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Preface

Diophantine equations are systems of polynomial equations to be solved in
integers, in rational numbers, or in various generalizations, such as finitely
generated rings over Z or finitely generated fields over Q. Diophantine
approximation is the study of Diophantine equations using the method of
approximations. The Nevanlinna theory, on the other hand, studies holo-
morphic solutions of the systems of polynomial equations. More precisely,
since the complex solutions to a system of polynomial equations form an
algebraic variety, Diophantine approximation studies the rational points in
algebraic varieties defined over Q and Nevanlinna theory investigates the
properties of holomorphic curves in algebraic varieties over C. Nevanlinna
theory and Diophantine approximation have developed independently of
one another for several decades. It has been, however, discovered by C.F.
Osgood, P. Vojta, Serge Lang and others that a number of striking similar-
ities exist between these two subjects. Generally speaking, a non-constant
holomorphic curve in an algebraic variety corresponds to an infinite set of
rational points, so, in this way, any theorem in Nevanlinna theory should
translate into a true statement in Diophantine approximation. A growing
understanding of these connections over the last 15 years has led to signif-
icant advances in both fields. Outstanding conjectures from decades ago
are being solved.

This book presents, in a systematic and almost self-contained way, the
analogy between the Nevanlinna theory and Diophantine approximation.
Although the emphasis is on Nevanlinna theory, both theories are presented
in this book, including some results of recent research. We divide each

vii



viii Preface

chapter into Part A and Part B. Part A deals with Nevanlinna theory and
Part B covers Diophantine approximation. At the end of each chapter, a
table is provided to indicate the correspondence of the theorems.

Let us first review the historical development of Nevanlinna theory.
Nevanlinna theory begins with the study of the distribution of values of
meromorphic functions. In 1929, R. Nevanlinna extended the classical lit-
tle Picard’s theorem by proving the two elegant theorems (we call them
the First and the Second Main Theorem). The work of Nevanlinna evoked
a very strong interest of research in his theory. Right after Nevanlinna,
a number of important papers by researchers such as Bloch [Blo], Car-
tan[Carl] [Car2], and Weyls [We-We] were published. Cartan extended
Nevanlinna’s result to holomorphic curves in projective spaces and Bloch
considered holomorphic curves in Abelian varieties. In 1941, Ahlfors[Ahl],
following Weyls’ work, gave a geometric approach to the theory of holo-
morphic curves in projective spaces. Stoll [Stol] generalized the work of
Weyl-Ahlfors to the case of several complex variables, and gave a foundation
of the Nevanlinna theory in several complex variables. The task of gener-
alizing the Nevanlinna theory to higher dimensional complex manifolds is,
in general, very difficult. Griffiths et al. [Ca-G], in the 1970’s, successfully
proved the Second Main Theorem for equi-dimensional holomorphic map-
pings. Their results also gave a new insight to the theory in terms of Chern
invariants after the work of Bott-Chern [Bo-C]. A recent discovery of the
relationship to Diophantine approximation has generated greatly renewed
interest in Nevanlinna theory. Great progress has been made recently:
Siu-Yeung [Siu-Y2] settled Lang’s conjecture for Abelian varieties and sig-
nificant progress towards solving Griffiths’ conjecture concerning holomor-
phic curves in algebraic varieties has been made (see Siu-Yeung [Siu-Y1],
Dethloff, Schumacher and Wong [D-S-W1] [D-S-W2], Wong[Wong6], Mc-
Quillan [McQ3], Demailly and J.El Goul [Dem-G2] etc.). McQuillan’s work
of translating Faltings’ proof in Diophantine approximation to Nevanlinna
theory is also worthy of mention.

Diophantine problems have also had a long history. In the first half
of the 20th century, Thue and Siegel developed the method of Diophantine
approximation to prove finiteness for integer solutions of certain polynomial
equations. To give an example, if (z,y) is a large integral solution of the
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equation 23 — 2y3 =1, then

1 1
<< 3.
|y||z2 + 21/3zy + 41/3y2 ME

= -2 =
Y

By continued fractions, for any irrational real number a there exists a con-
stant ¢ = c(c) and infinitely many rational numbers z/y (z,y € Z) with
|z/y — ] < c/|y|*>. Thue and Siegel used a weak converse of this fact to
obtain their finiteness statements. Roth [Rot] in 1955 proved the celebrated
Roth’s theorem, which provides a “sharp approximation” to algebraic num-
bers. W. Schmidt extended Roth’s result for simultaneous approximation
to algebraic numbers. Faltings [Fall] in 1983 solved Mordell’s conjecture:
A curve of genus g > 2 has only finitely many rational points. P. Vojta
[Voj2] obtained an alternative proof of Faltings’ theorem, using Diophan-
tine approximation techniques similar to those used in the proof of Roth’s
theorem. In the same year, G. Faltings, using an adaptation of Vojta’s
method, extended the theory of Diophantine approximation to Abelian va-
rieties.

This book begins with Nevanlinna theory of meromorphic functions. In
Chapter I, we prove Nevanlinna’s first and second main theorem for mero-
morphic functions, as well as Roth’s theorem. We also carefully examine
the “error terms” appearing in Nevanlinna’s Second Main Theorem. The
precise error term gives a better analogy. Chapter II presents the general
one dimensional Nevanlinna theory and Diophantine approximation. Both
theories depend on the genus. The genus 0 case has been included in chap-
ter I. If the genus is 1, then any affine Riemann surface does not carry
a non-constant holomorphic curve, while in Diophantine approximation, a
curve of genus g > 1 has only finitely many integer points. The first is
referred to as Picard’s theorem and the latter is referred to as Siegel’s the-
orem. We also know that the set of rational points on a curve of genus 1
forms a group and this group is of finite rank. This is the Mordell-Weil the-
orem. A curve of genus g > 2 has only finitely many rational points. This
was known as Mordell’s conjecture, but is now Faltings’ theorem. On the
other hand, the classical Picard’s theorem states that every holomorphic
map from C to a compact Riemann surface of genus greater than or equal
to two must be constant. Chapter III introduces Cartan’s theory for holo-
morphic curves in projective spaces and Schmidt’s subspace theorem. We
then use these theorems to study the hyperbolicity of the complement of
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hyperplanes in Nevanlinna theory and to study the finiteness of the number
of integer solutions of decomposable polynomial equations in Diophantine
approximation. Chapter IV extends the theory of Chapter III to the mov-
ing target case. Chapter V covers the equi-dimensional Nevanlinna theory
developed by Griffiths and his school in the late 1970’s. Chapter VI stud-
ies holomorphic curves in Abelian varieties, as well as rational points of
Abelian varieties. We also include the proof by McQuillan of Bloch’s con-
jecture in Nevanlinna theory. This method is parallel to Faltings’ proof
regarding the Diophantine problems of the Abelian variety. The last chap-
ter includes the theory of complex hyperbolicity, focusing on the method
of negative curvature.

Because this book covers subjects in complex analysis and number the-
ory, I hope it will be useful to many types of mathematicians: complex
analysts, differential geometers, algebraic geometers, and number theorists
at the very least. It is also my hope that this book will help you, the
reader, to appreciate some of deep and elegant results currently known in
both fields and will inspire you to do further research in these two beautiful
subjects.

I wish to thank my Ph.D. advisor Wilhelm Stoll for introducing me to
this field, and for his constant encouragements. I am very much indebted
to many friends and colleagues, without whose help and encouragement
this text would never have been written. I am especially grateful to Zhi-
hua Chen, S.S. Chern, D. Drasin, S. Lang, R. Osserman, Y.T. Siu and
P.M. Wong for their constant encouragements. I also want to express my
appreciation to the many people from whom I learned these two subjects,
including (but certainly not limited to) W. Cherry, J.P. Demailly, A. Ere-
menko, S. Lang, M. McQuillan, J. Noguchi, W.M. Schmidt, B. Shiffman,
Y.T. Siu, P. Vojta, and P. M. Wong. I wish to thank LeeAnn Chastain and
E H Chionh for editorial assistance. I would like to acknowledge the gen-
erous financial support of the U.S. National Science Foundation (through
grants DMS-9596181, DMS-9800361) and U.S. Security Agency (through
grants MDA904-99-1-0034, MDA904-01-1-0051). Finally, but most impor-
tantly, I want to thank my wife Yu Shen, my son Aaron, and my daughter
Christina for their love, support, understanding and patience.
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Chapter 1

Nevanlinna Theory for Meromorphic
Functions and Roth’s Theorem

In this chapter we introduce Nevanlinna’s theory of meromorphic functions
and Roth’s theorem in Diophantine approximation. Nevanlinna theory and
Diophantine approximation are counterpart to each other. As throughout
this book, we divide each chapter into two parts. Part A covers Nevanlinna
theory and Part B covers Diophantine approximation. At the end of the
chapter, we provide a table describing the correspondence of the theorems.

Part A: Nevanlinna Theory

Nevanlinna theory studies holomorphic maps f : C - M where C is the
complex number plane and M is a complex manifold. In particular, it asks
when f is forced to be constant. A simple example is taking M as a disc
of finite radius. In this case, the classical Liouville theorem says that every
holomorphic map sending C into the disc must be constant. This chapter
deals with the case that M = P*, the complex projective space of dimension
1.

The fundamental tool of this subject is the measurement of the growth
of f. Hadamard made the first discovery in this direction. Given an entire
function, there are two different ways of measuring its rate of growth—its
maximum modulus on the disc of radius r (viewed as a function of r)
and the maximum number of times at the value in the image is taken on
this disc. The insight is that these two rates of growth are essentially
the same, the former being roughly the exponential of the latter. As an
example, consider the function e?” — 1. Its maximum modulus on the disc
of radius r grows like ™" while the number of zeros in this disc grows like

1



2 Nevanlinna Theory for Meromorphic Functions and Roth’s Theorem

r®. The maximum modulus itself clearly does not work for meromorphic
functions since it may become infinite for finite values of r. R. Nevanlinna
[Nev], in 1929, found the right substitute for the maximum modulus. He
introduced the characteristic function T (r) to measure the growth of the
meromorphic function f. Starting from the Poisson-Jensen formula, he was
able to derive a more subtle growth estimate for meromorphic functions in
what he called the Second Main Theorem. It gives a quantitative version
of the classical Picard’s theorem for meromorphic functions. This chapter
introduces Nevanlinna’s First and Second Main Theorem for meromorphic
functions. We note that while we present the Second Main Theorem, we
also, following W. Cherry and Zhuan Ye [Ch-Y], carefully examine the
“error term”. The Second Main Theorem with a “good” error term provides
a more precise analogy to Roth’s theorem in Diophantine approximation.

Al.1 The First Main Theorem

We begin by recalling the following well-known Poisson-Jensen formula in
the classical complex analysis.

Theorem A1l.1.1 (Poisson-Jensen Formula) Let f # 0 be meromor-
phic on the closed disc D(R), R < co. Let ay,...,a, denote the zeros of f
in D(R), counting multiplicities, and let b;,...,b, denote the poles of f in
D(R), also counting multiplicities. Then for any z in |z| < R which is not
a zero or pole, we have

o R s do

gl () = [ |R0——| og | (Re") | 2
Zlog a, Zlog

Proof. We note that it suffices to prove the theorem when f has no zeros
or poles on the circle |z| = R. Otherwise, we consider the function f(pz)
and let p — 1.

We first consider the case when f is analytic and has no zeros in the

closed disc |z|] < R. Then log|f| is harmonic. For a given z in D(R), we
2(y —
consider the linear transformation L(w) = M

Zw
and satisfies |L(w)| = R if |w| = R. Let F(w) = log f(L(w)). Applying the

R(z R(z - bj

. L sends z to zero
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Mean Value Theorem for harmonic functions to F(w), we have

m do d
log f() = F(0) = | F(Re e)5 = le:RFw 2”’;’1”. (1.1)
We let ( = L(w), then
2(,
’”=L'1(0=}Zz(z—_z§)-
So, for || =R
dw 1(—1 Z)dc_(—l z)dg
o2miw  2mi\z—(  R?—2( T \z=C¢  (¢-3%() 2mi
_ z |\ d _ R*-—|z|* d¢
- ( ¢ c—z) 2ri¢ 1= 2P 2miC’ (12

Note that when |w| = R, |{| = R, and g.—g = df, so by combining (1.1) and
(1.2)

2" 6 |Z|2
logf(z)=/0 log f(Re )|—1w27r

Thus

27 2
oglf(e)| = [ logl R 2L 2. (1.9

The Theorem is proved in this case.
For the general case, we consider the function

P R—a.z

R O = e

v=1 R(z=b,)

Then g has no zeros or poles in |z] < R. Note that when |z| = R, |g(2)| =
|f(2)|- Applying (1.3) to g yields the theorem. O

Applying Theorem Al.1.1 with f(2) = e, we have

Corollary A1.1.2 Let |z| < R, then

/2" 1 dd 1
o |Re® —z|22r  R2—|z?
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Let 2o € D(R). If f(2z) = ¢c(z—2z9)™+-- -, where ¢ is the leading nonzero
coefficient, then m is called the order of f at 29 and is denoted by ord,, f.

Corollary A1.1.3 (Jensen’s Formula) Let f # 0 be meromorphic on
D(R), R< 0. Letay,...,a, denote the zeros of f in D(R)—{0}, counting
multiplicities, and let by,...,b, denote the poles of f in D(R) — {0}, also
counting multiplicities. Then

} (ordof)log R,

‘+Zlog

v=1

27
log|es| = /0 log £ (Re)| o2 —Zlog

pu=1

where f(z) = cfz°"d°f + .-+, ordof € Z, and cy is the leading nonzero
coefficient.

Proof. Applying Theorem Al.1.1 with 2 = 0 to the function

—ordo f
f(2)z . -

We now proceed to define Nevanlinna functions. Let f be a meromor-
phic function on D(R), where 0 < R < oo and let r < R. Denote the
number of poles of f on the closed disc D(r) by ny(r, o), counting multi-
plicity. We then define the counting function N¢(r,00) to be

N¢(r,00) = nyg(0, 00) logr +/or[n;(t,oo) —ny(0, oo)]%,

here ng (0, 00) is the multiplicity if f has a pole at z = 0. For each complex
number a, we then define the counting function Ny(r,a) to be

Ny (r,a) = Nyj(p-a)(r,00). (1.4)
So, in particular, by the definition of the Lebesgue-Stieltjes integral,

r
Ny(r,0) = (ordg f)logr+ 3 (ordj'f)log|;| (1.5)
z€D(r),z#0

where ord} f = max{0,ord, f} is just the multiplicity of the zero at z. We
note that Ny(r,a) measures how many times f takes value a. With this
notation, we can rewrite Corollary A1.1.3 as
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Corollary A1.1.4 Let f Z 0 be meromorphic on D(r). Then

27
0y, 46
loglc,e|=/0 log|f(re'0)|%— Z (ordzf)loglgl—-(ordof)logr,

2€D(r),z#£0

or equivalently,

2m . do
log |cy| =/0 loglf(re'0)|§+Nf(r,oo)—Nf(r,O).
The Nevanlinna’s proximity function m¢(r,o0) is defined by

27
my(ro0) = [ log" f(re )5, (1.6

where logt z = max{0,logz}. For any complex number a, the proximity
function my(r,a) of f with respect to a is then defined by

mf(r’ a) =My/(f-a) (T, OO) (17)

We note that mg(r,a) measures how close f is, on average, to a on the
circle of radius r. Finally, the Nevanlinna’s characteristic function of
f is defined by

Ty(r) = mg(r,0) + Ny(r, 00). (1.8)

T¢(r) measures the growth of f. For example: T¢(r) = O(1) if and only if
f is constant; T¢(r) = O(logr) if and only if f is a rational function.

The characteristic function 7', the proximity function m and the count-
ing function IV are the three main Nevanlinna functions. Nevanlinna
theory can be described as the study of how the growth of these three
functions is interrelated. The First Main Theorem is a reformulation of
Corollary A1.1.4.

Theorem A1.1.5 (First Main Theorem) Let f # 0 be meromorphic on
D(R), R < . Then, for any0 <r < R,

(i) T¢(r) = mg(r,0) + Ny(r,0) + log |cy|.

(i) Given a complez number a,

|T¢(r) — my(r,a) = Ny(r,a)| < [logler/(s-a)l| +log™ |a| +log2,
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where ¢ (s—q) is the leading non-zero coefficient in the Taylor’s ezpansion
of 1/(f — a) around 0.

Proof. (i) is derived directly from Corollary Al.1.4. To prove (ii), ap-
plying Corollary Al1.1.4 to 1/(f — a) yields

27
1 dé

loglei(r-a)l = /0 log F(re®) —al 27 + Nij(s-a)(r,00) = Ni/(5-4)(r,0).

Since log z = log™ = — log*(1/z),

27 27

1 df ' db
ol = logt ———— 2 _ [ 10g™ |f(rei®) — o] 2
lOglcl/(f a)l /(; og |f(re'9)-a| o o og If(re ) a|27l'

+Ny(r;a) — Ng(r,00).
Thus,

/021r log™ |f(rei0) - a|§ = —Ng(r,00)+ms(r,a)+ Ny (r,a)—log|ci/(s—a)l-
Note that if z and y are positive real numbers, then
log* (z + y) < logt 2max{z,y} < log™ z + log* y + log 2.
So
[log™ |z — y| — log™ ||| < log* |y +log 2.
Thus
|T¢(r) — ms(r,a) = N¢(r,a) + log|ci/(s—a)|| < log™ |a| +log 2. .

Theorem A1.1.6 Let f and a;,0 < j < m, be meromorphic functions on
C satisfying

ia,‘f'j =0
3=0
on C. Then
Ty(r) < 3 Tuy (r) + O(1).

j=0
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Proof. Without loss of generality, we assume that a,, and f are not
identically zero. We have

) +log? (mfw)

j=0

m—1

PIPi

j=0 "™

mlogt|f] = log*(If|™) =1log* (

aj

Qm

IN

log" ( max
0<j<m-1

log* [ max
0<i<m—1

4

Gm

IN

) +logt (mmax(1,|f|™ 1))

m-—1

1
logt — + |a; —1)log* .
og Iam|+Zlog laj| + (m — 1) log™ | f] + logm

=0
It follows that
m—1
myg(r,00) < my,, (r,0) + Z My, (r,00) +O(1).
e
We now estimate Ng(r,00). Let b be an entire function on C whose ze-
ros divisor is the maximum of the pole divisors of ay,...,am,_1 so that

bag,...,bam—1 are entire functions. Clearly we have
m~1
Ny(r,0) < > No,(r,00).
Jj=0
It follows from bam, = — Y7o’ bajf ™+ that N¢(r, ) < Nia,, (r,0). Thus
. m-1
Ny(r,00) € Na,(r,0) + Ny(r,0) < Na,,,(r,0) + Y No,(r,00).
=0
So
m-—1 m
Ty(r) < Tajan(r) + Y To;(r) + O(1) =Y Tay(r) + O(1).
j=0 Jj=0 0

The First Main Theorem states that T¢(r) = mg(r,a) + N¢(r,a) +
O(1). It gives us an upper bound on N¢(r,a) in terms of T%(r), hence
on the number of times f takes on the value a. It can be regarded as
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the generalization of the statement that the number of solutions of any
polynomial equation P = a, counting multiplicity, is at most d = deg P.
Our goal is to prove the Second Main Theorem which concerns the lower
bounds of N¢(r,a) in terms of T¢(r). To do that, we need the “logarithmic
derivative lemma”, which appears in the next section.

Al.2 The Logarithmic Derivative Lemma

In this section, we derive the Logarithmic Derivative Lemma. We closely
follow the presentation by W. Cherry and Zhuan Ye (cf. [Ch-Y]), focusing
on developing a good error term. We note that if one ignores the sharp-
ness of the error term, then the proof presented below can be significantly
simplified (see [Hay] or [Lang2]).

Lemma Al.2.1 (Smirnov’s inequality) Let R < oo, and let F(z) be
analytic in the disc D(R). If either of the functions ReF(z) or ImF(z)
has constant sign in the disc D(R) where ReF(z)(resp. ImF(z)) is the real
part (resp. imaginary part) of F(2), then for any a with 0 < a < 1 and
0 < r < R, we have

27
AIMﬂW£SMWWW@P

Proof. Assume, without loss of generality, that ReF(z) > 0 for |z| < R.
The function F is non-zero in D(R), and we can fix a choice of argF(z) so
that |argF(z)| < 7/2 for |z| < R. Thus the function

Fa () = [F(n)|7ees ()
is analytic in D(R), and it follows that Re{F*(z)} is harmonic. Since
ReF%(z) = |F(2)|* cos(aargF(z)) > |F(2)|* cos(an/2),
then

2 . do 2 . df
/ |F(re‘9)|°’g < sec(an/2) ReF* (re'9)2—7r— = sec(am/2)ReF*(0),
0

0

and so

27T . d0
/|mww—5mwww@w
0 27['
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The lemma is thus proven. 0

Theorem A1.2.2 (Gol’dberg-Grinshtein) Let f be @ meromorphic func-
tion in D(R)(0 < R < o), and let 0 < o < 1, then, forr < s < R, we

have
2w
/0

f'(re®)|®
f(re¥)

< (555) 60+ mss00)”
+9sec(am/2)r=* (n§(s,0) + n§(s,00)) .

P

Proof. Let ay,...,ap (resp. by,...,b;) denote the zeros (resp. poles)
of f in D(s), counting multiplicities. We start from the Poisson-Jensen
Formula,

2 2 .
oglfl = [l oglrse iz Zl S r— 2
+ log 5 (1.9)
;_1 s(z —by)

Since
log (2)] = 3log f(2) +log F(2)],

and (log f(2))' =0,

i‘l((;)) = (log f(2))' = 2(log | £(2)1)'-
Differentiating (1.9) yields
, 2n id )

1 b, 1
+Z(32-auz z—a,,) _2(32—5,,z+z—b,,)'

v=1

Consequently,
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q 5,
+ Z:.92—1-1.,z +

v=1

LR |
2 oot

p=1

For 0 < @ < 1 and for positive real numbers d;, we know that

(Fdi)* <3 as.

So the above inequality becomes

KOl 2 oy 28" 4 |5~ @
o) < (/0 2% —ap |log|f(se¢)||—> ;sz_uaz
—s —z—ay y=1z_b"

Now, set z = re* and integrate with respect to 6 to arrive at

27 | £1(peif) |¢ 27 27
f'(re”) " df / / i * dp
- —_< N — | i av
/0 f(re®) T~ Jo 0 |se'¢ - re;olz | og|f(se )Il o
2n | P - o on | @ - a
Gy db b, d_9
+/ Z 52 —a,re? | 2m +/ Z s2 —b,reid | 2m
0 lp=1 H v=1
2m P @ 2T q a
1 df 1 do
+/0 ‘;Teie—ap 2_7r+/0 Vglrew_bu o
= Lh+L+L+1i+1Is. (1'10)

By applying the Holder inequality and interchanging the order of integra-

tion, we see that
2w 2m
2s ” do
L ([ o ol 52) 5

2w 2 1 .
28/0 (/0 [sei% — re|? 27 )Iloglf(se )||—.

By Corollary A1.1.2,

/""' 1 @ 1
o |sei® —reif|22r  s2 —r2’

e

INA
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Also

2n ie d¢
| hoglse)l| 52 = mys,00) + my (5,0)

2
So

I 2s

IN

< (555) o) +mi0°

(5255 ms(6100) + my (5,00

where the last inequality follows directly from s + r > 2r.

Our next step is to estimate Iy, where

2w
12=/
0

Since a, = Rea, — iIma,,

p -
P

p=1

Use the inequality (3_d;)* < 5°df again,

a
2w 27
Rea de
I < / Z - 0 '*'/
0 |peaso S —auTe 2m 0

[+ 4
2w 2w
Ima, de
" /o 2 T ared §+/o

— a,reit
Ima,>0 aure

2 _g rei
s?2 —ayre

a
d_0
2’

2 a 10
s§2 —ayre 2w
Ima, <0 H

Applying Lemma A1.2.1 to the analytic function

F(z) = Z f&

Rea,>0

2 _ 5 )
G,z

11

(1.11)

. (112)
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note that Re(s? — @,z2) is positive for |z| < s so ReF(z) > 0, yields

a

2 Rea, ado Rea
———| — <sec(am/2 &
LZ Ssesfon/2) | 3

2 _g3 0 2
s —ayre 27 s
Rea, >0 o Rea, >0

Since |a,| < s, we have

a a
27
/ z 2Re+a,,io (21—0 < sec(am/2)s™® Z 1
0 Rea,.>0$ ~aure m Rea, >0
a
< sec(am/2) (_n;(:;()))
a
< sec(ar/2) (M) ,  (1.13)

where the last inequality is simply s > r. The rest of the terms in (1.12)
can also be estimated in the same way, so

ny (S, 0) ¢
I, < 4sec(ar/2) —) - (1.14)
By the same argument, replacing a, by b,, we have
ns(s,00)\*
I3 < 4sec(ar/2) (%) . (1.15)
Finally we estimate Iy and Is. Recall that
2 | P o
1 df
= —_—| —. 1.1
L ,/0 ,.Z=:1 re® —a,| 2w (1.16)

Denote by ¢, = arga,,. Because e**» (cos¢, — isin¢,) = 1, we can write

L1 1 1
Z:z—a,, - Zz—a +Zz—au

p=1 lau|>r B laulgr
_ Z e'¢» cos du ; z e sin du 1
zZ—a zZ—a zZ—a
lau|>r # lau|>r H lau]<r #

e*%x cos e cos
= ) ALY et cos by

cos ¢, >0,lau|>r €08 ¢, <0,la,|>r
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. e'%» sin . e'®x sin
-3 ePrsingy 3 e singy

- z—ay - zZ—ay
lau|>rsin g, >0 lau|>rsin ¢, <0

1
+ Y o

lau|<r

Denote by p, = cos ¢, and g, = sin ¢,,, then the above equation becomes

o1 eitup etep
Z:z—a# - 2 z— > z—aﬁ

ay
p=1 Pu>0,lau|>T Pu<0,la,|>r
» Z ei¢p Qu _; Z e’i¢n du
zZ=—aqa zZ—a
lau|>7r,9.>0 K |au|>r,q9,<0 H
1
+ Y = (1.17)
z J—
lau|<r s

Note that when |a,| > r and |z| < r then Re{e**/(z — a,)} < 0. So by
applying Lemma A1.2.1 to

erp
Fz)= Y, —* a“
Pp>01|a'u|>7' s

we conclude

a «a

/2’r Z e cosd, | df /2” Z edup, dé
0 et 2r — Jo re¥ —a,| 2n

r —-Qa
cos ¢, >0,|a,|>r o pu>0,jau|>r

< sec(am/2) Z l—al—l
lau|>r K
< sec(ar/2) ("f(s’o);"f(’“’o)> . (1.18)
Similarly,

a

2 itu de ,0) —ng(r,0)\*
/0 Z S .COS¢“ ‘E;Ssec(mrﬂ) (nf(s ) sl )) )

re —a, r
cos ¢,<0,la,|>T

(1.19)
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a

/-21r z €'%u gin b ﬁ < sec(ar/2) (nf(s,O) —ng(r, 0))0: |
0

re? —a, | 27 T
8in ¢, >0,la,|>r ®

(1.20)
and

a

27 10 o} — @
/0 z e+ sin ¢IJ ggir < sec(a7r/2) (nf(s70) nf(T, 0)> )

, re —a, T
sin ¢, <0,lau|>r

(1.21)
When |z| = r, we write

>

z a
leul<r #

Z a
2 _g
T2 —a,z

lau|<r

Note that, when |a,| < r and |2| < r, Re{r? — a,2} > 0. So by applying
Lemma Al.2.1 to

T
Fz) = Z 2 — G,z
lau<r #

we arrive at

a

27 *
1 dag 1
S | = ) 3 —
/0 . re —aq,| 2r ~ sec(am/2) ( |au|>

lau|< Jaul<r

A

ns

sec(ar/2) <—(:i))a (1.22)

IN

Combining (1.16) to (1.22) and using the fact that if d; are non-negative
real numbers and 0 < @ < 1 then (3_; d;)* < 3, df, we have

I < 5sec(ar/2) (M>a (1.23)

T

By replacing a, by b, and repeating the above argument again, we can
prove

I5 < 5sec(an/2) (M)a (1.24)

The theorem follows by combining (1.10), (1.11), (1.14), (1.15), (1.23), and
(1.24). O



Part A: Nevanlinna Theory 15

Theorem A1.2.3 (Gol’dberg-Grinshtein Estimate) Let f be a mero-
morphic function in D(R)(0 < R < ), and let 0 < o < 1, then, for
ro <1 < p < R, we have

™ f(ret®) |* df o p
[ 2 (w5

+2% sec(am/2) (

) (2T (p) — log|es])°

)(ﬂ@ﬂmwmf%>,
4]

where f(z) = c;z°"%f + ..., ordof € Z, and c; is the leading nonzero
coefficient.

r(p—r)

Proof. Lets=(r+p)/2. Thens—r=p—-s=(p—r)/2, s0

s rT+p 2p
= . 1.25
-1 -1 = (-7 (1.2
Also, by definition,
(Nf(py 0) + |0rd0f| log E) 2> nf(t) 0)?
s
P dt
> nys(s,0 —
2 ny(s,0) >
p—8
= —nys(s,0).
p £(s,0)
So
P +1
ng(s,0) < — (Nf(p,0)+|ordof|log —)
p—s To
4 + 1
< — — . .
< o5 (Tf(p)+|ordof|log 7‘0) (1.26)
Similarly,
1
176,09 < L= (Ty(0) +foraofllog =) . (12m
p—S8 To

By the First Main Theorem,
my(s,0) +my(s,00) < 2Ty(s) —logeg| < 2Ty (p) — log eyl

The Theorem is proved by applying Theorem A1.2.2 with s as chosen above,
using (1.25), (1.26) and (1.27). 0
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Before we derive the Lemma of the logarithmic derivative, we need the
following lemma.

Lemma A1.2.4 (Borel’s Growth Lemma) Let F(r) be a positive, non-
decreasing, continuous function defined on [rg,0) with ro > e such that
F(r) > e on [rg,0). Then, for every € > 0, there ezists a closed set
E C [ro,00) (called the “exceptional set”) of finite Lebesgue measure such
that if we set p=r + 1/log" ™ F(r) for all * > ro and not in E, we have

log Fp) <log F(r) + 1 (1.28)
and

logt —2 < (1 + €) log™ log F(r) + log 2. 1.29
gr(p_r)_( ) log™ log F(r) + log (1.29)

Proof. Let

E= {1‘6 [ro,00) : F(r+m> ZeF(r)}.

We may assume that E is non-empty, otherwise, the lemma is trivial. We
claim that F is of finite Lebesgue measure.

Let r; be the smallest r € E with r > r5. Now assume that we have
found numbers r,...,75, S1,...,5n—1. We describe here how to inductively
extend this set, and we continue this process as long as possible. If there
is no number s with F(s) > eF(r,), then we stop here. Otherwise, by
continuity of F, there exists an s with F(s) = eF(r,). Let s, be the
smallest such s. Then, if there is an r € E with r > s,, let r,41 be the
smallest such r. Otherwise, we stop here.

For each pair rj, s;, clearly s; > r;, and since r; € E,

1
Flri4+ ——— | > eF(r;) = F(s;).
(rs+ gipey) 2 eF) = s
Since F' is nondecreasing, this implies
T + 1 > 8
J log™ F(r;) = i
and so
1
Sj (130)
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Moreover, F(r;4+1) > F(s;) = eF(r;) since sj4+1 > s;. Hence,
F(rpy1) > eF(ry) > €2F(rp_) > --- > e"F(ry) > et (1.31)

It follows that either we can only find finitely many r,, or else the sequence
Ty, goes to the infinity as n goes to the infinity. Since the set E is contained
in the union of [ry, sy], if we can only find finitely many r,, then E is of
finite Lebesgue measure. Now consider the case where n goes to 0o. Let
m(E) be the Lebesgue measure of E, then

m(E) < Z(sn —Th).

By (1.30) and (1.31),

(8n —Tn) < e S 7 < t+oo.
27T S D g R <

Thus the claim is proved.
To verify (1.28), let » > ro where r is not contained in E, then, by the
construction of F,

F(p)=F (r + < eF(r).

1
log'*€ F(r) )
Thus log F(p) < log F(r) + 1. So (1.28) holds. Finally, we verify (1.29).

rF___ 1 - + % <log*t¢ F(r) +1 < 2log'te F(r).

rip—r) p-

Hence

log* p

< (1 +¢)logt log F(r) + log 2.
T(p_r)_( ) log™ log F(r) + log -

The following Lemma on the Logarithmic Derivative with a good error
term is due to Z. Ye.

Theorem A1.2.5 (Lemma on the Logarithmic Derivative) Let f be
a non-constant meromorphic function on C. Assume that Ty(rq) > e for
some ro. Then for any ¢ > 0, the inequality

my4(r,00) < log Ty(r) + (1 + €) log* log Ty(r) + C
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holds for allT > ro outside a set E C (0, +00) with finite Lebesgue measure,
where C is a constant which depends only on f.

Proof. Using the con-cavity of log™ to pull the log™ outside the integral

to get
_ 1 2w f/( ) do 1 27 f’(re“’) a do
mf'/f(r’oo)_a/(; IOg F(re®) 2—351 g+/o W o
1.32)

Take p=r+ —W Applying Lemma A1.2.4 with F(r) = Ty(r), we

have, for r > ro where r is not contained in E,
logT(p) <logTy(r) +1 (1.33)
and

log™ < (1 + € log™ log T4 (r) + log 2. 1.34
gr(p_r)-( ) log™ log Ty(r) + log (1.34)

The theorem follows from (1.32), (1.33), (1.34), Theorem A1.2.3 and the
inequality

log™(z +y) <logT z + logT y + log 2.

Al1l.3 The Second Main Theorem for Meromorphic Func-
tions

Before we state the Second Main Theorem, we introduce the ramification
term Npam f(r) of f, which is defined by

Nram,f(r) = Ny (r,0) + 2Ny (r, 00) — Ny (r, 00).

We note that Nam,f(r) > 0.

The following Second Main Theorem with a good error term is due to
P.M. Wong, and Y. Zhuan.

Theorem A1.3.1 (The Second Main Theorem) Let ay,...,a, be a set
of distinct complex numbers. Let f be a non-constant meromorphic function
on C. Then for any € > 0, the inequality

(g — D)Ty(r) + Nram,r(7)
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Zq: Ny (r,a;) + Ng(r,00) + log Ty (r) + (1 + €) logt log Ty (r) + O(1),

holds for allT > 1o outside a set E C (0,+00) with finite Lebesgue measure.

Proof. Let § = minx;{|a; — a;|,1}. For each z with f(z) # oo and
f(2) #aj for 1 < j <g, let jo be the index among {1,2,...,q}, such that

17(2) — ajo] < |f(2) —a;| forall1 <j<gq.
Then, for j # jo, by the triangle inequality, |f(2) — a;| > /2. Thus, for
j :/é jO)

log™ | f(2)] log™ | f(2) — a;| + log* |a;| + log 2

IN

IN

2
log |f(2) — a;| + log™ 5+ log* |a;j| + log 2.

Therefore,

q
(a=1)1og* [£(2)] < 3 1og|f(2)=asl+3 " log" las|+(g~1)(log" 3 +log 2).

J#de Jj=1
Now

Zlog|f(z)—aj| = Zlog|f(2)_aj|“108|f’(2)|+1°g|f(|:)l(_2)lj|

J#jo

Zloglf(z) — aj| — log|f'(2)| + log (Z lflf'(—)lz]|)

<
j=1
Thus
et e £'(2)]
(@~ DI0g* ()] < Y 10817(2) - ]~ Iogl(2)] + Iog ZU T
j=1

2
+ X:log+ la;] + (g — 1)(log™* 5 + log2).

Jj=1

Now, set z = re*’ and integrate with respect to 6 to get

2m
(@ Umylrio0) = (@=1) [ log" If(re)Ig]
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q 2 27
) db 0+, dB
< log |f(re®) — a;|— —/ log |f!(re'®)| —
< 2 [ toalstre®) - asigz - [ 1ogls eI

2w 10
|f'(re d0
+/0 log (Z TFre®) — aj| | +O(1)
From Corollary Al.1.4, we have

2 " d9
A log (™) ~ ajl5— = Ny(r,a;) = Ny(r,00) +10g ey |

and
2n . d0
/1mﬂwm%=mvmfmm@+mm¢
0

Thus, the above inequality becomes

(¢ — D)mg(r, 00) ZNf(T aj) + gNy(r,00) + Ny:(r,0) — Ny (r, 00)
j=1

2
4 |f'(ret?)| de
< /0 log (Z F(re?) = a; l) —+Zlog+|a1|

2
+(g — 1)(log™* 5 +log2) + Zlog lef—a;| — logles|.
i=1

However, by the First Main Theorem and the definition of Nyam,¢(r), the
left-hand side of the above inequality is

(g—-1 Tf sz r,aJ Nf(T,OO)-i-Nram‘f(T).
To complete the proof, we still need to estimate
27 10
_|f!(re®)| ) db
lo o
/0‘ ) (Z | f ezo —_ a]'

Let a be a real number between 0 and 1, then



Part A: Nevanlinna Theory 21

1 [ L f! (re'a “\ do

s _/ ‘og (z‘: f(re®) —a;| | 2
2n (2] a

bid (re' ) do

< log (Z / Tre —a o7

where in the last inequality, we used the con-cavity property of the log-
arithm and the inequality (3 d;)* < 3 d? for positive real numbers d;
and 0 < @ < 1. Now applying Theorem A1.2.3 and using log*(z + y) <
log™® z + log™ y, to get that the above expression is

q
< logh s 4 log" )2y, (p) + Clo)

T(p j=1

where C, is a constant depends only a. By Lemma Al.2.4, by taking
p = r+ 1/log' Ty (r), we have, for r > 7o and not in E, logTs(p) <
logT¢(r) + 1 and

logt —P— < (1 + €)log™ log T (r) + log 2.
gr(p_r)_( ) log™ log T (r) + log

Thus, for r > rg and not in E,

log™ +log™ (Z 2T _q;( )+C(a)

)
(1 +€)log* log Ty (r) + log™ max {2T/—,(s)} + C()
)
)

<
< (1 +e€)log® log Ty(r) + log(2Ty(p)) + C(a)
< (1 +e€)logtlogTy(r) + log Ty (r) + C(c).

Combining these various estimates completes the proof of the theorem. (O

Define the truncated counting function by

N}l)(r 0) = min{ord§ f,1} logr+ Z m1n{ord+f,1}log‘ l (1.35)
z€D(r),z#0

Theorem A1.3.1 can be restated as the following corollary.
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Corollary A1.3.2 Let a,,...,a, be a set of distinct complex numbers. Let
f be a non-constant meromorphic function on C. Then for any € > 0, the
inequality

q
(@-1Ty(r) < > NP(r,a5) + NV (r,00) + log Ty(r)
j=1

+(1 4 €)logt log T (r) + O(1),
holds for allT > 7o outside a set E C (0,+00) with finite Lebesgue measure.
Proof. It is easy to check that
q q
ZN;(T, a;) + Nf(r,00) = Nram, (1) < Z N}l)(r, aj) + N}l)(r, 00).
j=1 j=1

Combining the above inequality and Theorem A1.3.1, we can imply this
Corollary. a

Corollary A1.3.3 (Picard’s theorem) If a meromorphic function f on
C omits three distinct points a1,a2,a3 € CU{o0}, then f must be constant.

Proof. Assume that f is not constant. Applying Theorem A1.3.1, we
have
3
me(r, a;) < 2T4(r) +1log Ts(r) + (1 + €) log* log Ty (r) + O(1),
=1
which holds for all r > rg outside a set E C (0, +00) with a finite Lebesgue

measure. However, since f omits aj, N¢(r,a;) = 0, for 1 < i < 3. So
my(r,a;) = Ty(r) + O(1). Thus

3T¢(r) < 2Ty(r) +1ogTy(r) + (1 +¢) logt log Ty (r) + O(1)

holds for all r > 7o outside a set E C (0,+c0) with a finite Lebesgue
measure. This is a contradiction. a
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Part B: Diophantine Approximation

B1.1 Introduction to Diophantine Approximation

The fundamental problem in the subject of Diophantine approximation is
the question of how closely an irrational number can be approximated by
a rational number. For example, for irrational number v/2, since Q is
dense in R, an appropriate choice of p/q will make |(p/q) — v/2| as small
as desired. The problem.is: can we make it small without taking p, ¢
too large? The next two elementary propositions answer this question in
different directions.

Proposition B1.1.1 (Dirichlet) Let o € R with o € Q. Then there are
infinitely many rational numbers p/q € Q satisfying
p 1
-—al < .
PR B

Proof. Let N be a large integer, and look at the set

{ga = [ge]: ¢=0,1,...,N}

(here [ ] means greatest integer). Since « is irrational, this set consists of
N +1 distinct numbers in the interval between 0 and 1. If we divide the unit
interval [0, 1] into NV line segments of equal length, the pigeonhole principle
tells us that one of the segments must contain two of the numbers. Hence
there are two of these numbers whose difference has absolute value at most
1/N. In other words, there are integers 0 < ¢; < g2 < N satisfying

(g1 = [q10]) = (g2 — [g20])| < 1/N.

Hence
- 1 1
|[q2a] [‘ha] _ al < < >
G2 —q (2 —q)N ~ (g2 — @)
This provides one rational approximation to a with the desired property,
and by increasing N one can obtain infinitely many approximations. a

Proposition B1.1.2 (Liouville) Let a be an algebraic number of degree
d > 2. There is a constant C > 0, depending on a, such that for all rational



24 Nevanlinna Theory for Meromorphic Functions and Roth’s Theorem

numbers p/q

Is—alz%.

LS

Proof. Let P(X) = aoX?+ a1 X% ! +--- +aq € Z[X] be the minimal
polynomial of a. Suppose now that |§ — a| < 1, then Taylor’s formula
yields

d
P§N=I§:§—a PO < 2-al-d- max 3P (a)

1<i<d

=c|-ql
q

On the other hand, qu(s) € Z and P(p/q) # 0 since the minimal polyno-
mial P does not have rational roots. Hence

|qdp<§)| > 1.

Combining the last two inequalities gives Liouville’s Theorem if |§ —-a| <1
The theorem is obvious if [2 —a| > 1. a

Proposition B1.1.1 says that every real number can be approximated
by rational numbers to within 1/¢%, while Proposition B1.1.2 says that an
algebraic number of degree d can be approximated no closer than C/q%.
The natural question is: for a given algebraic number o, what is the best
exponent &, such that there are only finitely many p/q € Q (written in
lowest terms) satisfying an inequality of the form

for some constant ¢ > 0. It took many decades to obtain the best value for
k: letting d = [Q(a), Q], the progress is as follows:

Liouville 1844 x = d and ¢ is computable
Thue 1909 k = (d+1)/2+ ¢

Siegel 1921 k =2Vd +1+¢

Gelfond, Dyson 1947 k = v/2d + €

Roth 1955 k = 2 + €.
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How do theorems on Diophantine approximation lead to results con-
cerning Diophantine equations? Consider the simple example of solving
the equation

-2 =1z,yeZ

Suppose (z,y) is a solution with y # 0, Let ¢ be a primitive cube root of
unity, and factor the equation as

T T T 1

s 21/3 < 421/3 < 6221/3 = —.
( ” ) v ) ” ) 7
The second and third terms in the product are bounded away from 0 so we
obtain an estimate

2 -2/ < o

Y |yl
for some constant C independent of £ and y. Then the result of Thue
implies that there are only finitely many possibilities for £ and y. So the
equation z3 — 2y3 = 1 has only finitely many solutions in integers.

B1.2 Roth’s Theorem and Vojta’s Dictionary

Definition B1.2.1 Let F be a field. By an absolute value on F, we mean
a real-valued function | | on F satisfying the following three conditions:

(i) la| > 0, and |a| = 0 if and only if a = 0.

(i) |ab| = |a|[b].

(11) la + b| < |a| + |b].

Two absolute values | |; and | |2 are called equivalent if there is a
positive constant A such that | |; = | |3. Over the field of rational numbers
Q we have the following absolute values: the standard Archimedean
absolute value | | (we also denote it by | |« ), Which is defined by |z| = z
ifz >0, and |z| = —z if z < 0; p-adic absolute value | |,, for each prime
number p, defined by |z|, = p~", if £ = p"a/b, for some integer r, where a
and b are integers relatively prime to p. For z = 0, |z|, = 0. The p-adic
absolute value | |, satisfies (i) and (ii), and a property stronger than (iii)
in Definition B1.2.1, namely

(i) |a+b], < max{|alp, [b]p}-
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An absolute value that satisfies (ii1)' is called a non-Archimedean abso-
lute value. Every nonzero rational number has a factorization into prime
factors. So for every z € Q with = # 0, we have

|2oo - H lzl, = 1, (1.36)

P

where in the product, p runs for all prime numbers. (1.36) is called the
product formula.

Theorem B1.2.2 (A. Ostrowski) Any absolute value on Q is equivalent
to one of the following: a p-adic absolute value for some prime number p,
the standard Archimedean absolute value | |, or the trivial absolute value
| |o defined by |z|o =1 for all z # 0.

To clearly see how Roth’s theorem connects to Nevanlinna theory, we
have to consider the fields more general than Q, namely the number fields.
Let us first consider the extension of an absolute value to Q(a) where « is
an algebraic number. We know that an algebraic number is usually viewed
as a complex roots of its minimal polynomial. Then || is just the modulus
of this complex number, and extends | | to an absolute value of Q(«).
To extend a p-adic absolute value is less easy. But if one is willing to
accept the p-adic closure Q, of Q and the algebraic closure C, of Q,, with
the corresponding extension of | |, to C,, this becomes just as easy as for
| |oo- Namely, every embedding o : Q(a) - C, gives an extension of | |,
defined by |B|p, = |o(B)|p, for B € Q(a). More precisely, we present, in the
following, the theory of the extension of absolute values to a number field k.
A number field k is a finite extension of the rationals Q. Absolute values on
Q extend to absolute values on k. The absolute values on k are divided into
Archimedeans and non-Archimedeans. The Archimedean absolute values
arise in the following ways: Let n = [k : Q). It is a standard fact from the
field theory that k admits exactly n distinct embeddings o : k — C. Each
such embedding is used to define an absolute value on k according to the
rule

1zle = |o(2)]oo

where | |0 is the usual absolute value on C. Recall that the embeddings
o : k = C come in two flavors, the real embeddings (i.e., o(k) C R)
and complex embeddings (i.e. o(k) ¢ R). The complex embeddings come
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in pairs that differ by complex conjugation. The usual notation is that
there are r; real embeddings and 2r; pairs of complex embeddings, so
n = r; + 2r. The normalized almost absolute value corresponding to o is
then defined by

lzlle = |=lo, (1.37)
if o is a real embedding, and
llzllo = |zI7, (1.38)

if o is a complex embedding. We note that the normalized almost-absolute
values arising from the complex embedding do not satisfy the triangle in-
equality. This is why they are called almost-absolute values.

The non-Archimedean absolute values on k arise in much the same way
as they do on Q. However, one may not be able to uniquely factor elements
of k into primes. A key idea in number theory is to look at prime ideals
instead. To be more precise, let Ry be the ring of algebraic integers of k.
Recall that = € k is called an algebraic integer if z is a root of a monic
polynomial with coefficients in Z. Note that, although Ry is not a principle
ideal domain, for every z € Ry, the principal ideal (z) in Rt generated by
z does factor uniquely into a product of prime ideals. For every prime
ideal P of Ry, we denote by ordpz the number of times the prime ideal
P appears in this ideal factorization. Every prime ideal P lies above some
prime p in Q. For every element =z € Ry, we define

|z|‘P = p—Ol'd'pZ/Ol'd‘pp.

Of course, we always understand that ordp0 = 00. The absolute value | |p
extends to k by writing any z € k as the quotient of two elements in Ry.
Note that the ordpp is needed to ensure that |p|p = p~!. To get the normal-
ized non-Archimedean absolute values, let Q, be the completion of Q with
respect to the p-adic absolute value | [p on Q. Write k = Q(z1,...,z4) so
that z;,1 < j < g, generate k. Let kp = Qp(z1,...,z,). For every element
T € Ry, we define

l|z||p = p~Tk»:Qelordrz, (1.39)

The absolute value || ||p extends to k by writing any z € k as the quotient
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of two elements in Ry. Note the definition in (1.39) can also be written as

—ordpz

llzllp = (Nx/QP) )

where Ni QP is the norm of the ideal P.
Theorem B1.2.2 is then extended to the following theorem.

Theorem B1.2.3 (A. Ostrowski) Let k be a number field. Any almost-
absolute value on k is equivalent to one of the following: the Archimedean
absolute values which come from the real embeddings o : k — R defined
by (1.87); the Archimedean almost-absolute values which come from the
complex embeddings o : k — C defined by (1.38); and the non-Archimedean
absolute value || ||p for some prime number p € Q, defined by (1.39).

We refer to the real embeddings o : £ — R, the complex conjugate pairs
{0,5} of the complex embeddings o : k¥ — C, and the nonzero prime ideals
P in the ring R as real places, complex places and non-Archimedean
places. We denote by M, the canonical set of all the non-equivalent places.
The set of non-equivalent Archimedean places of k is denoted by Mg°, the
set of non-equivalent non-Archimedean places of k is denoted by MY. For

every place v € My, v has almost-absolute values || - ||, defined by
|o(z)] if v is real, corresponding to o : k =& R
lz|lo = |o(z)|? if v is complex, corresponding to 0,6 : k = C
p~[k»:Qplordpz  if 4 i5 non-Arch., corresponding to P C Ry
(1.40)

for z # 0 € k. We also define ||0||, = 0. As we noted, these are not
necessarily genuine absolute values. However, instead of having the triangle

inequality, we have a value such that if a;,...,a, € k, then
n
Do) <n max il (14)
where

1 if visreal
N, =<¢ 2 if viscomplex

0 if v is non-Archimedean.
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If L is a finite extension of k, v € M}, and z € k, then

II el = ll=lE4. (1.42)

weEMp,w|v

Artin-Whaples extended the product formula (1.36) on Q to the number
fields.

Theorem B1.2.4 (Product Formula) Let k be a number field. Let My
be the canonical set of non-equivalent places on k. Then, for every x € k
with z # 0,

II Nzl =1. (1.43)

vEM,
Roth’s theorem was extended by Mahler to number field & as follows:

Theorem B1.2.5 (Roth) Given ¢ > 0, a finite set of places S of k con-
taining M°, and a, € Q for each v € S. Then for all, except for finitely
many, T € k,

Z log min(||z — ayllv, 1) < (2 + €)h(z), (1.44)
[k Q] veS
where h(z) is the absolute logarithmic height defined by
ha) = e 3 log* llall- (1.45)
[k:q] Q] vA

Fix a finite set S containing Mg°, we define, for a,z € k,

™) = g Q]Es o o (149
N(z,a) = E Q]l; ogt ||a:—a|| (1.47)

Then the product formula (Theorem B1.2.4) reads

Theorem B1.2.6 Forallz € k*,a €k
m(z,a) + N(z,a) = h(z) + O(1).
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Theorem B1.2.5 can be restated as

Theorem B1.2.7 (Roth) Given € > 0, a finite set S C M}, containing
Mg°, and distinct points a,,...,aq € k. Then the inequality

Xq:mz a;) < (2+ €)h(z)

j=1

holds for all, except for finitely many, = € k.
Lang made the following conjecture with a more precise error term.

Conjecture B1.2.8 (Lang) Given ¢ > 0, a finite set S C My containing
o, and distinct points a1, ...,aq € k, the inequality

(g = 2)h(z) < zq: N (z,a;) + (1 +¢€)log h(z)

i=1

holds for all, except for finitely many, = € k.
Roth’s theorem implies the following analogy of Picard’s Theorem.

Theorem B1.2.9 Let k be a number field, and let a;,...,a, be distinct
numbers in kU {oo}. If ¢ > 3, then there are only finitely many elements
z € k such that 1/(z — a;) (or = itself if a; = 00) is an algebraic integer
foralll <j<gq.

To further explore the analogy, we introduce more notation. Recall the
Nevanlinna counting function for a meromorphic function f is defined by

N¢(r,a) = Z ord! (f — a) log—r— +ordd (f — a)logr.
z€D(r),z#£0 |Z|

On the other hand, take S = MZ°, then the number theoretic counting
function N(z,a) defined by (1.47) can be rewritten as, using (1.39),

Moo = fq Q] 2 e

= > ordf(z —a)[kp : Qpllogp,  (1.48)

[ Q] PCRy
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where ordfz = max{0,ordpz}. So Ny(r,a) and N(z,a) can be compared
by replacing log(r/|z|) in the definition of N¢(r,a) with [kp : Qp]logp in
the definition of N(z,a). From this point of view, Paul Vojta has compiled
a dictionary to translate the terms in Nevanlinna theory to the terms in
Diophantine approximation. It is provided on p. 32.
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Vojta’s Dictionary

Nevanlinna Theory

non-constant meromorphic function f
A radius r

A finite measure set F of radii

An angle 4
|f(re®)]
(ord, f)log Tf[
Proximity function
2
my(r,a) = [5" log" |7rty=2 | 22

Counting function:

Ny (r,a) = ordg (f — a) logr
+ ZO<|2|<1‘ ordj (f - a’) IOg ﬁ[
Characteristic function

Ty(r) = [ log* |f(re®)| &

+Ny(r, 00)
Jensen’s formula:

Jo " log|f(re'®)| g2

= Ny(r,0) — N¢(r, 00) + O(1)
First Main Theorem:
my(r,a) + Ng(r,a) = Ty(r) + O(1)
Weaker Second Main Theorem:

(g — 2)Ty(r) ZNf<r,a,> < .€Ty(r)

j=1
Second Main Theorem:

(¢ - 2Ty(r) = S NP (r,a))

=1
. <.(1+€)logTy(r)

Diophantine Approximation
infinite {z} in a number field k
An element of &k

A finite subset of {z}

An embedding 0 : £ = C

|z|o

(ordpz)(kp : Qp]logp
Proximity function

m(z,a) = Za:k—»C 10g+ zia -
Counting function:
N(z,a) =

[#(5] 2 PCR, ordj,;(:z: —a)lkp : Qp]logp
Loganthmxc height
h(z > log™ Izl
[k Q] a:k—C
+N{(z, 00)
Atin-Whaples Product Formula:

> logllells

o:k—~C

= N(z,0) — N(z,00)
Height Property:
m(z,a) + N(z,a)

Roth’s Theorem:
q
(g — 2)h(z) — ZN(:::, aj). < .eh(z)

= h(z) + O(1)

=1
Lang’s conjecture
(g — 2)h(z) EN(l)(m a;)
j=1

<.(1+4¢€)logh(z)

Note that, in above, we use the notation . <. to denote that the inequal-
ity holds for all r except a set E C (0, +00) with finite Lebesgue measure in
Nevanlinna theory and the inequality holds for all, except for finitely many,

z € k in Diophantine approximation.
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B1.3 Proof of Roth’s Theorem

The goal of this section is to prove Theorem B1.2.5. Write, for z € k,

Hi(z) = H max{1, ||z||,},
VEM, /

then (1.44) is equivalent to

1
[[ min(llz - el 1) > 55 (1.49)
per? Hy(z)
Note that in this section, it will be convenient to use both multiplicative
and logarithmic heights, where the logarithmic height hg(z) = log Hy(z).

To prove Roth’s theorem, we first state several lemmas. The first one is
the so-called Siegel’s lemma. Siegel’s lemma is a corollary of the “pigeonhole
principle.”

Lemma B1.3.1(Siegel’s Lernma) Let A be an M x N matriz with M < N
and having entries in Z of absolute value at most Q, where Z is the set of

integers. Then there ezists a nonzero vector x = (z1,...,2n) € ZV with
Ax =0, such that
|zi] < (NQYM/(N-M)] =. Z, i=1,...,N.

Proof. The number of integer points in the box
0<z;<2, i=1,...,N

is (Z+1)N. On the other hand, for all j = 1,..., N and for each such x, the
j** coordinate y; of the vector y := Ax lies in the interval [-n;QZ, (N —
n;)QZ), where n; is the number of negative entries in the j** row of A.
Therefore, there are at most (NQZ + 1)™ < (Z + 1)V possible values of
Ax. Hence, there must exist vectors x; # X in the box and such that

Ax; = Ax,. Then x = x; — X, satisfies the conditions of the lemma. O

For a number field &, we will now apply the same sort of pigeonhole
principle argument to solve linear equations with algebraic coefficients. If
the coefficients lie in k of degree d, and if we have M equations in N
unknowns, then choosing a basis for the number fields allows us to translate
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the problem into dM equations with coefficients in Q. Thus the relevant
linear algebra condition is now dM < N. The generalization of Siegel’s
lemma to number field k is the following.

Lemma B1.3.2 Let k be a number field with d = [k : Q], let a;; € k be
elements not all zero, and let A := H(...,aij,...) be the height of the vector
formed by the a;j’s. Assume that dM < N. Then there exists a nonzero
vector x € ZV such that

N

> ayzi=0 forall 1<j <M

i=1
and

max |z;| < (NA)M/(N=dM),
1<i<N

Proof. We begin by computing how many algebraic numbers are con-
tained in various boxes.

Claim. Let k be a number field of degree d, fix an element a, € k for
each v € My, and let ¢ = {cy}, be a multiplicative My-constant. That is,
¢y > 1 for all v € My, and ¢, = 1 for all but finitely many v € M. Set
C:=T[,cv. Then

#{mek

We now prove the claim. Call 7 the set whose cardinality we are trying to
bound. Each v € M is associated with an embedding oy, : k = C. So let

d
|z — ayly < ¢y for allve Mk} < (201/d+1) )

E= [[ kv=R"xC™
veEM?®
We write every € E as z = (z,), where v in M. For o € k and € > 0,

consider the box

B(a,€) = {x EE | |z, —oy(a)| <ec, forall v e M,‘f’} .

We first observe that if ,8 € T and if we take ¢ = 1C~!/9, then the
intersection B{a,¢) N B(B,¢) is empty. To verify this, suppose that z sits
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in both boxes. If v is Archimedean, then
la = Bly = |ou(a) — v (B)] < |zv — 0u(@)| + |Ty — 00 (B)] < 2€cy;
and if v is non-Archimedean, then
la = Blv < max{la — aylv, |8 — avlv} < co.

It follows that []|o— 8], < (2€)%C = 1, and then the product formula tells
us that a = 3.
Now the disjointness of the B(a,€)’s for o € T implies that

Vol (UaeTB(a,€)) = #(T)Vol (B(0,€)) = #(T)e*Vol (B(0,1)) .
Next, if z € B(a,€) with a € T, then
|zv — ou(aw)| < |2v — ou(@)] + | — aylv < (1 + €)cy.

These inequalities define a box with volume equal to (1 + €)¢Vol(B(0,1));
hence

#Ts(lje)d=(201/d+1)d.

This proves the Claim.

We now proceed with the proof of Lemma B1.3.2. To ease notation,
put § = dM/(N — dM) and X = [(NA)?]. We define linear forms L;(t) =
Zf;l a;jt; for 1 < j < M. We apply the Claim with

Lij(X/2,...,X/2) if vis Archimedean
oy = .
0 otherwise;
o = NX max|aij|,/2 if v is Archimedean
Y7 | max|aijly otherwise.
We then compute the associated “constant”
C = (NX/2)* [ max|ail < (NXA/2)%.
v
We conclude that the linear forms L;(z1,. ..,z x) takes at most (1+NX A)¢

values, and hence that L = L - - - Ly takes at most (1 4+ NXA)%M values.
But X + 1 > (NA)?, which implies that

(X+1DN = (X+1D)VM(X +1)M > (NAM (X +1)¢M > (NAX +1)4M.
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The pigeonhole principle says that there are distinct N-tuples of integers
x' and x" satisfying L(x') = L(x"). Hence

L(x'—=x")=0and |x' - x"| < X < (NA)’

as required. a

We also need Roth’s lemma. It roughly says: Suppose that the degrees
dy,...,d, are fairly rapidly decreasing (the rate of decreasing depending
on n). Given any points z1,...,z, € k with heights fairly rapidly increas-
ing (the rate of increase depending on n and dy,...,d,), then any nonzero
homogeneous polynomial P(Xi,...,X,) with degree d; in X; and coeffi-
cients in k whose heights are bounded in terms of d; and hg(z,), vanishes
at (z1,...,Zn) to only a fairly low order. To be more precise, we introduce
the concept of “index,” which measures how high the vanishing order is.

Definition B1.3.3 Let
Q(X1,...,Xn) = Z alx....,luXil Xiﬂ

15 ,-~-7ln 20

be a nonzero polynomial in n variables, and let dy,...,d, be positive real
numbers. Then the index of Q) at 0 with weights d,,...,d, is

n

t(Q,(O,---,O),dl,...,dn) =m1n{2(li_'

1

a’ly---:ln # 0} M

. \i=1

The precise statement of Roth’s lemma is as follows:

Lemma B1.3.4 (Roth’s Lemma) Let k be a number field. Let S C M}
be a finite set containing M°. Let Rg be the set of S-integers, i.e., those
z € k such that ||z||, <1 forv g S. Let

1

0<6<16n—+#5.

Let d;(j =1,...,n) be integers §-decreasing, that is

diy1
d;

Let Q(X1,...,Xn) # 0 be a polynomial in Rg[X1, ..., X,] of degree at most
d; in X;. Denote by Boo(Q) = maxyes ||Q||v, where ||Q||v s the mazimum

10 < 6dp, <$, i=1,...,n—1. (1.50)
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of the v-absolute values of the coefficients of Q. Let x1,...,z, be elements
in k, and let

t=tQ,(z1,..-,Zn),d1,...,dn)
be the indez of Q at (z1,...,Z,). Suppose that
#Slog4 + 4n < dhi(z1), dihe(z1) < dihe(z;), i=1,...,n (1.51)
and
log Boo (@) < 6d1hi(z1), (1.52)
then
t=t(Q,(z1,...,Z0),dg,...,dn) < (20)76%".

The proof of Roth’s lemma can be found in [Langl].

We now prove Roth’s Theorem.

Proof. First, we may assume that all o, € k. Otherwise, let k' be some
finite extension field of k containing all a,,, let S’ be the set of places w of
k' lying over v € S, and for each w|v let a,, be a certain conjugate of o,.
(In order to write ||z — ay||, when a, & k, some extension of || - ||, to k(ay)
must be chosen, then the a,, should be chosen accordingly.) With proper
choices of a,,, the left-hand side of (1.44) will remain unchanged when k is
replaced by k', as will the right-hand side.

The basic idea is to assume that there are infinitely many counterex-
amples to (1.44), and we then derive a contradiction. We derive a contra-
diction as follows: We choose n good approximations (zi,...,z,) which
satisfy certain additional constraints that appeared in Roth’s lemma. We
then use Siegel’s lemma to construct a nonzero polynomial Q, of degree
d; in X;, which vanishes to a fairly high order at the points (a,,...,a,).
Thus []||Q(z1,-..,zx)|lv vanishes at a fairly high order, by the selection
of good approximation (z1,...,Z,). This will contradict Roth’s lemma,
which says that the vanishing order of @ at (z;,...,z,) cannot exceed a
certain number. The detail of the proof is provided below:

Step 1: Let oy, ..., an, be the distinct values taken on by all a,,,v € S. Let
di,...,d, be positive integers. We wish to construct a nonzero auxiliary
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polynomial @ in X3, ..., X,, variables of degree d; in X; for each 7 and where
Q vanishes to fairly high order > n(% — €1) at each point (oj,...,0;5),j =
1,2,...,m. The precise statement is as follows.

