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PREFACE

These Lectures Notes are an expanded version of the Fermi
which I gave at the Scuola Normale in Pisa in June 1978. They
material presented in the spring of 1978 in the Loeb Lectures af
and the Whittemore Lectures at Yale. In all cases I was addressin
audience of mathematicians and physicists and the presentation
tailored accordingly. In writing up the lectures I have tried as f
sible to keep this dual audience in mind, and the early chapter:
cular attempt to bridge the gap between the two points of vier
later chapters, where the material becomes more technical, there i
of falling between two stools. On the one hand the mathemati
may be unintelligible to the physicist, while the presentation may,
matical standards, be lacking in rigour. This is a risk I have d«
taken. The initiated mathematician should be able to fill in m
gaps by himself or by referring to other published papers. Phys
have survived the early chapters may derive some benefit by bein
to new mathematical techniques, applied to problems they are fam
With this aim in mind I have throughout presented the mathem
terial in a somewhat unorthodox order, following a pattern wh
would relate the new techniques to familiar ground for physicis

The main new results presented in the lectures, namely the co
of all multi-instanton solutions of Yang-Mills fields, is the culm
several years of fruitful interaction between many physicists a
maticians. The major breakthrough came with the observatic
R. S. Ward that the complex methods developed by R. Penr
« twistor programme » were ideally suited to the study of the
equations. The instanton problem was then seen [4] to be equiv
problem in complex analysis and finally to one in algebraic
Using the powerful methods of modern algebraic geometry and t
results of G. Horrocks and W. Barth it was not long before th
was finally solved [2].

The first two chapters provide an introduction to the basic
a statement of the problem and an explicit description of the solu
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next two chapters are devoted to the Penrose theory and its application
to the Yang-Mills equations. In Chapter V I present Horrocks’ construction
in algebraic geometry which is equivalent via the Penrose theory to the
explicit instanton construetion of Chapter II. Chapter VI introduces the
important mathematical tool of sheaf cohomology and relates it to physically
interesting equations. There are a number of digressions which may help
to make the material less mysterious and more understandable. Chapter VII
is an account of the theorem of Barth [8] which shows that the Horrocks
construction of Chapter II yields all relevant bundles and hence that the
construction of Chapter II yields all instantons. Finally in Chapter VIII
we discuss some other aspects and open problems concerning the Yang-Mills
equations.

Although the presentation is somewhat discursive, and includes much
background material, it is also reasonably complete from the mathematical
point of view. The one point where the proof is only sketched is the iden-
tification in Chapter VI of the sheaf cohomology group H(P,, E(— 2))
with the solution space of an appropriate Laplace operator. A detailed
account of this can be found in various forms in [18] [29][36]. An alternative
presentation of the whole instanton theory is contained in the papers of
Drinfeld and Manin [16][17][18][19], and mathematicians, particularly if
they are proficient in algebraic geometry, may prefer to read these.

My acquaintance with the geometry of Yang-Mills equations arose from
lectures given in Oxford in Autumn 1976 by I. M. Singer, and I am very
grateful to him for arousing my interest in this aspect of theoretical physics.
We have collaborated since on many topics in this area. I have also, over
the past few years, greatly benefited from numerous discussions with R. Pen-
rose concerning twistor theory and complex analysis. In developing the
mathematical theory of instantons I have throughout worked in close col-
laboration with N. J. Hitchin, and these lectures embody the results of
our joint efforts. I am in addition greatly indebted to my now numerous
friends in the physics community who have helped to give me some small
understanding of the.fascinating mathematical problems facing elementary
particle physics.

Finally I should express my thanks to the Accademia Nazionale dei
Lincei and to the Scuola Normale for their invitation to deliver the Fermi
Lectures and for their hospitality in Pisa.
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CHAPTER I

The Yang-Mills Lagrangian

1. - Physics background.

The aim of quantum field theory is broadly speaking to pu
mentary particles on the same footing as photons. Whereas pht
pear as the quanta of classical electromagnetic theory other el
particles should arise by the quantization of appropriate class
theories. In recent years gauge tbeories have appeared the most y
candidates, and the Yang-Mills equation is the generalization of 2}
equations (in vacuo). The circle group which embodies the phase
Maxwell theory is generalized to a non-abelian compact Lie groy;
a8 SU(2) or SU(3), the choice of group being dictated by the en
observed symmetries of elementary particles. The non-abelian naf
leads to non-linearity for the Yang-Mills equations. This non-lin
of course the source of great mathematical difficulties and the qua
of non-abelian gauge theories is still in its infancy.

One recognized way of attempting to develop the quantum f
to use the Feynman functional integral approach which involves
ing exp (i8) where 9 is the action. If we analytically continue to i1
time, so that Minkowski space gets replaced by Euclidean 4-sy
Euclidean action is a positive multiple of i and so the integrand
becomes a decaying exponential whose maximum, value occurs at
nimum of the Euclidean action. It is reasonable therefore to ask
determination of the classical field configurations in Euclidean spa
minimize the action, subject to appropriate asymptotic conditions in
These classical solutions are the « instantons» of the Yang-Mills
and it will be the primary purpose of these lectures to show how
all instantons. For further explanations of their physical significas
ticularly in relation to tunnelling, I refer to[12] or [30). From a v
eral point of view one can also say that a thorough understandin
classical equations is likely to be a pre-requisite for developing tl
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tum theory, and one may hope that important structural features will ap-
pear at the classical level.

If one were to search ab initio for a non-linear generalization of Maxwell’s
equation to explain elementary particles, there are various symmetry prop-
erties one would require. These are

(i) ewxternal symmetries under the Lorentz and Poincaré groups and under
the conformal group if one is taking the rest-mass to be zero,

(ii) tnternal symmelries under groups like SU(2) or SU(3) to account for
the known features of elementary particles,

(iii) covariance or the ability to be coupled to gravitation by working on
a curved space-time.

Gauge theories satisfy these bagsic requirements because they are geometric
in character. In fact on the mathematical side gauge theory is a well estab-
lished branch of differential geometry known as the theory of fibre bundles
with connection. It has much in common with Riemannian geometry which
.provided Einstein with the basis for his theory of general relativity. As
is well known Einstein spent many years on a fruitless search for a unified
field theory, a search which most physicists regarded as a chimera. If the
current expectations of Yang-Mills theory are eventually fulfilled, it will
in some measure justify Einstein’s point of view that the basic laws of
physics should all be combined in geometrical form.

Gauge theory first appeared in physics in the early attempt by
H. Weyl[43] to unify general relativity and electro-magnetism. Weyl
had noticed the conformal invariance of Maxwell’s equations and sought
to exploit this fact by interpreting the Maxwell field as the distortion of
relativistic length produced by moving round a closed path. Weyl’s inter-
pretation was disputed by Einstein and never generally accepted. However
after the advent of quantum mechanics with its all-important complex
wave-functions it became clear that phase rather than scale was the cor-
rect concept for Maxwell’s equations, or in modern langunage that the gauge
group was the circle rather than the multiplicative numbers. Unfortunately,
while scale changes could be fitted into Einstein’s theory by replacing the
metric with a conformal structure, there was no room for phase to be incor-
porated into general relativity. Rather the gauge theory had to be super-
imposed as an additional structure on space-time and the unification sought
by Weyl then disappeared.

Non-abelian gauge theories were introduced in 1954 by Yang and
Mills [32] and have been increasingly studied by physicists since that time.
The relation with the mathematical theory of fibre bundles was either
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ignored or considered irrelevant until comparatively recently, when
perturbative aspects related to instantons have come to the fore. Mathe
cally this involves global questions of fibre bundle theory incorporating
topology and analysis, as opposed to the purely local theory of cla
differential geometry. A great deal of modern geometry of a sophisti
character is involved in dealing with such global problems and the techn
developed by mathematicians are unfamiliar to physicists. One purpc
these lectures is to try to bridge the gap between mathematicians
physicists by explaining the relevant techniques as simply as possibl
illustrating how they apply to the determination of instantons. Th
that so many new mathematical tools are naturally involved with this
lem may lead to some optimism concerning the ultimate aim of devel
the quantized form of gauge theories.

2. - Gauge potentials and fields.

‘We shall now recall the data of a classical theory as understoc
physicists and then reinterpret them in geometrical form.

We begin by fixing a compact Lie group &, typically SU(2) or &£
but not execluding yet the abelian group U(1). We consider its Lie al
L(G), which for SU(n) consists of skew-hermitian n x# matrices of
zero. A gauge potential is then a set of functions A4,(z) taking valh
L(@), where z = (, ... #,) is8 a point of Minkowski or Euclidean spac
#=1,...,4 is a spatial index. Associated with this potential we alsc
sider the operator

(2.1) Vu= Ou+ A,

where 9, = 0/dx,. This operator acts on a vector function (f,(z), ...,
whenever we are given an m-dimensional representation of G: for ex
when @ = SU(n) we can take m = n using the standard represent

Computing the commutator of V., and V, we get the gauge fiel
given by

Fm= [V”, Vy] = a,‘A'— a'Ay + [Ap’ Av]

where the commutator [A4,, 4,] is taken in the Lie algebra of G. TI
portant point to note is that for non-abelian G this commutator do
vanish and so F is a non-linear function of 4. For @ = U(1) howev
term drops out and we get the usual linear relation between the fie:
vector potential that characterizes Maxwell theory.
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The usual non-uniqueness of the potential has its counterpart in the
general case in the form of gauge transformations. By defiuition a gauge
transformation is a function g(x) taking values in ¢ and transforming the
potential 4, by the formula

Au—gtAug + g toug

which corresponds to sending V, into g-‘VT(here we consider & as a group
of matrices so that 2,¢ is simply the differentiated matrix). The gauge
field F,, then transforms by

Fw%g—lFmg.

It is important to observe that the A4, transform inhomogeneously whereas
the F,y transform homogeneously. In other words F,, is a vectorial (or ten-
sorial) object whereas 4, is an affine object (with no preferred zero).
Geometrically or mechanically we can interpret this data as follows.
Imagine a structured particle, that is a particle which has a location at a
point 2 of R* and an internal structure, or set of states, labelled by elements g
of G. We then consider the total space P of all states of such a particle. In
general we conceive of the internal spaces @, and G, for z £y as not being
identified and so we draw the picture of P as a collection of « fibres »

G.

ze R

In the absence of any external field however we consider that all G, can be
identified to each other so that in addition to the vertical lines or fibres
we can also draw horizontal lines (called sections) making the usual Car-
tesian type of grid

RI
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Now we imagine an external ficld imposed which has the effect of distor
the relative alignment of the fibres so that mo coherent identificatio
possible between the @, at different points. However we assume tha
and G, can still be identified if we choose a definite path in R4 from « t
In more physical terms we imagine the particle moving from x to y and
rying its internal space with it. In Minkowski space such a motion w.
take place along the world line of the particle. This identification of fi
along paths is called « parallel transport». If we now imagine two diffe
path joining « to y then therc is no reason for the two different par
transports to agree and they are assumed to differ by multiplication -
a group element, which could be viewed as a generalized « phase sh:
This phase shift is interpreted as produced by the external field. In gec
trical terms it is viewed as the total « curvature » or distortion of the |
bundle over the region enclosed by the two paths.

If we now infinitesimalize this picturc in Newtonian style we get
infinitesimal parallel transport at a point z in a given direction. '
will be an infinitesimal «hift A of the fibre @, into the nearby fibre, an
called a connection. The infinitesimal curvature F depends on two direct
at x and takes valucs in the Lie algebra of G,, i.e. it is an infinitesimal « p;
shift ». As usual the infinitesimal picture, that is the connection, ca
integrated up to give the global picture of parallel transport along cur
the two points of view are mathematically equivalent.

If we now compare this picture with the situation where we had no :
and all fibres ¢, were coherently identifiedd we can vicw parallel trans
as a change of phase in a fixed copy of G, and the connection as an elen
Au(r) of the Lie algebra depending on the point = and the p-th direct
Thus we recover the gauge potential of the physicists’ language. Simil
the curvature I’ becomes the gauge field F,,(x), taking values in the f
Lie algebra of G. Thus the curvature F can be thought of as the distor
produced by au external field, or it can be identified with the field wher
think of a field of force as measured by its local cffects. This identifica
of fields with geometrical distortion is of course at the heart of Einste
theory of gravitation. The difference here is that the distortion is not ta)
place in the geometry of space-time but in the geometry of some fictit
state-space of internal structure super-imposed on space-time. This d
rence makes the relevant geometry less obvious and historically, botl
physics and iu mathematics, the geometry of fibre-bundles came later t
the geometry of space. It is significant however that both mathematic
and physicists, each for their own reasons, were led to study these obj
which in fact turn up natwrally in a great variety of contexts.

Despite its later historical appearance the geometry of fibre bundle



the type we have been describing is much simpler technically than the
Riemann-Einstein geometry of space. This is because the relevant group
of our theory was taken as a finite-dimensional group @ whereas in Rieman-
nian geometry we have to deal with the group of all coordinate transforma-
tions. To clarify this point we shall now return to our fibre bundles and
re-cxamine their relation to gauge theory.

In order to describe our geometrical connection in algebraic terms we
compare our parallel transport with the situation in the absence of a field.
In this case we used a coherent identification of all the fibres G.. Now
it is important to emphasize that this coherence represents the absence of
a field but the particular choice of coherent identification is at our disposal.
A particular choice is called picking a gauge and a change from one choice
to another is a gauge transformation. Pictorially we imagine two different

sets of horizontals for our fibre bundle and the change from one to the other
is described by a function g(z), taking values in G. No particular choice
is regarded as being preferred (despite the appearance of the picture!).
Once a gauge has been picked the connection and curvature can be written
down in coordinate form. The group of gauge transformations plays a role
analogous to that of coordinate transformations in Riemannian geometry.
Since it is basically a simpler group the geometry of fibre-bundles is an easier
theory: it is, in a definite sense, «less non-linear ».

It should be emphasized that a connection is a definite geometric object
and is more primitive than the curvature. As a consequence one should
consider the gauge potential as more primitive than the gauge field. This
is borne out physically even in electro-magnetism by an experiment which
shows that the field may be identically zero but physical effects are still
detected due to the fact that parallel transport need not be trivial if the
region of space is not simply-connected. The vanishing of curvature only
gives information about parallel transport round very small closed paths.
In physical terminology parallel transport in general is described by talking
about non-integrable phase factors. Non-integrability locally refers to a
non-vanishing field, whereas large scale non-integrability is topological in .
character (going round a wire for example) and may arise even for zero fields
(outside the wire). Classically potentials were introduced as a mathematical
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device to simplify the field equations and the ambiguity (or gauge free
in choice of potential was taken as an indication that the potential h:
genuine physical meaning. The geometrical point of view shows that
i8 too narrow an interpretation. The connection is a geometric objec:
so the potential should be regarded as physical. The unphysical thi
the choice of gauge in which one chooses to describe the potential,
responding to the fact that our geometrical fibre bundle where the
nection sits has no natural horizontal sections. These remarks abou
predominant role of the potential will acquire more substance when we di
the field equations in the general non-abelian case.

So far we have talked only about fibre bundles in which the fibre
the group G. These are called principal fibre bundles by differential g
eters. However for applications one is usually interested in assoc
bundles in which the fibre is a vector space C* corresponding to a repres
tion of G. Again the typical case is to take G = U(n). The geometric pi
is essentially similar in that we consider a space (the vector bundl
fibred over R¢ so that the fibre E, is thought of as a vector space depel
smoothly on #. Parallel transport from & to y is regarded as a unitary t
formation from E, to E,. Thus parallel transport in the principal b
gives rise to parallel transport in the vector bundle and the same aj
to connection and curvature. In particular a section of the vector bu
namely a function f(z) defined on B¢ and taking values in the variable v
space L, is thought of in terms of its graph. A connection enables us to

RI

this graph infinitesimally in a given direction of R4. This shift is prec
the covariant derivative V,f. This is a geometric notion independe:
any choice of gauge. Once we choose a gauge we can describe f algebrai
by a n-vector (f,(z), ..., f.()) of ordinary functions and the covariant
vative is then given explicitly by formula (2.1). The curvature Fy, de
as the commutator [V,, V,] is again seen to be geometric in chara
appearing now as an (algebraic) operator on sections of the v
bundle.



3. — The field equations.

We come now to the field equations for a gauge theory which will gen-
eralize Maxwell’s equations. Written in terms of the covariant derivative V,,
and in units where the velocity of light is 1, the equations can be written
in terms of commutators

(3'1) [Vﬂv [V'9 Vﬂ]] + [V" [V°1 VI‘]] + [vﬂ, [VM V']] = 0
(3.2) [Vu, [V, Vs]] = 0.

In (3.2) we sum over x and in Minkowski space the term corresponding
to the time component has a minus sign (whereas the Euclidean analogue
has all positive signs).

These two equations involving the potential have a rather different char-
acter, in that the first is -an identity (the Bianchi identity of differential
geometry) and only the second, the Yang-lills equation, imposes a condi-
‘tion on the potential. For G = U(1) these equations written in terms of
the field F,, are Maxwell’s equations in vacuo. The first equation is then
just the integrability condition on F, which asserts that (at least locally)
we can introduce a potential A, so that

F[”= ayAv—' 3.A,, .

For non-abelian G it is not possible to write these equations in terms of
F,, alone because the covariant derivatives V, explicitly involve the po-
tential A,. This emphasizes once more the primary role of the potential
as opposed to the field.

The Yang-Mills equation (3.2) is derived from a Lagrangian £ by inte-
grating over R* a Lagrange density which is an invariantly defined qua-
dratic expression in the curvature. For @ = U(n) or SU(n) one puts (up
to constant factor)

(3.3) =—3 f Trace (F,» Fw) dz, dr, dz, dz, ,
Rt

where F» is obtained in the usual way from F,,, raising indices by the
standard metric tensor of Minkowski or Euclidean space and we sum over
all y,». Equations (3.2) are the corresponding Euler Lagrange equations.
The minus sign was inserted in (3.3) so that in the Euclidean case we oet
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& positive Lagrangian, the point being that —Trace (4AB) is positive defi
on the Lie algebra of U(n). For other Lie groups one can either use an em]}
ding in U(n) or more intrinsically one replaces Trace (AB) by the Kil
form which is the standard invariant bilinear form on L(G): the two metbh
give the same answer up to a Positive scalar multiple,

In the Euclidean case the Lagrangian can be viewed as the nat:
Lt-norm of the curvature, that is the integral over R¢ of the sums of
squares of the absolute values of all its components in a standard ort
normal base. More invariantly one can rewrite this as follows, First we re
that a skew tensor a, corresponds to an exterior differential 2-form

=} o, doipdr — > awdaspdar
i u<v
The dual 2-form *a defined relative 5ay to the standard Euclidean met
is given by replacing a,, by @3, ote. With an appropriate minus sign if {
indices involve an odd permutation. It satisfies #*= 1. The natu
L*-inner product of 2-forms is then defined by

(o, B =fa/\*ﬂ ’
R

where A denotes the exterior multiplication and gives here an exterj
4-form, i.e. a volume form which can therefore be integrated. Passing nc
to the curvature F which is a 2-form with values in the Lie algebra L(¢
we define *F in the same way, switching spatial indices and leaving untouch
the Lie algebra variables. Then we put

(3.4) Pt = (F, F)y = —fTrace (FA*F)
R

and this is the invariant way of writing the Lagrangian.

Equation (3.1) asserts that the covariant derivative of P, skew-syn
metrized, is zero or symbolically
(3.5) VAF =0.

Using the duality operator * we see that (3.2) can then be written

(3.6) VA*F =0.

my o



clearly its invariance and covariance properties. First of all the equations
clearly make sense on a curved (Riemannian) 4-space, since the *-operator
uses only the infinitesimal duality. Secondly the *-operator on 2-forms in
4-space is conformally invariant in the sense that two metrics dst and
o(x)ds? give the same *. Thus the Yang-Mills equation (and the Yang-Mills
Lagrangian) depend only on the conformal structure of 4-space. This im-
portant property of Maxwell's theory is therefore preserved in the non-
abelian case.

The apparent symmetry or duality between (3.5) and (3.6) is delusory
as we have explained, although in Maxwell theory it reflects the duality
between electricity and magnetism and attempts have been made to
understand the non-abelian analogue. This is a deep question and the
proper understanding of this duality is likely to be found only at the quan-
tum level [22][40]. However at the classical level we note an elementary
consequence of (3.5) and (3.6), namely that (3.6) follows from the identity
(3.5) if the field F satisfies one of the equations

(3.7) *F=F (self-duality)

(3.8) *F=—F (anti-self-duality) .

Thus we have here first-order non-linear equations for the potential which
imply the seecond-order Yang-Mills equations. These equations have a par-
ticularly sumple significance in the Euclidean case as we shall see in the next
section. Note that the definition of * involves an orientation of R* (an order-
ing of the coordinates z,, ..., x,) and that (3.7) and (3.8) switch when we
reverse the orientation. Thus there is no essential mathematical difference
between the two cases.

