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Preface to Part B

In Part B, I present the mathematical principles of electromagnetism and
gravitation, showing how these principles evolve from the classical forms
to the relativistic forms.

I start from the concept of the ether frame, which is taken to be a
particular inertial frame in the Newtonian space-time. Relative to this
frame I formulate the mathematical principles of electrostatics, magneto-
statics, time-varying electromagnetic fields, and electromechanical interac-
tions in moving media. These principles give rise to the field equations,
known as Maxwell’s equations. I formulate also certain constitutive equa-
tions, which characterize the electromagnetic response of various media.
The field equations coupled with the constitutive equations form a deter-
ministic system of partial differential equations for the electromagnetic
ficlds.

The set of electromagnetic constitutive equations for a vacuum is
known as the system of Maxwell-Lorentz ether relations. An unsatisfactory
feature of the classical theory is that the system of Maxwell-Lorentz
cther relations is not invariant under a general Galilean transformation.
As a result, the classical theory predicts that in a vacuum the speed of light
{i.c., an electromagnetic wave) relative to the ether frame cannot be the
same as that relative to a moving frame. This prediction is known to be
inconsistent with experimental observations.

The above difficulty in the classical theory of electromagnetism is
removed in the special theory of relativity, which uses the Minkowskian
space-time as the model for the event world. In Chapter 6, I explain the
structure of Minkowskian space-time in detail and reformulate the math-
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viil Preface to Part B

ematical principles in electromagnetism to comply with the new model.
Then I compare the results of the special relativistic theory with those of
the classical theory.

Although the special theory of relativity removes the difficulty in the
classical theory due to the transformation property of the Maxwell-Lorentz
ether relations, it still depends on a preferred set of frames, known as the
set of Lorentz frames. This set corresponds to the set of inertial frames in
the classical theory. Both the Maxwell-Lorentz ether relations and Max-
well’s field equations have the same forms relative to all Lorentz frames.
Physically, the precise interpretation of the set of inertial frames or the
set of Lorentz frames remains a major difficulty in the models.

In the classical theory it is understood that the departure of a frame
from an inertial frame gives rise to an inertial acceleration field, which is
indistinguishable from a gravitational field of the right type. For instance,
if the frame is moving at a constant translational acceleration relative to
an inertial frame, then its inertial acceleration field is a constant vector
field and is indistinguishable from a constant gravitational field. Physically,
there is associated with any frame of reference only an external acceleration
field, which is the resultant of the inertial acceleration and the gravitational
acceleration. An inertial frame is simply one in which the external accelera-
tion is regarded as due to gravitation alone.

In the view of Einstein the external acceleration need not and cannot
be decomposed intrinsically into a gravitational component and an inertial
component; these components do not have separate physical significance.
A relativistic model can be developed to account for the external accelera-
tion directly. This model is given by the general theory of relativity.

In Chapter 7, I present the basic ideas of general relativity. This
theory is based on the Minkowskian manifold as the model for the event
world; a set of preferred frames is not required for this model. Unlike
Minkowskian space-time, the Minkowskian manifold may have curvature
associated with the Minkowskian metric. In accord with Einstein’s inter-
pretation, the Minkowskian metric plays the role of the gravitational poten-
tial and must satisfy a set of equations, known as Einstein’s field equations.
I summarize the results of these field equations for the problem of planetary
orbits and the deflection of light and compare them with corresponding
results in the classical theory.

I present also some interesting results in a recent theory by Toupin,
who shows that a Minkowskian metric and an orientation on a 4-dimen-
sional manifold give rise to two canonical relations among differential
forms on the manifold. One of the two relations corresponds precisely to
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the system of Maxwell-Lorentz ether relations; I call the other relation
the system of Nordstrom-Toupin ether relations. It turns out that the two
canonical relations possess certain basic properties which may be used to
determine the Minkowskian metric and the orientation.

In Chapter 8, I first reformulate Maxwell’s equations in order to comply
with the model of general relativity, and then discuss in detail Toupin’s
results on the connections between the system of Maxwell-Lorentz ether
relations and the Minkowskian metric and the orientation.

Only a few topics in Part A, such as the balance principles and the
field equations in continuum mechanics, are referred to in Part B for the
purpose of comparing the results. Mathematical preliminaries for this
Part are taken also mostly from the two-volume work Introduction to Vectors
and Tensors,* published in this Series (Mathematical Concepts and Methods
in Science and Engineering) in 1976.

I take this opportunity to thank Richard Toupin for providing me with
an unpublished manuscript through the good office of Clifford Truesdell.
That manuscript contains more details of his lectures given at Bressanone,
Italy, in the summer of 1965. However, I have not referred directly to any
result from that manuscript in this work. To my good friend, Jack Elliot,
who also attended the Bressanone lectures, I wish to express my gratitude
for his help in preparing some preprints of this and other works of mine.

This work is dedicated to my teacher, Clifford Truesdell, who has
kept me honest by raising many critical questions and remarks, especially
on the draft of Part B.

The support of the U.S. National Science Foundation in the prepara-
tion of this work is gratefully acknowledged.

C.-C. Wang
Houston, Texas

* R. M. Bowen and C.-C. Wang, Plenum Press, New York.
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Classical Theory of Electromagnetism

The classical theory of electromagnetism is formulated on the basis of a
particular frame of reference, called the rest frame or the ether frame,
in the Newtonian space-time. We develop this theory in four stages: first,
electrostatics concerning the electric fields associated with a steady distribu-
tion of electric charges; second, magnetostatics concerning the magnetic
fields associated with a steady distribution of electric currents; third,
time-varying electromagnetism concerning the time-dependent electro-
magnetic fields associated with unsteady charge-current distributions;
and fourth, electromagnetism for deforming media concerning the interac-
tion of electromagnetic fields with mechanical stress and strain fields.

30. Classical Laws of Electrostatic Fields

In the classical theory of electromagnetism the event world is character-
ized by the Newtonian space-time & as in classical mechanics, but a par-
ticular frame of reference, called the rest frame or the ether frame, is assigned.
It is generally agreed that this frame is an inertial frame as defined in clas-
sical mechanics. Relative to this frame & is represented in a definite way
by the product space 5 x ZP. All concepts in classical mechanics, such
ns forces and motions, are admitted directly into the mathematical formula-
tion of electromagnetism.

We introduce first a primitive concept, called a point charge. Like a
point mass or a particle in classical mechanics, a point charge may be
vharacterized by a real number Q, called the electric charge, and by a point
y € .7, called the position or the location of the point charge. In electrostatics

199



200 Chapter 5 Sec. 30

we require that y be held fixed in 5 for all times ¢, i.e., the point charge
does not move relative to the ether frame. Unlike the mass of a particle,
the electric charge may be positive or negative. If the electric charges
0, and @, have the same sign, then they are called like charges; otherwise,
they are called unlike charges or opposite charges.

In the physical world the main phenomena associated with stationary
electric charges are the electrostatic fields. Electric charges play two distinct
roles with respect to electrostatic fields. First, the presence of any electric
charge in space gives rise to an electrostatic field, and second, the presence
of any electrostatic field (due to other electric charges in space) gives rise
to a force acting on any electric charge as soon as that charge is put into the
field. To balance the force due to the field, we may use a suitable support
force. Indeed, the electric force acting on any point charge may be de-
termined by the support force required to keep the charge in static equi-
librium.

The quantitative concept of an electric field originated from Coulomb’s
empirical determination of the force acting on a point charge due to the
presence of another point charge in space. Let Q, and Q, be located at the
positions y, and y,, respectively. Then the force f acting on Q, due to Q,
is given by Coulomb’s law:

f= K_%Q—z-r, (30.1)

where r = y, — y, denotes the position vector of y, relative to y,, r denotes

the length of r, and K denotes a positive real number, whose value depends

on the units used for electric charge and force. The fact that like charges

repel and unlike charges attract each other is reflected by the positive sign

of K. In the electrostatic units (esu) K is taken as unity. Then (30.1)
reduces to

f= -9;-3Qi r (in esu). (30.2)

Since the right-hand side of (30.2) is proportional to @,, we can define

an electric field E in space due to the presence of a point charge Q by

E = E(x) = T%’ r, (30.3)

where r = x — y denotes the position vector of x in the electric field relative
to the position y of the point charge Q. Then from (30.2) E(x) is just the
force acting on a unit charge if that charge is introduced at the position x.
It follows from (30.3) that E is a conservative vector field which may be
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expressed as the gradient of a potential, viz.,

E— —grad(—%). (30.4)

A point charge may be generalized to a distribution of electric charges
in the same way that a particle is generalized to a body in mechanics. Thus
the formulas (30.3) and (30.4) may be generalized to

E(x) = J_@ L v = —grad( J_% 4 dv), (30.5)

q

where ¢ denotes the charge density on some domain 2, in space, and where
dv denotes the Euclidean element of volume at the position y=x — r
in ;. As before we assume that a suitable field of support forces is present
to keep the charges in static equilibrium.

The formula (30.5) shows that E is again a conservative field, and that
the potential function ¢ is given by )

9 = p(x) = J_@ =L d. (30.6)

A direct consequence of (30.5) is

curl E = 0. (30.7)

It should be noted that the formulas (30.5) and (30.6) are valid at all
points x in space, including the points inside the domain . Indeed, if
g is a bounded field, say ¢4 is continuous on the closure ,@q, then g/r is
an integrable field even though it has a singularity at the point x =y e Z,,
where r = 0. This result is discussed in potential theory.” From that theory
we have the general formula

div(grad Ll dv) — —4mh(x) (30.8)
o, T

for any continuous function 4, where dv has the meaning as before. Taking
the divergence of (30.5) and using the general formula (30.8), we obtain
the field equation

div E = 4ngq. (30.9)

1 See, for example, O. D. Kellogg, Foundations of Potential Theory, Dover edition,
New York, 1953,
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This result may be expressed in the integral form
J divEdx = J E - -ndo=4n J q dx, (30.10)
o FX4 E-4

where 2 is any regular domain in space such that the divergence theorem
holds. We call the surface integral, [, E - n do, the electric flux through
02. Then (30.10) implies that the electric flux is equal to 4z times the total
charge enclosed by the surface 0.2. This assertion is known as Gauss’
flux theorem.

The mathematical model formulated so far has only limited applica-
tions for the following reason: In the physical world electric charges are
present in two distinct forms: free charges and bound charges. Free charges
are directly accessible to us in the sense that we can introduce or remove
them freely at any position in space. Bound charges, on the other hand,
are confined to the molecules of materials and are therefore not accessible
to us. We can only observe the effects of the bound charges but we cannot
introduce or remove them directly.

In some sense the distinction between the free charges and the bound
charges is just like that between the body forces and the contact forces
in a material body. We can introduce or remove body forces at will but we
cannot do the same to the contact forces. Like the contact forces, which are
due to the response of the material toward deformations, the bound charges
are due to the response of the material toward electric fields. In order to
apply Coulomb’s formulas directly, we have to account for all electric
charges—both the free charges and the bound charges. This situation is
similar to that in continuum mechanics: in order to apply Cauchy’s prin-
ciples of motion, we have to account for all forces—both the body forces
and the contact forces.

In continuum mechanics the difficulty of characterizing the contact
forces is overcome by using the stress tensor, and the stress tensor is charac-
terized mathematically by the constitutive equation. In classical electro-
magnetism we follow a similar procedure to characterize the bound charges.

We use the term medium to represent the physical notion of a material
body or a vacuum. This term is chosen instead of the previous term body
manifold in continuum mechanics mainly because in the case where the
medium is a vacuum there are no identifiable body points. In electrostatics
a medium is just a domain in space having a particular electrostatic response.
We proceed now to formulate models for such response. First, the symbol
¢ shall now refer to the free-charge density, and the symbol E shall refer
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to the electric field. We no longer require that E be determined by ¢ through
the formula (30.5), since E depends on both the free charges and the bound
charges. At any point x € .5 the value E(x) shall have the direct physical
meaning: the force acting on a unit point charge if that charge is introduced
at the position x. To characterize the bound charges we introduce a vector
field D called the electric displacement. We require that D be related to g by

div D = 4nq (30.11)

everywhere in space.

The physical meaning of the electric displacement has been explained
by Faraday and by Maxwell on the basis of a molecular model for a dielectric
material. We shall not go into the details of the explanation here, since we
are primarily interested in the mathematical structure of the theory.

In some sense the electric displacement D is just like the stress tensor T,
and the field equation (30.11) is just like the equation of equilibrium
div T + gb = 0. Mathematically, given the field ¢ the equation (30.11)
does not determine the field D uniquely, just like given the field gb the
equation of equilibrium does not determine the field T uniquely. To render
the model deterministic, we introduce some boundary conditions and some
constitutive equations as in continuum mechanics. We consider first the
constitutive equations.

The constitutive equations in electrostatics are based on the assumption
that at any point x € 5 the electric displacement D(x) is determined by
the electric field E(x). Such a relation characterizes the electrostatic response
of the medium at the point x and is independent of the field of free charge
density ¢. This basic constitutive assumption has been explained by Faraday
and by Maxwell on the basis of a molecular model mentioned before. For
a vacuum we have D = E, since in this medium (30.11) reduces to (30.9),
i.e., there are no bound charges in a vacuum. A medium is said to be
(electrically) isotropic if D is proportional to E,

D = ¢E, (30.12)

where ¢ is a positive material constant, known as the permittivity. A medium
is called anisotropic if D is a linear function of E,

D = €E, (30.13)

where € is a positive definite symmetric tensor, called the permittivity tensor.
The relation (30.13) corresponds to three independent permittivities &;,
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i=1,2,3, associated with a principal basis {e;,i = 1,2,3} of e, i.e.,
Di=eE, i=123, (30.14)

where D' and E* denote the principal components of D and E. In particular,
(30.13) reduces to (30.12) when € is completely degenerate and has only
one distinct proper number e.

Note. Like all constitutive equations, (30.12) and (30.13) are not
laws of physics but are some convenient mathematical models which
characterize the electrostatic response of some special classes of materials.
For the most part classical electrostatics is formulated on the basis of
(30.12) and (30.13). We can, of course, formulate mathematically some more
general nonlinear constitutive equations as in the development of continuum
mechanics. Some examples of constitutive equations more general than
(30.13) are considered in the last section of this chapter.

In the physical interpretation the difference between D and E,
P=D-E, (30.15)

may be attributed to the inaccessible bound charges in the medium. We call
P the polarization field. In the absence of free charges the divergence of
(30.15) implies that

divE = —divP. (30.16)

This equation is comparable to the previous equation (30.9) for the electric
field in a vacuum. Thus we may regard —(1/4=) div P as a source for the
electric field inside the medium.
Regardless of the nature of the bound charges E is always a conservative
vector field, i.e.,
curl E = 0, (30.17a)

E = —grad ¢. (30.17b)

However, because of the bound charges the potential function ¢ is generally
not given by Coulomb’s formula (30.6). Indeed, substituting (30.17b) into
the constitutive equations (30.12) or (30.13), and then using the field equa-
tion (30.11), we get

div(e grad ¢) = —4ngq. (30.18)

Since ¢ is positive definite and symmetric, this is an elliptic partial differential
equation for ¢ assuming that the free charge density ¢ is given. Suppose
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that € is smooth, that ¢ — 0 at infinity, and that g = 0 outside a bounded
domain Zj,. We can solve (30.18) and determine a unique solution ¢.
Then E is given by (30.17b), and D is given by (30.12) or by (30.13).

Note. For a vacuum € = I. Then the governing equation (30.18)
reduces to the Poisson equation

div(grad ) = V2%p = —4nq. (30.19)
In this case the solution ¢ is given by Coulomb’s formula (30.6).

For different media the permittivity tensors are not the same. Hence
the assumption that € be a smooth field in the whole space .5 is not realistic
from the physical standpoint, since at the interface of two distinct media €
is discontinuous. Then we must specify the boundary condition or the
jump condition.

Let Z be a surface in &, and suppose that ¢ is a field which is smooth
on.%” — 7 and has limits ¢ and ¢ from the two sides of Z”. Then we denote
the difference ¢ — § by [y], called the jump of y across the surface Z.
Since E is the field of forces acting on a unit charge, (30.17b) implies that
o is the field of potential energy of a unit charge in the field E, the potential
energy at infinity being taken as zero. We assume that [¢] = 0 across any
surface Z. Then from the field equation (30.17b) we see that the tangential
component of E must not suffer any jump discontinuity across the interface
of two media, viz.,

[E] = [E - n]n, (30.20)

where n denotes the unit normal vector of the interface. This jump condi-
tion may be obtained also by using the field equation (30.17a) and Stokes’
theorem on an elementary loop bridging the two sides of the interface.

Following the same idea, we use the divergence theorem on an elemen-
tary cylindrical domain bridging the two sides of the interface; then we
obtain from (30.11)

[D]-n=[D - n] = 0. (30.21)

Thus the normal component of D suffers no jump across the interface. In
the derivation of (30.21) we have assumed that there is no free charge
distribution on the interface. (This assumption is appropriate for the
interface of dielectric materials.) From (30.20), (30.21), and (30.13) we
can calculate the fields D and E on one side of the interface from the same
fields on the other side.
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Specifically, let €, D, E, and &, D, £, denote the fields on the two sides
of the interface. Then from (30.20)

@D —-D=[E- njén (30.22)

Taking the dot product of this equation with n and using (30.21), we get

n-8&D—n-D=[E- - én (30.23)
Hence
[E-n] = 3——l(f——en—§)£ (30.24)
which implies that
. B-E- (E_?;%:LE)n (30.25)
Then D is given by
D= e (“ ' (e:fle; nb )‘én. (30.26)

Another kind of material medium considered in electrostatics is a
conductor. This medium is defined by the condition that in its interior the
fields D and E always vanish. Consequently, the potential function ¢ is
constant throughout the medium, and there is no internal free charge
distribution. At the interface of a conductor with a dielectric the jump condi-
tion (30.20) remains valid, except that we may remove the bracket notation
and write simply

E=(E - -nn (30.27)

for the field E in the dielectric medium, since the electric field vanishes in
the conductor. The jump condition (30.21), however, is generally not valid,
since there may be a free charge distribution on the interface. Indeed, by
the argument leading toward (30.21), we now have

D . n=d4ar (30.28)

where T denotes the charge density per unit surface area.

Using the boundary conditions (30.25)-(30.28) together with the field
equation (30.18), we can solve the potential function ¢ such that ¢ — 0
at infinity. Then the electric field E may be determined by (30.17b), and the
displacement field D may be determined by the constitutive equation (30.13)
for each dielectric medium.
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31. Steady Currents and Magnetic Induction

In the preceding section we considered the electric field E and the
electric displacement field D associated with a stationary distribution of
charges. We now consider a more general situation when charges are in
motion. The existence of an electric current in a conducting wire due to a
source of electric potential such as a voltaic battery is a known physical
phenomenon. If the potential source is time independent, then it is known
that the current in the conducting wire attached to the source is steady.
Moreover, it is found from experiments that the current J is proportional
to the electric potential ¥ of the source,

1

where R is a constant, called the resistance of the conducting wire. The
empirical formula (31.1) was discovered originally by Ohm and is now
known as Ohm’s law.

Suppose that there are steady currents J; and J, in a pair of wires in
vacuum as shown in Fig. 3. It was observed in experiments by Ampére

that there is a force acting on the second circuit due to the first circuit.
Ampére obtained the formula

f= KJJ, §§M, (31.2)

rd

where K is a constant depending on the units used. In the electromagnetic

Figure 3.
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units (emu) X is taken as unity. The unit of current thus obtained is called
the abampere. This unit differs from the (esu) unit of charge per unit time
by a constant ¢, whose dimension is that of the velocity. As we shall see
in Section 34, c is just the speed of light (i.e., an electromagnetic wave)
in vacuum and has an approximate value of 3x 10! cm/sec. Using the
electrostatic units, K = 1/c%, we have

f— ng ﬁ; A X@MXE) G esu), (1.3)

r3

which is known as Ampére’s law.
From (31.3) we see that the force f may be regarded as the integral
of a force field on the circuit 2:

f— —Jcl§(d12><n), (31.4)
where
_Jy [ dAXxr ,
B— —c—§-—r3—~. (1.5)

We call B the magnetic induction field, which is due to the steady current
J, in the circuit 1.

The preceding analysis of the field induced by a steady current in a
wire may be generalized to that of a distribution of steady currents in
some domain &Z; in (vacuum) space. We denote the current density (in
current per unit area) by j. Then the magnetic induction B induced by the
current distribution is
jxr
s

B = B(x) — J_@, d, (1.6)

)

where r denotes the position vector of the location x in the field B relative
to the position y = x — r of integration in the domain 2. Similarly, if
there is a steady field B in the domain & with current density j, then the
force acting on the domain is given by the integral

f— J J B (31.7)
9’ 4

The previous formulas (31.5) and (31.4) can now be regarded as special
cases of (31.6) and (31.7), when 2 and 2} reduce to two circuits.
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The formula (31.6) may be rewritten as
B = —J d grad(L) dv = curl J J dv, (31.8)
_@j c r _@i cr

which implies that B is a solenoidal vector field, viz.,

divB =0, (31.9a)
B = curl A, (31.9b)

where A is called a vector potential for B. From (31.8) A is given by the
integral

A= f 3 . (31.10)
gi cr

For representations of vector fields possessing special properties such as
(31.92) the reader is referred to Section 54, IVT-2. It is pointed out there
that the vector potential of a solenoidal field is unique to within an additive
conservative field only.

In any field of currents j electric charges are moving in space. We can
visualize this situation as a flow of a distribution of point charges with
velocity field v. Then j = gv. Like the mass density ¢ of a continuum, the
charge density g satisfies the continuity equation

dq s
—E—+d1v1—0, (31.11)

which is the field equation for the /law of conservation of charge. The field
cquation (31.11) must be satisfied by any time-dependent charge and current
ficlds in general. For steady fields the continuity equation reduces to

divj=0. (31.12)

We can use this field equation to show that the vector potential A given
by (31.10) satisfies the additional condition

divA =0, (31.13)

which renders A unique provided that A — 0 at infinity.
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To verify the condition (31.13), we take the divergence of A from
(31.10), obtaining

div A(x) = Jg 0 - grady (]]TI:W) dy

i

== [, 1wty @

i(y) . J(Y)
J div (cux—yll) Ja@ elx—yl n((y3)1‘.1;’5

where we have used the divergence theorem and the continuity equation
(31.12). Now the surface integral on the right-hand side of (31.14) vanishes,
since by assumption the current field j is confined within a bounded domain.

Note. The preceding argument is valid for a smooth steady field of
currents only, since in the derivation of (31.14) we have used the divergence
theorem and the continuity equation (31.12). A more general condition for
an unsteady field is considered in Section 32.

Taking the curl of the field B from (31.8), we get

curl B = curl curl J 3 dv
@, cr

=_f9 j I72( )dv+grad de—4n( ) (31.15)

c

where we have used the general formula (30.8). Clearly (31.15) is consistent
with (31.12). The field equations (31.9a) and (31.15) determine uniquely
the field B if B — 0 at infinity. The solution is given by Ampére’s formula
(31.6). By using Stokes’ theorem, we can rewrite the field equation (31.15)
in the integral form

f}; B.dx—dnl, (31.16)
N ¢

where J is the total current encircled by the circuit A, i.e.,
J=J- j+ ndo, (31.17)
¥

where n is the positive unit normal of the surface Z such that 3% is the
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circuit A on the left-hand side of (31.16). The integral form (31.16) is known
as Ampeére’s circuit law.

So far we have formulated the magnetic induction field B associated
with some steady currents in (vacuum) space. This formulation has only
limited applications for the same reason as before: In the physical world
currents are present in two distinct forms: free currents and bound currents
(or magnetization currents). Free currents are accessible to us, but bound
currents are confined to the molecules of materials and are therefore not
accessible to us. In order to apply Ampére’s formulas directly, we must
account for all currents in space—both the free currents and the bound
currents. This difficulty may be overcome in the following way as before:

First, the symbol j shall now refer to the free-current density, and the
symbol B shall refer to the magnetic induction field. We no longer require
that B be determined by j through Ampére’s formula (31.6), since B depends
on both the free currents and the bound currents. The physical meaning of
B(x) at any point x €.5” is given directly by the force f acting on any
current according to the formula (31.7), when that current is introduced
into the field at the position x. To characterize the bound currents in the
material medium, we introduce a vector field H, called the magnetic field.
We require that the. field H be related to the field j by

curlH=4n% (31.18)

The term medium is used here in a similar sense as before: a domain in
‘#" having a particular magnetostatic response. When the medium is a
vacuum, we have H = B, and (31.18) reduces to (31.15), since there is no
bound current in a vacuum. For a medium of magnetic material we assume
that H(x) is determined by B(x). This constitutive relation characterizes
mathematically the magnetic response of the medium and is independent
of the free-current density j. A medium is said to be (magnetically) isotropic
if H is proportional to B:

H=—B, B=uH, (31.19)

where u is a positive material constant, called the permeability. A medium
1s called anisotropic if H is given by a linear transformation of B:

H = p'B, B = pH, (31.20)

where @ is a positive definite symmetric tensor, called the permeability
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tensor. As before this tensor corresponds to three independent permeabilities
i, i = 1,2, 3, associated with a principal basis of p.

Note. As remarked before, the constitutive relations (31.19) or (31.20)
are not laws of physics but are just some convenient mathematical models
which characterize the magnetic response of some materials. Ferromagnetic
materials such as iron and nickel may have permanent magnetization cur-
rents. For such materials the constitutive relations (31.19) or (31.20) are
not applicable. In fact ferromagnetic materials often exhibit a memory
effect known as magnetic hysteresis. Then H is not even given by a single-
valued function of B. In this section we shall limit our attention to con-
stitutive relations of the forms (31.19) or (31.20) only.

The difference between B and H,
M=B—H, (31.21)

is called the magnetization. In the physical interpretation this concept may
be attributed to the inaccessible bound currents in the medium. For an
isotropic medium we write also

M= (x— DH=yH = (1 — 1/u)B, (31.22)

where y is called the magnetic susceptibility. 1f y > 0, we call the medium
paramagnetic; otherwise, we call the medium diamagnetic.

Regardless of the nature of the magnetization currents in the medium
the field B is always a solenoidal field. However, the vector potential A
need not be given by the formula (31.10), since B depends on both the
free currents as well as the inaccessible magnetization currents. In the ab-
sence of free currents the magnetic field is a conservative field:

curl H = 0. (31.23)

Also, from (31.21) and (31.9)
divH = —divM. (31.24)

These two equations are comparable to the equations (30.7) and (30.9).
Thus —(1/4x) div M may be regarded as a source for the field H inside the
medium. This source is attributed to the inaccessible magnetization current.
The condition that B is always solenoidal means that there is no free
magnetic source in space.
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From (31.18) the magnetic field H may be determined to within an
additive conservative field by the free-current distribution j. We set

H = H, — grad vy, (31.25)

where H, is fixed and satisfies the field equation

divHy — 4z L, (31.26)
and where p is an unknown function. To determine the function p, we
use the constitutive equation (31.20) and the field equation (31.9a), ob-
taining

div((H, — grad y)) = 0. (31.27)

Hence
div(p grad y) = div(pH,), (31.28)

which has the same form as (30.18) and is an elliptic partial differential
cquation for the unknown function .

As before B and H must satisfy certain jump conditions at the interface
of two distinct magnetic media. The results are

[B] -n={B-n]=0, (31.29)
and

[H] = [H - n]n, (31.30)

provided that there are no free-current distributions on the interface. From
these jump conditions we can calculate the fields B and H on one side of
the interface from the fields B and H on the other side, viz.,

. g g (E-Lf;n;*")ﬁ)n (31.31)
und
B=pa'B— ( bl (‘f‘*f_a; nB )an. (31.32)

As usual we assume that y — 0 at infinity. Then y is determined by
the field equation (31.28) and the boundary conditions (31.29)-(31.32).
I'rom the solution » the magnetic field H may be determined by (31.25)
and the magnetic induction B may be determined by the constitutive equa-
ton (31.20) for each magnetic medium.
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32, Time-Dependent Electromagnetic Fields, Maxwell’s Equations

In the preceding two sections we have formulated the laws governing
time-independent electric fields and magnetic fields. Now we develop the
more general theory of unsteady fields.

We recall first that for a time-dependent charge field ¢ and a time-
dependent current field j the conservation of charge requires the continuity
equation

dq ———
¥ +divj=0. (32.1)

Clearly this equation is not consistent with the field equation (31.18) unless
dq/0t vanishes. Hence we cannot admit (31.18) directly into the theory of
unsteady fields. This difficulty may be resolved by using Maxwell’s concept
of displacement current in the following way:

First, we admit the field equation (30.11) for unsteady fields, i.e.,
we require that the instantaneous values of ¢ and D be related by (30.11)
at each time ¢. Using that field equation, we can rewrite the continuity
equation (32.1) as
. 1 oD\

le(] + —Zj-t_ —a-t—") _ 0, (32.2)
where the term (1/4n)0D/dt is called the displacement current. The physical
meaning of this term has been explained by Maxwell.

Next, Maxwell generalized Ampére’s law (30.11) to
I dD

—gpd 1L D
curl H = 4n p + - a1 (32.3)

for the unsteady case in general. The field equation (32.3) has been verified
by experiments and is consistent with the continuity equation (32.1).

In Section 31 we discussed the magnetic induction due to a steady
current. We pointed out that there is a force acting on a current if that
current is located in a magnetic induction field. Thus the relation of the
current to the magnetic induction is just like that of the charge to the electric
field. Now we consider still another kind of electromagnetic induction,
which was observed from experiments by Faraday.

Faraday discovered that an electric field is induced around a circuit
when the magnetic induction field B through the surface bounded by the
circuit is changing with respect to time. Faraday’s law of induction asserts
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that the line integral of the electric field around any circuit A is given by

1 d
iE-dl—-—c—Tk—JgB-ndo, (32.4)

where n denotes the positive unit normal of the surface Z such that 67
is the circuit A.

In Faraday’s original experiments a conducting wire was used to form
the circuit, and the electric field was observed from the resulting current
in the wire. Maxwell pointed out that the electric field was induced in the
whole space not just in the wire. Hence (32.4) is valid for all loops A. By
using Stokes’ theorem, we then have

f curlE-ndaz—J 1 0B (32.5)
v y € ot

for any oriented surface 7. Assuming that the integrands in (32.5) are
continuous, we obtain the field equation for the electric field E in the

unsteady case
1 0B
curlE = — ~ (32.6)
which shows that E is generally not a conservative field.
The four field equations

divD = 4ngq, (32.7a)
1 0B
curlE= — ? —aT, (32.7b)
divB =0, (32.7c)
4n . 1 0D
curl H = T] -+ ’?- —at—, (32.7d)

valid for time-dependent charge, current, electric, and magnetic fields in
peneral, are known as Maxwell’s equations.

From the definition of the electric field the force acting on a point
charge Q in an electric field E is given by QE. From Ampére’s law if the
puint charge Q is moving with a velocity v in a magnetic induction field B,
then the force acting on the current Qv is (Qv/c) x B. The total force acting
on the moving point charge is then given by

f= Q(E +Lx B). (32.8)
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If there is a distribution of charges ¢ moving with a velocity field v, then
(32.8) may be generalized to a field equation

=q(E+—Z—><B>=qE+—Z—><B, (32.9)

where f denotes the force density. This formula was observed originally
by Lorentz, so f is known as the Lorentz force. Maxwell’s equations (32.7)
together with Lorentz’s formula (32.9) form the basis for the mathematical
analysis of electromagnetic phenomena in the unsteady case.

As in the steady case considered in the preceding two sections, the
field equations (32.7) may be solved by using some potential functions.
First, (32.7¢) implies as before the existence of a vector potential A such that

B = curl A, (32.10)

where A is unique to within an additive time-dependent conservative field.
Substituting (32.10) into (32.7b), we get

1 0A
curl(E +— T) —0, (32.11)
which implies that
1 0A
E + = = —grad ¢, (32.12)

where @ is unique to within an additive function of time.

Now suppose that the medium satisfies the linear constitutive relations
(30.13) and (31.20)-in the unsteady case also. Then in terms of the potentials
@ and A we have

0A

D= —e(grad @+ -L— T) R H = p'curl A. (32.13)

Substituting these representations into the remaining field equations (32.7a)
and (32.7d), we get

div(e grad ¢) + % div(e %i?_) — _dng,
(32.14)

1 0 1 4 0A a _4n
- or (e grad @) + = (e T) + curl(p—tcurl A) = — I

These are the governing equations for the potentials ¢ and A for any charge
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and current distributions ¢ and j [which must satisfy the conservation
law (32.1); otherwise, (32.14a) is not consistent with (32.14b)].

For simplicity we consider a homogeneous isotropic medium. Then
€ and @ reduce to the constants I and ul In this special case (32.14)
becomes

1 JA 4r
2 —di —_ e
Vip + p div ER — 4 (32.15a)
el 8<p su  0°A _ Amu
- grad — + —- & + curl curl A = P (32.15b)

Now we claim that, without loss of generality, we can impose on the poten-
tials ¢ and A the following Loreniz condition:

pe Op
divA +— —"-=0. (32.16)

Indeed, if A and ¢ fail to satisfy the preceding condition, then we can
replace them by

1 8
A=A+ grady, ‘7’2"’_?—0’?—’ (32.17)

which still satisfy the representations (32.10) and (32.12). We may choose
v in such a way that the new potentials A and & satisfy the condition (32.16).
Specifically, A and @ obey the Lorentz condition if and only if y satisfies
the partial differential equation

oy, _ M O o pe Op
Vay ol div A — (32.18)

which may be solved by the retarded potential:

P(x, 1) = J Myt =80 4, (32.19)
2; r
where
1/2
rolx—yl, £=(i‘?——, /1_4_(d1A+’” %"’) (32.20)

To prove that (32.19) gives a solution to the equation

Py — 52 ar* = —4nl, (32.21)
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we note that for any function { of r = || x — y || the Laplacian is given by
Vei(r) = 1 @ (rem). (32.22)
rdr? )
Also, for any function n of t — &r

02 02
5 Mt — &r) = & = n(t — &), (32.23)

Differentiating (32.19) under the integral and using (30.18), (32.22), and
(32.23), we obtain

1 92 Aly, t — &r)
2y 2 2
Vi J@llV(r)dv—f—é or® J.% r »

2 2
- —4nl+§2%=—4nl+ pe Oy

- g (32.24)
Thus the validity of the solution (32.19) is proved.
Now assuming that ¢ and A obey the Lorentz condition (32.16),
we can rewrite (32.15a) as
_ pe B¢ 4z

V2(P ? 912 = — . q. (3225)

Using the vector identity
curl curl A = grad(div A) — V2A, (32.26)
we can rewrite (32.15b) similarly as

I72A—’u—£ A dnp

e i | (32.27)

Notice that the system (32.15) is now decoupled into two separate equations
(32.25) and (32.27) for ¢ and A, respectively.

Since (32.25) and (32.27) have the same form as (32.21), they can be
solved by the retarded potentials

P(x, 1) = Jg —‘-’(L';ﬂdv (32.28)
and
A(x, 1) = L L(y’—;;_—fr)—dv, (32.29)
i
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which satisfy the Lorentz condition. From these solutions we can then
determine the fields B and E by the representations (32.10) and (32.12).

At the interface of two distinct media the instantancous fields E, D,
B, and H are not continuous. We assume that the right-hand side of Max-
well’s equations are integrable fields with respect to the Euclidean volume.
Then by using (32.7b) and (32.7d) and Stokes’ theorem on an elementary
loop bridging the two sides of the interface, we see that the tangential com-
ponents of E and H suffer no jump, i.e., we still have the jump conditions
(30.20) and (31.30) in the unsteady case. Likewise by using (32.7a) and
(32.7¢) and the divergence theorem on an elementary cylindrical domain
bridging the two sides of the interface, we see that the normal components
of D and B suffer no jump, so that (30.21) and (31.29) still hold. Then
following the procedure as before, we can express the values E, D, B,
and H on one side of the interface in terms of the values E, D, B, and A
on the other side, i.e., (30.25), (30.26), (31.31), and (31.32) still hold at
cach instant 1.

So far we have developed the classical theory of electromagnetism in
three stages: first electrostatics, then magnetostatics with steady currents,
and finally unsteady electromagnetism. In order to distinguish a steady
field from an unsteady field, we must use a particular frame of reference
on the Newtonian space-time & . This frame is known as the rest frame or
the ether frame of classical electromagnetism. The requirement that such
a frame must exist is a basic difficulty in the classical theory.

To illustrate this point, we consider a change of frame by a uniform
translation with velocity u, i.e., the position vector x’' of an event relative
to the moving frame is related to the position vector x of the same event
rclative to the rest frame by

X' =x —ut (32.30)

For simplicity we assume that the two frames use the same Newtonian
time t. From (32.30) the velocity field v’ relative to the moving frame is
rclated to the velocity field v relative to the rest frame by

V=v—u (32.31)

Now conceptually it is very natural to regard the charge density g,
like the mass density ¢ in Newtonian mechanics, as being a frame-indifferent
quantity, viz.,

qg =q. (32.32)

then the current density §' relative to the moving frame is related to that
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in the rest frame by
=j—qu (32.33)

Next, since the field D and the field B are used to characterize the
free charge distribution and the free magnetic source, which are both
assumed to be frame-indifferent, we have

D' =D, (32.34a)
B = B. (32.34b)

Then the partial time derivatives dD’/dt and dB’/dt are related to the
partial time derivatives dD/dt and dB/dt by

aD’ 7)) 7): 4 0B
5 = or + (grad D)u, 5 = o + (grad B)u, (32.35)
where the extra terms on the right-hand side are due to the fact that in
calculating the time derivatives, x’ is held fixed in the moving frame while x
is held fixed in the rest frame. That is, (32.34a) means explicitly that

D'(x',t) =D(x,t) = D(x' + ut, t). (32.36)

It follows from the transformation laws (32.30)-(32.36) that Max-
well’s equations and Lorentz’s formula become

div' D' = 4nq’, curl’ (E + — X B) = 1 aa%,
¢ o (3237)
div' B’ = 0, curl’(H—B_xB):ij'_f_i oD ,
¢ c Ot
and
u v
f:q'<E+7>< B+ B'), (32.38)

where the prime on div’ and curl’ refers the operators to the moving frame.
Comparing (32.37) and (32.38) with (32.7) and (32.9), we see that the forms
of Maxwell’s equations and Lorentz’s formula are preserved by the change
of frame if we define the electric field E’ and the magnetic field H' in the
moving frame by

E’=E+—uc—><B, H’=H——“C-—><D. (32.39)

These transformation laws, however, will not preserve the constitutive
relations, which should be frame-indifferent.
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In fact while D = E and B = H for a vacuum in the rest frame,
according to (32.34) and (32.39) we have D' # E’ and B’ £ H' for the
same vacuum in a moving frame. Thus the constitutive relations do not
just refer to the response of a medium but depend also on the motion of
the frame of reference relative to the ether frame.