Lemma B1.3.5 Given ¢; > 0, and let n > (2m[k : Q]/e;1)?. Then there
exists a nonzero polynomial Q in X3, ..., X, variables, of degree d; in each
X;, and

tQ, (aj,...,aj),d1,...,dn) >2n(l/2—-€), j=1,...,m.

Proof. The polynomial Q will be constructed by using the simple linear
algebraic fact that a system of linear equations always has a non-trivial
solution if the number of unknowns exceed the number of linear equations.
Let

dy

Q(Xy,.. Z Z Qjy,...in X ~~-X;’;"

Jl—o Jn=0

where the integers aj, .. j, are unknowns to be determined. Clearly, the
number of aj, ... j, is

=(dy+1)---(dn +1).

The index
H(Q, (g, -, @), d1,...,dn) 2 n(1/2~ €1)
means that
Ghttia
mQ(a.‘i!"‘)aj) =0 (1.53)
wherever

Zd—' n(1/2 — e1). (1.54)

Since (1.53) is always true if I; > d; for some 7, the number of non-trivial
equations (1.53) is the number of points

l ln
(d_l”a)
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in the unit cube I™ where I = [0,1] with (1.54). We denote this number
by N;. It turns out that N;/N — 0 as n — oco. More precisely, we have
the following lemma.

Lemma B1.3.6 (A Combinatorial Lemma) Let di, ...,d, be integers
greater than or equal to 1 and let €; > 0. The number of sets of integers

(lh,...,1,) satisfying
0311 Sd1,~--,OSlnSdn

and

I ln 1
T ERLLIND gAY Gl
a + +dn _n(2 €1)

does not exceed

1
m(dl +1)...(d, +1).

Proof. We prove by induction on n. The assertion is trivial if n = 1.
Take n > 1. We write

1 1
n(—2- - 61) = E(TL - )\)
so that ne; = A/2. In terms of A our upper bound reads

2n1/2
A

Our assertion is trivial if A < 2n'/2. We may therefore assume that A >
2n1/2. For each I, and d, fixed, we consider the solutions of

(di+1)...(dn +1).
1/2
ll ln-l

_+...+
dy dn-1 ~

= %(n —1-(\=-1+2l,/d,)).

1 ln
3(n=A) - .

By the induction hypothesis, we have that the number of sets of integers
(l1y...,ln—1) satisfying 0 < I; < di,...,0 < lp—1 < dp—; and
ll ln—l

— 4+
dl dn—l

1 In
< Z(n=\)-=--"
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does not exceed

2(n —1)1/2

m(dl + 1) ces (dn—l + 1).

Take the sum over I, with [,, < d,, we have that the number of sets of
integers (ly,...,1,) satisfying
Osll Sdly"'yosln Sdn

and

does not exceed

Z 2n — D'V A (g +1)...(dnoy +1).
A X=T+20/dn

So it remains to prove that

dn

2(n —1)1/2 2n1/2
< 1).
ZE_I,\—1+2ln/d x (@t D)

To do this, we first make a computation:

SRR [ N
Lo x—1+2ifr & [X=1+2ifr X+1-2ir
2)

- ;)\2—(1—22'/7-)2

L 2) 2)
<
= w_1-rthye—7

i=1

Let ¢ = I, and r = d,, then the above inequality becomes

22

<(dn+ )37

ZA—1+21n/d

ln=1

Therefore, the proof is reduced to check whether

2A(n —1)'/2 _ 20!/
-1 = X
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or equivalently, whether
[(n - 1)/n]'/? < (A2 —1)/X?

holds. Observe that (1 —1/n)'/2 < 1 — in. It suffices therefore that
1—1n <1-1/X% But this is true in view of our original hypothesis on A,
and our lemma is proved. O

Back to Lemma B1.3.5. Since n > (2m[k : Q]/e1)?, Lemma B1.3.6
tells us that N7 < N/(2m[k : Q]), where N = (d; +1)...(d, + 1). That
is the number of nontrivial conditions (1.53) is at most N/(2m[k : Q)).
Each condition (1.53) is a homogeneous linear equation in the unknowns
a;,,....j.- Hence, each condition follows from m linear homogeneous equa-
tions whose coefficients are rational integers, and altogether our unknown
integers aj, ... ;. have to satisfy at most N/(2[k : Q]) linear homogeneous
equations with rational coefficients. A nonzero solution exists since the to-
tal number of unknowns (i.e. the coefficients of Q) is N. This finishes the
proof of Lemma B1.3.5. a

Step 2: Note that in Lemma B1.3.5, we only use the fact that mN; < N.
However, what we derive from Lemma B1.3.6 is mN, < N/(2[k : Q]).
This allows us to apply Siegel’s lemma to derive the following more precise
lemma.

Lemma B1.3.7 Let ¢;,m,n be defined as stated in Lemma B1.83.5. Then
there is a nonzero polynomial Q € k[X1,...,Xn] with integer coefficients
which is bounded by

Boo(Q) < c<111+~-+dn’
where ¢, is a constant dependent on k,S,n and a,...,an,, and
tQ, (o,...,05),d1,...,dn) 2 n(1/2-€), j=1,...,m.

Here Boo(Q) = maxyes ||Qllv, where ||Q|lv is the mazimum of the v-
absolute values of the coefficients of Q.

Proof. For each 1 < j < m, the number of non-trivial equations (1.53)
is N;. So we have M = mN; linear homogeneous equations for the N
variables aj, ... j, and we know, from above that M < N/(2[k : Q]). In
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order to apply Siegel’s lemma, we need to estimate the size of the coefficients
of these equations. Note that, for each n-tuple (l1,...,ls),
all + +ln

MT—'"Q(&]’ ;)

J j1—1 jn—ln
Z Ea.u, ,Jn(ll)"'(l:)a';'l 10[; '
=l ja=la

So we can get estimate of the coefficients of our linear homogeneous equa-
tions (1.53) by

jl jn g1t tin—l1 = =ln
,( h ) ( ln )0

where C' is a constant depends only on a;,1 < j < m, k and S. Now
applying Lemma B1.3.2(Siegel’s Lemma), we find that there is a polynomial
Q with t(Q, (o, ...,04),d1,...,dn) 2 n(1/2—€) for j =1,...,m and its
coefficients a;, ... ;. are bounded by

QI < (N(2C)di++dn)IQIM/NZIEQIM) () yditdn

odrttia 1t tin

IN

(ZC’)d‘ +:tdn ,

IN

using the facts that M < spirN and N < 291+ +dn. This finishes the
proof of Lemma B1.3.7. a

Step 3: We now proceed with the proof of Roth’s theorem. Assume that
Roth’s theorem is not true. Then there exists infinitely many = € k such
that

1

H min(||lz — avllv, 1) £ 75
veS Hy (:1:)2+

We claim that there must exist non-negative real numbers k,,v € S, with
2ves kv = 2+ § such that

. 1
min(||z - ay|lv, 1) < Ho@)’ veS (1.55)
holds for infinitely many z € k. In fact, we write

1

min(llz = evllo, 1) = Frmmrae
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Then, for those infinitely many z with

1

H mln(”z Otu”v: 1)< —— 2
s H ( ) +e?
we have
D &) > 1.
veS

Choose a positive integer A such that

2+e€
A(2+e/2 _1) >
where s = #S. Using induction and the obvious fact that [z + y] < [z] +
[y] + 1(the bracket being the largest integer <) we get

Avs < ALESE <[Z 2+e€v()]

2+¢/2 ~ 2+¢/2
2+
< 3|1 jzeu<z)]+s,
vES

whence
2+¢
A< Y [425 5600
1%:5 2+¢/2

Consequently, there exist integers a,(z) > 0 such that

2+e
2+¢/2

2+¢

e (@)

o) <[4 6 )] < 4
and ) csay(z) = A. From this we see that there is only a finite number
of possible distributions of such integers a,(z), and hence, restricting our
attention to a subsequence of z, if necessary, we can assume that the a,(z)

are the same for all z. We write them a,. We then put
. = 2+ $)ay
v A

sothat 0 < ky < (2+5) and ) g kv =2+ 5. For each z in our subse-
quence we have k, < (2 + €)é,(z), and hence z satisfies the simultaneous
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system of the inequality

1

——Q, wvE€eS.
Hk(:r:)"v

min(||z — aylly, 1) <

This verifies our claim.

Now choose €; < €/(20 + 4¢). We choose n, 4, points zi,...,z, and
integers d, ..., d, subject to the following conditions: We first select n >
(2m[k : Q]/e1)? so that we can apply Lemma B1.3.7; We then select 6 < ¢;
so that we also have

(20)"8% " < e, (1.56)
and
60#S + (5+€)er —€/4 < 0; (1.57)
We choose z; € k satisfying (1.55), with #Slog4 + 4n < §hi(z1) and
dhi(z1) > max{nlogec;,log2} (1.58)

where ¢; is the constant that appeared in Lemma B1.3.7; We then choose
Zg,...,Tn € k, satisfying (1.55) and with

he(ziz1)/he(zi) >2/6 1<i<n-1; (1.59)
we choose d; so large that

].Ohk (:1:,)

d > ——, 2<i<n 1.60
and finally, we choose decreasing integers ds, ..., d, such that
dihi(z1) dyhi(z1) .
— 2 <di<1+—22, 2<j<n. 1.61
he(z;) =7 hi (z5) =7= (1.61)

It follows immediately from the above inequality that d; satisfies the con-
dition

dihi(z1) < djhe(z;) < (1 + e1)dihe(z1). (1.62)
These conditions are easily satisfied, since by assumption there are infinitely

many z € k satisfying (1.55) and the heights of these z go to infinity.

Step 4: Having chosen dy,...,d,, and points z1,...,z, € k, we choose
a polynomial @) according to Lemma B1.3.7. We want to obtain a lower
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bound for the index of @ at the point (z;,...,z,). We claim that ¢ =
t(Q, (z1,-.-,%n),d1,...,dn) > €. That is, for every 41,...,i, with

i in
—+...+5-< 1.
dl + + dn S €, ( 63)
ai1+...+iﬂ
WQ(ZEI, e ,.’En) =0. (164)

To verify (1.64), fix i1, ... , i, satisfying (1.63), we let %%—Q =F. Itis

clear, from the definition, that we only need to prove that F(z;,...,z,) =
0. Let a1,...,a, be the distinct values taken on by all a,,,v € S. Since
by the construction of @,

HQ, (@y--r05),d1, .. dn) 2 0(1/2—€), j=1,...,m,
we have,
FO(ay,...,a,) =0, veS
whenever (1) = (14,...,1,) satisfies l; /dy +...lp/dp < n(1/2—€1) — €1. We
first estimate ||F(z1,...,Z,)||lv for v € S. By Taylor’s expansion,
F(X1,.... X3) =Y FO(ay,...,a,)(X — o).
(>0

Here, as we have indicated above, all the terms will be 0 except those
belonging to (I) with

i l, 1
— 4+ >p(=- .
a4 +--+ a _n(2 2¢1)

The total number of terms in the sum is bounded by (d; + 1) ---(d, + 1)
which is also bounded by, using (1.58),

it M < Hy(2)™,
since the d; are decreasing. Because
Boo(Q) < cftttdn < opdr, (1.65)

and F = 33—;_—::%62, an upper bound for ||F®(ay,...,a,)|ls is certainly
TXE v

S 2nd1 2ndlc;ld1 BOO(Q) S 22nd1 Cfndl S Hk (z1)26d1n’
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using (1.58) in the last step. Thus, putting everything together, we have,

IF(z1,...,2n)llo < Hi(21)*™ -sup(llz; - awlly -+ llzn — awlli?),

where the supremum is taken for those (I) with ly/dy + -+ + l,/dn
n(1/2 — 2¢;). Using (1.55), we have

log [|F(z1,. .., Zn)|lv < 3nddihi(z1) — ko(lihk(z1) + -+ - + lnhi(zn))

In
< 3n6d1hk(:z:1) - K,u(‘li—llh(zl)dl + -+ d—-h(fl?n)dn)

In

l
< 3nédihi(z) - K,vhk(zl)dl(i +oeee d_),

using d,-hk(zi) 2 dlhk(.’El). Since ll/dl + -+ ln/dn Z n(% - 261),

1
log||F(z1,---,Zn)llv < 3nddihi(z1) — thk(a:l)dln(§ - 2€1).
If ve S and &, = 0, we estimate ||F(z1,...,Zs)|lv naively, and get

IF (1, s 2n)llo < Hi (1) max(L, ||z1[|o)* - - -max(1, [l2a]l5)-

At v ¢ S, v is non-Archimedean, then we simply get

v

log||F (1, .- ,2n)llu < log ((max(1, ||z1]l)") - - - (max(1, lzxllv) ")) - -

Hence

Z log ||F(:z:1, e ,zn)”U

vEM,

1
< 6ndihi(z)#S — ) Kydihi(z1)n(5 — 2€1)
v€ES

+d1hk(11) +...+ dnhk(zn)

60ndy hi (z1)#S — hk(zl)dln(% —261)(2 +¢/2)
+nd1hk($1)(l + 61)
= duhe(a)n(63#5 + (14 ) — (5 ~ 20)(2 +€/2),

IN

using djhi(z;) < dihg(z1)(1+ €1) by (1.62). By (1.57),

6645 + (1+€1) — (% —2,)(2 +¢/2)) <0,
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which contradicts the product formula, unless F(zi,...,zn) = 0. So
F(zy,...,z,) = 0, which means
t=t(Q,(Il,...,IEn),dl,...,dn)261. (166)

Step 5: We now apply Roth’s lemma to @. We verify the conditions in
Roth’s lemma. We first verify (1.50). In fact,

divi _ & di @) nh(Ea)  h@a) 11
d; dy diy; ~ h(zi)d; dih(z1)(1+€) h(z:) 1+€ = &’
using (1.62), and (1.60). So (1.50) is satisfied. (1.51) in Roth’s lemma is

satisfied because of (1.61). Finally, (1.58) and (1.65) imply that (1.52).
Thus Roth’s lemma implies that

t< (20)"(52_n <e

using (1.56) in the last step. This contradicts (1.66). So Roth’s theorem is
proven. O
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The Correspondence Table

Nevanlinna Theory

non-constant meromorphic function f
Jensen’s Formula(Corollary A1.1.3)
(1.5)

(1.6)

(1.8)

Theorem Al1.1.5

Theorem A1.3.1

Corollary A1.3.2

Corollary A1.3.3

Diophantine Approximation
infinite {z} in a number field k
Product Formula(Theorem B1.2.4)
(1.48)

(1.46)

(1.45)

Theorem B1.2.6

Theorem B1.2.7

Conjecture B1.2.8

Theorem B1.2.9



Chapter 2

Holomorphic Curves into Compact
Riemann Surfaces and Theorems of
Siegel, Roth and Faltings

Part A: Nevanlinna Theory

In chapter 1, we introduced Nevanlinna theory for meromorphic functions.
A meromorphic function can be regarded as a holomorphic map from C
into P!(C), while we identify P!(C) with C U {oo}. In this chapter, we
will extend the theory to the holomorphic map f : C - M where M is
a compact Riemann surface. We closely follow Ahlfors’ negative curvature
method. We note that there is a simpler approach of using the Logarithmic
Derivative Lemma, which will be presented in chapter 5.

A2.1 Some Lemmas

We first introduce some notation. Let z = z + iy be an analytic coordinate.
Let

2
oz

0 0
a—y), and 5 =

2

1.0
—5(}%4-\/__1 (6:1:

N =

0
"Vl
For a function f, we define

of = g—ﬁdz, and 0f = %d}?,

so 8 and 8 send functions to 1-forms. Note that

0+0=d,

49
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where d is the ordinary exterior derivative of differential forms. We define
the real operator d° by

e V=1 - 1,9 ;)
d=—0-0)=(r5-®d0—r7' oo @dr), (2.1)
so that
das = Y155 (2.2)

2T

Before we state the Green-Jensen’s formula, we introduce the concept
of currents. Let g be a sub-harmonic function (resp. super-harmonic func-
tion). Let Z be the set of singularities of g. Denote by S(Z,€)(t) the union
of small circles around the singularities in D(¢). The (1,1) current dd°[g]
is the functional such that, for any fixed number ro > 0,

T T T
/ @ / dd°[g] = / at / dd°g + / % him d°g.
ro b Jc1<t ro t Ji¢l<t ro t 20J5(z,6)t)

In particular, taking g = log|f|? for some holomorphic function f, we have
the following Lemma.

Lemma A2.1.1 Let f be a holomorphic function on D(r). Let Z denote
the zeros of f inside D(r). Then, for anyt with0<t<r,

lim d°log|f|2 = ny(t,0). (2.3)
20J5(z,e)(t)

Proof. Let p be a zero of f. It suffices to prove that

lim d®log|f|? = ord,(f),
€20JS(p.e) ’

where S(p,¢€) is the circle centered at p with radius e. Without loss of
generality, we may assume that p = 0. We then have to prove

lim [ d°log|f|* = ordo(f),
€—0 S(e)

where S(€) is the circle centered at 0 with radius e. Let k¥ = ordg f. We can

write ff = r2¥h(r,8) where h is smooth and positive. So

lim d®log|f|* = lim d¢logr?*,
e—0 S(p,c) =0 S(p,e)
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since log h(z) is smooth. By (2.1),

1 O(logr?) 1
c 2k . _— - .
d®logr** = e db o kdo
Thus
lim d°log|f|* = hm kiq =k.
€—0 S(p,e) —0 0 2T
This finishes the proof. d

So we have the following theorem.

Theorem A2.1.2 (Poincaré-Lelong Formula) Let f be a holomorphic
function on an open neighborhood of D(r). Then, for every 0 < 1o <,

/ d / ddflog | fI7] = / n60,,

or we simply write, in the sense of current,
dd°[log|f|*] = [Dy],
where Dy = 3°_(ordyf) - p is the divisor associated with f.

Proof. By the definition,

[&] artai=[£] gty

+/ — lim d®log|f|2.
ro b e20s(,e)(0) l7l

Since f is holomorphic, dd®log |f|?> = 0 in the sense of the differential form,
and by Lemma A2.1.1,

lim d°log |f|* = ny(t,0).
=05, (1)

So the theorem is verified. O

We use the concept of current because of the following theorem.
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Theorem A2.1.3 (Green-Jensen’s Formula) Let g be a function of
class C? on D(R) or a sub-harmonic (resp. super-harmonic) function on
D(R). Then, for any 0 < r < R,

Proof. Denote by Z the set of singularities of g, and S(Z, €)(t) the union
of small circles around singularities in D(t). Then Stokes formula implies
that, using (2.1),

/ dd°g=/ d®g — lim dg
I¢l<t I¢l=t 0Js(z,6)t)
-1-/ t@#-g — lim / dg.
2 ('-‘t at 27T €e—0 S(Z,C)(t)
Integrating the above with respect to 1/t, we get
R
/ g / dd®
r I¢]<t
R
_ / dt/ lagde / glim &g
=2 0021 ) T e Ssiza0
dd 1 [*™  ..df
- = & 2 0y 2
= 2/0 9(Re) o 2/0 9(re) 5

dt
- / — lim dg.
r U eo0Jgza0)

So, by the definition,

R R R
/ dt / dd’[g] = / dt dd°g + / ﬂlim dyg
r bt r b i<t r b0 gz,

1 edd 1 [ df
= 5/0 g(Re )5;—5/0 g(re )2_11—

The theorem is proven. a

We shall need the following form of the Calculus Lemma.
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Lemma A2.1.4 (Calculus Lemma) Let T be a strictly nondecreasing
function of class C' defined on (0,00). Let y > 0 be a number such that
T(v) > e. Let ¢ be a strictly positive nondecreasing function such that

[o <]
=c
| wait=a@ <
Then the inequality

T'(r) < T(r)$(T(r))
holds for all r > v outside a set of Lebesgue measure < co(¢)-

Proof. Let A C [y,00) be the set of r such that T'(r) > T'(r)¢(T(r)).

Then
(g [P_TE [
‘“”“*1Ld5£ TR ,Ztﬂﬂ co(#),

which proves the lemma. O

Lemma A2.1.5 Let T be a function of class C? defined on (0,00). Assume
that (i) there exists v > 1 such that T(r) > e for all r > ~ and (ii) that
both T'(r) and T'(r) are strictly nondecreasing functions of r. Let b> 1 be
a number such that brT'(r) > e for all r > 1 (such number clearly exists).
Then

1d,dT
S (r =) ST (ST ()T ()]

for all v > «y outside a set of measure < 2co(d).

Proof. The assumptions guarantee that we may apply the Calculus lemma
twice, first to the function dT'(r) and then to the function T'(r). O

Lemma A2.1.6 Let 7 be a non-negative function of class C? when 7 > 0.
Then

1\? 1 1+logr
dd°1 —_) =2{———dd° —dd°
8 <log‘r) {‘r(logr)2 T (log )2 dd®log 7}

Proof. By direct computation. See [Wong3]. O
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A2.2 Divisors, Line Bundles, and the First Main Theorem

Given a compact Riemann surface M. Let f : C - M be a holomorphic
map. Given a point a € M, to introduce the proximity function of m(r, a),
we need to measure the distance between f(z) and a. So we borrow some
terminologies from algebraic geometry. Instead of one point, we consider
a more general case: a formal finite sum of distinct points 3 FROTD where
n; € Z,aj € M.

Definition A2.2.1 Let M be a compact Riemann surface. A divisor on
M, denoted by D, is a formal finite sum D = Ej njaj, where nj € Z and
a; € M are distinct points on M. If n; > 0 for all j, then we call D an
effective divisor.

Let D = 3, nja; be a divisor. We choose a local coordinate z; for a
coordinate chart U; centered at a; so that all U; are disjoint. Let Ug be an
open subset of M so that no a; belongs to the topological closure of Uy and
the set U — U¥_, Uj; is contained in Up. Take g; = z;” on U; (1 < j < k)
and go = 1 on Up. Let gi; = gi/g; on U; N Uj, then g;; are nowhere-zero
holomorphic functions, and g;; satisfies gi; = gijgj:, on U;NU;NU;. We call
the collection {Uj, g;;} the line bundle associated with D, and denote it
by O(D). The collection {g;} is called the canonical section of O(D), and
is denoted by sp. We have the following general definition of line bundles.

Definition A2.2.2 By a line bundle L over a compact Riemann surface
M, we mean a collection {Uy, gap} where {Uy} is a finite open cover of
M and g,p is a nowhere-zero holomorphic function on U, NUg satisfying
the compatibility condition goy = gaggpy 0n Ua NUg NU,. The functions
{948} are called transition functions.

Definition A2.2.3 Let L = {U,,gap} be a line bundle. A holomorphic
section s of L is a collection {so} where each so is a holomorphic function
defined on U, and satisfying sq = gopsg on Uy NUg. We note that, for
any p € Uy NUg, ordps, = ordysg by the transition property. So we define
D =% cmlordpsa)p, where for each p € M we pick Uy withp € Us. D
is called the divisor associated with the section s.

Definition A2.2.4 Let L = {Uq, gap} be a line bundle. A metric on L is
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a collection of positive smooth functions
ho : Uy = Rso
such that on U, N U we have

h‘ﬂ = Igaﬂlzha-

Example A2.2.5 We consider the canonical line bundle Kps. Cover M by
coordinate charts {U,} so that the coordinate for Uy is z,. The transition

. o dz .
functions gog of Ky on Uy N Us 1s given by gop = Zi-z—ﬁ A section of

a
K)s is precisely a (1,0) form on M. The reason is as follows. A section
of K 1is given by a collection {sq} so that so = gagsg on Uy NUsz. In

dz
other words, sq = -d—z—ﬁ-sg on Uy N Ug which is the same as saying that

w = $qdzq on Uy isawell-deﬁned. The divisor of any (1,0) form w on
M is called the canonical divisor on M. To give a metric for Ky is
the same as giving a volume form Q = hy/—1dz A dz. The reason is as
follows. A metric for Kar is a collection {hq} so that each hy is a positive

valued function on U, and hg = |—3?|2ha. Thus h3'v/=1dzq A dZs obeys
a
hylv/=1dzo A dZy = hEl\/—leﬁ A dZg and defines a volume form on M.

For any given metric {ho} of L we can define the (1,1)-form 8 as
0L = —ﬁgaglogha on U,. Since hyl|gag|> = hg on Uy N Ug, we have
locally log ho + log gop + log Jug = log hg for some local branch of log gqg.
From 8log gag = 0 and 8log gos = 0, we conclude that —@65 loghy =
—¥=1331og hg on Uy NUp. Thus, the form 6y, is well-defined.

Definition A2.2.6 Let L = {Uq, gog} be a metrized line bundle with metric
{ha}. The form 61 = —gaglog ho on Uy is called the Chern form of
L with respect to the metric {ho}. Denote 6L by c1(L,h), or just c1(L).
A holomorphic line bundle L with a metric is called positive if the Chern
form 61, for the metric of L is positive definite everywhere on M. A line
bundle is said to be ample if L is positive with some metric on L. A divisor
D is ample if O(D) is ample.
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Definition A2.2.7 For a metrized line bundle L with metric {h,}. Given
any two sections, s;, s;, we define the inner product

< 84,85 >= SiaSjalla.

In particular, ||s||? = |sq|*ha. By the transition properties of so and hg, it
is well-defined.

We notice that for a section {s4}, since so = gagsg, dSa = gapgdss +
dgasss. So, usually the differentiation of a section does not yield a section
because of the term dg,gss. To overcome this difficulty, one introduces
a correction term and defines covariant differentiation Ds = {Ds,} where
Dso = dsa+0(logha)sa = 0sa+08(log hy)sa. Then Ds obeys the transition
law that Ds, = gosDsg. For a (1,0) form A (resp. (0,1) form), we write,
|4]? = 3§A A A. So |A|? becomes a real (1.1) form. We write ||Ds||? =
|Dsal?ha-

Lemma A2.2.8 Let L be a metrized line bundle and s be a holomorphic
section of L. Then dd®||s||* = ||Ds]||? - ||s|[®c:(L).
Proof. Write L = {Uq,gag} and the metric h = {hq}. Then, by the
definition, ||s]|*> = |8a|*ha = $a8aha- SO
O|IslI® = sa03aha + Sadadha
= $4(054 + 5a0logho)ho
= 84D3qho =< 5,Ds >,

using the property that 8s, = 0 since s, is holomorphic. Thus,

c 2 _ V_]- 3 2
dd?||s|I* = 5 —=0|lsll
V=1 _
- o a(saDSaha)
= \/2;lasa/\5§aha+ V2;lsaa(psa)h \/ V1, 0h0 A s,
= ZWIaSaADSah + 271303('Dsa) sah 6(10gh )/\550
v-1

= - 85 A DSgha + V;lsahaa(logha)/\5§a + V;lsaa(ﬁga)ha

Jv=1 _ Y
= (08q + 5a0l0g ho) A DSoha + W%B('D%)ha
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= |Dsq|*ha + gsaa(ﬁéa)ha = ||Ds||* + \/?saa(l_).ia)ha. (2.4)
However,
ga(ﬁ%) = 96(5504-5&5(1% ha)) = 3a 2;1 00(log hy) = —54¢1(L)
So
YL, (Bt he = =susucr(Dho = ~lslfer (D). (29
Combining (2.4) and (2.5) proves the lemma. a

A2.3 Holomorphic Curves in Compact Riemann Surfaces

Let M be a compact Riemann surface. Let

v-1
2m
be a (1,1) form on M. The characteristic function Ty (r) of f with

respect to w is defined by

T dt .
Tue)= [ 5] T (26)

Given a positive (1,1) form w, Ty, . (r) measures the growth of f. In partic-
ular, f must be constant if Ty, (r) is bounded. If w;,w; are two positive
(1,1) forms, then there exist positive integers ¢, ¢’ such that cw; < we < c'wy
since M is compact, so cT¢u,(r) < Tfw,(r) < Ty, (r). We now define
the proximity function. A divisor D = };n;a; is called an effective di-
visor if n; > 0 for all j. So the canonical section sp = {g;} is holomorphic,
namely every g; is holomorphic on U;. Take a metric on O(D), where O(D)
is the line bundle associated with D. The proximity function of f with
respect to D is defined by, under the assumption that f(C) ¢ D,

mg(r D)—/%lo S (2.7
1E0= ]y *Blspo flre®)] 20 :

where sp is a canonical meromorphic section associated with D. In par-
ticular, define my(r,a) by taking D = a. We note here that, since M is
compact, m¢(r, D) is independent, up to a bounded term, of the choice
of the section s defining D and also of the choice of the metric on O(D).

dz NdZ

w=h
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The counting function of f with respect to D is defined by, under the
assumption that f(C) ¢ D,

Nf(r:D) = Ar[nf(t1D) _nf(O’D)]% +nf(0:D) log r, (2‘8)

where ny(t, D) = number of points of f~!(D) in the disc |z| < ¢, counting
multiplicity, and ns(0, D) = lim,_,o ns(t, D). We note that, for any positive
number rg > 0,

N;(r,D):/ ns(t, D)dt+0(1)

where O(1) is a constant depends on r9. In practice, we shall use this
definition for a fixed number r9. For a divisor D, i.e. take a metric on
O(D), where O(D) is the line bundle associated with D. We define the
characteristic function of Ty (r, O(D)) by

nmooy=[F [ raom)

where ¢; (O(D)) is the Chern form of O(D). Again, since M is compact,
T¢(r,O(D)) does not, up to a bounded term, depend on the choice of the
metric on O(D). If O(D) is ample, then Ty(r,O(D)) is positive and it
measures the growth of f.

We have the following First Main Theorem.

Theorem A2.3.1

Ty(r, O(D)) = my(r, D) + Ny(r, D) + O(1).

Proof. By the definition,

,
Ny(r,D) = / n6D) g 1 oq),
ro ¢
for any ro > 0, where O(1) is a constant depending on ry. We fix a rg > 0.
Let s be the meromorphic section of O(D) associated with D. Now, [|s]|> =
|s;|2h; where s; is holomorphic on U;, and h; is non-vanishing. Since
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dd°logh; = —c;i(L), by the Poincaré-Lelong formula (Theorem A2.1.2),

[dd° log||s]|?] = —c1(L) + [D]. So,
i ﬁ c * (12 _ " ﬁ -

/ro ; /mstdd [log || f*s]|”] /ro ; |<|s:f c1(L) + Ny (r, D) + O(1)

= =Ty(r) + Nys(r, D) + O(1).

On the other hand, by Theorem A2.1.3,

r dt - 2 * % do
[ 5] awoglrsifl= [ loglsstre g
ro t Jigi<e 0 i

2 . do
= [ 1ol stroe )P = ~my(r, D) +O().
f 0 ™
So T¢(r) = my(r,D) + N¢(r,D) + O(1). a

To state the Second Main Theorem, we write Ric(w) = dd°log h for w =
h¥=Ldz Adz. For a holomorphic map f : C — M, let f*w = v, %L=2d( Ad{
on C. Then the zeros of v; define a divisor on C. We call this divisor the
ramification divisor and denote it by D¢ ram. Then we have the following
theorem.

Theorem A2.3.2 (The Second Main Theorem) Let M be a compact
Riemann surface. Let w = h@dz/\di be a positive (1,1) form on M. Let
f:C — M be a non-constant holomorphic map. Let ai,...,a, be distinct
points on M. Then, for every e > 0,

q
> ms(r,a;) + Tt Ricw) () + Niram(r) < €Tsu(r) + O(logr)
Jj=1

holds for all r outside a set E C (0,+00) with finite Lebesgue measure.

By the uniformization theorem, M is either biholomorphic to the Rie-
mann sphere P!, the torus or the surface of genus > 2. So, before we
give the proof of Theorem A2.3.2, we discuss the consequences of Theorem
A2.3.2 for each case.

When M = P!, the Fubini-Study form w on P! is given in terms of
an affine coordinate w by

1 V-1

— 75 = dd° 2 .
w= AT [wP? 2r dw A dw = dd°log(1 + |w|*)
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Thus Ric(w) = —2w. So, for any meromorphic function f on C (also being
regarded as a holomorphic map f: C = P1),

Tf,Ric(w)(r) = Tf,—2w(r) = —2Tf,w(1‘),

where

_ [Tat dt P V-1
Trulr) = /o t /|c|5: / /(|<t 1+ 2 d( NG

The characteristic function T, (r) above is called the Ahlfors-Shimizu
characteristic function. The following Lemma says that Ty, (r) differs
from the Nevanlinna’s characteristic function defined in (1.8) of chapter 1
only by a constant.

Lemma A2.3.3 Let f be a meromorphic function. Let Ty, (r) be the
Ahlfors-Shimizu characteristic function of f. Then

Ttw(r) =my(r,00) + Ny(r,00) + O(1) = Ty(r) + O(1),
where T¢(r) is the Nevanlinna’s characteristic function defined in (1.8).

Proof. Since

=
T+ TwP)?

f*w = dd°log(1 + |f|?). Write f = f,/fo where f1, fo are holomorphic
without common zeros. Then, by Theorem A2.1.2,

dd°[log(1 + |f|*)] = fr'w—[fo = 0.

So, for a fixed positive number rg,

/r %/ dd°llog(1 + | f|?)] = Tyw(r) — Ns(r,00) + O(1).
o [CI<t

dw A dib = dd®log(1 + |w|?),

On the other hand, by Theorem A2.1.3(Green-Jensen’s formula),

rg ° 2 }_ o 102
/ro n /ICIStdd [log(1 + | f]*)] 2/0 log(1 + | f(re*)| ) +0(1)
= my(r,00) + O(1).

Hence Ty ., (1) — Ng(r,00) = mg(r,00)+O(1). That is Ty (r) = my(r,00)+
Ng(r,00) + O(1) = Ty(r) + O(1). a
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Noting that T ricw) () = Tf,—2uw(r) = —2Ty,.(r) = =2T¢(r) + O(1),
Theorem A2.3.2 implies, in this case, that

> my(r,a;) = 2T4(r) + Nyam(r) < €Ty(r) + O(logr)

Jj=1

holds for all 7 outside a set E C (0, +o0) with finite Lebesgue measure. This
is the same as Theorem A1.3.1(the Second Main Theorem for meromorphic
functions).

For the torus (elliptic) case, the canonical metric is a flat metric, i.e.
there exists a positive (1,1) form w such that Ric(w) = 0. So in this case,
Theorem A2.3.2 implies that

g
Z mg(r,a;) + Nfram(r) < €Tyu(r) + O(logr)
j=1

holds for all r outside a set E C (0, +o00) with finite Lebesgue measure.

Finally, for the surface of genus > 2, there exists a positive (1,1) form
w such that Ric(w) is also a positive (1,1) form, so that T gic()(r) > 0.
Thus we have

Tf,Ric(w) ('I‘) < fo,u (T) + O(lOg 'I‘) = €ITf,Ric(u) (1‘) + O(IOg 7‘)

holds for all r outside a set E C (0,+o00) with finite Lebesgue measure.
This implies that T gic(.)(r) is bounded, hence f is constant. So there is
no non-constant holomorphic map from C into M if its genus > 2.

We define the defect

my ('I‘, a)
Ty(r)

Then, according to our discussion above, we have

0¢(a) = hrn_lgx.}f

Corollary A2.3.4 (i) If M = P'(C), then 3_7_, é7(a;) < 2.

(ii) If M = T = torus then Z;=1 df(a;) <0, in particular every non-

constant holomorphic map from C into T is surjective. R
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(i41) If genus of M is greater than or equal to 2, then there is no non-
constant holomorphic map from C into M.
Proof of Theorem A2.3.2.

Proof. Let

V-1

w=h dz ANdzZ
2

be a positive (1,1) form on M. We write f*w = 7% d( AdC on C. Let
D; = a;,1 < j < g, be the divisors corresponding to the points a; € M.
The line bundle L = O(D;) associated to the divisor D; is the same for
J=12,...,q. Let s; be the meromorphic section associated with D;. Let

(H I1£*s51%( logllf‘syll"’)z)

By Theorem A2.1.2, dd°[log v¢] = dd®logyf + Dy ram = f*Ric(w) + D¢ ram,
$0

q
ddlogT] = Y  —dd°[log||f*s;|*] + f*Ric(w) + D ram

=1

q
— 3" dd°log(log 1 s;1%)2).

=1

For a fixed number ro > 0, applying the integral operator

/'ﬂ/ .
ro ¢ JigI<t

to the identity above and applying Theorem A2.1.3(Green-Jensen’s for-
mula), we get

1 dt
= (logT)dd = E my(r, a; )+/ — f*Ric(w) + Ny ram(r)
2 Jigl=r ! t Jicist

/ = / dd°[log(log || f*s;1|*)%] + O(1).

j=1
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However, it is easy to check using the definition, similar to the proof of
(2.3), that

’ dat c * 2)\2 ’ dt c * 2y2
¥ dd*[log(log || f*s;[I°)"] = | — dd® log(log || f*s;11)".
To [¢1<t To ICI<t

Thus

1 d " dt ,
3 / (log)dl = Zm;(r, a;) + / 7 f*Ric(w) + Ny ram(r)
I|=r j=1 To [¢I<t

dt
dd°1 ‘
= /ro /¢|<t 8 (l og || f* J||2) + O(1). (2.9)

By Lemma A2.1.6

2
dd®log (—1—2)
log sl

. 1+ log s
2{ dd®||s;||? — —=1"2 'L gd¢ Jog ||s4]12 b .
T A (P PR ) s

By definition, dd¢log||s;||> = —c1(L), and by Lemma A2.2.8, dd°||s;||> =
Ds;11% = lls;l1*e1(L). So

2
dd°log (;2)
log ||f*s;]l

9 { IDf*s;l1” = I£*s;l2f*ea (L) | 1 +]logllf*s;ll>
[1£*551I>(log || f*s5112)2 (log || f*s5%)?

fram)}

IDf*s;l1? fra(l) }
2 + . 2.10
retitee o * el (210
Recall on the covering {U,} of M, the covariant differential operator is

locally defined by Ds = 8so + Sa0(log ha), for a nonzero holomorphic
section s = {so}. Hence

IDs||? = |0sa + sa0(l0gha)|?ha

|2“ Lani

1 1
2 (§|asa|2 — |sa0(log ha)|2)ha = 5”63”2 - |Isl

1
= los]l* - [lslI* AP (2.11)
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where A is the differential form A = d(log ha). Assume that the zero set of
s is without multiplicity, then ||8s||2 + ||s||%c1 (L) is a positive (1,1) form on
M, and because M is compact,

1
§||<'J?s||2 + |Is]|%c1 (L) > cei(L) (2.12)

where c is a positive constant. Also, since L is positive and M is compact,
we have

ce(l) < AP < "ai(L) (2.13)

for some positive constant ¢’ and ¢”. Combining (2.11), (2.12) and (2.13),
we have ||f*Ds||? + || f*s||*f*c1(L) > cf*er(L) — ¢"[|f*s|[>f*e1(L), or this
simply means,

I£*Dsl|* 2 cf*er (L) = " Ilf*sl1* f*ex(L),

where ¢’ = 1 + ¢" > 0. The above inequality applies for holomorphic
sections s;. That is

15" Ds;lI* 2 ef*er(L) = ¢"Ilf*s511 f*er(L). (2.14)

Combining (2.10) and (2.14) gives

. 1 2 cf*er(L) " f*ey (L)
dd€1 S — -
%8 (10g||f"8j||2> 2 U Elogllf P2 ~ (ogllf s,
frei(L)
g /"5 (2.15)

When the metric of L is rescaled by a constant, so that ||s|| becomes A||s]|,
the covariant differentiation is not affected by the rescaling and c¢; (L) is
also unchanged. Choose a rescaling such that

cIII 1

- > —2e.
(log|ls;]1?)*  loglls;ll* ~

Then
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Since w, ¢; (L) are both positive and M is compact, there are positive con-
stants by, by such that byjw < ¢;(L) < bow, so (2.16) can be written as

() > i
log||f*s;l1* ) = " llf*s;ll*(log |l £*s;1*)

for some positive constant ¢. Thus, using (2.9),

dd®log

—ef*w} (2.17)

%/H_r(logr)de = Zm;(r, a;) + / at f*Ric(w) + N¢ ram(r)

To t [¢I<t

/ro dt/|<t (1 gllfl‘ J||2)2+0(1)

Z Z mg (’I‘, aJ) + Tf,Rlc(w) (T) + Nf,ram (7')
j=1

_7—1

—e/@ frw+0().

tJig<t

Therefore

1
Z mg(r,a;) — €T4,u(r) + Tt Ric(w)(T) + Nfram(r) < = /; | (logT")d#
J=1 =

(2.18)
We now estimate the term on the right-hand side of the above inequality.

By the con-cavity of log

/ (logIM)df < log/ I'ds. (2.19)
[¢|=r [¢|=r
Let
T dt V-1 _
)= [ [ TOYdad.
o t Jig<e 2m
Since
1d dTp(r))_2/ rds,
’I‘d’l‘ |(|=r

by applying Lemma A2.1.4 by ¢(t) = t¢,

/m_ Td9 < Tr(r)(Te (r))[orTr () (Tr (1), (2.20)
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for all r > v outside a set of measure < 2co, where co = [, (1/t'+¢)dt.
Combining (2.19) and (2.20) yields that the inequality

/ (logI')df < log/ T'df < (1+€)logTr(r) +logr + O(1)
Cl=r [¢l=r

holds for all outside a set E C (0, +00) with finite Lebesgue measure. Tr(r)
is estimated by using (2.17),

q r
dt 1
Tr(r €Ty, r+C§:/ —/ dd° log[————
v(r) o (r) Z i T e Eliog 775,17

IA

IN

2
6wa(7') + CZ/I—r (W) < ETf'w(T) + 0(1),

where, in the above inequality, C > 0 is a constant. Thus we have, by
(2.19), (2.20) and the above inequality,

/ (logI')dé < O(logr + log T, (r))
[¢|=r

where the inequality holds for all outside a set E C (0,+0c0) with finite
Lebesgue measure. This, together with (2.18), implies that the inequality

g
E mg(rya;) — €Ty, () + T Ric(w)(r) + N, #ram(r) < O(logr)
Jj=1
holds for all outside a set E C (0, 4+00) with finite Lebesgue measure. The
theorem is thus proven. a

Part B: Diophantine Approximation

B2.1 Integral Points on Algebraic Curves

In part A, we consider holomorphic curves in compact Riemann surfaces.
According to Vojta’s dictionary, a non-constant holomorphic curve corre-
sponds to an infinite set of rational points. In this chapter, we deal with
the number of rational (integral) points on M. A compact Riemann surface
can be embedded into P, so it is also a non-singular projective variety of
dimension one. Algebraic geometry and number theory often refer to a
non-singular projective variety of dimension one as an algebraic curve.
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Therefore, the aim of this chapter is to study the number of rational (for
compact curves) or integral points (for affine curves) on algebraic curves
defined over some number field.

Let k& be a number field and let X be an algebraic curve defined over
k. Denote by X (k) the set of k-rational points on X. As we discussed in
chapter I part B, a number field & has a canonical set of places, denoted by
M. The set of Archimedean places of k is denoted by Mg®, and the non-
Archimedean places is denoted by M,?. We define the height for points on
X. We first consider heights for points on P*. Let x € P*(k),x = [zo :

: &), with z; € k not all zero. We put

He(x)= [] max llzll.,

0<i<n
vEM;,

and

h(x) = log Hy(x). (2.21)

[k:Q] Q]
By (1.44), if L/k is a finite extension,

Hi(x) = Hi(x)!EH,

so h is independent of the ground field k, and thus extends to k, the alge-
braic closure of k. We have thus defined a logarithmic height h : P*(k) = R
with values > 0.

Theorem B2.1.1 Let f(T) = agT%+a,T¢  +- - -+aqg = ao(T—0) - (T—
aq) € Q(T) be a polynomial of degree d defined over k. Then

d d
274 [ He(ey) < He(lao : -+ : ag]) < 27! [[ Hi(ay).

j=1 j=1

Proof. First note that the inequality to be proven remains unchanged if
f(T) is replaced by (1/ao)f(T). It thus suffices to prove the result under
the assumption that ag = 1. It is clear that it is enough to prove that, for
every v € My,

d d
e(v)™* [ [ max{llesllv, 1} < max {llajll} < e(v)*? I ] max{llellv, 13,
e

0<i<d
j=1
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where e(v) =2 if v € M® and ¢(v) =1 if v € M}.

The proof is by induction on d = deg(f). For d = 1, the inequality is
clear. Assume now the result for all polynomials(with roots in k) of degree
d — 1. Choose an index u such that

lleulle > llejlle  forall 0<j<d,
and consider the polynomial
9(T) = f(T)/(T — o) = boT* " + 5T % + - + by_1.
So, comparing the coefficients yields, for 0 <¢ < d
a; =b; —aubi-1,
where b_; = bg = 0. We now prove the upper bound stated above.

maxflal} < max b - aubioil)

< et0) gma, il il

< €v) O%I?gd{llbi“u} ma‘x{“an”va 1}
d

< €)™ ] max{lla;lle, 1}

=1
where the last inequality holds because the induction hypothesis applies to

g.
Next we prove the lower bound. We consider two cases. First, if
[laullv < €(v), then by the choice of the index u,

d
[ max{liellv, 1} < max{]layllv, 1}¢ < e(v)?,
j=1

so the result is clear. Next, suppose that ||a,|lv > €(v), then, for v € M2,

. = s — . -1 . .
0‘2?%“1{”“.1”0} o%’?%d“”b' aubi—1llv} > €(v) 05’}153&"_1{||bt||u}{||au”u, 1}

For v € Mg°, we have, since ||a,||y > €(v) =2,

onslfgd{“aj“"} = Onsliasxd“”bi“aubi—l”v}

> (“au“v ~-1) osr?sag‘_l{“bi“u}
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> () Mol max (i}

Now applying the induction hypothesis to g gives the desired lower bound,
which completes the proof. O

The following theorem is the work of D.G. Northcott [Nor].

Theorem B2.1.2 (Northcott) Let n,d, N be integers > 1. There are
only finitely many points of P™(Q) of height < N and of degree < d. Here,
for x = (z9,...,7,) € P*(Q), the degree of x is the degree of the field
generated by the z;/z;,0 < i,j < n,z; #0.

Corollary B2.1.3 Given a number field k, there are only finitely many
points of P™(k) of height < N.

A morphism of degree d between projective spaces is a map
F:PN 5 PM, F(P)=[fo(P):...: fu(),

where fo,..., fu € Q[Xo,...,Xn] are homogeneous polynomials of degree
d without common zeros in Q other than Xo =--- = Xy =0. If f;,1 <
1 < M, have coefficients in k, then F' is said to be defined over k.

We have the following property of the height regarding the morphism.

Theorem B2.1.4 Let
F:pPN 5 pM

be a morphism of degree d. Then there are constants C; and C3, depending
on F, so that for all points P € PN (Q),

dh(P) + C; < h(F(P)) < dh(P) + C;.

Proof. This can be directly verified by the definition (see [Langl], Chap-
ter 4 Theorem 1.8 or [Sil2], Chapter VIII Theorem 5.6 for details). ]
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For a given algebraic curve X defined over k, let ¢ : X — P™ be an
embedding. For z € k, we put Hy(z) = Hi(¢(z)), and hy(z) = h(d(z)).
If ¥ : X — P™ is another embedding, then we have c1hy + c2 < hy(z) <
cshy + ¢4 on X (k) for some positive constants c;,...,cs. Hence hy and
hy have roughly the same size. So we often just denote the height by h.
Corollary B2.1.2 tells us that the height h(x) measures the “growth” of x,
as T¢(r) does in Nevanlinna theory.

Let D be a divisor on X. D is called very ample if there is an em-
bedding ¢ : X — P™ with D = ¢*H, where H is a hyperplane on P".
Note that the embedding ¢ can be obtained as follows: Let fi,..., fz be
a basis of space of all rational functions over k¥ with (f) > —D, the map
¢ :V — PN given by ¢(x) = [fo(x) : ... : fn(x)] is a projective embedding.
For a very ample divisor, we define

hp(z) = he(z).

Given two divisors D; and D5, we say that D; is rationally equivalent
to D, if there is a rational function f on X such that D; = Dy + (f) where
(f) is the divisor associated with f, that is (f) = > cx orda(f)a. A basic
lemma of algebraic geometry tells us that any divisor D is equivalent to
divisors Dy — Dy, where D; and D, are very ample divisors. We then
define

h‘D(x) = th (:L‘) - h‘Dz ((L‘)

hp(z) is then uniquely determined modulo a bounded function on X.

The height function can also be obtained through the Weil function. We
give a short recipe for the construction of the Weil functions on projective
varieties (for more details, see [Langl], Chapter 10). Let X be a non-
singular projective variety over k. Let D be a divisor on X. First construct
sets of effective divisors X;, (¢ = 1,...,n) and Y}, (j =1,...,m) such that
D + X, is linearly equivalent to Y; for every 4,j and such that the X;,1 <
i < n have point in common and the Y;,1 < j < m also have no point in
common. Let f;; € k(X) be such that (fi;) = Y; — X; — D for each pair
i,J. Extend the valuation to all of k. For each z € X (k) with = € D, the
‘Weil function with respect to the divisor D is then defined by, for
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each v € My,

Av,p(Z) = mja.x miin log || fij (z)]]v-

Of course, the Weil function defined above depends on the choice of fij,
but they differ only by a bounded function.

Example Let D be a hyperplane D = {[zo : -+ - : Zp] | aoZo+- - -+anz, = 0}
in P™(k). Take
T; .
filx) = J i=0,..,n

aoTo + -+ + Ty’

Here, using the notation above, X; is an empty set, Y; = [z; = 0]. The pole
divisor of f; is precisely D and the zero divisor is [x; = 0], so (f;) = Y;—D.
For x = [z : ... : zp] € P™(k), our Weil function reads

max; ||z;lv

Avp(x) =lo . 2.22
wolx) = g e T ananll (222
By the product formula and from (2.21) and (2.22), we have,
Z /\u D
[k Q] VvE M
So, given a divisor D on X, if we define, for z ¢ D,
hp Z Ao, (), (2.23)

‘UGMh

then we can prove (see [Langl], chapter 10) that this definition agrees with
the definition given earlier, up to a bounded term.

Fix a finite set S C M containing Mg°, we define the proximity function
m(z, D) by, for z € X(k) with z ¢ D,

[k Q] vES

The counting function N(z, D) is defined by, for z € X (k) with z ¢ D,

N(:L’, D) z Ay D(.’B) (225)

vﬁS
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Note that the sum above is still a finite sum, since the terms all vanish
except for finitely many. Combining (2.23), (2.24) and (2.25) we have our
First Main Theorem.

Theorem B2.1.5 (First Main Theorem)

hp(z) = m(z, D) + N(z, D) + O(1).

Theorem B2.1.6 (Second Main Theorem) Let k be a number field with
its set of canonical places My. Let S C My be a finite set containing all
Archimedean places. Let X be a smooth algebraic curve defined over k. Let
K be the canonical divisor on X. Then, for any € > 0,

m(z, D) + hk(z) < eh(z) (2.26)

holds for all z € X (k) except for finitely many points.

In the following sections, we will discuss Theorem B2.1.6 according to
the genus of X.

B2.2 Curves of Genus 0

Theorem B2.2.1 Let X be a smooth curve defined over k. If the genus
of X is zero, then X is isomorphic to a conic. If it has a k-rational point,
then it is isomorphic to P! (k), and thus has infinitely number of k-rational
points.

Proof. As the genus of X is zero, the canonical divisor on X has degree
—2. Changing the sign, one obtains a divisor of degree 2. This divisor
induces an embedding into the projective space, whose image is of degree
2, hence it is a conic. Thus, since by the assumption X (k) is non-empty,
X (k) is isomorphic to P1(k), and the canonical divisor K has degree —2.
So hx(z) = ~2h(z), thus (2.26) becomes, for D = 3°%_, a;,

Zm(z,a,-) — 2h(z) < €h(z).

Jj=1

Theorem B2.1.6 in this case is equivalent to Roth’s theorem. Theorem
B2.1.6, is thus proved for this case. a
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B2.3 Rational Points on Curves of Genus 1, Mordell-Weil
Theorem

X is called an elliptic curve if X is an algebraic curve of genus 1. An elliptic
curve may have infinitely many rational points. In 1901, Poincaré showed
that if a rational point on an elliptic curve X is chosen as an origin, the k-
rational points of X form a group. In 1922, Mordell proved the conjecture of
Poincaré that the group of rational points is finitely generated. In his paper,
Mordell also conjectures that the set of integral points is finite, and that
the set of rational points on a curve of genus > 2 is finite. The conjecture
about integral points was proved by Siegel and the conjecture about rational
points on a curve of genus > 2 was recently settled by G. Faltings [Fall].
In this section, we’ll first study rational points on elliptic curves.

Definition B2.3.1 An elliptic curve is a pair (X, 0), where X is an alge-
braic curve of genus I and O € X. (We often just write X for the elliptic
curve, the point O being understood.) The elliptic curve X is defined over
k, written X[k, if X is defined over k and O € X (k).

The main theorem in this section is the following Mordell-Weil Theorem.

Theorem B2.3.2 (Mordell-Weil Theorem) Let k be a number field,
and X be an elliptic curve defined over k, then the group X (k) is finitely
generated.

The proof of the Mordell-Weil theorem is divided into two steps. The
first step is to prove the so-called “weak Mordell-Weil Theorem”, and the
second is the “infinite descent” method using height functions. The first
part of this section is devoted to prove the weak Mordell-Weil Theorem.

Theorem B2.3.3 (Weak Mordell-Weil) Let k be a number field, and X
be an elliptic curve defined over k. Let m > 2 be an integer, then

X (k)/mX (k)

is a ﬁﬁite group.

Let X be an elliptic curve defined over k. We denote by k(X) the
function field of X. The following theorem shows that every elliptic curve
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can be written as a plane cubic; and conversely, every smooth Weierstrass
plane cubic curve is an elliptic curve.

Theorem B2.3.4 Let X be an elliptic curve defined over k.
(a) There exist functions z,y € k(X), such that the map

¢:X—)P2 ¢=[:1;:y:1]
gives an isomorphism of X/k onto a curve given by the Weierstrass equation
C:y*+aizy +agy = 2° + a2’ + a4z + a6 (2.27)

with coefficients ay,...,as € k; and such that $(0) =[0:1:0]. (We call
z,y Weierstrass coordinates on X.)

(b) Any two Weierstrass equations for X as in (a) are related by a linear
change of variables of the form

z=uls' +r, y=udy +sulz' +¢

with u,r,s,t € k,u #0.
(c) Conversely, every smooth cubic curve C given by a Weierstrass equa-
tion as in (a) is an elliptic curve defined over k with origin O =[0:1:0].

The proof of Theorem B2.3.4 uses the Riemann-Roch theorem. The
details can be found in Silverman [Sil2] p.46.

Let X be an elliptic curve given by a Weierstrass equation. Remember
that X C P? consists of the points P = (z,y) satisfying the Weierstrass
equation together with the point O = [0,1,0] at an infinity. Let L C P2 be
a line. Since the Weierstrass equation has degree three, L N X, taken with
multiplicities, consists of three points. Define an addition law for “+” on
X by the following rule.

Addition Law: Let P,Q € X, L be the line connecting P and Q (tangent
line to X if P =Q), and R be the third point of the intersection of L with
X. Let L' be the line connecting R and O. Then P + Q is the point such
that L' intersects X at R,O, and P + Q.

In terms of z,y coordinates in the Weierstrass equation, we have the
following theorem.
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Theorem B2.3.5 (Group Law) Let X be an elliptic curve given by a
Weierstrass equation
X: y2 +a1zy + a3y = z° + asz® + a4z + as.
(a) Let Py = (zo,y0) € X. Then
—Py = (z0, —yo — a1%0 — as)-

(b) Let P; = (z,y;) € X,1 <4< 2. If 71 = 22 and y1 +y2+a122+a3 =
0, then P, + P, = O.
(c) Otherwise, Ps = P, + P is given by

a:3=/\2+a1/\—a2—:1:1 — I,

Y3z = —(A + al).'L‘a — vV — as,

where
Y2 — Y1Z2 — Y2y .
A= v="—"7—""— if 3 #2x9;
I2 — I Iz —I1

_ 315% + 2a2z1 + a4 — a1yx

and A
2y1 + a1y +as

’

-3 4+ a4x) + 2a¢ — azy; .
v= if z; = z,.
2y1 +a111 + a3

Proof. We first verify (a). Let F(z,y) = y? + ayzy + azy — =3 — apz? —

a4 — ag. To find —PF,, we take the line through Py and O, and find its
third point of intersection with X. The line L is given by:

L:z—29=0.

Substituting this into the equation for X, we see that the quadratic poly-
nomial F(zo,y) has roots yo and yj, where —FPy = (2o, yg). Writing out

F(zo,y) = c(y — y0)(y — %o)

and comparing coefficients of y2 gives ¢ = 1, and then coefficients of y give
Yo = —Yo — a1Zo — az. This yields

—Po = (o, —Yo — a1T0 — a3).
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(a) is verified.

We now prove (b) and (c). Let P; = (z;,y:) € X,1<i<2. Ifz; =z,
and y; + y2 + a1z + a3 = 0, then from the above formula, P, + P, = O.
(b) is verified. Otherwise the line L through P, and P, (tangent line to X
if P, = P;) has an equation of the form

L:y=Az+v.

Substituting into the equation for X, we see that F(z, Az + v) has roots
T, %2, T3, where P; = (z3,y3) is the third point of LN X. By the addition
law, P, + P, + P; = O, while writing out

F(z, z +v) = z(z — z1)(z — z2)(z — z5)
and equating coefficients of z® and z? yields ¢ = —1 and z; + 25 + 2§ =

A% 4+ a1\ — ap. Thus 2§ = A2 + a1\ — az — z; — T2. Substituting back to the
equation for X gives y5 = Az3 + v. Note P; = (—z35, —y3). (c) is proved.O

To prove the weak Mordell-Weil theorem, we start with the following
reduction lemma.

Lemma B2.3.6 Let L/k be a finite Galois extension. If X (L)/mX (L) is
finite, then X (k)/mX (k) is also finite.

Proof. Let @ be the kernel of the natural map X (k)/mX (k) = X(L)/mX(
Thus

® = (X (k) NnmX(L))/mX (k),
so for each point P (mod mX(k)) in ®, there is a point Qp € X (L) with
[m)Qp = P, where [m] is the multiplication-by-m map, i.e. [m|Qp =

Qp+ ...+ Qp (m terms). Denote by X[m] the m-torsion subgroup of X,
that is the set of points of order m in X,

X[m] = {P € X(k) | [m]P = O}. (2.28)
Denote by G/« the Galois group. We define a map of sets
Ap:Gri = X[m], Ap(o) =Q% —Qp,

where Q% is the point obtained by acting o to the coordinates of Qp. We
note that Q% — Qp € X[m], since [m](Q% — Qp) = ((Mm]Qp)? — [M]Qp =
P’ - P=0.
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Suppose now that Ap = Ap: for two points P,P' € X (k) nmX(L).
Then
(@Qp—Qp)" =Qp—Qp, forall g€ G,
so Qp — Qp € X (k). Therefore
P - P' = [mlQp - [m)Qp € mX(K),
so P = P' (mod mX(k)). This proves that the association
® — Map(Gr/k, X[m]), P — Ap,

is one-to-one. But G'/x and X [m] are finite sets, so there are only a finite
number of maps between them. Therefore ® is finite.
Finally, the exact sequence

0> &> X(k)/mX(k) = X(L)/mX(L)

nests X (k)/mX (k) between two finite groups, so it, too, is finite. a

Lemma B2.3.6 tells us that it suffices to prove the weak Mordell-Weil
theorem under the additional assumption that

X[m] € X (k). (2.29)

For the remainder of this section we will assume, without further comment,
that this inclusion is true.

Definition B2.3.7 The Kummer paring
& : X (k) x Gg, = X[m]

is defined as follows. Let P € X(k), and choose any Q € X (k) satisfying
[m]Q = P. Then

k(P,0o) =Q° — Q.

Let C be a curve defined over a field k, using k(C) to denote the function
field of C.

Proposition B2.3.8 (a) The Kummer pairing is well-defined.
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(b) The Kummer pairing is bilinear.
(c) The kernel of the Kummer pairing on the left is mX (k).
(d) The kernel of the Kummer pairing on the right is Gg,r,, where

L =k([m)™' X (k)

is the compositum of all fields k(Q) as Q ranges over the points of X (k)
satisfying (m]Q € X (k).
Hence the Kummer pairing induces a perfect bilinear paring

X(k)/mX (k) x G = X[m],
where L is the field given in (d).

Proof. (a) We must show that (P, o) is in X[m] and does not depend
on the choice of Q. For the former,

[m]k(P,0) = [m]Q’ — [m]Q =P° - P =0,

since P € X (k) and o fixes k. For the latter, note that any other choice
has the form @ + T for some T' € X[m]. Then

Q+TY-QR+Y)=Q°+T°-Q-T=Q° -Q,

because by assumption (2.29) X[m] C X (k), so o fixes T'.
(b) The linearity in P is obvious. For the other side, let 0,7 € G-
Then

K(Por) =Q7" -Q=(Q° - Q)" +Q" - Q =x(P,0)" + &(P,7).

But k(P,0) € X[m] is contained in X (k) by (2.29), so it is fixed by 7.
(c) Suppose P € mX(k), say P = [m]Q with Q € X (k). Then any
o € Gy, fixes Q, so

k(P,0) =Q° - Q = O.

Conversely, suppose (P, 0) = O for all 0 € G ;. Thus choosing Q € X (k)
with [m]Q = P, we have

Q°=Q forall o€ Gyy-

Therefore, Q € X (k), so P = [m]Q € mX(k).
(d) Suppose o € G, Then

R(P,O')-:QO—Q:O,
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since @ € X(L) from the definition of L. Conversely, suppose ¢ € Gy
and k(P,0) = O for all P € X (k). Then for every Q € X(k) satisfying
[m]Q € mX (k),

0 = x([m]Q,0) = Q° - Q.

But L is the composition of k(Q) over all such @, so ¢ fixes L. Hence
o € Gy /L

Finally, the last statement of the Proposition is clear from what precedes
it, once we note that L/k is Galois because G, takes [m]~' X (k) to itself.
This finishes the proof. O

Using Proposition B2.3.8, we have that X (k) /mX (k) is finite if and only
if Gp is finite. Thus the finiteness of X (k)/mX (k) is equivalent to the
finiteness of the extension L/k. The next step is to analyze this extension.

To do so, we need to consider the “reduction of elliptic curve over local
fields.” First we recall the theory of valuations. Recall that My is the
canonical set of places over k, M is the set of Archimedean places and
M} is the set of non-Archimedean places. Fix a v € M?. We define

v(z) = —log |z|..

Then v is a function on k with the following properties: (a) v is a real
number for any z # 0, while v(0) = o0, (b) v(z +y) > min{v(z),v(y)}, (c)
v(zy) = v(z) + v(y). Such a function is called a valuation on k. It is clear
that the values taken on k form a subgroup I of the additive group of real
numbers. We denote

O, ={z€k|v(z) >0}
Then O, is a ring with group of units

Oy ={z € k|v(z) =0},
and the unique maximal ideal

Py, = {z € k | v(z) > 0}.

