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Preface

To our wives, Masha and Marian

Interest to the so-called completely integrable systems with infinite num-
ber of degrees of freedom aroused immediately after publication of the fa-
mous series of papers by Gardner, Greene, Kruskal, Miura, and Zabusky
[75, 77, 96, 18, 66, 19] (see also [76]) on striking properties of the
Korteweg—de Vries (KdV) equation. It soon became clear that systems of
such a kind possess a number of characteristic properties, such as infinite
series of symmetries and/or conservation laws, inverse scattering problem
formulation, L — A pair representation, existence of prolongation structures,
etc. And though no satisfactory definition of complete integrability was yet
invented, a need of testing a particular system for these properties appeared.

Probably, one of the most efficient tests of this kind was first proposed
by Lenard [19] who constructed a recursion operator for symmetries of the
KdV equation. It was a strange operator, in a sense: being formally integro-
differential, its action on the first classical symmetry (a-translation) is well-
defined and produces the entire series of higher KdV equations. But applied
to the scaling symmetry, it gave expressions containing terms of the type
J wdz which had no adequate interpretation in the framework of the existing
theories. And it is not surprising that P. Olver wrote “The deduction of the
form of the recursion operator (if it exists) requires a certain amount of in-
spired guesswork...” [80, p. 315]: one can hardly expect efficient algorithms
in the world of rather fuzzy definitions, if any.

In some sense, our book deals with the problem of how to construct
a well-defined concept of a recursion operator and use this definition for
particular computations. As it happened, a final solution can be explicated
in the framework of the following conceptual scheme.

We start with a smooth manifold M (a space of independent variables)
and a smooth locally trivial vector bundle 7: ' — M whose sections play
the role of dependent variables (unknown functions). A partial differential
equation in the bundle 7 is a smooth submanifold & in the space J*(r) of k-
jets of . Any such a submanifold is canonically endowed with a distribution,
the Cartan distribution. Being in general nonintegrable, this distribution
possesses different types of maximal integral manifolds a particular case of
which are (generalized) solutions of £. Thus we can define geometry of the

xi
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equation £ as geometry related to the corresponding Cartan distribution.
Automorphisms of this geometry are classical symmetries of £.

Dealing with geometry of differential equations in the above sense, one
soon finds that a number of natural constructions arising in this context is
in fact a finite part of more general objects existing on differential conse-
quences of the initial equation. This leads to introduction of prolongations
E! of £ and, in the limit, of the infinite prolongation £ as a submanifold
of the manifold J°°(7) of infinite jets. Using algebraic language mainly,
all finite-dimensional constructions are carried over both to J*°(7) and £%°
and, surprisingly at first glance, become there even more simple and elegant.
In particular, the Cartan distribution on £°° becomes completely integrable
(i.e., satisfies the conditions of the Frobenius theorem). Nontrivial symme-
tries of this distribution are called higher symmetries of £.

Moreover, the Cartan distribution on £ is in fact the horizontal dis-
tribution of a certain flat connection C in the bundle £ — M (the Cartan
connection) and the connection form of C contains all vital geometrical in-
formation about the equation £. We call this form the structural element of
€ and it is a form-valued derivation of the smooth function algebra on £°.
A natural thing to ask is what are deformations of the structural element
(or, of the equation structure on £). At least two interesting things are
found when one answers this question.

The first one is that the deformation theory of equation structures is
closely related to a cohomological theory based on the Frolicher—Nijenhuis
bracket construction in the module of form-valued derivations. Namely, if
we denote by D1A*(€) the module of derivations with values in i-forms, the
Frolicher—Nijenhuis bracket acts in the following way:

[, -]™: DIAY(E) x DIAN(E) — DIATI(E).
In particular, for any element Q € D1A'(€) we obtain an operator
dq: D1AY(E) — DIATLH(E)

defined by the formula dq(©) = [Q,0]™ for any © € DAY(E). Since
DiA*(E) = @2, D1AY(€) is a graded Lie algebra with respect to the
Frolicher—Nijenhuis bracket and due to the graded Jacobi identity, one can
see that the equality Oq o dq = 0 is equivalent to [[Q,Q]]fn = 0. The last
equality holds, if € is a connection form of a flat connection. Thus, any
flat connection generates a cohomology theory. In particular, natural co-
homology groups are related to the Cartan connection and we call them
C-cohomology and denote by HA(E).

We restrict ourselves to the vertical subtheory of this cohomological the-
ory. Within this restriction, it can be proved that the group H2(£) coincides
with the Lie algebra of higher symmetries of the equation & while H}(&)
consists of the equivalence classes of infinitesimal deformations of the equa-
tion structure on £. It is also a common fact in cohomological deformation
theory [20] that the group HZ(E) contains obstructions to continuation of
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infinitesimal deformations up to formal ones. For partial differential equa-
tions, triviality of this group is, roughly speaking, the reason for existence
of commuting series of higher symmetries.

The second interesting and even more important thing in our context
is that the contraction operation defined in D;A*(€) is inherited by the
groups H(E). In particular, the group H}(E) is an associative algebra
with respect to this operation while contraction with elements of HQ(&)
is a representation of this algebra. In effect, having a nontrivial element
R € H}(E) and a symmetry sg € HQ(E) we are able to obtain a whole
infinite series s, = R"sg of new higher symmetries. This is just what is
expected of recursion operators!

