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Preface to Part A

The purpose of this work is to give an introduction to the mathematical
principles of mechanics and of electromagnetism. Part A is concerned with
two main subjects in classical mechanics: analytical mechanics and con-
tinuum mechanics.

I start in Chapter 1 from Newtonian space-time, which is the basic
mathematical model for the event world in all classical theories of physics.
On the basis of this model I present the equations of motion for mass
points and rigid bodies. Then I derive Lagrange’s equations for holonomic
systems of mass points and rigid bodies.

My derivation differs in one important aspect from the traditional
approach followed by many authors. In the traditional approach a rigid
body is regarded as a limiting case of a rigid system of mass points; the
number of mass points becomes infinite and the mass of each point becomes
infinitesimal in such a way that a finite mass density may be assigned to
cach part of the body. Lagrange’s equations are then derived on the basis
of the equations of motion for mass points only, but the results are applied
to rigid bodies by using the aforementioned limiting process. Since this
limiting process amounts to only a motivation of the equations of motion
for a rigid body, I feel that the traditional derivation is not rigorous. In
my opinion rigid bodies are primitive concepts like mass points, so that
their equations of motion are independent of those for mass points. Hence I
derive Lagrange’s equations for systems of mass points and rigid bodies
from the equations of motion for mass points and for rigid bodies separately.
In this way I do not use any argument based on the limiting process in
my derivation,

vil
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For conservative systems, Lagrange’s equations may be transformed
into a set of autonomous first-order differential equations, known as the
Hamiltonian equations, in phase space. In Chapter 2, I consider the solution
operator of the Hamiltonian equations from the standpoint of differential
geometry and in the context of a first-order partial differential equation
known as the Hamilton-Jacobi equation. The contents of the first two
chapters constitute the bulk of general principles in analytical mechanics.

Chapter 3 is devoted to the derivation of the governing equations
of motion for deformable bodies. Unlike mass points and rigid bodies, the
dynamical responses of which are determined by inertia, deformable bodies
have a variety of dynamical responses, which may be described by various
constitutive equations. I present just one general class of constitutive equa-
tions; bodies characterized by this class are known as simple material
bodies.

Constitutive equations for simple material bodies are local models in
continuum mechanics, since they are formed by sets of equations of me-
chanical response for individual body points of the body manifolds. Each
distinguished equation of mechanical response characterizes a particular
simple material; a simple material body is just a body manifold made up
of simple material points. If the points of a body manifold belong to the
same simple material, then the body is called materially uniform. The struc-
ture of a materially uniform simple material body may be characterized
by a single equation of mechanical response and by a distribution of that
equation on the body manifold. That distribution may be homogeneous
or inhomogeneous.

In Chapter 4, I treat three topics of interest in the theory of simple
material bodies in order to illustrate the general principles in continuum
mechanics. The first two topics are concerned with homogeneous bodies
made up of fluids and isotropic elastic solids, respectively. The third topic
is concerned with the geometric structure of inhomogeneous elastic bodies
in general.

Throughout this work I have followed a simple, direct, and somewhat
old-fashioned approach in order that the text may be followed by advanced
undergraduate students with limited background in the elements of the
subjects. I set out to present in a clear and rigorous way the basic principles
in the two subjects; mathematical generality and elegance are not my
primary concern. I hope that this work is helpful to students in grasping
the central concepts and results in the subjects. However, 1 make no claim
that the subjects are covered completely in this work. Most of the math-
ematical preliminaries needed for the formulation of the principles con-
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sidered in this work may be found in the two-volume work Introduction
to Vectors and Tensors,* published in this Series (Mathematical Concepts
and Methods in Science and Engineering) in 1976.

I am grateful to the Series editor, Angelo Miele, a long-time colleague
and a good friend, for permitting me to publish a second work in his series.
To Ray Bowen, who has collaborated with me on many other works, I
wish to express my thanks for his comments and critical remarks on the
preliminary draft.

This work is dedicated to my teacher, Clifford Truesdell, who has
directed and guided me on many works, this one included, and who has
been a source of inspiration to me for many years. Without his encourage-
ment it would not have been possible for me to undertake and to finish
this work.

I take this opportunity to acknowledge also my gratitude to the U.S.
National Science Foundation for its support during the preparation of this
work.

As always, it is a pleasure to express my appreciation to my wife,
Sophia, and to my boys, Ferdie and Ted, for their patience and under-
standing during the years this work was in progress.

C.-C. Wang
Houston, Texas

¢ R. M. Bowen and C.-C. Wang, Plenum Press, New York.
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Lagrangian Mechanics of Particles
and Rigid Bodies

In classical mechanics the subject analytical dynamics is concerned with
motions of particles and rigid bodies. These physical entities may be rep-
resented by mathematical models possessing only a finite number of degrees
of freedom in their motions. In this chapter we develop the dynamical
theory for certain special systems of particles and rigid bodies. The title
Lagrangian mechanics is chosen because the governing equations of motion
for such systems are known as Lagrange’s equations.

1. Kinematics of Systems of Particles

In classical mechanics the event world is characterized by the Newtonian
space-time &, which is the union of a family of oriented 3-dimensional
Euclidean spaces, {&,, 7€ & }:

g-U ¢, (1.1

1232

where &, the index set of the union, is an oriented 1-dimensional Euclidean
space. The index 7 is called an instant, and the set of instants & is called
the Newtonian time. The orientation on & assigns the set of past instants
{re B, v < 1o} and the set of future instants {r € &, v > 1,} relative to
any present instant t,. At any 1, the oriented 3-dimensional Euclidean
space &, is called the instantaneous physical space, and its translation
space 7, is called the instantaneous translation space. We do not require
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&, and &, or 7, and 77, to be the same for different 7, and 7,. A positive
basis in 7, is also said to be right handed. In the physical interpretation
aright-handed basis is a basis {e;} which satisfies the following convention:
e;, €, and e, correspond to the thumb, the index finger, and the middle
finger, respectively, of the right hand. The concepts of Euclidean space,
the translation space of a Euclidean space, and a positive basis of an
oriented vector space are defined in Section 43 of IVT-2.®"

From (1.1) the Newtonian space-time & may be represented iso-
metrically by a product space & X 9P, where 5 is an oriented 3-dimensional
Euclidean space and £ is the set of real numbers. Specifically, we require
that & correspond to &2 and that &, correspond to & X {t}, r€ &, by
orientation-preserving isometries. The real number #, which corresponds to
the instant 7, is called the time of the instant, and the oriented 3-dimensional
Euclidean space .7, which represents the instantaneous spaces, is called
the physical space. Such a representation of & is not unique, of course.
We call any one such representation a frame of reference or an observer.
We assume that a particular frame of reference has been selected, and we
shall now develop the kinematics of systems of particles relative to this
particular frame of reference. It is important to remember, however, that
the kinematical quantities which we shall define are dependent on this
frame.

We consider first the kinematics of a single particle. In Newtonian
mechanics a particle is characterized by a positive real number m and by
a point x(t) € 5 at each time t € ZP. The number m is called the mass
or the inertia of the particle, and the point x(¢) is called the position of the
particle at the time f. We can also think of a particle abstractly as just a
point p with no intrinsic mathematical structure. Then the position x(f)
may be viewed as the image of a mapping from p to 57 In this sense we
say that a 1-parameter family, {x(¢), 1€ &P}, is a motion of p. Thus it is
meaningful to consider different motions of the particle p. For simplicity
of writing we suppress the argument ¢ and denote the position of p by x.
It is understood that in a motion of p, x is a function of 2.

In any motion of p we define the velocity v by

dx
ar’ (1.2)

Il

A\

‘4 Throughout this book the notations IVT-1 and IVT-2 refer to Introduction to Vectors
and Tensors, Volumes 1 and 2, by R. M. Bowen and C.-C. Wang, in the series Math-
ematical Concepts and Methods in Science and Engineering, Plenum, New York,
1976.
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and the acceleration a by
= 1.3)
Both v and a are vectors in the translation space ¥~ of &

Note. By the remark made before, v and a depend implicitly on the
underlying frame of reference, which is used in the representation of &
by & x 2.

As explained in Section 44, IVT-2, a rectangular Cartesian coordinate
system (x?, i = 1, 2, 3) on .5 is defined by a particular point 0 € & called
the origin, and by a particular right-handed orthonormal basis {¢;} € Z7
called the coordinate basis or the natural basis, such that

X = 0 + x'e; (1.4)

or, equivalently,
r=x— o=ux'e,, (1.5)

where r is called the position vector of x relative to 0. Then the velocity v
and the acceleration a are given by
dxt dvt d?xi

V=—32e;, a=—————ei=——atT

at €;. (1.6)

In other words the components v? of v and @' of a relative to {e;} are given by

;  dxt ;  dvt di
VST YT @ T Tar .7
From (1.5) we have also

dr dr
V=7t—, a =-$2— (1.8)

Note. In the coordinate representations (1.6) and (1.7) it is important
that the origin o be fixed in & and that the basis {e;} be fixed in Z; for
all times ¢. If 0 and {e;} are time dependent, then the representations
become

; de; dxt
VeV Y e

dxt d d?; d3x} (1.9)
R=a0 2 by i DSy e,

dt dt de? de?

where v° and a° denote the velocity and the acceleration of the origin o.
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In the geometric interpretation a motion of p is just a curve in 5
and the velocity is just the tangent vector of the curve as defined in Section
47, IVT-2, the parameter of the curve being the time ¢. Recall also that in
Section 53, IVT-2, we defined the unit tangent s of a curve by using the arc
length parameter s or by normalizing the tangent vector v, viz.,

v v ds
§ = “V" ——-E', D——aT, (110)
where v = || v|| = (v - v)¥? is the norm of v. Rewriting (1.10) as
ds
V—DS—WS, (1.11)

we see that the velocity is just a vector which is tangent to the curve described
by the motion, and the norm of v is just the speed, i.e., the rate of change of
the arc length s relative to the time ¢.

Unlike the velocity v, the acceleration a is generally not tangent to the
curve traced out by p in a motion. Indeed, from (1.3) and (1.11), and by
using the Serret-Frenet formulas derived in Section 53, IVT-2, we have

2

_.dv 2 — s 2 .
a——d—ts+va¢n—dt2s+vxn, (1.12)

where » and n denote the curvature and the principal normal of the curve.
If % # 0, then a is not tangent to the curve. Since a does not have a
component in the direction of the binormal b of the curve, it must lie on
the osculating plane. We call the first term, (d%s/dt?)s, on the right-hand
side of (1.12) the tangential acceleration, and the second term, v?xn, the
normal acceleration or the centrifugal acceleration. The former is a vector
tangent to the curve; its norm is the rate of change of the speed, while the
latter is a vector normal to the curve on the osculating plane; its norm is
equal to v?/r, where r denotes the radius of curvature; i.e., r = 1/x.

The velocity and the acceleration are the basic kinematical quantities
of a motion; other kinematical quantities are derived from them. Specif-
ically, we define the linear momentum 1, the moment of momentum h (relative
to the fixed origin o), and the kinetic energy e by

l= mv, (1.13a)
h=rxl=mrxyv, (1.13b)
e = gmvd. (1.13¢)
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From (1.9) and (1.13) we then have

dl

'-—d';- = ma, (1143)
dh

e mrxa, (1.14b)
de dv

S = mv-a=m—-, (1.14c)

where we have used the condition that m is a constant independent of ¢.
Having defined various kinematical quantities for any motion of a
single particle p, we consider next kinematics of a system of particles.
Let &= {p*,a=1,..., N} be a finite set of particles. Then a motion
of &2 is given by {x*(¢),t€ P, ¢ =1,..., N}. As before we suppress
the argument ¢, and we define the set of velocities {v*} and the set of
accelerations {a*} by
« & Sy
v«:%’-‘t——, a“=%=%, a=1,...,N.  (L.15)
An important kinematical concept for a system of particles is the
center of mass. At any time ¢ in a motion of & the center of mass is the
point x° = x°(¢) whose position vector r* = x°* — 0 is given by

N
Y. mer* | X N
r==%——=—Y mry, M=) m, (1.16)
« M a=1 a=1
m
a=1

where m* and r* denote the mass and the position vector r* =x* — o
of p2, respectively. It can be shown easily that x° is determined uniquely
by the set of positions {x*} of &7 independent of the choice of the origin o.
Consequently we can regard x° as the position occupied by a fictitious
particle p°. As we shall see, it is convenient to regard the mass of p° as
being the total mass M.
Indeed, from (1.16) the velocity v° and the acceleration a°® of p° are
given by
1

N 1 X .
— agx c — xq® .
v Mc;lmv, a Ma;lma. (1.17)

As a result, the total linear momentum L of & is given by

N
L=Y m*v = Mv, (1.18)
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and its rate of change is given by

jfi—lt"— = ﬁl mea* = Ma°. (1.19)
Hence if we take the mass of p¢ to be the total mass M, then the total linear
momentum of the system is the same as that of p¢.

Representations for the total moment of momentum and the total
kinetic energy are somewhat more complex than the representation for
the total linear momentum. First, we define the position vector r*¢, the
velocity v*¢, and the acceleration a®¢ of p* relative to p° by

¢ =r* — = x* — X, VOO = y¥ — ¥°, a%° == a* — a-. (1.20)

From (1.17) the mass-weighted averages of r*°, v*¢, a*¢ all vanish:

N N N
Y maxse =Y mrvet = ) mra=c = 0. 1.21)
=1 =1 =1
Using these identities, we can express the total moment of momentum
H of % relative to o by

H= ﬁ mer* X v¥ = Mrexv® 4 i mer®°®x v%e, (1.22)
=1 a=1

The leading term on the right-hand side of (1.22) is, of course, just the
moment of momentum of p¢ with mass M. The next term can be identified
as the total moment of momentum of .9° relative to p°. Thus the total
moment of momentum of the system is the sum of two parts: the first part
being the moment of momentum of the center of mass and the second part
being the moment of momentum relative to the center of mass. Direct
differentiation of (1.22) with respect to time yields

dH

N
7 = Mr‘xat 4 Z mers¢x a%°, (123)

a=1

Representation for the total kinetic energy E of the system .Z” may
be derived in a similar way, and the result is

N
! Zm“v“-v“=—1—Mv°-v°+—l—

E='2‘a_l 2 2

N
Y meyse . ovee,  (1.24)

a=]

which means that E is the sum of the kinetic energy of the center of mass
and the kinetic energy relative to the center of mass. Differentiation of



Sec. 2 Lagrangian Mechanics of Particles and Rigid Bodies 7

(1.24) yields the rate of change of E:

dE y
5 = Mve - ac 4 Y mavee . ane, (1.25)
=1
So far, we have considered various kinematical quantities for a particle
or for a system of particles which are allowed to move arbitrarily in the
Euclidean space 57 Physically, of course, particles do not move arbitrarily.
Indeed, each motion of a particle is governed by certain laws of dynamics,
which we shall develop later. Not only that, motions of particles may be
constrained in a certain predetermined way; e.g., a system .2° may be
constrained in such a way that the distances

d(x*, xf) = || x> — x?|| (1.26)

remain fixed independent of time for all pairs p* and pf in & If & is
subject to such a constraint, then it is called a rigid system. For a constrained
system in general, since the positions x* may not be arbitrary, it is more
convenient to express a motion in terms of certain generalized coordinates,
which characterize the constraint and are allowed to be arbitrary. We shall
discuss the kinematics of constrained systems of particles as well as rigid
bodies in Section 3.

2. Kinematics of a Rigid Body

Unlike the mathematical model for a particle, which is a point p as-
signed with a positive mass m, a rigid body is characterized by a domain %%
in an oriented 3-dimensional Euclidean space and by a finite positive mass
measure u on . The total mass measure of ., viz.,

M= u(#) = |_du @1

is called the mass of %. A motion of & is defined by a 1-parameter family
of orientation-preserving isometries of % into & viz.,

xt, ) : F > te 29 2.2)
We call & a rigid body, since for an isometry the distances
d(p, q) = | x(t, p) — x(t, @) | (2.3)

remain constant for all pairs of points p, g€ & and for all times .
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We define the center of mass p° of % by requiring that
j > dy = 0, (2.4)
-

where r?-¢ denotes the position vector of a point p € . relative to p°, viz.,
2t =p — pr. 2.5)

Note. The condition (2.4) is equivalent to the condition (1.21a) except
that a rigid body generally contains infinitely many points, so the summation
in (1.21a) is replaced by the integration in (2.4). If we choose an arbitrary
origin o in the Euclidean manifold of &, then the position vector r¢ of p*
relative to o is given by

1
. D
=3 J ¥ du, (2.6)

where r? denotes the position vector of the point of integration p relative
to o; i.e.,
¥»=p—o. 2.7

To characterize a point p € &%, we may use a rectangular Cartesian
coordinate system (%) on .. We choose the origin of the coordinate system
at the center of mass p°, and we call the natural basis {f;} of (%) an imbedded
basis at p°. Then (2.4) has the coordinate form

J yidu =0, i=1,2,3, 2.8)
@

since the components of r?-¢ relative to {f;} are just the imbedded coordi-
nates (y%) of p; ie.,
P = y"f,;. (29)

In a motion {x(t, -), t € G2} of H¥ the mappings x(¢, -) are isometries
of & into 5”. Consequently the imbedded coordinate system (3?) is trans-
formed into a rectangular Cartesian coordinate system on the image
x{t, &) < .5 for each te 2. Not only that, the origin of (y¥) remains
the center of mass of % at time ¢, since the condition (2.8) still holds, and
the integrand y* is still the component of the position vector r? relative to
the origin. Furthermore, the imbedded basis is mapped onto an orthonormal
basis, which we shall denote by {f;} also, for the physical translation space
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77 1t is important to note, however, that the origin x° = x(¢, p°) in &
and the natural basis {f;} of (3*) in 27 both depend on time. As a resuit
when we calculate the velocity and the acceleration of points in % in terms
of (»), we must use the general formulas (1.9).

Specifically, for any p € % with imbedded coordinates (y?), the position
x? = x(¢, p) and the velocity v? = v(¢, p) are given by

df

XP = X° + rP¢ = Xx¢ - yif;, VP = vc+y57ti—. (2.10)

Here we have used the fact that for a particular point p € & the imbedded
coordinates (y?) are constants independent of 7. By using the fact that the
imbedded basis {f;} is an orthonormal basis in Z; we can express the
time rate df,/dt by

A _of @.11)

where [©2,] is a skew-symmetric matrix, since

daf, d af;, d .
Qii—fj'“at———d;'(f; )1 — —'3;‘(59‘5) Q= =8y
(2.12)
Consequently we can rewrite (2.11) as
df;
7 = wxf,, (2.13)
where w is given by
w = Qpf) — Qyafy + Lpfs = 3o 2ufi. (2.14)
Substituting (2.13) into (2.10), we obtain
VP = v + Xy, = v + wx1PL, (2.15)

This is the velocity representation formula relative to the center of mass.
The vector w, which is given explicitly by (2.14), is called the angular
velocity of the rigid body.

We can generalize the velocity representation formula to an arbitrary
imbedded origin g € .#. Indeed, from (2.15) for the point g, we have

LS LR A D g L (2.16)
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Subtracting (2.16) from (2.15), we get
VvV — vl = w X (r?° — 1%%) = w X P9, 2.17)
where 1?7 is the position vector of x(z, p) relative to x(t, q); i.e.,
7 = x(t, p) — x(t, q). (2.18)
Transferring the term v¢ in (2.17) to the right-hand side, we obtain
VP = v¢ 4 wX P, (2.19)

This is the velocity representation formula relative to the arbitrary point
g€ . From (2.19) we see that the angular velocity w is independent of
the imbedded origin used in the velocity representation.

From the preceding analysis we see that a motion of a rigid body &
may be characterized by the list {x°,f;,i = 1, 2, 3}, which can be viewed
as a moving frame in space. At any time ¢, x°¢ is the position of the center of
mass of & in x(t, &), and {f;} is the position of the imbedded basis at-
tached to x°. Given the list {x¢, f;, i = 1, 2, 3} we can determine the position
of any point p € & with imbedded coordinates (y?) by (2.10) and, then,
we can calculate the velocity of p by the formuila (2.15).

Now to characterize the list {x¢, f;} we may refer to a fixed rectangular
Cartesian coordinate system (x?) with origin o and natural basis {e;} in &
Specifically, x¢ is just the position of a moving point, so it can be charac-
terized by the coordinates (&%), viz.,

x¢ = 0 + fle;, (2.20a)
_ g
v=—re, (2.20b)

as in the preceding section. As far as the moving basis {f;} is concerned,
we can use the component representation

£, = 08, :21)

where [Q;;] is a rotation matrix. The collection of all rotation matrices
form a continuous group 7@ (3). As explained in Section 63, IVT-2,
S@(3) is a 3-dimensional compact manifold in the 9-dimensional Euclidean
space ZP* of 3x3 matrices. In particular, it takes three coordinates to
characterize a particular [Q;;] in S”@(3). Of course, there are many co-
ordinate systems on the manifold 2 (3).
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Coplanar sets:
fe 60 6.7}
b5 e}
{él' fl'-e_2' f2 }

Figure 1.

One coordinate system, called the Eulerian angles (6% i=1,2,3),
is defined as indicated in Fig. 1. Specifically, {€;} is obtained from {e;}
by a rotation of 6' about the axis e,, viz.,

g, cosf' sin ' 0\ /e,
& | =| —sin0 cosf* O}le,]. (2.22)
g 0 0 1/ \e;

Similarly, {&;} is obtained from {&;} by a rotation of 62 about the axis
&, viz,,

&, cosf? 0 —sin 62\ /&,
& | = 0 1 0 & . (2.23)
&, sinf? 0 cosB?/ \§,

Finally, {f;} is obtained from {&;} by a rotation of 6% about the axis
8,, viz.,
f, cos6® sin6° 0\ /&
f,] = —sin6® cos6® 0][&}. (2.24)
fs 0 0 1/\&
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Combining (2.22)-(2.24), we see that the bases {e;} and {f;} are related by

f, cos 6% sin 6® O\ fcos0? 0 ~—sin 62 cos 01 sin 6 0\ /e,

<t‘a) = (—sin 0 cos?® 0)( 0 1 0 )(—sin 0 cos 0! 0) (ez) , (2.25a)
fy 0 0 1/ \sin 62 0  cos 6? 0 0 1/ \eg

or:

cos 0 cos 02 cos 0® — sin 1 sin 02 sin §*cos 02cos 07 + cosB'sin 63 -sin 62cos 6°
—cos 01 cos 0%sin 6% — sin 61 cos * —sin B1cosB2sin 6* + cos 0 cos §° sin 62sin 03
cos O'sin 62 sin O sin 62 cos 62

2

where the coefficient matrix on the right-hand side is just the matrix [Q;]
in (2.21). Thus (2.25) gives a representation of a rotation matrix [Q};]
in general in terms of the Eulerian angles (6%).

We can obtain the angular velocity w by using the formulas (2.11),
(2.14), and (2.25). It is more convenient to differentiate (2.25a) with respect
to ¢ first by the product rule, and then changing the basis from {e;} to {f;}
by the inverse of (2.25a). Notice that for an orthogonal matrix the inverse
is just the transpose. The final result is

w = oif;, (2.26a)
= o'f; + 0¥, + o, (2.26b)
= (—6"sin 62 cos 62 + 62 sin 6%)f, 4- (61 sin 62 sin 63 4 62 cos 63)f,

+ (61 cos 62 + 63)f,, (2.26¢)
= @1(—sin 62 cos 03, + sin 62 sin 6°f, + cos 67f,)

+ 62(sin 63f; + cos 63f,) + 6%, (2.26d)
= fe, + 6%, + 6%,. (2.26¢)

Note. The last line above, (2.26e), follows directly from the dif-
ferentiation of the three matrices in (2.25a) by using the product rule. In
the physical interpretation (2.25a) is called the multiplicative decomposition
of a finite rotation, while (2.26¢) is called the additive decomposition of an
infinitesimal rotation.

We can rewrite the component form (2.26c) as

w! —sin 62cos®® sin 62 0y /6
<w2> = ( sin 0% sin 6% cos6? 0)(62> 2.27)
w? cos 6* 0 1/\é
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or, more compactly,
! = Wiigs, (2.28)

where [W#] denotes the coefficient matrix on the right-hand side of (2.27).
The matrix [W¥] is not orthogonal; it is nonsingular when 62 is not an
integral multiple of =.

Summarizing the results, we see that a configuration of . % (i.e., an
orientation-preserving isometry of % into .5°) can be characterized by six
parameters (&, 6% i = 1,2, 3), which determine uniquely the position of
the moving imbedded frame {x°,f;, i = 1, 2, 3} relative to a fixed frame
{o,e;,i=1,2,3} in space. In any motion of % the parameters (&, 6°,
i=1,2,3) are generally functions of time. From these functions we can
calculate the angular velocity w by (2.26) or (2.27), and then the velocity
of an arbitrary point p ¢ .% by (2.15), with v¢ given by (2.20b). As before
the velocity is the basic kinematical quantity, from which we can derive
various other kinematical quantities.

Specifically, the linear momentum L is defined by

LEJ vpdyzj (v + X duy = Mv°, (2.29)
R4 @B

where we have used the basic condition (2.4) for the center of mass. The
result (2.29) is similar to the formula (1.18), except that & is generally
formed by infinitely many points. As before the rate of change of the linear
momentum is given by

aL J a? du — Mac. (2.30)
dt @
The moment of momentum H relative to the fixed origin o in space
is defined by

HEJ PX VP du =J P X (Vv + w X %) du
K &

:Mﬁxv°+J 2 X w X 1P du, (2.31)
&

where we have used again the basic condition (2.4). The formula (2.31)
is similar to the formula (1.22). Indeed, the first term is just the moment
of momentum of the center of mass assigned with the mass M, while
the second term is the moment of momentum relative to the center of
mass. This second term can best be calculated by using the imbedded
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coordinate system,
J X WX du = “ (fy*éy — yiyd) dy]wjfi = [iwif;,, (2.32)
@ e

where w? denote the components of w relative to {f;} as shown in (2.26).

Since the imbedded coordinates (3*) are the components of the position
vector relative to the center of mass, from (2.32) we see clearly that the
matrix [I¥] is the component matrix of a certain second-order tensor‘®
I over the translation space of the Euclidean manifold of .. Specifically, I
is given by

1— j (7 21 — 1o ® 1) dy, (2.33)
K4

where 1 denotes the identity tensor.®? We call I the inertia tensor of %%
relative to the center of mass p¢. It is easily seen that I is a symmetric tensor.
From the Schwarz inequality (cf. Section 12, IVT-1) and from the assump-
tion that u is a positive measure, we can show that I is positive definite.
Indeed, the quadratic form of I is given by

. jﬁ (7 2 u 2 — (1 - )] d >0 (2.34)

for all nonvanishing vectors u in the translation space of the Euclidean mani-
fold of #. Using the inertia tensor I, we can rewrite the formula (2.31) as

H = Mrx v + Iw, (2.35)

where the component form of Iw is given by (2.32).
We can calculate the rate of change of H directly from (2.35),

dH

. d
Fraa Mréxa® 4+ ar (Iw), (2.36)

where the second term on the right-hand side can be derived in the follow-
ing way: From the component form (2.32) and the formula (2.13) we get

d . da . df;
—— = %, : 2 J :

- (w) = I 7 f, + I'w 7 (2.37a)
- dew? s

= J¥ - f; + w X I, (2.37b)

= I® + wxIw, (2.37¢)

® In this chapter the symbol I denotes the inertia tensor, while the symbol 1 denotes
the identity tensor. Elsewhere, I denotes the identity tensor.
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where in the last equation, (2.37¢), we have used the fact that

. dw  dw C o, do .
C="G = hte g =g it exek

dot dw?

——d;—fi-‘!-wxw———d;—‘fi. (2.38)

Substituting (2.37) into (2.36), we obtain

idl.;l_ = Mrxa® + 6 + wxIw. (2.39)

Next, the kinetic energy E is defined by

| sivira=]

-;—M I ve |2 + _12_ w - lw, (2.40)

E 1

I

(v + X179 - (v + o X1P% du

Nl

where we have used (2.4) and (2.33). This formula is the counterpart of
the formula (1.24). From (2.40) we can calculate the rate of change of E by
Z—szv”-ac+-;—d)-lw+—12—w-—jt—(lw)=Mv”-a”—|—w-Id),
(2.41)

where we have used (2.37) and the symmetry of L

As remarked in the preceding section, the kinematics is developed
here for a rigid body which is free of any constraints, so the six parameters
(&,0%,i=1,2,3) are independent and arbitrary. If certain constraints
are imposed, then the parameters are no longer independent. In that case
we may replace the parameters by a set of generalized coordinates, which
are independent and are allowed to be arbitrary. We shall develop the
kinematics of constrained systems of particles and rigid bodies in the
following section.

3. Kinematics of Holonomic Systems of Particles and Rigid Bodies

We now consider a system
@ = {p*, B, 0=1,...,N,=1,...,K} 3.1

consisting in N particles and X rigid bodies. To characterize a configuration
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of @, we use N lists of coordinates (x*?) for the N particles and X lists of
parameters (&%4, 08.%) for the K rigid bodies, all referred to a fixed rec-
tangular Cartesian coordinate system (x*) on 5, defined by the origin
o and the coordinate basis {e;}. In any motion of & the quan-
tities (x=?, &A% 66:%) are all functions of time. Before imposing any con-
straints on &, we can regard a configuration of @ simply as a point
in GP x GP3K x @ (3)K, which is a manifold of dimension 3N + 6K
in the Fuclidean space G23V x 993K x 9P%K Hence we call the manifold
P3N GPRE PP (3)K the free configuration space of &, and we regard
(x~3, &8-%, §7.%) as the standard coordinates on the free configuration space.
We define a time-independent holonomic constraint on @ by a smooth
surface .# in the free configuration space, and we require that the con-
figuration of & be constrained to stay in.#. Hence we call .# the constraint
configuration space of ¢Z. The dimension n of .# is then called the number
of degrees of freedom of the constrained system. As explained in Section 68,
IVT-2, we can characterize the constraint surface .# by a system of algebraic
equations
X%t = (pa,i(ql’ R qn)’
Eﬂ,t — wﬂ”l(ql’ trt qn)7 (3'2)
08¢ = LPNg', ..., g™,

where @1, w83 [F7 are certain smooth functions, and where ¢, ..., ¢"
are certain surface coordinates in .#. Using the representation (3.2), we
can identify a point in the constraint space .# by (¢¥). Hence we call
(g4, A =1, ..., n) the generalized coordinates for the constrained system
@. Since the configuration of & must stay in .#, a motion of & may be
described by a system of equations of the form

g = q4(t), A=1,...,n 3.3)

By using the convention as explained in the preceding two sections,
we suppress the argument t and denote the motion of & simply by (g4).
We shall now develop the kinematics of the constrained system & in detail.

We remark first that since the dimension of .# is n, the generalized
coordinates (¢4) must be independent, i.e., the tangent vectors of the
coordinate curves of (g4) must be linearly independent and span a vector
space of dimension » at any point of .#. Specifically, let q be a point in ./#.
We denote the tangent vector of the g4 coordinate curve at ¢ by h(q).
Then we define

Mo =spanfh,q), 4 =1, ..., n}. 3.4)
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Since {h,} is a linearly independent set, .#, is an n-dimensional vector
space, called the tangent space of 4 at q.

The tangent space .#,, which we have just defined, is a very important
concept, so we now explain the details of the steps leading to its definition.
First, the free configuration space F7P3Y x 993K x SP@(3)X is a smooth
surface in the Euclidean space 993N x 993K x 999K As usual, we use the
standard Cartesian coordinate system (x*?, &%, Q%). Then the equation
(2.25) defines the free configuration space 993 x B9 x @ (3)K <
TPIN  OP3K  FP9K in terms of the surface coordinates (x4, £8:¢ 66%). The
tangent vectors of the coordinate curves of x=%, &%% and 6%¢ are linearly
independent in G73Y x GP3K x 99K and span a tangent space of dimension
3N + 6K at each point of P x DR x F (P (3)K.

Similarly, the system (3.2) defines the constraint space .# < G93Y
X GP3K  SF(@(3)K. The tangent vectors of the coordinate curves of (g4)
are linearly independent in the tangent space of G7%Y x GP3K x F (@2 (3)K
and span a tangent space .#, at each point q in.#. Of course, we can regard
# as a surface in the Euclidean space 993N x 993K x GP°K also. Then A,
is an n-dimensional subspace of G23Y x SP3K x GP9K 1t should be noted,
however, that the subspace .#, depends on the point ¢ € .#. Indeed, if
q and § are two different points in .#, then generally .#, 7= .#5.

If we denote the tangent vectors of the coordinate curves of x*%, &6.%
and 65% by u,;, v ;, and wg,;, respectively, then the system (3.2) gives
the following component formula for the tangent vector h, in terms of the
basis {u, ;, Vg i, Wg,;}:

D Db I

h,= o7 u,; + oq7 Va,i + e Ws.i, (3.5)

where the repeated indices (@, i) and (B, i) are summed over their ap-
propriate ranges: «, 1 to N, 8, 1 to K, and i, 1 to 3. The condition that
(h,} is linearly independent corresponds to the requirement that the
(3N + 6K)x n coefficient matrix

[ R L T
dq4 > dq4 ° 0g°

in (3.5) has rank n at each point q € .#. This condition is the same as the
condition of independence in multivariable calculus for the parametric
representations of x=¢, &4 and 65! by (g4) as shown in (3.2).

Now consider a motion of & given by (3.3). As explained in Section 1,
we can regard such a motion as a curve in .#. The tangent vector of the
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curve is a vector € .#, with component form
. dg*
() (3.6)

relative to the natural basis {h,} at q. In (3.6) the repeated index A is
summed from 1 to n, of course. We call the tangent vector ¢ the generalized
velocity of the motion. This vector is the basic kinematic quantity for the
system &@.

From the vector ¢ we can derive various other kinematical quantities
for the particles p= and for the rigid bodies %” in the system €. Specifically,
from (3.2a) the ordinary velocity v* = v*'%e; of p* is given by

a(pa,i dqd
aq? dt°

v“ni =

3.7

which means that v=is the image of § under a linear map grad @*: #, — 7,
viz.,

ve = [grad @=](4). (3.8)

The component form of this linear map relative to the bases {e;} in 7~
and {h,(q)} in .#, is given by (3.7). Similarly, the ordinary velocity V?#
= V#ie; of the center of mass p#° of the rigid body #” is given by

 oyhi g
Vi — a'/;‘: L (3.9)

which again means that V# is the image of @ under a linear map grad *:
My— 7] viz.,
V8 = [grad ?)(4). (3.10)

Finally, the rate of change of the Eulerian angle 8¢ of the imbedded basis
{f;?} of ¥ relative to the fixed basis {e;} is given by

gkt dg4

98,8 o
b dg4 dt

(3.11)
Now by using the transformation (2.28), we obtain the angular velocity
wf = whiff of FB* by

o8I dg4

8. — WBHBIT = WBY A _
w W B.iif W 37 di

(f not summed) (3.12)

which means that the angular velocity w? is the image of 4 under a linear
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map W#o grad §f: My — 7] viz.,
wf = [WF o grad 4F)(q). (3.13)

Having obtained the velocities v, V4, and the angular velocities w?
in terms of ¢ for all particles and rigid bodies in the system &, we can use
the results of the preceding two sections to determine other kinematical
quantities. As we shall see, the total kinetic energy E of ¢Z turns out to be
a very important kinematical quantity in the derivation of Lagrange’s
equations. Therefore we now derive a representation for E in terms of 4.

First, from (1.13c) and (3.7) the kinetic energy e* of p* is given by

ea_—l_ . a(pa,i a(pa,i dqd qu
=3 "™ Toq4 “aqF dr Tt ’

a=1,...,N, (3.14)

where m* denotes the mass of p*. As we have indicated in (3.14), ¢ is a
free index. The representation (3.14) shows clearly that e= is given by a
quadratic function of §. Next, from (2.40), (3.10), and (3.12) the kinetic
energy Ef of &8F is given by

1 dyhi  Qybi I

b= __ ;S S Bij 2 IBikpyB.kl
B = | MO g g T WP S 1w

60""] dg4 dq”

aqr | dt dt’
(3.15)

where f§ is a free index, i.e, =1, ..., K, and where M# and I%%¥ are

the mass and the inertia tensor relative to the center of mass of #%. The
total energy F is then given by the representation

_ 1 . a(pa,i a(pa,i p awﬂ,i awﬂ,i
E=5|m g4  dq’ +M dg4  dq”
. aCﬂ,j ) acﬁ,l qu dq”
B,ij B,ik 13/ 8.kl
W dq mew aq” ] dt dt
1 dg4 dq”

7&11*“27“ a0 (3.16)
where all the repeated indices are summed over their appropriate ranges:
a, L toN; B8, 1to K;i,j,k,I,11t03; Aand I, 1ton The formula (3.16)
shows that in general E is given by a quadratic function of 4.

The coefficient matrix [g ] on the right-hand side of (3.16) is a function
of position q € .4 and possesses some very important properties:

(i) [g4r]is symmetric;i.e., g,r=28r4,4, I'=1, ..., n. This property
follows directly from (3.16) and the symmetry condition of the inertia tensor.
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(ii) [g4r] is positive definite; i.e., g, m4n" > O unless #4 = 0 for all
A=1,...,n This property is a consequence of the facts that m* and
M?# are positive, that [I57] are positive definite (or, equivalently, that
[W8.i][B. kW B8.kL) are positive definite, since [W#.¥] are nonsingular), and
that {h,} is linearly independent. Indeed, from (3.16) the quadratic form
g4m“n’ can be rewritten as

garnnt = meAnij%t - MBybP.ixbi  WEUIA kY BkBIrAl  (3.17)

where
a(pa,i
dg4

8,1 8,1
O s, ehi— aai/] w4, (3.18)

dq4

Qi —

4, wbi —
By using the facts that m* and M?# are positive, and that [W8. ¥[8k 8.kl]
are positive definite, we obtain from (3.17) the result g, 59" > 0, unless
(A1, 2P, ¥8.%) al] vanish. Now by virtue of the fact that {h,} is linearly
independent, the matrix

dp=i  dypi  Arhd
[ aqd ’ an 4 aqd ]

has rank n. Consequently, from (3.18) (A=f, %% 1#%) all vanish if and
only if (»4) all vanish. Thus the proof of (i) is complete.

(iii) Under a change of generalized coordinates the matrix [g,,]
transforms according to the transformation rule of the component matrix
of a second-order covariant tensor. To prove this property we consider a
change of coordinates from (g4) to (§4) on .#. The coordinate transforma-
tion is given by

g4 = q4g' ..., qm, g4 = g4q*, ..., q"), A=1,...,n. (3.19)
Substituting (3.19) into (3.2), we obtain the system

x5t = q—?a,i(q'l’ DRI ‘7"),
&b = ghiGL, ..., "), (3.20)
68 = LB, ..., g™,

which characterizes # in terms of (§4). The matrix [§,,] relative to (§4)
can be obtained from (3.16) by replacing ¢=t, w#i (A% and g4 by §=i,
hi, £Pi and G4, respectively. But by the chain rule based on (3.19) the
partial derivatives of the functions gp=i, §=i, yf.i, i, (8.1 £8.i are related by

g . A=t AT ophi _ P aq” ks _ acki dgr
0g4 — 0q" 8§4° 0g4 ~ 0q" 944’ 0¢4  aqF 94’
3.21)
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Substituting these relations into the definition for g, and g,,, we obtain
immediately

gAF = gAE aq-d aq—p . (3'22)

Thus the proof of (iii) is complete.

The preceding three properties are equivalent to the assertion that
[g4-(q)] is the component matrix of an inner product g(q) on the tangent
space .#,. Since [g,(q)] depends smoothly on g4, the field g is a Rieman-
nian metric on the manifold .#. We call g the inertia metric. From (3.16)
the total energy E of 2 is just % ||  [|g% where the norm is taken relative
to the inertia metric g, viz.,

I4le® = g @- (3.23)

Asexplained in Section 56, IVT-2, the metric g gives rise to an operation
of covariant derivative, which enables us to take the covariant (time)
derivative of a vector field along any curve in .#. In particular, it becomes
meaningful to take the rate of change of the generalized velocity ¢ along
the curve q = q(¢). This time derivative corresponds to the generalized
acceleration, which we have not yet defined in the context of the constrained
system @,

So far, we have developed the kinematics of a constrained system &
subject to a time-independent holonomic constraint. A more general type
of constraint is a time-dependent holonomic constraint, which is defined by
a moving surface .# in the free configuration space. To characterize £,
we use a system of algebraic equations of the form

xa,i — (pa,i(ql, cees qn’ t)’
Ehi=ybi(gl, ..., q" 1), (3.24)
65 = BYg, ..., q" 1),

where the functions @?, 9% (¢ may depend explicitly on t. We can

represent a motion of & still by the system (3.3). However, the curve
q = q(¢) now lies in the manifold

A= 4, (3.25)

te SR

which generally has dimension »n + 1.
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We define the tangent vector h, of the g4 coordinate curve again by
(3.5), but we need also the vector

a(pa,i
ot

b acsi
'gt vf,,i+-—§-t—wﬁ,i. (3.26)

“a,i +

lln+1 =

The tangent vector of the curve q = ¢(¢) now has the component form

. dg4
Q=h, (3.27)

We call 4 the generalized velocity again. From q we can calculate the velocity
ve = puie; of p* by
a(pa,i qu a(pa,i

A P ar ’ (3.28)
the velocity V8 = Ve, of the center of mass of % by
_ OyPt dgd 9yl
ﬂ)l =
v A e (3.29)
the rate of change of the Eulerian angle 65:¢ of 994 by
. OCPY dgt aget
ﬂ"’ ==
6 9 i 5 (3.30)
and, finally, the angular velocity w?f = w?f,f of % by
. L 1 OLPI dgd QLA
B = WBiEBI — Whi
whi = WA — W f( i = ) (.31)

In the regular case when A has dimension n -+ 1, the set {hy, ...,
h,,h,,,} is linearly independent and forms a basis for the tangent space
My. Then ge 4, and we can regard (3.28), (3.29), and (3.31) as the
component forms of certain linear maps from ai., to 77 sending q to the
vectors v%, VA, and w?, respectively. We can regard ¢ as the generalized
coordinate g+ on .4, Then a motion of @ is given by a curve in .# having
the special coordinate form

g4 =qi(t), =1t (3.32)

In this sense the formulas (3.27), (3.28), (3.29), (3.30), and (3.31) are the
same as (3.6), (3.7), (3.9), (3.11), and (3.12), respectively, when the sum-
mation on 4 is extended to (n + 1). In particular, the total energy E is
still given by (3.16) except that 4, I" are summed from | to (n + 1).
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4. Dynamical Principles for Particles and Rigid Bodies

In the preceding three sections we have considered motions in general
for particles and rigid bodies. In classical mechanics motions of particles
and rigid bodies are regarded as results caused by forces and moments and
are governed by certain principles of dynamics. We develop first the dy-
namical principles for a particle p.

