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Preface

These notes are based on a course for graduate students entitled 'A
beginner's guide to intersection homology theory' given in Oxford in 1987.
The course was intended to be accessible to first year graduate students and
to mathematicians from different areas of mathematics. The aim was to give
some idea of the power, usefulness and beauty of intersection homology theory
while only assuming fairly basic mathematical knowledge. To succeed at all
in this it was necessary to give at most briefly sketched proofs of the
important theorems and to concentrate on explaining the main ideas and
definitions. The result is that these notes do not constitute in any sense
an introductory textbook on intersection homology. Rather they are intended
to be a piece of propaganda on its behalf. The hope is that mathematicians
of very varied backgrounds with interests in singular spaces should find the
notes readable and should be stimulated to learn in greater depth about
intersection homology and use it in their work.

Over the last century ordinary homology theory for manifolds has been
applied with enormous success to all sorts of different parts of mathematics.
Often however ordinary homology is not as successful in dealing with problems
involving singular spaces as with problems involving manifolds. In such
situations it is possible that intersection homology (which coincides with
ordinary homology for manifolds) may be more successful. MMany examples of
this phenomenon have been found since intersection homology was introduced a
decade ago. It was because exactly this phenomenon has occurred in my own
work in the last few years that I became an enthusiast for intersection
homology, and, although by no means an expert on the subject, decided to
give this course.

The goal I had in mind was to explain enough of the theory of intersection
homology to be able to give a sketch (following Bernstein [1]) of the proof
of the Kazhdan-Lusztig conjecture (Kazhdan-Lusztig [1], [2]). This relates.
the representation theory of complex Lie algebras to the theory of Hecke
algebras via D-modules and intersection homology, and was in fact important
motivation in the development of intersection homology theory (cf. Brylinski



[11). It seemed a suitable target at which to aim, though much of the
material covered on the way is just as interesting (or more so, depending
on one's point of view) in its own right.

This goal influenced the structure of the second half of the course and
thus the lecture notes. The first half consists of an elementary introduction
to intersection homology theory. The introductory chapter, which is intended
as motivation for the reader, describes three situations in which intersection
homology is more successful than ordinary homology in dealing with singular
spaces. The second chapter describes briefly some standard homology theory
and sheaf theory; it would be helpful but not essential for the reader to
be already familiar with this material. There are several different ways
of defining intersection homology which vary in difficulty and elegance:
Chapter 3 gives the most elementary of these and describes some of its basic
propertieé.

The singular spaces given most attention throughout the notes are complex
varieties, but intersection homology is defined for more general spaces as
well (the most general being topological pseudomanifolds). The fourth
chapter discusses the relationship between the intersection homology of
singular complex projective varieties and an analytically defined cohomology
theory, L™ -cohomology, which is a generalisation of De Rham cohomology for
compact manifolds. Chapter 5 describes the important sheaf-theoretic
constructions and characterisations of intersection homology, due to Deligne
and developed in Goresky and MacPerson [5], which imply that intersection
homology is a topological invariant.

The final three chapters lead towards the proof of the Kazhdan-Lusztig
conjecture which is described in Chapter 8. The sixth chapter discusses the
relationship of intersection homology with the Weil conjectures and the
arithmetic of algebraic varieties defined over finite fields, while Chapter
7 describes briefly the theory of D-modules and the Riemann-Hilbert
correspondence relating D-modules to intersection homology.

Nothing in these lecture notes is original work. The papers [ have used
most heavily are those listed in the references by Goresky and MacPherson,
Borel, Bernstein, and Beilinson, Bernstein and Deligne. I would like to
thank Joseph Bernstein for first suggesting several years ago that I should
look at intersection homology, and all those who attended the 'beginner's



guide' last year for pointing out many slips and errors. I am also grateful
to Valerie Siviter for typing the original manuscript and to Terri Moss for
typing the final version.

Frances Kirwan

Balliol College, Oxford.

April 1988,



1 Introduction

Homology theory was introduced by Poincaré nearly a hundred years ago in
order to study the topology of manifolds. As he foresaw, it has been of
immense importance in many areas of mathematics including algebraic and
differential geometry, differential equations and group theory. However in
many situations where homology provides good answers to questions involving
manifolds one would also like to know what happens when the manifolds are
replaced by singular spaces, and then ordinary homology is no longer always
so useful. About ten years ago a new sort of homology, called intersection
homology, was introduced by Goresky and MacPherson. llany others have helped
to develop its theory since then. Intersection homology coincides with
ordinary homology for manifolds, but for singular spaces it often gives
"better" answers than ordinary homology does. This introductory chapter
gives three examples of this phenomenon to whet the reader's appetite before
the definition of intersection homology is given.

§1.1 The cohomology of complex projective varieties

Let X be a nonsingular complex projective variety. Then X is a subset of a
complex projective space
cm+1

P = € -, {complex lines in €
C- {0}

m+1

s
and is defined by the vanishing of homogeneous polynomials. Let us write

1.1.1 (xo PXgiaa xm)

m+1

for the complex line in t™! spanned by a nonzero vector (x_,...,x_) € € .,
P m

Then X is of the form

0

1.1.2 X = {(xO:...:xm) € Pm|fj(xo,...,xm) =0, 1sjsM



where f1,...,f” are homogeneous polynomials in m+1 variables. The homogeneity
of fj implies that the condition

fj(xo"“’xm) =0

is independent of the choice of vector (xo,...,xm) € Em+1 - {0} representing
the point (xo:...:xm) of Pm.

Pm is a complex manifold with local coordinates

X X X X
(xoz...:xm) - (;9-...., —Jil, i+1 seees ;E
J J J J

identifying the open subsets
{(xgieeixy) € Pmlxj #0}, O0sjsm

of Pm with €. The statement that X is nonsin g]ar means that locally we can
choose f1"“’fM in 1.1.2 so that the matrix (371) has rank M. Then X becomes

a complex submanifold of Pm.

Let H1(X) be the ordinary ith cohomology group of X with complex coefficients.
(§ee Chapter 2 for definitions of ordinary homology and cohomology). Then
H1(X) is a complex vector space which is a topological invariant of X and has
the following properties (Griffiths and Harris, [1, Chapter 0, §4, §7,
Chapter 1, §2]).

1.1.3 (i) Hodge decomposition. e can write

W)= o PO
p+q=i

where each HP*9 is a complex subspace of H'(X) and

Hpaq = HQ-P .

Note that for complex conjugation to make sense we need a real structure on
H'(X), i.e. a real subspace V of H'(X) such that

W (%)

v GR .



We take V to be the ith cohomology group of X with real coefficients Hi(X;R).
The Hodge decomposition implies that if i is odd then

dimmHi(X) =2 L dimghP >4
p<q
p+q=i

is even.

(ii) Poincaré duality. There is a natural nondegenerate pairing
Hix) 8 W1 (x) - ¢
so that
HI ) = (HE™T(x))*

where n = dimgX. In particular dimmHi(X) = dimcHzn-i(X).

(ii1) Lefschetz hyperplane theorem. Let H < P_be a generic hyperplane.
("Hyperplane" means that H is defined by one linear equation; "generic"
means that the property we are interested in will not necessarily hold for
every linear equation but it will hold for most - more precisely for those
in a dense open subset of the space of all possible linear equations). Then
the restriction map

H(X) > H'(X n H)
is an isomorphism for i < n - 1 and is injective for i = n - 1.

(iv) Hard Lefschetz theorem. There is an isomorphism

LV ) - i)

given by multiplication (with respect to the cup product) by the ith power
of the hyperplane class [H] € HZ(X). This enables us to refine the Hodge
decomposition. Let L be the map given by multiplication by [H], and if
p+q = n-i where 0 s i g n let



P»q . P»q; i+1 -
Hprim = {g e P9 LT (&) = o).

Here "prim" stands for primitive cohomology. Then if p+q S n we have

P»q _ yPsq p-1,q9-1 2,,p-2,9-2
H Hprim 9 L(Hprim )oL (Hprim )@ ...

Note that the hard Lefschetz theorem implies that

L HR) > H*2(x)

k+2(

is injective if k < n (so that dimmHk(X) < dimEH X)) and surjective if

k+2>n (so that dimmHk(X) 2 dimIHk+2(X)).

(v) Hodge signature theorem. Let p and q be integers between 0 and n,

and suppose that £ € HE;?m(X) is nonzero. Then under the Poincare duality

pairing
HP*a(x) 8 HENPT9(x) - ¢
the pairing of £ € HP*9(X) with the element

(/=T)P-9(-1){n=p-a)(n-p-q-1)/2 n-p-q(z) ¢ 2n-P-q(y)

is a strictly positive real number.

0f these theorems Hodge decomposition in particular is very useful for
studying nonsingular projective varieties. If one allows X to vary in a
holomorphic way depending on some continuous parameters then H1(X) is
essentially independent of X but the Hodge filtration

Hi() = F° o F!

5...oF

of H'(X) defined by

P o Hjsi'j
izp

varies holomorphically with X in an interesting way. This leads to Griffiths'

4



theory of the variation of Hodge structures which gives one information about
moduli spaces (Griffiths [1]).

The properties 1.1.3 (i) - (v) of the cohomology of nonsingular projective
varieties fail in general for singular varieties. Let us consider two
simple examples of this,

First recall that the complex projective 1line P1 can be identified with
the extended complex plane T U {=}, Topologically it is a two-dimensional
sphere. Thus

0 otherwise.

(Spanier,. [1, Chapter 4, §6, Theorem 6] or 2.1.5 below). Now let X be the
complex projective variety

1.1.4  {(x:y:z) € P2|yz = 0},

Then X is the union of the two subsets

0}

{(x:y:z) € P2|y
and

{(x:y:z) € P2|z = 0}

of P2‘ These subsets are each homeomorphic to P1 and meet in the single

point (1:0:0).

A

It can easily be shown (using for example the Mayer-Vietoris sequence
(Spanier [1, Chapter 4, §6])) that



This means that neither Poincaré duality nor the hard Lefschetz theorem
can hold for X.
As a second example let X be the complex projective variety

1.1.5  {(x:y:z) € P2|x3 + y3 = xyz}.

Then it is not hard to check that topologically X is a two-dimensional sphere
with two points identified.

Thus
HO(X) = ¢,
W) =,
H2(X) = ¢

In particular dimEH1(X) is odd so there cannot be a Hodge decomposition of
the cohomology of X.

One remedy for the failure of 1.1.3 (i) - (v) when X is singular is to
introduce new cohomology groups.IH1(X) such that if X is nonsingular then
IH'(X) = H'(X) and such that IH'(X) has the properties 1.1.3 (i) - (v) even
when X is singular. These new cohomology groups IH'(X) are the intersection
cohomology groups of X.

§1.2 De Rham cohomology and L2-cohomology

When X is a compact manifold the cohomology H*(X) can be identified with the



De Rham cohomology HSR(X) defined as follows (see Bott and Tu [1] for more
details).

Let TX be the tangent bundle to X and let T*X be the cotangent bundle.
A differential r-form won X is a C_ section of the r-fold exterior product
A'T*X of the cotangent bundle. In (real) local coordinates YyseeesYy, e
have

w(y) = 1 a, i (V) dys A ady,
i1<...<ir 1°*°'r 1 r

where each a, ; is a smooth real-valued function of y = (y1,...,ym).
1oeip .

Let A"(X;R) be the space of all differential r-forms and let
AT(X) = A"(X;R) g €
be the space of all complex valued differential r-forms. There is a map
d AT > AT ()
defined in Tocal coordin;tes by

dw = ) ) (%, i /%) dy ady, A Ll.oady,
(PRSI Tpeeedy 707 1 r
r
when w is as above.
Then d2 = 0 (by the symmetry of the second partial derivatives of a ¢’
function). The rth De Rham complex cohomology group of X is by definition
the quotient group

r oy - ker d s ATO0 AT

1.2.1 H
DR imd: ATTT(X) > AT(X)

1.2.2 Proposition (Griffiths and Harris [1, p. 43]). HER(X) is canonically

isomorphic to HO(X).