Unfortunately (or, perhaps, luckily) a straightforward computation of
the first C-cohomology groups for known completely integrable equations
(the KdV equation, for example) leads to trivial results only, which is not
surprising at all. In fact, normally recursion operators for nonlinear inte-
grable systems contain integral (nonlocal) terms which cannot appear when
one works using the language of infinite jets and infinite prolongations only.
The setting can be extended by introduction of new entities — nonlocal
variables. Geometrically, this is being done by means of the concept of a
covering. A covering over £%° is a fiber bundle 7: W — £°° such that the
total space W is endowed with and integrable distribution C and the dif-
ferential 7, isomorphically projects any plane of the distribution C to the
corresponding plane of the Cartan distribution C on £%°. Coordinates along
the fibers of 7 depend on coordinates in £°° in an integro-differential way
and are called nonlocal.

Geometry of coverings is described in the same terms as geometry of
infinite prolongations, and we can introduce the notions of symmetries of
W (called nonlocal symmetries of £), the structural element, C-cohomology,
etc. For a given equation &£, we can choose an appropriate covering and may
be lucky to extend the group Hé(é’ ). For example, for the KAV equation it
suffices to add the nonlocal variable u_; = [wdz, where u is the unknown
function, and to obtain the classical Lenard recursion operator as an ele-
ment of the extended C-cohomology group. The same effect one sees for the
Burgers equation. For other integrable systems such coverings may be (and
usually are) more complicated.

To finish this short review, let us make some comments on how recursion
operators can be efficiently computed. To this end, note that the module
D(E) of vector fields on £ splits into the direct sum D(€) = DV(E)BCD(E),
where DY(E) are w-vertical fields and CD(E) consists of vector fields lying in
the Cartan distribution. This splitting induces the dual one: A(£) = A} (€)@
CA(€). Elements of A}(€) are called horizontal forms while elements of
CAY(E) are called Cartan forms (they vanish on the Cartan distribution).

By consequence, we have the splitting A*(£) = D, 1, CPA(E) ® A1(E),
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where

CPA(E) =CANE) N -~ ACAME), ALE)=AL(E) N ANAL(E).

p times q times

This splitting generates the corresponding splitting in the groups of C-
cohomologies: Hp(E) = @B, =i H24(€) and nontrivial recursion operators

are elements of the group Hcl’O(E).

The graded algebra C*A(E) = @,5(CPA(E) may be considered as the
algebra of functions on a super differential equation related to the initial
equation £ in a functorial way. This equation is called the Cartan (odd)
covering of £. An amazing fact is that the symmetry algebra of this covering
is isomorphic to the direct sum H?O(E) @ HS’O (€). Thus, due to the general
theory, to find an element of Hg’o(é’ ) we have just to take a system of forms
Q = (wh,...,w™), where w/ € CPA(E) and m = dimm, and to solve the
equation fgw = 0, where f¢ is the linearization of £ restricted to £°°. In
particular, for p = 1 we shall obtain recursion operators, and the action
of the corresponding solutions on symmetries of £ is just contraction of a
symmetry with the Cartan vector-form ).

*x Kk K

This scheme is exposed in details below. Though some topics can be
found in other books (see, e.g., [60, 12, 80, 5, 81, 101]; the collections [39]
and [103] also may be recommended), we included them in the text to make
the book self-contained. We also decided to include a lot of applications in
the text to make it interesting not only to those ones who deal with pure
theory.

The material of the book is arranged as follows.

In Chapter 1 we deal with spaces of finite jets and partial differential
equations as their submanifold. The Cartan distribution on J*(r) is intro-
duced and it maximal integral manifolds are described. We describe auto-
morphisms of this distribution (Lie-Bécklund transformations) and derive
defining relations for classical symmetries. As applications, we consider clas-
sical symmetries of the Burgers equation, of the nonlinear diffusion equation
(and obtain the so-called group classification in this case), of the nonlinear
Dirac equation, and of the self-dual Yang—Mills equations. For the latter,
we get monopole and instanton solutions as invariant solutions with respect
to the symmetries obtained.

Chapter 2 is dedicated to higher symmetries and conservation laws. Ba-
sic structures on infinite prolongations are described, including the Cartan
connection and the structural element of a nonlinear equation. In the con-
text of conservation laws, we briefly expose the results of A. Vinogradov
on the C-spectral sequence [102]. We give here a complete description for
higher symmetries of the Burgers equation, the Hilbert—Cartan equation,
and the classical Boussinesq equation.
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In Chapter 3 we describe the nonlocal theory. The notion of a covering
is introduced, the relation between coverings and conservation laws is dis-
cussed. We reproduce here quite important results by N. Khor’kova [43] on
the reconstruction of nonlocal symmetries by their shadows. Several appli-
cations are considered in this chapter: nonlocal symmetries of the Burgers
and KdV equation, symmetries of the massive Thirring model and symme-
tries of the Federbush model. In the last case, we also discuss Hamiltonian
structures for this model and demonstrate the existence of infinite number
of hierarchies of symmetries. We finish this chapter with an interpretation
of Bécklund transformations in terms of coverings and discuss a definition
of recursion operators as Backlund transformations belonging to M. Marvan
[73].