4. — Asymptotic conditions and topology.

We now restrict ourselves to the Euclidean 4-space so that the Yang-
Mills Lagrangian £ is positive. It is natural to consider potentials for which
the action € is finite, so that the integral over R* converges. To achieve this
we assume that the field F' decays sufficiently fast as we go to infinity. If
Wwe work in a given gauge this simply means that Fu(z)— 0 sufficiently
fast as |z| - oco. At first sight this might seem to require the gauge po-
tential 4,(x) to have similar decay together with its first derivatives. How-
ever, because of gauge freedom, all that is necessary is that, for large |z,
we can find a gaunge transformation g(x) so that the potential in the new
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gauge should decay. This means that
(4.1) Au(@)~ g (x)0ug(®) as |x| > 00

where ~ implies asymptotic behaviour including first derivatives. 1
portant point is that the gauge transformation g(x) need only be defi
large |z|. In fact it may be impossible to extend the definition of g(
tinuously to the whole 4-space. To see this consider the restriction
to a sphere |[r| = R of large radius, and take for example G =
Then g gives a continuous map

g: 85 —>8U(2)

and both sides are topologically 3-spheres. Such a map has a well-
integer invariant, its degree k, which counts (with appropriate multi
and signs) the number of points 2z € 83 which map to a given genera
in 8U(2). The function g can be extended continuously to |z| < R if a1
if ¥k = 0. The identity map (thinking of both spaces as the stand
has ¥k = + 1, and k = — 1 corresponds to an orientation reversal.

An analogous and more easily visualized situation occurs for G :
and R* replaced by R? in which case g becomes a map of the circle t
and the degree k is the « winding number ». Note however that if w
on R* with G = U(1) there is no topological invariant since ever
tinuous map of §* to the circle can be deformed to a constant map.

For any simple non-abelian compact ILie group G a corresponding
holds, namely that continuous maps of 82 into G have an integer topc
invariant which classifies the map up to deformation. This intege:
from the fact that every such G contains copies of SU(2) (or SO
subgroups.

Thus in non-abelian gauge theories on R¢, potentials which are
totically flat, <.e. have fields asymptotic to zero, fall into distinet 1
indexed by the corresponding integer k. This is frequently referred
topological quantum number even though at this stage we are only
with classical fields.

In dealing with asymptotic properties various technical analytic
stions arise concerning the precise rate of decay. There is one natu
convenient definition of decay to take arising from conformal inve
We recall that stereographic projection of a sphere onto fiat space is
a conformal map, relating the standard-curved metric of the sphere
fiat Euclidean metric. In particular the sphere S* (unit sphere in R
mapped conformally onto K.
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Alternatively we can say that S* is the conformal compactification of R*
obtained by adding a point at co. A potential on R* is then said to decay
at oo if it extends to a potential on 8¢. If the integer % is non-zero this means
that we cannot describe our potential using a single gange, we need one gauge
in the finite region |z| <R and another gauge near oo i.e. for |z| > R, the two
gauges being related on |z| = R by the gauge transformation g(r) of
degree k. This means that our fibre bundle P over 8¢ is no longer the topo-
logical product §*xG. In fact the topological theory of fibre bundles over
spaces like §* which are not contractible tells us that iu this case they are
precisely classified by the same integer k. Thus the integer k¥ which appeared
in the asymptotic description ou R¢ is now directly coded into the topology
of the space P. For example if @ = SU(2) and k = 1, P turns out to be
topologically the sphere 87 which is quite different from the product 8¢ x 83:
this will be explained in more detail later. The potential or connection in
our fibre bundle now has a well-defined curvature F on the whole of §*
and the particular role of the basc point coe §* can now be ignored. Note
that F — 0 at co on R* but F need not be zero on §* at the point oo because
when viewed as a differential form one uses different coordinates on R!*
and §%. Clearly the Lagrangian £ = |F|* computed relative to the curved
metric of §* is necessarily finite because §¢ is compact (we always assume
enough local differentiability so that F is always continuous at least). More-
over because of the conformal invariance of the Yang-Mills functional £
takes the same value whether computed on §¢ or R4,

Now on closed manifolds like §* there are well known theorems of global
differential geometry which relate topological invariants to integral expres-
sions in the curvature. One might expect such results because if the curvature
is everywhere zero the connection is flat and (on a simply-connected space)
one obtains a global gauge implying ¥ = 0. In dimension 2 the classical
theorem of Gauss expressing the Euler characteristic as the integral of the
scalar curvature is the prototype of higher-dimensional generalizations.
In our case the formula takes theé form

(4.2) 8k — — f Trace (FAF),
s‘

for the group SU(2). For other groups the same result holds but with a
different normalization, the integér k being replaced by a suitable multiple:
for precise details the reader may refer to[3]. We now have a topological
constraint on F and this should be fed into the formula (3.4) for the Lagran-
gian. To do this it is convenient to decompose F under the action of * into
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its self-dual part F* and its anti-self-dual part F~:
F=F‘@F

50 that *F*= F* and *F~= — F~ (recall #*= 1 for the positive
case). Then (3.4) and (4.2) can be written

(3-4) £ =|F*r+ 7|
8ntk = |F*|*— | F7|*

from which we deduce that £>8n®|k| and equality holds if and

*F = (signk)F. Thus the special solutions (3.7) and (3.8) of the
Mills equations correspond to the absolute minimum of the Lagi
(assuming the value 8n?|k|) is attained. This argument is due to 1
et al.[10] who also showed that for ¥ = 41 the minimum is at
and the term instanton has been coined for such solutions of the Yan
equation. Later other solutions wete discovered for all k [14] [31] an
were called multi-instantons.

The general problem to which we shall address ourselves is the
mination, in as explicit a fashion as possible, of all multi-instanto)
only for SU(2) but for all compact classical groups. As we shall s
problem admits of a surprisingly simple and complete answer, but the
require a great deal of sophisticated mathematical machinery.

At this point we shall merely note that any gauge transform of a
instanton is again a multi-instanton, and such solutions will be re
a8 equivalent. In geometric terms this means that two fibre bundles «
with connections (satisfying *F = 4 F) which are isomorphic will b
tified: they cannot be distinguished geometrically.

In the next chapter we shall describe explicitly how to write do
most general multi-instanton for SU(2), and we shall indicate how t
to be generalized to other groups.



CHAPTER 1I

Description of Instantons

1. ~ Quaternions.

In R? it is well known that many formulae are simpler when written
in terms of complex numbers. It was the discovery of Hamilton that for R¢
one can introduce a non-commutative extension of the complex numbers
called quaternions, and it was Hamilton’s hope that quaternions would
turn out to be the natural tool for an algebraic description of the physical
world. Although this was an exaggerated hope there is some merit in
Hamilton’s point of view as we shall see shortly. For the present however,
we simply use quaternions as a convenient algebraic formalism that simpli-
fies notation. This is particularly relevant to the group SU(2) which as
we shall gsee can be identified with the group of quaternions of unit norm,
in the same way that U(1) is the complex numbers of unit norm.

We begin by briefly recalling the definition and elementary properties
of quaternions. Just as the complex numbers C are formed from the real
numbers R by adjoining a symbol ¢ with i2= — 1, so the quaternions H (in
honour of Hamilton) are formed from R by adjoining three symbols %, j, k
satisfying the identities:

(1.1) P=j=k=—1

fj=—fi=k, jk=—Fki=1i, ki=—ik=7j.
Thus & general quaternion x is of the form
(1.2) T =24 Tt + 5§ + 2,k

where x,,%,, x5, #z, are real numbers. The conjugate quaternion Z is
defined by

8

=& — Byi— 5§~ 2k
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and conjugation is an anti-involution, i.e. (zy) = #Z. In virtue
identity (1.1), one finds

4
aIT=Zz= Y,
-

This quantity is denoted |z|* and is zero only for x = 0. If z#0
a unique inverse ! given by

1= Z[|z]*.

The quaternions # with norm 1, i.e. |z| = 1, form therefore a multip
group which is geometrically the 3-sphere

4
Sat=1.

u=1

In analogy again with the complex numbers we refer to the compo
in (1.2) as the real part of x and the remainder # — z, as the imaginax

If we identify ¢ with the usual complex number we can reg:
complex numbers C as contained in H (taking 2, = z, = 0). Moreove
quaternion # as in (1.2) has a unique expression.

r =2+ 2j, where 2=+ 2,4 and z,= &, + z,i.

This identifies H with C*. Now consider the quaternion multip
x — xg where g = g, + ¢, 4, with g,, g. € C. Computing we find-

2§ = (5 + 2af) (1 + 6:)) = 2101 — 2Fe + (2205 + 2:)) ]

so that the vector (2, 2,) is multiplied on the right by the 2 x2 e

matrix
( [/ gz)
— gz gl

Thus, if we wish, we can identify the algebra of quaternions as a sub-:
of the 2 x2 complex matrices in which 4, §, k¥ are the matrices

(R S ] Vi

In particular the group Sp(1) of quaternions of unit norm gets id«



with 8U(2) and its Lie algebra can be viewed as the pure imaginary qua-
ternions with natural basis i, j, k.

We now identify R* with H via (1.2) and an SU(2)-potential will be
given by functions 4,(z) whose values are imaginary quaternions. It will be
convenient if we go further and write

A(z) = ﬁA,(z) dam

s=1

8o that A(z) is a differential form with values in Im (H). Finally we shall
consider the quaternion differential

dz = dr' 4 dzti 4 dadj + daosk
and its conjugate
dZ = dz' — dxti — dr*) — da'k
just a8 in complex variable theory one uses dz = dr 4 idy and dz = dz — i dy.

If f(z) is any function of the quaternion variable z with quaternion values
the expression

(1.3) A(2) = Im {f(z)dr} = }{f(z)dz — dZf(z)}

will represent an SU(2)-potential. Here f(z)dz is computed formally,
written a8 ) a,da* with a,e H and then 4,= Im(a,). Note that, before
taking the imaginary part we have a potential for the group H* of all non-
zero quaternions which is SU(2) times a scale factor.

We shall also write the curvature ¥ as an exterior 2-form

F = Y Fydaspdzr= } T Fydavpdar .
' 114

u<y

Then F can be computed from A by

F=dA + ApA
where
dA = JdAuNdxr =} 3 (3u 4, — 3,A,) daspdar
and ’ “

AANA = ZA#A"““/\‘"'= $[A,, A))dospdar

e
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When A is written in the quaternionic form (1.3) we get a similar
(1.4) F =1Im {df/\dz + fda:/\fda:} .

Taking imaginary -parts commutes with formation of curvature be
our remark above concerning the larger group H*.

The use of the quaternion differentials dw and dZ is also conve
connection with the study of self-duality. To see this let us comput
We get

AENdZ = (do! + doi + dovf + dask)A (dot — dadi— dodj — davk) =
= — 2{(da*Ado* + de*Ada)i + (da'\do+ dadpda?)j +

+ (dr*Adxt 4 dzt/

The coefficients of i, j, % in this expression are precisely a bagis for

dual 2-forms, i.e. 2-forms @ with *» = w. Hence drA\dzZ is a 2-for

values in the Lie algebra of 8 U(2), Which is self-dual. A similar com;
shows that dZAdr is anti-self-dual.

2, — The basie instanton.

Using the quaternionic notation of the preceding section we sb
exhibit the basic instanton with ¥k = 4 1 (and the anti-instant
k=-—1).

Consider the 8U(2)-potential A defined by

@.1) A(z)=1m{ Zdz } ;{Eda;—dim}

1+ |z ~ 2 1+ |z

The explicit components 4,(x) can of course be read off from this
formula, for example

— Tyt — 20— 2,k

J + ok
e Ti—2j+ nk

Ae) = 1+ o

Ay(7) =

Computing the curvature F of this potential as in (1.4) we get

dzNdx — TdxA\Zdx
2.2 = 3)- SN
@2) Tm {1+ e T 240 F )M Ade + lzl’)’]
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Writing [z|*= 2% the middle term in this expression gives

_ ZdopZde Zzdz\dx
@+ = @+ =9

Substituting this in (2.2) and simplifying we get the purely imaginary ex-
pression:
(2.3) F= (dez-Al—:T’—)—'

.
S0 that, as explained in §1, F is anti-self-dual, i.e. *F =—F. As |z| > oo
we gee from (2.1) that

2.4) A(@)~Im (z-ds) = p(a)*dp(2)

where ¢(®) = z/|z|. This shows that A is asymptotically the gauge trans-
form of 0 by the gauge transformation g(z) = @(z), or equivalently that
if we apnly the inverse gauge transformation ¢(z)-! to A we get 0 asymp-
totically. On the unit sphere [z| = 1 in quaternion space we have p(z)*=7Z
and the map z—Z of §° to itself has degree — 1. Thus (2.1) describes an
anti-instanton.

Clearly if we replace z by 7 throughout we will obtain an instanton with
potential and field given by

_ zdZ ___dzpndT
(®9) a=w{ T T

These formulae are of course just those of Belavin et al.[10] written in
quaternionic notation.

To examine more carefully the behaviour of the anti-instanton (2.1)
a8 |z| > oo we change gauge by ¢(z)*, corresponding to (2.4), and intro-
duce the quaternion coordinate y = #~! around the point at oo, regarded
now as a point of 8¢. Taking the imaginary part of the identity

Zdx . L_ _Yay
“’(1+ w)“’ tod = n

shows that the anti-instanton extends to 8* and has precisely the same form
at oo as it has near 0. Similar calculations hold naturally for the in-
stanton (2.5).
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If we simply put y = 21 in (2.1) we get

dyy
2. = —Im{—=<
@9 At =~ 1 ()

and this describes the anti-instanton in the «singular» or ¢ asympt
gauge, namely the gauge in which A—0 as |y| > oo, but which is b
behaved at y = 0, where A(y) is singular. As we have seen this singul
can be removed by the appropriate gauge transformation, but the
gular form (2.6) is useful in practice.

It is perhaps worth pointing out that all the above formulae hol(
complex numbers instead of quaternions, in which case we obtain i
gauge potentials and fields on R? or 8. Self-duality no longer makes :
in dimension two but the 2-form F given by (2.3) is a multiple of the inva.
spherical area. In other words F is invariant under SU(2) acting by
tional linear transformations z— (ax 4+ b)(cx + d) of the complex variat

Since the equations *F = + F are conformally invariant it fo
that any conformal transformation of 8* into itself will convert the
instanton into some other instanton. We recall now that, just as the p1
(t.e. orientation preserving) conformal group of §* is SL(2, C)/{+ 1} &
via fractional linear transformations of a complex variable, so the p1
conformal group of 8¢ is §L(2, H)/{+ 1} acting similarly on a quatern
variable. Thus the transformations z — azb with z, a, b all quaternions
a#0, b0 generate the rotation group 80(4) together with scale chs
T—>z + ¢ gives translations while z -1/ = Z/|z|* gives a proper i
sion (i.e. inversion together with a compensating reflection z — % to re
orientation). Because of the non-commutativity of the quaternions ¢
proper conformal transformation of §¢ can be written either using
multiplication or using right multiplication, i.e.

& — (az + b)(ez + d)
or

- (@y + &) o + B) .

Taking quaternionic conjugates interchanges these two ways of represe:
the conformal transformations. More precisely let §, T denote the
transformations above with (a, B, y, 8) = (&, b, ¢, d) and let O denote
jugation -z, then T = 080. Note that C, being a reflection, is a1
proper conformal transformation.

‘We return now to the basic anti-instanton (2.1) and we apply confc
transformations to it. Recall that, up to a gauge transformation, (2
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preserved by the inversion z — !, It is evidently unchanged by 2z-+ax
with |¢| =1 and z-—>za produces only a constant gauge transformation.
Thus it is essentially invariant by S0O(4). In fact it is invariant up to gauge
transformations by the larger group SO(5) which may be viewed here as
Sp(2)/{+£ 1} where Sp(2)c SL(2, H) is the compact subgroup leaving norms
fixed. This verification is best left till later when the proper geometric
interpretation of (2.1) will make this invariance evident. To get new anti-
instantons therefore we should use elements representing SL(2, H) mo-
dulo Sp(2). Such elements are naturally given by the transformations

(2.7) z —p(z— b)

where x4 is a positive real scalar and b is a quaternion.
These parameters can be regarded as parametrizing SL(2, H)/Sp(2),
the space of quaternion norms on H?* with volume 1, by associating to (u, b)

the positive self-adjoint matrix
“ b
b* v
with uy— |b|*=1.

As u, b vary the transformation (2.7) applied to (2.1) generates a 5-par-
ameter family of anti-instantons with « centre » b and ¢ scale » u. From (2.3)
we see that the field density is a maximum at the centre and its strength
there is x?. This shows that no two members of our family can be gauge
equivalent. The more difficult result, which will emerge much later, is that
every anti-instanton (i.e. ¥ = — 1) is gauge equivalent to one of our family.

It will be convenient to apply inversion to (2.7) (and a sign change)
to (2.7) to get

(2.8) z—> Ab— ).

This transformation applied to (2.3) gives us the general anti-instanton in
an asymptotic gauge as explained before. We can also apply it to (2.5)
to generate the family of all instantons in an asymptotic gauge.

We now come to the more difficult question of constructing multi-
instantons for larger values of k. For this purpose we introduce the space H*
consisting of column vectors « with quaternion components us (x = 1, ..., k),
and we define an SU(2)-potential on the space H*= R by a formula
quite similar to (2.1), namely

u* du

where u* stands for the transposed conjugate of the column vector u
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and w*du stands for the matrix produect, so that

k
utdu = Y Uadita

a=1

and |u|*= w*u = ) |u4|? is the Euclidean norm.

Note that (2.9) restricts to (2.1) on each coordinate axis (all 1
except « = f) and is unchanged by the group Sp (k) acting on H*.
it restricts to (2.1) on any one-dimensional H-subspace of H*. It has
fore a high degree of symmetry and we shall in due course explain its
etrical significance. For the present we regard (2.9) as simply an aw
formula used to construet potentials on H = R* by using suitable fun
u = f(z), i.e. mapsf: H— H* Given any such f we substitute in (2.¢
obtain the potential

_ f*(z) df(z) - fa(2) dfa(x)
(210) Ae) = Im {1 ¥ If(w)l’] {21 T If(z)l‘}

For our function f(z) we now take the matrix analogue of (2.8), com
with a conjugation (to give instantons rather than anti-instantons), n:

(2.11) w(z) = [A(B—~2)-1]* .

Here B is a symmetric k¥ X% matrix of quaternions, 4 is a row
(A1) +o-y &) of quaternions and z stands for the scalar quaternion zI wl
is the unit k¥ x% matrix. For ¥ = 1 the parameters were arbitrary e
that A had to be invertible. In the general case however the parameter
will have to satisfy algebraic constraints as follows:

(I) B*B + 2*1 is a real k xk matrix
(IT) For every z€ H the equations

(B—2)f =0, Af=0 with feH* imply £ =0.

Condition (I) asserts that the coefficients of 4,4, k in the k X% quate
matrix B*B 4 2*1 all vanish. This gives a system of quadratic rel
on the coefficients of B and A. '

Condition (IT) is a non-degeneracy or open condition which can al
formulated as saying that the (k¥ 4 1) x% matrix Biz has ma
rank k for all ze H. Condition (I) is the crucial algebraic one whict



ensure that the potential 4, ;(z) defined by substituting (2.11) in (2.10) is
self-dual. Condition (II) will ensure the solution is non-degenerate and in
particular that the points z for which (B — z) is singular give singularities
of the potential which can be removed by a gauge transformation.

In principle, given gauge potentials A, ,(z) defined as above it is a direct
matter of computation to verify that the resulting field F satisfies *F = — F.
However the computations can be carried out more elegantly once we have
explained the geometrical meaning of some of the formulae. ‘This will be
done in the next section. Much more difficult is the proof that our construe-
tion gives all self-dual fields. This requires the introduction of quite new
ideas and techniques which will be explained in subsequent chapters.

The matrix transformation (2.11) includes, as a specially simple case,
the obvious choice of a diagonal matrix B (with diagonal entries b,, ..., b, € H)
and real positive scalars 4,, ..., 4,. Provided the b, are all distinct, condi-
tions (I) and (IX) will be satisfied. The resulting %k-instanton therefore looks
like a superposition of % instantons with scales A, and centres b,. These
special solutions were discovered by ‘t Hooft and others[14](31]. The
general solution cannot however be put into this form (even after a con-
formal transformation).

