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Preface

In 1907 Perron discovered some remarkable properties of square matrices with
positive entries. This work was substantially generalized by Frobenius who
extended Perron’s results to nonnegative matrices, that is, matrices with
nonnegative entries. Since then the theory of nonnegative matrices has been
one of the most active areas of linear algebra. It has found many applications
in various parts of mathematics and in the physical and social sciences. Indeed
in many universities the theory of nonnegative matrices has become a standard
part of the curriculum.

This book is an outgrowth of courses that I have given over the years at the
University of California at Santa Barbara and at the Technion - Israel Institute
of Technology in Haifa. It is nigh impossible to write a comprehensive treatise
on nonnegative matrices. The subject has become simply too extensive. My
purpose in writing the book is twofold:

1. To provide a textbook for two-quarter or one-semester courses either at
the undergraduate upper-division or the graduate level.

2. To write a self-contained reference work for mathematicians and scien-
tists interested in the theory of nonnegative matrices.

Thus the problem section at the end of each chapter may be regarded as being
primarily a part of the textbook, whereas the detailed references are mainly
intended for advanced students and research workers. Nonetheless, the only
prerequisite for the book is proficiency in matrix algebra at the level of a
standard undergraduate course.

The book consists of seven chapters. Chapters I, II, and III contain the
basic Perron-Frobenius theory, somewhat enlarged and brought up to date.
Most of the proofs in the book are rather simpler than the original proofs of
Frobenius. The first three chapters, with the possible exclusion of Sections 2.1
and 2.3, form the essential and indispensable core of any course on nonnega-
tive matrices. The remaining four chapters depend on this core material, but
are otherwise mostly self-contained. Chapter IV deals with combinatorial
properties of nonnegative matrices. In Chapter V the theory of doubly
stochastic matrices is presented in detail. The concluding section of the
chapter contains a complete proof of the van der Waerden permanent conjec-

vii



viii Preface

ture. Chapter VI deals with important special classes of nonnegative matrices
which find many applications in applied sciences. The last chapter presents
problems of existence of nonnegative matrices, stochastic and doubly stochas-
tic matrices, with prescribed eigenvalues or elementary divisors. Most of these
inverse eigenvalue problems are unsolved.

It has become fashionable to include in mathematical textbooks all kind of
“applications” to as many cognate and unrelated fields as possible. Thus a
textbook on our topic could include chapters or sections dealing with applica-
tions of nonnegative matrices in probability, combinatorics, numerical analy-
sis, dynamic programming, operations research, physics, chemistry, economics,
sociology, demography, and in other disciplines in which numerical models
can be represented by nonnegative matrices. However, most of such applica-
tions would be, by necessity, of infinitesimal depth, and any particular
application could interest but a small number of readers. Indeed, the only
interest they all may have in common is the mathematical theory of nonnega-
tive matrices. The aim of this book is to provide the reader with a rigorous
study of the Perron-Frobenius theory and some of its more recent develop-
ments and outgrowths. It is hoped that it will be helpful to anyone interested
in this important area of linear algebra, whether in its theoretical aspects or in
its applications.

My thanks are due to Dr. Arnold R. Krauter and Mr. Hervé Moulin, who
read the manuscript and helped to eliminate many errors and obscurities. The
work on the book was supported in part by the Office of Naval Research
under Research Contract N00014-85-K-0489.

HENRYK MINC
Santa Barbara, 1987
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Notation and Terminology

The notation and the terminology used in this book are essentially the same
as in Survey of Matrix Theory and Matrix Inequalities by M. Marcus and
H. Minc, Permanents by H. Minc, and in many other books on linear algebra
and matrix theory. For convenience, we give below a list of the more
important symbols and their definitions. Many of them are also defined in the
text. An index of symbols used in the book is to be found on page 197.

1. General Matrices. Let R, C, and P denote the set of real numbers,
complex numbers, and nonnegative numbers, respectively. If S is any set, then
M, .(S) represents the set of m X n matrices with entries from the set S. If
m = n, we use the abbreviated notation M, (S).

Matrices are represented by capital italic Latin letters, and their entries
usually by lowercase italic Latin letters. The statement “A = (a;;)” means
that A is the matrix whose (i, j) entry is denoted by a;;. The (i, j) entry of a
matrix A4 is also denoted by 4,;, although in the context of partitioned
matrices A, may represent the (i, j) block of A.

The ith row and the jth column of a matrix 4 are denoted by 4, and
A, respectively. A line of A designates either a row or a column of 4.

The n X n identity matrix is denoted by I,, or sometimes just by I.
The m X n zero matrix is denoted by 0,, ,, or simply by 0. The diagonal ma-
trix with d,,d,,...,d, as its main diagonal entries is designated by
diag(d,, d,, ..., d,). The n X n matrix all of whose entries are 1/n is denoted
by J,. The symbol J without a subscript represents a matrix, of appropriate
order, whose entries are all equal to 1. The matrix whose (7, j) entry is 1 and
all other entries are 0 is denoted by E;. In general, a matrix all of whose
entries are 0’s and 1’s is called a (0, 1)-matrix.

If A= (a;)€ M, (S), then A" € M, ,, designates the transpose of A.
The symbols |4| and 4 denote the m X n matrices whose (i, j) entries are
la;;| and a,;, respectively; A is called the conjugate of A. The adjoint (that is,
the conjugate transpose) of 4 is denoted by 4*.

The symbols " and + are used to represent direct sums. The symbol *
represents the Hadamard product: 1f A = (a,;) and B = (b,;;) are m X n
matrices, then A * B is the m X n matrix whose (i, j) entry is a;;b;; for all i
and j.

xi



xii Notation and Terminology

2. Scalar-Valued Functions of Matrices. The determinant of a square matrix
A is denoted by det(A4), or simply by det A. The permanent of an m X n
matrix 4 = (a,;), m < n, is denoted by Per(4), or Per 4; it is defined by

m
Per(4) = ). I—Iaia(i)’

o i=1

where the summation extends over all one-one functions from {1,2,..., m}
to {1,2,..., n}. If m = n, then the permanent is denoted by per(4), or per 4.
The rank of matrix 4 is denoted by p(4), and its trace by tr( 4).
3. Index Sets and Submatrices. If k and n are integers, 1 < k < n, then
Q.. , and G, , denote the set of increasing sequences of integers,

w=(w,0,),...,0;), 1L <wy<- -+ <w,<n,
and the set of nondecreasing sequences of integers,
©= (W, @W,...,0;), l<w; 0w, < -+ S0 <n,

respectively. If « € G, _,, then p(a) represents the product of the factorials of
the multiplicities of the distinct integers appearing in the sequence a. If
a = (o, a,,...,a,)is a sequence of integers and h is an integer, then a + h
and (a, h) represent the sequences (a, + h,a, + h,..., a, + h) and
(e}, @, ..., a,, h), respectively. If « € Q, , and p, g are integers, 1 <p < g
< k, then a‘7*9 denotes the subsequence («,, Qpypyeen, @)

Let 4 =(a;)€E M, (S) and let a=(a, @,...,a,) and B =
(B1, B>, ..., By) be sequences in Q, ,, and Q, ,, respectively. Then

Ala|B] = Alay, ey, ..., 04181, Bss- - -, :Bk]

denotes the & X k submatrix of 4 whose (i, j) entry is Aop, | = 1,2,..., h,
j=12,...,k; and

A("‘lB) =A(ay, ay,..., 0B, B, -, By,

is the (m — h) X (n — k) submatrix of 4 obtained from A by deleting rows
a;, &,,...,«, and columns B, B,,..., B,. Occasionally, we will use an
abbreviated notation for the principal submatrices of A: Instead of
Alay, ay, ..., aplay, ay, ..., a) and A(ay, ay, ..., ay|ay, ay, ..., a,), We write
Alay, ay, ..., a,] and A(ay, a,,..., a,), respectively. In a similar fashion,
Ala]a] and A(«|a) are abbreviated to A[a] and A(a), respectively.

The adjugate of an n X n matrix A, denoted by adj 4, (sometimes incor-
rectly called the adjoint of A, or the classical adjoint of A) is the n X n matrix
whose (i, j) entry is (—1)"*det(A(jli), i, j=1,2,...,n. The rth (de-
terminantal) compound of A, denoted by C,(4), is the (;’) X ('r’) matrix whose
entries are det(A[«|B]), &, B € Q, ,, arranged lexicographically in & and B.



Notation xiii

The rth permanental compound of A, designated by L (A), is the (f) X ('r')
matrix whose entries are per(4[«|B]), a, B € Q, ,, arranged lexicographicallﬁr

in a and B. The rth induced matrix of A, denoted by P,(A), is the (" trol
x(" - 1) matrix whose entries are per(A[a|B])/ yr(a)u(B), arranged

lexicographically in a and B, where a, 8 € G, ,, and p is the function defined
on page xii.

4. Vectors. The vector space spanned by vectors vy, v,,..., U, is repre-
sented by (v, v,,..., 1, . If u and v are vectors in a unitary space, then their
inner product is denoted by (u, v); the length of u is denoted by ||u||. The
space of n-tuples with entries (coordinates) from a set S is denoted by S”. The
special symbol E” denotes the subset of P” defined by

,n’

E"= {(xl,xz,...,x") epP"

Y x; = 1}.
i=1

If F is a field, then the vectors of the standard basis of F” are denoted by
€, €5,..., €,

5. Nonnegative Matrices and Vectors. A real matrix A is called positive if
all its entries are positive. It is called nonnegative if all its entries are
nonnegative. We write 4 > 0 if 4 is positive, and 4 > 0 if it is nonnegative.
Similarly, a real n-tuple x = (xy, x,,..., x,) is positive (nonnegative) if
x; >0 (x;20), i=12,...,n we write x >0 (x = 0). The set of n X n
doubly stochastic matrices is denoted by £,. The set of n X n (0, 1)-matrices
with k 1’s in each line is denoted by A%. Two m X n matrices, 4 = (a,;) and
B = (b,;), are said to have the same zero pattern if a;; = 0 whenever b;; = 0,
and vice versa. A matrix that has the same zero pattern as a permutation
matrix is called a generalized permutation matrix.

If « and B are nonnegative n-tuples, and a is majorized by B (see Section
5.2), then we write a < f.

6. Miscellaneous. The set of all permutations of (1,2,..., n) is denoted
by §,

n*

The Kronecker delta is defined by
5,={ % M=/
Y 0, ifi#j.

If A4, B, C are points in a plane, then A(A4, B, C) denotes the triangle with
A, B, C as its vertices, and £(A4, B, C) represents both the angle with B as its
vertex and its measure.
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Spectral Properties of
Nonnegative Matrices

1.1. LINEAR TRANSFORMATIONS ON NONNEGATIVE MATRICES

The usual method for studying invariants defined on matrices is to simplify the
structure of the matrices by linear transformations which preserve the in-
variants. In this chapter we are interested in spectral properties of nonnegative
matrices, and the relevant question to ask is: What linear transformations on
nonnegative matrices can be used in order to simplify their structure? Specifi-
cally: What linear transformations map nonnegative matrices into nonnegative
matrices and hold their spectra fixed?

We first state without proof a classical result of Frobenius on linear
transformations that preserve the determinant function.

Theorem 1.1 (Frobenius [2]). If T is a linear transformation on M, (C) that
holds the determinant of each matrix fixed, then there exist matrices U and V
such that det(UV') = 1, and

T(A) = UAV,
for all A € M (C), or

T(A) = UA™Y,
forall A € M (C).

Next we establish two results [7] about linear transformations on complex
matrices.

Theorem 1.2. If T is a linear transformation on M, (C), and T preserves the
determinant and the trace of each matrix, that is, det(T(A)) = det(A) and

1



2 Spectral Properties of Nonnegative Matrices

tr(T(A)) = tr(A) for all A € M, (C), then there exists a matrix V in M,(C)
such that

T(A4) =V 4r,
forall A € M (C), or

T(A) = V4T,
for all 4 € M,(C).

Proof. Since T preserves determinants, there exist, by Theorem 1.1,
matrices U = (u,;;) and V = (v,;) such that de(UV') = 1, and either

T(A) = UAV, (1)
for all 4 € M,(C), or
T(A) = UATY, (2)
for all 4 € M, (C). If T is of the form (1), then
T(E,;) = UEV
= U,

Now,

and

- Lu,
= (VU) .
Since tr(T(E;;)) = tr( E;;), we have
(VU),i=8,,,
for all i, j, and therefore
vu=1,

that is,

T(4) = V7'4V.



Linear Transformations on Nonnegative Matrices 3
If T(A) = UA™V for all 4 € M,(C), we can prove in a similar fashion that
w(T(E,)) = (VU),,

for all i, j, and therefore

Hence in this case
T(A)=V'4"y,
forall A e M (C). B

Corollary 1.1. A linear transformation on the space of complex n X n matrices
holds the spectrum of each matrix fixed if and only if it preserves the trace and
the determinant of each matrix.

For the proof of the main theorem of this section we require the following
lemma.

Lemma 1.1. The inverse of a nonnegative matrix A is nonnegative if and only if
A is a generalized permutation matrix.

Proof. The sufficiency of the condition is obvious. Let 4 = (4,;) € M, (P),
and suppose that A~" = (b,;) is nonnegative. Thus

™M=

a,b,; =4, i,j=1,2,...,n.
1

t

If the ith row of 4 has exactly k positive entries in positions (i, j,),
s=12,...,k, and j+# i, then b, must vanish forr =j, s =1,2,..., k. In
other words, A~! must contain a k X (n — 1) zero submatrix. But if k were
greater than 1, then clearly the determinant of 4! would be zero. Hence k
cannot exceed 1. It follows that A has at most one positive entry in each row,
and since it is nonsingular, it must be a generalized permutation matrix. W

Theorem 1.3 (Minc [7)). If T is a linear transformation on M, (C) that maps
nonnegative matrices into nonnegative matrices and preserves the spectrum of
each nonnegative matrix, then there exists a nonnegative generalized permutation
matrix P such that

T(A) = P"U4P, (3)
forall A € M (C), or

T(A4) = P7'4A"P, (4)
forall A € M (C).
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Proof. Since T preserves the spectra of all nonnegative matrices, it pre-
serves their traces and determinants. Clearly, any linear transformation that
preserves the trace of each nonnegative n X n matrix, and in particular of

each E,, will preserve the traces of all matrices in M,(C). We show that T

also holds the determinant of each complex matrix fixed.

Consider an n X n matrix X = (x,;), where the x,; are independent
indeterminates over C. The entries in 7( X) are fixed linear combinations of
the entries in X. Hence det(T(X)) — det(X) is a polynomial in the in-
determinates x;;. This polynomial vanishes if X is replaced by any nonnega-
tive n X n matrix. It follows (see Problem 9) that the polynomial det(7( X)) —
det( X) is identically zero, that is,

det(7( X)) = det( X),
and thus

det(T(A)) = det(4),
for all 4 in M,(C).

Hence T preserves both the trace and the determinant of each complex
n X n matrix and therefore, by Theorem 1.2, there exists a matrix S such that

T(A) = S748, (5)
for all 4 € M,(C), or

T(A) = S74TS, (6)
for all 4 € M,(C). If T is of the form (5), then

- ¢-1
T(E;) = ST'E;S
= -1\
= (57978,
is nonnegative for all i and j. Hence

(8™ niSy = 0,

for all h, i, j, and k. Now, not all (S§7!),, can be zero. Hence there is a
complex number & such that

*S}k= alS;l,

for all j and k. In other words, S is a scalar multiple of a nonnegative matrix
P, and therefore

S7US =P 4P,
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for all A. We have

T(E;) = P 'E,P

L

— -1\(9)
"(P l) P(

M
which must be nonnegative for all i and j. It follows, as before, that
(P~ )Py 2 0,

for all A, i, j, and k. Since some of the P, must be positive, all the (P~'),,
must be nonnegative, that is, P! must be a nonnegative matrix. The result
follows by Lemma 1.1. If T is of the form (6), the proof is similar. W

It is clear from the first part of the proof and Corollary 1.1 that the
apparently weaker premise, that T is a linear transformation on nonnegative
matrices that merely holds the determinant and the trace fixed, is sufficient to
imply the conclusion of Theorem 1.3.

1.2. IRREDUCIBLE MATRICES

A matrix X is said to be cogredient to a matrix Y if there exists a permutation
matrix P such that X = PTYP.

Definition 2.1. A nonnegative n-square matrix A, n > 2, is called reducible
(decomposable) if it is cogredient to a matrix of the form

BC]
0 D)

where B and D are square submatrices. Otherwise, A is irreducible (inde-
composable). Clearly, A is reducible if and only if there exists an order-
ing (iy, iy -5 by Jou1s Jswazr---» Juy of (1,2,..., n) such that
Alig, ig, ooy idfoits Jso2r---» Ju] = 0. A1 X 1 matrix is irreducible, by defini-
tion. '

Example 2.1. Show that if A = (a,;) > 0 is an irreducible n X n matrix and

X =(xy, Xg,-..,x,) 20, then Ax = 0 implies that x = 0.
Suppose that x, > 0. Then

0=(Ax)i = Z a;;x;
j=1

> A Xps



6 Spectral Properties of Nonnegative Matrices

and therefore a;, = 0, for all i. In other words, A has a zero column and thus
is reducible. W

We next prove an important property of irreducible matrices.

Theorem 2.1. If A is an irreducible nonnegative n X n matrix, n > 2, and y is
a nonnegative n-tuple with exactly k positive coordinates, 1 < k < n — 1, then
(I, + A)y has more than k positive coordinates.

Proof. Suppose that k coordinates of y are positive and the others are
zero. Let P be a permutation matrix such that the first k coordinates of
x = Py are positive and the others are zero. Since 4 > 0, the number of zero
coordinates in (I, + A)y = y + Ay cannot be greater than n — k. Suppose it
is n — k. This would mean that (Ay); = 0 whenever y, = 0, that is, (PAy), = 0
whenever (Py); = 0. But Py = x, and therefore the assumption that (I, + 4)y
has as many 0’s as y is equivalent to the assertion that (PAPTx), =0 for
i=k+1,k+2,...,n Let B=(b;) = PAP". Then

(Bx)i = Z bij'xj
j=1

k
= E b;;x,

Jj=1
:0,
fori=k+1,k+2,...,n But x,>0 for 1 <j< k and therefore b, =0
fori=k+1,k+2,...,nand j=12,..., k. Thus if (I, + A)y had the

same number of zero coordinates as y, the matrix 4 would have to be
reducible. =

Corollary 2.1. If A is an irreducible n X n matrix, and y is a nonzero
nonnegative n-tuple, then (I, + A)" 'y > 0.

Corollary 2.2. An n-square nonnegative matrix A is irreducible if and only if
(I, + A" >0

Proof. 1If A is irreducible, then
(1, + A)"—lej >0,

for j =1,2,..., n. In other words, all the columns of (1, + 4)"~! are positive.
The converse is obvious [see Problems 3(c) and 3(j)] ®
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Theorem 2.2. A nonnegative eigenvector of a nonnegative irreducible matrix
must be strictly positive.

Proof. Suppose that
Ax = Ax,

where A > 0 is irreducible, x > 0, and x + 0. Clearly, A must be nonnegative.
Now,

(I, + A)x=(1+2A)x.
If x had k zero coordinates, 1 < k < n, then (1 + A)x would have k zeros as

well, whereas, by Theorem 2.1, (7, + A)x would have less than k zeros. Hence
x must be positive. H

Let a{¥ denote the (i, j) entry of A*, the kth power of 4 = (a,)).

Theorem 2.3. A nonnegative square matrix A = (a;) is irreducible if and only
if for each (i, j) there exists an integer k such that a{®> > 0.

Proof. Suppose that A is irreducible. Then, by Corollary 2.2,
(I, +4)" ' >o0.
Let B = (b,;) = (I, + A)""'4. Clearly, B > 0. Let
B=A"+¢, ;A" ' + .-+ A% + 1A,
Then

b,=a’+c, af ™V + - +c,aP + cra,,> 0,

for all (i, j). It follows that for each (i, j) there must exist an integer k,
1 < k < n, such that a{}) > 0.

To prove the converse we have to show that if A is reducible, then a{¥) = 0
for some (i, j), whatever the integer k. Suppose that A4 is a reducible n X n
matrix and that P is a permutation matrix such that

Typ_|B C
pAP 01)]’

where B is s X 5. But then for all i and j satisfying s+ 1 <i<n and
1 <j <s, the (i, j) entry of PTA*P is zero for any k. ®

1.3. THE COLLATZ-WIELANDT FUNCTION
Let S be a subset of the set of complex numbers. A problem of considerable

interest in linear algebra is to determine how the spectral properties of a
matrix are affected by restricting its entries to S. For example, if S is the set of
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real numbers, then the spectra of matrices over S are symmetric relative to the
real axis. If S is the set of algebraic numbers, then all the eigenvalues of any
matrix over S are algebraic. However, in general, such problems appear to be
either unsolvable or perhaps without a clearcut solution. In 1907 Perron [8]
discovered some remarkable and unexpected spectral properties of positive
matrices. Frobenius [3,4] extended and greatly amplified Perron’s results by
generalizing them to irreducible nonnegative matrices. Various proofs of the
Perron—Frobenius theory have appeared in the literature. The methods of proof
in this book follow in most cases the elegant method developed by Wielandt
in [9].
Let E" be the subset of P” defined by

E"= {(xl,xz,...,xn) € P". Yox, = 1}.
i=1
Definition 3.1. Let 4 = (a;;) be an irreducible n X n nonnegative matrix.

Define the function f, from P” to the set of nonnegative numbers by

() = min (2,

x+0 X

for all nonzero x = (xy, x,,..., x,) € P". The function f, is called the
Collatz—Wielandt function associated with 4 [1,9].

Theorem 3.1. Let A be an irreducible nonnegative matrix and let f, be the
Collatz—Wielandt function associated with A. Then

(1) the function f, is homogeneous of degree 0;
(ii) if x is nonnegative, nonzero, and p is the largest real number for which

Ax — px = 0,

then p = f,(x);
(iii) ifx € P" x#0, andy = (I, + A)" x, then f,(y) = f(x).

Proof. (i) Fort>0and x € P”, x + 0, we have

. (A(tx))i
Sulee) = (,f;fﬂo (x);

|
o~
—

=
p —"
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(ii) The definition of f, implies that
Ax — f(x)x >0,
and that there exists an integer k, 1 < k < n, such that x, # 0 and the kth
coordinate of Ax — f,(x)x is 0. Thus if ¢ > f,(x), then the kth coordinate of
Ax ~ cx is negative. The result follows.
(iii)) We have
Ax — f(x)x = 0.
Multiplying both sides by (I, + 4)"~!, we obtain
AL+ A)" 'x — £,(x)(I, + )" 'x >0,
since 4 and (I, + 4)""' commute, that is,
Ay = f(x)y 2 0.
But by part (ii), f,(y) is the largest number satisfying

Ay — f(y)y = 0.

Hence

f(y) 2 f4(x). =
Example 3.1. Let A = (a;;) be a nonnegative irreducible n X n matrix.
Show that the function f, is bounded.

Clearly, f, is bounded below by 0. We show that it is bounded above by
the largest column sum of 4. Let

n
¢ = Za,j, j=12,..., n.
i=1
In view of Theorem 3.1(i) it suffices to prove that
fa(x) < mjaxcj,

for any x € E”. Now,

(Ax); = fo(x)x,,
that is,

n
)3 a;x; fa(x)x,,
j=1
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for i = 1,2,..., n. Therefore summing with respect to i, we have

Zn: a;;x; = Zn:fA(x)xi

since X7_,x, = 1. On the other hand,

n

n

Z Zaijxj= Z
i=1j=1 =1 i

n

2

Jj=1

and therefore

f4«(x) < maxc,. W

Theorem 3.2. Let A be an irreducible nonnegative n X n matrix. Then the
function f, attains its maximum in E".

Note that E" is closed and bounded and thus it is compact. If the function
f4 were continuous on E”, the result would follow immediately. Clearly, f, is
continuous at any positive n-tuple in E”. However, the function f, may not
be continuous on the boundary of E”. For example, if

2 21
2 21

0 2 1

A=

and x(¢) = (1,0, ¢) /(1 + ¢), where ¢ > 0, then
Ax(e) =2+ &2 +¢,¢e)/(1 +¢),

and

(2 + ¢ 3
min| —y—, |

=1.

fa(x(€)

However,

fox(0)) =2#1= zi_{rz)fA(x(s))-
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Proof of Theorem 3.2. Let
G=(I,+A4) 'E"={y|y=(I,+4)" 'x, xc E"}.

Then G is a compact set. Also, by Corollary 2.1, all the n-tuples in G are
strictly positive. Hence f, is continuous on G. Since G is compact, the
function f, attains its maximum value in G at some y° = (y?, y2,..., y0) €
G. Let x°=y%/¥" y"€ E", and let x be any vector in E". Then if
y = (I, + A)" 'x, we have

fax) < f ), by Theorem 3.1(iii),
< f4»°), by the maximality of y° in G,
=f4(x°), by Theorem 3.1(i).

Since x was any vector in E”, it follows that f, has an absolute maximum in
E"at x°. =

14. MAXIMAL EIGENVALUE OF A NONNEGATIVE MATRIX

The following theorem is the best known and perhaps the most important part
of the Perron—Frobenius theory.

Theorem 4.1. An irreducible nonnegative matrix A has a real positive eigen-
value r such that

r>|A,,

for any eigenvalue N, of A. Furthermore, there is a positive eigenvector corre-
sponding to r.

(The eigenvalue r is called the maximal eigenvalue of A, and a positive
eigenvector corresponding to r is called a maximal eigenvector of A.)

Proof. Let A be an irreducible nonnegative n X n matrix. By Theorem
3.2, there exists a vector x° in E” such that

F4(x°) = f(x),
for all x in E” Let
r=fA(x0)’
that is,

r=max{ f,(x)|x € E"}.
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We first show that r is positive. Let u = (1,1,...,1)/n. Then

r=f(u)
min (Au)i

i u;

n
min Y, a;;
H j=1
> 0,

since 4 cannot have a zero row. Next, we show that r is an eigenvalue of 4.
We certainly have

Ax® —rx%> 0. (1)

Suppose that Ax® — rx® # 0. Then, by Corollary 2.1,

(I, + 4)" " (A4x° — rx°) > 0,
that is,
Ay® —1y® >0, )
where y° = (I, + 4)" 'x° Since (2) is a strict inequality there exists a
positive number ¢ such that
Ay — (r+¢)y° = 0.
But then, by Theorem 3.1ii),

r+e<fy°),

and therefore

r <fA(y0)’

which contradicts the maximality of r. Hence (1) is an equality, r is an
eigenvalue, and x° is a nonnegative eigenvector corresponding to r.

Note that we have actually shown that if x is a nonnegative nonzero vector
and

Ax —rx =20,

then x 1s an eigenvector of 4 corresponding to r. Then Theorem 2.2 implies
that x > 0.
Next, let Az = A,z where z = (2, z,,..., z,) # 0. Then
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and therefore

n

Adlzd < Xalzl, =12, n. (3)

j=1
In vector notation, (3) reads
IAillz] < A]z].
Therefore, by Theorem 3.1(ii) and the definition of r,
Al <fllzD<r. m

Example 4.1. Let

1 2 3
A=10 1 1}
2 1 3

Let x = (0,1,1), y = (I, + A)?x, and z = (I, + A)*y. Compute f(x), f,(»),
and f,(z). Compare these numbers with r, the maximal eigenvalue of A4.
We compute

fi(x) = min(2,4) = 2,

- 10 11 20
(L+4)y =2 5 6]
12 10 23

y = (31,11, 33)
= 75(0.4133...,0.1466. .., 0.44),
fd(y) = min(52, #, ) = 4,
z = (1091, 315, 1241)
= 2647(0.4121...,0.1190...,0.4688...),
fu(z) = min(35t, 4%, $53¢)

1556

3

15
493968 ... .

il

We find by straightforward computation that » = 5, and the corresponding
eigenvector in E” is (0.4117...,0.1176...,04705...). &

For nonnegative matrices that are not necessarily irreducible we can derive,
by a continuity argument, the following weaker version of Theorem 4.1.
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Theorem 4.2. If A is a nonnegative n X n matrix, then A has a nonnegative
eigenvalue r that is at least as large as the absolute value of any eigenvalue of A,
and a nonnegative eigenvector corresponding to r.

Proof. Let A, = A + ¢B, where ¢ > 0 and B is any positive n X n matrix.
Then A, > 0 and therefore, by Theorem 3.1, A, has a maximal eigenvalue 7,
such that

r,> X9, (4)

for any other eigenvalue A\ of A4,. (In fact, as we shall see later, r, > |A(?|
since 4, > 0.) Also, there exists a positive vector x(® in E” such that

AxD = rx®, (5)

Now, eigenvalues and eigenvectors are continuous functions of entries of the
matrix. Hence 4, & 4 and r, - r as ¢ = 0. Moreover, ¥ — \,, where the A,
are eigenvalues of A, and, by (4),

r> |\l =0.
Also, (5) implies that
Ax = rx,

where x € E" and therefore x # 0 is an eigenvector. H

In case A is irreducible, we can refine the result in Theorem 4.1.

Theorem 4.3. The maximal eigenvalue of an irreducible nonnegative matrix is
a simple root of its characteristic equation.

Proof. Let r be the maximal eigenvalue of 4, an irreducible nonnegative
n X n matrix, and let x be a nonnegative eigenvector corresponding to r. By
Theorem 2.2, x > 0.

First, we show that the eigenspace of A corresponding to r is one-dimen-
sional. Suppose that

Ay =ry,

where y # 0. Then, by the triangle inequality,

Aly| = rlyl, (6)

where |y| is a nonnegative nonzero vector.

Thus we conclude as in the proof of Theorem 4.1 that (6) is an equality and
|¥| is a positive eigenvector of A corresponding to r. We have actually shown
that an eigenvector of 4 corresponding to r cannot have zero entries. Next,
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suppose that x = (x;, X5,...,X,) and y = (yy, ¥,,..., J,) af€ nonzero vec-
tors in the eigenspace of A corresponding to r. Then |x| > 0 and [y| > 0.
Now, the vector y,x — x;y is in the eigenspace of r but since its first
coordinate is zero it cannot be an eigenvector. Hence

NX — Xy = O»

and x and y are linearly dependent. It follows that the eigenspace of r is of
dimension 1.

We are now ready to prove that r is a simple root of the characteristic
equation of A. Let A(A) = det(A ], — A). We show that A'(r) # 0.

Recall that if every entry of X = (x,;) is a differentiable function of A, then

n

L (@e(X)) = X (~1)"det(X(il))) mrx,

i, j=1
Thus
(A = S (det(A I, - 4))
= 3 det(M, — 4)(ili)
i=1
= tr(adj(A 1, — 4)),
since
d
d_)\(()‘ln - A)ij) = 81','-
Hence

N(r) = tr(adj(rI, — 4)).
Let B(r) = adj(rI, — A). Then

(rl,— A)B(r) = ILdet(rI, — A)
= (. (7)

Since r has a one-dimensional eigenspace, the rank of rI, — 4 is n — 1 and
therefore B(r) # 0. Suppose that the column B(r)" is different from zero.
Then, by (7),

(rl, ~ A)B(r)' = 0,

that is, B(r) is an eigenvector corresponding to » and thus B(r)" is a real
multiple of a positive vector, namely, either B(r)") > 0 or B(r)) < 0. In
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other words, every column of B(r) is either all positive or all negative or zero,
and at least one of the columns is nonzero. Now, (B(r))T = adj(rl, — A7),
and AT is irreducible with maximal eigenvalue r. Hence the above conclusion
applies also to columns of (B(r))", that is, to rows of B(r). Thus each row
and each column of B(r) is either positive or negative or zero, and at least one
of the rows and one of the columns is nonzero. It follows that either

B(r) >0,
or

B(r) <O0.
Thus

A'(r) = te(B(r)) # 0,

and therefore r is a simple root of the characteristic equation of 4. W
Corollary 4.1.  Let A be an irreducible n X n matrix with maximal eigenvalue r
and let B(A) = adj(AI, — A). Then

B(r) > 0.

The proof of Corollary 4.1 is quite easy, and we leave it as an exercise

(Problem 11).

Corollary 4.2. If A is an irreducible matrix with maximal eigenvalue r, and
Ax = rx, then x is a scalar multiple of a positive vector.

We have shown that the maximal eigenvalue of an irreducible matrix is
simple. Nevertheless, the matrix may well have other positive eigenvalues. It
is therefore remarkable that the maximal eigenvector of an irreducible matrix
is (apart from positive multiples) the only nonnegative eigenvector the matrix
can have.

Theorem 4.4. An irreducible matrix has exactly one eigenvector in E".

Proof. Let A be an irreducible matrix with maximal eigenvalue r, and let
y € E" be a maximal eigenvector of AT. Then y > 0. Also, let z € E" be any
eigenvector of 4,

Az = {z.
If (, ) denotes the standard inner product, then

Hz,y) =(4z,y)
= (z,47y)
=r(z, y).
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Now, (z, y) > O since z € E" and y > 0. Therefore { = r. In other words, the
only eigenvalue of 4 with nonnegative eigenvector is r. The result follows by
Theorem 43. ®

We have shown that
r=max{ f(x)|x € E"}

. (Ax),
= max{mmui'x € E"}
x#0 X
is the maximal eigenvalue of 4, and that r is a simple eigenvalue and has a
positive eigenvector. Alternatively, we can arrive at the same conclusions by
defining a function g,:
(Ax);
ga(x) = max X, (®)
x;#0

i 1

for x € P", x # 0, where we define g ,(x) = + oo if for some i, x, = 0 and
(Ax); # 0 [or equivalently we say that g,(x) is not defined for such x]. We
show that

s = min{ g,(x)|x € E"}

. { (Ax),;
= min{ max ———
x#0 X

x€E "}
is the maximal eigenvalue of A.

Theorem 4.5. Let A be an irreducible matrix and let g 4 be the function defined
in (8). Then

(i) g4 is homogeneous of degree O;
(ii) if x is a nonnegative n-tuple such that x; > 0 whenever (Ax); > 0, and o
is the least number for which

ox — Ax > 0,
then o = g (x);
(iii) if x is as in (i) and y = (I, + A)""'x, then g () < g4(x);
(iv) g, attains its minimum in E" at a positive n-tuple.

The proof of Theorem 4.5 is similar to those of Theorems 3.1 and 3.2. We
leave it as an exercise (Problem 10).

Theorem 4.6. Let A be an irreducible nonnegative n X n matrix with maximal
eigenvalue r. If
s =min{g,(x)|x € E"},

then s = r.



18 Spectral Properties of Nonnegative Matrices
Proof. Let x° be a positive n-tuple in E” such that

g4(x°) < g4(x),

for all x € E” for which g, is defined. We show that s is an eigenvalue and
x0 is an eigenvector of A4. Since

sx%— Ax" > 0,

it suffices to prove that sx° — Ax° cannot be nonzero. Suppose that it is not
zero. Then, by Corollary 2.1,

(I, + A)" '(sx° — 4x%) > 0,
that is,
sy0 — A4y° > 0,
where y° = (I, + A)""x° Thus, for sufficiently small positive &,
(s —e)y° = 4y° >0,
and therefore, by Theorem 4.5(ii),

g4(»°) <s—e

But this would imply that

84(»°) <,
which would contradict the minimality of s. Therefore

Ax% = sx°,

and s is an eigenvalue of A. It follows from Theorem 4.4 that s = r. W

We conclude this section with an important criterion for the irreducibility
of a nonnegative matrix.

Theorem 4.7. A matrix A > 0 with a simple maximal eigenvalue r is irreduci-
ble if and only if both A and AT have positive eigenvectors corresponding to r.

Proof. The necessity of the condition follows from Theorem 4.1. To prove
the converse assume that 4 > 0 has a simple maximal eigenvalue r, and that
both 4 and AT have positive eigenvectors corresponding to r. If A were
reducible, then there would exist a permutation matrix P such that

B D
PUP = [ ]
0 C
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where B is a k X k submatrix. Note that PTAP has a simple maximal
eigenvalue r and both PTAP and PTA™P have positive eigenvectors corre-
sponding to r. Now, r would have to be the maximal eigenvalue of either B or
C. If Bv = rv, where v is a nonnegative nonzero k-tuple, then the n-tuple
v + 0, which clearly is not a multiple of the positive eigenvector, would be an
eigenvector of PTAP corresponding to r. This would contradict the simplicity
of r. If r were the maximal eigenvalue of C, then CTu = ru for some
nonnegative nonzero (n — k)-tuple 4 and 0 + u would be an eigenvector of
PTAP linearly independent of the positive eigenvector. This again would
contradict the simplicity of ». M

1.5. PRINCIPAL SUBMATRICES OF NONNEGATIVE MATRICES

Submatrices of nonnegative matrices are, of course, nonnegative. The follow-
ing results due to Frobenius [4] give a striking relation between the maximal
eigenvalues of a nonnegative matrix and its principal submatrices.

Theorem 5.1. The maximal eigenvalue of an irreducible matrix is greater than
the maximal eigenvalue of any of its principal submatrices.

Proof (Marcus and Minc [6]). Let A4 be an irreducible n-square matrix.
We can assume without loss of generality that the principal submatrix in
question lies in the first ¢ rows and first ¢ columns, that is,

_[B
A“[D E]

where B is the principal ¢ X ¢ submatrix. Let r and k be the maximal roots of
A and B, respectively. Let y be a nonnegative eigenvector of B corresponding
to k, and let x = y + 0 be the n-tuple whose first ¢ coordinates are those of y,
and whose last n — ¢ coordinates are 0. Then

and therefore

Hence, by Theorem 3.1(ii),
k<fi(x)<r.

The last inequality is strict by virtue of the fact that x is not a positive vector.
n
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As in the proof of Theorem 4.2 we can use a continuity argument to obtain
a similar though weaker result for nonnegative matrices that are not neces-
sarily irreducible.

Theorem 5.2. The maximal eigenvalue of a principal submatrix of a nonnega-
tive matrix A cannot exceed the maximal eigenvalue of A.

Of course, it is quite possible for the maximal eigenvalue of a principal
submatrix of a nonnegative matrix A to be equal to the maximal eigenvalue of
A. In fact, we have the following criterion for reducibility.

Theorem 5.3. A nonnegative matrix A with maximal eigenvalue r is reducible
if and only if r is an eigenvalue of a principal submatrix of A.

Proof. Sufficiency follows immediately from Theorem 5.1. To prove the
converse suppose that 4 is reducible, that is, 4 is cogredient to a matrix of the

form
[B C
0 DY

where B and D are square. Then the spectrum of A4 consists of the eigenvalues
of B together with those of D. Hence r must be either an eigenvalue of the
principal submatrix B or of the principal submatrix D. ®

PROBLEMS
1 Show that a nonnegative n X n matrix A is reducible if and only if there
exists a proper subset {e;,e;,...,e; } of the standard basis of R” such
that

(Ae;, Ae; ..., Ade; Y C (e, e ,....e ).

"k

2 Show that the n X n permutation matrix with 1’s in positions
1,2),(2,3),...,(n — 1, n), and (n, 1), is irreducible.

3 Prove or disprove the following statements. (4 and B denote arbitrary
nonnegative n X n matrices.)
(a) If A is irreducible, then AT is irreducible.
(b) If A is irreducible and p is an integer, then A7 is irreducible.
(¢) If A7 is irreducible, then A is irreducible. A
(d) If A4 and B are irreducible, then 4 + B is irreducible.
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(e) If A and B are irreducible, then AB is irreducible.
(f) If all eigenvalues of A4 are 0 then A is reducible.

