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Preface

To our wives, Masha and Marian

Interest to the so-called completely integrable systems with infinite num-
ber of degrees of freedom aroused immediately after publication of the fa-
mous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky
[75, 77, 96, 18, 66, 19] (see also [76]) on striking properties of the
Korteweg–de Vries (KdV) equation. It soon became clear that systems of
such a kind possess a number of characteristic properties, such as infinite
series of symmetries and/or conservation laws, inverse scattering problem
formulation, L−A pair representation, existence of prolongation structures,
etc. And though no satisfactory definition of complete integrability was yet
invented, a need of testing a particular system for these properties appeared.

Probably, one of the most efficient tests of this kind was first proposed
by Lenard [19] who constructed a recursion operator for symmetries of the
KdV equation. It was a strange operator, in a sense: being formally integro-
differential, its action on the first classical symmetry (x-translation) is well-
defined and produces the entire series of higher KdV equations. But applied
to the scaling symmetry, it gave expressions containing terms of the type∫
u dx which had no adequate interpretation in the framework of the existing

theories. And it is not surprising that P. Olver wrote “The deduction of the
form of the recursion operator (if it exists) requires a certain amount of in-
spired guesswork...” [80, p. 315]: one can hardly expect efficient algorithms
in the world of rather fuzzy definitions, if any.

In some sense, our book deals with the problem of how to construct
a well-defined concept of a recursion operator and use this definition for
particular computations. As it happened, a final solution can be explicated
in the framework of the following conceptual scheme.

We start with a smooth manifold M (a space of independent variables)
and a smooth locally trivial vector bundle π : E → M whose sections play
the role of dependent variables (unknown functions). A partial differential
equation in the bundle π is a smooth submanifold E in the space Jk(π) of k-
jets of π. Any such a submanifold is canonically endowed with a distribution,
the Cartan distribution. Being in general nonintegrable, this distribution
possesses different types of maximal integral manifolds a particular case of
which are (generalized) solutions of E . Thus we can define geometry of the

xi
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equation E as geometry related to the corresponding Cartan distribution.
Automorphisms of this geometry are classical symmetries of E .

Dealing with geometry of differential equations in the above sense, one
soon finds that a number of natural constructions arising in this context is
in fact a finite part of more general objects existing on differential conse-
quences of the initial equation. This leads to introduction of prolongations
E l of E and, in the limit, of the infinite prolongation E∞ as a submanifold
of the manifold J∞(π) of infinite jets. Using algebraic language mainly,
all finite-dimensional constructions are carried over both to J∞(π) and E∞
and, surprisingly at first glance, become there even more simple and elegant.
In particular, the Cartan distribution on E∞ becomes completely integrable
(i.e., satisfies the conditions of the Frobenius theorem). Nontrivial symme-
tries of this distribution are called higher symmetries of E .

Moreover, the Cartan distribution on E∞ is in fact the horizontal dis-
tribution of a certain flat connection C in the bundle E∞ →M (the Cartan
connection) and the connection form of C contains all vital geometrical in-
formation about the equation E . We call this form the structural element of
E and it is a form-valued derivation of the smooth function algebra on E∞.
A natural thing to ask is what are deformations of the structural element
(or, of the equation structure on E). At least two interesting things are
found when one answers this question.

The first one is that the deformation theory of equation structures is
closely related to a cohomological theory based on the Frölicher–Nijenhuis

bracket construction in the module of form-valued derivations. Namely, if
we denote by D1Λ

i(E) the module of derivations with values in i-forms, the
Frölicher–Nijenhuis bracket acts in the following way:

[[·, ·]]fn : D1Λ
i(E)×D1Λ

j(E)→ D1Λ
i+j(E).

In particular, for any element Ω ∈ D1Λ
1(E) we obtain an operator

∂Ω : D1Λ
i(E)→ D1Λ

i+1(E)
defined by the formula ∂Ω(Θ) = [[Ω,Θ]]fn for any Θ ∈ D1Λ

i(E). Since
D1Λ

∗(E) =
⊕∞

i=1D1Λ
i(E) is a graded Lie algebra with respect to the

Frölicher–Nijenhuis bracket and due to the graded Jacobi identity, one can

see that the equality ∂Ω ◦ ∂Ω = 0 is equivalent to [[Ω,Ω]]fn = 0. The last
equality holds, if Ω is a connection form of a flat connection. Thus, any
flat connection generates a cohomology theory. In particular, natural co-
homology groups are related to the Cartan connection and we call them
C-cohomology and denote by H i

C(E).
We restrict ourselves to the vertical subtheory of this cohomological the-

ory. Within this restriction, it can be proved that the group H0
C(E) coincides

with the Lie algebra of higher symmetries of the equation E while H1
C(E)

consists of the equivalence classes of infinitesimal deformations of the equa-
tion structure on E . It is also a common fact in cohomological deformation
theory [20] that the group H2

C(E) contains obstructions to continuation of
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infinitesimal deformations up to formal ones. For partial differential equa-
tions, triviality of this group is, roughly speaking, the reason for existence
of commuting series of higher symmetries.

The second interesting and even more important thing in our context
is that the contraction operation defined in D1Λ

∗(E) is inherited by the
groups H i

C(E). In particular, the group H1
C(E) is an associative algebra

with respect to this operation while contraction with elements of H0
C(E)

is a representation of this algebra. In effect, having a nontrivial element
R ∈ H1

C(E) and a symmetry s0 ∈ H0
C(E) we are able to obtain a whole

infinite series sn = Rns0 of new higher symmetries. This is just what is
expected of recursion operators!

Unfortunately (or, perhaps, luckily) a straightforward computation of
the first C-cohomology groups for known completely integrable equations
(the KdV equation, for example) leads to trivial results only, which is not
surprising at all. In fact, normally recursion operators for nonlinear inte-
grable systems contain integral (nonlocal) terms which cannot appear when
one works using the language of infinite jets and infinite prolongations only.
The setting can be extended by introduction of new entities — nonlocal
variables. Geometrically, this is being done by means of the concept of a
covering. A covering over E∞ is a fiber bundle τ : W → E∞ such that the
total space W is endowed with and integrable distribution C̃ and the dif-
ferential τ∗ isomorphically projects any plane of the distribution C̃ to the
corresponding plane of the Cartan distribution C on E∞. Coordinates along
the fibers of τ depend on coordinates in E∞ in an integro-differential way
and are called nonlocal.

Geometry of coverings is described in the same terms as geometry of
infinite prolongations, and we can introduce the notions of symmetries of
W (called nonlocal symmetries of E), the structural element, C-cohomology,
etc. For a given equation E , we can choose an appropriate covering and may
be lucky to extend the group H1

C(E). For example, for the KdV equation it
suffices to add the nonlocal variable u−1 =

∫
u dx, where u is the unknown

function, and to obtain the classical Lenard recursion operator as an ele-
ment of the extended C-cohomology group. The same effect one sees for the
Burgers equation. For other integrable systems such coverings may be (and
usually are) more complicated.

To finish this short review, let us make some comments on how recursion
operators can be efficiently computed. To this end, note that the module
D(E) of vector fields on E∞ splits into the direct sumD(E) = Dv(E)⊕CD(E),
where Dv(E) are π-vertical fields and CD(E) consists of vector fields lying in
the Cartan distribution. This splitting induces the dual one: Λ(E) = Λ1

h(E)⊕
CΛ1(E). Elements of Λ1

h(E) are called horizontal forms while elements of
CΛ1(E) are called Cartan forms (they vanish on the Cartan distribution).
By consequence, we have the splitting Λi(E) =

⊕
p+q=i CpΛ(E) ⊗ Λq(E),
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where

CpΛ(E) = CΛ1(E) ∧ · · · ∧ CΛ1(E)︸ ︷︷ ︸
p times

, Λqh(E) = Λ1
h(E) ∧ · · · ∧ Λ1

h(E)︸ ︷︷ ︸
q times

.

This splitting generates the corresponding splitting in the groups of C-
cohomologies: H i

C(E) =
⊕

p+q=iH
p,q
C (E) and nontrivial recursion operators

are elements of the group H1,0
C (E).

The graded algebra C∗Λ(E) =
⊕

p≥0 CpΛ(E) may be considered as the
algebra of functions on a super differential equation related to the initial
equation E in a functorial way. This equation is called the Cartan (odd)
covering of E . An amazing fact is that the symmetry algebra of this covering
is isomorphic to the direct sum H∗,0

C (E)⊕H∗,0
C (E). Thus, due to the general

theory, to find an element of Hp,0
C (E) we have just to take a system of forms

Ω = (ω1, . . . , ωm), where ωj ∈ CpΛ(E) and m = dimπ, and to solve the
equation `Eω = 0, where `E is the linearization of E restricted to E∞. In
particular, for p = 1 we shall obtain recursion operators, and the action
of the corresponding solutions on symmetries of E is just contraction of a
symmetry with the Cartan vector-form Ω.

? ? ?

This scheme is exposed in details below. Though some topics can be
found in other books (see, e.g., [60, 12, 80, 5, 81, 101]; the collections [39]
and [103] also may be recommended), we included them in the text to make
the book self-contained. We also decided to include a lot of applications in
the text to make it interesting not only to those ones who deal with pure
theory.

The material of the book is arranged as follows.
In Chapter 1 we deal with spaces of finite jets and partial differential

equations as their submanifold. The Cartan distribution on Jk(π) is intro-
duced and it maximal integral manifolds are described. We describe auto-
morphisms of this distribution (Lie–Bäcklund transformations) and derive
defining relations for classical symmetries. As applications, we consider clas-
sical symmetries of the Burgers equation, of the nonlinear diffusion equation
(and obtain the so-called group classification in this case), of the nonlinear
Dirac equation, and of the self-dual Yang–Mills equations. For the latter,
we get monopole and instanton solutions as invariant solutions with respect
to the symmetries obtained.

Chapter 2 is dedicated to higher symmetries and conservation laws. Ba-
sic structures on infinite prolongations are described, including the Cartan
connection and the structural element of a nonlinear equation. In the con-
text of conservation laws, we briefly expose the results of A. Vinogradov
on the C-spectral sequence [102]. We give here a complete description for
higher symmetries of the Burgers equation, the Hilbert–Cartan equation,
and the classical Boussinesq equation.
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In Chapter 3 we describe the nonlocal theory. The notion of a covering
is introduced, the relation between coverings and conservation laws is dis-
cussed. We reproduce here quite important results by N. Khor′kova [43] on
the reconstruction of nonlocal symmetries by their shadows. Several appli-
cations are considered in this chapter: nonlocal symmetries of the Burgers
and KdV equation, symmetries of the massive Thirring model and symme-
tries of the Federbush model. In the last case, we also discuss Hamiltonian
structures for this model and demonstrate the existence of infinite number
of hierarchies of symmetries. We finish this chapter with an interpretation
of Bäcklund transformations in terms of coverings and discuss a definition
of recursion operators as Bäcklund transformations belonging to M. Marvan
[73].

Chapter 4 starts the central topic of the book: algebraic calculus of form-
valued derivations. After introduction of some general concepts (linear dif-
ferential operators over commutative algebras, algebraic jets and differential
forms), we define basic constructions of Frölicher–Nijenhuis and Richardson–
Nijenhuis brackets [17, 78] and analyze their properties. We show that to
any integrable derivation X with values in one-forms, i.e., satisfying the

condition [[X,X]]fn = 0, a complex can be associated and investigate main
properties of the corresponding cohomology group. A source of examples
for integrable elements is provided by algebras with flat connections. These
algebras can be considered as a model for infinitely prolonged differential
equation. Within this model, we introduce algebraic counterparts for the
notions of a symmetry and a recursion operator and prove some results
describing the symmetry algebra structure in the case when the second co-
homology group vanishes. In particular, we show that in this case infinite
series of commuting symmetries arise provided the model possesses a non-
trivial recursion operator.

Chapter 5 can be considered as a specification of the results obtained
in Chapter 4 to the case of partial differential equations, i.e., the algebra
in question is the smooth function algebra on E∞ while the flat connection
is the Cartan connection. The cohomology groups arising in this case are
C-cohomology of E . Using spectral sequence techniques, we give a com-
plete description of the C-cohomology for the “empty” equation, that is for
the spaces J∞(π) and show that elements of the corresponding cohomol-
ogy groups can be understood as graded evolutionary derivations (or vector
fields) on J∞(π). We also establish relations between C-cohomology and
deformations of the equation structure and show that infinitesimal defor-
mations of a certain kind (elements of H1,0

C (E), see above) are identified
with recursion operators for symmetries. After deriving defining equations
for these operators, we demonstrate that in the case of several classical
systems (the Burgers equation, KdV, the nonlinear Schrödinger and Boussi-
nesq equations) the results obtained coincide with the well-known recursion
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operators. We also investigate the equation of isometric immersions of two-
dimensional Riemannian surfaces into R3 (a particular case of the Gauss–
Mainardi–Codazzi equations, which we call the Sym equation) and prove its
complete integrability, i.e., construct a recursion operator and infinite series
of symmetries.

Chapter 6 is a generalization of the preceding material to the graded
case (or, in physical terms, to the supersymmetric case). We redefine all
necessary algebraic construction for graded commutative algebras and in-
troduce the notion of a graded extension of a partial differential equation. It
is shown that all geometrical constructions valid for classical equations can
be applied, with natural modifications, to graded extensions as well. We
describe an approach to the construction of graded extensions and consider
several illustrative examples (graded extensions of the KdV and modified
KdV equations and supersymmetric extensions of the nonlinear Schrödinger
equation).

Chapter 7 continues the topics started in the preceding chapter. We
consider here two supersymmetric extensions of the KdV equations (one-
and two-dimensional), new extensions of the nonlinear Schrödinger equation,
and the supersymmetric Boussinesq equation. In all applications, recursion
operators are constructed and new infinite series of symmetries, both local
and nonlocal, are described.

Finally, in Chapter 8 we briefly describe the software used for
computations described in the book and without which no serious ap-

plication could be obtained.

? ? ?

Our collaboration started in 1991. It could not be successful without
support of several organizations among which:

• the University of Twente,
• NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek),
• FOM (Fundamenteel Onderzoek der Materie / Samenwerkingsver-

band Mathematische Fysica),
• INTAS (International Association for the promotion of co-operation

with scientists from the New Independent States of the former Soviet
Union).

We are also grateful to Kluwer Academic Publishers and especially to Pro-
fessor Michiel Hazewinkel for the opportunity to publish this book.

Joseph Krasil ′shchik and Paul Kersten,
Moscow–Enschede



CHAPTER 1

Classical symmetries

This chapter is concerned with the basic notions needed for our exposi-
tion — those of jet spaces and of nonlinear differential equations. Our main
purpose is to put the concept of a nonlinear partial differential equation
(PDE) into the framework of smooth manifolds and then to apply powerful
techniques of differential geometry and commutative algebra. We completely
abandon analytical language, maybe good enough for theorems of existence,
but not too useful in search for main underlying structures.

We describe the geometry of jet spaces and differential equations (its
geometry is determined by the Cartan distribution) and introduce classical

symmetries of PDE. Our exposition is based on the books [60, 12]. We also
discuss several examples of symmetry computations for some equations of
mathematical physics.

1. Jet spaces

We expose here main facts concerning the geometrical approach to jets
(finite and infinite) and to nonlinear differential operators.

1.1. Finite jets. Traditional approach to differential equations consists
in treating them as expressions of the form

F
(
x1, . . . , xn,

∂u

∂x1
, . . . ,

∂u

∂xn
, . . .

)
= 0, (1.1)

where x1, . . . , xn are independent variables, while u = u(x1, . . . , xn) is an
unknown function (dependent variable). Such an equation is called scalar,
but one can consider equations of the form (1.1) with F = (F 1, . . . , F r)
and u = (u1, . . . , um) being vector-functions. Then we speak of systems of
PDE. What makes expression (1.1) a differential equation is the presence of
partial derivatives ∂u/∂x1, . . . in it, and our first step is to clarify this fact
in geometrical terms.

To do it, we shall restrict ourselves to the situation when all func-
tions are smooth (i.e., of the C∞-class) and note that a vector-function
u = (u1, . . . , um) can be considered as a section of the trivial bundle
1mn : Rm × Rn = Rn+m → Rn. Denote Rm × Rn by J0(n,m) and con-
sider the graph of this section, i.e., the set Γu ⊂ J0(n,m) consisting of the
points

{
(x1, . . . , xn, u

1(x1, . . . , xn), . . . , u
m(x1, . . . , xn)

}
,

1
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which is an n-dimensional submanifold in Rn+m.
Let x = (x1, . . . , xn) be a point of Rn and θ = (x, u(x)) be the corre-

sponding point lying on Γu. Then the tangent plane to Γu passing through
the point θ is completely determined by x and by partial derivatives of u at
the point x. It is easy to see that the set of such planes forms an mn-di-

mensional space Rmn with coordinates, say, uji , i = 1, . . . , n, j = 1, . . . ,m,

where uji “corresponds” to the partial derivative of the function uj with
respect to xi at x.

Maintaining this construction at every point θ ∈ J0(n,m), we obtain

the bundle J1(n,m)
def
= Rmn × J0(n,m) → J0(n,m). Consider a point

θ1 ∈ J1(n,m). By doing this, we, in fact, fix the following data: values
of independent variables, x, values of dependent ones, uj , and values of
all their partial derivatives at x. Assume now that a smooth submanifold
E ⊂ J1(n,m) is given. This submanifold determines “relations between
points” of J1(n,m). Taking into account the above given interpretation of
these points, we see that E may be understood as a system of relations on
unknowns uj and their partial derivatives. Thus, E is a first-order differential
equation! (Or a system of such equations.)

With this example at hand, we pass now to a general construction.
Let M be an n-dimensional smooth manifold and π : E → M be a

smooth m-dimensional vector bundle1 over M . Denote by Γ(π) the C∞(M)-
module of sections of the bundle π. For any point x ∈ M we shall also
consider the module Γloc(π;x) of all local sections at x.

Remark 1.1. We say that ϕ is a local section of π at x, if it is defined on
a neighborhood U of x (the domain of ϕ). To be exact, ϕ is a section of the
pull-back ε∗π = π |U , where ε : U ↪→M is the natural embedding. If ϕ,ϕ′ ∈
Γloc(π;x) are two local sections with the domains U and U ′ respectively,
then their sum ϕ+ ϕ′ is defined over U ∩ U ′. For any function f ∈ C∞(M)
we can also define the local section fϕ over U .

For a section ϕ ∈ Γloc(π;x), ϕ(x) = θ ∈ E, consider its graph Γϕ ⊂ E
and all sections ϕ′ ∈ Γloc(π;x) such that

(a) ϕ(x) = ϕ′(x);
(b) the graph Γϕ′ is tangent to Γϕ with order k at θ.

It is easy to see that conditions (a) and (b) determine an equivalence relation
∼kx on Γloc(π;x) and we denote the equivalence class of ϕ by [ϕ]kx. The
quotient set Γloc(π;x)/∼kx becomes an R-vector space, if we put

[ϕ]kx + [ψ]kx = [ϕ+ ψ]kx, a[ϕ]kx = [aϕ]kx, ϕ, ψ ∈ Γloc(π;x), a ∈ R, (1.2)

1In fact, all constructions below can be carried out — with natural modifications
— for an arbitrary locally trivial bundle π (and even in more general settings). But we
restrict ourselves to the vector case for clearness of exposition.
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while the natural projection Γloc(π;x) → Γloc(π;x)/ ∼kx becomes a linear
map. We denote this space by Jkx (π). Obviously, J0

x(π) coincides with
Ex = π−1(x), the fiber of the bundle π over the point x ∈M .

Remark 1.2. The tangency class [ϕ]kx is completely determined by the
point x and partial derivatives up to order k at x of the section ϕ. From
here it follows that Jkx (π) is finite-dimensional. It is easy to compute the
dimension of this space: the number of different partial derivatives of order
i equals

(
n+i−1
n−1

)
and thus

dim Jkx (π) = m
k∑

i=0

(
n+ i− 1

n− 1

)
= m

(
n+ k

k

)
. (1.3)

Definition 1.1. The element [ϕ]kx ∈ Jkx (π) is called the k-jet of the
section ϕ ∈ Γloc(π;x) at the point x.

The k-jet of ϕ can be identified with the k-th order Taylor expansion of
the section ϕ. From the definition it follows that it is independent of coor-
dinate choice (in contrast to the notion of partial derivative, which depends
on local coordinates).

Let us consider now the set

Jk(π) =
⋃

x∈M

Jkx (π) (1.4)

and introduce a smooth manifold structure on Jk(π) in the following way.
Let {Uα}α be an atlas in M such that the bundle π becomes trivial over each
Uα, i.e., π−1(Uα) ' Uα × V , where V is the “typical fiber”. Choose a ba-
sis eα1 , . . . , e

α
m of local sections of π over Uα. Then any section of π |Uα

is representable in the form ϕ = u1eα1 + · · · + umeαm and the functions
x1, . . . , xn, u

1, . . . , um, where x1, . . . , xn are local coordinates in Uα, con-
stitute a local coordinate system in π−1(Uα). Let us define the functions
umσ :

⋃
x∈Uα

Jkx (π)→ R, where σ = (σ1, . . . σn), |σ| = σ1 + · · ·+ σn ≤ k, by

ujσ
(
[ϕ]kx

) def
=

∂|σ|uj

∂xσ

∣∣∣∣∣
x

, (1.5)

∂xσ
def
= (∂x1)

σ1 . . . (∂xn)
σn . Then these functions, together with local coor-

dinates x1, . . . , xn, define the mapping fα :
⋃
x∈Uα

Jkx (π)→ Uα×RN , where
N is the number defined by (1.3). Due to computation rules for partial
derivatives under coordinate transformations, the mapping

(fα ◦ f−1
β )

∣∣
Uα∩Uβ : (Uα ∩ Uβ)× RN → (Uα ∩ Uβ)× RN

is a diffeomorphism preserving the natural projection (Uα ∩ Uβ) × Rn →
(Uα ∩ Uβ). Thus we have proved the following result:

Proposition 1.1. The set Jk(π) defined by (1.4) is a smooth manifold

while the projection πk : Jk(π) → M , πk : [ϕ]kx 7→ x, is a smooth vector

bundle.
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Note that linear structure in the fibers of πk is given by (1.2).

Definition 1.2. Let π : E → M be a smooth vector bundle, dimM =
n, dimE = n+m.

(i) The manifold Jk(π) is called the manifold of k-jets for π;
(ii) The bundle πk : Jk(π)→M is called the bundle of k-jets for π;

(iii) The above constructed coordinates {xi, ujσ}, where i = 1, . . . , n, j =
1, . . . ,m, |σ| ≤ k, are called the special (or adapted) coordinate system

on Jk(π) associated to the trivialization {Uα}α of the bundle π.

Obviously, the bundle π0 coincides with π.
Note that tangency of two manifolds with order k implies tangency with

less order, i.e., there exists a mapping πk,l : J
k(π)→ J l(π), [ϕ]kx 7→ [ϕ]lx, k ≥

l. From this remark and from the definitions we obtain the commutative
diagram

Jk(π)
πk,l → J l(π)

Js(π)
←
π l,
s

π
k,s

→

M

πs
↓ ←

π l
π
k

→

where k ≥ l ≥ s and all arrows are smooth fiber bundles. In other words,
we have

πl,s ◦ πk,l = πk,s, πl ◦ πk,l = πk, k ≥ l ≥ s. (1.6)

On the other hand, for any section ϕ ∈ Γ(π) (or ∈ Γloc(π;x)) we can define
the mapping jk(ϕ) : M → Jk(π) by setting jk(ϕ) : x 7→ [ϕ]kx. Obviously,
jk(ϕ) ∈ Γ(πk) (respectively, jk(ϕ) ∈ Γloc(πk;x)).

Definition 1.3. The section jk(ϕ) is called the k-jet of the section ϕ.
The correspondence jk : Γ(π)→ Γ(πk) is called the operator of k-jet.

From the definition it follows that

πk,l ◦ jk(ϕ) = jl(ϕ), j0(ϕ) = ϕ, k ≥ l, (1.7)

for any ϕ ∈ Γ(π).
Let ϕ,ψ ∈ Γ(π) be two sections, x ∈M and ϕ(x) = ψ(x) = θ ∈ E. It is

a tautology to say that the manifolds Γϕ and Γψ are tangent to each other

with order k+ l at θ or that the manifolds Γjk(ϕ),Γjk(ψ) ⊂ Jk(π) are tangent
with order l at the point θk = jk(ϕ)(x) = jk(ψ)(x).

Definition 1.4. Let θk ∈ Jk(π). An R-plane at θk is an n-dimensional
plane tangent to some manifold of the form Γjk(ϕ) such that [ϕ]kx = θk.
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Immediately from definitions we obtain the following result.

Proposition 1.2. Let θk ∈ Jk(π) be a point in a jet space. Then the

fiber of the bundle πk+1,k : Jk+1(π) → Jk(π) over θk coincides with the set

of all R-planes at θk.

For a point θk+1 ∈ Jk+1(π), we shall denote the corresponding R-plane
at θk = πk+1,k(θk+1) by Lθk+1

⊂ Tθk(Jk(π)).

1.2. Nonlinear differential operators. Since Jk(π) is a smooth
manifold, we can consider the algebra of smooth functions on J k(π). De-
note this algebra by Fk(π). Take another vector bundle π′ : E′ → M and
consider the pull-back π∗k(π

′). Then the set of sections of π∗k(π
′) is a mod-

ule over Fk(π) and we denote this module by Fk(π, π′). In particular,
Fk(π) = Fk(π,1M ), where 1M is the trivial one-dimensional bundle over
M .

The surjections πk,l and πk generate the natural embeddings νk,l
def
=

π∗k,l : Fl(π, π′) → Fk(π, π′) and νk
def
= π∗k : Γ(π′) → Fk(π, π′). Due to (1.6),

we have the equalities

νk,l ◦ νl,s = νk,s, νk,l ◦ νl = νk, k ≥ l ≥ s. (1.8)

Identifying Fl(π, π′) with its image in Fk(π, π′) under νk,l, we can consider
Fk(π, π′) as a filtered module,

Γ(π′) ↪→ F0(π, π
′) ↪→ . . . ↪→ Fk−1(π, π

′) ↪→ Fk(π, π′), (1.9)

over the filtered algebra

C∞(M) ↪→ F0(π) ↪→ . . . ↪→ Fk−1(π) ↪→ Fk(π). (1.10)

Let F ∈ Fk(π, π′). Then we have the correspondence

∆ = ∆F : Γ(π)→ Γ(π′), ∆(ϕ)
def
= jk(ϕ)∗(F ), ϕ ∈ Γ(π). (1.11)

Definition 1.5. A correspondence ∆ of the form (1.11) is called a (non-

linear) differential operator of order2 ≤ k acting from the bundle π to
the bundle π′. In particular, when ∆(fϕ + gψ) = f∆(ϕ) + g∆(ψ) for all
ϕ,ψ ∈ Γ(π) and f, g ∈ C∞(M), the operator ∆ is said to be linear.

From (1.9) it follows that operators ∆ of order k are also operators of
all orders k′ ≥ k, while (1.8) shows that the action of ∆ does not depend on
the order assigned to this operator.

Example 1.1. Let us show that the k-jet operator jk : Γ(π) → Γ(πk)
(see Definition 1.3) is differential. To do this, recall that the total space of
the pull-back π∗k(πk) consists of points (θk, θ

′
k) ∈ Jk(π) × Jk(π) such that

2For the sake of briefness, we shall use the words operator of order k below as a
synonym of the expression operator of order ≤ k.
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πk(θk) = πk(θ
′
k). Consequently, we may define the diagonal section ρk of

the bundle π∗k(πk) by setting ρk(θk)
def
= (θk, θk). Obviously, jk = ∆ρk , i.e.,

jk(ϕ)∗(ρk) = jk(ϕ), ϕ ∈ Γ(π).

The operator jk is linear.

Example 1.2. Let τ ∗ : T ∗M → M be the cotangent bundle of M and
τ∗p :

∧p T ∗M → M be its p-th external power. Then the de Rham differ-

ential d is a first order linear differential operator acting from τ ∗p to τ∗p+1,
p ≥ 0.

Example 1.3. Consider a pseudo-Riemannian manifold M with a non-
degenerate metric g ∈ Γ(S2τ∗) (by Sqξ we denote the q-th symmetric power
of the vector bundle ξ). Let g∗ ∈ Γ(S2τ) be its dual, τ : TM → M be-
ing the tangent bundle. Then the correspondence ∆g : f 7→ g∗(df, df) is a
(nonlinear) first order differential operator from C∞(M) to C∞(M).

Let ∆: Γ(π) → Γ(π′) and ∆′ : Γ(π′) → Γ(π′′) be two differential opera-
tors. It is natural to expect that their composition ∆′ ◦ ∆: Γ(π) → Γ(π′′)
is a differential operator as well. However to prove this fact is not quite
simple. To do it, we need two new and important constructions.

Let ∆: Γ(π) → Γ(π′) be a differential operator of order k. For any
θk = [ϕ]kx ∈ Jk(π), let us set

Φ∆(θk)
def
= [∆(ϕ)]0x = (∆(ϕ))(x). (1.12)

Evidently, the mapping Φ∆ is a morphism of fiber bundles3 , i.e., the diagram

Jk(π)
Φ∆ → E′

M
←

π
′π

k

→

is commutative.

Definition 1.6. The map Φ∆ is called the representative morphism of
the operator ∆.

For example, for ∆ = jk we have Φjk = idJk(π). Note that there exists a
one-to-one correspondence between nonlinear differential operators and their
representative morphisms: one can easily see it just by inverting equality
(1.12). In fact, if Φ: Jk(π) → E′ is a morphism of the bundle π to π′,
a section ϕ ∈ F(π, π′) can be defined by setting ϕ(θk) = (θk,Φ(θk)) ∈
Jk(π)×E′. Then, obviously, Φ is the representative morphism for ∆ = ∆ϕ.

Definition 1.7. Let ∆: Γ(π)→ Γ(π′) be a k-th order differential oper-

ator. Its l-th prolongation is the composition ∆(l) def
= jl ◦∆: Γ(π)→ Γ(πl).

3But not of vector bundles!
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Lemma 1.3. For any k-th order differential operator ∆, its l-th prolon-

gation is a (k + l)-th order operator.

Proof. In fact, for any point θk+l = [ϕ]k+lx ∈ Jk+l(π) let us set Φ
(l)
∆

def
=

[∆(ϕ)]lx ∈ J l(π). Then the operator ¤, for which the morphism Φ
(l)
∆ is

representative, coincides with ∆(l).

Corollary 1.4. The composition ∆′ ◦ ∆ of two differential operators

∆: Γ(π)→ Γ(π′) and ∆′ : Γ(π′)→ Γ(π′′) of order k and k′ respectively is a

(k + k′)-th order differential operator.

Proof. Let Φ
(k′)
∆ : Jk+k

′

(π) → Jk
′

(π′) be the representative morphism

for ∆(k′). Then the operator ¤, for which the composition Φ∆′ ◦Φ
(k′)
∆ is the

representative morphism, coincides with ∆′ ◦∆.

To finish this subsection, we shall list main properties of prolongations
and representative morphisms trivially following from the definitions.

Proposition 1.5. Let ∆: Γ(π) → Γ(π′), ∆′ : Γ(π′) → Γ(π′′) be two

differential operators of orders k and k′ respectively. Then:

(i) Φ∆′◦∆ = Φ∆′ ◦ Φ
(k′)
∆ ,

(ii) Φ
(l)
∆ ◦ jk+l(ϕ) = ∆(l)(ϕ) for any ϕ ∈ Γ(π), l ≥ 0,

(iii) πl,l′ ◦ Φ
(l)
∆ = Φ

(l′)
∆ ◦ πk+l,k+l′ , i.e., the diagram

Jk+l(π)
Φ

(l)
∆ → J l(π′)

Jk+l
′

(π)

πk+l,k+l′

↓
Φ

(l′)
∆ → J l

′

(π′)

π′l,l′

↓
(1.13)

is commutative for all l ≥ l′ ≥ 0.

1.3. Infinite jets. We now pass to infinite limit in all previous con-
structions.

Definition 1.8. The space of infinite jets J∞(π) of the fiber bundle
π : E →M is the inverse limit of the sequence

· · · → Jk+1(π)
πk+1,k−−−−→ Jk(π)→ · · · → J1(π)

π1,0−−→ E
π−−→M,

i.e., J∞(π) = proj lim{πk,l,k≥l} J
k(π).

Though J∞(π) is an infinite-dimensional manifold, no topological or
analytical problems arise, if one bears in mind the genesis of this manifold
(i.e., the system of maps πk,l) when maintaining all constructions. Below
we demonstrate how this should be done, giving definitions for all necessary
concepts over J∞(π).
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A point θ of J∞(π) is a sequence of points {x, θk}k≥0, x ∈ M, θk ∈
Jk(π), such that πk(θk) = x and πk,l(θk) = θl, k ≥ l. Let us represent

any θk in the form θk = [ϕk]
k
x. Then the Taylor expansions of any two

sections, ϕk and ϕl, k ≥ l, coincide up to the l-th term. It means that the
points of J∞(π) can be understood as m-dimensional formal series. But
by the Whitney theorem on extensions of smooth functions [71], for any
such a series there exists a section ϕ ∈ Γ(π) such that its Taylor expansion
coincides with this series. Hence, any point θ ∈ J∞(π) can be represented
in the form θ = [ϕ]∞x .

A special coordinate system can be chosen in J∞(π) due to the fact
that if a trivialization {Uα}α gives special coordinates for some Jk(π), then
these coordinates can be used for all jet spaces Jk(π) simultaneously. Thus,

the functions x1, . . . , xn, . . . , u
j
σ, . . . can be taken for local coordinates in

J∞(π), where j = 1, . . . ,m and σ is an arbitrary multi-index of the form
(σ1, . . . , σn).

A tangent vector to J∞(π) at a point θ is defined as follows. Let
θ = {x, θk} and w ∈ TxM , vk ∈ TθkJ

k(π). Then the system of vectors
{w, vk}k≥0 determines a tangent vector to J∞(π) if and only if (πk)∗vk = w,
(πk,l)∗vk = vl for all k ≥ l ≥ 0.

A smooth bundle ξ over J∞(π) is a system of bundles η : Q → M ,
ξk : Pk → Jk(π) together with smooth mappings Ψk : Pk → Q, Ψk,l : Pk →
Pl, k ≥ l ≥ 0, such that

Ψl ◦Ψk,l = Ψk, Ψk,l ◦Ψl,s = Ψk,s, k ≥ l ≥ s ≥ 0,

and all the diagrams

Pk
Ψk,l → Pl

Ψl → Q

Jk(π)

ξk

↓
πk,l→ J l(π)

ξl

↓
πl →M

η

↓

are commutative. For example, if η : Q→M is a bundle, then the pull-backs
π∗k(η) : π

∗
k(Q)→ Jk(π) together with the natural projections π∗

k(η)→ π∗l (η),
π∗k(η) → Q form a bundle over J∞(π). We say that ξ is a vector bundle

over J∞(π), if η and all ξk are vector bundles and the mappings Ψk, Ψk,l

are fiber-wise linear.
A smooth mapping of J∞(π) to J∞(π′), where π : E →M , π′ : E′ →

M ′, is defined as a system F of mappings F−∞ : M → M ′, Fk : Jk(π) →
Jk−s(π′), k ≥ s, where s ∈ Z is a fixed integer called the degree of F , such
that

πk−r,k−s−1 ◦ Fk = Fk−1 ◦ πk,k−1, k ≥ s+ 1.
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For example, if ∆: Γ(π) → Γ(π′) is a differential operator of order s, then

the system of mappings F−∞ = idM , Fk = Φ
(k−s)
∆ , k ≥ s (see the previous

subsection), is a smooth mapping of J∞(π) to J∞(π′).
We say that two smooth mappings F = {Fk}, G = {Gk} : J∞(π) →

J∞(π′) of degrees s and l respectively, l ≥ s, are equivalent, if the diagrams

Jk−s(π′)
π′k−s,k−l → Jk−l(π′)

Jk(π)

G k

→←

F
k

are commutative for all admissible k ≥ 0. When working with smooth
mappings, one can always choose the representative of maximal degree in
any class of equivalent mappings. In particular, it can be easily seen that
mappings with negative degrees reduce to zero degree ones in such a way.

Remark 1.3. The construction above can be literally generalized to the
following situation. Consider the category M∞, whose objects are chains

M−∞
m←−M0

m1,0←−−−M1 ← · · · ←Mk
mk+1,k←−−−−−Mk+1 ← · · · ,

where M−∞ and all Mk, k ≥ 0, are finite-dimensional smooth manifolds
while m and mk+1,k are smooth mappings. Let us set

mk
def
= m ◦m1,0 ◦ · · · ◦mk,k−1, mk,l

def
= ml+1,l ◦ · · · ◦mk,k−1, k ≥ l.

Define a morphism of two objects, {Mk}, {Nk}, as a system F of mappings
{F−∞, Fk} such that the diagram

Mk

mk,l→Ml

Nk−s

Fk

↓ nk,l→ Nl−s

Fl

↓

is commutative for all admissible k and a fixed s (degree of F ).

Example 1.4. Let M and N be two smooth manifolds, F : N →M be
a smooth mapping, and π : E → M a be vector bundle. Consider the pull-

backs F ∗(πk)
def
= πF,k : JkF (π)→ N , where JkF (π) denotes the corresponding

total space. Thus {N, JkF (π)}k≥0 is an object of M∞.
To any section φ ∈ Γ(πk), there corresponds the section φF ∈ Γ(πF,k)

defined by φF (x)
def
= (x, φF (x)), x ∈ N (for any x ∈ N , we set φF (x)

def
=

(x, φ(F (x))). In particular, for φ = jk(ϕ), ϕ ∈ Γ(π) we obtain the section
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jk(ϕ)F . Let ξ : H → N be another vector bundle and ψ be a section of the
pull-back π∗F,k(ξ). Then the correspondence

∆ = ∆ψ : Γ(π)→ Γ(ξ), ϕ 7→ jk(ϕ)∗F (ψ),

is called a (nonlinear) differential operator of order ≤ k over the mapping

F . As before, we can define prolongations ∆(l) : Γ(πk+l) → Γ(ξl) and these

prolongations would determine smooth mappings Φ
(l)
∆ : Jk+lF (π) → J l(ξ).

The system {Φ(l)
∆ }l≥0 is a morphism of {JkF (π)} to {Jk(ξ)}.

Note that if F : N →M , G : O → N are two smooth maps and ∆, ¤ are
two nonlinear operators over F and G respectively, then their composition
is defined and is a nonlinear operator over F ◦G.

Example 1.5. The category M of smooth manifolds is embedded into
M∞, if for any smooth manifold M one sets M∞ = {Mk,mk,k−1} with
Mk = M and mk,k−1 = idM . For any smooth mapping f : M → N we also
set f∞ = {fk} with fk = f . We say that F is a smooth mapping of J∞(π)
to a smooth manifold N , if F = {Fk} is a morphism of {Jk(π), πk,k−1} to
N∞. In accordance to previous constructions, such a mapping is completely
determined by some f : Jk(π)→ N .

Taking R for the manifold N in the previous example, we obtain a defi-
nition of a smooth function on J∞(π). Thus, a smooth function on J∞(π)
is a function on Jk(π) for some finite but an arbitrary k. The set F(π) of
such functions is identified with

⋃∞
k=0Fk(π) and forms a commutative fil-

tered algebra. Using the well-known duality between smooth manifolds and
algebras of smooth functions on these manifolds, we deal in what follows
with the algebra F(π) rather than with the manifold J∞(π) itself.

From this point of view, a vector field on J∞(π) is a filtered derivation
of F(π), i.e., an R-linear map X : F(π)→ F(π) such that

X(fg) = fX(g) + gX(f), f, g ∈ F(π), X(Fk(π)) ⊂ Fk+l(π),

for all k and some l = l(X). The latter is called the filtration of the field
X. The set of all vector fields is a filtered Lie algebra over R with respect
to commutator [X,Y ] and is denoted by D(π) =

⋃
l≥0D

(l)(π).

Differential forms of degree i on J∞(π) are defined as elements of the

filtered F(π)-module Λi(π)
def
=
⋃
k≥0 Λi(πk), where Λi(πk)

def
= Λi(Jk(π)) and

the module Λi(πk) is considered to be embedded into Λi(πk+1) by π∗k+1,k.

Defined in such a way, these forms possess all basic properties4 of differential
forms on finite-dimensional manifolds. Let us mention most important ones:

(i) The module Λi(π) is the i-th external power of the module Λ1(π),

Λi(π) =
∧i Λ1(π). Respectively, the operation of wedge product

∧ : Λp(π) ⊗ Λq(π) → Λp+q(π) is defined and Λ∗(π) =
∑

i≥0 Λi(π)
becomes a commutative graded algebra.

4In fact, as we shall see in Section 1 of Chapter 2, Λi(π) is structurally much richer
than forms on a finite-dimensional manifold.
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(ii) The module D(π) is dual to Λ1(π), i.e.,

D(π) = homφ
F(π)(Λ

1(π),F(π)), (1.14)

where homφ
F(π)(·, ·) denotes the module of all filtered homomorphisms

over F(π). Moreover, equality (1.14) is established in the following
way: there is a derivation d : F(π)→ Λ1(π) such that for any vector
field X there exists a uniquely defined filtered homomorphism fX for
which the diagram

F(π)
d → Λ1(π)

F(π)
←

fX
X

→

is commutative.
(iii) The operator d is extended up to maps d : Λi(π) → Λi+1(π) in such

a way that the sequence

0→ F(π)
d−−→ Λ1(π)→ · · · → Λi(π)

d−−→ Λi+1(π)→ · · ·
becomes a complex, i.e., d ◦ d = 0. This complex is called the de

Rham complex on J∞(π) while d is called the de Rham differential.
The latter is a derivation of the superalgebra Λ∗(π).

Using the identification (1.14), we can define the inner product (or con-

traction) of a field X ∈ D(π) with a 1-form ω ∈ Λ1(π):

iXω
def
= fX(ω). (1.15)

We shall also use the notation X ω for the contraction of X to ω. This
operation extends onto Λ∗(π), if we set

iXf = 0, iX(ω ∧ θ) = iX(ω) ∧ θ + (−1)ωω ∧ iX(θ)

for all f ∈ F(π) and ω, θ ∈ Λ∗(π) (here and below we always write (−1)ω

instead of (−1)degω).
With the de Rham differential and interior product defined, we can

introduce the Lie derivative of a form ω ∈ Λ∗(π) along a field X by setting

LXω
def
= iX(dω) + d(iXω)

(the infinitesimal Stokes formula). We shall also denote the Lie derivative by
X(ω). Other constructions related to differential calculus over J∞(π) (and
over infinite-dimensional objects of a more general nature) will be described
in Chapter 4.

Linear differential operators over J∞(π) generalize the notion of
derivations and are defined as follows. Let P and Q be two filtered F(π)-

modules and ∆ ∈ homφ
R
(P,Q). Then ∆ is called a linear differential operator
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of order k acting from P to Q, if

(δf0 ◦ δf1 ◦ · · · ◦ δfk)∆ = 0

for all f0, . . . , fk ∈ F(π), where (δf∆)p
def
= f∆(p) − ∆(fp). We write k =

ord(∆).
Due to existence of filtrations in F(π), P and Q, one can define differ-

ential operators of infinite order acting from P to Q, [51]. Namely, let
P = {Pl}l, Q = {Ql}l, Pl ⊂ Pl+1, Ql ⊂ Ql+1, Pl, Ql being Fl(π)-modules.

Let ∆ ∈ homφ
R
(P,Q) and s be filtration of ∆, i.e., ∆(Pl) ⊂ Ql+s. We can

always assume that s ≥ 0. Suppose now that ∆l
def
= ∆ |Pl : Pl → Ql is a

linear differential operator of order ol over Fl(π). Then we say that ∆ is a
linear differential operator of order growth ol. In particular, if ol = αl + β,
α, β ∈ R, we say that ∆ is of constant growth α.

Distributions. Let θ ∈ J∞(π). The tangent plane to J∞(π) at the
point θ is the set of all tangent vectors to J∞(π) at this point (see above).
Denote such a plane by Tθ = Tθ(J

∞(π)). Let θ = {x, θk}, x ∈M , θk ∈ Jk(π)
and v = {w, vk}, v′ = {w′, v′k} ∈ Tθ. Then the linear combination λv+µv′ =
{λw+µw′, λvk+µv

′
k} is again an element of Tθ and thus Tθ is a vector space.

A correspondence T : θ 7→ Tθ ⊂ Tθ, where Tθ is a linear subspace, is called a
distribution on J∞(π). Denote by T D(π) ⊂ D(π) the submodule of vector
fields lying in T , i.e., a field X belongs to T D(π) if and only if Xθ ∈ Tθ for all
θ ∈ J∞(π). We say that the distribution T is integrable, if it satisfies formal
Frobenius condition: for any vector fields X,Y ∈ T D(π) their commutator
lies in T D(π) as well, or [T D(π), T D(π)] ⊂ T D(π).

This condition can expressed in a dual way as follows. Let us set

T 1Λ(π) = {ω ∈ Λ1(π) | iXω = 0, X ∈ T D(π)}
and consider the ideal T Λ∗(π) generated in Λ∗(π) by T 1Λ(π). Then the
distribution T is integrable if and only if the ideal T Λ∗(π) is differentially
closed: d(T Λ∗(π)) ⊂ T Λ∗(π).

Finally, we say that a submanifold N ⊂ J∞(π) is an integral manifold

of T , if TθN ⊂ Tθ for any point θ ∈ N . An integral manifold N is called
locally maximal at a point θ ∈ N , if there exist no other integral manifold
N ′ such that N ⊂ N ′.

2. Nonlinear PDE

In this section we introduce the notion of a nonlinear differential equa-
tion and discuss some important concepts related to this notion: solutions,
symmetries, and prolongations.

2.1. Equations and solutions. Let π : E →M be a vector bundle.

Definition 1.9. A submanifold E ⊂ Jk(π) is called a (nonlinear) dif-

ferential equation of order k in the bundle π. We say that E is a linear

equation, if E ∩ π−1
x (x) is a linear subspace in π−1

x (x) for all x ∈M .
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We say that the equation E is determined, if codim E = dimπ, that it
is overdetermined, if codim E > dimπ, and that it is underdetermined, if
codim E < dimπ.

We shall always assume that E is projected surjectively onto E under
πk,0.

Definition 1.10. A (local) section f of the bundle π is called a (local)
solution of the equation E , if its graph lies in E : jk(f)(M) ⊂ E .

Let us show that these definitions are in agreement with the traditional
ones. Choose in a neighborhood U of a point θ ∈ E a special coordinate sys-

tem x1, . . . , xn, u
1, . . . , um, . . . , ujσ, . . . , where |σ| ≤ k, j = 1, . . . ,m. Then,

in this coordinate system, E will be given by a system of equations



F 1(x1, . . . , xn, u
1, . . . , um, . . . , u1

σ, . . . , u
m
σ , . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F r(x1, . . . , xn, u
1, . . . , um, . . . , u1

σ, . . . , u
m
σ , . . . ) = 0,

(1.16)

where the functions F 1, . . . , F r are functionally independent. Now, let
f ∈ Γloc(π) be a section locally expressed in the form of relations u1 =
f1(x1, . . . , xn), . . . , u

m = fm(x1, . . . , xn). Then its k-jet is given by the
equalities

ujσ =
∂|σ|f j

∂xσ
,

where j = 1, . . . ,m, 0 ≤ |σ ≤ k, and jk(f)(Ū), Ū = πk(U) ⊂ M , lies in E if
and only if the equations





F 1(x1, . . . , xn, f
1, . . . , fm, . . . ,

∂|σ|f1

∂xσ
, . . . ,

∂|σ|fm

∂xσ
, . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F r(x1, . . . , xn, f
1, . . . , fm, . . . ,

∂|σ|f1

∂xσ
, . . . ,

∂|σ|fm

∂xσ
, . . . ) = 0.

are satisfied. Thus we are in a complete correspondence with the analytical
definition of a differential equation.

Remark 1.4. There exists another way to represent differential equa-
tions. Namely, let π′ : Rr × U → U be the trivial r-dimensional bundle.
Then the set of functions F 1, . . . , F r can be understood as a section ϕ of
the pull-back (πk |U )∗ (π′), or as a nonlinear operator ∆ = ∆ϕ defined in U ,
while the equation E is characterized by the condition

E ∩ U = {θk ∈ U | ϕ(θk) = 0}. (1.17)

More general, any equation E ⊂ Jk(π) can be represented in the form similar
to (1.17). Namely, for any equation E there exists a fiber bundle π′ : E′ →M
and a section ϕ ∈ Fk(π, π) such that E coincides with the set of zeroes for
ϕ : E = {ϕ = 0}. In this case we say that E is associated to the operator

∆ = ∆ϕ : Γ(π)→ Γ(π′) and use the notation E = E∆.
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Example 1.6. Consider the bundles π = τ ∗p :
∧p T ∗M → M , π′ =

τ∗p+1 :
∧p+1 T ∗M → M and let d : Γ(π) = Λp(M) → Γ(π′) = Λp+1(M)

be the de Rham differential (see Example 1.2). Thus we obtain a first-order
equation Ed in the bundle τ ∗p . Consider the case p = 1, n ≥ 2 and choose

local coordinates x1, . . . , xn in M . Then any form ω ∈ Λ1(M) is represented
as ω = u1dx1 + · · ·+ undxn and we have

Ed = {uj1i = ui1j | i < j},

where 1i denotes the multi-index (0, . . . , 1, . . . , 0) with zeroes at all positions
except for the i-th one. This equation is underdetermined when n = 2,
determined for n = 3 and overdetermined for n > 3.

Example 1.7 (see [69]). Consider an arbitrary vector bundle π : E →
M and a differential form ω ∈ Λp(Jk(π)), p ≤ dimM . The condition
jk(ϕ)∗(ω) = 0, ϕ ∈ Γ(π), determines a (k + 1)-st order equation Eω in
the bundle π. Consider the case p = dimM = 2, k = 1 and choose a special
coordinate system x, y, u, ux, uy in Jk(π). Let ϕ = ϕ(x, y) be a local section
and

ω = Adux ∧ duy + (B1 dux +B2 duy) ∧ du
+ dux ∧ (B11 dx+B12 dy) + duy ∧ (B21 dx+B22 dy)

+ du ∧ (C1 dx+ C2 dy) +Ddx ∧ dy,
where A, Bi, Bij , Ci, D are functions of x, y, u, ux, uy. Then we have

j1(ϕ)∗ω = Aϕ(ϕxx dx+ ϕxy dy) ∧ (ϕyx dx+ ϕyy dy)

+
(
Bϕ

1 (ϕxx dx+ ϕxy dy) +Bϕ
2 (ϕyx dx+ ϕyy dy)

)
∧ (ϕx dx+ ϕy dy)

+(ϕxx dx+ϕxy dy)∧(Bϕ
11 dx+Bϕ

12 dy)+(ϕyx dx+ϕyy dy)∧(Bϕ
21 dx+Bϕ

22 dy)

+ (ϕx dx+ ϕy dy) ∧ (Cϕ1 dx+ Cϕ2 dy) +Dϕ dx ∧ dy,

where Fϕ
def
= j1(ϕ)∗F for any F ∈ F1(π). Simplifying the last expression,

we obtain

j1(ϕ)∗ω =
(
Aϕ(ϕxxϕyy − ϕ2

xy) + (ϕyB
ϕ
1 +Bϕ

12)ϕxx − (ϕxB
ϕ
2 +Bϕ

12)ϕyy

+ (ϕyB
ϕ
2 − ϕxBϕ

1 +Bϕ
22 −Bϕ

11)ϕxy + ϕxC
ϕ
2 − ϕyCϕ1 +Dϕ)

)
dx ∧ dy.

Hence, the equation Eω is of the form

a(uxxuyy − u2
xy) + b11uxx + b12uxy + b22uyy + c = 0, (1.18)

where a = A, b11 = uyB1 + B12, b12 = uyB2 − uxB1 + B22 − B11, b22 =
uxB2 +B12, c = uxC2 − uyC1 +D are functions on J1(π). Equation (1.18)
is the so-called two-dimensional Monge–Ampere equation and obviously any
such an equation can be represented as Eω for some ω ∈ Λ1(J1(π)).
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Note that we have constructed a correspondence between p-forms on
Jk(π) and (p + 1)-order operators. This correspondence will be described
differently in Subsection 1.4 of Chapter 2

Example 1.8. Consider again a fiber bundle π : E → M and a section
∇ : E → J1(π) of the bundle π1,0 : J1(π) → E. Then the graph E∇ =
∇(E) ⊂ J1(π) is a first-order equation in the bundle π. Let θ1 ∈ E∇. Then,
due to Proposition 1.2 on page 5, θ1 is identified with the pair (θ0, Lθ1), where
θ0 = π1,0(θ1) ∈ E, while Lθ1 is the R-plane at θ0 corresponding to θ1. Hence,
the section ∇ (or the equation E∇) may be understood as a distribution
of horizontal5 n-dimensional planes on E : T∇ : E 3 θ 7→ θ1 = L∇(θ). A
solution of the equation E∇, by definition, is a section ϕ ∈ Γ(π) such that
j1(ϕ)(M) ⊂ ∇(E). It means that at any point θ = ϕ(x) ∈ ϕ(M) the plane
T∇(θ) is tangent to the graph of the section ϕ. Thus, solutions of E∇ coincide
with integral manifolds of T∇.

In local coordinates (x1, . . . , xn, u
1, . . . , um, . . . , uji , . . . ), where uji

def
= uj1i ,

i = 1, . . . , n, j = 1, . . . ,m, the equation E∇ is represented as

uji = ∇ji (x1, . . . , xn, u
1, . . . , um), i = 1, . . . , n, j = 1, . . . ,m, (1.19)

∇ji being smooth functions.

Example 1.9. As we saw in the previous example, to solve the equation
E∇ is the same as to find integral n-dimensional manifolds of the distribution
T∇. Hence, the former to be solvable, the latter is to satisfy the Frobenius
theorem conditions. Thus, for solvable E∇, we obtain conditions on the
section ∇ ∈ Γ(π1,0). Let us write down these conditions in local coordinates.

Using representation (1.19), note that T∇ is given by the 1-forms

ωj = duj −
∑

i=1n

∇ji dxi, j = 1, . . . ,m.

Hence, the integrability conditions may be expressed as

dωj =
m∑

i=1

ρji ∧ ωi, j = 1, . . . ,m,

for some 1-forms ρii. After elementary computations, we obtain that the

functions ∇ji must satisfy the following relations:

∂∇jα
∂xβ

+
m∑

γ=1

∇γα
∂∇jβ
∂uγ

=
∂∇jβ
∂xα

+
m∑

γ=1

∇γβ
∂∇jα
∂uγ

(1.20)

for all j = 1, . . . ,m, 1 ≤ α < β ≤ m. Thus we got a naturally constructed
first-order equation I(π) ⊂ J1(π1,0) whose solutions are horizontal n-dimen-
sional distributions in E = J1(π).

5An n-dimensional plane L ⊂ Tθk
(Jk(π)) is called horizontal, if it projects nondegen-

erately onto TxM under (πk)∗, x = πk(θk).
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Remark 1.5. Let us consider the previous two examples from a bit dif-
ferent point of view. Namely, the horizontal distribution T∇ (or the section
∇ : J0(π)→ J1(π), which is the same, as we saw above) may be understood
as a connection in the bundle π. By the latter we understand the following.

Let X be a vector field on the manifold M . Then, for any point x ∈M ,
the vector Xx ∈ TxM can be uniquely lifted up to a vector ∇Xx ∈ TθE,
π(θ) = x, such that Xx ∈ T∇(θ). In such a way, we get the correspon-
dence D(M) → D(E) which we shall denote by the same symbol ∇. This
correspondence possesses the following properties:

(i) it is C∞(M)-linear, i.e., ∇(fX + gY ) = f∇(X) + g∇(Y ), X,Y ∈
D(M), f, g ∈ C∞(M);

(ii) for any X ∈ D(M), the field ∇(X) is projected onto M in a well-
defined way and π∗∇(X) = X.

Equation (1.20) is equivalent to flatness of the connection ∇, which means
that

∇([X,Y ])− [∇(X),∇(Y )] = 0, X, Y ∈M, (1.21)

i.e., that ∇ is a homomorphism of the Lie algebra D(M) of vector fields on
M to the Lie algebra D(E).

In Chapter 4 we shall deal with the concept of connection in a more
extensive and general manner. In particular, it will allow us to construct
equations (1.20) invariantly, without use of local coordinates.

Example 1.10. Let π : Rm×Rn+1 → Rn+1 be the trivial m-dimensional
bundle. Then the system of equations

uj1n+1
= f j(x1, . . . , xn+1, . . . , u

α
σ1,...,σn,0, . . . ), (1.22)

where j, α = 1, . . . ,m, is called evolutionary . In more conventional notations
this system is written down as

∂uj

∂t
= f j(x1, . . . , xn, t, . . . ,

∂σ1+···+σnuα

∂xσ1
1 . . . ∂xσnn

, . . . ),

where the independent variable t corresponds to xn+1.

2.2. The Cartan distributions. Now we know what a differential
equation is, but cannot speak about geometry of these equation. The rea-
son is that the notion of geometry implies the study of smooth manifolds
(spaces) enriched with some additional structures. In particular, transfor-
mation groups preserving these structures are of great interest as it was
stated in the Erlangen Program by Felix Klein [45].

Our nearest aim is to use this approach to PDE and the main question
to be answered is

What are the structures making differential equations of smooth man-

ifolds?
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At first glance, the answer is clear: solutions are those entities for the sake of
which differential equations are studied. But this viewpoint can hardly con-
sidered to be constructive: to implement it, one needs to know the solutions
of the equation at hand and this task, in general, is transcendental.

This means that we need to find a construction which, on one hand,
contains all essential information about solutions and, on the other hand,
can be efficiently studied by the tools of differential geometry.

Definition 1.11. Let π : E →M be a vector bundle. Consider a point
θk ∈ Jk(π) and the span Ckθk ⊂ Tθk(J

k(π)) of all R-planes (see Definition

1.4) at the point θk.

(i) The correspondence Ck = Ck(π) : θk 7→ Ckθk is called the Cartan dis-

tribution on Jk(π).
(ii) Let E ⊂ Jk(π) be a differential equation of order k. The correspon-

dence Ck(E) : E 3 θk 7→ Ckθk ∩ TθkE ⊂ TθkE is called the Cartan dis-

tribution on E . We call elements of the Cartan distributions Cartan

planes.
(iii) A point θk ∈ E is called regular, if the Cartan plane Ckθk(E) is of

maximal dimension. We say that E is a regular equation, if all its
points are regular.

In what follows, we deal with regular equations or in neighborhoods of
regular points6.

We are now going to give an explicit description of Cartan distribu-
tions on Jk(π) and to describe their integral manifolds. Let θk ∈ Jk(π) be
represented in the form

θk = [ϕ]kx, ϕ ∈ Γ(π), x = πk(θk). (1.23)

Then, by definition, the Cartan plain Ckθk is spanned by the vectors

jk(ϕ)∗,x(v), v ∈ TxM, (1.24)

for all ϕ ∈ Γloc(π) satisfying (1.23).

Let x1, . . . , xn, . . . , u
j
σ, . . . , j = 1, . . . ,m, |σ| ≤ k, be a special coordinate

system in a neighborhood of θk. Introduce the notation ∂xi
def
= ∂/∂xi,

∂uσ
def
= ∂/∂uσ. Then the vectors of the form (1.24) can be expressed as

linear combinations of the vectors

∂xi +
∑

|σ|≤k

m∑

j=1

∂|σ|+1ϕj

∂xσ∂xi
∂ujσ, (1.25)

where i = 1, . . . , n. Using this representation, we prove the following result:

Proposition 1.6. For any point θk ∈ Jk(π), k ≥ 1, the Cartan plane

Ckθk is of the form Ckθk = (πk,k−1)
−1
∗ (Lθk), where Lθk is the R-plane at the

6It is clear that for any regular point there exists a neighborhood of this point all
points of which are regular.
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point πk,k−1(θk) ∈ Jk−1(π) determined by the point θk (see p. 5 for the

definition of Lθk).

Proof. Denote the vector (1.25) by vk,ϕi . It is obvious that for any two

sections ϕ, ϕ′ satisfying (1.23) the difference vk,ϕi − vk,ϕ′

i is a πk,k−1-vertical
vector and any such a vector can be obtained in this way. On the other

hand, the vectors vk−1,ϕ
i do not depend on ϕ satisfying (1.23) and form a

basis in the space Lθk .

Remark 1.6. From the result proved it follows that the Cartan distri-
bution on Jk(π) can be locally considered as generated by the vector fields

D
[k]
i = ∂xi +

∑

|σ|≤k−1

m∑

j=1

ujσ+1i
∂ujσ, V s

τ = ∂usτ , |τ | = k, s = 1, . . . ,m.

(1.26)

From here, by direct computations, it follows that [V s
τ , D

[k]
i ] = V s

τ−1i
, where

V s
(τ1,...,τn)−1i

=

{
V(τ1,...,τi−1,...,τn), if τi > 0,

0, otherwise.

But, as it follows from Proposition 1.6, vector fields V j
σ for |σ| ≤ k do not

lie in Ck.
Let us consider the following 1-forms in special coordinates on J k+1(π):

ωjσ
def
= dujσ −

n∑

i=1

ujσ+1i
dxi, (1.27)

where j = 1, . . . ,m, |σ| < k. From the representation (1.26) we immediately
obtain the following important property of the forms introduced:

Proposition 1.7. The system of forms (1.27) annihilates the Cartan

distribution on Jk(π), i.e., a vector field X lies in Ck if and only if iXω
j
σ = 0

for all j = 1, . . . ,m, |σ| < k.

Definition 1.12. The forms (1.27) are called the Cartan forms on

Jk(π) associated to the special coordinate system xi, u
j
σ.

Note that the Fk(π)-submodule generated in Λ1(Jk(π)) by the forms
(1.27) is independent of the choice of coordinates.

Definition 1.13. The Fk(π)-submodule generated in Λ1(Jk(π)) by the
Cartan forms is called the Cartan submodule. We denote this submodule by
CΛ1(Jk(π)).

Our last step is to describe maximal integral manifolds of the Cartan
distribution on Jk(π). To do this, we start with the “infinitesimal estimate”.

Let N ⊂ Jk(π) be an integral manifold of the Cartan distribution. Then
from Proposition 1.7 it follows that the restriction of any Cartan form ω onto
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N vanishes. Similarly, the differential dω vanishes on N . Therefore, if vector
fields X,Y are tangent to N , then dω |N (X,Y ) = 0.

Definition 1.14. Let Ckθk be the Cartan plane at θ ∈ Jk(π).

(i) We say that two vectors v, w ∈ Ckθk are in involution, if the equality

dω |θk (v, w) = 0 holds for any ω ∈ CΛ1(Jk(π)).

(ii) A subspace W ⊂ Ckθk is said to be involutive, if any two vectors
v, w ∈W are in involution.

(iii) An involutive subspace is called maximal , if it cannot be embedded
into other involutive subspace.

Consider a point θk = [ϕ]kx ∈ Jk(π). Then from Proposition 1.7 it follows
that the direct sum decomposition

Ckθk = T vθk ⊕ T
ϕ
θk

is valid, where T vθk denotes the tangent plane to the fiber of the projection

πk,k−1 passing through the point θk, while Tϕθk is the tangent plane to the

graph of jk(ϕ). Hence, the involutiveness is sufficient to be checked for the
following pairs of vectors v, w ∈ Ckθk :

(i) v, w ∈ T vθk ;
(ii) v, w ∈ Tϕθk ;
(iii) v ∈ T vθk , w ∈ T

ϕ
θk

.

Note now that the tangent space T vθk is identified with the tensor product

Sk(T ∗
x )⊗Ex, x = πk(θk) ∈M , where T ∗

x is the fiber of the cotangent bundle
to M at the point x, Ex is the fiber of the bundle π at the same point while
Sk denotes the k-th symmetric power. Then any tangent vector w ∈ TxM
determines the mapping δw : Sk(T ∗

x )⊗ Ex → Sk−1(T ∗
x )⊗ Ex by

δw(ρ1 ¯ · · · ¯ ρk)⊗ e =

k∑

i=1

ρ1 ¯ · · · ¯ 〈ρi, w〉 ¯ · · · ¯ ρk ⊗ e,

where ¯ denotes multiplication in Sk(T ∗
x ), ρi ∈ T ∗

x , e ∈ Ex, while 〈·, ·〉 is the
natural pairing between T ∗

x and Tx.

Proposition 1.8. Let v, w ∈ Ckθk . Then:

(i) All pairs v, w ∈ T vθk are in involution.

(ii) All pairs v, w ∈ Tϕθk are in involution too.

(iii) If v ∈ T vθk and w ∈ Tϕθk , then they are in involution if and only if

δπk,∗(w)v = 0.

Proof. Note first that the involutiveness conditions are sufficient to be
checked for the Cartan forms (1.27) only. All three results follow from the
representation (1.26) by straightforward computations.
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Consider a point θk ∈ Jk(π). Let Fθk be the fiber of the bundle πk,k−1

passing through the point θk and H ⊂ TxM be a subspace. Define the
space7

Ann(H) = {v ∈ Fθk | δwv = 0, ∀w ∈ H}.
Then, as it follows from Proposition 1.8, the following description of maximal
involutive subspaces takes place:

Corollary 1.9. Let θk = [ϕ]kx, ϕ ∈ Γloc(π). Then any maximal invo-

lutive subspace V ⊂ Ckθk(π) is of the form

V = jk(ϕ)∗(H)⊕Ann(H)

for some H ⊂ TxM .

If V is a maximal involutive subspace, then the corresponding space
H is obviously πk,∗(V ). We call dimension of H the type of the maximal
involutive subspace V and denote it by tp(V ).

Proposition 1.10. Let V be a maximal involutive subspace. Then

dimV = m

(
n− r + k − 1

k

)
+ r,

where n = dimM , m = dimπ, r = tp(V ).

Proof. Choose local coordinates in M in such a way that the vectors
∂x1, . . . , ∂xr form a basis in H. Then, in the corresponding special system in

Jk(π), coordinates along Ann(H) will consist of those functions ujσ, |σ| = k,
for which σ1 = · · · = σr = 0.

We can now describe maximal integral manifolds of the Cartan distri-
bution on Jk(π).

Let N ⊂ Jk(π) be such a manifold θk ∈ N . Then the tangent plane to
N at the point θk is a maximal involutive plane. Assume that its type is
equal to r(θk).

Definition 1.15. The number

tp(N)
def
= max

θk∈N
r(θk).

is called the type of the maximal integral manifold N of the Cartan distri-
bution.

Obviously, the set

g(N)
def
= {θk ∈ N | r(θk) = tp(N)}

is everywhere dense in N . We call the points θk ∈ g(N) generic. Let θk be
such a point and U be its neighborhood in N consisting of generic points.
Then:

7Using the linear structure, we identify the fiber Fθk
of the bundle πk,k−1 with its

tangent space.
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(i) N ′ = πk,k−1(N) is an integral manifold of the Cartan distribution on

Jk−1(π);
(ii) dim(N ′) = tp(N);
(iii) πk−1 |N ′ : N ′ →M is an immersion.

Theorem 1.11. Let N ⊂ Jk−1(π) be an integral manifold of the Cartan

distribution on Jk(π) and U ⊂ N be an open domain consisting of generic

points. Then

U = {θk ∈ Jk(π) | Lθk ⊃ Tθk−1
U ′},

where θk−1 = πk,k−1(θk), U ′ = πk,k−1(U).

Proof. Let V ′ = πk−1(U ′) ⊂ M . Denote its dimension (which equals
the number tp(N)) by r and choose local coordinates in M in such a way
that the submanifold V ′ is determined by the equations xr+1 = · · · = xn = 0
in these coordinates. Then, since U ′ ⊂ Jk−1(π) is an integral manifold
and πk−1 |U ′ : U ′ → V ′ is a diffeomorphism, in the corresponding special
coordinates the manifold U ′ is given by the equations

ujσ =





∂|σ|ϕj

∂xσ
, if σ = (σ1, . . . , σr, 0, . . . , 0),

0, otherwise,

for all j = 1, . . . ,m, |σ| ≤ k−1 and some smooth function ϕ = ϕ(x1, . . . , xr).
Hence, the tangent plane H to U ′ at θk−1 is spanned by the vectors of the
form (1.25) with i = 1, . . . , r. Consequently, a point θk, such that Lθk ⊃ H,
is determined by the coordinates

ujσ =





∂|σ|ϕj

∂xσ
, if σ = (σ1, . . . , σr, 0, . . . , 0),

arbitrary real numbers, otherwise,

where j = 1, . . . ,m, |σ| ≤ k. Hence, if θk, θ
′
k are two such points, then the

vector θk − θ′k lies in Ann(H), as it follows from the proof of Proposition
1.10. As it is easily seen, any integral manifold of the Cartan distribution
projecting onto U ′ is contained in U , which finishes the proof.

Remark 1.7. Note that maximal integral manifolds N of type dimM
are exactly graphs of jets jk(ϕ), ϕ ∈ Γloc(π). On the other hand, if tp(N) =
0, then N coincides with a fiber of the projection πk,k−1 : Jk(π)→ Jk−1(π).

2.3. Symmetries. The last remark shows that the Cartan distribution
on Jk(π) is in a sense sufficient to restore the structures specific to the jet
manifolds. This motivates the following definition:

Definition 1.16. Let U ,U ′ ⊂ Jk(π) be open domains.

(i) A diffeomorphism F : U → U ′ is called a Lie transformation, if it
preserves the Cartan distribution, i.e.,

F∗(Ckθk) = CkF (θk)

for any point θk ∈ U .
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Let E , E ′ ⊂ Jk(π) be differential equations.

(ii) A Lie transformation F : U → U is called a (local) equivalence, if
F (U ∩ E) = U ′ ∩ E ′.

(iii) A (local) equivalence is called a (local) symmetry, if E = E ′ and
U = U ′. Such symmetries are also called classical 8.

Below we shall not distinguish between local and global versions of the
concepts introduced.

Remark 1.8. There is an alternative approach to the concept of a sym-
metry. Namely, we can introduce the Cartan distribution on E by setting

Cθ(E) def
= Cθ ∩ TθE , θ ∈ E ,

and define interior symmetries of E as a diffeomorphism F : E → E preserv-
ing C(E). In general, the group of these symmetries does not coincide with
the above introduced. A detailed discussion of this matter can be found in
[60].

Example 1.11. Consider the case J0(π) = E. Then, since any n-di-
mensional horizontal plane in TθE is tangent to some section of the bundle
π, the Cartan plane C0

θ coincides with the whole space TθE. Thus the Car-
tan distribution is trivial in this case and any diffeomorphism of E is a Lie
transformation.

Example 1.12. Since the Cartan distribution on Jk(π) is locally deter-
mined by the Cartan forms (1.27), the condition of F to be a Lie transfor-
mation cam be reformulated as

F ∗ωjσ =

m∑

α=1

∑

|τ |<k

λj,ασ,τω
α
τ , j = 1, . . . ,m, |σ| < k, (1.28)

where λj,ασ,τ are smooth functions on Jk(π). Equations (1.28) are the base
for computations in local coordinates.

In particular, if dimπ = 1 and k = 1, equations (1.28) reduce to the only
condition F ∗ω = λω, where ω = du−∑n

i=1 u1i dxi. Hence, Lie transforma-
tions in this case are just contact transformations of the natural contact
structure in J1(π).

Example 1.13. Let F : J0(π)→ J0(π) be a diffeomorphism (which can
be considered as a general change of dependent and independent coordi-
nates). Let us construct a Lie transformation F (1) of J1(π) such that the

8Contrary to higher, or generalized, symmetries which will be introduced in the next
chapter.
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diagram

J1(π)
F (1)

→ J1(π)

J0(π)

π1,0

↓
F→ J0(π)

π1,0

↓

is commutative, i.e., π1,0 ◦ F (1) = F ◦ π1,0. To do this, introduce local
coordinates x1, . . . , xn, u

1, . . . , um in J0(π) and consider the corresponding

special coordinates in J1(π) denoting the functions uj1i by pji . Express the
transformation F in the form

xi 7→ Xi(x1, . . . , xn, u
1, . . . , um), uj 7→ U j(x1, . . . , xn, u

1, . . . , um),

i = 1, . . . , n, j = 1, . . . ,m, in these coordinates. Then, due to (1.28), to find

F (1) : pji 7→ P ji (x1, . . . , xn, u
1, . . . , um, p1

1, . . . , p
m
n ),

one needs to solve the system

dU j −
n∑

i=1

P ji dXi =
m∑

α=1

λj,α(duα −
n∑

i=1

pαi dxi),

j = 1, . . . ,m, with respect to the functions P ji for arbitrary smooth coeffi-

cients λj,α. Using matrix notation p = ‖pji‖, P = ‖P ji ‖ and λ = ‖λαβ‖, we
see that

λ =
∂U

∂u
− P ◦ ∂X

∂u

and

P =

(
∂U

∂x
+
∂U

∂u
◦ p
)
◦
(
∂X

∂x
+
∂X

∂u
◦ p
)−1

, (1.29)

where

∂X

∂x
=

∥∥∥∥
∂Xα

∂xβ

∥∥∥∥ ,
∂X

∂u
=

∥∥∥∥
∂Xα

∂uβ

∥∥∥∥ ,
∂U

∂x
=

∥∥∥∥
∂Uα

∂xβ

∥∥∥∥ ,
∂U

∂u
=

∥∥∥∥
∂Uα

∂uβ

∥∥∥∥

denote Jacobi matrices. Note that the transformation F (1), as it follows
from (1.29), is undefined at some points of J1(π), i.e., at the points where
the matrix ∂X/∂x+ ∂X/∂u ◦ p is not invertible.

Example 1.14. Let π : Rn×Rn → Rn, i.e., dimπ = dimM and consider
the transformation ui 7→ xi, xi 7→ ui, i = 1, . . . , n. This transformation is
called the hodograph transformation. From (1.29) it follows that the corre-

sponding transformation of the functions pji is defined by P = p−1.
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Example 1.15. Let Ed be the equation determined by the de Rham
differential (see Example 1.6), i.e., Ed = {dω = 0}, ω ∈ Λi(M). Then for
any diffeomorphism F : M → M one has F ∗(dω) = d(F ∗ω) which means
that F determines a symmetry of Ed. Symmetries of this type are called
gauge symmetries.

The construction of Example 1.13 can be naturally generalized. Let
F : Jk(π) → Jk(π) be a Lie transformation. Note that from the defi-

nition it follows that for any maximal integral manifold N of the Cartan
distribution on Jk(π), the manifold F (N) possesses the same property. In
particular, graph of k-jets are taken to n-dimensional maximal integral man-
ifolds. Let now θk+1 be a point of Jk+1(π) and let us represent θk+1 as a pair
(θk, Lθk+1

), or, which is the same, as a class of graphs of k-jets tangent to
each other at θk. Then, since diffeomorphisms preserve tangency, the image
F∗(Lθk+1

) will almost always (cf. Example 1.13) be an R-plane at F (θk).

Denote the corresponding point in Jk+1(π) by F (1)(θk+1).

Definition 1.17. Let F : Jk(π)→ Jk(π) be a Lie transformation. The

above defined mapping F (1) : Jk+1(π)→ Jk+1(π) is called the 1-lifting of F .

The mapping F (1) is a Lie transformation at the domain of its definition,
since almost everywhere it takes graphs of (k+1)-jets to graphs of the same

kind. Hence, for any l ≥ 1 we can define F (l) def
= (F (l−1))(1) and call this

map the l-lifting of F .

Theorem 1.12. Let π : E →M be an m-dimensional vector bundle over

an n-dimensional manifold M and F : Jk(π)→ Jk(π) be a Lie transforma-

tion. Then:

(i) If m > 1 and k > 0, the mapping F is of the form F = G(k) for some

diffeomorphism G : J0(π)→ J0(π);

(ii) If m = 1 and k > 1, the mapping F is of the form F = G(k−1) for

some contact transformation G : J1(π)→ J1(π).

Proof. Recall that fibers of the projection πk,k−1 : Jk(π) → Jk−1(π)
for k ≥ 1 are the only maximal integral manifolds of the Cartan distribution
of type 0 (see Remark 1.7). Further, from Proposition 1.10 it follows that
in the cases m > 1, k > 0 and m = 1, k > 1 they are integral manifolds
of maximal dimension, provided n > 1. Therefore, the mapping F is πk,ε-
fiberwise, where ε = 0 for m > 1 and ε = 1 for m = 1.

Thus there exists a mapping G : J ε(π) → Jε(π) such that πk,ε ◦ F =
G ◦ πk,ε and G is a Lie transformation in an obvious way. Let us show

that F = G(k−ε). To do this, note first that in fact, by the same reasons,
the transformation F generates a series of Lie transformations Gl : J

l(π)→
J l(π), l = ε, . . . , k, satisfying πl,l−1◦Gl = Gl−1◦πl,l−1 and Gk = F , Gε = G.

Let us compare the mappings F and G
(1)
k−1.

From Proposition 1.6 and the definition of Lie transformations we obtain

F∗((πk,k−1)
−1
∗ (Lθk)) = F∗(Ckθk) = CF (θk) = (πk,k−1)

−1
∗ (LF (θk))
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for any θk ∈ Jk(π). But F∗((πk,k−1)
−1
∗ (Lθk)) = (πk,k−1)

−1
∗ (Gk−1,∗(Lθk)) and

consequently Gk−1,∗(Lθk) = LF (θk). Hence, by the definition of 1-lifting we

have F = G
(1)
k−1. Using this fact as a base of elementary induction, we obtain

the result of the theorem for dimM > 1.
Consider the case n = 1, m = 1 now. Since all maximal integral man-

ifolds are one-dimensional in this case, it should treated in a special way.
Denote by V the distribution consisting of vector fields tangent to the fibers
of the projection πk,k−1. Then

F∗V = V (1.30)

for any Lie transformation F , which is equivalent to F being πk,k−1-fiberwise.
Let us prove (1.30). To do it, consider an arbitrary distribution P on a

manifold N and introduce the notation

PD = {X ∈ D(N) | X lies in P} (1.31)

and

DP = {X ∈ D(N) | [X,Y ] ∈ P, ∀Y ∈ PD}. (1.32)

Then one can show (using coordinate representation, for example) that

DV = DCk ∩D[DCk,DCk]

for k ≥ 2. But Lie transformations preserve the distributions at the right-
hand side of the last equality and consequently preserve DV.

We pass now to infinitesimal analogues of Lie transformations:

Definition 1.18. Let π : E →M be a vector bundle and E ⊂ Jk(π) be
a k-th order differential equation.

(i) A vector field X on Jk(π) is called a Lie field, if the corresponding
one-parameter group consists of Lie transformations.

(ii) A Lie field is called an infinitesimal classical symmetry of the equa-
tion E , if it is tangent to E .

It should be stressed that infinitesimal classical symmetries play an im-
portant role in applications of differential geometry to particular equations.

Since in the sequel we shall deal with infinitesimal symmetries only, we
shall skip the adjective infinitesimal and call them just symmetries. By
definition, one-parameter groups of transformations corresponding to sym-
metries preserve generalized solutions.

Remark 1.9. Similarly to the above considered situation, we may in-
troduce the concepts both of exterior and interior infinitesimal symmetries
(see Remark 1.8), but we do not treat the second ones below.

Let X be a Lie field on Jk(π) and Ft : J
k(π)→ Jk(π) be its one-param-

eter group. The we can construct l-liftings F
(l)
t : Jk+l(π) → Jk+l(π) and

the corresponding Lie field X(l) on Jk+l(π). This field is called the l-lifting

of the field X. As we shall see a bit later, liftings of Lie fields, as opposed
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to those of Lie transformations, are defined globally and can be described
explicitly.

An immediate consequence of the definition and of Theorem 1.12 is the
following result:

Theorem 1.13. Let π : E →M be an m-dimensional vector bundle over

an n-dimensional manifold M and X be a Lie field on Jk(π). Then:

(i) If m > 1 and k > 0, the field X is of the form X = Y (k) for some

vector field Y on J0(π);

(ii) If m = 1 and k > 1, the field X is of the form X = Y (k−1) for some

contact vector field Y on J1(π).

Coordinate expressions for Lie fields can be obtained as follows. Let

x1, . . . , xn, . . . , u
j
σ, . . . be a special coordinate system in Jk(π) and ωjσ be

the corresponding Cartan forms. Then X is a Lie field if and only if the
following equations hold

LXω
j
σ =

m∑

α=1

∑

|τ |<k

λj,ασ,τω
α
τ , j = 1, . . . ,m, |σ| < k, (1.33)

where λj,ασ,τ are arbitrary smooth functions. Let the vector field X be repre-
sented in the form

X =
n∑

i=1

Xi
∂

∂xi
+

m∑

j=1

∑

|σ|≤k

Xj
σ

∂

∂ujσ
.

Then from (1.33) it follows that the coefficients of the field X are related by
the following recursion equalities

Xj
σ+1i

= Di(X
j
σ)−

n∑

α=1

ujσ+1α
Di(Xα), (1.34)

where

Di =
∂

∂xi
+

m∑

j=1

∑

|σ|≥0

ujσ+1i

∂

∂ujσ
(1.35)

are the so-called total derivatives.
Recall now that a contact field X on J1(π), dimπ = 1, is completely

determined by its generating function which is defined as f
def
= iXω, where

ω = du−∑i u1i dxi is the Cartan (contact) form on J1(π). The contact field
corresponding to a function f ∈ F1(π) is denoted by Xf and is expressed as

Xf = −
n∑

i=1

∂f

∂u1i

∂

∂xi
+
(
f −

n∑

i=1

u1i

∂f

∂u1i

) ∂
∂u

+

n∑

i=1

( ∂f
∂xi

+ u1i

∂f

∂u

) ∂

∂u1i

(1.36)
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in local coordinates.
Thus, starting with a field (1.36) in the case dimπ = 1 or with an

arbitrary field on J0(π) for dimπ > 1 and using (1.34), we can obtain
efficient expressions for Lie fields.

Remark 1.10. Note that in the case dimπ > 1 we can introduce

vector-valued generating functions by setting f j
def
= iXω

j , where ωj =

duj −∑i u
j
1i
dxi are the Cartan forms on J1(π). Such a function may be

understood as an element of the module F1(π, π). The local conditions that
a section f ∈ F1(π, π) corresponds to a Lie field is as follows:

∂fα

∂uα1i
=
∂fβ

∂uβ1i

,
∂fα

∂uβ1i

= 0, α 6= β.

In Chapter 2 we shall generalize the theory and get rid of these conditions.
We call f the generating section (or generating function, depending on

the dimension of π) of the Lie field X, if X is a lifting of the field Xf .

Let us finally write down the conditions of a Lie field to be a symmetry.
Assume that an equation E is given by the relations F 1 = 0, . . . , F r = 0,
where F j ∈ Fk(π). Then X is a symmetry of E if and only if

X(F j) =
r∑

α=1

λjαF
α, j = 1, . . . , r,

where λjα are smooth functions, or

X(F j) |E = 0, j = 1, . . . , r. (1.37)

These conditions can be rewritten in terms of generating sections and we
shall do it in Chapter 2 in a more general situation.

Let E ⊂ Jk(π) be a differential equation and X be its symmetry. Then
for any solution ϕ of this equation, the one-parameter group {At} corre-
sponding to X transforms ϕ to some new solution ϕt almost everywhere. In
special local coordinates, evolution of ϕ is governed by the following evolu-
tionary equation:

∂ϕ

∂t
= f(x1, . . . , xn, ϕ,

∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn
), (1.38)

if π is one-dimensional and f is the generating function of X, or by a system
of evolutionary equations of the form

∂ϕj

∂t
= f j(x1, . . . , xn, ϕ

1, . . . , ϕm,
∂ϕ1

∂x1
, . . . ,

∂ϕm

∂xn
), (1.39)

where j = 1, . . . ,m = dimπ and f j are the components of the generating
section.

In particular, we say that a solution is invariant with respect to X, if
it is transformed by {At} to itself, which means that it has to satisfy the
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equation

f(x1, . . . , xn, ϕ,
∂ϕ

∂x1
, . . . ,

∂ϕ

∂xn
) = 0 (1.40)

or a similar system of equations when dimπ > 1. If g is a subalgebra in the
symmetry algebra of E , we can also define g-invariant solutions as solutions
invariant with respect to all elements of g.

2.4. Prolongations. The idea of prolongation originates from a simple
observation that, a differential equation given, not all relations between
dependent variables are explicitly encoded in this equation. To reconstruct
these relations, it needs to analyze “differential consequences” of the initial
equations.

Example 1.16. Consider the system

uxxy = v2
y , uxyy = vx + uy.

Then, differentiating the first equation with respect to y and the second one
with respect to x, we obtain

uxxyy = 2vyvyy, uxxyy = vxx + uxy

and consequently

2vyvyy = vxx + uxy.

Example 1.17. Let

vx = u, vt =
1

2
u2 + ux.

Then

ut = uux + uxx

by a similar procedure.

Example 1.18. Consider equations (1.19) from Example 1.8 on p. 15.
Then as consequences of these equations we obtain equations (1.20) which
may be viewed at as compatibility conditions for equations (1.19). One can

see that if the functions ∇ji satisfy (1.20), i.e., if the connection ∇ is flat,
then these conditions are void; otherwise we obtain functional relations on

the variables uji .

Geometrically, the process of computation of differential consequences is
expressed by the following definition:

Definition 1.19. Let E ⊂ Jk(π) be a differential equation of order k.
Define the set

E1 = {θk+1 ∈ Jk+1(π) | πk+1,k(θk+1) ∈ E , Lθk+1
⊂ Tπk+1,k(θk+1)E}

and call it the first prolongation of the equation E .
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If the first prolongation E1 is a submanifold in Jk+1(π), we define the
second prolongation of E as (E1)1 ⊂ Jk+2(π), etc. Thus the l-th prolongation

is a subset E l ⊂ Jk+l(π).
Let us redefine the notion of l-th prolongation directly. Namely, take a

point θk ∈ E and consider a section ϕ ∈ Γloc(π) such that the graph of jk(ϕ)
is tangent to E with order l. Let πk(θk) = x ∈M . Then [ϕ]k+lx is a point of
Jk+l(π) and the set of all points obtained in such a way obviously coincides
with E l, provided all intermediate prolongations E1, . . . , E l−1 be well defined
in the sense of Definition 1.19.

Assume now that locally E is given by the equations

F 1 = 0, . . . , F r = 0, F j ∈ Fk(π)

and θk ∈ E is the origin of the chosen special coordinate system. Let u1 =
ϕ1(x1, . . . , xn), . . . , u

m = ϕm(x1, . . . , xn) be a local section of the bundle π.
Then

jk(ϕ)∗F j = F j(x1, . . . , xn, . . . ,
∂|σ|ϕα

∂xσ
, . . . )

=
n∑

i=1

(
∂F j

∂xi
+
∑

α,σ

∂F j

∂uασ

∂|σ|+1ϕα

∂xσ+1i

)∣∣∣∣∣
θk

xi + o(x),

where the sums are taken over all admissible indices. From here it follows,
that the graph of jk(ϕ) is tangent to E at the point under consideration if
and only if

n∑

i=1

(
∂F j

∂xi
+
∑

α,σ

∂F j

∂uασ

∂|σ|+1ϕα

∂xσ+1i

)∣∣∣∣∣
θk

= 0.

Hence, the equations of the first prolongation are

n∑

i=1

(
∂F j

∂xi
+
∑

α,σ

∂F j

∂uασ
uασ+1i

)
= 0, i = 1, . . . , n.

From here and by comparison with the coordinate representation of prolon-
gations for nonlinear differential operators (see Subsection 1.2), we obtain
the following result:

Proposition 1.14. Let E ⊂ Jk(π) be a differential equation. Then

(i) If the equation E is determined by a differential operator ∆: Γ(π)→
Γ(π′), then its l-th prolongation is given by the l-th prolongation

∆(l) : Γ(π)→ Γ(π′l) of the operator ∆.

(ii) If E is locally described by the system of equations

F 1 = 0, . . . , F r = 0, F j ∈ Fk(π),

then the system

DσF
j = 0, |σ| ≤ l, j = 1, . . . , r, (1.41)
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where Dσ
def
= Dσ1

1 ◦ · · · ◦Dσn
n , corresponds to E l. Here Di stands for

the i-th total derivative (see (1.35)).

From the definition it follows that for any l ≥ l′ ≥ 0 one has the
embeddings πk+l,k+l′(E l) ⊂ E l

′

and consequently one has the mappings

πk+l,k+l′ : E l → E l
′

.

Definition 1.20. An equation E ⊂ Jk(π) is called formally integrable,
if

(i) all prolongations E l are smooth manifolds

and

(ii) all the mappings πk+l+1,k+l : E l+1 → E l are smooth fiber bundles.

In the sequel, we shall mostly deal with formally integrable equations.
The rest of this chapter is devoted to classical symmetries of some par-

ticular equations of mathematical physics.

3. Symmetries of the Burgers equation

As a first example, we shall discuss the computation of classical symme-
tries for the Burgers equation, which is described by

ut = uux + uxx. (1.42)

The equation holds on J2(x, t;u) = J2(π) for the trivial bundle π : R ×
R2 → R2 with x, t being coordinates in R2 (independent variables) and u a
coordinate in the fiber (dependent variable). The total derivative operators
are given by

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux

+ uxt
∂

∂ut
+ uxxx

∂

∂uxx
+ uxxt

∂

∂uxt
+ uxtt

∂

∂utt
+ · · · ,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux

+ utt
∂

∂ut
+ uxxt

∂

∂uxx
+ uxtt

∂

∂uxt
+ uttt

∂

∂utt
+ · · · (1.43)

We now introduce the vector field V of the form

V = V x ∂

∂x
+ V t ∂

∂t
+ V u ∂

∂u
+ · · ·+ V utt ∂

∂utt
, (1.44)

where in (1.44) V x, V t, V u are functions depending on x, t, u, while the
components with respect to ∂/∂ux, ∂/∂ut, ∂/∂uxx, ∂/∂uxt, ∂/∂utt, which
are denoted by V ux , V ut , V uxx , V uxt , V utt , are given by formula (1.34) and
are of the form

V ux = Dx(V
u − uxV x − utV t) + uxxV

x + uxtV
t,

V ut = Dt(V
u − uxV x − utV t) + uxtV

x + uttV
t,
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V uxx = D2
x(V

u − uxV x − utV t) + uxxxV
x + uxxtV

t,

V uxt = DxDt(V
u − uxV x − utV t) + uxxtV

x + uxttV
t,

V utt = D2
t (V

u − uxV x − utV t) + uxttV
x + utttV

t. (1.45)

The symmetry condition (1.37) on V , which is just the invariance condition
of the hypersurface E ⊂ J2(x, t;u) given by (1.42) under the vector field V ,
results in the equation

V ut − uxV u − uV ux − V uxx = 0. (1.46)

Calculation of the quantities V ut , V ux , V uxx required in (1.46) yields

V ux =
∂V u

∂x
+ ux

∂V u

∂u
− ux

(
∂V x

∂x
+ ux

∂V x

∂u

)
− ut

(
∂V t

∂x
+ ux

∂V t

∂u

)
,

V ut =
∂V u

∂t
+ ut

∂V u

∂u
− ux

(
∂V x

∂t
+ ut

∂V x

∂u

)
− ut

(
∂V t

∂t
+ ut

∂V t

∂u

)
,

V uxx =
∂2V u

∂x2
+ 2ux

∂2V u

∂x∂u
+ u2

x

∂2V u

∂u2
+ uxx

∂V u

∂u

− 2uxx

(
∂V x

∂x
+ ux

∂V x

∂u

)
− 2uxt

(
∂V t

∂x
+ ux

∂V t

∂u

)

− ux
(
∂2V x

∂x2
+ 2ux

∂2V x

∂x∂u
+ u2

x

∂2V x

∂u2
+ uxx

∂V x

∂u

)

− ut
(
∂2V t

∂x2
+ 2ux

∂2V t

∂x∂u
+ u2

x

∂2V t

∂u2
+ uxx

∂V t

∂u

)
. (1.47)

Substitution of these expressions (1.47) together with

ut = uux + uxx,

uxt = u2
x + uuxx + uxxx, (1.48)

into (1.46) leads to a polynomial expression with respect to the variables
uxxx, uxx, ux, the coefficients of which should vanish.

The coefficient at uxxx, which arises solely from the term uxt in V uxx ,
leads to the first condition

∂V t

∂x
+ ux

∂V t

∂u
= 0, (1.49)

from which we immediately obtain that ∂V t/∂x = 0, ∂V t/∂u = 0, or

V t(x, t, u) = F0(t), (1.50)

i.e., the function V t is dependent just on the variable t.

Remark 1.11. Although V t is a function dependent just on one variable
t, we prefer to write in the sequel partial derivatives instead of ordinary
derivatives.
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Now, using the obtained result for the function V t(x, t, u) we obtain
from (1.46), (1.47), (1.48), (1.49) that the coefficients at the corresponding
terms vanish:

uxxux : 2
∂V x

∂u
= 0,

uxx : − ∂V t

∂t
+ 2

∂V x

∂x
= 0,

u3
x :

∂2V x

∂u2
= 0,

u2
x : − ∂2V u

∂u2
+ 2

∂2V x

∂x∂u
= 0,

ux : − ∂V x

∂t
− u∂V

t

∂t
− V u + u

∂V x

∂x
− 2

∂2V u

∂x∂u
+
∂2V x

∂x2
= 0,

1 :
∂V u

∂t
− u∂V

u

∂x
− ∂2V u

∂x2
= 0. (1.51)

From the first and the fourth equation in (1.51) we have

V x = F1(x, t), V u = F2(x, t) + F3(x, t)u. (1.52)

Substitution of this result into the second, fifth and sixth equation of (1.51)
leads to

∂F0(t)

∂t
− 2

∂F1(x, t)

∂x
= 0,

∂F1(x, t)

∂t
+ u

∂F0(t)

∂t
+ F2(x, t) + uF3(x, t)

− u∂F1(x, t)

∂x
+ 2

∂F3(x, t)

∂x
− ∂2F1(x, t)

∂x2
= 0,

∂F2(x, t)

∂t
− u∂F2(x, t)

∂x
− ∂2F2(x, t)

∂x2

+ u

(
∂F3(x, t)

∂t
− u∂F3(x, t)

∂x
− ∂2F3(x, t)

∂x2

)
= 0. (1.53)

We now first solve the first equation in (1.53):

F1(x, t) =
x

2

∂F0(t)

∂t
+ F4(t), (1.54)

The second equation in (1.53) is an equation polynomial with respect to u,
so we obtain from this the following relations:

∂F0(t)

∂t
+ 2F3(x, t) = 0,

4
∂F3(x, t)

∂x
+ 2

∂F4(t)

∂t
+ x

∂2F0(t)

∂t2
+ 2F2(x, t) = 0, (1.55)

while from the third equation in (1.53) we obtain

∂F3(x, t)

∂x
= 0,
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∂F3(x, t)

∂t
− ∂2F3(x, t)

∂x2
− ∂F2(x, t)

∂x
= 0,

∂F2(x, t)

∂t
− ∂2F2(x, t)

∂x
= 0. (1.56)

From (1.55) we can obtain the form of F3(x, t) and F2(x, t), i.e.,

F3(x, t) = −1

2

∂F0(t)

∂t
,

F2(x, t) = −∂F4(t)

∂t
− x

2

∂2F0(t)

∂t2
. (1.57)

The first and second equation in (1.56) now fulfill automatically, while the
third equation is a polynomial with respect to x; hence we have

∂2F4(t)

∂t2
+
x

2

∂3F0(t)

∂t3
= 0, (1.58)

from which we finally arrive at

F0(t) = c1 + c2t+ c3t
2, F4(t) = c4 + c5t. (1.59)

Combining the obtained results we finally have:

V x(x, t, u) = c4 +
1

2
c2x+ c5t+ c3xt,

V t(x, t, u) = c1 + c2t+ c3t
2,

V u(x, t, u) = −c5 − c3x−
1

2
c2u− c3tu,

which are the components of the vector field V , whereas c1, . . . , c5 are arbi-
trary constants.

From (1.59) we have that the Lie algebra of classical symmetries of the
Burgers equation is generated by five vector fields

V1 =
∂

∂t
,

V2 =
1

2
x
∂

∂x
+ t

∂

∂t
− 1

2
u
∂

∂u
,

V3 = xt
∂

∂x
+ t2

∂

∂t
− (x+ tu)

∂

∂u
,

V4 =
∂

∂x
,

V5 = t
∂

∂x
− ∂

∂u
. (1.60)

The commutator table for the generators (1.60) is presented on Fig. 1.1.
Note that the generating functions ϕi = Vi (du− ux dx− ut dt) corre-

sponding to symmetries (1.60) are

ϕ1 = −ut,

ϕ2 = −1

2
(u+ xux + 2tut),
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[Vi, Vj ] V1 V2 V3 V4 V5

V1 0 V1 2V2 0 V4

V2 0 V3 −1
2V4

1
2V5

V3 0 −V5 0
V4 0 0
V5 0

Figure 1.1. Commutator table for classical symmetries of
the Burgers equation

ϕ3 = −(x+ tu+ xtux + t2ut),

ϕ4 = −ux,
ϕ5 = −(tux + 1). (1.61)

The computations carried through in this application indicate the way
one has to take to solve overdetermined systems of partial differential equa-
tions for the components of a vector field arising from the symmetry con-
dition (1.37). We also refer to Chapter 8 for description of computer-based
computations of symmetries.

4. Symmetries of the nonlinear diffusion equation

The (3 + 1)-nonlinear diffusion equation is given by

∆(up+1) + kuq = ut, (1.62)

where u = u(x, y, z, t), ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2, p, k, q ∈ Q, and
p 6= −1.

We shall state the results for the Lie algebras of symmetries for all
distinct values of p, k, q.

First of all we derived that there are no contact symmetries, i.e., the
coefficients of any symmetry V ,

V = V x ∂

∂x
+ V y ∂

∂y
+ V z ∂

∂z
+ V t ∂

∂t
+ V u ∂

∂u
,

V x, V y, V z, V t, V u depend on x, y, z, t, u only.

Remark 1.12. Such symmetries are called point symmetries contrary
to general contact symmetries whose coefficients at ∂/∂xi and ∂/∂u may
depend on coordinates in J1(π) (see Theorem 1.12 (ii)).

Secondly, for any value of p, k, q, equation (1.62) admits the following
seven symmetries:

V1 =
∂

∂x
, V2 =

∂

∂y
, V3 =

∂

∂z
, V4 =

∂

∂t
,

V5 = y
∂

∂x
− x ∂

∂y
, V6 = z

∂

∂x
− x ∂

∂z
, V7 = z

∂

∂y
− y ∂

∂z
. (1.63)
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We now summarize the final results, while the complete Lie algebras are
given for all the cases that should be distinguished.

4.1. Case 1: p = 0, k = 0. The complete Lie algebra of symmetries of
the equation

∆(u) = ut (1.64)

is spanned by the vector fields V1, . . . , V7 given in (1.63) and

V8 = u
∂

∂u
,

V9 = 2t
∂

∂x
− xu ∂

∂u
,

V10 = 2t
∂

∂y
− yu ∂

∂u
,

V11 = 2t
∂

∂z
− zu ∂

∂u
,

V12 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ 2t

∂

∂t
,

V13 = xt
∂

∂x
+ yt

∂

∂y
+ zt

∂

∂z
+ t2

∂

∂t
+

1

4
u(−x2 − y2 − z2 − 6t)

∂

∂u
(1.65)

together with the continuous part F (x, y, z, t)∂/∂u, where F (x, y, z, t) is an
arbitrary function which has to satisfy (1.64). In fact, all linear equations
possess symmetries of this type.

4.2. Case 2: p = 0, k 6= 0, q = 1. The complete Lie algebra of
symmetries of the equation

∆(u) + ku = ut (1.66)

is spanned by the fields V1, . . . , V7 given in (1.63) and

V8 = u
∂

∂u
,

V9 = 2t
∂

∂x
− xu ∂

∂u
,

V10 = 2t
∂

∂y
− yu ∂

∂u
,

V11 = 2t
∂

∂z
− zu ∂

∂u
,

V12 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ 2t

∂

∂t
+ 2kut

∂

∂u
,

V13 = xt
∂

∂x
+ yt

∂

∂y
+ zt

∂

∂z
+ t2

∂

∂t
+

1

4
u(4kt2 − x2 − y2 − z2 − 6t)

∂

∂u
.

(1.67)
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Since (1.66) is a linear equation, it also possesses symmetries of the form
F (x, y, z, t)∂/∂u, where

∆(F ) + kF = Ft. (1.68)

4.3. Case 3: p = 0, k 6= 0, q 6= 1. The complete Lie algebra of
symmetries of the equation

∆(u) + kuq = ut (1.69)

is spanned by V1, . . . , V7 given in (1.63) and the field

V8 = x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z
+ 2t

∂

∂t
− 2

q − 1
u
∂

∂u
. (1.70)

4.4. Case 4: p = −4/5, k = 0. The complete Lie algebra of symmetries
of

∆(u1/5) = ut (1.71)

is spanned by V1, . . . , V7 given in (1.63) together with the fields

V8 = 4t
∂

∂t
+ 5u

∂

∂u
,

V9 = 2x
∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂z
− 5u

∂

∂u
,

V10 = (x2 − y2 − z2)
∂

∂x
+ 2xy

∂

∂y
+ 2xz

∂

∂z
− 5xu

∂

∂u
,

V11 = 2xy
∂

∂x
+ (−x2 + y2 − z2)

∂

∂y
+ 2yz

∂

∂z
− 5yu

∂

∂u
,

V12 = 2xz
∂

∂x
+ 2yz

∂

∂y
+ (−x2 − y2 + z2)

∂

∂z
− 5zu

∂

∂u
. (1.72)

4.5. Case 5: p 6= −4/5, p 6= 0, k = 0. The complete Lie algebra of
symmetries of the equation

∆(up+1) = ut (1.73)

is spanned by V1, . . . , V7 given in (1.63) and two additional vector fields

V8 = −pt ∂
∂t

+ u
∂

∂u
,

V9 = px
∂

∂x
+ py

∂

∂y
+ pz

∂

∂z
+ 2u

∂

∂u
. (1.74)

4.6. Case 6: p = −4/5, k 6= 0, q = 1. The complete Lie algebra of
symmetries of the equation

∆(u1/5) + ku = ut (1.75)

is spanned by V1, . . . , V7 given in (1.63) and

V8 = e
4kt
5
∂

∂t
+ kue

4kt
5
∂

∂u
,
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V9 = 2x
∂

∂x
+ 2y

∂

∂y
+ 2z

∂

∂z
− 5u

∂

∂u
,

V10 = (x2 − y2 − z2)
∂

∂x
+ 2xy

∂

∂y
+ 2xz

∂

∂z
− 5xu

∂

∂u
,

V11 = 2xy
∂

∂x
+ (−x2 + y2 − z2)

∂

∂y
+ 2yz

∂

∂z
− 5yu

∂

∂u
,

V12 = 2xz
∂

∂x
+ 2yz

∂

∂y
+ (−x2 − y2 + z2)

∂

∂z
− 5zu

∂

∂u
. (1.76)

4.7. Case 7: p 6= 0, p 6= −4/5, k 6= 0, q = 1. The complete Lie algebra
of symmetries of the equation

∆(up+1) + ku = ut (1.77)

is spanned by V1, . . . , V7 given in (1.63) and by

V8 = e−pkt
(
∂

∂t
+ 4ku

∂

∂u

)
,

V9 = px
∂

∂x
+ py

∂

∂y
+ pz

∂

∂z
+ 2u

∂

∂u
. (1.78)

4.8. Case 8: p 6= 0, p 6= −4/5, q = p+ 1. The complete Lie algebra of
symmetries of the equation

∆(up+1) + kup+1 = ut (1.79)

is spanned by V1, . . . , V7 given in (1.63) and by the field

V8 = pt
∂

∂t
− u ∂

∂u
. (1.80)

4.9. Case 9: p 6= 0, p 6= −4/5, q 6= 1, q 6= p + 1. The complete Lie
algebra of symmetries of the equation

∆(up+1) + kuq = ut (1.81)

is spanned by V1, . . . , V7 given in (1.63) and by the field

V8 = (−p+ q − 1)

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
+ 2(q − 1)t

∂

∂t
− 2u

∂

∂u
. (1.82)

The results in these nine cases are a generalization of the results of
other authors [13]. We leave to the reader to describe the corresponding Lie
algebra structures in the cases above.

5. The nonlinear Dirac equations

In this section, we consider the nonlinear Dirac equations and compute
their classical symmetries [33]. Symmetry classification of these equations
leads to four different cases: linear Dirac equations with vanishing and non-
vanishing rest mass, nonlinear Dirac equation with vanishing rest mass, and
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general nonlinear Dirac equation (with nonvanishing rest mass). We con-
tinue to study the last case in the next chapter (Subsection 2.2) and compute
there conservation laws associated to some symmetries.

We shall only give here a short idea of the solution procedure, since all
computations follow to standard lines. The Dirac equations are of the form
[11]:

3∑

k=1

~
∂(γkψ)

∂xk
− i~∂(γ4ψ)

∂x4
+m0cψ + n0ψ(ψψ) = 0, (1.83)

where

x4 = ct,

ψ = (ψ1, ψ2, ψ3, ψ4)
T ,

ψ = (ψ∗
1, ψ

∗
2,−ψ∗

3,−ψ∗
4), (1.84)

T stands for transposition, ∗ is complex conjugate and γ1, γ2, γ3, γ4 are
4× 4-matrices defined by

γ1 =




0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


 , γ2 =




0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0


 ,

γ3 =




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


 , γ4 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


 . (1.85)

After introduction of the parameter

λ =
~

m0c
, (1.86)

we obtain

λ
3∑

k=1

∂

∂xk
(γkψ)− λi ∂

∂x4
(γ4ψ) + ψ + λ3εψ(ψψ) = 0. (1.87)

In computation of the symmetry algebra of (1.87) we have to distinguish
the following cases:

1. ε = 0, λ−1 = 0: Dirac equations with vanishing rest mass,
2. ε = 0, λ−1 6= 0: Dirac equations with nonvanishing rest mass,
3. ε 6= 0, λ−1 = 0: nonlinear Dirac equations with vanishing rest mass,
4. ε 6= 0, λ−1 6= 0: nonlinear Dirac equations.

These cases are equivalent to the respective choices of m0 and n0 in (1.83):
e.g., ε = 0, λ−1 = 0 is the same as m0 = n0 = 0, etc.

We put ψj = uj + ivj , j = 1, . . . , 4, and obtain a system of eight coupled
partial differential equations

λv4
1 − λu4

2 + λv3
3 + λv1

4 + (1 + λ3εK)u1 = 0,
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λv3
1 + λu3

2 − λv4
3 + λv2

4 + (1 + λ3εK)u2 = 0,

−λv2
1 + λu2

2 − λv1
3 − λv3

4 + (1 + λ3εK)u3 = 0,

−λv1
1 − λu1

2 + λv2
3 − λv4

4 + (1 + λ3εK)u4 = 0,

−λu4
1 − λv4

2 − λu3
3 − λu1

4 + (1 + λ3εK)v1 = 0,

−λu3
1 + λv3

2 + λu4
3 − λu2

4 + (1 + λ3εK)v2 = 0,

λu2
1 + λv2

2 + λu1
3 + λu3

4 + (1 + λ3εK)v3 = 0,

λu1
1 − λv1

2 − λu2
3 + λu4

4 + (1 + λ3εK)v4 = 0, (1.88)

where

ujk =
∂uj

∂xk
, vjk =

∂vj

∂xk
, j, k = 1, . . . , 4,

and

K = (u1)2 + (u2)2 − (u3)2 − (u4)2 + (v1)2 + (v2)2 − (v3)2 − (v4)2. (1.89)

Thus (1.87) is a determined system E ⊂ J1(π) in the trivial bundle π : R8×
R4 → R4.

Using relations (1.34) and symmetry conditions (1.37), we construct the
overdetermined system of partial differential equations for the coefficients of
the vector field V

V = F x1
∂

∂x1
+ · · ·+ F x4

∂

∂x4
+ F u

1 ∂

∂u1
+ · · ·+ F v

4 ∂

∂v4
. (1.90)

From the resulting overdetermined system of partial differential equations
we derive in a straightforward way the following intermediate result:

1 : F x1 , . . . , F x4 are independent of u1, . . . , v4,

2 : F x1 , . . . , F x4 are polynomials of degree 3 in x1, . . . , x4,

3 : F u
1
, . . . , F v

4
are linear with respect to u1, . . . , v4. (1.91)

Combination of this intermediate result (1.91) with the remaining system of
partial differential equations leads to the following description of symmetry
algebras in the four specific cases.

5.1. Case 1: ε = 0, λ−1 = 0. The complete Lie algebra of classical
symmetries for the Dirac equations with vanishing rest mass is spanned by 23
generators. In addition, there is a continuous part generated by functions

F u
1
, . . . , F v

4
dependent on x1, . . . , x4 and satisfying the Dirac equations

(1.88) due to the linearity of these equations. The Lie algebra contains the
fifteen infinitesimal generators of the conformal group X1, . . . , X15 and eight
vertical vector fields X16, . . . , X23:

X1 =
∂

∂x1
, X2 =

∂

∂x2
, X3 =

∂

∂x3
, X4 =

∂

∂x4
,

X5 = 2x2
∂

∂x1
− 2x1

∂

∂x2
− v1 ∂

∂u1
+ v2 ∂

∂u2
− v3 ∂

∂u3
+ v4 ∂

∂u4
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+ u1 ∂

∂v1
− u2 ∂

∂v2
+ u3 ∂

∂v3
− u4 ∂

∂v4
,

X6 = 2x3
∂

∂x1
− 2x1

∂

∂x3
− u2 ∂

∂u1
+ u1 ∂

∂u2
− u4 ∂

∂u3
+ u3 ∂

∂u4

− v2 ∂

∂v1
+ v1 ∂

∂v2
− v4 ∂

∂v3
+ v3 ∂

∂v4
,

X7 = −2x3
∂

∂x2
+ 2x2

∂

∂x3
+ v2 ∂

∂u1
+ v1 ∂

∂u2
+ v4 ∂

∂u3
+ v3 ∂

∂u4

− u2 ∂

∂v1
− u1 ∂

∂v2
− u4 ∂

∂v3
− u3 ∂

∂v4
,

X8 = 2x4
∂

∂x1
+ 2x1

∂

∂x4
+ u4 ∂

∂u1
+ u3 ∂

∂u2
+ u2 ∂

∂u3
+ u1 ∂

∂u4

+ v4 ∂

∂v1
+ v3 ∂

∂v2
+ v2 ∂

∂v3
+ v1 ∂

∂v4
,

X9 = 2x4
∂

∂x2
+ 2x2

∂

∂x4
+ v4 ∂

∂u1
− v3 ∂

∂u2
+ v2 ∂

∂u3
− v1 ∂

∂u4

− u4 ∂

∂v1
+ u3 ∂

∂v2
− u2 ∂

∂v3
+ u1 ∂

∂v4
,

X10 = 2x4
∂

∂x3
+ 2x3

∂

∂x4
+ u3 ∂

∂u1
− u4 ∂

∂u2
+ u1 ∂

∂u3
− u2 ∂

∂u4

+ v3 ∂

∂v1
− v4 ∂

∂v2
+ v1 ∂

∂v3
− v2 ∂

∂v4
,

X11 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4
,

X12 = (x2
1 − x2

2 − x2
3 + x2

4)
∂

∂x1
+ 2x1x2

∂

∂x2
+ 2x1x3

∂

∂x3
+ 2x1x4

∂

∂x4

− (3x1u
1 − x2v

1 − x3u
2 − x4u

4)
∂

∂u1

− (3x1u
2 + x2v

2 + x3u
1 − x4u

3)
∂

∂u2

− (3x1u
3 − x2v

3 − x3u
4 − x4u

2)
∂

∂u3

− (3x1u
4 + x2v

4 + x3u
3 − x4u

1)
∂

∂u4

− (3x1v
1 + x2u

1 − x3v
2 − x4v

4)
∂

∂v1

− (3x1v
2 − x2u

2 + x3v
1 − x4v

3)
∂

∂v2

− (3x1v
3 + x2u

3 − x3v
4 − x4v

2)
∂

∂v3

− (3x1v
4 − x2u

4 + x3v
3 − x4v

1)
∂

∂v4
,
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X13 = 2x1x2
∂

∂x1
− (x2

1 − x2
2 + x2

3 − x2
4)

∂

∂x2
+ 2x2x3

∂

∂x3
+ 2x2x4

∂

∂x4

− (3x2u
1 + x1v

1 − x3v
2 − x4v

4)
∂

∂u1

− (3x2u
2 − x1v

2 − x3v
1 + x4v

3)
∂

∂u2

− (3x2u
3 + x1v

3 − x3v
4 − x4v

2)
∂

∂u3

− (3x2u
4 − x1v

4 − x3v
3 + x4v

1)
∂

∂u4

− (3x2v
1 − x1u

1 + x3u
2 + x4u

4)
∂

∂v1

− (3x2v
2 + x1u

2 + x3u
1 − x4u

3)
∂

∂v2

− (3x2v
3 − x1u

3 + x3u
4 + x4u

2)
∂

∂v3

− (3x2v
4 + x1u

4 + x3u
3 − x4u

1)
∂

∂v4
,

X14 = 2x1x3
∂

∂x1
+ 2x2x3

∂

∂x2
− (x2

1 + x2
2 − x2

3 − x2
4)

∂

∂x3
+ 2x3x4

∂

∂x4

− (3x3u
1 + x2v

2 + x1u
2 − x4u

3)
∂

∂u1

− (3x3u
2 + x2v

1 − x1u
1 + x4u

4)
∂

∂u2

− (3x3u
3 + x2v

4 + x1u
4 − x4u

1)
∂

∂u3

− (3x3u
4 + x2v

3 − x1u
3 + x4u

2)
∂

∂u4

− (3x3v
1 − x2u

2 + x1v
2 − x4v

3)
∂

∂v1

− (3x3v
2 − x2u

1 − x1v
1 + x4v

4)
∂

∂v2

− (3x3v
3 − x2u

4 + x1v
4 − x4v

1)
∂

∂v3

− (3x3v
4 − x2u

3 − x1v
3 + x4v

2)
∂

∂v4
,

X15 = 2x1x4
∂

∂x1
+ 2x2x4

∂

∂x2
+ 2x3x4

∂

∂x3
+ (x2

1 + x2
2 + x2

3 + x2
4)

∂

∂x4

− (3x4u
1 − x2v

4 − x3u
3 − x1u

4)
∂

∂u1

− (3x4u
2 + x2v

3 + x3u
4 − x1u

3)
∂

∂u2

− (3x4u
3 − x2v

2 − x3u
1 − x1u

2)
∂

∂u3
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− (3x4u
4 + x2v

1 + x3u
2 − x1u

1)
∂

∂u4

− (3x4v
1 + x2u

4 − x3v
3 − x1v

4)
∂

∂v1

− (3x4v
2 − x2u

3 + x3v
4 − x1v

3)
∂

∂v2

− (3x4v
3 + x2u

2 − x3v
1 − x1v

2)
∂

∂v3

− (3x4v
4 − x2u

1 + x3v
2 − x1v

1)
∂

∂v4
,

X16 = u1 ∂

∂u1
+ u2 ∂

∂u2
+ u3 ∂

∂u3
+ u4 ∂

∂u4
+ v1 ∂

∂v1

+ v2 ∂

∂v2
+ v3 ∂

∂v3
+ v4 ∂

∂v4
,

X17 = u2 ∂

∂u1
− u1 ∂

∂u2
− u4 ∂

∂u3
+ u3 ∂

∂u4
− v2 ∂

∂v1

+ v1 ∂

∂v2
+ v4 ∂

∂v3
− v3 ∂

∂v4
,

X18 = u3 ∂

∂u1
+ u4 ∂

∂u2
+ u1 ∂

∂u3
+ u2 ∂

∂u4
+ v3 ∂

∂v1

+ v4 ∂

∂v2
+ v1 ∂

∂v3
+ v2 ∂

∂v4
,

X19 = u4 ∂

∂u1
− u3 ∂

∂u2
− u2 ∂

∂u3
+ u1 ∂

∂u4
− v4 ∂

∂v1

+ v3 ∂

∂v2
+ v2 ∂

∂v3
− v1 ∂

∂v4
,

X20 = v1 ∂

∂u1
+ v2 ∂

∂u2
+ v3 ∂

∂u3
+ v4 ∂

∂u4
− u1 ∂

∂v1

− u2 ∂

∂v2
− u3 ∂

∂v3
− u4 ∂

∂v4
,

X21 = v2 ∂

∂u1
− v1 ∂

∂u2
− v4 ∂

∂u3
+ v3 ∂

∂u4
+ u2 ∂

∂v1

− u1 ∂

∂v2
− u4 ∂

∂v3
+ u3 ∂

∂v4
,

X22 = v3 ∂

∂u1
+ v4 ∂

∂u2
+ v1 ∂

∂u3
+ v2 ∂

∂u4
− u3 ∂

∂v1

− u4 ∂

∂v2
− u1 ∂

∂v3
− u2 ∂

∂v4
,

X23 = v4 ∂

∂u1
− v3 ∂

∂u2
− v2 ∂

∂u3
+ v1 ∂

∂u4
+ u4 ∂

∂v1

− u3 ∂

∂v2
− u2 ∂

∂v3
+ u1 ∂

∂v4
. (1.92)

The result is in full agreement with that of Ibragimov [5].
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5.2. Case 2: ε = 0, λ−1 6= 0. The complete Lie algebra of symmetries
for the Dirac equations with nonvanishing rest mass is spanned by four-
teen generators, including ten infinitesimal generators of the Poincaré group
X1, . . . , X10 and the generators X19, X20, X23, X16. There is also a contin-

uous part generated by the functions F u1
, . . . , F v

4
dependent on x1, . . . , x4,

which satisfy Dirac equations (1.83) with nonvanishing rest mass.