O, is an integral domain with field of fractions k and has the property
that for every z € k*, either z € O, or z7! € O,. Such ring is called
a valuation ring. Its only maximal ideal is P,. In general, let k be a
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field, then there is a natural bijection between valuation rings on k and
equivalence classes of general valuations on k. The field O, /P, is called
the residue class field. Let L be an algebraic extension of k, and we now
consider the extensions of v to L. Let w be an extension of v to L. We
denote by I" the precise value group of v; by O, the valuation ring in k and
P, its maximal ideal; and the residue class field O, /P, will be written by
k'. The corresponding objects for w are denoted by A, O,, P, and L.
Then we have

P, =0, NPy and K'cL'.

Thus we may regard L' as an extension of k’. The degree f = [L' : k'] is
called the residue degree of the extension L/k. Further, I is a subgroup
of A and the index e = (A : I') is called the ramification index of the
extension L/k. We have ef < [L : k]. Moreover, if k is complete with
respect to v, then ef = [L : k]. The extension is said to be ramified if
e > 1, and unramified otherwise. Since the problem we will consider is
a local in v, we may assume that k is complete under v. In this case the
extension of v to L is unique, i.e.,

1
w(a) = [L—:k]U(NL/k(a))) forall a€elL
where N denotes the norm.

We now describe a theorem of determining whether L is unramified.
We first note that the residue class leads to yet another way of viewing
valuations. Let k, F' be two fields; by a place of k in F we mean a map
¢ : k = FU{oo} such that ¢ restricted to ¢~ (F) is a ring homomorphism
and ¢(z) = oo implies that z # 0 and ¢(z~!) = 0. There is a natural
bijection between the isomorphism of places on a field k and the valuation
rings in k(so sometimes we do not distinguish them). In our case, let
k' = O, /P, be the residue class field of k and let us write x — Z for the
natural homomorphism and define ¢ : k — k'U{o0} by ¢(z) =z ifz € O,
and ¢(z) = oo otherwise. ¢g is called the canonical place. It is clear
that ¢o and the valuation v are defined uniquely by each other. In fact,
we have O, = @5 ' (k'). So, the extension of v to L can be studied through
the extension of the corresponding residue fields. Let ¢o be the canonical
k'-valued place on k. We assume that ¢o is extended in a fixed way to the
algebraic closure k° of k, and we call this extension ¢. Since L is finite over
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k., L' is finite over k', and thus ¢ is k'*-valued, where k'® is the algebraic
closure of k. We have the following theorem.

Theorem B2.3.9 Assume that k is complete under v. Let L be a finite
extension of k with [L : k] = n. Then L is unramified if and only if ¢o has
at least n distinct extensions to places of L (in the given algebraic closure
of k'), and in that case, it has ezactly n.

Proof. By uniqueness, all extensions of ¢p to L are conjugate, and the
number of conjugates is equal to the separable degree of L' over k'. As
[L': k'] < [L : k] = n our assertion is immediate. O

Back to our proof of the Mordell-Weil Theorem. Remember we want
to prove that L = k([m]~! X (k)) is a finite extension of k. To continue, we
have the following proposition:

Proposition B2.3.10 Let
L = k([m]™' X (k)

be the field defined in Proposition B2.3.8.

(a) L/k is an abelian extension of exponent m (i.e. G i is abelian and
every element has order dividing m).

(b) There is a finite set S containing MZ° such that L/k is unramified
outside S.

Proof. (a) This follows immediately from Proposition B2.3.8, which im-
plies that there is an injection

Gr/x = Hom(X (k), X[m]) o— k(,0).

(b) Suppose that X : y% + ajzy + azy = 2 + axz? + a4z + ag, where
a1,...,as are algebraic integers. For almost all v € M}, we can define an
(smooth) elliptic curve X = X mod P,, by the equation

Y+ a1zy + azy = 22 + @xx? + Ggzx + as,

where ay,...,a¢ € Rg/P, are a; mod Py, 1 < j < 6, where Ry is the ring
of algebraic integers of k. The algebraic formulas for addition and division
of points can then be reduced mod P,, and give addition and division on
X. The map of reduction mod P,

P> P
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clearly sends X[m] to X[m]. We claim that, for almost all v € MY (all but
a finite number), this gives an isomorphism X[m] — X[m]. To prove this
claim, let F, (X) be the monic polynomial whose roots are z-coordinates of
the points in X[m]. Because the group law on X is obtained by reduction
mod P, of the group law of X, it follows that the points P in X[m] are
such that their z-coordinates are also roots of the reduced equation

Fn(X)=0.
If
Fn(X)=) a;X7
with a; € k, then by definition,
Fn(X) =) a;X7.

For almost all(but a finite number) v, the polynomial F,, has the same
degree as Fy,, and has distinct roots. This gives rise to an injection

z(P) - Z(P)
on the x-coordinates of points in X[m], P # 0, whence reduction mod P,
PP

induces an isomorphism X[m] — X[m]. This verifies the claim.

Let S be the set that, for all v ¢ S, X[m] — X[m)] is an isomorphism.
Let v ¢ S. We will show that L/k is unramified over v. Since our statement
is local in v, we may assume that k is complete under our valuation. Let
Q € X(k) satisfying [m]Q € X (k), and let k' = k(Q). It suffices to show
that k'/k is unramified over v, since L is the composition of all such k’.

Let n = [k’ : k] then there are n elements a,,...,a, of X[m] such that the
automorphisms o;(i = 1,...,n) satisfying
oiP=P+a;

give all automorphisms of k’ over k. Since X[m] — X[m] is an isomorphism,
a; € X[m](i = 1,...,n) are distinct. If ¢ is a place of k' extending the
canonical place of v, then ¢o; are also places of k' and

¢0‘i(P) = (P+a,~) = P+(_1i.
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Hence ¢o; are distinct. Theorem B2.3.9 implies that k' is unramified over
v. O

The next Proposition is concerned with the property (a) of L, that is
L/k is an abelian extension of exponent m.

Proposition B2.3.11 Assume that the m-th roots of unity lie in k. Then
there is a subgroup B of k* containing (k*)™ such that L = k(B'/™), where
(k)™ ={a™ |a € k"}.

Proof. Denote by ., the set of m**-roots of unity. Let B = (L*)™ Nk*.
We claim that L = k(B'/™). In fact, if z € BY/™, and ™ = o™ = a € k*,
a € L*, then z = £o € L*, where z is an m-th root of unity which lies in k.
So k(B'/™) C L. On the other hand, the extension L/k is the composite of
its cyclic sub-extensions of exponents m because it is the composition of its
finite sub-extensions and the Galois group of a finite sub-extension is the
product of cyclic groups, which may be interpreted as Galois groups of cyclic
sub-extensions. Let now M /k be a cyclic sub-extension of L/k. It suffices
to show that M C k(B'/™). Let o be a generator of G/t where Gk
is the Galois group, and { a generator of the group um,. Let [M : k] = d,
¢ = (™/¢. We now need the Galois theory (Hilbert’s Theorem 90) which
says if M/k is a cyclic field extension of k, then for any element a € M*
of norm Ny () = 1 is of the form a = 8°~!, where 8 € M* and 0 is a
generator of G r/x. Here the norm Njs/i(a) is a map M* — k* defined by

A’M/l&‘.(a)= H aa’ QGM‘.
o€G M/

In our case, { = (™4, so Nai(€) = €2 = ¢™ = 1, so Hilbert’s Theorem
90 implies that ¢ = 8°~! for some 8 € M*. Thus k C k(a) C M. But
B° = €B. Thus B = B is equivalent to i = 0 mod d, so k(8) = M. But
(B™)?~1 = (B7~1)™ = £™ =1, so that a = ™ € k*; then 3 € k(BY/™).
Therefore, M C k(BY/™). O

To complete the proof of the weak Mordell-Weil theorem, all that re-
mains is to show that any field extension L/k satisfying the conditions in
Proposition B2.3.10 is necessarily a finite extension. The proof of this fact
relies upon the two fundamental finiteness theorems of algebraic number



84 Holomorphic Curves into Compact Riemann Surfaces

theory, namely the finiteness of the ideal class group and the finiteness of
the group of S-units.

Proposition B2.3.12 L/k is a finite ectension.

Proof. Let k be the given number field, and S C M} be a finite set of
places containing Mg°, which appeared in Proposition B2.3.10.

Suppose that the proposition is true for some finite extension k' of k,
where S’ is the set of places of k' lying over S. Then L'/k’, being abelian of
exponent m unramified outside S’, is finite; and so L/k is also finite. It thus
suffices to prove that proposition under the assumption that k contains the
mth-roots of unity pm.

Similarly, we may increase the set S, since this only has the effect of
making L larger. Using the fact that the class number of k is finite, we can
thus add a number of elements so that the ring of S-integers

Rs={a€k|v(a)>0foralvgsS}

is a principal ideal domain. We may also enlarge S so that v(m) = 0 for
allv g S.

By Proposition B2.3.11, there is a subgroup B of k* containing (k*)™
such that,

L=k@/™:a€ B),

and by Proposition B2.3.10, L is unramified outside S. We may assume
L/k is the maximal abelian extension of k having exponent m which is
unramified outside S. That is L is the largest subfield of k(a'/™ : a € k)
which is unramified outside S.

Let v € My,v ¢ S. For every a € B, looking at the equation

Xm—a=0

over the local field k,, and remembering that v(m) = 0, it can be shown
that k(a'/™) is unramified over v if and only if ord,(a) is divisible by m
(see, [Langl] Chapter 6, Proposition 1.3). Now when adjoining m**-roots,
it is only necessary to take one representative for each class in k*/(k*)™.
We conclude that

L=k(@™:aeTs),
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where
Ts ={a € k*/(k*)™ | ordya =0 (mod m) for all v ¢ S}.

To finish the proof, it thus suffices to show that the set T’s is finite.
Consider the natural map

R§ — Ts.

We claim that it is surjective. To see this, suppose a € k* represents an
element of Ts. Then the ideal aRgs is the m**-power of an ideal in Rg,
since the prime ideals of Rg correspond to the valuations v € S. Since Rg
is a principal ideal domain, there is b € k* so that aRs = b™Rgs. Hence
there is u € R% so that

a = ub™.

Then a and u give the same element of Ts, so R% surjects onto Ts. Now
the kernel of this map certainly contains (Rg)™, so we have a surjection

Rs/(Rs)™ - Ts.

But Dirichlet’s S-unit theorem [Lang3, V§1] says that R% is finitely gen-
erated, so this proves that T’ is finite, and thereby completes the proof of
the proposition. O

Proposition B2.3.8, Proposition B2.3.10, and Proposition B2.3.12 are
now combined to give our proof of the weak Mordell-Weil theorem as fol-
lows.

Proof of the weak Mordell- Weil theorem:

Proof. Let L = k([m]~'X(k)) be the field defined in Proposition B2.3.10.
Since X[m)] is finite, the perfect pairing given in Proposition B2.3.8 shows
that X (k)/mX (k) is finite if and only if G i is finite. Thus X (k)/mX (k)
is finite if and only if L is a finite extension of k. Now Proposition B2.3.10
shows that L has certain properties, and Proposition B2.3.12 shows that
any extension of k with those properties is a finite extension. This proves
that L is a finite extension of k. O

Remember that our goal in this section is to prove that X (k), the group
of k-rational points on the elliptic curve X, is finitely generated. So far we
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have shown that X (k)/mX (k) is finite. It is easy to see that this is not
sufficient. For example, R/mR = 0 for every integer m > 1, but the set
of real numbers R is certainly not finitely generated. The second step is
the “infinite decent” method using height functions. We will first need to
investigate the height properties on elliptic curves.

Let X be an elliptic curve defined over k. Any non-constant function
f € k(X) determines a surjective morphism (which we also denote by f)
f:X - PY(k) with f(P) =[1:0]if Pisa poleof f,and f(P) = [f(P) : 1]
otherwise. Define

hs(P) = h({(P)).

Corollary B2.1.4 gives us the following theorem.

Theorem B2.3.13 Let X be an elliptic curve defined over k, and f € k(X)
be a non-constant function. Then for any constant C,

{P e X(k) | hy(P) < C}

is a finite set.

The next theorem gives a fundamental relationship between height func-
tion and the addition law on elliptic curves.

Theorem B2.3.14 Let X be an elliptic curve defined over k, and f € k(X)
be an even function (i.e. fo[-1]= f). Then for all P,Q € X (k),

h(P + Q)+ hs(P = Q) = 2h4(P) + 2h¢(Q) + O(1),

where the constants inherent in the O(1) depend on X and f, but are, of
course, independent of P and Q.

Proof. Choose a Weierstrass equation for X of the form
X:y2=z+az+0b.

We start by proving the theorem for a particular function f = z.
Since h;(0) = 0 and h;(—P) = h,(P), the result clearly holds if P = O
or @ = 0. We now assume that P,Q # O, and write

z(P)=[z1:1], z(Q)=[z2:1], z(P+Q)=[z3:1], z(P-Q) = [z4:1].
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Here, z3 or 4 may equal to oo if P = Q or P = —Q. From the group
law(Theorem B2.3.5), one gets

_ 2(z1 +x2)(a + x172) +4b
T3+ 24 = (.’21 + 172)2 —4z179

e = (z122 — @)% — 4b(z1 + T2)
354 = (:v1 + 132)2 — 41,249 )

Define a map g : P2 - P? by
g([t : u:v)) = [u® — 4tv : 2u(at +v) + 4bt? : (v — at)? — 4btu].

Then the formula for 3 and x4 shows that there is a commutative diagram

x x x % x x x
{ {
o P! x P! P! x P! ¢
4 4
p? 5 p?

where G(P,Q) = (P+Q, P—Q), and the vertical map o is the composition
of the two maps

XxX->P xP! (P,Q) = (z(P),z(Q))
and
P! xP! - P% ([oa : B1), [z : B2]) = [B1B2 : a1 B2 +a2fy : aras).

We note that the idea here is to treat t,u,v as 1,z; + z2,z122. Then
g([t:u:v]) =[1:2z3+ 24 : z324).

The next step is to show that g is a morphism, and this means we must
show that except for t = u = v = 0, the three homogeneous polynomials
defining g have no common zeros. Suppose now that g([t:u:v]) =[0:0:
0]. If t =0, then from

u?—4tv=0 and (v-—at)? —4btu=0,

we see that u = v = 0. Thus we may assume that ¢t # 0, and so it
makes sense to define a new quantity £ = u/2t. Notice that the equation
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u? — 4tv = 0 can be written as 22 = v/t. Now dividing the quantities
2u(at +v) +4bt> =0 and (v — at)? — 4btu = 0,
by t? and rewriting them in terms of  yields the two equations
Y(z) = 4z(a + 2%) + 4b = 42° + daz 4+ 4b = 0,
and
Y(z) = (z° — a)? — 8bz = z* — 2az® — 8bz +a® = 0.

To show that ¥(X) and ¢(X) have no common root, we use the formal
identity(it is verified directly)

(12X2 + 16a)$(X) — (3X3 — 5aX — 27b)y(X) = 4(4a® + 27b%) # 0.
Since the elliptic curve is non-singular, the discriminant 4a® + 275 # 0, so
(12X?% + 16a)(X) — (3X3 — 5aX — 27b)yh(X) = 4(4a® + 27b%) # 0.

Thus %(X) and ¢(X) have no common root. This completes the proof that
g is a morphism.
We return to our commutative diagram, and compute

Wo(P+Q,P-Q)) = h(coG(PQ))
h(g oo (P,Q))
2h(a(P,Q)) + O(1), (2.30)

using Theorem B2.1.4 that for any morphism g of degree 2, h(goo (P, Q)) =
2h(c(P,Q)) + O(1).

Now to complete the proof for f = z, we will show that for all R, R, €
X (k) there is a relation

h(o(R1, R2)) = ha(R1) + ha(Rz) + O(1). (2.31)

One immediately verifies that if either R; = O or R = O, then h(c(R1, Ry))
hz(R1) + hz(R2). Otherwise, we may write

z(Ry) =[a;1 : 1], z(R2) =[ag:1],
and so

h(o(R1,R2)) = h([1 : a1+a2 : aiaz]) and hy(Ry)+hz(R2) = h(a1)+h(a2).
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Applying Theorem A2.1.1 to f(T) = (T +a; )(T + ;) we obtain the desired
estimate

h{a1) + h(az) —log4 < h([1: a; + a2 : ayaz]) < h(ay) + h(a2) + log 2.

Thus (2.31) is verified. This completes the proof for the case of f = .

For the general even function f, we still denote z,y as the Weierstrass
coordinates for X. Thus subfield k(X) which consists of even functions is
exactly k(z), so we can find a rational function p : P! — P! such that
f = pox. Hence by Theorem B2.1.4 and the fact that p is morphism,

hy = hy 0 p = (degp)hs + O(1).

This proves the general case. O

Corollary B2.3.15 Let X be an elliptic curve defined over k and f € k(X)
be an even function.
(a) Let Q € X (k). Then for all P € X (k),

hs(P + Q) < 2hs(P) + O(1),

where O(1) depends only on X, f and Q.
(b) Let m be an integer. Then for all P € X (k),

hy([m]P) = m*hs(P) + O(1),
where O(1) depends only on X, f and m.
Proof. (a) follows Theorem B2.3.14 since hy(P — Q) > 0.

(b) Since f is even, it suffices to consider m > 0. Further the result is
trivial for m = 0. We finish the proof by induction. Assume it is known for
m — 1 and m. Applying Theorem B2.3.14 to [m]P and P, we have

hy([m + 1)P) = —hy([m — 1|P) + 2h;(m|P) + 2hs(P) + O(1).  (2.32)

By the induction hypothesis, hf([m — 1]P) = (m — 1)2hs(P) + O(1) and
h¢([m]P) = m2hs(P) 4+ O(1). This together with (2.32) implies that

hy([m + 1JP) = (m + 1)2hs(P) + O(1).
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We now complete the proof of the Mordell-Weil Theorem by going
through the descent procedure.

Proof. By the weak Mordell-Weil theorem, for integer m > 2
X (k) /mX (k)

is finitely. Choose elements Qi,...,Q, € X (k) to represent the finitely
many co-sets in X (k)/mX (k). Now let P € X (k). The idea is to show
that by subtracting an appropriate linear combination of Q;,..., A, from
P, we will be able to make the height of @1,...,Q, less than a constant
which is independent of P. Then Q4,...,Q, and the finitely many points
with height less than this constant will generate X (k).

Write

P=mP, +Q;,, forsomel<i; <r.
Continuing this fashion,

P1=mP2+Qi2’

P, =mPn+Qi»-

Choose any even, non-constant function f € k(X), for example the z-
coordinate function on a Weierstrass equation. We just write hy(P) as
h(P), since f will no longer be used. Now for any j, we have, by Corollary
B2.3.15,

1
MB) < —lhmP;)+ Gl
= LB -0y + 0l
< #[%(Pj_l) +C+ ),

where we take C] to be the maximum of the constants from (a) of Corollary
B2.3.15 for Q = —Q;, 1 < ¢ < r. Note that C] and C2 do not depend on
P.
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Now we use the above inequality, starting from P, and working back to
P. This yields

h(Py)

2\" 1 2 an-t
(55) h(P) + [W+W+"'+ —n (C1+Cy)

2\" C{ +Cy
(W) h(P) + 75
< 27"h(P) + (C] + Cy)/2.

It follows that by taking n large enough, we will have
h(P,) <1+ (C] + Cy)/2.
Since
n .
P=m"P,+) m Qs
i=1

it follows that every P € X (k) is a linear combination of the points in the
set

{Q1,..,@-}U{Q € X(K) |R(Q) < 1+ (Cy + C2)/2}.

From Theorem B2.1.1, this is a finite set, which proves that X (k) is finitely
generated. O

B2.4 Integral Points on Curves of Genus 1, Siegel’s Theo-
rem

An elliptic curve may have infinitely many rational points, although the
Mordell-Weil theorem at least assures us that the group of rational points
is finitely generated. However, Siegel proved that there will only be a finite
number of integral points on an affine elliptic curve.

Theorem B2.4.1 (Siegel) Let k be a number field with its set of canonical
places My. Let S C My be a finite set containing all Archimedean places.
Let X be a smooth algebraic curve of genus 1 defined over k. Then, for any
€>0,

m(z,D) < eh(z) (2.33)

holds for all z € X (k) ezcept for finitely many points.
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When X is of genus 1, its canonical divisor is trivial. So this Theorem
is equivalent to Theorem 2.1.6 in the case where the genus of the curve is
equal to 1.

To prove Siegel’s theorem, we define the v-distance on X for v € M.

Definition B2.4.2 Let X be a curve defined over k, and P,Q € X (k,).
Let tg be a locally defined rational function over X with values in k, such
that it vanishes at Q with order e > 1. The v-adic distance function
from P to Q, denoted by d,(P,Q), is given by

dy(P,Q) = min{||to(P)||/¢,1}.

The definition above certainly depends on the choice of tg, so possibly
a better notation would be d, (P, tg). However, since we will only use d,, to
measure the rate at which two points approach one another, the following
result shows that all of our theorems make sense.

Proposition B2.4.3 Let Q € X (k,), and let tq and ty be functions van-
ishing at Q. Then we have the notation

) logd,(P,tg)
lim —
PeX(ky),P~Q logd,(P,tg)

)

here P - @Q means P € X(k,) approaches Q in the v-topology, i.e.,
dy(P,tg) — 0.
Proof. Let tq and t have zeros of order e and e’ respectively at Q. Then

the function ¢ = (tg)¢/ (tQ)¢ has neither a zero nor a pole at Q. Hence
|¢(P)|y is bounded away from 0 and oo as P = @Q; so as P = Q,

logd. (Pt 1/ee’
ogdv(Ptg) _, . loglé(P)™
logd, (P, tg) logdy (P, tQ) O

Roth’s theorem implies the following theorem.

Theorem B2.4.4 Let X be a curve defined over k and Q € X (k). Then,
for any € > 0, the inequality

1
dv(P, Q) > (P
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holds for all P € X (k) except for finitely many points.

Proof. Let tg be alocally defined rational function over X values in k,
such that it vanishes at  with order e > 1. Then by definition, we may
take

dy(P, Q) = min{|Ito(P)II}/*,1}.
Applying Theorem B2.1.6 (Roth’s theorem) to a@ = 0, for any € > 0,
min{||tq(P)[I}/*, 1} > Hi(te(P))**

holds for all but finitely many P. The theorem is proven. O

We now prove Theorem B2.4.1.

Proof. Choose any even, non-constant function f € k(X), for example
the z-coordinate function on a Weierstrass equation. We just write hys(z)
as h(z) for z € X (k), since f will no longer be used. Then Corollary B2.3.5
applies to the height function h(z).

Let D = E;’.__:l (Q;)- It is easy to check, by the definition, that

9
ms(z,D) = 3 du(,Q))- (2:34)
j=1 vES

Let m be a positive integer such that (m? —1)/e > 3. By the weak Mordell-
Weil theorem, X (k)/mX (k) is finite. For any z € X (k), there are z',7 €
X (k) such that

z=mz' + .

Since X (k)/mX (k) is finite, we may assume that = is independent of z.
Since the morphism w — mw + 7 is etale, we have

dy(z,Q;) < du(z', Q) +O(1)
and h(z) = m2h(z') + O(1). By Theorem B2.4.4,
logdy(z',Q5) < (2 + €)h(z')
holds for all, but finitely many, ' € X (k). So
logdy (z, Q) < (2 + €)h(z) < eh(z)
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holds for all, but finitely many, z € X (k). By (2.34), this is equivalent to
ms(z, D) < eh(z)

which holds for all, but finitely many, z € X (k). O

Corollary B2.4.5 Let X/k be an elliptic curve with Weierstrass coordinate
functions z and y, let S C M be a finite set of places containing M°. Let
Og be the ring of S-integers of k. Then

{P € X(k) : z(P) € Os}
is a finite set.

Proof. Suppose Corollary B.2.4.5 is false. That is there exist distinct
points Py, Py,--- € {P € X (k) : z(P) € Os}. Consider the divisor consist-
ing of a single point O. Since z has a pole of order 2 at O, we have, by the
definition,

dy(P,0) = min{[lz(P)||;/?,1}.
Since for v € S we have ||z(P)|l. < 1,

dy(P;,0)=1, if vg§S.

So mg(P;,0) = h(P;) + O(1). This contradicts with (2.33) with D = 0.0

Clearly the above proof can be applied to any rational function f €
k(X). So we have the following more general corollary.

Corollary B2.4.6 Let X/k be an elliptic curve. Let S C My be a finite
set of places containing M. Let Og be the ring of S-integers of k. Let
f € k(X) be a non-constant function. Then

{P € X(k): f(P) € Os}

is a finite set.
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B2.5 Curves of Genus Greater Than or Equal to Two, The-
orem of Faltings

When the genus of X is greater than or equal to two, Faltings proved the
following theorem.

Theorem B2.5.1 (Faltings) Let X be an algebraic curve over Q whose
genus of X is greater than or equal to two. Then for any number field k,
the set X (k) is always finite.

This theorem is equivalent to the statement of Theorem B2.1.6 in the
case that the genus of X is greater than or equal to two. To see this, we
note that the canonical bundle K in this case is positive. So taking D = 0,
then Theorem B2.1.6 reads

hk(z) < €h(z).

This is equivalent to, by Corollary B2.1.3, the statement that the set X (k)
is finite.

Faltings’ [Fall] proof of Theorem B2.5.1 used a variety of advanced
techniques from modern algebraic geometry, including tools such as moduli
schemes and stacks, semi-stable abelian schemes, and p-divisible groups.
Vojta[Voj2] then came up with an entirely new proof of Faltings’ theo-
rem using ideas whose origins lie in the classical theory of Diophantine
approximation. However, in order to obtain the precise estimates needed
for the delicate arguments involved, he made use of Arakelov arithmetic
intersection theory and the deep and technical Riemann-Roch theorem for
arithmetic three-folds proven by Gillet and Soulé. Faltings [Fal2] then sim-
plified Vojta’s proof by eliminating the use of the Gillet and Soulé’s theorem
and proving a “product Lemma” especially well suited to induction. This
allows Faltings to generalize Vojta’s result to prove of Lang concerning ra-
tional and integral points on sub-varieties of abelian varieties(see Chapter
6). However, Faltings’ proof, which uses arithmetic intersection theory and
heights defined via differential geometric considerations, is far from ele-
mentary. Finally Bombieri [Bom] combined Faltings’ generalization with
Vojta’s original proof and with other simplification of his own to give a
comparatively elementary proof of Theorem B2.5.1. The tools that used
in Bombieri’s proof fall broadly into the following four areas: (i) Geomet-
ric tools: The Riemann-Roch theorem for surfaces, or more precisely, for
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the C x C of a curve C with itself. The theory of curves, Jacobians, and
the theta divisors; (ii) Height Functions: Weil height functions associated to
divisor classes. Canonical height functions on abelian varieties and their as-
sociated quadratic forms; (iii) The Mordell-Weil theorem for the Jacobian of
C; (iv) Diophantine Approzimation: The techniques used in proving Roth’s
theorem. In particular, the proof is divided into: (1) Construction of an
auxiliary function using Siegel’s lemma. (2) An elementary upper bound,
essentially obtained from the triangle inequality. (3) A non-vanishing result
such as Roth’s lemma or Dyson’s lemma. (4) A lower bound, obtained, via
the product formula, from the fact that 1 is the smallest positive integer.
However Bombieri’s proof, although is called an elementary proof, is still
very long and complicated. Thus we decide not to include his proof in this
book. Fortunately, the new book (Graduate Texts series in Mathematics)
[HS] written by Marc Hindry and Joseph H. Silverman contains a complete
proof of Bombieri for Theorem B2.5.1.
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The Correspondence Table

Nevanlinna Theory
(2.7

(2.8)

Theorem A2.3.1
Theorem A2.3.2
Corollary A2.3.4 (i)
Corollary A2.3.4 (ii)
Corollary A2.3.4 (iii)

Diophantine Approximation
(2.24)

(2.25)

Theorem B2.1.5

Theorem B2.1.6

Theorem B1.2.7

Theorem B2.4.1

Theorem B2.5.1
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Chapter 3

Holomorphic Curves in P"(C) and
Schmidt’s Subspace Theorem

We will introduce Nevanlinna theory for holomorphic curves in part A and
the Diophantine approximation results related to the Schmidt’s subspace
theorem in part B.

Part A: Nevanlinna Theory

There are two approaches in extending Nevanlinna theory to holomorphic
curves in P*(C). Oneis given by H. Cartan, another is by Ahlfors. Cartan’s
method uses the logarithmic derivative lemma derived in Chapter 1. In
Ahlfors’ approach, the negative curvature plays an important role. We note
that Ahlfors’ approach can be adapted to more general cases. For example,
it extends Nevanlinna theory to holomorphic maps from certain parabolic
manifolds to the complex projective space. In this part, we introduce both
approaches. In Cartan’s proof, we also carefully examine the error term
that appears in the inequality.

A3.1 Cartan’s Second Main Theorem

To introduce the theory, we reformulate the characteristic function T(r),
the proximity function my(r,a) and the counting function N¢(r,a) which
appeared in Chapter 1 for meromorphic function f. Let P!(C) be the
complex projective space of dimension 1, that is P1(C) = C? — {0}/ ~,
where (a1,az2) ~ (b1, b2) if and only if (a1,a2) = A(b1, b2) for some A € C.
We denote by [a; : as] the equivalent class of (a1, az). P!(C) is naturally

99
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identical to CU {oo} by the following map
[@a:1]]—»aforae C and [1:0]~ {oo}. (3.1)

In this way, any meromorphic function f on C determines a holomorphic
map f : C —» P!(C) with f(z) = [1 : 0] if z is a pole of f and f(2) =
[f(2) : 1] otherwise. We now reformulate the definitions. On P(C) (or
C U {o0}) there is a natural distance called chordal distance defined for
every 21,23 € CU {o0} as

|21 = 2| :
3 5w ifzg #£ 00
oy, 2l = ¢ A+ A+l (3:2)
m if 29 = 0O0.

We note the chordal distance arises in the following way: first we project
21, 25 on CU{oo} into the sphere of radius 1/2 centered at the origin in R3
by the standard stereographic projection and then we measure the length of
the chord of the sphere connecting these two points. Let a € CU {o0}, and
my(r,a) be the proximity function defined by (1.7). Using the inequality
log* z <log(1+ z) <log" z + log2 for every z > 0, we can easily get

m 1 dg
my(r,a) = /O log [—sa1 37 + O (3.3)

Also let N¢(r,a) be the counting function defined by (1.4), then

Ng(r,a) = /Or[nf(t, a) — nf(O,a)]% +ns(0,a)logr (3.4)

where n(t,a) is the number (with multiplicity counted) of zeros of ||f, a|
in |z| < r. Let f = f1/f2, where f1, f> are entire functions and without
common factors. By Corollary A1.1.4,

2w . de
Ny(ri00) = [ logIfa(re) I +0(1).
0 ™
So the characteristic function is
Tf(r) = my(r,00) + Ny(r,0)
2w
1 02 26_’ /
| groea+iseenpz+ [

27

. do
10g|f2(7“e’9)|'2;
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27 . . d
= [ gl + e L (33)
0

We now extend the theory to holomorphic curves in P*(C). Recall
that the n-dimensional complex projective space is P*(C) = C"*! —
{0}/ ~, where (ao, a,-..,an) ~ (bo,b1,...,bs) if and only if (ao,...,an) =
A(bo, . - -,bp) for some A € C. We denote by [ag : --- : ap] the equivalent
class of (ao,...,an). Let

=[fo:..: fa]: C = P(C)

be a holomorphic map where fy,..., fn are entire functions and without
common zeros. Denote by f = (fo,..., fn). f then is called a reduced
representation of f. Similar to (3.5), Cartan’s characteristic function
T¢(r) of f is defined by

2r
Ty(r) = [ toglitre)lig] - ogliEO)) (36)

where f is a reduced representation of f and ||f|| = (|fol? + - - - + | fal?)*/2.
Note that the characteristic does not depend on the choice of the reduced
representation. For W = [wp : - -+ : wy,] € P*(C), let

w = dd° log | W|[2.

Then w is a well defined (1,1) form on P™(C). Such (1,1) form is called
the Fubini-Study form. Define

T dt )
)= [ F[ 1w
0 |z|<t

The above Ty, (r) is called the Ahlfors’ characteristic function. In
fact, by Theorem A2.1.3(Green-Jensen’s formula), we have

dt
ﬂuﬂ=‘/ [mw%ww

1
=§A log IE(re) | 22 — 210 IEO)II? = Ty r).

So Ahlfors’ characteristic function agrees with Cartan’s characteristic func-
tion. '
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A hyperplane in P*(C) is given by

Hz{[:coz...:zn]EP"(C)

Xn: a;r; = 0}
1=0

where a; € C,0 < i < n. Denote by a = (ao,-..,a,) the non-zero vector
associated with H. The Weil function Ag(f(z)) of f with respect to
the hyperplane H is defined, if < f(2),a ># 0, by

IEC2) Ml
A =log ——~— 3.7
(7)) = log oAl (37)
where f is a reduced representation of f and < f,a > is the inner product
on C™t!. The proximity function my(r, H) of f with respect to H is
defined as, under the assumption that < f(z),a ># 0,

27 do

my(r, H) = ,\H(f(re“’))-z—. (3.8)
0 V4

Again if < f(z),a ># 0, let ny(r, H) be the number (with multiplicity
counted) of zeros of < f,a > in |z| < r. Let n(f")(r, H) be the number of
zeros of < f,a > in |z| < r, where the multiplicity is counted only as n
if the vanishing order of < f,a > at the point is greater than or equal to
n. The counting function Ny(r, H) of f with respect to H is defined by,
under the assumption that < f(z),a ># 0,

" dt
Ny(r,H) = / (ns(t, H) = ng(0, H) 5 + g0, H) logr, (3.9)
0
and the truncated counting function is
n T n dt n
N (r H) = /0 () (6, H) — (0, H) S +n(0, H) logr,  (3.10)

where ny(0, H) = lim;_,o ny(t, H) and n&")(o, H) = lim;o ng,") (¢, H). Note
that Ay (f(2)),ms(r,H), N¢(r, H) and N}")(r, H) are only defined under
the assumption f(C) ¢ H, i.e., < f(z),a ># 0. So whenever one of these
functions appears, we automatically assume that f(C) ¢ H. Also note that
the Weil function, proximity function, and the counting function introduced
above depends only on f and H, and not on the choice of a defining H or
on the choice of the reduced representation f.
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By Corollary Al.1.4,
2 0 do
Ny(r,H) = log| < f(re ),a>|-2?+0(1).
0
So, according to the definitions, we derive at the following theorem.

Theorem A3.1.1 (The First Main Theorem)
Ty(r) = mys(r, H) + Ny(r, H) + O(1).

Theorem A3.1.2 Let f;j, 0 < j < n, be entire functions on C without
common zeros. Let f : C = P™(C) be a holomorphic curve defined by
[fo:---: fn]. Then

Ty, 40(r) + O(1) S Typ(r) <D Ty, 5 (r) + O(2).
j=0

Proof. Take H = {[zo: -+ : zp] |20 = 0}. Then Ny(r,H) = Ny, (r,0) =
Ny, 4, (r, 00). Also

_ 11£(re®)|l 48
my(r, H) —/0 log |f0(7'e“9)| 7
So
Tt15(r) = my;y5,(r,00) + Nyy 5,(r, 00)
_ |£(re®)| d6
= [) log"' |fJ( e“’)| 27r +Nf’/f°(r,oo)
117 (re®)]| d8
< /o %8 | fo(re) 20 NI HD)

= mg(r,H) + Ny(r,H) = Ty(r) + O(1).
This proves one direction. On the other hand,
T¢(r) = my(r,H)+ Ng(r,H) +O0(1)

_ / e df
o % Tolre®)] 2r

— [ d
<yf e +:?§:§w§l2,,+Nf,/fo(r 00) +0(1)

+ Ny, /5, (r,00) + O(1)
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= ZT,,. /£6(r) +O(1).

j=0
This proves the Theorem. O

The following general Second Main Theorem with a Good Error Term
appeared in [Ru3].

Theorem A3.1.3 (A General SMT with a Good Error Term) Let
f=10fo:...: fn] : C > P"(C) be a holomorphic curve whose image is
not contained in any proper subspaces. Let H,...,Hy (or ai,...,a,) be
arbitrary hyperplanes in P*(C). Denote by W(fo,...,fn) the Wronskian
of fo,---, fn- Then, for any € > 0, the inequality

27 i do
| max 3 am (e )37 + N0

kEK

< (n+1)Ty(r) + M(Iong(r) + (14 ¢€)log™ log Ty (r)) + O(1)

holds for all r outside a set E with finite Lebesgue measure. Here the maz-
imum 1is taken over all subsets K of {1,...,q} such that a;,j € K, are
linearly independent.

To prove Theorem A3.1.3, we first extend Theorem A1.2.3 to higher
order derivatives.

Lemma A3.1.4 (Ye) Let g be a non-constant meromorphic function. For
arbitrary o with 0 < al < 1/2, there exist constants C,C,,C2 such that for
anyr < p< R,

1 27 |g®(re?)

a lo
P R
g(re“’) df < C(r(p——r)) I:ClTy(R)-l-Cz lOg —T, (R)

p(R—p)"*

2r Jo

Proof. Note that
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It turns out from the Hélder inequality and Theorem A1.2.3 that, for any

T<p,
1 /21!‘ _ 1 2m a &
2w Jo T om /0

g% (re®?)
g(=D(rei?)

9O (re?®) |
g(reif)

A FAGE)
g(re¥)

< ([ 2 = d_ﬂ)m
- o |gU-(reif)| 2m o |g(re®)| 2m
la
< o(5ps) Tin@ - THATIO (311)

However for meromorphic function g, by Theorem A1.2.3, we have, for any
p<p <p'<R,

M) (p',00) + Ny (o', 00)
My g- (P 00) + mgu—l) (p',00) + 2Nyii-1) (p', 00)

o ¢ W‘Wé%

.llog+/27r 9(7)(/’310)
a o 19U~ (p'e)

”
< M) +log (52—

Ty (p')

IN

IA

ﬁ + 2T gli=1) (pl)

IA

+ 2T (’-—1) (pl)

/( " _ /) y(J‘”(P )) +O(1)

Using the above inequality with j =1 —1, p' = p and p"” = (p + R)/2, we
have

2R
Tya-1(p) < 2T u-(p) + log ( B=p) Tya-»((R+ p)/?)) +0(1).
Again, with j =1 -2, p' = (R+ p)/2 and p" = (p + 3R) /4, we have
Tya-n((R+p)/2) < 2T4u-9(R+ p)/2)

+ log (%Tgu_a) (BR+ p)/4)) +0(1).

Repeating the above process to g¢~1),..., ¢, g consecutively, and combin-
ing it with (3.11) gives us the desired result. O

Proof of Theorem AS3.1.3.
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Proof. Let H,,...,H; be the given hyperplanes with coefficient vec-
tors ay,...,a, in C**!. Denote by K C {1,...,q} such that ai,k € K,
are linearly independent. Without loss of generality, we may assume that
¢ > n+1 and that #K = n+ 1. Let T be the set of all injective maps
p:{0,1,...,n} = {1,...,q} such that a,(q),...,a,(n) are linearly inde-
pendent. Then

27
| mex S msren

keK

_ /Z"max n og ( lI£(re®)|[llag;) I )ﬁ
0 j:O

| < f(rei"),a,,(j) >|) 2w

2w i0\||In+1
IE(re)(I™* do
= [ . ) 2 you
/0 o8 {Té‘a’f <Hj=0| <fre®), a5 ) [2n T O

. et | a
lo = c — +0(1
b {Z ool < fCet) 51 [ 20 7O

ueT

= /2" log{z W(< f,a,0) >,...,<f,a,mn) >)(re®)] } ﬁ
0

IA

2 Il <f0e?,au; > on

o 0y |n+1 10 df
[ g e T W (o S re )} 5+ O, (312)

where W(< f,a,0) >,...,< f,a,n) >) denotes the Wronskian of func-
tions < f,a ) >,...,< f,a,,m) >. In the above, we use the property of
Wronskian that

[W (fo,---, fa)l = IW(< f,au0) >,---,< fraum) >)|-C,

where C is a constant. We now estimate the first term on the right-hand
side of (3.12). Denote by

<f, au >

, 0<1l<n.
<f,a,,(0)>

9u) =

Then Ty, ,,(r) < Ty(r) + O(1) for 0 <! < n. Let an(n + 1) < 1/2. From
the con-cavity of the logarithm, the Holder inequality, lemma A3.1.4 and
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the inequality (Ei,j aij)* < C E,.,j ag, for a;; > 0 and a > 0, we have

27
/1
0

<

IA

IN

IA

IA

IN

o { 5 W< B >:::1< oty >)re) } d

[Ti=o | < f(re®),a, > | 2

BET

L5 (it 20 fty e 0
aly 8 [Ti=o | < f(re?),a, > | 2n

HET

b W(L,9u1),---» o\
a Jo uer Igu(l) . ‘gu(n)l 2

(31) (in) |*

1 27 g g .

E/ log Z Z Zu@) ., Zu(m) (re') '(2'124-0(1)
° BET 4. 4in < BUEID u)  Gun) T

(51) (in) |*

1 27 g g '
C—xlog/ Z Z u(1) | Zu(n) (re“’) gg'l'O(l)
° BET 4. tin < 2oL ut)  9u(n) T

1 +1
1 x| gl (re®) s df o
=1 Zu) " 7 &
o 8 b3 2 11 /0 Guqy(reid) 2
BeT i1+...+i”5u n+1) [=1

+0(1)

cl—xlog{ > % f[ ((%GPTT)) . [ClT,P(,) (R)

BET § 4. 4i<2ntl) =1

+Cy log(p(R—Iip)Tg”m (R))] W) } +0(1)

n(n2+ 1) log { r(pp— 9 Z [Cle (R) + Czlog (p(R—R—p)-Tf(R))] }

BET
+0(1). (3.13)

1

Taking R = r+i3§”"l_'1}?ﬁ and p = (R+r)/2 = T+W, then,
for all large r, p/r < 2, R/p < 2, 2= < 2log"**Ty(r) and ;(Rl__pj <

' g

4log"** Ty(r). In addition, lemma A1.2.4 implies that the inequality

Ty(R) < Ty(r) +1
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holds for all r outside a set E C (0,+o0) with finite Lebesgue measure.
Thus, (3.13) becomes

/-27r log{z W(< f,a,0) >,...,< f,a,n) >)(T6i9)|} "
0

- [Ti=o | < f(rei),a, > | 2

n(n+1)
2

where the inequality holds for all r outside a set E C (0, +o00) with finite
Lebesgue measure. Now

< (log Ty (r) + (1 + €) log* log Ty (r)) + O(1), (3.14)

o e+l iy 99
PR T AT
0

2n N 1 dé

= log ||f||"*' — + / lo o —

[, st [ o ey
= (n+1)Ty(r) — Nw(O0,r). (3.15)
Combining (3.12), (3.14) and (3.15), we conclude the proof. 0

Definition A3.1.5 Given hyperplanes Hi,...,H, (or ai,...,a;). We
say that Hy,...,Hy are in general position if for any injective map p :
{0,1,...,n} = {1,...,4}, ay),---,au(n) are linearly independent.

For hyperplanes Hi,...,H, in general position we have the following
product to the sum estimate.

Lemma A3.1.6 (Product to the sum estimate) Let Hy,...,H, be
hyperplanes in P™(C), located in general position. Denote by T the set of
all injective maps u: {0,1,...,n} = {1,...,q}. Then

i=0

) IR de
i
J};lmf(r’ ) < /0 max A, (f(re?))g +0(1).

Proof. Let a; be the coefficient vectors of Hj,1 < j < ¢g. By the defini-
tion,

<faum>=afPfo+- +ah0f,, 0<i<n,  (3.16)
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where a,;) = (ag ", @ ..,aﬁ(i)). By solving the system of linear equations
(3.16),

fi= &g(i) <f,a, >+--- +&Z(i) <f,aym >, 0<i<n,

uli ))

where (a;"") is the inverse matrix of (aj~). Thus, for any p € T,

I < C masx {] < £(2), 2,0 > - (3.17)

For a given z € C, there is p € T such that
0<|<f(2),auo) > < < <f(2),aum) >| < | <f(2),3; > |,

for j # u(i),i =0,1,...,n. Hence, by (3.17),

O 0] IEC2)l
H < f(z),a; > | - ueTH | < f(z),a, > |

The lemma is thus proved. O

Combining Lemma A3.1.6 and Theorem A3.1.3 implies the following
theorem known as Cartan’s Second Main Theorem.

Theorem A3.1.7 (Cartan’s Second Main Theorem) Let Hy,...,H,
be hyperplanes in P™(C) in general position. Let f : C — P™(C) be a
linearly non-degenerated holomorphic curve (i.e. its image is not contained
in any proper subspaces). Then, for any € > 0, the inequality

q
Y my(r, Hj) + Nw(r,0)

j=1

(_+1)

< (n+1)Ty(r) + (log Ty (r) + (1 + €) logt log T (7)) + O(1)

holds for all r outside a set E with finite Lebesgue measure.

A3.2 The Use of the Second Main Theorem with Truncated
Counting Functions

We first reformulate Theorem A3.1.7. We use the following fact.
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Lemma A3.2.1 Let Hy, ..., H, be the hyperplanes in P", located in general
position. Then

q

q
3" Ny(r,Hy) = Nw(r,0) < 5" N{™(r, Hy).

j=1 j=1

Proof. For each z € C, without loss of generality, we assume that <
f,a; > vanishes at z for 1 < j < ¢; and < f,a; > does not vanish at 2
for j > ¢1. There are integers k; > 0 and nowhere vanishing holomorphic
functions g; in a neighborhood U of z such that

<f,a;>=((—z)kg; for j=1,...,q.

Here k; =0 if g1 < j < ¢q. Also we can assume that k; > nif 1 < j < g
and 1 < k; < n where 0 < go < q;. By the property of the Wronskian,

W= W(fo,. . .,fn) = CW(( f, ay) >, < f, Ayu(n+1) >),

and

g0
W(< f,a,30) >, < £,8,041) >) = [J (¢ = 2)57"R(C),
=1
where h({) is a holomorphic function defined on U. Thus W vanishes at
z with order at least 3322, (kj —n) = 3292, kj — gon. This, together with
definitions of N¢(r, H;), Nw(r,0) and N}") (r, Hj), implies the Lemma. O

We use Lemma A3.2.1 and Theorem A3.1.1(the First Main Theorem)
to restate Theorem A3.1.7 as follows.

Theorem A3.2.2 (Cartan’s Second Main Theorem with Truncated
Counting Functions) Let Hi, ..., H, be hyperplanes in P™(C) in general
position. Let f : C — P™(C) be a holomorphic curve whose image is not
contained in any proper subspaces. Then, for any € > 0, the inequality

q
(@— (n+))Te(r) < S N{(r,H;)
ji=1
+n(n +1)

57— (logTy(r) + (1+¢) log™ log Ty(r)) + 0(1)
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holds for all r outside a set E with finite Lebesque measure.

We now use Theorem A3.2.2 to study the uniqueness problem. The
following result is due to the work of W. Stoll (cf. [Sto7]).

Theorem A3.2.3 (The Uniqueness Theorem) Let f1, f2,...,f»: C —
P™(C) be linearly non-degenerated holomorphic curves. Let Hy,...,H, be
hyperplanes in P™(C) located in general position. Assume that f{*(H;) =
= fTN(H;j),1 < j < q. Denote by Aj = f['(H;). Assume further that
for each i # j,AiNAj = 0. Let A = UJq-___lAj. Let 1,2 <1 < ) be an
integer such that for any increasing sequence 1 < j; < ja < ... < Ji < A,
£,(z2) Ao A fj,(2) =0 for every point z € A. If g > X_","T +n+1, then
fin---Afy=0 over C.

In the case where A = 2, Theorem A3.2.3 reads as follows.

Corollary A3.2.4 Let f, g : C = P"(C) be two linearly non-degenerated
holomorphic curves. Let Hy,..., H3nyo be hyperplanes in P™(C) located in
general position. Assume that f~'(H;) = g~'(H,),1<j < 3n+2, and for
each i # j, f~H(H;) N f~'(H;) = 0. Let A = Uj_, f~'(H;). If for every
point z € A, f(z) =g(2), then f = g.

When n =1 and A = 2, Theorem A3.2.3 yields the following statement
of Nevanlinna.

Corollary A3.2.5 Given two non-constant meromorphic functions f,g.
Assume that there ezist five distinct elements a;,...,a5 € CU {oo} such
that f(2) = aj if and only if g(2) = aj, for 1< j <5, then f = g.

Proof of Theorem A3.2.3.

Proof. We first apply Theorem A3.2.2 to f;,1 <t < A, to get, for 1 <
t<

q
(q— (n+ )Ty, (r) < 3 N (r, Hy) + O(log™ Ty, (), (3.18)
j:l

where the inequality holds for all r outside a set E C (0, +o00) with finite
Lebesgue measure.
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Assume that f; A--- Afy Z 0 on C, where f;,1 < i < ), is the reduced
representation of f;. We denote by pg a...af, the divisor associated with
fi A--- Afy. Denote by Nug sy (r) the counting function associated
with the divisor p, a...ar,. We make the following claim.

Claim. For every 1 <t < ),

q
n
> N}:') (r, Hy) < YT 1 EaAAn (r)- (3.19)
=

To prove the Claim, we assume that < f;,a;, > vanishes at some point
z € C with vanishing order m > 1 for some index 1 < jo < q. Then by the
assumption of Theorem A3.2.3,

< f;,a; >#0, for j # jo.

Also, by the assumption, since z € A, for any increasing sequence 1 < j; <
2 <. . <J <A

£,(2) A A (2) = 0. (3.20)

We verify that f; A --- A fy vanishes at z with the vanishing order at least
A =1+ 1. In fact, by the power series expansion for each component of f;,
we can write, for 1 <i < A,

£i(¢) = b: + (¢ — 2)hy((),

where b; is a constant vector, and h;(¢) is a holomorphic vector-valued
function defined around z. Denote by T'[a, A] the set of all increasing in-
jective maps from {1,2,...,a} to {1,2,...,A}. For each n € T[a, A], there
exists a unique 7} € T[\ — a, A] such that (Imn) N (Im#) = 0. Abbreviate
€, = singn. (3.20) then implies that, for any n € T'[I, A]

by) A -+ Abygy = 0.
Thus,

-1 o Ao
fin---Afy = Z(C—Z))‘_a Z €n (/\ bn(f)) /\ (/\ hﬁ("))

n€T[a,\] j=1
+(¢C=2)*hy A---Ahy.
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The lowest exponent of ({ —2) is A—l+1, s0 fi A---Af) vanishes at z with
the vanishing order at least A —I + 1. This, together with the property of
min{m,n} <n < 5=5(A — 1+ 1), concludes the claim.

We now proceed. By the First Main Theorem of the exterior product
(cf. [Stol7]),

A
Nuq/\.--/\f)‘ (r) < Z Ty, (r) + O(1). (3.21)

i=1
Combining (3.19), and (3.21) yields

g A
(n) ) < n
;N,, (nH) € 3727 ;Tw) +0(1).
This, together with (3.18), gives, for 1 <t < A,

A
(= (n+ DT4() < =157 3 T(r) + Olog™ Ty 1),

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. Thus, by summing them up, we have that the inequality

A A
;T" <G (n+1))(/\—l+1)sz' +0(;1og+Tf(r)),

holds for all 7 outside a set E C (0,+00) with finite Lebesgue measure.
This gives a contradiction under the assumption that ¢ > =3 , T+tn+l
This completes the proof of Theorem A3.2.3. O

Next we give the following result for holomorphic functions satisfying a
diagonal equation.

Theorem A3.2.6 (Generalized ABC Theorem) Let f = [fo : ... :
fa] : C = P?(C) be a holomorphic map with fo,..., fn as entire functions
with no common zeros. Assume that fo11 is a holomorphic function and

fot+.. .+ fotFay1 =0. If Y fi # 0 for any proper subset I of {0,...,n+1},
i€l
then the inequality
n+1
Ty(r) <3 Ny (r,0) + O(log™ Ty (r))

7j=0
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holds for all r outside a set E C (0,+00) of finite Lebesgue measure.

To prove Theorem A3.2.6, we recall the following lemma from [B-M].

m
Lemma A3.2.7 Assume ), f; =0 but no non-empty proper sub-sum van-
i=0
ishes. If some proper subset of {fo,..., fm} are linearly dependent, then
we can find an integer | > 2, a partition

{0,1,...,m} =L U..UJ
into non-empty disjoint sets I, ..., I;, and non-empty sets
LhChL, J,CLhUIL,.,J,,uCLU...UL,
such that
L, LUJ,. . UJ_

are minimal. Here, we say an indez set I C {0,1,...,m} is minimal if
the set {fi| i € I} is linearly dependent, and for any proper subset I' of I
the set {f;| i € I'} is linearly independent.

Proof. Throughout this proof, we use the term linear forms. Linear
forms are the homogeneous polynomials of degree one in m+1 variables with
coefficients in C, that is L(X) = cozg + * *+ + ¢nZTm where cp,...,cm € C,
X = (zo,...,Zm). We denote by L the set of linear forms which vanishes
on (fo,..., fm), that is L(X) = cozg + -+ + cmTrm is in L if and only if
cofo+...cmfm =0. By the assumption fo +...+ f,m = 0, £ is non-empty.
We make the following claim.

Claim 1 Every linear form L in L can be written as
L=) c;LywithL; €L

for certain minimal sets J, where Lj is a linear combination of {z; | j € J},
and ¢y is constant.

We prove Claim 1 by induction on the length t of L, i.e., the number
of nonzero coefficients. The case t = 1 is trivial. So assume that for some
t > 1 this holds for all elements of £ of length strictly less than t. If L € £
has length exactly ¢, we may suppose that

L=cyzo+...+ 1741, ¢ #0, for 0<i<t-1.
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If I ={0,2,...,¢t — 1} is minimal we are done. Otherwise, there is a linear
form L' in £ with less length. Without loss of generality we can assume
that

L' =chzy + ...+ czx,

lies in £ for some k with 0 < k < t—1and ¢§ # 0. Then L' and L" =
coL — coL' are both of length strictly less than ¢, and so the induction
hypothesis can be applied to both linear forms. Since

L = (co/co) L' + (1/cp)L",

L has the desired decomposition. So Claim 1 is proved.
We now prove Claim 2.

Claim 2 Suppose that Y i~ fi = 0 and 3 ,c; fi # 0 for some I C N =
{0,1,...,m}. Then there is a minimal set J with Ly € L such that JNI #
0, and JNI¢ # O where I° is the complement of I in N.

In fact, the set L =Y ;- z; is in £ because y .-, fi = 0. By Claim 1,
we have

L= ZCJLJ with Ly € L

for certain minimal sets J. If Claim 2 is false, then every such J is contained

eitherin I orin I°. So Y 7" z; = L(%o, ..., Zm) = > crcaLi(To, .., Tm)+
Yucre€iLi(zo,...,zm). However, for those J C I, Ly(zo,...,Tm) in-
volve only {z; | i € I} while for those J C I¢, L;(zq,...,zm,) involve only

{z: | i € I°}. Setting z; = 0 for i € I°, the above equation becomes

z T = Z CJLJ(.’L'(), ey :l:m).

i€l JcI
Since Ly € L, Ly(fo,...,fm) = 0. Hence }_,., fi = 0 which leads to a
contradiction that proves Claim 2.

We now pick any minimal set I;. By hypothesis N = {0,1,...,m} is
not minimal, so I; # N. Hence, 3 ;.; fi # 0. So Claim 2 implies that
there exists a minimal set I, with Ly, € £ such that I, N I; # @ and
I, N If # 0, where If is the complement of I; in N. Put I, = I, N I{ and
Ji=ILnI. If N=1I, UI, then we are done. Otherwise, let I = I U I.
Applying Claim 2 to I, there exists a minimal set I§ with L 1, € £, such that
LNI#Qand ENIc#0. Let s =I3N (11 UL) and Jo = I[{ N (11 U LL).



116 Holomorphic Curves in P*(C) and Schmidt’s Subspace Theorem

If N =1, Ul, UlI;, then we are done. Otherwise, we repeat the same
procedures until the union reaches N. O

Proof of Theorem A3.2.6.

Proof. If fo,..., fn are linearly independent, then this is a consequence
of Theorem A3.2.2. If fo,..., fn are linearly dependent, then by Lemma
A3.2.7 we can find an integer [ > 2, a partition

{0,1,..,n+1} =L U..UJ
into non-empty disjoint sets I, ..., I;, and non-empty sets
HhChL, JbCLhUDL,. .  ,J.p,CLU...UL,
such that
L, LUJ,.,.JUJ_

1
are minimal. Let n; = #1I;. Then }_ n; = n+ 2. Without loss of generality
=1 :
we may assume that

{0, ...,nl—l} =1, {71,1, ey N0 — 1} =1,..., {n+2—n1, ...,n+1} =1.

We also write

A
Ax= m. (3.22)

v=1

Since I; is minimal, there is a linear relation among {fo, ..., fn,—1}. That
is

coifot+-+en-11 -1 = Z cj1fi =0.
j€nL
Define c;j;; = 0 for all j > ny. Then

n+1

Z Cj,lfj =0.

j=0
Differentiation yields, for each positive integer p,

n+1
S eafi? =0. (3.23)

=0
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Take 2 < A < I. Since I U Jy—; is minimal, there are non-zero complex
numbers c; 5 exist such that

Z Cj,Afj=0.

JENLUJIx-1
Put Cin= 0 for all j & (I U Jx-1). Then
n+1

Z Cj,)‘fj =0.
j=0

Differentiation yields, for each positive integer p,

n+l1
> eaff) =o. (3.24)
j=0
We consider an (n + 1) x (n + 2) master matrix M given by
) Co,1f6 Cnt11fne1 ]
Co,1 f(m_l) *tt Cnia, 1f(m_1)
cz2fo ot cnti2fnp
M=| coafi™ Cn+1,2f,(ff1) ;
Co, f(na) Cn+1, 3f,(, )
L coufy fim) Cn+1,1f,(:g |

where, in above, we note that n; + -+ +n; = n + 2. We also note that,
by (3.23) and (3.24), the sum of each row of M is zero. Let D; be the
determinant of the matrix obtained by deleting the j-th column of the
master matrix M. Then, since the sum of each row of M is zero, we
actually have

D; = (-1)?D,. (3.25)
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We now show that
Dy #0. (3.26)

To show Do # 0, we first prove that

Do =vm1va (3.27)
where
c1afi Cny-1,1fp, -1
M= : : ;
adfmTY e 1f("l Y
and, for 2< A <,
Canaanfhu_, 0 Chn—iafh 1
= : : )
Caraa S a1 iy

where 71y is defined in (3.22). (3.27) is true because the definition of Dy
and the fact that ¢;; = 0for j > n; and ¢y =0for j > Ay for A =2,---,L
Now, since I; is minimal, ¢;; 3 0for 0 <i < n;—1andalso {f1,..., fa,—1}
is linearly independent, so y; # 0 by the property of the Wronskian. Also,
since Iy U Jx—; is minimal, ¢;» # 0 for fix-1 < ¢ < Aiy — 1 and also
{f;»7 € I,} is linearly independent. So vy # 0 for 2 < A < I. Hence
Dy # 0 by (3.27). So (3.26) is verified. The rest of the proof is similar
to the proof of Theorem A3.1.3(the second main theorem), replacing the
Wronskian W by Dg. The following is the detail. Applying Lemma A3.1.6

(Product to the sum formula) to f = [fo : --- : fn] and to the coordinate
hyperplanes H; = {{zo : ...,zn] | =1 =0} for 1 <i<n+1and Hyys =
{lzo:...,zn] | To + -+ + zn = 0}, and noticing that these hyperplanes are
in general position, we have
n+2 n+1
Il db
mg(r,H;) < / lo —. 3.28
; f( ) E g f] 1f]+1 fn+1| 27 ( )

However, using (3.25),

ST& £y~ b
Z/ log —
[fo- - fi—1fjs1- faa| 27

=070
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n+1/ |D| do
= 2/ log 5
~fi—1fi+1- e fay1| 2
27 2n
.oy A6 . db
i\ 22 (A Batdl
Hn+1) / g l(re®) 5 — | toglDo(re®)

n+l1 9
> / log" T2 St (et DT () + OQ)
J n

_ / log |Do(re"9)|—

n+1
D4 @
Z / log f]—1f1+1 « fny1] 27
(n + 1)Ty(r ) — Np,(r,0) + O(1) (3.29)

IA

where, in the last step, we used Corollary Al.1.4. For each fixed j with
0 <5 <£n+1, we now estimate

2
/ 10g+ IDJ' ﬁ
0 |for - fi—1fj+1- - frta| 27
Note that D; does not involve f;, so we write
Dj = D(fos---s fi-1, fi+1,- - s fnt1)-

Write g; = fi/f; for 1 <4 <n+1 and the fixed j. Similar to the property
of Wronskian, it is easy to verify that

D(fO,-"a j—lafj-}-l)-“afn-f-l)
= fPD(fo/fis- s fim1l fisFiwr] Fin- s Fnirl £i)-
In fact, from (3.27) we see that D; in fact is the product of several “small”

Wronskian. So the above equation is true by the property of Wronskian.
So

D.‘i = f;-’_lD(gO;'--,gj—l,gj+1,---,gn+1)-

Hence, by Theorem A1.2.5(The Lemma of logarithmic derivative),

/~21r 10g+ |D]| ﬁ
0 [fo-- fi—1fix1 -+ fnp1| 27
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/2" 10g+ |D(g0) 3 9j—1,95+1,- - ’gn+l)| d_9
0 |90 9j-19j+1 " Gn+1l 2T

IA

n+1
0 (E 1ogT,.(r)>

i=0

where the inequality holds for all r outside a set E C (0, +0o0) with finite
Lebesgue measure. Using Theorem A3.1.2, and the fact that fo+-: -+ fn +

fn+1 = O)

n+1
Z log Ty, (r) < O(log™ T¢(r)).
1=0
Hence
2" Dy do
logt |D; B oogt T ’ 130
/0 8 o FroafrnForn 2m = 00087 T () (3.30)

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. Hence, combining (3.28), (3.29) and (3.30),

n+2
> my(r,Hj) + Npy(r,0) < (n+ 1)T4(r) + O(log™ Ty (r)),
Jj=1

or we can write, by the First Main Theorem, the above inequality as

n+2
Ty(r) < > Ny(r,Hj) = Np,(r,0) + O(log™ T(r)),

=1
here the inequality holds for all 7 outside a set E C (0,+o00) with finite
Lebesgue measure. However, by the definition of H;, we have

Ny (r,Hj) = Ny;_, (r,0).

So the inequality

n+1

Tf(T) < Z ij (T’ 0) - NDo (1‘, 0) + 0(10g+ Tf(T))
=0

holds for all r outside a set E C (0,+00) with finite Lebesgue measure.
Similar to the the proof of Lemma A3.2.1 and using the fact that D; =
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(=1)? Dy, we can verify that

n+1 n+1

3" Ny, (r,0) = Npy(r,0) < Y NS (r,0).
Jj=0

=0

Thus the theorem is proven. (]

Theorem A3.2.8 Let fo, ..., fm be m+1 entire functions, and let ng,...,nm
be positive integers such that

£1o
= n; m'
IfFYm o f¥ =1, then fo,..., fm must be constants.