0 1 1
1 0 0
1 0 0

(g) The matrix

is reducible.
(h) The matrix

0 01 0
0 0 0 1
0 1 0 O
1 0 0 O
is reducible.
(i) The matrix
0 0 1 0o
0 0 1 1
1 0 0 O
1 1 0 O

is reducible.
() A is irreducible if and only if I, + A is irreducible.
(k) If AB is irreducible, then BA is irreducible.

4 Prove that if A4 is an irreducible matrix with minimal polynomial of
degree m, then for every (i, j), i # j, there exists a positive integer k not
exceeding m — 1 such that a{¥ > 0.

5 Prove that if 4 is a nonnegative matrix and A2 = I, then either 4 = I,
or A is cogredient to a direct sum of 2 X 2 matrices of the form

© <]

and, possibly, an identity matrix [5].

6 Show that a permutation matrix is irreducible if and only if it is
nonderogatory.

7 Let A be an irreducible nonnegative n X n matrix with a positive trace.
Show that 4* > 0 for a sufficiently large integer k.

8 Let A4 be a nonnegative n X n matrix. Show that if (7, + 4)x has less
zero entries than x, for every nonnegative nonzero n-tuple x with some
zero entries, then A is irreducible.
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Let f(x,, x,,...,X,,) be a polynomial in indeterminates x,, x,,..., X,
with complex coefficients. Show that if f(ay, a,,...,a,) =0 for al
nonnegative 4a,, d,,..., d,,, then f(x;, x5,..., x,,) = 0. (Hint: Use in-
duction on m and express f(x,, x,,..., X,,) as a polynomial in x,, with
coefficients in C[xy, x5,..., X,,_1]-)

Prove Theorem 4.5.
Prove Corollary 4.1.

Let 4 € M, (P) be irreducible and let f, be the Collatz—Wielandt
function associated with A. Find a necessary and sufficient condition on
A that f, be continuous on all of E".

Let G be the set defined in the proof of Theorem 3.2. Find the maximum

and the minimum of ¥, y; as (y1, 5, ..., ¥,) runs over all n-tuples in G.
Let
1 3 4
A4=12 1 1|,
3 4 5

and let f, be the Collatz-Wielandt function and g, the function defined
in Section 1.4. Compute f,(x) and g,(x) for each of the following x:
1,1,1), (1,0,2), and (2, 1, 3). Deduce a lower bound and an upper bound
for the maximal eigenvalue of A4.

Let A be the matrix in Problem 14. Let y = (I, + A)%x where x =
(2,1, 3). Compute f,(y) and g,(y). Use these data to obtain a lower
bound and an upper bound for the maximal eigenvalue of 4. How do
these bounds compare with those in Problem 14?

Let 4 and B be nonnegative n X n matrices. Show that if A is irreducible
and B +# 0, then the maximal eigenvalue of A + B is greater than that
of A.

Let C be a principal submatrix of a nonnegative matrix A4 with maximal
eigenvalue r. If r is an eigenvalue of C show that r is also an eigenvalue
of every principal submatrix of 4 containing C.

Let B> 0, x € E" and let y = (y, ¥,..-, ¥,) = Bx. Show that

n
m}ncj < Yy< mjaxcj,
i=1

where the ¢; are the column sums of B, ¢; = X7_;b,;, j=1,2,...,n.
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Localization of the Maximal
Eigenvalue

2.1. BOUNDS FOR THE MAXIMAL EIGENVALUE
OF A NONNEGATIVE MATRIX

The problem of localizing the maximal eigenvalue of a nonnegative matrix is
of importance not only in theoretical mathematics but also in computations
where iterative processes require an initial estimate of the maximal eigenvalue.
Such estimates are particularly useful if the bounds are expressed in terms of
easily computable functions of the entries of the matrix, such as row sums or
column sums.

The best known and most frequently used bounds for the maximal eigen-
value of a nonnegative matrix are due to Frobenius [2]. Let 7; and c; denote
the ith row sum and the jth column sum of a matrix 4 = (a;;) € M,(C),
respectively, that is,

n
=3 a,, i=1,2,...,n,

t=

[

and

Theorem 1.1. If A is a nonnegative matrix with maximal eigenvalue r and row
sums ry, ry,..., r,, then

p<r<R, (1)

where p = min,r,, and R = max,r,. If A is irreducible, then equality can hold on
either side of (1) if and only if all row sums of A are equal.

Clearly, an analogous result holds for column sums.

24



Bounds for the Maximal Eigenvalue of a Nonnegative Matrix 25

Proof. We first assume that A is irreducible. Let (x,, x,,..., x,) > Obea
maximal eigenvector. Then

n
Zaijxj=rxi, i=1,2,...,n.
Jj=1

Now, if x,, > x; for j = 1,2,..., n, then

v
™
a

&

=r
= p.
If A happens to be reducible, then the result follows by a continuity

argument, in the same manner as Theorems 4.2 and 5.2 in Chapter I follow
from Theorems 4.1 and 5.1, respectively. ®

An alternative proof, which easily yields the conditions for equality, is an
immediate consequence of the following elementary lemma.

Lemma 1.1. Let a be an eigenvalue of A and let (xy, x,,...,x,) and
(V1> Var---, ¥,) be eigenvectors corresponding to a of AT and A, respectively.
Then

n n

a Z xi = ; xlrl’ (2)

i=1

and
n n
aX y= Lyc (3)
j=1 =1
Proof. We have

n
ax; = Za”—x,, i=1,2,...,n.
t=1
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We sum both sides with respect to i,

g
_‘h
*

i

L
M= L=
Kol
™M= "
"h .

..
]
—
~
I
—

il
M=
_‘><
=

..
I
—

Formula (3) is proved similarly. B

Now, let A4 be a nonnegative matrix with maximal eigenvalue r. Let
(xy, X9,-+.,%,) = 0 be a maximal eigenvector of AT, and let X7 ,x, = 1.
Then, by (2),

n
r= sz’n (4)
t=1

and therefore

minr, < r < maxr,. (5)
t t

Moreover, if A4 is irreducible, then (x,, x5, ..., x,) > 0. In this case equality
on either side of (5) can hold if and only if

r=r,

for t=1,2,...,n. In other words, if A is the matrix described in the
statement of Theorem 1.1, p < R, and A is irreducible, then

p<r<R. W (6)

Theorem 1.1 can also be proved for an irreducible matrix 4 by considering
f4(u) and g ,(u) for an appropriate vector u (see Problem 2). The result can
then be extended to all nonnegative matrices by a continuity argument.

Equality (4) can be used to improve Frobenius’ bounds. We shall require
the following inequality:

If 4, 44, ..., g, are positive numbers, then
. Pi _Pitpyt - tp, pi
min — < < max —, 7
T Gttt T g @)

for any real numbers p,, p,, ..., p,. Equality holds on either side of (7) if and
only if all the ratios p,/q, are equal. The proof of (7) is elementary (see, e.g.,

(4D
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Theorem 1.2. Let A = (a;;) be a nonnegative matrix with nonzero row sums
1 by, ..., r, and maximal eigenvalue r. Then

,( Za )srsmax( Za,,r,) (8)

53 i\l 5

Proof. We assume that A is irreducible. The result can be then extended
to reducible matrices by a continuity argument. Let r,(42) denote the ith row
sum of matrix 4°. Applying formula (4) to matrices 4> and 4 we have

rr= Y x;r(4%),

and

where (x;, x,,..., x,,) is the maximal eigenvector of AT [and thus of (4%)T]
with Y7 ;x, = 1. Therefore

= _’_'_ 1==1x ( 2)
o Xroxr
and, by (7),
2 2 2 2
minr’(A ) < minri(A ) <r< maxri(A ) Smaxr"(A )
i Y x;#0 r x,#0 r; i s
Now,

-
==
S
[*)
p—
|
™M=
™M=
s
:n
S~

and the result follows. B

Alternatively, we can show that (8) follows from Theorem 1.1. Let

D= diag(rl’ Fyseens rn)‘
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Note that the ith row sum of D™4D is
” Z a; 't
r; (=1

Now, apply Theorem 1.1 to the matrix D™'4D (which is, of course, similar
to A):

( Za”r) r<max( % au

't=1 ! ’11

We also observe that the bounds in (8) are sharper than those in (1). For,
by (7),

2“:l==1anr
minz, < Zn—ﬁ < maxr,,
t t=1%1ir t
that is,
1 n
p= =z Z r, < maxr, = R,

fori=1,2,...,n
If A is a positive matrix with maximal eigenvalue r, maximum row sum R,
and minimum row sum p, and if p < R, then as noted i (6),

p<r<R.

Ledermann proposed the problem of determining positive numbers p,; and p,
such that

pt+p<r<R-p,.
He obtained the following result.
Theorem 1.3 (Ledermann [3]). Ler A = (a, ;) be a positive matrix with maxi-

mal eigenvalue r and row sums ry, ry,..., 1. If R = max;r,, p = min,r, n =

it
min, ;a,;, and R > p, then

p+n(%—l)5rsR—n(l~\/§), 9)

where § = max, _, (1,/1)).

Proof. Let (x4, x,,...,x,) be a positive maximal eigenvector of 4. We
can assume without loss of generality that 1=x,>x,> --- >x,> 0.
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[Such an ordering of the x; can be achieved by premultiplying A by a suitable
permutation matrix P and postmultiplying it by P~! (see Problem 3).]
Clearly, r, < r < r, (see Problem 4). Therefore r, /r; < 1, and thus r, /r, < 4.
Now,

n
= E anjxj < rn’
Jj=1
and

n
r= Z ax; > x,r.

j=1
It follows that
rn
x
" xnrl
Hence
X, < AP
n
Thus
r= Y a,x
j=1
n—1
< Xayt a8
j=1
= rl - aln(l - ‘/g)
<R-q(1-3).
Similarly,

Ledermann’s result was improved by Ostrowski.
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Theorem 1.4 (Ostrowski [7]). Let A = (a;;) be a positive n X n matrix with
maximal eigenvalue r and row sums ry, r,, ..., r,. Let 6 = \[(p — 1) /(R — n),

where R = max,r,, p = minr,, and n = min, ;a, . Then

p+n(%—1)sr5R—n(l—o).

Proof. Let (x, x,,...,x,) be a maximal eigenvector. For simplicity,
assume that 1 = x; 2 x, = --- = x, > 0. Then

n
rx; = E a;;x;
Jj=1

n
2ai1+xnza,j

j=2
=ay(1-x,) +rx, i=1,2,...,n.
Therefore
rz (xnri+7'(1 _xn))/xi7 i=1,2,...,n. (10)
Similarly,
n—1
rx; < > a;+a,x,
Jj=1

= ri - ain(l - xn)’
and therefore
r<(rn—ml-x,))/x, i=12,...,n. (11)
Let r, = R and r, = p. Setting i = s in (10), we have
r>(x,R+mn(l-x,))/x,
>x,R+7n(1-x,)
=x,(R—1)+1. (12)
Similarly, substituting ¢ for { in (11) we obtain
pP=m
r< s+ (13)

n

Hence, from (12) and (13),

p—n

X

x(R-m)<r-mn<

b
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and therefore

x, < Z:: = 0.

Now, put i = n in (10) and i = 1 in (11),

rn+11(3}——1)3r$r1—11(1—xn).

n

Thus a fortiori
1
p+'q(;-—l)5rSR—'q(l—o). [

Note that Ostrowski’s bounds are sharper than those in Theorem 1.3:

2_ P17 [y T
6°=p5—— <z <max— =206
R—n =R~ o1

A

(see Example 1.1 below).

Brauer [1] improved these bounds for the maximal eigenvalue of a positive
matrix and showed that his is the best possible result involving 5, R, and p, in
the sense that for any prescribed R, p, and 7 satisfying R > p > ny > 0,
there exist positive n X n matrices with maximum row sum R, minimum row
sum p, and minimum entry 7, for which Brauer’s bounds are attained.

Theorem 1.5 (Brauer [1]). Let A, r, R, p, and n be as defined in the
statement of Theorem 1.4. Let

=R—2n+\/R2—4n(R—p) h=—p+211+\/p2+411(R—p)
8 2(p — n) ’ 21 '

Then

p+n(h—1)<r<R-19(1-1/g).

Proof. The method of proof is to apply the bounds in Theorem 1.1 to two
matrices obtained from A by means of suitable similarity transformations.
Let r,, ry, ..., r, denote the row sums of 4. We can assume without loss of
generality that r, = R and r, = p. Let B be the matrix obtained from A4 by
multiplying the last row of 4 by g and its last column by 1/g. Obviously, 4
and B are similar and have the same spectrum. The jth row sum of B,
i=1,2,....,n—1,is

r—a,(1-1/g) <R-9(1-1/g)
= K, say.
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The nth row sum of B is equal to
go—a,(g—1)<gp—n(g—1)
= K,, say.

A straightforward computation shows that if g is as defined in the statement
of the theorem, then K; = K,. Hence all row sums of B are bounded above
by R — (1 — 1/g), and, by Theorem 1.1,

r<R-7(1-1/g).

In order to obtain the lower bound, we construct matrix C obtained from A
by multiplying its first row by 1/, and its first column by 4. Then 4 and C
are similar. The first row sum of C is

R/h+ay(1—1/h) = R/h +q(1 — 1/h) = K,,
and the ith row sumof C, i =2,3,...,n,is
rr+ay(h—1)=2p+n(h—1)=K,.

Again, a straightforward computation shows that if 4 has the prescribed value,
then K; = K. Thus all row sums of C are bounded below by p + 5(h — 1),
and, by Theorem 1.1,

rzp+n(h-1). &

We now construct two matrices Q and Q’ with prescribed R, p, and 1,
R > p = ny > 0, whose maximal eigenvalues attain the upper and lower
bound in Theorem 1.5, respectively. Let

P, | P
0= Lo
e

Py Ui
where every entry is not less than 7, all the row sums of the (n — 1) X (n — 1)
submatrix P, are equal to R — 7, every entry in P, is 7, and all those in P,
add up to p — n. Now, Q is similar to

i
|
|
1
I
i
e ———
I
|

each of whose first n — 1 row sums is equal to R — 5 + 5/g = K, and its last
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row sum is gp — gn + n = K, = K,. Hence, by Theorem 1.1, its maximal
eigenvalue and that of Q are equal to K.
Similarly, we construct a matrix

7

3

™

where no entry is less than 7, every row sum of the (n — 1) X (n — 1)
submatrix P, is equal to p — 1, each entry in Py is 7, and those of P; add up
to R — 1. Now, if the first row of Q’ is multiplied by 1/A, and its first column
by h, then the resulting matrix is similar to Q’, and all its row sums are
K,=K,

Many other bounds for the maximal eigenvalue of a nonnegative matrix are
known. However, most of them are rather complicated and of not much
interest, at least in the context of this book.

Example 1.1. Compute the bounds given in Theorems 1.1 (Frobenius), 1.2,
1.3 (Ledermann), 1.4 (Ostrowski), and 1.5 (Brauer), for the maximal ei-
genvalue r of

1 1 2
A=12 3 3]

4 1 1
Frobenius’ bounds: 4 < r < 8 (rows),

5 < r < 7 (columns);
Theorem 1.2: 5 <r < 6.25 (rows),

5.6 < r < 5.8572 (columns);
Ledermann’s bounds: 4.1547 < r < 7.8661 (rows),

5.080 < r < 6.9259 (columns);
Ostrowski’s bounds: 4.5275 < r < 7.6547 (rows),

5.2247 < r < 6.8165 (columns);
Brauer’s bounds: 4.8284 < r < 7.4642 (rows),

5.3722 < r < 6.7016 (columns).

The maximal eigenvalue actually is r = 5.74165738.... ®

Example 1.2. Find a matrix diagonally similar to the matrix 4 in Example
1.1 for which Theorem 1.1 produces sharper bounds for the maximal ei-
genvalue r of A than those obtained in Example 1.1.

We first try to find a matrix diagonally similar to A whose maximum
column sum is less than 7, the maximum column sum of A. Let X =
diag(x, 1,1), where x is a positive number to be determined. The column sums
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of X AX are

1+ 2x + 4x, %+3+1, and %+3+1.

If x <1, then 1 + 6x < 7, as intended. However, the other two column sums
increase as x decreases. Therefore the least value that the maximum row sum
of X !4X can have is given by

1+6x=2+4,
X
that is,
x =43+ 57),

which yields the upper bound

r< (5 +v57) < 6.2750.

Similarly, in order to improve the lower bound for r, we set Y = diag(1, y,1).
Then the column sums of Y 4Y are

1+%+4, y+3+y, and 2+%+1.

Our purpose is to find y > 1 for which

w

2
5<2y+3<min|5+ <,3+ .
<2y mm( y y)

Clearly, the optimal choice is given by
3
2y +3=3+ 2,
Y y
that is,
y= 1,
which gives the lower bound

r> 6 + 3> 5.44%,

An analogous method applied to row sums of A yields the following
bounds:

5<r<64495. m
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Example 1.3. Find bounds for the maximal eigenvalue r of the matrix in
Example 1.1, transforming the matrix twice by diagonal similarity transforma-
tions, as in the second proof of Theorem 1.2.

Let D, = diag(4, 8, 6). Then

DD, =

Wioo et
wis W N
P Bl W

The row sums of this matrix are 6, £, and 5. Thus

D;'Dr'4AD, D, =

Wi W GIR

=t RO Nl

where D = diag(6, %, 5). Now, applying Theorem 1.1 to rows of the above
matrix yields the bounds ’

5.5833 < r < 5.8667.

We can also apply the same method to columns. Let G, = diag(7, 5, 6).
Then

win W Wi
Pt N Wi

1
G, AGT = | &
%

whose column sums are 4, £, and 2. If G, = diag(%, £, %), then

—

G2G1AGI—IG2_1 = %%

140
41

s W B
— ok s

Applying Theorem 1.1 to columns of this matrix, we obtain
57142 < r <5.7805. ®m

Example 1.4. Construct 3 X 3 matrices Q and Q' with R=8, p=4,93=1,
and r = 7.464... and 4.828..., respectively (see Example 1.1).

Let
4 3 1
0=14 3 1

211
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(see the construction of Q after the proof of Theorem 1.5). The matrix

4 3 1/g
4 3 1/g],
2g g 1

where g = 2.15470053.. ., is similar to Q, and all its row sums are equal to
7.46410161 . .., which is therefore the maximal eigenvalue of Q.

Similarly, let
1 4 3
o'=11 2 1

1 2 1

Then the matrix
1 4/h 3/h
h 2 1 ]
h 2 1

where h = 1.82842712..., is similar to Q’, and all its row sums are
4.82842712 ... which is therefore the maximal eigenvalue of Q’. m

2.2. DOMINATING NONNEGATIVE MATRIX

If C=(c;)isan n X n complex matrix and 4 = (4,;) is an n X n nonnega-
tive matrix such that |C| < 4 (i.e, |c;;| < a;; for all 4, j), then 4 is said to
dominate C. The following remarkable result is due to Wielandt [9].

Theorem 2.1. If a complex matrix C is dominated by an irreducible matrix A
with maximal eigenvalue r, then for every eigenvalue s of C,

s} < r. (1)
Equality holds in (1) if and only if
C = e'*DAD ™, ()
where s = re'® and |D| = 1I,.
Proof. Let
Cy = sy, ©)

where y # 0. Then

IClIyl = |s[lyl,
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by the triangle inequality. But 4 > [C|, and therefore

Ayl = |Clly| = |s|Iy]. (4)

Hence, by Theorem 3.1(ii), Chapter I,

Isl = fA(lyI)’
where f, is the Collatz-Wielandt function associated with 4, and therefore
Is| < £lyD) < r. (5)

Suppose that C = e’?DAD™!, where |D| = I,. Then the matrices C and
e'?4 are similar and if r is the maximal eigenvalue of A, then re'® is an
eigenvalue of C.

We now prove the necessity of the condition (2) for equality in (1). Suppose
that s = re'?, that is, |s| = r. Then (5) implies that f,(|y|) = r. Thus |y| is a
maximal vector, and, by (4),

Ayl = IClly| = riyl, (6)
that is,
(4-|C)yl =0.

Since |y| is maximal, we must have |y| > 0 (see Corollary 4.2, Chapter I).
Also 4 — |C} 2 0, and therefore

A4=|C|. (7)
Define
. N Y2 )
D= g 2 )
B\l Dl > Wl
and

G= (gij) = e *D-ICD,
Then (3) gives
CD|y| = sD|y| = re’*Dly|.
Therefore

Glyl =rlyl,
and, by (6),

Glyl = Alyl. (8)
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Now, by the definition of G,

6] = IC|
and, by (7),
|G| = A.
Hence (8) yields
|GlIy] = Glyl,

or
E(lgij| —g,-,-)lyjl =0, i=12,...,n,
j=1

which implies that
lg:;;| — 8, =0,
for all i and j, since |y;| > 0, j =1,2,..., n. It follows that
G = |G| = 4,
and thus from the definition of G,
C=¢e*DAD™!. m

Corollary 2.1. Let A be a nonnegative matrix with maximal eigenvalue r, and
let C be a complex matrix such that |C| < A. Then for any eigenvalue s of C,

[s| <r.

The corollary follows easily from the theorem by a continuity argument.
The condition for equality is not, of course, necessary if A4 is reducible.

Corollary 2.2. If A is an irreducible matrix, and A 2 C >0, A # C, then
r(A) > r(C).

Example 2.1. Let A be an n X n nonnegative matrix with maximal ei-
genvalue r, and let p be the maximal eigenvalue of a principal submatrix of A.
Use Theorem 2.1 to prove that

p<r,

and that the inequality is strict in case A is irreducible (see Theorem 5.1,
Chapter I).
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Let A[i}, iy,...,i}i, i, ...,10;] be the principal submatrix, and C
be the n X n matrix such that C[iy, iy, ..., i;|iy, iy ..., 0] =
Aliy, iy, ..., 0l iy, ..., i,] and all other entries of C are 0. Then C < 4, and
the result follows by Theorem 2.1. &

Our next result gives bounds for the difference of maximal eigenvalues of
two irreducible matrices one of which dominates the other.

Theorem 2.2 (Marcus, Minc, and Moyls [5]). Let 4 = (a;;) and B = (b;;) be
irreducible matrices with maximum eigenvalues a and B, respectively, and let
A < B. Let S = (s;;) be any nonnegative matrix which commutes either with A
or with B and has nonzero column sums c,, c,, ..., c,. Then

)sB—as

_m M
ma'xi,j(sij/cj mlnt,j(sij/cj) ’
where m = min, ;(b;; — a,;) and M = max; ,(b;; — a,;).

Proof. Let z be the maximal eigenvector of 4, z € E”, and let f; be the
Collatz—Wielandt function associated with B. Suppose that ¢ is the integer for
which

() = e

Since

(B—A)z + Az = Bz,
that is,

(B—A4)z + az = Bz,

then, in particular,

Z (btj - atj)zj +az, = (BZ),,

j=1
and thus
- 4, _(B2),
jgl(blj - alj) Z Tes z,
=fB(Z)

<B. 9)
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Now, z € E", and therefore

T (b, @)z, = min(h, = a,)

=m. (10)
From (9) and (10) it follows that
m
— > —_—.
B-az7
It remains to show that
, < max(s,;/c;). (11)
i)

Observe that z is an eigenvector of S. For,

ASz = SAz
= aSz,

and thus Sz is a maximal eigenvector of A, and therefore it must be a positive
multiple of z,

Sz = Az, (12)

for some A > 0. But then, by formula (3), Section 2.1,

A= chzj

Jj=1

On the other hand, from (12)

and therefore

by (7), Section 2.1. Inequality (11) follows immediately. The upper inequality
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is proved similarly [this time using the function g, (see Theorems 4.5 and 4.6,
Chapter ). =

23. BOUNDS FOR MAXIMAL EIGENVECTORS

Let A be a positive n X n matrix, r its maximal eigenvalue, and x =
(xq, X4,..., x,) 2 maximal eigenvector of A. The problem of localizing r is
related to the problem of estimating the quotient max; ,(x;/x;). The lower
bound in the following theorem is essentially due to Ledermann [3]. The upper
bound is Minc’s [6] improvement of a result of Ostrowski [8].

Theorem 3.1. Let A = (a;;) be a positive matrix with a maximal eigenvector
x = (xy, Xp,..., X,) and let y = max; ;(x;/x;). Then

R a;
— <y < max —, 1
Vo =7 max = (1)

where R and p are the greatest and least row sums of A, respectively. The left
inequality in (1) is an equality if and only if R = p. Equality holds on the
right-hand side of (1) if and only if the pth row of A is a multiple of the qth row,
for some pair of indices p and q satisfying a,,/a,, = max; ; (a,;/a,;)

Proof. Let x, = max,x; and x, = min,x;, and let r be the maximal
eigenvalue of A. Then

rxi= Zal_[ J

Jj=1
> E a;;x,
j=1
=X, i=1,2,...,n. (2)
Therefore
LA
e xSy
for all i. In particular,
r 1
® > ; (3)
Similarly,
rx; < rx

" m>

and therefore

Lol
3

o
A
o
IA
=
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for all i, and, in particular,

IA
-~

(4)

I~

From (3) and (4), it follows that

yz\/?. (5)

Let r,, = R. Equality can hold in (5) only if it holds in (2), that is,

n
X, = 3 a,x; = Rx,.
j=1

This implies that all the coordinates of x are equal. But then all the row sums
of A must be equal. The converse is obvious.
To prove the upper bound we note again that

rx, =3, a, X (6)
j=1
and
rx, = ¥ a,;x;. (7)
Jj=1
Dividing (6) by (7), we have
MU S CEYd
X, Ljadyx,

Applying inequality (7), Section 2.1, we obtain

Y < max —— (8)

max —2 . 9)

st Yy

IA

Suppose now that the right-hand side of (1) is an equality. Then equality must
hold both in (8) and (9). Now, (8) is an equality (see Section 2.1) if and only if
.,

a =%

wJ
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for j=1,2,...,n Hence the mth and the uth rows of A are linearly
dependent. Moreover, since equality holds in (9), for any # we have

a sj
—mh — max —2,

Aun Josit Ay

Conversely, suppose that a,;,/a,;= B8, j=1,2,...,n, and that a,;/a. =
a,;/a,; forall s, t, and j. Then

i e sk 20 Y i 8
n b
Xg  Lja1gX;
and for any s and ¢,
n
X Py j=145;% ag; X
-~ = 5 1) < max = <B= £
X, j=lalj Jj J tj xq
Hence
X X
2P o max
q ij Xj
and therefore
a

that is, the right-hand side of (1) is an equality. This concludes the proof of the
theorem. W

Note that since 4 and A + eI, have common eigenvectors, the upper
bound in (1) may be improved by adding to 4 a suitable multiple of I,,. Also,
by use of the same device, the theorem can be extended to the case of
nonnegative matrices all of whose zero entries (if any) are on the main
diagonal (see [6], page 108).

Example 3.1. Find bounds for y for the matrix

21 2
=13 2 3|
21 2

Using Theorem 3.1 we obtain the inequalities
1.2649... =% <y <2, (10)

Both bounds in (10) can be sharpened by subtracting from 4 an appropriate
multiple of I, and applying Theorem 3.1 to the new matrix. As noted above, a
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maximal eigenvector of A is also a maximal eigenvector of 4 — el;. If we let ¢
tend to 2 from the left, then the lower bound approaches /6/3 = 1.4142... .
In order to improve the upper bound in (10), clearly we must have 0 < ¢ < 1.
Then

Y < max(2—3—8,2 - 8).

Hence the least upper bound is obtained, if

3
2—-¢

that is, if
e=2-1v3.
Then Theorem 3.1 yields the upper bound

y <V3 =1.73205....
The actual value of y, computed directly, is V7 — 1 =1.64575.... ®

Example 3.2. Find bounds for y for the matrix

211
B=11 0 1]
1 1 0

Note that B is irreducible, and therefore vy is well defined. Apply Theorem
3.1 to the matrix B + ¢l;, where 0 <& < 1:

[4+¢ 24+ 1
2—+—£ <‘y<maX{—1——,'é‘}. (11)

Clearly, (1) yields the best upper bound for y when 2 + ¢ = 1 /g, that is,
when e = —1 + y2. Hence y < 1 + V2.

The lower bound in (11) is less than 2, but it tends to v2 as & tends to 0.
We can conclude therefore that y > V2 . The actual value of y for the matrix
Bis2. ®

PROBLEMS

1 Show that the condition for equality in Theorem 1.1 is not necessary, if
the matrix A is reducible.

2 Let A be an irreducible matrix, and let 7, R, and p be as defined in the
statement of Theorem 1.1. Show that p < r < R by relating r to f,(u)
and g,(u) for an appropriate vector u.
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3 The matrix

RN

Il
B =N
e ¥
SRR
— = NN

has a maximal eigenvector (12,11, 7,12). Find a positive matrix similar to
A, with maximal eigenvector (12,12,11, 7).

4 Let 4 = (a;;) be a positive n X n matrix with maximal eigenvalue r, and
TOW sums 7y, 7y,..., . Let x = (xq, xX3,..., x,,), where x; > x, > ---
> x, > 0, be a maximal eigenvector of A. If x, > x, show that r, <r
<n.

5 Let

3 31
A=41 3 1}|.

1 3 3

(a) Compute the bounds for the maximal eigenvalue r of A using the
formulas in Theorems 1.1-1.5. Find r by direct computation and
compare it with the bounds obtained.

(b) Use the method in Exampie 1.2 to obtain improved bounds for r.
(¢) Obtain bounds for r using the method in Example 1.3.

6 Find bounds for y for the matrix 4 in Problem 5, using Theorem 3.1.
Compute a maximal eigenvector of 4, evaluate y directly, and compare
the value found with the bounds.

7 Let A be the matrix in Problem 5. Find the value & for which Theorem
3.1 applied to &I, + A yields the best upper bound for y.

8 Let

—
NN = =
R gy
W NN =

Compute the bounds for the maximal eigenvalue of B using Theorems
1.1-1.5.

9 Compute the bounds for y for the matrix B in Problem 8, using Theorem
3.1. Improve the upper bound by applying the theorem to matrix B + ¢/,
for an appropriate e.
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1

1

1

0 Let A be a nonnegative matrix with maximal eigenvalue r. Suppose that
A dominates a complex matrix C with eigenvalue s and that |s| = r.
Show by a counterexample that the condition (2) in Theorem 2.1 does not
necessarily hold.

1 Illustrate the result in Theorem 2.1 for the matrix A in Problem 5 and

3i 3 (=1+i)/V2
C= -1 3 (-1-)/2 |
A+/2 (3-3i)/2 3i
2 Let A be the matrix in Problem 5 and let B = I; + A. Use Theorem 2.2

to find the upper bound for the difference of the maximal eigenvalues of
B and A, taking (i) S = 4, (i) S = 4%

13 In Problem 12 take S = 8I, + A and find the value § for which Theorem

1

1

2.2 yields the best upper bound.

4 Let A = (a,;;) be a positive n X n matrix. Show that

S R-§
Y— p_8’

where v, R, and p are as defined in Theorem 3.1, and § = min,a,,.

5 Prove in detail the upper bound in Theorem 2.2.
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Primitive and Imprimitive
Matrices

3.1. SPECTRA OF IRREDUCIBLE MATRICES

In Chapter I we extended Perron’s results for positive matrices to the larger
class of nonnegative matrices. The first three sections of the present chapter
contain further results of Frobenius [1] on spectral properties of nonnegative
matrices which have no counterpart in the theory of positive matrices.

Definition 1.1. Let A be an irreducible n X n matrix with maximal eigen-
value r, and suppose that 4 has exactly s eigenvalues of modulus r. The
number 4 is called the index of imprimitivity of A, or simply the index of A. If
h = 1, then the matrix A is said to be primitive; otherwise, it is imprimitive (or
cyclic, in some authors’ nomenclature).

The proofs of the following two theorems are due to Wielandt [9].
Theorem 1.1. Let A be an irreducible n X n matrix with maximal eigenvalue r
and index h. Let A, \,,..., N, be the eigenvalues of A of modulus r. Then

AL Ay, ..., A, are the distinct hth roots of r*.

Proof. Let A, =re™® t=1,2,..., h. Since |A,| = r, the equality condi-
tion in Theorem 2.1, Chapter 11, with C = 4 and s = A, implies that

A=e"DAD!, t=1,2,..., h (1)
Hence 4 and e'% 4 are similar. Since r is a simple eigenvalue of A, it follows
that, for each ¢, e’?r =X, is a simple eigenvalue of ¢4, and thus of 4.
Now, by (1),
A =e"D/(eD AD ) D!

= ei(qz'+%)(D1Ds)A(DtDs)_1’

47
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and therefore 4 and e(?:* %4 are similar for any s and ¢. We can conclude
that re’(®:* %) is an eigenvalue of 4, and therefore e'(®* ) must be one of the
numbers e'?, e'%2 ___ e'? Hence the h distinct numbers e, e'®2 . . /¥
are closed under multiplication, and therefore they are the Ath roots of unity.

|

Theorem 1.2. The spectrum of an irreducible matrix of index h is invariant
under a rotation through 2 /h, but not through a positive angle smaller than
27 /h.

Proof. Let the spectrum of 4 be ¢ = (A, A,,..., A,). Then the spectrum
of ¢4 is = (Ae?™h N,e?™/t .., \,e?™"), that is, the spectrum o
rotated through 2« /h. It was shown in the proof of the preceding theorem
that the matrices 4 and e>"/*4 are similar, and therefore r is the spectrum of
A as well. This proves the first part of the theorem. It is clear from the result in
Theorem 1.1 that a rotation through any angle smaller than 27 /h cannot hold
the spectrum fixed, since even the set of the eigenvalues of maximum modulus
is not then preserved. B

The following theorem relates the index of an imprimitive matrix to the
form of its characteristic polynomial. It is often used in determining whether
an irreducible matrix is primitive or not.

Theorem 1.3. Let A be an irreducible matrix with index h, and let

N+ ag N+ a2+ -0 4ag, N5,

wheren > n, >ny,> -+ >n,anda,#0,t=1,2,..., k, be the characteris-
tic polynomial of A. Then

=gcd(n—n,n —ny...,n_—ny). (2)

Proof. Suppose that m > 2 is an integer such that 4 and e'2™/"4 have the
same spectrum. Then their characteristic polynomials are equal;

M+ a4+ a4 - g, A
=N+ g 0" N+ ay0" N 4 e g, 07N
where 8 = ¢27/™ 1t follows that
a,=af"m,

fort =1,2,..., k, and therefore m divides each ofn—n,n—n,....,n—n,.
Now, by Theorem 1.2, the matrices 4 and e'>™/™4 have the same spectrum for
m = h but not for m > h. This, together with the preceding argument, implies
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that
h=gcd{n—n,n—n,...,n—n),
and (2) follows immediately. B
Corollary 1.1. An irreducible matrix with positive trace is primitive.

Indeed, by Theorem 1.3, the index of the matrix is

ged(n—(n-1),...)=1.

3.2. PRIMITIVE MATRICES

It was shown in Corollary 1.1 that an irreducible matrix with a positive trace is
primitive. In particular, if A is irreducible, then I, + A is primitive. In Section
1.2 we discovered that the matrix I, + A has the remarkable property that it
becomes positive when raised to sufficiently high power (see Corollary 2.2,
Chapter I). We now show that this is a general property of all primitive
matrices. In fact, it is an alternative definition of primitive matrices.

Theorem 2.1 (Frobenius [1]). A necessary and sufficient condition for a non-
negative matrix A to be primitive is that A™ be positive for some positive inte-
ger m.

Proof (Marcus and Minc [2]). Suppose that 4™ > 0. Then 4 must be
irreducible. For, if A were reducible, that is, if 4 were cogredient to a matrix

[ ]
0 D ’

then 4™ would be cogredient to a matrix of the form

[Bm C’ ]
0 Dm ’

and thus could not be positive. We now show that 4, the index of A4, is 1. Let
r be the maximal eigenvalue of 4 and let re™/% t=0,1,..., h — 1, be the
eigenvalues of A of modulus r (see Theorem 1.1). Then 4™ has h eigenvalues
of modulus r”. Since A™ is positive it is primitive, by Corollary 1.1, and thus
h must be 1.

Conversely, let 4 be a primitive matrix with maximal root r. Then the
matrix A/r is primitive as well, its maximal root 1s 1, and all its other roots
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have moduli less than 1. Let

S‘l(%A)S=1 i B (1)
be the Jordan normal form of A /r. We can deduce immediately from (1) that

(i) the moduli of all roots of B are less than 1, and therefore lim B'=0
(Problem 1);

(ii) the first column of S is a characteristic vector of 4 /r corresponding to
the maximal root 1, and therefore has no zero coordinates;

(ili) the first row of S™! is a characteristic vector of the transpose of 4 /r

corresponding to its maximal root, and thus cannot have zero coordinates.

t— o0

Now,

lim (%A)t = lim (S(1 + B)S™Y)’

— 00 =00
| - s(l +(tliilo B'))s-1

= S1+0)s™!

is a nonnegative matrix. But the (i, j) entry of S(1 + 0)S™! is the nonzero
product S,(S7'), ; for all i and j. Hence S(1 + 0)S™! must be strictly
positive, that is,

1 !
lim (—A) > 0.
oo\ T

It follows that for a sufficiently large integer m,
l m
(—A) > 0,
r
and therefore

A">0.

It should be emphasized that the result in Theorem 2.1 is not obvious
per se, since a product of primitive matrices need not even be irreducible. On
the other hand, a product of reducible matrices may be positive. For example,

both
11 0 1
[1 0] and [1 1]

R

is reducible. The second assertion is quite obvious.

are primitive, but
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3.3. THE FROBENIUS FORM OF AN IRREDUCIBLE MATRIX

Frobenius [1] discovered a remarkable connection between the spectral proper-
ties of an irreducible matrix and its zero pattern, that is, the distribution of its
zero entries.

Theorem 3.1. Let A be an irreducible matrix with index h > 2. Then A is
cogredient to a matrix of the form

0 A, O - 0 0

0 0 A, 0 0

: =) (1)
0 0 L0 A,
(4, o . 0 |

where the zero blocks along the main diagonal are square.