If we replace the vector A = (4,, ..., 4,) in (2.11) by g1 where ¢ is a
quaternion of unit norm then the resulting potential A given by (2.9) is
unaltered. Similarly if we replace 4 by AT and B by T-BT, where T is a
(real) orthogonal % X% matrix, then the potential gets conjugated by the
constant matrix 7 which simply gives a gauge transformation. Note that
both these alterations of (A, B) preserve the conditions (I) and (II) above.
We shall in due course prove that no other transformations of the par-
ameters (4, B), except those just described, give gange equivalent potentials.
Thus the main theorem to be proved can be stated as follows [2]([18]([19]

THEOREM. Every k-instanton for S8U(2) arises from parameters (A, B)
satisfying (I) and (II), the potential being given in an asymplotic gauge by
formula (2.9) where u(z) is defined by (2.11). The potentials defined by (A, B)
and (2'y B') are gauge-equivalent if and only if A' = qAT, B'= TBT with
qef8p(1) and T €O0(k).

It is a simple matter to count the number of effective parameters in-
volved in our construction. The initial data of a pair (4, B) involves

4k + 4-3k(k + 1) = 2k* + 6k

real parameters. The number of real equations involved in (I) is 3%(k — 1)/2
while the groups Sp(1) and O(k) have dimensions 3 and }%(k— 1) respect-
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ively. Computing naively we find

3k(k—1)

2 u—
2k + 6k 3

3—}k(k—1) =8k—3

as the number of effective parameters. This checks with the calcul
infinitesimal variation methods [3][37]. If we start from a 't Hooft
(B diagonal, A real) and consider small perturbations of the soluti
parameters can be interpreted as follows. Each b, has 4 parame
each A, € H has 4 parameters, giving 8k in all: we subtract 3 becau
action of Sp(1). However we cannot satisfy condition (I) with B

and the 1, not real. What happens is that condition (I) requires non-
terms to enter in B 80 as to cancel the imaginary contributions
Near a 't Hooft solution one can actually solve by power series e:
for these off-diagonal terms so that (b;... by, 4;... ;) modulo St
local parameters for the space of k-instantons. However these are n
parameters and the global structure (even topologically) of this «
space is quite complicated (see [5]).

For the group Sp(n) (consisting of n xn quaternion matrice
also preserve the norm of H") there is an entirely analogous solutic
multi-instanton problem. We replace (4, B) by (4, B) where 4 is :
matrix satisfying the analogues of (I) and (II), namely

(I)a B*B + A*4 is real
(II), (B—2)t =0 and A¢ = 0 imply & = 0.
We then define the % xn-matrix U as a function of € H by

(2.12) U(z) = [A(B—z)1]* .

Finally the potential A(z) is defined in terms of U(z) by a formula
izing (2.9):

(2.13) A(z) = ¢U*dUg + o-'do

where 0 = (1 + I U)+ is now a self-adjoint #Xx#n-matrix. No
when n =1, ¢ i8 a real scalar and (2.13) coincides with the alt
form (2.9).

3. — Geometrical interpretation.

There is a geometrical way to construct potentials which is ver
but appears not to be familiar to physicists. Roughly speaking
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struction is analogous to the way in which Riemannian metrics on a manifold
can be constructed by embedding the manifold in a Euclidean space and
considering the induced metric. Historically this is of course the way
Riemannian metrics first arose (e.g. surfaces in 3-space).

We recall that a vector bundle E over a space X is a family of vector
spaces E, parametrized (continuously) by ze X: for example if X is an
n-dimensional manifold its tangent spaces form such a vector bundle with
E,.~ R~. We say that E is embedded in the trivial bundle X x RY if each E,
is embedded in R¥, the embedding varying continuously (or differentiably)
with z. For example if X is embedded as a manifold in R” its tangent spaces
(translated to the origin) get identified with subspaces of R¥. When E is
embedded in X X R¥ a section of F, namely a function f(z) taking its values
in E. can be viewed as a function with values in R¥. We can then form its
partial derivatives 0,f, but these need no longer take values in the sub-
spaces E.. However if we let P, be any linear transformation on R varying
smoothly with = and projecting onto E, (i.e. PZ = P,) we can put

(3-1) Vaf = Pouf

and we get a covariant derivative defined on E. If E is the tangent bundle
of a manifold X and P is orthogonal projection V, is just the usual cova-
riant derivative of Riemannian geometry (given by the Levi-Civita
connection).

In general (3.1) just corresponds to a GL(n, R)-connection or potential,
but if we impose additional structures, preserved by P, we can get potentials
for appropriate subgroups such as O(n), U(m) or Sp(l) (n = 2m or n = 41
respectively). Thus to get Sp(1) potentials we would consider quaternionic
lines in H* and use orthogonal projection.

Choosing a gauge for the bundle E will give rise to linear maps u,: R*— R¥
whose image is just E,c R If inner products are fixed throughout so
that » is an orthogonal gauge then the orthogonal projection P, onto E,
is given by P = wu*, while u*u = 1. To compute the covariant deriva-
tive V in the gauge % we put f = ug where g is now a function on X with
values in R* and find

V(ug) = uu*d(ug) = u{dg + u*(du)g)
showing that the gauge potential A is given by

(3.2) A=u*du or A= u*c.u.
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Note that « is here an (N Xn) matrix of functions so that 4, is a
matrix. If N = » then (3.2) asserts that A4 is gauge equivalent
corresponding to the fact that E,= R¥ does not really depend on .
ever for N > n (3.2) gives interesting potentials. The formula for t|
field is

(3.3) F =du*du + w*dupu*du
or

Fouy = Cuu® Syt — Cyu* Cuu 4+ [u* cuuty, u* 0pu] .

For many purposes it is unnecessary to pick a gauge since we ca:
work directly inside the larger R¥ space which has a natural basis.
illustrate this by deriving an alternative expression for the field, e
directly in terms of the projection operator P and the complement
jection @ = 1— P. Let us take the GL(N, R)-potential B defined

(3.4) B=QdQ.

Computing the covariant derivative V= d + B on functions
lie in F i.e. satisfying Pf = f or Qf = 0, we see that

Vaf = df + Q(dQ)f = df — Q*df = Pdf = Vf
where V is the covariant derivative on E defined by (3.1). Thus Ve
to all R¥-valued functions.
Now differentiating Q= @ we get Qd@Q + d@Q = d@Q and so
B'= QdQAQdQ = @(dQ — QdQ)\dQ = 0 .
Hence the field F of V, is given simply by
(3.5) Fp=dQAdQ .

Restricting this to E we see that the field F corresponding to the ¢
derivative (3.1) is given by

(3.6) F ="PdQ)NdQP = PdPAdPP.

The components F,, of F are here linear transformations on the im
If we choose an orthogonal gange % and take P = uu* then (3.6)

u{u® d(uu) A d(uu*)u}u*
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and the term in brackets gives
du*\du 4 u*dup u*du + u*dupdu*u | du*updu*u .

The last two terms cancel, since u*du = — du*«, and so we find again
formula (3.3).

The bundle £ when embedded in R¥ has a complementary bundle E+
given by the image of @¢. The relationship between E and E- is symmetrical
with the roles of P and @ being interchanged. If v: R¥*— R¥ is an ortho-
gonal gauge for EL so that Q = vv* we can compute the field F of E
from (3.6) by

3.7 F = Pd(vv*)\d(vv*) P
= PdvA\dv*P

the other terms dropping out since Py = 0.

If v is simply a linear, but not orthogonal, gauge these formulae get
modified slightly. We take the polar decomposition v = wg where
ot = v*v and Q = ww* = vp~*v*. Substituting in (3.6) for @ we get

(3.8) F = Pdvp—*dv*P

All these formulae hold unchanged if we replace the real numbers by
complex numbers or quaternions. In the quaternion case if we want to
consider all our matrix operators as left operators then we should regard H¥
a8 a right vector space, i.e. a scalar quaternion g acts on a quaternion vector £
by ¢ —¢q.

We now apply this general construction with X = §¢= P,(H), the
quaternion projective line. The calculations which follow are similar to
those in [13] and [15]. We consider a point of P,(H) as given by homogeneous
coordinates (z,y) with z,y € H and scalar multiplication on the right so
that («, y) and (2q, yq) denote the same point. Now let

39) v(z, y) = Oz 4 Dy

be a (k 4+ n) xk matrix of quaternions, C and D being constant matrices
(independent of the scalar quaternion variables z, y). We now agsume

(3.10) v(2, ¥) has maximal rank for all (=, y) # (0, 0).

The columns of v(z,y) then span a subspace of H*** having dimension k



DESCRIPTION OF INSTANTONS

and depending only on the ratio zy—3, i.e. on the point of 84, The ort
complement is then a subspace E ., of dimension n. We now g
vector bundle E over §¢ the covariant derivative induced from .
orthogonal projection as in (3.1). The field or curvature can then be cc
by one of the above formulae. If we restrict to R¢c S¢ where y 5
we can take affine coordinates (z,1) and v»(x) = v(z, 1) then gives
gauge for E+. Substituting for v in (3.8) gives the following ex
for the field F':

(3.11) F = PCdsg—*dzC* P

where g*= v*v = (TC* + D*)(Cz + D).
If we now assume that

(3.12) (ZC* + D*)(Cz + D)

is a real matrix for all € H then the term g-? in (3.11) commutes
scalar quaternion dz and shows that F involves only the self-dual
sion dzdz. Hence we have verified that (3.9), subject to conditiol
and (3.12), gives rise to a multi-instanton for the group Sp(n). N
the vector bundle £ on which the self-dual potential is defined has t!
of v a8 its orthogonal complement E-.

It is now easy to verify that the instanton number, i.e. the to:
invariant, of E is precisely k. Since this invariant is additive f(
sums it is equivalent to check that E+ has invariant — k. But E+ i
finition, a direct sum of %k quaternion line-bundles corresponding
k basic vectors of H* (i.e. the columns to v). Each of these line-bur
be identified with the standard line-bundle over S¢= P,(H) whi
ciates to (x, y) the one-dimensional subspace of H* consisting of sez
tiples of (z,y). This has invariant 4 1 depending on conventions.
case the sign must be — 1 8o that the invariant of the self-dual t
becomes the positive integer k.

If we want to write down explicitly a gauge potential 4 corre
to the matrix v(x) we must first pick an orthogonal gauge for the b
i.e. a (kK + »)xn» matrix %(z) such that

(3.13) uw*o=0 u*u=1.
Then A = u*du as in (3.2). Note that conditions (3.13) are pre

we replace 4 by ug where g(z) € Sp(n) and this produces a gener
transformation on A.



The matrices %, v can be put into a sort of normal form which gives more
explicit formulae although this will introduce « apparent singularities ». To
obtain these normal forms.we first decompose v(z, y) into blocks as follows

_ [Csz + Doy
omy) = (an + D,y

where C,, D, are #xk and C,, D, are kxk matrices. Since v is assumed
by (3.10) to have maximal rank we may, after a change of the (z, y) va-
. Tigbles (a conformal transformation of §¢), assume C, non-singular. Replac-
ing o by RvS where § is a real k X% matrix and R € Sp(n + k) we can then
take C,=—I (I the unit k x %) matrix and C,= 0.

Now putting y = 1 we get v(z) in the form

(3.14) v(x) = ( B fﬂ)

where 4 i8 an %Xk matrix and B is a k Xk matrix, both have quaternion
entries but are independent of the quaternion variable z. Condition (3.12)
is equivalent to requiring both

(3.15) A*A + B*B is real
(3.16) B*z 4 ZB is real for all 2ze H .

But (3.16) is easily seen to be equivalent to requiring

(3.17) B is a symmetric matrix .
We now take u in the form w — _é)c where I is the unit #Xn-

matrix, U is an kXx#-matrix and ¢ is a self-adjoint n X n-matrix. Equa-
tions (3.13) become

(3.18) ~A4+ U¥B—3l)=0 o*=1I+ U*T.

Except for singularities at points « where B — zI is singular we can solve
for U:

(3.19) U*= A(B—zI),

Substituting ¥ = (‘ é)a in (3.2) we find the gauge potential given in



DESCRIPTION OF INSTANTONS
terms of U and ¢ = (1 4+ U*U)? by
(3.20) A=0U0*dUcs + o 'ds .

Equations (3.19) and (3.20) are precisely those given in section 2. W
thus verified that the formulae of section 2 do indeed give k-instanton
have also explained why the singularities of section 2 are only « app:
and due to the particular choice of gauge.

Geometrically our construction of multi-instantons can also be form
a8 follows. On the Grassmannian G.(H) of n-dimensional subsps
H~+* the standard vector bundle with fibre H" has a standard con:
(induced by orthogonal projection) and our instanton connections
are induced by suitable maps f: §¢— G, .(H). Equation (3.19) desc
explicitly in terms of appropriate coordinates in the two manifold:
standard connection on G, .(H) is automatically invariant under the
Sp(n 4+ k). In particular for n = k = 1 this shows that the basic ins
on §* is invariant under Sp(2) = Spin (5).



CHAPTER III

The Penrose Twistor Space

1. ~ Complex projective 3-space.

Our attack on the instanton problem will rest on complex analytic
methods which are part of the general twistor theory of R. Penrose [35].
Very roughly Penrose’s programme consists in re-interpreting physical
space-time data in terms of corresponding data in a space of 3 complex
variables. This space is the (projective) twistor space and the transformation
of data can be called the twistor transform. The Penrose theory when con-
tinued to Euclidean 4-space can be developed in a slightly different way.
In this section we shall describe the basic geometrical picture and comment
on it from a variety of viewpoints.

As in previous sections we shall use the quaternions H and we shall
identify S¢ with P,(H), the projective line over the quaternions. We shall
use left scalars so that (q,, ¢,) and (1¢g,, 1q,) represent the same point of
P,(H). Taking conjugates (which reverses the orientation) would convert
to right scalars.

We identify the complex numbers C with the subfield of H generated
by 1 and ¢, and H then becomes identified with C* by writing quaternions
in the form 2, + 2,j with 2,, 2, C. Similarly H* gets identified with C¢.
Now consider the complex projective 3-space P,(C), the space parametriz-
ing complex lines (through 0) in C* If to each complex line we associate
the quaternion line it generates, we get a map

(1.1) P,(C)— P,(H).
In terms of homogeneous coordinates this map is given by
(71 23y 22y 2) > (2 + @dy 22+ 27) -

If we fix a quaternion line (a copy of C?) then all complex lines in it form
a copy of P,(C) = 8% Thus (1.1) is a fibre bundle with fibre P,(C).
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Left multiplication by  induces a transformation ¢ on P,(C) whi
anti-linear (i.e. anti-holomorphic in local complex coordinates) and sat
o?= 1. In homogeneous coordinates

(1.2) (21, %y 25y 2) = (— 7, 51,—2.,2.) .

Clearly o preserves the fibration (1.1), acting trivially on P,(H), and a
as the anti-podal map on each fibre (on S*). We shall consider ¢ as def
a «real structure » for P,(C) which is different from the usual real stru
given by just conjugating all coordinates. This terminology is standa
algebraic geometry and means that, for some suitable algebraic embet
of P4(C) in Py(C), o will be given by conjugating, in the usual way th
ordinates of Py(C). As a lower-dimensional example consider a single
fibre with its anti-podal ¢. This can be embedded in P,(C) a8 a conic
equation o} 4 w} + @} = 0. Note that this has no real points, corres)
ing to the fact that ¢ has no fixed points.

Although ¢ on P,(C) has no fixed points it does have fixed lines;
are precisely the fibres of (1.1). We call these the real lines. Thus S* ap
as the parameter space of all the real lines.

Now we recall the famous Klein representation of all lines of 1
Given two distinct points (za), (wa) of P,(C) we introduce the Pl
coordinates

Pap= Zap— 2aa

which give a skew-symmetric matrix characterizing the line joinin
and (w). The six homogeneous variables P,,, P12, P1ey Pias Paus Pea Batisf;
quadratic identity

(1.3) P14Ps+ Pr1aPas + PuPun=0

(this expression is the square root of det (p,;)). Thus the parameter
of all lines in P,(C) is the complex 4-dimensional quadric @, c P,(C)
by equation (1.3). A real structure on Py(C) induces a real structure o
For the standard real structure on P,(C) the real structure of @, is giv:
conjugating the pas and so @, has (1.3) as its real equation: this is a
dratic form of type (3, 3), i.e. having 3 plus signs and 3 minus signs
diagonalization. For our real structure given by ¢ on P,(C) we get :
ferent real form of Q, corresponding to the signature (5,1). To verif;
note that (1.2) has the following effect on the pas

— — N Q
Puu—>—Puy DPu—>—DPuy Pis>Pu,y Pu“’“?u'/\"

I T
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Hence the six quantities

X, = ipaa, X, = ipa, Xa=Pu+ P>
X, =tpun—Pa)y Xe=1Put+Pu)y Xe=Pu— Pus

are conjugated normally by (1.2). Rewriting equation (1.3) in terms of
the coordinates X,,..., X, we get

(1.4) 4X, X, 4 X34+ X0+ X34+ X3=0

confirming that the signature is (5,1). Moreover the real points of (1.4),
representing S¢, are indeed given by the affine equation (taking X, — X, = 1)

X3+ X+ X3+ X0+ (X, + X)*=1.

Reverting to the complex geometry of the Klein representation we
recall that there are two families of projective planes lying on @,. If the
equation of @, is written

N+n+n=2+2+7;

then the planes are given by the equations ¥ = AZ where 4 € 0(3, C).
The two families depend on the sign of det A. One family corresponds
to points of P,(C) and the other to planes of P,(C) or equivalently to points
of the dual P,(C). This means that as a line ! in P,(C) varies through a given
point A its representative point L € Q, varies in a plane « on @,. Similarly
if ! varies in a plane B its representative L varies in a plane § on @Q,, § being
of the opposite family to «.

With our real structure o every a-plane contains a unique real point,
namely the intersection @ N o(x). This corresponds to the real line in P,(C)
joining 4 to o(4), and so deseribes once more the map P,(C) — S¢.

All this can be conveniently summarized by introducing the correspond-
ence space M, c P,x@Q, consisting of «incident » pairs (4, L), i.e. A lies on
the line 1 (or equivalently L lies in the plane «). We then have two fibre maps

M,
VN
Py @
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with fibres P,, P, as indicated. All structures here are complex alg
If we now pick our real structure ¢ then this defines

(i) the real subspace S* of @,

(ii) a section &: P,—> M, which picks out the unique point
P,-fibre which is real (regarded as a subspace of Q,).

Thus the inverse image of S* in M, gets identified via (ii) witl
and so we recover our basic fibration P,(C) — §¢. Note that wher
projection M,— P, is complex analytic the section &: P,— M,

2. — Lie groups.

The Klein representation can also.be looked at from the point :
of Lie groups. The group SL(4, C), of complex 4 x4 matrices of
minant 1, acts on P,(C) by projective transformations, and hence
on the space of lines i.e. the quadric @,. But the group of projectiv:
formations in P, keeping @, fixed is just the complex orthogonal
0(6, C) modulo {+1} and so we get a homomorphism

(2.1) SL(4, C)—0(6, C)/{+ 1}

with kernel the fourth roots of unity. Since these two groups hs
same dimension it follows that (2.1) is a local isomorphism or ths

(2.2) SL(4, C) ~Spin (6, C) .

This is one of the coincidences that happen in low dimensions betw
various classical groups.

If we start from the group Spin (6, C) then the isomorphism (<
plies that Spin (6, C) has a representation on C4. This is one of the h
representations. The other half-spin representation is on the dual

These complex Lie groups have many real forms, and the lo
morphism (2.1) leads in particular to the following local isomorph
real Lie groups:

(i) SL(4, B)~80(3, 3)
(ii) ST, 2)~80(4, 2)
(iii) SL(2, H) ~ 80(5, 1)
(iv) SU(4)~ 80(6).



Case (ii) arises from Minkowski space and is the one mainly studied in the
Penrose theory. Case (iii) arises from Euclidean space and is the one that
concerns us. The action of SL(2, H) on P,(C) lireserves the fibration (1.1)
and induces the conformal group action on §¢. In other words the conformal
group of §* aets naturally on the fibration (1.1).

Taking maximal compact subgroups of (iii) we get the local isomorphism

8p(2)~ 80(5) .

Thus 3p(2) is the group of automorphisms of the fibration (1.1) which pre-
serves in addilion the natural metrics on P,(C) and on §%. Since Sp(2) acts
transitively on P,(C) we can express P,(C) a8 a homogeneous (coset) space:

__ 8p(2)
P(0) = U(1)x8Sp(1)°
Since
g = J06) __ Sp(2)

= 50(4) ~ 8p(1) x8p(1)

we see that the fibration (1.1), expressed in terms of compact Lie groups
becomes

Sp(2) Sp(2)
U(1)x8p(1) ~Sp(1) x8p(1)

(2.3)

with fibre Sp(1)/U(1) = 8% This description shows clearly that, starting
from S* we have essentially two different choices to produce P,(C) depending
on which Sp(1) factor we pick. These two choices switch when we reverse
orientation on §¢ and lead to dualizing P,(C).