When p undergoes a motion x = x(¢)€ .5, a force system acting
on p is just a vector f = f(¢t) € 7 assigned at the position x(¢) for each
t € 2. Unlike a kinematical quantity, a force is actually a vector defined
directly in the instantaneous space and is, therefore, independent of the
choice of any frame of reference. If a particular frame of reference is used,
we can represent the force by a vector in the translation space of the frame.
However, since the representation of the instantaneous space by the physical
space of the frame is required to be an isometry, the magnitude of the force
remains invariant under any change of frames. Therefore if the force vanishes
relative to any one frame, then it vanishes relative to all frames. Clearly,
the velocity or the acceleration do not enjoy such an invariance property.
Indeed, given any motion {x,, 7€ &} in the Newtonian space-time &
we can always reduce the velocity and the acceleration to zero by choosing
the origin of the frame at x,, T € &. Relative to some other frames, the
velocity and the acceleration of this motion need not vanish of course.

We now state the dynamical principles for a particle.

Newton’s First Law, There exists a particular frame of reference,
called an inertial frame, relative to which the linear momentum of a particle
remains constant when the force acting on the particle vanishes.

As remarked before, the condition that force vanishes is independent
of the choice of the frame. Consequently, the condition that linear mo-
mentum remains constant under vanishing force can be used as a criterion
for an inertial frame, and Newton’s first law merely asserts the existence
of such a frame. An inertial frame is not unique, of course. We shall now
choose a particular inertial frame as the frame of reference.

Newton’s Second Law. Relative to an inertial frame the motion of a
particle satisfies the following equation of motion:

d
7t_|(t) =1(t), te® 4.1)
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Clearly this principle is consistent with the first principle, since from
(4.1) f = 0 implies 1 = const. This remark does not mean that the first
principle is a consequence of the second principle, however, since without
the existence of an inertial frame, the equation of motion is meaningless.
In fact the two sides of (4.1) cannot possibly be equal in all frames,
since the right-hand side is frame indifferent, while the left-hand side
is not.

From (1.14) the equation of motion (4.1) can be rewritten as

ma(t) =m %g)— = (1), te 22 “4.2)

Relative to the fixed rectangular Cartesian coordinate system (x!) in 5,
(4.2) corresponds to a system of second-order differential equations

240%,
m%tgz—=fi(t), te®,  i=1,23, (4.3)

for the coordinate functions xi(¢) of the motion. We can solve the system
(4.3) and determine xi(¢) when fi(¢+) and certain initial values of xi(¢)
are known. In applications fi(¢) are not always known, however. For
example, the particle p may be an element in a certain constrained system.
Then the force f is the resultant of a certain known external force and a
certain unknown constraint force. The value of the latter may be determined
by the condition that the coordinate functions xi(z) satisfy the constraint.
For such problems it is more convenient to characterize the motion by the
generalized coordinates. We shall derive the equations of motion in terms
of the generalized coordinates in Section 5. These equations are Lagrange’s
equations.

Having developed the dynamical principles for a particle, we consider
next the same for a rigid body. Unlike a particle, a rigid body in general
may be acted on by a force system consisting in a resultant force F =
F(t)e 7 and a resultant moment G = G(¢) € 7 relative to the center
of mass at each t€.22. As before both F and G are independent of the
frame of reference. Hence in order that F and G may be related to certain
kinematical quantities, a particular frame must be used.

We now state the dynamical principles for a rigid body .#.

Euler’s First Law. Relative to an inertial frame the rate of change
of the linear momentum of .# is equal to the resultant force acting
on #.
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We can express this principle by the linear momentum equation:

d
—LO=F(1), 1e (4.4)

Clearly, this equation is consistent with the equation of motion (4.1).
Using (2.30), we can rewrite (4.4) as
dx(t)

Ma‘(t) = M—-‘-l—;—z—-— = F(t), te 2p, 4.5)
which has exactly the same form as (4.2). Thus the motion of the center of
mass of a rigid body is just like that of a particle with mass M and acted

on by the force F.

Euler’s Second Law (fixed-center-of-moment version). Relative to the
origin of an inertial frame the rate of change of the moment of momentum
of .# is equal to the total moment r*xF 4 G acting on .#.

We can express this principle by the moment of momentum equation
(relative to the fixed origin) '
dH

where the first term on the right-hand side denotes the moment of the
resultant force relative to the origin, and the second term denotes the
moment (a couple) relative to the center of mass. From (2.36) and (4.5)
we can rewrite (4.6) in the form

% (Iw) = G. 4.7

This equation is also called the moment of momentum equation (relative
to the center of mass), and it can be stated as Euler’s second law.

Euler’s Second Law (center-of-mass version). Relative to the center
of mass the rate of change of the moment of momentum of 2% in an inertial
frame is equal to the total moment G acting on #.

Substituting (2.37) into (4.7), we obtain

Io + wxIw =G. 4.8)
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In component form relative to an imbedded basis {f;} at the center of mass
this equation is given by

do’

ij
I dt

L gitkgyiMgl — Gi, i=1,23. 4.9)

In particular, if {f;} is taken to be a principal basis of the inertia tensor I,
then (4.9) reduces to

dw?
L—- = (I~ L)oo’ = G,
2
1, %“;— — (I — L)oo = G2, (4.10)
dw?
Ia_d—t— — (I, — L)w'w? = G5,

where I, I,, I, are the (positive) proper numbers of I. The equations (4.10)
are Euler’s equations.

Relative to a fixed rectangular Cartesian coordinate system (x*) in &
the linear momentum equation (4.5) corresponds to a system of second-
order differential equations

M dr?

=F{r), teZ, i=123 (4.11)

where the components of F are taken relative to the fixed coordinate
basis {e;}. These equations govern the first three parameters, &', £2, &2
of the motion of & as functions of .

Relative to the same fixed coordinate system (x*) the moment of
momentum equation (4.8) corresponds to a system of second-order dif-
ferential equations

d26%

i k
+ eif'Wf11f8W8k> J‘SZ— idf’t_ =G, (4.12)

; QW
36!

where I/, G, and W7 are taken relative to the imbedded basis {f;} at the
center of mass. These equations govern the last three parameters, 6, 02, 63
of the motion of & as functions of .

Like the system (4.3), the systems (4.11) and (4.12) can be used to
determine the motion provided that Fi(r) and G¥(¢), and certain initial
values of £(¢) and 6%(¢), are known. Such is not the case, however, when . %
is an element of a constrained system. The reason has been explained before,
since the constraint force and moment acting on . # are generally not known
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a priori, and their values are determined by the condition that the parameters
£i(¢) and 6'(¢ ) satisfy the constraint. As we shall see in the following section,
under certain assumptions this difficulty can be overcome by using the
generalized coordinates and their governing Lagrange’s equations.

5. Lagrange’s Equations for Constrained Systems

The concept of a constrained system & consisting in particles {p*}
and rigid bodies { 9%} was introduced in Section 3. We have shown that
a motion of € can be characterized by the system (3.3), ¢4 = g4(¢), and
we have defined various kinematical quantities in terms of g4(¢z). When
the generalized coordinates g4(¢) are determined, the standard coordinates
x»i(t), EBi(t), 68.i(t) are given by the constraint equations (3.2) or (3.24).
In this section we shall derive the dynamical governing equations for the
generalized coordinates ¢g4(z). These equations are known as Lagrange’s
equations.

The starting point of the derivation for Lagrange’s equations is the
equations of linear momentum (4.3) for p* and (4.11) for %% and the
equations of moment of momentum (4.12) for #%. These equations govern
the dependence of the standard coordinates x=¢ £8.i §6.% on time in the
free configuration space ZP3F x . GP%E x P (3)X. As remarked in the
preceding section, for a constrained system the forces acting on the elements
of the system generally are the sum of a known external part and an un-

known constraint part. Hence we write the governing equations of p*
and Z#* as
d2x1,i

m* dtz — j'eac,i _+_ f'caz,i’ (5'1)
dz2ghi ) ) )
M# —— = Fi = Fpi + FP, (5.2)
. _ d8.k . OWBIE . , dos.t  dpsk
B, W B,Ik By yr Bl s Wwesk o
135w o +(1 Sgp T+ ST WEIIBRW ) o %
= Ghi=GAli+ GSi (5.3)

wherea=1,...,n, g=1,...,K, and i = 1, 2, 3 are free indices, while
/. k, 1, r, s are dummy indices summed from 1 to 3. The subscripts ¢ and ¢
of f=i, FAi and G»' denote the external part and the constraint part,
respectively. We shall do away with these cumbersome notations as soon
as we have obtained the governing equations for the whole system &.
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Now we multiply (5.1) by de=>%/dg4, (5.2) by oy /g4, and (5.3) by
Wh.ik 38.2[3g4, and then sum the results with respect to all repeated
indices over their appropriate ranges, obtaining
awm,i d2xaz,i awﬂ d2£ﬁ i

aLob  digek
_ - 8,1 B,ih Py 8,5k -
9 —ar Mg g TIMIWRRWRR o =

3

. gWB.Ik . ] N YL A (T
B, wJr W/ B, 3Ly B, rs W/ B, sk B,ih
+(’ ggaT T ETWAITERW )W 37 &
_ Ot L gy 8., 8,k agh 8.i op™' .
- an .fe + qu_ Fe + /4 q G + an f‘c
8,1 8.h
+624P%“%Wﬂh%; G4, (5.4)

where 4 = 1, ..., n is the only free index. Since x=%, £3-% 657 can all be
expressed in terms of the generalized coordinates g4 through the constraint
relations (3.24), by using the chain rule we can regard (5.4) as a system of
second-order differential equations in g4(¢). These equations will determine
g4(t) as functions of ¢ provided that the right-hand side be a certain known
function of z.

Notice that the right-hand side of (5.4) is the sum of an external part
and a constraint part. We now assume that the constraint part in (5.4)
vanishes; i.e.,

,8 B.t
___f;m,i__l_ a(,;qu Fcﬁyi_*_ Wﬂ,ih

B,k
G = (5.5)
for each 4 = 1, ..., n. Under this assumption, the right-hand side of (5.4)
reduces to the external part only and is generally a certain known function.

It should be noted that the assumption (5.5) does not require that
the constraint parts f,»i, F,8.%, G5 of the force systems on the individual
elements p=, F* of @ be equal to zero separately. Indeed, there are 3N + 6K
components of constraint forces and moments in (5.1)-(5.3) but there are
only n equations in the system (5.5). Since the coefficient matrix of (5.5)
has rank » (this condition corresponds to the linear independence of the
tangent vectors {h,} of the g4 coordinate curves as explained in Section 3),
the vanishing of the sum in (5.5) implies the vanishing of the components
f4 Fpi GA4if and only if n = 3N + 6K. In that case, the constraint
surface £ is just the free configuration space, SP3V x GP3K x F@(3)K,
as it should be, since the vanishing of the individual constraint forces
means literally that the system is free.
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When n << 3N + 6K, the assumption (5.5) may be interpreted in the
following way: For a fixed time ¢, and position q, € £ we call any smooth
curve q(t) € £ passing through q, a virtual displacement from q,. Since
q(7) is required to stay in .#£%, we say that the virtual displacement is
consistent with the constraint. We claim that the condition (5.5) is satisfied
at q = q, and at ¢ = ¢, if and only if the total power of the constraint
forces and the constraint moments vanishes identically at the point q,
in all virtual displacements from q,. The truth of this claim is more or less
obvious. Indeed, the power P.(t) of the constraint forces and the constraint
moments in any virtual displacement q(z) is given by

dx“‘ i ; d&B
+ FS dr

P, = fxi (5.6)

But since the virtual displacement g4 = g4(7) belongs to .#£%, from (3.23)
we have

x%i(z) = ¢*i(g4(z), 1o),
£0i(7) = ¢#¥(g4(x), 1o), N CN))
05:i(z) = LPi(g(x), o).

Substituting (5.7) into (5.6) and evaluating the result at q,, we get

dg*
(Gp, to) dT

O G agﬂ.h>

Pelag = (fc ' o0q4 aq4

(lo

(5.8)

Consequently P, |, = 0 for all directions (dg4/dz) |,, if and only if (5.5)

holds at (qq, %)- This result shows that the assumption (5.5) asserts that

the constraint surface #'% is frictionless. Under this assumption, the right-

hand side of (5.4) is determined entirely by the external forces and moments.
We define

o, a(p .1 awﬂ’i B,/ B.ih acﬂ'h
Q,=fm + FH g+ G

, =1,...,n.

(5.9)

The significance of these quantities can be seen easily from the power P,
of the external forces and moments in the virtual displacement considered
before. In fact, by using the argument leading to (5.8), we now have

| fui 99 B8,i oyP B.i /B, ik —aCﬂ.h ) "
Pl = (fe a3 + F 0q4 + GO W 99 /l(apte 97 la,
dq?
_ 5.10
Qs lcao. 0 ran (5-10)
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Since (dq4/dr) |, are the components of the generalized velocity of the
virtual displacement in .#% at q,, the formula (5.10) requires Q, to be
the components of a generalized force. Indeed, from (5.9) we can prove
easily that Q, satisfy the transformation law of the components of a covar-
iant vector under a change of generalized coordinates on the instantaneous
constraint surface .£%. As before let (§4) be related to (g4) by (3.19).
Then at the fixed time ¢, the surface .# % can be represented by

xeb= gui@h n), B = PR 1), O = DG 1) (S0D)

also. Substituting these into (5.9) and using the chain rule based on (3.19),
we obtain the desired transformation law:

~ Ot 9 aghh
— foi 2t B.i B.i )/ B,k
Oy = fori S+ FOH o + GPiwe =
. i awm,’i ; a ac F
_ (f; aqr + Fe qF ) aq'A
aq”
=Orge> A=1...n (5.12)

Since the power P, is taken relative to a virtual displacement in .#£%
only, the quantities Q, are the tangential components of the generalized
force in the instantaneous constraint surface. The actual power P of the
motion is taken along the trajectory (3.3) of the system and is given by

x, 1
P = fazz xt + Fﬂ,i

dgb B8, i /B, ih 9.
T + GAiw — (5.13)

where the total forces and moments f, F, G are used. Substituting (3.28)-
(3.30) into (5.13) and using the assumption (5.5), we obtain

— dgq* i Op>' 8,i oyP’ 8. i T8, ik ageh
P=Q,—— T + f T + F T + G&iW 5 (5.14)
Comparing this result with the component form (3.27) of the generalized
velocity q, we see that the last three terms on the right-hand side of (5.14)
correspond to the component of the generalized force associated with the
basis vector h,,,. Thus we put

i . aLsh
ot

Quir = 1o 22 1 pos DL Grawsn (5.15)
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Relative to the dual basis (h4, W+, 4 =1,...,n} of {h,,h,,,4=1,
., n}, the generalized force Q is given by the component form

Q= Q4 + Qb (5.16)

The power P is, then, simply the value of Q at the generalized velocity q,
. dq
P=Q& =0, + Q. (5.17)

It should be noted that both the external and the constraint forces and
moments enter into the component Q,,, of Q. This fact is not hard to
understand, since when the constraint surface is moving in the free con-
figuration space, the constraint forces and moments, though having no
tangential components, still contribute toward the power of the system.
So far we have considered the right-hand side of the system (5.4).
Now we turn our attention to the left-hand side. We claim that it may be
rewritten as
4 (2E)_ o 5.18)
dr \ 8¢4 dq4

where
E=E@,...,q%¢,...,¢%t)

denotes the kinetic energy of the system &. We shall prove this result by
expanding (5.18) and showing that it coincides with the left-hand side
of (5.4).

Recall first that for the general case of time-dependent constraint the
kinetic energy E is given by the formula (3.16) with the summation on 4
and I" from 1 to n -+ 1. We can, of course, substitute (3.16) into (5.18)
and calculate the result directly. But this approach is very complicated,
since we have to differentiate E twice in the expression (5.18). A somewhat
simpler way of showing that (5.18) coincides with the left-hand side of
(5.4) is as follows: We start from the original definition of the kinetic
energy function:

E = }(mox=ixsi 4 MPBEBIERG | WA.UIBkARIGBIHRTY)  (5.19)

where the repeated indices «, g, i, j, k, [ are summed over their appropriate
ranges: «, 1 to N; B, 1 to K; i,j, k, 1, 1 to 3. As we have shown by (3.16),
F is really a function of ¢4, ¢4, and t. The dependence of E on these variables
can be obtained from that of x=.¢, £4.i, §8.i and W#.i. Specifically, from
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(3.28), (3.29), (3.30), and (2.27), respectively, we have

. L . a(pm,i . a(pa,,
x4 — wx,i(gd 54 - r
X x0i(g4, 4, 1) r g" + Fra (5.20)
L . st dyph-t
B — EBi(pgd 54 — r
E E (q » 47, t) aq[‘ q + at ’ (521)
. . 8.1 8,1
s = Oorigg, g 1y = S gr 4+ 20 (s
agq” ot
and
—sin (A2 cos (B3 sin B3 0
[Whii] = [Whi(g4,t)] = | sin {B2sin (A3 cos £B3 0f, (5.23)

cos (B2 0 1

where @i, p?.%, (5. are functions of (¢4, ¢) given by the constraint relations
(3.24). Using (5.19) and (5.20)-(5.23), we can now calculate the expression
(5.18) by the chain rule.
First, taking the partial derivative of (5.19) with respect to ¢4, we
obtain
oE Op™i . Oyht o 7 I
4

= m* x-az,@__l_ M?B an Eﬂ,@__l_ Wﬂ,wlﬂ,tkWﬂ,kl

.
g2 EYE 6

(5.24)

where we have used the chain rule together with the following results of
(5.20), (5.21), and (5.22):

ax=i Bt BERE  Qgybi 808 grhi (5.25)
aq-A - an ’ aq-A - an ', aq-A - an - :
Now taking the time derivative of (5.24), we obtain
d ( OE Op™* aw LsI .
—_— ) = o, 4 B8 B, B, 18, ik W/ B,k 8,1
dt(aq"’) me g &+ M o Wty
+mmaxa" az+Mﬂa§ Eﬂ'
0g°
4 WABGIBik Y8k %6 §8.1
Whii . I
355 Q8.7 B,k P/ 8.kl an g8.1
8.kl 8.j
4 Wh.i[Bik W ga.r 987 8.1 (5.26)

o687 " Tog2
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where we have used the following results:

d [ Op=~i\  0x~t d (Oyhi\ &b d [90Pi\ 068
—37( dq” )_ aq 717( 9g° )_ g2’ _(Tq"—)_W’
(5.27)
which can be derived directly from (5.20), (5.21), and (5.22).
Next, taking the partial derivative of (5.19) with respect to g4, we
obtain

oE ox~t s 053
= X% B8 B, B, i B, tk A/ B. k1 8,1
T m= T M FPE gt - WhGB kY a0 6
B.i 8.7
a;o/ﬂ,r] 666 — 15 E W B.kIG83G0.L, (5.28)

Subtracting (5.28) from (5.26), we finally obtain

d [ dE OE dp*§ ByP
(6q"’)— R A -
agﬂ,j
dq?
AW B3k o6 L8R 4ok
965:1 dg4
oW GWAIr
( 0057 9BBI

4 WBIB.ik 8.k gs.1

+ Whingsii

)Iﬁ,ikWB.kl aagﬂj 65.198.r,

(5.29)

where we have changed several dummy indices in order to make the first
four terms on the right-hand side of (5.29) appear exactly the same as the
first four terms on the left-hand side of (5.4).

Now from (5.23) it can be proved by direct differentiation that the
matrix [W#%] obeys the following identities:

aWwsU  gwhir
9087 96R.

— ePiWBsSWErT (B not summed). (5.30)

These identities are rather interesting. While the roles of the Eulerian
angles (68-%) are quite different from one another—indeed, [W?#.%] does
not depend on 88! at all, and the dependence of [W#¥] on 652 and
073 is not symmetrical—the identities (5.30), nevertheless, are symmetrical
with respect to the free indices i, j, r, which may take on any values of
1,2, 3. Using (5.30), we see immediately that the last term on the right-
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hand side of (5.29)—after the rearrangements of the dummy indices:
stoi,ptoj,itor,jtok, rtol, and k to s—is exactly the same as the last
term on the left-hand side of (5.4). Thus the proof is complete.
The results obtained so far can now be summarized by rewriting
(5.4) as
d [ OFE oE
7(5?)_@:94’ A=1,...,n, -~ (531
which are Lagrange’s equations for the constrained system &. Since E
is a quadratic function in ¢4 with coefficients depending on ¢4 and ¢, (5.31)
is a system of second-order differential equations for g4(z). Assuming that
the generalized forces Q, on the right-hand side of (5.31) are known, we
can solve the system and determine g4(¢) as functions of ¢ provided that
certain initial values, say g4(o) and §4(0), are given. The standard coor-
dinates x*%, &5 65.% of the system can then be determined from g4(t)
by the constraint relations (3.2) or (3.24).
We shall see certain explicit forms of Lagrange’s equations in the
following section.

6. Explicit Forms of Lagrange’s Equations

In this section we derive some explicit forms of Lagrange’s equations
for the special case when the constraint is time independent. As explained
in Section 3, the kinetic energy E is given by a homogeneous quadratic
function of ¢4 in this case; cf. (3.16), where [g,r] depends only on g4
and is independent of 1. We have established the fact that [g,,] is the com-
ponent matrix of a Riemannian metric g on the constraint manifold .#.
We shall now examine the meaning of Lagrange’s equations (5.31) in the
context of the Riemannian geometry on .#.

From (3.16) we can calculate the partial derivatives

OE .
rr e g4rd" (6.1a)

0E 1 Ogra

g2 2 0q4 grg. (6.1b)

Taking the time derivative of (6.1a) by the chain rule, we obtain

d (0 3 :
@ (794_") = 8ard" ¥ :;;_ 49", (6.2)
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Substituting (6.1b) and (6.2) into (5.31), we get

gard" + (R — L St \grgi— g, (63)
which is an explicit form of the system of Lagrange’s equations. From (6.3)
we see clearly that Lagrange’s equations form a system of second-order
differential equations for the generalized coordinates g<.

Since the product ¢7¢4 is symmetric with respect to the indices I"and A,
(6.3) is equivalent to

. 1 /0 0 a s
gard" + ‘2"‘< aquAr + aqurfl - ang;A )qrqA =04 (6.4)

This system is familiar in Riemannian geometry. Indeed, comparing (6.4)
with (56.3) in Section 56, IVT-2, we see that (6.4) can be rewritten as

gurla” +{ 15}40%) = 2 (6.5)

where the Christoffel symbols {4z} are based on the metric g, viz.,

'y _ 1 ;024 0gzs agAE)
{AE}_Tg ( 0g= " g g% )’ ©9

and where [g/'®] is the inverse of [g,;], viz.,
gltgr, = 0,47, (6.7)

Multiplying (6.5) by the inverse metric g/%, we obtain
r -
0" +{ 4 sfaves = on (6:8)
where Q7 denotes the contravariant components of the generalized force,

Qr = ghQ,. (6.9)

The operation of raising the indices used in this equation is explained in
detail in Section 35, IVT-1.

As explained in Section 56, IVT-2 [cf. equation (56.21)], the left-hand
side of (6.8) is just the covariant derivative of the generalized velocity
4 = ¢“h, along the trajectory q = q(f). As a result, (6.8) can be written
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in the following coordinate-free form:

Dq
- =Q (6.10)

We call the covariant derivative Dq/Dt the generalized acceleration. Relative
to any coordinate system (g4) in .# the contravariant component forms of
the generalized velocity and the generalized acceleration are

L Di . 4 ...
= ¢“h,, —5‘:—=(q"+{pA}qPqA)hA- (6.11)

Lagrange’s equations (6.3) or (6.4) simply express (6.10) in component
form and may be interpreted as the assertion that the result of the inertia
metric applied to the generalized acceleration is equal to the generalized
force.

In particular, when the system consists of a single particle p and is
free of any constraint, Lagrange’s equations (6.5) reduce to Newton’s
equations (6.3), which require that the acceleration multiplied by the mass
be equal to the force, since the inertia metric is simply the physical metric
multiplied by the mass in this case. When the system consists in a single
rigid body & and is free of any constraint, Lagrange’s equations (6.5)
are the combination of the six equations (4.11) and (4.12). In this case the
inertia metric g on the free configuration space 293 x 7@ (3) is the direct
sum of the product of M with the standard metric on &2? and the trans-
formed inertia metric W9I*W* on @ (3); cf. (5.19). Consequently,
the first three components of Lagrange’s equations are the equations (4.12).
The classical Euler’s equations (4.9) or (4.10), however, are not Lagrange’s
equations relative to any coordinate system on 7@ (3); they correspond to
Lagrange’s equations relative to a certain anholonomic basis, as we now
explain.

In Section 46, IVT-2, we have defined the concept of an anholonomic
basis: a smooth field of bases which may fail to satisfy the integrability
condition of a coordinate basis (i.e., it need not be the natural basis field
of any coordinate system). On the constraint manifold ./, let {k,} be an
anholonomic basis. To specify {k,}, we use its component form relative
to the natural basis {h,} of the coordinate system (g9):

kd—':kdrhr, hA=hArkr. (6.12)

Then the condition that {k,} fails to be integrable may be written
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as follows:

ok A
0-#£ [kA’kI‘] = (‘iiqL);‘kAE -

e kp’:)hAEkE = K5 ks. (6.13)

Since {k,} is a field of bases on .#, we can express the vector equation
(6.10) in component form relative to {k,}. We proceed to work out the
details.

First, the generalized velocity 4 may be expressed in component form
relative to {k,}:

q= o%k,, (6.14)

where the anholonomic components w4 are related to the holonomic
components g4 by the usual transformation law:

¢4 = kAol ol = h,T¢g4. (6.15)

Then the kinetic energy E may be regarded as a quadratic function of w4
with coefficients depending on ¢4, viz.,

E= E(‘IA, qA) = %gAI‘(qA)q-Aq.r’
= E_(qA) wA) = %gAF(qA)wAwI; (6‘16)

where g, are the anholonomic components of g relative to {k,} and are
related to g, by the transformation law:

gar = k8 r. (6.17)
From (6.16) the partial derivatives dE/0¢4 and GE/dw4 are related by

OF 0FE .
a_q-AngI’q.r:gAI‘kArwA:' a(l)A hAI' (6'18)

Similarly, the partial derivatives 0E/dq4 and dE/fq4 are related by

0E _0E , OFE _ ohs _ 0E | 0E _ ., on
907 =~ oq7 T Bar 4 Tagi T g7 T Bt ©F" 5

(6.19)

As usual we denote the dual basis of {k,} by {k4}. Then the generalized
force Q may be expressed in component form relative to {k4},

Q=Q,h" =k’ (6.20)
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where Q and | are related by the transformation law:
Or= QAhFAs -QA = Qrk 4" (6.21)

From (6.15), (6.21), and (5.10) the anholonomic components £2, of the
generalized force Q are simply the coefficients of the linear function

P = Q4" = Q0 (6.22)

which gives the power in any virtual displacement consistent with the
constraint.

Now substituting (6.18), (6.19), and (6.21) into (5.31), we obtain

d , OF oE 0E _ . on,S
= (hA et ) — ST G ket = bR (623)
We can expand the leading term into a more familiar form by using (6.15)
and the product rule

E E E r
d (hAF 0E)_hAP d(aE>+ dE  oh,

el ) = £ Yy
@ 0t a \Bor ) T For —aga 0k (629

Then (6.23) can be rewritten as

d | 0E LJOE  0E . . Aahf_ahf)_
@ (am)‘kr 97 T Bor “ks kf( g aga ) = 9
(6.25)

where we have multiplied the equation by [k;4], which is the inverse of
[747]. Differentiating the identity

hAEkI‘A — 6[\2 (6.26)
with respect to g4, we obtain

oh 4>

Ok =
g4 ’

oq4

= _hAFhEE

(6.27)
Hence (6.25) is equivalent to

d | 9E JOE | OE {0k, , Ok A)_
i (o) ~ ko g + g S = g k') = 2n
(6.28)

Comparing the third term on the left-hand side with the condition of
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integrability (6.13), we can rewrite (6.28) as

d | 8 0E  O0F -
4 (%,_) — kg g 0 KE =2, (629)

which is the system of Lagrange’s equations relative to the anholonomic
basis {k,}.

It should be noted that, if the basis {k,} is, in fact, the natural basis
of a coordinate system (g4), then w? is just ¢*, and [k 4] is just the Jacobian
matrix [@g4/8¢"] of the coordinate transformation. In this case K7z vanish
identically, of course, since {k,}, being a coordinate basis, satisfies the
condition of integrability, [k,, k,]=0. As a result (6.29) reduces to

ok E -

o (agr) 5 = or (639

which is just the system of Lagrange’s equations in the (§4) coordinate
system.

Next we show that Euler’s equations (4.9) may be regarded as a special
case of (6.29). We consider a single rigid body .%, which is free of any
constraints. On the free configuration space 993 x 5”@ (3) we choose the
anholonomic basis {e;, k;}, where {e;} is the standard basis on Z%3, but
{k;} is an anholonomic basis with component forms

h, = Wik, k; = (W-Y)bh,, (6.31)
relative to the natural basis {h;} of the coordinate system (6%). We choose
[W#] to be the particular coefficient matrix in (2.27), so that the anholo-
nomic components w! of the generalized velocity 6 are precisely the com-

ponents of the angular velocity relative to the imbedded frame. Further,
from (6.13), (6.31), and (5.30) we have

[k;, k;] = ek, #£ 0, (6.32)

i.e., in this case we know that {k;} fails to be a holonomic basis.
From (2.40) the kinetic energy E is given by

E = E(&,6, &, o) = §MEE + Hniel (6.33)

in terms of the anholonomic components wi. Hence the partial derivatives
of E with respect to w® and 0 are

E 2
dw’

tra
i
e

(6.34)

3
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In terms of the angular velocity w, the power P is given by
P = Fifi 4 Giwt. (6.35)

Hence the anholonomic components of the generalized force relative to
the basis {k;} are precisely the components G* of the moment relative to
the imbedded frame at the center of mass. Using the results (6.32), (6.34),
and (6.35), we obtain from (6.29) the system

-57 (Jwi) + Melwisk = Gi, (6.36)

which is just the system of Euler’s equations (4.9).

The preceding analysis shows that the Newtonian equations and Euler’s
equations may be recovered from Lagrange’s equations. Thus no math-
ematical information is lost when we pass from the Newtonian equations
and Euler’s equations to Lagrange’s equations. We have gained the in-
formation that the generalized forces become known functions, however,
when the constraint forces and the constraint moments obey the assumption
(5.5). This new information is the main advantage of Lagrange’s equations
over the Newtonian equations and Euler’s equations.



Hamiltonian Systems in Phase Space

The equations of Lagrange, which we have derived in Chapter 1, may be
transformed into a system of first-order differential equations when the
generalized force possesses a potential function. The transformation is
known as the Legendre transformation and the resulting first-order system
is known as the Hamiltonian system. In this chapter we develop the theory
of Hamiltonian systems from the standpoint of a flow problem and in the
context of a certain first-order partial differential equation known as the
Hamilton-Jacobi equation.

7. Hamilton’s Principle

In the preceding chapter we showed that the motions of a constrained
dynamical system & are governed by Lagrange’s equations:

d<aE)_aE=QA, A=1,...,n (7.1

dt \ 9g4 dg?
We can solve these equations and determine g4 as functions of ¢ provided
that Q , are certain known functions of ¢. In this section we wish to consider
a slightly different problem. We assume that Q, are given implicitly by a
generalized potential function V = V(g4, ¢4, t) in the following way:
d (dV av
=— =] — = 2
0. = 4 (5g7) — 7 (1.2)
where the time derivative is taken along the trajectory of the system. Under

41
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this assumption (7.1) may be rewritten as
d (0L oL
"dT(’@F)“T?TA—O’ A=1,...,n, (1.3)
where L = L(g4, ¢4, t) is defined by
L = E(q4 ¢4, 1) — V(g4 ¢4, t) (7.4)

and is called the kinetic potential or the Lagrangian function of the system.
An important special case of (7.2) is the case when V is a function of
g4 and ¢ only,

V= V(g4 1), (7.5)
so that (7.2) reduces to
av
Q0,=— s (7.6)

For this special case the generalized force Q is simply the gradient of the
potential function V on each instantaneous constraint surface .#7% In
particular, the power in any virtual displacement g4 = g4(r) in .#* is
given by

oV  dg4

_o ' _
P=0, dt ~— ¢4 dr

d
—_ e a4

V@@, aD
where ¢ is held fixed. The work done in this virtual displacement from ¢<(0)
to g4(7) is then given by

| P@ dr = V(@@= V@@, (.8)

which depends only on the terminal points (g4(0), t) and (g4(z), t) of
the virtual displacement. For this reason V(g4, ) may be regarded as
the virtual potential energy on .#% When V depends on ¢, (7.8) is valid
only for a virtual displacement in .#". For the actual trajectory g4 = g4(¢)
of @, the power P(t) is given by

dg oV dq?

. . d 4 av

which contains an extra term d¥V/dt due to the explicit dependence of V
on time.
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The main difference between the special case (7.6) and the general
case (7.2) is that in the special case Q, depends only on ¢4 and ¢, while in
the general case Q, depends on ¢4, ¢, as well as on the time derivatives
¢4 and §4. Regardless of which of these two cases is used, the Lagrangian
function L defined by (7.4) generally depends on 44, since the kinetic energy
E is a quadratic function of ¢4. In this section we are primarily interested
in the system (7.3), where L is a function in general of the variables g4,
¢4, and t. This function need not be quadratic in ¢4, since the potential
function ¥ may depend arbitrarily on (g4, 44, t).

The system (7.3) has a familiar form. In Section 57, IVT-2, we have
remarked that (7.3) is the system of Fuler-Lagrange equations for the
time integral of the Lagrangian function L. In the context of analytical
mechanics this assertion is known as Hamilton’s principle. Specifically,
we consider the integral

b
I(g4(t), te [a, b]) = J L(q4(t), g4(2), t) dt. (7.10)

We claim that the trajectory g4 = g4(t) satisfies the system (7.3) if and
only if it is an extremal curve for the integral / in the following sense:
Consider any l-parameter family of curves ¢4 = ¢,4(¢t) of the form

q.4(t) = q(t) + en4(t), 1€ [a,b], (7.11)
where 74 satisfies the conditions
n4(a) = n4(b) = 0, 4d=1,...,n, (7.12)

so that the curves q, all have the same terminal points: ¢,4(a) = ¢4(a),
q,4(b) = q4(b) for all ¢. Then Hamilton’s principle asserts that

L g0, 1€ 10, b]) o = 0 (7.13)

for all choice of n4 if and only if g4(¢t) = g,4(¢) satisfies the system (7.3).
We can prove Hamilton’s principle by a standard argument in the
calculus of variations. First, taking the time derivative of (7.11), we obtain

4.4(1) = ¢4(t) + en(r). (7.14)

Substituting (7.11) and (7.14) into (7.10), we get

b
(g (), t€ [a,b]) = L L(q4(t) + en4(1), g4(t) + en4(t), t)dt.  (7.15)
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Since the limits @ and b of the integral are independent of the parameter ¢,
we can differentiate (7.15) with respect to ¢ under the integral sign,

——/(qg(t),te [a, b]) = f ( -+ oL A) at.  (1.16)

The second term in the integrand may be integrated by parts, yielding
b 9L 2d dy — dL nd:_ﬁjt(qu)Adt

=0—.[Z-5—t(g;>nddt, (7.17)

g7 TN T g
where we have used the conditions (7.12). Combining (7.16) and (7.17),
and evaluating the result at ¢ = 0, we get

d br oL d (0L
A4 = a4 5.\ 5354
dE I(qa (t )’ te [a’ b]) |e=0 Ja [ an dt ( aq'd )] =0 n

ag  (7.18)

Hamilton’s principle now follows directly from this equation. Indeed,
since the functions #4(¢t) are arbitrary, the integral vanishes if and only
if the coefficients of 4 in the integrand all vanish; i.e., (7.3) holds.

Before closing this section we mention that an important special case
of the system (7.3) is the case when the Lagrangian function L is independent
of the time ¢r. We can characterize this special case by the following result:
The Lagrangian L is independent of ¢ if and only if the system (7.3) possesses
an integral of the form

oL

H = aq,Aq

4L, (7.19)

which is known as the Jacobi integral. To prove this assertion, we simply
take the time derivative of H and evaluate the result on any trajectory of

(7.3):
= (7= )
‘[d:(gch)_ngj’ G4 — %f:o_%. (7.20)

Thus H is constant on each trajectory if and only if L is independent of ¢.
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It should be noted that the condition dL/d¢t = 0 is naturally satisfied
when the constraint and the potential function are both independent of ¢.
In this case the Jacobi integral is simply the total energy of the system.
Indeed, when the constraint is time independent, the kinetic energy F is
given by a homogeneous quadratic function of ¢4 as shown in (3.16).
From Euler’s theorem, we then have

aL dF
'a—q_z-qd - 0q’d qA = 2E, (7.21)

where we have assumed that V = V(g4). Combining (7.21) and (7.19),
we get
H=2E—-F+V=E+1YV, (7.22)

so that the Jacobi integral corresponds to the usual law of conservation of

total energy on each trajectory.
When the constraint is time independent, the system (7.3) can be
rewritten as a system of autonomous first-order differential equations
dg4 %L dvT oL %L

— pd

= p4, = — vl
dt dvd dv”  dt aq” daq’ v

(7.23)

where (g4, v4) are the dependent variables, and where L is regarded as a
function of g4 and v4. We shall assume that the Hessian matrix
[0%L/av40v"] of L with respect to v4 is nonsingular. Then the first-order
time derivatives dg4/dt, dv4/dt of g4 and v4 are given by certain functions of
g" and v’ independent of .

We can regard the first-order system (7.23) as the system of governing
equations for the flow generated by a certain vector field on the manifold
#'(#) formed by the pairs (q, v), where q is a point in the constraint
manifold .#, and where v is a vector belonging to the tangent space .#
of .# at q. Specifically, we define & (.#) by

EA)= | A, (7.24)
qae M

It is a manifold of dimension 2n, called the tangent bundle of .#. Like the
manifold .#, which is a surface of dimension » in a Euclidean space
“RIN x GP3K x DPOK the manifold & (.#) can be regarded as a surface of
dimension 2n in the Euclidean space (993N x GP%K x GP*K)2 Indeed, the
tangent space .#, at any point g € . is a subspace of dimension # in the
translation space 973N x GP3K x GPVK of the underlying Euclidean space
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P3N x Op3K « OPOK, Naturally, a coordinate system for &' (.#) is given by
(¢4, v4), where (¢4) is a coordinate system for .#, and where (v4) is the
Cartesian coordinate system on .#, induced by the natural basis {h,(q)}
of (g4) at qe .

In Section 49, IVT-2, we have considered the problem of the flow
generated by a vector field in general. The first-order system (7.23) is just
a special case of that problem for a vector field on the manifold & (.#).
It turns out that the system (7.23) may be analyzed more effectively by
first transforming it into a system on another manifold, &*(.#), called the
cotangent bundle or the phase space of .#. This transformation is called the
Legendre transformation and is based on the assumption that the Hessian
matrix [@2L/dv40vT] in (7.23) is nonsingular. The result of the Legendre
transformation is known as the Hamiltonian system, which is a system of
first-order differential equations on &*(.#) having a very special form.
We shall discuss these topics in detail in the subsequent sections of this
chapter.

8. Phase Space and Its Canonical Differential Forms

In this section we consider the special case that the constraint is time
independent; i.e., the constraint surface .# is a fixed manifold of dimension
n in the free configuration space. In Section 3 we have defined the tangent
space A, of # at q € .#. We have pointed out that .#£ is an n-dimensional
vector space which depends on the point q. Relative to any coordinate
system (g4) .#, is spanned by the natural basis {h,(q)}, where h ,(q) denotes
the tangent vector of the coordinate curve of ¢4 at q.

Suppose that q = q(¢) is & curve in .4 with coordinates g4 = g4(t).
Then the tangent vector q is given by the component form

9= ¢h, 8.1

relative to the natural basis {h,}. In particular, under any change of coor-
dinates

g'=q%g", .., 9", ¢ =4q@, ..., ", (8.2)
the tangent vectors h, of the 44 coordinate curves are given by the com-
ponent form

aq"
54:79‘3‘4"'”' A=1,...,n (8.3)
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We can regard (8.3) as a change of basis in ., for any q € .#. Then the
components v4 and 74 of any tangent vector v € .#, relative to the natural
bases {h,(q)} and {h(q)} are related by the system of transformation laws

4 54
_ 0 o g 9T (8.4)

4 — D .
g " lq "’ 99" g

For this reason a tangent vector corresponds to a contravariant vector.

As usual we denote the dual space of .#, by #,*, and we call .#*
the cotangent space of A at q. A basis for #£y* is the dual basis {h4(q)}
of {h,(q)}. As explained in Section 31, IVT-1, the components of any
cotangent vector p € .#* relative to the dual basis {h4(q)} obey the system
of transformation laws

ogr|
Pg= Tq‘z qpp, (8.53)
__ 9q7
Pa= 57 | Prs (8.5b)

which is the dual of (8.4). As a result, a cotangent vector corresponds to a
covariant vector. From (8.1) we see that any ve .#, can be regarded as the
tangent vector of a certain curve at q. The dual of this interpretation for
M * is the assertion that any p € .#£,* can be regarded as the gradient or the
differential of a certain function at q.

