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Preface to the Fourth Edition

The purpose of this work is to present a broad overview of the theory of hyper-
bolic conservation laws, with emphasis on its genetic relation to classical continuum
physics. The background, scope and plan are outlined in the Introduction, following
this preface. The book was originally published fifteen years ago, and a third, revised
edition appeared in 2010. Nevertheless, in order to keep pace with recent develop-
ments in the area, it has become necessary to prepare this substantially expanded and
updated new edition.

In the face of the explosive growth of research, in volume, diversity and technical
complexity, the encyclopedic ambitions of the project had to be moderated. Thus, a
number of significant recent theoretical developments are barely touched upon here,
or are merely sketched. For the same reason, it is not feasible to present the mul-
titude of diverse applications that have mushroomed over the past few years. Still,
the updated bibliography, now comprising close to two thousand entries, provides a
panoramic view of the entire area.

The underlying objective of the work to promote synergy between the analysis
of hyperbolic systems of conservation laws and continuum physics is particularly
relevant at the present time, as the analytical theory is finally preparing the ground
for taking up the challenge posed by systems in several spatial dimensions. The Eu-
ler equations of gas dynamics currently serve as the port of entry into that area of
research. The new edition provides a brief account of recent developments is that
direction and also strives to bring to the fore the noteworthy, albeit undeservedly
neglected, paradigm of the system of elastodynamics.

The present edition places increased emphasis on the theory of hyperbolic sys-
tems of balance laws with dissipative source, modeling relaxation phenomena. The
part of the theory pertaining to classical solutions in several spatial dimensions is
expounded in the heavily revised and expanded Chapter V, while weak BV solutions
in one spatial dimension are discussed in a newly added chapter (XVI).

A substantial portion of the original text has been reorganized so as to streamline
the exposition, update the information, and enrich the collection of examples. In
particular, several chapters of the latest edition have been expanded by the addition
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of new sections, elaborating on previously raised issues or introducing new topics
for discussion.
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Introduction

The seeds of continuum physics were planted with the works of the natural philoso-
phers of the eighteenth century, most notably Euler; by the mid-nineteenth century,
the trees were fully grown and ready to yield fruit. It was in this environment that
the study of gas dynamics gave birth to the theory of quasilinear hyperbolic systems
in divergence form, commonly called hyperbolic conservation laws; and these two
subjects have been traveling hand in hand over the past two hundred years. This book
aims at presenting the theory of hyperbolic conservation laws from the standpoint of
its genetic relation to continuum physics. A sketch of the early history of this relation
follows the Introduction. Even though research is still marching at a brisk pace, both
fields have attained by now the degree of maturity that would warrant the writing of
such an exposition.

In the realm of continuum physics, material bodies are realized as continuous
media, and so-called “extensive quantities,” such as mass, momentum and energy, are
monitored through the fields of their densities, which are related by balance laws and
constitutive equations. A self-contained, though skeletal, introduction to this branch
of classical physics is presented in Chapter II. The reader may flesh it out with the
help of a specialized text on the subject.

In its primal formulation, the typical balance law stipulates that the time rate of
change in the amount of an extensive quantity stored inside any subdomain of the
body is balanced by the rate of flux of this quantity through the boundary of the sub-
domain together with the rate of its production inside the subdomain. In the absence
of production, a balanced extensive quantity is conserved. The special feature that
renders continuum physics amenable to analytical treatment is that, under quite nat-
ural assumptions, statements of gross balance, as above, reduce to field equations,
i.e., partial differential equations in divergence form.

The collection of balance laws in force demarcates and identifies particular con-
tinuum theories, such as mechanics, thermomechanics, electrodynamics, and so on.
In the context of a continuum theory, constitutive equations encode the material prop-
erties of the medium, for example, heat-conducting viscous fluid, elastic solid, elas-
tic dielectric, etc. The coupling of these constitutive relations with the field equations
gives birth to closed systems of partial differential equations, dubbed “balance laws”
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or “conservation laws,” from which the equilibrium state or motion of the continuous
medium is to be determined. Historically, the vast majority of noteworthy partial dif-
ferential equations were generated through that process. This is eminently the case
for hyperbolic systems of conservation laws, as may be seen from the historical ac-
count. The central thesis of the book is that the umbilical cord joining continuum
physics with the theory of partial differential equations should not be severed, as it
is still carrying nourishment in both directions.

Systems of balance laws may be elliptic, typically in statics; hyperbolic, in
dynamics, for media with “elastic” response; mixed elliptic-hyperbolic, in statics
or dynamics, when the medium undergoes phase transitions; parabolic or mixed
parabolic-hyperbolic, in the presence of viscosity, heat conductivity or other diffu-
sive mechanisms. Accordingly, the basic notions shall be introduced, in Chapter I, at
a level of generality that would encompass all of the above possibilities. Neverthe-
less, since the subject of this work is hyperbolic conservation laws, the discussion
will eventually focus on such systems, beginning with Chapter III.

The term “homogeneous hyperbolic conservation law” refers to first-order sys-
tems of partial differential equations in divergence form,

(HCL) OH(U)+ i 904G (U) =0,
a=1

that are of hyperbolic type. The state vector U, with values in R", is to be determined
as a function of the spatial variables (xi,...,x,) and time 7. The given functions H
and Gy, ...,G,, are smooth maps from R” to R". The symbol 9, stands for d/d¢ and
dy, denotes d /dxq . The notion of hyperbolicity will be specified in Section 3.1.

Solutions to hyperbolic conservation laws may be visualized as propagating
waves. When the system is nonlinear, the profiles of compression waves get pro-
gressively steeper and eventually break, generating jump discontinuities which prop-
agate on as shocks. Hence, inevitably, the theory has to deal with weak solutions.
This difficulty is compounded further by the fact that, in the context of weak so-
lutions, uniqueness is lost. It thus becomes necessary to devise proper criteria for
singling out admissible weak solutions. Continuum physics naturally induces such
admissibility criteria through the Second Law of thermodynamics. These may be in-
corporated in the analytical theory, either directly, by stipulating outright that admis-
sible solutions should satisfy “entropy” inequalities, or indirectly, by equipping the
system with a minute amount of diffusion, which has negligible effect on smooth
solutions but reacts stiffly in the presence of shocks, weeding out those that are
not thermodynamically admissible. The notions of “entropy” and “vanishing dif-
fusion,” which will play a central role throughout the book, will be introduced in
Chapters III and I'V.

Chapter V discusses the Cauchy problem and the initial-boundary value problem
for hyperbolic systems of balance laws, in the context of classical solutions. It is
shown that these problems are locally well-posed and the resulting smooth solutions
are stable, even within the broader class of admissible weak solutions, but their life
span is finite, unless there is a dissipative source that thwarts the breaking of waves.
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The analysis underscores the stabilizing effect of the Second Law of thermodynamics
and the role of dissipation modeling relaxation.

The Cauchy problem in the large may be considered only in the context of weak
solutions. This is still terra incognita for systems of more than one equation in sev-
eral space dimensions, as the analysis is at present facing seemingly insurmountable
obstacles. It may turn out that the Cauchy problem is not generally well-posed, either
because of catastrophic failure of uniqueness (see Section 4.8), or because distribu-
tional solutions fail to exist. In the latter case one would have to resort to the class
of weaker, measure-valued solutions ( see Section 17.3). It is even conceivable that
hyperbolic systems should be perceived as mere shadows, in the Platonic sense, of
diffusive systems with minute viscosity or dispersion. Nevertheless, this book will
focus on success stories, namely problems admitting standard distributional weak
solutions. These encompass scalar conservation laws in one or several space dimen-
sions, systems of hyperbolic conservation laws in a single space dimension, as well
as systems in several space dimensions whenever invariance (radial symmetry, sta-
tionarity, self-similarity, etc.) reduces the number of independent variables to two.

Chapter VI provides a detailed presentation of the rich and definitive theory of
L™ and BV solutions to the Cauchy problem and the initial-boundary value problem
for scalar conservation laws in several space dimensions.

Beginning with Chapter VII, the focus of the investigation is fixed on systems of
conservation laws in one space dimension. In that setting, the theory has a number
of special features that are of great help to the analyst, so major progress has been
achieved.

Chapter VIII provides a systematic exposition of the properties of shocks. In par-
ticular, various shock admissibility criteria are introduced, compared and contrasted.
Admissible shocks are then combined, in Chapter IX, with another class of particular
solutions, called centered rarefaction waves, to synthesize wave fans that solve the
classical Riemann problem. Solutions of the Riemann problem may in turn be em-
ployed as building blocks for constructing solutions to the Cauchy problem, in the
class BV of functions of bounded variation. Two construction methods based on this
approach will be presented here: the random choice scheme, in Chapter XIII, and a
front tracking algorithm, in Chapter XIV. Uniqueness and stability of these solutions
will also be established.

Chapter XV outlines an alternative construction of BV solutions to the Cauchy
problem, for general strictly hyperbolic systems of conservation laws, by the method
of vanishing viscosity.

Chapter XVI discusses the construction of BV solutions by the random choice
method for strictly hyperbolic systems of balance laws with a dissipative source,
governing relaxation phenomena.

The above construction methods generally apply when the initial data have suf-
ficiently small total variation. This restriction seems to be generally necessary be-
cause, in certain systems, when the initial data are “large” even weak solutions to the
Cauchy problem may blow up in finite time. Whether such catastrophes may occur
to solutions of the field equations of continuum physics is at present a major open
problem. For a limited class of systems, which however contains several important
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representatives, solutions with large initial data can be constructed by means of the
functional analytic method of compensated compactness. This approach, which rests
on the notions of measure-valued solution and the Young measure, will be outlined in
Chapter X VII.

There are other interesting properties of weak solutions, beyond existence and
uniqueness. In Chapter X, the notion of characteristic is extended from classical
to weak solutions; and it is employed for obtaining a very precise description of
regularity and long-time behavior of solutions to scalar conservation laws, in Chapter
X1, as well as to systems of two conservation laws, in Chapter XII.

The final Chapter X VIII discusses problems in two spatial dimensions, and time,
in which geometry and invariance reduce the number of variables to two, namely
the Riemann problem for scalar conservation laws, flows past obstacles and shock
collisions in gas dynamics, cavitation in elastodynamics and isometric immersion of
surfaces in differential geometry.

The bibliography, comprising close to two thousand entries, is quite extensive
but far from comprehensive. Next to recent developments, it also provides reference
to earlier work that may have been superseded, so as to enable the reader to trace the
evolution of the field.

In order to highlight the fundamental ideas, the discussion proceeds from the
general to the particular, notwithstanding the clear pedagogical merits of the reverse
course. Even so, under proper guidance, the book may also serve as a text. With that
in mind, the pace of the proofs is purposely uneven: slow for the basic, elementary
propositions that may provide material for an introductory course; faster for the more
advanced technical results that are addressed to the experienced analyst. Even though
the various parts of this work fit together to form an integral entity, readers may select
a number of independent itineraries through the book. Thus, those principally inter-
ested in the conceptual foundations of the theory of hyperbolic conservation laws, in
connection to continuum physics, need go through Chapters I-V only. Chapter VI, on
the scalar conservation law, may be read virtually independently of the rest. Students
intending to study solutions as compositions of interacting elementary waves may
begin with Chapters VII-IX and then either continue on to Chapters X-XII or else
pass directly to Chapters XIII, XIV and XVI. Similarly, Chapter XV relies solely on
Chapters VII and VIII, while Chapter XVIII depends on Chapters III, VII, VIII and
IX. Finally, only Chapter VII is needed as a prerequisite for the functional analytic
approach expounded in Chapter X VII.

Certain topics are perhaps discussed in excessive detail, as they are of special in-
terest to the author; and a number of results are published here for the first time. On
the other hand, several important aspects of the theory and its applications are barely
touched upon, or are only sketched very briefly. They include the stability theory of
multi-space-dimensional shocks and boundary conditions, the newly emerging the-
ory of hyperbolic conservation laws with random initial data, the derivation of the
balance laws of continuum physics from the kinetic theory of gases, the study of
phase transitions and a host of diverse applications. Each one of these areas would
warrant the writing of a specialized monograph. The most conspicuous absence is a
discussion of numerics, which, beyond its practical applications, also provides valu-



Introduction XV

able insight to the theory. Fortunately, a number of texts on the numerical analysis of
hyperbolic conservation laws are currently available and may fill this gap.

Geometric measure theory, functional analysis and dynamical systems provide
the necessary tools in the theory of hyperbolic conservation laws, but to a great ex-
tent the analysis employs custom-made techniques, with strong geometric flavor,
underscoring wave propagation and wave interaction. This may leave the impression
that the area is insular, detached from the mainland of partial differential equations.
However, the reader will soon realize that the field of hyperbolic conservation laws
is far-reaching and highly diversified, as it is connected by bridges with the realms
of elliptic equations, parabolic equations, dispersive equations and the equations of
the kinetic theory.



A Sketch of the Early History of Hyperbolic
Conservation Laws

The general theory, and even the name itself, of hyperbolic conservation laws
emerged just fifty years ago, and yet the special features of this class of systems
of partial differential equations had been identified long before, in the context of par-
ticular examples arising in mathematical physics. The aim here is to trace the early
seminal works that launched the field and set it on its present course. A number of
relevant classic papers have been collected in Johnson and Chéret [1].

The ensuing exposition will describe how the subject emerged out of fluid dy-
namics, how its early steps were frustrated by the confused state of thermodynamics,
how it was set on a firm footing, and how it finally evolved into a special branch of
the theory of partial differential equations.

This section may be read independently of the rest of the book, as it is essentially
self-contained, but the student will draw extra benefit by revisiting it after getting
acquainted with the current state of the art expounded in the main body of the text.
Accordingly, in order to highlight the connection between past and present, the his-
tory is presented here with the benefit of hindsight: current terminology is freely
used, and symbols and equations drawn from the original sources have been translit-
erated to modern notation.

Since the early history of hyperbolic conservation laws is inextricably inter-
twined with gas dynamics, we begin with a brief review of the theory of ideal gases,
as it stood at the turn of the nineteenth century. Details on this topic are found in the
historical tract by Truesdell [1].

The state of the ideal gas is determined by its density p, pressure p and (absolute)
temperature 6, which are interrelated by the law associated with the names of Boyle,
Gay-Lussac and Mariotte:

(1) p=Rpo,

where R is the universal gas constant. In the place of p, one may equally employ its
inverse u = 1/p, namely the specific volume.

The specific heat at constant pressure or at constant volume, ¢, or ¢,, is the rate
of change in the amount of heat stored in the gas as the temperature varies, while the
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pressure or the specific volume is held fixed. The ratio y = ¢, /c, is a constant bigger
than one, called the adiabatic exponent.

Barotropic thermodynamic processes, in which p = p(p), may be treated in the
realm of mechanics, with no regard to temperature. The simplest example is an
isothermal process, in which the temperature is held constant, so that, by (1),

(2) p=dp.

Subtler is the case of an isentropic or adiabatic process,' in which the temperature

and the specific volume vary simultaneously in such a proportion that the amount of
heat stored in any part of the gas remains fixed. As shown by Laplace and by Poisson,
this assumption leads to

(3) p=dp.

The oldest, and still most prominent, paradigm of a hyperbolic system of conser-
vation laws is provided by the Euler equations for barotropic gas flow, which express
the conservation of mass and momentum, relating the velocity field v with the den-
sity field and the pressure field. The pertinent publications by Euler, culminating in
his definitive formulation of hydrodynamics, are collected in Euler [1], which also
contains informative commentary by Truesdell. In addition to the equations that bear
his name, Euler derived what is now called the Bernoulli equation for irrotational
flow, so named because in steady flow it reduces to the celebrated law discovered by
Daniel Bernoulli. We will encounter the aforementioned equations on several occa-
sions in the main body of this book, beginning with Section 3.3.6.

Internal forces in an elastic fluid are transmitted by the hydrostatic pressure,
which is a scalar field. As a result, the Euler equations form a system of conser-
vation laws with distinctive geometric structure. Conservation laws of more generic
type, manifesting the tensorial nature of the flux field, as discussed here in Chapter
I, emerged in the 1820s from the pioneering work of Cauchy [1,2,3,4] on the theory
of elasticity. Nevertheless, as we shall see below, the early work on hyperbolic con-
servation laws dealt almost exclusively with the one-space-dimensional setting, for
which the Euler equations constitute a fully representative example.

In an important memoir on the theory of sound, published in 1808, Poisson [1]
considers the Euler equations and the Bernoulli equation for rectilinear isothermal
flow of an ideal gas, namely

o:p + di(pv) =0
(4)
9,(pv) + 9i(pv*) +a*dep =0,

! The term “adiabatic” was coined in 1859 by Rankine, who also originated the use of the
symbol 7 for the adiabatic exponent. However, in the sequel we will employ the newer
terminology “isentropic,” while reserving “adiabatic” for a related but different use; see
Section 2.5.
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1
(5) 09+ 5(9:9)* +a*logp =0,

where ¢ is the velocity potential, v = d,¢. By eliminating p between (5) and (4);,
he derives a second order equation for ¢ alone:

(6) 09 +2(0x0) (950, 0) + (0:9)*079 —a* 979 = 0.

Employing a method of solving differential equations devised by Laplace and by
Legendre, he concludes that any ¢ that satisfies the functional equation

() o = f(x+(a—@)1),

for some arbitrary smooth function f, is a particular solution of (6).

In current terminology, one recognizes Poisson’s solution as a simple wave (see
Section 7.6) on which the Riemann invariant (see Section 7.3) v+ alog p is constant,
and thus v satisfies the equation

(8) 00+ 09,0 — adyv =0,
admitting solutions

©) v=flx+(a=0)),

with f an arbitrary smooth function.

Forty years after the publication of Poisson’s paper, the British astronomer
Challis [1] made the observation that (9), with f(x) = —sin(37x), yields v = 0 along
the straight line x = —ar and v = 1 along the straight line x = —1 — (a — 1), which
raises the paradox that v must be simultaneously equal to O and 1 at the point (—a, 1)
of intersection of these straight lines. This is the earliest reference to the breakdown
of classical solutions, which pervades the entire theory of hyperbolic conservation
laws.

The issue raised by Challis was addressed almost immediately by Stokes [1], his
colleague at the University of Cambridge. Stokes notes that, according to Poisson’s
solution (9), along each straight line x = X — (a — f(X))t, we have v(x,t) = f(X) and

f'(%)
10 ad )= —"-"-.
(10) W) = T4t
Thus, unless f is nondecreasing, the wave will break att = —1/f'(x), where f'(x) is

the minimum of f’. He then ponders what would happen after singularities develop
and comes up with an original and bold conjecture. In his own words: “Perhaps the
most natural supposition to make for trial is that a surface of discontinuity is formed,
in passing across which there is an abrupt change of density and velocity.” He seems
highly conscious that this is a far-reaching idea, going well beyond the particular
setting of Poisson’s solution, as he writes: “Although I was led to the subject by
considering the interpretation of the integral (9), the consideration of a discontinuous
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motion is not here introduced in connection with that interpretation, but simply for
its own sake; and I wish the two subjects to be considered as quite distinct.”

Stokes then proceeds to characterize the jump discontinuities that conform to
the governing physical laws of conservation of mass and momentum, which underlie
the Euler equations in the realm of smooth flows. Assuming that density and velocity
jump from (p_,v_) to (p+,v ) across a line of discontinuity propagating with speed
o (i.e., having slope o), he shows that

p+04 —p-v-=0(p+—p-)
(11)

P40 +a’pi —p-v2 —a’p- =0 (pivy —p-v-).

By eliminating o between the above two equations, he gets

(12) p-pi(vi —v-)? =a*(pr —p-)*.

Thus, Stokes [1] introduces, in the context of the Euler equations (4) for isother-
mal flow, the notion of a shock wave and derives what are now known as the Rankine-
Hugoniot jump conditions (see Section 8.1), which characterize distributional weak
solutions of (4). This paper is one of the cornerstones of the theory of hyperbolic
conservation laws. However, the development of the subject was soon to hit a road-
block.

Stokes’s idea of contemplating flows with jump discontinuities was criticized,
apparently in private, by Sir William Thomson (Lord Kelvin), and later by Lord
Rayleigh, in private correspondence (Rayleigh [1]) as well as in print (Rayleigh [2,
§253]), on the following grounds: they argued that jump discontinuities should not
produce or consume mechanical energy. A calculation shows that this would require

(13) 2p_p. log <p‘> =p2—p3,
P+

which is incompatible with p_ # p,..

In order to place the above argument in the present context of the theory of con-
servation laws, one should notice that any smooth solution of the Euler equations (4)
automatically satisfies the conservation law of mechanical energy

(14) o, (3pv* +a*plogp) + 9, (1pv’ +apologp +a*pv) = 0.

In current terminology, % pv? +a’plogp is an entropy for the system (4), with en-
tropy flux %pv3 +a’pvlogp + a’pu; see Section 7.4. Assuming that mechanical

energy should be conserved, even in the presence of shocks, induces the jump con-

dition

(15) %Pﬂa +a*p vy logp, +a*pivy — %P—Ui —a’p_v_logp_ —a’p_v_
=0 [3pi 0} +a’pilogpy —p 0> —a’p_logp].

Eliminating ¢ between (11); and (15), and making use of (12), one arrives at (13).
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Stokes was convinced, and perhaps also intimidated, by the above criticism. On
June 5, 1877 he answered Lord Rayleigh in an apologetic tone, renouncing his the-
ory: “Thank you for pointing out the objection to the queer kind of motion in the
paper you refer to. Sir W. Thomson pointed the same out to me many years ago,
and I should have mentioned it if I had the occasion to write anything bearing on
the subject, or if, without that, my paper had attracted attention. It seemed, however,
hardly worthwhile to write a criticism on a passage in a paper which was buried
among other scientific antiquities” (Stokes [2]). Moreover, when his collected works
were published in 1880, he deleted the part of the 1848 paper that discussed dis-
continuous flows and inserted an annotation to the effect that shocks are impossible
because they are incompatible with energy conservation, expressed by (13) (Stokes
[3]). A more detailed account of the correspondence between Stokes, Rayleigh and
Thomson, with references to the original sources, is found in Salas [1].

Stokes’s vindication had to wait for the development of thermodynamics. Still, it
is puzzling that he was prepared to abandon his theory so readily, even though, as we
shall see below, by 1880 substantial progress had already been made in the subject.

To follow these developments in chronological order, let us return to the late
1840s. Airy [1], the Astronomer Royal, had demonstrated in 1845 that the propa-
gation of longitudinal water waves in a shallow channel is governed, in Lagrangian
coordinates, by the second-order equation

(16) OPw =a*(1+dw) 39%w.

One may recast (16) as a hyperbolic system of conservation laws, by setting
u=1+dwandv=odw:

8,14—8,(0 =0

(17)
0 v+ 0y (%a2u’2) =0.

This system, written in Eulerian coordinates, is known as the shallow-water equa-
tions, and is identical to the Euler equations for isentropic flow, with adiabatic expo-
nent y = 2. The derivation is found in Section 7.1.

Reacting to Challis’s paper of 1848, Airy [2] observes that, in a similar fashion,
System (4) of the Euler equations for isothermal flow may be recast, in Lagrangian
coordinates, as the scalar second-order equation

(18) tw = a*(1+dw) 292w,

where w is the displacement, so that u = 1 + dyw is specific volume and v = dyw is
velocity.
Airy then notes that (16) and (18), respectively, admit solutions

1

(19) dw —2a(1+ dyw)” 2 = constant,

(20) dw — alog(1+ dyw) = constant,
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whose derivation he attributes to De Morgan. This is the first instance that Riemann
invariants appear explicitly in print, in connection to simple waves.

With reference to Stokes’s work, Airy conjectures that tidal bores in long rivers
and surf on extensive flat sand may turn out to be represented by solutions of his
shallow-water equations, with jump discontinuities.

The next notable contribution came from Earnshaw [1]. The starting point in his
analysis is the observation that if y(x,) satisfies

(21) d;y — f(dxy) = constant,

for some function f, then
(22) 9%y =[f'(0:)]* 7.

He compares (22) with the equation of rectilinear barotropic motion of a fluid in
Lagrangian coordinates,

(23) P02y + 3up(dy) =0,

where y(x,?) is the position of the fluid particle x at time ¢, py is the reference density
and p is the pressure. Thus one may obtain particular solutions of (23) in the form
(21), with f computed from [f'(u))> = —p, ' p'(u).

Assuming py = 1, in current practice one introduces the specific volume u = d.y,
the velocity v = d,y, and recasts (23) as the equivalent first-order system

aﬂ/l - axv =0
(24)
v+ dp(u) =0.

Then v — f(u) are Riemann invariants of (24) and the solutions v — f(u) = constant
represent simple waves.

Earnshaw computes f(u), and thereby finds solutions (21), for isothermal flow,
in which p = a?p = a*u~", and for isentropic flow, where p = a?>p? = a>u~7, with
Y > 1. In current notation,

(25) v=+alogu = constant,
1
2av?2 —1
(26) v+ yayl u~'T = constant.

Depending on the sign, he envisages these solutions as waves of “condensation”
or waves of “rarefaction”. The term “compression” is currently used in the place of
“condensation”.

Another interesting observation due to Earnshaw is that the Euler equations admit
traveling wave solutions (““waves propagating without undergoing a change of type,”
in his terminology) if and only if p = a — b/p, which identifies what is now known
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as the Chaplygin gas; see Section 2.5. This is the earliest encounter with a nonlinear
system that is linearly degenerate; see Section 7.5. Earnshaw further notes that for
this special p, the equation of motion (23), in Lagrangian coordinates, is linear.

We now come to a landmark in the development of the theory of hyperbolic
conservation laws, namely the celebrated paper by Riemann [1]. This is the earliest
work in which the Euler equations are treated from the perspective of analysis. It
should be noted, however, that the author takes great pains to motivate his work from
physics. He expresses the hope that, beyond their purely mathematical interest, his
results will find applications in acoustics.

Riemann considers the rectilinear barotropic flow of a gas with general equation
of state p = p(p), subject only to the condition p’(p) > 0, and writes the Euler
equations in the form

d;logp +vdilogp = —dv
(27)
v +0vdv=—p'(p)dilogp.

As we saw above, what are now known as Riemann invariants were already present
in the works of Poisson, Airy, and Earnshaw, albeit exclusively in connection with
simple waves. By contrast, Riemann defines his invariants

1 " 1 "
(28) r=s {v+/ \/p’(p)dp} ;o s=5 {—v+/ \/p’(p)dp} ;
in the context of any smooth solution of (27), and shows that they satisfy

(29) ar=—(+VPP)Ar, s =—(0—/P(P))s.

so that r and s, respectively, stay constant along what are now deemed forward and
backward characteristics.

Riemann then devises what is now known as a hodograph transformation (see
Section 12.2), which recasts the nonlinear system (29) as a linear equation by revers-
ing the roles of (x,#) and (r,s) as independent and dependent variables. To that end,
upon observing that

(30) 3 [x= (=P ()] = =0, [x— 0+ /P (p)i] .
he introduces the potential w(r,s),

(31) Iw=x—(+Vp(P),  —dw=x—(—pPP)),
and shows that it satisfies a linear equation

(32) 3,dw = m(dw+Aw),

where m is some function of p, induced by p(p), and thus depends solely on r+s.
In particular, m = 7(20)_1 = constant, in the isothermal case p = azp. One has to
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determine w(r,s) by solving (32), then get x(r,s) and #(r,s) from (31), and finally
invert these functions to obtain r(x,t) and s(x,?).

Next, Riemann considers solutions with jump discontinuities, under the addi-
tional assumption p”(p) > 0. By balancing mass and momentum across a shock
x = &(t), with left state (p_,v_), right state (py,v,), and speed &, he derives the
jump conditions in the form

- p+ r(p+) —p(p-) %: p- p(p+) —p(p-) :
e F Ay } mi{m p—p- |

He does not address the issue of energy conservation, as he was probably unaware
of the objections to Stokes’s work raised by Kelvin and by Rayleigh. Nevertheless,
he emphasizes that, on grounds of stability, only compressive shocks are physically
meaningful. Actually, he postulates shock admissibility in the guise of what is now
called the Lax E-condition (see Section 8.3), namely

(34) v +/P(pr) <& <v_++/p'(p-)

for forward shocks, and similarly for backward shocks. He also constructs what is
now known as the shock curve or the Hugoniot locus (see Section 8.2) and describes
its shape.

Finally, Riemann introduces and solves the celebrated problem that now bears
his name (see Chapter IX), namely, he demonstrates that a jump in the state variables
(p,v) is generally resolved into an outgoing wave fan consisting of a backward and
a forward wave, each of which may be either a compressive shock or a centered
rarefaction simple wave.

Riemann’s remarkable paper provides the foundation for the general theory of
hyperbolic systems of conservation laws in one space dimension. As we shall see,
shocks cannot be isothermal or isentropic in gas flow that conserves energy, together
with mass and momentum. This has prompted the complaint, widely circulating in
the literature, that Riemann’s treatment of shocks is deficient. We have seen already
that it is the same argument that forced Stokes to abandon his theory of isother-
mal shocks. Nevertheless, such criticism is off the mark. Riemann’s equation (33)
on jump condition is mathematically accurate within the framework of isentropic
gas dynamics, which is a physically legitimate simplification of the more complete,
thermodynamic theory.

After 1860, the notion of shocks was progressively gaining acceptance. By 1870,
judging by a footnote in Rankine [1], Kelvin, one of the early critics of Stokes’s
ideas, was prepared to admit compressive shocks, while rejecting rarefaction shocks
as unstable.

In 1877, Christoffel [1] considered shocks of barotropic gas flow in three-
dimensional space, and derived the corresponding jump conditions. In fact, the com-
mon practice of bracketing the symbol of a field to denote its jump across a shock
was introduced by him. See Holder [1].

Between 1875 and 1889, Ernst Mach, with his students’ assistance, performed
the earliest experiments on shock waves, at the German University of Prague. He
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employed electric sparks triggered by the discharge of a Leiden jar to generate shock
waves in the layer of air confined between parallel glass plates, one of which was
covered with soot. The path of the shock was then determined from the marks it
left on the soot. By means of this device, he managed to measure the speed of the
shocks, showing that they are supersonic. He also observed that the oblique incidence
of a shock on a rigid boundary may induce regular or irregular (now called Mach)
reflection. The phenomenon of Mach reflection was also detected in surface waves,
in liquids (mercury, milk, syrup). The shocks were generated by dropping a V-shaped
iron wire on the liquid surface. Later on, by using the more powerful optical schlieren
method, Mach and his students demonstrated that projectiles moving through the air
at supersonic speed are surrounded by bow shocks. A historical account of Mach’s
experiments, with references to the original publications, which appeared in Vols. 72-
92 of the Vienna Academy Sitzungsherichte, is found in Krehl and van der Geest [1].
The mid-nineteenth century was a period of rapid strides in mastering the prin-
ciples of thermodynamics. The central role of the internal energy € was recognized,
and the law of energy conservation was established. The notion of entropy was intro-
duced, and named, by Clausius [1], and the Second Law of thermodynamics was for-
mulated. Soon the specific entropy s took its place on the list of thermodynamic vari-
ables, next to €, 0, p, u and p. General thermal equations of state € = €(p, 0) were
considered by Kirchhoff [1], and equivalent caloric equations of state € = &(u, s)
were introduced by Gibbs [1], who postulated the rule that now bears his name:

(35) de = 0ds — pdu.

Nevertheless, as we shall see below, most authors adhered to the special case of the
ideal gas, with equations of state

R R 0
(36) €= }/7197 p=Rpo, 5= y—llngY*I .

As regards fluid dynamics, it became clear that the system of the Euler equations
had to be supplemented with an additional, independent field equation, expressing
the conservation of (combined mechanical and thermal) energy. This equation was
derived by Kirchhoff [1,2] for thermoviscoelastic, heat-conducting gases. In the ab-
sence of viscosity and heat conductivity, attaching the conservation of energy equa-
tion to the Euler equations yields another important paradigm of a hyperbolic system
of conservation laws, which will be encountered on several occasions in the main
body of this book, beginning with Section 3.3.5.

The task of determining the jump conditions that express energy conservation in
the presence of shocks was undertaken by Rankine [1] and by Hugoniot [2].

Rankine derives his jump conditions for a shock wave moving into an undis-
turbed medium, by balancing the loss in mechanical energy at the shock against the
heat flux, so that the total energy production is nil. It is not easy to follow his discus-
sion,> which is based on physical arguments, but eventually he arrives at the correct
equations.

2 For a reconstruction of Rankine’s argument, see Rayleigh [4].
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In contrast to Rankine’s approach, the treatment by Hugoniot [2] is in a clear
mathematical style. He considers the rectilinear motion of general nonlinear elas-
tic media, in Lagrangian coordinates. First, he discusses at length barotropic mo-
tion, governed by the scalar second-order equation (23), or equivalently by the first-
order system (24). He reproduces (reinvents?) the results of Earnshaw and Riemann,
without citing either of these authors. In particular, he determines the two fami-
lies of Riemann invariants, by the same procedure as Earnshaw, and then shows,
as Riemann already had, that they are constant along characteristics of the same
family. He also points out the connection between Riemann invariants and simple
waves.

The pathbreaking contribution of Hugoniot is found in Chapter V of his memoir,
where he discusses shocks, and especially in §§ 149-158, where he derives the jump
condition dictated by energy conservation. It is there that one encounters for the first
time the full set of jump conditions in Lagrangian coordinates:

o(uy —u_)=v_—v4
(37) 0(vy —v-) =ps—p-
o(e+30% —e-—30*)=pio,—p_v_,

written for an ideal gas, with internal energy € = pu/(y— 1); see (36). Combining
the three equations in (37) yields the famous jump condition

(38) e~ +5(pitp )y —u) =0,

which does not involve v or . Hugoniot derives this equation for the case of the
ideal gas, in the form

pr 2+ (=D —u,)
P 2wt (= —u)’

(39)

He seems unaware that Rankine [1] had already obtained a similar result.

The above equations have had a great impact in the theory of gas dynamics and
its applications. Consequently, all jump conditions associated with shocks are now
collectively known as “Rankine-Hugoniot jump conditions,” even though the name
“Stokes jump conditions” would represent a more accurate reflection of the historical
record.

Another important contribution by Hugoniot [1] is the introduction and study
of weak waves (also known as acceleration waves), namely propagating character-
istic surfaces across which the state variables themselves are continuous but their
derivatives experience jump discontinuities. Weak waves had appeared earlier in the
acoustic research of Euler.

By the turn of the twentieth century, the field of hyperbolic conservation laws was
branching out, finding applications in the science and technology of combustion,
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detonation, and aerodynamics. We shall not pursue the history of developments in
those new directions, because the aim here is to trace the evolution of the core ideas
that have led to the present state of affairs in the mathematical theory. An account
of the subject of detonations, as it stood in the early 1900s, is found in the book by
Jouguet [3]. A good starting point for getting acquainted with the enormous literature
on aerodynamics is the text by von Mises [1], which contains historical references
and an extensive bibliography.

The state of the art in the basic theory of hyperbolic conservation laws around
1900 is exemplified by the books of Duhem [1], Hadamard [1], and Weber [1]. Weber
mainly elaborates upon the aforementioned paper by Riemann. For his part, Hadamard
makes a presentation of the work of Riemann in conjunction with the results of
Hugoniot. Both Duhem and Hadamard provide detailed expositions on the propaga-
tion of shock and weak waves, in several space dimensions. In particular, Hadamard
makes the important observation that when an irrotational flow crosses a weak wave
it remains irrotational, while after crossing a non-planar shock it acquires vorticity.
Duhem emphasizes the implications of thermodynamics. He postulates the Second
Law in the form of the celebrated field inequality that now bears his name (see Sec-
tion 2.3):

(40) pos + Div (ég) >0,

where Q is the heat flux vector. Furthermore, he shows that in the absence of viscosity
and heat conductivity, the system of conservation laws for mass, momentum and
energy, in conjunction with the Gibbs rule (35), implies that smooth thermodynamic
processes are necessarily isentropic: s = 0.

With the dawn of the new century, the theory was confronted by the issue of phys-
ical admissibility of shocks. The reader may recall that in the previous century sev-
eral authors, beginning with Riemann, had subscribed to the view that compressive
shocks are stable, and thereby admissible, in contrast to rarefaction shocks, which
are patently unstable, as they are apt to disintegrate into rarefaction simple waves.
However, the connection between shock stability and the Second Law of thermo-
dynamics was still elusive. A related point of contention was the physical status of
shocks in barotropic flows, in view of Rayleigh’s argument that they fail to conserve
mechanical energy.

The first step in addressing these questions was taken by Jouguet [1,2], who
demonstrated that in an ideal gas only compressive shocks are compatible with the
Second Law of thermodynamics. Indeed, in the absence of heat flux, Q = 0, (40)
reduces to § > 0, and s generated by a shock propagating with speed ¢ has the same
sign as o(s— — s ). By virtue of (36),

R p+u1)
41 sy—s_=——Io .
(41) o= oy (2

Furthermore, p. /p_ is related to u; /u_ by Hugoniot’s equation (39). One then
easily sees that s; —s_ has the same sign as u; — u_ and hence the opposite sign
from pL —p_.
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Following upon the above work, Duhem [2] shows that weak compressive shocks
in fact satisfy the Second Law of thermodynamics in any gas with equation of state
p = p(u,s), subject only to the constraint p,, > 0. In the process, he makes the im-
portant observation that the entropy jump across a weak shock is of cubic order in the
strength of the shock. He further proves that weak compressive shocks are subsonic
relative to the denser gas and supersonic relative to the more rarefied gas. Thus, in
current terminology, Duhem demonstrates that when the system of conservation laws
for gas dynamics is genuinely nonlinear, the Lax E-condition manifests the Second
Law of thermodynamics for weak shocks; see Section 8.5.

In parallel with Jouguet’s work, Zemplén [1] investigates the balance between
mechanical and thermal energy produced by shocks in ideal gases, and shows that
mechanical energy is converted into heat at compressive shocks, while at rarefaction
shocks this process would be reversed. Thus the Second Law of thermodynamics
allows only for shocks that convert mechanical energy into heat.

With regard to barotropic flow, p = p(p), Burtton [1], Weber [1], and Rayleigh
[3] are ultimately prepared to grant physical status to shocks so long as they comply
with the Second Law of thermodynamics, which they interpret as a requirement that
the production of mechanical energy be nonpositive. Weber demonstrates that only
compressive shocks meet this requirement, when p”(p) > 0. He operates in Eulerian
coordinates, but in order to avoid writing too many new equations, here we transcribe
his calculation to Lagrangian coordinates: The rate of mechanical energy production
by a shock propagating with speed o is

. I, 1, Ut
(42) E=-0 SV 500 —/ p(uw)du y +pioy —p_v_.
u—

Since mass and momentum are conserved, u+ , p+ and vy are related by the first two
jump conditions in (37), with the help of which (42) may be written as

(43) E:c{/u"*pwwu—;(pwp><u+—u>}.

It is now clear that, assuming p”(u) > 0, E < 0 if and only if 6(uy —u_) >0, i.e.,
o(p+—p-) <O0.

In current terminology, Weber is employing mechanical energy %02 — [ p(w)du
as a convex entropy for the system (24), with associated entropy flux vp(u), and is
showing that when the system is genuinely nonlinear, then the entropy admissibility
condition is equivalent to the Lax E-condition; see Section 8.5.

An alternative, albeit related, way of identifying physically admissible shocks
is through the “vanishing viscosity” approach. Stokes [1] and Hugoniot [2], among
others, were aware that viscosity and/or heat conductivity would smear shocks. This
was formalized by Duhem [1]. Thus the loss of mechanical energy incurred at shocks
could be attributed to the workings of “internal friction” induced by viscosity and
heat conductivity. Passing to the zero viscosity limit may be justified by showing
that physically admissible shocks can be paired with viscous traveling waves having
the same end-states and the same speed. By changing coordinates, one may consider
just stationary shocks and steady-state viscous waves.
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The conservation laws of mass, momentum and energy for rectilinear flow of
heat-conducting viscous fluids read

o;p + di(pv) =0
(44) 9/(pv) + dx(pv* + p — ) = 0
9 (pe + 1pv?) + dk(pve + 5 pv® + pv — nvdiv — kdi0) = 0,

where U is the viscosity and k is the conductivity. In the absence of viscosity and
heat conductivity, stationary shocks satisfy the jump conditions

p+0+ =p-v-=m
(45) moL+pr=mu_+p_=a
1,2 _ 1,2 _
me; + MUy + pyvy =mé_+;mv +p_v_=b.

The objective is to determine the shock layer (also called shock profile or shock
structure), namely a steady-state solution

pv=m
(46) pv*+p—uv =a
pvE + 1pv + pv— pvv’ — k6’ =b

of (44), on (—oe,00), for the assigned parameters m, a and b. Here and below, the
prime denotes differentiation with respect to x.

The above program was initiated almost simultaneously, and apparently indepen-
dently, by Rayleigh® [4] and by G.I. Taylor [1]. Their approaches are surprisingly
similar. Assuming the gas is ideal (36), they eliminate p, p, € and 6 between the
equations in (46), ending up with a second-order equation for v alone:

kw 2k u ; ka y+1 2 ay
4 R = — _— _— — — D.
(47) Rm(vv) (R y—l) T R’ 2(y— l)mv + }/—lv b

For k = 0 or u = 0, Taylor solves (47) in closed form. He also derives the asymp-
totic form of the solution when both k and p are positive but |v; —v_| is small. In
particular, he points out that only compressive shocks may support viscous profiles.

Becker [1] treated the same problem, still for ideal gases, by observing that, in
consequence of (46), the temperature as a function of the specific volume satisfies a
first-order differential equation that may be integrated in closed form in the special
situation where k/u equals the specific heat ¢, at constant pressure.

3 In addition to dealing with the issue at hand, Rayleigh’s memoir provides an interesting
review of the development of the theory of shock waves in the nineteenth century.
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During the Second World War, prominent physicists and mathematicians, coming
from various areas of expertise, were attracted to gas dynamics. An important issue
at the time was the behavior of real gases at high temperature and at high pressure,
beyond the range of validity of the polytropic model. In that connection, Bethe [1]
demonstrates that in gases with equation of state p = p(u,s), the condition p,, > 0
alone does not guarantee that compressive shocks of arbitrary strength are compatible
with the Second Law of thermodynamics and stable. For that purpose, one must make
additional assumptions, such as up;+26 > 0 and 6p, + pp, < 0, which may fail
when the gas undergoes phase transitions.

Another important contribution from the same era is the work of Weyl [1], which
extends the investigation on shock layers, initiated by Rayleigh [4], G.I. Taylor [1],
and Becker [1], to gases with general equations of state. By combining the equations
in (46), Weyl derives the first-order system

umu' =m*u+p—a
(48)

k0’ = me — %m3u2 +amu—Db,

in the variables (u,8), where u is the specific volume p~!. Noting that, by virtue
of (45), (u+,0+) are equilibrium points of (48), he realizes the shock profile as the
orbit joining (u_,0_), which is an unstable node, with (uy, 6, ), which is a saddle.
The definitive treatment of this problem was provided two years later by Gilbarg [1],
establishing the existence of the shock layer, for arbitrary positive u, k, and showing
that it converges to (a) a shock when both u and & tend to zero; (b) a continuous shock
layer when ut tends to zero, while k is held fixed; and (c) to a generally discontinuous
shock layer when k tends to zero, while  is held fixed. As we shall see in Section
8.6, Weyl’s approach has now become standard practice in the general theory of
hyperbolic conservation laws.

The roster of prominent scientists who contributed to the field as part of the war
effort includes von Neumann. He prepared a number of expository reports [1,2,3]
on the theory of shock waves in gas dynamics, with many insightful observations.
In particular, he elaborated on the problem of oblique shock reflection, reviving and
popularizing Mach’s contributions from the nineteenth century. He also championed
the idea of obtaining solutions by means of scientific computation; see von Neumann
[4]. The proceedings of a panel discussion, held on August 17, 1949, chaired by von
Neumann [5] and involving Burgers, Heisenberg, von Karman and other experts,
provide a glimpse of what were perceived as major open problems at that time. Re-
markably, many of the issues raised there are still unresolved.

By the late 1940s, a large amount of information on hyperbolic conservation
laws had been amassed, mainly in the guise of gas dynamics. It had been derived
by mathematicians, physicists, chemists and engineers over a period of 150 years,
and had been presented in a wide variety of styles and levels of rigor. The task of
consolidating this material was undertaken by Courant and Friedrichs [1], who pro-
vide a magisterial synthesis of the subject, in mathematical language. Their book
has played —and continues to play —an important role in disseminating the physical
underpinnings of the theory to the mathematical community.

After 1950, following the contemporaneous trends in the general area of partial
differential equations, research in hyperbolic conservation laws focuses on the qual-
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itative theory of the Cauchy problem. The seeds for establishing the local existence
of classical solutions had already been planted in the 1930s by the work of Schauder
[1] on quasilinear hyperbolic equations of second order. Schauder’s strategy, which
employs a hierarchy of L? “energy” estimates on the derivatives of solutions to lin-
earized equations and then passes to the quasilinear case via a fixed point argument,
has been exploited widely over the past decades, culminating in the definitive theory
of the Cauchy problem for symmetrizable systems of conservation laws, expounded
here in Chapter V.

Since classical solutions to the Cauchy problem generally break down in finite
time, one may at best hope to establish the existence of weak solutions in the large.
The first successful attempt in that direction was made in the seminal paper by Hopf
[1], which treats the Cauchy problem for the simplest nonlinear scalar conservation
law

(49) A+ 0, (;LB) 0,

This equation was originally proposed by Bateman [1], in an obscure publication, as
a simple model for the system of conservation laws of gas dynamics. It reappeared in-
dependently in the work of Burgers [1] on turbulence, and is now universally known
as the Burgers equation.

Adopting Burgers’s viewpoint, Hopf treats (49) as the u J O limit of the Burgers
equation with viscosity

1
(50) diu+ 0y <2u2) = ud’u.
By employing the celebrated Hopf-Cole transformation

(51) u=—2udlog¢,

so named because it was also discovered independently by Cole [1], he reduces (50)
to the classical heat equation

(52) 36 = 1d2.

This enables him to solve the Cauchy problem for the equation (50), with initial data

up, in the explicit form
/ 4 ——1 F ( t) d
ex X
t p 2“ 7y7 y

° 1
1 exp{—zuF(x,y,t)}dy

(53) u(x,t) =

)

where

¥ — 2
(54) Forn) =225 (e,
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Letting 1 | 0 in (53), he arrives at a weak solution u(x,) to the Cauchy problem for
the Burgers equation (49), which is determined explicitly by the initial data u(x)
through

(55) ulx,f) = x‘%(“) . ae. on (—oo,0) x (0,00),

where y(x,t) is the minimizer of the function F(x,y,?), with respect to y on (—oo, o).
He also investigates the geometric structure and the large-time behavior of this
solution.

Hopf’s paper stimulated intensive research on the scalar conservation law, ini-
tially in one and eventually in several space dimensions, which generated the rich
theory presented in Chapters VI and XI.

The next major milestone, marking the conclusion of this historical introduction,
is the landmark paper by Lax [2], which coins the term “hyperbolic conservation
law” and launches the field as a new principal branch in the theory of partial differ-
ential equations. This was accomplished by distilling, generalizing and formalizing
the raw material that had accumulated over the years in the context of special sys-
tems, as reported above.

The first part of Lax’s paper extends the aforementioned work of Hopf, and in
particular devises a generalization of (55) that solves the Cauchy problem, for general
convex scalar conservation laws. The reader may find an account of this theory in
Section 11.4.

The second part of the paper lays the foundations for the general theory of sys-
tems of hyperbolic conservation laws in one space dimension, by introducing the no-
tions of strict hyperbolicity, genuine nonlinearity, Riemann invariants, simple waves
and the Lax E-condition, which all come together in the construction of shock and
rarefaction wave curves and the solution of the Riemann problem. To a great extent,
the present state of the art in the theory of hyperbolic systems of conservation laws
in one space dimension, as presented here in Chapters VII, VIII and IX, is an elabo-
ration of the above themes. It is fair to say that Lax’s paper set the direction for the
development of the field of hyperbolic conservation laws over the past fifty years.
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I

Balance Laws

The general, mathematical theory of balance laws expounded in this chapter has
been designed to provide a unifying framework for the multitude of balance laws
of classical continuum physics, obeyed by so-called “extensive quantities” such as
mass, momentum, energy, etc. The ambient space for the balance law will be R¥, with
typical point X. In the applications to continuum physics, R will stand for physical
space, of dimension one, two or three, in the context of statics; and for space-time,
of dimension two, three or four, in the context of dynamics.

The generic balance law will be introduced through its primal formulation, as a
postulate that the production of an extensive quantity in any domain is balanced by a
flux through the boundary; it will then be reduced to a field equation. It is this reduc-
tion that renders continuum physics mathematically tractable. It will be shown that
the divergence form of the field equation is preserved under change of coordinates,
and that the balance law, in its original form, may be retrieved from the field equa-
tion. The properties discussed in this chapter derive solely from the divergence form
of the field equations and thus apply equally to balance laws governing equilibrium
and evolution.

The field equations for a system of balance laws will be combined with constitu-
tive equations, relating the flux and production density with a state vector, to obtain
a closed quasilinear first order system of partial differential equations in divergence
form.

It will be shown that symmetrizable systems of balance laws are endowed with
companion balance laws which are automatically satisfied by smooth solutions,
though not necessarily by weak solutions. The issue of admissibility of weak so-
lutions will be raised.

Solutions will be considered with shock fronts or weak fronts, in which the state
vector field or its derivatives experience jump discontinuities across a manifold of
codimension one.

The theory of BV functions, which provide the natural setting for solutions with
shock fronts, will be surveyed and the geometric structure of BV solutions will be
described.
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2 1 Balance Laws

Highly oscillatory weak solutions will be constructed, and a first indication of
the stabilizing role of admissibility conditions will be presented.

The setting being Euclidean space, it will be expedient to employ matrix notation
at the expense of obscuring the tensorial nature of the fields. The symbol M"™** will
denote throughout the vector space of r x s matrices and R” shall be identified with
M1, The (r — 1)-dimensional Hausdorff measure in R” will be denoted by .7~
Other standard notation to be used here includes S'~! for the unit sphere in R” and
Py (X) for the ball of radius p centered at X. In particular, %, will stand for %, (0).

1.1 Formulation of the Balance Law

Let 2" be an open subset of R¥. A proper domain in 2 is any open bounded subset
of 2, with Lipschitz boundary. A balance law on 2~ postulates that the production
of a certain “extensive” quantity in any proper domain & is balanced by the flux of
this quantity through the boundary 9% of 2.

The salient feature of an extensive quantity is that both its production and its flux
are additive over disjoint subsets. Thus, the production in the proper domain 2 is
given by the value Z(2) of a (signed) Radon measure & on 2. Similarly, with
every proper domain & is associated a countably additive set function 24, defined
on Borel subsets of d2, such that the flux in or out of 2 through any Borel subset
€ of 09 is given by 24 (%). Hence, the balance law simply states

(1.1.1) 2,(09) = 2(2),

for every proper domain & in .Z".

For the purposes of this book, it will suffice to consider flux set functions 24
that are absolutely continuous with respect to the Hausdorff measure .7°*~!. Hence
with each proper domain 2 in 2" is associated a density flux function g5 € L' (0 9)
such that

(1.12) 25(%) = /@;mxw%"*‘(m,

for any Borel subset € of 0 2.

Borel subsets 4 of 02 are oriented by means of the outward unit normal N to
2, at points of €. The fundamental postulate in the theory of balance laws is that the
flux depends solely on the surface and its orientation, i.e., if 4" is concurrently a Borel
subset of the boundaries of two distinct proper domains & and %, , sharing the same
outward normal on &, then 24, (¢) = 24,(¥), and thereby g4, (X) = g4, (X), for
almost all (with respect to % 1) X € F.

In analogy to the flux measure, one might be tempted to limit consideration to
production measures & that are absolutely continuous with respect to Lebesgue

measure, and are thus represented by a production density function p € L}O A 2):

(1.13) P(P) = /9 p(X)dX.
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Though adequate for many applications, such a simplification would be too restric-
tive for our needs, as we must deal extensively with balance laws for entropy-like
quantities, which incur nonzero production on shock fronts of zero Lebesgue mea-
sure.

1.2 Reduction to Field Equations

At first glance, the notion of a balance law, as introduced in Section 1.1, appears
too general to be of any use. It turns out, however, that the balancing requirement
(1.1.1) induces severe restrictions on density flux functions. Namely, the value of g¢
at X € d2 may depend on 2 solely through the outward normal N at X, and the
dependence is “linear”. This renders the balance law quite concrete, reducing it to a
field equation.

1.2.1 Theorem. Consider the balance law (1.1.1) on & where &2 is a signed Radon
measure and the 2 are induced, through (1.1.2), by density flux functions q4 that
are bounded, |q5(X)| < C, for all proper domains 2 and any X € d 9. Then,

(i) With each N € S~V is associated a bounded measurable function ay on 2, with
the following property: Let 9 be any proper domain in 2 and suppose X is some
point on 9 where the outward unit normal to 9 exists and is N. Assume further
that X is a Lebesgue point of qg, relative to %, and that the upper derivate of
| 2| at X, with respect to Lebesgue measure, is finite. Then

(1.2.1) 45/(X) = ay(X).

(ii) There exists a vector field A € L™ (%;Ml Xk) such that, for any fixed N € S*1,
(1.2.2) ay(X)=A(X)N, ae.onZ.

(iii) The function A satisfies the field equation

(1.2.3) divA = 2,

in the sense of distributions on Z'.

Proof. Fix any N € S*"! and then take any hyperplane %, of codimension one, with
normal N and nonempty intersection with 2". For X € ¥ N %", let B, (X) denote
the semiball {Y € %,(X): (Y —X)-N < 0}. The limit

: 1 ' _
(1.2.4) ay(X) = lrlﬂ)l A€ N %(X)) / 9%, (x) (Y)dA*(y),
ENB,(X)

exists for almost all (with respect to .#7*~1) X € ¥ N .2 and defines a bounded,
%~ -measurable function. By repeating the above construction for every hyper-
plane with normal N, we define ay on all of 2.



4 1 Balance Laws

In order to study the properties of ay , we fix N € S*~ !, together with a hyperplane
% with normal N, and a ball & in 2", centered at some point on € N 2". We then
apply the balance law to cylindrical domains

(1.2.5) 2= J %, d={X:X-1NecE¢nNB},

—0<1<€

where 0 and € are small nonnegative numbers. This yields

(1.2.6) /aN(X)d%k—l(X)+/a,N(X)dffk—l(X):32(@)+0(5)+0(e),
g g5

where the terms O(J) and O(g) account for the contribution of the flux through
the lateral boundary of the cylindrical domain. Setting 8 = 0 and letting € | 0, we
derive from (1.2.6) an estimate which, applied to all balls %, implies that, as 7 | 0,
ay (X +1N) = —a_n(X),in L* (¢ N Z") weak™. Similarly, setting € = 0 and letting
0 | 0, we deduce that, as 7 10, a_y (X +1TN) — —ay(X), again in L (€ N2Z")
weak™. In particular, this implies that ay is Lebesgue measurable on 2.

Returning to (1.2.6), and now letting both 6 | 0 and € | 0, we conclude that
a_n(X) = —ay(X), for almost all (with respect to J#*~1) X € €N .2, unless ¢
belongs to the (at most) countable family of hyperplanes with normal N for which
|Z1(€ N Z") > 0. Henceforth, we will refer to these exceptional hyperplanes as
singular.

Fig. 1.2.1

To show (1.2.1), consider any proper domain 2 in 2" and fix any X € d2 where
the outward unit normal is N and the tangential hyperplane is €. Assume, further,
that X is a Lebesgue point of g and that the upper derivate of | | at X, with respect
to Lebesgue measure, is finite. For r positive and small, write the balance law, first
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for the domain 2 N %, (X), then for the semiball {Y € %,(X) : (Y —X)-N < 0}; see
Fig. 1.2.1.
Combining the resulting two equations yields

(1.2.7) / 4o (Y)dA (V) — / ay(Y)d A1 (V) = o( <),
0INB(X) CNBr(X)

Dividing (1.2.7) by #*~!, letting r | 0, and recalling (1.2.4), we arrive at (1.2.1), thus
establishing assertion (i) of the theorem.

Fig. 1.2.2

We will verify (1.2.2) by employing the celebrated Cauchy tetrahedron argu-
ment. We introduce the standard orthonormal basis {Eq : o = 1,---,k} in R¥ and
assemble the m-row vector field A € L= (.2";M"**) with components ag,:

(1.2.8) A(X) = [ag, (X), - ,ag, (X)].

Fix any N € S¥~! with nonzero components Ny, (the argument has to be slightly
modified when some of the Ny vanish), and take any X € 2~ with the following
properties: X is a Lebesgue point of the k + 1 functions ag,,--- ,ag, and ay; the
upper derivate of || at X, with respect to Lebesgue measure, is finite. For r positive
and small, consider the simplex1

(1.2.9) D ={Y: (Yo —Xq)sgnNg > —r, 00 =1,--- ks (Y —=X)-N<r}.

Notice that 02 consists of one face € with outward normal N and k faces &, for
o =1,---,k, with respective outward normals (—sgnNgy)E . Furthermore, we have
AN (Cy) = |[Ng |71 (€). We select r so that none of the faces of 2 lies on a
singular hyperplane. The balance law for & then reads

! The Cauchy tetrahedron argument derives its name from the special case k = 3. Figure
1.2.2 depicts the setting when & = 2 and both N| and N, are negative.
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k
(1.2.10) / and A Z sgn Vo) / ag, dA* = P(9),
€ a=l Ca

Upon dividing (1.2.10) by #*~1(%) and then passing to the limit along any se-
quence of r that tends to zero, while avoiding the (at most countable) set of values
for which some face of Z lies on a singular hyperplane, one arrives at

k
(1.2.11) ay(X) =Y ag,(X)Ny = A(X)N,
a=1

which establishes (1.2.2).

It remains to show (1.2.3). For Lipschitz continuous A, one may derive (1.2.3) by
applying the divergence theorem to the balance law. In the general case where A is
merely in L*, we resort to mollification. We fix any test function y € CJ’(R¥) with
total mass one, supported in the unit ball, we rescale it by &,

(1.2.12) ve(X) = e Fy(e'X),

and employ it to mollify, in the customary fashion, &7 and A on the set Zz C 2 of
points whose distance from 2°¢ exceeds €:

(1.2.13) Pe=Vex P,  Ap= Y +A.

For any hypercube 2 C %Z;, we apply the divergence theorem to the smooth field
A¢ and use Fubini’s theorem to get

(1.2.14) /deg )dX = /As YA A (X)

_ //y/g(Y)A(X—Y)N(X)de%”k_l(X)

9 Rk

- / V() [ A@N@)dA* Z)ar,

%y

where 2y denotes the Y-translate of 2, thatis @y = {Z:Z+Y € 2}. By virtue of
the balance law,

(1.2.15) /A VAR (Z) = / N(2)dA(2) = P (),

aQy aﬁy

for almost all Y in the ball {Y : |Y| < €}. Hence (1.2.14) gives

(1.2.16) /deg )dX = /y/g P(Dy)dY = /p,g

whence we infer
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(1.2.17) divAe(X) = pe(X), X € 2.

Letting € | 0 yields (1.2.3), in the sense of distributions on Z". This completes the
proof.

In the following section we shall see that the course followed in the proof of
the above theorem can be reversed: departing from the field equation (1.2.3), one
may retrieve the flux density functions g4 and thereby restore the balance law in its
original form (1.1.1).

1.3 Change of Coordinates and a Trace Theorem

The divergence form of the field equations of balance laws is preserved under coor-
dinate changes, so long as the fields transform according to appropriate rules. In fact,
this holds even when the flux fields are merely locally integrable.

1.3.1 Theorem. Let 2" be an open subset of RF and let A € L}UC(,%”;MIX") and
P e M(Z) satisfy the field equation

(1.3.1) divA = 2,

in the sense of distributions on Z . Consider any bilipschit; homeomorphism X* of
X to a subset Z'* of RX, with Jacobian matrix

oxX*
1.3.2 J=——
( ) 12,4
such that
(1.3.3) detJ>a>0, ae.on Z.

Then, A* € L}OC(%*;MIX") and P* € M (), defined by

(1.3.4) A*oX* = (detJ) AT,

(1.3.5) (P* 0"y =(P,0), where p =@ oX",
satisfy the field equation

(1.3.6) divA* = 7%,

in the sense of distributions on 2.

Proof. It follows from (1.3.1) that

(1.3.7) /AgradgodX+<=@,(p>:O,
z
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for any Lipschitz function ¢ with compact support in 2, since one can always con-
struct a sequence {@,,} of test functions in C5’(Z"), supported in a compact subset
of 2, such that, as m — oo, ¢, — @, uniformly, and grad ¢,, — grad ¢, boundedly
almost everywhere on 2.

Given any test function ¢* € Ci’(2™), consider the function ¢ = ¢* o X*, Lip-
schitz with compact support in .2". Notice that grad ¢ = J grad ¢*. Furthermore,
dX* = (detJ)dX. By virtue of these and (1.3.4), (1.3.5), we can write (1.3.7) as

(1.3.8) /A*grad(p*dX*+(<@*,(p*> =0,
‘%'*

which establishes (1.3.6). The proof is complete.

1.3.2 Remark. In the special, yet common, situation (1.1.3) where the measure &7 is
induced by a production density field p € L} (2°), (1.3.5) implies that £2* is also

loc

induced by a production density field p* € L}oc (Z*), given by
(1.3.9) proX* = (detJ) ' p.

Even though in general the field A is only defined almost everywhere on an open
subset of R¥, it turns out that the field equation induces a modicum of regularity,
manifesting itself in trace theorems, which will allow us to identify the flux through
surfaces of codimension one and thus retrieve the balance law in its original form.
We begin with planar surfaces.

1.3.3 Lemma. Assume A € L™ (,}i’;Mle) and P € M (H) satisfy (1.3.1), in the
sense of distributions, on a cylindrical domain # = % x (a, ), where B is a ball
in RK=1. Let Ey denote the k-base vector in RF and set X = (x,t), with x in % and t in
(o, B). Then, after one modifies, if necessary, A on a set of measure zero, the function
a(x,t) = A(x,t)Ey acquires the following properties: One-sided limits a(-,T+) in
L= (B) weak* exist, for any T € (o, ), and can be determined by

T
1
a(x,7—) = esslim A(x,t)E; = lim — /A(x,t)Ekdt,
el0 €
—£

1T
T
(1.3.10)
1 T+E
a(x,7+) = esslim A(x,7)E, = lim — /A(x,t)Ekdt,
tlt el0 €

T

where the limits are taken in L (%) weak*. Furthermore, for any T € (a, ) and any
Lipschitz continuous function @ with compact support in &,
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/a(xa T—)(P(.x, T)dx = / A(X) grad(p(X) ax + <'@7 (P>33><(a,1:) y
Bx(o,T)

N

(1.3.11)

- fatw el edr = [ AX)erad@(X)dX +(P.0)5.(cp).
% Bx(1,B)

Thus, a(-,7—) = a(-,7+) = a(-,7), unless T belongs to the (at most) countable set of
points with | 2|(%# x {t}) > 0. In particular, when 22 is absolutely continuous with
respect to Lebesgue measure, the function T+ a(-,T) is continuous on (o, f3), in the
weak* topology of L*(A).

Proof. Fix € positive and small. If r is the radius of 4, let %, denote the ball in
R*~1 with the same center as % and radius r — €. As in the proof of Theorem 1.2.1,
we mollify A and & on %, x (a+ €, — €) through (1.2.13). The resulting smooth
fields A¢ and pe satisfy (1.2.17). We also set ag(x,1) = Ag(x,1)E}..

We multiply (1.2.17) by any Lipschitz function ¢ on R¥~!, with compact support
in %, and integrate the resulting equation over B, X (r,s), a+€ <r<s<f —e.
After an integration by parts, this yields

(1.3.12) ./.ag(x,s)(p(x)dx—./.ag(x,r)(p(x)dx
B Be

_ / / (Ae(x,1) T grad @ (x) + pe (x, 1) (%)} dxdt,
r PBe

where IT; denotes the projection of R¥ to R¥~!. Tt follows that the total variation
of the function 7 — [ ae(x,7)@(x)dx, over the interval (@ + €, — ¢€), is bounded,

B
uniformly in € > 0. Therefore, starting out from some countable family {¢;} of

test functions, with compact support in 2, that is dense in L'(24), we may invoke

Helly’s theorem in conjunction with a diagonal argument to extract a sequence {&;, },

with g, — 0 as m — oo, and identify a countable subset G of (¢, 3), such that, for

any £ =1,2---, the sequence { [ ag, (x,1)@;(x)dx} converges, as m — oo, for every
B

t € (a, B)\G, and the limit function has bounded variation over (a,B). The resulting
limit functions, for all ¢, may be collectively represented as [ a(x,?)@y(x)dx, for
%

some function 7 — a(-,7) taking values in L*(%). Clearly, a(x,t) = A(x,)E, a.e.
in . Thus, a does not depend on the particular sequence {&,} employed for its
construction, and (1.3.10) holds for any 7 € («, ).

Given any 7 € (&, 8) and any Lipschitz function ¢ with compact support in ¢/,
we multiply (1.2.17) by ¢ and integrate the resulting equation over %, X (@ + €, s),
where s € (o + €,7)\G. After an integration by parts, this yields

(1.3.13) /ag(x,s)(p(x,s)dx: / [Ae(X) grad 9(X) + pe(X) @(X)] dX.
Be PBe x (a+€,s)
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In (1.3.13) we first let € | 0 and then s 1 T thus arriving at (1.3.11); . The proof of
(1.3.11), is similar.

When & is absolutely continuous with respect to Lebesgue measure, (1.3.12)
implies that the family of functions t — [ a¢(x,7)@¢(x)dx, parametrized by €, is ac-

tually equicontinuous, and hence [ a(xﬁ)(pz (x)dx is continuous on (a, f3), for any

¢=1,2,---. Thus, t = a(-;t) is continuous on (a,B), in L= (%) weak*. This com-
pletes the proof.

The k-coordinate direction was singled out, in the above proposition, just for con-
venience. Analogous continuity properties are clearly enjoyed by AE, , in the direc-
tion of any base vector E , and indeed by AN, in the direction of any N € S*~! Thus,
departing from the field equation (1.2.3), one may retrieve the flux density functions
ay, for planar surfaces, encountered in Theorem 1.2.1. The following proposition
demonstrates that even the flux density functions g , for general proper domains &,
may be retrieved by the same procedure.

1.3.4 Theorem. Assume that A € L“(%;M“k) and P € M (X) satisfy (1.3.1), in
the sense of distributions, on an open subset 2" of R¥. Then, with any proper domain
P in X is associated a bounded 7% -measurable function g5 on 09 such that

(13.14) [ go(09(0)dr" () = [A(X) gradp(X)dX + (2.9)..
29 2

or any Lipschitz continuous function © on R, with compact support in 2.
Yy LD P PP

Fig. 1.3.1

Proof. Consider the cylindrical domain ™ = {X* = (x,t) :x € B, t € (—1,1)},
where 4 is the unit ball in R*~!. Fix any proper domain & in 2.

Since 2 is a Lipschitz domain, with any point X € dZ is associated a bilipschitz
homeomorphism X from .#™* to some open subset . of 2" such that X (0) = X,
X(Bx(—1,0))=2NH and X(B x {0}) = 0D N ; see Fig. 1.3.1.
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Consider the inverse map X* of X, with Jacobian matrix J, given by (1.3.2) and
satisfying (1.3.3). Construct A* € L= (¢ ;M"*¥), by (1.3.4), and 22* € .4 (),
by (1.3.5), which will satisfy (1.3.6) on £, in the sense of distributions.

We now apply Lemma 1.3.3 to identify the function a*(x,#) on J£* , which is
equal to A*(x,7)E), a.e on #*, and by (1.3.10) satisfies

0

1
(1.3.15) a*(x,0—) =esslim A" (x,t)E; = lim— [ A*(x,7)Edt.
t—0 el0 €
—&

We fix any Lipschitz continuous function ¢ on R¥, with compact support in %",
and let @* = @ o X, for X* € ¢ *. By virtue of (1.3.11),

[a 5009 wOdx = [ A'(X) erad’ (X)X + (2.0 s 10
2B Bx(—1,0)

We employ the homeomorphism X* in order to transform (1.3.16) into an equation on
2. Using that grad ¢ = J " grad ¢* and recalling (1.3.4) and (1.3.5), we may rewrite
(1.3.16) as

(13.07) [ as(X)e(0dA 1 (X) = [AX)eradp(x)dX +(2.0)s
09NKH 9
where we have set

* *

dx detJ " %
(1.3.18) quma o _EkTJNa oX*,

with N denoting the outward unit normal to &.

Equation (1.3.17) establishes (1.3.14) albeit only for ¢ with compact support in
. 1t should be noted, however, that the right-hand side of (1.3.17) does not depend
on the homeomorphism X* and thus the values of g on d 2N are intrinsically de-
fined, independently of the particular construction employed above. Hence, one may
easily pass from (1.3.17) to (1.3.14), for arbitrary Lipschitz continuous functions ¢
with compact support in 2", by a straightforward partition of unity argument. This
completes the proof.

The reader can find, in the literature cited in Section 1.10, more refined versions
of the above proposition, in which A is assumed to be merely locally integrable or
even just a measure, as well as alternative methods of proof. For instance, in a more
abstract approach, one establishes the existence of g by showing that the right-hand
side of (1.3.14) can be realized as a bounded linear functional on L' (9 2).

1.3.5 Remark. In the applications of the theory, one often needs an explicit con-
struction of g4 from A. This is easily obtained for domains & with simple geometric
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structure. To begin with, when 2 is the half-space {X € R¥ : X - N < 0} for some
N € S¥!, Lemma 1.3.3 implies

€
(1.3.19) qo(X) =esslimA(X —tN)N = liml A(x—tN)Ndt,
t—0 e—=0E& Jo

with limits taken in L (R¥~!) weak*. Consider next any & with the following prop-
erty. With any Xy € 92 are associated r > 0, & > 0 and N € S¥~! such that for all
X in the set € = d2(%B,(Xp) and t € (0, &), the point X —¢N lies in 2. Then,
applying (1.3.14) with test function ¢ foliated by the translates of € in the direction
— N, we conclude that (1.3.19) holds for X in €, with the limits now taken in L (%)
weak™.

1.4 Systems of Balance Laws

We consider the situation where n distinct balance laws, with production measures
induced by production density fields, act simultaneously in 2", and collect their field
equations (1.2.3) into the system

(1.4.1) divA(X) = P(X),

where now A is a n X k matrix field and P is a n-column vector field. The divergence
operator acts on the row vectors of A, yielding as divA a n-column vector field.

We assume that the state of the medium is described by a state vector field U,
taking values in an open subset ¢ of R”, which determines the flux density field A
and the production density field P at the point X € 2~ by constitutive equations

(1.4.2) A(X)=GUX),X), PX)=TI(UX),X),

where G and IT are given smooth functions defined on & x 2 and taking values in
M™% and R”, respectively.
Combining (1.4.1) with (1.4.2) yields

(1.4.3) divG(U(X),X) =TI(U(X),X),

namely a (formally) closed quasilinear first order system of partial differential equa-
tions from which the state vector field is to be determined. Any equation of the form
(1.4.3) will henceforth be called a system of balance laws, if n > 2, or a scalar bal-
ance law when n = 1. In the special case where there is no production, IT = 0,
(1.4.3) will be called a system of conservation laws, if n > 2, or a scalar conser-
vation law when n = 1. This terminology is not quite standard: in lieu of “system
of balance laws” certain authors favor the term “system of conservation laws with
source.” When G and IT do not depend explicitly on X, the system of balance laws is
called homogeneous.

Notice that when coordinates are stretched in the vicinity of some fixed point
XcZ,ie., X =X+¢€Y, then, as € | 0, the system of balance laws (1.4.3) reduces
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to a homogeneous system of conservation laws with respect to the Y variable. This is
why local properties of solutions of general systems of balance laws may be investi-
gated, without loss of generality, in the simpler setting of homogeneous systems of
conservation laws.

A Lipschitz continuous field U that satisfies (1.4.3) almost everywhere on 2~
will be called a classical solution. A measurable field U that satisfies (1.4.3) in the
sense of distributions, i.e., G(U(X),X) and IT(U(X),X) are locally integrable and

(1.4.4) /7 [G(U(X),X) grad @(X) + ¢(X)TI(U (X),X)]dX =0,

for any test function ¢ € Ci’(2Z"), is a weak solution. Any weak solution which is
Lipschitz continuous is necessarily a classical solution.

1.4.1 Notation. For a = 1,--- ,k, Go(U,X) will denote the o-th column vector of
the matrix G(U,X).

1.4.2 Notation. Henceforth, D will denote the differential with respect to the U vari-

able. When used in conjunction with matrix notations, D shall be regarded as a row
operation: D = [9/9U",---,d /oU"].

1.5 Companion Balance Laws

Consider a system (1.4.3) of balance laws on an open subset .2~ of R¥, resulting from
combining the field equation (1.4.1) with constitutive relations (1.4.2). A smooth
function Q, defined on & x 2" and taking values in M  is called a companion of
G if there is a smooth function B, defined on & x 2~ and taking values in R", such
that, forallU € & and X € 2,

(1.5.1) DQ«(U,X) =B(U,X) ' DGy(U,X), a=1,-- k.

The relevance of (1.5.1) stems from the observation that any classical solution U
of the system of balance laws (1.4.3) is automatically also a (classical) solution of
the companion balance law

(1.5.2) divQ(U(X),X) = h(U(X),X),
with
(1.53)  h(U,X)=BU,X)'I(U,X)+V-QU,X)—-B(U,X)'V-G(U,X).

In (1.5.3) V- denotes divergence with respect to X, holding U fixed — as opposed to
div, which treats U as a function of X.

One determines the companion balance laws (1.5.2) of a given system of balance
laws (1.4.3) by identifying the integrating factors B that render the right-hand side of
(1.5.1) a gradient of a function of U. The relevant integrability condition is
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(1.54) DB(U,X) ' DGy(U,X) =DGq(U,X) DB(U,X), a=1,--k,

forall U € € and X € 2. Clearly, one can satisfy (1.5.4) by employing any B that
does not depend on U in that case, however, the resulting companion balance law
(1.5.2) is just a trivial linear combination of the equations of the original system
(1.4.3). For nontrivial B, which vary with U, (1.5.4) imposes %n(n — 1)k conditions
on the n unknown components of B. Thus, when n = 1 and k is arbitrary one may use
any (scalar-valued) function B. When n = 2 and k = 2, (1.5.4) reduces to a system
of two equations in two unknowns from which a family of B may presumably be
determined. In all other cases, however, (1.5.4) is formally overdetermined and the
existence of nontrivial companion balance laws should not be generally expected.
Nevertheless, as we shall see in Chapter III, the systems of balance laws of continuum
physics are endowed with natural companion balance laws.

The system of balance laws (1.4.3) is called symmetric when the n X n matrices
DGy (U,X),a=1,--- ,k, are symmetric, forany U € & and X € Z"; say O is simply
connected and

(1.5.5) GU,X)'=prw,x)",

for some smooth function I", defined on & x 2 and taking values in M %k In that
case one may satisfy (1.5.4) by taking B(U,X) = U, which induces the companion

(1.5.6) QU,X)=U"G(U,X)-T(U,X).

Conversely, if (1.5.1) holds for some B with the property that, for every fixed
X € 2, B(-,X) maps diffeomorphically & to some open subset &* of R”, then
the change U* = B(U, X)) of state vector reduces (1.4.3) to the equivalent system of
balance laws

(1.5.7) divG*(U*(X),X) =1I"(U*(X),X),

with

(1.58) G (U*X)=GB ' (U*X),X), II'(U*.X)=II(B '(U*X),X),
which is symmetric. Indeed, upon setting

(1.5.9) Q" (U*,X) = QB ' (U",X),X),

(1.5.10) r*(U*x)=U""G*(U*,X) - Q" (U*,X),
one easily obtains from (1.5.1) that
(1.5.11) G'(U*,X)" =pr*wu+x)".

‘We have thus demonstrated that a system of balance laws is endowed with nontrivial
companion balance laws if and only if it is symmetrizable.
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We shall see that the presence of companion balance laws has major implica-
tions for the theory of systems of balance laws arising in physics. Quite often, in
order to simplify the analysis, it becomes necessary to make simplifying physical
assumptions that truncate the system of balance laws while simultaneously trimming
proportionately the size of the state vector. Such truncations cannot be performed
arbitrarily without destroying the mathematical structure of the system, which goes
hand in hand with its relevance to physics. For a canonical truncation, it is neces-
sary to operate on (or at least think in terms of) the symmetric form (1.5.7) of the
system, and adhere to the rule that dropping the i-th balance law should be paired
with “freezing” (i.e., assigning fixed values to) the i-th component U* of the special
state vector U*. Then, the resulting truncated system will still be symmetric and will
inherit the companion

(1.5.12) 0=0"-Y U c",

where the summation runs over all i for which the i-balance law has been eliminated
and U*' has been frozen. G* denotes the i-th row vector of G*.

Despite (1.5.1), and in contrast to the behavior of classical solutions, weak solu-
tions of (1.4.3) need not satisfy (1.5.2). Nevertheless, one of the tenets of the theory
of systems of balance laws is that admissible weak solutions should at least satisfy
the inequality
(1.5.13) divo(U(X),X) <h(U(X),X),
in the sense of distributions, for a designated family of companions. Relating this
postulate to the Second Law of thermodynamics and investigating its implications
for stability of weak solutions are among the principal objectives of this book.

Notice that an inequality (1.5.13), holding in the sense of distributions, can al-
ways be turned into an equality by subtracting from the right-hand side some non-
negative measure ./,

(1.5.14) divo(U(X),X) = h(U(X),X) — 4,

and may thus be realized, by virtue of Theorem 1.3.4, as the field equation of a
balance law.

1.6 Weak and Shock Fronts

The regularity of solutions of a system of balance laws will depend on the nature
of the constitutive functions. The focus will be on solutions with “fronts”, that is
singularities assembled on manifolds of codimension one. To get acquainted with
this sort of solutions, we consider here two kinds of fronts in a particularly simple
setting.

In what follows, % will be a smooth (k — 1)-dimensional manifold, embedded
in the open subset 2~ of R¥, with orientation induced by the unit normal field N.
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Fig. 1.6.1

U will be a (generally weak) solution of the system of balance laws (1.4.3) on 2~
which is continuously differentiable on .2"\.%, but is allowed to be singular on .%.
In particular, (1.4.3) holds for any X € 2°\.%. See Fig. 1.6.1.

First we consider the case where .% is a weak front, that is, U is Lipschitz con-
tinuous on 2" and as one approaches .% from either side the gradient of U attains
distinct limits grad~ U , grad™U. Thus [[gradU] = grad"U — grad~ U is the jump
experienced by gradU across .. Since U is continuous, tangential derivatives of U
cannot jump across .# and hence[grad U= [0U /ON]| N, where [0U /dN] denotes
the jump of the normal derivative dU /dN across .%. Therefore, taking the jump of
(1.4.3) across .Z at any point X € .% yields the following condition on [[0U /dN]:

U
(1.6.1) D[G(U(X),X)N] [[3NH =0.

Next we assume .% is a shock front, that is, as one approaches .# from either
side, U attains distinct limits U_, U and thus experiences a jump [U]] = Uy —U_
across .%. Both U_ and U, are continuous functions on .%. Since U is a (weak)
solution of (1.4.3), we may write (1.4.4) for any ¢ € C5(Z"). In (1.4.4) integration
over 2 may be replaced with integration over 2°\.Z. Since U is C' on 2°\.Z, we
may integrate by parts in (1.4.4). Using that ¢ has compact support in 2~ and that
(1.4.3) holds for any X € 2°\.Z, we get

(1.6.2) /f(p(X)[G(U+,X) —GU_,X)INd#*1(X)=0,

whence we deduce that the following jump condition must be satisfied at every point
X of the shock front .7 :

(1.6.3) [G(U,X)—G(U_,X)]N=0.

Notice that (1.6.3) may be rewritten in the form
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(1.6.4) { /0 'DIG(eU, + (1 —T)U,X)N]dr} U] =o.

Comparing (1.6.4) with (1.6.1) we conclude that weak fronts may be regarded as
shock fronts with “infinitesimal” strength: |[U]]| vanishingly small.
Witheach U € € and X € 2 we associate the variety

(1.6.5) Y (U,X) = {(N,V) e S x R": DIG(U,X)N]V = 0} .