Proposition 1.2.2 together with the famous Hodge theorem (Griffiths and



Harris [1, Chapter 0, §6]) can be used to put a Hodge decomposition on H™(X)
(see 1.1.3) when X is a nonsingular projective variety. The Hodge theorem
implies that every De Rham cohomology class in HER(X) contains a unique
harmonic differential r-form w which can be written uniquely as a sum of
harmonic (p,q)-forms where p+q = r. A (p,q)-form is one which can be written
locally with respect to complex local coordinates Zy5..05Z, 85 2 sum of terms
of the form

adz, A...adz; oA dz. A ... adz;

1 1P J1 J

q
where 11 < ... <1 and j1 < ... <J and o is a smooth function.

One would like to have some sort of analytically defined cohomology when
X is singular (at least when X is a singular complex projective variety,
perhaps in more general cases too) analogous to De Rham cohomology and
canonically isomorphic to intersection cohomology. With Tuck this could
then be used to give analytical proofs that intersection cohomology has a
Hodge decomposition and satisfies Poincare duality and the hard Lefschetz
theorem. It should have all sorts of other spin-offs as well, just as the
De Rham theorem does.

It is conjectured (and proved in some cases) that there is such a cohomology
defined analytically (see Cheeger, Goresky and MacPherson [1]). In fact
this is why it was originally hoped that intersection cohomology should satisfy
the properties 1.1.3 (i), (ii), (iv). The analytically defined cohomology
theory which is conjectured to be the same as intersection cohomology for
singular projective varieties is called Lz-cohomology. It is defined as
follows.

Let X < Pm be a projective variety of complex dimension n. Let I be the
set of singular points of X. Pm has a Kdhler metric called the Fubini-study
metric (Griffiths and Harris [1, p. 31]). The restriction of this to X-I
gives us a Riemannian metric on the manifold X-Z, i.e. an inner product 9y
on each tangent space T (X-£) = T X which varies smoothly with x € X-L, This
inner product 9, 1nduces inner products on the cotangent space T *(X-I) and
its exterior powers A‘T (X-£) for all i > 0 and x € X-L,

Given a smooth i- form w on X-I we have a smooth function ||w|| on X-I
defined by x - Hw(x)ll where || || is the norm on A’ T (X-Z) induced by the
inner product. The i-form is called square—integrable 1f this function Il w)l?

8



is integrable over X-I with respect to the volume form induced by the metric
and the natural orientation on X-Z. (For more details on differential
geometry see e.g. §pivak [1], Sternberg [1], Warner [1]).

Let L'(X-I) < A'(X-I) be the space of square-integrable differential i-Z
forms on X-IZ, The Lz-cohomology of X is defined to be

(x) = Lo €L (x2) do = 0}

1.2.3 H
(2) {neL (x-z)|3c € L"'(x-z), dg = n}.

Note that d may not map L1'1(X-£) into Li(X-Z).

Of course if X is nonsingular then X-I = X is compact so L‘(X-Z) = Ai(X)
for all i and

HZZ)(X) = Hoa(X).

1.2.4 Conjecture. (See Cheeger, Goresky and MacPerson [1]). If X is a
singular projective variety then H*2 (X) is isomorphic to IH*(X).

It is not even known that sz)(x) is finite-dimensional in general. But
the conjecture is known to be true when X has isolated conical singularities
(see Chapter 4).

§1.3 Morse theory for singular spaces

Suppose X is a compact manifold. A smooth function f: X = R is called a
Morse function (Milnor [1]) if the set

C(f) = {x € X|df(x) = 0}

of critical points of f is finite, and for each x € €(f) the Hessian Hx(f)
is nondegenerate. Here Hx(f) is the bilinear form on TXX given in local
coordinates Yyseeos¥p by the matrix

of the second partial derivatives of f at x. le shall also require for
simplicity of notation that if x and y are distinct critical points then
f(x) # fly).



The set of [lorse functions is open and dense in the set of all smooth
functions on X.
If f: X +R is a Morse function then for each y € R either

1.3.1 (i) y # f(x) for all critical points x € C(f), in which case if ¢ > 0
is small enough the map

H, (X )+Hk(X )

k*Ty-¢ y+e

induced by the inclusion of the open set

Xy-e

{x € X|f(x) < y-€}
in

Xy+e

{x € X|f(x) < y+e}

is an isomorphism for all k; or

(ii) y = f(x) for some (unique) critical point x € C(f), in which case
there is an integer I(f;x) such that if € > 0 is small enough the map

Ho (X ) > H (X )

k'y-¢ k' Ty+e

induced by inclusion is an isomorphism except when k is I(f;x) or I(f;x) - 1,
and for these values of k it fits into an exact sequence

0~ HI(f;x)(xy-e) - HI(f;x)(Xy+e) >t

- HI(f;x)-1(Xy-e) - HI(f;x)-1(Xy+e) > 0.
Another way to express this is to say that the relative homology Hk(Xy+E,Xy_€)
is given by
0 if k # I(f3x),
Mty ek o) = {
yreny C if ko= I(f3x).

The integer I(f;x) is called the Morse index of the critical point x for the

10



function f.
As a consequence of 1.3.1 we obtain the famous Morse inequalities, which
are most easily written in the following form

1.3.2 L IE) T g

H.(X) = (1+t)R(t), R(t) 20
X€C(F) i20 1

C

where R(t) is a polynomial in t with non-negative integer coefficients. In
particular this implies that the dimension of Hi(X) is at most the number of
x € C(f) with I(f;x) = i, but the Morse inequalities contain stronger
information than this. For example if I(f;x) is even for all x € C(f) the
Morse inequalities can only work if R(t) = 0, i.e. if the dimension of Hi(X)
is equal to the number of x € C(f) with I(f;x) = i for all i.

Morse theory can be generalised to the case when X is allowed to be
singular provided that intersection homology is used instead of ordinary
homology, as follows. (See Goresky and MacPerson [2] and [4] for more
details).

Let us assume that X is a subset of a manifold Y defined locally by the
vanishing of smooth functions on Y, The set of all functions f : X - R
which extend to smooth functions on Y contains a dense open subset such that
for any f: X -+ R in this subset there exists a finite set C(f) < X with the
following properties.

1.3.3 (i). Ify €R - {f(x)|x € C(f)} then there is an isomorphism

TH () & TH (X )

for all sufficiently small ¢ > 0. The isomorphism is induced by the
inclusion.

(ii) If y = f(x) for some x € C(f) then this x is unique, and there exists
an integer I(f;x) 2 0, called the lorse index of x for f, and a complex
vector space Ax such that if ¢ > 0 is small enough then

H (X o) = TH (X, )

unless k is I(f;x) or I(f;x) - 1, and there is an exact sequence



0> Ty (i) (Xy) = THyces (Kug) = A

(x,, )0,

» I I(f3x)-1""y+¢

1(F3)-10y-g) + H
Here Ax depends on x and X but not on the function f. In fact AX is
determined by the singularity of X at x. If x is a nonsingular point of X

then AX = C.
From 1.3.3 one gets generalised Morse inequalities

1.3.4 L tI(f;X)dimmA ) tidim‘[IH.(X) = 14t)Q(t), Q(t) 2 0,
x€C(F) X420 1

where Q(t) is a polynomial in t with non-negative integer coefficients.

1.3.5 Remark. If X is singular there does not in general exist a lorse

index for ordinary homology. As y moves through a critical value the homology
of Xy may change in a whole range of dimensions (Goresky and MacPherson

[4, 54.5, Example 3]).

This ends the introduction. Its aim was to make the reader sufficiently
interested in intersection homology to want to find out how it is actually
defined. Next it is necessary to review some ordinary (co)homology theory
and sheaf theory.



2 Review of homology,
cohomology and sheaf theory

If X is a compact manifold there are several ways of defining the homology
and cohomology groups H'(X) of X which all Tead to essentially the same
thing in the end: simplicial homology and cohomology; singular homology and
cohomalogy; Eech cohomology of sheaves; sheaf cohomology via derived

functors and De Rham cohomology. We shall review the first four of these
briefly in this chapter. (For the definition of De Rham cohomology see §1.2.
For more details see e.g. Bott and Tu [1], Dold [1], Greenberg [1], Spanier
[11).

§2.1 Simplicial homology

Simplicial homology is the most prosaic and least elegant of these. It is
useful for working out examples. Me shall need the definition in order to
define intersection homology later.

2.1.1 Definition. An n-simplex o in R" is the convex hull of points
vo,.’:‘.,vn such that v1—vo,v2-vo,...,vn-v0 are n linearly independent vectors
in R%, Then VosreeaVy are the vertices of 0 and n is the dimension of 0.
The faces of ¢ are the (n-1)-simplices whose vertices are also vertices of g,
for example the convex hull of VosVosVgseeesVpe

An orientation of an n-simplex 0 is an ordering of its vertices determined
up to even permutation.

A simplicial complex in RN is a set N of simplices such that

2.1.2 (i) if o € N then every face of 0 is in N;

(ii) if o, T € Nandont# @ then o N T is a simplex whose vertices are
also vertices of both o and T;

(iii) if x € o € N then there is a neighbourhood U of x in RN such that
Unt#@ for only finitely many simplices T € N.

2.1.3 Definition, The support



INl] = U o
g€EN

of a simplicial complex N in RN is the union of the simplices which belong
to it. A triangulation of a topological space X is a homeomorphism T: |N| +X
where N is a simplicial complex.

We shall assume henceforth that X is triangulable, i.e. that X has a
triangulation T: |N| ~ X. HNote that N is finite if and only if X is compact.

For each 0 € N choose an orientation of o, Let

V) - e N|o an i-simplex}.
An i-chain of N with complex coefficients is a formal linear combination
£=L0 €6 0
cEN(1) N

where the coefficients EO are complex numbers and only finitely many of them
are nonzero, The space Ci(N) of i-chains in N is a complex vector space
with basis N'', The boundary map

9: Ci(N) > €y, (N)
is the unique complex linear map such that if o € N(i) then

30 = X T
T face of O
where the sign * is 1 if the chosen orientation on T is obtained from the
chosen orientation, VoreeesVy Say, ON 0 by omitting some Vj where j is even,
and is -1 otherwise. Then

2

32:C,(K) > €. _,(N)

1

is 0, i.e.

im(3: C;(N) > C;_4(N)) < ker (3: C;_4(N) + C;_,(N)).



2.1.4 Definition. The ith homology group of N with complex coefficients is

ker 3: C.(N) - C._1(N)
H.(N) = 1 1
(N) > C;(N)

im 3: Ci+1

If T: |N| >~ X is a triangulation of X then we define the ith homology
group of X with respect to T as

T
Hi(X) = Hi(N)'

We also write CE(X) for Ci(N).

In fact HI(X) does not depend on the triangulation T chosen (see 2.2.3
below). It is a definition of homology which is usually easy to calculate
in examples.

2.1.5 Example. Let X be the two-dimensional sphere S2 and let T: |N|+X be
the triangulation indicated by the diagram.

\_
Then
im 9: C1(N) - CO(N)
is spanned by {vi-vjlo £i1<js3tso Hl(x) = €. Also
ker 3: C1(N) -+ CO(N) = im 9: CZ(N) -> C1(N)
T .
) H1(X) = 0. Finally

ker 9: CZ(N) - C1(N)



is spanned by
(vovqva) = (vgvqva) + (vovpvg) = (vyvpyg
S0 H;(X) = (.

2.1.6 Definition. A triangulation T: |[N| + X is a refinement of a triangu-
lation T: [N] ~ X if for each ¢ € N there exists some o € N such that
(o) < T(0).

If T is a refinement of ? then there is a natural map

Ci(N) > Ci(N)

compatible with boundary maps such that if g€ ﬁ(i) then

PE) ) E
UEN(1),T(0)Eﬁ(3)

where the sign depends on whether the orientations of o and G are compatible.