Proof (Wielandt [9]). Let r be the maximal eigenvalue of A. Then, as we
saw in Theorem 1.1,

A, =rel2m/k t=0,1,....,h— 1,
are the eigenvalues of 4 of modulus r, and
A=e?"/"pAD,  t=0,1,...,h—1, (2)

where |D,| = I,. We can assume without loss of generality that the (1,1) entry
of each D, is 1. Let z be a positive eigenvector of 4 corresponding to r. Define

z'=D,.z, t=0,1,....,h— 1. (3)
By (2) and (3),
Az' = e'*"/*D AD'D,z

— ei2m/thrZ

= A,z
and therefore z' is an eigenvector of A corresponding to A,. Since the
eigenspace of each A, is one-dimensional, the z' (and thus the D)), t =
0,1,..., h — 1, are determined within a constant. But the first coordinate of
each D, is 1, and therefore the D, are uniquely determined. Now, applying (2)
twice, we have

A= eiZWt/th(ei2ﬂs/hDsADs41)Dt71

— ei2ﬂ(s+t)/h(DIDJ)A(D,Dx)—I’
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and we can show, by reasoning analogous to that following (3), that D,D,z is
an eigenvector corresponding to re’>"* /4 In particular, D}z is an eigenvec-
tor corresponding to re?”/* = r. By the uniqueness of the D, we can
conclude that
h —
D 1= I n’

so that the main diagonal entries of D, are hth roots of 1. Let P be a
permutation matrix such that

s
PTD1P= Z eim,2ﬂ/hln,’
t=1

where 0 = m; <m, < --- <m, < h — 1. Partition PTAP into blocks con-
formally to the partition of PTD, P above; that is, let

Ay Ap Ay
A A cee Ay
pup=|"" "2 T (4)
A.sl As2 Ass
where block Apqis n, X n = 1,2,..., s. Equating the ( p, ¢) blocks on
both sides of PT4P = e'2"/q" PTD P)(PTAP)(PTD 'p), we obtain
qu — ei(1+mp—mq)21r/hqu

Therefore for each ( p, q), either
A,, =0, %)
or
m,—m,=1 (modh). (6)

The matrix A is irreducible, and thus for no p can 4 pq 0€0 for all ¢, nor for
any ¢ can A, vanish for all p.
If p = 1, then the congruence (6) is

m,=1 (modh), (7)

and since 1 <m,<m;< --- <m,<h~—1, the only solution of (7) is
m, = 1. Thus A4;, = 0 for all ¢ # 2. Next, for p = 2 condition (6) becomes

m,—m,=1 (modh),
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that is,

m,=2 (mod h),

and as above we find that m; = 2, and 4,, = 0 for all g + 3. We continue in
the same manner and conclude that m,,; = p,and 4, =Oforallg # p + 1,
p=12...,5s— 1

Consider the case p = 5. Conditions (5) and (6) state that for each g either
A4,,=00r m,—m =1 (mod h), that is, m, = s (mod k). Now, A4, cannot
be 0, since all other 4, are 0. Hence we must have

m;=s (modh),

which implies that s = A, and thus m # s (mod k) for all g # 1. It follows
that 4., = 0 for all g # 1. This concludes the proof. =

Many spectral properties of imprimitive matrices can be deduced im-
mediately from the Frobenius form of the matrices. Apart from the index of
imprimitivity h of the matrix, it is obvious from the form (1) that the trace of
an imprimitive matrix must be zero, and if h > 2, then the second symmetric
function of its eigenvalues must also vanish (see Theorem 1.3). Moreover,
certain structural properties of imprimitive matrices are quite obvious: Some
power of the matrix must be cogredient (and thus similar) to a direct sum. In
the next section we shall study matrices in the Frobenius form, or in any
superdiagonal block form, and their spectra.

Example 3.1. Use the result in Theorem 3.1 to prove that the spectrum of an
irreducible matrix 4 with index A is invariant under a rotation through 27 /h.
Let P be a permutation matrix such that PTAP is in the form (1). Let

h
D= Z ’ ei21rt/hln .
=1 '
Then
D Y(PTAP)D = e2"/*PT4P.

Thus A4 and e'2"/%4 are similar. The proof is complete. W

3.4. MATRICES IN SUPERDIAGONAL BLOCK FORM

A matrix 4 in the form

’—0 A12 0 st 0 0 i

0 0 A23 t 0 0

: C ) (1)
0 0 0 A,

Akl O 0
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where the block 4, ; isn; X n, 1, i=12...,k—1,and 4, isn, X n, is
said to be in a superdiagonal block form, or more specifically, in the superdi-
agonal (ny, n,,...,n.)block form. 1f A is irreducible with index k, then
clearly (1) is the Frobenius form of A.

A matrix in the form (1) is not necessarily irreducible, even if all the blocks
A, ;. happen to be square and primitive. For example, the matrix

is reducible although its (1,2) and (2,1) blocks are primitive. On the other
hand, a matrix may have the form (1), where all the blocks are reducible, and
still be irreducible. For example,

is irreducible although its (1,2) and (2, 1) blocks are reducible. In this section
we obtain necessary and sufficient conditions for a nonnegative matrix in the
form (1) to be irreducible.

We shall require the following lemmas.

Lemma 4.1. If A is in a superdiagonal (ny, n,, ..., n,)-block form,
I‘ .
A4 =3 B,
=1

where Bi=A A ., 4

square, j=1,2,...,

-1, (subscripts reduced modulo k) is n -

Lemma 4.2.  All the matrices B, defined in Lemma 4.1 have the same nonzero
eigenvalues.

Lemma 4.1 is immediate. The result in Lemma 4.2 is essentially due to
Sylvester [8]: the proof is quite straightforward (Problem 5).



Matrices in Superdiagonal Block Form S5

If 0 and 7 are permutations on {1,2,...,n}, we define the composite
permutation o1 by

o'r(i)=o('r(i)), i=12,...,n.

The n X n permutation matrix A(o) is called the incidence matrix of ¢ if its
(i, j) entry is §, ,(,)- We have then

A(o7) = A(a)A(7).

Theorem 4.1 (Minc [4]). Let A be an irreducible matrix with index h. Then A
is cogredient to a matrix in the form (1) with k nonzero blocks if and only if k
divides h.

Proof. Suppose that A is cogredient to a matrix in the form (1). Then A4*
is cogredient to

k .
Y B,
j=1

where the B, are as defined in Lemma 4.1. Let r be the maximal eigenvalue of
A. Then A* has exactly h eigenvalues of modulus r*, and all its other
eigenvalues have moduli smaller than r*. Now, by Lemma 4.2, the & eigenval-
ues of maximum modulus must be equally divided among the blocks
By, B,,..., B,, and thus each of the B; must have exactly h/k eigenvalues of
modulus r*. It follows that k must divide .

Conversely, let 4 be an irreducible matrix with index of imprimitivity A,
and let k be any divisor of . Let Q be a permutation matrix such that Q40T
is in the superdiagonal (ny, n,,..., n,)-block form, as in (1), Section 3.3. We
show that there exists a permutation matrix P such that (PQ)A(PQ)T is in
the form (1) with k nonzero blocks in the superdiagonal.

Let v be the cycle (h, h — 1,...,2,1) so that A(7) is the h X h permuta-
tion matrix with 1’s in positions (i,i + 1), i = 1,2,..., h — 1, and (A,1). Let
h = km, and let o € S, be defined by

o(sk+t)=s+1+(—-1)m, s=0,1,...,m—1,tr=1,2,..., k,

that 1s,
(12 - k k+1 k+2 --- 2k 2k +1 - km)
Fli14m - 14 k-Dm 2 24m -+ 24(k=1m 3 - km)

It follows that

o'ro”l(i)=i—m, i=m+1,m+2,...,h,

ot (1) = h,
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and

oo '(i)=h-m+i-1,
fori=23,..., m Thus

A(0)A(r)A(0)" = [ K ’ho'"], @

m

where P, denotes the m X m permutation matrix with 1’s in the positions
1,2),(2,3),...,(m — 1, m), and (m,1).

We now augment matrices A(¢) and A(7) to n X n matrices P and Q4Q7,
respectively, by replacing the 1’s in A(o) by identity matrices, the 1’s in A(7)
by blocks 4, ;,,, and all the zero entries by zero blocks of appropriate size.
Then PQAQTPT is an n X n matrix in a superdiagonal block form obtained
from matrix (2) by replacing the h 1’s by appropriate blocks 4, ;. Specifi-
cally, let P be the n X n permutation matrix partitioned into blocks so that
the (i, 6~ 1(i)) block is I,_,,i=12..., h Then the matrix PQAQ™PT isin
the superdiagonal (g,, g,, ..., g,)-block form, where

mt

8= Z a1y l=1,2,...,k. |

j=m(i—1)+1

Example 4.1. We illustrate Theorem 4.1 by considering a matrix A4 such that
QAQT is in the Frobenius form with h = 12, where the main diagonal blocks
are of orders n,, n,,..., ny,. Find a permutation matrix P so that PQAQTPT
is in a superdiagonal block form with k = 4.

Let
r=(12,11,10,9,8,7,6,5,4,3,2,1),
and
02(123 4 5 6 7 89101112)
1 47 10 25 8 11 3 6 9 12
Then
om*:(l 2 3 45 7 8 9 10 11 12)
12 10 11 1 2 4 56 7 8 9f
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and thus
PQAQTPT =
[ A4, 0 0o | !
0 10 Ay 0} 0 | 0
: 0 0 A‘) l(): :
——————————— et s i et
! DAy 0 0 !
0 ! 0 L0 Ay 0 0
! L0 0 Ay
__________ I e
1 | I Axg 0 0
0 i 0 | 0 L0 Ay O
: : : 0 0 All 12
___________ S U S M
0 Ay 0] ! !
0 0 Ag! 0 ! 0 ! 0
Ay 00 ! !
where
(1, 0 0 0 0 0 0 0 0 0]
0 0 0 14, 0 0 0 0 0 0
0 0 o 0 0o 0 0 7, O 0 0
o 1, 0 0 0 0 0 0 0 0 0 0
0 0 0 L, 0 0 0 0 0 0
0 0 0 0 o 0o o o I, 0 0
pP= [ ]
0 0 14, 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 £, 0 0O 0 0 0
0o 0 0 0 0 0 0o 0 0 0 I, 0
0 o 4, 0 0 0 0 0 0 0 O
0 o 0 0 o 0 I, 0 0 0 0
0 0 0 0 0 0 0 0 0 o I,

We now prove the following auxiliary, rather obvious, result.
Theorem 4.2 (Minc [3]). If A is a reducible matrix in the form (1) with no

zero rows or zero columns, then there exist increasing sequences
2
ol e, ..., ot BB ..., BY, such that

o' UB ={12,....n,}, adnNnp=ga, i=1,2,....k,
and

Apla'18?] =0,  A,[a¥B}] =0,..., 44[a*8] = 0.
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Proof. Clearly, if 4 is an n X n reducible matrix, then there exist se-
quences >\ = (jl’ j2’ ey .]s) € Qs,n and b= (js+1’ js+2’ ] .]n) € Qn—s.na
such that A U p = {1,2,..., n} and A[A|p] = O (Problem 6). Partition A and
p conformally with the partition of 4. Let X' be the subsequence of A all of
whose elements lie in the interval (X'Zin,,Xi_,n,], and let p' be the subse-
quence of p all of whose elements lie in the same interval, i = 1,2,..., k,
where L0_;n, is interpreted as 0. Then, clearly,

i-1 i-1 i
}\iUpi={Zn,+1, Yon, +2,..., Zn,},
r=1 =

r=1 r=1

and (3)

k
A’n“':An“t:g’ i=1’2"-'7k’ UA’.=A,
i=1

iC-
.='~.
It
=

i

Moreover, since none of the submatrices 4, ;, can have a zero row or a zero
column, none of the sequences A, A%,..., A%, u!, y? ..., p* can be empty (see
Problem 7).

Now, let &' be the sequence obtained from N by subtracting X'Zn, from
each of its elements, and let B’ be the sequence derived from p’ in the same
manner, i = 1,2,..., k. Then, by (3),

aiUBi={1’2""’ni}’ alnﬁ'=z’ i=1’2,""k'

Furthermore, if p € o' and g€ B+ thenu=p + XiZln,€Xand v =g +
Yi_in, € p, and thus the (u, v) entry of A4 is zero. But the (u, v) entry of 4 is
the (p, q) entry of 4, ,,,, and thus

Ai,i+l[ailﬁi+1] =0, i=1,2,...,k—1, Akl[ak|,81] =0. B

We use the preceding result to prove the following theorem which gives
necessary and sufficient conditions for a matrix in the superdiagonal block
form to be irreducible.

Theorem 4.3 (Minc [4]). Let A be a nonnegative matrix in the form (1)
without zero rows or zero columns. Then A is irreducible if and only if the product
Ay Ay -+ Ay s irreducible.

Proof. We prove the sufficiency of the condition by showing that if a
matrix 4 in the form (1) is reducible but has no zero rows or zero columns,
then A4,,4,; --- A, must be reducible. By Theorem 4.2, there exist nonempty
index sets o', a?,..., a%, B!, B2, ..., B¥ (see Problem 7) such that o' U B’ =
{(1,2,...,n,}, dd N B'=@,i=1,2,...,k, and

A12[“1|32] =0, A23[°‘2|B3] =0,..., Akl[aklﬁl] = 0. (4)
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We assert that

(A12A23 Akl)[allﬁl] =0,

and thus that 4,,4,, - -+ A,, is reducible. Let p € o' and ¢ € B*. The (p, q)
entry of A, A, -+ Ay is

Z (Au)pt,(Azs)tltz e (Ak-l,k)tk_ztk,l(Akl)tk_lq' (5)

fhatyseons te—1
We show that every term in the sum (5) is zero. Indeed,

(i) either (A4,,),, = 0 or, by (4), 1, € B and therefore 1, € a?; it follows
that(ij) either (A4,),,, = 0 or, by (4), 1, & B* and therefore 1, € ’; it follows
tha(tiii) either (Ay),,, =0 or, by (4), 1; & B* and therefore ¢, € a*; and so
On.(iv) If the first k — 1 factors of

("‘112)1211("‘123)1112 e (Ak—l,k)tk,ztk,l(Akl)tk,lq (6)

are nonzero, then #,_, & B* and therefore ¢, _, € a*. But then (A4 _,o= 0,
since ¢ € B'. Hence one of the factors in the product (6) must be zero for any
choice of ¢, t,,..., t,_;. It follows that

(A12A23 T Ak1)[a1|.81] =0,

and thus A4,,4,; --- A, is reducible.
We prove the converse. Let 4 be an irreducible matrix in the form (1). Let
h be the index of 4, and let

A, = ref2m/h, t=0,1,...,h— 1,

be the 4 eigenvalues of 4 of maximum modulus r. Let x be a positive
eigenvector corresponding to r. By Lemma 4.1,

k
. .
A =3 B,
i=1
where B, = A; i ,14;,1 42 - Aj_1; J=1,2,..., k, and, by Lemma 4.2,

each of the B, has the same nonzero eigenvalues. If # = km (see Theorem 4.1),
then the eigenvalues of A* of the maximum modulus r* are

rei2mi/m t=0,1,...,h— 1.
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It follows that exactly #/m = k of them are actually equal to »*. Thus each of
the B, has a single maximal real eigenvalue r*. We now partition the positive
eigenvector x into blocks conformally to the partition of A:

where x/ is a positive n-tuple, j =1,2,..., k. We have
ko 4
Afx =Y, Bx/,
j=1
and
Afx = r¥x

It follows that
o o

Bix’/ = r*x/, j=12,... k.
Hence each B; has a simple maximal real eigenvalue r* and a positive
eigenvector corresponding to it. Similarly, each BjT has a positive eigenvector
corresponding to r*. Thus, by Theorem 4.7, Chapter I, each B, =
A Ay jer Ay is irreducible. B
Corollary 4.1 (Minc [4]). Let A be a nonnegative matrix in the form (1)
without zero rows or zero columns. Then A is irreducible with index of imprimitiv-
ity h if and only if A, A,y -+ A,y is irreducible with index h/k. In particular,
A is irreducible with index k if and only if A3 Ay -+ Ay, is primitive.

For an alternative, shorter proof of the sufficiency of the condition in
Theorem 4.3 see [7].

We note en passant the following simple result on the minimum number of
zero eigenvalues that a matrix in the form (1) must have.

Theorem 4.4 (Minc [3]). Let A be a nonnegative matrix in the form (1). Then
the number of zero eigenvalues of A is at least

n— knP,

where n, = min(n, ny, ..., n;).
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Proof. By Lemma 4.1,
k_ . . .
A" =ApAdyy - Ay T Apdyy - A+ s F A Ay o Ay e
The ranks of the above products cannot exceed n,,, the least of the ;. Hence

A;iv14i41,042 - Aioy,» Which is n-square, has at least n, — n, zero eigen-
values. It follows that 4%, and thus A, has at least

™M=

(n,—n)=n—kn,

i=1

zero eigenvalues. W

Corollary 4.2 (Minc [3]). If A is a nonnegative nonsingular matrix in the form
(1), then every A, ,,, is n/k-square.

Of course, the result in Corollary 4.2 can be proved easily without the use
of Theorem 4.4 (see Problem 9).
The next two theorems extend the results in Lemmas 4.1 and 4.2.

Theorem 4.5 (Minc [S]). Let By, B,,..., B, and C,,C,,..., C, be irreducible
nonnegative matrices. The direct sums

G=Y B,

5

—

i

and
t .
H=}
i=1

are cogredient if and only if s = t, and there exists a permutation o € S, such
that B, and C,,, are cogredient for i = 1,2,..., k.

Proof. The sufficiency of the conditions is quite obvious. To prove the
necessity, let P be a permutation matrix such that

PGP =H,

and let 7 be the permutation corresponding to P, so that the (i, j) entry of
G is permuted into the (7(i), 7(j)) position of H = PTGP. For brevity,
the notation i is used in place of 7(i). If A[py, py. ., pal? ¥on- .-, ¥5]
denotes the submatrix of 4 lying in rows numbered p,, p,,...,pn, and
columns numbered »,,»,,...,»,, then rows p, p,,...,p, of 4 (and
columns »,, »,,...,»,) are said to intersect the submatrix. Now, suppose
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that for some v, 1 <v <1,

C,=H[@y, &y 8y Byo1y Byoar o B8y, sy By Byt Bpaas -5 B,y

and that rows and columns ay, a,,..., a, of G intersect block B,, but none of
rows or columns B, 4, B,.5,...,B,0f G iqtersects B,. Now, the only nonzero
entries in the rows a;, a,,..., a, of G are in the columns a;, a,, ..., «,. Thus

G[al, QAyyenns apIBp+1’ Bp+2""’BQ] = 0’

and therefore

H[ap az"- . a1)|Ep+19 Ep+2" LR} Eq] = O

However, this would imply that C, is reducible. Hence the supposition is
impossible, and each of the C; can be intersected only by rows and columns
which correspond to rows and columns that intersect a single B,. Since ¥..*,C,
and X2, B, are cogredient, the result follows. B

Theorem 4.6 (Minc [5]). If A is an irreducible nonnegative matrix and if A* is
cogredient to a direct sum of irreducible matrices C,, C,, ..., C,, then k divides
the index of imprimitivity of A, and all the C; have the same nonzero eigenvalues.

Proof. Let P be a permutation matrix such that PA*PT =¥ X ,C,. Let r
be the maximal eigenvalue and x a positive maximal eigenvector of A. Then

k
( Yy C,)Px = PA*P"Px = PA*x = r*Px.
t=1

It follows that r* is an eigenvalue (clearly maximal) of each of the C,. Since
the C, are irreducible, the eigenvalue r* is simple, and therefore A* has
exactly k eigenvalues equal to r*. But Theorem 1.1 implies that there are
d = g.c.d.(h, k) such eigenvalues. Hence d = k, and thus k divides A.

It now follows from Theorem 4.1, in conjunction with Lemmas 4.1 and 4.2
and Theorem 4.3, that A is cogredient to a matrix of the form

k -
L B,
t=1

where the B, are irreducible and all the B, have the same nonzero eigenvalues.
But then X%, B, and X;%,C, are cogredient, and all the B, and all the C, are
irreducible. Thus, by Theorem 4.5, the B,, B,,..., B, are cogredient to the
C,,G,, ..., C,, in some order, and the result follows. ®
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We use the preceding theorems to extend a result of Mirsky [6] and apply it
to imprimitive matrices. We shall require the following auxiliary result on
matrices in the form (1).

Theorem 4.7 (Minc [5]). Let A be a complex n X n matrix in the form (1),
and let

A"+ b
t

where the coefficients b, are nonzero, be the characteristic polynomial of A. Then
k divides n — m, for all t.

Proof. Let p(A, M) denote the characteristic polynomial of M. Sup-
pose that A4 is in the form (1), where the block A4, .., is n, X n, ,, s=
1.2,..., k —1,and A,y is n, X n;, and let

5,5+

k
D=3Y 61,
s=1 ’
where 8 = exp(27i/k). Then
D 'AD = 64,

and therefore

D YONI, — A)D = §(\I, — A),

so that
p(6X, 4) = 0"p(A, A).
Hence
"N + thom,xm, = "N + thonxm,,
t t
that is,

g = 0;1’
for all 7. Thus

exp(27i(n — m,)/k) = 1,
for all 7. The result follows. B

Our next result is a generalization of a theorem of Mirsky [6]. The proof is
similar to Mirsky’s proof in [6].
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Theorem 4.8 (Minc [S}). Let A be an n X n complex matrix in the form (1),
and suppose that w, w,,...,w, are the nonzero eigenvalues of the product
A, Ay -+ Ay Then the spectrum of A consists of n — km zeros and the km
kth roots of the numbers w,, w,,...,

m*

Proof. By Lemma 4.2, the spectrum of A* consists of the numbers
Wy, Wyyenes w,,, each counted k times, and n — km zeros. Thus

H—Kkm = A
p(A, A) = Nk Hl()\— W), (7
i=
and therefore
p(X, 4) = X" "p(X),
where
km

(P(A) = Z N

t=0

By Theorem 4.7, coefficient ¢, must vanish, unless k divides n — (n — km + t)
= km — t. It follows that ¢, = 0 whenever k does not divide ¢. In other words,
@(A) is a polynomial in A:

(P(A) = H (N( - -{1)’

=1

for some numbers ¢, {5, ..., {,,. Hence

PO 4) = x- [T (¢ - )

=Xk T (A= §Mk67), (8)

l<t<m
l<j<k

where 8 = exp(27i/k) and {!/* denotes any fixed kth root of {,. Therefore
the characteristic polynomial of A is

p(X, 4%) = ni~hn n (A - )" 9)

Comparing (7) and (9) it can be concluded that the numbers ¢, {,,..., ¢, are
the same as the numbers w,, w,, ..., w,, in some order. Thus the characteristic
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polynomial (8) of A4 reads

p(A 4) =xF T (A= w7*e7),

1<t<m
1<j<k

and the theorem is established. B

We now exploit Theorem 4.8 to gain information about the spectra of
imprimitive matrices,

Theorem 4.9 (Minc [5]). Let A be an irreducible n X n matrix, and suppose
that A* is cogredient to a direct sum of irreducible matrices Cy, C,, ..., C,. If the
nonzero eigenvalues of C, are w{, w,,..., w,, then the spectrum of A consists of

n — km zeros and the km kth roots of w;, w,,..., w,,.

Proof. By Theorem 4.6, k divides the index of A, and thus, by Theorem
4.1, the matrix 4 is cogredient to a matrix in the form (1) with blocks
Ay, Ay, ..., Ay in the superdiagonal. Then 4* is cogredient to

k .
> B,

t=1

where B, = A4, ,.1A4,41,42 " Ao1p t=12,...,k (subscripts reduced
modulo k), and all the B, have the same nonzero eigenvalues. Hence, by
Theorems 4.5 and 4.6, the matrices B, and C, have the same nonzero
eigenvalues. The result now follows by virtue of Theorem 4.8. W

PROBLEMS

1 Prove that lim,,_, 4™ = 0 if and only if the spectrum of A4 lies in the
interior of the unit circle.

2 Find pairs of imprimitive 3 X 3 matrices 4 and B satisfying the follow-
ing conditions, or show that such matrices do not exist:

(a) AB is primitive (is BA then necessarily primitive?);
(b) AB is imprimitive;
(¢) AB is reducible.

3 Find pairs of reducible 3 X 3 matrices 4 and B satisfying the following
conditions:

(a) AB is positive;
(b) AB is primitive but not positive;
(c) AB is imprimitive.
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Find an imprimitive 3 X 3 matrix 4 and a reducible 3 X 3 matrix B:
(a) such that 4B is primitive;
(b) such that AB is reducible.

Let 4, ;. bean n; X n;,, complex matrix for j = 1,2,..., k (subscripts
reduced modulo k), and let B, =A; ; 1A, 1 ;45 - A1, J=
1,2,..., k. Prove that all the B, have the same nonzero eigenvalues.

( Hint: First prove the result for two matrices one of which is nonsingular.
Extend this result to two singular matrices, and then to rectangular
matrices. Finally, generalize it to k matrices.)

Prove in detail that an # X n nonnegative matrix A is reducible, if and
only if there exist disjoint sequences A and p such that AU p =
{(L,2,...,n} and A[A|p] = 0.

Show that if one of the sequences o', a2, ..., a, B, B2 ..., B* in Theo-
rem 4.2 were empty, then the matrix 4 would have a zero row or a zero
column.

Let A be an irreducible matrix with index of imprimitivity 4. Show that
A* is irreducible if and only if # and k are relatively prime.

Prove Corollary 4.2 by considering the dimension of the row space or the
column space of A.

Is the converse of the result in Corollary 4.2 true?

Let Q and A be the matrices in Example 4.1. Find a permutation matrix
R such that RQAQRT is in a superdiagonal block form with k = 3.

Let P be the n X n permutation matrix with 1’s in the positions (i, i + 1),
i=12,...,n—1, and (n,1). Use Theorem 4.8 to determine the spec-
trum of P.

Let P be the permutation matrix defined in Problem 12, and let E;; be
the n X n matrix with 1 in the (1, 3) position and 0’s elsewhere. Show that
P + E|; is primitive.

Show that an n X n permutation matrix is irreducible if and only if it is
cogredient to the permutation matrix in Problem 12,

Show that a symmetric imprimitive matrix must have index 2.

Let A be an irreducible nonsingular » X n matrix with index 4. How
many real eigenvalues at most can 4 have?

Let A be a matrix in the form (1), Section 3.4, where the blocks
Ay, Ay, ..., Ay, are square. Let p be the number of zero eigenvalues of
A. Show that p = 0 (mod k).
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18 For each of the following matrices, either find an irreducible matrix
whose square is equal to the given matrix or show that such a matrix
cannot exist:

1 0 0
A=0111
L011
(1 1 0
B=1|1 1 0],
0 0 2
[1 1 0 o]
111 0 o0
C=l0o 0 1 1/
0 0 1 1]
[1 1 0 o]
111 0 o
D‘oozo’
0 0 0 O]
[0 1 0 0]
11 0 0 0
E=10 0 0 1|
0 0 1 0
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IV

Structural Properties of
Nonnegative Matrices

4.1. (0,1)-MATRICES. PERMANENTS

We now turn our attention to properties of nonnegative matrices which
depend on their zero pattern only. From this point of view, matrices are
essentially rectangular arrays with entries of two kinds. However, in most
combinatorial applications it is convenient to represent these entries by 0 and
1, particularly if the permanent function, or some other combinatorial matrix
function, is used for enumerative purposes. A matrix each of whose entries is
either 0 or 1, is called a (0, 1)-matrix.

Let S,,5,,...,S,, be subsets, not necessarily distinct, of an n-set § =
{x1, x3,..., x,}. Let A =(a,;;) be the m X n (0,1)-matrix with a,; =1 if
x; € S;,and a,; = 01if x; & S;. The matrix A is called the incidence matrix of
the subset configuration §, S,,..., S,,. Once the x;’s and the §;’s are ordered,
the incidence matrix is uniquely determined by the configuration, and vice
versa.

The definition of incidence matrices can also be specialized to representa-
tions of relations, functions, graphs, set intersections, etc.

Definition 1.1. Let S, S,,..., S, be subsets of an n-set S. A sequence
(515 S35 .-, 8,,) of m distinct elements of S is said to form a system of distinct
representatives (abbreviated to SDR) for the configuration S, S,,..., S, if
5;€8,i=12,...,m.

A configuration of subsets may or may not have an SDR. It is of
considerable interest in combinatorics to determine whether a given configura-
tion has any SDRs, and if so, how many.

Example 1.1. (a) The configuration of subsets X, = {x;, x;}, X, =
(x5, X3, x4}, X3 = {xq, X3}, X4 = {x, X3, x,} of the 4set X =
{x1, x5, x5, x,} has four SDRs: (x,, x5, X5, x,), (x1, X4, X5, X3),
(x3, X9, X1, X4), (X3, X4 X3, Xy).

68
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(b) The configuration of four subsets, $; = §; = S, = {s5,,5,}, S, = S, of
a 5-set S = {5y, 5,5, 53, 54, 55} has no SDRs. For, §; U §; U §, contains only
two elements, and therefore the subsets S;, S;, and S, cannot be represented
by three distinct representatives. B

The problems of determining the existence of SDRs of a given configura-
tion of subsets and of evaluating the number of SDRs can be analyzed
conveniently using incidence matrices.

Let 4 = (a,;) be the incidence matrix for subsets Sy, S, ..., S,, of an n-set
{x1, X5,..., x, }. If the configuration has an SDR, then clearly m < n and
there exists a one—one function ¢: {1,2,...,m} — {1,2,..., n} such that

xu(,.)eS,., i=1,2,...,m.

It follows from the definition of incidence matrices that

Gon=1, i=12...,m

Hence the configuration has an SDR if and only if there exists a one—one
function o such that

lj[laiam =1 (1)

The number of SDRs is equal to the number of distinct one—one functions o
for which (1) holds. It is therefore equal to

Z 1_[ Ais(iys (2)

¢ i=1

where the summation is over all one-one functions from (1,2,..., m} to

{(L,2,...,n}.

Definition 1.2. Let A = (a;;) be an m X n matrix with complex or real
entries, m < n. The permanent of A is defined by

Per(A) = ). I_[am(,), (3)

¢ i=1

where the summation extends over all one—one functions o as in (2). The
special case m = n is of particular importance; in this case we write per(A)
instead of Per(A). Thus, if A = (a;,) is n-square,

per(A)— Z I_[am(l) (4)

6ES, i=1
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Our conclusions about the existence of an SDR for a configuration of
subsets and the number of such SDRs can be restated in terms of permanents
as follows. A configuration has an SDR if and only if its incidence matrix has a
positive permanent. The number of SDRs for a configuration equals the perma-
nent of the incidence matrix of the configuration.

The similarity between the definition of the determinant function and that
of the permanent function on square matrices is quite apparent. In fact,
permanents do possess some properties analogous to those of determinants.

Theorem 1.1. Let A be an m X n matrix, m < n.
(a) The permanent of A is a multilinear function of rows of A.
(b) If m = n, then per(AT) = per( A).
(c) If P and Q are m X m and n X n permutation matrices, respectively, then

per(PAQ) = per( A).
(d) If D and G are m X m and n X n diagonal matrices, respectively, then
per( DAG) = per(D)per( A)per(G).

All these properties are immediate consequences of the definition of perma-
nents. ‘

The next theorem is an analogue of the Laplace expansion theorem for
determinants.

Theorem 1.2. Let A = (a;;) be an m X n matrix, m < n, and let a be a
sequence in Q, .. Then, forr < m,

Per(A) = ). per(A[ajw]) - Per(A(a|w)). (5)

w€Q, ,

In particular, for anyi,1 <i <m,

Per(4) = 3 a, Per(A(i]1)). (6)

t=1

In the case m = n, analogous formulas hold for expansions by columns.

Proof. Consider the entries of 4 as indeterminates. For a particular
w € Q, , the permanent of A{a|w]is a sum of r! diagonal products, and that
of A(a|w) is a sum of ( ,':,:’,B(m — r)! diagonal products. The product of a
diagonal product of A[a|w] by a diagonal product of A(«|w) is a diagonal
product of 4. Thus, for a fixed w, per(A4[a|w]) - Per(A(a|w)) is a sum of
r!( ;‘_’r)(m — r)! distinct diagonal products of A. Furthermore, for different

sequences w, different diagonal products are obtained. Now, there are ('r’ )
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sequences in Q, ,, and therefore the right-hand side of (5) is the sum of

(= om0 = ()

such diagonal products, that is, the sum of all the diagonal products of A, and
thus is equal to Per(4). m

For a comprehensive study of permanents see the monograph {24].

4.2. THE FROBENIUS-KONIG THEOREM

The fundamental result on zero patterns of matrices is the so-called
Frobenius—Konig theorem. It was first obtained by Frobenius {8]. In 1915
Konig [15] gave an elementary proof of the theorem, using graphs. In 1917 the
theorem was again re-proved by Frobenius [9] using an elementary method.
An acrimonious controversy developed between Frobenius and Konig about
their respective contributions to this result (see [16]). We do not intend to
adjudicate in this matter, and shall refer to the result in question (Theorem 2.1
below) as the Frobenius—Konig theorem, by which name it is generally known.

The Frobenius—Konig theorem states that a necessary and sufficient condi-
tion for every “term in the expansion of the determinant of an n X n matrix”
to be zero, is that the matrix contain an s X ¢ zero submatrix with s + t = n
+ 1. We restate the theorem in terms of permanents and extend it to
rectangular matrices.

Theorem 2.1. The permanent of a nonnegative m X n matrix, m < n, vanishes
if and only if the matrix contains an s X t zero submatrix with s + t=n + 1.

Proof. Let A be an m X n matrix, m < n, and suppose that A[a|B] =0,
«a€Q, ,, B€Q, ,ands+t=n+1 Then the submatrix A[e|1,2,..., n]
contains at most # — t = s — 1 nonzero columns, and therefore every s X s
submatrix A[a|w], w € Q, ,, has a zero column. In other words, per(A[a|w])
= 0 for every w € Q, ,. If s = m, the result is obvious. If 5 < m, it follows,
by Theorem 1.2, that

Per(4) = Y, per(A[a|w]) - Per(A(a]w)) = 0.

“,EQJ.H

Conversely, suppose that 4 =(a,;) is an m X n matrix, m < n, and
Per(A) = 0. We use induction on m. If m = 1, then 4 must be a zero matrix.
Assume that m > 1, and that the theorem holds for all matrices with less than
m rows for which the permanent is defined. If 4 = 0, there is nothing to
prove. Otherwise, 4 contains a nonzero entry a,,. But then Per(A(h|k)) = 0,
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since 0 = Per( 4) > a,,Per( A(h|k)). By the induction hypothesis, the subma-
trix A(h|k) contains a p X ¢ zero submatrix with p + ¢ = n. Let P and Q be
permutation matrices such that

re=[1 2]

where X is (m — p) X g and Z is p X p. Clearly, m — p < q and therefore
0 = Per(A4) = Per(PAQ) > Per( X) - per(Z),

and therefore either Per( X) = 0 or per(Z) = 0. If Per( X) = 0, then using the
induction hypothesis again, we can conclude that X contains a u X v zero
submatrix  X[i, i5, ..., 0,0/, J2o---» J,] With u+ v =4¢g + 1. But then
PAQ, and thus A, contains a (u + p) X v zero submatrix, namely,
(PAQNi iy, i, m—p+ 1 m—p+2,...,mlj, jp..., j), with

(u+p)+v=p+ (u+v)
=p+gqg+1

=n+1.
If per(Z) = 0, the proof is similar. B

Example 2.1 (“Dance Problem”). In a group of n boys and n girls every boy
has been introduced to k girls, and every girl has been introduced to & boys.
Show that it is possible to arrange a dance in n pairs in such a way that every
girl dances only with a boy to whom she was previously introduced.

Let A be the n X n matrix whose (i, j) entry is 1 if the ith boy has been
introduced to the jth girl, and O if he has not. Then every row sum and every
column sum is k. We have to prove that per(A) > 0, that is, there exists a
positive diagonal of A, since such a diagonal would determine a permissible
arrangement in pairs for the dance. Suppose that this is not the case, namely,
that per(4) = 0. Then, by the Frobenius—Konig theorem, the matrix A
contains a p X g zero submatrix where p + ¢ = n + 1, and thus there exist
permutation matrices P and Q such that

ma-[3 1]

where X is (n — p) X g and Z is p X (n — g). Let o( M) denote the sum of
all entries of matrix M. Then o(PAQ) = o(A) = nk. Also, ¢(X) = gk and
o(Z) = pk, since X contains all nonzero entries in the first g columns and Z
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contains all nonzero entries in the last p rows of PAQ. Hence

nk = o( PAQ)
>o(X) +0(2)
= gk + pk
=(p+aq)k
= (n + 1)k,

which is a contradiction. We can therefore conclude that the permanent of A4
is positive, and it follows that the dance can be arranged in the prescribed
way. B

Theorem 2.1 can be generalized as follows.

Theorem 2.2 (Ko6nig [16]). A necessary and sufficient condition that every
diagonal of an m X n matrix, m < n, contain at least k zeros is that the matrix
contain an s X t zero submatrix withs +t =n + k.

Proof (Aharoni [1]). Augment A to an m X (n + k — 1) matrix B =
[A4 : J] so that the first n columns of B form the matrix A and the remaining
columns form an m X (k — 1) matrix J all of whose entries are nonzero.
Suppose that every diagonal of A contains at least k zeros. Then every
diagonal of B contains a zero. For, at least m — (k — 1) entries of each
diagonal of B must lie in A, and these m — (k — 1) entries together with
k — 1 additional entries in 4 form a diagonal of B which contains at least k
zeros. Hence, by Theorem 2.1, the matrix B contains an s X ¢ zero submatrix
withs +t=(n+ k—1)+ 1 =n+ k. Clearly, it must lie in A.

Conversely, if A contains an s X ¢ zero submatrix with s+ ¢= (n +
k ~ 1)+ 1 =n+ k, then, by Theorem 2.1, every diagonal of B contains at
least one zero. We assert that this implies that every diagonal of A contains at
least k zeros. For, if a diagonal of A contained ¢ zero entries, t < k — 1, then
the m — ¢ nonzero entries of this diagonal together with appropriate ¢ entries
in J (which are all nonzero) would form a diagonal of B without any zeros.

|

Example 2.2. Find necessary and sufficient conditions for every diagonal in
an m X n matrix, m < n, to contain exactly k zeros.

Let 4 be an m X n matrix, m < n, and suppose that every diagonal of 4
consists of k zeros and m — k nonzero entries. By Theorem 2.2, the matrix 4
must contain both an s X ¢ zero submatrix with s+ t =k +n,anda p X ¢
submatrix all of whose entries are nonzero, with p + ¢ = n + (m — k). Since
the two submatrices cannot overlap, we must have either s + p <m or
t+ q < n. But

(s+p)+(t+q)=2n+m,
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and thus if s + p < m, then

m+t+qg=2n+m,
that is,

t+q=2n,

which implies that ¢ = r = n and therefore s = k and p = m — k. It follows
that A consists of k zero rows and m — k rows without zero entries. If
t + g < n, then we obtain

s+p+n=2n+m,

that is,

s+p=n+m,

which is impossible unless m = n. In this case s =p =n and ¢ =k and
q = n — k, and the matrix A consists of k zero columns and n — k columns
without zero entries.

The above conditions are obviously sufficient. W

We define now an important concept in combinatorics. It usually appears in
connection with (0,1)-matrices, but it is preferable here to define it for
nonnegative matrices.

Definition 2.1. Let A be an m X n nonnegative matrix. The term rank of A
is the maximal number of positive entries in A no two of which lie on the
same line. In other words, the term rank of A is the order of the largest
positive subpermanent of A.

Theorem 2.3 (Konig-Egervary [16]).  The minimal number of lines inanm X n
nonnegative matrix A that contain all the positive entries in A is equal to the term
rank of A.

Proof. Let r denote the term rank of A. If w lines contain all the positive
entries in A, then clearly w > r. Suppose that ¥ rows and v columns contain
all the positive entries of 4, u + v = w, where w is minimal. We can assume
without loss of generality that these are the first u rows and the first v
columns of A, that is,

(B ¢
A‘[D 0]’

where B is u X v. Clearly, w < min(m, n) and thus ¥ < n — v. Now, the term
rank of C is u. Otherwise, every diagonal of C would contain a zero, and, by
Theorem 2.1, the matrix C would contain a p X ¢ zero submatrix with
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p+qg=1+n—ov But then 4 would contain an (m —u + p) X g zero
submatrix. It follows that all the positive entries of 4 would be contained in
u — p of its rows and n — q of its columns. But

(u—p)+(n—g)=u+n—-1-n+v
=u+v-—1
=w-—1,

and w could not have been minimal. For similar reasons the term rank of D is
v. Now, the term rank of 4 must be at least as large as the sum of those of C
and D. Therefore

r>zu+v

= w.
This, together with the previously obtained inequality r < w, implies that
r=w. 1

Example 2.3. The term rank of the matrix

o

il
—_ O
O =-=O O
O - OO

bt D e e

is 3, since per( A(1]|4)) > 0 and per(A) = 0. We observe that the third row, the
first column, and the third column contain all the positive entries of A. W

4.3. NONNEGATIVE MATRICES AND GRAPHS

Many of the properties of nonnegative matrices, such as irreducibility, primi-
tivity, the Frobenius form of an irreducible matrix, and its index of imprimi-
tivity, depend on its zero pattern only. These properties can often be studied
conveniently by replacing the matrix by a (0, 1)-matrix with the same zero
pattern. With each such (0, 1)-matrix we can in turn associate an essentially
unique directed graph (see the definition below). In this section we show how
some properties of nonnegative matrices can be deduced from relevant proper-
ties of the associated directed graph. We shall not discuss here the reverse (and
perhaps the more important) problem of determining structural properties of
directed graphs from algebraic properties of associated matrices.