The number of weak fronts and shock fronts of small strength that may be sustained
by solutions of (1.4.3) will depend on the size of ¥". In the extreme case where, for
all (U,X), the projection of ¥ (U,X) onto R" contains only the vector V =0, (1.4.3)
is called elliptic. Thus a system of balance laws is elliptic if and only if it cannot
sustain any weak fronts or shock fronts of small strength. The opposite extreme to
ellipticity, where 7 attains the maximal possible size, is hyperbolicity, which will be
introduced in Chapter III.

1.7 Survey of the Theory of BV Functions

The space of BV functions provides a natural setting for solutions of systems of bal-
ance laws with shock fronts. Indeed, a prominent feature of these functions is that
their points of discontinuity assemble on manifolds of codimension one. Comprehen-
sive treatment of the theory of BV functions can be found in the references cited in
Section 1.10, so only properties relevant to our purposes will be listed here, without
proofs.

1.7.1 Definition. A scalar function v is of locally bounded variation on an open
subset 2" of R¥if v € L] (27) and gradv is a (R*-valued) Radon measure .# on
2 ie.,

(1.7.1) - /&Vvdiv'f’(X)dX: /%"P(X)d///(x),

g

for any test function ¥ € C§ (2 ;M!*). When v € L!(.2") and .# is finite, v is a
function of bounded variation on 2", with rotal variation

(1.7.2) TVyo=|4|(2)= sup /v(X)div‘P(X)dX.
P (X)|=15.

The set of functions of bounded variation and locally bounded variation on 2~ will
be denoted by BV (") and BVjo.(Z), respectively.

Clearly, the Sobolev space W!'1(27), of L!'(2") functions with derivatives in
L'(2), is contained in BV (.2"); and Wkl);:l (&) is contained in BVjo.(Z").

The following proposition provides a useful criterion for testing whether a given
function has bounded variation:
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1.7.2 Theorem. Let {Ey, 00 = 1,--- ,k} denote the standard orthonormal basis of
RX. If v € BVioo(Z), then

1
(1.7.3) hmsuph [0(X +hEg) —o(X)|dX = | Aa|(¥), o=1,--k,
hl0 &

for any open bounded set % with % C 2 . Conversely, if v € Llloc(% ) and the left-
hand side of (1.7.3) is finite for every % as above, then v € BVioc(Z).

As a corollary, the above proposition yields the following result on compactness:

1.7.3 Theorem. Any sequence {vy} in BV,.(Z"), such that ||UZI|L1(OJ) and TVyv,
are uniformly bounded on every open bounded % C ', contains a subsequence
which converges in L; OC(% ), as well as almost everywhere on &', to some function
v in BV, (Z), with TVyv < liminfy_,. TVy vy .

Functions of bounded variation are endowed with fine geometric structure, as
described in

1.7.4 Theorem. The domain 2" of any v € BVioc(Z") is the union of three, pairwise
disjoint, subsets ¢, ¢, and .9 with the following properties:

(a) € is the set of points of approximate continuity of v, i.e., with each X € € is
associated vy € R such that

1
(1.7.4) lim / 10(X) — vp|dX = 0.
#(%)

(b) 7 is the set of points of approximate jump discontinuity of v, i.e., with each
X € 7 are associated N in S 1 and distinct v_ v, in R such that

1

1.7. lim — X)—0vyldX =

(1.7.5) im / [o(X) —vildX =0,
B (X)

where B (X) denote the semiballs %,(X)N{X : (X —X)-N 2 0}. Moreover, ¢
is countably rectifiable, i.e., it is essentially covered by the countable union of
C! (k — 1)-dimensional manifolds {.7;} embedded in R*: %1 (_7\U.Z;) =
Furthermore, when X € _# N.%; then N is normal on F; at X.

(c) .7 is the set of irregular points of v; its (k — 1)-dimensional Hausdorff measure
is zero: 1 (7)) = 0.

Up to this point, the identity of a BV function is unaffected by modifying its val-
ues on any set of (k-dimensional Lebesgue) measure zero, i.e., BVjoc(Z") is actually a
space of equivalence classes of functions, specified only up to a set of measure zero.
However, when dealing with the finer behavior of these functions, it is expedient to
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designate a canonical representative of each equivalence class, with values specified
up to a set of (k— 1)-dimensional Hausdorff measure zero. This will be effected in
the following way.

Suppose g is a continuous function on R and let v € BV, (Z"). With reference to
the notation of Theorem 1.7.4, the normalized composition g ov of g and v is defined
by

g(vg), iftXe?®

(176) g =1
Agum+u—ﬂmyn, itXe g

and arbitrarily on the set .# of irregular points, whose (k— 1)-dimensional Hausdorff
measure is zero. In particular, one may normalize v itself:

v, ifXecv
(1.7.7) B(X) =
Tv_+vy), ifXe 7.

Thus every point of ¢ becomes a Lebesgue point.

The appropriateness of the above normalization is indicated by the following
generalization of the classical chain rule:

1.7.5 Theorem. Assume g is continuously differentiable on R, with derivative Dg,
and let v € BVioc (27 ) NLZ(Z). Then gov € BV;oo(Z ) NL*(XZ). The normalized

function Dg o v is locally integrable with respect to the measure .# = gradv and

(1.7.8) grad (gov) = (Dgov)gradv

in the sense

(1.7.9) (/ 8000 div#(X)dX = [ (Dgo0)(X)¥(X)d.4(X),
for any test function ¥ € Cy (2 ;M K).

Next we review certain important geometric properties of a class of sets in R¥
that are intimately related to the theory of BV functions.

1.7.6 Definition. A subset Z of R has (locally) finite perimeter when its indicator
function x4 has (locally) bounded variation on R

Let us apply Theorem 1.7.4 to the indicator function 4 of a set & with lo-
cally finite perimeter. Clearly, the set 6" of points of approximate continuity of
is the union of the sets of density points of 2 and R¥\ 2. The complement of %,
i.e., the set of X in R¥ that are not points of density of either 2 or R¥\ 2, consti-
tutes the measure theoretic boundary 02 of 9. It can be shown that 2 has finite
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perimeter if and only if /¥ 1(9%) < o, and its perimeter may be measured by
TVgi Xz or by 7#*1(0 ). The set of points of approximate jump discontinuity of
X2 is called the reduced boundary of 2 and is denoted by 0*%. By Theorem 1.7.4,
0*9 C 9, #*1(d2\d*2) = 0 and 9* 7 is covered by the countable union of
C' (k — 1)-dimensional manifolds. Moreover, the vector N € S¥~! associated with
each point X of d* 2 may naturally be interpreted as the measure theoretic outward
normal to 9 at X. Sets with Lipschitz boundary have finite perimeter. In fact, one
can reformulate the entire theory of balance laws by considering as proper domains
sets that are not necessarily Lipschitz, as postulated in Section 1.1, but merely have
finite perimeter.

1.7.7 Definition. Assume 2 has finite perimeter and let v € BVio.(R*). v has inward
and outward traces v_ and v, at the point X of the reduced boundary 0* 2 of 2,
where the outward normal is N, if

1
1.7.1 lim — X)— X =0.
(1.7.10) im [ [o(x) —0s]aX = 0
B

It can be shown that the traces vy are defined for almost all (with respect to
%1 points of 9* 2 and are locally integrable on 9* 2. Furthermore, the following
version of the Gauss-Green theorem holds:

1.7.8 Theorem. Assume v € BV (R¥) so .4 = gradv is a finite measure. Consider
any bounded set 9 of finite perimeter, with set of density points 2" and reduced
boundary d* 9. Then

(1.7.11) ///(@*):/ v, NdA#*"
*9
Furthermore, for any Borel subset F of 09,

(1.7.12) ///(y)z/ (v_ —v )NdA*.

F

In particular, the set ¢ of points of approximate jump discontinuity of any v in
BVioe (Rk) may be covered by the countable union of oriented surfaces and so (1.7.12)
will hold for any measurable subset .% of #.

For v € BV(Z'), the measure .# = gradv may be decomposed into the sum
of three mutually singular measures: its continuous part, which is absolutely con-
tinuous with respect to k-dimensional Lebesgue measure; its jump part, which is
concentrated on the set _# of points of approximate jump discontinuity of v; and its
Cantor part. In particular, the Cantor part of the measure of any Borel subset of 2~
with finite (k — 1)-dimensional Hausdorff measure vanishes.

1.7.9 Definition. v € BV(2") is a special function of bounded variation, namely
v € SBV(X'), if the Cantor part of the measure grad v vanishes.
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It turns out that SBV (2" is a proper subspace of BV (.2") and it properly contains
whl(2).

For k = 1, the theory of BV functions is intimately related with the classical
theory of functions of bounded variation. Assume v is a BV function on a (bounded
or unbounded) interval (a,b) C (—eo,0). Let ¥ be the normalized form of v. Then

(-1
(1.7.13) TViapyo=sup Y [0(xj41) —0(x))],
J=1

where the supremum is taken over all (finite) meshes a < x; < xp < --- < xp < b.
Furthermore, (classical) one-sided limits ¥(x+) exist at every x € (a,b) and are both
equal to 9(x), except possibly on a countable set of points. When k = 1, the compact-
ness Theorem 1.7.3 reduces to the classical Helly theorem.

Any v € SBV (a,b) is the sum of an absolutely continuous function and a saltus
function. Accordingly, the measure gradv is the sum of the pointwise derivative v’
of v, which exists almost everywhere on (a,b), and the (at most) countable sum of
weighted Dirac masses, located at the points of jump discontinuity of v and weighted
by the jump.

A vector-valued function U is of (locally) bounded variation on .2~ when each
one of its components has (locally) bounded variation on 2; and its total variation
TV4-U is the sum of the total variations of its components. All of the discussions,
above, for scalar-valued functions, and in particular the assertions of Theorems 1.7.2,
1.7.3, 1.7.4, 1.7.5 and 1.7.8, generalize immediately to (and will be used below for)
vector-valued functions of bounded variation.

1.8 BV Solutions of Systems of Balance Laws

We consider here weak solutions U € L*(.Z") of the system (1.4.3) of balance laws,
which are in BVjoc(2"). In that case, by virtue of Theorem 1.7.5, the function Go U
is also in BVjoe(Z7) NL*(Z") and (1.4.3) is satisfied as an equality of measures. The
first task is to examine the local form of (1.4.3), in the light of Theorems 1.7.4, 1.7.5,
and 1.7.8.

1.8.1 Theorem. A function U € BVioc(Z)NL*(Z") is a weak solution of the system
(1.4.3) of balance laws if and only if (a) the measure equality

(1.8.1) [DG(U(X),X), gradU(X)]+V-G(U(X),X) =T1(U(X),X)

holds on the set € of points of approximate continuity of U; and (b) the jump condi-
tion

(1.8.2) [G(U;,X)—G(U_,X)]N=0

is satisfied for almost all (with respect to %) X on the set F of points of approx-
imate jump discontinuity of U, with normal vector N and one-sided limits U_, U .
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Proof. In (1.8.1) and in (1.8.6), (1.8.7), below, the symbol V- denotes divergence
with respect to X, holding U fixed — as opposed to div which treats U as a function
of X. Let .# denote the measure defined by the left-hand side of (1.4.3). On ¢, .#
reduces to the measure on the left-hand side of (1.8.1), by virtue of Theorem 1.7.5.
Recalling the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we deduce (GoU)+ = GoU- atevery pointof _¢. Thus, if .7 is any
Borel subset of ¢, then on account of the remark following the proof of Theorem
1.7.8,

(1.8.3) M(F)

/m [G(U_,X)—G(Uy,X)|Nds#*".

Therefore, .# = II in the sense of measures if and only if (1.8.1) and (1.8.2) hold.
This completes the proof.

Consequently, the set of points of approximate jump discontinuity of a BV solu-
tion is the countable union of shock fronts.

As we saw in Section 1.5, when G has a companion Q, the companion balance
law (1.5.2) is automatically satisfied by any classical solution of (1.4.3). The follow-
ing proposition describes the situation in the context of BV weak solutions.

1.8.2 Theorem. Assume the system of balance laws (1.4.3) is endowed with a com-
panion balance law (1.5.2). Let U € BVioo (2 ) NL*(X") be a weak solution of
(1.4.3). Then the measure

(1.8.4) N =divo(U(X),X) — h(U(X),X)

is concentrated on the set ¢ of points of approximate jump discontinuity of U and
the inequality (1.5.13) will be satisfied in the sense of measures if and only if

holds for almost all (with respect to 1) X € .

Proof. By virtue of Theorem 1.7.5, we may write (1.4.3) and (1.8.4) as

(1.8.6) [DGoU,gradU]+V-G—TI =0,
(1.8.7) N =[DQoU,gradU] +V-Q —h.
On account of (1.7.6), if X is in the set € of points of approximate continuity of
U7
(1.8.8)  DGoU(X)=DG(U(X),X), DQoU(X) = DO(U(X),X).

Combining (1.8.6), (1.8.7), (1.8.8) and using (1.5.1), (1.5.3), we deduce that .4 van-
ishes on €.
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From the Definition 1.7.7 of trace and the characterization of one-sided limits in
Theorem 1.7.4, we infer (QoU)+ = QoU. . If % is a bounded Borel subset of 7,
we apply (1.7.12), keeping in mind the remark following the proof of Theorem 1.7.8.
This yields

(1.8.9) N (F) = [?[Q(U,,x) — QU X)INdA* .

Therefore, .4 < 0 if and only if (1.8.5) holds. This completes the proof.

1.9 Rapid Oscillations and the Stabilizing Effect of Companion
Balance Laws

Consider a homogeneous system of conservation laws
(1.9.1) divG(U(X))=0
and assume that

(1.9.2) [G(W)—G(V)[N=0

holds for some states V, W in & and N € S*~!. Then one may construct highly os-
cillatory weak solutions of (1.9.1) on R¥ by the following procedure: start with any
finite family of parallel (k — 1)-dimensional hyperplanes, all of them orthogonal to
N, and define a function U on R¥ which is constant between adjacent hyperplanes,
taking the values V and W in alternating order. It is clear that U is a weak solution of
(1.9.1), by virtue of (1.9.2) and Theorem 1.8.1.

One may thus construct a sequence of solutions that converges in L™ weak™ to
some U of the form U (X) =p(X-N)V+[1 —p(X -N)|W, where p is any measurable
function from R to [0,1]. It is clear that, in general, such U will not be solutions of
(1.9.1), unless G(-)N happens to be affine along the straight line segment in R” that
connects V to W. This type of instability distinguishes systems that may support
shock fronts from elliptic systems that cannot.

Assume now G is equipped with a companion Q and [Q(W) — Q(V)|N # 0. No-
tice that imposing the admissibility condition divQ(U) < 0 would disqualify the os-
cillating solutions constructed above, because, by virtue of Theorem 1.8.2, it would
not allow jumps both from V to W and from W to V, in the direction N. Consequently,
inequalities (1.5.13) seem to play a stabilizing role. To what extent this stabilizing is
effective will be a major issue for discussion in the book.

1.10 Notes

The principles of the theory of balance laws were conceived in the process of lay-
ing down the foundations of elasticity, in the 1820’s. Theorem 1.2.1 has a long and
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celebrated history. The crucial discovery that the flux density is necessarily a linear
function of the outward normal was made by Cauchy [1,2]. The argument that the
flux density through a surface may depend on the surface solely through its outward
normal is attributed to Hamel and to Noll [2]. For recent developments of these ideas
in the context of continuum physics, see Gurtin and Martins [1], Degiovanni, Mar-
zocchi and Musesti [1], Marzocchi and Musesti [1,2] and éilhavy [2,3,4]. The proof
here borrows ideas from Ziemer [1]. With regard to the issue of retrieving the bal-
ance law from its field equation, which is addressed by Theorem 1.3.4, Chen and Frid
[1,5,6] have developed a comprehensive theory of divergence measure fields which
yields a more explicit construction of the trace than by the method presented here,
under the additional mild technical assumption that the surface may be foliated (akin
to Remark 1.3.5). For further developments of that approach, see Chen [9,10], Chen
and Frid [8,9], Frid [7], Chen and Torres [1,2], and Chen, Torres and Ziemer [1,2].
An alternative, less explicit, functional analytic approach is found in Anzellotti [1].
An important question, currently under investigation, is whether the conclusion of
Theorem 1.3.1 still holds in the more general situation where the change of coordi-
nates belongs to some Sobolev space W!? or even to the space BV.

The observation that systems of balance laws are endowed with nontrivial com-
panions if and only if they are symmetrizable is due to Godunov [1,2,3], and to
Friedrichs and Lax [1]; see also Boillat [1] and Ruggeri and Strumia [1]. For a discus-
sion of proper truncations of systems of balance laws arising in physics, see Boillat
and Ruggeri [1].

As already noted in the historical introduction, in one space dimension, weak
fronts are first encountered in the acoustic research of Euler while shock fronts were
introduced by Stokes [1]. Fronts in several space dimensions were first studied by
Christoffel [1]. The connection between shock fronts and phase transitions will not
be pursued here. For references to this active area of research see Section 8.7.

Comprehensive expositions of the theory of BV functions can be found in the
treatise of Federer [1], the monographs of Giusti , and Ambrosio, Fusco and Pallara
[1], and the texts of Evans and Gariepy [1] and Ziemer [2]. Theorems 1.7.5 and 1.7.8
are taken from Volpert [1]. The theory of special functions of bounded variation is
elaborated in Ambrosio, Fusco and Pallara [1].

An insightful discussion of the issues raised in Section 1.9 is found in DiPerna
[10]. These questions will be elucidated by the presentation of the method of com-
pensated compactness, in Chapter XVI.
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Introduction to Continuum Physics

In continuum physics, material bodies are modeled as continuous media whose
motion and equilibrium is governed by balance laws and constitutive relations.

The list of balance laws identifies the theory, for example mechanics, thermome-
chanics, electrodynamics, etc. The referential (Lagrangian) and the spatial (Eulerian)
formulation of the typical balance law will be presented. The balance laws of mass,
momentum, energy, and the Clausius-Duhem inequality, which demarcate contin-
uum thermomechanics, will be recorded.

The type of constitutive relation encodes the nature of material response. The
constitutive equations of thermoelasticity and thermoviscoelasticity will be intro-
duced. Restrictions imposed by the Second Law of thermodynamics, the principle of
material frame indifference, and material symmetry will be discussed.

2.1 Kinematics

i / =
X2
Fig. 2.1.1

The ambient space is R, of dimension one, two or three. Two copies of R” shall
be employed, one for the reference space, the other for the physical space. A body
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is identified by a reference configuration, namely an open subset 2 of the reference
space. Points of % will be called particles. The typical particle will be denoted by x
and time will be denoted by 7.

A placement of the body is a bilipschitz homeomorphism of its reference config-
uration 4 to some open subset of the physical space. A motion of the body over the
time interval (f1,2;) is a Lipschitz map y of & x (t1,1;) to R™ whose restriction to
each fixed ¢ in (#1,1,) is a placement. Thus, for fixed x € # and t € (11,12), x(x,t)
specifies the position in physical space of the particle x at time 7; for fixed ¢ € (¢1,12),
the map x(-,7) : ## — R™ yields the placement of the body at time #; finally, for fixed
X € B, the curve x(x,-) : (11,t2) — R™ describes the trajectory of the particle x in
physical space. See Fig. 2.1.1.

The reference configuration generally renders an abstract representation of the
body. In practice, however, one often identifies the reference space with the physical
space and employs as reference configuration an actual placement of the body, by
identifying material particles with the point in physical space that they happen to
occupy in that particular placement.

The aim of continuum physics is to monitor the evolution of various fields as-
sociated with the body, such as density, stress, temperature, etc. In the referential or
Lagrangian description, one follows the evolution of fields along particle trajecto-
ries, while in the spatial or Eulerian description one monitors the evolution of fields
at fixed position in space. The motion allows us to pass from one formulation to the
other. For example, considering some illustrative field w, we write w = f(x,¢) for its
referential description and w = ¢ (), 7) for its spatial description. The motion relates
fand ¢ by ¢(x(x,1),t) = f(x,1), forx € B, 1 € (11,12).

Either formulation has its relative merits, so both will be used here. Thus, in or-
der to keep proper accounting, three symbols would be needed for each field, one
to identify it, one for its referential description, and one for its spatial description
(w, f, and ¢ in the example, above). However, in order to control the proliferation of
symbols and make the physical interpretation of the equations transparent, the stan-
dard notational convention is to employ the single identifying symbol of the field for
all three purposes. To prevent ambiguity in the notation of derivatives, the following
rules will apply: Partial differentiation with respect to ¢ will be denoted by an overdot
in the referential description and by a z-subscript in the spatial description. Gradient,
differential and divergence! will be denoted by Grad, V and Div, with respect to the
material variable x, and by grad, d and div, with respect to the spatial variable y.
Thus, referring again to the typical field w with referential description w = f(x,7)
and spatial description w = ¢(yx,t), w will denote df/dt, w, will denote d¢/dr,
Gradw will denote grad, f, and gradw will denote grad, ¢. This notation may appear
confusing at first but the student of the subject soon learns to use it efficiently and
correctly.

The motion y induces two important kinematical fields, namely the velocity

! For consistency with matrix notations, gradients will be realized as m-column vectors and
differentials will be m-row vectors, namely the transpose of gradients. As in Chapter I, the
divergence operator will be acting on row vectors.
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(2.1.1) v=X,

in L*(2# x (t1,12); R™), and the deformation gradient, which, its name notwithstand-
ing, is the differential of the motion:

(2.1.2) F =Vy,

in L=(# x (t1,t2); M"™*™). In accordance with the definition of placement, we shall
be assuming

(2.1.3) detF>a>0 a.e.

These fields allow us to pass from spatial to material derivatives; for example, as-
suming w is a Lipschitz field,

(2.1.4) w=w; + (dw)v,

(2.1.5) Gradw = F " gradw, Vw = (dw)F.

By virtue of the polar decomposition theorem, the local deformation of the
medium, expressed by the deformation gradient F', may be realized as the composi-
tion of a pure stretching and a rotation:

(2.1.6) F=RU,
where the symmetric, positive definite matrix
(2.1.7) U=(F'F)!/?

is called the right stretch tensor and the proper orthogonal matrix R is called the
rotation tensor.

Turning to the rate of change of deformation, we introduce the referential and
spatial velocity gradients (which are actually differentials):

(2.1.8) F =V, L= do.

L is decomposed into the sum of the symmetric stretching tensor D and the skew-
symmetric spin tensor W:

(2.1.9) L=D+W, D=1L(L+L"), W=3(L-L").

The spin tensor is just a representation of the vorticity vector @ = curlv as a skew
symmetric matrix.

The class of Lipschitz continuous motions allows for shocks but is not sufficiently
broad to also encompass motions involving cavitation in elasticity, vortices in hydro-
dynamics, vacuum in gas dynamics, etc. Even so, we shall continue to develop the
theory under the assumption that motions are Lipschitz continuous, deferring con-
siderations of generalization until such need arises.
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2.2 Balance Laws in Continuum Physics

Consider a motion y of a body with reference configuration  C R™, over a time
interval (t,t;). The typical balance law of continuum physics postulates that the
change over any time interval in the amount of a certain extensive quantity stored in
any part of the body is balanced by a flux through the boundary and a production in
the interior during that time interval. With space and time fused into space-time, the
above statement yields a balance law of the type considered in Chapter I, ultimately
reducing to a field equation of the form (1.2.3).

To adapt to the present setting the notation of Chapter I, we take space-time
R™+1 as the ambient space R¥, and set 2~ = % x (t1,12), X = (x,t). With reference
to (1.4.1), we partition the flux density field A into a n X m matrix-valued spatial part
¥ and a R"-valued temporal part ®, namely A = [—¥| ©]. In the notation introduced
in the previous section, (1.4.1) now takes the form

(2.2.1) O =Div¥ +P.

This is the referential field equation for the typical balance law of continuum physics.
The field O is the density of the balanced quantity; ¥ is the flux density field through
material surfaces; and P is the production density.

The corresponding spatial field equation may be derived by appealing to Theorem
1.3.1. The map X* that carries (x,#) to (x(x,?),t) is a bilipschitz homeomorphism
of 2 to some subset 2 * of R”*! with Jacobian matrix (cf. (1.3.2), (2.1.1), and
(2.1.2)):

(2.2.2) J= [g Zl’] .

Notice that (1.3.3) is satisfied by virtue of (2.1.3). Theorem 1.3.1 and Remark
1.3.2 now imply that if ® € L}OC (Z5RY), P e L}OC(%;M””‘) and P € L}OC (2R,

then (2.2.1) holds in the sense of distributions on 2" if and only if
(2.2.3) O +div(0*v") = divP* + P*

holds in the sense of distributions on 2°*, where the fields ©* € L} .(2*;R"),
wr e Ll (27*M™™) and P* € L}, (Z*,R") are defined by

(2.24) O =(detF) 'O, P* = (det F)"'WFT, P* = (detF)"'P.

It has thus been established that the referential (Lagrangian) field equations
(2.2.1) and the spatial (Eulerian) field equations (2.2.3) of the balance laws of con-
tinuum physics are related by (2.2.4) and are equivalent within the function class of
fields considered here.

As we have seen, in order to pass from Lagrangian to Eulerian coordinates, and
vice versa, one has to apply Theorem 1.3.1 for a bilipschitz homeomorphism that is
not given in advance, but is generated by the motion itself, which also affects the
balanced fields. This coupling, which has no bearing on whether the referential and
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the spatial formulations of balance laws are equivalent, has nonetheless fostered an
unwarranted aura of mystery about the issue.

In anticipation of the forthcoming discussion of material symmetry, it is useful to
investigate how the fields @, ¥, P and @, ¥*, P* transform under isochoric changes
of the reference configuration of the body, induced by a bilipschitz homeomorphism
X of Z to some subset % of another reference space R™, with Jacobian matrix

(2.2.5) ="

detH =1,

xox

Fig. 2.2.1

see Figure 2.2.1. By virtue of Theorem 1.3.1, the Lagrangian field equation (2.2.1)

on % will transform into an equation of exactly the same form on %, with fields ©,
¥ and P related to @, ¥ and P by

(2.2.6) 6=0, Y=¥YH', P=pr

In the corresponding Eulerian field equations, the fields ©@*,¥* and P* are obtained
through (2.2.4): @* = (det F)~'@, ¥* = (det F)"'"PF" and P* = (det F)~'P,
where F' denotes the deformation gradient relative to the new reference configura-
tion 4. By the chain rule, F=FH " andso

(2.2.7) 6" =0*", W=w, p=p,

i.e., as was to be expected, the spatial fields are not affected by changing the reference
configuration of the body.
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In continuum physics, theories are identified by means of the list of balance laws
that apply in their context. The illustrative example of thermomechanics will be pre-
sented in the next section. It should be noted, however, that in addition to balance
laws with physical content there are others that simply express useful, purely kine-
matic properties. Equation (2.1.8), F = Vo, which expresses the compatibility be-
tween the fields F' and v, provides an example in that direction.

At first reading, one may skip the remainder of this section, which deals with a
special topic for future use, and pass directly to the next Section 2.3.

In what follows, we derive, for m = 3, a set of kinematic balance laws whose
referential form is quite complicated and yet whose spatial form is very simple or
even trivial. This will demonstrate the usefulness of switching from the Lagrangian
to the Eulerian formulation and vice versa.

A smooth function @ on the set of F € M3*? with det F > 0 is called a null
Lagrangian if the Euler-Lagrange equation

(2.2.8) Div[dr@(F)] =0,

associated with the functional [ @(F)dx, holds for every smooth deformation gradi-
ent field F. Any null Lagrangian ¢ admits a representation as an affine function

(2.2.9) O(F)=1tr(AF)+tr(BF*)+ otdet F +

of F, its determinant det F, and its adjugate matrix F* = (det F)F ! = (dpdet F)".
By combining (2.2.8) with F' = Vv, one deduces that if ¢ is any null Lagrangian
(2.2.9), then the conservation law

(2.2.10) ¢(F) =Div[o" dr¢(F)]

holds for any smooth motion with deformation gradient F and velocity v.

The aim here is to show that, for any null Lagrangian (2.2.9), the “quasi-static”
conservation law (2.2.8) as well as the “kinematic” conservation law (2.2.10) actually
hold even for motions that are merely Lipschitz continuous, i.e.,

(2.2.11) Div (9pF) =0,
(2.2.12) Div (dpF*) =0,
(2.2.13) Div (dpdet F) =0,
(2.2.14) F =Div (v' 9F),

(2.2.15) F* =Div (v 9pF*),
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(2.2.16) det F = Div (v dp det F),

for any bounded measurable deformation gradient field F' and velocity field v.
Clearly, (2.2.11) is obvious and (2.2.14) is just an alternative way of writing the
familiar F = Vo. Furthermore, since

aF* 3
(2.2.17) Z Z &jk€apyFiy

where &, and €,p, are the standard permutation symbols, (2.2.12) follows from
the observation that 9 Fyy/dxg = 9% )i /dxpdxy is symmetric in (B, ) while g4, is
skew-symmetric in (3, 7).

To see (2.2.13), consider the trivial balance law (2.2.3), with ®* =0, ¥* =1,
P* =0, and write its Lagrangian form (2.2.1), where on account of (2.2.4), ® = 0,
Y = (detF)(F")"!' = (F*)" = ddet F/dF, P = 0. Similarly, (2.2.16) is the La-
grangian form (2.2.1) of the trivial balance law (2.2.3), with @* = [,¥* =o',
and P* = 0. Indeed, in that case, by virtue of (2.2.4) we deduce that ® = det F,
Y= (det F)(F~'v)" = (F*v)" =v"(ddet F/dF),and P =0.

It remains to verify (2.2.15). We begin with the simple conservation law

(2.2.18) (F71); = (dx); = dx, = —d(F'v),

in Eulerian coordinates, and derive its Lagrangian form (2.2.1), through (2.2.4). Thus
O = (detF)F —1 — F* while the flux ¥, in components form, reads

w

(2.2.19) Wi = Zl(detF) {Fﬁ’j'Fa' il F, }
=

The quantity in brackets vanishes when o = 8 and/or i = j; otherwise, it represents a
minor of the matrix F~! and thus is equal to det F~! multiplied by the corresponding
entry of the matrix (F~!)~! = F. Hence, recalling (2.2.17),

3 OF*.
(2.2.20) (det F) [y it = Fo '] = X ¥ eiieapyFioy = S
k=1y=1 P

and this establishes (2.2.15).

2.3 The Balance Laws of Continuum Thermomechanics

Continuum thermomechanics, which will serve as a representative model throughout
this work, is demarcated by the balance laws of mass, linear momentum, angular
momentum, energy, and entropy whose referential and spatial field equations will
now be introduced.

In the balance law of mass, there is neither flux nor production so the referential
and spatial field equations read
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(2.3.1) po=0,

(2.3.2) p,+div(pv') =0,

where pg is the reference density and p is the density associated with the motion,
related through

(2.3.3) p = po(det F)~ 1.

Note that (2.3.1) implies that the value of the reference density associated with a
particle does not vary with time: py = po(x). (2.3.2) is also referred to as the equation
of continuity.

In the balance law of linear momentum, the production is induced by the body
force (per unit mass) vector b, with values in R™, while the flux is represented by a
stress tensor taking values in M"™*"™_ The referential and spatial field equations read

(2.3.4) (pov) = DivS+ pob,

(2.3.5) (pv); +div(pvo ') =divT + pb,

where S denotes the Piola-Kirchhoff stress and T denotes the Cauchy stress, related
by

(2.3.6) T = (detF)"'SF'.

For any unit vector v, the value of Sv at (x,t) yields the stress (force per unit area)
vector transmitted at the particle x and time ¢ across a material surface with normal v;
while the value of Tv at (x,t) gives the stress vector transmitted at the point ¥ in
space and time ¢ across a spatial surface with normal v.

In the balance law of angular momentum, production and flux are the moments
about the origin of the production and flux involved in the balance of linear momen-
tum. Consequently, the referential field equation is

(2.3.7) (x Apov) =Div(x AS)+ x A pob,
where A denotes cross product. Under the assumption that pyv, S and pob are in LllOC
while the motion ¥ is Lipschitz continuous, we may use (2.3.4), (2.1.1) and (2.1.2)

to reduce (2.3.7) into
(2.3.8) SFT =FST.

Similarly, the spatial field equation of the balance of angular momentum reduces, by
virtue of (2.3.5), to the statement that the Cauchy stress tensor is symmetric:

(2.3.9) T =T.

There is no need to perform that calculation since (2.3.9) also follows directly from
(2.3.6) and (2.3.8).
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In the balance law of energy, the energy density is the sum of the (specific)
internal energy (per unit mass) € and kinetic energy. The production is the sum of
the rate of work of the body force and the heat supply (per unit mass) r. Finally,
the flux is the sum of the rate of work of the stress tensor and the heat flux. The
referential and spatial field equations thus read

(2.3.10) (pog + 1po|v[*) =Div(v'S+Q") +pov' b+ por,

(2.3.11) (pe+ip[of*) +div](pe+ 1plo])o'] = div(o T +4")+po'b+pr,

where the referential and spatial heat flux vectors Q and ¢, with values in R™, are
related by

(2.3.12) g=(det F)"'FQ.

Finally, the balance law of entropy is expressed by the Clausius-Duhem inequal-

ity

1
(2.3.13) (pos) > Div <9QT> +Pog,

1
(2.3.14) (ps); +div(pso") > div (eqT) —|—p£ ,

in its referential and spatial form, respectively. The symbol s stands for (specific) en-
tropy and 6 denotes the (absolute) temperature. Thus, the entropy flux is just the heat
flux divided by temperature. The term  represents the external entropy supply (per
unit mass), induced by the heat supply r. However, the fact that (2.3.13) and (2.3.14)
are mere inequalities rather than equalities signifies that there may be additional in-
ternal entropy production, which is not specified a priori in the context of this theory,
apart from being constrained to be nonnegative. This last condition is dictated by (and
in fact expresses) the Second Law of thermodynamics. As a nonnegative distribution,
the internal entropy production is necessarily a measure .4". Adding .4 to the right-
hand side turns the Clausius-Duhem inequality into an equality which, by virtue of
Theorem 1.3.3, is the field equation of a balance law. In particular, this demonstrates
that the referential form (2.3.13) and the spatial form (2.3.14) are equivalent even
when the fields are merely locally integrable.

The motion and the entropy (or temperature) field together constitute a thermo-
dynamic process. The fields of internal energy, stress, heat flux, and temperature (or
entropy) are determined from the thermodynamic process by means of constitutive
relations that characterize the material response of the body. In particular, the con-
stitutive equation for the stress is required to satisfy identically the balance law of
angular momentum as expressed by (2.3.8) or (2.3.9). Representative material classes
will be introduced in the following Sections, 2.5 and 2.6.

The field equations of the balance laws of mass, linear momentum and energy,
coupled with the constitutive relations, render a closed system of evolution equations
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that should determine the thermodynamic process from assigned body force field b,
heat supply field r, boundary conditions, and initial conditions.

The remaining balance law of entropy plays a markedly different role. The
Clausius-Duhem inequality (2.3.13) or (2.3.14) is regarded as a criterion of ther-
modynamic admissibility for thermodynamic processes that already comply with the
balance laws of mass, momentum and energy. In this regard, smooth thermodynamic
processes are treated differently from thermodynamic processes with discontinuities.

It is a tenet of continuum thermodynamics that the constitutive relations should
be constrained by the requirement that any smooth thermodynamic process that
balances mass, momentum and energy must be automatically thermodynamically
admissible. To implement this requisite, the first step is to derive from the Clausius-
Duhem inequality the dissipation inequality

(2.3.15) poé—poei—tr(SFT)—%Q-GSO,

(2.3.16) pé—p@s’—tr(TD)—écpggo,

in Lagrangian or Eulerian form, respectively, which does not involve the extrane-
ously assigned body force and heat supply. The new symbols G and g appearing in
(2.3.15) and (2.3.16) denote the temperature gradient:

(2.3.17) G=Gradd, g=gradf, G=F'g.

To establish (2.3.15), one first eliminates the body force b between the field equa-
tions (2.3.1), (2.3.4) and (2.3.10) of the balance laws of mass, linear momentum and
energy to get

(2.3.18) poé =tr (SFT)+DivQ" + por,

and then eliminates the heat supply r between the above equation and the Clausius-
Duhem inequality (2.3.13). Similarly, (2.3.16) is obtained by combining (2.3.2),
(2.3.5) and (2.3.11) with (2.3.14) in order to eliminate b and r. Of course, (2.3.15)
and (2.3.16) are equivalent: either one implies the other by virtue of (2.3.3), (2.3.6),
(2.3.17), (2.1.9) and (2.3.9). In the above calculations it is crucial that the underly-
ing thermodynamic process is assumed smooth, because this allows us to apply the
classical product rule of differentiation on terms like |U|2, v'S, 6710 etc., which in-
duces substantial cancellation. It should be emphasized that the dissipation inequal-
ities (2.3.15) and (2.3.16) are generally meaningless for thermodynamic processes
with discontinuities.

The constitutive equations are required to satisfy identically the dissipation in-
equality (2.3.15) or (2.3.16), which will guarantee that any smooth thermodynamic
process that balances mass, momentum and energy is automatically thermodynam-
ically admissible. The implementation of this requisite for specific material classes
will be demonstrated in the following Sections 2.5 and 2.6.
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Beyond taking care of smooth thermodynamic processes, as above, the Clausius-
Duhem inequality is charged with the additional responsibility of certifying the ther-
modynamic admissibility of discontinuous processes. This is a central issue, with
many facets, which will surface repeatedly in the remainder of the book.

When dealing with continuous media with complex structure, e.g., mixtures of
different materials, it becomes necessary to replace the Clausius-Duhem inequality
with a more general entropy inequality in which the entropy flux is no longer taken
a priori as heat flux divided by temperature but is instead specified by an individual
constitutive relation. It turns out, however, that in the context of thermoelastic or
thermoviscoelastic media, which are the main concern of this work, the requirement
that such an inequality must hold identically for any smooth thermodynamic process
that balances mass, momentum and energy implies in particular that entropy flux is
necessarily heat flux divided by temperature, so that we fall back to the classical
Clausius-Duhem inequality.

To prepare the ground for the forthcoming investigation of material symmetry,
it is necessary to discuss the law of transformation of the fields involved in the bal-
ance laws when the reference configuration undergoes a change induced by an iso-
choric bilipshitz homeomorphism X, with unimodular Jacobian matrix H (2.2.5); see
Fig. 2.2.1. The deformation gradient F and the stretching tensor D (cf. (2.1.9)) will
transform into new fields F and D:

(2.3.19) F=FH', D=D.

The reference density py, internal energy €, Piola-Kirchhoff stress S, entropy s, tem-
perature 0, referential heat flux vector O, density p, Cauchy stress T, and spatial
heat flux vector ¢, involved in the balance laws, will also transform into new fields
00,€,5,5,0,0,p,T, and g according to the rule (2.2.6) or (2.2.7), namely,

(2.3.20) po=po, E=¢, S=SH', §=s, 6=60, Q=HOQ,

(2.3.21) p=p, T=T, G=q.

Also the referential and spatial temperature gradients G and g will transform into
G and g with

(2.3.22)

Q
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2.4 Material Frame Indifference

The body force and heat supply are usually induced by external factors and are as-
signed in advance, while the fields of internal energy, stress, entropy and heat flux
are determined by the thermodynamic process. Motions may influence these fields
inasmuch as they deform the body: rigid motions, which do not change the distance
between particles, should have no effect on internal energy, temperature or referential
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heat flux and should affect the stress tensor in such a manner that the resulting stress
vector, observed from a frame attached to the moving body, looks fixed. This re-
quirement is postulated by the fundamental principle of material frame indifference
which will now be stated with precision

Consider any two thermodynamic processes (,s) and (x*,s*) of the body such
that the entropy fields coincide, s* = s, while the motions differ by a rigid (time
dependent) rotation:

(2.4.1) 2 (x,0) = 0() x(x,1), xXEB, t€(t,n),

(2.4.2) o'(No()=00)0"(1)=1, detO(t)=1, te(t,n).

Note that the fields of deformation gradient F, F*, spatial velocity gradient L, L*¥ and
stretching tensor D, D¥ (cf. (2.1.8), (2.1.9)) of the two processes (¥,s), (x*,s*) are
related by

(2.4.3) F*=oF, L*=o0L0"+00", D*=0DO".

Let (£,5,0,0) and (¢*,5% 6% O%) denote the fields for internal energy, Piola-
Kirchhoff stress, temperature and referential heat flux associated with the processes
(%,s) and (x*,s*). The principle of material frame indifference postulates:

(2.4.4) ef=e, S'=0s, 6'=6 0'=0

From (2.4.4), (2.3.17) and (2.4.3) it follows that the referential and spatial tempera-
ture gradients G, G* and g, g” of the two processes are related by

(2.4.5) G'=G, g'=o0;g

Furthermore, from (2.3.6), (2.3.12) and (2.4.3) we deduce the following relations
between the Cauchy stress tensors 7, T# and the spatial heat flux vectors g, ¢* of the
two processes:

(2.4.6) " =o0ro", 4*=o04.

The principle of material frame indifference should be reflected in the constitu-
tive relations of continuous media, irrespectively of the nature of material response.
Ilustrative examples will be considered in the following two sections.

2.5 Thermoelasticity

In the framework of continuum thermomechanics, a thermoelastic medium is identi-
fied by the constitutive assumption that, for any fixed particle x and any motion, the

2 An alternative, albeit equivalent, realization of this setting is to visualize a single thermo-
dynamic process monitored by two observers attached to individual coordinate frames that
rotate relative to each other. When adopting that approach, certain authors are allowing for
reflections, in addition to proper rotations.
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value of the internal energy &, the Piola-Kirchhoff stress S, the temperature 0, and
the referential heat flux vector Q, at x and time ¢, is determined solely by the value at
(x,7) of the deformation gradient F, the entropy s, and the temperature gradient G,
through constitutive equations

e =2&(F,s,G),
S=S(F,s,G),
(2.5.1)
9 = G(F’S7G)7
0= 0(F,s,G),

where &, §, 6 and 0 are smooth functions defined on the subset of M"*" x R x R™
with det F > 0. Moreover, 8 (F,s,G) > 0. When the thermoelastic medium is homo-
geneous, the same functions €, S, 6 and 0 and the same value po of the reference
density apply to all particles x € £.

The Cauchy stress T and the spatial heat flux ¢ are also determined by consti-
tutive equations of the same form, which may be derived from (2.5.1) and (2.3.6),
(2.3.12). When employing the spatial description of the motion, it is natural to sub-
stitute on the list (2.5.1) the constitutive equations of 7" and g for the constitutive
equations of S and Q; also on the list (F, s, G) of the state variables to replace the ref-
erential temperature gradient G with the spatial temperature gradient g (cf. (2.3.17)).

The above constitutive equations will have to comply with the conditions stip-
ulated earlier. To begin with, as postulated in Section 2.3, every smooth thermody-
namic process that balances mass, momentum and energy must satisfy identically
the Clausius-Duhem inequality (2.3.13) or, equivalently, the dissipation inequality
(2.3.15). Substituting from (2.5.1) into (2.3.15) yields

(2.5.2) tr[(podr& — S)F "] + po(0s& — 0)s + pode G—6710-G <0.

It is clear that by suitably controlling the body force b and the heat supply » one may
construct smooth processes that balance mass, momentum and energy and attain at
some point (x,¢) arbitrarily prescribed values for F, s, G, F, s and G, subject only to
the constraint det F' > 0. Hence (2.5.2) cannot hold identically unless the constitutive
relations (2.5.1) are of the following special form:

e=£(F,s),
S = podré(F,s),

(2.5.3)
0 = 0,8(F,s),

Q= Q(F,s,G),

(2.5.4) Q(F,s,G)-G>0.
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Thus the internal energy may depend on the deformation gradient and on the entropy
but not on the temperature gradient. The constitutive equations for stress and tem-
perature are induced by the constitutive equation of internal energy, through caloric
relations, and are likewise independent of the temperature gradient. Only the heat
flux may depend on the temperature gradient, subject to the condition (2.5.4) which
implies that heat always flows from the hotter to the colder part of the body.
Another requirement on constitutive relations is that they observe the principle
of material frame indifference, formulated in Section 2.4. By combining (2.4.4) and
(2.4.3); with (2.5.3), we deduce that the functions & and O must satisfy the conditions

(2.5.5) E(OF,s) = &(F,s), 0(OF,s,G) = O(F.s,G),

for all proper orthogonal matrices O. A simple calculation verifies that when (2.5.5)
hold, then the remaining conditions in (2.4.4) will be automatically satisfied, by
virtue of (2.5.3); and (2.5.3)3.

To see the implications of (2.5.5), we apply it with O = R, where R is the rota-
tion tensor in (2.1.6), to deduce

(2.5.6) &(F,s)=2(U,s), QO(F,5,G) = Q(U,s,G).

It is clear that, conversely, if (2.5.6) hold then (2.5.5) will be satisfied for any proper
orthogonal matrix O. Consequently, the principle of material frame indifference is
completely encoded in the statement (2.5.6) that the internal energy and the referen-
tial heat flux vector may depend on the deformation gradient F solely through the
right stretch tensor U.

When the spatial description of motion is to be employed, the constitutive equa-
tion for the Cauchy stress

(2.5.7) T =pdré(F,s)F ',

which follows from (2.3.6), (2.3.3) and (2.5.3),, will satisfy the principle of material
frame indifference (2.4.6); so long as (2.5.6) hold. For the constitutive equation of
the spatial heat flux vector

(2'5'8) qZQ(F’s7g)’

the principle of material frame indifference requires (recall (2.4.6),, (2.4.3); and
(2.4.5),):

(2.5.9) 4(OF,s,0g) = O4(F,s,g),

for all proper orthogonal matrices O.

The final general requirement for constitutive relations is that the Piola-Kirchhoff
stress satisfy (2.3.8), for the balance of angular momentum. This imposes no addi-
tional restrictions, however, because a simple calculation reveals that once (2.5.5);
holds, S computed through (2.5.3), will automatically satisfy (2.3.8). Thus in ther-
moelasticity, material frame indifference implies balance of angular momentum.
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The constitutive equations undergo further reduction when the medium is en-
dowed with material symmetry. Recall from Section 2.3 that when the reference
configuration of the body is changed by means of an isochoric bilipschitz homeo-
morphism X with unimodular Jacobian matrix H (2.2.5), then the fields transform
according to the rules (2.3.19), (2.3.20), (2.3.21) and (2.3.22). It follows, in partic-
ular, that any medium that is thermoelastic relative to the original reference config-
uration will stay so relative to the new one, as well, even though the constitutive
functions will generally change. Any isochoric transformation of the reference con-
figuration that leaves invariant the constitutive functions for €,7 and 6 manifests
material symmetry of the medium. Consider any such transformation and let H be
its Jacobian matrix. By virtue of (2.3.19);, (2.3.20); and (2.5.3);, the constitutive
function € of the internal energy will remain invariant, provided

(2.5.10) &(FH ' s5) = &(F,s).

A simple calculation verifies that when (2.5.10) holds, the constitutive functions for
T and 6, determined through (2.5.7) and (2.5.3), are automatically invariant under
that H. On account of (2.3.19); and (2.3.22),, the constitutive function § of the heat
flux will be invariant under H if

(2.5.11) G(FH™'.s5,8) = (F.s.8).

It is clear that the set of matrices H with determinant one for which (2.5.10)
and (2.5.11) hold forms a subgroup ¢ of the special linear group SL(m), called the
symmetry group of the medium. In certain media, ¢ may contain only the identity
matrix / in which case material symmetry is minimal. When ¢ is nontrivial, it dic-
tates through (2.5.10) and (2.5.11) conditions on the constitutive functions of the
medium.

Maximal material symmetry is attained when ¢ = SL(m). In that case the
medium is a thermoelastic fluid. Applying (2.5.10) and (2.5.11) with selected ma-
trix H = (det F)~'/"F € SL(m), we deduce that & and § may depend on F solely
through its determinant or, equivalently by virtue of (2.3.3), through the density p :

(2.5.12) e=£(p,s), q=4q(p,s.g)

The Cauchy stress may then be obtained from (2.5.7) and the temperature from
(2.5.3)3. The calculation gives

(2.5.13) T =—pl,

(2514) p:p28p§(p,s), Gzasé(pas)

In the standard texts on thermodynamics, (2.5.14) are usually presented in the guise
of the Gibbs relation:

1
(2.5.15) 0ds = de + pd (p).
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The constitutive function ¢ in (2.5.12) must also satisfy the requirement (2.5.9) of
material frame indifference which now assumes the simple form

(2.5.16) 4(p,s,0g) = 04(p,s,g),

for all proper orthogonal matrices O. The final reduction of § that satisfies (2.5.16) is

(2.5.17) qa=x(p,s,g])s;

where K is a scalar-valued function. We have thus shown that in a thermoelastic
fluid the internal energy depends solely on density and entropy. The Cauchy stress
is a hydrostatic pressure, likewise depending only on density and entropy. The heat
flux obeys Fourier’s law with thermal conductivity k¥ which may vary with density,
entropy and the magnitude of the heat flux.

The simplest classical example of a thermoelastic fluid is the ideal gas, which is
identified by Boyle’s law

(2.5.18) p=Rpo,

combined with the constitutive assumption that internal energy is proportional to
temperature:

(2.5.19) g=ch.

In (2.5.18), R is the universal gas constant divided by the molecular weight of the
gas, and ¢ in (2.5.19) is the specific heat. The constant Y = 1+ R/c is the adiabatic
exponent. The classical kinetic theory predicts y = 1+ 2/n, where n is the number
of degrees of freedom of the gas molecule. The maximum value ¥ = 5/3 is attained
when the gas is monatomic.

Combining (2.5.18) and (2.5.19) with (2.5.13) and (2.5.14), one easily deduces
that the constitutive relations for the ideal gas, in normalized units, read

2.5.20 e=c 7*18%7 —R Vg%, 0= pr 1ot
( p p=Rp p

The ideal gas model provides a satisfactory description of the behavior of ordi-
nary gases, over a wide range of density and temperature, but it becomes less reliable
at extreme values of the state variables, especially near the point of transition to the
liquid phase. Accordingly, a large number of equations have been proposed, with
theoretical or empirical provenances, that would apply to “real gases”. The most
classical example is the van der Waals gas, in which (2.5.18) is replaced by

(2.5.21) (p+ap®)(1—bp) =Rpb,

where a and b are positive parameters. It corresponds to constitutive relations
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(2.5.22)

r—1 Y r—1
—e( P : —R(P ) eg=(_P £
g_c(lbp) e R(lbp> “? (lbp) o

A more exotic model is the Chaplygin gas, with equations of state in the form

(2.5.23)
1 1 1 I, 1, /
€= ﬁf(s) - Eg(s)—Irh(S)’ p=2g(s)— Ef(S% 0= szf (s)— 08 () + 1 (s)-

Notice that at low density the pressure becomes negative, which runs counter to con-
ventional wisdom. However, it is this feature that renders the Chaplygin gas attractive
to cosmologists, as they are relating it to “dark matter”.

An isotropic thermoelastic solid is a thermoelastic material with symmetry group
4 the proper orthogonal group SO(m). In that case, to obtain the reduced form of the
internal energy function € we combine (2.5.10) with (2.5.6); . Recalling (2.1.7) we
conclude that

(2.5.24) g(ouo',s)=¢(U,s),

for any proper orthogonal matrix O. In particular, we apply (2.5.24) for the proper
orthogonal matrices O that diagonalize the symmetric matrix U : OUO" = A. This
establishes that, in consequence of material frame indifference and material symme-
try, the internal energy of an isotropic thermoelastic solid may depend on F solely as
a symmetric function of the eigenvalues of the right stretch tensor U. Equivalently,

(2.5.25) e=8&(1, JIm,s),

where (J1,---,J,;) are invariants of U. In particular, when m = 3, one may employ
Ji = |F|?, J, = |[F*|*> and J3 = det F, where F* is the adjugate matrix of F. The
reduced form of the Cauchy stress for the isotropic thermoelastic solid, computed
from (2.5.25) and (2.5.7), is recorded in the references cited in Section 2.9. The
reader may also find there explicit examples of constitutive functions for specific
compressible or incompressible isotropic elastic solids.

In an alternative, albeit equivalent, formulation of thermoelasticity, one regards
the temperature 6, rather than the entropy s, as a state variable and writes a consti-
tutive equation for s rather than for 6. In that case it is also expedient to monitor the
Helmholtz free energy

(2.5.26) Yy =¢€—0s
in the place of the internal energy €. One thus starts out with constitutive equations
v =W(F,6,G),
S=S(F,0,G),
(2.5.27)
s=35(F,0,G),
Q = Q_(F7 6’ G)’
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in the place of (2.5.1). The requirement that all smooth thermodynamic processes
that balance mass, momentum and energy must satisfy identically the dissipation
inequality (2.3.15) reduces (2.5.27) to

v =y(F,0),

S= pOaFV_/(Fa 9)7
(2.5.28)

s=—0dgY(F,0),

0=0(F,0,G),
(2.5.29) Q(F, Q,G) -G >0,

which are the analogs 3 of (2.5.3), (2.5.4). The principle of material frame indiffer-
ence and the presence of material symmetry further reduce the above constitutive
equations. In particular, | satisfies the same conditions as €, above.

We conclude the discussion of thermoelasticity with remarks on special thermo-
dynamic processes. A process is called adiabatic if the heat flux Q vanishes identi-
cally; it is called isothermal when the temperature field 6 is constant; and it is called
isentropic if the entropy field s is constant. Note that (2.5.29) implies Q(F,6,0) = 0
s0, in particular, all isothermal processes are adiabatic. Materials that are poor con-
ductors of heat are commonly modeled as nonconductors of heat, characterized by
the constitutive assumption O = 0. Thus every thermodynamic process of a noncon-
ductor is adiabatic.

In an isentropic process, the entropy is set equal to a constant, s = §; the consti-
tutive relations for the temperature and the heat flux are discarded and those for the
internal energy and the stress are restricted to s = §:

£ = &(F,5),
(2.5.30)
S = podré&(F,s3).

In particular, for an ideal gas, on account of (2.5.20),
(2.5.31) g=——p' L p=xp?,

where Kk = Rexp(§/c).

In an isentropic process, the motion is determined solely by the balance laws
of mass and momentum, in conjunction with the constitutive relations (2.5.30). This
may create the impression that isentropic thermoelasticity is isomorphic to the purely
mechanical theory of hyperelasticity. However, this is not entirely accurate, because

3 The constitutive equations in the form (2.5.3) are called caloric and in the form (2.5.28)
are called thermal.
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isentropic thermoelasticity inherits from thermodynamics the Second Law in the fol-
lowing guise: To sustain an isentropic process, one must control the heat supply r
in such a manner that the ensuing motion, under the constant entropy field, satis-
fies the energy balance law (2.3.10). When the process is also adiabatic, Q = 0, the
Clausius-Duhem inequality (2.3.13) reduces to r < 0, in which case (2.3.10) implies

(2.5.32) (Po€+ 1polv*) < Div(v'S) + pov ' b.
The Eulerian form of this inequality is
(2.5.33) (pe+1p[o|®): + div[(pe+ Lplo/*)0"] < div(v' T)+pov'b.

The above inequalities play in isentropic thermoelasticity the role played by the
Clausius-Duhem inequality (2.3.13), (2.3.14) in general thermoelasticity: for smooth
motions, they hold identically, as equalities, by virtue of (2.3.4) and (2.5.30). By con-
trast, in the context of motions that are merely Lipschitz continuous, they are extra
conditions serving as the test of thermodynamic admissibility of the motion.

In practice, the isentropic theory is employed when it is judged that the effect of
entropy fluctuation is negligible. This is not an uncommon situation, for the follow-
ing reason. In smooth adiabatic processes, Q = 0, and if in addition r =0, (2.3.18) in
conjunction with (2.5.3) yields s = 0. Thus, in the absence of heat supply, adiabatic
processes starting out isentropically stay isentropic for as long as they are smooth.
The smoothness requirements are met when F, v and s are merely Lipschitz con-
tinuous, which allows for processes with weak fronts, though not with shocks. As
we shall see later, even after shocks develop, so long as they remain weak, entropy
fluctuation is small (of third order) in comparison to the fluctuation of density and
velocity, and may thus be neglected.

In isothermal thermoelasticity, 0 is set equal to a constant 6, the heat supply r is
regulated to balance the energy equation, and the motion is determined solely by the
balance laws of mass and momentum. The only constitutive equations needed are

v =y(F,0),
(2.5.34) )
S =podry(F,0),

namely the analogs of (2.5.30). The implications of the Second Law of thermo-
dynamics are seen, as before, by combining (2.3.10) with (2.3.13), assuming now
6 = 6 =constant. This yields

(2.5.35) (Poy + Lpolv]?): < Div(v'S)+pov' b,
with Eulerian form
1 1
(2536)  (py+plel) +divi(py +5pof)oT] < div(e'T)+poh,

which should be compared to (2.5.32) and (2.5.33). We conclude that isothermal
and isentropic thermoelasticity are essentially isomorphic, with the Helmholtz free
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energy, at constant temperature, in the former, playing the role of internal energy, at
constant entropy, in the latter.
In an isothermal process 6 = 6 for an ideal gas,

(2.5.37) v = klogp, p=kp,
where k = R6.

2.6 Thermoviscoelasticity

We now consider an extension of thermoelasticity that encompasses materials with
internal dissipation induced by viscosity of the rate type. The internal energy €, the
Piola-Kirchhoff stress S, the temperature 6, and the referential heat flux vector O
may now depend not only on the deformation gradient F, the entropy s and the
temperature gradient G, as in (2.5.1), but also on the time rate F of the deformation
gradient:

€ :é(F7F,S,G),

S=38(F,F,s,G),
(2.6.1)

6 =6(F,F,s,G),

0 =0Q(F,F,s,G).

As stipulated in Section 2.3, every smooth thermodynamic process that bal-
ances mass, momentum and energy must satisfy identically the dissipation inequality
(2.3.15). Substituting from (2.6.1) into (2.3.15) yields

(2.6.2)
tr[(podré — S)F '+ tr(podpe F ") + po(ds& — 8)s+ podceG—0~'0-G <0.

By suitably controlling the body force b and heat supply r, one may construct smooth
processes that balance mass, momentum and energy and attain at some point (x,?)
arbitrarily prescribed values for F, F, s, G, F', s and G, subject only to the constraint
det F' > 0. Consequently, the inequality (2.6.2) cannot hold identically unless the
constitutive functions in (2.6.1) have the following special form:

€ =&(F.s),
S = podré(F,s)+Z(F,F,s,G),

(2.6.3)
0 = 0,2(F,s),

0=0Q(F,F,s,G),
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1
O(F,s)

(2.6.4) tr[Z(F,F,s,G)F "] + O(F,F,5,G)-G>0.

Comparing (2.6.3) with (2.5.3) we observe that, again, the internal energy, which
may depend solely on the deformation gradient and the entropy, determines the con-
stitutive equation for the temperature by the same caloric equation of state. On the
other hand, the constitutive equation for the stress now includes the additional term
Z which contributes the viscous effect and induces internal dissipation manifested in
(2.6.4).

The constitutive functions must be reduced further to comply with the principle
of material frame indifference, postulated in Section 3.4. In particular, frame indif-
ference imposes on internal energy the same condition (2.5.5); as in thermoelasticity,
and the resulting reduction is, of course, the same:

(2.6.5) &(F,s)=2(U,s),

where U denotes the right stretch tensor (2.1.7). Furthermore, when (2.6.5) holds,
the constitutive equation for the temperature, derived through (2.6.3)3, and the term
Podr&(F,s), in the constitutive equation for the stress, will be automatically frame
indifferent. It remains to investigate the implications of frame indifference on Z and
on the heat flux. Since the analysis will focus eventually on thermoviscoelastic fluids,
it will be expedient to switch at this point from S and Q to T and g; also to replace, on
the list (F, F, s, G) of state variables, ' with L (cf. (2.1.8)) and G with g (cf. (2.3.17)).
We thus write

(2.6.6) T =popé(F,s)F' +Z(F,L,s,g),

(2.6.7) q=4q(F,L,s,g).

Recalling (2.4.3) and (2.4.5), we deduce that the principle of material frame indiffer-
ence requires

Z(OF,0LO" + 007 ,s5,0g) = OZ(F,L,s,g)0"
(2.6.8)

G(OF,0LO" +00",5,0g) = 04(F,L,s,g),
for any proper orthogonal matrix O. In particular, for any fixed state (F,L,s,g)
with spin W (cf. (2.1.9)), we may pick O(¢) = exp (—tW), in which case O(0) =1,
0(0) = —W. It then follows from (2.6.8) that Z and § may depend on L solely through
its symmetric part D and hence (2.6.6) and (2.6.7) may be written as

(2.6.9) T =pdré(F,s)F' +2(F,D,s,g),

(2.6.10) q=4(F,D,s,g),

with Z and § such that
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Z(OF,0D0",s,0g) = OZ(F,D,s,g)0"
(2.6.11)
qA(0F7 ODOT7S7 Og) = OqA(F7D7S7g)?

for all proper orthogonal matrices O.

For the balance law of angular momentum (2.3.9) to be satisfied, 7 must also be
symmetric: Z' = Z. Notice that in that case the dissipation inequality (2.6.4) may be
rewritten in the form

A 1
(2.6.12) tr[Z(F,D,s,g)D] + B(Fs)

Further reduction of the constitutive functions results when the medium is en-
dowed with material symmetry. The rules of transformation of the fields under
isochoric change of the reference configuration are recorded in (2.3.19), (2.3.20),
(2.3.21) and (2.3.22). As in Section 2.5, we introduce here the symmetry group ¢ of
the material, namely the subgroup of SL(m) formed by the Jocobian matrices H of
those isochoric transformations & of the reference configuration that leave the consti-
tutive functions for €, T, 6 and ¢ invariant. Thus, ¢ is the set of all H € SL(m) with
the property

Q(F’D’S’g) .g Z 0'

&(FH™ ' s) =&(F,s),
(2.6.13) Z(FH™',D,s,8) = Z(F.D.s.g),

Q(FH_17D7S’g) = qA(F7D7S’g)‘

The material will be called a thermoviscoelastic fluid when ¢4 = SL(m). In that
case, applying (2.6.13) with H = (det F)~'/"F € SL(m), we conclude that &, Z and
g may depend on F solely through its determinant or, equivalently, through the den-
sity p. Therefore, the constitutive equations of the thermoviscoelastic fluid reduce to

e=E£(p,s),

T= *pI+Z(p,D,S,g),
(2.6.14)
p:pzapé(p,s), ezasé(pvs)’

q=4(p,D,s,g).

For frame indifference, Z and § should still satisfy, for any proper orthogonal ma-
trix O, the conditions

Z(p,0DO0",s,08) = OZ(p,D,s,8)0",
(2.6.15)
q(p70D0T7S70g) = Oq(p’D7s7g)7

which follow from (2.6.11). It is possible to write down explicitly the form of the
most general functions Z and § that conform with (2.6.15). Here, it will suffice to
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record the most general constitutive relations, for m=3, that are compatible with
(2.6.15) and are linear in (D, g), namely

(2.6.16) T =—p(p,s)[+A(p,s)(trD)I+2u(p,s)D,

(2.6.17) q=x(p,s)g;

which identify the compressible, heat-conducting Newtonian fluid.
The bulk viscosity A + % W, shear viscosity U and thermal conductivity K of a
Newtonian fluid are constrained by the inequality (2.6.12), which here reduces to

(2.6.18) A(p.5)(trD) +21(p.s)rD? + S5 g2 5

0(p,s)
This inequality will hold for arbitrary D and g if and only if

(2.6.19) n(p,s) >0, 3A(p,s)+2u(p,s) =20, K(p,s) = 0.

For actual dissipation, at least one of ¢, 3A +2u and x should be strictly positive.

2.7 Incompressibility

Many fluids, and even certain solids, such as rubber, may be stretched or sheared
with relative ease, while exhibiting disproportionately high stiffness when subjected
to deformations that would change their volume. Continuum physics treats such ma-
terials as incapable of sustaining any volume change, so that the density p stays
constant along particle trajectories. The incompressibility condition

(2.7.1) detF =1, trD =divo' =0,

in Lagrangian or Eulerian coordinates, is then appended to the system of balance
laws, as a kinematic constraint. In return, the stress tensor is decomposed into two
parts:

(2.7.2) S=—p(F YT +8, T=—pl+T,

where S or T, called the extra stress, is determined, as before, by the thermodynamic
process, through constitutive equations, while the other term, which represents a Ay-
drostatic pressure, is not specified by a constitutive relation but is to be determined,
together with the thermodynamic process, by solving the system of balance laws of
mass, momentum and energy, subject to the kinematic constraint (2.7.1).

The salient property of the hydrostatic pressure is that it produces no work under
isochoric deformations. To motivate (2.7.2) by means of the Second Law of thermo-
dynamics, let us consider an incompressible thermoelastic material with constitutive
equations for €,0 and Q as in (2.5.1), but only defined for F with det F = 1, and
S unspecified. The dissipation inequality again implies (2.5.2) with S replaced by
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S, dré replaced by the tangential derivative d%€ on the manifold det F = 1, and F
constrained to lie on the subspace

273)  w[(F)EFT ] =tw[(F) FT) = tr[(9p det F)FT] = dei F = 0.
Therefore, tr[(pgdfé —S)F "] <0 for all F satisfying (2.7.3) if and only if
(27.4) S= —p(F) 1 podfe(F.s).

for some scalar p.

In incompressible Newtonian fluids, the stress is still given by (2.6.16), where,
however, p is constant and p(p,s) is replaced by the undetermined hydrostatic pres-
sure p. When the incompressible fluid is inviscid, the entire stress tensor is subsumed
by the undetermined hydrostatic pressure.

2.8 Relaxation

The state variables of continuum physics, introduced in the previous sections, repre-
sent statistical averages of certain physical quantities, such as velocity, translational
kinetic energy, rotational kinetic energy, chemical energy etc., associated with the
molecules of the material. These quantities evolve and eventually settle, or “relax”,
to states in local equilibrium, characterized by equipartition of energy and other con-
ditions dictated by the laws of statistical physics. The constitutive relations of ther-
moelasticity, considered in earlier sections, are relevant so long as local equilibrium
is attained in a time scale much shorter than the time scale of the gross motion of
the material body. In the opposite case, where the relaxation time is of the same
order of magnitude as the time scale of the motion, relaxation mechanisms must
be accounted for even within the framework of continuum physics. This is done by
introducing additional, internal state variables, measuring the deviation from local
equilibrium. The states in local equilibrium span a manifold embedded in the ex-
tended state space. The internal state variables satisfy special constitutive relations,
in the form of balance laws with dissipative source terms that act to drive the state
vector towards local equilibrium.

An enormous variety of relaxation theories are discussed in the literature; the
reader may catch a glimpse of their common underlying structure through the fol-
lowing example.

We consider a continuous medium that does not conduct heat and whose isen-
tropic response is governed by constitutive relations

(2.8.1) e=2(FY),

(2.8.2) S =P(F) + poZ,

for the internal energy and the Piola-Kirchhoff stress, where ¥ is an internal variable
taking values in M and satisfying a balance law of the form
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(2.8.3) p()Z: %[H(Z) —F].

Thus, the material exhibits instantaneous elastic response, embodied in the term
P(F), combined with viscous response induced by relaxation of X. The positive con-
stant 7 is called the relaxation time.

The postulate that any smooth motion of the medium that balances linear mo-
mentum (2.3.4) must satisfy identically the entropy inequality (2.5.32) yields

(2.8.4) S = podpé(F,%),

(2.8.5) tr[oc8(F,X)ET] <0.
Upon combining (2.8.4) and (2.8.5) with (2.8.2) and (2.8.3), we deduce

(2.8.6) e=0(F)+tr(ZF ") +h(X),

(2.8.7) P(F) = pydro(F),  TI(X) = —dsh(%).

When # is strictly convex, the source term in (2.8.3) is dissipative and acts to
drive ¥ towards local equilibrium X = H(F), where H is the inverse function of II.
IT! exists since —IT is strictly monotone, namely,

(2.8.8) tr{[[1(Z) —IE)][Z-%"} <0, forany X #%.

In local equilibrium the medium responds like an elastic material with internal energy
(2.8.9) e=&(F)=0o(F)+t[H(F)F"|+h(H(F))

and Piola-Kirchhoff stress

(2.8.10) S=P(F)+ poH(F) = podr&(F).

2.9 Notes

The venerable field of continuum physics has been enjoying a resurgence, concomi-
tant with the rise of interest in the behavior of materials with nonlinear response. The
encyclopedic works of Truesdell and Toupin [1] and Truesdell and Noll [1] contain
reliable historical information as well as massive bibliographies and may serve as
excellent guides for following the development of the subject from its inception, in
the 18th century, to the mid 1960’s. The text by Gurtin [1] provides a clear, elemen-
tary introduction to the area. A more advanced treatment, with copious references,
is found in the book of Silhavy [1]. The text by Miiller [2] is an excellent presenta-
tion of thermodynamics from the perspective of modern continuum physics. Other
good sources, emphasizing elasticity theory, are the books of Ciarlet [1], Hanyga [1],
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Marsden and Hughes [1] and Wang and Truesdell [1]. The monograph by Antman
[3] contains a wealth of material on the theory of elastic strings, rods, shells and
three-dimensional bodies, with emphasis on the qualitative analysis of the governing
balance laws.

The referential description of motion was conceived by Euler, and was eventually
named Lagrangian so as to highlight the analogy with the formulation of Analyti-
cal Dynamics by Lagrange. On the other hand, the spatial, or Eulerian, description,
which was effectively employed by Euler, was introduced by Daniel Benoulli and by
D’ Alembert.

On the equivalence of the referential (Lagrangian) and spatial (Eulerian) descrip-
tion of the field equations for the balance laws of continuum physics, see Dafermos
[17] and Wagner [2,3]. It would be useful to know whether this holds under more
general assumptions on the motion than Lipschitz continuity. For instance, when
the medium is a thermoelastic gas, it is natural to allow regions of vacuum in the
placement of the body. In such a region the density vanishes and the specific volume
(determinant of the deformation gradient) becomes infinitely large. For other exam-
ples in which the equations get simpler as one passes from Eulerian to Lagrangian
coordinates, see Peng [2].

The kinematic balance laws (2.2.15) and (2.2.16) were first derived by Qin[1], in
the context of smooth motions, by direct calculation. It is interesting that, as we see
here, they are valid when the motions are merely Lipschitz continuous and in fact, as
shown by Demoulini, Stuart and Tzavaras [2], even under slightly weaker hypothe-
ses. The connection to null Lagrangians was first pointed out in this last reference.
For a detailed treatment of null Lagrangians, see Ball, Currie and Olver [1]. For the
differential geometric interpretation of the kinematic balance laws, see Wagner [3,4].

The field equations for the balance laws considered here were originally derived
by Euler [1,2], for mass, Cauchy [3,4], for linear and angular momentum, and Kirch-
hoff [1], for energy. The Clausius-Duhem inequality was postulated by Clausius [1],
for the adiabatic case; the entropy flux term was introduced by Duhem [1] and the en-
tropy production term was added by Truesdell and Toupin [1]. More general entropy
inequalities were first considered by Miiller [1].

The use of frame indifference and material symmetry to reduce constitutive equa-
tions originated in the works of Cauchy [4] and Poisson [2]. In the ensuing century,
this program was implemented (mostly correctly but occasionally incorrectly) by
many authors, for a host of special constitutive equations. In particular, the work
of the Cosserats [1], Rivlin and Ericksen [1], and others in the 1940’s and 1950’s
contributed to the clarification of the concepts. The principle of material frame in-
difference and the definition of the symmetry group were ultimately postulated with
generality and mathematical precision by Noll [1].

The postulate that constitutive equations should be reduced so that the Clausius-
Duhem inequality will be satisfied automatically by smooth thermodynamic pro-
cesses that balance mass, momentum and energy was first stated as a general prin-
ciple by Coleman and Noll [1]. The examples presented here were adapted from
Coleman and Noll [1], for thermoelasticity, and Coleman and Mizel [1], for thermo-
viscoelasticity.
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In his doctoral dissertation (1873), van der Waals introduced the equation of state
that now bears his name, in order to account for the volume of gas molecules and for
intermolecular forces. Gallavotti [1] discusses its interpretation from the standpoint
of statistical physics. The van der Waals gas has served over the years as a simple
model for phase transitions.

As we saw in the historical introduction, the special features of the Chaplygin
gas were first noticed by Earnshaw [1]. The classical contributions of Chaplygin [1]
are expounded in the text by von Mises [1]. The Chaplygin gas is currently finding
new applications in cosmology. For a surprising application of the equation of state
of this gas to differential geometry, see Section 18.7.

Coleman and Gurtin [1] have developed a general theory of thermoviscoelastic
materials with internal state variables, of which the example presented in Section 2.8
is a special case. Constitutive relations of this type were first considered by Maxwell
[1]. A detailed discussion of relaxation phenomena in gas dynamics is found in the
book by Vincenti and Kruger [1].
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Hyperbolic Systems of Balance Laws

The ambient space for the system of balance laws, introduced in Chapter I, will be
visualized here as space-time, and the central notion of hyperbolicity in the time di-
rection will be motivated and defined. Companions to the flux, considered in Section
1.5, will now be realized as entropy-entropy flux pairs.

Numerous examples will be presented of hyperbolic systems of balance laws
arising in continuum physics.

3.1 Hyperbolicity

Returning to the setting of Chapter I, we visualize R as R” x R, where R”, with
m =k —1, is “space” with typical point x, and R is “time” with typical value #,
so0 X = (x,1). We write d; for d/dX; and dy, for d/dXy, o0 = 1,...,m. We retain
the symbol div to denote divergence with respect to the x-variable in R™. As in
earlier chapters, in matrix operations div will be acting on row vectors. We also
recall the Notation 1.4.2, which will remain in force throughout this work: D denotes
the differential [9/dU",...,d/dU"], regarded as a row operation.

We denote Gy by H, reassign the symbol G to denote the n X m matrix with

column vectors (Gy,...,Gy), and rewrite the system of balance laws (1.4.3) in the
form
(3.1.1) OH (U (x,t),x,t) +divG(U (x,t),x,1) = II(U (x,1),x,1).

3.1.1 Definition. The system of balance laws (3.1.1) is called hyperbolic in the
t-direction if, for any fixed U € O, (x,t) € 2 and v € S™1 the n x n matrix
DH (U, x,t) is nonsingular and the eigenvalue problem

m
(3.1.2) Y vaDGq(U,x,t) = ADH(U,x,t)|R=0
a=1
© Springer-Verlag Berlin Heidelberg 2016 53
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has real eigenvalues A, (V; U, x,t),- - ,A,(V;U,x,t), called characteristic speeds, and
n linearly independent eigenvectors Ry (V;U, x,t), -+ ,R,(V;U, x,t).

A class of great importance are the symmetric hyperbolic systems of balance laws
(3.1.1), in which, for any U € & and (x,t) € 27, the n x n matrices DG (U, x,t), for
o =1,---,m, are symmetric and DH (U, x,t) is symmetric positive definite.

The definition of hyperbolicity may be naturally interpreted in terms of the no-
tion of fronts, introduced in Section 1.6. A front .% of the system of balance laws
(3.1.1) may be visualized as a one-parameter family of m — 1 dimensional manifolds
in R™, parametrized by ¢, i.e., as a surface propagating in space. In that context, if we
renormalize the normal N on . so that N = (v, —s) with v € !, then the wave
will be propagating in the direction v with speed s. Therefore, comparing (3.1.2)
with (1.6.1) we conclude that a system of n balance laws is hyperbolic if and only
if n distinct weak waves can propagate in any spatial direction. The eigenvalues of
(3.1.2) will determine the speed of propagation of these waves while the correspond-
ing eigenvectors will specify the direction of their amplitude.

When % is a shock front, (1.6.3) may be written in the current notation as

(3.1.3) —s[H(Uy,x,t) —H(U_,x,t)] + [G(Uj,x,t) — G(U_,x,1)]v =0,

which is called the Rankine-Hugoniot jump condition. By virtue of Theorem 1.8.1,
this condition should hold at every point of approximate jump discontinuity of any
function U of class BVj, that satisfies the system (3.1.1) in the sense of measures.

It is clear that hyperbolicity is preserved under any change U* = U*(U,x,t) of
state vector with U* (-, x,¢) a diffeomorphism for every fixed (x,¢) € 2. In particular,
since DH (U, x,t) is nonsingular, we may employ, locally at least, H as the new state
vector. Thus, without essential loss of generality, one may limit the investigation to
hyperbolic systems of balance laws that have the special form

(3.1.4) AU (x,t) +divG(U (x,t),x,t) = II(U (x,1),x,1).

For simplicity and convenience, we shall henceforth regard the special form (3.1.4) as
canonical. The reader should keep in mind, however, that when dealing with systems
of balance laws arising in continuum physics it may be advantageous to keep the state
vector naturally provided, even at the expense of having to face the more complicated
form (3.1.1) rather than the canonical form (3.1.4).

3.2 Entropy-Entropy Flux Pairs

Assume that the system of balance laws (1.4.3), which we now write in the form
(3.1.1), is endowed with a companion balance law (1.5.2). We set Oy = 1, reassign
Q to denote the m-row vector (Qj,...,Qy,) and recast (1.5.2) in the new notation:

(3.2.1) o (U (x,t),x,t) +divO(U(x,t),x,t) = h(U(x,1),x,1).
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As we shall see in Section 3.3, in the applications to continuum physics, companion
balance laws of the form (3.2.1) are intimately related with the Second Law of ther-
modynamics. For that reason, 7 is called an entropy for the system (3.1.1) of balance
laws and Q is called the entropy flux associated with 7.

Equation (1.5.1), for & = k, should now be written as

(3.2.2) Dn(U,x,t) = B(U,x,t) ' DH(U,x,t).

Assume the system is in canonical form (3.1.4) so that (3.2.2) reduces to Dn = B'.
Then (1.5.1) and the integrability condition (1.5.4) become

(3.2.3) DQy(U,x,t) =Dn(U,x,t)DGq(U,x,t), a=1,---,m,

(3.2.4) D’n(U,x,t)DGo(U,x,t) =DGo((U,x,1) ' D*n(U,x,1), aa=1,---,m.

Notice that (3.2.4) imposes %n(n — 1)m conditions on the single unknown func-
tion 1. Therefore, as already noted in Section 1.5, the problem of determining a
nontrivial entropy-entropy flux pair for (3.1.1) is formally overdetermined, unless
either n = 1 and m is arbitrary, or n = 2 and m = 1. However, when the system is
symmetric, we may satisfy (3.2.4) with n = %\U |2. Conversely, if (3.2.4) holds and
n(U,x,t) is uniformly convex in U, then the change U* = Dn(U,x,t)" of state vec-
tor renders the system symmetric. Thus, systems of balance laws in canonical form
(3.1.4) that are endowed with a convex entropy are necessarily hyperbolic.

An interesting, alternative form of the integrability condition is obtained by pro-
jecting (3.2.4) in the direction of an arbitrary v € S"~! and then multiplying the
resulting equation from the left by R;(v;U,x,t) " and from the right by Ry (v;U,x,1),
with j # k. So long as A;(v;U,x,t) # A(v;U,x,t), this calculation yields

(3.2.5) R;(v;U,x,t) ' D*n(U,x,0)Re(v;U,x,t) =0,  j#k.

Moreover, (3.2.5) holds even when A;(v;U,x,t) = Ax(v;U,x,t), provided that one
selects the eigenvectors R ;(V;U,x,t) and R(v; U, x,1) judiciously in the eigenspace
of this multiple eigenvalue.

Notice that (3.2.5) imposes on 1) $n(n— 1) conditions for each fixed v, and hence
a total of 1n(n— 1)m conditions for m linearly independent — and thereby all — v in
S™=1. A notable exception occurs for systems in which the Jacobian matrices of the
components of their fluxes commute:

(3.2.6) DGq(U,x,t)DGg(U,x,t) = DGg(U,x,t)DGo(U,x,t), a,B=1,....m.

Indeed, in that case the R;(v;U,x,t) do not vary with v and hence (3.2.5) represents
just 1n(n— 1) conditions on 1. We will revisit this very special class of systems in
Section 6.10.

The issue of the overdeterminacy of (3.2.5), in one spatial dimension, will be
examined in depth in Section 7.4.
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3.3 Examples of Hyperbolic Systems of Balance Laws

Out of a host of hyperbolic systems of balance laws in continuum physics, only
a small sample will be presented here. They will serve as beacons for guiding the
development of the general theory.