5.3. Case 3: ε 6= 0, λ−1 = 0. The complete Lie algebra in this situation
is spanned by fourteen generators. These generators are X1, . . . , X10, X19,
X20, X23, and X11 −X16/2.

5.4. Case 4: ε 6= 0, λ−1 6= 0. The complete Lie algebra of symmetries
for the nonlinear Dirac equations with nonvanishing rest mass is spanned
by thirteen generators. The generators in this case are the ten infinitesimal
generators of the Poincaré group, X1, . . . , X10, and X19, X20, X23. This
result generalizes the result by Steeb [94] where X20 was found as additional
symmetry to the generators of the Poincaré group.

6. Symmetries of the self-dual SU(2) Yang–Mills equations

We study here classical symmetries of the self-dual SU(2) Yang–Mills
equations. Two cases are considered: the general one and of the so-called
static gauge fields. In the first case we obtain two instanton solutions (the
Belavin–Polyakov–Schwartz–Tyupkin [6] and ’t Hooft instantons [84]) as
invariant solutions for a special choice of symmetry subalgebras. In a similar
way, for the second case we derive a monopole solution [83].

We start with a concise description of the SU(2)-gauge theory referring
the reader to the survey paper by M. K. Prasad [83] for a more extensive
exposition.

6.1. Self-dual SU(2) Yang–Mills equations. Let M be a 4-dimen-
sional Euclidean space with the coordinates x1, . . . , x4. Due to nondegen-
erate metric in M , we make no distinction between contravariant and co-
variant indices, xµ = xµ. The basic object in the gauge theory is the Yang–
Mills gauge potential. The gauge potential is a set of fields Aaµ ∈ C∞(M),
a = 1, . . . , 3, µ = 1, . . . , 4. It is convenient to introduce a matrix-valued
vector field Aµ(x), by setting

Aµ = gT aAaµ, T a =
σa

2i
, a = 1, . . . , 3, µ = 1, . . . , 4, (1.93)

where σa are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.94)

g being a constant, called the gauge coupling constant. Throughout this
section we shall use the Einstein summation convention when an index oc-
curs twice. From the matrix gauge potential Aµ dxµ one constructs the
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matrix-valued field strength Fµν(x) by

Fµν =
∂

∂xµ
Aν −

∂

∂xν
Aµ + [Aµ, Aν ], µ, ν = 1, . . . , 4, (1.95)

where [Aµ, Aν ] = AµAν −AνAµ. If one defines the covariant derivative

Dµ =
∂

∂xµ
+Aµ, (1.96)

then (1.95) is rewritten as

Fµν = [Dµ, Dν ]. (1.97)

In explicit component form, one has

Fµν = gT aF aµν , (1.98)

where

F aµν =
∂

∂xµ
Aaν −

∂

∂xν
Aaµ + gεabcA

b
µA

c
ν (1.99)

and

εabc =





+1 if abc is an even permutation of (1,2,3),

−1 if abc is an odd permutation of (1,2,3),

0 otherwise.

(1.100)

We shall use the expression static gauge field to refer to gauge potentials
that are independent of x4 (x4 to be considered as time), i.e.,

∂

∂x4
Aµ(x) = 0, µ = 1, . . . , 4. (1.101)

For gauge potentials that depend on all four coordinates x1, . . . , x4, the
action functional is defined by

S =
1

4

∫
F aµνF

a
µν d

4x, (1.102)

the integral taken over R4, while for static gauge fields we define the energy
functional by

E =
1

4

∫
F aµνF

a
µν d

3x, (1.103)

whereas in (1.103) the integral is taken over R3.
The extremals of the action S (or of the energy E for static gauge fields)

are found by standard calculus of variations techniques leading to the Euler–
Lagrange equations

∂

∂xµ
Fµν + [Aµ, Fµν ] ≡ [Dµ, Fµν ] = 0, (1.104)

or in components

∂

∂xµ
F aµν + gεabcA

b
µF

c
µν = 0. (1.105)
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Equations (1.105) is a system of second order nonlinear partial dif-
ferential equations for the twelve unknown functions Aaµ, a = 1, . . . , 3,
µ = 1, . . . , 4, that seems hard to solve.

Then one introduces the dual gauge field strength ∗Fµν as

∗Fµν =
1

2
εµνλρFλρ, (1.106)

where εµνλρ is the completely antisymmetric tensor on M defined by

εµνλρ =





+1 if µνλρ is an even permutation of (1,2,3,4),

−1 if µνλρ is an odd permutation of (1,2,3,4),

0 otherwise.

(1.107)

Since the fields Dµ (1.96) satisfy the Jacobi identity

[Dλ, [Dµ, Dν ]] + [Dµ, [Dν , Dλ]] + [Dν , [Dλ, Dµ]] = 0, (1.108)

multiplication of (1.108) by εµνλρ and summation result in

[Dµ,
∗Fµν ] = 0. (1.109)

If we compare (1.104) with (1.109), we see that any gauge field which is
self-dual , i.e., for which

∗Fµν = Fµν , (1.110)

automatically satisfies (1.101). Consequently, the only equations to solve are
(1.110) with ∗Fµν given by (1.106). This is a system of first order nonlinear
partial differential equations.

Instanton solutions for general Yang–Mills equations and monopole so-
lutions for static gauge fields satisfy (1.110) under the condition that S
(1.102) or E (1.103) are finite.

Written in components, (1.110) takes the form

F12 = F34, F13 = −F24, F14 = F23. (1.111)

So in components, the self-dual Yang–Mills equations are described as a
system of nine nonlinear partial differential equations,

−A1
4,1 +A1

3,2 −A1
2,3 +A1

1,4 − g(A2
1A

3
4 −A2

2A
3
3 +A2

3A
3
2 −A2

4A
3
1) = 0,

−A2
4,1 +A2

3,2 −A2
2,3 +A2

1,4 + g(A1
1A

3
4 −A1

2A
3
3 +A1

3A
3
2 −A1

4A
3
1) = 0,

−A3
4,1 +A3

3,2 −A3
2,3 +A3

1,4 − g(A1
1A

2
4 −A1

2A
2
3 +A1

3A
2
3 −A1

4A
2
1) = 0,

A1
3,1 +A1

4,2 −A1
1,3 −A1

2,4 + g(A2
1A

3
3 +A2

2A
3
4 −A2

3A
3
1 −A2

4A
3
2) = 0,

A2
3,1 +A2

4,2 −A2
1,3 −A2

2,4 − g(A1
1A

3
3 −A1

2A
3
4 −A1

3A
3
1 −A1

4A
3
2) = 0,

A3
3,1 +A3

4,2 −A3
1,3 −A3

2,4 + g(A1
1A

2
3 +A1

2A
2
4 −A1

3A
2
1 −A1

4A
2
2) = 0,

A1
2,1 −A1

1,2 −A1
4,3 +A1

3,4 + g(A2
1A

3
2 −A2

2A
3
1 −A2

3A
3
4 +A2

4A
3
3) = 0,

A2
2,1 −A2

1,2 −A2
4,3 +A2

3,4 − g(A1
1A

3
2 −A1

2A
3
1 −A1

3A
3
4 +A1

4A
3
3) = 0,

A3
2,1 −A3

1,2 −A3
4,3 +A3

3,4 + g(A1
1A

2
2 −A1

2A
2
1 −A1

3A
2
4 +A1

4A
2
3) = 0,

(1.112)
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whereas in (1.112)

Aaµ,ν =
∂

∂xν
Aaµ, a = 1, . . . , 3, µ, ν = 1, . . . , 4. (1.113)

Thus, we obtain a system E ⊂ J1(π) for π : R12 × R4 → R4.

6.2. Classical symmetries of self-dual Yang–Mills equations. In
order to construct the Lie algebra of classical symmetries of (1.112), we start
at a vector field V given by

V = V x1
∂

∂x1
+ · · ·+ V x4

∂

∂x4
+ V A1

1
∂

∂A1
1

+ · · ·+ V A3
4
∂

∂A3
4

. (1.114)

The condition for V to be a symmetry of equations (1.112) now leads to an
overdetermined system of partial differential equations for the components

V x1 , . . . , V x4 , V A1
1 , . . . , V A3

4 , which are functions dependent of the variables
x1, . . . , x4, A

1
1, . . . , A

3
4.

The general solution of this overdetermined system of partial differential
equations constitutes a Lie algebra of symmetries, generated by the vector
fields

V f1

1 = f1
x1

∂

∂A1
1

+ f1
x2

∂

∂A1
2

+ f1
x3

∂

∂A1
3

+ f1
x4

∂

∂A1
4

+ f1gA3
1

∂

∂A2
1

+ f1gA3
2

∂

∂A2
2

+ f1gA3
3

∂

∂A2
3

+ f1gA3
4

∂

∂A2
4

− f1gA2
1

∂

∂A3
1

− f1gA2
2

∂

∂A3
2

− f1gA2
3

∂

∂A3
3

− f1gA2
4

∂

∂A3
4

,

V f2

2 = −f2gA2
1

∂

∂A1
1

− f2gA2
2

∂

∂A1
2

− f2gA2
3

∂

∂A1
3

− f2gA2
4

∂

∂A1
4

+ f2gA1
1

∂

∂A2
1

+ f2gA1
2

∂

∂A2
2

+ f2gA1
3

∂

∂A2
3

+ f2gA1
4

∂

∂A2
4

− f2
x1

∂

∂A3
1

− f2
x2

∂

∂A3
2

− f2
x3

∂

∂A3
3

− f2
x4

∂

∂A3
4

,

V f3

3 = f3gA3
1

∂

∂A1
1

+ f3gA3
2

∂

∂A1
2

+ f3gA3
3

∂

∂A1
3

+ f3gA3
4

∂

∂A1
4

− f3
x1

∂

∂A2
1

− f3
x2

∂

∂A2
2

− f3
x3

∂

∂A2
3

− f3
x4

∂

∂A2
4

− f3gA1
1

∂

∂A3
1

− f3gA1
2

∂

∂A3
2

− f3gA1
3

∂

∂A3
3

− f3gA1
4

∂

∂A3
4

,

V4 =
∂

∂x1
, V5 =

∂

∂x2
, V6 =

∂

∂x3
, V7 =

∂

∂x4
,

V8 = x2
∂

∂x1
− x1

∂

∂x2
+A1

2

∂

∂A1
1

−A1
1

∂

∂A1
2

+A2
2

∂

∂A2
1

−A2
1

∂

∂A2
2

+A3
2

∂

∂A3
1

−A3
1

∂

∂A3
2

,
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V9 = −x3
∂

∂x1
+ x1

∂

∂x3
−A1

3

∂

∂A1
1

+A1
1

∂

∂A1
3

−A2
3

∂

∂A2
1

+A2
1

∂

∂A2
3

−A3
3

∂

∂A3
1

+A3
1

∂

∂A3
3

,

V10 = −x4
∂

∂x1
+ x1

∂

∂x4
−A1

4

∂

∂A1
1

+A1
1

∂

∂A1
4

−A2
4

∂

∂A2
1

+A2
1

∂

∂A2
4

−A3
4

∂

∂A3
1

+A3
1

∂

∂A3
4

,

V11 = −x3
∂

∂x2
+ x2

∂

∂x3
−A1

3

∂

∂A1
2

+A1
2

∂

∂A1
3

−A2
3

∂

∂A2
2

+A2
2

∂

∂A2
3

−A3
3

∂

∂A3
2

+A3
2

∂

∂A3
3

,

V12 = x4
∂

∂x2
− x2

∂

∂x4
+A1

4

∂

∂A1
2

−A1
2

∂

∂A1
4

+A2
4

∂

∂A2
2

−A2
2

∂

∂A2
4

+A3
4

∂

∂A3
2

−A3
2

∂

∂A3
4

,

V13 = −x4
∂

∂x3
+ x3

∂

∂x4
−A1

4

∂

∂A1
3

+A1
3

∂

∂A1
4

−A2
4

∂

∂A2
3

+A2
3

∂

∂A2
4

−A3
4

∂

∂A3
3

+A3
3

∂

∂A3
4

,

V14 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

−A1
1

∂

∂A1
1

−A1
2

∂

∂A1
2

−A1
3

∂

∂A1
3

−A1
4

∂

∂A1
4

−A2
1

∂

∂A2
1

−A2
2

∂

∂A2
2

−A2
3

∂

∂A2
3

−A2
4

∂

∂A2
4

−A3
1

∂

∂A3
1

−A3
2

∂

∂A3
2

−A3
3

∂

∂A3
3

−A3
4

∂

∂A3
4

,

V15 = (−x2
1 + x2

2 + x2
3 + x2

4)
∂

∂x1
− 2x1x2

∂

∂x2
− 2x1x3

∂

∂x3
− 2x1x4

∂

∂x4

+ 2(x1A
1
1 + x2A

1
2 + x3A

1
3 + x4A

1
4)

∂

∂A1
1

+ 2(x1A
1
2 − x2A

1
1)

∂

∂A1
2

+ 2(x1A
1
3 − x3A

1
1)

∂

∂A1
3

+ 2(x1A
1
4 − x4A

1
1)

∂

∂A1
4

+ 2(x1A
2
1 + x2A

2
2 + x3A

2
3 + x4A

2
4)

∂

∂A2
1

+ 2(x1A
2
2 − x2A

2
1)

∂

∂A2
2

+ 2(x1A
2
3 − x3A

2
1)

∂

∂A2
3

+ 2(x1A
2
4 − x4A

2
1)

∂

∂A2
4
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+ 2(x1A
3
1 + x2A

3
2 + x3A

3
3 + x4A

3
4)

∂

∂A3
1

+ 2(x1A
3
2 − x2A

3
1)

∂

∂A3
2

+ 2(x1A
3
3 − x3A

3
1)

∂

∂A3
3

+ 2(x1A
3
4 − x4A

3
1)

∂

∂A3
4

,

V16 = −2x2x1
∂

∂x1
+ (x2

1 − x2
2 + x2

3 + x2
4)

∂

∂x2
− 2x2x3

∂

∂x3
− 2x2x4

∂

∂x4

+ 2(−x1A
1
2 + x2A

1
1)

∂

∂A1
1

+ 2(x1A
1
1 + x2A

1
2 + x3A

1
3 + x4A

1
4)

∂

∂A1
2

+ 2(x2A
1
3 − x3A

1
2)

∂

∂A1
3

+ 2(x2A
1
4 − x4A

1
2)

∂

∂A1
4

+ 2(−x1A
2
2 + x2A

2
1)

∂

∂A2
1

+ 2(x1A
2
1 + x2A

2
2 + x3A

2
3 + x4A

2
4)

∂

∂A2
2

+ 2(x2A
2
3 − x3A

2
2)

∂

∂A2
3

+ 2(x2A
2
4 − x4A

2
2)

∂

∂A2
4

+ 2(−x1A
3
2 + x2A

3
1)

∂

∂A3
1

+ 2(x1A
3
1 + x2A

3
2 + x3A

3
3 + x4A

3
4)

∂

∂A3
2

+ 2(x2A
3
3 − x3A

3
2)

∂

∂A3
3

+ 2(x2A
3
4 − x4A

3
2)

∂

∂A3
4

,

V17 = −2x3x1
∂

∂x1
− 2x3x2

∂

∂x2
+ (x2

1 + x2
2 − x2

3 + x2
4)

∂

∂x3
− 2x3x4

∂

∂x4

+ 2(−x1A
1
3 + x3A

1
1)

∂

∂A1
1

+ 2(−x2A
1
3 + x3A

1
2)

∂

∂A1
2

+ 2(x1A
1
1 + x2A

1
2 + x3A

1
3 + x4A

1
4)

∂

∂A1
3

+ 2(x3A
1
4 − x4A

1
3)

∂

∂A1
4

+ 2(−x1A
2
3 + x3A

2
1)

∂

∂A2
1

+ 2(−x2A
2
3 + x3A

2
2)

∂

∂A2
2

+ 2(x1A
2
1 + x2A

2
2 + x3A

2
3 + x4A

2
4)

∂

∂A2
3

+ 2(x3A
2
4 − x4A

2
3)

∂

∂A2
4

+ 2(−x1A
3
3 + x3A

3
1)

∂

∂A3
1

+ 2(−x2A
3
3 + x3A

3
2)

∂

∂A3
2

+ 2(x1A
3
1 + x2A

3
2 + x3A

3
3 + x4A

3
4)

∂

∂A3
3

+ 2(x3A
3
4 − x4A

3
3)

∂

∂A3
4

,

V18 = −2x4x1
∂

∂x1
− 2x4x2

∂

∂x2
− 2x4x3

∂

∂x3
+ (x2

1 + x2
2 + x2

3 − x2
4)

∂

∂x4

+ 2(−x1A
1
4 + x4A

1
1)

∂

∂A1
1

+ 2(−x2A
1
4 + x4A

1
2)

∂

∂A1
2

+ 2(−x3A
1
4 + x4A

1
3)

∂

∂A1
3

+ 2(x1A
1
1 + x2A

1
2 + x3A

1
3 + x4A

1
4)

∂

∂A1
4
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+ 2(−x1A
2
4 + x4A

2
1)

∂

∂A2
1

+ 2(−x2A
2
4 + x4A

2
2)

∂

∂A2
2

+ 2(−x3A
2
4 + x4A

2
3)

∂

∂A2
3

+ 2(x1A
2
1 + x2A

2
2 + x3A

2
3 + x4A

2
4)

∂

∂A2
4

+ 2(−x1A
3
4 + x4A

3
1)

∂

∂A3
1

+ 2(−x2A
3
4 + x4A

3
2)

∂

∂A3
2

+ 2(−x3A
3
4 + x4A

3
3)

∂

∂A3
3

+ 2(x1A
3
1 + x2A

3
2 + x3A

3
3 + x4A

3
4)

∂

∂A3
4

.

(1.115)

The functions F 1, F 2, F 3 in the symmetries V1, V2, V3 are arbitrary,
depending on the variables x1, x2, x3, x4. The vector fields V1, V2, V3 are
just the generators of the gauge transformations.

The vector fields V4, V5, V6, V7 are generators of translations while the
fields V8, . . . , V13 refer to infinitesimal rotations in R4, X4, . . . , X18 being the
infinitesimal generators of the conformal group.

6.3. Instanton solutions. In order to construct invariant solutions
associated to symmetries of the self-dual Yang–Mills equations (1.112), we
start from the vector fields X1, X2, X3 defined by

X1 = V8 + V
f1
1

1 + V
f2
1

2 + V
f3
1

3 ,

X2 = V9 + V
f1
2

1 + V
f2
2

2 + V
f3
2

3 ,

X3 = V10 + V
f1
3

1 + V
f2
3

2 + V
f3
3

3 , (1.116)

i.e., we take a combination of a rotation and a special choice for the

gauge transformations choosing particular values f ji of arbitrary func-
tions f j . We also construct commutators of the vector fields X1, X2, X3,

[X1, X2], [X1, X3], [X2, X3] (1.117)

and make the following choice for the gauge transformations

f1
1 = 0, f2

1 = −1, f3
1 = 0,

f1
2 = 0, f2

2 = 0, f3
2 = −1,

f1
3 = −1, f2

3 = 0, f3
3 = 0. (1.118)

In order to derive invariant solutions (see equations (1.40) on p. 28), we
impose the additional conditions. Namely, we compute generating functions

(ϕi)
j
µ = Yi ω

Ajµ
, j = 1, . . . , 3, µ = 1, . . . , 4, (1.119)

whereas in (1.119) ω
Ajµ

is the contact form associated to Ajµ, i.e.,

ω
Ajµ

= dAjµ −Ajµ,ν dxν ,
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while Yi refers to the fields X1, X2, X3, [X1, X2], [X1, X3], [X2, X3]. Then
we impose additional equations

(
ϕi
)j
µ
(x1, . . . , x4, . . . , A

j
µ, . . . , A

j
µν , . . . ) = 0 (1.120)

and solve them together with the initial system. From conditions (1.119)
we arrive at a system of 6× 12 = 72 equations.

The resulting system can be solved in a straightforward way, leading to
the following intermediate presentation

A1
1 = x4F (r), A1

2 = x3F (r), A1
3 = −x2F (r), A1

4 = −x1F (r),

A2
1 = −x3F (r), A2

2 = x4F (r), A2
3 = x1F (r), A2

4 = −x2F (r),

A3
1 = x2F (r), A3

2 = −x1F (r), A3
3 = x4F (r), A3

4 = −x3F (r),
(1.121)

where

r = (x2
1 + x2

2 + x2
3 + x2

4)
1
2 . (1.122)

When obtaining the monopole solution (see below), we shall discuss in some
more detail how to solve a system of partial differential equations like (1.120).
Substitution of (1.122) in (1.95) yields an ordinary differential equation for
the function F (r), i.e.,

dF (r)

dr
+ grF (r)2 = 0, (1.123)

the solution of which is given by

F (r) =
2g−1

r2 + C
, (1.124)

C being a constant. The result (1.124) is just the Belavin–Polyakov–

Schwartz–Tyupkin instanton solution!
More general, if we choose

f2
1 = ±1, f3

2 = ±1, f1
3 = ±1, (1.125)

and

f2
1 f

3
2 f

1
3 = −1, (1.126)

or equivalently

f1
3 = −f2

1 f
3
2 , (1.127)

we arrive at

A1
1 = x4F (r), A1

2 = x3F (r), A1
3 = −x2F (r), A1

4 = −x1F (r),

A2
1 = x3F (r)f2

1 , A2
2 = −x4F (r)f2

1 , A2
3 = −x1F (r)f2

1 , A2
4 = −x2F (r)f2

1 ,

A3
1 = −x2F (r)f2

3 , A3
2 = x1F (r)f2

3 , A3
3 = −x4F (r)f2

3 , A3
4 = −x3F (r)f2

3 ,
(1.128)
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while (1.128) with F (r) has to satisfy (1.112), which results in

∂F (r)

∂r
+ grf2

1 f
2
3F (r)2 = 0. (1.129)

Choosing f2
1 , f3

2 , f1
3 as in (1.125) but with

f2
1 f

3
2 f

1
3 = +1, (1.130)

then the result is

A1
1 = x4F (r), A1

2 =− x3F (r), A1
3 = x2F (r), A1

4 =− x1F (r),

A2
1 = −x3F (r)f2

1 , A2
2 =− x4F (r)f2

1 , A2
3 = x1F (r)f2

1 , A2
4 =x2F (r)f2

1 ,

A3
1 = x2F (r)f2

3 , A3
2 =− x1F (r)f2

3 , A3
3 = −x4F (r)f2

3 , A3
4 =x3F (r)f2

3 ,
(1.131)

while F (r) has to satisfy

r
dF (r)

dr
+ 4F (r) + gr2f2

1 f
3
2F (r)2 = 0. (1.132)

The solution of (1.132)

F (r) = −2

g
(f2

1 f
3
2 )−1 a2

(r2 + a2)r2
(1.133)

together with (1.131) is just the ’t Hooft instanton solution with instanton
number k = 1. This solution can be obtained from (1.124) by a gauge
transformation.

6.4. Classical symmetries for static gauge fields. The equations
for the static SU(2) gauge field are described by (1.109) and (1.101). The
symmetries for the static gauge field are obtained from those for the time-
dependent case or straightforwardly in the following way . The respective
computations then results in the following Lie algebra of symmetries for the
static self-dual SU(2) Yang–Mills equations

V C1

1 = C1
x1

∂

∂A1
1

+ C1
x2

∂

∂A1
2

+ C1
x3

∂

∂A1
3

+ C1gA3
1

∂

∂A2
1

+ C1gA3
2

∂

∂A2
2

+ C1gA3
3

∂

∂A2
3

+ C1gA3
4

∂

∂A2
4

− C1gA2
1

∂

∂A3
1

− C1gA2
2

∂

∂A3
2

− C1gA2
3

∂

∂A3
3

− C1gA2
4

∂

∂A3
4

,

V C2

2 = −C2gA2
1

∂

∂A1
1

− C2gA2
2

∂

∂A1
2

− C2gA2
3

∂

∂A1
3

− C2gA2
4

∂

∂A1
4

+ C2gA1
1

∂

∂A2
1

+ C2gA1
2

∂

∂A2
2

+ C2gA1
3

∂

∂A2
3

+ C2gA1
4

∂

∂A2
4

− C2
x1

∂

∂A3
1

− C2
x2

∂

∂A3
2

− C2
x3

∂

∂A3
3

,
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V C3

3 = C3gA3
1

∂

∂A1
1

+ C3gA3
2

∂

∂A1
2

+ C3gA3
3

∂

∂A1
3

+ C3gA3
4

∂

∂A1
4

− C3
x1

∂

∂A2
1

− C3
x2

∂

∂A2
2

− C3
x3

∂

∂A2
3

− C3gA1
1

∂

∂A3
1

− C3gA1
2

∂

∂A3
2

− C3gA1
3

∂

∂A3
3

− C3gA1
4

∂

∂A3
4

,

V4 =
∂

∂x1
, V5 =

∂

∂x2
, V6 =

∂

∂x3
,

V7 = x2
∂

∂x1
− x1

∂

∂x2
+A1

2

∂

∂A1
1

−A1
1

∂

∂A1
2

+A2
2

∂

∂A2
1

−A2
1

∂

∂A2
2

+A3
2

∂

∂A3
1

−A3
1

∂

∂A3
2

,

V8 = −x3
∂

∂x1
+ x1

∂

∂x3
+A1

1

∂

∂A1
3

−A1
3

∂

∂A1
1

−A2
3

∂

∂A2
1

+A2
1

∂

∂A2
3

−A3
3

∂

∂A3
1

+A3
1

∂

∂A3
3

,

V9 = −x3
∂

∂x2
+ x2

∂

∂x3
−A1

3

∂

∂A1
2

+A1
2

∂

∂A1
3

−A2
3

∂

∂A2
2

+A2
2

∂

∂A2
3

−A3
3

∂

∂A3
2

+A3
2

∂

∂A3
3

,

V10 = x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3
+ x4

∂

∂x4

−A1
1

∂

∂A1
1

−A1
2

∂

∂A1
2

−A1
3

∂

∂A1
3

−A1
4

∂

∂A1
4

−A2
1

∂

∂A2
1

−A2
2

∂

∂A2
2

−A2
3

∂

∂A2
3

−A2
4

∂

∂A2
4

−A3
1

∂

∂A3
1

−A3
2

∂

∂A3
2

−A3
3

∂

∂A3
3

−A3
4

∂

∂A3
4

. (1.134)

In (1.134) C1, C2, C3 are arbitrary functions of x1, . . . , x3, while V1,
V2, V3 themselves are just the generators of the gauge transformations. The
fields V7, V8, V9 generate rotations, while V10 is the generator of the scale
change of variables.

6.5. Monopole solution. In order to construct invariant solutions to
the static SU(2) gauge field, we proceed in a way analogously to the one for
the time-dependent field setting. We define the vector fields Y1, Y2, Y3 by

Y1 = V7 − V 1
2 ,

Y2 = V8 − V 1
3 , (1.135)

Y3 = V9 − V 1
1 ,
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i.e., put C1, C2, and C3 equal to g−1. It results in 36 equations for the
functions Aaµ:

1 : A2
1 +A1

2 − x2A
1
1,1 + x1A

1
1,2 = 0, nonumber (1.136)

2 : −A1
1 +A2

2 − x2A
2
1,1 + x1A

2
1,2 = 0,

3 : A3
2 − x2A

3
1,1 + x1A

3
1,2 = 0,

4 : −A1
1 +A2

2 − x2A
1
2,1 + x1A

1
2,2 = 0,

5 : −A2
1 −A1

2 − x2A
2
2,1 + x1A

2
2,2 = 0,

6 : −A3
1 − x2A

3
2,1 + x1A

3
2,2 = 0,

7 : A2
3 − x2A

1
3,1 + x1A

1
3,2 = 0,

8 : −A1
3 − x2A

2
3,1 + x1A

2
3,2 = 0,

9 : −x2A
3
3,1 + x1A

3
3,2 = 0,

10 : A2
4 − x2A

1
4,1 + x1A

1
4,2 = 0,

11 : −A1
4 − x2A

2
4,1 + x1A

2
4,2 = 0,

12 : −x2A
3
4,1 + x1A

3
4,2 = 0, (1.137)

13 : −A3
1 −A1

3 − x1A
1
1,3 + x3A

1
1,1 = 0,

14 : −A2
3 − x1A

2
1,3 + x3A

2
1,1 = 0,

15 : A1
1 −A3

3 − x1A
3
1,3 + x3A

3
1,1 = 0,

16 : −A3
2 − x1A

1
2,3 + x3A

1
2,1 = 0,

17 : −x1A
2
2,3 + x3A

2
2,1 = 0,

18 : A1
2 −A3

3 − x1A
3
2,3 + x3A

3
2,1 = 0,

19 : A1
1 − x1A

1
3,3 + x3A

1
3,1 = 0,

20 : A2
1 − x1A

2
3,3 + x3A

2
3,1 = 0,

21 : A3
1 +A1

3 − x1A
3
3,3 + x3A

3
3,1 = 0,

22 : −A3
4 − x1A

1
4,3 + x3A

1
4,1 = 0, (1.138)

23 : −x1A
2
4,3 + x3A

2
4,1 = 0,

24 : A1
4 − x1A

3
4,3 + x3A

3
4,1 = 0, (1.139)

25 : −x2A
1
1,3 + x3A

1
1,2 = 0,

26 : −A3
1 − x2A

2
1,3 + x3A

2
1,2 = 0,

27 : A2
1 − x2A

3
1,3 + x3A

3
1,2 = 0,

28 : −A1
3 − x2A

1
2,3 + x3A

1
2,2 = 0,

29 : −A3
2 −A2

3 − x2A
2
2,3 + x3A

2
2,2 = 0,

30 : A2
2 −A3

3 − x2A
3
2,3 + x3A

3
2,2 = 0,
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31 : A1
2 − x2A

1
3,3 + x3A

1
3,2 = 0,

32 : A2
2 −A3

3 − x2A
2
3,3 + x3A

2
3,2 = 0.

33 : A3
2 +A2

3 − x2A
3
3,3 + x3A

3
3,2 = 0.

34 : −x2A
1
4,3 + x3A

1
4,2 = 0.

35 : −A3
4 − x2A

2
4,3 + x3A

2
4,2 = 0.

36 : A2
4 − x2A

3
4,3 + x3A

3
4,2 = 0. (1.140)

We shall now indicate in more detail how to solve (1.140).
Note, that due to (1.137)

A3
4 = F 1(r1,2, x3), (1.141)

where

r1,2 = (x2
1 + x2

2)
1
2 , (1.142)

and due to (1.139)

A1
4 = x1

(
∂F 1(r1,2, x3)

∂x3
− x3

r1,2

∂F 1(r1,2, x3)

∂r1,2

)
. (1.143)

Now let

∂F 1(r1,2, x3)

∂x3
− x3

r1,2

∂F 1(r1,2, x3)

∂r1,2

def
= H(r1,2, x3). (1.144)

Substitution of (1.141) and (1.144) into (1.138) results in

F 1(r1,2, x3) = x3H(r1,2, x3) +
x2

1

r1,2

∂H(r1,2, x3)

∂r1,2
− x2

1

∂H(r1,2, x3)

∂x3
, (1.145)

or

F 1(r1,2, x3)− x3H(r1,2, x3) = x2
1

(
1

r1,2

∂H(r1,2, x3)

∂r1,2
− ∂H(r1,2, x3)

∂x3

)
.

(1.146)

Differentiation of (1.146) with respect to x1, x2 yields

1

r1,2

∂H(r1,2, x3)

∂r1,2
− ∂H(r1,2, x3)

∂x3
= 0,

F 1(r1,2, x3) = x3H(r1,2, x3). (1.147)

From the second equation in (1.147) and equation (1.144) we obtain

H(r1,2, x3) = l(r), (1.148)

where

r = (x2
1 + x2

2 + x2
3)

1
2 , (1.149)

and finally, due to (1.147) and (1.123), one has

A2
4 = x1l(r), A2

4 = x2l(r), A3
4 = x3l(r). (1.150)
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Handling the remaining system in a similar way, a straightforward but te-
dious computation leads to the general solution of (1.123), i.e.,

A1
1 =

1

2
x2

1f(r) + k(r), A1
2 =

1

2
x1x2f(r)− x3u(r),

A1
3 =

1

2
x1x3f(r) + x2u(r), A2

1 =
1

2
x1x2l(r) + x3u(r),

A2
2 =

1

2
x2

2f(r) + k(r), A2
3 =

1

2
x2x3f(r)− x1u(r),

A3
1 =

1

2
x1x3f(r)− x2u(r), A3

2 =
1

2
x2x3f(r) + x1u(r),

A3
3 =

1

2
x2

3f(r) + k(r), A2
4 = x1l(r),

A2
4 = x2l(r), A3

4 = x3l(r), (1.151)

where u, l, k, f are functions of r.
Substitution of (1.151) into (1.95) and (1.95) yields a system of three

ordinary differential equations for the functions u, l, k, f :

l′ + u′ − gru2 − grul + 1

2
grfk = 0,

r2u′ + 2ru− rl − gr3ul + grk2 +
1

2
gr3fk = 0,

k′ − 1

2
rf − grku− grlk − 1

2
gr3fu = 0. (1.152)

If we choose

f(r) = k(r) = 0, l(r) =
h(r)

r
, u(r) = −a(r)

r
, (1.153)

we are led by (1.151), (1.153) to the monopole solution obtained by Prasad
and Sommerfeld [84] by imposing the ansatz (1.151), (1.153).
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CHAPTER 2

Higher symmetries and conservation laws

In this chapter, we specify general constructions described for infinite jets
to infinitely prolonged differential equations. We describe basic structures
existing on these objects, give an outline of differential calculus over them
and introduce the notions of a higher symmetry and of a conservation law.

We also compute higher symmetries and conservation laws for some
equations of mathematical physics.

1. Basic structures

Now we introduce the main object of our interest:

Definition 2.1. The inverse limit proj liml→∞ E l with respect to pro-
jections πl+1,l is called the infinite prolongation of the equation E and is
denoted by E∞ ⊂ J∞(π).

In the sequel, we shall mostly deal with formally integrable equations
E ⊂ Jk(π) (see Definition 1.20 on p. 30), which means that all E l are smooth
manifolds while the mappings πk+l+1,k+l : E l+1 → E l are smooth locally
trivial fiber bundles.

Infinite prolongations are objects of the categoryM∞ (see Example 1.5
on p. 10). Hence, general approach exposed in Subsection 1.3 of Chapter 1
can be applied to them just in the same manner as it was done for manifolds
of infinite jets. In this section, we give a brief outline of calculus over E∞ and
describe essential structures specific for infinite prolongations of differential
equations.

1.1. Calculus. Let π : E → M be a vector bundle and E ⊂ Jk(π) be
a k-th order differential equation. Then we have the embeddings εl : E l ⊂
Jk+l(π) for all l ≥ 0. We define a smooth function on E l as the restriction
f |El of a smooth function f ∈ Fk+l(π). The set Fl(E) of all functions
on E l forms an R-algebra in a natural way and ε∗l : Fk+l(π) → Fl(E) is a
homomorphism. In the case of formally integrable equations, the algebra

Fl(E) coincides with C∞(E l). Let Il
def
= ker ε∗l .

57
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Due to commutativity of the diagram

Fk+l(π)
ε∗l → Fl(E)

Fk+l+1(π)

π∗k+l+1,k+l

↓ ε∗l+1→ Fl+1(E)

π∗k+l+1,k+l

↓

one has Il(E) ⊂ Il+1(E). Then I(E) =
⋃
l≥0 Il(E) is an ideal in F(π) which

is called the ideal of the equation E . The function algebra on E∞ is the quo-
tient F(E) = F(π)/I(E) and coincides with inj liml→∞Fl(E) with respect
to the system of homomorphisms π∗k+l+1,k+l. For all l ≥ 0, we have the

homomorphisms ε∗l : Fl(E) → F(E). When E is formally integrable, they
are monomorphic, but in any case the algebra F(E) is filtered by the images
of ε∗l .

Now, to construct differential calculus on E∞, one needs the general
algebraic scheme exposed in Chapter 4 and applied to the filtered algebra
F(E). However, in the case of formally integrable equations, due to the
fact that all E l are smooth manifolds, this scheme may be simplified and
combined with a purely geometrical approach (cf. similar constructions of
Subsection 1.3 of Chapter 1).

Namely, differential forms in this case are defined as elements of the

module Λ∗(E) def
=
⋃
l≥0 Λ∗(E l), where Λ∗(E l) is considered to be embedded

into Λ∗(E l+1) by π∗k+l+1,k+l. A vector field on E∞ is a derivation X : F(E)→
F(E) agreed with filtration, i.e., such that X(Fl(E)) ⊂ Fl+α(E) for some
integer α = α(X) ∈ Z. Just like in the case J∞(π), we define the de Rham

complex over E∞ and obtain “usual” relations between standard operations
(contractions, de Rham differential and Lie derivatives).

In special coordinates the infinite prolongation of the equation E is de-
termined by the system similar to (1.41) on p. 29 with the only difference
that |σ| is unlimited now. Thus, the ideal I(E) is generated by the functions
DσF

j , |σ| ≥ 0, j = 1, . . . ,m. From these remarks we obtain the following
important fact.

Example 2.1. Let E be a formally integrable equation. Then from the
above said it follows that the ideal I(E) is stable with respect to the action
of the total derivatives Di, i = 1, . . . , n = dimM . Consequently, the action

DE
i

def
= Di

∣∣
F(E) : F(E) → F(E) is well defined and DE

i are filtered deriva-
tions. We can reformulate it in other words by saying that the vector fields
Di are tangent to any infinite prolongation and thus determine vector fields
on E∞. We shall often skip the superscript E in the notation of the above
defined restrictions.

The fact established in the last example plays a crucial role in the theory
of infinite prolongations. We continue to discuss it in the next section.
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To finish this one, let us make a remark concerning local coordinates.
Let E be locally represented with equations (1.41). Assume that the latter
is resolved in the form

u
αj
σj

= f j(x1, . . . , xn, . . . , u
β
σ, . . . ), j = 1, . . . , r,

in such a way that

(i) the set of functions uα1

σ1 , . . . , u
αr
σr has at the left-hand side the empty

intersection with the set of functions uβσ at the left-hand side and
(ii) uαi

σi+τ
= u

αj
σj+τ ′

for no τ, τ ′ unless i = j.

In this case, all coordinate functions in the system under consideration may
be partitioned into two parts: those of the form u

αj
σj+τ

, |τ | ≥ 0, j = 1, . . . , r,
and all others. We call the latter ones internal coordinates on E∞. Note
that all constructions of differential calculus over E∞ can be expressed in
terms of internal coordinates.

Example 2.2. Consider a system of evolution equations of the form

(1.22) (see p. 16). Then the functions x1, . . . , xn, t, . . . , u
j
σ1,...,σn,0

, σi ≥ 0,
j = 1, . . . ,m, where t = xn+1, may be taken for internal coordinates on E∞.
The total derivatives restricted onto E∞ are expressed as

Di =
∂

∂xi
+

n∑

j=1

∑

|σ|≥0

ujσ+1i

∂

∂uσ
, i = 1, . . . , n,

Dt =
∂

∂t
+

n∑

j=1

∑

|σ|≥0

Dσ(f
j)

∂

∂uσ
(2.1)

in these coordinates, while the Cartan forms are written down as

ωjσ = dujσ −
n∑

i=1

ujσ+1i
dxi −Dσ(f

j) dt, (2.2)

where all multi-indices σ are of the form σ = (σ1, . . . , σn, 0).

1.2. Cartan distribution. Let π : E → M be a vector bundle and
E ⊂ Jk(π) be a formally integrable equation.

Definition 2.2. Let θ ∈ J∞(π). Then

(i) The Cartan plane Cθ = Cθ(π) ⊂ TθJ∞(π) at θ is the linear envelope of
tangent planes to all manifolds j∞(ϕ)(M), ϕ ∈ Γ(π), passing through
the point θ.

(ii) If θ ∈ E∞, the intersection Cθ(E) def
= Cθ(π) ∩ TθE∞ is called Cartan

plane of E∞ at θ.

The correspondence θ 7→ Cθ(π), θ ∈ J∞(π) (respectively, θ 7→ Cθ(E∞),
θ ∈ E∞) is called the Cartan distribution on J∞(π) (respectively, on E∞).

The following result shows the crucial difference between the Cartan
distributions on finite and infinite jets (or between those on finite and infinite
prolongations).
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Proposition 2.1. For any vector bundle π : E → M and a formally

integrable equation E ⊂ Jk(π) one has:

(i) The Cartan plane Cθ(π) is n-dimensional at any point θ ∈ J∞(π).
(ii) Any point θ ∈ E∞ is generic, i.e., Cθ(π) ⊂ TθE∞ and thus Cθ(E∞) =
Cθ(J∞).

(iii) Both distributions, C(J∞) and C(E∞), are integrable.

Proof. Let θ ∈ J∞(π) and π∞(θ) = x ∈ M . Then the point θ com-
pletely determines all partial derivatives of any section ϕ ∈ Γloc(π) such that
its graph passes through θ. Consequently, all such graphs have a common
tangent plane at this point which coincides with Cθ(π). This proves the first
statement.

To prove the second one, recall Example 2.1: locally, any vector field Di

is tangent to E∞. But as it follows from (1.27) on p. 18, one has iDiω
j
σ = 0

for any Di and any Cartan form ωjσ. Hence, linear independent vector fields
D1, . . . , Dn locally lie both in C(π) and in C(E∞) which gives the result.

Finally, as it follows from the above said, the module

CD(π)
def
= {X ∈ D(π) | X lies in C(π)} (2.3)

is locally generated by the fields D1, . . . , Dn. But it is easily seen that
[Dα, Dβ] = 0 for all α, β = 1, . . . , n and consequently [CD(π), CD(π)] ⊂
CD(π). The same reasoning is valid for

CD(E) def
= {X ∈ D(E∞) | X lies in C(E∞)}. (2.4)

This finishes the proof of the proposition.

We shall describe now maximal integral manifolds of the Cartan distri-
butions on J∞(π) and E∞.

Proposition 2.2. Maximal integral manifolds of the Cartan distribu-

tion C(π) are graph of j∞(ϕ), ϕ ∈ Γloc(π).

Proof. Note first that graphs of infinite jets are integral manifolds of
the Cartan distribution of maximal dimension (equaling to n) and that any
integral manifold projects onto Jk(π) and M without singularities.

Let now N ⊂ J∞(π) be an integral manifold and N k def
= π∞,kN ⊂ Jk(π),

N ′ def
= π∞N ⊂ M . Hence, there exists a diffeomorphism ϕ′ : N ′ → N0 such

that π ◦ ϕ′ = idN ′ . Then by the Whitney theorem on extension for smooth
functions [71], there exists a local section ϕ : M → E satisfying ϕ |N ′ = ϕ′

and jk(ϕ)(M) ⊃ Nk for all k > 0. Consequently, j∞(ϕ)(M) ⊃ N .

Corollary 2.3. Maximal integral manifolds of the Cartan distribution

on E∞ coincide locally with graphs of infinite jets of solutions.

We use the results obtained here in the next subsection.
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1.3. Cartan connection. Consider a point θ ∈ J∞(π) and let x =
π∞(θ) ∈ M . Let v be a tangent vector to M at the point x. Then, since
the Cartan plane Cθ isomorphically projects onto TxM , there exists a unique
tangent vector Cv ∈ TθJ∞(π) such that π∞,∗(Cv) = v. Hence, for any vector

field X ∈ D(M) we can define a vector field CX ∈ D(π) by setting (CX)θ
def
=

C(Xπ∞(θ)). Then, by construction, the field CX is projected by π∞,∗ to X
while the correspondence C : D(M) → D(π) is C∞(M)-linear. In other
words, this correspondence is a connection in the bundle π∞ : J∞(π)→M .

Definition 2.3. The connection C : D(M) → D(π) defined above is
called the Cartan connection in J∞(π).

Let now E ⊂ Jk(π) be a formally integrable equation. Then, due to
the fact that Cθ(E∞) = Cθ(π) at any point θ ∈ E∞, we see that the fields
CX are tangent to E∞ for all vector fields X ∈ D(M). Thus we obtain the
Cartan connection in the bundle π∞ : E∞ → M which is denoted by the
same symbol C.

Let x1, . . . , xn, . . . , u
j
σ, . . . be special coordinates in J∞(π) and X =

X1∂/∂x1 + · · · + Xn∂/∂xn be a vector field on M represented in this co-
ordinate system. Then the field CX is to be of the form CX = X + Xv,

where Xv =
∑

j,σX
j
σ∂/∂u

j
σ is a π∞-vertical field. The defining conditions

iCXω
j
σ = 0, where ωjσ are the Cartan forms on J∞(π), imply

CX =
n∑

i=1

Xi


 ∂

∂xi
+
∑

j,σ

ujσ+1i

∂

∂ujσ


 =

n∑

i=1

XiDi. (2.5)

In particular, we see that C(∂/∂xi) = Di, i.e., total derivatives are just
liftings to J∞(π) of the corresponding partial derivatives by the Cartan
connection.

To obtain a similar expression for the Cartan connection on E∞, it needs
only to obtain coordinate representation for total derivatives in internal
coordinates. For example, in the case of equations (1.22) (see p. 16) we have

C
(

n∑

i=1

Xi
∂

∂xi
+ T

∂

∂t

)
=

n∑

i=1

XiDi + TDt,

where D1, . . . , Dn, Dt are given by formulas (2.1) and Xi, T ∈ C∞(M) are
the coefficients of the field X ∈ D(M).

Consider the following construction now. Let V be a vector field on E∞
and θ ∈ E∞ be a point. Then the vector Vθ can be projected parallel to
the Cartan plane Cθ onto the fiber of the projection π∞ : E∞ → M passing
through θ. Thus we get a vertical vector field V v. Hence, for any f ∈ F(E)
a differential one-form UE(f) ∈ Λ1(E) is defined by

iV (UE(f))
def
= V v(f), V ∈ D(E). (2.6)
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The correspondence f 7→ UE(f) is a derivation of the algebra F(E) with the
values in the F(E)-module Λ1(E), i.e.,

UE(fg) = fUE(g) + gUE(f)

for all f, g ∈ F(E). This correspondence contains all essential data about
the equation E .

Definition 2.4. The derivation UE : F(E)→ Λ1(E) is called the struc-

tural element of the equation E .
For the “empty” equation, i.e., in the case E∞ = J∞(π), the structural

element Uπ is locally represented in the form

Uπ =
∑

j,σ

ωjσ ⊗
∂

∂ujσ
, (2.7)

where ωjσ are the Cartan forms on J∞(π). To obtain the expression in the
general case, one needs to rewrite (2.7) in local coordinates. For example,
in the case of evolution equations we get the same expression with σ =

(σ1, . . . , σn, 0) and the forms ωjσ given by (2.2). Contrary to the Cartan
forms, the structural element is independent of local coordinates.

We shall now give a “more algebraic” version of the Cartan connection
definition.

Proposition 2.4. For any vector field X ∈ D(M), the equality

j∞(ϕ)∗(CX(f)) = X(j∞(ϕ)∗(f)) (2.8)

takes place, where f ∈ F(π) and ϕ ∈ Γloc(π). Equality (2.8) uniquely deter-

mines the Cartan connection in J∞(π).

Proof. Both statements follow from the fact that in special coordinates
the right-hand side of (2.8) is of the form

∑

j,σ

∂f

∂ujσ

∣∣∣∣
j∞(ϕ)(M)

X

(
∂|σ|ϕj

∂xσ

)
.

Corollary 2.5. The Cartan connection in E∞ is flat, i.e.,

C[X,Y ] = [CX, CY ]

for any X,Y ∈ D(M).

Proof. Consider the case E∞ = J∞(π). Then from Proposition 2.4 we
have

j∞(ϕ)∗(C[X,Y ](f)) = [X,Y ](j∞(ϕ)∗(f))

= X(Y (j∞(ϕ)∗(f)))− Y (X(j∞(ϕ)∗(f)))

for any ϕ ∈ Γloc(π), f ∈ F(π). On the other hand,
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j∞(ϕ)∗([CX, CY ](f)) = j∞(ϕ)∗(CX(CY (f))− CY (CX(f)))

= X(j∞(ϕ)∗(Y (f)))− Y (j∞(ϕ)∗(CX(f)))

= X(Y (j∞(ϕ)∗(f)))− Y (X(j∞(ϕ)∗(f)))

To prove the statement for an arbitrary formally integrable equation E , it
suffices to note that the Cartan connection in E∞ is obtained by restricting
the fields CX onto infinite prolongation of E .

The construction of Proposition 2.4 can be generalized.

1.4. C-differential operators. Let π : E →M be a vector bundle and
ξ1 : E1 →M , ξ2 : E2 →M be another two vector bundles.

Definition 2.5. Let ∆: Γ(ξ1)→ Γ(ξ2) be a linear differential operator.
The lifting C∆: F(π, ξ1)→ F(π, ξ2) of the operator ∆ is defined by

j∞(ϕ)∗(C∆(f)) = ∆(j∞(ϕ)∗(f)), (2.9)

where ϕ ∈ Γloc(π) and f ∈ F(π, ξ1) are arbitrary sections.

Immediately from the definition, we obtain the following properties of
operators C∆:

Proposition 2.6. Let π : E → M , ξi : Ei → M , i = 1, 2, 3, be vector

bundles. Then

(i) For any C∞(M)-linear differential operator ∆: Γ(ξ1) → Γ(ξ2), the

operator C∆ is an F(π)-linear differential operator of the same order.

(ii) For any ∆,¤ : Γ(ξ1)→ Γ(ξ2) and f, g ∈ F(π), one has

C(f∆ + g¤) = fC∆ + gC¤.
(iii) For ∆1 : Γ(ξ1)→ Γ(ξ2), ∆2 : Γ(ξ2)→ Γ(ξ3), one has

C(∆2 ◦∆1) = C∆2 ◦ C∆1.

From this proposition and from Proposition 2.4 it follows that if ∆ is a
scalar differential operator C∞(M) → C∞(M) locally represented as ∆ =∑

σ aσ∂
|σ|/∂xσ, aσ ∈ C∞(M), then

C∆ =
∑

σ

aσDσ (2.10)

in the corresponding special coordinates. If ∆ = ‖∆ij‖ is a matrix operator,
then C∆ = ‖C∆ij‖.

From Proposition 2.6 it follows that C∆ may be understood as a dif-
ferential operator acting from sections of the bundle π to linear differential
operators from Γ(ξ1) to Γ(ξ2). This observation is generalized as follows.

Definition 2.6. An F(π)-linear differential operator ∆: F(π, ξ1) →
F(π, ξ2) is called a C-differential operator, if it admits restriction onto graphs
of infinite jets, i.e., if for any section ϕ ∈ Γ(π) there exists an operator
∆ϕ : Γ(ξ1)→ Γ(ξ2) such that

j∞(ϕ)∗(∆(f)) = ∆ϕ(j∞(ϕ)∗(f)) (2.11)
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for all f ∈ F(π, ξ1).

Thus, C-differential operators are nonlinear differential operators taking
their values in C∞(M)-modules of linear differential operators. The follow-
ing proposition gives a complete description of such operators.

Proposition 2.7. Let π, ξ1, ξ2 be vector bundles over M . Then any C-
differential operator ∆: F(π, ξ1)→ F(π, ξ2) can be presented in the form

∆ =
∑

α

aαC∆α, aα ∈ F(π),

where ∆α are linear differential operators acting from Γ(ξ1) to Γ(ξ2).

Proof. Recall first that we consider the filtered theory; in particular,
there exists an integer l such that ∆(Fk(π, ξ1)) ⊂ Fk+l(π, ξ2) for all k.
Consequently, since Γ(ξ1) is embedded into F0(π, ξ1), we have ∆(Γ(ξ1)) ⊂
Fl(π, ξ2) and the restriction ∆̄ = ∆

∣∣
Γ(ξ1) is a C∞(M)-differential operator

taking its values in Fl(π, ξ2). Then one can easily see that the equality
∆ϕ = j∞(ϕ)∗ ◦ ∆̄ holds, where ϕ ∈ Γloc(π) and ∆ϕ is the operator from
(2.11). It means that any C-differential ∆ operator is completely determined
by its restriction ∆̄.

On the other hand, the operator ∆̄ is represented in the form ∆̄ =∑
α aα∆α, aα ∈ Fl(π) and ∆α : Γ(ξ1) → Γ(ξ2) being C∞(M)-linear dif-

ferential operators. Let us define C∆̄ def
=
∑

α aαC∆α. Then the difference
∆− C∆̄ is a C-differential operator such that its restriction onto Γ(ξ1) van-
ishes. Therefore ∆ = C∆̄.

Remark 2.1. From the result obtained it follows that C-differential op-
erators are operators “in total derivatives”. By this reason, they are called
total differential operators sometimes.

Corollary 2.8. C-differential operators admit restrictions onto infinite

prolongations: if ∆: F(π, ξ1) → F(π, ξ2) is a C-differential operator and

E ⊂ Jk(π) is a k-th order equation, then there exists a linear differential

operator ∆E : F(E , ξ1)→ F(E , ξ2) such that

ε∗ ◦∆ = ∆E ◦ ε∗,
where ε : E∞ ↪→ J∞(π) is the natural embedding.

Proof. The result immediately follows from Example 2.1 and Proposi-
tion 2.7.

We shall now consider an example which will play a very important role
in the sequel.

Example 2.3. Let ξ1 = τ∗i , ξ2 = τ∗i+1, where τ ∗p :
∧p T ∗M → M (see

Example 1.2 on p. 6), and ∆ = d : Λi(M) → Λi+1(M) be the de Rham

differential. Then we obtain the first-order operator dh
def
= Cd : Λih(π) →

Λi+1
h (π), where Λph(π) denotes the module F(π, τ ∗p ). Due Corollary 2.8, the

operators d : Λih(E)→ Λi+1
h (E) are also defined, where Λph(E) = F(E , τ ∗p ).
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Definition 2.7. Let E ⊂ Jk(π) be an equation.

(i) Elements of the module Λih(E) are called horizontal i-forms on E∞.

(ii) The operator dh : Λih(E) → Λi+1
h (E) is called the horizontal de Rham

differential on E∞.
(iii) The sequence

0→ F(E) d−→ Λ1
h(E)→ · · · → Λih(E)

d−→ Λi+1
h (E)→ · · ·

is called the horizontal de Rham sequence of the equation E .
From Proposition 2.6 (iii) it follows that d◦d = 0 and hence the de Rham

sequence is a complex. It cohomologies are called the horizontal de Rham

cohomologies of E and are denoted by H∗
h(E) =

∑
i≥0H

i
h(E).

In local coordinates, horizontal forms of degree p on E∞ are represented
as ω =

∑
i1<···<ip

ai1...ip dxi1 ∧ · · · ∧ dxip , where ai1...ip ∈ F(E), while the

horizontal de Rham differential acts as

dh(ω) =
n∑

i=1

∑

i1<···<ip

Di(ai1...ip) dxi ∧ dxi1 ∧ · · · ∧ dxip . (2.12)

In particular, we see that both Λih(E) and H i
h(E) vanish for i > dimM .

Remark 2.2. In fact, the above introduced cohomologies are horizontal
cohomologies with trivial coefficients. The case of more general coefficients
will be considered in Chapter 4 (see also [98, 52]). Below we make the first
step to deal with a nontrivial case.

Consider the algebra Λ∗(E) of all differential forms on E∞ and let us note
that one has the embedding Λ∗

h(E) ↪→ Λ∗(E). Let us extend the horizontal
de Rham differential onto this algebra as follows:

(i) dh(dω) = −d(dh(ω)),
(ii) dh(ω ∧ θ) = dh(ω) ∧ θ + (−1)ωω ∧ dh(θ).

Obviously, conditions (i), (ii) define the differential dh : Λi(E)→ Λi+1(E) and
its restriction onto Λ∗

h(E) coincides with the horizontal de Rham differential.

Let us also set dC
def
= d− dh : Λ∗

h(E)→ Λ∗
h(E). Then, by definition,

d = dh + dC , dh ◦ dh = dC ◦ dC = 0, dC ◦ dh + dh ◦ dC = 0.

In other words, the pair (dh, dC) forms a bicomplex in Λ∗(E) with the total
differential d. Hence, the corresponding spectral sequence converges to the
de Rham cohomology of E∞.

Remark 2.3. We shall redefine this bicomplex in a more general alge-
braic situation in Chapter 4. On the other hand, it should be noted that
the above mentioned spectral sequence (in the case, when dh is taken for the
first differential and dC for the second one) is a particular case of the Vino-
gradov C-spectral sequence (or the so-called variational bicomplex) which is
essential to the theory of conservation laws and Lagrangian formalism with
constraints; cf. Subsection 2.2 below.
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To conclude this section, let us write down the coordinate representation
for the differential dC and the extended dh. First note that by definition and
due to (2.12), one has

dC(u
j
σ) = d(ujσ)− dh(ujσ) = dujσ −

n∑

i=1

ujσ+1i
dxi,

i.e., dC takes coordinate functions ujσ to the corresponding Cartan forms.
Since obviously dC(xi) = 0 for any coordinate function on the base, we
obtain

dC(f) =
∑

j,σ

∂f

∂ujσ
ωjσ, f ∈ F(π). (2.13)

The same representation, written in internal coordinates, is valid on E∞.
Therefore, the image of dC spans the Cartan submodule CΛ1(E) in Λ1(E).
By this reason, we call dC the Cartan differential on E∞. From the equality
d = dh + dC it follows that the direct sum decomposition

Λ1(E) = Λ1
h(E)⊕ CΛ1(E)

takes place which extends to the decomposition

Λi(E) =
⊕

p+q=i

Λqh(E)⊗ CpΛ(E). (2.14)

Here the notation

CpΛ(E) def
= CΛ1(E) ∧ · · · ∧ CΛ1(E)︸ ︷︷ ︸

p times

is used. Consequently, to finish computations, it suffices to compute dh(ω
j
σ).

But we have

dh(ω
j
σ) = dhdC(u

j
σ) = −dCdh(ujσ)

and thus

dh(ω
j
σ) = −

n∑

i=1

ωjσ+1i
∧ dxi. (2.15)

Note that from the results obtained it follows, that

dh(Λ
q
h(E)⊗ CpΛ(E)) ⊂ Λq+1

h (E)⊗ CpΛ(E),
dC(Λ

q
h(E)⊗ CpΛ(E)) ⊂ Λqh(E)⊗ Cp+1Λ(E).

Remark 2.4. Note that the sequence dh : Λqh(E) ⊗ C∗(E) → Λq+1
h (E) ⊗

C∗(E) can be considered as the horizontal de Rham complex with coefficients

in Cartan forms
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Remark 2.5. From (2.14) it follows that to any form ω ∈ Λ∗(E) we
can put into correspondence its “purely horizontal” component ωh ∈ Λ∗

h(E).
Moreover, if the form ω “lives” on Jk(π), then, due to the equality dujσ =∑n

i=1 uσ+1i dxi + ωjσ, the form ωh belongs to Λ∗(Jk+1(π)). This correspon-
dence coincides with the one used in Example 1.7 on p. 14 to construct
Monge–Ampere equations.

2. Higher symmetries and conservation laws

In this section, we briefly expose the theory of higher (or Lie–Bäcklund)
symmetries and conservation laws for nonlinear partial differential equations
(for more details and examples see [60, 12]).

2.1. Symmetries. Let π : E → M be a vector bundle and E ⊂ Jk(π)
be a differential equation. We shall still assume E to be formally integrable,
though is it not restrictive in this context.

Consider a symmetry F of the equation E and let θk+1 be a point of E1

such that πk+1,k(θk+1) = θk ∈ E . Then the R-plane Lθk+1
is taken to an

R-plane F∗(Lθk+1
) by F , since F is a Lie transformation, and F∗(Lθk+1

) ⊂
TF (θk), since F is a symmetry. Consequently, the lifting F (1) : Jk+1(π) →
Jk+1(π) is a symmetry of E1. By the same reasons, F (l) is a symmetry of the
l-th prolongation of E . From here it also follows that for any infinitesimal
symmetry X of the equation E , its l-th lifting is a symmetry of E l as well.
In fact, the following result is valid:

Proposition 2.9. Symmetries of a formally integrable equation E ⊂
Jk(π) coincide with symmetries of any prolongation of this equation. The

same is valid for infinitesimal symmetries.

Proof. We have shown already that to any (infinitesimal) symmetry
of E there corresponds an (infinitesimal) symmetry of E l. Consider now an
(infinitesimal) symmetry of E l. Then, due to Theorems 1.12 and 1.13 (see
pp. 24 and 26), it is πk+l,k-fiberwise and therefore generates an (infinitesimal)
symmetry of E .

The result proved means that a symmetry of E generates a symmetry of
E∞ which preserves every prolongation up to finite order. A natural step to
generalize the concept of symmetry is to consider “all symmetries” of E∞.
Let us clarify such a generalization.

First of all note that only infinitesimal point of view may be efficient
in the setting under consideration. Otherwise we would have to deal with
diffeomorphisms of infinite-dimensional manifolds with all natural difficul-
ties arising as a consequence. Keeping this in mind, we proceed with the
following definition. Recall the notation

CD(π)
def
= {X ∈ D(π) | X lies in C(π)},

cf. (1.31) on p. 25.
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Definition 2.8. Let π be a vector bundle. A vector field X ∈ D(π) is
called a symmetry of the Cartan distribution C(π) on J∞(π), if [X, CD(π)] ⊂
CD(π).

Thus, the set of symmetries coincides with DC(π) (see (1.32) on p. 25)
and forms a Lie algebra over R and a module over F(π). Note that since the
Cartan distribution on J∞(π) is integrable, one has CD(π) ⊂ DC(π) and,
moreover, CD(π) is an ideal in the Lie algebra DC(π).

Note also that symmetries belonging to CD(π) are of a special type:
they are tangent to any integral manifold of the Cartan distribution. By
this reason, we call such symmetries trivial. Respectively, the elements of
the quotient Lie algebra

sym(π)
def
= DC(π)/CD(π)

are called nontrivial symmetries of the Cartan distribution on J∞(π).
Let now E∞ be the infinite prolongation of an equation E ⊂ Jk(π).

Then, since CD(π) is spanned by the fields of the form CY , Y ∈ D(M) (see
Example 2.1), any vector field from CD(π) is tangent to E∞. Consequently,
either all elements of the coset [X] = X mod CD(π), X ∈ D(π), are tangent
to E∞ or neither of them is. In the first case we say that the coset [X] is
tangent to E∞.

Definition 2.9. An element [X] = X mod CD(π), X ∈ D(π), is called
a higher symmetry of E , if it is tangent to E∞.

The set of all higher symmetries forms a Lie algebra over R and is de-
noted by sym(E). We shall usually omit the adjective higher in the sequel.

Let us describe the algebra sym(E) in efficient terms. We start with
describing sym(π) as the first step. To do this, note the following. Consider
a vector field X ∈ D(π). Then, substituting X into the structural element
Uπ (see (2.7)), we obtain a field Xv ∈ D(π). The correspondence Uπ : X 7→
Xv = X Uπ possesses the following properties:

(i) The field Xv is vertical, i.e., Xv(C∞(M)) = 0.
(ii) Xv = X for any vertical field.
(iii) Xv = 0 if and only if the field X lies in CD(π).

Therefore, we obtain the direct sum decomposition1

D(π) = Dv(π)⊕ CD(π),

where Dv(π) denotes the Lie algebra of vertical fields. A direct corollary of
these properties is the following result.

Proposition 2.10. For any coset [X] ∈ sym(E) there exists a unique

vertical representative and thus

sym(E) = {X ∈ Dv(E) | [X, CD(E)] ⊂ CD(E)}, (2.16)

where CD(E) is spanned by the fields CY , Y ∈ D(M).

1Note that it is the direct sum of F(π)-modules but not of Lie algebras.
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Using this result, we shall identify symmetries of E with vertical vector
fields satisfying (2.16).

Lemma 2.11. Let X ∈ sym(π) be a vertical vector field. Then it is

completely determined by its restriction onto F0(π) ⊂ F(π).

Proof. Let X satisfy the conditions of the lemma and Y ∈ D(M).
Then for any f ∈ C∞(M) one has

[X, CY ](f) = X(CY (f))− CY (X(f)) = X(Y (f)) = 0

and hence the commutator [X, CY ] is the vertical vector field. On the other
hand, [X, CY ] ∈ CD(π), because CD(π) is a Lie algebra ideal. Consequently,
[X, CY ] = 0.

Note now that in special coordinates we have Di(u
j
σ) = ujσ+1i

for all σ
and j. From the above said it follows that

X(ujσ+1i
) = Di

(
X(ujσ)

)
. (2.17)

But X is a vertical derivation and thus is determined by its values at the

functions ujσ.

Let now X0 : F0(π) → F(π) be a derivation. Then equalities (2.17)
allow one to reconstruct locally a vertical derivation X ∈ D(π) satisfying
X
∣∣
F0(π) = X0. Obviously, the derivation X thus constructed lies in sym(π)

over the neighborhood under consideration. Consider two neighborhoods
U1, U2 ⊂ J∞(π) with the corresponding special coordinates in each of them
and two symmetries X i ∈ sym(π |Ui ), i = 1, 2, arising by the described
procedure. But the restrictions of X1 and X2 onto F0(π |U1∩U2 ) coincide.
Hence, by Lemma 2.11, the field X1 coincide with X2 over the intersection
U1 ∩ U2. In other words, the reconstruction procedure X0 7→ X is a global
one. So we have established a one-to-one correspondence between elements
of sym(π) and derivations F0(π)→ F(π).

To complete description of sym(π), note that due to vector bundle struc-
ture in π : E → M , derivations F0(π) → F(π) are identified with sections
of the pull-back π∗∞(π), or with elements of F(π, π).

Theorem 2.12. Let π : E →M be a vector bundle. Then:

(i) The F(π)-module sym(π) is in one-to-one correspondence with ele-

ments of the module F(π, π).
(ii) In special coordinates the correspondence F(π, π) → sym(π) is ex-

pressed by the formula

ϕ 7→ ¤ϕ
def
=
∑

j,σ

Dσ(ϕ
j)

∂

∂ujσ
, (2.18)

where ϕ = (ϕ1, . . . , ϕm) is the component-wise representation of the

section ϕ ∈ F(π, π).

Proof. The first part of the theorem has already been proved. To prove
the second one, it suffices to use equality (2.17).
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Definition 2.10. Let π : E →M be a vector bundle.

(i) The field ¤ϕ of the form (2.18) is called an evolutionary vector field

on J∞(π).
(ii) The section ϕ ∈ F(π, π) is called the generating section of the field

¤ϕ.

Remark 2.6. Let ζ : N → M be an arbitrary smooth fiber bundle and
ξ : P → M be a vector bundle. Then it is easy to show that any ζ-verti-
cal vector field X on N can be uniquely lifted up to an R-linear mapping
Xξ : Γ(ζ∗(ξ))→ Γ(ζ∗(ξ)) such that

Xξ(fψ) = X(f)ψ + fXξ(ψ), f ∈ C∞(N), ψ ∈ Γ(ζ∗(ξ)). (2.19)

In particular, taking π∞ for ζ, for any evolution derivation ¤ϕ we obtain

the family of mappings ¤ ξ
ϕ : F(π, ξ)→ F(π, ξ) satisfying (2.19).

Consider the mapping ¤ π
ϕ : F(π, π)→ F(π, π) and recall that the diag-

onal element ρ0 ∈ F0(π, π) ⊂ F(π, π) is defined (see Example 1.1 on p. 5).
As it can be easily seen, the following identity is valid

¤
π
ϕ (ρ0) = ϕ (2.20)

which can be taken for the definition of the generating section.
Let ¤ϕ, ¤ψ be two evolutionary derivations. Then, since sym(π) is a Lie

algebra and by Theorem 2.12, there exists a unique section {ϕ,ψ} satisfying
[¤ϕ,¤ψ] = ¤{ϕ,ψ}.

Definition 2.11. The section {ϕ,ψ} is called the (higher) Jacobi

bracket of the sections ϕ,ψ ∈ F(π).

Proposition 2.13. Let ϕ,ψ ∈ F(π, π) be two sections. Then:

(i) {ϕ,ψ} = ¤ π
ϕ (ψ)− ¤ π

ψ (ϕ).

(ii) In special coordinates, the Jacobi bracket of ϕ and ψ is expressed by

the formula

{ϕ,ψ}j =
∑

α,σ

(
Dσ(ϕ

α)
∂ψj

∂uασ
−Dσ(ψ

α)
∂ϕj

∂uασ

)
, (2.21)

where superscript j denotes the j-th component of the corresponding

section.

Proof. To prove (i) let us use (2.20):

{ϕ,ψ} = ¤
π
{ϕ,ψ}(ρ0) = ¤

π
ϕ (¤ π

ψ (ρ0))− ¤ π
ψ (¤ π

ϕ (ρ0)) = ¤
π
ϕ (ψ)− ¤ π

ψ (ϕ).

The second statement follows from the first one and from equality (2.18).

Consider now a nonlinear differential operator ∆: Γ(π) → Γ(ξ) and let
ϕ∆ be the corresponding section. Then for any ϕ ∈ F(π, π) the section
¤ϕ(ϕ∆) ∈ F(π, ξ) is defined and we can set

`∆(ϕ)
def
= ¤ϕ(ϕ∆). (2.22)
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Definition 2.12. The operator `∆ : F(π, π) → F(π, ξ) defined by
(2.22) is called the universal linearization operator of the operator
∆: Γ(π)→ Γ(ξ).

From the definition and equality (2.18) we obtain that for a scalar dif-
ferential operator

∆: ϕ 7→ F
(
x1, . . . , xn, . . . ,

∂|σ|ϕj

∂xσ
, . . .

)

one has `∆ = (`1∆, . . . , `
m
∆), m = dimπ, where

`α∆ =
∑

σ

∂F

∂uασ
Dσ. (2.23)

If dim ξ = r > 1 and ∆ = (∆1, . . . ,∆r), then

`∆ =

∥∥∥∥∥∥∥∥

`1∆1 `2∆1 . . . `m∆1

`1∆2 `2∆2 . . . `m∆2

. . . . . . . . . . . .
`1∆r `2∆r . . . `m∆r

∥∥∥∥∥∥∥∥
. (2.24)

In particular, we see that the following statement is valid.

Proposition 2.14. For any differential operator ∆, its universal lin-

earization is a C-differential operator.

Now we can describe the algebra sym(E), E ⊂ Jk(π) being a formally
integrable equation. Let I(E) ⊂ F(π) be the ideal of the equation E (see
Subsection 1.1). Then, by definition, ¤ϕ is a symmetry of E if and only if

¤ϕ(I(E)) ⊂ I(E). (2.25)

Assume now that E is given by a differential operator ∆: Γ(π)→ Γ(ξ) and
locally is described by the system of equations

F 1 = 0, . . . , F r = 0, F j ∈ F(π).

Then the functions F 1, . . . , F r are differential generators of the ideal I(E)
and condition (2.25) may be rewritten as

¤ϕ(F j) =
∑

α,σ

aασDσ(F
α), j = 1, . . . ,m, aασ ∈ F(π). (2.26)

With the use of (2.22), the last equation acquires the form2

`F j (ϕ) =
∑

α,σ

aασDσ(F
α), j = 1, . . . ,m, aασ ∈ F(π). (2.27)

But by Proposition 2.14, the universal linearization is a C-differential op-
erator and consequently can be restricted onto E∞ (see Corollary 2.8). It
means that we can rewrite equation (2.27) as

`F j |E∞ (ϕ |E∞ ) = 0, j = 1, . . . ,m. (2.28)

2Below we use the notation `F , F ∈ F(π, ξ), as a synonym for `∆, where ∆: Γ(π) →
Γ(ξ) is the operator corresponding to the section F .
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Combining these equations with (2.23) and (2.24), we obtain the following
fundamental result:

Theorem 2.15. Let E ⊂ Jk(π) be a formally integrable equation and

∆ = ∆E : Γ(π) → Γ(ξ) be the operator corresponding to E. Then an evolu-

tionary derivation ¤ϕ, ϕ ∈ F(π, π), is a symmetry of E if and only if

`E(ϕ̄) = 0, (2.29)

where `E and ϕ̄ denote restrictions of `∆ and ϕ on E∞ respectively. In other

words,

sym(E) = ker `E . (2.30)

Remark 2.7. From the result obtained it follows that higher symmetries
of E can be identified with elements of F(E , π) satisfying equation (2.29).
Below we shall say that a section ϕ ∈ F(E , π) is a symmetry of E keeping
in mind this identification. Note that due to the fact that sym(E) is a
Lie algebra, for any two symmetries ϕ, ψ ∈ F(E , π) their Jacobi bracket
{ϕ,ψ}E = {ϕ,ψ} ∈ F(E , π) is well defined and is a symmetry as well.

2.2. Conservation laws. This subsection contains a brief review of
the main definitions and facts concerning the theory of conservation laws for
nonlinear differential equations. We confine ourselves with main definition
and results referring the reader to [102] and [52] for motivations and proofs.

Definition 2.13. Let E ⊂ Jk(π), π : E →M being a vector bundle, be
a differential equation and n be the dimension of the manifold M .

(i) A horizontal (n − 1)-form ρ ∈ Λn−1
h (E) on E∞ is called a conserved

density on E , if dhρ = 0.
(ii) A conserved density ρ is called trivial, if ρ = dhρ

′ for some ρ′ ∈
Λn−2
h (E).

(iii) The horizontal cohomology class [ρ] ∈ Hn−1
h (E) of a conserved density

ρ is called a conservation law on E .
We shall always assume below that the manifold M of independent vari-

ables is cohomologically trivial which means triviality of all de Rham coho-
mology groups H i(M) except for the group H0(M).

Note now that the group Hn−1
h (E) is the term E0,n−1

1 = E0,n−1
1 (E) of

the spectral sequence associated to the bicomplex (dh, dC) (see Subsection
1.4 and Remark 2.3 in particular). This fact is not accidental and to clarify
it we shall need more information about this spectral sequence. Let us start
with the “trivial” case and first introduce preliminary notions and notations.

For any equation E , we shall denote by κ = κ(E) the module F(E , π).
In particular, κ(π) denotes the module κ in the case E∞ = J∞(π). Let ξ
and ζ be two vector bundles over M and P = F(E , ξ), Q = F(E , ζ). Denote

by CDiffaltl (P,Q) the F(E)-module of R-linear mappings

∆: P ⊗ · · · ⊗ P︸ ︷︷ ︸
l times

→ Q
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such that:

(i) ∆ is skew-symmetric,
(ii) for any p1, . . . , pl−1 ∈ P , the mapping

∆p1,...,pl−1
: P → Q, p 7→ ∆(p1, . . . , pl−1, p),

is a C-differential operator.

In particular, CDiff(P,Q) denotes the module of all C-differential operators
acting from P to Q.

Define the complex

0→ CDiff(P,Λ0
h(E))

dP
h−→ CDiff(P,Λ1

h(E))→ · · · → CDiff(P,Λqh(E))
dP
h−→ CDiff(P,Λq+1

h (E))→ · · · → CDiff(P,Λnh(E))→ 0 (2.31)

by setting dPh (∆)
def
= dh ◦∆.

Lemma 2.16. The above introduced complex (2.31) is acyclic at all terms

except for the last one. The cohomology group at the n-th term equals the

module P̂
def
= homF(E)(P,Λ

n
h(E)).

Let ∆: P → Q be a C-differential operator. Then it generates the
cochain mapping

∆′ : (CDiff(Q,Λ∗
h(E)), dQh )→ (CDiff(P,Λ∗

h(E)), dPh )

and consequently the mapping of cohomology groups

∆∗ : Q̂ = homF(E)(Q,Λ
n
h(E))→ P̂ = homF(E)(P,Λ

n
h(E)). (2.32)

Definition 2.14. The above introduced mapping ∆∗ is called the ad-

joint operator to the operator ∆.

In the case E∞ = J∞(π), the local coordinate representation of the
adjoint operator is as follows. For the scalar operator ∆ =

∑
σ aσDσ one

has

∆∗ =
∑

σ

(−1)|σ|Dσ ◦ aσ. (2.33)

In the multi-dimensional case, ∆ = ‖∆ij‖, the components of the adjoint
operator are expressed by

(∆∗)ij = ∆∗
ji, (2.34)

where ∆∗
ji are given by (2.33).

Relation between the action of an C-differential ∆: P → Q and its ad-

joint ∆∗ : Q̂→ P̂ is given by

Proposition 2.17 (Green’s formula). For any elements p ∈ P and q ∈
Q̂ there exists an n− 1-form ω ∈ Λn−1

h (E) such that

〈p,∆∗(q)〉 − 〈∆(p), q〉 = dhω, (2.35)

where 〈R, R̂〉 → Λnh(E) denotes the natural pairing.
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Finally, let us define F(E)-submodules Kl(P ) ⊂ CDiffaltl−1(P, P̂ ), l > 0,
by setting

Kl(P )
def
=

{∆ ∈ CDiffaltl−1(P, P̂ ) | ∆∗
p1,...,pl−2

= −∆p1,...,pl−2
, ∀p1, . . . , pl−2 ∈ P}.

Theorem 2.18 (one-line theorem). Let π : E → M be a vector bundle

over a cohomologically trivial manifold M , dimM = n. Then:

(i) E0,n
1 (π) = Hn

h (E).
(ii) Ep,n

1 (π) = Kp(κ(π)), p > 0.

(iii) E0,0
1 (π) = R.

(iv) Ep,q
1 (π) = 0 in all other cases.

Moreover, the following result is valid.

Theorem 2.19. The sequence

Λ0
h(π)

dh−→ . . .
dh−→ Λnh(π)

E−→ E1,n
1

d1,n1−−→ E2,n
1 → · · · (2.36)

where the operator E is the composition

E : Λnh(π)→ Hn
h (π) = E0,n

1 (π)
d0,11−−→ E1,n

1 (π), (2.37)

the first arrow being the natural projection, is exact.

Definition 2.15. Let π : E →M be a vector bundle, dimM = n.

(i) The sequence (2.36) is called the variational complex of the bundle π.
(ii) The operator E defined by (2.37) is called the Euler–Lagrange opera-

tor.

It can be shown that for any ω ∈ Λnh(π) one has

E(ω) = `∗ω(1), (2.38)

from where an explicit formula in local coordinates for E is obtained:

E
j =

∑

σ

(−1)|σ|Dσ ◦
∂

∂ujσ
. (2.39)

The differentials dp,n1 can also be computed explicitly. In particular, we have

d1,n
1 (ϕ) = `ϕ − `∗ϕ, ϕ ∈ E1,n

1 (π) = κ̂(π). (2.40)

Let us now describe the term Ep,q
1 (E) for a nontrivial equation E . We

shall do it for a broad class of equations which is introduced below.
Note first that a well-defined action of C-differential operators ∆ ∈

CDiff(F(E , E) on Cartan forms ω ∈ CΛ1(E) exists. Namely, for a zero-

order operator (i.e., for a function on E∞) we set ∆(ω)
def
= ∆ · ω. If now

∆ =
∑

σ Xσ, where Xσ = CXi1 ◦ · · · ◦ CXis , Xα ∈ D(M), then

∆(ω)
def
=

∑

σ=(i1...is)

LXi1 (. . . (LXis (ω)) . . . ).
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In general, such a action is not well defined because of the identity

LaY (ω) = aLY (ω) + d(a) ∧ iY (ω).

But if Y = CX and ω ∈ CΛ1(E), the second summand vanishes and we
obtain the action we seek for.

Let now ∆ ∈ CDiff(κ,F(E)) and ∆1, . . . ,∆m be the components of this
operator. Then we can define the form

ω∆
def
= ∆1(ω1) + · · ·+ ∆m(ωm),

where ωj = ωj(0,...,0) are the Cartan forms. Thus we obtain the mapping

CDiff(κ,F(E)) → CΛ1(E), ∆ 7→ ω∆. On the other hand, assume that
the equation E is determined by the operator ∆: Γ(π) → Γ(ξ) and let
P = F(E , ξ). Then to any operator ¤ ∈ CDiff(P,F(E)) we can put into cor-
respondence the operator ¤◦`E ∈ CDiff(κ,F(E)), where `E is the restriction
of `∆ onto E∞. It gives us the mapping CDiff(P,F(E))→ CDiff(κ,F(E)).
In Chapter 5 it will be shown that the forms ω¤◦`E vanish which means that
the sequence

0→ CDiff(P,F(E))→ CDiff(κ,F(E))→ CΛ1(E)→ 0 (2.41)

is a complex.

Definition 2.16. We say that equation E is `-normal if (2.41) is an
exact sequence.

Theorem 2.20 (two-line theorem). Let E ⊂ Jk(π) be a formally inte-

grable `-normal equation in a vector bundle π : E → M over a cohomologi-

cally trivial manifold M , dimM = n. Then:

(i) Ep,q
1 (E) = 0, if p ≥ 1 and q 6= n− 1, n.

(ii) The differential d0,n−1 : E0,n−1
1 (E) → E1,n−1

1 (E) is a monomorphism

and its image coincides with ker(d1,n−1).

(iii) The group E1,n−1
1 (E) coincides with ker(`∗E).

Remark 2.8. The theorem has a stronger version, see [98], but the one
given above is sufficient for our purposes.

Remark 2.9. The number of nontrivial lines at the top part of the term
E1 relates to the length of the so-called compatibility complex for the opera-
tor `E (see [98, 52]). For example, for the Yang–Mill equations (see Section
6 of Chapter 1 one has the three-line theorem, [21].

Definition 2.17. The elements of E1,n−1
1 (E) = ker(`∗E) are called gen-

erating sections of conservation laws.

Theorem 2.20(iii) gives an efficient method to compute generating sec-
tions of conservation laws. The following result shows when a generating



76 2. HIGHER SYMMETRIES AND CONSERVATION LAWS

section corresponds to some conservation law.3 Let `∗E(ϕ) = 0 and the equa-
tion E be given by the operator ∆ = ∆F . Then `∗∆(ϕ) = ¤(F ) for some C-
differential operator ¤.

Proposition 2.21. A solution ϕ of the equation `∗E(ϕ) = 0 corresponds

to a conservation law of the `-normal equation E , if there exists a C-differ-

ential operator ∇ such that ∇∗ = ∇ and the equality

`ϕ +¤∗ = ∇ ◦ `∆
is valid being restricted onto E∞.

Let us describe the action of symmetries on the space of generating
sections. Assume, as above, that E is given by equations F = 0.

Proposition 2.22. Let ω be a conservation law of an `-normal equation

E and ψω be the corresponding generating section. Then, if ϕ ∈ sym(E) is a

symmetry, then the generating section

¤ϕ(πω) +¤∗(ψω)

corresponds to the conservation law ¤ϕ(ω), where the operator ¤ is such

that ¤ϕ(F ) = ¤(F ).

We finish this subsection with a discussion of Euler–Lagrange equations
and Nöther symmetries.

Definition 2.18. Let π : E → M , dimM = n, be a vector bundle and
L = [ω] ∈ Hn

h (π), ω ∈ Λnh(π), be a Lagrangian. The equation EL = {E(L) =
0} is called the Euler–Lagrange equation corresponding to the Lagrangian
L, where E is the Euler–Lagrange operator (2.38).

We say that an evolutionary vector field ¤ϕ is a Nöther symmetry of L,
if ¤ϕ(L) = 0 and denote the Lie algebra of such symmetries by sym(L). It
easy to show that sym(L) ⊂ sym(EL).

Proposition 2.23 (Nöther theorem). To any Nöther symmetry ¤ϕ ∈
sym(L) there corresponds a conservation law of the equation EL.

Proof. In fact, since ¤ϕ ∈ sym(L), one has ¤ϕ(ω) = dhρ for some

ρ ∈ Λn−1
h (π). Then, by Green’s formula (2.35), one has

¤ϕ(ω)− dh(ρ) = ` = ω(ϕ)− dh(ρ) = `∗ω(1)(ϕ) + dhθ(ϕ)− dh(ρ)
= E(L)(ϕ) + dh(θ(ϕ)− ρ) = 0.

Hence, the form dh(θ(ϕ) − ρ) vanishes on E∞L and η = θ(ϕ) − ρ |E∞
L

is a
desired conserved density.

We illustrate relations between symmetries and conserved densities by
explicit computations for the nonlinear Dirac equations (see Section 5 of
Chapter 1).

3If E2,n−1
1 (E) = 0, then, as it follows from Theorem 2.20(ii), there is a one-to-one

correspondence between conservation laws and their generating sections.
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Example 2.4 (Conservation laws of the Dirac equations). Let us con-
sider the nonlinear Dirac equations with nonvanishing rest mass (case 4
in Section 5 of Chapter 1). Among the symmetries of this equation there
are the following ones:

V1 = X19 = u4 ∂

∂u1
− u3 ∂

∂u2
− u2 ∂

∂u3
+ u1 ∂

∂u4

− v4 ∂

∂v1
+ v3 ∂

∂v2
+ v2 ∂

∂v3
− v1 ∂

∂v4
,

V2 = X20 = v1 ∂

∂u1
+ v2 ∂

∂u2
+ v3 ∂

∂u3
+ v4 ∂

∂u4

− u1 ∂

∂v1
− u2 ∂

∂v2
− u3 ∂

∂v3
− u4 ∂

∂v4
,

V3 = X23 = v4 ∂

∂u1
− v3 ∂

∂u2
− v2 ∂

∂u3
+ v1 ∂

∂u4

+ u4 ∂

∂v1
− u3 ∂

∂v2
− u2 ∂

∂v3
+ u1 ∂

∂v4
. (2.42)

The generators V1, V2, V3 are vertical vector fields on the space J0(π) =

R8×R4 π−−→ R4 with coordinates x1, . . . , x4 in the base and u1, . . . , v4 along
the fiber. The fields under consideration are generated by ∂/∂u1, ∂/∂u2,
∂/∂u3, ∂/∂u4, ∂/∂v1, ∂/∂v2, ∂/∂v3, ∂/∂v4, i.e.,

π∗Vj = 0, j = 1, . . . , 3.

In fact, we need the prolonged vector fields V
(1)
1 , V

(1)
2 , V

(1)
3 to J1(π) which

can be calculated from (2.42) using formulas (1.34) on p. 26.
Let L(u, v, uj , vj) be the Lagrangian defined on J1(π) by

L = −u4v1
1 + v4u1

1 − u3v2
1 + v3u2

1 − u2v3
1 + v2u3

1 − u1v4
1 + v1u4

1

− v4v1
2 − u4u1

2 + v3v2
2 + u3u2

2 − v2v3
2 − u2u3

2 + v1v4
2 + u1u4

2

− u3v1
3 + v3u1

3 + u4v2
3 − v4u2

3 − u1v3
3 + v1u3

3 + u2v4
3 + v2u3

4

− u1v1
4 + v1u1

4 − u2v2
4 + v2u2

4 − u3v3
4 + v3u3

4 − u4v4
4 + v4u4

4

−K(1 +
1

2
λ3εK), (2.43)

where

(x, u, v, uj , vj) = (x1, . . . , x4, u
1, . . . , v4, u1

1, . . . , u
1
4, . . . , v

4
1, . . . , v

4
4) (2.44)

are local coordinates on J1(π) = R44. An easy calculation shows that the
Euler–Lagrange equations associated to (2.43), i.e.,

∂

∂xa

∂L

∂zAa
− ∂L

∂zA
= 0 (2.45)

are just nonlinear the Dirac equations (1.88), see p. 39. In (2.45) we used the
notation zA, A = 1, . . . , 8, instead of u1, . . . , u4, v1, . . . , v4 and summation
convention over A = 1, . . . , 8, a = 1, . . . , 4, if an index occurs twice.
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Let us introduce the form Θ by

Θ = Lω + (∂aA )θA ∧ ωa, (2.46)

where

ω = dx1 ∧ dx2 ∧ dx3 ∧ dx4,

∂a =
∂

∂xa
, ∂A =

∂

∂zA
, ∂aA =

∂

∂zAa
,

ωa = ∂a ω,

θA = dzA − zAa dxa, (2.47)

and zAa refers to either uja or vja. From (2.45) we derive

Θ = Lω + (∂aAL)(dzA) ∧ ωa − (∂aAL)zAa ω

=
(
L− (∂aAL)zAa

)
ω + (∂aAL)(dzA) ∧ ωa. (2.48)

Since L defined by (2.43) is linear with respect to zAa we derive

L− (∂aAL)zAa = −K(1 +
1

2
λ3εK). (2.49)

We now want to compute the Lie derivatives

V
(1)
i Θ,

i.e., the Lie derivatives of the form Θ with respect to the vector field V
(1)
i ,

i = 1, 2, 3. We prove the following

Lemma 2.24. The form Θ is Vi-invariant, i.e.,

V
(1)
i Θ = 0, i = 1, 2, 3.

Proof. The proof splits in two parts:

1 : V
(1)
i K(1 +

1

2
λ3εK)ω = 0, i = 1, 2, 3, (2.50)

2 : V
(1)
i (∂aAL) dzA ∧ ω = 0, i = 1, 2, 3, a = 1, . . . , 4. (2.51)

Proof of 1. One has

V
(1)
i K(1 +

1

2
λ3εK)ω = V

(1)
i (−1− λ3εK)dK ∧ ω

and due to the definition of K (1.89) on p. 39, dK = 2(u1du1 + u2du2 −
u3du3−u4du4 + v1dv1 + v2dv2− v3dv3− v4dv4) an easy calculation leads to

V
(1)
i dK = 0, i = 1, 2, 3, (2.52)

which completes the proof of part 1.
Proof of 2. In order to prove (2.51), we introduce four 1-forms

V ∗
1 = (∂1

AL)dzA = v4du1 + v3du2

+ v2du3 + v1du4 − u4dv1 − u3dv2 − u2dv3 − u1dv4,

V ∗
2 = (∂2

AL)dzA = −u4du1 + u3du2
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− u2du3 + u1du4 − v4dv1 + v3dv2 − v2dv3 + v1dv4,

V ∗
3 = (∂3

AL)dzA = v3du1 − v4du2

+ v1du3 − v2du4 − u3dv1 + u4dv2 − u1dv3 + u2dv4,

V ∗
4 = (∂4

AL)dzA = v1du1 + v2du2

+ v3du3 + v4du4 − u1dv1 − u2dv2 − u3dv3 − u4dv4,

from which we obtain

dV ∗
1 = −2(du1 ∧ dv4 + du2 ∧ dv3 + du3 ∧ dv2 + du4d ∧ v1),

dV ∗
2 = 2(du1 ∧ du4 − du2 ∧ du3 + dv1 ∧ dv4 − dv2 ∧ dv3),

dV ∗
3 = 2(−du1 ∧ dv3 + du2 ∧ dv4 − du3 ∧ dv1 + du4 ∧ dv2),

dV ∗
4 = −2(du1 ∧ dv1 + du2 ∧ dv2 + du3 ∧ dv3 + du4 ∧ dv4). (2.53)

Using (2.42) and (2.53), a somewhat lengthy calculation leads to the follow-
ing result

V
(1)
i (V ∗

j ) = 0, i = 1, 2, , 3, j = 1, . . . , 4. (2.54)

This completes the proof of the lemma.

Now due to the relation

(V
(1)
i )Θ = (V

(1)
i ) dΘ + d(V

(1)
i Θ) = 0, i = 1, 2, 3, (2.55)

and

(V
(1)
i ) dΘ = 0, i = 1, 2, 3, (2.56)

on the “equation manifold”, [95], we arrive at

d(V
(1)
i Θ) = 0, i = 1, 2, 3 (2.57)

on the “equation manifold”. This means that V
(1)
i Θ are conserved currents,

i=1,2,3. Combination of (2.42), (2.48), and (2.54) leads to

V
(1)
i θ = (V

(1)
i V ∗

a )ωa, (2.58)

i.e., the conserved currents associated to V1, V2, V3 are given by

1 : 2
(
u4v4 − u3v3 − u2v2 + u1v1

)
dx2 ∧ x3 ∧ dx4

−
(
(u1)2 + (u2)2 − (u3)2 − (u4)2 − (v1)2 − (v2)2

+ (v3)2 + (v4)2
)
dx1 ∧ dx3 ∧ dx4

+ 2
(
u4v3 + u3v4 − u2v1 − u1v2

)
dx1 ∧ dx2 ∧ dx4

− 2
(
u4v1 − u3v2 − u2v3 + u1v4

)
dx1 ∧ dx2 ∧ dx3,

2 : 2
(
v1v4 + v2v3 + u1u4 + u2u3

)
dx2 ∧ dx3 ∧ dx4
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− 2
(
− u4v1 + u3v2 − u2v3 + u1v4

)
dx1 ∧ dx3 ∧ dx4

+ 2
(
v1v3 − v2v4 + u1u3 − u2u4

)
dx1 ∧ dx2 ∧ dx4

−
(
(u1)2 + (u2)2 + (u3)2 + (u4)2 + (v1)2 + (v2)2

+ (v3)2 + (v4)2
)
dx1 ∧ dx2 ∧ dx3,

3 :
(
− (u1)2 + (u2)2 + (u3)2 − (u4)2 + (v1)2 − (v2)2

− (v3)2 + (v4)2
)
dx2 ∧ dx3 ∧ dx4

− 2
(
u4v4 − u3v3 + u2v2 + u1v1

)
dx1 ∧ dx3 ∧ dx4

+ 2
(
v3v4 − v2v1 − u3u4 + u1u2

)
dx1 ∧ dx2 ∧ dx4

− 2
(
v1v4 − v3v2 − u1u4 + u2u3

)
dx1 ∧ dx2 ∧ dx3.

Remark 2.10. It is possible to derive the conservation laws obtained
above by the Nöther theorem 2.23, but we preferred here the explicit way.

3. The Burgers equation

Consider the Burgers equation E
ut = uxx + uux (2.59)

and choose internal coordinates on E∞ by setting uk = u(k,0). Below we
compute the complete algebra of higher symmetries for (2.59) using the
method described in [60] and first published in [105].

3.1. Defining equations. Let us rewrite restrictions onto E∞ of all
basic concepts in this coordinate system.

For the total derivatives we obviously obtain

Dx =
∂

∂x
+

∞∑

k=0

ui+1
∂

∂ui
, (2.60)

Dt =
∂

∂t
+

∞∑

k=0

Di
x(u2 + u0u1)

∂

∂ui
. (2.61)

The operator of universal linearization for E is then of the form

`E = Dt − u1 − u0Dx −D2
x, (2.62)

and, as it follows from Theorem 2.15 on p. 72, an evolutionary vector field

¤ϕ =

∞∑

i=1

Di
x(ϕ)

∂

∂ui
(2.63)
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is a symmetry for E if and only if the function ϕ = ϕ(x, t, u0, . . . , uk) satisfies
the equation

Dtϕ = u1ϕ+ u0Dxϕ+D2
xϕ, (2.64)

where Dt, Dx are given by (2.60), (2.61). Computing D2
xϕ we obtain

D2
xϕ =

∂2ϕ

∂x2
+ 2

k∑

i=1

ui+1
∂2ϕ

∂x∂ui
+

k∑

i,j=0

ui+1uj+1
∂2ϕ

∂ui∂uj
+

k∑

i=0

ui+2
∂ϕ

∂ui
,

while

Di
x(u0u1 + u3) =

i∑

α=0

(
i

α

)
uαui−α+1 + ui+3.

Hence, (2.64) transforms to

∂ϕ

∂t
+

k∑

i=1

i∑

α=1

(
i

α

)
uαui−α+1

∂ϕ

∂ui
= u1ϕ+ u0

∂ϕ

∂x
+
∂2ϕ

∂x2

+ 2
k∑

i=1

ui+1
∂2ϕ

∂x∂ui
+

k∑

i,j=0

ui+1uj+1
∂2ϕ

∂ui∂uj
. (2.65)

3.2. Higher order terms. Note now that the left-hand side of (2.65)
is independent of uk+1 while the right-hand one is quadratic in this variable
and is of the form

u2
k+1

∂2ϕ

∂u2
k

+ 2uk+1

(
∂2ϕ

∂x∂uk
+

k−1∑

i=0

ui+1
∂2ϕ

∂ui∂uk

)
.

It means that

ϕ = Auk + ψ, (2.66)

where A = A(t) and ψ = ψ(t, x, u0, . . . , uk−1). Substituting (2.66) into
equation (2.65) one obtains

Ȧuk +
∂ψ

∂t
+

k−1∑

i=1

i∑

α=1

(
i

α

)
uαui−α+1

∂ψ

∂ui
+

k∑

i=1

(
k

i

)
uiuk−i+1A

= u1(Auk + ψ) + u0
∂ψ

∂x
+
∂2ψ

∂x2
+ 2

k−1∑

i=1

ui+1
∂2ψ

∂x∂ui

+
k−1∑

i,j=0

ui+1uj+1
∂2ψ

∂ui∂uj
,
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where Ȧ
def
= dA/dt. Here again everything is at most quadratic in uk, and

equating coefficients at u2
k and uk we get

∂2ψ

∂u2
k−1

= 0, 2

(
k−2∑

i=0

ui+1
∂2ψ

∂ui∂uk−1
+

∂2ψ

∂x∂uk−1

)
= ku1A+ Ȧ.

Hence,

ψ =
1

2
(ku0A+ Ȧx+ ȧ)uk−1 +O[k − 2],

where a = a(t) and O[l] denotes a function independent of ui, i > l. Thus

ϕ = Auk +
1

2
(ku0A+ Ȧx+ ȧ)uk−1 +O[k − 2] (2.67)

which gives the “upper estimate” for solutions of (2.64).

3.3. Estimating Jacobi brackets. Let

ϕ = ϕ(t, x, u0, . . . , uk), ψ = ψ(t, x, u0, . . . , ul)

be two symmetries of E . Then their Jacobi bracket restricted onto E∞ looks
as

{ϕ,ψ} =

l∑

i=0

Di
x(ϕ)

∂ψ

∂ui
−

k∑

i=0

Dj
x(ψ)

∂ϕ

∂uj
. (2.68)

Suppose that the function ϕ is of the form (2.67) and similarly

ψ = Bul +
1

2
(lu0B + Ḃx+ ḃ)ul−1 +O[l − 2]

and let us compute (2.68) for these functions temporary denoting ku0A +

Ȧ+ a and lu0B + Ḃ + b by Ā and B̄ respectively. Then we have:

{ϕ,ψ} = Dl
x(Auk +

1

2
Āuk−1)B +

1

2
Dl−1
x (Auk +

1

2
Āuk−1)B̄

−Dk
x(Bul +

1

2
B̄ul−1)A−

1

2
Dk−1
x (Buk +

1

2
B̄ul−1)Ā+O[k + l − 1]

=
1

2
(lDx(Ā)uk+l−2 + Āuk+l−1)B̄ +

1

2
(Auk+l−1 +

1

2
Āuk+l−2)B

− 1

2
(kDx(B̄)uk+l−2 + B̄uk+l−1)Ā−

1

2
(Buk+l−1 +

1

2
B̄uk+l−2)A+

O[k + l − 3],

or in short,

{ϕ,ψ} =
1

2
(lȦB −KḂA)uk+l−2 +O[k + l − 3]. (2.69)
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3.4. Low order symmetries. These computations were done already
in Section 3 of Chapter 1 (see equation (1.61)). They can also be done
independently taking k = 2 and solving equation (2.64) directly. Then one
obtains five independent solutions which are

ϕ0
1 = u1,

ϕ1
1 = tu1 + 1,

ϕ0
2 = u2 + u0u1,

ϕ1
2 = tu2 + (tu0 +

1

2
x)u1 +

1

2
u0,

ϕ2
2 = t2u2 + (t2u0 + tx)u1 + tu0 + x. (2.70)

3.5. Action of low order symmetries. Let us compute the action

T ji
def
= {ϕji , •} = ¤

ϕji
− `

ϕji

of symmetries ϕji on other symmetries of the equation E .
For ϕ0

1 one has

T 0
1 = ¤u1 − `u1 =

∑

i≥0

ui+1
∂

∂ui
−Dx = − ∂

∂x
.

Hence, if ϕ = Auk+O[k−1] is a function of the form (2.67), then we obtain

T 0
1ϕ = −1

2
Ȧuk−1 +O[k − 2].

Consequently, if ϕ is a symmetry, then, since sym(E) is closed under the
Jacobi bracket,

(T 0
1 )k−1ϕ =

(
−1

2

)k−1 dk−1A

dtk−1
u1 +O[0]

is a symmetry as well. But from (2.70) one sees that first-order symmetries
are linear in t. Thus, we have the following result:

Proposition 2.25. If ϕ = Auk +O[k−1] is a symmetry of the Burgers

equation, then A is a k-th degree polynomial in t.

3.6. Final description. Note that direct computations show that the
equation E possesses a third-order symmetry of the form

ϕ0
3 = u3 +

3

2
u0u2 +

3

2
u2

0 +
3

4
u2

0u1.

Using the actions T 2
2 and T 0

3 , one can see that

((T 2
2 )i ◦ (T 0

3 ◦ T 2
2 )k−1)u1 =

(
−3

2

)k−1 k!(k − 1)!

(k − i)! uk +O[k − 1] (2.71)

is a symmetry, since u1 is the one.
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Theorem 2.26. The symmetry algebra sym(E) for the Burgers equation

E = {ut = uux + uxx}, as a vector space, is generated by elements of the

form

ϕik = tiuk +O[k − 1], k ≥ 1, i = 0, . . . , k,

which are polynomial in all variables. For the Jacobi bracket one has

{ϕik, ϕjl } =
1

2
(li− kj)ϕi+j−1

k+l−2 +O[k + l − 3]. (2.72)

The Lie algebra sym(E) is simple and has ϕ0
1, ϕ

2
2, and ϕ0

3 as its generators.

Proof. It only remains to prove that all ϕik are polynomials and that
sym(E) is a simple Lie algebra. The first fact follows from (2.71) and from
the obvious observation that coefficients of both T 2

2 and T 0
3 are polynomials.

Let us prove that sym(E) is a simple Lie algebra. To do this, let us
introduce an order in the set {ϕik} defining

Φ k(k+1)
2

+i

def
= ϕik.

Then any symmetry may be represented as
∑s

α=1 λαΦα, λ ∈ R.

Let I ⊂ sym(E) be an ideal and Φ = Φs +
∑s−1

α=1 λαΦα be its element.
Assume that Φs = ϕik for some k ≥ 1 and i ≤ k.

Note now that

T 1
1 =

∑

α≥0

Dα
x (tu1 + 1)

∂

∂uα
− tDx =

∂

∂u0
− t ∂

∂x

and

T 0
2 =

∑

α≥0

Dα
x (u2 + u0u1)

∂

∂uα
−D2

x − u0Dx − u1 = − ∂

∂t
.

Therefore,

((T 1
1 )k−1 ◦ (T 0

2 )i)Φ = cϕ0
1,

where the coefficient c does not vanish. Hence, I contains the function ϕ0
1.

But due to (2.71) the latter, together with the functions ϕ2
2 and ϕ0

3, generates
the whole algebra.

Further details on the structure of sym(E) one can find in [60].

4. The Hilbert–Cartan equation

We compute here classical and higher symmetries of the Hilbert–Cartan
equation [2]. Since higher symmetries happen to depend on arbitrary func-
tions, we consider some special choices of these functions [38].
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4.1. Classical symmetries. The Hilbert–Cartan equation is in effect
an underdetermined system of ordinary differential equations in the sense of
Definition 1.10 of Subsection 2.1 in Chapter 1. The number of independent
variables, n, is one while the number of dependent variables, m, is two. Local
coordinates are given by x, u, v in J0(π), while the order of the equations is
two, i.e.,

ux = v2
xx (2.73)

The representative morphism (see Definition 1.6 on p. 6) Φ is given by

Φ∆(x, u, v, ux, vx, uxx, vxx) = ux − v2
xx. (2.74)

The total derivative operator Dx is given by the formula

D = Dx =
∂

∂x
+ ux

∂

∂u
+ vx

∂

∂v
+ uxx

∂

∂ux
+ vxx

∂

∂vx
+ · · · (2.75)

To construct classical symmetries for (2.73), we start from the vector field
X, given by

X = X(x, u, v)
∂

∂x
+ U0(x, u, v)

∂

∂u
+ V0(x, u, v)

∂

∂v

+ U1(x, u, x, ux, vx)
∂

∂ux
+ V1(x, u, x, ux, vx)

∂

∂vx

+ U2(x, u, x, ux, vx, uxx, vxx)
∂

∂uxx
+ V2(x, u, x, ux, vx, uxx, vxx)

∂

∂vxx
.

The defining relations (1.34) (see p. 26) for U1, V1, U2, V2 are

U1 = D(U0)− uxD(X) = D(U0 − uxX) + uxxX,

V1 = D(V0)− vxD(X) = D(V0 − vxX) + vxxX,

U2 = D(U1)− uxxD(X) = D2(U0 − uxX) + uxxxX,

V2 = D(V1)− vxxD(X) = D2(V0 − vxX) + vxxxX. (2.76)

From (2.76) we derive the following explicit expressions for U1, V1, U2, V2:

U1 = U0,x + U0,uux + U0,vvx − ux(X0,x +X0,uux +X0,vvx),

V1 = V0,x + V0,uux + V0,vvx − ux(X0,x +X0,uux +X0,vvx),

U2 = U0,xx + 2U0,xuux + 2U0,xvvx + U0,uuu
2
x + 2U0,uvuxvx + U0,uuxx

+ U0,vvv
2
x + U0,vvxx − 2uxx(X0,x +X0,uux +X0,vvx)

− ux(X0,xx + 2X0,xuux + 2X0,xvvx

+X0,uuu
2
x + 2X0,uvuxvx +X0,uuxx +X0,vvv

2
x +X0,vvxx),

V2 = V0,xx + 2V0,xuux + 2V0,xvvx + V0,uuu
2
x + 2V0,uvuxvx + V0,uuxx

+ V0,vvv
2
x + V0,vvxx − 2uxx(X0,x +X0,uux +X0,vvx)

− vx(X0,xx + 2X0,xuux + 2X0,xvvx +X0,uuu
2
x

+ 2X0,uvuxvx +X0,uuxx +X0,vvv
2
x +X0,vvxx). (2.77)
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Now the symmetry-condition X(Φ∆) |E = 0 results in

U1 − 2vxxV2 = λ(ux − v2
xx) (2.78)

which is equivalent to

U1 − 2(ux)
1
2V2 = 0 mod Φ∆ = 0, (2.79)

which results in

U0,x + U0,uux + U0,vvx − ux(X0,x +X0,uux +X0,vvx)

−
(
V0,xx + 2V0,xuux + 2V0,xvvx + V0,uuu

2
x + 2V0,uvuxvx + V0,uuxx

+ V0,vvv
2
x + V0,vvxx − 2uxx(X0,x +X0,uux +X0,vvx)

− vx(X0,xx + 2X0,xuux + 2X0,xvvx +X0,uuu
2
x + 2X0,uvuxvx

+X0,uuxx +X0,vvv
2
x +X0,vvxx)

)
· 2(ux)1/2 = 0. (2.80)

Equation (2.80) is a polynomial in the “variables” (ux)
1/2, vx, uxx, the

coefficients of which should vanish. From this observation we obtain the
following system of equations:

1 : U0,x = 0,

u1/2
x : −2V0,xx = 0,

u1/2
x vx : −4V0,xv + 2X0,xx = 0,

u1/2
x uxx : −2V0,u = 0,

u1/2
x uxxvx : 2X0,u = 0,

u1/2
x v2

x : −2V0,vv + 4X0,xv = 0,

u1/2
x v3

x : 2X0,vv = 0,

ux : U0,u −X0,x − 2V0,v + 4X0,x = 0,

uxvx : −X0,v + 4X0,v + 2X0,v = 0,

u2
x : −X0,u + 4X0,u = 0,

u3/2
x : −4v0,xu = 0,

u3/2
x vx : −4V0,uv + 4X0,xu = 0,

u3/2
x v2

x : 4X0,uv = 0,

u5/2
x : −2V0,uu = 0,

u5/2
x vx : 2X0,uu = 0,

vx : U0,v = 0. (2.81)

From system (2.81) we first derive:

X0,u = X0,v = 0, V0,uu = V0,uv = V0,vv = 0 = V0,u = V0,xx,
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[Ai, Aj ] A1 A2 A3 A4 A5 A6

A1 0 0 0 0 A1 A3

A2 0 0 2A2 −3A2 0
A3 0 A3 0 0
A4 0 0 −A6

A5 0 A6

A6 0

Figure 2.1. Commutator table for classical symmetries of
the Hilbert–Cartan equation

which results in the equality X(x, u, v) = H(x) and in the fact that V0 is
independent of u, being of degree 1 in v and of degree 1 in x, i.e.,

X(x, u, v) = H(x), V0 = a0 + a1x+ a2v + a3xv.

Now from the equation labeled by u
1/2
x vx in (2.81) we derive

H(x) = a3x
2 + a4x+ a5. (2.82)

From the equations U0,v = 0 and U0,u + 3X0,x − 2V0,v = 0 we get

U0 = −(4a3x+ 2a2 − 3a5)u+G(x). (2.83)

Finally from U0,x = 0 we arrive at a3 = 0, G(x) = a6, from which the general
solution is obtained as

X = a4x+ a5, U0 = (2a2 − 3a4)u+ a6, V0 = a0 + a1x+ a2v.

This results in a 6-dimensional Lie algebra, the generators of which are given
by

A1 =
∂

∂x
,

A2 =
∂

∂u
,

A3 =
∂

∂v
,

A4 = 2u
∂

∂u
+ v

∂

∂v
,

A5 = x
∂

∂x
− 3u

∂

∂u
,

A6 = x
∂

∂v
,

while the commutator table is given on Fig. 2.1.

4.2. Higher symmetries. As a very interesting and completely com-
putable application of the theory of higher symmetries developed in Subsec-
tion 2.1, we construct in this section the algebra of higher symmetries for
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the Hilbert–Cartan equation E
ux − v2

xx = 0. (2.84)

First of all, note that E∞ is given by the system of equations:

Di(ux − v2
xx) = 0, i = 0, 1, . . . (2.85)

where D is defined by

D =
∂

∂x
+

∞∑

k=0

uk+1
∂

∂uk
+

∞∑

k=0

vk+1
∂

∂vk
, (2.86)

and uk = ux . . . x︸ ︷︷ ︸
k times

. So from (2.84) we have

D1F = u2 − 2v2v3 = 0,

D2F = u3 − 2v2
3 − 2v2v4 = 0,

DiF = u1+i −
i∑

l=0

(
i

l

)
v2+lv2+i−l = 0,

i = 3, . . . , with F (x, u, v, u1, v1, u2, v2) = u1 − v2
2 = 0.

In order to construct higher symmetries of (2.84), we introduce internal
coordinates on E∞ which are

x, u, v, v1, v2, v3, · · · (2.87)

The total derivative operator restricted to E∞, again denoted by D, is given
by the following expression

D =
∂

∂x
+ v2

2

∂

∂u
+ v1

∂

∂v
+
∑

i>0

vi+1
∂

∂vi
,

D(n) =
∂

∂x
+ v2

2

∂

∂u
+ v1

∂

∂v
+

n∑

i>0

vi+1
∂

∂vi
. (2.88)

Suppose that a vertical vector field V = ¤Φ with the generating function Φ,

Φ =
(
fu(x, u, v, v1, . . . , vn), f

v(x, u, v, v1, . . . , vn)
)
, (2.89)

is a higher symmetry of E . We introduce the notation

f [vk] = f(x, u, v, v1, . . . , vk). (2.90)

Since the vertical vector field V is formally given by

V = fu[vn]
∂

∂u
+ fv[vn]

∂

∂v
+ fv1 [vn+1]

∂

∂v1
+ fv2 [vn+2]

∂

∂v2
+ . . . , (2.91)

we derive the following symmetry conditions from (2.84)

D(n)fu[vn]− 2v2f
v2 [vn+2] = 0,

D(n)fv[vn]− fv1 [vn+1] = 0,

D(n+1)fv1 [vn+1]− fv2 [vn+2] = 0. (2.92)
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In effect, the second and third equation of (2.92) are just the definitions
of fv1 [vn+1] and fv2 [vn+2], due to the evolutionary property of ¤Φ. We now
want to construct the general solution of system (2.92). In order to do so,
we first solve the third equation in (2.92) for f v2 [vn+2],

fv2 [vn+2] = D(n+1)fv1 [vn+1], (2.93)

and the system reduces to

D(n)fu[vn]− 2v2D
(n+1)fv1 [vn+1] = 0,

D(n)fv[vn]− fv1 [vn+1] = 0. (2.94)

Remark 2.11. At this stage it would be possible to solve the last equa-
tion for fv1 [vn+1], but we prefer not to do so.

