @)
(b) Show that
(i) A0IS) = Q.
i) ARIS) = (3 )ARIRIGE "™ M, s <R

—1
(iii) p(S|S) =1 - :Eop(RIS)
(Ludwig 1975).

15.Let d(x) = x, x > 0, be the death rate of a birth-death process X(f) on
S ={0,1,...). Show that X(¢) is null recurrent if &(x) = x + 1, x > 0, and is
transient if b(x) = x + 2, x > 0.

16. Find the stationary distribution of the two-state birth—-death process (see
Exercise 2).

17. Consider a birth-death process on S = (0,1, ..., N} with rates b(x) = b > 0,
and d(x) = dx, d > 0. Show that the stationary distribution of X (f) is given by

x N

0 -5(2) 250"

y=0






Calculus with Stochastic Processes

6.1. Introduction

Consider a stochastic process X = {X(t,w)},t € T, w € Q, with state
space S = R, the real line. Most of what we do in this chapter holds also
if S is the complex plane or a suitable metric space. The time parameter set
T is taken as either T = R or T = a, b, a finite or infinite interval. The
process X is an RV for every fixed + € T. If we fix the sample or chance
point w, then X, (-) = X(-,w) is a function on T called a sample path or
trajectory. It is also common to denote the sample path X, (¢) by w(#). The
collection of all sample paths is called the sample path space of the process
X. In general the sample path space is a subcollection of the space of all
real-valued functions defined on 7. One such space is obtained by
considering all possible electrocardiogram outputs over a time interval
[a, b]. A similar space is obtained by considering all possible seismograph
recording over a time interval [a, b]. If {X(¢,w)} denotes the evolution of a
physical process, then X, (¢) represents a possible realization of the physical
phenomenon. This analogy of a sample path suggests the necessity to study
the analytic properties of the sample paths. First we study the sample
properties such as the continuity, differentiation, and integration. For fixed
time points s and ¢, the RVs X(s, -) and X(¢, -) express, say, the random
strength of the seismic events at the time points s and ¢. One would like to
measure the “dissimilarity” or the *“distance” between the two measure-
ments X(s) and X(r). Such a notion helps us to define the continuity,
differentiation, and integration in terms of this “distance.” We also study
such analytical properties of a stochastic process.
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6. Calculus with Stochastic Processes

Before establishing certain sample path properties a remark is in order.
This is about the concept of separability of a stochastic process. The
technical details behind this notion are beyond the scope of this textbook.
So we are content here with a brief remark about this concept. Let X (¢) be
a real-valued stochastic process on 7. We see later that subsets of Q of the
form

{w: X(t,w) € G forallz € I},

where [ is an open interval in 7 and G is a Borel subset of R, arise in many
important problems. Since / is an uncountable set, one cannot in general
assert that the sets of the preceding form are in the o-algebra @ That is,
such collection of sample points @ may not form an event, and thus no
probability can be assigned to it. This problem is more serious than it
appears on the surface. To rectify this situation, Doob (1953) introduced
the concept of separable stochastic processes.

Let X(r) be a real-valued process on an infinite or finite interval 7. The
process X(f), t € T, is said to be separable if there is a countable set C C T,
called separant, and a subset N C Q with P{N} = 0 such that, for any open
interval I C T and an arbitrary closed set F C R, the difference

{w: X(t,w) € F forallt € IN{w: X(t,w) € F forallt € C N I}

is a subset of N. (Recall that the probability space (2,&, P) is always
assumed to be complete.)

It is a result of Doob (1953) that corresponding to any real-valued
stochastic process X(¢), 1 € T, one can always find an extended real-valued
process Y(f), t € T, which is separable and equivalent to X(r).

Based on Doob’s result we can and do assume hereafter that every
stochastic process X(f) we work with is separable. This is a great technical
convenience. To see the power of this, let us consider an illustration. In
Section 6.2 we present conditions under which a given process X(f) can be
equivalent to a process Y(f) almost all of whose sample paths are contin-
uous. If X(¢) were a separable process, then this conclusion reduces to the
claim that

P{w: X,(r) is continuouson T} = 1,

where T = [a, b, say. That is we get continuity for X (¢) itself. Let C be the
countable separant set that appears in the definition of a separable process.
Clearly, X(r) = Y(¢) for all t € C, with probability one, where Y(?) is the
process equivalent to X(r) and almost all of whose sample paths are
continuous. We want to show that P{X(r) = Y(t),r € T} = 1. Fix ¢*
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6.1. Introduction

€ T and arbitrarily choose an € > 0. Then there exists a § > 0 such that
|Y(?) — Y(t*)) < e provided |t — t*| < 8. Let I ={t € T: |t — t*| < §).
Then

*x _ . — .
YO~ < gt YO = i X0

= :uelfl X(r), by separability,

< X(*).

Letting €| 0, we have Y(r*) < X(¢*). Similarly, X(¢*) < Y(t*) and
consequently X(¢+*) = Y(+*). Since ¢* is arbitrary, X(¢) = Y(¢) for all
t € T. This proves that P{X(¢Y) = Y(f),t € T} = 1, since almost all
sample paths of Y () are continuous on 7.

Let X be an RV with finite second moment, that is, E[X %] < o0. We do
not distinguish between any two equivalent RVs. The collection of all
(equivalence class of) RVs with finite second moment is denoted by L,. For
any two X, Y € L,, define

IX — Yl = {E[(X — Y)*]}L. (6.1.1)

We claim that ||X — Y| defines a distance or metric on L,. First we
establish the Cauchy-Schwarz inequality that for X, Y € L,

E[lxY|l < XYl = (E[X2]E[Y2])? (6.1.2)
From the classical inequality |xy| < (x2 + y?)/2 we get E|XY| < E!(Xz

+ Y?)/2]. Therefore, if X,Y € L,, then E|XY| < (IXI|* + ||Y|f)/2
< . Now let x = X/||X|| and y = Y/||Y]|. Then
i) < 2 L) e )
El|x =E[ < RE| — |+ E|— =1,
ol = E| iy ] < 2WELjaed * ELjvi?
and we obtain (6.1.2).
Next we show that the triangle inequality
lx + Yl < [Ix1 + [IY1], (6.1.3)

holds. Now
IX + YI* = E[(X + Y)?) = E[X?] + 2E[XY] + E[Y?]
< IXIP + 2E[Ix Y]] + || Y)?
< IXIP+ 20Xl + 1YIP by (6.1.2)]

= (x|l + I1YID2.

This proves (6.1.3). Now it is clear that ||-|| defines a metric on L,.
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6. Calculus with Stochastic Processes

A stochastlc process X(t,w), t € T, is called a second-order process if
E[(X (t)) ] < o for every t € T. Important processes such as Gaussian
and Wiener-Levy processes belong to this class. The mean-square distance
[Ill introduced above is used here to define the analytical notions of
continuity and so on. Let X(¢) be a second-order process. The mean function
of X(¢) is defined by m(r) = E[X(¢)), ¢t € T. The covariance function K(s, f)
of X(¢) is defined by

Ky (s,1) = cov(X(s), X (1)) = E[X()X()] — m, (s)mx(r). (6.1.4)

Examples 6.1.1

ExampLE 1. Find the covariance function of the process X(r)
= 3}_[éccos At + mysin Ay 1], where A, are real constants, §, ..., §,
M, - -+, M, are independent random variables with mean zero and var(¢,)

= 0,2( = var(n), ] <k < n.

mx(’) = E[X(t)] = kzl {E[gk]cos Ak’ + E[T’k]Sln Ak t} = O.
By the independence and zero mean assumptions,
E[§§] = 0= E[gm] if  i+#)
El§m;] =0 forall i,

Therefore
Ky(s, ) = E[{El (§cos A;s + n;sin Ajs)}
j=

{ él (gk cOs Ak’ + Mk sin Ak t)}]

Il
||M=

{E[ﬁk ]cos A s cos At + E[n?]sin Ags sin A, 1)

oZcos A, (t — s).

I
[ISE

ExaMpLE 2. Find the mean and covariance functions of a Poisson process
X (¢) with parameter A.

my(t) = E[X()] = A1, teT.



6.1. Introduction
Let 0 < s < t. Then
E[X(5)X()] = EIX©X() — X(5) + X(9)}]

= E[(X(9))’] + EIX@IEIX() - X(s)]  (why?)

= var(X(s)) + (my(s))* + AsA(t — 5)

= As + X5 + AsA(t — 5) = As + AsAL
Therefore

Kx(s,0) = As + (As)(A)) — As)(A) = As.

Hence if s < t, Ky(s,t) = As. By symmetry, Ky(s,t) = At if ¢t < 5. Conse-
quently

Ky(s,0) = XMs A ) = X min(s, ?).

Let X(¢) and Y(¢) be two second-order processes. The nmtual- or cross-
covariance function K yy(s, 1) of the processes X(f) and Y(?) is defined by

Kyy(s, ) = cov(X(s), Y(9)) = E[X©Y(0)] — my(s)my (o).
Proposition 6.1.2. Let X () and Y () be two centered second-order processes
[so that my () = 0 = my(f)]. Then:
() Kx(s,0) = Kx(1.9),
(i) Kxy(s,1) = Kyx(1,9),
(iii) Kyyy(s,0) = Kx(s,0) + Kyy(s, 1) + Kyx(s,9) + Ky(s,2),

(iv) Kx(s,f) is positive definite, that is, for all n > 1, time points

f,...,t, € T and real numbers q, ..., a,,

n n
lgl jgl Ky(1;,t)a;a; > 0.

Proofr. Relations (i)—(iii) are clear. To see (iv), note that
n 2 non
0< E[(El x(z,.)a,.) ] - E[El ) x(t,.)x(zj)a,.aj]
i= i=1j=
n n
= 2 2 KX(t‘-,I-)a‘-a-,
i=1 j=1 4 s

since my (1) = 0. O
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Definition 6.1.3. A sequence {X,,n > 1} of L,-RVs is said to be mean-
square convergent toa RV X € L, if

E[lX, - X’ >0, asn— .

Remark 6.1.4. Let {X,,n > 1} be a sequence of L,-RVs. Then
E[|X, — X,,|*] > 0,as m = o0, n > oo independently of each other, if
and only 1f there is an RV X € L, such that X,, is mean-square (MS)
convergent to X Moreover, IIX I? - |Ix]? and E[X,] > E[X] as n
— 0. Let X, %> X and Y, - Y. Using the Schwarz inequality, it is
easy to see that

E[X, Y] > E[XY], asn— oo.

We can find the proof of each of these statements in a standard
textbook on probability theory.

Theorem 6.1.5. (Loeve). 4 sequence {X,,n > 1} of L, RVs converges in the
mean-square sense if and only if

E[X,X,,] — a finite limit a

as m —> oo and n = oo, independently of each other.
ProoF. The sufficiency follows from

E[(X, - X,)’] = E[X?] - 2E[X, X,,] + E[Xx}]
=a—2a+a=0.

To see the necessity, let X, converge in mean square to an X € L,.
Then

E[X,X,] > E[XX] = E[X?] = a, say . a

6.2. Continuity

Definition 6.2.1. A stochastic process X: T X @ — R is called stochastically
continuous at a point ty € T, if for any e > 0 we have P{|X(¢) — X(t,)|
> ¢} — 0 as |r — 5] = 0. If X(2) is stochastically continuous at every
point in T then it is called stochastically continuous on 7. A process
X(t), t € T, is called stochastically uniformly continuous on T if for
arbitrary constants € > 0 and n > O there exists a § > 0 such that
P{IX(®) — X(s)) > ¢ <maslongas|s — t| <8.



6.2. Continuity

Theorem 6.2.2. If the process X(t) is stochastically continuous on a compact
T, then X (t) is stochastically uniformly continuous.

ProOOF. Assume the contrary. Then there exists a pair ¢ > 0 and n > 0
such that for any 8, > 0, and s,,, 1, € T with |s, — t,| < 8, we have

P{1X(s,) = X(1)] > € > .

Let us choose 8, and s, such that §, — 0 and s, = sy. Then ¢, — 55 and

n < P{X(s,) — X(1,)| > ¢}
< P{1X(s,) = X(s0)l > 5} + P{|X(s0) — X ()] > 5}

This contradicts the stochastic continuity of X(¢). This proves the theorem.
O

Definition 6.2.3. A process X(1), t € T, is called a continuous process if
almost all of its sample functions are continuous on 7.

As remarked earlier, we always assume that all our processes X(¢) are
separable. Also, let T = [0,1] = I

Theorem 6.2.4. Let g(h) and q(h) be two even functions nondecreasing in
h > 0 such that

21 g™ <o and ,En 2"q(27") <. (6.2.1)

n>
Let X(1), t € I, be a process such that, for all t, t + h € I we have
P{X(t+h — X0 > gh)} < qh). (6.2.2)

Then X () is a continuous process.

Proofr. The proof follows a standard polygonal approximation method.
For every n 2> 1 consider the time points

oy = k27" k=0.1...2"

149



6. Calculus with Stochastic Processes
and the polygonal approximation
X, (0) = X(t,4) + 2"(t — 1, )Xty p41) — X(150)} (6.2.3)
for 1, < t < t,;4 (see Figure 6.1). Then for ¢, , < ¢ < 1,4,
1 X, 1(0) — X, (D]

<2t {|X(1n+|,2k+|) = Xty ) + |X(tn+l,2k+|) - X(tn+l,2k+2)|}'
(6.2.9)

The RHS of this inequality is free of £in 1, = [t,,,1, , +1]. Consequently,
the RHS of (6.2.4) dominates

maXI e () — X, (D).
Denote the RHS of (6.2.4) by 27! (4, + 4,). Now
P { max 1%, 0 - %,00 > s }
tel,,
2
< §I P{4; > g2 )

< 292771,

and hence

P {Ipealxan-H(t) - Xn(t)l > 8(2_"_')} < 2n+lq(2_n_l).

X(r)

Uy k=, 2k Lnai 2k41 Ln ke 1S nay 2642

Figure 6.1



6.2. Continuity

But by assumption (6.2.1), £2"¢(27") < 0. Therefore, by the Borel-
Cantelli lemma, X, (¢) converges AS and the convergence is uniform in /.
Since each X, (7) is continuous on / and the convergence is uniform, the
limit Y () is continuous on [0, 1].

It remains to show that the processes X(f) and Y(7) are equivalent. By
the separability of X (r) we then conclude that X(7) is a continuous process
(see Section 6.1).

Since X, (1) = X(¢) for all t = t,;, we have P{X(r) = Y()} = 1, for
all t = t,,;. Now let ¢t # ¢, for every n and k. Then

t = lim t,, when 0< =1, <277,
n_’w v n v n
and by hypothesis (6.2.2),

P {'X(t,,_kn) - X0 > g(t — t,,,kn)} < q(t - t,,‘kn) < q(27M.

Again appealing to the Borel-Cantelli lemma we see that {s (tnx,) A5, x ().
By the continuity of the process Y (), X (t,4,)=Y(t,,,)—> Y(s). Hence
X(¢) and Y(¢) are equivalent processes, and the theorem follows. O

Theorem 6.2.5. (Kolmogorov). Let X(t), t € I, be a (separable) stochastic
process. If

E(IX(t + B) — X(0*] < M|h|llog|Al|™*,
wheret,t + h € I, M > 0, then X(¢) is a continuous process.

Proor. This is a simple consequence of Theorem 6.2.4. Take g(h)
= [log|A||* with 1 < a < 3 and apply Chebyshev’s inequality. O

Definition 6.2.6. A process X(r), t € I, is said to be without discontinuities
of the second kind in [ if almost all sample functions have the limits

X(@s+) = lhm X(»,t €[0,1)and X(s —) = lgn X(@), te@©1]

The following theorem gives conditions under which a process X(¢) can
have no discontinuities of the second kind. We omit the proof.

Theorem 6.2.7. (Cramer 1966). Ler g(h) and q(h) be two functions as
prescribed in Theorem 6.2.4. If

P{IX ) -~ XOIX () = X©) > g°()} < q(h)

Jor0 < s<t<u<l,u—s=h, then X(¥) is equivalent to a process
Y(¢) that has no discontinuities of the second kind.
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6. Calculus with Stochastic Processes

Definition 6.2.8. A second-order stochastic process X (¢), t € T, is said to
be mean-square continuous at s € T if

lim E[lX () - X()I’] = o.

Theorem 6.2.9. A second-order process X (1), t € I, is mean-square continuous
at t = 1 if and only if its covariance function K(s,t) is continuous at
s=1t=r.

ProoF. To see the sufficiency, note that
lim E[|X(r + ) = X(7)’]
= ’l’i_%[K(T + hr+ h) — K(r + h,1) — K(r,7 + h) + K(7,7)]
=0, by the continuity of X at (r, 7).
We obtain the necessity as follows, by using the Schwarz inequality:
[K(r + h,7 + H) — K(7,7)|
S E[X(r+ ) -X0|X(r +K) - X()]
+ E[|X(r + B) - X(MIX@I] + E[IX(r + &) — X(0)| | X()I]
<{ENX( + B -~ XOPIENX @+ H) - X@)P ]2
+{E(X( + B - XOPEIX @D
HE(IX(r + i) = X(@P1E[ X))
—0,as h > 0, by the mean-square continuity of X(¢).

This completes the proof. O

Example 6.2.10 The mean-square continuity does not necessarily imply
sample path continuity. Poisson processes provide us with an example. Let
X(7) be a Poisson process with parameter A. We know that every sample
path of X(7) is a step function with unit jumps (occurring at random times).
A typical sample path is drawn in Figure 6.2. Therefore, X(¢) is a process
with jump discontinuities only. For a Poisson process K(s,7) = A min(s, ¢)
[see Example 6.1.1 (2)]. Since K(s, #) is continuous, the Poisson process X (¢)
is mean-square continuous, by Theorem 6.2.9.

152



6.3. Differentiability

X(1)

|
I
|
~
r
!
0 l !
Figure 6.2

6.3. Differentiability

Definition 6.3.1. A stochastic process X (), t € 1, is said to be sample-path
differentiable if almost all sample paths possess continuous derivatives in
1.

Note that we require the sample derivatives to be continuous; that is,
almost all sample paths are required to be continuously differentiable. Next
we give a sufficient condition in order that a process be sample-path
differentiable, but we omit the proof.

Theorem 6.3.2. Let g(h) and q(h) be two functions as prescribed in Theorem
6.2.4, and let X (1) be a real-valued process defined on 1 = [0, 1]. If

P{X(t+h) +X(—h) - 2X(0)| < gh)} < qh),

Jorallt —h,t,t + h € I, h > 0, then X() is equivalent to a sample path
differentiable process Y(t), t € I.

Definition 6.3.3. A second-order process X(f), t € T, is said to be mean-
square differentiable at t € T if there exists a second-order process Y(s),
s € T, such that
lim EA~'1X( + ) = X()] - Y@ = o.
We write Y(1) = X'(¢t).
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6. Calculus with Stochastic Processes

Theorem 63.4. The process X (1), t € I, is mean-square differentiable at t if
and only if the second generalized derivative 3% K(r,u)/ 3t du exists at (t,0).

The proof is similar to that of Theorem 6.2.9. For instance, the
sufficiency follows from

ER "X\ +h) - X0 X+ k) - X(>H))]
= (hk) (K@t + ht+ k) — K+ hi)— K(t,t + k) + K1, 0).

At this point we simply remark that the mean-square differentiability of
a process does not necessarily imply the sample path differentiability [see
Example 6.4.5 (2)].

6.4. Integration

Let X(¢),t € I = [0, 1], be a second-order process such that: (1) almost all
sample functions of {X (¢, w)} are continuous and (2) the covariance function
K(s, 1) of X(f) is continuous on /2. Also let f(£), ¢t € I, be a deterministic
piecewise continuous function. Then the integral

1

L(w) = fo FOX(t,w)dt (6.4.1)
exists in the usual sense for almost every w € €. Let us delete from 2 the
set N of all w for which the sample functions X(:,w) are not continuous.
Then the integral (6.4.1) exists for every w € . The reader who is familiar

with measure theory can easily see that the stochastic integral in (6.4.1) is
an RV. One can also define a stochastic process by

t
Y(t,w) = fo X (s, w) . (6.4.2)
First we compute the expectations of /;(w) and Y(t, w).

my = ELh@)] = [} FOEXQlde = [ fOmy()dr,  (643)

and similarly

my(t) = [ myls)ds. (6.4.4)

Letf = f3 fi(DX(r)dtand I, = fol L () X(¢)dt, where f; (f) and f,(f) are any
two continuous functions on /. Then
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6.4. Integration
1 1
g| f A0x0a [ rox s
— £| [, 40 f, h0xOx@sa

= [ 50 [ HOEX QX () dsdr,

and therefore

cov{ folf:(t)X Gra fol fz(s)X(s)ds} = fo A 1, ' () K (1, 5) dsdt.
(6.4.5)
Consequently

Ky(ts) = [, ' Ky m)dnds,  stel (6.4.6)

Next we define stochastic integrals in the mean-square sense. Let f(¢) be
a continuous deterministic function on [0, 1], and X(¢), r € [0,1], be a
second-order process with zero mean function and covariance function
K(s, 7). Now we proceed to define the integrals

h = fol fOX@d  and = [ f@dx@). (647

Let :0=1< 1t <---<t,=1 be a partition of / = [0,1]. Define
|9| = max, ¢;<,(t; — t;_)). Corresponding to such a partition, let

n—1
R = _zof(’i)x(’i)[tiﬂ -]

';I (6.4.8)
R, = igof(t.')[x(’iﬂ) - X))

be the Riemann/Riemann-Stieltjes sums. Clearly, these approximating
sums are RVs. Let {9, } be a sequence of partitions of / such that |%,| = 0
as n — oo. If the sums R, and ¢, converge in the mean-square sense to the
limits J; and J, respectively and the limits are the same for all sequences of
partitions of the type described above, then the limits are defined as the
stochastic integrals. Thus the stochastic integrals J; and J, are defined by

Jy = MSim®, and J, = MS-lim &,,
P = M-I 2 = M>-in R2 (6.4.9)

where MS-lim denotes the limit in the mean-square sense.
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6. Calculus with Stochastic Processes

Theorem 6.4.1. Let f(t) be a continuous function on I = [0,1] and X(t) be a
second-order process with zero mean function and the covariance function
K(s, 1). Also let K(s,t) be continuous on I* so that the Riemann integral

R = fo' ) 105 0K G0 as ar (6.4.10)

exists. Then, the mean-square integral J| exists, and

E[h]=0 and var())) = R,. (6.4.11)

Proor. Let 9,:0=¢, < - <t,=1land ?,:0=1¢,;, <---<t,,
= 1,n > 1, be two sequences of partitions whose meshes |%,| and |?,]
approach 0 as n — oo. Let };, and &), be the corresponding Riemann
sums. Then

n—=1 n—1

E[R,,%,] = igojgof(tni)f(t;tj)K(’m"t;y')(’n(i+]) - Im')(’;x(j+l) - ’;y')’

and letting n — oo, we obtain

R, =j;l j(;l FOfE)K(t)drdr’

as the limit. This limit is independent of the sequence of partition of 7. Now
appealing to Loeve’s Theorem 6.1.5, we see that the sum @}, converges in
mean-square, and the limit is independent of the choice of the sequence of
partitions. Hence the mean-square stochastic integral J exists. The relations
(6.4.11) are obvious [see also (6.4.5)]. ]

Theorem 6.4.2. Let X(f) be a second-order process with zero mean function

and the covariance function K(s,t) of bounded variation on I*. If f(1) is a
continuous function on I so that the Riemann—Stieltjes integral

1 ,l
R, = fo fo FG)f(O)K (ds, dr) (6.4.12)
exists, then the mean-square integral J, = Jb' F() dX(f) exists with

ElL]=0 and var(,) = R,. (6.4.13)

We omit the proof of this theorem because it is similar to that of
Theorem 6.4.1.
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6.4. Integration

Let the covariance function of X (), ¢ € I, be continuous on /2. Then
by Theorem 6.2.9 the process X(f) is mean-square continuous. Let X () be
also (sample-) continuous on 1. If f(¢) is a continuous function or any suitable
Jfunction such that the stochastic integral

f, 70X

exists as a sample path integral denoted by I and as a mean-square integral
denoted by Jj, then

P, =) =1. (6.4.14)

The Riemann sum @, converges pathwise to J; and in mean-square to
Ji. It is a well-known result in measure theory that when a sequence of RVs
£, converge to £ in mean-square sense and to n with probability one, then £
and 7 are equivalent RVs. This proves our claim.

Theorem 6.4.3. Let X(f) and X'(1), t € T, be two second-order processes with

continuous covariance functions and such that X'(t) is a process without
discontinuities of the second kind and

X@-X@=[ ‘X'()ds, tET, (6.4.15)

where the integral exists sample-pathwise. Then X'(t) is the mean-square
derivative of X (r).

ProoF. First note that
t+h
RXG+ ) = XOL - X() = /7' [ IX06) - X @) ds,
and hence from (6.4.5),

A" X + B) — X()) — X" @I
= E[[h'{X(t + ) — X()} — X' ()]

=h f. th,'” E[(X'(s) — X())(X'() — X'(r))]drds.

<h f,Hh . P EIXE) - XOPIEIXC) — X'0)2)) " dr ds, (64.16)

by the Schwarz inequality.
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6. Calculus with Stochastic Processes

By the continuity of Ky (s, ), the process X'(f) is mean-square contin-
uous. Therefore, for an arbitrarily given € > 0 we can find a § > 0 such
that

E[X() - X)) <e iflt—s <8 (6.4.17)

Choose an A such that |A| < 8. Then using (6.4.17) in (6.4.16), we see that

A~ X (+h) — X(0] - X OIF < e

Since € is arbitrary, this completes the proof. O

Theorem 6.4.4. Let {X(r), t € 1} be a mean-square differentiable process with
derivative {X'(t)}. Then

£[sup x20)] < 27 O + IXOIR) + f) 1X O L@ e

Proor. First observe that
Jy xOx©ds = 27'x2) - x*(0)]
and
[ x©x 0 as = 27'x2) - x2(0)]
This implies, for any ¢+ € /, that
2X2() = X2(0) + X2(1) + 2 [ XOX'ds — 2 [ X()X'(s) s
< X20) + X2(1) + 2 [ IXEX'O)]ds,
and thus
E[sup x20] < 2 HIXO)F + IXOF) + [} EIXOXOlas
< 27 IXO)IF + IXO)F) + [ IX@OUIX@lde (why?).
This completes the proof. O
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6.4. Integration

This theorem can be considered as an extension of the Chebyshev
inequality from a RV to a stochastic process. So it can be used for the
purposes similar to the applications of Chebyshev inequality.

Examples 64.5

ExampLE 1. Under the conditions of Theorem 6.4.4, compute m,.(f) and
Ky (s, ).
From (6.4.15) it follows my(t) — my(a) = §, my.(s)ds, so that

d%m;‘,(t) = my(0). (6.4.18)

Now note that

EX()X() - X@)] = [ EWX(5)X"()]du

and
t
my(5)Imy () = my(@)) = [~ my(S)my. (u) dua
Therefore,
t
Ky (s,t) — Ky(s,a) =fa Kyx(s,u)du.
Consequently,

9
a_,Kxx(s, 1) = Kyy/(s,1),

and similarly

d
aKx(s, t) = Kx’x(s, t).
Combining these two relations, we have

32 92
le(s, t) = KX’X'(S’I) = mex(s, [) = ‘aTé_th(s, t). (6‘4‘19)

ExAMPLE 2. At the end of Section 6.3 we remarked that the mean-square
differentiability of a process need not imply the sample-path differentiabil-
ity. To see this, let us consider a Poisson process N(f). From Example 6.2.10
it follows that N(r) is a mean-square continuous process and is without
discontinuities of the second kind. Define

X0 = [ " NG ds.
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6. Calculus with Stochastic Processes

Then, clearly, X (#) is a mean-square continuous process with mean-square
derivative N(¢). But X(¢) is not sample-path differentiable since N(¢) is not
sample continuous.

Let us now introduce two important classes of stochastic processes,
namely, the Gaussian processes and Brownian motion processes. In Chap-
ter 7 we study some properties of stationary Gaussian processes, whereas
Chapter 9 is entirely devoted to Brownian motion processes. Here we use
these processes to illustrate the notions introduced in this chapter.

Definition 6.4.6. A stochastic process {X(¢), t € T} is called a normal or
Gaussian process if for any integer n > 1 and any finite sequence
Hh<tp<---<t, from T the RVs X(y), ..., X(t,) are jointly nor-
mally distributed.

The following result is a fundamental property of Gaussian RVs. As the
proof of this result is easy, it is omitted.

Theorem 6.4.7. Let X, ..., X, be n RVs jointly distributed as an n-
dimensional normal random vecror. If Y, ..., Y, are the linear combina-
tions

n n
Yy = '21 a; X, ..., Y = El a X;
i= 1=

of Xi, ..., X, then Y, ..., Y, are jointly normally distributed.

On the basis of this theorem it is not difficult to see that Definition 6.4.6
is equivalent to Definition 6.4.8.

Definition 6.4.8. A stochastic process {X(¢), t € T} is called a Gaussian
process if every finite linear combination of the RVs X(1),7r € T,
is normally distributed.

Example 6.49 In Example 6.1.1 (1) let us further assume that the RVs are
normally distributed. Then the process

X@) = El (£, cos Ay 2 + msin Ay 7]
k=

is a Gaussian process. To see this, consider a linear combination
n

n m
> aXx(@) =3 kE [£ca;cos At + my a;sin A 1],
; i=1 k=1

i=
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6.4. Integration

This is a linear combination of independent normal RVs and thus is
normally distributed. Hence, by Definition 6.4.8, X(¢) is a Gaussian process.

Definition 6.4.10. A stochastic process {B(r),r € R} is called a Brownian
motion process if: (1) B(0) = 0, (2) the increment B(f) — B(s) over the
interval [s, 7] is normally distributed with mean 0 and variance o*(r — s),
and (3) {B(r)} is a process with independent increments.

Example 64.11 Show that a Brownian motion process {B(f)} is a Gaussian

process. Consider an arbitrary linear combination =7, q; B(r;), where

a;, € Rand0 < 4, < --- <, Then
2 a86) = (2, a0 )86) - 8O + (2 a0 )180:) - B + -

NS B0 a,()[B(t,,_l)—B(’,.—z)]
k

=n—1

+ an[B(ln) - B(tn—l)]'

It follows from condition (3) of Definition 6.4.10 that =[ a; B(t;) is expressed
as a linear combination of independent normally distributed RVs, and
hence is itself normal. Therefore, B(r), t > 0, is a Gaussian process.

Theorem 6.4.12. Let {X, ) be a sequence of Gaussian RVs. If X, — X in mean-
square sense, then X is a Gaussian RV.

The proof of this theorem is left as an exercise.

Examples 6.4.13

ExAMPLE 1. Let X (r) be a mean-square differentiable Gaussian process with

derivative X'(f), t € T. Then X'(f) is a Gaussian process.
We want to show that every linear combination ='_,a;X'(t;) is a
Gaussian RV. First note that for each fixed 4 the RV

n
> aih_I[X(’i + h) — X(1)]
i=1
is Gaussian. But

lim 15[{;I ah X+ B) — X(t)] = S a,»X’(t,-)}z] —o.

Now, appealing to Theorem 6.4.12, we see that {X'(r)} is a Gaussian
process.
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6. Calculus with Stochastic Processes

ExampLE 2. If X(¢) is a Gaussian process, then fa” X(t)dr is a Gaussian
variable.

This follows from Theorem 6.4.12 and the fact that the Riemann sum
X))t — t;), for any partition a =1, <, < - <t,=b, is
Gaussian.