We start with a profusion of definitions, an unavoidable prerequisite of any
study of graphs.

Definition 3.1. Let V be a nonempty n-set whose elements may be conve-
niently labelled 1,2,..., n, and let E be a binary relation on V, that is, a set of
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ordered pairs of elements of V. The pair D = (V, E) is called a directed graph,
the elements of V are its vertices, and the elements of E are the arcs of D. The
arc (i, j) is said to join vertex i to vertex j. A subgraph of D is a directed
graph all of whose vertices and arcs belong to D. A spanning subgraph of D is
a subgraph of D containing all the vertices of D.

It is convenient to represent a directed graph D by means of a diagram in
which the vertices of D are represented by points and its arcs by directed lines
joining the appropriate points. It is customary to refer to the diagram as the
directed graph D.

Example 3.1. Let V= {1,2,3,45}) and E = {(1.1),(1,3),(2,5,(3, 1,
(3.4),(4.1),(4.2).(4.3).(5.4)}. Then the graph D = (V, E) may be repre-
sented by the diagram

Of course, the following diagram represents the same graph

4

since the corresponding points (vertices) in the two diagrams are simulta-
neously either joined by directed lines (arcs) or are not thus connected. Note
that in the second diagram some lines intersect in points which are not vertices
of the graph; these spurious intersections are not part of the graph. M
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A sequence of arcs (i, ), (¢, 1;), (23, 13)s -+ s (L 2y L1 s (B—1, J) IR D iS
called a path connecting i to j. The length of the path is defined to be the
number m of arcs in the sequence. A path of length m connecting vertex i to
itself is called a cycle of length m. If each vertex in a cycle appears exactly once
as the first vertex of an arc, the cycle is called a circuit. A cycle of length 1is a
loop. A spanning circuit is called a Hamiltonian circuit.

Definition 3.2. (a) The adjacency matrix A(D) of a directed graph D with »
vertices is the (0, 1)-matrix whose (i, j) entry is 1 if and only if (i, j) is an arc
of D.

(b) A directed graph D(X) is said to be associated with a nonnegative
matrix X, if the adjacency matrix of D(X) has the same zero pattern as X.

For example, the directed graph in Example 3.1 is associated with matrix

10 4 00
0 0 0 0 1
300 40
bbb 00
0 0 0 1 O

(and with every other nonnegative matrix with the same zero pattern).

Definition 3.3. A directed graph D is said to be strongly connected if for any
ordered pair of distinct vertices, i and j, there is a path in D connecting i
to j.

Example 3.2. The directed graph in Example 3.1 is strongly connected
whereas the graph
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is not strongly connected: It does not contain any paths connecting 1 to 2. The
adjacency matrix of this graph is

O it
-0 O O
— D ek i
— e O e O
OrRr OO

which clearly is reducible. B

In Examples 3.1 and 3.2 the associated directed graph of an irreducible
matrix is strongly connected whereas that of a reducible matrix is not. We
show that this correspondence is true for all nonnegative matrices.

Recall that if 4 = (a,;) is a square matrix, then a,(j’." denotes the (i, j)
entry in A*,

Theorem 3.1. If A =(a;;) is a (0,1)-matrix and D(A) is the associated
directed graph with vertices 1,2,... n, then the number of distinct paths of
length k connecting vertex i to vertex j is equal 1o a}).

Proof. On the one hand, we have

(k) = ...
a;; Z i, 841,8,1, Ay By o

where ¢, 1,...., 1, ., run independently over all integers between 1 and n. On
the other hand, a path (i, #;).(#;, 25, (¢85, 23), -« (Fx—2s ti— 1) (14 -1, J) cOD-
nects i to j in D(A)ifandonly if @, = a,,, = -+ =a, _,, = 1,
that is, if and only if

a’A-lj_

1.

T T TP
The result follows. MW

Corollary 3.1. If A = (a;;) is a nonnegative matrix, then the associated di-
rected graph has a path of length k connecting vertex i to vertex j if and only if
ath > 0.

ij

The corollary yields the following important theorem.

Theorem 3.2. A nonnegative matrix is irreducible if and only if the associated
directed graph is strongly connected.

Proof. By Theorem 2.3, Chapter 1, a nonnegative n X n matrix 4 = (a,;)
is irreducible if and only if for each / and j, 1 < i, j < n, there exists an
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integer k such that a{}” > 0. By Corollary 3.1, this condition is satisfied if and
only if the associated directed graph D(A) has a path connecting vertex i to
vertex j. It follows that A is irreducible if and only if for each i and j there
exists a path in D(A) connecting / to j; in other words, if and only if D(4) is
strongly connected. ®

Graphical methods can be used for determining whether a given nonnega-
tive matrix is primitive or not, and for finding the index of imprimitivity of an
irreducible matrix.

Definition 3.4. Let D be a strongly connected directed graph. The g.c.d. of
the lengths of all cycles in D is called the index of imprimitivity of D.

Lemma 3.1. Ler D be a strongly connected graph with index of imprimitivity k,
and let k; be the g.c.d. of the lengths of all cycles of D through vertex i. Then
k;,=k.

Proof. Clearly, k|k;. We show that k;|k. Let C, be any cycle in D. Let its
length be m, and suppose that it passes through vertex j. Since D is strongly
connected it contains a path P, connecting vertex i to vertex j, and a path P,
connecting vertex j to vertex i. Let the lengths of these paths be s, and s,
respectively. Now, the path consisting of P;; and P;; and the path consisting of
P G, and P, are cycles through vertex i. The lengths of these cycles are
s;; + s, and 5s,.+ m, + s;. Since k, divides both 5;; + s5;; and s5,; + m, + 5,
it must divide m. In other words, k, divides the length of every cycle in D.
Thus k, divides k, and we can conclude that k, = k. W

Theorem 3.3. The index of imprimitivity of an irreducible matrix is equal to the
index of imprimitivity of the associated directed graph.

Proof. Let h be the index of imprimitivity of an irreducible n X n matrix
A = (a;;), and let k be the index of imprimitivity of the associated strongly
connected, directed graph D(A). Consider the cycles through vertex i. Let M,
be the set of lengths of these cycles. Then, by Lemma 3.1,

k=gcd.{m|m € M}. (1)

We show that M, is closed under addition. Let m, and m, be any integers in
M,. Then a{’ > 0 and a{">’ > 0, by Corollary 3.1. It follows that

n

(my+n) (my) ,(my) (n1) 5 (m3)

a; Y aMa") = aa) > 0.
t=1
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Hence, by Corollary 3.1, there exists a cycle of length m; + m, through vertex
i, and therefore m; + m, € M,. Thus M; is closed under addition, and, by a
well-known theorem of Schur, it must contain all but a finite number of
multiples of k. Therefore a{¥” > 0 for all sufficiently large integers z. On the
other hand, if s is not a multiple of &, then it follows from (1), the definition
of M,, and Corollary 3.1, that a{ = 0. Since i was any vertex of D(A) we can
conclude that a{ > 0 for all sufficiently large s and i = 1,2,..., n, if and
only if s is a multiple of k.

Matrix A is irreducible with index of imprimitivity 4. Hence if 4 > 1, then,
by Theorem 3.1, Chapter III, there exists a permutation matrix P such that
PTAP is in the Frobenius form with & nonzero superdiagonal blocks. By
Lemma 4.1 and Corollary 4.1, Chapter 111, (PTAP)" is a direct sum of
primitive matrices. Hence, for sufficiently large ¢, (PTAP)** = PTAMP is a
direct sum of positive matrices. It follows that for all sufficiently large ¢,
a{}¥>0,i=1,2,..., n. On the other hand, if s is not a multiple of %, then
all the main diagonal entries in (P4 P)’, that is, of A, are zero. If & = 1, then
A is primitive and, for all sufficiently large ¢, the matrix A’ = A" is positive.
We can conclude that in either case, for sufficiently large s, a{’ > 0 if and
only if s is a multiple of k. Now it follows that h = k. W

Since a nonnegative matrix has a nonzero main diagonal entry if and only if
the associated directed graph has a loop, that is, a cycle of length 1, we have
the following result.

Corollary 3.2. An irreducible matrix with a nonzero main diagonal is primitive
(cf. Corollary 1.1, Chapter III).

Theorem 3.3 provides a useful method for finding the index of imprimitivity
of an irreducible matrix. It is doubtful, however, whether this method is more
efficient than the one provided by Theorem 3.1, Chapter III. The task here is
somewhat facilitated by the observation (see Problem 12) that the index of
imprimitivity of a directed graph is equal to the g.c.d. of the lengths of all the
circuits in the graph.

Example 3.3. Use graph methods to show that

SO RO MO
OO O -
— OO OO
O OO OO
= OO O MO
O OO OO

is irreducible. Find its index of imprimitivity.
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We construct the associated directed graph of A.

4 3

We construct the associated directed graph of A.

We check that there is a path connecting every pair of vertices, and thus
that the graph is strongly connected. Clearly, it is sufficient to check that
vertex 1, say, is connected to every other vertex and each of these vertices is
connected to vertex 1. It then follows that A is irreducible. We observe that
there is a cycle of length 2 through vertex 1, and that there is no circuit of odd
length. We can conclude that the index of imprimitivity of the graph (and thus
the index of imprimitivity of A) is 2. It is clear from the graph that if, e.g., the
arc (2, 6) were added to the graph, the graph would have a cycle of length 3, its
index of imprimitivity would be 1, and its adjacency matrix would be
primitive. [Perhaps it is not immediately obvious by inspection that replacing
the zero in the (2, 6) position by 1 would render the resulting matrix primitive.]

]

We conclude this section with a characterization of primitive matrices due to
Lewin [18].

Theorem 34. If A = (a;;) is an irreducible matrix and

(03]
a;a;; > 0

for some (i, J), then A is primitive.

Proof. By Corollary 3.1, in the associated directed graph D(A) vertex i is
connected to vertex j by paths of lengths 1 and 2. Since A is irreducible, and
therefore, by Theorem 3.2, D(A) is strongly connected, there exists a path
connecting vertex j to vertex i of length s, say. Then D(A) contains cycles of
lengths s + 1 and 5 + 2. Since g.c.d.(s + 1, s + 2) = 1 it follows, by Theorem
3.3, that A is primitive. W

Theorem 3.4 can be expressed in the following form: If A is an irreducible
matrix and the Hadamard product A * A* is nonzero, then A is primitive. [Recall
that the Hadamard product of two m X n matrices X = (x;;) and ¥ = (y,,) is
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the m X n matrix whose (i, j) entry is x,;; ]
Note that the converse of Theorem 3.4 is false. For example, the matrix

b

i
—_ o Qoo C
[N aNoNane
oo —O
OO O =
O OO O

is primitive, although A * A2 = 0. However, we have the following result.

Theorem 3.5. An irreducible matrix is primitive if and only if there exists a
positive integer q such that A?* A" is nonzero.

Proof. The sufficiency is proved by the method used in the proof of
Theorem 3.4. The necessity is an obvious consequence of Theorem 2.1,
Chapter III. =

44. FULLY INDECOMPOSABLE MATRICES

In the preceding chapters we saw that the spectral properties of a nonnegative
matrix can be made more apparent by a suitable permutation of its rows and
the same permutation of its columns. In studying combinatorial properties of
a nonnegative matrix we can usually go a step further: We can permute its
rows and columns independently without affecting its essential combinatorial
characteristics. For example, permuting rows of an incidence matrix corre-
sponds to relabelling the subsets in the configuration whereas a permutation of
columns is equivalent to relabelling its elements. We shall call two matrices A
and B permuation equivalent, or p-equivalent, if there exist permutation
matrices P and Q such that 4 = PBQ. In the spectral theory of nonnegative
matrices the key concept is that of an irreducible matrix, that is, a matrix
which is not cogredient to subdirect sum of smaller matrices. In combinatorial
theory the equivalent concept is that of a fully indecomposable matrix, that is,
a matrix which is not p-equivalent to any subdirect sum.

Definition 4.1. An n X n nonnegative matrix is said to be partly decompos-

able if it contains an s X (n — 5) zero submatrix. In other words, a matrix is
partly decomposable if it is p-equivalent to a matrix of the form

£
0 zI

where X and Z are square. If an »n X n nonnegative matrix contains no
§ X (n — s) zero submatrix, it is said to be fully indecomposable. Thus a
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nonnegative matrix is fully indecomposable if it is not partly decomposable.
The 1 X 1 zero matrix is, by definition, partly decomposable, whereas a
nonzero 1 X 1 matrix is fully indecomposable.

An important characterization of fully indecomposable matrices in terms of
permanents is contained in the following theorem.

Theorem 4.1 (Marcus and Minc [20]). A nonnegative n X n matrix A, n > 2,
is fully indecomposable if and only if

per(4(ilj)) > 0,
for all i and j.

Proof. By the Frobenius—Konig theorem (Theorem 2.1), per(A(h|k)) = 0
for some h and k if and only if the submatrix A(A|k), and thus the matrix 4,
contains an s X ¢ zero submatrix with s+ t=(n— 1)+ 1 =n. Hence
per(A(h|k)) = 0 for some 4 and k if and only if A4 is partly decomposable.

|

Corollary 4.1. Every positive entry of a fully indecomposable matrix lies on a
positive diagonal.

Recall that E;; denotes the n X n matrix with 1 in the (7, j) position and
0’s elsewhere.

Corollary 4.2. If A is a fully indecomposable nonnegative matrix, and ¢ is a
nonzero real number, then for every i and j,

per(A + cE,;) > per(A)
or

per(4 + ¢E,;) < per(4),
according as ¢ > 0 or ¢ < Q.

For, per(4 + cE;)) = per(4) + c per(A(i]))) and, by Theorem 4.1,
per(A(il))) > 0.

A stronger result is possible in the case of a fully indecomposable (0, 1)
matrix.

Corollary 4.3. If A is a fully indecomposable (0,1)-matrix, then

per

A+ ) E,,,j,) > per(4) + m.

t=1
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Proof. Since A is a (0, 1)-matrix, Theorem 4.1 implies that
per(4(ilj)) = 1,
for all i and j. Therefore
per(4 + E, ;) = per(A) + per(A(is|/1))
> per(A4) + 1.

Clearly, A + E, ; 1s fully indecomposable. The result now follows by induc-
tionon m. W

Theorem 4.2. Let

A, B, 0 0
0 4, B, :
A4=1" . 0 (1)
0 0 " A, B_,
B, 0 0 4,

be a nonnegative n X n matrix, where A; is a fully indecomposable n, X n,
matrix and B, # 0, i = 1,..., r. Then A is fully indecomposable.

Proof (Edgar [7]). Suppose that A is partly decomposable, that is, A[a|B]

= 0 for some « € Q_, and B € Q, ,, where s + ¢ = n. Let 5, of rows « and

t; of columns B intersect the submatrix 4, j=1,...,r. Then s + s,

+ -+ +s5, =5 > 1, so that at least one of the s; must be positive. Similarly, at
least one of the ¢; is not zero. Now, since each 4, is fully indecomposable and
contains an s; X 1, zero submatrix (unless either s, = 0 or ¢, = 0), we must

have s; + 1, < n;, where equality can hold only if 5, = 0 or ¢, = 0. But
n=s+1
r r
= Z s; + t
j=1 j=t

and thus s, + 1, = n; for every j. It follows that either s, =0 or 1, = 0 for
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j=1,..., r. But not all the s ', nor all the ¢ ' can be zero. Therefore there must
exist an integer k such that s, = n, and ¢, , = n,,, (subscripts reduced
modulo r). But then B, is a submatrix of a zero submatrix, contradicting our
hypotheses. W

Definition 4.2. A nonnegative matrix is called doubly stochastic if all its row
and column sums are 1.

Clearly, a doubly stochastic matrix must be square. We shall study doubly
stochastic matrices in detail in the next chapter.

Definition 4.3. A nonnegative matrix is said to have a doubly stochastic
pattern if it has the same zero pattern as a doubly stochastic matrix. B

1 1 1
1 1 0
1 0 1

has a doubly stochastic pattern, since it has the same zero pattern as the
doubly stochastic matrix

For example, the matrix

N N e O
[ RPN
sl O p—

On the other hand, the matrix
1 1 1
1 1 0 )
0 0 1
does not have a doubly stochastic pattern. For, if any doubly stochastic matrix
had the same zero pattern as (2), its only nonzero entry in the third row would
have to be 1. But then its (1, 3) entry could not be positive.
Theorem 4.3. A fully indecomposable matrix has a doubly stochastic pattern.
Proof. Let A = (a;;)bean n X n fully indecomposable matrix. Then, by

Theorem 4.1, per(A(i|j)) > 0 for all i, j. Let S = (s,,) be the n X n matrix
defined by

S,-,-=a,-jper(A(i|j))/per(A), i,j=1,...,n.
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Clearly, s is nonnegative and it has the same zero pattern as A. Also for
i=1,...,n

> s -

per(A) Z a,jper(A(1|j))

j=1
= 1 per(4)
~ per(4) P*
= 1,

and similarly for j =1,..., n,

n

Z S = per(A) Z auper(A(lll))

i=1

= 1.

Hence S is doubly stochastic and thus A has a doubly stochastic pattern. MW

Note that the converse of Theorem 4.3 is not true (Problem 16).
The following simple result [4] illustrates the connection between the
concepts of full indecomposability and irreducibility.

Theorem 4.4. A nonnegative matrix is fully indecomposable if and only if it is
p-equivalent to an irreducible matrix with a positive main diagonal.

Proof. Let A be an irreducible n X n matrix with a positive main diago-
nal. If A4 were partly decomposable, then it would contain a zero submatrix
A[il’ i2’ e is|js+1’ js+2’ ] jn]7 il < i2 < 0 < is’ js+l <j_v+2 < e <jm
where {i,, i,,...,i,} and {j,,1, Ji12,--., J,} Would have to be disjoint since
A has no zero entries on its main diagonal. But this would contradict the fact
that A is irreducible (see Problem 6, Chapter III).

Conversely, a fully indecomposable matrix contains, by Corollary 4.1, a
positive diagonal and is therefore p-equivalent to a fully indecomposable, and
thus irreducible, matrix with a positive main diagonal. ®W

4.5. NEARLY DECOMPOSABLE AND NEARLY
REDUCIBLE MATRICES

Corollary 4.2 implies that if a positive entry in a fully indecomposable
(0, 1)-matrix is replaced by a zero, then, provided that the matrix remains fully
indecomposable, its permanent decreases by at least 1, that is, the permanent
of the original matrix exceeds the permanent of the resulting matrix by at least
1. If the latter were known we would have a lower bound for the permanent of
the original matrix. If it is not known or it is difficult to estimate, we may



Nearly Decomposable and Nearly Reducible Matrices 87

continue the process of replacing 1’s by 0’s until we arrive at a more tractable
fully indecomposable matrix, and then apply Corollary 4.3 in order to obtain a
lower bound for the permanent of the original matrix. We shall now consider
the class of matrices obtained by carrying out such a “stripping” process on
fully indecomposable matrices as far as possible.

Definition 5.1. (a) A fully indecomposable nonnegative matrix 4 = (a,,) is
said to be nearly decomposable if for each a,, > 0, the matrix 4 — a,, E,, is
partly decomposable.

(b) An irreducible nonnegative matrix A = (a;;) is called nearly reducible
if for each positive a,,, the matrix 4 — a,,E,, is reducible. It is convenient
here to regard a 1 X 1 zero matrix as nearly reducible (and therefore irreduc-
ible).

(c) A strongly connected directed graph is called minimally connected if it
ceases to be strongly connected when any of its arcs is deleted.

(d) A strongly connected directed graph with no loops is called a rosette if
it has at most one vertex to which more than two arcs are incident.

(e) If W is a subset of vertices of a directed graph D, then the shrink of W
is obtained from D by deleting the arcs joining any two vertices of W and by
identifying all the vertices of W with a single one of them.

Note that the shrink of W may not be a directed graph since it may have
multiple arcs joining the same (ordered) pair of vertices. However, if no pair of
vertices is joined by more than one arc, then the shrink is a directed graph.

Lemma 5.1. (a) A directed graph with at least two vertices is minimally
connected if and only if its adjacency matrix is nearly reducible.

(b) A rosette (and thus a circuit) is a minimally connected graph.

(¢) The adjacency matrix of a circuit is a full-cycle permutation matrix.

The above propositions are quite obvious. We leave their proofs to the
reader (Problem 21).

Lemma 5.2. Let A be a matrix in form (1), Section 4.4, where the A; are fully
indecomposable and the B, are nonzero. If A is nearly decomposable, then each
of the A, is nearly decomposable.

Proof. If A, were not nearly decomposable, a positive entry in A4, could be
replaced by a zero, and the resulting block would still be fully indecompos-
able. But then, by Theorem 4.2, matrix 4 with the same positive entry
replaced by a zero would still be fully indecomposable, contradicting the fact
that A is nearly decomposable. ®

Lemma 5.3 (Berge [2]). If W is the set of vertices of a strongly connected
subgraph of a minimally connected directed graph D, then the shrink of W is also
a minimally connected directed graph.
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Proof. We first show that the shrink of W is a directed graph, that is, it
cannot contain multiple arcs. For, if it were not the case, there would exist in
D pairs of arcs (i, j) and (i, k) [or (j,i) and (k,i)] with i & W and
j. k € W. But then the strongly connected graph D would not be minimally
connected, since the directed graph obtained from D by deleting one of the
two arcs would again be strongly connected.

Next we assert that the shrink of W is minimally connected. Clearly, it is
strongly connected. Also, the deletion of any of its arcs cannot result in a
strongly connected graph. Otherwise, the deletion of the same arc in D would
also result in a strongly connected graph, contradicting the fact that D is
minimally connected. ®

The following theorem gives a remarkably simple canonical form for nearly
reducible and nearly decomposable matrices. The result is due to Hartfiel [13].
His canonical form for nearly decomposable matrices is a substantial simplifi-
cation of the canonical form obtained by Sinkhorn and Knopp [28].

Theorem 5.1. Let A be an n X n nearly decomposable (nearly reducible)
matrix, n > 1. Then A is p-equivalent (cogredient) to a matrix of the form

(4, E, 0 -~ 0 0 |
0 A, E, - 0 0
: L (1)
0 0 0 A,_, E,_,

E, 0 0 .

where s = 2, each E; has exactly one positive entry, each A, is nearly decompos-
able (nearly reducible), and all the A;, except possibly A, are 1 X 1.

Proof. We first prove the theorem for nearly reducible matrices. Let D be
the directed graph associated with A. By Lemma 5.1(a), graph D is minimally
connected. If D is a Hamiltonian circuit, then by Lemma 5.1(c) the adjacency
matrix of D is a full-cycle permutation matrix, and A is cogredient to a matrix
of the form (1). If D is not a Hamiltonian circuit, we shrink any of its circuits.
By Lemma 5.3, the resulting graph D, is minimally connected. Let v, be the
vertex of D, which replaced the vertices of the shrunk circuit. If D, is not a
Hamiltonian circuit, we shrink any circuit through v, and obtain a minimally
connected graph D,; let v, be the vertex which replaced the vertices of the
shrunk circuit through v,. We continue this shrinking process until we arrive at
a minimally connected graph D,, which is a Hamiltonian circuit of length s.
Let v,, be the vertex to which all the circuits in the preceding stages shrank.
The vertices of D which shrank to v,, form a subgraph of D which is a rosette.
The remaining s — 1 vertices were not involved in the shrinking process.
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Relabel them as 1,2,..., s — 1, label vertex v,, as s, and relabel the remaining
vertices of D as s+ 1,5 +2,...,n, in any order. Then C, the adjacency
matrix of D with its vertices relabelled as specified above, is of the form (1),
where 4, =4,= -+ =4, ,=0,E,=E,= --- =E_,=1E _|is1X
(n — s + 1) with 1 as its first entry and 0’s elsewhere, and E_is(n —s + 1) X 1
with 1 as its top entry and (’s elsewhere. Matrix A is cogredient to a matrix
with the same zero pattern as C. This completes the proof for the case when A
is nearly reducible.

Now, suppose that 4 is nearly decomposable. By Theorem 4.4, matrix 4 is
p-equivalent to an irreducible matrix 4 with a positive main diagonal. Since
the irreducibility of a matrix does not depend on its main diagonal entries, A
is a sum of an irreducible matrix B with a zero diagonal and a nonsingular
nonnegative diagonal matrix L. Clearly, B is nearly reducible. Hence, by what
we have already proved, there exists a permutation matrix P such that PTBP
is of the form (1), where the main diagonal blocks are nearly reducible and
each E; has exactly one positive entry. Again, by Theorem 4.4, PTBP + PTLP
= PTAP is of the form (1), where the main diagonal blocks are now _fully
indecomposable, and each E, has exactly one positive entry. Since P'4P is
nearly decomposable, then, by Lemma 5.2, each main diagonal block of PTAP
is also nearly decomposable. Matrix PTAP is p-equivalent to A. ®

We use Theorem 5.1 to evaluate the maximum number of positive entries in
a nearly reducible or a nearly decomposable matrix. We start with a lemma
which may be of interest in itself.

Lemma 54. If A = (a;;) is a nearly decomposable matrix in canonical form
(1), then A, cannot be 2 X 2.

Proof. Suppose that 4_is 2 X 2. We can assume without loss of generality
that 4 is a (0,1)-matrix, and that E,_,=[1 0] whereas E,_; =[0 1]7.
Since A, is a fully indecomposable 2 X 2 matrix it must be positive. But then
A cannot be nearly decomposable since 4 — E, ,_, = I, + P, is fuily inde-
composable by Theorem 4.2. (Here P, denotes the full-cycle permutation
matrix with 1’s in the superdiagonal.) ®

Lemma 5.5. (a) Let B, be the n X n (0,1)-matrix, n = 2,

0
1
1

Then B, is nearly reducible.
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(b) Let C, be the n X n (0,1)-matrix, n > 3,

01 1 1

n 1 1 0 0

Cn=Bn+ ZEH: 1 0 1 0
i=2 .

1 0 0 1

Then C, is nearly decomposable, and
per(C,) = —det(C,) =n— 1.

(Note that the matrix C, occurs in a celebrated theorem of de Bruijn and
Erdos [5].)

Proof. (a) Clearly, B, is nearly reducible. In fact, its associated directed
graph is a rosette.

(b) Matrix B, + I, = C, + E,; is fully indecomposable, by Theorem 4.4,
and so is C, since the additional zero in the (1,1) position cannot be an entry
in any s X (n — s) zero submatrix for n > 2. Also, C, is nearly decomposable:
If any of its positive entries is replaced by a zero, then the resulting matrix
contains either a 1 X (n — 1) or an (n — 1) X 1 zero submatrix.

Subtract the sum of the last n — 1 columns of C, from its first column. The
resulting matrix is triangular and its main diagonal product is —(n — 1) which
is equal to det(C,).

To compute the permanent of C, use induction on n. The permanent of C;
clearly is 2. Assume that » > 3 and that per(C,_;) = n — 2. Then

per(C,) = per(C,(1)n)) + per(C,(n|n))
1+n-2

n—1. 1
Let o(X) denote the sum of all entries in matrix X.

Theorem 5.2 (Minc [23]). If A is a nearly decomposable n X n (0, 1)-matrix,
n > 3, then

o(A4) <3(n—-1). (2)

Equality holds in (2) if and only if A is p-equivalent to C,.
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Proof. Let A be a matrix in the form (1) p-equivalent to 4. Then

5

Lo(£) + La(4)

;=+ (s—1) +a(4,)
—2s—1+0(4,).

o(A4)=0(A)

Use induction on n. If 4,is1 X 1, then s=n, A =1, + P, and

o(Ad)=2n—-1+1
=2n
< 3n -3,

where equality holds if and only if #n = 3. It is easily seen that the matrix
I, + P, is p-equivalent to C;.

By Lemma 5.4, submatrix A, cannot be 2 X 2. Assume that n — s + 1 > 3
and use the induction hypothesis:

o(A4)=25s—1+0a(4,)

<2s—1+3(n—-s5s+1)—1) (3)
=3n-s5-1
<3(n-1), (4)

since s > 2. Equality holds in (2) if and only if inequalities (4) and (3) are
equalities, that is, if and only if s = 2 and 6(A4,) = 3((n — s + 1) — 1), which
implies by the induction hypothesis that submatrix A4, (thatis 4,) is p-equiv-
alent to C,_,. It follows that A is p-equivalent to

L ] e

5
o b 5)

0
which obviously is p-equivalent to C,. Note that the 1’s in £, and E, must be
in positions (1,2) and (2,1) in C. For, if E; had 1 in position (1, j), j = 3,
then C — E,; would be fully indecomposable contradicting the fact that C is

nearly decomposable. For a similar reason E, cannot have its 1 in position
(i,1), i =3 =

Corollary 5.1. A nearly decomposable nonnegative n X n matrix must have at
least n* — 3n + 3 zero entries.
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Example 5.1. Show that for any n > 3 and any N, 2n < N < 3(n — 1), there
exists a nearly decomposable n X n (0,1)-matrix with N positive entries.

Let Gy, be the required matrix. If N = 3(n — 1) take G} = C,, the matrix
in Lemma 5.5(b). If N = 2n choose G}y =1, + P,. If 2n < N < 3(n — 1) let

1 1 0 0'!0 ]
0 1 1 0!

: A 0

1 15 0
Gy=19_ ______ 0. 111 0 - 01,

1 0 0!

0 I

: O : Cn—s+1
[ 0 : i

where s = 3n — N — 1 and the leading block is (s — 1) X (s — 1). Note that
3<n-s+1<n-2. Clearly, G} is nearly decomposable, and

O(Glr\ll) =2s—1+ O(Cn—s+l)
=2s—1+3(n—ys)

=3n—-s5s-1
=3n-1-(3n~-1-N)
=N. u

Theorem 5.3. If A is a nearly reducible n X n (0,1)-matrix, n > 2, then
o(4) <2(n—-1).

The proof of Theorem 5.3 is similar to that of the preceding theorem; it is
left as an exercise for the reader (Problem 23).

4.6. BOUNDS FOR PERMANENTS OF (0,1)-MATRICES

In Section 4.1 we introduced the concepts of the incidence matrix of a
configuration of subsets, and of a system of distinct representatives (SDR) of
the configuration. We saw that an SDR corresponds to a positive diagonal in
the incidence matrix, and therefore the number of SDRs in a configuration is
equal to the permanent of the incidence matrix of the configuration. Unfor-
tunately, there is no efficient algorithm for computing permanents. In general,
it is impossible to compute the permanent of a large matrix, even with the use
of computers. In these cases we have to be satisfied with bounds for perma-
nents.
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We first restate the Frobenius-Konig theorem (Theorem 2.1) as a condition
for the existence of an SDR.

Theorem 6.1. A configuration of m subsets of an n-set, m < n, contains an
SDR if and only if the incidence matrix of the configuration does not contain an
s X (n— s+ 1) zero submatrix,1 < s < m.

Corollary 6.1 (Minc [24]). If in a configuration of m subsets of an n-set,
m < n, every subset contains at least m elements, then the configuration has an
SDR. In other words, if each row sum of an m X n (0,1)-matrix, m < n, is
greater than or equal to m, then its permanent is greater than or equal to 1.

The corollary is an obvious consequence of the Frobenius—Koénig theorem.
For, if the permanent of the matrix did vanish, then the matrix would contain
an s X (n — s + 1) zero submatrix, which is impossible since the matrix has at
most n — m zero columns and s < m.

The first significant lower bound for the number of SDRs in a configuration
was obtained in 1948 by Hall [11]. We state it here, in a somewhat extended
form due to Mann and Ryser [19], in terms of permanents of (0, 1)-matrices.

Theorem 6.2. Let A be an m X n (0,1)-matrix, m < n, with at least t 1’s in
each row. If t > m, then

Per(A) > ¢!/(¢t — m)!.
If t < mand Per(A) > 0, then
Per(A) > t!.

Proof. By virtue of Corollary 6.1, we can assume that Per(4) > 0 for all
values of ¢, 0 < ¢ < n. Use induction on m. If m =1, then t > m and
Per(A4) =t = t!/(t — m)!. Now, assume that m > 1 and that the theorem
holds for all matrices with fewer than m rows. Since the permanent of 4 is
positive, the matrix cannot contain a k X (n — k + 1) zero matrix and thus
every k X n submatrix of 4 contains at least k nonzero columns. Suppose first
that for some h,1 <h < m — 1, 4 contains an h X n submatrix with exactly
n — h zero columns, that is, 4 is p-equivalent to

h
h{[?_j__‘i_ (1)
C' D

In each of the first & rows of the matrix the ¢ positive entries must be
contained in B. Thus each row of B has at least ¢t I’s and t < h <m — 1.



94 Structural Properties of Nonnegative Matrices

Also,
Per(A) = Per(B) - Per(D) > 0.

Hence Per(B) > 0 and Per(D) > 0. By the induction hypothesis, Per(B) > ¢!
and therefore
Per(A) = Per(B) - Per(D)
> t!Per(D)
>t

If A is not p-equivalent to a matrix in the form (1), then every k X n
submatrix of 4, 1 < k < m — 1, must contain at least k + 1 nonzero col-
umns. Thus every k X (n — 1) submatrix of 4 has at least k nonzero columns,
and, by Theorem 2.1, every (m — 1) X (n — 1) submatrix A(s|¢) has a posi-
tive permanent. Also, every row of A(s|¢) has at least ¢+ — 1 ones. Hence, by
the induction hypothesis,

(r—10, ift—1<m-1,

(=D (—m), ifr-12m-1. @

Per(A(si0) = |

But t—1<m-1ift<m andt—1>m—1if t > m. Hence if t < m,
then

Per(4) = ¥ ay Per(A(1])))

j=1

zn: ay(t—1)

Jj=1

n
(t—1)' Y ay
j=1

v

> t!

= t.y

since Zj,lal j=t Similarly, if ¢ > m, then

Per(A4) = f:,‘l .’ ((t’“;))',
_ (=1 ¢

(t - m)‘ Z Y

t!

= U—m)!

Note that the condition Per(4) > 0 in the statement of Theorem 6.2 is
essential. Even if every row sum of an m X n (0,1)-matrix is n — 1, its

(see also Problem 32). m
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permanent may vanish (Problem 33). Of course, it may not be easy to decide
whether the permanent of a (0, 1)-matrix is zero. In fact, it may take as many
as O(n*/?) computational steps [14]. If the matrix happens to be square and
fully indecomposable, then its permanent is positive, but the determination of
whether a matrix is fully indecomposable or not, is, in general, of the same
order of difficulty as that of whether its permanent is zero. However, for
permanents of fully indecomposable (0, 1)-matrices other lower bounds are
available.

Theorem 6.3 (Minc [22]). If A = (a;;) is a fully indecomposable n X n (0,1)-
matrix, then

per(4) = o(4) —2n+ 2, (3)
where o( A) denotes the sum of all entries in A.

Proof. First, suppose that 4 is nearly decomposable, and use induction on
n. For nearly decomposable matrices with n = 1,2, 3, inequality (3) becomes
equality (Problem 34). Assume the theorem holds for nearly decomposable
m X m (0, 1)-matrices with 3 < m < n. Let P and Q be permutation matrices
such that B = PAQ is in the canonical form (1), Section 4.5. Suppose that 4,
is n, X n,, where 1 < n, < n. Since 4, is fully indecomposable, it follows by
the induction hypothesis that

per(4,) > 0(A4,) — 2n, + 2.

But n,=n—(s—1), and o(4,)=0(B)—s—(s—1)=0(4) - 25+ 1,
and therefore

per(4,) >0(A4) - 2s+1-2(n—s5+1) +2
=0(A4) - 2n+ 1. (4)

Let the 1 in E; be in the (1, j) position in B. Expanding the permanent of B
by the first row we get

per(B) = per(B(1]1)) + per(B(1]/))
> per(4,) + 1,

by Theorem 4.1. Hence

per(4) = per(B)
> per(4,) +1
>0(A4)—2n+2,

by (4).
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Now, suppose that A is fully indecomposable but not nearly decomposable.
Then there exists an entry a; ; in 4 so that 4 — E, ; is a fully indecompos-
able (0, 1)-matrix. If 4 — E, , is not nearly decomposable, then there must
exist an entry a4, , =1in 4 — E, ;, such that A - E, , — E, , is fully
indecomposable, and so on. Thus we must finally obtain a nearly decompos-

able (0, 1)-matrix C satisfying
A=C+ L E,.
=1

By Corollary 4.3,
per(A4) > per(C) + m,

and applying inequality (3) to the nearly decomposable (0,1)-matrix C, we
obtain

per(4)20(C)—2n+2+m
=g(4) - 2n+2,

since 0(A4) = o(C) + m. A

It can be shown that the lower bound in Theorem 6.3 is the best possible, in
the sense that for each n = 3 and each N, 2n < N < 3(n — 1), there exists a
nearly decomposable n X n (0,1)-matrix 4 such that o(4) = N, and per(4)
= 0(A) — 2n + 2 [26]. However, if more information about the matrix is
available the bound in Theorem 6.3 can be improved. Gibson [10] used Hall’s
inequality in Theorem 6.2 to obtain the following improvement of MincC’s
inequality in Theorem 6.3.

Theorem 6.4. If A is a fully indecomposable n X n matrix with at least t ones
in each row, then

per(4) > a(4) —2n+2 + Ii (it —1). (5)

i=1

Proof. Use induction on ¢. If t =1 or 2, then inequality (5) reduces to
inequality (3). Assume that ¢ > 3 and that (5) holds for all k£ < ¢. Since each
row of A has at least ¢ ones, it follows from Theorem 5.2 that 4 cannot be
nearly decomposable. Thus there must exist a position (p,q) such that
a,,=1land B=4 - E,_is fully indecomposable and has at least ¢ — 1 ones
in each of its rows. By the induction hypothesis,

per(B) 2 0(4) —2n+ 1+ Iiz(i! -1). (6)

i=1
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Now, per(A) = per(B) + per(A( p|q)). Since A4 is fully indecomposable, the
permanent of A(p|q) is positive, and each row sum of A(p|q) is at least
t — 1. Hence, by Theorem 6.2,

per(4(plq)) = (+ - L (7)
The result follows from (6) and (7). B

We conclude this section with an upper bound for the permanents of
(0, 1)-matrices. The bound was conjectured and proved in special cases by
Minc [21] and proved completely by Brégman [3]. We give below an elegant
proof due to Schrijver [27]. We start with two preliminary results. Let r,
denote the ith row sum of an n X n matrix 4 = (a,)), that is, r, = X{_;a
i=1,2,...,n.

ij?
Lemma 6.1. If:¢,,...,t, are nonnegative real numbers, then
1 & iy n
EPTARENITS ®
k=1 k=1

where the summation in the exponent on the left-hand side extends from 1 to n,
and 0° denotes 1.

The lemma is an immediate consequence of the convexity of the function
x log x. For,

1 n 1 n 1 n
(; )y tk)log(;; )y tk) < o X tlogty,
k=1 k=1

k=1

which after multiplying by n and taking exponents of both sides, yields (8).