Chapter 4 starts the central topic of the book: algebraic calculus of form-
valued derivations. After introduction of some general concepts (linear dif-
ferential operators over commutative algebras, algebraic jets and differential
forms), we define basic constructions of Frolicher—Nijenhuis and Richardson—
Nijenhuis brackets [17, 78] and analyze their properties. We show that to
any integrable derivation X with values in one-forms, i.e., satisfying the
condition [X, X ]]fn = 0, a complex can be associated and investigate main
properties of the corresponding cohomology group. A source of examples
for integrable elements is provided by algebras with flat connections. These
algebras can be considered as a model for infinitely prolonged differential
equation. Within this model, we introduce algebraic counterparts for the
notions of a symmetry and a recursion operator and prove some results
describing the symmetry algebra structure in the case when the second co-
homology group vanishes. In particular, we show that in this case infinite
series of commuting symmetries arise provided the model possesses a non-
trivial recursion operator.

Chapter 5 can be considered as a specification of the results obtained
in Chapter 4 to the case of partial differential equations, i.e., the algebra
in question is the smooth function algebra on £°° while the flat connection
is the Cartan connection. The cohomology groups arising in this case are
C-cohomology of £. Using spectral sequence techniques, we give a com-
plete description of the C-cohomology for the “empty” equation, that is for
the spaces J°°(7m) and show that elements of the corresponding cohomol-
ogy groups can be understood as graded evolutionary derivations (or vector
fields) on J°(m). We also establish relations between C-cohomology and
deformations of the equation structure and show that infinitesimal defor-
mations of a certain kind (elements of Hcl’o(é'), see above) are identified
with recursion operators for symmetries. After deriving defining equations
for these operators, we demonstrate that in the case of several classical
systems (the Burgers equation, KdV, the nonlinear Schrédinger and Boussi-
nesq equations) the results obtained coincide with the well-known recursion
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operators. We also investigate the equation of isometric immersions of two-
dimensional Riemannian surfaces into R?® (a particular case of the Gauss—
Mainardi-Codazzi equations, which we call the Sym equation) and prove its
complete integrability, i.e., construct a recursion operator and infinite series
of symmetries.

Chapter 6 is a generalization of the preceding material to the graded
case (or, in physical terms, to the supersymmetric case). We redefine all
necessary algebraic construction for graded commutative algebras and in-
troduce the notion of a graded extension of a partial differential equation. It
is shown that all geometrical constructions valid for classical equations can
be applied, with natural modifications, to graded extensions as well. We
describe an approach to the construction of graded extensions and consider
several illustrative examples (graded extensions of the KdV and modified
KdV equations and supersymmetric extensions of the nonlinear Schrédinger
equation).

Chapter 7 continues the topics started in the preceding chapter. We
consider here two supersymmetric extensions of the KdV equations (one-
and two-dimensional), new extensions of the nonlinear Schrodinger equation,
and the supersymmetric Boussinesq equation. In all applications, recursion
operators are constructed and new infinite series of symmetries, both local
and nonlocal, are described.

Finally, in Chapter 8 we briefly describe the software used for

computations described in the book and without which no serious ap-
plication could be obtained.

*x kK

Our collaboration started in 1991. It could not be successful without
support of several organizations among which:

e the University of Twente,

e NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek),
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band Mathematische Fysica),

INTAS (International Association for the promotion of co-operation
with scientists from the New Independent States of the former Soviet
Union).

We are also grateful to Kluwer Academic Publishers and especially to Pro-
fessor Michiel Hazewinkel for the opportunity to publish this book.
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CHAPTER 1

Classical symmetries

This chapter is concerned with the basic notions needed for our exposi-
tion — those of jet spaces and of nonlinear differential equations. Our main
purpose is to put the concept of a nonlinear partial differential equation
(PDE) into the framework of smooth manifolds and then to apply powerful
techniques of differential geometry and commutative algebra. We completely
abandon analytical language, maybe good enough for theorems of existence,
but not too useful in search for main underlying structures.

We describe the geometry of jet spaces and differential equations (its
geometry is determined by the Cartan distribution) and introduce classical
symmetries of PDE. Our exposition is based on the books [60, 12]. We also
discuss several examples of symmetry computations for some equations of
mathematical physics.

1. Jet spaces

We expose here main facts concerning the geometrical approach to jets
(finite and infinite) and to nonlinear differential operators.

1.1. Finite jets. Traditional approach to differential equations consists
in treating them as expressions of the form

-
G e

where x1,...,x, are independent variables, while v = u(zy,...,z,) is an
unknown function (dependent variable). Such an equation is called scalar,
but one can consider equations of the form (1.1) with F = (F!,... F")
and u = (ul,...,u™) being vector-functions. Then we speak of systems of
PDE. What makes expression (1.1) a differential equation is the presence of
partial derivatives du/0z1,... in it, and our first step is to clarify this fact
in geometrical terms.