ExaMpLE 3. In Example 2 we saw that the mean-square integral of a
Gaussian process is a Gaussian variable. If the Gaussian process is mean-
square differentiable, its derivative is a Gaussian process. But a Gaussian
process need not be mean-square differentiable. In Example 6.4.11 we saw
that a Brownian motion processis always a Gaussian process. We claim that
the Brownian motion B(t) is not mean-square differentiable.

If B(r) is mean-square differentiable, there is a second-order process
B'(?) such that

lim E[{(h7"B(t + k) — B() - B®))*] =0
and consequently
J E[{(h"(B(t + h) — B()))*] = E[(B())*] < .  (6.4.20)

But

E{h " (B(t + h) — B(t))}2 = ghil - 00, as h — 0,

contradicting (6.4.20). Hence B(¢) is not mean-square differentiable.

Exercises

1. For each of the following stochastic processes compute the mean function mfr)
and the covariance function K(s,¢): (a) X(¢) = (At + B), where A and B are
independent RVs with means a and b and variances of and 03, respectively, (b)
X(¢) = (4¢2 + Bt + C), where A, B, and C are independent RVs with mean 1
and variance 1, (c) X(¢f) = cos(ar + b), where a is a positive constant and b is a
RV uniformly distributed on [0,27], and (d) X(1) = n'S}_,8(,4,), 0 < ¢
< 1, where 4, ..., A, are independent RVs each uniformly distributed on (0,
1) and g(t, x), (t,x) € [0,1] X [0,1], is defined by g(z,x) =1 for x < ¢ and
g(t,x) = 0 for x > ¢. In parts (e)—(h), B(?) is a standard Brownian monon (e)
X(0) = B(t™"), ¢ >0, (f) X(2) = a~'B(a®), t > 0, (g) X(2) = [BOF, ¢ > O,
(h) X(r) = B(¢) —tB(1),0 < ¢t <

2. Let{d,},n>1,bea sequence of IID RVs with mean p and variance 1. Define
the sequence {X,} by X, =n~'=}_, A;. Show that {X,} is a Cauchy sequence in
L,(R), that is, E|X, - ,\’,,,I2 — 0 as m, n — oo, and that E|X,—p°> — 0 as
n— oo.
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Exercises

3. Check whether each of the following sequences is mean-square convergent: (a)
{X,), n > 1, is a sequence of independent RVs distributed according to
PX,=1}=1 and P{x,=0}=1— n~!, and (b) {X,) is a sequence of
independent RVs distributed according to P{X, = n} = n~2 and P{X, = 0)
=1-n2

4. If a correlation function C(s,f) = E[X(s)X(1)] is continuous on the diagonal of
T X T, show that it is continuous on T X T.

5. Establish the following properties of mean-square differentiable processes: (a)
the mean-square differentiability of X (¢) at a point ¢* implies the mean-square
continuity at ¢*, (b) a linear combination of two mean-square differentiable
processes is mean-square differentiable, and (c) if g(f) is a differentiable
deterministic function and X (¢) is a mean-square differentiable process, then

L1e0x0) = x(VE + 5005

6. Investigate the properties of continuity, differentiability, and integrability (all in
the mean-square sense), of the following processes: (a) process X(¢) in Exercise
1 (a), (b) process X(¢) in Exercise 1 (b), (c) process X(¢) in Exercise 1 (c), (d)
process X(¢) in Exercise 1 (), (e) X(r) is a process with covariance function
K(s,6) = e cos bt — 5), a, b > 0, (f) X(r) is a process with covariance
function K(s,#) = [sin a(r — s)]{ (t — 5), (g) X(¢) is a process with covariance

function K(s,f) = (a* + (¢ — 5)°), (h) X(¢) is a process with covariance K(s, )

= e""l'—sl{l + alt — 5|}, and (i) X(¢) is a process with covariance function

K(s, ) = plembl—sl _ a ‘e sl where a > b.

In the following problems, B() is a standard Brownian motion.

7. Find the mean and covariance functions of each of the following processes:
!
@ XO=[ Bo)ds, >0
t
(®) X() = [ sdBs), t>0;
t
©) X = f.-. (¢t — 5)dB(s), t € R;
1+1
@) X = f, [B(s) — B(f)lds, € R.
8. Define, for t > 0 and a constant g,

X0 = "eM-94B(s) and  Y() = fo' X(s)ds:

(a) find the means and variances of the processes X(¢) and Y (¢) and (b) show that

Y@ = [ a (e ~ 1B, 1> 0.
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Stationary Processes

7.1. Definition and Examples

Consider a Markov chain (MC) X = {X,}, n > 0, with stationary transition
probability matrix [ p(x, y)] and a stationary distribution 7{x), x € S, where
S is the state space. Assume that {7(x)} is the initial distribution of the MC.
Then {r(x)} is a steady-state distribution, that is,

P{X, = x} = 7n(x), xESn>=0. (7.1.1)

Because the RHS of (7.1.1) is independent of time, it follows that the one-
dimensional distribution of the MC X is invariant under time shift. Next let
us consider the m-dimensional distributions of X. It is well known to us that
the m-dimensional distributions of an MC are determined by the initial
distribution and the transition matrix [see Lemma 3.1.3 (iii)]. Thus we now
have, for all positive integers k, that

m
P {Xn,-+k =x,1 <i<mp=m(x) ,Hl Pn = n_y;ximy, %) (7.1.2)
i

where p(n; x,y) is the n-step transition probability, nj < ny < - <n,,
and m is an integer > 2. That is, the m-dimensional distributions are
invariant under the time shift. Abstracting this invariance property, one can
intuitively describe a stationary process as a stochastic process whose
probabilistic laws are invariant under shifts in time.
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7. Stationary Processes

Throughout this chapter {X,,7 € T} denotes a process whose parameter
set T is defined with an additive semigroup structure. Typical examples of
TareT={0,1,2,...}, T={---,-1,0,1,...}, T=R,,and T = R.

Definition 7.1.1. A stochastic process X(¢),t € T, is called a strictly
stationary process if the RVs

{X(tl )a e ’X(tn)}
and the RVs

(X, + h),.... X, + h)}

have the same joint probability distributions for any positive integer n,
any time points f; < *-- < t,inT,and allh € T.

The strict stationarity is defined in terms of the joint distribution.
Therefore, it is not necessary that the process possesses even a mean
function. Let now X(7), t € T, be a strictly stationary process that is also
of second order. Since the one-dimensional distributions are invariant
through time translations for all 4 € T we have

m(t) = E[X ()] = E[X(t + b)) = m(t + h)
and hence the mean function m(¢) is constant. Similarly,

0? = var(X(0)) = var(X(t)) = var(X(r + h)) forallh e T

and
E[X©0)X(1)] = E[X()X(t + 5)],

so that the correlation and the covariance functions would depend on the
time points s and ¢ only through the difference | — s|. In many practical
applications the only use made of the stationarity is the constancy of the
mean function and the dependence of covariance function K(s,#) through
the difference |t — s|. Besides, it is not always possible in practical situations
to compute all the finite dimensional distributions in order to verify the
stationarity. It is thus natural to generalize the notion of stationarity to the
so-called wide sense stationarity. We remark here that this generalization
by no means enlarges the class of strictly stationary processes (why?).

Definition 7.1.2. A stochastic process is called a wide sense stationary process
if it is a second-order process with a constant mean function m(t) = m
and a covariance function K(s,7) = E[(X(t) — m)(X (s) — m)] that de-
pends only on the difference |t — s|.
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Wide sense stationary processes are also known as covariance stationary,
second-order stationary, or Khintchin stationary processes. A wide sense
stationary process is defined through its mean and covariance functions.
Obviously, as these two functions do not in general determine all the other
higher moments and all the finite dimensional distributions of the process,
a wide sense stationarity need not imply strict stationarity. We mainly
concentrate on wide sense stationary processes.

Examples 7.13

EXAMPLE 1. Let {X,,,n > 0} be a sequence of IID RVs with mean 0 and
variance 1. Then {X,} is a wide-sense-stationary process. Since the mean
function m(n) = 0 and

1 ifk=0
E[Xi Xa) = {o ifk #0

(see also Example 7.2.6 (1)).

EXAMPLE 2. Moving Average Process. Let {X,} be a doubly infinite sequence
(n = 0,%1,%2,...) of IID RVs with zero mean and unit variance. Define

K
Y, = 2 aX,_i, n=0*1,..., (7.1.3)
k=0

where the coefficients g, are given constants. Here K could be taken as
infinite with an appropriate condition for the convergence of the resulting
infinite series =32 a; X,_,. We consider only the finite K. The process Y,
defined by (7.1.3) (with finite or infinite K) is called a moving average
process. The process {Y,} is a wide-sense - stationary process, since the

mean function m(n) = 0 and

E[Y Y m] = E[ (j:0 ann~j)<k€:O ay Xn+m—k>]

_{aKaK_m+"'+am+|a| lfm <K_l
0 ifm> K

|developed further in Example 7.2.6 (2)].

ExaMPLE 3. Show that the process X(t) = UcosAt + Vsin Ar, —o0 < ¢
< o0, is wide sense stationary if and only if U and V are uncorrelated RVs
with zero mean and equal variance [see also Examples 7.2.6 (3) and 7.3.7
(N.
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7. Stationary Processes
Let the RVs U and V satisfy the conditions stipulated above. Then

m(t) = E[U]cos At + E[V]sin Ar = 0

and

E[X()X(t + 5)] = E[U%cos As cos A(t + s) + VZsin As sin A(Z + 5)]
+ E[UV](cos As sin A(f + s5) + cos A(z + s)sin As)

= o2cos[A(t + 5) — As] = o®cos A,

where var(U) = o? = var(V). Hence X () is wide sense stationary.

To see the necessity, let X(r) be a wide-sense-stationary process. Set
u = E[U] and v = E[V]. Then

m=m(t) =ucosAt +vsinkt foralls € R

Let m = 0. Taking # = 0, we get v = 0 and taking, ¢+ = (n/2)), we get
v=0.If m # 0, then taking + = 0 and ¢ = (7/2]), we see that u = m
= . Therefore

1 = cos Ar + sin At for all ¢.

This is not true for at least + = (n/4\). Hence m cannot be nonzero. If
m = 0, we saw that E[U] = 0 = E[V]. Next

K(r) = E[U?]cos A(t + s)cos As + E[V2]sin A(z + 5)sin As
+ E[UV]sin A(z + 25s)  for all ¢.

The RHS should depend only on ¢ This is possible if and only if
E[UV] = 0 and E[U?] = E[V'?]. This gives the necessity of the stated
conditions.

EXAMPLE 4. Periodic Oscillation. Define a complex-valued process X (7, w)
by X(t,w) = X(w)f(?), t € R, where X is a second-order centered real RV
and f is a deterministic function. Show that X (7) is wide sense stationary if
and only if £(¢) is of the form f(r) = ce®*%), where i = \/=1. [In the
complex-valued process case the correlation function is defined by
E[X(s) X (£)], where the bar denotes the complex conjugation.]

Since E[X] =0, the mean function m(;) = 0. Let (1) = ce/®*9. Then

E[X(s + )X ()] = E[X2]c?e/Mi+5)+8) g=iAs+0)

— CZGZeMr'



7.1. Definition and Examples

where o2 = E[X?]. Hence {X(f)} is wide sense stationary. Note that the
covariance function is proportional to the average energy of the oscillation
per unit time with random amplitude.

To see the converse, let X(?) be a wide-sense-stationary process. Then

E[X(s + X)) = EX?1f(s + ()
is necessarily independent of s. Taking ¢ = 0, we see that

| f(s)]> = constant = ¢?,  say.

Therefore, f(s) = ce'), where y(s) is a real function. Then
f(s + t)}'(_s) — CZeh[/(s+l)e——i1[,(.\‘) — C2ei[‘[,(s+r)—‘[,(s)]

is independent of s. Thus

d d d
as—[np(s +0)— U s)) =0 or %‘1’(“ +1) = Enp(s)
Since this is true for all ¢,
Y/(s) = a constant = A,  say.

Then y{s) = As + 6 and hence f(1) = cels+).

EXAMPLE 5. Random Telegraph Signal. The role of a random telegraph
signal is basic in the construction of random-signal generators. A random
telegraph signal is a stochastic process X (¢) defined by

X =¢-DO, >0, (7.1.4)

where the state space of X (¢) is the set {—1, 1}, the times at which the process
changes the values between —1 and 1 are distributed according to a Poisson
process N(f) with intensity rate A, and ¢ is a random variable independent
of {N()} and such that P{¢ = 1} = J = P{¢ = —1}. A typical sample path
of this process is given in Figure 7.1. First note that

E[X(?)) = E)E[(-DV) (7.1.5)
and
EX(6)X()] = EE2E(-D"I (1)), (1.1.6)

Set Y(r) = (—I)N('). Then we have to compute E[Y(#)] and E[Y(s)Y(?)]. To
compute these expectations, we need to find the probabilities P{Y(r) = 1}
and P{Y() = —1}. Now
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Figure 7.1

P{Y () = 1} = P{even number of changes in [0, ]}

e N i M = e Mcosh At (7.1.7)
~ (2K)! © o

P{Y(f) = —1} = P{odd number of changes in [0, ]}

— oA\ ~ (At)zk-H — oA
=¢ 2 kT e Msinh Ar. (7.1.8)
k=0 :

Therefore
E{[Y®)=1P{Y(») = I} + (- P{Y(t) = -1}
= e M[cosh At — sinh \f] = 72N, (7.1.9)
Using (7.1.9) in (7.1.5), m(t) = E[X(?)] = e M E[¢] = 0. Next
ElYSY@)] = 1P{Y(s) =1 =Y() or Y(s) = =1 =Y(@)}
+ (—=1)P{Y(s), Y(z) are of opposite signs}
=P{Y(s) =1 =Y(@)}+ P{Y(s) = —1 = Y(1)}
—P{Y(s)=1=-Y()}
— P{Y(s) = —1 = —-Y(1)}. (7.1.10)
Now let s < #; the case t < s follows similarly. Then
P{Y(s) =1 = Y()} = P{Y(s) = 1} P{Y(t) = l|Y(s) = 1}
= e cosh As P{even number of changes in (s, 1)}

= e Mcosh As e M=% cosh A(t — s). (7.1.11)
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7.1. Definition and Examples

Similarly
P{Y(s) = —1 = Y()} = e Msinh As e M=Icosh A(r —5), (7.1.12)
P{Y(s) = =1 = —Y(1)} = e Msinh As e M =Isinh A — 5), (7.1.13)

P{Y(s) =1 = —Y(?)} = e Mcosh As e M Iginh A(r — 5).  (7.1.19)
Using (7.1.11)«7.1.14) in (7.1.10) and simplifying, we get
E[Y()Y(@) = N9 s< 1
Using this in (7.1.6) and noting that E[¢2] = 1, we obtain

K(s,1) = E[X(s)X(1)] = e 2M=sl = K(|t - 5]).

This proves the wide sense stationarity of X(¢) [this topic is continued in
Examples 7.2.6 (4) and 7.3.7 (2)].

EXAMPLE 6. Random Binary Noise. A stochastic process X(f) is called a
random binary noise if X(f) = Y(t — U), where Y is a process taking values
from {—1, 1} on successive intervals of fixed length T and such that the RVs
Y(¢) are independent for the values of ¢ lying in nonoverlapping intervals
and U is the random shift of time such that U is uniformly distributed on
(0,T) and is independent of Y(s). We claim that X(¢) is wide sense
stationary.

First note that X (r) = Y(t — U) with
YO) =Y, for (n—1DT<t<nT.
where the RVs ¥, are IID with P{Y, = 1} = } = P{¥, = —1}. Since the
RVs U and Y(¢) are independent we see that
E[Y(t —u|U=u] = E[Yt—u] =0
and consequently
m(t) = E[X(@®)] = E[E[Y( — U)|U]] = 0. (7.1.15)

Therefore, K(s,#) = E[X(s)X(¢)]. It remains to compute K(s, ¢).

The time axis is divided into successive intervals by the points 0, 7, 27,
T, ... If s and ¢ lie on two different intervals, it follows from the
independence assumption on the RVs ¥, that K(s,f) = 0. Let [t —s| > T.
Since U is uniform in (0,7), it follows that E[X(s)X(¢)|U] = 0, and
consequently E[X(s)X(¢)] = E[E[X(s)X()|U]] = 0. Now let |t —s| < T
and s = nT. Then ¢ and s will lie in the same interval if

U+t—s|<T thatis Uu<T-t-sl (7.1.16)
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7. Stationary Processes

The event (7.1.16) occurs with probability (T — |t — s|)/T. Therefore

lt—s .
Exex@ =)'~ 71 Hl-s<T
0 iflt—s|>T

The relations (7.1.15) and (7.1.17) imply that {X (¢)} is wide sense stationary.

(7.1.17)

EXAMPLE 7. Poisson Increment. Let N(¢) be a Poisson process with intensity
rate A. Define

X@®) =N@e+1)—N(@), t> 0.
Show that X(7) is a wide-sense-stationary process.
m(t) = E[X(@)] = E[N¢+ 1) = N@O]=A+1)—X=A (7.1.18)

for all z. Since a Poisson process has independent increments, it follows that
cov(X(s),X(¥)) = 0if |t —s| > 1,andsolets < t < s + 1. Then

cov(X(s), X (1)) = cov(N(s + 1) — N(s), Nt + 1) — N(?))
=cov(N@s + 1) = N() + N(t) = N@),N¢+ 1) = N@s+ 1)+ Ns+ 1)
N (7.1.19)
But
cov(iNGs+ 1) = NONE+1) - N(s+1))=0
cov(N() — N(@), N+ 1) = N@s+ 1) =0
cov(N() — N(s), N(s + 1) = N(?)) =0,

all following from the fact that N(f) is a process with independent
increments and s < + < s + 1 < ¢+ 1. Using these in (7.1.19), we get

cov(X(s),X(1)) = var(N(s + 1) = N@t)) = As + 1 -1
Therefore

M ——s) - <1
K(s,1) _{0 s> 1 (7.1.20)

a function depending only on the difference |t — s|. Relations (7.1.18) and
(7.1.20) imply that X(¢) is wide sense stationary.
ExaMmPLE 8. Let {X(¢), —co < ¢t < oo} be a Gaussian process. Then {X(7)}
is wide sense stationary if and only if it is strictly stationary.

The sufficiency is clear from the remarks we made after Definition 7.1.1.
Let X(¢) be a wide-sense-stationary Gaussian process. Arbitrarily fix a real
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number h and define Y(t) = X(r + h). Then my(f) = my(r) and K,(s,?)
= K, (s, ?). Therefore, {Y(¢)} has the same joint distributions as {X(z)}. This
proves that X (/) is strictly stationary and, hence, also our claim.

Let {X(r),t € R} be a wide-sense-stationary process. From the criterion
for the mean-square continuity of a stochastic process (see Theorem 6.2.9),
it follows that X (¢) is mean-square continuous for every t if and only if the
covariance function K(1) is continuous at t = 0. We always assume that this
continuity assumption is satisfied. Regarding the mean-square differentia-
bility, a wide-sense-stationary process X(t), —oo < t < o0, is mean square
differentiable if and only if the covariance function K(t) is twice differentiable
att = 0.

The periodic oscillation process is mean-square differentiable. But the
random telegraph signal, binary noise, and Poisson increment processes are
not mean-square differentiable.

Theorem 7.14. Let X(t), t € R, be a separable wide-sense-stationary process
with covariance function K(-) continuous at t = 0 (and hence everywhere).
Then:

(1) Almost all sample paths X (-, w) are continuous in any finite interval if

2K(0) — K(1) — K(~1) = oflt|/[log|¢]|*)

for |t| - 0.
(i) Almost all sample paths are continuously differentiable in any finite
interval if

6K(0) — 4K(i) — 4K(—1) + KQ1) + K(=21) = ollt|*/log|e]|*).

7.2. Spectral Representation

Consider the stochastic process X (f, w) of periodic oscillation [see Example
7.1.3 (4)]. The process is defined by separating the variables X(,w)
= X(w)e'’™. (Note that we have absorbed ¢ into X(w) and hence X is a
complex RV.) Separation of variables is a well-known method in the theory
of partial-differential equations and where the general solution is represent-
cd as a superposition of particular solutions. The theory of stationary
processes has a parallel to this situation. That is, the principle of superpo-
sition can be used to represent wide-sense-stationary processes. A similar
representation is possible for the covariance function of the stationary
process.
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7. Stationary Processes

Consider the superposition
n .
X(0) = 3 XM
k=1

of n periodic oscillations with independent and centered random ampli-
tudes X, and different angular frequencies A,. The process {X(7)} is wide
sense stationary, and the covariance function K(¢) is given by

n X n .
Kt)= 3 o,%e'A*’ =d 3 pke'Ak', (7.2.1)
k=1 k=1

where o} is the average power of the oscillation process, a2 = 2_, o7 and
Px =(o2/a?). Note that {p;}, 1 < k < n, is a probability distribution.
Now expression (7.2.1) suggests the following representation

K@) = [ eNdF(\) (1.2.2)

where the integral is taken between suitable limits and F is a distribution
function. Similarly, the form

X0 = S X oM (123)

=-n

suggests a representation
xX@) = [T eNar, (7.2.4)

where Y()) is a centered second-order process with orthogonal increments.
We begin with Khintchin’s theorem.

Theorem 7.2.1. (Khintchin). 4 function K({) is the covariance function of a
wide sense stationary and mean square continuous process with zero mean
and unit variance if and only if it admits the following representation

= [T oM
K@) = [ _ eMaFQ),
where F()\) is some distribution function.

PROOF. (Necessity). Let K(f) be the covariance function of a MS contin-
uous wide-sense-stationary process. Then K(¢) is continuous for all 7. Since
K@) < K(0) = 1, K(?) is also bounded. We have seen in Chapter 6 that a
covariance function is positive definite. That is,

n n
X 2 K(t;—14)z7,>0
Jj=1i=1
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for any reals ¢, ...,¢, and complex numbers z, ..., z,. Now recall
Bochner’s theorem on the representation of characteristic functions (see
Chapter 1). Since K(#) is a continuous positive definite function with
K(0) = 1, it admits, by Bochner theorem, the representation (7.2.2) for
some distribution function F(A). O
PROOF. (Sufficiency). Let K(f) be the function defined by relation (7.2.2).
We have to produce a wide-sense-stationary process X (f) whose covariance
function is K(x). For an arbitrary integer n > 0 and real numbers
4, ..., b, let X(4), ..., X(1,) be an n-dimensional random vector follow-
ing the Gaussian distribution with

E[X(#)] =0, var(X(y)) =1, 1<k <n
and the correlation coefficient of X(z;) and X(#;) given by
E[X(#)X ()] = K@t — 1) (7.2.5)

The Gaussian process X (f) obtained this way is wide sense stationary, by
definition, and is the process that we are looking for. O

In the case of real valued stationary process the representation (7.2.2)
takes the form

K@) = [~ cos MrdF(. (1.2.6)

The spectral representation of a wide-sense-stationary process is due to
Kolmogorov, who established (7.2.4) using Hilbert space methods. More
direct methods are known now.

Theorem 7.2.2. A centered wide-sense-stationary process X (t) admits a spec-
tral representation in the form

x@) = [~ e™dy(, (12.7)

where Y(N) is a centered second-order process with orthogonal increments.
If X(¢) is real valued, the representation is given by

X(@) = f cos INdY(M) + f sin tAdZ(\) (7.2.8)

where Y and Z are uncorrelated to each other and are centered second-
order processes with orthogonal increments.
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ProOF. Let F(A) be the spectral distribution function of X(r) obtained
through Khintchin’s formula (7.2.2). Let £ and 7 be two continuity points
of F. Recall that the continuity points of F are dense everywhere. So if we
can define Y(A) at continuity points of F, then by continuity we can extend
its definition at the discontinuity points (which forms an at most countable
set).

Step 1. There is an obvious guess for the definition of Y(A). If (7.2.7)
holds, then by analogy with the inversion formula for Fourier-Stieltjes
integral we define, for £ <,

1 T L
Yr(¢,m) = Ef_TX(t)j; e "Nd\dt
1 T el e—irf

We have to show that the integral in (7.2.9) exists and converges, in mean-
square sense as T — oo, to a limit Y(§,1). Now let 0 < § < T. Then

]

E[|Yr(¢m) — )fs(ﬁ,n)lzl
_ e—uf N e i e—irf
[‘f X(t) . dt—f_SX(t)Wdt
]
e—ur, _ e—u.f ei.m _ eisf
f —2mit 27is EIX ()X (s)]drds
S<phi<T S<|s|l<T

© ity _ e—i1£ ei:r, _ eis.f Ai—s)
- f f j; o —2mit 2mis ¢ drdsdF (),
S<t|<T S<|s|<T
by Khintchin’s formula (7.2.2),

—ur, —e —it§ IM 2
—f ’ f s

ST

—ur, e‘llf
o] [ x0tlis

—27it
S<lILT

I

dF (). (7.2.10)

We claim that the inner integral in (7.2.10) converges uniformly to zero as
S, T — oo if, for any fixed e > 0, |A — 5| > eand |A — ¢| > e To see this,
rewrite the inner integral as
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e im _ e—iré N n e—it(x—i\)
f T ¢ 4= f ff 3w xdl (12.11)

s<<T s<li<T
Then

fsrf"cos tx — Ndxat| = |fsrt_l[sin tlg—A) —sin 1(¢ — A)]dtl

cos t(n — A) 7\) T cos t(n — A)dt’+ cos 1§ — N) r
St -N t2(n — N E—N s
* fs C(:Z(tg(g— A)}‘ a
<223 - N gAY
Now let S, T — o0. Then
E(Yr(&n) ~ Y5’ >0  asS,T—>o.  (1212)
Hence there is a second-order variable Y(£,7) such that
E[|YpEn) — YEP1 >0 as T — oo. (7.2.13)

Step 2. If (¢,m) and (a, B) are disjoint intervals, Y (¢, 1) and Y(a, 8) are
orthogonal.

Let ¢, 7, a, and B be any four continuity points of F(A). From (7.2.13)
it follows that the correlation E[Y (£, 1) Y(a, 8)] exists. Let us compute this
correlation.

EYEmY@B)] = Jim ElY(& )Y Bl

= Jim [* forzfe"cos '(x — A)dxdtforsz cos u(y — N)dy dudF().

T—o0 /=
(7.2.149)
Using the well-known fact that
1 fora >0
T - 0 _: 2
lim L [ sinal, =1] MAy=! 0 fora=0
T—oo T 0 t m 0 t 1
~3 fora <0
we obtain
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j:ofen cos t(x — N)dxdt = ]:0 ¢ [sin 1(n = A) = sin 1(§ — N]ar

if <A<y (7.2.15)
if n<Aor A< ¢,
if A=¢or Ul

I
ny O 3

Using (7.2.15) in (7.2.14), we obtain

nnB )
ElY¢En)Y(a,B)] = j;va dF(A) fpAB>EV a.

0 otherwise

(7.2.16)

The expression (7.2.16) proves Step 2.

Step 3. There exists a second-order process Y(A) with orthogonal
increments and

EllY() — Y] = F() — F(¢). (7.2.17)
From (7.2.16) it follows that

EUY@n)’) = [ dFQ) = F) = FE).  (1.2.18)

Moreover

E[|Y&n) — Y(a,)’] = |FE) — F(a)|

-0 as a, £ &> —oo,

and consequently there exists a second-order process Y () such that
Jim E[[Y(En) - Y@)'] = o. (7.2.19)

Therefore
Y(¢n) = Y(n) — Y(§). (7.2.20)

Using expression (7.2.20) in (7.2.16), we see that Y(-) has orthogonal
increments, and using (7.2.20) in (7.2.18), we obtain (7.2.17). This proves
Step 3.

Step 4. We complete the proof of the theorem in this step. Let £ and 7
be two continuity points of F with ¢ < 7. Then
E[X@)(Y(n) — Y(£))]

- %f_ol K@t —s) fen e™duds  [by (7.29),(7.2.13), and (7.2.19)]
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- 717 f_o:o fooo fe" e cos s(u — N)dudsdF(\)  [by (7.2.2)]

1 roo © L. )
=7 7 s [sin sty — A) — sin (& — N ds dF(N)
= j;n e’"dF(\)  [by the value of j:o t~'sin ar dt].

(7.2.21)

Since Y(A) is a process with orthogonal increment and satisfies (7.2.17), it
is easy to see that the integral = ¢* dY()\) exists as the mean-square limit
of Riemann-Stieltjes sum. Using this fact along with (7.2.21) and Khintchin
formula (7.2.2), we obtain

- e— T .
E[X(t) f_w e""dY(A)] = lim f_ , N GFQN)
_ f:, ¢~ GF(\) (7.2.22)
= K(t — ),
and again for the same reasons we obtain

E[ I e""dY(A)W] = [ ¢MGFQ) = K(t - ).

Therefore

E[ ’)((r) - Z e”"dY()\)'z]

= ENXOP) - 29[ x() [ N ave |+ | |f_°; ‘"“‘”‘*)r]
=0 [by(7.2.22))

V'his gives our spectral representation (7.2.7) in the case when F is
continuous.

If ¢ is a discontinuity point of F, then Y(¢) can be defined by
¥(§) = lim,; Y(n). All the essential formulas (7.2.17)«7.2.22) hold so that
the proof of (7.2.7) goes through. This completes the proof. O

Next we make a few remarks that contain some relevant information.

Remark 7.2.3. Let X(1) be a wide-sense-stationary process with covariance
function K (7). [Recall that we have been assuming that X (¢) is centered

179
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and mean-square continuous.] Then Khintchin’s formula gives us a
method to evaluate the spectral distribution function F(A) of X(¢). All
we have to do is find the inverse Fourier-Stieltjes transform of K(7). In
several of the practical situations |K(f)| approaches zero so rapidly as
[t| = oo that £2° |K(f)|dt < co. Consequently, it is possible to repre-
sent K(?) as

K@ =[" 2 e f(A)dA. (7.2.23)

If (7.2.23) holds, then F(\) = f*, f(x)dx, and f(A) = F'(A). The
function f(A) is called the spectral density function or the power spectrum
of X(#) [or of K(7)]. Representation (7.2.23) avoids the Stieltjes integrals
in (7.2.2). Inverting (7.2.23), we get

SO = 5 [ Nk, (7.2.24)

Remark 7.2.4. Consider the discrete time process X, = a,X,n = 0, 1,
+2, ..., where X is a complex RV with zero mean and unit variance
and {a,} is a doubly infinite sequence of complex numbers. It can be
shown, as in Example 7.1.3 (4), that {X,}”  is a wide-sense-stationary
process if and only if X, = Xe™. This represents a (discretized)
harmonic oscillation with random amplitude and phase. However,
e = ¢"A+2k7) for integral values of k, so that the angular frequency
is defined only to within an additive constant 2k 7. Consequently, we
can assume that A € [—7, 7], thereby taking into account only the
oscillations with frequencies lying in [—, ). Therefore, representation
(7.2.7) reduces to

X, =/ ’; ™y (N, (7.2.25)
and (7.2.23) takes the form
K(n) = [ " e i) a, (1.2.26)

provided that 2 __|K(k)| < oo. Now (7.2.24) becomes

Q) = 5 k S e kAK (k). (7.2.27)

Remark 7.2.5. If X(¢) is a real-valued wide-sense-stationary process, we
have [see (7.2.8)]



7.2. Spectral Representation
(e 2] (e 2]
X)) = j(; cos \edY(N) + f(; sin AtdZ(M).

Here the processes Y and Z are given by

YQ\) = i lfT"'AX(d
()—Tl_{rgoﬁ ot sin N ndt,
o (1.2.28)

. o -1 -
ZM) = Jim > [, 0710 = cos )X (@) a

Examples 1.2.6

ExampLE 1. Let {X,}*_ be a sequence of centered and uncorrelated RVs
with unit variance [see Example 7.1.3 (1)]. Then {X,} is a stationary
sequence with

K©0) =1 and K(n) =0 forn+#0.