Lemma 6.2. Let A = (a;;) be an n X n (0,1)-matrix with positive permanent,
and let S be the set of permutations corresponding to positive diagonals of A, that
is, 0 € Sifand only if I17_,a, ,, = 1. Then

i, o0

1:[1 T (per(A(i1K))** = TT -lf[lper(A(”oj))’ ¥

and

lr[lripem = l—[ I—Iri' (10)

oS i=1

Proof. For a given i and k, the number of factors per(A(i|k)) on the
left-hand side of (9) is per(A(i|k)) if a,, = 1, and zero otherwise. The number
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of such factors on the right-hand side of (9) is equal to the number of
permutations o in S satisfying oi = k, which is per(A4(i|k)) or zero, according
asa,; =1lor0.

It is easy to see that for a given i the number of factors r; on both sides of
(10) is per(4). |

Theorem 6.5. Let A= (a;;)) be an nXn (0,1ymatrix with row sums
Ty, Fys..., 1, Then

per(A) < .Ul’f’l/'" (11)

Proof (Schrijver [26]). Use induction on n. By Lemma 6.1,

per 4)"P 4 = er A)P"
._1 p

)):a,kperA(ilk)

- ﬁ( " ayeper A(iIK)

=13\ k=1
T E—
i=1 a,kk==1
and thus, by Lemma 6.2,
(per4)"*“ < T1 (( l—[r,.)( l—[perA(iloi))).
cES i=1 i=

We now apply the induction hypothesis to each A(i|oi):

IA

[ I per4(ijai) ]—[( I ,«j!l/o)( I (rj_l)!l/(r,-—l))
i=1 =1\ Jj#i j#i

a, 5,=0 a; ,=1

n

ﬂ( I1 rf!”’f)( I1 (rj—l)!l/"f’”)

J=1\ i#j i*)
aj.ui=0 /,oi=1

it

n
- - _ -/, —1
= 1"[1,.!_!(" r,)/r,(,.j 1)!(5 M=)
j=

The first equality is just a result of a change in the order of multiplication, and
the second equality is obtained by counting the number of factors rj!l/ 7 and
factors (r, — 1)!"/¢2~ Y. Clearly, for fixed o and j, the number of i satisfying

i#jand a;,,=01is n—r, and the number of i satisfying i # j and



and the result follows.

; = 1is r, — 1 (since a; ,;, = 1). Hence

(per 4)"™* < 1 (( ',. rf)( lilrj!(""”/’f(rj - 1)!))

PROBLEMS

1

Let S = {5y, 55,54, 54 85} and S| = {s5,, 85}, Sy = {5,545 85}, S3=
{51554, 55} 4 = {53, 84}
(a) Find all the SDRs of the above configuration.

(b) Find the permanent of the incidence matrix of the above configura-
tion using the Laplace expansion (Theorem 1.2) on the first row of the
matrix.

Prove that the product of fully indecomposable nonnegative matrices is
fully indecomposable ([17]).

Call an m X n nonnegative matrix A, m < n, fully indecomposable if
Per(A(i|j)) >0 for i=1,2,...,m, j=1,2,..., n. Interpret this defini-
tion in the context of incidence matrices for configurations of subsets.
What does the definition say about the m X m submatrices of 4?7

Extend the definition of near decomposability to m X n nonnegative
matrices, m < n. Give an example of a 3 X 4 nearly decomposable
matrix.

Call an n X n nonnegative matrix A k-indecomposable if per(A(a|B)) > 0
for all @ and B in @, ,. Show that if 4 is fully indecomposable (i.e.,
1-indecomposable), then 447 is 2-indecomposable.

Show that if 4 is fully indecomposable, then 44T and A4 are fully
indecomposable. Is the converse true?

Show that if 4 is fully indecomposable, then A4 is primitive. Is the
converse true?
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8 Let D be the directed graph

10

11
12

13

3¥— 4

(a) Use the adjacency matrix of D to find all pairs of vertices connected
by paths (i) of length 2, (ii) of length 3, (iil) of length 4.

(b) Show that every cycle in D is of even length.
Find the eigenvalues of matrices B, and C, in Lemma 5.5.

Let 4 be the 4 X 4 matrix

11 F

A= N

!
G

b

where F;, =[1 0 0], F=[1 0 0], and C, is the matrix defined in
Lemma 5.5(b). Find permutation matrices P and Q such that PAQ = C,.

Construct a doubly stochastic matrix with the same zero patterns as C,.

Show that the g.c.d. of the lengths of all circuits in a directed graph is
equal to the index of imprimitivity of the graph.

Use graph methods to determine which of the following matrices are
irreducible:

1
i
1
i

01 0 1 1 0 0 1
11 0 1 0 _|l1 0 10
A1_0100’ A20101’
1 0 0 0] 1 0 0 1]
[0 1 0 1] 0 1 1 0]
1o 0o 1 o _{0 0 1 0
A3_0001’A40001’
(1 0 0 0] 1 0 0 0]
[0 1 0 0 1 0 01 0 01 0
000 0 0 1 0 0 0 0 0 1
410100 00 410100 00
S 11 01 0 0 Of “ 1o 010 00
0 001 01 0 0 01 0 1
01 0 0 0 0 1 0 00 0 0



14

15

16
17

18

19

20

21
22

25

26

27

(a) Which of the matrices in Problem 13 are primitive?

(b) Determine the index of imprimitivity for the irreducible matrices in
Problem 13.

(¢) Which of the matrices in Problem 13 are fully indecomposable?

Construct a primitive matrix 4 (other than the matrix given as an
example after the proof of Theorem 3.4) such that 4 * 4% = 0.

Show by a counterexample that the converse of Theorem 4.3 is not true.

Let D be a strongly connected directed graph with index of imprimitivity
h. Prove that the lengths of all paths connecting two fixed vertices are
congruent modulo A.

Let A be the adjacency matrix of a directed graph D. Let S be a
subgraph of D consisting of disjoint circuits (i.e., circuits which have no
vertex in common). Show that the entries in A corresponding to arcs of S
form a positive diagonal in a principal submatrix of A.

Let A be a nonnegative n X n matrix. Suppose that the coefficient of
N~k in the characteristic polynomial of A is nonzero. Show that the
directed graph associated with A contains a subgraph consisting of
disjoint circuits, the sum of whose lengths is k.

Let A"+ a)A" +a,A"+ -+ +a, A", where n>n, >n,> --- >n,
and a,# 0, 1 =1,2,..., m, be the characteristic polynomial of an irre-
ducible matrix with index of imprimitivity 4. Use the results in Problems
12 and 19 to show that A divides n — n,, 1 =1,2,..., m (cf. Theorem
1.3, Chapter III).

Prove Lemma 5.1.
Show that the converse of Lemma 5.2 is not true.
Prove Theorem 5.3.

Construct nearly decomposable 8 X 8 (0,1)-matrices with N positive
entries, for N = 16, 17, 18, 19, 20, and 21.

Construct nearly irreducible 8 X 8 (0, 1)-matrices with N positive entries,
for N = 8,9, 10, 11, 12, 13, and 14.

Show by an example that a fully indecomposable nonnegative n X n
matrix with exactly 2n + 1 positive entries is not necessarily nearly
decomposable.

A (not directed) graph G is defined as a nonempty set V of vertices
together with a set E containing unordered pairs of vertices of V called
edges of G. Graph G is said to be bipartite if V can be partitioned into
two subsets, M and N, so that each edge of G has one of its vertices in M
and the other in N.

Describe the adjacency matrix of a bipartite graph.
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29

30

31
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Let G be a bipartite graph with m vertices in M and n vertices in N,
m < n. A perfect matching of G is a set of m edges such that no two
edges in the set have a common vertex. Find all perfect matchings of the
bipartite graph

4]
Uy

Va
uz

V3
us

Va

Let G be a bipartite graph with M= {u, u,,...,u,} and N =
{vy, 03,...,0,}, m < n. The incidence matrix of G is the m X n (0,1)-
matrix A4 = (a,;), where a,; = 1 or 0 according as (u;, v;) is an edge of G
or not.

(a) Construct the incidence matrix of the bipartite graph in Problem 28.

(b) Construct the bipartite graph whose incidence matrix is
01 0 1 0
1 11 0 1]
1 01 10

(c) What in the incidence matrix of a bipartite graph G corresponds to a
perfect matching of G?

How can the number of distinct perfect matchings in a bipartite graph be
determined from its incidence matrix? Compute this number for the
graph in Problem 28 using the incidence matrix of the graph.

Compute the lower bounds given in Theorems 6.2-6.4 and the upper
bound given in Theorem 6.5 for the permanents of the following matrices:

1
]
1
1

111000 1 100 0 0
011100 1110 0 0
4|00 1 110 p_|0 1 1.1 00
000 1 1 1 00111 0[
1000 11 0001 11
(110 0 0 1 (000 0 0 1 1.
111100 1100 0 0
01 1110 111000
c-l0 011 11 p-|1 1 110 0
100 1 1 1 11111 0f
1 100 11 111111
1 1100 1 111111
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[The exact values are per(A4) = 20, per(B) = 13, per(C) = 80, per(D) =
32]

32 Show that the condition Per(A4) > 0 in the statement of Theorem 6.2 is

essential.

33 Verify that Theorem 6.3 holds for nearly decomposable n X n (0, 1)-

matrices for n = 1, 2, and 3.
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Doubly Stochastic Matrices

5.1. DEFINITIONS AND EARLY RESULTS

In this chapter we study doubly stochastic matrices. a class of nonnegative
matrices with important applications in many areas of mathematics and the
physical sciences: linear algebra. theory of inequalities. combinatorial matrix
theory. combinatorics. probability. physical chemistry. etc.

Definition 1.1. A real matrix is said to be doubly quasi-srochastic if each of its
row and column sums is 1. A nonnegative doubly quasi-stochastic matrix is
called doublv stochastic. The set of n X n doubly stochastic matrices is denoted
by Q,.

Clearly. a doubly quasi-stochastic matrix must be square. It follows from
the definition that an n X » matrix A is doubly quasi-stochastic if and only if
1 is an eigenvalue of 4. and (1.1..... 1) is an eigenvector corresponding to this
eigenvalue for both 4 and AT. Thus a nonnegative n X n matrix A4 is doubly
stochastic if and only if

A‘]" = .]"A = ‘]N’

where J, is the n X n matrix all of whose entries are 1/n.
We begin with two interesting early results due to Konig [8] and Schur [23].

Theorem 1.1 (Konig [8]). Every doubly stochastic matrix has a positive diago-
nal.

Proof. If a matrix 4 in €, had no positive diagonals, then the permanent
of A would vanish and. by the Frobenius-Konig theorem, there would exist
permutation matrices P and Q such that

PAQ=[§ IC),

where the zero block in the lower left corner is p X g, with p+ g=n+ 1.

105
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Let o( X') denote the sum of the entries in matrix X. Then

n=o(PAQ)
o(B) + o(D)
=q+p

=n+ L.

v

This contradiction proves the theorem. B
Corollary 1.1. The permanent of a doubly stochastic matrix is positive.

Theorem 1.2 (Schur [23]). Ler H = (h,;) be a hermitian n X n matrix with

eigenvalues A, A5, ..., N, and let h=1[hy, hy..., h, )T and X =
Al AL A, 1%. Then there exists a doubly stochastic marrix S such that
h = SA.

Proof. Let U = (u;;) be a unitary matrix such that

H = Udiag(A,, A,, ..., AU

Then
n
h; = u A,
=1
n
2
= Z [t "N,
=1
n
= Z sit}‘v i=1,2, s R,
r=1
where s, = |u,|>, i.1=12.....n Clearly, the n X n matrix §=(s;;) is

doubly stochastic. The result follows.

Definition 1.2. (a) An n X n matrix A = (a,;) is called orrhostochastic if
there exists a (real) orthogonal matrix T = (7;;) such that g, = t,-zj, i, j=
1.2....,n.

(b) An n X n matrix 4 = (a,;) is called Schur-stochastic (or unitary-sto-
chastic) if there exists a unitary matrix U = (u,) such that a,; = |u,.j|2 for all
i and j.

The matrix § in Theorem 1.2 is Schur-stochastic. Clearly, every orthosto-
chastic matrix is Schur-stochastic, and every Schur-stochastic matrix is doubly
stochastic. However, not every doubly stochastic matrix 1s Schur-stochastic,
nor is every Schur-stochastic matrix orthostochastic.



Definitions and Early Results 107

Example 1.1. (a) The doubly stochastic matrix

Jo 11
A=(a,j)=§1 0 1
1 1 0

is not Schur-stochastic. For, if U= (u;) is any 3 X 3 matrix such that
a;; = u % i, j=1,23, then uy; = uyp = uy; =0, but uy iy + up,iiy +
Uy s,y = Uyaiiy; # O since the moduli of u,; and #,, are both 1/v2. Thus U
cannot be unitary, and A4 is not Schur-stochastic.

(b) The doubly stochastic matrix J; is Schur-stochastic. For, if U = (u;;) is

the unitary matrix

1 1 1 1
-1 6 %]
\60 1 6

where @ is a primitive cube root of 1, then |u, j|2 = § for all i and j. However,
J; is not orthostochastic. For, if T = (¢,;) were a real 3 X 3 matrix such that
12, = 3 for all i and j, then 1,,¢,; + 1,515, + 11315, could not vanish (it would
be equal to —1, or — %, or 4, or 1), and therefore T could not be orthogonal.

B

We note the following property of doubly stochastic matrices.
Lemma 1.1. A product of doubly stochastic matrices is doubly stochastic.

For, if 4 and B are doubly stochastic n X n matrices (and therefore
AJ,=J,A = BJ =J B =0J), then their product is nonnegative,

(AB)J,= A(BJ)) = AJ, =T,
and

J(AB) = (J,A)B=J B =1,

and therefore AB is doubly stochastic. It is easily seen that the same is true of
a product of any number of doubly stochastic matrices.

Definition 1.3. A doubly stochastic n X n matrix with n — 2 main diagonal
entries equal to 1 is called an elementary doubly stochastic matrix. In other
words, 4 = (a,;) €4, is elementary if a, =a,=1-0, a,=a, =0, for
some integers 5,7, 1 <s<t<n, and a real number 6, 0 <6 <1, and
a;; =&, otherwise.
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It follows from Lemma 1.1 that a product of elementary doubly stochastic
matrices is doubly stochastic. However, the converse is not true: Not every
doubly stochastic matrix can be expressed as a product of elementary doubly
stochastic matrices. For example, the doubly stochastic matrix 4 in Example
1.1(a) is neither an elementary doubly stochastic matrix nor is it a product of
such matrices (see Problem 7).

Reducible and imprimitive irreducible doubly stochastic matrices have
special structural properties.

Theorem 1.3. A reducible doubly stochastic matrix is cogredient to a direct sum
of doubly stochastic matrices.

Proof. Let A be a reducible n X n doubly stochastic matrix. Then 4 is
cogredient to a matrix of the form

_lX Y
B‘{o z]’

where X is k-square and Z is (n — k)-square. Clearly, B is doubly stochastic.
The sum of the entries in the first & columns of B is k, and all nonzero entries
in these columns are contained in X. Therefore

o(X)=k.
Similarly, by considering the last n — k rows of B, we can conclude that
o(Z)=n-k.
But
n=a(B)

=o(X)+0(Y) +0(2)
=k+o(Y)+(n—-k)

=n+o(Y),
and therefore
o(Y)=0.
Hence
Y=0,

and A4 is cogredient to B= X+ Z, where X and Z are clearly doubly
stochastic. W
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If in the above proof either X or Z happens to be reducible, then it is also
cogredient to a direct sum of doubly stochastic matrices. We have therefore
the following results.

Corollary 1.2. A reducible doubly stochastic matrix is cogredient to a direct
sum of irreducible doubly stochastic matrices.

Corollary 1.3. The elementary divisors corresponding to 1, the maximal eigen-
value of a doubly stochastic matrix, are linear.

The following analogous results for partly decomposable doubly stochastic
matrices can be proved similarly.

Corollary 1.4. A partly decomposable doubly stochastic matrix is p-equivalent
to a direct sum of doubly stochastic matrices.

Corollary 1.5. A4 partly decomposable doubly stochastic mairix is p-equivalent
to a direct sum of fully indecomposable doubly stochastic matrices.

Our next theorem, due to Marcus, Minc, and Moyls [12], describes the
structure of imprimitive irreducible doubly stochastic matrices.

Theorem 1.4. Let A be an irreducible doubly stochastic n X n matrix with
index of imprimitivity h. Then h divides n, and the matrix A is cogredient to a
matrix in the superdiagonal block form

0 4, 0 0 0 |
0 0 A, 0 0
: (1)
0 0 0 A4, .,
(4, 0 0 0 |

where all the blocks are (n/h)-square.

Proof. By Theorem 3.1, Chapter III, A is cogredient to a partitioned
matrix of the form (1), where the zero blocks along the main diagonal are
square. Clearly, each of the blocks 4,,, 4,3,..., 4, _, ,, 4;, must be doubly
stochastic and therefore square. But this implies that the zero blocks along the
main diagonal are of the same order. The result now follows. ®

Corollary 1.6. A doubly stochastic matrix is p-equivalent to a direct sum of
primitive matrices.
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5.2. THEOREMS OF MUIRHEAD AND OF HARDY, LITTLEWOOD,
AND POLYA

We introduce the following notation. If y = (v,, v,,...,v,) is a real n-tuple,

then y* = (v;*, v, ..., v,*) denotes the n-tuple y rearranged in nonincreasing
order, y* > v > --- > vk
Definition 2.1. A nonnegative n-tuple a = (a;, a,,...,a,) is said to be

majorized by a nonnegative n-tuple 8 = (B, B,,..., B,) if
af +af + kol < B PR 4B,
for k=1,2,...,n—1, and

o to,+ - ta, =B +B,+ - +8

This is denoted by a < 8.

One of the most important and elegant results in the area of majorization of
nonnegative n-tuples, with numerous applications in many areas of mathe-
matics, is due to Muirhead [22].

Theorem 2.1. Let ¢ = (cy,¢,,...,¢,) be a positive n-tuple, and let a =
(ay, @,,...,a,) and B= (B, B,,..., B,) be n-tuples of nonnegative integers.
Let A(c) and B(c) be n X n matrices whose (i, j) entries are ¢ and c?,
respectively. Then

a< B,
if and only if
per(4(c)) < per(B(c)),
for all positive n-tuples c.

The proof of Theorem 2.1 is postponed to the end of the section.
Hardy, Littlewood, and Polya [6] extended Muirhead’s theorem to any
nonnegative n-tuples a and 8, and proved the following result.

Theorem 2.2. Let a and B be real nonnegative n-tuples. Then a < B if and
only if there exists a doubly stochastic n X n matrix S such that

a=SB.

We first prove the following lemmas.
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Lemma 2.1. Ifa= (o, a,,...,a,) and B=(B,,B,,...,B,) are nonnegative
n-tuples, then

Z af; < Z arpBx. (1)
i=1 i=1

Proof. We can assume without loss of generality that « = a*. Suppose
that B, < B, for some s < ¢. Then

(asﬁt + azﬁs) (a B + azﬁz) ag ,)(B, BS) > 0.

In other words, the sum on the left-hand side of (1) is not diminished if 8, and
B, are transposed. A finite number of such transpositions will produce the sum
on the right-hand side of (1). ®

Lemma 2.2. Let k and n be positive integers, k <n, and let cy,c,,

¢, dy, d,,...,d, be nonnegative numbers such that c; < 1, i =1,2,...,n
Z;’zlc, k,andd >d,> --- >d, > 0. Then

m»

i

The lemma is nearly obvious intuitively. However, we give here a formal
proof.

Proof. We have

n

k n k
Zdi_zcldl=2(1_c)d Z cidi
i=1 i=1 i=1 i=k+1
k n
>Y(1-¢)d— Y cd,
i=1 i=k+1
k
AL B
i=1 i=k+1

i
e
|

Proof of Theorem 2.2. let a = SB. We can assume without loss of
generality that @ = o*. Let k be any integer, 1 < k < n. Then

Y.

g
II

~.

1M=FM»

o
x=
~.
»



112 Doubly Stochastic Matrices

where ¢, = EX 15, <1, and £%_,¢,; = k, since L?_,c,; is the sum of the

entries in the first k rows of a doubly stochastic matrix. Using Lemmas 2.1
and 2.2, we have

k
< Y B*
j=1
Hence
k k
Yar< Y Bx
i=1 i=1
for k =1,2,..., n — 1. Moreover,
n n n
a; = Z Z siij
i=1 i=1 j=1
n n
= Z Bj Z sl_[
j=1 "i=1
n
= ZB,
j=1
Thus a < B.

Now suppose that a < 8. We show that there exists a doubly stochastic
matrix S such that a = SB. Clearly, it is sufficient to prove that a* = S8* for
some S in &,. For, if o* = Pa and B* = QB, where P and Q are permutation
matrices, then a = (PISQ)B, and P'SQ € ©,. We can assume therefore that
a = a* and B = B*. Suppose that o* # 8* Call the number of nonzero
coordinates in B* — a* the discrepancy between a and B, and denote it by
8(a, B). Since a* # B*, it is clear that §(a, B) > 2. Since X7 ,(a; — 8,) =0
and not all these differences can be zero, some of them must be positive and
some negative. Let ¢ be the least subscript such that a, > B, and let s be the
greatest subscript, less than ¢, for which a, < 8,. Thus we have

as< s as+1=Bs+l’ as+2=Bs+2""’at—l=Bt—l’ at>Bt‘ (2)

Let S, be the elementary doubly stochastic n X n matrix with 8 in
positions (s, s) and (¢, t), and 1 — & in positions (s, ¢) and (7, s). Then

(5,8),=6B,+ (1 - 0)B,
(5:8),=(1-10)p,+08,
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and
(SIB),' = Bi’
for all other i. We choose two values for 8:
a, — Bt B: - at
= 5t 4, = .
b=3—8 %=B—8

Since B, > a, = a, > B, both these values lie in the interval (0,1). If § = 4,,
then

(SIB)szas and (SIB)1=Bs~as+Bt;
and if 8 = §,, then

(SIB)s = Bs —a + Bt and (SIB)t = a,.

Thus in either case the discrepancy between a and S;8 is less than 8(a, B),
provided that S;8 = (S;8*). This will be the case for 8, if

Bt—l P2 Bs - as + Bt P2 Bt+1’ (3)
and for 4, if
BS_IZBJ_‘!,+B,Z s+1° (4)

Since B, + (B, —a;)> B, 2 B,y and B, — (a, — B) < B, < B,_,, the right
inequality in (3) and the left inequality in (4) clearly hold. Suppose that the
left inequality in (3) fails to hold, that is,

:Bt—l < Bx - a, + Bz'
Then
B,—a,+B>B_,+a,—a,
=a,_, ta,—q
= ag

2 P |

= Bs+1’

and (4) holds. Similarly, we can show that if the right inequality in (4) does not
hold, then the left inequality in (3) must hold. We can conclude therefore that
with the appropriate choice, § = 8, or §,, we have

8(a, $,8) <8(a,B), a<S§B, and (S,B)* =S,8.

Continuing in the same fashion we can find a sequence of doubly stochastic
matrices S, S,,..., S, such that the discrepancy &(a, S,S,_; -+ S;B8) is
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zero, that is, a = S, S,_; -+ S18. Now set § =S, 5,_; --+ S}, which, by
Lemma 1.1, is doubly stochastic. &

The following example illustrates the method of the proof of Theorem 2.2:
For given nonnegative 5-tuples a and B, satisfying a < B8, we find an
“averaging” doubly stochastic matrix S such that a = SB. The example also
shows that substituting S;8 for 8 may not reduce the discrepancy unless

($:8)* = 5,8

Example 2.1. leta=(9,6,5,4,4)and B = (10,10,5,2,1). Then a < B. Find
a doubly stochastic matrix S such that a = SB.

We use the notation in the proof of the preceding theorem. Here ¢t = 4 and
s = 2. Let

1 0 0 0 0
0 6 0 1-4 0
S1=10 0 1 0 01
0 1-6 0 [/ 0
0 0 0 0 1

If we take 8 =8, = (a, — B,)/(B, — By) = 4, then (5,8), = (5:8), =6,
and S;B8 = (10,6,5,6,1). Thus (S;8)* =(10,6,6,5,1), and &(a, S,8) =
8(a, B) =4 Wetry 8 = 8, = (B, — a,)/(B, = B,) = i- Then (S,8), = a, =
4, and S,8 = (10,8,5,4,1). In this case, §(a, S;8) = 3 < 8(a, B). Of course,
this reduction in discrepancy was guaranteed by the theory.

We continue the process. Let

1 0 00 0
o 6 0 0 1-86
S=lo0 o 10 o0
0 0 01 o0
0 1-6 0 0 8

Try 8 = 6] = (a) — (5,8)5)/((5,8), = (5,8)s) = . Then §,S,8 =
(10,6, 5,6,1), and again we failed to progress: 8(a, S,5;8) = 8(a, S;B). The
alternate choice, 8 = 8; = ((S;8), — a5)/((5:8), — ($18)s) = %, yields
S$,8:8 = (10,5,5,4,4), and with this value for § we have 8(a, S,5;8) =2 <
8(a, S, B).

Lastly, we set

_| 6 1-4];
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and 6 = 8" = 4. Then §,5,5,8 = (9,6,5,4,4) = a. Hence a = SB, where

112 12 0 4 12

1128 48 0 16 48
S=858S=1g| 0 0 140 0 0 =

0 3 0 105 0

0 45 0 15 80

We now proceed to prove Theorem 2.1 in the more general form of Hardy,

Littlewood, and Polya (see the remark preceding Theorem 2.2), in which a and
B are assumed to be merely nonnegative n-tuples. We require the following
lemma.
Lemma 23. Let ¢ = (¢, ¢y, -..,¢,) be a positive n-tuple, and B =
(B1> Bys---» B,) be a nonnegative n-tuple. Let T be an elementary doubly
stochastic matrix, and let T8 = a = (a;, a,, ..., a,). Let A(c) and B(c) be as
defined in the statement of Theorem 2.1. Then

per(A(c)) < per(B(c)).

Proof. We can assume without loss of generality that

| @ 1-01{;
T—[1_0 9 ]+I,,_2.

Then

per(B(c)) — per(4(c))
08, +(1-0)8; (1 —o>ﬂ,+0ﬂz)
) a(2)

= X ey o (el — e
ogES,

- . By 8B+ (- 0)B, (L —0)B, +68

= Y chyclty - ctroy (cBycll, — ¥y oy :),

T€S,

and therefore

2(per(B(c)) — per(4(c)))

— . _ 88, +( -8 (1-8)8,+68
= Z c5(33)c£f4) Cg(n)( co‘(gll)( )ﬂzco(z) B+ 68,

gES,
- Cgl(l_;a)ﬂl +08, Cgff,”l -9)8,
+ cuycBy, + cBiychy)
= ¥ cBuchuchucly, - o, (BB~ Sfe)
ses,

1-6X%B — _ (1-0 —
'(ny(l) (81— B2) Cg(-;(Z) X B ﬂz)) >0. =
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Corollary 2.1. Let ¢, B, A(c), and B(c) be as defined in Lemma 2.3. If
S € Q, is a product of elementary matrices and o = SB, then per(A(c)) <

per(B(¢))-

Proof of Theorem 2.1. We assume that a and 8 are nonnegative n-tuples
arranged in nonincreasing order. If a < 8, then, by Theorem 2.2, a = S8,
where S is a product of elementary doubly stochastic matrices (see the proof
of Theorem 2.2), and thus

per(A(c)) < per(B(c)),

by Corollary 2.1.
To prove the converse assume that a and B are given, and

per(4(c)) < per(B(c)),

for all positive n-tuples ¢ = (¢, ¢,,. .., ¢,). First, choose ¢; = ¢, = --- =¢
= x > 0. Then

per( A(c)) = n'x%@ < per(B(c)) = ntxZEm,
where 2(y, m) = EL,v,. Hence
xE(a,n) < xz(ﬁ,n),

for all positive x (both greater than 1 and smaller than 1). Thus

n n
Zaj=ZBj‘
j=1 Jj=1
Next,letl <k <n-—1,andsetc;,=c,= -+ =¢,=y>1l,and ¢, =
Chpr = """ =cn=1_’rhen

per(A(c)) = ay®**® + (terms of degree lower than =(a, k)),
and

per( B(c)) = by=#- 5 + (terms of degree lower than =( 8, k)),
where a and b are constants. But

per(A(c)) < per(B(c)),
for all y, and therefore for sufficiently large y we must have
yz(a,k) < yz(ﬁ,k).
It follows that
2(a, k) <Z(B, k),
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that is,
o ta,t - ta, <P+ B+ + B,

fork=1,2,...,n—1.Hencea<pf. =1

5.3. BIRKHOFF’S THEOREM

We now introduce one of the fundamental results in the theory of doubly
stochastic matrices due to Birkhoff [2].

Theorem 3.1. The set of n X n doubly stochastic matrices forms a convex
polyhedron with permutation matrices as its vertices.

In other words, if 4 € ,,, then
A=) 6P, (1)
j=1

where P, P,,..., P, are permutation matrices, and the §; are nonnegative
numbers satisfying Zj=10j = 1.

Proof. Use induction on 7(A4), the number of positive entries in A. If
7(A) = n, then 4 is a permutation matrix, and the theorem holds with s = 1.
Assume that #(A) > n and that the theorem is true for all matrices in 2, with
less than 7(A) positive entries. By Theorem 1.1, the matrix 4 has a positive
diagonal (a,q, 1, @g0) 25> Go(n),n)» Where o € S,. Let P =(p,;;) be the
incidence matrix of the permutation ¢ [that is, P is the permutation matrix
with 1 in positions (0(i), i), i = 1,2,..., n],and let a,,, , = min,(a,, ;) = a.
Clearly, 0 <a <1, since a=1 would imply that 4 has 1 in positions
(e(i), 1), i =1,2,..., n,and 4 would be a permutation matrix. Also, A ~ aP
is a nonnegative matrix because of the minimality of a. We assert that the
matrix

Bz(bij)=11a(A_aP) (2)

is doubly stochastic. Indeed,

™
s

|
M=

(aij - apij)/(l —a)

1
[ s U S
=
.
=
[N ae
i)
<
——
|
i)
: ———
: .
It B
[N ae
)
<
—
—_
~N
—_
[
|
i)
p—"



We can show similarly that
Zb,,j=1, j=12,....n.
i=1

Now, #(B) < #(A) — 1, since B has zero entries in all positions in which 4
has zeros, and, in addition, b,,, , = 0. Hence, by the induction hypothesis,

s—1
B=} v P
j=1
where the P; are permutation matrices, v, > 0, j = 1,2,.. —1,and X317y,
= 1. But then, by (2),
=(1-a)B+aP
s—1
=(Z(1_0)Y, + aP
j=t
- T 45,
j=1
where 8, = (1 — a)yj for j=1,2,. -1, §,=a, and P, = P. Obviously,
the 4, are nonnegative. It remains to show that Z =10, = 1. We compute
Z ( Y (- a)y;| +a

= (1 - a) E.le

=(1-a)+a
=1 =

Let A* denote the set of n-square (0, 1)-matrices with k 1’s in each row and
each column. Such matrices occur in many combinatorial problems. If 4 € A%,
then A/k is clearly doubly stochastic, and for this reason matrices in AX are
often called doubly stochastic (0, 1)-matrices.

The following result, due to Konig [9], is an analogue of Theorem 3.1 for
doubly stochastic (0, 1)-matrices. Historically, Konig’s result preceded
Birkhoff’s theorem.

Theorem 3.2. If A € A%, then

S
1
i

where the P, are permutation matrices.



The proof of Theorem 3.2 is quite straightforward; it follows the lines of
the proof of Theorem 3.1. We leave it as an exercise (see Problem 10).

Birkhoff’s theorem gives rise to the following tantalizing combinatorial
problems:

(i) In how many ways can a given doubly stochastic matrix be expressed in
the form (1)?

(i) What is the least possible number of permutations in the representation
of a doubly stochastic matrix A4 in the form (1)? In other words, what is
the least number 8(A4) of permutation matrices whose convex combination
equals A4?

Both problems are very hard. Practically nothing is known about question (i).
Problem (ii) was proposed by Farahat and Mirsky {5}, and some upper bounds
for the number 8(A) have been obtained.

The first upper bound for 8( A) was given by Marcus and Newman {13] who
deduced it from the procedure used in the proof of Theorem 3.1. This
procedure consists of “stripping” multiples of permutation matrices, one by
one, off a given n X n doubly stochastic matrix A, in such a way that at each
stage at least one additional zero entry is produced. Thus, after no more than
n(n — 1) such stages, the resulting doubly stochastic matrix has exactly n
nonzero entries, and is therefore a permutation matrix. Hence A4 is a convex
combination of at most n(n — 1) + 1 permutation matrices. It follows that

B(A)<n*-n+1, (4)

for any A € Q,. However, as we shall see, equality cannot hold in (4) for any
A € Q,, n > 1. The following bound improves the bound in (4).

n’

Theorem 3.3. IfA €Q,, then

B(4) < (n—1)" +1. (5)

Proof. The dimension of the linear space of n X n real matrices is n”.
There are 2# linear conditions on the row sums and the column sums of n X n
doubly stochastic matrices. Of these only 2n — 1 are independent, since the
sum of all row sums in a matrix is necessarily equal to the sum of all its
column sums. Hence

dmQ,=n?>- (2n - 1)
= (n - 1)2’

and it follows, by Carathéodory’s theorem (see, e.g., [20]), that every matrix A
in @, is in a convex hull of (n — 1)> + 1 permutation matrices. Consequently,
B(A) cannot exceed (n ~ 1)*+ 1. B
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We now consider irreducible doubly stochastic matrices, and improve the
upper bound in (5) by using the index of imprimitivity. We shall first require
the following preliminary result.

Theorem 3.4 (Marcus, Minc, and Moyls [12]). Let S = ¥ ”\S,, where S, €
Q,.i=12,..., m. Then

",

BS) s L A(S) —m+1 ©)

Proof. Use induction on m. For m = 2 we have to show that

B(S, +8,) < B(S) + B(Sy) — 1. )
Let §;, =X/_6,P, and S, = Zj»=1q)ij, where the P, and the Qj are n; X n,
and n, X n, permutation matrices, respectively; 0 <6 <#6,< --- <6,

0<g <@y< -~ <gi L 6=Y_19;= 1 and r =B(S)). 5= B(S,).
We use inductionon r + 5. If r+ s=2,then §; = P, S, = Q,,and S, + S,
= P, + Q,. which is a permutation matrix, and therefore (7) holds. Now,
suppose that r + s > 2. We can assume, without loss of generality, that
0, < ¢,. Then

514'Sz=01(P14’Q1)

r 0, . q) 0 A) q)
+(1—01)((’§’1_01P’ + 11—0 Q1+ /§71 _Jolgl))
Clearly,
r 0 q)l sy
Z = PEQ, and T— Z Q €Q,
Thus

S, + S, = 01(P1 + Ql) + (1 - 01)R-

where R is a direct sum of two doubly stochastic matrices, the first of which is
a convex combination of r — 1 permutation matrices, and the second is a
convex combination of s permutation matrices. Hence, by the induction
hypothesis applied to R, B(R) < r + s — 2, and therefore

B(S, +S,)<r+s—1.

This proves the theorem for m = 2. Let m > 2, and assume that the theorem
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holds for direct sums of m — 1 matrices. Then
B(s) - B( 5 s.»)
i=1
m—1

sB( Y s,

i=1

+B(S,) —1

m—1

X B(S)—(m=-1)+1+8(s,) 1

i=1

iB(Si)_m'*'l- u

i=1

IA

Theorem 3.5 (Marcus, Minc, and Moyls [12]). If A is an irreducible doubly
stochastic n X n matrix with index of imprimitivity h, then

B(A)sh(%—1)2+l. (8)

Proof. By Theorem 1.4, the index h divides n. Let n = gh and let R be
the n X n permutation matrix with 1’s in positions (i, j) for i, j satis-
fying /i —j=q modn. Let P be a permutation matrix such that
PAPT is in the Frobenius form (see Theorem 1.4) with g-square blocks
A, Ay, A, _ | s Ay in the superdiagonal. Then

PAP'R = A+ Ay + - + A, |+ Ay,
and thus, by Theorem 3.4,

B(A) = B(PAP'R)
< B(A) + B(Ay) + - +8(A4,_,,) + B(4,) —h+ 1.

But from Theorem 3.3 we have
B(A, ) <(g-1)7+1, i=12,... . h-1,
and
B(4,) < (q- )"+ 1.
Therefore
B(A) <h((¢—1)°+1)—h+1

5

=h(%—1)'+1. -
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The preceding result together with Corollary 1.6 may be used to yield a
better estimate for §(4) than that given by a direct application of formula (8).
This is illustrated in the following example.

Example 3.1 (Marcus, Minc, and Moyls [12]). Let

04 J4
A= [S 04]698,

where

0, I

G [ 2 2}’

S 0,

and 0, denotes the ¢ X ¢ zero matrix. Estimate the value of B(A).
Formula (5) gives
B(4) < (8~1)"+1=150.

We observe, however, that 4 is in a superdiagonal block form and J,S is

positive, and therefore, by Corollary 4.1, Chapter 111, the matrix A4 is irreduc-
ible with index of imprimitivity 2. Thus from (8) we have

B(4) < 2(%— - 1)2 +1=19.

Now, we permute the rows and columns of 4 so that it becomes J, + S.
Further permutations of rows and columns yield the matrix J, + I, + J, =
J, + I, + I, + J,. Hence, by Theorem 3.4,

B(4) < B(J,) + B(L) + B(1y) + B(J;) =4+ 1. (9)

A direct application of Theorem 3.3 to J, gives B(J,) < 10, and thus (9)
implies that

B(4) < 11.
However, it is obvious by inspection that B(J,) = 4, and therefore (9) gives
B(4) <5.

In fact, it is not hard to show that actually 8(4) =4. B
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5.4. MORE ABOUT DOUBLY STOCHASTIC MATRICES

The inverse of a nonnegative matrix is nonnegative if and only if the matrix is
a generalized permutation matrix (Lemma 1.1, Chapter I). It follows that the
inverse of a doubly stochastic matrix is doubly stochastic if and only if the
matrix is a permutation matrix. An entirely different result holds for doubly
quasi-stochastic matrices.

Lemma 4.1. The inverse of a nonsingular doubly quasi-stochastic matrix is
doubly quasi-stochastic.

In particular, the inverse of a doubly stochastic matrix is doubly quasi-sto-
chastic.

Proof. Let A be a nonsingular n X n doubly stochastic matrix. Then
=J 1, =JAA ' =J A7,
since A is doubly stochastic, and
J,=1J,=A7'AJ, =AY,
Hence A ™! is doubly quasi-stochastic. W
The following corollary is an immediate consequence of the lemma.

Corollary 4.1. If A and X are n X n doubly stochastic matrices and X is
nonsingular, then XAX ™' is doubly quasi-stochastic.

Of course, the matrix XAX ! in Corollary 4.1 need not be nonnegative (see
Problem 15). Also, if A is doubly stochastic and X is a nonsingular matrix
such that XAX™! is doubly stochastic, then obviously X may not be doubly
stochastic or even doubly quasi-stochastic. For example, if A = I, then X
may be any nonsingular n X n matrix. However, if 4 happens to be irreduc-
ible, then the following rather unexpected result holds.

Theorem 4.1 (Marcus, Minc, and Moyls [12]). If A is an irreducible doubly
stochastic n X n matrix and B = XAX™' is doubly stochastic, then X is a
multiple of a doubly quasi-stochastic matrix. Moreover, there exists a doubly
stochastic matrix Y such that YAY ! = B.