To do it, we shall restrict ourselves to the situation when all func-
tions are smooth (i.e., of the C'*°-class) and note that a vector-function
u = (u!,...,u™) can be considered as a section of the trivial bundle
1m: R™ x R® = R*"™™™ — R". Denote R™ x R by J%n,m) and con-
sider the graph of this section, i.e., the set I’y C J°(n,m) consisting of the
points

F(z1,..., @y, ) =0, (1.1)

{(xl,...,xn,ul(xl,...,xn),...,um(wl,...,xn)},

1



2 1. CLASSICAL SYMMETRIES

which is an n-dimensional submanifold in R™*™,

Let © = (x1,...,zy,) be a point of R” and 6§ = (x,u(x)) be the corre-
sponding point lying on I'y,. Then the tangent plane to I', passing through
the point # is completely determined by x and by partial derivatives of u at
the point z. It is easy to see that the set of such planes forms an mn-di-
mensional space R™" with coordinates, say, u;,
where u] “corresponds” to the partial derivative of the function uw) with
respect to z; at x.

Maintaining this construction at every point § € J%(n,m), we obtain

the bundle J'(n,m) R J%(n,m) — J%mn,m). Consider a point

61 € J'(n,m). By doing this, we, in fact, fix the following data: values
of independent variables, z, values of dependent ones, u’/, and values of
all their partial derivatives at x. Assume now that a smooth submanifold
£ C JY(n,m) is given. This submanifold determines “relations between
points” of J!(n,m). Taking into account the above given interpretation of
these points, we see that £ may be understood as a system of relations on
unknowns u/ and their partial derivatives. Thus, £ is a first-order differential
equation! (Or a system of such equations.)

With this example at hand, we pass now to a general construction.

Let M be an n-dimensional smooth manifold and 7: £ — M be a
smooth m-dimensional vector bundle! over M. Denote by I'(7r) the C°°(M)-
module of sections of the bundle 7. For any point x € M we shall also
consider the module I (7; x) of all local sections at x.

1=1,...,n, g=1,....m,

REMARK 1.1. We say that ¢ is a local section of 7 at z, if it is defined on
a neighborhood U of x (the domain of ¢). To be exact, ¢ is a section of the
pull-back €*m = 7 |y, where e: U < M is the natural embedding. If , ¢’ €
[oe(m; ) are two local sections with the domains U and U’ respectively,
then their sum ¢ + ¢’ is defined over Y NU’'. For any function f € C°(M)
we can also define the local section f¢ over U.

For a section ¢ € I'oc(m;2), ¢(x) = 0 € E, consider its graph I', C E
and all sections ¢’ € [ye(m;x) such that

(a) p(z) = ¢'(2);

(b) the graph I' s is tangent to I', with order & at 6.
It is easy to see that conditions (a) and (b) determine an equivalence relation
~F on Tyoe(m;x) and we denote the equivalence class of ¢ by [p]X. The
quotient set T'yc(m; )/ Nﬁ becomes an R-vector space, if we put

o)z + W5 = lp + ¥I5. alels = lagly, @9 €Toc(miz), a €R,  (1.2)

'In fact, all constructions below can be carried out — with natural modifications
— for an arbitrary locally trivial bundle 7 (and even in more general settings). But we
restrict ourselves to the vector case for clearness of exposition.
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while the natural projection I'ioe(7;x) — Tioe(m;x)/ ~F becomes a linear
map. We denote this space by J¥(r). Obviously, JO(r) coincides with
E, = 7~ !(z), the fiber of the bundle 7 over the point x € M.

REMARK 1.2. The tangency class [¢]”* is completely determined by the

point x and partial derivatives up to order k£ at x of the section . From
here it follows that J¥(7) is finite-dimensional. It is easy to compute the
dimension of this space: the number of different partial derivatives of order
i equals (”:{1_11) and thus

k .
ok n+i—1 n+k
= = . 1.
dim J; () miE:()( I ) m( k (1.3)
DEFINITION 1.1. The element [p]® € J¥(7) is called the k-jet of the
section ¢ € I'oe(m; ) at the point x.

The k-jet of ¢ can be identified with the k-th order Taylor expansion of
the section ¢. From the definition it follows that it is independent of coor-
dinate choice (in contrast to the notion of partial derivative, which depends
on local coordinates).

Let us consider now the set

Jo) = | ) (1.4)
xeM

and introduce a smooth manifold structure on J*(7) in the following way.
Let {Uya},, be an atlas in M such that the bundle 7 becomes trivial over each
Uy, i.e., W_I(Ua) ~ U, x V, where V is the “typical fiber”. Choose a ba-

sis ef,...,e% of local sections of m over U,. Then any section of |y,
is representable in the form ¢ = u'e§ + --- + u™e%, and the functions
T1,...,Tn, ut,...,u™, where x1,...,x, are local coordinates in U,, con-

stitute a local coordinate system in 77 '(U,). Let us define the functions
ug': Upew, JF(r) — R, where 0 = (01,...04), |o| =01+ +0, <k, by

o], 3
j k d;f 07l
ul ([e]y) |

T

(1.5)

0xs o (0x1)?' ... (Oxy)". Then these functions, together with local coor-

dinates 1, ..., Tp, define the mapping fo: U,ey, JE(7) — Uy x RN, where
N is the number defined by (1.3). Due to computation rules for partial
derivatives under coordinate transformations, the mapping

(fa o f5") oty : Ua NUG) x RN — (U NUUg) x RN
is a diffeomorphism preserving the natural projection (U, NUg) x R™ —

(Us NUp). Thus we have proved the following result:

PROPOSITION 1.1. The set J*(r) defined by (1.4) is a smooth manifold
while the projection my,: J¥(1) — M, m: [p]¥ — 2, is a smooth vector
bundle.
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Note that linear structure in the fibers of m is given by (1.2).