2.1.7 Definition. The space Ci(X) of all piecewise linear i-chains is the
direct 1imit of the spaces cI(x) under refinement. That is, a piecewise
linear i-chain on X is represented by an element of CE(X) for some tri-
angulation T of X, and two such elements

c eclx, ¢ ecix)
represent the same piecewise 1inear i-chain if and only if there exists a
common refinement T of T and T such that the images of ¢ and ¢ in CI(X)
coincide.
The boundary maps 3: CI(X) - CI_1(X) induce boundary maps
3: C;(X) ~ ¢,y (X)

such that 32 = 0.

2.1.8 Definition. The simplicial homology of a triangulable space X is
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defined by

STy ker 9: C.(X) > C;_,(X)

i NI
im 3: cm(x) - ci(x)

This definition is independent of the choice of triangulation but a priori
impossible to compute.

§2.2 Singular homology

Singular homology is the most common first definition of homology. It is
not much use for defining intersection homology (see remark 3.4.5 below) but
for completeness the definition is included here.

A singular i-simplex in a topological space X is a continuous map

LA, >X

where Ai is the standard i-simplex in R1; that is, Ai is the convex hull of
the set of points

{(o0,...,0),(1,0,...0),(0,1,0,...0),...,(0,...0,1)}

inR'. The space Si(X) of singular i-chains in X is the complex vector
space with the set of singular i-simplices in X as basis. A singular (i-1)-
simplex is a face of a singular i-simplex I if it is the composition of L
with one of i+1 standard maps

¢j:Ai_1+Ai, 0<3si,

which identify 4, , with faces of ;. MWe define
oL = P> £T
T face of Z

where the sign depends on orientations (cf. §2.1). If the sign is chosen
correctly we get 3~ = 0 and we define the ith singular homology group of X
with complex coefficients to be the quotient

17



. ker 3:S.(X) »S. ,(X)
sing _ i i-1
2,21 HTP(X) = .

im 3: Si+1(X) -+ Si(X)

If f:X - Y is a continuous map between topological spaces then f induces
linear maps

fet Si(X) - Si(Y)
such that
fulo) =f oo

for any singular i-simplex L in X. The maps f, are compatible with the
boundary maps, and hence induce

2.2.2  fo: HYMI(x) » H3TN9(y).

It is not quite so obvious that if X and Y are triangulable then a
continuous map f: X > Y induces in a natural way a linear map
i HY™P(X) > H3™P(Y) on simplicial homology. This follows hawever from
the following important fact.

2.2.3 Theorem. If T: |N| + X is any triangulation of a topological space X
then there are natural isomorphisms

HETN9(x) = HSI™(x) = HI(x).

The proof of this is based on the simplicial approximation theorem (Spanier
[1, Chapter 3 84, Chapter 4 §6 Theorem 8]), which tells us that any singular
p-simplex

can be "approximated” by ¥: A+ X where I is piecewise-1inear with respect
to the given triangulation T on X and a refinement of the obvious triangulation
on Ap. The approximation is such that )

18



T=I+3L

for some (p+1)-chain I in S__,(X). Since 32 = 0 we get

p+1

It follows that the natural map
T sing
Ha(X) = HL 72 (X)

is an isomorphism. Taking direct limits, since Hi1"g(x)-is independent of
T we find that

K™ (x) = HSTM9(x).

To define cohomology groups instead of homology groups we can use the
dual 3* of the boundary operator. Thus the ith singular cohomology group of
X is

* . * *
ai ) = ker 3*: Ci(X) > C1+1(X)
sing im a%: C,_,(X)* > ¢, (0"

and the ith simplicial cohomology group H;imp(Y) is defined similarly.
Because we are working with coefficients in a field €, not an arbitrary
ring, we have natural isomorphisms

i si *
Hoing™) = (H:1"9(x))

and

. (X)

simp (H?imp(x))*

(1]

between the cohomology groups and the duals of the corresponding homology
groups.
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§2.3 Homology with closed support

We have defined the simplicial and singular homology groups of a triangulable
space X using chains which are finite linear combinations of simplices., It
is also possible to work with chains which are (formal) infinite linear
combinations of simplices (Borel-Moore [1]). We get new homology groups
(sometimes called Borel-Moore homology groups or homology groups with closed
support). When X is compact the two sorts of homology are canonically
isomorphic.

Let T : |N| ~ X be a triangulation of X. The space

ci(x))
of locally finite i-chains of X with respect to T is the vector space con-
sisting ‘of all formal linear combinations

)
g ceN(i) Ec °

where the coefficients £, are complex numbers. We do not impose the condition
that only finitely many of the E are nonzero CI(X) is the subspace of
«X)) spanned by N i) and we can identify C {x)) with the dual of CI(X)
us1ng the basis N''
We define the space C (X)) of 1oca1]y finite piecewise linear i-chains on
X as the direct 1limit of the spaces C, (X)) under refinement.
The support

el = _u  T(o)
50#0

of a locally finite i-chain
T

e= L e aecl
oEN(1) o 1

is always a closed subset of X (since any simplicial complex N is locally
finite). It is easy to see that the support |£| is compact if and only if

Ee€ CT(X). Thus i-chains £ € C1(X) are sometimes called i-chains with compact
support (and the groups H51mp( X) are called homology with compact support)
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whereas chains € € C,(X)) are called i-chains with closed support.

The boundary map 3: CI(X) > C1_1(X) extends in the obvious way to a
boundary map

T T
2 CT(00) » €1 ((0)

such that 32 = 0. There is an induced boundary map

3 C;((K) ~ C,_ (X)),

2.3.1 Definition. The homology groups with closed support (or Borel-Hoore

homology groups) H?i(x) of X are defined to be the quotients

ker 3: C,((X)) » C,_,(x))

HEA(x) =
1 () > ¢, ((x))

im 3: Ci+1

Of course when X is compact then if T: |[N| > X is a triangulation the
simplicial compiex N is finite, so

T T
;@) = c;(x).

Thus

2.3.2 KA = HT™P(x)

when X is compact.
We can also define singular homology groups with closed support.

§2.4 Sheaves.

We have now considered simplicial and singular homology and cohomology and
also De Rham cohomology for compact manifolds. In order to define two more
important forms of cohomology we need to review some sheaf theory. For more
details see e.g. Godement [1], Serre [1], Hartshorne [1].

2.4.1 Definition. A presheaf F on a topological space X is given by the
following data:
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(a) for every open subset U of X an abelian group F(U),

(b) for every inclusion U < V of open subsets of X a homomorphism

oyy + FOV) > F(U)

called the restriction homomorphism, satisfying
(i) F(@) = 0;
(i) ouy ¢ F(U) » F(U) is the identity;
ﬁﬁ)ﬁUEVEHmmpw=pwopw.
If U=V are open subsets of X and s € F(V) then we write

s|U
for

oyy(s) € F(U).

A presheaf F on X is a sheaf if in addition it has the following property.

(iv) Let {Vi|i € I} be a collection of open subsets of X. Suppose that
we are given elements s, € F(Vi) for all i € I satisfying

s. | = s
i Vi n Vj J Vi n Vj

for all i,j € I. Then there exists a unique s € F( U Vi) such that
i€l

sly =s.
Vi i
for all i € I.

2.4.2. Examples. (1). Let A be any abelian group. The constant sheaf AX
on X determined by A is defined by
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Ac(8) = {0}, A(U) = {continuous maps f: U > A} if U# 0,

with the obvious restriction homomorphisms, Here A is supposed to have the
discrete topology. (Even if A has a natural topology such as when A = C,

we take the discrete topology when defining AX). Thus if U is non-empty and
connected every continuous map f:U -~ A is constant so AX(U) = A,

(2) Let m:Y -+ X be continuous and define F by

F(U) = {continuous o:U + Y| ™o o(x) = x, vx € U}

{sections of m over U},

with the obvious restriction maps. F is called the sheaf of sections of

m:Y + X. For example Y might be the tangent bundle of X when X is a manifold,
or Y might be ArT*X. In these cases the elements of F(U) are vector fields
over U or differential r-forms on U.

2.4.3 Definition. Let F be a presheaf over X. The stalk Fx of Fat x € X
is the direct 1imit of abelian groups

Fo= 1im {F(U)|x € U, U open in X},
AN
Thus an element of FX is represented by a pair (U,s) where U is an open
subset of X such that x € U and s € F(U). Two pairs (U,s) and (V,t)
represent the same element of FX if there exists an open neighbourhood W of
x in X such that W< U n V and sIH = tIW' lle write s for the element of F
represented by (U,s).
Elements of F(U) are called sections of F over U, Elements of Fx are
called germs of sections of F at x.

2.4.4 Definition. Let F and G be (pre)sheaves over X. A map of (pre)sheaves
¢: F =+ G is given by homomorphisms

o(U) : F(U) + 6(U)

for all open subsets U = X such that if V < U then the diagram
23



é(U)
F(U) ——— G(U)

restriction restriction

F(V) —— G(V)
¢(V)

commutes. There is then an induced homomorphism

for all x € X. The map ¢ is called an isomorphism if ¢(U) : F(U) - G(U) is
an isomorphism for all open subsets U of X. If F and G are sheaves this is
the case if and only if ¢X:FX -+ Gx is an isomorphism for all x € X.

2.4.5 Definition. Let F be a presheaf over X. The sheaf F* associated to
F is defined as follows. If U is an open subset of X then F¥(u) is the set
of functions f: U » F_ satisfying

&t

i) f(x) € Fx for all x € U; and

ii) if x € U then there is an open neighbourhood W of x in U and there is
some s € F(W) such that f(y) = Sy for all y € W.

F*(U) becomes an abelian group under pointwise addition. The obvious
restriction homomorphisms make F* into a sheaf.

Alternatively if we put an appropriate topology on the disjoint union of
stalks

- L

then we can define F' as the sheaf of sections of m: Y -~ X, where n(sx) =X
if Sy € Fx.
There is a natural map of presheaves

¢: F> F'
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such that if U is open in X and s € F(U) then

¢(U)s : U~ l?% Fy
X

sends x € U to Sy € Fx. This map ¢ is an isomorphism if and only if F is a
sheaf. It has the universal property that any map or presheaves y:F + G
from F to a sheaf G over X factors uniquely as the composition of ¢: F~ Fr
and a map of sheaves o:F + 6.

If ¢: F+ G is a map of sheaves over X the kernel ker ¢ is the sheaf
defined by

ker ¢(U) = ker {¢(U): F(U) ~ G(U)}

with the restriction maps induced by those of F. However the presheaf whose
space of sections over U is

im {o(U): F(U) + G(u)}

is not necessarily a sheaf. Since we are interested in sheaves rather than
presheaves we define im ¢ to be the sheaf associated to this presheaf.

Similarly if F is a subsheaf of G (i.e. F is a sheaf over X such that F(U)
is a subgroup of g(U) for all open subsets U of X and the restriction maps
of F are induced by those of G) then the presheaf

0 s 6V
F{OT

is not necessarily a sheaf. We define the quotient sheaf G/F to be the sheaf
associated to this presheaf.

Suppose that f: X - Y is a continuous map and that F and G are sheaves on
X and Y. We define a sheaf f,F on Y by

£,F(U) = F(£H(U))

for every open subset U of Y. We define f*G to be the sheaf on X associated
to the presheaf H defined as follows. If V is open in X then H(V) is the
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1imit with respect to restriction of the abelian groups G(U) where U runs
over all open subsets of Y containing f(V). If f: X » Y is the inclusion of
a subset X of Y in Y then f*G is called the restriction of G to X.

§2.5 Eech cohomology of sheaves

Let F be a sheaf on a topological space X and let U = {Ui|1 € I} be an
open covering of X.