Because of this difficulty a better mathematical model for electro-
magnetism has been formulated in the context of the theory of relativity.
We shall discuss the relativistic model in the next three chapters.

The transformation laws (32.39) suggest that we should consider
more general linear constitutive relations of the symmetric form

E = xD + %B, H = x"D + vB, (32.40)

or the inverse form
D = ¢E -+ EH, B = ETE + uH. (32.41)

A medium defined by such a system of constitutive relations may be called
hianisotropic, where the prefix “bi”’ refers to the cross coupling of the electric
and the magnetic fields. [The symmetry of the coefficient matrices in (32.40)
and (32.41) is known as the Jossless condition.] When €, E, and p reduce
to scalars, viz.,

D = ¢E 4+ £H, B = ¢E + uH, (32.42)

the medium is called biisotropic.

Historically biisotropic or bianisotropic media were considered in the
theory of electromagnetism for moving media; cf. Section 35. It has been
shown recently, however, that the cross coupling of electromagnetic fields
may exist in certain types of magnetic crystals. The first experimental
observations of such cross coupling were made in 1960 in the antiferro-
magnetic chromium oxide. The system of constitutive relations for this
medium is of the form

D! e 0 0\ /E £ 0 0\ /H
D2l=(0 & 0)[E*)+ [0 & o |[A2),
D? 0 0 & \E® 0 0 &/ \H®

(32.43)
B £ 0 0\/E p 0 0\ /H
By =0 & 0 |[E2)+{0 u 0 || H
B® 0 0 &/ \E® 0 0 ug) \H®

1clative to a crystallographic basis {e;}.
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33. Balance Principles

From Lorentz’s formula (32.9) we see that the force acting on a moving
charge due to a field of magnetic induction is perpendicular to the velocity
field. Hence the power density on the moving charge is produced entirely
by the electric field. On any domain 2 with current density j the total
power is given by the integral

J j- Edx (33.1)
9

This power represents the rate of conversion of the electromagnetic energy
into other forms of energy such as thermal energy (e.g., the Joule heat).
Assuming that energy is balanced in 2, we equate the power with a rate
of decrease of electromagnetic energy in & together with the energy flux
through the boundary 2. Such a balance principle was considered first
by Poynting.

To obtain an expression for the power (33.1) in terms of the electro-
magnetic field in 2, we use Maxwell’s equation (32.7d) to determine the
current density j:

. 1 aDn
J@j-de—HJ@[cE-curlH—E-T] dx.  (33.2)
Now using the vector identity
divExH)=H - curlE — E - curl H (33.3)

together with the field equation (32.7b), we can rewrite (33.2) as

J - Edx— —LJ [cdiv(ExH)+E : —@—+H-a—3] dx.
g 4n o at at
(33.4)

Applying the divergence theorem to the first term on the right-hand side,
we obtain

. 1 7)) 7).}
J‘.@J'de——ﬁ'[g[E'T—f—H'T]dx

c
yPs .[097 (ExH) : ndo, (33.5)

where n denotes the outward unit normal on 3.22.
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Poynting observed that the volume integral on the right-hand side
may be regarded as being the rate of decrease of the energy of the electro-
magnetic field in 2, while the surface integral may be regarded as being
the energy flux through 0.2. Indeed, when D and B are related to E and H
by some linear constitutive equations, we may define an electromagnetic
field energy of the domain 2 by the integral

1

- J@ (E-D -+ H- B)dx. (33.6)

This expression for energy may be justified in electromagnetostatics. For
time-dependent fields we simply define the field energy by (33.6). Then
(33.5) may be rewritten as

—7‘17[_81;} (E-D+H-B)dx]='[ j-de+J S - ndo,
@ o 0 (33.7)
where S is defined by
c
S =~ ExH (33.8)

and is called the Poynting vector.

Poynting regarded S as being the energy flux associated with the
clectromagnetic fields. Thus (33.7) may be interpreted as a balance principle
which asserts that the rate of decrease of the field energy in 2 is equal to
the rate of conversion of energy in .2 plus the rate of energy efflux through
dX. We call this assertion Poynting’s principle. Since it is valid for all
domains 2, from (33.4) or from (32.7) directly we obtain its field equation

1 7)) 0B
(B a tH g

)+j-E+divS=O, (33.9)
which is known as Poynting’s equation.

Now it should be pointed out that Poynting’s principle is really an
wdentity which is satisfied by all solutions of Maxwell’s equations. The
rclation between Poynting’s equation and Maxwell’s equations is similar
to that between the energy equation (i.e., the Jacobi integral) and Lagrange’s
cquations in analytical mechanics. Poynting’s principle is not a new axiom
for electromagnetism; it is merely a theorem in the context of Maxwell’s
cquations. The definition (33.8) for the energy flux is just a convenient
vhoice. Clearly we may add an arbitrary divergence-free term on the right-
hand side of (33.8) without affecting the identity (33.7).
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We can derive a balance principle for the linear momentum similar
to Poynting’s principle. The principle may be stated for a homogeneous
bianisotropic medium in general. We regard the Lorentz force on the charge
and the current in 2 as a rate of conversion of the electromagnetic field
momentum into the mechanical momentum. Then this rate must be balanced
by a rate of decrease of the electromagnetic field momentum in 2 together
with the linear momentum flux through 2. Following the procedure as
before, we write the momentum conversion rate in 2 by the integral

jg (qE " % x B) ax. - (33.10)

Now using Maxwell’s.equations (32.7a) and (32.7d) to determine the charge
density g and the current density j, we get

j (qE—!—-j—xB)dx
o [

=LJ' [(divD)E+ (curlH) x B — L 9D
g c Odt

= x B] dx.  (33.11)

We shall now rewrite the right-hand side as a sum of a rate of change of a
volume integral and a surface integral.

Using the product rule and the system of field equations (32.7), we can
replace the right-hand side by

j (qE +d B) dx
o [
d 1
—_ ngm (DX B) dx
+._51—71—J [(divD)E + (curl H) X B — D X (curl E)]dx. (33.12)
o

The integrand of the second term on the right-hand side is the divergence
of the Maxwell stress tensor T, which is defined by

T=—I17—z—[}(E-D+H'B)I—E®D—H®B]. (33.13)

We can verify the formula

—div T = (divD)E + (divB)H — Bxcurl H — DxcurlE  (33.14)
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by direct calculation based on the assumption that e, &, and p are in-
dependent of the position x. Substituting (33.14) into (33.12) and using the
divergence theorem, we obtain

d 1 _ _]_
_ ng 1 (DXB) dx = Jg (qE 2 xB) dx + Lng do. (33.15)

This identity has a form similar to (33.7).

As before we regard the left-hand side of (33.15) as being the rate of
decrease of the electromagnetic field momentum in 2 and the second term
on the right-hand side as being the momentum efflux through 4.2. Then
(33.15) becomes a balance principle, which asserts that the rate of decrease
of the field momentum in 2 is equal to the rate of momentum conversion
in & plus the momentum efflux through 82. The field equation for this
balance principle is

4—;? —gt—(DxB)—i—(qE—i——i— x B)+divT=0. (33.16)
Like Poynting’s equation (33.9), the balance equation (33.16) is really an
identity which is satisfied by all solutions of Maxwell’s equations (32.7)
for a homogeneous bianisotropic medium. Hence this identity does not
place any additional restrictions on the electromagnetic field.

It should be noted that the Maxwell stress tensor T, as defined by
(33.13), is generally not a symmetric tensor. The skew symmetric part of
this tensor represents a distribution of torque on the medium by the electro-
magnetic fields.

In the view of Lorentz the electromagnetic fields in the interior of a
material medium actually satisfy the Maxwell-Lorentz ether relations
E = D and B = H, except that the charge density and the current density
must include the bound charge and the magnetization current. In other
words the system of field equations always takes the form

div E = 4x4, curl]:‘,_:——%—%?—,
_ 4z , 1 OE (33.17)
divB =0, curlB=—c——J+?T,
but ¢4 and § are now given by
1 apP

+-S_cudM.  (33.18)

|
4=g+——divP =)+ -

4n Ot
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Clearly the system (33.17) and (33.18) is mathematically equivalent to the
system (32.7).

Using the field equations (33.17), we can derive a set of balance equa-
tions similar to the set obtained before. Specifically, instead of (33.9) we
now have

1 JE oB . A
= (E - +B at)+]-E+d1VS—0, (33.19)
where
c s
S = —. EXB, | (33.20)

and instead of (33.16) we now have

I

oy (E><B)+(qE+—><B)+dwT_0 (33.21)

where

T=-%—-[1}(E-E—|—B-B)I—E®E—B®B]. (33.22)

Notice that T is a symmetric tensor.

The theory based on the field equations (33.17) with § and J given by
(33.18) is known as Lorentz’s electron theory. We shall use this theory in
Section 35 to derive the governing equation for an elastic dielectric medium.

34. Electromagnetic Waves

In Section 31 we remarked that the constant c in the field equations
corresponds to the speed of light (i.e., an electromagnetic wave) in a
vacuum. Now we are in a position to explain this fact.

Consider a domain which has no free charge—current distribution. If
the domain is a vacuum, then the electromagnetic fields in it satisfy the
field equations :
divD =0, (34.1a)

1 6B
curlE = — < (34.1b)
divB =0, (34.1c)
1 oD
curl H= + — Py Tt (34.1d)
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and the constitutive equations
D =E, B =H. (34.2)

We claim that these equations require that the electric field and the magnetic
field be solutions of the wave equation with wave speed c.

This fact is more or less obvious. Indeed, taking the curl of (34.1b)
and using (34.1d), we obtain

1 0%E
2 —
V?E = - o (34.3)
Likewise, taking the curl of (34.1d) and using (34.1b), we get
1 o*H
2 —
V2H = - (34.4)

These wave equations are necessary conditions on E and H. A particular
solution of the wave equations is a sinusoidal wave of the form

E(x,t) = Eysin(kn - x — wt),

] (34.5)
H(x, t) = Hysin(kn - x — wt),

where &k, w, and n denote the wave number, the circular frequency, and the
unit vector in the direction of the wave, respectively. To find the relations
among k, w, m, and the field vectors E and H, we substitute (34.5) into the
field equations (34.1), obtaining

n-E=0, (34.6a)
knXE = % H, (34.6b)
n-H=0, (34.6¢)
knxH = — %E (34.6d)

These equations imply directly that E, H, n are mutually orthogonal. Also’
taking the cross product of (34.6a) with m and using (34.6d), we get

w2

kE =&

E. (34.7)

‘Thus for a nontrivial solution, E 3£ 0,

w

5 =6 (34.8)
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which means that the wave speed is ¢, a result noted before from the wave
equations (34.3) and (34.4). Substituting (34.8) into (34.6b) and (34.6d),
we obtain

nxE=H, (34.9a)

nxH= —E. (34.9b)

Thus the magnitudes £ and H of E and H, respectively, must be equal.

Summarizing the preceding analysis, we see that (34.5) is a solution of
(34.1) if and only if E,, H,, n are mutually orthogonal, £, = H,, and
w = ck. Such a solution is highly specialized for the field equations (34.1),
of course. First, the wave (34.5) is polarized; i.e., the directions of E and H
are fixed in space. Second, the wave is monochromatic; i.e., the circular
frequency w is definite. Since (34.1) is a linear system, an electromagnetic
wave in the direction n may be an arbitrary superposition (a sum or an
integral with respect to w) of simple waves of the form (34.6). Then the
directions of E and H are no longer fixed, and the frequencies may spread
over a certain spectrum. The field conditions (34.6a), (34.6¢c) and (34.9a),
(34.9b), however, remain valid, since they are invariant under any super-
position.

Having described the electromagnetic fields associated with an electro-
magnetic wave, we now determine the radiation pressure on an absorbing
surface. Suppose that the absorbing surface is a plane which is perpendicular
to the direction n of the wave. From the Maxwell stress tensor T the force
acting on the plane is

Tn = Tln— [#(E* 4+ H*)n — E(E -n) — H(H - n)] = f—;n, (34.10)

where we have used the conditions (34.6a), (34.6c) and (34.92), (34.9b).
Thus the pressure is

E2
P=— (34.11)
From (33.8) the Poynting vector is
c cE?
S—jﬁ—ExH— " (34.12)
Thus from (34.11)
S =cpn. (34.13)

By following essentially the same procedure, we can analyze the
behavior of electromagnetic waves in a homogeneous isotropic medium.
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The field equations are still given by (34.1), but the constitutive equations
now read
D = ¢E, B = uH. (34.14)

As before we take the curl of (34.1b) and then use (34.1d) and (34.14),
resulting in a wave equation of the form

ue O°E

p — -
V:E = o

(34.15)

Similarly, taking the curl of (34.1d) and using (34.1b) and (34.14), we get

*H
e = £ %:T' (34.16)
In this case the wave speed v is given by
c

We consider again the sinusoidal wave of the form (34.5). When we
substitute (34.5) into the field equation (34.1) on the basis of the system of
constitutive equations (34.14), we obtain

n-E=0, (34.18a)
kan=—“’c-”-H, (34.18b)
n-H=0, (34.18¢)
kaxH = — 22 . (34.18d)

Thus E, H, n are again mutually orthogonal. Now taking the cross product
of (34.18b) with n and from (34.18d), we have

wiue

kE = et

E. (34.19)

Thus in this case the wave speed is given by

w c

&k (ue)?’

us we have already observed in (34.17). Substituting (34.19) into (34.18),

v= (34.20)
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we obtain

u 1/2 e \V2
nxE = (—8—) H, nxH = "“(7) E. (3421)

Thus the magnitudes of E and H are related by
eV2E = pV2H, (34.22)

As explained before, an electromagnetic wave in general may be an
arbitrary superposition of simple waves of the form (34.5), and the condi-
tions (34.19a), (34.19¢), (34.21), and (34.22) always hold. The formula for
the radiation pressure now takes the form

sE?

p=— (34.23)

The behavior of electromagnetic waves in an anisotropic medium is
much more complicated than that in an isotropic medium. For simplicity
we shall consider only a medium which is electrically anisotropic but
magnetically isotropic. In such a medium B is still parallel to H, but D
is generally not parallel to E. Suppose that {e;} is a principal basis for the
permittivity tensor €, and let the index i be assigned in such a way that

gy < gy < &, (34.29)

where ¢; denotes the proper number of € corresponding to the proper
vector e;. We consider again a sinusoidal wave of the form (34.5). From
the constitutive relations (30.13) and (31.19) the field D and the field B
have similar forms, viz.,

D(x, t) = Dy sin(kn - x — wt),

. (34.25)
B(x, t) = Bysin(kn - X — wt),
where
D, = €E,, (34.26a)
B, = uH,. (34.26b)

Substituting (34.5) and (34.25) into Maxwell’s equations (34.1), we get

n-D=0, (34.272)

nxE = % B, (34.27b)

n-B=0, (34.27¢)
v

axXH = — 3 D, (34.27d)



Sec. 34 Classical Theory of Electromagnetism 231

b {D, E, n} coplanar

1.

Figure 4.

where v denotes the wave speed; i.e.,

w
b= (34.28)
The conditions (34.27a) and (34.27¢) show that D and B are perpendicular
to n. Since H is parallel to B; compared with (34.26b), the condition (34.27d)
implies that B is perpendicular to D, and that the magnitudes B and D are
related by

=" p (34.29)

Finally, the condition (34.27b) implies that E is perpendicular to B. Hence
E is contained in the plane of n and D. The relative positions of the five
vectors D, E, B, H, and n are illustrated in Fig. 4.

Now the conditions (34.27b) and (34.27d) together with the constitutive
relations (34.26) form a homogeneous linear system for the pair of vectors
E and H. In order that this system may have nonzero solutions, v must
satisfy a propagation condition which may be derived in the following
way: First, taking the cross product of (34.27b) with n and using (34.26),
we get

E—@- Ep=+"p, (34.30)

c2
This equation may be solved for D in terms of n,

(r' _ "c—‘f )D — (@ En (34.31)
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or, equivalently,

2 —1
D—(n- E)(e—1 e 1) n. (34.32)
In component form relative to the principal basis {e;} of € the equation
(34.32) reads

;e n

v’

(34.33)

where v;, i =1, 2, 3, are defined by

A
N C L

(34.34)

Having obtained D in terms of n, we can express the other three vectors
E, B, and H by

E — e-'D, B=—"T”n><n, Hz—%nxb. (34.35)

From (34.32) and (34.35) we verify easily that the conditions (34.27b)-
(34.27d) are satisfied identically. The only remaining condition is (34.27a),
which implies that

c?

A B A,

i st e 02) =0. (34.36)

This is the desired propagation condition which governs the wave speed v.
We consider three distinct cases.

(i) When n, 22, n® all differ from zero; i.e., n does not belong to any
coordinate plane of the principal basis {e;}. In this case n - E cannot
vanish, since otherwise E would have to be paraliel to D, and then n would
be perpendicular to one of the basis vectors in {e;}, contradicting the as-
sumption that n!, n?, n® do not vanish. Thus (34.36) reduces to

GO 0 N o SN

v, — v? 0,2 — v? vg® — v?

+ (34.37)

From the assumption (34.24) and the definition (34.34) we see that
vy, ¥y, vy are ordered as follows:

1 2% > Vg > Dg. (34.38)

Using (34.38) and checking the changes of signs of the left-hand side of
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(34.37) at the singularities »,, vy, v;, we see that there are precisely two
roots v* and v, for (34.37) such that

vy > 0% > v, > v, > V5. (34.39)

We denote the fields associated with »* by D*, E*, B*, H*, and those
associated with v, by D, , E,, B,, H,. From (34.32) and (34.35) we see
that the directions of these fields are fixed; i.e., the waves must be polarized
in a definite way.

We claim that D* is perpendicular to D,. This fact follows directly
from the formula (34.33), which implies that

. 02 ni . 02 ni
* — __ . *y_ T . ———
D u (n - E¥) oF — o D, w (m-E,)) P p—— (34.40)
Hence
ct (n')?
* . =X _m.F*\n -
D* . D, P (@ - E*)(n E*)[ (0 — *DH(vE — v,

()

(0* — v**)(vs* — v,7)

+

N (n? ]

(v® — v**)(vs* — v,%)

_ ¢ (m-E*m:-E,) (n')? () (n*)?
- qu p*e 0,2 [( v, — p¥2 + U22 — p*2 + Uaz — p*2 )
() (n*)? (n*)?
_ ( e e S )] (34.41)

Thus D* - D, vanishes by virtue of the fact that v* and v, are roots of
(34.37).

Because v, is less than v*, when a light beam with direction n exits
from the boundary of the anisotropic medium and enters into an isotropic
medium the diffracted beam splits'® into two beams with different angles
of diffraction. Each of the diffracted beams is polarized in a definite way.
Similarly when a light beam exits from an isotropic medium and enters
into an anisotropic medium, the diffracted beam also splits into two beams,
and each of the diffracted beams is polarized in a definite way. The property
of double diffraction is known as birefringence. The fact that the diffracted
heams are polarized is used for producing polarized light, e.g., the Nicol
prism.

' The reader is assumed to be familiar with Snell's law of diffraction.
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(ii) When n belongs to a coordinate plane of {e;} but does not coincide
with any of the basis vectors e;.

There are two possibilities: First, n -+ E 7= 0. In this case the equation
(34.36) reduces to

() )

= h 30
U12 —_ U2 U22 _ U2 0; wnen n
(n)? (G .
o 0, when n2=0 (34.42)
(n*)? (2 L
U22 — UZ U32 _ Ug - 03 When n = 0,

Any one of these equations has a single root v* such that

vy > v* > p,, when n® = 0,
vy > v* > p,, when n? = 0, (34.43)

vy > 0¥ > vy, when 7! = 0.

The fields D*, E*, B*, H* associated with this wave speed are given by the
representations (34.32) and (34.35). It is important that v* be different
from any one of v,,v,, v,. This condition is automatically satisfied in
(34.43a) and (34.43c). In (34.43b) we must have

v* £ v, (34.44)

Second, n - E = 0. In this case E must be parallel to D. Thus D is a
proper vector of € From Fig. 4 we see clearly that D must be parallel to
e; when #n* = 0. The corresponding wave speed v, may be obtained from
(34.31), which reduces to

2
(e“ _ I)D —0 (34.45)

c?

in this case. Hence when D is parallel to e;, the speed v, is just v;, viz.,

c
vy = e = v, (34.46)
We denote the fields associated with this wave speed by D, , E,, B,, H,.
The preceding analysis shows that for each direction n there are again
two distinct wave speeds v* and v,, and the waves associated with these
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speeds are polarized in a definite way. From (34.43) and (34.46) we have
the order
vy > v* >0, >0, = vy, when n® = 0

(34.47)
Dy = Uy > Uy > 0¥ > vy, when n' = 0.

In the case n2 = 0 both v* and v, belong to the interval (v,, v;). There
are two exceptional cases when v* = v,.

These two cases occur in the directions n* and n, in the coordinate
plane of e, and e, such that

(n*l)2 (n*3)2 .
Ep— o o 0, (34.48)
and
n* = pn,t! >0, n* = —n,k > 0. (34.49)
In these two directions we have
v¥ = v, = vy, (34.50)

and the corresponding waves are no longer polarized. We call these two
directions the optic axes. When n* = 0, but n is not an optic axis, the order
of v, and v* is given by

vy > vy =0, >0* >vy,  when |n'|>n*
(34.51)
vy > 0¥ > v, = v, > v, when |n' | < n*l,

(iii) When n coincides with one of the basis vectors e,, e,, e;.

In this case the equation (34.36) may be satisfied only whenn - E = 0.
Hence as before D must be a proper vector of €. There are three possibilities:
First, n = e,. In this case v = p, corresponds to D parallel to ¢,, and
v = v, corresponds to D parallel to e;. The other two possibilities with
n = ¢, or 0 = e, are similar. The two waves propagating in each one of
these directions are polarized, and their corresponding two fields D are
perpendicular to each other as in case (i).

A similar but somewhat simpler analysis may be given for the case that
¢ has only two distinct proper numbers. For this case there is a single optic
axis in the direction of the proper vector of € corresponding to the simple
proper number.
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35. Electromechanical Interactions

Up to this point in our formulation of the classical theory of electro-
magnetism we have allowed the free-charge distribution and the free-current
distribution as well as the electromagnetic fields associated with them to
vary in space and time. We have allowed the medium to interact with the
electromagnetic fields through the polarization field and the magnetization
field. We have not allowed the medium to move in space, however.

Physically, of course, an unrestrained conducting wire situated in a
magnetic field will move when a current goes through it, since a force is
generated on the wire by the field. In fact, electric motors and many other
electric devices are based precisely on such induced forces. In these applica-
tions the electromechanical interactions may be explained adequately by
using external supplies; i.e., the force generated by the electromagnetic
field may be regarded as an external force for the mechanical problem. We
need not introduce interactions among the fluxes such as stresses and elec-
tromotive forces.

The simple interactions through external supplies are not adequate
to explain such physical phenomena as piezoelectric effects and photo-
elastic effects, however. To account for these phenomena we generalize the
theory by allowing interactions not only through external supplies but
also through constitutive equations. Thus motions and deformations may
affect the electromagnetic properties of the medium,”® and conversely
electromagnetic fields may affect the mechanical response of the medium.®
Such interactions are much more difficult to analyze mathematically, since
the electromagnetic field equations and the mechanical field equations must
be treated as a coupled system.

In this section we shall summarize a particular model for the electro-
mechanical interactions. This model is developed by Toupin® for a non-
magnetic elastic dielectric medium. The electromechanical constitutive
equations are obtained by using an energy principle similar to that of a
hyperelastic material; cf. Section 20. A survey report on the electro-magneto-
mechanical interactions has been prepared recently by Pao.’® Several

3 Here the medium must be a material body. Physically, it does not make too much
sense to talk about a moving and deforming vacuum.

“W R. A. Toupin, A dynamic theory of elastic dielectrics, International Journal of En-
gineering Science, Vol. 1, pp. 101-126, 1963.

® Y. H. Pao, Electromagnetic Forces in Deformable Media, Report No. 2508, Material
Science Center, Cornell University, Ithaca, New York, 1975,
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formulations of Maxwell’s equations for moving and deforming media and
models of field~-matter interactions are summarized in that report.

We assume first that the dielectric medium is at rest in the ether frame.
Since we are primarily interested in the interactions of the polarization and
the deformation, we assume also that the free charge and the free current
both vanish. Under these assumptions we may rewrite the field equation
(32.7a) as

divE = —divP = 4ngq,, (35.1)
where
gp = — —41; div P. (35.2)

At the boundary of the dielectric medium the field P generally suffers a
jump discontinuity. Then by applying the divergence theorem to the integral
of (35.2) on an elementary cylindrical domain bridging the two sides of the

boundary surface, we have /

T, = — —41;- [P]n. (35.3)

We may regard g, and 7, as the volume density and the surface density of
the polarization charge distributions in the medium. These densities are
known as the Poisson-Kelvin equivalent charge distributions.

If the polarization field on the stationary dielectric medium varies in
time, then the rate of change of the total polarization charge in a domain
2 is given by

d 1 opP .
—dTJ-qudx— —4_ﬂJ‘a_@'T -ndo = —Jag]p . ndO', (35.4)
where ‘
. 1 oJP

Since 2 is arbitrary, we may regard j, as the polarization current in the
medium.

Now we remove the assumption that the dielectric medium is at rest
in the ether frame. Let % be a reference configuration for the dielectric
material medium. Then as explained in continuum mechanics, a motion
may be described by the deformation ¢, from the reference configuration
x to the instantaneous configuration y,. Specifically, we use (X4) in x
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and (x%) in %,. Then ¢p, is given by the deformation functions
xt = x{(X4,1). (35.6)

The important kinematical quantities are the velocity field v and the de-
formation gradient field F; these fields are given by the component forms
i i
vl = %’-‘t—, Fi= -f%%—, (35.7)
as defined in Section 14.

At each time ¢ the polarization vector P is defined on the instantaneous
configuration ),. The field equation (35.1) is still valid at each point in
space, and the instantaneous polarization charge densities ¢, and 7, are
still given by (35.2) and (35.3). However, since the medium is moving,
these charges give rise to some currents. We define the polarization current
density j, due to the motion of ¢, by

1 .
ip = qpv = — —Zﬂ— (le P)V (358)

The polarization current due to the variations of P in time may be
derived in the following way: Consider the rate of change of the total
polarization charge in a moving material domain 2, = ¢,(2) given by

d 1 d

— dx = — —— — P - ndo. 35.9
dt J°t(9') qp 4” dt 0@t(9) ( )

We can calculate the time derivative on the right-hand side by first replacing
the integral by an integral on the time-independent surface d2 in the
reference configuration x. As explained in Section 17 [cf. the proof of
(17.21)], the transformation rule for the surface integral is

J P-ndc:J- P, . NdZ, (35.10)
2o D) o

where
P, = (det F)F-1P. (35.11)

We call P, the referential polarization field relative to the configuration x.
Now substituting (35.10) into (35.9) and then differentiating under the
integral sign, we get

4
4n dt

1 P
P-ndo=——-——J- x . NdE.  (35.12
J.am(s) 4n )9 Ot ( )
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Finally, transforming the surface integral back to an integral on dep,(2),
we obtain

4n L_@ 6t Ndx = “An Lm(g)—g;‘ ndo, (35.13)
where
P _ o P,
g = (et H'F—=, (35.14)

which is called the convected time derivative of P. From (35.11) this deriva-
tive is given by

¥ _ (det By F 2 [(det FYE-IP], (35.152)
‘i;f = %l: + [grad P](v) — [grad v](P) + (div V)P, (35.15b)
‘i;f = %l: + (div P)v -+ curl(P xv). (35.15¢)

Combining (35.9), (35.12), and (35.13), we see that

d 1 dp
—_ dx=——-——J —— - ndo. 35.16
dt Jm(.@) T 4n Jypuon dt ( )

Hence we define the polarization current i,, due to the variation of P in
time by
1 d4dp

The total polarization current j, is taken to be the sum of }, and J,,, viz.,

. : oz 1 14
b= J+ b= o [ @ivey]. (35.18)
From (35.15¢c) we have
i, = 41n ‘?;: + curl(PXv)] (35.19)

Having obtained the equivalent charge and current distributions as-
sociated with the polarization field on a moving and deforming dielectric
medium, we may obtain the governing equations by using Lorentz’s electron
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theory; i.e., we regard the medium as being a vacuum which is loaded
with a charge distribution ¢, and a current distribution j,. Then the field E
and the field B satisfy the system of equations

div E = 4ng,, (35.20a)
1 0B
curlE = — _CT —E—, (3520b)
divB = 0, (35.20¢)
4r 1 OE

Substituting (35.19) into (35.20d) and using the basic relation (35.1),
we obtain
oD

curl(B + vxXP) = —%— > (35.21)

which suggests that we may define the field H in the moving dielectric
medium by

H=B{ vXP. (35.22)

Then the field equations may be rewritten in the forms

divD = 0, (35.232)
1 0B
curl E= — ? 7, (3523b)
divB =0, (35.23¢)
1 oD
curl H = ? -—a't—-, (3523d)

corresponding to Maxwell’s equations with no free charge and no free
current.

Notice that the relation (35.22) between H and B is no longer a special
case of the linear constitutive relation (31.20), which is valid only for a
particular type of nonferromagnetic medium at rest in the ether frame.
Of course, when v =0, (35.22) reduces to

H=B, (35.24)

regardless of what polarization field P the diclectric medium may have.
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The electromagnetic field on the moving medium gives rise to the
Lorentz force

d,P

. . 1 . 1
f=¢qFE 4+ j,XxB=— T (divP)Z + T dr X B,  (35.25)

where Z denotes the electromotive intensity, viz.,
Z—=E + vxB. (35.26)

We can interpret Z as being the force acting on a unit charge moving with
the medium. As explained in Section 33, the Lorentz force f gives the rate
of conversion of the electromagnetic field momentum into the mechanical
momentum. Similarly the energy supply y to the medium is

o1 (4P
LA A e

— (div P)v] E= Tln‘ %P—- Z+f-v, (3527)

where f is given by (35.25). The quantity y represents the rate of conversion
of the electromagnetic field energy into the mechanical energy.

Other than the preceding momentum and energy conversions we
allow the electromechanical interactions to take place in the constitutive

relations also. First, we assume that the polarization vector is determined
by the electromotive intensity Z and the deformation F, viz.,

P = n(Z, F), (35.28)
such that 7 is invertible with respect to Z for each F, so that we have also
Z = ¢(F, P). (35.29)

The relation (35.28) with the property of invertibility (35.29) is a gener-
alization of the linear constitutive relation (30.15) to a moving and de-
forming dielectric medium. Next, we assume that the mechanical response
of the medium is hyperelastic, but because of the electromechanical interac-
tions we require that the stress tensor T and the stored energy ¢ be de-
termined by the deformation gradient F and the polarization vector P, viz.,

T=G(F,P), ¢=g¢F,P) (35.30)

Note. From (35.28) and (35.29) T and ¢ are also functions of F and
Z. It is more convenient to express the stress and the stored energy as
functions of P instead of Z, since the momentum and the energy conversions
are given in terms of P, not in terms of Z.
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Under the preceding constitutive assumptions we may derive a relation
between the stored energy function ¢ and the response functions G and §
by using an energy principle. The procedure is explained in detail in Section
20 for the purely mechanical case. Following that procedure, we assume
first that the total energy in a moving and deforming material medium
9, = @ (2)is given by the sum of the kinetic energy and the stored energy.
Then the energy principle for a hyperelastic dielectric material requires that
the rate of change of the total energy be balanced by the power of the forces
as well as the energy supply, viz.,

d o A
WJ_@“’“H""”‘“J_@t[@"“"”‘ﬂ— o 2] ax

+ j t-vdo (35.31)
87,

This principle generalizes the principle (20.4) from the purely mechamcal
case to the electromechanical case.

Cauchy’s principles of balance of linear momentum and balance of
moment of momentum, of course, remain the same as before, except that
the body force field now includes explicitly the Lorentz force f. By using
these balance principles, we can reduce the energy principle to the energy
equation
1 dP

eé = tr(T grad 7

(35.32)

Now since it is more convenient to calculate the convected time derivative
of P from the referential polarization vector P, , we write the energy equation
in the referential form

0 =t(TJF) + Z, - P,, (35.33)

where T, is the Piola—Kirchhoff stress tensor defined by (17.21), and where
Z, is the referential electromotive intensity defined similarly by

— 1 -1\7T
Z, = I (F-HTZ. (35.34)
From (35.11) we can express ¢ as a function of F and P,:

e = p(F,P)). (35.35)
Then by the chain rule

=)

a"’ P, (35.36)
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Substituting (35.36) into (35.33) and requiring the equation to hold in all
motions and for all polarization fields, we obtain

dy

_, oy
F Z, =g, (35.37)

T, = o 6—1’,"
which shows that the stored energy function is the potential function for
the response functions of the stress and the electromotive intensity.

The constitutive relations (35.30) must satisfy Noll’s principle of
material frame-indifference, of course. Specifically,

G(QF, QP) = QG(F,P)Q",  ¢(QF, QP) = ¢(F, P) (35.38)

for all rotations Q. From (35.11) P, remains unchanged when F and P
are replaced by QF and QP. Hence y satisfies

y(QF, P,) = y(F, P,). (35.39)

Then as explained in Section 20 (cf. Noll’s theorem), the stress tensor T,
given by

ETAY
T= QF(—aF-> , (35.40)

is necessarily a symmetric tensor. This condition renders the equation of
moment of momentum an identity in all motions. The equations of linear
momentum, of course, remain the same as before, cf. (17.12), except that
the external forces now include the Lorentz force f, viz.,

divT + gb + f = pa. (35.41)

As far as the electromagnetic field equations are concerned, we still
have Maxwell’s equations (35.23), except that the constitutive equations
are now given by

H=B 4 vx (D—E),

(35.42)
D=E + w(E + vxB, F).
In particular, when n(Z, F) depends linearly on Z, say,
n(Z, F) = [EF)](2), (35.43)

where E(F) is a tensor depending on F, we have a system of linear con-
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stitutive relations

H=aE + @B, D=yE + 5B, (35.44)

where the tensors «, B, ¥, 8 depend on v and F.

Because of the electromechanical interactions in the constitutive
relations (35.40) and (35.42) or (35.44) the equation of linear momentum
(35.41) and Maxwell’'s equations (35.23) must be treated as a coupled
system of field equations for the moving and deforming hyperelastic dielec-
tric medium.

Before closing this chapter we remark again that throughout the
formulation of the classical theory of electromagnetism it is assumed that
a particular frame on the Newtonian space-time, called the ether frame,
is used as the frame of reference. It is generally agreed that the ether frame
is an inertial frame as defined in Newtonian mechanics. In Section 32 we
remarked that relative to an inertial frame in general the constitutive rela-
tions of a medium do not have the same forms as those relative to the
ether frame, unless the inertial frame is at rest in the ether frame. This
feature of the classical theory is not satisfactory, since physically there is
no clear way to identify an inertial frame, much less to identify a particular
inertial frame among the set of all inertial frames.

The famous experiment of Michelson and Morley finally shows directly
that the preceding feature of the classical theory is not consistent with the
behavior of electromagnetic waves in nature. Hence a new and better
model is needed to characterize the principles governing electromagnetism.
Such a model is presented in the following chapter.

It should be noted, however, that the use of Noll’s principle of material
frame-indifference in (35.38) is not inconsistent with the basic assumptions
of the classical theory of electromagnetism, since the medium under con-
sideration in this section is assumed to be elastic. In particular, (35.38)
may be viewed as the transformation properties of the response functions
G and ¢ under a static rigid transformation of the frame of reference.
Such a transformation does preserve the constitutive relations in classical
electromagnetism. An application of the same principle to the constitutive
relations of media with memory effects, which we have not considered at
all in this chapter, will not be consistent with classical electromagnetism,
of course, as we have pointed out in Section 32.



Special Relativistic Theory
of Electromagnetism

One of the difficulties in the classical theory of electromagnetism is the
condition that the Maxwell-Lorentz ether relations D =E, B=H for a
vacuum are not invariant under a general Galilean transformation. As a
result, the whole theory is formulated on the basis of a particular ether
frame of reference, and some of its predictions are known to be inconsistent
with experimental observations. This difficulty is removed in the theory
of relativity. In this chapter we summarize first the mathematical model
of the event world used in the special theory of relativity. Then we develop
the theory of electromagnetism in the context of this mathematical model.

36. Newtonian, Galilean, and Ether Space-Times

In the preceding five chapters we have formulated the classical theories
of mechanics, continuum mechanics, and electromagnetism in the context
of a mathematical model for the event world, called the Newtonian space—
time &. We recall that & is the disjoint union of a family of oriented
3-dimensional Euclidean space {&,,7€ &},

g - %, (36.1)
1732

where &, the index set of the family, is itself an oriented 1-dimensional
Euclidean space. We call & the space of Newtonian instants, and we call
A’ the instantaneous physical space at the instant 7€ &

248
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A Euclidean coordinate system (x%, t) on & is defined by a (positively
oriented) isometry ¢ from & to 22 and a (positively oriented) isometry
(x%) from &, to D93 for each T € . Such a coordinate system corresponds
to an assignment of an initial instant 7, such that ¢(r,) = 0, an assignment
of an origin o(z) € &, such that x*(o(z)) = 0, i = 1, 2, 3, and an assignment
of a (positive) orthonormal basis {e,(z)} in the instantaneous translation
space 77(7) such that each x(r) € &, may be represented by

x(7) — o(7) = x¥(x(7))e;(v); (36.2)

cf. (1.4).
From the preceding definition we see that a change of Euclidean
coordinate system from (x%,t) to (%% ) is given by

%= Qi) + E(t), T=t+a (36.3)

where o is a constant, and where £(¢) and Q;i(¢) are functions of ¢, such
that [Q,i(¢)] is a rotation matrix for each t € Z2. We call such a coordinate
transformation a Euclidean transformation. This transformation charac-
terizes the collection @ of all Euclidean coordinate systems on & in the
sense that if any member (x*, ) of @ is given, then we can determine the
entire collection @ by arbitrary transformations from (x%, ¢) of the form
(36.3). In other words @ is a maximal collection of coordinate systems on
& with coordinate transformations given by (36.3).