Proof. Let J be the n X n matrix all of whose entries are 1, and let (M)
denote the ith row sum of matrix M. Since X4 = BX, we have XAJ = BX/J,
and therefore XJ = B(XJ). But each column of XJ is equal to the n-tuple
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u(X) = (r,(X), i,(X),..., r,(X)), and thus
Bu(X) = u( X).

Now, 1 is a simple eigenvalue of A4 and of B, since A4 is an irreducible doubly
stochastic matrix, and therefore u(X) must be a scalar multiple of the n-tuple
e all of whose entries are 1. Hence r,(X) = a, i = 1,2,..., n, and, by a similar
argument, we can prove that r(XT) =g, i=1,2,...,n. But then a = 8,
JX = XJ = aJ, and X is a scalar multiple of a doubly quasi-stochastic matrix.

Vector e is an eigenvector of both X and J corresponding to eigenvalues «
and n, respectively. Hence a + kn is an eigenvalue of X + kJ for any scalar
k. Choose k so that X + kJ is positive and nonsingular, and a + kn > 0. Let
Y = (X + kJ)/(a + kn). Then Y is doubly stochastic, and

YAY = (X + k) A(X + kJ) ™"
=(BX+ k)X +Kk)!
=B(X+K)X+kI)'
=B. m

If A is a positive semidefinite matrix, then there exists a unique positive
semidefinite matrix B such that B? = A. The matrix B is called the square
root of A, and is denoted by A'/2. The square root of a positive semidefinite
doubly stochastic matrix is not, in general, doubly stochastic. For example, the

square root of the matrix
113 0 1
7 0 3 1

1 1 2

is the doubly quasi-stochastic matrix

5433 5-3/3 2
Z15-3/3 5+3/3 2f
2 2 8

which is not doubly stochastic. The following theorem characterizes square
roots of doubly stochastic matrices.

Theorem 4.2 (Marcus and Minc [11]). The square root of a positive semidef-
inite doubly stochastic matrix A = (a,;) is doubly quasi-stochastic. If a;; <
1/(n—1),i=1,2,...,n, then A/? is doubly stochastic.

Proof. Letl A, A,,..., A, be the (nonnegative) eigenvalues of 4, and let
U = (u,;) be an orthogonal matrix for which

UTU = diag(1, A,, A;,...,A,),
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and whose first column is [1,1,.. .,

B=(b;)

Then B? = A, and

Hence

fori=1,2,...,

for j=1,2,...

Udlag( \/7,\/—3‘,...,

125
117/ Vn. Let

XUt (1)

Z Z “ikm“jk

j=1k=1

n n
Z uik\/X; Z Uy
k=1 =1

, and therefore for £k > 1,

n. Similarly, we can show
b=
i=1

, n. This proves the first part of the theorem.
Now, suppose that g, <1/(n—1), i =

1,2,..., n, and define B as in (1).

We assert that B is now nonnegative and therefore it is doubly stochastic. For,
if b,, were negative for some p and g, then

pp

v

X b,
=1

X by,
J*q
1 2
n—1 ( Z be)
j*q
1
n—1" (2)
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since

n
L by = ‘21 byy = byq
=

j*q
=1-1b,

> 1.

n -

However, (2) would contradict our assumption that a; < 1/(n — 1) for all i.
]

We conclude this section with a result of Marcus and Ree {14] which improves
and generalizes Theorem 1.1. We require the following lemma.

Lemma 4.2. Suppose that every entry of an n X n matrix either has a certain
property P or does not have this property. Then a necessary and sufficient
condition that at least k entries in each diagonal of the matrix have the property P
is that the matrix contain an s X t submatrix composed entirely of entries with
property P, wheres + t = n + k.

The lemma is just a restatement of Theorem 2.2, Chapter IV, where
“property P” was specialized, essentially without loss of generality, to “is 0.”

Theorem 4.3. Let A be an n X n doubly stochastic matrix, and let m be an
integer, 1 < m < n. Then there exists a diagonal of A with at least m entries
greater than or equal to

(ka)—z, if mis odd,

n+

B 4k L
—————, Iifmiseven,
(n+k) -1

where k =n—m + 1.

Proof. Suppose that every diagonal of A contains fewer than m entries
greater than or equal to p. That is, in every diagonal there are at least
n — m + 1 = k entries less than p. Hence, by Lemma 4.2, the matrix 4 must
contain an s X ¢t submatrix M, where s + ¢ = n + k and every entry in M is
less than pu. We can assume that A is of the form
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Let 6( X) denote the sum of all entries in matrix X. Then
o(M) + o(B) =s,
o(M)+a(C)=1,

and therefore

20(M) +o(B) +0(C)=s5+1
=n+k.
Also,

n=o(A4)=0(M)+d(B) +0(C) + o(D).
Hence
o(M)—o(D) =k,
and therefore
o(M) > k.
But we have assumed that o(M) < stu, and therefore

o(M) k
> =
st max st’

)

127

where max st is the largest value st takes on subject to the condition
s +t=n+ k. Thus if m is odd, and therefore n + k = 2n — m + 1 is even,

we have
max st = (n + k)>/4,
and if m is even, and therefore n + k is odd, then
max st = ((n + k) - 1)/4.
Hence if m is odd, then

4k _ 4k
(n+k) (@n-m+1)°

p >

and if m is even, then

oM ak
(n+k)’ -1 Q@n-m+1Y>-1’

which contradicts the definition of p. B
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For the case m = n we have the following result.

Corollary 4.2. If A = (a;;) is an n X n doubly stochastic matrix, then

4 PR
———, ifnisodd,
) (n+1)
max ming; ,;, >
s S - if n is even
n(n+2)° )

Example 4.1. Show that the bound p in Theorem 4.3 is the best possible by
constructing, for each n and m, a matrix none of whose diagonals contains m
entries greater than p.

Let 4 be an n X n doubly stochastic matrix. If m is even, we partition A4

into four blocks,
A A
A - l: 11 12],
A21 A22

where A4;; is (n + k)/2 X (n + k)/2 and all its entries are equal to p =
4k/(n + k)2, all the entries of 4,, and of 4,, are 2/(n + k), and A,, is zero.
Then A contains a submatrix all of whose entries are equal to p, and since
(n+k)/2+ (n+k)/2=n+ k, we can conclude, using Lemma 4.2, that
every diagonal of 4 has at least k entries equal to p, and therefore no
diagonal of A4 can have n — k + 1 = m entries greater than .

If m is even and p = 4k/((n + k)? — 1), we partition A in a similar way,
where now 4,, is (n + k — 1)/2 X (n + k + 1)/2 and all its entries are equal
to u, all the entries of A,, are equal to 2/(n + k — 1), those of A4,, are equal
to 2/(n + k + 1), and A,, is again zero. The conclusion follows by the lemma
in the same way as in the preceding case. ®

3.5. THE VAN DER WAERDEN CONJECTURE
= THE EGORYCEV-FALIKMAN THEOREM

In 1926 van der Waerden [24] posed the problem of determining the minimum
of the permanent function in §,, the polyhedron of doubly stochastic n X n
matrices. In view of Corollary 1.1, this minimum is positive. It was conjectured
that

per(S) = n!/n", (1)

for all S € Q,, and that equality holds in (1) if and only if $ =J,. The
conjecture, known as the van der Waerden conjecture, remained unresolved for
over half a century until Egoryéev [3] and Falikman [4] proved it indepen-
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dently. For the history of the conjecture and the details of the many partial
solutions and related results, see [17], [18], [19] and [20].

In this section we prove inequality (1) together with the condition for
equality. Our proof follows Egory&ev’s proof with a few variations. Instead of
using Alexandrov’s inequality for mixed discriminants [1] from which Egory&ev
deduced an inequality for permanents (Theorem 5.1), we shall obtain the latter
directly from a lemma of Falikman.

Leta,,a,,...,a,_, be positive n-tuples. Define a bilinear form f by

f(x,y) = per(a;,a,,...,a,_,,X,¥),
for all real n-tuples x and y.

Lemma 5.1. Let A = (a;;) be a positive n X (n — 1) matrix with columns
a,,a,,...,a,_,, andlet b= (b, b,,..., b,) be areal n-tuple. If f(a,_,,b) =0,
then f(b,b) < 0. Moreover, f(b,b) = 0 if and only if b = 0.

Proof. Use induction on n. If n =2, then 0 = f(a,,b) = ay;b, + anb,
implies that b, = —ayb,/a;;, and therefore f(b,b) = 2b,b, = —2aybl/a;,
< 0. Also, f(b,b) = 0 if and only if b, = 0, and thus if and only if b = 0.

Assume now that n > 2 and that the result holds for (n — 1)-tuples. Let
X = (xy, X5,..., X,) be a real n-tuple. We show that f(x,e,) =0, where
e, = (0,0,...,0,1), implies that f(x,Xx) <0, unless x is a multiple of e, in
which case, of course, f(x,x) = 0. Suppose that x is not a multiple of e,, and

f(x,e,) = per(a},a,,...,a,_,,x) =0, (2)

where a, = (ay;, azj,-- -, ay_1,;) Jj=12,...,n-2, and x’' =
(xy, X55..., X,_1) # 0. Expanding per(a,,a,,...,a,_,,X,x) by the last row
and using (2), we obtain

n—2
fx,%) = ¥ a,,f(x,x), 3)
j=1
where f,(X’,x") = per(a),...,a;_1,8),y,...,&,_5,X,X). Now, by (2), [(x,a))

= 0, and clearly fj.(a’j, a)>0, j=1, 2,...,n— 2. Since it is assumed that x
is not a multiple of e,, and therefore x’ # 0, it follows from the induction
hypothesis that [, x) <0, j=12,...,n=2. Hence we can conclude
from (3) that f(x,x) < 0. We have shown that if a vector x is not a multiple of
e,, and f(x,e,) = 0, then f(x,x) < 0. Since f(a,_;,a,_,) > 0, the preceding
argument shows that f(a,_,,e,) cannot vanish.

Let

1= —f(b,e,)/f(a, 1 e,)
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Then f(b + na,_;,e,) = 0, and therefore

f(b+ma, ,,b+mna, ) <0,
that is,

f(b,b) +v*f(a,_,a, ;) <O.

Hence f(b,b) < 0. If f(b,b) = 0, then we must have n = 0. But if n = 0, then
f(b,e,) = 0, and therefore b is a multiple of e,, b = re,. Then

0 =f(an——l’b) =f(an—1’ Ten) = Tf(an-lien)
implies that 7 = 0, and thusbh=0. =

Our next theorem is a special case of Alexandrov’s inequality for mixed
discriminants. The following permanent version is due to Egorydev.

Theorem 5.1. Let a;,a,,...,a,_; be positive n-tuples, and let a, be a real
n-tuple. Then
2
(per(ay,...,a,_;,a,))
2-per(al""’an-Z’an—l’an—l)per(ala" »3,_2,3,, n) (4)

Equality can hold in (4) if and only if a,_, and a, are linearly dependent.

Proof. Let f denote the bilinear form in Lemma 5.1, and let =
fa,-1,3,)/f@, 1,3, ). Ifb=a, —ra, ,, then

f(an—l?b) =f(an—1’an) - tf(an—l’an—l) =0
Hence, by Lemma 5.1,
0->—f(b’b) =f(b’an) - tf(ba an—l)

=f(b’an)
= f(a,.a,) —tf(a,-1,3,)

=f(an’ n)— (f(an 1,3, )) /f(an 13, 1) (5)
Thus

(f(an—l’an))2 >f(a,_1,a,_1)f(a,a,),

which is equivalent to inequality (4).
By Lemma 5.1, equality can hold in (5) if and only if b = 0, that is, if and
onlyifa,=ra,_ ;. W
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It can be easily shown by a continuity argument, that inequality (4) also
holds if a,,a,,...,a,_; are merely nonnegative n-tuples. Of course, the
condition for equality is no longer valid in this case. Furthermore, it is clear
that any two n-tuples a, and a,, not just the last two, can be the designated
n-tuples in Theorem 5.1, provided that one of them and all the remaining
n-tuples are nonnegative. Therefore we can deduce the following corollary to
Theorem 5.1.

Corollary 5.1. If A = (a;)) is a nonnegative n X n matrix, then
Ger(a)' = | £ aperao)))| S apertatua)).  ©
i=1 i=1

forany gqandt,1 < q <t < n. If all the columns of A, except possibly column t,
are positive, then equality can hold in (6) if and only if column t is a multiple of
column q.

Before we introduce and prove our next theorems we shall prove several
lemmas. An n X n doubly stochastic matrix A is called minimizing in Q, if

per(4) = min{per(S)[S < 2,).

Lemma 5.2 (Marcus and Newman [13]). A minimizing matrix is fully inde-
composable.

Proof. Let A be a minimizing matrix in §,. Suppose that A is partly
decomposable. Then, by Corollary 1.4, there exist permutation matrices P and
Q such that PAQ = B + C, where B = (b;;)) € 2, and C = (¢;;)) € 2,_,. We
show that there exists an n X n doubly stochastic matrix whose permanent is
less than per(A4). Since, by Corollary 1.1, the permanent of A is positive, we
can assume without loss of generality that b,,per((PAQ)(k|k)) > 0 and
cyper((PAQ) k + 1}k + 1)) > 0. Let ¢ be any positive number less than
min{b,,, ¢;;}, and let

G(e) = PAQ — e(Ey + Ep iy jv1) + €(Eg gir + Exir i)
Then G(¢) € Q,, and
er(G(e)) = per( PAQ) — eper(( PAQ)(k|k)) + e per(( PAQ)(k|k + 1))
—eper((PAQ)(k + 1|k + 1)) + eper((PAQ)(k + 1{k)) + O(¢?

= per(A4) — e(per((PAQ)(k|k))
+per((PAQ)(k + 1|k + 1))) + O(€?),
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since per((PAQ) klk + 1)) = per((PAQ) k + 1]k)) = 0, by the
Frobenius—K6nig theorem. Also, per(( PAQ) k|k)) + per((PAQ)(k + 1|k + 1))
> 0, and therefore for sufficiently small positive &,

per(G(e)) < per(4),

contradicting the assumption that A4 is a minimizing matrix. |

Lemma 5.3 (Marcus and Newman [13]). If A4 = (q; ;) is @ minimizing matrix
in Q,, then a,, > 0 implies that per(A(h|k)) = per(A).

Proof. Let C(A) be the face of ©, of least dimension containing 4 in its
interior. In other words,

C(A) = {X=(x;) €Q,lx,;=0if (i, j) € Z},

where Z = {(i, j)|a,;; = 0}. Then C(4) is defined by the following conditions:

x,. =0, (i, j) € Z.

Since A is in the interior of C(A4), and the permanent function has an
absolute minimum at 4, it must have a stationary point there. Hence we may
introduce Lagrange multipliers and set up the function

F(X) = per(X) - Zki( L Xy~ 1) - Zl"j( ) Xy — 1),
i=1  \k=1 j=1 \k=1
for X € C(A). Now, for (i, j) & Z,
aF(X)/axij = per( X(ilj)) — A, - K.

Therefore

per(A(ilj)) = A, + Bj» (7)
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and thus
per(4) = ) aijper(A(ilj))
j=1
= Z aij(}\i + l"j)
j=1
=\ + Zaijp,j, i=1,2,...,n.
j=1
Similarly,

per(4) = T, per( (i)

133

(8)

(9)

Now, let e = (1,1,...,1), N= (A, Ap,oiisAL), b= (fy, By, ---5 #,)- Then

from (8) and (9) we have
per(A)e =\ + Ap,
per(A)e = AT\ + p.
Premultiply (10) by 4T:

per(A)e = AT\ + ATy,

since A'e = e. Subtract (11) from (12):
ATAp = p.
Similarly,

AAT™N = \.

(10)
(11)

(12)

Now, by Lemma 5.1, 4 is fully indecomposable, and therefore both 474 and
AAT are fully indecomposable (see Problem 2, Chapter 1V), and therefore each
of them has 1 as a simple eigenvalue. Thus both N\ and p are multiples of e:

N\ = ce and p = de, say. It follows from (7) that

per(A(il))) = ¢ + d,
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for all (i, j) & Z. Hence

i aijper(A(ilj))

=1

per(A4)

n

)y a;;(c+ d)

Jj=1
=c+d
per(A(il/)),

forall(i, j)¢ Z. m

Lemma 54 (London [10]). If 4 is a minimizing matrix in Q,, then
per(A(i|j)) = per(4),

for all i and j.

Proof (Minc [16]). Let P = (p;;) be an n X n permutation matrix. For
0 < 8 < 1 define the function

fp(8) = per((1 — 6)A + 6P).
Since A is a minimizing matrix,
f7(0) =0,

for any permutation matrix P. But

.mm=i5ﬂ%ummumm

Sy

I
M= 5

1Imper(A(SIt)) — nper(4)

s

3" per(A(slo(s))) ~ n per(A),

s=1

where o is the permutation corresponding to P. Hence
n
Y per(A(slo(s))) = nper(4), (13)
s=1

for any permutation 6. Now, by Lemma 5.2, the matrix A4 is fully indecom-
posable and therefore, by Theorem 4.1, Chapter IV, every entry of A4 lies on a
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diagonal all of whose other n — 1 entries are positive. In other words, for any
(i, j) there exists a permutation ¢ such that j=¢(i) and a; ., >0 for
s=1,...,i—1,i+1,..., n. But this implies, by Lemma 5.3, that

per(A(sla(s))) = per(4), (14)

fors=1,...,i—1,i+1,..., n. Since j = o(i), it follows from (13) and (14)
that

per(A(i|j)) = per(4). ®

Lemma 5.5. Let A = (a,;) be an n X n mairix, and suppose that the corre-
sponding permanental cofactors of entries in columns s and t, s < t, are equal:
per( A(i|s)) = per(A(ilt)), i = 1,2,..., n. Then the permanent of the matrix
obtained from A by replacing column s and column t of A by their arithmetical
mean is equal to the permanent of A:

per(a;,...,a,_,(a, +2a,)/2,a,,,,...,a,;,(a,+2,)/2,a,,,,...,2,)
= per(4).

Proof. The result in this lemma is nearly obvious. For, by multilinearity of
the permanent function, we have

s t
per(a,,...,(a, +a,)/2,...,(a,+a,)/2,...,a,)
= per(ay,...,a,,..., a,...,a,)/4
+per(a,...,a,..., a,...,a,)/4
+per(a,...,a,..., a,...,a,)/4
+per(a,,....a,,..., a,...,a,)/4

- ( S a, per(A(il1)) + per(4) + per(4) + 3. a,-,per(A(ils))) /4

i=1 i=1

- ( S a,per(A(ils)) + per() + per(4) + 3. a,-,per(A(m))) /4

i=1 i=1

=per(4). B

Marcus and Newman [13] hoped to prove that all permanental cofactors
of a minimizing matrix are equal to the permanent of the matrix. This to-
gether with the “averaging process” in Lemma 5.5 would have proved the
van der Waerden conjecture (cf. the proof in [13] of the theorem that a positive
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minimizing matrix must be equal to J,). Egorycev [3] used London’s resuit
(Lemma 5.4) together with his own theorem (Theorem 5.1) to obtain the key
result on permanental cofactors of a minimizing doubly stochastic matrix. Our
next theorem gives Egoryéev’s result in a somewhat more general form.

A square nonnegative matrix is called column (row) stochastic if all its row
(column) sums are 1.

Theorem 5.2. Let A be an n X n column (row) stochastic matrix satisfying
0 < per(A4) < per(4(ilj)), i,j=1,2,....,n. (15)
Then
per(A(i|j)) = per(4), i,j=1,2,...,n.

Proof. Let 4 = (a;;) be a column stochastic matrix satisfying condition
(15), and suppose that for some s and # the inequality in (15) is strict, that is,

per( A(s|t)) > per(4).

Let a,, be a positive entry in the sth row of 4, where g # ¢. Such an entry
must exist, since the condition that per(A(i|j)) > 0 for all i and j guarantees
that A has at least two positive entries in each row. Then

altper(A(llq)) ‘>- aitper(A)’ l = 1,2,...,",
and

a,per(A(ilt)) = a, per(4), i=12,...,n
If we had strict inequality for i = s,

asqper(A(slt)) > asqper(A)’

then it would follow, by Corollary 5.1, that
e = [ £ aperCatn))| | £ a,per(atio))
i=1 i=1

- (S aupeta)|[ £ oupei(4)

i=1
2
= (per(4))".

This contradiction proves that per(A(s|t)) cannot be greater than per(A4) for

any s and ¢.
The proof for the case when A is row stochastic is similar. &
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Theorem 5.2, Corollary 1.1, and Lemma 5.4 yield immediately the following
results.

Theorem 5.3 (Egorycev [3]). If A is a minimizing matrix in Q,, then
per(A(ilj)) = per(4), i,j=12,...,n.

Corollary 5.2. If A is a minimizing matrix in Q,,, then

(er(4))" = | £ apes(a(i0) || £ auper(aCiia)).

forany gandt, 1 < g<t<n.

Corollary 5.3. If A is a minimizing matrix in Q,, and B is the matrix obtained
from A by replacing each of the two arbitrary columns of A by their arithmetical
mean, then per(B) = per(A4).

We are now ready to prove the van der Waerden conjecture.

Theorem 5.4. If S is a doubly stochastic n X n mairix and S # J,, then
per(S) > per(J,) = n!/n".

Proof. Let A be a minimizing matrix in Q,. We show that 4 = J,. By
Lemma 5.2, the matrix A4 is fully indecomposable, and therefore it has at least
two positive entries in each of its rows. Consider the jth column of A.
Applying the averaging process of Lemma 5.5 to pairs of columns of A4, other
than the jth column, we can obtain, after a finite number of steps, a doubly
stochastic matrix C all of whose columns, except possibly the jth column, are
positive. By Corollary 5.3, per(C) = per(A4). Thus C is also a minimizing
matrix in ,, and therefore for any integer i, 1 <i < n, i # j, we have, by
Corollary 5.3,

(per(C))’ = (télc,iper(c<t|j)>)(téc,,per(cw))).

It follows, by virtue of Corollary 5.1, that the ith and the jth columns of C
are equal. But this is true for every i, i # j. Hence all the columns of C are
equal, and therefore C = J,. Thus the jth column of C, which is the jth
column of 4, is a column of J,. Since this is true for any j, the matrix 4 must
beequaltoJ,. B
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PROBLEMS

1 Let 4 =(a;;) be an nx n (0,1)matrix with a positive permanent.
Define the n X n matrix B = (b,;) by

b, = a per(A(i|j))/per(4), i,j=12,...,n.
Show that B is doubly stochastic.

Show that every doubly stochastic 2 X 2 matrix is orthostochastic.

3 Which of the following matrices are not Schur-stochastic? Orthostochas-

tic?

1871144410221(1)(1)}{

SRR R R R
111 0

4 Show that 1 is the maximal eigenvalue of any row stochastic matrix, and
that e = (1,1,...,1) is a corresponding eigenvector. Are all the eigenvec-
tors corresponding to 1 multiples of e?

Prove Corollary 1.3.
Prove Corollaries 1.4, 1.5, and 1.6.

1 10
5[0 1 1

1 0 1

Show that the matrix

is not a product of elementary doubly stochastic matrices.

8 Let a =(12,13,11) and 8 = (6,18, 12).

(a) Let A(c) and B(c) be the matrices defined in Theorem 2.1, where
¢=1(3,2,1), and « and B are the triples defined above. Verify that

per( A(c¢)) < per(B(c)).
(b) Find a doubly stochastic matrix S such that a = SB.

9 Let a=1(97,54,4) and B =(10,10,5,3,1). Find a doubly stochastic
matrix S such that « = SB.

10 Prove Theorem 3.2.

11 Let

0 C
I, 0

0 C
EQS and B=[D 0]698’
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12

13

14

where

and D=

NI =
— - O
O = O
= O = O
O O =
SO =0
OO -
O= OO
—o 0o O

(a) Determine the indices of imprimitivity of 4 and B.
(b) Use Theorem 3.5 to obtain upper bounds for S(4) and B(B).

(c) Express C and D as convex combinations of permutation matrices,
and determine the actual values of 8(4) and B(B).

Show without the use of Theorem 4.3 that every 3 X 3 doubly stochastic
matrix contains a diagonal all of whose entries are greater than or equal
to 1. For any k > % construct a 3 X 3 doubly stochastic matrix each

diagonal of which contains an entry less than k.

Prove without the use of Theorem 4.3 that every 4 X 4 doubly stochastic
matrix contains a diagonal all of whose entries are at least 1.

Let 4 = (a;;) be a positive semidefinite doubly stochastic n X n matrix.
Show that the condition in Theorem 4.2,

a;<1/(n-1), i=1,2,...,n,

is not necessary for 4 to have a doubly stochastic square root, even if A4
happens to be positive.

15 Construct doubly stochastic matrices X and 4 such that XAX ! is not
doubly stochastic.

16 Find a mimimizing matrix in the set of all doubly stochastic 3 X 3
matrices with zero trace.

17 Find a minimizing matrix in the set of all doubly stochastic 3 X 3
matrices with (’s in positions (1, 1) and (2, 2).
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VI

Other Classes of Nonnegative
Matrices

6.1. STOCHASTIC MATRICES

A nonnegative square matrix is called row stochastic, or simply stochastic, if all
its row sums are 1. Column stochastic matrices are defined similarly.

Stochastic matrices play an important part in the theory of finite homoge-
neous Markov chains. Let S, S,,..., S, be n possible states of a certain
process or system, and suppose that the probability p;; of the process moving
from state i to state j is independent of time for i, j = 1,2,..., n. Then the
process is called a finite homogeneous Markov chain, and the stochastic n X n
matrix P = (p;;) is called the transition matrix for the chain. The process is
fully determined by its transition matrix, and vice versa.

In this section we study algebraic properties of stochastic matrices. The
following properties are immediate consequences of the definition of a sto-
chastic matrix and properties of general nonnegative matrices.

Theorem 1.1. (a) A nonnegative n X n matrix A is stochastic if and only if
AJ =J,

where J is the n X n matrix of 1’s.

(b) A square nonnegative matrix A is stochastic if and only if u = (1,1,...,1)
is an eigenvector corresponding to the maximal eigenvalue 1 of A.

(¢) The moduli of the eigenvalues of a stochastic matrix cannot exceed 1.

(d) The product of stochastic matrices is stochastic.

[For, if A and B are stochastic n X n matrices, that is, AJ = BJ = J, then
(AB)J = A(BJ) = AJ = J]

(e) The set of n X n stochastic matrices forms a convex polyhedron with the n"
stochastic n X n (0, 1)-matrices as its vertices.

Spectral properties of stochastic matrices do not differ much from those of
other nonnegative matrices, particularly irreducible matrices, or any nonnega-
tive matrices with maximal eigenvalue equal to 1 and a corresponding positive
eigenvector. In fact, we have the following result.

141
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Theorem 1.2. If A is a nonnegative matrix with positive maximal eigenvalue r
and a positive maximal eigenvector, then r~'A is diagonally similar to a
stochastic matrix.

Proof. Let x = (xy, x,,..., X,) be a positive maximal eigenvector of A. If
D = diag(x,, x,,..., x,), then x = Du. Clearly, 1 is the maximal eigenvalue
of D™Y(r=14)D = r"'D74D. Now,

r’ D" Y4Du = r 'D " Ux
=r D71
=D
=u.

Hence u is a maximal eigenvector of r"!D'4AD = D™Y(r"14)D, and it
follows from Theorem 1.1(b) that the matrix is stochastic. ®

The condition in Theorem 1.2 that the matrix have a positive maximal
eigenvector is essential. For example, the matrix

b il

has maximal eigenvalue 1, but it is not similar to any stochastic matrix.
Indeed, a stochastic matrix cannot have an elementary divisor (A — 1)’ with
i > 1. The analogous result for doubly stochastic matrices is quite obvious.
However, it is neither obvious nor easy to prove for stochastic matrices. We
require the following auxiliary results. The first of them describes a normal
form of a reducible matrix.

Lemma 1.1. A reducible matrix is cogredient to a matrix of the form

[ 4, 0 0 0 cee 0]
0 Ay 0 0 0
M= 0 0 A 0 01
Ak+1,1 Ak+l,2 Ak+1,k Ak+l,k+1 0 0
| Asl As2 e Ask A:,k+l e Ass ]

where the blocks A;; are n; X n;, i, j=1,2,...,s, the blocks Ay, As,,..., Ay
are irreducible (possibly 1 X 1 zero matrices), and A, + A, + -+ +4,
#0,t=k+1Lk+2,..,s
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Proof. 1If A is reducible, then it is cogredient to a matrix of the form

B 0 ]
C DY
where B and D are square submatrices. If both B and D are irreducible, the

proof is finished. Otherwise, we can continue the process until we obtain a
matrix of the form

A0 0 e 0

A% 420 - 0

EL R R (N (2)
Asl As2 As3 . 453

where the A" are square irreducible matrices. Suppose that all the off-diagonal
blocks in rows i, = 1,i,,...,i,_1, i, of matrix (2) are 0. By an appropriate
permutation of rows and the same permutation of columns, the blocks A%,
t=1,2,..., k, can be brought to the first £ places along the main diagonal.
Thus we obtain a matrix of form (1) which is cogredient to the original matrix.

|

Note that a normal form of a stochastic matrix is stochastic, and so are the
blocks A5, Ay, ..., Ay

The next two lemmas deal with spectral properties of general matrices. We
prove them here for completeness.

Lemma 1.2. Let A be an n X n matrix, and suppose that

a-[2 5} o

where B is k X k. If B and D have no eigenvalues in common, then A is similar
to B + D.

Proof. Let
I 0
s=1| .
X In‘k
We assert that S™'4S = B + D for an appropriate choice of X. Now
S~ US = I, 0 B 0] I, 0.
-X I, .ILC DllX I,

_ B 0]
-XB+C+DX D/

b
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and the problem is to determine whether there exists an (n — k) X k matrix X
such that — XB + C + DX = 0, that 1s,

XB - DX = C. (4)
We show first that the reduced equation
XB—-DX=0 (5)

has only the trivial solution X = 0.

Let H, denote the mlpotent m; X m; (0,1)-matrix with 1’s in positions
(t,t + 1), t=1,2,. —1, and 0’s elsewhere Let G =X;2,(A 1, + H,),
be the Jordan normal form of B,and K=X;9,(p, 1, + H, ) be the Jordan
normal form of D. Let G =P 'BP and K = 0 1DQ Then equation (5)
becomes

XPGP™! — QKQ X = 0. (6)

Now, multiply equation (6) on the left by Q! and on the right by P. The
equation becomes

Q~XPG — KQ"'XP = 0,
or
YG = KY, (7)

where Y = Q7'XP. Partition Y into blocks Y;;, so that the block Y, is
n,Xm;, i=12..,4q j=12,.., p. Equating the (i, j) blocks on both
sides of (7) we obtain

Y, (NI, + H, ) = (g1, + H,)Y,

l] 2
that is,

(Aj_“i)Yiszn.-Y"_ Y Hy,- (8)

Now, multiply (8) by A; — p,, and apply equality (8) to the right-hand side of
the resulting equation:

(7\,' - Hi)ZYij = ( )( - Yinmj)
=H,(H,Y,- Y,H,)-(HY,-Y,H,)H,
= H2Y,, - 2H,Y,H, + Y, H?

- ¥ (- 1)( |z, 8,

a+f=2
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where a and 8 are nonnegative integers. Therefore, inductively,

N TS I R Gy Ll P S

at+fB=y-1

- T (-0(p)Hey, 9

a+fB=y

for any integer y > 2. If y = n; + m; — 1, then for any nonnegative integers «
and B satisfying a + 8=, elther a«2>n; or B> m; and therefore either
H? =0or Hﬁ = 0. It follows that for y = n, + m; — 1 equation (9) becomes

(}\j - P‘i)inj = 0.

Since A; # p, for all i and j, we must have Y;; = 0 for all i and j, and thus
Y = 0. Hence X = 0, and the matrix equation (5) has only the trivial solution
X = 0. In other words, the corresponding system of (n — k)k linear equations
in (n — k)k unknowns x;; has only the trivial solution. We can conclude
therefore that the matrix equation (4) has a unique solution for any matrix C.
The result now follows. W

Lemma 1.3. Let A be a square matrix, and suppose that

_|B 0
A‘[c D]’

where B and D are principal submatrices of A. If A, is an eigenvalue of B but is
not an eigenvalue of D, then NI, — A and AI, — B have exactly the same
elementary divisors of the form (A — \,)".

Proof. Let A and B be n X n and h X h, respectively. If B and D have
no eigenvalues in common, then, by Lemma 1.2, A is similar to B + D, and
the result follows. Otherwise, let B, + B, be the Jordan normal form of B,
where all the main diagonal entries of B, are equal to A, and none of the main
diagonal entries of B, is equal to A,. Then A is similar to a matrix of the form

& 5]

¢

where D’ = B, + D. Now, B, and D’ have no eigenvalues in common, and
therefore, by Lemma 1.2, A is similar to B, + D’. The result follows. W

Theorem 1.3. If A is a stochastic n X n matrix, then all the elementary
divisors of A1, — A of the form (X — 1) are linear.
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Proof. 1f A is irreducible, then 1 is a simple root of 4, and A — 1 is the
only elementary divisor of AI, — A involving the eigenvalue 1. If 4 is
reducible, then, by Lemma 1.1, it is cogredient, and therefore similar, to a
stochastic matrix M of form (1). Recall that all the main diagonal blocks of M
are irreducible. Now, each of the last » — k main diagonal blocks has at least
one row sum strictly less than 1, and therefore, by Theorem 1.1, Chapter I, its
maximal eigenvalue is strictly less than 1. Let B= 3% 4, be an h X h
matrix. Then, by Lemma 1.3, AI, — 4 and AI, — B have the same elementary

divisors involving the eigenvalue 1. Now, each I, — A, i=12,...,k, has
exactly one elementary divisor A — 1 and no other elementary divisors involv-
ing the eigenvalue 1, since 4,,, Ao, ..., 4;, are irreducible and stochastic. It

follows that AI, — M, and thus also AJ — A, has k elementary divisors
A — 1, and no elementary divisors (A — 1)’ with i > 1. =

The final result in this section deals with localization of eigenvalues of a
stochastic matrix. It is due to Fréchet [3], but it is really a special case of a
theorem of Ger$gorin [6} on eigenvalues of general complex matrices.

Theorem 14. If A = (a;)) is a row stochastic matrix, and w = min,(a;),
then

A, —w <1- o,
for any eigenvalue A, of A.
Proof. Let A, be an eigenvalue of an n X n stochastic matrix A4, and let

x = (x5 X5,...,x,) be a corresponding eigenvector. Let 0 < |x,| =
max,(]x,|). Then A,x = Ax, and, in particular,

and therefore

J*EmM
Now, by the triangle inequality,
|At - amml =< z amjlxj/xml
J*Em
< Z a,;
Jj*Em

1—a,.,
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since A is stochastic. Thus

|>\t - ""l =|>\t— A t Ay — ""I
< |>‘t~ amml + Iamm - wl
< (1 - amm) + (amm - w)

=]1—w. W

6.2. TOTALLY NONNEGATIVE MATRICES

A particularly interesting class of nonnegative matrices with many applica-
tions is the class of totally nonnegative matrices.

Definition 2.1. A real m X n matrix A is called totally nonnegative ( positive)
if all subdeterminants of A, of all orders, are nonnegative (positive).

A symmetric totally nonnegative (positive) matrix is positive semidefinite
(definite). Of course, the converse is not true, that is, a nonnegative symmetric
positive definite matrix need not be totally nonnegative (see Problem 4).
However, as we shall see in our next example, the converse is true if the matrix
also happens to be tridiagonal.

Recall that a square matrix T' = (¢,) is called tridiagonal if 1,; = 0 whenever
|i — j| > 1. Thus a tridiagonal matrix T has the form

—bl a 0 0 ]
a, b, ¢,y 0 0
0 az b3 C3 0 v 0
T=(t,j)= : - . - ., : . (1)
0 0 a,, n—1 Cho1
_0 0 w1 b, ]

We illustrate the definition of a totally nonnegative matrix and some of its
consequences by considering first tridiagonal matrices.

Example 2.1. Show that a nonnegative tridiagonal matrix is totally nonnega-
tive if and only if its principal minors are nonnegative.
We first establish a general expression for a subdeterminant of a tridiagonal

matrix. We require the following notation. If w = (wy, w,,..., ;) is a se-
quence in Q, ., and g, h are integers, 1 < g < h < k, then (& " denotes the
subsequence (wg, W,yq,---> w,). Now, let a=(aj, @,,...,a,) and 8=

(B, By, ..., By) be sequences in Q, ,, and let T be the tridiagonal matrix in (1).
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We assert that if a, # B, for some 4, then

det(T[a|B]) = det(T [a®-#~ |8 #~D])det(T [a* 2| g P ])
= det(T[a®M)BU-P]) det(T [a*+1- 0| gt+1B]) . (2)

If a,<$B,, then a,_, <B,—2, and therefore o;< B, —2 for i=
1,2,...,h—1and j=h,h+1,..., k. Hence taiﬁj=0for these values of i
and j, and

(TlelBDI1,2,..., A=~ 1|,k +1,..., k] =0. (3)
On the other hand, if «, > f3,, then aizﬁj+ 2fori=h,h+1,...,k and
j=12,..., h — 1, and therefore lop, = 0 for these values of i and j, and
thus in this case

(T[a|BD[A, h+1,...,k|1,2,...,h = 1] = 0. (4)
The first equality in (2) is now implied by either (3) or (4). The second equality

in (2) is proved similarly (Problem 5).
If h =1, then the first formula in (2) is to be interpreted as

det(T[a|B]) = t,,50et(T [« P18 P]);

and if & = k, then the second formula in (2) becomes

det(T[a|B]) = det(T[a(l'k_1)|B(1,k—1)])t

By
Now,let a = (ay, «,,...,a;)and B = (B, B,, ..., B;) be sequences inQ, ,,
as before, and suppose that «;, = B; for i =1,2,..., g, and for i=h + 1,

h+2,...,k where g<h, buta,+ B, fori=g+1,g+2,..., h. Then we
can conclude from formulas (2) that

h
det(T[alB)) = der(rlawwww)( IT o Ja(r o100 501),
i=g+1
(5)

Note thatif a; # B, fori =1,2,...,h,and ;= B, fori=h+ 1, h + 2,..., k,
then formula (5) reads

det(T[a|B]) = (lgl—[l ta,ﬁi)(det(T[a(h+l’k)|B<h+1'k)]));

and if a;=p,; for i=12,...,g,and a;# B, for i=g+1,g+2,...,k,
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then formula (5) becomes

k
det(T[a|B]) = det(T[a(l’g)IB(l’g)])( éﬂﬂtai,,,_).

It follows from formula (5) that any subdeterminant of a tridiagonal matrix
is a product of some of its principal minors and off-diagonal elements. We can
conclude therefore that a tridiagonal matrix is totally nonnegative if and only
if it is nonnegative and all its principal minors are nonnegative. MW

The necessary and sufficient conditions in Example 2.1 that a nonnegative
tridiagonal matrix be totally nonnegative are the same as those that are
necessary and sufficient for a hermitian matrix to be positive semidefinite. It is
well known that for nonsingular matrices these conditions can be considerably
refined. In fact, a hermitian n X n matrix H is positive definite if merely all its
leading principal minors are positive [i.e., det(H[1,2,...,¢]1,2,...,¢t]) > 0 for
t=1,2,..., n]. It is remarkable that analogous conditions are sufficient for an
irreducible tridiagonal matrix to be totally nonnegative.