For each p 2 0 Tlet I(p) be the set of all subsets of I with precisely p+1
elements., If

s . (p)
K = {10,...,1p} €1
let

U, =U. nU. n...nU, .
1 1

Let

cPw,p) = TT F(U
ke1(P)

Then CP(U,F) is an abelian group. An element
o€ cP,F)

is determined by giving elements
o € F(UK)

for each K € I(p).

For each K € I(p) choose an orientation of K, i.e. an ordering of the
elements of K up to even permutations. Define a coboundary map

d: cP(u,F) > P u,F)

as follows. If K = {10""’1p+1} e 1P+ (ot
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(da) p+1

da), = L %o .

K j=0 K {1j]JUK

where the sign * depends on whether or not the orientation chosen for K
coincides with the orientation chosen for K - {ij} with ij placed at the
beginning. Then it is easy to check that

so we can define

v ker d: cP(u,F) > cP*1(¢,F)
2.5.1  HP(u,F) = ~ .
im d: P u,F) > cP(u,F)

An open covering V of X is called a refinement of U if for every V € V

there exists some Uv € U such that V < Uv. Then there is a map

cP(u,F) ~ cPv,F)

induced by the restriction maps of F which commutes with the coboundary maps.
We define

cP(x,F)
to be the direct 1limit of the Cp(U,F) with respect to refinement. That is,
every element of CP(X,F) is represented by an element of Cp(u,F) for some
apen covering U, and elements of cP(u,F) and cP(v,F) represent the same
element of Cp(X,F) if they map to the same element of Cp(w,F) for some
common refinement W of U and V.

The coboundary maps
d: cP(u,F) > P u,F)

induce coboundary maps

d: cPGE) ~ PR,
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v
The pth Cech cohomology group of X with coefficients in F is by definition
the quotient

vo ker d: CP(X,F) » cP*1(x,F)
HP(X,F) = )

im d: SPTOGF) » P(XLF)

In fact if X is triangulable we can always choose an open cover U so that
Vv \)
HP(u,F) = HP(X,F).

This follows from the proof of the following proposition.

P : . * ~u*
2.5.3 Proposition. If X is triangulable then Hsimp(x) = H (X,EX) where EX
is the constant sheaf on X determined by €.

Sketch proof. Consider a triangulation T: |N| + X of X. Let V be the set
of vertices of N. If c €N Tet

¢’ =g - U T
T#0
T face of ¢
be the interior of o, and if v € V Jet
Uv = ] T(c°).
o€EN,VED

Then U = {Uv|v € V} is an open covering of X.

- (p)
If K = {vo,...,vp} ev then

is nonempty and connected if VoseeesVy are the vertices of a p-simplex in N,
and is empty otherwise. Thus the constant sheaf EX satisfies

C if K spans a p-simplex in N,

,(U,) = {

0 otherwise.
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v
So given a Cech cochain a € cp(u,ax), or equivalently given elements
o € 'IX(UK)

for all K € I(p), we can define a simplicial cochain

*

6(a) € (c;(x))

by putting

¢(a)etT = %o ec,(U )=¢
{vo,...,vp} X {vo,...,vp}

if T is the p-simplex with vertices VoreeesV ,and extending linearly. The
sign depends on whether the orientation chosen for t is the same as that
chosen for K = {vo,...,vp}. We thus get an isomorphism

. ~P T *
¢ ¢ Ch(U,Ly) ~ (Cp(X))
which respects the coboundary maps and hence induqes an isomorphism

> HI(X).

Vx
H (U,C T

x)

Since we can refine T to make U arbitrarily fine we get in the 1limit an
isomorphism

*
simp

t

H(X,8,) = KD, (X).

§2.6 Cohomology of sheaves via derived functors

For more details see e.g. Godement [1], Hilton and Stammbach [1], Grothendieck
[1], Cartan and Eilenberg [1].

2.6.1 Definition. A covariant (respectively contravariant) funotor F from
the category Sh(X) of sheaves on X to the category Ab of abelian groups is
a rule which assigns to each sheaf F on X an abelian group F(F) and to each
map of sheaves ¢: F + G over X a homomorphism F(¢): F(F) + F(G) (respectively
F(¢): F(G) ~ F(F)) satisfying
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i) F(1F) = 1F(F) where 1. and 1F(F) are the identity maps on F and F(F);
and

ii) F(do¥) = F(¢)oF(¥) (respectively F(¢oy) = F(¥) o F(4)).

The functor F is additive if in addition

iii) when ¢,y are both maps of sheaves F » G then
F(¢ + v) = F(¢) + F(w)

where the map of sheaves ¢ + y: F + G is defined by
(¢ + W(U)(s) = ¢(U)(s) + w(U)(s)

for all U open in X and s € F(U).

Here + on the right hand side of this equation denotes the abelian
group structure on G(U).

The functor F is exact if in addition
iv) given a short exact sequence

o v
0+F~>G+H~>0

of maps of sheaves over X the sequence

0 -~ F(F) %F(G) —F—% F(H) =0

(or 0 ~F(H) »F(G) »F(F) ~0 in the contravariant case) is an
exact sequence of abelian groups.

Here a sequence

A Sy ey,
c A T A T A T

of maps of sheaves over X is called exact if

im ¢i = ker ¢1+1
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in the sense of sheaves for each i. A short exaxt sequence is an exact
sequence

¢ v
0>F~>G~+H~+0;
in other words we have ker ¢ = 0, im ¢ = ker ¥ and imy = H.
An additive functor F is called left (respectively right) exact if the
sequence of abelian groups obtained from any short exact sequence of sheaves
via F is left (respectively right) exact: that is, we drop the condition that

the second map should be surjective (respectively that the first map should
be injective).

2.6.2 Exercise. The functor I, from Sh(X) to Ab defined by

ry(F) = F(X)

ry(6) = 9(x)
is a left exact additive covariant functor.

2.6.3 Remark. Let F be a sheaf over X and let U be an open subset of X.
The space F(U) of sections of F over U is commonly written in several
different ways, for example

I'(U,F) = rU(F) = F(u).

If s € F(U) is a section of F over U then the support |s| of s is the closure
in U of the subset

{x € U|sX # 0}
where s is the image of s in the stalk F . If [s| is compact then s is

said to have compact support. The space of sections of F over U with compact

support is denoted by
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I‘C(U,F).

2.6.4 Definition. A sheaf I is called injective if the contravariant
functor F: Sh(X) - Ab given by

F(F)
F(y) = composition with ¢

"

{sheaf maps F » I}

is exact. This functor is left exact for any sheaf I, so I is injective if
and only if given

y:F+>G6

with ker ¥ = 0, every sheaf map F + I extends to a map G >~ I such that the
diagram

N

Fe————1
commutes.

2.6.5 Proposition. (Hartshorne [1, Chapter III, 2.3]). If A is a sheaf on
X there is an exact sequence

d 1 d1

0-A-1° 25 ' 1y L

of sheaves such that 19 is injective for all j.

Such an exact sequence is called aninjective resolution of A.

2.6.6 Definition. A complex of sheaves (or sheaf of cochain complexes) A*
is a set of sheaves {A']i €2} and _sheaf maps {q': A" » A1+1|1 € Z} satisfying
d1+1 o d' =0 for all i. If the A' are specified only in some range, e.g.
for i 20, then we set A' = 0 for all other i € Z.
The ith cohomology sheaf 51(A') of the complex A® is the sheaf
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i _ker d°
A = =71 -

im d
The stalk of the sheaf 51(A') at any x € X is the ith cohomology group Hi(A;)
of the stalk complex A; at x.

2.6.7 Definition. Let F be a Teft exact additive covariant functor from
the category Sh(X) of sheaves on X to the category Ab of abelian groups.
Then the ith right derived functor R'F of F is defined as follows. For each
sheaf A choose an injective resolution
0 do 1
0+A->T ——> T -+ ....

of A and apply F to this sequence omitting A to get a complex

F(d)) F(d,)

0+ F(1°%) —2— r(1') — 5 F(72

) > ...

Note that this is a complex since

F(d1._1) ° F(d'i) = F(di-1° d'i) = F(0) = 0.

Let R'F(A) be the ith cohomology sheaf of this complex, i.e.

i ker F(di)
R'F(A) = —
im F(di-1)
where d_, = 0.
It can be shown that R‘F(A) is independent, up to canonical isomorphism,
of the choice of injective resolution. !Moreover R'F is an additive functor

from Sh(X) to Ab, and there is a natural isomorphism

In addition, given a short exact sequence

0+A'>A->A">0
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of sheaves over X there is a natural homomorphism

§': RIF(A") - R1F@Y)

for each i fitting into a long exact sequence
X . . i
2.6.8 ... > RF(A') » RIF(A) » RIF(A") -5 RVTF(AY) » ...

Now we can give our last definition of cohomology.

2.6.9 Definition. If F is a sheaf on X let its ith cohomology group be
defined by

H'(X,F) = R'ry(F).

If X is a sufficiently nice topological space, for example an open subset
of a compact manifold or an open subset of a complex projective variety, and
F is a sufficiently nice sheaf on X, for example a constant sheaf, then
2.6.10  H'(X,F) = H'(X,F)
for all i 2 0 (see e.g. Hartshorne [1, Chapter III, Exercise 4.11]).

2.6.11 Remark. It is easy to check that
v
HOXF) = Ty (F) = F(X) = HO(X,F).

§2.7 Conclusion

If X is an open subset of a complex projective variety we have four different
definitions of the cohomology of X:

X¥. (X) simplicial cohomology
(X)  singular cohomology

v v
H*(X,EX) Cech cohomology
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H*(X,GX) derived functor cohomology

and these are all canonically isomorphic. We shall denote them all simply
by H*(X). If X is a nonsingular projective variety then H*(X) s also

*
canonically isomorphic to the De Rham cohomology HDR(X) of X.

To complete this chapter it is necessary to mention a few important
properties of the cohomology H*(X) of X. First of all H*(X) has a natural
ring structure defined by the cup product

2.7.1 Hx) e W) - ).

The cup product is easiest to describe when X is nonsingular and H*(X) is
identified with the De Rham cohomology HSR(X)' Then an element of H1(X) is
represented by a closed i-form a on X (i.e. an i-form o satisfying do = 0).
Similarly an element of HI(X) is represented by a closed j-form 8 on X. The
cup product of these elements of H'(X) and Hj(X) is the element of H1+J(X)
represented by the (i+j)-form o A B, It is easy to check that this is well-
defined by using the formula

d(e A B) =da A B+ (-1)7 a A dB.

Alternatively we can define the cup product using singular cohomology (see
e.g. Spanier [1, Chap. 5 §6]). This definition makes the singular cohomology
of any topological space into a ring.

The existence of a natural ring structure is one of the properties of
ordinary cohomology which does not carry over to intersection cohomology.
Another such property is the homotopy invariance of ordinary cohomology: if
f: X > Y is a homotopy equivalence between topological spaces then the induced
map

*
sing

2.7.2 5 HY. (Y) > HY. (X)

sing

is an isomorphism (see e.g. Spanier [1, Theorem 4.4.9]). We shall see that
this is not true in general for intersection cohomology, but that intersection
cohomology is a homeomorphism invariant (i.e. if f is a homeomorphism then
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. . . . * N 2
it induces an isomorphism f on intersection cohomology).

A property of cohomology which carries over (though only in special
circumstances) to intersection cohomology is the existence of relative
cohomology.