From (7.2.27) we have the constant power spectrum f(A) = 1/27. Actually,
the wide-sense-stationary sequence of uncorrelated centered RVs is charac-
terized by a constant power spectrum concentrated on [—, 7).

EXAMPLE 2. Moving Average Process. In Example 7.1.3 (2) we considered a
moving average process Y, defined by a linear combination of uncorrelated
RVs. Replacing the finite sum (7.1.3) bn infinite one, let us set

< k
Xn = kgoa Xl—k’

where a € R, |a| < 1, and all Y, are centered uncorrelated RVs. As in
l:xample 7.1.3 (2), we have

K= 3 da"=—"=  n>o,
k>n 1l —a
o that the covariance function K(n) is of the form
K(n) = Aa"l, A>0, la| <1, n=0=1,+2 ... (7229)

I ¢t us compute the power spectrum of this K(-).
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7. Stationary Processes

| .

A) = 5- K(k)e >

N 27,/(:2_00 (k)e
AT -
=2_[k2 a” etkA_'_Eaelk)\]
=—00

A kA —ik\
=2 a e + P de (7.2.30)
A ae? 1

== — + _
271 —ae* 1 —qae™

_:’_[_1—_02_

T 2 |e”‘—a|2 :

ExaMpLE 3. Consider the wide-sense-stationary process X(f) = U cos At
+ Vsin At, where A > 0 and U and V are uncorrelated RVs with zero
mean and unit variance. Then, as seen in Example 7.1.3 (3), the covariance
function K(¢) is given by K(f) = cos Ar. Now the spectral distribution
function of X (¢) is given by

0 if u <-—A
Fuy=(} if-A<u<A. (7.2.31)
1 fu>A

This is obvious from (7.2.6).

ExAMPLE 4. Random Telegraph Signal. Consider the wide-sense-stationary

process X(t) = Y(— l)N', where Y is an RV with P{Y = —1} = P{Y
= 1} =1, N(r) is a Poisson process with rate u and, Y and N(f) are

independent. It is shown in Example 7.1.3 (5) that K(1) = ™.

Extend the domain of K(-) to negative ¢ by defining K(—t) = K(f). Then
K(f) takes the form K(f) = ¢ 2*"|. Let us compute the power spectrum of
the random telegraph signal process:

o = 5'; [7 Mgl gy

_ 1% ouian I (o _u+iry
= wa_w e dt + fq;j(; e dt

Iroq | (1.2.32)
= E[zp—n\ + 2,L+i>\]

_ 2p
m4p® + N2)’
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Figures 7.2 and 7.3 plot the covariance function K(r) = e 2l and the
corresponding power spectrum f(A).

The p that appears in the functions K and f is the rate at which the
changes in the telegraph signal occur. But the graph of K(¢) (see Figure 7.2)
approaches the 2ur axis exponentially, and K(¢) is almost zero for values of
t that are only a few multiples of (2)”' or p~'. Thus the reciprocal p~' of
the intensity rate of the Poisson type changes of the signal gives the length
of time that is needed for the correlation between the signals X(¢) and
X(t + u) to taper off. This interpretation of the intensity rate p of the
Poisson process helps us to estimate (the parameter) p. To do this, one has
to find out for how long there is any accountable correlation between X (0)
and X(f). Next consider the graph of f(A) on the (A/2) X f(A)) axes. At
the origin f(-) takes the maximum value 1. For small values of A/2y, the
power spectrum stays close to this maximum value. As A increases, the
graph steadily approaches the A/2u axis. Processes with a flat power
spectrum are of great importance (a white-noise process is an example of
it—we study white-noise processes in Chapter 9). In the present case we can
flatten the power spectrum by increasing the Poisson intensity rate and
thereby increasing the length of the interval in which the power spectrum
is approximately constant. In many practical problems we may not be
interested for all A in —o0 << A < o0, and so restrict our attention to a finite
interval [T, T]. By taking p sufficiently large we can make f(A\) =~ f(0) in
this interval [T, T]. We remark further about the flat spectrum when we
consider white-noise processes.

ExaMPLE 5. Find the power spectrum f(A) if the covariance K(¢) is given by
(a) K@) = 4e™ (1 + at);

(b) K@) = e + alt] + %aztz).

K(1) o

1 1

0 2ut 0 A 2u
Figure 7.2 Figure 7.3
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7. Stationary Processes
First set Y(a) = (4/27) §2, e~ e dr. We leave it to the reader to
show that

A a

Now
A (e —iAt—alt|
NEE (1 + alt|)dr

A i A (o .
_ ﬁfoo e-,)q—altldt + Ef - altle—m—ahldt
—o0 -

= a) ——a‘;—:f

A _a ad (a* + ¥) - 24° .
TRE+N T (@ + )\2)2 [using (7.2.33)]

2A a

T @+ N)F

Then set Y(A) = i e~ "M=dlil gr. Note that

27

a

¥\ = e+ ) (7.2.34)

Now

| 242
fQ) = z—wf_w e M ““'(l + alt| +‘i3—)dt

2
- Bt Gy

= L [using (7.2.34)]
37\ + a?)’ e

EXAMPLE 6. Random Binary Noise. In Example 7.1.3. (6) we computed the
covariance function of the random binary noise and obtained

K(r) = {E)T_ /T < T (7.2.35)

otherwise
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7.3. Ergodic Theory of Stationary Processes

K(t)

-T 0 T

~

Figure 7.4

o)

Figure 7.5

It can be shown that the power spectrum f()) in this case is

2 sinZA—T
7T 2

The graphs of (7.2.35) and (7.2.36) are given in Figures 7.4 and 7.5,
respectively.

) = (7.2.36)

7.3. Ergodic Theory of Stationary Processes

Consider a physical process governed by a stationary process. Suppose we
want to compute some statistical averages of the process and instead what
1s available is only a long-term observation of a single sample function. In
such situations it is natural to ask whether it is possible to determine the
statistical average from an appropriate time average corresponding to a
single sample function. If the statistical or ensemble average of the process
equals the time average of a sample function, the process will be called
ergodic. This section presents some theorems that give conditions under
which a stationary process becomes ergodic.

The ergodic theory has its origin in classical statistical mechanics.
Consider a conservative dynamical system with n degrees of freedom and
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7. Stationary Processes

whose equations of motion are given by

dqg; dH dp,  OH =1
7;—a—pi, E——‘a—qi, 1= 1, ...,

where H = H(p;(1),q;(f); 1 <i < n) is the Hamiltonian of the system,
Q> ---»q, are the generalized coordinates, and p;, ..., p, are the corre-
sponding generalized momenta. The 2n-dimensional space S = {(g;, ...,
Gn>Pys---+Pn)) is called the phase space of the system. Let T, be a
transformation of § into itself such that x,,, = T/x, is the state of the
system at time s + ¢ if x; is the state of the system at time s. Liouville’s
theorem states that the volume is preserved under the transformations 7,
Because of the conservative nature of the dynamical system, a point in the
region between two surfaces of constant energy will remain in the region
forever. So a phase function

X(’) = X(ql (l)v e ’qn(l)’pl (t)’ oo ’pn(t))

defines a strictly stationary process. Since conservative systems have
constant energy (ergos) e, the possible trajectories lie on the surface H = e.
In such a context the physicists wanted to establish the equality of space
and time averages. These results came to be known as ergodic theorems.

Let {X,} be a stochastic process chosen to describe a physical process.
One would like to measure from the observation of the process {X,} the
statistical averages such as the mean function m(n) and covariance function
K(m,n). An experimenter observes a single realization of the process for a
long period 0 < k& < N and wants to use this observation to estimate the
statistical average, say, E[X,], n > 0. He forms the sample average
N~'2)_ X, and wants to know if it converges to a limit as N — co, where
the convergence is in suitable probabilistic sense. Let {X,} be a strictly
stationary process such that E[| X,|] < oo for all n. Then m(n) is a constant
m. It is natural to ask if N "23}' X, — m, with probability one. Ergodic
theorems give conditions for such a relation to hold.

Theorem 7.3.1. (Strong or Individual Ergodic Theorem). Let {X,}=, be a
strictly stationary process with E[|X,|] < co. Then the sample mean
n! 2" X, converges to a limit with probability one. If, moreover, {X,} is a
second-order process with bounded variance and such that the covariance

Sunction K(n) — 0, as n — oo, then
n—1

Pin '3 X, om= E[X,,]} = 1. (7.3.1)

0
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7.3. Ergodic Theory of Stationary Processes

PROOF. Set Sy = (b—a) "(X, + X,.q + -+ + X,_;). The first part of
the theorem claims that S, converges with probability one to a limit as
n— . Let C denote the contrary event, that is, C = {w:
Son(w) does not converge}. Then we have to show that P{C} = 0. Let us
assume the contrary, that P{C} > 0, and arrive at a contradiction (which
will establish the first part of the theorem).

Set S* = 11m sup Sy, and S, —mlugl° inf S, Consider a partlcular

realization X (n) = x,, n >0, from C. Set in this case, S* = s* and
Se = 4. Then there exist rationals a and f such that 5, < a < 8 < 5*.
Consider all such intervals C, = (a,,,) With rational end points. By
assumption, P{C} > 0; therefore, there is a k > O such that S, < a; <
< 8*, and P{C,} > 0. Corresponding to such a realization, consider the
integral interval (a,b) for which S,, > B and S,, < B for all ¢ € (a,b).
Call this interval a “special interval WRT 8.”

We claim that two special intervals do not overlap. Let (a,b) and (c,d)
be two special intervals such that a < ¢ < b < d. Since (g, b) is special,

Sp,>B and S, < B foralli € (a,b). (7.3.2)

Noting S, = (b — @) '[(c — @)S,. + (b — ©)S,,], it follows from S, > B

that either S,. > Bor S, > B. But S,. > B by (7.3.2). Similarly, S, 3 8,

since (c,d) is special. This shows that (g, b) and (c,d) are nonoverlapping.
Let us now define the so-called p-special interval. A special interval

(a, b) is called p-special if the rank (b — a) > p and it is not contained in

any other special interval whose rank is greater than p. From what is shown

above, it is easy to see that two p-special interval lie outside of each other.
Let C, denote the event

{Se < a < B< S* and there is a7 < p with S,, > B}.

Then C is the limit of such events and P{C} = lim,_,,, P{C,}. Since we
assumed that P{C} > O, there is a p such that P{C,} > 0.

Our next step is to further decompose C, into mutually exclusive events.
If the event C, occurs, one can find a least 7, among all r+ < p such that
Sor > B. Now the interval (0,7,) is either p-special or is contained in a p-
special interval a < 0 < b, and vice versa. Set —a = k and b —a = m.
Since the p-special intervals do not overlap, the event C, is decomposed

into Cy,,. corresponding to the intervals (—k, —k + m). That is,
C=UUCyp 1<m<p 0<k<m—L
m

Since {X, } is strictly stationary, the event Cy,, transforms into Cy,,, under
= (p + k) such that
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P{Cim} = P{Com} and E[X|Cim] = E[X;|Com]-  (7.3.3)
Also
PCIEIC,] = 3 S P(Con) BICin]

m—1
= mél P{COm} k§0 E[XkICOM] [by (733)]
= mél P{Com} E[MSgy|Com)
> 3 P(ConlmB  (since Som > fon Coy)

p m-—]
:=B 2: 2 Pu%m}
m=1 k=0

= BP{C,).

Hence E[X,|C,] > B. Therefore, E[X,|C] > B, since the events C, con-
verge to C.

Working similarly with «a (instead of f), one can show that E[X;|C]
< a. That is, we have shown that

E[X]C] < a < B < E[X|C],
if P{C} > 0. This is the contradiction we have been looking for. This
proves the first part of the theorem.

To prove the second half of the theorem, let the hypothesis K(n) — 0,
as n — oo, hold. The claim is that

P{Sy, > m} =1, m=E[X,]

For the moment let us assume that the variance of S, goes to zero as
n — oo, that is, var(Sy,) — 0. Then by Chebyshev’s inequality, S;, = m in
probability. But in the first half of the theorem we have shown that S,
converges with probability one. Hence the theorem will be proved once we
establish that var (Sp,) — 0, asn — co. Now setting o = var(X,) = K(0),

n—1 2
var(Sp,) = E[n_l ’EO (X, — m]

= n"%[n var(X,) + 2 2 K(G-i)
0<i<, <n—1

= n'z[na2 +2 ”il (n- i)K(i)].

i=1
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Since K(n) — 0, as n — o0, for any € > 0, we can find an N > 0 such that
|K(m)| < ¢ for all m > N. Therefore

N—-1 n—1
var(Sy,) < n_z[na2 +2 X (n—i)+2 3 (n— l)]
i=1 i=N
< n"Z[na2 +2(N=D(n—1)+2n—N—1)(n- N)].

Choosing a sufficiently large » and small € > 0, we can now make var(Sy,)
arbitrarily small. This is what we sought to establish and hence this proves
the theorem. O

It should be remarked here that under the conditions of the individual
ergodic theorem it is also true that the sample mean converges in mean;
that is, there is an RV £ such that n~' 27 _, X, — ¢ with probability one and
lim,_,, E[|(n"'27_, X;) — &|] = 0. Here, of course, we do not assume the
existence of finite variance of X,

Definition 7.3.2. Let § denote the space of all sequences {x,,,n > 0} of real
numbers. An operation 7: & — § is called a shift operator if T(x,,
Xpy...) = (x1,x5,...). Asubset A C § is said to be shift invariant if
TA C A.

Definition 7.3.3. A strictly stationary process {X,} is said to be ergodic if
P{(Xy, X,,...) € A} = 0 or | for every shift-invariant set 4.

Theorem 7.3.4. Let {X,} be a strictly stationary ergodic process with finite
mean m. Then

n
P{lim n' 3 X, =m) =1
k=1

n—o0

PROOF. For each real number r let us define the set

n—oo

n
A, = {x €S limn' 3 X, < r}.
K=1
It can easily be verified that A4, is shift invariant and consequently
n
P{(Xo. X....) €A} =P lim n' T X < r}.
n—oo K=1

By the individual ergodic theorem P{lim, ,,,n '30 | X, = &} = I, for
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some RV ¢ Because of this and the fact that A4, is shift invariant, we have
P{¢ < r} = 0 or 1 for every real r. Therefore, { is a constant RV. But, as
remarked earlier, it is also true that

Jim E[ (n"' é. xk) - £|] = 0.

Consequently, E[¢] = E[X,] = m, and hence ¢ = m. This completes the
proof. O

Theorem 7.3.5. (Mean-Square Ergodic Theorem). Let {X,} be a wide-sense-
stationary process with mean m = E[X,). Then
2
]=o

lim E [

n—oo
where Y*(0) = Y(0) — Y(0 —) and Y is the process that appears in the
spectral representation (1.2.25) of the process {X,)}. Consequently, the
limiting time average lim,_,,, n~'=}_, X, equals the space average m if
and only if Y*(0) = 0.

n'S X, —m—Y*0)
k=

PROOF. Let F be the spectral distribution function of {X,}. Define Z and
G as follows:

e ifA <0
Z0) = {yo\) —Y*0) A0
_(FX) A <0
GO = {F(A) —FO0)+ FO0-) x>0

Then Z(\) is a process with independent increments and

E[Z@) - Z®)'] = G@) - GE&).

and G is continuous at the origin. Note that
X,—m=["emay(\) = [* e™dz() + Y*(0).

(Recall that in Theorem 7.2.2 we assumed that m = 0.) Now
|
— o

n! kél Xy —m— Y*(O)lz]

n! é' I e"“dz(x)lz]
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o ] ]

< G(e) — G(—e) + n? [sinzg]— (G(@) — G(—n)),

for small € > 0. Since ¢ is arbitrarily small and G is continuous at 0, as
noted above, we can make the last expression arbitrarily small, by taking
sufficiently large n. This completes the proof. O

Thus far we have restricted our attention to the stationary sequences.
Theorem 7.3.6 deals with a wide-sense-stationary process {X(¢)}. It gives a
necessary and sufficient condition in order that the space average m
= E[X(?)] is equal to the limiting time average

X = lim (2T)“[T X(0)dt
T—o -T ’
with probability one. We omit the proof.

Theorem 7.3.6. Let {X(¢)} be a real-valued wide-sense-stationary process with
mean m and covariance function K(t). Then

X = Jim @) [ XQdi = m

with probability one if and only if

. o (2T 1=t dr =
Jim 77 ( —ﬁ)K(z) t = 0. (13.4)

Examples 7.3.7

ExAMPLE 1. Consider the wide-sense-stationary process X(f) = U cos At
+ Vsin Mt that we treated in Examples 7.1.3 (3) and 7.2.6 (3). The
covariance function of {X(¢)} is K(f) = o%cos Ar. We claim here that K(¢)
satisfies the condition (7.3.4), and hence {X(¢)} satisfies the conclusion of
Theorem 7.3.6. But this is clear from

o T 2 -
!T j(; (I - Z_T)a cos )\tdtl = |2)‘2 5(1 — cos 2AT)|.
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EXAMPLE 2. Random Telegraph Signal. Consider the random telegraph
signal process {X (¢)} studied in Examples 7.1.3 (5) and 7.2.6 (4). We have
shown that the covariance function of this process is given by K(/)
= ¢ Ml We claim that this process satisfies the condition (7.3.4) and
hence the conclusion of the ergodic Theorem 7.3.6. For

2T 0\ - I 1—e™T
—1 _ 2\ - _ _
' f, (' 2T)" A =T “gnr?

-0 asT — oo.

Exercises

1. Let X(r) = sin Ut, where U is uniformly distributed on [0,27]. (a) If £ = 1, 2,
..., show that {X(1)},r = 1,2, ..., is a wide-sense-stationary process but not
strictly stationary. (b) Let ¢ € [0, 00). Show that {X(#),# > 0} is neither strictly
stationary nor wide sense stationary.

2. Let{X(r)}, t > 0, be a second-order stationary process with covariance function
K(). Set 6*(T) = T~ f X(s)ds. Show that

2
(1) =272 [ (T - 9Kk(s)ds, K() = %;j%[szoz(s)].

3. Let X(r) be a wide-sense-stationary process with covariance function K, (°). Set
Y@) =177 J",'+TX (s)ds, t > 0, and T is fixed. Compute the covariance func-
tion of Y(:) if

(@) Kx(s) = ™,

1—|s| if|s] <1
b) K = .
(b) Kx(s) {0 otherwise
4. Let{X,,n > 0} be a stationary, Gaussian, and Markov process with zero mean

function. Show that the covariance function K(-) is of the form K(m) = o2all
for some fixed a with la] < 1.

5. Let X, = =¥ ,0,1/2 cos(ayn — U,), where o, and g, are positive constants,
k=1...,N,and U, ..., Uy are independent RVs uniformly distributed on
(0, 2m). Show that {X,,} is a wide-sense-stationary process.

6. Let {B(1),t € R} be a standard Brownian motion and set X(¢)
=0 e (=9 gB(s), t € R, a > 0. Show that X(¢), r € R, is a wide-sense-
stationary process.
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7. Let {B(?),t > 0} be a standard Brownian motion. Show that X(r) = B(r + 1)
— B(r), t > 0, is wide sense stationary.

8 Let X,=(X+namod1), n=0, %1, +2, ..., where X is an RV uniformly
distributed on [0, 1] and a is a fixed irrational number. Show that {X, } is strictly
stationary.

9. Let X,,n=0,%x1,..., be a Gaussian process satisfying the equation
IR oax X,_x = ZF—oby Vx> @y # 0, by # 0, where all Y, are independent
unit normal RVs. Find conditions under which {X,,} will be a stationary solution
of this equation.

10. Let {X,} be a Gaussian stationary process with covariance function K{(m). Show
that {X,} satisfies the stochastic difference equation 2,?':00,( X,k =0,ay=1,

if and only if =}_ya; K(n — k) = 0.

11. Find the general Gaussian stationary process {X,} solving: (a) (X, + X,) = 0
and (b) (X,,3 — X402 + X,s1 — X,) = 0. [Answer: (a) X, ., = U cos(wn/2)
+ V sin(wn/2); (b) X, = U cos(nm/2) + V sin(nm/2) + W.]

12.Let {X(/)} be a Markov and Gaussian stationary process. Show that its
covariance function is of the form K(s) = e Show also that the power
spectrum of K is proportional to a Cauchy density. Discuss the discrete
parameter case given in Exercise 4.

13.Let {X(¢)}, ¢t € R, be a continuous wide-sense-stationary process with unknown
mean m and covariance function K(s) = ae 8 ¢ € R, where a >0 and
b > 0. Forfixed T > 0set X = T~ ff X(s)ds. Show that EX = m, that is, X
is an unbiased estimator of m, and that

var(X) = 24[(67)"' — (67) (1 - e™)]

14.Let {X(1)), t € R, be a wide-sense-stationary process and X (f) the nth
derivative of X(¢) that is assumed to exist. Show that X ")(¢) is wide sense
stationary with

K,(s) = (—=1)"K@(s),

where K, is the covariance function of X .

15. Show that the spectral density of the process X(¢), ¢ € R, defined in Exercise 7
is given by 0(1 — cos A)/mA%.

16. Let {X,), n =0, =1, ..., be a strictly stationary MC with finite number of
states, transition probability matrix M, and zero mean function, where M has

only simple eigenvalues. Find the spectral distribution of X,, in terms of the
eigenvalues of M.
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7. Stationary Processes
17. Show that the spectral density of:
ac’ (R + a* + b?)
AR + a® — b2 + 4a?b?]
(b)K() =a 2edll[cos bt — ab~'sin B¢|]] s

(@) K(t) = o?e ¥cosbr  is  f(N) =

2%ak
AR + a® + b%) — 4b2N]
(©) K(2) = o%e [cos bt + ab™'sin Bl¢]] s
20%a(a* + b?)
7R + a* — b%)? + 4a*p?]’

@) =

o =

() K1) = a2e™ (1 + alt] — 2222 +37'2)P) s

W=

18. Show that the covariance function of:

n

@fA = kZI ﬁkb,z( is K@)=m k§=:| a, bl e tulil
_fa for|Al<b i o
(b)fA) = {0 for [\| > b is K(t) = 2at'sin b,

for |A| < aor l)\l > 2a
fora < |A] <

0
©fA) = {b2

is K(1) = 26*¢7'(2 cosat — )sin ar.

19.1Is the process X, = X, n = 0, =1, ... ergodic?
20. Is the process X, defined in Exercise 8 ergodic?
21, Show that a process {X,} of IID RVs is ergodic.

22, Show that the moving average process defined in Example 7.1.3 (2) is ergodic.
23.Let X5 be an RV with probability density function given by g(x) = 2x for

0 < x <1 and O elsewhere, and X, is an RV uniformly distributed on
(1 - X, 1], given Xy, ..., X,. Show that {X,} is an ergodic process.
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Martingales

8.1. Definitions and Examples

Every gambler is naturally interested in finding some betting strategy that
would give him a net expected gain after making a series of bets. But it can
be shown mathematically that no betting system could convert a sequence
of “fair” games into an advantageous one unless the gambler has infinite
amounts of time and money. A possible interpretation of a “fair” game is
that the gambler’s expected fortune in game n + 1, given that the history
up to game # inclusive, is the same as his fortune in game n. The notion of
martingale corresponds to this interpretation. The term martingale is
actually a French acronym for the betting system of doubling the bets until
the gambler wins a game. But this should not mislead the reader into
thinking that the martingale theory is something restricted to gambling
strategies. The martingale theory is a powerful tool in probability theory
and this chapter presents only an introduction to this topic. The concept of
martingale is due to P. Levy, who introduced it in terms of consecutive
sums of RVs. It was J. L. Doob who explored it systematically and brought
1o light its unexpected potentialities (Doob 1953, Meyer 1966).

Consider a gambler who is playing a sequence of games in each of
which he wins with probability § or loses with probability . Let {Y,},
n 2 1, be a sequence of IID RVs denoting the outcome of each game such
that

PY, = 1) =} =P(y, = -1). (8.1.1)
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8. Martingales

Here {Y, = 1} (resp. {¥, = —1}) denotes the event that the gambler wins
(resp. loses) the nth game, n > 1. If the gambler employs a betting strategy
based on the past history of the game, his successive bets can be described
by a sequence of RVs.

b,=b,(%,....Y,_), n>2 (8.1.2)
Let X, be the initial fortune of the gambler. Then

X, =X+ 3 bY, (8.1.3)
gives his fortune at the end of nth game. We claim that
ElX, |¥%,.. %] =X,. (8.1.4)
To prove this claim, first observe from (8.1.3) that
Xor1 = Xy + b, Yy
so that
E[XIH-lIX" ce Xy] = E[anyv cey X,] + E[b,,+| ):,.‘,l 'Y, c ey x,]
=X, t b,y E[le y,..., X.],
since X, and b, | are determined by Y, ..., ¥,;
=X, + bn+|E[)Z+|],
since (Y, } is an independent sequence,
=X,  since E[Y,,;] =0foralln > 0.

This proves that if the gambler has an equal chance of winning or losing a
game and his betting strategy depends on the past history of the game, the
game is “fair” as interpreted earlier. Note also that the expected winnings
in any game is zero. Hence these betting strategies do not help to change
fair games into favorable games. Having learned this, a gambler should no
longer be fascinated by some of these strategies that are only seemingly
favorable.

Definition 8.1.1. A stochastic process {X,,n > 0} is said to be a martingale
with respect to a process {Y,,n > 0} if, for alln > 0,

E[lx,]< o and E[X,l|%,..-.Y,]=X,. (8.1.5)

We call {X, } a submartingale WRT (Y, } if, for all n > 0, X,, is a function
of (Y,..., %)
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EX}] <o and E[X, |%,....Y,] >X, (816)

where X} = max{0, X,}.
We call {X,} a supermartingale WRT {Y,} if, for all n > 0, X, is a
function of (Y, ..., Y,),

E[X;]< o and E[X, % ..., ] < X,, (8.1.7)

where X,” = min{0, X, }.

Whereas a martingale describes a fair game, the submartingales and
supermartingales describe favorable and unfavorable games, respectively.

Next we define the same notions WRT o-algebras. (The reader is
advised to briefly review the relevant material from Chapter 1.) Let
(2, @, P) be a complete probability space on which all our random variables
are defined, and let {€,,n > 0} be a sequence of o-subalgebras of @ such
that@, C @,,,, n > 0. A stochastic process X,, n > 0, is said to be adapted
to an increasing sequence {@,} of o-algebras if, for every n > 0, X, is
measurable WRT @, that is, {X, < x} € &, forevery x € R. In Definition
8.1.1 we assumed, while defining a submartingale, say, that X, is a function
of (Yp,...,Y,). Let B, be the o-algebra generated by the RVs Y, ..., ¥,
n > 0. Then ®,, n > 0, is an increasing sequence of o-algebras. By saying
that X, is a function of X, ..., Y, we actually mean that {X, } is adapted to

{®,}.

Definition 8.1.2. A stochastic process {X,,n > 0} that is adapted to an
increasing family {@,,n > 0} of o-algebras is called a martingale if, for
alln > 0,

E[|X,]] <o and ElX,,,|@,]=X,. (8.1.8)
The adapted sequence {X,,&,,n > 0} is called a submartingale if, for all

n >0,
E[X}'] < o and ElX,,. &) > X,. (8.1.9)

A supermartingale is defined analogously.
Before presenting any example we consider some immediate conse-
quences of these definitions.

Proposition 8.13. (i) An adapted sequence {X,,&,,n > 0} is a submartin-
gale if and only if {—X,,&,,n > 0} is a supermartingale.

(i) If {X,.@,}and (Y,,q4,} are two submartingales and a and b are two
positive constants, then {aX, + bY,,@,} is a submartingale.
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8. Martingales

(iii) If {X,,@,} and {Y,,@,} are two submartingales (resp. supermartin-
gales), then {max{X,,Y,},&,} (resp. {min{X , Y,},@,)) is a submar-
tingale (resp. supermartingale).

The proof is easy and is left as an exercise. In this and similar
propositions the o-algebras {@,} can be replaced by a process {¥,}, (i.e., {X,}
is a submartingale WRT (Y} instead of WRT {&,}).

Proposition 8.1.4. Let {X,} be a martingale WRT {@, } (or WRT {Y,}). Then:
() E[X,+x1@,] = X, for every k > 0, and (ii) E[X,] = E[X,], for all
n>0.

ProoF. The proof of (i) goes by induction. The relation in (i) is certainly
true for k = 0, since X, is @,-measurable, and also for &k = 1, by the
definition of a martingale. Let us assume that it holds for some i, that is,

ElX,..|€,] = X,. (8.1.10)
Then
ElXy,i411€,] = E[E[Xp4in11@04)12,]
= E[X,,;|®,],  since {X,} is a martingale,
=X, by(8.110).
By induction, (8.1.10) holds for all i > 0. The proof of (ii) is:

ElX,] = E[E[X,|®&]] = E[X}, by (). g

Proposition 8.1.5. The adapted family {X,,®&,} is a (sub-, super-) martingale
if and only if

E[X,1 L)(>, <) = E[X,1,), (8.1.11)
forall4 € @,,n>1,2,....
PrOOF. Let A € &,. Then
fA Xp1dP =L E(X,.11@,)4P,
by the definition of conditional expectation,
(>, <) = [, X,dP,

by the definition of (sub-, super-) martingale. O
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Consequently, E[X,] is (increasing, decreasing) constant for a (sub-,
super-) martingale {X,, }.

We need Jensen’s inequality to prove Theorem 8.1.6, which gives us a
method of constructing submartingales from (sub-) martingales. Let us first
recall Jensen’s inequality. Let y: [a,6] — R be a convex function, that is,
Yax + (1 — a)y) < a(x) + (1 — a)y{y) for all x,y € [a,b] and all «
€ [0, 1]. If X is an RV with finite expectation and 4 is a o-subalgebra of @,
then

VE[X|B] < E[UX)I®]). (8.1.12)

Theorem 8.1.6. (i) Let {X,,&,} be a martingale and y: R — R be a convex
function such that E[|Y(X,)]] < oo for all n. Then {Y(X,).@,} is a
submartingale and consequently, {|X,|?} is a submartingale if E{|X,|?]
< oo, wherep > 1.

(i) Let {X,,@,} be a submartingale and y: R — R be an increasing,
comvex function such that E[|Y(X,)|]] < oo, for all n > 0. Then
{(U{X,),&,} is a submartingale and consequently {X,*} is a submartin-
gale.

PrOOF. By Jensen’s inequality and the assumptions in (i),

E[‘P(Xn+|)|@n] > ¢E[Xn+| |@n] = “(Xn)’

since {X,}is a martingale. Hence {y(X,.;)} is a submartingale; (ii) follows
stmilarly. a

Theorem 8.1.7. (Halmos’s Optional Skipping Theorem). Let {Y,,&,} be a
submartingale and {Z,} a sequence of RVs defined by

1 if(y,...,Y,) € B,
Z"_{O f(%.....%,) &B, (8.1.13)
Jor arbitrarily chosen B, € B(R"). Define
X, =Y, X, =X +Z/(%K~-Y),.
1 2 1 1 = n (8.1.14)

X =Xn_|+Z_|(};,_);_|),....

n

Then {(X,,Q,} is a submartingale and E(X,] < E[Y,], for all n > 1. If
{Y,.Q,) is a martingale, then (X,,Q,)} is a martingale and E[X,] = E[VY,]
for all n.
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ProOF. We prove the theorem only for the submartingale case; the
martingale case is analogous. Now

E[X,,118,) = ElX, + Z,(Y,,, — 1)|&,]

=X, +Z,ElY,,, - Y |e,),

since X, and Z, are functions of ¥, ..., ¥,
and thus are @,-measurable,
2 X,+2,(Y,—-Y), since {Y,} is a submartingale .