Now (2.94) is a polynomial in vn+2 of degree 1 and (2.94) reduces to

vn+2 : −2v2
∂fv1 [vn+1]

∂vn+1
= 0,

1 : D(n)fu[vn]− 2v2D
(n)fv1 [vn] = 0,

: D(n)fv[vn]− fv1 [vn] = 0. (2.95)

In (2.95) and below, “vn+2 :” refers to the coefficient at vn+2 in a particular
equation. From (2.95) we arrive, due to the fact that second and third
equation are polynomial in vn+1, at

vn+1 :
∂fu[vn]

∂vn
− 2v2

∂fu1 [vn]

∂vn
= 0,

1 : D(n−1)fu[vn]− 2v2D
(n−1)fv1 [vn] = 0,

vn+1 :
∂fv[vn]

∂vn
= 0,

1 : D(n−1)fv[vn]− fv1 [vn] = 0. (2.96)

To solve system (2.96), we first note that

fv[vn] = fv[vn−1]. (2.97)

By differentiation of the fourth equation in (2.96) twice with respect to vn,
we obtain

∂2fv1 [vn]

∂v2
n

= 0. (2.98)

By consequence, f v1 is linear with respect to vn, i.e.,

fv1 [vn] = H1[vn−1] + vnH
2[vn−1]. (2.99)

Now, substitution of (2.97) and (2.99) into (2.96) yields the following
system of equations

∂fu[vn]

∂vn
− 2v2H

2[vn−1] = 0,
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D(n−1)fu[vn]− 2v2D
(n−1)H1[vn−1]− 2v2vnD

(n−1)H2[vn−1] = 0,

D(n−1)fv[vn−1]−H1[vn−1]− vnH2[vn−1] = 0. (2.100)

We solve the first equation in (2.100) for fu[vn], i.e.,

fu[vn] = 2v2vnH
2[vn−1] +H3[vn−1], (2.101)

and from the second and third equation in (2.100) we arrive at

2v3vnH
2[vn−1] + 2v2vnD

(n−1)H2[vn−1] +D(n−1)H3[vn−1]

− 2v2D
(n−1)H1[vn−1]− 2v2vnD

(n−1)H2[vn−1] = 0,

D(n−1)fv[vn−1]−H1[vn−1]− vnH2[vn−1] = 0. (2.102)

Due to cancellation of second and fifth term in the first equation of (2.102)
and its polynomial structure with respect to vn, we obtain a resulting system
of four equations:

vn : 2v3H
2[vn−1] +

∂H3[vn−1]

∂vn−1
− 2v2

∂H1[vn−1]

∂vn−1
= 0,

1 : D(n−2)H3[vn−1]− 2v2D
(n−2)H1[vn−1] = 0,

vn :
∂fv[vn−1]

∂vn−1
−H2[vn−1] = 0,

1 : D(n−2)fv[vn−1]−H1[vn−1] = 0. (2.103)

From (2.103) we solve the third equation for H2[vn−1],

H2[vn−1] =
∂fv[vn−1]

∂vn−1
, (2.104)

and integrate the first one in (2.103):

2v3
∂fv[vn−1]

∂vn−1
+
∂H3[vn−1]

∂vn−1
− 2v2

∂H1[vn−1]

∂vn−1
= 0, (2.105)

which leads to

H3[vn−1] = 2v2H
1[vn−1]− 2v3f

v[vn−1] +H4[vn−2]. (2.106)

By obtaining (2.106), we have to put in the requirement n − 1 > 3 and we
shall return to this case in the next subsection.

We now proceed by substituting the results (2.104) and (2.106) into
(2.103), which leads to

2v3H
1[vn−1] + 2v2D

(n−2)H1[vn−1]− 2v4f
v[vn−1]− 2v3D

(n−2)fv[vn−1]

+D(n−2)H4[vn−2]− 2v2D
(n−2)H1[vn−1] = 0,

D(n−2)fv[vn−1]−H1[vn−1] = 0. (2.107)

By cancellation of the second and sixth term in the first equation of (2.107),
we finally arrive at

D(n−2)fv[vn−1]−H1[vn−1] = 0,
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D(n−2)H4[vn−2]− 2v4f
v[vn−1] = 0, (2.108)

where the first equation in (2.108) can be considered as defining relation
for H1[vn−1], while the second equation determines f v[vn−1] in terms of an
arbitrary function H4[vn−2]. The final result can now be obtained by (2.104)
and (2.106):

H2[vn−1] =
∂fv[vn−1]

∂vn−1
,

H3[vn−1] = 2v2H
1[vn−1]− 2v3f

v[vn−1] +H4[vn−2], (2.109)

together with (2.108) and (2.101):

fu[vn] = 2v2vn
∂fv[vn−1]

∂vn−1
+ 2v2H

1[vn−1]− 2v3f
v[vn−1] +H4[vn−2],

fv[vn] = fv[vn−1], (2.110)

whereas in (2.110) f v[vn−1], H
1[vn−1] are defined by (2.108) in terms of an

arbitrary function H4[vn−2]! The general result of this section can now be
formulated in the following

Theorem 2.27. Let H be an arbitrary function of the variables x, u,
v, . . . , vn−2, i.e.,

H = H[vn−2], (2.111)

and let us define

fv[vn−1] =
1

2v4
D(n−2)H[vn−2],

fu[vn] = 2v2D
(n−1)fv[vn−1]− 2v3f

v[vn−1] +H[vn−2]. (2.112)

Then the vector field

V = fu[vn]
∂

∂u
+ fv[vn−1]

∂

∂v
(2.113)

is a higher symmetry of (2.85).
Conversely, given a higher symmetry of (2.85), then there exists a func-

tion H, such that the components fu, fv of V are defined by (2.112).

4.3. Special cases. Due to the restriction n > 4 the result (2.109) and
(2.110) holds for

n = 5, . . . (2.114)

meaning that H4[vn−2] is a free function of x, u, v, . . . , vn−2 and fv[vn−1] is
obtained by (2.109)

fv[vn−1] =
1

2v4
D(n−2)H4[vn−2]. (2.115)
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From (2.115) and (2.109) it is clear that f v[vn−1] is linear with respect
to the variable vn−1 and

fv[vn−1] =
vn−1

2v4

∂H4[vn−2]

∂vn−2
+ f̃v[vn−2]. (2.116)

Moreover, the requirement that f v[vn−1] is independent of vn−1 reduces to
H4[vn−2] to be independent of vn−2, i.e.,

∂fv[vn−1]

∂vn−1
= 0⇒ H4[vn−2] = H4[vn−3]. (2.117)

The result (2.117) holds for all n > 5.
The results for higher symmetries, or Lie–Bäcklund transformations, for

n < 6 are obtained by imposing additional conditions on the coefficient f v

of the evolutionary vector field.
The case n = 5.

fv[v4] =
1

2v4
(
∂H4[v3]

∂x
+ v2

2

∂H4[v3]

∂u
+ v1

∂H4[v3]

∂v

+ v2
∂H4[v3]

∂v1
+ v3

∂H4[v3]

∂v2
+ v4

∂H4[v3]

∂v3
).

The requirement that f v[v4] is independent of v4 now leads to a genuine first
order partial differential equation, i.e.,

∂H4

∂x
+ v2

2

∂H4

∂u
+ v1

∂H4

∂v
+ v2

∂H4

∂v1
+ v3

∂H4

∂v2
= 0, (2.118)

and the general solution is given in terms of the invariants of the correspond-
ing vector field

U =
∂

∂x
+ v2

2

∂

∂u
+ v1

∂

∂v
+ v2

∂

∂v1
+ v3

∂

∂v2
, (2.119)

where the set of invariants is given by

z1 = v3,

z2 = v2 − v3x,

z3 = 2v1 − 2v2x+ v3x
2,

z4 = 6v − 6v1x+ 3v2x
2 − v3x

3,

z5 = 3u− 3v2
2x+ 3v2v3x

2 − v2
3x

3. (2.120)

So H4 is given by

H4 = H4(z1, z2, z3, z4, z5), (2.121)

whereas the formulas for f v and fu reduce to

fu = H4 − v2
∂H4

∂v2
− v3

∂H4

∂v3
+ v2v4

∂2H4

∂v2
3

,

fv =
1

2

∂H4

∂v3
. (2.122)
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The case n = 4. The requirement the function f v is independent of
v3 reduces to

∂2H4

∂v2
3

= 0, (2.123)

and (2.118)

∂H4

∂x
+ v2

2

∂H4

∂u
+ v1

∂H4

∂v
+ v2

∂H4

∂v1
+ v3

∂H4

∂v2
= 0. (2.124)

Substitution of (2.123) into (2.124) immediately leads to the condition

∂

∂v2

∂

∂v3
H4 = 0, (2.125)

i.e.,

fv = fv(x, u, v, v1), (2.126)

and the result completely reduces to the second order higher symmetries
obtained by Anderson [3] and [2] leading to the 14-dimensional Lie algebra
G2.

5. The classical Boussinesq equation

The classical Boussinesq equation is written as the following system
of partial differential equations in J3(π), where π : R2 × R2 → R2 with
independent variables x, t and u, v for dependent ones:

ut = (uv + αvxx)x = uxv + uvx + αvxxx,

vt = (u+
1

2
v2)x = ux + vvx. (2.127)

So in this application u = (u, v) and (x1, x2) = (x, t). In order to construct
higher symmetries of (2.127), we have to construct solutions of the symmetry
condition which are discussed in Section 2. For evolution equations it is
custom to choose internal coordinates as x, t, u, v, u1, v1, u2, v2, . . . , where

ui =
∂iu

∂xi
, vi =

∂iv

∂xi
. (2.128)

The partial derivative operators Dx and Dt are defined on E∞ by

Dx =
∂

∂x
+
∑

i>0

ui+1
∂

∂ui
+
∑

i>0

vi+1
∂

∂vi
,

Dt =
∂

∂t
+
∑

i>0

uit
∂

∂ui
+
∑

i>0

vit
∂

∂vi
, (2.129)

while expressions for uit and vit are derived from (2.127) by

uit = Di
x(ut), vit = Di

x(vt). (2.130)
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From (2.127) we derive the universal linearization operator as a 2×2 matrix
operator by of the form

`∆ =

(
vDx + v1 αD3

x + uDx + u1

Dx vDx + v1

)
. (2.131)

To construct higher symmetries for equations (2.127), we start from a
vertical vector field of evolutionary type, i.e.,

Y 7→ ¤Y =
∞∑

i=0

Di
x(Y

u)
∂

∂ui
+

∞∑

i=0

Di
x(Y

v)
∂

∂vi
. (2.132)

From this and the presentation of the universal linearization operator we
derive the condition for Y = (Y u, Y v) to be a higher symmetry of (2.127),
i.e.,

vDxY
u + v1Y

u + (αD3
x + uDx + u1)Y

v = 0,

DxY
u + (vDx + v1)Y

v = 0. (2.133)

It is quite of interest to make some remarks here on the construction
of solutions of this overdetermined system of partial differential equations
for Y u, Y v. Recall that we require Y u and Y v to be dependent of a finite
number variables. Equations (2.127) are graded, i.e., they admit a scaling
symmetry,

−x ∂
∂x
− 2t

∂

∂t
+ 2u

∂

∂u
+ v

∂

∂v
,

from where we have

deg(x) = −1, deg(u) = 2, deg

(
∂

∂u

)
= −2,

deg(t) = −2, deg(v) = 1, deg

(
∂

∂v

)
= −1.

Due to the grading of (2.127), equations (2.132) and (2.133) are graded too
and we require

Y u to dependent on x, t, v, u, v1, . . . , u4, v5, u5, v6,

Y v to dependent on x, t, v, u, v1, . . . , u4, v5.

The general solution of (2.133) is then given by the following eight vector
fields

¤Yi = ¤(Y ui ,Y
v
i ), i = 1, . . . , 8,

where

Y u
1 = αv3 + u1v + v1u,

Y v
1 = u1 + v1v;

Y u
2 = u1,

Y v
2 = v1;
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Y u
3 = tu1,

Y v
3 = tv1 + 1;

Y u
4 =

1

2
xu1 + t(αv3 + u1v + v1u) + u,

Y v
4 =

1

2
xv1 + t(u1 + v1v) +

1

2
v;

Y u
5 =

1

2α
x(αv3 + u1v + v1u) + t

(
u3 +

3

2
v3v + 3v2v1 +

3

4α
u1(v

2 + 2u)

+
3

2α
v1vu

)
+

3

2
v2 +

1

α
vu,

Y v
5 =

1

2α
x(u1 + v1v) + t

(
v3 +

3

2α
u1v +

3

4α
v1(v

2 + 2u)
)

+
1

4α
v2 +

1

α
u;

Y u
6 = 2αv5 + 4u3v + v3(3v

2 + 5u) + 9u2v1 + 10v2u1 + 12v2v1v

+
1

α
u1v(v

2 + 6u) + 3v3
1 +

3

α
v1u(v

2 + u),

Y v
6 = 2u3 + 4v3v + 7v2v1 +

3

α
u1(v

2 + u) +
1

α
v1v(v

2 + 6u);

Y u
7 = αu5 +

5

2
v5v +

15

2
αv4v1 +

5

2
u3(v

2 + u) +
25

2
αv3v2

+
5

4
v3v(v

2 + 5u) + 5u2u1 +
45

4
u2v1v +

25

2
v2u1v +

5

2
v2v1(3v

2 + 5u)

+
75

8
u1v

2
1 +

5

16α
u1(v

4 + 12v2u+ 6u2) +
15

4
v3
1v +

5

4
v1vu(v

2 + 3u),

Y v
7 = αv5 +

5

2
u3v +

5

2
v3(v

2 + u) + 5u2v1 + 5v2u1 +
35

4
v2v1v

+
5

4
u1v(v

2 + 3u) +
15

8
v3
1 +

5

16
v1(v

4 + 12v2u+ 6u2);

Y u
8 = u3 +

3

2
v3v + 3v2v1 +

3

4α
u1(v

2 + 2u) +
3

2α
v1vu,

Y v
8 = v3 +

3

2α
u1v +

3

4α
v1(v

2 + 2u). (2.134)

The Lie algebra structure of these symmetries is constructed by comput-
ing the Jacobi brackets of the respective generating functions Yi = (Y u

i , Y
v
i ).

The commutators of the associated vector fields are given then in Fig. 2.2.
The generating function Y9 is defined here by

Y u
9 =

5

2
αv7 +

15

2
u5v +

5

8
v5(15v

2 + 14u) + 25u4v1 +
105

4
v4u1

+
225

4
v4v1v +

175

4
u3v2 +

25

4
u3v(v

2 + 3u) +
175

4
v3u2 +

375

4
v3v2v

+
1125

16
v3v

2
1 +

25

32α
v3(3v

4 + 30v2u+ 14u2) +
75

2α
u2u1v
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[Yi, Yj ] Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y1 0 −Y2 −Y1 −Y8 0 0 0

Y2 0 −1
2Y2 − 1

2αY4 0 0 0

Y3
1
2Y3

1
αY4 4Y8

5
4Y6

3
2αY1

Y4
1
2Y5 2Y6

5
2Y7

3
2Y8

Y5
4
αY7 Y9

3
4αY6

Y6 0 0
Y7 0
Y8

Figure 2.2. Commutator table for symmetries of the
Boussinesq equation

+
25

16α
u2v1(27v

2 + 26u) +
375

4
v2
2v1 +

25

8α
v2u1(15v

2 + 14u)

+
75

4α
v2v1v(v

2 + 5u) +
125

4α
u2

1v1 +
1125

16α
u1v

2
1v

+
15

32α2
u1v(v

4 + 20v2u+ 30u2) +
75

16α
v3
1(3v

2 + 5u)

+
75

32α2
v1u(v

4 + 6v2u+ 2u2),

Y v
9 =

5

2
u5 +

15

2
v5v + 20v4v1 +

25

8α
u3(3v

2 + 2u) +
125

4
v3v2

+
25

4α
v3v(v

2 + 3u) +
25

2α
u2u1 +

75

2α
u2v1v +

75

2α
v2u1v

+
25

16α
v2v1(21v

2 + 22u) +
425

16α
u1v

2
1 +

75

32α2
u1(v

4 + 6v2u+ 2u2)

+
225

16α
v3
1v +

15

32α2
v1v(v

4 + 20v2u+ 30u2). (2.135)

In order to transform the Lie algebra we introduce

Z1 = αY5, Z0 = Y4, Z−1 = Y3,

W1 = Y2, W2 =
1

2
Y1, W3 =

1

2
αY8,

W4 =
3

8
αY6, W5 =

3

2
αY7, W6 =

3

2
α2Y9, (2.136)

which results in the Lie algebra structure presented in Fig. 2.3.
It is very interesting to note that the classical Boussinesq equation ad-

mits a higher symmetry Z1 (see (2.134)) which is local and which has the
property of acting as a recursion operator for the (x, t)-independent symme-
tries of the classical Boussinesq equation, thus giving rise to infinite series
of higher symmetries. In Chapter 5 we shall construct the associated
recursion operator by deformations of the equation structure of the classical
Boussinesq equation.
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[∗, ∗] Z1 Z0 Z−1 W1 W2 W3 W4 W5

Z1 0 −1
2Z1 −Z0 W2 W3 W4 W5 W6

Z0 0 0 1
2Z1

1
2W1 W2

3
2W3 2W4

5
2W5

Z−1 0 0 0 0 1
2W1

3
2W2 3W3 5W4

W1 0 0 0 0 0 0 0 0
W2 0 0 0 0 0 0 0 0
W3 0 0 0 0 0 0 0 0
W4 0 0 0 0 0 0 0 0
W5 0 0 0 0 0 0 0 0

Figure 2.3. Commutator table for symmetries of the
Boussinesq equation (2)
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CHAPTER 3

Nonlocal theory

The facts exposed in this chapter constitute a formal base to introduce
nonlocal variables to the differential setting, i.e., variables of the type

∫
ϕdx,

ϕ being a function on an infinitely prolonged equation. These variables are
essential for introducing nonlocal symmetries of PDE as well as for existence
of recursion operators. A detailed exposition of this material can be found
in [62, 61] and [12].

1. Coverings

We start with fixing up the setting. To do this, extend the universum
of infinitely prolonged equations in the following way. Let N be a chain of

smooth maps · · · → N i+1 τi+1,i−−−→ N i → · · · , i.e., an object of the category
M∞ (see Chapters 1 and 2), where N i are smooth finite-dimensional mani-
folds. As before, let us define the algebra F(N ) of smooth functions on N as

the direct limit of the homomorphisms · · · → C∞(N i)
τ∗i+1,i−−−→ C∞(N i+1) →

· · · . Then there exist natural homomorphisms τ ∗∞,i : C
∞(N i) → F(N ) and

the algebra F(N ) may be considered to be filtered by the images of these
maps. Let us consider calculus (cf. Subsection 1.3 of Chapter 1) over F(N )
agreed with this filtration. We define the category DM∞ as follows:

1. The objects of the category DM∞ are the above introduced chains
N endowed with integrable distributions DN ⊂ D(F(N )), where the
word “integrable” means that [DN , DN ] ⊂ DN .

2. If N1 = {N i
1, τ

1
i+1,i}, N2 = {N i

2, τ
2
i+1,i} are two objects of DM∞, then

a morphism ϕ : N1 → N2 is a system of smooth mappings ϕi : N
i+α
1 →

N i
2, where α ∈ Z is independent of i, satisfying τ 2

i+1,i ◦ ϕi+1 = ϕi ◦
τ1
i+α+1,i+α and such that ϕ∗,θ(DN1,θ) ⊂ DN2,ϕ(θ) for any point θ ∈ N1.

Definition 3.1. A morphism ϕ : N1 → N2 is called a covering in the
category DM∞, if ϕ∗,θ|DN1,θ

: DN1,θ → DN2,ϕ(θ) is an isomorphism for any

point θ ∈ N1.

In particular, manifolds J∞(π) and E∞ endowed with the corresponding
Cartan distributions are objects of DM∞ and we can consider coverings
over these objects.

Example 3.1. Let ∆: Γ(π) → Γ(π′) be a differential operator of order

≤ k. Then the system of mappings Φ
(l)
∆ : Jk+l(π)→ J l(π′) (see Definition 1.6

99
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on p. 6) is a morphism of J∞(π) to J∞(π′). Under unrestrictive conditions
of regularity, its image is of the form E∞ for some equation E in the bundle
π′ while the map J∞(π)→ E∞ is a covering.

Definition 3.2. Let ϕ′ : N ′ → N and ϕ′′ : N ′′ → N be two coverings.

1. A morphism ψ : N ′ → N ′′ is said to be a morphism of coverings, if
ϕ′ = ϕ′′ ◦ ψ.

2. The coverings ϕ′, ϕ′′ are called equivalent, if there exists a morphism
ψ : N ′ → N ′′ which is a diffeomorphism.

Assume now that ϕ : N ′ → N is a linear (i.e., vector) bundle and denote
by L(N ′) ⊂ F(N ′) the subset of functions linear along the fibers of the
mapping ϕ.

Definition 3.3. A covering ϕ : N ′ → N is called linear, if

1. The mapping ϕ is a linear bundle.
2. Any element X ∈ D(N ′) preserves L(N ′).

Example 3.2. Let E ⊂ Jk(π) be a formally integrable equation and E∞
be its infinite prolongation and TE∞ → E∞ be its tangent bundle. Denote
by τ v : V E∞ → E∞ the subbundle whose sections are π∞-vertical vector
fields. Obviously, any Cartan form ωf = dC(f), f ∈ F(E∞) (see (2.13) on
p. 66) can be understood as a fiber-wise linear function on V E∞:

ωf (Y )
def
= Y ωf , Y ∈ Γ(τ v), (3.1)

and any function ϕ ∈ L(V E∞) is a linear combination of the above ones
(with coefficients in F(E)).

Take the Cartan distribution C for the distribution DE∞ and let us define
the action of any vector field Z lying in this distribution on the functions of
the form (3.1) by

Z(ωf )
def
= LZωf .

Since any Z under consideration is (at least locally) of the form Z =∑
i fiCXi, X ∈ D(M), fi ∈ F(E), one has

Z(ωf ) = LP

i fiCXi
ωf =

∑

i

(
fLCXidCf + dfi ∧ iCXi(dCf)

)

=
∑

i

dC(CXif) =
∑

i

fiωCXi(f).

But defined on linear functions, you obtain a vector field Z̃ on the entire

manifold V E∞. Obviously, the distribution spanned by all Z̃ is integrable
and projects to the Cartan distribution on E∞ isomorphically. Thus we
obtain a linear covering structure in τ v : V E∞ → E∞ which is called the
(even) Cartan covering.
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Remark 3.1. In Chapter 6 we shall introduce a similar construction
where the functions ωf will play the role of odd variables. This explains the
adjective even in the above definition.

If the equation E ⊂ Jk(π) is locally presented in the form E = {F =
0}, then the object V E∞ is isomorphic to the infinite prolongation of the
equation 




F = 0,

∑
j,σ

∂F

∂ujσ
wjσ = 0,

(3.2)

where wjσ
def
= ω

ujσ
. Thus, V E∞ corresponds to the initial equation together

with its linearization.

Let N be an object of DM∞ and W be a smooth manifold. Consider
the projection τW : N ×W → N to the first factor. Then we can make a
covering of τW by lifting the distribution DN to N ×W in a trivial way.

Definition 3.4. A covering τ : N ′ → N is called trivial, if it is equiva-
lent to the covering τW for some W .

Let again ϕ′ : N ′ → N , ϕ′′ : N ′′ → N be two coverings. Consider the
commutative diagram

N ′ ×N N ′′ ϕ
′′∗(ϕ′)→ N ′′

N ′

ϕ′∗(ϕ′′)

↓
ϕ′

→ N

ϕ′′

↓

where

N ′ ×N N ′′ = { (θ′, θ′′) ∈ N ′ ×N ′′ | ϕ′(θ′) = ϕ′′(θ′′) }
while ϕ′∗(ϕ′′), ϕ′′∗(ϕ′) are the natural projections. The manifold N ′×N N ′′

is supplied with a natural structure of an object of DM∞ and the mappings
(ϕ′)∗(ϕ′′), (ϕ′′)∗(ϕ′) become coverings.

Definition 3.5. The composition

ϕ′ ×N ϕ′′ = ϕ′ ◦ ϕ′∗(ϕ′′) = ϕ′′ ◦ ϕ′′∗(ϕ′) : N ′ ×N N ′′ → N
is called the Whitney product of the coverings ϕ′ and ϕ′′.

Definition 3.6. A covering is said to be reducible, if it is equivalent to
a covering of the form ϕ×N τ , where τ is a trivial covering. Otherwise it is
called irreducible.

From now on, all coverings under consideration will be assumed to be
smooth fiber bundles. The fiber dimension is called the dimension of the

covering ϕ under consideration and is denoted by dimϕ.
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Proposition 3.1. Let E ⊂ Jk(π) be an equation in the bundle π : E →
M and ϕ : N → E∞ be a smooth fiber bundle. Then the following statements

are equivalent :

1. The bundle ϕ is equipped with a structure of a covering.

2. There exists a connection Cϕ in the bundle π∞◦ϕ : N →M , Cϕ : X 7→
Xϕ, X ∈ D(M), Xϕ ∈ D(N ), such that

(a) [Xϕ, Y ϕ] = [X,Y ]ϕ, i.e., Cϕ is flat, and

(b) any vector field Xϕ is projectible to E∞ under ϕ∗ and ϕ∗(X
ϕ) =

CX, where C is the Cartan connection on E∞.

The proof reduces to the check of definitions.
Using this result, we shall now obtain coordinate description of coverings.

Namely, let x1, . . . , xn, u
1, . . . , um be local coordinates in J0(π) and assume

that internal coordinates in E∞ are chosen. Suppose also that over the
neighborhood under consideration the bundle ϕ : N → E∞ is trivial with the
fiber W and w1, w2, . . . , ws, . . . are local coordinates in W . The functions
wj are called nonlocal coordinates in the covering ϕ. The connection Cϕ
puts into correspondence to any partial derivative ∂/∂xi the vector field

Cϕ(∂/∂xi) = D̃i. By Proposition 3.1, these vector fields are to be of the
form

D̃i = Di +Xv
i = Di +

∑

α

Xα
i

∂

∂wα
, i = 1, . . . , n, (3.3)

where Di are restrictions of total derivatives to E∞, and satisfy the condi-
tions

[D̃i, D̃i] = [Di, Dj ] + [Di, X
v
j ] + [Xv

i , Dj ] + [Xv
i , X

v
j ]

= [Di, X
v
j ] + [Xv

i , Dj ] + [Xv
i , X

v
j ] = 0 (3.4)

for all i, j = 1, . . . , n.
We shall now prove a number of facts that simplify checking of triviality

and equivalence of coverings.

Proposition 3.2. Let ϕ1 : N1 → E∞ and ϕ2 : N2 → E∞ be two cover-

ings of the same dimensions r <∞. They are equivalent if and only if there

exists a submanifold X ⊂ N1 ×E∞ N2 such that

1. The equality codimX = r holds.

2. The restrictions ϕ∗
1(ϕ2) |X and ϕ∗

2(ϕ1) |X are surjections.

3. One has (DN1×E∞N2)θ ⊂ TθX for any point θ ∈ X.

Proof. In fact, if ψ : N1 → N2 is an equivalence, then its graph

Gψ = { (y, ψ(y)) | y ∈ N1 }
is the needed manifold X. Conversely, if X is a manifold satisfying the
assupmtions of the proposition, then the correspondence

y 7→ ϕ∗
1(ϕ2)

(
(ϕ∗

1(ϕ2))
−1(y) ∩X

)

is an equivalence.
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Submanifolds X satisfying assumption (3) of the previous proposition are
called invariant.

Proposition 3.3. Let ϕ1 : N1 → E∞ and ϕ2 : N2 → E∞ be two irre-

ducible coverings of the same dimension r < ∞. Assume that the Whitney

product of ϕ1 and ϕ2 is reducible and there exists an invariant submanifold

X in N1 ×E∞ N2 of codimension r. Then ϕ1 and ϕ2 are equivalent almost

everywhere.

Proof. Since ϕ1 and ϕ2 are irreducible, X is to be mapped surjectively
almost everywhere by ϕ∗

1(ϕ2) and ϕ∗
2(ϕ1) to N1 and N2 respectively (other-

wise, their images would be invariant submanifolds). Hence, the coverings
are equivalent by Proposition 3.2.

Corollary 3.4. If ϕ1 and ϕ2 are one-dimensional coverings over E∞
and their Whitney product is reducible, then they are equivalent.

Proposition 3.5. Let ϕ : N → E∞ be a covering and U ⊂ E∞ be a

domain such that the the manifold Ũ = ϕ−1(U) is represented in the form

U × Rr, r ≤ ∞, while ϕ|Ũ is the projection to the first factor. Then the

covering ϕ is locally irreducible if the system

Dϕ
1 (f) = 0, . . . , Dϕ

n(f) = 0 (3.5)

has constant solutions only.

Proof. Suppose that there exists a solution f 6= const of (3.5). Then,
since the only solutions of the system

D1(f) = 0, . . . , Dn(f) = 0,

where Di is the restriction of the i-th total derivative to E∞, are constants, f
depends on one nonlocal variable wα at least. Without loss of generality, we
may assume that ∂f/∂w1 6= 0 in a neighborhood U ′ × V , U ′ ⊂ U , V ⊂ Rr.
Define the diffeomorphism ψ : U ′ ⊂ U → ψ(U ′ ⊂ U) by setting

ψ(. . . , xi, . . . , p
j
σ, . . . , w

α, . . . ) = (. . . , xi, . . . , p
j
σ, . . . , f, w

2, . . . , wα, . . . ).

Then ψ∗(D
ϕ
i ) = Di +

∑
α>1X

α
i ∂/∂w

α and consequently ϕ is reducible.
Let now ϕ be a reducible covering, i.e., ϕ = ϕ′×E∞ τ , where τ is trivial.

Then, if f is a smooth function on the total space of the covering τ , the
function f∗ =

(
τ∗(ϕ′)

)∗
(f) is a solution of (3.5). Obviously, there exists an

f such that f∗ 6= const.

2. Nonlocal symmetries and shadows

Let N be an object of DM∞ with the integrable distribution P = PN .
Define

DP(N ) = {X ∈ D(N ) | [X,P] ⊂ P }
and set symN = DP(N )/PN . Obviously, DP(N ) is a Lie R-algebra and D
is its ideal. Elements of the Lie algebra symN are called symmetries of the
object N .
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Definition 3.7. Let ϕ : N → E∞ be a covering. A nonlocal ϕ-

symmetry of E is an element of symN . The Lie algebra of such symmetries
is denoted by symϕ E .

Example 3.3. Consider the even Cartan covering τ v : V E∞ → E∞ (see
Example 3.2) and a symmetry X ∈ sym E of the equation E . Then we can
define a vector field Xe on V E∞ by setting Xe(f) = X(f) for any function
f ∈ F(E) and

Xe(ωf ) = LX(dCf) = dC(Xf) = ωXf .

Then, by obvious reasons, Xe ∈ symτv E and τ v∗X
e = X. In other, words

Xe is a nonlocal symmetry which is obtained by lifting the corresponding
higher symmetry of E to V E∞.

On the other hand, we can define a field Xo by Xo(f) = 0 and

Xo(ωf ) = iX(dCf) = X(f).

Again, Xo is a nonlocal symmetry in τ v, but as a vector field it is τ v-vertical.
So, in a sense, this symmetry is “purely nonlocal”.

Due to identities [LX ,LY ] = L[X,Y ], [LX , iY ] = i[X,Y ], and [iX , iY ] = 0,
we have

[Xe, Y e] = [X,Y ]e, [Xe, Y o] = [X,Y ]e, [Xo, Y o] = 0.

A base for computation of nonlocal symmetries is the given by following
two results.

Theorem 3.6. Let ϕ : N → E∞ be a covering. The algebra symϕ E is

isomorphic to the Lie algebra of vector fields X on N such that

1. The field X is vertical, i.e., X(ϕ∗(f)) = 0 for any function f ∈
C∞(M) ⊂ F(E).

2. The identities [X,Dϕ
i ] = 0 hold for all i = 1, . . . , n.

Proof. Note that the first condition means that in coordinate repre-
sentation the coefficients of the field X at all ∂/∂xi vanish. Hence the
intersection of the set of vertical fields with D vanish. On the other hand, in
any coset [X] ∈ symϕ E there exists one and only one vertical element Xv.

In fact, let X be an arbitrary element of [X]. Then Xv = X −∑i aiD
ϕ
i ,

where ai is the coefficient of X at ∂/∂xi.

Theorem 3.7. Let ϕ : N = E∞ × Rr → E∞ be the covering locally de-

termined by the fields

Dϕ
i = Di +

r∑

α=1

Xα
i

∂

∂wα
, i = 1, . . . , n, Xα

i ∈ F(N ),

where w1, w2, . . . are coordinates in Rr (nonlocal variables). Then any non-

local ϕ-symmetry of the equation E = {F = 0} is of the form

¤̃ψ,a = ¤̃ψ +
r∑

α=1

aα
∂

∂wα
, (3.6)
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where ψ = (ψ1, . . . , ψm), a = (a1, . . . , ar), ψi, aα ∈ F(N ) are functions

satisfying the conditions

˜̀
F (ψ) = 0, (3.7)

Dϕ
i (aα) = ¤̃ψ,a(X

α
i ) (3.8)

while

¤̃ψ =
∑

j,σ

Dϕ
σ (ψ)

∂

∂ujσ
(3.9)

and ˜̀
F is obtained from `F by changing total derivatives Di for Dϕ

i .

Proof. Let X ∈ symϕ E . Using Theorem 3.6, let us write down the
field X in the form

X =
∑

σ,j

′

bjσ
∂

∂ujσ
+

r∑

α=1

aα
∂

∂wα
, (3.10)

where “prime” over the first sum means that the summation extends on
internal coordinates in E∞ only. Then, equating to zero the coefficient at

∂/∂ujσ in the commutator [X,Dϕ
i ], we obtain the following equations

Dϕ
i (bjσ) =

{
bjσi, if ujσi is an internal coordinate,

X(ujσi) otherwise.

Solving these equations, we obtain that the first summand in (3.10) is of the

form ¤̃ψ, where ψ satisfies (3.7).

Comparing the result obtained with the description of local symmetries
(see Theorem 2.15 on p. 72), we see that in the nonlocal setting an additional
obstruction arises represented by equation (3.8). Thus, in general, not every
solution of (3.7) corresponds to a nonlocal ϕ-symmetry. We call vector fields

¤̃ψ of the form (3.9), where ψ satisfies equation (3.7), ϕ-shadows. In the next

subsection it will be shown that for any ϕ-shadow ¤̃ψ there exists a covering

ϕ′ : N ′ → N and a nonlocal ϕ ◦ ϕ′-symmetry S such that ϕ′
∗(S) = ¤̃ψ.

3. Reconstruction theorems

Let E ⊂ Jk(π) be a differential equation. Let us first establish relations
between horizontal cohomology of E (see Definition 2.7 on p. 65) and cover-
ings over E∞. All constructions below are realized in a local chart U ⊂ E∞.

Let us consider a horizontal 1-form ω =
∑n

i=1Xi dxi ∈ Λ1
h(E) and define

on the space E∞ × R the vector fields

Dω
i = Di +Xi

∂

∂w
, Xi ∈ F(E), (3.11)

where w is a coordinate along R. By direct computations, one can easily see
that the conditions [Dω

i , D
ω
j ] = 0 are fulfilled if and only if dhω = 0. Thus,

(3.11) determines a covering structure in the bundle ϕ : E∞ × R→ E∞ and
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this covering is denoted by ϕω. It is also obvious that the coverings ϕω and
ϕω

′

are equivalent if and only if the forms ω and ω′ are cohomologous, i.e.,
if ω − ω′ = dhf for some f ∈ F(E).

Definition 3.8. A covering over E∞ constructed by means of elements
of H1

h(E) is called Abelian.

Let [ω1], . . . , [ω
α], . . . be an R-basis of the vector space H1

h(E). Let us
define the covering a1,0 : A1(E) → E∞ as the Whitney product of all ϕωα .
It can be shown that the equivalence class of a1,0 does not depend on the
basis choice. Now, literary in the same manner as it was done in Definition
2.7 for E∞, we can define horizontal cohomology for A1(E) and construct
the covering a2,1 : A2(E)→ A1(E), etc.

Definition 3.9. The inverse limit of the chain

· · · → Ak(E) ak,k−1−−−−→ Ak−1(E)→ · · · → A1(E) a1,0−−→ E∞ (3.12)

is called the universal Abelian covering of the equation E and is denoted by
a : A(E)→ E∞.

Obviously, H1
h(A(E)) = 0.

Theorem 3.8 (see [43]). Let a : A(E) → E∞ be the universal Abelian

covering over the equation E = {F = 0}. Then any a-shadow reconstructs

up to a nonlocal a-symmetry, i.e., for any solution ψ = (ψ1, . . . , ψm), ψj ∈
F(A(E)), of the equation ˜̀

F (ψ) = 0 there exists a set of functions a = (aα,i),

where aα,i ∈ F(A(E)), such that ¤̃ψ,a is a nonlocal a-symmetry.

Proof. Let wj,α, j ≤ k, be nonlocal variables in Ak(E) and assume
that the covering structure in a is determined by the vector fields Da

i =

Di +
∑

j,αX
j,α
i ∂/∂wj,α, where, by construction, Xj,α

i ∈ F(Aj−1(E)), i.e.,

the functions Xj,α
i do not depend on wk,α for all k ≥ j.

Our aim is to prove that the system

Da

i (aj,α) = ¤̃ψ,a(X
j,α
i ) (3.13)

is solvable with respect to a = (aj,α) for any ψ ∈ ker ˜̀
F . We do this by

induction on j. Note that

[Da

i , ¤̃ψ,a] =
∑

j,α

(
Da

i (aj,α)− ¤̃ψ,a(Xj,α
i )
) ∂

∂wj,α

for any set of functions (aj,α). Then for j = 1 one has [Da

i , ¤̃ψ,a](X
1,α
k ) = 0,

or

Da

i

(
¤̃ψ,a(X

1,α
k )

)
= ¤̃ψ,a

(
Da

i (X
1,α
k )

)
,

since X1,α
k are functions on E∞.

But from the construction of the covering a one has the following equal-
ity:

Da

i (X
1,α
k ) = Da

k(X
1,α
i ),
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and we finally obtain

Da

i

(
¤ψ(X1,α

k )
)

= Da

k

(
¤ψ(X1,α

i )
)
.

Note now that the equality H1
h(A(E)) = 0 implies existence of functions a1,α

satisfying

Da

i (a1,α) = ¤ψ(X1,α
i ),

i.e., equation (3.13) is solvable for j = 1.
Assume now that solvability of (3.13) was proved for j < s and the func-

tions (a1,α, . . . , aj−1,α) are some solutions. Then, since [Da

i , ¤̃ψ,a]
∣∣
Aj−1(E) =

0, we obtain the needed aj,α literally repeating the proof for the case
j = 1.

Let now ϕ : N → E∞ be an arbitrary covering. The next result shows
that any ϕ-shadow is reconstructable.

Theorem 3.9 (see also [44]). For any ϕ-shadow, i.e., for any solution

ψ = (ψ1, . . . , ψm), ψj ∈ F(N ), of the equation ˜̀
F (ψ) = 0, there exists a

covering ϕψ : Nψ
ψ̄−→ N ϕ−→ E∞ and a ϕψ-symmetry Sψ, such that Sψ |E∞ =

¤̃ψ |E∞ .

Proof. Let locally the covering ϕ be represented by the vector fields

Dϕ
i = Di +

r∑

α=1

Xα
i

∂

∂wα
,

r ≤ ∞ being the dimension of ϕ. Consider the space R∞ with the coordi-
nates wαl , α = 1, . . . , r, l = 0, 1, 2, . . . , wα0 = wα, and set Nψ = N × R∞

with

D
ϕψ
i = Di +

∑

l,α

(
¤̃ψ + Sw

)l
(Xα

i )
∂

∂wαl
, (3.14)

where

¤̃ψ =
∑

σ,k

′

Dϕ
σ (ψk)

∂

∂ukσ
, Sw =

∑

α,l

wαl+1

∂

∂wαl
(3.15)

and “prime”, as before, denotes summation over internal coordinates.
Set Sψ = ¤̃ψ + Sw. Then

[Sψ, D
ϕψ
i ] =

∑

σ,k

′

¤̃ψ(ūkσi)
∂

∂ukσ
+
∑

l,α

(
¤̃ψ + Sw

)l+1
(Xα

i )
∂

∂wαl

−
∑

σ,k

′

D
ϕψ
i (Dϕ

σ (ψk))
∂

∂ukσ
−
∑

l,α

(
¤̃ψ + Sw

)l+1
(Xα

i )
∂

∂wαl

=
∑

σ,k

′ (
¤̃ψ(ūkσi)−Dϕ

σi(ψ
k)
) ∂

∂ukσ
= 0.
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Here, by definition, ūkσi = Dϕ
i (ukσ) |N .

Now, using the above proved equality, one has

[D
ϕψ
i , D

ϕψ
j ] =

∑

l,α

(
D
ϕψ
j

(
¤̃ψ + Sw

)l
(Xα

j )−Dϕψ
j

(
¤̃ψ + Sw

)l
(Xα

i )
) ∂

∂wαl

=
∑

l,α

(
¤̃ψ + Sw

)l(
D
ϕψ
i (Xα

j )−Dϕψ
j (Xα

i )
) ∂

∂wαl
= 0,

since D
ϕψ
i (Xα

j )−Dϕψ
j (Xα

i ) = Dϕ
i (Xα

j )−Dϕ
j (Xα

i ) = 0.

Let now ϕ : N → E∞ be a covering and ϕ′ : N ′ ϕ̄−→ N ϕ−→ E∞ be another
one. Then, by obvious reasons, any ϕ-shadow ψ is a ϕ′-shadow as well.
Applying the construction of Theorem 3.9 to both ϕ and ϕ′, we obtain two
coverings, ϕψ and ϕ′

ψ respectively.

Lemma 3.10. The following commutative diagram of coverings

N ′
ψ → Nψ

N ′

ψ̄′

↓
ϕ̄ → N

ψ̄

↓
ϕ → E∞

takes place. Moreover, if Sψ and S′
ψ are nonlocal symmetries corresponding

in Nψ and N ′
ψ constructed by Theorem 3.9, then S ′

ψ

∣∣∣F(Nψ) = Sψ.

Proof. It suffices to compare expressions (3.14) and (3.15) for the cov-
erings Nψ and N ′

ψ.

As a corollary of Theorem 3.9 and of the previous lemma, we obtain the
following result.

Theorem 3.11. Let ϕ : N → E∞, where E = {F = 0 }, be an arbitrary

covering and ψ1, . . . , ψs ∈ F(N ) be solutions of the equation ˜̀
F (ψ) = 0.

Then there exists a covering ϕΨ : NΨ → N ϕ−→ E∞ and ϕΨ-symmetries

Sψ1 , . . . , Sψs , such that Sψs |E∞ = ¤̃ψi |E∞ , i = 1, . . . , s.

Proof. Consider the section ψ1 and the covering ϕψ1 : Nψ1

ϕ̄ψ1−−→ N ϕ−→
E∞ together with the symmetry Sψ1 constructed in Theorem 3.9. Then ψ2

is a ϕψ1-shadow and we can construct the covering

ϕψ1,ψ2 : Nψ1,ψ2

ϕ̄ψ1,ψ2−−−−→ Nψ1

ϕψ1−−→ E∞

with the symmetry Sψ2 . Applying this procedure step by step, we obtain
the series of coverings

Nψ1,...,ψs

ϕ̄ψ1,...,ψs−−−−−→ Nψ1,...,ψs−1

ϕ̄ψ1,...,ψs−1−−−−−−−→ . . .
ϕ̄ψ1,ψ2−−−−→ Nψ1

ϕ̄ψ1−−→ N ϕ−→ E∞
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with the symmetries Sψ1 , . . . , Sψs . But ψ1 is a ϕψ1,...,ψs-shadow and we can

construct the covering ϕψ1 : N (1)
ψ1
→ Nψ1,...,ψs → E∞ with the symmetry S

(1)
ψ1

satisfying S
(1)
ψ1

∣∣∣F(Nψ1
) = Sψ1 (see Lemma 3.10), etc. Passing to the inverse

limit, we obtain the covering NΨ we need.

4. Nonlocal symmetries of the Burgers equation

Consider the Burgers equation E given by

ut = uxx + uux (3.16)

and choose internal coordinates on E∞ by setting u = u0 = u(0,0), uk =
u(k,0). Below we use the method described in [60]. The Lie algebra of
higher symmetries of the Burgers equation is well known and is described
in Section 3 of Chapter 2.

The total derivative operators Dx, Dt are given by

Dx =
∂

∂x
+

∞∑

k=0

ui+1
∂

∂ui
,

Dt =
∂

∂t
+

∞∑

k=0

Di
x(u2 + uu1)

∂

∂ui
. (3.17)

We now start from the only one existing conservation law for Burgers
equation, i.e.,

Dt(2u) = Dx(u
2 + 2u1). (3.18)

From (3.18) we introduce the new formal variable p by defining its partial
derivatives as follows:

px = 2u, pt = u2 + 2u1, (3.19)

which is in a formal sense equivalent to

p =

∫
(2u) dx, (3.20)

from which we have p is a nonlocal variable. Note at this moment that (3.18)
is just the compatibility condition on px, pt. We can now put the question:

What are symmetries of equation Ẽ which is defined by

ut = uxx + uux,

px = 2u,

pt = (u2 + 2ux). (3.21)

In effect (3.21) is a system of partial differential equations for two depen-
dent variables, u and p, as functions of x and t. The infinite prolongation of



110 3. NONLOCAL THEORY

Ẽ , denoted by Ẽ∞, admits internal coordinates x, t, u, p, u1, u2, . . . , while

the total derivative operators D̃x and D̃t are given by

D̃x =
∂

∂x
+ 2u

∂

∂p
+

∞∑

k=0

ui+1
∂

∂ui
,

D̃t =
∂

∂t
+ (u2 + 2u1)

∂

∂p
+

∞∑

k=0

Di
x(u2 + uu1)

∂

∂ui
. (3.22)

In order to search for higher symmetries, we search for vertical vector
fields with generating function ϕ = (ϕu, ϕp), where ϕu, ϕp are functions
dependent on the internal coordinates x, t, u, p, u1, u2 . . . .

The remarkable result is a symmetry ¤ϕ whose generating function ϕ =
(ϕu, ϕv) is

ϕu =
(
− 2

∂g(x, t)

∂x
+ g(x, t)u

)
e−p/4

ϕp = −4g(x, t)e−p/4, (3.23)

where g(x, t) is an arbitrary solution to the heat equation

∂g(x, t)

∂t
− ∂2g(x, t)

∂x2
= 0. (3.24)

If we now contract the vector field ¤ϕ, ϕ given by (3.23), with the Cartan
one-form associated to the nonlocal variable p, i.e.,

dC(u) = du− uxdx− (uxx+ uux)dt, (3.25)

we obtain an additional condition to Ẽ , (3.21), i.e.,

−2
∂g(x, t)

∂x
+ g(x, t)u = 0, (3.26)

or equivalently,

u = 2(g(x, t))−1∂g(x, t)

∂x
. (3.27)

Substitution of (3.27) into (3.16) yields the fact that any function u(x, t)
of the form (3.27), where g(x, t) is a solution of the heat equation (3.24),
is a solution of Burgers equation (3.16). Note that (3.27) is the well-known
Cole–Hopf transformation.

This rather simple example of the notion of nonlocal symmetry indicates
its significance in the study of geometrical structures of partial differential
equations. Further applications of the nonlocal theory, which are more in-
tricate, will be treated in the next sections.



5. NONLOCAL SYMMETRIES OF THE KDV EQUATION 111

5. Nonlocal symmetries of the KDV equation

In order to demonstrate how to handle calulations concerning the con-
struction of nonlocal symmetries and the calculation of Lie brackets of the
corresponding vertical vector fields, or equivalently, the associated Jacobi
bracket of the generating functions, we discuss these features for the KdV
equation

ut = uux + uxxx. (3.28)

The infinite prolongation of (3.28), denoted by E∞, is given as

ut = uux + uxxx,

uxt = Dx(uux + uxxx) = u2
x + uuxx + uxxxx,

ux...xt = Dx . . . Dx(uux + uxxx),

where total partial derivative operators Dx and Dt are given with respect
to the internal coordinates x, t, u, ux, uxx, uxxx, . . . as

Dx =
∂

∂x
+ ux

∂

∂u
+ uxx

∂

∂ux
+ uxxx

∂

∂uxx
+ . . . ,

Dt =
∂

∂t
+ ut

∂

∂u
+ uxt

∂

∂ux
+ uxxt

∂

∂uxx
+ . . .

Classical symmetries of KdV Equation are given by

V 1 = − ∂

∂x
,

V 2 = − ∂

∂t
,

V 3 = t
∂

∂x
+

∂

∂u
,

V 4 = −x ∂
∂x
− 3t

∂

∂t
+ 2u

∂

∂u
,

or equivalently, the generating functions associated to them, given by

V u
1 = ux,

V u
2 = uux + uxxx,

V u
3 = 1− tux,
V u

4 = xux + 3t(uux + uxxx) + 2u.

Associated to (3.28), we can construct conservation laws Ax, At such that

Dt(Ax) = Dx(At), (3.29)

which leads to

A1
x = u,

A1
t =

1

2
u2 + uxx,

A2
x = u2,
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A2
t =

2

3
u3 − u2

x + 2uuxx. (3.30)

A few higher conservation laws are given by

A3
x = u3 − 3u2

x,

A3
t =

3

4
(u4 + 4u2uxx − 8uu2

x + 4u2
xx − 8uxuxxx),

A4
x = u4 − 12uu2

x +
36

5
u2
xx,

A4
t =

4

5
u5 + 4u3uxx − 18u2u2

x − 24uuxuxxx + 12u2
xuxx,

+
96

5
uu2

xx +
72

5
uxxuxxxx −

36

5
u2
xxx. (3.31)

We now introduce nonlocal variables associated to two of conservation
laws (3.30) in the form

p1 =

∫
u dx,

p3 =

∫
(u2) dx. (3.32)

We also introduce the grading to the polynomial functions on the KdV
equation by setting

[x] = −1, [t] = −3, [u] = 2, [ux] = 3, [ut] = 5, . . . (3.33)

Then the nonlocal variables p1 and p3 are of degree

[p1] = 1, [p3] = 3.

In order to study nonlocal symmetries of the KdV equation, we consider the
augmented system

ut = uux + uxxx,

(p1)x = u,

(p1)t =
1

2
u2 + uxx,

(p3)x = u2,

(p3)t =
2

3
u3 − u2

x + 2uuxx. (3.34)

We note here that system (3.34) is in effect a system of partial differen-
tial equations in three dependent variables u, p1, p3 and two independent
variables x, t. We choose internal coordinates on E∞ × R2 as

x, t, u, p1, p3, ux, uxx, uxxx, uxxxx, uxxxxx, . . . , (3.35)

while the total derivative operators Dx, Dt are given as

Dx = Dx + u
∂

∂p1
+ u2 ∂

∂p3
,
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Dt = Dt +

(
1

2
u2 + uxx

)
∂

∂p1
+

(
2

3
u3 − u2

x + 2uuxx

)
∂

∂p3
. (3.36)

A vertical vector field V on E∞ × R2 has as its generating functions V u,
V p1 , V p3 . The symmetry conditions resulting from (3.34) are

DtV
u = V uux + uDxV

u +D
3
xV

u,

DxV
p1 = V u,

DxV
p3 = 2uV u. (3.37)

For the vertical vector fields V1, . . . , V4 we derive from this after a short
computation

V u
1 = ux, V u

2 = uux + uxxx,

V p1
1 = u, V p1

2 =
1

2
u2 + uxx,

V p3
1 = u2, V p3

2 =
2

3
u3 + 2uuxx − u2

x,

V u
3 = 1− tux, V u

4 = xux + 3t(uux + uxxx) + 2u,

V p1
3 = x− tu, V p1

4 = xu+ 3t

(
1

2
u2 + uxx

)
+ p1,

V p3
3 = 2p1 − tu2, V p3

4 = xu2 + 3t

(
2

3
u3 + 2uuxx − u2

x

)
+ 3p3. (3.38)

It is a well-known fact [80] that the KdV equation (3.28) admits the Lenard

recursion operator for higher symmetries, i.e.,

L = D2
x +

2

3
u+

1

3
uxD

−1
x . (3.39)

From this we have

L(V u
1 ) = V u

2 ,

L(V u
2 ) = V u

5 = uxxxxx +
5

3
uxxxu+

10

3
uxxux +

5

6
uxu

2,

L(V u
3 ) =

2

3
u+

1

3
xux + t(uux + uxxx) =

1

3
V u

4 . (3.40)

We now compute the action of the Lenard recursion operator L on the
generating function V u

4 of the symmetry V4. The result is

V u
5 = L(V u

4 ) = x(uxxx + uux)

+ 3t

(
uxxxxx +

5

3
uxxxu+

10

3
uxxux +

5

6
uxu

2

)
+ 4uxx +

4

3
u2 +

1

3
uxp1.

(3.41)

It is a straightforward check that V u
5 satisfies the first condition of (3.37),

i.e.,

Dt(V
u
5 ) = V u

5 ux + uDxV
u
5 +D

3
xV

u
5 . (3.42)
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The component V p1
5 can be computed directly from the second condition

in (3.37), i.e.,

Dx(V
p1
5 ) = V u

5 , (3.43)

which readily leads to

V p1
5 = x

(
uxx +

1

2
u2

)

+ 3t

(
uxxxx +

5

3
uxxu+

5

6
u2
x +

5

18
u3

)
+ 3ux +

1

3
up1 +

1

2
p3. (3.44)

The construction of the component V p3
5 , which should result from the third

condition in (3.37), i.e.,

Dx(V
p3
5 ) = 2uV u

5 , (3.45)

causes a problem:

It is impossible to derive a formula for V p3
5 in this setting.

The way out of this problem is to augment system (3.34) once more with
the nonlocal variable p5 resulting from

(p5)x = u3 − 3u2
x,

(p5)t =
3

4
(u4 + 4u2uxx − 8uu2

x + 4u2
xx − 8uxuxxx), (3.46)

or equivalently

p5 =

∫
(u3 − 3u2

x) dx, (3.47)

and extending total derivative operators Dx, Dt to

D̃x = Dx + (u3 − 3u2
x)

∂

∂p5
,

D̃t = Dt +
3

4
(u4 + 4u2uxx − 8uu2

x + 4u2
xx − 8uxuxxx)

∂

∂p5
. (3.48)

Within this once more augmented setting, i.e., having a system of par-
tial differential equations for u, p1, p3, and p5, it is posssible to solve the
symmetry condition for p3, (3.34):

D̃x(V
p3
5 ) = 2uV u

5 , (3.49)

the result being the vertical vector field V5 whose generating functions are
given by (3.41), (3.44), and from (3.49) we obtain

V u
5 = x(uxxx + uux) + 3t

(
uxxxxx +

5

3
uxxxu+

10

3
uxxux +

5

6
uxu

2

)

+ 4uxx +
4

3
u2 +

1

3
uxp1,

V p1
5 = x

(
uxx +

1

2
u2

)
+ 3t

(
uxxxx +

5

3
uxxu+

5

6
u2
x +

5

18
u3

)
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+ 3ux +
1

3
up1 +

1

2
p3,

V p3
5 = 2x

(
uuxx −

1

2
u2
x +

1

3
u3

)

+ 6t

(
uuxxxx − uxuxxx +

1

2
u2
xx +

5

3
u2uxx +

5

24
u5

)

+ 6uux +
1

3
u2p1 +

5

3
p5. (3.50)

The outline above indicates that we are working in effect in an aug-
mented system of partial differential equations in which all nonlocal vari-
ables associated to all conservation laws for the KdV equation are incorpo-
rated (cf. Theorem 3.8).

The computation of Lie brackets of vertical vector fields, or equivalently,
the computation of the Jacobi brackets for the associated generating func-
tions, is to be carried out in this augmented setting. To demonstrate this,
we want to compute the Lie bracket of the symmetry V1 and the nonlocal

symmetry V5 with the generating functions

V u
1 = ux,

V u
5 = x(uxxx + uux) + 3t

(
uxxxxx +

5

3
uxxxu+

10

3
uxxux +

5

6
uxu

2

)

+ 4uxx +
4

3
u2 +

1

3
uxp1. (3.51)

The associated Jacobi bracket {V u
5 , V

u
1 } is defined as

Ṽ u = {V u
5 , V

u
1 } = ¤V5(V

u
1 )− ¤V1(V

u
5 ), (3.52)

which, using in this computation the equality V p1
1 = u, results in

Ṽ u = uxxx + uux = V u
2 .

In a similar way the Jacobi bracket {V u
5 , V

u
2 } equals

{V u
5 , V

u
2 } = 3

(
uxxxxx +

5

3
uxxxu+

10

3
uxxux +

5

6
uxu

2

)
,

which is just the generating function of the classical first higher symmetry
of the KdV equation.

Remark 3.2. The functions V u
i , i = 1, . . . , 5, are just the so-called shad-

ows (see the previous section) of the symmetries Vi, i = 1, . . . , 5, in the
augmented setting, including all nonlocal variables.

6. Symmetries of the massive Thirring model

We shall establish higher and nonlocal symmetries of the so-called mas-
sive Thirring model [32], which is defined as the following system E0 of
partial differential equations defined on J1(π), where π : R4 × R2 → R2 is
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the trivial bundle with the coordinates u1, v1, u2, v2 in the fiber (unknown
functions) and x, t in the base (independent variables):

−∂u1

∂x
+
∂u1

∂t
= mv2 − (u2

2 + v2
2)v1,

∂u2

∂x
+
∂u2

∂t
= mv1 − (u2

1 + v2
1)v2,

∂v1
∂x
− ∂v1

∂t
= mu2 − (u2

2 + v2
2)u1,

−∂v2
∂x
− ∂v2

∂t
= mu1 − (u2

1 + v2
1)u2. (3.53)

For this system of equations we choose internal coordinates on E 1 as x, t, u1,
v1, u2, v2, u1,1, v1,1, u2,1, v2,1, while internal coordinates on E4 are chosen as
x, t, u1, v1, u2, v2, . . . , u1,4, v1,4, u2,4, v2,4, where ui,j , vi,j refer to ∂jui/∂x

j ,
∂jvi/∂x

j , i = 1, 2, j = 1, . . . , 4. In a similar way coordinates can be choosen
on E∞.

6.1. Higher symmetries. According to Theorem 2.15 on p. 72, we
construct higher symmetries (symmetries of order 2) by constructing vertical
vector fields ¤ϕ, where the generating functions ϕu1 , ϕv1 , ϕu2 , ϕv2 depend
on the local variables x, t, u1, v1, u2, v2, u1,1, v1,1, u2,1, v2,1, u1,2, v1,2, u2,2,
v2,2 [41]. The symmetry condition then is

−Dxϕ
u1 +Dtϕ

u1 = mϕv2 − 2(u2ϕ
u2 + v2ϕ

v2)v1 + (u2
2 + v2

2)ϕ
v1 ,

Dxϕ
u2 +Dtϕ

u2 = mϕv1 − 2(u1ϕ
u2 + v1ϕ

v2)v2 + (u2
1 + v2

1)ϕ
v2 ,

Dxϕ
v1 −Dtϕ

v1 = mϕu2 − 2(u2ϕ
u2 + v2ϕ

v2)u1 + (u2
2 + v2

2)ϕ
u1 ,

−Dxϕ
v2 −Dtϕ

v2 = mϕu1 − 2(u1ϕ
u2 + v1ϕ

v2)u2 + (u2
1 + v2

1)ϕ
u2 . (3.54)

The result then is the existence of four symmetries X1, . . . , X4 of order 1
the generating functions of which, ϕu1

i , ϕv1i , ϕu2
i , ϕv2i , i = 1, . . . , 4, are given

as

ϕu1
1 =

1

2
(−mv2 + v1(u

2
2 + v2

2)),

ϕv11 =
1

2
(mu2 − u1(u

2
2 + v2

2)),

ϕu2
1 =

1

2
(2u2,1 −mv1 + v2(u

2
1 + v2

1)),

ϕv21 =
1

2
(2v2,1 +mu1 − u2(u

2
1 + v2

1)),

ϕu1
2 =

1

2
(2u1,1 +mv2 − v1(u

2
2 + v2

2)),

ϕv12 =
1

2
(2v1,1 −mu2 + u1(u

2
2 + v2

2)),

ϕu2
2 =

1

2
(mv1 − v2(u

2
1 + v2

1)),
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ϕv22 =
1

2
(−mu1 + u2(u

2
1 + v2

1)),

ϕu1
3 = u1,1(x+ t) +mv2x+

1

2
u1 − v1(u

2
2 + v2

2)x,

ϕv13 = v1,1(x+ t)−mu2x+
1

2
v1 + u1(u

2
2 + v2

2)x,

ϕu2
3 = u2,1(−x+ t) +mv1x−

1

2
u2 − v2(u

2
1 + v2

1)x,

ϕv23 = v2,1(−x+ t) +mu1x−
1

2
v2 + u2(u

2
1 + v2

1)x,

ϕu1
4 = v1,

ϕv14 = −u1,

ϕu2
4 = v2,

ϕv24 = −u2. (3.55)

Thus in effect, the fields X1, X2, X3 are of the first order, while X4 is of
order zero.

In order to find symmetries of higher order, we take great advantage of
the fact that the massive Thirring model is a graded system, as is the case
with all equations possessing a scaling symmetry, i.e.,

deg(x) = deg(t) = −2,

deg(u1) = deg(v1) = deg(u2) = deg(v2) = 1,

deg(m) = 2, deg

(
∂u1

∂x

)
= 3, . . . (3.56)

Due to this grading, all equations in (3.53) are of degree three; the total
derivative operators Dx, Dt are graded too as is the symmetry condition

¤ϕ(E0) = 0 mod E3. (3.57)

The solutions of (3.57) are graded too. Note that the fields X1, . . . , X4 are
of degrees 2, 2, 0, 0 respectively.

We now introduce the following notation:

[u] refers to u1, v1, u2, v2,
[u]x refers to u1,1, v1,1, u2,1, v2,1,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In our search for higher symmetries we are not constructing the general
solution of the overdetermined system of partial differential equations for
the generating functions ϕu1 , ϕv1 , ϕu2 , ϕv2 , resulting from (3.57).

We are just looking for those (x, t)-independent functions which are of
degree five; so the presentation of these functions is as follows:

ϕ∗ = [u]xx + ([u]2 + [m])[u]x + ([u]5 + [m][u]3 + [m]2[u]). (3.58)
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Using the presentation above, we derive two higher symmetries, X5 and X6

of degree 4 and order 2, whose generating functions are given as

ϕu1
5 =

1

4
(2u2,1(−m+ 2v1v2)− 4v2,1u2v1 −mv2(R1 +R2)

− 2mv1R+ v1(R
2
2 + 2R1R2)),

ϕv15 =
1

4
(2v2,1(−m+ 2u1u2)− 4u2,1v2u1 +mu2(R1 +R2)

+ 2mu1R− u1(R
2
2 + 2R1R2)),

ϕu2
5 =

1

4
(−4v2,2 + 2u1,1(−m+ 2u1u2) + 4u2,1(R1 +R2) + 4v1,1u2v1

−mv1(R1 +R2)− 2mv2R+ v2(R
2
1 + 2R1R2)),

ϕv25 =
1

4
(4u2,2 + 2v1,1(−m+ 2v1v2) + 4v2,1(R1 +R2) + 4u1,1v2u1

+mu1(R1 +R2) + 2mu2R− u2(R
2
1 + 2R1R2)),

ϕu1
6 =

1

4
(4v1,2 + 2u2,1(−m+ 2u1u2) + 4u1,1(R1 +R2) + 4v2,1u1v2

+mv2(R1 +R2) + 2mv1R+ v1(R
2
2 + 2R1R2)),

ϕv16 =
1

4
(−4u1,2 + 2v2,1(−m+ 2v1v2) + 4v1,1(R1 +R2) + 4u2,1u2v1

−mu2(R1 +R2)− 2mu1R+ u1(R
2
2 + 2R1R2)),

ϕu2
6 =

1

4
(2u1,1(−m+ 2v1v2)− 4v1,1u1v2 +mv1(R1 +R2)

+ 2mv2R− v2(R
2
1 + 2R1R2)),

ϕv26 =
1

4
(2v1,1(−m+ 2u1u2)− 4u1,1u2v1 −mu1(R1 +R2)

− 2mu2R+ u2(R
2
1 + 2R1R2)), (3.59)

whereas in (3.59)

R1 = u2
1 + v2

1, R2 = u2
2 + v2

2, R = u1u2 + v1v2.

For third order higher symmetries the representation of the generating func-
tions, whose degree is seven, is

ϕ∗ = [u]xxx + ([u]2 + [m])[u]xx + [u][u]2x

+ ([u]4 + [m][u]2 + [m]2)[u]x

+ ([u]7 + [m][u]5 + [m]2[u]3 + [m]3[u]).

After a massive computation, we arrive at the existence of higher symmetries
X7 and X8 of degree 6 and order 3, given by

ϕu1
7 =

1

8
(8u2,2u2v1 + 4v2,2(2v1v2 −m)− 4u2

2,1v1

+ 4u2,1(m(R1 +R2 + v2
1 + v2

2)− 3v1v2(R1 +R2))− 4v2
2,1v1
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+ 4v2,1(−m(u1v1 + u2v2) + 3u2v1(R1 +R2)) + 4u1,1mR

− 2m2v1(R1 +R2)− 4v2m
2R+ 4v1mR(R1 + 2R2)

+ v2m(R2
1 + 4R1R2 +R2

2)− v1(R
3
2 + 6R2

2R1 + 3R2R
2
1)),

ϕv17 =
1

8
(−8v2,2v2u1 − 4u2,2(2u1u2 −m) + 4v2

2,1u1

+ 4v2,1(m(R1 +R2 + u2
1 + u2

2)− 3u1u2(R1 +R2))

+ 4u2
2,1u1 + 4u2,1(−m(u1v1 + u2v2) + 3v2u1(R1 +R2)) + 4v1,1mR

+ 2m2u1(R1 +R2) + 4u2m
2R− 4u1mR(R1 + 2R2)

− u2m(R2
1 + 4R1R2 +R2

2) + u1(R
3
2 + 6R2

2R1 + 3R2R
2
1)),

ϕu2
7 =

1

8
(8u2,3 + 12v2,2(R1 +R2) + 8u1,2u1v2 + 4v1,2(2v1v2 −m)

− 12u2
2,1v2 + 24u2,1v2,1u2 + 2u2,1(10mR− 3R2

1 − 12R1R2 − 3R2
2)

+ 12v2
2,1v2 + 24v2,1u1,1u1 + 24v2,1v1,1v1 + 8u2

1,1v2

+ 4u1,1(m(R1 +R2 + u2
1 + u2

2)− 3u1u2(R1 +R2)) + 8v2
1,1v2

+ 4v1,1(m(u1v1 + u2v2)− 3u2v1(R1 +R2))− 4m2v1R

− 2m2v2(R1 +R2) +mv1(R
2
2 + 4R1R2 +R2

1) + 4mv2R(R2 + 2R1)

− v2(R
3
1 + 6R2

1R2 + 3R1R
2
2)),

ϕv27 =
1

8
(8v2,3 − 12u2,2(R1 +R2) + 8v1,2u2v1 − 4u1,2(2u1u2 −m)

− 12v2
2,1u2 − 24u2,1v2,1v2 + 2v2,1(10mR− 3R2

1 − 12R1R2 − 3R2
2)

+ 12u2
2,1u2 + 24u2,1v1,1v1 + 24u2,1u1,1u1 − 8v2

1,1u2

+ 4v1,1(m(R1 +R2 + v2
1 + v2

2)− 3v1v2(R1 +R2))− 8u2
1,1u2

+ 4u1,1(m(u1v1 + u2v2))− 3v2u1(R1 +R2) + 4m2u1R

+ 2m2u2(R1 +R2)−mu1(R
2
2 + 4R1R2 +R2

1)

− 4mu2R(R2 + 2R1) + u2(R
3
1 + 6R2

1R2 + 3R1R
2
2)). (3.60)

The vector field associated to ϕ8 = (ϕu1
8 , ϕ

v1
8 , ϕ

u2
8 , ϕ

v2
8 ) can be derived from

ϕ7 by the transformation

T :





u1 7→ u2, v1 7→ v2, u2 7→ u1, v2 7→ v1,

∂/∂x 7→ −∂/∂x,
R1 7→ R2, R2 7→ R1, R 7→ R

(3.61)

in the following way:

ϕu1
8 = −T (ϕu2

7 ), ϕv18 = −T (ϕv27 ),

ϕu2
8 = −T (ϕu1

7 ), ϕv28 = −T (ϕv17 ). (3.62)
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The Lie bracket of vector fields can be computed by calculation of the
Jacobi bracket of the associated generating functions:

[Xi, Xj ]
l = Xi(X

l
j)−Xj(X

l
i), l = u1, . . . , v2; i, j = 1, . . . , 8, (3.63)

where Xi = ¤ϕi , which results in the following nonzero commutators:

[¤ϕ1 ,¤ϕ3 ] = ¤ϕ1 ,

[¤ϕ2 ,¤ϕ3 ] = −¤ϕ2 ,

[¤ϕ3 ,¤ϕ5 ] = −2¤ϕ5 −
m2

2
¤ϕ4 ,

[¤ϕ3 ,¤ϕ6 ] = 2¤ϕ6 −
m2

2
¤ϕ4 ,

[¤ϕ3 ,¤ϕ7 ] = −3¤ϕ7 +
m2

2
(¤ϕ1 + ¤ϕ2),

[¤ϕ3 ,¤ϕ8 ] = 3¤ϕ8 −
m2

2
(¤ϕ1 + ¤ϕ2). (3.64)

Transformation of the vector fields ¤ϕ1 , . . . ,¤ϕ8 by

Y1 = ¤ϕ1 ,

Y2 = ¤ϕ2 ,

Y3 = ¤ϕ3 ,

Y4 = ¤ϕ4 ,

Y5 = ¤ϕ5 +
m2

4
¤ϕ4 ,

Y6 = ¤ϕ6 −
m2

4
¤ϕ4 ,

Y7 = ¤ϕ7 −
m2

2
¤ϕ1 −

m2

4
¤ϕ2 ,

Y8 = ¤ϕ8 −
m2

4
¤ϕ1 −

m2

2
¤ϕ2 , (3.65)

then leads to the following commutator table presented on Fig. 3.1.
Note that from (3.64) and (3.65) we see that [Yi, Yj ] = 0, i, j = 1, 2, 5, 6,

7, 8, while Y3 is the scaling symmetry.

6.2. Nonlocal symmetries. Here we shall discuss nonlocal symme-
tries of the massive Thirring model [41]. In order to find nonlocal variables
for the system

−∂u1

∂x
+
∂u1

∂t
= mv2 − (u2

2 + v2
2)v1,

∂u2

∂x
+
∂u2

∂t
= mv1 − (u2

1 + v2
1)v2,

∂v1
∂x
− ∂v1

∂t
= mu2 − (u2

2 + v2
2)u1,
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[∗, ∗] Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Y1 0 0 Y1 0 0 0 0 0
Y2 0 0 −Y2 0 0 0 0 0
Y3 0 0 0 0 −2Y5 2Y6 −3Y7 3Y8

Y4 0 0 0 0 0 0 0 0
Y5 0 0 0 0 0 0 0 0
Y6 0 0 0 0 0 0 0 0
Y7 0 0 0 0 0 0 0 0
Y8 0 0 0 0 0 0 0 0

Figure 3.1. Commutator table for symmetries of the mas-
sive Thirring model

−∂v2
∂x
− ∂v2

∂t
= mu1 − (u2

1 + v2
1)u2, (3.66)

we first have to construct conservation laws, i.e., sets (Axi , A
t
i) satisfying the

condition

Dt(A
x
i ) = Dx(A

t
i),

from which we can introduce nonlocal variables.
6.2.1. Construction of nonlocal symmetries. To construct conservation

laws, we take great advantage of the grading of system (3.66).
Since

deg(x) = deg(t) = −2,

we start from two arbitrary polynomials Ax, At with respect to the variables
u1, . . . , v2, u1,1, . . . , v2,1, . . . such that the degree with respect to the grading
is just k, k = 1, . . .

It should be noted here that to get rid of trivial conservation laws, we
are making computations modulo total derivatives: this means in practice
that we start from a general polynomial Ax0 of degree k− 2 (with respect to
the grading), and eliminate resulting constants in Ax0 by equating terms in
the expression

Ax −Dx(A
x
0).

to zero. This procedure is quite effective and has been used in several
applications. Another way to arrive at conservation laws here, is to start
from symmetries and to apply the Nöther theorem (Theorem 2.23).

The result is the following number of conservation laws, (Axi , A
t
i), i =

1, . . . , 4:

Ax1 =
1

2
(u1v1,1 − u1,1v1 + u2v2,1 − u2,1v2),

At1 =
1

2
(u1v1,1 − u1,1v1 − u2v2,1 + u2,1v2 +R1R2),
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Ax2 =
1

2
(u1v1,1 − u1,1v1 − u2v2,1 + u2,1v2 +R1R2 − 2mR),

At2 =
1

2
(u1v1,1 − u1,1v1 + u2v2,1 − u2,1v2),

Ax3 =
1

2
(R1 +R2),

At3 =
1

2
(R1 −R2),

Ax4 =
1

2
x(u1v1,1 − u1,1v1 − u2v2,1 + u2,1v2 +R1R2 − 2mR)

+
1

2
t(u1v1,1 − u1,1v1 + u2v2,1 − u2,1v2),

At4 =
1

2
x(u1v1,1 − u1,1v1 + u2v2,1 − u2,1v2)

+
1

2
t(u1v1,1 − u1,1v1 − u2v2,1 + u2,1v2 +R1R2), (3.67)

where in (3.67) we have

R1 = u2
1 + v2

1, R2 = u2
2 + v2

2, R = u1u2 + v1v2.

We now formally introduce variables the p0, p1, p2 by

p0 =

∫
Ax3 dx =

1

2

∫
(R1 +R2) dx,

p1 =

∫
(Ax1 +Ax2) dx =

∫
(u1v1,1 − u1,1v1 +

1

2
R1R2 −mR) dx,

p2 =

∫
(Ax1 −Ax2) dx =

∫
(u2v2,1 − u2,1v2 −

1

2
R1R2 +mR) dx. (3.68)

Note that p0, p1, p2 are of degree 0, 2, 2 respectively (see (3.56)).
We now arrive from these nonlocal variables to the following augmented

system of partial differential equations

−u1,1 + u1t = mv2 − (u2
2 + v2

2)v1,

u2,1 + u2t = mv1 − (u2
1 + v2

1)v2,

v1,1 − v1t = mu2 − (u2
2 + v2

2)u1,

−v2,1 − v2t = mu1 − (u2
1 + v2

1)u2,

(p0)x =
1

2
(R1 +R2),

(p0)t =
1

2
(R1 −R2),

(p1)x = u1v1,1 − u1,1v1 +
1

2
R1R2 −mR,

(p1)t = u1v1,1 − u1,1v1 +
1

2
R1R2,
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(p2)x = u2v2,1 − u2,1v2 −
1

2
R1R2 +mR,

(p2)t = −u2v2,1 + u2,1v2 +
1

2
R1R2. (3.69)

We want to construct nonlocal higher symmetries of (3.53) which are just
higher symmetries of (3.69) (see Section 2). In effect we shall just con-
struct the shadows of nonlocal symmetries, as discussed in Section 2. For
a more detailed exposition of the construction we refer to the construction
the nonlocal symmetries of the KdV equation in Section 5.

To construct nonlocal symmetries of (3.53), we start from a vertical
vector field Z of degree 2 and of polynomial degree one with respect to
x, t. So the generating functions Zu1 , . . . , Zv2 are of degree 3. The total
derivative operators Dx, Dt are given by (3.70):

Dx = Dx + (p0)x
∂

∂p0
+ (p1)x

∂

∂p1
+ (p2)x

∂

∂p2
,

Dt = Dt + (p0)t
∂

∂p0
+ (p1)t

∂

∂p1
+ (p2)t

∂

∂p2
, (3.70)

while the symmetry condition for the generating functions Zu1 , . . . , Zv2 is

−Dx(Z
u1) +Dt(Z

u1) = mZv2 − v1(2u2Z
u2 + 2v2Z

v2)−R2Z
v1 ,

Dx(Z
u2) +Dt(Z

u2) = mZv1 − v2(2u1Z
u1 + 2v1Z

v1)−R1Z
v2 ,

Dx(Z
v1)−Dt(Z

v1) = mZu2 − u1(2u2Z
u2 + 2v2Z

v2)−R2Z
u1 ,

−Dx(Z
v2)−Dt(Z

v2) = mZu1 − u2(2u1Z
u1 + 2v1Z

v1)−R1Z
u2 . (3.71)

Application of these conditions does lead to a number of equations for the
generating functions Zu1 , . . . , Zv2 .

The result is the existence of two nonlocal higher symmetries ¤Z1 and
¤Z2 , where the generating functions Z1 = (Zu1

1 , Zv11 , Z
u2
1 , Zv21 ) and

Z2 = (Zu1
2 , Zv12 , Z

u2
2 , Zv22 ) are given by

Zu1
1 = v1p2 + x(−2Φu1

5 −m2v1) + t(2Φu1
5 ) +

1

2
mu2,

Zv11 = −u1p2 + x(−2Φv1
5 +m2u1) + t(2Φv1

5 ) +
1

2
mv2,

Zu2
1 = v2p2 + x(−2Φu2

5 −m2v2) + t(2Φu2
5 ) +

3

2
mu1 + 3v2,1,

− 3

2
R1u2 −

1

2
R2u2,

Zv21 = −u2p2 + x(−2Φv2
5 +m2u2) + t(2Φv2

5 ) +
3

2
mv1 − 3u2,1,

− 3

2
R1v2 −

1
R2v2,

Zu1
2 = v1p1 + x(−2Φu1

6 +m2v1) + t(−2Φu1
6 ) +

3

2
mu2 − 3v1,1
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− 3

2
R2u1 −

1

2
R1u1,

Zv12 = −u1p1 + x(−2Φv1
6 −m2u1) + t(−2Φv1

6 ) +
3

2
mv2 + 3u1,1

− 3

2
R2v1 −

1

2
R1v1,

Zu2
2 = v2p1 + x(−2Φu2

6 +m2v2) + t(−2Φu2
6 ) +

1

2
mu1,

Zv22 = −u2p1 + x(−2Φv2
6 −m2u2) + t(−2Φv2

6 ) +
1

2
mv1. (3.72)

The components Zp01 , . . . , Zp21 , Zp02 , . . . , Zp22 can be obtained from the invari-
ance of the equations

(p0)x =
1

2
(R1 +R2),

(p1)x = u1v1,1 − u1,1v1 +
1

2
R1R2 −mR,

(p2)x = u2v2,1 − u2,1v2 −
1

2
R1R2 +mR. (3.73)

6.2.2. Action of nonlocal symmetries. In order to derive the action of
the nonlocal symmetries ¤Z1 , ¤Z2 on the symmetries ϕ1, . . . , ϕ6, we have to
extend the Lie bracket of vector fields in a way analogous to (3.52). This
is in effect, as has been demonstrated for the KdV equation in previous
Section 5, where we extended the Jacobi bracket to the nonlocal variables,
i.e., u versus u, p, in this situation from u1, v1, u2, v2 to p1, p2. Since the
nonlocal variable p0 does not take part in the presentation of the vector
fields ϕ1, . . . , ϕ6, Z1, Z2, we discard in this subsection the nonlocal variable
p0, see (3.68).

The extended Lie bracket of the evolutionary vector fields ¤Zi , i =
1, 2, and ¤ϕ1 , . . . ,¤ϕ6 is obtained from the extended Jacobi bracket for the
generating functions, which is given by

{Zi, ϕj}w = ¤Zi(ϕ
w
j )− ¤ϕj (Zwi ), (3.74)

where in (3.74), i = 1, 2, j = 1, . . . , 6, w = u1, . . . , v2.
Since the generating functions ϕwj are local, we do not need to compute

the components Zp11 , Zp21 , Zp12 , Zp22 , in order to calculate the first term
in the right-hand side of (3.74)). The calculation of the second term in
the righ-thand side of (3.74) however does require the components ϕp11 ,
ϕp21 , . . . , ϕ

p1
6 , ϕ

p2
6 . These components result from the invariance of the partial

differential equations (3.73) for the variables p1, p2, leading to the equations

Dx(ϕ
p1
j ) = ¤ϕj

(
u1v1,1 − u1,1v1 +

1

2
R1R2 −mR

)
,

Dx(ϕ
p2
j ) = ¤ϕj

(
u2v2,1 − u2,1v2 −

1

2
R1R2 +mR

)
. (3.75)
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From this we obtain the generating functions in the nonlocal, augmented
setting u1, v1, u2, v2, p1, p2:

Φu1
1 =

1

2
(−mv2 + v1(u

2
2 + v2

2)),

Φv1
1 =

1

2
(mu2 − u1(u

2
2 + v2

2)),

Φu2
1 =

1

2
(2u2,1 −mv1 + v2(u

2
1 + v2

1)),

Φv2
1 =

1

2
(2v2,1 +mu1 − u2(u

2
1 + v2

1)),

Φp1
1 = −1

2
mR,

Φp2
1 = −v2u2,1 + u2v2,1 +

1

2
mR− 1

2
R1R2,

Φu1
2 =

1

2
(2u1,1 +mv2 − v1(u

2
2 + v2

2)),

Φv1
2 =

1

2
(2v1,1 −mu2 + u1(u

2
2 + v2

2)),

Φu2
2 =

1

2
(mv1 − v2(u

2
1 + v2

1)),

Φv2
2 =

1

2
(−mu1 + u2(u

2
1 + v2

1)),

Φp1
2 = −v1u1,1 + u1v1,1 −

1

2
mR+

1

2
R1R2,

Φp2
2 =

1

2
mR,

Φu1
3 = u1,1(x+ t) +mv2x+

1

2
u1 − v1(u

2
2 + v2

2)x,

Φv1
3 = v1,1(x+ t)−mu2x+

1

2
v1 + u1(u

2
2 + v2

2)x,

Φu2
3 = u2,1(−x+ t) +mv1x−

1

2
u2 − v2(u

2
1 + v2

1)x,

Φv2
3 = v2,1(−x+ t) +mu1x−

1

2
v2 + u2(u

2
1 + v2

1)x,

Φp1
3 =

1

2
(x+ t)(2u1v1,1 − 2v1u1,1 +R1R2)− tmR+ p1,

Φp2
3 =

1

2
(x+ t)(−2u2v2,1 + 2v2u2,1 +R1R2) + tmR− p2,

Φu1
4 = v1,

Φv1
4 = −u1,

Φu2
4 = v2,

Φv2
4 = −u2,
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Φp1
4 = 0,

Φp2
4 = 0 (3.76)

and similar for Φ5, Φ6

Φu1
5 =

1

4
(2u2,1(−m+ 2v1v2)− 4v2,1u2v1 −mv2(R1 +R2)

− 2mv1R+ v1(R
2
2 + 2R1R2)),

Φv1
5 =

1

4
(2v2,1(−m+ 2u1u2)− 4u2,1v2u1 +mu2(R1 +R2)

+ 2mu1R− u1(R
2
2 + 2R1R2)),

Φu2
5 =

1

4
(−4v2,2 + 2u1,1(−m+ 2u1u2) + 4u2,1(R1 +R2)

+ 4v1,1u2v1 −mv1(R1 +R2)− 2mv2R+ v2(R
2
1 + 2R1R2)),

Φv2
5 =

1

4
(−4u2,2 + 2v1,1(−m+ 2v1v2) + 4v2,1(R1 +R2) + 4u1,1v2u1

+mu1(R1 +R2) + 2mu2R− u2(R
2
1 + 2R1R2)),

Φp1
5 = −1

2
mv1u2,1 +

1

2
mu1v2,1 −

1

4
mR(R1 +R2) +

1

4
m2(R1 +R2),

Φp2
5 = u2,2u2 + v2,2v2 − u2

2,1 − v2
2,1 −

1

2
mu2v1,1 +mv1u2,1

+
1

2
mv2u1,1 −mu1v2,1 − u2,1v2(R2 + 2R1) + v2,1u2(R2 + 2R1)

− 1

4
m2(R1 +R2) +

3

4
mR(R1 +R2) +

1

2
R1R2(R1 +R2),

Φu1
6 =

1

4
(4v1,2 + 2u2,1(−m+ 2u1u2) + 4u1,1(R1 +R2)

+ 4v2,1u1v2 +mv2(R1 +R2) + 2mv1R+ v1(R
2
2 + 2R1R2)),

Φv1
6 =

1

4
(−4u1,2 + 2v2,1(−m+ 2v1v2) + 4v1,1(R1 +R2)

+ 4u2,1u2uv1 −mu2(R1 +R2)− 2mu1R+ u1(R
2
2 + 2R1R2)),

Φu2
6 =

1

4
(+2u1,1(−m+ 2v1v2)− 4v1,1u1v2 +mv1(R1 +R2) + 2mv2R

− v2(R
2
1 + 2R1R2)),

Φv2
6 =

1

4
(+2v1,1(−m+ 2u1u2)− 4u1,1u2v1 −mu1(R1 +R2)

− 2mu2R+ u2(R
2
1 + 2R1R2)),

Φp1
6 = −u1,2u1 − v1,2v1 + v2

1,1 + u2
1,1 −

1

2
mu1v2,1 +mv2u1,1

+
1

2
mv1u2,1 −mu2v1,1 − u1,1v1(R1 + 2R2) + v1,1u1(R1 + 2R2)
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+
1

4
m2(R1 +R2)−

3

4
mR(R1 +R2)−

1

2
R1R2(R1 +R2),

Φp2
6 = −1

2
mv2u1,1 +

1

2
mu2v1,1 +

1

4
mR(R1 +R2)−

1

4
m2(R1 +R2). (3.77)

The ∂/∂p1-component of ¤Z1 and the ∂/∂p2-component of ¤Z2 are given by

Zp11 =
1

2
(x− t)(−2mu1v2,1 + 2mv1u2,1 − (−m2 +mR)(R1 +R2)

− 1

2
m(u1v2 − u2v1),

Zp22 =
1

2
(x+ t)(−2mu2v1,1 + 2mv2u1,1 + (+m2 −mR)(R1 +R2)

+
1

2
m(u1v2 − u2v1). (3.78)

Computation of the Jacobi brackets (3.74) then leads to the following com-
mutators for the evolutionary vector fields:

[¤Z1 ,¤Φ1 ] = −1

2
m2
¤Φ4 − 2¤Φ5 ,

[¤Z2 ,¤Φ1 ] =
1

2
m2
¤Φ4 ,

[¤Z1 ,¤Φ2 ] = −1

2
m2
¤Φ4 ,

[¤Z2 ,¤Φ2 ] =
1

2
m2
¤Φ4 − 2¤Φ6 ,

[¤Z1 ,¤Φ3 ] = ¤Z1 ,

[¤Z2 ,¤Φ3 ] = ¤Z2 ,

[¤Z1 ,¤Φ4 ] = 0,

[¤Z2 ,¤Φ4 ] = 0,

[¤Z1 ,¤Φ5 ] = 4¤Φ7 − 2m2
¤Φ1 −m2

¤Φ2 ,

[¤Z2 ,¤Φ5 ] = m2
¤Φ1 ,

[¤Z1 ,¤Φ6 ] = m2
¤Φ2 ,

[¤Z2 ,¤Φ6 ] = 4¤Φ8 −m2
¤Φ1 − 2m2

¤Φ2 ,

[¤Z1 ,¤Z2 ] = −2m2
¤Φ3 . (3.79)

Transformation of the vector fields by

Y1 = ¤Φ1 ,

Y2 = ¤Φ2 ,

Y3 = ¤Φ3 ,

Y4 = ¤Φ4 ,

Y5 = ¤Φ5 +
m2

4
¤Φ4 ,
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[∗, ∗] Z1 Z2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

Z1 0 −2m2Y3 −2Y5 −m
2

2
Y4 Z1 0 4Y7 m2Y2 ∗ ∗

Z2 0 m
2

2
Y4 −2Y6 −Z2 0 m2Y1 4Y8 ∗ ∗

Y1 0 0 Y1 0 0 0 0 0
Y2 0 −Y2 0 0 0 0 0
Y3 0 0 −2Y5 2Y6 −3Y7 3Y8

Y4 0 0 0 0 0
Y5 0 0 0 0
Y6 0 0 0
Y7 0 0
Y8 0

Figure 3.2. Commutator table for nolocal symmetries of
the massive Thirring model

Y6 = ¤Φ6 −
m2

4
¤Φ4 ,

Y7 = ¤Φ7 −
m2

2
¤Φ1 −

m2

4
¤Φ2 ,

Y8 = ¤Φ7 −
m2

4
¤Φ1 −

m2

2
¤Φ2 , (3.80)

leads us to the following commutator table presented on Fig. 3.2.
From the commutator table we conclude that Z1 acts as a generating

recursion operator on the hierarchy Y = (Y1, Y5, . . . ) while Z2 acts as a

generating recursion operator on the hierarchy Ŷ = (Y2, Y6, . . . ). The
action of Z1 on Y2, Y6 is of a decreasing nature just as Z2 acts on Y1, Y5.
We expect that the vector fields Z1, Z2 generate a hierarchy of commuting
higher symmetries.

Remark 3.3. In (3.78), only those components of Z1 and Z2 are given
that are necessary to compute the Jacobi bracket of the generating functions,
i.e., for Z1 the ∂/∂p1- and for Z2 the ∂/∂p2-component

{Z1, Z2} = −2m2Y3. (3.81)

We should mention here that Z1 does not admit a ∂/∂p2-component,
while Z2 does not admit a ∂/∂p1-component in this formulation. The asso-
ciated components can be obtained after introduction of nonlocal variables
arising from higher conservation laws, a situation similar to the nonlocal
symmetries of the KdV equation, Section 5.
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7. Symmetries of the Federbush model

We present here results of symmetry computations for the Federbush
model. The Federbush model is described by the matrix system of equations
(
i(∂/∂t+ ∂/∂x) −m(s)
−m(s) i(∂/∂t− ∂/∂x)

)(
Ψs,1

Ψs,2

)
= 4πsλ

(
|Ψ−s,2|2Ψs,1

|Ψ−s,1|2Ψs,2

)
,

(3.82)

where in (3.82) s = ±1 and Ψs(x, t) are two component complex-valued
functions R2 → C.

Suppressing the factor 4π from now on (we set λ′ = 4πλ) and introducing
the eight variables u1, v1, u2, v2, u3, v3, u4, v4 by

Ψ+1,1 = u1 + iv1, Ψ+1,2 = u2 + iv2, m(+1) = m1,

Ψ−1,1 = u3 + iv3, Ψ−1,2 = u4 + iv4, m(−1) = m2, (3.83)

equation (3.82) is rewritten as a system of eight nonlinear partial differential
equations for the component functions u1, . . . , v4, i.e.,

u1,t + u1,x −m1v2 = λ(u2
4 + v2

4)v1,

−v1,t − v1,x −m1u2 = λ(u2
4 + v2

4)u1,

u2,t − u2,x −m1v1 = −λ(u2
3 + v2

3)v2,

−v2,t + v2,x −m1u1 = −λ(u2
3 + v2

3)u2,

u3,t + u3,x −m2v4 = −λ(u2
2 + v2

2)v3,

−v3,t − v3,x −m2u4 = −λ(u2
2 + v2

2)u3,

u4,t − u4,x −m2v3 = λ(u2
2 + v2

2)v4,

−v4,t + v4,x −m2u3 = λ(u2
2 + v2

2)u4. (3.84)

The contents of this section is strongly related to a number of papers [42,
36, 92] and references therein.

7.1. Classical symmetries. The symmetry condition (2.29) on p. 72
leads to the following five classical symmetries

V1 =
∂

∂x
,

V2 =
∂

∂t
,

V3 = t
∂

∂x
+ x

∂

∂t
+

1

2
(u1

∂

∂u1
+ v1

∂

∂v1
− u2

∂

∂u2
− v2

∂

∂v2

+ u3
∂

∂u3
+ v3

∂

∂v3
− u4

∂

∂u4
− v4

∂

∂v4
),

V4 = −v1
∂

∂u1
+ u1

∂

∂v1
− v2

∂

∂u2
+ u2

∂

∂v2
,

V5 = −v3
∂

∂u3
+ u3

∂

∂v3
− v4

∂

∂u4
+ u4

∂

∂v4
. (3.85)
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Associated to these classical symmetries, we construct in a straightforward
way the conservation laws (C i

x, C
i
t), satisfying

Dx(C
i
t)−Dt(C

i
x) = 0, (3.86)

i.e.,

C1
x = u1xv1 − u1v1x + u2xv2 − u2v2x + u3xv3 − u3v3x + u4xv4 − u4v4x,

C1
t = −u1xv1 + u1v1x + u2xv2 − u2v2x − u3xv3 + u3v3x + u4xv4 − u4v4x

+ λ(R1R4 −R2R3),

C2
x = −u1xv1 + u1v1x + u2xv2 − u2v2x − u3xv3 + u3v3x + u4xv4 − u4v4x

+ 2m1(u1u2 + v1v2) + 2m2(u3u4 + v3v4) + λ(R1R4 −R2R3),

C2
t = u1xv1 − u1v1x + u2xv2 − u2v2x + u3xv3 − u3v3x + u4xv4 − u4v4x,

C3
x = xC2

x + tC1
x,

C3
t = xC2

t + tC1
t ,

C4
x = R1 +R2,

C4
t = −R1 +R2,

C5
x = R3 +R4,

C5
t = −R3 +R4. (3.87)

In (3.87) we used the notations

R1 = u2
1 + v2

1, R2 = u2
2 + v2

2, R3 = u2
3 + v2

3, R4 = u2
4 + v2

4. (3.88)

7.2. First and second order higher symmetries. We now con-
struct first and second order higher symmetries of the Federbush model.
In obtaining the results, we observe the remarkable fact of the existence of
first order higher symmetries, which are not equivalent to classical symme-
tries.

The results for first order symmetries are

X1 =
λ

2
v1R4

∂

∂u1
− λ

2
u1R4

∂

∂v1
+
λ

2
v2R4

∂

∂u2
− λ

2
u2R4

∂

∂v2

+
1

2
m2v4

∂

∂u3
− 1

2
m2u4

∂

∂v3

+
1

2
(2u4x +m2v3 + λv4(R1 +R2))

∂

∂u4

+
1

2
(2v4x −m2u3 − λu4(R1 +R2))

∂

∂v4
,

X2 =
λ

2
v1R3

∂

∂u1
− λ

2
u1R3

∂

∂v1
+
λ

2
v2R3

∂

∂u2
− λ

2
u2R3

∂

∂v2

+
1

2
(2u3x −m2v4 + λv3(R1 +R2))

∂

∂u3
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+
1

2
(2v3x +m2u4 − λu3(R1 +R2))

∂

∂v3

− 1

2
m2v3

∂

∂u4
+

1

2
m2u3

∂

∂v4
,

X3 =
1

2
m1v2

∂

∂u1
− 1

2
m1u2

∂

∂v1

+
1

2
(2u2x +m1v1 − λv2(R3 +R4))

∂

∂u2

+
1

2
(2v2x −m1u1 + λu2(R3 +R4))

∂

∂v2

− λ

2
v3R2

∂

∂u3
+
λ

2
u3R2

∂

∂v3
− λ

2
v4R2

∂

∂u4
+
λ

2
u4R2

∂

∂v4
,

X4 =
1

2
(2u1x −m1v2 − λv1(R3 +R4))

∂

∂u1

+
1

2
(2v1x +m1u2 + λu1(R3 +R4))

∂

∂v1

− 1

2
m1v1

∂

∂u2
+

1

2
m1u1

∂

∂v2

− λ

2
v3R1

∂

∂u3
+
λ

2
u3R1

∂

∂v3
− λ

2
v4R1

∂

∂u4
+
λ

2
u4R1

∂

∂v4
.

Recall that two symmetries, X and Y are equivalent (we use the notation
.
=), see Chapter 2, if their exist functions f, g ∈ F(E) such that

X = Y + fDx + gDt, (3.89)

where Dx, Dt are the total derivative operators.
From this one notes that

X2 +X4
.
= −1

2

(
∂

∂x
− ∂

∂t

)
,

X1 +X3
.
= −1

2

(
∂

∂x
+
∂

∂t

)
. (3.90)

We did find these first order higher symmetries of the Federbush model
using the following grading of the model:

deg(x) = deg(t) = −2, nonumber (3.91)

deg(
∂

∂x
) = deg(

∂

∂t
) = 2, nonumber (3.92)

deg(u1) = · · · = deg(v4) = 1, nonumber (3.93)

deg(
∂

∂u1
) = · · · = deg(

∂

∂v4
) = −1, nonumber (3.94)

deg(m1) = deg(m2) = 2. (3.95)

In order to find first order higher symmetries which are equivalent to the
vector field V3 (3.85), we searched for a vertical vector field of the following
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presentation:

V = xH1 + tH2 + C, (3.96)

where H1, H2 are combinations of the vector fields V4, V5, X1, . . . , X4, while
C is a correction of an appropriate degree.

From (3.96) and condition (3.91) we obtain two additional first order
higher symmetries X5, X6, i.e.,

X5 = x(X1 −X2) + t(X1 +X2)−
1

2

(
u3

∂

∂u3
+ v3

∂

∂v3
− u4

∂

∂u4
− v4

∂

∂v4

)
,

X6 = x(X3 −X4) + t(X3 +X4)−
1

2

(
u1

∂

∂u1
+ v1

∂

∂v1
− u2

∂

∂u2
− v2

∂

∂v2

)
.

(3.97)

Note that

X5 +X6
.
= −V3. (3.98)

In order to construct second order higher symmmetries of the Feder-
bush model, we searched for a vector field V , whose defining functions
V u1 , . . . , V v4 are dependent on the variables u1, . . . , v4, . . . , u1xx, . . . , v4xx.
Due to the above introduced grading (3.91) the presentation of the defining
functions V u1 , . . . , V v4 is of the folowing structure:

V ∗ = [u]xx + ([u]2 + [m])[u]x + ([u]5 + [m][u]3 + [m]2[u]) (3.99)

whereas in (3.99)

[u] refers to u1, . . . , v4,
[u]x refers to u1x, . . . , v4x,
[u]xx refers to u1xx, . . . , v4xx,
[m] refers to m1,m2.

From presentation (3.99) and the symmetry condition we derive an overde-
termined system of partial differential equations. The solution of this sys-
tem leads to four second-order higher symmetries of the Federbush model,
X7, . . . , X10, i.e.:

Xu1
7 =

λ

2
v1K7, X

v1
7 = −λ

2
u1K7, X

u2
7 =

λ

2
v2K7, X

v2
7 = −λ

2
u2K7,

Xu3
7 =

1

4
m2

(
2u4x + λv4(R1 +R2)

)
, Xv3

7 =
1

4
m2

(
2v4x − λu4(R1 +R2)

)
,

Xu4
7 =

1

4

(
− 4v4xx + 2λu4(R1 +R2)x + 4λu4x(R1 +R2) + 2m2u3x

+ λm2v3(R1 +R2) + λ2v4(R1 +R2)
2
)
,

Xv4
7 =

1

4

(
4u4xx + 2λv4(R1 +R2)x + 4λv4x(R1 +R2) + 2m2v3x

− λm2u3(R1 +R2)− λ2u4(R1 +R2)
2
)
,

Xu1
8 =

λ

2
v1K8, X

v1
8 = −λ

2
u1K8, X

u2
8 =

λ

2
v2K8, X

v2
8 = −λ

2
u2K8,
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Xu3
8 =

1

4

(
− 4v3xx + 2λu3(R1 +R2)x + 4λu3x(R1 +R2)− 2m2u4x

− λm2v4(R1 +R2) + λ2v3(R1 +R2)
2
)
,

Xv3
8 =

1

4

(
4u3xx + 2λv3(R1 +R2)x + 4λv3x(R1 +R2)− 2m2v4x

+ λm2u4(R1 +R2)− λ2u3(R1 +R2)
2
)
,

Xu4
8 =

1

4
m2

(
− 2u3x − λv3(R1 +R2)

)
,

Xv4
8 =

1

4
m2

(
− 2v3x + λu3(R1 +R2)

)
,

Xu1
9 =

1

4
m1

(
2u2x − λv2(R3 +R4)

)
,

Xv1
9 =

1

4
m1

(
2v2x + λu2(R3 +R4)

)
,

Xu2
9 =

1

4

(
− 4v2xx − 2λu2(R3 +R4)x − 4λu2x(R3 +R4) + 2m1u1x

− λm1v1(R3 +R4) + λ2v2(R3 +R4)
2
)
,

Xv2
9 =

1

4

(
4u2xx − 2λv2(R3 +R4)x − 4λv2x(R3 +R4) + 2m1v1x

+ λm1u1(R3 +R4)− λ2u2(R3 +R4)
2
)
,

Xu3
9 =

λ

2
v3K9, X

v3
9 = −λ

2
u3K9, X

u4
9 =

λ

2
v4K9, X

v4
9 = −λ

2
u4K9,

Xu1
10 =

1

4

(
− 4v1xx − 2λu1(R3 +R4)x − 4λu1x(R3 +R4)− 2m1u2x

+ λm1v2(R3 +R4) + λ2v1(R3 +R4)
2
)
,

Xv1
10 =

1

4

(
4u1xx − 2λv1(R3 +R4)x − 4λv1x(R3 +R4)− 2m1v2x

− λm1u2(R3 +R4)− λ2u1(R3 +R4)
2
)
,

Xu2
10 =

1

4
m1

(
− 2u1x + λv1(R3 +R4)

)
,

Xv2
10 =

1

4
m1

(
− 2v1x − λu1(R3 +R4)

)
,

Xu3
10 =

λ

2
v3K10, X

v3
10 = −λ

2
u3K10,

Xu4
10 =

λ

2
v4K10, X

v4
10 = −λ

2
u4K10, (3.100)

whereas in (3.100)

K7 = 2u4xv4 − 2u4v4x +m2(u3u4 + v3v4) + λR4(R1 +R2),

K8 = 2u3xv3 − 2u3v3x −m2(u3u4 + v3v4) + λR3(R1 +R2),

K9 = −2u2xv2 + 2u2v2x −m1(u1u2 + v1v2) + λR2(R3 +R4),
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K10 = −2u1xv1 + 2u1v1x +m1(u1u2 + v1v2) + λR1(R3 +R4). (3.101)

The Lie bracket for vertical vector fields Vi, i ∈ N, defined by

Vi = V u1
i

∂

∂u1
+ V v1

i

∂

∂v1
+ · · ·+ V u4

i

∂

∂u4
+ V v4

i

∂

∂v4
, (3.102)

is given by

[Vi, Vj ]
α = Vi(V

α
j )− Vj(V α

i ), α = u1, . . . , v4. (3.103)

The commutators of the associated vector fields V4, V5, X1, . . . , X4, X5, X6,
X7, . . . , X10 are given by the following nonzero commutators:

[X1, X5] = −X1,

[X2, X5] = X2,

[X3, X6] = −X3,

[X4, X6] = X4,

[X5, X7] = 2X7 −
1

2
m2

2V5,

[X5, X8] = −2X8 +
1

2
m2

2V5,

[X6, X9] = 2X9 −
1

2
m2

1V4,

[X6, X10] = −2X10 +
1

2
m2

1V4. (3.104)

We now transform the vector fields by

Y +
0 = V4, Y −

0 = V5,

Y +
1 = X3, Y −

1 = X1,

Y +
−1 = X4, Y −

−1 = X2,

Y +
2 = X9 −

1

4
m2

1V4, Y −
2 = X7 −

1

4
m2

2V5,

Y +
−2 = X10 −

1

4
m2

1V4, Y −
−2 = X8 −

1

4
m2

2V5,

Z+
0 = X6, Z−

0 = X5. (3.105)

From (3.103) and (3.105) we obtain a direct sum of two Lie algebras: each
“+”-denoted element commutes with any “−”-denoted element and

[Z0, Yi] = iYi, [Yi, Yj ] = 0, i, j = −2, . . . , 2. (3.106)

In (3.106) Z0, Yi, where i = −2, . . . , 2, are assumed to have the same upper
sign, + or −.



7. SYMMETRIES OF THE FEDERBUSH MODEL 135

7.3. Recursion symmetries. We shall now construct four (x, t)-de-
pendent higher symmetries which act, by the Lie bracket for vertical vector
fields, as recursion operators on the above constructed (x, t)-independent
vector fields X1, . . . , X4, X7, . . . , X10. We are motivated by the results for
the massive Thirring model, which were discussed in Subsections 6.1 and
6.2, and the results of Subsection 7.2, leading to the direct sum of two Lie
algebras, each of which having a similar structure to the Lie algebra for
the massive Thirring model. So we are forced to search for nonlocal higher
symmetries, including the nonlocal variables (3.87) associated to the vector
fields V1, V2 in (3.85).

Surprisingly, carrying through the huge computations, the nonlocal vari-
ables dropped out automatically from intermediate results, finally leading
to local (x, t)-dependent higher symmetries. So, for simplicity we shall dis-
cuss the search for creating and annihilating symmetries, assuming from the
beginning that they are local.

The formulation of creating and annihilating symmetries will follow from
the Lie brackets of these symmetries with Y ±

i , meaning going up or down in

the hierarchy. The symmetries Y +
0 , Y −

0 are of degree 0, Y +
1 , Y +

−1, Y
−
1 , Y −

−1

are of degree 2, while the symmetries Y +
2 , Y +

−2, Y
−
2 , Y −

−2 are of degree 4, see
(3.105).

We now search for an (x, t)-dependent higher symmetry of second order,
linear with respect to x, t, and of degree 2, i.e., for a vector field V of the
form

V = xH1 + tH2 + C∗, (3.107)

where H1, H2 are higher symmetries of degree four and, due to the fact that
m1, m2 are of degree two, H1, H2 are assumed to be linear with respect
to Y +

0 , Y −
0 , . . . , Y

+
2 , Y +

−2, Y
−
2 , Y −

−2, while V in (3.107) has to satisfy the
symmetry condition. From these conditions we obtained the following result.

The symmetry condition is satisfied under the special assumption for V ,
(3.107), leading to the following four higher symmetries:

X11 = x

(
−Y +

−2 +
1

4
m2

1Y
+
0

)
+ t

(
Y +
−2 +

1

4
m2

1Y
+
0

)
+ C11,

X12 = x

(
Y +

2 −
1

4
m2

1Y
+
0

)
+ t

(
Y +

2 +
1

4
m2

1Y
+
0

)
+ C12,

X13 = x

(
−Y −

−2 +
1

4
m2

2Y
−
0

)
+ t

(
Y −
−2 +

1

4
m2

2Y
−
0

)
+ C13,

X14 = x

(
Y −
−2 −

1

4
m2

2Y
−
0

)
+ t

(
Y −
−2 +

1

4
m2

2Y
−
0

)
+ C14. (3.108)

where in (3.108) the functions C11, . . . , C14 are given by the following ex-
pressions

C11 =
1

2

(
2v1x +m1u2 + λu1(R3 +R4)

) ∂

∂u1
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+
1

2

(
− 2u1x +m1v2 + λv1(R3 +R4)

) ∂

∂v1
,

C12 =
1

2

(
− 2v2x +m1u1 − λu2(R3 +R4)

) ∂

∂u2

+
1

2

(
2u2x +m1v1 − λv2(R3 +R4)

) ∂

∂v2
,

C13 =
1

2

(
2v3x +m2u4 − λu3(R1 +R2)

) ∂

∂u3

+
1

2

(
− 2u3x +m2v4 − λv3(R1 +R2)

) ∂

∂v3
,

C14 =
1

2

(
− 2v4x +m2u3 + λu4(R1 +R2)

) ∂

∂u4

+
1

2

(
2u4x +m2v3 + λv4(R1 +R2)

) ∂

∂v4
. (3.109)

From (3.108) and (3.109) we define

Z+
−1 = X11, Z+

1 = X12, Z−
−1 = X13, Z−

1 = X14. (3.110)

Computation of the commutators of Z+
−1, Z

+
1 , Z−

−1, Z
−
1 and Y ±

i , where
i = −2, . . . , 2, leads to the following result:

[Z+
−1, Y

+
2 ] = −1

2
m2

1Y
+
1 , [Z+

1 , Y
+
2 ] = Y +

3 ,

[Z+
−1, Y

+
1 ] =

1

4
m2

1Y
+
0 , [Z+

1 , Y
+
1 ] = Y +

2 ,

[Z+
−1, Y

+
0 ] = 0, [Z+

1 , Y
+
0 ] = 0,

[Z+
−1, Y

+
−1] = −Y +

−2, [Z+
1 , Y

+
−1] = −1

4
m2

1Y
+
0 , nonumber (3.111)

[Z+
−1, Y

+
−2] = Y +

−3, [Z+
1 , Y

+
−2] =

1

2
m2

1Y
+
−1, nonumber (3.112)

[Z−
−1, Y

−
2 ] = −1

2
m2

2Y
−
1 , [Z−

1 , Y
−
2 ] = Y −

3 ,

[Z−
−1, Y

−
1 ] =

1

4
m2

2Y
−
0 , [Z−

1 , Y
−
1 ] = Y −

2 ,

[Z−
−1, Y

−
0 ] = 0, [Z−

1 , Y
−
0 ] = 0,

[Z−
−1, Y

−
−1] = −Y −

−2, [Z−
1 , Y

−
−1] = −1

4
m2

2Y
−
0 , nonumber (3.113)

[Z−
−1, Y

−
−2] = Y −

−3, [Z−
1 , Y

−
−2] =

1

2
m2

2Y
−
−1, (3.114)

while

[Z+
−1, Z

+
1 ] = −1

2
m2

1Z
+
0 , [Z−

−1, Z
−
1 ] = −1

2
m2

2Z
−
0 . (3.115)
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All other commutators are zero. The vector field Y +
3 is given by

Y +,u1
3 =

m1

4

(
− 4v2xx − 4λR34u2x + 2m1u1x − 4λu2(R34)(1)

+m2
1v2 − λm1R34v1 + λ2R2

34v2

)
,

Y +,v1
3 =

m1

4

(
+ 4u2xx − 4λR34v2x + 2m1v1x − 4λv2(R34)(1)

−m2
1u2 + λm1R34u1 − λ2R2

34u2

)
,

Y +,u2
3 =

1

4

(
− 8u2xxx − 4m1v1xx + 12λR34v2xx + 8λv2(R34)(2)

+ 24λv2x(R34)(1) + 8λv2(R34)(1,1) + u2x(4m
2
1 + 6λ2R2

34)

− 4λm1R34u1x + 12λ2u2R34(R34)(1) − 4λm1u1(R34)(1)

+m3
1v1 − 2λm2

1R34v2 + λ2m1R
2
34v1 − λ3R3

34v2

)
,

Y +,v2
3 =

1

4

(
− 8v2xxx + 4m1u1xx − 12λR34u2xx + 8λu2(R34)(2)

− 24λu2x(R34)(1) − 8λu2(R34)(1,1) + v2x(4m
2
1 + 6λ2R2

34)

− 4λm1R34v1x + 12λ2v2R34(R34)(1) − 4λm1v1(R34)(1)

−m3
1u1 + 2λm2

1R34u2 − λ2m1R
2
34u1 + λ3R3

34u2

)
,

Y +,u3
3 =

λ

4
v3L, Y +,v3

3 = −λ
4
u3L,

Y +,u4
3 =

λ

4
v4L, Y +,v4

3 = −λ
4
u4L, (3.116)

where in (3.116)

R34 = R3 +R4,

(R34)(1) = u3u3x + v3v3x + u4u4x + v4v4x,

(R34)(2) = u3u3xx + v3v3xx + u4u4xx + v4v4xx,

(R34)(1,1) = u2
3x + v2

3x + u2
4x + v2

4x,

L = 8(u2u2xx + v2v2xx)− 4(u2
2x + v2

2x) + 12λR34(u2xv2 − v2xu2)

+ 4m1(u1v2x − v1u2x + u2v1x − v2u1x)−m2
1(2R2 +R1)

+ 4m1λR34(u1u2 + v1v2)− 3λ2R2R
2
34.

The results for the vector fields Y +
−3, Y

−
3 , Y −

−3 are similar to (3.116) and
are not given here, but are obtained from discrete symmetries σ and τ , to
be described in the next section.

From the above it is clear now, why the vector fields Z+
−1, Z

+
1 , Z−

−1, Z
−
1

are called creating and annihilating operators.
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We thus have four infinite hierarchies of symmetries of the Federbush
model, i.e., Y +

−n, Y
+
n , Y −

−n, Y
−
n , n ∈ N. A formal proof of the infiniteness of

the hierarchies is given in Subsection 7.5.3.

7.4. Discrete symmetries. In deriving the specific results for the
symmetry structure of the Federbush model, we realised that there are dis-
crete transformations which transform the Federbush model into itself and
by consequence transform symmetries into symmetries. Existence of these
disrete symmetries allow us to restrict to just one part of the Lie algebra of
symmetries, the discrete symmetries generating the remaining parts. These
discrete symmetries σ, τ are given by

σ : u1 ↔ u3, v1 ↔ v3, u2 ↔ u4, v2 ↔ v4,m1 ↔ m2, λ↔ −λ, t↔ t;

τ : u1 ↔ u2, v1 ↔ v2, u3 ↔ u4, v3 ↔ v4, λ↔ −λ, x↔ −x, t↔ t. (3.117)

The transformations satisfy the following rules:

σ2 = id,

τ2 = id,

σ ◦ τ = τ ◦ σ.
Physically, the transformation σ denotes the exchange of two particles.

The action of the discrete smmetries on the Lie algebra of symmetries
is as follows:

σ(Y +
i ) = Y −

i ,

τ(Y +
i ) = Y +

−i,

τ(Y −
i ) = Y −

−i,

where i = 0, 1, 2,

σ(Z+
1 ) = Z−

1 ,

τ(Z+
1 ) = Z+

−1,

τ(Z−
1 ) = Z−

−1, (3.118)

while Y +
−3, Y

−
3 , Y −

−3, arising in the previous section, are defined by

Y +
−3 = τ(Y +

3 ), Y −
3 = σ(Y +

3 ), Y −
−3 = τσ(Y +

3 ). (3.119)

7.5. Towards infinite number of hierarchies of symmetries. In
this subsection, we demonstrate the existence of an infinite number of
hiearchies of higher symmetries of the Federbush model. We shall do this
by the construction of two (x, t)-dependent symmetries of degree 0 which
are polynomial with respect to x, t and of degree 2. This will be done in
Subsection 7.5.1.

Then, after writing the Federbush model as a Hamiltonian system, we
show that all higher symmetries obtained thusfar are Hamitonian vector
fields; this will be done in Subsection 7.5.2. Finally in Subsection 7.5.3
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we give a proof of a lemma from which the existence of infinite number of
hierarchies of Hamiltonians becomes evident, and from this we then obtain
the obvious result for the symmetry structure of the Federbush model.