Clearly if & is given by the disjoint union (36.1), then @ can be defined
uniquely and is a maximal collection with respect to (36.3). Conversely
if & is a given set equipped with a maximal collection @ of coordinate
systems with coordinate transformations given by (36.3), then & can be
defined uniquely as a disjoint union of the form (36.1), such that the given
collection @ becomes the collection of Euclidean coordinate systems on &,

The preceding remark means that we can define a Newtonian space~
time also as a pair, (&, @), where & is a set, and where @ is a maximal
collection of (global) coordinate systems on & with coordinate transforma-
tions given by (36.3).

~ Mathematically the definition based on the pair (&, @) is equivalent
to the definition based on the disjoint union of the form (36.1). The coor-
dinate-free definition (36.1) is more intuitive, so it is preferred when we
wish to explain concepts related to Newtonian space~time. In applications,
however, the definition based on the pair (&, @) is more convenient, since
all numerical calculations must be done in terms of a coordinate system.
Hence it is important that we be familiar with both definitions.
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Now in classical mechanics we distinguish a subcollection ¥ in @
as the collection of inertial coordinate systems. These systems are defined
by the inertial frames which are characterized by Newton’s first law; cf.
Section 4. In particular, we have shown that any two inertial coordinate
systems (x%, t) and (%%, f) are related by a Galilean transformation:

= Qfx + Et+ i, F=t+a (36.4)

where a, 7%, &%, and [Q,'] are all constant, and where [Q;’] is a rotation
matrix. Clearly (36.4) is a special case of (36.3), but the converse is false.
As before the coordinate transformation (36.4) characterizes the collection
¥ in the sense that if any member (x% t) of ¥ is given, then the entire
collection ¥ may be specified by arbitrary transformations from (xt, t)
of the form (36.4). In other words ¥ is maximal with respect to (36.4).

Since ¥ is a subset of @, the pair (&, ¥) is not the same as the pair
(&, ). We define formally a Galilean space—time as follows: a pair (&, ¥),
where & is a set, and where ¥ is a maximal collection of (global) coordinate
systems on & with coordinate transformations given by (36.4).

As remarked before, this definition is not intuitive, so we proceed
to find a more direct coordinate-free definition that is comparable to (36.1).
In Section 43, IVT-2, we have defined the notion of an affine space by a
triple (%7, 7, f), where &/ is a set, 7" is a vector space, and fis a mapping

[ X T (36.5)
such that

(@) fx,y) = f(x, z) + f(z,y) for all x,y, z in &}
(b) for every x € & and v € 7 there is a unique element y € % such
that f(x,y) =v.

We call &7 a Euclidean space if 77 is an inner product space, but we
call @7 an affine space if 77 is just a vector space without any additional
structure such as an inner product. As before 7" is called the translation
space of &7, and f is called the point difference and may be denoted by

fxy)=x—y. (36.6)

Let Z be a subspace of 77 Then % gives rise to an equivalence relation
on & by
X~y<X—Yy€EZ. (36.7)

I'ach equivalence class with respect to this equivalence relation is called
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an affine subspace parallel to 7. Thus Z gives rise to a decomposition of &/
into a disjoint union of parallel affine subspaces.

Now the Galilean space-time & may be defined directly as a Newtonian
space—time of the form (36.1), such that & is also an affine space, and that
(36.1) is a decomposition of & into a disjoint union of parallel affine
subspaces.

To see that this more intuitive direct definition is equivalent to the
previous definition, we have to prove the following: Given the pair (&, V),
there is an induced structure on & as stated in the direct definition, and
conversely, given a structure on & as stated in the direct definition, there
is a maximal collection ¥ with coordinate transformations given by (36.4),
such that the induced structure of the pair (&, ¥) coincides with the given
structure on &

Suppose that (&, ¥) is given. Then we determine an affine space
structure on & in the following way: We choose the 4-dimensional trans-
lation space of & to be & itself with a particular point z singled out as the
origin. To assign a vector space structure on &, we take the sum of any
two events x,ye & to be the event x + y, such that the coordinates
(x(x + y), t(x +y)) of x +y are given by

xH(x +y) = x¥(x) + xi(y) — x¥(z), (36.82)
1(x +y) = t(x) + «(y) — 1(z), (36.8b)

where (x%, t) is any member of ¥. Of course, we must show that the event
X -+ y thus defined is independent of the choice of (x*, ¢) in ¥. This fact
can be proved easily by using the coordinate transformation (36.4). Indeed,
from (36.8) and (36.4)

T(x +y) = @/ [x¥(x) + xj(y) — x¥(z)] + Et(x) + «y) — t(z)] + 7
= [Q;'xI(x) + &4(x) + 7] + [Q;x/(y) + &1(y) + 7]
— [Q/ixI(z) + &t(z) + 7]
= XH(x) + Xi(y) — Xi(2),
i+ y) = 1) + 1) — 1@)] + @
= [t(x) + a] + [#(¥) + a] — [t(z) + a]
= i(x) + i(y) — #(=z).

(36.9)

Thus the operation of addition is well defined.
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Similarly, for any x € & and any o € £2 we take ax to be the event
such that the coordinates (xi(ax), t(ax)) are given by

x¥(ax) = axi(x) — (@ — Dxi(z), (36.10a)
t(ax) = at(x) — (a — 1)t(z), (36.10b)

where (x%, t) is any member of ¥, Then by the same argument as before
we verify that

Xi(ax) = axi(x) — (a — 1)X(2),

i} i} i (36.11)
fox) = af(x) — (e — 1)¥(z),
for any (%%, f) related to (x% t) by (36.4). Thus the operation of scalar
multiplication is also well defined.
We can verify that the axioms of a vector space are all satisfied by
these operations; e.g., the particular event z plays the role of the null
vector, viz.,

Xx+z=x (36.12)
for all x € &, since according to (36.8) we have

xi(x + z) = x4(X) + x¥(z) — x(z) = xi(x),

(36.13)
t(x + z) = 1(x) + t(z) — t(z) = (x).

Next, we define the point difference operation f on & directly by
(36.6), where on the right-hand side the operation x — y is defined on the
vector space &; i.e.,

x—y=x+ (—y). (36.14)

Then the conditions (a) and (b) are clearly satisfied. Thus the pair (&, ¥)
gives rise to an affine space structure on &.

The pair (&, ¥) also gives rise to a decomposition of & into a disjoint
union of the form (36.1). First, we define simultaneity of any pair of events
X,y € & by the condition

t(x) = K(y) (36.15)

relative to any member (x, ¢) of ¥. The transformation rule (36.4) shows
clearly that (36.15) implies

#(x) = (y) (36.16)
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for any other (¥, f) in ¥. Thus the instantaneous spaces &, are defined,
and & is given by the disjoint union (36.1). We define an oriented Euclidean
space structure on each &, by requiring (x?) to be a positive rectangular
Cartesian coordinate system. Then (36.4) shows that this structure is
independent of the choice of (x%, ¢) in ¥. Thus the pair (&, ¥) gives rise
to a Newtonian space-time structure on & .

Finally, we still have to prove that the instantaneous spaces &, are
parallel affine subspaces in &, This fact is more or less obvious. First, the
instantaneous space &, containing the particular event z is a subspace
in &. That is to say, if x and y are simultaneous with z, then x + y and
ax are also. This fact follows directly from the definitions (36.8b) and
(36.10b). Next, if x is any event in &, then another event y is simultaneous
with x if and only if x — y is simultaneous with z. This fact also follows
directly from (36.8b) and (36.10b). Indeed,

t(x —y) = t(x + (—y)) = t(x) + ((—y) — 1(z) = 1(x) — 1(y) + 2t(z) — (z)
= 1(x) — 1(y) + 1(z), (36.17)

where the right-hand side reduces to #(z) if and only if x is simultaneous
with y. Thus each & is an affine subspace parallel to the subspace &;.

Thus the proof of the fact that the pair (&, ¥) gives rise to a structure
on & as stated in the direct definition is complete.

Next, we show that, conversely, if & has the structure as stated in
the direct definition, then we can define a collection ¥, which is maximal
with respect to the coordinate transformation (36.4), such that the induced
structure on & by the pair (&, ¥) coincides with the given structure on &,

To define ¥, we simply choose those Euclidean coordinate systems on
& which are also Cartesian systems with respect to the affine space structure
on &, By virtue of the fact that Cartesian systems on an affine space are
related to one another by affine transformations, it is clear that (36.3)
reduces to (36.4) on the collection ¥. In other words a Euclidean trans-
formation is also an affine transformation if and only if it is a Galilean
transformation. Thus the structure on & determines a unique maximal
collection ¥ with coordinate transformations given by (36.4).

It is clear that the induced structure of the pair (&, ¥) is precisely
the same as the given structure. Indeed, the structure of vector space on &
with z as the origin may be expressed by (36.8) and (36.10) if (x%,¢) is a
Cartesian system with respect to the structure of affine space on &. Similarly
the structure of Euclidean space-time on & requires the coordinate system
(x%) to be a positive rectangular Cartesian system on each &,. As a result,
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the structure on & induced by the pair (£, ¥) coincides with the given
structure on &, ‘

Thus we have shown that a Galilean space-time may be defined either
as a pair (&, ¥) or more directly as a Newtonian space-time equipped
with a structure of affine space, such that (36.1) is a decomposition of &
into a disjoint union of parallel affine subspaces.

Note. The equivalence of these two definitions is entirely due to the
fact that a Galilean transformation (36.4) corresponds exactly to a Euclidean
transformation (36.3), which is also an affine transformation.

Next, in classical electromagnetism we distinguish a still smaller sub-
collection 2 of @ as the collection of ether coordinate systems. These
systems are defined by the ether frames, which are characterized by the
system of ether relations

D=E B=H (36.18)

for a vacuum at rest in the frames. Any two ether coordinate systems
(xi, ¢t) and (%%, 7) are related by a rigid transformation:

X = Qjixi + i, f=t+a (36.19)

where a, 7%, and Q,* are constant, and where [Q;i] is a rotation matrix.
Clearly (&, 2) is a maximal collection with respect to (36.19).

As before we define formally an ether space—time as follows: a pair
(%, 2), where & is a set, and where 2 is a maximal collection of (global)
coordinate systems on & with coordinate transformations given by (36.19).

Following the procedure in the analysis of Galilean space-time, we
sce that the preceding definition is equivalent to the following more intuitive
direct definition: An ether space-time is just a Newtonian space-time &,
such that & is also a product space . x &, and that (36.1) is a decomposi-
tion of & into a disjoint union of t sections, (% 1), forall te &.

The equivalence of (&, 2) with &7 X & = |J,c5 (.S 1) is entirely due
to the fact that a rigid transformation (36.19) corresponds precisely to a
luclidean transformation (36.3), such that the spatial coordinate trans-
formation from (x!) to (¥!) is independent of ¢. This property of (36.19)
1s mathematically equivalent to the requirement that & be a product space
SXE,

We have explained the various space-time structures used in the clas-
sical theories here, because in the theory of special relativity a conceptually
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different space-time structure, called a Minkowskian space-time, is used.
It is important for us to understand the fundamental differences among the
structures of a Newtonian space-time, a Galilean space-time, an ether
space-time, and a Minkowskian space-time.

37. Minkowskian Space-Time

Like the three different space-times explained in the preceding section,
a Minkowskian space-time may be defined either directly as a set equipped
with a certain mathematical structure or indirectly as a pair of a set and a
maximal collection of coordinate systems with respect to certain coordinate
transformations. We give the direct definition first.

A Minkowskian space~time & is a 4-dimensional affine space such
that its translation space /" is equipped with a Minkowskian inner product
o and a Lorentzian orientation.

In Section 12, IVT-1, we defined the concept of an inner product on a
vector space. Then in Section 43, IVT-2, we defined the concept of a Eu-
clidean space, which is just an affine space with an inner product defined on
its translation space. Thus a Minkowskian space-time is similar to a
Euclidean space except that its translation space is equipped with a Min-
kowskian inner product, which is slightly different from an (ordinary)
inner product, as we shall now explain.

Consider a symmetric bilinear function

0: 7" x 7P (37.1)

on a vector space 7 i.e.,, ¢ is a symmetric second-order covariant
tensor in Z7* 77*. By a canonical isomorphism of 77* (X Z7* with
L(77,7*), o corresponds to a linear map

.7 T (37.2)

such that
a(u, v) = {u, T(v)) (37.3)

for all w,ve 77 We say that ¢ is nonsingular if & is an isomorphism.
Equivalently this condition means that o(u, v) = 0 for all ve ¥ if and
only if w = 0. For a nonsingular ¢ we define a symmetric bilinear function

PV AT Ao (37.4)
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on 77* by
' a*(f, g) = o(Z7X(f), =7(g)). (37.5)

Then o* is nonsingular and corresponds to the linear map

=1 T T (37.6)
ie.,

a*(f, g) = <f, Z*(g)> (37.7)

for all f,ge 77*.

The preceding results are similar to those associated with an (ordinary)
inner product. The linear maps 2 and Z* correspond to the operations of
lowering and raising of indices. Hence we call a nonsingular symmetric
bilinear function on 7" a pseudo-inner-product. The main difference between
a pseudo-inner-product and an (ordinary) inner product is that the former
need not be positive definite while the latter must be. Thus for a pseudo-
inner-product ¢ it is possible for o(u, u) to vanish for some nonzero vec-
tors w.

As usual the quadratic function o(u, u) determines the symmetric
bilinear function uniquely by the polar identity

o(u,v) = eu+ v,u + v) — o{u — v, u — v)]. (37.8)

We put
7. = {u:o(m,u)>0}u {0},
7, = {u:a(u,n) =0}, (37.9)
7" = {u:o(m,u) <0} U {0},

and we call a vector uin 77, 7;, or 77, spacelike, signal- like, or timelike,
respectively. These terms are chosen in the context of Minkowskian space—
time, as we shall see later.

As explained in Section 12, IVT-1, an inner product may be character-
ized by an orthonormal basis. We now show that a similar result is valid
for a pseudo-inner-product. That is, we claim that there exists a basis
{e;} such that

|o(e;, e) | = 6y (37.10)

for all i,j=1,...,n Such a basis may be called an orthonormal basis
relative to the pseudo-inner-product o.
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To see that an orthonormal basis {e;} exists, we choose an arbitrary
inner product g on 7 and we denote the operations of lowering and raising
of indices associated with g by G and G*, respectively. Then the composition
G*X is a symmetric tensor with respect to g. Indeed, the bilinear form of
G*X associated with g is just o; i.e.,

g(u, G*ZTy) = (u, Zv> = o(u, v) (37.11)

for all u,ve 77 Hence by the spectral theorem for a symmetric tensor
(cf. Section 27, IVT-1) there is a principal basis {f;}, such that
g(f;, ;) = &, Lj=1,...,n, (37.12)

and that
G‘zfi:- aif'i’ i= 1, PR (8 (3713)

where the proper numbers «;, i =1, ..., n, do not vanish, because G*X
is an automorphism of 777 Substituting (37.13) into (37.11) and using
(37.12), we obtain

o(f;, f;) = g(f;, o;f;) = eig(f;, ;) = a;0,, (37.14)
where there is no summation on j. Hence if we define

1

f;, i=1,...,n, (37.15)

then the resulting basis {e;} satisfies the condition (37.10).
We arrange the order of the basis vectors in such a way thate,, ..., ¢
are spacelike while e,,,, ..., e, are timelike, viz.

ole;,e)=1,...,0(e;, €)= 1, o(epi1,€.4) = —1,...,0(e,,e,) = —1.
(37.16)
Then we can verify easily that

% = spanfe,, ..., } < 7., ZL1=span{e;,,...,e,} <7,
(37.17)

where 71 denotes the orthogonal complement of Z with respect to o} i.e.,
7L = {w:o(,w)=0 for all ue 7}. (37.18)

An orthonormal basis {e,} associated with a pseudo-inner-product ¢
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is not unique, of course. However, the number k of spacelike vectors (and
hence the number n — k of timelike vectors) must be the same for all
orthonormal bases. This assertion is known as the inertia theorem of Syl-
vester. To prove that theorem, we choose another orthonormal basis
{&;} such that the first k£ vectors are spacelike while the remaining n — k
vectors are timelike. Then as before we define

Z=span{&,, ..., &} < 75, ZL=span{€,1,...,8)c 7 .
(37.19)
Now for each u e Z we define a unique decomposition

u= i+ @, (37.20)

where fic 7 and @it € Zt. From that decomposition we define a linear
map L:Z — % by L(u) = ii. Clearly L is one-to-one, since ii = 0 implies
u={#eZ . N 7 ;ie, u=0. Thus

k=dim#Z < dim Z = k. (37.21)

But the roles of Z and Z may be reversed in the preceding analysis; we
see that kK must be the same as k.

The number n — k distinguishes a pseudo-inner-product ¢ from an
(ordinary) inner product, so it is called the index of c. When the index is
zero, o is actually an (ordinary) inner product. Now we are ready to define
the concept of a Minkowskian inner product on the translation space 7~
of the Minkowskian space-time & .

A Minkowskian inner product ¢ on 7 is a pseudo-inner-product with
index 1. Since 7 is 4-dimensional, an orthonormal basis¥ {e,} with respect
to ¢ contains three spacelike vectors'"’ {e;} and one timelike vector e,.

Next, we define the concept of a Lorentzian orientation on 7. Like
an (ordinary) orientation, a Lorentzian orientation may be characterized
by an equivalence class of orthonormal bases of 77 We say that {e,}
and {&,} are equivalent or have the same Lorentzian orientation if they
satisfy the condition

det[o(e;, €)1 > 0, a(ey, &) > 0. (37.22)
Relative to the preceding equivalence relation the totality of orthonormal

' We use Einstein's notations here: Greek letters a, §, 7, ... denote indices ranging
from 1| to 4, while Latin letters J, /, k, ... denote indices ranging from 1 to 3.
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bases of 7~ decomposes into four equivalence classes. We distinguish one
particular equivalence class among these four classes and call that class the
Lorentz class. For any {e,} in the Lorentz class the timelike vector e,
is said to point into the future, and the set of spacelike vectors {e;} is said
to be right handed.

Let {€,} be any orthonormal basis which may or may not be in the
Lorentz class. Then the timelike vector &, is said to point into the future
(respectively, point into the past) if a(e,, &) > 0 [respectively, o(e,, &)<0],
and the set of spacelike vectors {&;} is said to be right handed (respectively,
left handed) if det{o(e;, &;)] > O (respectively, det[o(e;, ;)] < 0), where
{e,} is any orthonormal basis in the Lorentz class. From (37.22) it is easy
to verify that the preceding conditions are independent of the choice of
{e.} in the Lorentz class. ‘

Using the concepts just defined, we may describe the four equivalence
classes of orthonormal bases having the same Lorentzian orientation as
follows: (i) The Lorentz class is the equivalence class of bases {e,} such
that e, points into the future and that {e;} is right handed. (ii) The equiv-
alence class of bases {&,} such that & points into the past and that {&;}
is right handed. (iii) The equivalence class of bases {&,} such that &, points
into the future and that {&;} is left handed. (iv) The equivalence class of
bases {&,} such that & points into the past and that {&} is left handed.

It should be noted that for any two orthonormal bases, {e,} and
{&.}, the span of {e;} generally need not coincide with the span of {&;},
or, equivalently, the span of e, need not coincide with the span of €,.
However, by using the linear isomorphism L in the proof of the inertia
theorem of Sylvester, we see that o(e,, &) # 0 and det[o(e;, €)1 #0.
Hence the quantities o(e,, &) and det[o(e;, )] must be either positive or
negative.

The Lorentzian orientation may be viewed as a refinement of an
(ordinary) orientation. As usual we define an orientation on 7~ by an
equivalence class of orthonormal bases with respect to the following
equivalence relation: {e,} and {&,} are equivalent or have the same orienta-
tion if det[o(e,, &)] > 0. Relative to this equivalence relation the totality
of orthonormal bases of 7 decomposes into two equivalence classes only.
In fact one equivalence class is just the union of the previous classes (i)
and (iv), while the other equivalence class is just the union of the previous
classes (ii) and (iii). By using the Lorentz class, we can then distinguish
a particular union, namely, the union containing the Lorentz class, as the
positive class. Hence a Lorentzian orientation gives rise to an ordinary
orientation, but the converse is false, of course.
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signal cone 7,

The Minkowskian inner product and the Lorentzian orientation on 7~
may be described schematically by Fig. 5.

So far we have discussed the direct definition of the Minkowskian
space-time &. As we have pointed out at the beginning of this section,
the space-time may also be defined indirectly by a collection of coordinate
systems on &, It is required that the collection be maximal with respect
to certain coordinate transformations. We proceed -now to define these
coordinate systems.

We call any basis {e,} in the Lorentz class a Lorentz basis or a Lorentz
Sframe. A pair (o, {e,}), where 0 € & is singled out as the origin and where
{e.} is a Lorentz basis, gives rise to a Cartesian coordinate system (x¢, x*)
on & in the usual way:

X = 0 + x%e; + x%,, xe &. (37.23)

We call such a coordinate system on & a Lorentz system, and we denote
the totality of all Lorentz systems on & by @. We shall discuss the coor-
dinate transformations among Lorentz systems in the following section.

Using the collection @ of Lorentz systems, we may compare the math-
cmatical structure of a Minkowskian space-time with that of a Galilean
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space-time in the following way: Notice first that the underlying point
sets of both space-times are 4-dimensional affine spaces. In addition to
this underlying structure the Minkowskian space-time has a structure which
may be characterized by a Lorentz system (x¢, x*) in €. Specifically, the
Minkowskian inner product ¢ is characterized by the component formula

o(u, v) = uivt — uivt, (37.24)

where (%, u*) and (v%, v*) denote the components of u and v relative to the
Lorentz basis {e,} of the Lorentz system (x%, x%), and the Lorentzian orienta-
tion is characterized by the equivalence class containing the Lorentz basis
of the Lorentz system in accord with the equivalence relation defined by
(37.22). Similarly, in addition to the underlying structure of an affine
space, the Galilean space-time has a structure which may be characterized
by an inertial system (x% t). Specifically, the parallel (instantaneous)
affine subspaces are just the coordinate subspaces of the time coordinate ¢,
and the (ordinary) inner products on the (instantaneous) translation spaces
of the parallel (instantaneous) affine subspaces are characterized by the
component formula

u - v = ubl (37.25)

where u* and v¢ are the components of the (simultaneous, spatial) vectors
u and v relative to the basis {e;} of the spatial coordinate system.

In order that Minkowskian space-time may replace Galilean space-
time as a model for the event world, we regard a certain Lorentz system
(x% x*) as a replacement of the inertial system (x?, ¢) associated with the
ether frame of classical electromagnetism such that x* corresponds to ct.
In other words, in that Lorentz system the coordinates (x*) of any event
are just the list of four numbers (x, ct), where (x?) are the spatial coor-
dinates, and where ¢ is the time of that event relative to the ether frame.
Having established the relation between one particular Lorentz system and
one particular inertial system, we can extend the relation to Lorentz systems
and inertial systems in general by appropriate coordinate transformations.

Since the physical interpretation of an inertial frame in general or of
the ether frame in particular are not really known, the Lorentz system and
the inertial system in the preceding transition from a Galilean space-time
to a Minkowskian space-time are also unspecified. We shall formulate the
governing equations of electromagnetism in such a way that the forms of
the equations are the same in all Lorentz systems. This way, the inconsistency
of the classical theory with respect to the experimental result of Michelson
and Morley is no longer present in the new model.
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Since we cannot, and do not even wish to, identify a particular Lorentz
system as being the replacement of the particular inertial system associated
with the ether frame, we shall write the fourth coordinate x* of any Lorentz
system as ct, where ¢ denotes the speed of light in a vacuum as observed
in that Lorentz system, and where ¢ is the time coordinate in that Lorentz
system. In this sense the first three coordinates x¢, i = 1, 2, 3, become the
spatial coordinates at each time ¢. Since the equations of electromagnetism
have the same forms in all Lorentz systems, ¢ is a universal constant which
is independent of the choice of the Lorentz system. Of course, the time
coordinate ¢ and the spatial coordinates x%, i = 1, 2, 3, in a Lorentz system
do not satisfy the transformation laws of the same in an inertial system.
We shall consider transformations of Lorentz systems in detail in the
following section.

38. Lorentz Transformations

Let (x% ct) be a Lorentz system on the Minkowskian space-time &
defined by the origin 0 € & and the Lorentz basis {e;, e,} as explained in
the preceding section. We consider first a simple coordinate transformation
from (x*, ct) to another Lorentz system (%, cf), such that the two systems
share the same origin o and the same two spacelike basis vectors, say,

e2= éz, e3= 53. (38.1)
We claim that such a simple coordinate transformation has the explicit form

x4t
L= @l

t 4+ (vxYc)
[1 — @/c)12’
(38.2)

Xt X% = x2, X3 = x3, [=

where v is a constant such that |v | < c.
To prove that the simple coordinate transformation has the explicit
form (38.2), we notice first that (38.1) and (37.10) imply the representations

el == aél + ﬂ§4, e4 = )/él + 164, (38.3)
such that the components «, §, y, 1 satisfy the conditions

o — B2 =1, (38.42)
Yyt — A= —1, (38.4b)
ay — fA=0. (38.4c)
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From (38.4¢) if we put

L_r_2, (38.5)

where v is a parameter characterizing the change of basis, then (38.4a)
and (38.4b) imply that
1
a= A= -Tl—?(v—/c—)z]l/—z', (3863)
o vfe
B=y= [T — P2 (38.6b)

Now using (37.23), (38.3), and (38.6), we obtain

B t + vxt/c?

x4+ ot _
M=o =Mt e = T
(38.7)

= ax! + yct =

Thus the explicit form (38.2) is established.

In the physical interpretation the transformation (38.2) possesses
several important features: First, the line with coordinates (0,0, 0, ct)
in the system (x%, ct) has coordinates (v7,0, 0, ¢f) in the system (¥, cf).
Thus the origin of (x') corresponds to a point moving with speed v in the
direction of &, as observed in the system (¥, ¢f). (If v is negative, then the
actual direction of motion is —&,.) Next, the line with coordinates (1,0,
0, ct) in the system (x!, ct) has coordinates (1/{1 — (v/c)?]V2 + v7, 0, 0, ¢f)
in the system (%, cf). Thus the unit spatial distance as observed in the
system (x¢, ct) between the lines (0, 0,0, ¢t) and (1, 0, 0, ct) at any instant
t becomes a spatial distance 1/[1 — (v/c)?]"? as observed in the system
(%4, cf) between the lines (v, 0,0, ¢f) and (1/[} — (v/c)?]V% + v{, 0, O, cf)
at any instant 7. This result shows clearly that the spatial distance, cal-
culated on the basis of the spatial coordinates (x!) in a Lorentz system
(xi, ct), is not invariant under a change of Lorentz system. Indeed, the
concept of a spatial distance is meaningful with respect to a particular
Lorentz system only. Similarly the concept of a time interval is meaningful
with respect to a particular system but is not invariant under a change of
Lorentz system. Indeed, the unit time interval as observed in (xi, ct)
between the events (0,0,0,0) and (0,0,0, c) becomes a time interval
1/[1 — (v/c)?]/? as observed in the system (X, cf) between the events with
coordinates (0,0, 0,0) and (v/[l — (v/c)*]¥%, 0,0, ¢/[l — (v/c)*]¥/?). Such
changes of length and time intervals are known as the Fitzgerald-Lorentz
contractions.
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In general, two Lorentz systems (x% ct) and (%%, cf) need not share
the same origin and the same two spacelike basis vectors, of course. Then
the transformation from (x%, ct) to (X%, ¢f) may be expressed by

%= ajix? + yict + el = Bxt + Aet + &, (38.8)

where o, B;, i, 4 are determined by the component forms of the Lorentz
basis {e;, e,} relative to the Lorentz basis {&;, &,}, viz.,

€; = aijéj + ﬂié4’ € = yiéi + 164. (38.9)

Since both {e;,e,} and {&;, &} are orthonormal bases, we must have

ajoy — By = Ou, (38.10a)
aidy? — A =0, (38.10b)
yiyt — A2 = —1. (38.10c)

Using matrix notation,’” we can express these conditions as

ala —BRPB=I, (38.11a)
aly — A =0, (38.11b)
p:— A2 = —1. (38.11¢)

A general solution for (38.11) may be obtained in the following way:
First, from (38.11c)

A= (2 + D, (38.12)

where we have selected the positive sign for the square root because of
the condition (37.22b). From (38.12) and (38.11b)

1 Y
B= (—szl)T aTY = W aTn, (38.13)

where n = (n*) denotes the unit vector in the direction of y; i.e.,

n=— X . 38.14
» ( )

Substituting (38.13) into (38.11a), we obtain

aT[I—(l -—(yz—_'_l-ﬁu—z—)n(@nra: L (38.15)

‘" As usual, the subscript is the matrix column index and the superscript is the row index.
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which means that the matrix

n = [1— (1 —W)n@n]a (38.16)

satisfies the condition of orthogonality, viz.,
n™n =1L (38.17)

By using (38.16) and (37.22), we see that ¥ is a rotation matrix. Then a
may be solved from (38.16):

a={I-[1—0G*+D"h@n. (38.18)
Substituting this solution into (38.13), we obtain
B = yn"n. (38.19)

Hence the length of the vector B is the same as that of the vector y, but
the direction of @ differs from that of y by the rotation . The formulas
(38.18), (38.19), and (38.12) now give the general solution of the condition
(38.11) in terms of an arbitrary nonzero vector y = yn and an arbitrary
rotation matrix .

It is customary to put

—r 2
(PE4+ D2 o (38.20)
Then we have as before
. v/c
i = o (3821
Hence the vector y = (y) is given by
i (/o)nt
ST o (38:22)
From (38.20) and (38.12) the scalar 4 is given by
A= ————1———~ (38.23)

1 — (@/c)*1®

Similarly, from (38.20) and (38.18) the matrix a = [e;'] is given by

o = [ag —~ (1 - -—[TT:’/C-);]W-)n‘n‘.]r]f'. (38.24)
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Finally, from (38.20) and (38.19) the vector @ = (8;) is given by

vfc )
= G SE———— Y T

B: T = /" nin;. (38.25)
The formulas (38.22)-(38.25) give explicitly the coefficients of the coor-
dinate transformation (38.8) in terms of an arbitrary rotation matrix [7;'],
an arbitrary unit vector (n?), and an arbitrary positive number v such that
v<e.

The set of general solutions (38.22)—(38.25) reduces to the set of simple
solutions (38.6) when we choose [7,*] to be [§;*] and (n;) to be (1,0, 0).
Indeed, in that case (8;) and (y*) reduce to

e vfc
(ﬂz) - (7) - ( [l . (0/0)2]1/2 ’ O’ O) ’ (3826)
while [a;] reduces to
1
—_———— 0 0
i) = [ — /ey T 38.27
lof] = 0 o ol ( )
0 0 0

The constant A is, of course, always given by (38.23), which is the same
as (38.6a).

A coordinate transformation of the form (38.2) with coefficients given
by (38.22)-(38.25) is known as an inhomogeneous restricted Lorentz trans-
Sformation. If the origins of (x%, ct) and (&, cf) coincide, i.e., {* =0, £ = 0,
then the transformation is known as a (homogeneous) restricted Lorentz
transformation. If we remove the restriction (37.22), i.e., 4 may be positive
or negative, and [e;’] may be proper or improper, then the transformation
is known as an (unrestricted) Lorentz transformation.

The inhomogeneous restricted Lorentz transformations are the desired
coordinate transformations which characterize the collection @ of all
Lorentz systems (x%, ct) on &. Given any one Lorentz system (x%,ct),
we can determine all other Lorentz systems by arbitrary inhomogeneous
restricted Lorentz transformations from (x% ct). In other words @ is
maximal with respect to the transformations (38.8), such that e, 8;, ¥%,
and A are given by (38.24), (38.25), (38.22), and (38.23), respectively.

Since each Minkowskian inner product ¢ on 77~ determines uniquely
the maximal collection @, and conversely, each maximal collection ©
determines uniquely a Minkowskian inner product ¢ and a Lorentzian



264 Chapter 6 Sec. 38

orientation on 7, we can define a Minkowskian space-time either by the
direct definition given at the beginning of the preceding section or by the
indirect definition based on the maximal collection 6.

Mathematically, a Galilean transformation (36.4) may be regarded
as the limit of an inhomogeneous restricted Lorentz transformation when
¢— oo, In this sense a Galilean space-time may be regarded as a limiting
case of a Minkowskian space~time. The main difference between these two
space-times is that in the translation space of the underlying 4-dimensional
affine spaces, the former is equipped with a distinguished 3-dimensional
subspace 777, while the latter is equipped with a distinguished cone 77,
which separates the timelike vectors from the spacelike vectors. A maximal
subspace consisting of spacelike vectors must be 3-dimensional, but such
a subspace is not unique. As a result, an instantaneous physical space is
no longer assigned at each event, but we may define a 3-dimensional space
relative to a Lorentz frame {e;, e,}.

To implement Minkowskian space-time as a mathematical model for
the event world, we have to assign to each event the Lorentz coordinates
(x% ct) associated with one particular Lorentz system in @. A procedure
for making such an assignment has been explained in detail by Synge®.
Since we are primarily interested in the mathematical structure of the
relativistic model, we shall not discuss this procedure here.

39, Vectors and Tensors in the Minkowskian Space-Time

Since a Lorentz transformation in general does not preserve the sub-
space spanned by the spacelike basis vectors {e;} of a Lorentz frame
{e;, e,}, a vector of the spatial form

p = ple; (39.1)

relative to {e;, e,} will not be of the same form relative to another Lorentz
frame {&;, &}. Indeed, if {e;, e,} and {&;, &} are related by (38.9), then

P = pief§; + pifie,, (39.2)

where o;* and B; are given by (38.24) and (38.25), respectively. Thus it is
meaningless to regard p as a purely spatial vector. We can only say that p

® J. L. Synge, Relativity: The Special Theory, North Holland Publishing Co., Amster-
dam, 1956.
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is spacelike; i.e.,
a(p, p) = p'p’ = plafptey’ — p'fip’B; > 0, (39.3)

but generally such a vector may have nonzero components in both the
spacelike basis vectors as well as in the timelike basis vector of a Lorentz
frame. In other words, p* = O relative to one Lorentz frame {e;, ¢,} by no
means implies that p* = 0 relative to another Lorentz frame {&;, &}.

In the preceding section we denoted a change of Lorentz frames by

e” — e””év’ (394)

where p =1, ..., 4, and where v is summed from I to 4 such that [e,*]
has the explicit form
of

1= |5

The set of conditions (38.10) on a, B, ¥ and 4 is equivalent to the require-
ment that

—}'—] (39.5)

Xoerel =2, (39.6)
o€u u

where [2,,] denotes the component matrix of the Minkowskian inner
product; i.e.,
[Z.,] = diag(1, 1, 1, —1). 39.7)

Using the formula (39.4) for the change of basis, we can express the
transformation law of the components of a vector u in general by

7 = e, ut. (39.8)

Similarly, the transformation law of the components of a tensor A of
order r is
AV = - e AT, (39.9

The operations of lowering and raising of indices associated with the
Minkowskian inner product ¢ allow us to express the components in
covariant form or in mixed forms also; e.g.,

u, =2, A“l,‘,""""' = 2”,,,A"1””“""", etc. (39.10)
Then

a, = &'u,, ANV = epEe - er At T ete,  (39.11)



266  Chapter 6 Sec. 39

where [€,"] denotes the o inverse of [¢,”]; i.e.,

@ = =B Jm = 2R, (39.12)
which satisfies the condition
[el[e] = [&]. (39.13)
The preceding equation is equivalent to
o« |-y a |—B]_ g —
[—BI | = |-E1-m (39.14)

which means that [X,,] is the component matrix of a tensor, namely,
the Minkowskian inner product o, of course.

To illustrate the concept of a vector in Minkowskian space-time,
we consider the relativistic kinematics of a particle. A motion of the particle
may be described by a curve w(s) € & such that the tangent vector w(s)
is a timelike vector for all values of s. Such a curve may be reparametrized,
if necessary, so as to satisfy the condition

(W, W) = —ct (39.15)

When this condition of normalization holds, we call w(s) a world line,
and we call the parameter s the proper time.

Now since w(s) is a timelike vector at w(s), it may be expressed in
component form relative to a Lorentz frame {e;, e,},

w(s) = xi(s)e; + ci(s)ey, (39.16)

where (x% ct) denotes the Lorentz system defined by the Lorentz frame.
In that system we can express the spatial coordinates xi(s) as functions
of the time coordinate #(s), viz.,

xt = g¥(t) = x¥(s(1)), (39.17)
where s(¢) denotes the inverse of the function #(s); i.e.,
t(s@) =1, s(i(s) =s. (39.18)

Then we can define an ordinary velocity vector v as usual by

V= = T e = U‘e‘-, (3919)
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where the superposed dot refers to the derivative with respect to the proper
time s, as shown in (39.16). From (39.19) we see that the ordinary speed
relative to the frame {e;, e,} is

v = (%ixi)V2/i, (39.20)

Substituting the component form (39.16) into the condition of normal-
ization of (39.15), we see that

A — o = — 2. (39.21)
Hence from (39.20) and (39.21) { is given by

; 1
We denote the spatial component of w relative to {e;, e;} by u, and we call
u the relativistic velocity of the point as observed in the Lorentz system
(x%, ct). From (39.19) and (39.22) u is related to v by

v’l

u=xiei=iv:T'_W—ei.

(39.23)
Numerically the components of u relative to the spatial basis {e;} differ
from those of v by a factor 7, which is nearly equal to 1, when v is small
compared to the speed of light c.