Again this can be defined in different ways corresponding to the different
definitions of cohomology: let us take singular cohomology. Suppose X is a
topological space and Y is a subset of X. Then the space Si(Y) of singular
i-chains in Y is a subspace of the space Si(X) of singular i-chains in X,
so we can define

5,00
S;06) = 51yy -

1

Then the boundary map 3: Si(X) > 51_1(X) induces a boundary map

a1 S, 0GY) =S, (V).

i-1
We define the ith relative (singular) homology group of the pair (X,Y)
to be
. ker 3: S.(X,Y) »S._,(X,Y)
H§1ng(X,Y) - it i-1
(6,Y) » 5;(X,Y)

im 3: 51.+1

This group fits into a long exact sequence of abelian groups

- ; . sing
2.7.3 oeu > B9 5 HET90X) > HTMOKLY) o M (V) L

(Spanier [1, Chapter 4 §5]). Similarly we can define the ith relative

1 (X,Y) and these fit into a long exact

(singular) cohomology groups Hsing

sequence

i
sing

i
sing

i
sing

i-1
2.7.4 ...~ Hsing(Y) +H (X,Y) - H (X) > H (Y) » oo
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3 The definition of intersection
homology

In this chapter we shall define intersection homology. We shall mainly be
interested in the intersection homology of complex quasi-projective varieties,
though intersection homology can be defined for a much larger class of
topological spaces. For further details see Goresky and lacPherson [1] and
[5], MacPherson [1], Borel [1].

§3.1 Quasi-projective complex varieties

Recall that a complex projective variety X is a subset

cN+1 - {0}

X<P, =
- C - {0}

N
of some complex projective space PN which is defined by the vanishing of

homogeneous polynomial equations.
A quasi-projective complex variety X is a subset of PN of the form

X=Z-Y

where Z and Y are projective subvarieties of PN' That is, there exist

homogeneous polynomials f1,...,fr and 9qseeeslg in N+1 variables such that a

point (xO:...:xN) € Py belongs to X if and only if fj(xo""’xN) =0 for a]I

J such that 1 5 j < r, and gj(xo,...,xN) # 0 for some j such that 1 < j < s.
For example @" can be identified with the quasi-projective variety

with inverse
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X X
1 N
Xy ) > (e ee =)
N Xo ’x0

(xo:..

Using the sare mapping any subset of @N defined by the vanishing of poly-

nomials f1,...,fm of degrees d1""’dm in N variables is identified with the

quasi-projective variety

{(xo....:xN) € Pleo #0, fj(xo”"’xN) =0, 1gjsm
where
d. X X
v J 1 N
?J.(xo,...,xN) = Xo fJ (')g,...,;;).

Any quasi-projective variety X is an open subset of its closure in PN
which is a projective variety.

A point x of X is called nonsingular if there is an open neighbourhood U
of x in PN and homogeneous polynomials f1,...,fm in N+1 variables such that

Xnus= {xo:...:xN) €U | fj(xo"“’xN) =0,15jsm

and the matrix of partial derivatives

f.
0 J

has rank m at x. Otherwise x is called a singular point of X. The set
Xnonsing of nonsingular points of X is a dense open subset of X, and each
connected component is a complex submanifold of PN. The variety X is said
to have pure dimension n if each connected component of X is a complex
manifold of complex dimension n.

X is called <rreducible if it cannot be expressed as the union of two
closed subvarieties Y and Z unless either Y or Z is X itself.

nonsing

3.1.1 Examples. The variety X = {(x:y:z) € P2|yz = 0} is not irreducible.
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The variety X = {(x:y:z) € P2|x3 + y3 = xyz} is irreducible.

Any quasi-projective variety is the union of finitely many irreducible
quasi-projective subvarieties X,,...,X such that X, ¢ Xj if 1 #3j. The
subvarieties X1""’Xk are called the irreducible components of X. It is
easy to check that X has pure dimension n if and only if

(X

) X, - {singular points of Xj}

Jj’nonsing = J
is a complex manifold of dimension n for each j.

A variety of pure dimension one is called a curve. A variety of pure
dimension two is called a surface.

We shall mainly be interested in the intersection homology of quasi-
projective varieties of pure dimension. However the definition can be
extended to a much more general class of topological spaces (see below).

§3.2 Stratifications

What we need to define intersection homology is a suitable stratification.
For quasi-projective varieties we use a Whitney stratification.
Let X be a quasi-projective variety of pure dimension n.

3.2.1 Definition. A Whitney stratification of X is given by a filtration

39



of X by closed subvarieties Xj such that for each j the Tocally closed sub-
variety

X. = X,

37 X

is either empty or is a nonsingular quasi-projective variety of pure dimension
J. The connected components Sa of the subvarieties X. - Xj-1 are called the
strata of the stratification and are required to satisfy Whitney's conditions
(a) and (b) (Whitney [1]).

Whitney's condition (a). If a sequence of points a; € Sa tends to a point
c € SB then the tangent space Tcss to ¢ at S_ is contained in the 1imit of

the tangent spaces Ta.Sa, provided that this 1imit exists.
i

Whitney's condition (b). If a sequence of points b, € SB and a; € Su both
tend to the same point ¢ € S_ then the 1imit of the 1ines joining a; to bi
is contained in the 1imit of the tangent spaces to Sa at ai,.provided that
both 1imits exist.

Roughly speaking, the-object of these conditions is to ensure that the
normal structure to each stratum S_ is constant along S_. They imply that
for any points x and y on SB there is a homeomorphism of X to itself which
preserves all the strata and takes x to y (this follows from 3.3.2 below).

3.2.2 Example Consider the quasi-projective variety

X = {(x,y,z) € ¢3 | x4 + y4 = xyz}.

40



Let X2 =X, let X1 be the z-axis and let Xo be empty. This defines a
stratification of X with two strata

and S, = X

S =X Ky g = Xy

both nonsingular. This stratification fails Whitney's condition (b).
Consider sequences of points a; and bi in S, and SB chosen as in the diagram

below so that the a, are converging to ¢ much faster than the bi are. Then

the lines joining a; to bi will tend to the vertical line through c, while
the tangent spaces Ta Sa tend to the horizontal plane through c.
i

To obtain a Whitney stratification we must take c € Xo‘ If X2 and X1 are
defined as before and X = {c} then we have a llhitney stratification of X.

3.2.3 Theorem. (Whitney [1, Theorem 19.2]). Any quasi-projective variety
X of pure dimension n has a Whitney stratification.
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We shall define the intersection homology of X using a fixed Whitney
stratification.

§3.3 Topological pseudomanifolds

In fact in order for intersection homology to be defined it suffices that
X be a topological pseudomanifold.

If L is a compact Hausdorff topological space then the open cone C(L) on
L is the result of identifying the subset L x {0} of L x [0,1) to a single
point (called the vertex of the cone).

3.3.1 Definition. An m-dimensional topological stratification of a para-
compact Hausdorff topological space Y is given by a filtration

Y=Y oY >...>2 Y1 oY

m= m-1= o]

of Y by closed subsets Yj such that if x € Yj - Yj-1 there exist a neighbour-
hood N of x in Y, a compact Hausdorff space L with an (m-j-1)-dimensional
topological stratification

L=L_ . 42..2 L1 > L0

and a homeomorphism
o: N~ R xc(L),

where C(L) is the open cone on L, such that ¢ takes Nx ny homeomorphically

onto

J+i+l

R > (L) e R x o)
form-j-121i20, and ¢ takes Nx n Yj homeomorphically onto
RS x {vertex of c(L)}.

This is an inductive definition. When m = 0 we require that Y should be a
countable set with the discrete topology.
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Y is called a topological pseudomanifold of dimension m if it has such a
filtration satisfying

and Y - Y _, is dense in Y,
Any manifold Y is a topological pseudomanifold with filtration

Yo@o...20.
3.3.2 Theorem. (Borel [1, IV §2]). Any Whitney stratification

X = Xn 2 Xn—1 2...2X,
of a complex quasi-projective variety X of pure dimension n makes X into a
topological pseudomanifold of dimension 2n with filtration

Y oY

a2V 2027,

defined by

Y2j = Y2j+1 = Xj.

For the first definition of intersection homology which we shall give we
actually need X to be more than a topological pseudomanifold with filtration
Yj as above., We also require X to have a triangulation which is compatible
with the filtration (i.e, each Yj is a union of simplices).

3.3.3 Theorem. (Lojasiewicz [1], [2], Goresky [1]). Let

be a Whitney stratification of a complex quasi-projective variety X of pure
dimension n. Then there is a triangulation of X compatible with the
stratification.
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§3.4 Intersection chains and perversities

Now let us assume that X is a complex quasi-projective variety with a fixed
Whitney stratification

X = Xn > Xn_,| 2...2 Xo.

Let T: |N| - X be a triangulation of X compatible with the stratification.
Recall that CI(X) is the space of all (finite) simplicial i-chains of X with
respect to T, and CI((X)) is the space of all locally finite simplicial
i-chains of X with respect to T.

3.4.1 Definition. The support |&| of a simplicial i-chain

€= iy &, 0
c€N(1) o

is given by

lg] = U T(o).

g0

We are going to define subspaces ICE(X) and ICI(X)) of CI(X) and CI(X))
whose elements will be those i-chains g such that the intersection of |£]
and Xj is "not too big" for each j. To make "not too big" precise we need
the concept of a perversity.

3.4.2 Definition. A perversity is a finite sequence
B = (PZ,P3,---,PN)
of integers satisfying Py = 0 and Pral = P OF Pryq = P * 1 for all k 2 2.

Examples. The zero perversity § = (0,0,...,0).
The top perversity t = (0,1,2,3,...,N-2).

If p is a perversity, the complementary perversity is
E - 5 = (091-p13 2'P2,3'p3 ..-)
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Let us fix a perversity p = (PgsPgseeesPpy)e

3.4.3 Definition. Let IC?’T(X) be the subspace of C1(X) consisting of all
those i-chains £ € CE(X) such that

dimg lg]"n Xok S 1 - 2k +pyy
and
dimp [3€[ N Xpog S 1= 2k +py -1

for all k_2 1. Note that by convention the empty set has dimension - .
pefine 1¢P27(x)) similarly.

3.4.4 Remark. 2k appears in these inequalities because it is the real

codimension of Xn—k in X. In the more general case of a piecewise 1inear
pseudomanifold Y one requires

dimp |€|nYm_k§i-k+pk
and
dimg |3£|nYm_k§i-k+pk-1.

For complex varieties it is only the Pok terms which matter, so we could
define a perversity for our purposes to be a sequence

P = (PpsPgsPgsensPpy)

satisfying Py = 0 and Poks2 = Poke p2k+1 or p2k+2.
In particular for complex varieties we can consider the middle perversity m
given by

Moy = k - 1.

It does not matter what m is when k is odd. The middle perversity is
special because it is its own complementary perversity.
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3.4.5 Remark. Since the triangulation T is compatible with the stratification,
the intersection |£| n Xk
defined (real) dimension. This would not be the case if we worked with

is a union of simplices and hence has a well-

singular chains instead of simplicial ones. However there are alternatives
to simplicial chains which do work, such as semi-analytic chains (see e.g.
fardt [1]).

It is easy to check that if T is a refinement of the triangulation T then
the induced map

el - cli)
sends a chain g € C; ((X)) to a chain with the same support as £. Hence it
~estricts to maps

1¢B-T((x)) » 162 T((x))
ind
ICE’T(X) > IC?’f(X).

3.4.6 Definition. The space ICp(X) of (f1n1te) piecewise linear intersection
i-chains is the direct Timit of the ICp T( X) over_all triangulations T of X
:ompatible with the stratification. The space ICp((X)) of locally finite
yiecewise linear intersection i-chains is defined similarly.

Thus a piecewise linear intersection i-chain is represented by an elenent
f IC?’T(X) for some T, and

ne1c?T(x) and geIc PaT T(x)

epresent the same element of IC?(X) if and only if there is a common
efinement T of T and T, compatible with the stratification, such that n and
; induce the same element of

5T

IC?’ (X).

It is easy to check from the definition and the fact that 32 = 0 that the



boundary maps
3 C,((X)) > €, _ (X))
induce boundary maps from IC?((X)) to IC?_1((X)) and from IC?(X) to IC1_1(X).

