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Preface

In recent years there has been remarkable growth in the mathemat-
ics of random media. This collection of papers by leading researchers
provides a current overview of this rapidly-developing field. As will be
apparent to the reader of this volume, the field has deep scientific and
technological roots as well as purely mathematical ones in the theory of
stochastic processes.

The papers collected here were presented at the 1989 Summer Semi-
nar in Applied Mathematics, sponsored jointly by the American Math-
ematical Society and the Society for Industrial and Applied Mathemat-
ics, and held at Virginia Polytechnic Institute and State University from
May 29-June 9, 1989. In addition to new results on stochastic differen-
tial equations and Markov processes, fields whose elegant mathematical
techniques are of continuing value in the application areas, the confer-
ence was organized around four main themes.

Systems of interacting particles are normally thought of in connection
with the fundamental problems of statistical mechanics, but have also
been used to model diverse phenomena including computer architec-
tures and the spread of biological populations. They have also enjoyed
a more recent whimsical popularity as a computer recreation. Powerful
mathematical techniques have been developed for their analysis, and a
number of important systems are now well understood.

Random perturbations of dynamical systems have also been used
extensively as models in physics, chemistry, biology, and engineering.
Among the recent unifying mathematical developments is the theory of
large deviations, which enables the accurate calculation of the probabil-
ities of rare events. For these problems approaches based on effective
but formal perturbation techniques parallel rigorous mathematical ap-
proaches from probability theory and partial differential equations. We
include representative papers of forefront research of both types.

ix
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Effective medium theory, otherwise known as the mathematical the-
ory of homogenization, consists of techniques for predicting the macro-
scopic properties of materials from an understanding of their micro-
structure. This theory is fundamental, for example, in the science of
composites, for the theoretical determination of electrical and mechan-
ical properties. Furthermore, the inverse problem is potentially of great
technological importance in the design of composite materials which
have been optimized for some specific use.

Mathematical theories of the propagation of waves in random media
have been used to understand phenomena as diverse as the twinkling of
stars, the corruption of data in geophysical exploration, and the quan-
tum mechanics of disordered solids. Especially effective methods now
exist for waves in randomly stratified, one-dimensional media. A uni-
fying theme is the mathematical phenomenon of localization, which
occurs when a wave propagating into a random medium is attenuated
exponentially with propagation distance, with the attenuation caused
solely by the mechanism of random multiple scattering.

We hope this Proceedings mirrors the excitement of the conference
it records. We thank the other members of the organizing committee,
Marty Day, Rick Durrett, and Graeme Milton, for their considerable
efforts and expertise. Our special thanks are for conference coordinator
Betty Verducci of the AMS, whose cheerful competence actually made
administration a pleasure. We were supported by grants from the Na-
tional Science Foundation, the Army Research Office and the Air Force
Office of Scientific Research.

Werner Kohler,
Blacksburg, VA

Benjamin S. White,
Annandale, NJ

Conference Co-Chairmen
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The Contact Process, 1974-1989

RICK DURRETT

Abstract. We describe the current state of knowledge concerning the
contact process, which, thanks to recent results of Bezuidenhout and
Grimmett, is rather complete.

1. Introduction. The contact process was introduced by Harris [22].
It is a simple model of the spread of a biological population. The state
at time ¢, &, C Z%. The points in £, are thought of as occupied and
the system evolves as follows:

(1) if x €¢,, then x becomes vacant at rate I;
(i) if x ¢¢,, then x becomes occupied at a rate

My e :ly—x|=1}.

Here |z| =|z/|+---+]|z,| for z € Z% and 4| = the number of points
in 4 if A cZ%. In other words, vacant sites become occupied at a
rate proportional to the numer of occupied neighbors.

For later purposes it is useful to have a concrete construction of the
process (due to Harris [23]); so we give that now. For each x € Zd,
let {U: :n > 1} be the arrival times of a Poisson process with rate
1. As the reader can probably guess from the rate, at time U: we kill
the particle at x (if one is present). To generate the births for each
x,y € Z% with Ix—y| =1, welet {T,"” : n > 1} be the arrival
times of a Poisson process with rate 4. At time T:’y there is a birth

1980 Mathematics Subject Classification (1985 Revision). Primary 60K35.

Partially supported by the National Science Foundation, the Army Research Office
through the Mathematical Sciences Institute at Cornell University, and a Guggenheim
fellowship.

© 1991 American Mathematical Society
0075-8485/91 $1.00 + $.25 per page



2 RICK DURRETT

at y if x is occupied and y is vacant. It is not hard to show that this
“graphical representation” can be used to construct on the same space
copies of the process starting from any 4 C Z¢ . We will give the details
later.

The first thing to notice about the contact process is that it “dies out”
if 4 < 1/(2d). Suppose for the sake of drawing pictures that d = 1
and consider two things that can happen when [{,| = 4:

0 0 1 0 1 0 001 0 010
birth rate A A+ A A A A A A =84,
0 01 1 1 1 0 O
birth rate A A =24.

A little thought reveals that in Z¢ when |§,| = k, the death rate is k
and the birth rate is at most 2dik, the maximum occurring when no
two particles are adjacent. Let éto denote the process with fg = {0}.
Comparing this process with a birth and death process shows

P& #@forall)y=0 for i< 1/(2d).

The second picture above shows that when |{,| = k, the birth rate in
d = 1 may be as small as 24. This fact makes it much more difficult to
prove “survival”, ie, Q_ = {flo # & for all ¢} has positive probability.
The first and easiest thing to observe is that P,(_ ) is a nondecreasing
function of 4; so there is a critical value 4, = inf{4 : P,(Q_) > 0}.
Here the subscript f is for “survival from finite sets” to distinguish it
from another critical value that we will define later. Harris [22] gave an
argument that shows A 7 < 1328 in d = 1. His constant is ridiculously
large, but try to do better! By using much different methods Holley
and Liggett [24] have shown that i, < 2/d. Numerically i, ~ 1.65
ind=1,and 4 I 0.41 in 4 = 2 (see Brower, Furman, and Moshe
[3] and Grassberger and de la Torre [17]) and it has been shown that
2di; — 1 as d — oo. (See Holley and Liggett [25] or Griffeath [20].)

Having shown that 4 s < 0 the next question to answer is: What
happens when the process survives? Our first step in answering this
question is to introduce some general theory. Let sz denote the process
with é{; = A. The contact process is attractive, i.e., if A C B then we
can construct copies of the process on the same space with étA C étB
for all ¢. Indeed, it is easy to check that the graphical representation
introduced above has this property. Let étl denote the process starting

from étl =27 An important consequence of being attractive is that
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as t — oo, étl = é;. Here = denotes weak convergence, which in
this setting is just convergence of the finite-dimensional distributions
P(Acé ,BnE =02).

The convergence étl = f;o is easy to see intuitively. Z¢ > ésl for
s > 0 and the system is attractive; so étl is decreasing in time (i.e.,
P4 C éll) is decreasing) and hence has a limit. The contact process
is a Feller process, i.e., if we have a sequence of initial configurations
& = &;° then &' = & . By analogy with what happens when we iterate
a continuous nondecreasing function from [0, 1] into itself, we should
expect & ;o to be the largest fixed point (i.e., stationary distribution), and
it is. Turning the last intuition into a proof is not difficult or exciting.
The reader can find a full account of this and other facts that we use
without giving a reference in Liggett [28] or Durrett [6].

In the last paragraph we have argued that é; is the largest statidhary
distribution. There is nothing to guarantee that é; # d,, , the pointmass
on the empty configuration, and indeed we will have é; =4, if A is
too small. This motivates the definition of our second critical value
A, =1nf{i: ¢ olo # 04} . With two critical values introduced, it is natural
if somewhat optimistic to ask if they are equal. This is not true in
general (see Durrett and Gray [8), [9] for an example in d = 2) but the
answer for the contact process is YES. The key to the proof is duality,
which we will introduce by giving the promised construction of the
process from the graphical representation. Our first step is to write J’s
at the points (x, U: ) in space time Z° x [0, o) and draw arrows from
(x, T,"%) to (v, T;"”). We say there is a path from (x, 0) to (v, ¢)
if there is a sequence of times 5, =0 <5, <5, <---<s,,, =t and

spatial locations x = x, x;, ..., X, =y so that
(i) fori=1,2,...,n thereisanarrow from (x,_,, s;) to (x;, 5,);
(ii) for i=0,1,..., n the vertical segments {x,;} x [s;, s, ;] do

not contain any J’s.

To define the contact process starting from the initial configuration A4
we let

élA = {y : for some x € A there is a path from (x, 0) to (y, ¢)}.

Since the arrows in a path indicate births and the absence of ¢’s in-
dicates that the particles did not get killed before they gave birth, it is
easy to see that the recipe above gives the contact process.

The nice thing about the last representation is that it allows us to
reverse time. We say that there is a path down from (y, ¢) to (x, t—s)
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if (x, t—s) can be reached from (y, ) by going down segments with
no d’s and across arrows in a direction opposite to their orientation. A
little thought shows that if we let

2(B,t
f(

§ ) = {x : for some y € B there is a path down

from (y, t) to (x, t —s)}
then {E%°:s <} £ (&2 :5 <1} and {¢'NB # @} = {Ané®) 2 @} ;
SO
(1.1) PE'NnB#2)=PUne? £ @).

The last equation says that the contact process is “self-dual”. Letting
A= {0} and B = Z%, we have P&’ # @) = P(0 € &). Letting
t — oo, shows

PE#@forally=POeel);

$0 4, =4 IE For reasons that will only become clear when the reader
considers more general attractive systems, we will use A s 10 denote their
common value.

Having identified the two critical values, we are now ready to state
our results. The first was an open problem for almost 15 years.

(1.2) THEOREM. Plf(goo) =0.

As we will explain in Section 2, the proof of (1.2) is done by showing

(*) If P(Q,) > 0, then, when viewed on suitable length
and time scales, the contact process dominates oriented
percolation.

Once this is done it is routine to use existing technology to show
(1.3) CoMPLETE CONVERGENCE THEOREM. Let 1A=inf{t : é;‘ =}.
If P,(Q2_) >0 then
&= P(t! < 00)dy + P(t' = 0)EL ast— oo

Here we are using é;o to denote the distribution of that random
variable and the right-hand side is a convex combination of the two
probability measures. From (1.3) we immediately get

(1.4) CoroLLARY. All stationary distributions have the form 6o, +
(1-6), -
The result for P,(Q_) > 0 follows from (1.3). When P,(Q_) = 0,
it follows from self-duality that étl = d, and from attractiveness that
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&= 8, forall AC Z%; 50 6, is the unique stationary distribution in
this case.
(1.3) describes the limiting behavior of the finite-dimensional distri-

bution. Our next result gives a more global description of élo . Let
0 0, -
PII=U€I and K[=€[ U(étl)c'
>0

H, is the set of sites hit by time ¢. K, is the coupled region. If

we let §,(x) =1 when x € §, and {(x) = O when x & §,, then
é,o (x) = &/ (x) for x € K,. The next result shows that when éto does
not die out, t_l(Ht N K,) has an asymptotic shape. To state the result
it is convenient to let Q =[-1, %]d ,

H=|Jx+Q) and K, = J(x+0Q).

X€H, €K,

(1.5) SHAPE THEOREM. Suppose i > A Iz There is a convex set D so
that if w € Q_ and ¢ > 0, then for t > ty(e, w)

(l-eyDc (HnK,), H,c(l+euD.
At this point several remarks are in order. First, we must intersect with
K, because K, D {x: étl (x) = 0}. Second, we cannot have coupling on

a much larger set since élo(x) =0 on Hf . Third, when the processes

are constructed on the graphical representation, élA = UXE y élx ; 50 (1.5)
generalizes easily to finite initial configurations A .

(1.5) is proved by checking the hypotheses of a general result of Dur-
rett and Griffeath [10]. To do this we have to show that if ¢ = inf{¢:
& =2} then

(1.6) Ce™™>Plt<t<o)=Pxeél)-Pxeg),

the equality following from duality. The reader should note that (1.6)
implies that é,l = é; exponentially rapidly. With this established it
is straightforward to imitate the proof in Section 13 of Durrett [5] to
conclude

(1.7) STRONG LAW OF LARGE NUMBERS. If 4 > A, thenas t — oo,
0,,,d
g1/ = plGllg_ as.

Here p = PO € é;) and |G| = the volume of G. It would be inter-
esting to prove a corresponding central limit theorem. See Galves and
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Presutti [16] and Kuczek [27] for proofs of a central limit theorem for
r,= supét(_w’ol ind=1.

The key to the proofs of (1.2), (1.3), and (1.5) is (x). Bezuidenhout
and Grimmett’s proof of this result is described in Sections 3 and 4.
To orient and motivate the reader, we begin by describing the general
features of their construction in Section 2 and show how it implies (1.2).
(1.3) and (1.5) are proved in Section 5.

2. The big picture. The first step in making (*) precise is to define
the percolation process. Let & = {(m, n) € Z%:m+nis even}, and let
n(z), z € 2, be independent random variables with P(n(z) =1)=p
and P(n(z) =0)=1—-p. When 5(z) =1 (0) we say that the site
z is open (closed). We think of % as a graph with arcs connecting
(m,n) to (m+1,n+1) and from (m,n) to (m—1,n+1). With
this in mind we say that y can be reached from x and write x — y
if there is a sequence of open sites x; = 0, x;,...,x, =y so that
X=Xy €{(1, 1), (=1, 1)} for 1<m<n. Let ;={z:0- z}
be the cluster containing 0, the origin in Z*, and let A ={ICy| = =}
be the event that “percolation occurs.” It is known (see Durrett [5],
Section 10 or [6], p. 86) that

(2.1) LemMmA. If p > 80/81 then P(A_)>0.

Let B, = [-2L, 2L]d x [0, T] and Bm,n = (4Lm, 50T n) + B,
for (m,n) € &&. Let f: L be the process in which births outside
(-4L, 4L)? arenotallowed. Let I = (~J, J)? and callasite (m, n) €
Z wetif & D x+(-J, J)d for some (x, 1) € B, , . The heart of the
proof of (x) is

(©) ProrosIiTION. Suppose P,(Q2_)>0. Ife>0 then J, L, and
T can be chosen so that if (0, 0) is wet then with probability > 1 —e¢,
(1, 1) and (=1, 1) will also be wet.

See Figure 1 for a picture. We use the process f;”‘ because the regions
(4Lm, 50Tn)+((—4L, 4L)? xR), m € 2Z—n, are disjoint and hence
what happens in the graphical representation of them will be indepen-
dent. Using (©) and induction it follows (a proof will be given at the
end of Section 4) that the collection of wet sites dominates oriented
percolation with probability p = 1 — ¢. This leads easily to

(2.2) THEOREM. Plf(Qoo) =0.
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j I 51T
B, | . By |
50T
) T
By g
0
—-4L -2L 0 2L 3L 4L 6L
FiGURE |

PRrROOF. Suppose PA,(QOO) > 0. Let ¢ = 0.01 in (Q) and pick J,
L, and T so that the conclusion holds. Let 1 < 4 ’ and construct the
graphical representation for rate A by flipping coins with probability
A/4; of heads to determine which arrows to keep. Since the total num-
ber of arrows in (—4L, 4L)d x [0, 51T has a Poisson distribution, it
is easy to see that if A is close enough to A . the event in question
has probability > 80/81. This and (2.1) show that the contact pro-
cess with parameter 4 dominates an oriented percolation process with
P(A_) > 0 and hence has P,(Q_) > 0 contradicting the fact that
A< A I

A second immediate consequence of the construction is

(2.3) THEOREM.  A,(Z%) =lim,,_ A (Z x {-M, ..., M}*7").

Proofr. The sequence on the right-hand side is decreasing;, so the
limit exists and is easily seen to be > Ac(Zd). To prove the other

inequality let A > AC(Zd) , and observe that in the entire construction
no births are allowed outside Z x (—4L, 4L)d_1 .

REMARK. The last result is false if 4 g is replaced by 4,. The process

in Durrett and Gray [9] has 4,(Z%) < oo but A,(Zx {-M, ..., M}) =
oo for all M.
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3. The construction, part I. In this section we will do the tricky part
of the construction. The reader will see in the next section that once ()
is established it is reasonably straightforward to get (©). Throughout
the section we will suppose P,(Q_)>0.Let y€(0,1) and = y2/3.

(3.1) LeMMa. If J is large enough and I = (-J, J)d then P(é,’ #
& forall t)y>1-4

ProoF. Let ¢ = inf{t : & = @}. Pick ¢ so that P(t < t° < o0)/
P(r0 > t) € 6. The Markov property implies that

P(t <1’ < 00) = E(P(t" < 00); ° > 1).

Since P(|¢,| < oc) =1 it follows from the choice of ¢ that P(t? < x0) <
J for some finite set 4. If we pick J large enough, (-J, J)d DA
and the result follows.