DEFINITION 1.2. Let nm: E — M be a smooth vector bundle, dim M =
n, dim F =n + m.
(i) The manifold J*(x) is called the manifold of k-jets for T;
(ii) The bundle 7y : J*(7) — M is called the bundle of k-jets for T;
(iii) The above constructed coordinates {z;, uf,}, where i = 1,...,n, j =
1,...,m, |o| <k, are called the special (or adapted) coordinate system
on Jk(r) associated to the trivialization {Uy,},, of the bundle 7.

Obviously, the bundle 7y coincides with .

Note that tangency of two manifolds with order k implies tangency with
less order, i.e., there exists a mapping 7 ;: J*(7) — Ji(7), [p]% = [p]}, k >
[. From this remark and from the definitions we obtain the commutative

diagram

Tk,

JE () JY(m)

where k > [ > s and all arrows are smooth fiber bundles. In other words,
we have

Tls © Tl = Th,s, O T = Tk, k>1>s. (1.6)
On the other hand, for any section ¢ € I'(7) (or € I'joc(7;x)) we can define
the mapping jx(¢): M — J¥(m) by setting jr(¢): x — [@]F. Obviously,

Je(p) € T(my) (respectively, ji(¢) € Tioc(mi; ).

DEFINITION 1.3. The section ji(p) is called the k-jet of the section .
The correspondence ji: I'(w) — I'(my) is called the operator of k-jet.

From the definition it follows that

Tkl o]k(@) = jl(@), ]0(90) =@, k> l> (17)
for any ¢ € I'(m).
Let ¢,1 € I'(m) be two sections, z € M and ¢(z) =¢(x) =0 € E. It is
a tautology to say that the manifolds I', and I'y, are tangent to each other
with order k+1 at 6 or that the manifolds I';, (), T, () C J*(7) are tangent
with order [ at the point 0, = jr()(z) = Jr(¥)(x).

DEFINITION 1.4. Let 0 € J*(7). An R-plane at ) is an n-dimensional
plane tangent to some manifold of the form I';, () such that [©]k = 6y
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Immediately from definitions we obtain the following result.

PROPOSITION 1.2. Let 6, € J*() be a point in a jet space. Then the
fiber of the bundle w11 ,: J¥TH(m) — J*(7m) over Oy coincides with the set
of all R-planes at 0y,.

For a point 0, € J*1 (1), we shall denote the corresponding R-plane
at O, = i1,k (O+1) by Loy, C T, (J*(m)).

1.2. Nonlinear differential operators. Since J¥(7) is a smooth
manifold, we can consider the algebra of smooth functions on J*(x). De-
note this algebra by Fj(m). Take another vector bundle n’: E/ — M and
consider the pull-back 7} (7"). Then the set of sections of 7 (7’) is a mod-
ule over Fj(m) and we denote this module by Fy(m,#'). In particular,
Fi(m) = Fi(m,1pr), where 1y is the trivial one-dimensional bundle over
M.

The surjections m,; and m; generate the natural embeddings vy def
Tyt Fi(m, ') — F(m,7') and v o w5 D(n') — F(m, 7). Due to (1.6),

we have the equalities
Vg1 OV s =Vks, VklOUV = Uk, k>1>s. (1.8)

Identifying F;(m, 7’) with its image in F (7, 7') under vy, we can consider
Fi(m,7’) as a filtered module,

F(T‘J) — fO(”v 7T/) ... fk—l(ﬂv’fr,) — fk(ﬂvwl)v (19)
over the filtered algebra
C®(M) — Fo(m) — ... — Fr_1(m) — Fi(m). (1.10)

Let F € Fy(m, 7). Then we have the correspondence
A=Ap:T(r) =), Alp)  ju(@)*(F), @el(n). (111)

DEFINITION 1.5. A correspondence A of the form (1.11) is called a (non-
linear) differential operator of order? < k acting from the bundle 7 to
the bundle 7. In particular, when A(fy + gv0) = fA(p) + gA(v) for all
@, € I'(m) and f,g € C°°(M), the operator A is said to be linear.

From (1.9) it follows that operators A of order k are also operators of
all orders k' > k, while (1.8) shows that the action of A does not depend on
the order assigned to this operator.

EXAMPLE 1.1. Let us show that the k-jet operator ji: I'(m) — I'(mg)
(see Definition 1.3) is differential. To do this, recall that the total space of
the pull-back }(my) consists of points (6, 0;) € J¥(w) x J¥(x) such that

2For the sake of briefness, we shall use the words operator of order k below as a
synonym of the expression operator of order < k.
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mk(0x) = m(0}). Consequently, we may define the diagonal section pj, of

the bundle 7} (7;,) by setting py(0x) def (0, 0r). Obviously, ji, = A,,, ie.,

k(@) (ok) = gr(®), @ €T(m).
The operator j is linear.