We show by induction that E[X,] < E[Y,]. From (8.1.14), E[X]
= E[Y] Let us assume that E[¥;, — X;] > 0. Then

E(Yy — Xey] = E[E[Yesy — X0 1@]]
= E[E[%,1 — X — Z (% — Y)IE]]
= E[E[(1 — Z)(%sy — ¥ + (% — X)l&l]
= E[(1 — Z})E[ Yy, — Xl&] + E[X — X, l&]]
> ELElY, — X,|@;]], since {Y,}is a submartingale,
—E[Y,-X]>0. O

The intuitive meaning of the theorem is as follows. Let {Y,} denote the
fortune, after the nth game, of a gambler when he uses no skipping strategy
and {X,} the fortune when he uses a skipping strategy. The RV Z, = 1 if
he bets in game n and Z,, = 0 if he passes game n. What the theorem says
is that if the game is initially favorable (submartingale) or fair (martingale),
it remains favorable or fair, and no skipping strategy can increase the
expected winning.

Examples 8.1.8

EXAMPLE 1. Doob—Levy Martingale. Let X be an RV with E[|X|] < o and
{@,} an increasing sequence of o-subalgebras of @ Define X, = E[X|@,].

Then {X,,@,} is a martingale. First
Ellx,) = EllElX|e, ]l < E[E[|X]I€,]] = E[|X]] < co.
Next
E[Xn+l I@n] = E[E[X|6Bn+|]|&n]
= E[X'@n], SinCe &'l C @fl"‘l'
=X,

200
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Now let {@,} be a decreasing sequence of s-algebras, thatis, @, D @,,1,
n > 0,and X, = E[X|@,]. Then {X,,@,} is a reverse martingale, that is,

E[Xn|&n+ll = Xn+|' (81]5)

Using the suitable inequality signs in (8.1.15) one can define reverse sub-
and super-martingales. To see (8.1.15):

E[ana’rwl] = E[E[/Ylan]l@nﬁ-ll
= E[X|@,,;], since@,,, C @,,

nt+l1-*

EXAMPLE 2. Successive Sums of Independent RVs.

(i) Let Y, = 0 and {Y,,n > 1} be a sequence of independent centered
RVs, that is, E[|Y,|]] < oo and E[Y,] = 0. Define X5 =0 and X,
=2¢_, Y. Then {X,} is a martingale WRT (Y,}. First E[|X,]]
< Z{_E[|%]] < . Now, denoting Y, ..., ¥, by Y,, we have

E[X,.Y,] = E[X, + ¥, |Y,]
= X, + E[Y,,,]Y,], since X, is a function of Y,
= X, + E[Y, 1] since all Y, are independent,
=X, since Y, is centered .
(i) Next let {Y,}, n > 1, be independent RVs with E[|Y,|] < o0 and

ElY,] = m, # 0, for all n > 1. Define X,, = ITI{_,(Y,/m,). Then {X,}is a
martingale WRT {Y,}. Clearly, E[|X,]] < o. Now

XY,
Ex1v,] = B[ (T2 )y, |
n+1

Y
=X E[—*'] =X,.
" m, .

ExAMPLE 3. Pdlya’s Urn. Consider an urn initially containing r red and b
black balls. Repeated drawings are made from this urn as follows: after
cach drawing the ball drawn is replaced along with a balls of the same
color. Here r, b and a are positive integers. Let {¥,} be a sequence of RVs
such that ¥, = 1 if the nth ball drawn is red and ¥, = 0 if the nth ball
drawn is black. Let 7, and b, be the number of red and black balls,
respectively, in the urn after the nth draw has been completed. Define X, as
the proportion of red balls in the urn at the completion of the nth draw, that

s, X, = r,/(r, + b,). Then {X,} is a martingale WRT (Y,}.
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8. Martingales

Noting that 0 < X, < 1, we have E[|X,|] < o0. Next observe that a
red ball can be drawn in the (n + 1)th draw with probability 7,/(s, + b,)
and in that case 5y, = (r, + a) and b,,, = b,. Similarly, 7,,, = 5, and
b+, = (b, + a) with probability b,/(y, + b,). Therefore,

__hta I T by
EXyi1 o] r;,+b,,+ap;,+b,,+r;,+b,,+ar;,+b,,
- _
Tn+b, Xn»
where Y, denotes (X, ¥,...,Y,} as in Example 2. Since {X,} is a martin-

gale, we have, by Proposition 8.1.4 (ii), that E[X,] = E[X]] = r/(r + b),
for all n > 1 [see also Example 8.2.7 (1)].

ExamPLE 4. Let X, be uniformly distributed over [0, 1]. We successively
define a sequence as follows. If it is given that X, = x;, ..., X, = X,
then define X, as an RV uniformly distributed on [0, x,_, ]. The sequence
{X,} is a supermartingale.

First note that E[X,”] = 0 and then that

E[Xn+||’\,l’ s "Xn] = E[Xn+||Xn]‘

Since X4, is uniformly distributed over [0, X},

E[X,.,1X,] =1X, < X, [recall X, = {Xj,...,X,)]

and hence {X,,} is a supermartingale. Therefore, E[X,] is decreasing, as n T,
(as already observed in Proposition 8.1.5). Now

E[X,.\] = EIE[X, ., |X,,.... X,]]
= %E[Xn] =
— 2—"E[/\/|] — 2—(n+l)’

which is decreasing as n increases [further discussion is continued in
Example 8.2.7 (2)].

ExaMPLE 5. Let {X,} be a Markov chain with the set of rationals in (0, 1)
as the state space S and the transition probabilities described as follows.
For fixed rationals 0 < a < b < 1,if x € Sand X, = x, then X,,;; = ax
with probability 1 — x and X,,, = ax + 1 — b with probability x. Then
{X,} is a martingale or supermartingale if a = b or a < b, respectively.
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Let a = b. Then
E[Xn+l |X0’ c ’Xn] = E[Xn+l an]
= aX,(1 — X,) + (aX, + 1 — b)X,
=X, — (b - a)X,
=X, since a=b.

Hence {X,} is a martingale if a = b. The case a < b, which gives us a
supermartingale, follows similarly [see also Example 8.2.7 (3)].

EXAMPLE 6. We consider here an MC that is homogeneous in time and
space. Let {X,}, n > 0, be an MC with state space S = {---,—1,0,1,...}
and the transition probabilities given by p(x,y) = p(y — x), where p(u) > 0
and 2, cgp(u) = 1. First we show that X, = (Xo + ¥ + - - - + ¥,), where
Xo» X, ..., ¥, are IID RVs with the common distribution P{Y;, = u}
= p(u), u € S. Next we claim that {¢*} is a martingale if 3¢ gp(u)t"
= 1.

Let {X, ) be the MC given above. Define ¥, = (X, — X,_,),n > 1. Then
X, has the desired representation provided that we show X, Y, ..., ¥, to
be independent RVs with the common distribution P{Y;, = u} = p(u). This
follows from

P{Y,4, =x,,+||Xo=Xo,)i=x|,---,)¢.=x,.}

n+1 n
= P{X,,H = kgoxleO =Xx0,X =Xt Xx,...,X, = kzoxk}

n+1 n
=P {Xn+l = ’EO Xl Xy = ,EO xk}
= plxpiy)-
This proves our first claim. It then follows from
Efg% Xy = xg, ..., X, = x,] = E§™|X, = x,]
= 3 pug ™
= £, since X, p(u)¢" = 1,

that {¢ ¥} is a martingale if | p(u)t*| < oo and Sp(u)t" = 1.

1:XAMPLE 7. Branching Chain. Let {X,} be a branching chain with state
space S ={0,1,...}, X, = l,and X,,;, = (¥, +---+ ¥, ), a sum of X,
11D RVs with P(Y, = u} = p(u)forallk > 1, andu > 0. Let p = E[Y,].
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8. Martingales

Show that: (i) {¢™"X,)} is a martingale if 0 < p < oo and (ii) {¢*} is a
martingale if ¢ is a fixed point of the probability-generating function
g¢) = Z,p(w)E", & > 0.
@) El™' X lXo = X0, .0 X, = x,]
= E[#—”—IXrH-I an = xn]

n—1

= 2 plx,, wup.”

=u' 3y uP{)j+---+);"=u}

u>0

= #_""E[)’I+...+ );"]

n

=p ",
= p "x,
This shows that {p "X} is a martingale.
(i) E[£% X = xg, .., Xy = x,]
= E[¢*1]X, = x,]
= go Pxp u)E”

s er{neoan -}

u>0

- E[£n+..4+y‘"]
= {Elg" ™

= {8@))™ =&~

where we used the fact that ¢ is a fixed point of g(¢), that is, g(¢) = ¢
[discussion continued in Example 8.2.7 (4)].

ExXAMPLE 8. In the last three examples we generated martingales from MCs.
Some general methods for inducing martingales are known. These are done
by using the so-called concordant function or right regular functions and
the eigenfunctions of the transition probability matrix. Let {Y,} be an MC
with transition matrix M = [ p(x,y)], x, y € S, the state space. A function
fon S is called a concordant function or a right regular sequence if

fy) = E_s”(y’x)f(x)‘ (8.1.16)
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Recall that f(-) is a right eigenfunction corresponding to an eigenvalue A if
M) = 2 p(y,x)f(x) (8.1.17)
xES

for all y. Show that: (i) {X, = f(Y,)} is a martingale if f is a bounded
concordant function and (ii) {X, = A"f(Y,)} is a martingale if f is a right
eigenfunction WRT the eigenvalue A and E[|f(Y,)|] < oo for all n. [By
replacing the equality in (8.1.16) with < or >, one can define a sub- or
super-regular sequence. Then accordingly f(Y,) becomes a sub- or super-
martingale.] Now let us now prove (i).

By assumption f is a bounded function. Therefore, E[| f(Y,)|]] < oo. It
follows from

E[f(Y)lK, . ... Y] = ELf (Y )Y
= 2 Y, 0f(x)
xES
= f(Y,), by (8.1.16),

that { f(Y,)} is a martingale WRT the MC {Y,}. Next we prove (ii). By
assumption, E[| f(Y,)|]] < c. The martingale property follows as above:

EN"'Yf ()i, ... 1= ENU(Y )Y
= A"\ .?P()fnx)f(x)
— \Tf(Y), by (8.1.17).

ExAMPLE 9. Let {Y,}, n > 1, be a sequence of IID RVs following the
standard normal distribution. Fix an a € R. Define S, = Z/_, Y, and
X = exp(aS, — na’/2). Then (X} is a martingale WRT (Y, ). If F(a) is a
distribution function on R, then {§, = { X*dF(a)} is a martingale.

The second claim easily follows from the first. So we only prove that
{X,%} is a martingale. Since S, is normally distributed with mean 0 and
variance n, it is easy to show that E[|X*|] < co. Now

n + 1)a?
FXalt ] = Efew{as, - C 50 v ]

2
E[exp{ "T}exp{a)jm —%}h{),...,);]
2 2
exp{aS - na E[exp{a)j,H - %}]
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since exp{aS, — na?/2} is a function of ¥, ..., ¥, and exp{a¥,,, — a?/2}
is independent of Y, ..., ¥,. But

E|exp|aY, ——a—z - ax—a?/2 ,~x¥/2 4
P\®n+1 — 3 V2T e € X

= \/—;—W—fe'%("—“)zdx =l

Using this in the last equality, we see that {X,*} is a martingale.

ExaMpPLE 10. The exponential martingale considered in the last example is
actually a special case of Wald’s martingale. Let ¥, = 0 and {Y,} be a
sequence of IID RVs with a finite-moment generating function p(a)
= E[e*Y] for some a # 0. Set Xy = 1 and X, = [w(a)] " exp{aZ}_; %}.
Then {X,} is a martingale WRT {¥,,).

To establish that {X,} is a martingale, we appeal to Example 8. First
observe that {S, = Z}_, Y, } is an MC with state space S = R. We claim
that f(x) = e** is an eigenfunction corresponding to the eigenvalue u(a).
To see this, let F be the common distribution of the RVs ¥,, n > 1. Then
the transition distribution is given by

P{S,41 < VIS, = x} = F(y — x),
and the analog of (8.1.17) is obtained as follows:

fe")' d,F(y — x) = e"‘"fe""dF(u) = " p(a) = pa) f(x).

Example 8 now shows that {X),} is a martingale. To see that Example 9 is a
special case, let F be the unit normal distribution. Then p(a) = exp[a?/2),

and
2
X, = exp[aS mzl ]

EXAMPLE 11. Likelihood Ratios. The study of likelihood ratios arises in the
theory of testing statistical hypotheses. Let {Y,} be a random sample, a
sequence of IID RVs. The common density of the RVs Y is unknown. So
we make the (null) hypothesis that f; is the common density and test this
assumption against an alternative hypothesis that the common density is f;.
One of the test procedures uses the so-called likelihood ratios defined by

A(%) _
H ) " 0,1,2,.... (8.1.18)
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Here we assume that fy(x) > 0 for all x. If f; is the true density of the
random sample (or the population), then {X,} is a martingale WRT the
random sample {Y,}. To prove this, let us assume that the null hypothesis is
true. Then

EIX HIYO,-.-,Y"1=E[X"£‘)§ 20 ]
)
0( +1)

= X, [ LA KOS &
=X, [HO)d =X,

ExXAMPLE 12. Let P and Q be two probability measures on (2, &) and {Y,}
a sequence of RVs that are Borel measurable, that is, {w: ¥,(0) < y} € @

for every y € R. By p,(»,..-,%,) and q,(»,...,5,), n > 1, denote the
joint density of ¥, ..., ¥, WRT P and Q. Define

¥ ={q,,(Y,...,Y;,)/p"(Y,...,X,) ifp,(Y,....,%) >0
"= 0 i p(Y,.... ) =0

Then {X,} is a supermartingale WRT {Y, }.
First observe that

E[|X,]] = f [q"(x)]p,,(x)dx fq,,(x)dx =1

—XE ] (why?)

Pa(X)
{P.>0)
LetA ={(¥,...,Y,) € B}, B € ®(R"). Then
qn+ (y)
fA Xn+l dpP = f [1),,+—:(y)]p"+l(y)dy’

{xerpn+|(y)>0}

where x = (x,...,x,), ¥ = (X, ..., %5, x,41) = (X, x,41). Now, if x
& Bandp,(x) = 0, then p,,,(y) = 0 for almost all x,,,,. Therefore

gn+1(y)dy < f g,(x) dx
{X € B, pa(x)>0, p,s 1 (¥)>0} {x € B, p(x)>0}

- f [4.(¥) /p, (%)) p, (x) dx
{x € B, p(x)>0)

= [, X,aP.
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8. Martingales
and hence [, X, ,dP < f, X,dP for all events A determined by Y, ...,
Y,. Therefore, {X,,} is a supermartingale WRT {Y,}.

ExamPLE 13. Let{X,}, n > 0, be a martingale and also an MC with a finite
state space S = {0,1,...,N} and transition probability matrix [ p(i,;)],
i,j € S. Show that the states 0 and N are absorbing.

Using the martingale and Markov property of {X,}, we see that

Xn = E[Xn+l|X0’ o '?Xn] = E[Xn+llX"]

N
= 3 kp(X,, k).
k=0

This shows that the identity function f(x) = x on S is a concordant
function and thus

N
x = > plx,y)y, x € 8S.
y=0

In particular, 0 = E)f":Op(O, »)y. This implies that 0 = p(0,y) for y = 1, 2,
..., N. Since the row sums of a transition matrix is one, we get p(0,0) = 1,
and the state 0 is absorbing. It follows similarly that N is absorbing.

EXAMPLE 14. If {X,} is a martingale and E[X,2] < oo for all n, show that
the increments Xy, X; — Xy, X; — Xj, ... are orthogonal, that is,

E[(X; - X-))(X — X )] =0, i+
Let i <. Then
E[(X; — Xi- )X = X_))]
— ELEI(X, ~ X_) (6 = X_ )Xo, -, X,]
= E[(X; - XD E[(X); — X)X, ..., Xi]]
= E[(X; - X_;)(X; — X)), by martingale property,
= 0.

8.2. Martingale Convergence Theorems

The convergence theorems presented in this section are of fundamental
importance in the theory of stochastic processes and find many applications
in probability theory. As the proofs of these theorems may not be simple
enough for several senior-level students, they can omit the proofs of some
or all of the theorems presented in this section and concentrate on the
examples.
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Let {Y,}, n > 0, be a sequence of centered second-order RVs. Such a
sequence is called a partingale if the successive partial sums X, = Y5 + -
+ Y, form a martingale. Partingales are also known as conditionally
independent sequences. Consider the following three statements:

1. {Y,}is a sequence of independent RVs.
2. {Y,}is a partingale.
3. {Y,} is a sequence of orthogonal RVs.

From Examples 8.1.8 (2) and 8.1.8 (14) we see that

(1) = @) = (3). (8.2.1)

Thus the notion of partingale is intermediate between the independence
and orthogonality of RVs, and one can expect to extend the theorems such
as laws of large numbers to the partingale case. Such extensions exist. [As
an application of the martingale convergence theorem, we later prove the
strong law of large numbers.] We simply remark here that the implications
in (8.3.1) cannot be reversed in general.

Theorem 8.2.1. (Doob’s Submartingale Convergence Theorem). If{X,,&,},
n > 1, is a submartingale such that sup, ., E[X,"] < oo, there exists a
RV X, such that E[| X |] < oo and X,, = X_, with probability one.

To establish this theorem, we need Doob’s inequality for the expected
number of upcrossings of a level. Let {X,}, n = 1,..., N, be a submartin-
gale and a < b be two levels (real numbers). Let t;(w) be the first integer
in {1,...,N} such that X, ()@ < a, let ty(w) be the first integer > t,(w)
and such that X, () (w) > }7, let t;(w) be the first integer > t,(w) and such
that Xn,(w)(“’) < a, and so on. If M is the number of finite t,, define the
number U(a, b) of upcrossings of the interval (a, b) by

%’ if M is even
V@b = -1 if M is odd
2 1 1

Doob’s Upcrossing Inequality 8.2.2. Ler {X,}, | < n < N, be a submartin-
gale and U(a, b) be the number of upcrossings of the interval (a, b). Then

E[U@.b) < (b—a) "E[(Xy —a)”]. (8.2.2)
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8. Martingales

Proor. For simplicity let @ = 0 and {X,}, ] < k < N, be a nonnegative
submartingale. Let all t, be as in the definition of the number of
upcrossings. If kK < t;, define Z, = 0; if t; < k < t,, define Z;, = 1; if
t; < k < t3, define Z, = 0; and so on. Define

£| =/‘,|’ £"=£,,_|+Z_|(X"—X—l)y n>2.

Then £, denotes the total increase during upcrossings. Thus &, > sU(0, b).
From the definition of RVs Z, it is clear that Z, is a function of Xj, ..., Xj.
Appealing now to Halmos’s optional skipping theorem, we see that

{¢,,1 < n < N}is a submartingale WRT {X,} and E[{,] < E[X,] so that
This proves Doob’s inequality. (]

Proof of Theorem 8.2.1. Define sets A and A(a, b) by
A = {w: X, (w) does not converge to a finite or infinite limit}
A(a,b) = {w: lim inf X, () < a < b < lim sup X, (w)}.
n—c0 n—o

Then

P(A) = P { Y A(a, b)},

abEQ

where Q is the set of rationals. We claim that P(4) = 0. On the contrary,
if P{4(a,b)} > O for some rationals a and b, then at least on that set of
positive probability the submartingale is making an infinite number of
upcrossings of (a,b) and hence E[U(a,b)] = oo. Let U,(a,b) denote the
number of upcrossings of (a, b) by X, ..., X,. Then U,(a,b) monotonically
increases to Ul(a, b). Therefore, E[U,(a,b)] T E[U(a,b)] = oo. However, by
the hypothesis that sup, E[X,'] < co and Doob’s upcrossing inequality
(8.2.2), we have

E[U(a,0)] < (b — @ E[(X, - a)*]
< 6~ o {sup ELx;] + lal}

< oo,

which is a contradiction. Therefore, P(4) = 0 and X, — X,, with probabil-
ity one.

It remains to show that E[|X,|].< oo. First note that E[X,] > E[X,] by
submartingale property (Proposition 8.1.5). From the hypothesis of the
theorem it now follows that
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E[| X,]] < 2sup E[X,"] — E[X;] < oo,
and thus Fatou’s lemma (see Chapter 1) gives us
—>00

This proves the theorem. O

Definition 8.2.3. A stochastic process {X,,} is said to be uniformly integrable
if

llm Sup E[IX’I']{IX,,I>G]] = 0, (8.23)

aloo p>1
which in terms of integral takes the form

|X,|dP <125 0 uniformly in n. (8.2.4)
{|Xa|>a}

The convergence in probability or with probability one of a sequence of
RVs does not in general imply the convergence in mean or in mean square.
With the uniform integrability of the sequence of RVs, we can overcome
this problem. We state the precise result without proof.

Theorem 8.2.4. (i) Let {X,}, n > |, be a sequence of RVs such that X,, > X
with probability one (or in probability) and {|X,|”,n > 1}, p > 1, is an
uniformly integrable sequence. Then E[| X, — X|’] = 0, as n — 0.

(1) If{X,) is an uniformly integrable sequence of RVs such that X, > X
with probability one, then E[| X, — X|] = 0,as n — co.

‘Theorem 8.2.5. (Levy’s Martingale Convergence Theorem.) Let €,, n > 0,
be an increasing sequence of o-subalgebras of @ and &, be the o-algebra
generated by U, @,. Let X be an RV with E[|X]] < oo, and set
X, = E[X|@,), n > 0. Then:

(i) {X,,n > 0} is an uniformly integrable sequence.
(i) X, = E[X|@y] with probability one and in mean.

ProOOF. (i) The uniform integrability of {X,} follows from the Markov
inequality and absolute continuity of an iniegral (see Chapter 1), as follows:
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0< P{IX,| > a} < a'E[|X,]], the Markov inequality,
= a ' E[| E[X|@,)l] < a” ' E[E[|X|e,]]
=a 'E[|X|]] >0  uniformlyinn, asa 1 o,

and

E[(X"II{Ian>a}]

N
by

x50 El1X110,]|

=F E[IXIIHX,,I}a}l@n] ], since X, is € ,-measurable,

- {1, >a}
This proves (i).

(i) By Example 8.1.8 (1), {X,,&,} is a martingale, the so-called Doob—
Levy martingale, and by part (i) it is uniformly integrable. Since E[| X, |]
< E[E[|X]|@,]] = E[|X]] < oo (the hypothesis in Doob’s submartingale
convergence theorem),it follows that X, converges with probability one to
an RV X, with E[{X,|] < oo. By the uniform integrability of {X,} and
Theorem 8.2.4 it follows that E[| X, — X,,]] = 0, as n — co.

It remains to show that X, = E[X|@,]). Since E[|X, — X,[|] >0, it
follows that E[X,] — E[X,] as n = oo. Therefore, if A is an arbitrary set
in &,, then

L XdP = L E[X|@,]dP, by the definition of conditional expectation,
= [, x, ap, by the definition of X, ,

N fA X, dP.

Consequently, E[X1,] = E[X,1,] for all A € U, @, and hence for all
A € @. Noting that X, is @ -measurable and hence by the definition of
conditional expectation, X,, = E[X|@,]. ]

Theorem 8.2.6. Let {X,,@,,.n > 0} be a martingale or a nonnegative submar-
tingale such that E[|X,|2] < K < oo, for all n > 0. Then {X,,} converges
as n — oo to a limit RV X, both with probability one and in mean-square:

P{lim X, =X, ¢=1 and
n—oo

(8.2.5)
. 2
"ll,r?o E[lX, - X 1] = 0.
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PrOOF. Let the hypotheses of the theorem hold. First we claim that
{X,,n > 0} is a uniformly integrable sequence. Toward this end it suffices
to show that E [IX"“U X,|>a)] €an be made arbitrarily small for large a > 0.
So let us arbitrarily fix an € >0 and set a = (K/e), where K
= sup, E[IX,,IZ], which is finite by hypothesis. Then

1 2
E[IX,,IIHXH,}G,] < ;E[|Xn| ’{|xn|>a)]

< - E[IX, )

Q| ==

<

QX

= €.

This proves the uniform integrability of {X,}.
Next we claim that sup, E[| X, |] < oo. For an arbitrary e > 0, it follows
from the uniform integrability that

EIX, ) = E[ 1% 50 | + E[ 1% i<

<e+aP{|X|<a)<e+a

Thus the hypothesis of Doob’s submartingale convergence theorem is
satisfied. Hence X, converges, as n — oo, to an RV X with probability one
and E[|X,|] < . Also, by Theorem 8.2.4, E[|X, — X,,|] = 0 as n —> oo.

We now claim that the completed sequence {X,,n = 0,1,...,00} is a
martingale or nonnegative submartingale according as the process {X,,n
> 0} is a martingale or a nonnegative submartingale. To see this, consider
an arbitrary set 4 in &,. It follows from Proposition 8.1.5 that, for all
m 2> n,

E[X, 1] = (S)EIXu14)
Because X, converges to X, in mean, by letting m — oo we get
E[anA](Q) = E[XooIA]-
Appealing again to Proposition 8.1.5, we obtain that
E[Xw|@n1(>) = Xn’

This proves that the completed sequence {X,, n = 0,1,..., 00} is a martin-
gale (or submartingale).

Now it follows from Theorem 8.1.6 that the sequence {|X,|?,0 < n
= o0} is a nonnegative submartingale in both the cases where {X,, 0 < n
<. oo} is a martingale or nonnegalive submartingale.
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Next we claim that {X?, 0 < n < oo} is uniformly integrable. This
follows from

P{X? > a) < a'E[X}?), by Markov inequality,

<a
< a'E[X2], by Proposition 8.1.5,
7> 0, uniformly in n,

and

E[X,,ZI{X"2>“)] < EX}] < K< oo.

Finally appealing to Theorem 8.2.4, we obtain that E[| X, — X, |2] — 0 as
n — oo, and this completes the proof. )

Examples 8.2.7

EXAMPLE 1. Pdlya’s Urn. In Example 8.1.8 (3) we saw that the proportions
{X,} of red balls in the urn under Polya’s urn scheme form a martingale.
The proportions X, are uniformly bounded 0 < X, < 1 for all n. There-
fore, the sequence is uniformly integrable and hence there exists an RV X,
such that X, — X, with probability one and E[X,] = lim, E[X,] = E[X;]
= r/(r + b) by the martingale property.

EXAMPLE 2. Example 8.1.8 (4) gives us a supermartingale. Without invoking
any convergence theorem we can show that X, — 0 with probability one.
In Example 8.1.8 (4) we saw that E[X,] = 27", Thus

B[z x]=- 3 Ex- 307 <w
n>1 n>1 n>1

and hence 2, X, < co with probability one (recall that a nonnegative
RV with finite mean is finite-valued with probability one). Hence X, — 0
with probability one.

EXAMPLE 3. Let {X,}, n > 0, be the MC considered in Example 8.1.8 (5).
The state space S of this chain is the set of rationals in (0,1). Fix two
rationals 0 << a < » < 1 and set for x € S,

PX, . =ax|X,=x}=1-x=1-PX,, =ax+ 1-blX, = x}.

We saw that {X,} becomes a martingale if @ = b. In this case, show that
X, = X,, with probability one where X,, = 0 or 1 and that P{X, = 1}
= E[X,]. If a < b, then {X,} becomes a supermartingale. Show now that
X,, — 0 with probability one.
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Let a = b. Then {X,} is a uniformly bounded martingale and hence is
uniformly integrable. Therefore, there exists an RV X, such that
P{lim, X, = X} = 1 and E[| X, — X,|] = 0, as n > oo. Now, since

IXII+1 - Xn| = (1 - a)Xn Or (1 - a)(l - Xn)9
we have that, if X, (w) = £(w),

X1 = Xl > (1 @) or (1 —a)(1 —§).

Since {X,} converges with probability one, X,,; — X,, = 0 with probability
one. Consequently, £ = 0 or 1 and hence X, = 0or 1 with probability one.
Next, from the martingale property and the convergence in mean,

E[X,] = lim E[X,] = E[X]

But E[X ] = 1P{X, = 1} + OP{X, = 0} = P{X_, = 1}.
Now let a < b. First note that E[X,] is a decreasing function of n by
Proposition 8.1.5 (because X, is a supermartingale). It is clear also from

E[Xn+l] = (l +a-— b)E[Xn] = CE[XII] = ce. = CJH’]E[%],
where 0 < ¢ = (1 + a — b) < 1. Hence E[X,] = 0 as n — oo and
E[X,] = lim E[X,] =0.
n—w

Since X, > 0, this gives X, = 0 with probability one.

EXAMPLE 4. Branching Chain. Here we consider the application of martin-
gale convergence theorem to the branching chain [see Example 8.1.8 (7);
also Section 3.7]. As in Example 8.18. (7),let X, = land X,y = ¥, + - --
+ Yy with IID RVs {Y, } and P{Y, = u} = p(u). Letp = E[Y;] > 0. Letus
also assume that p(0) + p(1) < 1. We now establish Watson—Steffensen
Theorem 3.7.5 using the martingale convergence theorem.

Let us first consider the case when p < 1. In this case we claim that the
population eventually becomes extinct with probability one. First observe
that

E[X,1|X, = k] = KE[%] = kp.

Therefore, E[X,,,|X,] = pX, and E[X,,|] = pE[X,]. If p <1, then
P{lim,_, X, = 0} = 1. Since the process X, assume only nonnegative
integral values, X,, becomes 0 eventually.

Next let p > 1. We claim that

P{X, is 0 eventually} = ¢ = | — P{X, = oo}, (8.2.6)
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where £ is the unique fixed point in [0, 1) of the probability-generating
function of the RVs ¥, . (See the proof of Theorem 3.7.5 for the uniqueness
of £)

First we take the case £ € (0, 1). Recall, from Example 8.1.8 (7), that
{¢*) is a nonnegative martingale. Therefore, P{lim, X, = X,;} = 1 for
some X,,. To establish (8.2.6), we first show that the probability of X,
assuming any finite positive integral value m is zero. If P{X,, = m} > 0,
there is an integer N > 0 such that P{X, = mforalln > N} > 0. Set
pP= P{Xn+l = mIXn = m} Because P{Xn+l = OIXn = m} = [p(O)]m >0,
it follows that p < 1. Now

PX,=m foral n> N}
= P{Xy = m} P{Xy, = mlXy = m}
X P{XN+2 = lek = m,k = N,N+ ]}"’
= P{Xy = m}pP{Xy s = m| Xy = m} PXys3 =m| Xy =m} -,
by the Markov property,
= Jlim P P{Xy = m)
=0, since p < 1.