Let f,’ ‘X be the process with fg 'K — I and in which births outside
H=[-K, K]d are not allowed, and let

U
Uy = /0 &% n o | dt
where OH is the boundary of H . Our aim will be to show

(&) ProrosiTiON. If M, N < oo, then K and U can be chosen
so that |fIU’K| > M and uy > N each have probability > 1 —7.

To keep the logic in the proof straight, we will first pick M and
N large enough so that when the events in () occur, then with high
probability (i) there is an x € E;K so that x +7 c &% and (ii) we
can find a fully occupied copy of I in é’ k+2J in (H - H) x [0, U]
where H=[-K -2J,K +2J] .

(3.2) LeMMaA. If M is large and |&| > M, then P(& D x + 1 for
some x €§))>1-7.

PROOF. We can find { C &, with [{| > [M/(2J)"], where [x] = the
greatest integer < x, so that x + (=J, J)d, x € {, are disjoint. Let
ff be the process (constructed on the original graphical representation)
with & = {x} and in which births ouside x+(—J, J ) are not allowed.
P(& D x+1I)= B > 0 and success for different x € { are independent.

(3.3) LEMMA. There is a constant N so that if S is a subset of
{0} x Z97' x [0, co) with |S| > N/(2d) then with probability > 1 —y
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there is an arrow from some (x,t) € S to (x +e,,t) and the process
starting with x + e, occupied at time t and no births outside I =
x+((0, 20y x (=J, J)¥ Y)Y =x+(J,0, ..., 0)+1 contains I' at time
t+1.

ProoOF. Let H=[0, 1)U[2, 3)U-.- . Without loss of generality

d
Sc{0}x(2NZ" ' xH and |S|2N'=(A2[g2;§)) .

Now if 4 c [0, 1) the probability that a rate A Poisson process has at
least one arrival in A is

AlA|
(1-e“"')=/ e dx > Aldle™ (since || < 1).
0

Let X(z,k) = 1 if there is a birth from some (x,t) € {z} x
[k,k+1) to (x+e,t), O otherwise. The X(z, k) are indepen-
dent with EX(z, k) > var(X(z, k)); so if W = ZX(k, z) it follows
from Chebyshev’s inequality that P(W < EW/2) < 4/(EW). Since
EW > e *N' , we have shown that with high probability there are a lot
of intervals in which there are arrows out of S. Because the intervals
are separated in space and time, each one with an arrow gives us an
i.1.d. chance of getting the cube we seek, and (3.3) follows.

Having chosen J, M, and N we turn now to the proof of ().
(3.4) LEMMA. If |4| < M then P(r? < 00) > (2dA+ 1)™.

ProoF. The right-hand side gives the probability that all the particles
die before giving birth. '
Recall that § = °/3 and pick ¥ so that
PV <t <o0)<8di+ 1) M.

This is more than we need for the proof of (3.5). The reader will see
the reason for the choice of V' in (3.8) and for the relationship between
d and y in (3.9).

(3.5 LEmma. P& |2 M) >1-26.

Proor. By (3.4) and the choice of ¥, we must have
P(0 < Ié,I,I < M) < e < 5. The result now follows from (3.1).

Our next step is to localize the construction in space.
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(3.6) LEMMA. If K islarge then P(étl Cc (-K, K)d Jorall t<V)>
1-46.

PROOF. Let {, be the contact process with no deaths. Comparison
with a branching process shows that E|{,| < |I|exp(2dAiV’). Now use
Chebyshev’s inequality to bound P(|{,| > K) and observe that {, is
connected.

PrROOF OF (). It follows from (3.5) and (3.6) that
(3.7) P& 12 M) 21-36=1-y">1-7,

proving the first claim. Since P(I€"%| > 0 for all £) = 0 and ¢ —
P(IEII,K| > M) is continuous, we can pick U > V so that P(|5{j,1<| >
M)=1-y. When

U
uU=/ & noH|dt < N,
0

the probability that no birth outside the box will be attempted is >
e Y. Combining this with (3.4) gives

(3.8)

PV <t <x|I&5>0,18 % <M, u, < N) 2 @da+1) e ™,

so it follows from the choice of ¥ that
- =1,K
PUEX1>0, 18, 1< M, uy <N)<4.

By (3.1) and (3.6), P(|&;’%| = 0) < 26. Harris’ inequality (see note
below), and the choice of U imply

=36 2 PUE X < M, uy < N)
> P(IE X1 < MYP(u, < N) = yP(u, < N).

This shows P(u,;, < N) <7 and proves the second claim.

(3.9)

(/) Harris’ inequality (see, e.g., Durrett [6, p. 129]) says that if
X,,..., X, are independent random variables and f and g are
bounded nonincreasing functions defined on R” then E(f(X)g(X)) >
Ef(X)Eg(X). [The result is usually stated for nondecreasing functions,
but multiplying both functions by —1 gives the version we use here.]
We want to apply this result when f and g are the indicator functions
of |EL’K| < M and u; < N. To extend this result from a finite num-
ber of independent random variables to the graphical representation, let

[,={(M,ne): me Zd} and consider I', as a graph with oriented
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bonds from (x, ne) to (x, (n + 1)e) that are open with probability
1 — ¢, and oriented bonds from (x, ne) to (x +y, (n+ 1)¢) that are
open with probability Ae when |y| = 1. Letting ¢ — 0 this random
graph converges to the graphical representation. (See Durrett [6], Sec-
tion 5c for more details.) Harris’ inequality implies that the desired
result holds for the approximating systems. Letting ¢ — 0 and noticing
that P(u;, = N) =0 and |EIU’K| is integer-valued gives the result we
used.

4. The construction, part II. (#) together with (3.2) and (3.3) shows
that given an occupied cube, we will with high probability get an occu-
pied cube at the top of A x[0, U] and one on the side. The first step in
bootstrapping this to () is a generalization of the “square root trick”
of percolation (see, e.g., Durrett [6, p. 131]).

(4.1) LEMMA. Suppose A;, i € I, are increasing events that all
have the same probability and let A =J; A;. Then P(4,) > 1— (1 -
PA)NYM where |I| is the number of events.

PROOF. Set theory, Harris’ inequality, and the fact that P(4,) =
P(A4,) imply

1-P(A)=P (ﬂAf) > [ P4) = (1 - Pa)".

Rearranging gives the desired inequality.
Combining (4.1) and (&) gives

(4.2) LEMMA. Let D = 2%d. If M, N < oc, then K and U can

be chosen so that o
€ n{x20)2 55

and

N U-I,K .
BS“U=/0 &K noHN{x, =K, x,20, i>1}|dt

each have probability > 1 — yl/ b

PROOF. For v C {l,...,d} let O, = {x;, > 0, € v,x; < 0,
jgv},and 4, = (€N 0,| > M/2%}, and observe that if |E; | >
M , at least one of the 2 events A, will occur. The second conclusion
is similar but there are D = 2%d possibilities to consider. (For d
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o+U+1
c+U

-K -J J K K+2J 2K+J

FIGURE 2

choices of j we have x; = =K, with 297! choices of signs for the
other coordinates.)

(4.2) allows us to have the occupied copies of I on the side or top
of H x [0, U] in any orthant we want and leads easily to

(4.3) LEMMA. Let G = [K+J,2K+ J] x [0, 2KI* ' x [U + 1,
2U + 2],

P(EII,ZK+21 D x + I for some (x,) € G) > 1 —ay'/P,

Proor. See Figure 2 for a picture. Let o = inf{¢: EII'K”] Dy+1

for some y with y, = K+ J and y, > 0 for i > 1}. By (4.2) and
(3.3),

Pe>U+1)21-9"P—y>1-2y'"" (<)

and the desired result follows by applying (4.2) and (3.2) to the process
that starts with y + I occupied at time ¢ and does not allow births
outside y +[-2K, 2KT*.

Using (4.3) we can drive our cube wherever we want to go. To prove
(V) welet L =8K and T = 2U +2. We consider (3L,0,...,0)
as our “target” and use it to choose the next direction to move. For
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example, if the center of the cube is at x with x; < 3L, x, >0,
X3 < 0, we choose to put the next center £ € x + {[K + J, 2K + J] x
[-2K, 0] x [0, 2K]}. If x, > 3L then we put the center in x +[-2K —
J,—K—J]x---. Since J < K, each moves changes x, by an amount
in [K, 3K] and uses up between T/2 and T units of time. If we start
with x, in [-2L, 2L] =[-16K, 16K] (at some time < 7) and want
to get into [2L,4L] = [16K, 32K], at most 32 moves are required,
and we can achieve x; > 3L by time 417 .

At the beginning of the construction the center of our cube has |x,| <
2L = 16K. Itis easy to see that if x, > 0 then x, > %, > -2K =
—0.25L; so we will always have |x;| < 2L for i > 2. For the first
coordinate of the center we observe that it is nondecreasing until 3L
is reached, and at that time x; < 3L + 3K = 3.375L. Repeating
the argument for x, shows that we have |x; — 3L| < 3K after x,
first reaches 3L. To see why we pick L = 8K observe that when the
center of the cube is at x, no births are allowed outside x + [—2K —
2J,2K+2J]d. Now J < K, soif |x; — 3L| < 3K and |x,| < 2L
for i > 1, thisisin [2L,4L] x [-4L, 4L]"'_1 with a little room to
spare. Similar arguments show that before x, reaches 3L no births
are allowed outside [-2L — 4K, 3L + 4K] x [-4L, 4L)°".

The arguments in the last paragraph show that if all goes well we can
keep the center of the cube and the space time boxes needed to move it
inside

Ry o= ([-4L, 4L)" x [0, 50T))
U({[-4L, —2L]U[2L, 4L]} x [4L, 4L]" "' x [SOT , 51T7]).

(The reader will see the need for this funny-shaped region in the induc-
tion argument.) At most 100 moves are required; so if the y in the
last section is small enough then with probability close to one all will go
well. To finish up now we will sketch the induction argument needed
to prove

(#) ProposiTiON. Call asite (m,n) e & wetifé,’ Dx+(-J, J)d
for some (x,t) € B, . We can define independent random variables
n(z) with P(n(z) = 1) = 1 —¢ so that the wet sites contain C, for the
oriented percolation generated by 1.

ProoF. We only have to define n(m, n) when |m| < n. Suppose
n >0 and 75(j, k) have been defined for k < n. If {((m-1,n-1),
(m+1,n-1}nC, = &, flip a coin with a probability 1 — ¢ of
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heads to define #(m, n). If at least one of the sites (im—1,n — 1),
(m+1,n—-1) 1sin C,, there will be at least one cube in B, , that we
can use for the starting point of our construction. If there are two pick
the one that occurs at the latter time. Let 7(m, n) =1 if the construc-
tion is successful starting with this cube. If we condition on everything
that has happened in R; , = (4Lj, 50Tk) + R, o with k < n up
to the appearance of the chosen cubes then the #(m, n) are indepen-
dent. (For this step we need R, , instead of [—4L, 4L]d x[0,517].)
By introducing independent coin flips we can find iid. n < # with
P(n=1) =1—¢ and the proof is complete.

5. Complete convergence and shape theorems. In this section we will
prove (1.3) and (1.5). The first step is to identify what we need to show.
The key to (1.3) is a result of Griffeath [18].

(5.1) LEMMA. Let 5,8 be an independent copy of the contact process.
If
(@) PE!nE =02, +#0,8 +2)-0
then we get the conclusion of the complete convergence theorem:

PESNB # @) = P(t" = )Pl NB#£2).

PROOF. {E4NB # @} = {¢'né®F? % @} and &', &5 are
independent. Since we can only have étA n ét(B 2 # < when both sets
are nonempty, the hypothesis implies

P(éf, NB#Q) - P(rA > t)P(rB >t)—0.
Since P(1® = 00) = P((L, N B # Q) the desired result follows.

REMARK. Since 4 — P(é;, N B # ) is increasing and bounded
above by P(ézlt N B # &), it suffices to prove the complete convergence
theorem for finite sets A.

As advertised in the introduction we will prove (1.5) by checking the
hypotheses of a result of Durrett and Griffeath [10].

(5.2) THEOREM. Let T = % and t{x)=inf{x:x € é?}. Suppose
there are constants a, b, C € (0, o) so that

(b) P(t<t<o00)<Ce ™™ and
(¢) P(t{(x)>t,T1<0) < ce™ for |x| < at.
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Then there is a convex set G so that if w € {t = oo} then forall ¢ >0
(1-e)tGC H,C(1+e)tG fort>ty(e,w).

If, in addition,
(d) P(x¢K,,1=00) < Ce™ for |x| < at,
then for w € {1 =0} and any ¢>0

(1-etGCcH NK,C(1+e)tG fort>t (e, w).

REMARK. To explain why we are proving (1.3) and (1.5) in parallel
note that (d) is implied by P(&,nE&, =@, &), #3, &, #9) <
Cexp(-bt) for |x| < at.

To prove (a)-(d) we will use (¢) to get a lower bound on éf when it
survives. The approach is the same as the proofs in Section 5 of Durrett
and Schonmann [13] and Section 5 of Bramson, Ding, and Durrett [2];
so we will concentrate on explaining the ideas and not bother to spell out
all the details. To eliminate ...’s and to facilitate mental pictures we
will suppose that d = 2. The reader will see that argument generalizes
easily to d > 2.

The main ideas behind the proof are

(1) it is easy to prove what we want for oriented percolation with
p=l-gy;

(ii) (¢) tells us that the contact process dominates oriented perco-
lation with p =1 —¢,.

(iil) By repeatedly trying the “renormalized site construction” (or
r.s.c. for short) from the proof of (¢), we will eventually get
percolation or end up with éf = ¢ and in either case we are
happy.

Having announced the philosophy, we plunge into the details. Logi-
cally the first thing to do is to pick ¢,. Let C, be the cluster containing 0
in oriented site percolation with parameter p. Let W = {m:(m, n) €
Colr Ay = {IG| = oo} = {W, # @ for all n}, p(p) = P(A),
¢, =infW,, and r, = sup W, . Well-known results for oriented perco-
lation (see Durrett [5, Sections 3 and 13], or [6, Chapters 4 and 11)])
show that
(5.3) as.on A_ we have

r,/n—a(p), ¢, /n— —a(p), and [W,|/n — ao(p)p(p).
(5.4) If p>1-gy, then a(p), p(p) > 0.99.
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The reader should note that on A, the length of the interval [£,, r,]
is ~ 2a(p)n but only every other point is in .27, so W, fills up most
of the interval.

Let ¢ = ¢y/2 and pick j, L, and T so that () from Section 2
holds. The next step is to look for an occupied copy of I = (-J, J )d
to try the r.s.c. For z € z¢ ,let I, =4Lz+ 1. Thereisa 6 > 0 so
that P(éf > I, for some z) >4 ; so after at most a geometric number
of trials k¥ we will have é: = & or we will have found an 7, C é:+1 .
In the second case we try the r.s.c. in z; + (R x [-4L,4L]). If we
get percolation we are happy. If not, we wait until W, = & and we
look again for an occupied 7, to try again. After a geometric number
of repetitions we will have é;’ = & or a successful r.s.c. starting from
some I.. It follows from estimates on pages 1031-1032 in Durrett [5]
that if ¢, is the amount of time used up in this part of the construction
then

(5.5) P(a,>1) < Ce™™.

Since at time o, we either have é:o = @ or know that 7! = 0o or know

that t* = oc, it follows that
(5.6) P(t< < ) < ce™ (with constants independent of A)

proving (b). See Section 12 of Durrett [5] for more details. For later
purposes we need to know that { is not too far from 0. By comparing
with a contact process in which there are no deaths and using (5.5) it is
easy to show that if ¢ = L/(10007) then

(5.7) P(¢l > at < Ce™™.

The proof so far is valid in any dimension. For the next step we
restrict our attention to d = 2. Let v, = [z/((d + 1)50T)] where [x]
is the largest even integer < x . (We pick an even time because then the
wet sites are C 2Z .) We run the percolation process for v, units of time
and then we use the wet sites to grow in the second direction, i.e., start-
ing with each wet site m we try ther.s.c.in ({; +4mL)+((—4L, 4L)x
R). ({ is the center of the successful cube.) With high probability (i.e.,
> 1 — Cexp(—bt)) the number of sources is > (0.99)31/ (by (5.4) we
expect to have (0.99)2) , and we will get > (0.99)51/ successful r.s.c.’s.
Let o, = 5070, . We run the new oriented percolations for

vy =[(t — 6, - 0,)/(50T)] - 2
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time steps. (5.5) implies that v, > v, with high probability.

Let V = [-v,/2,v,/2] x [-1,/2,v,/2] and let W be the set of
v € {+V thatare wet in the percolation construction, i.e., contain an oc-
cupied copy of 1. The arguments above show that || > (0.99)71/11/2 >
0.93v,v, . With the last result in hand it is easy to prove (a), (c), and

(d). To prove (a) we observe that if éf and Ef’ do not die out and W*
and W2 are the corresponding wet regions, then

(58)  P(W nwl|xclt &l 22, & £o)<ce.