The preceding assertion can be explained in the following way: Given
any function f on .#, the gradient or the differential d, f of f at q is the
linear map d f: #q— 3P such that

ldaf 1@) =~ /(a(1)) o (8.6)

for any curve q = q(¢) passing through q. To show that d, f is well defined
by the condition (8.6), we must verify that the right-hand side of (8.6)
depends linearly on the tangent vector q. This fact is more or less obvious,
since by the chain rule we have

af dq*

d
7/’(‘1(’)) =37 di @7

Comparing this result with the component form (8.1), we see that

dof € #,*, and that the component form for d,f is

hf = 5| . (8.8)



48 Chapter 2 Sec. 8

Thus the cotangent space .#,* is formed by the gradients of functions at q.
From (8.8) the dual basis {h4(q)} is formed by the gradients {d,g4} of the
coordinate functions (¢4) at q.

At the end of the preceding section we have mentioned that the tangent
bundle & (#'), defined by (7.24), is a manifold of dimension 2n. Now we
define the cotangent bundle or the phase space &*(.#) by

BH) = | A (8.9)

As remarked before, Z*(.#) is a manifold of dimension 2»n and can be re-
garded as a surface in Euclidean space (993Y x GP3K « OP9K)2, A coordinate
system for &*(.#) is given by (g4, p,), where (g4) is a coordinate system
for .# as before, and where (p,) is the Cartesian coordinate system on
A * induced by the basis {h4(q)}.

Now since #*(#) is a manifold, it, too, has a tangent space
&*(.# ) qp and a cotangent space & *(.#) ,, at each point (q, p) € & *(A).
Using the coordinate system (g4, p,), we can define a basis {H,, K4,
A=1,...,n} for &*(#)qp and a basis (H4,K,,d=1,...,n} for
&* (M) p), Where

H, is the tangent vector of the g4 coordinate curve,

K4 is the tangent vector of the p, coordinate curve, (8.10)
H4 is the gradient of the ¢4 coordinate function, '

K, is the gradient of the p, coordinate function.

As before, {H4, K,} is the dual basis of {H,, K4}. That is, (H4, H)
= (Kp, K4 = 6,4, while (H4, K™ = (K, ,H > =0 for all 4, "=
1, ..., n. Here the {, ) operation is defined on the dual spaces &*(4)q,p)
and &*(A)¢ -

In Sections 51 and 55, IVT-2, we have defined the concepts of dif-
ferential forms and exterior derivative. A differential r-form is just a smooth
field of skew-symmetric covariant tensors of order r, and the exterior
derivative is an operator d, which maps an r-form to an (r + 1)-form in
accord with the formulas (51.5) or (55.34), IVT-2. We now apply these
concepts to the cotangent bundle &*(.#).

First, &*(.#) is endowed with a canonical 1-form 0, which has the
component form

0 =p,H4=p,dq°. @.1D

Notice that this l-form is a linear combination of the basis {H4, K,}
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of (g4, p,) in &*(.&), the components of 8 in H4 being p, and the com-
ponents in K, being 0. The reason for calling this 1-form canonical is
because 0 is independent of the choice of coordinates (g4, p,). In other
words, when we change the coordinates (¢4) to (§4), and we consider a
corresponding change of coordinates from (g4, p,) to (§4, p,4) for &*(4),
the component form for 0 is still given by

0=ﬁAH"=ﬁA dq_d. (8.12)

This fact is by no means obvious. We shall now explain the argument
leading to it.

From the definition (8.9) for &*(.#) we see that there is a natural
projection map w: & *(.#)— .4 such that

(g, p) =4 (8.13)

for all (q, p) € &*(.#). Using this mapping, we can transform a function
S on .# into a function fom on &*(4). (This transformation is just the
trivial operation of regarding a function of q as a function of q and p.)
As a result, the gradient d, f is transformed into the gradient dg )(f o 7)
in such a way that the components df/dg4 of d, f relative to {h<} [cf. (8.8)]
become the components of dgp)(f o 7) but relative to {H4, K,}, viz.,

lgrad m)(daf) = dani(f > ™) = 5

. H4(q, p). (8.14)

Now since any cotangent vector p € .#,* corresponds to the gradient of a
certain function, say f,

d
— pb@) = 5

h4(q), (8.15)

by applying the transformation 7, we can transform the cotangent vector
p = p,h4(qQ) € #,* into the cotangent vector p,HA(q, p) € &*(A )y ),
which is just the assigned value 0(q, p) of the I-form @ at the point (q, p)
€ &*(4) [cf. (8.11)]. As a result, the value of the 1-form 0 is determined
directly at each point (q, p) by the pair (q, p), and thus 0 is independent
of any coordinate system (g4).

We can prove the invariance of (8.11), viz,,

psH* = p,H4, (8.16)

by considering the transformation law of the natural basis under a change
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of coordinates from (g4, p,) to (¢4, p,) also. As usual (¢4) and (§4) are
related by (8.2) and their corresponding (p,) and (5 ) are related by (8.5).
Consequently, by the argument leading to the system of transformation
laws (8.3), we now have the system of transformation laws:

- aqT" %G5 g4

H, =35 He o G peKT, (8.172)
R = gZi KY, (8.17b)
and
fis = ggf, H', (8.18a)
K, = % %—i pHT + -g-g_; K, (8.18b)

Using (8.5b) and (8.18a), we obtain

aq” oG4

ﬁAHA: aq-A Pr 6qA

H4 = p;6,/HA = p HA (8.19)

Thus (8.16) is proved.

Next, we define a canonical 2-formV «w on &*(.#) by taking the
exterior derivative of the canonical I-form 0,

o = db. (8.20)

Since the exterior derivative is an operator which is independent of the
choice of coordinate system (cf. Section 51, IVT-2), the 2-form w defined
by (8.20) enjoys the property of being canonical on &*(.#) as the 1-form 0.
From the component form (8.11) for 8 and the basic properties, (51.21)
and (51.24), IVT-2, for the exterior derivative we can determine easily
the component form

w=dp,Ndg?=dp,Rdq* —dg* Rdp,=K,QH* —H QK,, (8.21)

where A denotes the wedge product or the exterior product, which is defined
in Section 38, IVT-1. The component form (8.21) indicates that w is a
skew-symmetric covariant tensor field of order 2 on the manifold &*(.#).

‘1 This notation should not be confused with that of the angular velocity.
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In tensor algebra (cf. Sections 32 and 33, IVT-1) we have explained
that a covariant tensor of order 2 over a vector space corresponds to a
bilinear function on the vector space and to a linear map from the vector
space to its dual space. Here the vector space over which w(q, p) is a co-
variant tensor of order 2 is the tangent space & *(.#) . From (8.21)
the covariant tensor w corresponds to the bilinear function w such that

w(HA’ HF) =0, w(Hy, KF) = _'6AF’ ® 22)
oKL, Hy) =6,7,  oK4K") =0, '
and to the linear map such that
wlHy) =K,, w(K4) = —HA4. (8.23)

From (8.22) we see that the bilinear function defined by w is skew symmetric,
as it should be, and from (8.23) we see that the linear map defined by w
is nonsingular, since it transforms the basis {H,, K4} for the tangent space
into the basis {H4, K,} for the cotangent space on the manifold &*(.#).

Another important property of the canonical 2-form « is that, from
its very definition (8.20), w is an exact 2-form. In particular, w is closed; i.e.,

dw = 0. (8.24)

[The concepts of exact forms and closed forms are defined in Section 52,
IVT-2. The result (8.24) follows from the general property that d2 = 0;
cf. (§1.24), IVT-2.]

Now a manifold which is equipped with a closed, nonsingular 2-form,
such as the canonical 2-form  just considered, is called a symplectic
manifold, and the particular 2-form is called its symplectic form. In this
sense we have shown that the manifold & *(.#) is a symplectic manifold,
and that the canonical 2-form ¢ is its symplectic form. This symplectic
structure on the phase space &*(.#) is important in the theory of the
Hamiltonian system, which is the main topic of the following section.

9. The Legendre Transformation and the Hamiltonian System I:
The Time-Independent Case

In Section 7 we remarked that the second-order system of Lagrange’s
cquations (7.3) on the constraint manifold .# can be replaced by the first-
order system (7.23) on the tangent bundle & (.#) of 4. We have pointed
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out that when the Lagrangian function L(g4, v4) is regular (i.e., when the
Hessian matrix [02L/dv49v”)] is nonsingular), (7.23) is an autonomous
system whose flow problem is equivalent to the dynamical problem of
finding the trajectories of the constrained system. In this section we show
that the flow problem of (7.23) can be analyzed in an effective way by
first transforming (7.23) into a system on the phase space &*(.#). This
transformation is a change of variables from (q, v) € &(.#) to (q,p) €
&*(#4) defined by the condition

PW) = 5 L@, v + 5) | 1)

for all ue .#;. We call this change of variables the Legendre transfor-
mation.

To show that the Legendre transformation is well defined by the
condition (9.1), we have to verify that the right-hand side of (9.1) is a linear
function of u at each fixed (q, v) € & (.#). This fact follows directly from
the chain rule:

d oL 4
= = . 2
ds L(@, v + su) |seo 4 | q.v ! ©-2)
This equation shows also that the cotangent vector p, which corresponds to
the tangent vector v according to the transformation (9.1), is given by

d
Pa=pAq-v") = 37 Lgr,v"), A=1,...,n (9.3)

From (9.3) the change of variables from (g7, v7) to (¢7, pr) is a local
diffcomorphism if and only if the Hessian matrix [0%L/dv40v!] is non-
singular. When this regularity condition holds, we can invert the system
(9.3) and express v4 as a function of ¢” and p:

v4 = v4(q7, pr), A=1,...,n 9.4)

In particular, a curve {q = q(t), v = v(¢)} in & (.#) corresponds uniquely
to a curve {q = q(¢), p = p(¢)} in &*(A), and vice versa. Based on this
invertible transformation, the flow problem associated with the system
(7.23) on & (.#) corresponds uniquely to the flow problem of a particular
system on &*(.#). As we have mentioned in Section 7, the system on
&*(A) is called the Hamiltonian system. Before deriving that system, we
consider first the physical meaning of the transformation (9.3) in more
detail.
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Recall that in the case of time-independent constraint, the Lagrangian
function L(g4, v4) is just the difference of the kinetic energy E = 3g,,(q)v%v’
and the potential energy V = V(g4), viz.,

L(g*, v*) = $84r(g " — V(g*). 9.5)
In this case (9.3) reduces to
Py = PA(‘IA, UA) = gar(qA)UF, A4=1,...,n (96)

The meaning of (9.6) is clear both mathematically and physically. In the
mathematical interpretation (9.6) means that p is the covariant vector
corresponding to the contravariant vector v relative to the inertia metric g.
In the physical interpretation (9.6) means that p plays the role of the
momentum corresponding to the generalized velocity v. By virtue of this
interpretation the image of q defined by (9.3) is called the generalized
momentum of the constrained system.

Now using the transformation (9.3) and its inverse (9.4), we can regard
any function of (q, v) as a function of (q, p), and vice versa. With this
transformation in mind we define the Hamiltonian function H = H(q, p) by

H=p(v)—L=pp4— L. 9.7

In the simple case when L is given by (9.5), the Hamiltonian function is
simply the total energy; i.e.,

H =g, 0%  + V. (9.8)

But it is important to note that, in both (9.7) and (9.8) the function H is
regarded as a function of q and p. Specifically, (9.7) means that

H(GT, p4) = pv*(q4, pa) — L(g%, v7(q%, p 1)), 9.9)

where v4(q7, pr) is given by the inverse transformation (9.4). Using the
Hamiltonian function, we claim that the system on & *(.#) corresponding
to the system (7.23) is given by

dg? OH dps _ oH
dt — dp,’ dt =~ 9q4°

(9.10)

This is the Hamiltonian system on the phase space & *(.#).

To prove that (9.10) is equivalent to (7.23), we have to show that a
curve (q(?), v(¢)) satisfies (7.23) if and only if its Legendre transformation
(q(r), p(r)) satisfies (9.10). We establish necessity first. From (9.9) the



54 Chapter 2 Sec. 9

partial derivatives of H and L are related by

OH 9" 9L oL &' oL
3g7 ~Pragi T 97 T B Bg7 T 0g?”
OH gv’ oL "

dp, =vitpr dp, ovf op, v

©.11)

where we have used the condition (9.3). From (9.11) and (7.23) we obtain
(9.10) directly. Thus necessity is proved. The proof of sufficiency is similar.
From (9.11) and (9.10) we obtain

dg* d(&L)_aL

a4 — —
ov4 dq“

T s, o =0. (9.12)

Thus (7.23) follows.

Unlike the system (7.23) on & (.#), the Hamiltonian system (9.10)
is rather symmetrical with respect to the dependent variables ¢4 and p,,
and for this reason its mathematical structure is easier to analyze. As before
we regard (9.10) as a flow problem generated by the vector field h on
&*(#) with component form

hzg%HA—-g%KA (9.13)
relative to the coordinate system (g4, p,). Since the components of h are
determined by a single function H, they are not entirely arbitrary. We can
explain the special nature of the vector field h by using the symplectic
structure on &*(.4).

We recall that the symplectic form w is a nonsingular exact 2-form on
&*(#). Ateach point (q, p) € & *(A), w(q, p) gives rise to an isomorphism
of the tangent space &*(# ) with the cotangent space &*(.A4)E ).
Hence we can apply w to the vector field h and obtain a I-form on &*(.4).
This 1-form turns out to be just the gradient dH of the Hamiltonian func-
tion, and thus is an exact 1-form. Indeed, the image of h under «w can be
obtained easily by using (8.23):

oOH oH
w(h) = ETN w(H,) — 3g7 ——— w(K4)
__ OH A

This is the key property of the Hamiltonian system (9.10).
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In general we call a vector field on &*(.#) a Hamiltonian vector field
if its image under w is an exact l-form. From the Poincaré lemma (cf.
Section 52, IVT-2) a closed form is locally exact, and vice versa, so we call
a vector field a locally Hamiltonian vector field if its image under w is a
closed l-form. The Hamiltonian system (9.10) is, then, the flow problem
associated with a particular Hamiltonian vector field.

We can characterize a locally Hamiltonian vector field k in general
by the following:

Theorem. A necessary and sufficient condition for a vector field k on
&*(A) to be a locally Hamiltonian vector field is that the Lie derivative
of the symplectic form w with respect to k vanishes,

Fw=0, (9.15)
k

or, equivalently, the flow of k preserves the 2-form <.

Proof. Recall that the Lie derivative and the exterior derivative com-
mute [cf. (51.30) in Section 51, IVT-2]. Consequently, (9.15) is equivalent
to the condition that the Lie derivative of the canonical 1-form 6 be
closed; i.e.,

Lo=Ld0=dZ0=0. (9.16)
k k k
Now let k be given by the component form
k=0a4H, + f,K4 9.17)

relative to the coordinate system (¢4, p,). Then from (49.42) in Section 49,
IVT-2, and (8.11) we have

(/'o — (ﬁ + 6aF )HA + aa[' » K. — ﬁ HA + aAK + d(aA )
. 4 _6q" Pr ap., riy 4 4 Pa
= w(k) + d(O(k)). (9.18)

This result implies that < 0 is closed if and only if «w(k) is also. Con-
sequently, the condition (9.15) is necessary and sufficient for k to be a
locally Hamiltonian vector field. )

From the definition of the Lie derivative [cf. (49.41) in Section 49,
IVT-2], it is clear that the condition (9.15) is equivalent to the condition
that the flow of k preserves the 2-form w. Thus the theorem is proved. []
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In general we call a diffeomorphism from a domain in #*(.#) onto
another domain in &*(.#) a canonical transformation if it preserves the
symplectic form w. Then the flow induced by a locally Hamiltonian vector
field is a 1-parameter family of canonical transformations. Since the Hamil-
tonian system (9.10) corresponds to the flow problem of a Hamiltonian
vector field, its solution, which determines the trajectories of the dynamical
system, can be viewed as a 1-parameter family of canonical transformations
such that the initial values (g4(0), p,(0)) are mapped to the points (g4(¢),
p4(2)) of the trajectories for each r.

In Section 7 we have defined the concept of an integral of a dynamical
system, and we have pointed out that in the case of time-independent
constraint one such integral is just the Hamiltonian function H; cf. the
Jacobi integral (7.19). We can prove this fact by using the Hamiltonian
system (9.10) also. Indeed, on any trajectory the time derivative of H
vanishes, since we have
dH  0H dqg* o0H dp, 0H O6H 0H 0H

dt ~ 9q¢4 “dt " dp, dt g% dp, Op, 0q%

0. (9.19)

In general an integral K = K(g4, p4) must satisfy the condition

dK _ 9K OH 0K 0H
dt ~ dq% dp, Op, 9q”

0= = (K, H). (9.20)

The scalar field {K, H} defined by this equation is called the Poisson
bracket of K and H. It is easy to prove that the Poisson bracket {K, H} is
independent of the choice of the coordinate system (g4, p,), since its value
can be determined by the coordinate-free formula

(K, H} = dK(w-'(dH)) = o~(dK, dH), (9.21)

where w1, being the inverse of the symplectic form w, is a canonical skew-
symmetric contravariant tensor field of order 2 on &*(.#).

From (9.20) or (9.21) we see that the Poisson bracket is a skew-
symmetric bilinear operation. In particular, we have

{H,H} =0, (9.22)

which is equivalent to (9.19); i.e., H is the Jacobi integral of the dynamical
system. The skew symmetry of the Poisson bracket is an important condition
in the coordinate-free interpretation of the flow generated by the Hamil-
tonian system.
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Mathematically, the determination of a general solution for the system
(9.10) is equivalent to the problem of finding (2n — 1) independent in-
tegrals. Indeed, from any (2n — 1) independent integrals K, ..., K,y
we can define the path of a trajectory by the algebraic equations

K,4(g4, p,) = const, A=1...,(2n — 1) (9.23)

Then the parametrization ¢ on the path can be assigned by solving a single
first-order differential equation. In this way we obtain a 2n-parameter
family of trajectories of (9.10),

qA = qA(t’ Kl’ R ] KZn)’ Pa= pA(ts Kl: LI ] KZn)’ (924)

where K,, is the additioned constant of integration from the solution of
the first-order equation. Since (9.24) contains 2» arbitrary constants,
K, ..., K,,, it is a general solution of (9.10).

Conversely, if we are given a general solution of (9.10) in the form
(9.24), then we can invert it and get a system of algebraic equations

K, =Kyt q4p), A=1,...,2n (9.25)

We call a function K(t, g4, p,) a time-dependent integral if its total time
derivative vanishes on any trajectory of (9.10), viz.,

dR 4R 8H 3R oH _ R

oK
ar " 9q7 Fp, 9p, 9g7 | ot =

ar

= {K H} + 0. (9.26)
In this sense the functions K,(t, ¢4, p,) in (9.25) are 2n time-dependent
integrals. Eliminating the parameter ¢ from the system (9.25), we obtain a
system of (2n — 1) (time-independent) integrals.

Now the problem of finding an integral K(q4, p,) in general can be
interpreted in the following way: We consider the Hamiltonian vector field
k = w~!(dK) induced by a function K(q4, p,). Then the flow of k must
preserve the symplectic form . Suppose that the flow also preserves the
Hamiltonian function H; i.e.,

dH OH dg* | 0H dp, OH 0K 9H 0K

dt  0q4 dr dp, dv  0q4 dp, Odp, 0q4
— {(H, K} =0, ©9.27)

where 7 denotes the parameter of the flow of k. Then K satisfies the condition
(9.20), since the Poisson bracket is skew symmetric. Thus K is an integral.
Conversely, if K is an integral, then from (9.20) we see that (9.27) holds.



58 Chapter 2 Sec. 9

Hence the flow of k preserves the Hamiltonian function. Therefore a function
K is an integral if and only if the flow of its corresponding Hamiltonian
vector field k preserves the Hamiltonian function H.

Summarizing the preceding analysis, we have the following important
result:

Theorem. Let K be any (time-independent) integral. Then the flow
generated by the locally Hamiltonian vector field k = w~'(dK) is a local
l-parameter group of canonical transformations which preserves the Hamil-
tonian function H. Conversely, let p, be any local 1-parameter group of
canonical transformations which preserves the Hamiltonian function H.
Then the generator k of p, corresponds to a closed 1-form w(k) via the
canonical 2-form w, and the potential function K of w(k) [i.e., w(k) = dK]
is a (time-independent) integral.

From this theorem we see that the dynamical problem of solving the
Hamiltonian system (9.10) is mathematically equivalent to the geometric
problem of finding the symmetry group of the symplectic form w and the
Hamiltonian function H. Indeed, each integral corresponds to a 1-parameter
group in the symmetry group of (w, H), and vice versa.

10. The Legendre Transformation and the Hamiltonian System II:
The Time-Dependent Case

When the constraint of the dynamical system is time dependent, we
———
define the (2n + 1)-dimensional manifold & (.#) by

5(/) = U@g(/‘), (10.1)

where #* denotes the constraint surface at time ¢, and where % (#£t)
denotes the tangent bundle of .#? Like the manifold structure of .4

———
defined in Section 3, the manifold structure of & (.#') is determined by the
coordinates (g4, v4, t), where (g4, v4) are the coordinates in & (.#) intro-

——

duced in the preceding section. Using the manifold &' (.#) and the coor-
dinate system (¢4, v4,¢), we can reduce Lagrange’s equations (7.3) to a
system of first-order differential equations:

dg4 oL dv” aL %L oL

v, = - ol — ’
dt dvdov  dt aq4 dv4 dgT vl 9t

(10.2)
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where the Lagrangian function L = L(g4,v4,¢t) now depends on 7. A

[P
trajectory of the dynamical system is a curve in & (.#) with coordinate
representation

g4 = q4(t), v4 = p4(t), t=1t, (10.3)

such that g4(z) and v4(¢) satisfy (10.2).
—_
We define the phase space & *(.#) similarly by

EH ) = | T, (10.4)

which is a manifold of dimension (27 + 1). A coordinate system for this
manifold is (g4, p,, t), where (g4, p,) are defined in &*(.#7) as before

—
for each te€ SP. We define the Legendre transformation from & (#) to

—
&*(.#£) by the condition (9.1), except that now L may be time dependent,
viz.,

PW) = o L(g, ¥ + 0, 1) oo (10.5)

for all we #,!. In terms of the coordinates (g4, v4, t) and (¢4, p,, t) in

& (M) and %"’*(,,{ ), respectively, the Legendre transformation is given by

A4 A
Pa=palgt, vt t) = -a-&a;f’—t), A=1,...,n  (10.6)

We assume again that L is a regular Lagrangian, so that the Legendre
transformation is invertible with respect to v and p, and we denote the
inverse by

v = v4(g1, p4, 1), A=1,...,n (10.7)

——?
Consequently, a curve in & (#) of the form (10.3) corresponds uniquely

PR
to a curve in &*(#) of the form

g4=q%t), pa=p4t), =4 (10.8)

and vice versa.
We define the Hamiltonian function H(q, p, ) on the phase space

#*(A) by (9.7), except that now both v and L may depend explicitly on
t, viz.,

H(qu Pas t)= pAvA(qA’ Pas 1) — L(qu vr(qA: Pas t), ’)‘ (109)
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We claim that the governing system for the trajectories in phase space is
still the Hamiltonian system (9.10), provided that the time-dependent
Hamiltonian function defined by (10.9) is used. The proof is more or less
the same as before. First, if (q(¢), v(¢), ¢) satisfies Lagrange’s system (10.2),
then under the Legendre transformation the image curve (q(?), p(¢), t)
satisfies the Hamiltonian system (9.10), because by the chain rule the partial
derivatives of L and H are still related by (9.11). Conversely, if (q(z),
p(t), t) satisfies (9.10), then from (9.11) and (9.10) we obtain (9.12) as
before. Thus the preimage (q(¢), v(¢), t) satisfies (10.2).

The main difference between the time-independent case and the time-
dependent case is in the structure of phase space. In the time-independent
case we have shown in Section 8 that the phase space & *(.#) is a symplectic
manifold equipped with the canonical forms @ and w. Now in the time-

P——
dependent case we define a 1-form & on &*(#) by

0=p,dg? — Hdt =0 — Hdt (10.10)

PPr—
and a 2-form & on &*(#) by
®=db=dp,Ndg" —dH N\ dt = »' — dH A d1. (10.11)

Notice that the tangential parts 8¢ and w’ of 8 and &, respectively, are
just the canonical forms of &*(.#*) for each t € S2. The time parts H dt
and dH A dt of 8 and &, however, are clearly not canonical, since they
depend on the Hamiltonian function H as well as on the choice of the
coordinate system (g4, p,, t) in &*(A).

From (10.4) the t coordinate curves relative to any coordinate system

(¢4, p4, t) are not intrinsic to & *(.#); i.e., the phase space W} is
not a product space of a particular symplectic manifold with 22, The forms
8 and & are invariant under a change of coordinates from (g4, p4, t) to
(g4, P4, t) if and only if the relation between (¢4) and (§4) is independent
of 1. [When the coordinates (¢4) and (§4) are required to be related by
a time-independent coordinate transformation only, the manifolds ./,

& (A), and & *(A) are, in effect, product spaces.] We now assume that a
particular coordinate system (g4, p,, t) is chosen, and that other admissible
coordinate systems (G4, 54, t) may be obtained from this system by means
of a time-independent coordinate transformation only. Under this assump-
tion the forms & and & defined by (10.10) and (10.11) are invariant under
any change of (admissible) coordinate system.

We now show that the 2-form & plays a role similar to that of the
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2-form w with respect to the flow generated by the Hamiltonian system.
Specifically, relative to the vector field h corresponding to the Hamiltonian
system (9.10), i.e.,

oH oH

b= M g

a4
3 K4 + 1hg,,,, (10.12)

—_—
where h,, ., denotes the tangent vector of the 7 coordinate curve in & *(.#),
we have

EEZG) =0 (10.13)

or, equivalently, the flow of h preserves the 2-form &.
To prove (10.13), we follow the same argument as before by showing

that the Lie derivative of the 1-form & is closed. Indeed, from (10.12),
(10.10), and the formula (49.42) in IVT-2 we have

[ _8H | 8 ([ 0H\],, OH | @
8- [‘ 9q7 | g7 ("F app)}d" +[‘ 99, ap, ("" a7 )]d"A

oH 8
+[ ot +3t(

Consequently, (10.13) follows, since the exterior derivative and the Lie
derivative commute.

Since the forms 8 and & depend explicitly on the Hamiltonian function
H, we cannot use them to characterize other Hamiltonian vector fields,
say the field

fp )] dt = dib(h)]. (10.14)

. dK 0K
k= p, Ha— 57

K4+ 1h 10.15
aPA 2n+1 ( )

induced by a function K. We can show by direct calculation that the flow
of k preserves a 2-form &y which is defined by (10.11) with H replaced
by K. However, the flow of k generally does not preserve the 2-form
o = @y,

Another new feature of the time-dependent case is the fact that the
Hamiltonian function H need not be an integral of the dynamical system.
Indeed, we can calculate the rate of change of H along any trajectory of
(9.10) by

dH dH dq“ OH dp, oH

dt =an dt +8pA dt + ot

_OH OH _OH 9H  OH _ oH
= 9¢7 3p, Op, 047 ' ot _ a1

(10.16)
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An integral K, whether or not it be time dependent, is defined by the con-
dition dK/dt = 0, viz.,

dK _ 0K 0K dg* | 0K dp,
dt ot dq4 dt dp, dt
0K | 0K OH 8K OH

TR ol Sl (10.17)

Also, it is no longer true that the Hamiltonian function H is preserved by
the flow of the Hamiltonian vector. field k induced by an integral K. We
can calculate directly from (10.15) and (10.17) that

OH | OH OK _ OH 0K _ 0H , oK
ot oq4 dp, Op, 0q, Ot ot ’

5{ H= (10.18)
where Z% H is just the rate of change of H along any trajectory of k. By
the same token if K is a function of (¢4, p,, t) in general, then we have

0H oK

The preceding analysis shows that the problem of finding integrals
for the dynamical system no longer corresponds to the geometric problem
of finding the transformation group which preserves the Hamiltonian
function H and the 2-form ® = &p. For that reason we now introduce
the new concept of contact transformation in order to interpret the flow
problem of the Hamiltonian system for the time-dependent case.

—_— N

We call a diffeomorphism §: &*(#) — & *(.#), which is formed by
a l-parameter family of diffeomorphisms ¢!: &*(AY) — G *( L"), t € 2P,
a contact transformation if there is a function F = F(q4, p,, t) on & *(#)
such that

[grad §1(®) = & + dF A dt (10.20)

or, equivalently,

d(lgrad $1(0) — 8 — Fdt) = 0, (10.21)

where grad ¢ denotes the gradient of @. (The concept of the gradient of a
mapping has been defined in Section 8 in connection with the projection

P ———
map =.) Relative to the particular coordinate system (¢4, p,, t) on &*(.#)
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we can express the mapping ¢ by giving the coordinates'® (Q4, P,, t)
of the image point ¢(q, p, ) as functions of the coordinates (g4, p,, )
of the point (q, p, ¢) in the domain, viz.,

Q4= Qg% part)y  Ps=Psq%psrt), t=t  (1022)

Then the condition (10.20) means that
dP,NdQ4=dp, N dg4 + dF A dt, (10.23)

while the condition (10.21) means that

d(P,dQ? — p,dg4 — Fdt) = 0. (10.24)

Note. The values of the terms H dt and dH A dt under grad § are
absorbed into the terms Fdr and dF A dt. Also, (10.24) is locally equiv-
alent to

P,d04 — p,dg4 — Fdt = dW. (10.25)

In general a time-preserving diffeomorphism of &*(.#) maps a curve
of the form (g4(¢), p4(¢), t) into a curve of the form (Q4(t), P4(), t).
A necessary and sufficient condition for such a diffeomorphism to be a
contact transformation is that a locally Hamiltonian vector field is trans-
formed into a locally Hamiltonian field. Specifically, the trajectories of a
system of the form

dg4 0K dp, dK
dt  dp,’ dt ~ dgq4 (10.26)
are transformed into the trajectories of a similar system
g4  9G dP, aG
-~ opP,’ a 0%’ (10.27)
where G is related to K by
G= K+ F. (10.28)

This criterion can be verified most easily by using Hamilton’s principle.
Indeed, the trajectories of the system (10.26) are simply the extremal
curves of the line integral [ (p,dg4 — K dt). (The concept of line integral

™ The coordinates Q4 here should not be confused with the generalized force in the
preceding chapter.
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is defined in Section 70, IVT-2.) As a result of (10.25), that line integral is
equal to the line integral [ (P,dQ4 — (K + F)dt)+ [dW, where the
last term is a constant for curves with fixed terminal points. Consequently,
extremal curves, which are characterized by the system (10.26), are trans-
formed into extremal curves, which are characterized by the system (10.27)
with G given by (10.28). It is understood, of course, that K is regarded as
a function of (¢4, p,,t) in (10.26) and as a function of (Q4, P4, t) in
(10.28) via the transformation (10.22).

Conversely, if the transformation ¢ possesses the property that trajec-
tories of (10.26) are mapped into trajectories of (10.27), we put

P,dQ4 — p,dg* — Fdt = Q; (10.29)

then the 1-form Q must be such that its line integral [ depends only on
the terminal points. Hence from Stokes’ theorem (cf. Section 71, IVT-2)
Q is closed.

Now the concept of a contact transformation can be applied to the
flow problem of the Hamiltonian system in the following way: We seek
a contact transformation ¢ such that the governing equations for the image
curves of the trajectories become

dQ4
dt

dP,
dt

=0, = 0. (10.30)
Notice that the system (10.30) is a special case of (10.27) with G = 0.
Since the solution curves of (10.30) are simply (Q4(0), P4(0),1), we say
that ¢ transforms the Hamiltonian system (9.10) to an equilibrium system.

The inverse of such a contact transformation is just a general solution of
(5.10), viz.,

g4 = q*(Q4, P4, t), Pa=ps(Q4 Py, t), (10.31)

where (Q4, P,) are 2n arbitrary constants.

In the following section we shall consider the procedure for constructing
a contact transformation in general by means of a generating function.
Then the problem of finding a particular generating function, which gives
rise to a contact transformation from the Hamiltonian system to an equi-
librium system, can be formulated. It turns out that this generating function
is governed by a first-order partial differential equation, called the Hamilton-
Jacobi equation. This partial differential equation possesses the property
that its characteristic strips are the trajectories of the Hamiltonian system,
and vice versa. We shall explain this relation in detail in the following section.
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11. Contact Transformations and the Hamilton-Jacobi Equation

The concept of a contact transformation §: & *(#) — &*(#£) has
been defined in the preceding section. Relative to a particular coordinate

—
system (g4, p,, t) in B*(#) we seck functions

04 = Q4%q* pa» 1), (11.1a)
Py= Pyq% py,t) (11.1b)

such that, locally, the condition
P,dQ4 —p,dq4 — Fdt = dW (11.2)

is satisfied by a certain function W. Since  is a time-preserving diffeo-
morphism, the system (11.1) is invertible on .#, i.e., we can solve ¢4
and p, from (11.1),
g4 = q(Q* P4, 1), (11.3a)
pa=pa(Q4 Py, t), (11.3b)
at each te G%.
We consider first the special case when the differentials {dQ4, dq4, dt}
are linearly independent. In this case the first n equations, (il.1a), are
invertible with respect to p,, so we have the intermediate relations

pl":ﬁ[‘(qd9 QA’t)’ F:‘ l’ N (X (11'4)
When this is the case, we can express W as a function of (¢4, 94, ). Then
aw » aw 4 8W
a'WﬂaAd + 907 g4 + —— e L. (11.5)
Substituting (11.5) into (11.2), we get
aw aw aw
(PA-aQA)dQA ("*ad) (F+—a—>dt—o (11.6)

Since the differentials {dQ4, dg4, dt} are assumed to be linearly independent,
this equation implies

ow
PA:W’ (11.7a)
ow
Ps= an > (11‘7b)
Fo_3¥ (11.7¢)

“or
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The assumption (11.4) requires that (11.7b) be invertible. Hence the Hessian
matrix [92W/dq40Q"] must be nonsingular. Inverting (11.7b), we obtain
a relation of the form (11.1a), which can then be substituted into (11.7a),
resulting in a relation of the form (11.1b). Thus we obtain a contact trans-
formation which transforms the Hamiltonian system (9.10) in.o the system

g4 9K ap, 0K
dt ~— 9P’ d 804’ (11.8)
where K is given by
K=H+F=H——%I;K (11.9)

and is regarded as a function of (Q4, P ,, t) via the transformation (11.1).

A contact transformation in general need not satisfy the condition of
invertibility (11.4), of course. If the rank of [0Q4/dp,] is only (n — r),
where r is an integer 0 < r < n, then we use the method of the Lagrange
multiplier to generate the corresponding contact transformation. [The
value r = O corresponds to the special case which satisfies the condition of
invertibility (11.4).]

Rearranging the order of Q4 and p if necessary, we may assume that

QY ..., Q")
det[ P ———— ];éo. (11.10)

Then the first (n — r) equations in (11.1a) may be inverted, and we have
the intermediate relations

Pa=0.0q%, 0% ..., 0" " Puri1s---sPnst), a=1,...,n—r. (11.11)
Substituting these into the remaining r equations in (11.1a), we get

0= 0%g", QY ..., 0", Py rias -5 Pus )y b=n—r+1,...,n
(11.12)
This system must now be entirely independent of p, i.e.,

oo™+, ..., 0" S
[ a(pn-r-H, ey pn) ] - 0’ (1113)

otherwise, we can solve some of the remaining p;’s in terms of (¢, Q7, t)
and thus contradict the assumption that the rank of [#Q4/dp,] is precisely
n—r.
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From (11.13) we see that there are r identities among the variables
(g", Q7. 1), say,
Q.q7,00,1)=0, c=1,...,r (11.14)

As before we choose a generating function W(g’, Q7, t) and obtain (11.6).
However, since (g7, QF, t) are related by the identities (11.14), the dif-
ferentials {dgT, dQT, dt} are no longer linearly independent. In fact we
have the linear relations

00,
dg”

29,
30"

00,

dQr + —2di =0, c=1,...,r, (1L15)

dg’ +

so that the coefficients in (11.6) are arbitrary linear combinations of the
coefficients in (11.15). This result is just the expression of the Lagrange
multipliers; i.e.,

ow . 00, 09, . 0%,
PA__OQA —11—-—an 4+ - A, P = A, 347 (11.16a)
owy . 0 00, . 0L,
_(pAJr_._an)_zl__aQA_Jr ot bt = Aot (1L16b)
LA 09, . 02,
_(” at) h— t b2 = he— (116

where ¢ is summed from 1 to r. The system (11.16a), (11.16b) and the
identities (11.14) jointly define the transformation (11.1) and the Lagrange
multipliers A,, ¢ = 1, ..., r, as functions of (¢, pr, t) or as functions of
(Q', Pr, t). Under this contact transformation the Hamiltonian system
(9.10) is transformed into the system (11.8), where K is now given by

ow 29,

(11.17)

which is regarded as a function of (Q4, P,,t).

From the preceding analysis we see that a contact transformation
subject to the identities (11.14) is rather difficult to construct. Therefore
we shall now return to the special case which satisfies the condition of
invertibility (11.4); i.e., we assume that there are no identities of the form
(11.14) among the variables (¢4, Q4, t). Under this assumption the contact
transformation generated by W transforms the Hamiltonian system (9.10)
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to an equilibrium system if W satisfies the partial differential equation

ow L oW N
o — Hlat — G t) = 0. (11.18)

It is customary to write this equation in the form

U LU\
- —i—H(q,W—,t)—O, (11.19)

which is called the Hamilton—-Jacobi equation. We seek an n-parameter
family of solutions of (11.19) of the form

U= U@’ @40, (11.20)

where Q4 are independent parameters in the sense that the Hessian matrix
[02U/8q49Q T} is nonsingular. Then W = —U is the generating function
for the contact transformation.

Clearly, the Hamilton-Jacobi equation is a first-order partial differential
equation for the unknown function

U = Ug4, t) (11.21)

on the constraint surface .# = \J,.#* with coordinates (¢7,¢). The
solutions of such a first-order partial differential equation may be described
by the method of characteristics, which is summarized in the appendix to
this chapter.

12. The Hamilton-Jacobi Theory

Using the notations in the theory of first-order partial differential
equations (cf. the appendix to this chapter), we write the Hamilton—Jacobi
equation (11.19) in the form

Dq4t, U, ps,p)=p+ H(q% ps,t) =0, (12.1)

where we have denoted the partial derivatives dU/dg4 and dU/d¢t by p,
and p, respectively. For simplicity we denote a partial derivative of a
function in general by a subscript, e.g., 09/0q4 = D4, GH/0t = H,, etc.
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From (12.1) we then have

®,a= H,a, (12.22)
o, = H,, (12.2b)
@y =0, (12.2¢)
¢, =H, , (12.2d)
@, =1, (12.2¢)

where H is the Hamiltonian function.
For the Hamilton—Jacobi equation (12.1) the conditions for a Monge
strip (g4(1), t(r), U(1), p4(z), p(z)) can be read off from (A.36), viz.,

@4 =H,, (12.3a)

t'=1, (12.3b)

U' = pAH,,A + p, (12.3¢c)

1’ + H(qAapAs t) = 0- (12.3d)

Similarly, the conditions for a characteristic strip can be read off from
(A.38), viz.,

(¢ = Hp, (12.4a)
=1, (12.4b)
U = pAH,,A + p, (12.4c)
(ps) = —H,a, (12.4d)
p' = H,, (12.4¢)

together with the algebraic condition (12.3d), which is automatically
satisfied on the whole strip if it is satisfied at an initial point. The systems
(12.3) and (12.4) can be interpreted in the following way:

First, a Monge strip (¢4(t), #(7), U(7), p4(7), p(r)) corresponds to a
s
curve (g4(1), p4(t), t) in the phase space &*(4) such that

T =1,
g(7) = q“(¢),
(1) = p4(2), (12.5)

p(T) = _H(qd(t)’ pA(t)’ t),
U(r) = U1),
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where p,(¢) are entirely arbitrary, g4(¢) are determined by solving the
system of first-order differential equations

dg4 4
— = Ho (@ pa1), 1), A=1,....n, (12.6)

and U(¢) is determined by solving the single first-order differential equation

B = pAOH, (00), a0, )~ H(g @), (1), 1) (12)

The collection of curves (g4(¢), p 4(¢), t) which corresponds to the collection
of Monge strips clearly contains the trajectories of the dynamical system,
since the system (12.6) is just the first half of the Hamiltonian system (9.10).
However, since p,(t) are entirely arbitrary, there are many curves in this
collection which do not satisfy (9.10).

The other half of the Hamiltonian system is contained in (12.4). As a

result, a characteristic strip corresponds precisely to a trajectory in & *(4),
and vice versa. The transformation from (g4(7), t(7), U(7), p4(7), p(7))
to (g4(t), p4(t), t) is again given by (12.5), except that now (g4(¢), p (1))
are determined by the Hamiltonian system (9.10), and then U(?) is deter-
mined by the differential equation (12.7). Notice that p(¢) is just the negative
value of the Hamiltonian function on the trajectory as shown by (12.5d).
Then (12.4¢) is just the rate equation (10.16), which we have observed
before.

The one-to-one correspondence between a characteristic strip of the
Hamilton—Jacobi equation and a trajectory of the Hamiltonian system is
the central result of the Hamilton-Jacobi theory. In the appendix to this
chapter we have explained the construction of a particular solution surface
by a family of characteristic strips. In dynamics, however, we are more
interested in the trajectories. In fact the very reason for considering the
Hamilton-Jacobi equation is to find a generating function W which gives
rise to a contact transformation from the Hamiltonian system to an equi-
librium system. Such a generating function corresponds to an n-parameter
family of solutions U = U(g4, Q4,t) of the Hamilton-Jacobi equation
such that the Hessian matrix [02U/0q40QT] is nonsingular.

In the theory of first-order partial differential equations a concept
closely related to the generating function is called a complete integral.
For equation (A.34) in the appendix to this chapter a complete integral is
an m-parameter family of solutions

u=u(x, ..., x" A, ..., M (12.8)
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such that the Hessian matrix [0%4/3x'947] is nonsingular. From such a
complete integral there is a standard procedure, which we shall not discuss
here, for generating a much bigger family of solutions. In fact in some
cases all solutions of the partial differential equation may be generated.
For the Hamilton—Jacobi equation (12.1) we need only to find an r-param-
eter family of solutions

U=U(@g4 @4%1) (12.9)

such that [02U/dq4dQT] is nonsingular, since we can obtain a complete
integral from (12.9) by simply adding an extra parameter Q**! to U, i.e.,

O(q4, 4,1, @) = U(q4, 04, 1) + Q™+ (12.10)

This result is a consequence of the fact that the dependent variable U does
not appear explicitly in the argument of the function @ for the Hamilton—
Jacobi equation; cf. (12.2c).