3.3.1 The Scalar Balance Law:
The single balance law (n = 1)

(3.3.1) dru(x,t) +divG(u(x,t),x,t) = @ (u(x,t),x,1)

is always hyperbolic. Any function 7 (u,x,¢) may serve as entropy, with associated
entropy flux and entropy production computed by

(33.2) 0= / “on a—fdu,

2 [dn Gy  9dQq an dn
333 h= —-— — O—+—.
(3:3.3) a;[au Ixa  dxe) o

Equation (3.3.1), the corresponding homogeneous scalar conservation law, and
especially their one space dimensional (m = 1) versions will serve extensively as
models for developing the theory of general systems.

3.3.2 Thermoelastic Nonconductors of Heat:

The theory of thermoelastic media was discussed in Chapter II. Here we shall em-
ploy the referential (Lagrangian) description so the fields will be functions of (x,?).
For consistency with the notation of the present chapter, we shall use d, to denote
material time derivative (in lieu of the overdot employed in Chapter II) and dy, to
denote partial derivative with respect to the a-component x4 of x. For definiteness,
we assume the physical space has dimension m = 3. We also adopt the standard
summation convention: repeated indices are summed over the range 1,2,3.

The constitutive equations are recorded in Section 2.5. Since there is no longer
danger of confusion, we may simplify the notation by dropping the “hat” from the
symbols of the constitutive functions. Also for simplicity we assume that the medium
is homogeneous, with reference density py = 1.

As explained in Chapter II, a thermodynamic process is determined by a motion
x and an entropy field s. In order to cast the field equations of the balance laws as a
first order system of the form (3.1.1), we monitor } through its derivatives (2.1.1),
(2.1.2) and thus work with the state vector U = (F,v,s), taking values in R'3. In that
case we must append to the balance laws of linear momentum (2.3.4) and energy
(2.3.10) the compatibility condition (2.1.8);. Consequently, our system of balance
laws reads
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atEa_aavi:O7 i,a:],273
(334) atvi—aaSia(F7S) :bi7 i= 1,2,3
z% [S(F,S) -+ %‘?JP] — 8a [U,‘S,’a(F,S)] = bjv;+r,

with (cf. (2.5.3))

de(F,s)
dFiq

_ J¢e(F,s)

(3.3.5) Sia(F,s) = O(F,s) = —

A lengthy calculation verifies that the system (3.3.4) is hyperbolic on a certain
region of the state space if for every (F,s) lying in that region

0e(F,s)
(3.3.6) =2,
d%¢e(F,s) 5
3.3.7 ——Lvy,vg&€&; >0, forallvand& inS-.
( ) aFiaaFjﬁ o ﬁé 5/ 5

On account of (3.3.5),, condition (3.3.6) simply states that the absolute temperature
must be positive. (3.3.7), called the Legendre-Hadamard condition, means that € is
rank-one convex in F, i.e., it is convex along any direction &ij with rank one. An
alternative way of expressing (3.3.7) is to state that for any unit vector v the acoustic
tensor N(V;F,s), defined by
2

(3.3.8) Nij(V;F,s) = mvavﬁ’ i,j=1,2,3
is positive definite. In fact, for the system (3.3.4), the characteristic speeds in the
direction v are the six square roots of the three eigenvalues of the acoustic tensor,
and zero with multiplicity seven.

Recall from Chapter II that, in addition to the system of balance laws (3.3.4),
thermodynamically admissible processes should also satisfy the Clausius-Duhem
inequality (2.3.13), which here takes the form

’
3.3.9 —ois < — .

339 =50

By virtue of (3.3.5), every classical solution of (3.3.4) will satisfy (3.3.9) identically
as an equality.! Hence, in the terminology of Section 3.2, —s is an entropy for the
system (3.3.4) with associated entropy flux zero.> Weak solutions of (3.3.4) will not

! Thus, for classical solutions it is convenient to substitute the equality (3.3.9) for the third
equation in (3.3.4). In particular, if » = O, the entropy s stays constant along particle trajec-
tories and one may determine F and v just by solving the first two equations of (3.3.4).

2 Identifying —s as the “entropy”, rather than s itself which is the physical entropy, may look
strange. This convention is adopted because it is more convenient to deal with functionals
of the solution that are nonincreasing with time.
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necessarily satisfy (3.3.9). Therefore, the role of (3.3.9) is to weed out undesirable
weak solutions. The extension of a companion balance law from an identity for clas-
sical solutions into an inequality for weak solutions will play a crucial role in the
general theory of hyperbolic systems of balance laws.

It should be noted that a solution (F,v,s) of (3.3.4) is not relevant to elastody-
namics, unless F is a deformation gradient (2.1.2), or equivalently

(3.3.10) dpFia —OaFp=0, i=123, af=123.

In that case, as shown in Section 2.3, (F,v) will also satisfy the kinematic conserva-
tion laws (2.2.15) and (2.2.16), namely

(3.3.11) KEj— dalEijcapyviFip) =0, k=123, y=12,3

(3.3.12) 0 (detF) — 9y (viFg;) = 0.

Recall that (3.3.11) and (3.3.12) hold even when F and v are merely in L™.
The Rankine-Hugoniot jump conditions (3.1.3) for a shock front propagating in
the direction v € S? with speed o here take the form

—06[Fa] = [vi]]va =123
(3.3.13) —o[oi] = [Sia(F,5)] Ve i=1,2,3

—o[e(F,s)+ 3[o1°] = [viSia(F.9)]Va,

where the double bracket denotes the jump of the enclosed quantity across the shock.
By combining the three equations in (3.3.13), we can eliminate the velocity:

(3.3.14) 70'{[[8]]ftr(%(S++S,)T[[F]})} —0.

Any shock associated with the physically relevant solution must also satisfy the
jump condition

(3.3.15) [Fiallvg = [Fg]Va i=1,2,3, o,f=1,23
induced by (3.3.10), or equivalently,
(3.3.16) [Fia]l = Wiva, i=1,2,3, a=1,23

for some vector w € R3. By virtue of (3.3.13);, this condition holds automatically,
with w = o~ ![[v]], for any shock with speed & # 0. However, (3.3.16) disqualifies any
isentropic shock with speed o = 0. Indeed, for any such shock joining (F_,s,v_) and
(Fy,s,04), (3.3.13); together with (3.3.5), (3.3.8) and (3.3.16) would imply Nw = 0,
where

1
(3.3.17) N:/ N(v,(1—T)F_ +TF,,s)dT.
0
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Since N is positive definite, this yields w = 0 so no such shock is possible. On the
other hand, there exist stationary nonisentropic shocks compatible with (3.3.16).
The inequality (1.8.5) induced by (3.3.9) takes the form

(3.3.18) ofs] <o,

which implies that whenever a material particle crosses a nonstationary shock, its
physical entropy increases.

3.3.3 Isentropic Motion of Thermoelastic Nonconductors of Heat:

The physical background of isentropic processes was discussed in Section 2.5. In
particular, as noted earlier, in the absence of heat supply, » = 0, any thermoelastic
process that starts out isentropically remains isentropic for as long as it stays smooth.
Moreover, the assumption of constant entropy is often a satisfactory approximation
even for weak solutions. The entropy is fixed at a constant value § and, for simplicity,
is dropped from the notation. The state vector reduces to U = (F,v) with values in
R!2. The system of balance laws results from (3.3.4) by discarding the balance of
energy:

atEa—aan:O, i7a:17273
(3.3.19)
atvi—aaSia(F):b,-, i=1,2,3
and we still have
0e(F
(3.3.20) S,-OZ(F):L7 oo=1,2,3.
dFq

The system (3.3.19) is hyperbolic if € is rank-one convex, i.e., (3.3.7) holds at s = §.
The characteristic speeds in the direction v € S? are the six square roots of the three
eigenvalues of the acoustic tensor (3.3.8), at s = §, and zero with multiplicity six.

As explained in Section 2.5, in addition to (3.3.19) thermodynamically admissi-
ble isentropic motions must also satisfy the inequality (2.5.32), which in the current
notation reads

(3.3.21) o [e(F) + [0 — 9 [viSia(F)] < biv;.

By virtue of (3.3.20), any classical solution of (3.3.19) satisfies identically (3.3.21)
as an equality. Thus, in the terminology of Section 3.2, n = &(F) + %|ZJ|2 is an en-
tropy for the system (3.3.19). Note that (3.3.19) is in canonical form (3.1.4) and that
Dn = (S(F), v). Therefore, as shown in Section 3.2, when the internal energy &(F)
is uniformly convex, then changing the state vector from U = (F,v) to U* = (S,v)
will render the system (3.3.19) symmetric hyperbolic. It should be noted, however,
that even though €(F') may be convex on a portion of the state space (especially near
its minimum point), it cannot be globally convex, unless it is quadratic, in which case
(3.3.19) is linear. This is a consequence of the principle of material frame indiffer-
ence, which requires that £(F) be invariant under rigid rotations.
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Weak solutions of (3.3.19) will not necessarily satisfy (3.3.21). We thus en-
counter again the situation in which a companion balance law is extended from an
identity for classical solutions into an inequality serving as admissibility condition
on weak solutions.

Classical or weak solutions of (3.3.19) that are relevant to elastodynamics must
also satisfy (3.3.10), and thereby the kinematic conservation laws (3.3.11) and
(3.3.12).

The Rankine-Hugoniot jump conditions (3.1.3) for a shock front propagating in
the direction v € S? with speed o take the form

—0 [Fia]] = [0i]] V& a=123
(3.3.22)
—0 [vi]] = [Sia(F)]| Veu i=1,2,3.

Shocks associated with physically relevant solutions should also satisfy (3.3.14) and
(3.3.15), which, as we saw above, disqualifies all stationary shocks.
The inequality (1.8.5) induced by (3.3.21) is

(3.3.23) o [e(F) + 1 [ol’] ~ [oiSialF)] Ve <0,

which, in conjunction with (3.3.22), reduces to

(3.3.24) —o{usﬂ —tr(%(S+—|—S_)T [[F]])} <0,

namely the analog of (3.3.14) that does not involve the velocity.

The passage from (3.3.4) to (3.3.19) provides an example of the truncation pro-
cess that is commonly employed in continuum physics for simplifying systems of
balance laws by dropping a number of the equations while simultaneously reduc-
ing proportionately the size of the state vector, according to the rules laid down in
Section 1.5. In fact, one may derive the companion balance law (3.3.21) for the trun-
cated system (3.3.19) from the companion balance law (3.3.9) of the original system
(3.3.4) by using the recipe (1.5.12). Recall that in a canonical truncation, the elim-
ination of any equation should be paired with freezing the corresponding compo-
nent of the special state vector that symmetrizes the system. Thus, for instance, one
may canonically truncate the system (3.3.19) by dropping the i-th of the last three
equations while freezing the i-th component v; of velocity, or else by dropping the
(i, ot)-th of the first nine equations while freezing the (i, &)-th component S; (F) of
the Piola-Kirchhoff stress.

As explained in Section 2.5, the balance laws for isothermal processes of ther-
moelastic materials are obtained by replacing in (3.3.19), (3.3.20) and (3.3.21) the
internal energy £(F), at constant entropy, with the Helmholtz free energy y(F), at
constant temperature.

3.3.4 Isentropic Motion with Relaxation:
We consider isentropic motions of the material considered in Section 2.8, assuming
for simplicity that the reference density pp = 1 and the body force b = 0. The state
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vector is U = (F,v,X), with values in R?!. The system of balance laws is composed
of the compatibility equation (2.1.8);, the balance of linear momentum (2.3.4) and
the balance law (2.8.3) for the internal variable X:

atEa_aavj:O7 i,a:1,273

(3.3.25) 00i — 0u[Pa(F) +Zia] =0, i=1,2,3

1
O Lig = ;[Hia(z) —Fal, ioo=1,2,3.

Furthermore,

L on()
OZiq

(3.3.26) Po(F) = Mg (X) =

In addition to (3.3.25), thermodynamically admissible (isentropic) motions
should satisfy the entropy inequality (2.5.32), which here takes the form

(3.3.27) O [0(F) +tw(ZF ") +h(Z) + 2[0]*] — 9u[viPia(F) +viZia] <O,

so that, in the terminology of Section 3.2, 6(F) + tr(XF ") + h(Z) + 3 |v|? is an en-
tropy for (3.3.25).
The system (3.3.25) is hyperbolic when

9’6 (F)

d%h(x)

VaVg&i&j + VaVa&ili+ VaVpGi; >0,

forallve S?and (£,8) € S°.

3.3.5 Thermoelastic Fluid Nonconductors of Heat:

The system of balance laws (3.3.4) governs the adiabatic thermodynamic processes
of all thermoelastic media, including, in particular, thermoelastic fluids. In the latter
case, however, it is advantageous to employ spatial (Eulerian) description. The reason
is that, as shown in Section 2.5, the internal energy, the temperature, and the Cauchy
stress in a thermoelastic fluid depend on the deformation gradient F solely through
the density p. We may thus dispense with F and describe the state of the medium
through the state vector U = (p,v,s) which takes values in the (much smaller) space
R.

The fields will now be functions of (yx,¢). However, for consistency with the
notational conventions of this chapter, we will replace the symbol y by x. Also we
will be using J; (rather than a -subscript as in Chapter I) to denote partial derivatives
with respect to ¢.

The balance laws in force are for mass (2.3.2), linear momentum (2.3.5) and
energy (2.3.11). The constitutive relations are (2.5.12), with § = 0, (2.5.13) and
(2.5.14). To simplify the notation, we drop the “tilde” and write €(p,s) in place
of &(p,s). Therefore, the system of balance laws takes the form
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dp+div(po') =0

9 (pv) +div(pvo ") +grad p(p,s) = pb,

(3.3.29)
d[pe(p,s)+ 3p[ol*] +div[(pe(p,s) + 3p[0]* + p(p,s))v ']
=pb-v+pr,
with
(3.3.30) p(p:s)=p’ep(p,s),  6(p,s)=&(p,s).

The system (3.3.29) will be hyperbolic if
(3.3.31) &(p,s) >0, pp(p,s)>0.

The characteristic speeds in the direction v € S? are v- v, with multiplicity three, and
v-v+/pp(p,s), with multiplicity one. The quantity c(p,s) = /pp(p,s) expresses
the speed of propagation of a weak front as perceived by an observer carried by the
fluid flow, and is called the sonic speed.

In addition to (3.3.29), thermodynamically admissible processes must also satisfy
the Clausius-Duhem inequality (2.3.14), which here reduces to

33.32 o (—ps)+div(—psv’ ) < —p——.

( ) t( ps)+ IV( pso )— p6<p,s)

When the process is smooth, it follows from (3.3.29) and (3.3.30) that (3.3.32) holds
identically, as an equality.’> Consequently, § = —ps is an entropy for the system

(3.3.29) with associated entropy flux —psv . Once again we see that a companion
balance law is extended from an identity for classical solutions into an inequality
serving as a test for the physical admissibility of weak solutions.

Changing the state variables from (p,v,s) to (p,m,E), where m = pv is the
momentum density and E = pe + % p|o|? is the energy density, reduces (3.3.29) to
its canonical form. A long, routine calculation shows that, by virtue of (3.3.31), the
entropy 1] = —ps is a convex function of (p,m, E).

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection v € S? with speed o read as follows:

lp(v-v=0)]=0
(3.3.33) lp(v-v—o)o+p(p,s)v] =0

[p(v-v—0)(e(p,s)+3[0) + p(p,5)v- V] = 0.

3 Thus for smooth solutions it is often convenient to substitute the simpler equality (3.3.32)
for the third equation of (3.3.29). Notice that the smoothness requirement is met when p,v
and s are merely Lipschitz continuous, which allows for flows with weak fronts.
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By combining these equations, one derives the analog of (3.3.14):

(3.3.34) ps(vs-v—0){[e]l+3(p++p)lp "1} =0.

Notice that (3.3.33) admits shocks with v1 - v = o and [[p]] = 0. These fronts
propagate with characteristic speed and are called contact discontinuities or vortex
sheets. Fluid particles may slide at different speeds on either side of a vortex sheet,
but they cannot cross it. In addition, (3.3.33) support shocks with vy - v # &, which
are traversed by the orbits of fluid particles. The quantity in braces, in (3.3.34), van-
ishes along these shocks.

The inequality (1.8.5) induced by (3.3.32) here takes the form

(3.3.35) p+(vs-v—0)[s] >0,
which implies that when fluid particles cross a shock the physical entropy increases.

3.3.6 Isentropic Flow of Thermoelastic Fluids:

As shown above, in the absence of heat supply, r = 0, thermoelastic flows starting
out isentropically remain isentropic for as long as they stay smooth. Furthermore, the
assumption of constant entropy is satisfactory even after shocks develop, provided
their amplitude is small. In an isentropic flow, the entropy is fixed at a constant value
and is dropped from the notation. The state vector reduces to U = (p,v), with values
in R*. The system of balance laws results from (3.3.29) by discarding the balance of
energy:

op +div(po') =0

(3.3.36)
9 (pv) +div(pvo") +grad p(p) = pb,

with

(3.3.37) p(p) = p€(p).

The system (3.3.36) is hyperbolic if
(3.3.38) P (p)>0.

The characteristic speeds in the direction v € S? are v- v, with multiplicity two,
and v- v+ /p'(p), with multiplicity one. The quantity c(p) = +/p’(p) is the sonic
speed. In particular, (3.3.38) is satisfied in the case of the ideal gas (2.5.31), as long
as p > 0.

Thermodynamically admissible isentropic motions must satisfy the inequality
(2.5.33), which here reduces to

(3.339)  alpelp)+ iplof]+div(pe(p)+ plv* +p(p))v'] < pb-o.

It should be noted that the system (3.3.36) results from the system (3.3.29) by canon-
ical truncation, as described in Section 1.5, and in particular the companion balance



64 III Hyperbolic Systems of Balance Laws

law (3.3.39) can be derived from the companion balance law (3.3.32) by means of
(1.5.12).

The pattern has by now become familiar: By virtue of (3.3.37), any classical
solution of (3.3.36) satisfies identically (3.3.39), as an equality, so that the function
n = pe(p) + p[v|? is an entropy for the system (3.3.36). At the same time, the
inequality (3.3.39) is employed to weed out physically inadmissible weak solutions.

The system (3.3.36) attains its canonical form by changing the state variables
from (p,v) to (p,m), where m = pv is the momentum density. It is easily seen that,
on account of (3.3.37) and (3.3.38), the above entropy 7 is a convex function of
(p,m).

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection v € S? with speed o take the form

lp(o-v—o)]=0
(3.3.40)

[p(v-v—oc)o+p(p)v]=0.

As in the nonisentropic case, we have contact discontinuities or vortex sheets, with
vy -v =0, and [[p] =0, as well as shocks with vy - v # ©.
The inequality (1.8.5) induced by (3.3.39) is

(33.41) [p(0-v—0)(e(p) + LIol?) + p(p)o- V] < 0.
By virtue of (3.3.40), the inequality (3.3.41) may be written as
(3.3.42) px(vs-v—0){[el+3(p++p-)lp ']} <O.

For a broad class of equations of state, which includes the polytropic gas, (3.3.42)
implies that when fluid particles cross a shock their density increases and their nor-
mal speed decreases.

We now assume that we have a smooth isentropic flow, with body force derived
from a potential

(3.3.43) b= —gradg,

and monitor the evolution of the spin tensor W introduced in Section 2.1. Upon
combining the two equations in (3.3.36), we get

(3.3.44) do+Lo+grad[h(p) +g] =0,

where L is the velocity gradient and & = € 4 p/p is the enthalpy, with derivative
H(p)=p'(p)/p.From (2.1.9), Lv = 2Wv+L"v and L" v = grad (1|v|?), so that

(3.3.45) 0yv+2Wo + grad [h(p) + 1 [v]* +g] =0.
We differentiate (3.3.45) and take the skew-symmetric part, which gives

(3.3.46) W+ (AW)o+WL—-L'W' =0,
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or, upon using (2.1.4) and (2.1.9),
(3.3.47) W +WD+DW =0.

Thus, when W, and thereby the vorticity @ = curlo, vanish at some point in space-
time, they must vanish all along the trajectory of the particle that happens to occupy
that position. In particular, if the vorticity vanishes for all x at + = 0, then it must
vanish everywhere, for as long as the flow stays smooth. Such a flow is called irro-
tational or potential, as the velocity field derives from a potential ¢:

(3.3.43) v =grad .

Substituting v from (3.3.48) into (3.3.45), setting W = 0 and integrating the resulting
equation, we deduce that irrotational flows satisfy the Bernoulli equation

(3.3.49) 09+ tlgrad¢ > +h(p)+g =0.

The constants of integration have been absorbed into the term J,¢.
Thus irrotational flows may be determined by solving the Bernoulli equation
(3.3.49) together with the continuity equation (3.3.36);, which now takes the form

(3.3.50) dip +div[p(gradg) '] = 0.

The above analysis applies even when p and v are merely Lipschitz continuous,
i.e., irrotationality is preserved even in the presence of weak fronts, but it generally
breaks down when jump discontinuities develop, because shocks generate vorticity.
However, it has been common practice to employ the system (3.3.49), (3.3.50) even
in the regime of weak solutions, notwithstanding that the resulting flows may fail
to satisfy the balance of momentum equation (3.3.36), . This is in the same spirit as
considering discontinuous isentropic flows, s =constant, even though they may fail
to satisfy the energy balance equation (3.3.29)3 . Similar to the isentropic approxima-
tion, the error is small when the discontinuities (shocks) are weak. A major limitation
is that irrotational flow cannot support vortex sheets. Indeed, since ¢ is Lipschitz, its
tangential derivatives must be continuous across jump discontinuities. The condition
U4 -V = 0, characterizing vortex sheets, would imply that the normal derivative of ¢
would also be continuous, so no such jump discontinuities may exist.

The equations governing isothermal flow are obtained by replacing in (3.3.36),
(3.3.37) and (3.3.39) the internal energy £(p), at constant entropy, with the Helmholtz
free energy y(p), at constant temperature.

Isentropic and isothermal flows of thermoelastic fluids are examples of flows in
which the pressure depends solely on the density, which are known as barotropic.

3.3.7 The Boltzmann Equation and Extended Thermodynamics:

In contrast to continuum physics, kinetic theories realize matter as an aggregate of
interacting molecules, and characterize the state by means of the molecular density
function f(&,x,t) of the velocity & € RR? of molecules occupying the position x € R3
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at time . In the classical kinetic theory, which applies to monatomic gases, f(&,x,t)
satisfies the Boltzmann equation

(3.3.51) af +¢-grad,f = 2[f],

where 2 stands for a complicated integral operator that accounts for changes in f
incurred by collisions between molecules.

A formal connection between the continuum and the kinetic approach can be
established by monitoring the family of moments

(3352) El...iN:/éil"'giNfdga ila"'7iN:1a273
R3

of the density f. Indeed, these moments satisfy an infinite system of evolution equa-
tions

8¢F+8ij:0

O F;+0jF;j=0, i=1,2,3

atE]+akEjk:Pl]7 i7j:1a273
(3.3.53)

O/ Fiji + 9Fjxe = Pjrc, i,j,k=1,2,3

atlril...iN +amF‘i|4.4iNm =iy s il;' . '7iN = 15273'

In the above equations, and throughout this section, d; denotes d/dx; and we employ
the summation convention: repeated indices are summed over the range 1,2,3. The
term P; _;, denotes the integral of &;, ---&;, 2[f] over R3. Because of the special
structure of 2, the trace P; of P;; vanishes.

We notice that each equation of (3.3.53) may be regarded as a balance law, in the
spirit of continuum physics. In that interpretation, the moments of f are playing the
role of both density and flux of balanced extensive quantities. In fact, the flux in each
equation becomes the density in the following one. Under the identification

(3.3.54) F=p,
(3.3.55) FE=pv, i=1.273,
(3356) E’j:p?},’T)j—Tij, i,j:1,2,3,

(3.3.57) 1Fy = pe+Lplof?,
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(3358) %Eik: (pe+%p‘v|2)vk_7}<ivi+qu k= 172737

the first equation in (3.3.53) renders conservation of mass, the second equation ren-
ders conservation of linear momentum, and one half the trace of the third equation
renders conservation of energy, for a heat-conducting viscous gas with density p,
velocity v, internal energy €, Cauchy stress 7' and heat flux q. We regard T as the
superposition, T = —pl + o, of a pressure p = —%T,-i and a shearing stress o that is
traceless, o;; = 0. By virtue of (3.3.56) and (3.3.57),

(3.3.59) pe=3p,

which is compatible with the constitutive equations (2.5.20) of the ideal gas, for
Y=15/3.

Motivated by the above observations, one may construct a full hierarchy of con-
tinuum theories by truncating the infinite system (3.3.53), retaining only a finite
number of equations. The resulting systems, however, will not be closed, because
the highest order moments, appearing as flux(es) in the last equation(s), and also the
production terms on the right-hand side remain undetermined. In the spirit of con-
tinuum physics, extended thermodynamics closes these systems by postulating that
the highest order moments and the production terms are related to the lower order
moments by constitutive equations that are determined by requiring that all smooth
solutions of the system satisfy identically a certain inequality, akin to the Clausius-
Duhem inequality. This induces a companion balance law which renders the system
symmetrizable and thereby hyperbolic. The principle of material frame indifference
should also be observed by the constitutive relations.

To see how the program works in practice, let us construct a truncation of (3.3.53)
with state vector U = (p,v, p, G,q), which has dimension 13, as ¢ is symmetric and
traceless. For that purpose, we retain the first three of the equations of (3.3.53), for a
total of 10 independent scalar equations, and also extract 3 equations from the fourth
equation of (3.3.53) by contracting two of the indices. By virtue of (3.3.54), (3.3.55),
(3.3.56), (3.3.57), (3.3.58) and since P, P; and P; vanish, we end up with the system

ap+ 8]'([)01') =0
9, (pvi) +dj(pvivj+ pdij — 0;j) =0
(3.3.60) 9 (pe+3p[vl*) + 9 (pe+5p[ol* + p)ox— ojoj+ai} =0

9 (pvivj — §p[v[*8; — 0ij) + Kk (Fije — Finij) = P

9{ (pe+3p[vf* +p)ox— 01jv; +ai} + 3 9iFju = 5 Pik -

This system can be closed by postulating that F; i, Fjji , P;j and Py are functions of
the state vector U = (p,v, p, G,q), which are determined by requiring that all smooth
solutions satisfy identically an inequality

(3.3.61) a9+ 9y <0,



68 III Hyperbolic Systems of Balance Laws

where ¢ and ; are (unspecified) functions of U, and ¢(U) is convex. After a lengthy
calculation (see the references cited in Section 3.4), one obtains complicated albeit
quite explicit constitutive relations:

(3.3.62) Fijix = pvivjop + (pvk + %6]1{) 0ij + (pUi + %511') Ojk + (ij + %C]j>5ik )
(3.3.63) Fjjik = (p|v\2 +7p)v,~vk + (p6ik - G,'k) |Z)|2 — 00U

14 4
— Ok0jVi+ (qivk + qxvi) + gqj'vj5ik + % (5p0ixk — Toi)

(3.3.64) Py =10;; , Pijx = 279 040; — T1 gy -

To complete the picture, p, Ty and 7; must be specified as functions of (p, 6).
The special vector U* = B(U), in the notation of Section 1.5, that symmetrizes
the system has components

5 1 1
2P _ Os — §|U|2+ ——0jj0i0j —

2
i|0

P
y%

L

1
U — ;G,'jvj—i— sz (|v|2q,~+2qjvjv,~)

| —

. 2
(3.3.65) U 1+ 2L g0
3p?

1

p
—5%‘ ~5 (vig; +v;qi — $vkqrij)

.,
s5p2 ™

In particular, as explained in Section 1.5, truncating the system (3.3.60) by dropping
the last two equations should be paired with “freezing” the last two components
of U*, i.e., by setting ¢ = 0 and o = 0. In that case, the system of the first three
equations of (3.3.60) reduces to the system (3.3.29), in the particular situation where
b=0, r=0and pe and p are related by (3.3.59). If one interprets (p,v,p) as the
basic state variables and (0, ¢) as internal state variables, as explained in Section 2.8,
then (3.3.29) becomes the relaxed form of the system (3.3.60).

3.3.8 Nonlinear Electrodynamics:
Another rich source of interesting systems of hyperbolic balance laws is electromag-
netism. The underlying system consists of Maxwell’s equations

0B = —curlE
(3.3.66)
oD = curlH —J
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(3.3.67) divB' =0, divD'=p

on R3, relating the electric field E, the magnetic field H, the electric displacement
D, the magnetic induction B, the current J, and the charge p. In turn, the current and
charge are interrelated by the continuity equation

(3.3.68) op+diviT =0.

Constitutive relations determine E and H from the state vector U = (B, D). For
example, when the medium is a homogeneous electric conductor, with linear dielec-
tric response, at rest relative to the inertial frame, then D = €¢E and B = uH, where
€ is the dielectric constant and U is the magnetic permeability. In order to account
for nonlinear dielectric response and cross-coupling of electromagnetic fields, one
postulates general constitutive equations

_omBD) ,_In(B.D)

(3.3.69) E=—"r—, e
or

_ Oh(B,E) _ Oh(BE)
(3.3.70) D=""r,  H=—"00

where 1) is the electromagnetic field energy and h is the Lagrangian. Notice that 1) is
the Legendre transform of # with respect to E.
Physically admissible fields must also satisty the dissipation inequality

(3.3.71) om(B,D)+divQ" (B,D) < —J-E,
where
(3.3.72) Q=EANH

is the Poynting vector. A straightforward calculation shows that smooth solutions of
(3.3.66), (3.3.69) satisfy (3.3.71) identically, as an equality. Therefore, (1, Q) consti-
tutes an entropy-entropy flux pair for the system of balance laws (3.3.66), (3.3.69).
Since DN = (H,E), it follows from the discussion in Section 3.2 that when the elec-
tromagnetic field energy function is uniformly convex, then the change of state vec-
tor from U = (B,D) to U* = (H,E) renders the system symmetric hyperbolic. It
should be noted, however, that even though 17 may be convex on a portion of the
state space (especially near its minimum point) it cannot be globally convex, un-
less it is quadratic, in which case (3.3.66) is linear. This is a consequence of the
requirement that the Lagrangian (B, E) be invariant under Lorentz transformations,
and hence may depend on (B, E) solely through the scalar quantities |B|> — |E|*> and
B-E. This in turn implies that 7 must be invariant under rigid rotations and thus
may depend on (B, D) solely through the scalar quantities |B|?,|D|*> and B-D. No
such function of (B,D) may be globally convex, unless it is quadratic. In this re-
spect, there is remarkable similarity between electomagnetism and elastodynamics.
Another important consequence of the Lorentz invariance of the Lagrangian is that
E ANH = BAD. An illustration is provided by the Born-Infeld constitutive relations*

4 These were designed so that, contrary to the classical linear theory, the electromagnetic
energy generated by a point charge at rest is finite.
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d 1 d 1
:£:—[D+B/\Q], Hz%z—[B—D/\Q}
(3.3.73) n n
n=+/1+[B*+[D]>+|0QJ, Q=DAB=EAH.

Here 1) is not globally convex, but the resulting system (3.3.66) is still hyperbolic.
Under constitutive relations (3.3.69), any smooth solution of both (3.3.66) and
(3.3.67) satisfies the additional balance law

(3.3.74) &P(B,D)+divL(B,D) = —pE +BAJ,
with
(3.3.75) P=BAD, L=ED'+HB'+(n—E-D—H-B)I.

In particular, in the Born-Infeld case,
(3.3.76) P=Q, L=n"'(I+BB"+DD"—Q0Q").

The reader should note the difference between (3.3.71) and (3.3.74): The former is
contingent solely on (3.3.66), while the latter requires both (3.3.66) and (3.3.67) to
hold.

The Rankine-Hugoniot jump conditions for a shock front propagating in the di-
rection v € S? with speed o take the form

(3.3.77)
—o[D]] = —[H] Av.

For compatibility with (3.3.67), shocks should also satisfy the jump conditions
(3.3.78) B]-v=0, [D]-v=0.

Notice that (3.3.78) follow from (3.3.77), when ¢ # 0. On the other hand, (3.3.78) in
conjunction with hyperbolicity rule out the possibility of shocks with [[E]] and [H]
collinear to v, that would satisfy (3.3.77) for o = 0.

The inequality (1.8.5) induced by (3.3.71) reads

(3.3.79) —o[n(B, D) +[EAH]-v<0.

It is also noteworthy that under the Born-Infeld constitutive relations (3.3.73), the
jump conditions (3.3.77), (3.3.78) imply

(3.3.80) —o[[P]+[L]v =0,

with P and L given by (3.3.76). This means, in particular, that the extra balance law
(3.3.74) is automatically satisfied not only by smooth, but even by BV weak solutions
of (3.3.66) and (3.3.67).
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3.3.9 Magnetohydrodynamics:

Interesting systems of hyperbolic balance laws arise in the context of electromechan-
ical phenomena, where the balance laws of mass, momentum and energy of con-
tinuum thermomechanics are coupled with Maxwell’s equations. As an illustrative
example, we consider here the theory of magnetohydrodynamics, which describes
the interaction of a magnetic field with an electrically conducting thermoelastic fluid.
The equations follow from a number of simplifying assumptions, which will now be
outlined.

Beginning with Maxwell’s equations, the electric displacement D is considered
negligible so (3.3.66) yields J = curl H. The magnetic induction B is related to the
magnetic field H by the classical relation B = ptH. The electric field is generated by
the motion of the fluid in the magnetic field and so is given by E = BAv = uH A v.

The fluid is a thermoelastic nonconductor of heat whose thermomechanical prop-
erties are still described by the constitutive relations (3.3.30). The balance of mass
(3.3.29); remains unaffected by the presence of the electromagnetic field. On the
other hand, the electromagnetic field exerts a force on the fluid which should be ac-
counted as body force in the balance of momentum (3.3.29),. The contribution of
the electric field E to this force is assumed negligible while the contribution of the
magnetic field is J A B = —uH Acurl H. On account of the identity

(3.3.81) —H AcurlH = div[HH" — }(H-H)I),

this body force may be realized as the divergence of the Maxwell stress tensor. We
assume there is no external body force. To account for the electromagnetic effects on
the energy equation (3.3.29)3, the internal energy should be augmented by the elec-
tromagnetic field energy %,u|H 2, and u(H Av) ANH = u|H|*v — u(H -v)H, namely
the Poynting vector, should be added to the flux. The electromagnetic energy produc-
tion —J-E = —u(H Av)-curl H and the rate of work (JAB)-v=—u(H AcurlH)-v
of the electromagnetic body force cancel each other out.
We thus arrive at

(3.3.82)
dp+div(pp")=0

9 (pv) + div[pvo" — uHH "]+ grad [p(p,s) + Su|H[>] =0
o [pe(p,s)+1plo+ tulH|]

+div [(pe(p,s) + 1plol* +p(p,s) + uH*)o" —u(H-v)H' | = pr

0,H — curl(vAH) =0.

The above system of balance laws, with state vector U = (p, v, s, H), will be hy-
perbolic if (3.3.31) hold. Thermodynamically admissible solutions of (3.3.82) should
also satisfy the Clausius-Duhem inequality (3.3.32), with r = 0. By virtue of (3.3.30),
it is easily seen that any classical solution of (3.3.82) satisfies identically (3.3.32) as
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an equality. Thus —ps is an entropy for the system (3.3.82), with associated entropy
flux —pso.
The system (3.3.82) is supplemented by (3.3.67), namely

(3.3.83) divH =0.

Magnetohydrodynamics supports a richer family of shocks than plain fluid dy-
namics. The Rankine-Hugoniot jump conditions associated with the system (3.3.82),
for a shock propagating in the direction v € S* with speed o, read

(3.3.84)
lp(-v—-0)]=0

[p(@-v—0)v+(p+zulH)V —pu(H v)H] =0

[(v-v—0)(pe+3plvf+ SulH??)+ (0-v)(p+ su|H*) - u(H - v)(H -0)] =0

[(v-v—0)H—(H-v)o] =0.

They are supplemented by the jump condition
(3.3.85) [H-v]=0,

for (3.3.83), which asserts that the jump of the magnetic field must be tangential to
the shock.

Upon combining (3.3.84) with (3.3.85), and after a lengthy calculation, one ar-
rives at the analog of (3.3.34):

(3.3.86) pﬂm;V—d{Wﬂ+;@++p)M‘ﬂ—M‘NWNV}ZO

The jump conditions (3.3.84), (3.3.85) support three types of shocks, namely:

(a) Contact discontinuities, akin to vortex sheets in fluid dynamics, with speed
c=vs-vand [[p] =0, [v] =0, [H] =0, but [p] # 0. No entropy is produced
by such jumps.

(b)Transverse shocks, with [p]] =0, [[p]] = 0 and [[s]] = 0. In that case, [[v]] and [[H]]

must be collinear,

1

(3.3.87) nﬂi(ﬁ>ﬁwm

so in particular the velocity jump is tangential to the shock, [[v - v]] = 0. Furthermore,
the strength of the magnetic field is continuous across these shocks, [|H|] = 0.
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(c) Shocks across which all fields, p, p, 1, v and H sustain nonzero jumps. When
the Clausius-Duhem inequality (3.3.32) is satisfied, these shocks are termed com-
pressive, as density, pressure and entropy increase across them. Compressive shocks
form two subfamilies, distinguished by their speed and accordingly dubbed fast and
slow. The strength of the magnetic field increases across fast compressive shocks and
decreases across slow compressive shocks.

There are corresponding types of weak magnetohydrodynamic waves, forming
intricate geometric patterns.

3.4 Notes

As pointed out in the historical introduction, the theory of nonlinear hyperbolic sys-
tems of balance laws traces its origins to the mid 19th century and has developed
over the years conjointly with gas dynamics. The classic monograph by Courant and
Friedrichs [1] amply surveys, in mathematical language, the state of the subject at
the end of the Second World War. It is the distillation of this material that has laid
the foundations of the formalized mathematical theory in its present form.

The great number of books on the theoretical and the numerical analysis of hy-
perbolic systems of conservation laws published in recent years is a testament to the
vitality of the field. The fact that these books complement each other, as they differ
in scope, style and even content, is indicative of the breadth of the area.

Students who prefer to make their first acquaintance with the subject through a
bird’s-eye view may begin with the outlines in the treatise by M.E. Taylor [2], the
textbooks by Evans [2], Hormander [2], and Lax [7], or the lecture notes of Lax
[5], Liu [28], Dafermos [6,10], and Bressan [15,16]. To a certain extent, some of the
above references are dated, but the last two are current. In fact, Bressan [15] lists
many of the important open problems, while Bressan [16] is an introduction to the
field with text adorned with numerous informative figures.

On the theoretical side, Jeffrey [2], Rozdestvenski and Janenko [1], and Smoller
[3] are early comprehensive texts at an introductory level. The more recent books by
Serre [11], Bressan [9], Holden and Risebro [2], and LeFloch [5] combine a general
introduction to the subject with advanced, deeper investigations in selected direc-
tions. The encyclopedic article by Chen and Wang [1] uses the Euler equations of
gas dynamics as a springboard for surveying broadly the theory of strictly hyperbolic
systems of conservation laws in one space dimension. Finally, Majda [4], Chang and
Hsiao [3], Li, Zhang and Yang [1], Yuxi Zheng [1], Lu [2], Perthame [2], Benzoni-
Gavage and Serre [2], Ben-Artzi and Falcovitz [1], and Tartar [4] are specialized
monographs, more narrowly focussed. The above books will be cited again, in later
chapters, as their content becomes relevant to the discussion, and thus the reader will
get some idea of their respective offerings.

Turning to numerical analysis, LeVeque [1] is an introductory text, while the
books by Godlewski and Raviart [1,2], and LeVeque [2] provide a more com-
prehensive and technical coverage together with a voluminous list of references.
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Other useful sources are the books by Kroner [1], Sod [1], Toro [1], Kulikovski,
Pogorelov and Semenov [1], and Holden and Risebro [2], and the lecture notes
of Tadmor [2].

Another rich resource is the text by Whitham [2] which presents a panorama
of connections of the theory with a host of diverse applications as well as a survey
of ideas and techniques devised over the years by applied mathematicians studying
wave propagation, of which many are ready for more rigorous analytical develop-
ment. Zeldovich and Raizer [1,2], and Vincenti and Kruger [1] are excellent intro-
ductions to gas dynamics from the perspective of physicists and may be consulted
for building intuition.

The student may get a sense of the evolution of research activity in the field over
the past twenty years by consulting the Proceedings of the International Conferences
on Hyperbolic Problems which are held biennially. Those that have already appeared
at the time of this writing, listed in chronological order and under the names of their
editors, are: Carasso, Raviart and Serre [1], Ballmann and Jeltsch [1], Engquist and
Gustafsson [1], Donato and Oliveri [1], Glimm, Grove, Graham and Plohr [1], Fey
and Jeltsch [1], Freistiihler and Warnecke [1], Hou and Tadmor [1], Benzoni-Gavage
and Serre [3], Tadmor, Liu and Tzavaras [1], Tatsien Li and Song Jiang [1], and
Ancona, Bressan, Marcati and Marson [1].

An insightful perspective on the state of the subject at the turn of the century is
provided by Serre [16].

The term “entropy” in the sense employed here was introduced by Lax [4]. A col-
lection of informative essays on various notions of “entropy” in physics and mathe-
matics is found in the book edited by Greven, Keller and Warnecke [1]. The question
whether entropies may exist for systems endowed with symmetry groups, such as in-
variance under rotations and Galilean transformations, is addressed in Sever [15,16].

The systems (3.3.29) and (3.3.36) are commonly called Euler’s equations. There
is voluminous literature on various aspects of their theory, some of which will be
presented in subsequent chapters. For rudimentary aspects, the reader may consult
any text on fluid mechanics, for example Chorin and Marsden [1]. A classification of
convex entropies is found in Harten [1] and Harten, Lax, Levermore and Morokoff
[1].

The literature on nonlinear elastodynamics is less extensive. Good references,
with copious bibliography, are the books by Truesdell and Noll [1], and Antman [3].

The book by Cercignani [1] is an excellent introduction to the Boltzmann equa-
tion. For recent developments in the program of bridging the kinetic with the contin-
uum theory of gases, see the informative survey articles by Villani [1], and Vasseur
[7]. See also Berthelin and Vasseur [1].

For a thorough treatment of extended thermodynamics and its relation to the ki-
netic theory, the reader should consult the monograph by Miiller and Ruggeri [1]. The
issue of generating simpler systems by truncating more complex ones is addressed
in detail by Boillat and Ruggeri [1].

For a systematic development of electrothermomechanics, along the lines of the
development of continuum thermomechanics in Chapter II, see Coleman and Dill
[1], and Grot [1]. Numerous examples of electrodynamical problems involving hy-
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perbolic systems of balance laws are presented in Bloom [1]. Particularly relevant to
the presentation here is the article by Serre [25]. See also Boillat [3,5]. The consti-
tutive equations (3.3.73) were proposed by Born and Infeld [1]. The reader may find
some of their remarkable properties, together with relevant references, in Chapter V.
For magnetohydrodynamics see for example the texts of Cabannes [1], Jeffrey [1],
Landau and Lifshitz [1], and Kulikovskiy and Lyubimov [1].

The theory of relativity is a rich source of interesting hyperbolic systems of bal-
ance laws, which will not be tapped in this work. When the fluid velocity is compara-
ble to the speed of light, the Euler equations should be modified to account for special
relativistic effects; cf. Taub [1], Friedrichs [3], and the book by Christodoulou [1].
The study of these equations from the perspective of the theory of hyperbolic balance
laws has already produced a substantial body of literature. For orientation and exten-
sive bibliography, the reader may consult the recent monograph by Groah, Smoller
and Temple [2] or the survey articles by Smoller and Temple [3], and Groah, Smoller
and Temple [1]. See also Ruggeri [1,2], Smoller and Temple [1,2], Pant [1], and Jing
Chen [1].

Interesting hyperbolic systems of conservation laws also arise in differential ge-
ometry, in connection to the isometric immersion and evolution of surfaces, with
shocks manifesting themselves as “kinks”; see Section 18.7 and Arun and Prasad
[1].

Numerous additional examples of hyperbolic conservation laws in one space di-
mension will be presented in Chapter VII.



IV

The Cauchy Problem

The theory of the Cauchy problem for hyperbolic conservation laws is confronted
with two major challenges. First, classical solutions, starting out from smooth initial
values, spontaneously develop discontinuities; hence, in general, only weak solutions
may exist in the large. Next, weak solutions to the Cauchy problem fail to be unique.
One does not have to dig too deep in order to encounter these difficulties. As shown
in Sections 4.2, 4.4 and 4.8, they arise even at the level of the simplest nonlinear
hyperbolic conservation laws, in one or several space dimensions.

The Cauchy problem for weak solutions will be formulated in Section 4.3. To
overcome the obstacle of nonuniqueness, restrictions need to be imposed that will
weed out unstable, physically irrelevant, or otherwise undesirable solutions, in hope
of singling out a unique admissible solution. Two admissibility criteria will be intro-
duced in this chapter: the requirement that admissible solutions satisfy a designated
entropy inequality; and the principle that admissible solutions should be limits of
families of solutions to systems containing diffusive terms, as the diffusion asymp-
totically vanishes. A preliminary comparison of these criteria will be conducted.

A preliminary discussion on the issue of identifying mathematically and physi-
cally meaningful boundary conditions will be presented in Section 4.7.

The final section 4.8 of this chapter collects a representative sample of results
on the Euler equations of (isentropic) gas dynamics, in three spatial dimensions,
emerging from work of older or recent vintage and highlighting current research
trends in that important area of hyperbolic conservation laws.

4.1 The Cauchy Problem: Classical Solutions

To avoid trivial complications, we focus the investigation on homogeneous hyper-
bolic systems of conservation laws in canonical form,

(4.1.1) QU (x,1) +divG(U(x,1)) =0,

even though the analysis can be extended in a routine manner to general hyperbolic
systems of balance laws (3.1.1). The spatial variable x takes values in R™ and time
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t takes values in [0,7), for some T > 0 or possibly T = oo. The state vector U takes
values in some open subset & of R" and G = (G, ..., Gy,) is a given smooth function
from ¢ to M"*™. The system (4.1.1) is hyperbolic when, for every fixed U € & and
v € S" 1 the n x n matrix

m
(4.1.2) A(viU) =Y vaDGo(U)
a=1
has real eigenvalues A;(v;U),...,A,(v;U) and n linearly independent eigenvectors

Rl (V’U)a s 7Rn(V;U)'
To formulate the Cauchy problem, we assign initial conditions

(4.1.3) U(x,0) = Up(x), xeR™

where Uj is a function from R" to 0.

A classical solution of (4.1.1) is a locally Lipschitz function U, defined on
R™ x [0,T) and taking values in &, which satisfies (4.1.1) almost everywhere. This
function solves the Cauchy problem, with initial data Uy, if it also satisfies (4.1.3)
for all x € R™.

As we shall see, the theory of the Cauchy problem is greatly enriched when the
system is endowed with an entropy 1) with associated entropy flux Q, related by

(4.1.4) DQu(U)=Dn(U)DGg(U), a=1,---,m.

In that case, any classical solution of (4.1.1) will satisfy the additional conservation
law

(4.1.5) oMU (x,t))+divO(U(x,r)) =0.

As we proceed with the development of the theory, it will become clear that con-
vex entropy functions exert a stabilizing influence on solutions. As a first indication
of that effect, the following proposition shows that for systems endowed with a con-
vex entropy, the range of influence of the initial data on solutions of the Cauchy
problem is finite.

4.1.1 Theorem. Assume (4.1.1) is a hyperbolic system, with characteristic speeds
M(viU) <o < Ay (v;U), which is endowed with an entropy M(U) and associated
entropy flux Q(U). Suppose U (x,t) is a classical solution of (4.1.1) on R™ x [0,T),
with initial data (4.1.3), where Uy is constant on a half-space: For some & € sm-t
Uo(x) = U = constant whenever x - & > 0. Assume, further, that D*n(U) is positive
definite. Then, for anyt € [0,T), U(x,t) = U whenever x-& > A,(&;U)t.

Proof. Without loss of generality, we may assume that n(U) = 0, Dn(U) = 0,
0a(U) =0, DQu(U) =0, o = 1,...,m, since otherwise we just replace the given
entropy-entropy flux pair with the new pair

(4.1.6) nU)=n(U)-n(U)-Dbn(0)U -],
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(4.1.7) Q(U) =0(U)-0(U)-Dn(U)[G(U) - G(U)].
Foreachs € R, v € S"land U € 0, we define
(4.1.8) P(s,v;U)=sn(U)—Q(U)yv,

noting that @ (s, v;U) = 0 and D®(s, v;U) = 0. Furthermore, upon using (4.1.4) and
4.12),

(4.1.9) D>®(s,v;U0) =D*n(0)[sl — A(v;0)].
Hence, for j,k=1,...,n,

(4.1.10)
R;(v;U) ' D*®(s,v;U)R(v;U) = [s — A(v; O)R; (v;T) "D*n(T)Ri(v; 0).

The right-hand side of (4.1.10) vanishes for j # k, by virtue of (3.2.5), and has the
same sign as s — A (v; U) for j = k, since D?>n(U) is positive definite.
For € >0, we set § = max A,(v;U)+€and §= A,(&;U)+ €. Then there exists

yesm—1
6 = d(€) such that

@(5,v;U) >0, for 0<|U—-U|<6(e), veSr!
(4.1.11)
P($,E:U)>0, for 0<|U—-U|<b(¢).

To establish the assertion of the theorem, it suffices to show that for each fixed
e>0andr€0,T),U(x,t) = U whenever x- & > §t.
With any point (y, ), where 7 € (0,T) and y- & > §7, we associate the cone

(4.1.12) A r={(x1): 0<r<r7, |x—y|<5(t—1),x-E>y-E—5(t—1)},

which is contained in the set {(x,#) : 0 <t < T, x-& > §t}. Thus, the boundary of the
t-section of % ; is the union &, U.%; of a subset &, of a hyperplane perpendicular
to £, and a subset .%; of the sphere with center y and radius §(t —r). The outward
unit normal to the #-section at a point x is —§ if x € #,, and 5 ' (7 —¢) "' (x — )
if x € ;. Therefore, integrating (4.1.5) over J%; ¢, applying Green’s theorem and
using the notation (4.1.8) we obtain

(4.1.13)

//df' ($,&;U)dm( dt—i—//qb 5,5 Yr—1) Y (x—y);U0)ds#"™ " (x)dt =0.

02 0.

After this preparation, assume that the assertion of the theorem is false. Since U (x,7)
is continuous, and U (x,0) = U for x- & > 0, one can find (y,7), with 7 € (0,7T) and
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y-& > 81, such that U(y,7) # U and U (x,1) —U| < 8(¢) for all (x,1) € % ;. In that
case, (4.1.13) together with (4.1.11) yields a contradiction. The proof is complete.

It is interesting that in the above proof a crude, “energy”, estimate provides the
sharp value of the rate of growth of the range of influence of the initial data.

As we shall see in Chapter V, the Cauchy problem is well-posed in the class of
classical solutions, so long as Uy is sufficiently smooth and T is sufficiently small. In
the large, however, the situation is quite different. This will be demonstrated in the
following section.

4.2 Breakdown of Classical Solutions

Here we shall make the acquaintance of two distinct mechanisms, namely “wave
breaking” and “mass confinement,” that may induce the breakdown of classical so-
lutions of the Cauchy problem for nonlinear hyperbolic conservation laws.

We shall see first that nonlinearity forces compressive wave profiles to become
steeper and eventually break, so that a derivative of the solution blows up. This will
be demonstrated in the context of the simplest example of a nonlinear hyperbolic
conservation law in one spatial variable, namely the Burgers equation

(4.2.1) 8,u(x,t)+8x(%u2(x,t)) =0.

This deceptively simple-looking equation pervades the theory of hyperbolic con-
servation laws, as it repeatedly emerges, spontaneously, in the analysis of general
systems; see for instance Section 7.6.

Suppose u(x,t) is a smooth solution of the Cauchy problem for (4.2.1), with ini-
tial data uo(-), defined on some time interval [0,T). The characteristics of (4.2.1)
associated with this solution are integral curves of the ordinary differential equation
dx/dt = u(x,t). Letting an overdot denote differentiation, - = d; + udy, in the charac-
teristic direction, we may rewrite (4.2.1) as t = 0, which shows that u stays constant
along characteristics. This implies, in turn, that characteristics are straight lines.

Setting d,u = v and differentiating (4.2.1) with respect to x yields the equation
0,0+ udv+v* =0, or v+ v* = 0. Therefore, along the characteristic issuing from
any point (¥,0) where u((X) < 0, |dyu| will be an increasing function which blows up
atf = [—up(X)] ~! Itis thus clear that u(x,) must break down, as a classical solution,
at or before time 7.

For an alternative, instructive, perspective on wave breaking, let us associate with
any point (x,) on the domain of the above solution the number y = x — tu(x,#). Thus
y marks the interceptor on the x-axis of the characteristic associated with u that passes
through the point (x,#). Then (x,z) — (y,7) induces a new coordinate system. In
the spirit of continuum physics, one may regard (x,) as “Eulerian coordinates” and
(y,7) as “Lagrangian coordinates”. Expressed in Lagrangian coordinates, the solution
takes the simple form u(y,7) = up(y), with bounded derivatives: dyu(y,t) = ug(y)
and du(y,t) = 0. However, the problem arises when one switches back to Eulerian
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coordinates, since x = y 4 tup(y) implies that the transformation becomes singular
when x, = 1+ tug(y) vanishes.

One may stop at the critical time where the earliest singularity develops, or else
seek the so called maximal development region, namely the largest subset of the
upper half-plane on which u exists, as a classical solution. In Lagrangian coordinates
this is the set of (y,r) with rug(y) > —1.

For future reference, we shall compare and contrast the behavior of solutions of
(4.2.1) with the behavior of solutions to Burgers’s equation with damping:

(4.2.2) ﬁlu(x,t)+8x(%u2(x,t)) +u(x,t)=0.

The arguments employed above for (4.2.1), adapted to (4.2.2), yield that the evo-
lution of classical solutions u, and their derivatives v = dyu, along characteristics
dx/dt = u(x,1), is now governed by the equations #+u = 0, and ¥+ 0> +v = 0. The
last equation exemplifies the competition between the destabilizing action of nonlin-
ear response and the smoothing effect of damping: When the initial data u satisfy
ug(x) > —1, for all x € (—oo,0), then damping prevails, d,u remains bounded, and a
global classical solution exists for the Cauchy problem. By contrast, if uj(¥) < —1,
for some X € (—oo, 00), then waves break in finite time, as v = dyu must blow up along
the characteristic issuing from the point (,0).

To see an alternative scenario for breaking down of classical solutions, consider
the Cauchy problem for the Burgers equation (4.2.1), with initial data ug(-) supported
in the interval [0, 1]. Suppose a classical solution u(x,#) exists on some time interval
[0,T). In that case, by virtue of Theorem 4.1.1, u(-,7) will be supported in [0, 1], for
any ¢ € [0,T). We define the weighted total mass

1
(4.2.3) M(t) = /xu(x,t)olx7
0

and use (4.2.1) and Schwarz’s inequality to derive the differential inequality
1 1
(4.2.4) M) =1 / 20, (12 (x,1)) dx = 4 / W2(x,1)dx > 32 (1),
0 0

Thus, if M(0) > 0, M(t) must blow up no later than at time t* = 2M(0)~!. The
interpretation is that the constraints on the rate of growth of the size of the range
of influence of classical solutions, imposed by Theorem 4.1.1, confines the “mass”,
hampering dispersion. This results in segregation of the positive from the negative
part of the mass, eventually leading to blowup. However, it is not difficult to see that
in the present context waves will start breaking no later than at time f = %M (0)~ e,
the wave-breaking catastrophe will occur before the mass confinement catastrophe
may materialize.

As we shall see in Section 7.8, the wave breaking catastrophe occurs generically
to solutions of genuinely nonlinear systems of hyperbolic conservation laws in one
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spatial dimension, as waves propagating along characteristics are confined to a plane
and thus cannot avoid colliding with each other. By contrast, in several space dimen-
sions wave breaking may be averted as it competes with dispersion. Nevertheless, as
we shall see in Sections 6.1 and 4.8, waves still break for scalar conservation laws
in several space dimensions and for the Euler equations in three spatial dimensions.
The discussion of systems in which dispersion prevails and prevents the breaking of
waves lies beyond the scope of this book. An example of such a system, arising in
elastodynamics, will be exhibited in Section 5.5.

4.3 The Cauchy Problem: Weak Solutions

In view of the examples of breakdown of classical solutions presented in the previous
section—and many more that will be encountered throughout the text—it becomes
imperative to consider weak solutions to systems of conservation laws (4.1.1). The
natural notion for a weak solution should be determined in conjunction with an exis-
tence theory. The issue of existence of weak solutions has been settled in a definitive
manner for scalar conservation laws, in any number of spatial variables (see Chapter
VI), and at least partially for systems in one spatial variable (see Chapters XIII-
XVID); it remains totally unsettled, however, for systems in several spatial variables.
In the absence of a definitive existence theory, and in order to introduce a number
of relevant notions, without imposing technical growth conditions on the flux func-
tion G, we shall define here as weak solutions of (4.1.1) locally bounded, measurable
functions U, defined on R™ x [0,T) and taking values in &, which satisfy (4.1.1) in
the sense of distributions.

Recalling Lemma 1.3.3, we normalize any weak solution U of (4.1.1) so that
the map ¢ — U(+,t) becomes continuous on [0,7) in L*(R™) weak*. A normalized
weak solution of (4.1.1) will then solve the Cauchy problem (4.1.1), (4.1.3) if it also
satisfies (4.1.3) almost everywhere on R”. Lemma 1.3.3 also implies

T
(4.3.1) // [atcpu+ y aaqma(u)} dxdt+/q>(x, 1)U (x, 7)dx =0,
T Rm a=1 R™

for every Lipschitz test function @(x,¢), with compact support in R” x [0,7) and
values in M'*”, and any 7 € [0, 7). In particular,

(43.2) /T / [8,¢U+ﬁlaa¢Ga(U)}dxdt+RZ & (x,0)Up (x)dx = 0,

0 R™

which may serve as an equivalent definition of a weak solution of (4.1.1), (4.1.3). The
continuity of # — U (+,t) also induces the desirable semigroup property: if U (x,?) is a
weak solution of (4.1.1) on [0, T), with initial values U (x,0), then for any 7 € [0,T)
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the function Uz (x,t) = U(x,t 4 7) is a weak solution of (4.1.1) with initial values
U:(x,0) =U(x,71).

An important class of weak solutions are those in which U is a function of locally
bounded variation on R™ x [0,7). Such solutions satisfy the system (4.1.1) in the
sense of measures and the initial conditions (4.1.3) as the trace of U at ¢t = 0. On the
set of points of approximate jump discontinuity, BV solutions satisfy the Rankine-
Hugoniot jump conditions (3.1.3), which here take the following form:

(4.3.3) —s[Uy —U_]+[GU,) = G(U-)]v=0.

As the system is in divergence form, there is a mechanism of regularity transfer
from the spatial to the temporal variables, which can be illustrated in the context of
BV solutions:

4.3.1 Theorem. Let U be a bounded weak solution of (4.1.1) on [0,T) such that, for
any fixed t € [0,T), U(-,t) € BV(R™) and TVgnU (-,1) <V, for allt € [0,T). Then
t = U(-,t) is Lipschitz continuous in L' (R™) on [0, T),

(4.3.4) [U(0)=U(0)|lp@n <aVlo—1], 0<1<0<T,

where a depends solely on the Lipschitz constant of G. In particular, U is in BVj,. on
R™ x [0,T).

Proof. Fix 0 < 7 < 0 < T and any ¥ € Cy (R™;M"*"), with |¥(x)| < 1 forx € R™.
Using the test function @(x,7) = f(r)¥(x), where f € C;[0,T), with f(t) =1 for
t € [0, o], write (4.3.1), first for T = o, then for T = 7, and subtract to get

(4.3.5) /m@w@@—(xrm—//xax (U (x,1))dxdr.
i

T Rm -

The spatial integral on the right-hand side is majorized by the total variation of
G(U(-,1)), which in turn is bounded by aV. Taking the supremum of (4.3.5) over
all ¥ with |¥(x)| < 1, we arrive at (4.3.4).

Theorem 1.7.2 together with (4.3.4) implies that U is in BV, on R™ x [0,T).
The proof is complete.

4.4 Nonuniqueness of Weak Solutions

Extending the notion of solution from classical to weak introduces a new difficulty:
nonuniqueness. To see this, consider the Cauchy problem for the Burgers equation
(4.2.1), with initial data

(4.4.1) u(x,0) = { _i

,  x<0
,  x>0.
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This is an example of the celebrated Riemann problem, which will be discussed
at length in Chapter IX. The problem (4.2.1), (4.4.1) admits infinitely many weak
solutions, including the family

—1, —oo < x < —t
X
g —t<x<—ot
—o, —otr<x<0
(4.4.2) ug(x,1) =
a, O<x<at
X
g ar <x<t
1, t < x<oo,

for any o € [0,1]. Indeed, uq(x,t) satisfies (4.2.1), in the classical sense, provided
x/t ¢ {0,£o,£1}. The lines x/t = £1, for a € [0, 1], and x/t = £, for et in (0, 1),
are just weak fronts, across which u, is continuous. Finally, for o # 0, the line x =0
is a stationary shock front across which the Rankine-Hugoniot jump condition (4.3.5)
holds.

To resolve the issue of nonuniqueness, additional restrictions, in the form of ad-
missibility conditions, shall be imposed on weak solutions. At the outset, reasonable
admissibility criteria should meet at least some of the following requirements:

(a) They should be dictated, or at least motivated, by physics.

(b) They should be compatible with other established admissibility conditions.

(c) They should be broad enough to allow for existence of admissible solutions,
and yet sufficiently narrow to disqualify spurious solutions. Ideally, they should be
capable of singling out a unique admissible solution.

The issue of admissibility of weak solutions to hyperbolic conservation laws will
be a central theme in this book, requiring lengthy discussions, which will commence
in the following two sections and culminate in Chapters VIII and IX. In particular, it
will turn out that ug(x,) is the sole admissible solution of the simple problem (4.2.1),
(4.4.1) considered in this section.

4.5 Entropy Admissibility Condition

As we saw in Chapter III, every system of balance laws arising in continuum physics
is accompanied by an entropy inequality that must be satisfied by any physically
meaningful process, as it expresses, explicitly or implicitly, the Second Law of ther-
modynamics. This motivates the following procedure for characterizing admissible
weak solutions of hyperbolic systems of conservation laws.

Assume our system (4.1.1) is endowed with a designated entropy 1, associated
with an entropy flux Q, so that (4.1.4) holds. A weak solution of (4.1.1), in the sense
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of Section 4.3, defined on R™ x [0, T), will satisfy the entropy admissibility criterion,
relative to 1, if

(4.5.1) MU (x,1)) +divO(U (x,1)) < 0

holds, in the sense of distributions, on R” x [0, T).

Clearly, any classical solution of (4.1.1) is admissible, as it satisfies the equality
(4.1.5). Another relevant remark is that the entropy admissibility criterion induces a
time irreversibility condition on solutions: if U (x,t) is an admissible weak solution
of (4.1.1) that satisfies (4.5.1) as a strict inequality, then U (x,¢) = U (—x, —t), which
is also a solution, is not admissible.

A natural question is how one may designate an appropriate entropy for the ad-
missibility criterion. For instance, it is clear that a weak solution that is admissible
relative to an entropy 1 fails to be admissible relative to the entropy 7 = —1. When
the system derives from physics, then it is physics that should designate the natu-
ral entropy. In the absence of guidance from physics, one has to use mathematical
arguments. It is, of course, desirable that the admissibility criterion induced by the
designated entropy should be compatible with admissibility conditions induced by
alternative criteria, to be introduced later. Another natural condition is that admissi-
ble weak solutions should enjoy reasonable stability properties. As we shall see, all
of the above requirements are met when the designated entropy 1(U) is convex, or
at least “convexlike”.

The reader should bear in mind that convexity is a relevant property of the entropy
only when the system is in canonical form. In the general case, convexity of 1) should
be replaced by the condition that the (n X n matrix-valued) derivative DB(U, x,t) of
the (n-vector-valued) function B(U,x,t) in (3.2.2) is positive definite.

A review of the examples considered in Section 3.3 reveals that the entropy, as
a function of the state vector that converts the system of balance laws into canon-
ical form, is indeed convex in the case of the thermoelastic fluid (example 3.3.5),
the isentropic thermoelastic fluid (example 3.3.6) and magnetohydrodynamics (ex-
ample 3.3.9). This may raise expectations that in the equations of continuum physics
entropy is generally convex. However, as we shall see, this is not always the case;
hence the necessity to consider a broader class of entropy functions.

For any weak solution U satisfying the entropy admissibility criterion, the left-
hand side of (4.5.1) is a nonpositive distribution, and thereby a measure, which shall
be dubbed the entropy production measure. Then Lemma 1.3.3 implies that the map
t — n(U(-,1)) is continuous on [0,7)\.# in L*(R™) weak*, where .% is at most
countable. Furthermore, for every nonnegative Lipschitz test function y(x,t), with
compact support in R” x [0,7), and any 7 € [0,T)\.Z,

(4.5.2) /T / [8;1//7](U)+ i 8ana(U)}dxdt+ / w(x, 7)1 (U (x,7))dx > 0.
o= R

T Rm

It would be important to determine conditions under which the set .7 is actually
empty, but the presence of wildly oscillating, exotic solutions for the Euler equations,
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which will be demonstrated in Section 4.8, is an indication that answering this ques-
tion will not be easy. Indeed, at the time of this writing, there is a rigorous proof that
Z =0 only in the scalar case, n = 1 (see Section 6.8). As we shall see, it is a great
help to the analysis if at least 0 ¢ %, in which case (4.5.2), with T = 0, becomes

(4.5.3) /T / [8,1//11(U)+ y 8ana(U)}dxdt+ / w(x,0) 1 (Uo(x))dx > 0.
a=1 Rm

0 R™

Accordingly, it is (4.5.3), rather than the slightly weaker condition (4.5.1), that is
often postulated in the literature as the entropy admissibility criterion for the weak
solution U. It should be noted, however, that admissible weak solutions character-
ized through (4.5.3) do not necessarily possess the desirable semigroup property,
i.e., U(x,t) admissible does not generally imply that Ur(x,t) = U(x,t + T) is also
admissible, for all T € [0,T). Thus, in the author’s opinion, admissibility should be
defined either through (4.5.1) alone or through (4.5.2), for all T € [0,T). An eventual
proof that, at least in certain systems, .% is empty will render the distinction moot.

A first indication of the enhanced regularity enjoyed by admissible weak solu-
tions when the entropy is convex is provided by the following

4.5.1 Theorem. Assume U (x,t) is a weak solution of (4.1.1) on R™ x [0,T), which
satisfies the entropy admissibility condition (4.5.1) relative to a uniformly convex
entropy 1. Thent — U (-,t) is continuous on [0,T)\.Z in L, (R™), forany p € [1,0),
where .F is at most countable. Moreover, (4.5.2) holds for some T in [0,T), if and
only if t — U (-,t) is continuous from the right at T in L], (R™), for any p € [1,e0).
Proof. Since both ¢ +— U(-,7) and ¢ — n(U(-,7)) are continuous on [0,7)\.% in
L*(R™) weak*, and 1 is uniformly convex, it follows that ¢ — U(-,#) is strongly
continuous on [0,7)\.Z in L?(2), for any compact subset 2 of R™ and p € [1,%0).

Assume now (4.5.2) holds, for some 7 € [0,T). Fix € > 0 and apply (4.5.2) for
y(x,1) = ¢(x)g(r), where ¢ € Ci’(R™), with @(x) > 0 for x € R™, while g is defined
by g(t) =1—€'(t—1), for 0 <t < T+¢, and g(t) =0, for t + & <t < eo. This
gives

T+€

(4.5.4) % / / o) (U (x,7)) = (U (x,1))] dxdi > O(e).

T Rm
By Lemma 1.3.3, letting € | 0, we deduce eSflimn(U(-,t)) <n(U(-, 7)), where the
T

limit is taken in L*(9) weak*, for any compact subset & of R™. Recalling that
1ifnU(~,t) =U(-,7), again in L*(Z) weak*, and that n(U) is uniformly convex, it
T

follows that, as ¢ | 7, U(-,#) — U(+, 1), strongly in L?(2), for any p € [1,0).
Conversely, assuming 7 — U(-,) is right-continuous in L (R™) at 7, we fix
any nonnegative Lipschitz function y(x,#) with compact support in R” x [0,7T)

and set ¢(x,7) = h(t)y(x,t), where h(t) =0, for 0 <t < 7, h(t) = e~ (t — 1), for
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T<t<7+e¢€, and h(t) =1, for T+ € <t < T. Upon applying (4.5.1) to the test
function ¢, and then letting € | 0, we arrive at (4.5.2). The proof is complete.

The implications of (4.5.3) or (4.5.2) are further elucidated by the following

4.5.2 Theorem. Let U(x,t) be a weak solution of (4.1.1), (4.1.3), on R™ x [0,T),
with Uy(-) — U € L*(R™), for some fixed state U. Assume U satisfies the entropy
admissibility condition (4.5.1) relative to a uniformly convex entropy 1, normalized"
so that n(U) =0,Dn(U) =0. Then U satisfies (4.5.3) if and only if

(4.5.5) NnU(x,1))dx < N (Uo(x))dx, 0<t<T.

Rn‘l RITI
It thus follows that (4.5.2) holds for all T € [0,T) if and only if the function
t = Jpm N(U(x,1))dx is nonincreasing on [0,T).

Proof. Assume (4.5.3) holds and fix any 7 € (0,7T). For € > 0 small, » > 0 and s > 0,
set

1 0<r<r
(4.5.6) ht)=<{ e N t—t)+1 1<t<t+e
0 T+e<t<T,
1 |x| —r—s(t—1) <0

(4.5.7) o(x,t) =< el r+s(t—t)—|x]]+1 O0<|x|—r—s(t—1t)<e
0 |x| —r—s(t—1t) > ¢,

and write (4.5.3) for the test function y(x,7) = h(¢)d(x,t) to get

(4.5.8) l/rm ‘xmn(U(x,r))dxdtg/ 1 (Uo(x))dx

£ |x|<r+st

T .
—1/ / [sn(U)+ o) x} dxdt +O(€).
€J0 Jrts(t—t)<|x|<r+s(t—t)+€ |x|

Recalling that 7] is uniformly convex, 11(U) = 0, Dn(U) = 0, and thereby we have
DQy(U) =0,a =1,---,m, normalize Q by Q(U) = 0, and fix s sufficiently large
for sm > |Q| to hold on the range of the solution U. In (4.5.8), let € | 0, use the weak
lower semicontinuity of [ 77(U)dx, and then let r 1 oo, to arrive at (4.5.5).

I As explained in the proof of Theorem 4.1.1.
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Conversely, assume (4.5.5) holds. Since U(-,T) — Up(-), in L*(R™) weak™, as
710, (4.5.5) and the weak lower semicontinuity of [ 1(U)dx imply U(-,7) — Up(*)
in L (R™). This in turn yields (4.5.3), by virtue of Theorem 4.5.1. The proof is
complete.

The monotonic decay of total entropy, manifested in (4.5.5), is physically ap-
pealing. It hinges on the admissibility condition (4.5.2) in conjunction with the weak
lower semicontinuity of the map V — [ 11(V)dx, for which convexity of (V) is both
necessary and sufficient, so long as V is unrestricted. However, in Chapter I1I we en-
countered important systems arising in mechanics and electrodynamics, in which the
entropy function is not allowed to be convex. What saves the day is that the state vec-
tor for such systems must satisfy side conditions that may render [ 1(V)dx weakly
lower semicontinuous even for (V) that are not convex.

For illustration, let us consider the system (3.3.19) that governs the isentropic mo-
tion of thermoelastic media. Recall that the entropy function 1 = €(F) + § [v|? fails
to be convex, because the internal energy function €(F) is not allowed to be convex.
Nevertheless, it is known (references in Section 4.9) that since F is constrained to be
a gradient, the map F — [ &(F)dx is lower semicontinuous in L* weak™ if and only
if €(F) is quasiconvex in the sense of Morrey, namely, letting .#~ denote the standard
hypercube in R3,

(4.5.9) e(F) < /£(ﬁ+Vx)dx
H

holds for every constant matrix £ and any Lipschitz vector field ¥ with compact
support in . In physical terms, (4.5.9) stipulates that € is quasiconvex when any
homogeneous deformation of .#” minimizes the internal energy stored in .2 among
all placements of % with the same boundary values.

Convexity of €(F) is a sufficient condition for quasiconvexity, but it is not nec-
essary. On the other hand, rank-one convexity (3.3.7), with s constant, is a necessary
condition for quasiconvexity of €(F) but it is not sufficient. In fact, since (4.5.9) is
nonlocal, it is not easy to test whether any particular rank-one convex, but not convex,
function is quasiconvex.

A method for constructing physically admissible, nonconvex but quasiconvex in-
ternal energies is based on that (4.5.9) holds as equality when &(F) = ¢(F), where
¢(F) is any null Lagrangian in the form (2.2.9). Thus null Lagrangians are continu-
ous in L” weak™. It follows that internal energies with constitutive equations

(4.5.10) e(F) = 0(F,F* detF),

where (F,H,3) is convex in R!, are lower semicontinuous in L weak* and
thereby quasiconvex. Constitutive equations of this type are termed polyconvex. They
provide realistic models for actual elastic materials and are playing an important role
in elastostatics. Their role is elastodynamics will be elucidated in Section 5.4. For
present purposes, when the internal energy function is polyconvex, the assertions of
Theorem 4.5.2 hold for the system (3.3.19) of isentropic thermoelasticity.
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As we shall see later, the entropy admissibility condition eliminates some, but not
necessarily all, of the undesirable, spurious weak solutions of hyperbolic systems of
conservation laws. A potential remedy is to require that (4.5.3) hold simultaneously
for every convex entropy of the system. However, this appears promising only for
the very special class of systems that are endowed with a rich family of entropies
and in particular, as we shall see in Chapter VI, for scalar conservation laws. In that
connection, one should be aware of the following

4.5.3 Remark. Assume (4.1.1) is endowed with an entropy-entropy flux pair (7}, Q)
with D) positive definite on ¢, and consider the stronger admissibility condition
on solutions U of (4.1.1), namely, that the inequality (4.5.3) must hold for every
entropy-entropy flux pair (1, Q) with 1 convex. In that case, 9,1 (U) +divQ(U) will
be a measure for any entropy-entropy flux pair (17, Q). This follows from the obser-
vation that any C? entropy-entropy flux pair (17, Q) may be written as the difference
of the entropy-entropy flux pairs (k) +1,kQ + Q) and (kf],kQ), where the Hessians
of both k7] + 1 and k7 are positive definite on any compact subset of &, for k suffi-
ciently large.

In the absence of a rich family of entropies and when (4.5.1) for a single en-
tropy does not suffice for weeding out all spurious solutions, one may attempt to
single out the physically admissible solution by adopting a more selective admis-
sibility condition, always in the spirit of the Second Law of thermodynamics. As
(4.5.5) manifests that admissible solutions must be dissipative, it is natural to inquire
whether the solution exhibiting dissipation at the highest rate has special status. One
may experiment with various characterizations of maximal dissipativeness. Thus, in
the setting of Theorem 4.5.2, a solution U may be termed maximally dissipative if
for every ¢ € [0,T) and any other solution U that coincides with U on R™ x [0,1],
either

(4.5.11) D+ / U dx <Dy | 1(0(x1))dx,

R™ *
where D' and D, denote the upper and lower right Dini derivatives; or, alternatively,
if there is a decreasing sequence {f }, ty —  as k — oo, such that

(4.5.12) /n (x,1¢) dx</ n(0 (x,1)) k=1,2,....

Notice that (4.5.11) and (4.5.12) are in the same spirit, but neither one implies the
other. We will return to these considerations, briefly in Section 4.8 and more thor-
oughly in Section 9.7.

Whenever the admissible solution U is of class BVjoc , Theorem 1.8.2 implies that
the entropy production measure is concentrated on the set of points of approximate
jump discontinuity of U, i.e., on the shock fronts. In that case, (4.5.1) reduces to the
local condition (1.8.5), which in the present notation takes the form
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(4.5.13) —s[N(Uy) =nU)]+[QWU+) —QU-)]v <0.

For admissibility of U relative to the entropy 1, (4.5.12) has to be tested at any point
of a shock that propagates in the direction v € §”~! with speed s.

As an application, let us test the admissibility of the family uq/(x,¢) of solu-
tions to (4.2.1), (4.4.1), defined by (4.4.2), relative to the entropy-entropy flux pair
(% 2, %u3) It is clear that, for any o € (0,1], the stationary shock x = 0 violates
(4.5.12). Thus, the sole admissible solution in that family is uo(x,), which is Lips-

chitz continuous, away from the origin.

4.6 The Vanishing Viscosity Approach

According to the viscosity criterion, a solution U of (4.1.1) is admissible provided
itis the y | O limit of solutions Uy, to a system of conservation laws with diffusive
terms:

(4.6.1) U (x,t —i—Z&aGa Z 90 [Bop (U(x,1))dgU (x,1)],
a,B=1

where the By are n X n matrix-valued functions defined on &

The motivation for this principle and the term “vanishing viscosity” derive from
continuum physics: as we saw in earlier chapters, the balance laws for thermoelastic
materials under adiabatic conditions induce first order systems of hyperbolic type.
By contrast, the balance laws for thermoviscoelastic, heat-conducting materials, in-
troduced in Section 2.6, generate systems of second order in the spatial variables,
containing diffusive terms akin to those appearing on the right-hand side of (4.6.1).
In nature, every material has viscous response and conducts heat, to a certain degree.
Classifying a particular material as an elastic nonconductor of heat simply means
that viscosity and heat conductivity are negligible, albeit not totally absent. Conse-
quently, the theory of adiabatic thermoelasticity may be physically meaningful only
as a limiting case of thermoviscoelasticity, with viscosity and heat conductivity tend-
ing to zero. It is this premise that underlies the vanishing viscosity approach.

In laying down (4.6.1), the first task is to select the n x n matrices Byg(U), for
a,PB =1,...,m. Inthe case of systems of physical origin, the natural choice for these
matrices is dictated, or at least suggested, by physics. For example, thermoelastic
fluid nonconductors of heat should be regarded as Newtonian fluids with constitutive
equations (2.6.16), (2.6.17) having vanishingly small viscosity and heat conductivity.
Accordingly, when (4.1.1) stands for the system (3.3.29) of balance laws of mass,
momentum and energy for thermoelastic fluids that do not conduct heat (with zero
body force and heat supply), the appropriate choice for the corresponding system
(4.6.1), with diffusive terms, should be?

2 We write this system in components form, let d; denote d/dx; and employ the summation
convention: repeated indices are summed over the range 1,2,3.
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ap +9j(pv;) =0

o (pZJ,‘) + &j (pvivj) + a,‘p(p,s) = )Lc?,-c?jvj + ,Llaj (aivj + ajv,-)
(4.6.2)
9 [pe(p,s)+1p[vl*] +9;[(pe(p,s) +3pl0l* + p(p,s))v;]

=A0; (U,’(?j?)j) —HL&, [(8,'Uj +8jv,-)v,»] + k0;0:0.

The reader should take notice that (4.6.2) contains three independent physical
parameters, namely the bulk viscosity A + % U, the shear viscosity p and the thermal
conductivity x, which might all be very small albeit of different orders of magnitude.
Thus, one should be prepared to consider formulations of the vanishing viscosity
principle, more general than (4.6.1), involving several independent small parameters.
However, this generalization will not be pursued here.

Physics suggests the natural form for (4.6.1) in every example considered in
Section 3.3, including electromagnetism, magnetohydrodynamics, etc. On the other
hand, in the absence of guidance from physics, or for mere analytical and computa-
tional convenience, one may experiment with artificial viscosity added to the right-
hand side of (4.1.1). For example, one may add artificial viscosity to (4.2.1) to derive
the Burgers equation with viscosity:

(4.6.3) Au(x,t) + 0y (Lu?(x,1)) = pofu(x,t).

It is clear that artificial viscosity should be selected in such a way that the Bgg
induce dissipation and thus render the Cauchy problem for (4.6.1) well-posed. The
temptation is to use for Byg matrices that would render (4.6.1) parabolic; and in
particular the zero matrix if @ # 8 and the identity matrix if o = 8, which would re-
duce the right-hand side to HAU. The physically motivated example (4.6.2) demon-
strates, however, that confining attention to the parabolic case would be ill-advised.
In general, one has to deal with systems of intermediate parabolic-hyperbolic type,
in which case establishing the well-posedness of the Cauchy problem may require
considerable effort. See Section 5.5.