If we let o, = 50Tv,, then the definition of v, guarantees ¢ — (o, +
o, +0,) € [100T, 2007]. Dividing space up into disjoint blocks and
finding independent events we see that

(5.9) PENE = | W' nW?| > o) < exp(-bP).

For more details in a more complicated situation where the parity of the
intersection is important see Section 5 of Bramson, Ding, and Durrett

[2].
(5.8) and (5.9) give us (a). To prove (d) we observe that the ar-
gument for (5.8) works when 4 = {0}, B = {x}, |x| < 2at, and
a = L/(1000T). To prove (c) we modify the first step of the construc-

tion for & so that every time we look for our copy of I in some f,(x 9

i.e., the process starting from x occupied at some time s > G. In this
way we will get survival of some ét(" S) and the proof given above guar-
antees that if |x| < 24t then with high probability we will hit x by
time 2¢.
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Is the Contact Process Dead?

LAWRENCE F. GRAY

Abstract. The basic one-dimensional nearest-neighbor contact process
has been the subject of many fruitful investigations during the past
one and a half decades. Recent work of Bezuidenhout and Grimmett
has solved what seems to be the last significant open question, and
many researchers are turning their attention to other processes. But
are we really done yet? In this report, we raise several simple ques-
tions about the contact process which are so fundamental that it is
somewhat embarrassing that they have not been previously answered.
It turns out that these questions are related: they all can be answered
by using certain properties of extremal paths in the graphical repre-
sentation of the contact process. Some of these properties are already
known, but there are also several useful monotonicity properties that
are announced here for the first time.

1. Introduction. The basic one-dimensional nearest-neighbor contact
process could be called the simplest nontrivial interacting particle sys-
tem, at least among models with continuous time. Unlocking its secrets
has been a favorite pastime of workers in the field since it was first in-
troduced by Harris [5). Most of the attention has been focused on the
equilibrium behavior. Many interesting results have been proved, cul-
minating in the recent result of Bezuidenhout and Grimmett [1], which
nails down the equilibrium behavior at the critical birth rate. A nice
exposition of the current state of knowledge is to be found in Durrett’s
article [2], entitled “The Contact Process, 1974—-1989” (is this an obitu-
ary notice?). To summarize, it is now known that the contact process’s
long-term behavior is very like that of a branching process: If the birth
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rate parameter A is strictly larger than some critical value 4., then
starting from a single particle, there is a positive probability that the
number of particles will grow forever; for all other values of 4 (includ-
ing 4 = 4,), the number of particles will reach 0 almost surely. The
main difference between the contact process and branching processes
seems to be that there is a formula for the critical birth rate for branch-
ing processes, whereas we only have bounds for the critical value of the
contact process. There appears to be little hope of obtaining a precise
numerical value for 4., so that is essentially the end of the story.

Or is it? In this article, I will discuss certain simple questions about
the contact process in the hopes of showing that at age 15, the contact
process still has some life in it. We will introduce these questions in-
formally here. More precise statements, along with answers, will follow
in subsequent sections.

The first question concerns what I call the “population profile.” As-
sume that initially there is a single particle at the origin, and fix some
time ¢t > 0. The population profile is the function which tells, for each
site x, the probability z,(x) that x is occupied at time ¢. This non-
negative function is symmetric about the origin and goes to 0 as |x|
goes to oo . Where is its maximum?

The second question concerns conditional probabilities. For each x
and ¢, let &(x,t) be the event that x is occupied at time ¢. How
does P(Z(x, 1)|&(y, t)) compare with P(Z (x, )|&(y,)Nn&(z, 1))?
The answer to this question is not as obvious as it seems at first.

The third and final question concerns a conjecture of Liggett [9]. Let
o(A) be the probability that the number of particles never reaches 0 if
A is the set of sites that are occupied initially. How does a(4 U {x})
depend on x ? The answer to this question has implications for certain
comparisons between the contact process and other models.

It seems to me that these questions are quite basic. It is not hard to
imagine them arising naturally in applications. It turns out that there
is a common thread: each of these questions is closely related to the
properties of “extremal paths.” In the next section, we will define paths
and discuss some of their properties. In the remaining three sections,
we will discuss applications of these properties to the three questions
raised above.

2. Paths of the contact process. The most useful construction of the
contact process is the graphical representation, due to Harris [7]. As
shown in Figure 1, this consists of a random graph containing vertical
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half-lines directed upward, horizontal segments of unit length directed
either to the right or to the left, and x’s. Each vertical half-line is a
time line associated with one of the sites in Z. Shown are the time
lines associated with -3, -2, -1,0, 1, 2, 3. We call the horizontal
segments birth arrows, or simply arrows. The points where the tails of
the arrows intersect the time lines are called birth points. There are two
types of birth points, depending on the direction of the corresponding
birth arrows. For each direction, the corresponding birth points on
a given time line form a Poisson point process with intensity equal
to A times Lebesgue measure, where A is a positive parameter called
the birth rate. Or in other words, the lengths of the intervals between
successive birth points of one type on any one time line are independent
exponentially distributed random variables with expected value 1/4.
Similarly, the lengths of the intervals between points marked with an
“x” on any given time line are independent exponentially distributed
random variables with expected value 1. The points marked with x’s are
called death points. The entire collection of exponentially distributed
random variables used to determine the locations of arrows and x’s
is independent. The probability space underlying the random graph
will be denoted by (Q, F, P). All random quantities to be defined
throughout the rest of this article will be defined on (Q, %, P).

™~
(8]

=3 =2 -1 0 1

FIGURE 1
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Before we use the random graph to define the contact process, we
need to define paths. An [s, t]-path is a right continuous, piecewise
constant function #:[s, ] — Z which satisfies the following two con-
ditions for all u €[s, t]:

(i) (m(u), u) is not a death point;
(ii) if m(u”) # n(u), then there is a birth point at (n(u"), u), and
the head of the corresponding arrow points to (n(u), u).

The image of one path is shown as a set of thickened lines in the picture.
Note that this path, like all paths, travels upward along the vertical time
lines, making jumps only at birth arrows (condition (ii)), and not passing
over any death points (condition (i)). If n is an [s, t]-path such that
n(s) € A and =n(t) € B, where A and B are subsets of Z, then we say
that 7 is a path from A to B.

The basic one-dimensional nearest-neighbor contact process is a Mar-
kov process whose state space is the collection of all subsets of Z. Actu-
ally, there is one Markov process for each initial state. If the initial state
is A C Z, then we denote the corresponding process by (éf). Given
the graphical representation described above, the state of the contact
process at time ¢ is determined according to the following simple rule:

X € étA iff there is a [0, ¢]-path from A4 to {x}.

The contact process may be thought of as a model for the growth of a
population. The pointsin Z represent sites that could be either occupied
or vacant. The state of the system is the set of occupied sites. Each
path represents a kind of a genealogical line. Death points are places
(in space-time!) where these genealogical lines come to an end. Birth
arrows represent places where the population may spread from one site
to another, causing a branching of genealogical lines.

One important feature of the graphical construction of the contact
process is that the entire family of processes { (étA ), ACZ} is defined
on the same probability space (2, ¥, P). This fact is useful in study-
ing the behavior of the contact process with different initial states. Many
other processes also have graphical representations. For a general treat-
ment, including a proof that a well-defined process results from such a
construction, see Gray [3] or Griffeath [4]. Another description of this
graphical approach to the contact process is to be found in Durrett’s
article in this volume.

The process we have constructed is one-dimensional because the set of
sites is the one-dimensional integer lattice. It is nearest-neighbor because
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the birth arrows all have unit length. These two properties imply the
existence of special paths which we call leftmost and rightmost paths.
Collectively, leftmost and rightmost paths will be called extremal paths.
To define extremal paths, we need to put a partial ordering on functions
from [s,t] to Z:

n <n, iff n (u) <my(u) forall uels, ).

It is easy to check from the graphical construction that whenever there
exists an [s, ¢]-path from A4 to B, there is a leftmost [s, t]-path =,
and a rightmost path z,, both from 4 to B, such that if 7 is any
[s, t]-path from A4 to B, then n; < n < n,. Note the importance of
the one-dimensional, nearest-neighbor character of the process. There
are two [0, ¢]-paths from {-1} to {-2} in the picture (assuming that
the top of the picture corresponds to time ¢). The path indicated is the
leftmost such path.

Extremal paths have two properties which will be important to us.
The first is a kind of space-time strong Markov property, which says that
the presence of a rightmost path gives no information about what lies
to the left of that path in the graphical representation, and similarly for
leftmost paths. I do not really know who first discovered this property.
It has been used in percolation theory for some time. A (somewhat
tedious) proof in the context of interacting particle systems can be found
in Gray [3]. Here is some necessary notation. For each right continuous,
piecewise constant function from [s, ¢] to Z, let #(n) be the o-field
generated by the locations of all birth arrows and x’s that lie strictly
to the left of n in Z x [s, ¢], and similarly let ¥ (n) be the o-field
generated by the locations of all birth arrows and X’s that lie strictly to
the right of 7.

PrRoOPOSITION 0. Let & be the event that there exists an [s, t]-path
from A to B. If & occurs, let n, and n, be respectively the leftmost
and rightmost (s, t]-paths from A to B. Let n:[s,t] — Z be right
continuous. Then for all events &, € #(n) and &, € F(n),

P&, n, >n)= P,
and
P&, n, < 1) = P(A,).

It is a consequence of the properties of Poisson point locations that
the o-fields F(n) and & (n) are independent. Thus, the preceding
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proposition is equivalent to the following statement:
Zn{n, < n} is F(n)-measurable and £N{n, > n} is F (n)-measurable.

The second property of extremal paths is new. It concerns a certain
type of monotonicity that is quite useful. We first need a definition.
Let I1(s, ¢) be the collection of all piecewise constant right continuous
functions from [s, ¢] to Z (these are the kinds of functions that can
be [s, t]-paths). A real-valued function ¢ defined on Il(s, ¢) is called
increasing if ¢(n,) < ¢(n,) forall n,, n, € II(s, ¢) suchthat =, < x,.
If 4 and v are two distributions on Il(s, ¢) (defined on an appropriate

o-field), we will say that u is stochastically to the left of v if for all
increasing functions ¢:Il(s, t) —

/¢ ) du(n /¢ n)dv(n

THEOREM 1. Let A and B be two nonempty subsets of Z.. Choose
Xx to be an integer that is strictly larger than sup A. Let & be the event
that an [s, t]-path exists from A to B, and let u be the conditional
distribution of the leftmost (rightmost) such path given 2 . Also, let &
be the event that an (s, t]-path exists from AU {x} to B, and let v be
the conditional distribution of the lefimost (rightmost) such path given
& . Then u is stochastically to the left of v.

There are several variations of this theorem. For example, the site x
may be added to the left of A instead of to the right, or it may be added
either to the left or the right of B. In all cases, increasing the size of
one of the two sets 4, B in a certain direction moves the conditional
distributions of the extremal paths in that same direction.

There is also a variation of the theorem which concerns the effect of
a “forbidden zone” on extremal paths. A forbidden zone is a region in
the space-time graph that paths are not allowed to touch. (Of course,
we are only interested in regions that are nice enough to avoid technical
problems, but we will not be more specific here.)

THEOREM 2. Let & be as in the preceding theorem, and let D be
the event that there exists an [s, t]-path from A to B which lies strictly
to the left of a given space-time region R. Assume that P(Dg) > 0.
Let © be the rightmost (or leftmost) [s, t]-path from A to B when &
occurs. Then the conditional distribution of n given Dy is stochastically
to the left of the conditional distribution of n given & .

Both of these theorems are proved by using the discrete time approxi-
mation to the contact process and a somewhat tricky induction. Details
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will appear in a future research article. In the remaining sections, we
will show how these theorems can be applied to the questions raised in
the introduction.

3. Population profiles. The population profile at time ¢t is the function
p, defined as follows:

p,(x) = P(x € &%),

It seems reasonable that this function should take its maximum at x =
0 and, in fact, be decreasing in |x|. We will show here how to use
Theorem 1 to prove

THEOREM 3. For all t > 0, the population profile p, is a nonnega-
tive, symmetric function of x which decreases in |x|.

Proor. Nonnegativity and symmetry are trivial properties of the
population profile. Let

T = inf{t:p,(y) > p,(y + 1) for some y > 0}.

Continuity considerations and the form of p, imply that T > 0. We
wish to show that T = oco. Suppose not. Then by continuity, p,(x)
is decreasing in |x| and there is a smallest nonnegative integer y such
that

(1) pr(¥)=p;(v+1)
and
(2) pr(y) <pr(y+1),

where p,(x) is the derivative with respect to T of p,(x). We compute

Pr(¥) = —pr ) + AP ¢ &,y -1
+Py el yr1eey
=—p v+ 1)+ APy ¢ &My -1 v - 1)
+Pr+1¢e yeel
> —p; v+ 1)+ APY ¢ &7y -1 € ep (v + 2)
+Pp+1¢e yeei

So far, we have only used a standard formula for p.., the fact that
pr(x) is decreasing in |x|, and (1). Suppose that we could prove that

@ Pye¢eMy-1eespp+1¢ e yr2eeh),



26 L. F. GRAY

Then substituting the right side of (4) into (3) gives the standard ex-
pression for p,(y +1). It then follows that p,(y) > p.(y + 1), which
contradicts (2).

It remains to prove (4). Theorem 1 is precisely suited to proving such
an inequality. We will also need Proposition 0. The argument that we
give here is a little informal in some places, but there are standard ways
of making it precise.

By symmetry and translation invariance, the left side of (4) equals

Py +1 ¢ &y ol

Let Z ={y+2¢ é;o}} and & ={y+2¢ é;zy“}}. When & occurs,
let n, be the rightmost [0, t]-path from 0 to y + 2; and when &
occurs, let 7, be the rightmost [0, ¢]-path from 2y+1 to y+2. Since
2y +1 > 0, it follows from successive applications of Theorem 1 and
one of its variations (the one in which the site x appears to the left of
A) that the conditional distribution of #;, given & is stochastically
to the left of the conditional distribution of 7, given &, in the sense

stated in the theorem. Note that if & occurs, the event {y+1 ¢ 5;0} }
will happen if and only if there is no path from some part of 7, to
the space-time point (y + 1, T). A similar statement holds for the
relationship between the event {y+1 ¢ E{sz 1 } and the path =,. But
it is “stochastically farther” from (y+1, T) to =, thanitisto =, (see
Figure 2). Proposition O says, in effect, that the presence of either of
these paths has no effect on the distribution of birth arrows and death
points in the region between the pathand (y + 1, 7). It follows that it
is more likely that a path reaches from (y + 1, T) to n,, conditioned
on Z , than it is for a path to reach from (y+1, T) to =,, conditioned
on & . With a little more work, it can be shown that this inequality of
probabilities is strict. The inequality in (4) now follows. O

v+ . v+1

LI

0 2y + 1 0 2v+ 1

FIGURE 2
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The preceding argument illustrates the way in which the properties
of extremal paths can be used to prove certain inequalities involving
conditional probabilities: first, the events that we are conditioning on
are stated in terms of the presence of certain paths; then, an inequality
is proved concerning the conditional distributions of the corresponding
extremal paths, using a result like Theorem 1 or 2; finally it is shown,
often by using Proposition 0, that such an inequality implies the desired
inequality between the two conditional probabilities.

4. Conditional occupation. We will follow the scheme outlined at the
end of the previous section to prove the following somewhat surprising
inequality.

THEOREM 4. For integers x and times t, let

Z(x, ) ={xec.
If x<y<z,then
(5) P(Ex, D&y, 1) 2PEx, )&y, )NnE&(z, 1))
(6) > P(&(x,1)).

The inequalilty in (6) is well known. It follows from the fact that the
events &(x,t),&(y,t),&(z,t) and intersections thereof are posi-
tively correlated (see Harris [6] or Liggett’s book [8]). We included it in

order to emphasize the paradoxical appearance of (5).

We will outline the proof of the following, which is equivalent to (5):
(7) PE(x, )&y, 1)) < PEx, D&Y, nNn&(z,1)).
The first step of the argument is to introduce the appropriate path: let
m, be the rightmost [0, t]-path from Z to {y}, which must exist if
&(y, t) occurs. The second step is to apply one of the two theorems in
Section 2. The appropriate choice here is Theorem 2. The idea is that
the event &(z, t)° is equivalent to the existence of a random forbidden
zone R. If &(y, t)n&(z, t)° occurs, the path 7, must pass strictly to
the left of R. It can be shown (this is similar to Proposition 0) that the
presence of the forbidden zone R does not affect the locations of birth
arrows and death points outside of R. This fact can be used to allow the
application of Theorem 2, even though R is random: the conditional
distribution of n, given &y, )n&(z, t)° is stochastically to the left
of the conditional distribution of m, given &(y, t). The third step of
the argument is identical to the last part of the proof of Theorem 3: the
comparison between the two conditional distributions of n, translates
into (7) after an appropriate application of Proposition 0.
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5. Liggett’s conjecture. Let I be an interval of n consecutive sites:
I={x,x+1,...,x+n-1}.