Using the generating function U(g4, Q4,t), we can define a contact
transformation by first inverting the relation

oU
to get
04 = Q4(q", pr, t). (12.12)
Then we substitute (12.12) into the argument of dU/Q4 to get
ou
P,= —WZPa(qr,Pr,t)- (12.13)

By virtue of the Hamilton~Jacobi equation the governing system for
(Q4, P,) is an equilibrium system, which has the trivial solution

QA = QA(qP’ p[" t) = COﬂSt, PA = PA(qF’p[‘: t) = const. (1214)

Then the general solution of the original Hamiltonian system is given
implicitly by (12.14) or, equivalently, by the inverse of the contact trans-
formation, viz.,

qA = qA(QF’ PI" t)9 Pa :pA(QF’ PI" t)’ (1215)

where (QF, P,) are 2n independent constants.
The Hamilton-Jacobi theory establishes a one-to-one correspondence
between the trajectories of the Hamiltonian system (9.10) and the charac-
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teristic strips of the Hamilton—Jacobi equation (12.1). But we recall that
the trajectories of the Hamiltonian system are also in one-to-one cor-
respondence with the trajectories of Lagrange’s equations via the Legendre
transformation. Finally, from Hamilton’s principle, the trajectories of
Lagrange’s equations are the extremal curves of the variational integral
(7.10) over any pair of fixed terminal points. Combining these three basic
one-to-one relations, we can obtain an interpretation of the solution of the
initial value problem for the Hamilton-Jacobi equation using concepts
from a variational principle. This interpretation corresponds to Huygens’
principle in optics. We shall discuss this interesting interpretation in the
following section.

13. Huygens’ Principle for the Hamilton-Jacobi Equation

In Section 7 we showed that an extremal curve for the integral (7.10)
taken from a class of curves having a common pair of terminal points is
characterized by Lagrange’s equations (7.3). The extremal value of the
integral then gives rise to a function of the pair of terminal points. In
general, however, this function may fail to be single valued, since there may
be more than one extremal curve joining a fixed pair of extremal points.
In such a case the results of this section may be applied to any one sheet
of the multiple-valued function.

We denote the single-valued function or a certain sheet of the multiple-
valued function of the pair of terminal points by

2%
G(qo% tos 1% 1) = J: L(g“(2), g4(t), t)dt, (13.1)

where (g4(t), 1) denotes the particular extremal curve chosen to join the
pair of terminal points (g,4, ¢t,) and (g,4, t,). We call this function the
geodetic distance from (gy4, t,) to (q,4, t,). It should be noted, however,
that G is not a distance function in the usual sense (cf. Section 12, IVT-1).
Indeed, G need not be positive, and it is skew symmetric rather than sym-
metric with respect to the pair of points (gy4, t,) and (q,4, t,), viz.,

G(g0%, to, 414, ) = —G(q:14, t1, 4o, to), (13.2)

provided that the same extremal curve is used in calculating the two sides
of (13.2).
We establish first an important property of the function G. Let
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(40%(), 1o(7)) and (g,4(7), t:(7)) be an arbitrary pair of curves with param-
eter 7. Then the restriction of G on the curves is a composite function of z.
We claim that the derivative of this composite function is given by

ty(z)

_f’._G__( dq” Hd’) (13.3)

&\l T

to(t)

where for each fixed t, p,(t, 7) denotes the generalized momentum on the
extremal curve (g4(t, ), t) joining (go4(7), 2,(7)) and (g,4(z), 1,(7)), and
where H(g4(t, 1), p (1, 7), t) denotes similarly the Hamiltonian function
on the extremal curve (g4(s, 7), t). The derivatives dg4/dv and dt/dr, of
course, are taken on the curves (g,4(7), ,(7)) and (g,4(z), 1,(1)).

To prove (13.3), we calculate the composite function G directly from
(13.1) and (10.9):

G(qOA(T)a IO(T), qIA(T)’ II(T))

— j‘“” 620, D)pa(t, ©) — H(gAt ), palt, 1), O] dt. (13.4)

tolr)

Differentiating this equation with respect to 7, we get

IG ti(r) t1(z) a
‘ —[(qu—H)dr] +J [¢%ps — H]dt

tolt) tolT) aT
dr 1
_ —H ]
[(q Pa )d‘r o
ti(z) apA aq oH an OH apd]
Jta(t)[ + P4 ot - an ot - apA 9t dt. (]35)

Now using the fact that for each fixed t the curve (g4(s, T), p4(1, 7), 1)
satisfies the Hamiltonian system (9.10), we can simplify the last integral

in (13.5):
Il(r) a 4 ti(7) a a 4 Aa ti(z)
80 A [ G [ = [

. ) 4 ot o 01 1 07
(13.6)
C'ombining (13.5) and (13.6), we then get
dG dq dr a2 dg* dr ht?
2 [ ( d'r - 31) Hd_'r]z.,m - [‘DA dt H dr ],0(,,'
(13.7)

Thus (13.3) is proved.
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Since the curves (go4(t), 2o(7)) and (g,4(7), t:(z)) are arbitrary, by
using the coordinate curves of (g,4, ¢,) and (g,4, ¢,), we obtain

G G ., 4G _ G
A 7 B R L T A T

—Hla
(13.8)

where p°, H, and p,', H, denote the generalized momenta and the
Hamiltonian functions at the terminal points (gy4, #,) and (g,, t,) of the
extremal curve.

From (13.8) we see that if the initial point (gy4, #,) is held fixed, and if
the terminal point (g,4, #;) is regarded as the independent variable, then
the function

V(g4 1) = G(qo", 10, 4%, 1) (13.9)

is a solution of the Hamilton-Jacobi equation. The surface (¢4, 1, V(g4, 1))
of this particular solution is called the integral conoid with vertex at (go4, t,).
This conoid is formed by the characteristic strips whose initial points cor-
respond to the tangent planes of the Monge cone at (gy4, #,). Consequently,
this solution has a singularity at the initial point.

Next, we develop a procedure for generating a regular solution surface
which has no singularity. To remove the fixed initial point, we now consider
a fixed initial manifold of dimension n. We use an algebraic equation

U(go?, 10) = 0 (13.10)

to identify this manifold.

Relative to this initial manifold an extremal curve (g4(¢), ¢) joining
(g0%, o) to (g4, 1)) is called a transversal extremal curve if it satisfies the
following condition: We keep the terminal point (g,4, ;) fixed, but we
allow the initial point to vary on an arbitrary curve (g,%(7), o(7)) in the
initial manifold. Then we require that the geodetic distance G(go4(7),
15(7), 414, ;) have an extremal value at the transversal extremal curve.
That is, we require that the transversal extremal curve satisfy

dG(qOA(T), IO(T)a qlA’ tl)

dv (994 ,t0)

-0 (13.11)

relative to all curves belonging to the initial manifold and passing through
the particular point (gq,4, ).
Using (13.8), we can express the condition (13.11) by

dq0 dt
—ps  — + H, T =0, (13.12)
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which means that the covector —p,°h4 + H,h**! is orthogonal to an
arbitrary tangent vector of the initial manifold at (g,4, #,). Since the normal
covector of the initial manifold (13.10) is given, in general, by (@U/dg,4)h4
+ (@U/dty)h»+1, the equation (13.12) implies that

—p, H,

STt~ U AT b (13.13)

We call (13.13) the system of transversality conditions, which is the system
of algebraic equations for the generalized momentum (p ,°) at each point
(go4, t;) in the initial manifold. Assuming that the system (13.13) has a
unique solution, we can define a particular generalized momentum (p,°),
and then a particular generalized velocity (§,?) via the Legendre trans-
formation at each point of the initial manifold.

In general, when the initial manifold defined by the condition (13.10),
i.e., U=0, is not a Monge strip manifold, the direction of the transversal
extremal is not tangent to the initial manifold. Then we can define a function

U(qA’ t) = G(qOA’ ly, qA’ I)a (1314)

where the geodetic distance G(g,4, ¢y, g4, t) is taken along the unique trans-
versal extremal from (g,4,t,) in the initial manifold to the point (g4, 1)
in .# We claim that this function U, like the function V defined earlier
by (13.9), is a solution of the Hamilton-Jacobi equation. In fact, we can
regard V' as a limiting case of U, when the initial manifold shrinks to a
single initial point (gy4, #,)-

The proof that U is a solution of the Hamilton-Jacobi equation follows
from (13.3) as in the preceding case. We consider the function U on an
arbitrary curve (g4(t), /(7). Let (go4(7), (r)) be the corresponding curve
in the initial manifold such that for each fixed 7 the extremal curve joining
(96%(7), 15(7)) to (g(z), (7)) is transversal relative to the initial manifold.
Then by the definition (13.14) we have

U(q4(r), #(7)) = G(go*(2), 1(7), g4(2), 1(2)). (13.15)

Now using the general result (13.3), we can calculate the derivative of U
with respect to 7 by

au . dgq? _ dt . dg* . i)
dv (pA dv d_T) tz) (pA dt H dt Lolt)
_ dg4 dt
= (pAT—HE_) . (13.16)
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where the third term vanishes since for a transversal extremal the condition
(13.12) holds for any curve (go%(7), 1p(t)) in the initial manifold. From
(13.16) we can read off as before the special case

ou U

o Pas ~ar = —H, (13.17)
by choosing the curve (g4(7), #(7)) to be the coordinate curves of (g4, ¢).
Thus U satisfies the Hamilton-Jacobi equation, viz.,

oU au

. 4 —
+H(q 3pA,t) at

-~ —1—H(q“ oU t)=0. (13.18)

s _a_q—A' ’

Note. The notation U(g4, t) defined by (13.14) is consistent with the
notation U(g4, ¢t) in the condition (13.10) for the initial manifold, since
U(g4, t) in fact vanishes on the initial manifold. Further, when the initial
manifold is nondegenerate, the solution U(g4, t), unlike the solution
V(g4, t) defined earlier by (13.9) relative to a single initial point (g,4, Z),
generally has no singularity; i.e., U(g4,t) is a regular solution of the
Hamilton—Jacobi equation.

The converse of the preceding result, i.e., every regular solution
U(g4, t) of the Hamilton-Jacobi equation can be regarded as the geodetic
distance along the transversal extremal relative to some initial manifold
U(g4, t) = const, is also valid. We can prove this converse result in the
following way: Relative to any given regular solution U(g4, t) of the Hamil-
ton-Jacobi equation, we define first the generalized momentum p, by

aUu

PA=p4(qF,t)—_—_aF, A=1,...,n (13.19)
Then from (13.18)
%(,]— = —H(g% pss t)- (13.20)

Now we consider the following system of ordinary differential equations:

dqg*  OH
dt 0pal @l prat oy

A=1,...,n (13.21)

Integrating this system and using the initial manifold U(g?, ¢) = const
as the initial condition, we get an n-parameter family of solution curves
(g%(r), t), one for each point in the initial manifold. Substituting these
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solutions g4 = ¢4(¢) into (13.19), we obtain the corresponding curves

(g4(2), p4(1), t) in the phase space &*(4). We claim that these curves
are trajectories of the Hamiltonian system (9.10), so that the solution curves
(g4(?), t) are extremal curves of the integral (7.10).
Since the curves (g4(7), 1) are obtained from the solutions of the system
(13.21), it suffices to show that
dp, oH

_ _ oa , 13.22
dt 99* | (L r o0 ( )

where p,(t) = p,(q7(¢), t). To prove that p,(¢) satisfy the system (13.22),
we differentiate the definition (13.19) with respect to ¢, obtaining
dp, 02U 02U  dqT

G~ Bg700 + 9T aqr A=1,...,n (13.23)

Now since U is a regular solution of the Hamilton-Jacobi equation, we get
from differentiating (13.18) the condition

®U_, OH  OH U
3701 " 97  Bpy Bqtoq

0= (13.24)

Combining (13.23) and (13.24) and using (13.21), we obtain (13.22).
Thus the n-parameter family of curves (g4(z), t) defined previously are
all extremal curves.

Next we show that the curves (g4(7), t) are, in fact, transversal ex-
tremals relative to the initial manifold; i.e., they satisfy the transversality
conditions (13.13) at each point (g,4, t,) in the initial manifold. This fact
is more or less obvious, since from (13.19) and (13.18)

—Ps H _
9Ujaqs ~ v = ! (13.25)
on all surfaces of the form
U(g4, t) = const. (13.26)

Thus the curves (g4(¢), t) are transversal relative to all these manifolds.
Now along any transversal extremal (g4(¢), t) we have

dU(g(t),t)  dU dq°
dt T aq4  adr

U dg*
g PaTgy

+ — H = L(qA’ qA9 ’)-

(13.27)
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Consequently, the value of U is simply the geodetic distance measured from
the initial manifold, and the proof of the converse result is complete.

The assertion that the curves (q"(t ) t) are transversal relative to all
surfaces of the form (13.26) gives rise to an interesting interpretation of the
general regular solution U in terms of the special solution V. From the
definition of a transversal extremal, we know that the geodetic distance
from a fixed point (go4, t,) on U(g4, t) = ¢, to an arbitrary point (g4, t)
on U(q4, t) = c takes on an extremal value ¢ — ¢, and this extremal value
is achieved along the transversal extremal curve (g4(t), t) passing through
the point (go4, ;). As a result, we can visualize the manifold U(g4,t) = ¢
as the envelope of the n-parameter family of manifolds

G(90%, 19, 9%, 1) = c — co (13.28)

for all (go4, t,) in the n-dimensional initial manifold U(g4, t) = c,.

This interpretation corresponds to Huygens’ principle in optics, which
asserts that the wave front U(g4, t) = ¢ + Ac can be visualized as the en-
velope of the wave fronts G(q,4, ¢, g4, t) = ¢ emitting from the point
sources at (q.4,t,) in the preceding wave front U(g4, t) = c with an in-
crement of geodetic distance Ac. This general property of the solution of
the Hamilton—Jacobi equation is important in the transition from classical
mechanics to quantum mechanics.

Appendix. Characteristics of a First-Order Partial Differential Equation

We consider first the partial differential equation
du Odu
¢(x’y’ u, "a_x'a 7}7) e 0, (A'l)

where u = u(x, y) is the unknown function. The method of characteristics
for the equation (A.1) may be summarized as follows:

Suppose that ¥ = u(x, y) is a particular solution surface of (A.1)
in the (x, y, u) space. For brevity we denote the partial derivatives du/dx
and du/dy by u, and u,, respectively. Then the tangent plane of the surface
is perpendicular to the vector (u,, u,, —1) in &2%. From (A.1) we see that
at each point (x,, y,, uy) the possible values of wu,(x,, y,) and u,(xo, yo)
must satisfy the algebraic equation

¢(x0v Yo Ug» uz(x(), )’o)’ “y(xo’ yO)) =0, (A.Z)
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which means that there is a functional relation between the x component
(%o, yo) and the y component u,(x,, yo) of the normal vector (u,(x,, yo),
u,(x9, yo), —1) at the point (x,, y,, u,). Consequently, the possible normals
of the solution surface form a cone with vertex at (x,, ¥, 4p), such that
the algebraic equation (A.2) defines the cross section of this cone on the
plane u — u, = —1. Since each possible normal is perpendicular to a
possible tangent plane, the family of all possible tangent planes forms the
envelope of another cone with vertex at (x,, yo, up), called the Monge cone.
We can derive the governing equation for the Monge cone in the following
way:

Let & = u,(x,, yo) and 1 = u,(xo, yo) be the x component and the
y component of a typical normal vector (&, n, —1) at (xq, ¥, 4p). Then the
equation for the corresponding tangent plane is

£(x — x0) + (¥ — yo) — (u — up) = 0. (A.3)

The condition (A.2) shows that & and # are functionally related; we can
express this relation implicitly by a curve

£=1£8@), n=n@). (A4

Then the Monge cone is generated by the l-parameter family of tangent
planes with & and 7 given by (A.4). We can determine a typical generator
of the Monge cone by the limit of the intersecting lines of adjacent tangent
planes. That is, we consider the plane at v given by

E@)(x — x) + ()Y —yo) — (W —u) =0 (A.5)
and the plane at = + Az given by
E( 4 Av)(x — x0) +n(r + AT)(y — po) — (W — up) = 0. (A.6)
The limit of the intersection, then, satisfies (A.5) and
§'@)(x — x0) + n'(¥)y — yo) = 0. (A7)
Now from (A.2)
P(x0, Yo, o, £(7), 7(2)) = 0. (A.8)
Differentiating this identity with respect to z, we obtain

P(x0, Yo, g, E(x), ())& (T) + P (%0, Yo, s, £(T), ()7 (r) = 0. (A.9)
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Thus we can replace (A.7) by

X— % _ Y=o
D, o ’

7

(A.10)

where the arguments of @, and @, are shown in (A.9). Combining (A.10)
with (A.5), we see that the Monge cone is generated by

X=Xy YV —Yo _U—U
?; I R

n

(A.1D)

where & and # are related by (A.8), which is also given implicitly by
(A4).

Having defined the concept of a Monge cone at each point in the
(x, y, u) space, we now consider a curve (x(t), y(7), u(t)) whose tangent
vector (x'(v), y'(v), W' (7)) is a generator of the Monge cone at (x(z), y(7),
u(t)) for each 7. Such a curve may be assigned a tangent plane of the Monge
cone. Let this tangent plane have the normal vector (&(z), 7(v), —1).
Then the five functions (x(7), y(v), u(z), &(z), n(z)) defined in this way
characterize a curve and a tangent plane at each point of the curve. We
call such a geometric object a Monge strip. From (A.l11) and (A.8) the
governing equations for a Monge strip are

xl yl ul

&~ b, PP,

D(x,y,u, &) =0.  (A.12)

In general a Monge strip may or may not be contained in a solution
surface u = u(x, y) of the equation (A.1), however. A criterion for a Monge
strip to be contained in a solution surface may be derived in the following
way: In order that there be a solution u = u(x, y) such that

u(r) = u(x(x), y(v)), (A.13a)
£(v) = ulx(z), y(v)), (A.13b)
7(7) = u(x(z), y()) (A.13c)

for all 7, it is necessary and sufficient that in addition to (A.12), &(v) and
7(z) satisfy the characteristic conditions:
xl El ’

————n, e 0 = = 17 .
@, —(£P, + P,) ~P, + P,)

(A.14)

We call a Monge strip satisfying (A.14) a characteristic strip.



Appendix Hamiltonian Systems in Phase Space 81

To prove necessity of (A.14), we obtain first from (A.13b)
= ux" + u,,y. (A.15)
Next, differentiating (A.12c) with respect to x, we get
D, 4 Pyu, + Pyu,, + P,u,, = 0. (A.16)
Evaluating this relation on the strip and using (A.15) and (A.12a), we

obtain
7))

D, + Dt + —-xf £ =0, (A.17)
which can be rewritten as
x! EI
= . A.18
i (A.18)

The same argument can be applied to y and #. Thus (A.14) is necessary
for a Monge strip to be a strip of a solution surface.

Notice that the common ratio in (A.14) is a function of the point of
the strip, i.e., a function of r. Hence after an appropriate reparametrization
(A.14) may be reduced to the system of characteristic equations:

x,:¢’ ,=¢ s ,=£¢ + ¢ ’ §’=_£¢u_¢l’
A R (A.19)
7’] = —7]¢u - ¢y’

for the five coordinates (x, y, u, &, n) of the characteristic strip. We can prove
that the function @ is ‘an integral of the system (A.19), viz.,

dD
L= + By + B+ Bl 4 By

=0. (A.20)

Consequently, if @ = 0 at an initial point of the strip, then the solution of
the system (A.19) automatically satisfies the condition (A.12c).

Now we show that, conversely, every strip satisfying (A.19) and the
condition @ = 0 is contained in a solution surface of the partial differential
cquation (A.1). This result is known as the method of characteristics for the
construction of a regular solution of (A.l).
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In general any strip (x(1), y(¢), u(t), &(t), n(t)) which belongs to a
solution surface u = u(x, y) of (A.l) clearly must satisfy the conditions

d: EX"FWJ", ¢(x)y’ u, E, 17):0 (A'2l)

for all 7, where the superposed dot denotes the derivative with respect to
the parameter . We call any strip satisfying (A.21) an initial strip. This
term is suggested by the fact that each point (x(¢), y(¢), u(t), £(t), n(1))
in an initial strip may be regarded as an initial point for the system (A.19).
Using the initial strip as a strip of initial points, we can solve the autonomous
system (A.19) and obtain a 1-parameter family of characteristic strips of
the form

x=x(1), y=yt71), u=u(rt), £&=E81t71), n=n(1). (A22)
Now there are two possibilities for this 2-parameter family of points:

(i) The transformation x = x(t,7), y = y(t, 7) is invertible at the
initial strip v = 0. In this case the initial strip is contained in a unique
solution surface ¥ = u(x, y) which may be obtained by inverting the trans-
formation and substituting the result into the function u = u(z, ).

To prove this assertion we observe first that since (A.22) is obtained
from (A.19), by the initial condition (A.21) and the integral condition
(A.20)

D(x(1, v), (1, ), u(t, 1), &(1, T), (1, v)) = 0 (A.23)

for all ¢ and 7. Now by the chain rule the surface ¥ = u(x, y) obtained from
the transformation satisfies the relations

Up = UgXy + uyyt’ Uy = UgX, + uyyt- (A24)

We claim that the same relations hold when u, and u, are replaced by &
and 7, viz.,
u, = &x; + Ny, (A.25a)

u, = &x, + ny,. (A.25b)

Notice that the relation (A.25a) holds initially at = = 0; cf. (A.19c).
To prove that (A.25a) hold for all 7, we define

£=10(t7)= (4 — &x — nyo(t, 7). (A.26)

Then {(z, 0) = O initially. We claim that { satisfies the linear ordinary dif-
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ferential equation (v is the independent variable and ¢ is the parameter)
;= —PL (A.27)

for each r. We can prove this result by direct differentiation of (A.26),
obtaining first

Co =ty — &0 — EXpp — M Ve — MYps (A.28)
Now differentiating (A.25b) with respect to ¢, we get

0 =u — &x; — EXtp — MYy — Wte. (A.29)
Subtracting (A.29) from (A.28) and then using (A.19), we get

Cr = "_E-;xt + Etxr — N e + Ny
= (£¢u + (pz)xt 'Jf' ¢e£t + (n¢u + ¢y)yt 'Jf' ¢n7]t
=@ x; + Dyyi + Pe + Pymy + (§x + 1y )Py- (A.30)

From (A.23) we have also
0=, x,+ Py + P&, + O,y + Puuy. (A.31)

Combining (A.30) and (A.31) and using the definition (A.26), we obtain
(A.27). As a result, { must vanish for all z, since it vanishes initially. Thus
(A.25) is proved.

Now under the assumption of invertibility the Jacobian matrix
[0(x, y)/a(¢, )] is nonsingular. Hence (A.24) and (A.25) imply that & = u,
and = u,. Thus from (A.23) we see that u = u(x, y) is a solution of the
partial differential equation (A.1).

The assertion which we have just established is the central idea of the
method of characteristics; it shows that a regular solution of the partial
differential equation (A.1) may be obtained by a I-parameter family of
characteristic strips over a (noncharacteristic) initial strip. If the initial strip
is itself a characteristic strip, then the case belongs to the next possibility:

(ii) The transformation x = x(t, t), y = y(t, r) is not invertible at
the initial strip v = 0. In this case the initial strip must be a Monge strip.

To prove this assertion notice that the condition det[d(x, y)/d(¢, T)] = 0
nt T = 0 implies that the initial strip satisfies

\ 0 = (xtyr - xryt) Ir—o = (wn - y¢€) Ir—O (A32)
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or, equivalently, on (x(t), y(t), u(t), &), (1))

X (A.33)

Combining this with the condition (A.21), we see that the initial strip is a
Monge strip with parameter ¢. Hence there are two possibilities:

(iia) The initial strip is a characteristic strip. In this case there are
infinitely many solution surfaces containing the initial strip.

For comparison with case (i) we change first the parameter of the initial
(characteristic) strip to z. Now at 7 = 0 we attach a matching initial strip
which is not a Monge strip. Aside from a single point at 7 = 0, the initial
strip is entirely arbitrary. For each such initial strip we can generate a
solution surface as in case (i) by a l-parameter family of characteristic
strips which includes the given characteristic strip. This result now shows
that (A.14) is sufficient for a Monge strip to be a strip of a solution surface.

(iib) The initial strip is a noncharacteristic Monge strip. In this case
in proving the necessity of (A.14) we have shown that there is no solution
surface containing the given initial strip.

The method of characteristics summarized above for the simple case
of first-order partial differential equation (A.1) of two independent variables
(x, y) may be generalized to first-order partial differential equations in
more than two independent variables, say an equation of the form

) du du
D(xt, u, uy) = ¢(x1, coa XM U, i g ) =0 (A.34)

in m independent variables. As before we put w,=§;, i=1,...,m.
Then at any point (x,i, 4y) € ZP™t! we define the Monge cone by
x! — xp! x™ — xg™ U — U

I _ , A35
P, D, £y, (A.35)

1 m

where the repeated index i is summed from 1 to m. Similarly, we define
a Monge strip (x¥(7), u(z), £;(z)) by the conditions

Y ™

[ .. &P’

D(xi,u, &) =0.  (A.36)
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A Monge strip is contained in a solution surface ¥ = u(x?) if and only if
it is a characteristic strip which is defined by the characteristic conditions

(%Y u (&)
= = ¢ , D(x*, u, =0, A.37
., 5D, GO, fBp 0 TComE (A-37)
wherei = 1, ..., m, and where the repeated index j is summed from 1 to m.
As before we can rewrite (A.37) as the system of characteristic equations

Y =@y, W =§Py, (&) =—(§P.+ D), (A3B)

and the function D(x*, u, &) is an integral of this system. Consequently,
we can determine a characteristic strip by solving the system (A.38) with
an initial point (x(0), u(0), £,(0)) satisfying the algebraic condition @ = 0.

The concept of an initial strip for an equation of two independent
variables can be generalized to an initial strip manifold of dimension m — 1
given by

Xi= Xy .Y, w=u(t), &= &%),  (A.39)

where « ranges from 1 to m — 1. The coordinate functions of an initial
strip manifold are required to satisfy the following initial conditions:

U = E;x, a=1,....,m—1, O u &) =0, (A.40)

at all points of the manifold. These conditions are necessary in order that
the initial strip manifold be contained in a solution surface.

We call an initial strip manifold a Monge strip manifold if it is formed
by Monge strips. That is, we can find a new coordinate system (7%, ...,
/™2 7), which is related to the coordinate system (¢%, ..., t™!) by a coor-
dinate transformation

= 1(t%), ..., "2 = im=2(1%), 7= 7(t%), (A41)

such that the coordinate strips of = are all Monge strips, viz., they satisfy
{A.36), or, equivalently,

x,i = ¢ei’ u, = £j¢5j’ ®(xi’ u, E@) = 0. (A‘42)

A Monge strip manifold can be visualized simply as an (m — 2)-parameter
fumily of Monge strips generated by an initial strip manifold of dimension
(m — 2). This lower-dimensional initial strip manifold must not be a Monge
strip manifold itself, of course; otherwise, the Monge strips generated from
it will stay in the initial strip manifold.
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We call an initial strip manifold a characteristic strip manifold if it is
formed by characteristic strips. In this case there is a new coordinate
system (7%, ..., ™2 7) such that the = coordinate strips are all charac-
teristic strips, i.e., they satisfy (A.38) with respect to v for each (7%, ...,
f™2), We can visualize a characteristic strip manifold simply as an (m — 2)-
parameter family of characteristic strips generated by a noncharacteristic
initial strip manifold of dimension (m — 2).

Note. We can define the concepts of initial strip manifold, Monge
strip manifold, and characteristic strip manifold of dimension lower than
(m — 1) in a similar way. However, these lower-dimensional manifolds
are not important in the description of a solution surface, which is just a
characteristic strip manifold of dimension m, as we shall now see.

We can visualize the solution surface of (A.34) for a given initial
strip manifold in the following way: Starting from the initial points (A.39),
we solve the problem (A.38) and obtain the solution

xt = x¥(t%, 1), u=u(t* 1), &, = &% 7). (A.43)
As before there are two possibilities:

(i) The transformation x* = xi(¢*, 7) is invertible at the initial strip
manifold. In this case the initial strip manifold is contained in a unique
solution surface u = u(x%), which may be obtained by inverting the trans-
formation and substituting the result into the function u = u(t*, 7).

(ii) The transformation x®= x%(¢%, z) is not invertible at the initial
strip manifold. In this case the initial strip manifold must be a Monge strip
manifold. Again there are two possibilities:

(iia) The initial strip manifold is a characteristic strip manifold. In
this case there are infinitely many solution surfaces containing the initial
strip manifold.

(iib) The initial strip manifold is a noncharacteristic Monge strip
manifold. ‘In this case there is no solution surface containing the initial
strip manifold.

The results summarized above can be proven in the same way as their
counterparts in the case of two independent variables.



Basic Principles of Continuum Mechanics

Continuum mechanics is the branch of classical mechanics concerned with
motions of deformable material bodies. The mathematical model for such
a body is called a body manifold which is an oriented 3-dimensional dif-
ferentiable manifold endowed with global coordinate systems. In this
chapter we develop the basic principles governing the motions of body
manifolds.

14. Deformations and Motions

The concepts of Newtonian space-time and a frame of reference
introduced in Section 1 are basic notions in classical mechanics. Since
continuum mechanics is one of its subjects, these notions remain applicable
in this chapter. We choose a particular frame of reference, and we denote
the corresponding physical space by 5% To specify a position x in &)
we use a Cartesian coordinate system (x); i.e., we locate x by

X = 0 + xle;, (14.1)

where 0 and {e;} denote the origin and the coordinate basis of the Cartesian
system. Relative to that coordinate system 5 is represented isometrically
by the oriented inner product space Z23.

The physical objects considered by continuum mechanics are deform-
able material bodies which are represented mathematically by various
body manifolds. We define a body manifold & as follows: an oriented
3-dimensional differentiable manifold which is endowed with global coor-
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dinate systems. Using a Cartesian system (x?) on 5, we may regard a
global coordinate system on %%, say,

(z?)

x: B & (14.2)

as an (orientation-preserving) diffeomorphism of . into 5% Such a dif-
feomorphism is called a configuration of .

Note. A configuration of a body manifold is a concept similar to a
configuration of a rigid body, except that, here, y is only required to be a
diffeomorphism, not necessarily an isometry. In other words, a body
manifold may deform from one configuration to another one. This distinc-
tion is a major generalization from the theory of rigid bodies, since unlike
an isometry, a diffeomorphism in general cannot be characterized by a
finite set of parameters.

To specify a configuration % of %, we assign the coordinates (x?%)
of the position x = ¥(X) € 5 occupied by each body point X € F. Since
one global coordinate system of % identifies uniquely the entirety of all
coordinate systems of % via the family of coordinate transformations,
we may use a particular reference configuration » to characterize %%. Itis
customary to denote the Cartesian coordinates of »(X) by (X4); i.e.,

®: B>, w(X)=(X1) = (X4(X)). (14.3)

We call (X4(X)) the referential coordinates of X.
A configuration ¥ in general may be characterized by a coordinate
transformation from % to y, viz.,

@ = Y ox 1 w(F) > x(H), xt= x{(X4), i=1,2,3. (14.4)

The mapping ¢ is the deformation from the configuration x to the con-
figuration y, so we call x¥(X4), i = 1, 2, 3, the deformation functions.

If we identify the body manifold % with the domain %(.%¥) in &
then the tangent space Py of # at any body point X € % is just the physical
translation space 77 Indeed, the tangent vector h, of any coordinate line
of X4 coincides with the basis vector e,. Hence the natural basis {h,}
of (X4) at any body point X € % is the same as the coordinate basis
{e4} of the Cartesian system on &7

Now consider a deformation ¢ from x to . From (14.4) a coordinate
line of X4 in w(%) is mapped into a curve with coordinates xi = xi(X4)
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in x(#), and the tangent vector of this curve is

Axi
—a———;‘— e; = [grad ¢](ey) = Fe,. (14.5)

We call the field of linear maps
F(X): 7 - 7, X € (%) (14.6)

defined by (14.5) the field of deformation gradients. From (14.5) F has the
component form

_ _0x 4
F—Wei®e . (147)

where {e4} denotes the dual basis of {e,}. (In fact we can identify {e}
with {e,}, since {e,} is an orthonormal basis; cf., the explanation given
in Section 31, IVT-1.) Since the deformation ¢ is an orientation-preserving
diffeomorphism, the determinant of F is necessarily positive,

dxt

det F = det[a—XA—] = 0. (14.8)

Note. The field of deformation gradients, by its very definition, must
satisfy certain compatibility conditions. Specifically, the identities

OF, _ 0Fy _

W—W, A,B— 1,2, 3, (14.9)
must hold regardless of the deformation ¢. However, these identities do
not restrict the value F(X,) at any one point X, € »(.%#). In fact any matrix
[F,}] which satisfies the condition (14.8) may be the component matrix
of the deformation gradient of a homogeneous deformation given by

xi=FgX4, =123, (14.10)

In this special case the deformation gradient is a constant field, and the
compatibility conditions (14.9) are automatically satisfied.

In Section 27, IVT-I, we showed that every orientation-preserving
isomorphism of an inner product space may be regarded as the composition
of a positive definite symmetric map and a rotation. This result is known
as the polar decomposition theorem. Applying this result to the deformation
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gradients at all points, we get the field equation
F = RU == VR, (14.11)

where U, V are positive definite symmetric, and where R is a rotation.
We called U (respectively, V) the field of right stretch tensors (respectively,
left stretch tensors) and R the field of rotation tensors of the deformation .

Since the decomposition (14.11) is defined for each point X € (. %),
we can illustrate its meaning by using the special case (14.10) of a homoge-
neous deformation. In this case the fields U, V, and R, like the field F,
are all constant. Then (14.11) means that there are three mutually orthogonal
vectors, say f;, i = 1, 2, 3, which are proper vectors of U, such that Ff;,
i=1,2,3, remain mutually orthogonal after the deformation is applied
to them.

For a general inhomogeneous deformation the preceding interpretation
is valid at each point X, € »(.9¥). Specifically, there are three mutually
perpendicular curves, say A,(¢), i = 1, 2, 3, passing through X,, such that
the image curves @(A;(¢)), i = 1,2, 3, remain mutually perpendicular at
%o == @(X,) € (). In fact the rotation R(X,) is just the linear map which
transforms the unit tangent vectors of A;(t) at X, to the corresponding unit
tangent vectors of ¢(A;(1)) at x,. Also, the tangent vectors A, Ix, are
proper vectors of U(X,), and the tangent vectors

((P ° ’7‘%) ‘Xo = F(XO))"L |Xo, i= 1’ 2a 39 (14'12)

are proper vectors of V(X,), the proper numbers a; associated with A; X,
and F(X,)A, |x, being given by

(0.5 PN 14.13)

12 Ix, |

Note. Although there is a principal basis for U(X) at each point

X € »(%#), in general a field of such bases need not be a holonomic field.

Hence there may or may not be an orthogonal coordinate net in x(.%%)

which is mapped to an orthogonal coordinate net in x(%) by the de-
formation ¢.

Having considered the concept of a deformation, we now turn our
attention to the more general concept of a motion of &. As usual we define
a motion as follows: a l-parameter family of configurations, ¥,, t € &2,
where t denotes the time. Relative to a fixed reference configuration x,
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a motion may be represented by a l-parameter family of deformations,
@, = Yo XL R( D) > Y(FB), xi= xi(X4,1). (14.14)

At each time ¢ we define the field of deformation gradients by taking the
partial derivatives of x*(X<, t) with respect to X4, and we define the field
of velocities v and the field of accelerations a by taking the partial derivatives
of xi(X4,t) with respect to ¢, viz.,
i 2y
v=aa—x;ei, az—%—ei. (14.15)

These definitions are consistent with similar definitions given before for
particles and rigid bodies, since the time derivatives are taken along the
path of each body point X, which is characterized by the referential co-
ordinates (X4).

In continuum mechanics it is often more convenient to regard v and
a as vector fields defined on the instantaneous configuration %, (%) rather
than as fields on the reference configuration x(.%#). This transformation
is defined by using the inverse ¢,~! of the diffeomorphism ¢,; i.e,

Ixt

vi=vi(xj,t)=—a—t—(XA(xf,t),t), (14.106)
and similarly,
. L aexi )
at=a(x’, 1) = FTE (XA, 1), 1), (14.17)

where X4 = X4(x/, t) denotes the inverse of xi = xi(X4, t). Using the
chain rule, we can calculate the acceleration field a(x, ¢) from the velocity
field v(x, t) by Euler’s formula:

ovi av'

i vt -
@ =t v, = 1,23, (14.18)

where the independent variables are (x*, t).

Note. In general we can regard any function @ = @(X-, 1) on »(F)
as a function @ = W(xi, 1) = Q(X4(x%, t), 1) on x,(.F) via the change of
coordinates x! = x*(X, t) due to the motion ¢p,. Then the time derivative
of & can be calculated from the representation ¥ by Euler’s formula in

general:

b Y oV
o = T 5 (14.19)
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It is customary to call the time derivative along the path of a body point
(i.e., holding X4 fixed) the material derivative. This time derivative should
not be confused with the partial derivative with respect to ¢ at a fixed
position x%. A standard notation for the material derivative is a superposed
dot. Thus we have v = X, a = v, etc.

The partial derivative dv?/dxJ, which appears in the last term of (14.18),
is known as the velocity gradient and is often denoted by the direct tensor
notation:

gv=2 / 14.20
gra v——a—;CTei®e7. (14.20)
This tensor field may be calculated from the deformation gradient F by
the formula

grad v = FF-1,

i i 4
v d ( dx ) 0X (14.21)

axi 9t \9X4 ) o’

where ¥ denotes the material derivative of F. In particular, when the
configuration y, at a certain time ¢, is taken to be the reference configura-
tion, the formula (14.21a) reduces to

grad v(-, 10) = F(-, 1)y (% = %) (14.22)
since in this case we have
F(-,19) =1 (x=x,,) (14.23)

We call the deformation gradient from ¥, to . the relative deformation
gradient of the motion from ¢, to ¢. Then (14.22) shows that the velocity
gradient at ¢, is just the material derivative of the deformation gradient
relative to ¥, .

Taking the material derivative of the polar decomposition of F, we get

F = RU + RU = VR -+ VR, (14.24)
Substituting the result into (14.21a) , we obtain
grad v = RR” 4 RUU-R? = VV-1 4- VRRTV-L, (14.25)

In particular, when the configuration ¥, is taken to be the reference con-
figuration as before, (14.25) reduces to

grad v(-, 1) = R(-, 1) + U(-, 1) = V(-, 1) + R(:, 1), (¢ = %) (14.26)
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since from (14.23) we have
UG, 1) =V, ) =R(-, 1) =1 (% = Xto)- (14.27)

The formula (14.26) gives an interesting decomposition for the velocity
gradient. Indeed, when (14.27) holds, R(-, t,) is skew symmetric, and
U(+, to) = V(-, to) is symmetric. Hence (14.26) is just the decomposition
of grad v(-, t,) into its symmetric part and its skew-symmetric part; i.e.,

R(-, 1) = }[grad v — (grad V)T}(-, 15) = W(:, 1), (x =x,) (14.28)
and

U(-, t) = V(-, 1) = dlgrad v + (grad VT](-, 10) = D(-, 1p), (% = xu,)
(14.29)

where W and D are called the spin tensor and the stretching tensor, respec-
tively. Substituting (14.28) and (14.29) into (14.26), we get

gradv=D + W, (14.30)

which is known as the Cauchy-Stokes decomposition of the velocity
gradient.

The deformation gradient, the velocity, and the acceleration fields
are the basic kinematical quantities of the motion of a body manifold.
In the following section we shall define some other kinematical quantities,
such as momentum and energy, from these basic quantities. Then we
consider the basic balance principles governing the motions of a body
manifold.

15. Balance Principles

In Section 2 we defined the concept of a mass measure on a rigid body;
a similar concept can be defined for a deformable body. Let the body
manifold .% be represented by a reference configuration w. Then we define
a mass measure x4 on.%# by

u(9)=j du=j 0. dX, (15.1)
K24 »(F?)

where Z is any subbody of %, and where g, = g,(X4) is a positive (mass)
density function on x(.%).
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Note. The representation of x4 by an integral over (%) requires an
assumption that the mass measure be absolutely continuous with respect to
the Euclidean volume measure on »(%#); i.e., when the volume of x(.%?)
approaches zero, the mass u(.2”) must also. In particular, this assump-
tion rules out the existence of any concentrated mass particle in a body
manifold. The reason for accepting this assumption is because continuum
mechanics generally deals with distributed force fields on configurations.
Any concentrated mass point would require a concentrated force in its
motion and thus cause a singularity in the force field. In order to maintain
smoothness in the formulation of field equations, we assume that the
density function g, is smooth on »(.%).

As in analytical mechanics, the mass measure u is required to be in-
variant in any motion of .%. Consequently, #(.%?) may be represented
also by

uP) = eax=[ e, (15.2)
) x(F?)

%,
where o = g(x%, 1) is the density function on y,(.%#). We may rewrite the
invariance condition (15.2) in the form

ij 0dx =0, PcB, (15.3)
dt xt(y)
which is called the principle of conservation of mass.

The balance principle (15.3) implies the following important identity
for any function @ = &(x, t):

a4 j o dx = j ot dx, (15.4)
dt x,(P) %P

where @ denotes the material derivative of @. The proof of this identity is
more or less obvious. Indeed, since g is the density function of the time-
independent mass measure g, we can rewrite the integral of ¢@ as an integral
with respect to dX,

J o® dx = f 0.® dX, (15.5)
X:‘g” x(F)

where the domain of integration x(.2?) is independent of ¢. Hence we can
carry the time derivative through the integral sign and obtain

4 j 0. dX = j ob dx. (15.6)
dt ) )
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Now after the differentiation with respect to ¢ is taken at each point
X € x(.2%), we transfer the integration back to an integral over x(%°):

j 0, d dX = j o® dx. (15.7)
#(F?) xt(.@)

Combining (15.5)-(15.7), we obtain (15.4).