7.5.1. Construction of Y +(2, 0) and Y +(2, 0). First, we start from the
presentation of these vector fields, which is assumed to be of the following
structure

Y +(2, 0) = x2(α1Y
+
2 + α2m1Y

+
1 + α3m

2
1Y

+
0 + α4m1Y

+
−1 + α5Y

+
−2)

+ 2xt(β1Y
+
2 + β2m1Y

+
1 + β3m

2
1Y

+
0 + β4m1Y

+
−1 + β5Y

+
−2)

+ t2(γ1Y
+
2 + γ2m1Y

+
1 + γ3m

2
1Y

+
0 + γ4m1Y

+
−1 + γ5Y

+
−2)

+ xC+
1 + tC+

2 + C+
0 , (3.120)

In (3.120), the fields Y +
i , i = −2, . . . , 2, are given in previous sections, α1,

βi, γi, i = 1, . . . , 5, are constant, while C+
1 , C+

2 , C+
0 , which are of degree 2,

2 and 1 respectively, have to be determined.
From the symmetry condition (2.29) on p. 72 we obtained the following

result: There does exist a symmetry of presentation (3.120), which is given
by

Y +(2, 0) = x2(Y +
2 −

1

2
m2

1Y
+
0 + Y +

−2) + 2xt(Y +
2 − Y +

−2)

+ t2(Y +
2 +

1

2
m2

1Y
+
0 + Y +

−2) + xC+
1 + tC+

2 , (3.121)

whereas in (3.120) and (3.121),

C+
1 = (−2v1x −m1u2 − λR34u1)

∂

∂u1
+ (2u1x −m1v2 − λR34v1)

∂

∂v1

+ (−2v2x +m1u1 − λR34u2)
∂

∂u2
+ (2u2x +m1v1 − λR34v2)

∂

∂v2
,

C+
2 = (2v1x +m1u2 + λR34u1)

∂

∂u1
+ (−2u1x +m1v2 + λR34v1)

∂

∂v1

+ (−2v2x +m1u1 − λR34u2)
∂

∂u2
+ (2u2x +m1v1 − λR34v2)

∂

∂v2
,

C+
0 = 0. (3.122)

In a similar way, motivated by the structure of the Lie algebra obtained
thusfar, we get another higher symmetry of a similar structure, i.e.,

Y −(2, 0) = x2(Y −
2 −

1

2
m2

2Y
−
0 + Y −

−2) + 2xt(Y −
2 − Y −

−2)

+ t2(Y −
2 −

1

2
m2

2Y
−
0 + Y −

−2) + xC−
1 + tC−

2 , (3.123)

whereas in (3.123),

C−
1 = (−2v3x −m2u4 + λR12u3)

∂

∂u3
+ (2u3x −m2v4 + λR12v3)

∂

∂v3
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+ (−2v4x +m2u3 + λR12u4)
∂

∂u4
+ (2u4x +m2v3 + λR12v4)

∂

∂v4
,

C−
2 = (2v3x +m2u4 − λR12u3)

∂

∂u3
+ (−2u3x +m2v4 − λR12v3)

∂

∂v3

+ (−2v4x +m2u3 + λR12u4)
∂

∂u4
+ (2u4x +m2v3 + λR12v4)

∂

∂v4
,

C−
0 = 0. (3.124)

To give an idea of the action of the vector fields Y +(2, 0), Y −(2, 0), we
compute their Lie brackets with the vector fields Y +

1 , Y +
0 , Y +

−1, Y
−
1 , Y −

0 ,

Y −
−1, yielding the following results

[Y +(2, 0), Y +
1 ] = 2Z+

1 , [Y −(2, 0), Y −
1 ] = 2Z−

1 ,

[Y +(2, 0), Y +
0 ] = 0, [Y −(2, 0), Y −

0 ] = 0,

[Y +(2, 0), Y +
−1] = 2Z+

−1, [Y −(2, 0), Y −
−1] = 2Z−

−1,

[Y +(2, 0), Y −
i ] = 0, [Y −(2, 0), Y +

i ] = 0, (3.125)

where i = −1, 0, 1. These results suggest to set

Y ±(1, i) = Z±
i , Y ±(0, i) = Y ±

i , i ∈ Z. (3.126)

The complete Lie algebra structure is obtained in Subection 7.5.3.
7.5.2. Hamiltonian structures. We shall now discuss Hamiltonians (or

conserved functionals) for the Federbush model described by (3.84),

u1,t + u1,x −m1v2 = λ(u2
4 + v2

4)v1,

−v1,t − v1,x −m1u2 = λ(u2
4 + v2

4)u1,

u2,t − u2,x −m1v1 = −λ(u2
3 + v2

3)v2,

−v2,t + v2,x −m1u1 = −λ(u2
3 + v2

3)u2,

u3,t + u3,x −m2v4 = −λ(u2
2 + v2

2)v3,

−v3,t − v3,x −m2u4 = −λ(u2
2 + v2

2)u3,

u4,t − u4,x −m2v3 = λ(u2
2 + v2

2)v4,

−v4,t + v4,x −m2u3 = λ(u2
2 + v2

2)u4. (3.127)

We introduce functions R1, . . . , R4 by

R1 = u2
1 + v2

1, R2 = u2
2 + v2

2,

R3 = u2
3 + v2

3, R4 = u2
4 + v2

4.

We first rewite the Federbush model as a Hamiltonian system, i.e.,

du

dt
= Ω−1δH, (3.128)
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where Ω is a symplectic operator, H is the Hamiltonian and δH is the
Fréchet derivative1 of H, u = (u1, v1, . . . , u4, v4). In (3.128) we have

Ω =




J 0 0 0
0 J 0 0
0 0 J 0
0 0 0 J


 , J =

(
0 1
−1 0

)
,

and

H =

∫ ∞

−∞

1

2

(
u1xv1−u1v1x−u2xv2+u2v2x+u3xv3−u3v3x−u4xv4+u4v4x

)
dx

−m1(u1u2 + v1v2)−m2(u3u4 + v3v4)−
λ

2
R1R4 +

λ

2
R2R3.

By definition, to each Hamiltonian symmetry Y (also called canonical sym-
metry) there corresponds a Hamiltonian F (Y ), where

F (Y ) =

∫ ∞

−∞
F(Y ) dx, (3.129)

F(Y ) being the Hamiltonian density, such that

Y = Ω−1δF (Y ), (3.130)

and the Poisson bracket of F (Y ) and H vanishes.
Suppose that Y1, Y2 are two Hamiltonian symmetries. Then [Y1, Y2] is a

Hamiltonian symmetry and

F ([Y1, Y2]) = {F (Y1), F (Y2)}, (3.131)

where {·, ·} is the Poisson bracket defined by

{F (Y1), F (Y2)} = 〈δF (Y1), Y2〉, (3.132)

〈·, ·〉 denoting the contraction of a 1-form and a vector field:

d

dε
H(x+ εy)|ε=0 = 〈δH, y〉. (3.133)

The Hamiltonians F (X) associated to the Hamiltonian densities F(X) are
defined by (3.134):

F (X) =

∫ ∞

−∞
F(X) dx. (3.134)

From these definitions it is a straightforward computation that the symme-
tries Y +

0 , Y +
1 , Y +

−1, Y
−
0 , Y −

1 , Y −
−1 obtained sofar are all Hamiltonian, where

the Hamiltonian densities are given by

F(Y +
0 ) =

1

2
(R1 +R2),

F(Y +
1 ) = −1

2
(u2xv2 − u2v2x) +

λ

4
R34R2 −

1

2
m1(u1u2 + v1v2),

1By the Fréchet derivative the components of the Euler–Lagrange operator are
understood.
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F(Y +
−1) = −1

2
(u1xv1 − u1v1x) +

λ

4
R34R1 +

1

2
m1(u1u2 + v1v2),

F(Y −
0 ) =

1

2
(R3 +R4),

F(Y −
1 ) = −1

2
(u4xv4 − u4v4x)−

λ

4
R12R4 −

1

2
m2(u3u4 + v3v4),

F(Y −
−1) = −1

2
(u3xv3 − u3v3x)−

λ

4
R12R3 +

1

2
m2(u3u4 + v3v4), (3.135)

whereas the densities F(Y ±
i ), i = −2, 2, are given by

F(Y +
2 ) = −1

2
(u2

2x + v2
2x) +

λ

2
R34(u2xv2 − u2v2x)−

1

2
m1(u2xv1 − u1v2x)

− 1

8
λ2R2

34R2 +
1

4
m1λR34(u1u2 + v1v2)−

1

8
m2

1R12,

F(Y +
−2) = −1

2
(u2

1x + v2
1x) +

λ

2
R34(u1xv1 − u1v1x) +

1

2
m1(u1xv2 − u2v1x)

− 1

8
λ2R2

34R1 −
1

4
m1λR34(u1u2 + v1v2)−

1

8
m2

1R12,

F(Y −
2 ) = −1

2
(u2

4x + v2
4x)−

λ

2
R12(u4xv4 − u4v4x)−

1

2
m2(u4xv3 − u3v4x)

− 1

8
λ2R2

12R4 −
1

4
m2λR12(u3u4 + v3v4)−

1

8
m2

2R34,

F(Y −
−2) = −1

2
(u2

3x + v2
3x)−

λ

2
R12(u3xv3 − u3v3x) +

1

2
m2(u3xv4 − u4v3x)

− 1

8
λ2R2

12R3 +
1

4
m2λR12(u3u4 + v3v4)−

1

8
m2

2R34, (3.136)

and the densities associated to Y +
3 , Y +

−3 are given by

F(Y +
3 ) = −(u2xxv2x − v2xxu2x)− λR34(u2xxu2 + v2xxv2)

+
λ

2
R34(u

2
2x + v2

2x)

−m1(u1xu2x + v1xv2x)−
3

4
λ2R2

34(u2xv2 − u2v2x)

+
1

2
m1λR34(u1xv2 − u1v2x + u2xv1 − u2v1x)

− 1

4
m2

1(u1xv1 − u1v1x)−
1

2
m2

1(u2xv2 − u2v2x)−
1

4
m3

1(u1u2 + v1v2)

+
1

8
λ3R3

34R2 −
1

4
m1λ

2R2
34(u1u2 + v1v2) +

1

8
m2

1λR34(R1 + 2R2),

F(Y +
−3) = u1xxv1x − v1xxu1x + λR34(u1xxu1 + v1xxv1) +

λ

2
R34(u

2
1x + v2

1x)

−m1(u1xu2x + v1xv2x) +
3

4
λ2R2

34(u1xv1 − u1v1x)

+
1

2
m1λR34(u1xv2 − u1v2x + u2xv1 − u2v1x)
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+
1

2
m2

1(u1xv1 − u1v1x) +
1

4
m2

1(u2xv2 − u2v2x)−
1

4
m3

1(u1u2 + v1v2)

− 1

8
λ3R3

34R1 −
1

4
m1λ

2R2
34(u1u2 + v1v2)−

1

8
m2

1λR34(2R1 +R2).

The vector fields Z+
−1, Z

+
1 , Z−

−1, Z
−
1 are Hamiltonian vector fields too,

and the associated densities are given by

F(Z+
0 ) = x

(
F(Y +

1 )−F(Y +
−1)
)

+ t
(
F(Y +

1 ) + F(Y +
−1)
)
,

F(Z+
1 ) = x

(
F(Y +

2 )− 1

4
m2

1F(Y +
0 )
)

+ t
(
F(Y +

2 ) +
1

4
m2

1F(Y +
0 )
)
,

F(Z+
−1) = x

(
−F(Y +

−2) +
1

4
m2

1F(Y +
0 )
)

+ t
(
F(Y +

−2) +
1

4
m2

1F(Y +
0 )
)
,

F(Z−
0 ) = x

(
F(Y −

1 )−F(Y −
−1)
)

+ t
(
F(Y −

1 ) + F(Y −
−1)
)
,

F(Z−
1 ) = x

(
F(Y −

2 )− 1

4
m2

2F(Y −
0 )
)

+ t
(
F(Y −

2 ) +
1

4
m2

2F(Y −
0 )
)
,

F(Z−
−1) = x(−F(Y −

−2) +
1

4
m2

2F(Y −
0 )
)

+ t
(
F(Y −

−2) +
1

4
m2

2F(Y −
0 )
)
.

We now arrive at the following remarkable fact: The vector fields Y +(2, 0)
and Y −(2, 0) are again Hamiltonian vector fields, the corresponding Hamil-
tonian densities being given by

F(Y −(2, 0)) = x2
(
F(Y −

2 )− 1

2
m2

2F(Y −
0 ) + F(Y −

−2)
)

+ 2xt
(
F(Y −

2 )−F(Y −
−2)
)

+ t2
(
F(Y −

2 ) +
1

2
m2

2F(Y −
0 ) + F(Y −

−2)
)

= (x+ t)2F(Y −
2 )− 1

2
m2

2(x+ t)(x− t)F(Y −
0 )

+ (x− t)2F(Y −
−2), (3.137)

and similarly

F(Y +(2, 0)) = (x+ t)2F(Y +
2 )− 1

2
m2

1(x+ t)(x− t)F(Y +
0 )

+ (x− t)2F(Y +
−2), (3.138)

Now the Hamiltonians F (Z+
1 ), F (Z+

−1), F (Z−
1 ), F (Z−

−1) act as cre-
ating and annihilating operators on the (x, t)-independent Hamiltonians
F (Y +

−3), . . . , F (Y +
3 ) and F (Y −

−3), . . . , F (Y −
3 ), by the action of the Poisson

bracket: for example

{F (Z+
1 ), F (Y +

0 )} = 0,

{F (Z+
1 ), F (Y +

−1)} =
1

4
m2

1

∫ ∞

−∞
(R1 +R2) =

1

4
m2

1F (Y +
0 ),

{F (Z+
1 ), F (Y +

1 )} = −F (Y +
2 ).
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In the next subsection we give a formal proof for the existence of in-
finite number of hierarchies of higher symmetries by proving existence of
infinite number of hierarchies of Hamiltonians, thus leading to those for the
symmetries.

7.5.3. The infinity of the hierarchies. We shall prove here a lemma con-
cerning the infiniteness of the hierarchies of Hamiltonians for the Federbush
model. From this we obtain a similar result for the associated hierarchies of
Hamiltonian vector fields.

Lemma 3.12. Let Hr
n(u, v) and Kr

n(u, v) be defined by

Hr
n(u, v) =

∫ ∞

−∞
xr(u2

n + v2
n),

Kr
n(u, v) =

∫ ∞

−∞
xr(un+1vn − vn+1un), (3.139)

whereas in (3.139) r, n = 0, 1, . . . , and r, n are such that the degrees of

Hr
n(u, v) and Kr

n(u, v) are positive.

Let the Poisson bracket of F and L, denoted by {F,L}, be defined as

{F,L} =

∫ ∞

−∞

(δF
δv

δL

δu
− δF

δu

δL

δv

)
. (3.140)

Then the following results hold

{H1
1 , H

r
n} = 4(n− r)Kr

n,

{H1
1 ,K

r
n} = (4(n− r) + 2)Hr

n+1 + r(r − 1)(r − n− 1)Hr−2
n ,

{H2
1 , H

r
n} = 4(2n− r)Kr+1

n ,

{H2
1 ,K

r
n} = (2n+ 1− r)(4Hr+1

n+1 − r2Hr−1
n ), (3.141)

r, n = 0, 1, . . .

Proof. We shall now prove the third and fourth relation in (3.141), the
proofs of the other two statements running along similar lines.

Calculation of the Fréchet derivatives of Hr
n, K

r
n yields

δHr
n

δu
= (−Dx)

n(2xrun),

δHr
n

δv
= (−Dx)

n(2xrvn),

δKr
n

δu
= (−Dx)

n+1(xrvn)− (−Dx)
n(xrvn+1),

δKr
n

δv
= −(−Dx)

n+1(xrun) + (−Dx)
n(xrun+1). (3.142)

Substitution of (3.142) into the third relation of (3.141) yields

{H2
1 , H

r
n} =

∫ ∞

−∞
−Dx(2x

2v1) · (−1)nDn
x(2xrun)

+Dx(2x
2u1) · (−1)nDn

x(2xrvn)
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= (−1)2n−1

∫ ∞

−∞
Dn
x(2x2u1)Dx(2x

rvn)−Dn
x(2x2v1)Dx(2x

run)

= −4

∫ ∞

−∞
(x2un+1 + 2nxun + n(n− 1)un−1)(x

rvn+1 + rxr−1vn)

− (x2vn+1 + 2nxvn + n(n− 1)vn−1)(x
run+1 + rxr−1un)

= −4

∫ ∞

−∞
rxr+1(un+1vn − vn+1un)− 2nxr+1(un+1vn − vn+1un)

+ n(n− 1)xr(vn+1un−1 − un+1vn−1) + n(n− 1)rxr−1(vnun−1 − unvn−1)

= 4(2n− r)Kr+1
n , (3.143)

which proves the third relation in (3.141).
The last equality in (3.143) results from the fact that the last two terms

are just constituting a total derivative of

n(n− 1)xr(vnun−1 − unvn−1). (3.144)

In order to prove the fourth relation in (3.141), we substitute (3.142),
which leads to

{H2
1 , H

r
n} =

∫ ∞

−∞
−Dx(2x

2v1) ·
(
(−1)n+1Dn+1

x (xrvn)−(−1)nDn
x(xrvn+1)

)

+Dx(2x
2u1) ·

(
(−1)n+1Dn+1

x (xrun)− (−1)nDn
x(xrun+1)

)
. (3.145)

Integration, n times, of the terms in brackets leads to

{H2
1 , H

r
n} = 2

∫ ∞

−∞
Dn+1
x (x2v1) · (Dx(x

rvn) + xrvn+1)

+Dn+1
x (x2u1) · (Dx(x

run) + xrun+1)

= 2

∫ ∞

−∞
(x2vn+2 + 2(n+ 1)xvn+1 + n(n+ 1)vn)(2x

rvn+1 + rxr−1vn)

+ (x2un+2 + 2(n+ 1)xun+1 + n(n+ 1)un)(2x
run+1 + rxr−1un). (3.146)

By expanding the expressions in (3.146), we arrive, after a short calculation,
at

{H2
1 ,K

r
n} = (2n+ 1− r)(4Hr+1

n+1 − r2Hr−1
n ), (3.147)

which proves the fourth relation in (3.141).

We are now in a position to formulate and prove the main theorem of this
subsection.

Theorem 3.13. The conserved functionals F (Y ±(2, 0)) associated to

the symmetries Y ±(2, 0) generate infinite number of hierarchies of Hamilto-

nians, starting at the hierarchies F (Y +
i ), F (Y −

i ), where i ∈ Z, by repeated

action of the Poisson bracket (3.140). The hierarchies F (Z+
j ), F (Z−

j ),
j ∈ Z, are obtained by the first step of this procedure.
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Moreover, the hierarchies F (Y +
j ), F (Y −

j ), j ∈ Z, are obtained from

F (Y ±
±1) by repeated action of the conserved functionals F (Z±

±1)

F (Z±
±1) = ±1

2
F
(
[Y ±(2, 0), Y ±

±1]
)
. (3.148)

Proof. The proof of this theorem is a straightforward application of
the previous lemma, and the observation that the (λ,m1,m2)-independent
parts of the conserved densities Y ±

±1, Y
+(2, 0), Y −(2, 0) are just given by

F(Y +
1 ) −→ −1

2
(u2xv2 − v2xu2),

F(Y +
−1) −→ −

1

2
(u1xv1 − v1xu1),

F(Y −
1 ) −→ −1

2
(u4xv4 − v4xu4),

F(Y −
−1) −→ −

1

2
(u3xv3 − v3xu3),

F(Y +(2, 0)) −→ −1

2
(x+ t)2(u2

2x + v2
2x)−

1

2
(x− t)2(u2

1x + v2
1x),

F(Y −(2, 0)) −→ −1

2
(x+ t)2(u2

4x + v2
4x)−

1

2
(x− t)2(u2

3x + v2
3x).

Note that in applying the lemma we have to choose (u, v) = (u1, v1), etc.

7.6. Nonlocal symmetries. In this last subsection concerning the
Federbush model, we discuss existence of nonlocal symmetries. We start
from the conservation laws, conserved quantities and the associated nonlo-
cal variables p1, p2:

p1x = R1 +R2, p1t = −R1 +R2,

p2x = R3 +R4, p2t = −R3 +R4. (3.149)

Including these two nonlocal variables, we find two new nonlocal symmetries

Z+(0, 0) = u1
∂

∂u1
+ v1

∂

∂v1
+ u2

∂

∂u2
+ v2

∂

∂v2
− λp1

(
v3

∂

∂u3
− u3

∂

∂v3

+ v4
∂

∂u4
− u4

∂

∂v4

)
+ 2p1

∂

∂p1
,

Z−(0, 0) = u3
∂

∂u3
+ v3

∂

∂v3
+ u4

∂

∂u4
+ v4

∂

∂v4
+ λp2

(
v1

∂

∂u1
− u1

∂

∂v1

+ v2
∂

∂u2
− u2

∂

∂v2

)
+ 2p2

∂

∂p2
. (3.150)

Analogously to the construction of conservation laws and nonlocal variables
in previous sections, we obtained nonlocal variables p3, p4, p5, p6 defined by

p3x =
1

2
λ(R1 +R2)R4 +m2(u3u4 + v3v4)− u4v4x + v4u4x,

p3t =
1

2
λ(R1 +R2)R4 − u4v4x + v4u4x,
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p4x =
1

2
λ(R1 +R2)R3 +m2(u3u4 + v3v4) + u3v3x − v3u3x,

p4t =
1

2
λ(R1 +R2)R3 − u3v3x + v3u3x,

p5x =
1

2
λ(R3 +R4)R2 −m1(u1u2 + v1v1) + u2v2x − v2u2x,

p5t =
1

2
λ(R3 +R4)R2 + u2v2x − v2u2x,

p6x =
1

2
λ(R3 +R4)R1 +m1(u1u2 + v1v1) + u1v1x − v1u1x,

p6t = −1

2
λ(R3 +R4)R1 − u1v1x + v1u1x. (3.151)

Using these nonlocal variables we find four additional nonlocal symmetries
Z+(0,−1), Z+(0,+1), Z−(0,−1), Z−(0,+1):

Z+(0,−1) =
1

2

(
− λu1(R3 +R4)−m1u2 − 2v1x

) ∂

∂u1

+
1

2

(
− λv1(R3 +R4)−m1v2 + 2u1x

) ∂

∂v1

− 1

2
m1u1

∂

∂u2
− 1

2
m1v1

∂

∂v2

+ λp6

(
v3

∂

∂u3
− u3

∂

∂v3
+ v4

∂

∂u4
− u4

∂

∂v4

)
,

Z+(0,+1) =
1

2
m1u2

∂

∂u1
+

1

2
m1v2

∂

∂v1

+
1

2

(
− λu2(R3 +R4) +m1u1 − 2v2x

) ∂

∂u2

+
1

2

(
− λv2(R3 +R4) +m1v1 + 2u2x

) ∂

∂v2

+ λp5

(
v3

∂

∂u3
− u3

∂

∂v3
+ v4

∂

∂u4
− u4

∂

∂v4

)
,

Z−(0,−1) = −λp4(v1
∂

∂u1
− u1

∂

∂v1
+ v2

∂

∂u2
− u2

∂

∂v2
)

+
1

2

(
− λu3(R1 +R2)−m2u4 − 2v3x

) ∂

∂u3

+
1

2

(
+ λv3(R1 +R2)−m2v4 + 2u3x

) ∂

∂v3

− 1

2
m2u3

∂

∂u4
− 1

2
m2v3

∂

∂v4
,

Z−(0,+1) = λp3

(
v1

∂

∂u1
− u1

∂

∂v1
+ v2

∂

∂u2
− u2

∂

∂v2

)

+
1

2
m2u4

∂

∂u3
+

1

2
m2v4

∂

∂v3
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+
1

2

(
λu4(R1 +R2) +m2u3 − 2v4x

) ∂

∂u4

+
1

2

(
λv4(R1 +R2) +m2v3 + 2u4x

) ∂

∂v4
.

According to standard lines of computations, including prolongation towards
nonlocal variables as explained in previous sections, we arrive at the follow-
ing commutators:

[Y ±(1,±1), Z±(0, 0)] = 0,

[Y +(1,−1), Z+(0,−1)] = Z+(0,−2),

[Y +(1,−1), Z+(0,+1)] = −1

4
m2

1Z
+(0, 0),

[Y +(1,+1), Z+(0,−1)] =
1

4
m2

1Z
+(0, 0),

[Y +(1,+1), Z+(0,+1)] = Z+(0,+2)

and

[Y −(1,−1), Z−(0,−1)] = Z−(0,−2),

[Y −(1,−1), Z−(0,+1)] = −1

4
m2

2Z
−(0, 0),

[Y −(1,+1), Z−(0,−1)] =
1

4
m2

2Z
−(0, 0),

[Y −(1,+1), Z−(0,+1)] = Z−(0,+2), (3.152)

the vector fields Z+(0,−2), Z+(0,+2), Z−(0,−2), Z−(0,+2) just being new
nonlocal symmetries.

Summarising these results, we conclude that the action of the symmetries
Y ±(1,±1) on Z±(0,±1) constitute hierarchies of nonlocal symmetries.

Finally we compute the Lie brackets of Y +(2, 0), (3.121), and Z+(0,±1)
which results in

[Y +(2, 0), Z+(0,−1)] = Z+(1,−1),

[Y +(2, 0), Z+(0,+1)] = Z+(1,+1), (3.153)

whereas in (3.153) Z+(0,±1) are defined by

Z+(1,−1) = 2(−x+ t)Z+(0,−2) +
1

2
m2

1(x+ t)Z+(0, 0)

+
(
λv1R34 +m1v2 − 2u1x

) ∂

∂u1
−
(
λu1R34 +m1u2 + 2v1x

) ∂

∂v1

− λ

2

(
v3

∂

∂u3
− u3

∂

∂v3
+ v4

∂

∂u4
− u4

∂

∂v4

)
K+

−1,

Z+(1,+1) = 2(x+ t)Z+(0,−2) +
1

2
m2

1(x− t)Z+(0, 0)

+
(
λv2R34 −m1v1 − 2u2x

) ∂

∂u2
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−
(
λu2R34 +m1u1 + 2v2x

) ∂

∂v2

− λ

2

(
v3

∂

∂u3
− u3

∂

∂v3
+ v4

∂

∂u4
− u4

∂

∂v4

)
K+

+1, (3.154)

while K+
±1 are given by

K+
−1 = 8

∫ x

−∞

∫ x

−∞
F(Y +(0,−2))−m2

1

∫ x

−∞

∫ x

−∞
F(Y +(0, 0)),

K+
+1 = 8

∫ x

−∞

∫ x

−∞
F(Y +(0,+2))−m2

1

∫ x

−∞

∫ x

−∞
F(Y +(0, 0)). (3.155)

The previous formulas reflect the fact that Y +(2, 0) constructs an (x, t)-
dependent hierarchy Z+(1, ∗) from Z+(0, ∗) by action of the Lie bracket. We
expect similar results for the action of Y +(2, 0) on the hierarchy Z+(1, ∗).

Results conserning the action of Y −(2, 0) on Z−(0, ∗) and from this, on
Z−(1, ∗) will be similar.

8. Bäcklund transformations and recursion operators

In this section, we mainly follow the results by M. Marvan exposed in
[73]. Our aim here is to show that recursion opeartors for higher symmetries
may be unberstood as Bäcklund transformations of a special type.

Let E1 and E2 be two differential equations in unknown functions u1 and
u2 respectively. Informally speaking, a Bäcklund transformation between E1
and E2 is a third equation E containing both independent variables u1 and
u2 and possessing the following property:

1. If u1
0 is a solution of E1, then solving the equation E [u1

0] with respect
to u2, we obtain a family of solutions to E2.

2. Vice versa, if u2
0 is a solution of E2, then solving the equation E [u2

0]
with respect to u1, we obtain a family of solutions to E1.

Geometrically this construction is expressed in a quite simple manner.

Definition 3.10. Let N1 and N2 be objects of the category DM∞. A
Bäklund transformation between N1 and N2 is a pair of coverings

N

N1
←

ϕ 1

N2

ϕ
2

→

where N is a third object of DM∞. A Bäcklund transformation is called a
Bäcklund auto-transformation, if N1 = N2.

In fact, let Ni = E∞i , i = 1, 2, and s ⊂ E∞1 be a solution. Then the set

ϕ−1
1 s ⊂ N is fibered by solutions of N and they are projected by ϕ2 (at

nonsingular points) to a family of solutions of E∞2 .
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We are now interested in Bäcklund auto-transformations of the total
space of the Cartan covering τ v : V E∞ → E∞ (see Example 3.2). The reason
to this is the following

Proposition 3.14. A section X : E∞ → V E∞ of the projection τ v is a

symmetry of the equation E if and only if it is a morphism in the category

DM∞, i.e., if it preserves Cartan distributions.

The proof is straightforward and is based on the definition of the Cartan
distribution on V E∞. The result is in full agreement with equalities (3.2)
on p. 101: the equations for V E∞ are just linearization of E and symmetries
are solutions of the linearized equation.

Thus, we can hope that Bäcklund auto-transformations of V E∞ will
relate symmetries of E to each other. This motivates the following

Definition 3.11. Let E∞ be an infinitely prolonged equation. A recur-

sion operator for symmetries of E is a pair of coverings K,L : R → V E∞
such that the diagram

R

V E∞←

K

V E∞

L

→

E∞←
τ
vτ v

→

is commutative. A recursion operator is called linear, if both K and L are
linear coverings.

Example 3.4. Consider the KdV equation E = {ut = uux + uxxx}.
Then V E∞ is described by additional equation

vt = uvx + uxv + vxxx.

Let us take for R the system of equations

wx = v,

wt = vxx + uv,

vt = vxxxuvx + uxv,

ut = uxxx + uux,

while the mappings K and L are given by

K : v = wx,

L : v = vxx +
2

3
uv +

1

3
uxw.
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Obviously, K and L determine covering structures over V E∞ (the first being
one-dimensional and the second three-dimensional) while the triple (R,K, L)
corresponds to the classical Lenard operator D2

x + 2
3u+ 1

3uxD
−1
x .

Let us now study action of recursion operators on symmetries in more
details. Let X be a symmetry of an equation E . Then, due to Proposition
3.14, it can be considered as a section X : E∞ → V E∞ which is a morphism
in DM∞. Thus we obtain the following commutative diagram

R∗ X∗

→ R L→ V E∞

E∞

P = X∗(K)

↓
X→ V E∞

K

↓
τv → E∞

τv

↓

where the composition of the arrows below is the identity while P = X∗(K)
is the pull-back. As a consequence, we obtain the following morphism of
coverings

R∗ L ◦X∗

→ V E∞

E∞←
τ
vP

→

But a morphism of this type, as it can be easily checked, is exactly a shadow

of a nonlocal symmetry in the covering P (cf. Section 2). And as we know,
action of the Lenard operator on the scaling symmetry of the KdV equation
results in a shadow which can be reconstructed using the methods of Section
3.

We conclude this section with discussing the problem of inversion of re-
cursion operators. This nontrivial, from analytical point of view, procedure,
becomes quite trivial in the geometrical setting.

In fact, to invert a recursion operator (R,K, L) just amounts to changing
arrows in the corresponding diagram:

R

V E∞←
K
′ =

L

V E∞

L ′
=
K

→

E∞←
τ
vτ v

→
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We shall illustrate the procedure using the example of the modified KdV
equation (mKdV).

Example 3.5 (see also [28, 27, 29]). Consider the mKdV eqiation
written in the form

ut = uxxx − u2ux.

Then the corresponding Cartan covering is given by the pair of equations

ut = uxxx − u2ux,

vt = vxxx − u2vx − 2uuxv,

while the recursion operator for the mKdV equation comes out of the cov-
ering R of the form

wx = uv,

wt = uvxx− uxvx + uxxv − u3v

and is of the form L : z = vxx− 2
3u

2v− 2
3uxw, where z stands for the nonlocal

coordinate in the second copy of V E∞.
To invert L, it needs to reconstruct the covering over the second copy

of V E∞ using the above information. From the form of L we obtain vxx =
z + 2

3u
2v + 2

3uxw, from where it follows that the needed nonlocal variables
are v, w, and s satisfying the relations

wx = uv,

vx = s,

sx =
2

3
uxw +

2

3
u2v + z

and

wt =
2

3
uuxw +

(
uxx −

1

3
u3

)
z − uxs+ uz,

vt =
2

3
uxxw −

1

3
u2s+ zx,

st =

(
2

3
uxxx −

2

9
u2ux

)
w +

(
2

3
uuxx −

2

9
u4

)
v − 2

3
uuxs+ zx −

1

3
u2z.

Consequently, we got the covering L′ : R′ → V E∞ with (w, v, s) 7→ v, and it
is natural to identify the triple (R′ = R, L′ = K,K ′ = L) with the inverted
recursion operator.

It should be noted that the covering R′ can be simplified in the following
way: set

p+ = w +

√
3

2
, p− = w −

√
3

2
, q = −2

3
uw + s.
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Then we get

p±x = ±
√

2

3
up± ±

√
3

2
q,

qx = z,

p±t = ±
√

2

3

(
uxx −

1

3
u3

)
p± −

(
ux ±

√
6

6
u2

)
q ±

√
3

2
zx + uz,

qt = zxx − u2z,

while K acquires the form v = p+ − p−.
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CHAPTER 4

Brackets

This chapter is of a purely algebraic nature. Following [99] (see also
[60, Ch. 1]), we construct differential calculus in the category of modules
over a unitary commutative K-algebra A, K being a commutative ring with
unit (in the corresponding geometrical setting K is usually the field R and
A = C∞(M) for a smooth manifold M). Properly understood, this calculus
is a system of special functors, together with their natural transformations
and representative objects.

In the framework of the calculus constructed, we study form-valued
derivations and deduce, in particular, two types of brackets: the Richardson–
Nijenhuis and Frölicher–Nijenhuis ones. If a derivation is integrable in the
sense of the second one, a cohomology theory can be related to it. A source
of integrable elements are algebras with flat connections.

These algebras serve as an adequate model for infinitely prolonged dif-
ferential equations, and we shall also show that all basic conceptual con-
structions introduced on E∞ in previous chapters are also valid for algebras
with flat connections, becoming much more transparent. In particular, the
notions of a symmetry and a recursion operator for an algebra with flat
connection are introduced in cohomological terms and the structure of sym-
metry Lie algebras is analyzed. Later (in Chapter 5) we specify all these
results for the case of the bundle E∞ →M .

1. Differential calculus over commutative algebras

Throughout this section, K is a commutative ring with unit, A is a
commutative K-algebra, P,Q, . . . are modules over A. We introduce linear
differential operators ∆: P → Q, modules of jets J k(P ), derivations, and
differential forms Λi(A).

1.1. Linear differential operators. Consider two A-modules P and
Q and the K-module homK(P,Q). Then there exist two A-module struc-
tures in homK(P,Q): the left one

(laf)(p) = af(p), a ∈ A, f ∈ homK(P,Q), p ∈ P,
and the right one

(raf)(p) = f(ap), a ∈ A, f ∈ homK(P,Q), p ∈ P.
Let us introduce the notation δa = la − ra.

155
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Definition 4.1. A linear differential operator of order ≤ k acting from
an A-module P to an A-module Q is a mapping ∆ ∈ homK(P,Q) satisfying
the identity

(δa0 ◦ · · · ◦ δak)∆ = 0 (4.1)

for all a0, . . . ak ∈ A.

For any a, b ∈ A, one has

la ◦ rb = rb ◦ la

and consequently the set of all differential operators of order ≤ k
(i) is stable under both left and right multiplication and
(ii) forms an A-bimodule.

This bimodule is denoted by Diff
(+)
k (P,Q), while the left and the right

multiplications in it are denoted by a∆ and a+∆ respectively, a ∈ A, ∆ ∈
Diff

(+)
k (P,Q). When P = A, we use the notation Diff

(+)
k (Q).

Obviously, one has embeddings of A-bimodules

Diff
(+)
k (P,Q) ↪→ Diff

(+)
k′ (P,Q)

for any k ≤ k′ and we can define the module

Diff
(+)
∗ (P,Q)

def
=
⋃

k≥0

Diff
(+)
k (P,Q).

Note also that for k = 0 we have Diff
(+)
0 (P,Q) = homA(P,Q).

Let P,Q,R be A-modules and ∆: P → Q, ∆′ : Q → R be differential
operators of orders k and k′ respectively. Then the composition ∆′◦∆: P →
R is defined.

Proposition 4.1. The composition ∆′ ◦∆ is a differential operator of

order ≤ k + k′.

Proof. In fact, by definition we have

δa(∆
′ ◦∆) = δa(∆

′) ◦∆ + ∆′ ◦ δa(∆). (4.2)

for any a ∈ A. Let a = {a0, . . . , as} be a set of elements of the algebra
A. Say that two subsets ar = {ai1 , . . . , air} and as−r+1 = {aj1 , . . . , ajs−r+1}
form an unshuffle of a, if i1 < · · · < ir, j1 < · · · < js−r+1. Denote the set

of all unshuffles of a by unshuffle(a) and set δa
def
= δa0 ◦ · · · ◦ δas . Then from

(4.2) it follows that

δa(∆ ◦∆′) =
∑

(ar,as−r+1)∈unshuffle(a)

δar(∆) ◦ δas−r+1(∆
′) (4.3)

for any ∆, ∆′. Hence, if s ≥ k + k′ + 1, both summands in (4.3) vanish
which finishes the proof.
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Remark 4.1. Let M be a smooth manifold, π, ξ be vector bundles over
M and P = Γ(π), Q = Γ(ξ). Then ∆ is a differential operator in the sense
of Definition 4.1 if and only if it is a linear differential operator acting from
sections of π to those of ξ.

First note that it suffices to consider the case M = Rn, π and ξ being
trivial one-dimensional bundles over M . Obviously, any linear differential
operator in a usual analytical sense satisfies Definition 4.1. Conversely, let
∆: C∞(M) → C∞(M) satisfy Definition 4.1 and be an operator of order
k. Consider a function f ∈ C∞(M) and a point x0 ∈ M . Then in a
neighborhood of x0 the function f is represented in the form

f(x) =
∑

|σ|≤k

(x− x0)σ

σ!

∂|σ|f

∂x|σ|

∣∣∣∣∣
x=x0

+
∑

|σ|=k+1

(x− x0)σgσ(x),

where (x−x0)σ = (x1−x0
1)
i1 . . . (xn−x0

n)
in , σ! = i1! . . . in!, and gσ are some

smooth functions. Introduce the notation

∆σ = ∆

(
(x− x0)σ

σ!

)
;

then

∆(f) =
∑

|σ|≤k

∆σ
∂|σ|f

∂x|σ|

∣∣∣∣∣
x=x0

+ ∆


 ∑

|σ|=k+1

(x− x0)σgσ(x)


 . (4.4)

Due to the fact that ∆ is a k-th order operator, from equality (4.3) it
follows that the last summand in (4.4) vanishes. Hence, ∆f is completely
determined by the values of partial derivatives of f up to order k and depends
on these derivatives linearly.

Consider a differential operator ∆: P → Q and A-module homomor-
phisms f : Q→ R and f ′ : R′ → P . Then from Definition 4.1 it follows that
both f ◦∆: P → R and ∆ ◦ f ′ : R′ → Q are differential operators of order

ord ∆. Thus the correspondence (P,Q) → Diff
(+)
k (P,Q), k = 0, 1, . . . , ∗, is

a bifunctor from the category of A-modules to the category of A-bimodules.

Proposition 4.2. Let us fix a module Q. Then the functor Diff+
k (•, Q)

is representable in the category of A-modules. Moreover, for any differen-

tial operator ∆: P → Q of order k there exists a unique homomorphism

f∆ : P → Diff+k (Q) such that the diagram

P
∆ → Q

Diff+k (Q)
←

D
k

f
∆

→
(4.5)



158 4. BRACKETS

is commutative, where the operator Dk is defined by Dk(¤)
def
= ¤(1), ¤ ∈

Diff+k (Q).

Proof. Let p ∈ P, a ∈ A and set (f∆(p))(a)
def
= ∆(ap). It is easily seen

that it is the mapping we are looking for.

Definition 4.2. Let ∆: P → Q be a k-th order differential operator.

The composition ∆(l)
def
= Dl ◦ ∆: P → Diff+l (Q) is called the l-th Diff-

prolongation of ∆.

Consider, in particular, the l-th prolongation of the operator Dk. By
definition, we have the following commutative diagram

Diff+l,k(P )
Dl → Diff+k (P )

Diff+l+k(P )

cl,k

↓
Dk+l → P

Dk

↓

(D
k )(l)

→

where Diff+i1,...,in
def
= Diff+i1 ◦ · · · ◦ Diff+in and cl,k

def
= fDk◦Dl . The mapping

cl,k = cl,k(P ) : Diff l,k(P ) → Diff l+k(P ) is called the gluing homomorphism

while the correspondence P ⇒ cl,k(P ) is a natural transformation of functors
called the gluing transformation.

Let ∆: P → Q, ¤ : Q → R be differential operators of orders k and l
respectively. The A-module homomorphisms

f∆: P → Diff+k (Q), f¤◦∆ : P → Diff+k+l(R), f¤ : Q→ Diff+l (R)

are defined. On the other hand, since Diff+k (•) is a functor, we have the

homomorphism Diff+k (f¤) : Diff+k (Q)→ Diff+k (Diff+l (R)).

Proposition 4.3. The diagram

P
f¤◦∆→ Diff+k+l(R)

Diff+k (Q)

f∆

↓
Diff+k (f¤)

→ Diff+k,l(R)

ck,l

↑
(4.6)

is commutative.

By this reason, the transformation ck,l is also called the universal com-

position transformation.
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1.2. Jets. Let us now study representability of the functors Diffk(P, •).
Consider an A-module P and the tensor product A⊗K P endowed with

two A-module structures

la(b⊗ p) = (ab)⊗ p, ra(b⊗ p) = b⊗ (ap), a, b ∈ A, p ∈ P.
We also set δa = la−ra and denote by µk the submodule1 in A⊗KP spanned
by all elements of the form

(δa0 ◦ · · · ◦ δas)(a⊗ p), a0, . . . , as ∈ A, s ≥ k.

Definition 4.3. The module J k(P )
def
= (A⊗K P )/µk is called the mod-

ule of k-jets for the module P . The correspondence

jk : P → J k(P ), p 7→ (1⊗ p) mod µk,

is called the k-jet operator.

Proposition 4.4. The mapping jk is a linear differential operator of

order ≤ k. Moreover, for any linear differential operator ∆: P → Q there

exists a uniquely defined homomorphism f∆ : J k(P ) → Q such that the

diagram

P
jk → J k(P )

Q
←

f
∆∆

→

is commutative.

Hence, Diffk(P, •) is a representable functor. Note also that J k(P )
carries two structures of an A-module (with respect to la and ra) and the
correspondence P ⇒ J k(P ) is a functor from the category of A-modules to
the category of A-bimodules.

Note that by definition we have short exact sequences of A-modules

0→ µk+1/µk → J k+1(P )
νk+1,k−−−−→ J k(P )→ 0

and thus we are able to define the A-module

J∞(P )
def
= proj lim

{νk+1,k}
J k(P )

which is called the module of infinite jets for P . Denote by ν∞,k : J∞(P )→
J k(P ) the corresponding projections. Since νk+1,k ◦jk = jk+1 for any k ≥ 0,
the system of operators jk induces the mapping j∞ : P → J∞(P ) satisfying
the condition ν∞,k ◦j∞ = jk. Obviously, J∞(P ) is the representative object
for the functor Diff∗(P, •) while the mapping j∞ possesses the universal
property similar to that of jk: for any ∆ ∈ Diff∗(P,Q) there exists a unique

1It makes no difference whether we span µk by the left or the right multiplication due

to the identity la
′

δa(b ⊗ p) = ra
′

δa(b ⊗ p) + δa
′

δa(b ⊗ p).
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homomorphism f∆ : J∞(P ) → Q such that ∆ = f∆ ◦ j∞. Note that j∞ is
not a differential operator in the sense of Definition 4.1.2

The functors J k(•) possess the properties dual to those of Diff+k (•).
Namely, we can define the l-th Jet-prolongation of ∆ ∈ Diffk(P,Q) by
setting

∆(l) def
= jl ◦∆: P → J l(Q)

and consider the commutative diagram

P
jk → J k(P )

J k+l(P )

jk+l

↓
cl,k → J lJ k(P )

jl

↓

j (l)
k

→

where cl,k = f j
(l)
k is called the cogluing transformation. Similar to Diagram

(4.6), for any operators ∆: P → Q, ¤ : Q→ R of orders k and l respectively,
we have the commutative diagram

J k+l(P )
f¤◦∆

→ R

J lJ k(P )

cl,k

↓ J l(f∆)→ J l(Q)

f¤

↑

and call cl,k the universal cocompositon operation. This operation is coasso-

ciative, i.e., the diagram

J k+l+s(P )
ck+l,s→ J k+lJ s(P )

J kJ l+s(P )

ck,l+s

↓ J k(cl,s)→ J kJ lJ s(P )

ck,l

↓

is commutative for all k, l, s ≥ 0.

1.3. Derivations. We shall now deal with special differential operators
of order 1.

Definition 4.4. Let P be an A-module. A P -valued derivation is a
first order operator ∆: A→ P satisfying ∆(1) = 0.

2One might say that j∞ is a differential operator of “infinite order”, but this concept
needs to be more clarified. Some remarks concerning a concept of infinite order differential
operators were made in Chapter 1, see also [51] for more details.
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The set of such derivations will be denoted by D(P ). From the above
definition and from Definition 4.1 it follows that ∆ ∈ D(P ) if and only if

∆(ab) = a∆(b) + b∆(a), a, b ∈ A. (4.7)

It should be noted that the set D(P ) is a submodule in Diff1(P ) but not in
Diff+1 (P ).

Remark 4.2. In the case A = C∞(M), M being a smooth manifold,
and P = A the module D(A) coincides with the module D(M) of vector
fields on the manifold M .

For any A-homomorphism f : P → Q and a derivation ∆ ∈ D(P ), the

composition D(f)
def
= f ◦ ∆ lies in D(Q) and thus P ⇒ D(P ) is a functor

from the category of A-modules into itself. This functor can be generalized
as follows.

Let P be an A-module and N ⊂ P be a subset in P . Let us define

D(N)
def
= {∆ ∈ D(P ) | ∆(A) ⊂ N}.

Let us also set (Diff+1 )i
def
= Diff+1 ◦ · · ·◦Diff+1 , where the composition is taken

i times. We now define a series of functors Di, i ≥ 0, together with natural
embeddings Di(P ) ↪→ (Diff+1 )i(P ) by setting D0(P ) = P , D1(P ) = D(P )
and, assuming that all Dj(P ), j < i, were defined,

Di(P ) = D(Di−1(P ) ⊂ (Diff+1 )i−1(P )).

Since

D(Di−1(P ) ⊂ (Diff+1 )i−1(P )) ⊂ D((Diff+1 )i−1(P )) ⊂ (Diff+1 )i(P ), (4.8)

the modules Di(P ) are well defined.
Let us show now that the correspondences P ⇒ Di(P ) are functors for

all i ≥ 0. In fact, the case i = 0 is obvious while i = 1 was considered
above. We use induction on i and assume that i > 1 and that for j < i all

Dj are functors. We shall also assume that the embeddings αjP : Dj(P ) ↪→
(Diff+1 )i(P ) are natural, i.e., the diagrams

Dj(P )
αjP→ (Diff+1 )j(P )

Dj(Q)

Dj(f)

↓ αjQ→ (Diff+1 )j(Q)

(Diff+1 )j(f)

↓
(4.9)

are commutative for any homomorphism f : P → Q (in the cases j = 0, 1,

this is obvious). Then, if ∆ ∈ Di(P ) and a ∈ A, we set (Di(f))(∆)
def
=

Di−1(∆(a)). Then from commutativity of diagram (4.9) it follows thatDi(f)
takes Di(P ) to Di(Q) while (4.8) implies that αiP : Di(P ) ↪→ (Diff+1 )i(P ) is
a natural embedding.
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Note now that, by definition, elements of Di(P ) may be understood as
K-linear mappings A→ Di−1(P ) possessing “special properties”. Given an
element a ∈ A and an operator ∆ ∈ Di(P ), we have ∆(a) ∈ Di−1(P ), i.e.,
∆: A→ Di−1(P ), etc. Thus ∆ is a polylinear mapping

∆: A⊗K · · · ⊗K A︸ ︷︷ ︸
i times

→ P. (4.10)

Let us describe the module Di(P ) in these terms.

Proposition 4.5. A polylinear mapping of the form (4.10) is an ele-

ment of Di(P ) if and only if

∆(a1, . . . , aα−1, ab, aα+1, . . . , ai)

= a∆(. . . , aα−1, b, aα+1, . . . ) + b∆(. . . , aα−1, a, aα+1, . . . ) (4.11)

and

∆(. . . , aα, . . . , aβ, . . . ) = (−1)αβ∆(. . . , aβ , . . . , aα, . . . ) (4.12)

for all a, b, a1, . . . , ai ∈ A, 1 ≤ α < β ≤ i. In other words, Di(P ) consists of

skew-symmetric polyderivations (of degree i) of the algebra A with the values

in P .

Proof. Note first that to prove the result it suffices to consider the
case i = 2. In fact, the general case is proved by induction on i whose step
literally repeats the proof for i = 2.

Let now ∆ ∈ D2(P ). Then, since ∆ is a derivation with the values in
Diff+1 (P ), one has

∆(ab) = a+∆(b) + b+∆(a), a, b ∈ A.
Consequently,

∆(ab, c) = ∆(b, ac) + ∆(a, bc) (4.13)

for any c ∈ A. But ∆(ab) ∈ D(P ) and thus ∆(ab, 1) = 0. Therefore, (4.13)
implies ∆(a, b) + ∆(b, a) = 0 which proves (4.12). On the other hand, from
the result proved we obtain that ∆(ab, c) = −∆(c, ab) while, by definition,
one has ∆(c) ∈ D(P ) for any c ∈ A. Hence,

∆(ab, c) = −∆(c, ab) = −a∆(c, b)− b∆(c, a) = a∆(b, c) + b∆(a, c)

which finishes the proof.

To finish this subsection, we establish an additional algebraic structure
in the modules Di(P ). Namely, we define by induction the wedge product

∧ : Di(A)⊗K Dj(P )→ Di+j(P ) by setting

a ∧ p def
= ap, a ∈ D0(A) = A, p ∈ D0(P ) = P, (4.14)

and

(∆ ∧¤)(a)
def
= ∆ ∧¤(a) + (−1)j∆(a) ∧¤ (4.15)

for any ∆ ∈ Di(A), ¤ ∈ Dj(P ), i+ j > 0.
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Proposition 4.6. The wedge product of polyderivations is a well-

defined operation.

Proof. It needs to prove that ∆ ∧ ¤ defined by (4.14) and (4.15) lies
in Di+j(P ). To do this, we shall use Proposition 4.5 and induction on i+ j.
The case i+ j < 2 is trivial.

Let now i+j ≥ 2 and assume that the result was proved for all k < i+j.
Then from (4.15) it follows that (∆∧¤)(a) ∈ Di+j−1(P ). Let us prove that
∆ ∧ ¤ satisfies identities (4.11) and (4.12) of Proposition 4.5. In fact, we
have

(∆ ∧¤)(a, b) = (∆ ∧¤(a))(b) + (−1)j(∆(a) ∧¤)(b)

= ∆ ∧¤(a, b) + (−1)j−1∆(b) ∧¤(a) + (−1)j(∆(a) ∧¤(b)

+ (−1)j∆(a, b) ∧¤) = −
(
∆ ∧¤(b, a) + (−1)j−1∆(a) ∧¤(b)

+ (−1)j∆(b) ∧¤(a) + ∆(b, a) ∧¤
)

= −(∆ ∧¤)(b, a),

where a and b are arbitrary elements of A.
On the other hand,

(∆ ∧¤)(ab) = ∆ ∧¤(ab) + (−1)j∆(ab) ∧¤
= ∆ ∧

(
a¤(b) + b¤(a)

)
+ (−1)j

(
a∆(b) + b∆(a)

)
∧¤

= a
(
∆ ∧¤(b) + (−1)j∆(b) ∧¤

)
+ b
(
∆ ∧¤(a) + (−1)j∆(a) ∧¤

)

= a
(
∆ ∧¤)(b) + b(∆ ∧¤

)
(a).

We used here the fact that ∆ ∧ (a¤) = a(∆ ∧¤) which is proved by trivial
induction.

Proposition 4.7. For any derivations ∆, ∆1, ∆2 ∈ D∗(A) and ¤, ¤1,
¤2 ∈ D∗(P ), one has

(i) (∆1 + ∆2) ∧¤ = ∆1 ∧¤+ ∆2 ∧¤,
(ii) ∆ ∧ (¤1 +¤2) = ∆ ∧¤1 + ∆ ∧¤2,
(iii) ∆1 ∧ (∆2 ∧¤) = (∆1 ∧∆2) ∧¤,
(iv) ∆1 ∧∆2 = (−1)i1i2∆2 ∧∆1,

where ∆1 ∈ Di1(A), ∆2 ∈ Di2(A).

Proof. All statements are proved in a similar way. As an example, let
us prove equality (iv). We use induction on i1 + i2. The case i1 + i2 = 0 is
obvious (see (4.14)). Let now i1 + i2 > 0 and assume that (iv) is valid for
all k < i1 + i2. Then

(∆1 ∧∆2)(a) = ∆1 ∧∆2(a) + (−1)i2∆1(a) ∧∆2

= (−1)i1(i2−1)∆2(a) ∧∆1 + (−1)i2(−1)(i1−1)i2∆2 ∧∆1(a)

= (−1)i1i2(∆2 ∧∆1(a) + (−1)i1∆2(a) ∧∆1) = (−1)i1i2(∆2 ∧∆1)(a)

for any a ∈ A.
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Corollary 4.8. The correspondence P ⇒ D∗(P ) is a functor from the

category of A-modules to the category of graded modules over the graded

commutative algebra D∗(A).

1.4. Forms. Consider the module J 1(A) and the submodule in it gen-
erated by j1(1), i.e., by the class of the element 1⊗ 1 ∈ A⊗K A. Denote by
ν : J 1(A)→ J 1(A)/(A · j1(1)) the natural projection of modules.

Definition 4.5. The quotient module Λ1(A)
def
= J 1(A)/(A · j1(1)) is

called the module of differential 1-forms of the algebra A. The composition

d = d1
def
= ν ◦ j1 : A→ Λ1(A) is called the (first) de Rham differential of A.

Proposition 4.9. For any derivation ∆: A → P , a uniquely defined

A-homomorphism ϕ∆ : Λ1(A)→ P exists such that the diagram

A
d → Λ1(A)

P
←

ϕ∆
∆

→

is commutative. In particular, Λ1(A) is the representative object for the

functor D(•).
Proof. The mapping d, being the composition of j1 with a homomor-

phism, is a first order differential operator and it is a tautology that f d (see
Proposition 4.4) coincides with the projection ν : J 1(A) → Λ1(A). On the
other hand, consider the diagram

J 1(A)
f∆

→ P

Λ1(A)

ϕ∆
→

ν

→

A

d
↑

∆

→←
j
1

Since ∆ is a first order differential operator, there exists a homomorphism
f∆ : J 1(A)→ P satisfying the equality ∆ = f∆ ◦ j1. But ∆ is a derivation,
i.e., ∆(1) = 0, which means that ker(f∆) contains A · j1(1). Hence, there
exists a unique mapping ϕ∆ such that the above diagram is commutative.

Remark 4.3. From the definition it follows that Λ1(A), as an A-module,
is generated by the elements da, a ∈ A, with the relations

d(αa+ βb) = αda+ βdb, d(ab) = adb+ bda,
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α, β ∈ K, a, b ∈ A, while the de Rham differential takes a to the coset
a mod (A · j1(1)).

Let us set now

Λi(A) = Λ1(A) ∧ · · · ∧ Λ1(A)︸ ︷︷ ︸
i times

. (4.16)

The elements of Λi(A) are called differential i-forms of the algebra A. We

also formally set Λ0(A)
def
= A.

Proposition 4.10. The modules Λi(A), i ≥ 0, are representative ob-

jects for the functors Di(•).
Proof. The case i = 0 is trivial while the case i = 1 was proved already

(see Proposition 4.9). Let now i > 1 and a ∈ A. Define the mappings

λa : homA(Λi(A), P )→ homA(Λi−1(A), P ), ia : Di(P )→ Di−1(P )

by setting

(λaϕ)(ω)
def
= ϕ(da ∧ ω), ia∆

def
= ∆(a),

where ω ∈ Λi−1(A), ϕ ∈ homA(Λi(A), P ), and ∆ ∈ Di(P ).
Using induction on i, let us construct isomorphisms

ψi : homA(Λi(A), P )→ Di(P )

in such a way that the diagrams

homA(Λi(A), P )
ψi→ Di(P )

homA(Λi−1(A), P )

λa

↓
ψi−1→ Di−1(P )

ia

↓
(4.17)

are commutative for all a ∈ A.
The case i = 1 reduces to Proposition 4.9. Let now i > 1 and assume

that for i− 1 the statement is valid. Then from (4.17) we should have

(ψi(ϕ))(a) = ψi−1(λa(ϕ)), ϕ ∈ homA(Λi(A), P ),

which completely determines ψi. From the definition of the mapping λa it
follows that

λab = aλb + bλa, λa ◦ λb = −λb ◦ λa, a, b ∈ A,
i.e., imψi ∈ Di(P ) (see Proposition 4.5).

Let us now show that ψi constructed in such a way is an isomorphism.
Take ∆ ∈ Di(P ), a1, . . . , ai and set

ψ̄i(da1 ∧ . . . dai) def
=
(
ψ−1
i−1(X(a1))

)
(da2 ∧ · · · ∧ dai).
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It may be done since ψ−1
i−1 exists by the induction assumption. Directly from

definitions one obtains that ψi ◦ ψ̄i = id, ψ̄i ◦ψi = id. It is also obvious that
the isomorphisms ψi are natural, i.e., the diagrams

homA(Λi(A), P )
ψi→ Di(P )

homA(Λi(A), Q)

homA(Λi(A), f)

↓
ψi→ Di(Q)

Di(f)

↓

are commutative for all homomorphisms f ∈ homA(P,Q).

From the result proved we obtain the pairing

〈·, ·〉 : Di(P )⊗A Λi(A)→ P (4.18)

defined by

〈∆, ω〉 def
=
(
ψ−1
i (∆)

)
(ω), ω ∈ Λi(A), ∆ ∈ Di(P ).

A direct consequence of the proof of Proposition 4.10 is the following

Corollary 4.11. The identity

〈∆, da ∧ ω〉 = 〈∆(a), ω〉 (4.19)

holds for any ω ∈ Λi(A), ∆ ∈ Di+1(A), a ∈ A.

Let us define the mappings d = di : Λi−1(A)→ Λi(A) by taking the first
de Rham differential for d1 and setting

di(a0 da1 ∧ · · · ∧ dai) def
= da0 ∧ da1 ∧ · · · ∧ dai

for i > 1. From (4.16) and Remark 4.3 it follows that the mappings di are
well defined.

Proposition 4.12. The mappings di possess the following properties:

(i) di is a first order differential operator acting from Λi−1(A) to Λi(A);
(ii) d(ω ∧ θ) = d(ω) ∧ θ + (−1)iω ∧ d(θ) for any ω ∈ Λi(A), θ ∈ Λj(A);
(iii) di ◦ di−1 = 0.

The proof is trivial.
In particular, (iii) means that the sequence of mappings

0→ A
d1−→ Λ1(A)→ · · · → Λi−1(A)

di−→ Λi(A)→ · · · (4.20)

is a complex.

Definition 4.6. The mapping di is called the (i-th) de Rham differ-

ential. The sequence (4.20) is called the de Rham complex of the algebra
A.
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Remark 4.4. Before proceeding with further exposition, let us make
some important comments on the relation between algebraic and geometrical
settings. As we saw above, the algebraic definition of a linear differential
operator is in full accordance with the analytical one. The same is true if we
compare algebraic “vector fields” (i.e., elements of the module D(A)) with
vector fields on a smooth manifold M : derivations of the algebra C∞(M)
are identical to vector fields on M .

This situation changes, when we pass to representative objects. A simple
example illustrates this effect. Let M = R and A = C∞(M). Consider the
differential one-form ω = dex− ex dx ∈ Λ1(A). This form is nontrivial as an
element of the module Λ1(A). On the other hand, for any A-module P let
us define the value of an element p ∈ P at point x ∈ M as follows. Denote
by µx the ideal

µx
def
= {f ∈ C∞(M) | f(x) = 0} ⊂ C∞(M)

and set px
def
= p mod µx. In particular, if P = A, thus defined value coincides

with the value of a function f at a point. One can easily see that ωx = 0
for any x ∈M . Thus, ω is a kind of a “ghost”, not observable at any point
of the manifold. The reader will easily construct similar examples for the
modules J k(A). In other words, we can state that

Λi(M) 6= Λi(C∞(M)), Γ(πk) 6= J k(Γ(π))

for an arbitrary smooth manifold M and a vector bundle π : E →M .
Let us say that C∞(M)-module P is geometrical, if

⋂

x∈M

µx · P = 0.

Obviously, all modules of the form Γ(π) are geometrical. We can introduce
the geometrization functor by setting

G(P )
def
= P/

⋂

x∈M

µx · P.

Then the following result is valid:

Proposition 4.13. Let M be a smooth manifold and π : E → M be a

smooth vector bundle. Denote by A the algebra C∞(M) and by P the module

Γ(π). then:

(ii) The functor Di(•) is representable in the category of geometrical A-

modules and one has

Di(Q) = homA(G(Λi(A)), Q)

for any geometrical module Q.

(i) The functor Diff(P, •) is representable in the category of geometrical

A-modules and one has

Diffk(P,Q) = homA(G(J k(P )), Q)

for any geometrical module Q.
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In particular,

Λi(M) = G(Λi(C∞(M))), Γ(πk) = G(J k(Γ(π))).

1.5. Smooth algebras. Let us introduce a class of algebras which
plays an important role in geometrical theory.

Definition 4.7. A commutative algebra A is called smooth, if Λ1(A)
is a projective A-module of finite type while A itself is an algebra over the
field of rational numbers Q.

Denote by Si(P ) the i-th symmetric power of an A-module P .

Lemma 4.14. Let A be a smooth algebra. Then both Si(Λ1(A)) and

Λi(A) are projective modules of finite type.

Proof. Denote by T i
def
= T i(Λ1(A)) the i-th tensor power of Λ1(A).

Since the module Λ1(A) is projective, then it can be represented as a direct
summand in a free module, say P . Consequently, T i is a direct summand
in the free module T i(P ) and thus is projective with finite number of gen-
erators.

On the other hand, since A is a Q-algebra, both Si(Λi(A)) and Λi(A)
are direct summands in T i which finishes the proof.

Proposition 4.15. If A is a smooth algebra, then the following isomor-

phisms are valid :

(i) Di(A) ' D1(A) ∧ · · · ∧D1(A)︸ ︷︷ ︸
i times

,

(ii) Di(P ) ' Di(A)⊗A P ,

where P is an arbitrary A-module.

Proof. The result follows from Lemma 4.14 combined with Proposition
4.10

For smooth algebras, one can also efficiently describe the modules
J k(A). Namely, the following statement is valid:

Proposition 4.16. If A is a smooth algebra, then all the modules J k(A)
are projective of finite type and the isomorphisms

J k(A) '
⊕

i≤k

Si(Λ1(A))

take place.

Proof. We shall use induction on k. First note that the mapping a 7→
aj1(1) splits the exact sequence

0→ ker(ν1,0)→ J 1(A)
ν1,0−−→ J 0(A) = A→ 0.

But by definition, ker(ν1,0) = Λ1(A) and thus J 1(A) = A⊕ Λ1(A).
Let now k > 1 and assume that for k − 1 the statement is true. By

definition, ker(νk,k−1) = µk−1/µk, where µi ⊂ A ⊗K A are the submodules
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introduced in Subsection 1.2. Note that the identity a⊗b = a(b⊗1)−aδb(1⊗
1) implies the direct sum decomposition µk−1 = µk ⊕ (µk−1/µk) and thus
the quotient module µk−1/µk is identified with the submodule in A ⊗K A
spanned by

(δa1 ◦ · · · ◦ δak) (1⊗ 1), a0, . . . , ak ∈ A.
Consequently, any a ∈ A determines the homomorphism

δa : µk−2/µk−1 → µk−1/µk

by

δa : a′ ⊗ a′′ 7→ aa′ ⊗ a′′ − a′ ⊗ aa′′.
But one has δab = aδb + bδa and hence δ : a 7→ δa is an element of the
module D1(homA(µk−2/µk−1, µk−1/µk)). Consider the corresponding ho-
momorphism

ϕ = ϕδ ∈ homA(Λ1(A), homA(µk−2/µk−1, µk−1/µk)).

Due to the canonical isomorphism

homA(Λ1(A), homA(µk−2/µk−1, µk−1/µk)) '
' homA(Λ1(A)⊗A µk−2/µk−1, µk−1/µk),

we obtain the mapping

ϕ : Λ1(A)⊗A
(
µk−2/µk−1

)
→ µk−1/µk,

and repeating the procedure, get eventually the mapping ϕ : T k → µk−1/µk.
Due to the identity δa◦δb = δb◦δa, this mapping induces the homomorphism
ϕS : Sk(Λ1(A))→ µk−1/µk which, in terms of generators, acts as

ϕS(da1 · · · · · dak) = (δa1 ◦ . . . ◦ δak) (1⊗ 1)

and thus is epimorphic.
Consider the dual monomorphism

ϕ∗
S : µk−1/µk = Diffk(A)/Diffk−1(A)→ (Sk(Λ1(A)))∗ = Sk(D1(A)).

Let σ ∈ Diffk(A)/Diffk−1(A) and ∆ ∈ Diffk(A) be a representative of the
class σ. Then

(ϕ∗
S(σ))(da1 · · · · · dak) = (δa1 ◦ · · · ◦ δak) (∆).

But, on the other hand, it is not difficult to see that the mapping

ϕ̄∗
S : X1 · . . .Xk 7→

1

k!
[X1 ◦ . . .Xk],

ϕ̄∗
S : Sk(D1(A)) → Diffk(A)/Diffk−1(A), where [∆] denotes the coset of

the operator ∆ ∈ Diffk(A) in the quotient module Diffk(A)/Diffk−1(A), is
inverse to ϕ∗

S . Thus, ϕ∗
S is an isomorphism. Then the mapping

µk−1/µk → (µk−1/µk)
∗∗ ' Sk(Λ1(A)),

where the first arrow is the natural homomorphism, is the inverse to ϕS .
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From the above said it follows that µk−1/µk ' Sk(Λ1(A)) and we have
the exact sequence

0→ Sk(Λ1(A))→ J k(A)→ J k−1(A)→ 0.

But, by the induction assumption, J k−1(A) is a projective module isomor-
phic to

⊕
i≤k−1 S

i(Λ1(A)). Hence,

J k(A) ' Sk(Λ1(A))⊕ J k−1(A) '
⊕

i≤k

Si(Λ1(A))

which finishes the proof.

Definition 4.8. Let P be an A-module. The module Smbl∗(P )
def
=∑

k≥0 Smblk(P ), where

Smblk(P )
def
= Diffk(P )/Diffk−1(P ),

is called the module of symbols for P . The coset of ∆ ∈ Diffk(P ) in Smblk(P )
is called the symbol of the operator ∆.

Let σ ∈ Smbli(A) and σ′ ∈ Smblj(A) and assume that ∆ ∈ Diff i(A) and
∆′ ∈ Diffj(A) are representatives of σ, σ′ respectively. Define the product
σσ′ as the coset of ∆ ◦∆′ in Diff i+j(A). It is easily checked that Smbl∗(A)
forms a commutative A-algebra with respect to thus defined multiplication.

As a direct consequence of the last proposition and of Proposition 4.4,
we obtain

Corollary 4.17. If A is a smooth algebra, then the following state-

ments are valid :

(i) Diffk(P ) ' Diffk(A)⊗A P ,
(ii) Diff∗(A), as an associative algebra, is generated by A = Diff0(A) and

D1(A) ⊂ Diff1(A),
(iii) Smblk(P ) ' Smblk(A)⊗A P ,
(iv) Smbl∗(A), as a commutative algebra, is isomorphic to the symmetric

tensor algebra of D1(A).

Remark 4.5. It should be noted that Smbl∗A is more than just a com-
mutative algebra. In fact, in the case A = C∞(M), as it can be easily seen,
elements of Smbl∗A can be naturally identified with smooth functions on
T ∗M polynomial along the fibers of the natural projection T ∗M →M . The
manifold T ∗M is symplectic and, in particular, the algebra C∞(T ∗M) pos-
sesses a Poisson bracket which induces a bracket in Smbl∗A ⊂ C∞(T ∗M).
This bracket, as it happens, is of a purely algebraic nature.

Let us consider two symbols σ1 ∈ Smbli1 A, σ2 ∈ Smbli2 A such that
σr = ∆r mod Diff ir−1A, r = 1, 2, and set

{σ1, σ2} def
= [∆1,∆2] mod Diff i1+i2−2 . (4.21)

The operation {·, ·} defined by (4.21) is called the Poisson bracket in the
algebra of symbols and in the case A = C∞(M) coincides with the classical



2. NIJENHUIS BRACKET 171

Poisson bracket on the cotangent space. It possesses the usual properties,
i.e.,

{σ1, σ2}+ {σ2, σ1} = 0,

{σ1, {σ2, σ3}}+ {σ2, {σ3, σ1}}+ {σ3, {σ1, σ2}} = 0,

{σ1, σ2σ3} = {σ1, σ2}σ3 + σ2{σ1, σ3}
and, in particular, Smbl∗A becomes a Lie K-algebra with respect to this
bracket. This is a starting point to construct Hamiltonian formalism in a
general algebraic setting. For details and generalizations see [104, 53, 54].

2. Frölicher–Nijenhuis bracket

We still consider the general algebraic setting of the previous section
and extend standard constructions of calculus to form-valued derivations.
It allows us to define Frölicher–Nijenhuis brackets and introduce a coho-
mology theory (∇-cohomologies) associated to commutative algebras with
flat connections. In the next chapter, applying this theory to infinitely
prolonged partial differential equations, we obtain an algebraic and analyt-
ical description of recursion operators for symmetries and describe efficient
tools to compute these operators. These and related results, together with
their generalizations, were first published in the papers [55, 56, 57] and
[59, 58, 40].

2.1. Calculus in form-valued derivations. Let k be a field of char-
acteristic zero and A be a commutative unitary k-algebra. Let us recall the
basic notations:

• D(P ) is the module of P -valued derivations A → P , where P is an
A-module;
• Di(P ) is the module of P -valued skew-symmetric i-derivations. In

particular, D1(P ) = D(P );
• Λi(A) is the module of differential i-forms of the algebra A;
• d : Λi(A)→ Λi+1(A) is the de Rham differential.

Recall also that the modules Λi(A) are representative objects for the
functors Di : P ⇒ Di(P ), i.e., Di(P ) = HomA(Λi(A), P ). The isomorphism
D(P ) = HomA(Λ1(A), P ) can be expressed in more exact terms: for any
derivation X : A→ P , there exists a uniquely defined A-module homomor-
phism ϕX : Λ1(A) → P satisfying the equality X = ϕX ◦ d. Denote by
〈Z, ω〉 ∈ P the value of the derivation Z ∈ Di(P ) at ω ∈ Λi(A).

Both Λ∗(A) =
⊕

i≥0 Λi(A) and D∗(A) =
⊕

i≥0Di(A) are endowed with
the structures of superalgebras with respect to the wedge product operations

∧ : Λi(A)⊗ Λj(A)→ Λi+j(A),

∧ : Di(A)⊗Dj(A)→ Di+j(A),

the de Rham differential d : Λ∗(A)→ Λ∗(A) becoming a derivation of Λ∗(A).
Note also that D∗(P ) =

⊕
i≥0Di(P ) is a D∗(A)-module.
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Using the paring 〈·, ·〉 and the wedge product, we define the inner product

(or contraction) iXω ∈ Λj−i(A) of X ∈ Di(A) and ω ∈ Λj(A), i ≤ j, by
setting

〈Y, iXω〉 = (−1)i(j−i)〈X ∧ Y, ω〉, (4.22)

where Y is an arbitrary element of Dj−i(P ), P being an A-module. We
formally set iXω = 0 for i > j. When i = 1, this definition coincides with
the one given in Section 1. Recall that the following duality is valid:

〈X, da ∧ ω〉 = 〈X(a), ω〉, (4.23)

where ω ∈ Λi(A), X ∈ Di+1(P ), and a ∈ A (see Corollary 4.11). Using the
property (4.23), one can show that

iX(ω ∧ θ) = iX(ω) ∧ θ + (−1)Xωω ∧ iX(ω)

for any ω, θ ∈ Λ∗(A), where (as everywhere below) the symbol of a graded
object used as the exponent of (−1) denotes the degree of that object.

We now define the Lie derivative of ω ∈ Λ∗(A) along X ∈ D∗(A) as

LXω =
(
iX ◦ d− (−1)Xd ◦ iX

)
ω = [iX , d]ω, (4.24)

where [·, ·] denotes the graded (or super) commutator: if ∆,∆′ : Λ∗(A) →
Λ∗(A) are graded derivations, then

[∆,∆′] = ∆ ◦∆′ − (−1)∆∆′

∆′ ◦∆.

For X ∈ D(A) this definition coincides with the ordinary commutator of
derivations.

Consider now the graded module D(Λ∗(A)) of Λ∗(A)-valued deriva-
tions A → Λ∗(A) (corresponding to form-valued vector fields — or, which
is the same — vector-valued differential forms on a smooth manifold).
Note that the graded structure in D(Λ∗(A)) is determined by the splitting
D(Λ∗(A)) =

⊕
i≥0D(Λi(A)) and thus elements of grading i are derivations

X such that imX ⊂ Λi(A). We shall need three algebraic structures asso-
ciated to D(Λ∗(A)).

First note that D(Λ∗(A)) is a graded Λ∗(A)-module: for any X ∈
D(Λ∗(A)), ω ∈ Λ∗(A) and a ∈ A we set (ω ∧ X)a = ω ∧ X(a). Second,
we can define the inner product iXω ∈ Λi+j−1(A) of X ∈ D(Λi(A)) and
ω ∈ Λj(A) in the following way. If j = 0, we set iXω = 0. Then, by induc-
tion on j and using the fact that Λ∗(A) as a graded A-algebra is generated
by the elements of the form da, a ∈ A, we set

iX(da ∧ ω) = X(a) ∧ ω − (−1)Xda ∧ iX(ω), a ∈ A. (4.25)

Finally, we can contract elements of D(Λ∗(A)) with each other in the fol-
lowing way:

(iXY )a = iX(Y a), X, Y ∈ D(Λ∗(A)), a ∈ A. (4.26)

Three properties of contractions are essential in the sequel.
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Proposition 4.18. Let X,Y ∈ D(Λ∗(A)) and ω, θ ∈ Λ∗(A). Then

iX(ω ∧ θ) = iX(ω) ∧ θ + (−1)ω(X−1)ω ∧ iX(θ), (4.27)

iX(ω ∧ Y ) = iX(ω) ∧ Y + (−1)ω(X−1)ω ∧ iX(Y ), (4.28)

[iX , iY ] = i[[X,Y ]]rn , (4.29)

where

[[X,Y ]]rn = iX(Y )− (−1)(X−1)(Y−1)iY (X). (4.30)

Proof. Equality (4.27) is a direct consequence of (4.25). To prove
(4.28), it suffices to use the definition and expressions (4.26) and (4.27).

Let us prove (4.29) now. To do this, note first that due to (4.26), the
equality is sufficient to be checked for elements ω ∈ Λj(A). Let us use
induction on j. For j = 0 it holds in a trivial way. Let a ∈ A; then one has

[iX , iY ](da ∧ ω) =
(
iX ◦ iY − (−1)(X−1)(Y−1)iY ◦ iX

)
(da ∧ ω)

= iX(iY (da ∧ ω))− (−1)(X−1)(Y−1)iY (iX(da ∧ ω)).

But

iX(iY (da ∧ ω)) = iX(Y (a) ∧ ω − (−1)Y da ∧ iY ω)

= iX(Y (a)) ∧ ω + (−1)(X−1)Y Y (a) ∧ iXω − (−1)Y (X(a) ∧ iY ω

− (−1)Xda ∧ iX(iY ω)),

while

iY (iX(da ∧ ω) = iY (X(a) ∧ ω − (−1)Xda ∧ iXω)

= iY (X(a)) ∧ ω + (−1)X(Y−1)X(a) ∧ iY ω − (−1)X(Y (a) ∧ iXω

− (−1)Y da ∧ iY (iXω)).

Hence,

[iX , iY ](da ∧ ω) =
(
iX(Y (a))− (−1)(X−1)(Y−1)iY (X(a))

)
∧ ω

+ (−1)X+Y da ∧
(
iX(iY ω)− (−1)(X−1)(Y−1)iY (iXω)

)
.

But, by definition,

iX(Y (a))− (−1)(X−1)(Y−1)iY (X(a))

= (iXY − (−1)(X−1)(Y−1)iYX)(a) = [[X,Y ]]rn(a),

whereas

iX(iY ω)− (−1)(X−1)(Y−1)iY (iXω) = i[[X,Y ]]rn(ω)

by induction hypothesis.

Note also that the following identity is valid for any X,Y, Z ∈ D(Λ∗(A)):

X (Y Z) = (X Y ) Z + (−1)X(X ∧ Y ) Z. (4.31)
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Definition 4.9. The element [[X,Y ]]rn defined by (4.30) is called the
Richardson–Nijenhuis bracket of elements X and Y .

Directly from Proposition 4.18 we obtain the following

Proposition 4.19. For any derivations X,Y, Z ∈ D(Λ∗(A)) and a form

ω ∈ Λ∗(A) one has

[[X,Y ]]rn + (−1)(X+1)(Y+1)[[Y,X]]rn = 0, (4.32)
∮

(−1)(Y+1)(X+Z)[[[[X,Y ]]rn, Z]]rn = 0, (4.33)

[[X,ω ∧ Y ]]rn = iX(ω) ∧ Y + (−1)(X+1)ωω ∧ [[X,Y ]]rn. (4.34)

Here and below the symbol
∮

denotes the sum of cyclic permutations.

Remark 4.6. Note that Proposition 4.19 means that D(Λ∗(A))↓ is a
Gerstenhaber algebra with respect to the Richardson–Nijenhuis bracket [48].
Here the superscript ↓ denotes the shift of grading by 1.

Similarly to (4.24), let us define the Lie derivative of ω ∈ Λ∗(A) along
X ∈ D(Λ∗(A)) by

LXω = (iX ◦ d− (−1)X−1d ◦ iX)ω = [iX , d]ω (4.35)

Remark 4.7. Let us clarify the change of sign in (4.35) with respect to
formula (4.24). If A is a commutative algebra, then the module D∗(Λ

∗(A))
is a bigraded module: if ∆ ∈ Di(Λ

j(A)), then bigrading of this element is

(i, j). We can also consider the total grading by setting deg ∆
def
= i + j. In

this sense, if X ∈ Di(A), then degX = i, and for X ∈ D1(Λ
j(A)), then

degX = j + 1. This also explains shift of grading in Remark 4.6.

From the properties of iX and d we obtain

Proposition 4.20. For any X ∈ D(Λ∗(A)) and ω, θ ∈ Λ∗(A), one has

the following identities:

LX(ω ∧ θ) = LX(ω) ∧ θ + (−1)Xωω ∧ LX(θ), (4.36)

Lω∧X = ω ∧ LX + (−1)ω+Xd(ω) ∧ iX , (4.37)

[LX , d] = 0. (4.38)

Our main concern now is to analyze the commutator [LX ,LY ] of two Lie
derivatives. It may be done efficiently for smooth algebras (see Definition
4.7).

Proposition 4.21. Let A be a smooth algebra. Then for any derivations

X,Y ∈ D(Λ∗(A)) there exists a uniquely determined element [[X,Y ]]fn ∈
D(Λ∗(A)) such that

[LX , LY ] = L[[X,Y ]]fn . (4.39)
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Proof. To prove existence, recall that for smooth algebras one has

Di(P ) = HomA(Λi(A), P ) = P ⊗A HomA(Λi(A), A) = P ⊗A Di(A)

for any A-module P and integer i ≥ 0. Using this identification, let us
represent elements X,Y ∈ D(Λ∗(A)) in the form

X = ω ⊗X ′ and Y = θ ⊗ Y ′ for ω, θ ∈ Λ∗(A), X ′, Y ′ ∈ D(A).

Then it is easily checked that the element

Z = ω ∧ θ ⊗ [X ′, Y ′] + ω ∧ LX′θ ⊗ Y + (−1)ωdω ∧ iX′θ ⊗ Y ′

− (−1)ωθθ ∧ LY ′ω ⊗X ′ − (−1)(ω+1)θdθ ∧ iY ′ω ⊗X ′

= ω ∧ θ ⊗ [X ′, Y ′] + LXθ ⊗ Y ′ − (−1)ωθLY ω ⊗X ′ (4.40)

satisfies (4.39).
Uniqueness follows from the fact that LX(a) = X(a) for any a ∈ A.

Definition 4.10. The element [[X,Y ]]fn ∈ Di+j(Λ∗(A)) defined by for-
mula (4.39) (or by (4.40)) is called the Frölicher–Nijenhuis bracket of form-
valued derivations X ∈ Di(Λ∗(A)) and Y ∈ Dj(Λ∗(A)).

The basic properties of this bracket are summarized in the following

Proposition 4.22. Let A be a smooth algebra, X,Y, Z ∈ D(Λ∗(A)) be

derivations and ω ∈ Λ∗(A) be a differential form. Then the following iden-

tities are valid :

[[X,Y ]]fn + (−1)XY [[Y,X]]fn = 0, (4.41)
∮

(−1)Y (X+Z)[[X, [[Y,Z]]fn]]fn = 0, (4.42)

i[[X,Y ]]fn = [LX , iY ] + (−1)X(Y+1)LiYX , (4.43)

iZ [[X,Y ]]fn = [[iZX,Y ]]fn + (−1)X(Z+1)[[X, iZY ]]fn

+ (−1)X i[[Z,X]]fnY − (−1)(X+1)Y i[[Z,Y ]]fnX,
(4.44)

[[X,ω ∧ Y ]]fn = LXω ∧ Y − (−1)(X+1)(Y+ω)dω ∧ iYX

+ (−1)Xωω ∧ [[X,Y ]]fn.
(4.45)

Note that the first two equalities in the previous proposition mean that
the module D(Λ∗(A)) is a Lie superalgebra with respect to the Frölicher–
Nijenhuis bracket.

Remark 4.8. The above exposed algebraic scheme has a geometrical
realization, if one takes A = C∞(M), M being a smooth finite-dimensional
manifold. The algebra A = C∞(M) is smooth in this case. However,
in the geometrical theory of differential equations we have to work with
infinite-dimensional manifolds3 of the form N = proj lim{πk+1,k}Nk, where

3Infinite jets, infinite prolongations of differential equations, total spaces of coverings,
etc.
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all the mappings πk+1,k : Nk+1 → Nk are surjections of finite-dimensional
smooth manifolds. The corresponding algebraic object is a filtered algebra
A =

⋃
k∈Z

Ak, Ak ⊂ Ak+1, where all Ak are subalgebras in A. As it was al-
ready noted, self-contained differential calculus over A is constructed, if one
considers the category of all filtered A-modules with filtered homomorphisms
for morphisms between them. Then all functors of differential calculus in
this category become filtered, as well as their representative objects.

In particular, the A-modules Λi(A) are filtered by Ak-modules Λi(Ak).
We say that the algebra A is finitely smooth, if Λ1(Ak) is a projective Ak-
module of finite type for any k ∈ Z. For finitely smooth algebras, elements
of D(P ) may be represented as formal infinite sums

∑
k pk ⊗Xk, such that

any finite sum Sn =
∑

k≤n pk⊗Xk is a derivation An → Pn+s for some fixed

s ∈ Z. Any derivation X is completely determined by the system {Sn} and
Proposition 4.22 obviously remains valid.

Remark 4.9. In fact, the Frölicher–Nijenhuis bracket can be defined in
a completely general situation, with no additional assumption on the algebra

A. To do this, it suffices to define [[X,Y ]]fn = [X,Y ], when X,Y ∈ D1(A)
and then use equality (4.44) as inductive definition. Gaining in generality,
we then loose of course in simplicity of proofs.

2.2. Algebras with flat connections and cohomology. We now
introduce the second object of our interest. Let A be an k-algebra, k being
a field of zero characteristic, and B be an algebra over A. We shall assume
that the corresponding homomorphism ϕ : A → B is an embedding. Let P
be a B-module; then it is an A-module as well and we can consider the B-
module D(A,P ) of P -valued derivations A→ P .

Definition 4.11. Let ∇• : D(A, •) ⇒ D(•) be a natural transforma-
tions of the functors D(A, •) : A ⇒ D(A,P ) and D(•) : P ⇒ D(P ) in the
category of B-modules, i.e., a system of homomorphisms ∇P : D(A,P ) →
D(P ) such that the diagram

D(A,P )
∇P→ D(P )

D(A,Q)

D(A, f)

↓ ∇Q→ D(Q)

D(f)

↓

is commutative for any B-homomorphism f : P → Q. We say that ∇• is a
connection in the triad (A,B, ϕ), if ∇P (X)

∣∣
A

= X for any X ∈ D(A,P ).

Here and below we use the notation Y |A = Y ◦ ϕ for any derivation
Y ∈ D(P ).

Remark 4.10. When A = C∞(M), B = C∞(E), ϕ = π∗, where M and
E are smooth manifolds and π : E →M is a smooth fiber bundle, Definition
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4.11 reduces to the ordinary definition of a connection in the bundle π. In
fact, if we have a connection ∇• in the sense of Definition 4.11, then the
correspondence

D(A) ↪→ D(A,B)
∇B−−→ D(B)

allows one to lift any vector field on M up to a π-projectable field on E.
Conversely, if ∇ is such a correspondence, then we can construct a natural
transformation ∇• of the functors D(A, •) and D(•) due to the fact that
for smooth finite-dimensional manifolds one has D(A,P ) = P ⊗AD(A) and
D(P ) = P ⊗B D(P ) for an arbitrary B-module P . We use the notation
∇ = ∇B in the sequel.

Definition 4.12. Let ∇• be a connection in (A,B, ϕ) and consider two
derivations X,Y ∈ D(A,B). The curvature form of the connection ∇• on
the pair X,Y is defined by

R∇(X,Y ) = [∇(X),∇(Y )]−∇(∇(X) ◦ Y −∇(Y ) ◦X). (4.46)

Note that (4.46) makes sense, since ∇(X) ◦ Y − ∇(Y ) ◦ X is a B-valued
derivation of A.

Consider now the de Rham differential d = dB : B → Λ1(B). Then the
composition dB ◦ϕ : A→ B is a derivation. Consequently, we may consider
the derivation ∇(dB ◦ ϕ) ∈ D(Λ1(B)).

Definition 4.13. The element U∇ ∈ D(Λ1(B)) defined by

U∇ = ∇(dB ◦ ϕ)− dB (4.47)

is called the connection form of ∇.

Directly from the definition we obtain the following

Lemma 4.23. The equality

iX(U∇) = X −∇(X|A) (4.48)

holds for any X ∈ D(B).

Using this result, we now prove

Proposition 4.24. If B is a smooth algebra, then

iY iX [[U∇, U∇]]fn = 2R∇(X|A , Y |A) (4.49)

for any X,Y ∈ D(B).

Proof. First note that degU∇ = 1. Then using (4.44) and (4.41) we
obtain

iX [[U∇, U∇]]fn = [[iXU∇, U∇]]fn + [[U∇, iXU∇]]fn − i[[X,U∇]]fnU∇ − i[[X,U∇]]fnU∇

= 2
(
[[iXU∇, U∇]]fn − i[[X,U∇]]fnU∇

)
.
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Applying iY to the last expression and using (4.42) and (4.44), we get now

iY iX [[U∇, U∇]]fn = 2
(
[[iXU∇, iY U∇]]fn − i[[X,Y ]]fnU∇

)
.

But [[V,W ]]fn = [V,W ] for any V,W ∈ D(Λ0(A)) = D(A). Hence, by (4.48),
we have

iY iX [[U∇, U∇]]fn = 2
(
[X −∇(X|A), Y −∇(Y |A)]− ([X,Y ]− ∇([X,Y ]|A))

)
.

It only remains to note now that ∇(X|A)|A = X|A and [X,Y ]|A = X ◦
Y |A − Y ◦ X|A.

Definition 4.14. A connection ∇ in (A,B, ϕ) is called flat, if R∇ = 0.

Fix an algebra A and let us introduce the category FC(A), whose objects

are triples (A,B, ϕ) endowed with a connection ∇• while morphisms are

defined as follows. Let O = (A,B, ϕ,∇•) and Õ = (A, B̃, ϕ̃, ∇̃•) be two

objects of FC(A). Then a morphism from O to Õ is a mapping f : B → B̃
such that:

(i) f is an A-algebra homomorphism, i.e., the diagram

B
f → B̃

A

ϕ̃

→←

ϕ

is commutative, and

(ii) for any B̃-module P (which can be considered as a B-module as well
due to the homomorphism f the diagram

D(B̃, P )
D(B̃, f) → D(B,P )

D(A,P )

∇
P

→←

∇̃ P

is commutative, where D(B̃, f)(X) = X ◦ f for any derivation

X : B̃ → P .

Due to Proposition 4.24, for flat connections we have

[[U∇, U∇]]fn = 0. (4.50)

Let U ∈ D(Λ1(B)) be an element satisfying equation (4.50). Then from
the graded Jacobi identity (4.42) we obtain

2[[U, [[U,X]]fn]]fn = [[[[U,U ]]fn, X]]fn = 0
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for any X ∈ D(Λ∗(A)). Consequently, the operator

∂U = [[U, ·]]fn : D(Λi(B))→ D(Λi+1(B))

defined by the equality ∂U (X) = [[U,X]]fn satisfies the identity ∂U ◦ ∂U = 0.
Consider now the case U = U∇, where ∇ is a flat connection.

Definition 4.15. An element X ∈ D(Λ∗(B)) is called vertical, if
X(a) = 0 for any a ∈ A. Denote the B-submodule of such elements by
Dv(Λ∗(B)).

Lemma 4.25. Let ∇ be a connection in (A,B, ϕ). Then

(1) an element X ∈ D(Λ∗(B)) is vertical if and only if iXU∇ = X;
(2) the connection form U∇ is vertical, U∇ ∈ Dv(Λ1(B));
(3) the mapping ∂U∇

preserves verticality, i.e., for all i one has the em-

beddings ∂U∇
(Dv(Λi(B))) ⊂ Dv(Λi+1(B)).

Proof. To prove (1), use Lemma 4.23: from (4.48) it follows that
iXU∇ = X if and only if ∇(X|A) = 0. But ∇(X|A)|A = X|A. The second
statements follows from the same lemma and from the first one:

iU∇
U∇ = U∇ −∇(U∇|A) = U∇ −∇

(
(U∇ −∇(U∇|A))|A

)
= U∇.

Finally, (3) is a consequence of (4.44).

Definition 4.16. Denote the restriction ∂U∇
|Dv(Λ∗(A)) by ∂∇ and call

the complex

0→ Dv(B)
∂∇−→ Dv(Λ1(B))→ · · · → Dv(Λi(B))

∂∇−→ Dv(Λi+1(B))→ · · ·
(4.51)

the ∇-complex of the triple (A,B, ϕ). The corresponding cohomology is de-
noted by H∗

∇(B;A,ϕ) =
⊕

i≥0H
i
∇(B;A,ϕ) and is called the ∇-cohomology

of the triple (A,B, ϕ).

Introduce the notation

dv∇ = LU∇
: Λi(B)→ Λi+1(B). (4.52)

Proposition 4.26. Let ∇ be a flat connection in a triple (A,B, ϕ) and

B be a smooth (or finitely smooth) algebra. Then for any X,Y ∈ Dv(Λ∗(A))
and ω ∈ Λ∗(A) one has

∂∇[[X,Y ]]fn = [[∂∇X,Y ]]fn + (−1)X [[X, ∂∇Y ]]fn, (4.53)

[iX , ∂∇] = (−1)X i∂∇X , (4.54)

∂∇(ω ∧X) = (dv∇ − d)(ω) ∧X + (−1)ωω ∧ ∂∇X, (4.55)

[dv∇, iX ] = i∂∇X + (−1)XLX . (4.56)

Proof. Equality (4.53) is a direct consequence of (4.42). Equality
(4.54) follows from (4.44). Equality (4.55) follows from (4.45) and (4.48).
Finally, (4.56) is obtained from (4.43).
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Corollary 4.27. The module H∗
∇(B;A,ϕ) inherits the graded Lie al-

gebra structure with respect to the Frölicher–Nijenhuis bracket [[·, ·]]fn, as well

as the contraction operation.

Proof. Note that Dv(Λ∗(A)) is closed with respect to the Frölicher–
Nijenhuis bracket: to prove this fact, it suffices to apply (4.44). Then the
first statement follows from (4.53). The second one is a consequence of
(4.54).

Remark 4.11. We preserve the same notations for the inherited struc-
tures. Note, in particular, that H0

∇(B;A,ϕ) is a Lie algebra with respect to
the Frölicher–Nijenhuis bracket (which reduces to the ordinary Lie bracket
in this case). Moreover, H1

∇(B;A,ϕ) is an associative algebra with respect
to the inherited contraction, while the action

RΩ : X 7→ iXΩ, X ∈ H0
∇(B;A,ϕ), Ω ∈ H1

∇(B;A,ϕ)

is a representation of this algebra as endomorphisms of H0
∇(B;A,ϕ).

Consider now the mapping dv∇ : Λ∗(B) → Λ∗(B) defined by (4.52) and

define dh∇ = dB − dv∇.

Proposition 4.28. Let B be a (finitely) smooth algebra and ∇ be a flat

connection in the triple (B;A,ϕ). Then

(1) The pair (dh∇, d
v
∇) forms a bicomplex, i.e.,

dv∇ ◦ dv∇ = 0, dh∇ ◦ dh∇ = 0, dh∇ ◦ dv∇ + dv∇ ◦ dh∇ = 0. (4.57)

(2) The differential dh∇ possesses the following properties

[dh∇, iX ] = −i∂∇X , (4.58)

∂∇(ω ∧X) = −dh∇(ω) ∧X + (−1)ωω ∧ ∂∇X, (4.59)

where ω ∈ Λ∗(B), X ∈ Dv(Λ∗(B)).

Proof. (1) Since deg dv∇ = 1, we have

2dv∇ ◦ dv∇ = [dv∇, d
v
∇] = [LU∇

,LU∇
] = L[[U∇,U∇]]fn = 0.

Since dv∇ = LU∇
, the identity [dB, d

v
∇] = 0 holds (see (4.38)), and it concludes

the proof of the first part.
(2) To prove (4.58), note that

[dh∇, iX ] = [dB − dh∇, iX ] = (−1)XLX − [dv∇, iX ],

and (4.58) holds due to (4.56). Finally, (4.59) is just the other form of
(4.55).

Definition 4.17. Let ∇ be a connection in (A,B, ϕ).

(1) The bicomplex (B, dh∇, d
v
∇) is called the variational bicomplex associ-

ated to the connection ∇.
(2) The corresponding spectral sequence is called the ∇-spectral sequence

of the triple (A,B, ϕ).
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Obviously, the ∇-spectral sequence converges to the de Rham cohomology
of B.

To finish this section, note the following. Since the module Λ1(B) is
generated by the image of the operator dB : B → Λ1(B) while the graded
algebra Λ∗(B) is generated by Λ1(B), we have the direct sum decomposition

Λ∗(B) =
⊕

i≥0

⊕

p+q=i

Λpv(B)⊗ Λqh(B),

where

Λpv(B) = Λ1
v(B) ∧ · · · ∧ Λ1

v(B)︸ ︷︷ ︸
p times

, Λqh(B) = Λ1
h(B) ∧ · · · ∧ Λ1

h(B)︸ ︷︷ ︸
q times

,

while the submodules Λ1
v(B) ⊂ Λ1(B), Λ1

h(B) ⊂ Λ1(B) are spanned in

Λ1(B) by the images of the differentials dv∇ and dh∇ respectively. Obviously,
we have the following embeddings:

dh∇
(
Λpv(B)⊗ Λqh(B)

)
⊂ Λpv(B)⊗ Λq+1

h (B),

dv∇
(
Λpv(B)⊗ Λqh(B)

)
⊂ Λp+1

v (B)⊗ Λqh(B).

Denote by Dp,q(B) the module Dv(Λpv(B) ⊗ Λqh(B)). Then, obviously,
Dv(B) =

⊕
i≥0

⊕
p+q=iD

p,q(B), while from equalities (4.58) and (4.59) we
obtain

∂∇
(
Dp,q(B)

)
⊂ Dp,q+1(B).

Consequently, the module H∗
∇(B;A,ϕ) is split as

H∗
∇(B;A,ϕ) =

⊕

i≥0

⊕

p+q=i

Hp,q
∇ (B;A,ϕ) (4.60)

with the obvious meaning of the notation Hp,q
∇ (B;A,ϕ).

Proposition 4.29. If O = (B,∇) is an object of the category FC(A),
then

Hp,0
∇ (B) = ker

(
∂∇

∣∣∣Dv1 (CpΛ(B))

)
.

3. Structure of symmetry algebras

Here we expose the theory of symmetries and recursion operators in the
categories FC(A). Detailed motivations for the definition can be found in
previous chapters as well as in Chapter 5. A brief discussion concerning rela-
tions of this algebraic scheme to further applications to differential equations
the reader will find in concluding remarks below.
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3.1. Recursion operators and structure of symmetry algebras.
We start with the following

Definition 4.18. Let O = (B,∇) be an object of the category FC(A).

(i) The elements of H0,0
∇ (B) = H0

∇(B) are called symmetries of O.

(ii) The elements of H1,0
∇ (B) are called recursion operators of O.

We use the notations

Sym
def
= H0,0

∇ (B)

and

Rec
def
= H1,0

∇ (B).

From Corollary 4.27 and Proposition 4.29 one obtains

Theorem 4.30. For any object O = (B,∇) of the category FC(A) the

following facts take place:

(i) Sym is a Lie algebra with respect to commutator of derivations.

(ii) Rec is an associative algebra with respect to contraction, U∇ being the

unit of this algebra.

(iii) The mapping R : Rec→ Endk(Sym), where

RΩ(X) = iX(Ω), Ω ∈ Rec, X ∈ Sym,

is a representation of this algebra and hence

(iv) i(Sym)(Rec) ⊂ Sym .

In what follows we shall need a simple consequence of basic definitions:

Proposition 4.31. For any object O = (B,∇) of FC(A)

[[ Sym,Rec]] ⊂ Rec

and

[[Rec,Rec]] ⊂ H2,0
∇ (B).

Corollary 4.32. If H2,0
∇ (B) = 0, then all recursion operators of the

object O = (B,∇) commute with each other with respect to the Frölicher–

Nijenhuis bracket.

We call the objects satisfying the conditions of the previous corollary
2-trivial. To simplify notations we denote

RΩ(X) = Ω(X), Ω ∈ Rec, X ∈ Sym .

From Proposition 4.31 and equality (4.42) one gets

Proposition 4.33. Consider an object O = (B,∇) of FC(A) and let

X,Y ∈ Sym, Ω, θ ∈ Rec. Then

[[Ω, θ]](X,Y ) = [Ω(X), θ(Y )] + [θ(X),Ω(Y )]− Ω([θ(X), Y ]

+ [X, θ(Y )])− θ([Ω(X), Y ] + [X,Ω(Y )]) + (Ω ◦ θ + θ ◦ Ω) [X,Y ].
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In particular, for Ω = θ one has

1

2
[[Ω,Ω]](X,Y ) = [Ω(X),Ω(Y )]

− Ω([Ω(X), Y ])− Ω([X,Ω(Y )]) + Ω(Ω([X,Y ])). (4.61)

The proof of this statement is similar to that of Proposition 4.24. The
right-hand side of (4.61) is called the Nijenhuis torsion of Ω (cf. [49]).

Corollary 4.34. If O is a 2-trivial object, then

[Ω(X),Ω(Y )] = Ω ([Ω(X), Y ] + [X,Ω(Y )]− Ω[X,Y ]) . (4.62)

Choose a recursion operator Ω ∈ Rec and for any symmetry X ∈ Sym
denote Ωi(X) = RiΩ(X) by Xi. Then (4.62) can be rewritten as

[X1, Y1] = [X1, Y ]1 + [X,Y1]1 − [X,Y ]2. (4.63)

Using (4.63) as the induction base, one can prove the following

Proposition 4.35. For any 2-trivial object O and m,n ≥ 1 one has

[Xm, Yn] = [Xm, Y ]n + [X,Yn]m − [X,Y ]m+n.

Let, as before, X be a symmetry and Ω be a recursion operator. Then

ΩX
def
= [[X,Ω]] is a recursion operator again (Proposition 4.31). Due to

(4.42), its action on Y ∈ Sym can be expressed as

ΩX(Y ) = [X,Ω(Y )]− Ω[X,Y ]. (4.64)

From (4.64) one has

Proposition 4.36. For any 2-trivial object O, symmetries X,Y ∈ Sym,
a recursion Ω ∈ Rec, and integers m,n ≥ 1 one has

[X,Yn] = [X,Y ]n +
n−1∑

i=0

(ΩXYi)n−i−1

and

[Xm, Y ] = [X,Y ]m −
m−1∑

j=0

(ΩYXj)m−j−1.

From the last two results one obtains

Theorem 4.37 (the structure of a Lie algebra for Sym). For any 2-
trivial object O, its symmetries X,Y ∈ Sym, a recursion operator Ω ∈ Rec,
and integers m,n ≥ 1 one has

[Xm, Yn] = [X,Y ]m+n +
n−1∑

i=0

(ΩXYi)m+n−i−1 −
m−1∑

j=0

(ΩYXj)m+n−j−1.

Corollary 4.38. If X,Y ∈ Sym are such that ΩX and ΩY commute

with Ω ∈ Rec with respect to the Richardson–Nijenhuis bracket, then

[Xm, Yn] = [X,Y ]m+n + n(ΩXY )m+n−1 −m(ΩYX)m+n−1.
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We say that a recursion operator Ω ∈ Rec is X-invariant, if ΩX = 0.

Corollary 4.39 (on infinite series of commuting symmetries). If O is

a 2-trivial object and if a recursion operator Ω ∈ Rec is X-invariant,
X ∈ Sym, then a hierarchy {Xn}, n = 0, 1, . . . , generated by X and Ω
is commutative:

[Xm, Xn] = 0

for all m,n.

3.2. Concluding remarks. Here we briefly discuss relations of the
above exposed algebraic scheme to geometry of partial differential equations
exposed in the previous chapters and the theory of recursion operators dis-
cussed in Chapters 5–7.

First recall that correspondence between algebraic approach and geo-
metrical picture is established by identifying the category of vector bun-
dles over a smooth manifold M with the category of geometrical mod-
ules over A = C∞(M), see [60]. In the case of differential equations, M
plays the role of the manifold of independent variables while B =

⋃
αBα

is the function algebra on the infinite prolongation of the equation E and
Bα = C∞(Eα), where Eα, α = 0, 1, . . . ,∞, is the α-prolongation of E . The
mapping ϕ : A → B is dual to the natural projection π∞ : E∞ → M and
thus in applications to differential equations it suffices to consider the case
A =

⋃
αBα.

If E is a formally integrable equation, the bundle π∞ : E∞ → M pos-
sesses a natural connection (the Cartan connection C) which takes a vector
field X on M to corresponding total derivative on E∞. Consequently, the
category of differential equations [100] is embedded to the category of alge-
bras with flat connections FC(C∞(M)). Under this identification the spec-
tral sequence defined in Definition 4.17 coincides with A. Vinogradov’s C-
spectral sequence [102] (or variational bicomplex), the module Sym, where
O = (C∞(M), C∞(E∞), C), is the Lie algebra of higher symmetries for the
equation E and, in principle, Rec consists of recursion operators for these
symmetries. This last statement should be clarified.

In fact, as we shall see later, if one tries to compute the algebra Rec
straightforwardly, the results will be trivial usually — even for equations
which really possess recursion operators. The reason lies in nonlocal char-
acter of recursion operators for majority of interesting equations [1, 31, 4].
Thus extension of the algebra C∞(E∞) with nonlocal variables (see 3) is the
way to obtain nontrivial solutions — and actual computation show that all
known (as well as new ones!) recursion operators can be obtained in such
a way (see examples below and in [58, 40]). In practice, it usually suffices
to extend C∞(E∞) by integrals of conservation laws (of a sufficiently high
order).

The algorithm of computations becomes rather simple due to the follow-
ing fact. It will shown that for non-overdetermined equations all cohomology
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groups Hp,q
C (E) are trivial except for the cases q = 0, 1 while the differential

∂C : Dv
1(Cp(E))→ Dv

1(Cp(E) ∧ Λh1(E)) coincides with the universal lineariza-
tion operator `E of the equation E extended to the module of Cartan forms.
Therefore, the modules Hp,0

C (E) coincide with ker(`E) (see 4.29)

Hp,0
C (E) = ker(`E) (4.65)

and thus can be computed efficiently.
In particular, it will shown that for scalar evolution equations all coho-

mologies Hp,0
C (E), p ≥ 2, vanish and consequently equations of this type are

2-trivial and satisfy the conditions of Theorem 4.37 which explains commu-
tativity of some series of higher symmetries (e.g., for the KdV equation).



186 4. BRACKETS



CHAPTER 5

Deformations and recursion operators

In this chapter, we apply the algebraic formalism of Chapter 4 to the
specific case of partial differential equations. Namely, we consider a formally
integrable equation E ⊂ Jk(π), π : E → M , taking the associated triple
(C∞(M),F(E), π∗∞) for the algebra with flat connection, where F(E) =⋃
k Fk(E) is the algebra of smooth functions on E∞, π∞ : E∞ → M is the

natural projection and the Cartan connection C plays the role of ∇.
We compute the corresponding cohomology groups for the case E∞ =

J∞(π) and deduce defining equations for a general E . We also establish
relations between infinitesimal deformations of the equation structure and
recursion operators for symmetries and consider several illustrative exam-
ples.

We start with repeating some definitions and proofs of the previous
chapter in the geometrical situation.

1. C-cohomologies of partial differential equations

Here we introduce cohomological invariants of partial differential equa-
tions based on the results of Sections 1, 2 of Chapter 4. We call these in-
variants C-cohomologies since they are determined by the Cartan connection
C on E∞. We follow the scheme from the classical paper by Nijenhuis and
Richardson [78], especially in interpretation of the cohomology in question.

Let ξ : P →M be a fiber bundle with a connection∇, which is considered
as a C∞(M)-homomorphism∇ : D(M)→ D(P ) taking a fieldX ∈ D(M) to
the field ∇(X) = ∇X ∈ D(P ) and satisfying the condition ∇X(ξ∗f) = X(f)
for any f ∈ C∞(M).

Let y ∈ P , ξ(y) = x ∈ M , and denote by Py = ξ−1(x) the fiber of
the projection ξ passing through y. Then ∇ determines a linear mapping
∇y : Tx(M) → Ty(P ) such that ξ∗,y(∇y(v)) = v for any v ∈ Tx(M). Thus
with any point y ∈ P a linear subspace ∇y(Tx(M)) ⊂ Ty(P ) is associated. It
determines a distribution D∇ on P which is called the horizontal distribution

of the connection ∇. If ∇ is flat, then D∇ is integrable.
As it is well known (see, for example, [46, 47]), the connection form

U = U∇ ∈ Λ1(P )⊗D(P ) can be defined as follows. Let y ∈ P , Y ∈ D(P ),
Yy ∈ Ty(P ) and v = ξ∗,y(Yy). Then we set

(Y U∇)y = Yy −∇y(v). (5.1)

187
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In other words, the value of U∇ at the vector Yy ∈ Ty(P ) is the projection of
Yy onto the tangent plane Ty(P ) along the horizontal plane1 passing through
y ∈ P .

If (x1, . . . , xn) are local coordinates inM and (y1, . . . , ys) are coordinates
along the fiber of ξ (the case s = ∞ is included), we can define ∇ by the
following equalities

∇
( ∂

∂xi

)
=

∂

∂xi
+

s∑

j=1

∇ji
∂

∂yj
= ∇i. (5.2)

Then U∇ is of the form

U∇ =
s∑

j=1

(
dyj −

n∑

i=1

∇ji dxi
)
⊗ ∂

∂yj
, (5.3)

From equality (4.40) on p. 175 it follows that

[[U∇, U∇]]fn = 2
∑

i,j,k

(
∂∇kj
∂xi

+
∑

α

∇αi
∂∇kj
∂yα

)
dxi ∧ dxj ⊗

∂

∂yk
. (5.4)

Recall that the curvature form R∇ of the connection ∇ is defined by the
equality

R∇(X,Y ) = [∇X ,∇Y ]−∇[X,Y ], X, Y ∈ D(M).

We shall express the element [[U∇, U∇]]fn in terms of the form R∇ now
(cf. Proposition 4.24). Let us consider a field X ∈ D(P ) and represent it in
the form

X = Xv +Xh, (5.5)

where, by definition,

Xv = X U∇, Xh = X −Xv

are vertical and horizontal components of X respectively. In the same
manner one can define vertical and horizontal components of any element
Ω ∈ Λ∗(P )⊗D(P ).

Obviously, Xv ∈ Dv(P ), where

Dv(P ) = {X ∈ D(P ) | Xξ∗(f) = 0, f ∈ C∞(M)},
while the component Xh is of the form

Xh =
∑

i

fi∇Xi , fi ∈ C∞(P ), Xi ∈ D(M),

and lies in the distribution D∇.

1With respect to ∇.
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Proposition 5.1. Let ∇ : D(M) → D(P ) be a connection in the fiber

bundle ξ : P →M . Then for any ξ-vertical vector field Xv one has

Xv [[U∇, U∇]]fn = 0.

If Xh =
∑

i fi∇Xi , Y h =
∑

j gj∇Yj , fi, gj ∈ C∞(P ), Xi, Yj ∈ D(M),
are horizontal vector fields, then

Y h Xh [[U∇, U∇]]fn = 2
∑

i,j

figjR∇(Xi, Yj), (5.6)

or, to be short,

[[U∇, U∇]]fn = 2R∇.

Proof. Let X ∈ D(P ). Then from equality (4.45) on p. 175 it follows
that

X [[U,U ]]fn = 2([[U,X]]fn U − [[U,X U ]]fn),

where U = U∇. Hence, if X = Xv is a vertical field, then

Xv [[U,U ]]fn = 2([[U,Xv]]fn U − [[U,Xv U ]]fn) = −2([[U,Xv]]fn)h.

But the left-hand side of this equality is vertical (see (5.4)) and thus vanishes.
This proves the first part of the proposition.

Let now X = Xh be a horizontal vector field. Then

Xh [[U,U ]]fn = 2[[U,Xh]]fn U = 2([[U,Xh]]fn)v.

Hence, if Y h is another horizontal field, then, by (4.31) on p. 173, one has

Y h (Xh [[U,U ]]fn) = 2Y h ([[U,Xh]]fn U) = 2(Y h [[U,Xh]]fn) U.

But from (4.45) (see p. 175) it follows that

Y h [[U,Xh]]fn = [[Xh, Y h]]fn U = [Xh, Y h] U.

Therefore,

Y h Xh [[U,U ]]fn = 2[Xh, Y h] U = 2([Xh, Y h]− [Xh, Y h]h)

= 2
∑

i,j

figi([∇Xi ,∇Yj ]− [∇Xi ,∇Yj ]h)

for X =
∑

i fi∇Xi and Y =
∑

j gj∇Yj . But obviously, for any f ∈ C∞(M)
one has

[∇Xi ,∇Yj ](f) = [Xi, Yj ](f)

and, consequently,

[∇Xi ,∇Yj ]h = ∇[Xi,Yj ],

which finishes the proof.
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From equality (5.6) and from the considerations in the end of Section 2
of Chapter 4 it follows that if the connection in question is flat, i.e. R∇ = 0,
then the element U∇ determines a complex

0→ D(P )
∂0
∇−→ Λ1(P )⊗D(P )→ · · ·

→ Λi(P )⊗D(P )
∂i
∇−→ Λi+1(P )⊗D(P )→ · · · , (5.7)

where ∂∇ = ∂i∇ = [[U∇, · ]]fn.

Remark 5.1. Horizontal vector fields Xh are defined by the condition
Xh U∇ = 0. Denote the module of such fields by Dh

∇(P ):

Dh
∇(P ) = {X ∈ D(P ) | X U∇ = 0}.

Then, by setting Θ = U = U∇ in (4.31) on p. 173, one can see that

∂∇(Ω U) = ∂∇(Ω) U

for any Ω ∈ Λ∗(P )⊗D(P ). Hence,

∂∇(Λ∗(P )⊗Dv(P )) ⊂ Λ∗(P )⊗Dv(P )

and

∂∇(Λ∗(P )⊗Dh
∇(P )) ⊂ Λ∗(P )⊗Dh

∇(P ).

Considering a direct sum decomposition

Λ∗(P )⊗D(P ) = Λ∗(P )⊗Dv(P )⊕ Λ∗(P )⊗Dh
∇(P )

one can see that

∂∇ = ∂v∇ ⊕ ∂h∇,
where

∂v∇ = ∂∇|Λ∗(P )⊗Dv(P ), ∂h∇ = ∂∇|Λ∗(P )⊗Dh
∇

(P ).

To proceed further let us compute 0-cohomology of the complex (5.7).
From equality (4.31) on p. 173 it follows that for any two vector fields

Y,Z ∈ D(P ) the equality

Z ∂0
∇Y + [Z, Y ] U∇ = [Z U∇, Y ]

holds. Thus Y ∈ ker(∂0
∇) if and only if

[Z, Y ] U∇ = [Z U∇, Y ]

for any Z ∈ D(P ). Using decomposition (5.5) for the fields Y and Z and
substituting it into the last equation, we get that the condition Y ∈ ker(∂0

∇)
is equivalent to the system of equations

[Zv, Y h] U∇ = [Zv, Y h], [Zh, Y v] U∇ = 0. (5.8)
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Let Y h =
∑

i fi∇Xi (see above). Then from the first equality of (5.8) it
follows that

∑

i

Zv(fi)∇Xi =
∑

i

fi[∇Xi , Zv].

But the left-hand side of this equation is a horizontal vector field while the
right-hand side is always vertical. Hence,

∑

i

Zv(fi)∇Xi = 0

for any vertical field Zv. Choosing locally independent vector fields Xi, we
see that the functions fi actually lie in C∞(M) (or, strictly speaking, in
ξ∗(C∞(M)) ⊂ C∞(P )). It means that, at least locally, Y h is of the form

Y h = ∇X , X ∈ D(M).

But since ∇X = ∇X′ if and only if X = X ′, the field X is well defined on
the whole manifold M .

On the other hand, from the second equality of (5.8) we see that Y v ∈
ker(∂0

∇) if and only if the commutator [Zh, Y v] is a horizontal field for any

horizontal Zh. Thus we get the following result:

Proposition 5.2. A direct sum decomposition

ker(∂0
∇) = Dv

∇(P )⊕∇(D(M))

takes place, where ∇(D(M)) is the image of the mapping ∇ : D(M)→ D(P )
and

Dv
∇(P ) = {Y ∈ Dv(P ) | [Y,Dh

∇(P )] ⊂ Dh
∇(P )}.

One can see now that Dv
∇(P ) consists of nontrivial infinitesimal sym-

metries of the distribution D∇ while the elements of ∇(D(M)) are trivial
symmetries (in the sense that the corresponding transformations slide inte-
gral manifolds of D∇ along themselves). To skip this trivial part of ker(∂0

∇),
note that

(i) U∇ ∈ Λ1(P )⊗Dv(P ),

and (see Remark 5.1)

(ii) ∂i∇
(
Λi(P )⊗Dv(P )

)
⊂ Λi+1(P )⊗Dv(P ).

Thus we have a vertical complex

0→ Dv(P )
∂0
∇−→ Λ1(P )⊗Dv(P )→ · · ·

→ Λi(P )⊗Dv(P )
∂i
∇−→ Λi+1(P )⊗Dv(P )→ · · · ,

the i-th cohomology of which is denoted by H i
∇(P ). From the above said it

follows that H0
∇(P ) coincides with the Lie algebra of nontrivial infinitesimal

symmetries for the distribution D∇.
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Consider now an infinitely prolonged equation E∞ ⊂ J∞(π) and the
Cartan connection C = CE in the fiber bundle π∞ : E∞ → M . The corre-
sponding connection form U∇, where ∇ = C, will be denoted by UE in this
case. Knowing the form UE , one can reconstruct the Cartan distribution on
E∞. Since this distribution contains all essential information about solutions
of E , one can state that UE determines the equation structure on E∞ (see
Definition 2.4 in Chapter 2).