Let A be a finite subset of Z which contains the sites x—1 and x+n
but none of the sites in 7. Thus, A is a finite set of sites with a “gap”
I. Let

o(y) = PENV 2 @),

This is the “survival probability” at time ¢ when the initial state is
AuU{y}. We are interested in how o,(y) dependson y €.

For simplicity, suppose that » is odd, and let m = x + (n - 1)/2
be the middle site in 7. Then one version of Liggett’s conjecture (see
Liggett [9]) is

THEOREM 5. For k=1,2,...,(n—- 1)}2,
(8) o,(m) > (o,(m—k)+o,(m+k))/2.

The theorem says that after symmetrizing about the center site m,
occupation of the center site increases the survival probability at least
as much as occupation of any other site in the gap. Intuitively, m
is the best site to occupy since it is the place at which “crowding” in
the population is reduced to a minimum. Reducing crowding increases
the survival probability, because it opens up more sites at which new
particles can appear. This conjecture implies another conjecture which
says that, in a certain sense, the basic one-dimensional nearest-neighbor
contact process has the lowest “survivability” of any model in a class of
related population models (the so-called nearest particle system). (See
Liggett [9] for details.)

We will indicate briefly here how the theorems of Section 2 can be
used to prove Theorem 5. Let us recast (8) in a form that is more
amenable to our approach. Let

o ={&=2)

and let

o,(y) = P& #2\).
Since étAU{y b= g’f Uéty (check this using paths), it is easily seen that (8)
is equivalent to

!

(9) g/(m) > (o,(m—k) +0,(m +k))/2.
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There is an obvious symmetry in the graphical construction which im-
plies that

at'(y) = P(there exists a [0, ¢]-path from y to Z | &)
= P(there exists a [0, t]-path from Zto y | &),

where &' = {4Nn¢% = @}, Thus, o/(¥) equals a kind of conditional
population profile when the initial state is Z, conditioned on the event
that all the sites in 4 are vacant at time ¢. The vacancy of sites in
A means the presence of random forbidden zones on either side of
any [0, ¢]-path from Z to a site y € I (see Section 4). Thus, (9) is
a statement about the shape of the conditional population profile ‘7;
between two forbidden zones after symmetrization about the center of
I. We have already shown how to prove a statement about the shape of
a symmetric (unconditional) population profile, namely Theorem 3. In
fact, the proofs of Theorem 3 and (9) are very similar, except that in the
proof of (9), Theorem 2 must be used to handle the random forbidden
zones. Details will appear in a future article.

We have seen that certain special properties of extremal paths are
quite useful for deriving information about the behavior of the contact
process. It is hoped that this report will arouse some interest in further
investigations along these lines. In my opinion, there is much to be done.
Rumors of the demise of the contact process are greatly exaggerated!
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Limiting Behavior of a One-Dimensional System
with Long Range Interactions

THOMAS M. LIGGETT

During the past twenty years, the study of interacting particle sys-
tems has concentrated on certain specific types of models. These have
been chosen partly for their simplicity and mathematical appeal, partly
because they exhibit phenomena such as phase transition which are of
interest in other fields, and partly because they are well suited to anal-
ysis by certain important techniques. One type of model which has
all of these attributes is known as a nearest particle system. This pa-
per describes the progress which has been made during the past decade
in understanding the limiting behavior of this process, with particular
emphasis on the most tractable case in which it has the properties of
attractiveness and reversibility.

The nearest particle systems we will describe are Markov processes
n, on the set of configurations 7 € {0, I}Z, where Z is the set of
integers, which have infinitely many 1’s in both directions. The state
n(k) at site k flips from a 1 to a O at rate one, and flips from a 0
toa 1 at rate B(/, r), where !/ and r are the distances from k to the
nearest sites to the left and right, respectively, at which there isa 1. The
birth rate B(l, r) is a strictly positive, bounded, symmetric function of
! and r. The process has long range interactions, so some technical
problems arise in its construction. These were resolved by Gray [3].
In this paper, we will assume that the process is attractive in the sense
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that the birth rate is an increasing function of the configuration, and so
B(l,r) is a decreasing function of / and r. In this case, the process
can be extended as a Feller process to all of {0, I}Z .

The attractiveness implies that if initially # = 1, then the distribu-
tion of the process is monotonically decreasing in time. The process is
said to die out if the limiting distribution v as ¢ — oo is the pointmass
on n = 0, and is said to survive otherwise. In either case, v is the
largest invariant measure. The process is called ergodic if v is the only
invariant measure. It is said to be supercritical if there exists a 4 < 1
so that the process with birth rates Af(/, r) survives. It is said to be
subcritical if there exists a A > 1 so that the process with birth rates
AB(l, r) dies out. A process which is neither subcritical nor supercrit-
ical is called critical. The main problems which have been considered
are:

(1) For what choices of birth rates does the process survive?

(2) When the process survives, are there invariant measures other
than v and the pointmass on n=07?

(3) What can be said about rates of convergence to v ?

(4) What differences in behavior are there between critical and su-
percritical processes?

(5) How can effective comparisons be made between different near-
est particle systems, which enable one to show, for example,
that if one survives, then the other does also?

One answer to the first question is provided by the following theorem.
Part (ii) is based on work of Bramson and Gray [2]—see Chapter VII
of Liggett [6] for the proof. Part (iii) is a recent result due to Bramson
[1]. For many natural parametric families of birth rates, the theorem
implies that the process survives for large values of the parameter and
dies out for small values. For example, for the uniform birth process
with rates

A
,3(1,")=1—:7:T,

it gives extinction for 4 < 1 and survival for 4 > 4log2 ~ 2.77.
(This process gets its name from the fact that a total birth rate of A is
distributed uniformly over the sites between two successive ones.) (Note
added in proof: T. Mountford has shown recently that this process
survives forall A >1.)
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THEOREM 1. (i) If
Y BU,N<1
l+r=n
for all n > 2, then the process dies out.

(i) If

NP
hmglleg: B(l, r)[nlogn—1llogl—rlogr] > 2log2,
=n

then the process survives.
(iii) For every € > 0, there exists a choice of birth rates satisfying

Y BU,r=1+e
l+r=n

for n > 2 for which the process survives.

The proof of the first part of the theorem is quite easy. It is based on
the observation that blocks between successive 1’s in the configuration
contribute a net death rate, since each 1 has a death rate of one, and
each block of 0’s has a total birth rate of at most one:

1000101100001 110000

For the second part, one defines
x
h(u) = Z,u{r]: n0)=nn)=1,nk)=0for0 <k <n}inlogn
n=1

for shift invariant u, and then proves that there exist positive constants
¢ and K so that

D () < e+ Kuln:n0) = 1),

where u, is the distribution at time ¢. The attractiveness assumption
implies that A(x,) is nondecreasing in ¢. Therefore the density of ones
is bounded below, so the process survives. Bramson’s example for part
(i1i) is a truncated version of the uniform birth process—the birth rate is
distributed uniformly over those sites which are within a fixed distance
of a one. His result suggests that the uniform birth process survives for
all A > 1. However, it appears to be difficult to make a comparison
which would lead to a proof that the uniform birth process survives if
its truncated version does.
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Since 7, has been extended as a Feller process to all configurations,
one can start it with the configuration # = 0. One might think that
whenever

lim B(l,r)=0

I, r—oco

the pointmass J, on 7 = 0 is an invariant measure. This is not neces-
sarily the case, as can be seen from the following result proved in Liggett
[5]. Intuitively, one should think that there are fixed 1’s at —oc and
+oo, which may generate 1’s in Z at positive times, in much the same
way as Markov chains can enter the state space from boundary states.

THEOREM 2. Let

a(n) = Z (IAnB,r) and o (n) = max{a(k): k < n}.

I+r=n

Then n=0 isatrapif

and is not a trap if

1

— < 0.
a(n)

Theorems 1 and 2 give about all that is known about general nearest
particle systems. Much more is known about those for which v # 4,
is reversible. The starting point for this development is the following
result due to Spitzer [10], which initiated the study of nearest particle
systems.

IVM

THEOREM 3. There exists a probability measure concentrating on
configurations with infinitely many 1’s which is reversible for the process
if and only if there exists a positive probability measure B(n) with finite
mean on the positive integers so that

B(1)B(r)
1 L, r)= -
M BU, 7 = G
Jor I, r > 1. In this case, the reversible measure is the distribution of the
Stationary renewal process with interarrival times distributed according
to B(n). It is the largest invariant measure v .

An easy corollary of Spitzer’s theorem is that if #(/, r) can be written
in the form (1) in terms of a positive function B(n), but cannot be



LIMITING BEHAVIOR OF A ONE-DIMENSIONAL SYSTEM 35

rewritten in that form in terms of a probability measure with finite
mean, then the process dies out. For example, if

p —-P,.—P
(2) ﬂ(l,r):c(%-k%) =c(11+—rr)_;

for some positive parameters ¢ and p, then (a) if p < 1, the process
survives for all ¢, (b) if 1 < p <2, the process survives if and only if
¢ > [, n"”]"l, and (c¢) if p > 2, the process survives if and only
if ¢> 3,51 n’? ]_l . In this example, Theorem 2 implies that §;, is a
trap if and only if p > 1. Note that there are critical processes which
survive, and critical processes which die out.

In the remainder of the paper, we will assume that the birth rates
have the form (1) for a probability density f(»n) with finite mean M .
The attractiveness assumption translates into the logconvexity of this
density. This implies that

. pn+1)
p=tim =gy <1
exists. An immediate consequence of Spitzer’s theorem is that the pro-
cess is critical if and only if p = 1. The renewal measure corresponding
to f(n) will always be denoted by v.

A second result proved in Liggett [S] rules out the possibility of the
existence of invariant measures other than v under some additional
conditions. The proof is based on the relative entropy technique (see,
for example, Chapter II, Section 4 of Liggett [6]). When combined with
Theorem 2, it implies that the process with birth rates given in (2) is
ergodic if p < 1. To see this, it is enough to note that the limiting distri-
bution when initially n = 0 is both invariant and translation invariant,
and hence must be v.

THEOREM 4. Suppose that the process is supercritical, or is critical
and satisfies

3) )
n=1

Then v is the only measure on the set of configurations with infinitely
many 1’s which is both translation invariant and invariant for the process.

2
(n)
2n) < Q.

™

™

Our final topic is rates of convergence to v of the distribution of the
process as ¢ — oc. One reason for being interested in this is that we
hope to see essentially different rates in supercritical and critical cases.
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The first step is to decide how to measure the rate of convergence. When
d, is invariant, the convergence cannot be uniform in the initial config-
uration. That suggests that an L, type of convergence is appropriate.
Let S(t) be the L,(v) semigroup for the process, and ||-|| be the norm
in that space. The process is said to converge exponentially rapidly in
L,(v) if there exists an & > 0 so that

swf- [ rav f=[ra

for all f € L,(v). We will take & to be the largest number with this
property.

Before stating conditions under which the nearest particle system has
this property of exponential convergence, we illustrate its meaning in a
simpler context.

S e-—Et

ExampLE. Consider a positive recurrent birth and death chain on
the nonnegative integers with stationary distribution 7, whose birth
and death rates are bounded above and below by positive constants.
Then the chain converges exponentially rapidly in L,(r) if and only if
7 decays exponentially, in the sense that there is a constant C so that

o0

> n(k) < Cn(n).

k=n
Versions of this result can be found in Sullivan [11], Lawler and Sokal
[4], and Liggett [7].

The following theorem is obtained by combining results from Liggett,
[7] and [8]. It not only gives a necessary and sufficient condition for
exponential convergence, but under additional regularity assumptions
also provides bounds on & which are good enough to imply (under a
second moment assumption) that its critical exponent is 2.

THEOREM 5. Suppose that (3) holds.

(i) The process converges exponentially rapidly in L,(v) if and only
if it is supercritical.
(ii) If B(n+ m) is totally positive of order three, then
B(1) 2

EZW(I—P)-

(i) e <4(l- Yo nB(m)p ™"
n=1



LIMITING BEHAVIOR OF A ONE-DIMENSIONAL SYSTEM 37

REMARK. The logconvexity of f(n) which we have been assuming
is equivalent to f(n+ m) being totally positive of order two. Thus we
need assume only slightly more regularity of the same type to get the
lower bound on ¢. This assumption is satisfied by the examples in (2).

A natural question suggested by the above theorem is whether some
type of algebraic convergence in L,(v) occurs in the critical case. Here
our results are less complete. The proofs are contained in Liggett [9].

There is some subtlety in deciding what form the bound should take,
since if ||S(¢)f = [ fdvo|| || f - [ fdo||t™ forall f and some a >
0, it would follow that the convergence is actually exponentially fast.
Therefore the norm on the right is usually replaced by some type of
Lipschitz norm. Before discussing nearest particle systems, we return
to the birth and death chain setting.

EXAMPLE (CONTINUED). Suppose that the transition rates of the
birth and death chain are bounded above and below by positive con-
stants, and satisfy

for £k > 1 and some constant C. Suppose also that the stationary
distribution satisfies

Z (k) < Cnn(n)
k>n .
for some C. Fixag>1.1If
> k*n(k) < oo
. k>0
for some o > 2q, then there is a constant C so that

2 _sup, |f(k+1) = flk)
s -3 s s 22 E D2 1B)
for all f. Conversely, if this is the case, then
S k*n(k) < oo
k>0

forall o < 2¢q.
For the statement of the next result, define

A = st;mf(nk) - f(n)l
k

for continuous f on {0, 1}, where N, is the configuration obtained
from 7 by flipping the kth coordinate. It is a type of Lipschitz norm
which has been useful often in interacting particle systems.
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THEOREM 6. Suppose that f(m+n) is totally positive of order three,
and that B(n) is regularly varying. Fixa q > 1.

(i) Suppose that
3K Bk) < oo
k>0

Then there exists a constant C so that

2 2
S(t)f—/fdv < Al

91

(4)

Jorall feL,v).
(ii) Suppose that there exists a constant C so that (4) holds for all
fe€L,(v). Then
D k*Blk) < o0

k>0
forall a < q-2.

REMARKS. (i) For the sake of simplicity, Theorems 5 and 6 and the
results about birth and death chains have not been stated in maximal
generality. For the more general statements, see Liggett [7], [9].

(ii) It would be interesting to narrow the gap in the moments appear-
ing in the two parts of Theorem 6.

Finally, we make a few comments about the proofs of Theorems 5
and 6. The first step in each case is to reduce the problem to proving a
statement about the generator  of the process. For functions f in its
domain D(Q), define the Dirichlet form by E(f, f) = - [ fQfdv.
Then exponential L, convergence is equivalent to the existence of a
constant C so that

2
f—/fdo < CE(f, f)
2

forall f. The corresponding criterion for algebraic convergence is more
complicated. Suppose that V' (f) is a quadratic functional of f which
is not changed by the addition of a constant to f and which satisfies
V(S(t)f) < V(f) forall f and ¢t > 0. Fix 1 < ¢ < oo, and let
P+ q"l = 1. If the process is reversible with respect to v, then the
following statements are equivalent.

(a) There exists a constant C so that

-

2
< CIE(S, NP N forall f e D(Q).
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(b) There exists a constant C so that

jsu)f— [rao] < B

2
< C—=~ forall feL,().
2 -

In order to verify the appropriate statement about the Dirichlet form,
we use a special construction of the renewal measure v in terms of
a product measure. To describe it, let g(n) be the renewal sequence
associated with the density B(n). The logconvexity of f(n) implies the
logconvexity of g(n), as was proved by de Bruijn and Erdds in 1953.
We can therefore define a probability measure 7(n) on the nonnegative
integers by 7(0) = g(1) and

gn+1)  g(n)
n(n) = - forn > 1.
=gt " &n-1)
Let 4 be the product measure on {0, 1, 2, ...}Z with marginals 7 on
each coordinate. Define a mapping 7T';: {0, 1, 2, ...}Z — {0, 1}Z by
T(X) = n, where

nn)=1& X(n+k)<k forall k>0.

It turns out that the image of x4 under T is the renewal measure v.
This makes it possible to write the variance of f with respect to v as
the variance of a function of i.i.d. random variables with distribution
7, and then to carry out the estimates needed for the sufficiency parts of
Theorems 5 and 6. These estimates require rather detailed information
about the behavior of the renewal sequence g(n). The proofs of the
necessary parts involve the computation of the varianceof f, E(f, f),
and ||| f]|| for carefully chosen functions f .
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Topics in Percolation

CHARLES M. NEWMAN

Abstract. We introduce percolation models and discuss such matters
as dynamic renormalization and the continuity of the percolation tran-
sition, uniqueness of infinite clusters and the layering transition, in-
vasion percolation and the trapping transition.