Example 2.2. Show that an irreducible (nonnegative) tridiagonal matrix is
totally nonnegative if and only if all its leading principal minors are positive.
Let T = (¢,;) be an n X n irreducible tridiagonal matrix of form (1). If T is
totally nonnegative, then, by the result in Example 2.1, all its principal minors
(and therefore all its leading principal minors) must be nonnegative. It remains
to prove the converse. Since T is irreducible, all the a; and the ¢, must be
positive. Note also that if some a; appears as a factor in a nonzero diagonal
product I'1;¢;, ), then ¢; must also be a factor of the same product, and vice
versa (see Problem 7). In other words, the numbers a; and ¢, appear in any
diagonal product only as products a,c;,, The same is true of any leading
principal minor of T. Consider therefore the tridiagonal symmetric matrix

(b, d, O 0o 1

d b, d, 0 0

0 dy by, dy 0 - 0
=|. . _ , . L

o --- 0 d,, b, d,_,

L() 0 dn—l bn ]

where d, = ya,c;, i = 1,2,..., n — 1. By the preceding remarks, every leading
principal minor of T is equal to the corresponding minor of 7”. Hence all the
leading principal minors of T” are positive, and, by properties of symmetric

matrices, T’ is positive definite. Therefore all principal minors of 7" are
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positive, and it follows that all principal minors of T must be positive, and T
is totally nonnegative by the result in Example 2.1. ®

We now return to general totally nonnegative matrices, and start with two
of their rather obvious properties.

Theorem 2.1. (a) The set of n X n totally nonnegative matrices is closed under
multiplication.

(b) The product of a totally positive matrix and a nonsingular totally nonnega-
tive matrix is totally positive.

We leave the proofs of the theorems above as exercises for the reader
(Problem 10).

Recall that if a = (ay,a,,...,;) € @, ,, then s(a) denotes the sum
a, + a, + --- +a,. We require the following preliminary general result relat-
ing a minor of the inverse of any matrix to a minor of the matrix.

Lemma 2.1. If A is a nonsingular n X n matrix, and o, B € Q then

r,n’

det( A [alB]) = (~1)"*Pdet(4(Bla))/det(4).
Proof. Let C,(M) denote the rth compound of M. Then
C(A(G(4) " =) (a™) =1,
where the identity matrix [ is ( " )-square. In scalar form, the equality reads

Y det(A[wla])det(A_l[al,B]) = 8,4, (6)

aeQr.n

for any w and B in Q, ,. On the other hand, expanding the determinant of A
by rows indexed with w, and using the generalized “Rule of False Cofactors,”
we obtain

Y (-1 Pge( A w|a])det(A(Bla)) = 8,4det(A). (7)

aeQr,n

Since the matrix (C(4))"' is uniquely determined, we obtain, by comparing
(6) and (7),

det( A4 [a|B]) = (1) Pdet( A(Bla))/det(4). =
Definition 2.2. A real matrix A is said to be sign-regular if

(=1)" " Pget( A[a|B]) = 0, (8)
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for all @ and B in Q, ,, k=1,2,..., n. If all the inequalities (8) are strict,
then A is called strictly sign-regular.

An immediate consequence of Lemma 2.1 and our definitions is the
following theorem.

Theorem 2.2. (a) A nonsingular matrix A is totally nonnegative if and only if
A~ is sign-regular.

(b) A nonsingular matrix A is totally positive if and only if A~ is strictly
sign-regular.

This theorem in turn implies the following result.

Theorem 2.3. Let A be a nonnegative n X n matrix with a positive determi-
nant. Then A is totally nonnegative if and only if its (n — 1)th compound is
totally nonnegative.

We omit the proofs of both theorems and relegate them to the problem
section (Problems 11 and 12).

Note that Theorem 2.3 is not true for the rth compound of a nonnegative
matrix if 2 < r < n — 2. For example, it is easy to verify, using the result in
Example 2.2, that the tridiagonal matrix

210 0
{1210
T=10 1 2 1
0 0 1 2

is totally nonnegative. However, its second compound

Cz(T) =

CORONW
oM AN
ONAND
N R
VRN EO
WOHOOO

is not totally nonnegative since it contains several negative minors; e.g.,
det(C,(T)1,2]|3,4) = -2

A totally nonnegative symmetric matrix is positive semidefinite, and thus it
inherits all the properties of positive semidefinite matrices. In particular, the
determinant of a positive semidefinite matrix: (a) is zero if the matrix has a
zero principal minor; (b) cannot exceed the product of its main diagonal
entries ( Hadamard’s inequality); or more generally, cannot exceed the product
of one of its principal minors and its complementary minor (Fisher’s in-



152 Other Classes of Nonnegative Matrices

equality). It is remarkable that totally nonnegative matrices have analogous
properties even if they do not happen to be symmetric.

We use the following abbreviated notation for submatrices. A principal
submatrix A[y|y] is denoted by A{y], and its complementary submatrix

A(vly) by A(y). If vy =(v1,¥2---»7,) is a sequence in Q, ,, and r is an
integer, then the sequence (y; + r,y, +7,..., v, + r) is denoted by vy + r.
We require the following classical result, known as Sylvester’s identity.

Lemma 2.2. Let A = (a;;) be any n X n matrix and let w denote the sequence
(1,2,..., k), where1 < k < n. Define the (n — k) X (n — k) matrix B = (b,;)
by

b, = det(A[w, i+ klw, j+k]), i,j=12,...,n—k.
If a and B are sequences in Q, ,_,, then
det(B[a|B]) = det(A[w])' 'det(A[w, a + k|w, B+ k]).  (9)

For a proof of this lemma see [4], Chapter II, Section 3.
We also require the following auxiliary result which is of interest by itself.

Lemma 23. If A = (a,)) is a totally nonnegative matrix with a zero principal
minor, then det(A) = 0.

Proof. We can assume without loss of generality that the zero principal
minor is det( A[1,2,..., k]). If k = 1, that is, if a;; = 0, then det(A[1, i{1, j]

= —aua;, i,j=273,...,n Since the entries and the minors of 4 are
nonnegative, we must have either a; =0 for i = 2,3,...,n, or a;; =0 for
J=12,3,..., n. In either case A contains a zero line, and therefore det(A4) = 0.

Now, assume that £ > 1 and suppose that det(A[l,2,...,¢]) > 0 for ¢ =
1,2,...,k—1, and det(4[1,2,..., k]) = 0. Let B = (b;;) be the (n — k + 1)
X (n — k + 1) matrix whose (i, j) entry is
b, =det(A[1,2,....,k—1,i+ k—-11,2,..., k-1, j+ k—1]),
i, j=1,2,...,n—k+1.

Consider any subdeterminant of B, det(B[a|B]), where a = (ay, a,,..., a,)
and B = (B, B,,..., B,) are sequences in Q_ , , .. By Sylvester’s identity,

det(B[a|B]) = det(A[w])* 'det(A[w, a + k — 1|0, B + k — 1]),
where w = (1,2,..., k — 1). Thus det( B[a|B]) is nonnegative for all a and B,

and therefore B is totally nonnegative. But b,, = det(A4[1,2,...,k])=0. It
follows from the first part of the proof that det(B) = 0. Hence applying
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Sylvester’s identity again, we have

0 = det(B) = det(A[1,2,..., k — 1])" “det(4),
which implies that det(4) = 0. =

Corollary 2.1. If the determinant of a principal submatrix Alw] of a totally
nonnegative matrix A is equal to zero, then the determinant of any principal
submatrix of A containing A{w) as a submatrix also vanishes.

We next prove the analogue of Fisher’s inequality for totally nonnegative
matrices.

Theorem 2.4. If A is a totally nonnegative n X n matrix and k is an integer,
1 <k <n, then

det(A4) < det(A4[1,2,..., k])det(A(1,2,..., k)).

Proof. Uf A = (a,;) has a zero principal minor, then, by Lemma 2.3,
det(A) = 0, and the result holds trivially. We can assume therefore that all
principal minors of A4 are positive. We use induction on n. If n = 2, then

det(A4) = ay,a;, — ay,8y < a1 a,, = det(A[1]1])det(A(1]1)).

Assume now that n > 2, and that the theorem holds for all totally nonnegative
m X m matrices with m < n. We can also assume without loss of generality
that k > 2, since the cases k =1 and k = n — 1 are analogous. Denote the
sequence (1,2,..., k — 1) by », and let B = (b,;) be again the (n — k + 1) X
(n — k + 1) matrix whose (i, j) entry is det(A[w, i + k — 1jw, j + k — 1)),
i,j=12,...,n— k + 1. As we saw in the proof of Lemma 2.3, the matrix B
is totally nonnegative. Thus

det(B)
det(A[w])" "
< by,det(B(1))
- det(A[w])"_k,
by

= Wdct(/ﬂw])nv ~det(A(k)),

det(4) =

by the induction hypothesis,

again by virtue of Sylvester’s identity. Now, b;; = det(A4[w, k]), and therefore
the above inequality, after some simplification, becomes

det(A[w, k])

det(4) < = afw])

det(A(k)).
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Hence applying our induction hypothesis to the determinant of the totally
nonnegative (n — 1) X (n — 1) matrix A(k), we obtain -

det(A[w, k])

det(4) < ~Fe(ATe])

det(A[w])det( A(w, k))

IA

det(A[1,2,..., k])det(A4(1,2,...,k)). m

Theorem 2.4 implies an analogue of Hadamard’s inequality for totally
nonnegative matrices.

Corollary 2.2. If A = (a;;) is a totally nonnegative n X n matrix, then
det(4) < []a,;.
i=1

Totally nonnegative matrices have another striking property in common
with positive semidefinite symmetric matrices.

Theorem 2.5. All the eigenvalues of a totally nonnegative matrix are real and
nonnegative.

Proof. Let A, A,,...,A, be the eigenvalues of a totally nonnegative

n X n matrix A, A, > |A,| = [A;] = --- > |A,|. Suppose that A, # 0 for
i=1,2...,k, and A, =0 for i=k+1,k+2,...,n Since A is totally
nonnegative, the compound matrix C,( A) is nonnegative. Hence, by properties
of compound matrices ([7], Chapter I, 2.15.12), the maximal eigenvalue of
C.(A)is A;A, --- A, which, by Theorem 4.2, Chapter I, is real and nonnega-
tive. This is true for r = 1,2,..., k, and therefore A, A,,..., A, are positive.
|

6.3. OSCILLATORY MATRICES

The class of totally nonnegative square matrices is perhaps too large to possess
noteworthy spectral properties. On the other hand, the class of square totally
positive matrices is too restrictive, particularly in applications to the theory of
small oscillations. In this section we study the so-called oscillatory matrices
which form a subclass of square totally nonnegative matrices that contains
totally positive matrices.

Definition 3.1. A totally nonnegative square matrix A is called oscillatory if
there exists a positive integer m such that A™ is totally positive. The least
positive integer k for which 4* is totally positive is called the exponent of A.
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Some rather obvious properties of oscillatory matrices are listed in the
following theorem.

Theorem 3.1. (a) An oscillatory matrix is nonsingular and primitive.

(b) Any positive integer power of an oscillatory matrix is oscillatory.

(¢) If A is an oscillatory matrix of exponent k, then A® is totally positive for
any integer t, greater than or equal to k.

(d) If A is an oscillatory n X n matrix, then C,_,(A) is also oscillatory (see
Theorem 2.3).

Oscillatory matrices possess truly remarkable spectral properties. We have
already shown that all eigenvalues of totally nonnegative matrices are real and
nonnegative (Theorem 2.5). For oscillatory matrices we have the following
substantially strengthened result.

Theorem 3.2. The eigenvalues of an oscillatory matrix are all distinct and
positive.

Proof. Let A be an n X n oscillatory matrix with exponent k, and let
ApbAg oA, A > Ayl 2 --- = |A,l, be the eigenvalues of 4. Consider
C.(A), the rth compound of A. Then C,(4) is nonnegative, and its eigenvalues
are

>\wl>\wz T Aw,’ (wl’ Wayeees wr) € Qr,n'

Since the matrix 4™ is totally positive for some positive integer m, the
compound matrix C,(A™) = (C,(A))™ is positive, and thus C,(A) is primitive.
This is true for r =1,2,..., n. It follows that A;A, --- A,, the maximal
eigenvalue of C.(A), is positive for r = 1,2,..., n, and therefore A, A,,..., A,
are all real and positive. Hence all the eigenvalues of C,(A) are real and
positive. In particular,

AMA, AN, AL AL,
for r = 2,3,...,n — 1, and we can conclude that

AA>A,> o> R
The following results concern variations in sign of coordinates in eigenvec-
tors of oscillatory matrices.

Definition 3.2. Let v be a real n-tuple. We count the number of variations in
sign in the sequence of the coordinates of v, that is, the number of consecutive
coordinates of v with different signs, zero coordinates (if any) being assigned
arbitrary signs. The maximum number of sign variations thus obtained is
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denoted by S,,(v), and their minimum number by S, (v). If S;,(v) = S,,(v),
then v is said to have an exact number of sign variations which is denoted by
S(v).

Our main theorem is a consequence of the following two lemmas which are
of interest in themselves.

Lemma 3.1. Ler A be an oscillatory n X n matrix with eigenvalues Ay > \, >
- >\, and let vy, v,,...,v, be corresponding eigenvectors, respectively. If w
is any nonzero linear combination of vectors vy, vy, ..., v,, then Sy (w) < q — 1.

Proof. Since A has distinct eigenvalues, by Theorem 3.2, it is diagonaliz-
able. Let

U™UU = L = diag(A,, A,,..., A,), (1)

where UV = v, j=1,2,...,n, where the signs are chosen so that
det(U{1,2,..., q]) is positive. Relation (1) implies an analogous relation for
compound matrices:

C,(U)'C,(A)C,(U) = C,(L).

Since A is oscillatory, A™ is totally positive for some positive integer m. It
follows that (C (4))™ > 0, and therefore C (4) is primitive. Since the first
column of C (U) is an eigenvector of C,(A4) corresponding to its maximal
eigenvalue, the entries in that column must be either all positive or all
negative. But these entries are def(U[w|1,2,...,4]), w € Q, ,, and since U
was constructed so that det(U[1, 2, ..., q]) is positive, we have

det(U[]1,2, ..., 4]) > 0, @)

foral we Q_,.
Let

q
w=(w,w,...,w,)= 2 ;s
j=1

where the c; are arbitrary real numbers, not all zero. Suppose that S, (w) > q.

Then w would have g+ 1 coordinates, w,,w,,..., W, , where a=
(a, ay,...,0,.1) € Q, .y, satisfying
WoWe,,, <0, i=1,2,...,q. (3)

We note that the w, cannot all be zero. For, if they were, then the system

(U[al,az,...,aq|1,2,...,q])x =0
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would have a nontrivial solution [c¢;, c,,
Let v; = (v, 0555 0s5), J = 1,2,

157

..., ¢,]T, which would contradict (2).
.., n. Consider the determinant of the

(g + 1) X (g + 1) matrix

Uall Ua, 2 Ual q Wal
Uazl Uaz 2 Ua2 q waz
an+11 an+12 U“q+lq w“qu

On the one hand, the determinant of the matrix vanishes, since the last column
in the matrix is a linear combination of the preceding columns. On the other
hand, by expansion on the last column, the determinant of the matrix is equal
to

g+1

Y (—1)'+q+1wa'det(U[a1, e @1, 8y 0] 1,2, q]) (4)
=1

But, by (3), the numbers (— 1)'wa', t=1,2,...,q9 + 1, have the same sign and
are not all zero, whereas, by (2), the minors det(Ule,,..., «, ,
@15 040111,2,..., q]) are all positive. Hence the expression (4) cannot
vanish. Thus the assumption that Sy, (w) > ¢ has led to a contradiction, and
we must have S, (w)<qg-1. B

Corollary 3.1. If A is the matrix defined in the statement of Lemma 3.1 and u
is a nonzero linear combination of eigenvectors Vps Up 15+ - -5 Ugs then Sy (u) <

q— 1.

Lemma 3.2. Let A be an oscillatory n X n matrix with eigenvalues \; > \, >

- > A, and let vy, v,,...,v, be eigenvectors corresponding to these eigen-
values, respectively. If w is a nonzero linear combination of vectors
Ups Upi1s -+ Ups then

S, (w)>p—1.
Proof. Let u=1Y}_,d;v. We have
Avj=}\jvj, j=L12,...,n,
and therefore
A7y =\,
or
(adj A)v; = A7 ldet(4), j=1,2,...,n. (5)
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Let D be the n X n generalized permutation matrix with nonzero entries in
positions (i,n —i + 1),i=1,2,..., n, the (i, n — i + 1) entry being (—1)'*1,
i=12,....,n. Then D' =(~1)"*'D, and D(adj X)D~! = C,_,(X)T for
any n X n matrix X. Now, it follows from (5) that

D(adj A)D~'Dv, = A7 'Dv det( A),
and therefore
C,_1(A)(Dv)) = A;Y(Dv,)det(4),  j=1,2,...,n.

Thus Duv,, Dv,,..., Dv, are eigenvectors of C,_;(A)T, corresponding to the
eigenvalues Aj ldet(A), A;'det(A4), ..., A, 'det(A4), respectively, where
A 'det(A4) > A1 det(4) > --- > A[!det(A). Now, by Theorem 3.1(d),
C,_1(A)T is oscillatory. Hence Lemma 3.1 applied to this matrix and to the
vector Du = X7_ d (Dv,) yields

Sy(Du) <n—p. (6)
Observe that for any real n-tuple v,
S, (v) + Sy(Dv)=n—1. (7

For, if two adjacent nonzero coordinates of v have the same sign, then the
corresponding coordinates of Dv have opposite signs, and if they have
different signs, then the corresponding coordinates of Dv have the same sign.
If at least one of two adjacent coordinates of v is zero, then this occurrence
counts as a change of sign in S,,(Dv) but not in S,(v). Thus in all cases,
every pair of adjacent coordinates gives rise to a change of sign either to be
counted in S, (v) or in S,,(Dv), but not in both. Equality (7) now follows.
From (6) and (7) we have

S, (u) =(n—1) — 8,,(Du)

2(n—1)-(n-p)
=p—1. &

Corollary 3.2. If A is an oscillatory n X n matrix with eigenvalues A; > X\, >
- > N, and corresponding eigenvectors v, v,,...,0,, and if u is a nonzero

cs Uy

linear combination of vectors v,, v, .1, ..., v,, then S, (u) > p — 1.
Corollary 3.3. If A is an oscillatory n X n matrix with eigenvalues A; > A\, >
- > X, and corresponding eigenvectors vy, U,,...,U,, and if u is a nonzero

linear combination of vectors Uy Upy1se e Ugs then

p-1<8 (u)<5,(u)<qg-1.
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The following theorem is the main result in this sequence of lemmas and
corollaries. It is obtained from Corollary 3.3 by setting p = ¢.

Theorem 3.3. If A is an oscillatory n X n matrix with eigenvalues | > A, >
+ > A, and corresponding eigenvectors vy, v,,. .., U,, then

S(y)=j-1, j=12,...,n

We conclude the section with a result giving simple necessary and sufficient
conditions for a totally nonnegative matrix to be oscillatory. We quote the
result without proof. For a proof see [5], Chapter 11, Theorem 10.

Theorem 3.4. A totally nonnegative n X n matrix A = (a,;) is oscillatory if
and only if it is nonsingular, and

a; ;41> 0, a:1,:> 0,

fori=1,2,...,n— 1.

64. M-MATRICES

In this section we introduce the so-called M-matrices. Although these matrices
are not nonnegative, they are closely related to nonnegative matrices. For
example, as we shall see, the inverse of a nonsingular M-matrix is always
nonnegative. Their main raison d’étre, however, are their applications in
mathematics and economics. Here we study some of their algebraic properties.

Of many possible definitions of M-matrices the one given below stresses an
important connection between this class of matrices and nonnegative matrices.

Definition 4.1. A real n X n matrix A is an M-matrix if there exists a
nonnegative matrix B with maximal eigenvalue r such that

A=cl, - B, (1)

where ¢ > r. Note that the main diagonal entries of an M-matrix are nonnega-
tive, and all its other entries are nonpositive. The set of n X n real matrices
whose off-diagonal entries are nonpositive is denoted by F,.

There are many other definitions of M-matrices. In fact, Berman and
Plemmons [1] list 50 equivalent definitions for nonsingular M-matrices! We
state and prove a few of the alternative necessary and sufficient conditions for
a matrix in F, to be an M-matrix, that are relevant to the main theme of this
book.
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Theorem 4.1. A matrix in E, is an M-matrix if and only if all its eigenvalues
have a nonnegative real part.

Proof. Let A = (a,;) € F,, and suppose that every eigenvalue of 4 has a
nonnegative real part. Let a,,, = max,(a,,). Then B = a,,,l, — A is non-
negative. Let r be the maximal eigenvalue of B. Now 4 = a,,,,I, — B, and
therefore a,,, — r is a real ecigenvalue of 4. It follows that a,, —r is
nonnegative, that is, a,,, = r. Thus A = a,,,,I, — B is an M-matrix.

Now, let A =cI, — B be an M-matrix, and let r be the maximal eigen-
value of B, ¢ > r. Let A, be an eigenvalue of 4. Suppose that Re(A,), the real

part of A,, is negative. Then
0 = det(A, I, — A)
= det(A,I,— cI, + B)
= det((c — A,)I, — B),

and thus ¢ — A, is an eigenvalue of B. But ¢ is nonnegative and —Re(A,) is
assumed to be positive, and therefore

fc—AJd=c—Re(A)
>c
>r,

which contradicts the maximality of ». W

In the following theorem the sufficiency of the condition in Theorem 4.1 is
substantially weakened by restricting it to the real eigenvalues of the matrix.

Theorem 4.2. A matrix A in F, is an M-matrix if and only if every real
eigenvalue of A is nonnegative.

Proof. The necessity of the condition follows directly from Theorem 4.1.
Suppose now that all real eigenvalues of A € F, are nonnegative. Let B =
a,,l, — A, where a,, = max,a,. Then B is a nonnegative matrix. Let r be
its maximal eigenvalue. Since a,,,, — r is a real eigenvalueof A = a,,,,I, — B

mm-n 4
it must be nonnegative. In other words, a,, > r, and therefore 4 is an
M-matrix. W

mm =

The next characterization of M-matrices involves their principal minors.
Theorem 4.3. A principal submatrix of an M-matrix is an M-matrix.

Proof. Let A be an M-matrix, and let 4 =cI, — B, where B is a
nonnegative matrix with maximal eigenvalue r, and ¢ > r. Let @ € Q, ,,, and
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let p be the maximal eigenvalue of the principal submatrix B[w]. Then, by
Theorem 5.2, Chapter I, r > p. Thus ¢ > p, and therefore

Alw] = cI, — Blw]
is an M-matrix. B
From Theorem 4.3 we can deduce the following result.

Theorem 4.4. A matrix in F, is an M-matrix if and only if all its principal
minors are nonnegative.

Proof. In order to prove the necessity of the condition it suffices, by virtue
of Theorem 4.3, to show that the determinant of an M-matrix is nonnegative.
By Theorem 4.2, the real roots of an M-matrix are nonnegative. Moreover,
since the matrix is real, all its nonreal eigenvalues occur in conjugate pairs. It
follows that the determinant of an M-matrix, which is the product of its
eigenvalues, is nonnegative,

Now suppose that 4 € F,, and all its principal minors are nonnegative. Let
a,,=max;a; andlet B=a,,Il — A.Then A =a,,I, — B, where B is a
nonnegative matrix with maximal eigenvalue r, say. If all the principal minors
of A are zero, then all its eigenvalues are zero, and 4 = — B since a,,,, = 0.
In this case r = 0, and therefore a,, > r = 0, and it follows that 4 is an
M-matrix. We assume now that all principal minors of A are nonnegative but
not all are zero. Let E,(A) denote the ith elementary symmetric function of
the eigenvalues of A, that is, the sum of all its principal minors of order i.
Then E,(A) > 0 for all i, and the inequality is strict for at least one i. If p isa
positive number, then

= det(pI, + A)

= Z Pn_kEnAk(A)’
k=0

which is positive. Hence p + a,, cannot be an eigenvalue of B for any
positive number p. Thus a,,, > r, and therefore 4 = a,,, I, — B is an M-
matrix. B

The next result is one of the most important and relevant to our study of
nonnegative matrices.

Theorem 4.5. A nonsingular matrix A € F, is an M-matrix if and only if A~ !
iS nonnegative.
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Proof. Let A = cI, — B be a nonsingular M-matrix, where B is a non-
negative matrix with maximal eigenvalue r < c. Note that r cannot be equal to
¢ since 4 is nonsingular. Thus the moduli of the eigenvalues of B/c are all less
than 1. It follows that lim,_, ,(B/c)’ = 0 (see Problem 1, Chapter III). Now,

(1,— B/e)(1, + B/c + (B/c) + -+ (B/c)") = I, - (B/e)"*.

Hence

(I~ B/o) ¥ (B/e)' =1,

t=0

and therefore
1 o0
(In - B/C)- = Z (B/C)t’
=0

which is nonnegative since L7 ,(B/c)’ is nonnegative for every positive
integer p. But

A l=c"Y(I,~ B/c)!

which, as we have shown above, is nonnegative.
Suppose now that A is a matrix in F, and 47! > 0. Let a,,, = max,a,,
and B=a,,I — A. Then B is a nonnegative matrix. Let r be its maximal

mm-n

root, and let x be a nonnegative eigenvector, so that Bx = rx. We have
Ax = (a1, — B)x
= (amm -r ) X,
and therefore

x=(a,,—r)A x.

But x and 4~ 'x are nonnegative, and a,,, — r # 0, since A is nonsingular.
Hence a,,,, —r > 0,and A = a,,,l,— B is an M-matrix. B

One of the attractive features of the theory of M-matrices is the abundance
of equivalent definitions of M-matrices involving concepts from many areas of
linear algebra, and the relative ease with which most of them can be proved.
Several of them, connected with nonnegative matrices, are listed in the
problem section below. We conclude the section with the following example.

Example 4.1. Let A be a singular M-matrix, A = cI, — B, where B is an
irreducible matrix with maximal eigenvalue r, ¢ > r. Show that A has rank
n—1
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Since A is singular, ¢ is an eigenvalue of ¢/, — 4 = B. Hence ¢ < r, by

maximality of r. Thus we have ¢ = r. But r is a simple eigenvalue of B, and
therefore the eigenvalue 0 of 4 = rI, — B must be simple as well. It follows
that therank of Aisn—1. =W

PROBLEMS

1

10
11
12
13

Let

A=

3 20
1 1 14,
0 1 3

and let r be the maximal eigenvalue of 4. Find a stochastic matrix similar

to r 4.

Let S be the stochastic matrix constructed in Problem 1. Find the
eigenvalues of S, and use them to verify Theorem 1.4.

Prove that a totally nonnegative symmetric matrix is positive semidefinite.

Find a positive definite symmetric matrix with real positive entries that is
not totally nonnegative.

Prove the second equality in (2), Section 6.2.

Let « = (1,2,4,5,7,8,9) and B = (1,3,4,6,7,8,9), and let T = (¢,;) be
an n X n tridiagonal matrix, n > 9. Express the determinant of T[a|B]
as a product of principal minors of T and some of its off-diagonal entries.

Let T = (¢,;) be an irreducible tridiagonal matrix of form (1), Section 6.2.
Show that if some a; is a factor in a nonzero diagonal product I,
then ¢, must be also a factor in the product.

o(j)

Let T be a positive semidefinite symmetric tridiagonal matrix. Show that
T is totally nonnegative if and only if all its entries are nonnegative.

Show that a generalized Vandermonde matrix V = (r%), 0 <r, <r, <

- <r,and a; <@, < --- <a,, is totally positive. [ Hint: First prove
(or assume) that the determinant of a generalized Vandermonde matrix is
always positive.]

Prove both parts of Theorem 2.1.
Prove in detail both parts of Theorem 2.2.
Prove Theorem 2.3.

Show that the second compound matrix of a totally positive 4 X 4 matrix
need not be totally nonnegative.
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14

15
16

17

18

19

20

21

22

25

Other Classes of Nonnegative Matrices

Give a counterexample to each of the following false assertions.

(a) A primitive totally nonnegative matrix is oscillatory.

(b) If A4 is a nonnegative matrix and A* is totally positive, then A4 is
oscillatory.

(c) A totally nonnegative matrix with distinct positive eigenvalues is
oscillatory.

Let A4 be the matrix in Problem 1. Is A4 oscillatory?

Let B =4 + I, where A is the matrix in Problem 1. Show by direct
computation, that B is oscillatory.

Determine necessary and sufficient conditions for a real n-tuple to have
an exact number of sign variations (see Definition 3.1).

Let B be the matrix in Problem 16. Find eigenvectors vy, v,, v; of B
corresponding to its eigenvalues A, A,, A;, where A, > A, > A;, and
verify that S(v;) = 0, S(v,) =1, and S(v;) = 2.

For what values of ¢ is the matrix

3 =2 1
A(t) = [—1 2 —2]
-2 0 t

an M-matrix?

If A(?) is the matrix defined in the preceding problem, find a lower bound
for the moduli of the eigenvalues of A(5) and of A(6). (Hint: Use
Theorem 1.1, Chapter II.)

Show that all triangular matrices in F, with nonnegative main diagonal
entries are M-matrices.

Show that the result in Example 4.1 is not valid if the matrix B is
reducible.

Let A be an n X n M-matrix. Show that 4 + D is an M-matrix for any
nonnegative diagonal matrix D.

Let A € F,. Show that A4 is an M-matrix if and only if 4 + D is
nonsingular for every positive diagonal matrix D.

Let A be an M-matrix. Show that there exists a nonnegative n-tuple x
such that Ax is nonnegative.

Let A be an M-matrix, A = cI, — B, where B is an irreducible nonnega-
tive matrix with maximal eigenvalue r, ¢ > r. Show that there exists a
positive n-tuple y such that Ay > 0. Show also that if B is reducible, then
there may not exist a positive n-tuple y for which 4y > 0.
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27 Show that a matrix A € F, is an M-matrix if and only if every real
eigenvalue of each principal submatrix of 4 is nonnegative.

28 A matrix in F, is said to be a Stielties matrix if it is positive definite
symmetric. Show that a Stieltjes matrix is an M-matrix.
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Inverse Eigenvalue Problems

7.1. INVERSE EIGENVALUE PROBLEMS FOR NONNEGATIVE
MATRICES AND STOCHASTIC MATRICES

In this chapter we consider the following inverse problems involving nonnega-
tive matrices.

1. The inverse eigenvalue problem. Determine necessary and sufficient con-
ditions for a complex number to be an eigenvalue of a nonnegative
matrix (or a stochastic or doubly stochastic matrix).

2. The inverse spectrum problem. Determine necessary and sufficient condi-
tions for a complex n-tuple ¢ to be the spectrum of a nonnegative n X n
matrix.

3. The inverse elementary divisor problem. Determine necessary and suffi-
cient conditions for a complex matrix to be similar to a nonnegative (or
a doubly stochastic) matrix.

Obviously, the first of these problems, which is the topic of this section, is the
easiest of the three. However, the general problem as set above, without any
restrictions on the matrix, is not of much interest. In fact, any complex
number is an eigenvalue of some nonnegative matrices.

Example 1.1. Find a nonnegative matrix one of whose eigenvalues is a + Bi,
where a and B are any real numbers.
Let

laf 1Bl O 0

o g 18 0
AB)=109 0 o 18

Bl 0 0 |Jaf
It is easily seen that the eigenvalues of A(a, B) are
lal £|B],  la| £|B]i.

166
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Now let B(a, 8) be the 8§ X 8 nonnegative matrix

[ 0 A(a,B)
A(e,B) 0

Then it follows from Theorem 4.8, Chapter III (or otherwise), that the
eigenvalues of B(a, B) are

tla] |8l and +|af +|BJi.

Clearly, one of the last four eigenvalues is equal to a + Si whatever the signs
of a and 8 happentobe. B

The nonnegative 8 X 8 matrix constructed in Example 1.1 is by no means
the smallest matrix with a + Bi as one of its eigenvalues. Indeed, it can be
shown that any complex number is an eigenvalue of a positive 3 X 3 circulant
(Problem 14).

In order that the inverse eigenvalue problem be meaningful, it is necessary
to restrict it to certain classes of nonnegative matrices: e.g., nonnegative n X n
matrices with a prescribed maximal eigenvalue, or n X n stochastic matrices,
or n X n doubly stochastic matrices, or » X n nonnegative circulants. It may
appear that the inverse eigenvalue problem for nonnegative n X n matrices is
more general than that for n X n stochastic matrices, but, in fact, the two
problems are virtually equivalent (see Theorem 1.2 below). We begin with
some simple aspects of the inverse eigenvalue problem for n X n stochastic
matrices that involve convex sums.

Recall that if z, z,,..., z, are complex numbers, that is, points in the
complex plane, and ¢, c,,..., ¢, are nonnegative numbers adding up to 1,
then the point (complex number) Y% (c,z, is called a comvex sum of
2y, 24, ..., z,. The set of all convex sums of finite subsets of a set X is called
the convex hull of X, and is denoted by H(X). The convex hull of a finite set
{z1, 235 .., 2, } 1s called the convex polygon spanned by z,, z,, ..., z,,. In every
convex polygon there are unique points, called vertices of the polygon, which
span the polygon, and have the property that none of them is a convex sum of
the others ([9], Chapter II, 1.5.1).

Theorem 1.1. If a is an eigenvalue of a stochastic n X n matrix, and { is a
convex sum of 1,a,a?,...,a*, then { is an eigenvalue of an n X n stochastic
matrix.

Proof. Let a be an eigenvalue of a stochastic n X n matrix A4, and let
{ =X¥ ,c,a'. Then { is an eigenvalue of the matrix B = cyI, + c;A + c,A?
+ -+ +c, A% Now, it is easily seen that any nonnegative power of a stochas-
tic matrix is stochastic, and that any convex sum of stochastic matrices is
stochastic. The first assertion follows from Theorem 1.1(d), Chapter VI, and
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the second can be shown to be true by part (a) of the same theorem:

k k
( Y c,A’)J =Y AT
t=0 =0
k
=Y clJ
=0
=J.

Thus B is a stochastic matrix with eigenvalue {. B

Corollary 1.1. If a is an eigenvalue of a stochastic n X n matrix, then every
point in HQ1, a, a?,...,a%,...), the convex hull of 1,a,a%,...,a%,..., is an

eigenvalue of an n X n stochastic matrix.

Corollary 1.2. If a is an eigenvalue of a stochastic n X n matrix, then fa is
also an eigenvalue of a stochastic n X n matrix, for any nonnegative number 6
not exceeding 1.

We are now ready to show that the inverse eigenvalue problems for n X n
nonnegative matrices and for n X n stochastic matrices are equivalent. If the
number in question is zero, then it is an eigenvalue of any singular nonnega-
tive matrix and of any singular stochastic matrix. Otherwise, we have the
following result.

Theorem 1.2. A complex nonzero number a is an eigenvalue of a nonnegative
n X n matrix with a positive maximal eigenvalue r, if and only if a/r is an
eigenvalue of a stochastic n X n matrix.

Proof. The sufficiency of the condition is obvious. Suppose that a is an
eigenvalue of a nonnegative n X n matrix with maximal eigenvalue r > 0. If 4
is irreducible, then, by virtue of Theorem 1.2, Chapter VI, r~!4 is similar to a
stochastic matrix which clearly has a/r as one of its eigenvalues. If A4 is
reducible, then, by Lemma 1.1, Chapter VI, it is cogredient to a matrix in
canonical form [see (1), Section 6.1]. In this case, a is an eigenvalue of one of
the main diagonal blocks. Let it be 4,,, an m X m irreducible submatrix with
maximal eigenvalue p which cannot exceed the maximal eigenvalue r of the
matrix. Then A,, is similar to a stochastic m X m matrix B with eigenvalue
a/p. Thus a/p is an eigenvalue of the stochastic n X n matrix B + I, _,.. But
p < r, and therefore, by Corollary 1.2, a/r is an eigenvalue of some stochastic
n X n matrix. B

In view of the preceding theorem we can confine our discussion to the
inverse eigenvalue problem for stochastic matrices. The following result due to
Kingman [12] deals with eigenvalues of doubly stochastic matrices.
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Theorem 1.3. Let 11, denote the set of points in the complex plane bounded by

the regular k-sided polygon, k > 2, inscribed in the unit circle and with one of its

vertices at (0,1). Then each of the points in
nm"=n,vilv---vll

n

is an eigenvalue of a doubly stochastic n X n matrix.

Proof. Let z be a point in I1,. Then z is a convex sum of the vertices of
I1,:

k-1
7 = Z c’eZMI/k’
t=0

where ¢, > 0 and L¥"Jc, = 1. But e2"/* is an eigenvalue of P,, the k X k
permutation matrix with 1’s in positions (¢, + 1), t =1,2,...,k— 1, and
(k,1). Let Q be the n X n permutation matrix P, + I,_,. Then z is an
eigenvalue of the doubly stochastic n X n matrix

k—1
L Q"

t=0

Hence every point in I1, is an eigenvalue of a doubly stochastic n X n matrix
fork=23,....,n. B

Corollary 1.3. A complex number is an eigenvalue of a doubly stochastic n X n
circulant if and only if it belongs to I1,,.

Proof. The eigenvalues of an n X n circulant C with first row

[Co G e Cn—1]
are
n—1
Y ce?mik/n, k=1,2,....n
t=0

([9], Chapter I, 4.9). If C happens to be doubly stochastic, then c,, ¢y, ..., ¢,_;
are nonnegative and L7_gc, = 1. Hence every eigenvalue of a doubly stochastic
n X n circulant is a convex sum of vertices of II,, and therefore belongs to

IT,. Conversely, if a belongs to I1,, then

n—1
a= Z d'eZwI/n’
t=0



170 Inverse Eigenvalue Problems

where the d, are nonnegative numbers adding up to 1, and therefore a is an
eigenvalue of the doubly stochastic circulant whose first line is

do &y --- d, 4] ®

It is not known whether any eigenvalues of doubly stochastic n X n
matrices lie outside I1” (and, of course, inside the unit circle). On the other
hand, it is known that eigenvalues of some stochastic matrices do not belong
to I1" [3,7)].

Example 1.2. Find a doubly stochastic 3 X 3 matrix with eigenvalue a =

(=3 +V3i)/12.
Since « does not lie in II, we try to express it as a convex sum of the
vertices of Il;:

(=3 +V3i)/12=c, + c,(=1 +V3i) 2+ (-1 =V3i)/2, (1)

where ¢,, ¢,, and c; are nonnegative, and
ct+e+e;=1. (2)
Equality (1) yields
4¢; — 2¢; — 2¢;= —1,
and
6c, — 6¢c; =1,
which together with (2) give
¢ =t ;=% and c¢;= 3.

Thus « lies in I1;, and it is an eigenvalue of the doubly stochastic matrix

1 3 2
%13+%P+%P2=%[2 1 3]. .
3 2 1

Example 1.3. Let B=(1+ 3i)/12. (a) Find a doubly stochastic 4 X 4 ma-
trix, by expressing 8 as a convex sum of the vertices of II. (b) Find doubly
stochastic 4 X 4 circulants with eigenvalue B.