Assuming a vanishing viscosity mechanism has been selected, rendering the
Cauchy problem (4.6.1), (4.1.3) well-posed, the question arises as to the sense of
convergence of the family {U, } of solutions, as p | 0. This is of course a serious
issue: requiring very strong convergence may raise unreasonable expectations for
compactness of the family {Uy }. On the other hand, if the sense of convergence is
too weak, it is not clear that limU, will be a solution of (4.1.1). Various aspects of
this problem will be discussed later, mainly in Chapters VI, XV and XVII.

Another important task is to compare admissibility of solutions in the sense of
the vanishing viscosity approach and admissibility in the sense of a designated en-
tropy inequality (4.5.1), as discussed in Section 4.5. In continuum thermodynamics,
presented in Chapter II, whenever (4.6.1) results from actual constitutive equations
compatible with the Clausius-Duhem inequality, and (4.5.1) is, or derives from, the
Clausius-Duhem inequality, solutions of (4.1.1) obtained by the vanishing viscosity



92 IV The Cauchy Problem

approach will automatically satisfy (4.5.1). For example, solutions of (3.3.29) ob-
tained as the (A, u, x) | 0 limit of solutions of (4.6.2) will satisfy automatically the
inequality (3.3.32).

If n(U) is an entropy for (4.1.1), associated with the entropy flux Q(U), then any
(classical) solution Uy, of (4.6.1) satisfies the identity

(464) (U + i]aaga(uu): " ﬁf_laa[nn(uu)gaﬂu,,)aﬁuﬂ]

m
—1 Y. (9Uu) D1 (Uu)Bag (Ui) Uy -
o,f=1

The second term on the right-hand side should be dissipative, so that the quadratic
form associated with Danaﬁ must be positive semidefinite. Beyond that, however,
this term is entrusted with the responsibility of dominating the first term on the right-
hand side of (4.6.4) as well as the right-hand side of (4.6.1). A sufficient, though not

necessary, condition for this will be

2
(4.6.5) Z EaD*N(U)Bop(U)Eg > a Z ZBaﬁ
o,f=1 a=1|B=1
for some positive constant a, any U € & and all §, € R", @ = 1,--- ,m. Notice that

when B vanishes for a # B, and is the identity for o = 8, (4.6.5) reduces to the
statement that 1 (U) is uniformly convex.

Suppose now that the initial data Uy and the solution Uy, of (4.6.1), (4.1.3) tend
sufficiently fast, as |x| — o, to a constant state U. Without loss of generality we
may assume that 1)(U) = 0 and Dn(U) = 0, since otherwise we may replace 1 (U)
by 7(U), defined by (4.1.6). We make the further assumption that actually U is the
minimum of 1) over &. This of course will automatically be the case when 1n(U)
is convex. Under these hypotheses, integrating (4.6.4) over R™ x [0,T) yields the
estimate

(4.6.6) // ﬁi &aU,J)TDzn(U“)Baﬁ(Uu)aﬁU”dxdt§/n(Uo(x))dx.
0 Rm @ m

We have now laid the groundwork for showing that the viscosity admissibility
criterion implies the entropy admissibility condition.

4.6.1 Theorem. Under the assumptions on N(U) and {U,} stated above, suppose
that a sequence {Uy, }, with i — 0 as k — oo, converges boundedly almost every-
where on R™ x [0,T) to some function U. Then U is a weak solution of (4.1.1),
(4.1.3) on R™ x [0, T), which satisfies the entropy admissibility condition (4.5.3).

Proof. We multiply (4.6.1) by any Lipschitz test function ®(x,t), taking values in
M!*" with compact support in R™ x [0, T) and integrate the resulting equation over
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R™ x [0,T). After an integration by parts, with respect to the time and spatial vari-
ables, we deduce

(4.6.7) /T/{a,quw Z&adbGa(Uu)}dxdt—k/(P (x,0) Up(x)dx

0 Rm a=1 Rm

T
m
:p/ Y 04®Bup(Uy)dpUy dxd.
0 pm o=1

By virtue of (4.6.5) and (4.6.6), as t; — 0, the right-hand side tends to zero, and
hence the limit function U satisfies the equation (4.3.2).
Next we multiply (4.6.4) by any nonnegative Lipschitz test function y/(x,¢), with
compact support in R™ x [0,T), and integrate the resulting equation over the strip
™ % [0,T). Integrating by parts with respect the spatial and time variables, we end
up with the identity

(4.6.8) //[a,wn Uy) + Z 8ana(Uu)}dxdt+/wx 0) 1 (Uo(x))dx

0 R™

=u/ /aaan (Un)Bag (Uy) Uy dixdt
0 Rm™

+u//1// Z (9aUu) ' D*N(Uy)Bap (Uy) pUy dxd.
o,f=1

On account of (4.6.5) and (4.6.6), the first term on the right-hand side tends to zero,
as U — 0, while the second term is nonnegative. Therefore, the limit function U
satisfies the inequality (4.5.3). This completes the proof.

More general admissibility conditions, of the same genre as the viscosity crite-
rion, may be formulated by replacing (4.6.1) with a system of the form

(4.6.9)
U + Z daGa(U) = p Z da [BaB(U)gﬁU] +v Z aa[HaBy(U)aﬁaYU]y
o=l o,f=1 o,B.y=1

involving third, and sometimes even fourth, order differential operators and two
“vanishing” parameters t and v. For example, in the place of (4.6.3) one may take

(4.6.10) du(x, 1) + 0u (2P (x,1)) = 1d2u(x,1) + voiu(x,1).
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The approach to admissibility via (4.6.9) is suggested by physics when the dissipative
effect of viscosity coexists with some dispersive mechanism induced, for instance, by
capillarity. Accordingly, the admissibility condition associated with (4.6.9) is termed
the viscosity-capillarity criterion. Which solutions of (4.1.1) pass this test of admis-
sibility will generally depend not only on the choice of B and Hy g, but also on the
relative rate by which u and v tend to zero. As a minimum requirement, (4.6.9) must
be compatible with the Second Law of thermodynamics, i.e., a proposition analogous
to Theorem 4.6.1 must hold for the entropy-entropy flux pair provided by physics.

4.7 Initial-Boundary Value Problems

Suppose that the hyperbolic system of conservation laws (4.1.1) is posed on a proper,
open subset 2 of R™, with Lipschitz boundary d 2 and outward unit normal field v.
To formulate a well-posed problem for (4.1.1) on the cylinder 2" = 2 x (0,T), in
addition to assigning initial data U (x,0) = Up(x) on the base Z x {0}, one must also
prescribe boundary conditions on the lateral boundary 8 =92 x (0,T).

Typically, homogeneous boundary conditions associated with the systems of con-
servation laws in continuum physics may be cast in the form

(4.7.1) PU))V(x) =0,  (x1)€ B,

where P is a smooth function defined on ¢ and taking values in M"*™. Classical
examples include the clamped boundary condition

(4.7.2) v(x,t) =0, (x,1) € B,
or the traction-free boundary condition
(4.7.3) S(F(x,1))v(x) =0, (x,1) € A,

for the system (3.3.19) of isentropic elastodynamics, in Lagrangian coordinates, and
the corresponding no-penetration (slip boundary)

(4.7.4) p(x,t)v(x,1)-v(x) =0, (x,1) € A,
or constant pressure

(4'7-5) p(p(x,t)) = Po; (xvt) €%,

boundary conditions for the Euler equations (3.3.36). The natural question of char-
acterizing the class of P that render the initial-boundary value problem well-posed,
in the regime of classical solutions, will be addressed later, in Section 5.6.

A separate issue, which will be discussed here briefly, is how to interpret the
boundary condition (4.7.1) in the context of weak solutions. Whenever the weak
solution U is a BV function on %, its inner trace U_ is well-defined on % (cf.
Section 1.7). Consequently, within the BV framework, (4.7.1) may be interpreted
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in a virtually classical, pointwise sense. The situation is different when the weak
solution U is merely in L*, so that its trace on % cannot be identified. Nevertheless,
by Theorem 1.3.4, one may still define on % the normal component of vector fields
whose space-time divergence is a bounded measure on 2. In particular, since the
space-time divergence of (G (U),---,G,(U),U) vanishes on 2", one may define the
trace Gy € L*(%A;R") of G(U)v on %, by means of Equation (1.3.14), which here
takes the form

T

(4.7.6) //chjdffm I dt—/cb x,0) Up (x)dx
0909

T
//{31¢U+ Y 0uPGo(U)|dxdt,
0

9 a=1

for any Lipschitz test function & compactly supported in R™ x [0,T) and taking
values in M!*",

More generally, when U satisfies an entropy admissibility condition (4.5.1), one
may define the trace Q4 € L*(%) of Q(U)V on % by means of

4.7.7)
T

//wQﬂd%’” X //[atwn )+ Zaana U)|dxdt+(Z,y)z ,

009 09

where &7 is the nonpositive entropy production measure and y is any Lipschitz test
function with compact support in R” x (0, 7). Moreover, under the conditions de-
scribed in Remark 4.5.3, (4.7.7) will hold for all smooth entropy-entropy flux pairs
(n,0).

We conclude that boundary conditions (4.7.1) may be defined for L™ weak so-
lutions, provided that the rows of the matrix P(U) are entropy fluxes. In particular,
this is the case in the examples (4.7.2), (4.7.3), (4.7.4) and (4.7.5), recorded above,
in which the rows of P(U) are linear combinations of the rows of G(U):

(4.7.8) P(U)=BG(U), Ueda,

for some n x n matrix B. For P(U) of the form (4.7.8), it follows from (4.7.6) that L™
weak solutions to the initial-boundary value problem are fully characterized by the
equation

(4.7.9) /0 ! /9 [a,ch+ y 8a€DGa(U)} dxdi + /9 ®(x,0)Up (x)dx = 0,
a=1

for every Lipschitz test function & (x,), with compact support in R” x [0,T'), values
in M"*", and trace on 2 that lies in the orthogonal complement of the kernel of B.
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An alternative approach to boundary value problems stems from the viewpoint,
presented in Section 4.6, that the hyperbolic system (4.1.1) should be regarded as
a system with diffusion, such as (4.6.1), with vanishing viscosity coefficient (. On
the basis of this premise, one should consider boundary conditions suitable for the
parabolic system (4.6.1) and let the limiting process dictate how these boundary con-
ditions relate to the hyperbolic system (4.1.1). Boundary layers may form, as u — 0,
on parts of the boundary 4, so that one should not expect that the resulting solution
to the hyperbolic system will satisfy the assigned boundary conditions everywhere.
Nevertheless, when the system (4.1.1) is endowed with an entropy-entropy flux pair
compatible with (4.6.1), as described in Section 4.6, then it is possible to derive use-
ful information on the boundary behavior of solutions. As an illustration, consider the
initial-boundary value problem for the system (4.6.1), with initial conditions U = Uy
on 2 and boundary conditions U = U on %, where U is some fixed state. As in
Section 4.6, assume that, for any y > 0, this problem possesses a classical solution
Uy, on 2, and that some sequence {Uﬂk }, with t; — 0 as k — oo, converges bound-
edly almost everywhere on 2" to a (weak) solution U of (4.1.1). Suppose (1,Q) is
an entropy-entropy flux pair satisfying (4.6.7). We write (4.6.6) for the normalized
entropy-entropy flux pair (77,Q), defined by (4.1.6), (4.1.7), multiply by any non-
negative Lipschitz test function W with compact support in R™ x [0,7), integrate
over 2 x (0,T), integrate by parts, and use the initial and boundary conditions thus
obtaining the following equation:

(4.7.10) /r/{azwﬁ(Uu)+ i 9al/an(Uu)}dxd’+/‘l/(xa())ﬁ(Uo(X))dx
02 a=l 7

T
// o WDA(Up)B o (Up) g Updxdt
0

Jr”/ /‘V Z aOCU[J ( ) aﬁ(UH)aBU”dxdt
o,f=1

The argument employed in Section 4.6 shows that, as 4 — 0, the first term on
the right-hand side of (4.7.10) tends to zero while the second term stays nonnegative.
Therefore,

4.7.11) /Or/j {3,1,,,-7(U)+ i 8alea(U)}dxdt+/l//(x,O)ﬁ(Uo(x))deO.
o= 2

To return to the original entropy-entropy flux pair (17,0Q), we write (4.7.6) for
@ = yDn(U). Upon combining the resulting equation with the inequality (4.7.11),
we obtain
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(4.7.12) /T/{a,wn +Z8al//Qa )}dxdt+/l//(x,0)n(Uo(x))dx
0 9

9

//‘//{QJ Dn(0)[Gy — Gyl }d" " (x)dt,
092

where we have set

(4.7.13) Gz=GWO)v, 0z=0@0)v.

Finally, we combine (4.7.12) with (4.7.7),

(4.7.14) //W{Qﬁ 05 —DN(0) [Gp— Gyt dr (x)dt > (P, W),

assuming y(x,0) =0, x € R™. By letting the support of y shrink about points of 4,
we deduce the pointwise condition

(4.7.15) 0z —0z-Dn(U)[Gz -Gz >0.

The quantity on the left-hand side of (4.7.15) may be interpreted as the density of a
surface measure that represents the entropy loss in the boundary layer.

The inequality (4.7.15) furnishes some information on the boundary conditions
induced by the vanishing viscosity approach. Naturally, this information becomes
more precise when the system (4.1.1) is endowed with multiple independent en-
tropies compatible with (4.6.1). In particular, as we shall see in Section 6.9, for the
scalar conservation law a sufficiently large collection of inequalities (4.7.15) charac-
terizes completely the solution to the initial-boundary value problem constructed by
the vanishing viscosity approach.

4.8 Euler Equations

The Euler equations (3.3.36), governing isentropic gas flow in one, two or three
spatial dimensions, offer the primordial, and still most important, example of a hy-
perbolic system of conservation laws. They have long served as the paradigm for the
entire class, and they command an enormous literature, addressing properties tied
to their special structure as well as generic properties shared by other hyperbolic
systems of conservation laws. So as to set the stage for the issues of concern in the
remainder of the book, we present in this section a representative sample of proper-
ties of the Euler equations, in three spatial dimensions, emerging from research work
of recent or older vintage. The analysis will only be sketched here — for the details,
the reader may consult the bibliography cited in Section 4.9.
We write (3.3.36), with zero body force, b = 0, as a system in canonical form,
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dp+divm" =0
(4.8.1)
dm+div (p~'mm") + grad p(p) = 0,

using as state variables the mass density p and the momentum density m = pov.
Recalling (3.3.39), we infer that the system (4.8.1) is endowed with the entropy-
entropy flux pair

1 1

1 _ _ _
(4.8.2) n=pe(p)+5p " Imf*, Q=np 'm+p(p)p~"m,

where €'(p) = p2p(p).
In the realm of classical solutions, one may combine the two equations in (4.8.1)

and write the system in the form

o;p + (v-grad)p + pdivo =0
(4.8.3)
d;v+ (v-grad)v+ p'(p) gradp =0,

with state variables (p,v).

The systems (4.8.1), (4.8.3) are hyperbolic, and the entropy 71 is a uniformly
convex function of (p,m), as long as p’(p) > 0. Throughout this section we shall
be assuming, for simplicity, that the gas is ideal, with equations of state (2.5.31),
namely p = kp?, where, in accordance with basic kinetic theory, y € (1,5/3]. The
sonic speed is c(p) = [Kypy’l]%. Thus our system is hyperbolic for p > 0, but hy-
perbolicity breaks down at p = 0. The presence of vacuum complicates the analysis
of the Euler equations.

One may restore hyperbolicity to the full physical range, including vacuum, by
replacing p by the new state variable ® = B~ '¢(p), with B = %1, thus transforming
(4.8.3) into

0,0+ (v-grad)o + fodivo =0
(4.8.4)
0,0+ (v-grad)v+ Bogradw = 0,

which is a symmetric hyperbolic system, even for @ = 0. As we shall see in Section
5.1, this guarantees that the Cauchy problem for (4.8.4), with initial data (@p,vp) in
a Sobolev space of sufficiently high order and @y > 0, possesses a unique classical
solution (®,v) on some maximal time interval [0, T). Furthermore, if T is finite, then
some derivative of @ and/or v must blow up as ¢ tends to 7. Clearly, the solution
(,v) induces classical solutions (p,m) and (p,v) to the systems (4.8.1) and (4.8.3),
on the same time interval [0,7).

We now employ an argument, similar in spirit to that encountered in Section 4.2
for the Burgers equation, to demonstrate that the lifespan 7 of the aforementioned
classical solution is typically finite, as a result of mass confinment. We consider the
Cauchy problem for (4.8.1), with initial values p(x,0) = py = constant, for x € R3,
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and m(x,0) supported in the unit ball, m(x,0) = 0 if |x| > 1. Suppose there exists
a classical solution (p(x,?),m(x,7)) on some time interval [0,7). The fast charac-
teristic speed in the direction v € S? is v- v+ ¢(p). Then, by virtue of Theorem
4.1.1, we have p(x,t) = pg and m(x,t) = 0, for any ¢ € [0,T) and |x| > r(¢), where
r(t) = 14+c¢(po)t. In particular, from (4.8.1);,

(4.8.5) / P(6,1)—poldx=0, 0<i<T.
el <r(t)
We will monitor the evolution of the weighted radial momentum
(4.8.6) M(t) = / x-m(x,t)dx.
|x|<r(t)

We differentiate (4.8.6) with respect to ¢, express the time derivative d;m in terms of
spatial derivatives, through (4.8.1);, , and integrate by parts to get

(4.8.7) M(1) = / [p*1|m|2+31<(p7—p07)}dx.
x| <r(r)
Since y > 1, (4.8.5) and Jensen’s inequality imply
(4.8.8) / (p"—pl)dx > 0.
el <r(r)
Furthermore, by (4.8.6), (4.8.5) and Schwarz’s inequality,
(4.8.9) M(1) < / plxPdx / o~ m|2dx < %”porS(z) / o~ m|2dx.
el <r(r) xl<r(2) Ix<r(t)
Upon combining (4.8.7) with (4.8.8) and (4.8.9), we end up with the differential

inequality

(4.8.10) M(t) > %po[l +c(po)t] M3 (1).

After an elementary integration, recalling that c¢(pg) = [K}/pg 71] 7, we conclude that
if

167 r
(4.8.11) M(0) > —=(x7)2py" .
then M () will blow up in finite time. Thus, classical solutions of the Cauchy problem
for the system of isentropic gas dynamics, with large initial data, generally break
down in finite time.
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More refined analysis, reported in the literature cited in Section 4.9, shows that
the above arguments may be extended for establishing breakdown of classical solu-
tions in nonisentropic gas dynamics, and even when the initial data are not necessar-
ily large.

The above argument verifies that the lifespan of classical solutions to the Cauchy
problem for the Euler equations (4.8.1) is generally finite, but it does not pinpoint
when and how catastrophe occurs. Typically, classical solutions blow up as the result
of wave breaking, but before turning to that issue, we shall discuss an alternative
manifestation of mass confining, in the presence of vacuum.

Let us consider the Cauchy problem for the system (4.8.1), with initial data
(po,mg), mo = Povo, that vanish outside a bounded subset Q of R3. Assume that
there exists a (generally weak) solution (p,m) on some time interval [0,7), which
satisfies the entropy admissibility condition (4.5.2) for the entropy-entropy flux pair
(4.8.2). The gas will disperse into the vacuum, with finite speed, so that, for each
t €[0,T), (p,m) will be supported in some bounded set €2, . We shall estimate the
size of €, with the help of an interesting estimate, derived as follows.

We start out from the identity

(4.8.12) %p\m —x*+1’pe = %|x|2p —tx-m+1°n(p,m).

After a long but straightforward calculation, using (4.8.1) and the entropy inequality,
we deduce

(4.8.13)
o (;p|w—x|2+t2p£> +div ([;p|tv—x|2+t2p£]v+tp[tv—x}> <t[2pe—3p).

In particular, when (p,m) is a classical solution, (4.8.13) holds as equality.
For the ideal gas (2.5.31), 2pe —3p = (5—37y)pe. Thus, integrating (4.8.13) over
RR? yields the differential inequality

1 — 1
(4.8.14) i/(zpw—xﬁﬂzpe) dx < > 3y/(2p|tv—x|2—|—t2p8) dx,
R3 R3

t

whence
(4.8.15) /psdx <cPi-n,
R3

The physical interpretation of (4.8.15) is that gas expansion converts internal to ki-
netic energy, and as a result the internal energy decays.
By Holder’s inequality,

1

- Ty -9 1y

(4.8.16) /pdx§ ({R/pydx |7 <Ct 7 | T,
R3 3
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where |€;| denotes the volume of €, . The left-hand side of (4.8.16) is a positive con-
stant, namely the conserved mass of the gas. Therefore, || > Ar3, for some positive
constant A. We now discuss whether classical solutions are capable of sustaining, in
the long term, growth of || at the above rate.

Assume then that the above solution is smooth, in which case 2 and €2, are open
sets with smooth boundaries denoted by I'" and I;. On I;, (4.8.3) and (4.8.4) reduce
to the transport equation

(4.8.17) v+ (v-grad)v = 0.

Consequently, for any x € I', v stays constant, equal to vg(x), along the straight line
y =x+10p(x), and

(4.8.18) [={yeR®: y=x+rop(x), xeI},

for all # € [0, T). Therefore, for ¢ sufficiently small,

(4.8.19) Q ={yeR?: y=x+rop(x), x€ Q},
whence
(4.8.20) || = /det [1+ ¢ grad vy (x)] dx.

Q

Thus, for ¢ small, |£2] is a polynomial:
(4.8.21) |Q| =J> + K> + Lt +N,

where J, K, L depend on gradvg, and N = |Q|. Actually, the constants J, K and L are
integrals over 2 of null Lagrangians of vy, and thus fully determined by the values
of vy and gradvg on I'. In particular,

(4.8.22) J = [ det[gradvg(x)]dx.
/

Since the above argument may be repeated after substituting O by any 7 € [0,T),
we conclude that (4.8.21) holds for all ¢ € [0,7). It is now clear that if J <0, then
the solution cannot accommodate the requirement |€;| > Af3, for ¢ large. Thus, the
lifespan of any classical solution with initial data satisfying J < 0 is necessarily finite.

In the present situation, the demise of the classical solution may occur either as a
result of wave breaking, or because a singularity forms at the interface between gas
and vacuum. Let us discuss the latter possibility, within the following setting: The
interface I; is still a smooth surface and the solution (p,v) is still smooth on £2;, but
allowed to be singular across I; .

First we test whether the interface may be a shock. To that end, we apply the
Rankine-Hugoniot conditions (3.3.40), with v the unit exterior normal on £2;, to
infer that the jump in the pressure p, and thereby also in the density p, vanishes.
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Thus the singularity at the interface must be milder than a jump discontinuity. We
seek conditions that would allow the interface to accelerate at a controlled rate. For
that purpose, the natural assumption is that the square of the sonic speed ¢ must be
Lipschitz, with normal derivative that jumps across the interface:

vz [22]) -

where g is a bounded function that is necessarily nonnegative. Indeed, when (4.8.23)
holds, the second equation of the system (4.8.4), restricted to the interface, yields

(4.8.24) dv+ (v- grad)o = %v,

which should be compared and contrasted to (4.8.17). Since g > 0, (4.8.24) signals
acceleration of the interface. In particular, for g suitably large, the volume of €, may
grow at a rate compatible with the requirement |,| > Ar3, thus allowing for the
existence of solutions in the large with no singularities, beyond those lying on the
interface with vacuum. More on that in Section 5.6.

We now turn to the question of the breakdown of classical solutions due to wave
breaking. As we saw in Section 4.2, in the context of Burgers’s equation, the physical
description of the phenomenon is that, due to the nonlinearity, wave speed depends
on the wave amplitude and this may generate steep wave profiles that eventually
break. The same mechanism is present in the Euler equations. Indeed, as we shall see
in Section 7.8, compressive waves for the Euler equations, in one space dimension,
must break. However, in three dimensions the situation is more delicate. To begin
with, the steepening of wave profiles due to compression competes with dispersion,
which has the opposite effect. This delays, and may even thwart, the breaking of
waves. The difficulty is compounded by the presence of vorticity, whose potential
contribution to the development of singularities is not yet fully understood. So as
to focus on the effects of compression, we shall eliminate the fallout of vorticity by
limiting our discussion to irrotational flow.

In irrotational flow, the velocity derives from a potential ¢, through (3.3.48),
and the Euler equations reduce to the system (3.3.49), (3.3.50), where £ is the
enthalpy. We assume, for simplicity, that the body force vanishes, g = 0. Since
W (p)=p'(p)/p > 0, one may realize the density as function of enthalpy, p = p(h).

In what follows, we shall be employing the summation convention. Inserting in
(3.3.50) p as a function of &, with & given by (3.3.49), reduces the mass conservation
equation to the quasilinear wave equation

(4.8.25) 979 —c*(p)Ad = —2(3;9)(9,0;9) — (3;9)(9;6)(:9;9),

for the potential ¢, where ¢(p) stands for the sonic speed. Notice that linearization
of (4.8.25) about any rest state p = pg, v = 0 yields the classical wave equation.

A remarkable feature of (4.8.25) is that it may be realized as an Euler-Lagrange
equation. Indeed, recall that d;¢ = v;, for i = 1,2, 3, and set d,¢ = —vy. Introducing
the Lagrangian
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1
(4.8.26) L(vo, v1,02,03) = p(p(h)),  h=v9— 5001
e dpdp
and using dpan = P>we deduce
JL JL .
(4827) T’Z)O_p7 Tm——pvi7 1= 1,273,

which implies

dL dL

(4.8.28) % g 0

i% =9,p +di(pv;) = 0.

We consider the Cauchy problem for (4.8.25), under assigned initial conditions
(4.8.29) 9(x,0)=o(x), dP(x,0)=¢1(x), xR

As a corollary to Theorem 5.1.1, which will be proved in Chapter V, whenever
do € WH2(R3) and ¢; € W32(RR3), there exists a unique classical C? solution ¢,
locally in time. Considerable effort has been expended in monitoring classical so-
lutions, under the assumption that the initial data reside in Sobolev spaces of suf-
ficiently high order, with norms of small size delimited by a parameter €. The task
requires powerful analysis, utilizing to a full extent the underlying geometric struc-
ture of (4.8.25) and in particular its manifestation as an Euler-Lagrange equation.
Unfortunately, this work is too technical and laborious to be presented here, even in
abridged form, so the reader should consult the bibliography cited in Section 4.9.
The next paragraph provides a sketchy summary of the main conclusions.

In three spatial dimensions, dispersion induces O(¢~!) decay rate on derivatives
of solutions to the Cauchy problem for the classical wave equation. The solutions
to the quasilinear wave equation (4.8.25) inherit that property at the level of first
derivatives. However, at the level of derivatives of second order there is an even con-
test between nonlinearity and dispersion. Dispersion manages to prolong the lifespan
of classical solutions to O(expé), a major improvement over the one-dimensional
situation, where the lifespan is merely O(é) Nevertheless, nonlinearity eventually
prevails, driving second derivatives to infinity. The insightful proof proceeds by in-
troducing special coordinates, adapted to the wave profiles, identifying the principal
direction along which second derivatives grow and eventually break, in contrast to
transversal directions along which dispersion dominates, keeping the size of deriva-
tives under control. The analysis in these coordinates is quite explicit, so that in addi-
tion to exposing the breaking of waves it also provides a description of the maximal
development of the solution.

We close this section with certain surprising, and perhaps disturbing, facts con-
cerning weak solutions of the Euler equations. The analysis in the forthcoming Sec-
tion 5.2 will establish that whenever the Cauchy problem for (4.8.1) possesses a clas-
sical solution on some time interval [0,7), this solution is unique, not only among
other classical solutions, but even within the broader class of L™ weak solutions that
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satisfy the entropy admissibility condition (4.5.3), for the entropy-entropy flux pair
(4.8.2). However, in the absence of a classical solution, the above entropy inequal-
ity is no longer sufficiently selective for singling out a unique admissible solution.
This remarkable fact will be demonstrated by considering the Cauchy problem for
(4.8.1) under initial data that are periodic in each component x; of x, with period 1.
It will thus be convenient to regard the solutions at time ¢ as functions defined on the
standard torus T>. The existence of multiple solutions is established by the following

4.8.1 Theorem. There exist mg in L (T>) such that the Cauchy problem for the Euler
equations (4.8.1) with initial data

(4.8.30) p(x,00=1,  m(x,0)=my(x), xeT

admits infinitely many L weak solutions (p,m) on [0, ), satisfying the admissibility
condition (4.5.2) for the entropy-entropy flux pair (4.8.2).

The proof is lengthy and technical, so only a rough sketch will be presented here.
The details are found in the bibliography cited in Section 4.9.

A surprising feature of the Euler equations is that, in the setting of L™ weak so-
lutions, the Cauchy problem is underdetermined to the extent that one may prescribe
the density field p together with the length |m| of the momentum field and still leave
room for constructing infinitely many solutions satisfying the entropy admissibility
condition. Accordingly, let us prescribe p = 1, in which case (4.8.1) reduces to

divin" =0
(4.8.31)
oym + div (mmT) =0.

Sidestepping, for the time being, the requirement of entropy admissibility, we fix
T >0 and a C' function M with positive values on [0,7] and seek L™ solutions of
(4.8.31) on [0, T] that satisfy initial and terminal conditions

(4.8.32) m(-,0) =mo(-), m(-,T) =0,
together with the constraint
(4.8.33) lm(x,t)| =M(t),  ae.on T x(0,T).

An obvious compatibility condition is |ng(x)| < M(0), a.e. on T>.
Assuming (4.8.33), it is instructive to rewrite (4.8.31) in the equivalent form

divin (x,t) =0
(4.8.34)
om(x,1) +divU (x,7) =0,

(4.6.35) U(x,t) = m(x,t)m' (x,1) — %|m(x,t)\21.



4.8 Euler Equations 105

Thus, in the spirit of continuum physics, we are regarding (4.8.31) as the composi-
tion of a system of conservation laws (4.8.34) with a constitutive equation (4.8.35).
Notice that the 3 x 3 matrix-valued function U is symmetric and traceless. In what
follows, N stands for the space of symmetric and traceless 3 x 3 matrices.

The first step in the analysis is to introduce a class of functions deemed subsolu-
tions to the above system.

A subsolution of (4.8.32), (4.8.33), (4.8.34) and (4.8.35) is a function u defined
on T3 x [0, T], taking values in R?, and having the following properties:

(a) The function ¢ — u(-,¢) is continuous on [0, 7], in L=(T3;R3) weak*, and
(4.8.36) u(+,0) = my(-), u(-,T)=0.
(b) uis C' on T3 x (0,T) and satisfies

divu' (x,t) =0
(4.8.37)
diu(x,t) +divU (x,t) = 0,

for some C! function U on T? x (0,T) with values in N.
(c) Forany x € T3 andt € (0,7T),

(4.8.38) u(x,t)u' (x,1) —U(x,1) < %Mz(t)l.

Let it be noted that, for any fixed w € R3 and W €N,
1
(4.8.39) ww! —W > 3 w1

Thus (4.8.38) implies |u(x,t)| < M(t), for all x € T? and ¢ € (0, T).

We proceed under the assumption that the set of subsolutions associated with
mg, M and T is nonempty. We denote this set by 2. In particular, 2~ associated with
mo = 0 is nonempty, for any choice of positive M, as it contains the zero function.
We let 2 denote the closure of 2" in the weak topology of L?(T? x [0,71]).

On 2~ we define the functional

(4.8.40) Jlu] = /0 ! /T [lu.0) P~ M3 (0)) dx,

with nonpositive values. Members of .2~ inherit from 2 the properties (4.8.37),
in the sense of distributions, and (4.8.38), almost everywhere, since the maximum
eigenvalue of symmetric matrices is a convex function. From this observation and
(4.8.39) follows that m € 2 is a solution of (4.8.32), (4.8.33), (4.8.34) and (4.8.35)
if and only if J[m] = 0.

Since |u(x,t)| < M(t), for all u € £, it follows that any m € 2~ with J[m] = 0
must be a point of continuity of J. It turns out that the converse is also true: if J is
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continuous at m € 2, then J[m] = 0. The reason is that if J[u] < 0, for some u € 2,
then there exist v € 2~ that are weakly close to u, and yet J[v] differs substantially
from J[u]. The precise statement is provided by the following proposition whose
technical proof is found in the literature cited in Section 4.9.

4.8.2 Lemma. Let u be any subsolution and (71,7,) any subinterval of (0,T). Then
there exist sequences {v,} in 2" such that u — v, is supported in the time interval
(11, ™), Uy — u in L”weak™ and

(4.8.41)

I Ty 2 n 2 27712

hmmf/ / |0n (x,8) — u(x,1)| dxdtZa/ / [u(x,0)|* —M*(1)]" dxdt
o Jr 7 J13

n—oo

holds, with a > 0 independent of u.

The perturbations of the subsolution u, within 2, that are “slight”, in the sense
of the weak topology, and yet incur sizable changes to the entropy typically involve
rapid oscillations. Indeed the presence of wild oscillations is the trademark of the
theory at hand.

We view 2~ as a complete metric space. The functional J is of Baire class 1
(pointwise limit of continuous functions), whence the set of its points of continuity
is dense in .2". Each and everyone of these points furnishes a solution to (4.8.31),
(4.8.32), (4.8.33). Henceforth, we call these solutions exotic.

We now turn to the question of admissibility of exotic solutions. By virtue of
(4.8.2) and (4.8.33),

(4.8.42) n(x,t):%Mz(t)Jrs(l), O(x,t) = %Mz(t)Jrs(l)er(l) m(x,t).

Notice that the divergence of Q' vanishes. Thus, when M(t) < 0, the solution (1,m)
satisfies the entropy admissibility criterion (4.5.1) on T? x (0, ). In particular, if M
is constant, the entropy is conserved on T3 x (0, T).

The above properties underscore the difference between exotic and standard so-
lutions, say of class BV. In the latter case entropy is produced exclusively by jump
discontinuities. As noted in (sub)section 3.3.6, solutions to the Euler equations may
support two types of jump discontinuities, namely compressive shocks and vortex
sheets (contact discontinuities). Compressive shocks, which produce entropy, cannot
take part in the exotic solutions, because they involve jumps in the density. By con-
trast, vortex sheets, which are compatible with uniform density, are probably present
in exotic solutions and may serve as building blocks for the oscillatory profiles of
these solutions. However, vortex sheets do not produce entropy and hence the decay
of 1 encoded in (4.8.42) cannot be attributed to the presence of jump discontinuities,
but is due to an alternative mechanism. We shall discuss related issues in Section 6.8
and 11.13.

Even though M (t) < 0 guarantees that the exotic solutions satisfy (4.5.1), the
more selective entropy admissibility criterion (4.5.2) will not hold, unless t =0 is a
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point of right continuity of the function ¢ — m(-,¢), in the strong L' (T3; R3) topology.
It turns out that given m in 2~ one may construct, with the help of the properties of
Z encoded in Lemma 4.8.2, 7 in 2" such that ma(-, 7) = M(7), for some 7 € (0,T),
and 7m(-,t) = m(-,t), for t near T. It is now clear that if one replaces M by M and
my by 1, where M(t) = M(t +7) and () = (-, T), the resulting exotic solutions
will satisfy (4.5.2).

Refined, technical, analysis shows that, in fact, one may even construct entropy
dissipating exotic solutions that are Holder (though not Lipschitz) continuous.

The discovery of exotic solutions, with massive non uniqueness, for the Euler
equations, is alarming, so one hopes that they will be disqualified as being physi-
cally inadmissible. Nevertheless, we saw above that these solutions pass the entropy
admissibility test. On the other hand, because of the afforded flexibility in setting
M(t), none of the exotic solutions may satisfy the maximal dissipativeness crite-
rion (4.5.11). Another risk is that standard solutions that were formerly pronounced
maximally dissipative may lose this status in competition with exotic solutions. The
reader may find relevant comments on this issue in Section 9.11.

4.9 Notes

To a great extent, it is the breaking of waves catastrophe that sets the tone for the
theory of nonlinear hyperbolic systems of conservation laws. This effect was in-
troduced, in Section 4.2, through the paradigm of the Burgers equation, but, as we
shall see in Section 7.8, it pervades all (genuinely) nonlinear systems of conserva-
tion laws in one spatial dimension. The drive to wave breaking is still present in
several spatial dimensions, but it has to compete with dispersion, which may delay
or even prevent outright the breakdown of classical solutions, in systems that sat-
isfy the so called null condition. In that direction, out of a voluminous literature, see
for instance Christodoulou [1], Klainerman [1], Klainerman and Sideris [1], Sideris
[2,3,4], Agemi [1], Chae and Huh [1], and Ta-tsien Li [1].

In particular, for the three-dimensional Euler equations the competing mecha-
nisms of wave breaking and dispersion are nearly evenly matched. As a result, the
proof that wave breaking eventually prevails, noted in Section 4.8, requires very del-
icate analysis. Following the pioneering work of John [2], the breakdown of classical
solutions was established by Alinhac [1,2,3]. However, the definitive treatment that
provides a detailed description of the breaking of waves, is due to Christodoulou [2],
for the relativistic Euler equations, and to Christodoulou and Miao [1], for the clas-
sical Euler equations. These proofs are very technical, occupying several hundred
pages of text. The recent paper by Holzegel, Klainerman, Speck and Wong [1] provides
a very readable survey of the above work, placed in the context of the historical dev-
elopement of the subject. Speck [1] is a monograph extending the results to general
quasilinear wave equations, in three spatial dimensions.

The proof outlined in Section 4.8 that mass confinement is an alternative motor
for the breakdown of classical solutions to the Euler equations, has been adapted
from Sideris [1]. The argument, in the same section, that the volume of a gas mass
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is expanding in vacuum at cubic order and that growth at such rate cannot be sus-
tained unless singularities develop at the interface, is taken from Serre [31]. In that
connection, see also Chemin [1], Liu and Yang [1], and Yang and Zhu [2]. For a
proof of breakdown of classical solutions to the Euler equations in the presence of
vacuum, by the method of characteristics, see Chae and Ha [1]. An interesting class
of global (dubbed “eternal”) classical solutions to the Euler equations in two-space
dimensions is presented in Serre [13,31] and in Grassin and Serre [1]. See also Chen
and Young [3]. For time periodic solutions, see Georgiev and LeFloch [1].

Nonuniqueness of weak solutions to the Cauchy problem and the need of devel-
oping selection criteria poses another challenge to the theory of hyperbolic conserva-
tion laws, with many facets that will be discussed extensively in ensuing chapters of
the book. In particular, as we saw in the historical introduction and in Chapters II and
I1I, the entropy admissibility criterion, introduced in Section 4.5, is an abstraction of
the Clausius-Duhem inequality, expressing the Second Law of thermodynamics, and
it has been applied in concrete situations, at least since the turn of the twentieth cen-
tury. The earliest explicit reference to this criterion, in its abstract form, is found in
Kruzkov [1], but its central importance was recognized after the publication of the
seminal paper by Lax [4], which, inter alia, introduced the term “entropy” in the
present context. Considering the direction of the inequality (4.5.1), which is oppo-
site to the direction of the Clausius-Duhem inequality (2.3.13), the term “free en-
ergy” rather than “entropy” would have been more appropriate, from the standpoint
of continuum physics.

As we saw in Section 4.5, convexity of the entropy, which is a necessary pre-
requisite according to the definition of the concept by Lax [4], induces a modicum
of stability to admissible L™ weak solutions, but is not always satisfied in the sys-
tems arising in continuum physics. For the weaker, but still sufficient, condition of
quasiconvexity, noted in Section 4.5, see Morrey [1], Dacorogna [1], and Miiller and
Fonseca [1]. Sverak [1] shows that rank-one convexity is not generally sufficient for
quasiconvexity. Polyconvexity was introduced by Ball [1], in the context of elasto-
statics. We shall return to this notion in Section 5.4. Remark 4.5.3 is due to Gui-Qian
Chen [9].

For various experimentations with the idea of maximal dissipativeness, see
Dafermos [32], Demoulini, Stuart and Tzavaras [1], Gangbo and Westdickenberg
[1], Westdickenberg [1], Chiodaroli and Kreml [1], and Feireisl [2]. We will return
to this issue in greater detail, albeit within a more narrow scope, in Section 9.7.

In later chapters, we shall have frequent encounters with the vanishing viscosity
approach, both as a method for constructing solutions and as a means of identifying
admissible shocks. It is for the latter purpose that the method was originally intro-
duced by Rayleigh [4] and G.I. Taylor [1]; see the historical introduction.

An exposition of the theory of intermediate parabolic-hyperbolic type systems is
presented in the monographs by Songmu Zheng [1] and Hsiao [3], as well as in the
survey article by Hsiao and Jiang [1], where the reader will find an extensive list of
references.

For the viscosity-capillarity admissibility condition on weak solutions, see Slem-
rod [3] and LeFloch [5].
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For a more detailed discussion of initial-boundary value problems, and related
bibliography, the reader should consult Chapters V and VI. The inequalities (4.7.8)
were first derived by Bardos, Leroux and Nédélec [1], for scalar conservation laws,
and were then extended to systems, in one spatial dimension, by DuBois and LeFloch
[1]. As we shall see in Section 6.9, these inequalities completely characterize admis-
sible boundary conditions in the scalar case.

Following the pioneering work of De Lellis and Szekelyhidi [1,2], and Buck-
master, De Lellis, Isett and Szekelyhidi [1], the theory of exotic solutions for the
Euler equations, outlined here in Section 4.8, was further developed in Chiodaroli
[1], Chiodaroli and Kreml [1,2], Chiodaroli, Feireisl and Kreml [1], Feireisl [2], Fei-
reisl and Kreml [1], Feireisl, Kreml and Vasseur [1], Chiodaroli, De Lellis and Kreml
[1], and Villani [2]. In particular, Lemma 4.8.2 is taken from Feireisl [2].
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Entropy and the Stability of Classical Solutions

It is a tenet of continuum physics that the Second Law of thermodynamics is es-
sentially a statement of stability. In the examples discussed in the previous chapters,
the Second Law manifests itself in the presence of companion balance laws, to be
satisfied identically, as equalities, by classical solutions, and to be imposed as ther-
modynamic admissibility inequality constraints on weak solutions of the systems of
balance laws. A recurring theme in the exposition of the theory of hyperbolic systems
of balance laws in this book will be that companion balance laws induce stability un-
der various guises. Here the reader will get a glimpse of the implications of entropy
inequalities on the stability of classical solutions.

It will be shown that when the system of balance laws is endowed with a com-
panion balance law induced by a convex entropy, the initial value problem is locally
well-posed in the context of classical solutions: sufficiently smooth initial data gen-
erate a classical solution defined on a maximal time interval, typically of finite dura-
tion. However, in the presence of damping induced by relaxation or other dissipative
mechanisms, and when the initial data are sufficiently small, the classical solution
exists globally in time. Classical solutions are unique and depend continuously on
their initial values, not only within the class of classical solutions but even within
the broader class of weak solutions that satisfy the companion balance law as an
inequality admissibility constraint.

Similar existence and stability results will be established, even when the entropy
fails to be convex, in the following two situations: (a) the entropy is convex only in
the direction of a certain cone in state space but the system is equipped with spe-
cial companion balance laws, called involutions, whose presence compensates for
the lack of convexity in complementary directions; or (b) the system is endowed
with complementary entropies and the principal entropy is polyconvex. This struc-
ture arises in elastodynamics and electromagnetism.

The chapter will close with a brief discussion of the existence of classical solu-
tions to the initial-boundary value problems.

From the standpoint of analytical technique, this chapter presents the aspects of
the theory of quasilinear hyperbolic systems of balance laws that can be tackled by
the methodology of the linear theory, namely energy estimates and Fourier analysis.
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5.1 Convex Entropy and the Existence of Classical Solutions

The aim in this section is to establish local existence of classical solutions to the
Cauchy problem

(5.1.1) oU(x,1)+ Y. 04Ga(U(x,1)) =0,  xeR", >0,
a=1

(5.1.2) U(x,0) = Up(x), xeR™,

for a homogeneous system of conservation laws endowed with a convex entropy 1.
The flux G, entropy 1 and associated entropy flux Q are smooth functions defined
on a closed ball ﬁp in R”, centered at the origin.

Throughout this chapter, we will employ the following notation. A multi-index r
is an m-tuple of nonnegative integers: r = (ry,...,rm). We put |r| =r;+ -+ 1y,
for the order of r, and 9" = 9@ ...d"n. Thus 9" is a differential operator of order |7|.
For { = —1,0,1,..., H; and H}" will denote the Sobolev spaces WH2(R™, R") and
W2 (R™; M™ ™), with respective norms || - ||, and || ||, . In particular, H" is identical
to the Cartesian product space [H;]". We will also use the symbol V for the gradient
operator (di,...,dy). Hence V € H; implies VV € H}" | and |[VV||,_; <||V|,. By
the Sobolev embedding theorem, for ¢ > % + 1, Hy is continuously embedded in the
space C' (R™;R") of continuously differentiable n-vector fields on R”.

For U € %, , we introduce the n x n matrices

(5.1.3) A(U)=D*n(U),

(5.1.4) Jo(U)=A(U)DG(U), a=1,---,m,

which are symmetric, by virtue of (3.2.4).
The main result of this section is the following

5.1.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with a
convex entropy M, so that A(U) is positive definite for any U € ﬁp Suppose the
initial data Uy lie in Hy, for some { > % + 1, and take values in a ball '@Po with
radius py < p. Then there exist T.o < o and a unique continuously differentiable
Sunction U on R™ x [0, T.), taking values in ﬁp, which is a classical solution to the
Cauchy problem (5.1.1), (5.1.2), on the time interval [0,T.). Furthermore,

L
(5.1.5) U(-t) € (€0, Tw) s Hey).
k=0

The interval [0,T.) is maximal in that if To, < oo then

T
(5.1.6) | IvUCll-de = o
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and/or limsup ||U (-,1)|| = p.
t—Tw
The traditional proof of the above theorem, found in the literature cited in Section
5.7, and even in the second edition of the present book, determines the solution of
(5.1.1), (5.1.2), in a suitable function space .%, as a fixed point of the map that carries
V € Z to the solution U € .% of the linearized system

(5.1.7) U (x,1) + f DGa(V (x,1))daU (x,1) = 0,

a=1

with initial conditions (5.1.2). This approach is effective when the entropy 7 is con-
vex, because in that case multiplication by A(V) renders the system (5.1.7) symmet-
ric; however, it is inapplicable under the conditions to be encountered in Sections
5.3 and 5.4, where the entropy fails to be convex and the compensatory estimates
are inexorably tied to the geometric structure of (5.1.1) and do not carry over to the
linearized form (5.1.7).

Accordingly, we shall employ here the vanishing viscosity method, which deter-
mines solutions to (5.1.1) as the € — 0 limit of solutions of the parabolic system

(5.1.8) QU (x,1) + i 9aGa(U(x,1)) = AU (x,1).

a=1

This approach may not lead to the proof of Theorem 5.1.1 via the most direct route,
but it has the advantage of rendering the passage to the following sections of this
chapter as effortless as possible. Another benefit of the vanishing viscosity method
is that it starts out at an elementary level. The sole prerequisite is knowing how to
solve the Cauchy problem for the classical heat equation.

The first step is to establish local existence for the Cauchy problem for (5.1.8),
(5.1.2), with fixed € > 0. The dominant term in (5.1.8) is the Laplacian, so the entropy
will not play any role at this stage.

Throughout this chapter, we shall employ ¢ to denote some generic positive con-
stant that may depend at most on p and on bounds of G, 1 and their derivatives on
By .

5.1.2 Lemma. As in the statement of Theorem 5.1.1, assume that Uy takes values in
By, » Po < P, and belongs to Hy, with £ > 5 + 1. Set axy = |Uy||¢. Then for any fixed
o >y and € > 0, there exist Ty ¢ , 0 < Ty ¢ < o0, and a solution U of (5.1.8), (5.1.2)
on the time interval [0, Ty ¢ ), taking values in %, and such that

(5.1.9) U(-,1) € CO[0, Twe); He) (L2 ([0, Twe): Hes1),
with
(5.1.10) WU <o, 0<t<Tyge.

Moreover, if Ty ¢ < oo, then limsup ||U(-,1)||¢ = @ and/or limsup ||U(-,t)|= = p.

t—=Typ.e t—=Tpe
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Proof. Fix w;, with @y < o; < @. With T > 0, to be specified below, we assiociate
the class 7 of Lipschitz functions V defined on R™ x [0, T], taking values in %, and
satisfying

(5.1.11) V() eL(0.T:H),  swp V() < .
0,77

By standard weak lower semicontinuity of L” norms, ¥ is a complete metric space
under the metric

(5.1.12) d(V,V) = sup |V (-,t) = V(-,0) o

For any given V € ¥/, we construct the solution U on R™ x [0,T] of the linear
parabolic system (coupled heat equations)

(5.1.13) AU (x,t) — AU (x,1) Z
with initial condition (5.1.2). Thus

2
(5.1.14)  (4ne)3U(x,1) = /R Hexp [—lx%f'] Uo(y)dy

t m |)C y|2 m
—/O/m(t—w fop | g Zaac;a 7))dyd.

We proceed to establish a priori bounds on U and in particular to show that if T is
suitably small, then U € ¥ and the map that carries V to U is a contraction. The
unique fixed point of that map will be the solution to (5.1.8), (5.1.2) on the time
interval [0, T].

To begin with, by virtue of (5.1.14) and (5.1.11),

(5.1.15) 1UC1) = Upl()lli < co(v/er+),

for 0 <t < T, which shows, in particular, that when T is sufficiently small, U(-,¢)
takes values in %, , for any ¢ € [0,T].

We fix any multi-index r of order |r| < ¢, set U, = 9"U, Uy, = d"Uy and apply 9"
to (5.1.13) to get

(5.1.16) QU (x,1) — AU, (x,1) fjaaa Ga(V(x,1)).

Since ||V (+,1)]|.= < p and ||V (-,#)]|¢ < @, familiar interpolation estimates from the
theory of Sobolev spaces yield

(5.1.17) 10GaV.t)llo < eIV (D)l < co,
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for any r, with |r| < ¢, and any ¢ € [0,T]. Then by standard theory of the heat
equation, U, as solution to (5.1.16) with initial values Uy, , belongs to the spaces
C%([0,T]); Ho) N L*([0,T]; Hy). This yields two “energy” integrals, namely

t
(5.1.18) / |Ur(x,t)\2dx+2£// VU, [2dxdz
Rm 0 JRm
" m
_ / Vo (x)dx + 2 / / Zaauj 9 G (V)dxdt
Rm 0 Rm —

/|U0, \dx+s// VU, |*dx. dr+—

which is derived formally by multiplying (5.1.16) by 2U,", integrating the resulting
equation over R™ x [0,¢] and integrating by parts, and holds for any r with |r| < ¢,
and

t
(5.1.19) 2// |87U,\2dxdr+e/ VU, (x,1)|2dx
0 m Rm
" m
e / VUo, (x)2dx — 2 / / 39U Y. 040" Go(V)dxdr
Rm 0 JRrRm a1

t
< / / 10:U, [2dxdT + c(t + £)
0 Rlﬂ

which is derived formally by multiplying (5.1.16) by 28U, , integrating the resulting
equation over R™ x [0,¢] and integrating by parts, and holds for any r with |r| < /— 1.

Upon summing (5.1.18) over all r of order |r
|r| < £—1, we deduce the estimates

ctw?

(5.1.20) lUC07 < of +

t
(5.121) / 19:U (-, 7)|2,d7 < (& + ct)0?
0

In particular, (5.1.20) implies that when 7 is sufficiently small, sup |U(-,1)]|¢, < @;
(0.7]
and thus U € 7.
We now fix V and V in ¥ and consider the solutions U and U of (5.1.13), (5.1.2)

induced by them. Then

(5.1.22) AU -0)—eAU-D) Z 9a|Ga(V) — Ga(V)].
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Multiplying (5.1.22) by 2(U — U) T, integrating over R” x [0,¢], ¢ € (0,T), and
integrating by parts we deduce

(5.1.23) /R U (x,1) — U (x,t 2dx+2£// V(U —U)|?dxdt
=2 /mzaawaf[Ga( )~ Ga(7))dxd

<£// V(U zdxdTJr?sup IV (x,7) — V(x,7)2dx.

Recalling (5.1.12), we conclude that if g =u® <1, thend(U,0) < ud(V,V),
which establishes that the map V — U possesses a unique fixed point, which is the
unique solution U to (5.1.8), (5.1.2) on the time interval [0, T].

Let p1 = ||U(-,T)|lo < p. If p1 = p the lemma has been proved with T, , = T.
On the other hand, if p; < p and since ||U(-,T)|¢ < ®; < @, we may extend the
solution U of (5.1.8), (5.1.2) beyond T by solving, as above, a new Cauchy problem
for (5.1.8) with initial data U(-,T) and (py, @) in the role of (po, @p). By iterating
this process, one extends U to a maximal time interval [0, T¢y ¢ ), with either T, ¢ = oo
or Ty e < oo, in which case limsup ||U(-,7)||z= = p and/or limsup [|U(-,1)]|, = @.

t—Twe t—=Tp.e

This completes the proof of Lemma 5.1.2.

The next step is to derive bounds on the solution to (5.1.8), (5.1.2) that are sus-
tained even as € — 0. Notice that (5.1.15) and (5.1.21) hold for € [0, T, ¢) and meet
this requirement. The next proposition establishes the main estimate in that direction,
with the convex entropy moving to center stage and the viscosity term reduced to a
merely supporting role.

5.1.3 Lemma. Assume A(U), defined by (5.1.3), is positive definite for U € gp.
Then there exists co > 1, depending solely on p,{ and on bounds of G,n and their
derivatives on %Tp, with the following property. Let Uy € Hy , £ > %5 + 1, taking values
in Bp, » po < p. Fix any © > co||Uo ||, and, with reference to Lemma 5.1.2, consider
the lifespan Ty ¢ of the solution U to (5.1.8), (5.1.2) that satisfies (5.1.10). Then
Twe > T, where Ty is a positive constant independent of € € (0,1), and for any
t €[0,T,),

(5124 0G0l < col o) eex [ e(e)de

where

(5.1.25) gty <c [ IVU (1)l = + €I VU (-, 1)1 } :
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Proof. For any multi-index r, of order |r| < ¢, we consider (5.1.16) for V = U and
write it in the form

(5.1.26) QU+ ) DGu(U)duU,

a=1

—Z{DGa )9aUy — 3" [DGa(U)dqU]} + AU, .

In the summation on the right-hand side of the above equation, the terms with deriva-
tives of (the highest) order / 4 1 cancel out. Hence, by familiar interpolation estimates
in Sobolev space (commonly referred to as Moser estimates), which can be found in
the literature cited in Section 5.7, one obtains

(5.1.27) IDGo(U)0aUr — 9" [DGo(U)daU]llo < c|[VUI[ = IVUIll,; -

Then (5.1.26) induces the following “energy” integral:

(5.1.28) » U (x,))A(U (x,1))U,(x,1)dx — / mUOTr(x)A(Uo(x))UOr(x)dx
:—2e/t [ uUTAW)3uU,drdT— 4e/ /Rm Z UT 9gA(U) U, dxdt
—s/ /Rm Z UT [04DA(U)deUU, dxdt
+/0 /'"a; U, [00Jo(U) —DA(U)dyGo(U)|U, dxdt

“/(: L. ai UA(U)[DGo(U)aU; — 3" DGo(U)do]ldxdr,

which may be derived formally upon multiplying (5.1.26) by 2U," A(U), integrating
the resulting equation over R™ x [0,7], and integrating by parts. In the process, one
uses the following identities, which manifest the symmetry of the matrices A(U) and
Jo(U):

(5.1.29) 2U,"A(U)O,U, = o[UA(U)U,] — U, ,A(U)U,,

(5.1.30) U 9AU)U, =-U/| i DA(U)3qGq(U)|U, + €U, [DA(U)AU]U,

a=1
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(5.1.31) U [DA(U i 9a[U," [0,A(U)U,]

—2 Y U, [0.AU))0aU, — Y. U, [0:DA(U)U]U,,
a=1

a=1

(5.1.32) UAU)AU, = i 9a[UA(U) U,

a=1

— Y 90U A(U)9oUr— Y. U, 94A(U) 9 Ur

a=1 a=1
(5.1.33) Y 20, A(U)DGo (U)o U,
o=1
=Y 0u[U, Ja(U)U,] = Y U, 90Ja(U)U,.

a=1 a=1

Since A(U) is positive definite,

(5.1.34) / 9aU. (v, DYA(U (x, 7)) 00Uy (x, T)dx > / 10U, (x, 7)|2dx.
Rm Rm

By the Cauchy-Schwarz inequality,

(5.1.35) 2/mU,T(x,r)aaA( (x,7))9U, (x, T)dx

gu/ |<9aUr(x,‘c)\2dx+c/ 10U (x, 7)P|U, (x, 7) 2dx.
Rm Rm

Therefore, summing (5.1.28) over all r with |r| < £ and using (5.1.34), (5.1.35) and
(5.1.27), we obtain

(5.1.36) Z/ UT (6, ) AU (x,1))Uy (x,1)dx

|r|<e

< ¥ [ @AW dx e [ g@)u)as

[r|<e R™

with g bounded as in (5.1.25).
Again, since A(U) is positive definite,

(5.1.37) HZ » U," (o, )A(U (x,0)) Uy (x,8)dx > u||U(-,1)||2 .
r|<¢



5.1 Convex Entropy and the Existence of Classical Solutions 119

Therefore, (5.1.36) yields

(5.1.38) lwenl7 < C%||U0(~)|I?+2/0tg(T)HU(wT)H?dT,

whence (5.1.24) follows by the Gronwall lemma.

Since ||[VU(-,7)||l;= < c||lU(-,7)||¢ < co, it is clear from (5.1.24) that there is
Ty > 0 such that ¢ ||Up||¢ < @ implies || U (-,1) || < @ forallz € [0, T, i.e. Ty < Ty ¢,
for all € € (0,1). This completes the proof of the lemma.

We have now set the stage for dealing with the hyperbolic system (5.1.1) by
letting € — 0 in (5.1.8).

5.1.4 Lemma. Assume A(U) is positive definite for U € %Tp, and take Uy € Hy, for
0> %+ 1, with values in By, po < p. Fix ® > co||Uol|¢, where cy is the constant
introduced in Lemma 5.1.3, and identify the corresponding Ty, . Then there exists a
classical solution U to (5.1.1), (5.1.2), defined on R™ x [0, Ty and taking values in
By . Foranyt € (0,T,),U(-,t) € Hy, ||U(-,1)|¢ < @ and

t
(5139 GOl < eltoO)liew [ VU, l,-dr
Furthermore, the functiont — U (-,t) is continuous in Hy on [0, Tg].

Proof. Take any sequence {&}, with & — 0, as k — oo, and let U, be the solution
of (5.1.8), (5.1.2), with € = &, on the time interval [0, Ty]. By Lemma 5.1.3, {Uy}
is bounded in L*([0,Ty];Hy), with ||Ui(-,1)|ls < @, for 0 < ¢ < T, . Furthermore,
it follows from (5.1.21) that {U;} is also bounded in W'2([0,T]; H,_1). There-
fore, by standard theory of Sobolev spaces, {U; } is equicontinuous and thereby con-
tains a subsequence, denoted again by {Uy }, which converges, uniformly on compact
sets, to some continuous function U on R™ x [0, T,], taking values in %, and sat-
isfying (5.1.1), (5.1.2), in the sense of distributions. For any ¢ € [0, 7], the bound
lU(-,t)]l¢ < @ implies that Uy (-,¢) — U(-,t), weakly in Hy, and ||U(-,7)|, < o.
This in turn gives U(-,¢) € C'(R™), with ||VU(+,1)||;~ < c®, and since U is a solu-
tion of (5.1.1), U (-,1) € CO(R™), with ||d;U(,¢)||z~ < co. Thus U is Lipschitz.

Next we show that Uy (-,7) — U(+,t), strongly in Hy, as k — oo, for any t € [0, Tgy).
To that end, we notice that V;, = Uy — U solves the equation

(5.1.40)  9Vk+ Y DGo(U)duVi = €AU; — Y [DGq(Ux) — DG (U)|daUs,
a=1 a=1

on R™ x [0, Ty], with initial condition V;(-,0) = 0. Hence, multiplying (5.1.40) by
2V,TA(U), integrating the resulting equation over R™ x [0,7], for ¢ € [0, T], and in-
tegrating by parts yields
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(5.1.41) /R VAW 1) Vil 1)dx
= / - V. {3AU)+ Z Ot (U) Wi dxdt

-2 / ' /R V' A(U) DG (Ur) — DGy (U)]9q Uy dxdt

Since A(U) is positive definite,

(5.1.42) - VkT(xvt)A(U(xvt))Vk(xvt)dx > “||Vk('7t)|lé .

Therefore, (5.1.41) induces an inequality of the form
t
(5.1.43) Ve (1)1 < cw/ IVie(-, 7)lld T + coo’ e,
Jo

whence we conclude that Vi(-,7) — 0, strongly in Hy, as k — oo, for any ¢ € [0, T, ].

Since {Ux(-,¢)} converges to U(-,t), strongly in Hy and weakly in H;, we in-
fer by interpolation that the convergence is strong in Hy_; and also uniform in R™.
Moreover, VU (-,t) — VU(-,t), uniformly in R™, for any ¢ € [0,Ty]. In particular,
recalling that (5.1.24) holds for the Uy, with g bounded as in (5.1.25), and letting
k — o, we verify that U satisfies (5.1.39).

It remains to prove that 7 — U(+,¢) is continuous in Hy on [0, Ty]. Considering
that (5.1.1) is invariant under time translations and reflections, it will suffice to show
that ¢ — U(-,t) is right-continuous at r = 0, i.e., U(+,t) — Up(+) in Hy, as t — 0.

We begin with the identity

(5.1.44) /UTA U)Urdx—Y, /Uk, (Ur) Uy dx

[r|<e [r|<e

__ Z/ UL AU — A(U)| Uy dx

I<e’/R"

— Z/ 2(Upr — U,) TA(U)U, dx
rf<e’R"

- Z/ (Ukr_Ur)TA(U)(Ukr_Ur)dxv
Ir<e/R"

which holds for any fixed ¢ € [0, T}, and let k — o= . On the right-hand side, the first
two terms tend to zero, while the last term has a definite sign:
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(5.1.45) z [, W =V AW Uy~ Up)dx > ][V~ U]}
r<¢

It follows that, as k — oo, the limit inferior of the left-hand side of (5.1.44) is non-
positive. Recalling that the Uy, satisfy (5.1.36), we conclude that

(5.1.46) Y / U," (x,))A(U (x,1))U,(x,1)dx

|rj<e

- Z - Uy, (x)A(Up (x))Uoy (x)dx < car’t.
Irl<¢

We now write the identity

(5.1.47) Y /R (U (6,) = Uor ()] " A(Uo () [Ur (x,¢) — Uy (x))dx

Irj<¢

/UT“ U (x,0))Uy (x,1)dx

r\<ﬁ
_ UT Vo, (¥)dx
rz;'[/ or(x 0(x))Uor(x)
| / U, (6,0)[A(U (x,1)) = A(Uo(x))]Uy (x,1)dx
r<£

/ 20, (x,) — Uor ()] TA (U (x) ) Uor (x)dx

[r|<e
and let + — 0. On the right-hand side, the last term tends to zero, because U is a
continuous function and ||U(-,7)||¢ < @, whence it follows that ¢ — U (-,?) is at least
weakly continuous in Hy. Similarly, the penultimate term tends to zero, because the
Uy, satisfy (5.1.15), and this estimate is then passed on to U, as k — oo . Finally, the
contribution of the remaining two terms is non-positive, by virtue of (5.1.46). We
thus conclude that, as r — 0, the limit inferior of the left-hand side of (5.1.47) is
nonpositive. On the other hand, since A(U) is positive definite,

(5.1.48) y / (U (x,1) ~ Ve ()] T AU ) Uy (5.7) — Upy (x))dx

rj<e’R

> plU (1) = Uo7
Hence, 7 — U(-,t) is continuous in H;. In particular, U is a continuously differen-
tiable, classical solution to (5.1.1), (5.1.2). On account of (5.1.15), we may reduce,
if necessary, the size of T, so as to secure that ||U(-,7)||= < p for ¢ € [0, Ty]. This
completes the proof of the lemma.

Proof of Theorem 5.1.1. We start out with the solution U to (5.1.1), (5.1.2) on [0, T)
constructed in Lemma 5.1.4, and set p; = || U (-, Ty) || < p, @1 = ||U(+,Tg)]|¢. Thus
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we may extend U beyond Ty, by solving a new Cauchy problem for (5.1.1) with
initial data U(-,T,) and (p1,co@) in the role of (pp, ). By iterating this process,
one extends U to a maximal time interval [0, 7., ), with either T, = o or T, < o0, in
which case limsup ||U(+,¢)||.~ = p or limsup||U (+,#)||¢ = 0. On account of (5.1.39),

t—Tw t—Tw
|U(-,)]|¢ may become unbounded only if (5.1.6) holds.

Time, and mixed space-time, derivatives of U may be determined from space
derivatives by employing the system (5.1.1). Hence (5.1.5) follows as a result of
U(-t) € CO([0, T.); Hy), which has already been established.

The uniqueness of the solution will be established in Section 5.2, under quite
weak hypotheses of regularity. This completes the proof of the theorem.

As noted in Chapter IV, T., = « is a rare occurrence: Generically, smooth solu-
tions break down in finite time, as shocks develop.

The proof of Theorem 5.1.1 hinges on the presence of the symmetric positive def-
inite matrix-valued function A(U) that acts as symmetrizer by rendering the matrix-
valued functions J(U), defined by (5.1.4), symmetric. It is fortuitous that here A(U)
is the Hessian matrix of (U), as there are systems endowed with symmetrizers that
do not derive from an entropy. In fact, existence of solutions to the Cauchy problem
has been established even for systems equipped with so-called symbolic symmetriz-
ers. These include, in particular, all hyperbolic systems in which the multiplicity of
each characteristic speed A;(v;U) does not vary with v or U.

5.2 Relative Entropy and the Stability of Classical Solutions

The aim here is to show that the presence of a convex entropy guarantees that clas-
sical solutions of the initial value problem depend continuously on the initial data,
even within the broader class of admissible bounded weak solutions.

5.2.1 Theorem. Assume the system of conservation laws (5.1.1) is endowed with an
entropy-entropy flux pair (1,Q), where D*1(U) is positive definite on By . Suppose
U is a classical solution of (5.1.1) on [0,T), taking values in ﬁp, with initial data
Up. Let U be any weak solution of (5.1.1) on [0,T), taking values in QTP, which
satisfies the entropy admissibility condition (4.5.3), and has initial data Uy . Then

(5.2.1) /| Kr\u(x,z)—z‘/(x,t)ﬁdxg aeh / \Uo(x) — T (x)|2dx

x| <r+st

holds for any r > 0 and t € [0,T), with positive constants s,a, depending solely
on bounds on G,1n,Q and their derivatives on gjp, and b that also depends on the
Lipschitz constant of U. In particular, U is the unique admissible weak solution of
(5.1.1) with initial data Uy and values in (%Tp.

Proof. On %, x %, we define the functions

(5.2.2) h(U,U) =n(U)-n(U)-Dn(U)[U-U],
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(5.2.3) Yo(U,U) = Qa(U) = Qa(U) =DN(U)[Ga(U) — Ga(U)),

(5.2.4) Zo(U,0) = A(U){Ga(U) - Go(U) —DGo(0)[U - U]},

all of quadratic order in U — i (recall (4.1.4) and (5.1.3)). Consequently, since
D?n(U) is positive definite on %, , there is a positive constant s such that

(5.2.5) Y(U,0)| < sh(U,D).

Let us fix any nonnegative, Lipschitz continuous test function y with compact
support on R™ x [0, T) and evaluate 4, Y and Z along the two solutions U (x,?), U (x,1).
Since U satisfies the inequality (4.5.3), while U, being a classical solution, satisfies
identically (4.5.3) as an equality, we deduce

(5.2.6)

/0 ! /]R ayh(.0) +ai] A Yo (U, 0] dxdi + /R W(x.0) h(U(x), o)) dx

> [ A0wDn (@)U =01+ ¥ 20 Dn(0)[Ga(t) ~ Gul)

— [, w0 Dn(Go() Uo(x) ~ o).

Next we write (4.3.2) for both solutions U and U, using the Lipschitz continuous
vector field yDn (U) as test function @, to get

527) [ [ {alyon@))v -]+ ¥, 2uyDn(0))Ga(t) - Ga(0)

a=1

+ [ v 0D (G0 Uo(x) ~ Dol = .

Since U is a classical solution of (5.1.1), and by virtue of (5.1.3), (5.1.4),

(5.2.8)
aDn(U) =9,U0"A(U) = Z 0aU " Ja(U)" ==Y 0,U"A(U)DGq(U)

so that, recalling (5.2.4),

(529) 4PN 0]+ Y. 2PN(0)[Ga(U) - Cal0)] = 3. 2l Za(U,0).
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Combining (5.2.6), (5.2.7) and (5.2.9) yields

(5.2.10)

/ ' [, lownv.0) +a"211 OayYa(U,D)ldxdi+ [ y(x.0)h(Uo(x).Un(x)) d

T m
> / / v Y 960 Zo(U,0)dxdr.
J0 IR g2

We now fix r € (0,T) and r > 0. For any o € (0,7] and € positive small, write
(5.2.10) for the test function y(x,7) = x(x,T)®(T), with

1 0<t<o
(5.2.11) o(t)=<{ e (oc—1)+1 c<1<0+e¢
0 O+e<T<C 0
1 |x| —r—s(c—1) <0

(5212) xt)={ e lr+st—1)—|x|]+1 O0<|x|—r—s(t—1)<e

0 |x| —r—s(t—1)>¢

where s is the constant appearing in (5.2.5). The calculation gives

(5.2.13)

1 [ote B ]
P /G /‘X |<r+s<,fa>h(U(x’ 7),0(x,7))dxdt < / h(Up(x),U(x))dx

[x]<r+st

. _
- 1/ / {sh(U,U)wLY(U’U)x]dxdT
€Jo Jris(t—1)<|x|<r+s(t—1)+e |x|

o m
_ / / Y. 960" Z(U,0)dxd7 + O(e).
0 Jlx|<r+s(t—1)

o=1
We let € | 0. The second integral on the right-hand side of (5.2.13) is nonnegative on
account of (5.2.5). Hence,

(5.2.14) /‘ oMU (5:0). O 0))x < / h(Uo (x), To (x))dx

[x|<rst

o m
_ / / Y 9607 Z(U,U)dxd,
JO  Jx|<rts(t—1) o=
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for all points ¢ of L* weak* continuity of 1(U(-,7)) in (0,#). As noted above,
h(U,U) and the Z4(U,U) are of quadratic order in U — U and, in addition, h(U,U)
is positive definite, due to the convexity of 7. Thus, upon setting

(5.2.15) u(7) :/ U (x,7) — U (x, 7)2dx,
|x|<r+s(t—71)
(5.2.14) implies
(5.2.16) u() < au(0) +b/6 u(r)dr,
0

for almost all o € (0,7). Since u(-) is weakly lower semicontinuous, (5.2.16) holds
for all o € [0,¢]. Then Gronwall’s inequality yields u(t) < au(0)e®, which is (5.2.1).
Notice that a and s depend solely on bounds on G, 1, Q and their derivatives on ﬁp
while b also depends on the Lipschitz constant of U. This completes the proof.

It is remarkable that a single entropy inequality, with convex entropy, manages
to weed out all but one solution of the initial value problem, so long as a classical
solution exists. As we shall see, however, when no classical solution exists, just one
entropy inequality is no longer generally sufficient to single out any particular weak
solution. In particular, as we saw in Section 4.8, the Cauchy problem for the Euler
equations (3.3.36), under specially constructed initial data, admits infinitely many
weak solutions satisfying the entropy admissibility condition (4.5.3), relative to the
entropy p&(p) + 3p|v|?, as an equality. The issue of uniqueness of weak solutions is
knotty and will be a major topic for discussion in subsequent chapters.

The functions #(U,U) and Y (U,U) of U, defined by (5.2.2) and (5.2.3), are com-
monly called the relative entropy and associated relative entropy flux, with respect to
the state U.

5.2.2 Remark. In the proof of Theorem 5.2.1 one only needs that 2(U, U ) is positive
definite for all U in the range of the classical solution. This may well hold, even for
n that fails to be convex, when the classical solution is special, e.g., it is a constant
state U which is a strong minimum of 7.

5.3 Involutions and Contingent Entropies

The previous three sections have illustrated the beneficent role of convex entropies.
Nevertheless, the entropy associated with systems of balance laws in continuum
physics is not always convex. Indeed, we have already encountered, in Chapter III,
the cases of isentropic elastodynamics (Section 3.3.3) and electrodynamics (Section
3.3.8), in which invariance, dictated by physics, is incompatible with global convex-
ity of the entropy. The objective in this and the following section is to identify special
structure in such systems that may compensate for lack of convexity in the entropy.
Recall that solutions of the system (3.3.19) with relevance to elastodynamics
should also satisfy the equations (3.3.10). Notice that (3.3.10) is not independent
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of (3.3.19). Indeed, in a Cauchy problem, (3.3.19); implies that when (3.3.10) is
satisfied by the initial data, then it will hold for all # > 0.

The equations of electrodynamics exhibit similar behavior: in addition to the
hyperbolic system (3.3.66), the magnetic induction and the electric displacement
must also satisfy (3.3.67). However, in a Cauchy problem, by virtue of (3.3.66) and
(3.3.68), both equalities in (3.3.67) will hold automatically for all # > 0, so long as
they are satisfied by the initial data.

One recognizes a similar structure in many other systems arising in contin-
uum physics, and so an examination of its implications in a general framework is
warranted.

We consider the class of hyperbolic systems (5.1.1) with the property that the
symmetry condition

(5.3.1) MoGg(U)+MgGo(U) =0, U€eB,, ap=1,....m

holds for some family of k x n matrices My, o = 1,...,m. A direct consequence of
(5.3.1) is that any (generally weak) solution U to the Cauchy problem for (5.1.1) will
satisfy the additional equation

(5.3.2) Y MyduU =0,

a=1

so long as the initial data do so. We call (5.3.2) an involution for (5.1.1). Thus
(3.3.10) is an involution for both (3.3.19) and (3.3.4), while (3.3.67) is an involution
for (3.3.66). Typically, for systems in this class arising in physics, the only relevant
solutions are those that also satisfy the involution.

With any v € S”~! we associate the k x n matrix

(5.3.3) N(v)= i VaMy .
a=1

By virtue of (4.1.2) and (5.3.1),
(5.3.4) N(WVA(v;U)=0, veS"™ ' Uec%,,

which shows that, in the presence of involutions, zero must be an eigenvalue of
A(v;U), with geometric multiplicity at least equal to the rank of N(v), and any
eigenvector R;(v;U) of A(v;U) with nonzero eigenvalue A;(v;U) must lie in the
kernel of N(Vv).

It should also be noted that any shock associated with a solution of (5.1.1), com-
patible with the involution (5.3.2), propagating in the direction v must satisfy the
jump condition

(5.3.5) NW)[U, —U_] =0,

so that its amplitude U} — U_ must lie in the kernel of N(V).
In this section, we will be operating under the assumption
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(5.3.6) dimker A(v;U) =rank N(v), veS"!' UecZ,

in which case the kernel of N(Vv) is spanned by the eigenvectors of A(v;U) with
nonzero eigenvalue and thus coincide with the range of A(v;U). This is indeed
the case for the system (3.3.19) of isentropic elastodynamics, where the kernel of
A(v;U) is six-dimensional and the rank of N(v) is six, though not for the system
(3.3.4) of nonisentropic thermoelasticity, in which the kernel of A(v;U) is seven-
dimensional. Systems with involutions, such as (3.3.4) in which the dimension of
ker A(v;U) is larger than the rank of N(v) may be handled by the same methodol-
ogy at the expense of introducing additional structure — the reader should be spared
from such complications.
We now introduce the involution cone

(5.3.7) ¢= |J kerN(v),

vesm-1

embedded in the state space R”. In particular, for the system (3.3.19) of isentropic
elastodynamics € = {(F,v) : F =uw',u,w,v € R}, while for the system (3.3.66)
of electrodynamics % occupies the entire state space R®. As we shall see, all inter-
esting action takes place on €.

The presence of involutions affords a natural broadening of the notion of entropy.
Recall that the definition of an entropy-entropy flux pair (17, Q) for the system (5.1.1)
has been crafted so that the extra conservation law

(538) MU+ Y, %QalU(x.1) =0
a=1

is automatically satisfied by any C' solution U of (5.1.1). However, in the present
setting, it is reasonable to require that (5.3.8) holds identically just for C' solutions
of (5.1.1) that also satisfy the involution (5.3.2). This motivates the following

5.3.1 Definition. In a system of conservation laws (5.1.1), endowed with the invo-
lution (5.3.2), a smooth, scalar-valued function 11 on %’p is a contingent entropy,
associated with the 1 x k matrix-valued contingent entropy flux Q(U), if there is a
k-vector-valued function E(U) on ﬁp such that

(5.3.9) DQy(U) =Dn(U)DG(U)+E(U) My, a=1,....m.

In particular, any entropy is a contingent entropy, with £ = 0. On the other hand,
by virtue of (3.3.11) and (3.3.12), detF and the nine entries of the matrix F* are
contingent entropies for the system (3.3.19) of isentropic elastodynamics, which are
not entropies. Similarly, on account of (3.3.74), the three components of BA D are
contingent entropies for the system (3.3.66), which are not entropies. The useful role
of these particular contingent entropies will be exposed in the next section. Another
interesting example of contingent entropies for (3.3.19), which will not be used here,
are the components of the 3-vector F ' v. The associated contingent entropy fluxes
are the corresponding rows of the 3 x 3 matrix F 'S + (€ + 3|v|?)1.
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The integrability condition for (5.3.9), which generalizes the symmetry relation
(3.2.4), is that the n x n matrices

(5.3.10) Jo(U)=A(U)DG4(U)+DEWU) My, a=1,...,m,

are symmetric.

The results of Section 5.1 are not applicable to the system (3.3.19) of isen-
tropic elastodynamics, because, as we have seen, global convexity of the entropy
n=¢e(F)+ %|v|2 is incompatible with the laws of physics. Nevertheless, the physi-
cally legitimate assumption (3.3.7) that the internal energy €(F) is rank-one convex
guarantees that 1) is convex at least on the involution cone %’. The aim in this section
is to demonstrate that, in the presence of the involution (5.3.2), local existence and
stability of classical solutions to the Cauchy problem may be established under the
assumption that the system (5.1.1) is endowed with a contingent entropy 7 that is
convex merely on the involution cone, i.e.,

(5.3.11) XTAU)X > 2ulX|*, X€F, UcB,,

with g > 0.
In the place of Theorems 5.1.1 and 5.2.1 we here have the following propositions:

5.3.2 Theorem. Assume the hyperbolic system (5.1.1) of conservation laws satisfies
(5.3.1), (5.3.6) and is endowed with a contingent entropy M that is convex on the
involution cone €, so that (5.3.11) holds. Suppose the initial data Uy lie in Hy,
for some £ > 3 + 1, take values in a ball %y, with radius po < p, and satisfy the
involution (5.3.2). Then there exist T.. < o and a unique continuously differentiable
Sunction U on R™ x [0, T..), taking values in ng which is a classical solution to the
Cauchy problem (5.1.1), (5.1.2) on the time interval [0, T..). Furthermore,

l
(5.3.12) U(-,1) € () CH[0,T.) 5 Hoy).
k=0

The interval [0, T..) is maximal in that if T < oo, then
Too
(5.3.13) [ IvUClede = e,

and/or limsup [|U(+,t)]|z= = p.

t—Tw

5.3.3 Theorem. Assume the hyperbolic system (5.1.1) of conservation laws satisfies
(5.3.1), (5.3.6) and is endowed with a contingent entropy-entropy flux pair (1,0),
where 1 is convex on the involution cone €, so that (5.3.11) holds. Suppose U is
a classical solution of (5.1.1) on [0,T), taking values in Q(Tp, with initial values U
satisfying the involution (5.3.2). Furthermore, assume U (x,t) — 0, |x| — oo, uni-
formlyint € [0,T). Let U be any weak solution of (5.1.1) on [0,T), taking values in
By , which satisfies the entropy admissibility condition (4.5.3) and has initial values
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Uy satisfying the involution (5.3.2). Moreover, assume that U (x,t) — 0, as |x| — o,
uniformly in t € [0,T). Finally, let ||U(-,t) —U(-,)|o be bounded on [0,T). Under
the above hypotheses, there are constants a and K, depending on p and on bounds

of G,n,Q and their derivatives on @p, and b that also depends on the Lipschitz
constant of U, such that if

(5.3.14) limsup |U(x,t) —U(y,7)| < x, yeR" 1€]0,7),

XY E—T

then
(5.3.15) / U (x,1) — O (x, 1) [2dx < aebf/ \Uo(x) — To(x)|2dx, a.e on [0,T].
R™ R™

In particular, U is the unique solution of the Cauchy problem for (5.1.1), with initial
data Uy, within the class of admissible weak solutions with sufficiently small local
oscillation (5.3.14) and the same asymptotic behavior as U at |x| = oo.