As explained in analytical mechanics, we assign a positive number m,
called the proper mass, to a particle. Then we define the momentum-energy
vector 1 by

1= mw. (39.24)

We call the spatial component mxie, = mu of 1 the relativistic momentum
and the timelike component mc?i2e, of 1 the relativistic energy of the particle
relative to the Lorentz system (x¢, cz).

Having considered the relativistic kinematics of a particle, we formulate
next the equations of motion. As we explained at the end of Section 37,
when we replace Galilean space-time by Minkowskian space-time as a
model for the event world, an inertial system is replaced by a Lorentz
system. Hence the forms of the relativistic equations of motion must be
the same in all Lorentz systems. Moreover, when the speed of the particle
relative to a Lorentz system is small compared to the speed of light, the
cquations of motion in that system must be approximately the same as the
classical Newton’s equations. From experiments of the motions of electrons
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in a f ray, Lorentz suggested that the relativistic vector equation of motion
may be expressed as

i— —5; (m —‘f;s';) —E, (39.25)

where E is a vector defined at each event w(s) of the world line of the
particle. We call § the momentum-energy supply vector.

It should be noted that, since w satisfies the condition of normalization
(39.15), and since m is a constant, the value of o(l, 1) is a constant, —mc?,
independent of the proper time s. As a result, the momentum-energy
supply vector § must be orthogonal to the timelike tangent vector w of
the world line of the particle at each event w(s). In particular, § must be
a spacelike vector.

Since (39.25) is a vector equation expressed directly in the Minkowskian
space-time &, it does not depend on the choice of any Lorentz system.
Of course, we can take the component form of (39.25) relative to a Lorentz
system (x¢, ct):

mit = £, mef = &4, (39.26)

Then the orthogonality condition g(w, §) = 0 implies that
XiE— cift = 0. (39.27)

We may express the equation of motion (39.25) in terms of the ordinary
velocity v = v'e; relative to a Lorentz system (x%, ct) also. The spatial
components of (39.25) correspond to

d ~_ d my' & .
_Zit—(mu)—_c—it—(_[l_w\)——-f’ 1—1,2,3, (3928)

t

where the vector f = f'e; may be called the relativistic force as observed in
the Lorentz system. The equations (39.28) may be regarded as the relativistic
corrections to Newton’s equations of motion (4.3) in the sense that the
Lorentz system (x%, ct) corresponds to an inertial system (xi, t), and that
the relativistic momentum mu replaces the ordinary momentum myv.

Next, the timelike component of the equation of motion (39.25) may
be written as
d mc?
_dt—( (1 — @/e))
where we have used the condition of orthogonality (39.27). Clearly the
right-hand side of (39.29) is just the power of the force f. Hence the quantity

) = vifi, (39.29)
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mc?/[1 — (v/c)*]/? may be called the relativistic energy. Assuming that v
is small compared to ¢, we expand the energy as a power series

mc?

R ISTC TR
= mc® + %mv2 + e (39.30)

Since mc? is a constant, which may be called the rest energy or the proper
energy of the point, the equation (39.29) is given approximately by

‘;T (% mv® + ) — vifi. (39.31)
Thus (39.29) is just the relativistic version of the energy equation.

From the preceding interpretation of the equations (39.26) we see that
the concepts of momentum and energy are not separable in the theory of
relativity, since they are the components of a single vector 1 relative to a
Lorentz frame. By the same token the concepts of force (i.e., supply of
momentum) and power (i.e., supply of energy) are not separable, and they
are the components of a single vector §, which is orthogonal to the tangent
vector w at all events of the world line of the particle.

The most important feature of the relativistic equation of motion
(39.25) is that the equation is entirely independent of the choice of the
Lorentz system. Hence the component forms (39.26) or (39.28) and (39.29)
are invariant under any Lorentz transformation. In other words if the
coordinates w*(s) of w in one Lorentz system (x*) satisfy the set of equa-
tions (39.26), then the coordinates #w*(s) of w in any other Lorentz system
(%) satisfy a set of equations similar to (39.26) with &= replaced by &=
We have attained this invariance property by using an equation which is
expressed directly in terms of some vectors in the Minkowskian space-time
¢. In the following section we shall follow a similar approach to formulate
the governing system of field equations in the special relativistic theory of
clectromagnetism.

40. Maxwell’s Equations in Special Relativistic Form
In the preceding sections we have formulated the mathematical struc-

ture of the Minkowskian space-time &. Now we apply that structure to
clectromagnetism. As we shall see, Maxwell’s equations correspond to two
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tensor equations which are independent of the choice of any Lorentz frame.
Hence the component equations are automatically invariant under any
restricted Lorentz transformation. The importance of such a transformation
property has been remarked before in the context of the relativistic equation
of motion (39.25), which has the invariant component form (39.26) relative
to any Lorentz frame {e;, e,}.

To motivate the relativistic form of Maxwell’s equations, we recall
first that a tensor equation or a vector equation in the 4-dimensional
space 7 generally correspond to a system of tensor equations or a system
of vector equations with respect to the decomposition of 7 into a 3-
dimensional space span{e;} and a 1-dimensional space span{e,} associated
with any Lorentz frame {e;, e,}. For instance the vector equation (39.25)
corresponds to the system of momentum equations and energy equation
as shown in (39.26) relative to any Lorentz frame. For the equations in
electromagnetism the tensor equations are expressed in terms of certain
differential forms.

Note. General concepts concerning differential forms are explained
in detail in Sections 51 and 70, IVT-2.

Consider a 2-form A in the Minkowskian space—-time &, In component
form relative to the dual basis {e’, e*} of a Lorentz frame {e;, e,}, A is
given by
A = (Ple! | P%* + P3e%) N et + (Q%? A e® + Q% A el + Q%! A e?),

(40.1)

where Pt and Q¢ are functions of the coordinates (x%, ¢f). Suppose that
A is a closed 2-form; i.e., A satisfies the tensor equation

dA = 0. (40.2)
Then from (40.1)

/et apt 1 80%\,
= (G — G T T )N

Pt 9P 1 90"\,
+(—axz ~ 9 T T o )“""’
aPr 9Pt 1 A0\, . 1. .
+(—6x3 o T Tt )“°]A°
1 2 a 3
+ ( %% + ?922 + 6%’ )e‘/\e’/\e’. (40.3)
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We recognize immediately that (40.3) corresponds to a system of two
tensor equations:

curlP—i—%%—?: , divQ=0, (40.4)

with respect to the decomposition of 7 induced by the frame {e;, e,}.
Similarly, suppose that A satisfies the more general tensor equation

dA = C, (40.5)

which means that the 3-form C is exact, and that A is its potential. Let
the component form of C relative to {e?, e*} be

C=(R'e*Nne’+ R%* Ael 4 Rlel Ne?) Ne 4 Set Ae? Aed. - (40.6)

Then from (40.3) the tensor equation (40.5) corresponds to a system of
two tensor equations

curl P + 1? %—? = R, divQ = S, (40.7)

with respect to the same decomposition induced by {e;, e,}.

Comparing (40.4) and (40.7) with (32.7), we see that the tensor equa-
tions (40.2) and (40.5) are just what we need to express Maxwell’s equations
in relativistic form. Specifically, relative to any Lorentz frame {e;, e,} we
define the relativistic electromagnetic field ® by

® — (Ele! + E%? -+ E%3®) Ae* -+ (Ble? A e® + B%® A e!' | Bl A e?),
(40.8)

where E' and B’ are regarded as the components of the field E and the
field B, respectively, relative to the spatial (ether) frame {e;}. Then the
governing equation for @ is the tensor equation

dd = 0, (40.9)

which corresponds to the system

curl E + % —%I:— =0, divB = 0. (40.10)

Since & is retractible, by Poincaré’s lemma (cf. Section 52, IVT-2)
the closed 2-form ® is exact; i.e., there exists a 1-form II, called the relativ-
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istic electromagnetic potential, such that
@ = dIl (40.11)
Writing the 1-form IT in component form relative to {ef, e!}, we have
II = A'e! + A%? 4 A3e® + (Cet, (40.12)

where A% and ¢ are functions of the coordinates (x¢, ct). Taking the exterior
derivative of (40.12), we get

R =,

dx? ¢ Ot dx? c Ot
0L 1 AN\ V.. L [[ 040 ary,
Haw = o )efre+ (G — g )ene
oAt o4 L oA oA .
+(75;3——W)e3/\e +(—3;,———E,—)el/\e]. (40.13)

Hence the tensor equation (40.11) corresponds to the system

1 0A

E=gradC——&— TR B = curl A, (40.14)

which are the potential equations for the electromagnetic fields.
Next, we define the relativistic charge—current field ¥ by

71 72 i3
¥ = (—]—c— ez/\e”—i——]Tes/\e1 —{--!c—el/\ez)/\e4 — ge'NnetAned, (40.15)

where ji and g are regarded as the components of the field j and the field
g, respectively, relative to the spatial (ether) frame {e;}. Similarly, we
define the relativistic charge—current potential I' by

T = (H'e' + H2e® | H?3%?®) A et — (D%? A e + D3 A el + D! A e?),
(40.16)

where Hi and D¢ are regarded as the components of the field H and the
field D, respectively, relative to the spatial (ether) frame {e;} as before.
Then the law governing the charge—current field ¥ is

dT = 4n'¥, (40.17)

which is a tensor equation in the space-time & independent of any Lorentz
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frame. From (40.7) the tensor equation (40.17) corresponds to the system

_4pd 1 0D VD —
curl H = 4n p + palar Tt divD = 4nq (40.18)

relative to the decomposition induced by the Lorentz frame {e;, e,}.
The condition that W is an exact 3-form implies that

d¥ = 0. (40.19)

Taking the exterior derivative of W from (40.15), we see that the tensor
equation (40.19) corresponds precisely to the continuity equation (32.1).
Thus (40.19) characterizes the law of conservation of electric charge in
relativistic form.

It should be emphasized again that the relativistic laws of electro-
magnetism (40.9), (40.11), (40.17), and (40.19) are stated directly in terms
of the differential forms. Consequently, these laws are entirely independent
of any choice of Lorentz frame. In particular, the components of the
forms &, II, ¥ and T relative to the Lorentz systems in the collection ©
must satisfy the transformation law (39.11). As a result, the transformation
laws for the fields E, H, B, D, j, 4 under a Lorentz transformation are no
longer at our disposal. Indeed, we can derive the relativistic transformation
laws for the components E%, H:, B', D%, j*, and ¢ under a Lorentz trans-
formation from the general formula (39.11).

For simplicity we consider the special Lorentz transformation (38.2)
only. In that transformation {e‘, e*} and {&, &} are related by

o _ e 4 (v/e)et s 2 ms .3 @ &+ (c)e
i 7557 R S S Sl AN ey gy o775 U B
(40.20)

Substituting (40.20) into the component form of @ in the (X%, ¢7) system,
viz.,
O = (E1@ + E2@ + E3e) A&t + (Ble2nd® + Bes A + B3ine?)
E? — vB3c E3 + vB¥c
— 1al 2 i A
B + T —epr TGl
B3 — vE?c
[1 — @/cy]

e”] N et

B2 + vE¥c

= Gl & "¢+

+ [Ble’/\e3+ ell\ez],

(40.21)
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we obtain
_py, pro_EiooBYe g, B oBYe
S (0 L (R 00 LR
B — Bt B B + vE3c B — B3 — vE?c '
’ = Gley ™’ [T — ey -

Similarly, when we substitute (40.20) into the component form of T in the
(%%, cf) system, we get

. m ,  H+ vD¥c s H*—ovD¥c
H =0, H=-r—com I g
_ (40.23)
Dl — Bt Dt — D* — vH3c Db — D3 + vAH?Yc _
= DL == o = T = Gore

and when we substitute (40.20) into the component form of W in the
(¢, cf) system, we obtain

7' —vg o __q—ve

i e A A o
(40.24)

Clearly the transformation laws (40.22)-(40.24) are not the same as
the classical transformation laws (32.32)-(32.34) and (32.39). Under the
relativistic transformation laws Maxwell’s equations are formally invariant;
i.e., in the Lorentz system (%% cf) we still have

aana:_%%, v B=—o,

L D (40.25)
cdA=d4nd + - 2 GVD =4aq

c c Ot

Not only are Maxwell’s equations formally invariant under any change
of Lorentz system, so also are the Maxwell-Lorentz ether relations D = E
and B = H for a vacuum. Indeed, the ether relations may be expressed
directly in terms of the 2-forms I" and ®. Recall that for any oriented inner
product space Z we can define a duality operator D,, which maps a skew-
symmetric tensor of order r to a skew-symmetric tensor of order n — r,
where n denotes the dimensional of the underlying vector spaces 7. That
operator is defined in Section 41, IVT-1. Now exactly the same definition
may be applied to the oriented Minkowskian inner product space 77
As we shall see, the set of ether relations corresponds to the tensor equation

Dy(®) =T. (40.26)
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Specifically, for any integer r between 0 and 4, we define the duality
operator D, by the condition

64—1(DTP’ Q) = 64(P A Q’ E)’ (4027)

where P and Q are arbitrary skew-symmetric covariant tensors of orders
r and 4 — r, respectively. The symbol g, in (40.27) denotes the pseudo-
inner-product of skew-symmetric covariant tensors of order k induced
by o; i.e., in component form

0u(P, R) = o T - TP, Ry, (40.28)
and the symbol E denotes the positive density tensor on 77 i.e.,
E=cAe?ANedAe (40.29)

where {e*} is the dual basis of any Lorentz frame {e,}. Notice that o,
is just the dual pseudo-inner-product ¢* defined by (37.5).
From (40.27)~(40.29) the duality operators D,, D,, and D, are given
explicitly as follows:
D,(e') = 2 A e3A et D,(e*) = eSNel A et

40.30
D,(e?) = el Ae*Aet, D,(e*) = el A e2 A e3; ( )

Dy(e! A e?) = e3 A e, Dy(e2Ae®) = el A el
D,(e? Ael) = e2 e, D,(et Aet) = e’ A el (40.31)
D,(e? A et) = el A ef, Dy(elNet) = e2 Ael;
and
D;(e! A e* A e) = ed, Dg(el A e2Aet) = e3,

40.32
D;(e® N e3 A et) = el D;(e? A el Aet) = e?; ( )

where {e*} is the dual basis of any positive orthonormal basis {e,}.

Note. A positive orthonormal basis {e,} is either a Lorentz frame or
the negative of a Lorentz frame. The conditions (40.30)—(40.32) are clearly
invariant when {e,} is replaced by {—e,}.

Using (40.31) and the component forms (40.8) and (40.16), we see
that the set of ether relations D = E and B = H corresponds precisely
to the tensor equation (40.26), which is independent of any choice of Lorentz
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frame. As a result, the ether relations are invariant under any change of
Lorentz system. This transformation property removes the difficulty
mentioned before in the classical theory of electromagnetism.

In general a system of constitutive relations of the isotropic form

D=¢E, B=uH (40.33)

is not formally invariant under a change of Lorentz system, however,
unless the constants ¢ and u satisfy the condition

eu = 1. (40.34)

When the condition (40.34) holds, the system (40.33) corresponds to the
tensor equation

eDy(P) =T. (40.35)

When the condition (40.34) does not hold, the constitutive relations in
another Lorentz system (%, ¢f) may be derived from (40.33) by using the
transformation laws for the fields B, H, D, and E.

To illustrate the transformation law of the constitutive relations,
we write (40.33) in the component form

D! = ¢E%, Hi= % Bi. (40.36)

Then from (40.22) and (40.23) the relations (40.36) are transformed into
D—oF + B H=¢F + B, (40.37)

where ¢ and y are diagonal matrices:

o e —v¥ctu e — v¥ctu
?= d‘ag(s’ T— @ 1— @y )

y ’ y ’ (40.38)
o f 1 1w — e?lc? v — ev¥c?
x = dise{ o~ T ey )
while ¢ is a skew-symmetric matrix:
0 0 0
o 0 @[O)[(1/p) — ¢]
[b]l= I — (e | (40.39)
o _ GIOW/m — ] o

I — (v/c)
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Clearly ¢ vanishes, and ¢ and y reduce to &I and (1/¢)1, respectively,
when the condition (40.34) holds.

Note. The set of constitutive relations (40.36) corresponds to a tensor
equation of the form

K®)=T, (40.40)
where K is a certain automorphism of the 6-dimensional space of skew-
symmetric covariant tensors of order 2 over the 4-dimensional translation
space 7~ of &. The tensor equation (40.40) has the component form (40.33)

in all Lorentz systems if and only if K is proportional to D, as shown in
(40.35).

Since the Minkowskian inner product o is invariant under any change
of Lorentz system, the squared pseudonorm o,(®, ®) of & is always
given by

0y(P, P) = % 283 &, = —E-E+ B - B. (40.41)

Hence
—-E-E+B-B=—-F.E+B-B (40.42)

under, any change of Lorentz frame. The identity may be proved directly
by using the transformation laws (40.22) also. Similarly, from (40.31)
and (40.41)

0)(®, Dy(®)) = —2B-E= —2B . E,
o, )= —-H-H+D.-D=-H .- B+D-D, 4043
0(T,Dy(T)) =2D - H=2D - H.
Finally, the transformation laws of the constitutive relations must be
consistent with the following identities:
0(®,T)=—E - D—-B-D=—-E.-A—B.-D, (4044a)
—E.D.

0)(®,Dy(T))=B-H—E-D=B-H (40.44b)

These identities may be proved for the special cases (40.33) and (40.37)
directly from (40.38) and (40.39).
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41. Lorentz’s Formula and the Balance Principles in Special Relativistic
Form

In the classical theory the force acting on a moving distribution of
charge ¢ in an electromagnetic field is given by Lorentz’s formula

f=q(E+—Z—><B)=qE+—£_—><B. (41.1)

Then the power of the force is given by
p=f-v=¢qv.-E=j-E. (41.2)

We shall now derive the relativistic versions of these formulas.
First, we show that there is a vector § which has the decomposition

ol (e o) s ()

relative to any Lorentz frame {e;, e,}. Notice that § satisfies the condition
of orthogonality (39.27), viz.,

i - q(E + 2% B) — ciq(% : E) —o, (41.4)

where we have used the formula (39.19).

To show that there is a vector § given by (41.3) relative to any choice
of Lorentz frame {e;, e,} we start from the relativistic charge-current field
¥ defined by the component form (40.15). Using the duality operator
D;, we transform ¥ into a I-form J, viz.,

J=D‘I’———j-l~—e1+—j2—e2+—"1e3— el (41.5)
T T e ¢ c ¢ ’

Next, since a 2-form is just a skew-symmetric covariant tensor field of
order 2, the electromagnetic field @ defined by (40.8) has the tensor com-
ponent matrix
0 B3 —B2 FE!
—B3 0 B! E?
B: —RB! 0 E3|’
_El __E2 _ES 0

[2,,] = (41.6)

Using the operation of raising of indices Z*, we transform this covariant
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tensor into a contravariant tensor with the component matrix

0 B® —B* —E!
_BS 0 Bl _E2

B* —B' 0 —E*|

E' E* E* 0

[Pr] = [(E*PI*)] = (41.7)

Now we apply the contravariant tensor field to the 1-form D,¥, and we
obtain a vector field

T*OT*D,Y

j2 j2 ) j2 jl )
— 3L 2J 1 17 3 4 2
(B p B p +qu1+<B p B - + E?gle,
jl j2 ) jl jﬂ j2)
24 ) A 3 ) S, 27 3L
+(B p B p +qu3+(E p + F p + E . e,
_ (qE +d B) + (% : E)e4 —E (41.8)

Thus & is well defined by the decomposition (41.3); we call § the momentum-
energy production vector of the electromagnetic field.

Next, we show that the momentum-energy production vector may be
obtained from the divergence of a certain tensor field &, known as the
electromagnetic stress-energy-momentum tensor. Specifically, we have the
tensor equation

DivQ + E =0, 41.9)

which corresponds to the system

00
oxi

o0 . 904 1 o0%
ot = dx7 +? at =& (41.10)

L1
[

As we shall see, these equations are just the balance equations (33.16)
and (33.9) in the classical theory. As before we assume that the medium
is characterized by a linear constitutive relation of the form (40.40), where
K is a constant tensor. Under this assumption we define €2 by the com-
ponent matrix
I
T '—47;' DxB

1 b

< (E-D+H:B)

[R] = (41.11)

S/c

where T is the Maxwell stress tensor [cf. (33.13)], S is the Poynting vector



280 Chapter 6 Sec. 41

[cf. (33.8)], (1/Anc)(DxB) is the electromagnetic momentum density
[cf. (33.12)], and (1/8=)(E - D + H - B) is the electromagnetic energy
density [cf. (33.7)]).

We prove first that the right-hand side of (41.11) is, in fact, the com-
ponent matrix of a contravariant tensor of order 2 on 77 Indeed,  may
be obtained from the tensors Z*, D,I', and ¥ in the following way: First,
we define a tensor W by the component form

Wb = DDy, (DI, 208, (41.12)
From (40.16) and (40.31) the component matrix of the 2-form D,T’ @s

0 —H® H* —D'
H* 0 —H' —D?

[@I%)=|_pe i o _psl (41.13)
D1 D? D3 0
Substituting (41.7) and (41.13) into (41.12), we obtain
B*H?® + B*H®* - E'D' -B*H' - E'D? —-B*H! — E'D? B*D? — B*D?
B —-B'H® — E*D! B*H?® + B'H'-E®D* —-B'H® - E*D? BD! — B'D?
| -pH* - B —BH*® — E’D* B*H® + B'H' - E*D* B'D* — B*D*
E*H® — E*H? E*H' — E'H? E'H® — E3H! ED' + E3D* + E
“4

Now using the identity (40.44b) and the definitions (33.8) and (33.13),

we see that

o — _11__ [ Wi 1 _;_ oy(®, Dzr)):m]_ (41.15)

T

Thus the tensor L is well defined by (41.11).
Taking the divergence of £ from the component form (41.11), we get

. . 1 4
DivQ = [leT +4_7ZC E—(DXB)]

oD o8
(E- o H )]e4. (41.16)

+1 [div S+ —

c 4n
Then from the balance equations (33.9) and (33.16)

Div52=—(qE+% x B)—(-;—-E)e.= —E @4L17)

Thus the tensor equation (41.9) is proved.
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Note. The classical balance equations (33.9) and (33.16) may be
used here, because they are actually mathematical identities for all solutions
of Maxwell’s equations. Since the field equations relative to a Lorentz
frame in the relativistic theory are exactly the same as the field equations
relative to the ether frame in the classical theory, those identities remain
valid in special relativity.

As remarked in Section 33, if we use Lorentz’s electron theory, then
the constitutive relations are always the same as the ether relations, provided
that the charge—current field includes the bound charge and the magnetiza-
tion current in the medium. In application that theory is not convenient,
since the bound charge and the magnetization current are not known a priori,
and we still have to use the conventional constitutive relations to determine
them. Conceptually, however, the electron theory is easier to formulate,
since the bound charge and the magnetization current are governed by the
same laws of physics as those for the free charge and the free current.
In other words the electron theory gives the “true” electromagnetic fields
in the interior of a medium (i.e., at the empty space not occupied by the
electrons). In the general theory of relativity, which we shall consider in
the next two chapters, it is the “true” electromagnetic stress-energy-momen-
tum tensor based on the electron theory, not the conventional stress-energy-
momentum tensor £2 defined by (41.11), that gives rise to an electro-
magnetic~gravitational interaction.

When we use the ether relations as the constitutive relations, the
balance equation (41.17) is replaced by

(3

Div® — —&— —(qE +% X B) - (% : E)e,,, (41.18)

where j and § are given as before by (33.18), and where £ is a symmetric
tensor having the component form

1
T ’ —~7 ExB
1

i
—_— - 2 2
] EXB' ) (E + B?)

Q] = , (41.19)

where T is defined by (33.22). The fact that the right-hand side of (41.19)
is the component matrix of a contravariant tensor of order 2 on 7 may be
verified easily as before.
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42. Doppler Effect of Electromagnetic Waves

As remarked in the preceding two sections, the field equations of elec-
tromagnetism relative to a Lorentz frame are exactly the same as those
in the classical theory relative to the ether frame. In particular, all classical
results associated with the ether frame remain valid in the special theory
of relativity, provided that they are interpreted as results associated with
a Lorentz frame. For instance the result that the speed of light in a vacuum
is the constant c in the ether frame becomes the result that the speed of
light in a vacuum is the constant ¢ in any Lorentz frame.

Most classical results pertaining to a moving frame fail to remain
valid in the relativistic theory, however. In the classical theory the field
equations relative to a moving frame are obtained from those of the
ether frame by certain transformation laws, which are established by
direct argument based on the nature of the field quantities involved. Un-
fortunately, the constitutive relations, such as the ether relations, are not
invariant under a change of frame by a Galilean transformation. As a
result, according to the classical theory the speed of light in vacuum is not
equal to the constant ¢ in a moving frame. From the famous experiment of
Michelson and Morley this prediction is known to be inconsistent with
the observation. This difficulty is removed by the theory of special relativity,
since the field equations are the same in all Lorentz frames. In fact the
transformation laws of the field gquantities are derived from that condition,
and they are not the same as those in the classical theory.

To illustrate the relativistic transformation laws, we consider the
Doppler effect for electromagnetic waves. For simplicity we use the special
Lorentz transformation given by (38.2). Setting x! = x*= x%®= 0, we
see that

Xt = i, #=x3=0. 42.1)

Thus the unbarred frame is moving with speed » along the X! axis in the
barred frame. We consider a sinusoidal electromagnetic wave emitting from
the origin of the unbarred frame in the direction

n= —e,. 42.2)

We shall now explain the behavior of this wave as observed in the barred
system (X%, c7).

In Section 34 of the preceding chapter we have shown that the electro-
magnetic fields E and H associated with a polarized, monochromatic,
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sinusoidal wave in the direction —e, have the followinz component forms:
E = asin[k(x* + ct)]es, H = asin[k(x* + ct)]e,, (42.3)

where & denotes the wave number and where o denotes the amplitude.
The fields E and H given by (42.3) satisfy Maxwell’s equations in vacuum.

Now to determine the fields of the same wave as observed in the barred
system (¥, ¢f), we use the inverse of the transformation laws (40.22) and
(40.23). Specifically, we have

E® — vBYc

== i
= () el e
= (—i—:_—zz)l/za sin[k(:—;—g%)m(xl + ct')]
= & sin k(%' + cf), (42.4)
where
&= “(:—1'3%)“’ k= k(‘:‘i%)m' (42.5)

The components £¢ and H? not shown in (42.4) all vanish, viz.,
E=E%,, H=Hzs%s,. (42.6)

Notice that the component forms (42.4) imply that in the barred
system (%%, ¢f) the electromagnetic fields still correspond to a sinusoidal
wave, which is propagating in the direction i = —§&,, and the wave speed
is ¢. We can verify that the identities (40.42) and (40.43) are satisfied.
In fact in this case

E-A=E.-H=0, F:— H*=FE*— H:=0. 42.7)

For any sinusoidal wave the Doppler effect is the fact that the frequency
of the wave depends on the motion of the observer relative to the wave.
Let w and @ denote the frequencies of the wave as observed in the unbarred
frame and in the barred frame, respectively. Then from (34.8) and (42.5)
we see that @ differs from o by a factor [(1 + v/c)/(1 — v/c)]V% When
v > 0, i.e., when the light source is moving away from the observer, the
factor [(1 + v/c)/(1 — v/c)]? has a value greater than 1. Thus & > w.
This situation is known as a red shift. We can use the value of the ratio
mfw to calculate the speed v of the light source as it moves away from the
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observer. When v < 0, i.e., when the light source is moving towards the
observer, the factor [(1 4 »/c)/{l — v/c)]¥? has a value less than 1. Thus
@ < w. This sitvation is known as a blue shift.

"~ Of course, the classical theory predicts a Doppler effect for an electro-
magnetic wave also. But the classical transformation laws imply that

i

o= qQ, k=kT——TB72'_,

(42.8)
and that the wave speed observed in the unbarred frame differs from that
in the barred frame by the relative speed v of the two frames. These results
are clearly not the same as those predicted by the relativistic theory.
When the light source is moving in a direction perpendicular to the
direction of the light beam, the classical theory predicts no Doppler effect
at all. Such is not the case if the theory of relativity is used. Consider the
special case when the wave is propagating in the direction n = e; and is
polarized in such a way that E is paraliel to e, while H is parallel to e,, viz.,

E = asinfk(x® — ct)]e,, H = asin[k(x?® — ct)]e,. 42.9)

For this wave the inverse of the transformation laws (40.22) and (40.23)
implies that

E = @sinlk(@ - & — cf)), (42.10)
where
. a
T = o
k= Kk 42.11
T = @R @1h
i = (v/c)& + [1 — (v/c)*]"2&;.
Then H may be obtained directly by
H=naxE (42.12)

A similar problem with E paraliel to e, and H paraliel to —e, may be formu-
lated and solved in the same way. Again, there is a factor /[l — (v/c)?}¥2
connecting &, k with «, k as shown in (42.11). This factor is of second
order in (v/c) and is strictly a relativistic effect.



General Relativistic Theory
of Gravitation

The special theory of relativity summarized in the preceding chapter was
formulated by Einstein in order to resolve the difficulties in the classical
theory of electromagnetism with regard to a change of inertial frame and
the associated change of the speed of light. The special status of the inertial
frames was not removed, however, but was transferred to the Lorentz
frames. In the general theory of relativity that special status was finally
removed, and a relativistic theory of gravitation was created. We shall
summarize the mathematical structure of the general theory and its major
results in this chapter.

43. Newton’s Law of Gravitation and the Principle of Equivalence

In classical mechanics the magnitude of the gravitational attraction
between two particles is given by Newton’s law:

mym,
where m; and m, denote the masses of the two particles, and where r
denotes the distance separating the particles. The empirical value of the

constant k is
k = 666X 10~% cm? g~! sec—2 (43.2)
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in cgs units. The line of the forces of attraction passes through the locations
of the two particles.

Since f is proportional to m, and m,, it may be characterized by a
gravitational field. Specifically, let g be a vector field such that if we intro-
duce a particle with mass 7 into its domain, then the gravitational force
acting on that particle is 77ig. We call g the gravitational field. From Newton’s
law (43.1) the gravitational field g due to a particle with mass m is

m
g=g(x)=—k s T, (43.3)

where r denotes the position vector of the field point x relative to the
location of the particle. The minus sign in the formula (43.3) means that
particles attract one another by gravitation.

It follows from (43.3) that g is a conservative field which may be ex-
pressed as

g = —grad {, - 434)

where the gravitational potential ¢ is given by

km
e

{={(x)=— 43.5)

The preceding formulation shows that a particle plays two distinct
roles relative to a gravitational field. First, a particle is a source point for
the gravitational field; i.e., the presence of a particle gives rise to a gravita-
tional field. Second, a particle is also a receptor point for the gravitational
field; i.e., the presence of a gravitational field gives rise to a force on a
particle as soon as that particle is introduced into the domain of the field.

The formulation of the gravitational field associated with a particle
may be generalized to that associated with a distribution of mass with
density ¢ on some domain ,. The previous formula (43.3) is generalized to

g(x) = J — k—f rdv= —grad(~J ke dV), (43.6)
g, r o, T

where dv denotes the Euclidean volume element at the position x — r
in 2,. The formula (43.6) shows that g is again a conservative field, and
that the gravitational potential is given by

t(x) = —L -krﬁ . 43.7)
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In particular, g satisfies the field equations

curlg = 0, (43.8a)
divg = —4nko, (43.8b)

where we have used the formula (30.8).
Substituting (43.6) into (43.8), we see that { satisfies the Poisson
equation
V3 = dnko. 43.9)

As usual we require that { — 0 at infinity. Then the solution of the preceding
field equation is given by (43.7). We can integrate the field equation (43.8b)
over any domain & in space, obtaining

J divgdx = J g-ndo= ——4:rzkj o dx, (43.10)
o o o

where dx denotes the Euclidean volume element at the field point x. We
call the surface integral in (43.10) the gravitational flux through 2. Then
the formula (43.10) shows that this flux determines the amount of mass
enclosed by the surface 2. This result is similar to the Gauss flux theorem
in electrostatics.

In the preceding formulation it is understood that the gravitational
field g is present simultaneously with the presence of mass. Thus the relations
(43.3) and (43.6) are valid in the instantaneous spaces of the Newtonian
space-time and are independent of any frame of reference. In order to
describe the gravitational field g, we may introduce a frame of reference,
of course. Then the position of the particle or the mass distribution in the
instantaneous space may be characterized as usual by the coordinates
(xi, t), and the gravitational field g may be represented by a vector field
on the physical space & of the frame of reference. If the mass is at rest,
then the corresponding gravitational field g is a steady field depending only
on the spatial coordinates x?. If the mass is moving relative to the frame,
then g depends on both x* and ¢ in such a way that the relations (43.3)
and (43.6) hold at each instant .

Now suppose that a gravitational field g is present in 57 and let a
particle with mass # be introduced into the domain of g. Then a gravita-
tional force /7ig acts immediately on the particle. If this force is not balanced
by a suitable support force, then a motion of the particle results. Indeed,
if the frame of reference is an inertial one, then according to Newton’s
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law of motion (4.5) the acceleration a of the particle is just the vector g, viz.,

2 _

a—_-idtfz‘—:—mizg. 43.11)

By virtue of this equation g is also called the gravitational acceleration.

As remarked in analytical mechanics, the equation of motion (43.11)

is valid relative to an inertial frame of reference only. Suppose that the

frame is not an inertial one, say, if the frame is moving with a translational

acceleration h relative to an inertial frame. Then the equation of motion
of the particle (relative to the noninertial frame) becomes

i+h= =g (43.12)

Sllnl

or, equivalently,
i=g—h, (43.13)

where @ denotes the acceleration of the particle as observed in the non-
inertial frame. Comparing the preceding equation with the previous equation
(43.11), we see that the gravitational acceleration g may be compensated
by an inertial acceleration h due to the motion of the frame relative to an
inertial frame. Physically this fact may be illustrated most vividly by using
the concept of the “Einstein elevator.” Indeed, an observer in an elevator
which is falling freely in space cannot detect any acceleration @ of a particle
inside the elevator, since h = g in this case.

Since the physical interpretation of an inertial frame of reference is
not really known in classical mechanics, when we observe an acceleration
a of a particle relative to a convenient frame of reference (e.g., the frame
attached to the earth or the frame attached to the sun) we do not really
know which part of the observed acceleration & is due to a gravitational
field and which part is due to the departure of the frame of reference from
an inertial frame. In other words, the presence of a gravitational field g
in a small domain in the physical space .5” of a frame of reference (e.g.,
inside the “Einstein elevator’) is mathematically equivalent to the departure
of the frame from an inertial frame. Relative to the frame attached to the
“Einstein elevator” it makes no difference mathematically whether we
interpret the equation

i=g—h=0 (43.14)

by asserting that a gravitational field g is present inside the elevator but
that it is compensated by the inertial acceleration h due to the motion of
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the frame, or by asserting that there is no gravitational field inside the
elevator and that the frame is an inertial frame. This mathematical equiv-
alence of the model of gravitation and the model of the departure of a
frame of reference from an inertial frame is called the principle of equiv-
alence.

It should be noted that the inertial acceleration h associated with the
noninertial frame under consideration is a vector field on .5” depending
only on ¢ and not on x% Since g generally depends on both ¢ and x¢, the
equivalence of g with h is valid at a point (x?, ¢) and is approximately valid
in a small domain (e.g., the interior of the “Einstein elevator” in the
gravitational field of the earth). For any one gravitational field g the “Ein-
stein elevators” at different points (x?, t) correspond to not just one (non-
inertial) frame of reference but to a field of (noninertial) frames of reference.
This remark is one of the reasons which motivate the use of a Minkowskian
manifold as a mathematical model for the event world in the general theory
of relativity.

We define a Minkowskian manifold & as follows: a 4-dimensional
differentiable manifold such that the tangent space &, at each point w
in & is equipped with a Minkowskian inner product o(w) together with
a Lorentzian orientation which identifies an equivalence class of ortho-
normal bases as the Lorentz bases at w. It is no longer required that &
be an affine space. Also, there may or may not be any coordinate system
(x*) in which the component matrix [ZX,,] of the Minkowskian inner pro-
duct is the constant matrix diag(l, 1, 1, —1). We require only that ¢ be
a smooth field on &,

If there is a coordinate system (x*) on some domain 2 in & such that
the component matrix [2,,] of o is the constant matrix diag(l, 1, 1, —1),
then & is regarded as being free of gravitational field, and (x*) is called a
Lorentz system on 2. Such a coordinate system is similar to a (global)
Lorentz system for the Minkowskian space-time, which may be regarded
as a special case of a Minkowskian manifold that is free of gravitational
field everywhere.

As explained in the preceding chapter, the Lorentz systems in special
relativity are the counterparts of the inertial systems in classical mechanics.
In general relativity the presence of an inertial system (i.e., a Lorentz
system) is directly related to the absence of a gravitational field. This
important feature is motivated by the principle of equivalence.

We shall summarize the mathematical structure of a Minkowskian
manifold in general in the following section. On the basis of that structure
we formulate Einstein’s field equations in subsequent sections.
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44, Minkowskian Manifold

As mentioned in the preceding section, a Minkowskian manifold is a
4-dimensional differentiable manifold & such that the tangent space &
at each point we & is equipped with a particular Minkowskian inner
product o(w) together with a Lorentzian orientation which designates
a certain equivalence class of orthonormal bases as the Lorentz frames at
the point w. We now discuss such a structure in detail.

First, the differentiable structure on a 4-dimensional manifold & is
defined by a maximal collection 4 of (local) coordinate systems (x*, a = 1,
2, 3, 4) such that the coordinate transformations are smooth. Specifically,
any two systems in 4, say, (x*) and (¥%), are related to each other by smooth
functions

x* = x*(xh), X = x*(xf) (44.1)

on the overlap of their domains, and A is maximal with respect to such
transformations. We may define a differentiable structure formally by a
pair (&, A).