(a) Let

1 V3 1 V3) 1, 3.
Cl+c2(—§+Tl)+c3(——2'—T!)=ﬁ+ﬁl, (3)
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where c,, ¢,, and ¢; are nonnegative numbers satisfying
cgtete=1. (4)
Solving equations (3) and (4) for ¢;, ¢,, and ¢,, we obtain

1 11433

_11-3y3
=18 2T 736 B :

and ¢ 36

Thus the doubly stochastic matrix

14 114+3/3 11-3/3 0
1{11-3/3 14 11+33 0
0

11 + 33 11 — 3y3 14
0 0 0 36

has eigenvalue B.
(b) The vertices of II, are 1,i,—1, —i. Let d,, d,, d;, and d, be
nonnegative numbers such that

d, +dyi — dy — dgi = (1 + 3i)/12, (%)
and

d+d,+d,+d,=1. (6)

Solving equations (5) and (6) we obtain

S—s 3+ 45 s
h="1: h=Tg. b= -1
where s is a real number satisfying
0<s<4, (7)

so that the numbers d,, d,, d,, d, are nonnegative. Hence B is an eigenvalue
of every doubly stochastic circulant

S5—s5s 34+s 4-—35 s
11 5 S5—5 34+s 4-5
1214 -5 s 5-s5 3+s/

3+s 4-35 s S5—5

where s is an arbitrary real number satisfying (7). ®

The reader should note that the method used in the proof of Theorem 1.3
and in the above examples cannot be expected, in general, to produce all
n X n doubly stochastic matrices with a given eigenvalue in IT,.
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Let 8, denote the set of points in the complex plane that are eigenvalues of
stochastic n X n matrices. It is easy to see that 6, is a compact set. Hence, by
Corollary 1.2, in order to determine 6, it suffices to find its boundary points,
that is, points a € 8, for which pa & ©, for any p > 1. We first determine
the points of 6, on the unit circle.

Theorem 1.4. A complex number z with modulus 1 is an eigenvalue of an
n X n stochastic matrix if and only if

z = e2wik/h (8)

where h and k are integers satisfying 0 < k < h < n.

Proof. Suppose that z is an eigenvalue of a stochastic matrix 4, and
iz} = 1. If A is irreducible, then, by Theorem 1.1, Chapter III, z is an hth
root of unity, where & < n is the index of imprimitivity of 4. If A is reducible,
then z is an eigenvalue of B, an irreducible principal ¢ X ¢ submatrix of A.
Thus the maximal eigenvalue of B must be 1, and, by Theorem 1.1, Chapter
II, B must be stochastic. It follows that z is an sth root of unity, where s is
the index of imprimitivity of B, s <t < n.

Now, suppose that z is a number in (8). If 4 = 1, then z = 1, which indeed
is an eigenvalue of every stochastic matrix. If 4 > 1, then z is an eigenvalue of
the n X n permutation matrix P, + I,_,, where P, is the h X h permutation
matrix with 1’s in the superdiagonal and in the (4, 1) position. H

Corollary 1.4. A complex number z of modulus 1 is an eigenvalue of an n X n
doubly stochastic matrix if and only if z is one of the numbers in (8).

Note that UY_,I1" contains all interior points in the unit circle. Hence

n=2

Theorem 1.3 and Corollary 1.4 imply the following result.

Theorem 1.5. A complex number z is an eigenvalue of a doubly stochastic
matrix (or a stochastic matrix) if and only if either it is an interior point of the
unit circle, or

z = ez”ip/q, (9)

where p and q are any integers, q # 0.

The determination of 6, for a given n is more difficult. This problem was
partly solved by Dmitriev and Dynkin [2,3] who used rather complicated
geometric methods. We give here two of their results.

If Z is a convex polygon with vertices z,, z,,..., z,, and a is a complex
number, then aZ denotes the convex polygon spanned by az;, az,,...,az,. In
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what follows we assume that the convex polygon Z is nontrivial, that is,
Z * {0}.

Theorem 1.6. A complex number a is an eigenvalue of an n X n stochastic
matrix if and only if there exists a convex polygon Z with k vertices, k < n, such
that aZ C Z.

Proof. Let A = (a;;) be an n X n stochastic matrix, and suppose that
Az = az, where z = (2, z,,..., z,) # 0. Then

n
az;= Y a,z, i=12,...,n.
Jj=1

Thus az, belongs to Z = H(zy, z,,...,2,) for i = 1,2,..., n. Hence
aZ C Z.

Conversely, if Z = H(z,, z,,..., z,), and a is a complex number such that aZ
is a subpolygon of Z, then az; € Z for i = 1,2,..., n. Therefore each az; is a
convex sum of the z;:

az; = Zbijzj’ i=1,29""n7 (10)
j=1

where the b;; are nonnegative numbers satisfying X.7_;b;; =1, i=1,2,..., n.
Equalities (10) state that a is an eigenvalue of the n X n stochastic matrix
B=(b;). ®

Theorem 1.6 can be used to prove Corollary 1.2 and Theorem 1.4 without
the use of the results obtained in the first three chapters. It can also be used to
establish directly the fact that the modulus of an eigenvalue of a stochastic
matrix cannot exceed 1. We leave these proofs as an exercise for the reader
(Problems 5, 9, and 10).

We need the following geometric lemma.

Lemma 1.1. Let Z be a convex k-sided polygon with vertices z,, z,,. .., z,. Let

0 be an interior point of Z, and let @; denote the angle £(z;.,,z;,0), j=
1,2,..., k (24 being z;). Then

. r
min(@;, ¢y,..., ;) < p = 3 - %

Note that if Z is a regular k-sided polygon and 0 is its center, then ; = g,
j=12,... k.
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Proof. Suppose to the contrary that ¢; > p, j =1, i, ..., k. Consider the
triangle A(z;, z;,4,0).

Since @; > p, there is a point w; on the side 0z;,, such that the angle

L w; 0) is equal to p. Denote the angle £(0, w;, z;) by ¢,. Then in triangle
A(O, z,, w;) we have

siny; _ 0z 0z, _

sin p _o—wj>0, _ J=12,.. k. (11)

Multiply inequalities (11) for j = 1,2,..., k,

siny; siny, sing, 0z 0z, 0z,
sing sing  sinp ~ 0z, 0z; 0z
=1 (12)

Now, ¢, = 7 — p — £L(z;,,,0, z;). Therefore

k k
Z‘I/j=k('”_ﬂ')_ ZL(ZjH,O, zj)
j=1 j=1

=k(w—§+z)—2w

But all the ¢;’s are in the interval (0, 7), and therefore the product I 1sm Y,
attains its maximum when the y,’s are equal. Hence [T} =180 ¢, < sinp,
contradicting (12). W

Dmitriev and Dynkin [2] made use of Lemma 1.1 to obtain the following
interesting result.
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Theorem 1.7. If the amplitude of a point a in the complex plane does not
exceed 2m/n in absolute value, n > 3, then a is an eigenvalue of an n X n
stochastic matrix if and only if « lies either in the triangle A(0,1, e2™/™) or in
A(0,1, e 27/m),

Theorem 1.7 asserts that an n X n stochastic matrix cannot have eigen-
values inside either of the two segments of the unit circle joining the point 1
with the points e?"/" and e~ 2"'/", respectively.

Proof. If a lies in either of the two triangles, then, by Theorem 1.3, it is an
eigenvalue of an »n X n stochastic matrix. Conversely, let a € ©,, and
|amp(a)| < 27 /n. We show that a lies in one of the two triangles.

Suppose that 0 < amp(a) < 27/n. By Theorem 1.6, there exists a k-sided
convex polygon Z, k < n, with vertices z,, z,,..., z;, such that aZ C Z.
Denote the angle £(z;,,,2;,,0) by ¢;, j=1,2,..., k. By Lemma 1.1, at least
one of these angles, ¢, say, does not exceed /2 — w/k < w/2 — w/n. The
point B = az, lies inside the polygon Z or on its boundary, and therefore

ne

£(B. Z,,O) = A(Zt+l‘ ZI‘O)
v T
< 3T n
Clearly, the angles (8, z,,0) and £(a, 1,0) are equal, and therefore £(a, 1,0)
< w/2 — w/n, and a lies within the triangle A0, 1, e2™/").
The case —2a/n < amp(a) < 0 is proved similarly. ®

Example 1.4. Show that the set ©; of eigenvalues of 3 X 3 stochastic matrices
consists of the points in the interior and on the boundary of the triangle with
vertices 1, ¢2"/3 and e~2"/3 and on the segment [1, —1].

Theorem 1.3 implies that the region described in the statement of the
corollary is contained in ©,. By Theorem 1.4, no other points on the unit circle
are in ©;. It remains to show that no nonreal points inside the unit circle but
outside the triangle A(1, 27/3, e~2"/3) can be eigenvalues of a 3 X 3 stochas-
tic matrix. By Theorem 1.7, no points inside the two segments of the unit circle
joining the point 1 with the points ¢?>"'/3 and e ~2"'/3, respectively, are in ©,.
Now, consider any nonreal point x + yi inside the segment of the unit circle
joining the points ™/ and e 2"/% -1 <x< — L, x2+y> <1, y #0.If
x + yi were an eigenvalue of a 3 X 3 stochastic matrix, then the other two
eigenvalues would have to be 1 and x — yi. But then the trace of the matrix
would be 1 + 2x < 0, which is clearly impossible. ®

Dmitriev and Dynkin [3] call a convex polygon Q in the complex plane
cyclic if it is a convex hull of points 1, &, &°, ..., &, ..., for some number a.
Now, the product of two points in Q is clearly in Q, and therefore if p € Q,
then pQ C Q. It follows from Theorem 1.6 that ©,, the set of eigenvalues of
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n X n stochastic matrices, contains all k-sided cyclic polygons, k < n. Dmitriev
and Dynkin conjectured that O, is just the union of all these cyclic polygons,
and they proved the conjecture for n < 5.

The inverse eigenvalue problem for » X n stochastic matrices was com-
pletely solved by Karpelevic¢ [7] who used a diflerent, less restrictive, definition
of cyclic polygons:

An n-sided convex polygon Q is cyclic if there exists a complex number A
and an integer p < n such that Q coincides with the convex hull of points
Nie2mi4/r m=0,1,2,...; g=0,1,....p— 1.

Karpelevi¢ showed in [7] that O, is the union of all thus defined k-sided
cyclic polygons, k& < n. He also showed that 0, is a curvilinear polygon with
vertices as determined in Theorem 1.4.

Theorem 1.8. The region O, is symmetric relative to the real axis. It is
contained within the circle |z| < 1, and intersects its boundary, |z| =1, at
points e>™“/*where a and b run over all integers satisfying 0 < a < b < n. The
boundary of O, consists of these points and of curvilinear arcs connecting them in
circular order. For n > 3 each of these arcs is given by one of the following
parametric equations:

AMA—1) =01 -1), (13)
(N =)' =1 - 1)\, (14)
where the real parameter t runs over the interval 0 < ¢t < 1, and b, d, p, q, r are

natural numbers defined as follows.
Consider an arc connecting consecutive points of ©, on the unit circle. Let its

endpoints be e>™'“/* and e>™“"/*" in counterclockwise order. Then either
’ n ’ n
o5 =0l ] 13)
or
r” n !/ n
vl 5] = o5 (16)

If (15) holds for some arc, then (16) must hold for its complex conjugate arc.
Thus, due to the symmetry of ©,, it will suffice to describe arcs satisfying (15).

Let r, = b" and r,=a”, and let ry, 1y, ..., r, be the sequence of positive
remainders obtained by the repeated use of the Euclidean algorithm: r,=r, q,
+ rias 0< TS < rt+l’ L= 1’2*"" m - 2’ L rmqm~l' If [n/b”] =1
and r, = 1, for some integer s, then the arc connecting the points e*"“/* and
e2m /Y s given by equation (13), where r = r,, |, and p and q are defined by
the relations:

a’p=1  modb’, 0<p<b” (17)
a’'g=—r modb’, 0<q<b (18)
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2wia’ /b’ 2mia” /b"

Otherwise, the arc connecting points e and e is given by equation
(14), where d = [n/b"], b = b", and q is defined by the relation

a’'g=—1 modb”, 0<gqg<b”. (19)

The proof of Theorem 1.8 is too long and too involved to be included here.
We refer the reader to Karpelevi€’s paper [7]. The statement of the theorem,
however, although rather lengthy, is not nearly as complicated as some writers
claim. In fact, the theorem gives quite a straightforward prescription for
constructing 6,. We illustrate the method in the following examples.

Example 1.5. Determine the boundary of 6,.

The only points of unit modulus in 6, are 1, e"'/2, e27/3 ™ ¢4/3 and
e37/2, By Theorem 1.7, the parts of the boundary of 8, connecting the point 1
with e™/% and 3%/, respectively, are straight lines.

Consider the arc connecting e2*'/* with e2™/3. Here a’' =1, b =4,
a” =1, and b” = 3, and therefore

vl =3 <la] -+

In order to follow the method described in the statement of Theorem 1.8, we
shift our attention to the convex conjugate arc of the one considered above,
that is, the arc connecting e**/> to ¢>"'/2. We have now a’ = 2, b’ = 3,
a” = 3, and b” = 4, and therefore

(] -1-o17) -

as expected. Since [n/b”] = 1, we proceed to compute the sequence of re-
mainders: ry, =4, =3, ,=r,—r,g,=1,and thus m=3. But r,, = r, =
3 # 1, and therefore the applicable parametric equation is (14). The constants
are: d =[n/b"] =1, b= b" = 4, and q which is defined by 3¢ = —1 mod 4,
0 < g < 4, is equal to 1. Hence the parametric equation is

(M=) = (1-1)r=0. (20)

Note that A — 1 is always a factor of (13) and (14). Thus after dividing (20) by
A — 1 and simplifying the resulting equation we obtain our parametric equa-
tion,

N+AN+A+1:=0. (21)

Thus the points of the required arc and its complex conjugate are the nonreal
roots of equations obtained from (21) by letting ¢ vary from 0 to 1.
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2mi/3

Lastly, we determine the arc connecting e and ™. Here a' =1,

b =3, a” =1, and b’ = 2. This time

o] ool -

Since [n/b”} = 2 # 1, the required parametric equation is derived once more
from (14) setting d =2, b= 2, and ¢ = —1 mod 2, that is, ¢ = 1. We have

(-1 -(1-¢)r=0,
which after division by A — 1 and simplification becomes
NN (2—1A—r2=0. (22)

Parametric equation (22) determines the points of the required arc and its
complex conjugate. The region 0, is shown in the following figure [17].

eTi/2
e2mif3

eﬁi

o 4mi/3

e3mir2
n

Example 1.6. Find the parametric equation of the arc in the boundary of 6,
between the points e” and e*"'/”.
Here our constants are a’ = 1, ' = 2, a” = 4, and b” = 7. Therefore

o] =7 ol] =6

Since [n/b"] = 1, we compute the sequence of remainders: r, = 7, r, = 4,
ry,=7-4q,=3, r,=4—-3¢g,=1. Now, r,, =1 for s =2, and therefore
the required arc is given by parametric equation (13), where r = r; = 3, and
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p.q are given by the relations

4p=1 mod7, O0<p<7,
4g= -3 mod7, 0<qg<T,

which yield p = 2 and g = 1. Thus the parametric equation of the arc of the
boundary of @, connecting the points e” and e®™/7 is

AR-1)’-0-1'=0. m

7.2. INVERSE SPECTRUM PROBLEMS FOR
NONNEGATIVE MATRICES

The problem considered in this section is the determination of necessary and
sufficient conditions for an n-tuple of complex numbers 6 = (A, A,,..., A,)
to be the spectrum of a nonnegative matrix. There are two obvious necessary
conditions: One is a well-known property of eigenvalues of real matrices, and
the other condition is implied by Theorem 4.2, Chapter I,

5= (k... X,) = o, (1)
max ([A]) € o. 2)

Another necessary condition expresses the obvious requisite that the trace of
any positive integer power of a nonnegative matrix must be nonnegative:

sp(o)= Y A">0, m=1,2,.... (3)
i=1

Conditions (1) and (2) alone are sufficient in case n = 2 (see Problem 17). For
n > 3, however, these two conditions, even with condition (3), are not suffi-
cient. For example, the 5-tuple o = (1,1, — 3, — %, — %) satisfies all three
conditions, but it cannot be the spectrum of any 5 X S nonnegative matrix,
since the matrix would have to be reducible, and thus it would have to contain
two complementary principal submatrices, one with eigenvalues 1, — %, and
the other with eigenvalues 1, — 2, — %, which is clearly impossible.

Loewy and London [8] established the following additional necessary

condition for a complex n-tuple to be the spectrum of a nonnegative matrix.

Theorem 2.1. Let o= (A, A,,...,A,) be the spectrum of a nonnegative
n X n matrix. Then

(5:(0))" < ™ s4,,(0), (4)

for any positive integers k and m.
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Proof. Let A = (a;;) be the nonnegative n X n matrix with spectrum o.
Let B = (b;;) = A*, and let D = diag(b,, by,- .., b,,)- Then clearly B™ —
D™ is nonnegative (Problem 16), and therefore

tr(B™) > tr(D™)

n
- Yo
i=1

1 (&, )"
2 m—1 ( Z bii) 4
h i=1
by Holder’s inequality (see [9], Chapter 11, 3.3). But

tr(B™) = tr(A4*™) = 5,,,(0),
and
gn:lb,»,» = tr(B) = tr(4*) = 5,(0).

Hence
n"s,(0) 2 (5,(0))”. m
Note that for k = 1, condition (4) becomes
sp(0) = (5;(0))"/n™ Y, m=1,2,....

Thus (4), together with the condition s,(0) = 0, imply condition (3). However,
the following example shows that condition (4) is independent of conditions
(1), (2), and (3).

Example 2.1 (Loewy and London [8]). Show that condition (4) is indepen-
dent of conditions (1), (2), and (3).

Let o = (V2, i, —i). Then conditions (1) and (2) are clearly satisfied. Also,
5,(6) = V2, 5,(6) = 0, and s,(c) > 0 for k > 3. Thus condition (3) is satisfied.
However, if we take k = 1 and m = 2, then

(s(0))" = 2> ™75, () = 0,
and condition (4) does not hold. ®
Example 2.2 (Loewy and London [8]). Show that conditions (1), (2), (3), and

(4) are not sufficient for an n-tuple to be the spectrum of a nonnegative matrix
if n>4
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Let o = (V2,V2,i,—1i,0,0,...,0). Then conditions (1), (2), and (3) are
clearly satisfied. The proof that (4) is also satisfied is straightforward.

If m = 1, then (4) is an equality. Assume then that m > 2. If k is an odd
integer, then

(si(0))™ = (@2'++2)"
< 22m—2+km/2
< 4m—1(21+km/2 _ 2)
<" si(0),

since n > 4.
If kK = 2 mod4, then

(si(o))” = (@42 - 2)",

and (4) holds a fortiori.
Lastly, if &k = 0 mod 4, then
(se(0))™ = @2+ 2)"
< (2%+/2)" " since k > 4,
< 2mk+H2-1 0 since m > 2,
_ 4m—1(21+km/2)

<n" Y, (o),

since km = 0 mod 4. Thus o satisfies condition (4) as well. However, o cannot
be the spectrum of any nonnegative matrix. For, by virtue of Theorem 4.3,
Chapter 1, the matrix would have to be reducible, and the nonzero eigenvalues
of one of its principal submatrices would have to be y2, i, and —i. But as we
have seen in Example 2.1, these numbers do not satisfy condition (4), and
therefore no nonnegative matrix can have these eigenvalues. B

We now show that for 3 X 3 matrices even weaker conditions than (1), (2),
(3), and (4) are sufficient.

Theorem 2.2 (Loewy and London [8]). If o = (A, A,, A;) and

o=o,

= |>\j|’ j=293’
A HA, A, 20,
AL+ A, + 22 <3(A + 2%+ A),

then there exists a nonnegative matrix with spectrum o.
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Proof. We first show that if o is a real triple satisfying just the conditions
Ay 2 A, j=2,3, and A;+ A, +A; 20, then o is the spectrum of a
nonnegative matrix. Indeed, if either A, > 0 or A, = 0, say A, > 0, then the
nonnegative matrix A, +((A; — A;)J; + A,1,) has the required spectrum. If
A, and A, are both negative,

AL HA A A A+
A=A+ A +A+A; 1 (%)
—2A1A3 _2A1>\3 0

1
2

is nonnegative and has spectrum o. (See also the companion matrix con-
structed in the proof of Theorem 2.3 below.)

Now, suppose that o contains nonreal numbers, and that all the conditions
in the statement of the theorem are satisfied. We construct a 3 X 3 matrix with
eigenvalues \;, A,, A;. Let o’ = (p, ™, e ), wherep = A,/ |A,|, A\, = A, =
IA,]e®®, 0 < @ < 7. Then the matrix

p 0 0
A =10 cosd siné
0 —smmf cosl

has spectrum ¢’. We find a nonnegative matrix similar to 4". Let J be the
3 X 3 matrix of 1’s, and let

—

5
1

[\
o33

=]
!

(-}

|
D= = =
=

Then QJQ = diag(3,0,0), and therefore

A;;=QA/QT
_ . T :| cosé sin0]) T
0(diag(0,0,0)07 + 00+ %4 sindl)g
. p + 2cos 6 p—2cos(37 +8) p—2cos(iw - 8)
=3 p — 2cos(37 — 8) p+ 2cos8 p — 2cos(37 + 8) |.
p—2cos(37+8) p—2cos(im — @) p+ 2cosé

Now, the conditions in the statement of the theorem imply that

p+2cosf >0, (6)



Inverse Spectrum Problems for Nonnegative Matrices 183

and
(p + 2cos 8)° < 3(p* + 2cos26),
which yield
(p — 2cos(37 + 8))(p — 2cos(i7 — 8)) > 0.

Thus

p — 2cos(37 — 8) > 0, (7
since

p — 2cos(3m + 8) > 0, (8)
for 0 < 8 <« and p > 1. Now, inequalities (6), (7), and (8) imply that the
matrix A” is nonnegative. Also, A" is similar to A’, and therefore ¢’ is also the

spectrum of A”. It follows that ¢ is the spectrum of the nonnegative matrix
A=|x]4". »

The general inverse spectrum problem for nonnegative matrices is unsolved.
The only direction in which some progress has been made is the problem of
the existence of a nonnegative matrix with a prescribed real spectrum. We
conclude the section with the first, and perhaps the most important, result in
this area due to Suleimanova [16] followed by some improvements due to
Perfect [14] who also devised the simple proof given here.

Theorem 2.3 (Suleimanova [16]). Let 0 = (A, A,,..., A,) be a real n-tuple
satisfying

A +A,+ - +A, 20,

A <0, ji=23,...,n.

Then there exists a nonnegative n X n matrix with spectrum o.

Proof. Let
f(>\) = I_II(A - >‘j)
j=
n
=\ — Z c N
=1
We assert that all ¢,, ¢, ..., ¢, must be positive. For, the polynomial

S0 = (07| T (=) e
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has exactly n — 1 positive roots. Therefore, by Descartes’ rule of signs, the
number of variations of sign in the sequence

n—1
1,¢, =€y, 63, —Car..., (—1)" ¢,

is exactly n — 1. However, ¢; = A; + A, + - -- +A, is nonnegative, and it
follows that all the other ¢, must be positive. Hence the companion matrix of

),

0o 1 0 0 0
o o0 1 0 0
0o 0 0 -5 0 1
€, Cyh 1 Ch_n Tt ) 5]

is nonnegative and, of course, has eigenvalues A;, A,,...,A,. B
Corollary 2.1. Let o = (A, A,,..., A,) be a real n-tuple, where

AizA,2 s 2A,20>A,,,> -0 24,

n

and

A+ A+ A, 20,

Then there exists a nonnegative matrix with spectrum o.

Proof. Use the method in the proof of Theorem 2.3 to construct a
nonnegative (n — p + 1) X (n — p + 1) matrix B with eigenvalues
A, A i1--+, A, Then the nonnegative matrix

B + diag(A,, A5,...,A,)
has spectrum 0. B
Corollary 2.1 implies the following result.
Corollary 2.2 (Perfect [14]). Let o be a real n-tuple, and suppose that it is
possible to partition o into subsets in such a way that (i) each subset contains one
or more nonnegative numbers, and (ii) the sum of the negative numbers (if any)

in each subset does not exceed the largest positive number. Then o is the spectrum
of a nonnegative matrix.
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7.3. SIMILARITY TO NONNEGATIVE MATRICES AND TO DOUBLY
STOCHASTIC MATRICES

In this section we consider the ultimate question: What are necessary and
sufficient conditions for a given matrix to be similar to a nonnegative matrix
or to a doubly stochastic matrix; or equivalently, for the existence of a
nonnegative matrix with prescribed elementary divisors? This problem in-
cludes the inverse spectrum problem which we discussed in the last section and
which is unsolved. The two problems are equivalent if the prescribed eigenval-
ues are distinct.
We start with matrices of small orders. The inverse spectrum problem for a

2 X 2 matrix is very simple (Problems 17 and 18), and the inverse elementary
divisor problem for such matrices is trivial. A complex 2 X 2 matrix can be
similar to a nonnegative matrix if either it has two linear elementary divisors
A—A; and A — A, with A; > |A,] (A, being real), or a single quadratic
elementary divisor (A — A,)? with A, > 0. In the first case the matrix is
similar to a nonnegative matrix as in Problem 17. In the second case it is
similar to the nonnegative matrix

A, 1

0 Al

The 3 X 3 matrices are the largest for which the inverse spectrum problem
has been completely solved (Theorem 2.2). The corresponding inverse elemen-
tary divisor problem is quite straightforward.

Theorem 3.1. If the spectrum o = (A, A5, A\3) of a complex 3 X 3 matrix
satisfies the conditions of Theorem 2.2, then the matrix is similar to a nonnega-
tive matrix.

Proof. Let C be the given complex matrix. If C has three linear elemen-
tary divisors, then C is similar to one of the nonnegative matrices constructed
in the proof of Theorem 2.2. Suppose now that the elementary divisors of C
are A — A, and (A — A,)% If A, is nonnegative, then the Jordan normal form
of C is nonnegative. It remains to consider the case where A, = —a <0,
A, =r>2a >0, and the elementary divisors of C are A — r and (A + a)2.
But then C is similar to the nonnegative matrix

1 r—2a 2r+2a 0
F|rt+a r—2a r+a (. B
r+a r+a r—2a

For larger matrices we can only try to solve the inverse elementary divisor
problem modulo the inverse spectrum problem: Given a nonnegative matrix A
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with spectrum o, does there exist a nonnegative matrix with spectrum o and
with arbitrarily prescribed elementary divisors, provided that elementary di-
visors corresponding to nonreal eigenvalues occur in conjugate pairs? We
answer the question in the affirmative in the case when the given nonnegative
matrix is a diagonalizable positive matrix. We require the following auxiliary
result.

Lemma 3.1. Let S be an n X n nonsingular complex matrix whose first p
columns are real, and the remaining columns are not real and consist of
q = (n — p)/2 pairs of complex conjugate n-tuples: columns t and q + t being
conjugate fort =p+ 1, p+2,...,p + q. Then

(a) the first p rows of S™! are real, and

(b) rows t and q + t of S™* are conjugate fort=p+ 1, p+2,...,p +q.

Proof. (a) Suppose that the conjugate columns ¢ and g + ¢ of S are
transposed, t =p + 1, p + 2,..., p + q. The resulting matrix is S, the con-
jugate of S. Hence

det(S) = (—1)7det(s) .

Thus det(S) is real if ¢ is even, and pure imaginary if ¢ is odd. Similarly, if
1 < h < p, then for any k,

det(S(k|n)) = (—1)?det(S(k|h)) ,
and therefore det(S(k|h))/det(S) is real. Hence if 1 < h < p, then
(S7 e = (—1)" " det(S(k|h)) /det(S)

is real for k = 1,2,..., n, and thus the first p rows of S~ ! are real.
(b) Let S = (s,;) and S7' = (z;;). Then

2y = (=1) " det(S(k|t)) /det(S),

and expanding det(S(k|t)) by column g + ¢t we obtain

n

Zo= (=1 L ()" s, |, det(S(h, k|t, g + 1)) /det(S), (1)
h=1
h#+k

where

={h, ifh <k,
T“\h-1 ifh>k.

If p<t<p+gq and h+#k, then the first p columns of the (n — 2) X
(n — 2) matrix S(h, k|t,q + t) are real, and the other columns are not real
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and consist of ¢ — 1 conjugate pairs. It follows, as in part (a), that

det(S(h, k|t, g + 1)) = (=1)7 ' det(S(h, k|t, q + 1)) ,

and therefore det(S(4, k|t, g + t)) is real or pure imaginary according as ¢ is
odd or even. Hence if p <t < p + q and h # k, then

det(S(h, k|t,q + t))/det(S)

is pure imaginary, and thus

det(S(h, k|t,q + t))/det(S) = ~det(S(h, k|t,q + t))/det(S). (2)
Also,

Sh, g+t ™ She- (3)

Therefore, using (1), (2), and (3),

Zp=(—1)7 " f (—1)""'s, det(S(h, k|t, q + 1)) /det(S)

ek
= (1) 7" det(S(k|q + 1)) /det(S)
= Zq+l,k’

fort=p+1L,p+2,...,p+gand k=12,...,n. N

Theorem 3.2 (Minc [11)). If there exists a diagonalizable positive matrix A
with spectrum o, then there also exists a positive matrix with spectrum o and
with arbitrarily prescribed elementary divisors, provided that elementary divisors
corresponding to nonreal eigenvalues occur in conjugate pairs.

Proof. Let o = (A, X,,...,A,), where A\; >\, > -+ > A arereal, the
remaining n — p eigenvalues are nonreal, equal eigenvalues are consecutive,
and A, is conmjugate to A, , for t=p+1,p+12,...,p+gq, where ¢ =
(n—p)/2. Let Av;=XAv, j=1,2,...,n, where vy, 0,,..., 0, are linearly
independent, and v, is conjugate to v,  fort=p+1,p+2,...,p+q If §
is the n X n matrix whose jth column is v, j =1,2,...,n, then

S48 = diag(A, A,,...,A,) = D.

Let X be the subset of {2,3,...,n~ 1} so that D+ X, xE, ,,, is the
Jordan normal form of the required matrix. We show that the matrix

B=(b,) = s( ¥ E,‘,H)S‘l

teX
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is real. Let S = (z;;). Then

b;; = Zsitzt+1‘j’ i, j=12,...,n.
teX

Now, s, is real for t = 1,2,..., p, and, by Lemma 3.1(a), z,,;, ; is real for
t=1,2,..., p — 1. Furthermore, if p <t < p + ¢ and ¢ belongs to X (note
that p, p + ¢, n do not belong to X), then ¢t + ¢ € X, and

Sit = Sitsgqg and Zib1,j = Ly gt o

for all i and j. Therefore

ptg—1

n
Z SitZev1,j = Z (sitzt+1,j + si,t+qzt+q+1,j)
=p t=p+1
rex tex

p+q—1

Z 2 Re(sitzt+1,j)'

t=p+1
te X

Hence b, is real for all i and j.
Now, SDS~! = A4 is positive, and therefore 4 + 6B is positive for suffi-
ciently small positive 8. Thus

A+ 6B = S(D +6Y E,,,H)S—1

tex
is positive for such 8, and has the required elementary divisors. B

The condition that the given matrix 4 be diagonalizable and positive are
necessary for our proof. It is not known, however, whether the theorem holds
without this assumption. Specifically, it is not known: (a) Whether for every
nonnegative (or even positive) matrix there exists a diagonalizable nonnegative
(positive) matrix with the same spectrum; (b) whether for every nonnegative
diagonalizable matrix there exists a nonnegative matrix with the same spec-
trum but with arbitrarily prescribed elementary divisors, subject to the condi-
tion that elementary divisors corresponding to nonreal eigenvalues occur in
conjugate pairs. In the case of doubly stochastic matrices, the answer to
problem (b) is in the negative, as we shall show in the following example.

Example 3.1. Show that there exists a doubly stochastic 3 X 3 matrix with
eigenvalues, 1, — 1, — 1, but there is no doubly stochastic 3 X 3 matrix with
elementary divisors A — 1 and (A + 3)2
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The reader should have no difficulty in verifying that the doubly stochastic

matrix
1 0 1 1
C=71 0 1
1 1 0

has eigenvalues 1, — 3, — 3.

Suppose that 4 = (a;;) is a doubly stochastic 3 X 3 matrix with elementary
divisors A — 1 and (A + 12 By Schur’s triangularization theorem (see [9],
Chapter I, 4.10.2), there exists an orthogonal matrix S = (s,;) such that

1
ST4S=B=|0 -

(=]
S o O
& o

|
aop—

where g is some nonzero real number. Since the first column of S is a mul-
tiple of [ 1 1]7, we can assume without a loss of generality that it is
1 1 1]7/V3. Then

a,;=(SBST),;
= 2 2
=3~ 3 ish+asps;
= as;,83, i=1,2,3,
since & + 52 + s} = ||S(,)|| =1 for i = 1,2, 3. But the trace of the nonnega-

tive matnx A is zero, and therefore a,; = 0 for i = 1,2,3. Now, a # 0, and
thus we must have

512513 = SpSp3 = §35533 = 0.

But this is impossible, since an orthogonal 3 X 3 matrix without 0’s in its first
column cannot have two 0’s in either of its other columns. #

Observe that Example 3.1 implies that for any n, n > 3, there exists an
n X n complex matrix B with the same spectrum as a given doubly stochastic
matrix C, but not similar to any doubly stochastic matrix, even if the
elementary divisors of B satisfy the usual restrictive conditions specified in
Theorem 3.3 below (see Problem 25). This situation, however, cannot occur if
the given doubly stochastic matrix happens to be positive and diagonalizable,
in which case a result analogous to Theorem 3.2 also holds for doubly
stochastic matrices.

Theorem 3.3 (Minc [11]). Given a diagonalizable positive doubly stochastic
matrix C, there exists a positive doubly stochastic matrix with the same spectrum
as C, and with arbitrarily prescribed elementary divisors, provided that they do
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not include (A — 1)* with k > 1, and that the prescribed elementary divisors
corresponding to nonreal eigenvalues occur in conjugate pairs.

Proof. Let D = diag(A;, A,,...,A,), where A, =1, X,,..., A, are
the eigenvalues of C arranged as in the proof of Theorem 3.2, and let
D+ %,.xE,,., be the Jordan normal form of the required doubly
stochastic matrix. Let S be the nonsingular matrix whose jth column is an
eigenvector corresponding to A s J=12,...,n, the first column being
[ 1 - 1)]7/vVn, columns 2,3,..., p (if any) being real, and columns
j and j+ p (if p <n) being conjugate for j=p+1,p+2,...,q9, q=
(n — p)/2. Then, as in the proof of Theorem 3.2, the matrix

B= S(D +6)Y E,,,H)S‘l
te X

is positive for sufficiently small positive 8, and has the required elementary
divisors. It remains to show that B is doubly stochastic.

The first row of S™'is[1 1 --- 1]/Vn, since it is an eigenvector
corresponding to 1 of positive doubly stochastic matrix 4T, and the product of
this row and the first column of § is 1. It follows that all the other row sums of
S~1 and all the column sums of S, except the first, are zero. Thus the first row
of S™Y,is[1 1 --- 1]/yn and allits other rows are zero, and J.S is the
transpose of S~V If we write D + 0%, . 4E, ,,, in the form 1 + G, where G
is (n — 1) X (n — 1), then

(1+6G)(s7Y,)=5"Y,
and
L(14+G) =15,
It follows that
BJ,=s((1+G)S7Y,)=58(s7Y,) =7,
and similarly
JB=(JS1+6G))S'=(JS)S'=J. =

The condition in Theorem 3.3 that the given diagonalizable doubly stochas-

tic matrix C be positive is essential for our proof. It is not known whether the

theorem holds if C is a diagonalizable, irreducible, but not necessarily posi-
tive, n X n doubly stochastic matrix.
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Example 3.2. Show that there exists an irreducible, diagonalizable, 4 X 4
nonpositive doubly stochastic matrix C, and a nondiagonalizable doubly
stochastic matrix B with the same spectrum as C.

The reader can easily verify that the doubly stochastic matrices

10111
_1l1 0 1 1
=311 1 0 1
1110

and
10222
_1i2 0 2 2
B‘63102
1 3 2 0

have the same spectrum (1, — §, — 1, — }). However, C is symmetric, and
therefore diagonalizable, whereas the elementary divisors of B are A — 1,
A+ 1L (A + 1?2 and thus B is not diagonalizable. ®

PROBLEMS

1 Find a nonnegative 2 X 2 matrix with eigenvalue — 3.
Find a nonnegative 4 X 4 matrix with eigenvalue 3 — 5i.

Show that there does not exist a stochastic matrix with eigenvalue
3 + 4i)/5.

4 For each of the following numbers find a doubly stochastic 4 X 4 matrix
which has the number as one of its eigenvalues: (i) a + (1 — a)i;
(i) a« — (1 — a)i; (i) —a + (1 — @)i; (iv) —a — (1 — a)i; where a is a
real number, 0 < a < 1.

Prove Corollary 1.2 using either Theorems 1.1 or 1.6.
Find a doubly stochastic 3 X 3 matrix with eigenvalue (—1 + V3i)/4.
Find a doubly stochastic 4 X 4 matrix with eigenvalue (1 + 2i)/3.

Show that a = (=5 + 4Y3i )/10 does not belong to II,. Find a doubly
stochastic 4 X 4 matrix with eigenvalue a.

W 3 & W

9 Use Theorem 1.6 to prove Theorem 1.4.

10 Use Theorem 1.6 to prove that the modulus of an eigenvalue of a
stochastic matrix cannot exceed 1.
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11

12

13
14

15
16

17

18

19

21
22

Inverse Eigenvalue Problems

Verify that the arcs of the boundary of ®, are given by the parametric
equations in the following table [7]. (For notation see Theorem 1.8)

a' /by a"/b” Equations

1/7 1/6 N—t=@1-0A
1/6 1/5 X—t=@1-0A
1/5 1/4 X¥—t=01-1A
1/4 2/7 N—t=@1-N
2/7 1/3 AR -nP=1-~1)?

1/3 2/5 N-02=(@1-1
2/5 3/7 N—t=@1-0N
3/7 1/2 AN -3 =1-1)?

Use Theorem 1.8 to determine the boundary of &;. Sketch the graph of
the region ©;.

Determine the boundary of &, and sketch it.

Show that any complex number is an eigenvalue of a positive 3 X 3
circulant.

Show thatif 4 > B>0and C> D > 0, then AC > BD.

Show that if 4 =(a;) is an n X n nonnegative matrix, and D =
diag(a,;, a,5,--., a,,), then A™ — D™ is nonnegative for any positive
integer m.

Show that if ¢ = (A, A,) satisfies conditions (1) and (2), Section 7.2, then
there exists a nonnegative matrix of the form

!

Show that for any real number A,, |A,| < 1, there exists a 2 X 2 doubly
stochastic matrix with eigenvalue A,.

with o as its spectrum.

(a) Find an irreducible nonnegative 3 X 3 matrix with eigenvalues
4,2, —-1.

(b) Find a direct sum of two nonnegative matrices that is similar to
diag(4,2, —1).
1

(c) Find a stochastic 3 X 3 matrix with eigenvalues 1, 3, — 4.
Prove Corollary 2.2.
Find a nonnegative 5 X 5 matrix with eigenvalues 4,2,0, —1, — 3.

Find a stochastic 5 X 5 matrix with eigenvaues 1, 1,0, — 1, — 3.

H
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23 Find a nonnegative 3 X 3 matrix with eigenvalues 4, — V3 + i, — V3 — i.

24 Find a nonnegative matrix similar to the matrix

a-15

Show that there is no stochastic matrix similar to 4.

25 Find a diagonalizable n X n doubly stochastic matrix C, and a complex
matrix B with the following properties:

(a) B and C have the same spectrum;
(b) B has no elementary divisors (A — 1), with k > 1;

(c) all elementary divisors of B corresponding to nonreal eigenvalues
occur in conjugate pairs;

(d) B is not similar to any doubly stochastic matrix.
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