This leaves 0 and oo as the only possible values of X,. Recalling that
¢ € (0,1), we note that {£*} is uniformly bounded and hence uniformly
integrable. Therefore, from the mean convergence of the martingale {£*"},
n > 0, we get

Ej¢*) = lim E[¢™] = E[¢%) = E[¢§] = ¢
But
£ = E[¢"=] = £°P{X, = 0} + lim £“P{X, = o0
= P{X, = 0}, since 0 < ¢ < 1,
and consequently P{X,, = oo} = 1 — §. This proves (8.2.6).
Now we take £ = 0. Since ¢ satisfies £ = 2,5 op(u)€", it follows that

p(0) = 0; that is, each individual in the population gives birth to at least
one. Therefore,

l=X0<X|<"'<X,,<X,,+|<'

and consequently X, T X, for some limit X. Here
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P{X < oo} = P{X, eventually is a finite RV}
= ¥ P{X, = mfor all large n}

m21

=0, as before,

and hence P{lim,_,, X, = oo} = 1.
As the final case, let ¢ = 1. We claim then that the population becomes
extinct with probability one. Since {X,} is a nonnegative martingale (note

p = 1 in Example 8.1.8 (1) (i),
P{X, — to a finite limit} = 1.

As in the last case, this finite value is zero almost surely. Therefore, X, — 0
with probability one.

ExAMPLE 5. Let {Y,} be an irreducible recurrent MC with transition matrix
[ p(x,»)]. Show that every bounded concordant function f is a constant
function.

Let fbe a bounded concordant function on the state space of the MC
(¥,), thatis, f(x) = =, ¢ sp(x,»)f(»). By Example 8.18 (8) (), (X, = f(1,))
is a martingale that is bounded because f is so (by assumption). Therefore,
X, converges with probability one. Because of the recurrence, the MC visits
all the states infinitely often. Consequently X, = f(x) and X, = f(y) for
infinitely many n and for any two states x and . Since X, converges to a
limit with probability one, f(x) = f(») for all pairs x and y and conse-
quently fis a constant function.

EXAMPLE 6. A Counterexample. Let {X,,} be a submartingale. Doob’s conver-
gence theorem states that X, converges with probability one if sup, E[X,"]
< oo. This is not a necessary condition. In other words, there are
martingale that converge with probability one, but sup, E[| X,|] = .

Let{a,}, n > 1, be a sequence of positive numbers and { p,}, n > 1, be
another sequence with 0 < p, <} for all n. Suppose that =, ,p, < o
and £,5a,p, = . Define an MC as follows: X; = 0. If X, # 0 for some
n > 1, then set X,,; = X,. That is, once the chain leaves the O state, it is
absorbed in the state it jumps to. Let {0, *+a,,n > 1} be the state space. If
X, = 0, then let

Apy with probability p,,,
X1 = ( —auy with probability p,;
0 with probability | — 2p,,,
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First we claim that {X,} is a martingale. This follows from the
computations

E[Xn+l|Xn = an] = a,, E[Xn+l|Xn = —an] = —a,,
E[Xn+lan = 0] = Qp41Pny + (—an+l)pn+l + O(l - 2pn+l) =0.

Next we show that E[|X,|] — oo, as n — o0. To see this let us compute
E[|X,|] for the first few n values.

E[|lx] =0, E[X|] = ayp, + |-a3lp, + 0 = 2a,p,,
E[|X;]] = 2a3p, + (1 — 2p;)2a;3p5, (since X, = 0 or *a,),
E(|X,[] = 2a,p; + (1 = 2py)2a3p; + (1 — 2p))(1 — 2p3)2a4p,

Therefore,

tim x> { T (=202 3 aup.

Since Zp, < oo and 0 < p, <1, we have IL,5, (1 — 2p,) > 0. Hence it

follows from the assumption =, a,p, = o that lim,_, o E[| X,|] = co.
Finally we claim that X, converges everywhere despite the fact that

E[|X,|] = co. From the defined transitions of {X,}, it follows that either

. X,(w) =0 for all n and all w or
X,(w) = g for some k, alln > k, and all w.

Hence X, converges everywhere.

A long line of theorems in probability theory can be established using
the martingale convergence theorems. As a sample we apply it only to
prove a strong law of large numbers.

Theorem 8.2.8. (Strong Law of Large Numbers). If{X,}, n > 1, is a sequence
of 1ID RVs such that E[|X,|] < co and E[X,] = u for all n and if
S, = Z!_, X, then n~'S, converges to p with probability one and in
mean.

ProoF. Under the conditions of the theorem, both X; and (X}, ..., X)) are
independent of (X,,{,X,,2,...). Therefore, (X;,S,) is independent of
(Xps15> Xps2s - - - ). Since X,y = S,k — Spyx—1> k > 1, we have

E[A,l ISn] = E[X' ISn’Sn+l’ v ‘]' (827)
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Now, if B is any Borel set on the real line,

E[XII{S,.EB}] =fR "'fR x) Is(kél Xk>dF(x1) “++ dF(x,),

where F is the common DF of all X,

n
-1 E[ (;Ex x,‘)l{sn . B}], by Fubini theorem,

= E[n—' S'II(S,, EB}]'
Hence E[X;|S,] = n~'S,. Using this in (8.2.7), we obtain

E[X1S,,Sps1s-..] =n71S,. (8.2.8)

Let @” be the o-algebra generated by {X,,, X, |, ...} and @ be the tail
o-algebra N, @". Having seen the proof of Levy’s martingale conver-
gence, it should not be difficult to prove that

n1S, = E[XIS,,Sy1,...] = E[X]|@°]

with probability one and in mean. Since lim,_, n~! S, is a function
measurable WRT the tail o-algebra @, it must be a constant by Kolmogo-
rov’s zero—one law. From E[|n™'S, — E[X,|@°]|] = 0 as n — oo, it follows
that E[n"'S,] = E[X;] = , and consequently the said constantis p. O

8.3. Optional Sampling Theorem

Consider a discrete-time stochastic process {X, }, n > 0,and let &, be the o-
algebra generated by {X, . . ., X, }. Recall that a mapping t: & —{0,1,...,
oo} is called a stopping time WRT {X,} (or WRT {@,}) if the event {t = n}
is completely determined by {X;, ..., X,} (or is a set in @,). An event 4 is
said to be prior to tif A N {t < n} € &,. The collection &, of all the events
prior to tis a o-algebra. A stopping time t relative to {X, } is said to be finite
(resp. bounded) if P{t < o} = 1 (resp. there is a finite N > 0 such that
Pt < N}=1).

On several occasions in this chapter we have seen that betting strategies
will not convert a fair game (martingale) into a favorable game (submartin-
gale). Let {X,}, n > 0, be a martingale and t a bounded stopping time. Let
us assume that the gambler plans to quit at a random time t. If E[X,]
= E[Xp), then the gambler's strategy does not help to improve his expected
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fortune. The same could be said about the expected fortunes of the gambler
at any two stopping times. In general, if {t,} is an increasing sequence of
stopping times relative to {X, }, then by optional stopping strategy one can
consider the sequence {X,"} and inquire as to whether the martingale
property preserved in passing from the martingale sequence {X,} to {X, }.
Under some mild conditions the answer is in the affirmative.

Definition 8.3.1. Let t be a stopping time WRT a process {X,}, n > 0. By
the process X ' stopped at t we mean the stochastic process defined by

Xt = {Xn'} = {Xt/\n} (8.3.1)
where t A n = min(t, n).

Theorem 8.3.2. (Stopped Martingale). Let {X,,@,}, n > 0, be a (sub-)
martingale and t be a stopping time WRT {X,}. Then the stopped process
X'is a (sub-) martingale WRT {@,,}.

ProoF. We prove only the martingale case and the submartingale case is
handled similarly.
It follows from |X}!| < Zf_ol|X,| that E[|X,!|] < oco. Noting that

Xt ==X, Iy + X Iy np We Obtain
EX} 1 — X1@n] = ElXns1 Lz nery = Xalysmy + XaLi=n))I@n]
= El(X,41 — X)) 5 n41)@0)
= 1{t>n+l}E[Xn+l - X, |@,]
= 0.
Hence {X,'} is a martingale. a

Theorem 8.3.3. (Optional Stopping). Ler {X,,&,,n > 0} be a submartingale
(martingale) and s and t be two bounded stopping times WRT {X,} such
that P{s < t) = 1. Then E[|X,]] < o0, E[|X,]] < o0 and

E[X,|&] > (=)X; (8.3.2)
consequently, E[X,] > (=) E[X,].

ProoF. We give the proof only in the submartingale case. Define a process
{Y,} by

Y, = Xn' - an = Xyan — Xsnn-
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8.3. Optional Sampling Theorem
Since s and t are bounded stopping times, there is an N > 0 such that
P{s < t < N} = 1. Now it is clear that
%,=0 and Y, =X,— X, forallk > N.

We claim that {Y,} is a submartingale. As in Theorem 8.3.2, let us write

Y, = kgl X1 Usck—1=¢ = s=k-1<t) + X digcncy

Then,
E[Xx+l - Xx'Qn] = E[(Xn+l - Xn)l{s<n+1<g}|@n]
= Isc 1<y EXnir — X,12,]
> 0, by submartingale property.

This proves the claim that {Y,} is a submartingale. So, by Proposition 8.1.5,
EIX, - X = E[%] > E[%] = 0,k > N.
Now let 4 be an arbitrary element in @ and set

t(w) ifweEeAd

A —
(@) ) fwéAd;

s* =s? ANandt* =¢t* A N.

Then
0 < E[Xps — Xs.] = E[(X, — X,)14].

From this and Proposition 8.1.5 we obtain (8.3.2), and this completes the
proof. O

The following optional sampling theorem (Theorem 8.3.4) is an imme-
diate consequence of this theorem.

Theorem 8.3.4. (Optional Sampling Theorem). Let {X,} be a martingale
WRT the increasing sequence {&,}, n > 0,and 1) < t; < -+ < be an
increasing sequence of bounded stopping times. Then the optionally sampled
process {X, } is a martingale WRT {@, }.

In these results we assumed that the stopping times are bounded. In
Theorem 8.3.5 we relax this condition. However, we need to impose some
restrictions on the martingale.
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8. Martingales

Theorem 8.3.5. (Optional Stopping Theorem). Let {X,} be a martingale and
t a finite stopping time. If:

(@) E[|X,[] < oo and (b) im E[X,[y>,] =0, (833)
then E[X,] = E[X;)].
Proor. First we note that
E[X,) = E[X Jycp] + EIX, Iy, ]
= E[X;nn] = EX, I 5] + EWXJ>p] (8.3.4)

It follows from Theorem 8.3.3 or directly from

n—1
E[Xt/\’l] = Z:O E[X'I{t=‘}] + ElX’l’{t}’l}]

n—1
= Eo EX; Iy_y) + ElX, 5 )

n—1

= ‘~§0 E[’{[:i}E[XnIXO’ N ,,X‘]] + E[X" 1{(2}1}]’

by martingale property,
n—1

= Z:O E[X, 1{t=i}] + E[X, I{t>n}]

= E[X,] = E[Xp}, by Proposition 8.1.4,

that E[X,»,] = E[X).

It remains to show that the last two expectations on the RHS of (8.3.4)
vanish (as n — o0). By the hypothesis (8.3.3 (b)), lim,_, , E[X, /R ]=0.
The proof will be completed once we show that lim,,_, E[X,]{t>") = 0.

By condition (8.3.3 (a)), Ef| X,|] < oo. Note that

E[IX] > E[1 X)) (8.3.5)
Also
ElXen) = 2 EIXIle = 1P = i) (8.3.6)

Letting n — o0 in (8.3.6),

lim E[X,|fcy) = 3, EllX It = 1Pl = i) = E[lx[. 83.7)
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8.3. Optional Sampling Theorem
Therefore, it follows from (8.3.5) and (8.3.7) that
Jim E[X Jy>n) = 0.

This proves the theorem. O

Examples 8.3.6

EXAMPLE 1. Random Walk Revisited. Let {J,} be a sequence of IID RVs
such that

PU=1=p=1-PyJ=-1).

Let X, = Z}_,J; be the associated simple random walk (RW). Let a and b
be two positive integers that denote the initial capitals of two gamblers; call
them Tom and Dick, respectively. The game ends as soon as one of them
wins all the fortune of the other. The duration t of the game is a stopping
time, and we have shown in Chapter 2 that P{t < oo} = 1. Set ¢
= (a + b). If p denotes the probability of ruin for Dick, then show that

_ a/(a + b) ifp=14
PO -/ sty ifp#

where s = (({/p).
Let p = 3. Then E[J;] = O for all k. Therefore, {X,} is a martingale by

Example 8.1.8 (2). Noting that |X,| < ¢, we obtain E[X,] = E[X;] = 0 by
the optional stopping theorem. But

E[X,] = bp — a(1 — p)
(X, is the resulting gain at the end of game n). Thus

- _a
P=a%b

NI —

if p=

Now let p # 1. Set s = (g/p). First note that E[s”"] = (sp + s q)
= (¢ + p) = 1, for all n > 1. Then it follows, as in Example 8.1.8 (6), that
{s”} is a martingale. Set ¥, = s’ n > 1, and observe that |Y;| < s°
V §7¢(= max(s°,s7)) and for k < t, |Y;| < s® v s7° Appealing now to
the optional stopping theorem, we obtain E[Y;] = E[Y] = 1. But E[Y,]
= ps® + (1 = p)s ™. Thus

1 -5 . |
p=m, lfp?ei.
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8. Martingales

EXAMPLE 2. Return to the Proof of Theorem 2.4.5 (i). Let p > 1 and t, be
the time of first passage through a, where a is a positive integer. Let g(s)
denote the probability generating function of t,, that is, g(s) = E[s']. First
note that

Elr"l=pr+ g~ =u  say. (8.3.8)

If r > 1,then u > 1,(p > }). Now define ¥, = u™"r* n > 1. Then {¥,}
is a martingale by Example 8.1.8 (2) (ii). Since X; = 0 and a > 0, it follows
that X, < a for all n < t, and hence |Y, | < r®u” ' < r* for r > 1. By
appealing to the optional stopping theorem, we get

E[Y,a] = E[Y] = E[u"'r¥] =1, by (8.3.8),

(8.39)
Elu™t%] =,
for r > 1, since P{X, = a} = 1. For 0 <s < 1 we set
2gs
r= ) 8.3.10
1— (1 - 4pgs?)} (83.10)

which solves (pr + gr~ ') = s. Note that » > 1. Now it follows from (8.3.9)
and (8.3.10) that
g(s) = Els) = (2091 = (1 - 4pgs?)H]".

This proves Theorem 2.4.5 (i).

Exercises

1. Tom plays a card game using a deck of five red and five black cards. Five cards
are drawn in succession without replacement. In the kth draw, 1 < k < §, Tom
wins if the card drawn is red and loses otherwise. He uses the following betting
strategy. He bets $5 when the deck contains more red cards than black cards and
bets $1 in all other draws. Find Tom’s expected winnings.

2. If Tom always bets $5 in this game, find his expected winnings. Which of these
two strategies is better?

3. Let {Y,}, n > 1, be a sequence of centered independent RVs. Which of the
following sequences {X,} are martingales WRT {Y,}: (a) X, = g+ -

+ELB X, = KB Y, ©X, = (KB K (@) X, = et
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4. Let {Y,} be a sequence of independent unit normal RVs and S, = (] + -+
+ Y,). Set

)
n =it P2+ S
Show that {X)} is a martingale WRT (Y,}.

5. Let{Y,} be a sequence of independent RVs identically distributed according to
PY=1}=p, P{y=-1})=gq=(0—-p), and S, = (¥ +---+ Y,). Show
that X, = [¢/p)>", n > 1, is a martingale WRT (¥,).

6. Let {¥,},n > 0, be an MC with transition probabilities p(0,0) = 1, p(x,x +1)

=p, andp(xO)—q, where p >0, (p+q)=1, and x =1,2,. For
arbitrarily fixed constants, @ and b define

Xy = ap' b1 —pR) it
b if
Show that {X,} is a martingale WRT (¥, }.

7. Let Y € N(u,o0?%). Given that Y = y, let {¥,} be a sequence of independent
Gaussian RVs with mean y and variance 1. Set S, = (] + K, + -+ + T)).
Show that X, = (uo™2 + S,)/(n + 672), n > 1, is a martingale WRT {¥,).

8. Consider a branching process ¥, defined by Y, = ([, + Z,; + -+ + Z,y),
where Z,, denotes the number of offspring of the kth individual in the nth
generation and I, is the number of immigrations in the nth generation. Let
E[l,] = a and E[Z,,k] =m+# 1. Set X, = m "[Y,—a(l —m")(1 —m)” ]
Show that {X, } is a martingale.

9. Let{Y,},n > 0,be an MCon S = {0,1,..., N} with transition probabilities

2N —2x 2x
= () (R)
For what value of a is the sequence X,, = a " Y,(N — Y,), n > 0, a martingale

WRT (1,2

10. Consider a sequence {4,,}, n > 1, of successively finer partitions of Q by
measurable sets A,, in a o-algebra @ Let @, be the o-algebra generated by
A, A, ... Notethat@, C @,,,n > 1. Let P(4,;) > O for all k and n. Let
m(-) be a countably additive set function on @ Define X, (w) = m(A4,,)/P(A4,x)
if w € 4, (k > 1 and n > 1). Show that (X, } is a martingale WRT {@,,}.

11. Let {X,} be a submartingale. Then show that, for any x > 0,
(@ P {I?I?x X, > x} < x7'E|X,|

(0 P { min, ¥ < —x} <x7'[EIX,| - EIX]L
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Using this and Proposition 8.1.6, establish Kolmogorov’s extension of Cheby-
shev’s inequality; namely, if {X,} is a second-order martingale, then

P {IQ&("I«\’H > e} < €2E[X?).

12.Let {X,} be a martingale such that E[X2] < M < oo, for all n, and
lim,_, o supy > 1 | E[X, X4 ] — E[X,] E[X, ]| = 0. Show that X, converges in
mean square to a constant.

13.Let {X,} be a sequence of independent centered RVs. Use martingale conver-
gence to establish that the sequence of partial sums S, = (X; + -+ + X,)
converges with probability one if =, E[X,?] < oo.

14. Give an example of a martingale {X),} such that X, — —co with probability one.

15. Give an example of a positive martingale {X,} that is not uniformly integrable.

16.Let {X,} be an MC and R a set of recurrent states of the chain. Let
T < B, < --- be the times of successive visits to R. Show that {X7.} is an MC.

17. Let {X,} be a sequence of IID RVs following the distribution P{X = 1} = p
= 1 - P{X = —1}. Which of the following T are stopping times?

() T = min{n > 1: X, = 1} or T = oo if no such n exists .

n+1

(b)T=min{n>l:EXk=0} or T = oo if no such n exists .
i
n
(c)T=min{n>l:2Xk>0} or T = oo if no such n exists .
1

18.Let {X,} be a sequence of nonnegative IID RVs with P{X; > 0} =1 and
EX\]=m.SetS, =X+ ---+X,and T, =min{n > 1: S, > x}or T, =
if no such n exists, where x > 0. Show that: (a) 7, is a stopping time WRT {X,},
(b) E[T,] < oo forevery x > 0,(c) E[T,] > (x/m), (d) E[T,] < (x + m)/m and
that E[T,] =~ x/mas x > o0, if P{X; < M} = 1.

19. Let {X,} be a sequence of ID RVsand T = min{n > 1: X; + -.- + X, > 0} or
T = oo if no such n exists. If E[X;] = 0, show that E[T] = oo.



Brownian Motion and Diffusion Stochastic
Processes

9.1. Random Walk to Brownian Motion

In most of Chapter 2 we treated the simple RW (random walk) in which a
particle takes, at the end of each unit of time, a unit step to either the right
or left with equal probability. In this section we speed up the particle in
such a way that it takes 2 steps in one unit of time, with each step of length
27k/2 and study the limiting behavior of the particle as k — 0. Let {X ()}
be such a sped-up RW. Here ¢+ > 0 and varies over diadic rationals. As
k — oo, we take ¢t € R,. Similarly, the state space of the RW will become
the real line R.

First let us observe the RW for one unit of time, that is, for z € [0, 1].
Let there be 2 steps in one unit of time and X(0) = 0. Then

X(A) =@ +h+ -+ S 272 (9.1.1)
where all J; are independent RVs that are identically distributed according

as P{J = 1} =1 = P{J = —1}. Note that E[J;]] =0 andkvar(.l,-) = 1, for
all i. Thus X(1) is a centered and normalized sum 27%/252" | J. of 1ID RVs,

where the centering constant is 0 and the normalizing constant is 1(27%/2),
Now appealing to the central limit theorem, we get

21(
Pla<Xx() < b} = P{a <2M2 3 g < b
= (9.1.2)

W};b [e_"z/z/\/f;r]dx.
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9. Brownian Motion and Diffusion Stochastic Processes

Hence X (1) is asymptotically normally distributed. Similarly, any one-

dimensional distribution of {X'(r)} is Gaussian, approximately.

Next let us take two time points s and ¢ with s < ¢. Let /, m, p, and ¢q be
four positive integers such thats = /277 and ¢t = m279. Then we claim that
(X(s), X(¢)) is a two-dimensional Gaussian random vector, approximately.
To see this, it is easy to work with the characteristic functions. Now

124 m2k-q
X@=2%23J and x(@=2%3 J, (9.13)
Jj=1 Jj=I1

since there are 2% steps in each unit of time. Also, the characteristic function
of any step J is

E[e"ﬁ-’] = %e1£ + %e—if = COS g (9.1.4)
Since s < ¢, 1277 < m277 and hence, from (9.1.3),

X(0) = X(s) +27%2 '"§"' J;

/i - (9.1.5)
Jj=12k"r+1

Recalling that all J, are IID RVs, we see from (9.1.3) and (9.1.5) that X (s)
and X(¢#) — X(s) are independent. Therefore, it follows from (9.1.4) and
(9.1.5) that

Elexp{iX(s) + inX()}] = E[exp{i(§ + n)X(s) + in(X (1) — X(5))}]

12k-p m2k-q¢
= E[exp{(s +n)27k/2 2 g+ ™ > J,}]
-

j=12kp 4]

= [{cos 2742 + ﬂ)}zk]s [(005 Z—k/zﬂ)z"]’_s (9.1.6)

Using the MacLaurin series for cos x, we see that
Jim [cos 27K/2, " = exp[—x/2). 9.1.7)
From (9.1.7) and (9.1.6) it follows that
. 2 s 2 t—s
khm Elexp{i¢X(s) + inX(0)})] = (e‘“*")/z) (e_" /2)
-0
= exp{—27'(st% + 2stn + 19?)}. (9.1.8)
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Also note, for large k, that X(s) and X (1) — X(s) are approximately normal
N(0,s) and N(0, 7 — s), respectively, where N(u,0?) is the normal distribu-
tion with mean p and variance o%. Therefore, (9.1.8) gives, as k — oo, the
limiting characteristic function of (X (s), X (¢#) — X(s)). Also it follows from
(9.1.8) that (X(s), X(r) is approximately a two-dimensional Gaussian
vector, since X (s) and X (¢) — X () are independent and Gaussian.

In general, we have the following theorem.

Theorem 9.1.1. Let {X (1)} be a RW starting at 0, taking 2 steps per unit time
and having a jump length of 27%2 ynits. Then Joro< < - <ty

G X@), X)) —X(@), ..., X(@1,) — X(1,_,) are independent Gaus-
sian RVs with (X(#;) = X(t,_;)) € NO,t,—t;,_,), i =1,...,n

(i) The n-vector (X(1;),...,X(t,)) has, as k — oo, the limiting density
Sunction f(x,, . ..,x,) given by

S, ...x,) = 'Ijl [2n(s; - ti—l)]_%exp 2(t_— 1) }

So, if we speed up the particle (a random walker) to take indefinitely
large number of steps per unit time and jump an infinitesimally small
distance each time, then in the limit we arrive at a process X (¢) described
as follows: (1) X(0) = 0, (2) X () is a process with independent increments,
(3) each increment X(¢) — X(s) is N(0,7 — s). By Definition 6.4.10, the
process {X(¢)} is a standard Brownian motion. Hence a sped-up simple
symmetric RW converges to a standard Brownian motion.

9.2. Brownian Motion

The study of Brownian motion originated as an attempt to explain the
physical phenomenon behind the rapid ceaseless irregular motion of a small
particle suspended in a fluid. During 1827-1829, Robert Brown, a distin-
guished botanist, gave a step-by-step account of his experiments and
discoveries on such a motion. Brown was not the first to observe this
phenomenon, although the motion was named after him. The first explana-
tion given to the Brownian phenomenon was that the particles were alive.
Other earlier explanations were concerned with the attractions and repul-
sions among particles, their capillary action, their unstable equilibrium in
the fluid in which they are immersed, and so on. But most of these
explanations were refuted by Brown himself. After Brown’s 1830 article
hardly any literature appeared on this topic until 1857. Around 1860 Gouy
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put forward a kinetic theory explaining the Brownian motion. The salient
point of his theory was that the motion is very active because of any
combination of the following facts: (1) the particles are smaller and the
fluid has lower viscosity and/or higher temperature, (2) the motion is ceaseless,
the composition and density of the particle have no effects, and the ceaseless
motion is irregular, composed of translations and rotations; and (3) the trajec-
tory of the particle seems to have no tangent; that is, the velocity appears to be
undefined at every point.

Despite the amount of research that went into understanding the
Brownian phenomenon, Einstein was not aware of the work on Brownian
motion, but he was the first to present a correct quantitative theory of
Brownian motion. The kinetic theory behind the motion reasons that the
chaotic motion of the particle is due to almost continuous bombardment of
the particle by the molecules of the media.

Consider a small particle suspended in fluid. The position of the particle
is described by a Cartesian coordinate system. The origin of the system is
taken to be the initial position of the particle. The three coordinates of the
location of the particle vary independently of each other. So, to fix an idea
about the motion, let X(r) denote the X-coordinate of the position at time
t. Given a time interval (s,7), however small it may be, the particle
experiences an enormous number of bombardments by the molecules of the
fluid. Because the particle is heavier than the molecules, the effect of each
collision is negligible. But there is an observable motion because of almost
continuous bombardment of the particle. Also, each collision is indepen-
dent of the others. So the displacement X(r) — X(s) in the interval (s,7) is
the sum of a very large number of independent infinitesimal displacements.
Appealing to the central hmit theorem, we can assume that the increment
X () — X(s) is Gaussian. Moreover, the increments X(¢) — X(s) and X (u)
— X(?) are independent for s < r < u. Now we are ready to define a
Brownian motion (see Definition 6.4.10).

Definition 9.2.1. A standard Brownian motion {X(f)}, t > 0, is a stochastic
process satisfying the following properties:

1. X(0) = O with probability one.

2. Every increment X (tf) — X (s) is normally distributed with mean
zero and variance o*|t — s|, for a fixed variance parameter o.

3. Fr 0=t <4<1t,< -+ <1,< o0, the increments (X(z;)
— X(#,_1)), 1 < i < n, are independent and distributed as in (2).
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Definition 9.2.2. A Brownian motion with drift is a stochastic process
{X(0),t > 0} with the following properties:

1. X(0) = 0 with probability one.

2. Every increment (X(¢) — X(s)) is normally distributed with mean
u(t — 5) and variance o*|t — s|, for some fixed parameters p and o.

3. For 0 = 1y < 4 <---< 1, < oo the increments X (1) — X(5), - . -,
X(1,) — X(t,_,) are independent and distributed as described in (2).

The Brownian motion processes are also associated with the names
Bachelier, Einstein, Levy, and Wiener. The statical treatment of Brownian
motion was first given by Einstein and Smoluchowsky. Wiener and Levy
presented the mathematical theory and extensively investigated the proper-
ties of a Brownian motion. We now summarize some of the elementary
properties of a standard Brownian motion.

Property 9.2.3. A standard Brownian motion X(¢f), > 0, is a Gaussian
process. This we have established in Example 6.4. 11

Property 9.24. A standard Brownian motion process {X (), > 0} is a
Markov process. This follows from the fact that {X(¢)} is a process with
independent increments (see Theorem 4.2.1). The transition probability
density of this Markov process is given by

flt—sy—x) = —P{X(t) YIX(s) = x}

[2(r — s)]_%exp é(); x)) , (take o = 1).

I

Notice the spatial homogeneity and temporal homogeneity of the
Brownian motion since the transition density f depends on s, ¢, x, and y
only through 1 — s and y — x.

Property 9.2.5. If {X(¢),7 > 0} is a standard Brownian motion, the follow-
ing processes are also standard Brownian.

1. X,(t) = cX(t/c?) for ¢+ > 0 and fixed ¢ > 0;
2. X,(t) = X(t + k) — X(h) for fixed » > O and ¢ > 0;
-1 .
3. X,(0) = {tX(t ) if£>0
0 ifr=20
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Clearly, each process X;(#), i = 1, 2, 3, is a process with independent
increments and X;(0) = 0. Also, each increment X;(r) — X,(s) is a centered
Gaussian RV. It remains to verify the condition on the variance of
X;(t) — X;(s). Now, fors < 1,

E[X% () - X, ()] = CZE[{X(;%) - X(fz) }2]

2.2
cco(t—s) 5
——CZ——o(t—s),

E[X,(0) — X,(s)Y’] = E[(X(t + k) = X(s + W)Y’]
=o¥(t+h—s—h) =0t —3),
El06(0) = X,(9)] = Elex (¢ 7") — sX (™))
SE[X 7Y = X )P+ (¢ - P E[(X (7))
= s =Y + (¢ - 5) 20!
= o%(t - s).

Symmetrically treating the cases s < t and t < s, we replace all 02(1 - 5)
above by 0|t — s|. This proves our claim (9.2.5).

Property 9.2.6. The covariance function K(s,7) of a standard Brownian
motion X (¢), # > 0, is given by K(s,7) = o®>min(s, 7). The proof of this
statement is identical to the corresponding formula for a Poisson
process [see Example 6.1.1 (2)]. Note that X(¢) has stationary increments
because of condition (2) in Definition 9.2.2.

Property 9.2.7. Let {X (1)}, —o0 < ¢ < o0, be a Brownian motion forz € R
(Definition 9.2.1 remains the same). Then the Brownian increment
process defined by

Y) =€ '[X(t+¢) — X)), ¢ E R,

is a stationary Gaussian process with covariance function

e 1=, lr] < e
ko = {3 ol > <

From the Gaussian nature of the increments of the Brownian motion
X (2) it easily follows that {Y(z)} is a Gaussian process. Following the proof
in Example 7.1.3 (7) for the Poisson increment process, one can prove the
rest of the claim.

232



9.2. Brownian Motion

Let {Y(¢), t > 0} be an arbitrary stochastic process with E[|Y(#)]] < oo
for all 7 > 0. Let @; be the o-algebra generated by events of the form
Mo {Y@) Kyt forall n>1and s<f{ << - <1, <t The
process Y(¢), ¢ > 0, is called a martingale if for s < t,

E[Y(0)|@%) = Y(s).
Property 9.2.8. Let {X(¢), t > 0} be a standard Brownian motion. Then
{X (1), @, t > 0} is a martingale, where @, = o{X(s): 0 < s < ¢}. For
E[X(1) — X(9)l&,] = E[X() — X(s)] = 0
(since X(f) — X (s) is independent of @, and E[X(u)] = 0).

Property 92.9. A standard Brownian motion X(¢), ¢ > 0, is continuous in
the mean-square sense. For

E[IX®) =X =0*t—s| >0 as t—s.

Property 9.2.10. If X(¢), 1 > 0, is a standard Brownian motion with o>
= |, say, then the reflected Brownian motion defined by Y (1) = |X(?)|, ¢
> 0, is a Markov process with

E[Y()] = @Qym'  and var(X()) = 1(1 — 227").