Proof. We prove this by induction on m. Theorem A3.2.8 is trivial if
m = 1. Now assume that the theorem is true for m—1. Consider } 1~ f/—
1 = 0. If a proper sub-sum vanishes, then the induction hypothesis applies.
So we assume that ) -, f/ — 1 = 0 and none of the proper sub-sum
vanishes. Applying theorem A3.2.6 to f = [fg° : ... : f&™], and noticing
that f,+1 =1, we have

Ty(r) < sz"")(r 0) + O(log™ Ty(r)),

i=0
where the inequality holds for all r outside a set E C (0, +o0) with finite
Lebesgue measure. However,

m m
NE(r,0) <mN[D(r,0) < mTy,(r) < =Tymi () < =Ty(r),

using the property that T'yn: (r) = n;Ty,(r). So the inequality

Ty(r) < Z 11 (r) ) + O(log™ T (r))
1—0

holds for all r outside a set E C (0, +00) with finite Lebesgue measure. If
f is non-constant, then

Contradiction. O
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The following more general case is due to Siu and Yeung ([Siu-Y3]).

Theorem A3.2.9 Let m be a positive integer and P;,1 < j < q be forms
of degrees d; in q variables z1,...,x4, such that {z;"_d’Pj(:cl, N 791
have no common zeros except at the origin. If

q
mZZdj+q(q—2)+1

j=1

and entire functions f1,..., fq, satisfy

q
Zf;n—djpj(fl)--"fq) =0

j=1

then the set of indices {1,...,q} can be partitioned into classes, each class
containing at least two elements, and such that for i and j in the same class
the functions g; and g; are proportional.

Proof. We prove this by induction on m. The theorem is trivial if
m = 1. Now assume that the theorem is true for m — 1. Let g; =
f;" 4 P;i(f1,...,fq). Consider 23!:1 g; = 0. If a proper sub-sum vanishes,
then the induction hypothesis applies. So we assume that none of the sub-
sum vanishes.

Elementary properties of Cartan’s characteristic imply that

T[gl:...:gq-x](r) = T[gl:“.:gq] (T) = mT[flz...:fq](T) + 0(1) (331)

Npy(fureat)T,0) € dT(p g () + O(1), 1< 5 < q (3.32)

(3.33)
Since g; +...+ g = 0, and none of the proper sub-sum vanishes, Theorem
A3.2.6 implies that the inequality

q
T[gxz--dyq—xl(r) < Z Ng;’"z)(r, 0) + O(1°g+ T[ax:--sgq—ll(r)) (3.34)
j=1
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holds for all 7 outside a set E C (0,+00) with finite Lebesgue measure.
Combining this with (3.31) and (3.33) implies

q
Z(dj+q—2)2m1

Jj=1

which contradicts our assumption. ]

Corollary A3.2.10 Let m > 11. If entire functions f;,0 < 5 < 3, satisfy
the equation

zf +a + 25 + 27 "2 P(z0, 71, T2, 73) = 0

where P is a generic form of degree two, then f = [fo : ... : f3] must be
constant.

Proof. Putting z; = f;, we conclude from Theorem A3.2.9 that one of
the first three commands of the equation is proportional to the fourth one,
and in addition two others of the first three commands are proportional,
that is, up to renumeration

= 372 P(fo, f1, f3)-

But for generic P this is a curve of genus greater than 1. So Picard’s
theorem implies that f = [fo : ... : f3] must be constant. O

A3.3 Borel’s Lemma and its Applications

In this section, we derive Borel’s Lemma. We will show that Borel’s Lemma
- is very useful in the study of complex hyperbolicity problems. The counter-
part of Borel’s Lemma in Diophantine approximation is the so-called Unit
Lemma, which is one of the fundamental results in Diophantine approxi-
mation (see B3.3 for further discussions).

Lemma A3.3.1 Let fy,..., fn be nowhere zero entire functions such that
fi/ f; are not constants for any distinct ¢ and j. Then they are linearly
independent.

Proof. We use the induction on n. Clearly the lemma is true for n = 2.
We consider the casen > 3. If fi,..., f, are linearly dependent, then there
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are constants ¢;,1 < ¢ < n, not all zero, such that
n
Z ¢ifi =0.
i=1

Without loss of generality, we assume that ¢; # 0 for all . Then

fHlfa+ o+ faa1/fa=-1

Applying Theorem A3.1.7 to the holomorphic curve f = [f1 : -+- : fn—1]
with hyperplanes H; = {z; = 0},1 <i<n-1and H, = {z; +--- +
Zp—1 = 0}, we conclude that the image of f = [f1 : --- : fa=1] : C =
P"~2(C) is contained in some proper subspace. That is f1,..., fn—1 are
linearly dependent, which contradicts the induction hypothesis. O

Theorem A3.3.2(Borel’s Lemma) Let fo, ..., fn+1 be nowhere zero en-
tire functions with

fot. ...+ fat fay1 =0. (3.35)
Consider the partition
{0,1,2,...,n+1} =L UL---UI

such that i and j are in the same class I, if and only if fi = c; j f; for some
nonzero constant c;j. Then
> si=0

el
for any L.

Proof. For an arbitrarily chosen ¢; € Ij, since f; = ¢; i, fi,, we can rewrite
(3.35) as

n k k
D f=d> cafu=) difi =0,
=1

=0 I=1iel

where d; = 3 ;¢ Ciji,- By Lemma A3.3.1, f;,,..., fi, are linearly indepen-
dent. So d; = 0 for all {. Thus, for each ,

Zfi = Zci.i,fi, =df;, =0.
i€l i€l
Theorem A3.3.2 is proved. O
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We now give some applications of Borel’s Lemma. We first consider
holomorphic maps in projective space omitting hyperplanes.

Given a hyperplane H = {[zg : - - - z,,] € P*(C) | apzo+...+anzn = 0},
H associates with a linear form L € C*™*! with L(zo,...,z,) = agzo +
<+ @nTy, where C*™*! is a dual space of C*t!. L is called a defining
linear form of H. A finite set of hyperplanes associates with a finite set of
linear forms which are pairwise linearly independent. Given a finite set of
hyperplanes H, we denote by L the set of corresponding linear forms. Let
(£) be the vector space generated by the vectors in £ over C.

Definition A3.3.3 A set of hyperplanes H (or linear forms L) is called
non-degenerate if

(1) dim(L)y =n+1

(2) For any proper non-empty subset Ly of L

(L1) N (L —L1)NL#0. (3.36)

In the rest of the section, we shall prove the following theorem due to
Min Ru ([Ru 2]).

Theorem A3.3.4 (Ru) Let H be a set of hyperplanes in P*(C). Then H
is non-degenerate if and only if every holomorphic map f : C = P*(C) —
UgenH is constant.

Corollary A3.3.5 Let Hy,..., H; be hyperplanes in general position. Then
every holomorphic map f : C = P"*(C) —U?=1Hj is constant if ¢ > 2n+1.

- Proof. Let L be the set of linear forms corresponding to the hyperplanes
in H. The “in general position” condition for { means that for each subset
Lo of £ with #Lo > n +1, (Lo) = C*™*. So dim(L) = n + 1. For each
proper non-empty subset £; of L, either #£; or the number of vectors in
L — L; is greater than n, so either (£;) = C*"*! or (L - £;) = C*™*!. In
any case, we have

(L)N(L-L)NLAD.

Thus (3.36) is satisfied, and hence H is non-degenerate. Theorem A3.3.4
implies that f : C - P*(C) — (H; U---U H,) is constant if ¢ > 2n + 1.
This proves Corollary A3.3.5. O
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We now prove Theorem A3.3.4. We first prove the following,.

Proposition A3.3.6 Let f : C — P™(C) be a holomorphic map. If f(C)
omits at least three distinct hyperplanes in P™(C) which are linearly depen-
dent, then f must be degenerate (that is f(C) is contained in some proper
subspace of P™(C)).

Proof. Let Hy,...,Hz; s > 3 be the distinct hyperplanes which f(C)
omits. Let Ly,...,L, be the defining linear forms of H;,1 < i < s. After
rearranging indices, let Ly, ..., L; be a minimal linearly dependent subset.
Then ¢ > 3 and there exists nonzero constants ¢; such that

t
Z C,‘Li =0.
=1

Therefore

Xt: C,‘Li(f) =0.

=1

Theorem A3.3.2 implies that there exist some constants d;, not all zero,
such that

c;Li(f)
Y -

whence

t
> (dics)Li(f) = 0
=2
So the image of f is contained in the hyperplane of P™(C) whose defining
linear form is E§=2 (dic;)L;. By the minimality of ¢, this hyperplane(subspace
is proper. This proves proposition A3.3.6. O

Proposition A3.3.7 A finite set of hyperplanes H (or linear forms L) is
non-degenerate if and only if for every H-admissible subspace V of P"(C)
of projective dimension greater than or equal to one, HNV contains at least
three distinct hyperplanes which are linearly dependent. Here HNV is the
set of hyperplanes restricted on'V, and V is called H-admissible if V is not
contained in any hyperplane in H.
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Proof. Let V be a subspace of P™(C) of projective dimension greater
than or equal to one. Assume that V is H-admissible. We first show that if
‘H is non-degenerate, then NV contains at least three distinct hyperplanes
which are linearly dependent. Let V be the subspace of C**! of dimension
r > 2, with P(V) = V. The inclusion map ! : V = C"*! induces a
surjective map I* : C*™*! 5 V*. We denote by I*L the set of all I*L for
L € L. Denote by £' a maximal set of pairwise linearly independent linear
forms in {*L. Since dim(£) = n+1,dim(I*L) =r > 2, dim(I*L) = dim(L'),
so #L' > 2. Let L] be a proper, non-empty subset of £'. Let £; be the
largest subset of £ with the property that each linear form in [*£; is linearly
dependent on one of the linear forms in £} over C. Then each vector in
I*L — I*L; is linearly dependent on one of the vectors in L' — £]. From
(3.36) we infer that

(LHNL = LYNIL="L)NIL—1"L)NI*L # 0.

Thus there are vectors Ly,...,L, € Ly,Lpy1,....,Lq € L' = Li(g>p > 1)
such that

14 q
daLi=- Y oL #0,
i=1 i=p+1
whence
q
Z a,‘L,‘ =0
i=1
with nonzero a; € C for i = 1,...,q. Since the vectors in £’ are pairwise

linearly independent, we have ¢ > 3. The hyperplanes defined by L;,1 <

"1 < g, arein HNV. That is they are the restriction of hyperplanes in H
onto V and are also distinct because of the pairwise linearly independence.
So the proof of this direction is finished.

Conversely, assume that for every H-admissible subspace V' of P™(C) of
projective dimension greater than or equal to one, H NV contains at least
three distinct hyperplanes whose coefficient vectors are linearly dependent,
we will show that # is non-generate. We first prove a sub-lemma.

Sub-Lemma A3.3.8. Let L be a set of linear forms in C™(r > 1)
which are pair-wisely linearly independent. Assume that dim(L) = r + 1
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and L = Ly U Lo, where Ly, Ls are two non-empty subsets and where
(L1) N (L2) = (0) (3.37)

then there ezists a L-admissible subspace V of C™! of dimension > 2 such
that L does not contain a subset of at least three linear forms which are
linearly dependent on V, but pairwise linearly independent on V.

Proof. Let L£;(j = 1,2) be the maximal subsets of Ly, L, respectively,
such that the forms in L} are linearly independent. Then, by (3.37),
the linear forms in £* = L] U £} are linearly independent. Let L =
{Lj,l, ~-~aLj,r,~}(j =1,2). Put Wj = (0) if r; =1 And if T; > 2, let Wj be
the vector space generated by L;2 — ¢j2Lj1, .., Lj,r; — Cj,r; Lj1 over C for
certain constants c;2, ..., Cj,r; Which can be chosen so that

(W1 + W) N L =0. (3.38)

Indeed, if 7y = r =1, (3.38) is trivially satisfied. Suppose that r; > 2 for
some j, it is easy to see that in view of the linear independence of forms in
L* and the finiteness of £, we can choose c; 2, ..., ¢j,r; to satisfy (3.38). Put
W = W; + W,. Let V be the vector space defined by

V={xeCrt':L(x)=0forall Le W}.
V has dimension
r+1—-dim(W)=r+1-(dim(£*)-2)=r+1-dim(L)+2 > 2.

It is easy to see that V is L-admissible. We notice first that, all forms in
L; are linearly dependent on L;; on V, for j = 1,2. Secondly, Ly 1, L2,
are linearly independent on V. For suppose that a;L;; + asls; = 0
identically on V, that is oy L1 + a2L2; € W. Since the forms in £*
are linearly independent, together with (3.37), we have a;L;; € W for
J = 1,2. In view of (3.38), this implies, however, that a; = 0 for j = 1,2
(for otherwise L;; € W; + W, and also L;,; € £). So H NV does not
contain more than three distinct hyperplanes which are linearly dependent,
where 7 is the set of hyperplanes defined by the linear forms in £. This
proves the sub-lemma A3.3.8. O

We now continue proving Proposition A3.3.7. We first prove dim(L) =
n + 1. If dim(£) < n + 1, then the hyperplanes have a common point P;
taking V' to be any line passing through P not contained in any hyperplanes
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in ‘H will give a contradiction. So dim(£) =n + 1. We now verify (3.36) is
true. Suppose (3.36) is not true; that is there exists ‘a proper, non-empty
subset £; of £ with

(L)N(L—-L)NL=0. (3.39)
Let V be the subspace of C"*! defined by
V={xeC':L(x)=0forall L€ (L)N(L~-Ly)}

By (3.39), V is L-admissible. Denote by r the dimension of V. Since, by
(3.39), m = dim((£1)N(L-L1)) <n+1,wehaver=n+1-m > 1
Let I* : C**! — V*(where [ is the inclusion map, I* is the dual map). By
(3.39), no form in I*L is identically zero. Further, we have, by (3.39),

(*Ly) N (I*L = 1*Ly) = (0)

where both sets [*£; and I*£ —[*L; are non-empty. But these sets consist
of linear forms in r-variables, hence r > 2. Together with the sub-lemma
A3.3.8, this implies that there is an [*£ -admissible subspace W of V of
dimension at least 2 such that *£ does not contain a subset of at least
three linear forms which are linearly dependent on W, but pairwise lin-
early independent on W. This contradicts our assumption. So Proposition
A3.3.7 is proved. O

Proof of Theorem A3.3.4.

Proof. We first prove that if H is non-degenerate, then every holomorphic
map f : C = P*(C) is constant. Since H is non-degenerate, Proposition
A3.3.7 implies that M contains at least three distinct hyperplanes which

. are linearly dependent. Therefore, by Proposition A3.3.6, the image of f
is contained in some proper subspace W of P*(C). Since the image of
f omits the hyperplanes in H, W is H-admissible. Applying Proposition
A3.3.7 again, we have that 1 N W still contains at least three distinct
hyperplanes which are linearly dependent. So we can apply Proposition
A3.3.6 again to further reduce the dimension and eventually conclude that
f is constant.

Conversely, if H is not degenerate, we are going to construct a non-
constant holomorphic mapping f : C — P*(C) — Ugen H. Since H is not
degenerate, there exists an H-admissible subspace V of P*(C) of projective
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dimension greater than or equal to one such that % NV does not tontain
at least three distinct hyperplanes which are linearly dependent over C.
We may assume, without loss of generality, that V = P*(C). Let H =
{H1,...,Hg}, then ¢ < n +1 and Hy,..., H, are linearly independent. We
may assume H, ..., Hy are first ¢ coordinate planes, then holomorphic map
f represented by f = (1, €7, ..., e*) satisfies our conditions. O

A3.4 The Linearly Degenerated Case

In section A3.1, we derive Cartan’s Second Main Theorem for the holomor-
phic curve whose image is not contained in any proper subspaces of P*(C).
In this section, we deal with the degenerated case, that is the image of
f: € = P"(C) is contained in a proper subspace of P*(C). We assume
the image f : C — P™(C) is contained in a subspace of dimension k, but
not in any subspace of dimension lower than k. Without loss of generality,
we assume that the subspace of dimension k that contains f(C) is P*(C).
Then f : C = P¥(C) is linearly non-degenerate. However the difficulty
in applying the theory in section A3.1 is that hyperplanes Hi,...,H, in
P™(C) in general position may not necessarily be in general position after
being restricted to P¥(C). So we have to use the techniques of Nochka to
overcome this difficulty.

Let n > k and ¢ > n + 1. We consider hyperplanes H;,1 < j < g, in
P*(C), which is given by
H; ={[zo:...: 2] | @jozo + ...ajxzx =0},
with reduced nonzero coefficient vectors a; = (ajo,...,ajr) € C**1.
Definition A3.4.1 Hyperplanes Hy,...,H, (or ai,...,aq) in P¥(C) are

said to be in n-subgeneral position if, for every 1 < ip < -+ < iy, < gq,
the linear span of a;,,...,a;, is Ck+1,

The following is directly verified by the definition: Let W be a subspace
of P*(C) of dimension k. Let Hy,...,H, be hyperplanes in P*(C) in gen-
eral position. Then the hyperplanes HiNW, ..., H,NW are in n-subgeneral
position in W.

Let Hy,...,H, (or ai,...,a,) be hyperplanes in P¥(C), located in n-
subgeneral position. Let A = {ai,...,a,}. We introduce the Nochka
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diagram and Nochka Polygon of A: For a non-empty subset B of A,
we associate with B a point Pg = (#B,d(B)) in R?, where d(B) is the
dimension of linear span of B. The collection of the points {Pg|B C A} is
called the Nochka diagram of A (see Figure 3.1).
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d(B)

0 u (n+1,0) (#8)

Fig. 3.1 Nochka Diagram

In Figure 3.1, the point O = (0,0),U = (n—k,0),V = (n+1,k+1), W =

- k
(2n 2k+1’ ;l)andx=(2n—k+1,k+1),soWisthemidpointofthe

segment UV, as well as of the segment OX. By the n-subgeneral position
assumption, the points Pg = (#B,d(B)) with #B > n + 1 lie on the line
with d(B) = k + 1(i.e., they lie on the horizontal line through V, and to
the right of V). On the other hand, the points Pg = (#B,d(B)) with
#B < n+1 lie on or above the line through U and V.

Proposition A3.4.2 Let A = {ay,...,aq} be a set of vectors in Ck+!
in n subgeneral position. Then either o(O,Pg) = o(0,X) for all Pg =
(#B,d(B)) with #B < n + 1 where o denotes the slope of the associated

line segments, or there exists a uniquely determined sequence of subsets of
A:
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with the following properties:

(i) o(Ps;_,,Pp;) < 0(PB;_,,X),1 < i < s, where o denotes the slope
of the associated line segments, and X = (2n—k+ 1,k + 1).

(i) 0(0, Pp,) < 0(0,X) for 1 < i < s, where O = (0,0) is the origin,
and X is as above.

(i) o(PB,_,, PB;) < 0(Pg;, Pp;,,),1 < i < s, where we set Pp,,, = X.

(iv) For 0 < i < s, let U; be the collection of the set B C A with #B <
n + 1 and where B strictly contains B;. Then o(Pp,, Pp,,,) < 0(Ps;, PB)
for any B € U; with strict inequality if i < s and B € U4, .

Proof. The sets By,...,B, are constructed inductively. Suppose that
By, ..., Bj have been constructed. Then by induction hypothesis, (i) and
(if) are satisfied for all 0 < i < j (these conditions are empty if j = 0), and
(iii), (iv) are satisfied for 0 < i < j (these conditions are empty if j < 1).

If o(Pp;,Pp) > o(Pp,;,X) for all B € U;, ie., (iv) is satisfied for
i = j, then we set j = s. By (i) of the induction hypothesis, we have
o(Pp,_,,PB,) < o(Ps,_,,X). This implies that (consider the triangle
Pg,_,Pg,X) o(Pp,_,,Ps,) < o(Pg,,X) which is (iii) for the case ¢ =

=s.
We may now assume that there exists B € U; such that

U(PBJ.,PB) < O'(PBJ.,X). (3.40)
Let
05 = &%{U(PB"’PB)}
and
Mj = {B Euj | U(PBJ.,PB) = Uj}.

For B € M;, we claim that d(B) < (k + 1)/2. In fact since B € M;,
o(Pg,, P) < o(Pp,;,X). By (ii), we also have ¢(O, Pp,) < 0(0, X). These
conditions and the remark before the proposition imply that Pg lies in the
triangle OUW that appears in the Nochka diagram, but not on the segment
OW. Hence d(B) < (k+1)/2.
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We now claim that if B and C are in Mj, then BUC is also in M;.
First of all, since d(BUC) < d(B) +d(C) < k+1, the sub-general position
condition implies that #(BUC) < n + 1. Thus, (BUC) € U;. Now

d(BUC) — d(B;) = d(B) + d(C) — d(BN C) — d(B;)

= d(B) - d(B)) + d(C) - d(B;) — d(BN C) + d(B;)
a; {#(B) — #(B;) + #(C) — #(B;) — #(BNC) + #(B;)}
o; {#(BUC) — #(B;)},

i.e., o(Pp;, Ppuc) < 0;. Thus (BUC) € M;. The claim is proved.
We now define

IN

Bj+1 =Upewm; B.

The above claim implies that Bjy; € M;. We now check (i) to (iv).
The proceeding argument shows that Bj,; € M. By construction, o; =
o(Pp;,Pp,,,) < o(Pp;,Pp) for all B € M;. Now that the inequality is
strict if B is in M. Thus (iv) is verified for ¢ = j. By assumption (3.40),
o(Pg,, Pp,,,) < 0(Pp;,X) so (i) is verified for 1 = j+1. This together with
0(0, Pp;) < (0, X) (by induction hypothesis, (ii) holds for i < j) imply
that the point Pp,,, is below the line OX. Hence ¢(0O, Pg,,,) < (0, X),
which is (ii) for ¢ = j + 1. From (iv) with ¢ = j — 1 and B = Bj41, we
have o(Ps;_,, Pp;) < o(Pp;_,,Pp;,,). This implies that (by considering
the triangle PBj_IPBjPBj+1) O'(PBJ._“PBJ.) < O’(PBJ.,PBJ.H). Thus (iii) is
verified for i = j.

This completes the induction step. Since the sets Bg, By, ... are strictly
increasing and A is a finite set, the above construction terminates after a
finite number of steps, concluding the proof of the Proposition A3.4.2. O

By Proposition A3.4.2, either ¢(O,P(B)) = ¢(0,X) for all Pg =
(#B,d(B)) with #B < n + 1 or there exists a sequence By,..., B,, which
appears in Proposition A3.4.2. If the first case occurs, we define w(a) =1
for a € A. Otherwise, the sequence By, ..., B, which appears in Proposition
A3.4.2 gives rise to a polygon in R? that is called the Nochka Polygon
of A (see fig. 3.1). Set B,+1 = A, then (B; — By) U(Bz — B1)U---U(Bs —
B,_1) U (A - B,) = A is a partition of A. We now define the Nochka
weights w(a) of a € A as follows: For any a € A, a lies in B;+; — B; for
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some 0 < i < s, define
w(a) = U'(PB.-,PB.-H), (3.41)

and
1 _2n—k+1-4B;

b= P, X - Eri-d@B.)

(3.42)

Example Consider P2(C). Let H; = {[zo : z; : 22} | 2o = 0}, Hy =
{lzo : 21 : 23] | 1 = 0}, H3 = {[zo : 21 : 22 | zo + 21 = 0}, Hy =
{lzo : 21 : z2] | Z2 = 0}, Hs = {[zo : 1 : 23] | To — 21 + 22 = 0},
Hg = {[z0 : z1 : z2] | To — =1 + 222 = 0}. Then these hyperplanes are in
3-subgeneral position. In this case, one can verify that (0, Pg) = 0(0, X)
for all Pg = (#B,d(B)) with #B < 4. Sow = 1.

The significance of Nochka weights is given by the following Theorem.

Theorem A3.4.3(Nochka) Let Hy,...,Hy (oray,...,ag) be hyperplanes
in P*(C) in n-subgeneral position with 2n —k +1 < q. Then there ezists a
functionw : {1,...,q} = R(0,1] called a Nochka weight and a real number
0 > 1 called Nochka constant satisfying the following properties:

(i) If j € {1,...,q}, then 0 <w(j)8 < 1.
(i) g —2n+k—-1=0(37_  w(j) —k-1).

(i) If 0 # B C {1,...,q} with #B < n +1, then ¥, pw(j) <
dim L(B), where L(B) is the linear space generated by {a;|j € B},

(w)1<(n+1)/(k+1) <0< (2n—-k+1)/(k+1).

(v) Given real numbers E,, ..., E, with E; > 1 for 1 < j < g, and given
anyY C {1,...,q} with 0 < #Y < n+1, there erists a subset M of Y with
#M = dim L(Y) such that {a;}jem is a basis for L(Y) where L(Y') is the
linear space generated by {a;|j € Y}, and

JEY JEM



136 Holomorphic Curves in P™"(C) and Schmidt’s Subspace Theorem

Proof. With the w(j) and 6 defined by (3.41), and (3.42), (i) immedi-
ately follows from (iii) of Theorem A3.4.3. To verify (ii), we set B,41 =
{1,2,...,q}. Then, write 0; = 0(Pg,, Pa,,,),

Yow@) = Y oi#Bi1 — #Bi)
Jj=1 0<i<s
z {d(Bi+1) —d(B;)} + 0,(q—#Bs)
0<i<s—1
= d(B;)+0,(q— #Bs),

where, by definition,

k+1-d(B,) _1

0 =o(Pp,X) = Sy T-#B, ~ 0

Hence
d(B;)=k+1-0,(2n—k +1—#B,).
Substituting yields (ii).
For (iii), we consider the two cases (a) #(BU B,) > n+ 1, (b) #(BU

B,) < n + 1 separately.
If #(BU B,) > n + 1, then the sub-general position implies

k+1<d(BUB,). (3.43)

By property (i), the Nochka weights satisfy o;*w(a) < 1. Thus,

> w(a) < o#B.

aeB

By the definition of subgeneral position, any set #B < n + 1, say #B =
n + 1 — p, satisfies k + 1 — p < d(B). Thus,

#B < d(B) +n—k.

Therefore,
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By (3.43), k + 1 < d(B) + d(B,) so that

n—k
aesz(a) < o0,(d(B) +n—k)=d(B)o, (1 + m)
n—k
s dBe (1 + k—+T_d(—B>)
_ n+1—d(B,)
= dB)os 4B,
< a(B), k1= #B,

k+1-d(B,)
= d(B).

So (iii) holds in the case (a).

We now assume that #(B U B,) < n+ 1. Then the set B} ; = B; U
(BN Biy1) contains B; and #B],; < #(BUB,) < n+1 for all <. It follows
that B]_, is in U; and by part (iv) of Proposition A3.4.2,

d(Bi U (B N Bi+1)) - d(B,)
#(B: U (BN Biy1)) — #B;
Since B;t; contains B;, we have #(B;U(BNB;;1))—#B; = #(BNB;y1)—
#(B nB,‘) and d(B, U (B nB,»+1)) - d(B,) = d(B nB,—+1) - d(B nB,‘). Thus
o d(B N Bi+1) — d(B n Bi)
‘= #(BNBiy1)-#(BNB;)

The sum of Nochka weights can now easily be estimated:

dow@ < Y oi{#(BNBip) - #(BNBy)}

a€B 0<i<s

> (d(BN Biy1) — d(BN B;))

0<i<s
= d(BNB,.1) = d(B).

oi =0(Pp;, Pp;,,) < o(Ps;, Ppy,,) =

IA

This completes the proof of (iii).

To verify (iv), since Pp, lies below the line OX in the Nochka diagram,
s =0(Pg,,X) >0(0,X)=(k+1)/(2n—k +1). On the other hand, Pp,
lies below the triangle OUW, thus o(Pp,, X) < o(U,X) = (k+1)/(n+1).
This proves (iv).

Finally, we prove (v). Without loss of generality, we assume that 1 <
E;, < E4; <... < E;. Define an increasing sequence of subsets of Y as
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follows: Let iy =min{i¢ |i € Y} and I; = {i € Y | a; is a multiple of a;, }.
IfY — I # 0, choose i € Y — I; such that i = min{i | i € Y — I1}
and I = {i € Y | a; € linear span of a;,,a;,}. Inductively, if I;_; is
defined and if Y — Ij_l # w, ij = min{i I 1€Y — Ij_l} and Ij = {2 €
Y | a; € linearspanof a;,...,a;;_,}. This process stops at I, with
p =dimension of the L(Y). It is clear that

IpDI_lD...

and i, > 451 > ... > 4;. Let M = {i1,...,1p}. Then, by construction, the
set {a;}jen is a basis for L(Y). Set Iy = §, then Y = Ui<j<p(I; — Ij—1) is
a disjoint union. Since E; < ... < E;, we have, by construction,

E;; = max E;.
i€l;—I;-1

Thus

HE;"(J) < H H E:"(’) < H E::J'

JEY 1<j<pielj—1I;1 1<j<p

where a; = 3 ,c; ;. w(i). Since the sets I; are increasing, for any 1 <
r < p, (iii) implies that

Yo=Y Y w@) =) w@)<dl)=r (3.44)
1<5<r 1<j<r i€l =I5 iel,
It remains to show that
II Ej < II B

1<5<p 1<j<p

This is easily verified by the induction on p. For p = 1, by (iv), a; < 1,
and since Ey > 1, we have trivially E{"* < E;. Assume that the inequality
holds for p = k. Since, by (3.44) ax+1 < k+1- 3 <<k @j, We have

O oev<| I (2)" )
i; = Tht1”

1<5<k+1 1<j<k Nt

Since i, > ... > 41, we have 1 < E;;/E;,,, for 1 < j < k, the induction
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hypothesis implies that

E;; & Ek+1 < H By Ek+1 — H E;
H E; ., et = ~ By ey T e
1<j<k + 1<k Tt 1<j<k+1

The combination of the last two inequalities completes the proof of (v). O

We now derive the Second Main Theorem with a good error term for
the holomorphic curves whose image is contained in some k-dimensional
subspace of P™(C). By using Nochka weights, we reduce the problem to
Theorem A3.1.3.

Theorem A3.4.4 (Degenerated SMT) Let f = [fo:...: fa] : C =
P™(C) be a holomorphic map whose image is contained in some k-dimensional
subspace but not in any subspace of dimension lower than k. Let Hj,

1 < j < g, be hyperplanes in general position. Assume that f(C) ¢ H;
for 1 < j <q. Then, the inequality

i myg(r, H;) + (nil) N(Rg,7) < (2n — k+ 1)Ty(r)
j=1
’ +k(2n—k+1)

5 (log T#(r) + (1 + €) log™ log T¢(r)) + O(1),

holds for all r outside a set E with finite Lebesque measure, here N(Ry,)
is the ramification term defined below.

Proof. Without loss of generality, we may assume that f(C) c P*(C).

‘So f : C = P¥(C) is a non-degenerate holomorphic map. We also assume
that ¢ > 2n—k+1. Denote by .f{j = H;NP*(C). Then ﬁj are hyperplanes
in P*¥(C) located in n-subgeneral position.

Since Hy,...,Hg (or aj,...,aq) are hyperplanes in general position,
Similar to the proof of Lemma A3.1.6 (see the proof of Lemma B3.4.4 for
detail), for each 2 € C, there are indices i(2,0),...,i(z,n) € {1,...,q} such
that )

w(j) illa w(i(z,0))
f[( IHEE ) <CH( If 2yl ) (3.45)

I < f(z)aaj > | | <f(z):at(z 1) > |

Jj=1
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where w(j) is the Nochka weight corresponding to ﬁj and C > 0is a
constant. Recall that the Weil function Ag(f(2)) of f is defined by

IEC2)lllall
A 1 21
and Mg (f(2)) > 0. Applying Theorem A3.4.3 with E; = e %ic=. p ) ,0<

l < n, there is a subset M of Y = {i(z,0),...,i(z,n)} w1th #M = k +1
such that {Hj(, ;)|i(z,5) € M} is linearly independent, and

n .
[ M aent® ¢ T e,

1=0 i(2,5)€M

Thus

n k

> Wiz g, ,F@) S D0 Mg, (F2) Smaxd ag (
=0 i(z,j)eM e =0

where T is the set of all maps v : {0,...,k} — {1,...,¢} such that
H, o), ..., Hy) are linearly independent. Combining this with (3.45) gives
us

k

g 27
;W(j)mf(Hj,T) < ‘/0. 1‘];163‘12( 2 AH (')(f(rew)) + 0(1)

Applying Theorem A3.1.3 yields that the inequality

27 k . o
/0. e pard /\1‘{7(')(]‘(1'6' ))g < (k+1)Ty(r) — Nw(r,0)
L 2+ D (log Ty (r) + (1 + €) log™ log Ty (r)) + O(1)

holds for all r outside a set E C (0, +o00) with finite Lebesgue measure.
Denote by N(Rg,r) = Nw(r,0), then the inequality

Zw(j)mf(r:Hj) < (k+1)Ty(r) — N(Ry,7)

k(k +1 (log Ts(r) + (1 + €) log* log Ty (r)) + O(
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holds for all 7 outside a set E C (0, +oc0) with finite Lebesgue measure.
Combining this with Theorem A3.4.3, and recalling that m¢(r, H;) < T¢(r)+
O(1), we have

q q q
me(ﬁ Hj) =) (1 - 6w(j))my(r, H;) + Y 0w(j)my (r, Hj)

=1 j=1

< D (1= 6w(@)my(r, Hj) + 0k + 1)Ty(r) — 6Nw (r, 0)

k(k

1) (16g 7 (r) + (1 + €) log" log Ty (r)) + O(1)

6
T

q
3o - QT 0) + 80k + DT/0) - (g ) NRp)

IN

j=1

+ @0k DR 10 73(r) + (14 0) log* log Ty(r) + O(1)

= {q—0 ( > w(j)—k—l)}Tf(r)— (:—ii) N(Ry,r)

1<5<¢q

2n—-k+1)k

+—
2

n+1
= (2n- - N

2n - b+ 1770 - (g ) N Rp)

2n —k+ 1)k

+(n+)

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. a

(log Ty (r) + (1 + €) log™ log Ty (r)) + O(1)

(log Ty (r) + (1 + €) log™ log Ty (r)) + O(1),

Corollary A3.4.5 Let Hy,...,H, be hyperplanes in P™(C), located in
general position. Let f : C = P*(C) — U‘JZ=1H:,- be a holomorphic map. If
g > 2n+1, then f is constant.

A3.5 Ahlfors’ Approach —

In this section, we give another proof of the Second Main Theorem using
Ahlfors’ method. The method also extends to holomorphic maps from
certain parabolic manifolds to the projective space. For details, see [Sto4].
Let f be a holomorphic map from C to P", and let f : C - C™*! — {0} be
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a reduced representation of f. Consider the holomorphic map F; defined
by

k+1
Fr=fAf'A---AfR:C5 A CHL

Evidently Fp4; = 0. Throughout this section, we assume that f is linearly
non-degenerated, so F, Z 0 for 0 < k <n. The map F;, = P(F;) : C -
P(A\*! Cnt1) = PNe, where N, = m&% — 1 and P is the natural
projection, is called the k-th associated map. Let wy = dd°log||Z||?> be

the Fubini-Study form on PM«(C), where Z = [2¢ : ... : zn,] € PV*(C).
Let
Qr = F,:wk = T:T—];hkdz ANdz, 0<k<n (3.46)

be the pull-back via the k-th associated curve.

Lemma A3.5.1 In terms of homogeneous coordinates,

V=T||F_1|?||F 41 ?

dzANdz
o R i

Qi = Fjwyi = dd° log ||F||? =

for 0 < k < n, and by convention |F_,|| = 1.

Proof. Recall that, in chapter 2, we introduce the differential operators
d=0+8 and d° = ¥=1(5 - 9) so that

dde = V=155
2T
The Fubini-Study form wy on PV*(C) is wy = dd°log||Z||*. So

Qe = Flwe = dd log||[Fe|? = —‘;amog(Fk,Fk)

_ VI (FLF)(FLFy) - (B FO(FELFY)
o TFa |

where (-,-) is the inner product on CV**1, Since

Fr=fAf' A---AFB)

L= EAE A AFRD A fOFD)
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For any z € C with Fi41(2) # 0, by Gram Schmidt there exist numbers Aj;
for 0 <1< j<n+1with-A;; > 0 and an orthonormal basis ey, ..., €r+1
such that

£0)(2) =‘2A,-,-e,- forj=0,...,k+1.
=0
So
Fj=Agp---AjjeoN...Nej forj=0,...,k+ 1.
Thus
IF;|l = Aoo - - - 4j; forj=0,...,k+1.
Also

;c(z) = (H Aqq) egAN...Nex_1 A (Ak+1,kek + Ak+1,k+lek+1)-

Since ey, ..., ex+1 is an orthonormal basis,

Fi, F) = (H A ) (AR 41k + Af1);

q=0

(Fi,Fi) = Afp -+ ARy

and
k-1
(F;qu)(Fk’ ;c) = (H A:q> Ai,kA%H-l,k'
¢=0
Therefore,
(Fi: Fi) (Fi, Fi) — (F, Fi) (Fi, Fy)
=Afy. - ARy k1 Ah kA k1 = P k1|2l F e |12
This proves Lemma A3.5.1. 0O

So, by Lemma A3.5.1 and (3.46),

|F k1% Frqs]?
hy = . (3.47)
[IF |4
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Note that Q,, = 0. It follows that
dd®loghr = Qi—1 + Qg1 — 2Q.

Define the kth characteristic function

T dt .
Tg,(r,8) =/ - Fuwy.
8
Denote by
T dt
Na(r9)= [ na®0F
8

where ng, (t) is the number of zeros of the k-th associated map Fy in |z| < ¢,
counting multiplicities. Note that Ny, (r, s) does not depend on the choice
of the reduced representation. Define

1 27 . df
Sk(r) = 3 /0 log hk(re'a)ﬂ. (3.48)

Then Lemma A3.5.1 and Theorem A2.1.3 (Green-Jensen’s formula) imply
the following.

Theorem A3.5.2 (Plicker’s Formula) For 0 < s < r and integers k
with0 <k <n,

Ny, (1‘, s) + TFh—l(r7 s) — 2TF, (1’, s) + TFh+l (T, 3) = Sk(r) - Sk(s)r

where Tr_,(r, s) = 0 and Tg,(r, s) = Ty(r, s).
The Pliicker formula implies the following theorem.

Theorem A3.5.3 For0<k<n-1,
TF, (r, s) < (n+2)*T¢(r,s) + O(logr)
holds for all v outside a set E with finite Lebesgue measure.
Proof. Fix a number s and write T(r) = Y p—s Tr, (r, ). Recall that

Tdt dt
Tg, (r,s =/ — / hkdz/\dz
7.(r,9) s |z|<t |zl<t 2T
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Observe that

dr thdz ANdZ

dTp,. (r,s) / V-1
|z|<r

and using spherical coordinates we see further that

/ —h dzAdzZ | =2r 2” h (re“’)ﬁ
dr loj<r 27 k I A 2r’
Hence

1d ( dTp, (r,s)

2m . df
= 0y~
rdr dr )_2 0 h(re )27r'

Applying Lemma A2.1.5 (Calculus Lemma) with ¢(t) = t¢, we get
0+ df
L, el 5 < T, (T, (DT 90T T
z|=r
for all r outside a set E with finite Lebesgue measure. This implies

1 [ i+ A0
Sk(r) = §/0 loghk(re'e)ﬂ

1 27 . df
< - 6 —
< 3 log | hi(re )27r
< (1 +6) IOETFI.(T’ s) +IOg7'+O(1)
< (1+¢€)logT(r) +logr+0(1)

where the inequality holds for r outside a set E with finite Lebesgue mea-
sure. From Theorem A3.5.2, we claim that, for 0 < ¢ < p,

T, (r, 8)+(p—q)Tr,, (1, 8) < (p—gq+1)Tr,(r, )+ ) _ (p—3§)S;(r) =D _ (p—1)S;(s).

Jj=q j=q

In fact, the claim is true for p = ¢. Assume that the claim is true for
¢,9+1,...,p. If p = n, the proof is done. If p < n, we proceed, by
Theorem A3.5.2, for any k with 0 < k < n,

k k P
Tp, 1 (r,8) = Tr, (r,8) — Ty (r,8) + 3 Sj(r) = Y Sj(s) = Y Nay(r, ).

=0 =0 i=q
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TFp+1 (1’, s)+TFq—1 (’I’, s) = TF, (’I’, s)+TFq (’I’, s)+Zp: Sj (T)—i Sj(s)_f: Ndj (1’, S)-

Thus

Jj=q Jj=q Jj=q

TFp+l (1’, s) + (p +1- q)TFq—l (1‘, S) = TFp+l (1’, s)+ TFq—l (1’, S) +(p- q)TFq-l (1’, s)

IN

IN

Tr,(r,s) + Tr,(r,s) + ZSj(r) - Z S;(s) — Z Ng;(r,s)
+(p - 9)TF,_,(r,s)

TF, (7”’ s) + (P - Q)TFq-l (1‘, 3) + TFq (1‘, s) + i Sj(r) - Xp: Sj(s)

Jj=q Jj=q
p—1 P P
(p— g+ 1)Tg,(r,8) + Z(p — 5)S;(r) + Tr,(r,8) + E 85(r) - Z 55(s)
(P—q+2)Tr,(r,8) + Y _(P+1-35)S;(r) = Y _(p+1-5)S;(s).
j=q Jj=q

So this proves our claim. Now take ¢ = 0 and p = k and notice that
Tr_,(r,s) =0, then

k-1 k—1
Tr, (r,8) < (k+ DTy (r,8) + > (k= 5)S;(r) = D_(k — 5)S;(s).
=0

j=0 J

Thus, for 0 < k& < n, the inequality

Tr,(r,8) < (k+1)Ty(r) + -;-k(k +1)(1 +¢€) (logT(r) +logr + O(1))

holds for all r outside a set E with finite Lebesgue measure. Therefore,

T(r) < (n+ 12Ty (r) + %n(n +1)2(1 + ) (log T(r) + O(log 7))

holds for all r outside a set E with finite Lebesgue measure. Because
in(n+1)2(1 +¢)log T(r) < 1Ty(r) where r is big enough, we have

T(r) < (n +2)*Ty(r) + O(logr),

which holds for all r outside a set E with finite Lebesgue measure. O
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We now define the projective distance. For integer 1 < ¢ <p<n+1,
the interior product £|a € A?"?C™1 of vectors £ € A’T' C™*! and
a e AN ¢t s defined by

B(Ela) = (a A B)(E) .
for any 8 € AP71C*™1. Let
H={[zo: - :2n] | aozo + -+ anzn =0}

be a hyperplane in P?(C)with unit normal vector a = (ag,-*-,an). In the
rest of this section, we will regard a as a vector in C*™*! which is defined
by a(x) = apzo +--- + anzn for each x = (zo,--+,T,) € C™1 where
C*™*1 is the dual space of C"*!. Let z € P(A**! C"+!), the projective
distance is defined by

1€ Lall
; H|| = . 3.49
=5 0= T (3.49)
where £ € C™**! with P(§) = z. Define
2 1 do
mpg, (7', H) = ‘/0‘ ].Og mg (350)

Note that when k = 0, this definition is the same as the proximity function
defined in (3.8).

We have, by the definition, the following First Main Theorem.

Theorem A3.5.4 (First Main Theorem)
mp,(r,H) + N, (r, H) = Tg, (r) + O(1).

We shall need the following product to sum estimate. It is an extension
of the estimate of the geometric mean by the arithmetic mean. First, we
prove the following lemma.

Lemma A3.5.5 Assume that Hy,...,H, (orai,...,ay) are hyperplanes in
P"(C) in general position. Take p € Z[0,n] and z € P(AP C*+!). Define

I, = {j € N[1,q] | |lz; H;l| = 0}
Then #I, < n—p.
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Proof. Let k = #I; and let E = Njer, H;. If K > n + 1, then, by the
assumption of general position, E = . If k < n + 1, then dimE =n — k.
There are £; € C™**! such that 0 # & A ... A€, and z = P(£). Let

E(@)=E@)={CeC™ | (AE=0}.

Then E(z) is a linear subspace of dimension p + 1 of C™*t! with base
€o,...,&. Since ||z, H;|| = 0 implies {|a; = 0 or < §,,a; >= 0 for
p=0,...,p. Hence P(E(z)) C E which implies

p=dimP(E(z)) <dimE =n -k,

ork<n-—p. a

Lemma A3.5.6 Assume that Hy,...,Hy (orai,...,a,) are hyperplanes in
P™(C) in general position. For z € P(A\” C™*!) and a real number d > 0
define

I(d) = {j € N[1,q] | ||lz; H;||* < d}.
Then there is a number ¢ > 0 such that #I;(c) < n —p for all x €
P(A? C™t1).

Proof. Take z € P(APC™*!). Let I, be the set defined in Lemma
A3.5.5. A number ¢, > 0 exists such that ||z, H;||> > ¢, for all j €
N[1,q] — I.. An open neighborhood U, of z in P(A? C**!) exists such
that ||y, H;||> > ¢, for all y € U, and j € N[1,g] — I. Since P(A? C™*!)
is compact, there are only finitely many Uy,,...,U,, whose union covers
P(A? C™*1). Define

¢ =min{cg,,...,¢z,} > 0.

Take y € P(A? C™*!). Then A € N[1,s] exists such that y € U,,. Take
J € I/(c). Assume that j € I;,. Then

lly, Hill? > czy 2 ¢ > lly, HjlP?
which is impossible. Hence I, (c) C I, and #I,(c) < #I;, <n—p. O
Theorem A3.5.7(Product to the sum estimate) Let H;,...,H, (or

ai,...,ay) be hyperplanes in P"(C) in general position. Take k € Z[0,n—1]
with n —k < q. Then there ezists a constant ¢, > 0 such that for every 0 <
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A<1landz € P(A\*C™) withz ¢ H;,1<j < qandy € P(\*! C"+1)
we have

q n—k
H My 72 <alY> lly; H;ll*
ll; Hj|[2=2> = llz; Hj >~

j=1

Proof. A constant ¢ > 0 exists such that #I,(c) < n—k for all z €
P(A\* C*+!). Define u = (q—n+k)/(n—k) and ¢ = (-——k)c—.. > 0. Take
z,y and A as indicated. Take a set I with I;(¢) C I C N[1,q] such that
#I =n—k. For j € N[1,q] — I we have

l|lz; Hj|[>72* > ||z; Hjl1? > e,

lly; H;ll>
llz; Hjl|?=2

= =
H ly; 2yl |2 ( ) H lys HilI2
- |l Hjl]2=2* AN T 1 Nl Hjl[2=2>

y; Hj Y,
(n=k) ( ll; Hjl|>~ 2") \lz; Hj[[2=2>

JE€I

1
<-.
c

Therefore

Let ¢x(H) = || Fk; H||%. Define

Gr—1(H) 11 (H)Q
¢z (H)

he(H) =
We need the following lemma.

Lemma A3.5.8 For a hyperplane H in P™ and constant A with0 < A < 1,
we have, for 0 < k <mn,

(Z) dd* log¢k(H) hk(H)



150 Holomorphic Curves in P (C) and Schmidt’s Subspace Theorem
(i) 0 < $r-1(H) < ¢x(H) < ¢n(H) = 1.
(ii1) dpi (H) A d°dp(H) = (i1 (H) ~ ¢x(H)) (¢ (H) — br—1(H)) Q%

(iv) dd°¢i(H) = ($r+1(H) — 20k (H) + -1 (H)) .
Proof. Since

[F a2
H)y= kBl
%) = I PllalP”

dd®log ¢x (H) = dd° log ||F|a||®> — dd° log ||F||* = dd° log ||Fk |al||* — Q.
Now, applying Lemma A3.5.1,

dd°log|[Filal® = dd°log||(F1|a)s-1lI”
[|(F1 [2)e—2[12[I(F1 |a) ]l V=1

= dz ANdz
[|(F1]a)k—1]l* 27
2
_ IFx1]all ”Fl;+1|.a” V- dz/\dz
I Lall

$r—1(H) b1 (H ||Fk—1|| IFs1]l® V-1 _
F(H) EE 2m N
$r—1(H )¢k+1(H)Q
¢z(H)

o (i) is proved by combining the above two inequalities.

We now prove (ii). For any z € C with F,(2) # 0. By Gram Schmidt
there exists numbers Aj; for 0 < 7 < j < n+1 with A; > 0 and an

orthonormal basis ey, ..., e, such that
f(J) ZA.e1 for j=0,...,n
i=0
So
Fj:Aoo...Ajjeo/\.../\ej for j=0,...,n, (351)
and

IIF;|l = Aoo - . - Ajj for j=0,...,n
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Let a € C***" be the unit normal vector associated with the hyperplane
H. Define B; = a(e;), and e} = (—1)7eg A...Aej_1 Aejr1 A... Aeg for

0 < j <€ ¢ < n. We note that

g ¢
(eoA...Neg)la= Z a(ej)e} = ZBjeZ.
j=0

=0
So we have
q
Fyla=|F,| ) _Bjel.
Jj=0
Thus
q
IFqlall® = [IFl%I Y |B;I*.
Jj=0

Hence

q
$e(H) =Y _|Bj|*, ¢q(H) — $g-1(H) = |By|* > 0.

j=0
This gives 0 < ¢g_1(H) < ¢q(H) for ¢ =1,...,n. Also
¢u(H) = _|Bil* = la(e;)/* = [lall* = 1.
§=0 §=0

Thus (ii) is proved. We proceed to verify (iii). First of all

(Fila,Fxla) (FL,Fk)llelallz) dz.

06x(H) = ( I3k L

(3.52)

(3.53)

(3.54)

(3.55)

We now calculate each individual term that appears in the above inequality.

L=EAE AL AERTD A flRHD

k-1
= (H Aqq) egAN...ANex_1 A (Ak+1'kek + Ak+1,k+1ek+1).(3.56)
q=0

Using (3.52) and (3.56)

k-1 k-1
tla = (H Aqq) ZBjei_l A (Ags1,k€k + Ak+1,k+1€k+1)

q=0 j=0
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(H Aqq) (BeAk41,k + Bit1 Aks,kr1)el

Combining the above identity with (3.53),

(Fi|a,Fi|a) = (HA )G with
=0

k
G = Ak (Z |B;j|? Agy1,k + Bk+1Ak+1,k+IBk) .

§=0

Using (3.56) and (3.51)

(Fi Fi) = (H A? ) Ak kAkt1,k-

q=0

This, together with (3.54), gives

k Je—
( 'R )“FkLall2 _ ZlB’lz ]_—IlAz A A
B IFell2 J . aq | Ak, Ak+1,k-
q=

=0
Therefore
a¢k (H) = ”Fk-—l |“|F2‘k+1 ” Bk+1§kdl.
[E x|
We obtain, by the above identity, (3.55) and Lemma A3.5.1

V=L ogu () h 6 (1)

V=T ||Fe-1|?|Fe+1l? -
= T EE eliBlden

= (¢x+1(H) — ¢ (H))(ox(H) — pr—1(H)) Q.

Hence (iii) follows. Also we have, using (i) and (iii)

dér(H) N d°¢r(H)

d¢k (H) A dc¢k (H)

dd°¢r(H) = o¢x(H)dd®loge¢y(H) +
= ¢x(H)(he(H) — Q)
+ (k1 (H) — ¢k (H))(@k (H) — pr—1(H))

1
ér(H)

_1
ér(H)
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= = (H)(dJk ~1(H)¢r41(H) — ¢ (H))%

™ (H) = (Pk+1(H) — ¢k (H)) (9 (H) — dre—1(H))
= (fk+1(H) — 20 (H) + dr—1(H)) .
Thus (iv) is verified. O

Theorem A3.5.9 (Ahlfors Estimate) Let H be a hyperplane in P™.
Then for any0 < A <1,0< s <r, we have

/ /|z|<t ;ik&ll’gf{)'\ kY < )2 (STFI: (r,8) +2log2).

To prove Ahlfors’ estimate, the following lemma plays a crucial role.

Lemma A3.5.10 For a hyperplane H in P™ constant X\ with 0 < A < 1,
then, for 0 < k < n, the following inequality
A2 fu41(H)
4 6, NH)
holds on C — {z | ¢x(H)(z) = 0}.
Proof. We have

dd'gp(H)* = MA - 1)gu(H) " 2dee (H) A d°$i(H) + Apw (H)* ™ dd° ¢y (H)
= AA = 1)gr(H)**(¢rt1(H) — ¢u(H)) (S (H) — dp—1(H)) %
+Apk () (41 (H) — 26k (H) + @1 (H)) e
= A= D () (drr1 (H) — di(H) + 1 (H)) %
+A1 = A)pt1 (H) bp—1 (H) i (H) 202,
+Adk (H) ™ (41 (H) — 261 (H) + Gr—1 (H)) U
= Mop(H) ™ (r (H) + -1 (H))Q — A1+ N) (H)
+A( = X) 1 (H) pr—1 (H )i (H) 20
(W2k (H) ™ drp1 (H) = AL + A) i (H)) S

Qi — A1+ A\)Q% < dd°log(1 + de(H)*)

v

Hence

(1 + ¢k (H)*)*dd° log(1 + ¢ (H)*)
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(1 + ¢u(H)*)dd® ¢ (H)* — dpie (H)* A d°i(H)*
dd° ¢ (H)* + ¢r (H)?*dd" log ¢} (H)

> (Nor(H) b1 (H) — A1+ N (H)Qu + Apw (H)?* (hie(H) — Q)
> (Mo drtr(H) — A1+ N (1 + 63 (H))H) %
> (1+¢2(H>)2( b () () A(1+A)) o

using 0 < ¢ (H) < 1. O

We now prove Theorem A3.5.9(Ahlfors’ Estimate).
Proof. By Lemma 3.5.10,

dd° log(1 + ¢x(H)*) > ’; z;*;g ;Qk = A1+ A)Q%.
Thus
22 i1 (H .
_4—'¢£_:+.-,1\E_I{;Qk < dd°log(1 + ¢i(H)*) + A(1 + ). (3.57)

By Theorem A2.1.2(Green-Jensen’s formula),

r_d_t c A
/.., : /Mstdd log(1 + ¢& (H))
1 de 1 de
< E/IZI_rlog(l-{-(f)k(H)’\)——E/Iz|=slog(1+¢k(H)’\)-2—7r-.

This, together with (3.57) implies that

el

< / T /|z|<t dd® 10g(1 + ¢x(H)*) + A(1 + \) T, (7)

1 de
<3 [ vosu+aEME -3 [ g+ eEg
2 |z|=r |z]=s 2w
+A(1+ AT, (1)
<A1+ AN)Tr,(r) + %log2 <Tg,(r) + %logz,

using 0 < ¢x(H) < 1. 0
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To prove the Second Main Theorem, we need the following consequence
of Ahlfors’ estimate.

Theorem A3.5.11 For 0 < s<r and any 0 < A < 1,

m Fi1(re®); H|? dé
/0‘ log* (||||1«":(-:135")'h)’||2_”2’\ hk) < O(log T, (r,s) +logr) — 2log A,

where the inequality holds for all r outside of a set E with finite Lebesgue
measure.

Proof. First of all, by Ahlfors’ estimate(Theorem A3.5.9),

r . 2 =
/ (/ ”Fk+l:H“ hk ldz A dz) ﬁ %(STF“ (‘r s) + 210g2)
s |

o<t IFe; H[2=22 75 2n ;
(3.58)
Observe that, using the concavity of log,
2n i0 )
+ [ || Frq1(re®); H|| o) d8
/0 log (||Fk(1‘ew);H||2—2/\h’°(re ) 5
27 0 )
Fiey1(re); H|| , i
< + ” k+1. ; " @
= ‘/0‘ lOg (||Fk(re‘0);H ”2_2/\ hk(re ) +1 5
w (NFenaleSHP g ) dB
= / log (||Fk(re'0) H “2 2Ahk(re )+ 1) ﬁ
27 i0 5
| Fryr1(re®®); H]| , 5
< ; b |
B log/ (”Fk(re“’) H ||2 2Ahk(7'e )+1 5 (3 59)

Let

_ [ | Fesrs HIP . V= dt
0= | (/lzl<t ol

Then, by Lemma A2.1.4 with ¢(t) = log'*“¢t,

;r(rd—) < T(r)log*t < (T(r)) log"t<[c,rT(r) log* < (T'(r))], (3.61)

where the inequality holds for all r outside of a set E with finite Lebesgue
measure. Since

27 10 2
|Prr(re ) HIP , pdd _ i d, dT
/o 15 (re); B -2 % (e 5 =" (3.62)
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Theorem A3.5.7 is derived by combining (3.58), (3.59), (3.60), (3.61) and
(3.62). 0

Theorem A3.5.12 (A General Form of the SMT) Let f : C —
P™(C) be a linearly non-degenerated holomorphic map. Let Hy,...,Hy (or
aj,...,aq) be arbitrary hyperplanes in P™*(C). Fiz a positive number sq.
Then :

2w ) 9
/0 m}?xk%;{/\111,‘,(1'(re“’))‘21—7r < (n+1)Ty(r) = Ng,(r,s0)
+cn(log Ts(r) + logr),

where the inequality holds for all r > so outside of a set E with finite
Lebesgue measure, the maz is taken over all subsets K of {1,...,q} such
that a;,1 € K, are linearly independent, and c,, is a positive constant de-
pendent only on n.

Proof. Denote by K C {1,...,q} such that vectors {ax,k € K}, are lin-
early independent. Without loss of generality, we may assume ¢ > n + 1
and that #K = n + 1. Let T be the set of all the injective maps u :
{0,1,...,n} = {1,...,q} such that a,(),...,a,) are linearly indepen-
dent.

Denote by
n—-1
I =max{) _mp,(s0,H;),1<j<q}, (3.63)
k=0
1
B(r) (3.64)

T 2g+ DT (n+ UTr, (rs0) + 14T)

Observe that 0 < 8(r) < 1 for r > so.
For any p € T,z & Iy, the Product to Sum Estimate (Theorem A3.5.7),
with A = B(r), reads

ﬁ | Fis1; Hy(yl?
|| Fie; Hujy l|2=28(r)

IA

-k
Cki( |Fis1; Hug|I? )n
S \IFs Hy P20 )

where B(r) is defined in (3.64). Since ||Fy;a,;ll is a constant for any

=0



Part A: Nevanlinna Theory 157

0 < j<nand Fy = f, we have

n

1
U7ase

< Cﬁ zn:( | Frq15 Hui) I ) ﬁﬁ
T o =g \IFks Hyp [P-260) | F; u(:)”w(')

k=0 j=0

Therefore, for r > so, we have, noticing that Fo = f,
27 1 de
|, e L e
_ / o Zlog 1 d8
PGT I (re®); u(g)”2 2r
27
df
= max lo
wer 0 (H [F(re?); H u(,)uz)
n-1 ‘on n i0y. 2 \"k
> [ Fe+1(re™); Hys) | dé
0 HET iz ||F]c (rew);Hu(j)”z‘Zﬁ(r) 27

nlm o 1 do
+33 o8 I re); B uwuwmw“‘o(”

IN
]
g
J

k=0 j=0"0
n—
= | Fet (re®); Hup I df
- Z/ Tg%clog ( (||Fk( eif); Hy,lI>~ 28(r) hi by +0(1)
n—1 n 1 "
_22 n-— k)Sk 7‘) + ,gjz_;/ I‘Illea%l ”Fk ezo) Hu(1)||2ﬁ(r) 27!'
n—1 2 ”Fk l(re ) ” n—k da
< / log* + sy +oa
k=0 ,; ( (”Fk(’”e“’) H,g;|*-26() 7 T O00)
n—-1 n
1 db
g " )54(r) ,;“z__; ?‘127)‘( || Fx (ref); #(J)”2ﬂ(r) o

IA

n—1
[ Fiva (re*); Hupll* ) df
Z n—k ZZ/ (”Fk rei®); H, ;) |12~ 2ﬁ(r)h o

k=0 p€ET j=0 u@i)|
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n—1
=23 " (n—k)Sk(r)
k=0

n-1 n on 1 db
| | ¥ o), 3.65
+EZ/0 L TR ey By o0 27 O 69

k=0 j=0

where hy is defined by (3.46) and Sk (r) is defined By (3.48).
We now estimate each term above. By theorem A3.5.11, the inequality

2n (| Fis1(re®®); HyuglI? de
log* . ey 1 2 < 0(log T ]
/o % (Ile(re“’);Hu(j)llz""ﬁ(’) k| 55 < O(logTr,(r,5) +logr)
(3.66)

holds for all r outside of a set E with finite Lebesgue measure. Using the
Pliicker formula (Theorem A3.5.2), we have

Ndh (1‘, 30) + TFh-l (7‘, 30) - 2TFh (r, 30) + TFh+l (7‘, 30) = Sk (1‘) — Sk (30)'

Noticing that T, (r, s0) = 0 and Tr, (7, s0) = T¢(r, s0),

n—1
> (n—k)Sk(r) = Na,(r,50) — (n + 1)T(r, 50) + O(1). (3.67)
k=0

By the First Main Theorem (Theorem A3.5.4)

n—-1 n

EZ 2"ma.xlog 7 . o 9
isoisoJo weT 7| Fi(ret); Hy(l (") 27
< Znii/% 26(r) log L B o
T aeTk=0j=07o (| (ret); Hyy |l 2m
n—-1 n
= 32> 26(r)mn,(r, Hyp) + O(1)
pET k=0 j=0
n—-1 n
< DY 2a8(r)(Tr, (1, 50) + mE, (80, Hyy))) + O(1) < O(1).
k=0 j=0

Combining (3.65), (3.66), (3.67) and (3.68), and by Theorem A3.5.3, we
have that the inequality

2 1 df
max log——+———— < + )T¢(r) — Ng, (r,s
/0 K Z g||f(re‘9);Hk|| om = (n ) f( ) 4. (T, 50)
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+cn(log Ty (r) + logr),
holds for all r outside a set E with finite Lebesgue measure, where ¢, is a

positive constant dependent only on n. Since, by the definition,

M (7€) = 108 [,

the theorem is proven. O

Part B: Diophantine Approximation

B3.1 Schmidt’s Subspace Theorem

Let k be a number field. In section B1.2, we introduce the concept of
absolute values on k. Let k be a number field and M, be the canonical
set of non-equivalent almost-absolute values on k. Almost-absolute values
satisfy the product formula

I lizlle =1 for z € k. (3.68)
vEM,

Let x = (2o, *,Zn) € k™!, For v € Mj put
lIx[|y := max(||zollu, - -, [lZnllv)- (3.69)

Let S C Mj be a finite set of absolute values on %k containing the infinite
places, we define

Os:={z€k:|z|[sy <1 forv ¢S} (3.70)
the ring of S-integers and

Os={zeK:||z|ly=1 forv ¢S}
the multiplicative group of S-units. Schlickewei [Sch1] extended Schmidt’s

subspace theorem to the following version.

Theorem B3.1.1 (Schmidt-Schlickewei) Let k be a number field. Let
S C My be a finite set containing all Archimedean absolute values. Suppose
that for each v € S we are given n + 1 linearly independent linear forms
Lg"), e ,Ls,iﬁl in n + 1 variables with algebraic coefficients. Then, for any
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e > 0, there exists proper subspaces W1,...,W; of P"(k) such that, the
inequality

n+1

H H |x||v { }n+1+c (371)

et i LY@l

holds for all x € O — (UL, W3).