The following lemma, which manifests how involutions compensate for the lack
of convexity of the entropy outside the involution cone, will play a pivotal role in the

proof of the above two propositions.

5.3.4 Lemma. Let P be a bounded measurable symmetric n X n matrix-valued func-
tion on R™, such that

(5.3.16) XTP(x)X >2u|X|?, Xe¥, xeR™

Assume further that there is a finite covering of R™ by the union of open sets
Qy,Q1,...,Qk with the property that for J =0,1,...,K,

(5.3.17) |P(x)—P(y)| < %/.L, x,y€ Q.
Then there is 8, depending solely on the covering, such that
(5.3.18) /R S(x)TP(x)S()dx > p|S|Ig — 818112 ,
holds for any S € L*(R™ ; R") that satisfies the involution

(5.3.19) Y My9,S =0,

a=1

in the sense of distributions on R™.

Proof. Fix U € %, and consider the linear differential operator

(5.3.20) &= i DGy (U)dy, -
a=1
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We seek a solution @ € Hj to the equation

(5.3.21) LO+D=S,

with the help of the Fourier transform:

(5:3.22) [1E1A(v:U) +1)D(8) =58(8). & €R™,

where v = |£|7'& and A(V;U) is defined by (4.1.2). The n x n matrix on the left-
hand side of (5.3.22) is nonsingular, since A (v;U) has only real eigenvalues. Fur-
thermore, by virtue of (5.3.19), S(&) lies in the kernel of N(Vv), which is spanned by
the eigenvectors of A (v;U) with nonzero eigenvalue. It follows that (5.3.22) admits
a solution ®(&) with

(5.3.23) [ D) <AU+IEP) TSP EeRr™,
whence
(5.3.24) @0 < eS| "
Next we consider a partition of unity Wy, Y1, ..., g subordinate to the covering

Q0,Q1,...,Qk,ie,forJ=0,1,... K, yy € C°(R™), spt y; C 2, and
(5.3.25) Y wix)=1, xeR™
We also fix y; € Qy, for J =0,1,...,K, and write

K
(5.3.26) - S(x) " P(x)S(x)dx = ZE)/R”’ Vi (x)S(x) " P(x)S(x)dx
J=

By virtue of (5.3.17),

K
(5.3.27) Y [ RS0 IP) — PS> a3
J=0

For each J =0,1,...,K we split y;S into
(5.3.28) yiS=X,+Y;,

where
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(5.3.29) Xy =2Z(y;®),

(5330) Y, = [WJI— i 8a1///DGa(U)]<15.

a=1

Setting v = |&| 1€ and recalling (5.3.4),

(5.3.31) N(W)Z(E) = i[EIN(V)A(v,U) (y;®)(&) =0,

so both the real and the imaginary parts of X;(&) lie in €, for any & € R™ and for
J=0,1,...,K. Thus, applying Parseval’s relation and using (5.3.16) we deduce

(5.3.32)
L X0 o)X= [ %0(8)"PU)%a(E)daE = 2 [ 1%0(x) P
Furthermore, from (5.3.30) and (5.3.24) we infer
(5.3.33) / V() 2dx < er||S|2,, J=0,....K.
Rm

We now return to (5.3.26). On account of (5.3.28), (5.3.32) and (5.3.33),

(5.3.34) [ VTS Py)S(x)dx

> %/ X;(x) "P(y))Xy(x)dx —8 | Yy(x)"P(y;)Ys(x)dx
) -

7
> [ P ells|?
]Rm
Again by (5.3.28) and (5.3.33),

6
(53.35) L P =2 [ w3 lse Pr—cslS|2

Combining (5.3.25), (5.3.26), (5.3.27), (5.3.34) and (5.3.35), we arrive at (5.3.18).
This completes the proof of the lemma.

Proof of Theorem 5.3.2. The solution to (5.1.1), (5.1.2), under the current assump-
tions, will be constructed by the vanishing viscosity method, namely as the € — 0
limit of solutions to the parabolic system (5.1.8), with the same initial data (5.1.2).
This approach, which was already tested in Section 5.1, is also effective in the
present setting because, when (5.3.1) holds, the parabolic system (5.1.8) inherits
from the hyperbolic system (5.1.1) the involution (5.3.2).! Indeed, if U is a solution
of (5.1.8) with initial data (5.1.2) satisfying the involution (5.3.2), then the function

! Note that this is not the case for the linearized system (5.1.7) and as a result the traditional
approach seems inapplicable under the current assumptions, in the presence of involutions.



132 V' Entropy and the Stability of Classical Solutions

Z =Y M0, U is the solution of the heat equation d,Z = €AZ with zero initial data,
and thus vanishes identically.

The construction of the solution in the present setting will closely parallel the
treatment of the classical case, in Theorem 5.1.1. A number of modifications shall be
needed to account for the fact that 17 is no longer a convex entropy but it is merely
a contingent entropy which is convex only on the involution cone. In order to keep
duplication at a minimum, we shall not write a lengthy self-contained proof, but we
will simply retrace the steps in the proof of Theorem 5.1.1, through the Lemmas
5.1.2,5.1.3 and 5.1.4, interjecting the adjustments, as needed.

To begin with, Lemma 5.1.2 does not rest on the presence of an entropy and
hence it applies here, without any modification. We thus know that for any fixed
€ >0 and @ > ||Upl|, there exists a solution U of (5.1.8), (5.1.2) on a time interval
[0,Tp.¢), taking values in % and satisfying (5.1.10). We proceed to derive bounds
for U, independent of &, by retracing the steps in the proof of Lemma 5.1.3.

Equations (5.1.26), (5.1.27), (5.1.29), (5.1.30), (5.1.31) and (5.1.32) are still
valid. We may no longer count on symmetry of the matrices A(U)DG(U). Never-
theless, upon switching to (5.3.10) as definition of J,(U), (5.1.33) still holds, since
U, and thereby U, satisfy the involution (5.3.2). With that modification, the basic
“energy” integral (5.1.28) remains in force.

The next obstacle is that we no longer have (5.1.34) and (5.1.37) , because A(U)
is not necessarily positive definite. We shall compensate for the loss of convexity of
N (U), with the help of Lemma 5.3.4, as follows. Since Uy € Hy,

1
(5.3.36) A(Uo(x)) — AW ()] < ;1
for all x and y in the set Qy = {z € R : |z| > a}, for o sufficiently large. Next we
cover the compact set £§ by the union of balls 1, ...,Qx with radii so small that

(5.3.36) also holds for any x and y in ;, I = 1,...,K . Finally, recalling (5.1.15), we
restrict U to a time interval [0, 7], with T < T, ¢ so small that

(5.3.37) AW (x,0)) AU < g

for all x € R™ and r € [0,T]. It follows that, for any fixed ¢ € [0, 7], the covering
Q0,81,...,Qk of R™ meets the conditions in Lemma 5.3.4, with A(U(+,#)) in the
role of P(+). In particular, in the place of (5.1.34) and (5.1.37) we now have

(5.3.38) U, (x,7)A(U (x,7)) 9o Uy (x, T)dx
]Rm
> [ 10aU 7 P [ U (e P
Rm Rm

(5339 L [ U 0@ @000 mIU I =AU 6Ol
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Therefore, (5.3.38) in conjunction with (5.1.28), (5.1.35) and (5.1.27), demonstrates
that (5.1.36) is still valid here, with

(5.3.40) g(7) < L+ [IVU(, 0l + €lIVU (-, 7).

With reference to (5.3.39), in order to estimate the term ||U (-,7)||¢—1 , we multiply
(5.1.26) by 2U,", integrate the resulting equation over R™ x [0,], t € [0, T], integrate
by parts the term 2eU," AU, and sum over all multi-indices r of order |r| < ¢ — 1.
Upon using (5.1.27), we deduce

(5:341) DI < GO +e [ 1+ IVUCDlL-)o G2l

Combining (5.1.36) with (5.3.39) and (5.3.41), we infer that (5.1.38), and thereby
(5.1.24), hold in the present setting, with g bounded through (5.3.40).

As in Lemma 5.1.3, we conclude that for any fixed @ > co||Up||¢, solutions U to
(5.1.8), (5.1.2), with [|U(-,#)||l¢ < o, exist on a time interval [0, T, for any € > 0.

By retracing the steps in the proof of Lemma 5.1.4, we now construct a solution
U to the Cauchy problem (5.1.1), (5.1.2) as the limit of a sequence {Uy } of solutions
Uy to (5.1.8), (5.1.2) with € = &, & — 0, as k — oo . The convergence is uniform on
compact subsets of R™ x [0, T|. Furthermore, Uy(-,t) — U(-,t), weakly in H, for
any fixed 1 € [0, 7).

Next we demonstrate that Uy (-,7) — U (-, 1), strongly in Hy, for any ¢ € [0, T)]. To
that end, we set V;, = Uy — U and appeal to (5.1.41), which still holds in the present
setting. However, we may no longer use (5.1.42), since A(U) is not necessarily pos-
itive definite. In its place, we employ

(5.3.42) /Rm Vi (e, AU (e, 0) Vi (x 1)dx > |V 0)l1g = S IViCo0)12

which follows from Lemma 5.3.4. We can handle the term ||V, (-,7)||—1 by noting that
since U satisfies (5.1.1) and Uy, satisfies (5.1.8), with the same initial data,

(5.343)  Vi(x,1)= ozil Oa /Ot [Ga(U(x,7)) — Ga(Uk(x,7T)) + & Uy (x, 7)]dT
whence

(5.3.44) Vi ()]l -1 < C/Ot[IIVk(wT)Ho+8||Uk(~7f)\|1]df~

Combining (5.1.41) with (5.3.42) and (5.3.44), we deduce

(5.3.45) IVi(-,0)|13 < c(a)—H)/(: Vi (-, ) I3dT + co’ et (1 + gt ),

which is comparable to (5.1.43) and implies Vi (-,7) — 0, strongly in Hy, for every 7 in

[0, Ty]. Since Ui (-,t) — U(+,t), weakly in Hy, this yields Uy (-,¢) — U(-,t), strongly
in Hy_; and uniformly in R™. Moreover, VU,(-,7) — VU(-,t), uniformly in R™, for
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any t € [0,T). In particular, since the Uy satisfy (5.1.24), with g bounded through
(5.3.40), we infer

t
(5.3.46) (WDl < colltblleexp [ el1+ VU, )l

The next step is to verity that — U(-,¢) is continuous on [0, T,]. As in the proof
of Lemma 5.1.4, we consider the identity (5.1.44), which is still valid in the present
setting, and let k — oo . On the right-hand side of (5.1.44), the first two terms tend to
zero, while the limit superior of the third term is nonpositive. Indeed, even though
we no longer have (5.1.45), in its place, by Lemma 5.3.4,

(5347) ) / Uiy =Un)"A(U) (U = Up)dx > p| U = U7 = | Uk = U7y ,
\

r|<¢

and, as noted above, ||U; — Ul|;—1 — 0. Since the limit superior of the left-hand
side of (5.1.44) is nonpositive and the Uj, satisfy (5.1.36), with g bounded through
(5.3.40), we deduce the inequality

(5.3.48) Y A U," (x,))A(U (x,1))U,(x,1)dx
Irj<e’R™

- Y | Up®AUs(x))Uor(x)dx < ca’*(1+ o)1,
Ir[<¢/R™
which is the analog of (5.1.46).
Continuing along the road map of the proof of Lemma 5.1.4, we observe that the
identity (5.1.47) remains in force in the present setting. We no longer have (5.1.48),
but instead, by virtue of Lemma 5.3.4,

(5.3.49) Y / U 06,1) = Uor ()] A (Un () [Ur (x,1) — Up ()} dx

[r|<e

> plU(,0) = Uo7 = U (1) = Uo(IIE- -

On account of (5.1.21), with € =0, ||U(-,r) — Uy(+)||—1 = O(t), as t — 0. On the
other hand, as ¢ — 0, the limit superior of the right-hand side of (5.1.47) is non-
positive, in consequence of U(-,#) — Uy(-), weakly in Hy, together with (5.3.48)
and (5.1.15). It thus follows that ||U(-,¢) — Up(-)|l¢ = 0, as t — 0, i.e., t — U(-,¢) is
right-continuous at ¢ = 0, and thereby continuous on [0, 7).

The remainder of the proof of the theorem just redoubles the final steps in
the proof of Theorem 5.1.1: One extends the solution U of (5.1.1), (5.1.2), con-
structed above, beyond Ty, by solving a new Cauchy problem for (5.1.1) with ini-
tial data U(-,Ty), and iterates this process until reaching a maximal time inter-
val [0,7.). The lifespan T.. may be finite only if limsup||U(-,#)||z~ = p and/or

t—T
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limsup ||U(+,t)]|; = e . On account of (5.3.46), ||U(-,1)||¢ cannot become unbounded

t—Tw
unless (5.3.13) holds. Finally, (5.3.12) follows from U(-,t) € C°([0,T.]; H;) and
(5.1.1). This completes the proof of the theorem.

Proof of Theorem 5.3.3. It will suffice to retrace the steps in the proof of Theorem
5.2.1, making the necessary adjustments.
The definitions (5.3.2) and (5.3.4) for h(U,U) and Z,(U,U) will remain intact.

However, so as to account for the assumption that 1 is now merely a contingent
entropy, the definition (5.3.3) for Yy (U,U) must be replaced by

(5.3.50)
Yo(U,U) = Qa(U) = Qa(U) —=DN(0)[Ga(U) = Ga(U)] — Z(U) Mo [U —T].

As a result of this change, in the place of (5.2.6) we now have

T _ m _
(5.3.51) /0 / [@yh(U.0)+ ; D WYo (U, 0)dxdr

+/ w(x, 0)h(Up(x), U x))dx > — // 3 wDn (0)[U — U)dxdt

‘/0 / ; day{DN(0)[Ga(U) — Ga(U)] + E(T) Mo [U — U]}dxd.

Equation (5.2.7) is still in force, but (5.2.8) must be modified to reflect the sym-
metry of the new J,(U), defined by (5.3.10). Taking into account that U satisfies the
involution (5.3.2), we get

(5.3.52) oDn(0) = 9,0 AU Z 94U DGy (U)"A(D)
a=1
= Z a0 TA(0)DGo (U Z wZ(0) M.

Combining (5.3.51) with (5.2.7) and (5.3.52), and using that U — U satisfies the
involution (5.3.2), we conclude that (5.2.10) is still in force in the present setting. We
fix any point ¢ € (0,T) of L™ weak” continuity of n(U(-,7)) and € positive small,
and apply (5.2.10) for the test function y(x,7) = x(x)o(r), where @ is defined by
(5.2.11) and y is any C3(R™) function such that y(x) = 1 for all x with |x| < 1.
Letting € — 0, we deduce
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(5.3.53) h(U(x,0),U(x,0))dx
RWI

< /mh(Uo(x%Uo(x))dx—/oia/R i 00U " Zo(U,0)dxdt.

m a=1

By virtue of (5.2.2),

(5.3.54) hU,0) = 5(UJ?)U%I(U,U)(UJ?),
where
(5.3.55) H(U,0) :2/01/0ZA(sU+(1—s)U)dsdz.

On account of (5.3.11),

(5.3.56) X'HU,0)X >2u|X|?, X€¥, UcB,, UcB,.

Since U is Lipschitz, when (5.3.14) holds with k sufficiently small there is € > 0

such that |x —y| < 2€ implies

(53.57) W0, 0(60) ~ HU ), 00:0)] < 34,

for all t+ € [0,T). Furthermore, in view of the prescribed behavior of U(x,t) and
U (x,t) as |x| — o0, (5.3.57) will also hold for all ¢ € [0,7) and all x and y in the set
Qy={z€R": |z] > a}, for large a. Let us fix some covering of the compact set
Qf by balls i,...,Qk of radius €. Then, for any fixed r € [0,T), 20,2y,...,Q
provide a covering of R™ which meets the conditions laid down in Lemma 5.3.4,

with H(U(+,¢),U(+,t)) in the role of P(-). Hence
(5.3.58)

' . 1 - 1 -
[ 15,0, 00x,0))dx > LU (0)~0(0) 3~ 38U 0) -
From

(5.3.59)

U(,0)~0(.0) = o)~ 0o() ~ ¥ da [ [GaU (1)) — GO (1),

it follows that

(5.3.60) [U(-,0)=U(-,0)[l-1 <|Uo(-) —Uo(')lloJrC/Ocy UG, =U(1)
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Combining (5.3.53), (5.3.58), (5.3.60) and (5.2.4) we deduce that the function u
defined by u(r) = ||U(-,#) —U(-,1)|o satisfies an integral inequality

(5.3.61) u(o) < au(O)—I—b/OGu(t)dt,

for almost all o € [0,7'), with a depending solely on bounds of G, 1 and their deriva-
tives on %, , and b that also depends on T and on the Lipschitz constant of U.
Applying Gronwall’s inequality to (5.3.61), we arrive at (5.3.15). This completes the
proof.

It should be noted that in certain systems (5.1.1) of conservation laws relations
of the form (5.3.2), introduced through the initial data, may be preserved by (at
least classical) solutions even though the M, are not induced by symmetry relations
(5.3.1). A case in point is the condition @ = curlv = 0 of irrotational flow which is
preserved by smooth solutions of the Euler equations (3.3.16) but breaks down after
discontinuities develop.

There are also systems of conservation laws equipped with involutions involv-
ing nonlinear functions of the state vector and its spatial derivatives. For example,
(2.2.12) and (2.2.13) may be regarded as nonlinear involutions for the system (3.3.19)
of isentropic elastodynamics. Furthermore, if one writes (3.3.19) in Eulerian coordi-
nates, then the linear involution (3.3.10) becomes nonlinear: F iB 0 iFioq — Fia 8jFl-ﬁ =0
(with summation convention). However, the most celebrated example of a system
with nonlinear involutions is provided by the Einstein equations of general relativity.

Theorem 5.3.2, 5.3.3 and their proofs serve as confirmation that, from the stand-
point of analysis, the notion of contingent entropy is the natural extension of the
notion of entropy for systems of conservation laws endowed with involutions. Nev-
ertheless, in the applications of the above theorems to systems arising in continuum
physics, such as (3.3.19), 1 is an actual entropy. The importance of contingent en-
tropies that are not entropies will become clear in the following section.

The preconditions for applying Theorems 5.3.2 and 5.3.3 are not met by every
system with non-convex entropy and involutions encountered in physics. For exam-
ple, as noted above, in the system (3.3.66) of electrodynamics (with J = 0), endowed
with the involutions (3.3.67) (with p = 0), the involution cone is the entire state
space RS, on which the electromagnetic filed energy 7 fails to be convex. Even
when the conditions for applying these theorems are present, as in the case of the
system (3.3.19) of elastodynamics, it should be noted that, in comparison to Theo-
rem 5.2.1, Theorem 5.3.3 requires more and delivers less. In the following section we
will identify special structure, associated with the presence of contingent entropies
in certain systems encountered in continuum physics, that may remedy the above
shortcomings.
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5.4 Contingent Entropies and Polyconvexity

We consider here systems of conservation laws with involutions and a nonconvex
contingent entropy, as in the previous section, but also endowed with supplemen-
tary contingent entropies rendering existence and stability of solutions to the Cauchy
problem as strong as that inferred by Theorems 5.1.1 and 5.2.1.

The systems (3.3.19), of elastodynamics, and (3.3.66), of electrodynamics, will
serve as models. As noted in the previous section, (3.3.19) is endowed with the invo-
lution (3.3.10), the entropy 1 = €(F) + 3|v|* and ten contingent entropies, namely
detF' and the nine entries of the adjugate matrix F*. Similarly, (3.3.66) is equipped
with the involution (3.3.67), the electromagnetic field energy 1 (B, D) and three con-
tingent entropies, namely the components of the vector B A D. Accordingly, through-
out this section we will be operating under the following

5.4.1 Assumptions. In the system of the conservation laws (5.1.1), the flux G satisfies
the symmetry condition (5.3.1), which induces the involution (5.3.2). The system is
endowed with the principal contingent entropy-entropy flux pair (1,Q) and a family
of N supplementary contingent entropy-entropy flux pairs (W', X'), I=1,...,N.

As a contingent entropy pair, (1,Q) must satisfy (5.3.9), for some k-vector-
valued function & (U). Similarly, for 7 =1,...,N,

(5.4.1) DXL (U) =DW!(U)DG4(U)+ Q' (U) "My, a=1,...,m,

for some k-vector-valued function Q/(U). It will be convenient to assemble the W/
into a N-vector W, the X/ into a N x m matrix X and the Q/ into a N x k matrix £,
in which case (5.4.1) may be written as the matrix equation

(5.4.2) DXy (U) =DW (U)DGo(U)+Q(U) "My, a=1,...,m.

Every component U’ of the state vector U may be regarded as an entropy, and
thereby as a contingent entropy, with associated flux the i-th row G’ of the ma-
trix G. For convenience, we embed these entropy pairs in the list of supplemen-
tary pairs recorded in the Assumption 5.4.1. Thus, we assume that N > n and for
I=1,....n, W(U)=U! XL (U)=GL(U) and Q(U) = 0.

The equation (5.3.8), together with

(5.4.3) AW (U(x,1)) + i daXa(U(x,1)) =0

a=1

must hold for any classical solution U of (5.1.1) that satisfies the involution (5.3.2).
On the other hand, admissible weak solutions U must satisfy the inequality (4.5.3)
for the principal contingent entropy-entropy flux pair (1, Q). Typically, in systems
with involutions, such as (3.3.19) and (3.3.66), encountered in continuum physics,
the principal contingent entropy is an actual entropy.
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The objective of this section is to demonstrate that in the above setting the re-
quirement of convexity on the principal entropy may be relaxed into the following
weaker condition:

5.4.2 Definition. The principal contingent entropy 7 is called polyconvex, relative
to the contingent entropies W, if it admits a representation

(5.4.4) W) =W ())., Ue,,

where 6 is a smooth function defined on an open neighborhood .# of W(4,) in RY
whose Hessian matrix is positive definite on every W € .%.

In the example of elastodynamics, with W = (F,v,F*,det F) arranged as a 22-
vector, the principal entropy 11 = €(F) + %|v|2 will be polyconvex when the internal
energy function €(F') admits a representation

(5.4.5) e(F) = 6(F,F*,det F),

where 6(F,H, ) is a smooth function with positive definite Hessian on an open
neighborhood of the manifold {(F,H,d8) : detF >0, H = F*, § = det F}, embed-
ded in R'. This is a physically reasonable hypothesis which has been discussed
thoroughly in the literature, especially in the context of elastostatics. We have al-
ready encountered it in Section 4.5, where it was noted that it implies that £(F) is
rank-one convex and thereby 7 is convex on the involution cone. However, as we
shall see here, the implications of polyconvexity on stability of solutions are much
stronger than the consequences of mere convexity on the involution cone, discussed
in the previous section.

The situation is similar with the system (3.3.66) of electrodynamics, in which
case W = (B,D,B A D), arranged as a 9-vector. Polyconvexity is a natural condition
for the electromagnetic field energy 1, which serves as principal entropy. Indeed, in
the Born-Infeld case (3.3.73), 1 is polyconvex.

We introduce the following notation for the function 8(W) : 6y, for the partial
derivative 0 /dW; 6y for the differential [6y,1 - - O], treated as a 1 x n matrix;
and Oy w for the N x N Hessian matrix.

For U € ﬁp we define the n x n matrices

(5.4.6) A(U)=D*nU) - i Ow 1 (W (U))D*W!,

I=1
(5.4.7) Jo(U)=A(U)DG(U)+T'(U) My, a=1,...,m,
where

(5.4.8) r'(U)=DE(U)- i O (W (U))DQ! (U).
I=1
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It is clear that A(U) is symmetric. As already noted in Section 5.3, (5.3.9) implies
that the matrices

(5.4.9) D’n(U)DGy(U)+DEU) "My, a=1,...,m,
are symmetric. Similarly, (5.4.1) implies that the matrices

(5.4.10) D*W!(U)DGy(U)+DQIU) My, oa=1,....m

are also symmetric. It thus follows that the matrices Jo(U), for @ = 1,...,m, are
symmetric.

From (5.4.5) and (5.4.6),
(5.4.11) AU)=DW(U) " 6yw (W(U))DW(U),

so that if 1) is polyconvex then A(U) is positive definite.
The following proposition establishes the local existence of classical solutions to
the Cauchy problem for systems with polyconvex entropy.

5.4.3 Theorem. Let the hyperbolic system (5.1.1) of conservation laws satisfy the
Assumptions 5.4.1, with a principal contingent entropy 1 that is polyconvex (5.4.4).
Suppose the initial data Uy lie in Hy, for some { > 5 + 1, take values in a ball %
with radius py < p, and satisfy the involution (5.3.2). Then there exist T.o < o and
a unique continuously differentiable function U on R™ x [0,T.), taking values in
ﬁp, which is a classical solution to the Cauchy problem (5.1.1), (5.1.2) on the time
interval [0, T.o). Furthermore,

(5.4.12) U(-1) e (yjc’f([o, T..);Hp_y).
k=0

The interval [0, T..) is maximal in that if To. < co, then
Too
(5.4.13) | IvO Gt =,

and/or limsup ||U (-, 1)]|z= = p.

t—T

Proof. Following the vanishing viscosity approach, we construct the solution to
(5.1.1), (5.1.2) as the € — 0 limit of solutions to (5.1.8), (5.1.2), by retracing the
steps in the proof of Theorem 5.1.1, through the Lemmas 5.1.2, 5.1.3 and 5.1.4.
In fact, the notation here has been designed so that, upon substituting (5.4.6) and
(5.4.7) for (5.1.3) and (5.1.4) as definitions of A(U) and Ju(U), one may transfer
virtually verbatim the text and the equations from Section 5.1 to the present setting.
The straightforward verification is left to the reader.

We now turn to the question of uniqueness and stability of classical solutions
within a class of weak solutions that will be dubbed mild.
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5.4.4 Definition. A measurable function U, defined on R™ x [0, 7') and taking values
in %, , is a mild solution to (5.1.1), (5.1.2) if

(5.4.14)
/O ! / OVTWU)+ Y. 9V Xo(U))dxdr + /R VT (x,0)W (Up(x))dx = 0
" a=1 "

holds for all Lipschitz N-vector-valued test functions V, with compact support in
R™ x [0,T).

Notice that (5.4.14) holds when U satisfies (5.4.3), in the sense of distributions,
together with the initial condition W(U(-,7)) — W(Uy(+)) in L™ weak™, as t — 0.
In particular, any mild solution of (5.1.1), (5.1.2) is a weak solution, since (5.1.1)
is embedded in (5.4.3). Clearly, any classical solution of (5.1.1), (5.1.2) is a mild
solution, because (5.4.3) and the initial conditions are automatically satisfied in that
case. However, it comes as a surprise that in the applications one often encounters
even discontinuous mild solutions. For example, any weak solution (F,v) of the sys-
tem (3.3.19) of isentropic elastodynamics is mild. Indeed, as we saw in Section 2.3,
(3.3.11) and (3.3.12) hold for any L™ fields that satisfy (3.3.19); and the involution
(3.3.10). Moreover, as noted in Section 4.5, null Lagrangians (2.2.9) are continuous
functions in L™ weak®, and hence F(-,) — Fy(:), in L weak®, as r — 0, implies
F*(-,;t) = Fj(-) and det F(-,t) — det Fy(-), in L™ weak™, as r — 0. Similarly, BV
weak solutions (B, D) of the system (3.3.66) of electrodynamics, with Born-Infeld
constitutive relations (3.3.73) and involutions (3.3.67), are necessarily mild solu-
tions, because all shocks satisfy (3.3.80). Thus, (3.3.74) will hold for such solutions.
Moreover, in the BV setting there is sufficient regularity so that B(-,7) — Bo(+) and
D(-,t) = Dy(-), as t — 0, implies B(-,¢) AD(-,¢) = Bo(-) ADo(+), as t — 0.

A mild solution U will be admissible if it is admissible as a weak solution, i.e.,
if (4.5.3) is satisfied for the principal contingent entropy-entropy flux pair. In par-
ticular, any BV solution of (3.3.66), under the Born-Infeld constitutive relation, is
admissible, because shocks do not incur energy production. Of course, this is not the
case with the system (3.3.19) of elastodynamics.

The following proposition is the analog of Theorem 5.2.1:

5.4.5 Theorem. Let the hyperbolic system (5.1.1) of conservation laws satisfy the
Assumptions 5.4.1, with a principal contingent entropy 1 that is polyconvex (5.4.4).
Suppose U is a classical solution of (5.1.1) on [0, T), taking values in gijp, with initial
data Uy satisfying the involution (5.3.2). Let U be any admissible mild solution of
(5.1.1) on [0,T), taking values in 9(7,,, with initial data Uy satisfying the involution
(5.3.2). Then

(5.4.15) /qu(x,t) —U(x,t)|2dx§aeb’/ U (x) — o (x) |2

|x|<r+st

holds for any r > 0 and t € [0,T), with positive constants s,a, depending solely
on bounds of G,n,Q and their derivatives on %, and b that also depends on the
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Lipschitz constant of U. In particular, U is the unique admissible mild solution of
(5.1.1) with initial data U.

Proof. We retrace the steps in the proof of Theorem 5.2.1, with the needed modifi-
cations. On %, x &, we define

(5.4.16) h(U,U) =n(U)—n(U) — 6w (W(U))[W(U)-W ()],

(54.17)  Ya(U,U) = Qu(U) = Qa(U) — by (W(U))[Xa(U) — Xa(U)]

(54.18)  Zy(U.0) = ~DGo(0) DW (D) by (W (D)W (U) ~ W(D)]

where I is given by (5.4.8).
Recalling Definition 5.4.2, we see that h(U,U) is of quadratic order in U — U and
positive definite. Upon using (5.3.9), (5.4.2) and (5.4.4), we deduce

(5419)  DYa(U,0) = (6w (W(U)) — 6 (W(D))DW (U)DGo(U)
H[EW) ~ E(0)] Mg — 6w (W(0))[QU) ~ Q(0)] Mq,

which vanishes at U = U, so that Y (U,U) is also of quadratic order in U —U. In
particular, for s large, (5.2.5) holds.
Turning to Z(U,U), and by virtue of (5.4.2),

(5.4.20) DZy(U,U) = —DGq(U) "DW (T) " 6w (W (U))DW (U)

+DW (T) " ww (W(U))DW (U)DG (V)
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Recalling (5.4.6), (5.4.7) and since J,, is symmetric, we conclude that
(5.4.21)
DZy(T,0) = —DGo(U) "A(T) +A(0)DGo(U) +T'(U) "My =M, (O).

As in the proof of Theorem 5.2.1, we fix a nonnegative, Lipschitz continuous test
function y with compact support in R™ x [0,T), and evaluate 4,Y and Z along the
two solutions U (x,t) and U (x,t). As an admissible weak solution, U must satisfy
the inequality (4.5.3), while U being a classical solution, will satisfy (4.5.3) as an
equality. We thus deduce

(5.4.22)
T m
/0 / [@vh(U.0)+ Z,l I Yo (U, 0] dxdlt + /R y(x.0) h(U(x), Tolx)) dx

> - [ [ {avevov@nww -wo)

™ Jen W (x,0)8w (W (Uo(x))) [W (Uo(x)) — W (To (x))]dx.

Next we write (5.4.14) for both U and U, with test function VT = w6y (W (0)).
This yields

a2 [ [ {awevov@nmw) -wo)

+

ngE
o5}
2
<
2
=
(]
&
S
|
£
(]
=
ISW
=
<

a=1

+ [ w006 (W (Do) W (Un() = W (T () = 0.
Furthermore, since both U and U satisfy the involution (5.3.2),
(5.4.24) /OT /m Y 90 {Wlow(W(0)Q(0)" ~Z(0)7]} Ma[U — Oldxdr =0.
a=1

By virtue of (5.4.2) and Y M0, U = 0,
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(5.4.25) 06w (W(0)) = aW(0) " 6ww (W(D))

= Y 30T [DW(0)DGo(T) + () Ma] Oy (W(D))

a=1

- i 90 "' DGo(0) ' DW ()" 6yw (W (0)).
a=l

Similarly,
(5.4.26) 0w (W(U)) = U "'DW (T) " Oy (W (0)),
(5.4.27) dulOw (W (0))Q(0)" —2(0)"]

U " DW(0) " Oyw (W(0)Q(0)" —0,0'T(T)".
Therefore, recalling (5.4.18),

m

(54.28)  ABy(WONW ) ~W(D)]+ Y. 3uby (W (0))[Xe(U) ~ Xe(D)]

(5.4.29) f 00U "'DZy(0,0) = [Z Maaa(]] TF(U) =0.

Consequently, the right-hand side of (5.4.28) is of quadratic order in U —U.

By combining (5.4.22), (5.4.23), (5.4.24) and (5.4.28), we recover (5.2.10). The
remainder of the proof follows along the lines of the proof of Theorem 5.2.1: depart-
ing from (5.2.10) and fixing any ¢ € (0,T), we derive (5.2.13), for o € (0,¢), and
then (5.2.12), for any o of L™ weak* continuity of 1(U(+,7)). This in turn yields
(5.2.14), for u defined by (5.2.15), and thereby (5.4.15). The proof is complete.

In particular, Theorems 5.4.3 and 5.4.5 apply to the class of systems of con-
servation laws that are endowed with an involution and are equipped with a convex
contingent entropy 1(U) (just take W (U) = U). One may attempt to reduce the more
general class of systems endowed with an involution and equipped with a polycon-
vex contingent entropy to the above special class by means of the following proce-
dure. Assume that the system (5.1.1) is endowed with the involution (5.3.2) and is
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equipped with a principal contingent entropy-entropy flux pair (n(U),Q(U)) which
is polyconvex (5.4.4), relative to the contingent entropies W. We seek functions S(¥)
and I1(¥), defined on R and taking values in MV >xm and MP*m, respectively, such
that

(5.4.30) SW(U) =W(U),  TI(WU)) =)

and, in addition, (6 (), I1(¥)) is a (generally contingent) entropy-entropy flux pair
for the extended system

(5.4.31) W (x,t) +divS(¥(x,1)) =0.

When functions satisfying the above specifications can be found, one may construct
solutions to the Cauchy problem (5.1.1), (5.1.2) by first solving (5.4.31) with initial
conditions

(5.4.32) ¥(x,0) =W (Uo(x)),

and then getting U from the equation W (U) = ¥. The merit of this approach lies in
that (5.4.31) is now equipped with a convex (possibly contingent) entropy 6.

The above program has been implemented successfully for the systems of elas-
todynamics and electrodynamics.

In elastodynamics, U = (F,0)",¥ = (F,0,0,0)", 6 = 6(F,0,0), the ex-
tended system reads

01 Fiq — dqv; = 0, a=1,23  i=1273
dc  do 9F5; 9o ddetF

v — 0, Ly — = i=1,2

Y a<aF}a+a@ﬁjaEa+aw 9F ) 0, i ;2,3

(5.4.33) .
0053 (4.} o =123 =123
Bi aF]OC J ’ 3Ly g

ddet F

3,&)—(905(%%) :O,

and the entropy-entropy flux pair is

(5.4.34) 6= 1o +0(F,0,0),

OF;.
(5.4.35) Ha:_(a‘f A) acadetF>v,-

JFia 905, 0Fy 00 Fg

On the “manifold” ¥ = W(U) = (F,v,F*,det F) ", (5.4.33) reduces to the system
(3.3.19) (with b = 0) together with the kinematic conservation laws (3.3.11), (3.3.12),
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while (6,IT) reduces to the classical entropy-entropy flux pair recorded in Section
3.3.3.

In electrodynamics, for the Born-Infeld constitutive relations, where U = (B, D)T,
¥ = (B,D,P)", the extended system reads

B+curl[~'(D+BAP)| =0
(5.4.36) D —curll0~'(B—DAP)|=0

P —div[o~'(I+BB" +DD" —PP")] =0,
and the entropy-entropy flux pair is

(5.4.37) 6 =(1+BP+[DP+|PP)2,

(5.4.38) II=P—602P—DAB—(D-P)D—(B-P)B).

Again, on the “manifold” ¥ =W (U) = (B,D,DAB) " (5.4.36) reduces to Maxwell’s
equations (3.3.66) (with J = 0), together with the supplementary conservation law
(3.3.74), while (6,IT) reduces to the entropy-entropy flux pair (1,Q) recored in
(3.3.73).

5.5 The Role of Damping and Relaxation

This section discuss the Cauchy problem

(5.5.1)  QU(x0)+ i 0aGa(U(x,8))+P(U(x,t)) =0, x€R™ >0,

a=1

(5.5.2) U(x,0) = Up(x), xeR™

for a homogeneous system of balance laws endowed with a convex entropy. As in
the previous sections of this chapter, the flux G, source P, entropy 7] and associated
entropy flux Q are smooth functions defined on a closed ball % in R", centered at
the origin.

We assume P(0) = 0, so U = 0 is an equilibrium state for (5.5.1). Furthermore,
as in (4.1.6), (4.1.7), we normalize the entropy by 11(0) = 0, Q(0) =0, Dn(0) =0,
and DQ(0) = 0. The source is a lower order term in (5.5.1). Consequently, a straight-
forward adaptation of the analysis from Section 5.1 yields the following extension of
Theorem 5.1.1:

5.5.1 Theorem. Assume A(U ), defined by (5.1.3), is positive definite for any U € ﬁp
Suppose the initial data Uy lie in Hy, for some { > 5 + 1, and take values in a ball

U € By, , with radius po < p. Then there exist T., < e and a unique continuously
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differentiable function U on R™ x [0, T.), taking values in %Tp, which is a classical
solution to the Cauchy problem (5.5.1), (5.5.2) on the time interval |0, T..). Further-
more,

0
(5.5.3) U(-,t) € [ CH[0,T); Ho—g).
k=0

The interval [0, T..) is maximal in that if To. < oo, then

T
(5.5.4) | IvUCnll-de =

and/or limsup ||U (-, 1)]|z= = p.

t—Tw

The aim here is to identity conditions on the source and the initial data that would
render the solution to the Cauchy problem (5.5.1), (5.5.2) global in time, i.e., T, = co.
The simple example (4.2.2), discussed in Section 4.2, raises the expectation that this
may be achieved when the source exerts a damping effect and the initial data take
values close to the equilibrium state.

Classical solutions of (5.5.1) satisfy the extra balance law

(5.5.5) oMU (x,1) + Y 9uQa(U(x,1)) +Dn(U(x,1)P(U(x,1)) = 0.
a=1
We shall call the source dissipative if it incurs a nonnegative entropy production:
(5.5.6) Dn(U)P(U) >0, UePB.
We proceed to estimate the effect of the presence of a dissipative source. We fix
initial data Up in Hyy1, for £ > 5 + 1, and consider the solution U to the Cauchy

problem (5.5.1), (5.5.2), on the maximal time interval [0, T.).
The first step is to integrate (5.5.5) over R™ x [0,¢], ¢ € [0,T.), which yields

657 [ @ /0 t [ Dn@)P)dxds = /R n(Uo(x))d.

Next we fix any multi-index r, of order 1 < |r| < ¢, set U, = 9"U, Uy, = d"Uy
and apply 0" to (5.5.1) to get

(5.5.8) AU, + i DGy (U)dqU, +DP(U)U, = DP(U)U, — "P(U)

a=1
+ i {DGa(U)3aU, — 9" [DGa(U)da U1},
a=1

which holds in Hy, for any 7 € [0, T..).
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We multiply (5.5.8) by 2U," A(U) and then integrate the resulting equation over
R™ x [0,t], t € [0,T.). After an integration by parts, using (5.1.29), (5.1.30) for
€ =0, and (5.1.31), we deduce

(5.5.9) /,,, U] (5 0AU (D)), (1) dx +2 /0 t / UT A(0)DP(0)U, dxdt

= [, Us (Ao ()) Vo, ()

//RmZU [0aJo(U) —DA(U)9a G (U)|U, dxdt
*/ot I 2 20,7 A(U){DGa(U) 9oy — 0 [DGa (U)oU)} dxdT
+ [ [ 2w aw) D), - P vz

o Jrm

- /Ot o 2U," [A(U)DP(U) — A(0)DP(0)]U, dxd.

We sum (5.5.9) over all r with 1 < |r| < ¢, and combine the resulting equation with
(5.5.7). We use that A(U) is positive definite and estimate the right-hand side with
the help of (5.1.27) and the similar bound

(5.5.10) IDP(U)U, = 0"P(U)llo < cl VUl = VUl -

We thus end up with the estimate

(5.5.11)  wp|uC,0|7+2 Z/ U," A(0)DP(0)U, dxdt

1<|r]<e

!
2
< Uo()II? +C/O WUlz= + VUl ]IV Uz d 7,

where u > 0.

In the above estimate, it is the second term on the right-hand side that may be
responsible for the growing, and eventual blowing up, of ||U(-,#),. This, however,
may be offset by the second term on the left-hand side, which manifests the damping
action of the dissipative source. Indeed, this term is nonnegative since the matrix
A(0)DP(0) is at least positive semidefinite, by virtue of (5.5.6). In fact, the damping
definitely prevails when ||Up||¢ is small and the source is dissipative definite in the
sense

(5.5.12) Dn(U)P(U) >alUP, U € %,

with a > 0. Indeed, (5.5.12) implies that the matrix A(0)DP(0) is positive definite,
and hence
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t t
(55.13) Y [ [ uTa©prodde > a [ VUL dv.
0 JrRm 0

I<|r|<t

It is now clear that ||U(-,7)||z= and ||VU(-, 7)||,~ small on the interval [0,f] im-
ply [|U(-0)]le < ¢||Uo(+)]¢, and this last inequality, with ||Up(-)||; small, implies
in turn that ||U(-,t)||= and ||VU(-,7)||;- are small. It thus follows that when the
source is dissipative definite (5.5.12), |Uo(+)||¢ small renders ||U(-,t)]|¢, and thereby
[IVU (-, 7)||| ;- , uniformly bounded on [0, T..), whence 7., = oo, by virtue of (5.5.4).

Recall that the identity (5.5.9), and thereby the estimate (5.5.11), were derived
under the assumption Uy € Hy. ;. Nevertheless, the size of ||Upl|,+ does not enter
in the final estimate ||U(-,7)||¢ < ¢||Uo(-)||¢ . Therefore, by completion of Hyy in Hy
and on account of the weak lower semicontinuity property of norms, we conclude
that under the assumption (5.5.12), we have T.. = o even when Uy is merely in Hy,
with ||Up||¢ sufficiently small.

For the balance laws arising in the applications, dissipative sources are ubiqui-
tous, but it is only on rare occasions that they may turn out to be dissipative definite.
Indeed, systems (5.5.1) encountered in physics commonly result from the coupling
of conservation laws with balance laws, and thereby appear in the special form

a,V +Z’('Xl:1 a(xFa (V,W) = O
(5.5.14)
OW + Y7 0oHe(V,W)+II(V,W)=0.

An illustrative example is provided by the system governing isentropic gas flow
through a porous medium, namely (3.3.6) with body force —v:

d,p +div(po') =0
(5.5.15)
9,(pv) +div(pvo") +grad p(p) + pv = 0.

It is now clear that a source in a system of the form (5.5.14) can only be partially
dissipative and at best it may satisfy

(5.5.16) Dn(U)P(U) >alP(U))?, U € %,

with a > 0. When (5.5.16) holds, we shall term the source dissipative semidefinite.

When (5.5.16) replaces (5.5.12), one may no longer rely on (5.5.11) alone, for
bounding ||U(-,?)||¢ on [0, T), but needs supplementary estimates, manifesting the
synergy between source and flux. Such estimates are in force on condition that the
system

(5.5.17) 9V + Y DGu(0)d,V +DP(0)V =0,
o=1

resulting from linearization of (5.5.1) about the equilibrium state U = 0, does not
admit traveling wave front solutions
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(5.5.18) V(xt) = @(x- v — A(v.0))R;(v.0),

which are not attenuated by entropy dissipation. Equivalently, the above requirement
is expressed by the Kawashima condition

(5.5.19) DP(0)R;(v;0) #0, veS™! i=1,...n

As shown in the references cited in Section 5.7, (5.5.19) implies that, for any
v € S" 1, there exists a n x n skew symmetric matrix K (V) that renders the matrix

(5.5.20) M(v)=K(v)A(v;0)+A(0)DP(0)
positive definite. This has the following important implications:
5.5.2 Lemma. Assume that the source is dissipative semidefinite (5.5.16), and the

matrices M(V), defined by (5.5.20), with K(v) skew-symmetric, are positive definite
forallv e S"'. Let V € C([0,T]; Hy) be a solution to the linear system

(5.5.21) AV + Y DGy (0)34V + kDP(O)Y =Z,
a=1
on the time interval [0, T], for some Z € L*([0,T]; Ho). Then, for any t € [0,T],
(5.5.22) /O t / WV Pdxdt < c /0 t /R VVTA(0)DP(0)VVdxdz
el /0 ’ | /]R VTA0)DP(0)VdxdT

1 g
teVEn R +lvE0i+e [ [ (zPdxe

Proof. We introduce the Fourier transform V (x,t) — V(&,¢) of V with respect to the
spatial variable. Applying the Fourier transform to the system (5.5.21) and setting
& =|€|v, with v € S"~!, we obtain the equation

(5.5.23) AV (E,1) +ilE|A(V;0)V (E,1)+ kDP(O)WV (&,1) = Z(E,1).

We now multiply (5.5.23) by i|E|V*(E,£)K(v). Since iK(v) is Hermitian, and
upon using (5.5.20), we deduce

(5.5.24) %at [ EIVK(V)V] = |EPV*M(V)V + |EPV*A(0)DP(0)V

—ik|E|V*K(V)DP(0)V = i|E|V*K(V)Z.

By (5.5.16), both matrices A(0)DP(0) and A(0)DP(0) —aDP(0) "DP(0) are positive
semidefinite. It follows that the eigenspace of the symmetric part of A(0)DP(0),
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associated with the zero eigenvalue, coincides with the kernel of the matrix DP(0).
Hence

(5.5.25) IDP(0)V|* < cRe[V*A(0)DP(0)V].

We now integrate the real part of (5.5.24) over R” x [0,7]. Upon using that
M(v) is positive definite, together with Parseval’s relation, (5.5.25) and the Cauchy-
Schwarz inequality, we arrive at (5.5.22). This completes the proof.

We have now laid the groundwork for establishing the existence of global clas-
sical solution to the Cauchy problem (5.5.1), (5.5.2), under the assumption that the
source is dissipative semidefinite and it satisfies the Kawashima condition (5.5.19).

5.5.3 Theorem. Assume A(U) is positive definite, the source is dissipative semidefi-
nite (5.5.16), and the matrices M (V), defined by (5.5.20), with K(Vv) skew-symmetric,
are positive definite, for all v € S"~'. When the initial data Uy, taking values in a
ball %, , with radius po < p, lie in Hy, for some £ > %5 + 1, and ||Up||¢ is sufficiently
small, then the Cauchy problem (5.5.1), (5.5.2) admits a global classical solution U,
on the time interval [0,).

Proof. We write (5.5.1) as

(55.26) QU+ f DG (0)dU = — Z [DGo(U) —DGg(0)]9eU — P(U),

a=1 o=1

which is in the form (5.5.21), for k¥ = 0. By virtue of (5.5.5) and (5.5.16),

(5.5.27) / / U)dxdz < ¢ / |Uo(x) P

Therefore, by (5.5.22), with k¥ =0,

t t
(5.5.28) / / VU 2dxdr < ¢ / / VU A(0)DP(0)VUdxdt
0 R"l 0 Rm

't
2
+CHU(~J)II%+CHU0(-)II%+C/O 1Ulz=[IVU [[od.

Next we fix any multi-index r of order 1 < |r| < £ —1 and write (5.5.8) as

(5.5.29) QU+ Z DG (0)dqU, +DP(0)U, = Z [DGo(U) — DG (0)]9eU,

a=1 a=1

—[DP(U)—DP(0)]U,+DP(U)U, —3"P(U)
+ Z {DGa aocU 9" [DGoc( )805(]]}7

in the form (5.5.21), with k¥ = 1. Therefore, on account of (5.5.22), (5.1.27) and
(5.5.10),
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t t
(5.5.30) / / VU, [*dxdt < ¢ / / VU,"A(0)DP(0)VU, dxdt
0 JR™ 0 JR™
t
se [ [ UTAODPOU;drdz-+e|U(.0)[} +clUoC)

t
2 2
+e [ VI + VU1V d=.

We sum (5.5.30) over all r, with 1 < |r| < ¢— 1, and combine the result with (5.5.28)
to get

(5.5.31) /|||VU\||Z dr<e Y / UTA(0)DP(0)U, dxdt

1<|r|<t

t
2
+elU G017 +ellto() 17 +6‘/0 U=+ VUl =]IVU 7 1 d.

Next we multiply (5.5.11) by a large positive number and add the resulting in-
equality to (5.5.31). This yields the following estimate:

t
(5.5.32) [WEnIE+ [ N9Vl de

t
2 2
< c[|Uo(-)II7 H/o (1U|= + U 7= + VU ll = + VU = ]IIVU 17y d .

We are now back in the situation we were before: As long as |U(+,7)| = and
[IVU(-,7)|||,~ stay small for T € [0,¢], (5.5.32) yields ||U(-,t)||¢ < c||Uo(-)|¢. In
return, this last inequality, with ||Up(-)||¢ small, keeps ||U(-,#)]|¢, and thereby also
|U(-,)||= and [[VU(-,t)]|;~, small. We thus conclude that if ||Up(-)||¢ is suffi-
ciently small, then [|[VU (-,#)|| ;- stays bounded, uniformly on [0, 7., ), in which case,
by (5.5.4), T.c = o and the classical solution U to (5.5.1), (5.5.2) is global. This
completes the proof.

In the literature cited in Section 5.7, the reader will find alternative, often tech-
nical, treatments of the Cauchy problem, under slightly different hypotheses and/or
in different function spaces. There is also extensive bibliography on the long time
behavior of classical solutions. Clearly, (5.5.7) indicates that solutions must tend
to “equilibrium”, where the entropy production vanishes. The asymptotic behavior
of solutions has been established either by use of “energy” type estimates in time-
weighted Sobolev spaces, or by treating (5.5.1) as a perturbation of its linearized
form (5.5.17). The large time behavior of solutions of the latter system, in various
L? spaces, can be determined quite precisely with the help of its Green function.
Because of the synergy between dissipation and dispersion, the rate of decay of solu-
tions to equilibrium in L? depends on the value of p. Out of a host of very technical
theorems, we record below one of the simplest:
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5.5.4 Theorem. Consider the Cauchy problem (5.5.1), (5.5.2) in R™, for m > 2,
assuming that the system has the following properties:

(a) An entropy 1 (U) exists and A(U) is positive definite.

(b) If & denotes the set of zeros of the source P and A is the orthogonal complement
of the range of P, then U € & if and only if Dn(U) € A .

(c) For U € &, Dn(U)A~'(U) is a symmetric positive semidefinite matrix whose
kernel is M .

Under the above conditions, for any Uy € Hy, £ > 5 + 1, with ||Uo||¢ sufficiently
small, there exists a global classical solution U to (5.5.1), (5.5.2) on [0,) and

I
(5.5.33) [0"U ()0 < cllUn()lle(1+2)"2,  O<|r[ <L

If, in addition, Uy € L', with ||Uy||,1 sufficiently small, then

I m
(5534)  12UC0lo < ellUolly + Vol d(1+0" 5%, o< <1,

The stretching of the space-time coordinates (x,f) — (tx, ut), u > 0, transforms
the systems (5.5.1) into

(5.5.35) U (x,t) + i 9aGa(U (x,1)) + %P(U(w)) =0,

a=1

so that there is an intimate relation between the long time behavior of solutions to
(5.5.1) and the asymptotic behavior of solutions to (5.5.35), as u — 0.

Relaxation phenomena are often governed by systems in the form (5.5.35), with
U being the relaxation parameter. The special structure of such systems has been
variously abstracted in the literature. Here we outline a simple popular framework,
related to (5.5.14), which captures numerous application.

We thus consider systems consisting of k conservation laws coupled with n —k
balance laws:

OV + XM duFu(V,W) =0
(5.5.36)
IW + X4y duHa (VW) + L IT(V,W) =0,

equipped with a uniformly convex entropy 1(V,W) and associated entropy flux
Q(V,W). Since the entropy is convex, (5.5.36) is hyperbolic, with characteristic
speeds A1 (V;V,W) < --- < A,(v;V,W), for any v € S"~ 1,

We assume that the source is dissipative semidefinite, so that

(5.5.37) Dy n (V,W)II(V,W) > a|IT1(V,W)|?,
with a > 0. We also assume that the (n — k) x (n — k) matrix Dy II1(0,0) has rank

n —k, whence, for |V| < 8, the equation IT(V,W) = 0 yields W = @(V), depicting
the (n — k)-dimensional local equilibrium manifold, embedded in R”".
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The natural conjecture is that, as the relaxation parameter tends to zero, the stiff
term in the system (5.5.36) will force the state (V,W) to relax to the equilibrium
manifold (V, ®(V)), on which V will be governed by the relaxed system

(5.5.38) AV+Y 9aGa(V)=0,
a=1

where G(V) = G(V,®(V)). Indeed, this has been verified in various settings, as re-
ported in the references cited in Section 5.7. It should be noted, however, that the con-
vergence of (V,W) to (V,®(V)), as 4 — 0, cannot be uniform in time unless the ini-
tial data (Vy, Wp) for (5.5.36) happen to lie on the equilibrium manifold, Wy = @ (Vp).
In the opposite case, a boundary layer must form across ¢ = 0, joining the initial data
to the equilibrium manifold.

The following proposition summarizes the special structure that the relaxed sys-
tem (5.5.38) inherits from its parent system (5.5.36).

5.5.5 Theorem. The relaxed system (5.5.38) is equipped with the entropy function
(V) =n(V,®(V)), with associated entropy flux Q(V) = Q(V,®(V)). Furthermore,
(V) is uniformly convex, so that (5.5.38) is hyperbolic, with characteristic speeds
A (V5v), ... 7ij(V; V). Finally, the so-called subcharacteristic condition

(5.5.39) MV, (V) < (V) < oo < L(viV) < (Vi V, D(V))
holds for all v € ™! and |V| < 8.

Proof. By (5.5.37), the entropy production is minimized on the equilibrium manifold,
and hence

(5.5.40) Dy (V,®(V)) =0.
Therefore, for any fixed V, with |V| < §,and @ = 1,...,m, (3.2.3) and (5.5.40) imply
(5.5.41) DyQy =Dy Qq + (DwQ«)Dy P

= (DyN)DyGg + (Dy1)(DwGa)Dy @ = (Dy)DyGq

with DyQy , DwQq , DyGy, DwGgy and Dyn all evaluated at (V,P(V)). We con-
clude that (A}, Q) is an entropy-entropy flux pair for (5.5.38).
By virtue of (5.5.40), we obtain

(5.5.42) Dj ) = Dy + (Dywn)Dy @,

(5.5.43) Dwyn + (D§1n)Dy® =0,

with DZ1, Dywn, Dwy 1 and D31 evaluated at (V, @(V)).
For £ € R¥ and { € R" ¥, we set



5.5 The Role of Damping and Relaxation 155

(5.5.44) B(V,W:&,8) =& (DymE+& (Dywn)E+¢ " (Dwym)é+¢ T (D¢

(5.5.45) Io(V,W;€,0) = ET[(D}
+&T[(DY
+¢ T [(Dwym)
+¢ T [(Dwyn)

(Dv Fa) + (Dywn)(DvHq)]E
(DwFo) + (Dywn)(DwHe)|E
(DyFo) + (Djy 1) (DyvHa ))&
(DwFa) + (Djyn) (DwHa)]¢,

n)
n)

(5.5.46) B(v;§) =& (DyA)E,

(5.5.47) Io(v:€) = &7 (D} M) (DyGa)é.
Upon using (5.5.42) and (5.5.43),

(5.5.48) B(vi&) =B(V,@(V):£,(Dv®)E),

(5.5.49) [a(Vi&) =1a(V,®(V); &, (Dy @)§).

Since 7 is uniformly convex, (5.5.48) implies that 1] is also uniformly convex.
For any v € "~ A;(v;V,W) and A,(v;V,W) are the minimum and the maxi-
mum of the Rayleigh quotient

r(;lzl V(ZIO!(V’W;§7 C)
B(V,W:&,0)

(5.5.50)

overall £ € R¥\{0} and { € R *. Similarly, 4, (v;V) and A (v; V) are the minimum
and the maximum of the Rayleigh quotient

m oLy (V:
(5.5.51) Lot VelalV:E),
B(V:¢)
over all & € R¥\{0}. Thus, the subcharacteristic condition (5.5.39) follows from
(5.5.48) and (5.5.49). The proof is complete.

For illustration, consider the system

oiu(x,t) 4+ dyo(x,1) =0
(5.5.52)
90(x,1) + Sp(u(x, 1)) + y[v(x,1) — f(ux,1))],

in one spatial dimension, which has served as a paradigm in the literature. Assum-
ing p'(u) = a®(u), with a(u) > 0, (5.5.52) is strictly hyperbolic, with characteristic
speeds A; = —a(u), A2 = a(u). The local equilibrium manifold is the curve v = f(u),
embedded in the u-v plane, and the relaxed system is the scalar conservation law
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(5.5.53) du(x,t) + e f(u(x,t)) =0,

with characteristic speed A= f'(u). As noted above, the subcharacteristic condition
(5.5.54) —a(u) < f'(u) < a(u)

is a necessary prerequisite for the existence of a convex entropy 1 (u,v) for the sys-
tem (5.5.52) that renders the source dissipative. We will return to the system (5.5.52)
in Chapters XVI and XVII, where we shall see, in particular, that (5.5.54) in strict
inequality form is also sufficient for the existence of a convex entropy.

In Section 4.6, we encountered an alternative mechanism inducing entropy pro-
duction, namely viscosity. The relevant systems are in the form (4.6.1) and the en-
tropy production is encoded in the second term on the right-hand side of (4.6.4).
In analogy with the terminology introduced above in the context of systems with
source, we shall call the viscosity term dissipative when the quadratic form asso-
ciated with Danaﬁ is positive semidefinite, and in particular dissipative definite
when the quadratic form is positive definite or dissipative semidefinite when (4.6.5)
holds with a > 0. Dissipative definite viscosity renders the system (4.6.1) parabolic,
in which case the Cauchy problem is well-posed and admits very smooth solutions.
However, viscosity terms commonly encountered in systems arising in continuum
physics are only dissipative semidefinite. Indeed, such systems often appear in the
form

atV + Zgzl aochx(V»W) =0
(5.5.55)
oW + Yl doHo(V.W)=u Z’g’ﬁﬂ Oa [Bocﬁ (va)aﬁWL

to be compared with (5.5.36). For an example, see (4.6.2).

The existence and long time behavior of solutions to the Cauchy problem for the
systems with semidefinite dissipative viscosity has been investigated extensively, in
various settings. The emerging theory closely parallels, in scope, methodology and
conclusions, the theory of the Cauchy problems for systems of balance laws with
dissipative semidefinite source, outlined above. In particular, for well-posedness of
the Cauchy problem, when the viscosity is merely dissipative semidefinite, one needs
the supplementary condition that the system

m m
(5.5.56) AV + Y DGu(0)0sV =p Y Byp(0)dadgV
a=1 a,f=1
resulting from linearization of (4.6.1) about the equilibrium state U = 0 does not

admit undamped traveling wave front solutions (5.5.18). This requirement is met
when the Kawashima condition

(5.5.57) Y VaVgBag(O)Ri(v:0)#0, veS™ ! i=1,..n
a,f=1

holds. This is the counterpart of the Kawashima condition (5.5.19), for systems of
balance laws with dissipative semidefinite source.
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An intimate relation between viscous relaxation and relaxation induced by a stiff
source emerges if one writes a formal expansion of solutions to (5.5.36) in powers
of the (small) relaxation parameter . At the zero degree level, u°, this yields the
relaxed hyperbolic system (5.5.38). At the next level, u', the result is a system with
viscosity:

(5.5.58) OV+Y 0uG(V)=u Y dulBap(V)IpV].
a=1 a,f=1

Furthermore, the viscosity is dissipative with respect to the entropy 1) (V) of (5.5.38).
The subcharacteristic condition (5.5.39) is an alternative, though related, manifesta-
tion of stability.

In order to avoid the cumbersome calculation for determining the coefficients
Eaﬁ in (5.5.58), for general systems, let us illustrate the above in the context of
the simple system (5.5.52). We have seen already that the scalar conservation law
(5.5.53) is the relaxed system. In order to get to the next level, of degree u, we
substitute v = f(u) + puw into (5.5.52), eliminate d;u with the help of (5.5.52); and
then drop all terms of order u, which yields

(5.5.59) w=[f"(u)* — a(u)*]ou.
Finally, we substitute v = f(u) + uw into (5.5.52); to get
(5.5.60) S+ 0 f (1) = no{[a(u)® — f'(u)*dwu},

which is of the form (5.5.56). The relation between the subcharacteristic condition
(5.5.54) and disspativeness of viscosity in (5.5.60) is now quite clear.

In continuum physics, one encounters a host of evolutionary systems with the
feature that wave amplification induced by nonlinear advection cohabits and com-
petes with some kind of dissipation; and the former is in control far from equilib-
rium, while the latter prevails in the vicinity of equilibrium, securing the existence
of smooth solutions in the large. Such systems are generally treated by methods akin
to those employed in this section, namely “energy” type estimates that bring out the
balance between amplification and damping. This subject, which already commands
a large body of literature, lies beyond the scope of the present book. Nevertheless, in
order to give a taste of the wide diversity of systems with such features, a few repre-
sentative examples will be recorded below, and a small sample of relevant references
will be listed in Section 5.7.

We begin with the so-called Euler-Poisson system

dp +div(po") =0
(5.5.61) 9, (pv) +div(pvo') + gradp(p) = ap grad y

Ay =b(p—p).
Fora= —1,b=4xnG and p =0, (5.5.61) governs the flow of a gas in the gravita-
tional field generated by its own mass. This is the “attractive” case. In the opposite,
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“repulsive” case, where both a and b are positive constants, this system models the
movement of electrons in a plasma. In that connection, the aggregate of the elec-
trons is regarded as an elastic fluid with density p and pressure p(p), flowing with
velocity v; while the much heavier ions are assumed stationary, merely providing
a uniform background of positive charge, proportional to p. The combined charge
of electrons and ions, which is proportional to p — p, generates the electrostatic
potential y, and thereby the electric field grady that sets the electrons in motion.
As in (5.5.15), we are dealing here with the hyperbolic system of the Euler equa-
tions, with a source induced by some feedback mechanism, which derives from the
Poisson equation (5.5.61)3 and is dissipative at least when the flow of electrons is
irrotational, curl v = 0. Recall from Section 3.3.6 that flows starting out irrotational
stay irrotational for as long as they are smooth. It has been shown that sufficiently
smooth, irrotational Cauchy data, close to equilibrium p = p, v =0, ¥ = 0, generate
globally defined smooth solutions. On the other hand, solutions starting out far from
equilibrium generally develop singularities in a finite time.
The situation is similar for the system

dp +div(po') =0
(5.5.62) 9,(pv) +div(pvo') + gradp(p) +u~'pv =ap grady

Ay =b(p—p),

associated with the hydrodynamic model of semiconductors. Here p > 0 is a relax-
ation parameter. Notice that (5.5.62) combines the dissipative mechanisms encoun-
tered in (5.5.15) and (5.5.61).

The balance laws for continuous media with internal friction, such as viscosity
and heat conductivity, yield systems exhibiting similar behavior. The reason is that
one may trace the lineage of these media back to elasticity, and hence, even though
the resulting systems are not hyperbolic, they inherit features of hyperbolicity, giving
rise to a destabilizing wave amplification mechanism that competes with the damping
induced by the internal friction.

A first example is the system (4.6.2), which governs the flow of heat conducting
thermoviscoelastic fluids with Newtonian viscosity. Internal friction manifests itself
on the right-hand side of the second and the third equation, while the first equation
retains its hyperbolic character.

Still another example with similar features is the system

8;” — (9)(0 =0
(5.5.63) 0v—0do(u,0)=0
o [8(”7 9) + %02} - ax[c(ua Q)ZJ] = ax‘](”v 973x6)7

which governs rectilinear motion, in Lagrangian coordinates, of a heat-conducting
thermoelastic medium. Here u is the strain (deformation gradient), v is the velocity,
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0 is the (absolute) temperature, o is the stress, € is the internal energy, g is the
heat flux, and the reference density is taken to be one. For compliance with (2.5.28)
and (2.5.29), the material response functions €, 6 and ¢ must satisfy €, = 6 — 00y
and g(u,0,2)g > 0. These should be supplemented with the natural assumptions
o, > 0, &g > 0 and g, > 0. Here internal friction is provided by thermal diffusion.

Internal friction of yet another nature, but with similar effects, is induced by
fading memory, encountered in viscoelastic continuous media in which the stress &
at the particle x and time 7 is no longer solely determined, as in elastic materials,
by the deformation gradient at (x,z), but also depends on the past history of the
deformation gradient at x. The balance laws are then expressed by functional-partial
differential equations. A simple, one-dimensional model system that captures the
damping effect of memory reads

diu(x,t) + dyv(x,t) =0

(5.5.64) ,
Sro(x, 1)+ dep(ulx, 1)) + [ K= 0)g(ulx,))dT =0,

where k is a smooth integrable relaxation kernel on [0, ), with k(7) > 0, k'(7) <0
and k”(t) > 0, for 7 € [0,00), and p’(u) > k(0)q’'(u) > 0. Notice that (5.5.64) is
intimately related to (5.5.52), as the latter system, for f = 0, may be rewritten in the
form

du(x,t) + do(x,t) =0

(5.5.65) .

Or0(.)+ dupluts)) + [ fexp (=N Auplut.5))dz =0,

The above systems, (5.5.63) and (5.5.64), share the property that smooth initial
data near equilibrium generate globally defined smooth solutions, while smooth so-
lutions starting out from “large” initial values generally blow up in finite time. See
the relevant references in Section 5.7.

An alternative decay mechanism acting on the systems of balance laws of con-
tinuum physics is dispersion. It is particularly effective when the dimension of the
space is large and solutions stay close to equilibrium. As we saw in Section 4.8, in
systems that are fully nonlinear, such as the Euler equations, dispersion may delay
but not prevent the breaking of waves. However, in systems with gentler nonlinearity,
satisfying the so-called null condition, dispersion renders the existence of globally
defined smooth solutions to the Cauchy problem, with initial data close to equilib-
rium. As a typical example, consider the system (3.3.19) of equations of isentropic
elastodynamics. For convenience, assume that the reference space coincides with the
physical space, and that the reference configuration, with F = I, is an isotropic equi-
librium state, so that the internal energy &(F) is a function (2.5.21) of the principal
invariants (J;,J2,J3) of the right stretch tensor (2.1.7). Assume, further, that (F) is
rank-one convex and satisfies the null condition

; S d3e(F)
(5.5.66) _PeF) v =0,
iﬁ./};:l a.B,y=1 aFiaaFj[;aFky
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at F = I, for any vector v € R, Then the Cauchy problem with initial data (Fy,vg)
close to (1,0), in an appropriate Sobolev space, admits a unique, globally defined
classical solution. For isotropic incompressible elastic media, the relevant null con-
dition is automatically satisfied. There is voluminous literature on these issues, a
sample of which is cited in Section 5.7.

5.6 Initial-Boundary Value Problems

The issue of properly formulating the initial-boundary value problem for systems of
hyperbolic conservation laws and establishing local existence of classical solutions
has been the object of intensive study in recent years. A fairly definitive, albeit highly
technical and complicated, theory has emerged, which lies beyond the scope of this
book. Fortunately, detailed expositions are now available, in books and survey arti-
cles, referenced in Section 5.7. In order to convey to the reader a taste of the current
state of this theory, a representative result will be recorded here, along the lines of
the formulation of initial-boundary value problems presented in Section 4.7.
We begin by fixing as domain the half-space

(5.6.1) P ={xeR": v.x<0},

with outward unit normal v € S"~!. We seek solutions to the system
m
(5.6.2) U(x,t)+ Y 04Ga(U(x,1)) =0, x€2,1€(0,T),
a=1

satisfying initial conditions

(5.6.3) U(x,0) =Up(x) , XED,

and boundary conditions in the special form (4.7.1), (4.7.8), namely,
(5.6.4) BG(U(x,t))v =0, x€d, t€(0,T),

where B is a constant n X n matrix.

We make the following assumptions on the system (5.6.2). The flux G(U) is a
smooth n X m matrix-valued function defined on %7,, For normalization, G(0) = 0.
Furthermore, (5.6.2) is endowed with a smooth entropy 1(U) such that D*n(U) is
positive definite on gjp, This implies, in particular, that (5.6.2) is hyperbolic, so that
forany U € B, and & € S"=1, the matrix A (&;U), defined by (4.1.2), possesses real
eigenvalues (characteristic speeds) A1 (&;U) < --- < 4,(&;U) and associated linearly
independent eigenvectors Ry (E;U),--- ,R,(&;U). We require that each eigenvalue
has constant multiplicity on S"~! x %, .

Turning to the boundary conditions (5.6.4), we introduce the “manifold” of
boundary data

(5.6.5) M ={U € B, : BG{U)v =0}
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and assume that the boundary is noncharacteristic, in the sense that, for a certain
k=0,---,nandallU € #,

(5.6.6) A(ViU) <0 < st (ViU),

where Ag(v;U) = —eo and A, (V;U) = oo. Thus k characteristic fields are incoming
to 2 and n — k characteristic fields are outgoing from 2, through 0 2.
We assume, further, that for any U € .# the rank of BA(v;U) is k and

(5.6.7) E¥(v;U) @ ker[BA(v;U)] = R,

where Ef(v;U) denotes the subspace of R" spanned by Ry (v;U),---,Ri(v;U). To
motivate this condition, we linearize the system (5.6.2) and the boundary condition
(5.6.4) about any constant state U € ./ :

(5.6.8) a4V (x,1)+ ) DGu(U)deV(x,1)=0, x€2, 1€(0,T),
a=1
(5.6.9) BA(v;U)V(x,1) =0, x€d2, t€(0,T).

Thus, roughly speaking, the role of (5.6.7) is to ensure that the trace of V on 92 is
determined by combining the boundary conditions with the information carried to
the boundary by the n — k outgoing characteristic fields.

The final assumption on the boundary conditions is the uniform Kreiss-Lopatinski
condition, which is formulated as follows. For each state U € ., vector & € sm-1
tangent to the boundary, i.e., & - v = 0, and complex number z with Rez > 0, we
define the matrix

(5.6.10) M(z,E:U) = A(v;U) I +iA(E:U))].

We denote by E(z,&;U) the subspace of R" spanned by the eigenvectors associated
with the eigenvalues of M(z,&;U) with negative real part and require that

(5.6.11) [W| < c|BA(V;U)W|, for all W € E(z,&;U),

where c is a positive constant, independent of U, & and z. To interpret this assumption,
notice that the linear system (5.6.8) admits solutions of the form

(5.6.12) V(x,t) =exp(i -x+zt)W(v-x),
where the function W () satisfies the ordinary differential equation
(5.6.13) W+M(z,&;U)W =0.

The role of (5.6.11) is to rule out solutions (5.6.12) that satisfy the boundary con-
dition (5.6.9) and exhibit “tame” growth in the spatial directions but grow exponen-
tially with time.
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Finally, we turn to the initial condition (5.6.3). For j =0,1,---, we let H; de-
note the Sobolev space Wj*2(9;R"), and assume Uy € Hy, for ¢ > % + 1. One may
then calculate formally, from (5.6.2), the initial values U; (x), - - - , U (x) of the time
derivatives ;U (x,0),---, 3, ~'U(x,0) of solutions. Thus

(5.6.14) Ui =— Y DGq(Up)dalb,
o=1

(5.6.15) Ur=—Y DGqu(Up)daUs — Y D*Go(Uo)[Ut,d4Uo],
o=1 a=1

and so on. Moreover, U; € Hy_;, j=0,--- ,£/— 1. In particular, the trace of U; on the
hyperplane 92 is well-defined, for j = 0,--- ,£ — 1. We then require that the initial
data be compatible with the boundary condition, in the sense

(5.6.16) BO/GU(x,t))v=0, t=0,x€dP, j=0,--,—1,
namely,

(5.6.17) BG(Uy(x))v =0, X€ 09,

(5.6.18) BA(v;Up(x))U;(x) =0, X€dD,

and so on.

‘We have now laid the preparation for stating the existence theorem:

5.6.1 Theorem. Under the above assumptions on the system, the boundary condi-
tions and the initial data, there exists a unique classical solution U € C' (2 x [0, T..))
of the initial-boundary value problem (5.6.2), (5.6.3), (5.6.4), for some 0 < T, < 0.
Furthermore,

L
(5.6.19) U(-,t) € () C/([0,Tw); Hp— ).
j=0

The interval [0, T..) is maximal in that if To. < co then

(5.6.20) limsup [|[VU (-, 1) = e

t—Tw

and/or limsup ||U (-,1)|| = = p.

t—Tw

The (lengthy and technical) proof proceeds from linear systems with constant
coefficients to linear systems with variable coefficients, and then passes to quasilinear
systems via linearization (5.6.8), (5.6.9) and a fixed point argument, for the map
U—V.
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It should be noted that the assumptions in the above theorem are too restrictive
for dealing with many natural initial-boundary value problems arising in continuum
physics. In the Euler equations, for isentropic or nonisentropic gas flow, the assump-
tion that the characteristic speeds have constant multiplicity is indeed valid (see Sec-
tions 3.3.5 and 3.3.6); but the assumption that the boundary is noncharacteristic is
often violated, for instance in the case of no-penetration (or slip) boundary condi-
tions v - v = 0. In the equations of isentropic or nonisentropic elastodynamics, the
condition that the characteristic speeds have constant multiplicity is often violated,
for example in the vicinity of the natural state of an isotropic elastic solid where
the multiplicity of the characteristic speed associated with shear waves undergoes a
transition. Moreover, the boundary is always characteristic, as the system possesses
zero characteristic speeds. Beyond that, one needs to consider more general domains
2 and homogeneous or inhomogeneous boundary conditions on d 2 of more gen-
eral form than (5.6.4). These issues are addressed by more sophisticated versions of
Theorem 5.6.1. References are cited in Section 5.7.

Instead of appealing to the general theory, outlined above, it is often advanta-
geous to treat initial-boundary value problems for particular systems of conservation
laws arising in continuum physics ab initio, taking advantage of their special struc-
ture. As an illustrative example, let us consider the system (3.3.19), which governs
the isentropic motion of an elastic solid, in Lagrangian coordinates, assuming for
simplicity that the body force vanishes, so that

9 Fiq — 0qv; =0, oa=12,3
(5.6.21)
90; — daSia(F) = 0, i=1,23.

In (5.6.21) and in what follows, we employ the summation convention.

As noted in (sub)section 3.3.3, the Piola-Kirchhoff stress S derives from a po-
tential (3.3.20), so that ) = &(F) + 1[0 is an entropy for the system. We assume
that the internal energy function £(F) satisfies €(F) > 0, €(I) = 0 and is rank-one
convex, i.e.

(5.6.22) Ajjp(F)Vavp&i€; >0, forall vand € inS?,
where

_ 9Sia(F)  9%(F)
(5.6.23) Aiajp(F) = OF5  OFqdFj

Notice the important symmetry relations

(5.6.24) Ajajp(F) = Ajpia(F).
We also define

0A.,5(F 3
(5.6.25) Biopiy(F) = iwjp(F)  9%(F)

0Fy  O0Fiq0FgdFy,
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The reference configuration of the elastic body is a bounded domain £ of R3,
with smooth boundary I', which is assumed clamped, so that the boundary conditions
read

(5.6.26) v(x,t)=0, xeI,t>0.

We also assign initial conditions

(5.6.27) F(x,0)=F°(x), o(x0)=v"(x), xcQ,
assuming that

(5.6.28) FOewm12(Q;M>%), " e wm2(Q:R%),

with m > 4. For r = 0,1, - -,m, we shall denote by || - ||, and [|-||, the norms of

the Sobolev spaces W"2(Q;R3) and W"?(Q2;M3*3). Also (zr)) will denote the time
derivative d/v of v, of order r. On account of (5.6.28), one may derive candidates

(S W””“z(Q;IR?) for the initial values of (zr)), by combining (5.6.21) with (5.6.27):

(5.6.29) v} (x) = duSia(FO(x)), i=1,2,3 x€Q,

(5.6.30) 7 (x) = da[Aig;p (F'(x))9p0)(x)], i=1,2,3, xeQ,
and so on. In that setting:

5.6.2 Theorem. Assume the initial data (F O,UO) are compatible with the boundary
condition (5.6.20), in the sense that v" € WOI’Z(Q;R3) ,forr=0,---m—1. Then
there exists a unique classical solution (F,v) to (5.6.21), (5.6.26), (5.6.27) on a time
interval [0,T], and

(5.6.31) v(-,1) € ﬁc’([o,ﬂ SWMTR2(QRY)).
r=0

The regularity of F and its time derivatives may be inferred by combining the first
equation of (5.6.21) with (5.6.31). The condition detF > 0, necessary for physical
admissibility of the solution, can be secured by taking det F* > 0 and T sufficiently
small.

Detailed proofs of the above proposition are found in the references cited in Sec-
tion 5.7. A formal, sketchy, derivation of the key estimate will suffice for the present
purposes. Our strategy is to monitor the pointwise behavior of the solution and its
derivatives with the help of L? bounds on derivatives of higher order. Thus, assum-
ing (F,v) is a solution of (5.6.21), (5.6.26), (5.6.27), on the time interval [0, T], with
the properties recounted in Theorem 5.6.2, the aim is to show that, for T sufficiently
small, the functional
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(5.6.32) Z 19 0llns

is bounded on [0, T]. Setting

(5.6.33) M=||F°O), ,, N= va )| —

we will be operating under the ansatz

m—1

(5.634)  (IFC )l <2M, Z ||U Ollm—r1 <2N,  1€[0,T],

which shall be verified a posteriori.

The approach followed in earlier sections for establishing such estimates for the
Cauchy problem, by differentiating the equations of the system with respect to the
spatial variables, cannot be applied here, because the boundary behavior of spatial
derivatives is not known a priori. We only know that, by virtue of (5.6.26), time
derivatives of v, of any order, vanish on I". We shall take advantage of that in esti-
mating the simpler functional

m—1

(5.6.35) Z 19 ¢+ 19 ¢l

Forr=0,---,m—1, we apply 8,’“ to (5.6.21) to get

(5.6.36) U0 (1) = el 5 (F (6.0)) 50 (x.1)] + 2L (x,8),
where

(r)
(5.637) Z0(x.1) = a0 Sia(F(0,1)) — Avgy (F (5,1)) 050 (. 1)].

+1
We multiply (5.6.36) by Z(rvi ) and integrate the resulting equation on 2 x [0,7].
Recalling the symmetry condition (5.6.24), and after an integration by parts,

(56.38) L1170 00+ A (0 51)051 1)) 5 )
= [ 1077 0+ A (F°(09) 2] ()95 )

t T r r
+ /O /Q 2276, 0)0; (2,7) 1 Biapiy (F) 01 (6, 7)) (x, 7) By (v, ) dxd .

We supplement (5.6.38) with the total energy (entropy) conservation law:
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(5639) /Q l£(F (x, 1)) + %|v(x,t)|2]dx - /!2 (FO(x)) + %|vo(x)|2]dx.

In order to avoid proliferation of symbols, we adopt the following convention:
In the sequel, a,b and K will stand for generic positive constants, with a depending
on M, b depending on M and on N, and K depending on H|F0|||m_1 and [|0°|),,. In
particular, for r =0, - -, m, |[0"]|m—r <K

By virtue of (5.6.22) and since (zr))(-,t) € WO1 ’Z(Q;R3), Garding’s inequality ap-
plies:

(r) (r) (r) (r)
(5.6.40) /QAiajﬁ(F(X»t))f%cvi(x7t)3ﬁvj(x,t)dxZullv(-,t)l\%—allv(-,t)\\%,

with pt > 0. Moreover, since m > 4, standard calculus inequalities for Sobolev spaces
yield

(5.6.41) 1Z"(\0)llo <BE(R),  r=1,---,m—1.