It follows from
PY(0) <HIY() = yoto < <+ <1, < 1}
= P{-y < X() < ®X(%) = 2y, 0< k < n}
= P{-y <
= Pl-y < X() < »IX(t,) =5). by (9.2.4),

X < +|X(t) =wm, 0< k< n}, bysymmetry,

that Y(f) is a Markov process. Clearly, the transition probability of Y(¢) is

given by
Atxy) = Ay —x0)+ Ay +x1),

where Q(x,1) = (2wt)_5exp[—x2/ 2t], since

Pl-y < X(1) < w1X(6,) =y} = fyv Qx = yput = 1) dx.
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9. Brownian Motion and Diffusion Stochastic Processes

Next

E[v(@)) = [ °:° | x|OCx, ) dx

— *® -} —x¥u — 2
2]; (27t) *xe dx V‘”’

var(¥()) = E{Y(Y] - 2

~ EIX@P1 - % = (1= 207"

Theorem 9.2.11. Let X(¢),t > 0, be a standard Brownian motion (take
o = 1). Then, for any A > 0 and time points 0 = 1t < t; < - -+ < 1,

0 P{ max, X0 >} < 2P0x() > ),

(MPLQQJHMDM}<2HHMN>&

ProOF. Define t = min{k: X(z,) > A}. The event {t = k} depends only
on X(t), ..., X(t;). Since X(1,) — X(t), 0 < k < n is Gaussian, its
distribution is symmetric about its mean 0 [i.e., P{X(s,) — X(t) > 0}
= P{X(t,) — X(#;) < 0}]. Then

n—1
P {021’2(" X(4) >AX@) <A g = 3 Plt=mX(5,) <A}

n

< 3 Plt=mXx(@,) - X@,) <0}

e
- méu P{t = m}P{X(t,) = X(1,)) < 0)
— mél Plt = m) P(X(1,) — X(,,) > 0)
- mé. P{t = mX(t,) — X(,,) > 0}

< 3 PlE=mx() >N

I

P{X(ty) > N).
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9.2. Brownian Motion

Also, P{maxgc,<.X(%) > A X(1,) > A} = P{X(t,) > A}. These imply
(). Part (ii) follows from (i) and the fact that —X(¢) is also a Brownian
motion:

ax [X(5)] > x} - p{ max X() > ,\}

02e2
+ P{ max [ X)) >)\}

= 2P{|X(z,)| > A}. |

More generally, we have Theorem 9.2.12.

Theorem 9.2.12. For each T > 0 and A > 0 we have

P{ sup X(0)) > Ap =2P(X(T) >\ = \/gf:o o~ X/2T gy

o<i<T

This theorem is a consequence of the so-called reflection principle. The
proof of this principle depends on the fact that a Brownian motion is a
strong Markov process; that is, it starts afresh at every stopping time (see
Section 9.4). Let X (¢) be a (standard) Brownian motion and A > 0 a fixed
real number. Let t, be the first time ¢ such that X(¢) > A. The hitting time
t, is a stopping time. For all 7 > t,, let us reflect the paths about the line
x = A, that is, set

NN (0] if £ <ty
X(t)_{Z)\—X(t) ifr>t,

Fix an interval [0, T'] and let X(T') > A. Consider a sample path that hits A
for the first time at t,(w) and continues on such that X(7) > A. To this
path there corresponds another path (the path reflected for 1 > t,(w)) such
that X*(7T') < A. Since a Brownian motion starts afresh at each stopping
time, the behavior of these paths after t, is independent of what happened
before t,. Since X (¢) and X*(¢) are reflections of each other for 1 > t, and
the increments X(r) — X(s), t), < s < ¢, are normal N(0,7 — s) (and hence
symmetric), the original path and its reflection beyond t, have same
probability law. Now
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{o’é’f’é‘r X@ > )\} = {Ogl’aé(r X@) > MAX(T) > )\}
U {021% X() > M X(T) = )\}

U {g% X@) > M X(T) < )\}.

Since X(T) is Gaussian, a continuous distribution, the probability of the
middle event on the RHS is zero. But each of the first and the last events
is obtained from the other by reflection about the line x = A beyond the
time t, and hence have equal probability. Noting that

{ max X() >\ X(T) > A} = (x(T) >N,

we obtain Theorem 9.2.12. (This theorem is also needed in Section 9.4.)

9.3. Some Fundamental Path Properties of Brownian Motion

In Section 9.1 we saw that a sped-up RW converges to a Brownian motion.
So we have to look at the sample paths of the RW to see what one can
expect of the sample paths of Brownian motion. Speeding up an RW
increases the number of steps per unit time, say, 2k steps per second. But
the step length is 27K/2, Compared to the increase in the speed, the decrease
in the step length is steady. Therefore, the peaks and the valleys in the
sample path rise and fall sharply (see Figures 9.1 and 9.2). Figure 9.1 gives
a typical sample path of an RW. By quadrupling the speed of the RW, the
same sample path takes the form as that given in Figure 9.2.

Figure 9.1
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9.3. Some Fundamental Path Properties of Brownian Motion

Figure 9.2

This suggests that the sample paths of a Brownian motion can be expected
to be continuous but have no tangents at any point. In other words, the
sample paths of a Brownian motion appear to be everywhere continuous
and nowhere differentiable curves. This, in fact, is true. Let us continue to
assume that our stochastic processes are separable. Also, let X (f) be a
standard Brownian motion with 0 = 1.

Theorem 9.3.1. A Brownian motion process X(f),t > 0, is a continuous
process; that is, almost all sample paths X ,(-) are continuous functions.

ProOOF. The result follows easily from Theorem 6.2.4. Indeed, take 0 < a
<3
1_ —1
gh) = A", q(h) = 2[R “e(ln]""?),

where ¢(x) is the normal density ¢(x) = (2#)—%6—"2/ 2. Then it is easy to
verify that

2 g(2~n) — 2 Z—an< 0
1 >1

nz nz

and that the series
> Z"q(Z-") =23 2n(l+2a)/2¢(2n(|—2a)/2)
n>1 n3>1

is convergent. The increment X (¢t + k) — X(¢) is normally distributed
(N(0,|A])). Let @ be this normal distribution with zero mean and variance
|h|. Since

1 - &(x) < x 'olx),
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9. Brownian Motion and Diffusion Stochastic Processes

we have
P(IX(t + k) — X()| > |A*} = 201 — &(|a®="72)]
< 2|h|(]_2a)/24>(|h|(2”_|)/2).

Thus all the conditions of Theorem 6.2.4 are satisfied. By our standing
assumption, X (7) is separable. Hence a (standard) Brownian motion is
always a continuous process. ]

Theorem 9.3.2. Almost all sample paths of a Brownian motion X(t) are
nowhere differentiable.

ProOF. Let X(f) be a Brownian motion and T a fixed time point. If a
sample path X (7) is differentiable from right at T, then the limit

13?3 A UX(T + k) — X(T)]

exists. For such a sample path X_(:) and the corresponding derivative X,
say, there is a § such that

|A7 X(T + h) — X(T)) - X7| < 1
for 0 < h < 8, and consequently
A7 X(T+h) — X(D))| < X7+ 1, (9.3.1)

if 0 < h < 8. Let A denote the collection of all w € @ such that X (-) is
differentiable from right at 7. We claim that P(4) = 0, and the conclusion
of the theorem holds.

From (9.3.1) we see that we can find, for any w € 4, an r > 0 and an

m > 0 such that X%+ 1 < r and m~! < oo, Therefore

. -1y _
AC glmglnr;m{w. |l X(T +n7") = X(D))| < 7).

Set A, = {w: [n[X(T + n') — X(T)]| < r}. Then
P{4,) = P{IX(T+n"") = X(T)| < n”'7})
=P-nr<X(T+nHY-XT)< n'p
= f_rr//nn (27m_])_*exp[-—x2/2n"]dx

-4
=" 4 (277)_*e"‘)/2dy, taking y = n"2x.

—-rn
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9.3. Some Fundamental Path Properties of Brownian Motion

But N5, 4, C A, Therefore

0< P{ 0 An,} < Ply) = [T ny e gy

m—o0 O’

since the integrals of continuous functions are continuous functions of the
limits of integration. Thus P{N,,, 4,.} = 0. Therefore, 4 as a subset of a
countable union of sets of zero probability is itself of zero probability. This
proves our theorem. O

Heuristically, we followed the ideas of Dvoretski et al. (1961) to
establish Theorem 9.3.2. Following the same idea, one can also prove
Theorem 9.3.3.

Theorem 9.3.3. For any a > %, almost all sample paths of a Brownian motion
X () are nowhere Holder continuous with exponent a. Consequently, almost
all sample paths of X (t) are nowhere differentiable and hence have infinite
variation on any. finite interval.

PROOF. Let T be an arbitrary positive integer. Choose a positive integer N
such that 2a — 1) > (2/N). If a sample path X (¢) is Holder continuous
with exponent a at some time point ¢ € [0, T}, then

[Xw,w) — X(t,0)| < Hlu —t|*,  if lu—1] Q%,

for some Holder constant # > 0 and an integer n > 0. Now fix a constant
H > 0 and define a sequence 4, of events by

A, = {w: for somet € [0, T]
we have | X(u) — X(¢)] < Hlu — t|*
whenever |u — t| < N/n}.

Note that4, C 4,,,n > 1. Let 4 = lim,_, , 4,. Since 4, is an increasing
sequence, P(4) = lim,_,, P(4,). If we can show that each 4, is a subset
of an event B, of probability zero, then P(4) = 0, and this will prove our
theorem.

Define, fork = 0, 1, ..., nT,

(557 -+ (=)

Y, = max
1I<m<N
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9. Brownian Motion and Diffusion Stochastic Processes

and

N a
= {w: Yi(w) < ZH(;) ,  for some k}

e x <242

kL_JO w: Y(w) < 2H(
First note that 4, C B,. For, if w € A4,, we can find a largest integer
k > 0 such that (k/n) < t and
ﬁ, a
o) -
Thus 4, C B,.

Next we use the fact that {X(m/n) — X((m — 1)/n)}, 1 < m < N, are
1ID Gaussian RVs to estimate P(B,). Now

() < 2(

N

nT N\* nT
r{8{n<an(5) )} < &r{n <l
2 )

P(B,)

(T + 1)P {yg) < ZH(

h

N

=0T +1)

=T+ 1)

= (T + 1)

— 0 as n — oo, since

Therefore

:P {|x(n") - X0)] < 211(

2HN®/n"

L v/;ZHN"/n"

n

2

2HN®
—2HN«

L(z,,)—i,,-(zex—n/z f

NQa - 1)
_2—>1

OBl

) N
e ™ /2 dx:l

N
eH/2ne ) dy]

0 < P(4) = lim P(4,) < lim P(B,) =0,

and hence almost all sample paths are nowhere Holder continuous for any

exponent a > 1.

If a sample path is differentiable at some ¢, it is Holder continuous with
a = 1. Therefore, almost all sample paths are nowhere differentiable.

240



9.3. Some Fundamental Path Properties of Brownian Motion

Since the bounded variation property of a path implies almost every-
where differentiability of that path, we see that almost all sample paths of
a Brownian motion have infinite variation on any finite interval. This ends
the proof. m]

We have theoretically shown, by ignoring a set of probability zero, that
the sample functions of a Brownian motion have infinite variation on any
finite interval. We can actually compute this variation and show that it is
infinite. This is a consequence of Theorem 9.3.4, which states that the
squared variation of almost all paths on a finite interval [a, b} is just (b — q).
This is an oddity in the sense that if f is a continuously differentiable
function on [a,b] and &, is a sequence of successively finer partitions
Ppia =ty <ty < -+ <ty with|%,| = 0,as n > oo, then the squared
variation

Nn
Jim 30 [f(n) = SV = 0

(but we should also remember that Brownian paths are nowhere differen-
tiable).

Theorem 9.3.4. Let {X(t), t > 0} be a Brownian motion and %, the sequence
of partitions of [0, t]

P02 L2 L <Lt
Then
2’!

i 3 [x(5) - ()] =0 632

k=1

where the limit holds in the mean-square sense and also with probability
one.

ProoF. First we show that (9.3.2) holds in the mean-square sense. To
simplify writing, let us introduce some notation. Set

Bug = X(?) - X<(k ;,,l)’). 1 < k<2,

2Il
Dy =A48,-2" 1<k<2" and §,= E‘ Dy, n>l
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9. Brownian Motion and Diffusion Stochastic Processes

So our claim is that E[S,f] — 0 as n — oo. Since the increments 4, , are
independent and N(0,27"f), the variables D,;, | < k < 2", are IID RVs
with

EID,) = E[A,}-2" =0 and E[D}] =222 (93.3)

Therefore

2"
Els;]= 2 E[DY] =222 = 2712 50 (9.34)

asn — oo.
To see that (9.3.2) holds almost surely, we first appeal to Chebyshev’s
inequality and get, for any ¢ > 0,

P{|S,] > ¢ < 2var(S,) = € 2262(27"), see (9.3.3).

But 227" is a convergent series, and hence by Borel-Cantelli lemma we
obtain

P{|S,| > e infinitely often} = 0.

P{lim S, = 0} =1L
n—oo

This proves the theorem. (]

Therefore

As remarked earlier, we can compute the variation

() (5

using (9.3.2) and show that this limit is infinite. Indeed,

2'!

Jim )

k=1

2" -1 2n
2 (Al >[ max IA,,,mI] k§I [A,4). (9.3.5)

1<m<2”

The factor S7__, [A,4 J* - ¢. Since the sample paths of X (1) are continuous,
they are uniformly continuous on [0, 7]. Hence

|é',‘,,aé‘z~|A"""| -0 as n-— oo.
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This proves that lim,_, ., =2"_, |Bp il = o0.
Next we state, without proof, the celebrated laws of iterated logarithm.

Theorem 9.3.5. (Laws of Iterated Logarithm). For a Brownian motion we
have

P {%(ﬁ log log 1) ¥ x (1) = 1} =1

P {Wn(zz log log £) "1 X () = 1} =1
tToo

P {Lil_?(zz log log ¢ ™) I X (1) = —1} =1
1

P {]i_m(2t log log t)_%X(t) = —1} = 1.
tToo

9.4. Examples and Further Properties

Let {X(¢)} be a Brownian motion and @, the o-algebra generated by
{X(s),0 < s < 1}, that is, by the events of the form

{w: X(5,) € B;,...,X(s,) € B,}

for all n > 1, time points 0 < 5; < s, < -:-<s, < 1, and Borel sets
B, ..., B, € B(R). Then {@,,¢ > 0} is an increasing family of ¢-algebras.
A mapping t: @ —> R, is called a stopping time WRT @&, t > 0, if
{w: t(w) < 1} € @, for all ¢ > 0. As in the discrete-time case we define @,
by

@e=fde@aanf{t<gee,>0}
Theorem 9.4.1. (Strong Markov Property). Let t be a stopping time WRT a
Brownian motion {X (1)}, that is, WRT {@,}. Define
Y(@) = X +¢t) — X(¢), t>0.

Then{Y(t),t > 0} is a Brownian motion. That is, a Brownian motion starts
afresh at any stopping time.

PrOOF. We present the proof only in the case where t is at most countably
valued.

If t = 1, a constant, then the theorem is obvious. Now let t be countably
valued, that is, t: @ > {f.55....}. f A €@, then A N {t =y} € Q,.
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9. Brownian Motion and Diffusion Stochastic Processes

Also, if ¥ is the o-algebra generated by ¥, = X(t + 1) — X(1), t >
then the events in ¥ are independent of events in @, because the Browman
motion is a process with independent increments. Therefore, for any time

points 0 < s; < s, < --+ < s, real numbers x;, ..., x,, and 4 € @,, we
have
P{Y(s;) < x1,...,Y(s,) < x,,4)}
=2 > PY(s) < x,...,Y(s,) < x,,t =1,4)
i21

=3 S P{(X(s, + 1) — X)) < x,1 < k < mt=1,4)

12

= 3 PXGi+ 1) = X@) < x 1 <k < m Pt = 1,4)
= P{X(s,) < i, 1 < k <} i§1 P{t = 1;,4)
= P{X(5;) < x4, 1 < k < n}P(A).

By taking 4 = §2 we see that

P{Y(sk) < xkal < n} - P{X(sk) xk7 \ k < n}v n > L

Thus the processes {Y(7)} and {X (¢)} have the same joint distributions. Since
X () is a continuous process (by being a Brownian motion), we see that Y (¢)
is also a continuous process. Hence {Y(¢)} is a Brownian motion. O

We heuristically discussed the reflection principle in Section 9.2. A
rigorous proof uses Theorem 9.4.1 and is beyond the scope of this textbook.
But the reflection principle has several interesting applications, and we
discuss one or two examples of it.

Examples 9.4.2

ExampLE 1. Find Py{X(s) < A for all s with 0 < s < ¢}, where P, is the
probability measure corresponding to the Brownian paths starting from a,
and A > 0.

First note that P{X(r) = A} = 0, since X(¢) is Gaussian. Therefore

1= Po{X(@) >N+ Py{X(s) <AOLKs <)
+ Po{X() < A and X(s) = A for some s < 1}
= 2Py{X(@®) > A} + Py{X(s) <AOK s < 1) (why?),

and hence
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PX(s) < AOKs <y =1-=2P{X(t) > A}

=1- 2];0 (Zm)—ie_"z/z’dx

2 ™ 2
S — — . /2
: \/;f)\l‘l e dy, (941)

by taking y = M
ExAMPLE 2. Show that

’1_12!1) Py{X(s) < Aforall s with0 < s <7} = 0.

2 o _»
_ < /2
1 \/;j(; e dy

=1- 2]:0 (2w)_l/28_y2/2dy

Letting t — oo in (9.4.1), we get

’lim Po{X(5)A\0< s < 4}

—1-2-}
= 0.

In other words, we cannot keep Brownian paths below any level A for
an indefinite period of time.

ExAMPLE 3. Show that

Po(X(s)< shforalls > t7') = 1 — ‘/3 JZ e luax (9.42)
7t JA
Recall that the process X;(¢) defined by

o - {00 >0

is also a standard Brownian motion (Property 9.2.5). Set o = s, s > 0,
and note that s > ¢+~ if and only if 0 < o < 1. Also, X(s) = sX3(s™").
Therefore

Py{X(s) < sAforalls > ¢} = Py{sX;(s™') < sAforalls > ¢}
= Po{X3(O) < )\forO < o < t}

— 1 _ 3 X XYy
=1 j; e dx,

art

by applying Example | to the Brownian motion X;(1).
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ExAMPLE 4. Let t, be the hitting or the first passage time of the level A > 0
by the (standard) Brownian motion X(7):t, = min{r > 0: X(1) > A}
Find the density function fy(?) of t,.

If t, >, then X(s) < A for all s with 0 < s < ¢, and conversely.
Hence, for ¢t > 0,

Po{‘x>f} = Po{X(S)<A,O<S < I}

and consequently

T e
Pty < 1) = \/;f)\/\ﬁe 72 dx,

from (9.4.1). Therefore

d 2 oo 2
- Z < -x%/2
ING) —d,\/;fw e /2 dx

= Qn) 2TV ¥ >0, (9.4.3)

Theorem 9.4.3. (Zero-Crossing Theorem). Let {X(f)}, t > O, be a standard
Brownian motion with X(0) = 0. Then the probability p that {X(t)} has at

least one zero in an interval (a, b) is given by

2 a
p = _ arccos \/; . (9.44)

Consequently, if t is the largest zero of X(f) witht < T, then

~N

Pyt < a} = %arcsin \/g. (9.4.5)

Proor. The Brownian particle X(f) starts from 0, and |X(a)| = A for
some nonnegative A. We want to compute the probability that the particle
will then cross the zero level at some point in the time interval (a,b). Let p,
denote the probability that the particle located at A at time a [i.e., X(a) = A]
will cross the zero level in the time interval (a, ). Then

P =, prPollX(@] = N}dA (9.46)
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So we first compute p,. Now

P {argnllgb X(1) < 0|X(a) = )\}
=P { r<n’i2b X(1) < A X(a) = 0}, by spatial homogeneity,
=P {aréllaéb X(0) 2 NX(@) = 0}, by symmetry,

=P, odnax X(1) 2 }\}, by temporal homogeneity,
= Py{ty < b —a},  wheret, is the hitting time of A,
b-a
= 2n) V2 fo 17326 N2 g by Example 9.4.2(4). (9.4.7)
Using this in (9.4.6), we have

0 0 1
p= [ PolIX(@] = N\ =2 [* (2ma)1e /2 py d)
2 [ ~y2y (579 ~3/2 Ny -N/2a
= \/Efo @m VAN [ 12N R 2 gy
= w*'a“'/z ‘3/2{f A exp[—A(:~! +a")/2]d)\}dt

'a’l/zj(‘) - 17 2at/(t + a)} dt,

by setting ¥ = A*(t + a)/2at in the inner integral,

b—a
= w_lal/zfo T2+ o) at

((6—a)/a]"? &
= 27" ——, by setting 1 = as?,
T ./(; s y setting as
= 2n arctan[(b - a)/a]'/z. (9.4.8)

Set a = arctan[(b — a)/a]l/z. Then tana = [(b — a)/a]]/2 and cos a

= [a/b]]/z. Hence
_ a2 2 av?
= arccos
T b

= g arctan[
P T

This proves (9.4.4).
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To see (9.4.5), note that if t < a, there is no zero in (a,T), and
conversely. Therefore

2 P U2 [al??
Pt<a)=1-p=1- - arccos[g] = _ arcsin [[—7]

by (9.4.4) and the relation (7/2) = cos™'6 + sin”'6. This completes the
proof. ]

Examples 9.4.4

EXAMPLE 1. Ornstein—-Uhlenbeck Velocity. In Section 9.3 we established that
the Brownian paths are nowhere differentiable; that is, the particle has
infinite velocity at all times. Recall that the mean square velocity is also
infinite at all times. To handle this situation, Ornstein and Uhlenbeck
introduced a process as a model for the velocities of particles performing a
Brownian motion. Let X(¢) be a standard Brownian motion. The process
V(1) defined by

V() = e 'X(e¥), tER, (9.4.9)

is called a Ornstein—-Uhlenbeck process. Show that V(r) is a Gaussian
stationary process.

Let a, ..., a, be some real constants and f <, < --- <1, be
arbitrarily chosen time points. Then

n

n
S aq V) = 3 ae v X (M),
K= =)

is a Gaussian variable since X(¢) is a Gaussian process. Hence V(1) is a
Gaussian process. Let us next compute the mean and covariance functions

of V(1)
my(t) = E[V()] = E[e”'X(e¥)) =¢"-0 =0, (9.4.10)
K (s,1) = e Se'E[X(e**) X(e¥)],  where we lets < 1,
= e *e'min(e%, e¥)
—1+s

— t¥s — goli=sl (9.4.11)

By symmetry in s and 1, K,/(s,1) = e~ for all 5, 1. Because Ky(s,1)is a
function of |t — s|, V(r) is wide sense stationary. Combining this with the
Gaussian nature of {V(r)}, we see that V(r) is also strictly stationary. The

248
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Ornstein—-Uhlenbeck process V(f) is just the Brownian motion X (f) trans-
formed appropriately into a stationary process. The transformation is done
by rescaling the time (such that zero is taken into —o0) and normalizing by
e”'. Since X () is a Markov process and the transformation is one-to-one, it
is easy to see that the Ornstein—Uhlenbeck process F(f) is a Markov
process.

Let us now obtain the transition probability density function f(s, x; ¢, y)
of V(). Since the Brownian motion X(f) is a process with independent
increments, it is clear that the RVs ¥ (s) and V() — e ") V(s) are
independent for s < t. Therefore

EVlV () = ElV() — e IvV(s) + e IV ()| vis))
= E[V(t) — eIV (s)] + e IV (s)
= e =9I (s), sincem,(r)=0 by (9.4.10), (9.4.12)

and also

E[v (1) — e IVEY V)] = EV(@) - eI v(s)))

A s <, (9.4.13)

=1-e

from (9.4.11). Since ¥ (¢) is a Gaussian process, the conditional distribution
of V(¢) given V(s) is also Gaussian with conditional mean and variance
given by (9.4.12) and (9.4.13). Hence

J6.582) = 3P < V() = 3

[27(1 — e~2-9)]4 [ - e_("f)x)z] (9.4.14)
= e g ex | (94.
PL 20 = %)
urther discussion is continued in Example 9.6.7 (3).
Further di ion i 1 in E le 9.6.7 (3)

ExAMPLE 2. Let f(s) be a continuous function on [0,7] and set Y(¢)
= {3 f(5)X(s)ds, where X(s) is a Brownian motion. Compute the mean and
variance of Y(¢),

! t
my(i) = E[Y(D)] = E [ f(s)X(s)ds = [ f(5)E[X(s))ds = O,
where the interchange of E and f operations can be justified. We suggest

(but not as the justification), that the reader think of these operations as
finite sums. Since my(t) = 0,
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9. Brownian Motion and Diffusion Stochastic Processes
war(v) = Ev@P) = £[ { [ roxoa) |
- 5[ [} [ r0s0x0x0 dras]
= [ [ 1O G EIX (X () dr ds
= [ [, FO) 7@ min ) drds
=[50 [, sewdras + [ 556 [ frdras.
ExaMPLE 3. Show that the process

ro = [ @6 - x@)as  reR,

where X(7) is a standard Brownian motion, is a wide-sense-stationary
process.

my) = E [ [X6) - x@las = [ EXG) - X@)ds = 0. 0:415)
Therefore

Ky(u,0) = E[Y(@)Y ()]

utl v+l
= E[f; [X(s) — X(u)]dsj; [X(H) — X(v)]dt].
fu<u+1<v<v+ |, thatis, if v — 4| > 1, then Ky(u,v) = O since

X(f) is a process with independent increments. Therefore, let u < v
<u+ 1< v+ 1 Then

o= (L) )]
B E[{]uu+l [X(s) - X(v)]ds}z]

= ] [ [ o - x@Ixo - x@lsa]

u+l prutl

=fv f min(s — v,t — v)dsds

=j;"+' {j;’(s—u)dg+j:u+l (z—u)ds}dz
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9.5. White Noise and Stochastic Integrals

= [ - )@=y~ 1+ 2)/2)a

= 27Mul(u + 1)’ = v?] — §l( + 1 — 02 + [ + 1) - )
Hu + 1) =02 = 2uw(u + 1 = v) + v2(u + 1 —v)
3l + 1) = %) - w(u + 1 —v))

=3 -@-wP =3""1-v—u.
The same expression holds for v < u. Therefore,

Ky(u,v) =31 = v — u])* = Ky (v — u]).

Hence Y (r) is a wide-sense-stationary process.

9.5. White Noise and Stochastic Integrals

Consider a mechanical or electronic system. Incessant fluctuations in such
devices limit their sensitivity and are called noise. For example, the
fluctuating current called shot noise in vacuum tubes is due to the random
emissions of electrons from the heated cathode. Similarly, the thermal
agitations of conduction electrons in various resistors in an electric network
cause fluctuations in the voltage across the ends of the resistor. The
fluctuating voltage is called the thermal noise. These types of noise are
examples of white-noise processes. The white-noise processes are defined in
several ways. Let us motivate one of them.

We need first the notion of 8-function(al). A (generalized) function &(x)
defined by the evaluation relation

Jo I = xg)dx = (xo), (9.5.1)

where f is a continuous function on R, is called the &-functional. One
advantage in introducing this function is that we can define the derivatives
of a function g(x) at its discontinuity points. For example, let g(x) be the
unit step function with unit jump at the origin. Then

dg(x)
dx

We have seen in Chapter 4 that the electron emissions can be modeled
by Poisson processes. Consider the emissions occurring at random times

8(x) =
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9. Brownian Motion and Diffusion Stochastic Processes

W,, W, .... The total current flowing through a vacuum tube is due to the
superpositions of current pulses. So one defines a shot noise by means of
the process

X() = % h(t — W), (9.5.2)

where h(?) is a real-valued function called impulse response. If N(t), t € R,
is a Poisson process, then the Poisson impulses process is defined by

Y() = 380 - W) = 4’;@. (9.53)

If h(t) is the impulse-response function corresponding to the input Poisson
impulses, then the shot noise is the resulting output. Now set

Ho) = {ZeT fo<1<T 9.5.4)

otherwise

where —e is the charge of each electron and T is the transit time that each
electron takes to move from the cathode to anode. The Campbell’s theorem
states that

E[X()) = A f h(f)dt = Ae

4)e?
3T
Ky(t,t + u) = X [ he)h(s + w)ds

4\e? 3ul  |ul
_ﬁ[l 2T + 2—7'_:] for |u| T

0 otherwise

var(X (1)) = A f KA (f)dt =

where A is the Poisson intensity parameter. If the transit time T is very
negligible, say, of order 10~ N for suitable N, one can show that the spectral
density function of the shot noise process is

f(¢) = constant,

a flat spectrum.

Similarly, a thermal noise in a resistor is defined as a normal process
with zero mean function and the §-functional as the covariance function.
The §-functional has a flat spectrum that in the thermal noise case is given
by f(§) = akT, where a is a constant, k is the Boltzmann constant, and T
is the absolute temperature.
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9.5. White Noise and Stochastic Integrals

There are several stationary processes with a flat spectrum. In particu-
lar, the process representing the energy distribution in white light from an
incandescent body has a flat spectrum. With this analogy, a white noise can
be defined as a stationary process with constant spectral density.

Definition 9.5.1. A white noise W(f), t € R, is a stationary process, either:
(1) with constant spectral density, (2) whose covariance is the Dirac §-
functional, or (3) with covariance and spectral density given respectively
by

K@) = Ne~ Nl and fx) = 7171_4-_(.LW’

where N is infinitely large.

9.5.2. A Formal Representation of White Noise

Let X(1), —o0 <t < o0, be a standard Brownian motion. We proved in
Chapter 6 that X(f) is not mean-square differentiable. But let us formally

consider the mean-square derivative X(f) of X(¢). Then

2 Ky (s, 1)
Kilo)) = =550

92 min(s, 1)
ds ot

oH(s — 1)
as

=& — 1),

where H is the Heavyside function

1 fors >t
H“—O_{o fors < 1

That is, the covariance functiop of X(t) is the Dirac 8-functional. So, by
Definition 9.5.1, we can treat X(¢) as a white noise. Thus the white-noise
process W(f) can be formally represented as

w@ = dXTt(Q

This representation suggests another definition of white-noise processes.
Actually, many probabilists prefer to work with the following definition.
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9. Brownian Motion and Diffusion Stochastic Processes

Definition 9.5.3. A white-noise process W(t) is the formal derivative of a
Brownian motion X () where W (1) = X(t) is to be treated as a function-
al that acts on continuously differentiable functions as follows:

[ 1ow@ar = [ 10 ax ) = fOx0E - [ X dr@). ©:55)

Since almost no sample path of X(¢) is differentiable, it is not p0551ble
to define the integral £ f(1) dX (1) by the usual recipe. Thus (9.5.5) gives also
a definition of the integration WRT to a Brownian motion. There is
extensive work avallable on such integrals. It is possible to define a
stochastic integral f° f(1,w)dX(t,w) in a suitable sense for a sufficiently
large class of processes f(r,w). But the theory of the so-called It integral is
beyond the level of this textbook. Bernstein and Wiener did the initial work
on stochastic integrals and equations. We simply call the integral
52 (1) dx (1) a stochastic integral. Theorem 9.5.4 lists some of the first and
basic properties of the stochastic integrals.

Theorem 9.54. Let C'[a,b] denote the class of all (once) continuously
differentiable functions, and let X (t) be a standard Brownian motion, where
la,b] C R,. Then:

(i) The stochastic integral fab f(O)dX (1) is a Gaussian RV with zero mean.