1. Introduction. The purpose of this paper is to give a brief (and
hence rather incomplete) survey of a number of loosely related top-
ics from percolation theory. A good general account of (independent)
percolation theory is to be found in [G]. In this section we introduce
percolation models and then discuss the problem of continuity of the
percolation transition. Several recent results about this matter rely on
a dynamic renormalization technique which we describe in Section 2.
In Section 3 we focus on the issue of uniqueness of the infinite clus-
ter emphasizing the case of percolation models which are dependent or
which involve unusual branching lattices; the latter case gives rise to a
“layering” transition distinct from the usual percolation transition. Yet
another transition plays the starring role in Section 4; this one involves
“trapping” and is related to the disappearance of the “external surface”
of the infinite cluster. A major issue here is the relation between this
transition and invasion percolation, a certain dynamic growth model.

Nearest-neighbor bond percolation on Z°? is described by 0- or 1-
valued random variables {n,: b € &,}. A bond b is said to be open
(or occupied or conducting or ---) when 7, = 1 and closed (or vacant
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or insulating or ---) when n, = 0. Here %, is the set of pairs {x, y}
of sites in Z¢ with [x —y|| =1, where ||-|| denotes Euclidean length.
The random graph with vertex set Z¢ and edge set consisting of all open
bonds decomposes into clusters (i.e., maximal connected components)
and percolation is said to occur when some cluster is infinite.

A percolation model is determined by P, the joint probability dis-
tribution of the n,s. We denote by P, the distribution for the inde-
pendent model with bond density p, corresponding to independent 7,s
with P (n, = 1) = p for each b [BH]. We will also occasionally men-
tion the independent site percolation model with site density A where
sites are independently occupied (with probability A) or vacant; here
the vertex set of the random graph consists of all occupied sites and the
edge set consists of all bonds in %, between pairs of occupied sites.
Theorem 1, from [H1, H2], establishes the existence of a percolation
phase transition.

THEOREM 1. Define 6(p) = P, (the cluster of the origin is infinite).
For d > 2, there is a critical density p, = p.(d) in (0, 1) such that
p<p, impliesf(p)=0,
and hence no percolation occurs with probability one (w.p.1) while
p>p. implies9(p)>0
and hence percolation occurs {w.p.1).

The status of (non}percolation at the critical point will be discussed
following the next two theorems which concern behavior away from the
critical point. Theorem 2 is about the subcritical regime and combines
results of [H1] and [M, AB].

THEOREM 2. Define 7,(x,y)=P, (x and y are in the same clus-
ter); then

p<p, implies 7,(0, x) = Oexp(~m,|x|))
as ||x|| — oc for some m, > 0.

Theorem 3 is about the supercritical regime and combines results of
[CCN2] and [GM]; the latter result will be discussed in Section 2 below.

THEOREM 3. Define r;(x »¥)=P, (x and y are in the same finite
cluster); then

p>p, implies 7,(0, x) = O(exp(—m,|Ix[)))

as ||x|| = oo for some m;, > 0.
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To see why the issue of (non)percolation at p, is important, we first
note that & is necessarily a right-continuous function of p. This is so
because it is a nondecreasing function of p and also is the decreasing
limit as L — oo of the continuous functions

6,(p) = Pp (there is a path of open bonds
from O to some x with ||x|| = L).

Theorem 4 then shows that 8(p) is continuous for all p if and only
if 6(p.) = 0; in this case the percolation phase transition is said to be
continuous. Theorem 4 combines results of [BeK] and [AKN]; the latter
result is Theorem 8 in Section 3 below.

THEOREM 4. For each p > p,, 8 is left-continuous (and hence con-
tinuous) at p.

The next two theorems sum up the current status of (non)percolation
at p.. The d =2 part of Theorem 5 combines results of [Hal] and
[K] while the large d part is from [HS1, HS2].

THEOREM 5. (i) For d =2, 6(p,)=0.
(ii) There is a finite integer dy > 6 such that d > d,, 6(p.)=0.

We remark that the results of [Hal, K] are rather special to bond per-
colation; for a proof of nonpercolation at the critical point sufficiently
general to cover, say, independent site percolation on z? , see [R]. We
also remark that for nearest-neighbor percolation, the best current value
of d, seems to be 92. On the other hand, for other models with spread-
out but still finite range bonds, d, = 6 [HS1, HS2]. Theorem 6, which
is based on “dynamic renormalization” methods as discussed in Section
2 below, is a result of [BGN1].

THEOREM 6. Set d > 3. (i) For independent nearest-neighbor per-
colation on the half-space (in which Z° is replaced by /Y / ) there
is no percolation at the critical point (w.p.1).

(il) A resolution of the following open problem would imply that 6(p,)
=0 (in Z%:

Prove that percolation in Z¢ at density p implies per-
colation in 2%~ x Z, at thesame density p.

In the next section, we discuss the dynamic renormalization tech-
nique introduced in [BGN1]. Meanwhile we remark that a variation of
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these techniques has led to a proof for d > 2 that the contact process
on Z°7! dies out at its critical point [BG]. The contact process has
a representation as directed percolation in A [Ha2] where the
time axis T can be either continuous ([0, oc)) or discrete (Z,) ; hence,
the geometric structure of this process is very close to that of ordinary
percolation in a half-space.

2. Dynamic renormalization. The basic technical fact which leads to
Theorem 6 is a proof of the following [BGN1]:

Percolation in Z%7! x Z_ at density p implies perco-

lation in the quarter slice @, = {-L, ..., L}d‘2 x Zi
at density p —e¢ for some ¢ >0 and L < x.

This fact also leads to the conclusion that the half-space critical density
equals the limitas L — x of the Q, critical densities. In [GM] new
ideas were added to the dynamic renormalization techniques of [BGN1]
to prove the following technical fact:

Percolation in Z? at density p implies percolation in
Q, at deusity p + ¢ for any ¢ > 0 and some L =
Lie) < x.

This fact implies that the limit of Q, critical densities equals the full-
space critical density p_ . which is a basic ingredient in obtaining results
on supercritical behavior such as Theorem 3 above. We note that the
open problem presented in part (ii) of Theorem 6 is basically to show
that the ¢ of [GM] can be set to zero.

In the remainder of this section we discuss a bit about the dynamic
renormalization arguments of [BGN1] and how they differ from static
renormalization methods such as those of [R, ACCFR]. Renormaliza-
tion arguments with dynamic aspects have appeared previously in the
contexts of long range percolation [AiN] and directed percolation [BDS,
D). For a more complete discussion than that given here, but still with-
out the many technical complications of [BGN1), see [BGN2] for a
proof of a simplified version of Theorem 6 (in which the half-space is
replaced by the orthant Zi).

How are renormalization methods used to prove that there is perco-
lation in @, at density p’ (where p =p—¢ or p+e above)? First
partition Q, into cubes which are translates of {-L, ..., L}d in the
obvious way and think of each cube as a “renormalized site” in the
rencrmalized lattice Zi. Say that a renormalized site is occupied if
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the corresponding cube is “well connected” in some appropriate sense.
Show that the occupied renormalized sites percolate in Zi and then
conclude that the original model percolates in @, .

In static renormalization. The meaning of “well connected” is typi-
cally the same (up to translations) for each renormalized site, and per-
colation in Zi is shown by testing the occupation status of all cubes
simultaneously.

In dynamic renormalization. Both the definition of “well connected”
and the testing of cube status are done dynamically, one cube at a time,
and the meaning of “well connected” for a given cube depends on the
microstate of neighbor cubes. A cube is not tested until (at least) one of
its neighbors is found to be occupied; as in a standard algorithm for the
computer simulation of the cluster of the origin for site percolation in
Zi, the cluster (and its boundary) is “grown”, one (renormalized) site
at a time. To show percolation in the renormalized lattice, it suffices if

2 ’

P (a cube is occupied | it is tested) > A(Z) +¢

where ).C(Zi) is the critical density for independent nearest-neighbor
site percolation in Zi.

The dynamic renormalization procedure just described starts with,
say, an independent bond model, renormalizes it into a dependent site
model and then compares the latter to an independent site model to
prove percolation in the original model. In order to point out a certain
geometric feature of this type of procedure which was not previously
emphasized, namely, that it has an underlying tree-like structure, we
apply a variant of the argument to dependent bond percolation to obtain
Theorem 7, a result which is implicit in [BGN1, BGN2].

THEOREM 7. For a (dependent) nearest-neighbor bond percolation
model, {n,.b e 3B,}, define M, tobelif x belongs to the cluster of
the origin and otherwise to be zero. Then the random field {M: x € z%
stochastically dominates {M(Ay): x € Z°} for a “renormalized site
density” A, € [0, 1] defined below. Here, for a given A, M;(A) islif x
belongs to the cluster of the origin in an independent nearest-neighbor
site percolation model on Z° at density A and otherwise M;(A) = 0.

Thus if Ay > /lc(Zd), the critical site density in Z°, then the original
bond model percolates (with positive probability). To define 4, first

denote by 7 the collection of finite subtrees t of the graph (Zd , B)
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which contain the origin and then for each t € 7 denote by %, the
collection of nonempty sets u of bonds b € B, such that

‘a) each b in u touches exactly one vertex in t, and
(b) t adjoined with the bonds (and new vertices) of u is still a tree.

Then A, is defined as

A, = inf inf infP(n, = l|n,, = 1 forb' € t and n,» = 0 for b” € u\{b}).
0™ te7 ue#, beu (n, = 1|n, b \bh
3. Uniqueness of infinite clusters. When percolation occurs, is the in-
finite cluster unique? Theorem 8, from [AKN], gives a positive answer,
at least for independent percolation on z°.

THEOREM 8. If 8(p) > 0, then
P,( there is exactly one infinite cluster) = 1.

In the rest of this section we discuss the status of uniqueness for
more general percolation models—first for dependent models on z°
and then for models on more exotic lattices than Z?. Dependent per-
colation models are of some importance in statistical mechanics. There
are for example (at least) two ways in which dependent percolation
and Ising models are related. Ising models are certain (dependent) +1-
valued random fields {S : x € Zd} and one may obtain a dependent
site percolation model by declaring x to be occupied if §, = +1 and
vacant if §_=—1. For d =2 (but not larger d) there is a close con-
nection between the percolation transition in this dependent site model
and the usual Ising phase transition, as shown in [CNPR]. (Some recent
applications of this relation may be found in [AN1, AN2] and [NSt].)
There is another way of relating dependent percolation to Ising models
which is more subtle but provides a connection valid for any d between
percolation and (ferromagnetic) Ising transitions. Here one deals with
bond percolation models known as random cluster or FK models [FK].
General discussions of FK models may be found in [ACCN] (covering
the ferromagnetic context) and in [N] (covering the nonferromagnetic
context such as occurs in Ising spin glasses).

The next example shows that uniqueness can fail for a dependent
percolation model {n,: b € %,} even though it is translation invariant
(with respect to Zd-translations) and is “almost independent” in the
sense that {n,: b€ ¥} and {n,: b € V'} are independent of each other
whenever the two sets of bonds ¥ and V' have no site in common.
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ExaMpLE. Let {S :x € z } be independent symmetric =+ 1-valued
random variables. Define n o} = 1 if § =S, and O otherwise and
let P denote the distribution of {n,:be Q }s then

P (there are exactly two infinite clusters) = 1.

This follows from the fact that the sites x with § = +1 (respectively
—1) form an independent site percolation model with density 1/2 and
the fact that the critical density 4 (Z’) is strictly less than 1/2 [CR].
Thus there is one infinite {n,}-cluster coming from each of the plus
and minus site clusters.

In spite of this example, Theorem 9, from [BuK] (with a minor
improvement from [GKN]), gives a nice general result guaranteeing
uniqueness for certain dependent models.

THEOREM 9. Assume that the distribution P of a percolation model
{n,: b € S} is translation invariant and for each b, its conditional
probability with respect to the o-field generated by {n,: b e BN\ {b}}
satisfies

P(n, = 1[{n,: ' #b})>0 w.p.l.

Then
P (there is more than one infinite cluster) = 0.

We remark that Theorem 9 is applicable to (ferromagnetic) FK mod-
els and leave it to the reader to decide why it is not applicable to the
example given above. For an application of Theorem 9 to spin glasses
and for extensions of Theorem 9 (e.g., to long-range bond models), see
[GKN].

The proofs of Theorems 8 and 9 rely on the fact that the lattice z°
may be approximated by finite regions with much less surface than vol-
ume. What happens to uniqueness in lattices where this property fails?
A simple example is the infinite homogeneous tree T, with coordinate
number k+ | > 3 for each site. Here it is clear, because of the absence
of closed loops in this graph, that when percolation occurs, there must
be infinitely many infinite clusters. But what happens in a lattice like
T, x Z where there are closed loops but also too much surface? If the
tree T, is thought of as a “branching line”, then T, x Z is a “branching
plane” which possesses some of the features of the tree T, and some of

the features of the plane Z?. One may ask: which features dominate
in the issue of uniqueness? Theorem 10, from [GN], shows that the
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answer depends on the bond density p: there is a “layering transition”
in which the model changes from tree-like to plane-like behavior.

THEOREM 10. Consider independent nearest-neighbor bond percola-
tion on T, x Z with bond density p. If k > 2 and p is close to 1, there
is exactly one infinite cluster (which intersects each Z-line in a positive
density of sites) w.p.1. If k is sufficiently large, then there is an open
interval of values of p such that there are infinitely many infinite clusters
(each of which intersects each Z-line in only finitely many sites) w.p.1.

We note that the tree-like behavior is shown in [GN] to occur for
all k¥ > 2 providing different bond densities are allowed for the T,-
bonds and the Z-bonds. Extensions of Theorem 10 which demonstrate
the existence of a layering transition for Ising (and FK) models may be
found in [NW]. The analogue of Theorem 10 for directed percolation
{alias, the contact process) appears in [P].

4. The trapping transition. Invasion Percolation (IP) is a stochastic
growth model for the microscopic development of a two-fluid (say, wa-
ter and oil} interface in a porous medium [LB, CKLW]. The (static)
random medium is described by i.i.d. continuous random variables
{W,: beH,}; W, represents the difficulty of water displacing (*“invad-
ing”) the oil originally contained in bond 5. In the (dynamic) invasion
process, water invades one new bond at a time by choosing the least
difficult one on the boundary of the currently invaded region. Inva-
sion percolation with trapping is a variation of this growth model with
the extra rule that any finite region of oil which is trapped by water
{i.e., which is such that every path from the region to infinity must pass
through currently invaded bonds) can no longer be invaded.

Simulation studies of IP and of IP with trapping were carried out in
[WW, W]. It was found that IP had large scale fractal behavior which
was closely related to the critical behavior of the usual percolation model
(see Section 1 above) at its critical density p,; some of these discov-
eries were later rigorously verified in [CCN1]. In simulating IP with
trapping in [W, WW], the invasion process was allowed to proceed in a
fixed 2- or 3-dimensional simulation region until all bonds were either
invaded or trapped. Preliminary conclusions were that for d = 2, the
large scale fractal behavior was again determined by the usual percola-
tion model critical behavior but for d = 3, a “new universality class”
arose. One ingredient in these conclusions was the perceived relation
between (non)trapping and the percolation of vacant bonds in the usual
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percolation model. From this perspective d = 2 is degenerate because
the critical density 1—p_ for vacant bond percolation equals p, (equals
1/2) in that dimension [K].

The analysis of IP with trapping of [W, WW] was subsequently shown
to be flawed and their preliminary conclusions were cast in doubt by
subsequent work of [CCN3], which showed that IP with trapping was
related to a “trapping transition” in the usual percolation model occur-
ring at a density k. which exceeds 1 —p, even for d = 2. The trapping
transition, as defined by Theorem 11, is related to the disappearance of
the “external surface” of the infinite cluster (see, e.g., [NS]). The d =2
case of Theorem 11 was proved in [CCN3] and the general result is from
[AG].

THEOREM 11. For a bond percolation model {n,: b € &,}, define

the random graph G with vertex set Z° and edge set B,\{b: b belongs
to an infinite cluster of occupied bonds}. For d > 2, thereisa k= k_(d)
in (0, 1) with k, > 1 — p_ such that

p <k, impliesP, (G has an infinite component) = 1,

p >k, implies Pp {G has an infinite component) = Q.