3.4.7 Definition. The ith intersection homology group of X with perversity
p is

- ker 3: IC?(X) - 1cP

(x)
IHR(X) = i-1

. 1eP L 1cP
im 32 ICY,, (X) » IC3(X)

IH?’T(X) and the intersection cohomology groups IH;(X) and IH] T(X) are

defined similariy. In fact as for ordinary simplicial homology we have

><
~
n

IH?(X)

for any triangulation T : |N| - X compatible with the stratification.

Of course a priori IH?(X) depends on the choice of stratification of X.
We shall see later that in fact it is independent of this choice (Goresky and
MacPherson [5, §4]).

The middle perversity

m=(0,0,1,1,2,2,...,n-1)

will be the most important for us so let us put

m m
3.4.8 IHi(X) = IHi(X), 1c1(x) = ICi(X).

etc.

3.4.9 Remark. We can also define intersection homology groups with closed
support by using locally finite intersection chains:

ker 3: IC,((X)) » IC,_,((X))
(X)) ~ 1C,((x))

THEA(X) = -
im 3: IC1.+1
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The definitions of intersection homology given in the Titerature are
inconsistent, and often the groups IC?E(X) are called the intersection
homology groups of X instead of the groups IHi(X).defined at 3.4.7. This is
because the groups IH?l(X) fit better with the sheaf-theoretic approach to
intersection homology (see Chapter 5) although the groups IHi(X) fit better
with classical homology theory. Of course when X is compact there is a
natural identification

IH. (X) = IH?E(X)
so it does not matter which definition is used.

§3.5 Simple examples of intersection homology

If X is nonsingular then THR(X) = H,(X) for any perversity p.
Suppose X is a quasi-projective variety of pure dimension n with one
isolated singularity x, so that X - {x} is nonsingular. Define a filtration

by Xj = {x} if 0 £ j < n, This gives a Whitney stratification of X. We
have

3.5.1 Proposition.

IH_i(X) = H].(X) if i>n,
Im (Hi(X-{x}) > Hi(X)) if i =n,
Hi(X-{x}) if 1 <n.
Proof.
IC;(X) = (g € C.(X) | dim |g] n {x} si-n-1,

dim [3g] n {x} s i - n - 2}.

Hence if i < n then
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IC,(X) = IC.(X-{x}) = C,(X-{x}),

whereas if i 2 n + 2 then

ICi(X) Ci(X).

n

Hence IHi(X)
Moreover

Hi(X-{x}) if i<n-1and IHi(X) = Hi(X) ifizn+ 2,

ker (5: ICn+1(X) - ICn(X)) = ker (5: C_ ., (X) Cn(X))

n+1

0!

IHn+1(X) = Hn+1(X).
Finally

B(I1C,,, (X)) = (5C (X)) n I (X)
and

IC, (X) = C (X-{x})
$0

n

IHn(X) = im(Hn(X-{x}) + Hn(x)).

As specific examples consider the curves

>
i

1 = {xy,2) €P, |yz = 0}
and

Xy = {(x,y,2) €P, %3 + v’ = xyzh .



N X

We have

><
>=<

3.5.2 IH (X)) =CacC, IHo(Xz) =,
IH1(X1) =0, IH1(X2) =0,
(X)) =t 8¢, IH,(X,) = C.

§3.6 Normalisations

Let Y be a topological pseudomanifold with filtration

Then Y is called (topologically) normal if every y € Y has an open neighbour-
hood U in Y such that U - Y__, is connected. Any manifold is normal.

3.6.1 Remark. A quasi-projective complex variety X is called normal if

the stalk at x of the sheaf of regular functions on X is an integrally closed
ring for every x € X. It can be shown using Zariski's Main Theorem (Harts-
horne [1, V Thm. 5.2]) that if a quasi-projective complex variety X is

normal in the algebraic sense then it is topologically normal.

3.6.2 Proposition. (Goresky and lacPherson [1, 4.3]). Let X be a quasi-
projective complex variety of pure dimension n. If X is (topologically)
normal then there are canonical isomorphisms
tyy -
IHi(X) = Hi(X)

and
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) = W0,

where t = (0,1,2,...,2n-2) is the top perversity and

0 =(0,0,...,0) is the zero perversity.

Any quasi-projective variety X has a normalisation r: X + X. Here X is a
normal quasi-projective variety and ¢ is a finite-to-one surjective holo-
morphic map with a suitable universal property. m restricts to an isomorphism

over the nonsingular part X of X.

nonsing

3.6.3 Proposition. (Goresky and MacPerson [1, 4.2]). If m: XX is a
normalisation of X then there is a natural isomorphism

IH?(X) IH?(X)

n

for any perversity p.
The normatlisation X of a curve X is always non-singular (Hartshorne III
Ex. 5.8), and hence by §3.5 and” 3.6.3 we have

n

3.6.4 IHE’(X) H. (X)

1

for every perversity p. However this fails in general for higher-dimensional
varieties.

3.6.5 Examples. Consider the curves

X1 = {(x,y,2) EPZ |yZ = 0}

and

>
]

2 {(x,y,2) €P, |x3 + y3 = xyz}

again. The normalisation of X is the disjoint union of two copies of P1
and the normalisation of X2 is P1.
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This fits with 3.5.2 and 3.6.4.

§3.7 Relative intersection homology

Suppose that U < X is an open subset of a quasi-projective variety X. MWe
can restrict the chosen Whitney stratification of X to U. Then any piecewise
linear intersection i-chain

£E€ ICi(U)

can be regarded as an element of ICI(X) for a suitable triangulation T of X
(depending on £). Hence we get an inclusion

IC,(U) » IC,(X)
which commutes with the boundary maps. Thus there is a natural map
IH, (U) > IH,(X).

toreover there is an induced complex

IC (X)

IC (X,U) =
: Ic_(U)

The ith relative intersection homology group of the pair (X,U) is

ker a: IC,(X,U) » IC._,(X,U)

3.7.1 TH(X,U) = -
im 3: ICi+1(X,U) -> ICi(X,U)

Just as for ordinary homology there is a long exact sequence
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3.7.2 .ou > TH(U) > TH,(X) o TH.(X,U) > TH, (V) > ...
(Goresky and MacPherson [4, 1.3]).

3.7.3 MWarning. The ordinary relative homology groups Hi(X,A) are defined
for any subset A of X, but this fails for intersection homology.

§3.8 Intersection homology is not a homotopy invariant

Like ordinary homology, intersection homology will turn out to be a topo-
logical invariant. In other words any homeomorphism f: X > Y will induce an
isomorphism

£ TH(X) > TH(Y).

However in contrast to ordinary homology, an arbitrary continuous map
f: X » Y does nat in general induce a homomorphism f,:IH,(X) > IH(Y).
Moreover intersection homology is not a homotopy invariant. That is, the
existence of a homotopy equivalence between X and Y does not necessarily
imply that IH.(X) and IH,(Y) are isomorphic. This can be seen by doing a
local calculation. For any gquasi-projective variety X and any x € X we shall
give a description of the intersection homology of a neighbourhood of x in X
which is contractible (i.e. homotopy equivalent to a point). It will be
clear that in general this intersection homology is not the same as the
intersection homology of a point.

For any x € Xj - XJ._1 we know that there is a compact pseudomanifold Lx
(called the Zink of Xj - XJ._1 at x) and a neighbourhood N of x in X which
is homeomorphic in a stratification-preserving way to the product

o« ()
of ¢j and the cone
C(L) = (L, x [0,1))/L x {0}

(see §3.3). We can take N, to be the intersection of X € Py with any small
ball centre x in PN,‘and LX to be the intersection of X with a small sphere

53



centre x in a submanifold of PN which meets Xj transversely at x (Borel [1,
1v §2]).

3.8.1 Proposition. (Goresky and MacPherson [5, 2.41).

(a) IH;N) = {0 ifizn-j,
IHi(Lx) if i<n-j.

(b)  IH(X,X-&}) = -IHi_Zj_1(LX) ifis>n+j,
0 ifisn+].

Sketch proof. One needs special cases of the excision theorem and the
Klnneth theorem (Goresky and [tacPherson [4, 1.5 and 1.6]).

3.8.2 Excision theorem. IHi(X,X-{x}) =z IHi(Nx’Nx - {x}).
3.8.3 Kinneth theorem. IH.(¢3 C(L,)) = Hy(C(L,))  and

J 3
IH, (¥ x C(Lx), €Y x C(Lx) - {(0,v)})

n

I p5(CL), C(L) = (v)

where v is the vertex of the cone C(LX).

The proofs are easy adaptations of the proofs in the case of ordinary
homology (Spanier [1, Corollary 4.6.5 and Theorem 5.3.10]).

Then one has

= J .
IH(N) = THL (87 > C(L,)) = IHL(C(L,))

and

n

IHi(x’x'{x}) IHi(NX’NX-{X})

J J
1H1(¢ x C(Lx), ¢ x C(Lx) - {(0,v)})

n

IHo5(CL )LL) - VD).
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Suppose i s n - jand £ € ICi(C(Lx)).
Then

dim |[g] n (v} si - (n-§) -1<0

sov £ |g]. Hence

1;(C(L,), ClLy) - (v]) = 0

when i s n - j. On the other hand if i 2 n - j and £ € ICi(C(Lx)) then one

can form an intersection i+1-chain c(g) € IC. (C(Lx))’ the "cone on g",

i+l
such that g is the boundary of c(g). Hence
IHi(C(Lx)) =0
if i 2n - J. We have shown that if i s n - j then
I (C(L ), C(L) - (v}) =0
and so by the long exact sequence 3.7.2 if i < n - j then

IHi(c(Lx)) z IHi(c(Lx) - {v}).

But

n

IHi(c(Lx) - {v}) IHi(Lx x (0,1))

n

IHi(Lx)

by the Klnneth theorem. Finally because IHi(c(Lx)) =0 for i2n-J the
long exact sequence 3.7.2 shows that

M (C(L), C(L) = () = H,_,(C(L) - ()
= IH]-_1(LX)

when i > n - j. The proof of the proposition follows from combining these

55



results.

§3.9 Intersection homology with local coefficients

Let X be any topological space.

3.9.1 Definition. A (complex) Zocal coefficient system L on X is given by
data consisting of a finite dimensional complex vector space Lx for each
x € X and an isomorphism

*

¢ L e
for any continuous path ¢: [0,1] = X in X, satisfying
(i) ¢* = w* when ¢ and ¢ are homotopic relative to fixed end points, and
(1) (¢.9)* = ¢" o 6™ if ¢(1) = y(0) and ¢-y is the composite path from
¢(0) to w(1).

3.9.2 Remark. Equivalently (if X is connected) L is given by a sheaf on X
which is Tocally isomorphic to a constant sheaf defined by a finite
dimensional vector space, or a representation of the fundamental group n1(X)
on a finite dimensional vector space, or alternatively by a complex vector
bundle on X with a flat connection.

We define a flat section of L to be a map

g: X » %@* Lx

such that g(x) € Lx for all x € X, and if ¢ is a path from x to y in X then

0" (g(x)) = gly).

The restriction of L to any simply connected subset Y of X is trivial,
in the sense that the isomorphism ¢* : Lx > Ly induced by a path ¢ from x
to y in Y is independent of the choice of path. In particular if T: [N] » X
is a triangulation the restriction of L to any i-simplex T(o) where ¢ € N(1)
is trivial, so if L0 is the space of all flat sections of L over T(g) then
the restriction maps
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are isomorphisms for all x € T(g). loreover if o is a face of g and x € p
then the composition

o,

0: g . ~
s (px o F gL

is independent of x. Let CE(X,L) be the vector space consisting of all
formal expressions of the form

£ UEN(i) 10 ’

with L € LU and only finitely many lo nonzero. Define

AT T
3 1 CL(KL) » €], (6,0)
by
a(€) = Loy £ (35
a€N(]), g faceof g 9 9

where the sign * is defined as before depending on a fixed choice of
orientations,

Taking direct Timits over triangulations we get the space of simplicial
i-chains with coefficients in L

C;(X,L).