) E| [ r0axo [ s0ax] = [ 10s0a

forf, g € C',

(9.5.6)

in particular,
var(fabf(t)dx(t)) = fabfz(t)dt, (9.5.7)

(iii) E -fa"f(z)dx(;)fc"g(z)dx(zﬂ —0 ifa<b<c<d,
] i (9.5.8)

min(b,c)

(iv) E [ fa ’ F(©)dx (o) fa ¢ g(t)dX(t)j = fa f(H)g()dr. (9.5.9)
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9.5. White Noise and Stochastic Integrals

ProoF. (i) Since the Brownian motion X (¢) is a Gaussian process, it is now
clear from (9.5.5) that j:,b f(0)dX (1) is a Gaussian variable with zero mean
function.

@ ] [ 100 [ svaxo]
- £ {rox® - r@x@ - [ xor0a)
x{£®x®) - s@x(@ - [ X()g'0ar} ]
- e[ {roxe - x@) - [ rown - x@a}

x{sBx®) - X@) - [ g OK0) - X@)ai} ]
= E[f(0)g(®)(X () — X(@)’]
[~ rb b
+&[ [ rowe - x@)s [ g0x0 - x@)a]

[ b
- E[rox®) - X@) [ s0x 0 - X(@)a]

I b)(X(b X 7 X X d
- E[sG)X®) - X@) [ 10K - X@)a]
= FE +E,— E;— E,, callthemso. (9.5.10)

Now

E, = JO)ROEIX®) - X@)) = [(B)s®)b - a) = [ 165 (b,
9.5.11)

b rb
E = [ [ g 0EIX G - X@)(X() - X(@)dsdi
b b
fa f'(s)fa g'()min(s — a,t — a)dtds

fabf'(s){fa’ (t — a)g'(t)dt +[f (s — a)g'(t)dt}ds

= [[50{u - a0l - [ s + s - (e(b) - 86) }as
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9. Brownian Motion and Diffusion Stochastic Processes
= [[10{ - a8 - [ sar}as
b K]
= [ 1) [ (8(6) - g(e))drds
b b
= [ (s6) - g()) [ () ds
= [ &®) — ) (®) - 1), 95.12)

E, = [ 18 OEX(6) - X@)(X() — X(a))ds
— [ s O min( - a1 - a)a
= [ 1O - aydr
= 1@ [ (¢ - adg()
- 1®)| - a0l - [ s at]
- 166 - a6 - [ st
= 1) [ (26) — g0, (95.13)

and similarly

b
Ey=gW) [ () - 1)) a. (95.14)
Using (9.5.11)49.5.14) in (9.5.10), we get
g| [ 10 axo [ swaxo)]

= [T 1/ ®)26) + (26) - g)(SC) - £0)) — )8 ®) ~ 1))
— gB)(f(6) - F@))]ds
= [* s .
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9.5. White Noise and Stochastic Integrals
(iii) This is a simple consequence of (9.5.5).

(iv) Let b < c. The case where ¢ < b follows similarly.

g [ roaxo [ s0ax o]

= [ [ 10 axo{ [ s0ax + [ sty ax 0} |

j; ® f0g()di, by (i) and (i),

min(b,¢)

= L f(Dg(n)dt,  since b < ¢ by assumption .

This completes the proof. O

To mention a point about defining a stochastic integral as the limit of a
sum D724 (1, @)[X(ty 41 @) — X (14, w)], consider a mean-square contin-
uous process f(t,w), t € [a,b] and a sequence {F,}, n > 1, of successively
finer partitions of [a, b] such that the mesh |%,| = 0 as n — 0. Define

n—1
J(w) = kgof(t:,w)[x(::“,w) - X(1f, w)]. (9.5.15)

Let us also assume now that f(f,w) is nonanticipatory of the Brownian
motion X (4, w); that is, f(¢) is independent of the increments X(v) — X(u)
foralla <t < u < v < b. Then

ELf@D)IX @) = X@F = ELf P EIX() = X)) < oo,

Consequently, each term in the sum (9.5.15) is a second-order RV, and thus
{4,}, n > 1, forms a sequence of second-order RVs.

Definition 9.5.5. If the sequence J, converges in the mean-square sense to

an RV J as n — oo, then the limit is called the /¢4 integral of f(f) WRT
X (?) and is denoted by

s = * 1t 0)dX (1, w). (9.5.16)

The 116 integral is not an ordinary mean-square integral as that defined
in Chapter 6. Not all of the usual integration formulas extend to the It6
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integral. Moreover, the limit / may depend on the choice of partition points
{7} of the interval [a, b]. As pointed out earlier, a detailed discussion of Itd
integrals is beyond our present scope. Since several standard calculus
formulas fail for the Ité integral case, many applied scientists hesitate to use
It6 calculus. To remedy the situation, Stratonovich introduced an integral
that bears his name. Although it enjoys the standard integration properties,
the Stratonovich integral fails to possess some important probabilistic
properties that the It6 integral satisfies. Which calculus to use depends on
what kind of properties one investigates. A detailed account of the
differences between Itd and Stratonovich calculi can be found in Mortensen
(1968). We simply point out the two anomalies mentioned at the beginning
of this paragraph. Example 9.5.6 is due to Doob. [See also McShane (1974).]

Example 9.5.6. Show that, for an Itd integral,
b
fa X(8)dx(5) = 3[x2(b) — xXa)] — 3(b — a). (9.5.17)

The extra term (b — a)/2 is the anomalous term that we do not have in the
standard calculus.

We have seen in Property 9.2.9 that X(f) is mean-square continuous.
Since a Brownian motion is a process with independent increments, X (?) is
independent of X (v) — X(u) for all a < t < u <v < b. Hence the inte-
gral fab X()dX () exists (uniquely). Let P:a =t <y < --- <1, = bbe
a partition of [a, b] such that lim,,_, . |%| = 0. Note that

b n—1 2
[ x0ax@) = tim B[S X000 - x0)]
n—1 2
- Jim B[4S 00) ~ X200) - &) - X WP ]

Now,

n—1
S, 200 - X20) - (X0 = XY
k=0
2
— [(X2) - X2(@) — (b - a)1} ]

- £[} El, K1) = X@)F = 6~ ")}2]

- 0, as n — oo,

by Theorem 9.3.4 on the squared variation. This proves (9.5.17).
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9.6. Diffusion Process and Kolmogorov Equations

Now define [, = ZX(t; .| )[X (1)) — X(1)] and J, = ZX(1,)[X (144,)
— X(t)] corresponding to the partition 9 as in Example 9.5.6. But, as seen
above,
E[(, = 4,)") = E[(Z (X (e +1) = X@)PY]
- (b - a), by Theorem 9.3.4.

Hence the sequences I, and J, do not converge to the same limit.

9.6. Diffusion Process and Kolmogorov Equations

Definition 9.6.1. A stochastic process X(f), ¢ 2> 0, on a (complete) proba-
bility space (£2, @, P) is called a Markov process with state space R, the
real line, if for all time points 0 < 1, < f; < --- < 1, < o and any
Xx € R we have

P{X(1,) < x|X (), ..., X(t,))} = P{X(,) < x|X(1,-1)}). (9.6.1)
Set, for s < ¢,

F(s,x;1,y) = P{X(1) < y|X(s) = x}. (9.6.2)

The function F(, -; -, ) is called the transition distribution function of the
Markov process X (1).

Since F is a distribution function, the following properties are satisfied
foranyx,y € Rands,t € R, withs < r:

Flsx;ty) 2 0, lim Fls,x;t.y) =0, im Fs,x;t,y) = 1 (9.63)

and F(s, x; t,y) is continuous from right as a function of y.

Let us assume that F(s, x;1,y) is continuous WRT s, 7, and x. Now let
s <t <u. As in the case of (5.1.3), we obtain the Chapman-Kolmogorov
equation

F(s,x;u,y) =fF(s,x;t,dz)F(t,z;u,y). (9.6.4)
We also set
. . 1 ify 2 x
WX hy) =1 WX Ly) = . . 9.6.
I’Iln'1 F(s,x;1,y) im F(s,x: 1, y) {0 iy < x (9.6.5)
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9. Brownian Motion and Diffusion Stochastic Processes

If Fis partially differentiable WRT y, the partial derivative f(s, x; t,y)
= (3/3y)F(s, x; t,y) is called the transition density function of X(r). The
Chapman-Kolmogorov equation now takes the form

J(s,x;u,y) =ff(s,x; 4L,2)f(1,z;u,y)dz. (9.6.6)

Consider now a continuous-time purely discontinuous or jump Markov
process.InChapter 5 we saw that such a process does not change its state in
a negligible amount of time with high probability. But when it does move,
it jumps by a noticeable distance. However, consider a Brownian motion.
Since the Brownian particle is heavier than the interacting molecules of the
media, any appreciable change during any small time interval occurs with
negligible probability. Such processes can be called purely continuous
processes or Khintchin continuous processes.

Definition 9.6.2. A Markov process X (¢), 1t > 0, with state space R is said
to be Khintchin continuous if for any fixed § > 0 the following condition
holds:

fim + f F(t,x;t + At dy) = 0. (9.6.7)

Definition 9.6.3. A Markov process X (¢), ¢ 2> 0, with state space R is called
a diffusion process if there exist real-valued functions M(¢, x) and S(t, x)
on R, X R such that for any fixed § > O the following conditions are
satisfied:

1 _ _
m 5 [ Fexi+And) =0, (9.6.8)
|y—x[>6
Jim & [ O-0Ftxt+Md) =MbY,  (969)
[y—x|<8
. 2 . —
Al;gxo—l f|<a (v = ) F(t,x;1 + M,dy) = S(4,%). (9,6.10)
ry—xs

9.6.4. Physical Meaning of Conditions (9.6.8) — (9.6.10)

To explain the physical meaning of the coefficients M(t, x) and S(1, x), let
us now modify Khintchin’s continuity condition as follows:

_— 2 ) -
lim o [ O-PFexi+Md) =0 (611
ly—x|>8

260



9.6. Diffusion Process and Kolmogorov Equations

It is clear that (9.6.11) implies (9.6.8). Now, in the light of this, we can
replace conditions (9.6.9) and (9.6.10) by

““oEf(y — x)F(t,x;t + At dy) = M(1, x) (9.6.12)
and
. -
Jim & [ (r = 0T Fx1 + M, dy) = S, ), (9.6.13)

respectively. Then
[ (v = DF@tx; 1+ Ady) = E[X(t + M) — X()),  (96.14)
the expectation of variation of X (f) during a time period At, and
f(y — x)2F(t,x;t + At dy) = E[(X(t + A) — X(1))*), (9.6.15)

the expectation of squared variation of X(¢) during Ar. From (9.6.12) and
(9.6.14) it is clear that M (¢, x) is the mean rate of change of X(f) and is
called the drift coefficient. Noting that the squared variation is proportional
to the kinetic energy we see that from (9.6.13) and (9.6.15) that S(z,x) is
proportional to the mean kinetic energy of the system and is called the
diffusion coefficient.

Theorem 9.6.5. (Kolmogorov’s Backward Equation.) Let X (1), t > 0, be a
diffusion process with drift M(s, x), diffusion coefficient S(s, x), and transi-
tion distribution function F(s, x; t,y) such that the partial derivatives

) 32
aF(S,x,I,)’) and WF(S,X, 1L,y)

exist and are continuous for all s, x, y and t > s. Then F(s, x; t, y) satisfies
Kolmogorov’s backward equation:

3 S(s,x) 8*
*&F(S,X;t,y) M(S,x)a F(sx ty)+ 2 a 2F(s7x t,y)
(9.6.16)
PrROOF. Since F is a distribution function, we have
F(s,x;1.y) = fF(s..x: L, Y)F(s — As, x;s,dz). (9.6.17)
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By the Chapman—Kolmogorov equation,

F(s — As, x;1,y) =fF(s — As,x;5,dz)F(s, z; 1, y). (9.6.18)
From (9.6.17) and (9.6.18),

i[F(s — As,x;t,y) — F(s,x; 1,y)]

= Alsf[F(s,z; t,y) — F(s,x; t, )| F(s — As,x; 5, dz)

1 [F(s,z;t,y) — F(s,x; ,y)|F(s — As, x; 5,dz)

|z=x|>6

+ Als f [F(s,z; t,y) — F(s,x; , )| F(s — As, x;.5,dz)
|z—x|<é

= 31— f [F(s,z; t,y) — F(s, x; ,y)|F(s — As, x; 5, dz)
|z—x|>6

0 1
+ E;F(s,x; t,y)A—s f (z — x)F(s — As,x;5,dz)
|z—x| <8

% F(s x; ty)A f [z — x)* + o(z—x)Z]F(x—As,x;s,dz),
lo—xl<8 (9.6.19)

by the hypothesis and Taylor’s formula.

Now let As — 0 in (9.6.19). The first term converges to 0 by Khintchin’s
continuity condition (9.6.7). By condition (9.6.9), the second term ap-
proaches M(s, x) (0 F/9x) as As — 0. Letting As — 0 and § — 0 in the third
term, we have the limit S(s, x)(32 F/9x2). So the RHS of (9.6.19) has the
limit

M(s, )c)a F(s,x; 1,y) + S(s,x) F(s,x Ly).
Therefore, the LHS of (9.6.19) exists as As — 0 and equals

0
—3;F(sx;0p),
and hence we obtain (9.6.16). O

Next we derive Kolmogorov’s forward equation, which is also known
among physicists as the Fokker—Planck equation.
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Theorem 9.6.6. (Kolmogorov’s Forward Equation.) Let X(t), t > 0, be a
diffusion process with drift M(1,y), diffusion S(t,y), and transition distribu-
tion function F(s, x; t,y) such that the following partial derivatives exist and
are continuous:

8 F(s x; ty) F(s x; Ly), arf(s,x t,y),

2
%{M(r,m(s,x;r,yn, and %ls(r,y)f(s,x; )

where f(s,x; t,y) is the transition density function f = (3 F/9y), which is
also assumed to exist. Then f(s, x; 1, y) satisfies the forward equation
) ) , 92
s/ G xity) = — 5 M) s, x )] + zﬁlS(t,y)f (s, x5 ,9)).
(9.6.20)
PrROOF. Let g(y) be a nonnegative and twice continuously differentiable

function vanishing outside a compact interval [q, b]. Then, by the continuity
of g and its derivatives, we have

0 =g(a) =g(b) =g'(a) =g'(b) = g"(a) = g"(b). (9.6.21)
By the differentiability assumption and Taylor’s formula, we have
8(2) = 8(») = (2 =0’ () + 1 = 1’8" () +olz — »)*).  (9622)

From Khintchin continuity and boundedness of g(-), we obtain

f f(ty;t + At,2)g(2)dz = o(Ab). (9.6.23)
ly=2l>6
Now
b 0
j; )5S, x5 1.y) dy

0
= Efabf(s,x; 1L,)g(y)dy
= tim [* @07 [fox 1 + 803) — (5. x5 )] dy
= fim @ { [ [ S x2Sz + e 9)p(Ndsdy
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b
- [ 16 xg0Id ), by 0ss)

= @)™ [ fexin)| [ 501+ 0250 d — 50|

by changing the order of integration,

= Al,iglo(Al)_'fRf(s,x; t,y){ f f(ty;t + A, 2)g(2) dz —g(y)}dy,

ly—2I<8
by (9.6.23),
= g,iglo(/ll)'I fR S, x; I,y){g’(y) | f|<a E=»f(ty;t + AL z)dz
ry—as
+27%87() [ e =) + ol - 3]

[y—zI<8

X f(t,y;t + A, z)dz + o(AI)} dy,

= [ Sex 1 )MEE () + 27 Sy ),

by using the uniform limits (9.6.9) and (9.6.10),

= [ S x: L) MEYE ) + 27 S g (Db,

since g’(y) and g”(y) vanish outside (a,b),

2
= [} 8O -G IMEn 6ok )] + 27 IS0 S xi 1]

using integration by parts .

Therefore
[ s gif x50 + S IMUNS 6,55 1.9)]

2—1 82 . —
- @[S(t,y)f (s, x; t,y)]} dy = 0. (9.6.24)

Since g(-) is arbitrarily chosen, we claim that relation (9.6.24) yields the
forward equation (9.6.20). Suppose that this is not true. We now show that
this leads to a contradiction. If (9.6.24) does not imply (9.6.20), then we can
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find a (s,x;1,y) such that the expression in the double bracket {---} of
(9.6.24) is nonzero at (s, x; t,y). By the hypotheses the expression in { - - - } is
a continuous function, and hence we can find an interval (c,d) on which
the function in {- - -} retains its sign. If (c,d) C [a,b], let us choose g()
such that it satisfies the properties stipulated earlier except that it now
vanishes outside [c,d] and is positive in (c,d). Then, the integral fcd -+ in
(9.6.24) is nonzero. This is the contradiction we are looking for. Hence
(9.6.24) gives us (9.6.20), and this completes the proof. O

If the transition density function f(s, x; ¢, y) exists, then we can rewrite
the backward equation (9.6.16) as

d d 9
a5/ X5 69) + Mls, )50 f (.52 19) + 3505, 0) = f (s, x31.5) = 0.
(9.6.25)

Examples 9.6.7

EXAMPLE 1. Random Walk to Diffusion. By speeding up the simple symmet-
ric random walk, we obtained a standard Brownian motion as the limit. If
the RW is nonsymmetric, let p and g be the probabilities of jumps to the
right and left, respectively. In this case we obtain a Brownian motion with
drift, and the corresponding transition density f(x;t,y) is

_ 1 (y-x-0"\ _
i) = = exp{ -2~y - 0,

Let {X,} be an unrestricted simple RW on the integral lattice. Then the n-
step transition p(n; x, y) is given by

pln;x,y) = Py + -+ J, =y = x}

- n (n+y=x)/2 (n—y+x)/2 _ _
((n ry— x)/z)p q pln,y — x),

a binomial distribution. Let us speed up the RW with 2% jumps per unit

time and each step length of 27k/2

p=%+2_k/2 and qg=143-2K2

units. Let p and ¢ be such that

In the limiting case we obtain the transition density given above.
Of course, the n-step transition probability p(n, x) satisfies the recurrence
relation

pn+ 1,x) = pp(n.x — 1) + gp(n.x + 1),
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which in the case of sped-up RW becomes

f(t + At,x) = pf(t,x — Ax) + q¢f (t, x + Ax),

where Ax = 27X/ 2 At =27k Using the choice of p and g shown above, we
obtain

flt,x) + At + o(Ar)
={5+Ax , a (A x)? -
(; A )[f(t x) — Ax f +5 29 f]

(— - Ax) [f(t x) + Ax 8f 2(A ) ] + O((Ax)z)

where again Ax = 27%2 and Ar = 27X, Therefore

o _ @y 1@
ot At dx 2 At gy? o1).

Proceeding to the limit, we obtain

¥_ 10y
5= "% T2 (9.6.26)

Equation (9.6.26) is the diffusion equation corresponding to a Brownian
motion. This limiting argument can be found in Kac (1947).

EXAMPLE 2. Spatially Homogeneous Diffusion. Let the transition density
function f(s, x; ¢, y) be dependent on s, ¢, and on x and y through y — x;
that is, the physical process under consideration is spatially homogeneous.
Then the drift and diffusion coefficients M (s, x) and S(s, x) are independent
of the position x at time s and hence M(s,x) = M(s) and S(s,x) = S(s).
Now equations (9.6.20) and (9.6.25) take the forms

2
s —M(t)g—i + %S(t)g—{

(9.6.27)

9 ] a2
= M) 3~ 356) 35,

respectively. Let us now proceed to solve system (9.6.27).
In Property 9.24 we saw that the Brownian transition density is both
temporally and spatially homogeneous. In such cases M and S are
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constants. So let us consider now a constant drift M and diffusion S. In
particular, let M = 0 and S = 1. Then system (9.6.27) becomes

of _ 13 of _ 13%
FYl +§ 8y2 and IS‘ = _i W (96.28)

The first equation in this system is the heat equation, and the second is its
adjoint equation [see (9.6.26) also]. We first solve this system and then by
proper transformation obtain the solution of system (9.6.27).

By spatial and temporal homogeneity, we can write f(0,x;t,y) as
f{x,t,y). Let us solve (9.6.28) under the boundary conditions

f(x,,y) >0  and %f(x, t,y) >0, as |y|—> o0. (9.6.29)

Set
&0; 1, x) = fR eV f(x,1,y)dy. (9.6.30)
Then
fR iy gfdy = [¢¥f]®°, — i8 fR eia"f(x, t,y)dy
= —i06(0;1,x), by 9.6.29,
and

igy 9 f L e igy Of
fR Y - [ yay]_w ”’fk" Y
= —if(—ifp(0; 1, x)) = ~¢(0;1,x).  (9.6.31)

Therefore, taking the Fourier transform on both sides of the heat equation
(3f/3r) = 4(3%f/3y?) and using (9.6.31), we obtain

do 2
Y ——0 ¢ (9.6.32)
whose solution (by separating the variables ¢ and ¢), is
02
&(8;t,x) = a exp [—-5-] (9.6.33)

Since f is a density function, f(s,x;s,y) = 8(y — x), the Dirac é-function,
and consequently we have

#(8:0,x) = fR EY¥(y — x)dy = 8%, by (9.5.1). (9.634)
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From (9.6.33) and (9.6.34) we obtain a = ¢* and

0 _ 02
&(8;1,x) = exp @X—2’i, (9.6.35)

which is merely the characteristic function of a Gaussian density with mean
x and variance ¢. Hence

2
s = @y Pep{ 2L, ek 0636)

which is the transition density of the Brownian motion (see Property 9.2.4).
Let us now set

§=x—fOSM(u)du, 11=y—f0‘S(u)du
o= fos M(u)du and =f0' S(u) du.

This transformation reduces system (9.6.27) into (9.6.28). Therefore, the
solution f(s, x; ¢, y) corresponding to system (9.6.27) is given by

- _ _ 2
Jo.5:8) = Qb)) Vexp{TL_EZ Y 96.7)
where

m = fs' M(u) du and D? = f:' S(u) du.

EXAMPLE 3. (Ornstein—-Uhlenbeck Velocity). In Example 9.4.4 (1) we defined
the Ornstein—Uhlenbeck process V(¢) as a transformation of a Brownian
motion and computed its transition density function f(s, x; t,y). It is shown
there that

(v — e =9x)?

. _ _ =2(t—s)\1—4
Soixi o) = a1l = N g =2

(9.6.38)

Here we derive the Kolmogorov equations corresponding to this f. From
(9.6.38) we first have

E[Vi+h) — VOIV©] = e "V(t) — V(t) = —hV (1) + o(h?), (9.6.39)
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and then
E[(V(c + ) — VOY V()]
= E[(V(t + h) — e "V () + V() — )P V()]
=1-e2h 4 P2 h - 1)

= 2h + o(h?). (9.6.40)

Therefore, the transition density function of the Ornstein—Uhlenbeck
process satisfies the following Kolmogorov equations:

f 3 0% f
of _ o ¥
3= %ox t (9.6.42)

These equations follow from (9.6.39)—(9.6.40) and the physical meaning
discussed in Section 9.6.4. The converse is also true: one can start with
(9.6.41), say, employ the Fourier transform or characteristic function
method used in Example 2, and show that the transition function f(s, x; ¢, y)
is given by relation (9.6.38). We leave this as an exercise.

EXAMPLE 4. Ornstein—Uhlenbeck’s Position-Velocity Two-Dimensional Proc-
ess. Let V(r) be the Ornstein-Uhlenbeck velocity process. Then the position
of the particle is given by

() = [ v(s)ds. (9.6.43)

Compute the mean and covariance functions of U(¢) and derive the
Kolmogorov equations of the two-dimensional process (U(?), V (7)),

my(t) = [ E[V(s)]ds = 0
and thus
Ky(s.t) = E[U(s)U(1)]

=f0'fox E[V(p)V(q)ldpdg

t K}
zfo fo e P=dldpdg, by (9.4.11)

sVt sAt SNt s
— -(p-q) -(p—q)
Af, j(; e dqdp + 2 fo j(; e dqdp
=2As A ) +e B g bV prlimsl (9.6.44)

where s A ¢t = min(s,¢) and s V 1 = max(s,?).
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By itself U/(?) is not a Markov process, but the two-dimensional process
(U(p), V(1)) is. From (9.6.39) and (9.6.40) we obtain

E[V(t + h) — VOIU@), V()] = —hV (D) + o(h?) (9.6.45)
E[V(t + B) — V(OP|U@), V(O] = 2k + o(h?). (9.6.46)

Next
t+h
BV + A - OO Vo) = B[ [ veaivo]
= e[ [T o - e 0vo + e voaivo)]

~ e[ [ e - evao] + [ e vo s

= hV (1) + o(h?), (9:6.47)

Elwe + )~ voF v vol = e[ { [ ve s} o]

= o(h?)

and hence it follows from (9.6.46) that

(9.6.48)

E[(U(t + h) — U@)(V(t + h) — V(@)IU@), V(2)] = o(h). (9.6.49)

Therefore, the forward equation for the transition density f(s, &, m; ¢, x, ) of
(U@), V(1)) is given by

o

2
TN+ N+

32’

and the corresponding backward equation is

¥_ o, Yy

s~ Yax T Yy T g

EXAMPLE 5. Bernstein Equation. Let {X,} be a simple symmetric random
walk with jumps {J,}. Then X, satisfies the stochastic difference equation

AX, =X,., — X, =J., Xo=0 n>1  (9.650)
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To pass to a continuous-time analog, we replace J, by a process J(f) such
that: (1) J(¢) has the same distribution for all # > 0, and (2) for any finite
sequence f;, | < k < n, of time points, the RVs {J(#,)} are independent.

Now we can extend (9.6.50) by defining a process X(¢) as follows:
AX() = X(t + &) — X (1) = J(t)\/At.

To accommodate a process with nonzero drift and nonunit diffusion or
variance, we can define

AX(t) = M, X(£))Ar + \/S(t, X (2))J ()\/At. (9.6.51)

Equations of this type are due to Bernstein. Let X(f) be a Markov process
satisfying Bernstein’s equation (9.6.51). Let the process J(f) satisfy the
conditions

EU@l =0, EWX0) =1, E[JOP]=o(a)7F), 9.652)

as Az | 0. Assume that the transition density function f(s,x;?,y) of the
Markov process X (¢) exists and possesses continuous partial derivatives

of 9 &
3% a(Mf), and ﬁ(sf)-
Then show that
f 9 1 9?

The idea of proof is the same as that in the derivation of the forward
equation. Let g(x) be a thrice continuously differentiable function that
vanishes outside a compact interval [a,b]. Since (9.6.53) is a forward
equation, we simply write f(z,y) in place of f(s, x; t,y). Define

W) = ElgX ()] = [ g(»)f()d.

Then

W) = 5[ 5D = [s(Ngfend. (0659

Also
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(@) = lim E{Qa)”{g(X(c + &1)) — 2(X()))]

= lim E[(A)™ (' (X()AX(1) + 18" X (D) (AX (1)
318 (XONBXOY + o AKX ()]
= lim E{8){g'X(@)[M a1 + S 1/&)

+ 48" (X(?))[M At + \/S J\/At
+ 387 (X (1) [M At + /S I/AP
+o[MAr +\/SJ\/AP),  using (9.6.51),

=FE [Mg’(X ) + g g" (X (t))], by conditions (9.6.52),

= [IM(£)8'(») + 1S )8 " (W) f () dv

2
= [s0) [~ 5501 + 5 5551 ) 8. 96.53)

Combining (9.6.54) and (9.6.55), we obtain

0= fe{-3 - g+ 5 Hn}a

which yields (9.6.53).

ExaMPLE 6. Let X(r) be a diffusion process whose transition density
f(s, x; t,p) satisfies the following forward equation:

2
g_{=%( )f "Zgz, y>0.  (9656)

Using the method of separation of variables, solve this equation for

f(s, x; 1, p).
Since we are working with the forward equation, we write f(¢, y) instead

of f(s, x;4,»). Set f(t,y) = g()h(y). Using this in (9.6.56), we get
1 dg _ 2)) e
g dt h{dy{(by 2y h}+ 2% )
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Note that the LHS is independent of y and the RHS is independent of ¢. So
both sides must be equal to a constant —A, say. Then

ag
dt

a? d h d

+Ag=0

Clearly
g(t) = e N9, (9.6.57)

The second equation has a solution vanishing at infinity corresponding only
to the discrete values of A = 2nb, n = 0, 1, .. .. In such case the solution

is given by
1 2b2y b2y2 b2y2
e e O
where

n
L,(x) = e‘%e""x"

are the orthogonal Laguerre polynomials. Thus from (9.6.57) and (9.6.58),

2 2.2
. _ -2nb(l-s)l 2b Y —b2y2/a? b Yy
f(sa-xs 1,)’) "§0 Ch€ n! az € Ln az ’

where the constants ¢, are to be evaluated from the condition f(s, x; s, y)
= 8(y — x) [as in Example 9.6.7 (2)]. Therefore

-0 = S, ok 2oy, (PF)
a a

!
n>0 n

Since the Dirac 8-function is an evaluation-type functional [see (9.5.1)],

multiply both sides by
—p2)2 p2)2
rea{ = }u("F)
a a

and integrate. Since the Laguerre polynomials are orthogonal, we obtain

_ 1 2b%x b2x? b2x?
c, —"—!—az exp ——az L, =)
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Hence

4b*x b2 (x? + 3?2
fG,xty) = Ty exp [—(—EL)]

a
x 2 ()7L (b 3 )L,,(”Za_gz)e—znw-s).

ExAMPLE 7. Ehrenfests Diffusion. In Chapter 3 we saw the importance of the
Ehrenfests chain in explaining the recurrence in the dynamical system and
thermodynamical irreversibility. Here we derive the diffusion limit to this
chain. For this and other examples we refer again to Kac (1947). Let {X, }
be the Ehrenfests chain on the state space —N < kK < N and with
transition probabilities given by

pl,k — 1) = %(l +%) plkk+ 1) = %(l —%) 9.6.59)
ANN—1)=1=p~N,—N +1).
Clearly
pln+ 1;k,m) = p(n; k,m — D)p(m — 1,m) + pn; k,m + 1)p(m + 1,m)
N-m+1 N+m+1

= —~2N—p(n;k,m— 1)+ 3N pln; k,m + 1),
(9.6.60)
Let us speed up this nonhomogeneous RW. Let N — oo such that
2
(AA);) = ¢? and NAt—> v > 0. (9:6.61)

Let us pass from the n-step transition probability to the transition density
f(t,y) = f(x; t,y) by taking nAt = t, mAx = x:

N-m+1 N+ + 1
flt+ Bty) = =S5 —f(ty — &) + = — Ly + ).

Then
£6) + 8+ o)

2
= ﬁ—mir—l{f(ty) Aya +2(Ay)28f}

+M+—]{f(t »)+ Aya + 4@ f} + oy,
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from which we obtain

of

a a* 3%f
FYh V@(yf)+75§-

9.7. First Passage Time

Diffusion processes arise very naturally in many physical, chemical, and
engineering problems. They are also very successfully utilized to model
phenomena in population dynamics, genetics, epidemiology, ecology, and
neural network. One of the important problems in diffusion modeling is the
first-passage-time problems, say, the problem of finding the distribution of
the random time of absorption or crossing a given level. For example, in
population genetics one is interested in the probability of “fixation,” that is,
the gene frequency X (¢) hitting either the zero or one level. In stochastic
neuron modeling, the first-passage-time distribution provides the theoretical
distribution of the distances between successive spikes released by the
neuron. In statistics, first-passage problems arise in Wald’s sequential
sampling and test of goodness of fit. On such a useful topic we present first
some of the simple results of Darling and Siegert (1953) and Siegert (1951).