It should be noted that all preceding equations in this section are
stated not for the whole body manifold .4 but for an arbitrary subbody
22 of #. Of course, these equations remain valid if we replace &2 by %,
since & is trivially a subbody of itself. However, for a deformable body
manifold %, it is important to consider an arbitrary subbody %% < %%,
since different subbodies of & generally may deform independently relative
to one another. This point reflects again the distinction remarked in the
preceding section about the difference between a rigid body and a de-
formable body.

Next we define the concept of linear momentum L for a motion of ..
As we have just remarked, it is important to define this concept not only
for the whole body manifold .2 but also for all subbodies of .%. Therefore
we regard L as being a vector-valued measure on & at each time 7 of the
motion, such that for any subbody &? < &, L(t, &°) is given by the
integral

L(t, 2°) = J@ vdu = j ovdx, (15.8)

xt(“?)

where v is the velocity field defined in Section 14. Using the identity (15.4),
we can calculate the rate of change of L by

d d
— L, 2 :———J vdx:J a dx, 15.9
de ( ) dt x,(P) ¢ X2 o &x ¢ )

where a is the acceleration field. Clearly, the formulas (15.8) and (15.9)
are consistent with the formulas (2.29) and (2.30) for a rigid body.

~ We define the concept of moment of momentum H relative to the origin
o in a similar way. Namely, H is a time-dependent vector-valued measure
on ‘# given by the integral

H(t,9)=j r><vd,u=J or X v dx, (15.10)
& %,(5)

where r = x — o denotes the position vector relative to o as before. Then
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applying (15.4) to @ =rxv, we get

d d
—H(,.2 =———j rxvd =J rxadx. 15.11
dt ( ) dt %P vex ) x ( )

The formulas (15.10) and (15.11) are generalizations of the formulas (2.31)
and (2.39) for a rigid body.

Similarly, we define the concept of kinetic energy E: a time-dependent
nonnegative measure on & given by the integral

EC) = | divide=| _selvia (15.12)
K24 xt( )
Then its rate of change is
d d
2 B, = *j Yol v ds = j ov-adx. (15.13)
dt dt X, x,(P)

The formulas (15.12) and (15.13) are generalizations of the formulas (2.40)
and (2.41) for a rigid body.

Next we define the concept of a force system acting on a body manifold.
Again, it is important to consider this concept for each subbody .Z? of %.
In continuum mechanics it is customary to assume that there are only two
types of distributed forces acting on each subbody %°

(i) Body Force B. We assume that B is a time-dependent vector valued
measure on % given by the integral

B(1, ) — j bdu = j ob dx, (15.14)
P X,

where the integrand b = b(x, ¢) is assumed to be a smooth vector field
on %,(%¥) at each time ¢ of the motion of .. We call b the body force
density.

(ii) Contact Force C. We assume that C is a time-dependent vector-
valued measure on each oriented surface in . In particular, on the bound-
ary 0.2 of 22 C(t,0.9°) is given by the integral

C(t, 8.57) = j t do, (15.15)

ax‘(y)

where do denotes the Euclidean area element on the surface 9y ,(.2).
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By convention this surface is oriented in such a way that its outward unit
normal is regarded as the positive normal vector. We call the integrand t
in (15.15) the contact force intensity.

Note. The contact force intensity generally depends on the oriented
surface across which it acts. When two oriented surfaces, say, %, and %,,
intersect at a certain point, their corresponding contact force intensities
need not be the same at that point x € %,(%; N Z,). This condition means
that t is not just a function of (x, ¢) like the body force density b(x, ).
Indeed, we should write t = t(x, t, 3y,(:9%)) for the integrand in (15.15).
We shall discuss the nature of the function t in Section 16.

We assume that the body force and the contact force are the only
forces acting on any subbody .%%. Then the resultant force on 5 at time ¢
is the sum B(7, . 9%) 4 C(1,0.2%). The balance of linear momentum can
now be stated by the following principle:

Cauchy’s First Law. Relative to an inertial frame the rate of change
of the linear momentum of any subbody &” of & is equal to the resultant
force acting on 2°

From (15.9), (15.14), and (15.15) this principle requires that

d

—J ovdx = j padx = J gbdx + tdo. (15.16)
dt X, P 2P x,(P) 9%,

Clearly, this principle is consistent with Euler’s first law of motion for
a rigid body; cf. (4.4).

We assume also that the moment of the body force and the moment of
the contact force are the only moments acting on any subbody %? Then
the resultant moment on .%° is given by

G(:,é@):j grxba’x—i—_[ rxt do. (15.17)

%,() am?)

The balance of moment of momentum may be stated by the following
principle: '

Cauchy’s Second Law. Relative to the origin of an inertial frame the
rate of change of the moment of momentum of any subbody & of & is
cqual to the resultant moment acting on &
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From (15.11) and (15.17) this principle requires that

ij grxvdx=J orxadx
dt x4P) %)

=J grxbdx—l—f r % tdo. (15.18)
xt(?) ax‘(y)

Clearly, this principle is consistent with Euler’s second law of motion for a
rigid body; cf. (4.6).

So far, we have stated the balance principles which govern the motion
of a body manifold & in general. Unlike their counterparts in analytical
mechanics, these principles do not determine the motion. Indeed, there
are many kinds of deformable bodies in the physical world—solids, fluids,
elastic materials, crystalline materials—which must all satisfy these prin-
ciples. When the same body force and external boundary contact force
are applied to different bodies, the resulting motions are generally not
the same. The main reason is because the internal contact forces are not
determined by any external sources but are due to the internal reactions
of the body manifold toward deformations and motions. These reactions
generally depend on the particular materials which make up the bodies.
In some sense the contact forces play a role in a body manifold similar
to that of the constraint forces in a dynamical system. However, continyum
mechanics treats far more possibilities for the contact forces than the simple
frictionless normal constraint forces considered in the preceding two chapters.

In the following section we shall first set up a general representation
for the contact force intensity. Then we develop the mathematical theory
for modeling specific classes of materials through the relations between the
contact forces and the motions.

16. Cauchy’s Postulate and the Stress Principle

At the end of the preceding section we pointed out the importance
of the contact force in the theory of deformable bodies. Unfortunately,
the contact force is a rather complicated quantity which cannot be charac-
terized easily. Indeed, by its very definition the contact force intensity t
is not just a function of (x, ¢) but depends also on the oriented surface
across which it acts. Consequently, to specify the contact force in general,
we have to assign a function

t = tx, 1, &), (16.1)
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where # is an arbitrary oriented surface in the configuration y (%) of
2, and where x is an arbitrary point in Z. Since the collection of oriented
surfaces in y%,(Z¥) is a very complicated set, it is not easy to characterize
the function t.

This difficulty was overcome in an ingenious way by Cauchy, who
recognized a special type of contact forces by means of a simple postulate.

Cauchy’s Postulate. Suppose that two oriented surfaces %, and 7,
have a common positive unit normal at the point x. Then the contact
force intensities on %, and %, coincide at x.

This postulate means, in effect, that the function t(x, ¢, Z) depends
on 7 through the positive unit normal ny (x) of Z at x only. In other words
there is a function f(x, ¢, n), which is defined for all unit vectors ne 7~
at each (x,?), such that the function t(x,t, Z) may be represented by

t(x, 1, ) = t(x, t, ng(x)). (16.2)

Thus the task of characterizing a function of Z is resolved by using a
function of a unit vector.

Of course Cauchy’s postulate, like the assumption that the constraint
surface be frictionless in Lagrangian mechanics, is not a law of physics;
it is merely a convenient mathematical condition from which a mathematical
model for certain physical objects may be developed. It turns out, however,
that the special type of contact forces identified by Cauchy’s postulate
represents the physical nature of deformable bodies very well. For this
reason classical continuum mechanics has dealt almost exclusively with
bodies which obey this postulate. Mathematically, it is difficult to find
other ways to characterize explicitly the function t(x, ¢, Z).

One surprisingly simple and elegant result which follows from Cauchy’s
postulate is the following theorem:

Cauchy’s Stress Principle. Suppose that Cauchy’s postulate holds,
and suppose that the field (-, #, m) is continuous on y,(.%). Then at each
(x, t) the function #(x, ¢, -) is the restriction of a linear function on 7~
to unit vectors m.

This principle asserts that under the assumption of continuity for the
field (-, ¢, n), there is a tensor field

T=Txt):7 -7, X € X(HF), te2p, (16.3)
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such that
t(x, t,n) = [T(x, 1)](n) (16.4)

for all unit vectors n at each (x, ¢). Since the set of unit vectors is a generating
set for 777 the tensor field T, if it exists, is necessarily unique. We call
that tensor field T the field of stress tensors on the configuration y ().
The existence of the stress tensor may at each (x,?) be proved by
using the original “tetrahedron argument” of Cauchy. We consider the
balance of linear momentum (15.16) for the subbody .Z” such that % ,(.2°)
is a tetrahedron with vertices at (x!, x2 x%), (x! + ¢/n!, x3, x%), (x%, x?
+ g/n?, x®), (x1, x?, x® + ¢/n®), where (n!, n?, n®) are the components of a
fixed unit vector m, and where ¢ is a small parameter. We claim that (16.4)
follows from the limit of (15.16) as ¢ — 0.
Indeed, by using the mean value theorem of integral calculus, we can
evaluate (15.16) on the tetrahedron by
e N e, e,
ey [e(a — b)|(, 1) = s t(x,, 1, —€;) + i t(x,, t, —e,)
e e? ne
+ i t(x3, 1, —€3) + S t(x, 7, ),
- (16.5)
where & is a certain point in the tetrahedron, and where x,, X,, X; and X

are certain points on the appropriate boundary triangles of the tetrahedron.
Dividing (16.5) by % and then letting ¢ — 0, we obtain

t(x, t,n) = —i(x, 1, —e;))n’, (16.6)

where we have used the continuity condition on t(-, ¢, n) and the fact that
X;, X2, X3, and X all approach x as ¢ — 0. Clearly, (16.6) implies that
t(x, ¢, - ) may be extended into a linear function on 7, since the coefficients
of n* on the right-hand side of (16.6) depend only on (x, ¢). Thus the stress
principle is proved.

Setting n = e; in (16.6), we obtain i(x, ¢, ;) = ~i(x, 7, —e;). Hence
we can rewrite (16.6) as

i(x, t,n) = H(x, t, e)n' = Ti(x, t)n'e;, (16.7)
where T/(x,t) are the components of the vectors i(x, ¢, e;), viz.,
f(x, 2, e;) = TH(x, t)e;, =123 (16.8)

The component form (16.7) for t(x, 7, n) implies that T/(x, t) are also
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the components of the stress tensor T(x, t), viz.,

T(x, 1) = T/(x, t)e; ® e'. (16.9)

Note. The term “tensor” is derived originally from the word “tension”
by virtue of the stress principle. Also, the classical tensor transformation law

T7 = eJe! T}k (16.10)

may be obtained by changing the basis {e;} in (16.8) into the basis {&;}
= {e_ikek}, ViZ.,

i(x, t, él) = i(x, t, e‘,—kek) = e-iki(x, t, ek) = e-ikalel = Tijéj = Tijéj’e,, (16.1 1)

which implies (16.10) directly.

The stress principle enables us to represent the contact forces in a
simple way by means of the stress tensor field T. Using that tensor field,
we can express the balance principles by certain field equations, and we
can characterize the material of the body manifold by certain constitutive
equations. We shall discuss these items in detail in the following two
sections.

17. Field Equations

In Section 15 we formulated three general balance principles which
govern the motions of all body manifolds. These principles are stated in
integral forms by (15.3), (15.16), and (15.18). In this section we shall
derive the differential forms of the balance principles. These forms are
called the field equations.

First, we introduce an important identity

ij (Ddxzj (@ + @ div v) dx, (17.1)
dt )y o )

which holds for any smooth function @ = @(x, ¢t). This identity is valid
because the time derivative on the left-hand side may be calculated by
l.cibnitz’s rule:

d
dt xt('y)

¢dx=J —ag—dx-i—J @dv - ndo, (17.2)
Ot ax, (9
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where n denotes the outward unit normal on 9y ,(%”). Notice that the
first term on the right-hand side of (17.2) is the rate of change of the integral
of @ when the domain of integration y,(.%°) is held fixed, and the second
term is the flux of @ through the boundary dy,(.%%) of the domain of in-
tegration y,(2”). Using the divergence theorem [cf. equation (71.30) in
Section 71, IVT-2], we can rewrite the flux term as a volume integral,

J Dy - ndo = J div(Dv) dx. (17.3)
ax,(P) )
Thus the right-hand side of (17.2) may be reduced to
o
J [ + d1v(¢v)] dx,
() 9t

which is the same as the right-hand side of (17.1) by virtue of Euler’s
formula (14.19) for the material derivative &.

Now applying the identity (17.1) to the balance principle (15.3),
we get

—d—J o dx = J @ + o div v) dx = 0. (17.4)
dt )y %,

(

t
This equation holds for an arbitrary subbody .%” of %. Hence if the in-
tegrand is continuous, it must vanish identically on the domain ¥ /(%).
Thus we obtain the field equation for the conservation of mass:

0 +edivvi=0, (17.5)
which is also known as the continuity equation.

Note. We can derive the identity (17.4) from the identity (17.1) and
the continuity equation (17.5), since we have

—(-l,dT (0D) + 0P div v = o + D(6 + o div v) = od. (17.6)

Also, the condition (15.2) may be regarded as a change of integration
variables from (x¥) to (X4). Hence the integrands g and g, are related by
the transformation law:

a0, x2, x%) ax
& = @ 50xT, X%, X%) e det| ggr

A ] = g detF. (17.7)
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Taking the material derivative of this equation, we get

i A .
0=gdetF + g%(%>%dem= detF(6 + e divv),  (17.8)

which is equivalent to the continuity equation (17.5).

Next we consider the balance of linear momentum. Using the stress
principle (16.4), we can rewrite (15.16) as

J eadx = J eb dx 4 J Tn do. (17.9)
xt(éa) xt(?) thh@)

Since the integrand of the surface integral is a linear function of the outward
unit normal n, the divergence theorem may be applied, and we obtain

J (0a — ob — div T) dx — 0, (17.10)
xt(gb)

where div T denotes the vector field with component form

ot/
oxt

divT = e;. (17.11)

Notice that the coordinate system (x*) is a rectangular Cartesian system
on the physical space .57 Relative to such a special coordinate system the
contravariant components and the covariant components of any tensor
field are numerically the same, and the Christoffel symbols all vanish.
The component form (17.11) is valid in such a coordinate system only.

Now since the balance equation (17.10) must be satisfied by an ar-
bitrary subbody .2” of %, by the argument as before we obtain the field
equation for the balance of linear momentum:

div T + ¢b = pa, (17.12)

which is also known as Cauchy’s equation.

Like the continuity equation (17.5), Cauchy’s equation (17.12) is
defined on the instantaneous configuration ¥, (#), which is a time-depen-
dent domain in the physical space &7 For some problems in continuum
mechanics it is more convenient to work with fields on the fixed domain
»(.#) occupied by .# in the reference configuration. For instance, it is
casier to formulate a boundary-value problem when the boundary is fixed.
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We proceed now to rewrite the field equation (17.12) as an equation on

w(F).

First, we can rewrite the balance principle (15.16) as
J oadX = J ebdX + J T,N dZ, (17.13)
®(Z) »(F?) In(F?)

where g, denotes the density in %(%) as before, and where N and dX
denote the outward unit normal and the Euclidean element of area on the
boundary 0%(.9”), respectively. The tensor T, in the integrand of the
surface integral is known as the Piola—Kirchhoff stress tensor. It is defined
by the condition

J TN Y = J Tn do (17.14)
»( %) X2

for any oriented surface Z in %. We can determine the relation between
T, and T in the following way:

Let (g% o = 1,2) be a positive coordinate system on Z. Then as
usual we can characterize the surfaces ®(%') and y,(%) by

X=X@,¢), x=x(",q¢) =(X(d" ) (17.15)
From (17.15) we can express the Euclidean elements of area dX and do by
dZ = |H;xH, | dg' dg?®, do = |h,xh,| dg'dg?, (17.16)

and the positive unit normals N and n by

HIXHg hIXh2

N = n=———-—
by xhy |

__HixH, 17.17
TH, < H, | (17.17)

where {H,} and {h,} denote the natural bases of (¢=) in ®(%) and ¥ (%),
respectively; i.e.,

X ox
H,= o hz=7ﬁ;, a=12. (17.18)

Now since (g%) is a convected system, the bases {H,} and {h,} are related by
h,=FH,, a=12, (17.19)
Substituting (17.16)-(17.19) into (17.14), we obtain

T.(H,xH,) = T(h, xh) = T(FH, xFH,),  (17.20)
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where H, and H, may be an arbitrary pair of linearly independent vectors,
since the oriented surface Z is arbitrary. We claim that the identity (17.20)
holds if and only if T, is related to T by

T, = (det F)T(F-1)7. (17.21)

To prove this result, we take the inner product of (17.20) with an
arbitrary vector H, obtaining

H - T, (H,xH,) = H - T(FH, xFH,) = T7H - FH, x FH,
= FH, - FH, x FH,, (17.22)

where H; is defined by
H, = F'TTH. (17.23)

Now the triple scalar product FH; - FH, XFH, on the right-hand side of
(17.22) is related to the triple scalar product H, - H, X H, by

FH, - FH, xFH, = (det F)H, - H, x H,; (17.24)

cf. (41.27) in Section 41, IVT-1. Substituting (17.24) into (17.22) and
observing the fact that H,, H, are arbitrary, we get

T,7H = (det F)H, = (det F)(F-)TTH. (17.25)
Now since H is also arbitrary, (17.25) implies that
T,7 = (det F)(F-1)T7, (17.26)
which is just (17.21) under the operation of transpose.

Having identified the integrands of the balance principle (17.13),
we can apply the divergence theorem to the surface integral and obtain

J (0,a —o,b — DivT, )dX =0, 17.27)
®(F) .
where Div T, denotes the vector field:
. T ).
DivT, = —%—X?— e (17.28)

As before the integral condition (17.27) for an arbitrary subbody .9° im-
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plies the field equation
Div T, + o,b = g,a, (17.29)
which is now defined on the fixed domain x(.%%).
Next, we consider the balance of moment of momentum. As before

we apply the stress principle (16.4) to the integral form (15.18) of the
balance principle, obtaining

j erxadx = j erxbdx + J rxTn do. (17.30)
xt(?) xt(?) axt(?)

Again we can rewrite the surface integral as a volume integral by using
the divergence theorem. In component form the result is

J ek xITiyl do = J etk 6, (X’T*Y) dx
MNP %) ox

. 0Tk N
= J ek x) ———dx + J e*T* dx, (17.31)
%, () ox X ()

Substituting this result into (17.30) and eliminating the cross product
terms by means of the linear momentum equation (17.12), we get

J FTH dx = 0. (17.32)
%P

Since the subbody .#” is arbitrary, this condition implies that
eWkTH = 0, (17.33)
which means that T is a symmetric tensor at each point x € ¥ (%), viz.,
T = TT. (17.34)

We can express this condition in terms of the Piola-Kirchhoff stress
tensor on the fixed domain (%) also. Indeed, from (17.21) the condition
(17.34) holds if and only if T, satisfies the condition

T.FT = FT,7. (17.35)

Consequently, T, is generally not a symmetric tensor. Like the condition
(17.34), the condition (17.35) characterizes the balance of moment of
momentum under the hypothesis that linear momentum is balanced.
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18. Constitutive Equations

In Section 15 we remarked that the contact forces in a deformable
body are generally caused by the internal reactions of the body toward
deformations and motions. In the physical world deformable bodies are
made up of many kinds of materials. In the mathematical framework of
continuum mechanics each material is represented by a special functional
relation between motions and stress tensors. Such a functional relation is
called a constitutive equation.

We regard a constitutive equation as being a mathematical model
which characterizes the mechanical response of a particular body manifold.
Using the constitutive equation and the balance equations, we can formulate
a deterministic theory for the motions of a body. Of course, the validity of
this theory can only be verified by experiments. From the standpoint of
mathematics many classes of constitutive equations may be formulated.
In application, however, only those classes which give rise to results con-
sistent with experiments deserve our attention.

Note. Physically, a deformable material body possesses many charac-
teristic features, such as color, chemical compositions, heat capacity,
electric conductivity, etc. The mechanical response, which is represented
mathematically by a constitutive equation, is but one special property of
the body. However, all other features are totally irrelevant in the context
of continuum mechanics, which is concerned with the mathematical de-
termination of motions of bodies under prescribed external forces only.
In particular, if two material bodies with different chemical compositions
happen to have exactly the same mechanical response, then in continuum
mechanics they can be represented by the same constitutive equation. On
the other hand, water and ice are made up of the same chemical substance,
H,0, but since their mechanical responses toward deformations are entirely
different, we must model them by different constitutive equations.

In this section we consider only a general class of constitutive equations
which was introduced by Noll.’ He calls the materials represented by these
cquations simple materials. Specifically, a simple material is defined by a

M W. Noll, A mathematical theory of the mechanical behavior of continuous media,
Archive for Rational Mechanics and Analysis, Vol. 2, pp. 197-226, 1958, reprinted in
Continuum Mechanics, International Science Review Series, Vol. 8, Edited by C.
Truesdell, Gordon and Breach, New York, 1965.
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constitutive equation of the form
T(x, 1) = G(F(X, t — 5), s € [0, o0), X, x), (18.1)

which means that the stress tensor T(x, ¢) is determined by the history
F(X,t — ), s € [0, c0), of the deformation gradient of X up to the time ¢.
We call G the response functional of the simple material.

Notice that the response functional generally depends also on the
body point X and on the reference configuration x; we shall consider such
a dependence in detail later. For simplicity of writing we suppress the nota-
tions x, ¢, X, s € [0, o0), X, and » from the equation (18.1). Thus we write

T = G(F(t — 5)). (18.2)

We call the particular time ¢ in this equation the present time. Then s is
the time lapse from the past time ¢ — s to the present time ¢. The fact that
G may depend on the past values of F indicates that in general a simple
material may have memory effects. For the special case in which G does
not depend on the past values of F, however, the material has no memory
effects and is called elastic.

Noll’s general theory of simple materials is based on two basic asser-
tions of invariance.

Principle of Material Frame-Indifference. The response functional G
must satisfy the condition

G(Q(F(t — 5)) = QO)G(F(t — 5))Q(0)” (18.3)

for any history of rotations Q(s) € F@(7"), s € [0, co).
The meaning of this condition may be explained in the following way:
Consider a motion ¥,: # — .7, te &P, which differs from the motion

Xt F— T t € FP, by a rigid motion only. Then the deformation histories
F(t — 5) and F(t — s) of ¥, and yx,, respectively, are related by

F(t — 5) = QF(t — ), (18.4)

where Q(s) € F@(7") for all se [0,00). Now from (18.2) the stress
tensor T in the motion ¥, is given by

T = GE( — ) = G(QG)F(t — 5)). (18.5)
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Consequently, the condition (18.3) amounts to the requirement
T = Q(0)TQ(0)". (18.6)

This requirement can best be explained by means of the contact forces.

We consider an arbitrary oriented surface % in & containing the
body point X. Let n and fi be the positive unit normals of Z at the positions
x = X{X) and X = ¥,(X), respectively. Then according to the assumption
about ¥, and ¥,, n and i are related by

fi = Q(0)n. (18.7)

Now from the stress principle (16.4) the contact forces t and t at x and %
are given by
t = Tn, t = Ti. (18.8)

Substituting the condition (18.6) into (18.8), we see that
t = Qt, (18.9)

which means that the contact force t is merely the contact force t rotated
by Q(0). Conversely, (18.9) is also sufficient for (18.6). Indeed, (18.7)-
(18.9) imply that

(T — QUOTQ(0))n = 0. (18.10)

But n, being the unit normal of an arbitrary surface 2 < &, is arbitrary;
(18.6) follows.

From (18.9) we see that the condition (18.3) reflects our basic under-
standing that the contact forces are caused by the internal reactions of the
body toward deformations and motions. Physically, a rotation Q(s) from
X5 t0 ¥X;_, preserves the size, the shape, and the sense of any subbody of .
For this reason we require that the contact forces t and t be related by the
rotation Q(0) as shown in (18.9).

Note. The condition (18.3) may be viewed also as a transformation
law of the constitutive relation (18.1) under a change of frame of reference.
Specifically, Q(s)F(t — s) and F(t — s) may be regarded as the deformation
histories of the same motion but observed in two different frames of refer-
cnce. From this point of view the condition (18.9) means simply that the
contact forces are frame-indifferent. Because of this explanation‘® the term
material frame-indifference is chosen for the condition (18.3).

' For more details see Chapter 2 in C.-C. Wang and C. Truesdell, Introduction to
Rational Elasticity, Noordhoff, Leyden, 1973,
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It should be pointed out, however, that since Q(s) is an arbitrary
history of rotations, the condition (18.3) involves a change of frame on &
in general, not just a change of inertial frame. In Section 36 of Part B
we shall specify the class of (Euclidean) frames in general and the class of
inertial frames on &, and we shall discuss changes of frames within these
classes in detail. In formulating the classical theories of mechanics, we
have decided at the onset to use one particular inertial frame as the frame
of reference on &, That special frame enables us to express the equations
of motion in the simplest forms. Of course, the classical theories may be
formulated in terms of an arbitrary frame on & or on the basis of &
directly without using any frame of reference at all. Such formulations,
however, tend to be far more abstract than ours, which emphasize simple
and direct presentations of the subjects.

The general solution of the condition (18.3) is given by the following:

NolP’s Representation Theorem. A functional G(F(t — s)) satisfies the
condition (18.3) if and only if it can be represented by

G(F(t — 5)) = R())G(U( — ))R()T; (18.11)
the restriction of G to positive definite symmetric histories is arbitrary.

We have used the polar decomposition
F(t — 5) = R{t — s)U( — 5) (18.12)

for the deformation gradient F in (18.11). In view of (18.12) the representa-
tion (18.11) means that G is entirely independent of all past rotations
R(t — 5), s€ (0, o), and it depends on the present rotation R(z) in a
special way. On the other hand the dependence of G on the stretch history
U(t — s), s € [0, 00), is not restricted at all by the condition of material
frame-indifference (18.3).

The proof of (18.11) is more or less obvious. Substituting (18.12)
into the left-hand side of (18.11) and then using the condition (18.3),
we obtain the right-hand side of (18.11). Thus necessity is proved.

Conversely, if G is given by (18.11), then we can express G(Q(s)F (¢ — s))
by

G(QEF( — 5)) = [QORMIG(U( — ) [QORE))”
= QO)R(*)G(U(t — 5))R(*)TIQO)

= Q(0)G(F(r — 5))Q(0)7, (18.13)
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since the polar decomposition of Q(s)F(z — s) is
QE)F(t — s) = [Q()R(E — U@ — s). (18.14)

Thus (18.11) is also sufficient for (18.3).

Mathematically, the condition of frame-indifference (18.3) corresponds
to a transformation law on the functional G by a left transformation group.
We define a group structure on the collection & of rotation histories
{Q(s), s€ [0, 00)} by the binary operation

{Q(), 5€ [0, 00)} * {Q(s), s € [0, 00)} = {Q()Q(s), s € [0,00)}. (18.15)

Then we define @@ as a left transformation group on the collection &%
of deformation histories {F(t — s), s € [0, c0)} by

{Q(s), s€ [0, 00)} o {F(t — 5), s€ [0, 00)} = {Q()F(t — 5), s € [0, 00)},
(18.16)

and as a left transformation group on the collection & of stress tensors by
{Q(s), s € [0, 00)} o T = Q(0)TQ(0)". (18.17)

It can be shown easily that the operation o satisfies the condition for a
left transformation; i.e.,

{0} ({Q®} e = (A} * { QN T (18.18)

for all {Q(s)} and {Q(s)} in @ and for all T in &. Using the notations
@, &, and & just defined, we can regard the response functional G as a
mapping

GZF>F. (18.19)

Then the condition (18.3) may be regarded as a transformation law of
G under the action of the group &@:

Go@=@5G. (18.20)
That is,
G({QW} o {Ft — 9}) = {QW}o GEFE — )  (18.21)

for all {Q(s)}e @ and all {F(t —s)}e &
Using the transformation group &, we can define an equivalence
relation ~ on the domain & by

{F(t — )} ~ {F@¢ — )} = (F(t — )} = {Q)} o {F(t — 5)}, (18.22)



112 Chapter 3 Sec. 18

where {Q(s)} € @. We call an equivalence class of this equivalence relation
a coset or an orbit of @ in %. By virtue of (18.21) the functional G is
determined on each coset by its value at any one representative point in the
coset. On the other hand the condition (18.21) does not restrict the values
of G on different cosets at all. This result explains clearly the meaning of
Noll’s representation formula (18.11). Indeed, the polar decomposition
(18.12) asserts that there is one and only one positive definite symmetric
history {U(t — s)} in each coset of @ in &, Using {U(t — 5)} as the rep-
resentative point in the coset, we obtain (18.11) from (18.21). Since (18.21)
does not restrict G on different cosets, the functional G(U(t — s)) is ar-
bitrary.

Note. The transformation of &7 by @ is called effective, since the
identity element of & is the only element which leaves any one element
{F(t — s)} invariant in %°. Equivalently, this condition means that the
element {Q(s)} in (18.22) is unique. Because @ is effective on &7, the
value of G at any representative point in a coset is entirely arbitrary in the
set . Otherwise, the value of G at any point {F(r — s)} must be invariant
under all {Q(s)} which preserve the point {F(t — s)}. This necessary
condition becomes vacuous, however, when @ is effective on &, since in
this case {F(r — s)} is preserved by the identity element {I(s)} of & only,
and {I(s)} clearly preserves each element T in &.

Next, we consider another condition of invariance on G due to the
rule of material symmetry. This rule reflects the observation that in the
physical world a deformable material body generally possesses certain
material symmetry. For example, if the body is a crystal, then two con-
figurations of the body differing by a transformation belonging to the
crystallographic group are indistinguishable. In the context of simple
materials we can define the physical concept of indistinguishable configura-
tions by the condition that the response functionals relative to the con-
figurations be identical. Specifically, we say that the reference configurations
% and ® are materially isomorphic at the point X € & if

G(F(X, t — 5),s€ [0,00), X, %) = G(FX, t — 5), s € [0,00), X, %) (18.23)

whenever F(X, -) = F(X, -). Here X and X denote the positions occupied
by X in the reference configurations » and X, respectively. We can express
the condition (18.23) in terms of the response functional G(F(r — s))
relative to a single reference configuration x in the following way:
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In general, when we change the reference configuration from x to %,
the response functional is changed according to the transformation law:

G(FX,t — s5), s€ [0,00), X, &) = G(FX, 1 — $)K(X), s € [0, 00), X, %),
' (18.24)

where K(X) denotes the deformation gradient from » to % at the point X.
This transformation law is valid since for the same motion ¥, the deforma-
tion gradients F(X, ¢t — s) and F(X, t — s) relative to » and &, respectively,
are related by the chain rule

FK t —5) = FX, t — HKX). (18.25)

Consequently, the stress tensor T(x, ¢t) may be obtained either by the left-
hand side or by the right-hand side of the equation (18.24).

Now using the general transformation law (18.24), we can rewrite the
condition (18.23) as

G(F(X,t — 5), s € [0, 00), X, ®) = G(F(X, 1 — s5)H, 5 € [0, o0), X, %),
(18.26)

where both sides are referred to the same configuration k. We call the
deformation gradient H from x to % a material automorphism of X relative
to the reference configuration x. It can be proved easily that the set of all
material automorphisms of X relative to » form a group & = Z(X, x).
We call this group the symmetry group (or the isotropy group) of X relative
to . Thus we have the following condition due to the rule of symmetry:

Condition of Material Symmetry. The response functional G must
satisfy the condition

G(F(t — 5)) = G(F(t — s)H) (18.27)

for any H belonging to the symmetry group %.

From our explanation of material symmetry the condition (18.27)
appears to be the definition for the symmetry group & rather than a condi-
tion for the response functional G. In application, however, the functional
G is rarely given explicitly, while the group & can often be assumed. As a
result, (18.27) becomes a condition upon the unspecified response func-
tional G. In other words an assignment of the symmetry group narrows
the class of response functionals. The conditions of frame-indifference
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(18.3) and symmetry (18.27) are the two basic assertions of invariance
which have been exploited for a simple material in general.

Mathematically, the condition (18.27) may be viewed as a transforma-
tion law to which the mapping G defined by (18.19) is subject under the
action of a right transformation group G. Specifically, we define G as a
right transformation group on & by

{F(t — s5),5€ [0,00)} oH= {F(t — s)H,s€ [0,00)}, (18.28)
and as a right transformation group on & by

ToH=T (18.29)

for all He &. Using the definitions (18.28) and (18.29), we can rewrite
(18.27) as the transformation law

GoF=%0G. (18.30)
That is,
G({F(t — s)} o H) = G(F(t — s))oH (18.31)

for all {F(t —s)}€% and all He &.
We define a coset of & as before: an equivalence class induced by the
equivalence relation

(F(t — s)} ~ {F(t — 5)} = {F(t — )} = {F(t — )} o H, (18.32)

where He . Then we can describe a general solution of the condition
(18.30) as before: G satisfies (18.30) if and only if it is constant on each
coset of & in &% On different cosets the constant values of G are arbitrary.

A general solution for both (18.3) and (18.27) has been obtained by
Wang.® We shall consider some important special cases of representations
in the following section.

19. Some Representation Theorems

In the preceding section we have introduced two basic conditions of
invariance on a constitutive equation, namely, the condition of material
frame-indifference (18.3) and the condition of material symmetry (18.27).
We shall now derive some results from these conditions.

® C.-C. Wang, A general representation theorem for constitutive relations, Archive
for Rational Mechanics and Analysis, Vol. 32, pp. 1-25, 1969,
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First, we remark that the symmetry group & of any simple material
is generally contained in the special linear group, viz.,

G c FHP). (19.1)

This restriction reflects the observation that the stress tensors in configura-
tions of different mass densities are generally different. Consequently, in
order to satisfy the condition (18.27), the determinants of F(#)H and
F(t) must be equal; i.e.,

detH = 1. (19.2)

From this observation we see that the largest possible symmetry group is
G = (7). Noll calls a simple material having that symmetry group
a simple fluid.

It should be noted that the symmetry group of a simple material gener-
ally depends on the reference configuration x. Under any change of reference
configuration, say from x to #, the transformation law for & is given by
Noll:

g, ») = KZ(X, K, (19.3)

where K denotes the deformation gradient at X from » to %. This trans-
formation law follows directly from (18.24). Indeed, if H satisfies

G(F(t — HH, X, x) = G(F(t — 5), X, ») (19.4)
for all {F(r — s)} € &, then from (18.24) we have

G(F(r — s)KHK, X, &) = G(F(t — s)KHK-'K, X, x)
= G(F(t — s)KH, X, ») = G(F(t — s)K, X, »)
= G(F(t — s), X, ®). (19.5)

Thus &(X, &) > KZ(X, »x)K-1. By reversing the roles of x and &, we
have also Z(X, x) > K-'Z(X, #)K. From these two inclusions Noll’s
transformation rule (19.3) follows.

By virtue of the transformation rule (19.3) the symmetry groups of
a simple material relative to different reference configurations form a
conjugate class of subgroups in the special linear group. For the special
case when & coincides with . ZZ(7); i.e., for a simple fluid, the conjugate
class consists of a single subgroup, namely, "% (7") itself. Hence in this
case the symmetry group is independent of the reference configuration.
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Now for a simple fluid the response functional G must satisfy the
following pair of conditions:

G(F(t — s)H) = G(F(t — 5)), HeFLO), (19.6)

G(QF(t — 5)) = QO)G(F(t — 9))QO), {Q(}e@. (19.7)

In order to exploit these conditions we first rewrite the response functional
G as a functional G of the form

G(F(t — 5)) = G(F(r — 5), F(1)), (19.8)

where F,(t — s5) denotes the relative deformation history; i.e., the deforma-
tion history relative to the present configuration

F(t —s)=F(@ — sF(1)!, se [0,00). (19.9)
In terms of the functional G the conditions (19.6) and (19.7) become

G(F{t — s), F()H) = G(F(t — 5), F(1)), (19.10)
G(Q()F.(r — 5)QO)T, Q(O)F(1)) = QO)G(F(t — 5), F())Q(0)", (19.11)

where H e F(77) and {Q(s)} € @ as before. We now show that these
conditions may be reduced in the following way:

Theorem (Noll). A functional G(F,(t — s), F(t)) obeys the conditions
(19.10) and (19.11) if and only if it can be represented by

G(F(t — ), F(1)) = G(ULr — 9), o(1)), (19.12)
where G is an isotropic functional; i.e., it satisfies the condition
G(QULt — 5)Q7, o(1)) = QG(ULr — 5), (1))Q"  (19.13)
for all orthogonal tensors Q € @ (7).

To prove this theorem we remark that a general solytion of the condi-
tion (19.10) is given by

G(F(t — 5)), F(t) = G(F (t — 5), 0(1)), (19.14)

since first, each coset of < (77) may be characterized by the determinant
of F(t), viz.,

F()=F()H, He L (7)< det F(t) = det F(t),  (19.15)

and second, by virtue of (17.7) det F(¢) is characterized by the density o(¢).
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Now after G is reduced by (19.14), the condition (19.11) may be
expressed in terms of G as

GQEF A — Q) 2(1)) = QO)G(F Lt — 5), 0(t))Q(0)T.  (19.16)

Then choosing Q(s) = Rt — s)T and Q(0) =1, we obtain (19.12).
Similarly, choosing Q(0) = Q and Q(s) = I for all s € (0, co0), we obtain
(19.13). Thus necessity of (19.12) and (19.13) is proved.

Conversely, when (19.12) and (19.13) are satisfied, we show the validity
of (19.16) by

G(QEF(t — Q)T o(1))
= G(QR (1 — 5)Q(0)TQ0)U(r — $)Q(0)T, o(1))
= G(QO)U,(t — 5)QO)T, o(t)) = QOYG(U(t — 3), ¢(1))Q(0)T
= QO)G(F(t — 5), o(1))Q(0)". (19.17)

Thus sufficiency of (19.12) and (19.13) is proved.

Note. In the preceding proof the tensor Q(s) is a rotation (i.e., proper
orthogonal) at each s € [0, o). The condition (19.13), however, is valid
for any improper orthogonal tensor Q also, since it is quadratic in Q.

Although a general solution of (19.13) is not known, we can often
use the condition directly to obtain valuable information about the func-
tional G. For example, if the relative right stretch history {U,(t — s)}
is a plane deformation, i.e., all Ut — 5), s€ [0, o), share a common
proper vector f, then the stress tensor T given by the value of G at the
history must also have f as a proper vector. This assertion can be proved
by a standard argument for an isotropic function. We choose Q to be the
orthogonal reflection with respect to the vector f. Then Q commutes with
Ut — 5); ie.,

QU,(t — 5)QT = Ut — s). (19.18)

We verify this fact by using an orthonormal basis of the form {f,, f,, f}.
Relative to this basis the component matrix of Ut — s) is a block matrix
with a general 2x2 block in {f;, f,} and a proper number in f, and the
component matrix of Q is a diagonal matrix with diagonal elements
(1, 1, —1). Clearly, these two matrices commute.

Now from (19.18) and (19.13) we see that the reflection Q must also
commute with the stress tensor T, which is given by the functional G at
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the history U,(t — s) in accord with the representation (19.12). Then by
using the component matrix of T relative to the basis {f;, f,, f}, we see
that f must be a proper vector of T also. In other words T is a plane stress
in the same plane of the stretch history Ut — s). Results like this have
been used by Coleman and Noll¥’ to analyze the viscometric flows of a
simple fluid in general; cf. Section 23 in Chapter 4.

The main difficulty in finding a general solution for the condition of
isotropy (19.13) is due to the fact that G generally depends on all past
values of the right stretch history U,(t — s). To simplify this situation,
we consider next a simple fluid which has only infinitesimal memory effects.
Specifically, we assume that G depends on U,(t — 5) only through its
derivative with respect to s at s = 0, i.e., the constitutive equation reduces to

T = G(D, o), (19.19)

where D denotes the stretching tensor defined by (14.28). The condition
(19.13) now implies that G is an isotropic function; i.e.,

G(QDQ”, o) = QG(D, 9)Q” (19.20)

for all Q € @(?"). A general solution of this condition is known.

Theorem (Rivlin and Ericksen®). A function G obeys the condition
(19.20) if and only if it can be represented by

G, ¢) = yol + y:D + y,D?, (19.21)

where v,, 7,, y. are functions of ¢ and the three fundamental invariants
of D, viz.,

Ip=1trD, Ilp=3}[(trD}—trD?], Ip=detD; (19.22)

cf. (26.7) in Section 26, IVT-1.

“ B, D. Coleman and W. Noll, On certain steady flows of general fluids, Archive for
Rational Mechanics and Analysis, Vol. 3, pp. 289-303, 1959. Reprinted in Continuum
Mechanics, International Science Review Series, Vol. 8, Edited by C. Truesdell,
Gordon and Breach, New York, 1965.

® R. S. Rivlin and J. L. Ericksen, Stress-deformation relations for isotropic materials,
Journal of Rational Mechanics and Analysis, Vol. 4, pp. 323425, 1955. When restricted
to polynomial functions this theorem is a special case of a general result in classical
invariant theory. The discovery of this special case in the context of continuum
mechanics may be attributed to many authors, including Finger (1894), Reiner and
Prager (1945), Reiner and Richter (1948), and others.
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The proof of this theorem follows from the remark about isotropic
functions mentioned before, namely, a proper vector of D is necessarily a
proper vector of T. From this remark we see that there are three possibilities:

(i) D has only one distinct proper number, so that
D =JdL (19.23)

In this case the remark implies that T has only one distinct proper number
also. Hence

G, o) = yol. (19.24)
(ii) D has only two distinct proper numbers, so that
D=cl+ di®f, (19.25)

where d 7 0. In this case the remark implies that T has at most two distinct
proper numbers; moreover, G has the form

G, ¢) = 7ol + 7D, (19.26)

since the tensor space generated by {I, f X) f} coincides with that generated
by {I, D}.