By rewriting the vertical complex defined above in the case ξ = π∞, we
get a complex

0→ Dv(E) ∂0
C−→ Λ1(E)⊗Dv(E)→ · · ·

→ Λi(E)⊗Dv(E) ∂i
C−→ Λi+1(E)⊗Dv(E)→ · · · , (5.9)

where, for the sake of simplicity, Λi(E) stands for Λi(E∞). The cohomologies
of (5.9) are denoted by H i

C(E) and are called C-cohomologies of the equation

E .
From the definition of the Lie algebra sym(E) and from the previous

considerations we get the following

Theorem 5.3. For any formally integrable equation E one has the iso-

morphism

H0
C(E) = sym(E).

To obtain an interpretation of the group H1
C(E), consider the element

U = UE ∈ Λ1(E)⊗Dv(E) and its deformation U(ε), U(0) = U , where ε ∈ R

is a small parameter. It is natural to expect this deformation to satisfy the
following conditions:

(i)

U(ε) ∈ Λ1(E)⊗Dv(E) (verticality)

and
(ii)

[[U(ε), U(ε)]]fn = 0 (integrability). (5.10)

Let us expand U(ε) into a formal series in ε,

U(ε) = U0 + U1ε+ · · ·+ Uiε
i + · · · , (5.11)

and substitute (5.11) into (i) and (ii). Then one can see that U1 ∈ Λ1(E)⊗
Dv(E) and

[[U0, U1]]
fn = 0.

Since U0 = U(0) = U , it follows that U1 ∈ ker(∂1
E). Thus ker(∂1

E) con-
sists of all (vertical) infinitesimal deformations of U preserving the natural
conditions (i) and (ii).
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On the other hand, im(∂0
E) consists of elements of the form ∂0

E(X) =

[[U,X]]fn, X ∈ Dv(E). Such elements can be viewed as infinitesimal defor-
mations of U originating from transformations of E∞ which are trivial on
M (i.e., fiber-wise transformations of the bundle π∞ : E∞ → M). In fact,
let P be a manifold and At : P → P , t ∈ R, A0 = id, be a one-parameter
group of diffeomorphisms with

d

dt

∣∣∣∣
t=0

(At) = X ∈ D(P ).

Then for any Θ ∈ Λ∗(P ) ⊗ D(P ) one can consider the element At,∗(LΘ)
defined by means of the commutative diagram

Λ∗(P )
LΘ → Λ∗(P )

Λ∗(P )

A∗
t

↓
At,∗(LΘ)→ Λ∗(P )

A∗
t

↓
(5.12)

Then, obviously, for any homogeneous element Θ = θ ⊗ Y ∈ Λ∗(P )⊗D(P )
and a form ω ∈ Λ∗(P ) we have

d

dt

∣∣∣∣
t=0

At,∗(LΘ)(ω)

=
d

dt

∣∣∣∣
t=0

(
A∗
t (θ) ∧A∗

tY A
∗
−tω + (−1)θdA∗

t θ ∧A∗
t (Y A∗

−tω)
)

= X(θ) ∧ Y (ω) + θ ∧ [X,Y ](ω) + (−1)θdX(θ) ∧ (Y ω)

+ (−1)θdθ ∧ [X,Y ] ω = L([[X,θ⊗Y ]]fn)(ω).

Thus, if one takes Θ =
∑

i θi ⊗ Yi ∈ Λ∗(P )⊗D(P ) and sets

A∗
t (Θ) = Θ(t) =

∑

i

A∗
t (θi)⊗A∗

tYiA
∗
−t, (5.13)

then

Θ(t) = Θ + [[X,Θ]]fnt+ o(t).

In other words, [[X,Θ]]fn is the velocity of the transformation of Θ with re-
spect to At. Taking P = E∞ and Θ = U , one can see that the elements

V = [[U,X]]fn are infinitesimal transformations of U arising from transfor-
mations At : E∞ → E∞. If π∞ ◦At = π∞, then X ∈ Dv(E) and V ∈ im(∂0

E).
It is natural to call such deformations of U trivial.

Since, as it was pointed out above, the element U determines the struc-
ture of differential equation on the manifold E∞ we obtain the following
result.



194 5. DEFORMATIONS AND RECURSION OPERATORS

Theorem 5.4. The elements of H1
C(E) are in one-to-one correspondence

with the classes of nontrivial infinitesimal vertical deformations of the equa-

tion E.
Remark 5.2. One can consider deformations of UE not preserving the

verticality condition. Then classes of the corresponding infinitesimal defor-
mations are identified with the elements of the first cohomology module of
the complex (5.7) (for P = E∞ and∇ = C). The theory of such deformations
is quite interesting but lies beyond the scope of the present book.

Remark 5.3. Since the operation [[·, ·]]fn defined on H1
C(E∞) takes its

values inH2
C(E) the elements of the moduleH2

C(E) (or a part of them at least)
can be interpreted as the obstructions for the deformations of E (cf. [78]).

Local coordinate expressions for the element UE and for the differentials
∂C = ∂iE in the case E∞ = J∞(π) look as follows.

Let (x1, . . . , xn, u
1, . . . , um) be local coordinates in J0(π) and pjσ, j =

1, . . . ,m, |σ| ≥ 0, be the corresponding canonical coordinates in J∞(π).
Then from equality (1.35) on p. 26 and (5.3) it follows that

U =
∑

j,σ

ωjσ ⊗
∂

∂pjσ
, (5.14)

where ωjσ are the Cartan forms on J∞(π) given by (1.27) (see p. 18).

Consider an element Θ =
∑

j,σ θ
j
σ ⊗ ∂/∂pjσ ∈ Λ∗(π)⊗Dv(π). Then, due

to (5.14) and (4.40), p. 175, we have

∂π(Θ) =
n∑

i=1

m∑

j=1

∑

|σ|≥0

dxi ∧
(
θjσ+1i

−Di(θ
j
σ)
)
⊗ ∂

∂pjσ
, (5.15)

where Di(θ) is the Lie derivative of the form θ ∈ Λ∗(E) along the vector field
Di ∈ D(E).

As it follows from the above said, the cohomology module H∗
C(E) inherits

from Λ∗ ⊗ D1 the structure of the graded Lie algebra with respect to the
Frölicher–Nijenhuis bracket. In the case when U = U∇ is the connection
form of a connection ∇ : D(M) → D(P ), additional algebraic structures
arise in the cohomology modules H∗

∇(P ) =
∑

iH
i
∇(P ) of the corresponding

vertical complex.
First of all note that for any element Ω ∈ Λ∗(P )⊗Dv(P ) the identity

Ω U∇ = Ω (5.16)

holds. Hence, if Θ ∈ Λ∗(P )⊗Dv(P ) is a vertical element too, then equality
(4.31) on p. 173 acquires the form

Ω ∂∇Θ + (−1)Ω∂∇(Ω Θ) = ∂∇(Ω) Θ. (5.17)

From (5.17) it follows that

ker(∂∇) ker(∂∇) ⊂ ker(∂∇),
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ker(∂∇) im(∂∇) ⊂ im(∂∇),

im(∂∇) ker(∂∇) ⊂ im(∂∇).

Therefore, the contraction operation

: Λi(P )⊗Dv(P )× Λj(P )⊗Dv(P )→ Λi+j−1(P )⊗Dv(P )

induces an operation

: H i
∇(P )⊗R H

j
∇(P )→ H i+j−1

∇ (P ),

which is defined by posing

[Ω] [Θ] = [Ω Θ],

where [·] denotes the cohomological class of the corresponding element.
In particular, H1

∇(P ) is closed with respect to the contraction operation,
and due to (4.31) this operation determines in H1

∇(P ) an associative algebra
structure. Consider elements φ ∈ H0

∇(P ) and Θ ∈ H1
∇(P ). Then one can

define an action of Θ on φ by posing

RΘ(φ) = φ Θ ∈ H0
∇(P ). (5.18)

Thus we have a mapping

R : H1
∇(P )→ EndR(H0

∇(P ))

which is a homomorphism of associative algebras due to (4.31) on p. 173.
In particular, taking P = E∞ and ξ = π∞, we obtain the following

Proposition 5.5. For any formally integrable equation E ⊂ J k(π) the

module H1
C(E) is an associative algebra with respect to the contraction opera-

tion . This algebra acts on H0
C(E) = sym(E) by means of the representation

R defined by (5.18).

When (5.16) takes place, equality (4.55), see p. 179, acquires the form

∂∇(ρ ∧ Ω) = (LU∇
− dρ) ∧ Ω + (−1)ρρ ∧ ∂∇(Ω). (5.19)

Let us set

dh∇ = d− LU∇
(5.20)

and note that

(dh∇)2 = (LU∇
)2 − LU∇

◦ d− d ◦ LU∇
+ d2 = −LU∇

◦ d− d ◦ LU∇
.

But

LΩ ◦ d = (−1)Ωd ◦ LΩ (5.21)

and, therefore, (dh∇)2 = 0. Thus we have the differential

dh∇ : Λi(P )→ Λi+1(P ), i = 0, 1, . . . ,

and the corresponding cohomologies

Hh,i
∇ (P ) = ker(dh,i+1

∇ )/im(dh,i∇ ).
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From (5.19) it follows that

ker(dh∇) ∧ ker(∂∇) ⊂ ker(∂∇),

im(dh∇) ∧ ker(∂∇) ⊂ im(∂∇),

ker(dh∇) ∧ im(∂∇) ⊂ im(∂∇),

and hence a well-defined wedge product

∧ : Hh,i
∇ (P )⊗R H

j
∇(P )→ H i+j

∇ (P ).

Moreover, from (5.20) and (5.21) it follows that

LΩ ◦ dh∇ = L[[Ω,U∇]]fn + (−1)Ωdh∇ ◦ LΩ

for any Ω ∈ Λ∗(P )⊗Dv(P ). It means that by posing

L[Ω][ω] = [LΩω], ω ∈ Λ∗(P )

we get a well-defined homomorphism of graded Lie algebras

L: H∗
∇(P )→ Dgr(Hh,∗

∇ (P )),

where Hh,∗
∇ (P ) =

∑
iH

h,i
∇ (P ).

If (x1, . . . , xn, y
1, . . . , ys) are local coordinates in P , then an easy com-

putation shows that

dh∇(f) =
∑

i

∇i(f)dxi,

dh∇(dxi) = 0,

dh∇(dyj) =
∑

i

d∇ji ∧ dxi, (5.22)

where f ∈ C∞(P ), i = 1, . . . , n, j = 1, . . . , s, while the coefficients ∇ji
and vector fields ∇i are given by (5.2). Obviously, the differential dH∇ is
completely defined by (5.22).

2. Spectral sequences and graded evolutionary derivations

In this section, we construct three spectral sequences associated with
C-cohomologies of infinitely prolonged equations. One of them is used to
compute the algebra H∗

C(π) = H∗
C(J∞(π)) of the “empty” equation. The

result obtained leads naturally to the notion of graded evolutionary deriva-
tions which seem to play an important role in the geometry of differential
equations.

The first of spectral sequences to be defined originates from a filtration
in Λ∗(E) ⊗Dv(E) associated with the notion of the degree of horizontality.
Namely, an element Θ ∈ Λp(E)⊗Dv(E) is said to be i-horizontal if

X1 (X2 . . . (Xp−i+1 Θ) . . . ) = 0

for any X1, . . . , Xp−i+1 ∈ Dv(E). Denote by Hpi (E) the set of all such ele-
ments. Obviously, Hpi (E) ⊃ H

p
i+1(E).
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Proposition 5.6. For any equation E, the embedding

∂C(Hpi (E)) ⊂ H
p+1
i+1 (E)

takes place.

To prove this we need some auxiliary facts.

Lemma 5.7. For any vector fields X1, . . . , Xp ∈ Dv(E) and an element

Θ ∈ Λ∗(E)⊗Dv(E) the equality

X1 . . . Xp ∂C(Θ) = (−1)p∂C(X1 . . . Xp Θ)

+

p∑

i=1

(−1)p+iX1 . . . Xi−1 ∂C(Xi) Xi+1 . . . Xp Θ (5.23)

holds.

Proof. Recall that for any Ω ∈ Λ∗(E)⊗Dv(E) one has

Ω UE = Ω (5.24)

and, by (5.17)

Ω ∂C(Θ) = ∂C(Ω) Θ− (−1)Ω∂C(Ω Θ). (5.25)

In particular, taking Ω = X ∈ Dv(E), we get

X ∂CΘ = ∂C(X) Θ− ∂C(X Θ). (5.26)

This proves (5.23) for p = 1. The proof is finished by induction on p starting
with (5.26).

Lemma 5.8. Consider vertical vector fields X1, . . . , Xp+1 ∈ Dv(E) and

an element Θ ∈ Hp0(E) = Λp(E)⊗Dv(E). Then

X1 . . . Xp+1 (∂CΘ) = 0,

i.e., ∂C(Hp0(E)) ⊂ Hp+1
1 (E).

This result is a direct consequence of (5.23).
Recall that a form θ ∈ Λp(E) is said to be horizontal if the identity

X θ = 0 holds for any X ∈ Dv(E); the set of such forms is denoted by

Λph(E). It is easy to see that Hpi (E) = Λih(E) ∧ H
p−i
0 (E), i.e., any element

Θ ∈ Hpi (E) can be represented as

Θ =
∑

s

ρs ∧Θs, (5.27)

where ρs ∈ Λph(E), Θs ∈ Λp−i(E) ⊗ Dv(E). Applying (5.19) and (5.20) to
(5.27) in the case when ∇ is the Cartan connection C, we get

∂C(Θ) =
∑

s

(
−dhC(ρs) ∧Θs + (−1)iρs ∧ ∂C(Θs)

)
. (5.28)
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Lemma 5.9. 1 Let ξ : P → M be a fiber bundle with a flat connection

∇ : D(M)→ D(P ) and

Λ∗
h(P ) = {ρ ∈ Λ∗(P ) | Y ρ = 0, Y ∈ Dv(P )}

be the module of horizontal forms on P . Then for any form ρ ∈ Λi
0(P ) one

has

dh∇(ρ) ∈ Λi+1
h (P ).

Proof. Let Ω ∈ Λ∗(P ) ⊗ D(P ), ρ ∈ Λ∗(P ), and Y ∈ D(P ). Then
standard computations show that

Y (LΩρ) = L(Y Ω)ρ+ (−1)ΩLΩ(Y ρ)− (−1)Ω[[Ω, Y ]]fn ρ. (5.29)

In particular, if Ω = U∇ and Y ∈ Dv(P ), using (5.16) one has

Y (LU∇
ρ) = Y (ρ)− LU∇

(Y ρ) + ∂∇(Y ) ρ,

from where it follows that

Y dh∇(ρ) = −dh∇(Y ρ)− ∂∇(Y ) ρ,

since, by definition, dh∇ = d− LU∇
.

Hence, if Y ∈ Dv(P ) and ρ ∈ Λ∗
h(P ), then one has ∂∇(Y ) ∈ Λ1(P ) ⊗

Dv(P ) and Y dh∇(ρ) = 0.

Proposition 5.6 now follows from Lemmas 5.8, 5.9 and identity (5.28).

Remark 5.4. From the definition of the differential dhC it immediately
follows that its restriction on Λ∗

h(E), denoted by dh, coincides with the hor-
izontal de Rham complex of the equation E (see Chapter 2). As it follows
from (5.22), in local coordinates this restriction is completely determined by
the equalities

dh(f) =
∑

i

Di(f) dxi, dh(dxi) = 0, (5.30)

where i = 1, . . . , n, f ∈ F(E) and D1, . . . , Dn are total derivatives. One can
show that the action L of H∗

C(E) can be restricted onto the module H∗
h(E)

of horizontal cohomologies. In fact, if ρ ∈ Λ∗
0(E) and X,Y ∈ Dv(E), then

X Y (ρ) = Y (X ρ) + [X,Y ] ρ = 0.

On the other hand, if Ω ∈ Λ∗(E)⊗Dv(E), then from (5.29) it follows that

Y (LΩρ) = L(Y Ω)ρ.

Hence, by induction,

L(
Λ∗(E)⊗Dv(E)

)(Λ∗
h(E)) ⊂ Λ∗

h(E).

On the other hand, the operator LUE
is exactly the Cartan differential of

the equation E (see also Chapter 2).
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Let us now define a filtration in Λ∗(E)⊗Dv(E) by setting

F l(Λp(E)⊗Dv(E)) = Hpp+l(E). (5.31)

Obviously,

F l(Λp(E)⊗Dv(E)) ⊃ F l+1(Λp(E)⊗Dv(E))
and Proposition 5.6 is equivalent to the fact that

∂C

(
F l(Λp(E)⊗Dv(E))

)
⊂ F l(Λp+1(E)⊗Dv(E)).

Thus (5.31) defines a spectral sequence for the complex (5.9) which we call
H-spectral. Its term E0 is of the form

Ep,q0 = Hp+q2p+q(E)/Hp+q2p+q+1(E), (5.32)

where p = 0,−1, . . . , q = −2p, . . . ,−2p+ n.
To express Ep,q

0 in more suitable terms, let us recall the splitting

Λ1(E) = Λ1
h(E)⊕ CΛ1(E),

where CΛ1(E) is the set of all 1-forms vanishing on the Cartan distribution
on E . Let

CiΛ(E) = CΛ1(E) ∧ · · · ∧ CΛ1(E)︸ ︷︷ ︸
i times

.

Then for any p the module Λp(E) can be represented as

Λp(E) =

p∑

i=0

Cp−iΛ(E) ∧ Λih(E).

Thus

Hpi (E) =
( p∑

i=0

Cp−iΛ(E) ∧ Λih(E)
)
⊗Dv(E)

from where it follows that

Ep,q0 = C−pΛ(E) ∧ Λ2p+q
h (E)⊗Dv(E).

The configuration of the term E0 for the H-spectral sequence is presented
on Fig. 5.1, where Dv = Dv(E), Λih = Λih(E), etc.

The second spectral sequence to be defined is in a sense complementary
to the first one. Namely, we say that an element Θ ∈ Λp(E) ⊗ Dv(E) is
(p− i+ 1)-Cartan, if X1 . . . Xi Θ = 0 for any X1, . . . , Xi ∈ CD(E), and
denote the set of all such elements by Cpi (E) ⊂ Λp(E) ⊗ Dv(E). Obviously,
Cpi (E) ⊂ C

p
i+1(E).

Proposition 5.10. For any equation E ⊂ Jk(π) one has

∂C(Cpi (E)) ⊂ C
p+1
i+1 (E).

To prove this proposition, we need some preliminary facts.
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C2Λ ∧ Λnh ⊗Dv

C2Λ ∧ Λn−1
h ⊗Dv

C2Λ ∧ Λn−2
h ⊗Dv C1Λ ∧ Λnh ⊗Dv

. . . C1Λ ∧ Λn−1
h ⊗Dv

. . . C1Λ ∧ Λn−2
h ⊗Dv Λnh ⊗Dv q = n

. . . . . . Λn−1
h ⊗Dv q = n−1

. . . . . . . . . . . .

C2Λ ∧ Λ1
h ⊗Dv . . . . . . . . .

C2Λ⊗Dv C1Λ ∧ Λ2
h ⊗Dv . . . . . .

C1Λ ∧ Λ1
h ⊗Dv . . . . . .

C1Λ⊗Dv Λ2
h ⊗Dv q = 2

Λ1
h ⊗Dv q = 1

Dv q = 0

p = −2 p = −1 p = 0

Figure 5.1. The H-spectral sequence configuration (term E0).

Lemma 5.11. For any vector fields X1, . . . , Xp ∈ CD(E) and an element

Θ ∈ Λ∗(E)⊗Dv(E) the equality

X1 . . . Xp ∂C(Θ) = (−1)p∂C(X1 . . . Xp Θ)

+

p∑

i=1

(−1)p+i+1X1 . . . Xi−1 [[Xi, Xi+1 . . . Xp Θ]]fn UE . (5.33)

holds.

Proof. We proceed by induction on p. Let X ∈ CD(E). Then, since

X UE = 0 and [[X,UE ]]fn = 0, from equality (4.45) on p. 175 it follows that

X ∂C(Θ) = −∂C(X Θ)− [[X,Θ]]fn UE , (5.34)

which gives us the starting point of induction.
Suppose now that (5.33) is proved for all s ≤ r. Then by (5.34) we have

X1 X2 . . . Xr+1 ∂C(Θ) = X1 (X2 . . . Xr+1 ∂C(Θ))

= (−1)rX1 ∂C(X2 . . . Xr+1 Θ)

+X1

r+1∑

i=2

(−1)r+iX2 . . . Xi−1 [[Xi, Xi+1 . . . Xr+1 Θ]]fn UE
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= (−1)r
(
−∂C(X1 . . . Xr+1 Θ)− [[X1, X2 . . . Xr+1 Θ]]fn UE

)

+
r+1∑

i=2

(−1)r+iX1 X2 . . . Xi−1 [[Xi, Xi+1 . . . Xr+1 Θ]]fn UE

= (−1)r+1∂C(X1 . . . Xr+1 Θ)

+
r+1∑

i=1

(−1)r+i+1X1 . . . Xi−1 [[Xi, Xi+1 . . . Xr+1 Θ]]fn UE ,

which finishes the proof of lemma.

Lemma 5.12. For any X ∈ CD(E) and Θ ∈ Cpi (E) we have

(i)

X Θ ∈ Cp−1
i−1 (E)

and

(ii)

[[X,Θ]]fn ∈ Cpi (E).
Proof. The first statement is obvious. To prove the second one, note

that from equality (4.45) on p. 175 it follows that for any X,X1 ∈ D(E) and
Θ ∈ Λ∗(E)⊗Dv(E) one has

X1 [[X,Θ]]fn = [[X,X1 Θ]]fn + [[X1, X]]fn Θ.

Now, by an elementary induction one can conclude that

X1 . . . Xi [[X,Θ]]fn = [[X,X1 . . . Xi Θ]]fn

+
i∑

s=1

X1 . . . Xs−1 [[Xs, X]]fn Xs . . . Xi Θ (5.35)

for any X1, . . . , Xi ∈ D(E).
Consider vector fields X,X1, . . . , Xi ∈ CD(E) and an element Θ ∈ Cpi (E).

Then, since [[Xs, X]]fn = [Xs, X] ∈ CD(E), all the summands on the right-
hand side of (5.35) vanish.

Proof of Proposition 5.10. Consider an element Θ ∈ Cpi (E) and
fields X1, . . . , Xi+1 ∈ CD(E). Then, by (5.33), one has

X1 . . . Xi+1 ∂C(Θ) = (−1)i+1∂C(X1 . . . Xi+1 Θ)

+
i+1∑

s=1

(−1)i+sX1 . . . Xs−1 [[Xs, Xs+1 . . . Xi+1 Θ]]fn UE . (5.36)

The first summand on the right-hand side vanishes by definition while the
rest of them, due to equality (4.31) on p. 173 and since UE ∈ Λ1(E)⊗Dv(E),
can be represented in the form

(−1)i+s
(
X1 . . . Xs−1 [[Xs, Xs+1 . . . Xi+1 Θ]]fn

)
UE .
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Since Θ ∈ Cpi (E) and X1, . . . , Xi+1 ∈ CD(E), we have

Xs+1 . . . Xi+1 Θ ∈ Cp−i+s−1
s−1 (E)

and by Lemma 5.12 (ii) the element [[Xs, Xs+1 . . . Xi+1 Θ]]fn belongs

to Cp−i+s−1
s−1 (E) as well. Hence, all the summands in (5.36) vanish.

Let us now define a filtration in Λ∗(E)⊗Dv(E) by setting

F l(Λp(E)⊗Dv(E)) = Cpp−l+1(E). (5.37)

Obviously,

F l(Λp(E)⊗Dv(E)) ⊃ F l+1(Λp(E)⊗Dv(E))
and, by Proposition 5.10,

∂C

(
F l(Λp(E)⊗Dv(E))

)
⊂ F l(Λp+1(E)⊗Dv(E)).

Thus, filtration (5.37) defines a spectral sequence for the complex (5.9) which
we call the C-spectral sequence for the equation E .

Remark 5.5. As it was already mentioned before, C-spectral sequences
were introduced by A.M. Vinogradov (see [102]). As A.M. Vinogradov
noted (a private communication), theH-spectral sequence can also be viewed
as a C-spectral sequence constructed with respect to fibers of the bundle
π∞ : E∞ →M . It is similar to the classical Leray–Serre sequence.

The term E0 of the C-spectral sequence is of the form

Ep,q0 = Cp+qq+1(E)/Cp+qq (E), p = 0, 1, . . . , q = 0, 1, . . . , n.

To describe these modules explicitly, note that

Cp+qq (E) =
(p+q∑

i=p

CiΛ(E) ∧ Λp+q−ih (E)
)
⊗Dv(E)

while

Cp+qq+1(E) =
( p+q∑

i=p+1

CiΛ(E) ∧ Λp+q−ih (E)
)
⊗Dv(E).

Thus

Ep,q0 = CpΛ(E) ∧ Λqh(E)⊗Dv(E).
The configuration of the term E0 for the C-spectral sequence is given on

Fig. 5.2.

Remark 5.6. The 0-th column of the term E0 coincides with the hori-
zontal de Rham complex for the equation E with coefficients in the bundle of
vertical vector fields. Complexes of such a type were introduced by T. Tsu-
jishita in [97].
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q = n Λnh ⊗Dv Λnh ∧ C1Λ⊗Dv . . . Λnh ∧ CpΛ⊗Dv . . .

q = n−1 Λn−1
h ⊗Dv Λn−1

h ∧ C1Λ⊗Dv . . . Λn−1
h ∧ CpΛ⊗Dv . . .

. . . . . . . . . . . . . . . . . .

. . . Λqh ⊗Dv Λqh ∧ C1Λ⊗Dv . . . Λqh ∧ CpΛ⊗Dv . . .

. . . . . . . . . . . . . . . . . .

q = 1 Λ1
h ⊗Dv Λ1

h ∧ C1Λ⊗Dv . . . Λ1
h ∧ CpΛ⊗Dv . . .

q = 0 Dv C1Λ⊗Dv . . . CpΛ⊗Dv . . .

p = 0 p = 1 . . . . . . . . .

Figure 5.2. The C-spectral sequence configuration (term E0).

Consider, as before, a formally integrable equation E ⊂ Jk(π) and the
corresponding algebra F(E) filtered by its subalgebras Fi(E).

We say that an element Θ ∈ Λp(E)⊗Dv(E) is i-vertical if

LΘ|Fi−k−1(E) = 0 (5.38)

and denote by Vpi (E) the set of all such elements. Obviously, Vpi (E) ⊃
Vpi+1(E) and Vp0 (E) = Λp(E)⊗Dv(E).

Proposition 5.13. For any equation E the embedding

∂C(Vpi (E)) ⊂ V
p+1
i−1 (E)

takes place.

Proof. Obviously, LUE
(Fj(E)) ⊂ Fj+1(E) for any j ≥ −k−1. Consider

elements Θ ∈ Vpi (E) and φ ∈ Fi−k−2(E). Then, by definition,

L∂C(Θ)(φ) = L[[UE ,Θ]]fn(φ) = LUE
(LΘ(φ))− (−1)ΘLΘ(LUE

(φ)) = 0,

which finishes the proof.

Let us define a filtration in Λ∗(E)⊗Dv(E) by setting

F l(Λp(E)⊗Dv(E)) = Vpl−p(E). (5.39)

Obviously,

F l(Λp(E)⊗Dv(E)) ⊂ F l+1(Λp(E)⊗Dv(E))
and

∂C
(
F l(Λp(E)⊗Dv(E))

)
⊂ F l(Λp+1(E)⊗Dv(E)).

Thus, (5.39) defines a spectral sequence for the complex (5.9) which we call
V-spectral. The term E0 for this spectral sequence is of the form

Ep,q0 = Vp+q−q (E)/Vp+q1−q (E), p = 0, 1, . . . , q = 0,−1, . . . ,−p.
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p = 0 p = 1 . . . . . . . . .

q = 0 FV FV ⊗ Λ1(π) . . . FV ⊗ Λp(π) . . .

q = −1 FV ⊗ S1D(M) . . . FV ⊗ Λp−1(π)⊗ S1D(M) . . .

. . . . . . . . . . . .

q = −p FV ⊗ SpD(M) . . .

. . . . . .

Figure 5.3. The V-spectral sequence configuration for
J∞(π) (term E0).

Now we shall compute the algebra H∗
C(E) = H∗

C(π) for the “empty equa-
tion” J∞(π) using the V-spectral sequence.

First, we shall represent elements of the modules Ep,q
0 in a more conve-

nient way. Denote −q by r and consider the bundle πr,r−1 : Jr(π)→ Jr−1(π)
and the subbundle πr,r−1,V : T v(Jr(π)) → Jr(π) of the tangent bundle
T (Jr(π)) → Jr(π) consisting of πr,r−1-vertical vectors. Then we have the
induced bundle:

π∗∞,r(T
v(Jr(π)) → T v(Jr(π))

J∞(π)

π∗∞,r(πr,r−1,V )

↓
→ Jr(π)

πr,r−1,V

↓

and obviously,

Ep,−r0 = Λp−r(π)⊗F(π) Γ(π∗∞,r(πr,r−1,V )).

On the other hand, the bundle π∗∞,r(πr,r−1,V ) can be described in the fol-
lowing way. Consider the tangent bundle τ : T (M)→M , its rth symmetric
power Sr(τ) : SrT (M)→M and the bundle

πV ⊗ π∗(Sr(τ)) : T v(J0(π))⊗ π∗(SrT (M))→ J0(π),

where πV : T v(J0(π))→ J0(π) is the bundle of π-vertical vectors. Then, at
least locally,

πr,r−1,V ≈ π∗p,0(πV ⊗ π∗(Sr(τ))).
It means that locally we have an isomorphism

µ : Ep,−r0 ≈ F(π, πV )⊗F(π) Λp−r(π)⊗C∞(M) S
r(D(M)).

Thus the term E0 of the V-spectral sequence is of the form which is presented

on Fig. 5.3, where FV def
= F(π, πV ).
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Let (x1, . . . , xn) be local coordinates in M , pjσ be the coordinates arising
naturally in J∞(π), and ξ1 = ∂/∂x1, . . . , ξn = ∂/∂xn be the local basis in
T (M) corresponding to (x1, . . . , xn). Denote also by vj , j = 1, . . . ,m, local

vector fields ∂/∂uj , where uj = pj(0,...,0) are coordinates along the fiber of

the bundle π. Then any element Θ ∈ Ep,−r
0 is of the form

Θ =
m∑

j=1

∑

|σ|=r

θjσ ⊗
∂

∂pjσ
, θjσ ∈ Λp−r(π),

while the identification µ can be represented as

Ω = µ(Θ) =
m∑

j=1

∑

|σ|=r

vj ⊗ θjσ ⊗
( 1

σ!
ξσ
)
,

where σ = (σ1, . . . , σn), σ! = σ1! · · · · · σn!, ξσ = ξσ1
1 · · · · · ξσnn .

Let us now represent Ω in the form

Ω =

p−r∑

i=0

ρi ∧ ωi ⊗Qi,

where ρi ∈ F(π, πV ) ⊗ Cp−r−iΛ(π), ωi ∈ Λih(π), and Qi = Qi(ξ) are homo-
geneous polynomials in ξ1, . . . , ξn of the power q.

From equality (5.15) it follows that in this representation the differential

∂0 : Ep,−r0 → Ep,−r+1
0 in the following way

∂0(Ω) =

p−r∑

i=0

(−1)p−r−iρi ∧
n∑

s=1

dxs ∧ ωi ⊗
∂Q

∂ξs
. (5.40)

Thus, the differential ∂0 reduces to δ-Spencer operators (see [93]) from which

it follows that all its cohomologies are trivial except for the terms Ep,0
0 . But

as it is easily seen from (5.40) and from the previous constructions,

Ep,01 = Ep,0
0 /∂0(E

p,1
0 ) = F(π, πV )⊗F(π) CpΛ(π).

Hence, only the 0-th row survives in the term E1 and it is of the form

0→ F(π, πV )
∂0,0
1−−→ F(π, πV )⊗ C1Λ(π)→ · · ·

→ F(π, πV )⊗ CpΛ(π)
∂p,01−−→ F(π, πV )⊗ Cp+1Λ(π)→ · · ·

Recall now that ∂1 is induced by the differential ∂π and that the latter
increases the degree of horizontality for the elements from Λ∗(π) ⊗ Dv(π)
(Proposition 5.6). Again, we see that ∂1 is trivial. Thus, we have proved
the following

Theorem 5.14. The V-spectral sequence for the “empty” equation

E∞ = J∞(π) stabilizes at the term E1, i.e., E1 = E2 = · · · = E∞, and

C-cohomologies for this equation are of the form

Hp
C(π) ≈ F(π, πV )⊗F(π) CpΛ(π).
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Remark 5.7. When π is a vector bundle, then F(π, πV ) ≈ F(π, π) and
we have the isomorphism

Hp
C(π) ≈ F(π, π)⊗F(π) CpΛ(π).

This result allows to generalize the notion of evolutionary derivations
and to introduce graded (or super) evolutionary derivations. Namely, we

choose a canonical coordinate system (x, pjσ) in J∞(π) and for any element
ω = (ω1, . . . , ωm) ∈ F(π, πV )⊗ CpΛ(π), ωj ∈ CpΛ(π), set

¤ω =
∑

j,σ

Dσ(ω
j)⊗ ∂

∂pjσ
∈ Λp(π)⊗Dv(π). (5.41)

We call ¤ω a graded evolutionary derivation with the generating form ω ∈
F(π, πV )⊗ CpΛ(π). Denote the set of such derivations by κp(π).

The following local facts are obvious:

(i)

L¤ω(F(π)) ⊂ CpΛ(π),

(ii)

¤ω ∈ ker(∂pπ),

(iii) the correspondence ω 7→ ¤ω splits the natural projection

ker(∂pπ)→ Hp
C(π)

and thus

ker(∂pπ) = im(∂p−1
π )⊕ κp(π).

We shall show now that Definition (5.41) is independent of local coor-
dinates. The proposition below, as well as its proof, is quite similar to that
one which has been proved in [60] for “ordinary” evolutionary derivations
(see also Chapter 2).

Proposition 5.15. Any element Ω ∈ Λ∗(π) ⊗ Dv(π) which satisfies

the conditions (i) and (ii) above, i.e., for which LΩ(F(π)) ⊂ CpΛ(π) and

∂π(Ω) = 0, is uniquely determined by the restriction of LΩ onto F0(π) =
C∞(J0(π)).

Proof. First recall that Ω is uniquely determined by the derivation
LΩ ∈ Dgr(Λ∗) (see Proposition 4.20). Further, since LΩ is a graded deriva-
tion and due to the fact that

LΩ(dθ) = (−1)Ωd(LΩ(θ)) (5.42)

for any θ ∈ Λ∗(π) (Proposition 4.20), LΩ is uniquely determined by its
restriction onto F(π) = Λ0(π).

Now, from the equality ∂π(Ω) = 0 it follows that

0 = [[Uπ,Ω]]fn(φ) = LUπ(LΩ(φ))− (−1)ΩLΩ(LUπ(φ)). (5.43)
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Let Ω be such that LΩ|F0(π) = 0 and suppose that we have proved that

LΩ|Fr(π) = 0. Then taking φ = pjσ, |σ| = r, and using equality (5.43), we

obtain

(−1)ΩLΩ

(
dpjσ −

n∑

i=1

pjσ+1i
dxi

)
= LUπ(LΩ(pjσ)) = 0.

In other words,

LΩ

( n∑

i=1

pjσ+1i
dxi

)
=

n∑

i=1

LΩ(pjσ+1i
) dxi

= LΩ(dpjσ) = (−1)Ωd(LΩ(pjσ) = 0.

Since LΩ(pjσ+1i
) ∈ C∗Λ(π), we conclude that LΩ(pjσ+1i

) = 0, i.e., we have
LΩ|Fr+1(π) = 0.

Remark 5.8. The element Uπ =
∑

j,σ

(
dpjσ−

∑
i p
j
σ+1i

dxi
)
⊗∂/∂pjσ itself

is an example of an evolutionary derivation: Uπ = ¤ω, ω = (ω1
®, . . . , ω

m
® ),

where ωj® = duj −∑i p
j
1i
dxi.

Since

F(π, πV )⊗ C∗Λ(π) = F(π, πV )⊗
∑

i≥0

CiΛ(π)

is identified with the module H∗
C(π), it carries the structure of a graded Lie

algebra. The corresponding operation in F(π, πV ) ⊗ C∗Λ(π) is denoted by
{·, ·} and is called the graded Jacobi bracket. Thus, for any elements ω ∈
F(π, πV )⊗CpΛ(π) and θ ∈ F(π, πV )⊗CqΛ(π) we have {ω, θ} ∈ F(π, πV )⊗
Cp+qΛ(π) and

{ω, θ}+ (−1)pq{θ, ω} = 0,
∮

(−1)(p+r)q{ω, {θ, ρ}} = 0,

where ρ ∈ F(π, πV ) ⊗ CrΛ(π) and
∮

, as before, denotes the sum of cyclic
permutations.

To express the graded Jacobi bracket in more efficient terms we prove
the following

Proposition 5.16. The space κ∗(π) =
∑

i≥0 κ
i(π) of super evolutionary

derivations is a graded Lie subalgebra in Λ∗(π) ⊗ Dv(π), i.e., for any two

generating forms ω, θ ∈ F(π, πV ) ⊗ C∗Λ(π) the bracket [[¤ω,¤θ]]
fn

is again

an evolutionary derivation and

[[¤ω,¤θ]]
fn = ¤{ω,θ}. (5.44)

Proof. First note that it is obvious that [[¤ω,¤θ]]
fn lies in ker(∂π).
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Consider a vector field X ∈ CD(π). Then, since X ¤ω = X ¤θ = 0,
from equality (4.45) on p. 175 it follows that

X [[¤ω,¤θ]]
fn = (−1)ω[[X,¤ω]]fn ¤θ − (−1)(ω+1)θ[[X,¤θ]]

fn
¤ω.

Let X = Di, where Di is the total derivative along xi in the chosen coordi-
nate system. Then we have

[[Di,¤ω]]fn =
∑

j,σ

(
Dσ(ω

j)⊗
[
Di,

∂

∂pjσ

]
+Dσ+1i(ω

j)⊗ ∂

∂pjσ

)
= 0.

Since any X ∈ CD(π) is a linear combination of the fields Di, one has

CD(π) [[¤ω,¤θ]]
fn = 0,

i.e., [[¤ω,¤θ]]
fn ∈ C∗Λ(π)⊗Dv(π). Hence, Proposition 5.15 implies that the

bracket [[¤ω,¤θ]]
fn is an evolutionary derivation.

From (5.44) and from Proposition 5.16 it follows that if (ω1, . . . , ωm)
and (θ1, . . . , θm) are local representations of ω and θ respectively then

{ω, θ}i =
m∑

j=1

(
¤ωj (θ

i)− (−1)ω
jθi
¤θi(ω

j)
)
, (5.45)

where i = 1, . . . ,m.
For example, if ω = LUπ(f) = df −∑iDi(f) dxi and θ = LUπ(g), where

f, g ∈ Γ(π), then

{ω, θ}i =
∑

j,σ

(
LUπ(Dσ(f

j)) ∧ LUπ

( ∂gi

∂pjσ

)
+ LUπ(Dσ(g

j)) ∧ LUπ

( ∂f i

∂pjσ

))
,

where i = 1, . . . ,m. In particular,

{ωiσ, ωjτ} = 0, (5.46)

where ωiσ, ω
j
τ are the Cartan forms (see (1.27) on p. 18).

3. C-cohomologies of evolution equations

Here we give a complete description for C-cohomologies of systems of
evolution equations and consider some examples.

Let E be a system of evolution equations of the form

∂uj

∂t
= f j

(
x, t, u, . . . ,

∂|σ|u

∂xσ
, . . .

)
, j = 1, . . . ,m, |σ| ≤ k, (5.47)

where x = (x1, . . . , xn), u = (u1, . . . , um). Then the functions x, t, pjσ, where
j = 1, . . . ,m, σ = (σ1, . . . , σn), can be chosen as internal coordinates on E∞.
In this coordinate system the element UE is represented in the form

UE =
∑

j,σ

(
dpjσ −

∑

i

pjσ+1i
dxi −Dσ(f

j) dt
)
⊗ ∂

∂pjσ
, (5.48)
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where Dσ = Dσ1
1 ◦ · · · ◦Dσn

n , for σ = (σ1, . . . , σn). If

Θ =
∑

j,τ

θjτ ⊗
∂

∂pjτ
∈ Λ∗(E)⊗Dv(E), θjτ ∈ Λ∗(E),

then, as it follows from (4.40) on p. 175, the differential ∂C acts in the
following way

∂C(Θ) =
∑

j,τ

(
∑

i

dxi ∧ (θjτ+1i
−Di(θ

j
τ ))

+ dt ∧
(∑

s,σ

∂

∂psσ

(
Dτ (f

j)
)
θsσ −Dt(θ

j
τ )

))
⊗ ∂pjτ , (5.49)

where

Dt =
∂

∂t
+
∑

j,µ

Dµ(f
j)

∂

∂pjµ
.

To proceed with computations consider a direct sum decomposition

Λp(E)⊗Dv(E) = Λpt (π)⊗Dv(π)⊕ dt ∧ Λp−1
t (π)⊗Dv(π), (5.50)

where π : Rm × Rn → Rn is the natural projection with the coordinates
(u1, . . . , um) and (x1, . . . , xn) in Rm and Rn respectively, while Λ∗

t (π) denotes
the algebra of exterior forms on J∞(π) with the variable t ∈ R as a parameter
in their coefficients. From (5.49) and due to (4.45) on p. 175 it follows that
if Θ ∈ Λp(E)⊗Dv(E) and

Θ = Θp + dt ∧Θp−1

is the decomposition corresponding to (5.50), then

∂C(Θ) = ∂π(Θ
p) + dt ∧ (LE(Θp)− ∂π(Θp−1)), (5.51)

where

LE(Θ) =
∑

j,τ

(∑

s,σ

∂

∂psσ

(
Dτ (f

j)
)
θsσ −Dt(θ

j
τ )
)
⊗ ∂

∂pjτ
. (5.52)
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Consider a diagram

0 0

. . . → Λit ⊗Dv

↓
∂iπ → Λi+1

t ⊗Dv

↓
→ . . .

. . . → dt ∧ Λit ⊗Dv

dt ∧ LE

↓

−id ∧ ∂iπ
→ dt ∧ Λi+1

t ⊗Dv

dt ∧ LE

↓
→ . . .

0
↓

0
↓

(5.53)

where Λit ⊗ Dv def
= Λit(π) ⊗ Dv(π). From (5.51) and from the fact that

∂π ◦ ∂π = 0 it follows that (5.53) is a bicomplex whose total differential is
∂C . Thus, from the general theory of bicomplexes (cf. [70]) we see that to
calculate H i

C(E) it is necessary:

(i) To compute cohomologies of the upper and lower lines of (5.53). De-
note them by H i

C(π) and H i
L(π) respectively.

(ii) To describe the mappings LiE : H i
C(π)→ H i

L(π) induced by dt ∧ LE .

Then we have

H i
C(E) = ker(LiE)⊕ coker(Li−1

E ). (5.54)

From Theorem 5.14 it follows that H i
C(π) = κit(π) and H i

L(π) = dt ∧
κi−1
t (π), where κpt (π) is the set of all evolutionary derivations with generating

forms from F(π, π)⊗CpΛt(π) parameterized by t (we write F(π, π) instead
of F(π, πV ) since π is a vector bundle in the case under consideration). Let
ω = (ω1, . . . , ωm) be such a form. Then, as it is easily seen from (5.52),

LpE(¤ω) = ¤
`
(p)
E

(ω)
,

where

`
(p)
E (ω) =

∑

j

(∑

s,σ

∂f j

∂psσ
(Dσω

s)−Dt(ω
j)
)
⊗ ∂

∂uj
. (5.55)

Comparing (5.55) with equality (2.23) on p. 71, we see that `
(p)
E is the

extension of the universal linearization operator for the equation (5.47) onto
the module F(π, π)⊗ CpΛt(π).
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Remark 5.9. Note that when the operator ∆ is the sum of monomials
X1 ◦ · · · ◦Xr, the action

∆(ω) =
∑

X1(X2(. . . (Xr(ω)) . . . ))

is well defined for any form ω such that Xi ω = 0, i = 1, . . . , r. It is just the
case for formula (5.55), since X ω = 0 for any X ∈ CD(E) and ω ∈ CpΛ(E).

Thus we have the following generalization of Theorem 2.15 (see p. 72).

Theorem 5.17. Let E be a system of evolution equations of the form

(5.47), `E = `
(0)
E be corresponding universal linearization operator restricted

onto E∞ and `
(p)
E be the extension of `E onto F(π, π)⊗ CpΛt(π). Then

Hp
C(E) ≈ ker(`

(p)
E )⊕ dt ∧ coker(`

(p−1)
E ).

Remark 5.10. The result proved is, in fact, valid for all `-normal equa-
tions (see Definition 2.16). The proof can be found in [98]. Moreover, let
us recall that the module H∗

C(E) splits into the direct sum

H∗
C(E) =

⊕

i≥0

⊕

p+q=i

Hp,q
C (E) =

n⊕

q=1

H∗,q
C (E),

where the superscripts p and q correspond to the number of Cartan and
horizontal components respectively (see decomposition (4.60) on p. 181).

As it can be deduced from Proposition 4.29, the component Hp,0
C (E) always

coincides with ker `
(p)
E .

As a first example of application of the above theorem, we shall prove
that evolution equations in one space variable are 2-trivial objects in the
sense of Section 3 of Chapter 4.

Proposition 5.18. For any evolution equation E of the form

∂u

∂t
= f(x, t, u, . . . , uk),

∂f

∂uk
6= 0, k > 0,

one has H2,0
C (E) = 0.

Proof. To prove this fact, we need to solve the equation

Dtω =
k∑

i=1

∂f

∂ui
Di
xω, (5.56)

with ω =
∑

α>β ϕαβωα ∧ ωβ , where ϕαβ ∈ F(E) and ωα, ωβ are the Cartan
forms on E∞. Let us represent the form ω as

ω = ϕm,m−1ωm ∧ ωm−1 +
∑

α<m−1

ϕm,αωm ∧ ωα

+
∑

β<m−2

ϕm−1,βωm−1 ∧ ωβ + o[m− 1], (5.57)
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where the term o[m − 2] does not contain Cartan forms of degree higher
than m− 2.

Note now that for any Cartan form ωi one has

Dtωi = Di
x

k∑

α=0

∂f

∂uα
ωα =

∂f

∂uk
ωi+k + iDx

(
∂f

∂uk

)
ωi+k−1

and

k∑

α=1

∂f

∂ui
Dα
xωi =

∂f

∂uk
ωi+k +

∂f

∂uk−1
ωi+k−1 + o[i+ k − 2].

Substituting (5.57) into (5.56) and using the above decompositions, one can
easily see that the coefficients ϕm,α vanish, from where, by induction, it
follows that ω = 0.

Now we shall look more closely at the module

H1
C(E) ≈ ker(`

(1)
E )⊕ dt ∧ coker(`

(0)
E )

and describe infinitesimal deformations of evolution equations in the form
ready for concrete computations. From the decomposition given by the
previous theorem we see that there are two types of infinitesimal defor-

mations: those ones which lie in ker(`
(1)
E ) and those which originate from

dt∧ coker(`
(0)
E ). The latter ones are represented by the elements of the form

U1 =
∑

j

gjdt⊗ ∂

∂uj
= dt⊗ θ, (5.58)

where gj ∈ F(E). Deformations corresponding to (5.58) are of the form

U(ε) = UE + U1ε+ . . . (5.59)

But it is easily seen that the first two summands in (5.59) determine an
equation of the form

ujt = f j + εgj , j = 1, . . . ,m, (5.60)

which is infinitesimally equivalent to the initial equation if and only if θ ∈
im(`

(0)
E ). The deformations (5.60) preserve the class of evolution equations.

The other ones lie in ker(`
(1)
E ) and we shall deduce explicit formulas for their

computation. For the sake of simplicity we consider the case dim(π) = m =
1, dim(M) = n = 2 (one space variable).

Let ωi = dpi − pi+1 dx − Di
x(f) dt, i = 0, 1, . . . , be the basis of Cartan

forms on E∞, where f = f1(x, t, p0, . . . , pk), x = x1, and pi corresponds to
∂iu/∂xi. Then any form ω ∈ C1Λ(E) can be represented as

ω =

r∑

i=0

φiωi, φi ∈ F(E). (5.61)



3. C-COHOMOLOGIES OF EVOLUTION EQUATIONS 213

Thus we have

`
(1)
E (ω) =

( k∑

j=0

fjD
j
x −Dt

)(∑

i

φiωi

)
, (5.62)

where fj denotes ∂f/∂pj . By definition, we have

(fjD
j
x)(φ

iωi) = fj(Dx(. . . (Dx(φ
iωi)) . . . )) = fj

j∑

s=0

(
j

s

)
Dj−s
x (φi)Ds

x(ωi).

But

Dx(ωi) = ωi+1 (5.63)

and therefore,

(fjD
j
x)(φ

iωi) = fj

j∑

s=0

(
j

s

)
Dj−s
x (φi)ωi+s. (5.64)

On the other hand,

Dt(φ
iωi) = Dt(φ

i)ωi + φiDt(ωi). (5.65)

Since ωi = Di
x(ω0) and [Dt, Dx] = 0, one has

Dt(ωi) = Dt(D
i
x(ω0)) = Di

x(Dt(ω0)). (5.66)

But ω0 = LUE
(p0) and [Dt,LUE

] = 0. Hence,

Dt(ω0) = LUE
(Dt(p0)) = LUE

(f) =
k∑

j=0

fjωj . (5.67)

Combining now (5.62)–(5.67), we find out that the equation `
(1)
E (ω) = 0

written in the coordinate form looks as

r∑

i=0

k∑

j=0

fj

j∑

s=0

(
j

s

)
Dj−s
x (φi)ωi+s

=

r∑

i=0

(
Dt(φ

i)ωi + φi
k∑

j=0

i∑

s=0

(
i

s

)
Di−s
x (fj)ωj+s

)
. (5.68)

Taking into account that {ωi}i≥0 is the basis in C1Λ(E) and equating
the coefficients at ωi, we obtain that (5.68) is equivalent to

`E(φs) =
r∑

i=0

φiDi
x(fs)

+

s∑

l=1

( r∑

i=l

(
i

l

)
φiDi−l

x (fs−l)−
k∑

j=l

(
j

l

)
fjD

j−l
x (φs−l)

)
(5.69)

where s = 0, 1, . . . , k+r−1, which is the final form of (5.62) for the concrete
calculations (we set φi = fj = 0 for i > r and j > k in (5.69)).
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Consider some examples now.

Example 5.1. Let E be the heat equation

ut = uxx.

For this equation (5.69) looks as

D2
x(φ

0) = Dt(φ
0),

D2
x(φ

1) + 2Dx(φ
0) = Dt(φ

1),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

D2
x(φ

r) + 2Dx(φ
r−1) = Dt(φ

r),

Dx(φ
r) = 0. (5.70)

Simple but rather cumbersome computations show that the basis of solutions
for (5.70) consists of the functions

φ0 =

s∑

j=0

A(j+s) x
2j

(2j)!
,

. . . . . . . . . . . . . . . . . . . .

φ2i = 22i
s−i∑

j=0

(
i+ s− j

2i

)
A(j+s−i) x

2j

(2j)!
,

φ2i+1 = 22i+1
s−i∑

j=0

(
i+ s− j
2i+ 1

)
A(j+s−i) x2j+1

(2j + 1)!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ2s = 22sA

for r = 2s and

φ0 =
s∑

j=0

A(j+s+1) x2j+1

(2j + 1)!
,

. . . . . . . . . . . . . . . . . . . . . . . . . .

φ2i = 22i
s−i∑

j=0

(
i+ s− j

2i

)
A(j+s−i+1) x2j+1

(2j + 1)!
,

φ2i+1 = 22i+1
s−i∑

j=0

(
i+ s− j + 1

2i+ 1

)
A(j+s−i) x

2j

(2j)!
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ2s+1 = 22s+1A

for r = 2s+ 1.
In both cases A = 1, t, . . . , tr and A(l) denotes dlA/dtl.
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Remark 5.11. Let φ =
∑

j φ
jωj be an element of H1

C(E) and ψ ∈
F(π, π) be a symmetry of the equation E . Then, as it follows from (5.18),
the element Rφ(ψ) is a symmetry of E again. In particular, since the equa-
tion under consideration is linear, it possesses the symmetry ψ = u. Hence,
its symmetries include those of the form

Rφ(u) =
∑

j

φjpj ,

where φj are given by the formulae above.

Example 5.2. The second example we consider is the Burgers equation

ut = uux + uxx. (5.71)

Theorem 5.19. The only solution of the equation `
(1)
E (ω) = 0 for the

Burgers equation (5.71) is ω = αω0, α = const.

Proof. Let ω = φ0ω0 + · · · + φrωr. Then equations (5.69) transform
into

p0Dx(φ
0) +D2

x(φ
0) = Dt(φ

0) +
r∑

j=1

pj+1φ
j ,

p0Dx(φ
1) +D2

x(φ
1) + 2Dx(φ

0) = Dt(φ
1) +

r∑

j=2

(j + 1)pjφ
j ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p0Dx(φ
i) +D2

x(φ
i) + 2Dx(φ

i−1) = Dt(φ
i) +

r∑

j=i+1

(
j + 1

i

)
pj−i+1φ

j ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p0Dx(φ
r) +D2

x(φ
r) + 2Dx(φ

r−1) = Dt(φ
r) + rp1φ

r,

Dx(φ
r) = 0.

(5.72)

To prove the theorem we apply the same scheme which was used to
describe the symmetry algebra of the Burgers equation in Chapter 2.

Denote by Kr the set of solutions of (5.72). A direct computation shows
that

K1 = {αω0 | α ∈ R} (5.73)

and that any element ω ∈ Kr, r > 1, is of the form

ω = αrωr +
(r

2
p0αr +

1

2
xα(1)

r + αr−1

)
ωr−1 + Ω(r − 2), (5.74)

where αr = αr(t), ar−1 = ar−1(t), a
(i) denotes diα/dti and Ω(s) is an

arbitrary linear combination of ω0, . . . , ωs with the coefficients in F(E).
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Lemma 5.20. For any evolution equation E one has

[[sym(E), ker(`
(1)
E )]]fn ⊂ ker(`

(1)
E ).

Proof of Lemma 5.20. In fact, we know that there exists the natural
action of sym(E) = H0

C(E) on H i
C(E). On the other hand, if X = ¤φ ∈

sym(E) and Θ = ¤θ ∈ ker(`
(1)
E ) where φ ∈ F(E) and θ ∈ C1Λt(π), then

[[X,Θ]]fn = ¤{φ,θ}. But the element

{φ, θ} = ¤φ(θ)− ¤θ(φ) =
(∑

i

Di
x(φ)

∂

∂pi

)
(θ)−

(∑

i

Di
x(θ)

∂

∂pi

)
(φ)

obviously lies in C1Λt(π).

Thus, if ¤φ ∈ sym(E) and ω ∈ ker(`
(1)
E ) then {φ, ω} lies in ker(`

(1)
E ) as

well.
Let φ = p1. Then we have

{p1, ω} =
(∑

i

pi+1
∂

∂pi

)
(ω)−Dx(ω) = − ∂

∂x
(ω).

If ω ∈ Kr then, since p1 is a symmetry of E , from (5.74) and from Lemma
5.20 we obtain that

ad(r−1)
p1 (ω) = α(r−1)

r ω1 + Ω(0) ∈ K1,

where adφ = {φ, ·}. Taking into account (5.73) we get that α
(r−1)
r = 0, or

αr = a0 + a1t+ · · ·+ ar−2t
r−2, ai ∈ R. (5.75)

Recall now (see Chapter 2) that

Φ = t2p2 + (t2p0 + tx)p1 + tp0 + x

is a symmetry of (5.71) and compute {Φ, ω} for ω of the form (5.74). To do
this, we shall need another lemma.

Lemma 5.21. For any φ ∈ F(E) the identity

¤φ ◦ LU = LU ◦ ¤φ
holds, where U = UE .

Proof of Lemma 5.21. In fact,

0 = ∂C(¤φ) = [LU ,¤φ] = LU ◦ ¤φ − ¤φ ◦ LU .

Consider the form ω = φsωs, φ
s ∈ F(E). Then we have

{Φ, φsωs} = ¤Φ(φsωs)− ¤(φsωs)(Φ) = ¤Φ(φs)ωs + φs¤Φ(ωs)− ¤(φsωs)(Φ).

But

¤Φ(ωs) = ¤ΦLU (ps) = LU¤Φ(ps) = LUD
s
x(Φ)

= LU
(
t2ps+2 + (t2p0 + tx)ps+1 + (s+ 1)(t2p1 + t)ps

)
+ Ω(s− 1).
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On the other hand,

¤(φsωs)(Φ) = t2φsωs+2 +
(
2t2Dx(φ

s) + (t2p0 + tx)φs
)
ωs+1

+
(
t2D2

x(φ
s) + (t2p0 + tx)Dx(φ

s) + (t2p1 + t)φs
)
ωs.

Thus, we finally obtain

{Φ, φsωs} = {Φ, φs}ωs + (s+ 1)(t2p1 + t)ωs

− 2t2Dx(φ
s)ωs+1 + Ω(s− 1). (5.76)

Applying (5.76) to (5.74), we get

adΦ(ω) = {Φ, ω} = (rtαr − t2α(1)
r )ωr + Ω(r − 1). (5.77)

Let now ω ∈ Kr and suppose that ω has a nontrivial coefficient αr of the
form (5.75) and ai is the first nontrivial coefficient in αr. Then, by (5.77),

adr−iΦ (ω) = α′
rωr + Ω(r − 1) ∈ Kr,

where α′
r is a polynomial of the degree r− 1. This contradicts to (5.75) and

thus finishes the proof.

4. From deformations to recursion operators

The last example of the previous section shows that our theory is not
complete so far. In fact, it is well known that the Burgers equation pos-
sesses a recursion operator. On the other hand, in Chapter 4 we identified
the elements of the group H1,0

C (E) with the algebra of recursion operators.
Consequently, the result of Theorem 5.19 contradicts to practical knowledge.
The reason is that almost all known recursion operators contain “nonlocal
terms” like D−1

x . To introduce terms of such a type into our theory, we
need to combine it with the theory of coverings (Chapter 3), introducing
necessary nonlocal variables

Let us do this. Namely, let E be an equation and ϕ : N → E∞ be a
covering over its infinite prolongation. Then, due to Proposition 3.1 on
p. 102, the triad

(
F(N ), C∞(M), (π∞ ◦ ϕ)∗

)
is an algebra with the flat

connection Cϕ. Hence, we can apply the whole machinery of Chapter 4 to
this situation. To stress the fact that we are working over the covering ϕ, we
shall add the symbol ϕ to all notations introduced in this chapter. Denote
by UϕC the connection form of the connection Cϕ (the structural element of
the covering ϕ).

In particular, on N we have the Cϕ-differential

∂ϕC = [[UϕE , ·]]
fn : Dv(Λi(N ))→ Dv(Λi+1(N )),

whose 0-cohomology H0
C(E , ϕ) coincides with the Lie algebra symϕ E of non-

local ϕ-symmetries, while the module H1,0
C (E , ϕ) identifies with recursion

operators acting on these symmetries and is denoted by R(E , ϕ). We also
have the horizontal and the Cartan differential dϕh and dϕC on N and the

splitting Λi(N ) =
⊕

p+q=i CpΛp(N )⊗ Λqh(N ).
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Choose a trivialization of the bundle ϕ : N → E∞ and nonlocal coordi-
nates w1, w2, . . . in the fiber. Then any derivation X ∈ Dv(Λi(N )) splits to
the sum X = XE +Xv, where XE(wj) = 0 and Xv is a ϕ-vertical derivation.

Lemma 5.22. Let ϕ : E∞ × RN → E∞, N ≤ ∞, be a covering. Then

Hp,0
C (E , ϕ) = ker ∂ϕC

∣∣ CpΛ(N ). Thus the module Hp,0
C (E , ϕ) consists of

derivations Ω: F(N )→ CpΛ(N ) such that

[[UϕE ,Ω]]fnE = 0,
(
[[UϕE ,Ω]]fn

)v
= 0. (5.78)

Proof. In fact, due to equality (4.55) on p. 179, any element lying in
the image of ∂ϕC contains at least one horizontal component, i.e.,

∂ϕC
(
Dv(CpΛ(N ))

)
⊂ Dv(CpΛ(N )⊗ Λ1

h(N )).

Thus, equations (5.78) should hold.

We call the first equation in (5.78) the shadow equation while the second
one is called the relation equation. This is explained by the following result
(cf. Theorem 3.7).

Proposition 5.23. Let E be an evolution equation of the form

ut = f(x, t, u, . . . ,
∂ku

∂uk
)

and ϕ : N = E∞ × RN → E∞ be a covering given by the vector fields2

D̃x = Dx +X, D̃t = Dt + T,

where [D̃x, D̃t] = 0 and

X =
∑

s

Xs ∂

∂ws
, T =

∑

s

T s
∂

∂ws
,

w1, . . . , ws, . . . being nonlocal variables in ϕ. Then the group Hp,0
C (E , ϕ)

consists of elements

Ψ =
∑

i

Ψi ⊗
∂

∂ui
+
∑

s

ψs
∂

∂ws
∈ Dv(CpΛ(N ))

such that Ψi = D̃i
xΨ0 and

˜̀(p)
E (Ψ0) = 0, (5.79)

∑

α

∂Xs

∂uα
D̃α
x (Ψ0) +

∑

β

∂Xs

∂wβ
ψβ = D̃x(ψ

s), (5.80)

∑

α

∂T s

∂uα
D̃α
x (Ψ0) +

∑

β

∂T s

∂wβ
ψβ = D̃t(ψ

s), (5.81)

s = 1, 2, . . . , where ˜̀(p)
E is the natural extension of the operator `

(p)
E to N .

2To simplify the notations of Chapter 4, we denote the lifting of a C-differential
operator ∆ to N by ∆̃.
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Proof. Consider the Cartan forms

ωi = dui − ui+1 dx−Di
x(f) dt, θs = dws −Xs dx− T s dt

on N . Then the derivation

UϕE =
∑

i

ωi ⊗
∂

∂ui
+
∑

s

θs ⊗ ∂

∂ws

is the structural element of the covering ϕ. Then, using representation (4.40)
on p. 175, we obtain

∂ϕC Ψ = dx ∧
∑

i

(
Ψi+1 − D̃x(Ψi)

)
⊗ ∂

∂ui

+ dt ∧
∑

i

(∑

α

∂(Di
xf)

∂uα
Ψα − D̃tΨi

)
⊗ ∂

∂ui

+ dx ∧
∑

s

(∑

α

∂Xs

∂uα
Ψα +

∑

β

∂Xs

∂wβ
ψβ − D̃x(ψ

s)
)
⊗ ∂

∂ws

+ dt ∧
∑

s

(∑

α

∂T s

∂uα
Ψα +

∑

β

∂T s

∂wβ
ψβ − D̃t(ψ

s)
)
⊗ ∂

∂ws
,

which gives the needed result.

Note that relations Ψi = D̃i
x(Ψ0) together with equation (5.79) are

equivalent to the shadow equations. In the case p = 1, we call the solu-
tions of equation (5.79) the shadows of recursion operators in the covering
ϕ. Equations (5.80) and (5.81) are exactly the relation equations on the
case under consideration.

Thus, any element of the group H1,0
C (E , ϕ) is of the form

Ψ =
∑

i

D̃i
x(ψ)⊗ ∂

∂ui
+
∑

s

ψs ⊗ ∂

∂ws
, (5.82)

where the forms ψ = Ψ0, ψ
s ∈ C1Λ(N ) satisfy the system of equations

(5.79)–(5.81).
As a direct consequence of the above said, we obtain the following

Corollary 5.24. Let Ψ be a derivation of the form (5.82) with ψ,ψs ∈
CpΛ(N ). Then ψ is a solution of equation (5.79) in the covering ϕ if and

only if ∂ϕC (Ψ) is a ϕ-vertical derivation.

We can now formulate the main result of this subsection.

Theorem 5.25. Let ϕ : N → E∞ be a covering, S ∈ symϕ E be a ϕ-

symmetry, and ψ ∈ C1Λ(N ) be a shadow of a recursion operator in the

covering ϕ. Then ψ′ = iSψ is a shadow of a symmetry in ϕ, i.e., ˜̀
E(ψ′) = 0.
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Proof. In fact, let Ψ be a derivation of the form (5.82). Then, due to
identity (4.54) on p. 179, one has

∂ϕC (iSΨ) = i∂ϕ
C
S − iS(∂ϕC Ψ) = −iS(∂ϕC Ψ),

since S is a symmetry. But, by Corollary 5.24, ∂ϕC Ψ is a ϕ-vertical derivation
and consequently ∂ϕC (iSΨ) = −iS(∂ϕC Ψ) is ϕ-vertical as well. Hence, iSΨ is
a ϕ-shadow by the same corollary.

Using the last result together with Theorem 3.11, we can describe the
process of generating a series of symmetries by shadows of recursion op-
erators. Namely, let ψ be a symmetry and ω ∈ C1Λ(N ) be a shadow of a
recursion operator in a covering ϕ : N → E∞. In particular, ψ is a ϕ-shadow.

Then, by Theorem 3.9, there exists a covering ϕψ : Nψ → N
ϕ−→ E∞ where

¤ψ can be lifted to as a ϕψ-symmetry. Obviously, ω still remains a shadow
in this new covering. Therefore, we can act by ω on ψ and obtain a shadow
ψ1 of a new symmetry on Nψ. By Theorem 3.11, there exists a covering,
where both ψ and ψ1 are realized as nonlocal symmetries. Thus we can
continue the procedure applying ω to ψ1 and eventually arrive to a covering
in which the whole series {ψk} is realized.

Thus, we can state that classical recursion operators are nonlocal de-

formations of the equation structure. Algorithmically, computation of such
deformations fits the following scheme:

1. Take an equation E and solve the linear equation `
(1)
E ω = 0, where ω

is an arbitrary Cartan form.
2. If solutions are trivial, take a covering ϕ : N → E∞ and try to find

shadows of recursion operators. Usually, such a covering is given by
conservation laws of the equation E .

3. If necessary, add another nonlocal variable (perhaps, defined by a
nonlocal conservation law), etc.

4. If you succeeded to find a nontrivial solution Ω, then the correspond-
ing recursion operator acts by the rule RΩ : ψ 7→ ¤ψ Ω, where ψ is
the generating function of a symmetry.

In the examples below, we shall see how this algorithm works.

Remark 5.12. Let us establish relation between recursion operators in-
troduced in this chapter with their interpretation as Bäcklund transforma-
tions given in Section 8 of Chapter 3.

Let Ω be a shadow of a recursion operator in come covering ϕ : N → E∞.
Then we can consider the following commutative diagram:

N ← τVN VN

E∞

ϕ

↓
← τVE V E

Vϕ

↓
V E

V
Ω

→
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where τVE and τVN are the Cartan coverings of the equation and its covering
respectively, Vϕ is naturally constructed by ϕ, while the mapping VΩ is
defined by VΩ(v) = v Ω, v ∈ VN . The pair (Vϕ, VΩ) is the Bäcklund
transformation corresponding to the recursion operator defined by Ω.

This interpretation is another way to understand why shadows of recur-
sion operators take symmetries to shadows of symmetries (see Section 8 of
Chapter 3).

5. Deformations of the Burgers equation

Deformations of the Burgers equation

ut = uu1 + u2 (5.83)

will be discussed from the point of view of the theory of deformations in
coverings. We start with the following theorem (see Theorem 5.19 above):

Theorem 5.26. The only solution of the deformation equation

`
(1)
E (Ω) = 0

for the Burgers equation (5.83) is ω = αω0 where α is a constant and

ω0 = du− u1 dx− (uu1 + u2) dt

i.e., Cartan form associated to u. This leads to the trivial deformation of

UE for (5.83).

In order to find nontrivial deformations for the Burgers equation, we
have to discuss them in the nonlocal setting. So in order to arrive at an
augmented system, a situation similar to that one for the construction of
nonlocal symmetries (see Section 4 of Chapter 3), we first have to construct
conservation laws for the Burgers equation and from this we have to intro-
duce nonlocal variables.

The only conservation law for the Burgers equation is given by

Dt(u) = Dx

(1

2
u2 + u1

)
, (5.84)

which is just the Burgers equation itself.
In (5.84), the total derivative operators Dx and Dt are given in local

coordinates on E , x, t, u, u1, u2, . . . , by

Dx =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ . . . ,

Dt =
∂

∂t
+ ut

∂

∂u
+ u1t

∂

∂u1
+ . . . (5.85)

The conservation law (5.84) to the introduction of the new nonlocal variable
y, which satisfies formally the additional partial differential equations

yx = u,

yt =
1

2
u2 + u1. (5.86)
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We now start from the covering E1 = E∞×R, where the Cartan distribution,
or equivalently the total derivative operators Dx, Dt, is given by

D̃x = Dx + u
∂

∂y
,

D̃t = Dt +
(1

2
u2 + u1

) ∂
∂y
, (5.87)

where y is the (formal) nonlocal variable y =
∫ x

u dx with the associated
Cartan form ω−1 defined by

ω−1 = dy − u dx−
(1

2
u2 + u1

)
dt. (5.88)

Local coordinates in E1 are given by

(x, t, y, u, u1, . . . ).

We now demonstrate the calculations involved in the computations of defor-
mations of a partial differential equation or a system of differential equations.

In order to construct deformations of the Burgers equation (5.83)

U =
∑

D̃i
x(Ω)⊗ ∂

∂ui
, (5.89)

we start at the generating form

Ω = F 0ω0 + F 1ω1 + F 2ω2 + F 3ω3 + F−1ω−1, (5.90)

where F i, i = −1, . . . , 3, are functions dependent on u, u1, u2, u3, u4, u5, y.
The Cartan forms ω−1, . . . , ω3 are given by

ω0 = du− u1 dx− (uu1 + u2) dt,

ω1 = du1 − u2 dx− (u2
1 + uu2 + u3) dt,

ω2 = du2 − u3 dx− (uu3 + 3u1u2 + u4) dt,

ω3 = du3 − u4 dx− (uu4 + 4u1u3 + 3u2
2 + u5) dt,

ω−1 = dy − u dx−
(1

2
u2 + u1

)
dt, (5.91)

and it is a straightforward computation to show that

D̃x(ωi) = ωi+1,

D̃t(ω−1) = uω0 + ω1,

D̃t(ω0) = u1ω0 + uω1 + ω2,

D̃t(ω1) = u2ω0 + 2u1ω1 + uω2 + ω3,

D̃t(ω2) = u3ω0 + 3u2ω1 + 3u1ω2 + uω3 + ω4,

D̃t(ω3) = u4ω0 + 4u3ω1 + 6u2ω2 + 4u1ω3 + uω4 + ω5, (5.92)

where i = −1, 0, . . .
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Now the equation for nonlocal deformations is (4.65), see p. 185,

`1E1(Ω) = 0.

Since this one amounts to

D̃t(Ω)− u1Ω− uD̃x(Ω)− D̃2
x(Ω) = 0, (5.93)

we are led to an overdetermined system of partial differential equations for
the functions F−1, . . . , F 3, by equating coefficients of ω−1, . . . , ω4 to zero,
i.e.,

ω4 : 0 = −2D̃x(F
3),

ω3 : 0 = −2D̃x(F
2) + (D̃t − uD̃x − u1 − D̃2

x)(F
3) + 4u1F

3,

ω2 : 0 = −2D̃x(F
1) + (D̃t − uD̃x − u1 − D̃2

x)(F
2) + 6u2F

3 + 3u1F
2,

ω1 : 0 = −2D̃x(F
0) + (D̃t − uD̃x − u1 − D̃2

x)(F
1) + 4u3F

3 + 3u2F
2

+ 2u1F
1,

ω0 : 0 = −2D̃x(F
−1) + (D̃t − uD̃x − u1 − D̃2

x)(F
0) + u4F

3 + u3F
2

+ u2F
1 + u1F

0,

ω−1 : 0 = (D̃t − uD̃x − u1 − D̃2
x)(F

−1). (5.94)

Note that in each coefficient related to ω−1, . . . , ω3 there is always a number
of terms which together are just

(
D̃t − uD̃x − u1 − D̃2

x

)
(F i), i = −1, 0, 1, 2, 3, (5.95)

which arise by action of `1E1 on the coefficient F i of the term F iωi in Ω,
(5.90). From these equations we obtain the solution by solving the system
in the order as given by the equations in (5.94).

This leads to the following solutions

F 3 = c1,

F 2 =
3

2
c1u+ c2,

F 1 = c1

(3

4
u2 + 3u1

)
+ c2u+ c3,

F 0 = c1

(1

8
u3 +

9

4
uu1 + 2u2

)
+ c2

(1

4
u2 +

3

2
u1

)
+

1

2
c3u+ c4,

F−1 = c1

(3

8
u2u1 +

3

4
uu2 +

3

4
u2

1 +
1

2
u3

)
+ c2

(1

2
uu1 +

1

2
u2

)
+

1

2
c3u1 + c5.

(5.96)

Combination of (5.90) and (5.96)) leads to the following independent solu-
tions

W 1 = ω0,

W 2 = u1ω−1 + u0ω0 + 2ω1,
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W 4 = 2(uu1 + u2)ω−1 + (u2 + 6u1)ω0 + 4uω1 + 4ω2,

W 7 = (3u2u1 + 6uu2 + 6u2
1 + 4u3)ω−1 + (u3 + 18uu1 + 16u2)ω0

+ 6(u2
1 + 4u1)ω1 + 12uω2 + 8ω3. (5.97)

In case we start from functions F i, i = −1, . . . , 2, in (5.90), dependent on
x, t, u, u1, u2, u3, u4, u5, y, and taking F 3 = 0, and solving the system of
equations (5.96) in a straightforward way, we arrive to

F 2 = c1(t),

F 1 =
1

2
c′1(t)x+ c1(t)u+ c2(t),

F 0 =
1

8
(c′′1(t)x

2 + 2c′1(t)xu+ 2c1(t)u
2 + 12c1(t)u1 + 4c′2(t)x

+ 4c2(t)u+ c3(t)),

F−1 =
1

48
(c′′′1 (t)x3 − 6c′′1(t)x+ 12c′1(t)u+ 12c′1(t)xu1

+ 24c1(t)(uu1 + u2) + 6c′′2(t)x
2 + 24c2(t)u1 + 24c′3(t)x+ 48c4(t)).

(5.98)

Finally, from the last equation in (5.94) we arrive at

c1(t) = α1 + α2t+ α3t
2,

c2(t) = α4 + α5t,

c3(t) = α6 +
3

2
t,

c4(t) = −1

2
c5, (5.99)

which leading to the six independent solutions

α6 : W 1 = ω0,

α4 : W 2 = u1ω−1 + u0ω0 + 2ω1,

α5 : W 3 = (tu1 + 1)ω−1 + (tu+ x)ω0 + 2tω1,

α1 : W 4 = 2(uu1 + u2)ω−1 + (u2 + 6u1)ω0 + 4uω1 + 4ω2,

α2 : W 5 = (2tuu1 + 2tu2 + xu1 + u)ω−1,

+ (tu2 + 6tu1 + xu)ω0 + (4tu+ 2x)ω1 + 4tω2,

α3 : W 6 = (2t2(uu1 + u2) + 2txu1 + 2tu+ 2x)ω−1,

+ (t2(uu2 + 6u1) + 2txu+ 6t+ x2)ω0,

+ (4t2u+ 4tx)ω1 + 4t2ω2. (5.100)

If we choose the term F 3 in (5.90) to be dependent of x, t, u, u1, u2,
u3, u4, u5, y too, the general solution of the deformation equation (5.93),
or equivalently the resulting overdetermined system of partial differential
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equations (5.94) for the coefficients F i, i = −1, . . . , 3, is a linear combination
of the following ten solutions

W 1 = ω0,

W 2 = u1ω−1 + u0ω0 + 2ω1,

W 3 = (tu1 + 1)ω−1 + (tu+ x)ω0 + 2tω1,

W 4 = 2(uu1 + u2)ω−1 + (u2 + 6u1)ω0 + 4uω1 + 4ω2,

W 5 = (2tuu1 + 2tu2 + xu1 + u)ω−1

+ (tu2 + 6tu1 + xu)ω0 + (4tu+ 2x)ω1 + 4tω2,

W 6 = (2t2(uu1 + u2) + 2txu1 + 2tu+ 2x)ω−1

+ (t2(u2 + 6u1) + 2txu+ 6t+ x2)ω0

+ (4t2u+ 4tx)ω1 + 4t2ω2,

W 7 = (3u2u1 + 6uu2 + 6u2
1 + 4u3)ω−1 + (u3 + 18uu1 + 16u2)ω0

+ 6(u2 + 4u1)ω1 + 12uω2 + 8ω3,

W 8 = (t(3u2u1 + 6uu2 + 6u2
1 + 4u3) + x(2uu1 + 2u2) + u2)ω−1

+ (t(u3 + 18uu1 + 16u2) + x(u2 + 6u1) + 2u)ω0

+ (t(6u2 + 24u1) + x(4u))ω1

+ (12tu+ 4x)ω2

+ 8tω3,

W 9 = (t2(3u2u1 + 6uu2 + 6u2
1 + 4u3) + tx(4uu1 + 4u2) + x2(u1)

+ 2tu2 + 2xu− 6)ω−1 + (t2(u3 + 18uu1 + 16u2) + tx(2u2 + 12u1)

+ x2u+ 4tu− 2x)ω0 + (t2(6u2 + 24u1) + 8txu+ 2x2)ω1

+ (12t2u+ 8tx)ω2 + (8t2)ω3,

W 10 = (t3(3u2u1 + 6uu2 + 6u2
1 + 4u3) + t2x(6uu1 + 6u2) + 3tx2u1

+ t2(3u2 + 12u1) + 6txu+ 3x2 + 6t)ω−1 + (t3(u3 + 18uu1 + 16u2)

+ t2x(3u2 + 18u1) + 3tx2u+ x3 + 18t2u+ 18tx)ω0 + (t3(6u2 + 24u1)

+ 12t2xu+ 6tx2 + 24t2)ω1 + (12t3u+ 12t2x)ω2 + (8t3)ω3. (5.101)

In order to compute the classical recursion operators for symmetries
resulting from the deformations constructed in (5.100) induced by the char-
acteristic functions W1, W2, . . . , we use Proposition 4.29. Suppose we start
at a (nonlocal) symmetry ¤X of the Burgers equation; its presentation is

¤X = X−1
∂

∂y
+
∑

i

Di
x(X)

∂

∂ui
. (5.102)
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The nonlocal component X−1 is obtained from the invariance of the equa-
tions, cf. (5.87)

yx = u,

yt =
1

2
u2 + u1,

i.e.,

Dx(X−1) = X, (5.103)

from which we have

X−1 = D−1
x (X). (5.104)

Theorem 4.30, stating that ¤X U1 is a symmetry, yields for the component
∂/∂u,

¤X W 2 = u1X−1 + uX + 2DxX =
(
u1D

−1
x + u+ 2Dx

)
X (5.105)

and similar for W 3

¤X W 3 = (tu1 + 1)X−1 + (tu+ x)X + 2tDxX

=
(
(tu1 + 1)D−1

x + (tu+ x) + 2tDx

)
X. (5.106)

From formulas (5.105) and (5.106) together with similar results with respect
to W4, . . . ,W7 we arrive in a straightforward way at the recursion operators

R1 = id,

R2 = u1D
−1
x + u+ 2Dx,

R3 = t(u1D
−1
x + u+ 2Dx) + x+D−1

x ,

R4 = 2(uu1 + u2)D
−1
x + (u2 + 6u1) + 4uDx + 4D2

x,

R5 = t
(
(2uu1 + 2u2)D

−1
x + (u2 + 6u1) + 4uDx + 4D2

x

)

+ x
(
u1D

−1
x + u+ 2Dx

)
+ uD−1

x ,

R6 = t2
(
(2uu1 + 2u2)D

−1
x + (u2 + 6u1) + 4uDx + 4D2

x

)

+ 2tx
(
u1D

−1
x + u+ 2Dx

)
+ x2

+ t(2uD−1
x + 6) + 2xD−1

x ,

R7 = (3u2u1 + 6uu2 + 6u2
1 + 4u3)D

−1
x + (u3 + 18uu1 + 16u2)

+ 6(u2 + 4u1)Dx + 12uD2
x + 8D3

x. (5.107)

The operator R1 is just the identity operator while R2 is the first classical
recursion operator for the Burgers equation.

This application shows that from the deformations of the Burgers equa-
tion one arrives in a straightforward way at the recursion operators for
symmetries. It will be shown in forthcoming sections that the representa-
tion of recursion operators for symmetries in terms of deformations of the
differential equation is more favorable, while it is in effect a more condensed
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presentation of this recursion operator. Moreover the appearance of formal
integrals in these operators is clarified by their derivation.

The deformation of an equation is a geometrical object, as is enlightened
in Chapter 6: it is a symmetry in a new type of covering.

6. Deformations of the KdV equation

Motivated by the results obtained for the Burgers equation, we search
for deformations in coverings of the KdV equation. In order to do this, we
first have to construct conservation laws for the KdV equation

ut = uu1 + u3, (5.108)

i.e., we have to find functions F x, F t, depending on x, t, u, u1, . . . such that
on E∞ one has

Dt(F
x) = Dx(F

t), (5.109)

where Dx, Dt are total derivative operators, which in local coordinates x, t,
u, u1, u2, u3, . . . on E∞ have the following presentation

Dx =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ u3

∂

∂u2
+ · · · ,

Dt =
∂

∂t
+ ut

∂

∂u
+ ut1

∂

∂u1
+ ut2

∂

∂u2
+ · · · (5.110)

Since the KdV equation is graded,

deg(x) = −1, deg(t) = −3

deg(u) = 2, deg(u1) = 3, . . . , (5.111)

F x, F t will be graded too being of degree k and k + 2 respectively.
In order to avoid trivialities in the construction of these conservation

laws, we start at a function F triv which is of degree k− 1 and remove in the
expression F x −Dx(F

triv) special terms by choosing coefficients in F triv in
an appropriate way, since the pair (Dx(F

triv), Dt(F
triv)) leads to a trivial

conservation law.
After this, we restrict ourselves to conservation laws of the type (F x −

Dx(F
triv), F t − Dt(F

triv)). Searching for conservation laws satisfying the
condition deg(F x) ≤ 6, we find the following three conservation laws

F x1 = u, F t1 =
(1

2
u2 + u2

)
,

F x2 =
1

2
u2, F t2 =

(1

3
u3 − 1

2
u2

1 + uu2

)
,

F x3 = u3 − 3u2
1, F t3 =

(3

4
u4 + 3u2u2 − 6uu2

1 − 6u1u3 + 3u2
2

)
. (5.112)

We now introduce the new nonlocal variables y1, y2, y3 by the following
system of partial differential equations

(y1)x = u,
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(y1)t =
1

2
u2 + u2,

(y2)x =
1

2
u2,

(y2)t =
1

3
u3 − 1

2
u2

1 + uu2

(y3)x = u3 − 3u2
1,

(y3)t =
3

4
u4 + 3u2u2 − 6uu2

1 − 6u1u3 + 3u2
2. (5.113)

The compatibility conditions for these equations (5.113) are satisfied because
of (5.109).

If we now repeat the construction of finding conservation laws on E∞ ×
R3, where local variables are given by x, t, u, y1, y2, y3, u1, u2, . . . and
where the system of partial differential equations is given for u, y1, y2, y3

by (5.113), we find yet another conservation law

F x4 = y1,

F t4 = u1 + y2 (5.114)

leading to the nonlocal variable y4, satisfying the partial differential equa-
tions

(y4)x = y1,

(y4)t = u1 + y2. (5.115)

The conservation law (F x4 , F
t
4) is in effect equivalent to the well-known clas-

sical (x, t)-dependent conservation law for the KdV equation, i.e.,

F̄ x4 = xu+
1

2
tu2,

F̄ t4 = x
(1

2
u2 + u2

)
+ t
(1

3
u3 + uu2 −

1

2
u2

1

)
− u1. (5.116)

We now start at the four-dimensional covering E∞×R4 of the KdV equation
E∞

ut = uu1 + u3, (5.117)

where the prolongation of the Cartan distribution to E∞ × R4 is given by

D̃x = Dx + u
∂

∂y1
+

1

2
u2 ∂

∂y2
+ (u3 − 3u2

1)
∂

∂y3
+ y1

∂

∂y4
,

D̃t = Dt +
(1

2
u2 + u2

) ∂

∂y1
+
(1

3
u3 − 1

2
u2

1 + uu2

) ∂

∂y2

+
(3

4
u4 + 3u2u2 − 6uu2

1 − 6u1u3 + 3u2
2

) ∂

∂y3
+ (u1 + y2)

∂

∂y4
, (5.118)
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where Dx, Dt are the total derivative operators on E∞, (5.110). In fact y1,
y2, y3 are just potentials for the KdV equation, i.e.,

y1 =

∫ x

u dx,

y2 =

∫ x 1

2
u2 dx,

y3 =

∫ x

u3 − 3u2
1 dx, (5.119)

while y4 is the nonlocal potential

y4 =

∫ x

y1 dx. (5.120)

The Cartan forms associated to y1, . . . , y4 are denoted by ω−1, . . . , ω−4,
while ω0,ω1, . . . are the Cartan forms associated to u0, u1, . . . The generating
function for the deformation U1 is defined by

Ω =
6∑

i=0

F iωi + F−1ω−1 + F−2ω−2 + F−3ω−3 + F−4ω−4, (5.121)

where F i, i = −4, . . . , 6, are dependent on the variables

x, t, u, . . . , u7, y1, . . . , y4.

The overdetermined system of partial differential equations resulting from
the deformation equation (4.65) on p. 185

`
(1)
E1 (Ω) = 0,

i.e.,

D̃t(Ω)− u1Ω− uD̃x(Ω)− D̃3
x(Ω) = 0, (5.122)

can be solved in a straightforward way which yields the following character-
istic functions

W0 = ω0,

W1 =
2

3
uω0 + ω2 +

1

3
u1ω−1,

W2 =
(4

9
u2 +

4

3
u2

)
ω0 + 2u1ω1 +

4

3
uω2 + ω4

+
1

3
(uu1 + u3)ω−1 +

1

9
u1ω−2,

W3 =
( 8

27
u3 +

8

3
uu2 + 2u2

1 + 2u4

)
ω0 + (4uu1 + 5u3)ω1

+
(4

3
u2 +

20

3
u2

)
ω2 + 5u1ω3 + 2uω4 + ω6

+
1

18
(5u2u1 + 10uu3 + 20u1u2 + 6u5)ω−1 +

1

9
(uu1 + u3)ω−2
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+
1

54
u1ω−3. (5.123)

Note that the coefficients of ω−1, ω−2, ω−3 in (5.123) are just higher sym-
metries in a agreement with the remark made in the case of the Burgers
equation.

From these results it is straightforward to obtain recursion operators for
the KdV equation, i.e.,

R̃1 =
2

3
u+D2

x +
1

3
u1D

−1
x ,

R̃2 =
(4

9
u2 +

4

3
u2

)
+ 2u1Dx +

4

3
uD2

x +D4
x

+
1

3
(uu1 + u3)D

−1
x +

1

9
u1D

−1
x u, (5.124)

while

R̃3 =
( 8

27
u3 +

8

3
uu2 + 2u2

1 + 2u4

)
+
(
4uu1 + 5u3)Dx + (

4

3
u2 +

20

3
u2

)
D2
x

+ 5u1D
3
x + 2uD4

x +D6
x +

1

18
(5u2u1 + 10uu3 + 20u1u2 + 6u5)D

−1
x

+
1

9
(uu1 + u3)D

−1
x u+

1

54
u1D

−1
x (3u2 − 6u1Dx). (5.125)

The last term in R̃2 and the last two terms in R̃3 arise due to the invariance
of

y2 = D−1
x

(1

2
u2
)
,

y3 = D−1
x (u3 − 3u2

1). (5.126)

The operators R̃1, R̃2, R̃3 are just classical recursion operators for the KdV
equations (5.119). From (5.125) one observes the complexity of the recursion
operators in the last two terms of this expression, due to the complexity of
the conservation laws. The complexity of these operators increases more if
higher nonlocalities are involved.

Remark 5.13 (Linear coverings for the KdV equation). We also con-
sidered deformations of the KdV equations in the linear covering and the
prolongation coverings, performing computations related to these coverings.

1. Linear covering E∞ × R2. Local coordinates are x, t, u, u1, . . . , s1,
s2 while the Cartan distribution is given by

D̃x = Dx +
1

6
s2

∂

∂s1
+
(
− 1

6
s2u1 +

1

18
s2u−

1

9
λs2

) ∂

∂s2
,

D̃t = Dt − (λ+ u)
∂

∂s1
+
(
− s1u2 +

1

6
s2u1 −

1

3
s1u

2 +
1

3
λs1u

+
2

3
λ2s1

) ∂

∂s2
. (5.127)
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The only deformation admitted here is the trivial one. There is how-
ever a yet unknown symmetry in this case, i.e.,

V = s1s2
∂

∂u
. (5.128)

2. Prolongation covering E∞ × R1. In this case the Cartan distribution
is given by

D̃x = Dx + (u+
1

6
q2 + α)

∂

∂q
,

D̃t = Dt +
(
u2 +

1

3
qu1 +

1

3
u2 + u

(1
8
q2 − 1

3
α
)

− 2

3
α
(1
6
q2 + α

)) ∂
∂q
. (5.129)

But here no nontrivial results were obtained.

In effect these special coverings did not lead to new interesting deformation
structures.

7. Deformations of the nonlinear Schrödinger equation

In this section deformations and recursion operators of the nonlinear
Schrödinger (NLS) equation

ut = −v2 + kv(u2 + v2),

vt = u2 − ku(u2 + v2) (5.130)

will be discussed in the nonlocal setting.
In previous sections we explained how to compute conservation laws for

partial differential equations and how to construct from them the nonlocal
variables, thus “killing” the conservation laws, i.e., in the coverings the
conservation laws associated to the nonlocal variables become trivial.

We introduce the nonlocal variables y1, y2, y3 associated to the conser-
vation laws of the NLS equation and given by

y1x = u2 + v2,

y1t = 2(−uv1 + vu1),

y2x = uv1,

y2t = −3

4
ku4 − 1

2
ku2v2 +

1

4
kv4 + uu2 −

1

2
u2

1 −
1

2
v2
1 (5.131)

and

y3x = k(u2 + v2)2 + 2u2
1 + 2v2

1,

y3t = 4
(
(−kuv1 + kvu1)(u

2 + v2)− u1v2 + v1u2

)
. (5.132)
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In the three-dimensional covering E∞ ×R3 of the NLS equation the Cartan
distribution is given by

D̃x = Dx +
3∑

i=1

yix
∂

∂yi
,

D̃t = Dt +

3∑

i=1

yit
∂

∂yi
, (5.133)

while Dx, Dt are total derivative operators on E∞, which in internal coor-
dinates x, t, u, v, u1, v1, . . . have the representation

Dx =
∂

∂x
+

∞∑

i=0

ui+1
∂

∂ui
+

∞∑

i=0

vi+1
∂

∂vi
,

Dt =
∂

∂t
+

∞∑

i=0

uit
∂

∂ui
+

∞∑

i=0

vit
∂

∂vi
. (5.134)

Now in order to construct a deformation of the NLS equation, we con-
struct a tuple of characteristic functions

W u =
3∑

i=0

(f iωui + f
i
ωvi ) +

3∑

i=1

f̃ iωyi ,

W v =

3∑

i=0

(giωui + giωvi ) +

3∑

i=1

g̃iωyi , (5.135)

where in (5.135) ωui , ω
v
i , ωyi are the Cartan forms associated to ui, vi, yi

respectively; the coefficients f i, f
i
, f̃ i , gi, gi, g̃i are dependent on

x, t, u, v, . . . , u4, v4, y1, y2, y3.

The solution constructed from the deformation equation (4.65) leads to the
following nontrivial results.

W u
1 =

1

k
ωv1 − vωy1 ,

W v
1 = −1

k
ωu1 + uωy1 ,

W u
2 = (u2 + v2)ωu0 + uvωv0 −

1

2k
ωu2 +

1

2
u1ωy1 − vωy2 ,

W v
2 = v2ωv0 −

1

2k
ωv2 +

1

2
v1ωy1 + uωy2 ,

W u
3 = 8uv1ω

u
0 + 12vv1ω

v
0 + 4uvωu1 + (4u2 + 8v2)ωv1 −

2

k
ωv3

+ 2(−k(u2 + v2)v + v2)ωy1 + 4u1ωy2 − vωy3 ,
W v

3 = (−12uu1 − 4vv1)ω
u
0 + (−4uv1 − 8vu1)ω

v
0
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+ (−8u2 − 4v2)ωu1 − 4uvωv1 +
2

k
ωu3

+ 2(k(u2 + v2)u− u2)ωy1 + 4v1ωy2 + uωy3 . (5.136)

Suppose we have a shadow of a nonlocal symmetry

X = Xu ∂

∂u
+ . . .+Xv ∂

∂v
+ . . .+X−1

∂

∂y1
+X−2

∂

∂y2
+X−3

∂

∂y3
. (5.137)

Then the nonlocal component X−1 associated to y1 is obtained from the
invariance of the equations

y1x = u2 + v2,

y1t = 2(−uv1 + vu1). (5.138)

So from (5.138) we arrive at the following condition

Dx(X−1) = 2uXu + 2vXv,

or formally

X−1 = D−1
x (2uXu + 2vXv). (5.139)

From the invariance of the partial differential equations for y2, y3, (5.131),
(5.132) we obtain in a similar way

X−2 = D−1
x

(
uDx(X

v) + v1X
u
)
,

X−3 = D−1
x

(
4k(u2 + v2)(uXu + vXv) + 4u1Dx(X

u) + 4v1Dx(X
v)
)
.

(5.140)

Using these results, we arrive from W u
1 , W v

1 in a straightforward way at
the well-known recursion operator

R1 =

(
−vD−1

x (2u) −vD−1
x (2v) + 1

kDx

+uD−1
x (2u)− 1

kDx +uD−1
x (2v)

)
(5.141)

Recursion operators resulting from W u
i , W v

i , i = 2, 3, . . . , can be ob-
tained similarly, using constructed formulas for X−2, X−3, see (5.140).

8. Deformations of the classical Boussinesq equation

Let us discuss now deformations of Classical Boussinesq equation

vt = u1 + vv1,

ut = u1v + uv1 + σv3. (5.142)

To this end, we start at a four-dimensional covering E∞×R4 of the Boussi-
nesq equation, where local coordinates are given by

(x, t, v, u, . . . , y1, . . . , y4)

with the Cartan distribution defined by

D̃x = Dx + v
∂

∂y1
+ u

∂

∂y2
+ uv

∂

∂y3
+ (u2 + uv2 + vv2σ)

∂

∂y4
,
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D̃t = Dt +
(
u+

1

2
v2
) ∂

∂y1
+ (uv + v2σ)

∂

∂y2

+
(1

2
u2 + uv2 + vv2σ −

1

2
v2
1σ
) ∂

∂y3

+ (2u2v + uv3 + 2σuv2 + 2σv2v2 + σvu2 − σv1u1)
∂

∂y4
. (5.143)

The nonlocal variables y1, y2, y3, y4 satisfy the equations

(y1)x = v,

(y1)t = u+
1

2
v2,

(y2)x = u,

(y2)t = uv + v2σ,

(y3)x = uv,

(y3)t =
1

2
u2 + uv2 + vv2σ −

1

2
v2
1σ,

(y4)x = u2 + uv2 + vv2σ,

(y4)t = 2u2v + uv3 + 2σuv2 + 2σv2v2 + σvu2 − σv1u1. (5.144)

We assume the characteristic functions W v, W u to be dependent on ωv0 ,
ωu0 , . . . , ω

v
5 , ωu5 , ωy1 , . . . , ωy4 , whereas the coefficients are required to be de-

pendent on x, t, v, u, . . . , v5, u5, y1, . . . , y4.
Solving the overdetermined system of partial differential equations re-

sulting from the deformation condition (4.65), we arrive at the following
nontrivial characteristic functions

W v
1 = vωv0 + 2ωu0 + v1ωy1 ,

W u
1 = 2uωv0 + vωu0 + 2σωv2 + u1ωy1 ,

W v
2 = (4u+ v2)ωv0 + 4vωu0 + 4σωv2 + (2vv1 + 2u1)ωy1 + 2v1ωy2 ,

W u
2 = (4uv + 6σv2)ω

v
0 + (4u+ v2)ωu0 + 6v1σω

v
1 + 4σvωv2 + 4σωu2

+ (2uv1 + 2vu1 + 2σv3)ωy1 + 2u1ωy2 (5.145)

and two more deformations.
As in the preceding section we use the invariance of the equations

(y1)x = v,

(y2)x = u (5.146)

to arrive at the associated recursion operators

R1 =

(
v + v1D

−1
x 2

2u+ 2σD2
x + u1D

−1
x v

)
(5.147)
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and

R2 =




(4u+ v2) + 4σD2
x + (2vv1 + 2u1)D

−1
x 4v + 2v1D

−1
x

(4uv + 6σ2v2) + 6σv1Dx + 4σvD2
x (4u+ v2) + 4σD2

x

+(2uv1 + 2vu1 + 2σv3)D
−1
x +2u1D

−1
x




(5.148)

Note that R2 is just equivalent to double action of the operator R1, i.e.,

R2 = R1 ◦R1 = (R1)
2. (5.149)

9. Symmetries and recursion for the Sym equation

The following system of partial differential equations plays an interesting
role in some specific areas of geometry [16]:

∂u

∂x
+ (u− v)∂w

∂x
= 0,

∂v

∂y
− (u− v)∂w

∂y
= 0,

uve2w +
∂2w

∂x2
+
∂2w

∂y2
= 0. (5.150)

The underlying geometry is defined as the manifold of local surfaces which
admit nontrivial isometries conserving principal curvatures, the so-called
isothermic surfaces.

In this section we shall prove that this system (5.150) admits an infinite
hierarchy of commuting symmetries and conservation laws, [7]. Results will
be computed not for system (5.150), but for a simplified system obtained by
the transformation u 7→ ue−w, v 7→ ve−w, i.e.,

∂u

∂x
− v∂w

∂x
= 0,

∂v

∂y
− u∂w

∂y
= 0,

uv +
∂2w

∂x2
+
∂2w

∂y2
= 0. (5.151)

9.1. Symmetries. In this subsection we discuss higher symmetries for
system (5.151):

ux − vwx = 0, vy − uwy = 0, wyy + uv + wxx = 0. (5.152)

This system is a graded system of differential equations, i.e.,

deg(x) = deg(y) = −1,

deg(u) = deg(v) = 1,

deg(w) = 0. (5.153)
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All objects of interest for system (5.152), like symmetries and conservation
laws, turn out to be homogeneous with respect to this grading, e.g.,

deg(ui,j) = deg(u)− i deg(x)− j deg(y) = 1 + i+ j,

deg
(
uv

∂

∂wxy

)
= deg(u) + deg(v)− deg(wxy) = 0, (5.154)

whereas in (5.154) ui,j = ux . . . x︸ ︷︷ ︸
i times

y . . . y︸ ︷︷ ︸
j times

.

For computation of higher symmetries we have to introduce vertical
vector fields ¤Φ with generating function Φ = (Φu,Φv,Φw), which has to
satisfy the symmetry condition

`F (Φ) = 0, (5.155)

where `F is the universal linearization operator for system (5.152), i.e.,

`F =



Dx −wx −vDx

−wy Dy −uDy

v u D2
x +D2

y


 (5.156)

The system `F (Φ) = 0 is homogeneous with respect to the degree, so
the symmetry with the generating function Φ = (Φu,Φv,Φw) is homo-
geneous with respect to the degree, i.e., deg(Φu∂/∂u) = deg(Φv∂/∂v) =
deg(Φw∂/∂w), leading to the required degree of Φ:

deg(Φu) = deg(Φv) = deg(Φw) + 1. (5.157)

Internal coordinates of E∞, where E is system (5.152), are chosen to be

x, y, u, v, w, uy, vx, wx, wy, uyy, vxx, wxx, wxy, uyyy, vxxx, wxxx, wxxy, . . . .
(5.158)

Thus E∞ is solved for ux, vy, wyy and their differential consequences ux...x,
vy...y, wx...xy...yy. With this choice of internal coordinates, the symmetry
equation (5.155) reads

Dx(Φu)− wxΦv − vDx(Φw) = 0,

−wyΦu +Dy(Φv)− uDy(Φw) = 0,

vΦu + uΦv +D2
x(Φw) +D2

y(Φw) = 0. (5.159)

The generating function Φ = (Φu,Φv,Φw) depends on a finite number of in-
ternal coordinates, Φ being defined on E∞. Dependencies for the generating
function are selected with respect to degree, i.e., Φ depends on the internal
coordinates of degree n or less. According to (5.157), this means that Φw

depends on internal coordinates of degree n− 1 or less.
The results for the generating function Φ depending on the internal

coordinates of degree 6 or less are as follows. There are two symmetries of
degree 0:

X0 = (0, 0, 1),

Y 0 = (u+ xvwx + yuy, v + xvx + yuwy, xwx + ywy). (5.160)
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The second symmetry in (5.160) corresponds to the scaling or grading of
systems (5.152), (5.153). Other symmetries appear in pairs of degrees 1, 3
and 5. The symmetries of degree 1 are

X1 = (uy, uwy, wy),

Y 1 = (vwx, vx, wx). (5.161)

They are equivalent to the vector fields of ∂/∂y and ∂/∂x respectively.
The symmetries of degree 3 are

X3
u = 6u2vwy + 3u2uy + 6uwywxx + 3uyw

2
x − 3uyw

2
y + 2uyyy,

X3
v = u3wy + 3uw2

xwy − 3uw3
y − 2uwxxy + 2uywxx + 2wyuyy,

X3
w = u2wy − 2vuy + 3w2

xwy − w3
y − 2wxxy (5.162)

and

Y 3
u = 3v3wx − 3vw3

x + 3vwxw
2
y + 2vwxxx + 2wxvxx − 2wxxvx,

Y 3
v = 3v2vx − 6vwxwxx − 3w2

xvx + 3w2
yvx + 2vxxx,

Y 3
w = 3v2wx − w3

x + 3wxw
2
y + 2wxxx. (5.163)

Finally the components of the generating functions Φ = (Φu,Φv,Φw) of the
two symmetries of degree 5 are given by

X5
u =− 60u4vwy + 15u4uy − 60u3wywxx − 140u2v2uy + 60u2vw2

xwy

− 60u2vw3
y − 80u2vwxxy + 30u2uyw

2
x + 110u2uyw

2
y − 40u2wyvxx

+ 20u2uyyy − 40uv2wywxx − 200uvuywxx − 120uvwxwyvx

− 40uwxw
2
ywxy − 60uw3

ywxx + 120uvwyuyy − 40uuywxvx

+ 80uuyuyy + 60uw2
xwywxx − 40uwywxxxx − 80uwxxwxxy

− 40v2uyw
2
x + 80vu2

ywy + 20u3
y + 15uyw

4
x − 50uyw

2
xw

2
y − 40uywxwxxx

+ 15uyw
4
y + 80uywywxxy − 60uyw

2
xx + 20uyw

2
xy + 20w2

xuyyy

+ 40wxuyywxy − 20w2
yuyyy + 80wywxxuyy + 8uyyyyy,

X5
v = + 3u5wy − 20u3v2wy + 10u3w2

xwy + 10u3w3
y − 4u3wxxy

− 16u2vwywxx + 12u2uywxx − 8u2wxwyvx + 20u2wyuyy − 16uv2w2
xwy

+ 8uv2wxxy + 80uvuyw
2
y + 24uvvxwxy + 20uu2

ywy + 15uw4
xwy

− 50uw2
xw

3
y − 20uw2

xwxxy − 40uwxwywxxx − 40uwxwxxwxy + 15uw5
y

+ 60uw2
ywxxy − 20uwyw

2
xx + 20uwyw

2
xy + 8uwxxxxy − 8v2uywxx

− 24vuywxvx + 20uyw
2
xwxx + 20uyw

2
ywxx − 8uywxxxx + 20w2

xwyuyy

− 20w3
yuyy + 8wyuyyyy + 8wxxuyyy − 8wxxyuyy,

X5
w = 3u4wy − 20u2v2wy − 12u2vuy + 10u2w2

xwy − 10u2w3
y − 4u2wxxy

− 16uvwywxx − 8uwxwyvx + 8uwyuyy − 16v2w2
xwy + 8v2wxxy
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− 20vuyw
2
x + 20vuyw

2
y − 8vuyyy + 24vvxwxy − 4u2

ywy

+ 8uyvxx + 15w4
xwy − 30w2

xw
3
y − 20w2

xwxxy − 40wxwywxxx

− 40wxwxxwxy + 3w5
y + 20w2

ywxxy − 20wyw
2
xx + 20wyw

2
xy + 8wxxxxy

(5.164)

and

Y 5
u = + 15v5wx − 50v3w3

x + 30v3wxw
2
y + 20v3wxxx + 60v2wxvxx

+ 20v2wxxvx + 15vw5
x − 50vw3

xw
2
y − 60vw2

xwxxx

+ 15vwxw
4
y + 40vwxwywxxy − 20vwxw

2
xx + 20vwxv

2
x + 20vwxw

2
xy

+ 20vw2
ywxxx + 40vwywxxwxy + 8vwxxxxx − 20w3

xvxx − 20w2
xwxxvx

+ 20wxw
2
yvxx + 8wxvxxxx − 20w2

ywxxvx − 8wxxvxxx + 8wxxxvxx

− 8vxwxxxx,

Y 5
v = + 15v4vx − 60v3wxwxx − 90v2w2

xvx + 30v2w2
yvx + 20v2vxxx

+ 60vw3
xwxx − 40vw2

xwywxy − 60vwxw
2
ywxx − 40vwxwxxxx

− 80vwxxwxxx + 80vvxxvx + 15w4
xvx − 50w2

xw
2
yvx − 20w2

xvxxx

− 80wxwxxvxx − 80wxwxxxvx + 15w4
yvx + 20w2

yvxxx + 40wyvxxwxy

+ 40wyvxwxxy − 60w2
xxvx + 20v3

x + 20vxw
2
xy + 8vxxxxx,

Y 5
w = + 15v4wx − 30v2w3

x + 30v2wxw
2
y + 20v2wxxx + 40vwxvxx

+ 40vwxxvx + 3w5
x − 30w3

xw
2
y − 20w2

xwxxx + 15wxw
4
y + 40wxwywxxy

− 20wxw
2
xx + 20wxv

2
x + 20wxw

2
xy + 20w2

ywxxx + 40wywxxwxy

+ 8wxxxxx. (5.165)

Apart from the second symmetry in (5.160), these symmetries commute,
i.e., [¤Φ,¤Φ′ ] = 0. The Lie bracket with the second symmetry in (5.160)
acts as multiplication by the degree of the symmetry.

Remark 5.14. One should note that for system (5.152) there exists a
discrete symmetry

T : x 7→ y, y 7→ x, u 7→ v, v 7→ u, w 7→ w, (5.166)

from which we have

T (X0) = X0, T (Y 0) = Y 0,

T (X1) = Y 1, T (Y 1) = X1,

T (X3) = Y 3, T (Y 3) = X3,

T (X5) = Y 5, T (Y 5) = X5. (5.167)
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9.2. Conservation laws and nonlocal symmetries. As in previous
applications, we first construct conservation laws in order to arrive at non-
local variables and the augmented system of partial differential equations
governing them.

To construct conservation laws, we start at functions F x and F y, such
that

Dy(F
x) = Dx(F

y)

We construct conservation laws for functions F x and F y of degree 0 until 4.
For degree 2 we obtained two solutions,

F x =
−v2 + w2

x − w2
y

2
, F y = wxwy,

F x = −wxwy, F y =
u2 + w2

x − w2
y

2
. (5.168)

Degree 4 yields two conservation laws, which are

F x =− (u2wxwy − u2wxy − 2uvwxwy + 2uvwxy + w3
xwy − wxw3

y

+ 2wxxwxy),

F y =(u4 − 4u3v + 4u2v2 + 2u2w2
x − 6u2w2

y − 4u2wxx + 8uvwxx

+ 8uwyuy + w4
x − 6w2

xw
2
y + w4

y + 4w2
xx − 4u2

y − 4w2
xy)/4,

F x =− (v4 − 6v2w2
x + 2v2w2

y + 4v2wxx + 8vwxvx + w4
x − 6w2

xw
2
y + w4

y

+ 4w2
xx − 4w2

xy − 4v2
x)/4,

F y =− 2uvwxwy + v2wxwy − v2wxy − w3
xwy + wxw

3
y − 2wxxwxy. (5.169)

Associated to the conservation laws given in (5.168), (5.169), we introduce
nonlocal variables.

The conservation laws (5.168) give rise to two nonlocal variables, p and
q of degree 1,

px =
−v2 + w2

x − w2
y

2
, py = wxwy,

qx = −wxwy, qy =
u2 + w2

x − w2
y

2
. (5.170)

To the conservation laws (5.169) there correspond two nonlocal variables r
and s of degree 3:

rx =− u2wxwy + u2wxy + 2uvwxwy − 2uvwxy − w3
xwy + wxw

3
y − 2wxxwxy,

ry =(u4 − 4u3v + 4u2v2 + 2u2w2
x − 6u2w2

y − 4u2wxx + 8uvwxx + 8uwyuy

+ w4
x − 6w2

xw
2
y + w4

y + 4w2
xx − 4u2

y − 4w2
xy)/4,

sx =(−v4 + 6v2w2
x − 2v2w2

y − 4v2wxx − 8vwxvx − w4
x + 6w2

xw
2
y − w4

y

− 4w2
xx + 4w2

xy + 4v2
x)/4,
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sy =− 2uvwxwy + v2wxwy − v2wxy − w3
xwy + wxw

3
y − 2wxxwxy. (5.171)

We now discuss the existence of symmetries in the covering of (5.152) by
nonlocal variables p, q, r, s, i.e., in E∞×R4. The system of partial differential
equations in this covering is constituted by (5.152), (5.170) and (5.171).

Total derivative operators D̃x, D̃y are defined on E∞×R4, and are given by

D̃x = Dx +
−v2 + w2

x − w2
y

2

∂

∂p
− wxwy

∂

∂q
+ rx

∂

∂r
+ sx

∂

∂s
,

D̃y = Dy + wxwy
∂

∂p
+
u2 + w2

x − w2
y

2

∂

∂q
+ ry

∂

∂r
+ sy

∂

∂s
, (5.172)

where rx, ry, sx, sy are given by (5.171).
Symmetries ¤Φ in this nonlocal setting, where the generating function

Φ = (Φu,Φv,Φw) is dependent on the internal coordinates (5.158) as well as
on the nonlocal variables p, q, r, s, have to satisfy the symmetry condition

˜̀
F (Φ) = 0, (5.173)

where `F is the universal linearization operator for the augmented system
(5.152) together with (5.170), (5.171), i.e.,

˜̀
F =



D̃x −wx −vD̃x

−wy D̃y −uD̃y

v u D̃2
x + D̃2

y


 (5.174)

This does lead to the following nonlocal symmetry ¤Z of degree 2, where

Zu =− 2pvwx − 2quy

+ x
(
3v3wx − 3vw3

x + 3vwxw
2
y + 2vwxxx + 2wxvxx − 2wxxvx

)

+ y
(
−6u2vwy − 3u2uy − 6uwywxx − 3uyw

2
x + 3uyw

2
y − 2uyyy

)

− 2u3 − 2uv2 − 4uw2
x + 6uw2

y − 2vwxx + 4wxvx − 6uyy,

Zv =− 2pvx − 2quwy

+ x
(
3v2vx − 6vwxwxx − 3w2

xvx + 3w2
yvx + 2vxxx

)

+ y
(
−u3wy − 3uw2

xwy + 3uw3
y + 2uwxxy − 2uywxx − 2wyuyy

)

− 2uwxx + 2v3 − 6vw2
x + 4vw2

y − 4uywy + 6vxx,

Zw =− 2pwx − 2qwy

+ x
(
3v2wx − w3

x + 3wxw
2
y + 2wxxx

)

+ y
(
−u2wy + 2vuy − 3w2

xwy + w3
y + 2wxxy

)

+ 2uv + 4wxx. (5.175)

One should note that the coefficients at p, q, i.e., (−2vwx,−2vx,−2wx) and
(−2uy,−2uwy,−2wy), are just the generating functions of the symmetries
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(5.161). This nonlocal symmetry is just the recursion symmetry, acting by
the extended Jacobi brackets on generating functions on E∞ × R4.

There is another symmetry of degree 4, dependent on p, q, r, s. For an
explicit formula of this symmetry we refer to [10]. Finally we mention that
starting from E∞ × R4, there is an additional nonlocal conservation law

Dy(p) = Dx(−q).
The nonlocal variable associated to this conservation law did not play an
essential role in the construction of the nonlocal symmetry (5.175).

9.3. Recursion operator for symmetries. We now arrive at the
construction of the classical recursion operator for symmetries of the Sym
equation [7]

∂u

∂x
− v∂w

∂x
= 0,

∂v

∂y
− u∂w

∂y
= 0,

uv +
∂2w

∂x2
+
∂2w

∂y2
= 0. (5.176)

We could arrive at this recursion operator by the construction of deforma-
tions of system (5.176), but we decided not to do so. We shall demonstrate
how we can, from the knowledge we have of the nonlocal structure of defor-
mations, arrive at the formal classical recursion operator, which, by means of
its presentation as integral differential operator is of a more complex struc-
ture. Due to the structure of conservation laws, we can make an ansatz for
the recursion operator.

We expect that as in the previous problems, in the deformation structure
of our system (5.176) the Cartan forms associated to the nonlocal variables
p, q, i.e.,

ωp = dp−
−v2 + w2

x − w2
y

2
dx− wxwy dy,

ωq = dq + wxwy dx−
u2 + w2

x − w2
y

2
dy (5.177)

play an essential role. According to this, the associated nonlocal components
of the symmetries play a significant role too. These components have to be
constructed from the invariance of the associated differential equations for
p and q. Since the system at hand is not of evolutionary type, we have a
choice to compute these components from the invariance of either px or py
and similar for the qx and qy.

Due to the discrete symmetry (5.166), we choose the invariance of the
following equations

py =wxwy,

qx =− wxwy.
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From these invariances, we obtain for the generating function of a symmetry
Φ = (Φu,Φv,Φw), terms like

Φp = D−1
y (wxDy(Φw) + wyDx(Φw)),

Φq = D−1
x (wxDy(Φw) + wyDx(Φw)). (5.178)

From the above considerations we expect the recursion operator to contain
terms like D−1

y (wxDy(·) + wyDx(·)), D−1
x (wxDy(·) + wyDx(·)).