The fibration (2.3) is also related to the basic Sp(1)-instanton on S*.
As explained in Chapter II the basic instanton can be thought of as the
quaternion line-bundle over P,(H) with its connection induced from the
fixed space H*. An equivalent description is to say that the principal
Sp(1)-bundle of the instanton is the fibration

8p(2) 8p(2)

(24) Sp() ~ p() xSp(1)
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The connection can now be described in terms of horizontals to

SC

If we give all spaces their natural metrics, inherited from the bi
metric of the compact group Sp(2), we can choose the orthogon
fibres as horizontals. This gives a connection admitting Sp(2)~
symmetry group. Moreover this is the unigue choice that has thi:
because any invariant choice of horizontals must, at each point, be
under the action of the isotropy group Sp(1), which acts by im
representations in the vertical (fibre) and horizontal directions
we have the adjoint representation of Sp(1) and horizontally we h:
representation of Sp(1) ~SU(2)). Since the instanton connectis
80(5) as symmetry group it follows that our connection must be t
ton or anti-instanton, depending on which Sp(1) factor we choc
left hand side of (2.4).

Thus P,(C) is naturally the quotient of the prineipal bun¢
8p(1)-instanton by the action of U(1). Equivalently Py(C) can b
from the instanton, considered as H = C* bundle over §¢, by
each fibre by the corresponding projective space P,(C). This way
ing Py(C) from 8¢ can be generalized to other 4-manifolds as explai

3. — Complex coordinates in R

The introduction of the Penrose space P,(C) as a tool to study
on 8¢ (or E¢) can be motivated in the following way. It is very w
that many classical problems in 2 real variables (z,y) are best
introducing the single complex variable 2 = z 4 iy, and then
powerful methods of holomorphic function theory. When we pas
to R* one might naively try a similar device by introducing tw
variables

Hn=2a,11i5,, zn=2a+iz.

There is one immediate objection to such a method, namely tha
closely tied to the particular coordinate system and therefore i
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to give gignificant results. For example a permutation of the four coordinates
Ty, &y, T3, 2, would lead to new complex variables not well related to the first
choice. In R* on the other hand provided we ‘have fixed the metric and
orientation the complex structure is unambiguous. The complex number ¢
is given by rotation through =/2 in the positive sense.

Since there is no natural choice of complex structure on R* we can try to
consider simultaneously all choices which are compatible with the metric
and orientation. Effectively we have to define ¢ as a proper orthogonal trans-
formation with ¢* = — 1. If we have made one such choice then transform-
ing (conjugating) by elements of SO(4) will produce all other choices. More-
over transforming by elements of U(2) leaves the first choice unaltered.
Hence the set of all complex structures is naturally parametrized by the
coset space

80(4) _ 8U(2)x8U(2)

7@ — T x80@ o

Thus to each % € §2 we have a complex structure on R+, namely an iso-
morphism R4~ C*.

If we now want to introduce complex variable methods in R¢ we need 3
complex variables (u, 2z}, z): the first variable # tells us which complex
structure to use and the next two are the complex coordinates themselves.
Since the coordinates z,, 2, depend on % the sitmation is a little delicate.
The Penrose picture clarifies this geometrically as we shall now explain.

For simplicity we shall now work only over R4 c §* and 80 we remove the
«point at oo» in §4 and correspondingly we remove the projective «line
at co» in P, that lies over it in the fibration (1.1). Then we get a fibration
P,(C)— P,(C) - R%. Projective planes in P,(C) which meet in the «line
at co» become « parallel » affine planes in P,(C) — Py(C). Thus we have
the following picture for our fibration:

P.(C) - PI(C)

Rt

e
e
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Over a given point (say the origin) of R* we have the fibre P,(C) =
ametrized by u. The plane of our parallel system through « is a c
and under the projection gets identified with R¢, This is the way in
gets the complex structure corresponding to w. The fact that this
structure is changing with » means that the vertical identification
the different C2 does not preserve the complex structure. This c:
pressed differently by noting that the ¢horizontal» projection P;(C)-
— Py(C) mapping C? into % is that of a complex vector bund
i8 not isomorphic to the product P,(C) x C%, although the underl
vector bundle is isomorphic to P,(C)x R¢. This can happen
bundles over 8*= P,(C) are topologically classified by maps of 1
torial §* into the group of the bundle and the fundamental groi
our case are:

m,(U(2)) = Z (integers) =,(80(4)) = Z, (integers mod 2

and our bundle corresponds to the integer 2 which gives zero in 7

This topological fact therefore lies behind the «linkage » bet
complex coordinates 2}, 2; and the complex parameter . Working
in the space P,(C)— P,(C) we can locally introduce three ind
(«unlinked ») complex variables and use these instead of (u, 2}, s
the Penrose space enables us to introduce 3 complex variables in :
way to study problems in R¢.

The same picture applies infinitesimally for the complete
Py(C) — 84. At each point « € P;(C) we can consider the tangent
and the subspace L, of tangents to the fibre through «. The quotis
T./L, is then a complex vector space which by projection gets
identified with the real tangent space to 84 at the point below .

Note in particular that, since complex manifolds have a natura;
tion, §* inherits a natural orientation from its description as the ba
fibration Py(C)— 8. This is the orientation which we fix (the
convention is adopted in [3]).
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Holomorphic Bundles

1. — Holomorphic and unitary gauges.

In Chapter I we explained that gauge theories had a direct differential-
geometric interpretation in terms of fibre bundles with connection. In this
chapter we shall encounter holomorphic fibre bundles and since these are
unfamiliar to physicists and have somewhat different features we begin
with some elementary remarks designed to explain the essential points.

Let us begin by considering gauge theory for the non-compact group
GL(n, C). Geometrically it will be convenient to consider the representation
on C~ and discuss complex vector bundles. Thus over our base space X
(e.g. 8¢) we consider a vector bundle E with fibre C», the fibre at xe X
being denoted by E.. Intuitively we consider E, as a vector space varying
continuously with z. A linear gauge for F means a choice of basis of E,
varying continuously with . A gauge transformation is then the fune-
tion g(z) € GL(n, C) which provides the change of basis at each point z.

In the definition of a vector bundle it is always assumed that local
gauges always exist, so that E is locally isomorphic to the product X x C*.
A global gauge does not necessarily exist since E need not be globally iso-
morphic to the product. The instanton bundles already provide examples
of this situation with X = 84 and » = 2.

If we assume that each fibre E, has a positive inner product, varying
continuously with z, then we can consider unitary gauges in which the
basis at each & consists of an orthonormal base. A change from one unitary
gauge to another is then described by a gauge transformation g(z) e U(n).
Local unitary gauges always exist and global unitary gauges exist if and
only if a global linear gauge exists, since the topological properties of
GL(n, C) are essentially carried by U(n).

Instead of fixing the inner product and defining unitary gauges in terms
of it we can reverse the procedure by choosing one linear gauge, decreeing
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that this is orthonormal, and considering all gauges obtained b;
unitary gauge transformations.

If X is a differentiable manifold then it is natural to requi
word continuous be replaced throughout by (sufficiently) dif
This introduces no essential differences.

If X is replaced by a complex analytic manifold Z, for exan
then we can introduce the notion of a holomorphic, or comple
vector bundle. Naively we now think of the fibres F, as var
morphically with ze Z. A holomorphic gauge is then a basis
varying holomorphically with z and a holomorphic gauge transfc
given by a holomorphic function g(z) with values in GL(n, C).
morphic structure can be defined by fixing one gauge, decreeing
holomorphic, and then allowing as new holomorphic gauges only
tained by applying holomorphic gauge transformations.

The analogy and difference between the holomorphic and w
is fairly clear. The important point to note is that unitary g¢
formations are defined by a point-wise restriction on values wh
morphic gauge transformations cannot be defined this way. No
two types of gauge transformations are diametrically opposed sin
formation which is both unitary and holomorphic is necessarily
To illustrate these basic ideas let us consider a simple example
base space P,(C) and associate to each point (z) € P,(C) the cc
Ly Cc C* which that point parametrizes, namely all muntiples J

It is clear intuitively that L, varies holomorphically with (z2).
holomorphic gauge is given by intersecting L with any affine
(not through 0) (see dotted line in figure): for example the line z,
gauge is well-defined except at the peint (1,0)e Py(C). Simil
gives a gauge except at (0,1). The gauge transformation bet
two is given by the function z,/z, and this is of course a holomo
tion on P,(C) outside the two points (1, 0) and (0, 1).

If we give C? its natural inner product each fibre L, inheri



product and we can introduce unitary gauges. Note again that the linear
holomorphic gauges above are definitely not unitary.

If we associate to each (z) the orthogonal complement L, we again get
a vector bundle with unitary structure. However the process of taking ortho-
gonal complements involves complex conjugation and so the vector spaces
L{;, do not vary holomorphically with (z). Thus L is a holomorphic vector
bundle but L+ is uot. This is a major difference between the unitary and
holomorphic theories.

Although taking orthogonal complements is not a holomorphic process
we can instead form the quotient space N = C%/ L. This does again
form a holomorphic line-bundle N, a holomorphic gauge coming from any
holomorphic function on P,(C) with values in C%. If we take linear duals
the bundle N’ appears a8 a sub-bundle of P,(C)x(C*)’. In general if E is
any holomorphic vector bundle, its linear dual E’ is again a holomorphie
vector bundle.

If we replace P,(C) by P,.(C) then again we get a holomorphic line
bundle L. The quotient C*+!/L is now a holomorphic C*-bundle over P.(C).

So far we have just holomorphic or unitary bundles with no further
structure. Now we come to the question of connections. In the case of a
linear vector bundle F with group GL(n, C) a connection can be given by
the covariant derivative V. The components V,, relative to coordmates Ty
in the base manifold, act on sections of the vector bundle, i.e. functions
f(®)e E.. In a given linear gaunge

Vi =df + 4f,

where A = Y Audr# is the gauge potential.

If E has a unitacy structure and we require V to be compatible with
unitarity (i.e. the corresponding parallel transport preserves length) then
in any unitary gauge A*=— A.

Before proceeding to the holomorphic case l¢t us review a few elementary
definitions used in complex manifold theory. If (2 ...2,) are local complex
coordinates on Z we introduce the formal differentials dz.,dz, defined by

dza= dwa+ idya, di.: dm“—idya
where za= Za+ 1ys. The total differential

if=3 (ﬂdxa+ﬂaya)

a1 \0%a Yo
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can be decomposed into two parts
df = d'f + d'f

where d'f involves only the dzas and d’f involves only the dzx.
composition is independent of the choice of local kolomorphic coo
and the equation d'f = 0 is the Cauchy-Riemann equation,. chara
holomorphic functions.

If now ¥ is a holomorphic vector bundle over Z and Vis a ¢
derivative, we can write

V=V 4V.
If we put
V= E(Vadma—f- Vady;)

then V'= Y V.dz,, V"= 3 V,dz, where

VL= i(va—" )
V.= 3(Vat+iVa).

We shall say that V is compatible with the holomorphic structure
V’f = 0 for every holomorphic section f of E. This is equivalent to 1
that, in any holomorphic gauge, the gauge potential 4, when dec
a8 A= A'4 A", has A"= 0. Such a potential is said to be of ty,
In general a differential form is said to be of type (p, g) if it invol
the dzs and ¢ of the dz..

The link between connections on unitary and holomorphic b
provided by the following simple and well-known result:

ProposITION (1.1). Let E be a holomorphic veclor bundle with ¢
structure. Then there is a unique connection compatible with both s
i.e. such that

(i) in every unilary gauge the gauge potential A satisfies A
(ii) in every holomorphic gauge A*= 0.
The curvature F of this unique connection is of type (1,1).

PROOF. - First pick a holomorphic gauge and choose A”= 0 to sa
Now transform to a unitary gauge by the gauge transformation ¢
transformed potential is B = B’ B’, then B'=d'g-g*+ A'=
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is determined by g. Finally to satisfy (i) we must take B'=— (B")*. This
uniquely determines B and hence fixes the potential. Computing the field F
in the holomorphic gauge we have

F=dA'4[A,A4)= {4 +[4, 47} + @4’

exhibiting only terms of type (2,0) and (1,1). But unitarity implies that,
in any gauge, F* = — F, and so the component of type (2, 0) is also zero.
Thus F is of type (1,1).

Proposition (1.1) has an important converse which can be stated as
follows:

THEOREM (1.2). Let F be a complex vector bundle, with a unitary structure,
over a complex manifold. Let E have a unitary conmeciion whose curvature
8 of type (1,1). Then there is a unique holomorphic structure on E such that
the connection is that given by (1.1).

This theorem is essentially a consequence of the Newlander-Nirenberg
integrability theorem for complex structures[33]. The basic idea is that
the holomorphic structure of E is defined by taking the solutions of the
equation V’f = 0 as its bolomorphic sections. Here V" denotes the (0, 1)
component of the covariant derivative of the connection. The condition
on the curvature implies that [V,,V,;]=0, where V"= 3 V.dz, and

the z, are local complex coordinates on our manifold. The integrability
theorem of [33] then implies that the equation V"f = 0 has locally enough
solutions to provide a basis for E. For further details we refer to [3]: see
also [25].

2. — Twistor interpretation of instantons,

In this section we shall show how to interpret the self-duality equations
for a Yang-Mills field on S* in terms of complex analysis on the twistor
space Py(C).

As an algebraic preliminary wé shall need to understand the significance
of the equations. *» = + w for a 2-form w on R* in terms of complex co-
ordinates. We recall that once we have introduced complex coordinates,
identifying R* with C%, a 2-form w can be expressed in terms of its type
decomposition:

(2.1) © = wh+ W+ o
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We ask how this decomposition corresponds to the *-decompositi
(2.2) w =o'+ w"

according to the eigenvalues + 1 of *. This is just a question
algebra and it can be viewed in terms of group representations. Equa
corresponds to decomposing a representation of §0(4) into two i
pieces (each of dimension 3), while (2.1) corresponds to decompc
representation under the subgroup U(2). The (2,0) and (0, 2) co:
have dimension one while the 4-dimensional representation in ft;
has a further decomposition:

(2.3) o= w(’," 4 a.

Here o is a multiple of the (1,1) form p corresponding to the
metric and w}* is the « primitive » part, orthogonal to x. The 3-di:
representation of U(2) on this primitive part is easily seen to be i:
and so this must coincide with one of the two irreducible pieces
But the form u corresponding to the metric is self-dual. Hence
have

(2.4) o™= wy'.

In particular this shows that the space 2~ of w with *w=-
type (1, 1) for all complex structures (compatible with metric an
tion). The converse is also true, because the space

V=ne!

of 2-forms on R* which are of type (1,1) for all complex struc
invariant under SO(4), contains £~ but is not the whole space: it r
for coincide with 2~.

Thus we have established the following algebraic lemma.

LEMMA (2.5). A 2-form w on R* is anti-self-dual if and only
type (1,1) for all compatible complex structures.

We shall now apply this lemma to a 2-form « on S* which we
tain a 2-form @ on P,(C). This form & is purely horizontal, i.
if & or B is a fibre direction. To compute the horizontal part of @ a
we note the interpretation, explained in the preceding section,
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to which « parametrizes (infinitesimally) complex structures on §4 at the
point below. From this and our Lemma we deduce

PROPOSITION (2.6). A 2-form w on 84 is anti-self-dual if and only if its
lift @ to P,(C) is of type (1,1).

Note that this proposition is a purely local one, valid for any open set U
in 8¢ and its counterpart ¥ in P,(C).

Finally we consider a complex vector bundle F on S* with a unitary
structure and connection. Let F be its curvature. If we lift E to give a
bundle £ with connection on P,(C) its curvature is just the lift F of F. Ap-
plying (2.6) to the matrix coefficients of ¥ we deduce

PrOPOSITION (2.7). A wvector bundle E on 8% with unitary structure and
connection has anti-self-dual curvature if and only if the lifted bundle £ on
P,(C) with the lifted connection has curvature of type (1,1).

Using (2.7) and theorem (1.2) we deduce the important result
(2.8) E anti-self-dual -» £ holomorphic .

We plan now to make this statement more precise by specifying which holo-
morphic bundles on P,(C) arise in this way and how one gets back from £ to E.

Note first of all that, restricted to any fibre P, of P,(C) — 84, £ is holo-
morphically trivial, a basis of E, giving rise to a holomorphic basis or gauge
of E|P,. Conversely this shows that E, can be uniquely defined as the space
of holomorphic sections of E|P,.

We turn next to consider the unitary structures on ¥ and £. The unitary
structure on E can be given by an anti-linear isomorphism z: E — E* such
that (u, Tv) is a positive hermitian form (E* denotes the dual of E). Passing
to £ we use 7 to define a lifting 7 of the conjugation o on P,(C), namely we
define a commutative diagram

The map 7 is anti-holomorphic, i.e. if we give £* its opposite complex
structures it becomes a holomorphic isomorphism. This follows from the
fact that 7 preserves the unitary structure and connection and hence (by
the uniqueness part of Theorem (1.2)) it preserves the holomorphic
structures.
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Restricting to the fibre P, our map ¥ induces a similar map
morphic sections of £ and in this way we reeover 7. Lifting back
the unitary structure of £ which together with the holomorphic
yields, by (1.1), a unique connection of type (1,1). Our final step i
that this connection descends to a connection on E: by (2.7) this v
sarily be anti-self-dual. The condition that the connection on %
from P,(C) to 84 is that the curvature should be purely horizontal
F,p= 0 if o is a vertical direction (i.e. along the fibres). If « and
vertical this is clear because, restricted to a fibre, £ is trivial holom:
ind unitarily. The stronger statement, when only o« is vertica
from the triviality of E restricted to the first formal neighbouri
fibre. More concretely this triviality means that we can pick a ga
near a fixed fibre P,, which is holomorphic and unitary on P, a
first derivatives normal to P,. The verification of this triviality
of £ is best postponed until later (see Chapter VI, §3) since it
complex analytical machinery. We note in passing that E is not
to second derivatives unless the whole curvature vanishes.

To summarize our results in a convenient form we shall mak
lowing definitions. Let V be a holomorphic vector bundle over P.
an anti-linear isomorphism p: ¥ — V* covering g on P,(C) such

(u, pv) = (v, pu) vE V(l)r u€e Vﬂ(')

will be called a real form on V. If V is further assumed to be trit
real lines of P,(C) then p induces a non-degenerate hermitian for
space of holomorphic sections of V restricted to any real line. If
mitian form is positive we say that our real form is positive. T-
bundles ¥V, W with real forms are called isomorphic if there is 2
analytic isomorphism from ¥V to W commuting with p.

Our conclusion can now be stated as follows:

THEOREM (2.9). There i8 a natural (1-1) correspondence beir
(i) anti-self-dual U(n)-potentials over 8¢ (up to gauge equiva

(ii) holomorphic vector bundles with fibre C* over Py(C) with
real form (up to isomorphism).

REMARKS.

1) This theorem is purely local in character. It holds for
set U of 8¢ and its counterpart ' on P,(C).



2) In a purely complex form this theorem is originally due to R. S
Ward [42). We shall later discuss Ward’s proof. The present version is
stated briefly in [4] and elaborated in[3].

3) It should be emphasized that in (ii) most of the information is
already contained in the holomorphic vector bundle. The positive real form
when it exists is generally unique.

4) Both in (i) and (ii) there is an integer topological invariant. In (i)
it is the anti-instanton number, while in (ii) it is the second Chern class.
These integers are equal (cf. [3]).

Theorem (2.9) can easily be generalized to the orthogonal and symplectic
groups. We shall consider the symplectic case in detail, the orthogonal case
is quite similar except for sign changes.

Recall that the compact symplectic group Sp(n) is the group of norm-
preserving automorphisms of the quaternion vector space H". It can be
identified with the subgroup of U(2n) commuting with the action of the
quaternion j on H== (C*». Alternatively it is the sugbroup of U(2n) com-
muting with the skew bilinear form (, ) on C** defined by (u, jv) = (u, )
where {,> is the hermitian inner product. Hence an Sp(n)-potential can be
represented geometrically by a vector bundle F with fibre C** having a
unitary comnection, together with an isomorphism o: E— E* which is
skew i.e. (u, av) = — (v, au) and preserves connection (E* being endowed
with the connection inherited from F by duality).

Suppose now we have an’ Sp(n)-potential on ¢ which is anti-self-dual.
Then using (2.9) for U(2n) we see first of all that £ on P,(C) is holomorphic.
Moreover the isomorphism «: E - E* induces a holomorphic isomorphism
&: B — E* which is also skew. Combining & with the anti-linear isomorphism
o: B — E* given by (2.9) we obtain an anti-linear isomorphism £ — £
covering o on P,(C). We shall denote this map on £ also by o: it satisfies
o*= —1, and is compatible with & or equivalently with the skew form on £
defined by & Thus an anti-self-dual Sp(n)-potential on §*¢ corresponds to
a holomorphic vector bundle £, with fibre 0%, over P,(C) which has two
further structures:

(i) a holomorphic non-degenerate skew form on #

(ii) an anti-linear map o: £ — £ lifting o on P,(C) such that o* = — 1
and compatible with the skew form i.e. (ou, ov) = (u, v).