(iii) D has three distinct pr;)per numbers, so that
D=dfiRf, + dofs X f, + dof; X 13, (19.27)

where {f;} is an orthonormal basis, and where d,, d,, d; are unequal.
Then the remark implies that {f;} is also a principal basis for T; moreover,
G has the form

G(D, ¢) = I + y:D + 7.D?, (19.28)

since the tensor space generated by {f, ®f;,f, ® f,, f; ® f;} coincides
with that generated by {I, D, D?}.

Now the coefficients y,, 7, ¥, in (19.24), (19.26), and (19.28) are
functions of D and ¢. However, since

QIQ" =1, QDQ"=QDQTQDQ" = (QDQ")},  (19.29)

the condition (19.20) implies further that y,, v, ¥, are isotropic functions
of D; i.e.,

yu(QDQT! 9) = }'a(Do 9)’ a=0,1,2, (19°3O)
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for all Q& @ (7). As a result, v, depend on D only through its funda-
mental invariants Ip, IIp, IIlp, since a symmetric tensor D is related
to D by

D = QDQ” (19.31)

if and only if its proper numbers, or equivalently its fundamental invariants,
are the same as those of D. Thus necessity of (19.21) is proved.
Sufficiency of (19.21) is entirely obvious, since from (19.29) and
(19.30) we obtain (19.20). Thus the theorem is proved.
The special class of simple fluids defined by the constitutive equation

is called the class of (compressible) Reiner—Rivlin fluids. This class includes
the classical (compressible) Newtonian fluids as special cases. For a Newto-
nian fluid the response function depends linearly on the stretching tensor
D, so its constitutive equation is of the form

T = —pI + A(tr D)I + uD, (19.33)

where 4, u, and p are functions of g.
When a simple fluid has no memory effect at all, i.e., when it is elastic
as defined before, its constitutive equation has the form

T = —pl, (19.34)

where the pressure p is a function of the density ¢. In classical fluid mech-
anics this material is known as the (compressible) Euwlerian fluid.

So far, we have considered the condition of material symmetry for
the group & = (7). Since this group is the largest possible symmetry
group of a simple material, any soluation of the conditions (19.6) and (19.7)
is automatically a solution of a similar pair of conditions but for a smaller
group &. Noll calls a simple solid a simple material for which there is a
reference configuration x relative to which & is contained in the rotation
group, viz.,

G <« FO9). (19.35)

Note. Unlike the symmetry group of a simple fluid, the symmetry
group of a simple solid may vary when we change the reference configura-
tion. Specifically, the transformation law is given by Noll’s rule (19.3),
which does not always preserve the condition (19.35). As a result, the sym-
metry group of a simple solid may or may not be a subgroup of F@(7").
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The validity of (19.35) depends very much on the choice of the reference
configuration. We call x an undistorted reference configuration when the
condition (19.35) holds.

For a simple solid in general the largest possible symmetry group
(relative to an undistorted reference configuration) is the rotation group
FOP) itself. A simple solid having this symmetry group is called an
isotropic simple solid. Its response functional G satisfies the condition (19.7)
and the condition

G(F(t — 5)Q) = G(F(t — 5)), Qe F@P). (19.36)

As before we can rewrite G as G by (19.8). Then the condition (19.36)
is equivalent to the condition

G(F,(t — 5), F(1)Q) = G(F(t — 5), F(1)). (19.37)

Using an argument similar to the proof of (19.12) and (19.13), we have
the following result:

Theorem (Noll). A functional G(F(t — s), F(¢)) obeys the conditions
(19.11) and (19.37) if and only if it can be represented by

G(F(t — 5), F()) = G(U,(t — 5), V(1)), (19.38)
where G is an isotropic functional; i.e.,
G(QU(r — 5)Q7, QV(1)QT) = QG(U(t — 5), V(1))QT  (19.39)
for all Qe @(9).

As before there is no known general solution for the condition of
isotropy (19.39). However, for elastic isotropic solids, which are devoid
of any memory effect, G becomes a function of V = V(¢) only, and the
condition (19.39) reduces to

G(QVQT) = QG(V)Q”. (19.40)
By using the theorem of Rivlin and Ericksen, we obtain
G(V) = gl + 9,V + @V, (19.41)

where @, ¢, @3 are functions of the principal invariants of V. Conse-
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quently, the constitutive equation of an isotropic elastic solid has the
representation

T = gl + ¢,V + ¢2V%, (19.42)

provided that the reference configuration % is undistorted.

In continuum mechanics there are many other representation theorems
which characterize the constitutive equations of various types of materials
subject to different kinds of assumptions. The theorems established in
this section are just some important examples. There are many types of
subgroups of the special linear group F(7"); we can formulate a rep-
resentation problem for each choice of &. Our examples here illustrate
a fairly general procedure for finding a representation.

20, The Energy Principle for Hyperelastic Materials

In Section 15 we introduced the concept of kinetic energy F in the
motion of a body manifold .%. We have not discussed the balance of
energy, however, because first, for a deformable body the kinetic energy is
only a part of the total energy possessed by the body, and second, the
mechanical power of the forces acting on the body is also only a part of the
total energy flux. As a result, the rate of change of the kinetic energy need
not be balanced by the power of the forces as in analytical mechanics.

It is well known in physics that energy may take many different forms,
the most obvious examples of nonmechanical forms of energy being heat,
electromagnetic energy, and chemical energy. Since all forms of energy
are interchangeable, there is a general balance principle only for the rate
of change of the total energy and the total energy flux. This general principle
is usually called the first law of thermodynamics. In this section we have no
intention to venture outside the domain of continuum mechanics. For this
reason we shall limit ourselves to a very special type of energy balance,
which is valid only for a certain class of elastic materials under certain
physical restrictions.

Specifically, we assume that there is a balance between the mechanical
power induced by the forces acting on the body and the rate of change of
the total mechanical energy, which is assumed to be the sum of the kinetic
energy E and the (elastic) stored energy S of the body. Like E, S is a measure
on . % and is given by the integral

S(F) = J )Qe dx, P cH ‘ (20.1)

xS
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at any instant f in a motion ), of &#. Then the stored energy density ¢,
like the stress tensor T, is given by a constitutive equation of the form

£(x, 1) = p(F(X, 1), X, %). (20.2)

Notice that only the present value F(X, ) of the deformation gradient
enters into the argument of ¢, since we have assumed that the material is
elastic. As before we shall suppress the notations x, ¢, X, X, and » from
the constitutive equation (20.2). Thus we write

& = @(F). (20.3)

Under the preceding assumption the special form of energy balance
may be stated as follows:

Energy Principle for Hyperelastic Materials. Relative to an inertial
frame the rate of change of the mechanical energy is equal to the power
of the forces,

d

—J g(e+%v-v)dx=J eb - vdx + t-vde, (20.4)
dt xt(‘?)

%P %, ()

where 5° is an arbitrary subbody of .%.

Note. We shall prove that an elastic material satisfies the balance
principle (20.4) if and only if its response function G takes on a certain
special form. In continuum mechanics an elastic material with such a form
of response function is known as a hyperelastic material. In the context
of continuum thermodynamics the special balance principle (20.4) is valid
under two types of physical restrictions: First, the isothermal condition,
which requires the temperature be held constant throughout the motion.
Under this condition the free energy plays the role of the stored energy in
(20.4). Second, the isentropic condition, which requires the entropy be
held constant throughout the motion. Under this condition the internal
energy plays the role of the stored energy. We mention these conditions
here merely to point out the fact that (20.4) is not a general physical prin-
ciple.

Now using the stress principle (16.4) and the balance of moment of
momentum (17.34), we can rewrite the last term of (20.4) as

f t-vda=f Tn-vdcr=J Tv-nds,  (20.5)
31‘(.?) ax,(.?) ax,(.?)
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which may be converted into a volume integral by means of the divergence
theorem

J Tv - ndo = J v.divTdx + J tr(T grad v) dx. (20.6)
X, (2 x

(5

Substituting (20.6) into (20.4) and using the linear momentum equation
(17.12), we get

J [0é — tr(T grad v)] dx — 0. (20.7)
xt(y)

As before since 2 is arbitrary, (20.7) implies the field equation
oé = tr(T grad v), (20.8)

which is the differential form of the energy principle (20.4).

From (20.8) we see that the change of the stored energy ¢ is caused by
the action of the stress tensor on the velocity gradient. For this reason we
call the term on the right-hand side of (20.8) the stress power. From (14.21)
the stress power is a linear function of F, viz., .

tr(T grad v) = tr(TFF-1) = tr(F'G(F)F), (20.9)

and this linear function is uniquely determined by the deformation gradient
F. From (20.3) the rate of change of the stored energy 1s also a linear
function of ¥, viz.,

0é — tr( ( gg ) F) _ tr( o (‘;—g)TF), (20.10)

and this linear function is also uniquely determined by the deformation
gradient F. Now since the condition (20.8) must hold in all motions, we
can regard F and F as mutually independent variables. As a result, the
linear function given by (20.9) must be the same as that given by (20.10).
In other words, we have

9
F-'G(F) — g( o ) (20.11)
or, equivalently,
G®) = oF(52)', @o.12)

which shows that the stored energy function @(F) is the potential for the
response function G(F).
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Note. The relation between the stored energy and the stress may be
expressed even more clearly by using the Piola—Kirchhoff stress tensor T,,.
Indeed, from (17.7), (17.21), and (20.12) we have

_Op 0
T, = ou 3F - OF (ox9)- (20.13)

We can obtain this relation directly from the energy principle by transferring
the integrals to the reference configuration %(B) also,

ditj ex(e+&v-v)dX=J eub-vdX+J TN - vdZ.
®(P2) ®(F?) In(B?) (2014)
Then by the argument as before we get the field equation
o.é = tr(T,7F), (20.15)

which implies the relation (20.13).

The particular form of response function G(F) given by (20.12) is
the one mentioned before. We call an elastic material having a constitutive
equation of the form

dp \T
T— gF(W) (20.16)

a hyperelastic material.
The constitutive equation (20.16) must obey the principle of material
frame-indifference (18.3), which implies that

-t o

for all rotations Q. Since (20.3) is also a constitutive equation, we assume
that it, too, obeys the principle of material frame-indifference. Specifically,
we require

¢(QF) = ¢(F) (20.18)

for all Qe @ (7). This condition reflects our understanding that e,
like the stress tensor T, is caused by the deformations of the body. Then
(20.18) asserts that the stored energy of the body is invariant when the body
merely suffers only a rigid rotation. It turns out that the conditions (20.17)
and (20.18) are mathematically equivalent. This result was noted originally
by Noll.
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Sufficiency of (20.18) for (20.17) is obvious. We simply differentiate
(20.18) with respect to F to get (20.17). Conversely, integrating (20.17),
we obtain

®(QF) = ¢(F) + ¢(Q) + ¢(@). (20.19)
Thus it remains to show that

?(Q) = (D) (20.20)

for all Q € F@ (7). We set F = Q in (20.19) and integrate the resulting
equation over S7@(#") with respect to a left-invariant volume tensor
E(Q) as explained in Section 72, IVT-2, obtaining

[ ¢QuEQ
FOF)

—|[,. P QE@®+(@-em)|  ED. @2
FOF FOT)
From the left invariance of E(Q) the left-hand side of (20.21) is equal to the
first term on the right-hand side. Hence (20.21) reduces to

G@—¢m)|  E@=o. (20.22)
SO

Since S°@(2") is bounded, the integral of E(Q) over the whole group is

finite and nonzero [cf. (72.19) in Section 72, IVT-2]. Thus (20.22) implies

(20.20).

Another general condition which must be satisfied by the constitutive
equation (20.16) is the equation of moment of momentum (17.34). We
now show that this condition is also equivalent to the condition (20.18).

Indeed, by an argument similar to that in the proof of Noll’s representa-
tion theorem in Section 18, we see that a general solution of (20.18) is

¢(F) = ¢(U) = o((FTF))"2 (20.23)

Differentiating this condition with respect to F, we get

op _ . Op
- =F55 (20.24)

where we have used the symmetry condition

dp [ dp \T ) ‘
<= (‘aﬁ) , (20.25)



Sec. 20 Basic Principles of Continuum Mechanics 127

which follows from the symmetry of U. Substituting (20.24) into (20.12),
we obtain

_ Op o
G(F) = oF U F (20.26)

which is symmetric by virtue of the condition (20.25).
Conversely, since the chain rule

T
0 dii ¢(F(x)) = tr(eF(g—iﬁ) F’F—l) = tr(G(F)F'F-')  (20.27)

holds for any curve F = F(z) in &< (#"), by choosing the particular curve
F(r) = Q(7)F, (20.28)
with a skew-symmetric velocity gradient
FF1=QQl =Q = —QT, (20.29)
we get

02 p(QEIF,) = tr(GEIR) = 0. (20.30)

Thus the value of @ remains constant on each curve of the form (20.28).
This condition implies (20.18) immediately, since the rotation group
S@(77) is connected.

The foregoing results may be summarized as follows:

Theorem (Noll'®), The following three conditions are mathematically
equivalent:

(i) The value T of the response function G(F) given by (20.12) is
always a symmetric tensor.

(ii) The response function obeys the principle of material frame-
indifference (20.17).

(iii) The stored energy function obeys the principle of material frame-
indifference (20.18).

¢ W. Noll, On the continuity of the solid and fluid states, Journal of Rational Mechanics
and Analysis, Vol. 4, pp. 3-81, 1955. Reprinted in Continuum Mechanics, International
Science Review Series, Vol. 8, Edited by C. Truesdell, Gordon and Breach, New York,
1965.
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Before closing this section, we remark that hyperelastic materials,
which are defined by constitutive equations of the form (20.16), form
only a proper subset of elastic materials in general. We can characterize
that subset by a condition of integrability for the existence of the potential
@. Indeed, from (20.27) we must have

§ % tr(GEF)FF)dr =0 (20.31)

for any closed circuit F = F(z). If this condition holds, we can determine
the potential ¢ by

F
o(F) — L %tr(G(F)F’F—l) dr + g(b), (20.32)

where the integral is taken along any curve F(z) joining I to F, and where
() is an arbitrary constant.

21. Internal Constraints

So far we have formulated the basic governing principles for the motions
of a body manifold % which is free of any constraint. Given any motion
of &, we can determine the stress tensor field T = T(x, t) by using the
constitutive equation. Then from the stress tensor field we can determine
the body force field by using the linear momentum equation. We generally
regard the body force as an external quantity, which is not subject to any
a priori restrictions. Consequently, our theory allows the motions of %
to be arbitrary.

In this section we extend our formulation to bodies which are subject
to certain constraints. Previously we have explained that a configuration
of a body manifold &, unlike that of a system & of particles and rigid
bodies, cannot be characterized by a finite set of parameters. Hence the
free configuration space, which may be taken as the collection of all con-
figurations of %, is not a finite-dimensional manifold. We can define a
holonomic constraint on % by requiring that the configurations of % be
restricted to stay on a certain constraint surface in the free configuration
space. Then in general the constraint surface is also infinite dimensional.

Note. We can regard a rigid body as a body manifold which is subject
to the constraint of rigidity. For this special case the constraint surface
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is finite dimensional, of course. As we shall see, the governing principles
for this special case reduce precisely to those introduced in Section 4.

In continuum mechanics we restrict our attention to the following
special type of infinite-dimensional constraint suffaces which may be
described by means of certain finite-dimensional entities. First, we choose
a fixed reference configuration (%) to represent the body manifold .%5.
As has always been the case, this reference configuration may or may not
be an actual configuration of % at a particular instant in a motion. Con-
sequently, » need not itself satisfy the condition of constraint, defined as
follows:

We specify a smooth surface
M= MX,n) c GLT) (21.1)

for each body point X € #. Then we require the configurations of & to
be restricted in such a way that the deformation gradient F relative to »
must satisfy the condition

F(X, 1) € A(X, %) (21.2)

for all X € w(&) and for all 1€ 2. In particular, the deformation history
F(X,t — s), s € [0, o0), must stay in the surface .#(X, »), so the domain
of the response functional is restricted.

Note. The surface .# may or may not contain the identity element I
of FL(77). Since the deformation gradient from x to itself is I, s satisfies
the condition of constraint (21.2) if and only if .# happens to contain I
for all X e .

Now in accord with our understanding of the constitutive equation,
the stress tensor is due to the internal reaction of the body toward the
deformation history. Since the deformation is subject to the constraint
condition (21.2), we expect that there be an additional internal reaction
which affects the motion of & in such a way that (21.2) is maintained at
all times. Hence the stress tensor T = T(Xx, t) consists of two parts:

T = N + G(F(t — 5), s € [0, 00)), (21.3)

where N = N(x, t) denotes the stress due to the internal reaction of the
body toward the constraint, while G(F(t — s), s € [0, 00)) is the stress due
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to the response of the body toward the deformation history, which is
subject to the condition (21.2).

As remarked in analytical mechanics, the reaction N toward the con-
straint is generally an unknown quantity. Hence we must make some as-
sumptions about its mathematical properties. In this regard we are guided
by the idea as before: We require that N produce no power in any motion
consistent with the constraint. This idea may be formulated in the following
way:

In Section 20 we introduced the concept of stress power within the
context of a hyperelastic material body. Now for a simple material body in
general the stress power plays the role of the density of the excess mech-
anical power in any motion of . Indeed, from the linear momentum equa-
tion and the moment of momentum equation we have the identity

j tr(T grad v) dx
xt(\Q)

=J Qb-vdx+j t-vda—ij ov - vdx 21.4)
x,(P) % () dt )y

for any subbody &° of #. By virtue of this identity we see that N produces
no excess mechanical power if and only if

tr(N grad v) = tr(NFF-1) = 0 (21.5)
for all deformation histories F(¢ — s) consistent with the constraint (21.2).

Note. Strictly speaking, the excess mechanical power of N is given by
the integral of tr(N7 grad v), since we do not know whether N is symmetric
or not. The condition

tr(N7 grad v) = tr(NTFF-1) = 0, (21.6)

however, implies that
N = NT 21.7)

under a very natural assumption. We generally require that the surface
# be closed with respect to superposed rigid rotation; i.e., if F € .#,
then QF € .# for all rotations Q. This assumption is reasonable, since the
condition of constraint (21.2) is meant to be a restriction on the internal
deformation, not a restriction on the position of ¥, (%) in space. Hence
if the configuration ¥y, is consistent with the constraint, then the configura-
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tion Q o y,, obtained from y, by any superposed rigid rotation Q, is also.
We call this assumption thé condition of frame-indifference for the constraint.
Under this condition, if we choose any point F, € .# and consider a curve
passing through it,

F(r) = Q(v)F,, (21.8)

where Q(0) =1 and Q(0) = L, then the condition (21.6) implies that
tr(NTQ) = 0. . (21.9)

From (21.9) we see that N is orthogonal to all skew-symmetric tensors £
relative to the standard inner product on the space of second-order tensors
[cf. equation (35.50) in Section 35, IVT-1]. As a result, N is necessarily
a symmetric tensor, and thus the conditions (21.5) and (21.6) are equivalent.

Conversely, the symmetry of N and (21.5) or (21.6) imply also the
condition of frame-indifference. Indeed, we can consider an arbitrary curve
of the form (21.8) and obtain as before the condition

tr(NFF-1) = tr(NQQ7) = 0, (21.10)

since the tensor QQT is skew symmetric. As a result, we can extend the
surface .# into a surface satisfying the condition of frame-indifference
without violating the condition (21.5).

The condition (21.5) may be solved explicitly by using Lagrange’s
multipliers. That is, N is expressible as a linear combination of a basis for
the orthogonal complement of the tangent space of .# at the present de-
formation gradient F(¢). For example, if .# is a hypersurface which is
characterized by a single algebraic equation of the form

u(F) =0, (21.11)

then by taking the derivative of u on any curve F = F(¢) which satisfies
the constraint (21.11), we get

O \To] o\ ]
tr[(—ﬁ,—-) F] - tr[F(—él_T) IF ]_ 0. @1.12)
Comparing this equation with (21.5), we obtain
1'
N= lF(—a'u—) , 21.13)

oF

where 4 is a Lagrange’s multiplier.
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Note. From (21.13) and Noll’s theorem in Section 20 we see also
that the condition (21.7) is equivalent to the condition of frame-indifference,
which in this case means that

#(QF) = u(F) (21.14)

for all Q € @ (7). It follows that u reduces to a function of the right
stretch tensor U of F only, viz.,

p(F) = u(U). (21.15)
Using the representation (21.15), we can rewrite the tensor N as
N — F 2 gr (21.16)
ou "’ )

which is clearly symmetric.

In general if # is a surface of lower dimension, say, 9 — k, then it
may be characterized by a system of algebraic equations, viz., F € .4 if
and only if

Uu(F) =0, a=1,...,k. (21.17)

In this case the representation (21.13) is replaced by

— a.”'l T . 6,“/; T__ a,ua T
N— AIF(W) o 4 AJ(W) - Aap(ﬁ,—) . @L18)

Also, if the functions u,, a =1, ...,k, obey the condition of frame-
indifference, then we have the symmetric representation

N = AF %’I‘; F7, (21.19)

where g is summed from 1 to k.
We now consider some important special cases of internal constraints:

(i) Incompressibility. For this constraint we require that the determinant
of F remain fixed in all motions. We can express this constraint by an
equation of the form (21.11), where u(F) =detF —c¢, ¢ > 0. Using
this function, we obtain directly from (21.13) that the orthogonal com-
plement of . is the 1-dimensional subspace spanned by the identity tensor L
Thus N is a hydrostatic stress, viz.,

= —pl, (21.20)
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where p denotes the pressure. Substituting (21.20) into (21.3), we see that
the constitutive equation for an incompressible simple material is

T = —pl + GF( — s), s€ [0, o0)). (21.21)

(i) Inextensibility. For this constraint we require that the deformation
gradient F preserve the length of a particular vector e in all motions. We
can express the constraint again by an equation of the form (21.11), where
u(F)=| Fe| — ¢, ¢ > 0. Using this function, we obtain from (21.13)
the result that the orthogonal complement of 4 at any F € .# is spanned
by the tensor Fe (X) Fe. Thus N is a uniaxial tension in the direction of
Fe, viz.,

N = AFe (X) Fe. (21.22)

From this representation we see that the constitutive equation of an in-
extensible simple material is of the form

T = AFe @ Fe + G(F(t — 5), s € [0, o0)). (21.23)

(iii) Rigidity. This is a degenerate constraint for which 4 is a 3-
dimensional surface formed by tensors of the form QF,, where F, is fixed
and Q € @ (). For this case the orthogonal complement at any point
of .# is 6-dimensional, so that it consists of all symmetric tensors. Thus
for a rigid body the stress tensor is entirely independent of the motion.

The preceding three examples illustrate clearly the general properties
of the constraint stress N, namely, N is an appropriate tensor whose presence
in y, prevents the body .# from violating the given constraint. The precise
value of N depends on the external body forces and the boundary tractions.
Specifically, given any motion of % consistent with the constraint, we
determine first the value G(F(t — §), s € [0, o)) due to the response. Then
from the linear momentum equation we determine the combination gb
+ divN. In particular, two external body force fields b and b differing
only by

b—b= %div K, (21.24)

where K is orthogonal to the constraint surface .#, are consistent with the
same motion.

In particular, for a rigid body any two force systems which have the
same resultant force and the same resultant moment are equivalent, since
in the theory of partial differential equations it is known that the boundary
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value problem
divK=f in 2,

(21.25)
Kn=g on 09,

has a solution if and only if f and g satisfy the compatibility conditions:

j fdx+j gdo =0 (21.26)
@ 0z
and

j xxfdx+J. xxXgdo = 0. (21.27)
o o4

Indeed, we can regard (21.25) as a traction boundary value problem in
the classical theory of linear elasticity by identifying K as the stress tensor
of any linearly elastic material (say, with a positive definite stored energy
function so as to assure the existence!” of a solution).

™ Compare G. Fichera, Existence theorems in elasticity, in Handbuch der Physik,
Edited by C. Truesdell, Vol. VIa/2, Springer-Verlag, Berlin, 1972,



Some Topics in the Statics
and Dynamics of Material Bodies

There is a vast literature in continuum mechanics on topics ranging from
the classical theories of hydrodynamics and linear elasticity to the modern
theories of materials with memory effects and dislocations. In this chapter
we shall consider only three topics for the purpose of illustrating the basic
principles developed in the preceding chapter. The topics are: the theory of
viscometric flows of simple fluids, the universal solutions of isotropic
elastic solids, and the mathematical formulation of continuous distributions
of dislocations in elastic bodies.

22. Homogeneous Simple Material Bodies

Noll’s concept of a simple material, which we have summarized in
Section 18, is basically a mathematical model for the mechanical response
of a single body point X in a body manifold %#. We may, of course, apply
this model to each and every point of %. Then we obtain in a very natural
way a mathematical model for the mechanical response of the whole body .
Thus we may regard a simple material body as a body manifold such that
each of its body points is equipped with a constitutive equation of the form
(18.1) relative to the particular reference configuration x of #. That is,

T(x, t) = G(F(X, t — 5), s € [0, 00), X, x) (2.1
for all Xe .

138
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In Section 18 we have pointed out that the response functional G
on the right-hand side of (22.1) generally depends on the body point
X e % and on the reference configuration ». This remark means that the
mechanical response of different body points, taken with respect to de-
formation histories relative to the reference configuration », need not be
the same for the whole body %. In general the response functionals of
different body points of & are entirely independent of one another. As a
result, in order to specify a simple material body % we must assign a
field of response functionals on the domain »(.%#). Mathematically, such
a field has a rather complicated structure. In this section we develop first
a theory for the simplest kind of bodies, namely, homogeneous bodies.

A homogeneous simple material body is a body manifold % such that
there exists a reference configuration » relative to which the response
functional G is independent of the body point. We call this particular
reference configuration a homogeneous configuration of #. In this con-
figuration the body points may be regarded as being in the same state,
since their response functionals are identical to one another.

It should be noted that a homogeneous body may have homogeneous
configurations as well as inhomogeneous configurations. Indeed, suppose
that » is a homogeneous configuration of . Then from the transformation
law (18.24) another configuration ® of %% remains a homogeneous one if
and only if

G(F(r — 5)K(X), ») = G(F(r — 5)K(Y), %) (22.2)

for all deformation histories F(+ — s) and for all X, Y € »(%#), where K
denotes the deformation gradient field from » to ® as before. Comparing
(22.2) with (18.27), we see that a necessary and sufficient condition for
(22.2) is

K(X)K(Y) € (%) (22.3)

for all X, Ye »(%), where &(x) denotes the symmetry group relative
to . If K fails to satisfy the condition (22.3), then & is an inhomogeneous
configuration of #. In such a configuration the body points are not in the
same state; i.e., their response functionals are not identical.

Note. The condition (22.3) is certainly satisfied when K is a constant
field on w(%); i.e., when the deformation ¢ = R o x~! from » to R is a
homogeneous one. However, if &(x) is a large group, then there might
be some inhomogeneous deformations which also satisfy the. condition
(22.3). For example, if F(x) = FL(#") for a simple fluid, then (22.3)
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holds whenever the determinant of K is a constant field. Clearly, there are
many inhomogeneous deformations whose gradients have a constant
determinant.

If a homogeneous configuration » of & is given, then we can determine
whether or not another configuration # is also homogeneous by the criterion
(22.3). Conversely, however, if a general inhomogeneous configuration #
is given, say the constitutive equation relative to # is

T(x, 1) = G(FX, t — 5), s€ [0, o), X, R), (22.4)

where the response functional G(-, ®) relative to R is specified, then it is
a very difficult problem to determine a deformation ¢ = x o #-! such that
the configuration » is homogeneous. Indeed, from the transformation law
(18.24) the deformation gradient field K of ¢ must satisfy the condition

G(F(t — )K(X), s € [0, o0), X, &)
— G(F(r — 5R(R), s€ [0, 00), ¥, R) (22.5)

for all X, Y € % and for all deformation histories F(¢ — s), s € [0, o).
Since the response functionals G(-, X, ) and G(-, Y, 8) are generally
not the same, the condition (22.5) cannot be reduced to a simple criterion
like (22.3).

In fact the existence of a solution K for the condition (22.5) charac-
terizes implicitly the fact that %7 is a homogeneous body. Since the solution
K must be a field of deformation gradients, it has to satisfy the compatibility
condition (14.9) also. We shall consider the problem of existence of K
in the context of a more general model later. If (22.5) fails to have a solution,
then # is an inhomogeneous body. For such a body all configurations are
inhomogeneous.

Now suppose that & is a homogeneous body, and let % be a homoge-
neous reference configuration for %¥. Then the response functional G
relative to » is independent of the body point. In principle we can test G
in the following way: We consider arbitrary homogeneous motions of %
of the form

x =FX + ¢, (22.6)

where F and ¢ depend only on t. For this motion the stress tensor field is
a constant field at any instant ¢, since the deformation history F(z — s),
s € [0, 00), is independent of the position. As a result, div T vanishes
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identically, and the equation of linear momentum reduces to
a=FX+e¢=FF'(x—c)+&é=b. 22.7)

If such a body force can be produced, and if suitable contact forces are
applied on the boundary of the body, then the homogeneous motion (22.6)
is possible, and the value of the response functional G(F(t — s), %) is
simply the constant stress tensor T(z) on the instantaneous configuration
of & at time .

It is highly questionable, of course, whether a body force field b of
the form (22.7) can be achieved in a laboratory. Also, if the simple material
of &, in fact, has an infinite memory effect, then the homogeneous motion
(22.6) must be maintained over an infinite period of time, which is clearly
impossible to achieve physically. Hence in application we must either
restrict the deformation histories to a class, which is representable by a
certain finite-dimensional space, or conjecture that the response functional
has a certain special form, which can be determined completely by testing
only a few deformation histories.

From (22.7) we see that a homogeneous motion can be maintained
by suitable boundary forces alone if and only if both ¥ and & vanish iden-
tically. Thus such a motion has the explicit representation

x = F,{ + FX + ¢f + ¢, (22.8)

where F,, F;, ¢,, ¢, are constant. For this motion the deformation history
is of the form

F(t —s)=F,(I+Fyt—s), se [0,00). (22.9)

Since the deformation gradient must have a positive determinant, the
tensors F, and F, in the preceding two equations are not entirely arbitrary.
Indeed, in order that the motion be nonsingular for all ¢, it is necessary
and sufficient that det F, be positive, and that all real roots of the charac-
teristic polynomial of F, be zero. (The characteristic polynomial is defined
in Section 26, IVT-1.)

The accelerationless homogeneous motions (22.8) enjoy the following
important property: They are motions which can be maintained by boundary
forces alone for all homogeneous bodies, regardless of what simple materials
the bodies are made up of. Because they have this property, we call these
motions universal solutions for all simple materials. It is clear that no other
motion enjoys the same property. Among homogeneous motions those
satisfying the condition b = 0§ are given by (22.8). On the other hand, an
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inhomogeneous motion cannot possibly be a universal solution for all
simple materials, since the linear momentum equation requires that

div G(F(X, t — s), s € [0, 0), %) = pa, (22.10)
which cannot always hold for an arbitrary response functional G.

Note. Strictly speaking, the response functional G in (22.10) is not
entirely arbitrary, since it must satisfy the condition of frame-indifference.
However, from Noll’s representation theorem, we know that the restriction
of G to stretch histories is arbitrary. Since the field of stretch histories of
an inhomogeneous motion must be an inhomogeneous field (proof?),
the values of G in (22.10) are, indeed, arbitrary.

Choosing F, = 0 and ¢, = 0 in (22.8), we see that all homogeneous
static deformations

x=FX+}e¢,, det F, >0 (22.11)
are universal solutions. Similarly, a simple shearing flow of the form
x = (I 4+ Ko)X, (22.12)

where K has the component matrix

0 00
K]= [k 0 0f, (22.13)
0 00

is also a universal solution. Since the present deformation gradient in the
motion (22.12) is
F(t) =1+ Kq, (22.14)

which depends on ¢, the stress tensor T(¢) is generally a time-dependent
homogeneous field on the present configuration. These examples illustrate
some of the general features of the universal solutions (22.8).

The concept of universal solutions for all simple materials may be
generalized in an obvious way to the concept of universal solutions for a
specific class of simple materials, e.g., the class of all simple fluids, the class
of elastic materials, the class of isotropic elastic solids, etc. Thus a universal
solution for simple fluids is a motion which can be maintained by boundary
forces alone for all homogeneous bodies made up of simple fluids. In general,
of course, a smaller class of simple materials always gives rise to a bigger
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family of universal solutions. In this sense the accelerationless homogeneous
motions given by (22.8) are contained in all families of universal solutions.
In continuum mechanics the problem of finding universal solutions for a
specific class of materials is very important. We shall discuss this problem
in detail for several classes of materials in later sections of this chapter.

Having considered homogeneous bodies made up of simple materials
in general, we now turn our attention to bodies with internal constraints,
the most important constraint being incompressibility. We call & an
incompressible simple material body if the body points of & are all subject
to the constraint of incompressibility as defined in Section 21. We choose
the reference configuration » to be consistent with the constraint, so that
the deformations relative to % must be isochoric; i.e.,

det F(X, ) = 1 (22.15)

for all X € »(.%) and for all times ¢. The constitutive equation now takes
the form

T(x, 1) = —pl + G(F(X, 1 — s), s€ [0, 00), X, %),  (22.16)

where the domain of the response functional G contains isochoric histories
only.

Since the pressure p in the constitutive equation (22.15) is entirely
independent of the deformation history, we can adjust the value of the
response functional G in such a way that

tr G(F(X, t — s), s € [0, 00), X, x) = 0. (22.17)

Under this condition both p and G are uniquely determined by the stress
tensor T(x, ). We shall now impose the condition (22.17) on G. Then as
before we call # a homogeneous body if G is independent of X relative
to a certain reference configuration %, which is called a homogeneous
configuration of %.

We may test the response functional G relative to a homogeneous
reference configuration » in the following way: We consider an isochoric
homogeneous motion of the form (22.6). For this motion the value of the
response functional G is a constant field. Hence the linear momentum
equation implies that

—grad p + b = o(FX + &). (22.18)

We assume that the mass density g, is a constant in a homogeneous con-
figuration ». Then from (22.15) and (17.7) we see that g is also a constant.
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Thus (22.18) may be rewritten as
b = FX + grad ¢ = FF-x + grad , (22.19)

where { and £ are arbitrary time-dependent scalar fields on the configuration
x{F) of the motion. If we apply this body force field and a suitable
contact force on the boundary, then, in principle, we can sustain the homoge-
neous motion, and the value of the response functional G is given by

G(F(t — 5), s € [0, 00), x) = T(t) — (tr T(1))L, (22.20)

where T(¢) is the constant stress tensor field in the homogeneous motion
at time ¢

From (22.19) we see that the homogeneous motion can be maintained
by boundary forces alone if and only if the vector field FFx is a lamellar
field (cf. Section 54, IVT-2). Since the vector field depends linearly on the
position x, a necessary and sufficient condition for it to be a lamellar field
is that FF! is a symmetric tensor at all times . From (22.7) the tensor
FF-1 is the acceleration gradient of the homogeneous motion. Thus the
criterion for b = 0 is

grad a = (grad a)7 (22.21)

or, equivalently,
curla = 0. (22.22)

In general a motion satisfying the condition (22.22) is called circulation
preserving, since (22.22) is necessary and sufficient for the following con-
dition:

ij v-dx=J a-dx=J curla - mdo — 0, (22.23)
dt Joy ax ) X, Z)

which means that the circulation around the boundary of any oriented
surface 7 in & is time independent.

Summarizing the preceding analysis, we obtain the following result
of Coleman and Truesdell.”V

Theorem. A homogeneous isochoric motion is possible in every
homogeneous incompressible simple material body subject to boundary
forces alone if and only if it is circulation preserving.

M B. D. Coleman and C. Truesdell, Homogeneous motions of incompressible materials,
Zeitschrift fiir Angewandte Mathematik und Physik, Vol. 45, pp. 547-551, 1965.
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As explained before, an inhomogeneous isochoric motion cannot
possibly be maintained by boundary forces alone for all homogeneous
incompressible material bodies. Hence the preceding theorem implies that
the circulation-preserving homogeneous isochoric motions are the only
universal solutions for all incompressible simple materials. As remarked
before, these motions are contained in all families of universal solutions
for all classes of incompressible simple materials. Of course, the accelera-
tionless isochoric homogeneous motions, such as the simple shearing flow
(22.12) considered before, are ipso facto circulation preserving.

One example of a circulation-preserving isochoric homogeneous
motion in which the acceleration does not vanish is given by the steady
extension flow with deformation gradient

F(t) = exp(A?), (22.24)

where A is a constant traceless symmetric tensor, say,
a 0 O
[A]=i0 & Of, a+b+c=0. (22.25)
0 0 ¢

For an explanation of the exponential map of a tensor see Section 65,
IVT-2. The motion (22.24) is isochoric since

det F(¢) = det(exp(A?)) = exp(tr(Az)) = exp(0) = 1 (22.26)

for all t &€ &P, cf. part (g), Exercise 65.1, Section 65, IVT-2.
Now for the homogeneous motion with deformation gradient F(z)
given by (22.24) we have

F(t)"' = exp(—At), F(1) = A?exp(At). (22.27)
Thus the acceleration gradient is a constant symmetric tensor field, viz.,
grad a = FF-1 = A2, (22.28)

As a result, the criterion (22.12) is satisfied.

Note. The simple shearing flow (22.12) may be written in the form
F(t) = exp(Kt) o (22.29)

also, where K is given by (22.13). A motion having the general form (22.29)



Sec. 23 Topics in Statics and Dynamics of Material Bodies 143

may be characterized by the l-parameter group property
F(t, + t;) = F(1)F(ty) (22.30)

for all t;, t, in @2. In particular, the relative deformation history of such
a motion is given by

F(t — s) = F(t — sF(¢)~! = F(t — s)F(—t) = F(—s), (22.31)

which is a function of the time lapse s only independent of the present time z.
For this reason we call (22.29) an invariant motion relative to the con-
figuration at time ¢ = 0, where F(0) = I. A general form of an invariant
motion is

F(t) = H exp(Kt), (22.32)

where the reference configuration need not coincide with any instantaneous
configuration of the motion.

A motion differing from an invariant motion by a superposed rigid
motion is called a motion with constant stretch history, viz.,

F(t) = Q(t)H exp(K¢), (22.33)

where Q(t) € @ (7") for all t € 2. In continuum mechanics this general
class of motions is of considerable importance. It is known that the restric-
tion of the response functional to this class has a simple representation.‘®

23. Viscometric Flows of Incompressible Simple Fluids

In the preceding section we have considered homogeneous motions
of homogeneous simple material bodies. We pointed out that there are
certain special motions, called universal solutions, which may be maintained
by boundary forces alone regardless of what simple materials the bodies
are made up of. Since there is a great variety of simple materials involved,
such special motions are limited to a few very simple motions. In this
section we focus our attention on a much smaller class of materials, namely,
the class of incompressible simple fluids. Also, we drop the requirement
that the motion be a universal solution. Then we can consider a bigger
class of motions, including some inhomogeneous ones.

" C.-C. Wang, A representation theorem for the constitutive equation of a simple
material in motions with constant stretch history, Archive for Rational Mechanics and
Analysis, Vol. 20, pp. 329-340, 1965.
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All results of this section were obtained by Coleman and Noll,®
who extended the earlier analysis of Rivlin'® on viscometric flows of non-
Newtonian fluids to simple fluids. Some experimental observations of these
flows were made by Weissenberg.!®

For an incompressible simple fluid the constitutive equation is

T = —pI + G(U,(t — 9)), (23.1)

where U,(t — s) denotes the right stretch tensor of the relative deformation
gradient F,(t — s), and where G is an isotropic functional, viz.,

G(QU(t — 5)QT) = QG(U(r — £))Q” (23.2)

for all orthogonal tensors Q. We have purposely left out the variable
o(t) from the argument of G, since under the constraint of incompressibility
o(t) is a constant independent of t. Also, the relative stretch history
{U[t — s), s€ [0,00)} must satisfy the constraint

det Uyt — s) = 1 (23.3)

for all s € [0, o0).

In application it is more convenient to use the square of the stretch
history as the independent variable of the response functional; i.e., we
replace (23.1) by

T = —pl + H(C,(t — )), (23.4)
where C,(t — s), called the right Cauchy-Green tensor, is defined by
Ct —5) = Ut — 5)2 = F,(t — 5)TF,(t — s). (23.9)

The form (23.4) is strictly equivalent to the form (23.1). Indeed, both
U,(t — s) and C,(t — s) are positive definite and symmetric, so they deter-

® B. D. Coleman and W. Noll, On certain steady flows of general fluids, Archive for
Rational Mechanics and Analysis, Vol. 3, pp. 289-303, 1959. Reprinted in Continuum
Mechanics, International Science Review Series, Vol. 8, Edited by C. Truesdell,
Gordon and Breach, New York, 1965.

W R. S. Rivlin, The hydrodynamics of non-Newtonian fluids, I, Proceedings of the

Royal Society of London, Vol. A193, pp. 260-281, 1948; The hydrodynamics of non-

Newtonian fluids, II, Proceedings of the Cambridge Philosophical Society, Vol. 45,

pp. 88-91, 1949, Reprinted in Continuum Mechanics, International Science Review

Series, Vol. 8, Edited by C. Truesdell, Gordon and Breach, New York, 1965.

K. Weissenberg, A continuum theory of rheological phenomena, Nature (London),

Vol. 159, pp. 310-311, 1947.