We recall that, for x = [zo : - - - : z,], the height of x is defined by
Hx)= ][] Jax {[zillv}- (3.72)
veEM;, T~

By (3.68) this does not depend on the choice of the coordinates of x. The
logarithmic height of x is defined by

b = g

Note that the logarithmic height is independent of the number field k.
Given a hyperplane

log Hy(x). (3.73)

H={zo:...:2n] | aoTo + - + anTn =0}

with coefficients a; € k,0 < ¢ < n. Denote by a = (ag,...,an) the non-
zero vector associated with H. Let x = [z : ... : z,] € P"(k) with
x € H, ie., apzg + -+ + anzy, # 0. Write ||a|l, = maxo<i<n ||aillv and
|[x||v = maxo<i<n ||Ti]|v, then the Weil Function A, g is defined by

1 (n + 1)||a]lv[[[]v

Ao () = R %8 T xa > [

where < -,- > is the standard inner product on k®t!. The extra term
maxo<i<n ||ai||, ensures that A, m(x) depends only on H, x, and not on
g, +,an or on the choice of homogeneous coordinates [zg : - : ). We
note that we always have A, r(x) > 0. Fix a finite set S C My, we define
the proximity function

, (3.74)

X H) Z Av H(x (375)
vES
and counting function
H) =3 ). (3.76)

vgS
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We note that the Weil function, the proximity function and the counting
function are only defined for points x.with x ¢ H. So, in the rest of the
book, whenever one of these functions appears, we automatically assume
that x ¢ H. By (3.73), (3.74), (3.75), (3.76) and the product formula
(3.68), we have

m(x, H) + N(x, H) > log|xlly + O(1) = h(x) + O(1).

VEM,,

) Q]

Thus we have the following analogue of the First Main Theorem (compare
to Theorem A3.1.1).

Theorem B3.1.2 If H is a hyperplane in P™(k) and x € P™(k) with
x & H, then

m(x,H) + N(x, H) = h(x) + O(1). (3.77)

Theorem B3.1.1(Schmidt’s subspace theorem) is formulated as follows.

Theorem B3.1.3 Let k be a number field, and S C My, be a finite set
containing all Archimedean absolute values. Given hyperplanes H,, ..., H,
(or ai,...,a,) in P™(k). Then for every e > 0, there ezists a finite set of
proper subspaces Wy,..., W, of P*(k) such that the inequality

Z max Y Av; (%) < (n+ 1+ €)h(x) (3.78)
v€ES JjEK

holds for all points x € P™(k) — U§-=1Wj. Here the mazimum is taken over
all subsets K of {1,...,q} such that aj,j € K, are linearly independent.

Proof. Let H,,...,H; be the given hyperplanes with coefficient vec-
tors ay,...,a, in k"*!. Denote by K C {1,..., ¢} such that a;,j € K,
are linearly independent. Without loss of generality, we may assume that
g > n+1 and that #K = n+ 1. Let T be the set of all injective maps
p:{0,1,...,n} = {1,...,q} such that a,(q,...,a,(n) are linearly inde-
pendent. Then Theorem B3.1.1 implies that for any ¢ > 0, there exists
proper subspaces Wi,..., W, of P*(k) such that, the inequality

H H ” ”U < Hk(x)n+l+e
veS =0 MET || <X, auE) > ”v
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holds for all x € P™(k) — (U, W;). Hence

Zma.xz}\vﬂ,(x Ema.xz)\u i (

veES JEK vES i=0
= ZZma.xl Il +0(1)
Q et P T<xaum > T
< (n+1+e)h x) + O(1). (3.79)
This finishes the proof. 0O

Lemma B3.1.4 (Product to the Sum Estimate) Let Hy,...,H, (or
aj,...,ay) be hyperplanes in P"(k), located in general position. Denote
by T the set of all injective maps p : {0,1,...,n} = {1,...,q} such that
a,(0),- - -,au(n) 0re linearly independent. Then

9

me H)<Ema.x2)\uyﬂ()
j=1

vGS =0

Proof. Let a; be the coefficient vector of H;,1 < j < ¢. By the definition,
< X,a,3) >= ag(i)zo +oo+atiz, 0<i<n. (3.80)
By solving the system of linear equations (3.80),
zi =t <x,a,0) >+ + 8O <x,a,, >, 0<i<n, (3.81)
where (& ®) is the inverse matrix of (a})- Thus, for any p € T,
|1%]]» < Colél?gn I < x,a,3) > [lv- (3.82)
For a given v € S, there is p € T such
0<|l<xau0) > |lv < S <Xa0m) > [l S| < X,a,3) > [l

for j # p(0),...,p(n). This, together with (3.82), implies that

E (n + 1)||x]|v]laj]lv
[k:qQ] Q] I <x,a; > |
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(n + DlIxllvllaue)llv
= +0(1
[k Q] E || < x, a,@i) > Il @

(n+ 1)||x||v||au(i)”v

< ——max ) lo + O(1).
- [k : Q] HET ; & ” < Xy &y () > ”v ( )
The lemma holds by taking the sum for v € S. O

Combining Lemma B3.1.4 with Theorem B3.1.3, we have the following
theorem.

Theorem B3.1.5 Let k be a number field, and S C M} be a finite set
containing all Archimedean absolute values. Given hyperplanes Hy,...,H,
in P"(k), located in general position. Then for every e > 0, there ezists a
finite set of proper subspaces W1, ..., W; of P"(k) such that the inequality

g
Y m(x,H;) < (n+ 1+ €)h(x) (3.83)
i=1

holds for all points x € P™(k) — Ufj:l W;.

B3.2 The abc-Conjecture

Consider a+b=¢, a,b,c€ Z and consider the following table.

at+b=c ma-x{lal’lblalcl} H p

plabe
2+3=5 5 30
9+16=25 25 30
3+125=128 128 30
191307 +7-292 . 318 | €36-15 £22.26
— 28 . 322 . 54
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We see that in the last two lines, the height h(a, b, ¢) = max{|al, |b],|c|}
is larger than the radical r(a,b,c) = H p, where the product is taken over

plabe
primes p. The abc conjecture says that the height cannot be much larger

than the radical.

Conjecture B3.2.1 (abc Conjecture) For every ¢ > 0 there erists a
constant K (€) such that

h(a,b,c) < r(a,b,c) + eh(a,b, c) + K(e), (3.84)

for every sum a + b = ¢ of coprime nonzero integers.

Define, for [a: b : ] € P2(Q) with integer coefficients,

h(la: b: c]) = log max{]al, 8], |c|}

NO(z,0) = Zlogp, T € Q"

plz

Then we can restate abc Conjecture as

(1—eh([a:b: ) < NV(abec,0) + K(e).

The abc conjecture was formulated in 1983 by Masser and Oesterlé as a
possible approach to Fermat’s conjecture (now Wiles’ theorem): For n > 3,
the equation z™+y™ = 2™ has no solution in positive integers z, y, z. Indeed,
this is a simple consequence of the abc conjecture. Let z™ + y™ = 2™ be a
solution. Without loss of generality, we assume that max{|z|, |y|, |z|} = |z|.
So

h([z™ : y™ : 2™]) = log |2|™.

The radical is composed of the prime factors of z™y™2™, hence of the prime
factors of zyz. Thus r = H p < log|zyz| < log|z|®. Take € = 1/2, then,

plzyz
(3.84) implies that n < 6 + 2K(1/2)log|z|. Since it is known that there

are no solutions for n = 3,4, 5 or 6, this leaves only finitely many values of
z,y,z and n to check.
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Corresponding to (3.10), we define, for z,
N®™(z,0) = Z(min{ord;'x, n})logp, (3.85)
P

where the sum is taken over all primes p, and ord,z is defined as follows:
ord,z = k if and only if z = p*q, where p, g are coprime.

Conjecture B3.2.2 (Generalized abc Conjecture) For every ¢ > 0
there erists a constant K (e) such that the following is true: If ag + -+ +
an+any1 =0 witha; € Z, 0< i < n+1, and no common factors. Assume

that > a; # 0 for any proper subset I of {0,...,n+1}. Then there ezists a
i€l
constant K (€) such that

n+1
(1—¢€h(lag:...:an)) < ZN(")(aj,O) + K (€).

§=0

Corresponding to Theorem A3.2.6, according to Vojta’s dictionary, we
raise the following conjecture.

Conjecture B3.2.3 Let ny,...,n., be positive integers such that

Then the equation

m
Z:L‘?‘ =1, with z; €Z
i=0

has only finitely many solutions.

Corresponding to Corollary A3.2.8, according to Vojta’s dictionary, we
raise the following conjecture.

Corollary B3.2.4 If m > 11 the surface defined by
it + 27 + 2 + 252 P(zo,71,T2,23) = 0

has only finitely many rational points, where P is a generic form of degree
two.
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B3.3 The S-Unit Lemma

Let k be a number field. Let S be a finite subset of M (k) containing M (k).
Recall that an element z € k is said to be S-integer if ||z||, < 1 for each
v € M(K) — S. Denote by Os the set of S-integers. The units of Og are
called S-units. They form a multiplicative group which is denoted by O%.
For example, if k = Q the field of rational numbers and S = {| |, p1,...,ps}
where p;,...,p, are prime numbers. Then the set Og of S-integers consists
of the numbers pf‘ .--pksz where ky,..., ks and z are integers, and the
set O% of S-units consists of the numbers :bpf‘ -+ -pks where ky,..., ks are
integers.

Theorem B3.3.1 (S-unit Lemma) Let k be a number field. Let S be a
finite subset of C M (k) containing My, (k). Then the equation

o +...+z, =1

has finitely many solutions in S-units z,,...,T, such that no proper sub-
sum T; + ...+ Tim vanishes.

The proof of Theorem B3.3.1 is the same as the proof of Theorem A3.3.2.

As an application of the S-unit lemma, we study integer solutions for
the decomposable homogeneous polynomial equation.

Definition B3.3.2 Let k be a number field, and S be a finite subset of M}

containing M°. Let F(X) = F(zo,...,Zn) be a homogeneous polynomial
in n + 1 variables with coefficient in Og. F is called decomposable if F
factors into linear forms L, ..., Ly over some finite extension of k.

For n = 1, every homogeneous polynomial is decomposable, but for
n > 1 this is not always the case. Important classes of decomposable
homogeneous polynomial equations are Thue’s equations, when n = 1,
and norm form equations, discriminant form equations, and index form
equations for n > 1.

Thue’s equation,

F(zo,71) =a, a€O0s
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is well-studied: If F' contains three distinct linear factors over some finite
extension of k£, then the number of integer solutions of the equation is finite
and the explicit bound (even an effective bound) is obtained (see [Evel]).

Here we study the general case of n > 1. Given a decomposable homoge-
neous polynomial F(zy,...,z,). F then factors into linear forms L,,..., L
over some finite extension of k. Since by enlarging k, the finiteness does
not change, we assume that F factors into linear forms Ly,..., L, over k.
We denote by L the set of all linear factors of F. Then £ defines a set of
hyperplanes in P"(k).

Definition B3.3.3 A decomposable homogeneous polynomial F is called
non-degenerate if £ is non-degenerate, where L is the set of linear factors
of F. Here, similar to Definition A3.3.8, L is non-degenerate if and only
ifdim(L) =n+1, and (L) N (L - L1)NL # D for every subset L1 of £
where (L) is the linear span over k of the linear forms in L.

Theorem B3.3.4 (Evertse and Gyory [Ev-G2]) If a decomposable
homogeneous polynomial F(xq, ..., z,) is non-degenerate, then for every b €
k* and every finite subset S of My containing MZ°, the equation

F(x)=b in  x=(0,..,Zn) € Ot (3.86)

has only finitely many solutions. In particular, if F € Z[X] factors into
linear forms over Q which is in general position and the degree of ¢ > 2n+1,
then the equation

F(x)=b in x=(x0,...,Tn) € Z" (3.87)
has only finitely many solutions.
Proof. By extending k, if necessary, we may assume that
F(zo,...,zn) = Li(zg,...,Tpn) - - - Lg(Z0, ..., Tn),

where Ly, ..., Lq are linear forms coefficients in k. Since F' is non-degenerate,
by Proposition A3.3.7 (we note that Proposition A3.3.7 can be easily ex-
tended to k), there are at least three linear forms among L, ..., L, that
are linearly dependent over k, but not pair-wisely dependent. Without loss
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of generality, we may assume that L;, Lo, L3 are linearly dependent. So
there are non-zero constants ¢;, ¢z, c3 € k such that

ca1Ly +caLg +c3L3 =0.

We assume that coefficients of L;, ¢, c2, 3, 1/¢1, 1/c2, 1/c3 b, and 1/b are
S-integers by enlarging S, if necessary. Denote by the solutions of (3.86)
by I. For x € I,

Li(x)...Ly(x)/b=1.

It follows that 1/L;(x) is an S-integer because L;(x) is an S-integer for
x € I and b~! is also an S-integer. Thus L;(x),1 < j < ¢,x € I, are
S-units. So ¢;Lj(x),1 < j < 3,x € I, are S-units. The S-unit lemma
implies that I is obtained in a proper subspace of k"*!. Proposition A3.3.7
(we note that Proposition A3.3.7 can be easily extended to k) thus allows
us to use induction to reduce I to a finite set. ]

B3.4 The Degenerated Schmidt’s Subspace Theorem

Definition B3.4.1 Let 1 <1 < n be an integer. Hyperplanes H,,...,H,
(or ai,...,a,) in P!(k) are in n-subgeneral position if for every 1 <
ip < -+ < in < q the linear span over k of a;,,...,a;, is k'*t1.

The following is directly verified by the definition.

Lemma B3.4.2 Let W be a subspace of P"(k) of dimension I. Let
Hy,...,H, be hyperplanes in P"(k) in general position. Then the hy-
perplanes Hi NW,..., H,N W are in n-subgeneral position in W.

Nochka’s Theorem A3.4.3 easily extends to any field of characteristic 0,
in particular to the number field k.

Theorem B3.4.3(Nochka) Let Hy,...,Hg (or aj,...,a,) be hyperplanes
in P!(k), located in n-subgeneral position. Assume that ¢ > 2n — 1 + 1.
For each § # J C {1,...,q} let L(J) be the linear space generated by
{aj|l7 € J}. Then there exists a function w : {1,...,q} = R(0,1] called
the Nochka weight and a real number § > 1 called the Nochka constant
satisfying the following properties:

(1) If j € {1,...,q}, then 0 < w(j)6 < 1.
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(i) g—2n+1-1=0( 5, w() -1 -1).
(iii) ¥ 0 # J C {1,...,q} with #J < I+1, then 3", ; w(j) < dim L(J).
(V) 1<(+1)/(n+1) <6< (2n—1+1)/(n+1).

(v) Given Ey,..., E,, real numbers > 1, and given any Y C {1,...,q}
with 0 < #Y < n + 1, there exists a subset M of Y with #M = dim L(Y")
such that {a;};enm is a basis for L(Y') and

JEY JEM

Lemma B3.4.4 (Product to the Sum Estimate) Let Hy,...,H, (or
a,...,a,) be hyperplanes in P!(k), located in n-subgeneral position. Let
w:{1,...,9} = R(0,1] be the Nochka weight associated with H;. Denote
by T the set of all injective maps p : {0,1,...,1} = {1,...,q} such that
a,(0),- - -»ay() ore linearly independent. Then

q 1
Zw(j)m()(: Hj) < Z TeaTxZ/\v,H“(.') (x) (3'88)
j=1

vES =0

Proof. Let a; be the coefficient vectors of H;,1 < j < q. For every
x € P!(k) and v € S, we rearrange {1,2,...,q} as i1,...,%, such that

0<|[<xa,; >y L[ < X85, >l <--- < <xa5, > |[o- (3.89)

We note that the indices 1,...,7, depend on x and v. The n-subgeneral
position implies that aj,,...,a;,,, span k'+!. Thus there is an injective
map a: {0,1,...1} = {i1,...,in41} such that {ay(),...,aq()} is a basis
of k1. Consider

< X, 8q(;) >= ag,a(i)Zo + . + a0, 0<i< l (3.90)

with a,(;) = (@0,a(i); - - - »@1,a(i))- BY solving the system of linear equations
(3.90),

Ti = Gg,a(i) < X,8q(0) > -+ +aa() < X890 >, 0<5i<
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where (@; 4(;)) is the inverse matrix of (aq(j),;).Thus,

Ixllo < Co max || < x,209 > Iy < Coll < x>l (3:9)

for j > 4,41, where Cy is a positive constant, independent of x and v.
Combining (3.89) and (3.91) we have

g q\wE) i llo )
11 ((z+1)||x||v||aj||,,) <a] ((l+ 1)|Ix||uIIa..IIv> . (3.92)
j=1

" <x,a; > ”v =1 “ <Xx,a; > ”v

where ¢, is a positive constant, independent of x and v. Let

_ @+ Dlxllllas [l

E, = .
”l <x,a; > “v

Note that E; > 1. Lemma B3.4.3 (v) applied to E;,1 < ¢t < n+ 1, implies
that there is an injective map p : {0,...,l1} = {é1,...,%p4+1} such that
{au(0)s---,au()} is linearly independent and

n+1 1

I &% < T Busy-
t=1

i=0

That is, by the definition of E;,

anl ((z + 1)||x||v||ai.||v)““" <17 4 Dilxllullaulls

” <x,a; > “v ” < X, Ay(4) > ”v '

(3.93)

t=1 =0

Thus the lemma follows by combining (3.92), (3.93), the definition of m(x, H;)
and the definition of Ay, g, (x). O

Theorem B3.4.5 (Ru-Wong) Let k be a number field, let S be a finite
set of places of k containing M. Let Hy, ..., H, be hyperplanes in P!(k),
located in n-subgeneral position (1 < |l < n). Then for any € > 0, there
erists a finite set of proper subspaces Wi, ...,W; of P!(k), such that

q
> m(x,Hj) < (2n -1+ 1+ )h(x)
=1

holds for all x € P*(k) — Ut,_, W,.
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Proof. Let a; be the coefficient vectorsof H;,1<j<gq. Ifg<2n—-I+1
then Theorem B3.4.5 is a consequence of the First Main Theorem and h(x)
is unbounded. We may now assume that ¢ > 2n —[+1. By Lemma B3.4.4,

Zq:w m(x,H;) <) maxz Ao H,) (X (3.94)

Jj=1 UGS i=0

where T is the set of all injective maps p : {0,1,...,1} = {1,...,q} such
that a,(),...,a,() are linearly independent. However, Theorem B3.1.4
implies that for any ¢ > 0, there exists a finite set of proper subspaces
Wi, ..., W; of P!(k), such that

Zma.xz/\uy(l) < (I +1+e)h(x)

UES i=0

holds for all x € P!(k) — U!,_; W,. This, together with (3.94), yields that
for all x € P!(k) — Ui, Wa,

D w(@)m(x, Hj) < (I +1+ e)h(x). (3.95)

=1

Combining this with Lemma B3.4.3, and recalling that m(x, H;) < h(x) +
0O(1), we have

> omx,Hy) = Y (1-6w(j))m(x,H;) +Z€w m(x, H;)
J=1

™

(1 —6w(g))m(x, H;) + 0(l + 1+ €)h(x)

IN
-
—
|
s}
€
S
=
+
=
+
—
+
&
=

where the inequality holds for all x € P!(k) — Ut,_, W,. O
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Theorem B3.4.6 (Ru-Wong) Let k be a number field, let S be a finite set
of places of k, let ¢ € Z5o. Let Hy,...,H, (or a;,...,a,) be hyperplanes
in'P"(k), located in general position. Then for any € > 0, there ezists a
finite set of proper subspaces Wi,..., W, of P™(k) of dimension ! —1, such
that

g
> m(x, Hj) < (2n =1+ 1+ €)h(x)
i=1
holds for all x € P (k) — Ut _ W, with Lj(x) #0 for 1 < j < q. In
particular, the set of points x € P™(k) with < x,a; ># 0 and satisfying

Zq:m(x,Hj) > (2n + €)h(x)

=1
is a finite set.

Proof. Consider the points x € P"(k) with < x,a; ># 0. We use
induction for I. The Il = n case is just Theorem B3.1.6, so the theorem is
true for this case. Assume that the theorem holds for ! + 1, that is there
exists a finite set of proper subspaces Wi, ..., W; of P*(k) of dimension I,
such that

q
Zm(x,Hj) < (2n -1+ €)h(x) (3.96)
j=1

holds for all x € P™(k)—Ut,_; W,. Now consider each subspace Wy, of P™(k)

of dimension /. Lemma B3.4.2 tells us that the hyperplanes Hy,..., H, re-

stricted to W, are in n-subgeneral position in W, = P!(k). So Theorem

B3.4.5 applies to this case. Therefore the theorem holds for I. Thus Theo-

rem B3.4.6 is verified by induction. O

Theorem B3.4.6 implies Wirsing’s Theorem.

Theorem B3.4.7 (Wirsing’s Theorem) Let k be a number field and let
S be a finite set of places of k containing Mg°. Let r be a positive integer
and let a,(a) € k for each v € S. Then the inequality

|z = ay|lw 1
| | | | > (3.97)
. - 2r4
V€S weMyia), wlo max(1, ||z||w) - max(1, [lay|lw) = Hi)(z)? +e
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holds for all, except for a finite number, z € k with [k(z) : k] < r.

Proof. It will suffice to prove the statement under the additional assump-
tion that [k(z) : k] = r. For those points let

f(X)=A4X"+...+ Ao

be the minimal polynomial of = over k. This defines a collection of points

P, :=[Ap:...: A;] in P7(k). It is easy to verify that
Cl v max(”AO”v””AT”v) S H max(1,||x||w)
’ 1 4rlo wEMage), wlv
max(||4ollv, - - -, [|Arllv)
< Coy-
= 4.1,

for all v € My, where C1,, and Cs, are positive constants. Moreover,
C1,» = Cap = 1 if v is non-Archimedean. Hence the heights of z and P;
are related by

C1H, (Pz) < Hk(,_.) (IL‘) < Csz(Pz) (3.98)

where C; and C; are positive constants.

For each v € S, a, determines a hyperplane H, defined by the equation
H,={[zo: - :2p] | Zo +ayz1 +... +alz, =0} (3.99)

The hyperplanes H, are defined over k, and the set {Hy},¢s lies in general
position by the non-vanishing of the van der Monde determinant. Moreover,
it is easy to check that the left-hand side of (3.97) is related to the Weil
functions of P, with respect to H,, as follows. First of all,

[I  max(i,llayllw) = max(i, laylls)"
WEMp(a), wlv

= max(L[laslls, llaull3,- - -, llas|l7)- (3.100)
Also, we have

M le-alle = INP@ - a)lle = If(@)llb-  (3.101)

WEMy(z), wlv
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Combining (3.98), (3.99), (3.100) and (3.101) then gives

”Z - av”w
- = A, u, (Pz) + O(1).
% H max(1, ||z]lw) - max(l, llav||w) v,H.,( ) (1)

WEM(z), wlv

So, (3.97) is equivalent to
[—,C:I—Q] > Ao, (Pe) < (21 + )h(P2) + O(1).

This follows immediately from the last assertion of Theorem B3.4.6. O

Theorem B3.4.6 also gives the finiteness of number of integer solutions
of decomposable form equations.

Theorem B3.4.8 (Gyory-Ru) Given positive integers g,m with ¢ > 2m,
and a polynomial G(X) € Os[X] in X = (Xo,...,Xm) with total degree
less than g — 2m. Let F(X) € Os[X] be a decomposable form of degree q
whose linear factors are in general position. Then the equation

F(X) = G(X) (3.102)
has only finitely many solutions x = (%o, ...,Tm) € OF1! with G(x) # 0.
Proof. By extending k, if necessary, we may assume that
F(X) = Li(X) - Fo(X)

over k, where L,,..., L, are linear forms, located in general position. As-
sume that there is an infinite sequence x, = (Zo,n,.-.,Zm,n) € 0'5"“ which
satisfies (3.102).

First consider the case when the values h(x,) are bounded. We may
assume without loss of generality that zo, # O for each n. Then the
h(xn/zo0,n) are bounded and this implies that x,/zo,, may assume only
finitely many values in k™+1. Hence there are infinitely many n such that
Xp = To,nXo for some xq € k™+1, For these n we deduce from (3.102) that
h(zo,n) are bounded. This is a contradiction. ‘

Next consider the case when h(x,) are not bounded. We may assume
that h(xp,) = o0 asn — 0o. Let € > 0 with 0 < € < ¢ — 2m — v, where
v = degG. Then by Theorem B3.4.6, there is an infinite subsequence
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Xn, € 02tk =1,2,..., of {x,}, without loss of generality, we assume
{xn} 1tself such that

Zzl %7 ]lv - 1| J”v < (2m + €)h(xy).

" qQ Q] 24 28 LGl
However, F(x,) = [1%_, L;(xs). Furthermore, in view of x, € O™, we
have
h < ——logH
(xn) [k Q] log S(xn)7
where Hg(x,) = H ||Zx |- Hence it follows that
vES
H ”Xn”g, : _?:1 ”LJ”v < Hs(xn)2m+e’
L TR
whence
H§(xn) - HUES H;‘l—l 1Z;1lo
= < Hg(x,)*™*e. 3.103
Mocs IFGTs (xe) (3109
Since the coefficients of L; are S-integers,
q9
ITITNZle > 1, forn=1,2... . (3.104)

veES j=1

Furthermore, since F(x,) = G(x,) and deg G = v.

[T IF&xn)llo < c2Hs(%n)" forn=1,2... . (3.105)
vES

Combining (3.103), (3.104) and (3.105) gives
Hs(xn)? < coHs(x5) 2™,

Since Hs(xn) — 00 as n — 00, and ¢ > v + 2m + ¢, which gives a contra-
diction. O
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The Correspondence Table

Nevanlinna Theory
Theorem A3.1.1
Theorem A3.1.3
Lemma A3.1.6
Theorem A3.1.7
Theorem A3.2.6
Theorem A3.2.8
Corollary A3.2.9
Theorem A3.3.2
Theorem A3.3.4
Theorem A3.4.3
Theorem A3.4.4
Corollary A3.4.5

Diophantine Approximation

Theorem B3.1.2
Theorem B3.1.3
Lemma B3.1.4
Theorem B3.1.5
Conjecture B3.2.2
Conjecture B3.2.3
Conjecture B3.2.4
Theorem B3.3.1
Theorem B3.3.4
Theorem B3.4.3
Theorem B3.4.6
Theorem B3.4.8



Chapter 4

The Moving Target Problems

While R. Nevanlinna established his Second Main Theorem(see Theorem
A1.3.1), he asked whether the theorem still remains true if the targets
a;,1 < j < g, are replaced by slowly growing meromorphic functions
a;(z),1 < j < ¢. This motivated the moving target problems in Nevanlinna
theory and Diophantine approximations.

Part A: Nevanlinna Theory

A4.1 The Moving Target Problem for Meromorphic Func-
tions

We first extend Theorem A1.3.1 by replacing a; with slowly growing mero-
morphic functions a;(z),1 < j < ¢q. The proximity function m¢(r,a) and
the counting function N¢(r,a) defined in chapter 1 for meromorphic func-
tion f and complex number a are easily extended to meromorphic functions
f and a, provided f and a are free, i.e., f # a.

Theorem A4.1.1 (Steinmetz) Let f be a non-constant meromorphic
function. Let ay,...,a, be meromorphic functions with a; £ a; for i # j,
1<1i,j < q. Assume that Tg;(r) = o(T¢(r)) for 1 < j < q. Then, for every
€ > 0, the inequality

q
mg(r,00) + me(r, a;) < (24 €)Ty(r)
j=1
holds for all r outside a set E C (0,+00) with finite Lebesgue measure.
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178 The Moving Target Problems

Proof. Let ay,...,a, be the given meromorphic functions. Let £(s) be
the vector space generated over C by the functions

q9
n n L —
{a1 orag? | nj €N, ZnJ—s}.

i=1
Choose a basis {b1,...,bys} for £(s) and {b1, ..., bys41)} for L(s + 1),
where £(s) = dim L(s). Let F : C — P(C4#)+4s+1)) be the holomorphic
map defined by

F= [blf Seeat b[(s)f H 51 Leead 5[(,+1)].

We call F the Steinmetz’s map. Since Ty, (r) = o(T¥(r)) for 1 < j < g,
the components of F' are linearly independent over C. So the image of
F is not contained in any proper subspaces of P(C4®)+&(s+1))  Also by
definition and using To;(r) = o(T¢(r)) for 1 < j < ¢ again, we have

Tr(r) = Ty(r) + o(Ty(r))-
Notice that, for each 1 < j < gand 1 <t < {(s), bia; € L(s + 1). So bia;
can be written as a linear combination of {bx,1 < k < £(s+ 1)}, that is

£(s+1) 3
—bia; = Z Ctikbi, (4.1)
k=1

where ¢ are complex numbers. For each fixed j, 1 < j < g, define the
hyperplanes H(j), ..., Hys)+e(s+1)(j) in P(CHIHUsD) as follows: for 4
with 1 <4 < £(s),

£(s+1)
T; + Z CijkTe(s)+k =0 23

k=1
I = 0} .

Since by, ..., b(s) are linearly independent over C, using (4.1), it is easy to
check that the hyperplanes H; (5), . .., Hy(s)+(s+1) (j) (or more precisely the
coefficient vectors of H1(5), ..., Hy(s)+¢(s+1)(3)) are linearly independent for

H;(j) = {[zl HR Zt(a)+£(s+1)]

and for i with £(s) < i < £(s) + £(s + 1),

Hi(j) = {[171 ees Tg(s)4b(s+1))
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each j with 1 < j < ¢. By the definition for the Weil function in (3.7) and
using (4.1) again, we have, for 1 <i < £(s),

ma‘x{lblfl’ ) |bl(s)f|: |I;1|: ) |Bl(s+l)|}

da(FX) = log B (72 - o () o
_ + 1 _ z .
= log ROET] +C(ay,...,a4)(2), (4.2)
and, for £(s) <i < £(s) +€(s + 1),
M) (F)(2) =logt | £(2)| + Clay, - . ., ag)(2) (4.3)

where C(a1,...,a4)(2) is a term that depends only on ay,...,a,. Applying
Theorem A3.1.3 to F and the hyperplanes Hi(j),..., Hys)+e(s+1)(4), 1 <
Jj < g, and using (4.2) and (4.3), it follows that

{(s + 1)my(r,00) + £(s) Y my(r,a;)

j=1
2 £(s)+L(s+1) ) do
max Z i) (F (7’13“)))2—7r + o(Ts(r))

o 15i<q =
(€(s) + £(s + 1))Tr(r) + o(Tr(r)) + o(T¢(r))
(€(s) + £(s + 1))T¢(r) + o(Ty(r)),

IA

IN A

where the inequality holds for all r outside a set E C (0, 400) with finite
Lebesgue measure. As noted by Steinmetz, we obviously have

Oﬁf(s)g(q(n+1)+3—1)

S

for each s and therefore

fs+1) _

e

We conclude that the inequality
q
my(r,00) + Zm;(r, a;) < (24 €)Ty(r)
j=1

holds for all » outside a set E C (0,+o0) with finite Lebesgue measure.
Theorem A4.1.1 is thus proved. O
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A4.2 The Moving Target Problem for Holomorphic Curves
in Projective Spaces

In this section, we extend Theorem A4.1.1 to holomorphic curves intersect-
ing with moving hyperplanes. By a moving hyperplane H in P"*(C), we
mean

H={[zo:...:2,) € P*(C) | aozo + ... + anz, =0},

where ay,...,a, are entire functions without common zeros. So H is as-
sociated with a holomorphic map a = [ag : -+ : a,] : C = P*(C). Write
a = (ag,...,an). Given a holomorphic map f : C — P"*(C), we say that
f and H are free if < f,a ># 0 where f is a reduced representation of f
and < , > is the inner production on C™*!. The definitions of the Weil
function, the proximity function and the counting function can easily be
extended to moving hyperplane H without any change, provided that f is
free with H. So, in the rest of chapter, whenever we write Ay (f), ms(r, H)
or Ny(r, H), we automatically assume that f is free with H.

Let H;,1 < j < g, be the moving hyperplanes in P™(C) which are given
by

Hj = {[:Bo HE :a:n] I ajoZo + ...+ ajnTn =0},
where ajo,...,a;j, are entire functions without common zeros. Let a; =
(ajo,---,ajn) : C = C™*1 — {0} be the moving vector associated with H;

and let a; = P(a;). The following theorem generalizes Theorem A3.1.3 to
the moving hyperplanes case.

Theorem A4.2.1 (Ru-Stoll) Let f = [fo:...: fn] : C = P*(C) be a
holomorphic map. Let G be a finite set of moving hyperplanes Hi,...,H,
(or ay,...,ay). Let a; = (ajo,...,0a;n) and let Rg be the smallest field
which contains C and all aj,/a;, with a;, # 0. If f is non-degenerate
over Rg, meaning that fo,..., fn are linearly independent over Rg, then
for every € > 0, the inequality

2 i\, 8
. i0
‘/0 m}gxkéx i, (reie) (f(re ))—271' <(n+1+€eTy(r)+ 0O (fgqu T, (r))

holds for all r outside a set E C (0,+00) with finite Lebesgue measure, and
maxg is taken over all subsets K C {1,...,q} such that a;(2), for j € K,
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are linearly independent for some (and hence for almost all) z € C.

Definition A4.2.2 The moving hyperplanes Hy,...,H, (orai,...,a,) are
said to be in general position if H;(z), ..., Hy(2) are in general position
for some (and hence for almost all) z € C.

Let G be a finite set of moving hyperplanes Hi,...,H, (or aj,...,a,).
Assume that G is in general position. Define, for z € C,

I(G)(2)

. llau)(2) A= Naymy (2l o
min p:Z0,n] = {1,...,q}, injective » .
{ llau@) ()l - llauem) (2)l (0. = J

By the general position assumption,
S={zeC|I(G)(z) =0}

is a closed set of isolated points.

Lemma A4.2.3 (Product to the Sum Estimate) Let f = [fo:...: f]:
C — P™(C) be a holomorphic map. Let G be a finite set of hyperplanes
Hy,...,Hy (or ay,...,a,). Assume that G is in general position, Then
for every z € C — S with < £(2),a(z) ># 0 for all a € G, there exist
i(2,0),...,i(2,n) among 1,...,q such that

[£(2)llla(2)Il 2(n+ 1)\ 11 _If@) i (2)l]
11 [<1(z),a(z) > (1‘(9)(2)) H o | <f(2),ai:(2) > |’

where < -,- > is the inner product on C™+1,

Proof. Given any z € C — S, we have fixed hyperplanes {H(z)|H € g}
and they are in general position. For the number ¢ = n—mr(g)( z) W
claim that #I(f(z),¢,G) < n, where

| < £(z),a;(2) > |
@yl = }

To verify our claim, we recall that, for integer 1 < ¢ < p < n+ 1, the
interior product of vectors £ € AP*! C™*! and a € A9t C*™*!, where
C*™*! is the dual space of C"*!, is defined by

B(Ela) = (aAp)(&)

I(f(2),¢,9) = {
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for any B € AP79C*"*1. We first show that for any linearly independent
vectors Xg, ..., Xn € C*1 and any y € C*"*1,

lIxo A=<= Axalyll =lI%0 A= A xallllyll-

In fact, let vo,---, v, be an orthonormal base of C**! and v§,---, v’ be
the dual base. Define y; =< vj,y >=y(v;). Then

n
Y= 4V
j=0

Let ¥; = (=1)’Vo A---AVj=1 AVjt1 A--- Avn. Then ¥, -+, ¥, is an
orthonormal base of A" C™*1. A number 4 € C exists such that

XA AXp=AVogA--- AV,
Therefore we have

|4lllvo A--- A valyll

1/2
n n
1411y D ws¥sll =141 | D |yj|2)

= |lxo A+ Axnllllyll.

%o A -+ Axp ¥l

We now verify our claim. For each H € G with the unit normal vector a,
we can regard a € C*™*! defined by a(x) =< x,a > for every x € C"t1,
Now assume that #I(f(2),¢,G) > n, without loss of generality, we assume
that {1,...,n+ 1} C I(f(2),c,G). So we have

lla1(z) A--- A anis(2)l

0 < TOE) < o T Tamn @I
las () A~ A aner (2) ()]
TG Taner ]
rf < f(2),a;(2) >( 1yl jar(z)A---Aaj_1(z) Aajpi(2) A--- Nany(2)
;T Ty @I a1 DMz (@) Tans1 )]
n+1
| <£(),25(2) > |
2 @
< (n+De=3T(G)()
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which gives a contradiction. So our claim is proven.
Now choose i(z,0),...,i(z,n) € {1,...,q} such that

1(f(2),a,9) C {i(2,0),...,i(z,n)},

then
11 £ lllal - (1)“%'1" If(2)lllain (2l
L<t@,aE >1 = ¢ <), a0 > |
_ %n+D>“"l 7 @) a0 ()l
)G LLT2T6@) 200 > |
Lemma A4.2.3 is proven. O

Combining Theorem A4.2.1 and Lemma A4.2.3 gives

Theorem A4.2.4 (SMT with moving targets) Under the same as-
sumptions in Theorem A4.2.1, and in addition, we assume that the hyper-
planes H; (or a;), 1 < j < gq, are in general position. Let a; = P(a;).
Then for every € > 0, the tnequality

q

merH (n+1+e)Tf(r)+O(ma.xTaJ()>

j=1

holds for all r outside of a set E with finite Lebesgue measure.

We now prove Theorem A4.2.1. The proof is taken from [Ru3].

Proof. Without loss of generality, we can assume ¢ > n + 1, and that at
least n + 1 of the hyperplanes are linearly independent. Let T be the set
of all maps u : {0,1,...,n} = {1,...,q} such that a,(g)(2),...,a,(n)(2)
are linearly independent for some (thus for almost all) z € C. Let f =
(fo,---,fn) be a reduced representation for f, meaning that f;,0 <i < n,
are entire functions and without common zeros, and P(f) = f. For each
1 < j < q, choose an index j with 0 5} <n and a;; #Z 0, and define

Gi(2) = aju(2)/a;5(2), 5=1,...,¢; 1 =0,...,n

Let L(s) be the vector space generated over C by

q n
ni1,0 | Nq,0 n, Ng.n -
{‘ SR e | e, z):}
=0

j=1 =
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We have L(s) C L(s +1). Let {b1,...,byst+1)} be a basis of L(s + 1)
such that {by,...,bys)} is a basis of ,C(s), where £(s) = dimL(s). Let
F =P(F): C - P(C(r+1)is+1)) be the holomorphic map defined by

F(z2) = (b1(2)fo(2),. -, bysr1)(2) fol2),b1(2) f1(2), - - -, be(sr1) (2) fn(2))
€ Cr+Dis+1) (4.4)

Because f is linearly non-degenerate over Rg, F' is linearly non-degenerate.
We will apply Theorem A3.1.3 to F. The next step is to construct, for each
pu €T, aset of (fixed) hyperplanes {I?Il,j(u) |1=0,...,n;5=1,...,£(s)}
in P(C(n+1)4(s+1)) sych that the Weil functions satisfy

My ) (F@) ~ At () (£(2))-
To do so, let h;, 1 < j < g, be the meromorphic function defined by

h;(z) = c,,o+Z<],,( f(( )) G=1,...,q). (4.5)
Noticing that b;j¢x; € L(s+1) for 1 < j < {(s),1<k<gand0<!<n,
S0 it can be written as a linear combination of b,,1 < r < #(s + 1). Thus
functions bjh,),1 < j < £(s),0 <1 < n, can be written as a combination
of by,1 <7 <{(s+1),and by (f3/f0),]1 <a<{(s+1),0<f<n In
other words there is an (n + 1)£(s) x ((n + 1)4(s + 1)) matrix C(u) with
entries in C such that

[ )
[ bihue) ) b .+1)
: by (f1/ fo)
be(s) Puco) 1 1 ’
: =0l by(s+1) (f1/fo) (4.6)
bihy(n) :
: b1 (fa/ fo)
\ be(o)hucny / :
be(s+1) (fnl fo) /

For I = 0,...,n, and j = 1,...,£(s), let f{l,j(li) be the hyperplane in
P(C(r+1)is+1)) defined by the corresponding row in C(u), i.e., if we denote
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cij (1) the elements of C(u), then

H (p) =
{10 Ye(s1),0 SYL1 S ove T Ye(s1)L T oo S YLm ©one  Ye(st1)n)

€ P(CHDUAD) | gyt i 1 (1)W1,0 + * -+ + Cla(syriie(sr1) (1) Ye(s+1),0

+ Cit(oyrit(sr 1)1 (BYLL + -+ + Cue(syrsae(s1) (W) Ye(s1)1 + - - -
+Cre(s)+3,(n+1)2(s+1) () Ye(s+1),n = 0} - (4.7)

Since a,(0)(2), - - -, ay(n) (2) are linearly independent for some z and fo, . .., fn

are linearly independent over Rg, hy(),---,hu(n) are linearly indepen-

dent over Rg. Thus, by the choice of by,...,bys), the set {bjh,q),j =
.,€(s); 1 =0,...,n}is linearly independent over C. Hence, ﬁ;_j(p),l =

0,...,n; j =1,...,£(s) (more precisely the coefficient vectors of ﬁl,j(u),l =

0,...,n; j =1,...,£(s)), are linearly independent for each u € T. Apply-

ing Theorem A3.1.3 for F', with the hyperplanes {fIz'j(p)U =0,...,n;j =
.,£(s)}, yields that the inequality

2 n_&(s)
/(; o Zo X;AHI () (F(re‘a))— <((n+1)(s+1)+¢€/2)Tr(r)
=0 j=
(4.8)
holds for all 7 outside a set E C (0, +00) with finite Lebesgue measure. We

now compare T¢(r) and Tr(r). In fact, for each z € C, not in the set of
the poles of by,...,bys41), by (4.4) we have

||F(Z)||
= max(|b1(2)fo(2)], .- -, [be(s+1)(2) fo(2)], [b1(2) f1(2)]; - - -, be(ss1) (2) fn(2)])
+0(1)
max(|fo(2)], ..., |fn(2)]) - max(|bi(2)],- - -, [be(s+1)(2)]) + O(1)
= |Ifll - max(|b1(2)], - - -, |be(s+1)(2)]) + O(1).

By the First Main Theorem

IN

Tr(r) = /0 log IL' f”l(re'a)dﬁ + N(r,[b1fo =0]) — N(r,[1/b; = 0]) + O(1

< [ "og M re)ds + N, o = ) +0 (s 7.,
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= T¢(r)+0 (max T, (r)) (4.9)

Next we compare Ay, (-)(f(2)) and Af ) (F(2)), for each u € T. By
(3.7), (4.4), (4.5), (4.6), and (4.7), for 0 <1 < n,

'\fﬁ.j (m) (F(2)

= 1 F . )
og (IFGI-,__msx,  leurrir )

= log (|erg(s)y+4,1 (b1 (2) fo(2) + - -+ + Crg(s)+j,(n+1)e(s+1) (1)e(s+1) (2) Fn (2)])
< tog (Il _max | 1@ _max  laursse )

—log(lbj(z u(z)(z)l' | fo(2) 1)
= log (”f" 1<a <l( +l)| a(Z)I ' lSrS(IT?‘Fafgl(s-i-l) Icu(s)-"j'r(”)l)

_IOg (lbj(z)l . Kp(l),o(z)fO(z) +-+ Cy(l),n(z)fn(z)l)

maxXo<r<n |au),-(2)] b(z

= A1{,,(1)(2)(f(z)) - lOg sran Pu®.r —-lo I J( )I

Ia,‘(z),#(‘z)(z)l maxX; <a<i(s+1) |be(2)]
+0(1),

where the above equality holds for those z € Csuch that < f(2),a,)(2) >#

0, fo(z) # 0, and such that z is not in the union of the sets of the zeros

and poles of ¢j; and b,, 1 < j<¢q,0<1<n,1<r <{s+1). Combining

this with (4.8) and (4.9) gives

e o dO
e(s) ‘/0‘ I/.Itleai)'(; /\H"(‘)(rc-‘a)(f(re 0”%
2 n £(s)
/o max ) Z’\H: (o (F(re? ))— +0 ( mex T, (r))
1=0 j=

((n+1)e(s+1)+€/2)Ty(r) + O <11§1;§\%<q T, (r)) ,

IN

where the inequality holds for all 7 outside of a set E C (0, +00) with finite
Lebesgue measure. Hence, the inequality

27
‘/0 #ET Z A}'f,,(l)(f‘e")(f(relo))
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< (L +n)l(s+1)/(s) +€/2(s)) Te(r) + O (lrél?%cq T, (r))

holds for all 7 outside of a set E C (0, +0c) with finite Lebesgue measure.
As noted by Steinmetz, we obviously have

054(3)5(4(n+1)+s-1)

S

for each s and therefore

liminf £+ 1)

$—00 Z(s) =1L

Thus, for the given € > 0 there exists a positive integer s > 0 such that
Us+1)/L(s) <1+€/2(n+1).

Choosing such an s concludes our proof of Theorem A4.2.1 ]

A4.3 Cartan’s Conjecture with Moving Targets

In this section, we consider the degenerate case of Theorem A4.2.1, i.e., the
case when f is degenerate over Rg.

Definition A4.3.1 Let Rg be the field that appears in Theorem A4.2.1.
A holomorphic map f = [fo : --- : fa] : C = P*(C) is said to be m-
nondegenerate over Rg if m is the largest integer with the property that
there is an injectionn : {0,...,m} = {0,...,n} such that { fy0), -, fo(m)}
is linearly independent over Rg.

Clearly 0 < m < n, and m = n if and only if f is non-degenerate over
Rg.

Theorem A4.3.2 (Ru-Stoll) Let f = [fo:...: fo] : C = P*(C) be a
holomorphic map. Let G be a finite set of moving hyperplanes Hy, ..., H,
(or ay,...,a,) with T,,(r) = o(T¢(r)),1 < j < q. Assume that G is in
general position. Let a; = [ajo : ... : ajn],1 < j < q. Let Rg be the
smallest field which contains C and all aj,/a;j, with aj, # 0. Assume that
f is m-nondegenerate over Rg. We further assume that < f,a; >% 0 for
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j=1,...,q. Then, for every € > 0, the inequality

im,«(r, H;)<(2n—m+ 1+ €)Ty(r)

i=1

holds for all r outside of a set E C (0,+00) with finite Lebesgue measure.

Definition A4.3.3 We say that Hy,...,H, (or ay,...,aq) are in
u-subgeneral position if for every 1 < iy < --- < iy < g, the linear span
of a;y(2),...,a;,(2) is C**! for some z, hence for almost all z.

The significance of the condition of u-subgeneral position is that the
hyperplanes Hi,---,, H, are in u-subgeneral position if and only if there
is an embedding P" < P* and hyperplanes Hj,..., H; in P* such that
Hin P" = H; for all j and such that Hj,..., H, are in general position.

Theorem A4.3.4 (Ru-Stoll) Letu >n. Let f =[fo:...: fa] : C =
P™(C) be a holomorphic map. Let G be a finite set of moving hyperplanes
Hy,...,H, (oray,...,a;) with T,,(r) = o(T¢(r)),1 < j < q. Assume that
G is in u-subgeneral position. If f is nondegenerate over Rg, then, for
every € > 0, the inequality

> my(r,Hj) < (u—n+ 1+ €)Ty(r)
\j=1

holds for all v outside of a set E C (0,+00) with finite Lebesgue measure.

We will prove Theorem A4.3.4 first and then derive Theorem A4.3.2
from Theorem A4.3.4.

Take 0 < p € Z and let T, = Tp(G) be the set of all injective map
A:{0,...,p} = {1,...,q} such that ay = ay) A--- Aayp # 0. For
A € Tp, the set Sy = a;(lo) (0) is a discrete set. Then S = Up—o UnreT, Sx
is a discrete set and C — S is open and dense in C. It is easy to check
that for z € C— S, {a;j(z),1 < j < q} is in u-subgeneral position (as fixed
hyperplanes). For § # P C {1,...,q}, let L(z, P) be the linear subspaces
of C"*! spanned by {a;(2) | j € P}. Define d(z, P) = dim L(z, P).

Lemma A4.3.5 If 0 # P C {1,...,q}, then d(z, P) is constant for z €
C-3S.
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Proof. Take z; and 2z, in C—S. Let p=d(z;,P)— 1. Then 0 < p < n.
There is a bijective map A : Z[0,p] = P such that ayq)(21),...,axp)(21)
is a base of L(z,P). Then a) # 0 and A € T,. Because 2,0 € C - S,
also ax(z2) # 0. Hence ay()(22),...,8)(p)(22) are linearly independent.
Hence p+1 < d(22,P). Thus, d(z;, P) < d(22, P). By symmetry we obtain
equality. (]

We now use Theorem A3.4.3 to derive the product to the sum estimate.
Given our G = {H; |1 < j < ¢} in u-subgeneral position with ¢ > 2u—n+1.

Theorem A4.3.6 Given G, a set of moving hyperplanes Hy,...,H, in
u-subgeneral position with ¢ > 2u — n + 1, there ezists a function w :
{1,...,4} = R(0,1] called the Nochka weight and a real number 6 > 1
called the Nochka constant satisfying the following properties:

(i) Ifj€{l,...,q}, then0< w(j)0 < 1.
(i) g—2u+n-1=037_ w(@)—n-1).
(%) If 0 # B C {1,...,q} with #B <u+1, then

Y w(j) < dim L(B).
JjerP

() 1<(u+1)/n+1)<0<L (2u—n+1)/(n+1).

(v) Let {E,...,E;} be a family of functions E; : C — S = R[1,+00).
Given any AC {1,...,q} withO< #A<u+1. Take a 2 € C—S. Then
there is a subset B(z) of A such that #B(z) = dim L(z,A) = d(A) and
such that {a;j(2) |j € B(z)} is a base of L(z,A), and such that

jEA jeB

Proof. Weselect a point zg € C—S. Then G(2z) = {H;(z) |1 <j<q}is
a collection of fixed hyperplanes in u-subgeneral position. Now we take the
Nochka weight function w and the Nochka constant 8 for this family G(zp).
Then Theorem A3.4.3 gives (i) to (iv). So we only need to verify (v). By
(v) of Theorem A3.4.3 it follows that, for 2 € C — S, there is a subset B(z)
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of A such that #B(z) =dim L(z,A) = d(A) =p+1, {a;(20) |j € B(2)} is
a base of L(zp, A), and such that

[[ 59 < I] Ei@.

JEA j€EB

Take a bijective map A : Z[0,p] & B(z). Then ay(20) = ax@)(20) A+ A
ax(p)(20) # 0. Thus ay # 0 and A € T,. Thus a)(z) # 0 since z € C -

S. Hence ayg)(2),...,a)(p)(2) are linearly independent. Also a,(;)(2) €
L(z,A) for j =0,...,p. Since z € C — S, we have dim L(z, A) = d(z) =
p+ 1. Thus {a;(z) | j € B(z)} is a base of L(z, A). a

Proof of Theorem A4.3.4.

Proof. The theorem is trivial when ¢ < 2u — n + 1, so we may assume
that ¢ > 2u—-n+1. Let G = {H; |1 < j < ¢} be a finite collection of
moving hyperplanes in u-subgeneral position. Define, for z € C,

L(G)(2) =

@ A A @
Tau0) @M Taym @I

w:Z[0,n] = {1,...,q}, injective} .

By the u-subgeneral position assumption,
S={ze C|I(G)(2) =0}

is a closed set of isolated points. Fix a zp € C — S and let w(j),1 < j < g,
be the Nochka weights associated with the hyperplanes {H;(20)}. Since
Hy,---,,Hy are in u-subgeneral position, there is an embedding P* — P*
and hyperplanes Hj,...,H; in P* such that H; N P" = H; for all j and
such that Hj,...,H, are in general position. So by Lemma A4.2.3, for
every z € C — S, there exists i(z,0),...,i(z,u) among 1,...,q such that

@I\
H (I < f(2),a(z) >)|)

acg
2w+ D\ E@ @)l ) “CED
(F(G)(z) ) g) <| <T(2), a0 (2) > |) . (4.10)

Let A = {i(2,0),...,i(2z,u)}. Then d(A) = n + 1. Recall that the Weil
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function Ap(;)(f(2)) of f is defined by

I£E)llal)l
| <f(2),a(z) > |

A(z)(f(2)) = log

and our Weil function has the property that A (f) > 0. Applying Theorem
A4.3.6 with E; = eA"‘("‘)(f(z)),O <l < u,for z€e C— 8, there is a subset
B(z) of A such that #B(z) = dim L(z,A) = d(A) = n + 1 and such that
{aj(2) |j € B(z)} is a base of C"*1. Moreover

H( () laiqzn ()] )“’““"” < Tl I£(2)lllla; ()]l

| < £(2), iz, (2) > | | <£(2),a;(z) > |

JEB(z)

n @l
w2 L 7210, a0 > (4.1

where T is the set of all maps v : {0,...,n} — {1,...,q} such that
a,(0)(2), -, a4(n)(2) are linearly independent for some (and hence for al-
most all) z € C. It follows from (4.10) and (4.11) that

q

27 n
. i 48
Y w(i)my(r, H;) < /0 ’335‘,;: A, gy (reioy (£ (re "))% +Clay,...,a,),

i=1

where C(ay,...,a,) is a term depends only on ay,...,a,. Applying Theo-
rem A4.2.1 yields, for every € > 0,

27
/0 max ZAH,(,)m-v)(f(re“’))— < (n+1+¢/2)T5(r),

where the inequality holds for all r outside a set E C (0, +o00) with finite
Lebesgue measure. So the inequality

> w(@)mys(r,Hy) < (n+ 1+ €)Ty(r)
j=1

holds for all r outside a set E C (0,+00) with finite Lebesgue measure.
Thus

> omy(r,Hy) = > (1-6w(G))mys(r,Hj) + Y w(i)my(r, Hy)
j=1

j=1 =1
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9

< Z(l — 8w(§))my(r, H;) +8(n+ 1+ )Ty (r)
< D (1= 6w(G))Ty(r) +6(n + 1+ €)Ty(r)
ij=1

= {q—H ( Z w(j)—-n—l) +5}Tf(7‘)
1<5<q

= (Qu—n+1+¢Ty(r),

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. d

We now prove Theorem A4.3.2.

Proof. The theorem trivially holds when ¢ < 2n — m + 1. So we can
assume that ¢ > 2n — m + 1. By the assumption, f is m-nondegenerate
over Rg, that is m is the largest integer with the property that there is
an injection 7 : {0,...,m} — {0,...,n} such that {fy),.-., fom)} is
linearly independent over R 4. Without loss of generality, we assume that
{fo,---»fm} is linearly independent over R4. Soforeachr =m+1,...,n
there are co,ry...,Cm,» € R4 such that

fr = cO,rfO +...+ cm,rfm-
We now modify f and hyperplanes Hy,..., H; so that Theorem A4.3.4 can

be applied. Let f = [fo:...: fm] : C = P™(C). Then f is non-degenerate
over Rg and then

Ty(r) = T¢(r) + o(Ty(r)). (4.12)
We define the modified moving hyperplanes
Hi={lzo:...:2n]) € P™(C) |bjoTo + ...+ bjmTm = 0},
where

bji =aj1 +ajmt1Cm+1+ ...+ 8jnCin
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for j =1,...,¢q, and [ = 0,...,m. These new hyperplanes are clearly in
n-subgeneral position. We also have, for 1 < j < g,

Q;0%0+ ...+ ajnTn = bj'o.’l,‘() +...+ bj,m.’l?m.

Thus

Ay (f) = Ag, (). (4.13)
By applying Theorem A4.3.4 to f and to the hyperplanes H,..., fIq, com-
bining with (4.12) and (4.13), we obtain Theorem A4.3.2. a

A4.4 Applications

As an application of Theorem A4.3.2, we derive the Second Main Theorem
with moving targets for algebroid functions. Let f be a v-valued meromor-
phic algebroid function in |z| < +00, defined by an irreducible equation

A’ + Ay 1w’ P 4+ .+ 40 =0,

where A,, Ay—1,..., Ao are entire functions without any common zero. We
prove the following SMT with moving targets for meromorphic algebroid
functions.

Theorem A4.4.1 Let f be a v-valued algebroid function on C. Leta,,...,q,
be meromorphic functions with Ty, (r) = o(T¢(r)),1 < j < q. Assume that
a; Zaj fori#j4,4,5=1,2,...,9. Then, for any € > 0, the inequality

g

> my(r,a;) < (2v + €)Ty(r)

i=1
holds for all r € E, where E is a set of finite measure.

Proof. Given f, a v-valued meromorphic algebroid function on C, de-
fined by an irreducible equation

Ayw? + Av_l’wv_l 4+..+40=0,

where A,, Ay—1,..., Ao are entire functions without any common zero. Let
F=[Ap: A4 :...: A,]: C = P¥(C). Then, by a theorem of Valiron [Val]
we have

|ITy(r) = Tr(r)| < C,
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where C is a constant. For each j, 1 < j < ¢, the given meromorphic
functions a; defines a moving hyperplane H; defined by the equation

X0+an1+...+a;-’ v =0.

Because a; Z a;, the set of hyperplanes { H;} lies in general position by the
non-vanishing of the van der Monde determinant. Moreover, by the stan-
dard definition, m¢(r,a;) = mp(r, H;) + O(1). Thus the theorem follows
by applying Theorem A4.3.2 to F and H;,1 < j <q. O

Part B: Diophantine Approximation

B4.1 Schmidt’s Subspace Theorem with Moving Targets

We prove, in this section, the counterpart of the theorems of Part A in
number theory: Schmidt’s subspace theorem with moving targets. The
method of proof is similar to one used in Part A. It is worth noting that it
basically says that “Schmidt’s subspace theorem (with fixed targets) implies
Schmidt’s subspace theorem with moving targets.”

Let k be a number field. Let A be an infinite index set. A moving
hyperplane H indexed by A assigns, for each a € A, a hyperplane H(c).
Also a collection of points {x(a) € P™(k) | @ € A} will be regarded as a
map x : A = P"(k). We note that the definitions of the Weil function,
proximity function, and the counting function defined in chapter 3 can
be easily extended to the moving hyperplane H. Also, if H(a) = {[zo :

.t zn] | ao(@)zo + ... + an(a)zn, = 0}, we define the height, for the
hyperplane H(a), as h(H(c)) = h([ag(a) : --- : an(a)]). We note that
h(H(a)) depends only on H(c), not on the choice of ag(a),...,an(a).

Definition B4.1.1 Given moving hyperplanes H,,...,H, indezed by A

with Hij(a) = {[zo: ... : za] | ajo(@)zo+...4ajn(a)zn =0} for1<j< g
and a € A. An infinite indez subset A C A is said to be coherent with
respect to (Hi,...,Hy) if for every homogeneous polynomial P in vari-

ables X1,0,...,X1,n,X2,0,...,Xq,n either P(ay0(a),...,aqn(a)) vanishes
for all a € A, or it vanishes for only finitely many a € A.

Remark. The above definition is independent of the choice of the coeffi-
cients ajo(a),...,a;jn(c).
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Lemma B4.1.2 There ezists an infinite index subset A C A which is
coherent with respect to (Hy,...,Hy).

Proof. Suppose the statement is false; i.e., for any infinite subset A C A
there is a P € k[X1,0,...,X1,n,X2,0,...,Xq,n] such that

P(aio(a),...,aqn(a)) =0, for infinitely many o € A

but P(ai0(a),...,aqn(a)) # 0 for some a € A. We will construct a chain
of ideals in k[Xi0,...,X1,n,X2,0,...,Xq,n]: for any index subset A C A,
let I(A) denote the ideal generated by multi-homogeneous polynomials
Pe k[Xl'o, o X1 X205 Xq,n] such that P(al,o(a), cee ,aq,n(a)) =0
for all @ € A. Let A; = A. Then A; is infinite, and (by assumption)
not coherent. Therefore there is a multi-homogeneous polynomial P €
k[X1,0,...,X1,n,X2,0,...,Xq,n] and an infinite index subset Ay C A; such
that P(a1,0(a),...,aqn(a)) =0foralla € Az, but P(ayg(a),...,aqn(a)) #
0 for all & € A; \ A2. So I(A;) C I(Az), and I(A;) # I(A;). Continuing
in this way, we obtain an infinite chain of ideals I(A4;) C I(4;) C ... C
k[X1,0,...,X1,n,X2,0,...,Xq,n), which contradicts the fact that

kX103 X1,n, X2,0,---, Xg,nl

is Noetherian. O

Now we define R 4:

Definition B4.1.3 Let A C A be an infinite index subset which is coherent
with respect to (Hy,...,H,). Let RY be the set of equivalence classes of
pairs (C,a) where C is a subset of A with finite complement, a is a map a :
C — k, and (C1, a1) is equivalent to (Cs, az) if there is a subset C C C1NC,
such that C has finite complement in A, and such that the restrictions of
a1 and ap to C coincide. RY has an obvious ring structure. Moreover
we embed k into RY as constant functions. If j € {1,...,q} and p,v €
{0,...,n} are such that aj,, () # O for at least one a € A, then the pair
({a € A | aju(@) # 0},a = aju(@)/aj.(a)) lies in RY by coherence.
Moreover, the subring of RY generated over k by all such pairs is entire.
Therefore we define R4 to be the gquotient field of this subring.

Note that the field R 4 is independent of the choice of coefficients.
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Definition B4.1.4 Let H,,...,Hy be the moving hyperplanes indezed by

A. Amapx =[z0:...:2,]: A > P"(k) is said to be non-degenerate
over R (with respect to Hi,...,H,) if there is an infinite subset A C A,
coherent with respect to Hy,...,H,, such that xo,...,Zn is linearly inde-

pendent over R 4.

Remark B4.1.5 Let B C A C A be two infinite index subsets. Then it
is clear that if A is coherent then so is B, and if xg,...,Zn is linearly
independent over R 4 then it is linearly independent over Rp.

The following theorem is due to Ru-Vojta.

Theorem B4.1.6 (Schmidt’s subspace theorem with moving tar-
gets) Let k be a number field, let S be a finite set of places of k, let q be a
positive integer, and let € > 0. Let A be an infinite indez set, let Hy,...,H,
be the moving hyperplanes indezed by A, and let x : A = P™(k) be a col-
lection of points. Assume that h(H;(a)) = o(h(x(a))) for all j =1,...,q.
We also assume that x is non-degenerate over R (see Definition B4.1.4).
Then

1
k: Q]

holds for all o € A, where the mazimum is taken over all subsets K of
{1,...,q} such that the hyperplanes Hj(a),j € K, (or more precisely the
linear forms L;(a) defining Hj(c)), are linearly independent over k for
each a € A.

D max ) Au,s;(e)(x(2)) < (n+ 1+ €)h(x(e))

vES JEK

If, in addition, we assume that H;(a),..., Hy(c) are in general position
for each a € A, then by the product to the sum estimate, we have the
following theorem.

Theorem B4.1.7 Let k be a number field, let S be a finite set of places of
k, let q be a positive integer, and let € > 0. Let A be an infinite indez set, let
H,,...,H, be the moving hyperplanes indezed by A, and let x : A — P™(k)
be a collection of points such that:

(i) for each o € A, Hy(a),...,Hy(a) are in general position;

(i1) x is non-degenerate over R (see Definition B4.1.4); and

(iii) h(H;(a)) = o(h(x(a))) for all j =1,...,q.