Moreover the bundle £ is holomorphieally trivial on all real lines of P,(C)
and the hermitian form induced by (%, ov) on sections of £, restricted to a
real line, is positive definite.
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In the special case of Sp(1) =~ SU(2) condition (i) reduces to
logical constraint, namely that the first Chern class ¢,(£) shoulc
The non-degenerate skew form is then unique up to a comstan
Moreover the anti-linear map o: £ —» £ is unique (unless k = 0)
two such ¢ differ by a holomorphic automorphism of £ and (as we
later) E nas no automorphisms except scalars: the condition o*=
positivity of the hermitian form then uniquely fix . We thus re
version of the SU(2) theorem given in[4].

3. — Bundles over P,(C).

In order to familiarize ourselves with holomorphic vector bu
shall now describe the simplest case, namely over the complex projec

The basic example of a complex line bundle (fibre C') i, a8 we h
given by the family L, of complex lines in C*, parametrized by
responding point (2) € P,(C). This standard bundle is topologic:
trivial, and can be described by two holomorphic gauges near z
z = oo on P, (z being a non-homogeneous coordinate), with the gauv
formation from one to the other being multiplication by z. More
the bundle L*=L ® ... ® L (n times) is similarly given by ti
transformation 27. Taking L= L* (the dual) we can also allow
a negative integer.

One can now ask if there are any further holomorphic line bu
isomorphic to some L". Suppose for example we construct a bundle
a8 a gauge transformation any function f(z) which is holomorphic
zero near the equator |z = 1. TFirst of all we can define the tc
invariant

1 (1)

o ) fa)

the integral taken over |2/ = 1. Suppose first k = 0, then we hav
defined holomorphic function

9(2) = log f(2)

in some annulus r < |¢| < R. Take the Laurent expansion

g(z) = _2 @n2"
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and write it in the form

9(2) = go(2) — 9(2)

where g, is holomorphie in |zj < B and ¢, is holomorphic in r < |2|, i.e. g,
involves terms with n<0 and g, those with #>0. This decomposition is
therefore unique up to additive constants. Exponentiating we get

1(2) = fol2) ful2)

which we can interpret as saying that the holomorphic bundle given by
f(2) is holomorphically trivial. The terms f,(2) and f.(2) allow us to change
our original holomorphic gauges so that they now coincide near the equator
and so provide a global holomorphic gange. Thus if ¥ = 0 the bundle is
holomorphically trivial and a similar argument tells us in general that

3.1) 1(2) = fol2)*fol2)

and so the bundle is holomorphically equivalent to L*. A slight generaliza-
tion of this argament, allowing more than two local gauges, leads to the
conclusion that every holomorphic line-bundle on P,(C) is isomorphic to
some L*.

Passing now to vector bundles with fibre C* we can construct obvious
examples a8 direct sums:

3.2) E=I"Q@l"*®..I~.

A much subtler theorem, proved in various versions over the years by
Hilbert, G. D. Birkhoff, Grothendieck [26] and others asserts that every
holomorphic vector bundle over P,(C) is isomorphic to such a direct sum
of L* and the integers (k,, ..., k,) are unique up to permutation. In more
concrete terms this implies in particular a matrix version of (3.1), namely
if f(2) is a holomorphic function defined in the annulus r < |2| < R, taking
values in GL(n, C), then we can write f(z) in the form

3.3) 12) = fo(2) A(2) f o (2)*

where A(z) is the diagonal matrix with entries 2% and f,(2), f.(¢) are holo-
morphic functions with values in @GL(n, C) defined for |z] < B and r< |z
respectively.

It is important to note that although the exponents %, in (3.2) are holo-
morphie invariants of the bundle E they are not topological invariants, only
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the sum k = ) k, is a topological invariant. Again, in more cone
if in (3.3) f(z) is holomorphic in z and depends continuously on ¢
parameter ¢, then the factorization (3.3) eannot in general be
tinuous in ¢. The integers k; will depend on ¢ in a semi-continuo
Namely as ¢t —t, the differences |k;(t)— k%,(t)] can suddenly inc
particular this implies that the trivial bundle, with all k, = 0, is st
small deformations.

A simple geometrical example will illustrate the way in whi
tegers k, can suddenly jump. Consider the case n = 2, and assun
topological invariant ¥, 4 k,—= 0. Instead of vector bundles wit
we can equally well work with projective bundles with fibre F
trivial bundle is P, X P, while an example of a non-trivial bundle ¢
ing to integers (1, — 1) is provided by the family of generators of
cone in P, (we regard the vertex of the cone as a different poir
generator). If we now take a general quadric in P, it can be iden
P, x P, (cf. a real hyperboloid). By continuously altering the «
of the quadratic form we can end up with a singular quadric i.

On P,(C) therefore all holomorphic vector bundles are known.
cular they are all algebraic, i.e. in suitable gauges the gauge trans
are rational functions of z. Moreover this algebraic structure is
unique. ‘This is a special case of a general theorem of Serre [39)
plies to all complex algebraic varieties in projective space of any «
and in particular to projective spaces themselves. However the s
complete classification available over P,(C) does not extend to
gebraic varieties.

One way to study holomorphic (or algebraic) vector bundles
jective space P, (C) (e.g. m = 3 which is our case) is to consider t
tion of the bundle to all the projective lines in P,(C). The semi-
property mentioned above tells us that over the «general line »
set of integers (k,, ..., k,) but there will in general be some exce
jumping lines where the differences |k,— k,| jump upwards. If
line all k, are 0 (i.e. the restricted bundle is trivial) then this mu
for the general line. According to Theorem (2.9) we see that the hc
vector bundles on P;(C) arising from anti-instantons on §4 have
erty, since every real line has all k,= 0. The jumping lines ar
and correspond to points in the complexification of S*. Serre’s tl
sures us that, in a suitable gauge, our anti-self-dual gauge poter
will be given by rational functions in the coordinates. The com
of these rational functions account for the jumping lines.

If E is a holomorphic vector bundle on P,(C) trivial on general
up to a constant matrix, E has a unique global holomorphic ge



any general line (since holomorphic functions on P, are constant). However
if we take a triangle formed by three coplanar general lines there is no
reason why the three holomorphic gauges on these lines should be con-
sistent. One can think of a trivial holomorphic bundle on P, as having a
distinguished connection or parallel transport. Then, going round the
triangle formed by three coplanar lines, parallel transport may not return
to the identity. Thus we get a version of curvature for E purely out of the
holomorphic structure and the compactness of the projective lines. This
« curvature » is a global notion, associated with each general triangle, but
we can obviously infinitesimalize it to derive something more like the dif-
ferential-geometric curvature.

From this point of view it is now natural to introduce the space which
parametrizes all lines in Py(C). As explained in Chapter III this space is
the Klein quadric @, in P,(C). The « general » lines of P,, i.e. lines for
which E is trivial, correspond to an open set U of §,. We can now construct
a holomorphic vector bundle § over U by defining the fibre &, to be the space
of holomorphic sections of E|l, where L € U represents the line I c P,. All
the lines ! through a point A correspond to points L of a plane « in @, and
the vector spaces §, for le @\ U can all be naturally identified with E,.
This gives & a flat connection along all a-planes through L. These a-planes
generate the tangent cone to @, at L and so we get components for a con-
nection along all these directions in the tangent cone. But any holomorphic
function on this cone which is homogeneous of degree one on each generating
line automatically extends (uniquely) to a linear function on the whole
tangent space. This is an elementary geometric property of quadric cones
(in any number of dimensions); cf. Chapter VI, §3. Hence & has a holo-
morphic connection, flat along the a-planes. On the other hand on the other
system of planes on Q,, corresponding to planes of P,, the connection need
not be fiat. This corresponds to the other notion of curvature on P, de-
scribed above. A connection for a bundle on @, which is flat along a-planes
precisely corresponds to anti-self-duality for the curvature. This is essen-
tially Ward’s approach, passing from holomorphic bundles on P, to holomor-
phic bundles with holomorphic anti-self-dual connection on an open set of @, .

If we now want to consider unitary structures and work on S4¢c @, we
would impose appropriate conjugations throughout. The only drawback of
this approach is that, in order to pass from S* to a neighbourlood in @,
and apply the above argument, we have to assume that our bundle on §*
is real-analytic. Our treatment in Section 2, based on the Newlander-
Nirenberg integrability theorem, had the advantage of requiring only dif-
ferentiability. Analyticity, and eventually rationality of the solutions, is
then an automatic consequence.
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As mentioned in Section 2 (and will be proved in Chapter V
morphic bundle E on P,(C) which is trivial on a given line 1 is :
on the first neighbourhood of I. Thus a basis of E along I can b
formally up to first derivatives normal to I. This extension es
just the connection on § at the point L defined by Ward’s app
fact the property of quadric cones used in Ward’s construction
related to the extension property of E: both can be formulated i
the vanishing of a certain sheaf cohomology group (cf. Chapte



CHAPTER V

Construction of Algebraic Bundles

1. — The linear complex.

In this chapter we shall give an algebraic construction for vector bundles
on P,(C) which, by the results of Chapter IV, will correspond to anti-
instantons. We begin in this section by considering in some detail the basic
anti-instanton (for ¥ =—1 and @ = SU(2)). The algebraic geometry in
this case is classical and is, in traditional language, the geometry of a «linear
complex » of lines in P4(C). It will turn out that this special case is an illu-
minating preliminary of the general construction and so it repays care-
ful study.

If we start again from our fibration P,(C)—> S¢ and if we use the
standard metrics of S¢ and of P,(C) we can obviously construet a vector
bundle over P,(C) with fibre C* by taking the horizontal tangent vectors
on P,(C), i.e. vectors orthogonal to the fibre direction. Now we recall that
taking orthogonal complements is not a holomorphic process so that we
would not expeet this horizontal vector bundle to be holomorphic. However
the vertical bundle, from which we start, is itself not holomorphic since its
definition involves the «real structure» of P,(C). In fact it turns out that
the horizontal vectors do form a holomorphic bundle (while the comple-
mentary verticals do not). The restriction of this bundle to any real line
is clearly the normal bundle of the line in P,(C). This is not trivial but be-
comes so after tensoring with the standard line bundle L on P,(C). We
then end up with a holomorphic vector bundle which satisfies the conditions
of Theorem (2.9) of Chapter IV and corresponds to the basie anti-
instanton on 8¢,

The preceding construction used the metric and real structure of P,(C)
or equivalently the metric and quaternion structure of C*= H*. From these
structures we can also extract the natural skew-form and this is essentially
what is needed to produce the algebraic vector bundle. If L c C* is the
line corresponding to the point (z) € Py(C) we consider its annihilating or
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polar space L{, with respect to the (non-degenerate) skew-form
mepsion of Ly is 3 and, since the form is skew-symmetrie, L, c L
the quotient space

Ey= Li,/L,

is a 2-dimensional vector space depending algebraically on

(2) € Py(C). In other words F is an algebraic vector bundle wit
over P,(C). Moreover the skew-form induces a non-degenerate

on E so that its structure group reduces to SL(2, C).

In projective terms L, corresponds to a projective plane in .
ging through the point (z). Such a point-plane correspondence is
called a null-correlation and the lines that lie in such a plane
through its corresponding point form the associated «linear
These projective lines correspond in C* to the 2-dimensional isot
spaces of the skew-form, i.e. those C* c C* on which the skew-for
tically zero. If the skew-form in C* is given by the skew-
4 x4 matrix a,, the line (z)(y) belongs to the linear complex
S YalasZs= 0 or equivalently

Y GapPag= 0

where pas = ZTays— Tpya are the Pliicker coordinates of the line.

We shall now show that the lines of this linear complex arc
the jumping lines of the bundle E. First assume that the line (:
not belong to the linear complex. This means that L, does not
and hence that L7, N Lj,,=R is a 2-dimensional subspace of
for all (z) on the line (z) (y), lies in Lj, but does not contain L,. '
that E, restricted to the line (z) (y) is a trivial bundle. Converse
show that F is not trivial when restricted to a line I of the linea
The line ! corresponds to an isotropic 2-dimensional subspace W
80 for all (z) el we have the inclusions

(x.1) LycWcLi,cCt.

Hence E, containg W/L,, i.e. E|l contains the line-bundle W/I
denotes the-trivial bundle with fixed fibre W). Topological con:
then show that W/L =~ L*. Since L* has holomorphic sections
it cannot be a sub-bundle of a trivial bundle and so E|! is not
fact E|l corresponds to the integers (1, — 1) in the general cla

We come now to consider real structures so that, by the
Chapter IV, we can construct anti-instantons on S*.



58 CHAPTEB V

If we take the standard skew-form (,) on C*‘= H* this is related
to j and the positive inner product {,> by

(1.2) {uy ) = (u, jv)
and in particular j preserves the skew-form in the sense that
(1.3) (ju, 7v) = (u, ) .

(1.2) implies that L{,,= L{,, where L denotes the orthogonal space with
respect to the inner product, and so for any (z) € P, we have an orthogonal
decomposition:

(1.4) Ct = L(g) @Rz @ L(i‘)

where R, = L{, N Ly, and x represents the real line I, = {(2)(j2)}.

This shows first that a real line I, for z € 8¢ is never a jumping line for
the algebraic bundle B = L°%L on P,(C). It also shows that j induces on E
a real structure, i.e. an anti-linear map o: E—>E covering o on P,(C)
satisfying o?= — 1. Finally this real structure is positive, meaning that
(%, gv) induces a positive inner product on the sections of E restricted to
any real line. This last statement follows from the fact that, restricted
to the real line (z)(j2), the sections of E can be identified with R and the
inner product is just that coming, as in (1.2), from the inner product of C*.

Thus the bundle E on P,(C) together with its real structure o gives pre-
cisely the data which, according to Chapter IV, corresponds to an anti-
instanton on 84 The bundle R on S* has as fibre at the point = the vector
space R, in the decomposition (1.4) with its natural inner product. It re-
mains to specify the connection it inherits. According to Chapter IV the
connection is uniquely determined by the condition that, on P,(C), it should
be compatible with both the unitary and holomorphie structures. Now
quite generally if V ¢ W are holomorphic vector bundles with compatible
unitary structures then the canonical connection on V is induced by ortho-
gonal projection from that of W. This is clear because a holomorphic sec-
tion f of V is also holomorphic in W and so satisfies V,f = 0 (V,, being the
canonical covariant derivative of W), hence PV, f = 0 where P is ortho-
gonal projection from W to V. Since this property plus unitarity char-
acterizes the canonical connection we must have PV, = V,. Dualizing,
the same applies to holomorphic quotient bundles. Applying these ob-
servations first to the sub-bundle L°c P, xC* and then to the quotient
bundle E of L° we gee that the canonical connection on E coincides with the
connection induced on L°N Lt from the trivial connection of P, x C*.
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From (1.4) we see that L7, N Ly =R, and so the connection
that induced from §¢XxC* by orthogonal projection.
In quaternionic notation the decomposition (1.4) can also |

C*= R,® R:

where ze8*= P,(H) and R} is the quaternionic line in H* pa:
by . Thus R and R' are the standard quaternionic line-bundl
discussed in Chapter II and the connection we have given R is ¢
one explained in Chapter II. With our present sign conventior
anti-instanton while B+ is an instanton. Both are clearly acted
compact symplectic group Sp(2)=Spin (5).

If we fix the metric on S* as we have done here then we get a wm
instanton bundle B. However by applying a conformal transfor:
will get new anti-instantons. The space of moduli is then SL(2
and parametrizes the metrics on §4 in its standard conformal
‘Alternatively the moduli space can be viewed as the interior o
ball in R® (the hyperbolic 5-space). This unit ball can be though
interior component of the real part of P,(C)— Q,, the compl
space. Note that the exterior component corresponds to a gauge :
with real singularities on an equatorial 3-sphere (the polar sect
external point).

2. — The Horrocks construction.

We shall now give an algebraic construction for SL(2, C) bw
P,(C) which generalizes the linear complex bundle dcseribed in
This construction is due to G. Horrocks and has been further &
W. Barth and K. Hulek (8]. We shall return to it again in Ch:

The basic idea can be expressed as follows. In section 1 our
arose as the quotient L°/L. We now look for a generalization ir
is allowed to be k-dimensional. The details are as follows.

We fix complex vector spaces V, W of respective dimension
%k and we suppose V endowed with a non-degenerate skew-form.

2.1) AlR): WV

be a linear map depending linearly on z = (z,, 2,, 2z, 2,). Thn

4
= Y Az, where each A;: W—V is a constant linear map.
i=]



U,= A(z)WcV be the image space and we assume:

(2.2) for all 250, the space U, is k-dimensional and isotropic for the

skew-form on V.

With this assumption we have U,c U;, the polar space, and hence
E,= Uy U, is a vector space depending algebraically on (z) € P,(C). Since
dmU,=k, dimU;=2k+2—k=Fk + 2 and so dimE,= 2. Moreover
E, inherits a non-degenerate skew-form and so E is an algebraic vector
bundle over P,(C) with group SL(2, C).

Note that, when k¥ =1, U, i3 one-dimensional and automatically iso-
tropic. For k> 1 however the isotropic condition, which can be written
in matrix form as

(2.3) A(z)JA(z) =0

where A' is the transpose and J is the matrix of the skew-form, gives a system
of quadratic equations on the coefficients of the 4 matrices A,, A,, 4,, 4,.
The number of coefficients considerably exceeds the number of equations
8o that we certainly get solutions.

The assumption that dim U,= k for all 20 implies that for any two
distinet points (z) and (y) in P,

(2.4) U.NnU,=0.

To see this we note first that the family of all U, gives a k-dimensgional
vector bundle over P, isomorphic to the sum of % copies of L, each copy
arising from a basis vector of W. Now any non-zero vector in U, N U,
would give rise to a holomorphic section (not identically zero) of U restricted
to the line ! joining (z), (¥) in P,. But U|l is isomorphic to &k copies of L|!
and this bundle has no holomorphic section besides zero (recall that, over
any P,_(C), a holomorphic section of L* is a linear form in the coordinates,
a gection of L" is a homogeneous polynomial of degree n, and therefore L
has only the zero section).

Now let us try to identify the jumping lines of the bundle E on P,
Consider first a line ! joining points (x) (y) such that

(2.5) U,NnU0,=0.
This implies that
(2.6) R=U:NT;

is a 2-dimensional complement to U, in Ug for all points (z) on the line 1.
This shows that E|l is trivial and so ! is not a jumping line. Suppose now
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that (2.5) is false then the space R given by (2.6) has non-zero in
with U,. Let v be a non-zero vector in BN U,, then accordin
v¢ U, and so v defines an algebraic section of E|! which ig zero at y
zero at . This shows that E|l is not trivial and so ! is a jumping 1
the jumping lines are precisely the lines for which (2.5) fails.

To introduce reality conditions we now assume that we have
linear map o acting on W,V with =+ 1 on W and o*=-
Moreover we require that ¢ preserve the skew-form on V and be
the corresponding hermitian form

(2.7 {u, ©) = (1, ov)

i positive. Our linear transformation 4(z) is now assumed to t
tible with o, i.e.
(2.8) o{A(z)w} = A(oz)(ow)

where o(z) is, as before, multiplication by the quaternion 1.
Condition (2.7) implies that.

2.9) U,,= o{U.}
and (2.7) implies that
(2.10) U= UL.

Hence we get an orthogonal decomposition:
(2.11) V=U,®R.®U,

where R,= U.N U;, depends only on the point z € §* paramet:
real line (2)(g2) of P,. This shows in particular that the real lin
a jumping line for F and that E inherits a real structure from ¢
properties required, ag in Chapter IV, to give an anti-instant:
Exactly as for the case k. = 1 we see that the anti-instanton b
is R with the connection induced by orthogonal projection fro

The instanton number of the bundle R over S¢ig — k. This fol
the fact that its orthogonal complement ig topologically equivall
sum of k copies of the basic 1-instanton bundle.

To generalize from Sp(1) to Sp(n) all we have to do in the
construction is to take V to have dimension 2% -+ 2n. For the gr
we have to take V of dimension 2k - n and we have to alter the sij
we require ¥ to have a non-degenerate symmetric bilinear form and
on V and o*=—1 on W. In all cases the instanton number is



We can deal with U(n) by regarding it in the standard way as the sub-
group of SO(2n) commuting with J where J2= — 1. We therefore require
that V, W should both possess a complex linear automorphism J with
J*=—1, ¢J =— Jg. Moreover J i8 assumed to preserve the inner product
on V or equivalently (Ju,Jv) = — (u,v). Finally the linear transforma-
tion A(z): W— V is required to commute with J. Then the decompeosi-
tion (2.10) is J-invariant. Hence the bundle R has an action of J and
(since J preserves inner products) the canonical connection of R is preserved
by J. Hence the connection of R, which is anti-self-dual, reduces from
80(2n) to U(n).

Notice that we could proceed one stage further and regard Sp(n) c SO(4n)
and so describe Sp(n) solutions as SO(4n) solutions with extra structure.
However the more direct approach to Sp(n) used earlier is more economical.