£
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mine each other uniquely. The form (23.4) is easier to calculate, however,
because C,(t — s) is a polynomial of F,(t — s), while U,(t — s) is not.
In terms of the variable C,(r — s) the condition (23.2) becomes

H(QC,(t — s)QT) = QH(C,(t — s))QT (23.6)
for all Q € @ ("), and the condition (23.3) reduces to
det C(t — 5) = L. (23.7)

We now use the representation (23.4) to calculate the stress tensor in
a simple shearing flow (22.12), which we have considered in the preceding
section. First, from (22.14) the relative deformation history in a simple
shearing flow is given by

Fi(t —s5)=F(t — )F(@) ' = (I + K(t —s))A—Ke) =1 —Ks, (23.8)

which depends only on s, as we have remarked before. Next, from (23.5)
the right Cauchy-Green tensor is given by

C,(t —5) =F,(t — s)TF(t — 5s) = (I — KTs)(I — Ks)
—I— (K + K7)s + KTKs?, (23.9)

which also depends only on s. From (22.13) the component matrix of
Ct —s) is
1+ k%2 —ks O
[Ct — )] =] —ks 1 0} (23.10)
0 0 1

Substituting (23.9) into (23.4), we see that the value of the response func-
tional is independent of ¢. Thus (23.4) reduces to

T(x, t) = —p(x, )I + S(k), (23.11)

where
S(k) = HI — (K + K7)s + K7Ks?). (23.12)

Now using the condition of isotropy (23.6), we can show that the
component matrix of S(k) must be of the form

Sulk) Spk) 0
[S(K)] = Sn(k) San(k) 0 s (23-13)
Y 0 Su(k)
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where S;,(k), Sy(k), Ss(k) are even functions of k, while S,,(k) is an
odd function; i.e.,

Sn("’k) = Sn(k)s Szz(_k) = Szz(k), Saa(_k) = Saa(k) (23-14)

and
Syo(—k) = —Sp(k) (23.15)

for all k € 2P. This important result may be proved as follows:

We observe first that the particular tensor C,(t — s) of the form (23.10)
commutes with the orthogonal reflection Q in the direction of e;; i.e.,
Q has the component matrix

1 0
[Ql=[0 1 of. (23.16)
00

Hence from the condition of isotropy (23.10), S(k) commutes with Q also.
This condition requires the component matrix of S(k) to have the form
(23.13). Next, if we consider the orthogonal refiection Q in the direction
of e, i.e.,
-1 0 0
[@l=| 0 1 o, (23.17)
0 0 1

then Q(C,(¢t — s)QT has the component matrix

ks 1 0
0 0o 1

[QC.(t — 5)QT] = (23.18)

1 4+ k%% ks 0]

which is the same as [C,(f — s)] except that k is replaced by —k. Thus
H(QC(t — )QT) = S(—k). - (23.19)

However, from (23.6) H(QC,(r — s)Q7) is equal to QS(k)Q7, and from
(23.13) and (23.17)

Sutk) —Spk) O
[QSK)QT] = | —Suk)  Suk) 0 | (23.20)
0 0 Sas(k)

Combining (23.19) and (23.20), we obtain (23.14) and (23.15).
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It should be noted that by the convention (22.17) the three normal
stress components of S(k) must satisfy the condition

tr(S(k)) = Su(k) + Sea(k) + Sss(k) = 0, (23.21)

so they can be expressed in terms of two independent even functions of k,
viz.,

0,(k) = Sii(k) — Sy(k), oa(k) = Sp(k) — Sa3(k). (23.22)

From (23.11) o4(k) and o,(k) are also the differences of the normal com-
ponents of T(x, t), viz., -

Ty (x, 1) — Tas(x, t) = o04(k), Tyo(x, t) — Tys(X, t) = 0y(k). (23.23)

The shear components of S(k) and T(x, ¢) coincide of course. We denote
the nonzero shear stress by

Siolk) = Tie(x, t) = t(k). (23.24)

The functions a,(k), o5(k), and 7(k) characterize completely the response
of an incompressible simple fluid in an arbitrary simple shearing flow.

We call o, and o, the normal stress functions and v the shear stress
Sfunction. We generally assume that 7 is a monotonic increasing function
which is positive for positive & [and negative for negative k by virtue of
(23.15)]. That is, the higher the shearing rate the bigger the shear stress.
This assumption is known to be consistent with experimental observations
of fluids in simple shearing flows. We do not make any a priori assumptions
on the normal stress functions.

In Section 22 we pointed out that the pressure field is a constant in
a simple shearing flow, viz.,

grad p = 0. (23.25)
As a result, we can determine the boundary forces directly by
t=Tn = (—pI 4 S(k))n; (23.26)
e.g., if n=e,, then t is
t = Ty,e + Tye, = Tye, -+ t(k)e,. (23.27)

From this force we may test the shear stress function (k). The normal
stress functions o,(k) and o,(k) require tests at several boundary points
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with independent normals. For example, the contact force at a boundary
point where n = e; is

= Tye,. (23.28)

Then o,(k) may be determined by the difference of the normal components
Ty, and T3, of t and t.

Next, we use the representations (23.23) and (23.24) to analyze certain
inhomogeneous motions, called steady viscometric flows. These motions
are characterized by the condition that the deformation history at each
point is of the form (23.8), but the shearing rate kK may depend on the point.

23.1. Channel Flow

We assume (see Figure 2) that the fluid is confined between two fixed
planes x! = d and x' = —d, and we consider a flow with velocity field
of the form

vl =0, v® = v(x1), 3 =0, (23.29)

which satisfies the boundary condition
v(d) =v(—d) = 0. (23.30)
Integrating the velocity field (23.29), we obtain the deformation functions

X=X,  x=p(X)r+ X2,  x3 =X, (23.31)

xl
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where the configuration at time ¢+ = 0 is regarded as the reference configura-
tion. From (23.31) we see that the motion is accelerationless, and that the
relative deformation history is

1 00
F.t —s)]=|—v'(x})s 1 Of. (23.32)
0 0 1

This component matrix means that the motion is a simple shearing flow
at each point with shearing rate

k = v'(x'), (23.33)

which depends on the coordinate x!. Thus the motion is a steady viscometric
flow. As a result, the representation (23.13) can be applied, and we have

T — Ty = (v (x), (23.34a)
Toe — Tag = (v’ (), (23.34b)
Ty, = (v’ (xY)), (23.34c)

which are all functions of x!.

Note. Although the representation (23.13) was obtained for a simple
shearing flow, it may be applied to a viscometric flow because for a simple
fluid the stress is determined by the motion through the deformation
history only. Since the history (23.32) coincides with the history (23.8)
with k given by (23.33), the formulas (23.34) foillow from (23.23) and
(23.24).

Now under the assumption that the body force field vanishes, the
linear momentum equation reduces to

dp  dSy ap ds,, ap

dx! ~ dxt’ Iz dxt ’ 9x® 0. (23.35)

Since the right-hand side of (23.35) depends only on x!, the system (23.35)
is integrable if and only if the pressure gradient in the direction of the
channel is a constant, say,

3p dslg

= = . (23.36)
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Then the system (23.35) may be integrated, and the pressure field is
p=p(,t) = —cx®+ f(x") + g(t), (23.37)

where f is a certain function of x! depending on the shearing rate v’'(x!),
while g is an arbitrary function of ¢.

The velocity profile v(x!') may be determined in the following way:
First, since the boundary condition (23.30) is symmetric with respect to
x!, we may assume that v is an even function; i.e.,

p(xl) = vo(—x?) (23.38)

for all x! € [—d, d]. Then v'(x!) is an odd function, and thus by virtue of
(23.34c) and (23.15), S;p(x') is also an odd function. We can determine
the shear stress by integrating the differential equation (23.36), obtaining

Sio(x!) = —cxl, (23.39)

where we have not added any integration constant because we know that
S12(x1) is odd with respect to x'. Combining (23.39) with (23.34¢c), we get

(' (x1)) = —ext. (23.40)
Since 7 is a monotonic function, this equation may be solved for v’'(x!):
v'(x1) = —{(ext), (23.41)

where { denotes the inverse function of 7. Integrating (23.41) and using the
boundary condition (23.30), we finally obtain the velocity profile:

p(xt) = Jdl L(cE) de. (23.42)

Notice that the form of the function v(x!) depends explicitly on the
response functional of the fluid through the function {. Thus each motion
of the form (23.31) is a universal solution for all incompressible simple
fluids having one particular shear stress function = only. In other words,
it is not possible to maintain the motion (23.31) with a particular velocity
profile v(x!) by boundary forces alone for all incompressible simple fluids.

We can use the formula (23.42) for the velocity profile to test the shear
stress function in the following way: Physically, the volume discharge
rate through the channel is a convenient quantity to measure. Let Q be the
discharge rate per unit channel width. Then

d
0=0(c)= J_dv(x‘) dxt = j d_d j ': L(cE)dE dxt = %J:d EC(E) dE, (23.43)



Sec. 23 Topics in Statics and Dynamics of Material Bodies 151

where we have used integration by parts to reduce the double integral.
The integral (23.43) is the solution of the differential equation

Eed) = gy - (c0(0), (23.44)

which determines the function {. Then the shear stress function 7 may be
obtained by inverting {.

Having considered the shear stress field in the motion, we turn our
attention next to the normal stress fields. First, since the pressure field has
the form (23.37), we have

Tu(x' 1) = ex® — f(x') + g(t) + Si(x"). (23.45)
But from (23.35a) the gradient of T',(x% ¢) in the direction of x! vanishes:

oTy,

=0, (23.46)

so we can rewrite (23.45) as
T(x% 1) = ex?* — g(t). (23.47)
Then from (23.34) the other normal stress components are

Too(x?, t) = cx® — g(t) + O'2(1’,(751)) - O'1(1’,(751)),

23.48
Tss(x', 1) = ex® — g(1) — o1 (v'(xY). ( )

Also, the pressure field is

p(xi, 1) = — % tr(T(x% 1)) = —ex? + g(1) + 3[20,(v'(x1)) — au(v'(x")]-
(23.49)

The formulas (23.40) and (23.46)-(23.49) determine completely the stress
tensor field in the channel flow.
23.2, Poiseuille Flow

For this motion the fluid is confined in a circular pipe. We assume that
the velocity field is of the form -

V=0, ve =0 v, =0v() (23.50)

relative to the cylindrical coordinate system (r, 0, z). The boundary
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condition is
v(Ry) = 0. (23.51)
Integrating (23.50), we obtain the deformation functions

r=R, 0 =0, z=v(R)t + Z, (23.52)

where the reference configuration is the configuration at time ¢t = 0, as
before. From (23.52) we can prove easily that the motion is accelerationless,
and that the physical component matrix of the relative deformation history is

1 00
[F.(t — 5)] = 0 1 0]. (23.53)
—v'(r)s 0 1

Thus the motion is a viscometric flow with shearing rate
k=v'(r). (23.54)

Hence the components of the stress tensor field satisfy the relations

Trry — Ty = 0V (1)), (23.55a)
Tiery — Ty = Uz(l"(")), (23.55b)
Ty = (v (r)). (23.55¢)

Since the coordinate system (r, 0, z) is not a Cartesian system, we use
the general formula (47.39) in Section 47, IVT-2, to calculate the com-
ponents of div T. Specifically, the physical components of div T are given by

. 8T(rr) 1 aT(rO) aT(rz> T(rr) - T<oo>
(div T)y, = T r a0 + a9z + r ?
. aT, 1 oT T s . 2 S
(div T)y = =522 + — ——g2  —22 o = T, (23.56)
oT,. 1 0T, oT,., 1
(le T)<z> - a< 2 + r 6<66 2 + (; 2 + —r— T(rz) s

where we have also used the transformation rule (46.19) in Section 46,
IVT-2, to express the results in physical components. Using (23.55) and
(23.56), we see that the linear momentum equation reduces to

op - Sy + Tim — Teony ap
or or r 00

ap - aT(rz) T(rz)
9z = or + r

(23.57)

=0,
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where we have assumed that the body force vanishes. Since the right-hand
side of (23.57) depends only on r, the system is integrable if and only if
the pressure gradient in the direction of the pipe is a constant, viz.,

8P _ 8T(rz> T(rz> _
3 = " ar + = ¢ (23.58)
Then the pressure field is of the form
p= —cz + flr) + g(t). (23.59)

The velocity profile v(r) may be determined in a similar way as before.
First, integrating (23.58) and using the fact that T, vanishes at r =0
since the shearing rate vanishes there, we obtain

Ty = —3er. (23.60)
Hence from (23.55c) we get
v(r) = —C(%). (23.61)

Integrating this formula with respect to r and using the boundary condition
(23.51), we obtain
Ry /&
b(r) = j C(T) dk. (23.62)
As before we can use the discharge rate Q to test the shear stress
function. From (23.62)

0 = 0(c) = f OR 2urv(r) dr — f : f R 2mc<c75) dE dr

— j f 525<%) dt, (23.63)

which is the solution of the differential equation

¢R, 1 d ..
c( ) - 2 (@), (23.64)

2 nc* Ry

Inverting the function ¢, we obtain the shear stress function 7.
The normal stress components can be obtained from (23.55) as
before.
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The results are

~

L |
Ty = cz — g(t) — o—g Ul(l"(f)) dg,

Y

~

Rm=a—ﬂ0—:%mW®Mﬂw&W»—mﬁm,

(23.65)

~

nm=a—dn~:%mew&w@w»

Y

p=—cz+g(t)+ J:% o,(v'(£)) dE + % [20:(v'(r)) — o2(v'(M)].
23.3. Couette Flow

The fluid is confined between two concentric circular pipes, and the
velocity field is of the form

Vipy = 0, Uiy = ro(r), Vipy = 0. (2366)
The boundary conditions are
o(R) = £2,, w(Ry) = 2,. (23.67)

From (23.66) the deformation functions relative to the configuration at
t =0 are

r=R, 0 = w(R)+ 6, z=2Z. (23.68)

Unlike the previous two examples, the flow (23.68) has a centrifugal ac-
celeration

Ay = —ro(r)? ap =0, ag =0. (23.69)
In physical components relative to (r, 0, z) the relative deformation history is
1

00
F(t — )] =|—ro'(r)s 1 0}. (23.70)
0 01

Thus the motion is a viscometric flow with shearing rate
k = ro'(r), (23.71)

which depends on r. Hence the components of the stress tensor field satisfy
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the relations

T(rr) — T(zz) - Ul(rwl(r))’
Tiopy — Tory = 0x(re’ (), (23.72)

Ty = t(ro’(r)).

As before we assume that the body force vanishes. Then using (23.56),
(23.69), and (23.72) we can express the linear momentum equation as

dp _ aS(rr) Tirry — Ty 2
 — o T p + oro(r)?, (23.73a)
dp _ 0T (0

- =" + 2T 6y (23.73b)
9 _ (23.73¢)
0z :

This system may be integrated directly; the pressure field is of the form
p=/S{r) + g(). (23.74)

Note. The pressure gradient in the direction of the flow must vanish
in this case, since ¢ is not single valued unless ¢ = 0.

The velocity profile may be determined in the following way: First,
from (23.73b) with dp/00 — O we see that the shear stress is of the form

c
Tirp, = T (23.75)

where the constant of integration ¢ may be regarded as being a twisting
moment. Specifically, the torque per unit length in the z direction is given by

M = r2mT gy = 2nr2% = 2nc. (23.76)

Substituting (23.75) and (23.76) into (23.72c), we get

2nr?

ro(r) = c(-M—) , (23.77)

where { is the inverse function of v as before. Integrating (23.77) with
respect to r and using the boundary condition (23.67a), we obtain

o(r) = @, + j :ﬁ lé c(z—n"f&?) de. (23.78)
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Now using the other boundary condition (23.67b), we have

AQ =0, — 0, = ﬁl& c(%%) . (@3.19)

The formula (23.79) may be used to test the shear stress function. We
define first
dAQ(M)

p(M) = 2M —— ——,

(23.80)

which may be obtained from (23.79) by Leibnitz’s rule -

p(M) = C(zyleelz) - C(zﬁz;)‘ (23.81)

Since ¢(M)—0 as M — 0, we can rewrite (23.81) as

M == Iz1 n
) = 2oM(R) ) @382
In the limiting case when R, is much greater than R, this formula reduces
approximately to

C( M )=<p(M)———2M-

4 AQ(M)
27 R,2 ’

T (23.83)

In another limiting case when R, is very close to R,, we can evaluate the
integral (23.79) approximately by

AR M
A = — [~ .
QM) R C( wRE ) , (23.84)
where AR denotes the difference of R, and R,. Then the shear stress function
is given by
M\ AQM) \
c( o ) = r, AU (23.85)

The normal stress components may be obtained from (23.72) as
before. The results are

T = Terry |, -+ jR [oa(60'(8)) — 0r(E00'(8))] d—f - j obo(£)? dE,

Ry (23.86a)
Topy = Tirry — 01(re0’(r)), (23.86b)
Teooy =Ty — ‘71("“”(")) + az(rw’(r)), (23.86¢)

P = Ty + $[20,(re’(r)) — ao(re’ ()] (23.86d)
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The formula (23.86a) may bé used to test the difference of the normal
stress functions. Evaluating (23.86a) at r = R,, we get

AT(m = T(rr> le - T(rr> ‘Rl

= J’Ra {_.lé_ [0'2(5w’(5)) - Gl(fw’(f))] _ wa(f)z} dE. (23.87)
R,

We define the function

p(M) = 24 0 (AT<,,>+j k(e dt). (23.88)

Then from (23.87)

y(M) = [0, — Gl](g(%?)) — [0, — 01]<C(~2;MR—2—2—)), (23.89)

which implies that
M o 0 Rl 2n
= elimre)) - LoM(R) ) @

In particular, when R, is much greater than R,;, we have the approximate
formula

[0y — al]<c(~2ﬁ-l—2—)) — w(M). (23.91)

On the other hand, when R, is very close to R;, we obtain directly from
(23.87) the approximate formula

M AT,
[0, — “1]<C(2n—R12>) — oRQD, + R (2392)

Of course, these formulas do not determine the normal stress functions
o, and o; individually. However, there are other viscometric flows which
allow us to test one of the two normal stress functions. Then (23.91) or
(23.92) determine uniquely the other one.

For more details on the viscometric flows of incompressible simple
fluids we refer the reader to the encyclopedia article by Truesdell and
Noll.®

¢ C, Truesdell and W. Noll, The non-linear field theories of mechanics, in Fliigge's
Handbuch der Physik, Vol. 111/3, Springer-Verlag, Berlin, 1965.
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24, Universal Solutions for Isotropic Elastic Solids I:
The Compressible Case

In the preceding section we have analyzed some flows for the class of
incompressible simple fluids. Now we turn our attention to the response
of the class of isotropic elastic solids. Mathematically, this particular class
of materials is convenient since there is a simple representation formula
(19.42) for the constitutive equation. In application this class is also quite
important. In fact the linearization of (19.42) at a stress-free natural state
is the basis of a major part of the classical theory of linear elasticity.

Since the material is assumed to be elastic, its response in static de-
formations determines the constitutive equation completely. Hence the
problem of finding equilibrium configurations is just as important as the
problem of determining motions. In Section 22 we introduced the concept
of a universal solution for the dynamic problem. Clearly, this concept
may be applied to the static problem also. Specifically, let » be a homoge-
neous reference configuration of a body manifold % as before. Then a
(static) deformation ¢ relative to x is called a static universal solution
for a class of materials if the deformed configuration @(%(.%)) = (%)
may be maintained in equilibrium by boundary forces alone regardless
of what material belonging to the class the body % is made up of. We
now consider the problem of static universal solutions for the class of
isotropic elastic solids.

In Section 22 we pointed out that an accelerationless homogeneous
motion is a universal solution for all simple materials. In particular, when
the motion is time independent, the deformation becomes a static universal
solution. We now show that the homogeneous deformations are the only
static universal solutions for any type of elastic solids. This result is a
consequence of Ericksen’s theorem, which asserts that any static universal
solution of the class of isotropic hyperelastic solids must be a homogeneous
deformation. As a result, any static universal solution of an arbitrary type
of elastic or hyperelastic solids with a particular symmetry group must also
be a homogeneous deformation, since the symmetry group of the isotropic
solids contains the symmetry group of any other type of solids.

We recall that in Section 20 we defined a hyperelastic material by a
constitutive equation of the form

de \T
T = QF(—aF—) , 24.1)

where £ = £(F) denotes the stored energy function. Suppose that the hyper-
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elastic material is an isotropic solid, and let » be an undistorted reference
configuration. Then & satisfies the conditions

&(QF) = ¢(F) (24.2)
and

e(FQ) = ¢(F) (24.3)

for all rotations Q. A representation for these conditions may be found
easily by using an argument similar to that in the proof of (19.42):

e(F) = f(y, lly, Illy), (24.4)

where Iy, IIy, Illy denote the three fundamental invariants of the left
stretch tensor V of F. Indeed, it follows from (24.3) that ¢ depends on
F through V. Then from (24.2) we see that ¢ is an isotropic function of V.
Thus the representation is of the form (24.4).

In application it is more convenient to use the variable B defined by

B = V2 = FF? (24.5)

instead of the variable V, since B is a polynomial of F while V is not.
Notice that both B and V are positive definite and symmetric, so they
determine each other uniquely. Thus a function of V may be regarded as
a function of B, and vice versa. We call B the left Cauchy—Green tensor
of F. Using this tensor, we can rewrite the representation (24.4) as

¢(F) = g(1g, 11g, Illp). (24.6)

Substituting (24.5) and (24.6) into (24.1) and using the chain rule, we
obtain

(24.7)

ol 0B ' olly 0B olll; 9B

Now the partial derivatives of the invariants Ig, IIg, IIIg with respect to
B may be calculated in the following way: We derive first the formula for
the partial derivative of the determinant of an arbitrary invertible tensor A
with respect to A, viz.,

ddetA T
To prove this basic formula we write
det(A + AC) = A%(det A) det(% I+ A"C). (24.9)
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Now using the characteristic polynomial for the tensor A-1C (cf. Section
26, IVT-1), we can expand the right-hand side of (24.9) as

det(A + }.C) = (det A)[l + 1A—1C}“ + IIA-lclz + HIA—l(:}ﬁ]. (2410)
Differentiating this expression with respect to 4 and evaluating the result

at 1 =0, we get

-;'7 det(A + AC) |5-0 = (det A)[j1c = tr((det A)A-IC).  (24.11)

Since C is an arbitrary tensor, this result implies directly the formula (24.8).
Since Illg is just the determinant of B,

lllg
9B

= IlIgB-. (24.12)

The partial derivative of the other two invariants may now be derived
as follows: Applying (24.12) to the invertible tensor AI 4 B for sufficiently
small 4, we have

5% det(AI + B) = det(AI - B)(AL 4+ B)-L. (24.13)
Since det(AI + B) may be expressed by the characteristic polynomial, we

have
a

0B

ollly

det(AI + B) — aIB 24 61113" b+ s

(24.14)

Thus (24.13) implies that

(0 (3 o (o 0 S

= 113 + Igla2 - IIBIA + gL (24.15)

Matching the coefficients of A% and A%, we get
dlg

S =L (24.16a)
ollg
- = Igl — B. (24.16b)

Note. We can recover also the formula (24.12) and the Cayley-
Hamilton equation for B [cf. equation (26.14) in Section 26, IVT-1] by
matching the coefficients of A! and A° in (24.15).
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Substituting (24.12) and (24.16) into (24.7), we obtain a represen-
tation formula for the constitutive equation of an isotropic hyperelastic
solid:

T—2 “a?i%; TGl + 2g(§—fB + %)B — 2 a?i B  (24.17)
Notice that the coefficients of I, B, and B2 in the formula are functions of the
fundamental invariants Ig, Ilg, [Ilg. Thus (24.17) is a special case of the
general formula (19.42) when the variable V is replaced by the variable B.
Since the coefficients in (24.17) are derived from a single stored energy
function g, they must satisfy certain compatibility conditions, as we have
remarked in Section 20.

Since B and B! determine each other uniquely, and since their sets
of fundamental invariants also determine each other uniquely, we can
express the stored energy function ¢ as a function of the invariants [,, I, I,
of B, viz.,

e(F) = h(l,, I, 1,). (24.18)

In the proof of Ericksen’s theorem it is more convenient to use the rep-
resentation (24.18) than the earlier one, (24.6), because the components
of B-! are precisely the covariant components of the Euclidean metric
tensor on »#(B), when the coordinates are transformed from (X4) to (x%)
by the deformation functions. That is,

x4 o0XxB

By = Oup —— —5 5

(24.19)

As a result, the curvature tensor based on B! must vanish (cf. Exercise
47.7 in Section 47, IVT-2, and the Theorem 59.1 in Section 59, IVT-2).
This condition of integrability may be obtained by differentiating (24.19)
with respect to x* and then using the symmetry condition for the partial
derivatives. The result is

‘}(Bl;r}»,pq + B&},km - Bl?;,mq - B;r}»,kp)
+ Brs(qurAkms - AqmrAkps) = 0’ (24'20)

where the comma denotes partial derivative with respect to x%, e.g., Bip, 5
= 3®BgL/0xP 3x9, etc., and where

Aimp = Amip = 4(Bip.m + Baps — Bim o) (24.21)
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Now in terms of B—! and its invariants I, the constitutive equation
becomes

oh oI, oh o,  on al
—_ -1 3
T—=—28 ( L 3B T oL, aBT t oL, BB-l)
B oh Oh . Oh Voo, g O o

We shall now use this representation to establish the following important
result:

Theorem (Ericksen®). A deformation ¢ relative to a homogeneous
reference configuration % is possible for every isotropic hyperelastic material
subject to boundary forces alone if and only if it is homogeneous.

To prove this theorem we seek necessary conditions on the deformation
from the equation of equilibrium

divT =0, (24.23)

where the body force vanishes since the deformation is required to be a
universal solution. Replacing the density g in (24.22) by g,1,"/2 and regarding
0. as a constant, we obtain from (24.22) and (24.23)

ah a 1/2 aI 1/2 aIa 82}1 aIb
N, oxm <I3 B 9po1 )“3 B S50 a1, 01, oxm

= 0’
(24.24)

where the repeated indices @ and b are summed from 1 to 3. In order that
the deformation be a universal solution, the field equation (24.24) must
hold for all forms of the stored energy function A. Hence the coefficients
of dh/01, must vanish, and the coefficients of 92%h/d1, 01, must be skew
symmetric with respect to the indices a and b; i.e.,

d oI,
axm (131/231",1 —a—é—i’}.—) = 0, (24.25)

and

(81 o1, o, oI,

B e T B D )B,;,,‘ =0, (24.26)

where a and b are now free indices.

™ ), L. Ericksen, Deformation possible in every compressible, isotropic, perfectly
elastic material, Journal of Mathematical Physics, Vol. 34, pp. 126-128, 1955. Re-
printed in Continuum Mechanics, International Science Review Series, Vol. 8, Edited
by C. Truesdell, Gordon and Breach, New York, 1965.
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Choosing a = 3 in (24.25) and using (24.12) for B!, we get

— (I,Y%) =0, (24.27)

0 ol 0
axm <I31/2 aBSI B ) axm (I 3/2Bmka )

so I; is necessarily a constant field. Next, choosing a = 1 in (24.25) and
using (24.16a) for B-1, we get

1/2
Iy

0 (811 B_1>———I”2 ad
axm \ 0By ' 8 gxm

Also, choosing a = 3 and b = 1 in (24.26), we have

o1,
dIxm

(OpmBiy) = LV2Bin n = 0. (24.28)

o, dl, o1,

axm aB 1 ka == a "y I3B ka == 13

= LBim=0, (24.29)
so I; is necessarily a constant field. Now substituting the results (24.28)
and (24.29) into (24.21) and setting k = m, we get

Aip = ¥( By x + Bipr — Bikp) = 0. (24.30)

Next, using the results (24.28)-(24.30) and setting p =g and k= m
in the integrability condition (24.20), we obtain

BrsApkrAkps = (quAplcr)(Vqukps) = 0, (2431)

where V is the left stretch tensor which is also the square root of B; cf.
(24.5). Since (24.31) reduces to a sum of squares, we have

VigAprr = 0, (24.32)
which implies that
Aprr = 0. (24.33)
Then from (24.21) '
Botr = Aips + Asip = 0. (24.34)

Thus B! is necessarily a constant field.

By virtue of (24.19) we know that Bj' corresponds to the covariant
components of the Euclidean metric on »(%) expressed in the coordinate
system (x?). Now the condition (24.34) implies that the Christoffel symbols
of that metric vanish in both (X4) and (x%). In Section 47, IVT-2, we have
derived a general transformation law for the Christoffel symbols. In par-
ticular, when the Christoffel symbols vanish in both (X4) and (x%), the
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transformation law reduces to

axt x4

0= E) ZRr T + 0, (24.35)
which implies directly that
92X4 -
W = FAil,j = 0. (24.36)

Thus F is necessarily a constant field; i.e., the deformation is homogeneous,
and the proof is complete.

Since a hyperelastic material is ipso facto an elastic material, Ericksen’s
theorem shows that a universal solution for all isotropic elastic solids must
be a homogeneous deformation. Next, since the response function of an
isotropic elastic material satisfies automatically the symmetry condition of
any type of solids, the theorem implies also that a universal solution for
any type of elastic solids must be a homogeneous deformation. The sym-
metry group of an elastic fluid, however, is bigger than the symmetry
group of an isotropic solid. Indeed, the constitutive equation of an elastic
fluid has the representation

T = —p(o)L, (24.37)

which is an extremely simple special case of (19.42). As a result, there are
a lot more universal solutions for elastic fluids. In fact from (24.37) the
equation of equilibrium reduces to

—p'(p) gradp = 0. (24.38)

Thus a deformation is a universal solution if and only if det F is a constant
field. Obviously, this condition can be satisfied by all homogeneous de-
formations as well as by some inhomogeneous ones.

Having solved the problem of static universal*solutions for all types
of elastic solids, we consider next the problem of dynamic universal solu-
tions. This problem has a very simple answer. Namely, a motion is a
dynamic universal solution for any type of elastic solid if and only if it is
an accelerationless homogeneous motion. Such a motion has been con-
sidered in Section 22.

The reason for the preceding result is more or less obvious. Since
both the condition of symmetry and the condition of frame-indifference
are linear with respect to the response function, 2 dynamic universal solu-
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tion for any type of elastic material must be accelerationless, and the in-
stantaneous deformation of the motion must be a static universal solution.
Indeed, if a motion satisfies the linear momentum equation

div G(F) = oa (24.39)

for a collection of G which is closed with respect to linear operations,
then we have also

div cG(F) = pa (24.40)
for any constant c. As a result, (24.39) reduces to
div G(F) = 0, a=2_0. (24.41)

Consequently, for any type of elastic materials, a dynamic universal solution
is simply an accelerationless motion such that the instantaneous deforma-
tions are all static universal solutions. In particular, for any type of elastic
solids, a dynamic universal solution is just an accelerationless homogeneous
motion.

The preceding criterion for a dynamic universal solution is not ap-
plicable to incompressible materials. For such materials the acceleration
field may be balanced by the gradient of a pressure field. We shall consider
the problem of universal solutions for incompressible elastic solids in the
following section.

25. Universal Solutions for Isotropic Elastic Solids II:
The Incompressible Case

For an incompressible isotropic elastic solid the constitutive equa-
tion is
T = —pl + fiB + f,B?, (25.1)

where f; and f, are functions of Ig and IIg. As before we assume that the
reference configuration itself also satisfies the constraint. Then we have

Il = detB = 1. (25.2)
From (25.2) we can verify easily that

ln = llB—l = l. "n = ln-q = L (253)
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Also, by use of the Cayley-Hamilton equation [cf. (26.14) in Section 26,
IVT-1] we can rewrite (25.1) as

T=—pl +gB+g_ B (25.4)

where g, and g_; are functions of I and II.
If the material is hyperelastic, then there is a stored energy function ¢
which has the representation

& = h(1, II). (25.5)

In this case the constitutive equation becomes

oh oh oh
T = —pl+ 20(5r + 57 1B — 22 5 B (25.6)
or, equivalently,
oh oh

where ¢ is equal to the constant density p,, since the deformation must
satisfy the condition of constraint (25.2).

The problem of static universal solutions for incompressible isotropic
elastic materials in general may be formulated as before by requiring the
equation of equilibrium

div(g,B + g_;B~!) = grad p (25.8)

to be integrable for p for all choice of g, and g,. Similarly, if the materials
are hyperelastic, then the problem is defined by the equation

. (on oh N\
dlv(—a—l— B B ) — grad p (25.9)

N

for all choice of 4. The problem (25.9) was considered by Ericksen.(®
Unfortunately, a complete answer is not known. So far, we only know
that the homogeneous isochoric deformations and five families of in-
homogeneous deformations, which we shall summarize later in this section,
come near to exhausting'® all solutions. The determination of the complete

® J. L. Ericksen, Deformation possible in every isotropic, incompressible, perfectly
elastic body, Zeitschrift fiir Angewandte Mathematik und Physik, Vol. 5, pp. 466489,
1954. Reprinted in Continuum Mechanics, International Science Review Series, Vol. 8,
edited by C. Truesdell, Gordon and Breach, New York, 1965.

™ See, for example, A. W. Marris, and J. F. Shiau, Universal deformations in isotropic
incompressible hyperelastic materials when the deformation tensor has equal proper
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solutions, however, remains a major unsolved problem in the theory of
elasticity.

Since there is no definitive answer to the problem of universal solutions
for incompressible isotropic elastic solids, we shall not summarize here
any of the partial analyses, which are all very lengthy. In the remainder of
this section we shall consider only the five presently known families of
inhomogeneous universal solutions. Our analysis follows closely the ency-
clopedia article by Truesdell and Noll"® and the recent book by Wang
and Truesdell.'?

The deformation functions of the five known families of inhomogeneous
universal solutions are given in terms of the Cartesian coordinate system,
the cylindrical coordinate system, and the spherical coordinate system,
the latter two being curvilinear systems. In Section 23 we have given the
formulas for the physical components of divT relative to the cylindrical
coordinate system; cf. (23.56). Now we give the same relative to the spherical
coordinate system (r, 8, ¢). The derivation is based on the formulas (46.19)
and (47.39) in Sections 46 and 47, IVT-2, as before. The results are

. aT(rr) L aT(rl)) 1 aT(rqo)

@iv D = ar 7 T oh rsinf  dgp

1
+ - [2Try — Tiopy — Tipgy + €Ot 0T 45,1,

. aT. 1 aT, 1 7Y
(le T)(e) — {rf> + - {60 + _ (6g
6r1 r a0 rsinf dg (25.10)
+ - [3T0, + €Ot 8(Teopy — Tgpy))s
. Ty, | 1 0T, 1 0T,
WD ="+ 36 T 750 d¢

1
+ - [3T ¢y + 2 cot 6T, 1.

values, Archive for Rational Mechanics and Analysis, Vol. 36, pp. 135-160, 1970;
R. L. Fosdick and K. W. Schaler, On Ericksen’s problem for plane deformations
with uniform transverse stretch, International Journal of Engineering Science, Vol. 7,
pp. 217-233, 1969; W. C. Miiller, Some further results on the Ericksen-problem for
deformations with constant strain invariants, Zeitschrift fiir Angewandte Mathematik
und Physik, Vol. 21, pp. 633-636 (1970); C. B. Kafadar, On Ericksen’s problem,
Archive for Rational Mechanics and Analysis, Vol. 47, pp. 15-27, 1972,

10 C, Truesdell and W. Noll, The non-linear field theories of mechanics, in Fliigge’s
Handbuch der Physik, Vol, 111/3, Springer-Verlag, Berlin, 1965.

an C.C. Wang, and C. Truesdell, Introduction to Rational Elasticity, Noordhoff Inter-
national Publishing Company, Leyden, 1973,
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We consider first some special types of stress tensor fields. Direct
calculation shows that these fields satisfy the equations of equilibrium
without any body force field.

25.1. Planar Problems

We assume that the physical components of the determinate stress
S = T + pI relative to a Cartesian system (x, y, z) satisfy the following
conditions: (a) the shear components S, and S, vanish, and (b) the
remaining nonzero components of S depend only on x. Under these condi-
tions the equations of equilibrium reduce to

ap _ dS(x:c) ap .
ox  dx ’ dy

dp

= 0. (25.11)

Clearly, this system is integrable for p, and the solution is of the form
p = k(x), (25.12)

where k is a certain function of x. Under the equilibrating pressure field p
given by (25.12) the components of the stress tensor field are of the form

T“”’) =6 T<ZIZ/> - f(x)’ T(zz) = g(x), (2513)
T(Iy) =0, T<xz> =0, T(yz) = h(x),

where ¢ is a constant, and where f, g, h are certain functions of x.

Note. The precise forms of the functions k,f, g, # depend on the
component functions S, Scyyy, Sy, and S¢,,,. The important condition
here is that the stress tensor field with components given by (25.13) satisfies
the equations of equilibrium regardless of what forms the functions f, g, &
have. Also, the value of the constant ¢ in (25.13) is entirely arbitrary. This
fact reflects the usual condition that an equilibrium configuration of an
incompressible material body is not affected by any additional constant
pressure field.

25.2. Cylindrical Problems

We consider two types of stress tensor fields. First, we assume that the
physical components of the determinate stress S relative to a cylindrical
system (r, 0, 2) satisfy the following conditions: (a) the shear components
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S¢ey and S,,, vanish, and (b) the remaining nonzero components of S
depend only on r. Under these conditions the equations of equilibrium
reduce to

ap . dS(rr) 1 ap — ap o
or T + T (S<rr> - S<66>)a W =0, dz 0. (25'14)

Clearly, this system is integrable for p, and the solution is of the form
p = k(r). (25.15)

Then the physical components of the stress tensor field are

Tomy = 100, Ty = 2= (). Ty = £

(25.16)
Tip, = 0, T, =0, T4y = h(r).

As before the functions k,f, g, h depend on the component functions

Sy s Scoays Sczzy » and S,y . However, regardless of what forms f, g, A have,

the stress tensor with components given by (25.16) always satisfies the

equations of equilibrium,.

Next, we consider another type of stress tensor field. We assume that
the physical components of the determinate stress S relative to the cylindrical
system satisfy the following conditions: (a) the shear components S,.,
and S, vanish, and (b) the remaining nonzero components of S are all
constant. Under these conditions the equations of equilibrium reduce to

op — S — Sceey dp
or r ’ a0

_ op _
=0, 5 =0 (2517)

Once again, this system is integrable, and the pressure field is of the form
P = (Siry — Seey) logr + 2084, + ¢y, (25.18)

where ¢, is a constant. Under this equilibrating pressure field the stress
tensor field has the physical components

Ty =—p+ e, Tigoy = —p -+ c2, T,, = —p-+cs,

(25.19)
Tpy = ¢4, Ty =0, Ty =0,
where ¢,, ¢;, ¢3, €4 are certain constants. As before the stress tensor field
with component fields given by (25.19) always satisfies the equations of
equilibrium regardless of what values the constants ¢,, ¢,, ¢;, and ¢, are.
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25.3. Spherical Problems

We assume that the physical components of the determinate stress S
relative to the spherical system (r, 0, ¢) satisfy the following conditions:
(a) all shear components Sy, S(s,y, Sy Vanish, (b) the normal com-
ponents S, and S, are equal, and (c) all normal components depend
on r only. Under these conditions the equations of equilibrium reduce to

dp _ dS,

" 2 op 7)
= I S (S = Sem)s - =0, —E-=0. (2520)

This system is integrable for p, and the solution is of the form
p = k(r). (25.21)

The physical components of the stress field are

1 d
Ty = f(r), Tigoy = Tpey = 5 ar (r*f(r),

T<ro> =0, T<r<p> =0, T<e<p> =0.

(25.22)

This field satisfies the equations of equilibrium regardless of what form the
function f(r) is.

The preceding static results show that there are several types of stress
tensor fields which involve certain functions and constants such that these
fields always satisfy the equations of equilibrium regardless of what forms
or values the functions or the constants are. Using these results, we can
verify easily that the following families of inhomogeneous deformations
are universal solutions.

Family 1. The deformation functions are
r= (AX)2, 0= BY + CZ, z = DY + EZ, (25.23)
where A, B, C, D, E are constants satisfying the condition
A(BE — CD) = 1. (25.24)

In (25.23) we have used a Cartesian system (X, Y, Z) in the reference
configuration » and a cylindrical system (r, 0, z) in the deformed con-
figuration Y.

We can prove that the deformations in this family are universal solu-
tions by showing that the stress tensor field in the deformed configuration
% is of the first type in the cylindrical problems. Indeed, from (25.23) the
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component matrix of the deformation gradient F relative to the natural
bases of (X, ¥, Z) and (r, 0, 2) is

A 0 0
Efl=| o 5 cl (25.25)
0 D E

Then the contravariant component matrix of the left Cauchy-Green tensor
B in the cylindrical system (r, 8, z) is

A2
e
0 B4 C® BD-+CE|
0 BD-+CE D®-+ E?

0 0

[B¥™] = [F /*F,m] = (25.26)

Now using the transformation law (46.19) in Section 46, IVT-2, we obtain
the physical component matrix of B:
A2
ey
0 r¥(B*4CY» r(BD - CE)
0 " r(BD + CE) D% 4 E?

0 0

[Bim ] = [(81x8mm)/2BF™] = , (25.27)

where the repeated indices k and m are not summed. From (25.27) we can
prove easily that det B = 1 if and only if (25.24) holds. Thus the deforma-
tions in this family are all isochoric.

From (25.27) and (25.24) the physical component matrix of B! in
(r,0,z) is

[ 2
&0 o
A2 A2
[(BYaml=1| 0 T (D*+E")  —5(BD+ CE)|. (25.28)
A2
0 — 5 (BD+CE) 4B+ C%)

The fundamental invariants I and II can now be read off from (25.27)
and (25.28), viz.,

2
1-_-_’:;2_+r2(32+cz)+02+52,

. g (25.29)
= T3 + 5 (D' + E%) + 4B + CV).
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Substituting (25.27), (25.28), and (25.29) into the representation (25.4),
we see that the determinate stress S satisfies the conditions (a) and (b) of the
first type in the cylindrical problems. Hence the deformed configurations
¥ may be maintained in equilibrium by boundary forces alone, and thus
the deformations are universal solutions.

Family 2. The deformation functions are
x = $AR?, y = BO + CZ, z= DO + EZ, (25.30)

where A, ..., E are constants satisfying (25.24). In (25.30) we have used
a cylindrical system (R, @, Z) in »(%) and a Cartesian system (x, y, z)
in ().

Following essentially the same procedure as for the preceding family,
we can show that the determinate stress S in the deformed configurations
of this family satisfies the conditions (a) and (b) of the planar problems.
Hence the deformations are universal solutions.

Family 3. The deformation functions are

r=(AR®+ B)V?, 0=CO +DZ, z=EO -FZ  (2531)

For this family we have used the cylindrical system in both the reference
configuration »%(%) and the deformed configuration y(.%).

We can show that the determinate stress S in the deformed configuration
satisfies the conditions (a) and (b) of the first type in the cylindrical problems.
Hence the deformations are universal solutions.