The ith homology group of X with coefficients in L is by definition the
quotient

ker 3: Ci(X,L) > Ci_1(X,L)

3.9.3 H].(X,L) = -
im 3: Ci+1(X,L) - Ci(X,L)

Now suppose that X is a quasi-projective variety with a fixed Whitney
stratification
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X=X 2X_12..2 L
To make this procedure work for intersection homology we only need the
local coefficient system L to be defined on the nonsingular open subset
X - X _qof X, not on X itself. This is because the allowability conditions
on intersection i-chains £ mean that if ¢ € N(1) and the coefficient of £
indexed by ¢ is non-zero then

o =X X
and

~0

o =X - X

for any face g € N(]'1) of g. Thus we can use this procedure to define the

intersection homology groups IHi(X,L) of X with coefficients in L for any
local coefficient system L on X - Xn-1'

§3.10 Generalised Poincaré duality.

One of the reasons that the middle perversity is particularly important is
the generalised Poincaré duality theorem for intersection homology.

3.10.1 Generalised Poincaré duality., (Goresky and MacPherson [1, §3.3]).
Suppose that X is a projective variety of pure dimension n. Then if p and q
are complementary perversities and i+j = 2n there is a nondegenerate pairing

IH‘i’(x) 8 IH‘J?(x) - L.

Taking p = q = m we get a nondegenerate pairing

IHi(X) 8 IHj(X) - C.
More precisely any a € IHi(X) and b € IH.(X) can be represented by
£ €1C,(X) and n € ICj(X) such that the supports |g| and |n| meet only in
X-Xn_1 (which is nonsingular) and they meet in finitely many points. The

number of these points counted with appropriate weights depending on the
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coefficients of the chains & and n is a complex number which is independent
of the choice of £ and nj and is denoted a n b, Moreover if a # 0 there

exists some b such that a nb # 0.
Poincaré duality for IH,(X) can be interpreted as the statement that
there is a natural isomorphism

L())* = eT(x)

3.10.2  TH(X) = (IH, .

for all i. Thus it is equivalent to the existence of a natural nondegenerate
pairing between intersection cohomology groups

3.10.3 IH' () 8 " (x) > €.

In fact if X is normal then for any i and j there are natural intersection

pairings

3,10.4 IHi(X) 8 IHj(X) > Hi+j-2n(x)

and

3.10.5  TH(X) @ 1 (X) » H (x)

2n-i-j

(Goresky and MacPherson [1, §2.3]). However we cannot replace the homology
groups on the right hand side by intersection homology or cohomology groups.
There is no natural ring structure on IH*(X).

3,10.6 Remark. If X is topologically normal (see §3.6) then

in

t
IHi(X) H, (X)

and

IH?(X) K21 (x)

n

and generalised Poincaré duality between IHE(X) and IH2(X) becomes the
ordinary duality

Hi(X) 8 Hix) - €.
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3.10.7 Definition., The intersection cohomology of X with compact supports
is defined as

I (X) = 1im IH (X, X-K).
c >
KX, K compact

It is the cohomology theory corresponding to intersection homology with
closed supports (see 3.4.9). That is, there are natural isomorphisms

I (X) = (IHSHOO)*
for all i, Of course when X is compact itself then
IHS(X) = TH'(X).

Poincaré duality can be generalised from the case when X is compact (i.e.
projective) to the case when X is any quasi-projective complex variety by
using intersection cohomology with compact supports.

3.10.8 (Poincaré duality). If X is a quasi-projective complex variety of
dimension n then there is a natural perfect pairing

Hi(x) e IHEn—i(X) >
for al1 0 £ i < 2n (Goresky and MacPherson [5, §5.3], Borel [1,1 4.3]).

3.10.9 Remark. We noted in §1.1 that the cohomology of a nonsingular
complex projective variety satisfies

(i)  Hodge decomposition,

(ii) Poincaré duality,

(ii1) Lefschetz hyperplane theorem,
(iv) Hard Lefschetz theorem,

(v) Hodge signature theorem.

The intersection cohomology (with respect to the middle perversity) of a
singular complex projective variety is believed to have the same five
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properties. There is not yet a published proof of (i) or (v), though see
Saito [1] and [2]. However the diligent reader may find proofs of (ii),
(iii), (iv) in Goresky and MacPherson [1], [4], [5] and Beilinson, Bernstein
and Deligne [1].
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4 L*-cohomology and
intersection cohomology

Recall from §1.2 that the Lz-cohomo]ogy of a projective variety X E,Pn is
defined by

{w el (x-2) | do = 0}
el (x-r)|3 e LT (x-L), dg = n}

i
H(Z)(X) =

where I is the set of singular points of X and

LVx-5) = {w € AV (x-1)| J w2 <o}
>

is the space of square-integrable differential i-forms on X-L. Here the
norm ||w|| of w is defined using the restriction to X-I of the standard
Kdhler metric (the Fubini-Study metric) on Pn.

When the singularities of X are particularly simple it is possible to
show that

* *

H(z)(X) = IH (X)
by doing a local calculation for L2-cohomology and comparing it with the
local calculation (3.8.1) for intersection cohomology. It is conjectured
that such an isomorphism holds in general. (For further details see Cheeger

[11, [2] and [3] and Cheeger, Goresky and MacPherson [1].)

§4.1 Isolated conical singularities

4.1.1 Definition. Two Riemannian metrics g and h on a manifold Y are
called quasi-isometric if there exists a positive constant K such that at
every point y of Y the inner products gy and hy on the tangent space TyY
satisfy the inequalities:

-1

K sh sKg.
9y =y = R 9y
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The norms defined by the metrics g and h then satisfy corresponding
inequalities at each point. In particular if w is a differential i-form on
Y then w is square-integrable in the sense that

2
[ lan? <o
Y

with respect to the norm defined by the metric g, if and only if w is square-
integrable with respect to the norm defined by the metric h, Thus the L2-
cohomology groups of Y defined using two quasi-isometric metrics are the same.

4.1,2 Definition, If Y is a compact manifold with Riemannian metric 9y let
C*(Y) be the punctured cone

C*(Y) = c(Y) - {vertex} = (0,1) x Y
with Riemannian metric
2
g=dt 8dt +t ﬂ*gY
where t is the standard coordinate on the open interval (0,1) and m:(0,1) X
Y > Y is the projection. (Recall that the cone C(Y) is obtained from the
product [0,1) x Y by identifying the points of {0} x Y to give a single
point which is the vertex of the cone).
Note that any differential i-form £ on C*(Y) can be written uniquely as

41,3 E£=n+dt acg

where n and ¢ are differential forms which do not involve dt. In other
words with respect to (real) local coordinates (y1,...,ym) on Y we can
write

4.1.4 (t,)=z n (t,y) dy*
i a€l(i) e

where I(i) is the set of all multi-indices a = (a1,...,ai) such that

1s o, < . .. < oy < m, where
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o [v )]
dy* =dy A ... A dy |

and where s is a smooth function on (0,1) x Y. Similarly

4.1.5 g(t,y) = ) g (t,y) dy®.

o€I(i-1) o
Thus for fixed t € (0,1) we can regard n(t,y) and z(t,y) as defining
differential forms on Y. The Riemannian metric on C*(Y) is defined in such
a way that the norm of £ is given by

-2(i-1)

2 =2i 2 2
41,6 e(ty)]]© =t Inlty)||y + ¢t Izl y

where || ||y is the norm induced by the metric g, on Y. The factor 21
occurs because n(t,y) lies in the ith exterior power of the dual of the
tangent space to C*(Y) at the point (t,y).

4.1.7 Definition. Let X < Pn be a quasi-projective variety with isolated
singularities. Let

L= {x1,...,xq}

be the set of singular points of X. We say that X has Zsolated conical
singularities if there exist compact Riemannian manifolds Y1,...,Y and
disjoint open neighbourhoods U1,...,U of x1,...,xq in X such that UJ is
homeomorphic to the cone C(Y. ) and U {x } is quasi-isometric to the
punctured cone C (Y.) for 1 ¢ q. Here U.-{x,} is given the restriction
of the Fubini-Study metric on Pn and C*(Yj) is given the metric defined at
4.1.2,

§4,2 The Lz-cohomology of a punctured cone

In order to find the L2-cohomology of a variety with isolated conical
singularities we first need to calculate the Lz-cohomo]ogy of a punctured
cone C*(Y) in terms of the cohomology of the compact Riemannian manifold Y.

4.2.1 Proposition. (Cheeger [2]). Let Y be a compact Riemannian manifold
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of dimension m and let C*(Y) be the punctured cone on Y with the metric
defined at 4.1.2. Then

sz)(c*(v)) . { Hiy) if i< /2,
0 if 4> m/o2.

4,2.2 Remark. Note that the L2-cohomo1ogy of Y is the same as its De Rha
cohomology (since Y is compact) and hence there is a natural isomorphism

i i
Higy(Y) = H'(Y).

Sketch proof of Proposition 4.2.1. As in §4.1 let
*
e C(Y) = (0,1) x Y > Y

be the projection. If y € A1(Y) 1s a differential i-form on Y then with
respect to local coordinates (y1,...,ym) we can write

wly) = ¢ w (y) dy* .
a€I(i) @

The i-form m w on C*(Y) is then defined in local coordinates (t,y1,...,ym)

by the same formula
rult,y) = L w (y) dy®.
ael(i) o

By 4.1.6 we have

2 2

It 12 = 72 )] 2.

Moreover the volume form on C*(Y) at a point (t,y) differs from the volume
form on Y at y by a factor of t™ so

1 .
Joregy Il = [ [, % lal® "
LY

Since Y is compact it follows that ﬂ*m is square integrable if and only if

w=0or

m
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1 o
J &M 21dt <o .
0

Therefore if m - 2i > - 1 or equivalently
ism/2
then 7* restricts to a map
2 > L ern)
which commutes with d and hence induces a natural map
*

Lyl oyl i *
4.2.3 1" D HUY) = Hipy(Y) » sz)(c (Y)).

We shall show that this map is an isomorphism for all i < m/2.
Given a differential i-form £ on C*(Y) write

E=n+dt Ag

as at 4.1.3. There is an i-form 3n/at on C*(Y) defined in local coordinates
(yyseeesyy) by

]
Wty = 1 T8 (ry) @y
3 w€l(i) °

in the notation of 4.1.4. Similarly there is an (i-1)-form 3z/3t given by

ag
% (ty) = L S (t,y) dy®.
at «€1(i-1) St
We can define

dy 1 ATCT(Y) > AT ()

in local coordinates (y1,...,ym) by
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an
dye(t,y) = ) ! =% (t,y) dy, A dy®
Y 1<jsm o€I(3) j J

14
) ) =2 (t,y) dy; A dt 4 dy®.

15jsm a€I(i-1) 9Yj

Then
dYE = dYn - dt A dYg,

and

n

an
dg = dyE + dt A 30

dyn + dt A <§% - dyz).
Now fix s € (0,1) and define
He AT(C*(Y)) > AT (C* (1))

in local coordinates (y1,...,ym) by
t

(HE)(toy) = & (
£)(t,y “_1)j

. ¢ (tay)dr)dy®,
a€l o

S

where £ = n + dt A ¢ as before. He shall write this more conveniently as

t
HE = J T
s

Then

= 2
dHg = dY J g +dt A 5T J T

Also
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_ an _
HdE = H(dyn + dt A (at dyz))
t
_ an _
= J (ﬁ dYC)
s
t
0=l - [
s
where n(s) € A1(Y) 1s given in local coordinates (t,y1,...,ym) by

Ny = E n(say) oy
a€I(i) @

Thus

4,2.4 dHE + HdE =dt AT + 7 - n*(n(S))

)y,

£-1(n
Now if £ is a square-integrable i-form then

1 .
2 =21, (t) ;2
= t
ler® = ] [ Bt

» 72(-1) ";(t)||$) t™ dt

JC*(Y)

is finite. Since HE is an (i-1)-form

1 . t
2 -2(i-1) (1), 42 ,m
Hel' = = t .
IC*(Y) [|Hg | [n JY t |le z dT"y dt

Using the Cauchy-Schwarz inequality and reversing the order of integration
we find that if i < m/2 then

1 . t
2 m-2i+2| ( (1), 2
HE < J t [4 dt|dt
Jowgyy M s [ a2 et o

s T . 1 2 1 o
= J J ||§(T)||$ J tm-21+2 dt dr + J j "C(T)HY J tl‘l'l 2i+2 dtdt
0’y 0 s /Y T
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< { ( JS [Y It (T)||$ m-21+3 dr

m-2i+3 0
1
(1) )
+
J o], 1 e
-m+2i-2
sy [ jlel? < e
m-2i+3 C*(Y)

Hence Hg is square-integrable.