The analysis of [CCN3] indicated two things regarding the fractal be-
havior of IP with trapping. First, that no new universality class should
arise unless one already occurs in the trapping transition at x_. Sec-
ond, that in this regard, d = 2 is not a degenerate case. Consequently,
simulations were performed in [PNM] to test the null hypothesis that
the d = 2 trapping transition has the same critical behavior as does
the usual 4 = 2 percolation transition at p. = 1/2. For example, if
x{p) denotes the mean (w.r.t. Pp) size of the cluster of the origin and
%(p) denotes the mean size of the “trap” of the origin (i.e., the maximal
connected component in G which contains the origin), then the null hy-
pothesis predicts equality of the critical exponents y and ¥ defined by

x(p)~@.-p)”" asptp., IW@)~((p-x) asplk,.
The simulations of [PNM] are completely consistent with the equality
of these (and other) critical exponents; thus there appears to be no new
universality class in IP with trapping. Incidentally, . does not exceed
1—p, by very much; for d = 2, 1-p_ = 1/2 (exactly) while x_ ~ 0.520
(numerically).
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Abstract. This talk describes some recent joint work with Takashi
Hara [12], in which it is proved that the triangle condition for inde-
pendent bond percolation on Z¢ is satisfied fi or the nearest-neighbour
model in sufficiently high dimensions {d > 48), and above six di-
mensions for a class of “spread-out” models. The triangle condi-
tion is known to imply that the critical exponents 7, £,4.4, (t =
2.3... ) exist and take their mean-field ¢ Bethe lattice) values. This
provides further evidence that the upper cnitical dimension for per-
colation is six.

The proof uses an expansion which is related to the lace expan-
sion for the self-avoiding walk. In this context, the lace expansion is
best interpreted as arising from repeated application of the inclusion-
exclusion relation.

1. The triangle condition. Consider the set of all bonds b = {x, y},
where x, y € Z¢ and x # y,andlet {J,} be a fixed set of nonnegative
numbers, indexed by the bonds, which is invariant under the symmetries
of Z%. Toeachbond b is associated an independent Bernoulli random
variable n,, with n, = | with probability p - J, and n, = 0 with
probability 1 —p - J,, where 0 < p < [sup, J,]”'. The following
possibilities for J, will be considered:
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(1) the nearest-neighbour model:
. { Lfly-xl, =1,
{x.2} 0 otherwise;
(11) the “spread-out” models:

—-d y—-Xx
J{x,y}=L g( L )’

where L will be taken to be large, and g is a Z° <invariant piecewise
differentiable function g : R — [0, x), with e’™!=g(x) € L®(RY)
for some J > 0. A basic example is g(x) = I[||x]| < 1], where [ is
the indicator function.

If n, =1 then b is said to be occupied, while if n, =0 then b is
said to be vacant. Two sites x and y are said to be connected (in a
given configuration {n,}) if there is a path from x to y consisting of
occupied bonds. The set of sites which are connected to x is denoted
C(x), and the cardinality of C(x) is written |C(x)|. Let

TNy = 1{x 1s connected to y])p ={I[ve C(x‘;])p,
where (), denotes expectation with respect to the joint distribution of
the n, . The triangle diagram is defined by

Vip)=) 7,(0,x)t (x,y)7,(y,0).
p p p
X,y

The triangle diagram can be written in terms of the Fourier transform
(1) t (k) =3 1,00, x)e™*
X

as d

dk . 3
Vip) = —1 (k).
?) /[—n,rr]’ (zn)drp( :

The triangle condition states that ‘V(p,) < oc, where p_€ (0, 1) is the
critical point. The critical point has two equivalent definitions [6, 10,
14, 1]:

i

P, sgp{p s (I[1C(0)] = =]}, = 0}

sgp {p 1 x(p) EZTP(O, x) < oo} .

The triangle condition was introduced by Aizenman and Newman
(3] as an (unverified) criterion which implies that x(p) ~ (p, — p)~’
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as p / p., with y = |, 1e., there are positive constants ¢, and c,
such that ¢ (p, —p)_1 < x(p) < ¢ip, —p)_1 , for all p < p.. Subse-
quently Barsky and Aizenman [4] showed that if the triangle condition
is satisfied then P_(p) = (I[|C(0)] = x<]), ~ (p — p) as p\.p,.,
with B = 1,and M(p,, h) ~ h'/® as h \, 0 with § = 2, where

M(p, h) = Cicnea® hn (I[|C(0)| = n]), . Also, the triangle condi-
tion is known to imply that the gap exponents are mean field (A, = 2,
t=2,3,...) [15].

Recently it has been proved [12] that the triangle condition is satisfied
in two situations as stated in the following theorem.

THEOREM |. The triangle condition and the infrared bound fp( k) <

const -k, uniformly in p < p., hold: (a) for the nearest-neighbour
model if d is sufficiently large (d > 48) and (b) for d > 6 and L
sufficiently large (depending on d, g) for the spread-out models.

The triangle condition is expected not to hold for d < 6. A conse-
quence of the proof is that v, = 1,2, 1€,

1,2
Elxfn,0. 01"
2 7,0, x) ¢
Using related ideas, Hara [11] has shown that for (a) and (b) of Theorem
1, v=1/2,1e,

~ lim Llnt ,0,(n,0,...,0)~(p,~p)""* asp/p,.

n—occ N

-1;2
" asp/p,.

Similar methods can be used to study branched polymers above their
expected upper critical dimension of eight [13].

Since the nearest-neighbor and spread-out models are expected to be
in the same universality class (i.e., have the same critical exponents),
Theorem 1 supports the conjecture that the triangle condition is satis-
fied for the nearest-neighbour model above six dimensions. Theorem 1
is complementary to the results of [9, 18], which show that all critical
exponents (assuming they exist) cannot take their mean-field (Bethe lat-
tice) values in less than six dimensions, and provides further evidence
that the upper critical dimension for percolation is six. The fact that
(b) holds independently of the short-range behaviour of the J, is an
illustration of universality.

Theorem 1 is proved using an expansion which is related to the
Brydges-Spencer lace expansion for self-avoiding walk [8], with the con-
vergence argument of [17]. The lace expansion is best interpreted in this
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context as a consequence of repeated use of the inclusion-exclusion rela-
tion. As this interpretation of the lace expansion has not been published
elsewhere, it is reviewed in the next section.

2. The lace expansion and the inclusion-exclusion relation. In [8], the
lace expansion was used to show that in more than four dimensions
weakly self-avoiding walk behaves like simple random walk: the mean-
square displacement is asymptotically linear in the number of steps.
Later the lace expansion was applied directly to the strictly self-avoiding
walk in very high dimensions [17]. These methods could also be used
to treat “spread-out” strictly self-avoiding walk above four dimensions.

The lace expansion was first derived by an expansion and resumma-
tion procedure reminiscent of the cluster expansions of statistical me-
chanics and constructive quantum field theory [7]. Viewed differently,
however, the lace expansion can be seen as resulting from repeated ap-
plication of the inclusion-exclusion relation, as will now be explained.
This approach to the lace expansion is similar in spirit to the work of
Park [16] on intersection probabilities of simple random walk.

A T-step nearest-neighbour self-avoiding walk in Z° is an ordered
sequence w = (w(0), w(1), ..., w(T)), with w(i) € Z°, |w(i + 1) -
w(i)] =1, and w(i) # w(j) for i # j. Let &:(x,y) be the set of all
T-step self-avoiding walks from x to y,let ¢ (x, y) be the cardinality
of #.(x,y),and let ¢, be the number of T-step self-avoiding walks
starting at the origin. By convention, ¢y(x, y) = Jx' ) The two-point
function is defined by

0

T

g,(x,y)= E cr(x, y)z .
T=0

For simplicity, here z is taken to be nonnegative. Information about
critical exponents, such as the one governing the mean-square displace-
ment, is contained in the detailed behavior of the Fourier transform
6.(k) (defined as in (1)) near the critical point z, (the radius of con-
vergence of the power series 4,(0) = 37, cTzT) . It is this behavior
which can be determined using the lace expansion, in high dimensions.

The first step in deriving the expansion is to extract the term in
d,(0, x) corresponding to T =0,

o

(2) 0,00, X) =8, .+ cy(0, %)z

T=1

T
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Now for T > 1,

(3) (0, x)= Y [q(o,.v)cr_l(y,x)— 3 1[Oew11].

yiiyl=1 w EF_ (Y, X)
Diagrammatically the right side of (3) can be represented by

STOTYTTTTY - OQy/x ].

y:ilyi=1

In the first term on the right side the dotted line is unconstrained, apart
from the fact that it should be self-avoiding. Equation (3) is just the
inclusion-exclusion relation: the first term on the right side counts all
walks from 0 to x that are self-avoiding after the first step, and the
second subtracts the contribution due to those that are not self-avoiding
from the beginning, i.e., walks that return to the origin. Since ¢, (0, y) =
1 for |y| =1, substitution of (3) into (2) gives

(4)

0.(0.x)=dy ~= Z o.(y, x)- : Z -1 Z I0 € w,]
"

yiyi=l1 v yi=1T=0 W, €%y, x)

ty

The inclusion-exclusion relation can now be applied to the last term
on the right side of (4), as follows. Let S be the first (and only) time
that w, (S)=0. Then

T
2. Mbewl=>, 3> llwnw;={0}
w, €%y, x) S=1 w,e%(y,0)
w, €%, _¢(0,x)

T
Z sV, 0)cr_s(0,x)= > Iw,Nw, #{0}]

S=1 w, E?(V 0)

we £r_s0.x)
= Om X = OQ-——.r,

\\-_y,,’ AN y s
and hence
o0
T+1
5) X Dz X I0ew]
y:lyl=1T=0 W, €&y, X)
+
Zz ug- o, )-—Z 7 Iw, Nwy # {0}]
S= S=2  w,€¥%;
T=0w36?1.(0,x)



58 GORDON SLADE

where % is the set of all S-step self-avoiding loops at the origin and
ug is the cardinality of Zj .

Continuing in this fashion, in the last term on the right side of (5)
let T, > 1 be the first time along w,; that w,(T)) € w,, and let
v = w4(7)) . Then the inclusion-exclusion relation can be applied again
to remove the avoidance between the portions of w, before and after
T, , and correct for this removal by the subtraction of a term involving
a further intersection. Repetition of this procedure leads to

(6) 0,0, x)=38  +z > 0oy, x)+ I(0,v)0,(v,x),

Y=l
where
= N (V)
(7) I,(0,v) = > (-1)"I1;7(0, v),
N=1
with

1100, v) =3, , 3 Sug = by, 04, }
522
Hf’(O.v)—H i Z IHw,Nw, =, N,

i=l | T, W €. (0, v)

0

Similarly, | @
o, v)=0 v

where each wavy line represents a sum over self-avoiding walks between
the endpoints of the line, weighted by zT | with mutual avoidance be-
tween some (but not all) pairs of lines in the diagram. The unlabelled
vertex is summed over Z° . All the higher-order terms can be expressed
as diagrams in this way, and it is not difficult to see the pattern of
mutual avoidance between subwalks (individual lines in the diagram)
which emerges. Equation (7) is the lace expansion.
Taking the Fourier transform of (6) and solving for & (k) gives
|

=w,Nw;={0,v}]

3

5 (k) = _ _ ,
(®) 7 (k) 1-2dzD(k)-T1,(k)
where

- 1 &
(9 D(k) = ZZCOSky'

u=1
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One wants now to use the lace expansion to bound fI__(k) at z=z_.
The first step in bounding the diagrams representing I'I(ZN) is to obtain
an upper bound by removing the mutual avoidance between subwalks.
This relies on the repulsive nature of the interaction. It can then be
shown [8] that for N > 2

|ﬁ(;V)(k)| < [51;1}8 02(0, x)]B(z)“V‘Z)/Z
X

where B(z) is the “bubble diagram”

d
B(z)=Y 0,00, x)’= /[_ . (‘;nl)cd&:(k)z

and

B/(z)=B(z)-1= Zaz(O, x)z.
x#0

It is expected that &, (k) < const k™% for k near zero (the infrared
bound), and hence that B(z,) < x (the “bubble condition™) for d > 4.
In fact, in high dimensions it can be expected that B (z,) = od'y,
since the main contribution should be due to |x| =1 and the one-step
walk to x, and this gives zf 2d = (1/(2d - 1))2 -2d . Thus one expects

that |ﬁz (k)| will be small in high dimensions, and a more detailed

analysis can be used to argue that |8k2 ﬁz_(k)| should also be small.

The details of how these ideas can be turned into a proof can be found
in [17]. The analogous expansion for percolation is described in the
next section, where the mechanism for using the expansion is explained
in more detail.

3. Sketch of proof of Theorem 1. The proofs of parts (a) and (b) are
similar, and we will discuss only the proof of part (a). Define

(10) T(p) =V(p)~1=3_1,(0, X)7,(x,»)7,(y, 0) - 7,(0,0),
X,y
(1) W(p) = 3 Ix’1,(0, x)?,

and let T, and W, be the quantities obtained by replacing T, in (10)
and (11) by the massless Gaussian propagator

1\ Ak ikp-x 1
(12) Clx»= 3 (27) =/[_n,nyf 2 I —D(k)’

Wi x—y
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where the sum in (12) is over simple random walks, and D(k) was
defined in (9).

It follows from the continuity of T, in p [2] that T(p) and W(p)
are conunuous for p < p_, and it can be shown that if p < 1/(2d),
then T(p) < T;<K,/d and W(p) < W, < K, /d,with K; and K},
independent of d > 7. (For d <6, T, = W, = x.) Together with
these facts, the next proposition (whose statement here is incomplete—
the details are in [12]) implies that T(p) < 3K,/d forall p <p_ . It
then follows from the continuity of <, in p and the monotone conver-
gence theorem that Vip,) = 1 + T(p,) < 1+ (3K;/d), and hence the
triangle condition is satisfied.

ProposiTION 2 (Incomplete statement). For the nearest-neighbour
model in sufficiently high dimensicns, for any fixed p € [1/(2d), p.), if
T(p) < 4K./d and Wi(p) < 4K, /d, then in fact T(p) < 3K /d and

Wip) < 3Kw/d-

The argument which allows poor estimates on 7 and W to be turned
into better estimates uses an expansion related to the lace expansion for
the self-avoiding walk. The derivation of the expansion for percolation
is more involved than for the self-avoiding walk, and we will just give
the basic idea. First some definitions are needed. Given a bond config-
uration {n,} and two distinct sites x and y, a bond b 1s said to be
pivotal for the connection from x to y if x and y are connected in
the configuration when n, = 1 but are not connected when 7, = 0. In
the models treated in Theorem 1, at the critical point connected sites
are expected tvpically to be connected mainly by pivotal bonds. If x
and v are connected but there is no pivotal bond for the connection
from x to y,then x and y are said to be doubly connected, denoted

0 Dx.

If 0 is connected to x then either O is doubly connected to x or
there is a first pivotal bond (u, v) for the connection (with # doubly
connected to 0). Therefore

(13) 7,0, %) =Prob(0 <__>x)+ 3 Prob(0 7w x).

(u,v)

In the last term the connection from v to x cannot share any site in
common with the cluster between 0 and u, since (u, v) is pivotal. This
1s a kind of repulsive interaction akin to that of the self-avoiding walk.
Now one wants to proceed as for the self-avoiding walk, by extracting
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a factor of rp(v , X) from the last term on the right side of (13), and
correcting with a term involving a “more connected” (and hence less
important) term. The first step in this procedure is to appeal to a lemma
used in [3], which implies that

(14)  Prob(0~—"w—x) = p(I[0 > ul:S*V(w, x)),,

where rC‘“vw(O)(v, x) is configuration dependent and is defined as fol-
lows. The set C(uyv)(O) is defined to be the set of sites which remain
connected to the origin after setting » oy = 0, and foraset A of sites,

t*(v, x) is the probability that v is connected to x after all bonds ter-
minating on a site in 4 are made vacant. Next the r wal®y X) in
(14) 1s replaced by

(15) rp(v,x)—[rp(v,.r)—rf“'“)(o)(tv,x)].

The first term in (15) allows a factor of T,(v,x) to be extracted from
the expectation in (14), and there is a remainder due to the second term.
The treatment of the remainder is somewhat technical, and as explained
in [12] leads to an iterative procedure which generates further terms in
an expansion.

The result, after taking Fourier transforms and solving for t (k). 1is

. Gk
(16) k) = L —
| —2dpD(k) - P, (k)
where
(17) k) =1+ Y Prob0 > x)e ™  + -,
x#0
(18) Phky=p S Prob(0 T u)e" " +
(u,v): ux0

The higher-order terms can be interpreted diagrammatically. By the van
den Berg-Kesten inequality [5],

Prob(0 < Ox) < 7,(0, X)z,

and by the hypothesis in Proposition 2, Ex %0 p (0, x) <4K./d. Sim-
ilar but more involved estimates requiring 7°(p) can be made for the
higher-order terms. For the self-avoiding walk the repulsive nature of
the interaction was used in an important way to bound the terms of
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the expansion, and here that role is being played by the van den Berg-
Kesten inequality. In addition, first and second derivatives with re-
spect to k 4 of G and ¥ can be estimated using the van den Berg-
Kesten inequality and the hypothesis on W(p) in Proposition 2. In
this way it can be shown that the hypotheses of Proposition 2 imply
that G(k)— 1= O(d™") and that the denominator of (16) is a small
perturbation of (1 — 5(k)) , leading to the bound

= -1

t,(k) < (1+0(d™")(1 - D(k))
This is the infrared bound. (Although at this point the infrared bound
depends on the assumption that T(p) < 4K./d and similarly for W (p),
it will follow from Proposition 2 that in fact stronger bounds on T(p)
and W (p) hold, and thus the infrared bound is proved.) Now by writing
T(p) and W(p) in terms of %p, the improved bounds on 7(p) and
W(p) can be obtained.