Using the differentiable structure, we define a tangent space &, at
each point we & as follows: We start from a coordinate system (x*)
on a coordinate neighborhood 27 of w. Since the coordinate system is a
diffeomorphism of & into Z24, it gives rise to a one-to-one correspondence
between smooth curves in 27 and smooth curves in the coordinate set of
2 in 224 We use this one-to-one correspondence to define an equivalence
relation among smooth curves passing through the point w. Specifically,
we say that A and p are equivalent (or have the same tangent vector at w)
if their coordinate forms have the same tangent vector at the coordinates
(x*(w)) of w. By virtue of the smoothness requirement of the coordinate
transformations, it can be verified easily that this equivalence relation is
well defined; i.e., if the coordinate forms of A and p. have the same tangent
vector relative to any one coordinate system (x*) € 4, then they have the
same tangent vector relative to all coordinate systems in 4. Now we define
the tangent space &, simply as the space formed by the equivalence classes
defined by the preceding equivalence relation.

It is clear that the tangent space &, just defined has the structure of a
4-dimensional vector space. Indeed, there is an one-to-one correspondence
between a tangent vector at w (i.e., an equivalence class of curves passing
through w) and a tangent vector at (x*(w)) in SP* by the very definition of
the tangent space. Hence we can define a structure of vector space on &y
by requiring that this one-to-one correspondence be a (linear) isomorphism.
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Again, the requirement that the coordinate transformations are smooth
ensures us that the structure of vector space defined in this way is indepen-
dent of the choice of the coordinate system.

Note. If we can regard the manifold & as a smooth 4-dimensional
surface in a Euclidean space of some higher dimension, then the preceding
formal definition of the tangent space &, is consistent with the elementary
definition of the tangent space of a surface. In fact, it is known that every
differentiable manifold can always be regarded as a smooth surface in a
Euclidean space of sufficiently high dimension. We choose not to define
the tangent space on the basis of this result, however, since the proof of
the result is not elementary.

The coordinate curves of any coordinate system (x*) in 4 are smooth
curves, of course. We can verify that their tangent vectors {h,(w)} at the
point w form a basis for the tangent space &,,. This result may be seen
most easily by using the isomorphism of &, with Z7* mentioned in the
definition of the vector space structure on &,. Indeed, the image of {h,(w)}
under the isomorphism is just the standard basis of Z24. As before we call
the basis {h,(w)} the natural basis of (x*) at w for the tangent space &y.

The dual space &G* of & is called the cotangent space of & at w.
That space is spanned by the natural basis {h*(w)}, which is formed by the
differentials of the coordinate functions x* at w and is also the dual basis
of the basis {h,(w)} in &. The differential of a smooth function on a
neighborhood 27 > w may be defined in terms of the usual differential of a
smooth function on Z%* by using a coordinate system (x*) in & as before.
Specifically, we say that two functions f and g have the same differential at
w if their coordinate representations f(x*) and g(x*) have the same dif-
ferential at the coordinates (x*(w)) of w. Again, the smoothness of the
coordinate transformations ensures us that the definition does not depend
on the choice of coordinate system in 4. Then &,* is just the space of all
differentials of smooth functions at the point w.

Now a Minkowskian metric may be defined as follows: a smooth
field ¢ whose value o(w) at each point we & is a Minkowskian inner
product on &, . As before o(w) gives rise to the operations of lowering
and raising of indices, Z(W): &y — &,* and T*(w): &, * — &, respec-
tively. In component form relative to any coordinate system (x®)

E=I QW =*=IhQh, (44.2)

where 2, and 2** are smooth functions of (x=).
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The fact that o(w) is a Minkowskian inner product on &, means
that there is an orthonormal basis, say, {e,(w)}, such that Z(w) and
Z*(w) have the component forms

Z(w) = d;;¢1(w) @ e/(w) — ef(W) & e*(w),

iy (44.3)
Z¥(w) = 0Ve,(W) © €;(W) — ey(W) @) ey(W).

It should be noted, however, that there need not be a local coordinate
system (x*) such that the corresponding field of natural basis {h,} is a
field of orthonormal bases. In particular, we can no longer take the com-
ponent fields 2, and X to be the constant fields given by (39.7).

In Section 59, IVT-2, we showed that a necessary and sufficient condi-
tion for a Riemannian manifold to be locally Euclidean is that the curvature
tensor based on the metric vanishes. Exactly the same argument shows
that the curvature tensor based on the Minkowskian metric vanishes if and
only if local Lorentz systems exist. To define the curvature tensor R, we
recall that the covariant derivative of a vector field u is given by the com-
ponent formula

u* a
W= 25 + {yﬂ}uV, (44.4)
cf. equation (59.9) in Section 59, IVT-2. Then the Ricci identities for the
second covariant derivative are
U gy — Uy = —UR%p,; (44.5)

cf. equation (59.9) in Section 59, IVT-2. The quantities R*;;, are the com-
ponents of the curvature tensor field R and are given explicitly by

ro - el el Hal - Gl o

cf. equation (59.10) in Section 59, IVT-2,
The curvature tensor R satisfies the following symmetry conditions:

Resp, + R%s,5 + R%55 = 0, (44.7)
and
Raéﬂy = _Rézﬂy = _Raayﬂ = R,ﬁy.zaa (448)

where the covariant components R,;, are obtained from the mixed com-
ponents R*,;, by using the operation of lowering of indices, viz.,

Rabﬂy = aBReoﬂy' (44'9)
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The conditions (44.8) mean that R(w) may be regarded as a symmetric
linear map from &, A &, to & * A &y*, so there are only 21 indepen-
dent components. Then the condition (44.7) reduces the number by 1
to 20 independent components.

We define the Ricci tensor S by the component form

Sys = Resg,. (44.10)

From (44.8) S is symmetric, so it has ten independent components. The
trace of S with respect to o is called the scalar curvature,

S=1trS = Z=S,;. (44.11)

The combinations
Gog = Sop — 3824 (44.12)

define the components of the Einstein tensor G, which is also symmetric
and has ten independent components.
The curvature tensor R satisfies the Bianchi identities:

Rs,.0 + R*sy0,5 + R%s05,, = 0, (44.13)

which may be verified by using (44.6) relative to a geodesic system at any
point w e &. (For the concept of a geodesic system see Section 57, IVT-2.)
From (44.13) we may contract the pairs («, p) and (4, 8):

0 = S)e + R‘zﬂme’ﬂ + Rﬁﬂeﬂ‘a == S,e - 2S’39,ﬂ = —2Gﬂﬁ,ﬂ. (44.14)

As we shall see, these contracted Bianchi identities are important in Ein-
stein’s formulation of the field equations for gravitation.

An important concept in Riemannian geometry is a geodesic (cf.
Section 57, IVT-2). For a Minkowskian manifold we define a geodesic in
a similar way: a curve A(s) such that the tangent A forms a parallel vector
field on A. The equations governing geodesics are

d2j> a) d¥ di
=22 o, 44.1
ds? {ﬂy} ds ds 0 (44.15)
We call a curve w(s) in & a world line if its tangent vector w(s) is a
timelike vector in &y, for all s. We may adjust the parameter s in such

a way that
o(W, w) = —c2 (44.16)

Then s is called the proper time as before.
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Note. The tangent vector of a geodesic must have constant length
with respect to the metric. Hence we can impose the condition (44.16)
on a geodesic without affecting the geodesic equations (44.15).

As explained in Section 57, IVT-2, the geodesic equations correspond
to the Euler-Lagrange equations for the arc length integral. This result
may be applied to world lines in &, and the integral is

o) = J [—a(h, A)]V2 ds. (44.17)

Consequently, among all world lines joining two events the geodesic gives
an extremum value of proper time interval between the events.

On any differentiable manifold we can define an exterior derivative
operator d for differential forms. This operator is entirely independent of
such metrical structure as the manifold may have. The definition and the
basic properties of the operator d are explained in detail in Section 55,
IVT-2. We recall that a differential form A is said to be closed if its exterior
derivative dA vanishes:

dA = 0. (44.18)

From the lemma of Poincaré (cf. Section 52, IVT-2) the preceding condition
is equivalent, locally, to the existence of a potential B such that

A =dB. (44.19)

By Stokes’ theorem (cf. Section 71, IVT-2) the condition (44.18) is also
equivalent to the requirement that the integral of A over the boundary of
any oriented domain %7 must vanish, viz.,

jw A= L dA, (44.20)

where the dimension of d% is the same as the order of the differential
form A, of course.
Since we have assigned an orientation on the Minkowskian manifold
&, the metric o determines a positive unit density tensor field & which
satisfies the condition
0,8, 8)= —1. (44.21)

At each point we & we define E(w) by

S(w) = el(w) A e¥(w) A e3(w) A e(w), (44.22)
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where {e*(w)} is any positive orthonormal basis in &,*. Relative to an
arbitrary positive coordinate system (x*), & has the component form

= (=22 Ah* AR AbR% (44.23)
where 2 denotes the determinant of [ZX4]:

Z = det[Z,], (44.24)

which is negative for a Minkowskian metric.
Using the 4-form &, we define the integral of any function X (i.e.,
a O-form) on an oriented domain 2 by

J KE :j K(—Z)\2 do, (44.25)
9 g

where dw denotes the element of volume in (x2); i.e., do = dx! dx? dx3 dx*.
It is understood that (x*) is a positive coordinate system on 2. Notice
that the 4-form K& is just the dual of the O0-form K, viz.,

KE = Dy(K), (44.26)

where the duality operator D, is defined as before by (40.27). In particular,
for any Lorentz frame {e,(w)} at w

Dy(1) = e(w) A e2(w) A e3(w) A el(w) = E(w), DyE)= —1, (44.27)

where {e*(w)} denotes the dual basis of {e,(w)}.

45, The Stress-Energy-Momentum Tensor in a Material Medium

In Section 41 we have shown that, in accord with the Lorentz electron
theory, there is a symmetric stress-energy-momentum tensor £ associated
with an electromagnetic field such that the divergence of € is related to the
momentum-energy production vector § by the equation of balance

DivQ + E = 0. (45.1)

Relative to a Lorentz frame {e;, e,} the spacelike components & of §
correspond to the components of the production of linear momentum,
and the timelike component &* corresponds to 1/c times the production
of energy due to the electromagnetic ficld. Relative to the same frame
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{e;, e,} the components £2% correspond to the components of the Maxwell
stress tensor, the components 2% = Q4 correspond to 1/c times the com-
ponents of the Poynting vector, and the component £2% corresponds to the
electromagnetic energy density of the field. We now show that a similar
stress-energy-momentum tensor may be defined for a material medium.

In this formulation we temporarily use the structure of a Minkowskian
space-time relative to which the divergence in (45.1) is taken. We recall
first that in continuum mechanics a material medium has a mass density
o(x,t) and a symmetric stress tensor T(x, ¢) such that

% + div(gv) = 0, 45.2)
ot

and
divT + ob = ga, (45.3)

where v and a denote the velocity field and the acceleration field, respectively,
relative to an inertial frame, and where b denotes the body force field.
We regard the field gb as a supply of linear momentum (i.e., the opposite
of the production of linear momentum). Using (45.2) and Euler’s formula
(14.18), we can express the right-hand side of (45.3) as

=2 v @ v). (45.4)

Then the equation of linear momentum (45.3) may be rewritten as

8(gv) + div(ev @ v — T) = gb. (45.5)

This equation is quite similar to the equation of balance of linear momen-
tum (33.21) in the classical theory of electromagnetism.

The equations of balance (45.2) and (45.5) may be revised to meet
the invariance requirement of special relativity in the following way: First,
a motion of the material medium corresponds to a collection of non-
intersecting world lines in Minkowskian space-time. As explained in Sec-
tion 39, we parametrize the world lines by the proper time s. Then the tan-
gent vector field w satisfies the condition of normalization (44.16). At
each point w in the medium we put

&,(w) = % W, (45.6)

and we extend this timelike unit vector into a Lorentz frame {&.(w)}.
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Now we define the stress tensor T(w) at the point w by the component
form
T(w) = T9(w)8:(w) @ &(w), (45.7)

where T%(w) denote the components of the usual Cauchy stress tensor
relative to the spatial frame {&;(w)} which is formed by the first three
vectors of the Lorentz frame {&;, &} defined at the point w. From the
condition (45.6) we know that the velocity vanishes at w relative to the
Lorentz frame {&;, é,}. Consequently, the spatial frame {&;} is unique to
within a rigid rotation only. As a result, the tensor T(w) is well defined
by (45.7) and satisfies the condition

[T(w)](w) = 0. (45.8)

Relative to a Lorentz frame {e,} for the whole Minkowskian space—
time the component form of the stress tensor field T is

T(w) = T**(w)e, ¥ e, (45.9)

where the components T*(w) may be obtained from the components
T#(w) by a Lorentz transformation from {e,} to {&;, &}. For example,
suppose that the velocity at the particular point w happens to be ve, relative
to {e,}. Then the transformation from {e,} to {&,(w)} is given by

o & wlo)e, o
4 = T T IS GogE e = e (45.10)
(v/c)e, e '

S =e W =T gt T @

Substituting (45.10) into (45.7) and then matching components with (45.9),
we obtain

Tls(w)=ﬁ%/{)—)—2m—’ TM(W)Z%’ 45.11)
rugm = ST ) = £,

T2(w) = T93(w), T3(w) = T'33(w).
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Following the same procedure, we get the component form for Ww:

ve,

1 — @/

cey

=@

W = cé,(w) =

(45.12)

The fact that (45.11) and (45.12) are consistent with the condition (45.8)
may be verified easily by direct calculation.

Next, the momentum-energy supply vector n(w) is defined in a similar
way. Specifically, we use the special Lorentz frame {&,(w)} at each point
w, and we define n(w) by the component form:

(W) = g(wWbi(w)e(w), (45.13)

where bi(w) denote the components of the body force relative to the spatial
frame {&;(w)}, and where ¢(w) denotes a positive scalar, called the mass
density of the material at the point w.

Note. In the theory of relativity mass and energy are interchangeable
quantities. Hence ¢(w) includes both the proper mass and the internal
energy of the medium. In the theory of some special classes of materials,
e.g., the theory of hyperelastic materials, § may be expressed as o(1 + &/c?),
where g is called the proper mass density, and where ¢ is called the internal
energy density (per unit proper mass). In these models the proper mass
density is treated as an intrinsic property of the material medium like the
mass density in the classical theory of continuum mechanics. Then it is
assumed that the proper mass satisfies a conservation law which forbids
it from changing into energy. The factor 1/¢? for the term ¢/c? has the usual
meaning: the mass equivalent to the energy ¢ is ¢/c?. By virtue of the factor
1/¢? the value of ¢/c? is generally much smaller than the value of g. Hence
¢ and o are almost the same.

Now by virtue of the remark about the uniqueness of the spatial frame
{&;(w)} the vector y(w) is well defined by (45.13) and satisfies the condition

o(n, w) = 0. (45.14)

If we use a Lorentz frame {e,} for the whole Minkowskian space-time &,
then the vector w(w) has the component form

n(w) = n*(We,, (45.15)

where the components 7*(w) may be obtained from the components 7*(w)
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by a Lorentz transformation from {e,} to {&,(w)}. For the special trans-
formation (45.10)

) = R ) = EmB ),
Swf (45.16)
n¥(w) = J(w)b¥(w), (W) = (v/c)é(w)b*(w)

(1 — @)1’

As before we can verify that (45.16) and (45.12) are consistent with (45.14).
Now we define the stress-energy-momentum tensor © by

O=0w@w—T. (45.17)

Clearly © is a symmetric tensor filld on the domain of the medium. We
claim that this tensor field satisfies the equation of balance

Div® — n = 0. (45.18)

Notice that the minus sign of v is due to the fact that v denotes the supply
of momentum-energy, while § in (45.1) denotes the production of mo-
mentum-energy in the medium.

To prove the equation of balance (45.18), we choose as the Lorentz
frame {e,} the special frame {&,(w)} at a particular point w, and we verify
the validity of (45.18) at the point w. The components of (45.18) in a
Lorentz system (x% ct) in general are

(fxixi — T9) + % __Q__ (é}'vici —T%) = 7t

01 o (45.19)
9 Scixd 4j 1 9 252 44 4 .
W(QCIX—T)“{“?-a—t(QCt—T):’I]

From (45.6) in the special Lorentz frame {&,(w)} at the point w the com-

ponents x¥w) vanish and the component ¢f reduces to c. Also, the com-

ponents T#(w), T4(w), and n*(w) all vanish; cf. (45.7) and (45.13).
From the general conditions (39.19) and (39.21) we have

-2
w Ot

_ovt
w Ot

axt
w ot

oi

'Y A~ .
w ax?

axt
ox?

vt

w  Ox

=0, (45.20)

w

at the particular point w. Then from (45.8) we obtain

T9x%) — T¥ci = 0, T3 — T4ct = 0. (45.21)
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Differentiating these conditions with respect to x* and ¢ and evaluating
the results at the point w, we get

y gvi | oT* i avi Y A
Ti(w) Oxt lw =c x|y T’(W)—“a‘t— . c—a—t_\w’
a7 o . (45.22)
ax |lw 0 o |lw

Substituting (45.20) and (45.22) into (45.19), we see that

oTH | a(a) N A
— E3; . ot . — —;:2— T ](W) —6_t- w = Qb . (45.233.)
oy | 1. o 06|
4 EP%; . ? T ](W) o ‘w +c W w = 0. (45.23b)

Now (45.23a) is just the classical equation of linear momentum (45.5)
evaluated at the particular point w, where the velocity v vanishes, except
that the mass density ¢ here contains the internal energy, and that an extra
relativistic correction term — (1/¢®)T%(w)(0v7/dt) |y is included. That term
is due to the fact that T%v’e; may be regarded as the energy flux induced
by the stress and, thus, (1/c2)T%ve; is its corresponding momentum flux.
Therefore the time derivative (1/¢2)T%(w)(@v’/dt)|y is a momentum pro-
duction vector.

Next, dividing (45.23b) by ¢, we get

(%) | v ag
|~ T |+

= 0. (45.24)

w

ox

This is just the classical continuity equation (45.2) evaluated at the point
w, except that g is replaced by ¢, and that an extra relativistic correction
term — (1/c®)TY(w)(@v//0x')|y is included. That term is due to the fact
that T¥(9v%/dx’) is the stress power. Hence 1/c% times it, (1/c*)T¥(w)
X (@vi/0x7) |y, is the corresponding rate of mass production at the point w.
If we regard the mass density ¢ as o(1 + ¢&/c?), then the proper mass density
o satisfies the continuity equation (45.2), and (45.24) reduces to the classical
energy equation (20.8).

The preceding analysis shows that relative to the special Lorentz
frame {e,} = {&,(w)}, (45.18) is the correct equation of balance at the
point w. However, since (45.18) is a tensor equation, it is independent of
any choice of Lorentz frame. Thus the proof is complete.
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It follows from the equation of balance (45.18) that relative to any
Lorentz frame {e,} the spacelike component (9@*/dx*)e; corresponds to
the supply of momentum, while the timelike component (3@%*/dx*)e,
corresponds to 1/c times the supply of energy as observed in {e,}.

Note. The stress-energy-momentum tensor © defined by (45.17)
satisfies the condition

A

[O(W))(W) = — —f;— Ww; (45.25)

i.e., w is a proper vector of @(w) corresponding to the proper number
—¢§/c* The preceding result is due to the fact that in the definition (45.7)
for the tensor T(w) we have not allowed any extra momentum-energy flux
such as a heat flux and a heat supply.

If the stress tensor T always vanishes in the medium, and if there is
no internal energy ¢, then the stress-energy-momentum tensor is just the
simple tensor ow X w. Such a medium is called an incoherent fluid or a
dust cloud. In general we call oW (X W the intrinsic stress-energy-momentum
and (gg/c)W @ W — T the extra stress-energy-momentum of the material
medium. Their sum is the stress-energy-momentum ©.

Note. Since the tangent vector w must satisfy the condition of normal-
ization (44.16), the trace of the intrinsic stress-energy-momentum is go(W, W)
= —pc?, which is just the negative of the energy density of the proper
mass of the medium. This energy density is generally much greater than
the trace —pe — 771 — 722 — 733 of the extra stress-energy-momentum.
In this sense we say that the intrinsic stress-energy-momentum is the
dominant part of ©.

So far we have defined a stress-energy-momentum tensor O(w) at
each point w in a material medium by using the structure of the Min-
kowskian space-time in special relativity. We have shown that the tensor
field © satisfies the equation of balance (45.18), which has the same form
as the equation of balance (45.1). If we regard a Lorentz system in the
special theory of relativity as the counterpart of an inertial system in the
classical theory, then the equations of balance (45.18) and (45.1) are just
the relativistic versions of the classical equations of balance of mass and
momentum.

The formulation of the stress-energy-momentum in a material medium
may be generalized in an obvious way from special relativity to general
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relativity. We simply regard the frame {e,(w)} as being a Lorentz basis at
the pasticular point w in the Minkowskian manifold. The condition (45.6)
still determines the timelike basis vector é,(w) uniquely, and then the space-
like basis vectors {&(w)} are unique to within an arbitrary rotation as
before. Of course, we still define T(w) by (45.7) and ©(w) by (45.17).

The definition (45.17) is suitable for a medium which has no electro-
magnetic fields. If electromagnetic fields are present, then we modify the
definition of @ to

O=¢wRWw T+, (45.26)

where §2 denotes the stress-energy-momentum tensor defined by the electro-
magnetic fields. [We shall formulate the theory of electromagnetism in the
context of general relativity in Chapter 8. The definition of the stress~energy-
momentum tensor 2 is given by (55.1) which is a direct generalization of
a similar definition (41.19) in special relativity.]

Note. The definition of the stress-energy-momentum tensor © must
be modified further when other kinds of energy and momentum fluxes are
present, such as heat conduction. We shall not consider such other fluxes
in this treatise, however.

In the view of Einstein there is a distribution of stress-energy-mo-
mentum tensor on the Minkowskian manifold & in the general theory of
relativity. According to Einstein’s formulation, the field of stress-energy-
momentum tensors coincides with the field of Einstein tensors associated
with the Minkowskian metric ¢. Consequently, in the general theory the
model for the event world is not completely determined a priori as in the
special theory and in the classical theory. Indeed, the structure of the
particular Minkowskian manifold, which represents the event world,
depends on such entities as mass, stress, electromagnetic field, etc. which
may be introduced into the manifold. This feature of the general theory
renders it impossible to treat rigorously the entities separately, since an
overall interaction of the entities is introduced into the model at the onset
of the formulation. Fortunately, the stress-energy-momentum tensor may
be decomposed into a dominant part and an extra part. To the extent that
the extra part does not alter the structure of the Minkowskian manifold
significantly, we develop separately in the context of general relativity a
theory of mechanics in this chapter and a theory of electromagnetism in
the following chapter. An example of electromagneto-gravitational interac-
tion is treated in the last section.
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46. Einstein’s Field Equations

In accord with Einstein’s general theory of relativity the stress-energy-
momentum distribution on & gives rise to the departure of the Minkowskian
manifold from the Minkowskian (affine) space-time. He wrote down the
field equations:

G — CXu = — KO8, (46.1)

which are now known as Einstein’s field equations. In these equations C
and K are two physical constants, which we shall identify later. Since 2
is covariantly constant, and since G satisfies the contracted Bianchi identities
(44.14), it follows directly from (46.1) that we must have

[Div @] = @2 , = 0, (46.2)

where the divergence is taken with respect to the Minkowskian metric o.

Comparing (46.2) with the special relativistic equation (45.18), we
see that the momentum-energy supply vector v} is absorbed entirely by the
curvature of the Minkowskian metric. Since the components of the Einstein
tensor G may be expressed in terms of the second partial derivatives of the
components of the Minkowskian metric o, the field equations (46.1) are
just the relativistic version of the Poisson equation (43.9) with the metric
corresponding to the gravitational potential { and the stress-energy-mo-
mentum corresponding to the mass density p.

In application the precise value of the stress-energy-momentum is not
easy to determine. The prevailing view in physics is that proper mass,
like electric charge, is confined to some small bounded regions. Outside
these regions the system of field equations (46.1) reduces to the system of
homogeneous equations

G*# — CZeb = 0. (46.3)

In the small bounded regions containing some proper mass, & and G may
become singular.

We may regard the stress-energy-momentum tensor © simply as an
average of (G — CZ)/K over the singularities. This interpretation is similar
to that of the concept of a density in the classical Newtonian theory.
Specifically, we regard the Newtonian gravitational potential { as a solution
of the homogeneous field equation

P2t =0 (46.4)

except on some small domains occupied by mass where { may become
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singular. Then the mass density o is just the average of V2(/4nk over the
singularities.

We notice that the field equations (46.1) and (46.3) contain a term
CZ=f, which has no counterpart in the classical theory. If we require that
& approach a flat Minkowskian (affine) space-time “at infinity,” then we
must set C = 0. The prevailing view among cosmologists, however, is
that the spatial slices of & are, in fact, finite. Hence it is meaningless to
talk about the structure of & *‘at infinity.” In other words a spatial slice
of & does not resemble an infinite affine space at large with islands of
material media floating on it causing curvature in adjacent regions. Rather,
each spatial slice has a finite volume only, and there is an average nonzero
density of proper mass on such a slice.

One possible solution of (46.3) is given by a Minkowskian manifold
with constant curvature, called a de Sitter manifold, such that

C
Rzﬂyd = _5— (Za’yzﬁd - 2:1621311)’

(46.5)
Sp, = —CZg,, Gy, = CLy,, S = —4C.
In that manifold the Gaussian curvatures on geodesic surfaces are in-
dependent of the choice of the surface at each point of the manifold. When
C > 0 in (46.5), all spacelike geodesics starting from any point will meet
again at a certain point, possibly the starting point itself, while all timelike
geodesics will open out and never meet again. When C < 0, the behavior
of the geodesics is just the opposite of that in the preceding case.
Einstein introduced the constant C in order to discuss extremely large-
scale problems in cosmology. It is generally agreed that the value of that
cosmologic constant is extremely small. Hence we shall neglect its contribu-
tion to the field equations. Thus we write

G = — K@, (46.6)

and we proceed to determine the value of the constant K in terms of the
gravitational constant k.

First, according to Einstein’s interpretation of the Minkowskian mani-
fold &, the world line of a particle is a geodesic with respect to the
Minkowskian metric ¢. In the special theory of relativity & is a Minkow-
skian space-time, which is an affine space equipped with a constant Min-
kowskian metric. Then there is no curvature, and a geodesic is just a straight
line. That metric corresponds to the zeroth-order approximate solution to
the field equations (46.6).
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Next, in the first-order approximation, we take [X,;] to be a small
departure from the constant matrix {4,,] = diag(1, 1, 1, —1) by a variable
field [F,5), such that all terms higher than the first order in F may be
neglected. Also, the motion is assumed to have a slow speed compared to
the speed of light, so that x* = vf is neglible relative to X* == ¢f. Under
these assumptions the system of geodesic equations (44.15) reduces to

d2xt d ( 1

= (7o), =123 @en)

The system (46.7) is similar to Newton’s law of gravitation with { given by

= — % 2F,,. (46.8)

Note. The factor C? in (46.7) and (46.8) is due to the fact that the
Minkowskian metric ¢ has a component matrix approximately equal to
the constant matrix [4,5] = diag(l, 1, 1, —1) in the coordinate system (x*)
= (x%, ¢t). Such a coordinate system corresponds approximately to a
Lorentz system in the special theory and an inertial system in the classical
theory. Some authors prefer to use the metric § = —(1/c®)s on &. Then
the coordinate system (£*) such that the component matrix [23',,,3] is ap-
proximately equal to the constant matrix [—4,;] = diag(—1, —1, —1, 1)
is related to our coordinate system (x*) by (£9) = (x%/c) = (xi/c, 1),
where (x%, ¢) corresponds approximately to an inertial system in the classical
theory. In the coordinate system (£2) we have £' = (vi/c) and £ = i.
Then the condition of normalization (44.16) becomes &(w, w) = 1, and
the system of geodesic equations (46.7) becomes

28 9 (1,
- (7 F“), (46.9)

Although some equations in the general theory take slightly simpler forms
in terms of the metric ¢ and the coordinate system (£*), we prefer to use
the metric ¢ and the coordinate system (x*) = (x%, ct), since they are
directly comparable to corresponding quantities in the special theory and
the classical theory.

Now taking the trace of the field equations (46.6) and using the defini-
tion (44.12) for the Einstein tensor G, we get

S = K6, (46.10)
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where @ denotes the trace of 0, viz.,
0 = X,,0% (46.11)

Substituting (46.10) into (46.6), we have

Saﬁ == —K(@aﬁ - %Eaﬁ@)’ (46.12a)
= —k6%,. (46.12b)

In the first-order approximation the Ricci tensor S is given by

Su = ooy (oo {o} + {;a}{;ﬁ} - {;ﬁ}{;a}

=—_.1_Aau( O F oy O%Fpy __OFy  0°Fp )
2 0x°® 0x8 Ox* Ox# ox~ 0x? 0xP Ox»
1 PF 18 aFﬁ*a) 1 9 [0F
=2 o T2 ( ax ] T2 X ( ax" \ (46.13)
where
Fy*e = AwF,, — }A"F, 8,". (46.14)

By using a coordinate transformation which preserves the first-order ap-
proximation, we can impose four more conditions on the components
F,, of the metric. Specifically, without loss of generality, we may assume that

6Fﬁ*ac
ox®

=0, p=1,23,4 (46.15)

Under these conditions the formula (46.13) for S, is simplified a great deal.
In order to satisfy the coordinate conditions (46.15), we change the
coordinate system (x*) to the system (%¥¢) by a transformation of the form

x* = x* -+ z%(xh), (46.16)

where z*(xf) are certain undetermined functions of the first order with
respect to F. To within first-order accuracy the inverse transformation of
(46.16) is given by

x* = ¥* — z%(x#). (46.17)

From the usual transformation law of the components of a tensor we then
have

oz 9z
A, +F,, = (a#a . )(a,n - 7;7)(11,‘, +Fg),  (46.18)
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which implies

F —F — A oz 0z

uy uy ap a_x,, T gy W (4619)
It follows that the transformation law of the components of the tensor
F* is

0z 0z az#

o A g t o

F—ﬂ*a = Fﬂ*u - aﬂ“. (46.20)

Differentiating this equation with respect to %, we obtain

6Fﬁ*“ _ 6Fﬁ*“ . 6227
T P ey (46.21)
Then
6F‘ﬂ*a _ _
L-=0, f=1,234 (46.22)

provided that the undetermined functions z* satisfy the partial differential
equations

o —— — /8
A o =45

'z oF, i* . y=1,2,3,4, (46.23)
which may be solved by the retarded potentials; cf. (32.19) and (32.21).
Thus a coordinate system (%¥*) in which the coordinate conditions (46.22)
are satisfied exists.

In the special coordinate system (x*) such that (46.15) holds, the
formula (46.13) simplifies to

0%F;

i (46.24)

Sop = Ao

Now in the first-order approximation the derivative with respect to x* is

small compare to that with respect to a spatial variable x?; i.e., the com-

ponents of F may be regarded as approximately independent of x*. Then

the right-hand side of (46.24) reduces to the ordinary (three-dimensional)
Laplacian of Fj,, viz.,

Sy = 2V 2F,. (46.25)

In particular, for the component F,,

S“ - ‘V’F“. (46.26)
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Using the field equations (46.6), we then have
—K@:‘; = %VzF44. (46.27)

In the first-order approximation the stress-energy-momentum tensor
@ is dominated by the (4, 4) component of the intrinsic part pw X W, viz.,

0% = @, = oc?, O = —pcd (46.28)
Consequently, @%, has the approximate value
0% = —}oc (46.29)

Substituting this value into the Poisson equation (46.27) and comparing
the result with (46.8) and (43.9), we obtain

K =22 207105 em1 g1 sect, (46.30)

where the numerical value of K in cgs units is obtained from that of k as
shown in (43.2).

Note. In cgs units the unit of the constant K is cm~! g=* sec?, as shown
in (46.30). It can be verified easily that this unit is consistent with the
field equations (46.6). Indeed, in our formulation the unit of the com-
ponents of the stress-energy-momentum tensor is cm~! g sec~2 (i.e., dyn/cm?)
and the unit of the components of the Einstein tensor is cm~2; the latter
unit follows from the fact that the unit of the coordinates (x*) = (x%, ct)
is cm.

In the following section we shall summarize a rigorous solution of
the homogeneous field equations

G =0 (46.31)

such that 2%, and therefore G*#, both become singular on a small bounded
region. This solution was obtained originally by Schwarzschild. It is gener-
ally agreed that the Schwarzschild solution corresponds to the gravitational
potential associated with a single particle according to the general theory
of relativity.
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47. The Schwarzschild Solution and the Problems of Planetary Orbits
and the Deflection of Light

Einstein’s field equations form a system of nonlinear second-order
partial differential equations for the components of the Minkowskian
metric when the components of the stress-energy-momentum tensor field
are given. These equations are very difficult to solve, and only a few exact
solutions are known. In this section we shall summarize one particular
solution of the system of geometric equations

S =0, 41.1)
which is equivalent to the system of homogeneous field equations
Gys=0 47.2)

by virtue of (44.12). The particular solution has two singularities near a
given point w € & and may be regarded as the metric in the neighborhood
of an isolated particle. The solution was discovered originally by Schwarz-
schild. One of the singularities is entirely different from the singularity in
the classical theory.

The starting point for the derivation of the Schwarzschild solution is
the assumption that the components of the metric be of the special form

2= erm, D A 243 = rtsin?6, 2= —e'"  (47.3)

where A(r) and »(r) are certain undetermined functions of r. This form of
metric corresponds to a gravitational potential which is spherically sym-
metric with respect to a particular world line, r = 0, in the coordinate
system (x*) = (r, 0, @, ct), where (r, 0, ¢) are the spherical coordinates
centered at the world line.

It can be shown that the nonzero Christoffel symbols based on the
metric given by (47.3) are

{111} = % xs {212} = —re™, {313} — —re-*sin?f, { 41 4} _ % "
2 3 3 1 2 _
{ } {21} - {x3} = {31} =— {33} = —sin 6§ cos 6, 47.4)
} 4

{233} B {332

= cot 8
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Then from (44.6) and (44.10) the nonzero covariant components of the
Ricci tensor S are

1 1 1 A

_— II_____ 1. —_ 12_
Su=gv =g AVt
Sye = e“[l + —:lz—r(v’ — l’)] -1,

(47.5)
Sy = e*sin? 9[1 —I—%r(v’—l’)] — sin? 6.
2 Ay y'2 "

—eo-n|_Y_ LAY Y Y

Su= e =t G ]

From (47.1) we see that the right-hand sides of the four equa ons in (47.5)
must all vanish,

From S;, =0 and S,, = 0, we obtain A’ = —»'. Assuming that, as
r — oo, the metric approaches the flat metric ¢ with components

Ell = 1, Z“zz = r2, E‘33 = I’2 Sin2 0, 244 = —‘1, (47.6)
we get A = —v. Now using this condition in either Sy, =0 or Sg3 =0,
we obtain

e(l +r')= 7‘1— (re*) = 1.- 41.7)

The preceding equation may be integrated easily, and the solution is

. 2km
e =1— 7 = 47.8)

where the constant of integration is determined by the condition that
{ = —km/r, the Newtonian potential, satisfies (46.8).

Note. When 4 = —yv, the conditions S;; = Sy = 0 have an integral
e’(1 + rv') = constant. Hence the solution (47.8) automatically satisfies
the requirements S;; = Sy, = 0.

We now use the Schwarzschild solution to analyze the geodesics in
the neighborhood of the center r = 0. As we have remarked before, a
timelike geodesic corresponds to the world line of an infinitesimal particle
(i.e., whose own gravitational field is neglected), while a signal-like geodesic
corresponds to a path of light (i.e., the history of a light front) passing by
the center r = 0.



Sec. 47 General Relativistic Theory of Gravitation 311

We consider first the orbital problem. From (44.15) any timelike
geodesic (x*(s)) = (r(s), 6(s), p(s), ct(s)) satisfies the system of equations

[¢4
R 4 { }xﬁxv =0, «a=1234, 47.9)
By (

and the condition of normalization
o(W, W) = X pXXf = —c% (47.10)

We set o = 2 in (47.9) first. From (47.4)
5+%f€— sin 6 cos f¢? = 0. (47.11)

We consider the special case that the geodesic stays on the plane such that

T

=2 (47.12)

Clearly the preceding assumption is consistent with the equation (47.11).
For this special case the remaining three equations in the system (47.9) are

2,2
F——ﬂ—r—ﬂ—r(l _ Zkm )¢2+ km (1 — 261‘2;" )c2i2=0,

1 — 2km|c?r c?r c?r?
¢+%r'¢= 0, (47.13)
- 2km/cr® |,
ct + T—W— ref = 0.

Since the tangent vector of the world line satisfies the condition (47.10),
we have an integral
"-2

1 — 2km/c?r

= —c (47.14)

+ r2¢2 _ cz,‘z(l _ 2km )

cr
Next, the last two equations of (47.13) give rise to the integrals

r*g = h, (47.152)

ctr

(1 _ 2km )i =g, (47.15b)

where h and ¢ are two constants of integration. Substituting (47.15) into
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47.14), we get

2kmr
¢ 2

F2 -+ rz(pz — 2’f’m — c2q2 — 2 4 (")2_ (4716)

The integrals (47.15a) and (47.16) may be compared with corresponding
results in the Newtonian theory, viz.,

dr\®  (dp\* 2km _ 2F
(dt)Jr,(dt)_ = (47.172)
dy 7 .
2 1
ro - =, (47.17b)

where 77, E, and H denote the mass, the total energy, and the moment
of momentum relative to the center r = 0, respectively, of the orbiting
infinitesimal particle, and where m denotes the mass of the particle at the
center r = 0. It is important that the mass /7 be infinitesimal compared with
the mass m, since the problem of two bodies has not been solved in the
general theory of relativity. (The Schwarzschild solution has singularities
near the center r = 0 only. The classical trick of using the center of mass
of two particles to solve the problem of two bodies does not work in the
relativistic formulation.)