Upon combining (5.6.38) with (5.6.39), (5.6.40) and (5.6.41), one arrives at an
estimate in the form

(5.6.42) G(t) <K+b /O 'E(7)dr.

. . . ( .
To estimate spatial derivatives of zr)), of order greater than one, we view (5.6.36)
as a strongly elliptic system

(r) (r+2) b
(5.6.43) Aiajp(x,1)00dpvj(x,t) = v; (x,1) =Y/ (x,1),
where
r r (V)
(5.6.44) Y/ (x,t) = Z] (x,1) + B,-ajﬁky(F(x,t))aaFky(x,t)aﬁvj(x7t).

Fors=0,---,m—r—2, we employ the standard estimates from the theory of elliptic
systems:

) (r+2) " .
(5.6.45) [vC)lls2<all o Colls+ oGO+ 1Y Co)lls | -

By virtue of calculus inequalities for Sobolev spaces,
(5.6.44) Y (-, 0)|ls <DE(t), ||Y (-,0)|ls <BE(), r=1,---m—2.

Hence

(5.6.45) Y C)]s < K—i—b/O[E(r)dr.
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For r =0,---,m—2, one may estimate recursively, with the help of (5 6. 45)

(r) . (r) (m) . (r)
|| 7 ||m—r interms of || ¥ |0, -, || ¥ ||o, when m — ris even, or of || ¥ ||1,- -, H Hl,
when m — r is odd, all of which are parts of G. We thus end up with an estimate in
the form

(5.6.47) E()<b {KJF Gli)+ /0 tE(T)dr] :

Combining (5.6.47) with (5.6.42), yields E(r) < Kexp(bt), which establishes that
E(r) is bounded on [0,7], so long as the ansatz (5.6.34) holds. This is indeed the
case, since

4 I
(5.6.48) Fia(x1) = -?x(x)—i-/ ovi(x, DT, ) (x,1) = VL +/ 5 0)d
0

yield
(5.649) [IF(-\0)lll,p—y < M+K( 1), Z\Iv Ollm-r1 <N+K(" = 1),

which in turn imply (5.6.34), when T is sufficiently small.

For a complete, rigorous proof of Theorem 5.6.2, one may construct the solution
to (5.6.21), (5.6.26), (5.6.27) by establishing the existence of a fixed point of the map
that carries @, in a suitable function class, to F, where (F,v) is the solution to the
linear system

O Fiep — A0 = O, Po=123
(5.6.50)
&tvi_Aiajﬁ((p)aaﬂﬁ :07 i= 172737

with boundary conditions (5.6.26) and initial conditions (5.6.27). Alternatively, one
may employ the vanishing viscosity method, obtaining the solution to (5.6.21),
(5.6.26), (5.6.27) as the € — 0 limit of solutions to the system

8tFioc_8ocUi:()7 iva:17273
(5.6.51)
8tvi—8aS,~a(F):£Av,~, i=1,2,3,

under the same boundary and initial conditions. In either approach, the crucial task
is to demonstrate that the functional E(¢) is bounded, uniformly in &, for the system
(5.6.50), or uniformly in &, for the system (5.6.51).

Unless it is clamped, the boundary of moving bodies varies with time. Thus,
tracking the evolution of continuous media in Eulerian coordinates often leads to
initial-boundary value problems with a free boundary that is to be determined as part
of the solution. This usually raises serious technical complications. One may attempt
to circumvent that obstacle by switching to Lagrangian coordinates, in which case
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the domain becomes the fixed reference configuration of the body. However, the price
to pay is that typically the equations in Lagrangian form are complicated and lack
the symmetries of their Eulerian counterparts. In particular, this is encountered in the
Euler equations of gas dynamics.

For illustration, let us consider the isentropic expansion of a gaseous mass that is
confined, at # = 0, in a bounded domain of R3, surrounded by vacuum. The evolution
of the gas in that setting has been modeled, in Section 4.6, as a Cauchy problem for
the Euler equations (4.8.1), by visualizing the vacuum as a gas with zero density. It
was pointed out that, insofar as the focus stays on classical solutions, it is preferable
to switch state variables from density p to the weighted sonic speed w, because,
unlike the Euler equations (4.8.3), the symmetric system (4.8.4) is hyperbolic even
at the vacuum state. When the initial data (@y,vp), extended to all of R3, lie in the
Sobolev space W2, Theorem 5.1.1 guarantees the existence of a classical solution
to the Cauchy problem for (4.8.4), and thereby to the Euler equations (4.8.3), at least
locally in time. However, as already discussed in Section 4.8, the lifespan of this
classical solution is generally finite, because either waves break inside the gas cloud
or singularities develop on the interface between gas and vacuum. The breaking of
waves is associated with the transition from a classical to a weak solution, containing
shocks, and falls outside the scope of the present discussion, which will focus on
interfacial singularities.

The nature of interfacial singularities was discussed in Section 4.8. The balance
laws force the pressure, and thereby the density, to be continuous across the inter-
face. It was argued that the natural condition, encoded in (4.8.23), is that the normal
derivative of the square of the sonic speed must experience a jump across the inter-
face. To test whether solutions may stay smooth in the interior, even after the onset
of interfacial singularities, one introduces, through the initial data, singularities of
this type at t = 0, and attempts to construct classical solutions to the resulting initial-
boundary value problem. In that setting, the interface must be treated as a free bound-
ary, to be determined as part of the solution. A result in that direction is the following

5.6.3 Theorem. Consider the isentropic flow of an ideal gas, with equation of state
p=xpY, 1 <y<2, which occupies, at t = 0, a bounded set Q of R3, with smooth
boundary I, surrounded by vacuum. At t = 0, the density of the gas is py € C*(Q),
such that

(5.6.52) po(x) >0, xeQ, po(x)=0, xel,

(5.6.53) pl () > Adist(x,T"),  xeQ,

with A > 0. The initial velocity is vy € CS°(Q;R3). Then, for some T > 0, there exists
a C? function x, defined on Q x [0,T] and taking values in R3, with the following
properties: (a) x(-,0) is the identity map on Q; (b) for any t € [0,T], x(-,t) maps
diffeomorphically Q to an open set £, , and also maps I to the boundary I; of £,
(c) x induces a unique C' solution (p,v) to the Euler equations (4.8.3), defined on
{(x,t) : t €[0,T), x € &} and satisfying the initial conditions
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(5.6.54) p(x,0) =po(x), v(x,0)=1v9(x), xeQ
and the boundary conditions
(5.6.55)  plp(x,1)=0, ov(x,1)-v(xt)=V(x,1), 1€10,7T], xeI;,

where v denotes the external unit normal on I; and V stands for the normal speed of
the surface I; .

The nature of the singularity across the interface is encoded in (5.6.53) — recall
that the square of the sonic speed is proportional to p?~!. The regularity restrictions
imposed on the initial data in €2 are excessive. Solutions exist under considerably
weaker hypotheses (initial data in a Sobolev space of sufficiently high order, satisfy-
ing compatibility conditions, which however are rather awkward to state.)

The proof of the above proposition, which is found in the bibliography cited in
Section 5.7, is lengthy and technical. The following remarks will convey a taste of
the methodology.

To overcome the obstacle raised by the presence of the free boundary, we re-
formulate the problem in Lagrangian coordinates. We employ the notational con-
ventions introduced in Sections 2.1-2.3, with slight modifications, for compatibility
with the notation of Section 4.8, for the Euler equations. Thus, material particles will
be identified by y (Lagrangian coordinates), while position in physical space will be
labelled by x (Eulerian coordinates). For any particular field, we shall be using the
same symbol for denoting both its Lagrangian representation, as function of (y,),
and its Eulerian representation, as function of (x,). To prevent confusion, material
time derivatives (holding y fixed) will be denoted by an overdot, while spatial time
derivatives (holding x fixed) will be denoted by 0, .

We choose the physical space R? as reference space, and the physical placement
Q of the gas, at time ¢t = 0, as reference configuration. Thus the reference density
is po(y). The function ¥ (y,t), appearing in the statement of the theorem, represents
the motion of the gas. Thus y(y,0) =y, for all y € Q. The motion induces the defor-
mation gradient field F (y,1), by F = V, and the velocity field v(y,?), in Lagrangian
coordinates, by v = j¥. On account of (2.3.3), the density field in Lagrangian coordi-
nates is p(y,¢) = po(y)J ' (y,¢), where J = detF.

In Lagrangian coordinates, the Euler equations assume the form (2.3.4), namely
(when the body force vanishes),

(5.6.56) po(»)0(y,t) = DivS(F (y,1)),

where S is the Piola-Kirchhoff stress. For the ideal gas, the Cauchy stress tensor is
—kp?I and hence, by virtue of (2.3.6),

(5.6.57) S=—xp’J(F )" = —xp¥(F")T,

where F* is the adjugate matrix of F, and hence (F*)T is the cofactor matrix of F.
On account of (2.2.13), the divergence of the cofactor matrix of F' vanishes, whence
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(5.6.58) DivS(F(y,1)) = —k(F*) " (3,1) Grad [p{ (y)J ¥ (3,1)].

The solution to (5.6.56), (5.6.58) is obtained by the vanishing viscosity method,
as the € — 0 limit of solutions to the system

(5.6.59) Po(¥)0(y.1) = DivS(F (3,1)) + € DivS(F (3,1)).

One recognizes in (5.6.59) the equations of motion of a viscoelastic material with a
special constitutive equation for the Piola-Kirchhoff stress, of the type introduced in
Section 2.6.

In broad terms, the construction of the solution follows here the path taken earlier
in treating the elastic solid with clamped boundary (Theorem 5.6.2), and proceeds
by establishing L? estimates on derivatives of the solution, extracted from “energy”
integrals. These combine bounds on the quantity

4
(5.6.60) CORD) 1% 012,
=0

with L? estimates on certain derivatives of the vorticity field. The degeneracy at the
boundary renders the task of deriving these estimates much harder than what was
encountered in the case of the clamped boundary. In particular, some of these esti-
mates are tied to the nonlinear structure of the system. As a result one cannot ap-
proach the construction of the solution via linearization, by analogy to (5.6.50). The
success of the vanishing viscosity approach hinges on the particular choice S for
the viscous term, which preserves the delicate features of the Piola-Kirchhoff stress
for the Euler equations. The details of the hard and lengthy derivations of the esti-
mates are recorded in the bibliography cited in Section 5.7, albeit only for the case
Q=T2x(0,1).

5.7 Notes

A comprehensive treatment of classical solutions to the initial and initial-boundary
value problem for hyperbolic systems of conservation laws is found in the mono-
graph by Benzoni-Gavage and Serre [2].

Local existence of classical solutions to the Cauchy problem for symmetrizable
systems of conservation laws has been established by a variety of methods, ultimately
relying on the hierarchy of “energy” estimates derived by differentiating the system
with respect to the spatial variables.

The earliest, and still most popular, approach, expounded in Benzoni-Gavage
and Serre [2], constructs solutions to (5.1.1) by an iteration process on the linearized
systems (5.1.7). It was originated by Schauder [1], in the context of the quasilinear
second-order wave equation, and has attained its present general form through the
contributions of several authors, in particular Friedrichs [2], Garding [1] and Majda
[3]. Godunov [3], Makino, Ukai and Kawashima [1], Chemin [1], Lax [1], M.E. Tay-
lor [1,2] and Métivier [1] have used symmetrizers other than the Hessian of a convex
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entropy, or even symbolic symmetrizers. In that connection, recall the symmetrized
form (4.8.4) for the Euler equations, which retains hyperbolicity even at the vacuum
state.

For the Euler equations for incompressible fluids, it has been shown by Beale,
Kato and Majda [1] that classical solutions to the Cauchy problem persist for as
long as the vorticity stays bounded. For the case of compressible fluids, Chemin
[2] explains how breakdown of classical solutions arises as a result of explosion in
vorticity, compression, or the velocity divergence.

An alternative way of establishing Theorem 5.1.1, by Kato [1], is based on
the theory of abstract evolution equations. The method of vanishing viscosity was
adopted here because it also applies to the cases where the entropy is convex only in
the direction of the involution cone or it is merely polyconvex.

The use of relative entropy for proving, as in Theorems 5.2.1, 5.3.3 and 5.4.5,
uniqueness and stability of classical solutions within a broader class of admissible
weak solutions (informally referred to as “weak-strong uniqueness” ) originated in
the works of Dafermos [9,10] and DiPerna [7]. This approach has now been extended
in several directions: the weak solution may be very weak — just measure-valued —
or the system may be of intermediate hyperbolic-parabolic type, or even arising in
the kinetic theory. A representative sample, out of a large number of relevant papers,
is Brenier, De Lellis and Szekelyhidi [1], LeFloch [8], Christoforou and Tzavaras
[1], Lattanzio and Tzavaras [2], Tzavaras [7], Demoulini, Stuart and Tzavaras [3],
Berthelin, Tzavaras and Vasseur [1], Luo and Smoller [1,2], Germain [1], Elling [5],
Miroshnikov and Trivisa [1], and Feireisl and Novotny [1]. In fact, under certain
conditions, the method may even yield uniqueness of weak solutions; see DiPerna
[7], Chen, Frid and Li [1], Gui-Qiang Chen and Yachun Li [1,2], Gui-Qiang Chen
and Jun Chen [1], Kwon [3], Kwon and Vasseur [2], Choi and Vasseur [1], Serre and
Vasseur [1], Feireisl, Kreml and Vasseur [1], and Leger and Vasseur [2]. By using the
last paper, Texier and Zumbrun [2] show that the relative entropy condition implies
the Lopatinski (stability) condition for extreme shocks of arbitrary strength.

There are interesting examples of classical solutions in which the relative entropy
production (second term on the right-hand side of (5.2.14)) happens to be non posi-
tive. Then (5.2.1) holds with b = 0, yielding stability, uniformly in time. Such con-
ditions may be induced by a suitable selection of state vector. This situation arises,
for instance, in the case of the rarefaction wave in rectilinear isentropic gas flow. See
Gui-Qiang Chen [7], Chen and Frid [7], and Serre [30].

Hyperbolic systems of conservation laws with involutions were discussed by
Boillat [4] and Dafermos [14]. In particular, Boillat [4] presents examples arising in
general relativity. The notion of contingent entropy is due to Serre [22]. The analysis
in Section 5.3 follows and extends Dafermos [14,27,37]. An intimate relation ex-
ists between involutions and the theory of compensated compactness, as formalized
by Murat and Tartar; see Tartar [1,2]. In that connection, “involution cone” corre-
sponds to “characteristic cone.” In particular, for the equations of elastodynamics,
see Hughes, Kato and Marsden [1], and Dafermos and Hrusa [1].

Section 5.4 follows Dafermos [27], which improves upon the treatment of this
topic in earlier editions of the book. As already noted in Section 4.9, the notion of
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polyconvexity in elastostatics was introduced by Ball [1], as a condition rendering the
internal energy function weakly lower semicontinuous. It is from P.G. LeFloch that
the author originally heard the idea of extending the system of conservation laws
in elastodynamics by appending conservation laws for the invariants of the stretch
tensor. Explicit extensions were first published by Qin [1] and by Demoulini, Stuart
and Tzavaras [2]. See also Lattanzio and Tzavaras [1]. Tzavaras [8] embeds the ex-
tended system of elastodynamics in a relaxation scheme. In particular, he discusses
the example of the equations of gas dynamics, which are endowed with a convex
entropy in their Eulerian formulation, whereas the entropy in their Lagrangian for-
mulation is merely polyconvex. Brenier [2] presents two distinct extensions of the
equations of electrodynamics, for the Born-Infeld constitutive relations, including
the one recorded here, and discusses its asymptotics in various regimes. This inves-
tigation continues in Brenier [4] and Brenier and Yong [1]. See also Neves and Serre
[1]. Serre [22] devises the proper extension in electrodynamics, under general con-
stitutive relations, by exploiting the contingent entropy-entropy flux pair (3.3.76).

There is extensive literature on the existence and long time behavior of globally
defined classical solutions to the Cauchy problem for systems of balance laws with
source satisfying a Kawashima-type condition. Variants of this condition are encoun-
tered in several papers by Kawashima and coworkers, but its first appearance is in
Shizuta and Kawashima [1], and so it is often referred to as the Kawashima-Shizuta
condition. The reader may find results with the flavor of Theorems 5.5.3 and 5.5.4 in
Hanouzet and Natalini [1], Yong [6], Yang, Zhu and Zhao [3], Bianchini, Hanouzet
and Natalini [1], Kawashima and Yong [1,2], Xu and Kawashima [1,2], Yanni Zeng
[6], and in the bibliography of these papers. See also Beauchard and Zuazua [1], Hu
and Wang [1], Luo, Xin and Zeng [1], Mascia and Natalini [2], and Peng and Wang
[1]. A survey on the role of viscous dissipation is found in Tai-Ping Liu [30].

The setting of the general relaxation framework, in Section 5.5, follows Chen,
Levermore and Liu [1]. For an interesting alternative framework, see Bouchut [1].
The connection between relaxation and diffusion was first recognized in the kinetic
theory of gases, where it is effected by means of the Chapman-Enskog expansion
(e.g. Cercignani [1]). Chapman-Enskog type expansions have also been employed in
order to relate classes of hyperbolic balance laws (5.5.1) with systems with diffusion
in the form (4.6.1); see Kawashima and Yong [1,2].

There is voluminous literature on various aspects of relaxation theory. For a his-
torical retrospective, see Mascia [4]. Surveys and extensive bibliographies are found
in Natalini [3] and Yong [4]. Relevant references include Tai-Ping Liu [21], Nishi-
bata and Yu [1], Wei-Cheng Wang and Zhouping Xin [1], Donatelli and Marcati
[1], Hsiao and Pan [1], Shen, and Winther [1], Yong [2,3,5], Yang and Zhu [1],
Yang, Zhu and Zhao [3], Liu and Yong [1], Natalini and Terracina [1], Xin and Xu
[1], DiFrancesco and Lattanzio [1], Fan and Hérterich [1], Fan and Luo [1], Bed-
jaoui, Klingenberg and LeFloch [1], Berthelin and Bouchut [1], Junca and Rascle
[1], Tadmor and Tang [2], Carbou and Hanouzet [1], Carbou, Hanouzet and Natal-
ini [1], Chalons and Coulombel [1], Lambert and Marchesin [1], Yanni Zeng [4,5],
Miroshnikov and Trivisa [2], and Lattanzio and Tzavaras [1]. In particular, the sys-
tem (5.2.18) with p(u) = a’u, proposed by Jin and Xin [1], has served widely as
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a vehicle for understanding and explaining the features of relaxation. We will visit
the theory of this system in Section 17.5, and the reader may find the relevant refer-
ences in Section 17.9. Baudin, Coquel and Tran [1] propose a variant of the above
relaxation scheme, which bears a curious relationship to the one-dimensional Born-
Infeld system; see Serre [11]. We will also come across relaxation in Section 6.6,
with references in Section 6.11.

The intimate relation between relaxation and diffusion also manifests itself in
the large time behavior of solutions to hyperbolic systems with “frictional” damping
and in particular in the simple system governing the isentropic flow of a gas through
a porous medium; see Hsiao and Liu [1], Tai-Ping Liu [25], Serre and Xiao [1],
Hsiao and Luo [1], Luo and Yang [1], Nishihara and Yang [1], Hsiao and Pan [2,3],
Hsiao, Li and Pan [1], Hsiao and Li [1,2], Nishihara, Wang and Yang [1,2,3], Marcati
and Mei [1], He and Li [1], Liu and Natalini [1], Marcati and Pan [1], Marcati and
Nishihara [1], Marcati, mei and Rubino [1], Pan [1,2], Li and Saxton [1], Huang and
Pan [1,2], Lattanzio and Rubino [1], Huang, Marcati and Pan [1], Di Francesco and
Marecati [1], Lan and Lin [1], Dafermos and Pan [1], and Huang, Pan and Wang [1].

Out of a huge literature on nonhyperbolic systems that nevertheless exhibit be-
havior similar to that of hyperbolic systems with damping, here is a small repre-
sentative sample: For the Euler-Poisson system, see Poupaud, Rascle and Vila [1],
Dehua Wang [1,3], Wang and Chen [1], Guo [1], Engelberg, Liu and Tadmor [1], Li,
Markowich and Mei [1], Feldman, Ha and Slemrod [1], Jang [1], Chae and Tadmor
[1], and Tadmor and Wei [1]. For the semiconductor equations, see the monograph
by Markowich, Ringhofer and Schmeiser [1], which contains a comprehensive list
of references; also Guo and Strauss [1]. For the system of radiation hydrodynamics,
coupling the Euler equations with an elliptic equation accounting for the flux of radi-
ation energy, see Rohde and Yong [1], Rohde, Wang and Xie [1], and Rohde and Xie
[1,2]. The monographs by Lions [2] and Feireisl [1] treat the system of equations
for compressible viscoelastic fluids, in several space dimensions, and provide an
exhaustive bibliography. Of course, the literature on the incompressible case, which
includes the classical Navier-Stokes equations, is vast. The system of magnetohydro-
dynamics for viscous fluids is discussed in Chen and Wang [4,5], and Dehua Wang
[4]. For the equations of radiation magnetohydrodynamics, see Rohde and Yong [2].
For the system of one-dimensional thermoviscoelasticity, see Dafermos and Hsiao
[2], and Dafermos [12]. For the equations of one-dimensional thermoelasticity, see
Slemrod [1], Dafermos and Hsiao [3], and the detailed survey article by Racke [1].
Finally, for the equations of one-dimensional viscoelasticity, with viscosity induced
by fading memory dependence, see MacCamy [1], Dafermos and Nohel [1], Dafer-
mos [15], and the monograph by Renardy, Hrusa and Nohel [1].

A thorough discussion of initial-boundary value problems, including the details
on the material sketched in Section 5.6, is found in Benzoni-Gavage and Serre [2].
See also the survey article by Higdon [1]. In particular, Theorem 5.6.2, on the equa-
tions of elastodynamics, is taken from Dafermos and Hrusa [1], while Theorem 5.6.3,
on the Euler equations, in the presence of vacuum, is due to Coutand and Shkoller
[2]. For related results on the last problem, see Coutand and Shkoller [1], Makino
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[1], Liu and Yang [1], Liu, Xin and Yang [1], Tong Yang [4], Xu and Yang [1], and
Jang and Masmoudi [1].

For perspectives on stability issues see Benzoni-Gavage, Rousset, Serre and
Zumbrun [1]. See also Benzoni-Gavage and Coulombel [1]. The vanishing viscosity
approach and the related questions on the nature and stability of resulting boundary
layers have been actively investigated in recent years; see H.O.Kreiss [1], Benab-
dallah and Serre [1], Gisclon and Serre [1], Gisclon [1], Grenier and Gues [1],
Kreiss and Kreiss [1], Xin [6], Serre and Zumbrun [1], Serre [14, 17, 24], Joseph
and LeFloch [1,2,3], Roussef [1,2,3], Métivier and Zumbrun [1,2], and Gues, Méti-
vier, Williams and Zumbrun [5,6].



VI

The L' Theory for Scalar Conservation Laws

The theory of the scalar balance law, in several spatial dimensions, has reached a
state of virtual completeness. In the framework of classical solutions, the elementary,
yet effective, method of characteristics yields a sharper version of Theorem 5.1.1,
determining explicitly the life span of solutions with Lipschitz continuous initial
data and thereby demonstrating that in general this life span is finite. Thus one must
deal with weak solutions, even when the initial data are very smooth.

In regard to weak solutions, the special feature that sets the scalar balance law
apart from systems of more than one equation is the size of its family of entropies. It
will be shown that the abundance of entropies induces an effective characterization
of admissible weak solutions as well as very strong L!-stability and L*-monotonicity
properties. Armed with such powerful a priori estimates, one can construct admissi-
ble weak solutions in a number of ways. As a sample, construction by the method of
vanishing viscosity, the theory of L!-contraction semigroups, the layering method,
a relaxation method and an approach motivated by the kinetic theory will be pre-
sented here. The method of vanishing viscosity will also be employed for solving
the initial-boundary value problem. When the initial data are functions of locally
bounded variation then so are the solutions. Remarkably, however, even solutions
that are merely in L™ exhibit the same geometric structure as BV functions, with
jump discontinuities assembling on “manifolds” of codimension one.

The chapter will close with a description of the seemingly insurmountable obsta-
cles encountered in the study of weak solutions for hyperbolic systems of conserva-
tion laws in several spatial dimensions, and an account of current efforts to bypass
these obstructions.

In order to expose the elegance of the theory, the discussion will be restricted to
the homogeneous scalar conservation law, even though the general, inhomogeneous
balance law (3.3.1) may be treated by the same methodology, at the expense of rather
minor technical complications.

The issue of stability of weak solutions with respect to the weak™* topology of L™
will be addressed in Chapter XVI. The special case of a single space variable, m =1,
has a very rich theory of its own, certain aspects of which will be presented in later
chapters and especially in Chapter XI.
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6.1 The Cauchy Problem: Perseverance and Demise
of Classical Solutions

We consider the Cauchy problem for a homogeneous scalar conservation law:

(6.1.1) diu(x,t) +divG(u(x,t)) =0, xeR"™ >0,

(6.1.2) u(x,0) =up(x), xeR™.

The flux G(u) = (G1(u),...,Gn(u)) is a given smooth function on R, taking values
in M,

A characteristic of (6.1.1), associated with a continuously differentiable solution
u, is an orbit & : [0,T) — R™ of the system of ordinary differential equations

dx

(6.1.3) 5= = G (u(x,1)".

With every characteristic & we associate the differential operator

(6.1.4) O =0+ G (& (1)) arad,

which determines the directional derivative along &. In particular, since u satisfies
(6.1.1), du/dt = 0, i.e., u is constant along any characteristic. By virtue of (6.1.3),
this implies that the slope of the characteristic is constant. Thus all characteristics
are straight lines along which the solution is constant. With the help of this property,
one may study classical solutions of (6.1.1), (6.1.2) in minute detail. In particular,
for scalar conservation laws Theorem 5.1.1 admits the following refinement:

6.1.1 Theorem. Assume that ug, defined on R™, is bounded and Lipschitz continu-
ous. Let

(6.1.5) Kk = essinfdiv G’ (up(y)).

yeRmM

Then there exists a classical solution u of (6.1.1), (6.1.2) on the maximal interval
[0,T..), where Too = o0 when K > 0 and Too = —x~! when x < 0. Furthermore, if ug
is C* so is u.

Proof. Assume first that uy € Cj’(R™) and let u be the unique smooth classical so-
lution of (6.1.1), (6.1.2), defined on the maximal time interval [0, 7. ), in accordance
to Theorem 5.1.1. By the properties of characteristics, stated above, with any point
(x,1) in R™ x [0, T) is associated y € R™ such that

(6.1.6) y=x—1G (u(x,t))",  u(x,r) =uo(y).

From (6.1.6) one easily gets
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Vi (y) —G'(uo(y)) - Vuo(y)
1+1divG (up(y)) ’ 141divG (uo(y))

(6.1.7) Vu(x,t) = diu(x,t) =

which implies, in particular, that 7., = oo if ¥ > 0, or 7o = — Kk 1if x <O0.
Suppose now u is merely Lipschitz on R™. Set .. = 0 if K > 0, or To.o. = —K
if k¥ < 0. With the help of mollifiers, we construct a sequence {uo,} in C; (R™) that
converges to ug, uniformly on compact sets, and also Vug,(y) tends to Vuy(y) at
every Lebesgue point y of Vuy .
The classical solution u, of (6.1.1) with initial value u, is defined on a maxi-
mal time interval [0,7,). We set T = lirrgi‘gf T, , noting that 0 < T < 7,,. By virtue of

—1

(6.1.7), the uy, are equilipschitzean on every compact subset of R” x [0,7), whence
some subsequence of {u,} converges, uniformly on compact sets, to a locally Lip-
schitz function u. Clearly u inherits from {u,} the property (6.1.6). This in turn
implies that if ug is differentiable at some point y, then u is differentiable along the
characteristic x = y+1G'(ug(y)) and the derivatives are given by (6.1.7). In particu-
lar, u is the classical solution of (6.1.1), (6.1.2) on the time interval [0,T). If T = T,
(6.1.7) implies that [0, T..) is the maximal time interval and the assertion of the the-
orem has been proved. On the other hand, if 7 < T.., (6.1.7) implies that u may be
extended to r = T and u(-,T) is Lipschitz on R™. We may thus repeat the process
and prolong the time interval of existence of u up to [0,7.), which is necessarily
maximal.

Finally, the implicit function theorem, applied to (6.1.6), yields that when uy is
C* the solution u is also C¥. This completes the proof.

From the above considerations it becomes clear that the lifespan of classical so-
lutions is generally finite. It is thus imperative to deal with weak solutions.

An alternative, instructive way of viewing classical solutions u to (6.1.1) is by
realizing them as “level surfaces” of functions f(v;x,t), defined on R x R” x RR; that
is

(6.1.8) S(u(x,t);x,6)=0

whenever u satisfies (6.1.1). It is easy to see that for that purpose f must satisfy the
transport equation

(6.1.9) flosx,1) ZG’ )Oaf (v;x,1) = 0.

Thus, we have transformed the nonlinear equation (6.1.1) into a linear one, at the
price of increasing the number of independent variables from m + 1 to m+2. In par-
ticular, to solve the initial value problem (6.1.1), (6.1.2), one should solve a Cauchy
problem for (6.1.9) with initial condition f(v;x,0) = v — ug(x). Since (6.1.9) is lin-
ear, a solution of this Cauchy problem will exist on R x R” x R. The resulting f
will in turn induce, through (6.1.8), the classical solution « to (6.1.1), (6.1.2), which
will be valid up until f; vanishes for the first time. We shall return to the transport
equation (6.1.9), in the context of weak solutions, in Section 6.7.
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6.2 Admissible Weak Solutions and their Stability Properties

In Section 4.2, we saw that the initial value problem for a scalar conservation law may
admit more than one weak solution, thus raising the need to impose admissibility
conditions. In Section 4.5, we discussed how entropy inequalities may serve that
purpose. Recall from Section 3.3.1 that for the scalar conservation law (6.1.1) any
smooth function 1 may serve as an entropy, with associated entropy flux

(6.2.1) Ou) = / "1(0) (0)do,

and entropy production zero. It will be convenient to relax slightly the regularity con-
dition and allow entropies (and thereby entropy fluxes) that are merely locally Lips-
chitz continuous. Similarly, G need only be locally Lipschitz continuous. It turns out
that in order to properly characterize admissible weak solutions, one has to impose
the entropy inequality

(6.2.2) o (u(x,t)) +divQ(u(x,t)) <0
for every convex entropy-entropy flux pair:

6.2.1 Definition. A bounded measurable function u on R” x [0, ) is an admissible
weak solution of (6.1.1), (6.1.2), with ug in L= (R™), if the inequality

©23) [ [ [avnw +z Oa Qu(u)ldxdr + [ y(x.0)n(uo(x)dr >0

holds for every convex function 1, with Q determined through (6.2.1), and all non-
negative Lipschitz continuous test functions y on R™ x [0, o), with compact support.

Applying (6.2.3) with n(u) = tu, Q(u) = £G(u) shows that (6.2.3) implies
(4.3.2), i.e., any admissible weak solution in the sense of Definition 6.2.1 is in par-
ticular a weak solution as defined in Section 4.3. Also note that if u is a classical
solution of (6.1.1), (6.1.2), then (6.2.3) holds automatically, as an equality, i.e., all
classical solutions are admissible. Several motivations for (6.2.3) will be presented
in subsequent sections.

To verify (6.2.3) for all convex 7, it would suffice to test it just for some family of
convex 7 with the property that the set of linear combinations of its members, with
nonnegative coefficients, spans the entire set of convex functions. To formulate ex-
amples, consider the following standard notation: For w € R, w" denotes max{w,0}
and sgnw stands for —1,1 or 0, as w is negative, positive or zero. Notice that any
Lipschitz continuous function is the limit of a sequence of piecewise linear convex
functions

k
(6.2.4) cou+ Zci(u—ui)+
i=1
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with ¢; > 0,i=1,--- k. Consequently, it would suffice to verify (6.2.3) for the en-
tropies tu, with entropy flux £G, together with the family of entropy-entropy flux
pairs

(6.2.5) Nwi)=(u—a)*, Qi) = sgn(u—a)*[G(u) — G(a)],

where i is a parameter taking values in R. Equally well, one may use the celebrated
family of entropy-entropy flux pairs of Kruzkov:

(6.2.6) N(w; i) = |u—1il, O(u;it) = sgn(u—u)[G(u) — G(@)].

From Remark 4.5.3 one infers that admissible weak solutions « render the distri-
bution d;7 («) + divQ(u) a measure for any (not necessarily convex) entropy-entropy
flux pair.

The fundamental existence and uniqueness theorem, which will be demonstrated
by several methods in subsequent sections, is

6.2.2 Theorem. For each uy € L (R™), there exists a unique admissible weak solu-
tion u of (6.1.1), (6.1.2) and

(6.2.7) u(-,t) € C°([0,00); Lioe (R™)).
The following proposition establishes the most important properties of admissi-

ble weak solutions of the scalar conservation law, namely, stability in L' and mono-
tonicity in L™:

6.2.3 Theorem. Let u and it be admissible weak solutions of (6.1.1) with respective
initial data uy and iy taking values in a compact interval [a,b]. There is s > 0,
depending solely on [a,b], such that, for anyt >0 and r >0

(6.2.8) /| Julen i) ds < / o (x) — it (x)] " d,

[x|<r+st

(6.2.9) lu(- 1) = () 11(,) < lluo(-) = @0 ()l (z,,,) -

Furthermore, if

(6.2.10) uo(x) < iip(x), a.e.on R™,
then
(6.2.11) u(x,r) <i(x,t), a.e. on R x [0,00).

In particular, the (essential) range of both u and it is contained in [a,b].

Proof. The salient feature of the scalar conservation law that induces (6.2.8) is that
the functions 7 (u;i), Q(u; i), defined through (6.2.5), constitute entropy-entropy
flux pairs not only in the variable u, for fixed i, but also in the variable i, for fixed u.
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Consider any nonnegative Lipschitz continuous function ¢ (x,7,%,7), defined on
R™ x [0,00) x R™ x [0,0) and having compact support. Fix (¥,7) in R™ x [0,c0) and
write (6.2.3) for the entropy-entropy flux pair 1 (u;i(%,7)), Q(u;i(%,7)), and the test
function y(x,t) = ¢ (x,1,%,7):

(6.2.12)
/0 Rm{&,(b(x,t,i,t_)n(u(x,t);ﬁ(i,t_))—&— Z’] Oxy O (x,8,%,7) Qo (u(x,2); (%, 7)) tdxdt

+ [ 00087 (uo(x):(.1)dx > 0.

Interchanging the roles of u and i, we similarly obtain, for any fixed point (x,#) in
R™ X [0, 00):

(6.2.13)
/0 Rm{%(}b(x,t,x,t_)n(u(x,t);ﬁ()f,t_))+ Zl Oz O (x,8,%,7) Qo (u(x,1); (%, 7)) Ydxdi

+ [, 900501 (ulx,1); o (%)) d = 0.

Integrating over R™ x [0, ) (6.2.12), with respect to (,7), and (6.2.13), with respect
to (x,7), and then adding the resulting inequalities yields

6214) [ [ "] {@+a)etennnina()
+ f (Ory + 95, )0 (1,1, %, F) Quc (u(x, 1); (%, 7)) }dxdtd5dF

a=1
+/000/,,, [ @60, 5,1) 1 (o (x): (%, 7)) dxd 2

+/0°° _/m e O (x,7,%,0)  (u(x,1); 10 (X)) dxdxdt > 0.

We fix a smooth nonnegative function p on R with compact support and total
mass one:

(6.2.15) /_Zp(g)dg _1.

Consider any nonnegative Lipschitz test function y on R"x[0,00), with compact
support. For positive small €, write (6.2.14) with

ooy a—(m+) X+Xx it_ t;t_ o Xg—Xp
(6.2.16) ¢(x,1,%,7) =€ V(5 el )ﬁI;IlP(izg )

and then let € | 0. Noting that
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' PP PYWAR RIS A LIS o (e i
(6217) (al+at)¢(xat7xat)_8 atll/( 2 ’ 2 )p( D¢ )ﬁl}lp( 2¢ )7

(6.2.18)
(axa+axa)¢(x7[7j,f) =& m+1 (9 l[/(

(6.2.19) |1 (ue(ox, 1) 880 (%)) — 1 (o (x)s 880 (%)) | < [u(x,7) = uo ()],

(6.2.20) |1 (uo (x); (%,7)) — 1 (o (x); 20 (%)) | < [a(%,7) — ito (%),

recalling Theorem 4.5.1, and using standard convergence theorems, we conclude that

(6.2.21)

| [ @venm:icn) + il Quc(3,1) Qau(x,):1(x,) bl

+ [ w0 (o)) dx > .
From (6.2.5) it is clear that there is s > O such that
(6.2.22) |O(u;2)| < sm(us; i),

for all u and # in the range of the solutions.
Fix r >0, r > 0 and € > 0 small; write (6.2.21) for y(x, 7) = x(x,7)®(7), with
x and o defined by (5.3.12) and (5.3.11) to get

(6.2.23) é /t't” /‘ e 7)) e < /‘ 4o (x) — o ()] " dx

x| <r-st

1/t _ Q(u;ﬁ)x}
_Z i)+ dxdt+ O(¢€).
8/0 /r+‘r(lfr)<x<r+s(tfr)+8 [Sn (u u) |x| e ( )

On account of (6.2.22), the second integral on the right-hand side of (6.2.23) is non-
negative. Thus, letting € | 0, recalling Theorem 4.5.1, and using that [-|* is a convex
function, we arrive at (6.2.8).

Interchanging the roles of u and i in (6.2.8) we deduce a similar inequality which
added to (6.2.8) yields (6.2.9).

Clearly, (6.2.10) implies (6.2.11), by virtue of (6.2.8). In particular, applying
this monotonicity property, first for iip(x) = b and then for up(x) = a, we deduce
u(x,t) <b and ii(x,t) > a a.e. Interchanging the roles of u and i, we conclude that
the essential range of both solutions is contained in [a,b]. Thus s in (6.2.22) depends
solely on [a, b]. This completes the proof.
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From (6.2.9) we immediately draw the following conclusion on uniqueness and
finite dependence:

6.2.4 Corollary. There is at most one admissible weak solution of (6.1.1), (6.1.2).

6.2.5 Corollary. The value of the admissible weak solution at any point (%,f) depends
solely on the restriction of the initial data to the ball B (X).

Another important consequence of (6.2.9) is that any admissible weak solution
of (6.1.1) with initial data of locally bounded variation is itself a function of locally
bounded variation:

6.2.6 Theorem. Let u be an admissible weak solution of (6.1.1) with initial data
uy € BVioc (R™) taking values in an interval a,b]. Then u € BVjoc(R™ x (0,0)). For
any fixed t > 0, u(-,t) is in BVioc(R™) and

(6.2.24) TVggru(‘,[) < TV@,,+Stu0(‘),
for every r > 0, where s depends solely on [a,b].

Proof. Let {Ey, o = 1,---,m} denote the standard orthonormal basis of R™. Note
that, for ¢ = 1,--- ,m, the function #, defined by i(x,t) = u(x+hEq,t), h > 0, is
an admissible weak solution of (6.1.1) with initial data i, iip(x) = uo(x + hEq).
Therefore, by virtue of (6.2.9), for any ¢ € (0,T),

(6.2.25) /

Jx|<r

lu(x+hEq, ) — u(x,1)|dx < / g (x+ hEo) — o (x) |dx.

|x|<rst

Since ug € BVioc(R™), Theorem 1.7.2 and (1.7.3) yield that u(-,t) € BVjo.(R™) and
(6.2.24) holds.

Thus dgu(-,t) is a Radon measure which is bounded on any ball of radius r in R™,
uniformly on compact time intervals. Since u is bounded, it follows from Theorem
1.7.5 that div G(u(+,t)) has the same property. In particular, the distributions dyu and
divG(u) are locally finite measures on R™ x (0,0). Because (6.1.1) is satisfied in
the sense of distributions, d;u will also be a measure on R™ x (0, ). Consequently,
u € BVjoe (R™ x (0,00)). This completes the proof.

The trivial, constant, solutions of (6.1.1) are stable, not only in L' but also in
any L”. Since u may be renormalized, it suffices to establish L”-stability for the zero
solution.

6.2.7 Theorem. Let u be an admissible weak solution of (6.1.1), (6.1.2), with initial
data taking values in a compact interval [a,b]. There is s > 0, depending solely on
[a,b], such that, forany 1 <p <o t >0, andr >0,

(6.2.26) luC0lzrz) < luoC)lLe( 2,0 -
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Proof. For 1 < p < oo, consider the convex entropy 1 (u) = |u|?, with entropy flux Q
determined through (6.2.1). Note that there is s > 0, independent of p, such that

(6.2.27) |0(u)| < sm(u),  wuéela,b].

Fix r > 0,¢ > 0 and € > 0 small; write (6.2.3) for the above entropy-entropy flux
pair and the test function y(x,T) = x(x,T)®(T), with ¥ and @ defined by (5.3.12)
and (5.3.11). This yields

1 1+€
(6.2.28) ~ / / lu(x, 7)[Pdxdt < / o (x)|Pdx
E Jt [x|<r Jx|<r-st

1 Q(u)X]
__ + =——|dxdt+ O(¢).
8/0 /r+s(z—r)<|x|<r+s(tfr)+8 {sn(u) |x\ e ( )

We know that the range of u is contained in [a,b] and so, by (6.2.27), the second
integral on the right-hand side of (6.2.28) is nonnegative. Thus, letting € | 0 and
using that |u|? is convex, we arrive at (6.2.26). This completes the proof.

The following sections will present various methods of constructing admissible
weak solutions of (6.1.1), (6.1.2), inducing alternative proofs of Theorem 6.1.1.

6.3 The Method of Vanishing Viscosity

The aim here is to construct admissible weak solutions of the scalar hyperbolic con-
servation law (6.1.1) as the u | 0 limit of solutions of the family of parabolic equa-
tions

(6.3.1) Siu(x,t) +divG(u(x,t)) = uAu(x,t), x€R™, 1 €[0,00),

where A stands for Laplace’s operator with respect to the spatial variables, namely
A=Y"_, 92, and U is a positive parameter.

The motivation for this approach has already been presented in Section 4.6. Note
that (6.3.1) is not necessarily related to any specific physical model and so the term
UAu should be regarded as “artificial viscosity”.

Because (6.3.1) is parabolic, the initial value problem (6.3.1), (6.1.2) always has
a unique solution, which is smooth for # > 0 (assuming G is regular) even when the
initial data uo are merely in L™. For example, if the derivative G’ is Holder continu-
ous, then the solution u of (6.3.1), (6.1.2) is continuously differentiable with respect
to ¢ and twice continuously differentiable with respect to the spatial variables, on
R™ x (0, 00).

Espousing the premise that “relevant” solutions of (6.1.1), (6.1.2) are u | O limits
of solutions of (6.3.1), (6.1.2) provides the first justification of the notion of admis-
sible weak solution postulated by Definition 6.2.1:
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6.3.1 Theorem. Let uy, denote the solution of (6.3.1), (6.1.2). Assume that for some
sequence { W}, with . | 0 as k — oo, {uy, } converges to some function u, boundedly

almost everywhere on R™ x [0,0). Then u is an admissible weak solution of (6.1.1),
(6.1.2) on R™ x [0, 00).

Proof. Consider any smooth convex entropy function 1, with associated entropy flux
Q determined through (6.2.1). Multiply (6.3.1) by 1 (uy (x,)) and use (6.2.1) to get

(6.3.2) o (up) +divQ(uy) = uAn (uy) — Nﬂ”(”u)wuu |2-

Multiply (6.3.2) by any smooth nonnegative test function Y, with compact sup-
port in R™ X [0,00), integrate over R™ x [0,0), and integrate by parts. Taking into
account that the last term in (6.3.2) is nonnegative yields the inequality

633 [ [ 0vntm) + Y v Qutuldvdr+ [ w0 ()

> _“/m/ Ay (uy)dxdr.
0 JRm

Setting 4 = . in (6.3.3) and letting k — oo, we conclude that the limit u of
{uy, } satisfies (6.2.3) for all smooth convex entropy functions 1 and all smooth
nonnegative test functions . By completion we infer that (6.2.3) holds even when
n and y are merely Lipschitz continuous. This completes the proof.

That (6.1.1) and (6.3.1) are perfectly matched becomes clear by comparing
Theorem 6.2.3 with

6.3.2 Theorem. Let uy,, and iy be solutions of (6.3.1) with respective initial data ug
and ity that are in L' (R™) and take values in a compact interval [a,b]. Then, for any
t>0,

(6.3.4) /R g ) — g ()] P < /R Juolx) — o ()] Fdx,
(6.3.5) (g (-58) =t (- )| 1 oy < Nl (+) — 0 ()| 1 (g -

Furthermore, if

(6.3.6) uo(x) <iip(x), a.e.onR",
then
(6.3.7) up (x,1) <y (x,1), on R™ x (0,0).

In particular, the range of both u, and iiy is contained in [a,b].
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Proof. To simplify the notation, we drop the subscript y and denote u, and i, by
u and i. From standard theory of parabolic equations it follows that when u(-) and
ii(+) are in L' (R™) N L*(R™), then u(-,¢), ii(-,¢) and their spatial derivatives of any
order are also in L' (R™) N L= (R™), with norms uniformly bounded with respect to ¢
on compact subsets of (0,0).

For € > 0, we define the function 1 on R by

0 —co<w<0
w2
(6.3.8) Ne(w) = - 0<w<2¢e
4e
w—§€ 26 <w < oo,

Since both u and i satisfy (6.3.1), one easily verifies the equation

(639)  ame(u—i)+ Y, dunllu—)[Galu) ~ Gal®)]}

o=l

—Zn u—it)[Go(u) — Go ()]0 (u — i)

— AN (u— ) — pn(u— )|V (u— ).
Fix 0 < s <t < o0 and integrate (6.3.9) over R™ X (s,t). Considering that the last
term on the right-hand side of (6.3.9) is nonnegative, we thus obtain the inequality

(6.3.10) /]R’" Ne (u(x,1) —i(x,1))dx — /Rm Ne (u(x,s) —i(x,s))dx

= Z/ R™ ng u—u [Go‘(u)_Ga(ﬁ)]aa(u—ﬂ)dxd‘t.

Notice that N} (u — i1)[G¢ (1) — G (i1)] is bounded, uniformly for € > 0. Also, it is
clear that as € | 0, M (u(x, 1) — ii(x, 1)) converges pointwise to [u(x, 1) —i(x,)]* while
N2 (u(x,t) — i(x,1))[Ga (u(x,1)) — Gg (ii(x,1))] converges pointwise to zero. There-
fore, (6.3.10) and the Lebesgue dominated convergence theorem imply

(6.3.11) / uCer) —ax.)] Fdx— / Ju(e.s) — a(e.s)] Fdx <0,

whence we deduce (6.3.4), by letting s |, 0.

Interchanging the roles of u and i in (6.3.4) we derive a similar inequality which
added to (6.3.4) yields (6.3.5).

Clearly, (6.3.6) implies (6.3.7), by virtue of (6.3.4). In particular, applying this
monotonicity property, first for iig(x) = b and then for ug(x) = a, we deduce that
u(x,t) < b and i(x,r) > a. Interchanging the roles of u and i, we conclude that the
range of both solutions is contained in [a,b]. This completes the proof.
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Estimate (6.3.5) may be employed to estimate the modulus of continuity in the
mean of solutions of (6.3.1) with initial data in L=(R™) N L' (R™).

6.3.3 Lemma. Let uy be the solution of (6.3.1), (6.1.2), where ug is in L'(R™) and
takes values in a compact interval [a,b). In particular,

(6.3.12) /Rm|u0(x+y)—u0(x)|dxgw(\y\), yER,

for some nondecreasing function @ on [0,00), with @(r) | 0 as r | 0. There is a
constant ¢, depending solely on [a,b], such that, for any t > 0,

(6.3.13) /Rm\uﬂ(x—l—y,t)—uu(x,tﬂdxga)(\y\), yeR™,
(6.3.14)
/R (1 4+ ) — 10 (5, )l < (/3 4+ h'/3) o | 3 oy +200(0'3), R >0,

Proof. Fix r > 0. For any y € R™, the function i (x,7) = uy (x+y,?) is the solution
of (6.3.1) with initial data iip(x) = up(x+y). Applying (6.3.5) yields

(6.3.15) /R g (x3,1) — 1 (x, 1) | dlx < /Rm o (x+y) — tto (x)|dx

whence (6.3.13) follows.

We now fix & > 0. We normalize G by subtracting G(0) so henceforth we may
assume, without loss of generality, that G(0) = 0. We multiply (6.3.1) by a bounded
smooth function ¢, defined on R™, and integrate the resulting equation over the strip
R™ x (t,t + h). Integration by parts yields

(6.3.16) /R 900 (o + ) g (.1

t+h m
— /t + /W{ Z_,l e (x) Gy (14 (x, 7)) + LA (x) uy (x,T) ydxd.
Let us set
(6.3.17) U(x) :”u(x7f+h)—uu(x7t).

One may establish (6.3.14) formally by inserting ¢ (x) = sgnov(x) in (6.3.16). How-
ever, since the function sgn is discontinuous, we have to mollify it first, with the help
of a smooth, nonnegative function p on R, with support contained in [—m /2, m~1/2]
and total mass one, (6.2.15):

6.3.18 o) = [ BT p(B2 dz.
(63.18) @W=/, TP () sencc)a
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Notice that |dq¢| < c;h~'/3 and |A¢| < c,h~2/3. Moreover, by virtue of (6.3.5), with
=0, lu(-, 7)1 @my < lluo(-) |1 (my - Therefore, (6.3.16) implies

(6.3.19) o $I0(0) dx < c(W*7 -+ ph' ) |luo|| 1 @)
where ¢ depends solely on [a,b]. On the other hand, observing that

(6.3.20)
[o(x)] = v(x)sgno(z) = [o(x)| = [o(z)] + [0(z) = v(x)]sgno(z) < 2[v(x) —v(2)],

we obtain from (6.3.18):
(6321) Jo(x)|—o( / h‘”’“H L) o0)| — o) seno(2)ldz

<2 TpEplot) —o(—hE)|dE.
JIEI<l g4
Combining (6.3.17), (6.3.21), (6.3.19), and (6.3.13), we arrive at (6.3.14). This com-
pletes the proof.

We have now laid the groundwork for presenting a

Proof of Theorem 6.2.2. Assume first that ug € L*(R™)NL!(R™). Let u, denote
the solution of (6.3.1), (6.1.2), with 0 < pu < 1. By (6.3.14), {uy(-,1)}, regarded as
a family in C°([0,00); L' (R™)), is uniformly equicontinuous. Furthermore, (6.3.13)
implies that, for any fixed 7 in [0,00),{uy(-,#)} is contained in a compact set of
L} .(R™). Hence, by virtue of the Ascoli theorem, with any sequence {t}, ty — 0
as k — oo, is associated a subsequence, denoted again by { i}, and a function u in
CO([O,W);LIIOC(R’")) such that {uy, (-,#)} converges to u(-,¢) in L} (R™), uniformly
for ¢ in any compact subset of [0,0). Passing if necessary to a further subsequence,
always denoted by {1}, we infer that {u, } converges to u boundedly almost every-
where on R™ x [0,0), and hence, on account of Theorem 6.3.1, u is an admissible
weak solution to (6.1.1), (6.1.2). Since the admissible solution is unique (Corollary
6.2.4), the whole family {u, } must converge to u, as p | 0. Furthermore, by (6.3.14)
and weak lower semicontinuity in L' (R™), u(-,1) lies in C°([0,0); L' (R™)).
Suppose now up € L= (R™). For r > 0, let x, denote the characteristic function
of the ball %,(0), and u” denote the admissible weak solution of (6.1.1), with initial
data y,up € L”(R™) N L' (R™). As r — oo, x,up — uo in L} (R™). Therefore, on
account of (6.2.9), the family {«"} will converge in LloC to some function u. Clearly,
u is an admissible weak solution of (6.1.1), (6.1.2). By Corollary 6.2.4, this solution
is unique. Now, by Corollary 6.2.5, u = u” on any compact subset of R™ X [0,00), if
r is sufficiently large. Since u’(-,¢) € C°([0,0); L' (R™)), it follows that u(-,¢) is in
CO(]0,00); LL .(R™)). This completes the proof.
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6.4 Solutions as Trajectories of a Contraction Semigroup and the
Large Time Behavior of Periodic Solutions

For ¢ € [0,00), consider the map S(¢) that carries up € L=(R™) N L' (R™) to the ad-
missible weak solution u of (6.1.1), (6.1.2) restricted to ¢, i.e., S(#)uo(-) = u(-,¢). By
virtue of the properties of admissible weak solutions demonstrated in the previous
two sections, S(¢) maps L™ (R™) N L' (R™) to L=(R™) N L' (R™) and

(6.4.1) S(0) =1 (the identity),

(6.4.2) S(t+1)=S8(t)S(7), foranytand Tin [0,c0),

(6.4.3) S(-Jug € C°([0,00); L (R™)),

(6.4.4) [S(t)uo — S(t)dol| 11wy < [luo — o || 1 (gmy, ~ for any ¢ in [0,0).

Consequently, S(-) is a L'-contraction semigroup on L= (R™) N L! (R™).

Naturally, the question arises whether one may construct S(-) ab initio, through
the theory of nonlinear contraction semigroups in Banach space. This would pro-
vide a direct, independent proof of existence of admissible weak solutions of (6.1.1),
(6.1.2) as well as an alternative derivation of their properties.

To construct the semigroup, we must realize (6.1.1) as an abstract differential
equation
(6.4.5) du +A(u) 30,

dt
for a suitably defined nonlinear transformation A, with domain Z(A) and range
Z(A) in L! (R™). This operator may, in general, be multivalued, i.e., for each
u€ 2(A), A(u) will be a nonempty subset of L' (R™) which may contain more than
one point.

For u smooth, one should expect A(u) = div G(u). However, the task of extending
P (A) to u that are not smooth is by no means straightforward, because the construc-
tion should somehow reflect the admissibility condition encoded in Definition 6.2.1.
First we perform a preliminary extension. For convenience, we normalize G so that
G(0)=0.

6.4.1 Definition. The (possibly multivalued) transformation A, with domain Z(A) in
L'(R™), is defined by u € Z(A) and w € A(u) if u,w and G(u) are all in L! (R™) and
the inequality

(6.4.6) LY 2u) Qalue)) + () 1 (o) () 2 0

a=1
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holds for any convex entropy function 1, such that 1’ is bounded on R, with asso-
ciated entropy flux Q determined through (6.2.1), and for all nonnegative Lipschitz
continuous test functions ¥ on R”, with compact support.

Applying (6.4.6) for the entropy-entropy flux pairs +u, =G(u), verifies that
n m
(6.4.7) Aw) =Y 9aGe(u)
o=1

holds, in the sense of distributions, for any u € 2 (A) In particular, Ais single-valued.
Furthermore, the identity

m

(6.4.8) /Rm{ il Ao Qar(u) + w1’ ( Z u) ydx =

which is valid for any u € Cé (R™) and every entropy-entropy flux pair, implies that
Cy(R™) € 2(A). In particular, Z(A) is dense in L' (R™). For u € C}(R™), A(u) is
given by (6.4.7). Thus A is indeed an extension of (6.4.7).

The reader may have already noticed the similarity between (6.4.6) and (6.2.3).
Similar to (6.2.3), to verify (6.4.6) it would suffice to test it just for the entropies F-u
and the family (6.2.5) or (6.2.6) of entropy-entropy flux pairs.

6.4.2 Definition. The (possibly multivalued) transformation A, with domain Z(A) in
L'(R™), is the graph closure of A, i.e., u € Z(A) and w € A(u) if (u,w) is the limit
in L'(R™) x L (R™) of a sequence { (i, wy)} such that u; € Z(A) and wy € A(uy).

The following propositions establish properties of A, implying that it is the gen-
erator of a contraction semigroup on L! (R™).

6.4.3 Theorem. The transformation A is accretive, that is if u and i are in 9(A),
then

(6.4.9) [[(u+Aw) = (@+2Aw)|[ L1 @my = |lu— a1 @my, A > 0,w € A(u),w € A(i).

Proof. It is the property of accretiveness that renders the semigroup generated by A
contractive. Consequently, the proof of Theorem 6.4.3 bears close resemblance to
the demonstration of the L!-contraction estimate (6.2.9) in Theorem 6.2.3.

In view of Definition 6.4.2, it would suffice to show that the “smaller” trans-
formation A is accretive. Accordingly, fix some u, ii in Z(A) and let w = A(u) and
W = A(ii). Consider any nonnegative Lipschitz continuous function ¢ on R” x R™,
with compact support. Fix X in R” and write (6.4.6) for the entropy-entropy flux
pair 1 (u;i(x)), Q(u;ia(x)) of the Kruzkov family (6.2.6) and for the test function
y(x) = ¢(x,X) to obtain

(6.4.10)
o s200) ~ AL 02,059 (G () ~ Gala)]+ (6,0 wl) b 20
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We may interchange the roles of u# and i and derive the analog of (6.4.10), for any
fixed x in R™:

(6.4.11)
/R sgnli {Z o9 (x,%) [Ga((X)) — G (u(x))] + ¢ (x,%) w(¥x) }dx > 0.

Integrating over R™ (6.4.10), with respect to &, and (6.4.11), with respect to x, and
then adding the resulting inequalities yields

(6.4.12) ./.,,, /‘m sgn(u(x) — i(x)]{ f‘,l(am + 05,) 9 (x,%) [Go (u(x)) — G (i(%))]
+¢ (6, X)[w(x) — w(¥)] }dxdx > 0.

Fix a smooth nonnegative function p on R with compact support and total mass
one, (6.2.15). Take any nonnegative Lipschitz continuous test function ¥ on R”, with
compact support. For positive small &, write (6.4.12) with

(6.4.13) ¢(x,%) = 8_"’11’()6;)?) lm—[p(xﬁz_:ﬁ)’

and let € | 0. Noting that

(6.4.14) (Oy + 05, )9 (x,%) = Simaa‘//(x;x) 1"—11 p(xB —Xp )

(6.4.15)
/m o(x){ Zl oY (x) [Ga(u(x)) — Galit(x))] + y(x) [wlx) —w(x)] }dx = 0,

where o is some function such that

=1 if u(x) > a(x)
(6.4.16) o) e[-1,1] ifulx)=a(x)
=-1 if u(x) < a(x).

Upon choosing y with y(x) =1 for |x| < r, y(x) = 1 +r—|x| for r < |x| < r+ 1 and
y(x) =0 for r+ 1 < |x| < e, and letting r — oo, we obtain

(6.4.17) /R o (x)wlx) —w(@)dx >0,

for some function ¢ as in (6.4.16).
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Take now any A > 0 and use (6.4.17), (6.4.16) to conclude

(6.4.18)

a4 Aw) = @+ A7) oy = [ () = (2) + Alw() = 9l

> [ 0 lu) = () = lu =

This completes the proof.

An immediate consequence (actually an alternative, equivalent restatement) of
the assertion of Theorem 6.4.3 is

6.4.4 Corollary. For any A > 0, (I +AA)~" is a well-defined, single-valued,
L'-contractive transformation, defined on the range % (I + AA) of I + AA.

6.4.5 Theorem. The transformation A is maximal, that is
(6.4.19) R(I+AA) = L' (R™), forany A > 0.

Proof. By virtue of Definition 6.4.2 and Corollary 6.4.4, it will suffice to show that
Z(I1+ AA) is dense in L' (R™); for instance that it contains L' (R™) N L™ (R™). We
thus fix f € L'(R™)NL™(R™) and seek solutions u € Z(A) of the equation

(6.4.20) u+AA(u) = f.

Recall that A (x) admits the representation (6.4.7), in the sense of distributions. Thus,
solving (6.4.20) amounts to determining an admissible weak solution of a first-order
quasilinear partial differential equation, namely the stationary analog of (6.1.1).

Motivated by the method of vanishing viscosity, discussed in Section 6.3, we
shall construct solutions to (6.4.20) as the u | 0 limit of solutions of the family of
elliptic equations

(6.4.21) u(x) + AdivG(u(x)) — pAu(x) = f(x), xeR™.

For any fixed > 0, (6.4.21) admits a solution in H>(R™). We have to show that, as
0, the family of solutions of (6.4.21) converges, boundedly almost everywhere,
to some function u which is the solution of (6.4.20). The proof will be partitioned
into the following steps.

6.4.6 Lemma. Let uy and ity be solutions of (6.4.21) with respective right-hand sides
f and f that are in L'(R™) and take values in a compact interval [a,b). Then

(6.4.22) / g (x) = g ()] Fdlx < / ) = F ()] dx,

(6.4.23) H”IJ —ﬁuHLl(Rm) < ”f_fHLl(]R’")'
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Furthermore, if

(6.4.24) fx) < f(x), ae onR™,
then
(6.4.25) u(x) <iy(x), onR™.

In particular, the range of both u and il is contained in |a,b).

Proof. It is very similar to the proof of Theorem 6.3.2 and so it will be left to the
reader.

6.4.7 Lemma. Let uy, denote the solution of (6.4.21), with right-hand side f in
L=(R™) N LY(R™). Then, as p | 0,{uy} converges boundedly a.e. to the solution
u of (6.4.20).

Proof. For any y € R™, the function i, , defined by i1y, (x) = uy, (x+y), is a solution
of (6.4.21) with right-hand side £, f(x) = f(x+y). Hence, by (6.4.23),

(64.26) [ o +3) il < [ 17Ge43) = f)ld

Thus the family {u } is uniformly bounded and uniformly equicontinuous in L!. It
follows that every sequence {1 }, with ; — 0 as k — e, will contain a subsequence,
labeled again as { }, such that

(6.4.27) uy, — u, boundedly a.e. on R",
where u is in L= (R™) N L' (R™).

Consider now any smooth convex entropy function 1), with associated entropy
flux Q, determined by (6.2.1). Then u,, will satisfy the identity

(6.4.28) 0’ (uy)uy +AdivQ(uy) — AN (uy) + 40" (u) [Vaa > = 1" (wy) -

Multiplying (6.4.28) by any nonnegative smooth test function y on R™, with com-
pact support, and integrating over R” yields

(6429) [ (2 L 2a¥ Quln) + 1 () )} = [, avnax
From (6.4.27) and (6.4.29),
(6.4.30) /Rm{z ¥ Q) + w1 (WA~ (f —u)}dx >0,

a=1

which shows that u is indeed a solution of (6.4.20).
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By virtue of Corollary 6.4.4, the solution of (6.4.20) is unique and so the entire
family {u, } converges to u, as u | 0. This completes the proof.

Once accretiveness and maximality have been established, the Crandall-Liggett
theory of semigroups in nonreflexive Banach space ensures that A generates a con-
traction semigroup S(-) on Z(A) = L' (R™). S(-)ug can be constructed by solving the
differential equation (6.4.5) through the implicit difference scheme

l[ug(t)—ue(t—E)]JrA(u.g(z)) 50, >0

(6.4.31) €
ug(t):u07 t<0

For any € > 0, a unique solution ug of (6.4.31) exists on [0,0), by virtue of Theorem
6.4.5 and Corollary 6.4.4. It can be shown, further, that Corollary 6.4.4 provides the
necessary stability to ensure that, as € | 0, ug(-) converges, uniformly on compact
subsets of [0,c0), to some function that we denote by S(-)ug.

The general properties of S(-) follow from the Crandall-Liggett theory: When
uy € 2(A), S(t)up stays in Z(A) for all ¢ € [0,00). In general, S(¢)up may fail to
be differentiable with respect to ¢, even when uy € Z(A). Thus S(-)up should be
interpreted as a weak solution of the differential equation (6.4.5).

The special properties of S(-) are consequences of the special properties of A
induced by the propositions recorded above (e.g. Lemma 6.4.6). The following the-
orem, whose proof can be found in the references cited in Section 6.11, summarizes
the properties of S(-) and in particular provides an alternative proof for the existence
of a unique admissible weak solution to (6.1.1), (6.1.2) (Theorem 6.2.2) and its basic
properties (Theorems 6.2.3 and 6.2.7).

6.4.8 Theorem. The transformation A generates a contraction semigroup S(-) in
L' (R™), namely a family of maps S(t) : L'(R™) — L'(R™), t € [0,0), which satisfy
the semigroup property (6.4.1), (6.4.2); the continuity property (6.4.3), for any ug in
L' (R™); and the contraction property (6.4.4), for any ug , ity in L' (R™). If

(6.4.32) up < dp, a.e.on R™,
then
(6.4.33) S(t)up < S(t)iag,  a.e.onR™.

For 1 < p < oo, the sets LP(R™) N L' (R™) are positively invariant under S(t) and,
Sforanyt € [0,),

(6434) ||S(t)u0||Lp<Rm) S HM()HL]J<RIn) y fOr all Uy € LP(Rm) le (Rm)

If up € L*(R™)NLY(R™), then S(-)uq is the admissible weak solution of (6.1.1),
(6.1.2), in the sense of Definition 6.2.1.
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The reader should note that the approach via semigroups suggests a notion of
admissible weak solution to (6.1.1), (6.1.2) for any, even unbounded, ug in L (R™).
These are not necessarily distributional solutions of (6.1.1), unless the flux G exhibits
linear growth at infinity.

The theory of contraction semigroups in Banach space provides the proper setting
for describing the long time behavior of solutions to the Cauchy problem (6.1.1),
(6.1.2), when the initial data are periodic, say

(6.4.35) up(x+e) =up(x), xeR" i=1,...,m,

where (ej,...,e;) is the standard basis of R™. The spatial periodicity property is
passed on to the solution u, for any fixed 7 € [0,00). It is thus expedient to realize
uo(-) and u(-,) as functions on the standard torus T, in which case, by virtue of
(6.2.9), the family of maps S(t), ¢ > 0, that carry uo(-) to u(-,) constitutes a L'-
contraction semigroup on L= (T").

The L' contraction property implies that the orbit Y(uo) = U,=oS(t)uo of the
trajectory Su of the semigroup, emanating from uy, is relatively compact in L' (T™).
Furthermore, by the semigroup property, y(S(¢)uo) C Y(up), for all ¢ € [0,00). Thus,
the nonempty, compact omega limit set

(6.4.36) o(uo) = () ¥(S(t)uo),

t>0

of up encodes the long time behavior of the solution of (6.1.1), (6.1.2), because, as
t — oo, u(-,t) = ®(up), in LP (T™), for any 1 < p < 0.

The omega limit set is invariant, S(t)®(up) = ®(up), for 0 <t < e, and min-
imal, in that @ (ug) = y(vy) = @(vy), for any vy € @(up). To see that, suppose
Vo = im0 S(2, )up and wo = limg_,eo S(Tx ) 1o, With ¢, — oo and 7 — eo. Fix any
subsequence { T, } of {7}, with s, = 7, —1, > n. Since

(6.4.37)  [IS(sn)vo —wollr < [IS(sn)vo — S(sn)S(ta)uoll 1 + 1S (T, Juo — woll 1,

we conclude that S(s,)vg — wo, as n — oo, i.e., wyg € ®(Vp).

The minimality of @(u), in conjunction with Theorem 6.2.7 and the weak lower
semicontinuity of L” norms, implies that, for any 1 < p <o, ®(up) lies on a sphere
in LP(T™), centered at 0. It is also easy to see (references in Section 6.11) that the
semigroup S restricted to (1) becomes a semigroup of L' isometries, which admits
an extension into a group $ of L! isometries. Furthermore, for any vy € a(up), S(t)vo
is an almost periodic function with values in L' (T™).

The case of (6.1.1) with linear flux demonstrates that an omega limit set that
satisfies all the constraints listed in the previous paragraph may still be quite large.
However, nonlinearity in the flux induces damping that may shrink the omega limit
set to a single point, namely the constant function equal to the conserved mean value
of the solution.

Linear degeneracy of G in the spatial direction marked by the nonzero vector
& € R™ is encoded in the set
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(6.4.38) Ne={ueR : & -G"(u)=0}.

The following proposition states optimal conditions for the asymptotic decay of pe-
riodic solutions to their mean value.

6.4.9 Theorem. Let u be the admissible solution to the Cauchy problem (6.1.1),
(6.1.2), with initial data ug € L= (R™) satisfying the periodicity condition (6.4.35). If
the mean value

(6.4.39) / o (x)dx = &

is not an interior point of the set ¢, for any nonzero E €Z™, then
(6.4.40) u(-,t) = u, ast— oo,

the convergence being in LP (T™), for every 1 < p < co.

Sketch of Proof. Assume, without loss of generality, that ug € BV (T™), in which
case @(up) C BV(T™). Fix any vp € @(up). One needs to show that vp = %, a.e. on
T™. Since the mean value of vy is &, it would suffice to prove that the set ¥ of x in
T™ with v(x) > u has measure zero, or equivalently that the BV function ¢,

(6.4.41) 60 =100~ [ 1Oy, xeT

vanishes a.e. on T". By basic integral geometry, one may demonstrate that ¢ van-
ishes by establishing the vanishing of its integral over every geodesic hyperplane of
codimension one, P , = {x : §-x=p}, with § € Z"\{0} and p € R. The proof of
that, found in the references cited in Section 6.11, rests on the minimality of @ (u)
which in particular implies that vy € @(vp).

6.5 The Layering Method

The admissible weak solution of (6.1.1), (6.1.2) will here be determined as the 2 | 0
limit of a family {u;} of functions constructed by patching together classical solu-
tions of (6.1.1) in a stratified pattern. In addition to providing another method for
constructing solutions and thereby an alternative proof of the existence Theorem
6.2.2, this approach also offers a different justification of the admissibility condition,
Definition 6.2.1.

The initial data ug are in L*(R™), taking values in a compact interval [a,b]. The
construction of approximate solutions will involve mollification of functions on R™
by forming their convolution with a kernel 4; constructed as follows. We start out
with a nonnegative, smooth function p on R, supported in [—1, 1], which is even,
p(—&) =p(&) for £ € R, and has total mass one, (6.2.15). For i > 0, we set
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m

X
(6.5.1) Ap(x) = (ph)™" HP(%%
p=1 P
with
(6.5.2) p = vVmaqyluo| L= (rm)

where g denotes the total variation of the function p and y is the maximum of |G” (u)
over the interval [a,b]. We employ A;, to mollify functions f € L= (R™):

(6.5.3) (A= f)(x / A(x=y)f(y)dy, xeR™

From (6.5.3) and (6.5.1) it follows easily

(6.5.4) inf(Ay, % f) > essinf f, sup(Ay, * f) <esssup f,

(6.5.5) |M,h>kf||L1 2) < Hf||L1 for any r >0,

r+\/171ph)

656)  13u(hux F)limen < 5 Flimany @=L m.

A somewhat subtler estimate, which depends crucially on A being an even function,
and whose proof can be found in the references cited in Section 6.11, is

(6.5.7) |/ (A f)(x) = f())dx| < || 2 gem 1l 2= (o)

for all x € C5(R™).
The construction of the approximate solutions proceeds as follows. After the
parameter & > 0 has been fixed, R™ X [0, o) is partitioned into layers:

(6.5.8) U R™ x [th,th+ h).

The initial value uy(-,0) is determined by
(6.5.9) up(+,0) = A xup(+).

By virtue of (6.5.6) and (6.5.2), u;(-,0) is Lipschitz continuous, with Lipschitz con-
stant @ = 1/p7. Hence, by Theorem 6.1.1, (6.1.1) with initial data u,(-,0) admits a
classical solution u;, on the layer R™ x [0, ).

Next we determine uy(-,h) by mollifying the limit u;,(-,h—) of u,(-,1) ast 1 h:

(6.5.10) up (5 h) = g x up(- h—).

We extend uy, to the layer R™ x [h,2h) by solving (6.1.1) with data u,(-,h) att = h.
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Continuing this process, we determine u;, on the general layer [¢h,¢h+ h) by
solving (6.1.1) with data

(6.5.11) up (-, Ch) = A xup (-, 0h—)

att = ¢h. We thus end up with a measurable function u;, on R™ x [0,e) which takes
values in the interval [a,b]. Inside each layer R™ x [¢h,lh+ h), uy, is a classical so-
lution of (6.1.1). However, as one crosses the border t = £h between adjacent layers,
uy, experiences jump discontinuities, from uy, (-, ¢h—) to uy (-, ¢h).

6.5.1 Theorem. As h | 0, the family {u,} constructed above converges boundedly
almost everywhere on R™ x [0,0) to the admissible solution u of (6.1.1), (6.1.2).

The proof is an immediate consequence of the following two propositions to-
gether with uniqueness of the admissible solution, Corollary 6.2.4. The fact that the
limit of classical solutions yields the admissible weak solution provides another jus-
tification of Definition 6.2.1.

6.5.2 Lemma. (Consistency). Assume that for some sequence {hy}, with hy — 0 as
k — oo,

(6.5.12) up, (x,1) = u(x,z), a.e. on R™ x [0,00).
Then u is an admissible weak solution of (6.1.1), (6.1.2).

Proof. Consider any convex entropy function 1 with associated entropy flux Q de-
termined through (6.2.1). In the interior of each layer, u;, is a classical solution of
(6.1.1) and so it satisfies the identity

(6.5.13) oM (up(x,1)) + div Q(up(x,1)) = 0.
Fix any nonnegative smooth test function ¥ on R” x [0, ), with compact sup-

port. Multiply (6.5.13) by v, integrate over each layer, integrate by parts, and then
sum the resulting equations over all layers to get

(6.5.14) /0 ) /ﬂ%m[a,wn(uhn i oW O (up) et + /R y(x,0) 0y (x,0))dx

=% [ w00 )~ o, 08 )
(=1

Combining (6.5.11) with Jensen’s inequality and using (6.5.7) yields
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(6.5.15) / e ) 1 (. 1)) — 11 (o, )

< [, Wk g ) e =) = o (0= < I,

The summation on the right-hand side of (6.5.14) contains O(1/h) many nonzero
terms. Therefore, passing to the k — oo limit along the sequence {/;} in (6.5.14)
and using (6.5.12), (6.5.9), and (6.5.15), we conclude that u satisfies (6.2.3). This
completes the proof.

6.5.3 Lemma. (Compactness). There is a sequence {h}, with hy — 0 as k — oo, and
a L™ function u on R™ x [0,00) such that (6.5.12) holds.

Proof. The first step is to establish the weaker assertion that for some sequence {/y},
with i — 0 as k — oo, and a function u,

(6.5.16) up, (1) = u(-,1), ask—oeo,  inL7(R™) weak",

for almost all ¢ in [0,0). To this end, fix any smooth test function ¥ on R™, with
compact support, and consider the function

(6.5.17) op(t) = Rmx(x)uh(x,t)dx, t € ]0,00).

Notice that vy, is smooth on [¢h, ¢h+ &) and satisfies

Lh+h d Lh+h m
(6.5.18) / L on(t)|at = / _ / 200 Y duGalu(x,))dx|dr
(h dl th m a1
Lh+h m
- / Y 9ux(x) Go(u(x,1))dx|dt < Ch
th R A=

On the other hand, v, experiences jump discontinuities across the points r = £k which
can be estimated with the help of (6.5.11) and (6.5.7):

(6.5.19)  |o(¢h) —vp(th—)| = ‘ /R ()l (3, ) — wy (x, L) x| < C2.

From (6.5.18) and (6.5.19) it follows that the total variation of v, over any com-
pact subinterval of [0,0) is bounded, uniformly in /. Therefore, by Helly’s theorem
(cf. Section 1.7), there is a sequence {/}, iy — 0 as k — oo, such that vy, (¢) con-
verges for almost all # in [0, o).

By Cantor’s diagonal process, we may construct a subsequence of {/;}, which
will be denoted again by {/;}, such that the sequence

(6.5.20) { . x(x)uhk(x,t)dx}
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converges for almost all ¢, for every member y of any given countable family of test
functions. Consequently, the sequence (6.5.20) converges for any x in L' (R™). Thus,
for almost any 7 in [0, ) there is a bounded measurable function on R™, denoted by
u(-,t), such that (6.5.16) holds.

We now strengthen the mode of convergence in (6.5.16). For any y € R™, the
functions uy, and iy, , iy (x,t) = u,(x+y,1), are both solutions of (6.1.1) in every layer.
Let us fix ¢t > 0 and r > 0. Suppose ¢ € [¢h,¢lh+ h). Applying repeatedly (6.2.9) and
(6.5.5) (recalling (6.5.11)), we conclude

6.5.21)

/ up (x+y,1) — up (x, t)|dx</ |up (x + v, €h) — wy (x, Ch)|dx
J|x|<r |x|<r4s(t—th)

< x4 3,60 =) =y . O
|x|<r4s(t—Lh)++/mph

<...

< a0 +) — o) d.

x| <r+st4+/mp(t+h)
It follows that the family {u;(-,7)} is equicontinuous in the mean on every com-
pact subset of R™. Therefore, the convergence in (6.5.16) is upgraded to strongly in
LIIOC(R’"). Thus, passing to a final subsequence we arrive at (6.5.12). This completes
the proof.

6.6 Relaxation

Another interesting method for constructing admissible weak solutions of (6.1.1) is
through relaxation. The point of departure is a semilinear system of m + 1 equations,

1 m
d,v(x,1) anaav x,t) ﬁ Z Fo(v(x,1)) — Zg (x,1)]
(6.6.1) !
1
a[Za(.x,t) — CaaaZa(.x7t) = E[Fa(v(.x,[)) 7Za(.x,t)], o= 1, s, M,
in the m+ 1 unknowns (v,Z,---,Z,), where U is a small positive parameter while,
forox=1,--- ,m,the cy are given constants and the Fy, are specified smooth functions
such that
(6.6.2) Fl,(v) <0, —wo<v<oo, a=1,-,m,
(6.6.3) Fo(0)=0, Fu(v)— £eo, asv— Foo, o =1,--,m.

Notice that solutions of (6.6.1) satisfy the conservation law
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m

(6.6.4) Alote)— Y Zalr,)]+ f cadalo(x,1) + Zo(x,1)] = 0.

a=1 a=1

Because of the form of the right-hand side of (6.6.1), one should expect that, as
U 10, the variables Zy “relax” to their equilibrium states Fy (v), in which case (6.6.4)
reduces to a scalar conservation law (6.1.1) with!

(6.6.5) U=70v— i Fo(0), Go(u) = cq[v+Fy(v)], a=1,---,m.
a=1

The above considerations suggest a program for constructing solutions of (6.1.1)
as asymptotic limits of solutions of (6.6.1).

The first step is to examine the Cauchy problem for (6.6.1), under assigned initial
conditions

(6.6.6) v(x,0) =v9(x),  Zg(x,0) =Zgo(x), o=1,---,m, xeR™

Since (6.6.1) is semilinear hyperbolic, when the initial data (vo,Zi0,,Zm0)
are in C}(R™) there exists a unique classical solution (v,Zy,--,Z,) defined on a
maximal time interval [0, T), for some 0 < T < eo. For any ¢ € [0,T), the functions
(0(-,1),Z1 (1), ,Zw(+,1)) are in C} (R™). Furthermore, if T < oo,

(6.6.7) [[o( )] 2= (mm) + Z 1Za(+52)[| Lo (momy = oo, ast1T.
a=1

Here we need (possibly weak) solutions, under a broader class of initial data,
which exist globally in time. Such solutions do indeed exist because, under our as-
sumptions (6.6.2), (6.6.3), the effect of the right-hand side in (6.6.1) is dissipative.
This is manifested in the following

6.6.1 Theorem. For any initial data (vo,Z10, -+ ,Zmo) in L' (R™) N L™ (R™), there ex-
ists a unique weak solution (v,Zy,- -+ ,Z,) of (6.6.1), (6.6.6) on R™ x [0, 0) such that
(0(-,8),Z1(-t), -+, Zpu(+,1)) are in CO(]0,00); L' (R™)). If

(6.68) a<vp(x) <b, Fu(b)<Zao(x) <Fula), a=1,--,m xeR™

then

(6.6.9)
a<o(x,t) <b, Fu(b) < Zg(x,t) < Fyla), a=1,---,m, (x,¢) € R" x [0,00).