Part B: Diophantine Approzimation 197

Then there ezists an infinite index subset A C A such that

> m(x(a), Hj(a)) < (n + 1+ €)h(x(a))

j=1

foralla € A.

We note that when n = 1, the non-degeneracy condition is automatically
satisfied if h(H;(a)) = o(h(z(a))), 1 =1,...,q.

We now prove Theorem B4.1.6.

Proof. Without loss of generality, we may assume that ¢ > n + 1 and
#K = n+ 1. Let T be the set of all injective maps p : {0,...,n} —
{1,...,q} such that H,(;(a),j = 0,1,...,n (or more precisely the linear
forms defining H,(;)(a), j = 0,1,...,n) are linearly independent over k
for each o € A. Let x = [z¢ : ... : 5] : A = P™(k) be the map given
in Theorem B4.1.6. Since x is nondegenerate over R, there is a coherent
infinite index subset A C A such that zy,...,z, are linearly independent
over R4. By Remark B4.1.5, if B is any infinite subset of A, then B is still
coherent and zy,...,z, are still linearly independent over Rp. Therefore
we may freely pass to infinite subsequences.

Choose aj,, . . ., aj,n such that, for each a € A, H;(a) is the hyperplane
determined by the equation ajo(a)zo + ...+ ajn(a)z, = 0. By coherence,
for each j = 1,...,q, there is jo such that 0 < jo < n and a;,;, # 0 for all
but finitely many a € A. Therefore, for j = 1,...,qand [ = 0,...,n we
may let (;; € R4 be defined by

Gi = aj1/aj,jo- (4.14)
Let £(s) C Ra be the vector space generated over k by

q n
n;; €N, ZZ"‘J = s}.

11,0 Nngq,0 Ni,n Ng,
i=1 j=0

We have L(s) C L(s +1). For each s, let £(s) = dim L(s). As noted by
Steinmetz, we obviously have

0<£(s) < ( q(n+1)+3_1)

S
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for each s and therefore

liminf £ 1)

s—o0  £(s) =1

Thus, given any § > 0 we may find a positive integer s such that
s +1) < (14 9)L(s). (4.15)

Fix such an s.

Let {b1,-..,byst1)} be a basis of L(s + 1) such that {by,...,by,)} is
a basis of £(s). Then (b,z,)u=1,... e(s+1); v=0,...n are, by condition (ii),
linearly independent over k. For j =1,...,q let h; € R4 be defined by

hi =Y Cami. (4.16)
=0

For each u € T, the bjh,q) (for j = 1,...,£(s) and I = 0,...,n) can be
written uniquely as k-linear combinations of the products b,z, for p =
1,...,4(s+1) and ¥ = 0,...,n. In other words there is an (n + 1){(s) x
(n + 1)€(s + 1) matrix C(u), with entries in & (not just in R 4) such that

bl h”(o) bl Zo
be(sy o) be(a+1)%o
: =C(u) : (4.17)
b1 h,u(n) bizn
be(a) () be(a+1)Zn

Forue€eT,l=0,...,n,and j =1,...,4(s), let fIl,j(u) be the hyperplane
in P(n+1)s+1)-1 defined by the corresponding row in C(u); i.e., if ci; (1)
denote the elements of C(u), then

H,;(n)

= {[3/1,0 CeeetUs+1)0 -t YLn et yl(a+l),n] € P("+1)t(’+l)—l(k)

Cie(s)+5,1 (V1,0 + - - - + Cue(a) 45, (n+1)2(s+1) (V)Ye(s+1),n = 0} (4.18)
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Since Hy(g)(@),-- -, Hy(n)(a) are in general position for each a, and since
To,...,Zn are linearly independent over R 4, it follows that A, (), - -, hu(n)
are linearly independent over R4. Thus, by the choice of bi,...,bys),
bjhuuy,i =1,...,€(s); L =0,...,n, are linearly independent over k. Hence,
for each y € T, ﬁz,j(p),O <1< mn1<j <), (or more precisely, the
linear forms defining H,,j (1)) are linearly independent.

Let k4 denote, as is standard, the set of (set-theoretic) maps A — k.
This is a ring; as before we embed k into k4 as constant functions. After
deleting finitely many elements from A, we may assume that a; ;,(a) # 0
for all a € A. Then (4.14) defines elements ¢!, € k* for all j and all 1.
Since L(s) is generated by monomials in the (;, the b; are all polynomials
in the (j;; these polynomials define corresponding elements bE € k4 for all
i=1,...,4(s +1). Let A}, ..., Al € k* be defined by (4.16). Then, after
deleting finitely many elements from A, (4.17) holds in k4.

From now on we work entirely in k* instead of R4, and omit the su-
perscripts f.

For each a € A let P(a) € P(*+D4s+1)-1(k) be the point defined by
homogeneous coordinates

P(a)
= [hi(a)zo(a) : ... : byer)(@)To(a),bi(@)zi() @ ... : byepr)(a)Zn(a)]
€ P(n+1)l(s+1)—1 (k) (419)

By applying Theorem B3.1.3 to the points
P(a) € P(n+l)l(s+1)—l(k)

with hyperplanes {ﬁ,,j(p) |1=0,...,n; j =1,...,£(s)}, there is a finite
collection £ of proper linear subspaces of P("*+1&(s+1)~1(k) such that

n_ {s)
0z Q]Zrygxgzl 11,5 (P(@) < (0 + 1)(s +1) + )h(P())

for all a such that P(a) ¢ Uyc. L- By the condition that x is non-
degenerate over R, we may pass to an infinite subsequence satisfying P(a) ¢
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ULec L for all a in the subsequence. Therefore,

n_ £(s)
iz Q]Z 300D Mt 0 (P(@) < ((n+ Dls + 1)+ Dh(Ple)

1=0 j=1
(4.20)
for all o € A.
We now translate the various terms above in terms of Schmidt’s sub-
space theorem with moving targets. First consider the height h(P,). We
have

ax(][b1 (@)o(A)lfos - - - [1be(a+1) (@) 2o (Dllws - + - [1Be(s+1) (@)Zn (@)]]0)
max(|[zo(a)lv, - - - [lEa(@)llv) - max(llba(@)llu, - - -, be(st1) (@)llo)
=[xl - max(|[bs(@)lfo, - - -, [1begas) (@)]o) (4.21)

and therefore

IN

h(P(a)) = h(x(a)) + o(h(x(a)))-

Next consider the Weil functions A 4 (P(c)). By (3.74), (4.14), (4.16),

(4.17), (4.18), (4.19), and (4.21)
Ao s (wy (P(0))

< log (nxuu b (@lle - max ||cu(,)+j.r(u)nv)

Hyj(v)v

1<r <l( +1) 1<r<(n+1)€(s+1)
— 108 (llete(sy+5.1 (b1 (@) To (@) + . - . + Cre(s)+j,(n+1)e(s+1) () De(ar1) (@) Zn

— log (nxnv (@)l max ||cu<a>+,~.r(u)n.,)

1<r <t( +l) 1<r<(n+1)£(s+1)
—log ([b; (@)huqy (@)llv)

= tog (Il _max W@l _max, s Gl )
~10g (IB5(@ll - 1Gu.0(@)20(0) + .+ Gy n(@)an(@)ll)
Jb5(l

max; <t <e(s+1) ||be(@)]lo

= A1),1:{,,(1)(&) (x(a)) - log Olélraé(n "Cu(l),r (a)”U - log
+0(1).
But

~o(h(x())) < ~log max lGu +(@)ll < O
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by the condition that h(Hj(a)) = o(h(x(a))) for all j = 1,...,q, and
likewise

1185 ()}
0< —-lo
= T8 maxicece(ern [0 (@)s

< o(h(x(a)))
since the b, are polynomials in the {;;. Thus

)‘v.H,_j(p) (P(a)) = )‘v.H,.(t)(a) (x(e)) + o(h(x())).

Combining this with (4.20) then gives

[k lQ] ;ge(s) Tg :Z Av,Hyy () (X(@))

n {(s)

[k : Q]Zma‘xzz w1 () (P(@) + o(h(x(a))

1=0 j=1
((n+1)(s+1) + 8)h(P(a)) + o(h(x()))
((n +1)€(s + 1) + 8)h(x(a)) + o(h(x())),

for all a € A. Therefore

<
<

I;I}Ga%( /\v Huay(a) (x(a))
Z(s +1) + _) h(x(a)) + o(h(x(a)))

< (("“) TORED)
< (n+1+eh(x(a))

for all @ € A. Thus Theorem B4.1.6 is proven. O

B4.2 The Degenerate Case

In this section, we consider the degenerate case of Theorem B4.1.6; i.e.,
the case where condition (ii) in Theorem 1.1 fails. We will use the Nochka
weights, similar to the one appearing in section A4.3.

Definition B4.2.1 Let H,,...,H,; be moving hyperplanes indezed by A.
The map x = [zg : ... : zp] : A = P™(k) is said to be m-nondegenerate
over R if m is the largest integer with the property that there is an infinite
subset A C A, coherent with respect to Hy,...,H,, and an injection 7 :
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{0,...,m} = {0,...,n} such that {x(0), ..., Tn(m)} is linearly independent
over R4.

Clearly 0 < m < n, and m = n if and only if x is non-degenerate over
R with respect to Hy,...,H,.

Theorem B4.2.2 (Ru-Vojta) Let k be a number field, let S be a finite set
of places of k, let q be a positive integer, and let € > 0. Let A be an infinite
indez set, let Hy,...,H, be the moving hyperplanes in P™ (k) indexed by A,
and let x : A = P™(k) be the moving points, such that

(i) for each a € A, H1(a),...,H,(a) are in general position;
(ii) x is m-nondegenerate over R (see Definition B4.2.1);
(iii) h(Hj(a)) = o(h(x(a))) for all j=1,...,q; and
(v) x(a) ¢ Hj(a) forallj=1,...,q and a € A.

Then there exists an infinite index subset A C A such that

m(x(a), Hj(a)) < (2n —m + 1 + €)h(x(a))
=1
for all a € A.
In particular, if only (i), (iii), and (iv) are satisfied, then there ezists
an infinite indez subset A C A such that
q

Y_m(x(a), Hj(a)) < (2n + €)h(x(a))

=1

for all a € A.
Now we introduce the concept of u-subgeneral position.

Definition B4.2.3 Let n, u, and g be positive integers with u > n and
g >2u—-n+1. We say that hyperplanes H,,...,H, C P"(k) are in u-
subgeneral position if for every set P C {1,...,q} with #P = u + 1, there
are p(0),...,u(n) € P such that H,q),...,Hyn) are in general position.

The significance of the condition of u-subgeneral position is that Hy,...,H,
are in u-subgeneral position if and only if there is an embedding P™ — P*
and hyperplanes Hj,..., H; in P* such that H; NP" = H; for all j and
such that Hj,..., H, are in general position.
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The following theorem is a trivial consequence of Theorem B4.2.2.

Theorem B4.2.4 (Ru-Vojta) Let k be a number field, let S be a finite
set of places of k, let n be a positive integer, let u be an integer with u > n,
let q be an integer with ¢ > 2u—n+ 1, and let € > 0. Let A be an infinite
indez set, let Hy,...,H, be the moving hyperplanes in P™(k) indexed by A,
and let x : A = P™(k) be moving points, such that

(1) Hi(a),...,Hy(a) are in u-subgeneral position for each o € A;
(i) x is non-degenerate over R (Definition 4.1.4); and
(iii) h(H;(a)) = o(h(x(a))) for all j=1,...,q

Then there ezists an infinite subset A C A such that

> m(x(a), Hj(e)) < (2u—n + 1+ e)h(x(a))
Jj=1
foralla € A.

We will prove Theorem B4.2.4 first and then derive Theorem B4.2.2
from Theorem B4.2.4.

Proof of Theorem B4.2.4.

Proof. The theorem is trivial when ¢ < 2u — n + 1, so we may assume
that ¢ > 2u—n+1.

Since x is nondegenerate over R, there is a coherent infinite subset A C
A such that zq, . .., z, are linearly independent over R4. Let H;,1 < j < g,
be the given moving hyperplanes P™(k) indexed by A. For every a € A, let
wi(a),...,wq(a) be the Nochka weights and let §(a) be the Nochka constant
associated by Lemma B3.4.3 to the hyperplanes Hy(a),...,Hy(a). The
u-subgeneral position condition implies that, by the product to the sum
formula(Lemma B3.4.4), after passing to an infinite index subset (which
we still denote by A), for each v € S, there exist distinct i(v,0),...,i(v,u)
among {1,...,q} such that

ZEwJ(a Ao, () (X(a))

vGS] 1

> [ Q] Z sz (v l) a)’\v Hio, 1)(a)(x(a)) + O( ) (422)
vES I1=0
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for all a € A (after passing to an infinite index subset, which we still denote
by A). Since our Weil functions have the property that A, g(x) > O(1)
with a constant depending only on n and v, we can apply Theorem B3.4.3
with Ej(a) = (n +1)M exp(Ay, 1, () (X(2))), and Y = {i(v,0),...,i(v,u)},
where N, = [k, : Qp]. Then there is a subset M (v,a) of Y such that:

(i) #M(v,a) =dimL(a,Y)=d(Y)=n+1,
(i) {Hj(a)|j € M(v,a)} lie in general position, and

(iii) Hewa(u.l)(a))\u.ni(v',)(a)(x(a)) <C H ef\u.nj(a)(x(a))’ where C is
1=0 JEM(v,a)
a constant depending only on n and v.

Since there are only finitely many subsets M (v,a) C Y, after passing to an
infinite index subset, we may assume that M (v,a) = M (v) is independent
of a. So

Zwi(u,l) (a)’\vyHi(u,l)(a) (x(a))
1=0
< Z Ao, i, (o) (X(a)) + O(1)
JEM(v)

S I;Itlea‘%c e A1.) H,,([)(a) (x(a)) + 0(1) (423)

where T is the set of all maps u : Z[0,n] = {i(v,0),...,%(v,u)} such that
Hy)(),...,Hym)(a) are in general position for all a € A. Applying
Theorem B4.1.6, for each u € T (note that x4 depends on v),

k:qQ] Q] Z uer Z v, Hyqry (2 (X(@))
< (n + 1+ e)h(x(a)) + o(h(x(c))). (4.24)

Therefore, (4.22), (4.23), and (4.24) imply that

ij(a)m(x(a)sHj(a)) = [k Q]Zzwj(a uH,(a)(x(a))

j=1 veS j=1
(n 4+ 1+ e)h(x(a)) + o(h(x(a)))

IA
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for all @ € A. Combining with Lemma B3.4.3, we have

q

Y mx(@),Hi(@) = Y (1-8(aw;(@)m(x(a), H;())

j=1 j=1

+ " b(a)w;(a)m(x(a), Hj(a))

j=1

< D (1 -8(a)w;(@)h(x(a))

j=1

+60(a)(n + 1 + €')h(x(a))
< {q - 6(a) (ij<a) —n-1- ) }h(x(a))
= (g-g+2u—n+1+0(a))h(x(a))
< (2u-—n+1+eh(x(a)),

for all a € A. 0

We now prove Theorem B4.2.2.

Proof. The theorem trivially holds when ¢ < 2n — m + 1. So we can
assume that ¢ > 2n —m + 1. Let H;,..., H; be the given moving hyper-

planes in P"(k) indexed by A. Let x = [z¢ : ... : z,] : A = P"(k) be
the given points. Let 5 : {0,...,m} — {0,...,n} be an injection and A
a coherent subset of A such that z,q),...,Zm) are linearly independent

over R4 (these exist by the definition of m-nondegeneracy). Without loss
of generality we may assume that u(i) =i for all 7 = 0,...,m. By Remark
B4.1.5, for any infinite B C A, B is coherent and {zo,...,Zm} is linearly
independent over R g, so we may freely pass to infinite subsequences.

Since m is chosen to be maximal, for each r = m + 1,...,n there are
€0,ry- -+ Cm,r € R4 such that

Tr =CorZo+ ...+ CmrTm.

Forj=1,...,qandl=0,...,nlet {;; € R4 be defined by (4.15) as before,
and let C;,, € k4 be their liftings to k4. Since each ¢ir can be written as a

rational function of the (j,, there are liftings cE,, to k* such that

z.(0) = cg,,(a):co (&) +...+ cEn‘r(a)a:m(a) (4.25)
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for all but finitely many o € A. After throwing out finitely many a, we
may assume that this equation holds for all & € A. As before, from now on
we work entirely in k4 and omit the superscripts b.

We now modify x and H,, ..., Hy, so that Theorem B4.2.4 applies. The
basic idea is that each x(a) lies in a linear subspace of dimension m, which
depends on a, but whose height does not grow quickly. Let

y= [.’E”(o) Dellt :L‘”(m)] A Pm(k)
We claim that
h(x(a)) = h(y(a)) + o(h(x(a))). (4.26)

In fact, it is obvious that A(y(a)) < h(x(a)). On the other hand, (4.25)
holds for all a € A, so the opposite inequality follows since h(c;r(a)) =
o(h(x(a))). So the claim is true.

We now define the modified moving hyperplanes

Hi(a) ={[zo:...: zm] € P™(k) | bjo(a)zo + ...+ bjm(a)zm = 0},

where bji(a) = aji(a) + ajmy1(a)cmyr1(a) + ... + ajn(a)c,n(a) for all
j=1,...,q,alll=0,...,m, and all a € A. These new hyperplanes are
clearly the restrictions of the original hyperplanes to the linear subspaces
mentioned above, so Hj, ..., H, are in n-subgeneral position. We also have

a;j,0ZTo + ...+ aj,nTn = 050Z0 + ...+ bj,m.’l,'m
in kA forall j=1,...,q. Thus

Av,H(a) (X(@)) = Ao 111 () (¥ (@) + o(h(x())), (4.27)

for all j and all v. By applying Theorem B4.2.4 to y and to the hy-
perplanes Hj,...,H;, and combining with (4.26) and (4.27), we obtain
Theorem B4.2.4. a

B4.3 Applications of Schmidt’s Subspace Theorem with Mov-
ing Targets

As an application of Theorem B4.2.2, we first give a proof of Wirsing’s
theorem with moving targets which generalizes Roth’s theorem with moving
targets.
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Theorem B4.3.1 (Wirsing’s Theorem with Moving Targets) Let k
be a number field and let S be a finite set of places of k. Let r be a positive
integer. Let A be an infinite index set, let ay(a) € k for each v € S and
a € A, and let z(a) € k with [k(z()) : k] < 7 for all & € A, such that

(i) h(z(a)) = o0 and
(i1) h(ay(a)) = o(z(c)) for each v € S.

Then there ezists an infinite subset A C A such that

llz(e) — ay(a)llw 1
1] II max(1, ||z(a)|lw) - max(1, ||lay(e)|w) z Hi(z(a)) (2())?rte

VES WEMp(2(a)), WiV
(4.28)

for all o € A, where Hi(z) is the (relative, multiplicative) height of  over
the number field k.

Proof. It will suffice to prove the statement under the additional assump-
tion that [k(z(a)) : k] = r. For those points let

f(X)=A(a)X" +...+ Ag(a)

be the minimal polynomial of z(a) over k. This defines a collection of

points Py(q) = [Ao(a) : ... : Ar(a)] in P7(k). It is easy to verify that
max(||Ao|lv,---, || Ar
Cl,v . (” 0||||A “ ” ”v) < H max(1,||a:(a)||w)
riv WEMp(a(a)), WV
ax(||Aollv,-- -, ||Ar
< - mllolln A w29)
Tiv

for all v € My, where C,, and C;,, are positive constants independent of
a. Moreover, Cy,, = C2,, = 1 if v is non-Archimedean. Hence the heights
of z(a) and P;(,) are related by

CrHi(Pr(a)) < Hi(z(a)) (z(@)) £ CoHg(Pr(a)) (4.30)

where C; and C; are positive constants independent of a.
Foreachv € S and a € A, a,(a) determines a hyperplane H,(a) defined
by the equation

Xo+ ap(@) X1 +...+al(a)X, =0.

The hyperplanes H,(a) are defined over k, and the set {H,(a)}ves (ignor-
ing duplicates) lies in general position for each a € A by the non-vanishing
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of the van der Monde determinant. Moreover, it is easy to check that the
left-hand side of (4.28) is related to the Weil functions of P,(4) with respect
to H,, as follows. First of all,

I[I  max(lllen(@)llw) = max(l, las(a)ls)"
WEMp(2(a)), w|v
= max(L, |lay(a)llv, lav(@)II3, - .-, llau(@)I7)- (4.31)

Also, we have

I @ -au@)lle = 1IN (@(@) ~as(@))lv = IIf (as(@))]]-

wGM;,(,(a» , wlv
(4.32)

Combining (4.29), (4.31), and (4.32) then gives
I llz(e) = ay()llw

max(1, [|z(a)||w) - max(1, ||ay(@)]|w)

—log
WEM(a(a))» w|v
= A‘u,H.,(cz) (Pz(a)) + 0(1) (433)

where the implicit constant in O(1) is independent of a. By (4.30) and
(4.33), (4.28) is equivalent to

ﬁ D AuHo(@) (Pra)) < @+ )h(Pa() + O(1).

This follows immediately from the last assertion of Theorem B4.2.2. O

Theorem B4.2.2 also gives the finiteness of the number of integer solu-
tions of decomposable form equations.

For any z € k — {0}, let Ns(z) = [],csllzllv denote the S-norm of
z. Also for x = (zo,...,ZTm) € k™*!, define the S-height as Hg(x) =

HvGS (1]l

Theorem B4.3.2 (Gyoéry-Ru) Let g, m be positive integers with ¢ > 2m.
Let ¢,v be real numbers with ¢ > 0,v < ¢ —2m and G a finite extension
of k. Forn = 1,2,..., let Fo(X) = Fn(Xo,...,Xm) € Os[X] denote
a decomposable form of degree q which factors into linear factors over G,
and suppose that these factors are in general position for each n. Then there
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does not exist an infinite sequence of Og-non-proportional x, € Ofg"“,n =

1,2,..., for which

0 < Ng(Fn(xn)) < cHs(xp)” forn=1,2,..., (4.34)
and

h(F,) = o(h(xy)) if h(xn) 200 asn— o0 (4.35)
hold.
Proof. Assume that there is an infinite sequence X, = (Zo,n;.--,Tmmn) €

OF*! which satisfies (4.34) and (4.35). First consider the case when the
values h(x,) are bounded. We may assume without loss of generality that
Zo,n # 0 for each n. Then the h(xn/zo,n) are bounded and this implies
that X, /To , may assume only finitely many values in k™*+!. Hence there
are infinitely many n such that x, = zo,nXo for some xo € k™*+!. For these
n we deduce from (4.34) that

0< Ns(.’l:o,n)qNs(Fn(xO)) _<_ CNs(:l:o,n)VHs(xO)v

and hence Ng(zo,n) are bounded. Since zo,, € Og, it follows that there
are infinitely many n for which ¢ n = nnzy with some 77, € O% and fixed
zg € Og. This implies that for these n the x, considered above are O%-
proportional, which is a contradiction.

Next consider the case when h(x;,) are not bounded. We may assume
that h(x,) — oo as n = oo. Then, by assumption, (4.35) also holds.
Further it follows that Hs(x,) = o0 asn — o0. For n = 1,2,..., let
Fo=Lyn...Lgn be afactorization of F;, over G into linear factors. Then

max h(Ljn) < h(Fy) +

where ¢, is a positive constant which depends only on ¢, m and G. Together
with (4.35) this gives

max h(L;n) = o(h(xn)) as n = oo. (4.36)
j
Let M(G) denote the set of places of G. For v € M(G), define and

normalize || ||, in a similar manner as over k above. Further, let T denote
the set of extensions to G of the places in S. Then we deduce from (4.34)
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that

0 < Nr((Fa(%n)) = Ns(Fa(xa))I%* < (cHs(xn)") 6 = e Hr(xa)",
(4.37)
where ¢; = cl¢*]. Here Nz( ), Hr() are defined over G in the same way
as Ns( ), Hg() over k.
Let € > 0 with 0 < € < ¢ — 2m — v. Then by Theorem B4.2.2, there is
an infinite subsequence x,, € 0’"“, k=1,2,..., of {x,}, without loss of
generality, we assume {x,} itself, such that

1 [1%nllo - 1 Zj,nllv
log 122 < (2m + €)h(Xp).
- Z; & Ml = O ORER)

However, Fy(xn) = [1j=; Ljn(Xn). Furthermore, in view of x, € oty
we have

h(xp) < —=——=log Hr(x,)-

[G Ql

Hence it follows that

X9 - q'_ L'n
H “ ”v j=1 ” J» “” < HT(Xn)2m+e: (438)
o 8 [|F7 (%0 )]0

whence

Hg‘(xn) : HvGT qul [[Zj,nllv
Nr(Fn(xs))

Since the coefficients of L;, are T-integers,

< Hyp(xp)?™ e, (4.39)

q
ITITILsmlle > 1, forn=1,2.... (4.40)

veT j=1
Furthermore, it follows from (4.37) that
Nr(Fn(xp)) < coHr(x,)” forn=1,2.... (4.41)
Combining (4.39), (4.40) and (4.41) gives
Hr(xp)? < coHr(x,) T2mte,

Since Hr(x,) = o0 as n — oo, and ¢ > v + 2m + ¢, we derives a contra-
diction. O
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Theorem B4.3.2 implies the following theorem.

Theorem B4.3.3 (Gyodry-Ru) Given positive integers ¢, m with ¢ > 2m,
a finite extension G of k, and a sequence of polynomials G, (X) € Os[X]
in X = (Xo,...,Xm) such that deg(Gnr(X)) < ¢ —2m for n = 1,2,....
Let F,,(X) = Fr(Xo, ..., Xm) € Og[X] be a sequence of decomposable forms
of degree g such that F, factors into linear forms over G, and suppose
that these factors are in general position for each n. Then there does
not exist an infinite sequence of Og-non-proportional x, € (’)fs'.1+1 sat-
isfying (i) Fu(xn) = Gnlxn) # 0, n = 1,2,..., (ii) log Hs(Gn) =
o(log Hs(xy)), if Hs(xn) — o0 and (it) h(Fy,) = o(h(xs)), if h(x,) —

o0 as n — oo.

Note that Theorem B3.4.8 is a special case of the theorem above when
F,(X) = F(X), which is independent of the index n.
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The Correspondence Table

Nevanlinna Theory
Theorem A4.2.1
Theorem A4.2.4
Theorem A4.3.2
Lemma A4.3.4
Theorem A4.4.1

Diophantine Approximation
Theorem B4.1.6

Theorem B4.1.7

Theorem B4.2.2

Lemma B4.2.4

Theorem B4.3.1



Chapter 5

Equi-dimensional Nevanlinna Theory
and Vojta’s Conjecture

Part A: Nevanlinna Theory

To generalize the Nevanlinna theory to the case of higher dimensional com-
plex manifolds, we note that if f : A — M is holomorphic, where A, M
are complex manifolds with dimA < dim M, then f(A) never covers a
non-empty open set of M, and moreover, even in the equidimensional case
dim A = dim M, we know that the Fatou-Bieberbach map f : C™ —» C™
satisfies |df| = 1 and f(C™) # C™. So to get a reasonable generalization,
we should regard @ € P!(C) not simply as a point, but as a sub-variety
of P}(C). In this reason, a higher dimensional Nevanlinna theory usually
deals with holomorphic maps intersecting divisors in M. However it is, in
general, very hard to establish the Second Main Theorem in the higher di-
mensional case. P. Griffiths et al. [Ca-G] in the 1970’s successfully proved
the S.M.T. for the equi-dimensional holomorphic mappings, i.e., holomor-
phic maps from C"™ to a projective compact complex manifold M with
dimension 7. In this section, we will introduce their results. However, here
we will not follow their method. Instead, we will use the logarithmic deriva-
tive lemma to prove the main theorem. We note that this chapter can be
regarded as a generalization of the results in Chapter 2.

A5.1 Logarithmic Derivative Lemma for Meromorphic Func-
tions on C™

In this section, we extend the Logarithmic Derivative Lemma to mero-
morphic functions on C", following the methods of A. Biancofiore and

213
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W. Stoll [Bia-S], and Z. Ye[Ye]. First we introduce some notations. For
z = (z1,...,2,) € C", we define, for any positive number r, |z| = (|z1]? +
ot 2oV, Cu(r) = {2z € C* | |2| < 7}, Cy[r] = {z € C" | |2| < r}, and
Sn(r) = {z € C™ | |z| = r}. The sphere S,(r) is considered to be an ana-
lytic manifold oriented to the exterior of C,(r). Define d¢ = @(5 - 9).
The pull-back of the form

on = d°log|z|* A (dd°log|z[*)*™! on C™ - {0}

defines a positive measure on S, (r) with total measure 1. For z € C™— {0},
let wy(z) = dd°log|z|?. For z € C™ let v,(z) = dd°|z|> and pp(z) =
(dd°|z|*)™. Then p, is a Lebesgue measure on C" such that C,(r) has
measure 727,

A divisor on C" is a formal finite sum D = 3. n;D;, where n; € Z
and Dj is a sub-variety of codimension 1. Each n; is called the order of D,
while each Dj is called the support of D. If n; > 0 for all j, then we call
D an effective divisor.

To each meromorphic function f on C", we can assign a divisor Dy
associated to f, while the supports consist of the union of the set Ny of
zeros of f and the set Py of its poles. The order of Dy is equal to the order
of zero on every component of Ny and the order of the pole with a minus
sign on every component of P;. For a € CU {00}, let D} be the divisor
associated to f — a if a € C and the divisor associated to 1/f if a = oo.
Let

ns(t,a) = t2'2"/ L
D3NCa[t]

The counting function of f with respect to a is defined by
T dt
Ny(r0) = [ nst,0) = ns0,0) 5 +ns0,0)logr,  (5.)
0

where ns(0,a) = lim;—0ny(t,a) and the integration [p. g qva~" is in
! n

the following sense: write D¢ = ) m;M;, where M; are the irreducible

components, then

/ v;‘_l = ij/ vﬁ‘l.
D3NCat] M;NCn,[t]
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The proximity function mg(r, a) is defined by

my(r,a) = / logt ——an, if a0 (5.2)
Sa(r) |f —al
and
my(r,00) = [
S

Let T¢(r) = mg(r,00) + Ng(r,00). Similar to Theorem A1.1.5, the First
Main Theorem states

Ty(r) = mys(r,a) + Ny(r,a) + O(1).

log* |f| on. (5.3)
)

ni\T

Lemma A5.1.1 Let r > 0 and let h be a function on S,(r) such that ho,
is integrable over S,(r). Let p(w) = /72 — |w|2. Then

ho, = r2-2n hw, L
/S"(r) o /Cn—llrl </Sl(p(w)) (w ()01(0) Pr-1(w)

Proof. Define E = {(21,...,2,) € Sp(r) |0< z, € R} and F = S, (r) —
E. Then E is a closed subset of S,(r) with zero (2n — 1)-dimensional
Hausdorff measure. A bijective map

g9:R(0,27) x Cpy(r) = F

of class C* is defined by g(¢,w) = (w, p(w)e*?) for all ¢ € R(0,27) and all
w € Cp—1(r). Let ¢ be the variable in R(0, 27) and let wy, ..., w,—1 be the
complex variables on C"~! with w; = z; +y;1/—1. The partial derivatives
96,921,915 " * y9zn—119y._, are pointwise linearly independent over R and
g is perpendicular to these derivatives. Here g(¢,w) points in the direction
of S,—1(r) at g(¢,w). Since

det(g, 96, 9z1s Gyrr* s Jzno1sJyny) =7° >0

the map g is an orientation preserving diffeomorphism. We shall compute
g*(0,). Write z = (21,...,2,) € C" and w = (wy,...,wp—) € C*?
where actually w; = z,...,wp—1 = zp—1, hence z = (w, z,). We have

g (@l2]*) = dlwl* + (1/2m)(r? ~ |w|*)d¢
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9" (dd°[2|*) = dd°|w|® ~ (1/2r)d|w[* A d¢

n

9" (dala ()" = (@)™ - "2l A dg A (dd°ful?)"

2

g*(d|z]* A (dd°[2*)"71) = (1/27)(r® — w]*)dg A (dd°|w|?)"

+ "2—'1d¢ A dwl? A d¥wl? A (dde|wl?)™2.
(3

It is easy to check that |w|?(dd®|w|?)"~! = (n—1)d|w|>Ad®|w|?A(dd¢|w|?)"~2,
hence
9°(d°lz| A (dd°|2[)*™) = (1/2m)rdg A (dd°|w|*)"".
Now |g|?> = r? and (dd°|w|?)*~! = pn_1, we obtain
9*(0n) = g*(d°log|z|* A (dd°log|z[*)""") = g*(r~>"d’|z[* A (dd°|2[*)""")
= (1/2m)r?>~2"dp A ppy.

Fubini’s theorem implies that

27
/ hop, = r?=2n / L [ h(w, p(w)e)dd A pa_y (w).
Sa(r) Cnoalr] 27 Jo |

Let f be a meromorphic function on C®. Take w € C*~! and define,
for z € C, flu)(2) = f(w,2).

Lemma AB.1.2 Let f be a non-constant meromorphic function on C",
and let a € CU {oo}. Then, forr >0,
1 ,
[, PV e @) < (),
n—1|(T
where flu) = f(w,z) forw e C* ! and z€ C.
Proof. For each j € N[1,n] define 7; : C* = C*~! by
(215 oy 2n) = (21,01 Zj=1,Zj41, - - -y Zn)-

Then
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Define A = C,(r) Nsupp D$. If A is empty, then the lemma is trivial.
Assume that A is not empty. Then A is a pure (n — 1)-dimensional subset
of Cp(r). Define m# = mp|a. Then m(A) C Cp_y1(r). The set E = {z €
A | rank,m < n—1} is analytic in C,(r). Let Eo be the union of all (n —1)-
dimensional branches of E and let E; be the union of all other branches
of E. Then Ep and E; are analytic in C,(r) with dimE; < n — 2 and
dimE; = n—1if Eg # 0. Also Ej = n(Ep) is analytic in C,_1(r) with
Eo = n;1(Ey) N Cu(r). Therefore 7*(pp—1) = 0 on Ey. The complement
Ao = A— Ej is open in A and Ao N E; is thin analytic in Ag if Ag # 0.
Then A; = Ao — E; = A— E is open in A. A thin analytic subset E;
of A; exists such that = is locally biholomorphic on As = A; — E;. Then
F = n(Eo U E; U E») has a measure of zero in C*~1. Also B, = 7(A2) is
open in C*~!. Here B = 7(A) = B, U F and B3 = B, — F differ by sets of
measure zero from Bs.

The intersection S (r) Nsupp D$ has a (2n — 2)-dimensional Hasudorff
measure of zero. If w € Cp_1(r), then

77 (w) = ({w} x C1(Vr? = [w[?)) N 4

and for almost all w € C,_1(r) we have
77} (w) = ({w} x C1[y/r? - [w|?]) N suppD}.

For allw € C,_1(r)— B, we have 7~} (w) = 0, hence ny, (1/r? — |w[?,a) =
0 for almost all w € C,—1(r) — B. If w € Bj, then

7 (w) = ({w} x Cr(Vr? = [w?)) N A.

Take P = (b,c) € A2 with b = m(P) € Cp_1(r) and ¢ € C. There
exist open, connected neighborhoods V' of b in C,_;1(r) and W of ¢ and
U=V xWof Pin C,(r) withUNA; =UNAsuchthat 7 : UNA =5 V' is
biholomorphic. Let A be the inverse map. Then a holomorphic function h :
V — W exists such that A(w) = (w, h(w)) for all w € V. The multiplicity
v§(w,z) = ¢ is constant for all (w,2) € UN A. A holomorphic function
H :U — C - {0} exists such that

f(ws z) =a+ (Z - h(w))qH(wa Z)

for all (w,z) € U. Therefore v}(w,z) = ¢ = Vi) (2) for all (w,z) e UN A.
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All together we obtain
" 2ns(r,a) = / V?U,’:_l > / Vi (pn—1) = / viT* (pn—-1)
A A Ao
[men=[ ¥ vwemw
Az B

2 (w,z)EA2

Z V?[w] (Z) pn—l (w)
Bs \ seci(v/r—Tul)

/1mA 0P, a)pnos (w)
Bg

= /;nf[wl( T2 — |w|2aa)/’n—l(w)

/ N (VT2 = |w]?,a)pn—1(w).
Chn-1[r]

O

Lemma A5.1.3 Let f be a non-constant meromorphic function on C™.
Then for any 0 < a < 1/2 there is a constant C > 1 such that for any real
numbers r and R withr < R and 1 < j <n, we have

a a(2n-2) a
LT oo (™ ()
Sa(r)

f T r(R-r)
Proof. Without loss of generality, we take j = n. Let s = (R+7)/2 and
write p(w) = /r? — |[w|? and P(w) = y/s? — |[w|?>. Then Lemma A5.1.1

implies that
/ fz.. aan — ,,,2—2n/ / f['"'](z)
Sa(r) Cn-1[r] S1(p(w))

f f[w](z)

We write ng(t,0,00) = ng(¢,0) + ng(t,00) and my(t,0,00) = ms(t,0) +
my(t,00). By Lemma Al.2.2,

/ f[lw](z)
S1(p(w)) f[w] (Z)

< Csec(ar/2) (

o1 (Z)) pr-1(w).

a

g1 (Z)

P(w)
p(w)(P(w) - p(w))

) m$ ., (P(w),0,00)
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%ﬁ;m"ﬁwl (P(w),0,00).

So, by Lemma A5.1.1,
f['w](z)

fz a - / </ a )
> op =17 01(2) | pn-1(w)
/sn(r) " Cuailr] \Usi(p(w)) | frul(2)

7
. Pwmg,,(P(w),0,00)\ ®
< /c"_llrlcs““"'/” (S e)

1
+ pa(w) n’?[w](P(w)’O) OO)] pn—l(w)- (5.4)
Clearly, for any w € Cp_[r], since p(w) < P(w)r/s,
P(w) s
P) - p) = s—1 (5:5)
1
Forany0 <8< 1,set C = ——pn-1(7), then
y Cor(l] (1- |‘r|2)ﬁ/2p 1(7)
1 2—2n/ 1
— o (W) = 7 1
/cn-l[r] P o) PP Ryt
= Crinh (5.6)
For any a € CU {c0}, applying lemma A5.1.1 gives
hmy(s,0) = [ log" 1/((2) - @)lon(e)
Sn(s)
= / (/ log* 11/(frw)(2) — a)|ou (Z)) Pn—1(w)
Cn-1[s] \/S(P(w))
= / M fru) (P(w),a)pn-1(w)
Cn—l[O]
> [ mp(P)aea o) 6.7
Cn—llf‘]

Therefore, using (5.5), the Hélder inequality, (5.6) for 8 = a/(1 — @), and
(5.7), we obtain

r22n P(w) Y .
an[rl (P(w)(P(w) —p(w))) mf[w](P( ), 0, OO)pn_l (w)
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@ m§ (P(w),0,00)
() OIS
Cn-1[r]

IA

s—r p*(w)

l-a
x ( /c n_l[r](p(w)):ﬁpn_l(w))

c <__3_)a (i)“‘”"_z) mS(s,0,00). (5.8)

r(s—r) T

Similarly, using the Hélder inequality, (5.6) for 8 = a/(1 — a), and Lemma
A5.1.2, we obtain

1
T2—2n/ ——n9 P(w ,O,w 1 (w
Cn-1fr] p*(w) f[w]( ( ) )p 1( )

< 2o (/ Ny (P(w), 0, OO)Pn—l(w)>
Cn—l[r]

l-—a

2-2n, 2n-2 Crin-2\17®
< (220 4(5,0, 00))* (m)
C /s a(2n-2) o
< ;3(;) n$(s,0,00). (5.9)

Noting that s = (R+7)/2 we have my(s,00) < T¢(R)+0(1) and my(s,0) <
T¢(R) +O(1), s/r < R/r, and s/r(s —r) <2R/r(R —r). Also

R R 2R
< — —_— _—
ny(s,00) < ——Ny(s,00) < 7—T(R) = 57— T¢(R),
and ny(s,0) < 2&(Ty(R) + O(1)). Combining these estimates with (5.4),
(5.8) and (5.9) proves the Lemma. 0O

Let f be a meromorphic function on C*. Let I = (i1,...,i,) be a
multi-index with i; € Z* U {0} with 1 < j < n. We denote the length of I
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by |I| = 37, i, and define

Then Lemma A5.1.3 is extended to the following theorem.

Theorem A5.1.4 Let f be a meromorphic function on C™ and let I =
(i1,---,in) be a multi-index with length | = 3°7_, ;. For any o with 0 <
la < 1/2, there are positive constants C, Cy, Cy such that for anyr < p < R,

we have
a p la(2n-2) p la
w s of) (G5 lomw

/S..(r)
s (8] g

Proof. We prove the theorem by induction on the number of non-zero
elements in I. First we assume that there is only one non-zero element in
I,say I =(l,0,...,0). Then

6I_f — lel _Jz f‘;—l le

f o f S fam fuee S

where fZi means &' f/8z}. It turns out from the Hélder inequality and
Lemma A5.1.3 that, for r < p,

o'f

f

a [
JATN 2y A =N L 1
.=
Sar) | f Sar) [ Fai-r| | S i
1
(/ f;{ o )1/1 (/ le la >1/1
an DI — a'n
Su(r) | fai-1 sar) | f

£ 10(211—2) p la lo
< c(f) o) Tha @ TG TR (5.10)
By Lemma A5.1.3, we have, for any p < p’' < p" <R,
Ty, () = m,; (¢',00) + Ny ; (¢', 0)
< mf,{/f,{—l (pl: °°) + mfz{—l (pl) °°) + 2Nf,{-1 (Pl) 00)
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a
1 fi
< o[ gt sy, ()
a Js,(r) fai- 4
1 |®
< —log+/ f‘ on+2T7 ,_,(p")
a Sa(r) | f2imt “

"

p a(2n-2) pu
1 1
< 2Tf,{-1(/’ )+C (F) WTgl—l(P )¢, (5.11)

where C > 1 is a constant. Using (5.11) with j = 1 -1, p' = p and
p" = (p+ R)/2, we have

a(2n-2) 2R
Ty .(p) < 2T _,(p)+Clog (—)
*1 ! p p(

R—_p)Tf,;_z (R+ p)/2)} :

(5.12)
Using (5.11) with j =1 -2, p' = (p + R)/2 and p" = (p + 3R)/4, we have

Tr1-2 (B +0)/2) < 2Ty o (R +£)/2)

R a(2n-2) S8R
+C lOg { (;) mTf';_a ((3R + p)/4)} .

In this way, using (5.11) to fz;_x,---, fz, consecutively, and combining it
with (5.10) proves the theorem in this case.

Now suppose the theorem is true when the number of non-zero elements
inIisl—1.Set ;3 = (i1,-..,%n-1,0). Then

Q{i B (a-’n—lf)z:-‘" 61""f

and =i, + |In_1].

a

On

(@™ f) in
iy

fool7
Sa(r)
2a 1/2 20\ 1/2
On . On
(/s.,(r) ) <</Sn(r) f )

[y
Therefore, from the Holder inequality and the induction hypothesis,
f
6In—1f
c p)(inw —ihaan=2) ¢ p ) (ntle-iDe
(7‘ r(p—r)
T, (0)- T 1(p). (5.13)

7AN
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Again making use of (5.11), we get

a(2n—2)
Tyra-14(p) < C1T¢(p) + C2 log { (%) p(—RR_—p)Tf(R)} :

It turns out from (5.13) that

@ p la(2n-2) p lo
e o) ) o
oo ) (esn) lene

+Cilog { (%)“(2" ! p(RR p) T (R)}] la'

This completes the proof. ]

o'f

f

The following Theorem is due to A. Biancofiore and Stoll (see also [Ye]).

Theorem A5.1.5 (Lemma on the Logarithmic Derivative) Let f be
a non-constant meromorphic function on C™ and let I = (i1,...,i,) be a
multi-indez with length | = Z;‘___l ij. Assume that T¢(ro) > e for some ro.
Then for any € > 0, the inequality

/ log*t
Sn(r)

holds for all T > 1o outside a set E C (0,400) with [ dr < oo, where C is
a constant which depends only on f.

1
of on < llogTy(r) + (1 +€)logT log T (r) + C

Proof. Using the con-cavity of log™ to pull the log™ outside the integral
we get, for any small positive a,

+|8'f 1/ ol f*
log* On = — logt |[=—=| on
/S,.(r) & a Js,(r) & 177
1 o'f|*
< —logt / —| on | +0Q1
< log (S"(r) 7 ) (1)

< 2o {o(9)" () oo
+c210g{(g)“"""‘”MRL;mT,,(R)}]“}. (5.14)
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Take

1

R=r+4+ ———
" log™e Ty (r)

and

_R+r_r+ 1
o2 2log! T Ty (r)

Applying Lemma A1.2.4, we have
log T(p) < logTy(r) +1 (5.15)

for all r outside a set E C (0,+o00) with finite Lebesgue measure. In
addition, for all large r,

p/r <2, 1/(p—r) < 2log** Ty (r), R/p < 2,1/(R— p) < 4log'** Ty(r).
(5.16)
The theorem follows by (5.14), (5.15), (5.16) and the inequality

log* (z + ) < logt z + log* y + log 2.

A5.2 Equi-dimensional Nevanlinna Theory

We first extend the concepts about divisors, line bundles, etc., to a compact
complex manifold.

Definition A5.2.1 Let M be a complex manifold. A divisor on M is a
formal finite sum D = Zj n;D;, where n; € Z and D; is a sub-variety of
codimension 1. Each n; is called the order of D, while each D; is called
the support of D. Ifnj > 0 for all j, then we call D an effective divisor.

To each function f which is meromorphic on the manifold M, we can
assign a divisor Dy associated to f, while the supports consist of the union
of the set IVf of zeros of the function and the set Py of its poles. The order
of D, is equal to the order of zero on every component of Ny and the order
of the pole with a minus sign on every component of P;.

Definition A5.2.2 By a line bundle L over a complex manifold M, we
mean a collection {Uy, gap} where {Uy} is a finite open cover of M and
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gop 5 a nowhere-zero holomorphic function on Uy, NUg satisfying the com-
patibility condition goy = gapggpy on Us NUgNU,. The functions {gap}
are called transition functions.

To every divisor D on a complex manifold M one can associate a line
bundle O(D) called the line bundle of the divisor D. This is how it
is defined: since every divisor is locally solvable, the covering {U,} can be
assumed so fine that the restriction D|y, = Dy, for some f, meromorphic
onUy. fDNU, =0, we set fo = 1. Let gag = fg/fa on U NUg. Then
O(D) is the line bundle with the above defined transition functions.

Definition A5.2.3 Let L = {Uqs,ga} be a line bundle. A holomorphic
section s of L is a collection {s,} where each s, is a holomorphic function
defined on U, and satisfies so = gagsg on Uy N Us.

Definition A5.2.4 Let L = {Uq, gag} be a line bundle. A metric on L is
a collection of positive smooth functions

ha : Ua - R)O
such that on Uy N Ug we have

hg = Igaﬂ|2ha~

Definition A5.2.5 Let L = {Uq, gag} be a metrized line bundle with metric
{ha}. The form 8, = —gaglog ho on Uy is called the Chern form of
L with respect to the metric {ho}. Denoted by c1(L,h), or just ¢c1(L). A
holomorphic line bundle L with a metric is called positive if the Chern
form 81 for the metric of L is positive definite everywhere on M.

A line bundle L (resp. a divisor D) is said to be ample if there is a
positive metric (i.e., Chern form 6, for the metric of L is positive definite
everywhere on M) on L (resp. on O(D)). A complex manifold M is said
to be a projective complex manifold if it can be embedded into some
projective space PV. Then, by pulling back the hyperplane line bundle to
M, we have that there always exists an ample bundle L over M. We also
define the Zariski topology on M, it is the topology such that the closed
sets are those algebraic subsets of M.
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Definition A5.2.6 For a metrized line bundle L with metric {h,}. Given
any two sections, s;,s;, we define the inner product

< 8i,8; >= Siagjaha'
In particular, ||s|| = |sa|?ha. By the transition properties of so and hq, it

is well-defined.

We now introduce briefly the concept of currents. Let M be a complex
manifold of dimension n. A current of dimension (r, s) is a linear functional
T on the space FI°, where F® is the space of forms of bidegree (r,s)
with coefficients of smooth functions on M with compact support. In our
case, only two types of currents are involved: the currents induced by
differential forms, and the currents induced by submanifolds vV C M. For
an (n —r,n — s) form w, it induces a current [w] of dimension (r, s), which,
as a linear functional on the space F7**, is defined by

M@=AﬂA¢

for every ¢ € F['°. In exactly the same way, a k-dimensional submanifold
N C M induces a current [N] given by

[M@=A@

for every ¢ € F&*. In particular, for a divisor D, write D = ZJ- n;D;
where D; are the irreducible components. Then D determines a current
[D] as

CIOED Y I

for every ¢ € FP~1m~1  The multiplication of current [D] with w can be
defined by

D)nw(@)= [wne.
Currents can be differentiated by the rule
0T (¢) = (-1)™***'T(9),
for a current T of dimension (r, s). Thus dd°T(¢) = T(dd°¢).
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Similar to Theorem A2.1.2, we have the following Poincaré-Lelong For-
mula.

Theorem A5.2.7 (Poincaré-Lelong Formula) Let f be a holomorphic
function on an n-dimensional manifold M and let Dy be its divisor. Then
the following equality, in the sense of currents, is true:

dd*[log | f|*] = [Ds].

We also have, similar to Theorem A2.1.3, the following Green-Jensen’s
formula.

Theorem A5.2.8 (Green-Jensen’s Formula) Let g be a function of
class C? on C™ or a pluri-subharmonic (resp. pluri-superharmonic) func-
tion on C™. Then, for any 0 <r < R,

R g 1 1
/ —/ dd®[g] A (dd°log |2|*)" ! = —/ 90n — —/ 90n.
r t Cnlt] 2 Sn(R) 2 Sn(r)

Let M be a compact projective complex manifold of dimension n. Let
f : C™ = M be a holomorphic map. Let D be an effective divisor on M.
Take a metric on O(D), where O(D) is the line bundle associated with D.
The proximity function of f with respect to D is defined by, under
the assumption that f(C™) ¢ D,

1
my¢(r,D) = log ———on, 5.17
1 D) /s..(r) Elsp o 7" (5.17)

where sp is a canonical meromorphic section associated with O(D). We
note here, since M is compact, my(r, D) is independent, up to a bounded
term, of the choice of the section s defining D and also of the choice of the
metric on O(D). Define

ny(t, D) = -2 / (dd®|2[2)1.
F=HD)NCa[t])
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The counting function of f with respect to D is defined as, under the
assumption that f(C™) ¢ D,

Ny(r,D) = /Or[nf(t, D) —n;(0, D)]% +n,(0, D) logr

where n(0, D) = lim;0ny(t, D) is called the Lelong number. Here, the
integration

/ (dde|2[2)m
-1 (D)NC.,[t]

is in the following sense: write f~(D) = }°; m;M; where M; are the
irreducible components, then

/ (@afeyt = Somy [ (aalafy
F=1(D)NCalH] F M;

;NCnt]

Note that we also have
T dt
Ny (r, D) = / at / (dd log |2[2)™~" + n;(0, D) log 7.
o t Ji-1D)ncaly
For any fixed real number ry > 0,
Tdt
Ny(r,D) = / - / (dd®log|z|®)™! + 0(1).
ro t Jr-1(D)nC.[t]
Using the notation of currents, we can write
T
Ny¢(r,D) = / % / [f~'D] A (dd° log |2|*)™~! + n(0, D) log .
0 Calt)

Note that m(r,D) and Ny(r,D) are defined under the assumption that
f(C™) ¢ D, so whenever one of these functions appears, we automatically
assume that f(C™) ¢ D.

Let w be a (1,1) form on M. The characteristic function T} (r) of
f with respect to w is defined by

T w(r) = / at / f*w A (dd® log|z|*)™ L. (5.18)
' o tJca

Note that (ddlog|z|?)"~! has an infinite of order 2(n — 1) at the point
z = 0, this is integrable over the 2n-dimensional ball C,[t], and f*w is
smooth. Therefore the inner integral in (5.18) exists, has a zero of no less
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than first order at ¢ = 0. Hence the outer integral also exists. If w is
positive, then T, (r) measures the growth of f. Also, since M is compact,
for any two positive (1,1) forms wy,wa, Ty, (1) < Tiw,(r) < /Ty, (r)
for some positive constants ¢ and ¢'.

Let L be a Hermitian line bundle with metric A, then the characteristic
function Ty(r, L) is defined by Ty(r,L) = Ty, (L)(r) where c;(L) is the
Chern form associated with h. For a divisor D, take a metric on O(D),
where O(D) is the line bundle associated with D, we define the character-
istic function of Ty(r, O(D)) by

't (r, O(D)) / dt/ f*c1(O(D)) A (dd® log [2]*)1,

where ¢;(O(D)) is the Chern form of O(D). Note that, since M is compact,
T¢(r,O(D)) does not, up to the addition of a bounded term, depend on the
choice of the metric on O(D). If O(D) is ample, then T (r, O(D)) is positive
and it measures the growth of f.

Theorem A5.2.9 (First Main Theorem)
Tf(’l‘, O(D)) = mf(T, D)+ Nf(ra D) +0(1).

Proof. By the definition,
T dt
Ny(r,D) = / at / [f~1D] A (dd® log |2[2)™ + O(1)
r 13 Calt]

for any r9 > 0. Fix a ro > 0. Let sp be a canonical meromorphic section
associated with D. Let U, be a finite cover of M. Write sp = {so}. Then
the square of its Hermitian norm

”-"'D”2 = ha|3a|2
on U,. So
dd°[log||sp|[?] = dd° log ho + dd°[log |s4|?]-

By the Poincaré-Lelong formula, dd°[log |sq|?] = [D]. Noticing dd®log hq =
—ca1(O(D)), we have

—dd*[log [|sp||*] + [D] = &1 (O(D)).
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We pass now to pull-backs by the map f:
—dd®[log [|f*spll*] + [f ' D] = f*c1(O(D)).
Thus
(=dd°[log||f*sp|*]+[f ' D])A(dd° log |2*)*~" = f*e1(O(D))A(dd" log |2|*)"~
So

(=da°[log [|f*spl|*] A (dd°log |2[*)"~" + [ ' D] A (ddlog|2|*)" ") (xc.11)
= (f*c1(O(D)) A (dd°log |2|*)" ") (xcafe);

where xc,[¢ is the characteristic function of the ball C,[t]. This simply
means

/ *c1(O(D)) A (ddlog =)™ = / [£71D] A (dd log 2[2)""
Cnlt] Calt]

- / dde{log [|f*sp%) A (dd log |2[?)™".

Cal[t]

Taking integration yields
[ 5] srao@)r@roglsr
To t Cn[t]

rdt -1 2\n—1

= [Z [ DAl
To t C,,[t]

r
- / a / dde{log || f*spII?) A (dd° log |2|?)™*
ro b Jealy

T dt
N - [ F [ B 17 solf') A (@ log "~ +0().
To Cn[t
By Theorem A5.2.8 and the definition of my(r, D),
T dt
=[5 dalogllssolld A @alog |z = my(r, D) + 0.
To Ca(t]

So we have Ty (r, O(D)) = my(r, D) + N¢(r,D) + O(1). a

Definition A5.2.10 Let M be a compact complex manifold of dimension
n. A divisor D on M is said to be of simple normal crossing if for every
point P € M, there is a neighborhood Up of P such that D NUp is given
by an equation w; ...wy = 0 in local coordinates, where k < n.
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Let M be a compact projective complex manifold of dimension n. Fix
a positive (1,1)-form w on M and write T¢(r) = T, (r). We note such w
exists because M is a projective manifold.

Theorem A5.2.11 Let M be a compact projective compler manifold of
dimension n. Let (L,h) be a positive hermitian holomorphic line bundle
over M. Letsy,...,s, be holomorphic sections of L and D = Dy +---4+ D,
be the divisor defined by the s;’s, i.e., Dj = [sj'l(O)]. Assume that D is
of simple normal crossing. Let f : C™ — M be a non-degenerate (i.e., the
image contains an open set) holomorphic map. Then, for every € > 0, the
inequality

q
> my(r,D;) + Ty (r,K) + N(r,Sy) < O(log™ Ty(r))
i=1
holds for all large r outside a set E C (0, +00) with finite Lebesgue measure,
where K is the canonical line bundle over M and Sy is the stationary
divisor.

Proof. Let § be a volume form on M, i.e., an (n,n)-form on M which
is locally written as, in terms of local coordinates wy,...,wy,

n
VI
Q=h ——dw; A dw;
(w) g o dw; A dw;,
where h > 0 everywhere. We note that a volume form Q as above defines
a metric on the canonical line bundle K such that dd¢logh = ¢;(K).
We consider a singular volume form with singularity on D:

Q
U= e (5.19)
ITj=1 lIs;11?
We write f*(¥) = £€®, where @, is the Euclidean volume form in C%, i.e.
d, = H?:l 2;1 dz; AdZ;. We use the logarithmic derivative lemma to prove

the following claim.
Claim The inequality
| log* on < Otog* T5(r)
Sa(r)

holds for all large r outside a set E C (0, +00) with finite Lebesgue measure.
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To prove the Claim, we first prove that there exists a finite set # = AUB
of set of rational functions on M such that

(a) For every point P € M, there is a Zariski open neighborhood U of P
and rational functions ¢y,...,¢, € A such that ¢,,..., ¢, are holomorphic
on U and form a local coordinate system around every point of U.

(b) For every point P € D, there is a Zariski open neighborhood U of

P and rational functions ¢, ..., ¢, € B such that ¢,,..., ¢, are holomor-
phicon U, ¢; = 0,...,¢r = 0 are the defining equation of D on U, and
é1,...,¢, form a local coordinate system around every point of U.

We now construct 4. We may assume without loss of generality that
D is irreducible, since otherwise we will just consider each component D;
because D has only finitely many components and a finite union of a finite
number of rational functions is still finite. We also assume that D is ample;
otherwise we may replace D by D+ D' so that D+ D’ is ample. Observe that
if s is a function holomorphic on a neighborhood U such that [s = 0] = DNU
then [s™ = 0] = 7D NU where 7 is a real constant. This means that we
may assume without loss of generality that D is very ample by replacing D
with 7D for some 7 so that 7D is very ample.

Let u € H%(M,O(D)) be a section such that D = [u = 0]. At a
point z € D choose a section v; € H°(X,O(D)) so that E; = [v; = 0]
is smooth, D + E) is of simple normal crossings and v; is non-vanishing
at z (this is possible because O(D) is very ample). The rational function
t; = u/v; is regular on the affine open neighborhood M — E; of z and
(M -E)N[ti =0 = (M- E))ND. Since M is a projective variety,
there exists a very ample bundle L on M. Choose rational functions ¢, =
ug Vg, ...,tn = un/v, where u; and v; are sections of a very ample bundle
L on M (such line bundle exists because M is projective) so that to,..., 1,
are regular at z, the divisors D; = [u; = 0], E; = [v; = 0] are smooth and
D+Dy+---+Dyp+Ey +---+ E, is of simple normal crossings. Moreover,
since the bundles involved are very ample the sections can be chosen so
that dt; A --- A dty is non-vanishing at = (the complete system of sections
provides an embedding, hence at each point there are n + 1 sections with
the property that n of the quotients of these n + 1 sections forms a local
coordinate system on some open neighborhood U, of z). In this way, we
get a set of rational functions ty,...,t, which depends on z € M. More
precisely, it depends on an open neighborhood of U, of z. However, since
D is compact it is covered by a finite number of such open neighborhoods,
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say Uy, ...,Un. Moreover, there exist relatively compact open subsets U] of
U; (1 <£i < m) such that Nj<i<m U] still covers D. For each U, 1 <i<m
we get a finite set of rational functions as described above. Let B be the
collections of all rational functions obtained.

Next we consider a point z in the compact set M —N1<<mU;]. Repeating
the procedure as above we can find rational functions s; = a, /by, ...,8n =
an /b, where a; and b; are sections of some very ample line bundle L so
that si,..., s, from a holomorphic local coordinate on some open neigh-
borhood V, of z. We must also choose these sections so that the divisor
H = [s;---sp = 0] together with those divisors (finite in number), which
had already been constructed, is still a divisor with simple normal cross-
ings(this is possible by the very ampleness of the line bundle L). Since
M — Mi<i<mUj is compact, it is covered by a finite number of such coordi-
nate neighborhoods. Let A be the collections of such rational functions. It
is a finite set. Let H = AU B. Then H has the desired properties.

Let Uy, ..., Un be an open covering of D, as presented above. There exist
relatively compact open subsets U; of U; (1 < i < m) such that Ui<i<m U]
still covers D. Since Q is a volume form on M, on each U;,

Q = ay; (w)®(w), (5.20)

where ay, > 0 on Uj;, and hence is bounded on U/. Let ¢1,...,¢, € B such
that ¢;,...,¢, are holomorphic on U;, ¢; = 0,...,¢r = 0 are defining
equations of D on U; and ¢, ..., ¢, form a local coordinate system around
every point of U;. Then

H —d¢, A dé;.

Also, after rearranging the indices, if necessary,
lls;I* = I1¢5*hv; for 1< j<k (5.21)

and ||s;|| > 0 for j > k + 1 on U;, hence

1
logt —————— is bounded on U}. 5.22
i 1P (522

Also, since hy; > 0 and ay; > 0 on Uj,

log* % is bounded on Uj. (5.23)
U;
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We now consider M — Ui<i<mU]. Since M — Uj<i<mU] is compact and
lIs;|I> > 0, ||s;]|? is bounded for 1 < j < g on M —U;<i<mU]. This, together
with (5.20), (5.21), (5.22), (5.23), (5.24) and the inequality In*(a + b) <
In* a 4+ In* b, gives us

det [ 22iof)
logté < ¢ Y logt %7 ) 1<ij<n
B 1.0, pn EAUB |¢pro0 f]2-|@no f|?
= + (h ° f)z,’
= 0D log"| 507 (5.24)
heH

By Theorem A5.1.5(the Logarithmic derivative lemma),

,L(,)log 5‘7n502/nm f)z:

heH

on < O(log™ Thos(r))

holds for all large r outside a set E C (0, +00) with finite Lebesgue measure.
Since h is a rational function on M,

Thos(r) < O(Ty(r))-

This proves the claim.