We notice that the main difference between (47.16) and (47.17) is the
extra term (2kmr/c*)¢* in the former equation. Also, the independent
variable s in the relativistic equations is the proper time, while that in the
classical equations is the Newtonian time. A more direct comparison may
be made on the orbits of the infinitesimal particle. We eliminate the variable
s in (47.16) by using the integral (47.15a), obtaining

1 dr\? I 2km c*q? — ¢ 2km

<—rT do ) T T YT T as (47.18)
As remarked in the classical formulation, the equation (47.17a) may be
simplified by introducing the new variable ¥ = 1/r. Then (47.18) becomes

au\* ., 2km c2q? — ¢t 2km .
(—d?,)—) +ut = e u-+ e + po u., 47.19)
Differentiating the preceding equation with respect to ¢ and then removing
the nonzero common factor 2du/dp, we obtain

d?u km 3km
T¢’— + U= —hT- + c’ u’. (47.20)
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In the classical theory the same procedure leads to
_— = (47.21)

provided that H/# = h. Comparing (47.20) with (47.21), we see that the
relativistic correction term (3km/c®)u? is extremely small. Indeed, its ratio
with the classical term km/h® is

Skmu® | km _3(_@_)2
c? B T\ ¢

(47.22)
where r¢ is of the order of the orbital speed.

The equation (47.20) may be viewed as a nonlinear vibration problem
in Newtonian mechanics with ¢ corresponding to the time and }u® —
(km/h®)u — (km/c?)u® corresponding to the potential energy. Without the
third-order term the solution is given by a simple harmonic motion with
neutral position at u equal to km/h? and the period in ¢ equal to 2z This
classical solution gives rise to a closed elliptic orbit for the particle. When
the third-order term is included in the potential energy function, the neutral
position is shifted to the root of the algebraic equation

km 3km
u— i w=0 (47.23)

near the value km/h2, and the period in ¢ is lengthened to 2z + 6. Then
the orbit may or may not be closed, and the perihelion advances by an
angle 4 per cycle in u. This correction is small in each cycle, but it will
accumulate and become observable after many cycles.

To find an approximate value for the angle 4, we use the folloving
iterative procedure: First, we solve the classical equation (47.21) without
the third-order term. The result is

k
u=—5-[1 + & coslp — go)} 47.24)

where ¢ and ¢, are two constants of integration representing the eccentricity
and the phase angle of the perihelion of the closed elliptic orbit. Substituting
(47.24) into the right-hand side of (47.20), we get an approximation of the
nonlinear equation by a linear equation with forcing terms depending on
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the independent variable ¢, viz.,

du km  3k3md e 6k*m?
Gt =T e (L )+ e e coso — 90
3k¥m®
+ g & 005 29 — 7o) (47.29)

We recognize immediately that there is a forcing term which is proportional
to the base solution given by (47.24). In the theory of vibrations it is known
that such a forcing term gives rise to a resonance, and the solution is of
the form

. 3km® .

= — ep sin(p — o), (47.26)
where the resonant amplitude is proportional to the independent variable ¢.
Adding this correction term to the base solution, we get the approximate
solution of the nonlinear equation,

km

U= i [1 + ecos(p — @o — @8)], 47.27)
where
3k%m?
S = 5 (47.28)

For the planet Mercury the preceding formula predicts that the ac-
cumulated advances of the perihelion in a century amounts to about 43 sec.
This result agrees quite well with the observed value in astronomy and is
generally regarded as strong evidence in support of the validity of Einstein’s
field equations.

The problem of the deflection of light near the center r = 0 of the
Schwarzschild solution may be solved in a similar way. The only change
from the previous problem is that the path of light corresponds to a signal-
like geodesic whose tangent vector is a signal vector. Hence w satisfies,
instead of (47.10),

o(W, W) = S giuif = 0. (47.29)

As a result, the parameter s is unique to within an arbitrary positive factor
only. Then (47.14) is replaced by

P

—lt—z—km—/c’;' + r’q')’ - C’lm(l —_ 2km/c’r) = 0, (47.30)
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while (47.15) still holds. By following the procedure as before, we obtain

2
%‘:- fu— 3’;’" w2, @7.31)

The preceding equation may be compared to the classical equation
v 4+ u=0, (47.32)

which has a general solution of the form
u = uycos(g — @), (47.33)

where r, = 1/u, denotes the radius, and where ¢, denotes the phase angle
of the perihelion. The orbit is, of course, a straight line in the (r, ) plane.

The angular difference between any two consecutive zeros of (47.33)
is precisely equal to z. That difference corresponds to the fact that the
two directions in which the light path goes toward infinity differ by an
angle z. When the nonlinear term is included, the solution of (47.31) is
no longer given by (47.33). The angular difference of two consecutive zeros
of the solution u = u(p) still has the meaning as before. However, the
value is = + &, where £ is a small positive angle of deflection, which may
be estimated by the iterative procedure.

Specifically, we substitute the base solution given by (47.33) into the
right-hand side of (47.31), obtaining

d* emu,?
dT; tu= —# cos (g — @p). (47.34)

A particular solution of the preceding equation is

kmuy?

U= P

[cos®(p — @) + 2sin*(p — @o)]. (47.35)
Then the approximate solution of the nonlinear equation (47.31) with the
same radius and the same phase angle as the base solution at the perihelion is

kmug?
c2

u = uycos(p — @o) + [cos® (9 — @o) + 2sin®(p — @,)].  (47.36)

Changing the coordinates (r, ¢) into the Cartesian coordinates (x, y)
by the transformation

=rcos(p — @o),  y =rsin(p — @), (47.37)
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we can rewrite the solution (47.36) as

X = ro— fz’r': ( ;‘:: ;3;; . (47.38)
Hence the equations of the asymptotes are
X=ry— _/21_ (+£2y). (47.39)
o
Thus the deflection angle £ is given approximately by
£= t]:: . (47.40)

For the gravitational field of the sun at a distance equal to the sun’s
radius the preceding formula predicts an angle of deflection amounting to
about 1.75 sec. This value also agrees quite well with the observed values
obtained at several total solar eclipses.

Before closing this section, we remark that the Schwarzschild solution
becomes singular not only at r =0 but also at r = 2km/c?; cf. (47.8).
The latter singularity, which has no counterpart in the classical theory at
all, is known as the Schwarzschild singularity. This peculiar singularity
cannot be observed, however, since mass cannot be compacted into such
high density as to make it outside the material medium. Indeed, if m = 1 g,
then the radius of the Schwarzschild singularity is only

r= —?—I:— X 1 =148x10"%8cm. (47.41)
c

If m is of the order of the solar mass, m = 1.99 x 103 g, the radius of the
singularity is of the order

r = 2.95x10%cm, (47.42)

which is much smaller than the radius, 6.95x 10 cm, of the sun.

48. The Action Principle

In analytical mechanics we have shown that the trajectories of a
conservative system may be characterized either by the system of Lagrange’s
equations or by Hamilton’s principle. The former is a system of differential
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equations, and the latter is a variational principle. Trajectories of the
system are, on the one hand, solution curves of Lagrange’s equations and,
on the other hand, extremal curves of the variational integral of the Lagrang-
ian function taken over a class of curves satisfying certain boundary condi-
tions and smoothness conditions. These results have been discussed in
detail in Sections 5 and 7.

We note that the system of differential equations is essentially deter-
mined by the trajectories. Indeed, if the trajectories are given by a param-
etrized family of coordinate functions, then the differential equations may
be obtained by eliminating the parameters from the coordinate functions
and their time derivatives. The variational integral, however, is not deter-
mined by the trajectories. Clearly, a function cannot be determined by its
extremal points, and the trajectories are merely the extremal curves of the
variational integral over a family of curves. Hamilton’s principle gives
but one variational integral, whose extremal curves coincide with the trajec-
tories. Many other variational integrals possessing the same extremal
curves exist.

In much the same way a gravitational potential may be characterized
either by some differential equations or by some variational principles.
We have shown in Section 38 that the Newtonian potential { satisfies the
Laplace equation

V=0 (48.1)
in a vacuum and the Poisson equation
V2 = dnkg (48.2)

in a material medium. Now we show that { may be characterized by several
variational principles also.

Let & be a bounded domain in an instantaneous space in Newtonian
space-time. We define the Dirichlet integral D({) for smooth functions
& on the closure & by

D) = Jg grad £ - grad £ dx. 48.3)

Then we have the following variational principle: { is a Newtonian poten-
tial in & for vacuum if and only if it is an extremum for the Dirichlet integral
among all smooth functions { having the same boundary values as (.

This variational principle may be proved easily in the following way:
We take the variation of the Dirichlet integral D at a particular function
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{ over the set of functions having the same boundary values as {:

8D(C) = ”gz grad ¢ - grad 8¢ dx

~ [ 2div(a¢ grad 0 dx—j 26 V2 dx

JG k-

~ 26CgradC-nda—J 28¢ V3¢ dx

J oz 9

~ [ 2wy scax, (48.4)
k-

where the surface integral vanishes since 6 = 0 on the boundary. Con-
sequently, 8D({) = 0 for all 4 if and only if { satisfies (48.1). Thus the
variational principle is proved.

Note. In (48.4) 6 denotes the variation of { and dD({) denotes the
variation of D at {. These notions are standard in the calculus of variations.
We may use a l-parameter family of functions to express the variations
as shown in Section 7. Specifically, we consider the family of functions

(o= Cx) = {(X) + en(x), x€Z, (48.5)

where ¢ is a parameter, and where 7(x) is a smooth function on & satisfy-
ing the boundary condition

nx) =0, xed. (48.6)

When ¢ = 0, the function £, reduces to the function {. Thus {, corresponds
to a l-parameter family of variations from the function { in the direction
of the function #. Using the l-parameter family {,, we can rewrite the
equation (48.4) as

d d
== D(E) |0 = Jg [—27258 di‘ Lo dx = J@ (—2V2ymdx.  (48.7)

Since the notations 6 and 8D are more compact, we shall use them through-
out this section. All equations expressed in terms of these notations may be
rewritten in terms of the derivatives with respect to the parameter e if
we use the l-parameter family {,; we have just shown that the equation
(48.4) may be rewritten as the equation (48.7).
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The preceding variational principle asserts that D({) is an extremum
at ¢ over the class of functions ¢ having the same boundary values as ¢.
In fact D({) is a minimum among the values D(£), since from (48.4)

D(¢ + 60) — D(D)
= J@ [grad( + do) - grad({ + 60) — grad { - grad {]dx

= J 2 grad ¢ - grad 6 dx + J grad 6 - grad 8¢ dx
4 4

= J grad 8¢ - grad 8¢ dx, (48.8)
4

which is positive unless 4 = const = 0, where we have used the boundary
condition on ¢ to determine the value of the constant. An extremum of a
variational integral in general need not be a minimum, of course. The fact
that D({) is actually a minimum is asserted by the Dirichlet principle.
In this section we are mainly interested in various variational principles
for the gravitational potential, both in the classical theory and in the
relativistic theory.

We call the coefficient of 4 in the integrand of the variation D({)
the variational derivative of D at {; i.e.,

8D(2) = J@ ‘sg(f) 8¢ dx, “6%(@6-) = —2p2 (48.9)

Using this concept, we can rewrite the field equation (48.1) as

D)
35t = 0, (48.10)
and the field equation (48.2) as
oD(l)
——_—_55 = —2nkp, (48.11)
or, equivalently,
_ 1 6D({)

which asserts that the mass density is determined by the gravitational
potential { through the variational derivative of the Dirichlet integral.

The Dirichlet integral is just one example of variational integrals whose
extremum over a class of functions { coincides with the Newtonian gravita-



320 Chapter 7 Sec. 48

tional potential { of a vacuum. Another example is the integral
A(f)=j — (G2 + } grad & - grad £) dx. (48.13)
4

We claim that { is a solution of the field equation (48.1) in the domain
2 if and only if it is an extremum of the variational integral A({) over the
class of smooth functions £ such that the boundary values of { and grad £
coincide with those of { and grad £, respectively.

This variational principle may be proved easily as before. We take the
variation of A from (48.13)

SA(L) = '9 —(82V°C + LV25¢ + grad ¢ - grad 8C) dx

~

= —scrrcax— J div(¢ grad 8¢) dx
k-

J
= — 8LVt dx—_[ ¢ grad 6L do
JG 3
= [ (=720 6z ax, (48.14)

o

where we have used the boundary condition on grad 6{ to eliminate the
surface integral. It follows from (48.14) that dA({) = 0 for all 8 if and
only if 2 = 0. Thus the variational principle is proved.

Using the concept of variational derivative defined before, we have

dA(0)

—5— =7 (48.15)

Thus for a vacuum we can rewrite the field equation (48.1) as

0AQ) _

55— =0 (48.16)

while for a material medium we can rewrite the field equation (48.2) as

dA(0)
14

= —4ankp, (48.17)

or, equivalently,

__ 1 AR
e= " Zak 8

(48.18)
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which asserts that the mass density o may be determined by ¢ through the
variational derivative of A.

Note. Like the Dirichlet integral D, the variational integral A also

takes a minimum at { among the class of functions {. Indeed, from (48.1),
(48.13), and (48.14) the difference between A({ + 6£) and A({) is given by

AL + 80) — A(D) = jg (8726 + } grad 8¢ - grad 87) dx
- Jg (—div(8¢ grad 82) + grad 8¢ - grad 87) dx
— J 4 grad 8¢ - grad 6 dx
9

— J 3 grad 8¢ - grad 8¢ dx, (48.19)
k-

which is positive unless 6 = const = 0, where we have used the boundary
condition on 6 to determine the value of the constant.

Now in the general theory of relativity the Minkowskian metric plays
the role of the gravitational potential. The system of field equations is

Gy =0 (48.20)
for a vacuum and is
Gy = — 82'4" 0, (48.21)

for a material medium. Notice that the left-hand side of (48.20) and (48.21)
are formed by partial derivatives up to the second order in the components
25 of the Minkowskian metric . Thus the systems of field equations (48.20)
and (48.21) are comparable to the field equations (48.1) and (48.2), respec-
tively.

It turns out that G,; may be determined by the variational derivative
of the integral

A@G) = J 35— J S(—Z)2 dw, (48.22)
k- k-

where § and & denote the curvature scalar and the unit density tensor
based on the Minkowskian metric &, which is required to satisfy the bound-
ary conditions £,; = Z,5 and 02 4/0x” = 0Z4/dx? on 3. Of course the
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domain 2 here is contained in the 4-dimensional differentiable manifold
&, (x*) is any coordinate system in 2, and dw = dx! dx® dx® dx*.

Note. It can be verified easily from the transformation law of the
components of the metric that if the boundary conditions faﬂ =2,z and
8i'aﬂ/6xi’ = 90X 7/dxv are satisfied on 0.2 relative to any one coordinate
system (x?) in &, then the same are satisfied relative to all other coordinate
systems in 2. Thus the boundary conditions are actually conditions on
the metrics & and ¢ independent of the choice of the coordinate system (x?).

Now we claim that

dA(0)
—62‘;73— = Gazﬂ' (4823)

Hence for a vacuum we can rewrite the field equations (48.20) as

0A(0)
=0, (48.24)

while for a material medium we can rewrite the field equations (48.21) as

SA() 8k
828 ct

0,- (48.25)

The condition (48.24) means that the Minkowskian metric ¢ in a vacuum
is an extremum of the variational integral A over the class of Minkowskian
metrics & having the same boundary values and the same first derivatives
on the boundary as ¢. For a vacuum the assertion that

dA(0) .
SA(c) = J.@W 88 dw — 0 (48.26)

for all variations §2* of the Minkowskian metric satisfying the afore-
mentioned boundary conditions is known as the action principle.

Note. The invariant integral A(o) is, in fact, proportional to the usual
notion of an action integral. Indeed, from (44.12) the curvature scalar .S
is related to the trace G of the Einstein tensor G by

G=-S. (48.27)

From (48.21) G is related to the trace @ of the stress-energy-momentum
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tensor © by
8nk

c?

G=— 6. (48.28)

Now recall that the trace of © is dominated by the intrinsic energy —oc2.
It follows that A(o¢) is given approximately by

8nk

c2

A(0) = Jg _ o(—Z)2 dw, (48.29)

which is proportional to the usual definition of an action, i.e., an integral
of energy with respect to time. In particular, A(¢) = 0 in a vacuum.

To prove the formula (48.23), we calculate the variation dA(¢) directly
from (48.22):

8A(c) = Jg (8,5 O[ZB(—Z)V2] + Za8(—Z)V2 8S,,} dw,  (48.30)

where the variation 4[X*f(—2)V2] is given as usual by
O[Z=8(—2)2] = (—2)2(0L*F — 322BL 50270). (48.31)

Substituting this result into the first term of the integrand and using (44.12),
we get
S.p0[2B(—ZY2] = G 4 (—2)V202=F. (48.32)

Hence to prove (48.23) we must show that the integral involving the varia-

tion 45,5 reduces to a boundary term.
From (44.6) and (44.10)

_ 0 ([ 9 fv AsfY 'APE.
856 = 55 Nan) — 757 o} + eyt lit} *+ 168t
A y y A
~{apt ot — (R olast (4833
Now recall that the Christoffel symbols satisfy the set of transformation

rules:
T\ (o) 0% oxt ox o 9%
{ﬂ)’}_{m} ox® oxf oxv % 0%F Ox’ (48.34)

under a change of coordinate system from (x%) to (¥*); cf. equation (56.15)
in Section 56, IVT-2. Hence 8{s,} are the components of a third-order
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tensor field on 2. By using the formula for the covariant derivative of a
third-order tensor field, we can rewrite (48.33) as

sG]l

Substituting this result into the second term of the integrand in (48.30),
we get
Zeb(—EY18S,, = (—Z 1/2(&%{ Y } — zvaa{’g }) . (4836
(—2288,, = (—2) i ), 4839
Now using the identity

(= DWe(VB) ;= _8_37 [(—Z)2p8] (48.37)

for any vector field V, we see that the contribution of the second term in
the integrand of (48.30) may be expressed as a surface integral which
vanishes by virtue of the boundary condition on the first derivatives of
L. ie., 6{5) =0 on 4. Thus

SA(c) = j G0 ZH(— Z)/2 dw = J (G.)0Z¥E,  (48.38)
4 o4
which implies (48.23) by the definition of the variational derivative.

Note. To get Einstein’s field equations including the cosmologic con-
stant C, we simply change the definition of the integral A(&) to

A@G) = J S + 20 (48.39)
z
Then (48.23) is replaced by
8A(0)
——5—2—:';5— == G&I# — CZM,. (4840)

In other words the metric 2',; is —2 times the variational derivative of the
volume integral; i.e.,
V(o)

Sz = 1%, (48.41)

where V(&) is defined by
V(&) =J g, (48.42)
-
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The formula (48.41) follows directly from the variation of the volume
integral V:

V() = f@ 5(— )2 dw
= J _%Eaﬂazaﬂ(_z)lm dw
k-

- J (—3Z,,)0 08, (48.43)
k-

49. Action and Coaction

In the preceding section we explained the relation between the Einstein
tensor G of the Minkowskian metric ¢ and the variational derivative
dA(0)/do of the action integral A, which is an invariant integral of a certain
4-form over a domain in the 4-dimensional differentiable manifold &
The variational derivative of A is taken with respect to a class of Min-
kowskian metrics & satisfying certain boundary conditions. For a vacuum
we have shown that the metric ¢ is an extremum of A among the metrics &.
In this section we explore another relation between the metric ¢ and 4-
forms on & Instead of considering the special status of the metric ¢ among
the metrics & relative to a certain 4-form, we now hold the metric o fixed
and show that it gives rise to an operator on 4-forms. It turns out that,
conversely, this operator may be used to characterize the metric o.

Let A be any 4-form on &. We call A an action density, and we define
the action A[Z] of A over an (oriented) 4-dimensional domain & in & by

A[D] = JQA. @9.1)

The action integral considered in the preceding section is a special case
of this concept, such that the 4-form is S&. Since S and & are determined
by the metric o and the orientation on &, we regard the action integral
A(o) as a function of ¢, which belongs to a class of metrics & satisfying
certain boundary conditions. Here, the metric ¢ is held fixed, and we
consider the action of a 4-form A in general over a 4-dimensional domain
P in &. Thus A[Z] is a function of the pair (A,.2).
Since & is 4-dimensional, every 4-form in & is closed; i.e.,

dA = 0. (49.2)

Hence by the Poincaré lemma (cf. Section 52, IVT-2) there exists, locally,
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an action potential P, which is a 3-form such that
A =dP. (49.3)

As usual the 3-form P is unique to within an additive closed 3-form only.
We claim that there is a particular action potential P, which satisfies the
following condition: The dual D4(P) of the action potential P is a closed
I-form; i.e.,

G = D,P, (49.4a)

dG =0, (49.4b)
where the duality operator Dy is induced at each point w e & by the Min-
kowskian metric ¢ and the orientation on the tangent space &,; cf. (40.27)
and (40.32). When we impose the preceding condition on the action poten-

tial P, the 1-form G defined by (49.4a) also has a potential 1, which is a
smooth function (i.e., a O-form) such that

G =dr. (49.5)

To prove that an appropriate action potential satisfying (49.4) exists
for any given action density A, we substitute (49.5) into (49.4) and then
into (49.3), obtaining

A =dD, dY, (49.6)

where we have used the fact that the inverse of Dy is just Dy; cf. (40.30)
and (40.32). We now apply the duality operator D, on (49.6), and the result
is a scalar equation (i.e., an equation in O-forms)

M =D,dD, dY, 49.7)
where M denotes the dual of the action density A, viz.,

M = DA, (49.82)
A= —ME. (49.8b)

Now for a 0-form Y we define the Laplacian' Lap Y° by
Lap Y = Div(dY), (49.9)
where Div denotes the divergence with respect to the Minkowskian metric a.

O For the general concept of the Laplacian of a differential form, see W. V. D, Hodge,
Theory and Applications of Harmonic Integrals, Cambridge University Press, London
and New York, 1952,
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Relative to any coordinate system (x*) the Laplacian is given explicitly by

oY _ 1 0 V2 Sap oY
5, = o e (P )

Lap ¥ = (z’aﬂ . (49.10)

where the comma denotes the covariant derivative as usual.

Note. For a Minkowskian space-time with a constant metric there
are Lorentz systems (x*) in which the component matrix of the metric is
the constant matrix [4,,] = diag(1, 1, I, —1). Then the right-hand side
of (49.10) reduces to

2
(A . ar) O R @9.11)

OxF ct Ot

The Laplacian in this special case is usually denoted by the symbol 2, viz.,

1 oY

2y — 2y — —/— —
O =V — — =5

(49.12)
The right-hand side of (49.12) is invariant under a Lorentz transformation
from one Lorentz system to another Lorentz system but is not invariant
under a coordinate transformation in general. For a Minkowskian manifold
& Lorentz systems may or may not exist. Then the Laplacian is defined by
(49.9), which has the coordinate form (49.10). The right-hand side of (49.10)
is invariant under any coordinate transformation as it should be, since the
definition (49.9) does not depend on any coordinate system.

Now we claim that the right-hand side of (49.7) is just the negative of
the Laplacian of 17; i.e.,

Lap Y= —D, dD, dY- (49.13)
Hence (49.7) is just the generalized Poisson equation
Lap Y= —M (49.14)
on the Minkowskian manifold &,

Note. For a Minkowskian space-time the formula (49.13) may be
verified easily by using a Lorentz system (x*). Indeed, since dY" has the
component form

aY ar or ar
df = e+ =m e+ —m e+ e, (49.15)
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from (40.30) its dual D, d1° has the component form

_or , ., 0 ., 9r 2 A s
D, dY = 7 © AetAe +——ax2 eeNelAe —i——-——axsel/\e A e
oy L.
-}———-—a el N et A el (49.16)

Taking the exterior derivative of (49.16), we obtain

o oer oY oy BY \ . . .
dD, dY = ( F Py Prally re rouual e el e B )e NENENe
— Y= (49.17)

Then from (44.27) the dual of this 4-form is
D, dD, dY = —[?Y. (49.18)

Thus the formula (49.13) is proved in this simple case. The preceding proof
is not valid for the Minkowskian manifold &, however, since a Lorentz
system may not exist. '

To verify the formula (49.13) in general, we recall first that the duality
operator D, is defined by the condition

04 (D,®, W) = o,(® AP, E) (49.19)

for all r-forms @ and all (4 — r)-forms W; cf. (40.27). Using (40.28),
we can express the left-hand side of (49.19) in the coordinate form

04—r(Dr¢s ‘I’) = 1 211;31 o 214-rﬂ4-r(qu))“l"

1
=T .., (49.20)

S gy

and the right-hand side in the coordinate form

=Y = 1 18 4 B, 1 1 CILY79 STTTY PR
04(¢/\\P,u)—-—4TZ°‘ 1...244_r_!_ (4"')‘ /;;“./1 " a:_

X ¢ﬂ1"°ﬂrT11"°h—r('—z)l/asﬁr"ﬂ(’ (49.21)

where we have used the fact that the component form of the unit density
tensor & is

E = (— 22 X1 ® -+ @ dx
/e
— ( Z") £ dxa N -« A dx%s, (4922)

AT Carw

As usual ¢, ..., denotes the skew-symmetric symbol for a 4-dimensional
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space; cf. Section 20, IVT-1. Now since the condition (49.19) holds for all
(4 — r)-forms W, combining (49.20) and (49.21) and eliminating ¥, we get
(D,P)

= (CEPRER o DD gy, (49.23)

Xty fog—y

The preceding component formula characterizes the duality operator D,
relative to a positive coordinate system in general. In the derivation of this
component formula we have used the formulas (20.13), (21.16), and (38.21)
in IVT-1.
Now using the component formula (49.23), we can verify the identity
(49.13) by direct calculation. Specifically, the component form of 47 is
oY

dY = —— dx*. (49.24)

Then from (49.23) with r =1 and ® = 4T

Dl dY‘ —_ ( 2)1/22«1: ay:

dxr ) dx#s (X dxma. (49.25)

Eappugny

Taking the exterior derivative of (49.25), we obtain

N R azm [(—2)1/’22” g ] sy B ® <+ @ AN
Then from (49.23) with r = 4 and ® = dD, dY, 29
D, dD,dY = o 5 (—E)E . Dy e,
X 8?011 ~Zyrz a: ]
o L e,
% aim ( 2)1/22¢9 87‘
- _317 _(_:_;T)Va_em...p.ewwaﬂ‘ aap, [( —Z)vese gY‘
- (_2)1/2 8, aam [( 2)1/22aw 0T
B )

= —Lap Y, (49.27)
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where we have used (49.10) and the formulas (20.12), (20.13), and (21.6)
in IVT-1. Thus (49.13) is proved.

Note. The duality operators D,, r =0, 1, ..., 4, are often denoted
collectively by a single symbol %, called the Hodge * operator. We distinguish
the duality operators by an extra subscript r because D, and D, enter
explicitly into the ether relations, and they do not have the same properties;
e.g, D;71 = D; but D,7! = —D,. The composition D,_, dD,,, together
with a particular sign is known as the codifferential and is denoted usually
by the symbol 4. It is important to note, however, that & is a Minkowskian
manifold, not a Riemannian manifold. Hence the sign must be chosen
carefully. For a Riemannian manifold the negative sign in (49.13) may
be removed.

Now for any given action density A we determine the function M by
(49.8a), and then we solve the function Y" from (49.14). From the function
Y we determine the 1-form G by (49.5). Then G is closed, and its dual

P=D,G (49.28)
is an action potential, viz.,
dP = dD,G = dD,dY = —DM = A. (49.29)

Thus we have shown that an action potential P satisfying the additional
condition (49.4) exists.

Note. Relative to a Lorentz system (x*) the equation (49.14) reduces to

1 oY

¢ o

vy — = —M, ~(49.30)

which has the same form as the equation (32.21) and may be solved by the
retarded potential; cf. (32.19). In general a Lorentz system may not exist.
Then from (49.10) the equation (49.14) has the form

1 7}

—(—_—-'27)37—2— 0xﬂ = —M, (49.31)

oY

— 1/2 ¥ af
[(—zymge 2]
which is a linear second-order hyperbolic partial differential equation.
We can obtain a solution of (49.31) by solving a Cauchy problem.



Sec. 49 General Relativistic Theory of Gravitation 331

We call a closed 1-form G, which is related te an action potential P
by (49.4a) or, equivalently, by (49.28), a coaction field associated with the
action density A. A potential function Y for G is then called a coaction
potential. The basic relation (49.28) between an action potential and a
coaction field is comparable to the Maxwell-Lorentz ether relation (40.26),
which pairs a charge—current potential with an electromagnetic field.

The relation between an action density A and a coaction field G is
not one-to-one in general. Indeed, suppose that Z is a solution of the
homogeneous equation

Lap Z = 0. (49.32)

Then the closed 1-form
Y=4dZ (49.33)

may be regarded as the coaction field associated with the zero action
density; i.e., the dual of Y is a closed 3-form

W = D,Y (49.34)

such that
dW = 0. (49.35)

Hence if G is a coaction field associated with the action density A, then
G 4+ W is also.

Conversely, suppose that G and G are two coaction fields associated
with a given action density A. Then the difference

Z=7"-7, (49.36)

where ¥" and Y denote the coaction potentials of the coaction fields G
and G, respectively, is a solution of the homogeneous equation (49.32).
Consequently,

G=dV=dr+dzZ=G+ W, (49.37)

where W is defined by (49.34) with Z given by (49.36). Thus the set of coac-
tion fields associated with a given action density may be characterized by
the set of solutions of the homogeneous equation (49.32).

In particular, we can force the relation between A and G to be one-to-
one on a domain .2 by imposing a suitable boundary condition on the coac-
tion potential 7" in such a way that the only solutions of the homogeneous
equation (49.32) are the constant solutions. Then W = 0 and G = G.
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In a series of lectures on electromagnetism and gravitation Toupin®
formulated a theory in which he used the terms “‘gravitational field” and
“gravitational potential” to describe the I-form G and the O-form Y,
which we call coaction field and coaction potential, respectively. Toupin
called the line integral

GIF] = Jg G (49.38)

on any oriented curve & the “gravity” of @. From (49.4b) the “gravity”
satisfies the following conservation law:

J G- J dG = 0, (49.39)
9.9 4 ‘

where & is any 2-dimensional surface in &’

Since Toupin’s terms ‘“‘gravitational field” and ‘“‘gravitational poten-
tial” are not the same as those in Einstein’s theory, which we have followed
so far in this chapter, we have changed the terms to coaction field and
coaction potential, respectively.

In Toupin’s theory the event world is represented by a 4-dimensional
differentiable manifold & together with two basic classes of differential
forms which satisfy certain axioms. The first class of differential forms
contains the action density A, the action potential P, the “gravitational
field” G, and the “gravitational potential” Y. The axioms governing this
class are two conservation laws which correspond to the field equations
(49.2) and (49.4b) and an ether relation of the form

P = NG, (49.40)

where N = N(w) is defined at each point w € & as a linear operator from
the space of skew-symmetric covariant tensors of order 1 to the space of
skew-symmetric tensors of order 3 at the point w. Since a Minkowskian
metric and an orientation are not assumed in Toupin’s theory, the duality
operator D, is not defined. Instead, the operator N is required to possess
certain basic properties, which we shall consider in detail in the next section.

It turns out that if a Minkowskian metric and an orientation are
defined on & as in Einstein’s theory, then the duality operator D; possesses
the required basic properties of the operator N in Toupin’s theory. Con-

& R. A. Toupin, “Elasticity and electro-magnetics,” in Non-linear Continuum Theories,
pp. 206-342, C.I.M.E. Conference, Bressanone, Italy, 1965. Coordinators: C. Truesdell
and G. Grioli.
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versely, if & is a 4-dimensional differentiable manifold equipped with a
field N possessing the basic properties as required in Toupin’s theory, then
a unique Minkowskian metric and a unique orientation may be defined on
& in such a way that the duality operator D, associated with the metric
and the orientation coincides with the operator N. Thus the mathematical
structures of the models for the event world in Toupin’s theory and in
Einstein’s theory are essentially equivalent to each other. We shall demon-
strate this result in the next section.

The second class of differential forms in Toupin’s theory contains the
charge—current field W, the charge—current potential I, the electromagnetic
field @, and the electromagnetic potential II. Again, these forms are required
to satisfy two conservation laws and an ether relation

T = M®, (49.41)

where M = M(w) is defined at each point we & as a linear operator on
the space of skew-symmetric covariant tensors of order 2 at w. In Einstein’s
theory M is just the duality operator D,, which is defined in terms of the
Minkowskian metric and the orientation. In Toupin’s theory the operator
M is required to possess certain basic properties, which we shall consider
in detail in the next chapter. Again, D, possesses the required basic properties
of M. Conversely, we can use the condition that M be the same as D,
to determine a Minkowskian metric and an orientation on & to within an
arbitrary change of gauge. We shall discuss this result in detail in the next
chapter.

50. The Nordstrom—Toupin Ether Relation and the Minkowskian
Metric

As mentioned at the end of the preceding section, in Toupin’s theory
a linear operator

NW): Ff — F% A FF A Fo* (50.1)

is defined at each point w in the 4-dimensional differentiable manifold
4, which represents the event world. This operator transforms a coaction
field G into an action potential P,

P = NG. (50.2)

Since the preceding relation is similar to the Maxwell-Lorentz ether relation,
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1 call it the Nordstrom—Toupin ether relation. In this section we analyze the
problem of finding a Minkowskian metric and an orientation on & such
that the condition

N =D,, (50.3)

is satisfied, where D, denotes the duality operator associated with the metric
and the orientation.
We prove first the following result:

Uniqueness Theorem (Toupin®). If an appropriate Minkowskian met-
ric ¢ and an orientation on & may be chosen in such a way that (50.3)
holds, then they are unique.

&

This theorem asserts that the relation between the pair (o(w), E(w))
and the duality operator D,(w) is one-to-one at each point we &. It is
understood that E(w) denotes the positive unit density tensor associated
with ¢(w) and the particular orientation on &,*; i.e.,

S(w) = el(w) A eX(w) A e¥(w) A et(w) (50.4)

for any positive orthonormal basis {ex(w)} in &,*.

From now on we shall consider tensors at a particular point w only.
Hence, for simplicity of writing, we shall suppress the notation w from the
argument of the fields &, D,, g, N, etc.

We shall prove the uniqueness theorem in several steps. First, we
require that the positive unit density tensor E be held fixed but let the
Minkowskian metric o be replaced by another Minkowskian metric &.
(Notice that & is not entirely independent of o, since the condition that
Z is held fixed requires that £ = X relative to any basis in &,*, where
£ and X denote the determinant of the component matrices of & and o,
respectively.) Under the preceding hypothesis we claim that D, = D,
implies that & = o. _

To prove this assertion, we introduce first another class of duality
operators. Using the fixed unit density tensor & and its dual E*, the unit
volume tensor, we define the class of linear operators

DN EFNAN- - ANEFF N N&,, r=20,1,23,4, (50.5)

T 4-r

® R. A. Toupin, “Elasticity and electro-magnetics” (see footnote on page 332), Toupin
did not state his result in the form presented here, but his result may be reformulated
and converted into the theorem here.
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by the condition
BX), Y> = (X ANY,E* (50.6)

foral Xe &y* A --- A& ¥ of orderrandforall Ye &,* A .. A & *
of order 4 — r. The condition (50.6) is similar to the condition (40.27)
for the operators D,, except that the Minkowskian inner product ¢ is
replaced by the bracket {, >. Since the class of operators A, depends only
on the unit volume tensor Z*, it is not affected by the change of Min-
kowskian metric from ¢ to & under the assumption that & is held fixed.

We now give the duality operators A, explicitly in terms of an arbitrary
positive unit basis {e,} in &,; i.e., {e,} satisfies the condition

SF = e, A ey A ey A e, (50.7)

This basis may or may not be a positive orthonormal basis relative to ¢
or relative to . Using (50.7) and (50.6), we verify easily that whenr =0

Dy(1) = e, N ey A eg A ey = E*; (50.8)
when r =1
A(e') = e, A ey A ey, (50.9a)
A(e?) = e; N e; N\ ¢y, (50.9b)
A(e?) = e; N e A ¢y, (50.9¢)
Aj(ef) = —e; A ey A eg; (50.9d)
when r =2
Ay(e! A ) = e;3 N\ ¢, (50.10a)
Ay A e3) = e; A e, (50.10b)
Ay(e® A el) = e, A ¢y, (50.10c)
Dy(et N et)= —ez N\ e, (50.10d)
Ax(e? N et)= —e, A &, (50.10¢)
Ay(e2 A et) = —e, N\ e (50.10f)
when r =3
Az(et A e? A e®) = ey, (50.11a)
By(er A e2 A et) = —e,, (50.11b)
Ayt ANed Aet)= —e, (50.11¢)

Ag(e® A el Aed)= —ey; (50.11d)
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and when r =4

Afet ANe2 A et Aet)= A E) = 1. (50.12)

Notice that there is a change of sign for terms not containing e, on
the right-hand side of (50.8)-(50.12) as compared with corresponding
terms on the right-hand side of (40.30)-(40.32) and (44.27). This change
of sign is due to the fact that in (40.30)-(40.32) and (44.27) o,(e?, €*) = —1,
while in (50.8)-(50.12) <e,, > = 1. ‘

Now using the duality operators A, and D,, we verify easily that

a1(X, ¥) = <(A(X), Dy(Y)> (50.13)

for all X and Y in &,*. Indeed, (50.9) and (40.30) are both valid when
{e,} is a positive orthonormal basis relative to o. Hence if we express
X and Y in component forms relative to the dual basis {e*}, viz.,

X = X,er, Y=Y, (50.14)
then from (50.9) and (40.30)

AX), DY) = X Y <es Aeg Aey, e A ed Aet)
+ X, Y eg Aep Aey, e Ael Aet)
4+ X Y<e; A ey Aey, el A e Aetd
— X,Y, e, A ey Aeg, et A e? A e?)
=X,Y, + X, Y, + X;Y; — X, Y, = 0,(X, Y). (50.15)

Thus (50.13) holds.
Now it follows directly from (50.13) that D, = D, implies that o, = 7,,
or, equivalently, ¢ = G. Thus the assertion of the first step is proved.
Next, we claim that if only the orientation on &, is held fixed, D, = D,
still implies that ¢ = &. Notice that when the orientation is held fixed,
2 is in the same direction of, but need not be equal to, &. Thus the hy-
pothesis of this step is somewhat weaker than that of the previous step.
Since E and & are in the same direction, they are related by

E=ag, (50.16)

where a is a nonzero number. We define another Minkowskian metric & by

§= —;,— é. (50.17)
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Then it can be verified easily that

E=g, (50.18a)
D, =—-D,, (50.18b)

where we have used the hypothesis that D, = D,. From (50.18a) we see
that & and o share the same positive unit density tensor. Hence the results
of the previous step may be applied.