Furthermore, if (0,Zy,--+,2Zy) is another solution of (6.6.1), with initial data
(00,210, -, Zmo) in L' (R™) VL= (R™), then, for any t € [0, ),

! By virtue of (6.6.2), the transformation (6.6.5); may be inverted to express v as a smooth,
increasing function of u, and it is in that sense that G, defined by (6.6.5);, should be
realized as a function of u.
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(6.6.10) /m{[v(x,t) e+ Y (Zalert) — Zax.0)] Jdx

Rm{[vo( —o(x)]" + i [Zoo(x) — Zgo(x)] " }dx,
a=1

(6.6.11) [0(,8) =31 @my + Y 1Za(-51) = Za(50) |1 gromy
a=1

< Jlo0() = o) m + Y 1Za0() ~ Zao ()11 am -

a=1

In particular, if
(6.6.12) vo(x) <00(x), Zao(x) > Zao(x), o=1,---,m, xeR",

then

(6.6.13)
U(X,l‘) < T_J(XJ), Za(xat) > Za(xat)v o= 15 1M, ()C,t) € R™ x [0700)

Proof. The first step is to establish (6.6.10) under the simplifying assumption that
both solutions (v,Z;, -+ ,Z,) and (9,Z,---,Zy) are classical, with initial data
(00,2105, Zmo) and (o, Z10,"+* ,Zmo) in C}(R™). For € > 0, we recall the func-
tion 1 defined through (6.3.8) and note that

m

(6.6.14)  J[Ne(v—0)+ Z Ne(Zoa —Za)] + i ca0a[Ne(v—0) = Ne(Za — Zo)]
a=1

a=1
= 3 3 i) =i~ ZaFulo) o)+ 2~ 2]

follows readily from (6.6.1). For fixed values of v,8,Zy ,Zq , of any sign, the right-
hand side of (6.6.14) has a nonpositive limit as € | 0. Therefore, integrating (6.6.14)
over R™ x (0,¢) and letting € | 0 we arrive at (6.6.10).

When (6.6.12) holds, (6.6.10) immediately implies (6.6.13). Notice that, for any
constants a and b, (a,Fj(a), -+ ,Fy(a)) and (b,F(b),--- ,F,(b)) are particular so-
lutions of (6.6.1) and hence (6.6.8) implies (6.6.9). In particular, blow-up (6.6.7)
cannot occur for any T and thus the solutions exist on R x [0, o).

To get (6.6.11), it suffices to write (6.6.10) with the roles of (v,Z,--,Z;)
and (0,Z;,---,Zy) teversed and then add the resulting inequality to the original
(6.6.10).

We have now verified all the assertions of the theorem, albeit within the con-
text of classical solutions, with initial data in Cé (R™). Nevertheless, by virtue of the
L'-contraction estimate (6.6.11), weak solutions of (6.6.1), with any initial data in
L'(R™) N L>(R™), satisfying the asserted properties, may readily be constructed as
L' limits of sequences of classical solutions. This completes the proof.
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Our next task is to investigate the limiting behavior of solutions of (6.6.1) as
U J 0. The mechanism that induces the Z, to relax to their equilibrium values Fy (v)
will be captured through an entropy-like inequality. We define the family

o
(66]5) ¢a(za):— F(;l(w)dw’ a:]7...7m
J0

of nonnegative, convex functions on (—oe, o). Assuming (v,Z;,--- ,Z,) is a classical

solution of (6.6.1), with initial data (vg,Z10,- -+ ,Zuo) in C}(R™), we readily verify
that

(6.6.16) o [%024— f‘, qsa(za)} + f" Cada [%vz—cpa(za)
a=1

a=1

[0~ Fo ' (Za))[Fa (v) — Za)-

™=

= -
i

1

Since v — Fy 1(Zy) = Fy ' (Fg(v)) — Fy ' (Zy), the mean value theorem implies
_ 1
6617) o= F Gl lFal0)~Ze) > L Fu(0)~ZaP

where k is any upper bound of —F}, over the range of v. Therefore, upon integrating
(6.6.16) over R™ x [0,0) we deduce the inequality

(6.6.18) / / ) Z Fo(0) — Zo]2dxdt < kit / 7+ Y Po(Zay)| .

a=1

As explained in the proof of Theorem 6.6.1, weak solutions of (6.6.1) are constructed
as L' limits of sequences of classical solutions, and hence the inequality (6.6.18) will
hold even for weak solutions with initial data in L' (R™) 0 L= (R™).

6.6.2 Theorem. Let (v*,Z}',- -, Z},) denote the family of solutions of (6.6.1), (6.6.6),
with parameter |1 > 0, and initial data (v, Fi(vo),---,Fu(v0)), where vy is in
L' (R™) N L>(R™). Then there is a bounded measurable function v on R™ x [0, o)
such that, as L | 0,

(6.6.19) oM (x,t) — o(x,t),  Zh(x,t) — Fu(v(x,1)), a=1,---,m,

almost everywhere on R™ x [0, 00). The function
(6.6.20) u(x,t) =v(x,t) Z Fy(v

is the admissible weak solution of the conservation law (6.1.1), with flux functions
G, defined through (6.6.5), and initial data
(6.6.21) up(x) = vo(x) —

Fa(vo(x)), x€R™
1

s
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Proof. Let us set, for (x,7) € R™ x [0,00),

m

(6.6.22) ut (x,t) = oH (x,1) — Z Zb (x,1),
a=1

(6.6.23) Ghy(x,1) = co[0" (x,1) + Zb (x,1)].

By virtue of (6.6.4),

(6.6.24) oiut (x,1) +divGH (x,1) = 0.

First we show that there is a bounded measurable function u on R” x [0, ) and
some sequence { U, }, with i, | 0 as n — oo, such that

(6.6.25) utn () —u(-t), n-—>oo,

in L*(R™) weak®, for all ¢ € [0,00). To that end, let us fix any test function Jx in
Cy (R™) and define the family of functions

(6.6.26) wh(t) = Rmx(x)u” (x,1)dx, t €]0,00),

which, on account of (6.6.24), are continuously differentiable with derivative

d

(6.6.27) ) = f‘, /R dax(x) Galx,1)
a=1

bounded, uniformly in g > 0. It then follows from Arzela’s theorem that there is a
sequence { U, }, with t, | 0 as n — o, such that {w*» } converges for all 7 € [0,00). By
Cantor’s diagonal process we may construct a subsequence of {u,}, denoted again
by {U,}, such that the sequence

(6.6.28) { / x(xut (x,t)dx}

is convergent for all t € [0,00) and every member y of any given countable fam-
ily of test functions. Consequently, (6.6.28) is convergent for any y € L!(R™).
Thus, for each ¢ € [0,00) there is a bounded measurable function on R™, denoted
by u(-,t), such that (6.6.25) holds in L=(R™) weak*. Next we note that, by the
L! contraction estimate (6.6.11), for any fixed ¢ in [0,00) the family of functions
(0 (-,1),Z}' (-,t),++ ,Zl(-,1)) is equicontinuous in the mean. Hence, the conver-
gence in (6.6.25) is upgraded to strongly in L' (R™). In particular,

(6.6.29) wh (x,t) —> u(x,1),  n—eo,

almost everywhere on R™ x [0, ).
We now apply (6.6.18) for our solutions (v#,Z}" -+, Zh") and, passing if nec-
essary to a subsequence, denoted again by {, }, we obtain
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(6.6.30) Fy(vhn (x,1)) —Zh"(x,t) =0, n—oo, oa=1---,m,

almost everywhere on R™ x [0, ).
Combining (6.6.22), (6.6.29) and (6.6.30), we deduce

(6.6.31) ot (x,t) — i Fo (0" (x,1)) — u(x,t), n— oo,

a=1

almost everywhere on R™ x [0, ). Because of the monotonicity assumption (6.6.2),
(6.6.31) implies that the sequence {v*"} itself must be convergent, say

(6.6.32) ot (x,t) = v(x,t), n— e,

almost everywhere on R X [0,0), where v is a function related to u through (6.6.20).
Furthermore, (6.6.30) and (6.6.32) together imply

(6.6.33) Zh(x,0) = Fo(v(x,1)), n—e, oa=1,--,m,

almost everywhere on R™ x [0, ).

By virtue of (6.6.22), (6.6.23), (6.6.24), (6.6.32) and (6.6.33), u is a weak solution
of (6.1.1), with fluxes G defined through (6.6.5). We proceed to show that this
solution is admissible. We fix any constant 0 and write (6.6.14) for the two solutions
(oHn, Z4" - Z}") and (9, F (D), , F,u(D)). We apply this (distributional) equation
to any nonnegative Lipschitz continuous test function y, with compact support on
R™ X [0,00) and let € | 0. Since the € | 0 limit of the right-hand side of (6.6.14) is
nonpositive, this calculation gives

m

(6.6.34) /0 ) [ vl —o)" + Y. (Fale) - 2E) | dxa

a=1

+/:/Rm ’Zi: cada W [(0H" — )" — (Fa(D) — Zg") "] dxdr

+/ W(x.0)[(@0— )" + Y (Fu() — Falv0)) Jdx > 0.

a=1

Letting n — o and using (6.6.32) and (6.6.33), (6.6.34) yields

(6.6.35) //a,w 0-0) + Y (Fu(0) — Fa(0))*] dxdi

a=1
+/0w / " Z caOa ¥ [(v—0)" — (Fu(D) — Fo(0)) "] dxdt

+ [ w(x,0)[(vo—2)" + Z Fo (D) — Fy(v0)) ]dx > 0.
Rln
On account of (6.6.2), v — 0 and F (D) — Fg(v) have the same sign. Furthermore, if
we setii =0 —Y Fy(D), then v — 0 and u — ii also have the same sign. Therefore, upon
using (6.6.20), (6.6.21), and (6.6.5), we may rewrite (6.6.35) as
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(6.6.36)
/0 / [ryn(ui)+ Y aa‘/’Qa(u;ﬁ)]dth-‘r/Rm v(x,0)n (uo; it)dx > 0,
o=1

where (1 (u; i), Q(u;i)) is the entropy-entropy flux pair defined by (6.2.5). As noted
in Section 6.2, the set of entropy-entropy flux pairs (6.2.5), with i arbitrary, is “com-
plete” and hence (6.6.36) implies that (6.2.3) will hold for any entropy-entropy flux
pair (1,Q) with ) convex. This verifies that u is the admissible weak solution of
(6.1.1), with initial data ug given by (6.6.21). Since u is unique, the convergence in
(6.6.29), (6.6.32) and (6.6.33) applies not only along the particular sequence {, }
but also along the whole family {u}, as u | 0. This completes the proof.

Theorem 6.6.2 demonstrates how, starting out from a given system (6.6.1), one
may construct, by relaxation, admissible solutions of a particular scalar conservation
law induced by (6.6.1). Of course, we are interested in the reverse process, namely
to determine the appropriate system (6.6.1) whose relaxed form is a given scalar
conservation law (6.1.1). This may be accomplished when, given the fluxes G (u),
it is possible to select constants ¢y in such a way that the transformations (6.6.5)
implicitly determine functions Fy (v) that satisfy the assumptions (6.6.2) and (6.6.3).
Let us normalize the given fluxes by G(0) =0, oo = 1,--- ,m. Since our solutions
will be a priori bounded, let us assume, without loss of generality, that the G, (u) are
uniformly bounded on (—oo,0). From (6.6.5),

(6.6.37) (m—+1)0=u+ Z iGa ().

(X
Therefore, the first constraint is to fix the |c,| so large that

(6.6.38) (m+1);lu =1+ ) —Ggu(u)> % ,

in order to secure that the map v +— u will possess a smooth inverse. Next we note

du m+1 i
! — U _
(6:6.39) Fa(v)=—1+— G alw) - =—1+ . [1+ﬁz1 ”

1~
Gﬁ( )] G (u),
so that, by selecting the |cy| sufficiently large, we can satisfy both assumptions
(6.6.2) and (6.6.3). Restrictions on ¢, that maintain that the convective character-
istic speeds cq should be high relative to the characteristic speeds G/, of the relaxed
conservation law are called subcharacteristic conditions.

6.7 A Kinetic Formulation

This section discusses an alternative, albeit equivalent, characterization of admissible
weak solutions to (6.1.1), (6.1.2), which, as we shall see below, is motivated by the
kinetic theory.
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It has already been noted that the entropy production for any solution of (6.1.1)
satisfying (6.2.2) is a nonpositive measure. In particular, if « is an admissible solution
of (6.1.1), (6.1.2) in the sense of Definition 6.2.1, then for any v € (—eo, ),

(6.7.1) 3 {|u— 0| — o]} + div{sgn (u—0) [G(u) — G(v)] — sgnv G(v)} = —2v,,

where V, is a nonnegative measure on R” X R*. For || > sup |ug| = sup ||, we have
2v, = |du+divG(u)| = 0.

We realize {V,} as a nonnegative measure v on R x R™ x R™ and differentiate
(6.7.1), in the sense of distributions, with respect to v, to deduce

(6.7.2) o x (vsu) + i Gy (0)dux (v;u) = dyV,

o=l

where y denotes the function

1 if O<ov<u
(6.7.3) x(u)=< -1 if u<v<0

0 otherwise.

The entropy production by any entropy-entropy flux pair (1,Q) is easily ex-
pressed in terms of v. Indeed, let us multiply (6.7.2) by 1'(v) and integrate with
respect to v over (—oo,00). Recalling (6.2.1) and after an integration by parts, we
obtain

(6.7.4) a,/:n’(v)x(v;u)dw div/:oQ’(U)x(v;u)dU:—[Zn”(v)dv(v;-,~).

One easily verifies that if p(v) is any C' function, then

(67.5) | ¢ @x@udo=p(w - p(o),
and so (6.7.4) yields
(6.7.6) 3 (u) + div Q(u) = — /_ Zn”(v)dv(v;~,-).

In particular, when 1 (u) is convex the right-hand side of (6.7.6) is nonpositive. Fur-
thermore, applying (6.7.6) for 1 (1) = %uz and integrating with respect to (x,f) over
R™ x [0,0), we deduce

(6.7.7) /Ow/m ./::dv(v;x,t) < %/m u3(x)dx.

It is remarkable that (6.7.2) fully characterizes admissible weak solutions of
(6.1.1), as shown in the following

6.7.1 Theorem. A bounded measurable function u(x,t) on R™ x [0,0) is the ad-
missible solution to (6.1.1), (6.1.2) if and only if the function X (v;u(x,t)), defined
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through (6.7.3), satisfies (6.7.2) on R x R™ x [0,0), for some nonnegative measure
Vv, together with the initial condition

(6.7.8) x(0;u(x,0)) = x(v;up(x)), v E (—oo0,00), x€R™

Proof. Equation (6.7.2) admits solutions x(-;u(-,¢)) € C°([0,%);L! (R x R™)) and
thus the initial condition (6.1.2) is attained strongly in L'(R™). Hence it remains
to show that (6.2.2) holds for every entropy-entropy flux pair (1, Q) with 1] convex.
Since u is bounded, it will suffice to establish (6.2.2) for entropies with linear growth,
i.e., with |n’(u)| bounded on (—oo,00).

Starting out from (6.7.2), one can show, as above, that (6.7.6) holds, albeit
only for functions 7(v) whose derivative 1’(v) vanishes for |v| large (in order
to perform the integration by parts, as it is no longer known that v vanishes for
[o] > supluo]).

Fix any convex function 7, with linear growth, and then for k = 1,2,---, set
M (v) = n(v)¢(v/k), where ¢ is a smooth even function on (—ee,0), with ¢ (v) =1
for [v| <1, ¢(v) =0 for |[v| > 2, and ¢'(v) < 0 for v € (1,2). We thus have

(6.7.9) O Mk (1) + div O (u / e ( 30)
°° v 1 (0 o
[ |ree () + i@ () + o (k)}de, ot
For k large, n(u) = (u) and Oy (u) = Q(u), on the range of the solution. Fur-
thermore, " (v)¢(v/k) — N (v) monotonically, as k — oo. Finally, it is clear that
N’ (v)¢'(v/k) = O(1) and N(v)¢" (v/k) = O(k), as k — oo. Thus, letting k — oo in

(6.7.9), we arrive at (6.7.6), and thereby at (6.2.2). This completes the proof.

The kinetic formulation (6.7.2), which may serve as an alternative, albeit equiv-
alent, definition of admissible weak solutions of (6.1.1), provides a powerful instru-
ment for discovering properties of these solutions. In particular, one obtains an al-
ternative, direct proof of the L! contraction property (6.2.9), even under the more
general assumption that the initial data are merely in L' (R™) and not necessarily in
L= (R™); see references in Section 6.11.

Up to this point, we have been facing nonlinearity as an agent that provokes the
development of discontinuities in solutions with smooth initial values. It turns out,
however, that nonlinearity may also play the opposite role, of smoothing out solu-
tions with rough initial data. In the course of the book, we shall encounter various
manifestations of such behavior. The kinetic formulation provides valuable insight
into the compactifying and smoothing effects of nonlinearity in scalar conservation
laws. This will become evident in the next Section 6.8, but it is also seen in the fol-
lowing regularity theorem whose (hard and technical) proof is found in the references
cited in Section 6.11.
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6.7.2 Theorem. Assume there are r € (0,1] and C > 0 such that
(6.7.10) meas{v : [0 < |Juo||r=, |[p+ G (v)P| < 8} <C§',

forall § € (0,1), pe R, PcR" with p*> + |P|> = 1. Then the admissible weak
solution u of (6.1.1), (6.1.2) satisfies
(6.7.11) u(-,1) € CO((0,00); WL (R™)),

C

foranys € (0, ﬁ)

It is condition (6.7.10) that encodes the aspect of nonlinearity of G responsible
for the regularizing effect. For example, (6.7.10) fails, for any r, when G is linear,
but it is satisfied, with r = 1, if the G, are uniformly convex functions, G}, (u) > 0,
a=1,---,m.

The section closes with a discussion on how the kinetic formulation (6.7.2) of
the scalar conservation law may be motivated by the kinetic theory of matter. As
we saw in Chapter III, Example 3.3.7, in the classical kinetic theory of gases the
state of the gas at the point x and time ¢ is described by the molecular density func-
tion f(&,x,7) of the molecular velocity &. The evolution of f is governed by the
Boltzmann equation (3.3.51), which monitors the changes in the distribution of
molecular velocities due to transport and collisions. The connection between the
kinetic and the continuum approaches is established by identifying intensive quanti-
ties, such as density, velocity, pressure, temperature, etc., with appropriate moments
of the molecular density function f, and then showing that these fields satisfy the
balance laws of continuum physics. Thus, in principle one may construct solutions
to systems of balance laws by treating the fields as moments of a molecular density
in an underlying kinetic model with density function whose zero moment satisfies
the scalar conservation law (6.1.1).

In the model, the “velocity” v is scalar-valued and the “molecular density”
f(v;x,t), at the point x and time ¢, is allowed to take positive and negative values.
Then u is obtained from f by

(6.7.12) u(x, 1) = /'w F(osx,1)do.
In turn, f satisfies the transport equation
= 1
(6.7.13) o f(v;x,1) + Z G, (0)daf(vsx,1) = m [x (v;u(x,t)) — f(v;x,1)],
a=1

where U is a small positive parameter and y (v;u) is the function defined by (6.7.3).
Readers familiar with the kinetic theory will recognize in (6.7.13) a model of the
BGK approximation to the classical Boltzmann equation. Hopefully, as u | 0, the
stiff term on the right-hand side will force f(v;x,¢) to “relax” to x (v;u(x,t)) which
satisfies (6.7.2). Before verifying that this expectation will be fulfilled, let us discuss
properties of solutions of (6.7.13), (6.7.12).
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6.7.3 Theorem. Let uy € L= (R™) L' (R™). For any u > 0, there exist bounded
measurable functions

(6.7.14)  ful-51) € CO([0,00): L (RXR™),  u(-,1) € CO([0,00); L' (R™))
which provide the unique solution of (6.7.13), (6.7.12) with initial data
(6.7.15) fu(03x,0) = x(v;u0(x)), 0 € (—o0,00), x€R™,
induced by uy. For any (x,t) € R x [0,00),
[0,1] ifv>0
(6.7.16) fu(vsx,t) €
[-1,0] ifv<O.

If (f_u,ﬁu) is another solution of (6.7.13), (6.7.12), with initial data induced by iy in
L>(R™)O\L'(R™), then, for any t > 0,

(6.7.17) [ fuCest) = fu (s 'af)HU(Rme) < fu3,0) = fus '70)||L1(R><R’”)

(67.18) o (8) = B 1) 1 gy < o) = T )
Furthermore, if

(6.7.19) up(x) < dp(x), xeR™,

then

(6.7.20) fu(vsx,t)

IN
=
—~

S
=
~
~—
S

m
0N
8

8
~—
=

m

A
3
=)
8
—

(6.7.21) up (x,1) < iy (x,1), x€R™, 1 €[0,00).

Proof. Taking, for the time being, the existence of (fy,uy) and (fy, i) for granted,
we integrate (6.7.13) along characteristics dx/dt = G'(v) " , dv/dt = 0 to deduce

(6.7.22)
fusx, ) = e fu(0:x—1G(0)T,0)+ — / (v (x— (1—1)G'(0) T, 7))dx.

Thus (6.7.16) readily follows from (6.7.22), (6.7.15) and the properties of the func-
tion x.

We write the analog of (6.7.22) for the other solution ( f#,ﬁ#) and subtract the
resulting equation from (6.7.22) to get
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(6.7.23) fu(vix,t)— fu(vsx,1) = e F [fu(v:ix—1G'(v)",0) = fu(v;x—1G'(v) T, 0)]

+— / e T iy (x— (1 - 1)G'(0) 1)~ 2(@:Eu(x— (1 - 7)G'(0) ", 7)]dT

whence, upon using

(6.7.24) /_ 2 (O300) — % (0|0 < Juy — ity
which follows from (6.7.3), and recalling (6.7.12),

(67.25) [lfu-350) = Ful 1)l oy < € B 1ia-550) = Fu-5+50) 1 e

+% /0[ e |2 (@ up(x— (1 —1)G'(0) 7, 7))
—x (v (x— (1= 1)G'(0)", 7)) (Rxrm)dT
<eh £ (3550) = Fu (55 0) [ 11 (ocm)
+(1- e’ﬁ%‘?i‘é‘, [FACERIEIME ;'»T)HU(RxR’") :

Clearly, (6.7.25) implies (6.7.17) and this in turn yields (6.7.18). In particular, there
is at most one solution to (6.7.13), (6.7.12), (6.7.15). Furthermore, this solution can
be constructed from the integral equation (6.7.22) by Picard iteration.

Since y(v;u) is increasing in u, (6.7.23) and (6.7.12) guarantee that (6.7.19) im-
plies (6.7.20) and (6.7.21). This completes the proof.

We now turn to the limiting behavior of solutions as pt | 0.

6.7.4 Theorem. For yu > 0, let (fy,uy) denote the solution of (6.7.13), (6.7.12),
(6.7.15) with ug € L*(R™) L' (R™). Then, as u |0,

(6.7.26) up (x,1) = u(x,1),
(6.7.27) Ju(vsx,t) = x(v;u(x,t)),
in LloC , where x(v;u) satisfies (6.7.2) for some bounded, nonnegative measure v,

and hence u is the admissible weak solution of (6.1.1.), (6.1.2).

Proof. The first step is to demonstrate that the family {(fy,uy): g > 0} is equicon-
tinuous in the mean. This is clearly the case in the v and x directions by virtue of
the contraction property (6.7.17), (6.7.18). For any w € R and y € R™, the functions
(fu,ity) defined by fu(vix,1) = fu(v+wix+y,1), iy (x,1) = uy(x+y,r) are solu-
tions of (6.7.13), (6.7.12) with initial data f, (v;x,0) = x(v+w;ug(x+y)), and so
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(6.7.28) /O ) /R Vfulo+wirt30) — fu(oix,1)|dxdo

< /O“’/m |x(©+wiuo(x+y)) — x(vsu0(x))|dxdv,

(6.7.29) /R () — (e, < /R ol +y) — o (x) .

Equicontinuity in the ¢-direction easily follows from the above, in conjunction with
the transport equation (6.7.13) itself; the details are omitted.
Next we consider the function

v

(6.7.30) 0 (v:5,1) = / [ (witt (2,1)) — fu(wix,1)] dw.
Let us fix (x,7), assuming for definiteness uy (x,7) > O (the other cases being simi-
larly treated). Clearly, @, (—oo;x,1) = 0. By virtue of (6.7.3) and (6.7.16), @y (- ;x,t)
is nondecreasing on the interval (—oo,u,(x,7)) and nonincreasing on the interval
(uy (x,1),00). Finally, on account of (6.7.12), @y (o0;x,1) = 0. Consequently, we may
write

(6.7.31) % (X (vsuy(x,1)) = fu(vix,1)] = vy,

where v, is a nonnegative measure which is bounded, uniformly in u > 0.

It follows that from any sequence { i}, tx — 0 as k — oo, we may extract a sub-
sequence, denoted again by {i}, so that {(fy, , uy, )} converges in L] _ to functions
(f,u), and {vy,} converges weakly in the space of measures to a bounded non-
negative measure v. Clearly, f(v;x,t) = x(v;u(x,t)) and (6.7.2) holds. By unique-
ness, the whole family {(fy,uy)} converges to () (-;u),u), as p | 0. This completes
the proof.

It is interesting that the transport equation (6.1.9), which, as we saw in Section
6.1, generates the classical solutions of (6.1.1), also arises in the theory of weak
solutions, in the guise of (6.7.13) or (6.7.7). Remarkably, there is another connec-
tion between (6.1.10) and weak solutions of (6.1.1), emerging from the following
considerations. Let u(x,¢) be the admissible weak solution of (6.1.1), (6.1.2), with
initial datum ug that is 1-periodic in x4 and takes values in an interval [a,b] C (0, 1).
Thus u(-,¢) will also be 1-periodic in x4 and will take values in [a,b]. Let € denote
the closed unit cube in R™, % = [0, 1)™. The aim is to characterize u(-,t) through
its level sets in %’ For that purpose, we introduce the function f(v;x,t), defined for
vel0,1],xe % andr > 0by

(6.7.32) {x€€: flox,t) <1} ={x€¥: u(x,t) >v}.

One may recover u from f through

1
(6.7.33) u(x, 1) = /0 h(1 = f(0:x,1))do,
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where h denotes the Heaviside function, i(y) = 0 for y < 0 and A(y) = 1 for y > 0.
As shown in the literature cited in Section 6.11, f satisfies the abstract differential
equation

(6.7.34) of+ i 0 (0)0af +0H (f) 0,
a=1

on the Hilbert space H = L*([0,1] x %), where d.%# denotes the subdifferential of
the closed convex cone % = {f € H: f, >0}, i.e.,

(6.735)  9x(f)={gcH: /OlL(f—f)gdxdvgo, forall f € 47},

The usefulness of the above observation lies in that the equation (6.7.34) involves a
maximal monotone operator and thus generates a contraction semigroup on H. It is
easily seen that the initial value f(v;x,0) can be adjusted in such a way that u(x,0),
computed through (6.7.33), coincides with the given initial data uo(x). Therefore, the
existence, uniqueness, stability and even numerical construction of f, and thereby of
u, follow from the standard functional analytic theory of contraction semigroups in
Hilbert space. The details on this approach, and its connection to the kinetic formu-
lation, are found in the references listed in Section 6.11.

6.8 Fine Structure of L™ Solutions

According to Theorem 6.2.6, admissible solutions u to the scalar conservation law
(6.1.1), with initial values uy of locally bounded variation on R, have locally
bounded variation on the upper half-space, and thereby inherit the fine structure
of BV functions described in Sections 1.7 and 1.8. In particular, the points of ap-
proximate jump discontinuity of u assemble on the (at most) countable union of C!
manifolds of codimension one. Furthermore, u has (generally distinct) traces on both
sides of any oriented manifold of codimension one. However, when ug is merely
in L™ the above structure is generally lost, as may be seen by considering the case
where (6.1.1) is linear. On the other hand, we saw in Section 6.7 (Theorem 6.7.2)
that nonlinearity in the flux function may exert a smoothing influence on L™ solu-
tions. As another manifestation of this phenomenon, we shall see here that when the
conservation law is linearly nondegenerate, in a sense to be made precise below, ad-
missible solutions that are merely in L™ are nevertheless endowed with fine structure
that closely resembles the structure of BV functions.

For the present purposes, the distinction between spatial and temporal vari-
ables is irrelevant, so it will be convenient to revert to the formulation and nota-
tions of Chapter I, by fusing the m-dimensional space and 1-dimensional time into
k-dimensional space-time, k = m + 1, and representing (x,¢) by the vector X, with
Xog =Xq, 00 =1,---,m and X; = t. In what follows, div will denote the divergence
operator in R¥, acting on k-row vectors.

On some open subset 2~ of R¥, we consider scalar balance laws in the form
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(6.8.1) divGu(X)) = vg,

where Vg is a Radon measure. A function u € L*(.Z") will be called an admissible
solution of (6.8.1) if, for any companion Q of G,

(6.8.2) divQ(u(X)) = vg,

where Vg is a Radon measure on 2.
We recall, from Section 1.5, that companions Q are related to G by

(6.8.3) Q' (u) =n'(u)G'(u),

where 7 is some scalar-valued function.

In the setting of Section 6.2, G(u) = u, Qx(#) = N(u) and vg = 0. As noted
in Section 6.2, any admissible solution u in the sense of Definition 6.2.1 renders the
distribution div Q(u) a measure, for any companion Q (and in particular a nonpositive
measure whenever Q is convex), so that it is also an admissible solution in the above
sense.

In order to expunge linear systems, we introduce the following notion (compare
with (6.7.10)):

6.8.1 Definition. The balance law (6.8.1) is called linearly nondegenerate if for each
N € §¢!

(6.8.4) G (u)N #0, foralmostall u € (—eo, ).

The fine structure of admissible solutions of linearly nondegenerate scalar bal-
ance laws is described by the following

6.8.2 Theorem. Assume (6.8.1) is linearly nondegenerate and let u be an admissible
solution on 2. Then Z is the union of three pairwise disjoint subsets €, ¢ and
& with the following properties:

(a) € is the set of points of vanishing mean oscillation of u, i.e., for X € €

N _ o
(6.8.5) lr]ig 7 s |u(X) —a,(X)|dX =0,
where ii,(X) denotes the average of u on the ball %,(X).

(b) _Z is rectifiable, namely it is essentially covered by the countable union of C !
(k — 1)-dimensional manifolds {.F;} embedded in R*: #*1(_7\JF:) = 0.
When X € 7 (.%;, then the normal on F; at X is interpreted as the normal on
7 at X. The function u has distinct inward and outward traces u_ and u. , in
the sense of Definition 1.7.7, at any point X € ¢ .

(¢) The (k— 1)-dimensional Hausdor(f measure of % is zero: #*~1(.7) = 0.

A comparison between Theorems 1.7.4 and 6.8.2 reveals the striking similarity
in the fine structure of admissible L™ solutions and BV functions. The reader should
note, however, that there are some differences as well: points in the set ¢ have merely
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vanishing mean oscillation in admissible L™ solutions, whereas they are Lebesgue
points in the BV case. Furthermore, if u is a BV solution of (6.8.1), with vg = 0,
then, on account of Theorem 1.8.2, for any companion Q, Vg is concentrated on the
set ¢ of points of jump discontinuity. However, it is not known at the present time
whether this important property carries over to L™ admissible solutions, except for
n=1; see Section 11.14.

The reader should consult the references in Section 6.11 for the proof of Theorem
6.8.2, which is lengthy and technical. Even so, a brief outline of some of the key
ingredients is here in order.

Admissible L™ solutions u« to (6.8.1) on 2" may be characterized by the kinetic
formulation, discussed in Section 6.7. In the present setting, (6.7.2) takes the form

M=

(6.8.6) G, (0)dax (03u) = 3y,

a=1

where ¥ is the function defined by (6.7.3) and v is a bounded measure on R x 2",
Notice that here, in contrast to Section 6.7, the measure v need not be nonnegative,
as the notion of admissible solution adopted in this section is broader.

In analogy to (6.7.6), the measure Vv, associated with any companion Q induced
by some 7 through (6.8.3) is related to the measure v by

(6.8.7) w:fK_W@MWw&
The measure v also determines the “jump set” _¢#, in Theorem 6.8.2, by
VIR x %, (X))

(6.8.8) I ={XeZ: linrll%upT >0},

where |Vv| denotes the total variation measure of v.

The resolution of the fine structure of u is achieved by “blowing up” the neigh-
borhood of any point X € 2, that is by rescaling u and v in the vicinity of X in
a manner that leaves (6.8.6) invariant. The linear nondegeneracy condition (6.8.4),
in conjunction with velocity averaging estimates for the transport equation (6.8.6),
induces the requisite compactness, so that the limits u. and V. of # and v under
rescaling exist and satisfy (6.8.6). When X ¢ ¢, the measure V., vanishes. On the
other hand, when X € / , Vo 18 the tensor product of a measure on R and a measure
on Z . It is by studying solutions of (6.8.6) with v having this special tensor product
structure that the assertion of Theorem 6.8.2 is established.

By the same techniques one verifies that admissible solutions of linearly non-
degenerate scalar balance laws share another important property with BV functions,
namely they have one-sided traces on manifolds of codimension one:

6.8.3 Theorem. Let u be an admissible solution of the linearly nondegenerate bal-
ance law (6.8.1) on a Lipschitz subset 2" of R with boundary 2. Assume that for
any companion Q the measure Vo in (6.8.2) is finite on Z . Then u has a strong trace
ug € L*(B) on AB.
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The strong trace is realized in LllOC , roughly as follows: Suppose that % contains a

compact subset & of a (k— 1)-dimensional hyperplane with outward unit normal N.
Then the restriction of ug to & is characterized by

(6.8.9) csslim / (X = TN) — up(X)|dA* 1 (X) = 0.
T P

In the general case, one employs Lipschitz transformations on R¥ to map “pieces” of
2 into “pieces” & of a hyperplane, and then uses the above characterization.

Theorem 6.8.3 plays an important role in the theory of boundary value prob-
lems for scalar conservation laws, as we shall see in Section 6.9. Another important
implication of Theorem 6.8.3 is the following

6.8.4 Corollary. Assume that the scalar conservation law (6.1.1) is linearly nonde-
generate, and let u be an L™ weak solution of the Cauchy problem (6.1.1), (6.1.2), on
the upper half-space, which satisfies the inequalities (6.2.2), in the sense of distribu-
tions, for every convex entropy 1. Then the map t — u(-,t) is strongly continuous in
L .(R™), for any t € [0,0).

In particular, for linearly nondegenerate scalar conservation laws, admissible so-
lutions to the Cauchy problem may be characterized merely by the set of inequalities
(6.2.2), rather than by the stronger condition (6.2.3). Thus, referring back to the dis-
cussion on entropy admissibility, in Section 4.5, we conclude that for scalar, linearly
nondegenerate conservation laws, the set .% is empty.

6.9 Initial-Boundary Value Problems

Let Z be an open bounded subset of R”™, with smooth boundary 0% and outward
unit normal field v. Here we consider the initial-boundary value problem

(6.9.1) diu(x,t) +div G(u(x,t)) =0, (x,1) e 2,
(6.9.2) u(x,t) =0, (x,1) € B,
(6.9.3) u(x,0) = up(x), XEYD,

in the domain 2" = 2 x (0, 0), with lateral boundary Z = 92 x (0,c0).

The boundary condition (6.9.2) shall be interpreted in the context of the vanishing
viscosity approach, as explained in Section 4.7. The inequality (4.7.5) motivates the
following notion of admissible weak solution:

6.9.1 Definition. A bounded measurable function u on %" is an admissible weak
solution of (6.9.1), (6.9.2), (6.9.3), with initial data uy € L*(2), if the inequality
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©94) [ [[@wne+ . 2u¥ Qulu)landr + [ vomn)ds

> [7 ] v -nO)16% Gl arm W

holds for every convex entropy 1, with associated entropy flux Q determined by
(6.2.1), and all nonnegative Lipschitz continuous test functions y with compact sup-
port in R™ x [0,00). G4 denotes the trace of the normal component of G on %, while
GY% and QY stand for G(0)v and Q(0)V, respectively.

Notice that (6.9.4) implies d;n + divQ < 0, and in particular du + divG = 0,
so that the traces Q4 and G4 of the normal components of Q and G on 4 are well
defined. Furthermore, (4.7.8) holds on 4, in the form

(6.9.5) 07— 0% —n'(0)[Gz — G| > 0.

At the price of technical complications, but without any essential difficulty, the
special boundary condition u = 0 may be replaced with u = fi(x,t), for any suffi-
ciently smooth function .

The justification of Definition 6.9.1 is provided by

6.9.2 Theorem. For each uy € L (9), there exists a unique admissible weak solution
u of (6.9.1), (6.9.2), (6.9.3), and

(6.9.6) u(-,1) € C°([0,00); LY (2)).
Furthermore, if uy € BV(9), then u € BVjoc(%").

Before establishing the existence of solutions by proving the above theorem, we
demonstrate uniqueness and stability by means of the following analog of Theorem
6.2.3:

6.9.3 Theorem. Let u and it be admissible weak solutions of (6.9.1), (6.9.2) with
respective initial values ug and iiy. Then, for anyt > 0,

(6.9.7) /9 lu(x, 1) — (o, )] " dx < /9 luo (x) — o (x)] " dx,

(698) 1) = 1) < o)~ 0l
Furthermore, if

(6.9.9) up(x) <iip(x), a.e.on 9,

then

(6.9.10) u(x,t) <a(x,t), ae.on Z.
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Proof. We sketch the proof under the simplifying assumption that both « and # attain
strong traces ug and iy on A, in which case the traces of the normal components
of G and Q on Z are obtained via ordinary composition:

(6.9.11) Gz =G(uz)v, 0z =0uz)v, Gz =Giz)v, 0z = Q(ixz)Vv.

The above assumption will hold when « and i are BV functions or when « and i are
merely in L™ and G is linearly nondegenerate; see Theorem 6.8.3.

We retrace the steps in the proof of Theorem 6.2.3, employing the same entropy-
entropy flux pair (1 (u;i),Q(u;i)), defined by (6.2.5), and the same test function
o (x,t,%,f), given by (6.2.16). However, we now integrate over Z x [0,c0), instead of
R™ x [0,00), and substitute (6.9.4) for (6.2.3). We thus obtain, in the place of (6.2.21),

(6.9.12)

/Ow/@{arwn(u;ﬁ)+O:i1aaV’Qa(M;IZ)}dxdt—i—/@y/(x’())rl(uo(x);ﬁo(x))dx

> / ; vsen(ugp — izt [Gy — Gpld ™ (x)dr.
0 Joz

We verify that, as a consequence of the boundary condition (6.9.5), the integral on
the right-hand side of (6.9.12) is nonnegative. Indeed, the integrand vanishes where
ug < iig, and has the sign of Gz — G where ugz > iz . In the latter case, we
examine, separately, the following three subcases:

(@) ug > g > 0: (6.9.5), written for the solution # and the entropy-entropy flux
pair (1 (u;iz), Q(u;iiz)), yields Gz > G .

®) 0> ugy > ig: (6.9.5), written for the solution i and the entropy-entropy flux
pair (1 (ug;it),Q(uz;i)), again yields Gz > G .

(¢) ug >0>iig :(6.9.5), written for the solution u and the entropy-entropy flux
pair (n(4;0),0(u;0)), yields Gz > G?,A-y. Similarly, (6.9.5), written for the solu-
tion i and the entropy-entropy flux pair (1(0;),Q(0;)), yields G5 < G% . In
particular, Gg > G4 .

We apply (6.9.12) for the test function y(x,7) = x(x)®(7), where x(x) = 1
for x € 2, and o is defined by (5.3.11). Since the right-hand side of (6.9.12) is
nonnegative, we deduce

(6.9.13) é /t"% /9 lu(x, 7) — ai(x, 7)] " dxd < /j o (x) — o ()] dx.

Letting € | 0, we arrive at (6.9.7). In turn, (6.9.7) readily implies the remaining as-
sertions of the theorem. The proof is complete.

The next task is to construct the solution to (6.9.1), (6.9.2), (6.9.3) by the vanish-
ing viscosity method. We thus consider the family of parabolic equations
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(6.9.14) u(x,t) + div G(u(x,t)) = pAu(x,t), (x,1) e 2,

with boundary condition (6.9.2) and initial condition (6.9.3). For any u > 0, (6.9.14),
(6.9.2), (6.9.3) admits a unique solution u,, which is smooth on Z x (0,0). By the
maximum principle,

(6.9.15) |up (x,1)| <supluo(-)|, x€2, 1€(0,0).

Upon retracing the steps in the proof of Theorem 6.3.2, except that now (6.3.10)
should be integrated over & X (s,t) instead of R™ x (s,¢), one readily obtains

6.9.4 Theorem. Let uy and ity be solutions of (6.9.14), (6.9.2) with respective initial
data ug and igy. Then, for any t > 0,

(6.9.16) /j [y () — i1 (x,1)] T lx < /j o (x) — it (¥)] " d,

(6.9.17) g (-,0) = ()1 () < o () =0 ()1 ()

Furthermore, if

(6.9.18) uo(x) <iip(x), a.e.on 9,
then
(6.9.19) uy (x,1) <ty (x,1), (x,1) € Z % (0,00).

We proceed to show that the family {u,, : 4 > 0} of solutions to (6.9.14), (6.9.2),
(6.9.3) is relatively compact in L!.

6.9.5 Lemma. Let uy be the solution of (6.9.14), (6.9.2), (6.9.3) with initial data
up € L*(2)\W>(D). Then, for anyt > 0,

(6.9.20) vt 1) 1y < 0 0 )+ 2 0w

(6.9.21) ZHaﬁuu Mgy < a®lluo()llwra ) + rONuo (w1 ,

where co and the continuous functions a(t), b(t) do not depend on [L.

Proof. For i > 0, we apply (6.9.17) for the two solutions, u (x,7), with initial value
uo(x), and 7y (x,¢) = uy (x,1 4 h), with initial value io(x) = uy (x h) Upon dividing
by A, and then letting /2 | 0, we deduce H&,uu < ||8, uy (- , whence
(6.9.20) follows with the help of (6.9.14).

One cannot use the same procedure for estimating spatial derivatives, because
shifting in the spatial direction no longer carries solutions into solutions. We thus
have to employ a different argument.

e 0l1()
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For € > 0, we define the function

—w—£€ —co < W< —2¢
w2
(6.9.22) Ne(w) = — —2e<w<2¢e
4e
w—E€ 26 <w < oo,

We set w = dguy, differentiate (6.9.14) with respect to xg, multiply the resulting
equation by n;(w) and integrate over 2. After an integration by parts, this yields

(6.9.23) / e (w /] [Me(w) — 0 (w)w] div G (1) dx

[t |vwcu+/ [0 22— (o) (01! ().

As € | 0, the integrand on the left-hand side of (6.9.23) tends to |w|. On the
right-hand side, the first integral is O(€) and the second integral is nonnegative.
To estimate the integral over d2, we note that since uy vanishes on the bound-

ary, o'?au“ = an, a=1,---,m. In particular, w = a—vﬁ Then (6.9.14) im-
duy _ . . dw  d%uy duy
plies a—G (0)v = uAuy, . Finally, it is clear that v = v Vg + O(I)W and

A= 2 4 0(1) 2" We thus h
Uy =53 5, - We thus have
ow Ne(w), 0%uy duy
/ ow ’ _ ’ o guu
(69.24) unf(0) 2% e (w)G' (O = fnfw) — O Ty 1) T

which tends to O(1)u , as € | 0. Therefore, in the limit, as € | 0, (6.9.23) yields

8

d duy
9. — < —_—
(6.9.25) dt/9|8ﬁu”|dx_c/()@u‘ -

We sum (6.9.25) over B = 1,--- ,m, and also substitute uAuy by dyuy + divG(uy).
Using (6.9.15), (6.9.20) and applying Gronwall’s inequality, we arrive at (6.9.21).
The proof is complete.

dA" " (x) §c’/@[1|AuH|dx.

Proof of Theorem 6.9.2. Assume first uy € L=(2)\W?>!(2). By virtue of Lemma
6.9.5, the family {“u : 14 > 0} of solutions to (6.9.14), (6.9.2), (6.9.3) is relatively
compact in L'(2 x (0,T)), for any T > 0. Therefore, recalling (6.9.15), we may
extract a sequence {uy, }, with t | 0 as k — oo, which converges boundedly almost
everywhere on 2 x (0,e0) to some function u. As shown in Section 4.7, u satisfies
(6.9.4) and hence is the unique solution of (6.9.1), (6.9.2), (6.9.3). In particular, the
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entire family {uy: u > 0} converges to u, as i1 | 0. Moreover, it follows from (6.9.20),
(6.9.21) that u is in BVjoc(Z x (0,%0)) and, for any 7 > 0,

(6.9.26) TVgxoru < c(T)|[uollwri(g) -

In addition, u inherits from (6.9.15) the maximum principle: |u(x,#)| < sup |uo(-)]-

Assume now ug € L*(Z). We construct a sequence of functions {ug,} in
L=(2)NW>(2) with ||uon | 1=(2) < |luol|z=() and uo, — uo in L'(Z). By virtue
of (6.9.8), the sequence {u,} of admissible solutions to (6.9.1), (6.9.2), with ini-
tial data uo, , converges in L! to a function u which satisfies (6.9.4) and hence
is the admissible solution of (6.9.1), (6.9.2), (6.9.3). Moreover, when ug is in
BV (2), the sequence {up, } may be constructed with the additional requirement that
l|ton|lw11(z) < C [TVguo+ |[uol| ()] in which case (6.9.26) implies that u is in
BV (2 % (0,T)), for any T > 0. This completes the proof.

6.10 The L' Theory for Systems of Conservation Laws

The successful treatment of the scalar conservation law, based on L' and L™ esti-
mates, which we witnessed in the previous sections, naturally raises the expectation
that a similar approach may also be effective for systems of conservation laws. Un-
fortunately, this does not seem to be the case. In order to gain some insight into the
difficulty, let us consider the Cauchy problem for a symmetrizable system of conser-
vation laws:

(6.10.1) AU+ Y 0uGe(U)=0, xeR" 1>0,

a=1

(6.10.2) U(x,0) = Up(x), xeR™

In analogy to Definition 6.2.1, for the scalar case, we shall require that admissible
solutions of (6.10.1), (6.10.2) satisfy (4.5.3), for any entropy-entropy flux pair (1, Q)
with 1 convex. The first test of this should be whether the trivial, constant solutions
U of (6.10.1) are LP-stable in the class of admissible solutions:

(6.10.3) NU1) =Ullriz,) < cpllUo(-) =Ullir(,.y) -

Since the system is symmetrizable, and thereby endowed with a convex entropy
of quadratic growth, (6.10.3) will be satisfied at least for p = 2, by virtue of Theorem
5.3.1. The question then arises whether such an estimate may also hold for p # 2,
with the cases p = 1 and p = oo being of particular interest.

For the linear system

(6.10.4) aV+ Y DGu(U)dqV =0,

a=1
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resulting from linearizing (6.10.1) about a constant state U, it is known (references in
Section 6.11) that the following three statements are equivalent: (a) the zero solution
is LP-stable for some p # 2; (b) the zero solution is L”-stable for all 1 < p < o}
(c) the Jacobian matrices DGa(U ) commute:

(6.10.5) DGa(U)DGﬁ(U) = DGﬁ(U)DGa(U), af=1,-m
The system (6.10.1) inherits (6.10.5) as a necessary condition for L”-stability:

6.10.1 Theorem. Assume that the constant state U is LP-stable, (6.10.3) for some
p # 2, within the class of classical solutions. Then (6.10.5) holds.

Sketch of Proof. For € small, let Ug(x,t) denote the solution of (6.10.1) with initial
values Ug (x,0) = U + €Vy(x), where Vy € Hy for £ > % + 1. By Theorem 5.1.1, U
exists, as a classical solution, on a time interval with length 0(8’l ). Furthermore,

(6.10.6) Ue(x,t) = U+ €V (x,1) + O(€?),

where V(x,t) is the solution of (6.10.4) with initial value Vp(x). Now if (6.10.3)
is satisfied by the solutions Uy, for any € > 0, it follows that the zero solution of
(6.10.4) is LP-stable and hence (6.10.5) must hold. This completes the proof.

A similar argument shows that (6.10.3) is also necessary for stability of solutions
of (6.10.1), (6.10.2) in the space BV:

(6.10.7) TV, U (1) < cTVs,, Uo(").

The above results douse any hope that the elegant L' and BV theory of the scalar
conservation law may be readily extended to general systems of conservation laws
for which (6.10.5) is violated. A question of some relevance is whether (6.10.3) may
at least hold in the special class of systems that satisfy (6.10.5). This is indeed the
case, at least for systems of just two conservation laws:

6.10.2 Theorem. Let (6.10.1) be a symmetrizable system of two conservation laws
(n = 2) with the property that (6.10.5) holds for all U. Then, for any fixed U and
1 < p <2, there are 6 > 0 and ¢p > 0 such that (6.10.3) holds for any admissible
solution U of (6.10.1), (6.10.2), taking values in the ball Bg(U).

The proof, which is found in the references cited in Section 6.11, employs a
convex entropy 1 for (6.10.1) such that

(6.10.8) clU-UP <nU)<ClU-T|?, U e B5(0).

Recall that in order to construct an entropy for a system of n conservation laws in
m spatial variables, one has to solve the generally overdetermined system (3.2.4) of
%n(n — 1)m equations for the single scalar 7. However, as noted in Section 3.2, when
(6.10.5) holds, the number of independent equations is reduced to %n(n —1), and in

the special case n = 2 to just one. It thus becomes possible to construct a convex
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entropy with the requisite property (6.10.8), for 1 < p <2, by solving a Goursat
problem on % (U). In fact, under additional assumptions on the system, it is even
possible to construct convex entropies that satisfy (6.10.8) for all p, and for such
systems constant solutions are L”-stable over the full range 1 < p < o,

The class of systems that satisfy (6.10.5) includes, in particular, the scalar con-
servation laws (n = 1), in any spatial dimension m, as well as the systems of arbitrary
size n, in a single spatial dimension (m = 1); but beyond that it contains very few
representatives of (even modest) physical interest. An example is the system

(6.10.9) U + f‘, dulFa(|U)U] =0,
a=1

which governs the flow of a fluid in an anisotropic porous medium. The special fea-
tures of this system make it analytically tractable, so that it may serve as a vehicle for
exhibiting some of the issues facing the study of hyperbolic systems of conservation
laws in several space dimensions.

If U is a classical solution of (6.10.9), it is easy to see that its “density” p = |U]|
satisfies the scalar conservation law

(6.10.10) a0+ Y dulpFalp)) =0,

a=1

while its directional unit vector field ® = p~'U satisfies the transport equation
m

(6.10.11) 9,0+ ) Fy(p)ou® =0.
a=1

Thus, classical solutions to the Cauchy problem (6.10.9), (6.10.2) can be constructed
by first solving (6.10.10), with initial data p(-,0) = |Up(-)|, say by the method of
characteristics expounded in Section 6.1, and then determining ® by its property of
staying constant along the trajectories of the ordinary differential equation

dx

6.10.12 ==
( ) 7

F(p(x,1)).

It is not obvious how to adapt the above procedure to weak solutions. It is of
course still possible to determine p as the admissible weak solution of (6.10.10) with
initial data |Up| merely in L, but it is by no means clear how one should interpret
(6.10.12) when F(p(x,t)) is just an L* function. In fact, it has been shown (refer-
ences in Section 6.11) that the Cauchy problem for (6.10.9) is generally ill-posed in
L™. A relevant, powerful theory of ordinary differential equations X = P(X) exists,
but it requires that P be a divergence-free vector field in BV. In order to use that the-
ory, we restrict the initial data so that |Up| is a positive function of locally bounded
variation on R”. This will guarantee, by virtue of Theorems 6.2.3 and 6.2.6, that p
is a positive function of locally bounded variation on the upper half-space. Next, we
rescale the time variable and rewrite (6.10.12) in the implicit form
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(6.10.13)
% =p(x,1)F(p(x,1)),

which has the desired feature that the vector field (p,pF(p)) is divergence-free on
the upper half-space, by virtue of (6.10.10).

By eliminating 7 in the family of solutions (#(7),x(7)) of (6.10.13), one obtains
the family of curves x = x(¢), namely the formal trajectories of (6.10.12), along which
O stays constant. Thus @ can be determined from its initial data, which may merely
be in L. Finally, it can be shown (references in Section 6.11) that U = p® is a weak
solution of (6.10.9), (6.10.2):

6.10.3 Theorem. For any Uy € L*(R™;R") with |Uy| € BVioc(R™), there exists a
unique L™ weak solution U of (6.10.9), (6.10.2) on [0,0), such that p = |U| is the
admissible weak solution of (6.10.10) with initial data p(-,0) = |Up(-)|.

It has been shown, further, that the above solution depends continuously on its
initial value in L]'OC , and it satisfies the entropy admissibility condition, for any con-
vex entropy of (6.10.9), at least when the set of critical points of the function pF (p)
on (0,0) has measure zero.

On the other hand, the Cauchy problem for (6.10.9) is ill-posed in BV, even when
the initial data have small total variation:

6.10.4 Theorem. Let m > 3 and n > 2. For any nonzero U € R", such that |U | is not
a critical point of pF(p), and any & > 0, there exist initial data Uy that take values
in Bs(U), are equal to U for |x| > 1, have total variation on R™ that is less than
0, and have the property that if U is any admissible L weak solution of (6.10.9),
(6.10.2) on some time interval [0,T), then the total variation of U on R™ x [0,T) is
infinite.

The reader should bear in mind that (6.10.9) is so special that the above should
not necessarily be interpreted as representative of the behavior of generic systems.
The theory of hyperbolic systems of conservation laws in several spatial variables is
still in its infancy.

6.11 Notes

More extensive discussion on the breakdown of classical solutions of scalar conser-
vation laws can be found in Majda [4]. Theorem 6.1.1 is due to Conway [1]. For a
systematic study of the geometric features of shock formation and propagation, see
Izumiya and Kossioris [1], and Danilov and Mitrovic [3]. The reduction of (6.1.1) to
the linear transport equation (6.1.10) is classical; see Courant-Hilbert [1,§1.5].
There is voluminous literature on weak solutions of the scalar conservation law.
The investigation was initiated in the 1950’s, in the framework of the single space
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dimension, stimulated by the seminal paper of Hopf [1], already cited in the historical
introduction. References to this early work will be provided, as they become relevant,
in Section 11.12.

The first existence proof in several space dimensions is due to Conway and
Smoller [1], who recognized the relevance of the space BV and constructed solutions
with bounded variation through the Lax-Friedrichs difference scheme. The definitive
treatment in the space BV was later given by Volpert [1], who was apparently the
first to realize the L' contraction property in several space dimensions. Building on
Volpert’s work, Kruzkov [1] proposed the characterization of admissible weak solu-
tions recorded in Section 6.2, derived the L' contraction estimate, and established the
convergence of the method of vanishing viscosity along the lines of our discussion
in Section 6.3. More delicate treatment is needed when the flux is merely continu-
ous in u; see Kruzhkov and Panov [1], Bénilan and Kruzkov [1], and Andreianov,
Bénilan and Kruzhkov [1]. Moreover, when the flux is discontinuous the notion of
an admissible weak solution must be clarified and redefined; see Panov [8,9,10], An-
dreianov, Karlsen and Risebro [1], and Audusse and Perthame [1]. On the other hand,
the analysis extends routinely to inhomogeneous scalar balance laws (3.3.1), though
solutions may blow up in finite time when the production grows superlinearly with
u; see Natalini, Sinestrari and Tesei [1]. In particular, the inhomogeneous conserva-
tion law of “transport type,” with flux G(u,x) = f(u)V (x), has interesting structure,
especially when divV = 0; see Caginalp [1] and Otto [2].

New ideas, with geometric flavor, are needed in order to treat scalar conservation
laws on a manifold, because the notion of entropy does not extend to that setting in
a straightforward manner; see Amorim, Ben-Artzi and LeFloch [1], Ben-Artzi and
LeFloch [1], Ben-Artzi, Falcovitz and LeFloch [1], LeFloch and Okutmustur [1],
Dziuk, Kroner and Miiller [1], Kroner, Miiller and Strehlau [1], and Panov [3].

The theory of nonlinear contraction semigroups in general, not necessarily reflex-
ive, Banach space is due to Crandall and Liggett [1]. The application to the scalar
conservation law presented in Section 6.4 is taken from Crandall [1]. For an alterna-
tive functional analytic characterization of admissible solutions, see Portilheiro [1].

The construction of solutions by the layering method, discussed in Section 6.5,
was suggested by RoZdestvenskii [1] and was carried out by Kuznetsov [1] and
Douglis [2].

There is an active research program aiming at treating hyperbolic conservation
laws as the “relaxed” form of larger, but simpler, systems that may govern, or model,
relaxation phenomena in physics. Further discussion and references are found in
Chapter XVII. The presentation in Section 6.6 follows Katsoulakis and Tzavaras [1].
Though artificially constructed for the purposes of the analysis, (6.6.1) may be inter-
preted a posteriori as a system governing the evolution of an ensemble of interacting
particles, at the mesoscopic scale. See Katsoulakis and Tzavaras [2], and Jin, Kat-
soulakis and Xin [1]. An alternative construction of solutions to multidimensional
scalar conservation laws by a relaxation scheme is discussed in Natalini [2].

The kinetic formulation described in Section 6.7 is due to Perthame and Tadmor
[1], and Lions, Perthame and Tadmor [2]. Theorem 6.7.2 was first established by Li-
ons, Perthame and Tadmor [2], with s < r/(r+2). The improved range s < r/(2r+1)
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was derived by Tadmor and Tao [1], with the help of a sharper velocity averaging
estimate. A detailed discussion, with extensions, applications and an extensive bib-
liography, is found in the recent monograph and survey article by Perthame [2,3].
For related results, see Giga and Miyakawa [1], Bécker and Dressler [1], Brenier
[1], James, Peng and Perthame [1], Natalini [2], Perthame [1], Perthame and Pul-
virenti [1], Hwang [1,2], Vasseur [2,3,5], Westdickenberg and Noelle [1], Kissling
and LeFloch [1], and Dalibard [1]. The mechanism that induces the regularizing ef-
fect stated in Theorem 6.7.2 plays a prominent role in the theory of nonlinear trans-
port equations in general, including the classical Boltzmann equation (cf. DiPerna
and Lions [1]).

The surprising association of the level sets of admissible solutions with contrac-
tion semigroups in Hilbert space, outlined in Section 6.7, was discovered by Brenier
[3]. See also Bolley, Brenier and Loeper [1].

For another interesting example of a kinetic model that relaxes, in the hydrody-
namic limit, to the scalar conservation law, see Portilheiro and Tzavaras [1].

There are several other methods for constructing solutions, most notably by
fractional stepping, spectral viscosity approximation, or through various difference
schemes that may also be employed for efficient computation. See, for exam-
ple, Bouchut and Perthame [1], Chen, Du and Tadmor [1], Cockburn, Coquel and
LeFloch [1], and Crandall and Majda [1]. For references on the numerics the reader
should consult LeVeque [1], Godlewski and Raviart [1,2], and Kroner [1].

In addition to L' and BV, other function spaces are relevant to the theory. DeVore
and Lucier [1] show that solutions of (6.1.1) reside in Besov spaces.

Perthame and Westdickenberg [1] establish a total oscillation diminishing prop-
erty for solutions.

To get a feel for the limiting behavior of solutions when the conservation law is
singularly perturbed, the reader may consult Botchorishvilli, Perthame and Vasseur
[1], for the effect of stiff sources, Hwang [3], for diffusive-dispersive limits, Aggar-
wal, Colombo and Goatin [1], for nonlocal effects, and Dalibard [2], for the conse-
quences of homogenization.

The fine structure of L™ solutions, and in particular Theorem 6.8.2, is discussed
in De Lellis, Otto and Westdickenberg [1]. See also De Lellis and Riviere [1], De
Lellis and Golse [1], and Crippa, Otto and Westdickenburg [1]. Theorem 6.8.3 is due
to Vasseur [4]. See also Chen and Rascle [1], and, for more recent developments,
Panov [5,6], and Kwon and Vasseur [1].

The construction of BV solutions to the initial-boundary value problem by the
method of vanishing viscosity, expounded in Section 6.9, is taken from Bardos, Le-
roux and Nédélec [1]. For a proof of Theorem 6.9.3 when u and & are merely in
L, see Otto [1] and Malek, Necas, Rokyta and Ruzicka [1]. For recent results in
that direction, see Kwon [1], and Coclite, Karlsen and Kwon [1]. For the initial-
boundary value problem in L™, with the flux vanishing at the boundary, see Biirger,
Frid and Karlsen [1]. The case of discontinuous flux is discussed by Carrillo [1].
Solutions in L™ have been constructed via the kinetic formulation by Nouri, Omrane
and Vila [1], and Tidriri [1]. For measure-valued solutions, see Szepessy [1], and
Kondo and LeFloch [1].
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The large time behavior of solutions of (6.1.1), (6.1.2) is discussed in Conway
[1], Engquist and E [1], Bauman and Phillips, and Feireisl and Petzeltova [1]. Chen
and Frid [1,3,4,6] set a framework for investigating, in general systems of conserva-
tion laws, decay of solutions induced by scale invariance and compactness. In par-
ticular, this theory establishes the long time behavior of solutions of (6.1.1), (6.1.2)
when uy is either periodic or of the form ug(x) = v(|x|~'x) +w(x), with w € L' (R™).
This framework has been refined by Panov [11,13] and extended to the almost pe-
riodic case by Frid [5], and Panov [12]. The approach, via contraction semigroups,
leading to Theorem 6.4.9, is taken from Dafermos [35]. In that connection, see also
Dafermos and Slemrod [1].

For stochastic effects see Lions, Perthame and Souganidis [2,3], Gess and Sougani-
dis [1,2], and the references in these interesting papers.

The proof that (6.10.5) is necessary and sufficient for L”-stability in symmetriz-
able linear systems, is due to Brenner [1]. Rauch [1] demonstrated Theorem 6.10.1,
and Dafermos [22] proved Theorem 6.10.2. See also Frid and LeFloch [1], for a
uniqueness result. Theorem 6.10.3 is due to Ambrosio and De Lellis [1]. See also
Ambrosio, Bouchut and De Lellis [1]. Finally, Bressan [11,13] and De Lellis [1,2]
explain why the Cauchy problem for the system (6.10.9) is not generally well-posed
in L” or in BV, when m > 1 (Theorem 6.10.4). By contrast, when m = 1 the Cauchy
problem for this system is well-posed and has an interesting theory; see Temple [2],
Isaacson and Temple [1], Liu and Wang [1], Tveito and Winther [1], Freistiihler [7],
and Panov [4].



VII

Hyperbolic Systems of Balance Laws
in One-Space Dimension

Chapters VII-XVI will be devoted to the study of systems of balance laws in one
space dimension. This narrowing of focus is principally dictated by necessity: At
the present time the theory of multidimensional systems is terra incognita, replete
with fascinating problems. In any event, the reader should bear in mind that certain
multidimensional phenomena, with special symmetry, such as wave focussing, may
be studied in the context of the one-space-dimensional theory. We will return to
several space dimensions in Chapter X VII.

This chapter introduces many of the concepts that serve as foundation of the
theory of hyperbolic systems of balance laws in one space dimension: strict hyper-
bolicity; Riemann invariants and their relation to entropy; simple waves; genuine
nonlinearity and its role in the breakdown of classical solutions.

In order to set the stage, the chapter opens with the presentation of a number of
illustrative examples of hyperbolic systems of balance laws in one space dimension,
arising in physics or other branches of science and technology.

7.1 Balance Laws in One-Space Dimension

When m = 1, the general system of balance laws (3.1.1) reduces to
(7.1.1) O H(U (x,t),x,t) + 0 F (U(x,t),x,t) = II(U (x,1),x,1).

Systems (7.1.1) naturally arise in the study of gas flow in ducts, vibration of elas-
tic bars or strings, etc., in which the medium itself is modeled as one-dimensional.
The simplest examples are homogeneous systems of conservation laws, beginning
with the scalar conservation law

(7.1.2) diu+dif(u) =0.

Despite its apparent simplicity, the scalar conservation law provides valuable in-
sight into complex processes, in physics and elsewhere. The simple hydrodynamic
theory of traffic flow in a stretch of highway is a case in point.
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The state of the traffic at location x and time ¢ is described by the traffic density
p(x,) (measured, say, in vehicles per mile) and the traffic speed v(x,7) (in miles per
hour). The fields p and v are related by the law of conservation of vehicles, which is
identical to mass conservation (2.3.2), for rectilinear motion:

(7.1.3) a,p + 9 (pv) = 0.

This equation is then closed by the behavioral assumption that drivers set their ve-
hicles’ speed according to the local density, v = g(p). In order to account for the
congestion effect, g must be decreasing with p, for instance g(p) = vo(1 — p/po),
where vy is the speed limit and pg is the saturation density beyond which traffic
crawls to a standstill. For that g(p), (7.1.3) becomes

o-5))

This simplistic model manages, nevertheless, to capture some of the qualitative
features of traffic flow in congested highways, and serves as the springboard for more
sophisticated models, developed in the references cited in Section 7.10.

Another important example of a scalar conservation law is the Buckley-Leverett
equation

(7.1.4) 9,p+ 0

)

where a is some positive parameter. It provides a simple model for the rectilinear flow
of two immiscible fluids (phases), such as oil and water, through a porous medium,
and thus finds applications in enhanced oil recovery operations by the petroleum
industry. The variable u, taking values in [0, 1], measures the saturation (i.e., vol-
ume fraction) of one of the fluid phases, and the flux measures the fractional flow
rate of that phase. Thus, the equation expresses mass conservation. If one neglects
the effects of inertia and capillarity, the fractional flow rate is determined through
Darcy’s law, and it depends on the ratio of viscosities as well as on the ratio of rel-
ative permeabilities of the two phases. In turn, the relative permeabilities depend on
the saturation u, and hence the equation closes. The empirical flux function employed
in (7.1.5) captures the salient traits of the fractional flow rate. It should be noted that,
in contrast to (7.1.4), the second derivative of the flux in (7.1.5) changes sign on
[0,1]. As we shall see later, this renders the structure of solutions substantially more
complex.

Still another instructive example of a scalar conservation law arises in chromatog-
raphy in a single solute. The concentration ¢ of a dilute solute of a chemical species
moving, with speed v, through the interstices of a finely divided solid bed of parti-
cles, and absorbed on the solid surfaces, satisfies the conservation law

(7.1.6) dvc+ v g(c)] =0,

where x is the space variable along the bed,  is time, and g(c) is the column isotherm
function. The reader should notice that space and time exchange roles in this case.



7.1 Balance Laws in One-Space Dimension 229

An interesting example of a scalar conservation law (7.1.2) in which both
variables are spatial arises in the theory of composite materials consisting of an
incompressible matrix, such as rubber, reinforced with inextensible fibers. In the
mathematical modeling, it is assumed that one fiber passes from any particle of the
matrix, so the material is inextensible in the direction of the tangent to that fiber. In
the equilibrium state of a body made of this material, the fibers are assumed par-
allel straight lines, tangential to some fixed vector A € R3. Taking this equilibrium
state as reference configuration, we consider a placement (bilipschitz homeomor-
phism) X* = X*(X), with deformation gradient F = dX*/dX. Each fiber becomes
a Lipschitz curve with tangent vector field A* = FA. As the fibers are inextensi-
ble, |A*| = 1. Furthermore, since the material is incompressible, det F = 1. Hence
A*T = (det F)"'ATFT, so that divA*" = 0, by virtue of Theorem 1.3.1. Assume
now that AT = (1,0,0) and that the deformation is planar, with Fi3, F>3, F3; and F3p
all zero. Thus A*T = (F1,F>,0), where Fi; and F>; depend solely on the first two
coordinates (x,y) of X*. Assuming Fi; > 0, setting F»; = u(x,y) and noting that
|A*| = 1 implies Fi; = v/1 —u2, we conclude that divA*" = 0 reduces to the scalar
conservation law

(7.1.7) du+oV1—u?=0.

Thermoelasticity is a rich source of interesting examples of systems. In La-
grangian coordinates, the rectilinear adiabatic flow of a thermoelastic fluid (gas) in a
duct is governed by the one-dimensional version of (3.3.4), in the form

8[“ — 8)(0 =0
(7.1.8) v+ dcp(u,s) =0

o [e(u,s) + $0*] + o[op(u,s)] =0,

where u is the specific volume (u = 1/p, on account of (2.3.3)), v denotes the ve-
locity, € is the internal energy and p stands for the pressure (-p is the stress). Note
that p > O restricts u to positive values.

The thermodynamic relations (3.3.5) here read

(7.1.9) plu,s) = —g,(u,s), 0(u,s) = &(u,s).
The system (7.1.8) is hyperbolic if
(7.1.10) &(u,s) >0, Em(u,s) >0,

that is, the absolute temperature 6 is positive and the internal energy € is convex in
u, or equivalently, p,(u,s) < 0.
The one-dimensional version of (3.3.19),

3,u—3xv =0

(7.1.11)
00— 9,0 (1) =0,
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with monotone increasing o, ¢’ (u) > 0, is the hyperbolic system governing the rec-
tilinear isentropic flow of a gas, as well as the isentropic longitudinal oscillation of
an elastic solid bar and the isentropic shearing motion of an elastic layer. For the case
of a gas, where u is the specific volume, (7.1.11) written with 6 = —p, is commonly
known as the p-system. In the case of the bar, u is the strain. Specific volume and
strain are both restricted to positive values, whereas in the case of the shearing mo-
tion u may take values of either sign. In what follows, we shall often use (7.1.11) as a
mathematical paradigm under the assumption that ¢ is a smooth monotone increas-
ing function on (—eo, ).

In Eulerian coordinates, rectilinear isentropic flow of a gas is governed by the
one-dimensional version of (3.3.36), namely

ap+di(pv) =0
(7.1.12)
9/(pv) + k[pv* + p(p)] = 0.

This system is hyperbolic when p’(p) > 0. In particular, when the fluid is an ideal
gas (2.5.31), (7.1.12) becomes

o:p +di(pv) =0
(7.1.13)
9 (pv) + 9, [pv? + kp?] = 0.

For y > 1, hyperbolicity breaks down at the vacuum state p = 0.
The so called system of pressureless gas dynamics

o,p+di(pv) =0
(7.1.14)
9 (pv) + 9, (pv*) =0,

which is not hyperbolic, governs the flow of an aggregate of “sticky” particles: col-
liding particles fuse into a single particle that combines their masses and moves with
velocity that conserves the total linear momentum. The propensity of solutions of
(7.1.14) to develop mass concentrations may serve as an explanation for the forma-
tion of large-scale structures in the universe.

Next we derive the system that governs isentropic, planar oscillations of a three-
dimensional, homogeneous thermoelastic medium, with reference density pg = 1.
In the terminology and notation of Chapter II, we consider motions in the particular
form ¥ = x+ ¢ (x-v,t), where Vv is the (constant) unit vector pointing in the direction
of the oscillation. For consistency with the notation of this chapter, we shall denote
the scalar variable x- v by x, so that d, = fo:l V0o - The velocity in the v-direction
is v(x,1) = ;¢ (x,1). We also set u(x,t) = dy¢(x,t), in which case the deformation
gradient is F' = I +u ® v. The stress vector, per unit area, on planes perpendicular to
vis o(u) = S(I+uv")v, where S(F) is the Piola-Kirchhoff stress. We thus end up
with a system of six conservation laws
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3,14 — 3xv =0
(7.1.15)
30— Ao () =0,

which looks identical to (7.1.11), except that here u, v and ¢ are no longer scalars
but 3-vectors.

The internal energy &(F) also becomes a function of u: €(I+uv ') = e(u). Then,
(2.5.30) yields 6(u) = de(u)/du. Thus the Jacobian matrix of ¢ (u) is the Hessian
matrix of e(u), which in turn is the acoustic tensor (3.3.8) evaluated at F = +uv .
The system (7.1.15) is hyperbolic when the function e(u) is convex.

As explained in Section 2.5 (recall (2.5.25)), when the medium is an isotropic
solid, the internal energy depends on F solely through the invariants |F|, |F*| and
detF.Here F =1+uv' andso |F|> =3+2u-v+|ul, |[F*|* = (u-v)> +du-v+|uf?
and detF = 1 4 u- v. Thus, the internal energy depends on just two variables, |u|
and u - v. If, in addition, the material is incompressible, the kinematic constraint
(2.7.1) becomes u - v = 0, in which case the internal energy depends solely on |u/,
e(u) = h(u|). The stress tensor is now given by (2.7.2), where p is the hydrostatic
pressure. After a short calculation, recalling that o = Sv, we deduce that (7.1.15)
takes the form

atufaxU:()

/
v+ 0ypV — Oy <h |(MT|)u> =0.

However, the incompressibility condition u-v = 0 implies d,v- v = 0; let us take
v-v =0 so as to eliminate a trivial rigid motion in the direction v. Then (7.1.16),
yields d,p = 0, and thus (7.1.16) reduces to

(7.1.16)

aﬂ/l_axv: 0

(7.1.17) /
v — 3x<h |(L|£T|)u> —o.

The special symmetry encoded in the flux function of (7.1.17) induces rich geo-
metric structure which is a gift to the geometer at the expense of the analyst who has
to deal with particular analytical difficulties, a taste of which will emerge later. The
next example indicates that the same symmetry structure arises in other contexts as
well.We derive the system that governs the oscillation of a flexible, extensible elastic
string. The reference configuration of the string lies along the x-axis, and is assumed
to be a natural state of (linear) density one. The motion ¥ = x/(x,#) is monitored
through the velocity v = d, and the stretching u = d, which take values in R or
in R?, depending on whether the string is free to move in 3-dimensional space or
is constrained to undergo planar oscillations. The tension T of the string is assumed
to depend solely on |u|, T = 7(|u|), which measures the stretch of the string. Since
the string cannot sustain any compression, the natural range of |u| is [1,o°), and T
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is assumed to satisfy 7(r) > 0, [t(r)/r]’ > 0, for r > 1. The compatibility relation
between u and v together with balance of momentum, in Lagrangian coordinates,
yields the hyperbolic system

8tu_a_x'0 == O
(7.1.18)
90— 0, (T(||u"||)u> —0,

which is identical to (7.1.17).

Our next example is the classical system of conservation laws that governs the
propagation of long gravity waves in shallow water. It may be derived either by
asymptotic analysis of the Euler equations or ab initio, by appealing to gross balance
of mass and momentum. We follow here the latter approach.

An incompressible, inviscid fluid of density one flows isentropically in an open
channel with horizontally level bottom and unit width. The atmospheric pressure on
the free surface is taken to be zero. The flow is driven by the hydrostatic pressure
gradient induced by variations in the height of the free surface. Assume the channel
lies along the x-axis, the y-axis is vertical, pointing upwards, and the bottom rests on
the x-z plane. It is assumed that the height of the free surface is constant in the z-
direction and thus is described by a function % of (x,) alone. Moreover, the velocity
vector points in the x-direction and is constant on any cross section of the channel,
so its length is likewise described by a function v of (x,1).

As explained in Section 2.7, the stress tensor for an incompressible, inviscid fluid
is just a hydrostatic pressure —pl. The balance of linear momentum in the y and the
z-direction yields dyp = —g and d.p = 0, respectively, where g is the acceleration
of gravity. Thus, p = g[h(x,t) — y], for 0 <y < h(x,t). Integrating with respect to y
and z, we find that the total pressure force exerted on the x-cross section at time ¢ is
P(x,t) = 3gh?(x,1).

We treat the flow in the channel as a rectilinear motion of a continuum governed
by conservation of mass and linear momentum, exactly as in (7.1.12), where now
the role of density is naturally played by the cross sectional area /& and the role of
pressure is played by the pressure force P. We thus arrive at the system of shallow
water waves:

8th + 8}((}17]) = 0
(7.1.19)
0, (hv) + 0 (hv? + L gh?) = 0.

Notice that (7.1.19) is identical to (7.1.13), with y = 2.

As we saw earlier, the flow of two phases through a porous medium, with volume
fractions u and 1 — u, is governed by the Buckley-Leverett equation (7.1.5). In the
case of the flow of n phases, with respective volume fractions Uy, ---,U,,

(7.1.20) U+-+U, =1,

the conservation of mass equations reduce to a system of the following form:
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l

CiU~2
n

(7.1.21) oU; + 9y =0, i=1,-,n.

72
j=1¢Uj

Notice that (7.1.20) and (7.1.21) are compatible. Of course, one may eliminate one of
the unknowns, with the help of (7.1.20), thus reducing the size of the system (7.1.21)
by one. For instance, when n =3 and ¢y = ¢; = ¢3,

u2

=0
uz-l-vz-l-(l—u—v)z}

8[1/! + &X |:
(7.1.22)

i)
90+ 0: Ltz-i-?)z-i-(l —u—v)z} =0
Systems of this type are employed by the petroleum industry in oil recovery opera-
tions.

Systems with interesting features govern the propagation of planar electromag-
netic waves through special isotropic dielectrics in which the electromagnetic energy
depends on the magnetic induction B and the electric displacement D solely through
the scalar r = (B-B—i—D-D)%; i.e., in the notation of Section 3.3.8, n(B,D) = y(r),
with y/(0) =0, y"(0) > 0, and y'(r) > 0,y (r) > 0 for r > 0. Waves propagating
in the direction of the 3-axis are represented by solutions of Maxwell’s equations
(3.3.66), with J = 0, in which the fields B,D,E and H depend solely on the single
spatial variable x = x3 and on time ¢. In particular, (3.3.66) imply Bz =0 and D3 =0
so that B and D should be regarded as vectors in R? satisfying the hyperbolic system

9B — s [w/(r)AD] —0

(7.1.23) '

r

/
D+ 9y [ v (r)AB] —0,

where A is the alternating 2 x 2 matrix, with Aj; = A =0,A;p = —Ay; = 1.

Returning to the general balance law (7.1.1), we note that H and/or F' may depend
explicitly on x, to account for inhomogeneity of the medium. For example, isentropic
gas flow through a duct of (slowly) varying cross section a(x) is governed by the
system

dla(x)p]+ dila(x)pv] =0
(7.1.24)

9 [a(x)pv] + dkla(x)pv? +a(x)p(p)] = d'(x)p(p),

which reduces to (7.1.12) in the homogeneous case a =constant. On the other hand,
explicit dependence of H or F on ¢, indicating “ageing” of the medium, is fairly rare.
By contrast, dependence of IT on ¢ is not uncommon, because external forcing is
generally time-dependent.

The source IT may depend on the state vector U, to account for relaxation or
reaction effects. A simple example of the latter case is provided by the system



234 VII Hyperbolic Systems of Balance Laws in One-Space Dimension

o;p+ di(pv) =0

9 (pv) + o[pv* + (Y —1)cp6] =0
(7.1.25)
0 [cpO+ Bpz+ 1pv?] + o[ (vepO + Bpz+ 1pv?)v] =0

3/(p2) + 3i(p=0) = —3h(6 — 6)pz,

which governs the flow of a combustible ideal gas in a duct. In addition to density
p, velocity v and temperature 0, the state vector here comprises the mass fraction z
of the unburnt gas, which takes values in [0, 1]. The first three equations in (7.1.25)
express the balance of mass, momentum and energy. As in (2.5.18), the equation of
state for the pressure is p = Rp6 = (y— 1)cp0, where ¥ is the adiabatic exponent
and c is the specific heat. On the other hand, unlike (2.5.19), the internal energy
here depends also on z, € = ¢ + Bz, where B > 0 is the heat of reaction (assumed
exothermic). In the fourth equation of (7.1.25), which governs the reaction, # is the
standard Heaviside function (({) =0 for { < 0 and h({) = 1 for { > 0), 6; is the
ignition temperature and 6 > 0 is the reaction rate.
A simple model system that captures the principal features of (7.1.25) is

O (u+PBz)+f(u)=0
(7.1.26)
diz=—0h(u)z,

where both u and z are scalar variables, and f(u) is a strictly increasing convex
function.

As an example of a source that manifests relaxation, consider the isothermal flow
of a binary mixture of ideal gases in a duct. Both constituents of the mixture satisfy
partial balance laws of mass and momentum: For ot = 1,2,

9Pa+ d(Pava) =0
(7.1.27) o

9 (Pava) + ok [pav%x + VaPa] =Xa-

The coupling is induced by the source term Y , which accounts for the momentum
transfer to the a-constituent by the other constituent, as a result of the disparity
between v and v; . In particular, x| + x> = 0. In nonisothermal flow, the coupling is
enhanced by the balance law of energy. In more sophisticating modeling of mixtures,
the density gradient appears, along with the density, as a state variable (Fick’s law),
in which case second-order spatial derivatives of the concentrations emerge in the
field equations. Such terms induce diffusion, similar to the effect of heat conduction
or viscosity. Here, however, we shall deal with the simple system (7.1.27)1-(7.1.27),,
which is hyperbolic.