Moreover from the expected degree of the operator, which probably will
be equal to 2, due to the degrees of the symmetries of the previous sub-
section, we arrive at the ansatz for the recursion operator for symmetries.
From this ansatz we arrive at the following expression for R:

R =



D2
y + u2 + w2

x − w2
y −wxDx + uv + wxx uwxDx − 2uwyDy

wyDy + wxx −D2
x − v2 + w2

x − w2
y 2vwxDx − vwyDy

0 u D2
y




+




0 0 vwxD
−1
y (wyDx + wxDy)− uyD−1

x (wyDx + wxDy)
0 0 vxD

−1
y (wyDx + wxDy)− uwyD−1

x (wyDx + wxDy)
0 0 wxD

−1
y (wyDx + wxDy)− wyD−1

x (wyDx + wxDy)


 (5.179)

It is a straightforward check that the operator R is a recursion operator for
higher symmetries since

`F ◦ R = S ◦ `F , (5.180)

where the matrix operator S is given by

S =



D2
y + u2 + w2

x − w2
y −D2

x − v2 + w2
x − w2

y −uDy − vwy
−wyDx − 2wxy wxDy + 2wxy uwx

S31 S32 S33


 (5.181)

where S31, S32, S33 are given by

S31 = 2(uv + wxx)D
−1
x u− wyD−1

x Dyu,

S32 = 2wxxD
−1
y v + wxD

−1
y Dxv,

S33 = 2wxxD
−1
y wy + wxD

−1
y Dxwy + 2(uv + wxx)D

−1
x wx

− wyD−1
x Dywx +D2

y + w2
x − w2

y. (5.182)

It would have been possible not to start from the invariance of py, qx, but
from the invariance of for instance px, qx, but in that case we had to in-
corporate terms like D−1

x v, D−1
x wxDx, D

−1
x wyDy into the matrix recursion

operator R.



CHAPTER 6

Super and graded theories

We shall now generalize the material of the previous chapters to the case
of super (or graded) partial differential equations. We confine ourselves to
the case when only dependent variables admit odd gradings and develop a
theory closely parallel to that exposed in Chapters 1–5.

We also show here that the cohomological theory of recursion operators
may be considered as a particular case of the symmetry theory for graded
equations, which, in a sense, explains the main result of Chapter 5, i.e.,

Hp,0
C (E) = ker `

(p)
E . It is interesting to note that this reduction is accom-

plished using an odd analog of the Cartan covering introduced in Example
3.3 of Chapter 3.

Our main computational object is a graded extension of a classical partial
differential equation. We discuss the principles of constructing nontrivial
extensions of such a kind and illustrate them in a series of examples. Other
applications are considered in Chapter 7.

1. Graded calculus

Here we redefine the Frölicher–Nijenhuis bracket for the case of n-graded
commutative algebras. All definitions below are obvious generalizations of
those from 4. Proofs also follow the same lines and are usually omitted.

1.1. Graded polyderivations and forms. Let R be a commutative
ring with a unit 1 ∈ R and A be a commutative n-graded unitary algebra
over R, i.e.,

A =
∑

i∈Zn

Ai, AiAj ⊂ Ai+j

and

ab = (−1)a·bba

for any homogeneous elements a, b ∈ A. Here and below the notation (−1)a·b

means (−1)i1j1+...injn , where i = (i1, . . . , in), j = (j1, . . . , jn) ∈ Zn are the
gradings of the elements a and b respectively. We also use the notation a · b
for the scalar product of the gradings of elements a and b. In what follows,
one can consider Zn2 -graded objects as well. We consider the category of n-
graded (left) A-modules Mod =Mod(A) and introduce the functors

Di : Mod(A)⇒Mod(A)

243
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as follows (cf. [54, 58]):

D0(P ) = P

for any P ∈ Ob(Mod), P =
∑

i∈Zn
Pi, and

D1,j(P ) = {∆ ∈ homR(A,P ) | ∆(Ai) ⊂ Pi+j ,∆(ab)

= ∆(a)b+ (−1)∆·aa∆(b)},
where j = (j1, . . . , jn) = gr(∆) ∈ Zn is the grading of ∆; we set

D1(P ) =
∑

i∈Zn

D1,j(P ).

Remark 6.1. We can also consider objects ofMod(A) as right A-mod-
ules by setting pa = (−1)a·pap for any homogeneous a ∈ A, p ∈ P . In
a similar way, for any graded homomorphism ϕ ∈ homR(P,Q), the right

action of ϕ can be introduced by (p)ϕ = (−1)pϕϕ(p).

Further, if D0, . . . , Ds are defined, we set

Ds+1,j(P ) = {∆ ∈ homR(A, Ds(P )) | ∆(Ai) ⊂ Ds,i+j(P ),

∆(ab) = ∆(a)b+ (−1)∆·aa∆(b),∆(a, b) + (−1)a·b∆(b, a) = 0}
and

Ds+1(P ) =
∑

j∈Zn

Ds+1,j(P ).

Elements of Ds(P ) a called graded P -valued s-derivations of A and elements
of D∗(P ) =

∑
s≥0Ds(P ) are called graded P -valued polyderivations of A.

Proposition 6.1. The functors Ds, s = 0, 1, 2, . . . , are representable in

the category Mod(A), i.e., there exist n-graded modules Λ0,Λ1, . . . ,Λs, . . . ,
such that

Ds(P ) = homA(Λs, P )

for all P ∈ Ob(Mod).

Elements of the module Λs = Λs(A) are called graded differential forms

of degree s.
Our local target is the construction of graded calculus in the limits needed

for what follows. By calculus we mean the set of basic operations related to
the functors Ds and to modules Λs as well as most important identities con-
necting these operations. In further applications, we shall need the following
particular case:

(i) A0 = C∞(M) for some smooth manifold M , where 0 = (0, . . . , 0);
(ii) All homogeneous components Pi of the modules under consideration

are projective A0-modules of finite type.
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Remark 6.2. In fact, the entire scheme of calculus over commutative
algebras is carried over to the graded case. For example, to define graded

linear differential operators, we introduce the action δa : homR(P,Q) →
homR(P,Q), a ∈ A, by setting δaϕ = aϕ − (−1)aϕϕ · a, ϕ ∈ homR(P,Q),
and say that ϕ is an operator of order ≤ k, if

(δa0 ◦ · · · ◦ δak)ϕ = 0

for all a0, . . . , ak ∈ A, etc. A detailed exposition of graded calculus can be
found in [106, 52].

1.2. Wedge products. Let us now consider some essential algebraic
structures in the above introduced objects.

Proposition 6.2. Let A be an n-graded commutative algebra. Then:

(i) There exists a derivation d : A → Λ1 of grading 0 such that for any

A-module P and any graded derivation ∆: A → P there exists a

uniquely defined morphism f∆ : Λ1 → P such that f∆ ◦ d = ∆.

(ii) The module Λ1 is generated over A by the elements da = d(a), a ∈ A,
with the relations

d(αa+ βb) = αda+ βdb, d(ab) = (da)b+ adb, a, b ∈ A.
The j-th homogeneous component of Λ1 is of the form

Λ1
j = {

∑
adb | a, b ∈ A, gr(a) + gr(b) = j},

(iii) The modules Λs are generated over A by the elements of the form

ω1 ∧ · · · ∧ ωs, ω1, . . . , ωs ∈ Λ1,

with the relations

ω ∧ θ + (−1)ωθθ ∧ ω = 0, ω ∧ aθ = ωa ∧ θ, ω, θ ∈ Λ1, a ∈ A.
The j-th homogeneous component of Λs is of the form

Λsj = {
∑

ω1 ∧ · · · ∧ ωs | ωi ∈ Λ1, gr(ω1) + · · ·+ gr(ωs) = j}.

(iv) Let ω ∈ Λsj , j = (j1, . . . , jn). Set gr1(ω) = (j1, . . . , jn, s). Then

Λ∗ =
∑

s≥0

Λs =
∑

s≥0

∑

j∈Zn

Λsj

is an (n + 1)-graded commutative algebra with respect to the wedge

product

ω ∧ θ = ω ∧ · · · ∧ ωs ∧ θ1 ∧ · · · ∧ θr, ω ∈ Λs, θ ∈ Λr, ωα, θβ ∈ Λ1,

i.e.,

ω ∧ θ = (−1)ω·θ+srθ ∧ ω,
where ω · θ in the power of (−1) denotes scalar product of gradings

inherited by ω and θ from A.
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Remark 6.3. When working with the algebraic definition of differential
forms in the graded situation, one encounters the same problems as in a pure
commutative setting, i.e., the problem of ghost elements. To kill ghosts, the
same procedures as in Chapter 4 (see Remark 4.4) are to be used.

A similar wedge product can be defined in D∗(A). Namely for a, b ∈
D0(A) = A we set

a ∧ b = ab

and then by induction define

(∆ ∧∇)(a)
def
= ∆ ∧∇(a) + (−1)∇·a+r∆(a) ∧∇, (6.1)

where a ∈ A, ∆ ∈ Ds(A), ∇ ∈ Dr(A) and ∇ in the power of (−1) denotes
the grading of ∇ in the sense of the previous subsection.

Proposition 6.3. For any n-graded commutative algebra A the follow-

ing statements are valid :

(i) Definition (6.1) determines a mapping

∧ : Ds(A)⊗A Dr(A)→ Ds+r(A),

which is in agreement with the graded structure of polyderivations:

Ds,i(A) ∧Dr,j(A) ⊂ Ds+r,i+j(A).

(ii) The module D∗(A) =
∑

s≥0

∑
j∈Zn

Ds,j is an (n+ 1)-graded commu-

tative algebra with respect to the wedge product :

∆ ∧∇ = (−1)∆·∇+rs∇∧∆

for any ∆ ∈ Ds(A), ∇ ∈ Dr(A).1

(iii) If A satisfies conditions (i), (ii) on page 244, then the module D∗(A)
is generated by D0(A) = A and D1(A), i.e., any ∆ ∈ Ds(A) is a sum

of the elements of the form

a∆1 ∧ · · · ∧∆s, ∆i ∈ D1(A), a ∈ A.
Remark 6.4. One can define a wedge product ∧ : Di(A) ⊗A Dj(P ) →

Di+j(P ) with respect to which D∗(P ) acquires the structure of an (n+ 1)-
graded D∗(A)-module (see [54]), but it will not be needed below.

1.3. Contractions and graded Richardson–Nijenhuis bracket.
We define a contraction of a polyderivation ∆ ∈ Ds(A) into a form ω ∈ Λr

in the following way

i∆ω ≡ ∆ ω = 0, if s > r,

i∆ω = ∆(ω), if s = r, due to the definition of Λr,

iaω = aω, if a ∈ A = D0(A),

1This distinction between first n gradings and additional (n + 1)-st one will be pre-
served both for graded forms and graded polyderivations throughout the whole chapter.
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and for r > s set by induction

i∆(da ∧ ω) = i∆(a)(ω) + (−1)∆·a+sda ∧ i∆(ω). (6.2)

Proposition 6.4. Let A be an n-graded commutative algebra.

(i) For any ∆ ∈ Ds(A) definition (6.2) determines an (n + 1)-graded
differential operator

i∆ : Λ∗ → Λ∗

of the order s.
(ii) In particular, if ∆ ∈ D1(A), then i∆ is a graded derivation of Λ∗:

i∆(ω ∧ θ) = i∆(ω) ∧ θ + (−1)∆·ω+rω ∧ i∆θ, ω ∈ Λr, θ ∈ Λ∗.

Now we consider tensor products of the form Λr⊗ADs(A) and generalize
contraction and wedge product operations as follows

(ω ⊗∆) ∧ (θ ⊗∆) = (−1)∆·θ(ω ∧ θ)⊗ (∆ ∧∇),

iω⊗∆(θ ⊗∇) = ω ∧ i∆(θ)⊗∇,
where ω, θ ∈ Λ∗, ∆,∇ ∈ D∗(A). Let us define the Richardson–Nijenhuis

bracket in Λ∗ ⊗Ds(A) by setting

[[Ω,Θ]]rns = iΩ(Θ)− (−1)(ω+∆)·(Θ+∇)+(q−s)(r−s)iΘ(Ω), (6.3)

where Ω = ω⊗∆ ∈ Λr ⊗Ds(A), Θ = θ⊗∇ ∈ Λq ⊗Ds(A). In what follows,
we confine ourselves with the case s = 1 and introduce an (n + 1)-graded
structure into Λ∗ ⊗D1(A) by setting

gr(ω ⊗X) = (gr(ω) + gr(X), r), (6.4)

where gr(ω) and gr(X) are initial n-gradings of the elements ω ∈ Λr, X ∈
D1(A). We also denote by Ω and Ω1 the first n and (n + 1)-st gradings of
Ω respectively in the powers of (−1).

Proposition 6.5. Let A be an n-graded commutative algebra. Then:

(i) For any two elements Ω,Θ ∈ Λ∗ ⊗D1(A) one has

[iΩ, iΘ] = i[[Ω,Θ]]rn1
.

Hence, the Richardson–Nijenhuis bracket [[·, ·]]rn = [[·, ·]]rn1 determines

in Λ∗⊗D1(A) the structure of (n+1)-graded Lie algebra with respect

to the grading in which (n+1)-st component is shifted by 1 with respect

to (6.4), i.e.,

(ii) [[Ω,Θ]]rn + (−1)Ω·Θ+(Ω1+1)(Θ1+1)[[Θ,Ω]]rn = 0,

(iii)
∮

(−1)Θ·(Ω+Ξ)+(Θ1+1)(Ω1+Ξ1)[[[[Ω,Θ]]rn,Ξ]]rn = 0, where, as before,
∮

denotes the sum of cyclic permutations.

(iv) Moreover, if ρ ∈ Λ∗, then

[[Ω, ρ ∧ θ]]rn = (Ω ρ) ∧Θ + (−1)Ω·ρ ∧ [[Ω,Θ]]rn.

(v) In conclusion, the composition of two contractions is expressed by

iΩ ◦ iΘ = iΩ Θ + (−1)Ω1 iΩ∧Θ.
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1.4. De Rham complex and Lie derivatives. The de Rham differ-

ential d : Λr → Λr+1 is defined as follows. For r = 0 it coincides with the
derivation d : A → Λ1 introduced in Proposition 6.2. For any adb ∈ Λ1,
a, b ∈ A, we set

d(adb) = da ∧ db
and for a decomposable form ω = θ∧ρ ∈ Λr, θ ∈ Λr

′

, ρ ∈ Λr
′′

, r > 1, r′, r′′ <
r, set

dω = dθ ∧ ρ+ (−1)θ1θ ∧ dρ.
By definition, d : Λ∗ → Λ∗ is a derivation of grading (0, 1) and, obviously,

d ◦ d = 0.

Thus, one gets a complex

0→ A d−→ Λ1 → · · · → Λr → dΛr+1 → · · · ,
which is called the de Rham complex of A.

Let X ∈ D1(A) be a derivation. A Lie derivative LX : Λ∗ → Λ∗ is
defined as

LX = [iX , d] = iX ◦ d+ d ◦ iX . (6.5)

Thus for any ω ∈ Λ∗ one has

LXω = X dω + d(X ω).

The basic properties of LX are described by

Proposition 6.6. For any commutative n-graded algebra A one has

(i) If ω, θ ∈ Λ∗, then

LX(ω ∧ θ) = LXω ∧ θ + (−1)X·ωω ∧ LXθ,

i.e., LX really is a derivation of grading (gr(X), 0).
(ii) [LX , d] = LX ◦ d− d ◦ LX = 0.
(iii) For any a ∈ A and ω ∈ Λ∗ one has

LaX(ω) = aLXω + da ∧ iX(ω).

(iv) [LX , iY ] = [iX ,LY ] = i[X,Y ].

(v) [LX ,LY ] = L[X,Y ].

Now we extend the classical definition of Lie derivative onto the elements
of Λ∗ ⊗D1(A) and for any Ω ∈ Λ∗ ⊗D1(A) define

LΩ = [iΩ, d] = iΩ ◦ d+ (−1)Ω1d ◦ iΩ.

If Ω = ω ⊗X, then one has

Lω⊗X = ω ∧ LX + (−1)ω1dω ∧ iX .

Proposition 6.7. For any n-graded commutative algebra A the follow-

ing statements are valid :
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(i) For any Ω ∈ Λ∗ ⊗D1(A) one has

LΩ(ρ ∧ θ) = LΩ(ρ) ∧ θ + (−1)Ω·ρ+Ω1·ρ1ρ ∧ LΩθ, ρ, θ ∈ Λ∗,

i.e., LΩ is a derivation of Λ∗ whose grading coincides with that of Ω.

(ii) [LΩ, d] = LΩ ◦ d− (−1)Ω1d ◦ LΩ = 0.
(iii) Lρ∧Ω = ρ ∧ LΩ + (−1)ρ1+Ω1dρ ∧ iΩ, ρ ∈ Λ∗.

To formulate properties of LΩ similar to (iv) and (v) of Proposition 6.6,
one needs a new notion.

1.5. Graded Frölicher–Nijenhuis bracket. We shall now study the
commutator of two Lie derivatives.

Proposition 6.8. Let, as before, A be an n-graded commutative alge-

bra.

(i) For any two elements Ω,Θ ∈ Λ∗ ⊗ D1(A), the commutator of

corresponding Lie derivatives [LΩ,LΘ] is of the form LΞ for some

Ξ ∈ Λ∗ ⊗D1(A).
(ii) The correspondence L: Λ∗ ⊗ D1(A) → D1(Λ

∗), Ω 7→ LΩ, is injec-

tive and hence Ξ in (i) is defined uniquely. It is called the (graded)
Frölicher–Nijenhuis bracket of the elements Ω,Θ and is denoted by

Ξ = [[Ω,Θ]]fn. Thus, by definition, one has

[LΩ,LΘ] = L[[Ω,Θ]]fn .

(iii) If Ω and Θ are of the form

Ω = ω ⊗X, Θ = θ ⊗ Y, ω, θ ∈ Λ∗, X, Y ∈ D1(A),

then

[[Ω,Θ]]fn = (−1)X·θω ∧ θ ⊗ [X,Y ] + ω ∧ LXθ ⊗ Y
+ (−1)Ω1dω ∧ (X θ)⊗ Y
− (−1)Ω·Θ+Ω1·Θ1θ ∧ LY ω ⊗X
− (−1)Ω·Θ+(Ω1+1)·Θ1dθ ∧ (Y ω)⊗X
= (−1)X·θω ∧ θ ⊗ [X,Y ] + LΩ(θ)⊗ Y
− (−1)Ω·Θ+Ω1·Θ1LΘ(ω)⊗X. (6.6)

(iv) If Ω = X, Θ = Y ∈ D1(A) = Λ0⊗D1(A), then the graded Frölicher–

Nijenhuis bracket of Ω and Θ coincides with the graded commutator

of vector fields:

[[X,Y ]]fn = [X,Y ].

The main properties of the Frölicher–Nijenhuis bracket are described by

Proposition 6.9. For any Ω,Θ,Ξ ∈ Λ∗ ⊗D1(A) and ρ ∈ Λ∗ one has

(i)

[[Ω,Θ]]fn + (−1)Ω·Θ+Ω1·Θ1 [[Θ,Ω]]fn = 0. (6.7)
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(ii)
∮

(−1)(Ω+Ξ)·Θ+(Ω1+Ξ1)·Θ1 [[Ω, [[Θ,Ξ]]fn]]fn = 0, (6.8)

i.e., [[·, ·]]fn defines a graded Lie algebra structure in Λ∗ ⊗D1(A).
(iii)

[[Ω, ρ ∧Θ]]fn = LΩ(ρ) ∧Θ− (−1)Ω·(Θ+ρ)+(Ω1+1)·(Θ1+ρ1)dρ ∧ iΘΩ

+ (−1)Ω·ρ+Ω1·ρ1 · ρ ∧ [[Ω,Θ]]fn. (6.9)

(iv)

[LΩ, iΘ] + (−1)Ω·Θ+Ω1·(Θ1+1)LΘ Ω = i[[Ω,Θ]]fn . (6.10)

(v)

iΞ[[Ω,Θ]]fn = [[iΞΩ,Θ]]fn + (−1)Ω·Ξ+Ω1·(Ξ1+1)[[Ω, iΞΘ]]fn

+ (−1)Ω1 i[[Ξ,Ω]]fnΘ− (−1)Ω·Θ+(Ω1+1)·Θ1 i[[Ξ,Θ]]fnΩ. (6.11)

Remark 6.5. Similar to the commutative case, identity (6.11) can be
taken for the inductive definition of the graded Frölicher–Nijenhuis bracket.

Let now U be an element of Λ1 ⊗D1(A) and let us define the operator

∂U = [[U, ·]]fn : Λr ⊗D1(A)→ Λr+1 ⊗D1(A). (6.12)

Then from the definitions it follows that

∂U (U) = [[U,U ]]fn = (1 + (−1)U ·U )LU ◦ LU (6.13)

and from (6.7) and (6.8) one has

(1 + (−1)U ·U )∂U (∂UΩ) + (−1)U ·U [[Ω, [[U,U ]]fn]]fn = 0

for any Ω ∈ Λ∗ ⊗D1(A).
We are interested in the case when (6.12) is a complex, i.e., ∂U ◦∂U = 0,

and give the following

Definition 6.1. An element U ∈ Λ1⊗D1(A) is said to be integrable, if

(i) [[U,U ]]fn = 0 and
(ii) (−1)U ·U equals 1.

From the above said it follows that for an integrable element U one has
∂U ◦ ∂U = 0, and we can introduce the corresponding cohomologies by

Hr
U (A) =

ker(∂U : Λr ⊗D1(A)→ Λr+1 ⊗D1(A))

im(∂U : Λr−1 ⊗D1(A)→ Λr ⊗D1(A))
.

The main properties of ∂U are described by

Proposition 6.10. Let U ∈ Λ1 ⊗ D1(A) be an integrable element and

Ω,Θ ∈ Λ∗ ⊗D1(A), ρ ∈ Λ∗. Then

(i) ∂U (ρ ∧ Ω) = LU (ρ) ∧ Ω− (−1)U ·(Ω+ρ)dρ ∧ iΩU + (−1)U ·ρ+ρ1ρ ∧ ∂UΩ.
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(ii) [LU , iΩ] = i∂UΩ + (−1)U ·Ω+Ω1LΩ U .

(iii) [iΩ, ∂U ]Θ + (−1)U ·Θi[[Ω,Θ]]fnU = [[iΩU,Θ]]fn + (−1)U ·Ω+Ω1 i∂UΩΘ.

(iv) ∂U [[Ω,Θ]]fn = [[∂UΩ,Θ]]fn + (−1)U ·Ω+Ω1 [[Ω, ∂UΘ]]fn.

From the last equality it follows that the Frölicher–Nijenhuis bracket is
inherited by the module H∗

U (A) =
∑

r≥0H
r
U (A) and thus the latter forms

an (n+ 1)-graded Lie algebra with respect to this bracket.

2. Graded extensions

In this section, we adapt the cohomological theory of recursion opera-
tors constructed in Chapter 5 (see also [55, 58]) to the case of graded (in
particular, super) differential equations. Our first step is an appropriate
definition of graded equations (cf. [87] and the literature cited there). In
what follows, we still assume all the modules to be projective and of finite
type over the main algebra A0 = C∞(M) or to be filtered by such modules
in a natural way.

2.1. General construction. Let R be a commutative ring with a unit
and A−1 ⊂ A0 be two unitary associative commutative Zn-graded R-alge-
bras. Let D = D0 ⊂ D(A−1, A0) be an A0-submodule in the module

D(A−1, A0) = {∂ ∈ homR(A−1, A0) | ∂(aa′)

= ∂a · a′ + (−1)a·∂a · ∂a′, a, a′ ∈ A−1}.
Let us define a Zn-graded A0-algebra A1 by the generators

[∂, a], a ∈ A0, ∂ ∈ D0, gr[∂, a] = gr(∂) + gr(a),

with the relations

[∂, a0] = ∂a0,

[∂, a+ a′] = [∂, a] + [∂, a′],

[a′∂′ + a′′∂′′, a] = a′[∂′, a] +′ [∂′′, a],

[∂, aa′] = [∂, a] · a′ + (−1)∂·aa · [∂, a′],
where a0 ∈ A−1, a, a

′, a′′ ∈ A, ∂, ∂′, ∂′′ ∈ D0.
For any ∂ ∈ D0 we can define a derivation ∂(1) ∈ D(A0, A1) by setting

∂(1)(a) = [∂, a], a ∈ A1.

Obviously, ∂(1)a = ∂a for a ∈ A0. Denoting by D1 the A1-submodule in
D(A0, A1) generated by the elements of the form ∂(1), one gets the triple

{A0, A1,D1}, A0 ⊂ A1, D1 ⊂ D(A0, A1),

which allows one to construct {A1, A2,D2}, etc. and to get two infinite
sequences of embeddings

A−1 → A0 → · · · → Ai → Ai+1 → · · ·
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and

D0 → D1 → · · · → Di → Di+1 → · · · ,
where Ai+1 = (Ai)1, Di+1 = (Di)1 ⊂ D(Ai−1, Ai), and Di → Di+1 is a
morphism of Ai+1-modules.

Let us set

A∞ = inj lim
i→∞

Ai, D∞ = inj lim
i→∞

Di.

Then D∞ ⊂ D(A∞) and any element ∂ ∈ D0 determines a derivation

D(∂) = ∂(∞) ∈ D(A∞). The correspondence D : D0 → D(A∞) possesses
the following properties

D(X)(a) = X(a) for a ∈ A−1,

D(aX) = aD(X) for a ∈ A0.

Moreover, by definition one has

[D(X),D(Y )](a) = D(X)(Y (a))− (−1)X·YD(Y )(X(a)),

a ∈ A−1, X,Y ∈ D0.

2.2. Connections. Similar to Chapter 5, we introduce the notion of a
connection in the graded setting.

Let A and B be two n-graded algebras, A ⊂ B. Consider modules the
of derivations D(A,B) and D(B) and a B-linear mapping

∇ : D(A,B)→ D(B).

The mapping ∇ is called a connection for the pair (A,B), or an (A,B)-
connection, if

∇(X)|A = X.

From the definition it follows that ∇ is of degree 0 and that for any
derivations X,Y ∈ D(A,B) the element

∇(X) ◦ Y − (−1)X·Y∇(Y ) ◦X
again lies in D(A,B). Thus one can define the element

R∇(X,Y ) = [∇(X),∇(Y )]−∇(∇(X) ◦ Y − (−1)X·Y∇(Y ) ◦X)

which is called the curvature of the connection ∇ and possesses the following
properties

R∇(X,Y ) + (−1)X·YR∇(Y,X) = 0, X, Y ∈ D(A,B),

R∇(aX, Y ) = aR∇(X,Y ), a ∈ B,
R∇(X, bY ) = (−1)X·bbR∇(X,Y ), b ∈ B.

A connection ∇ is called flat , if R∇(X,Y ) = 0 for all X,Y ∈ D(A,B).
Evidently, when the grading is trivial, the above introduced notions

coincide with the ones from Chapter 5.
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2.3. Graded extensions of differential equations. Let now M be
a smooth manifold and π : E → M be a smooth locally trivial fibre bundle
over M . Let E ⊂ Jk(π) be a k-th order differential equation represented as
a submanifold in the manifold of k-jets for the bundle π. We assume E to
be formally integrable and consider its infinite prolongation E i ⊂ J∞(π).

Let F(E) be the algebra of smooth functions on E∞ and CD(E) ⊂
D(E) = D(F(E)) be the Lie algebra generated by total derivatives CX,
X ∈ D(M), C : D(M) → D(E) being the Cartan connection on E∞ (see
Chapter 2).

Let F be an n-graded commutative algebra such that F0 = F(E). De-
note by CD0(E) the F-submodule in D(F(E),F) generated by CD(E) and
consider the triple (F(E),F , CD0(E)) as a starting point for the construc-
tion from Subsection 2.1. Then we shall get a pair (F∞, CD∞(E)), where

CD∞(E) def
= (CD0(E))∞. We call the pair (F∞, CD∞(E)) a free differential

F-extension of the equation E .
The algebra F∞ is filtered by its graded subalgebras Fi, i = −1, 0, 1, . . . ,

and we consider its filtered graded CD∞(E)-stable ideal I. Any vector field
(derivation) X ∈ CD∞(E) determines a derivation XI ∈ D(FI), where
FI = F/I. Let CDI(E) be an FI -submodule generated by such deriva-
tions. Obviously, it is closed with respect to the Lie bracket. We call the
pair (FI , CDI(E)) a graded extension of the equation E , if I ∩ F(E) = 0,
where F(E) is considered as a subalgebra in F∞.

Let F−∞ = C∞(M). In an appropriate algebraic setting, the Cartan
connection C : D(F−∞) → D(F(E)) can be uniquely extended up to a con-
nection

CI : D(F−∞,FI)→ CDI(E) ⊂ D(FI).
In what follows we call graded extensions which admit such a connection
C-natural. From the flatness of the Cartan connection and from the defini-
tion of the algebra CD∞(E) (see Subsection 2.1) it follows that CI is a flat
connection as well, i.e.,

RCI (X,Y ) = 0,

where X,Y ∈ D(F−∞,FI), for any C-natural graded extension
(FI , CDI(E)).

2.4. The structural element and C-cohomologies. Let us consider
a C-natural graded extension (FI , CDI(E)) and define a homomorphism UI ∈
homFI (D(FI), D(FI)) by

UI(X) = X − CI(X−∞), X ∈ D(FI), X−∞ = X|F−∞
. (6.14)

The element UI is called the structural element of the graded extension
(FI , CDI(E)).

Due to the assumptions formulated above, UI is an element of the module
D1(Λ

∗(FI)), where FI is finitely smooth (see Chapter 4) graded algebra, and
consequently can be treated in the same way as in the nongraded situation.
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Theorem 6.11. For any C-natural graded extension (FI(E), CDI(E)),
the equation E being formally integrable, its structural element is integrable:

[[UI , UI ]]
fn = 0.

Proof. Let X,Y ∈ D(FI) and consider the bracket [[UI , UI ]]
fn as an

element of the module homFI (DI(E)∧DI(E), DI(E)). Then applying (6.11)
twice, one can see that

[[UI , UI ]]
fn(X,Y ) = ε

(
(−1)U ·Y [UI(X), UI(Y )]− (−1)U ·Y UI([UI(X), Y ])

− UI([X,UI(Y )]) + U2
I ([X,Y ])

)
, (6.15)

where ε = (−1)X·Y (1+(−1)U ·U ). Expression (6.15) can be called the graded

Nijenhuis torsion (cf. [49]).
From (6.14) if follows that the grading of UI is 0, and thus (6.15) trans-

forms to

[[UI , UI ]]
fn(X,Y ) = (−1)X·Y · 2

(
[UI(X), UI(Y )]− UI [UI(X), Y ]

− UI [X,UI(Y )] + U2
I [X,Y ]

)
. (6.16)

Now, using definition (6.14) of UI , one gets from (6.16):

[[UI , UI ]]
fn(X,Y )

= (−1)X·Y · 2
(
[CI(X−∞), CI(Y−∞)]− CI([CI(X−∞), Y ]−∞)

− CI([X, CI(Y−∞]−∞) + CI((CI([X,Y ]−∞))−∞

)
.

But for any vector fields X,Y ∈ D(FI) one has

(CI(X−∞))−∞ = X−∞.

and

[X,Y ]−∞ = X ◦ Y−∞ − (−1)X·Y Y ◦X∞.

Hence,

[[UI , UI ]]
fn(X,Y ) = (−1)X·Y · 2

(
[CI(X−∞), CI(Y−∞)]

− CI(CI(X−∞) ◦ Y−∞ − (−1)X·Y CI(Y−∞) ◦X−∞)
)

= (−1)X·Y 2RCI (X,Y ) = 0.

Hence, with any C-natural graded E-equation, in an appropriate alge-
braic setting, one can associate a complex

0→ D(FI)→ Λ1(FI)⊗D(FI)→ · · ·

· · · → Λr(FI)⊗D(FI) ∂I−→ Λr+1(FI)⊗D(FI)→ · · · , (6.17)
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where ∂I(Ω) = [[UI ,Ω]]fn, Ω ∈ Λr(FI)⊗D(FI), with corresponding cohomol-
ogy modules.

Like in Chapters 4 and 5, we confine ourselves with a subtheory of this
cohomological theory.

2.5. Vertical subtheory.

Definition 6.2. An element Ω ∈ Λ∗(FI) ⊗ D(FI) is called vertical, if
LΩ(ϕ) = 0 for any ϕ ∈ F−∞ ⊂ FI = Λ0(FI).

Denote by Dv(FI) the set of all vertical vector fields from D(FI) =
Λ0(FI)⊗D(FI).

Proposition 6.12. Let (FI , CDI(E)) be a C-natural graded extension of

an equation E. Then

(i) The set of vertical elements in Λr(FI) ⊗ D(FI) coincides with the

module Λr(FI)⊗Dv(FI).
(ii) The module Λ∗(FI)⊗Dv(FI) is closed with respect to the Frölicher–

Nijenhuis bracket as well as with respect to the contraction operation:

[[Λr(FI)⊗Dv(FI),Λs(FI)⊗Dv(FI)]]fn ⊂Λr+s(FI)⊗Dv(FI),(
Λr(FI)⊗Dv(FI)

) (
Λs(FI)⊗Dv(FI)

)
⊂Λr+s−1(FI)⊗Dv(FI).

(iii) An element Ω ∈ Λ∗(FI)⊗D(FI) lies in Λ∗(F)⊗Dv(FI) if and only

if

iΩ(UI) = Ω.

(iv) The structural element is vertical : UI ∈ Λ1(FI)⊗Dv(FI).
From the last proposition it follows that complex (6.17) can be restricted

up to

0→ Dv(FI)→ Λ1(FI)⊗Dv(FI)→ · · ·

· · · → Λr(FI)⊗Dv(FI) ∂I−→ Λr+1(FI)⊗Dv(FI)→ · · · (6.18)

Cohomologies

Hr
I (E) =

ker(∂I : Λr(FI)⊗Dv(FI)→ Λr+1(FI)⊗Dv(FI))
im(∂I : Λr−1(FI)⊗Dv(FI)→ Λr(FI)⊗Dv(FI))

are called C-cohomologies of a graded extension. The basic properties of the
differential ∂I in (6.18) are corollaries of Propositions 6.9 and 6.12:

Proposition 6.13. Let (FI(E), CDI(E)) be a C-natural graded extension

of the equation E and denote by LI the operator LUI . Then for any Ω,Θ ∈
Λ∗(FI)⊗Dv(FI) and ρ ∈ Λ∗(FI) one has

(i) ∂I(ρ ∧ Ω) = (LI(ρ)− dρ) ∧ Ω + (−1)ρ1 · ρ ∧ ∂IΩ,

(ii) [LI , iΩ] = i∂IΩ + (−1)Ω1LΩ,

(iii) [iΩ, ∂I ]Θ = (−1)Ω1(∂IΩ) Θ,

(iv) ∂I [[Ω,Θ]]fn = [[∂IΩ,Θ]]fn + (−1)Ω1 [[Ω, ∂IΘ]]fn.
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Let dh = d−LI : Λ∗(FI)→ Λ∗(FI). From (6.13) and Proposition 6.6 (ii)
it follows that dh◦dh = 0. Similar to the nongraded case, we call dh the hori-

zontal differential of the extension (FI , CDI(E)) and denote its cohomologies
by H∗

h(E ; I).
Corollary 6.14. For any C-natural graded extension one has

(i) The module H∗
I (E) =

∑
r≥0H

r
I (E) is a graded H∗

h(E ; I)-module.

(ii) H∗
I (E) is a graded Lie algebra with respect to the Frölicher–Nijenhuis

bracket inherited from Λ∗(FI)⊗Dv(FI).
(iii) H∗

I (E) inherits from Λ∗(FI)⊗Dv(FI) the contraction operation

Hr
I (E) Hs

I (E) ⊂ Hr+s−1
I (E),

and H∗
I (E), with the shifted grading, is a graded Lie algebra with re-

spect to the inherited Richardson–Nijenhuis bracket.

2.6. Symmetries and deformations. Skipping standard reasoning,
we define infinitesimal symmetries of a graded extension (FI(E), CDI(E)) as

DCI (E) = {X ∈ DI(E) | [X, CDI(E)] ⊂ CDI(E)};
DCI (E) forms an n-graded Lie algebra while CDI(E) is its graded ideal con-
sisting of trivial symmetries. Thus, a Lie algebra of nontrivial symmetries

is

symI E = DCI (E)/CDI(E).
If the extension at hand is C-natural, then, due to the connection CI , one
has the direct sum decompositions

D(FI) = Dv(FI)⊕ CDI(E), DCI (E) = Dv
CI (E)⊕ CDI(E), (6.19)

where

Dv
CI (E) = {X ∈ Dv

I (E) | [X, CDI(E)] = 0} = Dv(FI) ∩DCI (E),
and symI E is identified with the first summand in (6.19).

Let ε ∈ R be a small parameter and UI(ε) ∈ Λ1(FI) ⊗ Dv(FI) be a
smooth family such that

(i) UI(0) = UI ,

(ii) [[UI(ε), UI(ε)]]
fn = 0 for all ε.

Then UI(ε) is a (vertical) deformation of a graded extension structure,
and if

UI(ε) = UI + U1
I · ε+ o(ε),

then U1
I is called (vertical) infinitesimal deformation of UI . Again, skipping

motivations and literally repeating corresponding proof from Chapter 5, we
have the following

Theorem 6.15. For any C-natural graded extension (FI , CDI(E)) of the

equation E one has

(i) H0
I (E) = symI(E);
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(ii) The module H1
I (E) consists of the classes of nontrivial infinitesimal

vertical deformations of the graded extension structure UI .

The following result is an immediate consequence of the results of pre-
vious subsection:

Theorem 6.16. Let (FI , CDI(E)) be a graded extension. Then

(i) The module H1
I (E) is an associative algebra with respect to contrac-

tion.

(ii) The mapping

R : H1
I (E)→ EndR(H0

I (E)),
where

RΩ(X) = X Ω, X ∈ H0
I (E), Ω ∈ H1

I (E),
is a representation of this algebra. And consequently,

(iii)

(symI E) H1
I (E) ⊂ symI E .

2.7. Recursion operators. The first equality in (6.19) gives us the
dual decomposition

Λ1(FI) = CΛ1(FI)⊕ Λ1
h(FI), (6.20)

where

CΛ1(FI) = {ω ∈ Λ1(FI) | CDI(E) ω = 0},
Λ1
h(FI) = {ω ∈ Λ1(FI) | Dv(FI) ω = 0}.

In fact, let ω =
∑

α fα dgα, fα, gα ∈ FI , be a one-form. Then, since by
definition d = dh + LI , one has

ω =
∑

α

fα(dhgα + LI(gα)).

Let X ∈ Dv(FI). Then from Proposition 6.13 (ii) it follows that

X LI(g) = −LI(X g) + ∂I(X) g + LX(g) = X(g), g ∈ FI .
Hence,

X dhg = X (d− LI)g = X(g)−X(g) = 0.

On the other hand,

LI(g) = UI dg,

and if Y ∈ CDI(E), then

Y LI(g) = Y (UI dg) = (Y UI) dg

due to Proposition 6.5 (v); but Y UI = 0 for any Y ∈ CDI(E).
Thus, similar to the nongraded case, one has the decomposition

Λr(FI) =
∑

p+q=r

CpΛ(FI) ∧ Λqh(FI), (6.21)
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where

CpΛ(FI) = CΛ1(FI) ∧ · · · ∧ CΛ1(FI)︸ ︷︷ ︸
p times

,

and

Λqh(FI) = Λ1
h(FI) ∧ · · · ∧ Λ1

h︸ ︷︷ ︸
q times

,

and the wedge product ∧ is taken in the graded sense (see Subsection 1.2).

Remark 6.6. The summands in (6.21) can also be described in the fol-
lowing way

CpΛ(FI) ∧ Λqh(FI) = {ω ∈ Λp+q(FI) | X1 . . . Xp+1 ω = 0,

Y1 . . . Yq+1 ω = 0 for all Xα ∈ Dv(FI), Yβ ∈ CDI(E)}.
Proposition 6.17. Let (FI , CDI(E)) be a C-natural extension. Then

one has

∂I(CpΛ(FI) ∧ Λqh(FI)⊗Dv(FI)) ⊂ CpΛ(FI) ∧ Λq+1
h (FI)⊗Dv(FI)

for all p, q ≥ 0.

The proof is based on two lemmas.

Lemma 6.18. dhC1Λ(FI) ⊂ C1Λ(FI) ∧ Λ1
h(FI).

Proof of Lemma 6.18. Due to Remark 6.6, it is sufficient to show that

Xv Y v dhω = 0, Xv, Y v ∈ Dv(FI), (6.22)

and

Xh Y h dhω = 0, Xh, Y h ∈ CDI(E), (6.23)

where ω ∈ C1Λ(FI). Obviously, we can restrict ourselves to the case ω =
LI(g), g ∈ FI :

Y v dhω = Y v dhLI(g) = −Y v LIdhg

= LI(Y
v dhg) + LY v(dhg) = dhY

v(g).

Hence,

Xv Y v dhω = Xv dhY
v(g) = 0,

which proves (6.22). Now,

Y h dhω = −Y h LIdhg = Y h (d(UI dhg)− UI d(dhg)).

But UI is a vertical element, i.e., UI ∈ Λ1(FI)⊗Dv(FI). Therefore,

UI dhg = 0

and

Y h dhω = −Y h UI d(dhg)
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= −Y h UI) d(dhg)− (Y h ∧ UI) d(dhg).

The first summand in the right-hand side of the last equality vanishes, since,
by definition, Y h UI = 0 for any Y h ∈ CDI(E). Hence,

Xh Y h dhω = −Xh (Y h ∧ UI) d(dhg)

= −(Xh (Y h ∧ UI)) d(dhg)− (Xh ∧ Y h ∧ UI) d(dhg)

= −(Xh ∧ Y h ∧ UI) d(dhg).

But Xh ∧ Y h ∧ UI is a (form valued) 3-vector while d(dhg) is a 2-form;
hence

Xh Y h dhω = 0,

which finishes the proof of Lemma 6.18.

Lemma 6.19. ∂ID
v(FI) ⊂ Λ1

h ⊗Dv(FI).
Proof of Lemma 6.19. One can easily see that it immediately follows

from Proposition 6.13 (iii).

Proof of Proposition 6.17. The result follows from previous lem-
mas and Proposition 6.13 (i) which can be rewritten as

∂I(ρ ∧ Ω) = −dh(ρ) ∧ Ω + (−1)ρ1ρ ∧ ∂I(Ω).

Taking into account the last result, one has the following decomposition

Hr
I (E) =

∑

p+q=r

Hp,q
I (E),

where

Hp,q
I (E) = ker(∂p,qI )/im(∂p,q−1

I ),

where ∂i,j : CiΛ(FI) ∧ Λjk(FI)⊗Dv(FI)→ Ci(FI) ∧ Λj+1
h (FI)⊗Dv(FI).

In particular,

H1
I (E) = H0,1

I (E)⊕H1,0
I (E). (6.24)

Note now that from the point of view of H1
I (E)-action on H0

I (E) =
symI E , the first summand in (6.24) is of no interest, since

Dv(FI) Λ1
h(FI) = 0.

We call H∗,0
I (E) the Cartan part of H∗

I (E), while the elements of H1,0
I (E)

are called recursion operators for the extension (FI , CDI(E)). One has the
following

Proposition 6.20. Hp,0
I (E) = ker ∂p,0I .

Proof. In fact, from Proposition 6.17 one has

im(∂I) ∩ (C∗Λ(FI)⊗Dv(FI)) = 0,

which proves the result.



260 6. SUPER AND GRADED THEORIES

Note that H∗,0
I (E) inherits an associative graded algebra structure with

respect to contraction, H1,0
I (E) being its subalgebra.

2.8. Commutativity theorem. In this subsection we prove the fol-
lowing

Theorem 6.21. [[H1,0
I (E), H1,0

I (E)]]fn ⊂ H2,0
I (E).

The proof is based on the following

Lemma 6.22. For any ω ∈ C1Λ(FI) one has

UI ω = ω. (6.25)

Proof of Lemma 6.22. It is sufficient to prove (6.25) for the genera-
tors of the module C1Λ(FI) which are of the form

ω = LI(g), g ∈ FI .
From (6.10) one has

LI ◦ iUI − iUI ◦ LI + LUI UI = i[[UI ,UI ]]fn ,

or

LI ◦ iUI − iUI ◦ LI + LI = 0. (6.26)

Applying (6.26) to some g ∈ FI , one sees that

UI LI(g) = LI(g).

Proof of Theorem 6.21. Let Ω,Θ ∈ H1,0
I (E), i.e., Ω,Θ ∈ C1Λ(FI)

and ∂IΩ = ∂IΘ = 0. Then from (6.11) it follows that

UI [[Ω,Θ]]fn = [[UI Ω,Θ]]fn + [[Ω, UI Θ]]fn,

or, due to Lemma 6.22,

UI [[Ω,Θ]]fn = 2[[Ω,Θ]]fn.

Hence,

[[Ω,Θ]]fn =
1

2
UI [[Ω,Θ]]fn =

1

4
UI (UI [[Ω,Θ]]fn)

=
1

4
((UI UI) [[Ω,Θ]]fn − (UI ∧ UI) [[Ω,Θ]]fn)

=
1

4
(UI [[Ω,Θ]]fn − (UI ∧ UI) [[Ω,Θ]]fn)

=
1

2
[[Ω,Θ]]fn − 1

4
(UI ∧ UI) [[Ω,Θ]]fn,

or

[[Ω,Θ]]fn = −1

2
(UI ∧ UI) [[Ω,Θ]]fn.

But UI ∈ C1Λ(FI)⊗Dv(FI) which finishes the proof.
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Corollary 6.23. The element UI is a unit of the associative algebra

H1,0
I (E).

Proof. The result follows from the definition of the element UI and
from Lemma 6.22.

Corollary 6.24. Under the assumption H2,0
I (E) = 0, all recursion op-

erators for the graded extension (FI , CDI(E)) commute with respect to the

Frölicher–Nijenhuis bracket.

Let Ω ∈ H1,0
I (E) be a recursion operator. Denote its action on H0

I (E) =
symI(E) by Ω(X) = X Ω, X ∈ H0

I (E). Then, from (6.11) it follows that

Y X [[Ω,Θ]]fn = (−1)X·Y
(
(−1)Y ·Ω[Ω(X),Θ(Y )]

+ (−1)(Y+Ω)·Θ[Θ(X),Ω(Y )]

− (−1)Ω·ΘΩ((−1)Y ·Θ[Θ(X), Y ] + [X,Θ(Y )])

−Θ((−1)Y ·Ω[Ω(X), Y ] + [X,Ω(Y )])

+ ((−1)Ω·ΘΩ ◦Θ + Θ ◦ Ω)[X,Y ]
)
, (6.27)

for all X,Y ∈ symI(E), Ω,Θ ∈ H1,0
I (E).

Corollary 6.25. If H2,0
I (E) = 0, then for any symmetries X,Y ∈

symI(E) and recursion operators Ω,Θ ∈ H1,0
I (E) one has

(−1)Y ·Ω[Ω(X),Θ(Y )] + (−1)(Y+Ω)·Θ[Θ(X),Ω(Y )]

= (−1)Ω·ΘΩ((−1)Y ·Ω[Θ(X), Y ] + [X,Θ(Y )]) + Θ((−1)Y ·Ω[Ω(X), Y ]

+ [X,Ω(Y )]) + ((−1)Ω◦ΘΩ ◦Θ + Θ ◦ Ω)[X,Y ]. (6.28)

In particular,

(1 + (−1)Ω·Ω)
(
(−1)Y ·Ω[Ω(X),Ω(Y )]

− (−1)Y ·ΩΩ[Ω(X), Y ]− Ω[X,Ω(Y )] + Ω2[X,Y ]
)

= 0,

and if Ω · Ω is even, then

[Ω(X),Ω(Y )] = Ω([Ω(X), Y ] + (−1)Y Ω[X,Ω(Y )]− (−1)Y ΩΩ[X,Y ]).
(6.29)

Using Corollary 6.25, one can describe a Lie algebra structure of symI E
in a way similar to Section 3 of Chapter 4.

3. Nonlocal theory and the case of evolution equations

Here we extend the theory of coverings and that of nonlocal symmetries
(see Chapter 3 to the case of graded equations (cf. [87]). We confine our-
selves to evolution equations though the results obtained, at least partially,
are applicable to more general cases. For any graded equation the notion of
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its tangent covering (an add analog of the Cartan covering, see Example 3.2
on p. 100) is introduced which reduces computation of recursion operators to
computations of special nonlocal symmetries. In this setting, we also solve
the problem of extending “shadows” of recursion operators up to real ones.

3.1. The GDE(M) category. Let M be a smooth manifold and A =
C∞(M). We define the GDE(M) category of graded differential equations
over M as follows. The objects of GDE(M) are pairs (F ,∇F ), where F is
a commutative n-graded A-algebra (the case n = ∞ is included) endowed
with a filtration

A = F−∞ ⊂ . . . ⊂ Fi ⊂ Fi+1 ⊂ . . . ,
⋃

i

Fi = F , (6.30)

while ∇F is a flat (A,F)-connection (see Subsection 2.2), i.e.,

(i) ∇F ∈ homF (D(A,F), D(F)),
(ii) ∇F (X)(a) = X(a), X ∈ D(A,F), a ∈ A,
(iii) [∇F (X),∇F (Y )] = ∇F (∇F (X) ◦ Y −∇F (Y ) ◦X), X,Y ∈ D(A,F).

From the definition it follows that the grading of ∇F is 0, and we also
suppose that for any X ∈ D(A,F) the derivation ∇F (X) agrees with the
filtration (6.30), i.e.,

∇F (X)(Fi) ⊂ Fi+s
for some s = s(X) and all i large enough.

Let (F ,∇F ) and (G,∇G) be two objects and ϕ : F → G be a graded
filtered homomorphism. Then for any X ∈ D(A,F) the composition ϕ ◦X
lies in D(A,G). We say that it is a morphism of the object (F ,∇F ) to
(G,∇G) if the diagram

F ϕ → G

F

∇F (X)

↓
ϕ → G

∇G(ϕ ◦X)

↓

is commutative for all X ∈ D(A,F). If ϕ is a monomorphism, we say that
it represents a covering of (G,∇G) over (F ,∇F ).

Remark 6.7. Let E be an equation in some bundle over M . Then all
graded extensions of E are obviously objects of GDE(M).

Remark 6.8. The theory of the previous section can be literally applied
to the objects of GDE(M) as well.

3.2. Local representation. In what follows, we shall deal with the
following kinds of objects of the category GDE(M):

(i) infinite prolongations of differential equations;
(ii) their graded extensions;
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(iii) coverings over (i) and (ii).

For particular applications local versions of these objects will be consid-
ered. It means the following:

(i) In a neighborhood O ⊂ M local coordinates x = (x1, . . . , xn) are
chosen (independent variables);

(ii) the bundle π : E → M in which E is defined is supposed to be a
vector bundle, and it trivializes over O. If (e1, . . . , em) is a basis
of local sections of π over O, then f = u1e1 + · · · + umem for any
f ∈ Γ(π|O), and u1, . . . , um play the role of dependent variables for
the equation E ;

(iii) the equation E is represented by a system of relations




F1(x, . . . , u
j
σ, . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . .

F1(x, . . . , u
j
σ, . . . ) = 0,

where ujσ = ∂|σ|uj/∂xσ, σ = (i1, . . . , in), |σ| = i1 + · · · + in ≤ k, are
coordinates in the manifold of k-jets Jk(π), k being the order of E ;

(iv) a graded extension F of F(E) (see Subsection 2.3 is freely generated
over F(E) by homogeneous elements v1, v2, . . . . It means that F∞ is

generated by vjτ , where vj
0

= vj and

vj(i1,...,is+1,...,in) = [Ds, v
j
(i1,...,in)],

Ds being the total derivative on E∞ corresponding to ∂/∂xs. In this
setting any graded extension of E can be represented as





F1(x, . . . , u
j
σ, . . . ) + φ1(x, . . . , u

j
σ, . . . , v

j
τ , . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fr(x, . . . , u
j
σ, . . . ) + φr(x, . . . , u

j
σ, . . . , v

j
τ , . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φr+1(x, . . . , u
j
σ, . . . v

j
τ , . . . ) = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φr+l(x, . . . , u
j
σ, . . . v

j
τ , . . . ) = 0,

where φ1, . . . , φr are functions such that φ1 = 0, . . . , φr = 0 for vjτ = 0.
(v) for any covering ϕ : F → G of the graded extension F by an object

(G,∇G) we assume that G is freely generated over F by homogeneous
elements w1, w2, . . . and

∇G

(
∂

∂xi

)
= Di +

∑

s

Xs
i

∂

∂ws
def
= D̃i

with

[D̃i, D̃j ] = [Di,
∑

s

Xs
j

∂

∂ws
] + [

∑

s

Xs
i

∂

∂ws
, Dj ]



264 6. SUPER AND GRADED THEORIES

+ [
∑

s

Xs
i

∂

∂ws
,
∑

s

Xs
j

∂

∂ws
] = 0,

where i, j = 1, . . . , n, Xs
i ∈ G, and D1, . . . , Dn are total derivatives

extended onto F : Di = ∇F (∂/∂xi). Elements w1, w2, . . . are called
nonlocal variables related to the covering ϕ, the number of nonlocal
variables being called the dimension of ϕ.

3.3. Evolution equations. Below we deal with super (Z2-graded) evo-
lution equations E in two independent variables x and t:





u1
t = f1(x, t, u1, . . . , um, . . . , u1

k, . . . , u
m
k ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

umt = fm(x, t, u1, . . . , um, . . . , u1
k, . . . , u

m
k ),

(6.31)

where u1, . . . , um are either of even or of odd grading, and ujs denotes

∂uj/∂xs. We take x, t, u1
0, . . . , u

m
0 , . . . , u

1
i , . . . u

j
i , . . . for the internal coor-

dinates on E∞. The total derivatives Dx and Dt restricted onto the infinite
prolongation of (6.31) are of the form

Dx =
∂

∂x
+

∞∑

i=0

m∑

j=1

uji+1

∂

∂uji
,

Dt =
∂

∂t
+

∞∑

i=0

m∑

j=1

Di
x(f

j)
∂

∂uji
. (6.32)

In the chosen local coordinates, the structural element U = UE of the
equation E is represented as

U =
∞∑

i=0

m∑

j=1

(duji − u
j
i+1 dx−Di(f j) dt)⊗ ∂

∂uji
. (6.33)

Then for a basis of the module C1Λ(E) one can choose the forms

ωji = LU (uji ) = duji − u
j
i+1 dx−Di(f j) dt,

while (6.33) is rewritten as

U =
∞∑

i=0

m∑

j=1

ωji ⊗
∂

∂uji
. (6.34)

Let Θ =
∑∞

i=0

∑m
j=1 θ

j
i ⊗ ∂/∂u

j
i ∈ Λp(E)⊗Dv(E). Then from (6.6) one

has

∂E(Θ) = [[U,Θ]]fn =
∞∑

i=0

m∑

j=1

(
dx ∧ (θji+1 −Dx(θ

j
i ))

+ dt ∧
( ∞∑

β=0

m∑

α=1

θαβ
∂Di

xf
j

∂uαβ
−Dt(θ

j
i )
))
⊗ ∂

∂uji
. (6.35)
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From (6.35) one easily gets the following

Theorem 6.26. Let E be an equation of the form (6.31). Then Hp,0
C (E)

consists of the elements

¤θ =
∞∑

i=0

m∑

j=1

Di
x(θ

j)⊗ ∂

∂uji
,

where θ = (θ1, . . . , θm), θj ∈ CpΛ(E), is a vector-valued form satisfying the

equations

k∑

i=0

m∑

j=1

Di
x(θ

j)
∂f l

∂uji
= 0, l = 1, . . . ,m, (6.36)

or in short,

Hp,0
C (E) = ker `

(p)
E ,

where `
(p)
E is the extension of the operator of universal linearization operator

onto the module CpΛ(E)⊗R Rm:

(`
(p)
E (θ))l =

k∑

i=0

m∑

j=1

Di
x(θ

j)
∂f l

∂uji
, l = 1, . . . ,m. (6.37)

3.4. Nonlocal setting and shadows. Let now ϕ be a covering of
equation (6.31) determined by nonlocal variables w1, w2, . . . with the ex-
tended total derivatives of the form

D̃x = Dx +
∑

s

Xs
∂

∂ws
,

D̃t = Dt +
∑

s

Ts
∂

∂ws
, (6.38)

satisfying the identity

[D̃x, D̃t] = 0. (6.39)

Denote by F(Eϕ) the corresponding algebra of functions and by Λ∗(Eϕ)
and D(Eϕ) the modules of differential forms and vector fields on F(Eϕ)
respectively. Then the structural element of the covering object is

Uϕ = U +
∑

s

(dωs −Xs dx− Ts dt)⊗
∂

∂ws

and the identity

[[Uϕ, Uϕ]]fn = 0

is fulfilled due to (6.39).
If now

Θ =
∞∑

i=0

m∑

j=1

θji ⊗
∂

∂uji
+
∑

s

ρs ⊗
∂

∂ws
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is an element of the module Λp(Eϕ)⊗Dv(Eϕ), then one can easily see that

∂ϕ(Θ) = [[Uϕ,Θ]]fn =

∞∑

i=0

m∑

j=1

(
dx ∧

(
θji+1 − D̃x(θ

j
i )
)

+ dt ∧
( ∞∑

β=0

m∑

α=1

θαβ
∂Di

xf
j

∂uαβ
− D̃t(θ

j
i )
))
⊗ ∂

∂uji

+
∑

s

(
dx ∧

( ∞∑

β=0

m∑

α=1

θαβ
∂Xs

∂uαβ
+
∑

γ

ργ
∂Xs

∂wγ
− D̃x(ρs)

)

+ dt ∧
( ∞∑

β=0

m∑

α=1

θαβ
∂Xs

∂uαβ
+
∑

γ

ργ
∂Ts
∂wγ

− D̃t(ρs)
))
⊗ ∂

∂ws
. (6.40)

Again, confining oneself to the case Θ ∈ CpΛ(Eϕ)⊗Dv(Eϕ), one gets the
following

Theorem 6.27. Let E be an equation of the form (6.31) and ϕ be its

covering with nonlocal variables w1, w2, . . . and extended total derivatives

given by (6.38). Then the module Hp,0
C (Eϕ) consists of the elements

¤θ,ρ =
∞∑

i=0

m∑

j=1

D̃i
x(θ

j)⊗ ∂

∂uji
+
∑

s

ρs ⊗
∂

∂ws
, (6.41)

where θ = (θ1, . . . , θm) and ρ = (ρ1, . . . , ρs, . . . ), θ
j , ρs ∈ CpΛ(Eϕ), are

vector-valued forms satisfying the equations

˜̀(p)
E (θ) = 0, (6.42)

and
∞∑

β=0

m∑

α=1

D̃β
x(θα)

∂Xs

∂uαβ
+
∑

j

ρj
∂Xs

∂wj
= D̃x(ρs),

∞∑

β=0

m∑

α=1

D̃β
x(θα)

∂Ts
∂uαβ

+
∑

j

ρj
∂Ts
∂wj

= D̃t(ρs), (6.43)

s = 1, 2, . . . , where ˜̀(p)
E is the natural extension of `

(p)
E with Dx and Dt

replaced by D̃x and D̃t in (6.37).

Similar to Chapter 5, we call (6.42) shadow equations and (6.42) relation

equations for the element (θ, ρ); solutions of (6.42) are called shadow solu-

tions, or simply shadows. Our main concern lies in reconstruction elements
of the module Hp,0

C (Eϕ) from their shadows. Denote the set of such shadows

by SHp,0
C (Eϕ).

Remark 6.9. Let ϕ be a covering. Consider horizontal one-forms

ωsϕ = dhws = Xs dx+ Ts dt, s = 1, 2, . . . ,
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where dh is the horizontal de Rham differential associated to ϕ. Then (6.42)
can be rewritten as

¤θ,ρ(ω
s
ϕ) = dhρs, s = 1, 2, . . . (6.44)

Remark 6.10. When Xs and Ts do not depend on nonlocal variables,
the conditions of ϕ being a covering is equivalent to

dhω
s
ϕ = 0, s = 1, 2, . . . ,

dh being the horizontal differential on E . In particular, one-dimensional
coverings are identified with elements of ker(dh). We say a one-dimensional
covering ϕ to be trivial if corresponding form ωϕ is exact (for motivations see
Chapter 3). Thus, the set of classes of nontrivial one-dimensional coverings ϕ
with ωϕ independent of nonlocal variables is identified with the cohomology
group H1

h(E), or with the group of nontrivial conservation laws for E .

3.5. The functors K and T . Keeping in mind the problem of recon-
structing recursion operators from their shadows, we introduce two functors
in the category GDE(M). One of them is known from the classical (non-
graded) theory (cf Chapter 3), the other is specific to graded equations and
is a super counterpart of the Cartan even covering constructed in Chapter
3 (see also [97]).

Let (F ,∇F ) be an object of the category GDE(M) and H1
h(F) be the

R-module of its first horizontal cohomology. Let {wα} be a set of generators
for H1

h(F), each wα being the cohomology class of a form ωα ∈ Λ1
h(F),

ωα =
∑m

i=1X
i
α dxi. We define the functor K : GDE(M) ⇒ GDE(M) of

killing H1
h(F) as follows.

The algebra KF is a graded commutative algebra freely generated by
{wα} over F with gr(wα) = gr(X i

α). The connection ∇KF looks as

∇KF

(
∂

∂xi

)
= ∇F

(
∂

∂xi

)
+
∑

α

Xi
α

∂

∂wα
.

From the fact thatH1
h is a covariant functor from GDE(M) into the category

of R-modules it easily follows that K is a functor as well.
To define the functor T : GDE(M)⇒ GDE(M), let us set TF = C∗Λ(F),

where C∗Λ∗(F) =
∑

p≥0 CpΛ(F) is the module of all Cartan forms on F (see

Subsection 2.7). If F is n-graded, then TF carries an obvious structure of
(n+ 1)-graded algebra. The action of vector fields ∇F (X), X ∈ D(M), on
Λ∗(F) by Lie derivatives preserves the submodule C∗Λ(F). Since C∗Λ(F),
as a graded algebra, is generated by the elements χ and dCψ, χ, ψ ∈ F , this
action can be written down as

L∇F (X)χ = ∇F (X)χ,

L∇F (X)dCψ = dC∇F (X)(ψ),

L∇F (X)(χdCψ) = L∇F
(χ) · dCψ + χL∇F (X)dCψ.
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Moreover, for any X ∈ D(M) and ω ∈ C∗Λ(F) one has

∇F (X) ω = 0;

hence, for any θ ∈ C∗Λ(F)

(θ ∧ L∇F (X))(ω)

= θ ∧ L∇F (X)(ω) + (−1)θ1dθ ∧ (∇F (X) ω) = θ ∧ L∇F (X), (ω),

which means that we have a natural extension of the connection ∇F in F
up to a connection ∇TF in TF . It is easy to see that the correspondence
T : (F ,∇F )⇒ (TF ,∇TF ) is functorial. We call (TF ,∆TF ) the (odd) Car-

tan covering of (F ,∇F ).
In the case when (F ,∇F ) is an evolution equation E of the form (6.31),

T (F ,∇F ) is again an evolution equation TE with additional dependent vari-
ables v1, . . . , vm and additional relations





v1
t =

∑
i,j

∂f1

∂uji
vji ,

. . . . . . . . . . . . . . .

vmt =
∑
i,j

∂fm

∂uji
vji .

(6.45)

Note that if a variable uj is of grading (i1, . . . , in), then the grading of vj is
(i1, . . . , in, 1).

3.6. Reconstructing shadows. Computerized computations on non-
local objects, such as symmetries and recursion operators, can be effectively
realized for shadows of these objects (see examples below). Here we describe
a setting which guarantees the existence of symmetries and, in general, el-
ements of Hp,0

C (E) corresponding to the shadows computed. Below we still
consider evolution equations only.

Proposition 6.28. Let E be an evolution equation and ϕ be its covering.

Let θ ∈ SHp,0
C (Eϕ). Then, if the coefficients Xs and Ts for the extensions of

total derivatives do not depend on nonlocal variables for all s, then

(i) for any extension ¤θ,ρ of θ up to a vector field on Eϕ the forms

¤θ,ρ(ω
s
ϕ)

def
= Ωs

(see Remark 6.9 in Subsection 3.4) are dh-closed on Eϕ;

(ii) the element θ is extendable up to an element of Hp,0
C (Eϕ) if and only

if all Ωs are dh-exact forms.

Proof. To prove the first statement, note that using Proposition
6.13 (i) one has

0 = ∂2
ϕ(¤θ,ρ) = ∂ϕ

(
∑

s

(¤θ,ρ(ω
s
ϕ) + dhρs)⊗

∂

∂ωs

)
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= −
∑

s

dhΩ
s ⊗ ∂

∂ωs
. (6.46)

The second statement immediately follows from (6.43).

Remark 6.11. If Xs, Ts depend on w1, w2, . . . , then (6.46) transforms
into

∑

s

(
dhΩ

s − (Ωs + dhρs) ∧
(
∂Xs

∂ws
dx+

∂Ts
∂ws

dt

))
⊗ ∂

∂ws
= 0. (6.47)

Let now θ ∈ SHp,0
C (Eϕ) and Φ ∈ Hq,0

C (Eϕ). Then from Proposition
6.13 (iii) it follows that

[iΦ, ∂ϕ]θ = (−1)q(∂ϕΦ) θ = 0.

Hence, since by the definition of shadows ∂ϕθ is a ϕ-vertical element,
iΦ∂ϕθ is vertical too. It means that ∂ϕiΦθ is a ϕ-vertical element, i.e.,

iϕθ ∈ SHp+q−1
C (Eϕ). It proves the following result (cf. similar results of

Chapter 5):

Proposition 6.29. For any θ ∈ SHp,0
C (Eϕ) and Φ ∈ Hq,0

C (Eϕ) the ele-

ment Φ θ lies in SHp+q−1
C (Eϕ). In particular, when applying a shadow of

a recursion operator to a symmetry, one gets a shadow of a symmetry.

The next result follows directly from the previous ones.

Theorem 6.30. Let E be an evolution equation of the form (6.31) and

Eϕ be its covering constructed by infinite application of the functor K : Eϕ =

K(∞)E, where

K(∞)E = inj lim
n→∞

(KnE), KnE = (K ◦ · · · ◦K)︸ ︷︷ ︸
n times

E .

Then for any shadow R of a recursion operator in Eϕ and a symmetry Φ ∈
sym Eϕ the shadow R(Φ) can be extended up to a symmetry of Eϕ. Thus, an

action of SH1,0
C (Eϕ) on sym(Eϕ) is defined modulo “shadowless” symmetries.

To be sure that elements of SH1,0
C (Eϕ) can be extended up to recursion

operators in an appropriate setting, we prove the following two results.

Proposition 6.31. Let E be an equation and Eϕ be its covering by means

of TE. Then there exists a natural embedding

Tsym : H∗,0
C (E)→ sym(TE)

of graded Lie algebras.

Proof. Let Φ ∈ H∗,0
C (E). Then LΦ acts on Λ∗(E) and this action pre-

serves the submodule C∗Λ(E) ⊂ Λ∗(E), since

[LΦ, dC ] = L[[Φ,UE ]]fn = 0.
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Let X ∈ CD(E). Then, due to (6.11), [[X,Φ]]fn UE = 0. But, using

(6.11) again, one can see that [[X,Φ]]fn is a vertical element. Hence,

[[X,Φ]]fn UE = [[X,Φ]]fn = 0.

Proposition 6.31 allows one to compute elements of H∗,0
C (E) as nonlocal

symmetries in Eϕ = TE . This is the base of computational technology used
in applications below.

The last result of this subsection follows from the previous ones.

Theorem 6.32. Let E be an evolution equation and Eϕ be its covering

constructed by infinite application of the functor K ◦ T . Then any shadow

Φ ∈ SH∗,0
C (Eϕ) can be extended up to an element of H∗,0

C (Eϕ). In particular,

to any shadow SH1,0
C (Eϕ) a recursion operator corresponds in Eϕ.

Remark 6.12. For “fine obstructions” to shadows reconstruction one
should use corresponding term of A.M. Vinogradov’s C-spectral sequence
([102], cf. [58]).

4. The Kupershmidt super KdV equation

As a first application of the graded calculus for symmetries of graded par-
tial differential equations we discuss the symmetry structure of the so-called
Kupershmidt super KdV equation, which is an extension of the classical
KdV equation to the graded setting [24].

At this point we have already to make a remark. The equation under
consideration will be a super equation but not a supersymmetric equation
in the sense of Mathieu, Manin–Radul, where a supersymmetric equation
is an equation admitting and odd, or supersymmetry [74], [72]. The super
KdV equation is given as the following system of graded partial differential
equations E for an even function u and an odd function ϕ in J 3(π;ϕ), where
J3(π;ϕ) is the space J3(π) for the bundle π : R×R2 → R2, (u, x, t) 7→ (x, t),
extended by the odd variable ϕ:

ut = 6uux − uxxx + 3ϕϕxx,

ϕt = 3uxϕ+ 6uϕx − 4ϕxxx, (6.48)

where subscripts denote partial derivatives with respect to x and t. As
usual, t is the time variable and x is the space variable. Here u, x, t, u, ux,
ut, uxx, uxxx are even (commuting) variables, while ϕ, ϕx, ϕxx, ϕxxx are
odd (anticommuting) variables. In the sequel we shall often use the term
“graded” instead of “super”.

We introduce the total derivative operators Dx and Dt on the space
J∞(π;ϕ), by

Dx =
∂

∂x
+ ux

∂

∂u
+ ϕx

∂

∂ϕ
+ uxx

∂

∂ux
+ ϕxx

∂

∂ϕx
+ · · · ,
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Dt =
∂

∂t
+ ut

∂

∂u
+ ϕt

∂

∂ϕ
+ utx

∂

∂ux
+ ϕtx

∂

∂ϕx
+ · · · (6.49)

The infinite prolongation E∞ is the submanifold of J∞(π;ϕ) defined by
the graded system of partial differential equations

Dn
xD

m
t (ut − 6uux + uxxx − 3ϕϕxx) = 0,

Dn
xD

m
t (ϕt − 3uxϕ− 6uϕx + 4ϕxxx) = 0, (6.50)

where n,m ∈ N.
We choose internal coordinates on E∞ as x, t, u, ϕ, u1, ϕ1, . . . , where we

introduced a further notation

ux = u1, ϕx = ϕ1, uxx = u2, ϕxx = ϕ2, . . . (6.51)

The restriction of the total derivative operators Dx and Dt to E∞, again
denoted by the same symbols, are then given by

Dx =
∂

∂x
+
∑

n≥0

(un+1
∂

∂un
+ ϕn+1

∂

∂ϕn
),

Dt =
∂

∂t
+
∑

n≥0

((un)t
∂

∂un
+ (ϕn)t

∂

∂ϕn
). (6.52)

We note that (6.48) admits a scaling symmetry, which leads to the in-
troduction of a degree to each variable,

deg(x) = −1, deg(t) = −3,

deg(u) = 2, deg(u1) = 3, . . . ,

deg(ϕ) =
3

2
, deg(ϕ1) =

5

2
, . . . (6.53)

From this we see that each term in (6.48) is of degree 5 and 4 1
2 respectively.

4.1. Higher symmetries. We start the discussion of searching for
(higher) symmetries at the representation of vertical vector fields,

¤Φ = Φu ∂

∂u
+ Φϕ ∂

∂ϕ
+
∑

n>0

(
Dn
x(Φu)

∂

∂un
+Dn

x(Φϕ)
∂

∂ϕn

)
, (6.54)

where Φ = (Φu,Φϕ) is the generating function of the vertical vector field ¤Φ.
We restrict our search for higher symmetries to even vector fields, meaning
that Φu is even, while Φϕ is odd.

Moreover we restrict our search for higher symmetries to vector fields
¤Φ whose generating function Φ = (Φu,Φϕ) depends on the variables x, t,
u, ϕ, . . . , u5, ϕ5. These requirements lead to a representation of the func-
tion Φ = (Φu,Φϕ), Φu, Φϕ ∈ C∞(x, t, u, u1, . . . , u5) ⊗ Λ(ϕ, . . . , ϕ5) in the
following form

Φu = f0 + f1ϕϕ1 + f2ϕϕ2 + f3ϕϕ3 + f4ϕϕ4 + f5ϕϕ5 + f6ϕ1ϕ2

+ f7ϕ1ϕ3 + f8ϕ1ϕ4 + f9ϕ1ϕ5 + f10ϕ2ϕ3 + f11ϕ2ϕ4 + f12ϕ2ϕ5

+ f13ϕ3ϕ4 + f14ϕ3ϕ5 + f15ϕ4ϕ5 + f16ϕϕ1ϕ2ϕ3 + f17ϕϕ1ϕ2ϕ4
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+ f18ϕϕ1ϕ2ϕ5 + f19ϕϕ1ϕ3ϕ4 + f20ϕϕ1ϕ3ϕ5 + f21ϕϕ1ϕ4ϕ5

+ f22ϕϕ2ϕ3ϕ4 + f23ϕϕ2ϕ3ϕ5 + f24ϕϕ2ϕ4ϕ5 + f25ϕϕ3ϕ4ϕ5

+ f26ϕ1ϕ2ϕ3ϕ4 + f27ϕ1ϕ2ϕ3ϕ5 + f28ϕ2ϕ3ϕ4ϕ5

+ f29ϕϕ1ϕ2ϕ3ϕ4ϕ5,

Φϕ = g1ϕ+ g2ϕ1 + g3ϕ2 + g4ϕ3 + g5ϕ4 + g6ϕ5

+ g7ϕϕ1ϕ2 + g8ϕϕ1ϕ3 + g9ϕϕ1ϕ4 + g10ϕϕ1ϕ5 + g11ϕϕ2ϕ3

+ g12ϕϕ2ϕ4 + g13ϕϕ2ϕ5 + g14ϕϕ3ϕ4 + g15ϕϕ3ϕ5 + g16ϕϕ4ϕ5

+ g17ϕ1ϕ2ϕ3 + g18ϕ1ϕ2ϕ4 + g19ϕ1ϕ2ϕ5 + g20ϕ1ϕ3ϕ4 + g21ϕ1ϕ3ϕ5

+ g22ϕ1ϕ4ϕ5 + g23ϕ2ϕ3ϕ4 + g24ϕ2ϕ3ϕ5 + g25ϕ2ϕ4ϕ5 + g26ϕ3ϕ4ϕ5

+ g27ϕϕ1ϕ2ϕ3ϕ4 + g28ϕϕ1ϕ2ϕ3ϕ5 + g29ϕϕ1ϕ2ϕ4ϕ5 + g30ϕϕ1ϕ3ϕ4ϕ5

+ g31ϕϕ2ϕ3ϕ4ϕ5 + g32ϕ1ϕ2ϕ3ϕ4ϕ5, (6.55)

where f0, . . . , f29, g1, . . . , g32 are functions depending on the even variables
x, t, u, u1, . . . , u5. We have to mention here that we are constructing
generic elements, even and odd explicitly, of the following exterior alge-
bra C∞(x, t, u, . . . , u5) ⊗ Λ(ϕ, . . . , ϕ5), where Λ(ϕ, . . . , ϕ5) is the (exterior)
algebra generated by ϕ, . . . , ϕ5 The symmetry condition (6.37) for p = 0
reads in this case to the system

Dt(Φ
u) = ¤Φ(6uu1 − u3 + 3ϕϕ2),

Dt(Φ
ϕ) = ¤Φ(3u1ϕ+ 6uϕ1 − 4ϕ3), (6.56)

which results in equations

Dt(Φ
u)− 6Φuu1 − 6uDx(Φ

u) +D3
x(Φ

u)− 3Φϕϕ2 − 3ϕD2
x(Φ

ϕ) = 0,

Dt(Φ
ϕ)− 3Dx(Φ

u)ϕ− 3u1Φ
ϕ − 6Φuϕ1 − 6uDx(Φ

ϕ) + 4D3
x(Φ

ϕ) = 0.
(6.57)

Substitution of the representation(6.55) of Φ = (Φu,Φϕ)), leads to an
overdetermined system of classical partial differential equations for the co-
efficients f0, . . . , f26, g1, . . . , g32, which are, as mentioned above, functions
depending on the variables x, t, u, u1, . . . , u5.

The general solution of equations (6.57) and (6.55) is generated by the
functions

Φ1 = (u1, ϕ1);

Φ2 = (6uu1 − u3 + 3ϕϕ2, 3u1ϕ+ 6uϕ1 − 4ϕ3);

Φ3 = (6tu1 + 1, 6tϕ1);

Φ4 = (3t(6uu1 − u3 + 3ϕϕ2) + x(u1) + 2u,

3t(3u1ϕ+ 6uϕ1 − 4ϕ3) + xϕ1 +
3

2
ϕ);

Φ5 = (u5 − 10u3u− 20u2u1 + 30u1u
2 − 15ϕϕ4 − 10ϕ1ϕ3

+ 30u1ϕϕ1 + 30uϕϕ2,



4. THE KUPERSHMIDT SUPER KDV EQUATION 273

16ϕ5 − 40uϕ3 − 60u1ϕ2 − 50u2ϕ1 + 30u2ϕ1 + 30u1uϕ− 15u3ϕ).
(6.58)

We note that the vector fields ¤Φ1 , ¤Φ2 , ¤Φ3 , ¤Φ4 are equivalent to the
classical symmetries

S1 =
∂

∂x
,

S2 =
∂

∂t
,

S3 = t
∂

∂x
− 1

6

∂

∂u
,

S4 = −x ∂
∂x
− 3t

∂

∂t
+ 2u

∂

∂u
+

3

2
ϕ
∂

∂ϕ
. (6.59)

In (6.59) S1, S2 reflect space and time translation, S3 reflects Galilean
invariance, while S4 reflects the scaling as mentioned already. In (6.50), the
evolutionary vector field ¤Φ5 is the first higher symmetry of the super KdV
equation and reduces to

(u5 − 10u3u− 20u2u1 + 30u1u
2)
∂

∂u
+ . . . , (6.60)

in the absence of odd variables ϕ, ϕ1, . . . , being then just the classical first
higher symmetry of the KdV equation

ut = 6uu1 − u3. (6.61)

4.2. A nonlocal symmetry. In this subsection we demonstrate the
existence and construction of nonlocal higher symmetries for the super KdV
equation (6.48). The construction runs exactly along the same lines as it is
for the classical equations.

So we start at the construction of conservation laws, conserved densities
and conserved quantities as discussed in Section 2. According to this con-

struction we arrive, amongst others, at the following two conservation laws,
i.e.,

Dt(u) = Dx(3u
2 − u2 + 3ϕϕ1),

Dt(u
2 + 3ϕϕ1) = Dx(4u

3 + u2
1 − 2uu2 + 12uϕϕ1 + 8ϕ1ϕ2 − 4ϕϕ3), (6.62)

from which we obtain the nonlocal variables

p1 =

∫ x

−∞
u dx,

p3 =

∫ x

−∞
(u2 + 3ϕϕ1) dx. (6.63)

Now using these new nonlocal variables p1, p3, we define the augmented
system E ′ of partial differential equations for the variables u, p1, p3, ϕ,
where u, p1, p3 are even and ϕ is odd,

ut = 6uux − uxxx + 3ϕϕxx,
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ϕt = 3uxϕ+ 6uϕx − 4ϕxxx,

(p1)x = u,

(p1)t = 3u2 − u2 + 3ϕϕ1,

(p3)x = u2 + 3ϕϕ1,

(p3)t = 4u3 + u2
1 − 2uu2 + 12uϕϕ1 + 8ϕ1ϕ2 − 4ϕϕ3. (6.64)

Internal coordinates for the infinite prolongation E ′∞ of this augmented
system (6.64) are given as x, t, u, p1, p3, ϕ, u1, ϕ1, . . . . The total derivative

operators D̃x and D̃t on E ′∞ are given by

D̃x = Dx + u
∂

∂p1
+ (u2 + 3ϕϕ1)

∂

∂p3
,

D̃t = Dt + (3u2 − u2 + 3ϕϕ1)
∂

∂p1

+ (4u3 + u2
1 − 2uu2 + 12uϕϕ1 + 8ϕ1ϕ2 − 4ϕϕ3)

∂

∂p3
. (6.65)

We are motivated by the result for the classical KdV equation (see Sec-
tion 5 of Chapter 3) and our search is for a nonlocal vector field ¤Φ of the
following form

Φ = C1tΦ4 + C2xΦ2 + C3p1Φ1 + p3Φ
∗ + Φ∗∗, (6.66)

whereas in (6.66) C1, C2, C3 are constants and Φ∗ = (Φ∗u,Φ∗ϕ), Φ∗∗ =
(Φ∗∗u,Φ∗∗ϕ) are functions to be determined.

We now apply the symmetry condition resulting from the augmented
system (6.64), compare with (6.57)

D̃t(Φ
u)− 6Φuu1 − 6uD̃x(Φ

u) + D̃3
x(Φ

u)− 3Φϕϕ2 − 3ϕD̃2
x(Φ

ϕ) = 0,

D̃t(Φ
ϕ)− 3D̃x(Φ

u)ϕ− 3u1Φ
ϕ − 6Φuϕ1 − 6uD̃x(Φ

ϕ) + 4D̃3
x(Φ

ϕ) = 0.
(6.67)

Condition (6.67) leads to an overdetermined system of partial differential
equations for the functions Φ∗u, Φ∗ϕ, Φ∗∗u, Φ∗∗ϕ, whose dependency on the
internal variables is induced by the scaling of the super KdV equation, which
means that we are in effect searching for a vector field ¤Φ, where Φu, Φϕ

are of degree 4 and 3 1
2 respectively. Solving the overdetermined system of

equations leads to the following result.
The vector field ¤Φ with Φ defined by

Φ = −3

4
tΦ5 −

1

4
xΦ2 −

1

2
p1Φ1 + Φ∗∗, (6.68)

where Φ5, Φ2, Φ1 are defined by (6.58) and

Φ∗∗ = (u2 − 2u2 − 3

2
ϕϕ1,

7

2
ϕ2 − 3uϕ), (6.69)

is a nonlocal higher symmetry of the super KdV equation (6.48). In effect,
the function Φ is the shadow of the associated symmetry of (6.64).
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The ∂/∂p1- and ∂/∂p3-components of the symmetry ¤Φ can be com-
puted from the invariance of the equations (6.70),

(p1)x = u,

(p3)x = u2 + 3ϕϕ1, (6.70)

but considered in a once more augmented setting. The reader is referred to
the construction of nonlocal symmetries for the classical KdV equation for
the details of this calculation.

It would be possible to describe the recursion here, but we prefer to
postpone it to the chapter devoted to the deformations of the equation
structure (see Chapter 7), from which the recursion operator can be obtained
rather easily and straightforwardly.

5. The Kupershmidt super mKdV equation

As a second application of the graded calculus for symmetries of graded
partial differential equations, we discuss the symmetry structure of the so-
called Kupershmidt super mKdV equation, which is an extension of the
classical mKdV equation to the graded setting [24].

The super mKdV equation is given as the following system of graded
partial differential equations E for an even function v and an odd function
ψ on J3(π;ψ) (see the notation in the previous section),

vt = 6v2vx − vxxx +
3

4
ψxψxx +

3

4
ψψxxx +

3

2
vxψψx +

3

2
vψψxx,

ψt = (6v2 − 6vx)ψx + (6vvx − 3vxx)ψ − 4ψxxx, (6.71)

where subscripts denote partial derivatives with respect to x, t. Here t is the
time variable and x is the space variable, v, x, t, v, vx, vt, vxx, vxxx are even
(commuting) variables, while ψ, ψx, ψxx, ψxxx are odd (anticommuting)
variables.

We introduce the total derivative operators Dx, Dt on J∞(π;ψ) by

Dx =
∂

∂x
+ vx

∂

∂v
+ ψx

∂

∂ψ
+ vxx

∂

∂vx
+ ψxx

∂

∂ψx
+ · · · ,

Dt =
∂

∂t
+ vt

∂

∂v
+ ψt

∂

∂ψ
+ vtx

∂

∂vx
+ ψtx

∂

∂ψx
+ · · · (6.72)

The infinite prolongation E∞ is the submanifold of J∞(π;ψ) defined by
the graded system of partial differential equations

Dn
xD

m
t (vt − 6v2vx + vxxx −

3

4
ψxψxx −

3

4
ψψxxx −

3

2
vxψψx −

3

2
vψψxx) = 0,

Dn
xD

m
t (ψt − (6v2 − 6vx)ψx − (6vvx − 3vxx)ψ + 4ψxxx) = 0, (6.73)

where n,m ∈ N.
We choose internal coordinates on E∞ as x, t, v, ψ, v1, ψ1, . . . , where

we use a notation

vx = v1, ψx = ψ1, vxx = v2, ψxx = ψ2, . . . (6.74)
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The restriction of the total derivative operatorsDx, Dt to E∞, again denoted
by the same symbols, are then given by

Dx =
∂

∂x
+
∑

n≥0

(
vn+1

∂

∂vn
+ ψn+1

∂

∂ψn

)
,

Dt =
∂

∂t
+
∑

n≥0

(
(vn)t

∂

∂vn
+ (ψn)t

∂

∂ψn

)
. (6.75)

We note that (6.71) admits a scaling symmetry, which leads to the assigning
a degree to each variable,

deg(x) = −1, deg(t) = −3,

deg(v) = 1, deg(v1) = 2, . . . ,

deg(ψ) =
1

2
, deg(ψ1) =

3

2
, . . . (6.76)

From this we see that each term in (6.71) is of degree 4 and 3 1
2 respectively.

5.1. Higher symmetries. We start the discussion of searching for
(higher) symmetries at the representation of vertical vector fields,

¤Φ = Φv ∂

∂v
+ Φψ ∂

∂ψ
+
∑

n>0

(
Dn
x(Φv)

∂

∂vn
+Dn

x(Φψ)
∂

∂ψn

)
, (6.77)

where Φ = (Φv,Φψ) is the generating function of the vertical vector field ¤Φ.
We restrict our search for higher symmetries to even vector fields, meaning
that Φv is even, while Φψ is odd. Moreover we restrict our search for higher
symmetries to vector fields ¤Φ whose generating function Φ = (Φv,Φψ)
depends on the variables x, t, v, ψ, . . . , v5, ψ5. The above mentioned re-
quirements lead to a representation of the function Φ = (Φv,Φψ) in the
following form

Φv = f0 + f1ψψ1 + f2ψψ2 + f3ψψ3 + f4ψψ4 + f5ψψ5 + f6ψ1ψ2

+ f7ψ1ψ3 + f8ψ1ψ4 + f9ψ1ψ5 + f10ψ2ψ3 + f11ψ2ψ4 + f12ψ2ψ5

+ f13ψ3ψ4 + f14ψ3ψ5 + f15ψ4ψ5 + f16ψψ1ψ2ψ3 + f17ψψ1ψ2ψ4

+ f18ψψ1ψ2ψ5 + f19ψψ1ψ3ψ4 + f20ψψ1ψ3ψ5 + f21ψψ1ψ4ψ5

+ f22ψψ2ψ3ψ4 + f23ψψ2ψ3ψ5 + f24ψψ2ψ4ψ5 + f25ψψ3ψ4ψ5

+ f26ψ1ψ2ψ3ψ4 + f27ψ1ψ2ψ3ψ5 + f28ψ2ψ3ψ4ψ5

+ f29ψψ1ψ2ψ3ψ4ψ5,

Φψ = g1ψ + g2ψ1 + g3ψ2 + g4ψ3 + g5ψ4 + g6ψ5

+ g7ψψ1ψ2 + g8ψψ1ψ3 + g9ψψ1ψ4 + g10ψψ1ψ5 + g11ψψ2ψ3

+ g12ψψ2ψ4 + g13ψψ2ψ5 + g14ψψ3ψ4 + g15ψψ3ψ5 + g16ψψ4ψ5

+ g17ψ1ψ2ψ3 + g18ψ1ψ2ψ4 + g19ψ1ψ2ψ5 + g20ψ1ψ3ψ4 + g21ψ1ψ3ψ5

+ g22ψ1ψ4ψ5 + g23ψ2ψ3ψ4 + g24ψ2ψ3ψ5 + g25ψ2ψ4ψ5 + g26ψ3ψ4ψ5
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+ g27ψψ1ψ2ψ3ψ4 + g28ψψ1ψ2ψ3ψ5 + g29ψψ1ψ2ψ4ψ5 + g30ψψ1ψ3ψ4ψ5

+ g31ψψ2ψ3ψ4ψ5 + g32ψ1ψ2ψ3ψ4ψ5, (6.78)

where f0, . . . , f29, g1, . . . , g32 are functions depending on the even variables
x, t, v, v1, . . . , v5. We have to mention here that we are constructing generic
elements, even and odd explicitly, of the exterior algebra C∞(x, t, v, . . . , v5)⊗
Λ(ψ, . . . , ψ5), where Λ(ψ, . . . , ψ5) is the exterior algebra generated by the
elements ψ, . . . , ψ5. The symmetry condition (6.37) reads in this case

Dt(Φ
v) = ¤Φ(6v2v1 − v3 +

3

4
ψ1ψ2 +

3

4
ψψ3 +

3

2
v1ψψ1 +

3

2
vψψ2),

Dt(Φ
ψ) = ¤Φ((6v2 − 6v1)ψ1 + (6vv1 − 3v2)ψ − 4ψ3), (6.79)

which results in equations

Dt(Φ
v)− 12Φvvv1 − 6v2Dx(Φ

v) +D3
x(Φ

v)− 3

4
Dx(Φ

ψ)ψ2

− 3

4
ψ1D

2
x(Φ

ψ)− 3

4
Φψψ3 −

3

4
ψD3

x(Φ
ψ)

− 3

2
Dx(Φ

v)ψψ1 −
3

2
v1Φ

ψψ1 −
3

2
v1ψDx(Φ

ψ)

− 3

2
Φvψψ2 −

3

2
vΦψψ2 −

3

2
vψD2

x(Φ
ψ) = 0,

Dt(Φ
ψ)− (12vΦv − 6Dx(Φ

v))ψ1 − (6v2 − 6v1)Dx(Φ
ψ)

− (6Φvv1 + 6vDx(Φ
v)− 3D2

x(Φ
v))ψ

− (6vv1 − 3v2)Φ
ψ + 4D3

x(Φ
ψ) = 0. (6.80)

Substitution of the representation (6.78) for Φ = (Φv,Φψ)), leads to
an overdetermined system of classical partial differential equations for the
coefficients f0, . . . , f26, g1, . . . , g32 which are as mentioned above functions
depending on the variables x, t, v, v1, . . . , v5.

The general solution of equations (6.80) and (6.78) is generated by the
functions

Φ1 = (v1, ψ1),

Φ2 = (−v3 + 6v2v1 +
3

2
v1ψψ1 +

3

2
vψψ2 +

3

4
ψψ3 +

3

4
ψ1ψ2,

− 4ψ3 + (6v2 − 6v1)ψ1 + (6vv1 − 3v2)ψ),

Φ3 = −2xΦ1 − 6tΦ2 + (−2v,−ψ),

Φv
4 = v5 − 10v3v

2 − 40v2v1v − 10v3
1 + 30v1v

4 − 15

4
ψψ5 −

25

4
ψ1ψ4 −

5

2
ψ2ψ3

− 15

2
vψψ4 − 5vψ1ψ3 + (

15

2
v2 − 15v1)ψψ3 + (

15

2
v2 − 5v1)ψ1ψ2

+ (15v3 + 15v1v − 15v2)ψψ2 + (45v1v
2 − 15

2
v3)ψψ1,

Φψ
4 = 16ψ5 + (40v1 − 40v2)ψ3 + (60v2 − 120v1v)ψ2
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+ (50v3 − 100v2v − 60v1v
2 − 70v2

1 + 30v4)ψ1

+ (15v4 − 30v3v − 30v2v
2 − 60v2v1 − 60v2

1v + 60v1v
3)ψ. (6.81)

We note that the vector fields ¤Φ1 , ¤Φ2 , ¤Φ3 are equivalent to the classical
symmetries

S1 =
∂

∂x
,

S2 =
∂

∂t
,

S4 = 2x
∂

∂x
+ 6t

∂

∂t
− 2v

∂

∂v
− ψ ∂

∂ψ
. (6.82)

In (6.82), S1, S2 reflect space and time translation, while S3 reflects the scal-
ing as mentioned already, (6.73). The field ¤Φ4 is the first higher symmetry
of the super mKdV equation and reduces to the evolutionary vector field

(v5 − 10v3v
2 − 40v2v1v − 10v3

1 + 30v1v
4)
∂

∂v
+ . . . , (6.83)

in the absence of odd variables ψ, ψ1, . . . , being then just the classical first
higher symmetry of the mKdV equation.

vt = 6v2vx − vxxx. (6.84)

Remark 6.13. It should be noted that this section is just a copy of
the previous one concerning the Kupershmidt super KdV equation, except
for the specific results! This demonstrates the algorithmic structure of the
symmetry computations.

5.2. A nonlocal symmetry. In this subsection we demonstrate the
existence and construction of nonlocal higher symmetries for the super
mKdV equation (6.71). The construction runs exactly along the same lines
as it is for the classical equations.

So we start at the construction of conservation laws, conserved densities
and conserved quantities as discussed in Section 2. According to this con-
struction, we arrive, amongst others, at the following two conservation laws,
i.e.,

Dt(v) = Dx(2v
3 − v2 +

3

4
ψψ2 +

3

2
vψψ1),

Dt(v
2 +

1

4
ψψ1) = Dx(3v

4 − 2v2v + v2
1 − ψψ3 + 2ψ1ψ2

+
3

2
vψψ2 − 3v1ψψ1 +

9

2
v2ψψ1), (6.85)

from which we obtain the nonlocal variables

p0 =

∫ x

−∞
v dx,

p1 =

∫ x

−∞
(v2 +

1

4
ψψ1) dx. (6.86)
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Now using these new nonlocal variables p0, p1 we define the augmented
system E ′ of partial differential equations for the variables v, p0, p1, ψ,
where v, p0, p1 are even and ψ is odd,

vt = 6v2vx − vxxx +
3

4
ψxψxx +

3

4
ψψxxx +

3

2
vxψψx +

3

2
vψψxx,

ψt = (6v2 − 6vx)ψx + (6vvx − 3vxx)ψ − 4ψxxx,

(p0)x = v,

(p0)t = 2v3 − v2 +
3

4
ψψ2 +

3

2
vψψ1,

(p1)x = v2 +
1

4
ψψ1,

(p1)t = 3v4 − 2v2v + v2
1 − ψψ3 + 2ψ1ψ2 +

3

2
vψψ2 − 3v1ψψ1 +

9

2
v2ψψ1.

(6.87)

Internal coordinates for the infinite prolongation E ′∞ of this augmented
system (6.87)) are given as x, t, v, p0, p1, ψ, v1, ψ1, . . . . The total derivative

operators D̃x and D̃t on E ′∞ are given by

D̃x = Dx + v
∂

∂p0
+ (v2 +

1

4
ψψ1)

∂

∂p1
,

D̃t = Dt + (2v3 − v2 +
3

4
ψψ2 +

3

2
vψψ1)

∂

∂p0

+ (3v4 − 2v2v + v2
1 − ψψ3 + 2ψ1ψ2 +

3

2
vψψ2 − 3v1ψψ1 +

9

2
v2ψψ1)

∂

∂p1
.

(6.88)

We are motivated by the result for the classical KdV equation (see Section 5
of Chapter 3) and our search is for a nonlocal vector field ¤Φ of the following
form

Φ = C1tΦ4 + C2xΦ2 + C3p1Φ1 + Φ∗, (6.89)

whereas in (6.89) C1, C2, C3 are constants and Φ∗ is a two-component
function to be determined.

We now apply the symmetry condition resulting from the augmented
system (6.87) (compare with (6.80)):

D̃t(Φ
v)− 12Φvvv1 − 6v2D̃x(Φ

v) + D̃3
x(Φ

v)− 3

4
D̃x(Φ

ψ)ψ2

− 3

4
ψ1D̃

2
x(Φ

ψ)− 3

4
Φψψ3 −

3

4
ψD̃3

x(Φ
ψ)− 3

2
D̃x(Φ

v)ψψ1 −
3

2
v1Φ

ψψ1

− 3

2
v1ψD̃x(Φ

ψ)− 3

2
Φvψψ2 −

3

2
vΦψψ2 −

3

2
vψD̃2

x(Φ
ψ) = 0,

D̃t(Φ
ψ)− (12vΦv − 6D̃x(Φ

v))ψ1 − (6v2 − 6v1)D̃x(Φ
ψ)
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− (6Φvv1 + 6vD̃x(Φ
v)− 3D̃2

x(Φ
v))ψ − (6vv1 − 3v2)Φ

ψ + 4D̃3
x(Φ

ψ) = 0.
(6.90)

Condition (6.90) leads to an overdetermined system of partial differential
equations for the functions Φ∗u, Φ∗ψ, whose dependency on the internal
variables is induced by the scaling of the super mKdV equation, which means
that we are in effect searching for a vector field ¤Φ, where Φv, Φψ are of
degree 3 and 2 1

2 respectively.
Solving the overdetermined system of equations leads to the following

result.
The vector field ¤Φ with Φ defined by

Φ = −3

2
tΦ4 −

1

2
xΦ2 + p1Φ1 + Φ∗, (6.91)

where Φ4, Φ2, Φ1 are defined by (6.81) and

Φ∗ = (−3

2
v2 + 2v3 + vψψ1 +

7

8
ψψ2,−5ψ2 − vψ + 4v2ψ − 4v1ψ), (6.92)

is a nonlocal higher symmetry of the super mKdV equation (6.71). In effect,
the function Φ is the shadow of the associated symmetry of (6.87).

The ∂/∂p0- and ∂/∂p1-components of the symmetry ¤Φ can be com-
puted from the invariance of the equations

(p0)x = v,

(p1)x = v2 +
1

4
ψψ1, (6.93)

but considered in a once more augmented setting. The reader is referred to
the construction of nonlocal symmetries for the classical KdV equation for
the details of this calculation.

6. Supersymmetric KdV equation

In this section we shall discuss symmetries and conservation laws of the
supersymmetric extension of the KdV equation as it was proposed by several
authors [68, 74, 87].

We shall construct a supersymmetry transforming odd variables into
even variables and vice versa. We shall also construct a nonlocal symmetry of
the supersymmetric KdV equation, which together with the already known
supersymmetry generates a graded Lie algebra of symmetries, comprising a
hierarchy of bosonic higher symmetries and a hierarchy of nonlocal higher

fermionic (or super) symmetries. The well-known supersymmetry is just
the first term in this hierarchy.

Moreover, higher even and odd conservation laws and conserved quan-
tities arise in a natural and elegant way in the construction of the infinite
dimensional graded Lie algebra of symmetries. The construction of higher
even symmetries is given in Subsection 6.1, while the construction of the
above mentioned nonlocal symmetry together with the graded Lie algebra
structure is given in Subsection 6.2.
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6.1. Higher symmetries. The existence of higher even symmetries of
the supersymmetric extension of KdV equation

∂u

∂t
= −∂

3u

∂x3
+ 6u

∂u

∂x
(6.94)

shall be discussed here. We start at the supersymmetric extension given by
Mathieu [74], i.e.,

ut = −u3 + 6uu1 − aϕϕ2,

ϕt = −ϕ3 + (6− a)ϕ1u+ aϕu1. (6.95)

In (6.95), integer indices refer to differentiation with respect to x, i.e., u3 =
∂3u/∂x3; x, t, u are even, while ϕ is odd ; the parameter a is real. Taking
ϕ ≡ 0, we get (6.94).

For internal local coordinates on the infinite jet bundle J∞(π;ϕ) we
choose the functions x, t, u, ϕ, u1, ϕ1, . . . The total derivative operators
Dx, Dt are defined by

Dx =
∂

∂x
+ u1

∂

∂u
+ ϕ1

∂

∂ϕ
+ u2

∂

∂u1
+ ϕ2

∂

∂ϕ1
+ · · · ,

Dt =
∂

∂t
+ ut

∂

∂u
+ ϕt

∂

∂ϕ
+Dx(ut)

∂

∂u1
+Dx(ϕt)

∂

∂ϕ1
+ · · · (6.96)

The vertical vector field V , the representation of which is given by

V =
∞∑

i=0

Di
x(Φ

u)
∂

∂ui
+

∞∑

i=0

Di
x(Φ

ϕ)
∂

∂ϕi
, (6.97)

with generating function Φ = (Φu,Φϕ), is a symmetry of (6.95), if the
following conditions are satisfied

Dt(Φ
u) = −D3

x(Φ
u) + Φu6u1 +Dx(Φ

u)6u− aΦϕϕ2 + aD2
x(Φ

ϕ)ϕ,

Dt(Φ
ϕ) = −D3

x(Φ
ϕ) + (6− a)Dx(Φ

ϕ)u+ (6− a)Φuϕ1 + aΦϕu1

+ aDx(Φ
u)ϕ. (6.98)

In (6.98), Φu, Φϕ are functions depending on a finite number of jet variables.
We restrict our search for higher symmetries at this moment to even vec-

tor fields, moreover our search is for vector fields, whose generating function
Φ = (Φu,Φϕ) depends on x, t, u, ϕ, u1, ϕ1, . . . , u5, ϕ5. More specifically,

Φu = f1 + f2ϕϕ1 + f3ϕϕ2 + f4ϕϕ3 + f5ϕϕ4 + f6ϕ1ϕ2 + f7ϕ1ϕ3,

Φϕ = g1ϕ+ g2ϕ1 + g3ϕ2 + g4ϕ3 + g5ϕ4 + g6ϕ5, (6.99)

whereas in (6.99) f1, . . . , f7, g1, . . . , g6 are dependent on the even variables
x, t, u, . . . , u5. Formula (6.99) is motivated by the standard grading in the
classical case of (6.94),

deg(x) = −1, deg(t) = −3, deg(u) = 2, deg(ϕ) =
3

2
. (6.100)

and results for other problems.
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In effect, this means that we are not only searching for Φu and Φϕ in
the appropriate jet bundle but also restricted to a certain maximal degree.
In this case we assume the vector field to be of degree less than or equal to
5, which means that Φu, Φϕ are of degree at most 7 and 6 1

2 respectively.
Substitution of (6.99) into (6.98) does lead to an overdetermined system

of partial differential equations for the functions f1, . . . , f7, g1, . . . , g6. The
solution of this overdetermined system of equations leads to the following
result

Theorem 6.33. For a = 3, there are four vector fields ¤Φ1 , . . . ,¤Φ4

satisfying the higher symmetry condition (6.98), i.e.,

Φ1 = (u1, ϕ1),

Φ2 = (u3 − 6u1u+ 3ϕϕ2, ϕ3 − 3ϕ1u− 3ϕu1),

Φ3 = −(u5 − 10u3u− 20u2u1 + 30u1u
2 + 5ϕϕ4 + 5ϕ1ϕ3

− 20uϕϕ2 − 20u1ϕϕ1, ϕ5 − 5uϕ3 − 10u1ϕ2 − 10u2ϕ1 + 10u2ϕ1

+ 20u1uϕ− 5u3ϕ),

Φ4 = −3tΦ2 + xΦ1 + (2u,
3

2
ϕ). (6.101)

If a 6= 3, then ¤Φ3 is not a symmetry of (6.95).

Next, our search is for odd vector fields (6.97) satisfying (6.98); the
assumption on the generating function Φ = (Φu,Φϕ) is

Φu = f1ϕ+ f2ϕ1 + f3ϕ2 + f4ϕ3 + f5ϕ4 + f6ϕ5 + f7ϕ6,

Φϕ = g1 + g2ϕϕ1 + g3ϕϕ2 + g4ϕϕ3 + g5ϕϕ4 + g6ϕϕ5 + g7ϕ1ϕ2

+ g8ϕ1ϕ3 + g9ϕ1ϕ4 + g10ϕ2ϕ3, (6.102)

where f1, . . . , f7, g1, . . . , g10 are dependent on x, t, u, . . . , u5.
Solving the resulting overdetermined system of partial differential equa-

tions leads to:

Theorem 6.34. There exists only one odd symmetry Y 1
2

of (6.95), i.e.,

ΦY 1
2

= (ϕ1, u). (6.103)

In order to obtain the Lenard recursion operator we did proceed in a way
similar to that discussed in Section 5 of Chapter 3, but unfortunately we were
not successful. We shall discuss a recursion for higher symmetries, resulting
from the graded Lie algebra structure in the next subsection, while the
construction of the recursion operator for the supersymmetric KdV equation
is discussed in Chapter 7.

6.2. Nonlocal symmetries and conserved quantities. By the in-
troduction of nonlocal variables, we derive here a nonlocal even symmetry
for the supersymmetric KdV equation in the case a = 3

ut = −u3 + 6u1u− 3ϕϕ2,
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ϕt = −ϕ3 + 3ϕ1u+ 3ϕu1, (6.104)

which together with the supersymmetry ¤Y 1
2

generates two infinite hier-

archies of higher symmetries. The even and odd nonlocal variables and
conserved quantities arise in a natural way.

We start with the observation that

Dt(ϕ) = Dx(−ϕ2 + 3ϕu) (6.105)

is a conservation law for (6.104), or equivalently,

q 1
2

=

∫ x

−∞
ϕdx, (6.106)

is a potential of (6.104), i.e.,

(q 1
2
)x = ϕ, (q 1

2
)t = −ϕ2 + 3ϕu. (6.107)

The quantity Q 1
2

defined by

Q 1
2

=

∫ ∞

−∞
ϕdx (6.108)

is a conserved quantity of the supersymmetric KdV equation (6.104).
We now make the following observation:

Theorem 6.35. The nonlocal vector field ¤Z1 , whose generating func-

tion ΦZ1 is

ΦZ1 = (q 1
2
ϕ1, q 1

2
u− ϕ1) (6.109)

is a nonlocal symmetry of the KdV equation (6.104). Moreover, there is

no nonlocal symmetry linear with respect to q 1
2

which satisfies (6.95) with

a 6= 3.

The function ΦZ1 is in effect the shadow of a nonlocal symmetry of the
augmented system of equations

ut = −u3 + 6u1u− 3ϕϕ2,

ϕt = −ϕ3 + 3ϕ1u+ 3ϕu1,

(q 1
2
)x = ϕ,

(q 1
2
)t = −ϕ2 + 3ϕu. (6.110)

Total partial derivative operators D̃x and D̃t are given here by

D̃x = Dx + ϕ
∂

∂q 1
2

,

D̃t = Dt + (−ϕ2 + 3ϕu)
∂

∂q 1
2

,
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and the generating function ΦZ1 satisfies the invariance of the first and the
second equation in (6.110), i.e.,

D̃t(Φ
u
Z1

) + D̃3
x(Φ

u
Z1

)− Φu
Z1

6u1 − D̃x(Φ
u
Z1

)6u+ 3Φϕ
Z1
ϕ2 − 3D̃2

x(Φ
ϕ
Z1

)ϕ = 0,

D̃t(Φ
ϕ
Z1

) + D̃3
x(Φ

ϕ
Z1

)− 3D̃x(Φ
ϕ
Z1

)u− 3Φu
Z1
ϕ1 − 3Φϕ

Z1
u1 − 3D̃x(Φ

u
Z1

)ϕ = 0.

The vector field ¤Z1 together with the vector field ¤Y 1
2

play a fundamental

role in the construction of the graded Lie algebra of symmetries of (6.104).
From now on, for obvious reasons, we shall restrict ourselves to (6.104),

i.e., to the case a = 3.

Remark 6.14. All odd variables ϕ0, ϕ1, . . . , q 1
2

are, with respect to the

grading (6.100), of degree n/2, where n is odd. The vector field ¤Z1 is even,
while ¤Y 1

2

is odd.

We now want to compute the graded Lie algebra with ¤Z1 and ¤Y 1
2

as

“seed elements”.
In order to do so, we have to prolong the vector field ¤Y 1

2

towards the

nonlocal variable q 1
2
, or by just writing ¤Y 1

2

for this prolongation, we have

to calculate the component ∂/∂q 1
2
, in the augmented setting (6.110)).

The calculation is as follows. The coefficient Y
q 1

2
1
2

has to be such that the

vector field ¤Y 1
2

leaves invariant (6.105), i.e., the Lie derivative of (6.105)

with respect to ¤Y 1
2

is to be zero.

Since

Y u1
1
2

= Dx(Y
u
1
2
) = Dx(ϕ1) = ϕ2,

Y ϕ1
1
2

= Dx(Y
ϕ
1
2

) = Dx(u) = u1,

Y ϕ2
1
2

= Dx(Y
ϕ1
1
2

) = Dx(u1) = u2, (6.111)

the invariance of the third and fourth equation in (6.110) leads to

D̃x(Y
q 1

2
1
2

)− u = 0,

D̃t(Y
q 1

2
1
2

) + D̃x
2
(Y ϕ

1
2

)− 3Y ϕ
1
2

u+ 3ϕY u
1
2

= 0, (6.112)

from which we have

D̃x(Y
q 1

2
1
2

)− u = 0,

D̃t(Y
q 1

2
1
2

) + u2 − 3u2 + 3ϕϕ1 = 0. (6.113)

By (6.109), (6.111), (6.113) we are led in a natural and elegant way to the
introduction of a new nonlocal even variable p1, defined by

p1 =

∫ x

−∞
u dx (6.114)
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and satisfying the system of equations

(p1)x = u,

(p1)t = −u2 + 3u2 − 3ϕϕ1, (6.115)

i.e., p1 is a potential of the supersymmetric KdV equation (6.104); the com-
patibility conditions being satisfied, while the associated conserved quantity
is P1.

Now the vector field ¤Y 1
2

is given in the setting (6.110) by

¤Y 1
2

= ϕ1
∂

∂u
+ u

∂

∂ϕ
+ p1

∂

∂q 1
2

+ . . . (6.116)

Computation of the graded commutator [¤Z1 ,¤Y 1
2

] of ¤Z1 and ¤Y 1
2

leads

us to a new symmetry of the KdV equation, given by

¤Y 3
2

= [¤Z1 ,¤Y 1
2

], (6.117)

where the generating function is given by

ΦY 3
2

= (2q 1
2
u1 − p1ϕ1 + uϕ− ϕ2, 2q 1

2
ϕ1 − p1u+ u1). (6.118)

This symmetry is a new nonlocal odd symmetry of (6.104) and is of degree
3
2 .

Note that as polynomials in q 1
2

and p1, the coefficients in (6.118) just

constitute the generating functions of the symmetries 2¤X1 and −¤Y 1
2

re-

spectively, i.e.,

ΦY 3
2

= 2q 1
2
Φ1 − p1ΦY 1

2

+ (uϕ− ϕ2, u1). (6.119)

We now proceed by induction.
In order to compute the graded Lie bracket [¤Z1 ,¤Y 3

2

], we first have

to compute the prolongation of ¤Z1 towards the nonlocal variables p1 and
q 1

2
, which is equivalent to the computation of the ∂/∂p1- and the ∂/∂q 1

2
-

components of the vector field ¤Z1 , again denoted by the same symbol ¤Z1 .
It is perhaps illustrative to mention at this stage that we are in effect

considering the following augmented system of graded partial differential
equations

ut = −u3 + 6u1u− 3ϕϕ2,

ϕt = ϕ3 + 3ϕ1u+ 3ϕu1,

(q 1
2
)x = ϕ,

(q 1
2
)t = −ϕ2 + 3ϕu,

(p1)x = u,

(p1)t = −u2 + 3u2 − 3ϕϕ1, (6.120)
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We now consider the invariance of the fifth equation in (6.120), i.e., of
(p1)x = u, by the vector field ¤Z1 which leads to the condition

D̃x(Z
p1
1 ) = q 1

2
ϕ1, (6.121)

from which we have

Zp11 = q 1
2
ϕ. (6.122)

The ∂/∂q 1
2
-component of ¤Z1 , i.e., Z

q 1
2

1 has to satisfy the invariance of the

third equation in (6.120), i.e., (q 1
2
)x = ϕ by the vector field ¤Z1 which leads

to the condition

D̃x(Z
q 1

2
1 )− Zϕ1 = 0,

i.e.,

D̃x(Z
q 1

2
1 )− q 1

2
u+ ϕ1 = 0, (6.123)

from which we derive

Z
q 1

2
1 = q 1

2
p1 − ϕ−

∫ x

−∞
p1ϕdx. (6.124)

So prolongation of ¤Z1 towards the nonlocal variable q 1
2
, or equivalently,

computation of the ∂/∂q 1
2
-component of the vector field ¤Z1 , requires formal

introduction of a new odd nonlocal variable q 3
2

defined by

q 3
2

=

∫ x

−∞
p1ϕdx, (6.125)

where

(q 3
2
)x = p1ϕ,

(q 3
2
)t = p1(−ϕ2 + 3uϕ)− u1ϕ+ uϕ1, (6.126)

while the compatibility condition on (6.126) is satisfied; so q 3
2

is a new odd

potential, Q 3
2

being the new odd conserved quantity.

The vector field ¤Z1 is now given in the augmented setting (6.120) by

¤Z1 = q 1
2
ϕ1

∂

∂u
+ (q 1

2
u− ϕ1)

∂

∂ϕ
+ (q 1

2
p1 − ϕ− q 3

2
)
∂

∂q 1
2

+ q 1
2
ϕ
∂

∂p1
.

(6.127)

The system of graded partial differential equations under consideration is
now the once more augmented system (6.120):

ut = −u3 + 6u1u− 3ϕϕ2,

ϕt = −ϕ3 + 3ϕ1u+ 3ϕu1,

(q 1
2
)x = ϕ,

(q 1
2
)t = −ϕ2 + 3ϕu,
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(p1)x = u,

(p1)t = −u2 + 3u2 − 3ϕϕ1,

(q 3
2
)x = p1ϕ,

(q 3
2
)t = p1(−ϕ2 + 3uϕ)− u1ϕ+ uϕ1. (6.128)

The prolongation of the vector field ¤Y 3
2

towards the nonlocal variables q 1
2
,

p1 is now constructed from the respective equations for (q 1
2
)x and (p1)x,

(6.128) resulting in

Y
q 1

2
3
2

= 2q 1
2
ϕ− 1

2
p2
1 + u,

Y p1
3
2

= 2q 1
2
u− p1ϕ− ϕ1. (6.129)

Computation of the graded Lie bracket [¤Z1 ,¤Y 3
2

] leads to

¤Y 5
2

= (−2q 3
2
u1 +

1

2
p2
1ϕ1 + p1(ϕ2 − uϕ)− 4u1ϕ− 3uϕ1 + ϕ3)

∂

∂u

+ (−2q 3
2
ϕ1 +

1

2
p2
1u− p1u1 + u2 − 2u2 + ϕϕ1)

∂

∂ϕ

+ (−2q 3
2
u+

1

2
p2
1ϕ+ p1ϕ1 − 4uϕ+ ϕ2)

∂

∂p1

+ (−2q 3
2
p1ϕ+

1

8
p4
1 − p2

1u+ p1u1 −
1

2
u2 − ϕϕ1)

∂

∂q 3
2

+ · · · , (6.130)

whereas the ∂/∂p1- and ∂/∂q 3
2
-components of ¤Y 5

2

are obtained by the in-

variance of the associated differential equations for these variables in (6.128).
In order to obtain the ∂/∂q 1

2
-component of ¤Y 5

2

, we have to require the

invariance of the equation (q 1
2
)x − ϕ = 0, which results in the following

condition

Dx(Y
q 1

2
5
2

) = −2q 3
2
ϕ1 +

1

2
p2
1u− p1u1 + u2 − 2u2 + ϕϕ1, (6.131)

from which we have

Y
q 1

2
5
2

=
1

6
p3
1 − p1u+ u1 − 2q 3

2
ϕ+

∫ x

−∞
(u2 + 2(p1ϕ)ϕ+ ϕϕ1 − 2u2) dx

=
1

6
p3
1 − p1u+ u1 − 2q 3

2
ϕ−

∫ x

−∞
(u2 − ϕϕ1) dx. (6.132)

So expression (6.132) requires in a natural way the introduction of the even

nonlocal variable p3, defined by

p3 =

∫ x

−∞
(u2 − ϕϕ1) dx, (6.133)

where

(p3)x = u2 − ϕϕ1,
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(p3)t = 4u3 − 2u2u+ u2
1 − 9uϕϕ1 + ϕϕ3 − 2ϕ1ϕ2. (6.134)

Here p3 is a well-known potential, P3 being the associated conserved quan-
tity.