Specifically, from (50.13)

5%, ) = B0, BN = (A(X), 5 DY)

1 1
= A DY) =— (X, Y)  (50.19)
for all X and Y in &*. Thus
. 1 .
0y = F Oy, & = a%o. (50.20)
Combining (50.17) and (50.20), we get
& = a‘o. (50.21)
But then we must have
]-)1 = a4D1, (50.22)

since the orientation on &, is held fixed. Clearly (50.22) is consistent
with our original hypothesis that D, = D, only if a* = 1. Hence we are
back to the previous case, and from (50.21) we have & = o. Thus the as-
sertion of the second step is proved.

Finally, we remove all conditions with regard to the orientation on
Zw. We claim that D; = D, still implies that @ = o. This last step is
just the assertion of the uniqueness theorem.

As before we replace o by &, but we choose £ to be in the opposite
direction of &; i.e.,

h
I

= —gi&. (50.23)
We show that under the preceding condition the duality operators D,
and D, associated with the pairs (7, £) and (o, 8), respectively, cannot be
the same.
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Suppose that D, is the same as D,. We define & by (50.17), and we
choose the orientation of & to be the same as that of Z. Then

Gk

la_ =

a4 >

ok

1 = 1
ﬁl = ? D1 = —aT Dl' (50.24)

Now since & differs from E in sign only, {e,, ey, €5, €,} is a positive unit
basis for E if and only if {—e,, e,, &, ¢,} is a positive unit basis for &,
Then from (50.9)

A =—-A,. (50.25)

Hence from (50.13), (50.24), and (50.25)

50X, ) = By(X), DD = (—A,(X), 5 D,(V)

1 1
- Bi(X), Dy(Y)) = —— (X, Y). (50.26)

This equation is a contradiction since the negative of a Minkowskian metric
is not a Minkowskian metric. Thus the uniqueness theorem is proved. []

The preceding proof of the uniqueness theorem shows clearly that if a
Minkowskian metric o and an orientation on & may be chosen in such a
way that (50.3) holds for a given linear operator N, then that operator
cannot be arbitrary but must possess certain basic properties. In order to
use these basic properties to determine the pair (o, ), we must, of course,
state them without using the pair (o, 2). For this reason we now choose
an arbitrary volume tensor S* in &y A Ty A Fy A &y, and we use
that tensor to define the duality operator A, as before; cf. (50.9). From the
operator A, we define a bilinear form

7t Eg* X ¥ >P (50.27)
by
7(X, Y) = (4,(X), N(Y)> (50.28)

for all X and Y in &,*.
Now we claim that, if there is a pair (o, £) such that (50.3) holds, the
operator N must possess the following basic property®:

(N) Either % or —7 must be a Minkowskian inner product on &y*.

@ R. A. Toupin, “Elasticity and electro-magnetics’ (see footnote on page 332).
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The preceding property is more or less obvious. Indeed, let N be the
same as the duality operator D, associated with the pair (¢, ), and suppose
that the density tensor & reciprocal to the volume tensor E* is related to
the density tensor & by (50.16). Then

A = 1 A,. (50.29)

=
Hence from (50.13) # is related to o, by
1K, ) = (4 Ay, Dy(V)) = i <By(X), Dy(V))
= % a,(X, Y). (50.30)

Thus in this case 7 is a Minkowskian inner product on &,*.
Next, suppose that & is related to E by (50.23). Then

A =— %A,. (50.31)

Hence from (50.13) # is related to o, by

n=— -54— g. (50.32)
Thus in this case —7 is a Minkowskian inner product on &,*.

Now since the space of density tensors &y * A Fp* A E* A Ey*
is I-dimensional, & and E are related either by (50.16) or by (50.23). Thus
the proof is complete.

It turns out that the basic property (N) is not only necessary but also
sufficient for the condition (50.3). Sufficiency of (N) for (50.3) is asserted
by the following result.

Existence Theorem (Toupin'®). If a linear operator N of the form
(50.1) possesses the basic property (N), then there is a pair (o, 2) such that
(50.3) holds.

We assume that % is a Minkowskian inner product on &y*. (Other-
wise, we simply reverse the direction of & to achieve the hypothesis.) This

» R, A. Toupin, “Elasticity and electro-magnetics™ (see footnote on page 332). This
theorem is reformulated from Toupin's original resuit.
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hypothesis fixes the orientation on &,* as that which is determined by &.
Using this orientation and the Minkowskian inner product &, = 7, we
may determine a positive unit density tensor &, which generally differs
from the reciprocal & of E* by a positive factor, say,

&= pE (50.33)
Now we define a Minkowskian inner product o, on &,* by
o * = a%¢, = a'y, (50.34)
and we claim that
g, (X, Y) = A, X), N(Y)) (50.35)

for all X and Y in &,*, where A, is the duality operator induced by the
positive unit volume tensor =% associated with the dual o of o, and the
chosen orientation on &*.

To prove the condition (50.35), we observe first that (50.34) is equiv-
alent to

o= po g. (50.36)
Then
= | & 1 =
E* = gt B, (50.37b)

where (50.33) has been used. It follows from (50.37b) and (50.6) that
A, = a*A,. (50.38)
Consequently, from (50.38), (50.28), and (50.34),

(By(X), N(Y))> = <atBy(X), N(Y)) = a*(By(X), N(Y)>
= a(X,Y) = 0y(X, Y). (50.39)

Thus (50.35) holds.
Now combining (50.35) and (50.13), we get

{By(X), N(Y))> = <A(X), Dy(Y)> (50.40)
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for all X and Y in &,*. Since A, is an isomorphism [cf. (50.9)], and since
the bracket ¢, > is definite [cf. (31.1) in IVT-1], the condition (50.40)
implies that

N(Y) = Dy(Y) (50.41)

forall Y in &y*. Thus (50.3) holds, and the proof of the existence theorem
is complete. O

Combining the existence theorem and the uniqueness theorem, we
see that a metrical structure and an orientation on the differentiable manifold
Z may be characterized completely by a smooth field of Nordstrom—
Toupin ether tensors N possessing the basic property (IN). Conversely, if
a Minkowskian metric ¢ and an orientation are given on &, then the field
of duality operators D, possesses the basic property (N) and satisfies the
Nordstrém-Toupin ether relation (49.28).

In Toupin’s theory two basic classes of differential forms and two
fields of ether tensors (N and M) are regarded as primitive concepts and
are defined once and for all on the 4-dimensional differential manifold &,
which represents the event world. This situation is similar to the assumption
that the Minkowskian metric and the Lorentzian orientation are primitive
concepts and are defined once and for all in the Minkowskian manifold
Z in Einstein’s theory. In this section we have only considered Toupin’s
first class of differential forms and the Nordstrém-Toupin ether relation.
Our results show that the mathematical structure of Toupin’s model may
be matched with that of Einstein’s model by using the condition (50.3).
Then the differential form A may be matched with the action density
SE considered in Section 48, and the other three differential forms P, G,
and 1" may be matched with the action potential, the coaction field, and the
coaction potential, respectively, which are determined by the action density
as explained in Section 49.

Note. The set of duality operators D,, r =0, 1, 2, 3, 4, depends on
the orientation but not the Lorentzian orientation on &. Indeed, the condi-
tions (40.27), (40.30)-(40.32), and (44.27) are invariant when we replace
the basis {e,} by the basis {—e,}. (For an even-dimensional space {e,}
and {—e,} are of the same orientation.) Physically, such a change of basis
corresponds to a reversal of time and a central reflection of space on &, .
Since such a transformation does not affect the Nordstrém-Toupin ether
relation, a Lorentzian orientation on & cannot be determined by the field of
Nordstrém-Toupin ether tensors N. In Toupin’s theory a positive orienta-
tion for timelike vectors is determined by using the entropy principle in
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thermodynamics. Then a Lorentzian orientation similar to that in Einstein’s
theory may be defined on each tangent space &,. We have throughout
this work excluded the theory of thermodynamics. Hence we cannot con-
sider that aspect of Toupin’s theory here.



General Relativistic Theory
of Electromagnetism

In the general theory of relativity the event world is represented by the
Minkowskian manifold & whose structure is determined by the distribution
of the stress-energy-momentum tensors on & in accord with Einstein’s
field equations. This distribution is dominated by its intrinsic part, which
is due to the presence of proper mass in a material medium. The electro-
magnetic field, like the stress tensor field in a material medium, gives rise
to only a small contribution in the stress-energy-momentum distribution.
Hence we may regard the Minkowskian metric and the electromagnetic
field as independent fields on &. In this sense the metrical structure and
the orientation on & are determined to within an arbitrary change of
gauge by the Maxwell-Lorentz ether relation. A rigorous theory of electro-
magnetism in the context of general relativity, however, must allow the
electromagnetic field and the gravitational field to affect each other. One
exact solution of the coupled system of electromagnetic field equations and
gravitational field equations is summarized in the last section of this chapter.

51. Maxwell’s Equations in General Relativistic Form

In Chapter 5 we developed the mathematical model for the event world
in the special theory of relativity. We recall that the underlying point set
of the model is a 4-dimensional affine space & whose translation space is
equipped with a Minkowskian inner product ¢ and a Lorentzian orientation.
We call that model a Minkowskian space-time.

kU
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The structure of a Minkowskian space-time may be characterized by a
Lorentz frame {e,}, which is an orthonormal basis with respect to o such
that the spacelike basis {e;} is right handed and the timelike basis vector
e, points into the future. If we single out a particular point z in & as the
origin, then a Lorentz frame gives rise to a Lorentz system (x*), which is
an affine coordinate system defined by

W — z = X%, (51.1)

for all win &. A Lorentz frame and a Lorentz system are not unique, of
course; transformations among Lorentz frames and Lorentz systems have
been discussed in detail in Section 38.

We have pointed out that, when we replace the classical model by the
special relativistic model, an inertial frame is replaced by a Lorentz frame
and an inertial system is replaced by a Lorentz system. Since the ether
frame in the classical theory of electromagnetism is assumed to be an
inertial frame, it, too, is replaced by a Lorentz frame. Then we define the
electromagnetic field @, the electromagnetic potential II, the charge-
current field W, and the charge-current potential I' by the component
formulas (40.8), (40.12), (40.15), and (40.16), respectively, relative to
any Lorentz system (x*) on &. Using these component formulas, we have
shown that Maxwell’s equations are just the coordinate representations in
a Lorentz system for the following field equations:

d®d =0, (51.2a)

® = JII, (51.2b)

d¥ = 0, (51.2¢)
1

An important property of these equations is that they are entirely
independent of the choice of the Lorentz system. As a result, in special
relativity Maxwell’s equations are valid in all Lorentz systems. This property,
which has been confirmed by experiments, is the very reason that a Min-
kowskian space-time is chosen as a model for the event world in the special
theory of relativity.

Now in the general theory of relativity the model for the event world
is a Minkowskian manifold &, which is a 4-dimensional differentiable
manifold equipped with a Minkowskian metric ¢ and a Lorentzian orienta-
tion. The tangent space &,, of & at any point w € & has the same structure
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as the translation space of a Minkowskian space—time. Hence we define a
Lorentz frame {e,(w)} at w in the same way, namely, {e,(w)} is an ortho-
normal basis for &, with respect to o(w) such that {e;(w)} is right handed
and e,(w) points into the future. For different points in & the tangent
spaces are independent of one another, however, since & is not equipped
with an affine parallelism. Hence a Lorentz system, which is defined in a
Minkowskian space—time by (51.1) on the basis of an affine parallelism,
may be defined locally in a Minkowskian manifold only if the Minkowskian
metric o is flat. We have discussed that result in Section 44.

To generalize the theory of electromagnetism from special relativity
to general relativity, we replace a Lorentz frame {e,} for the Minkowskian
space-time by a Lorentz frame {e,(w)} at each point w in &. More specifi-
cally, we define the values ®(w), II(w), ¥W(w), and I'(w) at w by the com-
ponent formulas

BD(w) = (EX(w)el(w) + EX(w)eX(w) + E3(w)e*(w)) A e*(w)

4+ (B*(w)e(w) N e¥(w) + BA(W)ed(w) A el(w)

+ B3(w)el(w) A eX(w)), (51.3)
II(w) = A*(w)el(w) + A%(w)e*(w) + A3(w)ed(w) + L(w)e*(w), (51.4)

P(w) — [-’—l(?"l e2(w) A e3(w) + —Jz—(c'i)- eS(W) A el(w)

+ _j_f(?w)_ el(w) A ez(w)] A eX(w)
— g(w)el(w) A e}(w) A e¥(w), (51.5)

and

T(w) = (H (w)e*(w) + H(w)e(w) + H3¥(w)e*(W)) A eH(w)
— (D (w)er(w) A e3(w) + D*(w)ed(w) A e'(w) ,
+ D¥(w)el(w) A eX(w)), (51.6)

where {e*(w)} denotes the dual basis of a Lorentz frame {e,(w)} at w.
The component formulas (51.3), (51.4), (51.5), and (51.6) are formally
the same as the component formulas (40.8), (40.12), (40.15), and (40.16),
respectively, except that the basis {e,} is replaced by the basis {e,(w)}.
We may apply the component formulas (51.3)-(51.6) at each point win &.
Thus II is a I-form, ® and I are 2-forms, and ¥ is a 3-form on &.

The differential forms @, IT, ¥, and T' are required to satisfy the field
equations (51.2) as in special relativity, except that the exterior derivatives
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are now taken in the Minkowskian manifold &. As we have explained in
Section 44, the equation (51.2a) is equivalent to the requirement that

chb=j%d¢:o (51.7)

for all oriented 3-dimensional domains 7 in &. The preceding condition
corresponds to the conservation of magnetic flux. Next, the equation (51.2c)
is equivalent to the requirement that

Lglr — Jgd‘I’ —0 (51.8)

for all oriented 4-dimensional domains & in &. The preceding condition
corresponds to the conservation of electric charge. The field equations
(51.2b) and (51.2d) are just the potential equations associated with the
field equations (51.2a) and (51.2¢), respectively, and the potentials II and
(1/47x)I" are unique to within additive closed forms. As remarked in the
classical theory and the special theory of relativity, we may determine a
particular pair of potentials such that the Maxwell-Lorentz ether relation
is satisfied.

Specifically, we use the Lorentz electron theory, which requires that at
each point w in & the tensors €(w) and I'(w) obey the relation

T'(w) = [Dy(W)I(P(W)), (51.9)

where D,(w) denotes the duality operator associated with the Minkowskian
inner product and the orientation on &,. As before we call (51.9) the
Maxwell-Lorentz ether relation. Notice that (51.9) is a local condition
which is not affected by the curvature of the Minkowskian metric. If we
use the component formulas (51.3), (51.6), and (40.31) for ®(w), I'(w),
and D,(w), respectively, then we can express (51.9) in component form,

Di(w) = Ei(w), Hi(w)=Biw), i=123  (51.10)

which corresponds to the system of ether relations of a vacuum in the
classical theory.

Now using an arbitrary positive coordinate system (x*), we express
the differential forms € and T by the component forms

1 1
¢=7¢aﬂhu/\hﬁ’ r=TraﬂhaAhﬁ’ (51.11)

where {h*} denotes the natural basis of (x*) as usual. From (49.23) the
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ether relation (51.9) may be expressed by the component form
1
I'y= 1 (—2)2Zmivis,, o D. (51.12)

The preceding formula may be rewritten in terms of the contravariant
components I of T, viz.,

8 = —51'— (—2)1/22""2792W12§w8/wAw¢v0

1
=2y °

(—ZY g 0,y = — Bod,,  (51.13)

1
21
where we have used the formula (21.6) in IVT-1. Since the inverse operator
of D, is just —D, [cf. (40.31)], (51.13) is equivalent to

/

@b T, (51.14)

1
=7

In the coordinate system (x*) the system of field equations (51.2)
takes the coordinate forms

Z‘zaf 4 Z‘iﬁv i ‘Z’c;u —o, (51.15a)
@aﬁ=%lj%__%%_, (51.15b)
aizﬁy B 0(9911;;:” L ‘9;‘)’:;51 _ ag;/;«ﬁ —0, (51150

These equations may be transformed into more familiar forms in the fol-
lowing way: First, we introduce the dual 1-form J of W as before by

J=D,¥; (51.16)

cf. (41.5). Then from (49.23) the components of J are given by

J, = -31—,- (107520 X01 ZNPu (51.17a)

A T

60V (51.17b)
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where we have used the formula (21.6) in IVT-1 again. The component
formula (51.17b) is equivalent to

Jx — Pl P (51.18)

1
(=22
and the inverse of (51.18) is
qlaﬂy = (_Z)l/z‘lxexuﬂy- (51.19)

Now in terms of J and & the field equation (51.15¢) may be rewritten as
——ai,, [(=2y"2] =0, (51.20)

and the field equation (51.15d) may be rewritten as

1 ad
' = 5 ot

We can express the preceding equations by using the covariant derivative
relative to the Minkowskian metric ¢ also, viz.,

[(—2)v2). (51.21)

J*,=0, DivI=0, (51.22)

and
dnJ* = P9, (51.23a)
4nJ = Div ®. (51.23b)

Next, using the inverse relation (51.14), we can rewrite the field equa-
tion (51.15a) as

-337 [(—2)2r+] =0, (51.24)
which is equivalent to |
Ir«,=0, Divl=0. (51.25)
Finally, the field equation (51.15b) may be rewritten as
Dp=1,,—1I,,, (51.26)

where we have used the symmetry of the Christoffel symbols {5,} with
respect to (8, ). ,
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Having rewritten the field equations (51.15a)-(51.15d) in the more
familiar forms (51.25), (51.26), (51.22), and (51.23), respectively, we now
show that they may be solved in essentially the same way as in the classical
theory and in the special theory of relativity. First, we observe as before
the fact that the potential II is unique to within an additive 1-form only.
We claim that there is a potential which satisfies the following Lorentz
condition:

IT* ,=DivII = 0. (51.27)

Suppose that II is any potential which fails to satisfy the preceding condi-
tion. Then we may replace II by

=144z (51.28)

for so?é function Z, which may be chosen in such a way as to make )14
satisfy the Lorentz condition (51.27). Indeed, Z may be obtained by solving
the generalized Poisson equation

Div(dZ) = Lap(Z) = —DivH, (51.29)

where the Laplace operator Lap has been defined by (49.9). Thus without
loss of generality we can assume that II satisfies (51.27).

Now we take the covariant derivative of (51.26) with respect to x?
and sum the result as usual, obtaining

wlp = Hﬁ,aﬁ —_— ZWH“,/”. . (51.30)
From the Ricci identities [cf. (59.9) in IVT-2]

—ID'S,, = IP ,;, —II? 5, (51.31a)
=1IF ,, (51.31b)

where in (51.31b) we have used the Lorentz condition (51.27) to eliminate
the term 7% 5,. Combining (51.30), (51.31b), and (51.23a), we get

Z6ql, 5, + S, 17 + 4], =0, a=1,2,3,4, (51.32)

which is the governing system of equations for the potential II.

As we have remarked in Section 45, the electromagnetic field contributes
to only a small extra part of the stress-energy-momentum tensor © on &.
Hence in the system (51.32) we may regard the Ricci tensor S as a given
field on & independent of I7” and J,. Then we can solve the system (51.32)
for IT7 subject to the Lorentz condition (51.27) for each given l-form J.
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(Recall that J is just the dual of the 3-form ¥.) After obtaining the potential
I, we can determine € by (51.26) and then I’ by (51.12).

The preceding analysis of the field equations (51.15) is similar to that
of the field equations (49.2), (49.3), (49.4b), and (49.5), which govern the
forms A, P, G, and Y. Here we regard the charge—current field W as a given
closed 3-form on &, and we determine the corresponding forms @, II,
and T in such a way that the ether relation (51.9) and the field equations
(51.15) are satisfied. In Section 49 the action density A is a given 4-form
on &, and we determine the corresponding forms G, 1, and P in such a
way that the ether relation (49.4a) and the field equations (49.2)-(49.5)
are satisfied.

It should be noted that both the analysis in Section 49 and the analysis
here are based on a given Minkowskian metric and a given orientation on &
Indeed, the duality operators D, and D,, which characterize the ether
relations, are induced by the metric and the orientation. In general relativity
the metric cannot really be chosen a priori, however, since it must satisfy
Einstein’s field equations, which depend on the stress-energy-momentum
tensor © on &. Because a small extra part of @ depends on the electro-
magnetic field and the extra part of the action density, the field equations
of electromagnetism and action may be analyzed rigorously only if they
are coupled with Einstein’s field equations. An example of a rigorous
solution of the coupled system of Einstein’s field equations and Maxwell’s
field equations is summarized in the last section of this chapter.

52. The Maxwell-Lorentz Ether Relation and the Minkowskian Metric
I: Toupin’s Uniqueness Theorem

In Section 50 we have shown that the structure induced on a 4-dimen-
sional differentiable manifold & by a field of Nordstrom-Toupin ether
tensors N, which possess a certain basic property (N), is essentially equiv-
alent to the structure induced by a Minkowskian metric and an orientation
on the manifold. In the next three sections we shall prove a similar result
for the field of Maxwell-Lorentz ether tensors.

We recall first that a Maxwell-Lorentz ether tensor M(w) at a point
w in & is a linear operator

MW): & * A & * - &2 A & * (52.1)
such that
I'(w) = M(wW))(®(W)), (52.2)
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where T'(w) and ¥(w) are the values of the charge—current potential and
the electromagnetic field at w, as defined in the preceding section. In the
general relativistic formulation of the theory of electromagnetism I'(w)
and ®(w) are related by (51.9), which implies that the Maxwell-Lorentz
ether tensor at w is just the duality operator D,(w) associated with the
Minkowskian inner product ¢(w) and the orientation on &,. That con-
dition is a local result, which is not affected by the curvature of the

field o.

In Section 50 we have sthn that there is a one-to-one correspondence
between the duality operator D,(w) and the pair (¢(W), &E(w)), which gives
rise to D,(w); cf. the uniqueness theorem in that section. Now we wish to
establish a similar (but somewhat weaker) result for the duality operator
Dy(w).

We observe first that a direct one-to-one correspondence between
D,(w) and (o(w), E(w)) is not valid. Indeed, an inspection of the com-
ponent formula (40.31) for D, shows clearly that Dy(w) is invariant when
we replace the positive orthonormal basis {e,(w)} by a positive basis
{ae,(w)} for any nonzero number g. This simple remark implies that the
duality operator D, associated with the pair (o, ) coincides with that
associated with the pair (a%0, a*E). Consequently, a uniqueness theorem for
D,, worded exactly as the uniqueness theorem in Section 50 for D,, is
not true. However, the following weaker result may be proved.

Uniqueness Theorem (Toupin‘®). Let D,(w) and D,(w) denote the
duality operators associated with the pairs (o(w), E(W)) and (G(w), E(W)),
respectively. Then Dy(w) coincides with Dy(w) if and only if there is a
nonzero number a(w) such that

(GW), Ew)) = (a2(w)a(w), a*(W)E(W)). (52.3)

Note. Since the preceding theorem is strictly a result for each point
w in &, the number a(w) in (52.3) generally may depend on w. We call a
transformation from (o, 8) to (420, a*E) a change of gauge; such a trans-
formation is said to be uniform if a is a constant, and nonuniform if a depends
on w. Then the preceding theorem asserts simply that the duality operator
D, is invariant under an arbitrary, possibly nonuniform, change of gauge.

U R, A. Toupin, Elasticity and electro-magnetics, in Non-Linear Continuum Theories,
pp. 206-342, C.I.M.E. Conference, Bressanone, Italy, 1965. Coordinators: C. Truesdell
and G. Grioli. Toupin did not state his result in the form presented here, but his
result may be reformulated and converted into the theorem here.
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From now on we shall consider tensors at a particular point w only.
Hence, for simplicity of writing, we shall suppress the notation w from the
argument of the field M, D;, g, &, etc.

To prove the uniqueness theorem, we establish first the following
useful identity: '

<D2(fl A f’)’ Aa(gl A g2)> = Gl(fl’ gl)o'l(fzi gz) - o'l(fl: gz)o'l(fz, gl)’ (524)

which is valid for all £, f2, g1, g2 in &, *. Here A, denotes the duality opera-
tor associated with the unit density tensor & as explained in Section 50;
cf. (50.6) and (50.10). We verify the identity (52.4) by direct calculation
based on the component formulas (40.31) for D, and (50.10) for A, relative
to a particular positive orthonormal basis {e,} for &.

Specifically, the left-hand side of (52.4) may be expressed as

(D(f* A 12), B,(8" A 8°)) = (1o — fih')(81'82® — &%)
+ (AU — [1)(81'8s" — &1°8s")
+ (A — L) (ge'8s® — &°2sY)
— (A — ) (g8 — &i'8dY)
— (fi' f& — 121 (82'8 — 8:.°8")
— (' f® — i fi)(8s'8 — &5°8d'),  (52.5)

while the right-hand side may be expressed as

o,(f*, gHo(f?, g?) — ay(f?, g?)o,(f2 g')
= (filg:' + fi'gs' + fi'gs' — fuilgd)(Nlgd + fi%g + 13%8s® — fa%8)
— (i'g® + fi'g + fi'gs® — flg (g + fo%8:! + fi%gs' — fi%84Y)-
(52.6)

We verify that the right-hand sides of (52.5) and (52.6) are the same by
multiplying the factors and rearranging the terms. Thus the identity (52.4)
is proved. ,

Now we follow the same procedure as in the proof of the uniqueness
theorem for D,. First, we hold the unit density tensor E fixed but we
change the Minkowskian metric from ¢ to &. Under this hypothesis we
claim that D, = D, implies that & = o.

Indeed, when & is held fixed, the duality operator A, is also. Hence if
D, = D,, then the right-hand side of (52.4) is fixed. Thus

a,(f", g)o (L2, g®) — G,(1", g?)a.(f%, gY)
= 0,(f', g')o:(f?, g2) — ay(f", g*)ou(f?, g"). (52.7)
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Applying the preceding formula to a positive orthonormal basis {e*}
relative to o,, we get

S Sve — Ser S0 — ABAY — A=A, (52.8)

where [4%] denotes the constant matrix diag(l, 1, 1, —1) as before. We
wish to show that
[£+] = [4*), (52.9)

which is just the component forji of 6, = o,.
We restrict our attention first to the indices ranging from 1 to 3 in
(52.8), viz.,
SiZk _ PkLit = §ugkt — sikssl, (52.10)

Multiplying (52.10) by £4a2 ™ and summing the result on repeated indices
from 1 to 3, we get

eivden det[Zr] = gFpEom, (52.11)
or, equivalently,

87 det[ 7] = S, (52.12)

where we have used the formula (21.6) in IVT-1. Taking the determinant
of this matrix equation, we obtain

(det[E]2 = 1. (52.13)
Thus (52.12) reduces to
S = 489, (52.14)

We shall show that the sign in (52.14) must be positive.
Next, we restrict our attention to the case that one of the indices in
(52.8) is 4, while the remaining three indices range from 1 to 3, viz.,

St _ PikSi — 0, (52.15)

Substituting the result (52.14) into the preceding equation, we obtain
immediately
Sk — 0, (52.16)

Finally, we choose two of the indices in (52.8) to be 4, viz.,

Subu _ FuFit = _ 54, (52.17)
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which implies that
S4— _1 when LV = §i, (52.18)

and that
S =11 when LV = _4§i, (52.19)

Since & is required to be a Minkowskian metric, we must rule out (52.19).
Thus the sign in (52.14) must be positive, and (52.9) is proved.

Next, we replace the hypothesis that & be held fixed by the weaker
hypothesis that the orientation on &, be held fixed. Under this weaker
hypothesis we claim that B, = D, implies that (o, E) and (7, E) are related
by (52.3).

This result may be proved in the same way as in the proof of the
uniqueness theorem for D;. Indeed, since E and & are in the same direction,

they are related by
E = o5 (52.20)

é; (52.21)

cf. (50.17). As before (52.21) implies that

1
at

[k
(W]
1

(52.22)

cf. (50.18a). Now since the duality operator D, is gauge invariant, it follows
from (52.21) and (52.22) that D, coincides with D,. Hence D, = D, and

& — =. Thus the conditions of the previous step are satisfied, and, as a result,

=0 (52.23)

=1

Substituting (52.23) and (52.21) into (52.22), we obtain (52.3).

Finally, we remove all conditions with regard to the orientation on
&w. We claim that D, — D, still implies that (o, E) and (5, &) are related
by (52.3). This last step is just the assertion of the uniqueness theorem.

The proof is again the same as that in the proof of the uniqueness
theorem for D,. We show that, when & is in the opposite direction of
E, D, cannot be the same as D,. Suppose that & and E are related by

5~ o (52.24)

cf. (50.23). We define & as before by (52.21), and we choose the orientation
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of & to be the same as that of &. Then

bk
(W]

1 -
=—gs=-5 (52.25)
cf. (50.24). Hence D, = D, as before. Now by hypothesis D, = D,. Thus
the duality operators D, and D, associated with the pairs (6, —E) and (o, E)
coincide. We claim that this condition gives raise to a contradiction.

Indeed, from (50.6) when E is replaced by —&, A, is transformed into
—A,. Then the identity (52.4) implies that~

—&(f', g9)5:(f, g*) + &:(F, g)5:(f%, gV

= oy(f', gy (P2, g%) — oy(f', g (f% g"). (52.26)
Following the procedure from (52.7) to (52.12), we obtain from (52.26)
— e det[Zre] = Zom, (52.27)

Now taking the determinant of the preceding matrix equation, we get
(det[Zr]2 = —1, (52.28)

which is a contradiction. Thus the uniqueness theorem is proved. O

Note. From the preceding uniqueness theorem we see that the Max-
well-Lorentz ether tensor M must possess certain basic properties; otherwise,
it cannot be the duality operator D, associated with any pair (o, E). We
shall consider these basic properties in detail in the following section.

Like the Nordstrom-Toupin ether relation, the Maxwell-Lorentz ether
relation is invariant when we retain the orientation but reverse the Lorent-
zian orientation on the tangent space &,. Specifically, the system of
formulas (40.31) remains unchanged when we replace the basis {e,} by
the basis {—e,}. Hence a Lorentzian orientation on & cannot be deter-
mined by the tensor field M.

53. The Maxwell-Lorentz Ether Relation and the Minkowskian Metric
II: Basic Properties and Preliminary Lemmas

In the preceding section we showed that the duality operator D, may
determine the orientation and the Minkowskian metric on & only to
within an arbitrary change of gauge. In general if a field of linear maps
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M of the form (52.1) is given on &, there may or may not be any pair
(0, &) such that M = D,. In this section we obtain some necessary condi-
tions on M in order that M be the same as the duality operator D, associated
with some pair (¢, ). Then in the following section we show that these
conditions on M are also sufficient for the existence of a pair (o, &) such
that the condition (52.3) holds. A similar problem for the Nordstrém-
Toupin ether tensor N = D, has been solved in Section 50.

Since we shall consider the Maxwell-Lorentz ether tensor M(w) at a
particular point w in & only, for simplicity of writing we shall drop from
the notation the argument w as before.

The basic properties'® of the tensor M are the following:

{M-1) Reciprocity. The ether tensor M obeys the condition
M2 = —1, (53.1)
or, equivalently,

M-1=_—M, (53.2)

where I, denotes the identity map on & * A &,*.
The proof of this property follows directly from (40.31); i.e.,

D2—1 == _"Dg. (53-3)

(M-2) Symmetry. The bilinear form

PWEIFNEIFXEFXNE S P (53.4)
defined by
p(X, Y) = B;(X), M(Y)) (53.5)
is symmetric; i.e.,
p(X,Y) = u(Y, X) (53.6)

for all X and Y in &,* A &*. In (53.5) A, denotes the duality operator
induced by a certain nonzero volume tensor E*, which is chosen as a
reference in order to state the basic property without using any metric
and orientation. '

The proof of the preceding property follows directly from (50.10) and
(40.31). Indeed, let M be the duality operator D, associated with the pair
(6, ). Then E and & may or may not be in the same direction. From
(40.31) and (50.10) when & and 2 are in the same direction, the bilinear

® R. A. Toupin, “Elasticity and electro-magnetics” (see footnote on page 351).
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form may be expressed by

1
w(X, Y) = 3 (X12Y1e + XasYos + X1 Yay — XagYo4 — X50Yae — XaaYao),
(53.7)
but when E and & are in the opposite directions, u is given by

1
u(X,Y) = = (—X12Y12 — Xos Yoy — X5y Yy + X1y Yiy + Xoo Yoo + XaeYao)s
(53.8)

where X5 and Y,, denote the components of X and Y relative to a positive
orthonormal basis {e,} with respect to the pair (o, &), and where

E=4+aE (53.9)

The sign in (53.9) is chosen according to the hypothesis on the directions
of E and E. From (53.8) and (53.9) we see clearly that the bilinear form u
is symmetric in either case.

(M-3) Definiteness. There is a covariant vector e* in &, * such that
the quadratic form p(X, X), restricted to all simple tensors in &* A &y*
having e? as a factor, is either positive definitive or negative definite, where
u is the bilinear form defined in the basic property (M-2).

The proof of the preceding property follows directly form the com-
ponent formulas (53.7) and (53.8) for the bilinear form u in general. Indeed,
we choose the particular covariant vector e* to be just the fourth basis
vector in the positive orthonormal basis {e*}. Then for any nonzero simple
tensor Xin &, * A &, * having et as a factor u(X, X) is negative definite, viz.,

u(X, X) = - (—Xh — Xh— X2) <0, (53.10)
when E and & are in the same direction, but it is positive definite, viz.,
u(X, X) = o (K + Xi + X3 > 0, (53.11)

when E and £ are in the opposite directions. Thus the basic property is
necessary for M.

By using the basic property (M-3), we can determine the orientation
on &,, uniquely as follows: We choose £ in such a way that the quadratic
form u(et A f, et A f) is negative definite. Then M corresponds to the
duality operator D, associated with some pair (o, £) only if £ is in the
same direction as &. Since D, is invariant with respect to any change of
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gauge, without loss of generality we may assume that & = . Then the
correspondence between M and ¢ is one-to-one according to the uniqueness
theorem proved in the preceding section.

It turns out that the three basic properties (M-1), (M-2), and (M-3)
are not only necessary but also sufficient for the existence of a pair (o, E)
such that (52.3) holds. To prove sufficiency, we need certain preliminary
lemmas, which we shall summarize in this section. These lemmas as well
as the existence theorem in the following section are given by Toupin'®
in his lectures.

Lemma 1. A tensor X in &,* A &,* is simple; i.e.,
X =e! A ¢? (53.12)
for some e! and e? in & *, if and only if

(By(X), X> = 0. (53.13)

Proof. Necessity. When X = 0, (53.13) certainly holds. When X £ 0,
the covariant vectors e! and e2 must be linearly independent. Then we can
extend the set {el, e?} into a positive unit basis {e*} with respect to .
From (50.10a)

(Dy(e! A e?), e! A e?) = {e; A ey, e Ae?)=0. (53.14)
Thué (53.13) is necessary for X to be simple.

Sufficiency. Let X be given by a component form in general relative
to a positive unit basis {e*}, viz,,

X = ale! A e? + ae® A et 4 a®e? A ed -+ ofe! A et + ae? A et + afed Ael.
(53.15)
Then from (50.10) and (53.13)
(By(X), X> = 2(a'a? + oot + oBat) = 0. (53.16)
From (53.15) the tensor component matrix [X,,] of X relative to {e*} is
0 at —of ot
_(Zl O (13 (Z5
a® —a® 0
—ot —a® —a® 0

X.,] = (53.17)

@ R. A. Toupin, “Elasticity and electro-magnetics™ (see footnote on page 351).



Sec. 53 General Relativistic Theory of Electromagnetism 359

In particular, /
det[X,,] = (¢'a® 4 aPa? +@*ab)® = 0. (53.18)

From (53.18) we may choose one of the basis vectors of the dual basis
{e.}, say, e,, in such a way that

X(ey) = 0. (53.19)
Relative to such a basis {e*} the component form of X reduces to
X = ate! A e? - a%e? A e® + afed A e, (53.20)

and the tensor component matrix [X,,] reduces to

0 al —a® 0
—at 0 a® 0

[X.]1= o —ab o ol (53.21)
0 0 0 O

Now since the determinant of a 3X3 skew-symmetric matrix is always
equal to zero, by the same argument as that from (53.18) to (53.19) we may
choose e; in such a way that

X(e3) = 0. (53.22)

Then the component form of X reduces to
X = ale! A el (53.23)
Thus (53.13) is sufficient for X to be simple. ]

Lemma 2. Two simple tensors X and Y in &,* A &,* share a com-
mon factor, i.e.,

Y =elAée} Y=eAe? (53.24)
for some e, e2, and e? in &,.*, if and only if
(X, Y) = <AyX), Y> =0. (53.25)
Note. The bilinear form
LEFPNEFXENE D (53.26)

defined by (53.25a) corresponds to that of the identity map I, on
&* A &y* in accord with the general definition (53.5). (Here & = E.)
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Proof. When X and Y are proportional, the assertion of this lemma
reduces to that of the preceding lemma. Hence it suffices to prove the
lemma for a linearly independent pair {X, Y}.

Necessity. When X and Y are linearly independent and have the
forms shown in (53.24), the set {e’, e? e3} must be linear independent.
Hence we can extend the set {el, e? e®} into a positive unit basis {e“}
From (50.10) and (53.24)

(X,Y) = {eg Aeg, et Ae3) =0. (53.27)
Thus (53.25) is necessary for (53.24).

Sufficiency. Suppose that X and Y do not share aﬁy common factor.
Then they are of the forms

Y=e'Nne, Y=e*Ae! (53.28)

such that no nonzero linear combination of {e!, e?} is equal to a linear
combination of {e3 e*}. This condition means precisely that {e,} is a basis
for &,*. In general, {e=} need not be a positive unit basis with respect to
Z, but clearly it may be transformed into one by replacing one of its ele-
ments, say e!, by ae?, where a is an appropriate nonzero number. Hence
if we replace (53.24) by

X = —al— el A é? Y = e® A ¢4, (53.29)

then we may assume that {e*} is a positive unit basis with respect to &
From (50.10) and (53.29)

(X, Y) = % ey A ey, & A e‘> — % £0. (53.30)

Thus (53.25) is sufficient for (53.24). O
Lemma 3. If X is a simple tensor in &,* A &,*, then M(X) is also.
Proof. We verify the condition (53.13) for M(X), viz., '

(MX), M(X)) = <AM(X), M(X))> = p(M(X), X) = (X, M(X))
= ByX), M(MX))> = <A,(X), —X>
=—iuX,X)=0, (53.31)

where we have used the basic properties (M-1) and (M-2). Od
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Lemma 4. If X and Y are simple tensors in &,* A &,* sharing a
common factor, then M(X) and M(Y) are also.