Family 4. The deformation functions are

r=(+R + A, 06=46, ¢=09, (25.32)

where A is an arbitrary constant. For this family we have used the spherical
coordinate system in both the reference configuration »(%) and the de-
formed configuration %(.%).

We can show that the determinate stress S in the deformed configuration
satisfies the conditions (a), (b), and (c) of the spherical problems. Hence
the deformations are universal solutions.

Family 5. The deformation functions are
r=AR, 6= BlogR + CO, z = DZ, (25.33)
where A, ..., D are constants satisfying the condition

A2CD = |1 (25.34)
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For this family we have used the cylindrical coordinate system in both
w(#) and ¥ ().

We can show that the determinate stress S in the deformed configura-
tion % (.%¥) satisfies the conditions (a) and (b) of the second type in the cylin-
drical problems. Hence the deformations are universal solutions.

The preceding five families of inhomogeneous universal solutions
were discovered originally by Rivlin,"® Ericksen,"® Rivlin and Ericksen,
and Singh and Pipkin.t®

Having summarized the presently known families of static universal
solutions for incompressible isotropic elastic materials, we consider next
the problem of dynamic universal solutions. Using the argument as before
[cf. (24.39) and (24.40)], we can show that, in general, a motion is a dynamic
universal solution of any type of incompressible elastic materials if and
only if it is circulation preserving and its instantaneous deformations are
all static universal solutions. In particular, for incompressible isotropic
elastic materials, a typical dynamic universal solution may be obtained
by replacing the constants A, B, ... in the preceding families of static
universal solutions by some appropriate functions of time A(t), B(z), ...
such that the acceleration field of the resulting motion is a conservative
field.

Since a complete analysis of such dynamic universal solutions is
lengthy, we shall illustrate the results by motions belonging to Family 2
only. For this family the components of the acceleration field are the same
as those of a homogeneous motion, since the coordinates (x, y, z) in the

a2 R, S, Rivlin, Torsion of a rubber cylinder, Journal of Applied Physics, Vol. 18, pp.
444-449, 1947 ; Large elastic deformations of isotropic materials, IV. Further develop-
ments of the general theory, Philosophical Transactions of the Royal Society of London
A, Vol. 241, pp. 379-397, 1948; Large elastic deformations of isotropic elastic mate-
rials, V. The Problem of flexure, Proceedings of the Royal Society of London A, Vol.
195, pp. 463473, 1949; Large elastic deformations of isotropic elastic materials, VI.
Further results in the theory of torsion, shear, and flexure, Philosophical Transactions
of the Royal Society of London A, Vol. 242, pp. 173-195, 1949,

a3 J, L. Ericksen, Deformation possible in every isotropic, incompressible, perfectly
elastic body, Zeitschrift fiir Angewandte Mathematik und Physik, Vol. 5, pp. 466-489,
1954,

a4 R, S. Rivlin and J. L. Ericksen, Stess-deformation relations for isotropic materials,
Journal of Rational Mechanics and Analysis, Vol. 4, pp. 323-425, 1955, This paper and
the preceding ones are reprinted in Continuum Mechanics, International Science
Review Series, Vol. 8, Edited by C. Truesdell, Gordon and Breach, New York,
1965.

a8 M, Singh and A. C. Pipkin, Note on Ericksen's problem, Zeitschrift fiir Angewandte
Mathematik und Physik, Vol. 16, pp. 706-709, 1965.
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deformation functions (25.30) are Cartesian. Specifically, we have

a,=x= —A— X
£ T - A >
a, = y = A(EB — DC)y + A(BC — CB)z, (25.35)

a, = %= A(ED — DE)y + A(BE — CD)z,

where the functions A(¢), ..., E(t) must satisfy the condition (25.24).
We now determine the forms of these functions in order that the acceleration
field be conservative; i.e., there is an acceleration potential { = {(x, y, z, 1)
such that

o

9

v 0z :

_ 9¢ _
= Ay, ?y——a

From (25.35) we see that the condition of integrability for the system
(25.36) is .
BC — CB=ED — DE. (25.37)

This differential equation may be integrated with respect to ¢, yielding
BC — CB = ED — DE + k, (25.38)

where k is a constant. We consider the following two cases:
1. B(t,) 7% 0 at some ¢,. In this case the complete solution near ¢, is

B, D, E = arbitrary functions of ¢, but B£0 and E, D do not vanish
simultaneously;

t
C = B[k’ +J % (ED' — DE’ + k) dt] , where k' is a constant
o

such that E(t,) — k'D(f,) = 0: A
1

A4=BE—¢cp"

2. B(t,) = 0 at some #,. In this case C(¢,) and D(¢,) do not vanish.
The complete solution near 1, is

C, D, E = arbitrary functions of 7 but CD %0,
14 1 .
B= —CL F{(ED~ DE -+ k) dt,

1

A=pr—cp"
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In general a solution may belong to different cases on different intervals
of time. The acceleration potential { is given by

1 4 1 . . 1 ., .
+ A(BC — CByz + f(1), (25.39)

where f is an arbitrary function of ¢.

The preceding dynamic universal solutions were discovered originally
by Truesdell.'®

26. Materially Uniform Smooth Elastic Bodies

In Sections 22-25 we have formulated some mathematical models of
certain homogeneous material bodies, and on the basis of these models
we have discussed several static and dynamic problems. Now we generalize
the models to include certain inhomogeneous material bodies, called
materially uniform smooth bodies. Originally, the more general models
were developed by Noll?? and by Wang® for bodies made up of simple
materials. Here, however, we present the models for elastic bodies only,
since the major applications of the models are in the theory of elasticity.

We recall that the mechanical response of an elastic material point X
in a body manifold %8 is characterized by a constitutive equation of the form

T = G(F, X), (26.1)

where X is the position occupied by X in a particular reference configuration
x of &, and where F is the deformation gradient taken with respect to

16 C, Truesdell, Solutio Generalis et Accurata Problematum Quamplurimorum de
Motu Corporum Elasticorum Incomprimibilium in Deformationibus valde Magnis,
Archive for Rational Mechanics and Analysis, Vol. 11, pp. 106-113, 1962; Addendum,
Archive for Rational Mechanics and Analysis, Vol. 12, p. 106, 1963; Corrigenda
Addendumque Alterum, Archive for Rational Mechanics and Analysis, Vol. 28, p. 397,
1968.

an W, Noll, Materially uniform simple bodies with inhomogeneities, Archive for Rational
Mechanics and Analysis, Vol. 27, pp. 1-32, 1967.

a8 C.-C. Wang, On the geometric structures of simple bodies, a mathematical foundation
for the theory of continuous distributions of dislocations, Archive for Rational Me-
chanics and Analysis, Vol. 27, pp. 33-94, 1967. Both this paper and the preceding one
are reprinted in W. Noll, R. A. Toupin, and C.-C. Wang, Continuum Theory of In-
homogeneities in Simple Bodies, Springer, Berlin, 1968,
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w (). Suppose that the response function G is independent of the position
X. Then %7 is a homogeneous body, and % is a homogeneous configuration
of &. We call & an inhomogeneous body if it does not possess any homoge-
neous configuration. In this case the response function G must depend on
the position X relative to any reference configuration x.

Now we consider a special type of inhomogeneous elastic material
bodies. For these bodies we assume that the response function G satisfies
the following two basic conditions:

(i) Material Uniformity. There is a nominal response function N(F)
such that G(F, X) may be represented by

G(F, X) = N(FK(X)) (26.2)

for all X € ®(%) and for all deformation gradients F, where K(X) is a
nonsingular tensor which generally depends on X.

Notice that the nominal response function N(F) does not depend
explicitly on X, so the representation (26.2) requires that the dependence
of G on X be contained entirely in the term K(X). Furthermore, if we write
the representation (26.2) as

G(FK-1(X), X) = N(F), (26.3)

we see that K-1(X) is a tensor which transforms the response function at
X to the nominal response function N(F) for all X € %(.%). In other words,
by applying K-1(X) to the tangent space at X, we can map the state of X
in %(%) to a state with response function N(F). Since N(F) is independent
of X, (26.3) means also that K—1(X) and K-1(Y) map the states of X and Y
in (&%) to the same state; i.e., -

G(FK-*(X), X) = G(FK-1(Y), Y) (26.4)

for all deformation gradients F.

In general if the condition (26.4) holds for some tensors K—1(X) and
K-1(Y), then we say that X and Y are materially isomorphic. Since (26.3)
is equivalent to (26.4) for all pairs X, Y in %, the condition of material
uniformity corresponds precisely to the requirement that the body points
of & are pairwise materially isomorphic.

Now it should be noted that, in general, the tensor K(X) in (26.2)
is not unique. To see this fact, we define the nominal symmetry group & by

He &< NFH) = NF) for all F. (26.5)
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Then we have
N(FK(X)) = N(FK(X)H(X)) (26.6)

for any HX) e &. As a result, if K(X) satisfies (26.2), then KX)H(X)
also satisfies (26.2) for all H(X) € &. Hence as long as & is not the trivial
group formed by I alone, the tensor K(X) which satisfies (26.2) is not unique.

Next, we remark that the field K(-) in (26.2) need not be smooth.
Of course, if K(-) is a smooth field, then G depends smoothly on X. How-
ever, the converse of this assertion is not true. Indeed, since smoothness
is a local property, we may characterize the smooth dependence of G
on X by the following condition:

(ii) Smoothness. For each X, € %(.%) we can choose a neighborhood
5 and a smooth nonsingular tensor field K on ./} such that the representa-
tion (26.2) holds for all X in .#j.

If X, is not contained in the neighborhood .#; of X,, then by the same
smoothness condition we can choose a neighborhood .#; of X, and a field
K on ./} such that the representation

G(F, X) = N(FK(X)) (26.7)

holds for all X € .#;. In particular, if .#; overlaps ./, and if X € 45 N /5,
then both (26.2) and (26.7) are satisfied. Hence

N(FK(X)) = N(FK(X)) (26.8)

for all deformation gradients F. Comparing this condition with (26.5),
we see that the difference

H(X) = K-'(X)R(X) (26.9)

between K(X) and K(X) is contained in &. Thus the smooth fields K and
K are related to each other by a smooth field H on .#j N .4, with values
belonging to the nominal symmetry group &.

If HX) =1 for all Xe.#; N .#,, then K and K coincide on the
overlap of their domains. In this case we can regard K as an extension of
K, and vice versa. In general H(X) need not coincide with I, of course.
Then K and R are not the same field on .#, N .#,, but they both satisfy
the representation (26.2) or (26.7).

We remark that a smooth field K-' satisfying (26.3) need not be the
gradient of a deformation. Indeed, if K-! = grad ¢, then the configuration
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% = ¢ o x is homogeneous for .%. This assertion is obvious, since by the
transformation law (18.24) of the response function the left-hand side of
(26.3) is just the response function G relative to the configuration %; i.e.,

G(F, (X)) = G(F grad ¢, X). (26.10)

Then (26.3) implies that G coincides with N. Thus G is independent of the
position X = @(X) e #(.Z).

We call Z a locally homogeneous body if we can choose the smooth
field K- on the neighborhood .4, of X, to be the gradient of a deformation
of .#; for each X, € »(%). Since K need not have a smooth extension which
is defined on the whole configuration ®(%), and which satisfies the rep-
resentation (26.2), a locally homogeneous body need not be (globally)
homogeneous.

An example of a locally homogeneous body that is not (globally)
homogeneous is given by the Mdbius crystal, which is formed by twisting
a (thick) strip of homogeneous crystal into a M&bius strip in the usual way.
The resulting Mobius crystal is locally homogeneous, since each segment of
the strip may be deformed into a configuration in which the crystalline
basis forms a parallel field. Such a configuration is homogeneous for the
crystal. The whole Mobius crystal, however, is not homogeneous, since
there is no global configuration in which the crystalline basis is a parallel
field. In fact for that crystal a globally smooth field K, which satisfies the
representation (26.2), does not exist.

In the remainder of this chapter we shall assume that.% is a materially
uniform smooth elastic body; i.e., the response function G of & satisfies
the preceding conditions (i) and (ii). Our main purpose is to develop a theory
in order to determine the static and the dynamic response of the body .%.
A major difficulty in the theory is due to the fact that in general the smooth
field K, which satisfies the representation (26.2), is defined only on a ngigh—
borhood. To overcome this difficulty, we introduce a concept called a
material connection. We shall explain this concept in detail in the following
section.

27. Material Connections

In Section 26 we explained that the response function at any point

X € »(.%¥) may be represented by a nominal response function in the fol-
lowing way:

G(F, X) = N(FK(X)), 27.1)
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where K(X) is a certain nonsingular tensor depending on X. Since (27.1)
holds for all F, it is equivalent to

G(FK-1(X), X) = N(F), (27.2)

where the right-hand side no longer depends on X. As a result, if Y is
another point in % (%), then

G(FK-(Y), Y) = G(FK-(X), X). (27.3)
Now since (27.3) also holds for all F, it is equivalent to
G(F, Y) = G(FK(Y)K-'(X), X), (27.4)

which means that the response function at Y differs from that at X by
a linear transformation

K(X, Y) = K(Y)K-(X) (27.5)

from the tangent space at X to the tangent space at Y.

More specifically, let 7(X) denote the tangent space at any point
X € (). Then K(X,Y) is an isomorphism from Z77(X) to 77(Y) such
that the stress tensor due to a deformation gradient F at Y is always the
same as that due to a deformation gradient FK(X, Y) at X for all choice
of F. Because it has this transformation property, K(X,Y) is called a
material isomorphism from X to Y relative to w(.%).

In general a material isomorphism from X to Y is not unique. Since
the composition of any two material isomorphisms is a material isomor-
phism, when K(X,Y) is a material isomorphism from X to Y, an iso-
morphism R(X, Y) is also a material isomorphism if and only if the com-
position K-1(X, Y)R(X, Y) is contained in the symmetry group of X [or,
equivalently, the composition R(X, Y)K-!(X, Y) is contained in the sym-
metry group of Y]. Another way to visualize this result is to use the formula
(27.5) directly. Since K(X) and K(Y) are unique to within a multiple on
the right by an arbitrary element in &, a material isomorphism from X
to Y in general can be represented by

R(X, Y) = K(Y)HK(X), (27.6)

where He %.

It should be noted that the condition of material uniformity is equiv-
alent to the requirement that there be a material isomorphism K(X, Y)
for each pair of points X, Y in x(.#). Indeed, choosing any reference point
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X, € n(%), we can regard G(F, X,) as a nominal response function. Then
the transformation rule

G(F, X) = G(FK(X,, X), X,) (27.7)

becomes a representation of G(F, X) by means of the nominal response
function N(F) = G(F, X,) and the tensor field K(X) = K(X,, X).

By the same token the condition of smoothness is equivalent to the
requirement that for each point X, € »(.%) we can choose a neighborhood
4, and a smooth field of material isomorphisms K(X,, X) for all X € .#5.
We can regard such a smooth field as a parallelism from the point X,
to neighboring points X € .4,. A globally smooth field of material iso-
morphisms K(X,, X) for all X € »(%) may or may not exist, however.
Hence the geometric structure on »(.%%) defined by the material isomor-
phisms need not give rise to a distant parallelism.

In Sections 56 and 64, IVT-2, we have discussed two types of paral-
lelisms on a manifold, namely, the Riemannian parallelism induced by a
metric and the Cartan parallelism defined on a continuous group. We have
remarked that the former may have curvature but not torsion, while the
latter may have torsion but not curvature. For the purpose of character-
izing material isomorphisms, we need a more general type of parallelism
which may have both curvature and torsion. In classical differential geometry
this general type of parallelism is called an affine parallelism or an affine
connection, which we shall now explain,

Let {h,} be the natural basis field of the coordinate system (X4)
on »(%¥) as before. We define a general covariant derivative of {h,} by

Dh
‘D—IYAb = FACth. (27.8)

N

This formula is formally the same as the formula (56.5) in Section 56,
IVT-2, except that the Christoffel symbols are replaced by the I’ symbols
I'§y. In general, I'{y need not be obtained from a Riemannian metric.
We simply assign the I" symbols as certain smooth functions of (XP),
In particular, I'{3z need not be symmetric with respect to the subscripts
A and B.

Using the basic formula (27.8), we can define the covariant derivative
of a vector field u = u4h, in general by the component formula

ou’

Pu— (‘a?\'"‘ ¥ u‘rfB)hc ® bE. 27.9)
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In particular, I'{y are also the components of Vhy, viz.,
Phy = I'Sghe R hB. (27.10)

Now consider a smooth curve A(z) with coordinates (44(7)) relative to
the coordinate system (X4). Suppose that u = u(z) is a vector field on
A(7). Then we define the covariant derivative of u along the curve A by

+ uATe ‘”B) @7.11)
u AB —g— he. -

Du [ duf
Dt ( dr

As before we call u(z) a parallel field or a covariantly constant field along
A(7) if Du/Dr = 0. Thus in component form the equations of parallel
transport are

C B
% AT, 'f?? —0, C=1253 27.12)

The parallelism defined by these equations is the affine parallelism induced
by the I' symbols I'{; in the (X4) coordinate system.

Notice that the formulas (27.8)—(27.12) associated by the I" symbols
are formally the same as those in Sections 56 and 64, IVT-2, for the Christof-
fel symbols and the Cartan symbols. Hence an affine parallelism is a direct
generalization of a Riemannian parallelism or a Cartan parallelism. As
usual we define the torsion tensor Y by the component formula

Y = (I'fs — I')he @ b4 @ b, (27.13)

and the curvature tensor R by the component formula

0Ly 0Ly E e E ¢ 4 D B
R:(aXD - aXB +PABFED—PADFEB)hC®h ®h ®h
(27.14)

Then in general neither Y nor R vanishes.

So far, we have defined the affine parallelism and its related quantities
and operations in the (global) coordinate system (X4). Now suppose that
(X4) is another coordinate system on %x(.%¥), and let the coordinate trans-
formation from (X4) to (¥4) be given by X4 = X4(XB) and ¥4 =
X4(XB). Then as explained in Section 45, IVT-2, the natural basis field
{hy} of (¥4) is related to the natural basis field {h,} of (X4) by

B
= 9X

—gr bs. (27.15)
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Hence the covariant derivative of h, relative to the affine parallelism
under consideration is given by the formula (27.9), viz,,

- a2XC aYD aXD o
Vhe = ( GX45%D oxF ' aX4 FDB)hc@)hB (27.16)

or, equivalently, in component form relative to {hy}

- _( x°  9RP | 9xP ) dRE 9x®

Vhy = + axX°¢ oXF By

aX49X> 9xB = 9xX4 ®hbF.  (27.17)

Comparing this formula with (27.10), we see that the I" symbols in the
(XD) coordinate system are given by :

x> 9XE ox® 92x°¢  oXE
Tér = Ton 5%a Sxe %% T wxaaxr oxe @9
This formula characterizes the transformation law for the I" symbols of a
particular affine connection under a change of coordinate system. Using
(27.18), we can prove by direct calculation that the component formulas
for the torsion tensor Y and the curvature tensor R are still of the form
(27.13) and (27.14) provided that the I" symbols I'S; and the bases {h,},
{h4} are replaced by 'Sy and {h,}, {h4}, respectively.

It should be noted that, under the change of coordinates from (X4)
to (¥4) the covariant derivative and the parallel transport both remain
unchanged. In other words the tensor field Fu given by the component
formula

a - -

is the same as that given by (27.9). We can prove this fact by the trans-
formation law

ou’ oa? _rpp \ 0XC OXE
(37 +78) = (5w 7The) 537 G @20

which follows from (27.18) and the usual transformation law

0x°¢
0xp

ul = @ (27.21)

for the components of a vector field.
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Similarly if u(z) is a parallel field on A(z), then the components #4(z)
relative to (X4) satisfy the equations of parallel transport

7B
=0, =123, (27.22)

which are formally the same as (17.12) except that all quantities are taken
with respect to the coordinate system (X4). The parallel transport

£.: 7 (A(0)) > 7" (A1) (27.23)

defined by
p.(u(0)) = u(r) (27.24)

for all parallel fields u(z) on A(z), however, remains the same whether
u(t) is obtained from (27.12) or from (27.22).

Now we define a material connection on w(%) as follows: an affine
connection such that the paralle] transports along all curves are material
isomorphisms. It is known that"® such an affine connection exists. To
meet the requirement that the parallel transports be material isomorphisms,
the I' symbols of a material connection are not arbitrary but must satisfy
certain conditions, which we proceed to derive.

Consider a neighborhood .#” of X and a smooth field K on.# satisfying
the representation (26.2). Suppose that A is a smooth curve in .4 and let
. be the parallel transport along A induced by an affine connection. Then
as remarked before, p, is a material isomorphism if and only if it can be
represented by

e, = K(A(x))H(x)K-(A(0)), (27.25)
where H(z) € &. At 7 = 0 we have the initial condition
H(0) =1, (27.26)

since p, is the identity map. The representation (27.25) means that a parallel
field u(r) on A(r) must be of the form

u(z) = K(A(2))H@K(A(0)u(0) = KAMD)H()w,  (27.27)
where u(0) and w are arbitrary vectors in 77(A(0)).

a9 C.-C, Wang, On the geometric structures of simple bodies, a mathematical foundation
for the theory of continuous distributions of dislocations, Archive for Rational Me-
chanics and Analysis, Vol. 27, pp. 33-94, 1967.
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The component form of the vector field u(r) defined by (27.27) is
u(r) = KzP(A(r))H B(z)w. (27.28)
Substituting this form into (27.12), we get

B E B ¢ di? A
HA +KB HA PEl))-aT—W . (27.29)

B
d—ZS—— KBCWA = —(

K
axD

Since the vector w is arbitrary, and since K is invertible, the preceding
condition is equivalent to

dH B _ 6KFC F B F dlD
h -« I)CB( o i + Ke*H, FgD)W' (27.30)
In particular, at 7 =0
dH2 | 1 B[ 9K B e diP
dr 0 - _(K )C ( aXD + K4 FED) 1(0)7{" 0~ (273])

It suffices to consider the condition (27.30) at the initial point A(0) only,
since that point and the curve A(7) passing through it are both arbitrary.
The formula (27.31) shows that the combination

AK,C

dA?
K- (-G + KiTh)

A(0) dr

(27.32)

0

must be a tangent vector of a curve H(r) € & at the identity element
H(0) = L In Section 65, IVT-2, we have explained that such a tangent
vector corresponds to an element in the Lie algebra 4 of %. Hence the I
symbols of a material connection must satisfy the condition that the com-
bination (27.32) is contained in g for all A(0) € " and for all initial tangent
vectors A(0) e 77 (7\(0)). As a result, we obtain the following important
field condition®® for the I'" symbols of a material connection:

IKC ,
(K“‘)cB( oo+ Ki'l 50) €z, (27.33)

where D is a free index, D =1, 2, 3.

(20 C.-C. Wang, On the geometric structures of simple bodies, a mathematical foundation
for the theory of continuous distributions of dislocations, Archive for Rational Mech-
anics and Analysis, Vol. 27, pp. 33-94, 1967.
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It should be noted that the condition (27.33) is valid for any smooth
field K which satisfies the representation (26.2). In application we choose
a covering of »(.%#) by neighborhoods .#” on which we define the smooth
fields K. Then (27.33) may be used at all points X € »(.%) with K defined
on a neighborhood of X.

28. Noll’s Equations of Motion

For a homogeneous elastic body the governing equations of the de-
formation functions may be derived in the following way: We choose a
homogeneous reference configuration »(%), and let G be the response
function relative to ». Then the stress tensor in the deformed configuration
X is given by the component formula

(28.1)

k
T = Tii(x, t) = Gij( dx )

ax4

Since the stress tensor field must satisfy the linear momentum equation
(17.12), we get

241

i B
dx +Qbi:@ax

0%xk X

ij 4
% (8,\’0) XA 9XE oy’ 377 (28.2)
where G¥,A(F) denotes the gradient of the function G¥(F):
i dGY(F)
ij A .
GO (F) = —5p— (28.3)

The matrix [0X3/dx’] is just the inverse of the deformation gradient
[0x7/dXB]; it may be absorbed into the coefficient functions G¥,4(dx'/0X )
or, equivalently, (28.3) may be rewritten as

) dxt d0%x* ) 02xi
HLB“A( aXC) Gxigxs T = e (284)

where p, denotes the density in »(.%), and where
HBAF) = (det F)GHAF)(F1);2. (28.5)

The system (28.4) governs the deformation functions x¥(X4, ¢), i = 1, 2, 3.
On the basis of the system of equations (28.4) we may formulate various
boundary-value or boundary-initial-value problems for the determination
of the functions x‘(X4,t).



186 Chapter 4 Sec. 28

A similar system of equations of motion may be derived for a materially
uniform smooth elastic body. The concept of a material connection intro-
duced in Section 27 is important in the derivation. Qur starting point is
the representation (28.2), where K is a smooth field defined on a neighbor-
hood .#~ < %(.%). In component form the stress tensor is then given by

Tii(x, t) = N"f( gf& KAC). (28.6)

Substituting this representation into the linear momentum equation (17.12),
we get

- ox! 02%x* oxt 0K, \ 0X? )

ij 4 E C 4 i

Ny ((‘)XE K )(KA 9XC XD " 39X 9x?P ) o Teb

02xt
where
, INU(F)

N AF) = ————. 28.8
A = (28.8)

Unlike the system (28.4) for the homogeneous body, the system (28.7) is
valid only on the neighborhood .#; on which the smooth field K is defined.

In order that the equations of motion may be written in a global form,
we make use of the symmetry condition of the nominal response function
N. From (26.5)

[ Ox* [ Ox*
Nw( e KBCHAB(r)> - N“( e KAC) (28.9)
for any curve [H,B]e & such that
H,3(0) = §,8. (28.10)

Differentiating (28.9) with respect to 7 and evaluating the result at T = 0,
we obtain
[ Ox! dxk dH 48
ij, 4 E c A4
N9 G Ke?) e Kid g

=0, (28.11)

1]

where the tangent vector of [HZ(z)] at 7 = 0 may be an arbitrary element
of the Lie algebra g of Z, i.e.,

dH B
dr

€z (28.12)

[]
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Comparing the conditions (28.11) and (28.12) with the condition (27.33)
for a material connection, we see that

i dx! ox*t 0K,C \
Ny Ke®) e (g + KiTh) = 0. @813)

Consequently, (28.7) may be rewritten as

o al Ox! e a2k ax* .
N }"A( IXE KFE)K-* 9% ( 9XCax?  9xF Lt g,)) + b

= (28.14)

Now we claim that the leading coefficient involving the smooth field
K may be extended from the domain .#”to the entire reference configuration
»( ). To prove this fact, we observe the identity

Ox!

1
NijkA( i KJEHFJ)KLCHAL - NijkA( 0x

0XE

KFE)KAC (28.15)

for alt smooth fields H on .#” with values belonging to %. Indeed, if the
identity (28.15) is true, then the leading coefficient of (28.14) forms a
certain globally smooth field, which may be calculated by using any smooth
field K defined on the neighborhoods .#” belonging to the covering of »(.%¥).
Hence (28.14) has the global form

azxi

arz ’
(28.16)

i of 0x! oxP a2x* dx* )

ij C 4 _ B i
¢ L‘( X ) 7 (axcaxu X7 P"”) tebi=e
where the globally smooth function G¥C(F, X) is defined by the local
formula

G A(F, X) = N¥A(FKX))K,4(X), (28.17)

where K is any smooth field satisfying (26.2) with its domain containing
the point X. Since there is such a neighborhood .#"and such a smooth field
K on .#” for each point X € w(.%#), the field G¥.C(F, X) is well defined by
(28.17).

To prove the identity (28.15), we eliminate first the nonsingular
factor K,C, obtaining

D Ox! = gy B\ 4 ij A ox! B
N Loy et )it = NGy KeB). @818)




188 Chapter 4 Sec. 28

which must hold for all smooth fields [H,4] with values in &. We can
verify this identity by using the symmetry condition (28.9), which may be
written as

NU(FgbH, B) = NU(F,*) (28.19)

for all [H,®]e ¥ and for all deformation gradients [F*]. Differentiating
(28.19) with respect to F,* and using the definition (28.8), we get

NijkD(FBlHOB)HDA = NijkA(FCl)’ (28.20)
which implies (28.18) directly by setting

Ox!

Fo' = 5%z

K-, (28.21)
Thus the global form (28.16) is established.

As before the matrix [0XP/0x'] may be absorbed into the leading
coefficient G¥,C. Then we can rewrite (28.16) as

1 axl 82x" axk 02 X
HDkC( 7 ,XA>( XTI IX I’CD) + oubt = ey, (2822)
where
HIPE(F, X) = (det HIGU(F, X)(F ). (28.23)

The system (28.22) governs the deformation functions x*(X4, ¢),i = 1, 2, 3,
relative to the reference configuration x(.%).

It should be noted that the combination involving the I" symbols of
a material connection on the left-hand side of the equations of motion
(28.22) corresponds precisely to the covariant derivative of the deformatlon
gradient F/* taken relative to the material connection, viz.,

OF
Fep = —yo — Flon, (28.24)
where
Oxk
Ff = R (28.25)

It is not surprising that the covariant derivative of F with respect to a
material connection is important for the equations of motion, since the
parallel transports of a material connection are all material isomorphisms,
which leave the response function invariant.
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It should be noted that the covariant derivative Fé‘, p given by (28.24)
cannot vanish when the body is not locally homogeneous. In fact the
conditions of integrability for the second-order partial differential equations

0%xk dx*t

5o g0 — oyE Loo="0 (28.26)

are precisely the vanishing of both the torsion tensor Y and the curvature
tensor R for the material connection. When these conditions are satisfied,
we can find local deformation functions X# = XB(X4) relative to which
T4, vanish identically. In other words, the Euclidean connection in the
configuration % with coordinates (X¥4) is a material connection. Hence
% is a homogeneous configuration.

In the special case when the body is globally homogeneous, we choose
% to be a homogeneous reference configuration. Then a material connection
on (%) is just the Euclidean connection with I'§, vanishing identically,
and the system (28.22) reduces to the previous system (28.4).

The equations of motion (28.22) were derived originally by Noll.*V
In the following section we shall obtain some static and dynamic universal
solutions for certain inhomogeneous incompressible isotropic elastic bodies,
known as laminated bodies.

29. Inhomogeneous Isotropic Elastic Solid Bodies

In this section we apply the theory of materially uniform smooth
elastic body to an isotropic solid. As before we choose a reference configura-
tion »(.%) for the body, and we assume that the response function G has
the representation (26.2). The assumption that the material is an isotropic
solid means that we can choose the nominal response function N(F) to have
a symmetry group & = 7@ (7). That is to say, N(F) satisfies the con-
dition

N(FQ) = N(F) (29.1)

for all rotations Q. As we have explained in Section 19, a general solution

2L N. Noll, Materially uniform simple bodies with inhomogeneities, Archive for Rational
Mechanics and Analysis, Vol. 27, pp. 1-32, 1967. The derivation summarized here
is given by Wang, C.-C., On the geometric structures of simple bodies, a mathematical
foundation for the theory of continuous distributions of dislocations, Archive for
Rational Mechanics and Analysis, Vol. 27, pp. 33-94, 1967.
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for this condition is

N(F) = N(B), (29.2)
where B denotes the left Cauchy~Green tensor, viz.,
B = FF7, (29.3)

The principle of material frame-indifference implies that N is an isotropic
function; i.e.,

N(QBQ”) = QN(B)Q” (29-4)

for all orthogonal tensors Q.

In Section 26 we remarked that the field K in the representation (26.2)
is unique to within an arbitrary right multiplication by a field H with
values belonging to the nominal symmetry group &. In particular, if the
body is an isotropic solid, then any two fields K and K in (26.2) differ from
each other by a rotation Q:

K =KQ. (29.5)

A necessary and sufficient condition for (29.5) is
KK7” = KKT (29.6)
or, equivalently,
K-HTK-1 = (K-1)TKL. (29.7)

Hence we may define a metric M on »(%) by
M= (K-HTK-!, M-!'=KKT, (29.8)

Since for each point X, € »(%%) there is a neighborhood .#; on which a
smooth field K satisfying the representation (26.2) exists, the metric M
defined by (29.8) is smooth; i.e., M is a Riemannian metric on %(%).

We call M the characteristic metric on w(¥), since it characterizes
the fields K completely by the condition (29.8). It follows that all material
isomorphisms among points in ®(%¥9) are also determined by M. In fact
an isomorphism K(X, Y): Z(X) - Z7(Y) is a material isomorphism if
and only if it preserves the metric M in the sense that

u - MX)w = K(X, Y)u - M(Y)K(X, Y)w (29.9)

for all vectors u and w in Z°(X). To prove this fact, we recall first that a
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material isomorphism K(X,Y) may be represented by (27.6). Using it
and the definition (29.8), we see that the left-hand side of (29.9) is equal to
K-'(X)u - K-4(X)w while the right-hand side is given by

K(Y)QK-(X)u - K-(Y)"K-}(Y)K(Y)QK~}(X)w
= QK(X)u - QK-(X)w = K'(X)u - K-'(X)w.  (29.10)

Conversely, if we write K(X, Y) in the form (27.6), then from (29.9) we
obtain

K-1(X)u - K-{(X)w = HK-(X)u - HK-1(X)w. (29.11)

Thus He &, and K(X,Y) is a material isomorphism.

The criterion (29.9) for a material isomorphism K(X, Y) is a convenient
property for the determination of a material connection. In Section 56,
IVT-2, we have explained that the Riemannian connection possesses the
basic property that the Riemannian metric is preserved by the parallel
transports along any smooth curve. By virtue of (29.9) this property cor-
responds precisely to the requirement of a material connection when the
metric is the characteristic metric M. As a result, the Riemannian connection
associated with M is a material connection on x(.%¥) for an isotropic solid
body . In particular, the Christoffel symbols of M are the I" symbols of
the material connection.

Note. The Riemannian connection is the unique affine connection
which possesses the following two properties: (i) the Riemannian metric
is a covariantly constant field, and (ii) the torsion tensor vanishes. The
preceding assertion is a well-known result in classical differential geometry.
To prove that result, we use the formula

—56- — Mpplic — Mapl'ic (29.12)

for the covariant derivative of a metric M with respect to an affine connec-
tion in general. Then the condition (i) implies that

OM,p

3%C = MpI'Se + Maplhe, (29.13)

and the condition (ii) implies that

PIA’C = ng. (29.14)
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Now we rotate the indices A, B, C in (29.13), obtaining

oM
=5 = MocT B + MapT (29.15)
oM

()XCI;4 = MpsI'p + Mepl'ds, (29.16)

Adding (29.13) with (29.15) and subtracting (29.16), then using the sym-
metry conditions:of the connection and the metric, we obtain

%0 ¥4~ — 5yt = 2Mpp T2, (29.17)

Thus the I' symbols must be the Christoffel symbols, viz.,

o, — L MBD< Mz | Mo 8MCA>:{D}'

2 3XC T x4~ 9x® CA

(29.18)

The preceding result shows that, for an isotropic solid body .% the
geometric structure associated with the collection of fields K is just the
Riemannian structure induced by the characteristic metric M. In com-
ponent form relative to (X4) M is given by

Myp = dcp(K (K ")pP,  MAB = §°PKAK,E. (29.19)

In general M,z and M48 are certain smooth functions of the coordinates
(X?). In Section 59, IVT-2, we explained that a necessary and sufficient
condition for M to be a flat or locally Euclidean metric is the vanishing of
the Riemann-—Christoffel curvature tensor R. In the context of isotropic
solids the preceding result means that % is locally homogeneous if and
only if R vanishes. That is to say, R = 0 if and only if for each X, € (%)
there is a neighborhood .#; such that we can find certain deformation func-
tions X4 = X4(X©), 4 =1, 2, 3, which transform M,y into d,5, viz.,

aX¢ 9xP 848 _ pgoD 0X4 9XB
x4 oxE’ - AXC 9x° -’

(SAB = MC’D (29.20)

Note. If the deformation functions are defined for all points in %(.%¥),
and if (29.20) holds, then the body is globally homogeneous. However,
R = 0 is only necessary but not sufficient for M to be globaly Euclidean
(i.e., not sufficient for % to be globally homogeneous). By virtue -of the
preceding remark the field R for the characteristic metric M may be called
the Jocal inhomogeneity of ‘# in the reference configuration u(.%).
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Now suppose that the characteristic metric M on »(.%) is given ex-
plicitly. Then the stress tensor field in any deformed configuration y(.%)
may be determined in the following way: First, according to the representa-
tion (26.2),

T = N(FK). (29.21)

But from (29.2) the right-hand side of (29.21) has the representation
T = N(FKK7F7). (29.22)

From (29.8) the components of the argument of N are

axk  ax?
TETY — pokl — AfAB
(FKKTFT) m M v HYF (29.23)
Then from (29.22) the components of the stress tensor T are
T4 = N¥(m), (29.24)

where the function N is isotropic; cf. (29.4).

If the isotropic solid is incompressible, then as before the deformation
must be isochoric, and the stress tensor is determined by the deformation to
within an arbitrary additive pressure only. Thus the constitutive equation
has the representation

T = —pI + N(FKK7F?), (29.25)

where the determinate stress S = T + pI = N(FKKZFT) is required to
satisfy the condition
tr S = 0. (29.26)

We shall now consider a special class of incompressible isotropic solid
bodies, called laminated bodies. Certain families of static and dynamic
universal solutions for this class of bodies may be obtained directly by
using the representation (29.25).

First, we call & a laminated plate if relative to a Cartesian coordinate
system (X, Y, Z) in a certain reference configuration %(.%%) the component
matrix of the characteristic metric is of the form

M 0 0
[MAB]=| 0 M%» M¥, (29.27)
0 MZS MSS
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where the nonzero components M, M M33 and M? are functions of
X only. The inverse matrix [M,p] = [M4F]-! has a similar form, and
the nonzero components M, , M,,, M3, and M,, are also functions of
X only. We claim that the following two families of deformations are static
universal solutions:

Family 0. The deformation functions are
x = AX, y = BY + CZ, z= DY + EZ, (29.28)
where A4, ..., E are constants such that

A(BE — CD) = 1. (29.29)

The deformations in this family are homogeneous. In the deformed
configuration the component matrix [m*] is of the form

mt 0 0
[M*]=| 0 m® mB, (29.30)
0 m23 m33

where the nonzero components m'!, m®, m®, and m?? are functions of x
only. Indeed, from (29.23), (29.27), and (29.28)

11 — gepuf X
m(x) AM(A)’

m(x) = BzMzz( ) + 2BCM23( ) + c2M33( - )
29.31
m®(x) = D2M22( )+ 2DEM23( : ) + E2M33(—j;—), @b

i (x) = BDM”(—;—) (€D + BE)M23( ) + CEM33( . )

Now since the determinate stress S is given by an isotropic function of m,
its components in (x, y,z) must satisfy the following conditions: (a)
Siayy = Sy = 0 and (b) Sczzys Suyy» Siary » and S, depend only on x.
In Section 25 we explained that the equations of equilibrium are integrable
in this case with the pressure field given by (25.12) and the stress com-
ponents given by (25.13).
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Family 1. The deformation functions are
r= (2AX)V?, 6 = BY + CZ, z=DY + EZ, (29.32)

where A, ..., E are constants satisfying the condition (29.29). For this
family the coordinate system (r, 0, z) in the deformed configuration is the
cylindrical system.

We can prove that the deformations in this family are static universal
solutions by using an argument similar to that of the preceding family.
Indeed, it can be shown that the physical components of the determinate
stress satisfy the conditions (a) S, = S¢, = 0 and (b) S¢,s, Scasys Sczzy
and S, depend only on r. Thus the equations of equilibrium (25.14)
are integrable with the pressure field given by (25.15) and the physical
components of the stress tensor field given by (25.16).

Next, we call & a laminated cylindrical shell if relative to a cylindrical
coordinate system (R, @, Z) in a certain reference configuration w(%)
the component matrix of the characteristic metric is of the form (29.27),
where the nonzero components M, M2 M3 and M2 are functions of
R only. Now we claim that the following two families of deformations are
static universal solutions:

Family 2. The deformation functions are

x = —;— AR?, y=BO + CZ, z= DO + EZ, (29.33)

where 4, ..., E satisfy (29.28).

Family 3. The deformation functions are
r = (AR? 4+ B)V?, 0=CO + DZ, z= DO + EZ, (29.34)
where A4, ..., F are constants satisfying the condition

A(CF — DE) = 1. (29.35)

The proof that these families are static universal solutions is essentially
the same as before. Specifically, for Family 2 the determinate stress in the
deformed configuration satisfies the conditions of the planar problem in
Section 25, while for Family 3 the determinate stress satisfies the conditions
for the first type of the cylindrical problems in the same section. Hence
regardless of what incompressible isotropic elastic solid material the
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laminated cylindrical shell is made up of, the equations of equilibrium are
always integrable.

Finally, we call % a laminated spherical shell if relative to a spherical
coordinate system (R, ®, @) in a certain reference configuration (%)
the physical components of the characteristic metric M satisfy the following
conditions:

M re, = M(rey = M(os, = 0, (29.36)
M o0, = M(gq,, (29.37)

and the nonzero components M gr,, M(go, = M (ss, are functions of R
only. In this case we claim that the following family of deformations are
static universal solutions:

Family 4. The deformation functions are
r=(xR+ AW, 0=+6, ¢=09 (29.38)

where A is an arbitrary constant.

For this family the determinate stress in the deformed configuration
satisfies the conditions of the spherical problems considered in Section 25.
Thus the equations of equilibrium are integrable with the pressure field
given by (25.21) and the stress components given by (25.22).

As we explained in Section 25, if we replace the constants in the pre-
ceding families of static universal solutions by appropriate functions of ¢
in such a way that the resulting motions have a conservative acceleration
field, then we obtain families of dynamic universal solutions. Since the
conditions on the functions of ¢ are independent of the characteristic metric,
the results are exactly the same as those of the homogeneous bodies.

For more details on the universal solutions of laminated bodies, we
refer the reader to the original paper by Wang.??

9 C.-C. Wang, Universal solutions for incompressible laminated bodies, Archive for
Rational Mechanics and Analysis, Vol. 29, pp. 161-192, 1968, Reprinted in W. Noll,
R. A. Toupin, and C.-C. Wang, Continuum Theory of Inhomogeneities in Simple Bodies,
Springer, Berlin, 1968.
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