We proceed with the proof of Theorem A5.2.9. £ is equal to zero on the
divisor of stationary S; and equal to infinity on f~!(D). So we have, by
the definition of &,

dd°[log§] = f*e1(K) — dec{logllf sill’] + Sy
j=1
Since, by the Poincare-Lelong formula, dd®[log ||s;|?] = —e1 (L) + [Dj],
q
dd°[log€] = f*er(K) +¢f*er(L) = D _[f 7' Dj] + 5.
j=1

So, for a fixed real number rg > 0,
" dt c 2\n—1
— dd°[log €] A (dd° log |2|*)
ro t Jealt

= Ty(r,K) +qTs(r) + N(r,S) = D Ny(r, D;) + O(1).
j=1
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On the other hand, by Green-Jensen’s formula and the Claim,

/ ﬂ/ dd°[log €] A (dd° log |2|*)*! = l/ log éoy, + O(1)
o tJcal 2 Jsatn)
O(log™ Ty(r))

IN

holds for all large r outside a set E C (0, +00) with finite Lebesgue measure.
Thus,

q

qTy(r) + Tg(r,K) + N(r, S¢) < E Ny(r, D;) + O(log™ Ty(r))

holds for all large r outside a set E C (0, +00) with finite Lebesgue measure.
By the First Main Theorem,

me(rD +ZN; r,D;) = qTy(r) + O(1).

j=1

So

q
> my(r, D) + Ty(r, K) + N(r, Sy) < O(log™ Ty (r))
=1
holds for all large r outside a set E C (0, +00) with finite Lebesgue measure.
This proves the theorem. a

A5.3 Griffiths’ Conjecture

Theorem A5.2.11 provides a “good model” of what results can be expected
in the higher dimensional Nevanlinna theory. P. Griffiths made the fol-
lowing conjecture for holomorphic curves into compact projective complex
manifolds.

Conjecture A5.3.1 (Griffiths) Let D be a divisor of simple normal cross-
ings on a compact projective compler manifold M. Then there ezists a
proper algebraic subset Zp having the following property. Let f : C - M
be a holomorphic curve such that f(C) ¢ Zp. Let K be the canonical divi-
sor, and let A be an ample divisor, then

my(r, D) + Ty(r, O(K)) < O(log™ Ty(r, O(A)))

holds for all v outside a set E C (0,400) with finite Lebesgue measure.
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We consider the case that M = P*(C). To determine the canonical
divisor we consider the volume form Q = dz; A --- A dz,, in the affine
coordinates (1,z;,...,2,) on Up = {[20 : -*- : z,] € P*(C)|zo # 0}. If
we rewrite 2 with respect to (zo,...,1,...,2,) on U; = {[20 : --- : 2] €
P"(C)|2; # 0}, we find

1 .
an—ﬂdzo/\"'/\dmi/\"'/\dzn.
Zo

Hence Q has a pole of order n + 1 along zo = 0. Hence the canoni-
cal divisor K = —(n + 1)H where H is the hyperplane at infinity. So
Ty (r,O(K)) = —(n + 1)T¢(r), where Ty(r) is the Nevanlinna’s characteris-
tic function defined in Chapter 3. Take D = H;+---4+H,, where H,, ..., H,
are hyperplanes in general position, then Conjecture A5.3.1 in this case is
just Theorem A3.1.6. If M is an abelian variety, then Ky is trivial. So Grif-
fiths’ conjecture implies that if the image f omits a divisor on an Abelian
variety, then f is degenerate. Furthermore, if D is ample, then f must be
constant. This is known as Lang’s conjecture. We shall discuss, in Chapter
6, the results for holomorphic curves in Abelian varieties.

Part B: Diophantine Approximation

B5.1 Vojta’s Conjecture in Diophantine Approximation

Motivated by Conjecture A5.3.1, Paul Vojta made the following conjecture.

Conjecture B5.1.1 Let V be a smooth projective variety defined over a
number field k and let A be a pseudo ample divisor. Let D be a normal
crossing divisor defined over a finite extension of k. Let K be a canonical
divisor of V. Let S be a finite set of valuation on k and for each v € S
let \y,p be a Weil function for D. Let € > 0. Then there exists a Zariski
closed variety Z of V such that for all P € V(k), P € Z we have

>~ Au,p(P) + hx(P) < eha(P) + O(1).

veES

As an example consider V = P". Then K = —(n + 1)H where H
is the hyperplane at infinity. So by linearity of heights we find that hx =
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—(n+1)h where h is the ordinary projective height. Thus Vojta’s conjecture
for V = P" reads as follows: for all P € V(k), P € Z we have

z Au,p(P) < (n+ 1+ €)eh(P) + O(1).
veS

In the case when D is a union of hyperplanes in general position, this is
just Schmidt’s subspace theorem.

We take for D any hypersurface, and for £ = Q, the field of rational
numbers, and we obtain the following conjecture.

Conjecture B5.1.2 Let D be a hypersurface in P™ defined over Q of degree
d > n + 2 with at most normally crossing singularities. Suppose that it is
given by the homogeneous equation Q(xo,...,z,) where @ has coefficient
in Z. Let S be a finite set of rational primes. Then the set of points
(Zoy.--,Zn) € Z™*, with ged(zo, .. .,zn) = 1 such that Q(zo,...,z,) only
contains primes from S, lies in a Zariski closed subset of P™.

Proof. In fact, we apply Vojta's conjecture with the proximity functions

Av,p = logmax
1

e
Q(zo,---,Zn)
and the set of valuations S U {oco}. Vojta’s conjecture implies that for

any € > 0 the set of projective n + 1-tuples (zo,...,z,) € Z"*! with
ged(zo, - .. ,Zn) = 1 which satisfy

Z log max

vESU{oo}

v

> (n+1+€h(zo,...,2Zn)

o=
Q(zo, -2 zn) [l

lie in a Zariski closed subset of P™. The inequality can be restated as

Z log||Q(zo,. .. Zn)llv < —(n+1+e€)h(zo,...,Zn)

vESU{oo}
+ ), logmax|izf..
vESU{oo}
The sum on the right is precisely dh(zo, ...,Z,) since the sum includes the

infinite valuation and the max; is 1 for all finite v, so the set of solutions
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to
> log|Q(zo,. .., za)llv < (d—n — 1 - €)h(zo,...,2n)
vESU{oo}
lies in a Zariski closed subset of P™. Suppose Q(zo,...,Z,) is composed of

primes only from S. Then log||Q(zo,...,Zs)||y = 0 for v € S. Thus, by
the product formula, Zuesu{oo} log [|Q(zo, ... ,Zn)|lv = 0. So

0= 3 10glIQ(0, -, za)lly < (d =1~ 1= (3o, . ,2n)

veESU{oo}
holds since d > n + 1. Hence the set of points (zo,...,z,) € Z"*1, with
ged(zo, . ..,z,) = 1 such that Q(zo,...,z,) only contains primes from S,
lies in a Zariski closed subset of P™. a

Note that we know that Conjecture B5.1.2 holds if @ is decomposable,
i.e. @ =L,Ly---Lq is the product of d linear forms in general position(see
Chapter 3, Part B). But it in general is still an open question. Indeed, it
does not appear to be known whether the integer solutions to the specific
equation

D+ + 2+t =1
are Zariski dense in P3(Q).

Recall that V is said to be of general type if K is pseudo-ample. So
taking D = 0, Vojta’s conjecture gives us the following conjecture.

Conjecture B5.1.3 (Bombieri) Let V be a projective variety over a num-
ber field k and suppose that V is of general type. Then V (k) is contained
in a Zariski closed subset of V.

Finally, if V is an Abelian variety, then Vojta’s conjecture gives the
following result (now known as Faltings’ theorem).

Theorem B5.1.4 (Faltings) Let A be an Abelian variety over k and E a
sub-variety, also defined over F'. Let h be a height on A and v a valuation
on F. Let € > 0. Then we have

A, E(P) < €h(P)

for almost every point P € A(k) - E.
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The Correspondence Table

Nevanlinna Theory | Diophantine Approximation
Conjecture A5.3.1 Conjecture B5.1.1



Chapter 6

Holomorphic Curves in Abelian
Varieties and the Theorem of Faltings

Part A: Nevanlinna Theory

A6.1 Bloch’s Theorem for Holomorphic Curves in Abelian
Varieties

In this section, we prove the following theorem of Bloch.

Theorem A6.1.1 (Bloch) Let A be an Abelian variety and X be a sub-
variety of A which is not a translate of an Abelian sub-variety of A. Then
there ezists no non-constant holomorphic map from C into X whose image
in X is Zariski dense in X.

The proof of Bloch’s Theorem presented here is based on Bloch’s original
proof, along the lines of the papers of Ochiai [Och], Kawamata [Ka], Wong
[Wong2], and Siu [Siu3].

There are two steps in this proof. The first one is an algebraic statement
about the map from the projectivization of a jet bundle of X defined by jet
differentials from the Abelian variety to a complex projective space. The
second one is an argument from Nevanlinna theory.

One of the tools which we use is the k-jet bundle Jk(M ) of k-jets for a
complex manifold M of complex dimension n.

Definition A6.1.2 Let M be a complex manifold of dimension n. The k-jet
bundle Jx(M) = UpemJr(M)p is a bundle over M, where, for each point
P € M, the fiber Jp(M)p is defined as follows: every element v € Jx(M)p

241
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is a set of complez numbers (§;a)1<j<k,1<a<n With respect to a local coor-
dinates z4 (1 < a < n) of M around P; when another coordinate system
we (1 < a < n)isused, v = (Nja)1<j<k,1<a<n and the relation between
(§ja)1<j<k1<a<n and (Nja)i<j<ki1<a<n 5 as follows; let g be a holomor-

phic map to M from an open neighborhood U of 0 in C with coordinate ¢

such that g(0) = P and %(za 09)(0) =¢&ja 1<j<k,1<a<n) then

& (waog)(0) =nja 1<j<k 1<as<n)

From the above definition, with respect to a local coordinate system
26 (1 £ a < n)of P e M, every element v € Ji(M)p is represented
by (dlc’,—(za 0 9)(0))1<j<k,1<a<n for some holomorphic map g from an open
neighborhood U of 0 in C to M such that g(0) = P. The complex dimension
of Je(M)p is kn. The 1-jet bundle J; (M) is simply the tangent bundle of

M.

Definition A6.1.3 For a holomorphic map f : C - X. The map d*f :
C = Ji X sending each point (o € C tod* f({o) = (j"c—l;(zo,of)((0))15_,-5,‘,,150‘5,1
is called the k-jet lifting of f.

An Abelian variety A is a complex tori A = C™/A which can be em-
bedded into a projective space. For an Abelian variety A, let (z1,...,2m)
be the coordinates of C™, then dz, . ..,dz, are global differential forms on
A. So we can identify Ji(A) with the trivial product bundle A x C¥™ using
the global differentials dzi,...,dz,. We write Ji(4) = A x C¥™ with this
identification. Let

pr : Je(A) = A x CF™ o Ck™

be the natural projection.

Let f: C — A be a holomorphic map. Let X be the Zariski closure of
f(C) in A. Let n be the complex dimension of X. Since X is a sub-variety
of A, the inclusion ¢ : X — A naturally induces a holomorphic bundle
morphism ¢, : Jp(X) = Ji(A). Let

Qk =Pk Ols: Jk(X) - Ckm, (61)
and write

3 =2, (6.2)
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The algebraic statement concerning the jet bundles of X and A is the
following.

Lemma A6.1.4 Let f : C = A be a holomorphic map. Denote by X
the Zariski closure of f(C). Assume that for every { € C the differential
d®|gng(¢) of @ at d"f(C) is not injective. Then there exists a one-parameter
subgroup of A which leaves X invariant under the translation.

To prove Lemma A6.1.4, we need a lemma concerning the properties of
Wronskian.

Lemma A6.1.5(Generalized Lemma on Wronskian) Let n > 2 be an
integer. Let U be a domain in C and (fi,x,---, fa,x) be an n-tuple of holo-
morphic functions on U for A € A, where A is a finite index set. Suppose
for every point (o € U there ezist complez numbers é ({o),...,¢n(lo) such
that 30 _, éa(Co)fi?,z(Co) =0for0<B<n-—1and ) € A, where fiﬁg
denotes the 3-th order derivative of f,,». Then there ezxist complex numbers
C1y...,¢n not all zero such that 3 _ cafax =0 on U for every X € A.

Proof. By replacing U by the complement in U of the common zero-set
of far(l < a < n) we can assume without loss of generality that some
vector (fi,A(€),. .., fa,x(¢)) is nonzero for every ( € U. For 0 < f < n —1,
A€ A, and ¢ € Ulet v(6,1¢) = (FAQ),....£8(¢) € €. For 0 <
k < n—1let Vi(¢) denote the vector subspace of C™ spanned by v(8, A, ()
for 0 < S <kand X € A. Let di(¢{) = dimVi({). By the assumption in
the Lemma, we have d,—1(¢) < n. On the other hand, since some vector
(fix(Q)y- .., fa,a(€)) is nonzero for every ( € U, we have do(¢) > 1 for
every ( € U. Thus we get a sequence

1<dp(¢) £di(¢) £ ... < dn-1({) <n.

It follows that there exists £(() < n — 1 such that dy)(¢) = dy)+1(¢)-
Moreover, there actually exists a subset Uy of positive measure in U such
that both £(¢) and dy¢)(¢) are constant on Up. Denote the constant value
of £(¢) on Uy by £, and the constant value of dy(¢)(¢) on Up by m.

There exists a point (o € U such that for every open neighborhood
W of (o the measure of W N Uy is positive, otherwise we can cover U by
a countable number of sets of measure zero each of which has measure-
zero intersection with Uy, contradicting the positivity of the measure of
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Uo. Therefore we can find 0 < 8; < ¢, \j € A, and 1 < o < n for
1 < 7 < m such that the rank of the m x m matrix (f(ﬂ’,\ (Co))1<jk<m is
m, and for some open neighborhood W of (o the rank of the m x m matrix
( g:’,\J (O))1<j,k<m is also m for ¢ € W. Thus

rank(f9) (()1<jcmicken =m for (€ W. (6.3)

For ( € W the m-vectors (ff,‘:’l, (©))1<j<m for 1 < k < m form a basis of
the vector space C™. Pick amy1 € {1,...,n} — {@1,...,am}. Then for
¢ € W we can find unique complex numbers cq, (¢),...,Ca,, ({) such that

£ 0 =Ty ca (O () for 1< j < m. Set
Cams1(() = -1 and ¢q,(¢) =0 for k€ {1,...,n}—{a1,...,am}. (6.4)

Then we have holomorphic functions ¢;(¢), . . ., ¢x(¢) not all zero for { € W
such that

ch(c )50 () =0 for (€W and 1<j<m. (6.5)

Since for B < £+ 1 the n-vector v(B, A, () is a linear combination of the
vectors v(B1,1,0), .-, V(Bm,Am, ) for { € W N Uy, it follows from the
positivity of the measure of WNUj that for 8 < £+1 the n-vector v(8, A, ()
is a linear combination of the vectors v(B1, A1,(), ..., v(Bm,Am,() for ¢ €
W. Thus by (6.5) we have

ch(of,g‘” (¢)=0 for CEW and B<€+1. (6.6)

By differentiating (6.6) with respect to ( € W for 8 < £ and by using (6.4)
and (6.6), we conclude that 3 ;" c,, (¢)f (f)x, (¢) =0 for B < £. Since
B; < £ (1 £j <m), it follows from (6.3) that c;, () = 0 on W and thus
Ca, (€) is constant on W for 1 < k < m. Finally, the identical vanishing of

Y k=1 CkSea(C) on U for A € A follows from (6.6). a
Proof of Lemma A6.1.4:
Proof. Let z,---,2, be the coordinates of the universal cover C™ of

A. Then the global differentials dz, ..., dz;, are well-defined on A. Let ¢ :
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X — A be the inclusion. Then there is a simply connected neighborhood U
of zo = f(0) € X such that for suitable indices 1 <4; < i3 <...<i, <m

*(dziy Ao ANd2;,)#0 on U.

Without loss of generality we can assume that ¢; = j for 1 < j < n. Taking
U smaller if necessary, we have a simple connected neighborhood U' of z¢
in A such that U' N X = U and if we put z*(P) = [ dz;,1 < i <min
U’ then they form a holomorphic coordinate system in U’ and there are

holomorphic functions Fy(z!,...,2"),n + 1 < a < m, such that
U'nX={(z',...,z™) € U'; 2% = Fp(z!,...,z"), n+1 < a <m}.

Therefore (z,...,z") restricted over U is a holomorphic local coordinate
system in U and

i aFa
ozt

i=1

t*(dza) = d(z%|v) = dzt, n+1<a<m. (6.7)

Using this coordinate system, we identify J,(U) with U x cr’. By (6.1),
&:U x C"" - C™" is given by

o (P, (Eia)lSiSn.ISagn) - (Eia)ISiSn,ISaSm ) (6~8)

where, for a > n + 1, &, is a polynomial in ig,1 < i < n,1 <8 < q,
whose coefficients are partial derivatives of F,, of order < « in z!,...,z".
Take (o € C close to the origin. By the assumption there exists a nonzero
tangent vector T to J,(X) at d™f({o) such that d®(T) = 0. The tangent
vector T of J,(X) at d"f((p) is represented by an integral curve, i.e., there
exists a neighborhood W of (p, a positive number ¢, and a holomorphic
curve G : W x (—¢,€) = X such that

= T,
t=0

(0 = FQ), 2 (@)

where g:(¢) = G(¢,t). So

0= d8(T) = Z2("9:(6) (69

=0
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By definition A6.1.3,

96 = ( 355z 0 9)(6)) . 6

1<j<n,1<a<n

Combining (6.8), (6.9) and (6.10) yields, for 1 < a < m,
=0, 1<j<n (6.11)

2 (S oo i) ~

Forn+1< a<m(6.11) means, for 1 <j <n,

d a7 oI+l
(dC’ (2a gt)(Co)) ‘ = W(za °G) (6.12)
t=0 (CD'O)
Let Fy = 9% Then, by (6.7),
dza=ZF;’dz,,, n+l<a<s<m.
v=1
Thus (6.12) becomes, for n+1 < a < m,
o+ ¥ N, 0
= 5¢igi % °¢) = (% Z(Fa °f)'§(zu°G))
(¢0,0) v=1 (¢0,0)
n d-""\(F” of) } G 1
S ) e (6.13)
Y X
v=1 A=0 dgi- o o¢rot (¢0.0)

However, from (6.11),for 1 <A<nand1<v<n,

3A+l
m‘(Zy o G) =0.
((0:0)
Thus (6.13) yields, forn+1 < a < m,
d&i(Fg o f)
0= Zx dg¢s ot (20 G)
v= Co ((0'0)

Since the n complex numbers Q(z., o Q) (1 £ v £ n) are not all zero

ot
(¢0+0)
due to the non-triviality of T, it follows flo'om Lemma A6.1.5 that there
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n
exist constants ¢, (1 < v < n) not all zero such that Zc,,EdE(F;’ of)=0
v=1

forn+1<a<mSoY, c,Fof =constant forn+1< a < m.

v=1

Denote this constant by —c,. Then
n
Ca+2c.,F:ofEO
v=1
on C. Since the Zariski closure of the image of f is dense in X, we have
n
Co + Z cF, =0
v=1

on X forn+1<a<m. NotethatF&’:%,so

n
0F, _
c,_.,-i-‘;lc,,azu =0

on X for n+ 1 < a < m. Consider the vector field v = Z:’_l_l ci% defined
on A, then, forn+ 1< a <m,

v(z® —F,) =0 (6.14)
on X. Note that X is defined by
U'nX={(z',...,z™) € U'; 2* = Fa(z*,...,z"),n+1 < a <m}.

(6.14) means that the vector field v = 31, c,-%,— is, when restricted to X,
actually in the tangent space T(X) of X. Thus the exponential map exp(vt)
leaves X invariant by the translation for any t € C. Clearly {exp(vt);t € C}
is a one-parameter subgroup of A. This proves Lemma A6.1.4. O

Next we use Nevanlinna theory to prove the following Lemma.

Lemma A6.1.6 Let f : C — A be a holomorphic map. Denote by X the
Zariski closure of the image of f. If dim X > O then for every ( € C the
differential d® of ® at d™f(() is not injective.

To prove Lemma A6.1.6, we need the following well-known theorem
from algebraic geometry.
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Theorem A6.1.7 Let Y;,Y, be complex quasi-projective varieties of the
same dimension and f : Y1 — Y> be a dominate rational mapping. Then the
rational function field C(Y1) is a finite algebraic extension of the rational
function field C(Y2) with extension degree [C(Y1); C(Y2)], where f is said
to be dominate if f(W) is Zariski dense in Y2 for some non-empty Zariski
open subset W C Y;. Note that we regard C(Y2) as a subfield of C(Y7)
since for every function F € C(Yz), f*F € C(Y1).

Proof of Lemma A6.1.6.

Proof. Suppose the contrary, that is there exists (o € C such that the
differential d® of ® at d"f({o) is injective. We are going to derive a con-
tradiction. Without loss of generality, we may assume that (o = 0.

Let A be an Abelian variety whose universal cover is C™ with coor-
dinates z;,--+,zm. Let d*f : C » J,X be the n-th lifting map. Let Z
be the Zariski closure of d"(f)(C) in J,(X). Let p: Jo(X) = X be the
bundle projection. Take an embedding A C PV and take a homogeneous
coordinate system [u® : --- : uN] of PN so that X ¢ {u® = 0}. Put

i .
w =FaISZSN

It follows that, by Corollary A3.1.2,

N
Tuios(r) STy(r) + 0(1) <Y Tusios(r) + O(1). (6.15)

i=1

Let V' be the Zariski closure of ® od™(f)(C) in C™". Since, by the assump-
tion, the differential d® of ® at d™f(0) is injective, dim Z = dim V' and
®|z : Z = V iasdominate. Since w’ are rational functions on X, the pull-
backs p*w’,1 < i < N, are rational functions on Z. By Theorem A6.1.7,
there are algebraic relations, for 1 <i < N,

(Pio o ®)(p*w')% + (P10 ®)(p*w')* 1 + ...+ (Pig, 0 ®) =0, (6.16)
where P;; are homogeneous polynomials on'C""‘ and Pyo® # 0on Z. How-
ever, P;j o ® o d"(f) are polynomials in j—éj(za of),1<j<n,l<a<m.
By (6.16), we have

Pio({j—g,.(za o 20
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and
47 . inds d’ «, ivdi—1
Pio({d—cj(zwf)})( w)‘+Pil({d—C,~(za°f)})( w4

+Pia; ({ (Za o f)}) =

d¢i
Thus, by Theorem A1.1.6,

Ty(r) < C T i (y0p)() +OQ). (6.17)

max
1<a<m,1<j<k 37

Since dd® Y - |za|? is a Kéhler form on A4, it follows that, from Theorem
A5.2.8 (Green-Jensen’s formula),

Ty(r) = /dt/|z|<t ddCZIzal

= / (lecﬂf re'? )ﬁ+0( )
- %/0 ﬂ ((lz——'l(log+ exp|za Of(re‘o)|)2> % +0(1). (6.18)

On the other hand, the logarithmic derivative lemma gives us
Tt o)) < OB Toxpron (7)) (6.19)
Moreover, by the First Main Theorem,
Texp(zaof) (T) = Mexp(zaof) (1, 00) + O(1)
= /027r log™ exp |24 © f(rei9)|-;i—i +0(1)

27 . do 1/2
< ( | (log* exp|zq © f(re’0)|)22—7r-) + O(1). (6.20)
Hence, by (6.18), (6.19) and (6.20),

121;1132("‘ Tm(Zaof) (T)

2n
< Oflog max_ /0 (108" exp 20 o F(re®) ) 22) + O(1)
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IN

2 m
O(log /0 (Z(log+ exp |za o f(re“’)l)2) 2)+0(1)

a=1

O(log T4(r)) + O(1).

il

Combining this with (6.17) we get
T¢(r) < O(log Ty(r)) + O(1),

which implies that Ty (r) = O(1), contradicting f being non-constant. O

Combining Lemma A6.1.4 and Lemma A6.1.6 gives us the following
lemma.

Lemma A6.1.8 Let f: C — A be a holomorphic map. Denote by X the
Zariski closure of the image of f. Assume that dim X > 0. Then there
exists a one-parameter subgroup of A which leaves X invariant.

Bloch’s theorem now follows easily from Lemma A6.1.8. Let f: C —+ A
be the given holomorphic map. Let X be the Zariski closure of f(C).
Assume that X is not a translate of an Abelian sub-variety of A. Let A’
be the quotient of the subgroup of all elements whose translates leave X
invariant, i.e., if B = {a € Ala + X = X}, then A' = A/B. By replacing
f by its composite with the quotient map A — A', we can assume without
loss of generality that X is not invariant by the translate of any subgroup
of A with positive dimension. This contradicts Lemma A6.1.8. This proves

Bloch’s Theorem.
[

A6.2 The Proof of Lang’s Conjecture

In this section, we prove the conjecture of Lang that the complement of
an ample divisor in an Abelian variety is hyperbolic. The proof is due to
Siu-Yeung [Siu-Y2].

Theorem A6.2.1 (Siu-Yeung) Let A be an Abelian variety and D be an
ample in A. Let f : C = A be a non-constant holomorphic map. Then the
image of f must intersect D.



Part A: Nevanlinna Theory 251

To prove Theorem A6.2.1, we assume, in contrast, that f : C - A—D.
We note that we can assume that the image of f is Zariski dense in A.
Otherwise, by Bloch’s theorem, there is a positive dimensional Abelian
sub-variety B of A and a point a € A such that the Zariski closure of f(C)
is B +a. Let g : C — B be defined by ¢g(¢) = f(¢) — a. Since BN (D — a)
is an ample divisor in B, the problem is reduced to study g, and the image
of g is Zariski dense in B.

The proof of Theorem A6.2.1 uses essentially the same techniques of
Bloch presented in the previous section. The key point here in proving
Lang’s conjecture is the explicit construction of a suitable log-pole higher
order jet differential in terms of the theta function. To describe it we first
introduce the concept of the jet differential.

Recall that Jx(M) = UpemJi(M)p is a bundle over M, where, for
each point P € M, every element v € Jx(M)p is a set of complex numbers
(&ja)1<j<k,1<a<n With respect to a local coordinates z, (1 < a < n) of
M in a neighborhood of P. Define d?z, such that d?z,(v) = o for v =

(§a)1<i<k1<agn-

Definition A6.2.2 A k-jet differential w of total weight m (respectively
meromorphic k-jet differential) on a complez manifold M assigns, at each
point P € M, a function w(P) on J,(M)p such that, with local coordinates
21, 2n, w 18 locally a polynomial, with holomorphic (respectively mero-
morphic) functions as coefficients, in the variables d°z; (1 < £ < k,1 <
j < n) and of homogeneous weight m when dz; is given the weight £. A
meromorphic k-jet differential w is said to be a log-pole k-jet differential if
it is locally a polynomial, with holomorphic functions as coefficients, in the
variables d‘zj,d"loggy (1 < €<k 1<j<nl1<v<kl<A<A),
where gx (1 < X < A) are local holomorphic functions whose zero-divisors
are contained in a finite number of global nonnegative divisors of M.

Thus, in terms of local coordinates 2y,..., z,, a meromorphic k-jet dif-
ferential of total weight m is expressed in the form

W=D Wy v pevmnevm s (@21) 0 (@R 20) 0 (dzg) 0 (A5 2p)
’ (6.21)
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where the summation is over the kn-tuple
V= (Vl,l Vgt Uplce 'Vn,k)
of nonnegative integers with
(ma+2v04 - -+hkvig)+ o+ Wn1+2no+ - Fhkvpi) =m

and Wy, ;...vy 4 vn1va, 1S @ meromorphic function locally defined. A k-
jet differential can be naturally regarded as a function on J;(X) and also
naturally regarded as a function on J;(X) when k& <[ by the composition
with the forgetful projection g : Ji(X) = Ji(X).

We now describe the explicit construction of a suitable log-pole higher
order jet differential in terms of the theta function. Let f : C — A be the
given holomorphic map whose image is Zariski dense in A. Assume that
dim A = n. Choose a coordinate system (zi,...,2,) of C®, so that the
lifting f : C = C™ of f is expressed as

f=(f01"'vfw01"'v0)

with entire functions fi,..., f, being linearly independent over C. Let 6 be
a theta function defining the ample divisor D. The locally defined g + 1-jet
differential

dlog8,dz1,dz,...,dz,

© =det d?logf,d?z,,d%z,, ..., d%2,

4

di*llogh,dit1z;,d9 29, ...,d9F 2,

gives a well-defined function © on the Zariski closure Xg41(f) of d?*! f(C)
in J;+1A4. We define an algebraic subbundle Ji(A)' of Ji(4)(k =0,1,...)
by equations

diz;=0, 1<i<k,g+1<j<n.

Then Xg41(f) C Jg+1(A)'. Recall that from the discussion in Section
A5.1, Jy(A) = A x C™* is a trivial bundle. So Jx(A)' = A x C%. Let
p : Ji(A) = A x C¥* — C% be the projection and let p|x,(s) be the
restriction of p to Xy (f). Note that © is a well-defined function on X4 (f).
Taking the derivatives of ©, we have

d'O: Ji(X;41(f) = C, 1=0,1,2,....
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We also note that Jj(Xg+1(f)) = Xg+1+:1(f) and denote by m; the projection
from Jyqn+1(X) to Jygnt+1-1(X). So we can define a new map

U = (plx,414n(f)s ©OTn, dOOT,_1,...,d"O0mg) : Xgt14n(f) 2 Calgt1l+n)+ntl
(6.22)

We also denote by Q¢ i the set of all meromorphic &-jet differentials on A

which vanishes identically on Xx(f).

Similar to Lemma A6.1.8, we shall prove the following lemma.

Lemma A6.2.3 If dim X,41(f) > 0, then there is some non-zero constant
vector fieldv =37 _, ca8/024 on A such that (3, _; ca0/d24)w vanishes
identically on Xqy1(f) for every w € Qy g41 with pole set contained in D
and (30 _; ¢a0/024)0 is also identically zero on Xqy1(f).

Proof. The proof of Lemma A6.2.3 breaks down into two steps. The first
step is similar to that of Lemma A6.1.7. We prove that for every ( € C,
the differential d® of ¥ at the point d?+1*™ f(() is not injective. The same
argument carries over. The only thing that needs to be modified since ©
now is involved, is that in carrying the estimation we need to control the
growth of the theta function . In fact, we always have

16(2)| < exp(C'|2[*) + C"

for some positive constants C" and C"”. By using the above estimate, the
same argument applies.

The next step is similar to the proof of Lemma A6.1.4, where X is
replaced by Xy41(f) and & is replaced by ¥. We will prove that if for every
¢ € C the differential d¥ of ¥ at the point d9*1*"f({) is not injective,
then there is some non-zero constant vector field v = }0_, ¢48/8z4 on
A such that (3°)_; ca0/8z4)w vanishes identically on Xg41(f) for every
w € 441 with pole set contained in D and (3.7 _; ca8/024)0 is also
identically zero on X,11(f). We still use the method of integral curves to
prove this statement. Assume that the statement is not true. Take (o € C
close to the origin, and such that Q¢ = d7*" f((o) € Xgt14n(f) is a
regular point of X¢414+n(f). Then there exists a non-zero tangent vector T'
to Xg+14n(f) at Q, such that d¥(T') = 0. We now use an integral curve
to represent T'.
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Recall that for a complex manifold M and a point P € M, a tangent
vector T' € Tp(M) is represented by a unique holomorphic map g: C - M
defined in a neighborhood of 0 with g(0) = P, ¢'(0) = T. Such a holomor-
phic curve is called an integral curve. The existence of g follows from solving
the system of ordinary differential equations. In our case, we consider the
algebraic variety X (f). Recall that X (f) is the Zariski closure of d* f(C)
in Jg(A). Denote by Q2 x the set of all meromorphic k-jet differentials on
A which vanishes identically on the image Im(d*f) of d*f : C — Ji(A).
Then Xj(f) is the common zero set of all elements of Qg .

Sub-lemma A6.2.4 Let f : C — A be a holomorphic map with Zariski
dense image in A. Let k > n = dim A. Then there ezists a proper sub-
variety of Xi(f) such that for any point Q in Xi(f) outside that sub-variety
there exists a holomorphic map g : U — A for some open neighborhood of
0 with d*g(0) = Q and d*g({) belongs to Xi(f) for ( € U.

Proof. The existence of g follows from a standard argument involv-
ing the fundamental theorem of the ordinary differential equation. In
fact, let Xi(f) be defined by meromorphic k-jet differentials wg,, (1 <
v < Ni). Note that the fiber Ji(A)p of Ji(A) over a point P of A
can be identified with C*" with coordinates {13")}15a5n,15vsk- There ex-
ists a proper sub-variety of Xi(f) (after renumbering wg,) so that, for
any point @ € Xi(f) outside the sub-variety, the rank of the matrix

0 . .
(ka,q is equal to p at @ and is ne less than the rank of
0z; 1<0<p,1<i<p
. 0 s .
the matrix Ry W at any point in some neighborhood
i 1<k, 1<j<n

of @ in Xx(f). Choose local holomorphic k-jet differentials w!(p < s < n)
such that the rank of the matrix

8
E;(F)'wk,q
18 (
8z Ws
J
is equal to n at Q. Now we solve for the n-tuple valued function g(¢) as
the unknown functions in the system of n ordinary differential equations

1<¢<p,p<s<n,1<j<n

T ({2} =0 (0<a<kl<j<n1<r<p),
g ({#P) =wl(Q) (0<a<kl<j<np<s<n),
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with the initial conditions
60
o
The vanishing of g*wg, with order £, < k (p < v < Ny) follows from

the uniqueness of the solution of the system of differential equations which
expresses d""‘"wk,,, in terms of wk,1,...,Wk, N, O

(z09)(0) =2{2(Q) (0<a<k1<j<n).

Sub-lemma A6.2.5 Any tangent vector T to X, (f) at the point Q can be
presented as a holomorphic map g : U x U — A, where U is a neighborhood
of 0 in C, such that

(1) T = (d9)(0,0),

(2) Q = (d9)(0,0),

(3) (dfg)((, t) belongs to Xi(f) for (€U andt e U.

Moreover, if Q is given by d* f(0), then we can choose g such that

g(¢,0) = f(¢) for C e U.

Proof. The tangent vector T is represented by a curve in X;(f) and we
simply apply sub-lemma A6.2.4 to each point on the curve. From the proof
of sub-lemma A6.2.4 and the holomorphic dependence of the unique solu-
tion of the system of ordinary differential equations on the holomorphically
varying initial condition, we conclude that the result depends holomorphi-
cally on the parameter of the curve.

When Q is given by d*f(0), in the proof of sub-lemma A6.2.4, the
condition ¢(¢,0) = f(() for ¢ € U is satisfied, because of the uniqueness of
the solution of the system of ordinary differential equations. a

We now continue the proof of Lemma A6.2.3. For (¢, not in a proper
sub-variety of X,414n(f), by sub-lemma A6.2.5, we can represent T by
a holomorphic map g : Ug, x Up = A, where Ug,(respectively Up) is a
neighborhood of (o(respectively 0) in C, such that g(¢,0) = f(¢), T is
given by {%(%}})((0, 0)}o<j<q+1+n and for every fixed t € Uy the pull-back
giw = 0 on Ug, for every w € Qy,¢1n+1. Note that g is called an integral
curve of T. By the definition of ¥, the vanishing of d¥(T) means that

0 (a*(za og))

3 a0n =0 for 1<a<nand1<A<g+1+n (6.23)

((0 \0)
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and

=0 for 0<u<n—-1

0 (3"(9{@))

ot ¢
¢ (¢0,0)
The non-vanishing of T' means that there exists some 1 < a < n with
_B(Z;to 9 #0. Let, for1 <a<n,
(€0,0)
to| =09 (6.24)
((010) ((010)

For any w € Q441 with pole set in D, we write it in the form of
equation (6.21):

w = Zva~~-V1..,+1-~-vn.1~--un,q+1(dzl)yl'l o (d9F gy )re
v
oo (dzg) et o (T g )Pat

where Wy, ;...v; g41-Vn,1++¥n,q41 1S @ meromorphic function locally defined.
Using g;w = 0 for t € Uy, (6.23) and (6.24), we obtain

0 el ﬁg ‘w
= 3ot B
N aﬂ a * Vi1
- VZa:ca(CO)W[(Zwyl'l“'Vl.q+1""’n,l""’n.q+l) ° f * (f d21) bl
(£ in) et () e o (fr 0 zg) met]
L *
at ( = (o for 0 < 8 < n — 1. Similarly, for O, since ﬁm =0
ot (e €0.9)
0,
for 0 < p<n-—1, we have
0 8o .
= aFa

0
= Zéa(Co)W[(Z@ul'l...yl'ﬁl...,,n_l...,,n'qﬂ) of-(f*dz)"rt---

(FrdmH i) havs oo (frdag)™ o (fdt¥ ) o]
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at ( = (o for 0 < 3 < n — 1. We note that the key point here is that the
same ¢, ({o) is used for all w € Q¢ 441, as well as ©. We now apply Lemma

A6.1.5 to conclude that there exist complex numbers ¢y,..., ¢, such that
a » V1,1
0 = an( wlln V1,q41°"¥n, 1" an+1) f(f dzl) e
v,a

(FrdmHim) ot o (frdzg) ot (fdTH g e

for every w € Qg with pole set in D and

0 . v
ZCG(Z_OV1,1~'-V1,q+1"'Vn,x"'l’n,q+1) ° f : (f le) bl
v,a @

(f*d"“zl)”‘-q“ ... (f‘dzq)""-l - (f*dq+1zq)"n.q+x.

This simply means (3}_, ca2)w = 0and (Y5 caZ)© = 00n Xg41(/).
So Lemma 6.2.3 is proven. a

We now prove Lang’s conjecture:

Proof. By Lemma A6.2.3, there exist constants ¢, (1 < a < n) not all
zero such that f*(3°0_; ca%)e =0 on C. Since © is defined in the form
of the Wronskian determinant, by Lemma A6.1.5, there exist constants
ag,0y,...,8, with ag # 0 such that

aof*d ( an log()) +ardfy + ...+ a,dfy =0
on C. Therefore

.8
aod ((ana—) log0> +aydz + ...+ a,dz, =0 (6.25)
s 4

a=1

on Xg41(f). Let w = aod ((Em_1 Cagos )log()) +a1dz +...+4 agdz,, then
w € Q¢ 4+1. Thus, by Lemma A6.2.3,
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on Xg+1(f). That is

((Z Ca—) logﬂ) =0. (6.26)

a=1

2
Since (Z Ca 66 log@ is a globally well-defined meromorphic function
a

on A and its pull-back by f is identically equal to a constant by (6.26), it
follows from the Zariski density of f in A that

n 2
0
( E ca—> log 6 = constant
0z4
a=1
on A.

Now let B be the subgroup of A so that D is invariant under translation
by an element of B. By replacing A by the quotient of A with respect to
the maximum Abelian sub-variety contained in B, we can assume without
loss of generality that B is a finite group. Since B is a finite group, there
exists some point Py on D such that the orbit W through Py of the vector
field (3X0_; ca %) on A is not completely contained in D. Integrating the
equation

“~

(Z caa—a—) log 6 = constant

a=1

on W starting from some point W — D two times and exponenting, we
conclude that the function is nowhere zero on W, contradicting the choice
of Py on the divisor D of 8. O

A6.3 McQuillan’s Proof

.

Faltings [Fal2] proved the analog in number theory of both Bloch’s Theorem
and Lang’s Conjecture (see discussion in section B). Faltings’ proof is based
on Vojta’s idea [Voj2] of the existence of line bundles on the product of
copies of a sub-variety of an Abelian variety other than the obvious ones
from the Abelian variety if the sub-variety is not a translate of an Abelian
sub-variety. McQuillan [McQ2] adapted Faltings’ proof to function theory
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and gave a new proof of Bloch’s theorem. We present here McQuillan’s
proof of Bloch’s theorem (Theorem A6.1.1).

Let X™ (respectively A™) be the product of m copies of X (respectively
A). Consider the map p: X™ — A™(m~1)/2 defined by (z;)1<j<m going to
(zj = Tk)1<j<k<m.

If X is the translate y + B of an Abelian sub-variety B of A, then for
b; € B (1 £ j < m) the point (y + b; + 2z)1<j<m of X™ is mapped to
the same point (b; — bx)1<jck<m Of A™m=1)/2 for any z € B. So in that
case every fiber of the map p : X™ — A™(™m-1)/2 contains a sub-variety
biholomorphic to B and has a positive dimension. However, if X is not a
translate of an Abelian variety, then we have the following lemma.

Lemma A6.3.1 Assume that X is not a translate of an Abelian variety. If
m > dim X + 1, then the map p : X™ — A™™=1)/2 defined by (Zj)i1<i<m
going to (; — Tr)1<j<k<m generically has finite fiber.

Proof. This is a special case of Lemma 5.1 in [Voj7]. O

For any rational number € let M(e) be the Q-bundle 62;.":1 priL +
El<j<k<m(prj — pri)*L, where prj : A™ — A is the projection onto the
4t factor. Using the property in Lemma A6.3.1 that p : X™ — A™(m-1)/2

generically has finite fiber, we can prove the following lemma.

Lemma A6.3.2 There ezist positive numbers € and ¢ such that for a suffi-
ciently divisible d the dimension of M (—€)®? over X™ is at least cd™4im X
In particular there erists a non-trivial holomorphic section s of M(—¢)®?
over X™.

Proof. This is a special case of Proposition 6.1 in [Voj7]. a

The following is an inequality concerning the characteristic function of
the difference of two rescaled maps:

Lemma A6.3.3 Let f : C — A be a holomorphic map from C to an
Abelian variety A. Let fx(2) = f(\z). Then

|A = plr
T2 ) < =R =T

T¢(R) + O(1)
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when max(|A|, |u|)r < R.

Proof. Let n = dim A. Then the universal covering of A is C" with
coordinates wi,...,w,. Since dd°3 7, |w;|* is a Kéhler form on 4, it
follows that, from Theorem A5.2.8 (Green-Jensen’s formula),

T dt . N . ; dé
n0 = [T /MStf(dd IEEES / (;Iwﬂf(re")lz)g

—= z lw;j o £(0) (6.27)

]—l
For any 1 < j < n, by Cauchy’s integral formula, we have

(A— “) j © f(C)dC
w;j o f(AZ) —wjo f(”'z) 27'-\/_ [¢|=R (C ’\z)(c p,z)

So
w0 2 N2 < |A = plr e wi o i0y|2 ‘_12
JZ;I (@=L < =T . (;I 0 f(Re )l)%-

By (6.27), we have

|A = plr

Proof of Bloch’s theorem.

Proof. Suppose Bloch’s theorem is false, i.e., there is a non-constant
holomorphic map f from C to A such that the Zariski closure of the image
of f is X. We are going to derive a contradiction. Let m > dim X. Let
F(z1,...,2m) = (f(z1),..., f(zm)) : C™ — X™. Assume without loss of
generalization that F(0) = 0. By Lemma A6.3.2, there exists a non-trivial
holomorphic section s of M(—€)®¢ over X™. In a local trivialization of
the line bundle M(—€)®4 over X™, we can expand F™*s into homogeneous
components F*s = Zu—l s, so that s; is not identical to zero. Choose
nonzero numbers such that

st(L+X2,...,14+2%) 0.
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We now fix a sufficient large number r. Recall that F(z1,...,2m) =
(f(z1)y.-., f(zm)) : C™ — X™. Since the image of f is Zariski dense in
X, the image of F is Zariski dense in X™. So we may choose numbers
Aj = 140.)3/r, where ﬂl'r')" < < Xfﬁ)—’ for 1 < j < m, such that the
image of the map (21,...,2m) = (f(A\121),- -+, f(Am2zm)) from C™ = X™
does not lie in the divisor of s. Denote by F (or Fy,,...a..) such that

F(z1,...,2m) = Fay, o (2150, 2m) = (Fwz1), -+, F(Amzm))-

Then the image of ' (or Fy, ... »,.) does not lie in the divisor of s.

Let L be a very ample line bundle over A. Choose a metric on L so
that its Chern form is positive definite. We let the metric of M(—¢)® be
induced from that of L. Then the Chern form Q of M(—¢)®? is equal to
d(—€ 372, Priw + X1 < j<k<m (Prj — Pr)*w), where w is the Chern form of
L. Since the vanishing order of |F*s|?> at z = 0 is £. By Theorem A5.2.7
(Poincare-Lelong formula),

\2;:135[log|17"s/z’|2] = Z(F*s/z%) — F*Q.
The above equality, together with Theorem A5.2.8 (Jensen-Green’s for-
mula), implies that

/ log|F*s/2%|om — log |F*s/2%|(0) = —Ty(r, Q) + N (r,s/2%), (6.28)
m(7

where

Todt -
Tp(r,Q =/ —-—/ F*Qavpt
F( ) 0 2m—1 Colr] m

and

Todt
Ni(r,s/z‘)=/ o
0

Thus (6.28) implies that

vmL

[
Z(F*8/z¢)NCum[r]

Tp(r,Q) = Np(r,s/2%) — / log | F*s|om — Llogr + log |F™*s/2%|(0).

m (T

We re-scale the metric of the line bundle, so that

/ log |F*s|lom < 0.
Sm(r)
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Then
Ty(r,Q) > —Llogr + log |F*s/2%((0).

On the other hand,

Tp(r, ) = —¢ E de,\j (r) + Z d(TfAJ- (r) - Tf,\k (r),

i=1 1<j<k<m
where f);(z) = f();z) and

e

Tf,\,- (r) = Tf,\j,w(r) =/0. 7 f:ju.).

C[r]
So
—ed dTy, (N + Y, ATy, (r) =Ty, ()

j=1 1<j<k<m
> —tlogr + log|F*s/z%|(0). (6.29)
Using Lemma A6.3.3, we have

[Aj — Ag|r
(T10, (1) = T, ) £ Gy ey ) + O,

Take R=r+ ﬂ,l;y Recall that A; = 1+79,A%/r, and —771;5-; < < W
for 1 <j <m. Then ’

1 1 1
—X\lr > R—r =0, |\ > - >
Wilr2 B=r=nsl 2 7065 ~ 1368 > 91,60

and [\ — Xg|r = |/\? = Mnr < ﬁ?;)-g So, using Lemma A1.2.4,

|Aj = Aelr
T, ) =T, (1)) < (R- IA;Ir)(Rk— Akl )Tf (®) +0()
8 1 B
< 0) - Ty (1‘+ T )) +0(1) < T ( 7 -2Ty(r) + O(1) = O(1),

where the inequality holds for all 7 outside a set E C (0, +o00) with finite
Lebesgue measure. Similarly

(T, (7) = Ty() < O(1),
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where the inequality holds for all r outside a set £ C (0, +00) with finite
Lebesgue measure. Thus

Ta(r,Q) = —eZdeA M+ Y, d (T, () = Tg,,, (1))
1<j<k<m
= —emef(r)+O(1), (6.30)

where the equation holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. We now compute (Fy  , s/2z%)(0). In fact

(P31, 8/29(0) = 8¢ty -+, Am) = se(L+ 12T/, 14 e XD, /).

Consider the expansion of the function se(1+A9¢,- -+, 1+ A% ¢t) as a function
of t at t = 0. We get

81(1 +’\(1)t""’1+)‘?nt) = ¢ptp+¢p+1tp+l + ‘”+¢P¢t‘

with 0 # ¢, € C. Then,sinceﬁ(l;)-;gnrsWforlﬁjgm,
J

|83(/\1, ) )‘m)l = |$¢(1 + nr’\(l)/ra 14 ﬂr/\?n/rﬂ
1
> 2, (——)P.
= 2(pp('l’Tf (7‘)4 )
Finally, from (6.29) and (6.30) and the above inequality, we have

—edmTy(r) + O(1) > —Llogr + log <pp(rT (r)4) ,

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. This gives the estimate T¢(r) = O(logr) for all 7 outside
aset E C (0,+00) with finite Lebesgue measure. However, since

* — ,_ﬂx V_]- -
f“’—az;haﬁfa f o dz Adz

and -, sh. 35 f s f is plurisubharmonic and not identically zero, we know
that T} (r) > O(r’) Thus we have a contradiction. O
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Part B: Diophantine Approximation

B6.1 Faltings’ Theorem on Rational Points in Abelian Va-
rieties

In 1990 and 1991, Faltings produced two papers in which he proved the
following two fascinating theorems.

Theorem B6.1.1 Let A be an Abelian variety defined over a number field
k. Let X be a sub-variety of A, also defined over F. Then the set X (k) of
k-rational points in X is contained in a finite union of translated Abelian
sub-variety of X.

Theorem B6.1.2 Let A be an Abelian variety defined over a number field
k and E a sub-variety, also defined over F. Let h be a height on A and v
is a valuation on k. Let € > 0. Then we have

Av,e(P) < €h(P)
for almost every point P € A(k) — E.

We will not prove these two theorems since they involve more sophis-
ticated theory. Instead, we will outline the idea. The proof of Faltings’
theorems is a higher dimensional generalization of Vojta’s proof of Roth’s
theorem (see [Fal2]). Basically it can be summarized as follows. Assume
that X does not contain translates of Abelian subvariety of A and assume
that X (k) is infinite. First of all we fix a very ample symmetric line bun-
dle £ over A, and the norms on £ at the Archimedean places of k. Let
m be a sufficiently large integer. There exists ¢ = (z1,...,Zm) in X™(k)
satisfying certain conditions(e.g., the angles between the z; with respect to
the Néron-Tate height associated to £ should be small, the quotient of the
height of z;,; by the height of z; should be big for 1 < i < m and the height
of z; should be big). Instead of a polynomial, we then construct a global
section f of a certain line bundle £(o —¢, s1, ..., Sm)? on a certain model of
X™ over the ring of integer R of k. This line bundle is a tensor product of
pull-backs of £ along maps A™ — A depending on o — ¢, the s; and on d;
in particular it comes with the norms at the Archimedean places. By con-
struction, f has small order vanishing at = and has suitably bounded norms
at the Archimedean places of k. Then we consider the Arakelov degree of
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the metrized line bundle z*L(0 — ¢, s1,. .., sm)% on spec(R); the conditions
satisfied by the z; give an upper bound, whereas the bound on the norm of
f at the Archimedean places gives a lower bound. It turns out that we can
choose the parameter €, 0 the s; and d in such a way that the upper bound
is smaller than the lower bound, which gives a contradiction. We note that
the construction of f is quite involved. Intersection theory is used to show
that under suitable hypotheses, the line bundle £(—e¢, s1,- .. ,8m)% is ample
on X™. A new, basic tool here is the so-called Product theorem, a strong
generalization by Faltings of Roth’s Lemma. Also Siegel’s Lemma is used
in the construction of the section f.
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The Correspondence Table

Nevanlinna Theory | Diophantine Approximation
Theorem A6.1.1 Theorem B6.1.1
Theorem A6.2.1 Theorem B6.1.2



Chapter 7

Complex Hyperbolic Manifolds and
Lang’s Conjecture

Part A: Nevanlinna Theory

A7.1 Schwarz Lemma

The starting point of the theory of complex hyperbolic manifolds is the
so-called Schwarz Lemma. Before stating it, we need some preparations.
Let X be a Riemann surface, i.e., a 1-dimensional complex manifold. Let

do?® = 2a(z)dzdz

be a Hermitian pseudo-metric on X expressed in terms of a local coordinate
z. Here the term pseudo-metric means that do? is only semidefinite, i.e.,
a(z) > 0. Let

—18%loga
K=— .
a 020z

K is called the Gaussian curvature of do?. Note that K is defined
whenever a is positive.

(7.1)

Example A7.1.1 Let D(r) be the disc of radius r on C. The metric

4r?dzdz
(r2 —|2|2)?

is called the Poincaré metric on D(r). It is easy to check that the Gaus-
sian curvature K of the Poincaré metric is —1.

ds® = (7.2)

We will prove a generalization of the Schwarz-Pick Lemma by Ahlfors.

267
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Theorem A7.1.2 (Ahlfors) Let ds? denote the Poincaré metric on the
unit disc D. Let do? be any Hermitian pseudo-metric on D whose Gaussian
curvature is bounded above by —1. Then

do? < ds®. (7.3)

Proof. Let D, be the disc of radius 7 < 1 with the Poincaré metric ds?

of curvature —1 given by

ds® = 2a,(z)dzdz where a.(z) = —E—-
T T (= 2D

We compare this metric with do? = 2b(z)dzdz. Put

u(z) = log :r(:z)) .

Since p(z) =@ —oo as z — 0Dy, there is a point 29 € D, such that
w(z0) = sup{u(z);z € D;} > —c0.
Then b(2) > 0. Since 2z is a maximal point of p(z),

0*pu

0> ——(z).
= 6z62( o)

On the other hand, since the Gaussian curvature of the Poincaré metric is

—1 and the curvature of do? is bounded above by —1,

8%loga, 82logb
dror — () and 5o (2) 2 b(z).
So
% _ 0%logb 8% loga,
02 020z (20) = 020z (20) - 8207 (20) > b(20) — ar(zo)-

Hence a,(29) > b(z) and so p(z) < 0. By the choice of 29, we have
©(2) < 0on D,, that is

ar(2) > b(2).

The Theorem is proven by letting r — 1. O
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Note that in the proof of Theorem A7.1.2, we see that the theorem holds
if do? is only continuous at zero points of do? and is twice differentiable
at the points where it is positive(and hence the curvature is defined). This
allows Ahlfors to extend Theorem A7.1.2 to non-smooth metrics. Let do?
be an upper semi-continuous Hermitian pseudo-metric on the unit disc D.
A pseudo-Hermitian metric do? is called a supporting pseudo metric
for do? at zp € D if it is defined and of class C? in a neighborhood U of zp
and satisfies the following condition:

do® >do? onU and do® =do} at 2.
We define
Kd02 (Zo) = inf Kda'g (Zo),

where the infimum is taken over all supporting pseudo metric do? for do?
at zg. Theorem A7.1.2 is generalized to the following theorem.

Theorem A7.1.3 Let ds? denote the Poincaré metric on the unit disc D.
Let do? be an upper semi-continuous Hermitian pseudo-metric on D whose
curvature is bounded above by —1. Then

do? < ds®.

Corollary A7.1.4 Let X be a Riemann surface with a Hermitian pseudo-
metric ds% whose curvature (wherever defined) is bounded above by —1.
Then every holomorphic map f : D — X is distance-decreasing, i.e.,

f‘dsgf < ds?,
where ds? is the Poincaré metric on the unit disc D.

Proof. Set do? = f*ds%. Then do? is a Hermitian pseudo-metric on D.
If we denote the curvature of ds% by Kx, then the curvature of do? is given
by f*Kx. Now Corollary A7.1.4 follows from Theorem A7.1.2. ]

The classical Schwarz-Pick Lemma immediately follows from Corollary
AT7.1.4.
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Corollary A7.1.5 Let D be the unit disc with the Poincaré metric ds?.

Then every holomorphic map f : D — D is distance-decreasing, i.e.,
f*ds® < ds?, or equivalently

|17 (2)]

< , for ze€D.
1-[f(2)? = 1—|2?

To generalize Corollary A7.1.4 to higher dimensional manifolds, we in-
troduce the concept of pseudo-length function.

Definition A7.1.6 Let M be a complez manifold. By a pseudo-length
function on M we mean a non-negative (and strictly positive somewhere)
function F(z,£) defined on the complez tangent bundle TM such that

F(z,X¢) = |[MF(z,&) forall AeC.

We normally assume that F' is smooth. However, for applications it is
sometimes necessary to consider upper-semi-continuous pseudo-length func-
tions. If F(z,€) > 0 for all nonzero £ € T, M and all z € M, then we call
F a length function. If, in addition, F(x,£) satisfies the property that
F(z,& + &) < F(z,8) + F(z,£), then we call F as a Finsler (pseudo-)
metric.

Given an upper-semi-continuous pseudo-length function F' on M, let
p € M and v € T, M, and let [v] denote the complex line spanned by v. We
define the holomorphic sectional curvature Kr([v]) in the direction of

[v] by
Kr([v]) = sup K. p(0), (7.4)
where the supremum is taken over all holomorphic maps from the unit disc
D into M with f(0) = p and f'(0) € [v].
Corollary A7.1.4 is easily generalized to the following:

Theorem A7.1.7 Let F be an upper-semicontinuous pseudo-length func-
tion on a compler manifold M. If its holomorphic sectional curvature is
bounded above by —1, then

f*F% <ds® for fe€ Hol(D,M),
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where ds? is the Poincaré metric of the unit disc D.

We now show that for a Hermitian manifold the definition of the holo-
morphic sectional curvature given above coincides with the usual one. Given
a Hermitian metric

n
ds* =2 ) g;dzid7
i,j=1
on a complex manifold M, the components of its curvature tensor are ex-
pressed by

a gz] agtq agp]
Rigur = s~ & (7.5)
Then given a unit tangent vector v = y v*(8/8z"), the holomorphic sec-
tional curvature in the direction of v is defined to be

Hy,2(v) = Z R; BRI (7.6)

Proposition A7.1.8 Let M' be a complez submanifold of a Hermitian
manifold M. Then the holomorphic sectional curvature Hj,, of M' does
not exceed the holomorphic sectional curvature Hy,2 of M, i.e.,

H}2(v) < Hygpe(v) for veTM'

Proof. We choose a local coordinate system z!,..., 2" in such a way that
M' is defined by

MMHl= =" =0

so that we may use z1,...,2z™ as a local coordinate system for M'. Then
m

the induced Hermitian metric on M’ is given by 2 Z 9i;dz'dz’. We shall
1,j=1

compute its curvature tensors R;w-. Fixing a point £ € M', by a linear

change of coordinates, we may assume that g;; = d;; at z. Then at the

point of z we have the following equation of Gauss:

“ 095 09,
231,1‘ = Riikl’— Z 6z’f 3_;,] (7-7)

p=m+1
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for i,4,k,1=1,...,m. So, by (7.6) and (7.7), the Proposition holds. O

Theorem A7.1.9 For Hermitian manifold (M,ds?) the holomorphic sec-
tional curvature defined by (7.4) coincides with the classical holomorphic
sectional curvature defined by (7.6).

Proof. Fix a point p € M, and let v € T,M be a unit tangent vector.
If M’ is a holomorphic curve in M tangent to v at p, then, by Proposi-
tion A7.1.8, its Gaussian curvature at p does not exceed the holomorphic
sectional curvature Hy,a(v) of M in the direction v. We shall show that
there exists a holomorphic curve tangent to v whose Gaussian curvature at
p equals Hy,2(v). We start with any holomorphic curve M’ tangent to v at
p. We may choose a local coordinate system z1,...,2" with origin p such
that g;; = 6;; and M’ is given by 2% = ...2" = 0. From (7.7) we know
that if 8g15/02' =0 at p for ¢ =2,...,n, then M’ already has the desired
property. If not, we consider the following coordinate transformation:

1
2! =w1,z"=w"—§a"(w1)2, (¢=2,...,n),

where a?,...,a" are constants to be chosen appropriately. Substitute the
coordinate transformation above into ds* = 23 g;3dz*dz’ to express it in
terms of w',...,w™. Then we obtain ds? =2} h;;dw'dw?, with

m
hig =915 — Z grga"w’.

r=2
It follows that if we set a? = (8g15/02')|p, then (8hig/0w')|, = 0, so
that the holomorphic curve defined by w? = --- = w™ = 0 has the desired
property. This finishes the proof. O

Theorem A7.1.9, together with Theorem A7.1.7, implies the following
theorem.

Theorem A7.1.10 Let (M,ds%;) be a Hermitian manifold whose holo-
morphic sectional curvature (in the classical sense) is bounded above by
—1, then

f*ds3; < ds® for fe€ Hol(D,M),

where ds? is the Poincaré metric of the unit disc D.
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A7.2 Kobayashi Hyperbolicity

4dzdz
(1-z%)*
The Gaussian curvature K of the Poincaré metric is —1. Let p denote the
Poincaré distance defined by the Poincaré metric ds?. We first find an
explicit formula for p.

Recall that on the unit disc D the Poincaré metric is given by ds? =

Theorem AT7.2.1

la — ab| + |a —b|
la — ab| — |a —b|

a-b

= 2tanh™} —
an 1—ab

for a,beD. (7.8)

p(a,b) = log

Proof. Let 0 < a <1 If z(t) = z(t) +iy(t),0 <t < 1, is a curve in
D joining the origin 0 € D to @ € D, its arc length ! with respect to ds?
satisfies

o [HR e,
— S 1-z()? -y()?
1o2lz'(2) ¢ 2dz l1+a
— /' > = .
o 1—z(t)2dt—/(; 1-2z2 lOgl—a

v

This shows that the ordinary line segment from 0 to a is the shortest path
and that

l1+ea
0,a) =1 .
p(0,a) = log -—
Since the Poincaré metric is invariant under the rotations, we have
p(0,a) = log 1 +Z =2tanh™!|a| for a € D.

Given two points a and b in D, the transformation
w = z—b
T 1-b2

is an automorphism of D that sends b to 0 and a to (a —b)/(1 — ab). From
the invariance of p we obtain

a-b
1-ab

la — ab| + |a — b

- = 2tanh™!
la—ab—la—b "

p(a,b) = log for a,b€D.

O
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Given a complex manifold M, we shall define the Kobayashi pseudo-
distance on M. Given two points p,q € M, we consider a Kobayashi
chain of discs from p to g, that is, a chain of points p = po, p1,...,pr = qof
M, pairs of points a;, by, ..., ax, by of D and holomorphic maps fi,..., fr €
Hol(D, M) such that f;(a;) = pi—1 and fi(b;) =pifori=1,... k.

Definition A7.2.2 Let M be a complex manifold. The Kobayashi pseudo-
distance on M is defined, for any two points p,q € M, by

k
du(p,g) = inf Y _ plai, bs)
i=1

where p is the Poincaré distance on the unit disc D given in (7.8) and the
inf is taken over all Kobayashi chains of discs from p to q.

From the definition, we see that djs has an important property that is
the distance decreasing under holomorphic mapping. So

Theorem A7.2.3 (1) Let M, N be two complez manifolds and f : M - N
be holomorphic. Then

dn(f(p), £(9)) < dum(p 9)-

(2) For the unit disc D, the Kobayashi pseudo-distance dp coincides
with the Poincaré distance on D.

(3) The Kobayashi pseudo-distance is the largest pseudo-distance on M
such that every holomorphic map f: D — M is distance decreasing.

Example A7.2.4 For the complez plane C and the punctured plane C* =
C - {0}, we have dc =0 and dc- = 0.

Proof. In fact, given two points p,q € C and an arbitrarily small positive
number ¢, there is a holomorphic map f : D — C such that f(0) = p and
f(e) = q. Hence dc < e. Letting € — 0 implies that dc = 0. dc- =0
follows from the distance-decreasing property (Theorem A7.2.3) and the
fact that dc = 0. O

Definition A7.2.5 A complez manifold M is said to be Kobayashi hy-
perbolic if dy is a distance, i.e., if dpy(p,q) = 0 then p = q. If the
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distance dps is complete, then we say that M is complete Kobayashi
hyperbolic.

Theorem A7.2.6 If M is Kobayashi hyperbolic, then every holomorphic
map f: C = M must be constant.

Proof. Assume that M is Kobayashi hyperbolic then the Kobayashi
pseudo-distance dps, in fact, is a distance. By Theorem A7.2.3, we have,
for every a,b € C,

dM(f(a')) f(b)) < dC(av b) =0.

Hence, since dps is a distaﬁce, f(a) = f(b), which implies that f is constant.
This finishes the proof. O

Let M be a complex manifold and M’ be a complex subspace of M with
compact closure M’. We call a point p € M’ a hyperbolic point if every
neighborhood U of p contains a smaller neighborhood V of p, V C U, such
that

dMI(VﬂM',M'-U) >0,

where dps is the Kobayashi pseudo-distance induced from M. We say that
M' is hyperbolically imbedded in M if every point of M” is a hyperbolic
point. Clearly, M' is hyperbolically imbedded in M if and only if, for every
pair of distinct points p,q in M’ C M, there exists neighborhoods U, and
U of p and ¢ in M such that dar (U, N M', U, N M') > 0.