ExaMpPLE 1.2. Let 7*: T*M — M be the cotangent bundle of M and
T N’ T*M — M be its p-th external power. Then the de Rham differ-
ential d is a first order linear differential operator acting from 7 to 7,4,
p=>0.

ExaMpPLE 1.3. Consider a pseudo-Riemannian manifold M with a non-
degenerate metric g € T'(S?7*) (by S%€ we denote the g-th symmetric power
of the vector bundle £). Let g* € T'(S?7) be its dual, 7: TM — M be-
ing the tangent bundle. Then the correspondence Ay: f — g*(df,df) is a
(nonlinear) first order differential operator from C*°(M) to C*°(M).

Let A: I'(m) — I'(#') and A": T'(7") — I'(7”) be two differential opera-
tors. It is natural to expect that their composition A’ o A: T'(7) — T'(7”)
is a differential operator as well. However to prove this fact is not quite
simple. To do it, we need two new and important constructions.

Let A: I'(r) — T'(7’) be a differential operator of order k. For any
Or = [p]F € J*(7), let us set

def
alk) = [A(P)]E = (Alp))(2). (1.12)
Evidently, the mapping ® A is a morphism of fiber bundles? , i.e., the diagram
P
J¥ () 2 E
N \
% <
M

is commutative.

DEFINITION 1.6. The map ®a is called the representative morphism of
the operator A.

For example, for A = ji we have ®;, =id jx(,). Note that there exists a
one-to-one correspondence between nonlinear differential operators and their
representative morphisms: one can easily see it just by inverting equality
(1.12). In fact, if ®: J*(r) — E’ is a morphism of the bundle 7 to 7,
a section ¢ € F(m, ') can be defined by setting p(br) = (0, P(6k)) €
J¥(7) x E'. Then, obviously, ® is the representative morphism for A = A,,.

DEFINITION 1.7. Let A: I'(w) — I'(7’) be a k-th order differential oper-
ator. Its [-th prolongation is the composition A®) def JioA: T'(m) = I'(m).

3But not of vector bundles!
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LEMMA 1.3. For any k-th order differential operator A, its I-th prolon-
gation is a (k + 1)-th order operator.

PROOF. In fact, for any point 0;; = [p]¥+! € J¥(7) let us set <I>(Al) f

[A(p)]L. € JY(m). Then the operator [J, for which the morphism (IJ(AZ) is
representative, coincides with A, O

COROLLARY 1.4. The composition A’ o A of two differential operators
A:T(n) = T(n") and A": T'(x") — T(x") of order k and k' respectively is a
(k + K')-th order differential operator.

PROOF. Let <I>(Ak/): JEHE () — J¥ (7') be the representative morphism
for A Then the operator O, for which the composition ® A/ o <I>(Ak ) is the

representative morphism, coincides with A’ o A. O

To finish this subsection, we shall list main properties of prolongations
and representative morphisms trivially following from the definitions.

PROPOSITION 1.5. Let A: T'(w) — I(x), A": T'(x") — T'(x") be two
differential operators of orders k and k' respectively. Then:
(i) Daron = Bar o D),
(i) ®X 0 jiti(p) = AD(p) for any € T(w), 1 >0,
(iii) mp o (ID(AZ) = <I>(Al/) O Thtl k5 I-€., the diagram

0
Jk—l-l(ﬂ_) A Jl(ﬂ'/)
T+ T (1.13)
)
! @ I
JkJrl (71') A Jl (77-/)

is commutative for all 1 > 1" > 0.

1.3. Infinite jets. We now pass to infinite limit in all previous con-
structions.

DEFINITION 1.8. The space of infinite jets J°°(mw) of the fiber bundle
w: E — M is the inverse limit of the sequence

o T () B R ) s Y () 25 BT M,
Le., J®°(m) = projlim, k> JF ().

Though J*°(7) is an infinite-dimensional manifold, no topological or
analytical problems arise, if one bears in mind the genesis of this manifold
(i.e., the system of maps 7 ;) when maintaining all constructions. Below
we demonstrate how this should be done, giving definitions for all necessary
concepts over J(m).
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A point 6 of J*(m) is a sequence of points {x,0;}k>0, + € M,0; €
Jk(m), such that m(0x) = x and 7 (k) = 6, k > I. Let us represent
any ) in the form 0, = [pg]f. Then the Taylor expansions of any two
sections, ¢ and ¢;, k > [, coincide up to the [-th term. It means that the
points of J°(7m) can be understood as m-dimensional formal series. But
by the Whitney theorem on extensions of smooth functions [71], for any
such a series there exists a section ¢ € I'(7) such that its Taylor expansion
coincides with this series. Hence, any point § € J*°(7) can be represented
in the form 6 = [p]5°.

A special coordinate system can be chosen in J°°(7) due to the fact
that if a trivialization {U, } gives special coordinates for some J*(r), then
these coordinates can be used for all jet spaces J* () simultaneously. Thus,

the functions zi,...,Zn,...,u%,... can be taken for local coordinates in
J(m), where j = 1,...,m and o is an arbitrary multi-index of the form
(01,...,00).