The reverse problem arises in neural network. Suppose that a function
is chosen for representing the experimental neuron’s interspike distances.
The problem now is to investigate whether this function is the first-passage-
time distribution for some diffusion process. In this respect we quote some
recent results of Capocelli and Ricciardi (1972).

Let X(7) be a temporally homogeneous diffusion process with transition
distribution F(x;t,y) and transition density f(x;t,y) (if it exists). Let
X(0) = x, and let A and p be two extended reals that are fixed to represent
some left or lower and right levels such that —oo < A < x < p < o0.

Define t(w) = t),(w) by

t(w) = t*(w) = inf{t: X(,w) <A or X(t,w) 2 p}. (9.7.1)

Then t is called the first passage time or exit time of X(¢) from the interval
(A, p). Let

ty = inf{: X(¢) < A} if p = o0,
9.7.2)
2

inf{r: X(r)

I

t; p} ifA = —oo.

Since we are interested in the exit time t from the interval (A, p), we

consider the process X (¢) up to that time and then i/l it by absorption, that
1s, one works with the absorbed process

Y(t)={x(t) fort <t

X(t) fort >t (9.7.3)
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Next set

Gt x)=PR{t<1y, 120, (9.7.4)
H(x;t,y) = B{Y(1) <y} = P{Y() < ¥|Y(0) = x}. (9.7.5)

Theorem 9.7.1. (Siegert). Let X(¢),t > 0, be a temporally homogeneous
diffusion process with symmetric transition distribution F(x; t,y), that is,

F(x;t,y) =1 — F(—x;1,—y), (9.7.6)

and tg, with x > 0, be the exit time through the lower level A = 0,
(p = ). Then

G(t; x) = R{t < t} = 2F(x;1,0). (9.7.7)

PrROOF. Since the transition distribution is symmetric,
F(0;1,0) = 1 — F(0;1,0), by (9.7.6). (9.7.8)
But, from the well-known renewal argument
t
F(x;1,0) = fo G(ds; x) F(0; 1 — 5,0)

=1G(1; x), from (9.7.8),
which is nothing but (9.7.7). O

Let us now assume that the densities f and g of F and G, respectively,
exist. Denote their Laplace transforms by ¢ and vy, that is,

&O; x,y) = fow e f(x;y)dy, V(O x) = fow e Ug(t; x)dt.

Let A = —o0, so that t =t;, and x < p <. Again by the renewal
principle,

f(x;sty) = fol 8o(s; x) fp; t — 5,y)ds, 9.7.9)

where we have used the notation g,(s; x) to denote the density function of
t;. Taking the Laplace transform on both sides of (9.7.9), we obtain

o0 —8 . _ (o] . o0 -8, L.
Jo e d = [ g, (sx) [ e f (o5t — s.y)drds

[o <] 0
=f0 e_o’gp(s; x)dffo eV f(o;t,y)at
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Thus
¥0; x,») = 1,0; )0 0,), x<p <y 9.7.10)

Relation (9.7.10) is a formal solution to the first-passage-time problem,
since g,(#; x) can be obtained from (9.7.10) by inverting the transform v,
and here ¢ is, at least theoretically, known.

Theorem 9.7.2. (Darling-Siegert). Let X(i), t > O, be a temporally homoge-
neous diffusion process satisfying the Kolmogorov equation

I _ M() + S()a (9.7.11)

ot 2

under the conditions
f(x0) =8y —x), f(x;4)—>0 as|x]—> 0. (9.7.12)

Then v, can be expressed as

§(x)
£(o)’

where £(x) is a solution of the equation

Y,(0,x) = x <p, (9.7.13)

6y = M(x)g S( )8 2 Y(x) > 0as x > —o0. (9.7.14)

Proor. Taking the Laplace transform on both sides of equation (9.7.11)
and using condition (9.7.12), we see that y{x;8) = &(f; x,y) satisfies the
equation

o= M3+ 4592 Y,

where —y is the so-called Green’s solution. Let £(x) and n(x) be two linearly
independent solutions of this equation with §(—o0) = 0 = 7(c0). Then

Eom(y)  ifx<y
Enx)  ifx>y’

except possibly for a constant factor. Now using (9.7.15) in (9.7.10) we get

Wx; 0) = (0; x,y) = (9.7.15)

Lm0 _ )
%0 = o) " £y’

which is what we wanted to establish. O
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Remark 9.7.3. In Theorem 9.7.2 we worked with the passage time of exit
through one barrier p. Now let both A and p be finite, and t the time of
exit from (A, p). If ¥(0; x) denotes the Laplace transform of the density
g of t, it can be shown, as in Theorem 9.7.2, that vy satisfies the equation

3 3?
by = MWFL+ISOT, xe o), (0716)

with the obvious boundary conditions y(A) = 1 = y(p). Let g* and g
be the density functions of exit time through the boundaries A and p,
respectively, before hitting the other. Then

g(6:x) = g (15 x) + 8°@; x).
Solving (9.7.16) with the boundary conditions ¥(A) = 1 and y(p) = 0,

we obtain y*(@; x). Solving (9.7.16) with y(p) = 1 and y(A) = 0, we
obtain y*.

Applications of first-passage-time distributions to Brownian motion, the
Ornstein-Uhlenbeck process, Wald’s sequential sampling, and the “good-
ness of fit” test can be found in Darling and Siegert (1953).

9.7.4. Converse Problem

It was pointed out earlier that the reverse of the first-passage problem arises
in certain diffusion modeling of neuron spike activity. This converse
problem is as follows. Given a complex function y(@; x, y) such that

0 < y(0;x,y) <1 and  lim y(#;x,) =1,  (9.7.17)
x>y

under what conditions vy is the Laplace transform of a first passage time
density function g(z; x,y) of a continuous temporally homogeneous diffu-
sion process satisfying the Kolmogorov equation (9.7.11)? Corresponding to
this converse problem, we simply state, without proof, the following
theorems due to Capocelli and Ricciardi.

Theorem 9.7.5. For v(6; x,y) to be the Laplace transform of the first-passage
time of a temporally homogeneous diffusion process, it is necessary that the
drift and diffusion coefficients be given by

_Y% - _uk
M= Jand s 2(¢0 Yo ) (9.7.18)

where
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¢o = Re{y/y"}, Y = Im{by/y"}),
&% = Re(y/y"},  mo = Im{y/¥"},

with Yy = (3y/3x), y" = (8%y/3x?), Re(") = real part of (-), and Im(-)
= imaginary part of (*).

The boundary points A and p have been classified by Feller as follows.
Let S(x) > 0 for x € (A, p). Define

h(x) = exp{— /. ) [2S(u)/M(u)]du}, (9.7.19)
the so-called Hille function, where a € (A, p). Set
o = Ky{fmz H()h(y)dxdy, oy = a<x£j;<p H(x)h(y) dx dy
m= [ HOHGD&d, wm= [[  Kx)H()dxdy.

A<y<x<a ax<y<p
(9.7.20)

To simplify writing, set 5, = A and b, = p. Then the boundary ;, i = 1, 2,
is called:

regular if o; < o0, p; < o0,
an exit boundary if 0; < o0, p; = o0,
an entrance boundary if o, = o0, p; < o0,
natural if o; = o0, p; = o0. 9.7.21)

The regular or exit boundaries are called accessible and the others,
inaccessible. The probabilistic meaning of the classification is that the
probability of reaching an accessible boundary in finite time is positive,
whereas the same probability is zero for an inaccessible boundary.

We assume the following conditions to hold in the next two theorems:
(1) S(x) > 0, (2) M and dS/dx are continuous in (A, p) (with M and S as in
Theorem 9.7.5), and (3) M and S depend only on x.

Theorem 9.7.6. If A is an inaccessible boundary, then v(8; x, p) is the Laplace

transform of the time of first passage through the boundary p for the
diffusion process with drift and diffusion as given in Theorem 9.7.5.
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Theorem 9.7.7. Let A be an accessible boundary. If ¥(0;\,p) = O, then
¥(0; x,p) is the Laplace transform of the time of first passage through p
without hitting A, and the drift and diffusion coefficients of the correspond-
ing process are given as in Theorem 9.7.5.

Remark 9.7.8. The conditions (1)—(3) stipulated above are essential. It is
important that the quantities M and S in (9.7.18) be functions of x
alone. For example, take

¥(0; x,p) = exp{(x — p)¢*}, x < p.

Then v satisfies the conditions in (9.7.17) but M and S in (9.7.18) depend
on f, and there does not exist any diffusion possessing this y as the
Laplace transform of a first passage time.

Examples 9.7.9

ExampLE 1. Brownian Motion. Consider the function

~p—X)(p ! Vi +260%) ) e

¥(0; x,p) = CXP{

for p > 0and —oo < x € p < oo. This y clearly satisfies (9.7.17). Let us
compute M and S using (9.7.18). Set § = (a + iB) and (u* + 2002)i
= ¢ + in. From (9.7.22),

dy _ [-p+ (2 + 260Dy
- 2

dx o

d®y _ [-p + (42 + 2067 Py

ax? o
and therefore
& bo*
VTt 2+ 2000
_ P+ 00+ + 200%)}
26

= (26 + 1 [+t + i + (";2 )2+ 8]
+ i(—pB + am — &B)}
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’

7 = 20) [+ (5 + 260%)!]

= [2(a® + )] '[ap + af + B + i(=Bu + am — EB)],
from which [and also (9.7.18)] we get
M=y and S =

Since o; = o0 in (9.7.20), A = —oo is inaccessible, and hence by Theorem
9.7.6 we see that the y in (9.7.22) is the Laplace transform of the first
passage time of a diffusion with drift u and diffusion o?. Inverting (9.7.22),

we obtain
2
p—x —(p—x—w)}
tx,p) = ex
8%.0) 0(2'7r13)i p{ 20°t

EXAMPLE 2. Diffusion with Lognormal Transition. Consider the function

Vo fo<x< <
¥(@; x,p) = (x/p)\/@ o< x<porp<x<0 (9.7.23)
(o/x) fo<p<xorx<p<O
This function satisfies conditions (9.7.17). Also
Oy t\/éxz Y —-X
By _ =X oy X 9.7.24
Y (=/e+1) Y (=B +1) ( )
Setting +\/8 = a + iB in (9.7.24), we get
2 2
Y (a+1)"+8 (a+1D)"+p8
Y —(a+1) . B
-, = X 1 X. 9.7-26
Y (a+ 1)* + B2 (a + 1)* + B2 ( )
From (9.7.25) and (9.7.26) one computes
M(x)=x and S(x) = 2x°. (9.7.27)

We leave it as an exercise to show that the origin 0 is a natural and
hence inaccessible boundary for M and S given by (9.7.27). Inverting
(9.7.23), we get

2
gt x,p) = ltog(p/x)| exp{— log™(o/) xp > 0. (9.7.28)

2\/7;_5 4 ’
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Let us compute the transition density f(x;¢,y) corresponding to this
diffusion process with drift and diffusion given by (9.7.27). We begin with
the forward equation

3 d &
3 = a0+ a0 67.29)

with the obvious condition lim,of(x;7,y) = 8(y — x). This is a singular
diffusion equation in any interval containing the natural boundary 0. We
solve (9.7.29) separately in the intervals (—o0,0) and (0, c0). We proceed by
separating the variables f(z,y) = £(¢£)n(y), where we dropped the variable x
from f(x;2,y) for the convenience of writing and also since we are
considering the forward equation. Then

L ive=o, (9.7.30)

2
y ‘:2 +3yd +(Q+M¥)n =0, (9.7.31)

where A is an arbitrary constant. From (9.7.30)

£() = ae™ M.

Equation (9.7.31) is the well-known totally Fuchsian equation. Its general
solution is

$(») = b + o,
where b and ¢ are constants and r values are the solutions of the indicial
equation r(r — 1) + 3r + 1 + X = 0. Note that

n=-1%i\, k=12

Now let y € (0, ). Then a particular solution of (9.7.29) is fo(t,y)

= y lexp[—(iX log y + A1)}, y > 0, and hence the general solution is

given by

1) = (2‘ 1 aernl-hlogy + RKolan ¥ >0 (0232
y(2m

where a(\) is an arbitrary function to be determined by the initial
condition. From f(x;0,y) = 6(y — x)

e?d8(ef — x) = (217)‘i fa(}\)e")"d}\,
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from which
o) = @) [ eNowrs(y ~ x)ay
= (2w)— exp[iAlogx], x>0, (9.7.33)
and a(A) = 0 for x < 0. Therefore, from (9.7.32) and (9.7.33),

oy = b e [ log? (/)
fOsty) = ()] eXP[ a1 ] x>0,y > 0. (9.7.34)

Similarly, on (— o0, 0),

fx;6y) =

2
_log (y/x)]’ x <0,y <0 (9.735)

vl
exp ,
2A=y)(a)? 4
From (9.7.34) and (9.7.35),

logz(y/x) 0
flxt,y) = 2|y|(m)* [ ] xy >0, (9.7.36)

which is the well-known lognormal distribution.

Exercises

1. Draw the graph of the first 48 steps of a sample path of a simple symmetric RW.
On the same graph paper draw the graphs of the same path, but now with: (a)
two steps per second and with step length 1/1/2, (b) four steps per second and
with step length 1/2, (c) 16 steps per second and with step length 1/4.

2. Let {X,}, n > 1, be a sequence of IID RVs distributed according to P{X 1}
=}=Px = —l} Let ¢ > 0 take diadic rational values and n = 2, k = 1,
2, .... Show that the limiting distribution of

p+on”2(X + -+ X,)

is N(g, 021).

3. Let{X,} be a sequence of IID RVs with E[X,] = 0 and var(X,) = 1. Let n and
t be as above with nr an integer. Find the limiting distribution of n'g(Xl +

X,,).

4. Let {X(#),t > 0} be a standard Brownian motion with ¢ = 1. If T(w) is the
amount of time in [0, 1] for which X(t,w) > 0, show that, for 1 € [0, 1],

P{TS )= w"j(‘)’ [s(1 = s))3ds = 22 'arcsin /5.
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5. Find the distribution of X(1) + - - - + X(n) for a positive integer n, where X(r)
is a standard Brownian motion with ¢ = 1. [Answer: N(0,n(n + 1)(2n + 1)/6).]

6. Let X(r) be a Brownian motion with drift x and diffusion coefficient o®. The
geometric Brownian motion associated with X (¢) is defined by Y(f) = exp[X(?)],
t > 0. Show that:

() E[Y(0)IY(0) = y] = y exp [’(" + 072)]

(b) var[¥ ()| Y(0) = y] = y*(e"® — Dexp [2; (u + "72)]

7. Find the correlation between X(f), 0 < ¢ < 1, and fOl X(s)ds, where X(2) is a
standard Brownian motion with ¢ = 1.

8. Let X(r) be a standard Brownian motion. Show that the processes Y(r)
= [X2(t) — 1) and Z(1) = exp[aX (t) — a®1/2] are martingales.

9. Let X(f) be a standard Brownian motion with variance parameter ¢ and
X(0) = x. Let A < x < B and T be the hitting time of A or B. Then show that

B{X(T) = B} = —4 (B—%Zi).

=4 EdTl=

10. Let X(7) be a Brownian motion with drift g % 0 and dlﬂusmn parameter o°.

Show, for any real a, that £(r) = exp{aX(r) — (au + a®0%/2)i} is a martingale.
Suppose that X(0) = 0 and 4 < 0 < B. Then show that the Jarobablhty that
the particle hits B before hitting A is given by (1 — ¢<?)/[e? — e“), where
C = (—2u/6?).

11. For a Brownian motion with drift x and ¢ = 1, define Y(f) = f; [X (s)]zds.
Show that E[¥,] = (¢ + 2u)/2.

12.Let X(¢) be a standard Brownian motion with 6 = 1 and X(0) = x. If a > 0
and b > 0, show that

B{X(f) <at+bforallt >0} =1-e2"0  forx <b.

13. Establish the identity

E[exp{a j(;t sX(s)ds}] =TS g eR

14. Establish the identity

E[exp{a j;)l g(s)X(s)ds}] = exp [aZ j(': g(u) j(;u vg(v)dvdu],

where g(-) is a continuous function on [0, ).
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15.Let 0 < s < ¢ < u. Given that the Brownian motion X(-) # 0 in (s, ), show
that the (conditional) probability that X () is not zero in (s,u) is given by

(arcsin \/s/u) /(arcsin \/s/t).

16. For a standard Brownian motion, establish that
t

P{ sup |X(s)|><}<—2, e>0.
0<s<t €

Using this inequality, show that lim,_,., ¢ ' X(f) = 0 with probability one.

17. Exponential martingales play a basic role in the theory of Brownian mouon and
diffusion processes (see Exercises 8-10). Let g(a, x,f) = exp[ax — a%t/2]. Take
a>0,a =+/2b.Let T = min{t: | X(¢)| = A}. Using the martingale g(a, X(7), 7)
+ g(—a, X(¢), 1), establish that

E[e T} = [cosh \/2bA]™"

18.Show that h(x )= frQm" g(a x,f)da = t"1e /% { > 0, where g(a,x,1)
= explax — a®t/2). Show that h(X(¢), t + A) is a martingale for A > 0. Now
show that

P{X(@W)| > [24 + Dlog(4 + ) for some 1 > 0} < A~

19. Show that the transition density function

_ 2
A, x,y) = (27rl)_% exp [ —()—C—zt—y)—]

solves the heat equation (3p/dr) = $(32p/dx?).

20. Compute the drift and diffusion coefficients for the geometric Brownian motion
defined in Exercise 6.

21. Prove that the Ornstein-Uhlenbeck velocity process V(r) does not possess
independent increments.

22. A population contains N individuals. Each individual is of one or the other of
two genotypes. At the end of each unit of time a randomly chosen individual
dies and is replaced by a new individual of randomly chosen genotype. Let X,
denote the MC representing the number of persons of first genotype having the
transition probabilities

— 2x(N - x)
N2

and p(x,y) = 0if |x — y| > 1. To obtain a diffusion approximation X (¢), let us
take N sufficiently large and speed up the removal and replacement of dead

) - pex+ 1), plxx) =

px,x — 1) = {(N_N;_x_
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individuals. Now let X(¢) denote the frequency of individuals of first genotype
and f(¢, x) the density function of X (¢). Show that

3 3?
a_lf(t’x) = W[X(l - x)f(t,x)], x E (O, ])

(Watterson 1961).

23. Consider the equation

2
g{+ 18, x) 9 f + M(t,x)% =0,

where the diffusion coefficient S(z, x) is differentiable WRT x and 0 < S(¢, x)
< 0. Under the change of variable y = f5* [S(s, u)]”! Y2 4u, show that the
preceding equation reduces to the form

§ +A(t )

24. Let A be an absorbing barrier for a homogeneous diffusion process with constant
M and S. Then show that the transition density is given by

£(0,0; 1, x) = [2nST ™} [exp{i;StM_’)z}

e 2MA_(x—2A—Mt)2]
P\ 7S 281 '

25. Consider a diffusion process with drift M(t,x) = —m(t) and S(s, x) = S(¢). By
solving the forward equation, show that the transition density f(s, x; 2, y) is given
by

2
-2 —(y = h(s, 9)x) ]
[2ng(s, OV 2exp| 2005 |
where g and & solve

3 _ 5@ +2M()g  and aaf' M)k,

respectively.
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Index

A

Absorbed process, 275
Absorbing barrier, 43
Absorption time, 23
Action potential, 21
Adapted family, 197
Algebra(s), 3, 4
sigma, 3,4
Borel, 5
completion of, 5
generated by, 4,7
independent, 13
tail, 13
Almost sure convergence, 14
Almost surely, 10
Aperiodic state, 68, 69
Arley process, 121
AS, see Almost surely

B

Backward equation, 107
Barrier, 42,43

absorbing, 43

elastic, 43

reflecting, 43
Bayes' formula, 11, 12
Bernstein equation, 270, 271
Binary noise, 171, 184, 185
Binomial distribution, 8
Birth - death chain, 44, 52, 76, 77
Birth --death process, 111

nonhomogencous, 127

nonlinear, 125, 129
Birth process, 111
linear, 117
pure, 111
simple, 117
Birth rate, 111
Blood clotting, 123, 124
Bochner’s theorem, 15
Borel —Cantelli lemma, 5
first, 5
second, 13
Borel set, 5
o-algebra, 4
inR", 4
Boundary, 279
accessible, 279, 280
entrance, 279
exit, 279
inaccessible, 279
natural, 279
regular, 279
Branching chain, 44, 79, 203, 204, 215, 216
Brownian motion, 160, 161, 227
geometric, 284
random walk to, 227
reflected, 233
standard, 230
with drift, 231

C
Capocelli  Ricciardi theorem, 278, 279
Carcinogen, 34
Carcinogenesis, 34, 129
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Carcinogenesis [cont.] gamma, 8
birth—death process in, 129 joint, 7
hitin, 34 Depolymerization, 21
random walk in, 34 Differentiation, 153
Central limit theorem, 16 mean square, 153
Central movement, 9 sample path, 153
Chapman—Kolmogorov equation, 48, 106, 259 Diffusion coefficient, 261
Characteristic function, 14, 15 Diffusion process, 227, 259
Chebyshev inequality, 16 Ehrenfests, 274
Chi-square density, 8 random walk to, 265
Closed set of states, 55, 131 with lognormal transitions, 281
minimal, 131 Dirac 8-function(al), 251
Communicating states, 55 Distribution, initial, 40
Complete probability space, 5 stationary, 67
Completion, 5 steady state, 67
Compound Poisson process, 100 transition, 259
Concordant function, 204 Distribution function, 7
Conditional density, 12 binomial, 8
expectation, 12 Gaussian, 8
probability, 12 geometric, 8
Conditionally independent sequence, 209 joint, 7
Contact rate, 125 marginal, 7
Contagion process, 137 normal, 8
Continuous distribution, 8 Poisson, 8
Continuous process, 149 uniform, 8
Khintchin, 260 Divergent population, 114
mean square, 152 Doob—Levy martingale, 200
purely, 260 Drift, 231
sample path, 149 Drift coefficient, 261

stochastically, 148
uniformly, 148

Convergence, 14 E

almost sure, 14

in distribution, 14 Ehrenfests chain, 45, 74

inpth mean, 14 Elastic barriers, 43

in probability, 14 Electron emission, 89

mean square, 148 in optical detection, 99
Correlation, 9 Embedded chains, 132
Counting process, 87 Entrance boundary, 279
Convariance, 9 Enzyme amplifier system, 2
Covariance function, 146 Ergodic process, 185
Convariance stationary, 167 Ergodic properties, 131

Ergodic state, 68
Ergodic theorem, 186

D individual, 186

Darling—Siegert theorem, 277 mean square, 190
Death process, 111 strong, 186

pure, 111, 118 Events, 3
Death rate, 111 independent, 13
Decomposition prior to a stopping time, 220

first entrance, 54 Exit boundary, 279

first step, 52 Exit time, 225
Density function, 7 Expectation, 9

chi square, 9 conditional, 12

conditional, 12 Expected duration of the game, 28

exponential, 8 Expected number of visits, 59



Explosive population, 114
Exponential density, 9

F

Fatou’s lemma, 11
Feller— Arley process, 121
Feller—Lundberg theorem, 115
Fibrin, 124
Fibrinogen, 124
First entrance, 54
decomposition, 54
time, 131
First passage, 31
probability, 31

probability generation function of, 34

time, 33, 275
First return time, 131
First step decomposition, 52
Flat spectrum, 252
Fokker—Planck equation, 262
Fuchsian equation, 282
Furry —Yule process, 117

G

Gambler’s maximum winning, 32
ruin, 24
probability of, 25
expected time to, 28
Gamma density, 8
Gaussian distribution, 8
Gaussian process, 160
Geometric Brownian motion, 284
Geometric distribution, 8

H

Hille’s function, 279
Hit, in carcinogenesis, 34
Hitting time, 33, 50

mth, 54
Holder continuous path, 239
Homogeneous Markov chain, 40

Impulse response, 252

Inaccessible boundary, 279

Incubation period, 125

Independent events, 13
random variables, 13
-algebras, 13

Independent increments, 87
process with, 87

Indicator function, 6
random variable, 6
Individual ergodic theorem, 186
Infected, 125
Infectious period, 125
Infinitely often, 5
Infinitesimal generator, 109
parameter, 109
Initial distribution, 40
Integral, 154
mean square, 154
sample path, 153
Intensity function, 106
Interarrival time, 92
Irreducible class, 55
Markov chain, 55

process, 131
It integral, 254
J

Jensen’s inequality, 199

Joint density, 7
distribution, 7

Jump process, 105

K

Khintchin stationary, 167
continuous process, 260
formula, 176
theorem, 174

Killed process, 275

Kolmogorov zero—one law, 13
backward equation, 107
Feller equations, 106
forward equation, 107, 262
strong law of large numbers, 17
theorem, 151

L

Laplace transform, 15
Latent period, 125
Lattice walk, 20, 41
Law of large numbers, 17
weak, 17
strong, 17
Law of iterated logarithm, 243
Likelihood ratio, 206
Limit inferior, 5
superior, 4
Linear birth process, 117
Linear death process, 118
Lognormal distribution, 283
transition, 28 |

Index
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M

mth hitting time, 54
mth return time, 54
Marginal distribution, 7
Markov chain, 39
homogeneous, 40
irreducible, 55
time reversibility, 40
two-state, 46
with stationary transition, 40
Markov process, 106, 259
strong, 51, 235, 243
Markov time, 50
Martingale, 195
Doob—Levy, 200
reverse, 201
stopped, 220
sub-, 196
super-, 197
Wald, 206
Maximum winning, 32
MC, see Markov chain
Mean recurrence time, 62, 131
Mean square continuous, 152
convergence, 148
differentiability, 153
distance, 146
ergodic theorem, 189
integral, 154
Mean value function, 98, 146
Memoryless random variable, 93
Minimal closed set, 131
Moment, 9
central, 9
mixed, 9
Monotone convergence theorem, 11
Moving average process, 167, 181

N

n-step transition, 47

matrix, 47

probability, 47
Neuron spike activity, 89, 100
Noise, 251

shot, 251

thermal, 2, 251

white, 253
Normal density, 8

process, 160
Nuclear medicine, 88, 100
Null recurrent, 61, 131
Number of visits to a state, 54
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0

Occupation time, 54
Occurrence time, 92
One-step transition, 39
matrix, 40
probability, 39
Open negative orthant, 4
Optical detection, 89, 101
electron emission in, 99
Optional sampling, 221
skipping, 199
Halmos theorem on, 199, 210
stopping, 222
Ornstein—Uhlenbeck, 268
velocity, 268
position velocity, 269

P

Partingale, 209
Period, 68
Periodic oscillation, 168
Periodic state, 68
Phase space, 186
Photosynthesis, 20
Physical process, 1
Poisson distribution, 8
impulses, 252
increment, 172
process, 88, 118
Pélya process, 138
Polya'surn, 45,201,214
Polydispersity, 36
Polymer, 36
Positive recurrent, 131
Potential, 21
Power spectrum, 180
Predator encounter, 47, 52,78
Probability, 4
conditional, 11
convergence in, 14
distribution, 7
first passage, 31
measure, 4
n-step transition, 47
of extinction, 81
of gambler’s ruin, 25
of no return, 31
one-step transition, 39
space, 4
complete, 5
Pure jump process, 105
Purely continuous process, 260
discontinuous process, 105



Q
Queuing chain, 46

R

Radiation damage, 21
Radioactive decay, 88, 99, 123
Random binary noise, 171, 184
Random element, 6
Random flight, 36
Random telegraph signal, 169, 182, 192
Random time, 23, 50
Random variable(s), 6
discrete, 6
equivalent, 6
independent, 13
indicator, 6
memoryless, 93
a-algebra generated. 7
Random vector, 6
Random walk, 20, 223
in carcinogenesis, 34
lattice, 20, 41
nonhomogeneous, 20
simple, 20, 22, 42
symmetric, 20, 22
to Brownian motion, 227
ot diffusion process, 265
with barriers, 42
absorbing, 42
elastic, 42
reflecting, 42
Recurrence, 29, 131
time, 62, 131
mean, 62, 131
Recurrent state, 47, 131
null, 61, 131
positive, 62, 131
Reflected Brownian motion, 233
Reflecting barriers, 43
Reflection principle, 235
Regular boundary, 279
Regular sequence, 204
right, 204
Relative transition function, 106
Rest potential, 21
Return time, first, 131
RV, see Random variable
RW, see Random walk

S

Sample path(s), 143
continuity of, 149

Index

Holder, 239
differentiability of, 153
integral, 154
space of, 143

Sample point, 1, 3
Sample space, 3
Second order process, 146, 166
Seismic events, 101
Separable process, 144
Separant, 144
Shift invariant set, 189
Shift operator, 189
Shot noise, 251
Siegert theorem, 276
a-algebra(s), 3
Borel, 4
generated by a random vector, 8
independent, 13
tail, 13
Simple random walk, 20, 42
Spatially homogeneous
diffusion, 266
Spectral density, 180
representation, 173
Spectrum, flat, 253
power, 180
State(s), 54
aperiodic, 68
closed set of, 55, 131
communicating, 55
ergodic, 68
irreducible class of, 55
mean number of visits, 59
minimal closed set of, 131
null recurrent, 61
period of , 68
periodic, 68
positive recurrent, 61
recurrent, 57, 131
transient, 57, 131
Stationary distribution, 67
measure, 82
Stationary process, 165
covariance, 166
Khintchin, 167
second order, 166
strictly, 166
wide sense, 166
Stationary transition probability, 40
Steady state distribution, 67
Stochastic epidemic, 125
Stochastic integral, 251
Stochastic matrix, 41
Stochastic process(es), |
birth—death, 125
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Stochastic process(es) [cont.]
Brownian motion, 161, 230
compound Poisson, 100
continuous, 149
counting, 87
diffusion, 277, 259
ergodic, 185, 189
Feller—Arley, 121
Furry—Yule, 117
Gaussian, 160
Khintchin continuous, 260
linear birth, 117
linear death, 118
Markov, 106, 258

strong, 243
moving average, 167, 181
of Poisson impulses, 252
Poisson, 88, 98, 118
Polya, 138
pure jump, 105
purely continuous, 260
purely discontinuous, 105
second order, 146
separable, 144
simple birth, 117
simple death, 118
stationary, 165
stopped, 220
uniformly integrable, 211
white noise, 251
with independent increments, 87
with stationary increments, 88
without discontinuities of second kind, 151

Stochastically closed set, 55

continuous process, 148
uniformly, 148

Stopped process, 220
martingale, 220

Stopping time, 23, 49, 219, 243
bounded, 220
events prior to, 220
finite, 220

Storage, 22

Strong ergodic theorem, 185

Strong law of large numbers, 17, 218

Strong Markov property, 50, 243

Submartingale, 196
convergence theorem, 209

Supermartingale, 197

Susceptibles, 125
Symmetric random walk, 20, 22

T

Tail o-algebra, 13
Thermal noise, 2, 251
Thrombin, 124
Total probability formula, [1
Trajectory, 143
Transient state, 131
Transition probability, 39
density, 260
distribution, 259
function, 106
matrix, 39
n-step, 47
one-step, 39
Two-state Markov chain, 46

U

Uniform distribution, 8
continuous, 8
discrete, 8
Uniformly integrable
process, 211
Unimolecular reaction, 124
Upcrossing inequality, 210

A\
Variance, 9

w

Waiting time, 92
Wald’s identity, 24
first, 24
second, 28
Waterfall sequence, 124
Weak law of large numbers, 17
White noise, 251

Z

Zero crossing theorem, 246
Zero—one law, 13, 219