Finally, the commutator ¤Y 7
2

= [¤Z1 ,¤Y 5
2

] requires the prolongation

of the vector field ¤Z1 towards the nonlocal variable q 3
2
, obtained by the

invariance of the condition (q 3
2
)x − p1ϕ = 0 by ¤Z1 , so

Dx(Z
q 3

2
1 ) = ¤Z1(p1ϕ) = (q 1

2
ϕ)ϕ+ p1(q 1

2
u− ϕ1). (6.135)

Integration of (6.135) leads to

Z
q 3

2
1 =

1

2
p2
1q 1

2
− p1ϕ−

∫ x

−∞
(
1

2
p2
1ϕ− uϕ) dx. (6.136)

The new odd nonlocal variable q 5
2

is, due to (6.136), formally defined by

q 5
2

=

∫ x

−∞
(
1

2
p2
1ϕ− uϕ) dx. (6.137)

Here q 5
2

is a nonlocal odd potential of the supersymmetric KdV equation

(6.104),

(q 5
2
)x =

1

2
p2
1ϕ− uϕ,

(q 5
2
)t =

1

2
p2
1(−ϕ2 + 3uϕ) + p1(−u1ϕ+ uϕ1) + u2ϕ− u1ϕ1 − 4u2ϕ+ uϕ2.

(6.138)

Proceeding in this way, we obtain a hierarchy of nonlocal higher supersym-
metries by induction,

¤Y
n+1

2

= [¤Z1 ,¤Yn− 1
2

], n ∈ N. (6.139)

The higher even potentials p1, p3, . . . arise in a natural way in the prolon-
gation of the vector fields ¤Y

2n+1
2

towards the nonlocal variable q 1
2
, whereas

the higher nonlocal odd potentials q 1
2
, q 3

2
, q 5

2
, . . . are obtained in the pro-

longation of the recursion symmetry ¤Z1 .
To obtain the graded Lie algebra structure of symmetries we calculate

the graded Lie bracket of the vector fields derived so far. The result is
remarkable and fascinating:

[¤Y 1
2

,¤Y 1
2

] = 2¤X1 ,

[¤Y 3
2

,¤Y 3
2

] = 2¤X3 ,

[¤Y 5
2

,¤Y 5
2

] = 2¤X5 , (6.140)

so the “squares” of the supersymmetries ¤Y 1
2

, ¤Y 3
2

, ¤Y 5
2

are just the “clas-

sical” symmetries 2¤X1 , 2¤X3 , 2¤X5 obtained previously (see (6.101)). The
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other commutators are

[¤Y 1
2

,¤Y 3
2

] = 0,

[¤Y 1
2

,¤Y 5
2

] = −2¤X3 ,

[¤Y 3
2

,¤Y 5
2

] = 0,

[¤X1 ,¤X3 ] = [¤X1 ,¤X5 ] = [¤X3 ,¤X5 ] = 0,

[¤Z1 ,¤X1 ] = [¤Z1 ,¤X3 ] = [¤Z1 ,¤X5 ] = 0,

[¤Y
n+1

2

,¤X2m+1 ] = 0, (6.141)

where n = 0, 1, 2, m = 0, 1, 2. We conjecture that in this way we obtain
an infinite hierarchy of nonlocal odd symmetries Yn+ 1

2
, n ∈ N, and an infi-

nite hierarchy of ordinary even higher symmetries X2n+1, n ∈ N, while the
even and odd nonlocal variables p2n+1, qn+ 1

2
and the associated conserved

quantities P2n+1, Qn+ 1
2

are obtained by the prolongation of the vector fields

Yn+ 1
2

and Z1 respectively.

We finish this section with a lemma concerning the Lie algebra structure
of the symmetries.

Lemma 6.36. Let X2n+1, n ∈ N, be defined by

X2n+1 =
1

2
[Yn+ 1

2
, Yn+ 1

2
], (6.142)

and assume that

[Z1, X2n+1] = 0, n ∈ N. (6.143)

Then

1. [Yn+ 1
2
, Ym+ 1

2
] =

{
(−1)m−n2Xn+m+1 m− n is even,

0 m− n is odd.

2. [Yn+ 1
2
, X2m+1] = 0, n,m ∈ N.

3. [X2n+1, X2m+1] = 0, n,m ∈ N.

Proof. The proof of (1) is by induction on k = m − n. First consider
the cases k = 1 and k = 2:

0 = [Z1, [Yn+ 1
2
, Yn+ 1

2
]] = [Yn+1+ 1

2
, Yn+ 1

2
] + [Yn+ 1

2
, Yn+1+ 1

2
]

= 2[Yn+ 1
2
, Yn+1+ 1

2
],

0 = [Z1, [Yn+ 1
2
, Yn+1+ 1

2
]] = [Yn+1+ 1

2
, Yn+1+ 1

2
] + [Yn+ 1

2
, Yn+2+ 1

2
], (6.144)

so

[Yn+ 1
2
, Yn+2+ 1

2
] = −2X2n+3. (6.145)

For general k, the result is obtained from the identity

0 = [Z1, [Yn+ 1
2
, Yn+k+ 1

2
]] = [Yn+1+ 1

2
, Yn+k+ 1

2
] + [Yn+ 1

2
, Yn+k+1+ 1

2
], (6.146)
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i.e.,

[Yn+ 1
2
, Yn+k+1+ 1

2
] = −[Yn+1+ 1

2
, Yn+k+ 1

2
]. (6.147)

The proof of (3) is a consequence of (2) by

[X2n+1, X2m+1] = [[Yn+ 1
2
, Yn+ 1

2
], X2m+1] = 2[Yn+ 1

2
, [Yn+ 1

2
, X2m+1]] = 0.

(6.148)

So we are left with the proof of statement (2), the proof of which is by
induction too. Let us prove the following statement:

E(n) : for all i ≤ n, j ≤ n one has [Yi+ 1
2
, X2j+1] = 0.

One can see that E(0) is true for obvious reasons: [Y 1
2
, X1] = 0. The

induction step is in three parts,

(b1): [Yn+1+ 1
2
, X2n+3] = 0;

(b2): [Yn+1+ 1
2
, X2j+1] = 0, j ≤ n;

(b3): [Yi+ 1
2
, X2n+3] = 0, i ≤ n.

The proof of (b1) is obvious by means of the definition of X2n+3.
The proof of (b2) follows from

[Yn+1+ 1
2
, X2j+1]] = [[Z1, Yn+ 1

2
], X2j+1]

= [Z1, [Yn+ 1
2
, X2j+1]] + [[Z1, X2j+1], Yn+ 1

2
] = 0, (6.149)

while both terms in the right-hand side are equal to zero by assumption and
(6.144) respectively.

Finally, the proof of (b3) follows from

[Yi+ 1
2
, X2n+3] =

1

2
[Yi+ 1

2
, [Yn+1+ 1

2
, Yn+1+ 1

2
]] = [[Yi+ 1

2
, Yn+1+ 1

2
], Yn+1+ 1

2
] = 0,

(6.150)

by statement 1 of Lemma 6.36, which completes the proof of this lemma.

7. Supersymmetric mKdV equation

Since constructions and computations in this section are completely sim-
ilar to those carried through in the previous section, we shall here present
just the results for the supersymmetric mKdV equation (6.151)

vt = −v3 + 6v2v1 − 3ϕ(vϕ1)1,

ϕt = −ϕ3 + 3v(vϕ)1. (6.151)

Note that the supersymmetric mKdV equation (6.151) is graded

deg(x) = −1, deg(t) = −3,

deg(v) = 1, deg(ϕ) =
1

2
. (6.152)
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The supersymmetry Y 1
2

of (6.151) is given by

Y 1
2

= ϕ1
∂

∂v
+ v

∂

∂ϕ
. (6.153)

The associated nonlocal variable q 1
2

and the conserved quantity Q 1
2

are given

by

q 1
2

=

∫ x

−∞
(vϕ) dx, Q 1

2
=

∫ ∞

−∞
(vϕ) dx, (6.154)

where

(q 1
2
)x = vϕ,

(q 1
2
)t = −v2ϕ+ v1ϕ1 − vϕ2 + 3v3ϕ. (6.155)

The nonlocal symmetry Z1 is given by

Z1 = (q 1
2
ϕ1)

∂

∂v
+ (q 1

2
v − ϕ1)

∂

∂ϕ
. (6.156)

We now present the even nonlocal variables p1, p3 and the odd nonlocal
variables q 1

2
, q 3

2
, q 5

2
, where

p1 =

∫ x

−∞
(v2 − ϕϕ1) dx,

p3 =

∫ x

−∞
(−v4 − v2

1 + 3ϕϕ1v
2 + ϕ1ϕ2) dx,

q 1
2

=

∫ x

−∞
(vϕ) dx,

q 3
2

=

∫ x

−∞
(p1vϕ+ vϕ1) dx,

q 5
2

=

∫ x

−∞
(−p2

1vϕ− 2p1vϕ1 + v3ϕ− 2vϕ2) dx. (6.157)

The x-derivatives of these nonlocal variables are just the integrands in
(6.157), while the t-derivatives are given by

(p1)t = 3v4 + v2
1 − 2vv2 − 9v2ϕϕ1 + ϕϕ3 − 2ϕ1ϕ2,

(p3)t = −4v6 + 4v2v
3 − v2

2 + 2v1v3 − 12v2v2
1 + 21v4ϕϕ1

− 9vv2ϕϕ1 + 3v2
1ϕϕ1 + 12vv1ϕϕ2 − 3v2ϕϕ3

+ 9v2ϕ1ϕ2 − ϕ1ϕ4 + 2ϕ2ϕ3,

(q 1
2
)t = −v2ϕ+ v1ϕ1 − vϕ2 + 3v3ϕ,

(q 3
2
)t = p1(−v2ϕ+ v1ϕ1 − vϕ2 + 3v3ϕ) + 2v2v1ϕ

− v2ϕ1 + 4v3ϕ1 + v1ϕ2 − vϕ3,

(q 5
2
)t = −p2

1(−v2ϕ+ v1ϕ1 − vϕ2 + 3v3ϕ)
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+ p1(2vϕ3 − 2v1ϕ2 − 8v3ϕ1 + 2v2ϕ1 − 4v2v1ϕ)

+ 2vϕ4 − 2v1ϕ3 − 9v3ϕ2 + 2v2ϕ2 − 13v2v1ϕ1

+ 4vϕϕ1ϕ2 + 5v5ϕ− 9v2v2ϕ. (6.158)

The resulting symmetries are given here by

Z1 = (q 1
2
ϕ1)

∂

∂v
+ (q 1

2
v − ϕ1)

∂

∂ϕ
+ (q 1

2
vϕ+ ϕϕ1)

∂

∂p1

+ (q 1
2
p1 − q 3

2
)
∂

∂q 1
2

,

Y 1
2

= ϕ1
∂

∂v
+ v

∂

∂ϕ
+ vϕ

∂

∂p1

+ p1

∂

∂q 1
2

,

Y 3
2

= (2q 1
2
v1 − p1ϕ1 + v2ϕ− ϕ2)

∂

∂v
+ (2q 1

2
ϕ1 − p1v + v1)

∂

∂ϕ

+ (2q 1
2
(v2 − ϕϕ1)− p1vϕ− 2vϕ1 + v1ϕ)

∂

∂p1

+ (2q 1
2
vϕ− 1

2
p2
1 +

1

2
v2 + ϕϕ1)

∂

∂q 1
2

,

Y 5
2

= (
1

2
p2
1ϕ1 + p1(ϕ2 − v2ϕ)− 2q 3

2
v1 + ϕ3 −

5

2
v2ϕ1 − 3vv1ϕ)

∂

∂v

+ (
1

2
p2
1v − p1v1 − 2q 3

2
ϕ1 + v2 −

3

2
v3 + 2vϕϕ1)

∂

∂ϕ

+ (
1

2
p2
1vϕ+ p1(2vϕ1 − v1ϕ)− 2q 3

2
(v2 − ϕϕ1) + 2vϕ2 − 2v1ϕ1

+ v2ϕ−
7

2
v3ϕ)

∂

∂p1

+ (
1

6
p3
1 − 2q 3

2
vϕ− p1(ϕϕ1 +

1

2
v2)− ϕϕ2 + vv1 + p3)

∂

∂q 1
2

+ (
1

8
p4
1 −

1

4
p2
1(v

2 + 4ϕϕ1)− 2p1q 3
2
vϕ− p1ϕϕ2

− 2q 3
2
vϕ1 − ϕ1ϕ2 + v2ϕϕ1 −

11

8
v4 + vv2 −

1

2
v2
1)

∂

∂q 3
2

,

X1 = v1
∂

∂v
+ ϕ1

∂

∂ϕ
,

X3 = (−v3 + 6v2v1 − 3vϕϕ2 − 3v1ϕϕ1)
∂

∂v
+ (−ϕ3 + 3v2ϕ1 + 3vv1ϕ)

∂

∂ϕ
,

X5 = (v5 − 10v3v
2 − 40v2v1v − 10v3

1 + 30v1v
4

+ 5vϕϕ4 + 10v1ϕϕ3 + 5vϕϕ3 + 5v1ϕ1ϕ2 − 20v3ϕϕ2

+ 10v2ϕϕ2 + 5v3ϕϕ1 − 60v1v
2ϕϕ1)

∂

∂v
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+ (ϕ5 − 5v2ϕ3 − 15v1vϕ2 − 15v2vϕ1 − 10v2
1ϕ1 + 10v4ϕ1

− 5v3vϕ− 10v2v1ϕ+ 20v1v
3ϕ)

∂

∂ϕ
. (6.159)

The graded Lie algebra structure of the symmetries is similar to the structure
of that for the supersymmetric extension of the KdV equation considered in
the previous section.

8. Supersymmetric extensions of the NLS

Symmetries, conservation laws, and prolongation structures of the su-
persymmetric extensions of the KdV and mKdV equation, constructed by
Manin–Radul, Mathieu [72, 74], have already been investigated in previous
sections.

A supersymmetric extension of the cubic Schrödinger equation has been
constructed by Kulish [15] and has been discussed by Roy Chowdhury [89],
who applied the Painlevé criterion to it. A simple calculation shows however
that the system does not admit a nontrivial prolongation structure. More-
over, as it can readily be seen, the resulting system of equations does not
inherit the grading of the classical NLS equation.

We shall now discuss a formal construction of supersymmetric extensions
of the classical integrable systems, the cubic Schrödinger equation being
just a very interesting application of this construction, which does inherit
its grading, based on considerations along the lines of Mathieu [74]. This
construction leads to two supersymmetric extensions, one of which contains
a free parameter. The resulting systems are proven to admit infinite series
of local and nonlocal symmetries and conservation laws.

8.1. Construction of supersymmetric extensions. We shall dis-
cuss supersymmetric extensions of the nonlinear Schrödinger equation

iqt = −qxx + k(q∗q)q, (6.160)

where q is a complex valued function. If we put q = u + iv then (6.160)
reduces to a system of two nonlinear equations

ut = −vxx + kv(u2 + v2),

vt = uxx − ku(u2 + v2). (6.161)

Symmetries, conservation laws and coverings for this system were discussed
by several authors, see [88] and references therein.

Now we want to construct a supersymmetric extension of (6.161). This
construction is based on two main principles:

1. The existence of a supersymmetry Y 1
2
, whose “square”

[Y 1
2
, Y 1

2
]
.
=

∂

∂x
, (6.162)

where in (6.162)) “
.
=” refers to equivalence classes of symmetries2.

2Recall that by the definition of a higher
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2. The existence of a higher (third) order even symmetry X3, which
reduces to the classical symmetry of (6.162) in the absence of odd
variables.

The technical construction heavily relies on the grading of equations
(6.161) and (6.162),

deg(x) = −1, deg(t) = −2, deg(u) = 1, deg(v) = 1,

deg(ux) = deg(vx) = 2, deg(ut) = deg(vt) = 3,

deg(uxx) = deg(vxx) = 3, . . . (6.163)

Condition 1, together with the assumption that the odd variables ϕ, ψ to
be introduced are of degree ≥ 0, immediately leads to two possible choices
for the degree of ϕ, ψ and the supersymmetry Y 1

2
, namely,

deg(ϕ) = deg(ψ) =
1

2
,

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+
u

2

∂

∂ϕ
+
v

2

∂

∂ψ
, (6.164)

or

deg(ϕ) = deg(ψ) =
3

2
,

Y 1
2

= ϕ
∂

∂u
+ ψ

∂

∂v
+
u1

2

∂

∂ϕ
+
v1
2

∂

∂ψ
, (6.165)

where it should be noted that the presentations (6.164), (6.165) for Y 1
2

are

not unique, but can always be achieved by simple linear transformations
(ϕ,ψ) 7→ (ϕ′, ψ′). The choice (6.165) leads to just one possible extension of
(6.161), namely,

ut = −vxx + kv(u2 + v2) + αϕψ,

vt = uxx − ku(u2 + v2) + βϕψ,

ϕt = f1[u, v, ϕ, ψ],

ψt = f2[u, v, ϕ, ψ], (6.166)

where f1, f2 are functions of degree 7/2 depending on u, v, ϕ, ψ and their
derivatives with respect to x.

A straightforward computer computation, however, shows that there
does not exist a supersymmetric extension of (6.162) satisfying the two
basic principles and (6.164) in this case. Therefore we can restrict ourselves
to the case (6.164) from now on.

For reasons of convenience, we shall use subscripts to denote differenti-
ation with respect to x in the sequel, i.e., u1 = ux, u2 = uxx, etc. In the

symmetry (see Chapter 2), it a coset in the quotient DC(E)/CD. Usually, we choose a
canonical representative of this coset — the vertical derivation which was proved to be an
evolutionary one. But in some cases it is more convenient to choose other representatives.
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case of (6.164), a supersymmetric extension of (6.161) by two odd variables
ϕ, ψ is given by

ut = −v2 + kv(u2 + v2) + f1[u, v, ϕ, ψ],

vt = u2 + ku(u2 + v2) + f2[u, v, ϕ, ψ],

ϕt = f3[u, v, ϕ, ψ],

ψt = f4[u, v, ϕ, ψ], (6.167)

where f1, f2 are functions in of degree 3 and f3, f4 are functions of degree
5/2. Expressing these functions into all possible terms of appropriate degree
requires the introduction of 72 constants.

Moreover, basic Principle 2 requires the existence of a vector field

X3 = g1[u, v, ϕ, ψ]
∂

∂u
+ g2[u, v, ϕ, ψ]

∂

∂v
+ g3[u, v, ϕ, ψ]

∂

∂ϕ
+ g4[u, v, ϕ, ψ]

∂

∂ψ
(6.168)

of degree 3 (i.e., g1, g2 and g3, g4 have to be functions of degree 4 and 7/2,
respectively) which is a symmetry of (6.167) and, in the absence of odd
variables, reduces to

X̄3 = (u3 − 3k(u2 + v2)u1)
∂

∂u
+ (v3 − 3k(u2 + v2)v1)

∂

∂v
, (6.169)

the classical third order symmetry of (6.161). The condition that (6.168)
is a higher order symmetry of (6.167) gives rise to a large number of equa-
tions for both the 72 constants determining (6.167) and the 186 constants
determining (6.168). Solving this system of equations leads to the following
theorem.

Theorem 6.37. The NLS equation (6.161) admits two supersymmetric

extensions satisfying the basic Principles 1 and 2. These systems are:

Case A. The supersymmetric equation in this case is given by

ut = −v2 + kv(u2 + v2) + 4ku1ϕψ − 4kv(ϕϕ1 + ψψ1),

vt = u2 − ku(u2 + v2) + 4kv1ϕψ + 4ku(ϕϕ1 + ψψ1),

ϕt = −ψ2 + k(u2 + v2)ψ + 4kϕψϕ1,

ψt = ϕ2 − k(u2 + v2)ϕ+ 4kϕψψ1 (6.170)

with a third order symmetry

X3 =
(
u3 − 3ku1(u

2 + v2) + 6kv2ϕψ + 3ku1(ϕϕ1 + ψψ1)

+ 3kv1(ϕψ1 + ϕ1ψ) + 3ku(ϕϕ2 + ψψ2) + 3kv(ψϕ2 − ϕψ2) + 6kvϕ1ψ1

) ∂
∂u

+
(
v3 − 3kv1(u

2 + v2)− 6ku2ϕψ + 3kv1(ϕϕ1 + ψψ1)− 3ku1(ϕψ1 + ϕ1ψ)

+ 3kv(ϕϕ2 + ψψ2)− 3ku(ψϕ2 − ϕψ2)− 6kuϕ1ψ1

) ∂
∂v
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+
(
ϕ3 + 6kϕψψ2−

3

2
k(u2 + v2)ϕ1 +

3

2
k(uv1− u1v)ψ−

3

2
k(uu1 + vv1)ϕ

) ∂

∂ϕ

+
(
ψ3−6kϕψϕ2−

3

2
k(u2 +v2)ψ1−

3

2
k(uv1−u1v)ϕ−

3

2
k(uu1 +vv1)ψ

) ∂

∂ψ
.

(6.171)

Case B. The supersymmetric equation in this case is given by

ut = −v2 + kv(u2 + v2)− (c− 4k)u1ϕψ − 4kvψψ1 − (c+ 8k)uψϕ1

+ 4kuϕψ1 + cvϕϕ1,

vt = u2 − ku(u2 + v2)− (c− 4k)v1ϕψ + 4kuϕϕ1 + (c+ 8k)vϕψ1

− 4kvψϕ1 − cuψψ1,

ϕt = −ψ2 + k(3u2 + v2)ψ − 2kuvϕ+ (c− 4k)ϕψϕ1,

ψt = ϕ2 − k(u2 + 3v2)ϕ+ 2kuvψ − (c− 4k)ϕψψ1, (6.172)

where c is an arbitrary real constant. This system has a third order

symmetry

X3 =
(
u3 − 3ku1(u

2 + v2)− 3

2
(c− 4k)v2ϕψ + 12kv1(ϕψ1 + ϕ1ψ)

− 3

2
(c+ 4k)uψψ2 +

3

2
(c+ 4k)vϕψ2 + 12kvϕ1ψ1

) ∂
∂u

+
(
v3 − 3kv1(u

2 + v2) +
3

2
(c− 4k)u2ϕψ − 12ku1(ϕψ1 + ϕ1ψ)

+
3

2
(c+ 4k)uψϕ2 −

3

2
(c+ 4k)vϕϕ2 − 12kuϕ1ψ1

) ∂
∂v

+
(
ϕ3 −

3

2
(c− 4k)ϕψψ2 − 3k(u2 + v2)ϕ1 + 6kv1(uψ − vϕ)

) ∂

∂ϕ

+
(
ψ3 +

3

2
(c− 4k)ϕψϕ2 − 3k(u2 + v2)ψ1 − 6ku1(uψ − vϕ)

) ∂

∂ψ
. (6.173)

Equations (6.170) and (6.172) may also be written in complex form.
Namely, if we put q = u+ iv and ω = ϕ+ iψ, equations (6.170) and (6.172)
are easily seen to originate from the complex equation

iqt = −q2 + k(q∗q)q − 2kq(ω∗ω1 + ωω∗
1) + c2q(ω

∗ω1 − ωω∗
1)

+ (c1 + 2k)(qω∗ − q∗ω)ω1 + (c1 − c2)q1ωω∗,

iωt = −ω2 + k(q∗q)ω +
1

2
c2q(q

∗ω − qω∗) + (c1 − c2)ωω∗ω1, (6.174)

where c1, c2 are arbitrary complex constants.
Now from (6.174), equation (6.170) can be obtained by putting c1 = −4k

and c2 = 0, while equation (6.172) can be obtained by putting c1 = c,
c2 = 4k.

Hence we have found two supersymmetric extensions of the classical
NLS equation, one of them containing a free parameter. We shall discuss
symmetries of these systems in subsequent subsections.
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8.2. Symmetries and conserved quantities. Let us now describe
symmetries and conserved densities of equation (6.174).

8.2.1. Case A. In this section we shall discuss symmetries, supersym-
metries, recursion symmetries and conservation laws for case A, i.e., the
supersymmetric extension of the NLS given by equation (6.170).

We searched for higher or generalized local symmetries of this system
and obtained the following result.

Theorem 6.38. The local generalized (x, t)-independent symmetries of

degree ≤ 3 of equation (6.170) are given by

X0 = v
∂

∂u
− u ∂

∂v
,

X̄0 = ψ
∂

∂ϕ
− ϕ ∂

∂ψ
,

Y 1
2

= −ψ1
∂

∂u
+ ϕ1

∂

∂v
+

1

2
v
∂

∂ϕ
− 1

2
u
∂

∂ψ
,

Ȳ 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+

1

2
u
∂

∂ϕ
+

1

2
v
∂

∂ψ
,

X1 = u1
∂

∂u
+ v1

∂

∂v
+ ϕ1

∂

∂ϕ
+ ψ1

∂

∂ψ
,

X2
.
=

∂

∂t
, (6.175)

together with X3 as given by (6.171).

Similarly we obtained the following conserved quantities and conserva-
tion laws

Theorem 6.39. All local conserved quantities of degree ≤ 2 of system

(6.170) are given by

P0 =

∫ ∞

−∞
ϕψ dx,

Q 1
2

=

∫ ∞

−∞
(uψ − vϕ) dx,

Q̄ 1
2

=

∫ ∞

−∞
(uϕ+ vψ) dx,

P1 =

∫ ∞

−∞
(u2 + v2 − 2ϕϕ1 − 2ψψ1) dx,

P2 =

∫ ∞

−∞
(uv1 + 2ϕ1ψ1) dx, (6.176)

with the associated conservation laws

p0,x = ϕψ,

p0,t = ϕϕ1 + ψψ1,
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q 1
2
,x = uψ − vϕ,

q 1
2
,t = uϕ1 + vψ1 − u1ϕ− v1ψ,

q̄ 1
2
,x = uϕ+ vψ,

q̄ 1
2
,t = −uψ1 + vϕ1 + u1ψ − v1ϕ,

p1,x = u2 + v2 − 2ϕϕ1 − 2ψψ1,

p1,t = 2u1v − 2uv1 − 4ϕ1ψ1 + 2ϕ2ψ + 2ϕψ2,

p2,x = uv1 + 2ϕ1ψ1,

p2,t = u2u−
1

2
(u2

1 + v2
1) +

1

4
k(v4 − 2u2v2 − 3u4) + 2(ψ1ψ2 + ϕ1ϕ2)

+ 4ku2(ϕϕ1 + ψψ1) + 4kuv1ϕψ + 8kϕψϕ1ψ1. (6.177)

From the conservation laws given in Theorem 6.39 we can introduce
nonlocal variables by formally defining

p0 = D−1
x p0,x,

q 1
2

= D−1
x q 1

2
,x,

q̄ 1
2

= D−1
x q̄ 1

2
,x,

p1 = D−1
x p1,x,

p2 = D−1
x p2,x. (6.178)

Using these nonlocal variables one can try to find a nonlocal generalized
symmetry, which might be used in the construction of an infinite hierarchy
of symmetries and conserved quantities for (6.170). From the associated
computations we arrive at the following theorem.

Theorem 6.40. The supersymmetric NLS equation given by (6.170) ad-

mits a nonlocal symmetry of degree 1 of the form

Z1 = q 1
2

(
−ψ1

∂

∂u
+ ϕ1

∂

∂v
+

1

2

∂

∂ϕ
− 1

2

∂

∂ψ

)

+ q̄ 1
2

(
ϕ1

∂

∂u
+ ψ1

∂

∂v
+

1

2

∂

∂ϕ
+

1

2

∂

∂ψ

)

− 2vϕψ
∂

∂u
+ 2uϕψ

∂

∂v
+ k−1ϕ1

∂

∂ϕ
+ k−1ψ1

∂

∂ψ

= q 1
2
Y 1

2
− q̄ 1

2
Ȳ 1

2
+B (6.179)

where B is given by

B = −2vϕψ
∂

∂u
+ 2uϕψ

∂

∂v
+ k−1ϕ1

∂

∂ϕ
+ k−1ψ1

∂

∂ψ
. (6.180)

The existence of the symmetry Z1 of the form (6.179) should be com-
pared with the existence of a similar symmetry for the supersymmetric KdV
equation, considered in the previous Sections 4.2 and 6. It should be noted
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that relation (6.179) just holds for the ∂/∂u-, ∂/∂v-, ∂/∂ϕ- and ∂/∂ψ-
components. Starting from (6.175) and (6.179), we can construct new sym-
metries of (6.170) by using the graded commutator of vector fields

[X,Y ] = X ◦ Y − (−1)|X|·|Y |Y ◦X.
Computing the commutators of (6.175) we get the identities

[Y 1
2
, Y 1

2
] = X1, [Ȳ 1

2
, Ȳ 1

2
] = X1,

[X0, Y 1
2
] = −Ȳ 1

2
, [X0, Ȳ 1

2
] = Y 1

2
,

[X̄0, Y 1
2
] = Ȳ 1

2
, [X̄0, Ȳ 1

2
] = −Y 1

2
, (6.181)

all other commutators of (6.175) being zero.
In order to compute the commutators [Z1, Y 1

2
] and [Z1, Ȳ 1

2
], we are forced

to compute the prolongations of the vector fields Y 1
2
, Ȳ 1

2
towards the nonlocal

variables q 1
2

and q̄ 1
2
. In other words we have to compute the ∂/∂q 1

2
- and

∂/∂q̄ 1
2
-components of the vector field Y 1

2
and Ȳ 1

2
. These components can be

obtained by requiring the invariance of q 1
2
,x and q̄ 1

2
,x, i.e.,

Dx(Y
q 1

2
1
2

) = Y 1
2
(q 1

2
,x) = Y 1

2
(uψ − vϕ) = Y u

1
2

ψ + uY ψ
1
2

− Y v
1
2

ϕ− vY ϕ
1
2

Dx(Y
q̄ 1

2
1
2

) = Y 1
2
(q̄ 1

2
,x) = Y 1

2
(uϕ+ vψ) = Y u

1
2

ϕ+ uY ϕ
1
2

+ Y v
1
2

ψ + vY ψ
1
2

(6.182)

where Y
q 1

2
1
2

and Y
q̄ 1

2
1
2

are the ∂/∂q 1
2
- and ∂/∂q̄ 1

2
-components of Y 1

2
. Similar

relations hold for Ȳ
q 1
2

1
2

and Ȳ
q̄ 1

2
1
2

.

A straightforward computation yields

Y
q 1

2
1
2

= −1

2
p1, Ȳ

q 1
2

1
2

= ϕψ,

Y
q̄ 1

2
1
2

= ϕψ, Ȳ
q̄ 1

2
1
2

=
1

2
p1,

Y p1
1
2

= −(uψ − vϕ), Ȳ p1
1
2

= uϕ+ vψ. (6.183)

Now the commutators [Z1, Y 1
2
] and [Z1, Ȳ 1

2
] give the following results:

Y 3
2

= [Z1, Y 1
2
] = q 1

2
X1 +

1

2
p1Y 1

2

+
(
− k−1ψ2 +

1

2
(u2 + 3v2)ψ + 3ϕψϕ1 + uvϕ

) ∂
∂u

+
(
k−1ϕ2 +

1

2
(3u2 + v2)ϕ+ 3ϕψψ1 − uvψ

) ∂
∂v

+
(
− 1

2
k−1v1 +

3

2
uϕψ

) ∂

∂ϕ
+
(1

2
k−1u1 +

3

2
vϕψ

) ∂

∂ψ
,

Ȳ 3
2

= [Z1, Ȳ 1
2
] = −q̄ 1

2
X1 +

1

2
p1Ȳ 1

2
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+
(
k−1ψ2 −

1

2
(u2 + 3v2)ϕ+ 3ϕψψ1 + uvψ

) ∂
∂u

+
(
k−1ψ2 −

1

2
(3u2 + v2)ϕ− 3ϕψϕ1 − uvϕ

) ∂
∂v

+
(
− 1

2
k−1u1 −

3

2
vϕψ

) ∂

∂ϕ
+
(1

2
k−1v1 +

3

2
uϕψ

) ∂

∂ψ
, (6.184)

i.e., Y 3
2

and Ȳ 3
2

are two new higher order supersymmetries of (6.170). In ef-

fect, we are here considering the supersymmetric NLS equation in the graded
Abelian covering by the variables p1, q 1

2
, q̄ 1

2
, where the following system of

differential equations holds

ut = −v2 + kv(u2 + v2) + 4ku1ϕψ − 4kv(ϕϕ1 + ψψ1),

vt = u2 − ku(u2 + v2) + 4kv1ϕψ + 4ku(ϕϕ1 + ψψ1),

ϕt = −ψ2 + k(u2 + v2)ψ + 4kϕψϕ1,

ψt = ϕ2 − k(u2 + v2)ϕ+ 4kϕψψ1,

q 1
2
,x = uψ − vϕ,

q 1
2
,t = uϕ1 + vψ1 − u1ϕ− v1ψ,

q̄ 1
2
,x = uϕ+ vψ,

q̄ 1
2
,t = −uψ1 + vϕ1 + u1ψ − v1ϕ,

p1,x = u2 + v2 − 2ϕϕ1 − 2ψψ1,

p1,t = 2u1v − 2uv1 − 4ϕ1ψ1 + 2ϕ2ψ + 2ϕψ2. (6.185)

We are now able to prove the following lemma.

Lemma 6.41. By defining

Yn+ 1
2

= [Z1, Yn− 1
2
],

Ȳn+ 1
2

= [Z1, Ȳn− 1
2
], (6.186)

n = 1, 2, . . . , we obtain two infinite hierarchies of nonlocal supersymmetries

of equation (6.170).

Proof. First of all note, that the vector field ∂/∂p1 is a nonlocal sym-
metry of (6.170) and an easy computation shows that

[
∂

∂p1
, Z1] = 0,

[
∂

∂p1
, Y 3

2
] =

1

2
Y 1

2
,

[
∂

∂p1
, Ȳ 3

2
] =

1

2
Ȳ 1

2
. (6.187)
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Secondly, note that by an induction argument and using the Jacobi identity
and (6.187) it is easy to prove that

[
∂

∂p1
, Yn+ 1

2
] = [

∂

∂p1
, [Z1, Yn− 1

2
]] = [Z1,

1

2
Yn− 3

2
] =

1

2
Yn− 1

2
,

[
∂

∂p1
, Ȳn+ 1

2
] =

1

2
Ȳn− 1

2
. (6.188)

From (6.188) it immediately follows that the assumption Yn+ 1
2

= 0 leads to

the conclusion that also Yn− 1
2

= 2[∂/∂p1, Yn+ 1
2
] = 0, which proves that the

hierarchies {Yn+ 1
2
}n∈N, {Ȳn+ 1

2
}n∈N are infinite.

Higher order conservation laws arise in the construction of prolongation
of the vector fields Y 1

2
, Ȳ 1

2
and Z1 towards nonlocal variables, the first of

which resulted in (6.183).

In order to compute the Z
q 1

2
1 component of the vector field Z1 we have

to require the invariance of the equation q 1
2
,x = uψ − vϕ, i.e.,

Dx(Z
q 1

2
1 ) = Z1(q 1

2
,x) = q 1

2
Y 1

2
(q 1

2
,x)− q̄ 1

2
Ȳ 1

2
(q 1

2
,x) +B(q 1

2
,x)

= q 1
2
(−1

2
p1,x)− q̄ 1

2
(ϕψ)1 +B(q 1

2
,x)

due to (6.177) and (6.179), from which we obtain

Z
q 1

2
1 = −1

2
p1q 1

2
− q̄ 1

2
(ϕψ) + k−1(uψ − vϕ)

+

∫ x

−∞

(1

2
p1(uψ − vϕ)− k−1(u1ψ − v1ϕ)

)
dx (6.189)

and in a similar way

Dx(Z
q̄ 1

2
1 ) = Z1(q̄ 1

2
,x) = q 1

2
Y 1

2
(q̄ 1

2
,x)− q̄ 1

2
Ȳ 1

2
(q̄ 1

2
,x) +B(q̄ 1

2
,x)

= q 1
2
(ϕψ)1 − q̄ 1

2
(
1

2
p1,x) +B(q̄ 1

2
,x),

yielding

Z
q̄ 1

2
1 = q 1

2
(ϕψ)− 1

2
p1q̄ 1

2
+ k−1(uϕ+ vψ)

+

∫ x

−∞

(1

2
p1(uϕ+ vψ)− k−1(u1ϕ+ v1ψ))

)
dx. (6.190)

So the prolongation of Z1 towards the nonlocal variables q 1
2
, q̄ 1

2
requires the

introduction of two additional nonlocal variables

q 3
2

=

∫ x

−∞

(1

2
p1(uψ − vϕ)− k−1(u1ψ − v1ϕ)

)
dx,

q̄ 3
2

=

∫ x

−∞

(1

2
p1(uϕ+ vψ)− k−1(u1ϕ+ v1ψ)

)
dx. (6.191)
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It is a straightforward check that q 3
2
, q̄ 3

2
are associated to nonlocal conserved

quantities Q 3
2
, Q̄ 3

2
. Thus we have found two new nonlocal variables q 3

2
and

q̄ 3
2

with

q 3
2
,x =

1

2
p1(uψ − vϕ)− k−1(u1ψ − v1ϕ),

q̄ 3
2
,x =

1

2
p1(uϕ+ vψ)− k−1(u1ϕ+ v1ψ). (6.192)

From this we proceed to construct the nonlocal components of Y 1
2

and Ȳ 1
2

with respect to q 3
2
, q̄ 3

2
, which can be obtained by requiring the invariance of

q 3
2
,x and q̄ 3

2
,x.

In this way we find

Dx(Y
q 3

2
1
2

) = Y 1
2
(q 3

2
,x)

=
1

2
Y 1

2
(p1)(uψ − vϕ) +

1

2
p1Y 1

2
(uψ − vϕ)

− k−1Y 1
2
(u1ψ − v1ϕ)

=
1

2
p1(−ψ1ψ −

1

2
u2 − ϕ1ϕ−

1

2
v2)

− k−1(−ψ2ψ −
1

2
uu1 − ϕ2ϕ−

1

2
vv1) (6.193)

yielding

Y
q 3

2
1
2

=
1

8
p2
1 −

1

4
k−1(u2 + v2) + 4(ϕϕ1 + ψψ1) (6.194)

In similar way we find

Y
q̄ 3

2
1
2

=
1

2
p1ϕψ − k−1(ϕ1ψ + ϕψ1 +

1

2
uv)− k−1

∫ x

−∞
(uv1 + 2ϕ1ψ1) dx,

Ȳ
q 3

2
1
2

=
1

2
p1ϕψ − k−1(ϕ1ψ + ϕψ1 +

1

2
uv)− k−1

∫ x

−∞
(uv1 + 2ϕ1ψ1) dx,

Ȳ
q̄ 3

2
1
2

=
1

8
p2
1 −

1

4
k−1(u2 + v2)− 4(ϕϕ1 + ψψ1). (6.195)

Hence we see from (6.193) that the computation of the nonlocal components

Y
q 3

2
1
2

and Ȳ
q̄ 3

2
1
2

requires the introduction of a new nonlocal variable

p2 =

∫ x

−∞
(uv1 + 2ϕ1ψ1) dx. (6.196)

It is easily verified that p2 is associated to a conserved quantity P2. In
arriving at the previous results, (6.195), we are working in a covering of the
supersymmetric NLS equation with nonlocal variables p1, q 1

2
, q̄ 1

2
, q 3

2
, q̄ 3

2
,

p2; i.e., we consider system (6.185), together with the differential equations,
defining q 3

2
, q̄ 3

2
, p2.
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Summarizing the results obtained so far, we see that the odd potentials
Q 1

2
, Q̄ 1

2
, Q 3

2
and Q̄ 3

2
enter in a natural way in the prolongation of Z1,

whereas the even potentials P1 and P2 enter in the prolongation of Y 1
2

and

Ȳ 1
2
. This situation is similar to that arising in the supersymmetric KdV

equation treated in Section 6.
8.2.2. Case B. In order to gain insight in the structure of the super-

symmetric NLS equation (6.172), we start with the computation of (x, t)-
independent conserved quantities of degree ≤ 3. We arrive at the following
result.

Theorem 6.42. The supersymmetric NLS equation (6.172) admits the

following set of local even and odd conserved quantities of degree ≤ 3:

P0 =

∫ ∞

−∞
ϕψ dx,

Q 1
2

=

∫ ∞

−∞
(uψ − vϕ) dx,

P1 =

∫ ∞

−∞

1

2
k−1

(
(c+ 4k)(ϕϕ1 + ψψ1) + 2k(u2 + v2)

)
dx,

Q 3
2

=

∫ ∞

−∞
(uϕ1 + vψ1) dx,

P2 =

∫ ∞

−∞

1

4
k−1

(
(c+ 4k)ϕ1ψ1 + (c+ 12k)k(u2 + v2)ϕψ − 4kuv1

)
dx,

Q 5
2

=

∫ ∞

−∞
−k−1

(
uψ2 − vϕ2

− k(u2 + v2)(uψ − vϕ)− 4kϕψ(uϕ1 + vψ1)
)
dx. (6.197)

Moreover, in the case where c = −4k we have an additional local conserved

quantity of degree 3 given by

P3 =

∫ ∞

−∞

(
16uv(ϕψ1 − ψϕ1)

+ 32uvϕψ + (u2 + v2)2 − 2k−1(uu2 + vv2)
)
dx. (6.198)

Motivated by the nonlocal results in case A, we introduce the nonlocal
variables p0, q 1

2
, p1, q 3

2
, p2 and q 5

2
as formal integrals associated to the

conserved quantities given in (6.197).
Including these new nonlocal variables in our computations, we get an

additional set of nonlocal conserved quantities

Q̄ 1
2

=

∫ ∞

−∞

1

2

(
2q 3

2
+ (c+ 4k)ϕψq 1

2

)
dx,

P̄1 =

∫ ∞

−∞

1

2
k−1

(
2k(uψ − vϕ)q 1

2
− (ϕϕ1 + ψψ1)

)
dx,
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P̄2 =

∫ ∞

−∞
−1

2
k−1

(
2k(uϕ1 + vψ1)q 1

2
− ϕ1ψ1

)
dx, (6.199)

as well as an additional conserved quantity in the case c = −4k, namely

P̄0 =

∫ ∞

−∞
p1 dx.

This situation can be described as higher nonlocalities, or covering of a
covering, and as it will be shown lead to new interesting results.

Remark 6.15. The results (6.197), (6.199) indicate the existence of a
double hierarchy of odd conserved quantities {Qn+ 1

2
}n∈N as well as a double

hierarchy of even conserved quantities {Pn}n∈N.

In order to obtain any further results, we also need the conserved quan-
tity Q 7

2
of degree 7/2 which is given by

Q 7
2

=

∫ ∞

−∞

1

6
k−1

(
2uϕ3 + 2vψ3 − 2kv3ψ1 − 2ku3ϕ1 − 6kuv2ϕ1 + 6ku2v1ψ

− 12kuvv1ϕ+ 2c(uψ − vϕ)ϕ1ψ1 − (c− 12k)ϕψ(uψ2 − vϕ2)
)
dx. (6.200)

Let us stress that now, by the introduction of the nonlocal variables q̄ 1
2
, p̄1,

p̄2 and q 7
2
, associated to the appropriate conserved quantities, we are able to

remove the condition c = −4k on the existence of the conserved quantities

P3 and P̄0. By also including q̄ 1
2
, p̄1, p̄2 and q 7

2
in our computations, we

find four additional conserved quantities given by

P̄0 =

∫ ∞

−∞

(
p1 + (c+ 4k)p̄1

)
dx,

Q̄ 3
2

=

∫ ∞

−∞
−1

2
k−1

(
2kq 5

2
+ 2k(u2 + v2)q 1

2
+ (ϕϕ1 + ψψ1)q 1

2

)
dx,

P3 =

∫ ∞

−∞
k−1

(
2k(c+ 4k)(uψ − vϕ)q 5

2
+ 2(c+ 4k)(u2ψψ1 + v2ϕϕ1)

− 2(c+ 12k)uvψϕ1 − 2(c− 4k)uvϕψ1

+ 32ku1vϕψ + k(u2 + v2)2 − 2(uu2 + vv2)
)
dx,

P̄3 =

∫ ∞

−∞

1

2
k−1

(
4k2(uψ − vϕ)q 5

2
+ 2k(uϕ1 + vψ1)q 3

2

− (ϕ1ϕ2 + ψ1ψ2) + (c− 4k)ϕψϕ1ψ1

)
dx. (6.201)

Note that the first equation in (6.201) and the third one in (6.201) reduce
to the second equations in (6.199) and (6.197) respectively under the con-
dition c = −4k. Furthermore, from the computation of the t-component
of the conservation law q̄ 3

2
associated to Q̄ 3

2
, it becomes apparent why the

introduction of the nonlocal variable q 7
2

is required in its construction.
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So P3 is just an ordinary conserved quantity of this supersymmetric ex-

tension; for c = −4k it is just a local conserved quantity, while for other

values of c it is a nonlocal one.
We now turn to the construction of the Lie algebra of even and odd

symmetries for the supersymmetric NLS equation (6.172). According to the
introduction of the nonlocal variables associated to the conserved quantities
obtained earlier in this section we find the following result.

Theorem 6.43. The supersymmetric NLS equation (6.172) admits the

following set of even and odd symmetries of degree ≤ 2. The symmetries of

degree 0 are given by

X0 = v
∂

∂u
− u ∂

∂v
+ ψ

∂

∂ϕ
− ϕ ∂

∂ψ
,

X̄0 = ψq 1
2

∂

∂u
− ϕq 1

2

∂

∂v
− 1

8
k−1ϕ

∂

∂ϕ
− 1

8
k−1ψ

∂

∂ϕ
; (6.202)

the symmetries of degree 1/2 by

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+

1

2
u
∂

∂ϕ
+

1

2
v
∂

∂ψ
,

Ȳ 1
2

= vq 1
2

∂

∂u
− uq 1

2

∂

∂v
+ (q 1

2
ψ − 1

4
k−1u)

∂

∂ϕ

+ (−q 1
2
ϕ− 1

4
k−1v)

∂

∂ψ
(6.203)

the symmetries of degree 1 by

X1 = u1
∂

∂u
+ v1

∂

∂v
+ ϕ1

∂

∂ϕ
+ ψ1

∂

∂ψ

X̄1 =
(
(c+ 4k)(ϕ1q 1

2
+ ψq 3

2
) + 2k(c− 4k)p̄1v

) ∂
∂u

+
(
(c+ 4k)(ψ1q 1

2
− ϕq 3

2
)− 2k(c− 4k)p̄1u

) ∂
∂v

+
(
− 4kuq 1

2
+ 2ψ1 + 2k(c− 4k)p̄1ψ

) ∂

∂ϕ

+
(
− 4kvq 1

2
− 2ϕ1 − 2k(c− 4k)p̄1ϕ

) ∂

∂ψ
; (6.204)

the symmetries of degree 3/2 by

Y 3
2

=
(
vq 3

2
+ u1q 1

2
− 1

2
k−1ψ2 + u2ψ − uvϕ− 1

2
k−1cϕψϕ1

) ∂
∂u

+
(
− uq 3

2
+ v1q 1

2
+

1

2
k−1ϕ2 − v2ϕ+ uvψ − 1

2
k−1cϕψψ1

) ∂
∂v

+
(
q 3

2
ψ + q 1

2
ϕ1

) ∂

∂ψ
+
(
− q 3

2
ϕ+ q 1

2
ψ1

) ∂

∂ψ
,

Ȳ 3
2

=
(
4kcu1q 1

2
− (c− 4k)(ψ2 + cϕψϕ1) + k(c− 12k)(u2 + v2)ψ

) ∂
∂u
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+
(
4kcv1q 1

2
+ (c− 4k)(ϕ2 − cϕψψ1)− k(c− 12k)(u2 + v2)ϕ

) ∂
∂u

+
(
4kcq 1

2
ϕ1 + 2k(c− 12k)uϕψ + 4kv1

) ∂

∂ϕ

+
(
4kcq 1

2
ψ1 + 2k(c− 12k)vϕψ − 4ku1

) ∂

∂ψ
, (6.205)

and finally the symmetries of degree 2 by

X2 =
(
v2 − kv(u2 + v2) + (c− 4k)u1ϕψ + 4k(vψψ1 − uϕψ1)

+ (c+ 8k)uψϕ1 − cvϕϕ1

) ∂
∂u

+
(
− u2 + kv(u2 + v2) + (c− 4k)v1ϕψ − 4k(uϕϕ1 − vψϕ1)

− (c+ 8k)vϕψ1 + cuϕϕ1

) ∂
∂v

+
(
ψ2 − k(3u2 + v2)ψ + (c− 4k)ϕψϕ1 + 2kuvϕ

) ∂

∂ϕ

+
(
− ϕ2 − k(u2 + 3v2)ϕ+ (c− 4k)ϕψψ1 − 2kuvψ

) ∂

∂ψ
,

X̄2 =
(
(c+ 4k)(−kψq 5

2
+ ψ2q 1

2
− 3ku2ψq 1

2
+ cϕψϕ1q 1

2
)

+ (c− 4k)(4kp̄2v + vψϕ1 − vϕψ1)

+ 16k2vq 1
2
q 3

2
+ (c− 12k)kv2ψq 1

2
+ 4ckuvϕq 1

2

) ∂
∂u

+
(
(c+ 4k)(kϕq 5

2
− ϕ2q 1

2
+ 3kv2ϕq 1

2
+ cϕψψ1q 1

2
)

+ (c− 4k)(−4kp̄2u− uψϕ1 + uϕψ1)

− 16k2uq 1
2
q 3

2
− (c− 12k)ku2ϕq 1

2
− 4ckuvψq12

) ∂
∂v

+
(
− 2ϕ2 + (c− 4k)(4kp̄2ψ + 2ϕψψ1)− 2(c− 12k)kuϕψq 1

2

+ (4ku+ 16k2ψq 1
2
)q 3

2
− 4kv1q 1

2
− 4kuvψ + 4kv2ϕ

) ∂

∂ϕ

+
(
− 2ψ2 − (c− 4k)(4kp̄2ϕ+ 2ϕψϕ1)− 2(c− 12k)kvϕψq 1

2

+ (4kv − 16k2ϕq 1
2
)q 3

2
+ 4ku1q 1

2
− 4kuvϕ+ 4kv2ψ

) ∂

∂ψ
. (6.206)

Analogously to case A, we have the following result.

Theorem 6.44. The nonlocal even symmetry X̄1 given by (6.204) acts

as a recursion symmetry on the hierarchies of odd symmetries.

In order to compute the graded commutators [X̄1, Y 1
2
] and [X̄1, Ȳ 1

2
], we

have to compute the components of Y 1
2

and Ȳ 1
2

with respect to the nonlocal
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variables q 1
2
, q 3

2
and p̄1. Analogously to the computations in Subsection 8,

we find

Y
q 1

2
1
2

= ϕψ,

Y
q 3

2
1
2

=
1

4
(u2 + v2),

Y p̄1
1
2

= ϕψq 1
2

+
1

4
k−1(uϕ+ vψ)− 1

2
k−1q 3

2
(6.207)

and

Y
q 1

2
1
2

= 0,

Y
q 3

2
1
2

= −1

8
k−1(u2 + v2),

Y p̄1
1
2

= −1

8
k−2(uϕ+ vψ) +

1

4
k−2q 3

2
. (6.208)

Moreover, the computation of [X̄1, Ȳ 1
2
] requires the ∂/∂q̄ 1

2
-component of X̄1

which is given to be

X̄
q 1

2
1 = −(c+ 4k)ϕψq 1

2
− 2q 3

2
. (6.209)

Now the computation of the commutators leads to

[X̄1, Y 1
2
] =

1

2
(c− 12k)Y 3

2
− 1

4
k−1Ȳ 3

2
,

[X̄1, Ȳ 1
2
] = (−1

4
k−1c+ 1)Y 3

2
+

1

8
k−2Ȳ 3

2
, (6.210)

indicating that X̄1 acts as a recursion operator on the Y , Ȳ hierarchies.
It is our conjecture that X̄1 is a Hamiltonian symmetry for equation

(6.172). We refer to the concluding remarks for more comments on this
issue.

9. Concluding remarks

In the previous sections we proposed a construction for supersymmetric
generalizations of the cubic nonlinear Schrödinger equation (6.160) and dis-
cussed symmetries, conserved quantities for the resulting interesting cases
A and B. In both cases we found an infinite set of (higher order) local and
nonlocal symmetries. These facts indicate the complete integrability of both
systems.

It is possible to transform the results obtained thus far in the superfield
formulation. Namely, if we introduce the odd quantity Φ by

Φ = ω + θq, (6.211)

where θ is an additional odd variable, and put

Dθ =
1

2

∂

∂θ
+ θDx, (6.212)
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then

[Dθ, Dθ] = Dx

and it is clear that Dθ corresponds to the supersymmetry Y 1
2

given by

(6.203). Notice that our definition of Dθ differs a factor 1
2 in the ∂/∂θ

term. This is caused by our requirement that [Dθ, Dθ] = Dx, whereas the
operator Dθ introduced by Mathieu satisfies [Dθ, Dθ] = 2Dx. In this setting
the general complex equation (6.174) takes the form

iΦt = −4D4
θΦ + 2(c1 − c2)ΦΦ∗D2

θΦ

+ 2(c2 + 2k)ΦDθΦDθΦ
∗ − 2c2Φ

∗(DθΦ)2 (6.213)

Our hypothesis is that there exist Hamiltonian structures of the systems of
Cases A and B in this setting. Due to the conjecture that the nonlocal recur-
sion symmetry X̄1 given by (6.204) is a Hamiltonian symmetry associated to
a linear combination of P2 and P̄2 we hope to prove the formal construction
and the Lie superalgebra structure of the local and nonlocal symmetries and
the Poisson structure of the associated hierarchies of conserved quantities.

Remark 6.16. The contents of this section clearly indicates how to con-
struct supersymmetric extensions of classical integrable systems, which can
be termed completely integrable by the existence of infinite hierarchies of
local and/or nonlocal symmetries and conservation Laws.



CHAPTER 7

Deformations of supersymmetric equations

We shall illustrate the developed theory of deformations of supersym-
metric equations and systems through a number of examples.

First of all we shall continue the theory for the supersymmetric extension
of the KdV equation [35, 72, 74, 87] started in Section 6 of the previous
chapter. We shall construct the recursion operator for symmetries, which is
just realized by the contraction of a symmetry and the deformation. More-
over we construct a new hierarchy of conserved quantities and a hierarchy
of (x, t)-dependent symmetries.

As a second application, we consider the two supersymmetric extensions
of the nonlinear Schrödinger equation (Section 2) leading to the recursion
operators for symmetries and new hierarchies of odd and even symmetries.

We shall also construct a supersymmetric extension of the Boussinesq
equation, construct deformations for this system and eventually arrive at
the recursion operator for symmetries and at hierarchies of odd and even
symmetries and conservation laws.

Finally, we construct two-dimensional supersymmetric extensions (i.e.,
extensions including two odd dependent variables) of the KdV and study
their symmetries, conservation laws, and deformations, obtaining recursion
operators and hierarchies of symmetries.

1. Supersymmetric KdV equation

We start at the supersymmetric extension of the KdV equation [72, 74]
and restrict our considerations to the case a = 3 in the system

ut = −u3 + 6uu1 − aϕϕ2,

ϕt = −ϕ3 + (6− a)ϕ1u+ aϕu1 (7.1)

(see Section 6 of Chapter 6).
Features and properties of the equation were discussed in several papers,

cf. [35, 87].

1.1. Nonlocal variables. In order to construct a deformation of (7.1),
we have to construct an appropriate covering by the introduction of a num-
ber of nonlocal variables. These nonlocal variables, which arise classically
from conserved densities related to conservation laws, have been computed
to be

q 1
2

=D−1(ϕ),

309



310 7. DEFORMATIONS OF SUPERSYMMETRIC EQUATIONS

q 3
2

=D−1(p1ϕ),

q 5
2

=D−1

(
1

2
p2
1ϕ− uϕ

)
(7.2)

and

p1 =D−1(u),

p0 =D−1(p1),

p1 =D−1(ϕq 1
2
),

p3 =D−1(u2 − ϕϕ1),

p3 =D−1(u2 − 2uϕq 1
2

+ uq 1
2
q 3

2
), (7.3)

where D = Dx.
Odd nonlocal variables will be denoted by q, while even nonlocal vari-

ables will be denoted by p and p. We mention that, in effect, the total
derivative operator Dx should be lifted to an appropriate covering, where it
is denoted by the same symbol Dx, i.e.,

Dx =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ u3

∂

∂u2
+ . . .

+ (q 1
2
)x

∂

∂q 1
2

+ (q 3
2
)x

∂

∂q 3
2

+ (q 5
2
)x

∂

∂q 5
2

+ (p0)x
∂

∂p0
+ (p1)x

∂

∂p1
+ (p3)x

∂

∂p3

+ (p1)x
∂

∂p1

+ (p3)x
∂

∂p3

. (7.4)

Other odd nonlocal variables, q 7
2

and q 9
2
, are given by

q 7
2

= D−1
(
p3ϕ+ q 1

2

(1
2
p2
1u− p1u1 + u2 − u2

))
,

q 9
2

= D−1
(
6p3p1ϕ+ q 1

2

(
p3
1u− 3p2

1u1 + 6p1u2 − 6p1u
2

+ 36uu1 − 6u3

))
. (7.5)

Note that the variables q 3
2
, q 5

2
, q 7

2
, q 9

2
, p0, p1, p3 contain higher nonlocalities.

1.2. Symmetries. For hierarchies {Y 2n+1
2
}, {X2n+1}, n ∈ N, of sym-

metries of equation (7.1) we refer to 4 of Chapter 6. Recall that

Y 1
2

=ϕ1
∂

∂u
+ u

∂

∂ϕ
,

Y 3
2

=(2q 1
2
u1 − p1ϕ1 + uϕ− ϕ2)

∂

∂u
+ (2q 1

2
ϕ1 − p1u+ u1)

∂

∂ϕ
,

X1 =u1
∂

∂u
+ ϕ1

∂

∂ϕ
,



1. SUPERSYMMETRIC KDV EQUATION 311

X3 =− ut
∂

∂u
− ϕt

∂

∂ϕ
,

X5 =− (u5 − 10u3u− 20u2u1 + 30u1u
2 + 5ϕϕ4 + 5ϕ1ϕ3

− 20uϕϕ2 − 20u1ϕϕ1)
∂

∂u

− (ϕ5 − 5uϕ3 − 10u1ϕ2 − 10u2ϕ1 + 10u2ϕ1 + 20u1uϕ− 5u3ϕ)
∂

∂ϕ
.

(7.6)

Moreover we found the supersymmetric analogue of the (x, t)-dependent
symmetry which acts as recursion on the even hierarchy {X2n+1}, n ∈ N,
i.e.,

V2 = −6tX5 − 2xX3 +H2, (7.7)

where

H2 =
(
− q 1

2
(ϕ2 + p1ϕ1 − ϕu) + 3q 3

2
ϕ1 − 13ϕϕ1

+ 4p1u1 − 2p1u1 − 8u2 + 16u2
) ∂
∂u

+
(
− q 1

2
(p1u− u1) + 3q 3

2
u

+ 2p1ϕ1 − 2p1ϕ1 − 7ϕ2 + 14ϕu
) ∂
∂ϕ

. (7.8)

It should be noted that the vector fields

Y− 1
2

=
∂

∂q 1
2

− q 1
2

∂

∂p1

+ (p1q 3
2
− 2q 5

2
)
∂

∂p3

,

X−1 =
∂

∂p1
+ q 1

2

∂

∂q 3
2

+ q 3
2

∂

∂q 5
2

+ x
∂

∂p0
,

X−1 = =
∂

∂p1

(7.9)

are symmetries of equation (7.1) in the covering defined by (7.2), (7.3).
These symmetries are vertical in the covering under consideration.

Computation of graded Lie brackets leads to the identities

[Y− 1
2
, V2] =Y 3

2
,

[X−1, V2] =2Z1 + 4X1,

[X−1, V2] =− 2X1, (7.10)

where Z1 is the nonlocal symmetry of degree 1 (cf. 4 of Chapter 6), which
acts, by its Lie bracket, as a recursion operator on the odd hierarchy {Yn+ 1

2
},

n ∈ N. Recall that

Z1 = (q 1
2
ϕ1)

∂

∂u
+ (q 1

2
u− ϕ1)

∂

∂ϕ
+ . . . (7.11)
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1.3. Deformations. In order to construct a deformation of (7.1), we
formally construct the infinite-dimensional Cartan covering (see Subsection
3.5 of Chapter 6) over the infinite covering of (7.1) by (7.2), (7.3).

In the setting under consideration, the Cartan covering is described by
the Cartan forms ω0, . . . , ωk, . . . on the infinite prolongation of the super-
symmetric KdV equation together with the forms corresponding to the non-
local variables (7.2), (7.3):

ωq 1
2

, ωq 3
2

, ωq 5
2

, ωp0 , ωp1 , ωp1 , ωp3 , ωp3 , (7.12)

where ωf = LUϕ(f) denotes the Cartan form corresponding to the potential
f (see (2.13) on p. 66). According to (7.12), we search for a generalized
vector field which is linear with respect to the Cartan forms. Applying the
deformation condition on this vector field and taking into account the grad-
ing of (7.1), (7.2), (7.3), and (7.12), we arrive at the following deformation

U1 =
(
ωu2 + ωu(−4u) + ωϕ1(−2ϕ) + ωϕ(ϕ1)

+ ωq 1
2

(q 1
2
u1 + p1ϕ1 + ϕ2 − uϕ)

+ ωp1(−2u1) + ωp1(u1) + ωq 3
2

(−ϕ1)
) ∂
∂u

+
(
ωϕ2 + ωϕ(−2u) + ωu(−2ϕ)

+ ωq 1
2

(−q 1
2
ϕ1 + p1u− u1)

+ ωp1(−ϕ1) + ωp1(ϕ1) + ωq 3
2

(−u)
) ∂
∂ϕ

. (7.13)

Similar to the results of Subsection 2.8 of Chapter 6, the element U1 satisfies
the identity

[[U1, U1]]
fn = 0, (7.14)

which means that U1 is a graded Nijenhuis operator in the sense [49].
We now redefine our hierarchies in the following way. First we put

Y 1
2

=ϕ1
∂

∂u
+ u

∂

∂ϕ
,

Y 3
2

=(2q 1
2
u1 − p1ϕ1 + uϕ− ϕ2)

∂

∂u
+ (2q 1

2
ϕ1 − p1u+ u1)

∂

∂ϕ
,

X1 =u1
∂

∂u
+ ϕ1

∂

∂ϕ
,

X1 =(q 1
2
ϕ1)

∂

∂u
+ (q 1

2
u− ϕ1)

∂

∂ϕ
= Z1,

V0 =(2u+ xu1 + 3tut)
∂

∂u
+ (

3

2
ϕ+ xϕ1 + 3tϕt)

∂

∂ϕ
(7.15)
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and define the odd and even hierarchies of symmetries by

Y2n+ 1
2

= ((. . . (Y 1
2

U1) U1) . . . ) U1)
︸ ︷︷ ︸

n times

= Y 1
2

Un1 ,

Y2n+ 3
2

= Y 3
2

Un1 ,

X2n+1 = X1 Un1 ,

X2n+1 = X1 Un1 ,

V2n = V0 Un1 . (7.16)

1.4. Passing from deformations to “classical” recursion oper-
ators. Here we rewrite the main result of the previous subsection in more
conventional terms, i.e., as formal matrix integro-differential operators. We
shall see that this representation is far less “economical” than representation
(7.13). Moreover, if one uses conventional left action of differential opera-
tors, additional parasitic signs arise, which makes this representation even
more cumbersome.

Let X = ¤(F,G) be a nonlocal symmetry of (7.1) in the covering defined
by (7.2), (7.3) with 2-component generating function (F,G) and let |X| be
the degree of X; then one has |F | = |X| and |G| = |X|+ 1.

It means that X is of the form

X =

∞∑

i=0

(
Di(F ))

∂

∂ui
+Di(G)

∂

∂ϕi

)
, (7.17)

where F and G satisfy the shadow equation for the covering in question and
D denotes the extension of the total derivative Dx onto the covering. Then
one has

iX(ωui) = Di(F ),

iX(ωϕi) = Di(G) (7.18)

for all i = 0, 1, . . . From the definition of nonlocal variables (see (7.2) and
(7.3)) one also has

iX(ωp1) =D−1(F ),

iX(ωq 1
2

) =D−1(G),

iX(ωp0) =D−1(D−1(F )),

iX(ωq 3
2

) =D−1(D−1(F )ϕ+Gp1),

iX(ωp1) =D−1(Gq 1
2
−D−1(G)ϕ),

iX(ωq 5
2

) =D−1(D−1(F )p1ϕ+
1

2
Gp2

1 − Fϕ−Gu),

iX(ωp3) =D−1(2uF −Gϕ1 +D(G)ϕ), (7.19)

while
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iX(ωp3) = D−1
(
2Fu− 2Fϕq 1

2
− 2Guq 1

2
+ 2D−1(G)uϕ

+ Fq 1
2
q 3

2
+D−1(G)uq 3

2
−D−1

(
D−1(F )ϕ+Gp1

)
uq 1

2

)
(7.20)

(the last equality is given for reasons of completeness only and will not be
used below).

Then the recursion operator R corresponding to the deformation U1,
(7.13) acts as

R(X) = iX(U1) (7.21)

and is of the form

R(F,G) = (F1, G1), (7.22)

where

F1 = D2(F ) + F (−4u) +D(G)(−2ϕ) +G(ϕ1)

+D−1(G)(−q 1
2
u1 + p1ϕ1 + ϕ2 − uϕ) +D−1(F )(−2u1)

+D−1(Gq 1
2
−D−1(G)ϕ)u1 +D−1(D−1(F )ϕ+Gp1)(−ϕ1),

G1 = D2(G) +G(−2u) + F (−2ϕ)

+D−1(G)(−q 1
2
ϕ1 + p1u− u1) +D−1(F )(−ϕ1)

+D−1(Gq 1
2
−D−1(G)ϕ)(ϕ1) +D−1(D−1(F )ϕ+Gp1)(−u). (7.23)

Due to the relations

D−1(Gq 1
2
) = D−1(G)q 1

2
−D−1(D−1(G)ϕ)

= −(−1)|X|q 1
2
D−1(G) + (−1)|X|D−1(ϕD−1(G)),

D−1(Gp1) = p1D
−1(G)−D−1(uD−1(G)), (7.24)

we rewrite F1, G1 in a left action notation as

F1 = D2(F )− 4uF + (−1)|X|2ϕD(G)− (−1)|X|ϕ1G

− (−1)|X|(−q 1
2
u1 + p1ϕ1 + ϕ2 − uϕ)D−1(G)− 2u1D

−1(F )

− (−1)|X|u1q 1
2
D−1(G) + (−1)|X|u1D

−1(ϕD−1(G))

+ (−1)|X|u1D
−1(ϕD−1(G)) + ϕ1D

−1(ϕD−1(F )

+ (−1)|X|ϕ1p1D
−1(G)− (−1)|X|ϕ1D

−1(uD−1(G))),

G1 = D2(G)− 2uG− (−1)|X|2ϕF

+ (−q 1
2
ϕ1 + p1u− u1)D

−1(G)− (−1)|X|ϕ1D
−1(F )

+ (−1)|X|ϕ1((−1)|X|+1q 1
2
D−1(G)− (−1)|X|+1D−1(ϕD−1(G)))

+ (−1)2|X|ϕ1D
−1(ϕD−1(G))− (−1)|X|uD−1(ϕD−1(F ))

− up1D
−1(G) + uD−1(uD−1(G)). (7.25)
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From this we finally arrive at

F1 = D2(F )− 4uF − 2u1D
−1(F ) + ϕ1D

−1(ϕD−1(F ))

+ (−1)|X|2ϕD(G)− (−1)|X|ϕ1G− (−1)|X|(ϕ2 − uϕ)D−1(G)

+ (−1)|X|2u1D
−1(ϕD−1(G))

− (−1)|X|ϕ1D
−1(uD−1(G)),

G1 = −(−1)|X|2ϕF − (−1)|X|ϕ1D
−1(F )

− (−1)|X|uD−1(ϕD−1(F ))

+D2(G)− 2uG− u1D
−1(G) + 2ϕ1D

−1(ϕD−1(G))

+ uD−1(uD−1(G)), (7.26)

or

F1 = D2(F )− 4uF − 2u1D
−1(F ) + ϕ1D

−1(ϕD−1(F ))

+ (−1)|X|
(
2ϕD(G)− ϕ1G+ (−ϕ2 + uϕ)D−1(G)

+ 2u1D
−1(ϕD−1(G))− ϕ1D

−1(uD−1(G))
)
,

G1 = (−1)|X|
(
− 2ϕF − ϕ1D

−1(F )− uD−1(ϕD−1(F ))
)

D2(G)− 2uG− u1D
−1(G) + 2ϕ1D

−1(ϕD−1(G)) + uD−1(uD−1(G)),
(7.27)

leading to the recursion operator R = Rij , where

R11 = D2 − 4u− 2u1D
−1 + ϕ1D

−1ϕD−1,

R12 = (−1)|X|(2ϕD − ϕ1 − ϕ2D
−1 + uϕD−1 + 2u1D

−1ϕD−1

− ϕ1D
−1uD−1),

R21 = (−1)|X|(−2ϕ− ϕ1D
−1 − uD−1ϕD−1),

R22 = D2 − 2u− u1D
−1 + 2ϕ1D

−1ϕD−1 + uD−1uD−1. (7.28)

Note that the classical recursion operator for the KdV equation is just the
ϕ-independent part of R11:

R0 = D2 − 4u− 2u1D
−1. (7.29)

From the above representation it becomes clear that the action of the re-
cursion operator considered as action from the left, requires introduction of
the sign (−1)|X|, which makes the operation not natural. Therefore we shall
restrict ourselves to representations similar to (7.13).

2. Supersymmetric extensions of the NLS equation

In this section, we shall discuss deformations and recursion operators for
the two supersymmetric extensions of the nonlinear Schrödinger equation
[88]

ut = −v2 + kv(u2 + v2)− u1(c1 − c2)ϕψ − 4kvψψ1
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− u(c1 + c2 + 4k)ψϕ1 + c2uϕψ1 + c1vϕϕ1,

vt = u2 − ku(u2 + v2)− v1(c1 − c2)ϕψ + 4kuϕϕ1

+ v(c1 + c2 + 4k)ϕψ1 − c1uψψ1 − c2vψϕ1,

ϕt = −ψ2 + (
1

2
c2u

2 + ku2 + kv2)ψ − 1

2
c2uvϕ− (c1 − c2)ϕψϕ1,

ψt = ϕ2 − (
1

2
c2v

2 + ku2 + kv2)ϕ+
1

2
c2uvψ − (c1 − c2)ϕψψ1,

where in

Case A: c1 = −4k, c2 = 0,

Case B: c1 = c, c2 = 4k.

The construction of deformations will follow exactly the same lines as for the
supersymmetric KdV equation presented in Section 1, so for the nonlinear
Schrödinger equation we shall only present the results.

2.1. Case A. In order to work in the appropriate covering for the su-
persymmetric extension of the Nonlinear Schrödinger Equation we did con-
struct the following set of nonlocal variables, associated to conserved quan-
tities

p0, p1, p2 , p0, p1, p2,

q 1
2
, q 1

2
, q 3

2
, q 3

2
, q 5

2
, q 5

2
,

which are defined by

p0 = D−1(ϕψ),

p0 = D−1(p1),

p1 = D−1(u2 + v2 − 2ϕϕ1 − 2ψψ1),

p1 = D−1
(
k(ψv + ϕu)q 1

2
+ k(ψu− ϕv)q 1

2
− 2ψψ1 − 2ϕϕ1

)
,

p2 = D−1(uv1 + 2ϕ1ψ1),

p2 = D−1
(
k(2ψ1v + 2ϕ1u+ kψvp1 + kϕup1)q 1

2

+ k(−2ψ1u+ 2ϕ1v − kψup1 + kϕvp1)q 1
2

+ 2uv1

)
,

q 1
2

= D−1(ψu− ϕv),
q 1

2
= D−1(ψv + ϕu),

q 3
2

= D−1(kψup1 − kϕvp1 + 2ψ1u− 2ϕ1v),

q 3
2

= D−1(kψvp1 + kϕup1 + 2ψ1v + 2ϕ1u).

After introduction of the associated Cartan forms, we found the deformation,
or Nijenhuis operator, for this case to be

U1 =
(
ωv1 + ωp1(−kv)− 2ωp0ku1 + ωu(−2kϕψ)
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+ ωϕ(−kuψ − kvϕ) + ωψ(−kvψ + kuϕ)

− ωq 1
2

(kϕ1) + ωq 1
2

(kψ1)
) ∂
∂u

+
(
− ωu1 + ωp1(ku)− 2ωp0kv1 + ωv(−2kϕψ)

+ ωϕ(−kvψ + kuϕ) + ωψ(kuψ + kvϕ)

+ ωq 1
2

(−kψ) + ωq 1
2

(−kϕ1)
) ∂
∂v

+
(
ωψ1 + ωϕ(kϕψ) + ωp1(−

k

2
ψ) + ωp0(−2kϕ1)

+ ωq 1
2

(−k
2
u) + ωq 1

2

(−k
2
v)
) ∂

∂ϕ

+
(
− ωϕ1 + ωψ(−kϕψ) + ωp1(+

k

2
ϕ) + ωp0(−2kψ1)

+ ωq 1
2

(−k
2
v) + ωq 1

2

(
k

2
u)
) ∂

∂ψ
.

By starting at the symmetries (see [88])

X0 = v
∂

∂u
− u ∂

∂v
+ . . . ,

X0 = ψ
∂

∂ϕ
− ϕ ∂

∂ψ
+ . . . ,

Y 1
2

= −ψ1
∂

∂u
+ ϕ1

∂

∂v
+

1

2
v
∂

∂ϕ
− 1

2
u
∂

∂ψ
+ . . . ,

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+

1

2
u
∂

∂ϕ
+

1

2
v
∂

∂ψ
+ . . .

and

S0 = (u+ xu1 + 2tut)
∂

∂u
+ (v + xv1 + 2tvt)

∂

∂v

+ (
1

2
ϕ+ xϕ1 + 2tϕt)

∂

∂ϕ
+ (

1

2
ψ + xψ1 + 2tψt)

∂

∂ψ
+ . . . ,

the recursion operator U1 = R generates five hierarchies of symmetries

Xn = X0Rn,
Yn+ 1

2
= Y 1

2
Rn,

Xn = X0Rn,
Y n+ 1

2
= Y 1

2
Rn,

Sn = S0Rn,
where X0Rn, . . . should be understood as

Xn = X0Rn = (. . . ((X0 U1) U1) . . . ) U1︸ ︷︷ ︸
n times

.
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2.2. Case B. In this case the supersymmetric nonlinear Schrödinger
equation is

ut = −v2 + kv(u2 + v2)− (c1 − 4k)u1ϕψ − 4kvψψ1,

− (c1 + 8k)uψϕ1 + 4kuϕψ1 + c1vϕϕ1,

vt = u2 − ku(u2 + v2)− (c1 − 4k)v1ϕψ + 4kuϕϕ1,

(c1 + 8k)vϕψ1 − c1uψψ1 − 4kvψϕ1,

ϕ1 = −ψ2 + (3ku2 + kv2)ψ − 2kuvϕ− (c1 − 4k)ϕψϕ1,

ψ1 = ϕ2 − (ku2 + 3kv2)ϕ+ 2kuvψ − (c1 − 4k)ϕψψ1.

We introduce the following nonlocal variables, resulting from computed con-
servation laws,

p0 = D−1(ϕψ),

p0 = D−1
(
p1 + (c1 + 4k)p1

)
,

p1 = D−1
(
u2 + v2 +

1

2k
(c1 + 4k)(ϕϕ1 + ψψ1)

)
,

p1 = D−1
(
(uψ − vϕ)q 1

2
− 1

2k
(ϕϕ1 + ψψ1)

)
,

q 1
2

= D−1(uψ − vϕ),

q 1
2

= D−1
(
q 3

2
+

1

2
(c1 + 4k)ϕψq 1

2

)
,

q 3
2

= D−1(vψ1 + uϕ1)

and additionally

q− 1
2

= D−1(q 1
2
),

p2 = D−1
(
− uv1 +

1

4k
(c1 + 4k)ϕ1ψ1 +

1

4
(c1 + 12k)(u2 + v2)ϕψ

)
,

p2 = D−1
(
− (vψ1 + uϕ1)q 1

2
+

1

2k
ϕ1ψ1

)
.

Within this covering, we constructed a deformation of the form

U1 =
(
ωv1 + ωu

(1
2
(c1 − 4k)ϕψ

)

+ ωϕ
(
− 4kuψ +

1

4
(c1 − 4k)vϕ

)
+ ωψ

(1
4
(c1 − 4k)vψ + 4kuϕ

)

+ ωp0
(1
2
(c1 − 4k)u1

)
+ ωp1

(
− kv

)
+ ωp1

(
− 1

2
k(c1 + 12k)v

)

+ ωq 1
2

(1
2
k(c1 + 12k)vq 1

2
+

1

2
(c1 + 4k)ϕ1

)

+ ωq 3
2

(
− 1

2
(c1 + 4k)ψ

)) ∂
∂u
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+
(
− ωu1 + ωv

1

2
(c1 − 4k)ϕψ + ωϕ(−4kvψ − 1

4
(c1 − 4k)uϕ)

+ ωψ(−1

4
(c1 − 4k)uψ + 4kvϕ)

+ ωp0
1

2
(c1 − 4k)v1 + ωp1(ku) + ωp1

1

2
k(c1 + 12k)u

+ ωq 1
2

(−1

2
k(c1 + 12k)uq 1

2
+

1

2
(c1 + 4k)ψ1)

+ ωq 3
2

1

2
(c1 + 4k)ϕ

) ∂
∂v

+
(
ωψ1 +

1

4
ωϕ(c1 − 4k)ϕψ + ωp0

1

2
(c1 − 4k)ϕ1 − ωp1kψ

− ωp1
1

2
k(c1 + 12k)ψ + ωq 1

2

(−2ku− 1

2
k(c1 + 12k)ψq 1

2
)
) ∂

∂ϕ

+
(
− ωϕ1 + ωψ

1

4
(c1 − 4k)ϕψ + ωp0

1

2
(c1 − 4k)ψ1 + ωp1kϕ

+ ωp1
1

2
k(c1 + 12k)ϕ+ ωq 1

2

(−2kv +
1

2
k(c1 + 12k)ϕq 1

2
)
) ∂

∂ψ
.

The action of U1 on the symmetries

X1 = u1
∂

∂u
+ v1

∂

∂v
+ ϕ1

∂

∂ϕ
+ ψ1

∂

∂ψ
+ . . . ,

X1 =
(
(c+ 4k)(ϕ1q 1

2
+ ψq 3

2
) + 2k(c− 4k)p̄1v

) ∂
∂u

+
(
(c+ 4k)(ψ1q 1

2
− ϕq 3

2
)− 2k(c− 4k)p̄1u

) ∂
∂v

+
(
− 4kuq 1

2
+ 2ψ1 + 2k(c− 4k)p̄1ψ

) ∂
∂ϕ

+
(
− 4kvq 1

2
− 2ϕ1 − 2k(c− 4k)p̄1ϕ

) ∂
∂ψ

+ . . . ,

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+

1

2
u
∂

∂ϕ
+

1

2
v
∂

∂ψ
+ . . . ,

Y 1
2

= q 1
2
v
∂

∂u
− q 1

2
u
∂

∂v
+ (q 1

2
ψ − 1

4k
u)

∂

∂ϕ
+ (−q 1

2
ϕ− 1

4k
v)

∂

∂ψ
+ . . . ,

X0 = v
∂

∂u
− u ∂

∂v
+ ψ

∂

∂ϕ
− ϕ ∂

∂ψ
+ . . . ,

X0 = −q 1
2
ψ
∂

∂u
+ q 1

2
ϕ
∂

∂v
− 1

8k
ϕ
∂

∂ϕ
− 1

8k
ψ
∂

∂ψ
+ . . . ,

Y− 1
2

= ψ
∂

∂u
− ϕ ∂

∂v
+ . . .
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creates hierarchies of symmetries in a similar way as in the preceding sub-
section. Note that X1 is the nonlocal recursion symmetry constructed in
Section 8.2 of Chapter 6.

3. Supersymmetric Boussinesq equation

We discuss the construction of a supersymmetric extension of the Boussi-
nesq equation. Conservation laws, nonlocal variables, symmetries and re-
cursion operators for this supersymmetric system will be discussed too.

3.1. Construction of supersymmetric extensions. We start our
discussion from the classical system [14, 80]

ut = −1

2
uxx + uux + vx,

vt =
1

2
vxx + uvx + uxv. (7.30)

We construct a so-called fermionic extension [35] by setting

Φ = ϕ+ θu,

Ψ = ψ + θv, (7.31)

where ϕ ψ, θ are odd variables.
Due to the classical grading of equation (7.30), i.e.,

deg(u) = 1, deg(v) = 2, deg(x) = −1, deg(t) = −2,

and the grading of the odd variables

deg(θ) = −1

2
, deg(ϕ) =

1

2
, deg(ψ) =

3

2
,

the variables Φ, Ψ are graded by

deg(Φ) =
1

2
, deg(Ψ) =

3

2
.

Now we construct a formal extension of (7.30) by setting

ut = f1[u, v, ϕ, ψ]

vt = f2[u, v, ϕ, ψ]

ϕt = f3[u, v, ϕ, ψ]

ψt = f4[u, v, ϕ, ψ] (7.32)

where f1, f2, f3, f4 are functions of degrees 3, 4, 5/2, 7/2 respectively
defined on the jet bundle J∞(π), π : (x, t, u, v) 7→ (x, t), extended by the
odd variables ϕ and ψ. The construction of f1 and f2 should be done in
such a way that in the absence of odd variables f1, f2 reduce to the right-
hand sides of (7.30). We now put on the following requirements on system
(7.32), see [88]:
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1. The existence of an odd symmetry of (7.32), i.e.,

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+ u

∂

∂ϕ
+ v

∂

∂ψ
+ . . . ,

[Y 1
2
, Y 1

2
] = 2(u1

∂

∂u
+ v1

∂

∂v
+ ϕ1

∂

∂ϕ
+ ψ1

∂

∂ψ
) + · · · .= −2

∂

∂x
.

2. The existence of an even symmetry of (7.32) of appropriate degree
which reduces to the classical first higher order symmetry of (7.30)
in the absence of odd variables, i.e.,

Xclas
3 =

(
1

3
u3 − u2

1 + 2uv1 + 2vu1 − uu2 + u2u1

)
∂

∂u

+

(
1

3
v3 + u1v1 + 2vv1 + uv2 + 2uu1v + u2v1

)
∂

∂v
. (7.33)

From the above requirements we obtained the following supersymmetric
extension of (7.30):

ut = −1

2
u2 + uu1 + v1,

vt =
1

2
v2 + u1v + uv1 + ϕ1ψ1 + ϕ2ψ,

ϕt = −1

2
ϕ2 + ψ1 + uϕ1,

ψt =
1

2
ψ2 + uψ1 + u1ψ, (7.34)

while the symmetry X3 is given by

X3 =
(1

3
u3 − u2

1 + 2vu1 − uu2 + 2uv1 + u2u1 + ϕ1ψ1 + ϕ2ψ
) ∂
∂u

+
(1

3
v3 + u1v1 + 2vv1 + uv2 + 2uvu1 + u2v1 + ϕ2ψ1 + ϕ1ψ2

+ 2uϕ1ψ1 − ψψ2 + 2ϕ2ψu+ 2u1ϕ1ψ
) ∂
∂v

+
(1

3
ϕ3 − uϕ2 + 2uψ1 + u2ϕ1 + vϕ1 − u1ϕ1 + u1ψ

)
∂ϕ

+
(1

3
ψ3 + uψ2 + u2ψ1 + vψ1 + u1ψ1 + 2uu1ψ + v1ψ

) ∂

∂ψ
. (7.35)

The resulting supersymmetric extension of the Boussinesq equation is just
the same as mentioned in [67].

3.2. Construction of conserved quantities and nonlocal vari-
ables. For the supersymmetric extension (7.34) of the Boussinesq equation
we constructed the following set of conserved densities (X), associated con-
served quantities (

∫∞
−∞X dx) and nonlocal variables D−1(X), i.e, the vari-

ables pi of degree i, qj of degree j:

p0 = D−1(u),
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p1 = D−1(v),

p2 = D−1(uv + ϕ1ψ),

p3 = D−1(v2 + uv1 + u2v + 2uϕ1ψ + ϕ1ψ1 − ψψ1),

p0 = D−1(p1),

p1 = D−1(ψq 1
2

+ ϕψ),

p2 = D−1(p1ϕψ − uϕψ + ϕ1ψ − uψq 1
2

+ p1ϕ1q 1
2
),

p3 = 2D−1
(
(p2ϕ1 − u2ψ − 2vψ + u1ψ − p1vϕ− ϕv1)q 1

2

+ (uψ − p1ψ)q 3
2

+ (−u2 + p1u− 2v + u1 − p2
1 + p2)ϕψ

− u2v − uv1 − v2
)

and

q 1
2

= D−1(ψ),

q 3
2

= D−1(uψ + vϕ),

q1 1
2

= D−1(q 1
2
v + p1ϕ1),

q 5
2

= D−1(−ϕ1p
2
1 + p2(2ψ − 2ϕ1)− 2(p1v + v1)q 1

2
− 2vϕ1),

q 5
2

= D−1
(1

2
ϕ1p

2
1 + p2(−2ψ + ϕ1) + (uv − 2uu1

+ u1p1 + u2)q 1
2

+ vϕ1

)
.

Note that the variables p0, p1, . . . contain higher order nonlocalities.
In fact, introduction of the nonlocal variables p0, p0, . . . , q 1

2
, q 3

2
, q 3

2
, . . . is

essential for the construction of nonlocal symmetries, while the associated
Cartan forms ωp0 , ωp0 , . . . , ωq 1

2

, . . . play a significant role in the construction

of deformations or recursion operators.

3.3. Symmetries. We obtained the following symmetries for the su-
persymmetric extension of Boussinesq equation (7.34):

Y 1
2

= ϕ1
∂

∂u
+ ψ1

∂

∂v
+ u

∂

∂ϕ
+ v

∂

∂ψ
+ . . . ,

Y 1
2

= ψ
∂

∂u
+ ψ1

∂

∂v
+ (u− p1)

∂

∂ϕ
+ . . . ,

X1 = u1
∂

∂u
+ v1

∂

∂v
+ ϕ1

∂

∂ϕ
+ ψ1

∂

∂ψ
+ . . . ,

X1 = (ϕψ + ϕ1q 1
2
)
∂

∂u
+ (ϕψ1 + ϕ1ψ + ψ1q 1

2
)
∂

∂v

+ (−uq 1
2
− q 3

2
− ϕ1 + uϕ)

∂

∂ϕ
+ (−vq 1

2
− ψ1 − uψ)

∂

∂ψ
+ . . . ,
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Y 3
2

= (−2q 1
2
u1 − ϕ2 + uϕ1 + p1ϕ1 − 3uψ + u1ϕ)

∂

∂u

+ (−2q 1
2
v1 − ψ2 + 2uψ1 + p1ψ1 − vϕ1 − vψ − 2u1ψ + v1ϕ)

∂

∂v

+ (−2q 1
2
ϕ1 + ϕϕ1 − u2 + p1u+ u1 + 2p2)

∂

∂ϕ

+ (−2q 1
2
ψ1 + 2ϕ1ψ + ϕψ1 + uv + p1v + v1)

∂

∂ψ
+ . . . ,

Y 3
2

= (−q 1
2
u1 − ψ1 − 2uψ + p1ψ)

∂

∂u

+ (−q 1
2
v1 − ψ2 − 2uψ1 + p1ψ1 − 2u1ψ)

∂

∂v

+ (−q 1
2
ϕ1 − u2 + p1u− v + u1 −

1

2
p2
1 + p2)

∂

∂ϕ
− q 1

2
ψ1

∂

∂ψ
+ . . . ,

3.4. Deformation and recursion operator. In a way, analogously to
previous applications, we construct a deformation of the equation structure
U related to the supersymmetric Boussinesq equation, i.e.,

U1 =
(
ωu1 − 2ωv − ωuu− ωp0u1 − ωϕψ + ωq 1

2

(2ψ − ϕ1)
) ∂
∂u

+
(
− ωv1 − ωvu− 2ωuv − 2ωϕ1ψ − ωϕψ1 + ωψ(ϕ1 + ψ)

− ωp0v1 + ωq 1
2

ψ1

) ∂
∂v

+
(
ωϕ1 − 2ωψ + ωϕ(2p1 − u)− ωp0ϕ1 + ωp1(2q 1

2
+ ϕ)

− ωq 3
2

− 2ωq 3
2

+ ωq 1
2

u
) ∂

∂ϕ

+
(
− ωψ1 − ωψu− 2ωuψ − ωp0ψ1 + ωp1ψ − ωq 1

2

v
) ∂

∂ψ
.

From the deformation U , we obtain four hierarchies of (x, t)-independent
symmetries {Yn+ 1

2
}, {Y n+ 1

2
}, {Xn+1}, {Xn+1}, n ∈ N, by

Yn+ 1
2

= (. . . (Y 1
2

U1) . . . U1),

Y n+ 1
2

= (. . . (Y 1
2

U1) . . . U1),

Xn+1 = (. . . (X1 U1) . . . U1),

Xn+1 = (. . . (X1 U1) . . . U1),

and an (x, t)-dependent hierarchy defined by

Sn = (. . . (S0 U1) . . . U1),

where S0 is defined by

S0 = (u+ xu1 + 2tut)
∂

∂u
+ (2v + xv1 + 2tvt)

∂

∂v
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+
(1

2
ϕ+ xϕ1 + 2tϕt

) ∂

∂ϕ
+
(3

2
ψ + xψ1 + 2tψt

) ∂

∂ψ
+ · · ·

In effect, the hierarchies {Y n+ 1
2
} and {Xn+1} start at symmetries

Y − 1
2

=
∂

∂ϕ

and

X0 = (2q 1
2
− ϕ)

∂

∂ϕ
+ ψ

∂

∂ψ

respectively.

4. Supersymmetric extensions of the KdV equation, N = 2

In this chapter we shall discuss the supersymmetric extensions of the
classical KdV equation

ut = −uxxx + 6uux (7.36)

with two odd variables, the situation N = 2. The construction of such
supersymmetric systems runs along similar lines as has been explained
for the supersymmetric extension of the classical nonlinear Schrödinger
equation, cf. Section 8 of Chapter 6. For additional references see also
[68, 87, 64, 65, 63, 82, 79].

The extension is obtained by considering two odd (pseudo) total deriv-
ative operators D1 and D2 given by

D1 = ∂θ1 + θ1Dx, D2 = ∂θ2 + θ2Dx, (7.37)

where θ1, θ2 are two odd parameters. Obviously, these operators satisfy the
relations D2

1 = D2
2 = Dx and [D1, D2] = 0.

The N = 2 supersymmetric extension of the KdV equation is obtained
by taking an even homogeneous field Φ

Φ = w + θ1ψ + θ2ϕ+ θ2θ1u (7.38)

with degrees deg(Φ) = 1, deg(u) = 2, deg(w) = 1, deg(ϕ) = deg(ψ) = 3/2,
deg(θ1) = deg(θ2) = −1/2, and considering the most general evolution
equation for Φ, which reduces to the KdV equation in the absence of the
odd variables ϕ,ψ.

Proceeding in this way, we arrive at the system

Φt = Dx

(
−D2

xΦ + 3ΦD1D2Φ +
1

2
(a− 1)D1D2Φ

2 + aΦ3

)
. (7.39)

Rewriting this system in components, we arrive at a system of partial dif-
ferential equations for the two even variables u,w and the two odd variables
ϕ,ψ, i.e.,

ut = Dx

(
− u2 + 3u2 − 3ϕϕ1 − 3ψψ1 − (a− 1)w2

1

− (a+ 2)ww2 + 3auw2 + 6awψϕ
)
,
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ϕt = Dx

(
− ϕ2 + 3uϕ+ 3aw2ϕ− (a+ 2)wψ1 − (a− 1)w1ψ

)
,

ψt = Dx

(
− ψ2 + 3uψ + 3aw2ψ + (a+ 2)wϕ1 + (a− 1)w1ϕ

)
,

wt = Dx

(
− w2 + aw3 + (a+ 2)uw + (a− 1)ψϕ

)
, (7.40)

or equivalently,

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 − 3aw1w2 − (a+ 2)ww3 + 3au1w
2

+ 6auww1 + 6aw1ψϕ+ 6awψ1ϕ+ 6awψϕ1,

ϕt = −ϕ3 + 3u1ϕ+ 3uϕ1 + 6aww1ϕ+ 3aw2ϕ1 − (a+ 2)w1ψ1

− (a+ 2)wψ2 − (a− 1)w2ψ − (a− 1)w1ψ1,

ψt = −ψ3 + 3u1ψ + 3uψ1 + 6aww1ψ + 3aw2ψ1 + (a+ 2)w1ϕ1

+ (a+ 2)wϕ2 + (a− 1)w2ϕ+ (a− 1)w1ϕ1,

wt = −w3 + 3aw2w1 + (a+ 2)u1w + (a+ 2)uw1 + (a− 1)ψ1ϕ

+ (a− 1)ψϕ1. (7.41)

It has been demonstrated by several authors [87, 74] that the interesting
equations from the point of view of complete integrability are the special
cases a = −2, 1, 4.

In Subsection 4.1 we discuss the case a = −2. We shall present in
the respective subsections results for the construction of local and nonlocal
conservation laws, nonlocal symmetries and finally present the recursion
operator for symmetries. A similar presentation is chosen for Subsections
4.2, where we deal with the case a = 4, and finally in Subsections 4.3 we
present the results for the most intriguing case a = 1.

The structure is extremely complicated in this case, which can be illus-
trated from the fact that in order to find a good setting for the recursion
operator for symmetries, we had to introduce a total of 16 nonlocal variables
associated to the respective conservation laws, while the complete computa-
tion for the recursion operation required the introduction and fixing of more
than 20,000 constants.

4.1. Case a = −2. In this subsection we discuss the case a = −2,
which leads to the following system of partial differential equations

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 + 6w1w2 − 6u1w
2 − 12uww1

− 12w1ψϕ− 12wψ1ϕ− 12wψϕ1,

ϕt = −ϕ3 + 3u1ϕ+ 3uϕ1 − 12ww1ϕ− 6w2ϕ1 + 3w2ψ + 3w1ψ1,

ψt = −ψ3 + 3u1ψ + 3uψ1 − 12ww1ψ − 6w2ψ1 − 3w2ϕ− 3w1ϕ1,

wt = −w3 − 6w2w1 − 3ψ1ϕ− 3ψϕ1. (7.42)

The results obtained in this case for conservation laws, higher symmetries
and deformations or recursion operator will be presented in subsequent sub-
sections.
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4.1.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables p0,1 and p0,2 of degree 0 defined by

(p0,1)x = w,

(p0,1)t = 3ϕψ − 2w3 − w2;

(p0,2)x = p1,1,

(p0,2)t = 12p3,1 − u1 + 3ww1 (7.43)

(see the definition of p1,1 and p3,1 below).
2. Nonlocal variables p1,1, p1,2, p1,3, p1,4 of degree 1 defined by the rela-

tions

(p1,1)x = u,

(p1,1)t = −3ψψ1 − 3ϕϕ1 + 12ϕψw + 3u2 − 6uw2 − u2 + 3w2
1;

(p1,2)x = ψq 1
2
− ϕq 1

2
,

(p1,2)t = −ψ2q 1
2

+ ϕ2q 1
2

+ 3ψq 1
2
u

− 6ψq 1
2
w2 − 3ψq 1

2
w1 − 2ψψ1 − 3ϕq 1

2
w1 − 3ϕq 1

2
u+ 6ϕq 1

2
w2 + 2ϕϕ1;

(p1,3)x = ψq 1
2
,

(p1,3)t = −ψ2q 1
2

+ 3ψq 1
2
u− 6ψq 1

2
w2 + ϕ1ψ − 3ϕq 1

2
w1 − ϕψ1;

(p1,4)x = ϕq 1
2

+ w2,

(p1,4)t = −ϕ2q 1
2

+ 3ψq 1
2
w1 + 3ϕq 1

2
u− 6ϕq 1

2
w2

− 2ϕϕ1 + 6ϕψw − 3w4 − 2ww2 + w2
1 (7.44)

(the variables q 1
2

and q 1
2

are defined below).

3. Nonlocal variable p2,1 of degree 2 defined by

(p2,1)x = q 1
2
q 1

2
u+ ψ1q 1

2
+ ψq 1

2
w + ϕq 1

2
w,

(p2,1)t = 3q 1
2
q 1

2
u2 − 6q 1

2
q 1

2
uw2 − q 1

2
q 1

2
u2 + 3q 1

2
q 1

2
w2

1 − ψ3q 1
2
− ψ2q 1

2
w

− ϕ2q 1
2
w + ψ1q 1

2
w1 + 4ψ1q 1

2
u− 6ψ1q 1

2
w2 − ϕ1q 1

2
u− 2ϕ1q 1

2
w1

+ ϕ1ψ1 + 3ψq 1
2
uw − 6ψq 1

2
w3 − ψq 1

2
w2 + 2ψq 1

2
u1 − 9ψq 1

2
ww1

− 3ψψ1q 1
2
q 1

2
− 2ψψ1w + ϕq 1

2
u1 − 3ϕq 1

2
ww1 + 3ϕq 1

2
uw − 6ϕq 1

2
w3

− 4ϕq 1
2
w2 − ϕψ2 − 3ϕϕ1q 1

2
q 1

2
− 2ϕϕ1w + 12ϕψq 1

2
q 1

2
w + ϕψu.

(7.45)

4. Finally, the variable p3,1 of degree 3 defined by

(p3,1)x =
1

4
(−ψψ1 − ϕϕ1 + 4ϕψw + u2 − 2uw2 − ww2),
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(p3,1)t =
1

4
(−2ψ1ψ2 − 2ϕ1ϕ2 − 2ϕ1ψ1w + ψψ3 + 7ψϕ2w − 9ψψ1u

+ 12ψψ1w
2 + 4ϕ1ψw1 + ϕϕ3 − 7ϕψ2w + 4ϕψ1w1 − 9ϕϕ1u

+ 12ϕϕ1w
2 + 24ϕψuw − 48ϕψw3 − 10ϕψw2 + 4u3 − 12u2w2

− 2uu2 + 12uw4 + 4uww2 + 4uw2
1 + u2

1 − 4u1ww1 + 2u2w
2

+ 6w3w2 + 6w2w2
1 + ww4 − w1w3 + w2

2). (7.46)

Remark 7.1. It should be noted that the first lower index refers to the
degree of the object (in this case the nonlocal variable), while the second
lower index is referring to the numbering of the objects of that specific
degree. The number of nonlocal variables of degree 3 is 4, since this num-
ber is the same as for nonlocal variables of degree 1, cf. (7.44). This total
number will arise after introduction of these nonlocal variables and com-
putation of the conservation laws and the associated nonlocal variables in
this augmented setting. These conservation laws and their associated non-
local variables are of a higher nonlocality. We shall not pursue this further
here, because the number of nonlocal variables found will turn out to be
sufficient to compute the deformation of the system of equations (7.42), or
equivalently the construction of the recursion operator for symmetries. We
refer for a more comprehensive computation to Subsection 4.3, where all

nonlocal variables at the levels turn out to be essential in the computation
of the recursion operator for that case.

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2 we computed the variables q 1
2

and q 1
2

defined by

(q 1
2
)x = ϕ,

(q 1
2
)t = −ϕ2 + 3ψw1 + 3ϕu− 6ϕw2;

(q 1
2
)x = ψ,

(q 1
2
)t = −ψ2 + 3ψu− 6ψw2 − 3ϕw1. (7.47)

2. At degree 3/2 we have the variables q 3
2

and q 3
2

defined by

(q 3
2
)x = q 1

2
u− ϕw,

(q 3
2
)t = 3q 1

2
u2 − 6q 1

2
uw2 − q 1

2
u2 + 3q 1

2
w2

1 + ϕ2w − ψ1u− ϕ1w1 − 3ψψ1q 1
2

+ ψu1 − 3ψww1 − 3ϕϕ1q 1
2

+ 12ϕψq 1
2
w − 3ϕuw + 6ϕw3 + ϕw2;

(q 3
2
)x = −(q 1

2
u+ ψw),

(q 3
2
)t = −3q 1

2
u2 + 6q 1

2
uw2 + q 1

2
u2 − 3q 1

2
w2

1 + ψ2w − ψ1w1 + ϕ1u+ 3ψψ1q 1
2

− 3ψuw + 6ψw3 + ψw2 + 3ϕϕ1q 1
2
− 12ϕψq 1

2
w − ϕu1 + 3ϕww1.

(7.48)
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3. Finally, at degree 5/2 we obtained q 5
2

and q 5
2

defined by the relations

(q 5
2
)x = q 1

2
p1,1u+ 3q 1

2
ww1 + ϕ1w + ψu− ϕp1,1w,

(q 5
2
)t = 3q 1

2
p1,1u

2 − 6q 1
2
p1,1uw

2 − q 1
2
p1,1u2 + 3q 1

2
p1,1w

2
1 − 18q 1

2
w3w1

− 3q 1
2
ww3 − ϕ3w − ψ2u+ ϕ2p1,1w + ϕ2w1 − ψ1p1,1u+ ψ1u1

− ϕ1p1,1w1 + 2ϕ1uw − 6ϕ1w
3 − ϕ1w2 − 3ψψ1q 1

2
p1,1 − 9ψϕ1q 1

2
w

+ ψp1,1u1 − 3ψp1,1ww1 + 4ψu2 − 6ψuw2 − ψu2 + 6ψww2

+ 9ϕψ1q 1
2
w − 3ϕϕ1q 1

2
p1,1 + 12ϕψq 1

2
p1,1w + 3ϕψϕ1

− 3ϕp1,1uw + 6ϕp1,1w
3 + ϕp1,1w2 − 4ϕuw1 + 4ϕu1w − 12ϕw2w1;

(q 5
2
)x = −q 1

2
p1,1u+ q 1

2
u1 − 3q 1

2
ww1 + ψ1w − ψp1,1w,

(q 5
2
)t = −3q 1

2
p1,1u

2 + 6q 1
2
p1,1uw

2 + q 1
2
p1,1u2 − 3q 1

2
p1,1w

2
1 + 6q 1

2
uu1

− 12q 1
2
uww1 − 6q 1

2
u1w

2 − q 1
2
u3 + 18q 1

2
w3w1 + 3q 1

2
ww3 + 6q 1

2
w1w2

− ψ3w + ψ2p1,1w + ψ2w1 − ψ1p1,1w1 + 2ψ1uw − 6ψ1w
3 − ψ1w2

+ ϕ1p1,1u− ϕ1u1 − 3ψψ2q 1
2

+ 3ψψ1q 1
2
p1,1 − 3ψϕ1q 1

2
w − 3ψp1,1uw

+ 6ψp1,1w
3 + ψp1,1w2 − ψuw1 + 4ψu1w − 12ψw2w1 − 3ϕϕ2q 1

2

+ 3ϕψ1q 1
2
w + 3ϕϕ1q 1

2
p1,1 − 12ϕψq 1

2
p1,1w + 12ϕψq 1

2
w1 + 3ϕψψ1

− ϕp1,1u1 + 3ϕp1,1ww1 − ϕu2 + ϕu2 − 6ϕww2. (7.49)

Thus the entire nonlocal setting comprises the following 14 nonlocal vari-
ables:

p0,1, p0,2 of degree 0,

p1,1, p1,2, p1,3, p1,4 of degree 1,

p2,1 of degree 2,

p3,1 of degree 3,

q 1
2
, q 1

2
of degree

1

2
,

q 3
2
, q 3

2
of degree

3

2
,

q 5
2
, q 5

2
of degree

5

2
. (7.50)

In the next subsections the augmented system of equations associated
to the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.1.2. Higher and nonlocal symmetries. In this subsection, we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
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extension of KdV equation (7.42),

Y = Y u ∂

∂u
+ Y w ∂

∂w
+ Y ϕ ∂

∂ϕ
+ Y ψ ∂

∂ψ
+ . . .

We obtained the following odd symmetries, just giving here the components
of their generating functions,

Y u
1
2
,1

= ψ1, Y u
1
2
,2

= ϕ1,

Y w
1
2
,1

= −ϕ, Y u
1
2
,2

= ϕ1,

Y ϕ
1
2
,1

= −w1, Y ϕ
1
2
,2

= u,

Y ψ
1
2
,1

= u; Y ψ
1
2
,2

= w1 (7.51)

and

Y u
3
2
,1

= 2q 1
2
u1 − ϕ2 + 3ψ1w − ϕ1p1,1 + 3ψw1 + ϕu,

Y w
3
2
,1

= 2q 1
2
w1 + ψ1 − ψp1,1 + ϕw,

Y ϕ
3
2
,1

= −2ϕ1q 1
2
− p1,1u+ u1 − 3ww1,

Y ψ
3
2
,1

= −2ψ1q 1
2

+ 2ϕψ − p1,1w1 − uw − w2;

Y u
3
2
,2

= 2q 1
2
u1 − ψ2 − ψ1p1,1 − 3ϕ1w + ψu− 3ϕw1,

Y w
3
2
,2

= 2q 1
2
w1 − ϕ1 + ψw + ϕp1,1,

Y ϕ
3
2
,2

= −2ϕ1q 1
2
− 2ϕψ + p1,1w1 + uw + w2,

Y ψ
3
2
,2

= −2ψ1q 1
2
− p1,1u+ u1 − 3ww1. (7.52)

We also obtained the following even symmetries:

Y u
0,1 = 0,

Y w
0,1 = 0,

Y ϕ
0,1 = ψ,

Y ψ
0,1 = −ϕ;

Y u
1,1 = u1,

Y w
1,1 = w1,

Y ϕ
1,1 = ϕ1,

Y ψ
1,1 = ψ1;

Y u
1,2 = ϕ1q 1

2
+ 2ww1,

Y w
1,2 = ψq 1

2
+ w1,

Y ϕ
1,2 = −q 1

2
u+ ϕ1 − ψw,
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Y ψ
1,2 = −q 1

2
w1 − ϕw;

Y u
1,3 = ψ1q 1

2
− ϕ1q 1

2
,

Y w
1,3 = −ψq 1

2
− ϕq 1

2
,

Y ϕ
1,3 = q 1

2
w1 + q 1

2
u− ϕ1 + 2ψw,

Y ψ
1,3 = −q 1

2
u+ q 1

2
w1 + ψ1 + 2ϕw;

Y u
1,4 = ψ1q 1

2
+ ϕ1q 1

2
,

Y w
1,4 = ψq 1

2
− ϕq 1

2
,

Y ϕ
1,4 = −q 1

2
u+ q 1

2
w1 + ψ1 + 2ϕw,

Y ψ
1,4 = −q 1

2
w1 − q 1

2
u+ ϕ1 − 2ψw. (7.53)

Moreover there is a symmetry of degree 2 with the generating function

Y u
2,1 = 2q 1

2
q 1

2
u1 + ψ2q 1

2
− ϕ2q 1

2
− ψ1q 3

2
+ 3ψ1q 1

2
w − ϕ1q 3

2
+ 3ϕ1q 1

2
w

+ 3ψq 1
2
w1 − ψq 1

2
u+ ϕq 1

2
u+ 3ϕq 1

2
w1 + ϕ1ψ + ϕψ1,

Y w
2,1 = 2q 1

2
q 1

2
w1 + ψ1q 1

2
+ ϕ1q 1

2
− ψq 3

2
− ψq 1

2
w + ϕq 3

2
+ ϕq 1

2
w,

Y ϕ
2,1 = −q 3

2
w1 + q 3

2
u− q 1

2
u1 + 3q 1

2
ww1 + q 1

2
uw + q 1

2
w2 + ψ2 + 2ϕ1q 1

2
q 1

2

− 2ψu+ 4ψw2 − 2ϕψq 1
2

+ 2ϕw1,

Y ψ
2,1 = q 3

2
u+ q 3

2
w1 + q 1

2
uw + q 1

2
w2 + q 1

2
u1 − 3q 1

2
ww1 − ϕ2 + 2ψ1q 1

2
q 1

2

+ 2ψw1 − 2ϕψq 1
2

+ 2ϕu− 4ϕw2. (7.54)

4.1.3. Recursion operator. Here we present the recursion operator R
for symmetries for this case obtained as a higher symmetry in the Cartan
covering of the augmented system of equations (7.50). The result is

R = Ru
∂

∂u
+Rw

∂

∂w
+Rϕ

∂

∂ϕ
+Rψ

∂

∂ψ
+ . . . , (7.55)

where the components Ru, Rw, Rϕ, Rψ are given by

Ru = ωu2 + ωu(−4u+ 4w2)

+ ωw1(−4w1) + ωw(8uw − 2w2 − 6ϕψ)

+ ωϕ1(−2ϕ) + ωϕ(ϕ1 − 8ψw) + ωψ1(−2ψ) + ωψ(ψ1 + 8ϕw)

+ ωq 1
2

(ϕ2 − 3ψ1w − 3ψw1 − ϕu− q 1
2
u1)

+ ωq 1
2

(ψ2 + 3ϕ1w + 3ϕw1 − ψu− q 1
2
u1)

+ ωq 3
2

(ψ1) + ωq 3
2

(−ϕ1) + ωp1,4(2u1) + ωp1,2(u1)

+ ωp1,1(−2u1 + 4ww1 + ϕ1q 1
2

+ ψ1q 1
2
),

Rw = ωw2 + ωw(4w2) + ωϕ(−2ψ) + ωψ(2ϕ)
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+ ωq 1
2

(−ψ1 − ϕw − q 1
2
w1) + ωq 1

2

(ϕ1 − ψw − q 1
2
w1)

+ ωq 3
2

(−ϕ) + ωq 3
2

(−ψ) + ωp1,4(2w1) + ωp1,2(w1)

+ ωp1,1(ψq 1
2
− ϕq 1

2
),

Rϕ = ωu(−2ϕ) + ωw1(−2ψ) + ωw(−ψ1 + 8ϕw)

+ ωϕ2 + ωϕ(−2u+ 4w2) + ωψ(−2w1)

+ ωq 1
2

(−u1 + 3ww1 + ϕ1q 1
2
)

+ ωq 1
2

(−uw − w2 + 2ϕψ + ϕ1q 1
2
)

+ ωq 3
2

(−w1) + ωq 3
2

(−u) + ωp1,4(2ϕ1) + ωp1,2(ϕ1)

+ ωp1,1(−ϕ1 − q 1
2
u+ q 1

2
w1),

Rψ = ωu(−2ψ) + ωw1(2ϕ) + ωw(ϕ1 + 8ψw)

+ ωϕ(2w1) + ωψ2 + ωψ(−2u+ 4w2)

+ ωq 1
2

(uw + w2 − 2ϕψ + ψ1q 1
2
)

+ ωq 1
2

(−u1 + 3ww1 + ψ1q 1
2
)

+ ωq 3
2

(u) + ωq 3
2

(−w1) + ωp1,4(2ψ1) + ωp1,2(ψ1)

+ ωp1,1(−ψ1 − q 1
2
w1 − q 1

2
u). (7.56)

It should be noted that the components are given in the right-module struc-
ture (see Chapter 6).

4.2. Case a = 4. In this subsection we discuss the case a = 4, which
does lead to the following system of partial differential equations:

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 − 6ww3 − 12w1w2 + 24uww1 + 12u1w
2

+ 24ψϕ1w − 24ϕψ1w − 24ϕψw1,

ϕt = −ϕ3 + 3ϕu1 + 3ϕ1u− 6ψ2w − 9ψ1w1 − 3ψw2 + 12ϕ1w
2 + 24ϕww1,

ψt = −ψ3 + 3ψu1 + 3ψ1u+ 6ϕ2w + 9ϕ1w1 + 3ϕw2 + 12ψ1w
2 + 24ψww1,

wt = −w3 + 12w2w1 + 6u1w + 6uw1 + 3ψϕ1 − 3ϕψ1. (7.57)

The results obtained in this case for conservation laws, higher symmetries
and deformations or recursion operator will be presented in subsequent sub-
sections.