So as to realize the mixture as a single continuous medium, it is expedient to
replace the original state vector (p;,p2,v1,v2) with new state variables (p,c,v,m),
where p and v are the density and mean velocity of the mixture, that is, p = p; + p2,
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PU = P101 + P203, ¢ is the concentration of the first constituent, i.e., ¢ = p;/p, and
m=(—1)%py(v—"2v¢). It is assumed that Yo = Bpo(ve —v) = (—1)*Bm, where 8
is a positive constant. One may then rewrite the system (7.1.27) in the form

ap +dx(pv) =0
di(pc)+ d(pcv+m) =0

2
(7.1.28) 9,(pv) + 9, [pvz+(V2+(V1 —V2)C)P+m} -°

2
9 (pcv+m) 4y [PCUZ +2mv+ % + va} =—pm.

Indeed, the second and fourth equations in the above system are just (7.1.27), rewrit-
ten in terms of the new state variables, while the first and the third equations are
obtained by adding the corresponding equations of (7.1.27); and (7.1.27),.

Single-space-dimensional systems (7.1.1) also derive from multispace-dimensi-
onal systems (3.1.1), in the presence of symmetry (planar, cylindrical, radial, etc.)
that reduces spatial dependence to a single parameter. In that process, parent multi-
dimensional homogeneous systems of conservation laws may yield one-dimensional
inhomogeneous systems of balance laws, as a reflection of multidimensional geo-
metric effects. For example, the single-space-dimensional system governing radial,
isentropic gas flow, which results from the homogeneous Euler equations (3.3.36), is
inhomogeneous:

2
ap +9:(pv) + g =0

(7.1.29)

9/ (pv) + 0, [pv* + p(p)] + =0.

In particular, certain multidimensional phenomena, such as wave focusing, may be
investigated in the framework of one space dimension.

7.2 Hyperbolicity and Strict Hyperbolicity

As in earlier chapters, to avoid inessential technical complications, the theory will be
developed in the context of homogeneous systems of conservation laws in canonical
form:

(7.2.1) QU (x,1)+ F(U(x,1)) = 0.

F is a C3 map from an open convex subset & of R” to R”.

Often in the applications, systems (7.2.1) govern planar front solutions, namely,
U =U(v-x,t), in the spatial direction v € S”"~!, of multispace-dimensional systems
of conservation laws (4.1.1). In that connection,
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m
(7.2.2) F(U)=Y vaGa(U), U€cO.
a=1

Referring to the examples introduced in Section 7.1, in order to cast the system
(7.1.8) of thermoelasticity in canonical form, we have to switch from (u,v,s) to
new state variables (u,v,E), where E = € 4+ %02 is the total energy. Similarly, the
system (7.1.12) of isentropic gas flow is written in canonical form in terms of the
state variables (p,m), where m = pv is the momentum.

By Definition 3.1.1, the system (7.2.1) is hyperbolic if for every U € & the n x n
Jacobian matrix DF (U) has real eigenvalues A;(U) < --- < 4,(U) and n lineary
independent eigenvectors Ry (U),--- ,R,(U). For future use, we also introduce left
(row) eigenvectors Ly (U),- -+ ,L,(U) of DF (U), normalized by

0 if i)
(7.2.3) L(U)R;(U) =
1 if i=j.

Henceforth, the symbols A;, R; and L; will be reserved to denote these objects.

Clearly, the multispace-dimensional system (4.1.1) is hyperbolic if and only if all
one-space-dimensional systems (7.2.1) resulting from it through (7.2.2), for arbitrary
v € S"~!, are hyperbolic. Thus hyperbolicity is essentially a one-space-dimensional
notion.

For the system (7.1.11) of one-dimensional isentropic elasticity, in Lagrangian
coordinates, which will serve throughout as a vehicle for illustrating the general con-
cepts, we have

(7.2.4) M=—-c'W'?,  A=dw)?,
_G/(u)—l/z _G/(u)—l/z
(7.2.5) Ri=1 ., Ry=1 ;
-1 1
(7.2.6) L= (—c'(w)'/?, -1), Ly =(—c'(u)'/?, 1).
The eigenvalue A; of DF, i = 1,--- ,n, is called the i-characteristic speed of the

system (7.2.1). The term derives from the following

7.2.1 Definition. An i-characteristic, i = 1,--- ,n, of the system (7.2.1), associated
with a classical solution U, is a C' function x = x(¢), with graph contained in the
domain of U, which is an integral curve of the ordinary differential equation

dx
dr
The standard existence-uniqueness theory for ordinary differential equations

(7.2.7) implies that through any point (¥,7) in the domain of a classical solution
of (7.2.1) passes precisely one characteristic of each characteristic family.

(7.2.7) (U (x,1)).



7.2 Hyperbolicity and Strict Hyperbolicity 237

Characteristics are carriers of waves of various types. For example, Eq. (1.6.1),
for the general system (1.4.3) of balance laws, specialized to (7.2.1), implies that
weak fronts propagate along characteristics. As a result, the presence of multiple
eigenvalues of DF' may induce severe complexity in the behavior of solutions, be-
cause of resonance. It is thus natural to single out systems that are free from such
complication:

7.2.2 Definition. The system (7.2.1) is strictly hyperbolic if for any U € & the
Jacobian DF (U) has real, distinct eigenvalues

(7.2.8) MU) < - < M(U).

By virtue of (7.2.4), the system (7.1.11) of isentropic elasticity in Lagrangian
coordinates is strictly hyperbolic. The same is true for the system (7.1.8) of adiabatic
thermoelasticity, for which the characteristic speeds are

(7.2.9) M=/ —pu(u,s), A= 0, A3 = V —Pu(u’s)-

The system (7.1.13) for the ideal gas has characteristic speeds

Y1

(7.2.10) A :v—(K}/)l/zpyT, o =0v+(kp)?p T,

and so it is strictly hyperbolic on the part of the state space with p > 0.

Furthermore, any one-dimensional system resulting, through (7.2.2), from the
Euler equations for two-dimensional isentropic flow is strictly hyperbolic.

In view of the above examples, the reader may form the impression that strict
hyperbolicity is the norm in systems arising in continuum physics. However, this
is not the case. For example, the system (7.1.15) of planar elastic oscillations fails
to be strictly hyperbolic in those directions v for which the acoustic tensor (3.3.8)
has multiple eigenvalues. Indeed, it has been shown that in one-space-dimensional
systems (7.2.1), of size n = £2,43,+4 (mod 8), which result from parent three-
space-dimensional systems (4.1.1) through (7.2.2), strict hyperbolicity necessarily
fails, at least in some spatial direction v € S?. In particular, one-dimensional sys-
tems resulting from the Euler equations for two-dimensional non-isentropic flow
(n =4), or for three-dimensional isentropic or non-isentropic flow (n =4 or n = 5)
are not strictly hyperbolic. Actually, failure of strict hyperbolicity is often a byprod-
uct of symmetry. For instance, the systems (7.1.17) and (7.1.18) are not strictly
hyperbolic.

In systems of size n = 2, strict hyperbolicity typically fails at isolated umbilic
points, at which DF reduces to a multiple of the identity matrix. Even the presence
of a single umbilic point is sufficient to create havoc in the behavior of solutions.
This will be demonstrated in following chapters by means of the simple system

Oru+ o [(u? +0*)u) =0
(7.2.11)
00+ [ (u? +0*)v] =0,
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which is a caricature of (7.1.17) and (7.1.18). The characteristic speeds of (7.2.11)
are

(7.2.12) M=ut40, =3+,

with corresponding eigenvectors

(7.2.13) R = (_vu> Ry = (Z)

so this system is strictly hyperbolic, except at the origin (0,0) which is an umbilic
point.

We close this section with the derivation of a useful identity. We apply D to both
sides of the equation DFR; = A;R; and then multiply, from the left, by R,j; we also
apply D to DFR; = AR, and then multiply, from the left, by R,T. Upon combining
the resulting two equations, we deduce ’

(7.2.14)
(D)Lij)Rj — (leRj)Rk = DF[Rj,Rk] — l,’DRij +lkDRkRJ', j,k = 1, Y (N

where [R;, Ri| denotes the Lie bracket:
(7.2.15) [R;,R] = DRR — DRR; .

In particular, at a point U € & where strict hyperbolicity fails, say A;(U) = A4(U),
(7.2.14) yields

(7.2.16) (DA;Ri)R; — (DR )R = (DF — A;1)[R;,Re).

Upon multiplying (7.2.16), from the left, by L;(U) and by L, (U), we conclude from
(7.2.3):

(7.2.17) DA;(U)R(U) = DA(U)R;(U) = 0.

7.3 Riemann Invariants

Consider a hyperbolic system (7.2.1) of conservation laws on & C R". A very im-
portant concept is introduced by the following

7.3.1 Definition. An i-Riemann invariant of (7.2.1) is a smooth scalar-valued func-
tion w on & such that

(7.3.1) Dw(U)R,(U) =0, Ueo.

For example, recalling (7.2.5), one readily verifies that the functions
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(7.3.2) w:f/u\/c’(w)dahtv, z:f/ux/o’(w)dwfv

are, respectively, 1- and 2-Riemann invariants of the system (7.1.11). Similarly, it
can be shown that
2(kp)' 2 v 2(x0)'? 1

7.. = B —— et ¢ . S A—
(7.3.3) w=0v-+ 7/_lpz, =0 y—lp

are 1- and 2-Riemann invariants of the system (7.1.13) of isentropic flow of an ideal
1
gas.
By solving the first-order linear differential equation (7.3.1) for w, one may con-
struct in the vicinity of any point U € & n— 1 i-Riemann invariants whose gradients
are linearly independent and span the orthogonal complement of R;. For example,

the reader may verify as an exercise that the three pairs of functions

s, —/ V—Po(0,s)do+v

(7.3.4) v, —p(u,s)

s, = [ V=pol@s)do—o

are, respectively, 1-, 2-, and 3-Riemann invariants of the system (7.1.8) of adiabatic
thermoelasticity.

Riemann invariants are particularly useful in systems with the following special
structure:

7.3.2 Definition. The system (7.2.1) is endowed with a coordinate system of Riemann
invariants if there exist n scalar-valued functions (wy, -+ ,w,) on & such that, for any
i,j=1,---,n, with i # j, w; is an i-Riemann invariant of (7.2.1).

An immediate consequence of Definitions 7.3.1 and 7.3.2 is

7.3.3 Theorem. The functions (wi,---,wy,) form a coordinate system of Riemann
invariants for (7.2.1) if and only if

=0 ifidj

£0 ifi=]

(7.3.5) Dw;i(U)R;(U)

i.e, if and only if, for i = 1,--- ,n, Dw;(U) is a left eigenvector of the matrix
DF(U), associated with the characteristic speed A;(U). Equivalently, the tangent
hyperplane to the level surface of w; at any point U, is spanned by the vectors
Ri(U),...,Ri_1(U),Rix1(U),...,R,(U).

UIn the isothermal case, y=1, w =0+ Kl/zlogp, z=v—x!/? logp.
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Assuming (7.2.1) is endowed with a coordinate system (wy,-- ,w,) of Riemann
invariants and multiplying from the left by Dw;,i = 1,--- ,n, we reduce this system
to diagonal form:

(736) atWi+7Li(9xWi :0, l: 17 7}17

which is equivalent to the original form (7.2.1), albeit only in the context of clas-
sical solutions. The left-hand side of (7.3.6) is just the derivative of w; in the i-
characteristic direction. Therefore,

7.3.4 Theorem. Assume (wy,---,wy) form a coordinate system of Riemann invari-
ants for (71.2.1). Fori = 1,--- ,n, w; stays constant along every i-characteristic as-
sociated with any classical solution U of (7.2.1).

Clearly, any hyperbolic system of two conservation laws is endowed with a co-
ordinate system of Riemann invariants. By contrast, in systems of size n > 3, coor-
dinate systems of Riemann invariants will exist only in the exceptional case where
the formally overdetermined system (7.3.5), with n(n — 1) equations for the n un-
known (wy,---,wy), has a solution. By the Frobenius theorem, the hyperplane to
the level surface of w; will be spanned by Ry,...,R;_1, Rit+1,...,R, if and only
if, for i # j # k # i, the Lie bracket [R;,Ry] (cf. (7.2.15)) lies in the span of
{Ri1, - ,Ri—1,Ri+1, - ,R,}. Consequently, the system (7.2.1) is endowed with a co-
ordinate system of Riemann invariants if and only if

(737) [R]’Rk] = afR/ - a]{Rka ]7k = 17 cee,n,

where the o are scalar fields.
When a coordinate system (wy,--- ,w,) of Riemann invariants exists for (7.2.1),
it is convenient to normalize the eigenvectors Ry, - - , R, so that

0 ifi#j
(7.3.8) Dw;(U)R;(U) =
1 ifi=j.
In that case we note the identity
(7.3.9) DW,DR;R; =D(Dw;R;)Ry—R; D*W;Ry = —R | D*wiRy, i,jk=1,--,n,
which implies, in particular, Dw;[R;,R| =0, i=1,--- ,n, i.e.,
(7.3.10) [Rj,Ri]=0,  jk=1,---,n.
Recalling the identity (7.2.14) and using (7.2.15), (7.3.10), we deduce that when-
ever A;(U) # 4(U),DR;(U)Ri(U) lies in the span of {R;(U),R,(U)}. This, to-
gether with (7.3.8) and (7.3.9), yields

(7.3.11) R D*wiR; = —Dw;DR;R; =0, i#jAk#i
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When (7.2.1) possesses a coordinate system (wy, - - - ,w,) of Riemann invariants,
the map that carries U to W = (wy,---,w,) " is locally a diffeomorphism. It is often
convenient to regard W rather than U as the state vector. To avoid proliferation of
symbols, when there is no danger of confusion we shall be using the same symbol to
denote fields as functions of either U or W. By virtue of (7.3.8), dU /dw; = R; and
so the chain rule yields, for the typical function ¢,

99
aW,‘

=D¢R; i=1,-

y , 1.

(7.3.12)

For example, (7.3.10) reduces to dR;/dwy = IRy /dw; = 82U/8wj8wk.

We proceed to derive certain identities that will help us later to establish other
remarkable properties of systems endowed with a coordinate system of Riemann
invariants. Upon combining (7.2.14), (7.2.15), (7.3.10) and (7.3.12), we deduce

OR; . .
(7313) _Tvé:gij]+gijk7 ]ak:lv”'vn; ]#kv
where we have set
1 oA;
7.3.14 git=—r =L, k=1, n; j#k
( ) J )uj—},k 3wk

Notice that g jx may be defined even when A; = A, because at such points dA4;/dwy
vanishes by virtue of (7.2.17) and (7.3.12). From (7.3.13),

_ R _ 98k
8wi3wk o 8wi

Igk;
R —gj(gjiR;+gijRi) + Tw-j Ri — 81j(8kiRi + giRi).-
1

(7.3.15)

Since R;, R, Ry are linearly independent for i # j # k # i, and the right-hand side of
(7.3.15) has to be symmetric in (i,k), we deduce

8g-k ag‘- . . .

(7.3.16) 8v1i<:¢9wj/z’ i£jEk#I,
agi; . .
(7.3.17) Tvz“"gijgjk_gijgik"‘gikgkj =0, i#jFk#L

Of the hyperbolic systems of conservation laws of size n > 3 that arise in the
applications, few possess coordinate systems of Riemann invariants. A noteworthy
example is the system of electrophoresis:

c;iU;
n

(7.3.18) AU; + 0, 7,

:07 i:lv"'vnv

j=1

where ¢; < ¢y < --- < ¢y, are positive constants. This system governs the process used
to separate n ionized chemical compounds in solution by applying an electric field.
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In that context, U; denotes the concentration and c¢; measures the electrophoretic
mobility of the i-th species. In particular, U; > 0. As an exercise, the reader may
verify that the characteristic speeds of (7.3.18) are given by

n
(7.3.19) A=y Uj, i=1,---,n,
j=1
where for i =1,--- ,n— 1 the value of y; at U is the solution of the equation
n U n
(7.3.20) Yy 95—y,
=1 R 3
lying in the interval (c;,c;+1); and g, = 0. Moreover, (7.3.18) is endowed with a
coordinate system (wy,---,w,) of Riemann invariants, where, for i = 1,---,n— 1,
the value of w; at U is the solution of the equation
n
U,
(7.3.21) =0
j;l Cji—w
that lies in the interval (c;, ¢;11); and
U
(7.3.22) wa=Y —Uj.
=1¢i

Later we shall see that the system (7.3.18) has very special structure and a host of
interesting properties.

Another interesting system endowed with coordinate systems of Riemann in-
variants is (7.1.23), which, as we recall, governs the propagation of planar electro-
magnetic waves through special isotropic dielectrics. This is seen by passing from
(B1,B,D1,D;) to the new state vector (p,q,a,b) defined through

V2pexp(ia) = By + Dy —i(B) — D3)
(7.3.23)
V2qexp(ib) = —By + Dy +i(B) +D2).

In particular, p? + ¢*> = ?. A simple calculation shows that, at least in the context of
classical solutions, (7.1.23) reduces to

op+ 0k Vfr)p] =0
(7.3.24)
!
drq — 0 ll/r(r) q} =0,
/
da+ ‘I/r(") da=0
(7.3.25)

/
ab— "’r(r) aub = 0.



7.4 Entropy-Entropy Flux Pairs 243

Notice that (7.3.24) constitutes a closed system of two conservation laws, from which
p,q, and thereby r, may be determined. Subsequently (7.3.25) may be solved, as
two independent nonhomogeneous scalar conservation laws, to determine a and b.
In particular, a and b together with any pair of Riemann invariants of (7.3.24) will
constitute a coordinate system of Riemann invariants for (7.1.23).

7.4 Entropy-Entropy Flux Pairs

Entropies play a central role in the theory of hyperbolic systems of conservation laws
in one space dimension. Adapting the discussion of Section 3.2 to the present setting,
we infer that functions 11 and ¢ on & constitute an entropy-entropy flux pair for the
system (7.2.1) if

(7.4.1) Dq(U) =Dn(U)DF(U), Uedo.
Furthermore, the integrability condition (3.2.4) here reduces to
(7.4.2) D’n(U)DF(U) =DF(U) 'D*n(U), Ueo.

Upon multiplying (7.4.2) from the left by R;(U)" and from the right by Ry (U),
J # k, we deduce that (7.4.2) is equivalent to

(7.4.3) R;(U)'D*n(U)R(U) =0, Jok=1,--- n; j#k,

with the understanding that (7.4.3) holds automatically when 4;(U) # A« (U ) but may
require renormalization of eigenvectors R; associated with multiple characteristic
speeds. (Compare with (3.2.5).) Note that the requirement that some entropy 7 is
convex may now be conveniently expressed as

(7.4.4) R;(U)'D’n(U)R;(U) >0, j=1,,n
When the system (7.2.1) is symmetric,

(7.4.5) DF(U)" =DF(U), Ueo,

it admits two interesting entropy-entropy flux pairs:

(7.4.6) n=3lUJ, q=U-F(U)—h(U),

(7.4.7) n=nhU), q=3%FU)}
where £ is defined by the condition
(7.4.8) Dh(U)=F(U)".

As explained in Chapter III, the systems (7.1.8), (7.1.11), (7.1.13) are endowed
with entropy-entropy flux pairs, respectively,
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(7.4.9) n=-—s, q=0,
(7.4.10) n=1vtew), q=—vo(u), emy:/<xmmm,
(7.4.11) n:lpvz+ip7 q:lpv3+ﬂpyv

o 2 y—1"" 2 y—1" "

induced by the Second Law of thermodynamics.2 In fact, (7.4.10), with vo and cd®
interpreted as v- o and © - dw, constitutes an entropy-entropy flux pair even for the
system (7.1.15). When expressed as functions of the canonical state variables, that is
(u,v,E) for (7.4.9), (u,v) for (7.4.10), and (p,m) for (7.4.11), the above entropies
are convex.

In developing the theory of systems (7.2.1), it will be useful to construct en-
tropies with given specifications. These must be solutions of (7.4.2), which is a linear,
second-order system of %n(n — 1) partial differential equations in a single unknown
n. Thus, when n = 2, (7.4.2) reduces to a single linear hyperbolic equation which
may be solved to produce an abundance of entropies. By contrast, for n > 3, (7.4.2)
is formally overdetermined. Notwithstanding the presence of special solutions such
as (7.4.6) and (7.4.7), one should not expect an abundance of entropies, unless (7.2.1)
is special. It is remarkable that the overdeterminacy of (7.4.2) vanishes when (7.2.1)
is endowed with a coordinate system (wy,- - - ,w,) of Riemann invariants. In that case
it is convenient to seek 1 and ¢ as functions of the state vector W = (wy,--- ,w,)".
Upon multiplying (7.4.1), from the right, by R;(U) and by using (7.3.12), we deduce
that (7.4.1) is now equivalent to

dq an

7.4.12 4 =t i=1,--,n.
( ) awj ]awja J 9 N

The integrability condition associated with (7.4.12) takes the form

a*n an an

il B —~1 _p jk=1,---.n; j#k,
aWjaWk+gjkaWJ +gk]awk ) .17 I ?n j#

(7.4.13)

where gji, gx; are the functions defined through (7.3.14). An alternative, useful
expression for g arises if one derives (7.4.13) directly from (7.4.3). Indeed, for
j,k: 17 )N,

(7.4.14)

d
R;D’nRy =D(DNR;)R, —DNDR;R, = D(DNR; )Ry — Y a—ZDwiDR iRy
i=1 i

Combining (7.4.3), (7.3.12), (7.3.10) and (7.3.9), we arrive at an equation of the form
(7.4.13) with

2 In the isothermal case, ¥ = 1, the entropy-entropy flux pair of (7.1.13) takes the following
form: n = 1pv® + kplogp, ¢ = 1pv’ + kpvlogp + kpo.
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(7.4.15) gik=RD’WiRc,  jk=1,- n j#k.

The reader may verify directly, as an exercise, with the help of (7.2.14), (7.3.8),
(7.3.11), (7.3.10), (7.3.9) and (7.3.12), that (7.3.14) and (7.4.15) are equivalent.

Applying (7.4.14) with k = j, using (7.3.12), (7.3.9) and recalling (7.4.4), we de-
duce that, in terms of Riemann invariants, the convexity condition on 7 is expressed
by the set of inequalities

’n & adn
7.4.16 —+) aij=— >0, j=1,---,n,
( ) 8w§ ; Y Iw; J
where
(7417) aij:R;‘rDZWjRj7 i,j=1,---,n.

The system (7.4.13) contains %n(n — 1) equations in the single unknown 1 and
thus seems overdetermined when n > 3. It turns out, however, that this set of equa-
tions is internally consistent. To see this, differentiate (7.4.13) with respect to w; to
get

a’n dgjx In on on
(7.4.18) Fwidwiawe - aw; ow; T8 (8ﬂaw,. *gffaw,.)

dgkj 0 0 d
Sty 21 + 8kj <8kin +gik83> .

B awi 8wk (9Wk

The system (7.4.13) will be integrable if and only if, for i # j # k # i, the right-
hand side of (7.4.18) is symmetric in (i, j, k). But this is always the case, on account
of the identities (7.3.16) and (7.3.17). Consequently, it is possible to construct, in a
neighborhood of any given state W = (¥, --- ,W,) ', entropies 1 with prescribed val-
ues {n(wi,wa, -+ ,Wy), N(W1,Wwa, -+, Wy), -, (Wi, ,Wy_1,wy)} along straight
lines parallel to the coordinate axes. When n = 2, this amounts to solving a classical
Goursat problem.

We have thus shown that systems endowed with coordinate systems of Riemann
invariants are also endowed with an abundance of entropies. For this reason, such
systems are called rich. In particular, the system (7.3.18) of electrophoresis and the
system (7.1.23) of electromagnetic waves are rich. The reader will find how to con-
struct the family of entropies of these systems in the references cited in Section 7.10.

7.5 Genuine Nonlinearity and Linear Degeneracy
The feature distinguishing the behavior of linear and nonlinear hyperbolic systems

of conservation laws is that in the former, characteristic speeds being constant, all
waves of the same family propagate with fixed speed; while in the latter, wave speeds
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vary with wave-amplitude. As we proceed with our study, we will encounter various
manifestations of nonlinearity, and in every case we shall notice that its effects will
be particularly pronounced when the characteristic speeds A; vary in the direction of
the corresponding eigenvectors R;. This motivates the following

7.5.1 Definition. For the hyperbolic system (7.2.1) of conservation laws on &, U in
O is called a state of genuine nonlinearity of the i-characteristic family if

(7.5.1) DA;(U)R;(U) # 0,
or a state of linear degeneracy of the i-characteristic family if
(7.5.2) DA;(U)R;(U) =0.

When (7.5.1) holds for all U € O, i is a genuinely nonlinear characteristic family,
while if (7.5.2) is satisfied for all U € @, then i is a linearly degenerate characteristic
Sfamily. When every characteristic family is genuinely nonlinear, (7.2.1) is a genuinely
nonlinear system.

It is clear that the i-characteristic family is linearly degenerate if and only if the
i-characteristic speed A; is constant along the integral curves of the vector field R;.

The scalar conservation law (7.1.2), with characteristic speed A = f’(u), is gen-
uinely nonlinear when f has no inflection points: f”(u) # 0. In particular, the Burgers
equation (4.2.1) is genuinely nonlinear.

Using (7.2.4) and (7.2.5), one readily checks that the system (7.1.11) is genuinely
nonlinear when 6”(u) # 0. As an exercise, the reader may verify that the system
(7.1.12) is genuinely nonlinear if 2p’(p) + pp”(p) > 0 so, in particular, the system
(7.1.13) for the ideal gas is genuinely nonlinear. The system (7.1.19) of waves in
shallow water is likewise genuinely nonlinear.

On account of (7.2.9), the 2-characteristic family of the system (7.1.8) of ther-
moelasticity is linearly degenerate. It turns out that the other two characteristic fam-
ilies are genuinely nonlinear, provided o, (u,s) # 0.

Consider next the system (7.1.15) of planar elastic oscillations in the direction
v, recalling that o () = de(u)/du, with e(u) convex. The six characteristic speeds
are the square roots &,/fly, =\/Hz, =,/13 of the eigenvalues i (u), uz(u), U3 (u)
of the Hessian matrix of e(u), namely the eigenvalues of the acoustic tensor (3.3.8)
evaluated at F =74 uv . A simple calculation shows that the characteristic families
associated with the characteristic speeds =, /Ll; are genuinely nonlinear at u = F'v if

3 d3e(u)
(7.5.3) i’j,zk“:l Sudu du

u;&uk

sea- Y Y S AV 70

i,j.k=1 a,p,y=1

where € is the eigenvector of the acoustic tensor associated with the eigenvalue Ly .

Applying the above to the special system (7.1.17), one finds that ; = h”(Jul)
is a simple eigenvalue, with eigenvector u, and , = uz = ' (Jul|)/|u| is a dou-
ble eigenvalue, with eigenspace the orthogonal complement of u. Thus, the char-
acteristic speeds =+ [h” (|u\)]1/ 2 are associated with longitudinal oscillations, while



7.6 Simple Waves 247

+ [ (|u])/|ul]"/? are associated with transverse oscillations. However, only trans-
verse oscillations that are also orthogonal to v are compatible with incompressibility.

The characteristic families associated with =+ [2”(|u|)] 1/2 are genuinely nonlinear at

u if 7" (|u|) # 0, while the characteristic families associated with & [1(|u|)/|u]]"/*
are linearly degenerate. Clearly, the same conclusions apply to the system of elastic
string oscillations (7.1.18), with 7(|u|) replacing #'(|u|). For this system, all trans-
verse oscillations are physically meaningful, as the incompressibility constraint is
no longer relevant. The model system (7.2.11) exhibits similar behavior, as its 1-
characteristic family is linearly degenerate, while its 2-characteristic family is gen-
uinely nonlinear, except at the origin.

In the system (7.1.22) of three-phase flow through a porous medium, genuine
nonlinearity breaks down along the three lines of symmetry u =v, u =1—u—v and
v=1—u—0, as well as along a closed curve surrounding the point u =v = 1/3.

Finally, in the system (7.3.18) of electrophoresis the n-characteristic family is
linearly degenerate while the rest are genuinely nonlinear.

The system of Maxwell’s equations (3.3.66) for the Born-Infeld medium (3.3.73)
has the remarkable property that planar oscillations in any spatial direction v € §2
are governed by a system whose characteristic families are all linearly degenerate.

Quite often, linear degeneracy results from the loss of strict hyperbolicity. Indeed,
an immediate consequence of (7.2.17) is

7.5.2 Theorem. In the hyperbolic system (7.2.1) of conservation laws, assume that
the j- and k-characteristic speeds coincide: A;(U) = A(U) , U € 0. Then both the
J- and the k-characteristic families are linearly degenerate.

When the system (7.2.1) is endowed with a coordinate system (wy,---,w,) of
Riemann invariants and one uses W = (wy,---,w,) ' as state vector, the conditions
of genuine nonlinearity and linear degeneracy assume an elegant and suggestive
form. Indeed, upon using (7.3.12), we deduce that (7.5.1) and (7.5.2) are respectively
equivalent to

oA
(7.54) S #0
and

N
(7.5.5) Tw; 0.

7.6 Simple Waves

In the context of classical solutions, the scalar conservation law (7.1.2), with charac-
teristic speed A = f”(u), takes the form

(7.6.1) u(x,t) + A(u(x,t))dwu(x,t) = 0.



248 VII Hyperbolic Systems of Balance Laws in One-Space Dimension

As noted already in Section 6.1, by virtue of (7.6.1) u stays constant along charac-
teristics and this, in turn, implies that each characteristic propagates with constant
speed, i.e., it is a straight line. It turns out that general hyperbolic systems (7.2.1) of
conservation laws admit special solutions with the same features:

7.6.1 Definition. A classical, C' solution U of the hyperbolic system (7.2.1) of con-
servation laws is called an i-simple wave if U stays constant along any i-characteristic
associated with it.

Thus a C! function U, defined on an open subset of R2 and taking values in &, is
an i-simple wave if it satisfies (7.2.1) together with

(7.6.2) AU (x,1) + Ai(U (x,1))3U (x,1) = 0.

In particular, in an i-simple wave each i-characteristic propagates with constant speed
and so it is a straight line.
If U is an i-simple wave, combining (7.2.1) with (7.6.2) we deduce

kU (x,t) = a(x,t)R;(U (x,1))
(7.6.3)
atU(x7t) = _a(x7t)/li(U(x’t))Ri(U(xvt))v

where a is a scalar field. Conversely, any C' function U that satisfies (7.6.3) is nec-
essarily an i-simple wave.

It is possible to give still another characterization of simple waves, in terms of
Riemann invariants:

7.6.2 Theorem. A classical, C' solution U of (1.2.1) is an i-simple wave if and only
if every i-Riemann invariant is constant on each connected component of the domain
of U.

Proof. For any i-Riemann invariant w, dyw = Dwd,U and dyw = Dwd,U. If U is an
i-simple wave, d,w and d,w vanish identically, by virtue of (7.6.3) and (7.3.1), so that
w is constant on any connected component of the domain of U.

Conversely, recalling that the gradients of i-Riemann invariants span the orthog-
onal complement of R;, we infer that when d,w = Dw d,U vanishes identically for all
i-Riemann invariants w, d,U must satisfy (7.6.3); . Substituting (7.6.3); into (7.2.1)
we conclude that (7.6.3), holds as well, i.e., U is an i-simple wave. This completes
the proof.

Any constant function U = U qualifies, according to Definition 7.6.1, to be
viewed as an i-simple wave, for every i = 1,--- ,n. It is expedient, however, to re-
fer to such trivial solutions as constant states and reserve the term simple wave for
solutions that are not constant on any open subset of their domain. The following
proposition, which demonstrates that simple waves are the natural neighbors of con-
stant states, is stated informally, in physical rather than mathematical terminology.
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The precise meaning of assumptions and conclusions may be extracted from the
proof.

7.6.3 Theorem. Any weak front moving into a constant state propagates with con-
stant characteristic speed of some family i. Furthermore, the wake of this front is
necessarily an i-simple wave.

Proof. The setting is as follows: The system (7.2.1) is assumed strictly hyperbolic.
U is a classical, Lipschitz solution which is C' on its domain, except along the graph
of a C! curve x = x(t). U is constant, U, at any point of its domain lying on one side,
say to the right, of the graph of ). By contrast, d,U and 9,U attain nonzero limits
from the left along the graph of ). Thus, according to the terminology of Section
1.6, x is a weak front propagating with speed = dy /dt. In particular, (1.6.1) here
reduces to

(7.6.4) [DF(0) — 21)[dU JoN] = 0,

which shows that J is constant and equal to A;(U) for some i.

Next we show that to the left of, and sufficiently close to, the graph of x
the solution U is an i-simple wave. By virtue of Theorem 7.6.2, it suffices to
prove that n — 1 independent i-Riemann invariants, which will be denoted by
Wi, s Wi—1,Wit1, -+, Wy, are constant.

For U near U, the vectors {Dw;(U), -+ ,Dw;_1(U),Dw;1(U),---, Dw,(U)}
span the orthogonal complement of R;(U) and this is also the case for the vec-
tors {L;(U),---,Li—1(U),Li+1(U),---,L,(U)}. Consequently, there is a nonsingular
(n—1) x (n—1) matrix B(U) such that

(7.6.5) Li(U) =Y By(U)Dw(U),  j=1,---,i—Li+1,-,n
ki

Multiplying (7.2.1), from the left, by L;(U) yields
(7.6.6) Li(U)o,U+A;(U)L;(U)oU =0, j=1,--- n.
Combining (7.6.5) with (7.6.6), we conclude

(767) ZB/kathJFZl/Bjkaka:O, ‘]:1,,171714»1,’”

ki ki
We regard (7.6.7) as a first-order linear inhomogeneous system of n — 1 equa-
tions in the n — 1 unknowns wi,--- ,Wj_1,Wjt+1,--- ,w,. In that sense, (7.6.7) is
strictly hyperbolic, with characteristic speeds Ay,---,A;_1, 411, ,A,. Along the

graph of ), the n — 1 Riemann invariants are constant, namely, equal to their
values at U : wi(U), - ,wi_1(U),wis1(0), -+ ,w,(U). Also, the graph of y is
non-characteristic for the system (7.6.7). Consequently, the standard uniqueness the-
orem for the Cauchy problem for linear hyperbolic systems implies that (7.6.7) may
admit only one solution compatible with the Cauchy data, namely the trivial one:
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wi=wi(O), ,wi1 =w;i_1(0),wiy1 =wir1(0), - ,w, =w,(U). This completes
the proof.

At any point (x,7) in the domain of an i-simple wave U of (7.2.1), we let & (x,7)
denote the slope at (x,¢) of the i-characteristic associated with U, i.e.,

(7.6.8) E(x,1) = L(U(x,1)).
The derivative of £ in the direction of the line with slope & is zero, that is
(7.6.9) ;& +E0& =0.

Thus & satisfies the Burgers equation (4.2.1).

In the vicinity of any point (¥,7) in the domain of U, we shall say that the i-simple
wave is an i-rarefaction wave if d,& (x,7) > 0, i.e., if the i-characteristics diverge, or
an i-compression wave if 0,&(x,f) < 0, i.e., if the i-characteristics converge. This
terminology originated in the context of gas dynamics.

Since in an i-simple wave U stays constant along i-characteristics, on a small
neighborhood 2~ of any point (%,7) where d,& (%,7) # 0 we may use the single vari-
able & to label U, i.e., there is a function V;, defined on an interval (§ —€,& + ¢€),
with & = 4;(U (%,7)), taking values in & and such that

(7.6.10) Uet) =Vi(E(xr), (nr)e .

Furthermore, by virtue of (7.6.3) and (7.6.8), V; satisfies

(7.6.11) Vi€) =b(ORi(Vi(§)), Se(E—&+e),

(7.6.12) L(Vi€)=¢.  te(E-el+te),

where b is a scalar function and an overdot denotes derivative with respect to &.

Conversely, if V; satisfies (7.6.11), (7.6.12) and & is any C! solution of (7.6.9)
taking values in the interval (& —€,& +¢€), then U = V;(&(x,1)) is an i-simple wave.
The above considerations motivate the following

7.6.4 Definition. An i-rarefaction wave curve in the state space R", for the hyper-
bolic system (7.2.1), is a curve U = Vj(+), where the function V; satisfies (7.6.11) and
(7.6.12).

Rarefaction wave curves will provide one of the principal tools for solving the
Riemann problem in Chapter IX. The construction of these curves is particularly
simple in the neighborhood of states of genuine nonlinearity:

7.6.5 Theorem. Assume U € O is a state of genuine nonlinearity of the i-
characteristic family of the hyperbolic system (7.2.1) of conservation laws. Then
there exists a unique i-rarefaction wave curve V; through U. If R; is normalized on a
neighborhood of U through
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(7.6.13) DA(U)R{(U) = 1,

and V; is reparametrized by T = & — 5, where E = X(0), then V; is the solution of
the ordinary differential equation

(7.6.14) Vi =Ri(Vi)

with initial condition V;(0) = U. In particular, V; is C3. The more explicit notation
Vi(t;0) shall be employed when it becomes necessary to display the point of origin
of this rarefaction wave curve.

Proof. Any solution V; of (7.6.14) clearly.satisﬁes (7.6.11) withb=1. At & = 5_, ie.,
=0, 4(V;) = 4(U) = €. Furthermore, A;(V;) = D4;(V;)V; = 1, by virtue of (7.6.14)
and (7.6.13). This establishes (7.6.12) and completes the proof.

By contrast, when the i-characteristic family is linearly degenerate, differentiat-
ing (7.6.12) with respect to £ and combining the resulting equation with (7.6.11)
yields a contradiction: 0 = 1. In that case, i-characteristics in any i-simple wave are
necessarily parallel straight lines. It is still true, however, that any i-simple wave
takes values along some integral curve of the differential equation (7.6.14).

Motivated by Theorem 7.6.2, we may characterize rarefaction wave curves in
terms of Riemann invariants:

7.6.6 Theorem. Every i-Riemann invariant is constant along any i-rarefaction wave
curve of the system (7.2.1). Conversely, if U is any state of genuine nonlinearity
of the i-characteristic family of (7.2.1) and wy,- -+ ,Wi_1,Wit1,- - , W, are indepen-
dent i-Riemann invariants on some neighborhood of U, then the i-rarefaction curve
through U is determined implicitly by the system of equations w;(U) = w;(U), for
j=1ji—1,i+1,--- n

Proof. Any i-rarefaction curve V; satisfies (7.6.11). If w is an i-Riemann invariant
of (7.2.1), multiplying (7.6.11), from the left, by Dw(V;(&)) and using (7.3.1) yields
w(Vi(€)) =0, i.e., w stays constant along V;.

Assume now wi,--- ,Wi_1,Wi+1,--+,W, are i-Riemann invariants such that
Dwy,--- ,Dw;_1,Dwyy,--- ,Dw, are linearly independent. Then the n — 1 surfaces
wj(U)=w;(U), j=1,---,i—1,i+1,---,n, intersect transversely to form a C!

curve V; through U, parametrized by arclength s, whose tangent Vil must satisfy, on
account of Definition 7.3.1, V,-/ (s) = c(s)R;(V(s)), for some nonzero scalar function
c. For as long as V; is a state of genuine nonlinearity of the i-characteristic field,
ll-l Vi) = Dl,'Vil = cDA;R; # 0. We may thus find the proper parametrization s = s(&)
so that V; satisfies both (7.6.11) and (7.6.12). This completes the proof.

As an application of Theorem 7.6.6, we infer that the 1- and 2-rarefaction wave
curves of the system (7.1.11) through a point (i,?), with 6”(if) # 0, are determined,
in terms of the Riemann invariants (7.3.2), by the equations
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(7.6.15) vzﬁﬁ:/_u\/c’(w)dw.

Similarly, the 1- and 3-rarefaction wave curves of the system (7.1.8) through a
point (i&,9,5), with p,,(i1,5) # 0, are described in terms of the Riemann invariants
(7.3.4), by the equations

u
(7.6.16) v:Z'J:t/ V—ro(0,5)do, §=3.
i
When the system (7.2.1) is endowed with a coordinate system (wy,---,w,) of
Riemann invariants and we use W = (wy,--- ,wn)T, instead of U, as our state vari-
able, the rarefaction wave curves assume a very simple form. Indeed, by virtue of
Theorem 7.6.4, the i-rarefaction wave curve through the point W = (w1, --- ,w,) " is

the straight line w; = w; , j # i, parallel to the i-axis.

7.7 Explosion of Weak Fronts

The aim here is to expose the decisive role played by genuine nonlinearity in the
amplification and eventual explosion of weak fronts.

We consider a Lipschitz continuous solution U of the strictly hyperbolic system
(7.2.1), defined on a strip (—oo,0) x [0,T) and having the following structure: A
C! curve x = y(t) issues from the origin, and U(x,#) = U = constant on the set
{(x,0):0<t<T, x> x(t)}, while on the set {(x,1) : 0<t < T, x < x(¢)} U is C*
and its first and second partial derivatives attain non-zero limits, as x 1 x(¢). Thus,
x(+) is a weak front moving into a constant state.

Onthe set {(x,7): 0<r < T, x< (1)},

(7.7.1) O,U (x,t) + DF (U (x,1)) .U (x,£) = 0.

Since U(x(t)—,t) =U,

(7.7.2) AU (x(1)—.1)+ x(1)AU (x(£)—,1) = 0.

By combining (7.7.1) with (7.7.2),

(7.7.3) [DF(U) — x(t)I]o:U (x (t)—,t) = 0.

Therefore, () is constant, equal to A;(U), for some characteristic family i, and
(7.7.4) AU (x(t)—,1) = a(t)R;(T).

The function a(f) measures the strength of the weak front.
We multiply (7.7.4), from the left, by L,-(U ), use (7.2.3) and differentiate with
respect to ¢ to get
da(t)

(7.1.5) 28— L(0) [2AU (x(0) 1) + MDA (x(1)—1)]-
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Next, we multiply (7.7.1), from the left, by L;(U (x,1)),
(7.7.6) Li(U(x,1)) [0,U (x,t) + A;(U (x,1)) 9 U (x,7)] = 0,

then differentiate with respect to x and let x T x(¢). Upon combining % (¢) = A;(U),
(7.7.2), (1.7.5), (71.7.4) and (7.2.3), we conclude that a(r) satisfies an ordinary differ-
ential equation of Bernoulli type:

d _ _
(7.7.7) d—f +DA;(0)R;(0)a? = 0.
Thus, if U is a state of genuine nonlinearity for the i-characteristic family and
DA;(U)R;(U)a(0) < 0, then the strength of the weak wave increases with time

and eventually explodes as ¢ 1 [~DA;(U)R;(U )a(O)]il. The issue of breakdown
of classical solutions will be discussed from a broader perspective in the following
section.

7.8 Existence and Breakdown of Classical Solutions

When the system (7.2.1) is equipped with a convex entropy, Theorem 5.1.1 guaran-
tees the existence of a unique, locally defined, classical solution, with initial data Uy
in the Sobolev space H;. In one space dimension, however, there is a sharper exis-
tence theory which applies to quasilinear hyperbolic systems in general, that may or
may not be conservation laws, and does not rely on the existence of entropies:

7.8.1 Theorem. Assume (7.2.1) is strictly hyperbolic on O. For any initial data Uy in
C! (—oo0,00), with values in a compact subset of € and bounded derivative, there exists
a unique C' solution of the Cauchy problem on a strip (—oo,0) x [0, T..), for some
0< T <oo, and values in O. Moreover, if Too <o, then, ast 1 Too, |0 U (+,1) || 1> — o0
and/or the range of U (-,t) escapes from every compact subset of 0.

The proof of the above theorem, which may be found in the references cited in
Section 7.10, relies on pointwise bounds for U and d,U obtained by monitoring the
evolution of U and its derivatives along characteristics. Estimates of this nature will
be established below but they will be employed for establishing the breakdown of
classical solutions in finite time.

We have already encountered a number of examples of breakdown of classical
solutions, notably for scalar conservation laws, in Section 6.1, and for weak fronts, in
Section 7.7. Breakdown also occurs in the presence of compressive simple waves. In-
deed, as shown in Section 7.6, an i-simple wave solution U is obtained by taking the
composition (7.6.10) of a (smooth) solution V; to the ordinary differential equation
(7.6.11) with a classical solution £ to the Burgers equation (7.6.9). When that solu-
tion of (7.6.9) breaks down, so does the i-simple wave. The above examples involve
a single characteristic family. The aim here is to demonstrate that, in the presence of
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genuine nonlinearity, the interaction of waves from different characteristic families
cannot prevent the breakdown of smooth solutions.
Any classical, C? solution U of (7.2.1) on (—oo,0) x [0,T) may be written as

U =Y a;R;(U)
j=1

(7.8.1)
QU ==Y a;A;(U)R;(U)
j=1
with
(7.8.2) aj=L;(U)dU, j=1,-.,n.

In view of (7.6.3), one may interpret (7.8.1) as a decomposition of U into simple
waves, one for each characteristic family, with respective strengths ay,--- ,a,. Our
aim is to study the evolution of g; along the i-characteristics associated with U. We
let

d
(7.8.3) prie O + Aidx
denote differentiation in the i-characteristic direction. Combining (7.8.2) with (7.8.1)
yields

(7.8.4) dra; = Lid, .U + o,U DL/ ,U

= 0, (Lid,U)— ;U DL} 0,U 4+ d,U DL} o,U
n
=0:(LidU)+ Y (A — )R] DL Reajay ,
jik=1

(7.8.5) Aidva; = Iy (A:LioU) — (DA;0 U ) (L0 U)
n
= 0y (AiL;0.U) — Z (D)Ll-Rj)S,»kajak,
jk=1
where & is the Kronecker delta. From (7.2.1), L;0,U + A;L;d,U = 0. Also, by virtue
of (7.2.3), R] DL Ry = —L;DR;Ry . Therefore, combining (7.8.3), (7.8.4), (7.8.5)
and symmetrizing we conclude

da; !
(7.8.6) 7; = Z Yijkajax
Jk=1

with

(7.8.7) Yijk = —3(Aj — M) Li[R, Ri] — (DAR;) By,
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where [R, Ri| denotes the Lie bracket (7.2.15). Note, in particular, that

(788) Yiii = —D)UiRi s

(7.8.9) hii=0,  j#i

It is clear that in any argument showing blow-up of a; through (7.8.6), the co-
efficient 7;; will play a pivotal role. By virtue of (7.8.8), 7% never vanishes when
the i-characteristic family is genuinely nonlinear, and vanishes identically when the
i-characteristic family is linearly degenerate.

To gain insight, let us consider first the case where U is just an i-simple wave,
i.e.,a; #0and a; = 0 for j # i. In that case, (7.8.6) reduces to

da,'

7.8.1 —
(7.8.10) I

= Viiiaiz-
Furthermore, since U is constant along characteristics, %; in (7.8.10) is a constant.
When %; # 0 and a; has the same sign as %;;, (7.8.10) induces blow-up of g; in a
finite time.

Next we consider the noteworthy special case where the system (7.2.1) is en-
dowed with a coordinate system (wy,---,w,) of Riemann invariants. In that case
Lj =Dw; and so, by (7.8.2),

(7811) aj=oxW;j.

Moreover, in virtue of (7.8.7), (7.3.10) and (7.3.12), (7.8.6) reduces to
da[ 1 8),,

7.8.12 —=—) —aa;.

( ) dt ]:Zl aWjalaj

We seek an integrating factor for (7.8.12). If ¢ is any smooth scalar function of U,
we get from (7.8.1):

d¢ 9¢

(7813) E = D¢(8,U+l,8xU) = Z()"’ —A,j)(D(ij)aj = Z(}\q — lj)ﬁaj .
J# J# J
Combining (7.8.12) with (7.8.13) yields
d I IA; 90
Ze®a) = —e? 212 o LA — A Nasa
(7.8.14) ” (ea;) e aw,-a’ j;ie [awj (A l])&wj]ala].

From (7.3.14) and (7.3.16), it follows that there exists ¢ that satisfies

99 1IN
aWjil,‘—ljaij

(7.8.15) j=1,-,i—1i+1,---,n.

For that ¢, (7.8.14) reduces to
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d I
dt 8w,~

When the i-characteristic family is genuinely nonlinear, dA;/dw; # 0. Whenever
e~?dA;/dw; is bounded away from zero, uniformly on the range of the solution,
(7.8.16) will induce blowup of a;, in finite time, along any characteristic emanating
from a point ¥ of the x-axis where a; has the opposite sign of dA;/dw;. Uniform
boundedness of e ?dA;/dw; is maintained, because, by Theorem 7.3.4, the range
of any classical solution in the state space of Riemann invariants coincides with the
range of its initial values. In the opposite case where the i-characteristic family is
linearly degenerate, so that dA;/dw; vanishes identically, (7.8.16) implies that d,w;
stays bounded for as long as the solution exists. We have thus established

(7.8.16) (ea;)=—e? (e?a;)?.

7.8.2 Theorem. Assume (7.2.1) is endowed with a coordinate system of Riemann
invariants (wy,- -+ ,wy). Suppose the i-characteristic family is genuinely nonlinear.
Then any classical solution U with bounded initial values Uy, such that dw;(Uy)/dx
has the opposite sign from dA;/dw; at some point X € (—oo,0), breaks down in finite
time.

7.8.3 Theorem. Assume the strictly hyperbolic system (7.2.1) is linearly degener-
ate and is endowed with a coordinate system of Riemann invariants (wi,--- ,wy),
on a domain 0 = {U € R" : a; < w; < b;, i = 1,--- ,n}. For any initial data
Up € C'(—o0,00) with values in O, there exists a unique C" solution U to the Cauchy
problem on the upper half-plane (—oo,00) X [0, 00).

We now return to the general situation. When the i-characteristic field is gen-
uinely nonlinear, and thus, by (7.8.8), ¥i;; # 0, the term }/i,-iaiz in (7.8.6) will have a
destabilizing effect. Any expectation that this may be offset by the remaining terms in
(7.8.6), which account for the interaction effects with the other characteristic fields, is
not likely to be fulfilled, at least when the initial data are constant outside a bounded
interval, for the following reason. Equation (7.8.9) rules out the possibility of self-
interactions of the remaining characteristic fields: all interactions, other than }/iiial-z,
involve two distinct characteristic families. Now, when the initial data are constant
outside a bounded interval, mutual interactions eventually become insignificant, be-
cause waves of distinct characteristic families propagate with different speeds and
thus eventually separate. Consequently, in the long run the term }/i,-iaiz becomes the
dominant factor and drives g; to infinity in finite time. The above heuristic arguments
can be formalized and lead to the following

7.8.4 Theorem. Assume (7.2.1) is a genuinely nonlinear strictly hyperbolic system
of conservation laws. Consider initial data Uy € C*(—o0,0) such that Uy(x) = U,
a constant state, for x < a and x > b. If (b — a)*> max |U(;/ (x)| is a sufficiently small
positive number, then the classical solution of the initial value problem breaks down
in finite time.

In the literature cited in Section 7.9, the reader will find the (long and tech-
nical) proof of the above theorem as well as analogous results on the breakdown
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of classical solutions under weaker hypotheses, namely when the requirement of
strict hyperbolicity of the system is relaxed and only some of the characteristic fam-
ilies are genuinely nonlinear. There are also extensions of Theorem 7.8.3, in which
global existence of C! solutions is established when the characteristic families are
merely weakly linearly degenerate relative to some constant state U, in that, for
i=1,---,n, DA4;R; need only vanish along the i-rarefaction wave curve emanating
from U, and the initial data Uy € C!(—oo,0) stay close to U, in the sense that

(7.8.17) sup{ (1 + |x|) " (|Un(x) = U] + [Up(x) )}

is sufficiently small, for some pt > 0.

There is also a substantial body of research on the initial-boundary value prob-
lem. For comparison with the discussion in Section 5.6, let us consider a strictly
hyperbolic system (7.2.1) on the quadrant {(x,#) : x > 0,7 > 0}, under the as-
sumption that the boundary x = 0 is noncharacteristic, i.e., 4(U) < 0 < A1 (U),
for some k = 0,---,n, with Ag(U) = —oo, A,41(U) = . We impose boundary
conditions of the form (5.6.4), namely BF (U (0,t)) = 0, where B is a n X n ma-
trix such that, for any U in the manifold .# = {U : BF(U) = 0}, R”" is the di-
rect sum of the kernel of BDF(U) and the subspace spanned by the eigenvectors
{Ri+1(U),--- ,Ry(U)} associated with the incoming characteristic families. We also
assign initial data Uy € C'([0,0);R") that are compatible with the boundary con-
ditions, in that BF (Uy(0)) = 0 and B[DF (Up(0))]>U{(0) = 0. Under the above hy-
potheses, one can show (a) local existence of classical solutions; (b) breakdown, in
finite time, of classical solutions, when (at least some of) the incoming characteristic
families are genuinely nonlinear; and (c) global existence of classical solutions, when
all of the incoming characteristic families are (at least) weakly linearly degenerate
and the supremum (7.8.17) of the initial data is sufficiently small.

7.9 Weak Solutions

In view of the breakdown of classical solutions, demonstrated in the previous sec-
tion, in order to solve the initial value problem in the large, for nonlinear hyperbolic
systems of conservation laws, one has to resort to weak solutions. As explained in
Chapter IV, the issue of the admissibility of weak solutions will have to be addressed.

In earlier chapters, we mainly considered weak solutions that are merely bounded
measurable functions. Existence in that function class will indeed be established, for
certain systems, in Chapter XVII, through the functional analytic method of com-
pensated compactness. On the other hand, there are systems of three conservation
laws for which the Cauchy problem is not well-posed in L'. Apparently, the function
class of choice for hyperbolic systems of conservation laws in one spatial dimen-
sion is BV, which provides the natural framework for envisioning the most important
features of weak solutions, namely shocks and their interactions.

The finite domain of dependence property for solutions of hyperbolic systems,
combined with the fact that our system (7.2.1) is invariant under uniform stretching



258 VII Hyperbolic Systems of Balance Laws in One-Space Dimension

of coordinates: x =X+ay , t =f+at , a > 0, suggests that the admissibility of
BV weak solutions may be decided locally, through examination of shocks and wave
fans. These issues will be discussed thoroughly in the following two chapters.

7.10 Notes

The general mathematical framework of the theory of hyperbolic systems of conser-
vation laws in one space dimension was set in the seminal paper of Lax [2], which
distills the material collected over the years in the context of special systems. The
notions of Riemann invariants, genuine nonlinearity, simple waves and simple wave
curves, at the level of generality considered here, were introduced in that paper. The
books by Smoller [3] and Serre [11] contain expositions of these topics, illustrated
by interesting examples.

The simple hydrodynamic model (7.1.4) for traffic flow was introduced by
Lighthill and Whitham [1]. Its elaborations and extensions have provided the vehicle
for exhibiting and exploring a variety of features of hyperbolic systems of conser-
vation laws. Extensions address traffic flow on road networks, under proper mod-
eling of interactions at the junctions. In particular, when users plan their itinerary
so as to minimize their personal travel cost, the network is expected to operate
at a state of Nash equilibrium. Systems of conservation laws with the same flavor
model pedestrian flow and gas flow in a network of pipes. A comprehensive treat-
ment is found in the monograph by Garavello and Piccoli [2]. Other references in-
clude Holden and Risebro [3], Aw and Rascle [1], Tong Li [1,2,3,4], Greenberg [4,5],
Colombo [1], Greenberg, Klar and Rascle [1], Bagnerini and Rascle [1], Benzoni-
Gavage and Colombo [1], Tong Li and Hailiang Liu [1,2], Coclite, Garavello and
Piccoli [1], Herty and Rascle [1], Garavello and Piccoli [1,2,3,4,5,6,7,8], Benzoni-
Gavage, Colombo and Gwiazda [1], Colombo, Goatin and Priuli [1], Colombo,
Goatin and Piccoli [1], Colombo, Goatin and Rosini [1], Berthelin, Degond, Delitala
and Rascle [1], D’ Apice, Manzo and Piccoli [1], Marigo and Piccoli [1], Godvik and
Hanche-Olsen [1], Coclite and Garavello [1], Colombo and Marcellini [4], Colombo,
Marcellini and Rascle [1], Colombo and Garavello [1,2] Colombo and Mauri [1],
Colombo and Marcellini [1,2,3], Chalons, Goatin and Seguin [1], Amadori, Goatin
and Rosini [1], Goatin [2], Garavello [1], Garavello and Goatin [1,2], Lee and Liu
[1], Bressan and Han [1,2], and Bressan, Liu, Shen and Yu [1].

The derivation of the chromatography equation (7.16), the Buckley-Leverett
equation (7.1.5) for two-phase flow, and the systems (7.1.21) and (7.1.22) for multi-
phase flow is found in the book by Rhee, Aris and Amundson [1], which also pro-
vides extensive discussions and a generous list of references. See also Bourdarias,
Gisclon and Junca [1].

For the equation (7.1.7) of the rubber sheet reinforced with inextensible fibers,
see Choksi [1].

The connection of the system (7.1.14) of pressureless gas dynamics with astro-
physics is discussed in Shandarin and Zeldovich [1]. For a different application of
the system of pressureless gas dynamics, see Ha, Huang and Wang [1].
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A systematic, rigorous exposition of the theory of one-dimensional elastic con-
tinua (strings, rods, etc.) is found in the book by Antman [1]. See also Antman [2],
and Antman and Jian-Guo Liu [1]. The system (7.1.17) was studied by Freistiihler.

The shallow water wave system (7.1.19), originally derived (in a somewhat dif-
ferent form) by Lagrange [1], has been used extensively in hydraulic theory to model
flood and tidal waves and bores. A few relevant references, out of an immense bib-
liography, are Airy [1], Saint Venant [1], Stoker [1], Whitham [1], Gerbeau and
Perthame [1], and Holden and Risebro [5].

The system (7.1.23) for planar electromagnetic waves was studied thoroughly by
Serre [4].

The system (7.1.25) represents the (inviscid) Zeldovich-von Neumann-Doring
combustion theory, which reduces, as the reaction rate tends to infinity, to the simpler
Chapman-Jouguet combustion theory. See the book by Williams [1]. The system
(7.1.26) was proposed by Majda [1], as a model for the Zeldovich-von Neumann-
Doring theory. As 0 — o, it yields a model for the Chapman-Jouguet theory.

For a general thermodynamic theory of mixtures, see I. Miiller [2] and Miiller
and Ruggeri [1]. A thorough treatment of the mathematical properties of the non-
isothermal version of the system (7.1.28) is given in Ruggeri and Simi¢ [1].

There are many other interesting examples of hyperbolic systems of conserva-
tion laws, for example the equations governing sedimentation and suspension flows
(Biirger and Wendland [1], Biirger [1]), the system of flood waves (Whitham [2]), the
system of polymer flooding (Holden, Risebro and Tveito [1]), the system of granu-
lar flow and its slow erosion limit (Amadori and Shen [1,2,3,4], Bressan and Shen
[3], Cattani, Colombo and Graziano [1], Colombo, Guerra and Shen [1], Shen and
Zhang [1], May, Shearer and Daniels [1], Shearer and Giffen [1], Shearer, Gray and
Thornton [1]), and a system modeling the advance of avalanches (Shen [1]).

The possibility of recovering the flux F from the eigenvectors Ry,--- ,R, of DF
is discussed by Dafermos [22], when n = 2, and by Jenssen and Kogan [1], for any n.

The failure of strict hyperbolicity in one space-dimensional systems deriving
from three-space-dimensional parent systems is discussed by Lax [6]. The system
(7.2.11) has been used extensively as a vehicle for demonstrating the features of
non-strictly hyperbolic systems of conservation laws, beginning with the work of
Keyfitz and Kranzer [2].

As we saw 1in the historical introduction, Riemann invariants were first consid-
ered by Earnshaw [1] and by Riemann [1], in the context of the systems (7.1.11)
and (7.1.12) of isentropic gas dynamics. Conditions for existence of coordinate sys-
tems of Riemann invariants and its implications on the existence of entropies were
investigated by Conlon and Liu [1] and by Sévennec [1]. The calculation of the char-
acteristic speeds and Riemann invariants of the system (7.3.18) of electrophoresis
is due to Fife and Geng [1]. A detailed exposition of the noteworthy properties of
this system is contained in Serre [11]. Serre [4] shows that the system (7.1.23) is
equivalent to (7.3.24), (7.3.25) even within the realm of weak solutions.

As already mentioned in Section 1.10, the special entropy-entropy flux pair
(7.4.6), for symmetric systems, was noted by Godunov [1,2,3] and by Friedrichs
and Lax [1]. Over the years, a great number of entropy-entropy flux pairs with spe-
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cial properties have been constructed, mainly for systems of two conservation laws,
beginning with the pioneering paper of Lax [4]. We shall see some of that work in
later chapters. The characterization of systems of size n > 3 endowed with an abun-
dance of entropies is due to Tsarev [1], who calls them semi-Hamiltonian, and Serre
[6], who named them rich. A comprehensive exposition of their theory is contained
in Serre [11]. For more recent developments in that direction, see Jenssen and Kogan
[2]. For related discussions, see Sever [5,6].

Theorem 7.5.2 is due to Boillat [2].

The earliest examples of simple waves appear in the works of Poisson [1], Airy
[2], and Earnshaw [1]; see the historical introduction. Theorem 7.6.3 is taken from
Lax [2], who attributes the proof to Friedrichs.

A thorough discussion on the explosion of weak waves in continuum physics,
together with extensive bibliography, are found in the encyclopedic article by Peter
Chen [1]. Danilov and Mitrovic [1] describe the process of shock generation by the
collision of two weak waves, in a scalar conservation law.

Local existence of C! solutions to the initial value problem in one space dimen-
sion was established by Friedrichs [1], Douglis [1], and Hartman and Winter [1]. For
a comprehensive treatment of the initial as well as the initial-boundary value prob-
lem see the monograph by Ta-tsien Li and Wen-ci Yu [1]. Under certain conditions
on the initial data, smooth solutions may exist globally in time.

It was pointed out in the historical introduction that the process of wave-breaking
was first described by Stokes [1]. The earliest result on generic breakdown of clas-
sical solutions to systems of conservation laws caused by wave-breaking is due to
Lax [3], who proved directly the case n = 2 of Theorem 7.8.2. This work was ex-
tended in several directions: Klainerman and Majda [1] established breakdown in the
case n =2 so long as neither of the two characteristic families is linearly degenerate.
John [1] derived? (7.8.6) and used it to prove Theorem 7.8.3. A detailed discussion
is found in Hérmander [1,2]. Tai-Ping Liu [13] gives an extension of Theorem 7.8.3
covering the case where some of the characteristic families are linearly degenerate.
Ta-tsien Li, Zhou Yi and De-xing Kong [1] consider the case of weakly linearly de-
generate characteristic families. See also Ta-tsien Li and De-xing Kong [1], Kong and
Yang [1], and Ta-tsien Li and Libin Wang [1,3]. A direct proof of Theorem 7.8.2, for
any n, is found in Serre [11]. Precise estimates for the equations of (nonisentropic)
gas flow and inhomogeneous nonlinear wave equations are found in Geng Chen [1]
and Chen and Young [1]. In particular, for the system of nonisentropic gas flow, see
Chen, Young and Zhang [1], and Hualin Zheng [1]. For systems with relaxation, see
Li and Liu [2,3,4].

Corli and Gues [1] consider systems with a linearly degenerate characteristic field
and establish the local existence of “stratified” weak solutions, which have Lipschitz
continuous components along the Riemann invariants of the degenerate field, but
the remaining component may have infinite variation. See also Heibig [1]. On the
other hand, the plausible conjecture that solutions to the Cauchy problem for totally

3 John’s formula for ¥, jk is different from (7.8.7) but, of course, the two expressions are
equivalent.
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degenerate systems, under smooth initial data, are globally smooth is generally false;
see Neves and Serre [2].

Examples of systems for which the Cauchy problem is not well-posed in L! are
found in Bressan and Shen [1]. See also Lewicka [1].



VIII

Admissible Shocks

Shock fronts were introduced in Section 1.6, for general systems of balance laws, and
were placed in the context of BV solutions in Section 1.8. They were encountered
again, briefly, in Section 3.1, where the governing Rankine-Hugoniot condition was
recorded.

Since shock fronts have codimension one, important aspects of their local behav-
ior may be investigated, without loss of generality, within the framework of systems
in one space dimension. This will be the object of the present chapter. The discussion
will begin with an exploration of the geometric features of the Rankine-Hugoniot
condition, leading to the introduction of the Hugoniot locus.

The necessity of imposing admissibility conditions on weak solutions was pointed
out in Chapter IV. These in turn induce, or at least motivate, admissibility conditions
on shocks. Indeed, the prevailing view is that the issue of admissibility of general
BV weak solutions should be resolved through a test applied to every point of the
shock set. In particular, the shock admissibility conditions associated with the en-
tropy condition of Section 4.5 and the vanishing viscosity approach of Section 4.6
will be introduced, and they will be compared with each other as well as with other
important shock admissibility conditions proposed by Lax and by Liu.

8.1 Strong Shocks, Weak Shocks,
and Shocks of Moderate Strength

For the hyperbolic system

(8.1.1) U+ dF(U)=0,

in one space dimension, the Rankine-Hugoniot jump condition (3.1.3) reduces to
(8.1.2) F(UL)—FU-)=s(Uy —-U-).

Actually, (8.1.2) is as general as the multi-space-dimensional version (3.1.3), once
the direction v of propagation of the shock has been fixed and F has been defined
through (7.2.2).
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When (8.1.2) holds, we say that the state U_, on the left, is joined to the state U,
on the right, by a shock of speed s. Note that “left” and “right” may be interchanged in
(8.1.2), by the invariance of (8.1.1) under the transformation (x,#) — (—x, —t). Nev-
ertheless, later on we shall introduce admissibility conditions inducing irreversibility,
as a result of which the roles of U_ and U cannot be interchanged.

The jump U, — U_ is the amplitude and its size |U; — U_| is the strength of the
shock. Properties established without restriction on the strength are said to hold even
for strong shocks. Quite often, however, we shall have to impose limitations on the
strength of shocks: |U; —U_| < 8, with § depending on DF through parameters
such as the size of the gaps between characteristic speeds of distinct families, which
induce the separation of waves of different families, and the size of derivatives of
the functions A; and R;, which manifest the nonlinearity of the system. In particular,
when 0 depends solely on the size of the first derivatives of the A; and R;, the shock
is of moderate strength; while if § also depends on the size of second derivatives,
the shock is termed weak. Of course, the size of these parameters may be changed
by rescaling the variables x,7 and U, so the relevant factor is the relative rather than
the absolute size of §.

Notice that (8.1.2) may be written as

(8.1.3) A(U_,U)—sI|(Uy —U_) =0,

where we are using the notation
1
(8.1.4) A(V,U) = / DF (U + (1 — 7)V)dx.
0

Thus s must be a real eigenvalue of A(U_, U, ), with associated eigenvector U, —U_.
If for some U € O the characteristic speed 4;(U) is a simple eigenvalue of DF (U),
then for V and U near U, A(V,U) will have a simple real eigenvalue y;(V,U) with
associated eigenvector S;(V,U). In particular, A(U,U) = DF(U) whence we get
wi(U,U)=4(U), Si(U,U) = R;(U). Notice that A(V,U), and thereby also p;(V,U)
and S;(V,U), are symmetric in (V,U). Therefore, (finite) Taylor expansion of these
functions about the midpoint 4 (V +U) yields

(8.1.5) w(V,U) = k(L (v +U)) +0(V ~UP),

(8.1.6) Si(V,U) =Ri(3(V+U))+0(|vV - UJ?).
Suppose then that for a shock of moderate strength

(817) S:,ui(U*aU‘F)a

(8.1.8) Uy —U_=(Si(U_UL).

Thus s will be close to the characteristic speed A;. Such a shock is then called an
i-shock.
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An interesting implication of (8.1.5), (8.1.7) is the useful identity
(8.1.9) s = AU )+ LU +0(U- — U ).

In special systems it is possible to associate even strong shocks with a particular
characteristic family. For example, the Rankine-Hugoniot condition

v —0_+s(uy —u_)=0
(8.1.10)
o(uy)—o(u_)+s(vy—v_)=0

for the system (7.1.11) of isentropic elasticity implies

(8.1.11)

Recalling the characteristic speeds (7.2.4) of this system, it is natural to call shocks
propagating to the left (s < 0) 1-shocks and shocks propagating to the right (s > 0)
2-shocks.

Another important example is the system (7.1.8), which governs rectilinear adi-
abatic flow of inviscid gases. The Rankine-Hugoniot jump conditions read !

(8.1.12)
v —v_+r(uy—u_)=0

plug,sy)—plu_,s_)—r(vy—v_)=0
vpp(us,sy)—v_plu_,s_)—rle(uy,s+)+ %Zﬁ —e(u_,s_)— %zﬁ] =0.
The 2-shocks, associated with the characteristic speed A, = 0, are stationary, r = 0,

in which case (8.1.12) reduces to v— = v and p_ = p . On the other hand, 1-shocks
and 3-shocks propagate with negative and positive speed

uy —u_

(8.1.13) r:i\/_p(uﬁu)—p(u_,s_).

Furthermore, when r # 0, we may combine the three equations in (8.1.12) to deduce
the celebrated Hugoniot equation

(8114)  eluse)—e(u )= 3 [plurs:)+plus )y —u)

(see the historical introduction), which does not involve velocity or the shock speed,
but relates only the thermodynamic state variables u and s.

! Here r stands for shock speed, as the symbol s is retained to denote specific entropy.
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8.2 The Hugoniot Locus

The set of points U in state space that may be joined to a fixed point U by a shock is
called the Hugoniot locus of U. It has a simple geometric structure in the vicinity of
any point U of strict hyperbolicity of the system.

8.2.1 Theorem. For a given state U € O, assume that the characteristic speed 2;(U)
is a simple eigenvalue of DF (U). Then there is a C* curve U = W;(t) in state space,
called the i-shock curve through U, and a C? function s = s5i(7), both defined for T in
some neighborhood of 0, with the following property: A state U can be joined to U
by an i-shock of moderate strength and speed s if and only if U = W;(1), s = 5;(7),
for some t. Furthermore, W;(0) = U and

(8.2.1) 5:(0) = A:(0),
(8.2.2) 5i(0) = sDA(0)R;(0),
(8.2.3) W;(0) = Ri(U),
(8.2.4) W;(0) = DR;(0)R;(0).

The more explicit notation W;(t;U), s;(T;U) shall be employed when one needs to
identify the point of origin of this shock curve.

Proof. Recall the notation developed in Section 8.1 and, in particular, Equations
(8.1.7), (8.1.8). A state U may be joined to U by an i-shock of speed s if and only if

(8.2.5) U =0+18(0,U),

(8.2.6) s=w(U,U).

Accordingly, we consider the function

(8.2.7) H(U,7)=U-0U-1S;(0,U),

defined on & x R, and note that H(U,0) =0 , DH(U,0) = I. Consequently, by the
implicit function theorem, there is a curve U = W;(7) in state space, with W;(0) = U,
such that H(U, t) = 0 for 7 near 0 if and only if U = W;(7). We then define

(8.2.8) si(T) = Wi (U, Wi(1)).

In particular, s;(0) = 1;(U,U) = A;(U). Furthermore, differentiating (8.2.5) with re-

spect to T and setting T = 0, we deduce W;(0) = S;(U,U) = R;(U). To establish the
remaining equations (8.2.2) and (8.2.4), we appeal to (8.1.5) and (8.1.6) to get
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(8.2.9) 5i(7) = AL(3(U +Wi(t))) +O(7?)

— 24(0) + L eDA(0)R(T) + O(7%),

(8.2.10) Wi(1) = U +1R;((U + Wi(1))) + O(7?)

= U +TR;(0) + L T*DR;(U)R:(T) + O(7?).

This completes the proof.

In particular, if U is a point of strict hyperbolicity of the system (8.1.1), Theorem
8.2.1 implies that the Hugoniot locus of U is the union of n shock curves, one for
each characteristic family.

The shock curve constructed above is generally confined to the regime of shocks
of moderate strength, because of the use of the implicit function theorem, which
applies only when the strength of the shock, measured by |7|, is sufficiently small:
|7| < & with § depending on the C' norm of S;, which in turn can be estimated in
terms of the C' norm of DF and the inverse of the gap between A; and the other char-
acteristic speeds. Nevertheless, in special systems one may often use more delicate
analytical or topological arguments or explicit calculation to extend shock curves to
the range of strong shocks. For example, in the case of the system (7.1.11), combin-
ing (8.1.10) with (8.1.11) we deduce that the Hugoniot locus of any point (i,?) in
state space consists of two curves

(8.2.11) v="0++/[o( )| (u—i),

defined on the whole range of u.

Another noteworthy case of a system in which the shock curves may be extended
to the realm of strong shocks is (7.1.8). Recalling the discussion at the end of Section
8.1, we infer that the 2-shock curve through the state (i7,7,5) is determined by the
Rankine-Hugoniot jump conditions

(8.2.12) V=7, plu,s) = p(a,s).

Since p, < 0, (8.2.12) describes a simple curve parametrized by s. As regards the
other two shock curves, the Hugoniot equation (8.1.14), with (u_,s_) = (&,5) and
(us+,s+) = (u,s), determines the projection of the Hugoniot locus on the u-s plane.
Realizing this projection as a curve s = s(u), we differentiate with respect to u and
use (7.1.9) to get

(8.2.13) [2979u(u712)]$:pfp_fpu(ufﬂ).

Since 6 > 0, (8.2.13) induces a simple curve s = s(u) on some neighborhood of
ii. When the equations of state satisfy 26 —u6, > 0 on their domain of definition,
as is the case with ideal gases (2.5.20), the curve s(u) is extended to the regime of
strong shocks. However, if 20 — 10, is allowed to change signs, upon encountering a
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singular point at which 26 — 6,,(« — it) and p — p — p,(u — i1) vanish simultaneously,
s(u) may split into infinitely many branches. The velocity components of the 1- and
the 3-shock curves follow from (8.1.12):

(8.2.14) o(u) =04 /—[p(u,s(u) — p(a,5)](u—ia).

As we shall see in Section 8.5, parametrizing the shock curves by u will elucidate the
admissibility of strong shocks. In order to prepare the ground for that investigation,
we differentiate (8.2.13) to get

(8.2.15)
2 ds

2
126 — 0, (u—0)] = 126, s (u—1)] (“) +2(6, = 0, (u—1)] 5 = —Ppus(u—11).

du? du
The shock speed, r = r(u), parametrized by u, is determined by (8.1.13), with
(u_,s_) = (,5) and (u4,s4) = (u,s(u)). Upon using (8.2.13), we deduce
dr 0 ds

8.2.16 —_———
( ) "du (u—ii)? du

Returning to the general system (8.1.1), we note that the i-shock curves intro-
duced above have common features with the i-rarefaction wave curves defined in

Section 7.6. Indeed, recalling Theorems 7.6.5 and 8.2.1, and, in particular, compar-
ing (7.6.14) with (8.2.3), (8.2.4), we deduce

8.2.2 Theorem. Assume U € O is a point of genuine nonlinearity of the
i-characteristic family of the hyperbolic system (8.1.1) of conservation laws, and
X:(U) is a simple eigenvalue of DF (U). Normalize R; so that (7.6.13) holds on some
neighborhood of U. Then the i-rarefaction wave curve V;, defined through Theorem
7.6.5, and the i-shock curve W;, defined through Theorem 8.2.1, have a second order
contactat U.

Recall that, by Theorem 7.6.6, i-Riemann invariants are constant along i-rarefac-
tion wave curves. At the same time, as shown above, i-shock curves are very close
to i-rarefaction wave curves. It is then to be expected that i-Riemann invariants vary
very slowly along i-shock curves. Indeed,

8.2.3 Theorem. The jump of any i-Riemann invariant across a weak i-shock is of
third order in the strength of the shock.

Proof. Assume A;(U) is a simple eigenvalue of DF(U) and consider the i-shock
curve W; through U. For any i-Riemann invariant w, differentiating along the curve
W/l()7

(8.2.17) W = DwW,,

(8.2.18) W = W, D*wW; + DwW, .
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By virtue of (8.2.3) and (7.3.1),w=0at T =0.
We now apply D to (7.3.1) and then multiply the resulting equation from the right
by R; to deduce the identity

(8.2.19) R/ D*wR; + DwDR;R; = 0.

Combining (8.2.18), (8.2.3), (8.2.4) and (8.2.19), we conclude that w =0 at T = 0.
This completes the proof.

In the special case where the system (8.1.1) is endowed with a coordinate system
(w1, -+ ,wy) of Riemann invariants, we may calculate the leading term in the jump of
w; across a weak i-shock, i # j, as follows. The Rankine-Hugoniot condition reads

(8.2.20) F(W;(7)) = F(U) = s;(7)[W;(7) = U].
Differentiating with respect to 7 yields

(8.2.21) [DF (Wi(7)) — si(0)I|Wi(7) = 5i(7)[Wi(7) — U].
Multiplying (8.2.21), from the left, by Dw;(W;) gives
(8.2.22) (Aj —si)wj = s;Dw;[W; = U].

Next we differentiate (8.2.22), with respect to 7, thus obtaining

(8.2.23)  (Aj— i)W+ (A; —25)w; = §Dw;[W; — U] + 5;W; D*w;[W; — T].

We differentiate (8.2.23), with respect to 7, and then set T = 0. We use (8.2.1), (8.2.2),
(8.2.3), (7.3.12) and that both »v; and w; vanish at 0, by virtue of Theorem 8.2.3, to
conclude

1 1 A

RiTD2WjR,' y

where w ; is evaluated at 0 and the right-hand side is evaluated at U.

Returning to the general case, we next investigate how the shock speed func-
tion s;(7) evolves along the i-shock curve. We multiply (8.2.21), from the left, by
L;(W;(7)) to get

(8.2.25) [2i(Wi(7)) — 5i(T)|Li(Wi(7))Wi(1) = 5i(T)Li(Wi(2)) [Wi(7) — .

For 7 sufficiently close to 0, but 7 # 0,

(8.2.26) LW(D)Wi(t) >0, tL(Wi(x)[Wi(x) — 0] >0,

by virtue of (8.2.3). In the applications it turns out that (8.2.26) continue to hold
for a broad range of 7, often extending to the regime of strong shocks. In that case,
(8.2.25) and (8.2.21) immediately yield the following
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8.2.4 Lemma. Assume (8.2.26) hold. Then

(8.2.27) $i(7) >0 if and only if T[A:(Wi(7)) —si(7)] >0,

(8.2.28) $i(t)=0 if and only if L;(W;(1)) = si(7).
Moreover, $;(t) = 0 implies that W;(7) is collinear to R;(Wi(1)).

In order to see how s; varies across points where s; vanishes, we differentiate
(8.2.25) with respect to T and then evaluate the resulting expression at any T where
$i(t) = 0. Since s;(t) = A; (W;(7)) and W;(1) = aR; (Wi(t)), upon recalling (7.2.3)
we deduce

(8.2.29) 5:(T)Li(Wi(2)) [Wi(1) — U] = a*DA;(Wi()) Ri (Wi(7)),

whence it follows that at points where §; = 0, §; has the same sign as TDAR; .

By Lemma 8.2.4, s; constant implies that the i-shock curve is an integral curve
of the vector field R;, along which A; is constant. Consequently, all points along
such a shock curve are states of linear degeneracy of the i-characteristic family. The
converse of this statement is also valid:

8.2.5 Theorem. Assume the i-characteristic family of the hyperbolic system (8.1.1) of
conservation laws is linearly degenerate and A;(U) is a simple eigenvalue of DF (U).
Then the i-shock curve W; through U is the integral curve of R; through U. In fact,
under the proper parametrization, W; is the solution of the differential equation

(8.2.30) W; = Ri(W;)

with initial condition W;(0) = U. Along W;, the characteristic speed A; and all
i-Riemann invariants are constant. The shock speed function s; is also constant:

(8.2.31) si(T) = L(Wi(1)) = X(0).
Proof. Let W; denote the solution of (8.2.30) with initial condition W;(0) = U. Then
(8.2.32) [DF (Wi(7)) — (Wi (7)) [|Wi(1) = 0.

Since DA;(U)R;(U) = 0, Ai(Wi(t)) = 0 and so A;(W;(t)) = A(U). Integrating
(8.2.32) from 0 to 7 yields

(8.2.33) F(Wi(x)) — F(0) = 2(0)[Wi(x) — 0],

which establishes that W; is the i-shock curve through U, with corresponding shock
speed function s; given by (8.2.31). This completes the proof.

Th