Returning now to the symplectic case we see that two triples (W, V, A)
(W', V', A’) which are isomorphic, in the obvious sense that we have
isomorphisms W~ W', V=~ V' commuting with ¢ and the skew-forms
on V, V', and taking A to A’, will give rise to an isomorphism between the
bundles R and R’ preserving connections. Thus isomorphic triples in the
linear algebra sense yield gauge equivalent solutions of the anti-instanton
problem. As we shall prove later the converse is also true.

3. - Quaternionic formulae.

In this section we shall show how the construction of the preceding
section, for Sp(n), can be formulated in terms of quaternions. We then
obtain the explicit formulae given in Chapter II.

We recall that we have identified the space C* with H? in such a way
that the map o on C* is given by left multiplication on H? by the qua-
ternion j. Similarly the vector space V of dimension 2k 4- 2 can be viewed
a8 a left quaternion vector space of dimension k + » with j given by the
anti-linear map o.

The vector space W, of complex dimension k, has ¢ with ¢*=1 and
so can be viewed as the complexification of the real vector space Wy left
fixed by ¢. Then C* ®.W =~ H? ®» Wi and ¢ corresponds again to multi-
plication by j on the quaternion vector space H* ®; Wx.

The linear map A(z): W—V can now be viewed as a map

A:H* @ Wp>V

which is quaternion linear. This corresponds to the compatibility of A(z)
with ¢.
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If we take a real basis of W and an orthogonal H-basis of V, ¢
gets identified with H*'", then A is described by two matrices C, i
ternions. The row-vectors of C are the image under 4 of (1,0)®1
tors of W, and D is similarly defined replacing (1, 0) by (0, 1) in
use mafrices as right multipliers here since our scalars act on th
that C, D are k x (k + n) matrices. Regarded as a matrix functi
pair (z,y) of quaternions in H? we then have

(3.1) A(x,y) =2C + yD.

The non-degeneracy condition on A is just that this matrix have
rank for all (z, y) # (0, 0). Finally the isotropy condition (2.2) is ec
using (2.10), to saying that for any two row-vectors », v of the ms
u and iu are orthogonal to j» and j(iv). This means that

Re (uv*j) = Re (uv*k) = Re (uv*i) = 0
or equivalently that the quaternion uv* is real. Hence (2.2) is equ

(3.2) for all (z,y)e H*, the matrix (¢C 4 yD)(C*x + D*§j

is real.

We thus recover the description given in Chapter II, Section
that we have transposed our matrices since we are now consid
action by scalars. For this reason we now get anti-instantons i
the instantons of Chapter II.



CHAPTER VI

Linear Field Equations

1. — Bundles and sheaf cohomology.

The theory of holomorphic bundles is intimately related to the coho-
mology theory of sheaves. Although this cohomology theory arises in
various contexts, and can be developed independently of bundle theory,
it is rather natural from our point of view to explain it in terms of bundles.
The main thing to emphasize just now is that cohomology is a linear or
abelian theory and it first arises from abelian gauge groups and, at a later
stage, from solvable groups.

‘We shall begin, as in Chapter IV, § 3, by considering holomorphic bun-
dles over P,(C). This simple case provides a good illustration of the general
theory and ties up with the classical function theory of one complex variable.
In addition this special case occupies a key role in our applications, since
P,(C) appears ag the fibre of our bagic fibration P,(C)— S*.

In Chapter IV, §3, we explained how a holomorphic line-bundle over
P,(C) given by the holomorphic gauge-transformation f(z), near the equator,
could be reduced, as in (3.1), to the standard form z*. In particular when
kE = 0 we could take g(z) = log f(z) and using the Laurent expansion

(1.1) g(2) = ia,.z" r<lz|]<R

we could write g(z) in the form

(1.2) 9(2) = 9o(2) — 9.(2)

with g,(z) holomorphic for |2| < R and g.(z) holomorphic for r < |z|. Suppose
now we ask instead whether we can write g(z) in the form

(1.3) 9(2) = 2™go(2) — 9u(2)
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where m is some fixed integer, and g,, g, are as before holomor]
0, oo respectively. Clearly if m <1 this is possible while for m>2
sible if and only if the coefficients of (1.1) satisfy:

= ..=An,=0.

In other words the functions 2, ..., 2™ ! in general provide obstrt
the solubility of (1.2). Alternatively the space of all holomorp
tions g(z), modulo those which can be written in the form (1.3), h
sion m — 1 and a basis ig represented by 2, ..., 2»*. This is our first
with a sheaf cohomology group: it is usually denoted by H'(F
Hy(P,, 9(— m)). The reasons for these notations will ' be explaine:
Equation (1.2) asserts that a holomorphic bundle over P,(C) wit
(the additive group) is holomorphically trivial: by exponentiation
responds to bundles with group C* (the multiplicative group) {
the topological invariant k = 0. We can alse consider C as tl
subgroup of translations in SL(2, C), i,e. matrices of the form

1

G 3)
Then (1.2) says that holomorphic bundles for this group over
trivial. Geometrically a bundle for this matrix group correspo
2-dimensional holomorphic vector bundle ¥ over P,(C) having a
bundle N such that N and the quotient E/N are both trivial. The
of (1.2) then asserts that N always possess a holomorphic cor
Recall that, unlike unitary bundles, holomorphic complements d
cessarily exist. In fact (1.3) corresponds to a slightly more gene
tion of this type. To see this note that eq. (1.3) is equivale
matrix equation

1 q 1 g\[1 0\/1 g\
(1.4) (0 z")=(o 1)(0 z*)(o 1) ‘
If we regard the left-hand side as the gauge transformation, nea
defining a 2-dimensional vector bundle ¥ over P,(C), then E has
sub-bundle N with E/N =~ L-~, and solubility of (1.4) is equivale
existence of a holomorphic complement to N. Thus for m>2 su
plement does not generally exist. More precisely any such bund
an element of the vector space H'(P,, L) and a complement e:

if this element is zero. More generally H{P,, L™) classifies the ext
of the trivial bundle by Z—, two such extensions being regarded as ¢



if there i8 an isomorphism between the bundles which is the identity on the
sub-bundle and quotient bundle.

After this introduction we shall now give the precise definition of sheaf
cohomology groupse on any compact complex manifold X, e.g. P,(C). We
begin with the simplest case, corresponding to (1.2). Instead of just the
2 open sets |z| < R and r < |z| which cover P,(C) we now have to allow a
finite number of open sets {Uas} to cover X : for Py(C) we could take the 4 sets
given by 2,#0 (¢ =1, 2,3,4). A holomorphic 1-cochain is then a col-
lection of holomorphic functions g.s defined in U. N U, (conventionally
gsa= — Gag). Such a 1-cochain is called a 1-cocycle if it satisfles the transi-
tivity condition

(1-5) Gag = gav‘l‘ Gvs in Ua N Unﬁ U.y .

It is called a 1-coboundary if there exist holomorphic functions b, defined
in Us 8o that

(1.6) Gap= ha— hg in Us N Up .

Every 1-coboundary is evidently a 1-cocycle but the converse need not
be true. We measure the effect by considering the quotient space H! of
1-cocycles modulo 1-coboundaries. If the open sets U, are sufficiently small
and well-chosen (technically all finite intersections should be domains of
holomorphy) H! is independent of the covering. It is called the first coho-
mology group of H with coefficients in the sheaf of holomorphic functions
and is denoted by HY(X, 0).

We cannot pursue cohomelogy theory in any detail, for which we refer
to standard texts, and we confine ourselves for the present to a few further
comments.

1) For P,(C) we used just 2 open sets, hence there was only one g.s
and every 1-cochain was automatically a 1-cocycle.

2) HYX, O) always classifies holomorphic bundles over X with group C
or equivalently extensions of the trivial line-bundle by itself.

3) For every integer ¢>0 one can define HY(X, 0): H*X, O) consists
of global holomorphic functions on X (which are constant for compact X).
The cohomology groups are linked together by exact sequences.

4) If X is not compact similar definitions work but one must allow
infinite coverings which are locally finite.
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5) For X' compact algebraic, as for P.(C) for any m, c
groups can be computed by using only rational functions. This
the main results of Serre [38].

It is implicit in our notation that other coefficients than the hc
functions O can be used to form cohomology groups. Thus in the ca
the cohomology group we denoted by H(P,, L™) uses local hc
sections of the holomorphic line-bundle L™, Clearly the definit
of H* goes through unaltered for any X and any holomorphic line
or even vector bundle E over X. The cohomology group HY(X,
viewed as classifying extensions of the line-bundle L by the t1
bundle. More generally holomorphic vector bundles E of any
which have a given sub-bundle E, and quotient E/E, = E, arc
by HX, E; ®E,) where E; is the dual bundle of E,.

If X is compact all H? of the type considered here are finite-d
vector spaces. This ceases to be true for non-compact X. Fo
H°(X, O) consists of all holomorphic functions on X. Example
being infinite-dimensional will occur naturally in our applicatir
shall see in the next section.

2. ~ Linear aspects of the Penrose transform.

The main result of Chapter IIT was that solutions of the ant
Yang-Mills equations on 8¢ converted, via the Penrose transfor:
holomorphic bundles on P,(C). There is a parallel twistor interpre
solutions of certain important linear differential equations. We ¢
in this section that they correspond to elements of appropriate s:
mology groups.

We begin by considering the case of U(1) Yang-Mills theory.
there are no global anti-self-dual selutions on S84, solutions cert:
in R* corresponding to solutions of the Euclidean Maxwell equat
2-form w: dw = 0, *o = — @. From Chapter III we know that
respond to holomorphic line-bundles on Py(C) — P,(C). If we ignor:
and work with complex-valued 2-forms the holomorphic line-
unrestricted, except that it must be topologically trivial. As ex
Section 1 such a line-bundle is then described by an element of
mology group HYP,— P,, 9). Thus this group corresponds
Penrose transformation to the solutions of the anti-self-dual Max:
tions on R* This is the type of correspondence which we propose
As we shall see all the cohomology groups H(P,— P,, O(— m)) ¢
in a similar way to solutions of other linear differential equatic



Before leaving the case of Maxwell fields we should comment on one spe-
cial topological feature, related to the bundle interpretation, which does
not generalize to the other cases. If we work with some open set U c R*
and the corresponding open set U c P,(C) then holomorphic line-bundies
on U which are trivial on the fibres of P,C)—> 8¢ correspond to anti-
self-dual C*-potentials on U. If U is R* or a contractible open set then the
homology of U is generated by the fibres and the line-bundle on U is then
topologically trivial. However if U has 2-dimensional homology, e.g. if
U= R‘— R' then the bundle on U need not be topologically trivial
and the corresponding bundle (with connection) on U is then also non-
trivial. We cannot in such a case take the logarithm of the gauge trans-
formations to reduce from C* to C. Thus the geometrical correspondence
between bundles given in Chapter III contains more information than the
correspondence described above between H({f, O) and solutions of the
anti-gelf-dual Maxwell equations on U.

The cohomology groups H (U, O(— m)) fa.ll naturally into two families
according as m>2 or m << 2. The case m = 2 is in a sense the most basic
and the situation is essentially symmetric about this case, as we shall see.
For example H!(U, O(— 4)) will turn out to correspond to solutions of the
self-dual Maxwell equations on U.

We begin therefore with the case m — 2 and we take any element
@ e HY(U, O(— 2)). If P, is the fibre of P,(C)— 8* over the point z€ U c 8¢
we can restrict @ to P, to get an element

p.€ HY(P,, O(—2)).
As explained in Section 1

dim H1(P,, O(— 2)) =1

so that if we fixed, in some standard way, a basis of this space p, would
become a scalar function of z, defined for x € U. If U c R* then U c Py(C) —
— P,(C) hag a natural map to P,(C), projecting along parallel planes, and
this identifies all P, with € U. Thus in this case g, gives a scalar function ¢
defined in U. Analogy with the Maxwell fields suggests that ¢ should satisfy
a differential equation and the only candidate with the necessary inva-
riance properties is the Laplace operator of B*. In fact the correspondence
@ > p establishes an isomorphism between H!(U, O(— 2)) and the space
of solutions of the Laplace equation in U. When U = R* both spaces are
acted on by the 11-parameter group of conformal motions of B¢ (the Eu-
clidean motions together with scalar magnification about an origin) and the
isomorphism is compatible with these actions. In particular the subspace
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of HY(Py(C)— P,(C), O(—2)) which is homogeneous of degree
scale change, corresponds to homogeneous polynomials of degree
which satisfy the Laplace equation. We shall indicate how this :
can be verified.

Once we have fixed an origin in R4, Py(C) — P,(C) can be view
normal bundle N of the corresponding projective line. The bunc
is trivial or equivaiently N~ L* ® §~, where S =~ C* is a fixe
space. As explained in[3] (where a different notation is used), {
naturally identified with one of the half-spin spaces of R4. Hol
functions on N which are homogeneous, in each fibre, of degree
sheaf over P, isomorphic to the sections of L* ® $"(8~), where
the polynomials of degree n (8o I7(S7) = C"*1). Since we want to
HYN, L*) = H(N, 9(— 2)) we tensor with L* and deduce a maj

21) HYP,, L***) @F~87) - H(P;— Py, O(— 2)).

where the suffix n on the right denotes the part of the cohomolo
is homogeneous of degree n. By general theorems one can deduce

is actually an isomorphism. Now we saw in Section 1 that H!
was of dimension # 4 1. With a little more care (see section 4)
naturally identify it with 4»(8+), where S+ is the other half-spin sp:
Now §*® 8™ ~R*® C, the complexification of Rt. Hence (2.1) st
the space of polynomials ¢ corresponding to elements e H(P,— P,,
consists precisely of the image of

(2.2) Fn(8+) @ F~(8™) = T(CY) .

The classical invariant theory of SO(4) then shows that the imag
i8 just the space of harmonic polynomials; for example when 7 = !
side of (2.2) has dimension 9 while the right side has dimension 10, c

4
the extra polynomial 7* = ¥ a%.
1

The preceding piece of algebra can be used as a basis for th
correspondence @ «» p by associating to each of @, ¢ a power gerit
sion in homogeneous terms. Appropriate analytic questions of cor
have then to be examined but these can be dealt with by standard
Note that such convergence questions are irrelevant when we wor
whole of S* since all spaces are then finite-dimensional.

If we work on the whole of S¢ the different fibres P, cannot all
tified (the bundle Py(C)— 8¢ being topologically non-trivial) and
care has to be taken in the interpretation of the correspondenc:



We must now view ¢ as a section of the line-bundle W over 84 whose fibre W,
is the one-dimensional space H(P., O(— 2)). One can show that W* is
the volume of density bundle on §*: thus ¢ is the fourth root of a density.
The Laplace operator has a conformally invariant counterpart{34] which
acts on such fourth-roots of densities and @ <> @ is an isomorphism between
H(P,;, 9(— 2)) and the space of solutions of this conformally invariant
Laplace equation on 8¢ Written in terms of the standard metric of S*
this operator is 4 4+ R/6, where A is the Laplace-Beltrami operator d*d
of 8¢ and R is the scalar curvature [34], which vanishes on R* but is po-
sitive on 8¢

Since 4> 0 as an operator, 4 + R/6 >0 and so the equation (4 4 R/6)p =10
has no global solutions on 4 except ¢ = 0. This checks with the well-known
result of algebraic geometry that H(P,, O(— 2)) = 0: in fact the same is
true for all O(— m).

In a later section we shall have more to say about the Laplace operator
in relation to the Penrose transform. Returning for the present to the inter-
pretation of other sheaf cohomology groups, we get a very similar picture
for the groups H)(U, O(— m)) m>2. Any element @ of this cohomology
group gives rise to an element ¢, € H(P,, O(— m)) for all ze U. As shown
in section 1 this vector space (in which ¢, takes its values) has dimension
m— 1. Thus, for UcR* ¢ is an (m— 1)-component function and it sa-
tisfics a first-order differential equation. For m = 3 this is the (mass-less)
Dirac equation and for m = 4 it is the (self-dual) Maxwell equation. All
these can be exhibited in conformally invariant form.

For m < 2 we have already met the case m = 0 in a different context.
For other values one has to proceed slightly differently. Restricting & to
any P, now gives zero since H(P,, 9(— m)) = 0 for m<1. However the
isomorphism (2.1) still holds with 2 replaced by m. In particular taking
n =2—m we see that

(2.3) §2(87) = HY(Py,— Py, O(— m))s—m -

Based on this isomorphism we can now assign to any @€ H'(Py— P;, O(— m))
a k-component function ¢ on R¢ where ¥ = 3 — m. This is done as follows.
Given z € R* we take this as origin for scalar magnification and then pick
out the component @,_,, of @. By (2.3) we get a vector in the k-dimensional
space $*™(87). An alternative description is to consider the »-th formal
neighbourhoods P{" of the line P, : this means that we include not only values
on P, but also normal derivatives up to order ». Taking y =2— m we
restrict @ to give an element

q’ceHl(‘P(s')) 0(‘ m)) .



LINEAR FIELD EQUATIONS

It is not hard to show that this is equivalent to.the previous defii

Again one shows that the functions ¢ arising this way are pr
solutions of the appropriate first-order differential equation. 1
we again get the (mass-less) Dirac¢ equation but this time for th
type of spinor from the case m = 3. In general the equations for m
are essentially the same, except that they are of opposite type
when we reverse orientation.

3. - Linear equations in a Yang-Mills background.

As we saw in Chapter IV a vector bundle E on 8¢ with an
connection lifts to give a bundle Z on P,(C) which has a natural hc
structure. As in the preceding section we can then form the s
mology groups H!(P,, B(— m)) or their counterparts over an
It is natural to look for an interpretation of these vector space
of the original bundle £ on S. When E is a trivial bundle the
section 2 tell us that we get spaces of solutions of certain stanc
differential equations. These differential equations have obvion
parts for a non-trivial bundle in which the derivatives are replac
propriate covariant derivatives built from the connection. It i
tremely plausible that our sheaf cohomology groups will corr
these covariant differential equations, and in this section we shall
this is indeed the case.

As mentioned in Chapter IV the vector bundle £ is trivial :
line P,, for z€ 84 and furthermore is trivial along the first for
bourhood PY. We shall first give the proof of this statement. T1
is any holomorphic vector bundle on P,, defined in a neighbow
fixed projective line P,, triviality of V restricted to P, implies triv
restricted to P{". To see this we consider first the exact sequence

(3.1) 0—>J%J— 0fJ*> Q)] —0

where O is the sheaf of holomorphic functions and J is the ideal ¢
(consisting of functions vanishing on P,). The three sheaves in
then be equivalently described as follows:

9/J = O(P,), holomorphic functions on P,
0/J* = O(P{"), bholomorphic «functions» on P{
J3/J = sheaf of sections of the co-normal bundle N* of P, in 1



If fe O/J* then it has a value on P,, namely its image in 9/J, and
extra components corresponding to the first-order terms in the Taylor ex-
Pansion normal to P,. These first-order. terms lie in J*/J.

Since the normal bundle N ~ L-'@ L-! we have N*~L® L and so
in particular

Ho(P,, N*) = H\(P,, N*) = 0

(see §1). From the cohomology exact sequence of (3.1) this implies that
the global sections of O/J* map isomorphically onto those of O/J: in other
words a global function on P{" is constant, as we should expect.

Suppose now we introduce the vector bundle ¥, assumed trivial on P,,
and tensor (3.1) with ¥. We get an exact sequence:

(3.2) 0>VORQN*> VO VO 50

where V9, ¥V denote the restriction of ¥V to P, and P{" respectively.
Since V' js trivial we again have

HYP,, VO N%) = HY(P,, VO@ N*) = 0

and (3.2) then implies as before that global sections of ¥V map isomorphically
onto global sections of ¥V®. This means that a basis of (constant) sections
of the trivial bundle ¥V has a unique extension to V@, showing in parti-
cular that V™ is trivial as claimed.

When V = £ arises from a bundle E on §* as in Chapter IV the fibre E,
can be identified with the space of global sections of V (i.e. the restriction
of V to P,). Global sections of V¥ give vectors in E®), the first jet space of
sections of E at x (i.e. including first derivatives). The fact that every global
section of V» extends uniquely to a global section of V¥ means that we
have a unique way of extending vectors from E, to E®, i.e. we have a con-
nection on E. This is essentially Ward’s definition of the connection as
explained in Chapter IV. Note that the property of quadric cones used in
Chapter IV, §3 for Ward’s construction is equivalent to the vanishing of
H'(P,, O(— 1)) a8 one sees by an exact sequence argument; & more ele-
mentary argument can however be used based on the fact that a quadric
surface factorizes as P, X P;.