Acknowledgments. [ am grateful to Takashi Hara for helpful sugges-
tions and comments on this paper, and to Michael Aizenman and to the
Courant Institute for their hospitality while it was written.
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Mandelbrot Percolation
in Two and Three Dimensions

GLEN H. SWINDLE

In the early 1970s Mandelbrot [M] introduced a method of generat-
ing self-similar fractals, which is now called “Mandelbrot Percolation.”
The scheme begins with the unit square in two dimensions, and with
two numbers: N a positive integer greater than one, and p a real num-
ber in the unit interval [0, 1]. The unit square is divided into N?
squares of dimension 1/.V and each square is independently retained
with probability p, or else it is removed. On the next iteration, all re-
tained squares are again divided into N? subsquares, and each square
is similarly retained or removed. If we denote the retained set after n
iterations by 4, , then the object of interest is the set

o]
A.=[)A4,.
n=|

The system was first approached rigorously by Chayes, Chayes, and
Durrett. Let Q_ denote the event that a crossing of the unit square
exists within the limiting retained set 4_, and define the three critical
values:

Py(N)=inf{p:. P(4_ # <) > 0},

p,(N) = sup{p : P(largest connected component of A4_is a point) = 1},
p(N)=inf{p: P(Q_) > 0}.

The following results, established in [CCD], identify the value of p,,
equate p,; with p. (which eliminates the possibility of additional phases
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between the “dust-like” phase and the percolation phase), and establish
the discontinuity of the phase transition at p..

THEOREM 1. p, = 1/N2.
THEOREM 2. p (N)=p.(N)< 1.

THEOREM 3. There exists an ¢, > 0 so that if P(Qw) < &, then
P(Q_)=0.

=)

The result of the last theorem means that at p, the probability of
percolation across the square drops from some positive value discontin-
uously to zero. The driving force in this discontinuity is the asymmetry
between retained squares and removed squares (once a square is re-
moved, it stays removed forever).

The next result [CC], which we use later in the analysis of the three-
dimensional system, establishes the limiting behavior of p (N) as N —
> . In what follows, p . refers to the critical probability in standard
site percolation on the two-dimensional integer lattice.

THEOREM 4. limy_ __p.(N)=p,.

We now direct our attention to the analogous three-dimensional Man-
delbrot percolation system. Let N be a positive integer larger than 1,
and consider the 2 x 2 x 1 box [0, 2] x [0, 2] x [0, 1] which we will
denote by &, , | . In general, we will denote the box [0, J]x [0, K] x
[0, L] by &, K.L" Technical considerations require that we consider
the box &, , | instead of the unit cube.

The procedure is to divide each of the 4 unit cubes comprising @2‘ )

into N cubes of dimension 1/N, and retain each of these cubes in-
dependently with probability p. Denote the retained set by 4, . This
procedure is repeated with each of the retained cubes in 4, to form
A4, , and after n such iterations, the retained set is again denoted by
4, . As in the two-dimensionai system, we are interested in properties
of the limiting set

Ao =4,
n

In [CCGS] the existence of three phase transitions is established—the
first twe being analogs of p, and p. in the two-dimensional system,
while the third is associated with the event of a crossing of the box by
a “sheet.” Additionally, we show that this third phase transition is also
discontinuous.
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We now state the results, and then outline the proofs. With p,
defined as before, the first result is

THEOREM 5. p, = 1/1\’3 .

Now let Q_ denote the event that an easy crossing exists in 4_
By an “easy” crossing we mean a crossing of &, , | between the two
2 x 2 facets. Consider two critical values:

Py = sup{p : P(largest connected component of 4__ is a point) = 1}

and

=inf{p: P(Q_) > 0}.
If p€(p,,p,;) then 4_ is “dust-like”, and if p > p, then A4_ con-
tains strands which cross the box. The following theorem places a lower
bound on p,.

THEOREM 6. p, > 1/N.

In the next result we establish that the phase transition at p, is dis-
continuous and that p, = p,.

THEOREM 7. There exists an ¢, >0 such that if P(Q_ ) < g,, then
P(Q_ ) = 0, and the largest connected component is a point.

Theorems 5 through 7 are generalizations of results established in
[CCD] for the two-dimensional system. The subsequent results address
issues unique to the higher-dimensional model. We define a sheet cross-
ing of the box to be the retention of a surface crossing %, , | the easy
way. Topological considerations are made precise in [CCGS] however,
it suffices here to say that a surface crossing exists if the complement
of the retained set A; does not contain a top to bottom crossing of
gz,z,l . Let

p, = inf{p : P(exists a sheet crossing) > 0}.
We show that
THEOREM 8. p (N)< 1 forall N.
THEOREM 9. For N sufficiently large, p (N) < p,(N).

THEOREM 10. Letting A denote the event of a sheet crossing the
easy way, then there exists an &, > 0 such that if P(A,) < &, then
PA)=0.

Theorem 8 shows that the sheet phase is indeed nontrivial. The last
two results show that the strand and sheet phases are distinct (at least for
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large values of N ), and that the phase transition at p_ is discontinuous.
We now outline the proofs of Theorems 8, 9, and 10 (the proofs of
Theorems 3, 6, and 7 being very similar to those in [CCD]).

Summary of the proof of Theorem 8. The idea (a modification of
an argument in [CCD]) is to show that there exists an ¢ > 0 so that,
if p > 1 — ¢, then there is positive probability of a sheet crossing of
@2’ ,,, forall N >2. We now restrict our attention to N > 3; the
case N = 2 follows by comparison with N = 4. The approach is to
consider events where after the subdivision of a cube, at least N -1
cubes are retained (at most one cube is lost). Loss of at most a single
subcube within each cube at every iteration implies that a sheet crossing
occurs.

Let 4, =2, IRE and let 4, denote the retained set after m iter-
ations. We consider the event in which at most one cube of dimension
1/N is lost after the first iteration:

G (4,) = {at least N 3 _ 1 of the subcubes are retained}.
In an inductive fashion, let

G,(4,) = {at least N’ = 1 of the subcubes are G}
and

G, (A,) = {at least N’ — 1 of the subcubes are G _ih
m\ 0 m—1

Now, let 8, = P(Gm(AO))/. It is clear that if 8 = lim__ 6, >
0, then with positive probability a sheet crossing of A4, occurs, since
removal of at most a single cube of dimension 1/N™ from each cube
of dimension 1 /N""'l at the mth iteration never precludes a sheet
crossing. The original intention was to establish a sheet crossing of

@2_2.1 . However, if 6 > 0 then the probability of a sheet crossing of
%, ., 1s greater than * > 0. It is enough, therefore, to establish that
for large p <1, 6 >0. )

By construction of the events above we have

N -1
m-1 "

1

3 3 3 3
8,=p" (6, +N6'1-6 _)+Np" '1-p)8

The proof is completed by showing that for large values of p this equa-
tion has a positive fixed point. This is a simple computational exercise.

Summary of the proof of Theorem 9. We begin with a remark on
the notion of duality in percolation. First, in two-dimensional integer
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lattice site percolation, duality is essentially the following: either a left-
right crossing of a rectangle occurs by occupied sites, or else there is a
top-bottom crossing (with a modified notion of connectedness) of the
rectangle by vacant sites (see [D] for details). In the three-dimensional
system we need the following two dual statements (see [CCGS]).

(a) Either a left-right crossing of a box occurs in 4__, or else there
is a top-bottom sheet crossing of the box in A; (defined with
an appropriate notion of connectedness) which separates the left
face from the right face of the box.

(b) Either a top-bottom crossing of the box occurs in A; (again,
with appropriately defined connectedness) or else a sheet cross-
ing occurs in 4_ which separates the top face from the bottom
face of the box.

We prove Theorem 9 by showing that for large values of N there
are values of p so that Pp(Qx) > 0 (there is positive probability of
percolation in the retained set), at the same time that a dual crossing
{which precludes sheet percolation) occurs almost surely. With this goal
in mind, after n Mandelbrot iterations we will focus our attention on
a single layer of cubes L,—those cubes of dimension 1/N" adjacent
to the plane y = 0. Note that, after n iterations, the probability of
a dual crossing entirely within this layer is greater than the probability
that the dual of integer lattice site percolation with parameter p crosses
a box of size N” x 2N” the hard way, since conditioning on complete
retention reduces the probability of a dual crossing.

The next observation to make is that there is an effective enhancement
of this dual crossing event due to the layer of cubes adjacent to L, .
Specifically, if five cubes in the next layer arranged as in Figure 1 are
removed (this occurs with probability (1 — p)s), then the site in L,
adjacent to the central cube in this arrangement is effectively removed,
in the sense that retention of this cube does not prevent a dual crossing.
This enhancement and the convergence of p.(N) to pg, are the key
ingredients to our proof. The idea is to pick N large enough so that
p.(N) is close enough to pg, so that the enhancement of the dual
crossings pushes the dual crossing probability to one.

To make this precise, we consider the sublattice V' = 3Z, in which
sites are separated by a minimum distance of three units. Sites in V
will be those sites which have lowered occupation probability (enhanced
dual occupation), and these enhancing events are independent.
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Top view Side view

Figure 1. Enhancement of dual crossing

In Chapter 10 of [K], conditions are given under which site percola-
tion is forced into the subcritical regime by lowering the occupation
probabilities on a periodic sublattice of a periodic two-dimensional
graph. The result that we are going to use is Theorem 10.2 of [K],
which, in this particular scenario, can be stated as

LEMMA 9.1. Let Pp,m denote the measure on occupation configu-
rations in two-dimensional site percolation. Let Pp, denote a similar
measure with site occupation probabilities equal to p,, except on the
sublattice V', where they are strictly less than p,, . Then,

E {|Gl} << and P, {|Cy| =} =0,
where |C,| denotes the number of sites connected to the origin.

Lemma 9.1 follows from Theorem 10.2 of [K] upon verification of
Condition D in Chapter 10 of [K], which is satisfied in this case. We
will use one additional result which appears as Corollary 5.1 of [K].

LEmMMA 9.2. {p:0<p and E {|Cyl} < o} is open.

Theorem 9 now follows easily from the preceding lemmas. Lemmas
9.1 and 9.2 imply that there isa J > 0, so thatif |[p—p .| <J, then
the “enhanced” site percolation problem is subcritical. This implies
that with probability one, after a large number of iterations there will
exist a top-bottom dual crossing of the box [0, 1]x {0} x [0, 2] (really
[0, N"] x {0} x [0, 2N"] after n iterations). Now, by Theorem 4,
N can be selected large enough so that |p (N) —p | < d/2, which
implies that there are values of p so that there is positive probability
of crossing in 4__, but with probability one that a dual crossing exists
in A__, preventing a sheet crossing.
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FIGURE 2. Renormalization of dual crossing events

Summary of the proof of Theorem 10. Denote the event of a dual
crossing of the box &, , , between the k x [ faces by #, , , . The
result is a consequence of two lemmas. The first lemma, loosely speak-
ing, states that if the probability of a dual crossing of &, , , is highly
likely, then so is the probability of a dual crossing of ﬂl 1.y - This
result is used with the second lemma to show that if the probablllty of
a dual crossing of &, 2.2 is close enough to one, then it is in fact one.

LemMA 10.1. If P(%] , ;) 2 1 —¢, then P(% | ) 2 1 - fy,(¢)
where f,, is a function such that fM, —=0ase—0.

LEMMA 10.2. There exists an integer M and an ¢, so that if

P(% L) 21 -¢gg, then limn_xP(?l'lizw) =1.

REMARK ON LEMMA 10.1. The second lemma is used to show that
once a dual crossing of a long box (%] 0. 4) is highly likely, then the
dual crossing of a longer box is, in fact, more likely. The first lemma is
what tells us that % |, islikelyif % | , occurs with high probability.

The proof is an application of Harris’ inequality.

REMARK ON LEMMA 10.2. The idea is to place 4N —1 of the boxes
&, | ,u colinearly with each box overlapping its neighbors on an in-
terval of length M (see Figure 2, which shows two &, | ¢ boxes with

M = 3 overlap). Then with probability exceeding (1 — ao)w'l all of
these boxes have dual crossings the long way due to the fact that these
events are increasing. Consider any two of the overlapping translates
of %, | ;) - The overlapping region contains M cubes of unit size,
and the probablllty that at least one of these cubes is removed is at least
(1- ) . Removal of one of these boxes connects the two original dual
crossings. Consequently,

P(Z | ) 2 (18"

M 4N-2
(I-p7)"
Now consider Nz‘@l.l.‘tMN boxes arranged to form a By y suyn-

Clearly a crossing within any one of these N 2 component boxes im-
plies a crossing of the larger box, and these events are independent.
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Therefore, after rescaling the resulting box &y . ,,,x, We see that

(4N—1) M (AN=2), N*?
p) }

P(%yl,‘;M)Zl_{l_(l_a) (1_

=1-¢
where
¢ <{(4N = De+ (4N —2)p™"}"
<4 (e + ™"

We now iterate this procedure, with component boxes %, | , »»and
at the nth iteration with boxes &, | ,»,,. The overlap of the compo-

nent boxes is 2"”'. Note that this increases in 7 , and, therefore, the
probability that no overlap box is removed decreases exponentially to
zero. In an identical fashion, we find

P(%,l.z"*'M) 2l-e€,,

where ] -
W N- M2VTUN
€ S@N) {e,+(07 ) } .

n+
Consequently, if ¢, is sufficiently small, and M is sufficiently large,

lim,_,_ &, =0, completing the proof.
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Intersection Probabilities for Random Walks

GREGORY F. LAWLER

1. Introduction

Let A be a finite connected subset of Z¢ (d > 2) containing 0 and
let S, be a simple random walk taking values in Z . There are two
closely related measures of the behavior of the set 4 at the point O:

¢ the harmonic measure of 0, i.e., the probability that a random
walker “starting at x ” conditioned to hit 4 first hits 4 at the
point 0;

o the probability that S, ¢ 4 for r =1, ..., n* where S, =0

and n = [rad(4)] = sup{lx|: x € A}.
A number of problems have arisen which are equivalent to consider-
ing one of the above quantities for some set 4. In some cases the set
A is random and changing with time. We list three such problems here.

Diffusion limited aggregation. In this model for dendritic growth first
introduced by Witten and Sander [16], we have a Markov chain whose
state space is the set of finite connected subsets of Z d containing 0.
We start with 4, = {0} and the transition probability is

iy P p 0 X ¢ 04,
{n+l_ nU{X}| "}_ H&A (x) XEBAn.

Here 04, = {x € Zd\An tlx—y|=1 forsome y € 4,} and H,, (x)
denotes the harmonic measure. Many simulations of diffusion limited
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aggregation (DLA) clusters have been made. For 4 = 2 it is conjectured
that the “fractal dimension” of the cluster is about 1.7; in particular,
the clusters are rather sparse and do not eventually fill up Z 2 Kesten
[7], [8] proved that almost surely for n sufficiently large,

23
cn d=2
<
. rad(4,) < { en?® d >3

Random walk intersections. Let 4 be the random set S'[0, n], where
S! is a random walk starting at O independent of S.. The problem is
to determine the probability that the paths of the two random walks
intersect. If we let f(n) = P{Sl[O, n]n S(0, n] # <}, then [10], [4],
(2], [3]

c>0 d>>5
fini={ (logn)™* d=4
n=t d=2,3.

{Here = means that the logarithms of both sides are asymptotic.) For
d = 2, 3, the best rigorous estimates of the exponents are:

(2)
(3)

Duplantier and Kwon [5] have conjectured from a conformal invariance
argument that ¢, = 5/8; they also have Monte Carlo simulations which
are consistent with this conjecture. Monte Carlo simulations by Burdzy,
Polaski, and the author [4] suggest {, ~ 0.62 (a little lower than the
conjecture—however, the rate of convergence seems to be slow so we
cannot reject the conjecture of Duplantier and Kwon) and {; =~ 0.29.

There are a number of reasons to be interested in finding ¢, and
;- This is one of the easiest stated “critical exponents” which has
many of the characteristics of exponents from mathematical physics:
(a) it is dimension dependent; (b) it takes on nontrivial values below
the critical dimension 4 = 4; and (c) it is possible that it takes on
a rational value for d = 2 but an irrational value for d = 3. This
problem could be a good test for some nonrigorous techniques used in
mathematical physics, e.g., renormalization and conformal invariance.
This exponent is also the simple random walk analogue to an exponent
for self-avoiding walks, see [11].
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Loop-erased or Laplacian self-avoiding random walk. This is a model
for self-avoiding walk (SAW) first introduced by the author [9] and
later independently by Lyklema and Evertsz [6]. There are two equiva-
lent definitions—we give here the one similar to DLA. We consider the
Markov chain whose state space is the set of SAWs w = [w,, ..., ®,]

starting at the origin in Z 4 Let

w° =10],
and let the transition probability be given as follows for d > 3 (the
transition is slightly different for d =2). If x - w,| =1,

P{o™"! =[w,...,0,,x]| 0" =w}
Es(x, {wgy, ..., w,})

) Liy-w, =1 B0, {0y, .y @, 1)

where
Es(x,4)=P(S ¢ 4, t=0,1,2,...}.