Proof. We verify the condition (53.25) for M(X) and M(Y), viz.,

(M(X), M(Y)) = <AM(X), M(Y)> = #(M(X), Y) = u(Y, M(X))
= —«(X,Y) =0, (53.32)

where we have used the basic properties (M-1) and (M-2) again. O

Lemma 5. For any nonzero tensor X in &p* A &,* the tensors
M(X) and X must be linearly independent.

Proof. Suppose that M(X) is proportional to X, say,
M(X) = aX. : (53.33)

Applying M to this equation and using (53.1), we get

Mi(X) = —X = a’X. (53.34)

Thus
(d+a)X =0, R (53.35)
which contradicts the hypothesis that X is nonzero. O

In the following section we shall use the preceding five lemmas to show
that when M possesses the basic properties (M-1), (M-2), and (M-3),
there is a pair (¢, &) such that the condition (52.3) holds. In the proof of
this existence theorem many simple tensors in &,* A &,* shall be used,
so we now make an important remark regarding them: Any nonzero simple
tensor in &,* A &,*, such as the simple tensor X given explicitly by
(53.12), corresponds to a (2-dimensional) volume tensor on the plane in
&* spanned by the factors; i.e., the plane span{el, e?}. This remark is
discussed in detail in Section 40 of IVT-1. By virtue of that remark the
simple tensor X may be represented not only by (53.12) but also by

X = (ae! + be?) A (ce! + de?), (53.36)
provided that
a b
det[c d] —ad—be=1. (53.37)
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Consequently, any nonzero linear combination age® + be? % 0 is a factor
of X. If one factor ae' + be? of X is chosen, then the other factor may be
any nonzero linear combination ce' 4+ de?, which is linearly independent
of ae! + be? and is normalized to satisfy the condition (53.37). Since the
possible values of (a, b, ¢, d) form a 3-dimensional surface characterized
by the algebraic equation (53.37), there are many factors of X differing
from the factors e! and e? shown in (53.12).

In Toupin’s original lecture notes he seemed to have overlooked th1s
simple fact. For instance in his proof of the existence theorem he argued
that® if a covariant vector f is known to be a factor of the simple tensor
X = e! A e%, and if fis shown to be not proportional to e!, then f must be
proportional to e Such an argument leaves a gap in the proof, since
there are many factors of X not proportional to either &' or e

In our proof of sufficiency in Lemma 2 we have noted that the simple
tensors X and Y given by (53.28) share no common factor if and only if
no nonzero linear combination of {e?, e?} coincides with a linear combina-
tion of {e? e}, or, equivalently,

span{e', e?} N span{e’ e*} = {0}, (53.38)

which is necessary and sufficient for {e!, e?, 3, e*} to be a basis of &y*.
That assertion reflects clearly that a factor of X is not just e! or e? but may
be any nonzero linear combination of {e!, e?}. By the same token a factor
of Y is not just e or e* but may be any nonzero linear combination of
{e3, e4}. It is quite possible for X and Y to share a common factor when
el, e?, €%, and e* are completely distinct covariant vectors in &,*.

54. The Maxwell-Lorentz Ether Relation and the Minkowskian Metric
HI: Toupin’s Existence Theorem

In the preceding section we showed that the Maxwell-Lorentz ether
tensor M(w) must possess three basic properties, namely, reciprocity,
symmetry, and definiteness, in order that M(w) may be the same as the
duality operator D,(w) associated with some pair (o(w), E(w)). We have
remarked that, by using the basic property (M-3), we may choose in a
definite way a certain nonzero tensor in &,* A & * A & * A &y* to be
the positive unit density tensor E(w) in the pair (o(w), E(w)). We now

" See, for example, p. 281 in Toupin’s lecture notes, *“Elasticity and electro-magnetics™
(see footnote on page 351).
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show that the three properties suffice to determine a certain Minkowskian
inner product o(w) on &, such that

[a,(WE(W), E(W)) = —1, (54.1a)
M(w) = D,(w), (54.1b)

where D,o(w) denotes the duality operator associated with the pair (o(w),
E(w)). The condition (54.1a) simply means that E(w) is a unit density
tensor with respect to o(w), as it should be. The orientation of Z(w) is
chosen in such a way that the quadratic form u(X, X) mentioned in the
basic property (M-3) is negative definite. We state the preceding result
formally as a theorem.

Existence Theorem (Toupin‘®’). Suppose that a linear operator M(w)
of the form (52.1) possesses the three basic properties (M-1), (M-2), and
(M-3), and let E(w) be chosen in such a way that the quadratic form
u(X, X) in (M-3) is negative definite. Then there is a Minkowskian inner
product o(w) on & such that (54.1) holds.

Like the uniqueness theorem proved in Section 52, the existence theo-
rem is strictly a result for each point w in &. Hence we shall restrict our
attention to tensors at a particular point w. For simplicity of writing we
shall now drop from the notation the argument w as before.

To prove the existence of o, we use first the basic property (M-3)
and choose a particular covariant vector f in &,* such that

w(X,X) <0 (54.2)

for all nonzero simple tensors X in &* A &4* having f* as a factor. From
(54.2) it is clear that f4 is nonzero. We choose an arbitrary plane in &*
containing f and designate another nonzero covariant vector in that plane,
not parallel to f4, by f'. Then we put

X=ftAfi (54.3)

Of course, this simple tensor is nonzero and satisfies (54.2).
From Lemmas 3 and 5 in the preceding section M(X) must be a

9 R, A. Toupin, “Elasticity and electro-magnetics™ (see footnote on page 351). Toupin
did not state his result in the form presented here, but his result may be reformulated
and converted into the theorem here.
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nonzero simple tensor which is not proportional to X. We claim that X
and M(X) cannot even share a common factor. This assertion may be
verified easily by using the criterion given by Lemma 2, viz.,

(X, M(X)) = <By(X), M(X))> = u(X, X) <0. (54.4)
Hence M(X) may be expressed as
MX) =8 A1 (54.5)

and the set {f*} forms a basis for &,*.
Now we define another nonzero simple tensor Y by

Y=FAf (54.6)
which also has f* as a factor. Hence from (M-3)
(Y, Y) < 0. (54.7)

By the argument as before M(Y) must be a nonzero simple tensor, and Y
and M(Y) do not share a common factor. In particular, both f2 and f*
are not factors of M(Y).

From (54.6) and (54.3) we see that X and Y share a common factor,
namely, 4. Hence by Lemma 4, M(X) and M(Y) must also share a common
factor, say, g®. From (54.5) this common factor g2 is a certain nonzero
linear combination of f2 and f2, say,

2 — aft + bf?, (54.8)

where the coefficient a is nonzero since f2 is not a factor of M(Y). Since a
common factor of M(X) and M(Y) is unique to within an arbitrary non-
zero multiple only, the nonzero coefficient a in (54.8) is arbitrary, but for
each choice of a there is a unique corresponding b, such that the covariant
vector g® given by (54.8) is a common factor of M(X) and M(Y).

Now because the coefficient a in (54.8) is nonzero, if we put

g=1f, g=f  gi=f ‘ (54.9)

then {g*} is a basis for &y*. From (54.8) the density tensors associated
with the bases {f*} and {g*} are related by

gngZAgAgl=aft AT2A AR (54.10)

This relation implies that we can choose an appropriate nonzero number a
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such that {g*} is a positive unit basis relative to the density tensor &; i.e.,
gingtAngENngt=CE. (54.11)

Using the preceding basis {g*}, we rewrite the equations (54.3),
(54.6), and (54.5) as

X=gtAg (54.12a)
Y=gAgi (54.12b)
M(X) = 711— g3 N gt (54.12¢c)

where in (54.12c) we have used the inverse of (54.8), viz.,
2= —‘11- (g® — bg?). (54.13)

We claim that the nonzero number a, which enters into (54.12c), must be
positive. Indeed, since {g*} is a positive unit basis with respect to E, we
may use the component formula (50.10d) to calculate A, (X), viz.,

A;(X) = Dy(g' N g*) = —g5 A\ 8. (54.14)
Then from (54.4), (54.12), and (54.2),

o(X, M(X)) = <Az(g‘ A g, % g A g”> = <—gs\/‘\\gu% g° A g2> = — %

= u(X, X) <0. (54.15)

Next we claim that X and M(Y) share a common factor. As before we
verify this assertion by using the criterion given by Lemma 2, viz.,

(X, M(Y)) = <By(X), M(Y)> = (X, Y) = u(Y, X) = (Ay(Y), M(X)>

1 1
= <Az(g2 N gh), " g A g2> =— (—g1Ngs 8 NEH=0,
(54.16)

where we have uséd (54.12), (50.10e), and the basic property (M-2). From
(54.12a) the common factor of X and M(Y) is a certain nonzero linear
combination of g!' and g*, say,

h! = ag! + bg?, (54.17)

where the coefficient g is nonzero since we have remarked after (54.7)
that f4 = g4 is not a factor of M(Y). Then as explained before, the nonzero
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coefficient @ in (54.17) is arbitrary, but for each choice of 4 there is a unique
corresponding & such that the covariant vector h! given by (54.17) is a
common factor of X and M(Y).

We choose the coefficient @ to be 1, and we put

h? = g2, h? = g3 ht = gt - (54.18)
Then {h*}, like {g*}, is a positive unit basis for &,* with respect to &, viz.,
MABRRAR AR =g Ag?AglAgt=E. (54.19)

From (54.17) with @ = 1, (54.18), and (54.12) we now have

X=h AR, (54.20a)
M(X) = c;b® A B2, (54.20b)
Y =h A, (54.20¢)
M(Y) = ch* A b3, (54.20d)

where we have replaced the notation for the positive number 1/a by c,,
and where M(Y) is of the form (54.20d) because h! and h® = g® are linearly
independent factors of M(Y). The nonzero number ¢, in (54.20d), like the
number ¢; in (54.20b), is positive. Indeed, from (54.4), (54.20), (50.10¢),
and (54.7),

(Y, M(Y)) = (Ay(b® A b%), c;h! A B8 = (—h, A by, csh* A B8 = —q,
= u(Y,Y) <O. (54.21)

Next we put
Z=h ARt (54.22)

We claim that M(Z) must be of the form
M(Z) = csh* A bt (54.23)

where ¢, is a certain positive number. To prove this result, we notice first
that since h* = gt = f* is a factor of Z, from (M-3)

w(Z,Z) < 0. (54.24)

Then as before Z and M(Z) do not share any common factor. In particular,
from (54.22) h® and h* are not factors of M(Z).
Now since Y and Z share a common factor, namely, h%, from Lemma 4
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M(Y) and M(Z) must also. From (54.20d) the common factor of M(Y)
and M(Z) is a certain nonzero linear combination of h' and h3, say,

k! = a;h! + b, (54.25)

where the coefficient a, is nonzero since h® is not a factor of M(Z). As
before a, is arbitrary, but for each choice of a, there is a unique cor-
responding b, such that the covariant vector k! given by (54.25) is a com-
mon factor of M(Y) and M(Z).

By the same token M(X) and M(Z) must share a common factor,
since X and Z both have the factor h*. From (54.20b) the common factor
of M(X) and M(Z) is a certain nonzero linear combination of h? and h3, say,

k® = a;h? + b, (54.26)

where the coefficient a, is nonzero. As before, a, is arbitrary, but for each
choice of a, there is a unique corresponding b,. Because both a; and a,
are nonzero and arbitrary, k! and k? are linearly independent factors of
M(Z). Hence M(Z) may be expressed as

M(Z) = k? A k! = (a,h® + b;h®) A (azh! + byh?), (54.27)

where the product a,a, is fixed.

To complete the proof of (54.23), we must show that the coefficients
b, and b, in (54.27) both vanish. The fact that b, — O follows from the
condition that X and M(Z) share a common factor. As before we use the
criterion given by Lemma 4 to verify that condition, viz.,

UX, M(Z)) = (Ay(X), M(Z)) = u(X, Z) = (Z, X) = (A,y(Z), M(X))
= (A, (3 AR, c;h® AB2) = (—h, A by, c;h3A B2 =0, (54.28)

where we have used (54.22), (50.10f), and the basic property (M-2). From
(54.20a) the common factor of X and M(Z) is a certain nonzero linear
combination of h! and h4, say,

k® = azh! + bght, (54.29)

where the coefficient a, is nonzero since h* is not a factor of M(Z). From
(54.27) the common factor of X and M(Z) is also a certain nonzero linear
combination of k! and k2 Thus we have an equation of the form

ay(a,h* + b,h®) + by(azsh® + bsh®) = ash! + bshd, (54.30)

where the coefficients a,, a;, and g, are nonzero. Since {h*} is a basis, the
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equation (54.30) implies that

aa, —a; =0, (54.31a)
aby = 0, (54.31b)

aby + byby = 0, (54.31¢c)
by = 0. (54.31d)

From (54.31b) b, = 0, since a, * 0. Then from (54.31a) a, %~ 0, since
a, and a,; are nonzero. It then follows from (54.31c) that b, = 0, since
a, 7% 0 and b,=0.

By the same argument but based on the simple tensor Y instead of
the simple tensor X, we obtain b, = 0. Thus we have shown that M(Z)
has the form given by (54.23). The fact that c,, like ¢, and ¢,, is a positive
number may be verified easily as before. Specifically, from (54.4), (54.22),
(54.23), and (54.24),

(Z, M(Z)) = <A,(0* A h?), cgh* AW = {—h; A hy, csh* AR} = —¢;4
=u(Z,Z) < 0. (54.32)
Thus the proof of (54.23) is complete.

Summarizing the result obtained so far, we see that there is a positive
unit basis {h*} in &,* with respect to  such that

X =h' A b3, (54.33a)
M(X) = c;b° A b, (54.33b)
Y = b2 A b4, (54.33c)
M(Y) = c;h! A B?, (54.33d)
Z =1 AR, (54.33¢)
M(Z) = csh* A b, (54.33)

where ¢,, c,, and c; are certain positive numbers. Now we make a final
adjustment on the basis by replacing h!, h?, h3, and h* by

e! = o;hl, e? = a,h? e = agh?, e! = q,ht, (54.34)

where the coefficients «,, a,, @3, and «, are chosen in such a way that

A ollally = 1, (54.353.)
Aglly = C1040%y , (54-35b)
alas == Cza2a4, (54-350)

azal = C3a3a4. (54.35d)
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The general solution of (54.35) is given by

oy = F=(caca/cy)V4,
oy = F(cyc5/c)V4,
o = *(c109/c3) V4,

og = $(1/cicoc5)V4,

(54.36)

where any even number of positive sign and even number of negative sign
may be used in (54.36), e.g., a; <0, a3 >0, a3 > 0, a4 < 0, etc.

After this adjustment is made, the new basis {e*} is still a positive unit
basis with respect to &, viz.,

el A e? A ed A et = ayaperga h! A h2 AR A Bt = E, (54.37)

where we have used (54.35a) and (54.19). In terms of the new basis {e*}
the previous conditions (54.33b), (54.33d), and (54.33f) may be rewritten as

C1010y
A3y

M(e! A e*) = a,0,M(h! A h?) = cyo04h® A W2 = e A e?

= e A e?,
¢
M(e? A et) = a,a,M(h? A h?) = c,o0,h! A B? = —;—a;—ai- e! ﬁ/ea
= e A €, e (54.38)
Cy0ts,
a0ty

M(e® A e?) = aya,M(h® A ht) = cyaah® A Rl = e* A el

= e2 A e,

where we have used (54.35b)-(54.35d). Applying the operator M to the
preceding conditions and using the basic property (M-1), we obtain

M(e® A e*) = M2(e! A e') = —e! A e,
M(e' A e®) = M2(e? A et) = —e? A ed, (54.39)
M(e? A el) = M?(e® A et) = —e® A el

Comparing the conditions (54.38) and (54.39) with the component
formula (40.31) for the duality operator D,, we see that M coincides with
D, provided that {e*} is regarded as a positive orthonormal basis with
respect to a Minkowskian inner product o; on &,*. Thus the existence
theorem is proved. O

Combining the preceding existence theorem with the uniqueness
theorem proved in Section 52, we see that a Minkowskian metric and an
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orientation on & may be determined to within an arbitrary change of gauge
by a field M which possesses the three basic properties (M-1), (M-2), and
(M-3). Conversely, if a Minkowskian metric and an orientation are given
on &, then the field D, possesses the three basic properties (M-1), (M-2),
and (M-3). The preceding result is quite similar to the result obtained in
Section 50 on the basis of the field N = D,.

55. The Electromagnetic Action and the Electromagnetic
Stress-Energy-Momentum Tensor

In the special theory of relativity we have shown that an electro-
magnetic field @ gives rise to a field & of electromagnetic stress-energy-
momentum tensors. Using the Lorentz electron theory, we can express Q
by the component formula

1 1
0= (zwq)wdi,ﬂ - zuﬂcpwcbﬂ,); (55.1)

cf. (41.19). We have also shown that  satisfies the equation of balance
DivQ + E = 0; (55.2)

cf. (41.18), where the divergence is taken with respect to the curvature-
free Minkowskian metric on the Minkowskian space-time. In (55.2) §
denotes the field of momentum-energy production vectors and is given by
the component formula

£ = ], (55.3)

cf. (41.8), where J denotes the dual of the charge-current field ¥ as shown
in (41.5). .

Now it turns out that the equation of balance (55.2) remains valid
in the context of the general theory of relativity; i.e., if we define £ by
(55.1) and E by (55.3), then Maxwell’s equations together with the Maxwell-
Lorentz ether relation imply (55.2), where the divergence is taken with
respect to the Minkowskian metric ¢ on the Minkowskian manifold &
The proof of the equation of balance in Section 41 is not applicable here,
of course, since it is based on a Lorentz system, which need not exist in the
Minkowskian manifold &

To verify (55.2) in the general theory of relativity, we take the covariant
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derivative of (55.1) converted into the contravariant form,

1 1
Q= (zy,cbw,ﬂdw + I, Predrs , — Zuﬂcb,,,,,,cbw). (55.4)

Using the field equation (51.23a), we have

1
4n

fom P, = QPP = — LT, D, (55.5)

Adding (55.4) and (55.5), we obtain

1 1
Q=+ &= I (Zﬂ,ﬁp”“,ﬂ@”ﬂ - 72@745 diuv)

uv,p

1
o ZD( DBy, + By + D). (55.6)

Now from the symmetry of the Christoffel symbols {2,} and the skew-
symmetry of @,, with respect to the pair (u, ), we get the identity

00, D, . 8D,
- s . (55T

dj,uﬂ,v + ¢ﬂv,y + ¢vy.ﬂ = Ix8

Hence the right-hand side of (55.6) vanishes by virtue of the field equation
(51.15a). Thus the equation of balance (55.2) is proved in the general theory.
It follows from (55.2) that £ satisfies the field equations

Q6 , =0 (55.8)

in any region where there is no charge-cirrent field W. In the view of
Einstein if a field & of electromagnetic stress-energy-momentum tensors
is present in a region, then the field © of stress-energy-momentum tensors
is given by the formula

O=¢w@RW—_T+Q; (55.9)

cf. (45.26). In particular when there is no material in the region, the field
equations (46.6) reduce to

G = —KQ,;, (55.10)
where X is given by (46.30).
Note. Unlike the contribution of a material medium to O, the con-

tribution of an electromagnetic field to @ is not confined to some small
bounded regions in &, since @, and therefore €2, differ from zero both
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inside and outside the domain of the charge—current field ¥. In other
words, in the entire domain of the electromagnetic field @ there is a field
 of electromagnetic stress-energy-momentum tensors, and that field
interacts with the gravitational potential (i.e., the Minkowskian metric)
through Einstein’s field equations.

In the view of Lorentz the electric charge-current field ¥, like the proper
mass distribution ¢, is confined to certain bounded regions in &. Since,
physically, any particle which carries some electric charge also possesses
some proper mass, the field @ of stress-energy-momentum tensors in these
bounded regions is given by the complicated general formula (55.9).
Outside these bounded regions, however, only the electromagnetic field ®
is present, and the field equations reduce to (55.10). When we prescribe
certain boundary conditions, these equations may be solved to determine
the gravitation potential o, which is due to both the charge and the proper
mass in the bounded regions. In the following section we shall summarize
a rigorous solution of Einstein’s field equations and Maxwell’s equations
outside a small region occupied by a single electrically charged mass point.
As in the Schwarzschild solution the Einstein tensor associated with this
solution becomes singular at certain points inside the small region.

Taking the trace of (55.1), we obtain

Q=0 =0. (55.11)

The preceding result may be compared with the result that the trace of the
intrinsic stress-energy-momentum tensor ow X) w of a material medium
is —pc?, which is the negative of the energy density of the proper mass.
Hence (55.11) may be regarded as the assertion that there is no proper
mass associated with an electromagnetic stress-energy-momentum tensor.
For most cases the contribution of  to @ is very small compared with that
of a material medium. Using (55.11) and (46.12a), we can rewrite the field
equations (55.10) as .

S.,s = —KQ,, (55.12)

where S denotes the Ricci tensor of the Minkowskian metric ¢ as before.
In Section 48 we formulated an action principle for the gravitational
potential ¢ in a domain which is free of electromagnetic fields; now we
generalize that principle to include electromagnetic fields. We define the
electromagnetic action integral £(6,II) on a domain 2 in & by

EG, 1) = —417;_ L? 5D, )8 = ‘817 L? B, (—Eyrdw,  (55.13)
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where dw = dx! dx? dx® dx* as before, and where @,; is given by

g _ o, o,

v

“ T9xe oxr

(55.14)

cf. (51.15b). As explained before, we require that the boundary values of
& and I be held fixed. In other words we consider the variation of the

integral E(6, fI) over the class of Minkowskian metrics & and electro-
magnetic potentials I having the same boundary values on 2. Under
the preceding assumption we calculate the variation dE(o, II) of E at the
pair (g, II) in a standard way:

1
0E(0, ) = —— J_@ {@,40,,0[Z+Z0(— )]
+ 2T Z(— D)2 6D, dw. (55.15)
As usual the variation S[Z*X#(—X)V?] is given by

S[ZowT(—I)2] = Zby(—ZY\2§Z w4 Zow(—ZYWHSZPr — IBE SEH,
(55.16)

where we have used the formula (48.31). Substituting (55.16) into the first
term of the integrand in (55.15), we get

DD, 0|20 2P (22 = 2(XFD D, — gzudiw/ﬂ)(—x)wazw

= 870 5(— )21, (55.17)
where we have used (55.1). From (55.14) the variation 6®,, is given by
d 7}

00,, = o (0I1,) — —— (3I1). (55.18)

Substituting (55.18) into the second term of the integrand in (55.15), we get

a
dxu

2Bi(— Zyr6db,, = 2<1w(—2)1/2[ (3I1,) — Tiv (anﬂ)]

— 4Pu(— Sy _aiu (811,)

— a v 1/2 a vl __ 1/2
= 4 [P(—D)0IT,] 4{_87; [Br(—X) ]}517,
=4 T?C"_ [@er(—ZYV2SIT,] + 4(—2)“@"#’”617,,

= 4—82"_ [@ev(— 2172811, + 16m(—2)V2P61T,,
x (55.19)
where we have used (51.21) and (51.23).
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Now substituting (55.17) and (55.19) into (55.15) and using the
divergence theorem together with the boundary conditions, we obtain

0E(o, IT) = —%t— L? (87825028 + 167J*811,)(—X)V* dw

4 a v 1/2
+ Ly S [@(— 1811,

- J (Q,305°6 + 21011 )E, (55.20)
pe ;
which implies that
0E(s,II)
—62‘_5-— = 3. (55.213.)
8E(e, 1)
T, 2J, (55.21b)

where the variational derivatives are defined as before by the condition

O0E(o, IT)

0E(o, IT) = J [_‘s_E.(Eﬁ)_ 8B | 3
2 v

e an,].: (55.22)

for all variations 62 and 611,, which satisfy the boundary conditions.

In Section 48 we have shown that the Einstein tensor G,; may be
expressed as the variational derivative of the action integral A(oc); cf.
(48.22) and (48.23). Combining (48.23) with (55.21), we see that the
field equations (55.10) are equivalent to

8A(0) OE(e, II)
sy T K—55a— = 0. (55.23)

Similarly, the condition that there is no charge-current field in the domair
D, ie., ¥ =0 or J=0, is equivalent to

8E(s,T)
=0 (55.24)

From (55.23) and (55.24) we see that the field equations for any domain
9 which is free of any material medium and charge—current field (but
there may be an electromagnetic field ® in 2) may be characterized by
the variational principle

8[A(0) + KE(s, II)] = O. (55.25)

The preceding assertion is known as the action principle for an electrovac
domain.
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In his lectures Toupin‘® remarked that a stress-energy-momentum
tensor similar to the electromagnetic stress-energy-momentum tensor may
be defined on the basis of a “gravitational field” G, which we call a coaction
field in Section 49. Specifically we define a “gravitational action” F(G, T
on a domain & by

F, ) = J@ 5(C, )& = Jg GG (— 5y dw,  (55.26)

where G, is given by )
or. (55.27)

cf. (49.5). The preceding definition for F(6, ") is quite similar to the defini-
tion (55.13) for E(G, IT). As before we require that the boundary values of
& and T be held fixed on 4.2.

From (55.26) we calculate the variation 6F(o, Y') of F at the pair
(o, 7) by

0F(a, 1) = Jg {G,GzO[ZB(—X)V?] + 2ZB(—X)V2G,0G,} dw.  (55.28)

The first term in the integrand may be determined as before by the formula
(48.31):
G,Ggd[ZH(—2)?] = (GG — $2,,G+G ) (—2)V20X . (53.29)

From (55.27) the variation 6G; is given by
7}
0Gs = T Y. (55.30)

Substituting (55.30) into the second term of the integrand in (55.28), we
obtain

(=22 es g{ aﬂ 28]
9 o 9 oY
=7 | [ 2500(— Dy T. — 2 2aﬂ(-2)1/2W]ar
_ 0 [aswe—zyn ﬁ 8T | — 2(— X2 Lap(Y)sY
ox? | Ox* |
— 2 [azes—syn 2L sv] 4 om(—zynsy (55.31)
oxf | Ox* ] ’

where we have used (49.10) and (49.14).

® R. A. Toupin, “Electricity and electro-magnetics” (see footnote on page 351).
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Now we define a ‘‘gravitational stress-energy-momentum tensor” A
associated with a “gravitational field” G by the component formula

Ay = G,Gs — }Z,5G4G,, (55.32)

which is quite similar to the component formula (55.1) for the electro-
magnetic stress-energy-momentum tensor 2. Like the field 2, the field A
satisfies an equation of balance of the form

DivA 4 p =0, (55.33)
where p is given by the component formula
ue = G*M. (55.34)

Here M denotes the dual of the action density A, which gives rise to the
“gravitational field” G as explained in Section 49. The equation of balance
(55.33) and the component formula (55.34) are comparable to (55.2)
and (55.3).

To verify the equation of balance (55.33), we take the covariant deriv-
ative of the component formula (55.32) converted into the contravariant
form:

A% 5 = G* ;GP 4 G*GP 3 — L¥GH 4G,. (55.35)

Now using (49.31), we have

1 0

Iu“ = G*M = —G* ————(_—2)1/2 —axﬁ

[(—=2)V2GP] = —G*GP ,. (55.36)

Adding (55.35) and (55.36), we get

A% 5 4 p* = G 4GP — Z%Gr 4G, = E7GHG,,, — G (55.37)

I"V)'

Now by virtue of the symmetry of the Christoffel symbols {%,} with respect
to the pair (v, p),

¢ _0G, _9G, _ 98 (ar>_aa <ar>

G #¥ T gxm ax*  Ox* \ dx? x? \ Ox*

=40,

ViH

(55.38)

where we have used the field equation (49.5). Hence the right-hand side

of (55.37) vanishes. Thus the equation of balance (55.33) is proved.
Since the action density A, like the charge—current field ¥, is confined

to certain bounded regions in &, outside these regions the equation of
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balance reduces to
A“‘ﬂ,p =0, (55.39)

which is comparable to (55.8). It should be noted, however, that the field
G, like the field &, need not vanish outside the domain of A and M. Hence
there is a nonzero tensor A associated with the tensor G outside the bounded
regions also.

Note. A fundamental difference between the tensors A and 2 is that,
while the trace of §2 with respect to ¢ always vanishes [cf. (55.11)], the
trace of A may not vanish. Indeed, from (55.31)

Z% A, = A = —G*G, = —a,(G, G). (55.40)

Now using the “gravitational stress-energy-momentum tensor” 4,4,
we can rewrite (55.29) as

GG 0[Z6(—Z)2] = A 4(— )25, (55.41)

Substituting (55.41) and (55.31) into (55.28) and using the divergence
theorem together with the boundary conditions, we obtain

OF (0, 1) = J (A 02 + 2MOYY(—Z)V2 dw

+J [22«6( Zyn 2 or 6Y‘]d /

- J (4,05 + 2MOY)E, (55.42)
o
which implies that
oF(a, 1)
RAGRVISYN (55.432)
5F(0,Y)
. (55.43b)

Recall that the scalar M in (55.43b) is just the dual of the 4-form A. Hence
(55.43b) is similar to (55.21b), where the 1-form J is the dual of the closed
3-form W.

In his lectures Toupin suggested that the action principle (55.25)
might be regarded as a special case of the following more general variational
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principle:
6[A(0) + KE(o, II) + HF(c, )] = 0, (55.44)
where K and H are certain universal constants. From (48.23), (55.21),

and (55.43) the variational principle (55.44) is equivalent to the following
system of field equations:

G+ K25+ HA; = 0, (55.452)
J, =0, (55.45b)
M=0. (55.45¢)

The field equations (55.45a) are more general than the field equations
(55.10), since the “gravitational field” G may interact with the gravitational
potential o, provided that the constant H is nonzero. Toupin did not make
clear in his lectures whether or not the constant H might vanish, however.

56. Electrogravitational Fields of an Electrically Charged Mass Point

In this section we derive a rigorous solution of the coupled system of
Einstein’s equations (55.10) and Maxwell’s equations (51.15) outside a
small region occupied by an electrically charged mass point; that solution
was obtained originally by Nordstrém and by Jeffrey.

We start from the assumption that the components of the gravitational
potential (i.e., the Minkowskian metric ¢) and the electromagnetic potential
IT are of the forms

Zn=e",  Zp=r: Zy=risin?0, Z,y=—e? (56.1)

and
I, =1,=1,=0, II, = h(r). (56.2)

As remarked in Section 47, the potentials having the special component
forms are spherically symmetric with respect to a particular world line,
which is characterized by the condition r = 0 in the coordinate system
(x*) = (r, 0, @, ct), where (r, 0, p) denote the spherical coordinates centered
at the world line.

In Section 47 we showed that the nonzero covariant components of
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the Ricci tensor S associated with the metric o are given by

Su= b — 1 + b - L

Sae = e 1 + $r(v' — A)] — 1,
23 = e~*sin? 6[1 + 4r(»' — A")] — sin? G,
»'! Ay’ y'2 ' ]

— v _ e
Su=e 5 T3 3 r

(56.3)

cf. (47.5). Unlike the Ricci tensor of the Schwarzschild solution, the Ricci
tensor here does not vanish but is equal to —K times the electromagnetic
stress-energy-momentum tensor £2, as required by the field equations
(55.12). We proceed now to determine the tensor £ from the electro-
magnetic potential II.

From (56.2) and (51.15b) the nonzero covariant components of the
electromagnetic field @,; are
¢14 = —¢41 = aalzl"

_y (56.4)

Then the nonzero contravariant components of ® are given by
PN = QU = JUTHUP,| = g~ A+0)p', (56.5)
since from (56.1) the nonzero components of the dual metric o, are
U= dn  Z2 = [y, I8 = |[rtsin?f, 4= —e—" (56.6)
From (51.21) the components @ satisfy the field equations

% [(—X)2+6] = 0 (56-7)/
outside the small region occupied by the charged mass point. From (56.1)
the determinant X' = det[X 4] is given by

2 = —etirigin? f, (56.8)
Substituting (56.5) and (56.8) into (56.7), we obtain

dir (e-WD+mp2pry — 0, (56.9)

Hence

h’=%e“""“”, (56.10)
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where a is a constant of integration. It follows from (56.10), (56.5), and
(56.4) that the nonzero components of € are

D, = —D, = 7‘12_ V40 (56.11)
and
QY — P14 — 7(12_ e—(1/2)(A+r) (56.12)

Now using the general formula (55.1), we calculate the components
of the electromagnetic stress-energy-momentum tensor £, and the result is

2
(9.] = = 2 ding(—', %, rtsin? 6, &), (56.13)

Substituting the component formulas (56.3) and (56.13) into the field
equations
8nk

Sazﬂ = - P thﬂa

(56.14)

we obtain the following system of differential equations for the two unknown
functions A and »:

% v — %W + —41— ) — —Ar— = fjﬁ e, (56.15a)
e—‘[l + %r(w _ A’)] 1= f:ﬁ ”, (56.15b)

e~ sin? 0[1 n %r(v’ _ A’)] — sin?f = — fjﬁ r2sin®6,  (56.15¢)
e‘”‘“[— ”T + ’1;”' - (—”;)-2- - ”T] - _ % o (56.15d)

This system may be solved easily as in Section 47. [Notice that the homoge-
neous system of (56.15) is just the system in Section 47 which governs the
unknown functions A and » in the Schwarzschild solution.]

Specifically, the equations (56.15a) and (56.15d) imply that »' = —4'.
Hence by requiring that, as » — oo, the metric ¢ approaches the flat metric
& with components

Zu=1, Zu=r, Zy=risin20, ZX,=—1; (56.16)
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cf. (47.6), we get v = —A. From that result the equation (56.15b) reduces to

, ka?
e(l+m)y—1=— e (56.17)
or, equivalently,
ka®

— (re") =] — A (56.18)

Integrating the preceding equation, we obtain

2km ka?
e =1 ‘W_FW, (56.19)

where m is another constant of integration. It follows from (56.19), (56.6),
and (56.1) that the nonzero components of the metric o are

2
211:1/(1_ 2km _I_E_)’ = 12,

2 402
oroer . NC D
m a
233—"2511'126 244_—" ——(1 —_ C2r +W)
and
2
oy Hm | k& I = 1/p,
c°r cr
(56.21)
2
I% — /st sin?0, I —1/( 2kim kf2)
cor

Now applying the approximate formula (46.8) to the preceding exact
solution, we see that the metric o corresponds to a Newtonian gravitational
potential { of the form

N

2 2
: 1 cz( 2km ka )_ _ km ka (56.22)

S - ) = o
2 cr cir? ré 2c%r?

We recognize immediately that the leading term on the right-hand side of
(56.22) corresponds to the gravitational potential in the classical theory
due to a mass point with mass m located at the center r = 0 of the spherical
coordinate system (r, 0, ¢). The second term on the right-hand side of
(56.22) is a relativistic correction of the classical formula due to the electric
charge of the mass point. Because of the factor k/c? in the second term,
the correction is very small compared to the leading term.
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The reason that the second term on the right-hand side of (56.22) is
due to the electric charge may be seen in the following way: Since A + v = 0,
the formulas (56.11) and (56.12) reduce to

Oy = —0y = B = —OM — . (56.23)

We recognize immediately that these components are just the components
of the electric field E according to Coulomb’s law in the classical theory,
provided that we regard the constant g as the electric charge of the mass
point.

From (56.20) and (56.21) we see that the Nordstrom-Jeffrey solution,
like the classical solution and the Schwarzschild solution, becomes singular
at the center r = 0; the presence of other singularities like the Schwarzschild
singularity depends on the value of the electric charge a relative to the value
of the proper mass m. There are three possibilities:

(i) a® > km?® In this case r = 0 is the only singularity of the solution.
The empirical values of @ and m for a single electron are approximately

a = —4.801x 1071 esu, m=9.109x10-% g, (56.24)

which satisfy the hypothesis a® > km? For the values given by (56.24)
the two terms on the right-hand side of (56.22) are equal in magnitude at
the radius

ro = 332% = 1.41x10-% cm, (56.25)
which is generally agreed to be of the order of magnitude of the radius of
an electron. Differentiating (56.22) with respect to r, we see that { has a
minimum value at r = 2r,. When r < 2r,, the second term on the right-
hand side of (56.22) dominates the first term, and {— 00 as r — 0;
the form of { in the region is entirely different from that of the Schwarz-
schild solution. On the other hand, when r > 2r,, the first term dominates
the second term, and { — 0 as r — oo; the form of { in the region is similar
to that of the Schwarzschild solution as well as that of the classical New-
tonian solution,

(ii) a® = km*. In this case other than the singularity at r = 0 there is
another singularity in the Nordstrom-~Jeffrey solution at
p=tm (56.26)

c?
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which is exactly one-half of the radius of the Schwarzschild singularity
corresponding to the mass point without the electric charge.

(iii) a® < km?®. In this case the algebraic equation

2k ka?
r2 — c2m r+ o =0 (56.27)
has two positive roots:
km a® \12
r=— [1;{;(1— or) | (56.28)

which are both less than 2km/c?, the radius of the Schwarzschild singularity
corresponding to the mass point without the electric charge. [In fact, from
(56.27) the sum of the two positive roots given by (56.28) is equal to 2km/c2.
The radius given by (56.26) in the previous case corresponds to a double
root of the equation (56.27) when the coefficients satisfy the condition
a® = km?.] When a2 is much smaller than km?, i.e., when the contribution
of the electric charge is small compared to that of the proper mass, the
two roots are given approximately by

2km a® a®
r = e—_——— r = ————
! c? 2mce?’ 27 2mer’

(56.29)

where one root, ry, is close to 2km/c?, while the other root, r,, is close to the
center. Since the radius 2km/c? of the Schwarzschild singularity of the cor-
responding mass point without the electric charge is an upper bound for
the two roots (56.28), by the remark made in Section 47 we cannot observe
these singularities outside the region occupied by the charged mass poin]/.
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