We turn now to the question of interpreting the sheaf cohomology groups
H\(O, E(— m)) where U cP,(C) corresponds to an open set Ucf8¢ Wé
begin by considering the case m >2. Then for any ze U, an element
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o e H\(U, B(— m)) defines
(p,EH‘(P‘, E(.o)(__ m)) =~ E,® H'(P,, 9(—m))

(since E is trivial on each P,). In other words @ i8 a section
where W, is the vector-bundle (with fibre C™!) which we 1
previous section. For m > 2 there is a first-order differential e
sections of W, whose solutions correspond to elements of H l(t
This differential equation may be identified by computing in the
neighbourhood P!V. Repeating this computation with E(— m),
triviality of £, and the way in which this triviality defines the
on E, it follows that @ satisfies the obvious differential equation !
of EQ W,. For example if m = 3, W, is the 2-component sg
the equation is the (mass-less) Dirac equation and the equation
is the Dirac equation extended to E using its connection. In mo
terms this is the Dirac equation in a Yang-Mills background fic
For m < 2, the equations are again first-order, and a similar t
more complicated argument leads to the same conclusion.
Finally we come to the case m = 2 which is both the most
and technically the most complicated since it involves a second-(
ator, the Laplacian. General considerations, and computations of
type, lead to the conclusion that elements ®e HY(U, £(— 2))
to sections of E® W, over U (where W, is the line-bundle of f«
of densities as in Section 2) which satisfy a second-order differentia
Using the triviality of £ on P identifies the first-order and se
parts of this equation but leaves unidentified the zero-order pa:
calculation is therefore necessary to determine this zero-order
most elegant and informative way of performing this calculation is
in detail in [29]. The idea is to exploit the inter-relation betwe:
ferent cohomology groups H 1(U, E(— m)) for various m, arising
fact that multiplication by each of the linear coordinates 2z, .
E(—m) to B(—m + 1). Formally we note that z,,...,2, are :
the holomorphic sections over P;(C) of the bundle L. Conw
statement into one on §* provides a link between the differential
for various integers m. Knowledge of the equation for m <2 ca
used to help identify the equation for m = 2. In more concrete
second-order operator has to annihilate elements of the form =z,
satisfies the appropriate Dirac equation (corresponding to m = 3).
in [29] this information is enough to identify our equation as

(3.3) (v +5)r =0



where V is the covariant derivative of ¢, V* its adjoint relative to the standard
metric of 84, and ¢ is now considered as a pure scalar function (densities
being identificd with scalars by using the volume form of §4).

An important consequence of (3.3) is that it has no global solutions on P,
except ¢ = 0. This is because the operator V*V -+ R/6 is positive just
a8 in Section 2. We conclude that

(3.4) H\(P,(C), E(—2))=0.

Unlike the case when £ is trivial (3.4) is not a general result of algebraic
geometry. There are many vector bundles V which do not satisfy (3.4).
All that general theory tells us is that

Hi(P,, V(—m) =0 if |m|>my(¥)

where m, is a sufficiently large integer. The proof of (3.4) depends crucially
on the fact that £ comes from a unitary bundle on 8.

For m >2 by composing the first-order operator with its adjoint one
gets a second-order operator which can also be shown to be positive. This
leads to the further result that:

(3.5) H(Py(0), B(—m)) =0 m>2.

However, a8 we shall see in Chapter VII, (3.56) follows easily from (3.6).
The reason is that multiplication by a monomial of degree m — 2 in 2, ..., 2,
shifts us from H(P,(C), E(— m)) to H!(P,(C), E(— 2)).

So far we have explained that sheaf cohomology groups correspond to
solutions of various linear equations in the background field of Yang-Mills
instantons. For quantum calculations one needs, not only the solutions of
the homogeneous linear equation, but the full Green’s function or « propa-
gator». Using the explicit description of instantons given in Chapter II
explicit and fairly simple formulae have been derived for some of these
Green’s functions [13][15].

4. — The ’t Hooft Ansatz.

This section is a digression in which we shall explain how solutions of
the anti-self-duality equations can be constructed from solutions of linear
equations. This point of view was explained in[4] and it leads to the
't Hooft Ansatz and natural generalizations of it.
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We shall consider the group SL(2, C), ignoriug for the pres
constraints. Equivalently we work with 2-dimensional vectc
with a skew form. According to the results of Chapter IV an
SL(2, €) connections on U c §* correspond to holomorphic vect
on UcP,(C) which are trivial along all fibres P, for ze U. O
construet such vector bundles is to produce extensions of line-1
other words to use only the triangular matrices in SL(2, C) for g:
formations. As explained in Section 1 such extensions are classif
ments of a sheaf cohomology group. Thus we can construct SL(2,
by first picking a line-bundle ¥ on U and then choosing an ele
HY (U, N*). This gives a vector bundle V with ¥ as sub-bund
as quotient.

In particular we can take N to be the standard line-bundle I
its powers L=. Then to every ®eHY U, L») = HY(T, 9(— 2m))
holomorphic vector bundle over . To descend to §* we need f
bundle to be trivial on each P, with z € . To investigate this q
consider a fixed projective line P, and ask which elcments of H1(P,,
give the trivial buudle. Note for example that the zero element
direct sum L™@® L~ which is never trivial (for m #£0). As we
a general element always gives the trivial bundle but special elel
rise to direct sums L'@ L~" for r = 1,2, ..., m.

For simplicity consider first the case m =1, then H(P,,:
one-dimensional and every non-zero @ gives the trivial bundle [1]
next the case m = 2, then H!(P,, O(— 4)) is a 3-dimensional
Section 1 we saw that a basis is given by the tramsition functic
cycles) z, 2% 2%. A more invariant description of the space H'(F
is to say that it is the dual of the space of quadratic forms in the 1
geneous coordinates (2, z,) of P,. This arises because of the mul

Ho(P,, 0(2)) ® H'(P,, O(-- 4)) — H'(P,, O(— 2)) =~ C .

Using our basis it is easy to verify that this multiplication gives th
duality. This is in fact a very special case of the much more gene!
theorem of Serre [39]. Thus if P, = P\(V), i.e. V is the copy of
lines are represented by points of P,, we have a natural isomor

(1) H'(P,, O(— 4)) = T(V)* = (V).

Hence elements ®e H!(P,, 9(— 4)) represent quadratic form:
Then @ defines the trivial bundle over P, if and only if the corr
quadratic form on V* is non-singular (i.e. not a perfect squa
® > 0 but corresponds to a perfect square the bundle is isomorphic t
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The generalization of this to arbitrary m > 0 is now fairly straightfor-
ward. We have a natural isomorphism

(4.2) H\(P;, O(— 2m)) o= F3m—3(V*) .

If $eH(P,, O(— 2m)), let { be the corresponding homogeneous polynomial
of degree 2m — 2 on V*. Any such polynomial can be written as a linear
combination of perfect powers:

m—2
f=3

=1

where 4,€ C and ugis a linear form on V*. The general result proved in [1]
is that @ defines the trivial bundle unless f can be expressed as a combina-
tion of less than m — 2 perfect powers (or is a limit of smch). More
generally if f is a combination of m — 2 —r perfect powers (or a limit
of such), with » being maximal, then @ defines the bundle L'@ L™".

We know therefore the precise conditions to be imposed on an ele-
ment ®eH} (U, O(— 2m)) in order to get a trivial bundle on all P, with
ze U and so to descend to a bundle on U with anti-self-dual SIL(2, C)-
connection. By the results described in Section 2, @ corresponds to a section
of the vector bundle §2=-3(8+) satisfying the appropriate linear differential
equation. Here 8+ denotes the half-spin bundle corresponding to instantons,
whereas S~ corresponds to anti-instantons. We have also used the metric
on 8¢ or R* to identify S+ with its dual (S+)*, although to exhibit full con-
formal invariance this should not be done.

To sum up we have given an implicit construction for anti-self-dual
SL(2, C) connections starting from a section ¢ of §»-3(8*) satisfying the
relevant differential cquation. To get a solution this section must be every-
where ¢ general » i.e. not a combination of less than (m — 2) perfect powers.

For m =1, ¢ i8 a scalar field satisfying the Laplace equation and
nowhere zero. For m = 2, ¢ is a self-dual solution of Maxwell’s equations
which is nowhere the square of a spinor.

The case m = 1 is the Ansatz employed by 't Hooft. The explicit for-
mulae for m = 2 are given in [4]. It is important to note that the solution
of the non-linear Yang-Mills equations obtained in such a way may have
a larger domain of regularity than the linear field ¢ from which we start.
For example it is well-known, for the 't Hooft Ansatz, that a 1/r? singularity
for ¢ disappears when we construct the Yang-Mills field. Geometrically this
corresponds to the fact that the reduction from SL(2, C) to the triangular
matrices may oniy be valid in a smaller open set. The situation is quite
clear if we work on the whole of P4(C) as we shall now explain.
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Let W be a 2-dimensional holomorphic vector bundle o1
Although W may have no globally defined holomorphic section, «
zero, general theorems tell us that W@ L™= W(m) has a nor
tion if m is sufficiently large. Let s be such a section, then s =
closed algebraic subariety X of P,(C) and &0 on the comp
open set. On this open set s generates a trivial sub-line-bundl
and so exhibits W(m) as an extension. Tensoring back by L™ t
that, over this open set W has L™ as a sub-line-bundle. If W is a
bundle then the quotient is necessarily L™ and we are in the stan«
tion described above. Thus the subvariety 2 given by s =0 v
a8 a singularity of the extension element @, or the corresponding lin
but is not a singularity of the vector bundle W.

If m is the least integer for which W(m) has global sections thi
show that 2 necessarily has complex dimension 1, i.e. it is an algeb
Conversely given any curve X one can describe (a) when it arit
bundle W as above and (b) how to reconstruct W from X2 when
tions of (a) are satisfied [23]. In particular when X is connected i
determines W. If X has several connected components 2, then 1
on non-zero constants ¢, (up to a common factor).

When m =1, X has to be a collection of k + 1 disjoint lix
k = ¢,(W) is the anti-instanton number). If we take these lines
i.e. fibres of P,(C)— 8% we recover the 't Hooft Ansatz dep:
(k 4+ 1) points of S* and corresponding weights ¢, ..., ¢,+,. Wh
Z has to be a collection of disjoint elliptic curves, whereas i
2 involves rather special curves of high genus.

For the bundles given by the Horrocks construction of Chaj
can show that one need only take m >+/3k +1-—1. Hartshorn
shown that this bound is best possible in the sense that smaller -
not give all — k-instantons.

We conclude with a few further comments on the Ansatz for
In order to give an explicit formula for the potential one must ck
finite gauge and it is desirable to pick the gauge as simply a
Geometrically this means that we have to pick a basis of H*(P,, W
ing smoothly on r € R*. Recall that in the appropriate open set
as an extension or exact sequence of bundles

0—-I">W-s>L™>0.

Restricting to P, and taking cohomology we get an exact sc
vector spaces:

0—HYP,, W,) > H(P,, O(m)) %> HY(P,, O(— m)) >0



Now HYP., O(m)) == §™(8}) and
H‘(P,, O(—m)) =~ gy

and the map & between them is given by ¢,. Thus if W= £, the fibre
E,.= HP,, W.) appears as the kernel of the homomorphism

g, TS — PS>

Now over R* the bundle S+ has a natural trivialization and so therefore
do J~(8+) and Jm-3(S+). However the kernel of ¢, clearly varies with »
and so the explicit description of the potential is best given by using the
natural basis of the larger space J™(S*). Note that this only applies for
m>2 because for m = 1 the second space §™2= 0. These remarks ex-
plain the apparent singularity in the formula for m = 2 given in[4]: this
occurs because a basis for Ker ¢, has been taken by projecting a sub-set
of basis vectors of §*, and different subsets are needed for different positions
of z in R*.

5. — Relation with Radon transform.

In this section we make yet another digression to explain how the Pen-
rose transform is related to other well-known transforms.

We recall first the classical Radon transform which associates to a funec-
tion f on R? its integral over affine planes. Thus to each f we obtain a trans-
formed function ¢ defined on the space of planes = by:

(3.1) p(m) =Jf .

The space of all planes in R® is a 3-dimensional manifold which can be
identified with P,(R) with a point removed. There is an inversion formula
which defines f in terms of an integral of . The Radon transform is closely
related to the Fourier transform and is therefore useful for solving constant
coefficient linear differential equations [20].

An obvious generalization of the Radon transform is to associate to f
its integral over affine lines ! in R%. Thus we define ¢ by

(5.2) () -_—J' /.
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It is a function on the space of all lines in R®. This space is a s
the space of all lines in P4(R), namecly the real Klein quadric
ter IIT). This quadric has signature (3,3) and contains two s
real projective planes. Our subspace is obtained by omitting on
one system.

In (5.1) and (5.2) the measure on x or !, with respect to whicl
gration is performed, is the usual Euclidean area or length rei
Consequently both transforms are compatible with the group of
motions, this group acting naturally on the space of planes or L
possible however to extend both transforms to the whole projecti
P,(R), compatibly with the action of SL(4, R), provided we replace
by appropriate types of density. In general a k-th root of a di
be called a k~!-density. Then in (5.1) ¢, f must be taken as } and
respectively, while in (5.2) @, f must be 1 and } densities. More
if we integrate over (p — 1)-planes in R**! the relevant de;
1/(p 4 ¢) and p/(p 4 ¢).

In this extended form (5.2) therefore transforms the }-density
to the }-density @ on the real Klein quadric @ (R). Since dim @, = «
it is unreasonable to expect a universal inversion formula, as
Instead one expects ¢ to satisfy some condition in order for it
transform of an f. In fact this condition is that ¢ be a solution ¢
formally invariant second order equation Ap = 0, where A is the
analogue of the conformal Laplacian [21], (45]). Note that Q,(R) i
formal compactification of the space R¢ with the (2, 2) signature
is an «¢ultra-hyperbolic » operator, i.e. one which in fiat space is

o2 2 &2 o2

@ Em

The group SL(4, R) acts on Q,(R) by conformal transformations
serves the operator A,

In these transforms we have so far ignored regularity questio
The precise correspondence holds either for ¢ functions or for re:
functions. Note that, unlike the positive definite case when A
the equation Ap = 0 does not imply analyticity of ¢.

If we deal with analytic functions then the transform (5.2) can
at in the complexification. Thus, if we extend f a8 a complex ana;
tion to some neighbourhood of P,(R) in P,(C), then (5.2) becomes
integral. This leads naturally to the sheaf cohomology occurring iy
rose transform as we shall now explain.

To begin with let us recall that for the complex projective-}
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we have
(5.3) HY(P,(C), O(— 2)) = C.

In section 1 this isomorphism was given in terms of explicit representative
cocycles, and this can be made more intrinsic by recalling that O(— 2) =~ Q*
the sheaf of holomorphic differentials on P,(C) (note that the tangent bundle
of P,(C) is L*). If w = f(z)dz is a holomorphic differential defined near
the circle |2| = 1, we can take w = w,, to define a 1-cocycle relative to the
standard covering of P,(C) by the open sets U,, U, given by |z| <1 4 ¢,
|2) >1~—e. The isomorphism (5.3) is then given by the contour integral

(5.4) W om
taken around |z| = 1 (oriented in the conventional manner as the boundary
of |z|<1).

We now return to the transform (5.2) in which f, as explained earlier,
should be taken as a }-density on P,(R). If we fix the orientation of P,(R)
3 density on P,(R) can be identified with an exterior differential 3-form
and hence with a section of the real line-bundle Z¢. Thus f can be viewed
a8 a section of L? and complexified accordingly.

Next we fix a line I, in P,(R) and consider all nearby lines 1, parametrized
by a small open set V c @,(R). The complexifications of the lines I fill out
an open set U in P,(C) as one can verify. If we orient l,, and extend this
orientation by continunity to all nearby I, we can define open subsets U,,
U, of U swept out by the (¢-enlarged) upper and lower hemispheres of each
P,(C) in our family. If ¢ is small enough U,N U, will be close to Py(R)
and hence within the domain of definition of f. Hence taking f,, = f we get
an element

(5.5) (he (U, 0(—2)) .

By the Penrose transform, as explained in Section 2, (f) defines a
}-density ¢, on the appropriate open set of Q,(C), satisfying Ap = 0. The
value of ¢ at the point parametrizing a given P,(C) is given by restricting (f)
to this P,(C) and using (5.3). Comparing (5.2) and (5.4) we see that they
coincide, up to the factor 2zi. Thus the Penrose description of solutions
of Ap = 0 via sheaf cohomology classes can be considered as the natural
complex-analytic description of the integral transform (5.2).

Although the transform (5.2), taken globally on the whole of P,(R), is
invertible (i.e. p =0 =f=0), the same is not true locally. Thus if /,
defined originally in U, extends holomorphically to U, or U,, or more
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generally is the difference of two such extensions, then (f) = 0
in V. This clarifies the role of the sheaf cohomology group whic
absorbs the local non-invertibility, in other words ¢ =0 in V = (f

It is perhaps worth emphasizing that the construction of the ¢
-mology class (f) from the }-density f depended on orienting the
that U, and U, could be unambiguously defined. Now for topologi
we cannot coherently and continuously orient all real lines ! in
space @(R) is not simply-connected. Thus a global f does not def
ment of the global cohomology group H'(P,(C), O(— 2)). This
tontradiction that would otherwise arise from the vanishing of
mology group and the global invertibility of (5.3).



CHAPTER VII

Theorems on Algebraic Bundles

1. — Cohomology of the Horrocks construction.

In Chapter V we gave the construction of Horrocks for producing sym-
plectic vector bundles on P,(C). In this chapter we shall prove a theorem
due to Barth [8] which shows how the Horrocks bundles may be character-
ized in cohomological terms. Combined with the results of the preceding
chapter on the vanishing of appropriate sheaf cohomology groups for in-
stanton bundles this will finally prove that the Horrocks construction gives
all instanton bundles.

We begin in this section by examining the Horrocks construction in
greater detail and deducing its cohomological properties. At this stage,
and also in the next section, we work purely over the complex numbers.
Reality questions do not enter until later.

Throughout this chapter we shall be making extensive use of the ma-
chinery and standard results of sheaf cohomology which have only been
lightly touched on in previous chapters. Inevitably therefore this chapter
will be more technical, but we shall try to recall basic facts as and when
they are needed. In any case, it is the arguments of this chapter which
exhibit the full power of cohomology theory and the reader may find it
instructive to try, where possible, to reinterpret the methods in real 4-space
terms. We shall at the appropriate stage make some comments in this
direction.

We recall that the Horrocks construction for Sp(n, C)-bundles, as ex-
plained in Chapter V, Section 2, starts from a linear map

1.1) AR): WV

with appropriate properties. Here dim W =%, dim V = 2k 4 25, 2z =
= (%, ...,2) and V has a non-degenerate skew-form. For each zs<0 the
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image U,= A(2)WcV is assumed k-dimensional and isotropic,
contained in its polar space U;. We then put E,—= U% U, whic
vector space of dimension 2n with an inherited non-degenerate s
This is the fibre over (2)e Py(C) of the required bundle E.

Since A(z) is linear in z we can view (1.1) as a homomorphism
bundles over Py(C):

(1.2) A:W(—1)—>T

where W(— 1) = W® L. In other words the bundle U c V is i
to W(— 1). By duality V/U® is then isomorphic to W*(1). We c:
all bundles relevant to the construction in the following display
sequences:

0 0
v v
0>W—1)—> @* > E -0
[ v v
(1.3) 0->W—1)4% Vv > @ -0
v v
W(1) = W*(1)
v v
0 0

where @ = V/U, ¢* = U°. This diagram is self-dual, and the ¢
skew in an appropriate sense, being induced by that of V.

In dealing with sheaf cohomology groups on Py(C) we shall,
confusion can arise, omit the symbol Py(C) and simply write H®(S
cohomology of a sheaf 8. The cohomology of the bundles E,Q it
then given by

PRoPOSITION (1.4).

HYQ)~V HY(E(—n)) =0 for n>)]

H(Q(—n)) =0 for n>1 HYE(—n)) =0 for n>:¢
H'Qm)) =0 for all » HY(BE(—1)) o W*.

ProOF. The middle row of (1.3), together with the cohomology p

of W(—1) and V give at once the results on Q [we use here the v

of He(O(n)) for ¢=1, 2 and all n, for ¢ = 0 and n < 0]. Using this
tion on @ in the last column we then deduce the results on F.



As noted in Chapter V the second Chern class c,(F) can be read off
from (1.3) and we get ¢y(E) = k. More formally if z is the standard gen-
erator of H%P,, Z) the total Chern polynomials are given by:

e(W(—1)=(1—2z}, (W 1) =@+, cV)=1
hence
@) =@1—a2)*
and
c(BE)=(1—2)*1 4 2)*=(1—a)*=1+ ka?
showing that ¢,(E) = k.

Returning now to (1.3) let us use the last column to investigate H(E(n))
for n>— 1. We see that

HQW*(n + 1)) - HY(E(n))

is surjective. Using the identification of W* given by (1.4) this can be
replaced by the surjectivity of .