The interesting exponent a = a, for this model ifor d = 2, 3) is
defined by

(|w"]2) ~n™,
It has been proved that « is at least as large as the Flory exponents for
the usual self-avoiding walk model, i.e., o, > 727 , but the exponent is
expected to be larger than this value,

In this paper I will review some of the rigorous work which has been
done recently in the area of intersections of random walks. Sections 2
and 3 contain some basic ideas that are useful in this subject. We first
rigorously state the relationship between harmonic measure and escape
probabilities in Section 2. A useful technical tool is the discrete Har-
nack’s inequality. In Section 3 we discuss the case where 4, isa random
set with a translation invariant measure. In the case of random walk
intersections, it is easier to consider intersections of a one-sided walk
and a two-sided walk than two one-sided walks because the measure on
two-sided walks is translation invariant. The last section summarizes
recent results of Burdzy and myself in establishing the inequalities (2)
and (3); in particular, the exponent {, is related to the rate of exponen-
tial decay in a large deviations problem. I will not discuss either DLA
or the Laplacian SAW here. Readers interested in those results should
see [7], [8], and [12] respectively.
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2. Escape probabilities and harmonic measure. Let A be a finite, con-
nected subset of Z° (d > 2), and rad(4) = sup{|x|: x € 4}. If S,
denotes a simple random walk in z° , we define the hitting time of A4
by

=inf{t>1:S5, € 4}.
For (x,y) e Z% x 4 we let
H,(x,y)=P{r,<x,S =y},
H,(x,y)=H (x, )P {1, <}

If d=2, P{r, <>c}-landey) H,(x,y).
The (dlscrete) harmonic measure of a set A is defined by

H,(y)= lim H,(x, ).

The limit is well known to exist [15]. There is a relationship between the
harmonic measure of a point y € 4 and the probability that a random
walk starting at v avoids A. There are at least four natural ways to
measure the harmonic measure of escape probability of a point y € 4.
if rad(.4) = n. Before listing them we need two more definitions. Let
4, be the hitting time of the sphere of radius n, ie., 4, = inf{z :
IS,/ > n}. Foreach 0 <r < 1,let T be a geometric random variable
independent of S. with rate r,ie., P{T, = j} = (1 -r)’r. We think
of T, as being the killing time of the random walk with killing rate r.
Then the four quantities of interest are:

() P'{r,>n’},
(a0 P'{r,> T},
(I P’ {z,>4,,},
(IV)  H(y).

What we would like to show is that all four are in some sense equivalent.
For (I) and (II) we state without proof an easy Tauberian theorem.

ProroSITION 2.1, Suppose a, is a decreasing sequence of nonnega-

tive numbers and o € (0, 1). Let R(r)=3"72,(1-r)'ra;.

(a) Suppose c;n”® <a, < czn_"‘ for some 0 < ¢ <c,<oc. Then
there exist k(c,, ¢y, a) and ky(c,, c,, a) such that

k,n"® <R <l> <k,n”C
n
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(b) Suppose k,n™® < R(L) < k,n™® for some 0 < k; < k, < 0.
Then there exist ¢ (k,, k,, @) and c,(k,, k,, a) such that

We note that the assumption o < 1 is needed for the proposition.
For example, if a; = 1 and a, =0 for n > 1, then R(1/n) = 1/n.
The proposition can be applied immediately to (I) and (II) by setting
a, = Py{rA > n}. Then R(r) = Py{rA > T,}. We also note that an
analogous proposition would hold if we assumed

en °F(n) <a, <c,n "F(n),
where F is some slowly varying function of n.
We now consider (I) and (III). Let
c=’inrif1P° {|sj| < '—;-,j=0, 1, ..., mz} > 0.
Then the Markov property gives P’ {ty> n? | T, >4,,} ¢ and hence
(4) Py{rA>n2}2ch{rA>,{2n}.

There is no general inequality in the opposite direction; in fact, it
is easy to construct connected sets 4 with rad(4) = n such that
P{t, >n% >0 and P’{r, > A,,} = 0. However, there is an in-
equality in the other direction that is useful.

PROPOSITION 2.2, For every 0 < ¢, < ¢, < o, a >0, there exists
k(c,, ¢y, a) such that if rad(4) <n, ye 4, P'{t, > n’} < c,n” %,
and for all m > n?, Pt > m’} > c,m™", then

P {t, >4} >kn™"

PROOF. We may assume n > 5. Let J be a positive integer and let

p < | be defined by

p= sup sup P{i,, > m’}
S<m<oo |x|<2m

< sup P0{14m>m2}.
S<m<ac

Then by the Markov property,

Pz, >Jn2,/12n >Jn2}§Py{rA >n'}p’ !

J-1 -
<ep TR
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Therefore,

P {t, >4} 2 P{A, <JIn’ 7, > Jn*}
=Pt > JIn'} =P {4, >Jn', 1, > Jn’}
>, (VIn) ™%~ czpj_ln_“.

Choose J so that k = ¢, (vJ)™* = ¢,p” ™' > 0, and the proposition is
proved. O

There is a nice inequality which relates (III) and (IV). We start by
stating a very useful inequality for working with hitting probabilities.

THEOREM 2.3 (Harnack’s Inequality). For every 1 <r < R < x,
there exist ¢ (r,R) < x and ¢,(r) < oo, such that if rad(4) < n,
yed,

(@) of ' B'x, )
(b) ¢;'H(x, )

y<e,H'(x,y), rn<|x|,|z| < Rn.
) SHY(x,y), rn<|x|, |z € .

<H'(z,y
<H*z,y

A proof of this inequality can be found in [14]. It is also shown in
that paper that one can prove the existence of harmonic measure as a
consequence of this result, Another corollary of the inequality is the

following,

PROPOSITION 2.4. There exist ¢, ¢, Such that if rad(4) < n, y €
A, then

¢ H() < P'{dg, < T P {Ay, > 1,117 0T < H(Y),
where z =z, =([3n],0,...,0).

The proof can be found in [4]. If d =2 and A4 is a connected set
of radius n containing 0, one can show (see e.g. [4]) that

O0<c <P{d, <1,}<c <1,

where ¢, ¢, are constants independent of n and 4. Therefore
o H(y) < PP{A, <1,} <c,H()

for appropriately chosen ¢, ¢, .

3. Translation invariant sets. In this section it will be convenient to
consider criterion (II) or in general to consider P’{r 4> T}. The
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easiest case is when 4 = {0} . If welet ¢ = sup{t < T,:S§, =0}, then

0

1 Poc =1t}

[J8 L0]¢

(3)

(=)

t=

P’(S,=0,1<T}P°(S,#0for 1 <s< T}

=P{1,>T}g(0),

where g is the standard Green’s function
g (x)= ZPO{S, =x,t<T}
=0

It is standard that as n — oo, 81/,(0) ~ en'?, d=1; 81/2(0) ~
c(logn), d =2; 8/n(0) ~ ¢, d > 2. Therefore, we get the behav-
ior of Po{r 4+ > T.}. The same idea can easily be applied to 4 =

{{x,0,....0):xeZ}C ze. Singleton sets and lines have the prop-
erty that they “look the same™ at each point. These ideas can be ex-
tended to the case where A is a stochastically translation invariant set.

Suppose [x], ={..., x_,, Xy, x|, ...} is a two-sided sequence of

points in Z¢ U {oc}. We define [T, x] and [—x] to be the sequences

[Tkx]n = Xpek ™ X
[=x], =x_

n
where oc+ 20 =oc—oc =oc +X = —Xx = . Note thatif [x], =0,
then [T, x], =0 if x, # <. Let A(n), n € Z, be a stochastic process
taking values in Z d satisfying

(a) A(0)=0.

(b) If n >0 and A(n) =oc, then A(m) = for m>n;if n <0

and A4(n) =, then A(m)=o0c for m < n.
(c) If [x], is a sequence with x, # >, then

P{A(n) =[x},,m; <n<m}
= P{A(n)=[T, x],, m -k <n<m,—-k};

(d) If [x], is any sequence,

P{A(n) =[x],, m; < n<m,}=P{A(n) = [-x],, -my<n< -m}.
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Examples of such sets are as follows.
(a) A straight line: with probability 1/2 let A(n)=(n,0,...,0)
for each n, and with probability 1/2 let A(n) =(~-n,0,...,0)
for each n.
(b) Let P be any probability measure on the set of finite subsets of

z? containing 0 which satisfies
P(A)=P(4—-x), whenever x € 4.
(Here A —x ={y~x:y € A}.) Any such P can easily be
put into the form of an A(n) as above. An example is the set
of lattice animals, i.e., the set of all finite subsets of Z 4 with
measure
Py(4)=2Z""' ",

where | -| denotes cardinality. If ¢, is the number of lattice
animals of cardinality n, and f§ = limn_*oo(cn)l/ ", then Py is
a probability measure for # < § with Z =Y ¢, g"

(¢) Suppose s! and S,2 are independent simple random walks

starting at O with killing rate r, and corresponding killing times
T,1 , Trz. Let A4 be the corresponding “two-sided” walk
S, 0<n<T),
Am)=4q §? -T'<n<o,

oo  otherwise.

Now let S, be a random walk, independent of A4, with killing rate
r and killing time 7, and let g, be the Green’s function for the walk.

For any set B c Z%, let Es(B) = P°{t, > T.}. If B c Z% U {x},
let Es(B) =Es(BNZ d) . Define the following random variables (which
depend on r):
J, = Es[{A(n) : n > m}],
J = Es[{4(n) :ne Z}],

G= i g, (A(n)), where g,(c0)=0,

n=-—oco
D = indicator function of the event
{Am)#0:n=1,2,...}.

We can then prove two identities [13}:
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ProposITION 3.1. If A is transient, i.e.,
P{3x € Z%with A(n) =x i.0.} =0,
then
E(DJ) = E(DJyJ)).
ProrosiTiON 3.2. If E(G) < ¢, then
E(JGD) = 1.

Note that (5) is a special case of Proposition 3.2, where 4(0) = 0,
A(n) = <, n # 0. We now give an example using each of these
propositions. Suppose A(n) is a line as in Example (a). Then D =1,
and J is not random. Let 4 = {(n,0,...,0):n€ Z} and 4™ =
{(n,0,...,0); n>m}. Then Proposition 3.1 gives

P, > T} = P10 > T} P (1, > T}
As mentioned before it is easy to show thatas n — x,
en”'? d=2,
Pt > T}~ 3 cllogn)™" d=3,
¢ d>3.
It is also not difficult to show [13] that

Pt >T,,} 2cP{7, > T},

where ¢ is independent of r. We therefore get

-1/4 0
cn <P {er>T

t/n
~-1/2
)

~1/4
}<en™ ', d=2,

¢\(logn)™ * < Pz, > Ty} <pllogm) ™, d =3,

The estimate for d = 2 (actually a very similar estimate) was first
derived by Kesten [8] using a different argument. In fact, he proved a
stronger result: there exists a constant ¢ > 0 such that if 4 is any finite
connected subset of Z° containing 0 with rad(.4) > n1? , then

PO{rA >T )t < en” M4,

We now consider the case where 4 is a two-sided random walk with
killing rate r = r, = 1/n, and the walk S, also has killing rate 7, .
Then

E(J) = P{(S'[0, T,1US’[0, T, )N S(0, T, 1= 2},
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i.e., the probability that a two-sided walk and a one-sided walk with
killing rate 1/n do not intersect. Proposition 3.2 gives

(6) E(JGD)=1.
It is relatively easy to show that as n — oo,
4~d
cn 2 d<4,
E(G) ~ ¢ c(logn) d =4,
¢ d >4,

Also E(D) ~ c(logn)™' for d =2,and E(D)~c>0 for d >2. Itis
tempting to use (6) to conclude that

E(J) =~ [E@1ED)T;

in fact, one can get such a result and prove

(7) en T < BN e, d=2,3
(8) cl(logn)‘l 5E(J)_<_c2(logn)_l, d=4
(It is straightforward to show that E(J) > ¢ > 0 for 4 > 4.) Note that
the logarithmic term E(D) has disappeared for d = 2. This happens

because a random walk in Z> , conditioned so that another random
walk never hits its path, does not return to 0 very often.

>

4. Intersections of random walks. We now return to the problem of
intersections of random walks starting at the origin, i.e.,
f(n)= P{S'(0, n]n S*[0, n] = @}.
From (7) and (8), or the equivalent result for walks of fixed length, if
F(n) = P{S'(0, n]u(S°[0, n]n S°[0, n)) =@},

then

<F(n)< c2n<d—4)/2, d<4,

cl(logn)_l < F(n) < cz(logn)_l , d=4,

d-4)/2
cln( 2

(9)

A simple application of the Schwarz inequality gives F(n) < f(n) <
F(n);so

(10) eh T < fiy < eI, d=2,3,
c,(logn)™" < f(n) < c,(logn)™"?, d=4.
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For d = 4, the right-hand inequality is almost sharp [10] in the sense
that

. log f(n) 1

(11) Mim, loglogn =~ 2
In fact, it is probably true that f(n) ~ c¢(log n)_l/ 2 but this has not
been proven. The proof of (11) 1s technical but makes use of the fact
that “short range” intersections and “long range” intersections of four-
dimensional paths are almost independent. We do not expect this be-
havior in less than four dimensions and hence would not expect the
1nequalities to be sharp.

For the remainder of this section we will consider only dimensions
two and three. Let S! , S.z, ... be independent simple random walks
starting at 0 and let

f(n,j) = fyn, j)=P{$'(0, n]n(S’[0, n]u---US"'[0, n]) = @}.
Then f(n) = f(n, 1) and F(n) = f(n, 2). The intersection exponents
are defined by

. : 3 l-—-———-——’ ‘
CU) =¢;4()) = lim — Ogl{)(gnn /)

b

ie, f(n,j) = n~*UY | It has been proved [2] that the exponents exist
and are equal to corresponding exponents for Brownian motion: let
x!, X,2 , ... be independent Brownian motions starting at 0 in Rd,

and let sz =inf{t>0: |X,i| =a}. Let
ple, jy=P{X'[r), o 1n (X[, Ao u X JT ) = @)

and

. . .1 o J
$U) = &40) = lim B T)

Then &(j) = 2¢(j). It will be easier to consider &(j) at this point.
From (9) we get §,(2) = 2{,(2) =2, &(2) =24,(2) = 1.
For any ¢ >0, let Q, be the conditional probability of

PX'[z}, nIn X[, 111 = @)
given X'. Then p(e, j) = E(Q)). Define a function b:R* — R by

log P{Q, > ¢°
b(a) =lim ogfL =8 ) @ 2¢}
e—0 loge
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ie, P{Q, > ¢"} = ¥ . It can be shown that the limit exists and that b
is a convex function of a. This is closely related to large deviations—if
we let

L,=-logQ,,
then
'}Lngo % log P{L, < (alog2)n} = b(a)log2.

ProrosiTioN 4.1.  £(j) =inf

(aj + b(a)).

The proof of this proposition is not difficult once we know the ex-
ponents £(j) exist. To see why the RHS is a reasonable quantity, note
that if P{Q, >¢"} > e’ then p(e, j) > e¥*°.

Since b is a convex function of a, the infimum is well defined.
We expect that b is strictly convex in which case the point at which
the infimum is achieved, say a b 1s unique and different for each ;.
Properties of Brownian motion allow us to derive some properties of
b(a), see [2]. [3]

Ifd=2,

e lim,_,, ,b(a) = oc (this is essentially the Beurling projection the-

orem from harmonic functions, see [1}]);
e b(a) < x forevery a>1/2;
e lim _ _b(a)>y>0. where y is an exponent defined by

P{X‘[r: , ri] does not make a closed loop about 0} = ¢’.

If d=3,

e lim__,b(a)=c;

e b(a) < x forevery a>0;
e lim,_ __b(a)=0.

We now derive inequalities for & from the above facts. Let a, and
a, be such that {(1) = a, + b(q,), &(a,) = 2a, + b(a,). Then

¢(1) =a, +b(a))
< a, + b(a,)
<é(2)-a,.

For d =2, a,>1/2, and for d =3, a, > 0. Therefore

3.

Q) <3 &)<
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For d = 2, we also get 2 = &(2) < 2a, + b(a,). Therefore, a, >
$(2-b(a,)) and

Our best estimate of y is y > 2—‘; , which gives the best lower bounds
of ¢, and {,.
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