A tangent vector to J°°(m) at a point 6 is defined as follows. Let
0 = {x,0;} and w € T,M, vy € Ty, J*(m). Then the system of vectors
{w, vg }r>0 determines a tangent vector to J°°() if and only if (7y).vr = w,
(Wk’l)*vk = U for all k& > l > 0.

A smooth bundle ¢ over J*°(m) is a system of bundles n: Q@ — M,
&k: Py — JF() together with smooth mappings Vy.: P, — Q, Uy Py —
P, k>12>0, such that

VioWp; =V, V0V o=V, k>1>s2>0,

and all the diagrams

&k & n

Ty R gl v

are commutative. For example, if n: Q — M is a bundle, then the pull-backs
T (n): 7(Q) — J¥(7) together with the natural projections 7} (n) — 77 (n),
75 (n) — @ form a bundle over J*°(m). We say that ¢ is a vector bundle
over J*°(m), if n and all §;, are vector bundles and the mappings ¥y, ¥y,
are fiber-wise linear.

A smooth mapping of J*(7) to J*(n'), where 7: E — M, n': B/ —
M', is defined as a system F of mappings F_o: M — M', Fy: JF(r) —
JF=3(x"), k > s, where s € Z is a fixed integer called the degree of F, such
that

Th—rk—s—1 © Fly = F—1 0 g -1, k>s+1
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For example, if A: I'(r) — T'(n’) is a differential operator of order s, then
the system of mappings F_o, = idys, Fr = @g_s), k > s (see the previous
subsection), is a smooth mapping of J*°(m) to J* (7).

We say that two smooth mappings F' = {Fy},G = {Gy}: J®(n) —
J(7') of degrees s and [ respectively, | > s, are equivalent, if the diagrams

/
T s k—1

J]{I—S(ﬂ_’) Jk_l(ﬂ'/)

% o

J* ()

are commutative for all admissible & > 0. When working with smooth
mappings, one can always choose the representative of maximal degree in
any class of equivalent mappings. In particular, it can be easily seen that
mappings with negative degrees reduce to zero degree ones in such a way.

REMARK 1.3. The construction above can be literally generalized to the
following situation. Consider the category M°, whose objects are chains

MfooﬂMoﬂMlH"'HMkkaHH'“,
where M_., and all My, k > 0, are finite-dimensional smooth manifolds
while m and my1 are smooth mappings. Let us set

def def
Mg = MOomigO- - O0Mgk_1, Mkl = Mi41]0 " OMgk_1, k>1.
Define a morphism of two objects, { My}, { N}, as a system F' of mappings
{F_oo, F}} such that the diagram

My
M, ————— M,

Fy, F

N
Ni—s ——— N,

is commutative for all admissible k& and a fixed s (degree of F).

EXAMPLE 1.4. Let M and N be two smooth manifolds, F': N — M be
a smooth mapping, and 7w: £ — M a be vector bundle. Consider the pull-

backs F*(m) o Trk: JE(7) — N, where JE(7) denotes the corresponding

total space. Thus {N, J&(7)} x>0 is an object of M.

To any section ¢ € I'(my), there corresponds the section ¢p € I'(mpy)

defined by ¢p(x) def (x,pF(x)), x € N (for any z € N, we set ¢pp(z) &f

(x,¢(F(x))). In particular, for ¢ = ji(¢), ¢ € I'(w) we obtain the section
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Jik(@)r. Let & H — N be another vector bundle and v be a section of the
pull-back 77, (£). Then the correspondence

A=Ay:D(m) =T(), ¢ (@)r(),
is called a (nonlinear) differential operator of order < k over the mapping
F. As before, we can define prolongations A : T'(74;) — I'(&) and these
prolongations would determine smooth mappings <I>(Al): Jf}“(ﬂ) — JYE).
The system {tID(Al)}lzo is a morphism of {J(m)} to {J*(&)}.
Note that if F': N — M, G: O — N are two smooth maps and A, [J are

two nonlinear operators over F' and G respectively, then their composition
is defined and is a nonlinear operator over F o G.

EXAMPLE 1.5. The category M of smooth manifolds is embedded into
M if for any smooth manifold M one sets Mo, = {Mj, mp—1} with
My, = M and my, ;1 = idps. For any smooth mapping f: M — N we also
set foo = {fx} with fr = f. We say that F' is a smooth mapping of J>(r)
to a smooth manifold N, if F' = {F},} is a morphism of {J*(7), mxx_1} to
Ny In accordance to previous constructions, such a mapping is completely
determined by some f: J¥(7) — N.

Taking R for the manifold N in the previous example, we obtain a defi-
nition of a smooth function on J*° (7). Thus, a smooth function on J*°(7)
is a function on J¥(7) for some finite but an arbitrary k. The set F(r) of
such functions is identified with (J;—, Fi(m) and forms a commutative fil-
tered algebra. Using the well-known duality between smooth manifolds and
algebras of smooth functions on these manifolds, we deal in what follows
with the algebra F(m) rather than with the manifold J°(7) itself.

From this point of view, a vector field on J°(7) is a filtered derivation
of F(r), i.e., an R-linear map X : F(7) — F(m) such that

X(fg)=fX(9)+9X(f),  f.geF(m), X(Fi(m))C Fip(r),
for all k£ and some [ = I(X). The latter is called the filtration of the field
X. The set of all vector fields is a filtered Lie algebra over R with respect
to commutator [X,Y] and is denoted by D () = J;so DW (7).