It is an important problem to find many examples of Kobayashi hyper-
bolic complex manifolds besides those that are easily found. S. Kobayashi
raised the following conjecture.

Conjecture A7.2.7 (S. Kobayashi) (I) Is a generic hypersurface X of
degree > 2n + 1 in P*(C) hyperbolic?

(II) Is the complement of such a surface is complete hyperbolic and
hyperbolically imbedded in P™(C)?

The classical result in support (II) is that the complement of 2n + 1
hyperplanes in general position in P®(C) is hyperbolically imbedded in
P™(C). Brody-Green [Br-G] showed that the smooth surface

(22)% 4+ -+ (2%)? + 5(2°21)¥? + 1(2°2%)¥? = 0
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in P3(C) is hyperbolic for even degree d > 50 and generic s,t € C*. Nadel
[Nad] obtained similar examples of hyperbolic surfaces in P3(C) and curves
in P%(C) with hyperbolically imbedded components. K. Masuda and J.
Noguchi [Mas-N] constructed example of the hyperbolic hypersurface of
P™(C). Dethloff-Schumacher-Wong proved that the complement of the
union of generic 2 quadrics in P?(C) is hyperbolic, and Siu-Yeung [Siu-Y1]
proved the Kobayashi conjecture (II) for generic curves in P?(C) of degree
greater than some large number.

We know that metric induces distance, and in most case metric is more
convenient to use. So next we shall describe Royden’s pseudo-length func-
tion, of which the Kobayashi distance is the integrated form. Let M be a
complex manifold M and let p € M and v € T,M. We define

Ry (p,v) = inf {TIR_ there exists a holomorphic map f: D(R) - M

with £(0) = p, f'(0) = v} (7.9)

or equivalently

there exists a holomorphic map f: D - M

Ry (p,v) = inf{%

with f(0) = p, f'(0) = Ru}. (7.10)

Royden proved that it is upper semi-continuous. It follows immediately
from the definition and the Schwarz Lemma that on the unit disc D the
Royden function Rps(p,v) is the same as the Poincaré metric.

Royden’s pseudo-length function induces a pseudo-distance on M and
we shall prove that that distance actually is Kobayashi’s pseudo-distance.
Let v : [a,b] & M be a C! curve in M. The length induced by Royden’s
pseudo-length function is

b
Lu(y) = / Rar(v(2),'(8))dt

and for any two points p,q € M, the pseudo-distance (we call it Royden’s
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pseudo-distance) induced by Royden’s pseudo-length function is given by

du(p,q) = inf Lar(v),
where the infimum is taken over all C' curves connecting p and gq.
Theorem A7.2.8 dy, = d, that is Royden’s pseudo-distance is equal to
Kobayashi’s pseudo-distance.

Proof. The inequality d}, < dpr follows from Theorem A7.2.3 such that
the Kobayashi pseudo-distance is the largest pseudo-distance on M hence
every holomorphic map f : D — M is distance decreasing.

Next we prove that dar < d),. Given two points p,q € M, for arbitrary
€ > 0, there is a C! curve v : [0,1] = M connecting p and ¢ such that

Lus() = / Ras(v(8), 7 ())dt < doy (p, ) +e.

Since Royden’s function is upper semi-continuous there exists a sequence
of continuous functions {h,(t)} increasing to the function Rar(7(t),7'(t)).
Hence there exists a continuous function h(t) such that

Ry (x(t),7'(t)) < h(t),

but

/ (et < /  Rar(r(), 7 ()dt + € < dioy (p,) + 26
0 0

Also we find a partition (to,...,ts) of the interval [0, 1] such that for s; €
[ti—1,t;] we have an estimate for the Riemann sum

i h(si)(t,’ - ti—l) < d;u(p, q) + 3e. (7.11)

Next we prove the following claim, which is a mean-value type theorem:

Claim: Let 7y : [a,b] = M be a C! curve. Then given s,e' > 0 there ezists
0 such that for all t in the interval |t — s| < § we have

dm (7(t),7(5)) < [Ru(7(5),7'(s)) + €]t — s].
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To prove the Claim, we note, by the definition of Royden’s pseudo-length
function, there exists a disk D(R) and a holomorphic map f : D(R) - M
such that f(0) = ~(s), f'(0) = ¥'(s), and

= < Ru(r(s),7/(s) + e

Let W = D be a coordinate polydisc centered at y(s), and let W/, be
the subpolydisc of half the radius, where n = dim M. For z,y € W/, we
have

dM(xs y) < dW(Z, y)
We can choose 6; such that |t — s| < d; implies ¥(t) € W¢/a.
Since when f is restricted to the real axis, f also becomes a parametrized
curve in M, and two parametrized curves v and f (restricted to the real

axis) have the same tangent vector at y(s) = f(0). Hence there exists d;
such that for |t — s| < d2 we have

dw (f(2), f(t = 8)) < €t — 5],
because dw defines the topology on the polydisc W. Then
du (f(2), f(t = s)) < elt —s]. (7.12)

On the other hand, composing f with dilation mg : D — D(R), directly
from the definition of Kobayashi pseudo-distance, we have that for some §
and |t —s| < 4:

dm (f(t - 5), £(0))

IN

dp(r)(t —,0) < (% + e) |t - s|
< (Bm(v(8),7'(5)) +26)]t — sl (7.13)
Combining (7.12) with (7.13) and using the triangle inequality we find

dm (7(£),7(s)) < (Rm(v(5),7'()) + 3e)|t — s,

thereby proving the Claim.
We now return to the proof. Applying the Claim with ¢ = h(s;) —
Rar(~y(s:i),7'(s:)) and taking the partition sufficiently small, we have, noting

A
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(7.11),
du(pg) < D dm(y(t:),v(tiz1))
< D _lh(si) + )t = i
< dy(pq) +4e
This proves the Theorem. O

Finally, we present criteria for using the Royden function to determine
the Kobayashi hyperbolicity.

Theorem A7.2.9 Let M be a complex manifold with a metric h on it.
If there is a positive a > 0 such that for every point p € M and every
v € Tp(M), Rum(p,v) > ah(v), then M is Kobayashi hyperbolic.

Proof. In fact, the condition Rps(p,v) > ah(v), together with the fact
that h is a metric, implies that the Royden pseudo-distance induced by
R (p,v) is actually a distance. But Theorem A7.2.8 says that the Royden
pseudo-distance is the same as the Kobayashi distance. So M is Kobayashi
hyperbolic. O

A7.3 Brody’s Hyperbolicity

Intuitively speaking, a complex manifold is Kobayashi hyperbolic if it does
not contain disc of arbitrary large radii. For compact manifolds, as it turns
out, the characterization takes an exceptionally simple form.

Theorem A7.3.1 (Brody) A compact complex manifold M is Kobayashi
hyperbolic if and only if M contains no non-constant holomorphic curves,
i.e., there is no non-constant holomorphic curve f : C - M.

The following example by D. Eisenman and L. Taylor shows that The-
orem A7.3.1 does not hold for some non-compact manifolds.

IWIZI}

Example A7.3.2 The domain

M = {(z,w) € C?

lz] < 1,]|zw| < 1} - {(O,w)
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is not Kobayashi hyperbolic, but there is no non-constant holomorphic map
f:C-o M.

Proof. Themap h: (2,w) = (z,2w) sends M into the unit bidisc and is
one-to-one except at 2 = 0. Let f : C - M be a holomorphic map, then
ho f:C — D? is constant by Liouville’s theorem. So either f is constant
or f maps C into the set {(0,w) € M}. But this set is equivalent to the
unit disc. Hence f is constant in either case. Since h is distance-decreasing
we see that dps(p,q) > 0 for p # ¢ unless both p and ¢ are in the subset
{(0,w) € M}. We shall show that if p and ¢ are in the subset {(0,w) €
M}, then dp(p,q) = 0. Let p = (0,b) with b # 0 and ¢ = (0,0). Set
Pn = (1/n,b). Then dp(p,q) = limdp(pn,q). Let ap, = min{n, /n/|b|}.
The mapping t € D = (ant/n,anbt) € M maps 1/a, into p,. Hence

lim dM(pn, q) S lim dD(l/an: 0) = 0:

which shows that M is not Kobayashi hyperbolic. O

To prove Theorem A7.3.1, we need a lemma about the reparametriza-
tion.

Lemma A7.3.3 (Brody’s reparametrization) Let M be a compact Her-
mitian manifold with a Hermitian metric. Let f : D(R) — M be a holomor-
phic map with |f'(0)| > 0, where the norm |f'(0)| is taken with respect to
the Hermitian metric. Then for any 0 <1 < R, there ezists 0 <t < 1 and
a Mébius transformation T of D(r) such that the function g(z) = f(tT(2))
satisfies |g'(0)| = 3| f'(0)| and

9 < 5| £ O]

TP Ll

Note that the image of g is contained in the image of f.
Proof. For 0<t<1let fy(z) = f(tz). Let

r? — |22

si(2) = ——rz—lft,(z)l'
Since |f{(2)| = t|f'(tz)],

s¢(2) =t L IZI |f'(t2)].
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Let

s(t) = sup s¢(2).
z€D(r)
Since s;(2) vanishes at points |z| = r, the value s(t) is achieved by s;(2) at
some point z; of D(r). Since

t t
st(z) = ?Stl (;z)

for 0 <t < t' <1, it follows that s(t) is an increasing function of 0 < ¢ < 1.
Since s(0) = 0 and s(1) > |f'(0)|, there exists some 0 < ¢, < 1 such
that s(to) = 1|f'(0)|. Let 2z, € D(r) such that s(t) = ss(2t,). Let T
be the Mobius transformation mapping D(r) to itself so that T' maps the
origin to 2;,. Let g = f;, o T. To estimate |g'(2)|, we use the property
that the Poincaré metric on the disc D(r) is invariant under the M&bius
transformation by Schwarz’s lemma. That is ds* = T*(ds?) where ds? is
Poincaré metric on the disc D(r). So

r

,
= -|T'(2)].
A - Eomer

Thus

19 = |, (T(2)]- |T(2)]
- TR |, 2 ,
- ez | £, (T (2))] - W - |T'(2)|
2 2

T T
= 54,(T(2))- TF < s(to) - =gyl

1, r?
= 7Ol P

We also have |¢'(0)] = | £, (T(0))] - T"(0)] = st,(2e0) = s(to) = 3|£'(0)]. O

Proof of Theorem A7.3.1:

Proof. Theorem A7.2.6 gives one direction. To prove the other direction,
assume that M is not Kobayashi hyperbolic. Let h be a metric on M,
then Theorem A7.2.9 implies that there does not exist a positive number
a such that for every p € M and v € T,(M), Ru(p,v) > ah(v), where
Ry is the Royden pseudo-length function. Hence there is a sequence of
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points p, € M and tangent vectors v, € T}, (M) such that |v,| = 1 and
Ru(pn,vn) < 1/n, where the norm of |v,| is taken with respect to the
metric h. By the definition of Rjs given by (7.9), we find an increasing
sequence of discs D(R,,) with radius R, lim,, R, = oo, and a sequence
of holomorphic maps f, : D(R,) = M with f,(0) = pnp, f.(0) = v,.
By applying Lemma A7.3.3, we obtain a sequence of maps g, = fn 0T,
where T,, is Mobius transformation of D(R,,) such that the function satisfies
9% (0)| = 3£2(0)| = 1/2 and

PR -
lgn(2)] < A=)

This implies that the family 1 = {gn|D(r,,,)} is equicontinuous, the
Arzela-Ascoli theorem implies that we can extract a subsequence which
converges to a map h; € Hol(D(R,/3), M). (We note that this is the place
where we use the compactness of M.) Applying the same theorem to F2, we
extract a subsequence from the above subsequence which converges to hy €
Hol(D(R;/2), M). In this way, we obtain maps hx € Hol(D(Ry,2), M),
k=1,2,..., such that each hy is an extension of hi_;. Hence we have a
map h € Hol(C, M). Moreover, since |g;,(0)| = 1/2, |h'(0)| = 1/2. This im-
plies that h is not a constant. This is in contradiction with our assumption
that M contains no non-constant holomorphic curves. 0O

Motivated by Brody’s theorem, we provide the following definition.

Definition A7.3.4 A complex manifold M is said to be Brody hyper-
bolic if every holomorphic map f : C = M 1is constant.

In the previous chapters we show various manifolds which are Brody
hyperbolic using Nevanlinna’ theory. These manifolds are: P! minus 3
distinct points (Corollary A1.3.3); P™ minus 2n + 1 hyperplanes in general
position (Corollary A3.4.5); and an Abelian variety minus an ample divisor
(Theorem A6.2.1). The surface M = {[zo : 21 : 2o : 73) € P* | 2 + =T +
i + 252 P(z, 21,21, 23) = 0}, where P is a generic form of degree two,
is Brody hyperbolic if m > 11 (Corollary A3.2.10).

By Theorem A7.2.6, we arrive at the following theorem.

Theorem A7.3.5 If a complex manifold M is Kobayashi hyperbolic then
it is Brody hyperbolic.
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A7.4 Differential Geometric Criteria for Hyperbolicity

The results in Section A7.1 about the Schwarz Lemma yield differential
geometric criteria for hyperbolicity.

Theorem A7.4.1 Let M be a complex manifold. If there is a length func-
tion F with holomorphic sectional curvature Kr bounded above by a neg-
ative constant, then M is hyperbolic. If, moreover, F defines a complete
distance on M, then M is complete hyperbolic.

Proof. By normalizing F', we may assume that Kr < —1. Let p € M and
v € T,M. Let f : Dp = M be a holomorphic map with f(0) = p, f'(0) = v.
Recall that the Poincaré metric on D(R) is

4R?
(B? —12%)?

By the Schwarz Lemma, F(p,v) < 4. This implies that the Royden pseudo-
length function Rz (p,v) satisfies

dzdz.

1
:,,:F(P, v) < Ry (p,v).

By Theorem A7.2.9, M is Kobayashi hyperbolic. O

We note that although M admits a Hermitian metric with negative
holomorphic sectional curvature, this is not sufficient to conclude that it is
Kobayashi hyperbolic. For example, the Hermitian metric 2(1 + |z|)2dzdz
on C has Gaussian curvature

1

O R <

however, C is not hyperbolic.

Example A7.4.2 Every compact Riemann surface of genus > 2 is complete
Kobayashi hyperbolic.

Proof. In fact, the universal cover of such a Riemann surface is the up-
per half-plane. So the Poincaré metric on the upper half-plane induces a
complete metric on the Riemann surface with Gaussian curvature as —1.
So Theorem A7.4.1 implies that it is complete Kobayashi hyperbolic. [
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Example A7.4.3 The Riemann sphere P*(C) minus at least three points
is complete Kobayashi hyperbolic.

Proof. Infact,let M = P1(C)—{a;}]_, and let ||z, a|| denote the spher-
ical distance of P!(C). Define a hermitian metric do? on M by
1 4

do? = . dzdz
i1 1z, a2 (log cllz, ail[2)? (1 +|2%)?

where ¢ > 0 is a constant. Taking small ¢ > 0, one finds that the Gaussian
curvature Kz,2 < —k < 0 with a constant k > 0. So M is Kobayashi
hyperbolic. For every a;, we take a local coordinate w around a; with
w(a;) = 0. Then there is a constant A > 0 such that

A

2 A _
do P2 (log [w]?)? dwdw.

Therefore do? is complete. So M is complete Kobayashi hyperbolic. O

Next, we consider P™ — U‘}=1Hj, where H; are hyperplanes in general
position and ¢ > 2n + 1. Assume that there exists a non-constant holo-
morphic map f: C —» P" — Uj=lHj. We shall construct a pseudo-metric
on C with curvature bounded above by a negative constant, so it derives a
contradiction by using Schwarz’s Lemma. The procedure basically repeats
Ahlfors’ method, presented in section A3.5. We recall definitions in section
A3.5. Let f be a non-degenerated holomorphic map from C to P™. Let
F}, be the k-th associated map of f. Let ¢x(H) = ||F; H||. Then, we have
a Lemma similar to Lemma A3.5.10.

Theorem A7.4.4 For every € > 0 there erists a po(e) > 1 such that for
all p > po(€) and for any hyperplane H C P™ we have

c > 20141 (H)
108 (H/¢k(H)) = ¢w(H)log® (u/dx(H))

Qk - EQk.

Proof. First of all,

1 _ o dd®log ¢ (H) +2 dor(H) Nd°¢i(H)

log?(u/dx(H)) log(u/¢x(H)) ~ ¢2(H)log* (1] dx(H))’ (7.14)

dd° log
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Recall that, by Lemma A3.5.8,

br—1(H)rs1(H) — ¢ (H) 0%

and

déx(H) A d°¢i(H) = ($rt1 (H) — ¢i(H)) (b (H) — -1 (H)) .
Thus, we can rewrite (7.14) in the form

. 1 _ 2¢k+1(H)

8 T (T on ()~ o (H) log (] 6u(H))

k-1 (H)dr11(H) ( 1 _ 1 ) Q
2(H) log(u/¢x(H)) ~ log?(u/de(H)))

$x—1(H) _ 1 1
on () log? (u/ e () 2 (esgaracy * 1og’<u/¢k<H))) e

Then using the fact that ¢,(H) < 1, we choose a number p so large that
1
Tog(a/ e () > 1 and

+2

1 1
log(u/ox(H)) " log® (u/dx(H))

for the given € > 0 and

<<
2

1 1
og(a/ () Iog(a/oe(E) ~
Then
c 1 2¢k+1(H) e
o8 T o) = a2 ulen(@) *

Now let f: C —» P™ — U;’.ZIH,' be a non-constant holomorphic map,
where H;,1 < j < q are hyperplanes in general position. Assume that
f is m-linearly non-degenerate, i.e., f(C) is contained in a subspace of
dimension m < n, but not any subspace of lower dimension. Without
loss of generality, we assume that f : C — P™. Then f is linearly non-
degenerate. Furthermore, the hyperplanes H; N P™,1 < j < ¢ are in
m-subgeneral position. Let w(j) be the Nochka Weights associated with
Hj = Hi N P™. Then, similar to Theorem A3.5.7, we have the following
product-to-sum estimate.
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Lemma A7.4.5 For any constant N > 1 and 1/q < Ay < 1/(m —k), there
ezxists a positive constant Cy > 0 which depends only on k and the given
hyperplanes such that

Ak
b (H) )V 1
G (]';[ ( ¢k(Hj; ) (N—10g¢k(Hj))2)

dr+1(Hj)
<3 ) 108 62 ()

j=1

on Dy — Ug'=1 {ox(H;) = 0}.

To construct the pseudo-metric on D(R), we write

-1
Qk = on ak(z)dz Adz
and

1 (H;) )9 ! )
or = Cy H [( Pk (Hj) ) (N —log ¢« (H;))? e

where C is the positive constant in the product-to-sum estimate above,
M = 1/[m — k + 2g(m — k)2/N] and N > 1. We take the geometric mean
of o and define

m—1
'=2c H af"‘/’\"dzdf,

k=0
where 8, = 1/ st Ayt and ¢ = 2([Th! /\k" )ﬂ"' Let
[ = 2h(z)dzdz,

then
aﬁm /Ak

N B q 1 Bm 9 [m-1 p -
@ =ell (w@) EILI:I N —loga@en | (1)

Theorem A7.4.6 For ¢ > 2n —m+ 2, and

j=1w(f) — (m+1)
m(m + 2)

2¢/N <

k)
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we have
v-1

c >
dd®logh(z) > 5

h(z)dz A dz.

Proof. From (7.15) it follows that
dd° log h(z)

g q m-1 2
= ~Bm Y_w(j)dd"log do(Hj) + fm Y D _ dd”log (N - log1 ¢k(Hj)>

j=1 j=1 k=0
m-—1

+Bm Y (1/Ac)dd® log ay..
k=1
By Lemma A3.5.1, dd°log ay = Qi+1 — 2% + Qk—1 and dd®log ¢o(H;) =
—Qo. These, together with Lemma A7.4.4, imply that

dd10gh(2) > i SSw(i) +25° 3 Ses(Fy) Q
8 (")-""‘(Z“U) 0+ 23 D ST ~ log e EDT

j=1 j=1 k=0
2q m—1 m—1 2q
- S+ D [(m—k)+(m- k)’—ﬁ]{nkﬂ - 20 + Qk_l}).
k=0 k=0

Using Lemma A7.4.5, it follows that

! br+1(H;) Qk
= Sk (H;)(N —log ¢ (Hj))?

Ak
L [ bri1(Hj) w@) 1 .
Cl (H( mwﬁ) (N—logm(Hj))?) e

2
j=1

—_— v _1 >

= —Fa'k(Z)dZ AdZ.
Notice that

Qn =0,
so that
m-—1

D (m = k)( Qs — 20k + Qy) = —(m + 1),
k=0
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and therefore

dd®logh(z) >

9 \/_—1 m—1 %
Pm (JZ:;W(J')QO + 27 kgo ok(2)dz A dz — (m+1)Qy — (m® + 2m)ﬁﬂo
m-—2 5
+ 3 [m =k + 1) - 2(m — k) + (m — k = 1) — 1] 2%
k=1 N
2q
20 ).
+3 1)
We use the following elementary inequality: For all positive numbers z;,...,z,
and ay,...,aq,

a1z; +-- cAnTn Z (al + .4 an)(zgl . .zzﬂ)l/(al"’"""ﬂn)'

Letting ax = A\;' we have

ﬁ Ak
Gk >_ 2 Ok

k=1 zﬂm

and therefore

9 m—2
alogh() > fn| (Zwm —(m+1) - (m? +2m)fv—q) 0+ Mo,

=1 k=1
] v-1

+20 4+ —_lh(z)dz Adz.
2

N
By Theorem A3.4.3, we have
q
O(Ew(j)- (m+1)=¢q-2n+m-1>0,
j=1

and 6 > 0, so (Zgzl w(j) = (m + 1)) > 0. Using this and the choice of N
gives us

\/__lh(z)dz AdZ.

dd®logh(z) >
2m O
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By Theorem A7.4.6, the Gauss curvature of the pseudo-metric I' on
D(R) is bounded above by —1. So, using Theorem A7.1.2, we have

h(z) < (E%’ilz—l,;)z.

Letting R — oo, we have h(z) = 0 on C, which gives a contradiction. So
we again derive the following theorem. (Note, in A5.3, we use Nevanlinna’s
second main theorem for the derivation.)

Theorem A7.4.7 P™ — Ug___lHj is Brody hyperbolic if Hj,1 < j < q, are

hyperplanes in general position and ¢ > 2n + 1.

Note that M. Green actually showed that P* — UJ_, H; is Kobayashi
hyperbolic and hyperbolically embedded in P™ if H; are hyperplanes in
general position and ¢ > 2n + 1.

A7.5 Metrics on Jet Bundles

Let M be a compact complex manifold. Let D = Dy + ---+ Dg be a
divisor on M where {D; | ¢ = 1,...,q} are the irreducible components of
D. Furthermore we assume that D is of simple normal crossing, i.e., each
D; is smooth; D; intersects D; transversally for all ¢ # j and each point z
is contained in at most n components. For simplicity we also assume that
D; are linearly equivalent, i.e., the line bundle L = O(D;) associated to the
divisor D; is the same foralli = 1,...,q. Denote by Tp M = Q},(log D) the
bundle over M of meromorphic 1-forms which are holomorphic except for
logarithmic poles at D. T, M is called the logarithmic cotangent bundle of
M. The dual Tp M shall be referred to as the logarithmic tangent bundle.
The following theorem is due to S. Lu ([Lu]). The proof presented below is
provided by P.M. Wong.

Theorem A7.5.1 Let A be a very ample divisor and D be a divisor of
simple normal crossing on a compact complex manifold M or let D be a
trivial divisor. Let f : C — M — D be a holomorphic curve, then

ffw=0

for all non-trial w € H°(M,S™THM ® O(—A)), where SMTHM is the
m-fold symmetric product of THM.
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Proof. Let py,...,pn be a basis of sections of H°(M, O(A)) providing
an embedding [po,...,pn] : M = PN. Then p = Eio pi ® p; may be
considered as a Hermitian metric along the fiber of O(—A). Indeed it is the
pull-back of the standard Hermitian metric of the tautological line bundle
Opn~ (—1). Denote by p* the dual metric on O(A), then

c1(0(A4),p") > 0.

We first deal with the case when D is a trivial divisor. Define a Finsler
metric on T'(M) by, for every & € T(M),

F(€) = lléllogp = (lw(@™E)P)H™.
Differentiating the above equation in the sense of the differential form yields:
dd®log F(§) = c1(O(4), p*). (7.16)

Since M is compact and ¢; (O(4), p*) > 0,

c1(O(A), p*)(&,€) 2 aF(£), (7.17)

where a is a positive constant, which we may assume to be 1/2r after
normalizing the metric. Combining (7.16) and (7.17) gives, for any holo-
morphic curve f: C = M,

dd®log(F o £)(9/0¢,8/8() = dd° log F(£.0/¢, £.8/8()
> F(£.8/8¢,£.8/8C) = (F o £)(8/8¢,8/8C).

This means that f*F = F o f is a pseudo-length function on C whose
Gaussian curvature is bounded above by —1. So by the Schwarz Lemma,
we have

f*F <ds%

where ds% is the Poincaré metric on the disc D(R). Let R — oo, we have
f*F =0,s0 f*w = 0. This proves the first case.

Now let D be an ample divisor. We have to modify the Finsler metric
defined above. Define a Finsler metric on TpM by, for every £ € Tp M,

ll€P = li€llogp = (w(@™E)F)H™,
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where Tp M is the logarithmic tangent bundle of M. Let L = O(D) and
let s; € H°(M, L) be a holomorphic section such that D; = {s; = 0} and
consider the function

— |I§|Iw®p
O = M Gog /iy ¢ € 72X (7.18)

where p is a constant to be determined and where ||s;|| is the norm of a

Hermitian metric h along the fiber of L.

Differentiating (7.18) in the sense of the differential form yields:

. q 1
[+ = — * C (log 1/||s:|[2)?
dd°log ¢ = —c1(O(A),p") + ;dd log (log /||s:][2)2

_ 1 ci(Lyh) | < log|lsil|? A de log ||si|?
- cl<0<A>p>+Zlog,,/||s Pt Goga/lsl?

Given any € > 0 we may choose u so that

1
— >
log pu/|[s:l|2 =

and for e sufficiently small enough we have (as ¢; (4, p*) is positive definite)

—€

5=c1(0(4),5°) — geea(L,h) > 0 (7.19)

and so

dlog [|s;]|* A d¢log [[s:]|?
(log u/||s:|?)2 ’

Since D = Dy + -+ -+ Dy is of simple normal crossing, at any point x € M
there exists an open neighborhood U’ and local coordinates z = (z1,...2n)
such that DNU' = {z|z;-- - zx = 0} for some 1 < k < n. Assume without
loss of generality that s; = z;,i =1,...,k on U’ and $g41,...,S, are non-
vanishing on U’. Since M is compact it is covered by a finite number of
such open neighborhoods. In fact we can choose U C U C U’ so that a
finite number of U covers M.

dd° log ¢ > _CI(O(A)) ")+ Z

Each term dlog ||s;|| A d°log||s:||?/(log i/||sil|?)? is regular and on the
neighborhood U’ is smooth and hence bounded on U for k+1 <7 <gq. On
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the other hand, for 1 < ¢ < k, write ||s;|| = |2;|2h; where h; > 0 is smooth
on U'. Then

dlog||s:[|* A d° log ||s:||*

_ v-1 dzi/\dzi+dzi/\aloghi+aloglii/\dz,- +810gh,~/\510ghi
2m |2:]? Zi Zj
_ V-1 /[ldzindz + dz; AOlogh; + alogh-i/\dzi + 48log h; A Blog hs
27 4 |zi|2 Z; F2
V=13dz; Adz; /-1 5
e - i h;
+ ey o 30logh; A Olog
V-l (3dzindz 30log h; A Dlog h;
2r \4 |z|?

where we have used the elementary identity |a|?+ab+ab+4[b| = |3a+2b|.
Thus we have

2
dd®log¢ 2 5—c1(O(4), ")

k k 5
dz; AdZ; v-1 Ologh; A Ologh;
4 2w Z|z,| 3 E

2(logz:?)? (log |s:]12)?
Y dzindz >
> —c O(A + u L 3¢ dlogh; A d°logh;.
= 1( ( ) p ) Z IZ |2(10g|21‘|2)2 ; g
Since g; is smooth on U we have
k
—cl(O(A) p*) > 36 Y dlogh; Ad°logh; (7.20)
=1

on U for € sufficiently small. Similarly, there exists Ay > 0 such that

1 n
%01(0(‘4),[)*) > Ay E dz; AN dz;. (721)

i=k+1

Putting all these together we get

k n
1 dz; A\ dz; _
dd°l > — * _—— dz; AN dz;
0g¢ 2 z—c1(O(A),p") +av (; P (og [P +i=2k;d i A z)
(7.22)
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where ay is a positive constant. Consider

7] 7]
E=amz1—+...+apzk—+...+tanzn=— € TpX|v

0z Oz Ozp
with i, |ai|> # 0. Then on U there exists constant by > 0 such that

ZI a;|?

k
|a)?
L = 5
o€ = 2 o7 " 3 i

ZI al®.

Hz_l (log ﬂ/|21|2
On the other hand
€112, < CUE |as]?
i=1

for some constant ¢y > 0 on U. Thus there exists a positive constant
ay > 0 such that Ly(€) > ayd(§) on U. Let @ = minay > 0 where the
minimum is taken over the finite covering U’s. Then

dd° log ¢(¢, €) > —01(0(A) p*)(E, €)+a —¢(¢), £ €TpM.  (7.23)

By rearranging the constant to the norm, we may assume that a = 1. Let
f:C —= M — D be a holomorphic curve. Then (7.23) implies that

d log( 0 £)(9/0¢,0/07) = dd 10g §(£.0/9¢, 1.0/00)
> 5-0(1.0/0¢,£.0/00) = 5-(6 o 1)(0/0¢,3/0).

This means that f*¢ = ¢ o f is a pseudo-length function on C whose
Gaussian curvature is bounded above by —1. So by the Schwarz Lemma,
we have

f*o < dsh

where ds% is the Poincaré metric on the disc D(R). Letting R — oo, we
have f*¢ =0, so f*w =0. a

To apply Theorem A7.5.1, we introduce some notation. Let E be a
holomorphic vector bundle of rank r over M. At each point z € M, let
P(E;) be the (r — 1)-dimensional projective lines through the origin in the



294 Complez Hyperbolic Manifolds and Lang’s Conjecture

fiber E;. Let P(E) be the fiber bundle over M whose fiber at z is P(E;).
In other words,

P(E) = UzemP(E;) = (E — zero section)/C*.

Using the projection p : P(E) - M, we pull back the bundle E to obtain
the vector bundle p*E of rank r over P(E). We define the tautological
bundle Op(g)(—1) over P(E) as the subbundle of p*E whose fiber at any
point (z,v) € P(E) is the line in E, represented by v. A vector bundle E
over M is said to be big (resp. ample) if the line bundle Op(g+)(1) over
P(E*) is big (resp. ample), where E* is the dual of E.

We now consider the case that the cotangent bundle T*M is big. By
Grothendieck’s well-known result ([Gro], p. 162-163),

HO(M,S™T*M ® O(~A)) = H*(P(TM), Op(ray(m) ® (—p* 4)),

where T M is the tangent bundle over M. In the case that the cotangent
bundle T* M is big, i.e., the line bundle Op(7ar)(1) is big, there exists a
global section in HO(P(T M), Op(rar)(m) ® (—p* A)) for m large enough. So
there exists an w € H'(M,S™T*M ® O(—A)). Applying Theorem A7.5.1
with D as a trivial divisor, f*w = 0. In general, it is very hard to go from
f*w = 0 to the conclusion that f is constant. In the case that the cotangent
bundle T*M is ample, then the base locus is empty, so we conclude that
f is constant. This proves Kobayashi’s result that For a compact complex
manifold M, if its cotangent bundle 2ps is ample, then M is hyperbolic.

Next we consider the surfaces of general type. Let M be a compact
complex surface with ¢? > cp, where c;, c; are the first and second Chern
forms of M. To produce a meromorphic differential

w € H(M,S™T*M ® O(—A)),

we use Hirzebruch’s Riemann-Roch formula (see [Hi]). By Hirzebruch’s
Riemann-Roch formula,

3
x(M, S™T* M) = %-(cﬁ - c3) + O(m?).

On the other hand, Serre duality implies that
R (M,S™T*M) = h°(M,S™T*M ® K )
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where K is the canonical bundle over M. A vanishing theorem due to
Bogomolov [Bo] implies that, on a surface M of general type,

RO(M,S™"T*M @ K&¥) =0

for all m,q such that m —2g > 0. In particular, h°(M,S™T*M ® K1) =0
whenever m > 3 and we get, by combining Grothendieck’s result

hO(P(TM),Op(TM) (m)) = R%(M,S™T* M)
3
> X(M, S™T*M) = Z=(&} = c2) + O(m?).
As a consequence, the line bundle Op(ra)(1) is big when ¢ > ¢;. So
there exists a nontrivial section w € H*(P(TM), Op(7m)(m) ® (—p* A4)) =
HO(M,S™T*M ® O(—A)) for m large enough. If f : C — M is a holomor-
phic curve, then, by Theorem A7.5.1 (with D = @), we have f*w = 0. This
means that f satisfies a differential equation. However, to conclude hyper-
bolicity, i.e., f is constant, one needs some new techniques. We present
here two results which give some conclusions on complex hyperbolicity un-
der various conditions. The first one is due to Lu-Yau.

Theorem A7.5.2(Lu-Yau) Let M be a surface of general type and ¢ (M) >
2c2(M), where c1(M),co(M) are the first and second Chern forms of M,
then M is Brody hyperbolic.

Proof. By the above discussion, we see that there exists a nontrivial
section w € HO(M,S™T*M ® O(—A)) such that f*w = 0 for m large
enough. That is f(C) is contained in a horizontal component of the zero
set Z* of w. Let Y be such a horizontal component of the zero set Z¥. By
the condition ¢2 (M) > 2¢2(M), one can prove (see [Lu-Y]), using Riemann-
Roch again, that

dim H°(Y, S™T*Y ® O(-A)|y) > bm?®

for m big enough. Thus, applying Theorem A7.5.1 again, we conclude that
the image of f is contained in the zero set of some nontrivial section in
HO(Y,S™T*Y ® O(—A)|y). By the dimension reason, this zero set has
dimension zero. Hence f is constant. O
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The second result is due to Dethloff-Schumacher-Wong [DSW1]. They
used meromorphic 1-jet differentials with only logarithmic pole singularities
to show the hyperbolicity of the complement of 3 generic nonsingular plane
curves with very mild conditions on their degrees. One new ingredient they
introduced is the use of a Borel Lemma-type argument after the use of
Theorem A7.5.1 for meromorphic differentials with only logarithmic pole
singularities.

Theorem A7.5.3 Let C; (1 < j < 3) be three nonsingular curves in P?
such that the degree of Cy is at least 3 and the degrees of C2 and C3 are at
least 2. Suppose that the three nonsingular curves intersect only in normal
crossing and if one curve C; is a quadric then there does not ezist a line
which is tangential to Cy for k # j and which intersects C; at precisely
the two points of tangency with Cy (k # j). Then there is no non-constent
holomorphic map from C to P2 — U?-zl C;.

Proof. First we use the theorem of Riemann-Roch to produce a mero-
morphic 1-jet differential which is holomorphic except for logarithmic poles
along U;C;j. Let C = U3_, C; and the degree of C; be b;. Let Qp,(log C)
be the bundle over P2 of meromorphic 1-forms which are holomorphic
except for logarithmic poles at C. By using the exact sequence 0 —
L, = QL,(logC) — QL2(logC)/Qh. — 0, where QL is the cotan-
gent bundle of P2, one computes c(Qh,(log C)) — c2(h2(log C)) to be
—3(X 3.1 bj ~4) — 6 + ¥,; bib; which is positive when by > 3 and by > 2
and b3 > 2. Similar to the above discussion, using the theorem of Riemann-
Roch and the result of Bogomolov [Bog], we can find a nontrivial section

w € H°(P?,5™0L.(log C) ® O(—A4))

for some ample curve A. Let f : C = P2 — C be a non-constant holo-
morphic map. Theorem A7.5.1 implies that the pull-back f*w of w by f
is identically zero. The paper of Dethloff-Schumacher-Wong [DSW94] in-
troduced a new technique to show that the image of f is contained in an
algebraic curve. It uses a refinement of the Borel Lemma argument. First
of all, since there cannot exist any non-constant holomorphic map from C
to C, by using Brody’s reparametrization, according to Lemma A7.3.3, we
can assume without loss of generality that the pointwise norm of df is uni-
formly bounded on C. Let a; be positive integers such that a;b; is the same
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for 1 < j < 3. Let 0; be the homogeneous polynomial of degree b; defining
C;. Consider the map ® : P? — P? with finite fibers defined by [¢7*, 032,
03®]. Let @ be the meromorphic 1-jet differential on P2 which is obtained
by locally taking the product of the a1b, values of w on the a;b; sheets of
®. We claim that the three homogeneous components of ® o f are given by
exp(p;j(z)) for some polynomial p;(z) of degree at most 2 (0 < j < 2). In
fact, by Lemma A7.3.3 (Brody’s reparametrization Lemma) we can assume
that |[d® o f| is uniformly bounded on C. It follows that Tgos(r) = O(r?).
Let go, ..., g2 be any entire function on C without common zeros such that
[go:...: g2] defines ® o f. For any 1 < j < 2, by Theorem A3.1.2,

N.‘]:‘/.’Jo(r7 00) < Tyj/yo(r) < T@of(r) = 0(1,2).

Let B; be the pole divisor of g;/go. Let Z be the zero-set of go. Since
Jo, - --,92 have no common zeros, Z < E?=1 B; as divisors. Write Z =
> o=y v and let Wz be the Weierstrass canonical product [[72; E(Z,2)

where E(Z,2) = (1 - 2)ezp(352, Z_). Then Tw, (r) = O(r?). Let
exp(po(2)) =Wz and exp(pj(2)) = WZ% for 1<j<2.
0

Then we have Texp(p; (2))(T) < O(r?) for 0 < j < 2. So p;(z) are polynomials
of degree at most 2, 0 < j < 2. So the claim holds. We now continue our
proof. The identical vanishing of f*w from Theorem A7.5.1 implies that
there exist rational functions R;(&;,&2) of &1, & such that

k
ZRa &, &)(d6 ) (d&)7 =
j=1

when & = exp(pj(z) — po(z)) ( = 1,2). This means that we have an
equation of the type

k

> exp(Pj(2))Q4(2) =0, (7.24)
j=1
where P; and @; are polynomials such that Q,,:--,Qx have no common

zeros. Consider the map v from C to P*~! defined by

[exp(P1(2))Q1(2), - - -, exp(Fi(2)) Qi (2)]-

By (7.24) the image of ¢ lies in the hyperplane H := {E;f:l ¢ = 0},
where [(1,---, (k] is the homogeneous coordinate of P¥~1. The algebraic
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degeneracy of ® o f (and therefore of f) comes from applying the Second
Main Theorem to the map 9 from C to H and the hyperplanes HN{¢; = 0}
in H (1 £ j £ k), because, though exp(P;(z))Q;(z) may be zero, the
number of its zeros is finite and does not make the defect for H N {¢; = 0}
smaller than 1. The condition on C; (1 < j < 3) rules out the existence of
such an algebraic curve. O

The case of logarithmic jet differentials are defined analogously. Let M
be a compact complex manifold. Let D = Dy +...+ D, be a divisor on M
where {D; | i =1,...,q} are the irreducible components of D. Furthermore
we assume that D is of simple normal crossing, i.e., each D; is smooth; D;
intersects D; transversally for all i # j and each point z is contained in
at most n components. For simplicity we also assume that D; are linearly
equivalent, i.e., the line bundle L = O(D;) associated to the divisor D; is
the same for alli = 1,...,q. For every P € M, since D is of simple normal
crossing, D is locally defined by HLI zj = 0 for some local coordinate
system zi,...,z, of P. A meromorphic k-jet differential w on M of total
weight m with at most logarithmic pole singularities along D is expressed
in the form

w =
dz d* 2, dz d*z
Ev Wyy 1 V1,5 Vn, 1 Vn,k (;l_l'yll'1 T (T)ul'lu T (z_qq)uq'1 e ('—zq_q)ul'k
(zgys )5 - (A 2gqn ) -« (dzn)nt -« - (dE2) b 7.25)
q q

where the summation is over the kn-tuple
V= (yl.l SVl Unpce 'Vn,k)
of non-negative integers with
(p+2va+--+kng)+ o+ Wng +2no+ -+ kvpg)=m

and Wy, ;..vy - vm,1va,s 1S @ meromorphic function locally defined.

Let M be a projective compact complex manifold. Fix a positive (1,1)
form w on M and write T¢(r) = Ty, (7). The following theorem is due to
P.M. Wong [Wong 6].

Theorem A7.5.4 (Logarithmic derivative Lemma for Jet Differen-
tials with possible log poles) Let k be a positive integer. Let M be a
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projective compact complez manifold of dimension n. Let D either be an
effective divisor in M with simple normal crossings or just a trivial divisor.
Let w be a k-jet meromorphic differential form of total weight m with at
most logarithmic pole singularities along D. Let f : C = M be a holomor-
phic map such that f(C) is not contained in D. Assume that f*w = £(d()™
on C. Then either f*w =0 or

2n
o / log" |€(re*)|d8 < O(log™ T(r)),
0

where the inequality holds for all r outside a set E C (0,+00) with finite
Lebesgue measure.

Proof. We claim that there exists a finite set H of rational functions
on M with the property that for each point £ € M there exists a subset
H. of H such that {(d®h/h)™* | h € H,,1 < a < k} span the fiber
of J*M(log D) over z € M, where Ji"M(log D) is the sheaf of germs
of meromorphic k-jet differentials on M of total weight m with at most
logarithmic pole singularities along D.

We now construct . We may assume without loss of generality that
D is irreducible, since otherwise we will just consider each component D;
because D has only finitely many components and a finite union of a finite
number of rational functions is still finite. We also assume that D is ample;
otherwise we may replace D by D + D’ so that D + D' is ample. Observe
that if s is a function holomorphic on a neighborhood U such that [s =
0] = DNU then [s" = 0] = 7D NU where 7 is a real constant. Thus
d9 (log s7) = 7d) (log s). This means that we may assume that D is very
ample by replacing D with 7D for some 7 so that 7D is very ample.

Let u € H°(M, O(D)) be a section such that D = [u = 0]. At a point
z € D choose a section v; € H*(M, O(D)) so that E; = [v; = 0] is smooth,
D + E, is of simple normal crossings and v; is non-vanishing at z. The
rational function ¢; = wu/v; is regular on the affine open neighborhood
M - E;, ofz and (M - E;)N[t; = 0] = (M — E;)ND. Choose rational
functions ¢3 = ug/vq,...,tn = un/v, where u; and v; are sections of a
very ample bundle L on M so that i, ...,t, are regular at z, the divisors
D; = [u; = 0], E; = [v; = 0] aresmooth and D+ D3+ +Dp+Ey+-- -+ E,
is of simple normal crossings. Moreover, since the bundles involved are very
ample the sections can be chosen so that dt; A- - - Adt,, is non-vanishing at z;
the complete system of sections provides an embedding, hence at each point
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there are n + 1 sections with the property that n of the quotients of these
n + 1 sections form a local coordinate system on some open neighborhood
U, of z. Then the set {(d(®)¢;/t;)™/* | 1< j <n,1 < a < k} generates
Ji" M (log D) over U,. However, since D is compact it is covered by a finite
number of such open neighborhoods, say Ui, ..., Uy, and we obtain a finite
number of rational functions. Moreover, there exist relatively compact
open subsets U] of U; (1 < i < m) such that N;<i<mU] still covers D. Next
we consider a point z in the compact set M — Ni<i<mU]. Repeating the
procedure as above we can find rational functions 8; = a; /by, ..., 8p = an /by
where a; and b; are sections of some very ample line bundle L so that
81,...,85 form a holomorphic local coordinate on some open neighborhood
Vz of z. Then the set {(d(")sj/aj)’"/"‘ |1 <j<n,1< ac<k} generates
Ji* M over V. We must also choose these sections so that the divisor H =
[81--- 8, = 0] together with those divisors (finite in number), which had
been already constructed, is still a divisor with simple normal crossings(this
is possible by the very ampleness of the line bundle L). Since M —M1<i<mUj}
is compact, it is covered by a finite of such coordinate neighborhoods. So the
number of rational functions obtained is still finite. Let H be the collection
of all the rational functions obtained above, then the claim holds. Note if
D is the trivial divisor, then it is enough to use only the second part of the
construction.

We can also describe the above argument in the following simple way.
Let Lo be a very ample line sheaf on M. Let Eq,...,Eq2n be effective
divisors corresponding to Lo such that any n + 1 have empty intersection,
and for integer i, j with 0 < 7 < j < 2n choose a rational function f;; on M
such that (f;;) = Eo; — Fo;. Then the set {(d(®)fi;/fi;)™*|0<i<j <
2n,1 < a < k} has the property that, for each point z € M, some subset of
this is regular at z and generates Jy" M there. Next, let £; and L] be very
ample line sheaves on M such that £, = L{(D). For each j = 1,...,n,
choose divisors Ey; and Ej; associated to £, and L] respectively, such that
Nj (suppEy; UsuppE;;) is disjoint from suppD. Choose a rational function
g; on M with (g;) = D+ Ej;— E,;. Then the set {d@g;/giy™*|1<j <
n,1 < a < k} has the property that, for each point z € M, some subset of
this is regular at z and generates J;™M (log D) there. Let H = {f;; | 0 <
i<j<2n}uU{g; |1 <j < n}. By compactness of M, H satisfies the
desired condition.

Since f*w = £(d()™, by the claim, using the compactness of M and
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using also the inequality log™ (a + b) < log* a + log™ b, we have

(@
% /0 log* |£(re®®)|d6 < C ) Z / e f

heH 1<a<k

where C' > 0 is a constant. Now by Theorem A1.2.5, the inequality

2T
|| 108" 1tk 1o 12 < 0108 Thos(r)

holds for all r outside a set E C (0,+00) with finite Lebesgue measure.
Since h is a rational function, logt Thos(r) < O(logt T¢(r)) and we arrive
at the estimate. O

Theorem A7.5.5 (Wong) Let M be a projective compact complez mani-
fold. Let D either be an effective divisor in M with simple normal crossings
or just a trivial divisor. Let w be a meromorphic k-jet differential of weight
m with logarithmic singularity along D that vanishes along an ample divi-
sor A. Then for every holomorphic map f :C > M —D (resp. f:C o M
in the second case), we have f*w = 0.

Proof. Let w be a meromorphic k-jet differential of weight m with log-
arithmic singularity along D vanishing along an ample divisor A. Let
f:C—> M-D (resp. f:C — M in the second case) be a holomor-
phic map. Assume that f*w # 0. We will derive a contradiction. Choose
a positive integer £ such that £A is very ample. Then a basis of holomor-
phic sections H°(M, O(£A)) embeds M into the projective space PN (C)
with homogeneous coordinates [wp,...,wn]. By Cartan’s Second Main
Theorem, we conclude that for any 1 > € > 0, there exists a hyperplane
H={[wo::wn] | XNoaiw; =0} such that Ny(r,H) > (1 — €)Ty(r).
Let s4 be the holomorphic section of the line bundle associated with the
given ample divisor A so that the divisor of s4 is A. By replacing w by

¢
(%) (Zf;o a;w;) we can assume without loss of generality that £ =1 and
A={[wo:---:wn]| Zf’:oa,-w.- =0} N M. So we have

Ny(r, A) 2 (1 - €)Ty(r).
Since w vanishes along an ample divisor A, by the First Main Theorem,

Twoj"f(r) 2> Nf (1‘, A) 2> (1 - E)Tf(r).



302 Complex Hyperbolic Manifolds and Lang’s Conjecture

On the other hand, by Theorem A7.5.4,
Tugoj"f(r) < 0(10g+ Tf(’l‘))

where the inequality holds for all r outside a set E C (0, +00) with finite
Lebesgue measure. This gives a contradiction. O

Part B: Diophantine Approximation

B7.1 Lang’s Conjecture

The following Conjecture is due to Lang.

Conjecture B7.1.1 (Lang) Let M C P¥ be a complez submanifold which
is defined over a number field k. If M is Kobayashi hyperbolic as a complez
manifold, then there ezist only finitely many k-rational points of M, where
the k-rational points of M are the points whose homogeneous coordinates
are represented by values in k.

It is Lang’s optimistic view that there would be no way to obtain in-
finitely many k-rational points of M other than to construct them from
projective space P} (rational curves) or from Abelian varieties into M. Of
course, in such case, M is not hyperbolic. In the case of dimM =1, M is
Kobayashi hyperbolic if and only if the genus of M > 2. Hence the Con-
jecture in this case is equivalent to Mordell’s conjecture, which was solved
by Faltings.
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The Correspondence Table

Nevanlinna Theory | Diophantine Approximation
Theorem A7.3.1 Conjecture B7.1.1
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List of frequently used notation

C the set of complex numbers

cn the n-th Cartesian products of C

Cfrl  ={zeC"||z]<r}

C"(r) ={zeC"||z| <r}

<, > the standard inner product on C™

a1 (L) Chern form of the metrized line bundle L, 55

de = ¥=1(5-9), 50

D the unit disc on C

D(r) the open disc of radius r on C

D(r) the closure of D(r) in C

O(D) the line bundle associated to the divisor D, 54
ImF the imaginary part of F, 8

[D] the current associated to the divisor D, 50, 226
af the k-jet lifting of f, 240

f a reduced representation of f : C — P(C"), 101
ffw the pull-back of w by f

GL/k Galois group of L over k, 77

k a number field, 26

k algebraic closure of k, 67

k(C) function field of the algebraic curve C, 77

h(z) absolute logarithmic height of z, 29, 70

hp(z) absolute logarithmic height of z with respect to D, 70
h(x) logarithmic height of x for x = [zg : - -+ : z,] € P™, 160

Jr (M) k-jet bundle, 241

315



316

List of frequently used notation

/\v,D

AH(f(2))
’\v,H

my(r,a)
my(r, H)

m(z,a)
m(z, D)

m(z, H)

M;

Me

M
N¢(r,a)
Ny(r,H)

N (r,a)
N{™(r, H)

Nram, ()
N(z,a)
N(z,D)

N(z,H)

o(1)
f(r) < g(r) + O(h(r))

f(r) < g(r) + o(h(r))
ord,, f

ord? f

Os

O3

wn(2)

Weil function with respect to the divisor D, 71
Weil function of f with respect to the hyperplane
H, 102

Weil function with respect to the hyperplane

H, 160

proximity function of f with respect to a, 5
proximity function of f with respect to the
hyperplane H, 102

proximity function of = with respect to a, 29
proximity function of z with respect to the divisor
D,

proximity function of z with respect to the
hyperplane H, 160

canonical set of places in the number field k, 28
Set of Archimedean places in M}, 28

Set of non-Archimedean places in M}, 28
counting function of f with respect a, 4

counting function of f with respect to the
hyperplane H, 102

truncated counting function of f with respect a, 21

truncated counting function of f with respect the
hyperplane H, 102

ramification term of f, 18

counting function of z with respect to a, 29
counting function of =z with respect to the divisor
D,N

counting function of z with respect to the
hyperplane H, 160

a constant
. f(r) —g(r)
e R 1o B

r—+400 h(r)

order of f at the point zp, 4

the multiplicity of the zero of f at the point z, 4
the ring of S-integers, 159

the multiplicative group of S-units, 159

= dd°log|z|?, 214



Qum(logD)

Sn(r)
On
Ts(r)
Tfw(r)
Ty(r, L)

Ty(r,0(D))

Il 1l
v(z)

lIx]lw

un(2)

A
W(for- . » fa)
X (k)

X[m)]

Z
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logarithmic cotangent bundle of M with at worst
logarithmic simple poles along D, 289

p-adic absolute value, 25

p-adic absolute value associated to a prime ideal, 27
normalized p-adic absolute value associated to a
prime ideal, 27

n-th dimensional projective space

the complex projective space of dimension n

the set of rational numbers

algebraic closure of Q

p-adic closure of Q, 26

the set of real numbers

real part of F

Ricci form of w, 58

Royden’s pseudo-distance, 276

the ring of algebraic integers of k, 27, 81

the ring of S-integers, 84

= (dd°|z|®)", 214

a finite subset of M}, containing all Archimedean
places, 29

={z€e C"||z| =1}, 214

= d°log |z|? A (dd°log |z|*)"!, 214

characteristic function of f

characteristic function of f with respect to w, 57, 228
characteristic function of f with respect to a line
bundle L, 229

characteristic function of f with respect to the
divisor D, 58, 229

a place on the number field &

normalized almost-absolute value associated to

a place v € My, 28

= —log|lz|lv, 79

= maXop<i<n "Z,”U for x = (Il:o HER RN :En), 159

= dd°|z|?, 214

the wedge product

the Wronskian of fo,..., fn, 104

k-rational points on X, 67

m-torsion subgroup of the elliptic curve X, 76
the set of integers



Index

abc conjecture, 163, 164
generalized abc conjecture, 165
generalized ABC theorem, 113

algebraic curve, 66, 67,

algebroid function, 193

abelian extension of exponent m, 81,
83

Abelian variety, 95, 238, 241-265

absolute value
almost—-absolute value, 27, 28
Archimedean —, 25, 28, 159
non-Archimedean —, 25, 28, 159
—on Q, 25
— on a number field, 26, 27
p-adic —, 25
product formula, 26, 29
set of M

admissible
‘H-admissible, 126

Ahlfors’ approach, 99, 141-159

Ahlfors’ Estimates, 153, 154

Ahlfors’ negative curvature method,
49

Ahlfors-Schwarz lemma, 266

algebraic integer, 27

k-th associated map, 142, 284

Biancofiore-Stoll, 213, 223
Bloch’s theorem, 241, 250, 258,
260-263

Bombieri’s conjecture, 238

Borel
Borel’s growth lemma, 16
Borel’s lemma, 124

Brody’s reparametrization lemma,
279

bundle
holomorphic bundle morphism, 242
k—jet bundle, 241
k-jet lifting, 242
logarithmic cotangent bundle, 289
line bundle, 54
canonical line bundle, 55

calculus lemma, 53
characteristic function,
Ahlfors’ —, 101
Ahlfors-Shimizu —, 60
Cartan’s —, 101
Nevanlinna’s —, 5
— of f with respect to w, 57, 228
— of f with respect to D, 58, 229
Chern form, 55, 225
Cherry, W. and Ye, Zhuan, 2, 8,
chordal distance, 100
coherent with respect to
(Ha,...,Hy), 194
complex projective space, 101
counting function
— for meromorphic function, 4
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— for meromorphic function on C,
214
— for rational points, 29-30, 71
— for rational points with respect
to H, 160
— of f with respect to D, 58, 228
— of f with respect to H, 102
truncated —, 21, 102, 109-123
curve
— of genus zero, 72
— of genus one, 73-94
— of genus at least two, 95-96
Faltings’ theorem, 95
current, 50, 226
curvature
Gaussian — , 267
holomorphic sectional —, 271

decomposable, 167, 174
defect, 61
degenerate
degenerated Schmidt’s subspace
theorem, 168-172
degenerated Second Main
Theorem, 139
‘H is non-degenerate, 125
linearly non-degenerate, 109
linearly degenerated case, 130-141,
187-194, 201-206
non—degenerate over R, 196
non-degenerate over Rg, 180
m-non—degenerate over R, 201
m-non—degenerate over Rg, 187
polynomial F' is non—degenerate,
166
Dethloff-Schumacher-Wong, 276, 296
Differential form
first Chern form, 294
second Chern form, 294
Ricci form Rie(w), 59
Dirichlet, 23
Dirichlet’s S—unit theorem, 85
distance
Kobayashi pseudo—distance, 274

Indez

Poincaré — , 273

Royden’s pseudo—distance, 276

v-adic distance function, 92
divisor, 54, 214, 224

ample, 55

canonical —, 55

effective —, 54, 57, 214, 224

line bundle of the divisor D, 54,

225

— associated with the section s, 54

canonical section of [D], 54

very ample, 70, 290

rationally equivalent, 70
dominate rational mapping, 248

elliptic curve, 73-94
height properties on elliptic curves,
86-89
Mordell-Weil theorem, 73, 90-91
weak Mordell-Weil theorem, 73-85
reduction of elliptic curve over
local fields, 79
Siegels’ theorem, 91
error term, 8, 104’
Evertse and Gyory, 167

Faltings’ theorem, 94, 95, 238, 264
field
number —, 26
abelian extension of exponent m,
81
residue class —, 80
residue degree, 80
finite theorems of algebraic number
theory, 83
finiteness of the field class group,
84
finiteness of the group of S—units,
84
First Main Theorem, 5, 58, 72, 103,
147, 161, 229
free, 177, 180
Fubini-Study form, 59, 101, 142
function field, 73



Indezx

Galois extension, 76
Galois theory, 83
general position, 108, 181
n-subgeneral position, 130, 168
u—subgeneral position, 188, 202
Gol’sberg—Grinshtein, 9
— estimate, 15
Green—Jensen’s formula, 50, 52, 227
Griffiths’ conjecture, 235
group
Galois —, 76-79, 81-83
— law, 75
one parameter subgroup of A4, 243
multiplicative — of S—units, 159
m-torsion subgroup, 76
Gyodry-Ru, 174, 208, 211

height, 67, 71, 160
absolute logarithmic height, 29
logarithmic height, 32, 160
multiplicative height, 33
Hilbert’s theorem 83
Hoélder inequality, 10, 106, 219
homogeneous polynomial, 69
hyperbolicity
Brody hyperbolic, 282
complete Kobayashi hyperbolic,
275
hyperbolically imbedded, 275
hyperbolic point, 275
Kobayashi hyperbolic, 274, 275
hyperplane, 102

infinite descent method, 73, 86, 90
integral domain, 79
integral point, 66, 91-94
Siegels’ theorem, 91
interior product, 147, 181

Jensen’s formula, 4
jet—differential
meromorphic differential, 289
meromorphic k—jet differential of
total weight m, 251

321

meromorphic k—jet differential of
total weight m with at
most logarithmic pole
singularities along D, 251,
297

Kobayashi’s conjecture, 275
Kummer pairing, 77, 78
bilinear, 78
kernel of the Kummer pairing, 78
perfect bilinear pairing, 78

Lang, 69, 84, 85, 302
Lang’s conjecture, 30, 250-258, 302
Lemma on the Logarithmic
Derivative, 8, 17
Lemma on the Logarithmic
Derivative for meromorphic
functions on C", 213, 223
Lemma on the Logarithmic
Derivative for jet
differentials, 298
line bundle, 54-57, 224
ample —, 55, 225
— associated with D, 54, 59, 225
canonical —, 55, 231
Chern form, 55, 225
covariant differentiation, 56, 63
holomorphic section, 54, 225
metric, 54, 225
metrized —, 55-57, 225
positive —, 55, 225
tautological —, 290
transition functions, 54, 224
linear form, 114, 125
Liouville, 1, 23
Lu, S., 289
Lu-Yau, 295

Masuda, K. and J. Noguchi, 276
McQuillan’s proof, 258-263

metric
canonical —, 61
flat —, 61
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Finsler (pseudo)-metric, 270, 290
Hermitian (pseudo)-metric, 267,
290
Poincaré —, 267
pseudo—length function, 270
pseudo—metric, 267
supporting pseudo—metric, 269
Mordell-Weil theorem, 73, 90-91
weak Mordell-Weil theorem, 73-85
morphism, 69, 87
moving hyperplane, 180
moving hyperplan indexed by A, 194
moving target, 177-211
Cartan’s conjecture with moving
targets, 187-193
Schmidt’s subspace theorem with
moving targets, 194-201
Second Main Theorem with moving
targets, 177, 180, 183
Second Main Theorem with
moving targets for
algebroid functions, 193
Wirsing’s theorem with moving
targets, 207

Nadel, A., 276
Nevanlinna functions, 5
Nochka, 130
Nochka’s diagram, 130-132
Nochka’ polygon, 130, 134
— weights, 134, 168, 189, 203-205,
285
Nochka’s theorem, 135, 168,
203-205
Northcott, D.G., 69

Ochiai, T., 241
Ostrowski, 27

p-adic
p-adic absolute value, 25
p-adic closure, 26
Picard’s theorem, 22
Pliicker’s formula, 144

Indez

proximity function
— for meromorphic function, 5
— for meromorphic function on C,
215 ’
— for rational points, 29, 71
— for rational points with respect
to H, 160
— of f with respect to D, 58, 227
— of f with respect to H, 102
place, 80
canonical —, 80
canonical set of places, 28, 67, 79
Archimedean —, 28, 67, 79
complex —, 28
non—-Archimedean — , 28, 67, 79
real — , 28
Poincaré metric, 267
Poincaré distance, 273
Poincaré-Lelong formula, 51, 227
Poisson—-Jensen Formula, 2
product formula, 26, 29
product to the sum estimate, 108,
148, 162, 169, 181
projective complex manifold, 225
projective distance, 147
projective space, 69,

ramification divisor, 59
ramification index, 80
ramification term, 18
ramified, unramified, 80, 81-83
reduced representation, 101
reduction lemma, 76
residue class field, 80
residue degree, 80
Riemann-Roch theorem, 74, 294, 295,
296
Riemann surface, 49-66
ring
valuation —, 79
— of algebraic integers, 81
— of S-integers, 84, 85, 159
Roth’s lemma, 35
Roth’s theorem, 1, 25, 29, 32, 32-46,



Indez

72, 94
Ru, Min, 104, 183
Ru-Stoll, 180, 188
Ru-Vojta, 196
Ru-Wong, 170, 172

S-integer, 84, 166
S-unit, 166
S-unit lemma, 166
Schlickewei, 159
Schmidt’s subspace theorem, 99, 159,
161
Schmidt’s subspace theorem with
moving targets, 194-201
Second Main Theorem, 18, 59, 72,
104, 156 -
Cartan’s —, 109
Cartan’s conjecture with moving
targets, 187-193
degenerated —, 139
equi-dimensional —, 231
— with moving targets, 177, 180,
183
— with moving targets for
algebroid functions, 193
Siegel
Siegel’s lemma, 32
Siegel’s theorem, 91
Silverman, 74, 96
Siu, Y.T., 241
Siu-Yeung, 122, 276
Siu-Yeung’s theorem, 250
Smirnov’s inequality, 8
Steinmetz, 177
Steinmetz’s map, 178
Stoll, W, 111, 141, 214

uniformization theorem, 59

valuation, 79
valuation ring, 79

Vojta, P., 30, 95
Vojta’s conjecture, 236
Vojta’s dictionary, 25, 31

323

Volume form, 55, 231

Weil function, 70, 71, 102, 160
— with respect to the divisor D, 70
Weierstrass equation, 74
Wirsing’s theorem, 172
Wirsing’s theorem with moving
targets, 207
Wong, P.M., 18, 241, 289, 298, 301
Wronskian, 106
generalized lemma on —, 243

Ye, Zhuan, 17, 18, 104, 214, 223
Zariski closure, 243-251

Zariski dense, 241
Zariski topology, 225
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