4.2.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables p0,1 and p0,2 of degree 0 are

(p0,1)x = w,

(p0,1)t = −3ϕψ + 6uw + 4w3 − w2;

(p0,2)x = p1,1,
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(p0,2)t = −24p3,1 − u1 − 3ww1. (7.58)

2. Nonlocal variables p1,1 and p1,2 of degree 1 are defined by

(p1,1)x = u,

(p1,1)t = −3ψψ1 − 3ϕϕ1 − 24ϕψw + 3u2 + 12uw2 − u2 − 6ww2 − 3w2
1;

(p1,2)x = ψq 1
2

+ ϕq 1
2
,

(p1,2)t = −ψ2q 1
2
− ϕ2q 1

2
− 6ψ1q 1

2
w + 6ϕ1q 1

2
w − 3ψq 1

2
w1 + 3ψq 1

2
u

+ 12ψq 1
2
w2 − 2ψψ1 + 3ϕq 1

2
u+ 12ϕq 1

2
w2 + 3ϕq 1

2
w1

− 2ϕϕ1 − 12ϕψw. (7.59)

3. Nonlocal variables p2,1 and p2,2 of degree 2 are

(p2,1)x = ϕψ − uw,
(p2,1)t = ϕ1ψ1 + ψϕ2 + 9ψψ1w − ϕψ2 + 9ϕϕ1w + 6ϕψu+ 36ϕψw2

− 6u2w − 12uw3 + uw2 − u1w1 + u2w + 6w2w2;

(p2,2)x =
1

3
(−q 1

2
q 1

2
u− ψq 1

2
w − ϕq 1

2
w + uw),

(p2,2)t =
1

3
(−3q 1

2
q 1

2
u2 − 12q 1

2
q 1

2
uw2 + q 1

2
q 1

2
u2 + 6q 1

2
q 1

2
ww2 + 3q 1

2
q 1

2
w2

1

+ ψ2q 1
2
w + ϕ2q 1

2
w + ψ1q 1

2
u+ 6ψ1q 1

2
w2 − ψ1q 1

2
w1 − ϕ1q 1

2
w1

− ϕ1q 1
2
u− 6ϕ1q 1

2
w2 − ψq 1

2
u1 − 3ψq 1

2
ww1 − 9ψq 1

2
uw

− 12ψq 1
2
w3 + ψq 1

2
w2 + 3ψψ1q 1

2
q 1

2
− ψψ1w − 9ϕq 1

2
uw − 12ϕq 1

2
w3

+ ϕq 1
2
w2 + ϕq 1

2
u1 + 3ϕq 1

2
ww1 + 3ϕϕ1q 1

2
q 1

2
− ϕϕ1w + 24ϕψq 1

2
q 1

2
w

− 2ϕψu− 12ϕψw2 + 6u2w + 12uw3 − uw2 + u1w1

− u2w − 6w2w2). (7.60)

4. Finally, the variables p3,1 and p3,2 of degree 3 are defined by

(p3,1)x =
1

8
(ψψ1 + ϕϕ1 + 8ϕψw − u2 − 4uw2 + ww2),

(p3,1)t =
1

8
(2ψ1ψ2 + 2ϕ1ϕ2 + 14ϕ1ψ1w − ψψ3 + 17ψϕ2w + 9ψψ1u

+ 72ψψ1w
2 − 2ψϕ1w1 − ϕϕ3 − 17ϕψ2w + 2ϕψ1w1 + 9ϕϕ1u

+ 72ϕϕ1w
2 + 96ϕψuw + 192ϕψw3 − 14ϕψw2 − 4u3 − 48u2w2

+ 2uu2 − 48uw4 + 26uww2 + 2uw2
1 − u2

1 − 2u1ww1 + 10u2w
2

+ 36w3w2 + 12w2w2
1 − ww4 + w1w3 − w2

2);

(p3,2)x =
1

27
(27q 1

2
q 3

2
u− 27q 1

2
q 3

2
w1 − 45q 1

2
q 3

2
w1 + 27q 1

2
q 3

2
u− 8q 1

2
q 1

2
p1,1w1

+ 6q 1
2
q 1

2
uw − 10q 1

2
q 1

2
w2 − 9ψ2q 1

2
− 9ϕ2q 1

2
− 186ψ1q 3

2
+ 16ψ1q 1

2
w
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+ 52ψ1q 1
2
p1,1 + 36ψ1q 1

2
p1,2 + 18ϕ1q 3

2
− 24ψq 5

2
− 72ψq 3

2
w

− 48ψq 1
2
p2,1 + 288ϕq 5

2
). (7.61)

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2, we have the variables q 1
2

and q 1
2

defined by the relations

(q 1
2
)x = ψ,

(q 1
2
)t = −ψ2 + 6ϕ1w + 3ψu+ 12ψw2 + 3ϕw1;

(q 1
2
)x = ϕ,

(q 1
2
)t = −ϕ2 − 6ψ1w − 3ψw1 + 3ϕu+ 12ϕw2. (7.62)

2. At degree 3/2, the variables are q 3
2

and q 3
2
:

(q 3
2
)x =

1

3
(q 1

2
u+ ϕw),

(q 3
2
)t =

1

3
(3q 1

2
u2 + 12q 1

2
uw2 − q 1

2
u2 − 6q 1

2
ww2 − 3q 1

2
w2

1 − ϕ2w − ψ1u

− 6ψ1w
2 + ϕ1w1 − 3ψψ1q 1

2
+ ψu1 + 3ψww1 − 3ϕϕ1q 1

2
− 24ϕψq 1

2
w

+ 9ϕuw + 12ϕw3 − ϕw2);

(q 3
2
)x =

1

3
(q 1

2
u− ψw),

(q 3
2
)t =

1

3
(3q 1

2
u2 + 12q 1

2
uw2 − q 1

2
u2 − 6q 1

2
ww2 − 3q 1

2
w2

1 + ψ2w − ψ1w1

− ϕ1u− 6ϕ1w
2 − 3ψψ1q 1

2
− 9ψuw − 12ψw3 + ψw2 − 3ϕϕ1q 1

2

− 24ϕψq 1
2
w + ϕu1 + 3ϕww1). (7.63)

3. Finally, at degree 5/2 we have q 5
2

and q 5
2

which are defined by the

relations, i.e.,

(q 5
2
)x =

1

24
(2q 1

2
p1,1u− 2ψ1w − 2ψp1,1w + 4ψp2,1 + 2ϕu+ 3ϕw2),

(q 5
2
)t =

1

24
(6q 1

2
p1,1u

2 + 24q 1
2
p1,1uw

2 − 2q 1
2
p1,1u2 − 12q 1

2
p1,1ww2

− 6q 1
2
p1,1w

2
1 + 2ψ3w + 2ψ2p1,1w − 4ψ2p2,1 − 2ψ2w1 − 2ϕ2u

− 15ϕ2w
2 − 2ψ1p1,1w1 − 24ψ1uw − 42ψ1w

3 + 2ψ1w2 − 2ϕ1p1,1u

− 12ϕ1p1,1w
2 + 24ϕ1p2,1w + 2ϕ1u1 − 6ψψ1q 1

2
p1,1 − 18ψp1,1uw

− 24ψp1,1w
3 + 2ψp1,1w2 + 12ψp2,1u+ 48ψp2,1w

2 − 4ψuw1

− 21ψw2w1 − 6ϕϕ1q 1
2
p1,1 − 48ϕψq 1

2
p1,1w + 2ϕψψ1 + 2ϕp1,1u1

+ 6ϕp1,1ww1 + 12ϕp2,1w1 + 8ϕu2 + 69ϕuw2
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− 2ϕu2 + 36ϕw4 − 24ϕww2);

(q 5
2
)x =

1

6
(−4q 1

2
p1,1w1 − 2q 1

2
p1,1u+ 2ψ1p1,1 + 4ϕ1q 1

2
q 1

2
− 2ϕ1w

− 3ψw2 − 6ϕp1,1w). (7.64)

We omitted explicit expressions for (p3,2)t and (q 5
2
)t in (7.61) and (7.64)

because they are too massive.
Thus, we obtained the following 14 nonlocal variables:

p0,1, p0,2 of degree 0,

p1,1, p1,2 of degree 1,

p2,1, p2,2 of degree 2,

p3,1, p3,2 of degree 3,

q 1
2
, q 1

2
of degree

1

2
,

q 3
2
, q 3

2
of degree

3

2
,

q 5
2
, q 5

2
of degree

5

2
. (7.65)

In the next subsections the augmented system of equations associated
to the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.2.2. Higher and nonlocal symmetries. In this subsection we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
extension of the KdV equation (7.57) in the case a = 4,

Y = Y u ∂

∂u
+ Y w ∂

∂w
+ Y ϕ ∂

∂ϕ
+ Y ψ ∂

∂ψ
+ . . .

We obtained the following odd symmetries. The components of their gener-
ating functions are given below:

Y u
1
2
,1

= ψ1, Y u
1
2
,2

= ϕ1,

Y w
1
2
,1

= −ϕ, Y w
1
2
,2

= ψ,

Y ϕ
1
2
,1

= −w1, Y ϕ
1
2
,2

= u,

Y ψ
1
2
,1

= u; Y ψ
1
2
,2

= w1 (7.66)

and

Y u
3
2
,1

= −2q 1
2
u1 + ϕ2 + 3ψ1w + ϕ1p1,1 + 3ψw1 − ϕu,

Y w
3
2
,1

= −2q 1
2
w1 + ψ1 + ψp1,1 − 3ϕw,

Y ϕ
3
2
,1

= 2ϕ1q 1
2

+ p1,1u− u1 − 3ww1,

Y ψ
3
2
,1

= 2ψ1q 1
2
− 4ϕψ + p1,1w1 + 3uw − w2;
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Y u
3
2
,2

= 2q 1
2
u1 − ψ2 − ψ1p1,1 + 3ϕ1w + ψu+ 3ϕw1,

Y w
3
2
,2

= 2q 1
2
w1 + ϕ1 + 3ψw + ϕp1,1,

Y ϕ
3
2
,2

= −2ϕ1q 1
2
− 4ϕψ + p1,1w1 + 3uw − w2,

Y ψ
3
2
,2

= −2ψ1q 1
2
− p1,1u+ u1 + 3ww1. (7.67)

We also obtained the following even symmetries:

Y u
0,1 = 0,

Y w
0,1 = 0,

Y ϕ
0,1 = ψ,

Y ψ
0,1 = −ϕ;

Y u
1,1 = ψ1q 1

2
+ ϕ1q 1

2
,

Y w
1,1 = ψq 1

2
− ϕq 1

2
,

Y ϕ
1,1 = −q 1

2
u+ q 1

2
w1 + ϕ1 + 2ψw,

Y ψ
1,1 = −q 1

2
w1 − q 1

2
u+ ψ1 − 2ϕw;

Y u
1,2 = u1,

Y w
1,2 = w1,

Y ϕ
1,2 = ϕ1,

Y ψ
1,2 = ψ1. (7.68)

4.2.3. Recursion operator. Here we present the recursion operator R for
symmetries for the case a = 4 obtained as a higher symmetry in the Cartan
covering of the augmented system of equations (7.65). This operator is of
the form

R = Ru
∂

∂u
+Rw

∂

∂w
+Rϕ

∂

∂ϕ
+Rψ

∂

∂ψ
+ . . . , (7.69)

where the components Ru, Rw, Rϕ, Rψ are given by

Ru = ωu2 + ωu(−4u− 4w2) + ωw2(4w)

+ ωw1(6w1) + ωw(−16uw + 6w2 + 18ϕψ)

+ ωϕ1(−2ϕ) + ωϕ(ϕ1 + 12ψw) + ωψ1(−2ψ) + ωψ(ψ1 − 12ϕw)

+ ωq 1
2

(ψ2 − 3ϕ1w − 3ϕw1 − ψu− q 1
2
u1)

+ ωq 1
2

(ϕ2 + 3ψ1w + 3ψw1 − ϕu− q 1
2
u1)

+ ωq 3
2

(3ψ1) + ωq 3
2

(3ϕ1) + ωp1,2(u1)

+ ωp1,1(−2u1 + ψ1q 1
2

+ ϕ1q 1
2
)

+ ωp0,1(2w3 − 8uw1 − 8u1w + 8ϕ1ψ + 8ϕψ1),
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Rw = ωu(−4w) + ωw2 + ωw(−4u− 4w2) + ωϕ(2ψ) + ωψ(−2ϕ)

+ ωq 1
2

(−ϕ1 − 3ψw − q 1
2
w1) + ωq 1

2

(ψ1 − 3ϕw − q 1
2
w1)

+ ωq 3
2

(−3ϕ) + ωq 3
2

(3ψ) + ωp1,2(w1)

+ ωp1,1(−2w1 + ψq 1
2
− ϕq 1

2
) + ωp0,1(−2u1 − 8ww1),

Rϕ = ωu(−2ϕ) + ωw1(2ψ) + ωw(5ψ1 − 12ϕw)

+ ωϕ2 + ωϕ(−2u− 4w2) + ωψ1(4w) + ωψ(4w1)

+ ωq 1
2

(w2 − 3uw + 4ϕψ + ϕ1q 1
2
) + ωq 1

2

(−u1 − 3ww1 + ϕ1q 1
2
)

+ ωq 3
2

(−3w1) + ωq 3
2

(3u) + ωp1,2(ϕ1)

+ ωp1,1(−ϕ1 + 2ψw + q 1
2
w1 − q 1

2
u)

+ ωp0,1(2ψ2 − 8ϕ1w − 8ϕw1) + ωp2,1(−2ψ),

Rψ = ωu(−2ψ) + ωw1(−2ϕ) + ωw(−5ϕ1 − 12ψw)

+ ωϕ1(−4w) + ωϕ(−4w1) + ωψ2 + ωψ(−2u− 4w2)

+ ωq 1
2

(−u1 − 3ww1 + ψ1q 1
2
)

+ ωq 1
2

(3uw − w2 − 4ϕψ + ψ1q 1
2
)

+ ωq 3
2

(3u) + ωq 3
2

(3w1) + ωp1,2(ψ1)

+ ωp1,1(−ψ1 − 2ϕw − q 1
2
u− q 1

2
w1) + ωp0,1(−2ϕ2 − 8ψ1w − 8ψw1)

+ ωp2,1(2ϕ). (7.70)

It should be noted that the components are again given here in the right-
module structure (see Chapter 6).

Remark 7.2. Personal communication with Prof. A. Sorin informed us
about existence of a deformation, or recursion operator of order 1 in this
specific case, a fact which might be indicated by the structure of the existing
nonlocal variables. The result is given by

R1 =
(
ωu(2w)− ωw2 + ωw(4u) + ωϕ(−3ψ) + ωψ(3ϕ)

+ ωq 1
2

(ϕ1) + ωq 1
2

(−ψ1) + ωp0,1(2u1)
) ∂
∂u

+
(
ωu + ωw(2w) + ωq 1

2

(ψ)

+ ωq 1
2

(ϕ) + ωp0,1(2w1)
) ∂

∂w

+
(
ωw(3ϕ)− ωψ1 + ωϕ(2w) + ωq 1

2

(u)

+ ωq 1
2

(w1) + ωp0,1(2ϕ1) + ωp1,1(−ψ)
) ∂

∂ϕ
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+
(
ωw(3ψ) + ωϕ1 + ωψ(2w) + ωq 1

2

(w1)

+ ωq 1
2

(−u) + ωp0,1(2ψ1) + ωp1,1(ϕ)
) ∂

∂ψ
.

4.3. Case a = 1. In this section we discuss the case a = 1, which does
lead to the following system of partial differential equations:

ut = −u3 + 6uu1 − 3ϕϕ2 − 3ψψ2 − 3ww3 − 3w1w2 + 3u1w
2 + 6uww1

+ 6ψϕ1w − 6ϕψ1w − 6ϕψw1,

ϕt = −ϕ3 + 3ϕu1 + 3ϕ1u− 3ψ2w − 3ψ1w1 + 3ϕ1w
2 + 6ϕww1,

ψt = −ψ3 + 3ψu1 + 3ψ1u+ 3ϕ2w + 3ϕ1w1 + 3ψ1w
2 + 6ψww1,

wt = −w3 + 3w2w1 + 3uw1 + 3u1w. (7.71)

The results obtained in this case for conservation laws, higher symmetries
and recursion symmetries will be presented in subsequent subsections.

4.3.1. Conservation laws. For the even conservation laws and the asso-
ciated even nonlocal variables we obtained the following results.

1. Nonlocal variables p0,1 and p0,2 of degree 0 are

(p0,1)x = w,

(p0,1)t = 3uw + w3 − w2;

(p0,2)x = p1,

(p0,2)t = −6p3 − u1. (7.72)

2. Nonlocal variables p1,1, p1,2, p1,3, and p1,4 of degree 1 are defined by

(p1)x = u,

(p1)t = −3ψψ1 − 3ϕϕ1 − 6ϕψw + 3u2 + 3uw2 − u2 − 3ww2;

(p1,1)x = cos(2p0,1)(ϕq 1
2
,2 + p1w) + sin(2p0,1)(ψq 1

2
,2 + w2),

(p1,1)t = cos(2p0,1)(−ϕ2q 1
2
,2 − ψ1q 1

2
,2w − 2ψq 1

2
,2w1 − ψϕ1 + 3ϕq 1

2
,2u

+ ϕq 1
2
,2w

2 − ϕψ1 + 3p1uw + p1w
3 − p1w2 + uw1 − u1w − w2w1)

+ sin(2p0,1)(−ψ2q 1
2
,2 + ϕ1q 1

2
,2w + 3ψq 1

2
,2u+ ψq 1

2
,2w

2 − 2ψψ1

+ 2ϕq 1
2
,2w1 − 2ϕψw + 4uw2 + w4 − 2ww2 + w2

1);

(p1,2)x = cos(2p0,1)(ψq 1
2
,2 + w2)− sin(2p0,1)(ϕq 1

2
,2 + p1w),

(p1,2)t = cos(2p0,1)(−ψ2q 1
2
,2 + ϕ1q 1

2
,2w + 3ψq 1

2
,2u

+ ψq 1
2
,2w

2 − 2ψψ1 + 2ϕq 1
2
,2w1 − 2ϕψw + 4uw2 + w4 − 2ww2 + w2

1)

+ sin(2p0,1)(ϕ2q 1
2
,2 + ψ1q 1

2
,2w + 2ψq 1

2
,2w1 + ψϕ1 − 3ϕq 1

2
,2u

− ϕq 1
2
,2w

2 + ϕψ1 − 3p1uw − p1w
3 + p1w2 − uw1 + u1w + w2w1);
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(p1,3)x = −2 cos(2p0,1)ϕq 1
2
,2 + sin(2p0,1)(2q 1

2
,1q 1

2
,2w − ψq 1

2
,2 + ϕq 1

2
,1),

(p1,3)t = 2 cos(2p0,1)(ϕ2q 1
2
,2 + 2ψ1q 1

2
,2w + ϕ1q 1

2
,1w + ψq 1

2
,2w1

+ ψq 1
2
,1w

2 + ψϕ1 − 3ϕq 1
2
,2u− 2ϕq 1

2
,2w

2 − ϕq 1
2
,1w1 + ϕψ1)

+ sin(2p0,1)(6q 1
2
,1q 1

2
,2uw + 2q 1

2
,1q 1

2
,2w

3 − 2q 1
2
,1q 1

2
,2w2 + ψ2q 1

2
,2

− ϕ2q 1
2
,1 − ψ1q 1

2
,1w − ϕ1q 1

2
,2w − 3ψq 1

2
,2u− ψq 1

2
,1w

2

− 2ψq 1
2
,1w1 + 2ψψ1 − 2ϕq 1

2
,2w1 + 3ϕq 1

2
,1u+ ϕq 1

2
,1w

2 − 2ϕϕ1);

(p1,4)x = cos(2p0,1)(2q 1
2
,1q 1

2
,2w − ψq 1

2
,2 + ϕq 1

2
,1) + 2 sin(2p0,1)ϕq 1

2
,2,

(p1,4)t = cos(2p0,1)(6q 1
2
,1q 1

2
,2uw + 2q 1

2
,1q 1

2
,2w

3 − 2q 1
2
,1q 1

2
,2w2 + ψ2q 1

2
,2

− ϕ2q 1
2
,1 − ψ1q 1

2
w − ϕ1q 1

2
,2w − 3ψq 1

2
,2u− ψq 1

2
,2w

2 − 2ψq 1
2
,1w1

+ 2ψψ1 − 2ϕq 1
2
,2w1 + 3ϕq 1

2
,1u+ ϕq 1

2
,1w

2 − 2ϕϕ1)

+ 2 sin(2p0,1)(−ϕ2q 1
2
,2 − 2ψ1q 1

2
,2w − ϕ1q 1

2
,1w − ψq 1

2
,2w1 − ψq 1

2
,1w

2

− ψϕ1 + 3ϕq 1
2
,2u+ 2ϕq 1

2
,2w

2 + ϕq 1
2
,1w1 − ϕψ1). (7.73)

3. The variable p3,1 of degree 3 is

(p3,1)x =
1

2
(ψψ1 + ϕϕ1 + 2ϕψw − u2 − uw2 + ww2),

(p3,1)t =
1

2
(2ψ1ψ2 + 2ϕ1ϕ2 + 8ϕ1ψ1w − ψψ3 + 5ψϕ2w + 9ψψ1u

+ 12ψψ1w
2 + ψϕ1w1 − ϕϕ3 − 5ϕψ2w − ϕψ1w1 + 9ϕϕ1u

+ 12ϕϕ1w
2 + 18ϕψuw + 12ϕψw3 − 2ϕψw2 − 4u3 − 9u2w2 + 2uu2

− 3uw4 + 11uww2 − uw2
1 − u2

1 + u1ww1 + 4u2w
2 + 6w3w2

+ 3w2w2
1 − ww4 + w1w3 − w2

2). (7.74)

For the odd conservation laws and the associated odd nonlocal variables
we derived the following results.

1. At degree 1/2 we have the variables q 1
2
,1, q 1

2
,2, q 1

2
,3, and q 1

2
,4, defined

by the relations

(q 1
2
,1)x = ϕ,

(q 1
2
,1)t = −ϕ2 − 3ψ1w + 3ϕu+ 3ϕw2;

(q 1
2
,2)x = ψ,

(q 1
2
,2)t = −ψ2 + 3ϕ1w + 3ψu+ 3ψw2;

(q 1
2
,3)x = cos(2p0,1)q 1

2
,1w + sin(2p0,1)q 1

2
,2w,

(q 1
2
,3)t = cos(2p0,1)(3q 1

2
,1uw + q 1

2
,1w

3 − q 1
2
,1w2 − ϕ1w − ψw2 + ϕw1)
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+ sin(2p0,1)(3q 1
2
,2uw + q 1

2
,2w

3 − q 1
2
,2w2 − ψ1w + ψw1 + ϕw2);

(q 1
2
,4)x = cos(2p0,1)q 1

2
,2w − sin(2p0,1)q 1

2
,1w,

(q 1
2
,4)t = cos(2p0,1)(3q 1

2
,2uw + q 1

2
,2w

3 − q 1
2
,2w2 − ψ1w + ψw1 + ϕw2)

+ sin(2p0,1)(−3q 1
2
,1uw − q 1

2
,1w

3 + q 1
2
,1w2 + ϕ1w + ψw2 − ϕw1)

(7.75)

2. At degree 3/2, we have q 3
2
,1 and q 3

2
,2:

(q 3
2
,1)x = cos(2p0,1)(q 1

2
,2p1w + q 1

2
,1u− q 1

2
,1w

2 + ψq 1
2
,1q 1

2
,2 + ψw)

+ sin(2p0,1)(q 1
2
,2u− q 1

2
,2w

2 − q 1
2
,1p1w − ϕq 1

2
,1q 1

2
,2 − ϕw),

(q 3
2
,1)t = cos(2p0,1)(3q 1

2
,2p1uw + q 1

2
,2p1w

3 − q 1
2
,2p1w2 − q 1

2
,2uw1

+ q 1
2
,2u1w + q 1

2
,2w

2w1 + 3q 1
2
,1u

2 − q 1
2
,1uw

2 − q 1
2
,1u2 − q 1

2
,1w

4

− q 1
2
,1ww2 − q 1

2
,1w

2
1 − ψ2q 1

2
,1q 1

2
,2 − ψ2w − ψ1p1w + ψ1w1

+ ϕ1q 1
2
,1q 1

2
,2w − ϕ1u+ 2ϕ1w

2 + 3ψq 1
2
,1q 1

2
,2u+ ψq 1

2
,1q 1

2
,2w

2

− ψψ1q 1
2
,1 − ψϕ1q 1

2
,2 + ψp1w1 + 3ψuw + 2ψw3 − ψw2

+ 2ϕq 1
2
,1q 1

2
,2w1 − ϕψ1q 1

2
,2 − 3ϕϕ1q 1

2
,1 − 4ϕψq 1

2
,1w + ϕp1w

2

+ ϕu1 + ϕww1)

+ sin(2p0,1)(3q 1
2
,2u

2 − q 1
2
,2uw

2 − q 1
2
,2u2 − q 1

2
,2w

4 − q 1
2
,2ww2

− q 1
2
,2w

2
1 − 3q 1

2
,1p1uw − q 1

2
,1p1w

3 + q 1
2
,1p1w2 + q 1

2
,1uw1

− q 1
2
,1u1w − q 1

2
,1w

2w1 + ϕ2q 1
2
,1q 1

2
,2 + ϕ2w + ψ1q 1

2
,1q 1

2
,2w − ψ1u

+ 2ψ1w
2 + ϕ1p1w − ϕ1w1 + 2ψq 1

2
,1q 1

2
,2w1 − 3ψψ1q 1

2
,2

− ψϕ1q 1
2
,1 + ψp1w

2 + ψu1 + ψww1 − 3ϕq 1
2
,1q 1

2
,2u− ϕq 1

2
,1q 1

2
,2w

2

− ϕψ1q 1
2
,1 − ϕϕ1q 1

2
,2 − 4ϕψq 1

2
,2w − ϕp1w1 − 3ϕuw

− 2ϕw3 + ϕw2);

(q 3
2
,2)x = cos(2p0,1)(−q 1

2
,2u+ q 1

2
,2w

2 + q 1
2
,1p1w + ϕq 1

2
,1q 1

2
,2 + ϕw)

+ sin(2p0,1)(q 1
2
,2p1w + q 1

2
,1u− q 1

2
,1w

2 + ψq 1
2
,1q 1

2
,2 + ψw),

(q 3
2
,2)t = cos(2p0,1)(−3q 1

2
,2u

2 + q 1
2
,2uw

2 + q 1
2
,2u2 + q 1

2
,2w

4 + q 1
2
,2ww2

+ q 1
2
,2w

2
1 + 3q 1

2
,1p1uw + q 1

2
,1p1w

3 − q 1
2
,1p1w2 − q 1

2
,1uw1 + q 1

2
,1u1w

+ q 1
2
,1w

2w1 − ϕ2q 1
2
,1q 1

2
,2 − ϕ2w − ψ1q 1

2
,1q 1

2
,2w + ψ1u− 2ψ1w

2

− ϕ1p1w + ϕ1w1 − 2ψq 1
2
,1q 1

2
,2w1 + 3ψψ1q 1

2
,2 + ψϕ1q 1

2
,1

− ψp1w
2 − ψu1 − ψww1 + 3ϕq 1

2
,1q 1

2
,2u+ ϕq 1

2
,1q 1

2
,2w

2 + ϕψ1q 1
2
,1
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+ ϕϕ1q 1
2
,2 + 4ϕψq 1

2
,2w + ϕp1w1 + 3ϕuw + 2ϕw3 − ϕw2)

+ sin(2p0,1)(3q 1
2
,2p1uw + q 1

2
,2p1w

3 − q 1
2
,2p1w2 − q 1

2
,2uw1

+ q 1
2
,2u1w + q 1

2
,2w

2w1 + 3q 1
2
,1u

2 − q 1
2
,1uw

2 − q 1
2
,1u2 − q 1

2
,1w

4

− q 1
2
,1ww2 − q 1

2
,1w

2
1 − ψ2q 1

2
,1q 1

2
,2 − ψ2w − ψ1p1w + ψ1w1

+ ϕ1q 1
2
,1q 1

2
,2w − ϕ1u+ 2ϕ1w

2 + 3ψq 1
2
,1q 1

2
,2u+ ψq 1

2
,1q 1

2
,2w

2

− ψψ1q 1
2
,1 − ψϕ1q 1

2
,2 + ψp1w1 + 3ψuw + 2ψw3 − ψw2

+ 2ϕq 1
2
,1q 1

2
,2w1 − ϕψ1q 1

2
,2 − 3ϕϕ1q 1

2
,1 − 4ϕψq 1

2
,1w + ϕp1w

2

+ ϕu1 + ϕww1). (7.76)

3. At level 1 and 3/2 there exist three more higher nonlocal conservation
laws, of which we only shall present here the x-components:

(p1,5)x = cos(2p0,1)(wq 1
2
,1q 1

2
,3 + wq 1

2
,2q 1

2
,4 + p1,3w)

+ sin(2p0,1)(wq 1
2
,2q 1

2
,3 − wq 1

2
,1q 1

2
,4 − p1,4w)

+ 2wq 1
2
,1q 1

2
,2 + ϕq 1

2
,1;

(q 3
2
,3)x = cos(2p0,1)(q 1

2
,4(−2p1w + w1) + q 1

2
,3(u+ 2w2) + q 1

2
,2(−2p1,1w)

+ q 1
2
,1(2p1,2w + 2p1,4w) + ψp1,4)

+ sin(2p0,1)(q 1
2
,4(−u− 2w2) + q 1

2
,3(−2p1w + w1) + q 1

2
,2(2p1,2w)

+ q 1
2
,1(2p1,1w + 2p1,3w + ψp1,3)

− q 1
2
,1w1 + q 1

2
,2u;

(q 3
2
,4)x = cos(2p0,1)(q 1

2
,4(−u− 2w2) + q 1

2
,3(−2p1w + w1) + q 1

2
,2(−2p1,2w)

+ q 1
2
,1(−2p1,1w))

+ sin(2p0,1)(q 1
2
,4(2p1w − w1) + q 1

2
,3(−u− 2w2) + q 1

2
,2(−2p1,1w)

+ q 1
2
,1(2p1,2w))

+ q 1
2
,1u+ q 1

2
,2w1 + ψq 1

2
,1q 1

2
,2. (7.77)

Thus, we obtained the following 16 nonlocal variables:

p0,1, p0,2 of degree 0,

p1, p1,1, p1,2, p1,3, p1,4, p1,5 of degree 1,

p3,1 of degree 3,

q 1
2
,1, q 1

2
,2, q 1

2
,3, q 1

2
,4 of degree

1

2
,

q 3
2
,1, q 3

2
,2, q 3

2
,3, q 3

2
,4 of degree

1

2
. (7.78)
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In the next subsections the augmented system of equations associated to
the local and the nonlocal variables denoted above will be considered in
computing higher and nonlocal symmetries and the recursion operator.

4.3.2. Higher and nonlocal symmetries. In this subsection, we present
results for higher and nonlocal symmetries for the N = 2 supersymmetric
extension of KdV equation (7.71) in the case a = −1,

Y = Y u ∂

∂u
+ Y w ∂

∂w
+ Y ϕ ∂

∂ϕ
+ Y ψ ∂

∂ψ
+ . . .

We obtained the following odd symmetries whose generating functions are:

Y u
1
2
,1

= −ψ1,

Y w
1
2
,1

= ϕ,

Y ϕ
1
2
,1

= w1,

Y ψ
1
2
,1

= −u;

Y u
1
2
,2

= cos(2p0,1)(ψ1 − 2ϕw) + sin(2p0,1)(−ϕ1 − 2ψw),

Y w
1
2
,2

= cos(2p0,1)ϕ+ sin(2p0,1)ψ,

Y ϕ
1
2
,2

= cos(2p0,1)(2ψq 1
2
,1 + w1) + sin(2p0,1)(2ψq 1

2
,2 − u)− 4ψq 1

2
,4,

Y ψ
1
2
,2

= cos(2p0,1)(−2ϕq 1
2
,1 + u) + sin(2p0,1)(−2ϕq 1

2
,2 + w1) + 4ϕq 1

2
,4;

Y u
1
2
,3

= cos(2p0,1)(−ϕ1 − 2ψw) + sin(2p0,1)(−ψ1 + 2ϕw),

Y w
1
2
,3

= cos(2p0,1)ψ − sin(2p0,1)ϕ),

Y ϕ
1
2
,3

= cos(2p0,1)(2ψq 1
2
,2 − u) + sin(2p0,1)(−2ψq 1

2
,1 − w1) + 4ψq 1

2
,3,

Y ψ
1
2
,3

= cos(2p0,1)(−2ϕq 1
2
,2 + w1) + sin(2p0,1)(2ϕq 1

2
,1 − u)− 4ϕq 1

2
,3;

Y u
1
2
,4

= ϕ1,

Y w
1
2
,4

= ψ,

Y ϕ
1
2
,4

= u,

Y ψ
1
2
,4

= w1;

Y u
3
2
,1

= cos(2p0,1)(−2q 1
2
,2u1 − 2q 1

2
,2ww1 + 2q 1

2
,1uw − q 1

2
,1w2

+ ψ2 + ψ1p1 + ϕ1q 1
2
,1q 1

2
,2 − 2ϕ1w + 2ψq 1

2
,1q 1

2
,2w − ψu

− ψw2 − ϕp1w − ϕw1)

+ sin(2p0,1)(2q 1
2
,2uw − q 1

2
,2w2 + 2q 1

2
,1u1 + 2q 1

2
,1ww1 − ϕ2

+ 2ψ1q 1
2
,1q 1

2
,2 − 2ψ1w − ϕ1p1 − ψp1w − ψw1 − 2ϕq 1

2
,1q 1

2
,2w
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+ ϕu+ ϕw2)− 2q 1
2
,3u1 − ψ1p1,2 − ψ1p1,4 + ϕ1p1,1,

Y w
3
2
,1

= cos(2p0,1)(−q 1
2
,1u+ ϕ1 − ψq 1

2
,1q 1

2
,2 + ψw)

+ sin(2p0,1)(−q 1
2
,2u+ ψ1 − ϕw)− 2q 1

2
,3w1 + ψp1,1 + ϕp1,2 + ϕp1,4,

Y ϕ
3
2
,1

= cos(2p0,1)(q 1
2
,1q 1

2
,2u+ ψ1q 1

2
,1 + ψq 1

2
,1p1 − ϕq 1

2
,1w

− ϕψ + 2uw − w2)

+ sin(2p0,1)(−ψ1q 1
2
,2 − 2ϕ1q 1

2
,1 + ψq 1

2
,2p1 − 2ψq 1

2
w + ϕq 1

2
,2w

− p1u+ u1 + ww1) + 2ϕ1q 1
2
,3 − 2ψq 3

2
,1 + p1,1u+ p1,2w1 + p1,4w1,

Y ψ
3
2
,1

= cos(2p0,1)(−q 1
2
,1q 1

2
,2w1 + 2ψ1q 1

2
,2 + ϕ1q 1

2
,1 + ψq 1

2
,1w

− 2ϕq 1
2
,2w − ϕq 1

2
,1p1 + p1u− u1 − ww1)

+ sin(2p0,1)(2q 1
2
,1q 1

2
,2u− ϕ1q 1

2
,2 − ψq 1

2
,2w − ϕq 1

2
,2p1 − ϕψ + 2uw − w2)

+ 2ψ1q 1
2
,3 + 2ϕq 3

2
,1 + p1,1w1 − p1,2u− p1,4u. (7.79)

We also have

Y u
3
2
,2

= cos(2p0,1)(−2q 1
2
,2uw + q 1

2
,2w2 − 2q 1

2
,1u1 − 2q 1

2
,1ww1 + ϕ2

− 2ψ1q 1
2
,1q 1

2
,2 + 2ψ1w + ϕ1p1 + ψp1w + ψw1 + 2ϕq 1

2
,1q 1

2
,2w

− ϕu− ϕw2)

+ sin(2p0,1)(−2q 1
2
,2u1 − 2q 1

2
,2ww1 + 2q 1

2
,1uw − q 1

2
,1w2 + ψ2 + ψ1p1

+ ϕ1q 1
2
,1q 1

2
,2 − 2ϕ1w + 2ψq 1

2
,1q 1

2
,2w − ψu− ψw2 − ϕp1w − ϕw1)

+ 2q 1
2
,4u1 − ψ1p1,1 − ψ1p1,3 − ϕ1p1,2,

Y w
3
2
,2

= cos(2p0,1)(q 1
2
,2u− ψ1 + ϕw)

+ sin(2p0,1)(−q 1
2
,1u+ ϕ1 − ψq 1

2
,1q 1

2
,2 + ψw)

+ 2q 1
2
,4w1 − ψp1,2 + ϕp1,1 + ϕp1,3,

Y ϕ
3
2
,2

= cos(2p0,1)(ψ1q 1
2
,2 + 2ϕ1q 1

2
,1 − ψq 1

2
,2p1 + 2ψq 1

2
,1w − ϕq 1

2
,2w

+ p1u− u1 − ww1)

+ sin(2p0,1)(q 1
2
,1q 1

2
,2u+ ψ1q 1

2
,1 + ψq 1

2
,1p1 − ϕq 1

2
,1w − ϕψ + 2uw − w2)

− 2ϕ1q 1
2
,4 − 2ψq 3

2
,2 + p1,1w1 − p1,2u+ p1,3w1,

Y ψ
3
2
,2

= cos(2p0,1)(−2q 1
2
,1q 1

2
,2u+ ϕ1q 1

2
,2 + ψq 1

2
,2w + ϕq 1

2
,2p1

+ ϕψ − 2uw + w2)

+ sin(2p0,1)(−q 1
2
,1q 1

2
,2w1 + 2ψ1q 1

2
,2 + ϕ1q 1

2
,1 + ψq 1

2
,1w − 2ϕq 1

2
,2w

− ϕq 1
2
,1p1 + p1u− u1 − ww1)

− 2ψ1q 1
2
,4 + 2ϕq 3

2
,2 − p1,1u− p1,2w1 − p1,3u (7.80)



4. SUPERSYMMETRIC EXTENSIONS OF THE KDV EQUATION, N = 2 343

and

Y u
3
2
,3

= cos(2p0,1)(−4q 1
2
,4uw + 2q 1

2
,4w2 + 2q 1

2
,3u1 + 4q 1

2
,3ww1

− 2ψ1q 1
2
,1q 1

2
,4 + ψ1p1,2 + ψ1p1,4 − 2ϕ1q 1

2
,2q 1

2
,4 − 4ϕ1q 1

2
,1q 1

2
,3 + ϕ1p1,1

+ ϕ1p1,3 − 4ψq 1
2
,1q 1

2
,3w + 2ψp1,1w + 2ψp1,3w + 4ϕq 1

2
,1q 1

2
,4w

− 2ϕp1,2w − 2ϕp1,4w)

+ sin(2p0,1)(−2q 1
2
,4u1 − 4q 1

2
,4ww1 − 4q 1

2
,3uw + 2q 1

2
,3w2

− 2ψ1q 1
2
,1q 1

2
,3 + ψ1p1,1 + ψ1p1,3 − 2ϕ1q 1

2
,2q 1

2
,3 + 4ϕ1q 1

2
,1q 1

2
,4

− ϕ1p1,2 − ϕ1p1,4 + 4ψq 1
2
,1q 1

2
,4w − 2ψp1,2w − 2ψp1,4w

+ 4ϕq 1
2
,1q 1

2
,3w − 2ϕp1,1w − 2ϕp1,3w)

+ 2q 1
2
,2u1 + 2q 1

2
,2ww1

+ 2q 1
2
,1uw − q 1

2
,1w2 − ψ2 − ψ1p1 − 4ϕ1q 1

2
,3q 1

2
,4

− ϕ1q 1
2
,1q 1

2
,2 + 2ϕ1w + ψu+ ψw2 + ϕp1w + ϕw1,

Y w
3
2
,3

= cos(2p0,1)(2q 1
2
,4u− 2q 1

2
,3w1 − 2ψq 1

2
,2q 1

2
,4 − ψp1,1 − ψp1,3

− 2ϕq 1
2
,1q 1

2
,4 + ϕp1,2 + ϕp1,4)

+ sin(2p0,1)(2q 1
2
,4w1 + 2q 1

2
,3u− 2ψq 1

2
,2q 1

2
,3 + ψp1,2 + ψp1,4

− 2ϕq 1
2
,1q 1

2
,3 + ϕp1,1 + ϕp1,3)

− q 1
2
,1u+ ϕ1 − 4ψq 1

2
,3q 1

2
,4 − ψq 1

2
,1q 1

2
,2 + ψw,

Y ϕ
3
2
,3

= cos(2p0,1)(−2q 1
2
,2q 1

2
,4u− 2q 1

2
,1q 1

2
,4w1 − 4q 1

2
,1q 1

2
,3u+ 2ψ1q 1

2
,4

+ 2ϕ1q 1
2
,3 + 2ψq 1

2
,4p1 − 2ψq 1

2
,2p1,1 − 2ψq 1

2
,2p1,3 − 4ψq 1

2
,1q 1

2
,2q 1

2
,3

+ 2ψq 1
2
,1p1,2 + 2ψq 1

2
,1p1,4 − 2ϕq 1

2
,4w + p1,1u

+ p1,2w1 + p1,3u+ p1,4w1)

+ sin(2p0,1)(−2q 1
2
,2q 1

2
,3u+ 4q 1

2
,1q 1

2
,4u− 2q 1

2
,1q 1

2
,3w1 + 2ψ1q 1

2
,3

− 2ϕ1q 1
2
,4 + 2ψq 1

2
,3p1 + 2ψq 1

2
,2p1,2 + 2ψq 1

2
,2p1,4

+ 4ψq 1
2
,1q 1

2
,2q 1

2
,4 + 2ψq 1

2
,1p1,1 + 2ψq 1

2
,1p1,3 − 2ϕq 1

2
,3w + p1,1w1

− p1,2u+ p1,3w1 − p1,4u)

− 4q 1
2
,3q 1

2
,4u− q 1

2
,1q 1

2
,2u− ψ1q 1

2
,1 − 4ψq 1

2
,4p1,2 − 4ψq 1

2
,4p1,4

− 4ψq 1
2
,3p1,1 − 4ψq 1

2
,3p1,3 − ψq 1

2
,1p1 + ϕq 1

2
,1w − ϕψ + 2uw − w2,

Y ψ
3
2
,3

= cos(2p0,1)(−2q 1
2
,2q 1

2
,4w1 − 2q 1

2
,1q 1

2
,4u− 2ψ1q 1

2
,3 + 2ϕ1q 1

2
,4

+ 2ψq 1
2
,4w − 2ϕq 1

2
,4p1 + 4ϕq 1

2
,3w + 2ϕq 1

2
,2p1,1 + 2ϕq 1

2
,2p1,3

+ 4ϕq 1
2
,1q 1

2
,2q 1

2
,3 − 2ϕq 1

2
,1p1,2 − 2ϕq 1

2
,1p1,4 − p1,1w1 + p1,2u

− p1,3w1 + p1,4u)
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+ sin(2p0,1)(−2q 1
2
,2q 1

2
,3w1 − 2q 1

2
,1q 1

2
,3u+ 2ψ1q 1

2
,4 + 2ϕ1q 1

2
,3

+ 2ψq 1
2
,3w − 4ϕq 1

2
,4w − 2ϕq 1

2
,3p1 − 2ϕq 1

2
,2p1,2 − 2ϕq 1

2
,2p1,4

− 4ϕq 1
2
,1q 1

2
,2q 1

2
,4 − 2ϕq 1

2
,1p1,1 − 2ϕq 1

2
,1p1,3 + p1,1u

+ p1,2w1 + p1,3u+ p1,4w1)

− 4q 1
2
,3q 1

2
,4w1 − q 1

2
,1q 1

2
,2w1 − 2ψ1q 1

2
,2 − ϕ1q 1

2
,1 − ψq 1

2
,1w

+ 4ϕq 1
2
,4p1,2 + 4ϕq 1

2
,4p1,4 + 4ϕq 1

2
,3p1,1 + 4ϕq 1

2
,3p1,3 + 2ϕq 1

2
,2w

+ ϕq 1
2
,1p1 − p1u+ u1 + ww1, (7.81)

together with

Y u
3
2
,4

= cos(2p0,1)(2q 1
2
,4u1 + 4q 1

2
,4ww1 + 4q 1

2
,3uw − 2q 1

2
,3w2 − 4ψ1q 1

2
,2q 1

2
,4

− 2ψ1q 1
2
,1q 1

2
,3 + ψ1p1,1 − 2ϕ1q 1

2
,2q 1

2
,3 − ϕ1p1,2 − 4ψq 1

2
,2q 1

2
,3w

− 2ψp1,2w + 4ϕq 1
2
,2q 1

2
,4w − 2ϕp1,1w)

+ sin(2p0,1)(−4q 1
2
,4uw + 2q 1

2
,4w2 + 2q 1

2
,3u1 + 4q 1

2
,3ww1 − 4ψ1q 1

2
,2q 1

2
,3

+ 2ψ1q 1
2
,1q 1

2
,4 − ψ1p1,2 + 2ϕ1q 1

2
,2q 1

2
,4 − ϕ1p1,1 + 4ψq 1

2
,2q 1

2
,4w

− 2ψp1,1w + 4ϕq 1
2
,2q 1

2
,3w + 2ϕp1,2w)

+ 2q 1
2
,2uw − q 1

2
,2w2 − 2q 1

2
,1u1 − 2q 1

2
,1ww1 + ϕ2 − 4ψ1q 1

2
,3q 1

2
,4

− 2ψ1q 1
2
,1q 1

2
,2 + 2ψ1w + ϕ1p1 + ψp1w + ψw1 + 2ϕq 1

2
,1q 1

2
,2w

− ϕu− ϕw2,

Y w
3
2
,4

= cos(2p0,1)(−2q 1
2
,4w1 − 2q 1

2
,3u+ 2ψq 1

2
,2q 1

2
,3 + ψp1,2

+ 2ϕq 1
2
,1q 1

2
,3 + ϕp1,1)

+ sin(2p0,1)(2q 1
2
,4u− 2q 1

2
,3w1 − 2ψq 1

2
,2q 1

2
,4 + ψp1,1

− 2ϕq 1
2
,1q 1

2
,4 − ϕp1,2)

− q 1
2
,2u+ ψ1 + 4ϕq 1

2
,3q 1

2
,4 − ϕw,

Y ϕ
3
2
,4

= cos(2p0,1)(−2q 1
2
,2q 1

2
,3u+ 2q 1

2
,1q 1

2
,3w1 + 2ψ1q 1

2
,3 − 2ϕ1q 1

2
,4

− 4ψq 1
2
,4w − 2ψq 1

2
,3p1 + 2ψq 1

2
,2p1,2 + 2ψq 1

2
,1p1,1 − 2ϕq 1

2
,3w

+ p1,1w1 − p1,2u)

+ sin(2p0,1)(2q 1
2
,2q 1

2
,4u− 2q 1

2
,1q 1

2
,4w1 − 2ψ1q 1

2
,4 − 2ϕ1q 1

2
,3 + 2ψq 1

2
,4p1

− 4ψq 1
2
,3w + 2ψq 1

2
,2p1,1 − 2ψq 1

2
,1p1,2 + 2ϕq 1

2
,4w − p1,1u− p1,2w1)

+ 4q 1
2
,3q 1

2
,4w1 + ψ1q 1

2
,2 + 2ϕ1q 1

2
,1 − 4ψq 1

2
,4p1,1 + 4ψq 1

2
,3p1,2 − ψq 1

2
,2p1

+ 2ψq 1
2
,1w − ϕq 1

2
,2w + p1u− u1 − ww1,

Y ψ
3
2
,4

= cos(2p0,1)(−4q 1
2
,2q 1

2
,4u+ 2q 1

2
,2q 1

2
,3w1 − 2q 1

2
,1q 1

2
,3u+ 2ψ1q 1

2
,4

+ 2ϕ1q 1
2
,3 + 2ψq 1

2
,3w + 2ϕq 1

2
,3p1 − 2ϕq 1

2
,2p1,2 − 2ϕq 1

2
,1p1,1
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+ p1,1u+ p1,2w1)

+ sin(2p0,1)(−2q 1
2
,2q 1

2
,4w1 − 4q 1

2
,2q 1

2
,3u+ 2q 1

2
,1q 1

2
,4u+ 2ψ1q 1

2
,3

− 2ϕ1q 1
2
,4 − 2ψq 1

2
,4w − 2ϕq 1

2
,4p1 − 2ϕq 1

2
,2p1,1 + 2ϕq 1

2
,1p1,2

+ p1,1w1 − p1,2u)

− 4q 1
2
,3q 1

2
,4u− 2q 1

2
,1q 1

2
,2u+ ϕ1q 1

2
,2 + ψq 1

2
,2w + 4ϕq 1

2
,4p1,1

− 4ϕq 1
2
,3p1,2 + ϕq 1

2
,2p1 − ϕψ + 2uw − w2. (7.82)

Even symmetries are

Y u
1,1 = u1,

Y w
1,1 = w1,

Y ϕ
1,1 = ϕ1,

Y ψ
1,1 = ψ1;

Y u
1,2 = cos(2p0,1)(−ψ1q 1

2
,1 − ϕ1q 1

2
,2 + 2ϕq 1

2
,1w − 2uw + w2)

+ sin(2p0,1)(2ϕ1q 1
2
,1 + 2ψq 1

2
,1w − u1 − 2ww1)− 2ϕ1q 1

2
,3,

Y w
1,2 = cos(2p0,1)(−ψq 1

2
,2 − ϕq 1

2
,1 + u)

+ sin(2p0,1)w1 − 2ψq 1
2
,3,

Y ϕ
1,2 = cos(2p0,1)(q 1

2
,2u+ q 1

2
,1w1 − ψ1 − ψp1 + ϕw)

+ sin(2p0,1)(−2q 1
2
,1u+ ϕ1 − 2ψq 1

2
,1q 1

2
,2) + 2(q 1

2
,3u+ ψp1,2 + ψp1,4),

Y ψ
1,2 = cos(2p0,1)(q 1

2
,2w1 + q 1

2
,1u− ϕ1 − ψw + ϕp1)

+ sin(2p0,1)(−ψ1 + 2ϕq 1
2
,1q 1

2
,2 + 2ϕw) + 2(q 1

2
,3w1 − ϕp1,2 − ϕp1,4);

Y u
1,3 = cos(2p0,1)(2ϕ1q 1

2
,1 + 2ψq 1

2
w − u1 − 2ww1)

+ sin(2p0,1)(ψ1q 1
2
,1 + ϕ1q 1

2
,2 − 2ϕq 1

2
,1w + 2uw − w2)− 2ϕ1q 1

2
,4,

Y w
1,3 = cos(2p0,1)w1

+ sin(2p0,1)(ψq 1
2

+ ϕq 1
2
,1 − u)− 2ψq 1

2
,4,

Y ϕ
1,3 = cos(2p0,1)(−2q 1

2
,1u+ ϕ1 − 2ψq 1

2
,1q 1

2
,2)

+ sin(2p0,1)(−q 1
2
,2u− q 1

2
,1w1 + ψ1 + ψp1 − ϕw)

+ 2(q 1
2
,4u− ψp1,1 − ψp1,3),

Y ψ
1,3 = cos(2p0,1)(−ψ1 + 2ϕq 1

2
,1q 1

2
,2 + 2ϕw)

+ sin(2p0,1)(−q 1
2
,2w1 − q 1

2
,1u+ ϕ1 + ψw − ϕp1)

+ 2(q 1
2
,4w1 + ϕp1,1 + ϕp1,3); (7.83)

Y u
1,4 = cos(2p0,1)(−2ψ1q 1

2
,2 + 2ϕq 1

2
,2w + u1 + 2ww1)
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+ sin(2p0,1)(ψ1q 1
2
,1 + ϕ1q 1

2
,2 + 2ψq 1

2
,2w − 2uw + w2)− 2ψ1q 1

2
,3,

Y w
1,4 = − cos(2p0,1)w1

+ sin(2p0,1)(−ψq 1
2
,2 − ϕq 1

2
,1 + u) + 2ϕq 1

2
,3,

Y ϕ
1,4 = cos(2p0,1)(ϕ1 + 2ψw)

+ sin(2p0,1)(−q 1
2
,2u+ q 1

2
,1w1 + ψ1 − ψp1 − ϕw)

+ 2(−q 1
2
,3w1 + ψp1,1),

Y ψ
1,4 = cos(2p0,1)(2q 1

2
,2u− ψ1)

+ sin(2p0,1)(q 1
2
,2w1 − q 1

2
,1u+ ϕ1 + ψw + ϕp1) + 2(q 1

2
,3u− ϕp1,1).

(7.84)

Finally, we got

Y u
1,5 = cos(2p0,1)(ψ1q 1

2
,1 + ϕ1q 1

2
,2 + 2ψq 1

2
,2w − 2uw + w2)

+ sin(2p0,1)(2ψ1q 1
2
,2 − 2ϕq 1

2
,2w − u1 − 2ww1)− 2ψ1q 1

2
,4,

Y w
1,5 = cos(2p0,1)(−ψq 1

2
,2 − ϕq 1

2
,1 + u)

+ sin(2p0,1)w1 + 2ϕq 1
2
,4,

Y ϕ
1,5 = cos(2p0,1)(−q 1

2
,2u+ q 1

2
,1w1 + ψ1 − ψp1 − ϕw)

+ sin(2p0,1)(−ϕ1 − 2ψw) + 2(−q 1
2
,4w1 + ψp1,2),

Y ψ
1,5 = cos(2p0,1)(q 1

2
,2w1 − q 1

2
,1u+ ϕ1 + ψw + ϕp1)

+ sin(2p0,1)(−2q 1
2
,2u+ ψ1) + 2(q 1

2
,4u− ϕ)p1,2);

Y u
1,6 = cos(2p0,1)(−ψ1q 1

2
,3 + ϕ1q 1

2
,4 + 2ψq 1

2
,4w + 2ϕq 1

2
,3w)

+ sin(2p0,1)(ψ1q 1
2
,4 + ϕ1q 1

2
,3 + 2ψq 1

2
,3w − 2ϕq 1

2
,4w)

− ψ1q 1
2
,2 − ϕ1q 1

2
,1 − ψq 1

2
,1w + ϕq 1

2
,2w,

Y w
1,6 = − cos(2p0,1)(ψq 1

2
,4 + ϕq 1

2
,3)

+ sin(2p0,1)(−ψq 1
2
,3 + ϕq 1

2
,4),

Y ϕ
1,6 = cos(2p0,1)(−q 1

2
,4u+ q 1

2
,3w1 + 2ψq 1

2
,2q 1

2
,4 + 2ψq 1

2
,1q 1

2
,3)

+ sin(2p0,1)(−q 1
2
,4w1 − q 1

2
,3u+ 2ψq 1

2
,2q 1

2
,3 − 2ψq 1

2
,1q 1

2
,4)

+ q 1
2
,1u− ϕ1 + 4ψq 1

2
,3q 1

2
,4 + ψq 1

2
,1q 1

2
,2 − ψw,

Y ψ
1,6 = cos(2p0,1)(q 1

2
,4w1 + q 1

2
,3u− 2ϕq 1

2
,2q 1

2
,4 − 2ϕq 1

2
,1q 1

2
,3)

+ sin(2p0,1)(−q 1
2
,4u+ q 1

2
,3w1 − 2ϕq 1

2
,2q 1

2
,3 + 2ϕq 1

2
,1q 1

2
,4)

+ q 1
2
,2u− ψ1 − 4ϕq 1

2
,3q 1

2
,4 − ϕq 1

2
,1q 1

2
,2 + ϕw. (7.85)



4. SUPERSYMMETRIC EXTENSIONS OF THE KDV EQUATION, N = 2 347

4.3.3. Recursion operator. Here we shall discuss briefly the recursion
properties of the nonlocal symmetries Y1,2, Y1,3, Y1,4, Y1,5, Y1,6 given in
(7.83) and (7.85).

We shall discuss their action on the supersymmetry Y 1
2
,1 of degree 1/2.

In order to compute the Lie bracket of these symmetries, we have to
derive the nonlocal components, just for the vector field Y 1

2
,1.

Due to the invariance of the equations, defining the nonlocal variables
p0,1, p1, q 1

2
,1, q 1

2
,2, q 1

2
,3, q 1

2
,4 and p1,1, p1,2, p1,3, p1,4, the nonlocal components

can be obtained.
The prolongation of the vector field Y 1

2
,1 is then given as

Y 1
2
,1 = −ψ1

∂

∂u
+ ϕ

∂

∂w
+ w1

∂

∂ϕ
− u ∂

∂ψ

+ w
∂

∂q 1
2
,1

− p1
∂

∂q 1
2
,2

+ (p1,2 + p1,4)
∂

∂q 1
2
,3

− (p1,1 + p1,3)
∂

∂q 1
2
,4

+ q 1
2
,1

∂

∂p0,1
− ψ ∂

∂p1

+ (cos(2p0,1)(2q 1
2
,1p1 + q 1

2
,2w) + sin(2p0,1)(2q 1

2
,2p1)− 2q 3

2
,1)

∂

∂p1,1

+ (cos(2p0,1)(2q 1
2
,2p1)− sin(2p0,1)(2q 1

2
,1p1 + q 1

2
,2w) + 2q 3

2
,2)

∂

∂p1,2

+ (− cos(2p0,1)(2q 1
2
,1p1 + 2q 1

2
,2w) + sin(2p0,1(q 1

2
,1w − q 1

2
,2p1)

+ 2q 3
2
,1)

∂

∂p1,3

+ (cos(2p0,1)(q 1
2
,1w − q 1

2
,2p1) + sin(2p0,1)(2q 1

2
,1p1 + 2q 1

2
,2w)

− 2q 3
2
,1)

∂

∂p1,4
. (7.86)

For the vector fields Y1,i, i = 2, . . . , 6, prolongation is not required due to
the locality of Y 1

2
,1.

We obtain the following commutators:

[Y1,2, Y 1
2
,1] = 0,

[Y1,3, Y 1
2
,1] = 0,

[Y1,4, Y 1
2
,1] = 2Y 3

2
,1,

[Y1,5, Y 1
2
,1] = −2Y 3

2
,2,

[Y1,6, Y 1
2
,1] = −2Y 3

2
,3, (7.87)

meaning that Y1,i, i = 2, . . . , 6, take symmetry Y 1
2
,1 higher into the hierarchy.

Similar results are obtained for the local symmetry Y 1
2
,4.
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In order to compute the Lie brackets for Y 1
2
,2 and Y 1

2
,3, leading to similar

results too, prolongations of these vector fields are required.
The results are related to a similar action of the recursion symmetry for

the n = 1 supersymmetric KdV equation, discussed in Section 1.
The work on the contruction of the recursion operator as obtained for

the cases a = −2 by (7.56) and a = 4 by (7.70), is still in progress and will
be published elsewhere.



CHAPTER 8

Symbolic computations in differential geometry

To introduce this subject, it is nice to tell the story how NN computed
the tenth conservation law of the classical KdV equation at the end of the
sixties.

From previous results one had obtained nine conservation laws for the
KdV equation and the idea was that if one would be able to compute the
tenth then people would be convinced that there existed an infinite hierarchy
of conservation laws for the KdV equation. At that time, the notion of
recursion operators (the first one obtained by Lenard) was not yet known.

Then NN took the decision to retire for two weeks to a nice cabin some-
where high up in the mountains and to try to figure out whether he would be
able to find number ten. After two weeks he returned from his exile position
having found the next one in the hierarchy, thus “proving” the existence of
an infinite hierarchy.

With nowadays modern facilities it is possible to construct the first ten
or twenty in few seconds. This is just one of the examples demonstrating
the need for computer programs to do in principle simple, but in effect huge
algebraic computations to get to final results.

Towards the end of the seventies the first computer programs were con-
structed. Among them Gragert [22], Schrüfer [90], Schwarz [91], Kersten
[34], . . . , just doing part of the work on computations on differential forms,
vector fields, solutions of overdetermined systems of partial differential equa-
tions, covering conditions, etc.

Since then, quite a number of programs has been constructed and it
seems that nowadays each individual researcher in this field of mathematical
physics uses his or her own developed software to do the required computa-
tions in more or less the most or almost most efficient way. An overview of
existing programs in all distinct related areas was recently given by Hereman
in his extensive paper [30].

In the following sections, we shall discuss in some detail a number of
types of computations which can be carried through on a computer sys-
tem. The basis of these programs has been constructed by Gragert [22],
Kersten [37], Gragert, Kersten and Martini [24, 25], Roelofs [85, 86], van
Bemmelen [9, 8] at the University of Twente, starting in 1979 with exterior
differential forms, construction and solution of overdetermined systems of
partial differential equations arising from symmetry computations, exten-
sion of the software to work in a graded setting, meaning supercalculus,

349
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required for the interesting field of super and supersymmetric extensions of
classical differential equations and at the end a completely new package,
being extremely suitable for classical as well as supersymmetrical systems,
together with packages for computation of covering structures of completely
integrable systems, and a package to handling the computations with to-
tal derivative operators. We should mention here too (super) Lie algebra
computations for covering structures by Gragert and Roelofs [23, 26].

We prefer to start in Section 1 with setting down the basic notions of the
graded or supercalculus, since classical differential geometric computations
can be embedded in a very effective way in this more general setting, which
will be done in Section 2.

In Section 3 we shall give an idea how the software concerning construc-
tion of solutions of overdetermined systems of partial differential equations
works, and what the facilities are.

Finally we shall present in Subsection 3.2 a computer session concerning
the construction of higher symmetries of third order of the Burgers equation,
i.e., defining functions involving derivatives (with respect to x up to order 3),
cf. Chapter 2.

1. Super (graded) calculus

We give here a concise exposition of super (or graded) calculus needed
for symbolic computations.

At first sight the introduction of graded calculus requires a completely
new set of definitions and objects. It has been shown that locally a graded
manifold, or equivalently the algebra of functions defined on it, is given as
C∞(U)⊗Λ(n), where Λ(n) is the exterior algebra of n (odd) variables, [50].
Below we shall set down the notions involved in the graded calculus and
graded differential geometry.

Thus we give a short review of the notions of graded differential ge-
ometry as far as they are needed for implementation by means of software
procedures, i.e., graded commutative algebra, graded Lie algebra, graded man-

ifold, graded derivation, graded vector field, graded differential form, exterior

differentiation, inner differentiation or contraction by a vector field, Lie de-

rivative along a vector field, etc.
The notions and notations have been taken from Kostant [50] and the

reader is referred to this paper for more details, compare with Chapter 6.
Throughout this section, the basic field is R or C and the grading will be
with respect to Z2 = {0, 1}.

1. A vector space V over R is a graded vector space if one has V0 and V1

subspaces of V , such that

V = V0 ⊕ V1 (8.1)

is a direct sum. Elements of V0 are called even, elements of V1 are
called odd. Elements of V0 or V1 are called homogeneous elements.
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If v ∈ Vi, i = 0, 1, then i is called the degree of v, i.e.,

|v| = i, i = 0, 1, or i ∈ Z2. (8.2)

The notation |v| is used for homogeneous elements only.
2. A graded algebra B is a graded vector space B = B0 ⊕ B1 with a

multiplication such that

Bi ·Bj ⊂ Bi+j , i, j ∈ Z2. (8.3)

3. A graded algebra B is called graded commutative if for any two ho-
mogeneous elements x, y ∈ B we have

xy = (−1)|x||y|yx. (8.4)

4. A graded space V is a left module over the graded algebra B, if V is
a left module in the usual sense and

Bi · Vj ⊂ Vi+j , i, j ∈ Z2; (8.5)

right modules are defined similarly.
5. If V is a left module over the graded commutative algebra B, then V

inherits a right module structure, where we define

v · b def
= (−1)|v||b|b · v, v ∈ V, b ∈ B. (8.6)

Similarly, a left module structure is determined by a right module
structure.

6. A graded vector space g = g0⊕ g1, together with a bilinear operation
[·, ·] on g such that [x, y] ∈ g|x|+|y| is called a graded Lie algebra if

[x, y] = −(−1)|x||y|[y, x],

(−1)|x||z|[x, [y, z]] + (−1)|z||y|[z, [x, y]] + (−1)|y||x|[y, [z, x]] = 0, (8.7)

where the last equality is called the graded Jacobi identity.
If V is a graded vector space, then End(V ) has the structure of a

graded Lie algebra defined by

[α, β] = αβ − (−1)|α||β|βα, α, β ∈ End(V ). (8.8)

7. If B is a graded algebra, an operator h ∈ Endi(B) is called a graded

derivation of B if

h(xy) = h(x)y + (−1)|i||x|xh(y). (8.9)

An operator h ∈ End(B) is a derivation if its homogeneous compo-
nents are so.

The graded vector space of derivations of B, denoted by Der(B),
is a graded Lie subalgebra of End(B). Equality (8.9) is called graded

Leibniz rule. If B is a graded commutative algebra then Der(B) is a
left B-module: if ζ ∈ Der(B), f, g ∈ B, then fζ ∈ Der(B), where

(fζ)g = f(ζg). (8.10)
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8. The local picture of a graded manifold is an open neighborhood U ⊂
Rm together with the graded commutative algebra

C∞(U)⊗ Λ(n), (8.11)

where Λ(n) is the antisymmetric (exterior) algebra on n elements

s1, . . . , sn, |si| = 1, sisj = −sjsi, i, j = 1, . . . , n. (8.12)

The pair (m|n) is called the dimension of the graded manifold at
hand. A particular element f ∈ C∞(U)⊗ Λ(n) is represented as

f =
∑

µ

fµsµ, (8.13)

where µ is a multi-index: µ ∈ Mn = {µ = (µ1, . . . , µn) | µi ∈ N, 1 ≤
µ1 ≤ µ2 · · · ≤ µk ≤ n},

sµ = sµ1 · sµ2 · . . . · sµk , fµ ∈ C∞(U). (8.14)

9. Graded vector fields on a graded manifold (U,C∞(U) ⊗ Λ(n)) are
introduced as graded derivations of the algebra C∞(U)⊗Λ(n). They
constitute a left C∞(U)⊗Λ(n)-module. Locally, a graded vector field
V is represented as

V =

m∑

i=1

fi
∂

∂ri
+

n∑

j=1

gj
∂

∂sj
, (8.15)

where fi, gj ∈ C∞(U)⊗ Λ(n), and ri, i = 1, . . . ,m, are local coordi-
nates in U ⊂ Rm.

The derivations ∂/∂ri, i = 1, . . . ,m, are even, while the deriva-
tions ∂/∂sj , j = 1, . . . , n, are odd. They satisfy the relations

∂rk
∂ri

= δik,
∂sj
∂ri

= 0,
∂rk
∂sj

= 0,
∂sl
∂sj

= δjl (8.16)

for all i, k = 1, . . . ,m, j, l = 1, . . . , n.
10. A graded differential k-form is introduced as k-linear mapping β on

Der(C∞(U)⊗ Λ(n)) which has to satisfy the identities

〈ζ1, . . . , fζl, . . . , ζk | β〉 = (−1)|f |
Pl−1
i=1 |ζi|f〈ζ1, . . . , ζk | β〉 (8.17)

and

〈ζ1, . . . , ζj , ζj+1 . . . , ζk | β〉
= (−1)1+|ζj ||ζj+1|〈ζ1, . . . , ζj , ζj+1, . . . , ζk | β〉, (8.18)

for all ζi ∈ Der(C∞(U) ⊗ Λ(n)) and f ∈ C∞(U) ⊗ Λ(n). The set of
k-forms is denoted by Ωk(U).

Remark 8.1. Actually we have to write Ωk(U,C∞(U) ⊗ Λ(n)),
but we made our choice for the abbreviated Ωk(U).
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The set Ωk(U) has the structure of a right C∞(U)⊗Λ(n)-module
by

〈ζ1, . . . , ζk | βf〉 = 〈ζ1, . . . , ζk | β〉f. (8.19)

We also set Ω0(U) = C∞(U) ⊗ Λ(n) and Ω(U) = ⊕∞
k=0Ω

k(U).
Moreover Ω(U) can be given a structure of a bigraded (Z+,Z2)-com-
mutative algebra, that is, if βi ∈ Ωki(U)ji , i = 1, 2, then

β1β2 ∈ Ωk1+k2(U)j1+j2 (8.20)

and

β1β2 = (−1)k1k2+j1j2β2β1. (8.21)

For the general definition of β1β2 see [50].
11. One defines the exterior derivative (or de Rham differential)

d : Ω0(U)→ Ω1(U), f 7→ df, (8.22)

by the condition

〈ζ | df〉 = ζf (8.23)

for ζ ∈ Der(C∞(U) ⊗ Λ(n)) and f ∈ Ω0(U) = C∞(U) ⊗ Λ(n). By
[50] and the definition of β1β2,

dri, i = 1, . . . ,m, dsj , j = 1, . . . , n, (8.24)

defined by

〈 ∂

∂rk
| dri

〉
= δik,

〈 ∂

∂sj
| dri

〉
= 0,

〈 ∂

∂rk
| dsl

〉
= 0,

〈 ∂

∂sj
| dsl

〉
= δjl, (8.25)

generate Ω(U) and any β ∈ Ω(U) can be uniquely written as

β =
∑

µ,ν

drµds
νfµ,ν , (8.26)

where

µ = (µ1, . . . , µk), 1 ≤ µ1 ≤ . . . ≤ µk ≤ n, l(µ) = k,

ν = (ν1, . . . , νn), νi ∈ N = Z+ \ {0},

|ν| =
n∑

i=1

νi, fµ,ν ∈ C∞(U)⊗ Λ(n). (8.27)

Note in particular that by (8.21),

dridrj = −drdri, dridsj = −dsjdri, dsjdsk = dskdsj , (8.28)

and by consequence

dsj . . . dsj︸ ︷︷ ︸
k times

6= 0. (8.29)
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By means of (8.22) and (8.23), the operator d : Ω0(U) → Ω1(U) has
the following explicit representation

df =

m∑

i=1

dri
∂f

∂ri
+

n∑

j=1

dsj
∂f

∂sj
. (8.30)

12. Since Ω(U) is a (Z+,Z2)-bigraded commutative algebra, the algebra
End(Ω(U)) is bigraded too and if u ∈ End(Ω(U)) is of bidegree (b, j) ∈
(Z+,Z2), then

u(Ωa(U)i) ∈ Ωa+b(U)i+j . (8.31)

Now, an element u ∈ End(Ω(U)) of bidegree (b, j) is a bigraded deriva-

tion of Ω(U), if for any α ∈ Ωa(U)i, β ∈ Ω(U) one has the Leibniz

rule

u(αβ) = u(α)β + (−1)ab+ijαu(β). (8.32)

There exists a unique derivation, the exterior differentiation,

d : Ω(U)→ Ω(U) (8.33)

of bidegree (1, 0), such that d
∣∣
Ω0(U) is defined by (8.22), (8.30), and

d2 = 0. (8.34)

If β ∈ Ω(U),

β =
∑

µ,ν

drµ ds
νfµ,ν , (8.35)

then

dβ =
∑

µ,ν

(−1)l(µ)+|ν|drµ ds
νdfµ,ν . (8.36)

Other familiar operations on ordinary manifolds have their counter-
parts in the graded case too.

13. If ζ ∈ Der(C∞(U)⊗Λ(n)), inner differentiation by ζ, or contraction

by ζ, iζ is defined by

〈ζ1, . . . , ζb | iζβ〉 = (−1)|ζ|
Pb
i=1 |ζi|〈ζ, ζ1, . . . , ζb | β〉 (8.37)

for ζ, ζ1, . . . , ζb ∈ Der(C∞(U) ⊗ Λ(n)) and β ∈ Ωb+1(U). Moreover
iζ : Ω(U) → Ω(U), β ∈ Ωb+1(U), iζβ ∈ Ωb(U), is a derivation of
bidegree (−1, |ζ|).

Bigraded derivations on Ω(U) can be shown to constitute a bi-

graded Lie algebra DerΩ(U) by the following Lie bracket. If u1, u2 ∈
Der Ω(U) of bidegree (bi, bj), i = 1, 2, then

[u1, u2] = u1u2 − (−1)b1b2+j1j2u2u1 ∈ DerΩ(U). (8.38)
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14. From (8.38) we have that Lie derivative by the vector field ζ defined
by

Lζ = diζ + iζd (8.39)

is a derivation of Ω(U) of bidegree (0, |ζ|).
The fact that exterior differentiation d, inner differentiation by ζ,

iζ , and Lie derivative by ζ, Lζ are derivations, has been used to imple-
ment them on the computer system starting from the representation
of vector fields and differential forms (8.15) and (8.35).

15. If one has a graded manifold (U,C∞(U) ⊗ Λ(n)), the exterior deriv-
ative is easy to be represented as an odd vector field in the following
way

d =
m∑

i=1

dri ∧
∂

∂ri
+

n∑

j=1

dsj ∧
∂

∂sj
, (8.40)

where now the initial system has been augmented by n even variables
ds1, . . . , dsn and m odd variables dr1, . . . , drm. The implementation
of the supercalculus package is based on the theorem proved in [50]
that locally a supermanifold, or a graded manifold, is represented as
U,C∞(U) ⊗ Λ(n), U ⊂ Rn, from which it is now easy to construct
the differential geometric operations.

Suppose we have a supermanifold of dimension (m|n). Local
variables are given by (r, s) = (ri, sj), i = 1, . . . ,m, j = 1, . . . , n.
Associated to these coordinates, we have (dri, dsj), i = 1, . . . ,m,
j = 1, . . . , n. We have to note that dri, i = 1, . . . ,m, are odd while
dsj , j = 1, . . . , n, are even.

So the exterior algebra is

C∞(Rm)⊗ R[ds]⊗ Λ(n)⊗ Λ(m), (8.41)

where in (8.41) a specific element is given by

f =
∑

dsk11 . . . dskmm drµ1 . . . drµrfk,µ (8.42)

while in (8.42) ki ≥ 0, i = 1, . . . ,m, 1 ≤ µ1 < · · · < µr ≤ n, while
fk,µ ∈ C∞(Rm)⊗ Λ(n).

2. Classical differential geometry

We shall describe here how classical differential geometric objects are
realised in the graded setting of the previous section. We start at a super-
algebra A on n even elements, r1, . . . , rn, and n odd elements s1, . . . , sn,
i.e.,

A = C∞(Rn)⊗ Λ(n), (8.43)
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where Λ(n) is the exterior algebra on n elements, s1, . . . , sn. A particular
element f ∈ A = C∞(Rn)⊗ Λ(n) is represented as

f =
∑

µ

fµsµ, (8.44)

where µ is a multi-index µ ∈ Mn = {µ = (µ1, . . . , µk) | µi ∈ N, 1 ≤ µ1 ≤
· · · ≤ µk ≤ n} and

sµ = sµ1sµ2 . . . sµk , fµ ∈ C∞(Rn), (8.45)

where we in effect formally assume:

si = dri, i = 1, . . . , n. (8.46)

1. Functions are represented as elements of the algebra A0 = C∞(Rn).
2. Derivations of A0 can be identified with vector fields

V = V1
∂

∂r1
+ · · ·+ Vn

∂

∂rn
, (8.47)

where Vi ∈ C∞(Rn), i = 1, . . . , n.
3. Differential forms are just specific elements of A.
4. Exterior derivative is a derivation of A which is odd and can be

represented as the vector field

d = dr1
∂

∂r1
+ · · ·+ drn

∂

∂rn
, dri = si. (8.48)

5. Contraction by a V , where V is given by (8.47), can be represented
as an odd derivation of A by

V α =

(
V1

∂

∂s1
+ · · ·+ Vn

∂

∂sn

)
(α). (8.49)

6. The Lie derivative by V can be easily implemented by the formula

LV (α) = V d(α) + d(V α). (8.50)

3. Overdetermined systems of PDE

In construction of classical and higher symmetries, nonlocal symmetries
and deformations or recursion operators, one is always left with an overde-
termined system of partial differential equations for a number of so-called
generating functions (or sections). The final result is obtained as the general
solution to this resulting system.

In Section 3.1 we shall describe how by the procedure which is called
here solve equation, written in the symbolic language LISP, one is able
to solve the major part of the construction of the general solution of the
overdetermined system of partial differential equations resulting from the
symmetry condition (2.29) on p. 72 or the deformation condition (6.42) on
p. 266.

It should be noted that each specific equation or system of equations
arising from mathematical physics has its own specifics, e.g., the sine-Gordon
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equation is not polynomial but involves the sine function, similar to the
Harry Dym equations, where radicals are involved.

In Subsection 3.2 we discuss, as an application, symmmetries of the
Burgers equation, while finally in Subection 3.3 we shall devote some words
to the polynomial and graded cases.

3.1. General case. Starting at the symmetry condition (2.29), one
arrives at an overdetermined system of homogeneous linear partial differen-

tial equations for the generating functions Fi, i = 1, . . . ,m. First of all,
one notes that in case one deals with a differential equation1 Ek ⊂ Jk(x, u),
x = (x1, . . . , xn), u = (u1, . . . , um), then the r-th prolongation Ek+r is always
polynomial with respect to the higher jet variables in the fibre Ek+r → Ek.

The symmetry condition (2.29) is also polynomial with respect to these
variables, cf. Subsection 3.2. So the overdetermined system of partial differ-
ential equations can always be splitted with respect to the highest variables
leading to a new system of equations.

These equations are stored in the computer system memory as right-
hand sides of operators equ(1), . . . , equ(te), where the variable te stands
for the Total Number of Equations involved.

If at a certain stage, the computer system constructs new expressions
which have to vanish in order to generate the general solution to the system
of equations (for instance, the derivative of an equation is a consequence,
which might be easier to solve). These new equations are added to the
system as equ(te + 1), . . . and the value of te is adjusted automatically to
the new situation.

In the construction of solutions to the system of equations we distinguish
between a number of different cases:

1. CASE A: A partial differential equation is of a polynomial type in
one (or more) of the variables, the functions F∗ appearing in this
equation are independent of this (or these) variable(s). By conse-
quence, each of the coefficients of the polynomial has to be zero, and
the partial differential equation decomposes into some new additional
and smaller equations.

Example 8.1. The partal differential equation is

equ(.) :=x2
1(F1)x2 + x1F2, (8.51)

where in (8.51) the functions F1, F2 are independent of x1.
By consequence, the coefficients of the polynomial in x1 have to

be zero, i.e., (F1)x2 and F2. So equation (8.51) is equivalent to the
system

equ(.):=(F1)x2 ,

equ(.):=F2 (8.52)

1We use the notation Jk(x, u) as a synonim for Jk(π), where π : (x, u) 7→ (x).
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2. CASE B: The partial differential equations equ(.) represents a de-
rivative of a function F∗. In general

equ(.) :=(F∗)xk1i1 ,...,x
kr
ir

, (8.53)

is a mixed (k1 + · · ·+ kr)-th order derivative.
The general solution of (8.53) is

F∗ :=
r∑

s=1

ks−1∑

t=0

Fis,tx
t
is , (8.54)

whereas in (8.54) Fis,t depends on the same variables as F∗, except
for xis , t = 0, . . . , ks − 1, s = 1, . . . , r.

Example 8.2.

equ(.) :=(F1)x1,x2 . (8.55)

The general solution to this equation is given by

F1 := F2 + F3, (8.56)

where F2 depends on the same variables as F1, except for x1, while
F3 depends on the same variables as F1, except for x2.

3. CASE C: The partial differential equation equ(.) contains a func-
tion F∗, depending on all variables present as arguments of some
other function(s) F∗∗, occuring in this equation, whereas there is no
derivative of a function F∗ present in the equation.

The partial differential equation can then be solved for the func-
tion F∗.

Example 8.3.

equ(.) :=x1F1 + x2(F2)x1 , (8.57)

where in (8.57) F1, F2 are dependent on x1, x2, x3. The solution is

F1 := (−x2(F2)x1)/x1 (8.58)

We have to make a remark here. There is a switch in the system
that checks for the coefficient for the function F∗ to be a number. In
case the switch coefficient check is on, equ(.) will not be solved.
In case the switch coefficient check is off, the result is given as in
(8.58).

4. CASE D: In the partial differential equation there is a derivative
of a function F∗ with respect to variables which are not present as
argument of any other function F∗∗, while the coefficient of F∗ is a
number. By the assumption that x1, . . . , xn appear as polynomials,
the partial differential equation can be integrated.
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Example 8.4. Let the partial differential equation be given by

equ(.) :=(F1)x3 + x2F2, (8.59)

where F1 depends on x1, x2, x3 and F2 depends on x1, x2.
The solution to (8.59) is

F1 := −x2x3F2 + F3, (8.60)

whereas F3 depends on x1, x2 and is independent of x3.

5. CASE E: In the partial differential equation a specific variable xi is
present just once as argument of some function F∗. By appropriate
differentiation, one may arrive at a simple equation, which can be
solved.

Evaluation of the original equation can result in an equation which
can be solved too.

Example 8.5.

equ(.) :=x2(F1)x2,x3 + x3F2, (8.61)

where F1 depends on x1, x2, x3 and F2 depends on x1, x2.
Differentiation with respect to x3 twice results in

equ(.) :=x2(F1)x2,x3
3
. (8.62)

The solution to (8.62) is CASE B:

F1 := F3x
2
3 + F4x3 + F5 + F6, (8.63)

where F1, F4, F5 are dependent on x1, x2, F6 depends on x1, x3.
Substitution of the result (8.63) into the original equation (8.61)

leads to

equ(.) :=2x2x3(F3)x2 + x2(F4)x2 + x3F2. (8.64)

Due to CASE A, the procedure solve equation constructs two new
equations

equ(.):=2x2(F3)x2 + F2,

equ(.):=x2(F4)x2 (8.65)

The complete result of the procedure solve equation will in this case
be (8.63) and (8.65).

Now the procedure solve equation is then useful to solve the last
two equations (8.65) constructed before; this last step is not carried
through automatically.

For this case there is a switch “differentiation” too, similar to
the previous case.

In practical situations, one is able to solve the overdetermined system
of partial differential equations, using the methods described in the CASES
A, B, C, D, E and some additional considerations, which are specific for the
problem at hand.
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3.2. The Burgers equation. We shall discuss the construction of
higher symmetries of order three of the Burgers equation in order to demon-
strate the facilities of the INTEGRATION package, in effect the procedure
solve equation described in the previous subsection.

The Burgers equation is given by the following partial differential equa-
tion

ut = uu1 + u2, (8.66)

where partial derivatives with respect to x are given by indices 1, 2, . . . We
start this example by introduction of the vector fields Dx, Dt in the jet
bundle where local coordinates are given by x, t, u, u1, u2, u3, u4, u5, u6,
u7, u8 and a generating function F1, which is dependent on the jet variables
x, t, u, u1, u2, u3.

So the representation of the vector fields Dx, Dt is given by

Dx =
∂

∂x
+ u1

∂

∂u
+ u2

∂

∂u1
+ u3

∂

∂u2
+ u4

∂

∂u3
+ u5

∂

∂u4
+ u6

∂

∂u5

+ u7
∂

∂u6
+ u8

∂

∂u7
,

Dt =
∂

∂t
+ (ut)

∂

∂u
+ (ut)1

∂

∂u1
+ (ut)2

∂

∂u2
+ (ut)3

∂

∂u3
+ (ut)4

∂

∂u4

+ (ut)5
∂

∂u5
+ (ut)6

∂

∂u6
, (8.67)

where (ut), . . . , (ut)6 are given by

(ut) = uu1 + u2,

(ut)1 = uu2 + u2
1 + u3,

(ut)2 = uu3 + 3u1u2 + u4,

(ut)3 = uu4 + 4u1u3 + 3u2
2 + u5,

(ut)4 = uu5 + 5u1u4 + 10u2u3 + u6,

(ut)5 = uu6 + 6u1u5 + 15u2u4 + 10u2
3 + u7,

(ut)6 = uu7 + 7u1u6 + 21u2u5 + 35u3u4 + u8. (8.68)

In the remaining part of this section we shall present in effect a computer
session and give some comments on the construction and use of the procedure
solve equation. We shall stick as close as possible to the real output of
the computer system. Boldtext will refer to real input to the system, while
the rest is just the output on screen.

Now from the symmetry condition (2.29) we obtain

2 : equ(1) = Dt(F1)− Dx(DxF1)− uDx(F1)− u1F1; (8.69)

where the solution is to be determined in such a way that the right-hand
side in (8.69) has to vanish.
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The resulting equation is now given by

equ(1) = (F1)t − 2(F1)u,u1u1u2 − 2(F1)u,u2u1u3 − 2(F1)u,u3u1u4

− 2(F1)u,xu1 − (F1)u2u2
1 − 2(F1)u1,u2u2u3 − 2(F1)u1,u3u2u4

− 2(F1)u1,xu2 − (F1)u2
1
u2

2 + (F1)u1u
2
1 − 2(F1)u2,u3u3u4

− 2(F1)u2,xu3 − (F1)u2
2
u2

3 + 3(F1)u2u1u2 − 2(F1)u3,xu4 − (F1)u2
3
u2

4

+ 4(F1)u3u1u3 + 3(F1)u3u
2
2 − (F1)x2 − (F1)xu− F1u1$ (8.70)

The dependency of the function F1 is stored on a depl!* (dependency list):

3 : lisp depl!∗;
(((f 1) u3 u2 u1 u t x)) (8.71)

Equ(1) is an equation, which is a polynomial with respect to the variable u4,
so in order to be 0, its coefficients should be zero.

These coefficients will be detected by the procedure solve equation(*),
i.e., CASE A:

4 : solve equation(1);

equ(1) breaks into equ(2), . . . , equ(4) by u4, u5, u6, u7, u8

5 : print equations(2, 4);

equ(2) :=− (F1)u2
3
$

Functions occurring :

F1(u3, u2, u1, u, t, x)

equ(3) :=− 2((F1)u,u3u1 + (F1)u1,u3u2 + (F1)u2,u3u+ (F1)u3,x)$

Functions occurring :

F1(u3, u2, u1, u, t, x)

equ(4) :=(F1)t − 2(F1)u,u1u1u2 − 2(F1)u,u2u1u3 − 2(F1)u,xu1

− (F1)u2u2
1 − 2(F1)u1,u2u2u3 − 2(F1)u1,xu2 − (F1)u2

1
u2

2 + (F1)u1u
2
1

− 2(F1)u2,xu3 − (F1)u2
2
u2

3 + 3(F1)u2u1u2 + 4(F1)u3u1u3 + 3(F1)u3u
2
2

− (F1)x2 − (F1)xu− F1u1$

Functions occurring :

F1(u3, u2, u1, u, t, x) (8.72)

We now are left with a system of three partial differential equations for the
function F1.

Equ(2) can now be solved, the result being a polynomial of degree 1 with
respect to the variable u3, while coefficients are functions still dependent on
x, t, u, u1, u2.
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The construction of this solution, as in CASE B, is performed by the
procedure solve equation(*) too, i.e.:

6 : solve equation(2);

equ(2) : Homogeneous integration of (F1)u2
3

7 : F1 := F1;

F1 := F3u3 + F2$ (8.73)

Substitution of this result into the third equation leads to:

8 : equ(3) := equ(3);

equ(3) := −2((F3)uu1 + (F3)u1u2 + (F3)u2u3 + (F3)x)$ (8.74)

and this equation splits up, since it is a polynomial of degree 1 with respect
to u3, CASE A:

9 : solve equation(3);

equ(3) breaks into equ(5), ..., equ(6) by u3, u4, u5, u6, u7, · · ·

10 : print equations(5, 6);

equ(5) := −2(F3)u2$

Functions occurring :

F3(u2, u1, u, t, x)

equ(6) := −2((F3)uu1 + (F3)u1u2 + (F3)x)$

Functions occurring :

F3(u2, u1, u, t, x) (8.75)

Now the procedure can be repeated, since equ(5) indicates that F3 is inde-
pendent of u2, in effect a polynomial of degree 0, and equ(6) can be splitted
with respect to u2:

11 : solve equation(5);

equ(5) : Homogeneous integration of (F3)u2

12 : solve equation(6);

equ(6) breaks into equ(7), . . . , equ(8) by u2, u3, u4, u5, u6, . . .

13 : print equations(7, 8);

equ(7) := −2(F4)u1$

Functions occurring :

F4(u1, u, t, x)

equ(8) := −2((F4)uu1 + (F4)x)$

Functions occurring :
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F4(u1, u, t, x) (8.76)

From equ(7) we have that F4 is independent of u1 and combination with
equ(8) then results in the fact that F4 is independent of u and x too:

14 : solve equation(7);

equ(7) : Homogeneous integration of (F4)u1

15 : solve equation(8);

equ(8) breaks into equ(9), ..., equ(10) by u1, u2, u3, u4, u5, . . .

16 : print equations(9, 10);

equ(9) := −2(F5)u$

Functions occurring :

F5(u, t, x)

equ(10) := −2(F5)x$

Functions occurring :

F5(u, t, x)

17 : solve equation(9);

equ(9) : Homogeneous integration of (F5)u

18 : solve equation(10);

equ(10) : Homogeneous integration of (F6)x (8.77)

Summarising the results obtained thusfar, we are left with an expression for
the function F1 in terms of F2 and F7 and one equation, equ(4), which is
polynomial with respect to u3:

19 : f(1) := f(1);

F1 := F7u3 + F2$

20 : print equations(1, te);

equ(4) := (F7)tu3 + (F2)t − 2(F2)u,u1u1u2 − 2(F2)u,u2u1u3

− 2(F2)u,xu1 − (F2)u2u2
1 − 2(F2)u1,u2u2u3 − 2(F2)u1,xu2 − (F2)u2

1
u2

2

+ (F2)u1u
2
1 − 2(F2)u2,xu3 − (F2)u2

2
u2

3 + 3(F2)u2u1u2 − (F2)x2

− (F2)xu+ 3F7u1u3 + 3F7u
2
2 − F2u1$

Functions occurring :

F2(u2, u1, u, t, x)

F7(t)

21 : solve equation(4);

equ(4) breaks into equ(11), . . . , equ(13) by u3, u4, u5, u6, u7, . . .
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22 : print equations(11, 13);

equ(11) := −(F2)u2
2
$

Functions occurring :

F2(u2, u1, u, t, x)

equ(12) := (F7)t − 2(F2)u,u2u1 − 2(F2)u1,u2u2 − 2(F2)u2,x + 3F7u1$

Functions occurring :

F2(u2, u1, u, t, x)

F7(t)

equ(13) := (F2)t − 2(F2)u,u1u1u2 − 2(F2)u,xu1 − (F2)u2u2
1

− 2(F2)u1,xu2 − (F2)u2
1
u2

2 + (F2)u1u
2
1 + 3(F2)u2u1u2 − (F2)x2

− (F2)xu+ 3F7u
2
2 − F2u1$

Functions occurring :

F7(t)

F2(u2, u1, u, t, x) (8.78)

The remaining system, equ(11), equ(12), equ(13), can be handled in a sim-
ilar way as before, leading to an expression for the function F2:

23 : solve equation(11);

equ(11) : Homogeneous integration of (F2)u2
2

24 : equ(12) := equ(12);

equ(12) := −2(F9)uu1 − 2(F9)u1u2 − 2(F9)x + (F7)t + 3F7u1$

25 : solve equation(12);

equ(12) breaks into equ(14), . . . , equ(15) by u2, u3, u4, u5, u6, . . .

26 : equ(14);

− 2(F9)u1$

27 : solve equation(14);

equ(14) : Homogeneous integration of (F9)u1

28 : equ(15);

− 2(F10)uu1 − 2(F10)x + (F7)t + 3F7u1$

29 : solve equation(15);

equ(15) breaks into equ(16), . . . , equ(17) by u1, u2, u3, u4, u5, . . .

30 : print equations(16, 17);
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equ(16) := −2(F10)u + 3F7$

Functions occurring :

F7(t)

F10(u, t, x) (8.79)

and

equ(17) := −2(F10)x + (F7)t$

Functions occurring :

F7(t)

F10(u, t, x)

31 : solve equation(16);

CASE C :

equ(16) : Inhomogeneous integration of (F10)u

32 : solve equation(17);

equ(17) : Inhomogeneous integration of (F11)x

33 : f(2) := f(2);

F2 := ((F7)tu2x+ 2F12u2 + 2F8 + 3F7uu2)/2$ (8.80)

while the original defining function F1, and the remaining equation, equ(13),
are given by:

34 : f(1) := f(1);

F1 := ((F7)tu2x+ 2F12u2 + 2F8 + 3F7uu2 + 2F7u3)/2$

35 : print equations(1, te);

equ(13) := (2(F12)tu2 + 2(F8)t − 4(F8)u,u1u1u2 − 4(F8)u,xu1

− 2(F8)u2u2
1 − 4(F8)u1,xu2 − 2(F8)u2

1
u2

2 + 2(F8)u1u
2
1 − 2(F8)x2

− 2(F8)xu+ (F7)t2u2x+ 2(F7)tuu2 + 2(F7)tu1u2x+ 4F12u1u2

− 2F8u1 + 6F7uu1u2 + 6F7u
2
2)/2$

Functions occurring :

F7(t)

F8(u1, u, t, x)

F12(t) (8.81)

Equ(13) is a polynomial with respect to the variable u2, and the result is
again a system of three equations, the first two of them can be solved in
exactly the same way as before, leading to an expression for F8:

36 : solve equation(13);

equ(13) breaks into equ(18), . . . , equ(20) by u2, u3, u4, u5, u6, . . .
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37 : print equations(18, 19);

equ(18) := 2(−(F8)u1,2 + 3F7)$

Functions occurring :

F7(t)

F8(u1, u, t, x)

equ(19) := 2(F12)t − 4(F8)u,u1u1 − 4(F8)u1,x + (F7)t2x+ 2(F7)tu

+ 2(F7)tu1x+ 4F12u1 + 6F7uu1$

Functions occurring :

F7(t)

F8(u1, u, t, x)

F12(t)

38 : solve equation(18);

equ(18) : Inhomogeneous integration of (F8)u2
1

39 : print equations(19, 19);

equ(19) := −4(F14)uu1 − 4(F14)x + 2(F12)t + (F7)t2x+ 2(F7)tu

+ 2(F7)tu1x+ 4F12u1 + 6F7uu1$

Functions occurring :

F7(t)

F12(t)

F14(u, t, x)

40 : solve equation(19);

equ(19) breaks into equ(21), . . . , equ(22) by u1, u2, u3, u4, u5, . . .

41 : equ(21);

2(−2(F14)u + (F7)tx+ 2F12 + 3F7u)$

42 : solve equation(21);

equ(21) : Inhomogeneous integration of (F14)u

43 : print equations(22, 22);

equ(22) := −4(F15)x + 2(F12)t + (F7)t2x$

Functions occurring :

F7(t)

F12(t)

F15(t, x)
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44 : solve equation(22);

equ(22) : Inhomogeneous integration of (F15)x

45 : f(8) := f(8);

F8 := (4(F12)tu1x+ (F7)t2u1x
2 + 4(F7)tuu1x+ 8F16u1 + 8F13

+ 8F12uu1 + 6F7u
2u1 + 12F7u

2
1)/8$ (8.82)

while F1 and the remaining equation, equ(20), are given as:

46 : f(1) := f(1);

F1 := (4(F12)tu1x+ (F7)t2u1x
2 + 4(F7)tuu1x+ 4(F7)tu2x+ 8F16u1

+ 8F13 + 8F12uu1 + 8F12u2 + 6F7u
2u1 + 12F7uu2

+ 12F7u
2
1 + 8F7u3)/8$

47 : print equations(1, te);

equ(20) := (8(F16)tu1 + 8(F13)t − 16(F13)u,xu1 − 8(F13)u2u2
1

− 8(F13)x2 − 8(F13)xu+ 4(F12)t2u1x+ 4(F12)tuu1 + (F7)t3u1x
2

+ 2(F7)t2uu1x− 2(F7)t2u1 + 2(F7)tu
2u1 + 4(F7)tu

2
1 − 8F13u1)/4$

Functions occurring :

F7(t)

F12(t)

F13(u, t, x)

F16(t) (8.83)

The remaining equation can then be solved in a straightforward way leading
to the final result:

48 : solve equation(20);

equ(20) breaks into equ(23), . . . , equ(25) by u1, u2, u3, u4, u5, . . .

49 : equ(23);

4(−2(F13)u2 + (F7)t)$

50 : solve equation(23);

equ(23) : Inhomogeneous integration of (F13)u2

51 : f(13) := f(13);

F13 := ((F7)tu
2 + 4F18u+ 4F17)/4$

52 : print equations(24, 24);

equ(24) := −16(F18)x + 8(F16)t + 4(F12)t2x+ 4(F12)tu+ (F7)t3x
2

+ 2(F7)t2ux− 2(F7)t2 − 8F18u− 8F17$
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Functions occurring :

F17(t, x)

F7(t)

F12(t)

F16(t)

F18(t, x)

53 : solve equation(24);

equ(24) breaks into equ(26), . . . , equ(27) by u, u1, u2, u3, u4, . . .

54 : print equations(26, 27);

equ(26) := 2(2(F12)t + (F7)t2x− 4F18)$

Functions occurring :

F18(t, x)

F7(t)

F12(t)

equ(27) := −16(F18)x + 8(F16)t + 4(F12)t2x+ (F7)t3x
2

+ 2(F7)t2 − 8F17$

Functions occurring :

F17(t, x)

F7(t)

F12(t)

F16(t)

F18(t, x)

55 : solve equation(26);

equ(26) : Solved for F18

56 : solve equation(27);

equ(27) : Solved forF17

57 : print equations(1, te);

equ(25) := 8(F16)t2 + 4(F12)t3x

+ (F7)t4x
2 − 8(F7)t3$

Functions occurring :

F7(t)

F12(t)

F16(t) (8.84)
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and

58 : solve equation(25);

equ(25) breaks into equ(28), . . . , equ(30) by x, u, u1, u2, u3, . . .

59 : print equations(28, 30);

equ(28) := (F7)t4$

Functions occurring :

F7(t)

equ(29) := 4(F12)t3$

Functions occurring :

F12(t)

equ(30) := 8((F16)t2 − (F7)t3)$

Functions occurring :

F7(t)

F16(t)

60 : solve equation(28);

equ(28) : Homogeneous integration of (F7)t4

61 : f(7) := f(7);

F7 := c(4)t3 + c(3)t2 + c(2)t+ c(1)$

62 : solve equation(29);

equ(29) : Homogeneous integration of (F12)t3

63 : f(12) := f(12);

F12 := c(7)t2 + c(6)t+ c(5)$

64 : equ(30) := equ(30);

equ(30) := 8(−6c(4) + (F16)t2)$

65 : solve equation(30);

equ(30) : Inhomogeneous integration of (F16)t2

66 : f(16) := f(16);

F16 := c(9)t+ c(8) + 3c(4)t2$

67 : factor t, x; (8.85)

and

68 : f(1) := f(1);
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F1 := (t3c(4)(3u2u1 + 6uu2 + 6u2
1 + 4u3)

+ 6t2xc(4)(uu1 + u2)

+ t2(4c(7)uu1 + 4c(7)u2 + 3c(4)u2 + 12c(4)u1 + 3c(3)u2u1

+ 6c(3)uu2 + 6c(3)u2
1 + 4c(3)u3)

+ 3tx2c(4)u1

+ 2tx(2c(7)u1 + 3c(4)u+ 2c(3)uu1 + 2c(3)u2)

+ t(4c(9)u1 + 4c(7)u+ 4c(6)uu1 + 4c(6)u2 + 6c(4)

+ 2c(3)u2 + 3c(2)u2u1 + 6c(2)uu2 + 6c(2)u2
1 + 4c(2)u3)

+ x2(3c(4) + c(3)u1)

+ 2x(2c(7) + c(6)u1 + c(3)u+ c(2)uu1 + c(2)u2)

+ 4c(9) + 4c(8)u1 + 2c(6)u+ 4c(5)uu1 + 4c(5)u2 − 6c(3)

+ c(2)u2 + 3c(1)u2u1 + 6c(1)uu2 + 6c(1)u2
1 + 4c(1)u3)/4$ (8.86)

and

69 : for i := 1 : 9 do write vec(i) := df(f(1), c(i));

vec(1) := (3u2u1 + 6uu2 + 6u2
1 + 4u3)/4$

vec(2) := (t(3u2u1 + 6uu2 + 6u2
1 + 4u3) + 2x(uu1 + u2) + u2)/4$

vec(3) := (t2(3u2u1 + 6uu2 + 6u2
1 + 4u3)

+ 4tx(uu1 + u2) + 2tu2 + x2u1 + 2xu− 6)/4$

vec(4) := (t3(3u2u1 + 6uu2 + 6u2
1 + 4u3)

+ 6t2x(uu1 + u2) + 3t2(u2 + 4u1) + 3tx2u1 + 6txu+ 6t+ 3x2)/4$

vec(5) := uu1 + u2$

vec(6) := (2t(uu1 + u2) + xu1 + u)/2$

vec(7) := t2(uu1 + u2) + txu1 + tu+ x$

vec(8) := u1$

vec(9) := tu1 + 1$

70 : (8.87)

The previous application demonstrates in a nice way how calculations con-
cerning symmetries and other invariants of partial differential equations are
performed.
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We finish this section with the remark that it is possible to run the
program automatically on this system (8.66). Doing this, the complete con-
struction does take 0.3 seconds. Most problems need however the researcher
as operator in the construction of the general solution.

3.3. Polynomial and graded cases. A very often arising situation
is the construction of symmetries and of conservation laws for equations
admitting scaling symmetry.

Let us take for example:

Example 8.6. The KdV equation is given by:

ut = uux + uxxx, (8.88)

which as we have seen in Section 5 of Chapter 3 admits a scaling symmetry

S = −x ∂
∂x
− 3t

∂

∂t
+ 2u

∂

∂u
+ · · · (8.89)

This means that in physical terms all variables are of appropriate dimen-
sions, whereas in mathematical terms it means that all variables are graded2,
i.e.,

degree(x) ≡ [x] = −1, [t] = −3, [u] = 2, [ux] = 3, [ut] = 5, . . . . (8.90)

This grading means that all objects are graded too, and for the generat-
ing functions of symmetries and conservation laws only those functions are
of interest which are of a specified degree in the variables.

Example 8.7. Suppose that in the previous example we are interested
to have the most general functions F and G of degree 5 and 7 respectively,
with respect to the graded variables u, ux, uxx, uxxx, uxxxx, uxxxxx which
are of degree 2, 3, 4, 5, 6, 7 respectively. The result will be:

F = c1uxxx + c2uux, G = c3uxxxxx + c4uuxxx + c5uxuxx + c6u
2ux.

(8.91)

If, however, we are in the situation that F is of degree 5 with respect to the
graded variables p1, u, ux, uxx, uxxx, uxxxx, uxxxxx which are of degree 1, 2,
3, 4, 5, 6, 7 respectively, then the result will be:

F = c1uxxx + c2p1uxx + (c3u+ c4p
2
1)ux + c5p

3
1u+ c6p

5
1, (8.92)

while for G we have the general presentation

G = c1uxxxxx + c2p1uxxxx + (c3u+ c4p
2
1)uxxx

+ (c5ux + c6p1u+ c7p
3
1)uxx + c8p1u

2
x

+ (c9u
2 + c10p

2
1u+ c11p

4
1)ux + c12p1u

3

+ c13p
3
1u

2 + c14p
5
1u+ c15p

7
1. (8.93)

2The term graded here means that some weights can be assigned to all variables in
such a way that the equation becomes homogeneous with respect to these weights.
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Procedures are availabe to construct the most general presentation of
a function of a specified degree, with respect to a specified list of graded
variables.

Once one knows that all objects are graded, the conditions (1.37) do lead
to polynomial equations with respect to the jet variables, the coefficients
of which have to vanish. This process does lead to just algebraic linear
equations for the constants in the original expressions (8.92) and (8.93).
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Abelian covering, 106
adapted coordinate system, see special

coordinate system
adjoint operator, 73
annihilating operators in the Federbush

model, 137, 143

Bäcklund auto-transformations, 149
Bäcklund transformations, 149

in the category DM∞, 149
Belavin–Polyakov–Schwartz–Tyupkin

instanton, 50
bosonic symmetries, 281
Boussinesq equation, 93, 233

deformations, 233
graded extensions, 322

conservation laws, 323
coverings, 323
deformations, 325
higher symmetries, 324
nonlocal symmetries, 324
recursion operators, 325

higher symmetries, 96
recursion operators, 233
recursion symmetries, 96

bundle of k-jets, 4
Burgers equation, 30, 80, 109, 215, 221,

362
classical symmetries, 33
Cole–Hopf transformation, 110
coverings, 109
deformations, 215, 221
higher symmetries, 84
nonlocal symmetries, 109
recursion operators, 221

Cartan connection, 61
Cartan covering

even, 100
odd, 268

Cartan differential, 66, 198
Cartan distribution, 17, 59
Cartan forms, 18

Cartan plane, 17, 59

Cartan submodule, 18

category FC(A), 178

category M∞, 9

category DM∞, 99

category GDE(M), 262

C-cohomology, 187

of a graded extension, 255

of an equation, 192

C-differential operator, 63

classical symmetries, 22, 25

finite, 22

infinitesimal, 25

of the Burgers equation, 33

of the Federbush model, 129

of the Hilbert–Cartan equation, 87

of the nonlinear diffusion equation,
35–37

of the nonlinear Dirac equation, 39,
42, 43

of the self-dual Yang–Mills equations,
46

of the static Yang–Mills equations, 51

C-natural extension, 253

coefficient check switch, 360

cogluing transformation, 160

Cole–Hopf transformation, 110

compatibility complex, 75

compatibility conditions, 28

connection, 16, 176, 252

connection form, 177, 187

conservation laws, 72

of supersymmetric extensions of the
Boussinesq equation, 323

of supersymmetric extensions of the
KdV equation, 328, 333, 339

of supersymmetric extensions of the
NLS equation, 318, 320

of the Dirac equations, 77

of the Federbush model, 130

of the KdV equation, 111, 227
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of the Kupershmidt super KdV equa-
tion, 274

of the Kupershmidt super mKdV
equation, 279

of the massive Thirring model, 121
of the supersymmetric KdV equation,

283, 311
of the supersymmetric mKdV equa-

tion, 291
of the supersymmetric NLS equation,

297, 304
of the Sym equation, 238

conserved densities, 72; see also conser-
vation laws

trivial, 72
contact transformations, 22
contraction, 172, 246, 356, 358
coverings, 263

Abelian, 106
Cartan even covering, 100
Cartan odd covering, 268
dimension, 101
equivalent, 100
in the category DM∞, 99
irreducible, 101
linear, 100
over E∞, 99
over supersymmetric extensions of the

KdV equation, 328, 333
over supersymmetric extensions of the

NLS equation, 318
over the Burgers equation, 109
over the supersymmetric KdV equa-

tion, 311
reducible, 101
trivial, 101
universal Abelian, 106

creating operators in the Federbush
model, 137, 143

C-spectral sequence, 65, 202
curvature form, 177, 188, 252

deformations
of a graded extension, 257
of an equation structure, 192
of supersymmetric extensions of the

Boussinesq equation, 325
of supersymmetric extensions of the

KdV equation, 332, 337, 348
of supersymmetric extensions of the

NLS equation, 318, 320
of the Boussinesq equation, 233
of the Burgers equation, 215

of the heat equation, 214
of the supersymmetric KdV equation,

314
depl!* list, 363
de Rham complex

graded, 248
of an algebra, 166
on E∞, 58
on J∞(π), 11

de Rham differential, 6, 11, 14, 164, 166,
355, 358

graded, 248
derivation, 160, 358

bigraded, 356
graded, 353

differential forms, 358
graded, 244, 354
of an algebra, 164, 165
on E∞, 58
on J∞(π), 10

differential operators of infinite order, 12
differentiation switch, 361
Diff-prolongation, 158
dimension of a covering, 101
dimension of a graded manifold, 354
discrete symmetries of the Federbush

model, 138
distribution on J∞(π), 12

equation associated to an operator, 13
equivalent coverings, 100
equ operator, 359
Euler–Lagrange equation, 76
Euler–Lagrange operator, 74, 141
evolutionary equation, 16
evolutionary vector field, 70
exterior derivative, see de Rham differ-

ential

Federbush model, 129
annihilating operators, 137
classical symmetries, 129
conservation laws, 130
Hamiltonian structures, 140
higher symmetries, 130, 138, 144
nonlocal symmetries, 146
recursion symmetries, 135

fermionic symmetries, 281
finitely smooth algebra, 176
flat connection, 16, 178, 252
formally integrable equation, 30
Fréchet derivative, see Euler–Lagrange

operator
free differential extension, 253
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Frölicher–Nijenhuis bracket, 175
graded, 249

gauge coupling constant, 43
gauge potential, 43
gauge symmetries, 24
gauge transformations, 52

of the Yang–Mills equations, 49
generating form, see generating function
generating function

of a conservation law, 75
of a contact field, 26
of a graded evolutionary derivation,

206
of a Lie field, 27
of an evolutionary vector field, 70

generating section, see generating func-
tion

generic point of maximal integral mani-
fold of the Cartan distribution, 20

geometrical module, 167
geometrization functor, 167
g-invariant solution, 28
gluing homomorphism, 158
gluing transformation, 158
graded algebra, 353
graded commutative algebra, 353
graded evolutionary derivation, 206
graded extensions of a differential equa-

tion, 253; see also supersymmetric
extensions

graded Jacobi identity, 353
graded manifold, 354
graded module, 353
graded polyderivations, 244
graded vector space, 352
Green’s formula, 73

Hamiltonian structures of the Federbush
model, 140

heat equation, 110, 214
deformations, 214

higher Jacobi bracket, 70
graded, 207

higher symmetries, 68
of supersymmetric extensions of the

Boussinesq equation, 324
of supersymmetric extensions of the

KdV equation, 330, 336, 343
of supersymmetric extensions of the

NLS equation, 318, 320
of the Boussinesq equation, 96
of the Burgers equation, 84
of the Federbush model, 130, 144

of the Hilbert–Cartan equation, 91–93
of the KdV equation, 111
of the Kupershmidt super KdV equa-

tion, 272
of the Kupershmidt super mKdV

equation, 277
of the massive Thirring model, 116
of the supersymmetric KdV equation,

282, 312
of the supersymmetric mKdV equa-

tion, 291
of the supersymmetric NLS equation,

297, 304
of the Sym equation, 235

Hilbert–Cartan equation, 84
classical symmetries, 87
higher symmetries, 91–93

hodograph transformation, 23
horizontal de Rham cohomology, 65
horizontal de Rham complex, 65, 198

with coefficients in Cartan forms, 66
horizontal de Rham differential, 65, 256
horizontal distribution of a connection,

187
horizontal forms, 65, 197
horizontal plane, 15
H-spectral sequence, 199

ideal of an equation, 58
infinite prolongation of an equation, 57
infinitesimal deformation of a graded ex-

tension, 257
infinitesimal Stokes formula, 11
infinitesimal symmetries, 25
inner differentiation, see contraction
inner product, see contraction
instanton solutions of the Yang–Mills

equations, 45, 49
integrable distribution on J∞(π), 12
integrable element, 250
integral manifold of a distribution on

J∞(π), 12
INTEGRATION package, 362
interior symmetry, 22
internal coordinates, 59
invariant recursion operators, 183
invariant solutions, 27

of the Yang–Mills equations, 49
invariant submanifold of a covering, 103
inversion of a recursion operator, 151
involutive subspace, 19
irreducible coverings, 101

jet of a section, 4
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jet of a section at a point, 3
jet operator, 159
Jet-prolongation, 160

KdV equation, 111, 150, 227, 373
conservation laws, 111, 227
deformations, 227
graded extensions, 271, 281, 311, 326,

333, 339
conservation laws, 274, 283, 311,

328, 333, 339
coverings, 311, 328, 333, 339
deformations, 314, 332, 337, 348
higher symmetries, 272, 282, 312,

330, 336, 343
nonlocal symmetries, 274, 283, 312,

330, 336, 343
recursion operators, 315, 332, 337
recursion symmetries, 348

higher symmetries, 111
nonlocal symmetries, 111
recursion operators, 113, 227

killing functor, 268
Korteweg de Vries equation, see KdV

equation
Kupershmidt super KdV equation, 271,

271; see also graded extensions of
the KdV equation

Kupershmidt super mKdV equation,
276; see also graded extensions of
the mKdV equation

Leibniz rule
bigraded, 356
graded, 353

Lenard recursion operator, 113, 150
Lie algebra

bigraded, 356
graded, 353

Lie derivative, 172, 174, 357, 358
graded, 248

Lie field, 25
Lie transformation, 21
lifting

of a Lie field, 25
of a Lie transformation, 24
of a linear differential operator, 63

linear coverings, 100
linear differential equation, 12
linear differential operator, 5, 156

graded, 245
over J∞(π), 11

linear recursion operators, 150
`-normal equation, 75, 211

local equivalence of differential equa-
tions, 22

manifold of k-jets, 4
massive Thirring model, 115

conservation laws, 121
higher symmetries, 116
nonlocal symmetries, 120, 121, 124
recursion symmetries, 128

maximal integral manifolds of the Car-
tan distribution

on E∞, 60
on J∞(π), 60
on Jk(π), 20

maximal involutive subspace, 19
mKdV equation, 152

graded extensions, 276, 291
conservation laws, 279, 291
higher symmetries, 277, 291
nonlocal symmetries, 279, 291

recursion operators, 152
modified Korteweg de Vries equation, see

mKdV equation
module of k-jets, 159
module of infinite jets, 159
module of symbols, 170
Monge–Ampere equations, 14, 67
monopole solutions of the Yang–Mills

equations, 45, 52, 55
morphism of coverings, 100

Nöther symmetry, 76
Nöther theorem, 76
∇-cohomology, 179
∇-complex, 179
Nijenhuis torsion, 182

graded, 254
NLS equation, 231

deformations, 231
graded extensions, 294, 317

conservation laws, 297, 304, 318,
320

coverings, 318, 320
deformations, 318, 320
higher symmetries, 297, 304, 318,

320
nonlocal symmetries, 297, 304, 318
recursion operators, 318, 320

recursion operators, 231
nonlinear differential equation, 12

formally integrable, 30
`-normal, 75
local equivalence, 22
regular, 17
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nonlinear differential operator, 5
over a mapping, 10

nonlinear diffusion equation, 34
classical symmetries, 35–37

nonlinear Dirac equation
classical symmetries, 39, 42, 43

nonlinear Dirac equations
conservation laws, 77

nonlinear Schrödinger equation, see NLS
equation

nonlocal coordinates, 102
nonlocal symmetries, 104

ϕ-symmetry, 104
of supersymmetric extensions of the

Boussinesq equation, 324
of supersymmetric extensions of the

KdV equation, 330, 336, 343
of supersymmetric extensions of the

NLS equation, 318, 320
of the Burgers equation, 109
of the Federbush model, 146
of the KdV equation, 111
of the Kupershmidt super KdV equa-

tion, 274
of the Kupershmidt super mKdV

equation, 279
of the massive Thirring model, 120,

121, 124
of the supersymmetric KdV equation,

283, 312
of the supersymmetric mKdV equa-

tion, 291
of the supersymmetric NLS equation,

297, 304
of the Sym equation, 238

nonlocal variables, 264
nontrivial symmetry

of a graded extension, 256
of the Cartan distribution on J∞(pi),

68

one-line theorem, 74
operator of k-jet, 4

point of J∞(π), 8
point symmetries, 34
Poisson bracket, 170
prolongation

of a differential equation, 28, 29
infinite, 57

of a differential operator, 6
Diff-prolongation, 158
Jet-prolongation, 160

recursion operators, 149, 150, 181, 260
for supersymmetric extensions of the

Boussinesq equation, 325
for supersymmetric extensions of the

KdV equation, 332, 337
for supersymmetric extensions of the

NLS equation, 318, 320
for the Boussinesq equation, 233
for the Burgers equation, 221
for the KdV equation, 113, 227
for the mKdV equation, 152
for the NLS equation, 231
for the supersymmetric KdV equation,

315
for the Sym equation, 241
invariant, 183
inversion, 151
linear, 150

recursion symmetries
for supersymmetric extensions of the

KdV equation, 348
of the Boussinesq equation, 96
of the Federbush model, 135
of the massive Thirring model, 128

reducible coverings, 101
regular equation, 17
regular point, 17
relation equations, 218, 267
representative morphism, 6
Richardson–Nijenhuis bracket, 174

graded, 247
R-plane, 4

self-dual gauge field, 45
self-dual Yang–Mills equations, 45
shadow, 151, 267

of a nonlocal symmetry, 105
of recursion operators, 219

shadow equations, 218, 267
smooth algebra, 168
smooth bundle over J∞(π), 8
smooth functions

on E∞, 58
on J∞(π), 10

smooth mapping of J∞(π), 8
solution of a differential equation, 13
solve equation procedure, 358
space of infinite jets, 7
special coordinate system, 4

in J∞(π), 8
spectral sequence associated to a connec-

tion, 180
structural element, 192, 253



384 INDEX

of a covering, 217
of an equation, 62

structure of sym(E∞), 72
structure of sym(π), 69
structure of Lie fields, 26
structure of Lie transformations, 24
structure of maximal integral manifolds

of Cartan distribution, 21
super evolutionary derivation, 206
supersymmetric extensions

of the Boussinesq equation, 322
of the KdV equation, 281, 311

(N = 2), 326, 327, 333, 339
of the mKdV equation, 291
of the NLS equation, 294, 317

Sym equation, 235
conservation laws, 238
deformations, 241
higher symmetries, 235
nonlocal symmetries, 238
recursion operators, 241

symbol of an operator, 170
symmetries, 22, 72, 181

bosonic, 281
classical, 22, 25
discrete, 138
fermionic, 281
gauge, 24
higher, 68
nonlocal, 104
of an object of the category DM∞,

103
of the Cartan distribution on J∞(π),

68
point, 34
recursion, 96, 128, 135

tangent vector to J∞(π), 8
te variable, 359
’t Hooft instanton, 51
total derivatives, 26
total differential operators, see C-differ-

ential operators
trivial covering, 101, 267
trivial deformations, 193
trivial symmetry of the Cartan distribu-

tion on J∞(π), 68
two-line theorem, 75
2-trivial object, 182
type of maximal integral manifold of the

Cartan distribution, 20
type of maximal involutive subspace, 20

universal Abelian covering, 106

universal cocompositon operation, 160
universal composition transformation,

158
universal linearization operator, 71, 210
unshuffle, 156

variational bicomplex, 65, 74
associated to a connection, 180

vector fields, 358
graded, 354
on E∞, 58
on J∞(π), 10

vectors in involution, 19
vertical derivation, 179
V-spectral sequence, 203

wedge product of polyderivations, 162
Whitney product of coverings, 101

Yang–Mills equations, 43, 75
Belavin–Polyakov–Schwartz–Tyupkin

instanton, 50
classical symmetries, 46, 51
instanton solutions, 45, 49
invariant solutions, 49
monopole solutions, 45, 52, 55
self-dual, 45
’t Hooft instanton, 51