HY(B(—1))® H(O(n + 1)) —HY(E(n)) .
Thus, if we introduce the graded module
M=@®M,, M,=H(E®n)
over the ring of polynomials in z,, ..., z,, We see that M has the properties:
M, =0 for n<—1 and n sufficiently large

(1.5) dmM_,=Fk
M_, generates M .

The properties (1.5) of the module M reflect the simple nature of the Hor-
rocks construction. There are in fact vector bundles E given by more com-
plicated constructions, in which 4 is not assumed linear in z, ..., z,, for
which the associated module M is more complicated. This is part of the
general theory of Horrocks but fortunately for our purposes the simple case
leading to (1.5) is sufficient.
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2. — Theorem of Barth.

We shall now give Barth’s theorem [8] which gives sufficient ¢
a symplectic bundle E in order that it should arise from the Horr
struction. We consider first the following assumption on E:

(2.1) For some line 1 in P,, the resiriction of E to 1 ig trivial.

This assumption is related to the notion of semi-stability: for
when E is 2-dimensional (2.1) i8 equivalent to semi-stability ap
vanishing of Ho(E(— 1)) [7]. Note that (2.1) implies automaticall
is trivial on the « general » line of P, (see Chapter IV). For bundle
from §4, via the basic construction of Chapter IV, (2.1) is certainly
since E is trivial on all real lines, i.e. the fibres of P,(C)— §¢.

Our second assumption is that E satisfies the vanishing theore:

(2-2) HY(E(—2)) =0

which is satisfied by bundles coming from the Horrocks con
(see (1.4)), and also for bundles corresponding to anti-self-du:
connections on §* by the results of Chapter VI.

Barth’s theorem asserts that (2.1) and (2.2) are sufficient, nai

(2.3) THEOREM. Let E be a symplectic vector bundle on P,(C) !
(2.1) and (2.2). Then E arises by the Horrocks construction from a li:

A(z): WV
unique up lo isomorphism.

The uniqueness in (2.3) means that, if (4, W, V) and (4', W',
isomorphic symplectic bundles, there are isomorphisms W— W’
(preserving skew-forms) taking A into A'.

The idea of the proof of Theorem (2.3) is to show that the disp
can. be canonically reconstructed from E alone. As a preliminary
first show that the module M =@ H*(E(n)) satisfies the conditio
a necessary consequence of (1.3).

Take any plane P, containing the line I, then E is trivial on the
line in this P, and so, for » < 0, E(n) can have no non-zero sect
this P,. Now consider the standard exact sequence

0—>E+—1)>E—>E|Py,—0.



Tensoring with O(n) and taking cohomology gives the long exact sequence
~ H%(Py, E(n)) - H'(P;, E(n— 1)) = H(P,, E(n)) >

Takingn = —2,— 3, ... in turn and using the vanishing of H(P,, E(n))
we deduce inductively that H(P,, E(n)) = 0 for all n<— 2, which is the
first part of (1.5). To prove the last part we take coordinates in P, so that I
is given by z,= z,= 0. Then we have the exact sequence, resolving O,

(2.4) 05>0(—2) S 0(-1)@0(—1) &0 -59,-0

where & = (2,, — 2,) and § = (z,2). The image of B is the ideal sheaf J
of the line l. Tensoring (2.4) with E(n), and taking cohomology we deduce
the exact sequences

—HY(E(n— 1)) @ H(E(n — 1)) H\(J(n)) > H(E(n — 2)) >
(2.5) i
~ HY(J(n))->HY(E(n)) > B*(, E(m)~>0.

Since E is trivial on I, H(l, E(n)) = 0 for n>— 1, and by Serre duality
H*(E(n— 2)) is dual to H'(E(— n— 2)) and so vanishes for #>0 (as proved
above): note that we have used ¥ o~ E* here. Hence (2.5) asserts that
the map

M@ M, 2550,

is surjective for all »>0. This implies that 3/_, generates }M as a module
(and is a somewhat stronger statement since only two of the variables are
required). Finally to check the dimension of M_, = H(E(— 1)) we note that
all the other cohomology groups HY(E(— 1)}, ¢ #1, vanish. For ¢ = 2 this
follows from Serre duality and the vanishing of M_,, for ¢ = 0 it follows
from the triviality of E on general lines and for ¢ = 3 we apply Serre duality
and reduce to the same argument. Thus dim M_, can be computed from
the Riemann-Roch theorem which evaluates

i(— 1)*dim HYE(— 1))
=0

in terms of the Chern classes. Since ¢;(E) = 0, ¢;(E) = k we get dim M_, =
= @ + bk, where a, b are constants independent of E. These can either be
obtained from the detailed Riemann-Roch formula or more simply we take
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explicit examples arising from — k-instantons. Either way
dim M_, = k completing the verification of (1.5).

We turn now to the construction of the display (1.3) and we
the last column. Defining W* = H'(E(— 1)) and using the inte
of H' in terms of extensions (cf. Chapter VI) we construct the

(2.6) 0>E—>Q—>W*1)—>0
corresponding to the identity element of
H (W® E(—1)) = W® W*= End(W).

The effect of this is that, in the cohomology sequence of (2.6
with O(— 1)

- HY(W*) % HY(B(— 1)) > H{Q(— 1)) > HY(W*)

the coboundary 4 is the identity. Since HY(W*) =0 it fol
HY@(— 1)) = 0. If we tensor (2.6) in general with O(n) then fo
we deduce

HY(Q(—n)) =~ HY(E(—n)) = 0
while for n>0 we get

(2.7 W*@ H(O(n + 1)) - HY(E(n)) - H(@(n)) >0 .

In (2.7) 8 can be identified with the module multiplication from M
and the surjectivity just proved (i.e. (1.5)) tells us that H 1Q(m) =
we have proved

(2.8) H(@(n)) = 0 for all n.

We have now constructed the last column of (1.3) and establ
key property (2.8) of the bundle . Dualizing we get the first rov
The cohomology sequence of this first row tells us that

HY(Q*(n)) =~ H(E(n)) for all n.

Interpreted in terms of extensions (with # = — 1) this shows tha
an extension of @* by W*(1) compatible with each such extens
In particular this gives us the middle column of (1.3), for a suital
bundle V.



From the middle row of (1.3), using (2.8), we deduce
(2.9) H(V(n)) =0 for all .

By Serre duality (2.8) implies that H*(@*(n)) = 0 for all », and hence from
the middle column of (1.3) we get

(2.10) H:(V(n)) =0 for all n.

From (2.9) and (2.10), we can now deduce that V is a trivial bundle.
We require the following special case of the general theory of Horrocks [28].

PROPOSITION (2.11). Let V be a vector bundle over P, such that HY(V(n)) =
= H¥V(n)) = 0 for all n. Then V is isomorphic to a direct sum of line-
bundles.

Proor. Fix P,c P,c P, and let
(2.12) Vip, 2 Klp,

where K ~L™@...® L™ is a sum of line-bundles. It will be enough to
shows that the isomorphism ¢ of (2.12) extends to P, as a homomorphism,
because the points where @ is not an isomorphism form an algebraic surface
‘(local equation det p = 0) not meeting P, and so necessarily vacuous. We
show that ¢ extends first to P, then to P, by using the exact sequences

0—>V(n—1)|p—> V(n)[p,—> V(n)|,,—>0
0>V(n—1)=V(n) > V(n)p,—>0.

The second sequence and the vanishing of H'(V(n)), H*(V(n)) shows that
HY(P,, V(n)) = 0 and that every section of V(n) over P, extends to P,.
The vanishing of H(P,, V(n)) =0 applied to the first sequence shows
similarly that every section of V(n) over P, extends to P,. Since ¢ (or
rather ¢=1) is a direct sum of sections V(n,), the proposition follows.

We now apply (2.11) to the bundle V constructed above. To prove
finally that the integers n, are all zero, i.e. that V is trivial, it is enough to
restrict V to one line l. But when (1.3) is restricted to !, since E|l is trivial,
all the extensions split and it follows that V|l is trivial.

We have now reconstructed the display (1.3) from E. It remains only
to show that it is skew-symmetric and in particular that V has a canonical
skew-form. But dualizing (1.3) and using the skew duality E ~ E* we get
an isomorphic diagram, showing that Vo V*. With a little more care
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(cf.[8]) one checks that this isomorphism is skew, completing
of Barth’s theorem. The uniqueness of the display (1.3) follow
canonical nature of our reconmstruction, in which no arbitra
were involved.

It is clear from our proof that exactly the eame argument wi
orthogonal bundle, i.e. a vector bundle E with a non-degenerate
form. The duality of the corresponding diagram to (1.3) is now

In conclusion we should point out that a more general theoremr
is given in [17] (and has been further generalized in[9]) which g
sary and sufficient conditions for a bundle to arise from the Ho
struction. Condition (2.2) is still kept but (2.1) is relaxed. In te
module M, conditions (1.5) are still fnlfilled but it is not assun
of the 4 variables (2, ..., 3,) are enough to generate } from M_
stanton buudles condition (2.1) is satisfied and therefore the extra
of [17] is not needed.

3. — Reality constraints.

We come now to the question of imposing the necessary reality «
on the Horrocks construction to produce instanton bundles. In (
§ 2 we imposed a Galois action ¢ on the triple (4, V, W), with
on V and ¢*= 1 on W, which enabled us to obtain an Sp(n)-bunc
with anti-self-lual connection. We want now to show the con
that every such connection arises in this way.

According to Chapter IV, §2 every such connection corresp
holomorphic veetor bundle E over P,(C) with

(i) a holomorphic symplectic structure

(ii) an anti-linear o, compatible with (i), with ¢ on Py(C),
o*=—1, and inducing a positive hermitian form o
on £ along all real lines of Py(C).

Since £ is trivial on all real lines of P,(C) and satisfies the vani:
dition H*(E(— 2)) = 0 (Chapter VI, §3) we can apply Barth’s t
the previous section and deduce that £ is constructed canonical
triple (4, V, W). The anti-linear map o then induces an antilinear 1
This follows from the uniqueness part of Barth’s theorem: we c
and the complex conjugate of ¢*(#). The uniqueness also shows t]
o*= —1 and is compatible with the symplectic form.

To derive all the conditions imposed in Chapter V, §2 we ne
to show that the hermitian form induced by ¢ on V is positive. 2



that, for any (z) € P;(C) we have an orthogonal decomposition:
V= U:@ El@ Uﬂl

where U7, = U;= U,® E,. The hermitian form restricted to U, is there-
fore definite. Applying o shows that the sign of this definite form is the
same in U, as in U,. The form is positive on E, because of its original
definition. Hence the form is either positive on all V or else it has signature
(2n, 2k). But in the latter case the fibres E, would lie in the positive cone
and the bundle would be topologically trivial (deformable to a fixed positive
subspace), contradicting the fact that ¢,(£) = k 0.

This completes the proof that the construction of Chapter V, made
explicit in Chapter 11, gives all anti-instantons for Sp(n). Exactly analogous
arguments work for the orthogonal group. Finally for the unitary group
U(n) we can embed this in SO(2n) and consider an additional anti-linear J.
Again using the uniqueness part of Barth’s theorem we deduce that we get
an operator J on V with the appropriate properties.

4. — The Drinfeld-Manin description.

In the proof of Barth’s theorem in § 2 we reconstructed the display (1.3)
from the symplectic vector bundle £ over P;. The vector space W* was
identified with the cohomology group H!(E(— 1)). The vector space V can
also be identified as a cohomology group in such a way that the linear map 4
(or its dual 4*) acquires a simple cohomological interpretation. This enables
one to reformulate Barth’s theorem rather more elegantly by directly exhibit-
ing the triple (4, V, W) in terms of the cohomology of E. This reformulation
has the advantage of making the additional reality conditions more
transparent.

We shall explain how to interpret V cohomologically. For fuller details
and a more systematic account see [18].

From the middle column of (1.3) we get the cohomology sequence:

(4.1) 0 — HY(@*) - HY(V) - HY(W*(1)) > H (Q*) > H(V) .

Since V is a trivial bundle HYV)=>=V, H(V) = 0.
From the top row we have

HYQ*) = HYE), q=0,1
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and finally we recall that
W*~HY(E(—1)).

Substituting these into (4.1) we get
(4.2) 0—>HE)—V - HY(E(—1))® H(O(1)) £~ H}(E) >0

where u can be identified with the natural module multiplicati
module M,
On the other hand we have a natural exact sequence on P,:

0>0(—1)>Ct—>T(—1) >0
where T is the tangent bundle. Dualizing and tensoring with E(
0>E® '~ (C*)* QE(—1)—>FE >0,
The cohomolegy sequence of this is
(4.3) 0—>HYE)—~HY(E® 2') > HY(E(— 1)) ® (C*)* “> H\(E)
where x4 is the natural multiplication (recall that H*(O(1)) is th
linear forms (C4)*).

Comparing (4.2) with (4.3) suggests that there should be
isomorphism

(4.4) VH*(E® 2%).
This is clear if H*(E) = 0 which is the case for instanton bundle:

taining a trivial summand (e.g. for 8p(1)-bundles and k£0). I
eral case V splits as a direct sum

(4.3) VHY(E)®V'

using the skew-form on V. Now H}E® ') has a natural skew-fi
by the cup-product (and the skew-form on E):

(4.6) HV\EQ 2Y)Q H(E® @) - H (%) ~

and so it decomposes analogously to (4.5). This gives us the isomorp
and one must then check directly that this isomorphism is compa
the skew-forms.
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Thus the linear map A* associated to E can be identified with the map

HYEQR Q') - HY(E(~ 1)) ® H*(0(1))

occurring in (4.3).

Any additional structure on E such as ¢ or J then passes naturally to
these cohomology groups. Note that in the orthogonal case the multipli-
cation (4.6) is symmetric.

Since H3(P,, 2?) maps isomorphically onto H*(P;, £2%) it follows that
(4.6) factors through the restriction to P, where it coincides with Serre
duality. The non-degeneracy of (4.6) therefore implies the injectivity of

HY(Py, E® QY(Py)) > HY(P,, EQ Q'(Py)) .

Concerning restriction from P, to P, we draw attention to the following.
Let P, and o(P,) be considered as a degenerate quadric with real structure.
In general for any real quadric @ c P, two real bundles E, F on P,, cor-
responding to anti-instanton Sp(n)-bundles on 8¢, are isomorphic if and
only if their restrictions to @ are isomorphic. To see this we have to show
that any isomorphism ¢: E — F over ¢ extends as a homomorphism over P,
(it is then necessarily an isomorphism by an argument used earlier). Now
G = Hom (E, F) again corresponds to an anti-instanton bundle and so
satisfies the vanishing condition H*(P,, G(— 2)) = 0. Applied to the exact
sequence

0>G—2)>G—>Gyg—>0

this shows precisely that every section of G over @ extends to a section
over P,. Taking @ = P, VU o(P;) we deduce that ¥~ F over P, (as real
bundles i.e. commuting with o) if and only if E o F over P; and the iso-
morphism respects o over the real line P,= P,No(P,). Since E,F are
trivial over real lines the real structure over P, corresponds to a real struc-
ture or hermitian metric on C?*. Thus we deduce that the map from the
space of moduli of real Sp(n) anti-instantons to the space of moduli of
complex symplectic bundles over P,(C) has fibre the symmetric space
Sp(n, C)/Sp(n). For example when n = 1 this fibre is the hyperboiic 3-space.
The (8% — 3)-manifold of SU(2) — k-instantons therefore fibres over an
8k — 6 = 2(4k — 3)-manifold of bundles on P,(C). But a dimension count
(cf. [3]) shows that (4k — 3) is the complex dimension of the relevant space
of (stable) bundles on P,(C). Hence, after factoring out by the hyperbolic
3-space, we get a complex structure on the real moduli space.
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This result can be interpreted roughly as follows. Starting in I
coordinates to identify it with C%. Then an anti-self-dual connec
a holomorphic bundle on C2®. If we require the bundle to extend
holomorphic bundle extends to P,(C) and acquires a real structi
The surprising result is that this data uniquely determines th
solution: in other words it is enough to fix one set of complex e
if we work globally, whereas the main local result of Chapter IV
we needed all complex coordinates to interpret the anti-self-duality -
It would be very interesting to have a direct differential-geome
of this result. For this it would be necessary to prove the exisi
unique hermitian metric for the holomorphic bundle which saf
propriate conditions.



CHAPTER VIII

Further Problems

1. - Euclidean approach to instantons.

As we have seen, the proof that the Horrocks construction yields all
instantons uses the full machinery of algebraic geometry. On the other
hand the construction itself has a simple description in the Eunclidean 4-space
without resorting to the twistor picture. It is natural therefore to ask if
we can produce an alternative proof of the completeness working only in
the Euclidean 4-space. As a first step it seems necessary to describe the
canonical data used in the Horrocks construction in Euclidean terms. In
particular the vector spaces ¥V and W should have such a description. We
recall that, in sheaf cohomology terms, we have

W* = Hy(E(— 1))
V = H(EQ 2Y).

According to the results of Chapter VI we already know that H YE(— 1))
can be identified with the space of E® S~ satisfying the coupled Dirac
equation (recall that with our sign conventions we produce anti-instantons):
here S~ is the negative spin bundle over §%. We shall now show how the
other cohomology group can be similarly interpreted.

Using the standard metric of §* the basic anti-instanton bundle is pre-
cisely the bundle 8~ and, when lifted to P,(C), it gives the holomorphic
bundle orthogonal to the fibres as explained in Chapter V, §1. Thus on
P,(C) we have the exact sequence

0>8-®L*>T>L3—>0

or dualizing,
0Lt >N >8 RL->0.
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Tensoring with E gives
0>E—2)>ER 2N >ER®S(—1)—>0.

Taking cohomology and using the vanishing of HYE(— 2)) fo
(these are duals of each other) we see that

HYE® QY)Y ~HY(E® S-(—1)).

Thus HY(E® ) can be identified with the space of solutions of
equation on (E® 87)® 8~ (we have for simplicity.used the same
for the holomorphic bundle on P,(C) and the corresponding anti
bundle on 84). Now sections of 8" ® S~ can be naturally ident
pairs (f, w) where { is a scalar function and w is an anti-self-du;
this is a matter of examining the representations of Spin (4).

the Dirac operator coupled to S~ can be identified with the Hodg:
d + d* on differential forms. The corresponding results hold i
further couple to ¥ provided d is replaced by its covariant an
Thus we see that H}(E® ') can be identified with the spac:
(f, ) satisfying the equation

(1.1) Df=—D*o

where f is a section of £ and w a section of ¥ ® Q2.

When F is irreducible it has no covariant constant sections e:
and 80 w, in (1.1), uniquely determines f.

The geometrical description of the bundle E, arising from the
construction, gives it as a sub-bundle of the trivial bundle S*x V.
gonal projection V then becomes identified with a certain space ¢
of E. Conversely to find the embedding of & into 84XV, it is :
give this space of sections. It seems reasonable to conjecture that
of sections is related to the pairs (f, w) by interior and exterior
with the curvature F.

From this point of view one would have to show the approp
degeneracy of this space of sections (so as to get an embedding
8*x V). In addition one would have to verify that the original ¢
on E coincided with the connection induced from the embedd
last part appears to be the hardest.

A direct interpretation of the self-dual Yang-Mills equations
of analytic function theory of a quaternionic variable has been «
by F. Giirsey. It would be very interesting to investigate in detai
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tion between this point of view and our complex methods. This might help
to produce a proof of the completeness of the instantou construction in the
Euclidean framework.

2. - General solutions of the Yang-Mills equations.

In these lectures I have concentrated on the instanton problems which
correspond to absolute minima of the Yang-Mills functional on §4. I shall
now review what is known about general solutions of the Yang-Mills equa-
tions, corresponding to critical points which are not absolute minima.

First of all there is a recent result of Bourguignon, Lawson and Simons (11}
which shows that there are no other local minima. It isat present unknown
if other critical points exist, but [11] asserts that any such points must be
unstable. The proof consists in showing that the second variation is
indefinite.

The twistor interpretation of instantons does not immediately apply
to other Yang-Mills solutions, but Witten [44] and Green et al.[24] have
shown how to generalize Ward’s ideas to the general case. However, the
twistor interpretation is now more complicated and its potential has not
yet been exploited.

Topological aspects of Yang-Mills theory related to ideas of Morse theory
have been studied in [5]. In this and other respects there are close analogies
with the non-linear ¢ model in 2 dimensions and these analogies suggest
that no other critical points exist.

Finally, K. Uhlenbeck has recently shown [41] that square integrability
on R+ for Yang-Mills solutions antomatically ensures the extension to 9+,
More precisely there is a purely local result asserting that a smooth ¢on-
nection defined in a neighbourhond of 0 (but not at 0), which is locally
square integrable and satisfies the Yang-Mills equations,. automatically
extends to a smooth connection defined at 0. In other words, point sin-
gularities are « removable ». Applied to the point at oo, after a conformal
transformation, this yields the extension from R* to S4.
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