Differential forms of degree i on J°° () are defined as elements of the

filtered F (m)-module A’(r) € (J,o A(my), where Af(my) © AZ(J%(r)) and

the module A?(7;) is considered to be embedded into A*(myy1) by Tt ke

Defined in such a way, these forms possess all basic properties? of differential

forms on finite-dimensional manifolds. Let us mention most important ones:

(i) The module A’(7) is the i-th external power of the module A'(7),

Ai(m) = /\iAl(ﬂ’). Respectively, the operation of wedge product

A AP(m) ® Ad(mr) — APT9(m) is defined and A*(w) = Y0 AY(m)
becomes a commutative graded algebra.

“In fact, as we shall see in Section 1 of Chapter 2, A’(r) is structurally much richer
than forms on a finite-dimensional manifold.
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(i) The module D(r) is dual to A'(7), i.e.,
D(r) = hom ., (A (m), F(m)), (1.14)

where hom?.(ﬂ) (+,-) denotes the module of all filtered homomorphisms

over F(m). Moreover, equality (1.14) is established in the following
way: there is a derivation d: F(w) — A!(7) such that for any vector
field X there exists a uniquely defined filtered homomorphism fx for
which the diagram

is commutative. ‘ ‘
(iii) The operator d is extended up to maps d: A*(1) — A“! () in such
a way that the sequence

0— F(r) -5 Al(r) — -+ — Al(r) -5 A (1) — - -

becomes a complex, i.e., d od = 0. This complex is called the de
Rham complex on J°°(w) while d is called the de Rham differential.
The latter is a derivation of the superalgebra A* ().

Using the identification (1.14), we can define the inner product (or con-
traction) of a field X € D(r) with a 1-form w € Al(r):

ivw < fy(). (1.15)

We shall also use the notation X _iw for the contraction of X to w. This
operation extends onto A*(r), if we set

ixf=0, ix(w/\e):ix(w)/\e-l-(—l)ww/\i)((e)

for all f € F(n) and w,f € A*(w) (here and below we always write (—1)“
instead of (—1)de&w),

With the de Rham differential and interior product defined, we can
introduce the Lie derivative of a form w € A*(w) along a field X by setting

Lyw iy (dw) + d(ixw)
(the infinitesimal Stokes formula). We shall also denote the Lie derivative by
X (w). Other constructions related to differential calculus over J*°(7) (and
over infinite-dimensional objects of a more general nature) will be described
in Chapter 4.
Linear differential operators over J°°(m) generalize the notion of
derivations and are defined as follows. Let P and @ be two filtered F(r)-

modules and A € hom]ﬁ(P, Q). Then A is called a linear differential operator
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of order k acting from P to @, if
(05,005, O”'O(ka)A:O

for all fo,..., fr € F(n), where (6yA)p & fA(p) — A(fp). We write k =

ord(A).

Due to existence of filtrations in F(7), P and @, one can define differ-
ential operators of infinite order acting from P to @, [51]. Namely, let
P ={P}, Q@ ={Qi}, P C Py1, Qi C Quy1, B, Qi being Fi(m)-modules.
Let A € homfg(P, Q) and s be filtration of A, i.e., A(P) C Qi4+s. We can

always assume that s > 0. Suppose now that A, et A lp P — Qis a
linear differential operator of order o; over Fi(mw). Then we say that A is a
linear differential operator of order growth o;. In particular, if o = al 4 (3,
a, B € R, we say that A is of constant growth a.

Distributions. Let § € J*°(w). The tangent plane to J*°(7m) at the
point @ is the set of all tangent vectors to J°°(m) at this point (see above).
Denote such a plane by Ty = Ty(J>®(7)). Let 6 = {x, 04}, 2 € M, 0}, € J*(x)
and v = {w, v}, v = {w', v} } € Ty. Then the linear combination A\v+puv’ =
{Aw+pw’, v+ p) } is again an element of Ty and thus Tp is a vector space.
A correspondence 7 : 0 +— Ty C Ty, where 7y is a linear subspace, is called a
distribution on J*°(w). Denote by 7 D(w) C D(w) the submodule of vector
fields lying in 7', i.e., a field X belongs to 7 D(n) if and only if Xy € 7y for all
6 € J°°(m). We say that the distribution 7 is integrable, if it satisfies formal
Frobenius condition: for any vector fields X,Y € 7 D(x) their commutator
lies in 7D(7) as well, or [TD(w),TD(r)] C TD(x).

This condition can expressed in a dual way as follows. Let us set

T'A(m) = {w € AY(n) | ixw =0,X € TD(n)}

and consider the ideal 7A*(7) generated in A*(m) by 7'A(w). Then the
distribution 7 is integrable if and only if the ideal 7A*(7) is differentially
closed: d(7TA*(m)) C TA*(m).

Finally, we say that a submanifold N C J* () is an integral manifold
of T, if TyN C Ty for any point § € N. An integral manifold N is called
locally mazimal at a point @ € N, if there exist no other integral manifold
N’ such that N ¢ N'.

2. Nonlinear PDE

In this section we intro