We have shown that if £ is a square-integrable i-form on C*(Y) and i s m/2
then HE is square-integrable and

4,2,5 £ = dHE + Hdg + n*(n(s)).
Therefore if dg = 0 then

£ edlN e + o))

SO
* . i i *
: H (Y) d H(Z)(C (Y))

is surjective for i s m/2. loreover since d2 = 0 we have by 4.2.5

de = d(Hdg) + dr*(n(S))

d(Hdg) + n*(dn(s)).

It comes straight from the def1n1t1on of H that Hdg = 0 if dg € *wh)),
and hence it follows easily that m* : H (Y) - H(z)(c (Y)) is injective for
igsm/2.

It remains to show that H(z)(C (Y)) =0 for i > m/2. The Cauchy-Schwarz
inequality tells us that if ¢ is a square-integrable i-form on C *(Y) and
0<a<b< 1 then
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b
(] jete2 e

a’y
< ( I; JY "2 (8 $dt) (J: JY (2i-m dt)
o1, ) ).

1
Therefore the integral J J ||¢(t)||Y dt exists if i 2 m/2, and so for
0/Y

almost all y € Y the integral

t t
J 6 = J ¢(T) dr
0 0

exists for all t € (0,1). The idea is now that if £ = n + dt A ¢ is a square-

integrable i-form and i-1 2 m/2 then we define

The argument used above can be easily modified to show that Hog is square-
integrable and that

£ = di’% + Hode.

In particular if dg = 0 then g = dHOg

From this it can be deduced that H(z)(C (Y)) = 0 when i-1 2 m/2, though

technical difficulties arise because H° £ is not necessarily differentiable.
The only case we have not yet covered is when m is odd and i = (m+1)/2.

This case is more delicate but it can be shown sz)(C*(Y)) = 0 in this case

also (see Cheeger [2]).

§4.3 The natural map sz)(X) > IH*(X).
Let X be a projective variety, and let g be a square-integrable differential
i-form on

Xoonsing = X = 2
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such that dg is also square-integrable. Then one can show that for almost
all intersection chains ¢ € ICi(X) the integral

j g
13
exists and Stokes' theorem

ool
£ 9g

is satisfied, (Mote that the support of an intersection chain g € ICi(X) is
never contained in the singular set ¢ where g is not defined: it meets ¢ in
a subset of dimension at most i-2). In this way integration can be used to
define a natural pairing

i
4.3.1 H(z)(x) 8 IHi(X) )
or equivalently a natural map

i * _ o
4.3.2 H(Z)(X) > (IHi(X)) = IH (X).
When X 1is nonsingular this map is the De Rham isomorphism

i i
HDR(X) » H (X)

(Griffiths and Harris [1, p. 44]).
MNow suppose that X is a projective variety with isolated conical

singularities, and let n dimﬁx.

4,3.3 Lemma. Every x € X has arbitrarily small open neighbourhoods U in X
such that the natural maps

* *
H(z)(U) + IH (V)
are isomorphisms,

Proof. It is easy to check that if x € X is a nonsingular point of X then x
Al



has arbitrarily small open neighbourhoods U in

X X-3z

nonsing -
which are quasi-isometric to cones on a sphere., A simpler version of the
argument used to prove 4.2.1 shows that the Lz-cohomology of such a neigh-
bourhood is trivial, i.e.

sz)(U) = { ¢ ifi=0,

0 otherwise.

On the other hand

-

miw) = 1)

{ ¢ ifi=0,

n

0 otherwise,

since U is nonsingular and contractible, It is clear from the definition of
4.3,1 that the natural map

HZZ)(U) » ()

is nonzero when i = 0 and hence is an isomorphism for all i z 0.

Now suppose x is a singular point of X. Then since X has isolated conical
singularities there is a compact Riemannian manifold Y and an open neighbour-
hood U of x in X such that U is homeomorphic to the cone C(Y) and U-{x} is
quasi-isometric to the punctured cone C*(Y). It is easy to see that U may
be chosen arbitrarily small. Then by 4.2.1 since the real dimension of Y is
2n-1 we have

4.3.4 sz)(u) = Hi(Y) if ign-1,

0 if i

v

n.

On the other hand since U has a single isolated singularity at x it follows
from 3.5.1 that
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IHi(U) = Hi(U-{x}) ifign-1,
Im(Hi(U-{x}) > Hi(U)') if i =n,

H].(U) ifizn+ 1,
toreover since U is contractible we have
H].(U) =0
if 1 2 1, and since U-{x} is homeomorphic to C*(Y) = (0,1) x Y we have
Hy(U=1x}) = Hi((0,1) x Y) = H(Y)
for all i. Thus

4.3.5 IH;(U) = HA(Y) ifign-1,

0 if i

L\'
>

Taking duals and comparing with 4,3.4 we find that
i i
= IH
Higy(U) = TH (V)

for all i.
In order to check that this isomorphism corresponds to the natural map

i i
it suffices to consider the case i s n - 1. Then the isomorphism
i _yi
H(z)(U) = H'(Y)
of 4.3.4 is the composition of the inverse of the map

* .1 i _ _ oyl
™™ H(Z)(Y) + H(Z)(U {x}) = H(z)(U)
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1nd:isg,by~the projection

m: U={x} = (0,1) x ¥ > Y
with the natural isomorphism
Higy(Y) = Hig(Y) > H'(Y).
On the other hand the isomorphism
IH,(U) = H,(Y)
of 4.3.5 1is the composition of the identification
IH, (V) = IHi(U-{x}) = Hi(U-{x})
with the isomorphism
Tx * Hi(U-{x}) > Hi(Y)'

The result follows,

Let X be a projective variety with isolated conical singularities. It
turns out (cf. 5.3.6) that the existence of the natural map

* *
H(z)(x) + IH (X)
together with Lemma 4.3.3 implies the following theorem.
4.3.6 Theorem. (Cheeger [2]). The natural map
* *
H(z)(X) > IH(X)
from the L2-cohomology of X to its intersection cohomology is an isomorphism,

It is conjectured that this theorem holds without the hypothesis that X
has isolated conical singularities.
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5 The intersection sheaf complex ICx

Let X be a quasi-projective variety with a fixed Whitney stratification
defined by the filtration

We have defined the intersection homology groups IH (X) as the homology
groups of a chain complex IC (X). The group IC, (x) of intersection i-chains
is the subspace of C, (X) cons1st1ng of all those i-chains g € C, (X) satisfying

dim [g] n X, <7 - k-1
and
dim [g] n X |, s i-k-2

for all k 2 1. In this chapter we shall give a sheaf-theoretic description
of IH,(X) which leads to a proof that IH,(X) is a topological invariant of X.
For more details see Goresky and MacPherson [5], Borel [1], Brylinski [1].

§5.1 Definition of the sheaf complex Cy and ;gi

We noted in §3.7 that if U is an open subset of X then IC (U) is a subcomplex
of IC (X). However the complexes IC (U) do not define a éomp]ex of sheaves
on X Because if U and V are open sub;ets such that U < V the natural map goes
from ICi(U) to ICi(V), not the other way round. To get a complex of sheaves
we shall use the complexes ICi((U)) instead. \

Recall that if N is a locally finite simplicial complex in R and
T: |N| > X is a triangulation of X then an element { € CI((X)) is a formal
linear combination

¢ OEN“) o
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where the coefficients £ are complex numbers. The chain g belongs to cI(x)
g

if only finitely many of the coefficients go are nonzero. Since T is a

locally finite triangulation of X the support

] = U T(o)
£ #0

of any ¢ € CEGX)) is a closed subset of X, and it is compact if and only if
£ € CE(X). If the triangulation of T is compatible with the stratification
of X then dirnR |g] M X, is well defined for all j, and ICI((X)) is the sub-
space of CI((X)) consisting of all those ¢ € CI((X)) satisfying

dimp gl n Xn-k si-k-1
and

dimp [3g[ N X _ s -k-2
for all k 2 1. The boundary map

31 CL((X)) » €], ((x)
restricts to a boundary map

a: 1C((X)) > IC]_, (X))
which makes ICT((X)) into a complex, and IC ((X)) is the direct limit of
these complexes under refinement.
Now suppose that U and V are open subsets of X and that V< U, If
T: |[N] +U

is a locally finite triangulation of U then there is a locally finite
triangulation

S: IMI -V

76



of V such that if ¢ € M(i) there is a unique t{(g) € N(1) such that
(o) = T(t(0)).

Thus to any chain £ € CI((U)) we can associate a chain p(g) € C?((V)) defined
by

Then

[p(€) ] lg] nv.

]

Thus if € € IC1(U) then p(£) € IC3(V). Taking limits we get well defined
restriction maps

p: ICi((U)) - ICi((V))

which commute with the boundary maps. These restriction maps define a sheaf
on X whose space of sections over U is ICi((U)). By convention, because
people Tike to work with sheaves of cochain complexes, not sheaves of chain
complexes, the sheaf defined by the ICi((U)) is denoted by

=i
1.

5.1.2 MWarning. Unfortunately there is inconsistency in the literature in
the indexing of the sheaf complex ICy- The only consistency is in working
with sheaves of cochain complexes not sheaves of chain complexes., Sometimes
the index -i is replaced by 2n-i or n-i where n is the complex dimension of
X (see Goresky and MacPherson [5, §2.3]).

The boundary maps define a sheaf map
T =i+
o Lyt~ Ly
0] ;gi becomes a sheaf of cochain complexes on X, Similarly we can define a
sheaf of cochain complexes Ly on X.
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5.1.3 Remark. Recall from 2,5.3 that if U is an open subset of X then

i
r.(u, Igy)

is the space of sections of IC, over U with compact support. He have

i
=X

--i_
r(u, I ) = 1C. (V)

and under this identification the sheaf map

=i -i+
=£x > Lgx

—

3:
induces the original boundary map
3: IC,(U) » IC,_,(U).

5.1.4 Remark. Of course if L is a local coefficient system over X then we
can define complexes of sheaves

x,0) a4 Iy 1)

no

over X in the obvious way (cf. §3.9). Indeed to define lg(x L) we only need
- i

a local coefficient system L over the nonsingular open subset X - Xn_1 of X,
not over X itself.

§5.2 The cohomology of the sheaves gi_ggg ;gi

Let U = {Ui|i € I} be any open cover of X. Then there is a triangulation
T: |N| > X

of X such that for every o € N there is some i € I such that
T(o) S U; «

For each ¢ we choose some such i and denote it by i(g).
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5.2.1 Remark. We call T a triangulation subordinate to the open cover U.
Now suppose that V is any open subset of X. We shall use the triangulation
T to define maps

Vo, o=l -J
Py ¢ (=:X (U_i nv) +gx (V)

such that if ¢ € 2;3 (Ui N V) then the support of p¥(£) is contained in
U; 0V and if ¢ € CI(V) then

)
i€l

v
oy (el =2

This infinite sum will make sense because it is locally finite, i.e. its
restriction to any sufficiently small open subset of V involves only finitely
many nonzero terms. Such a collection of maps pv is called a partition of
unity for the sheaf C o subordinate to the open cover U.

In order to def1ne the partition of unity we first note that we can
represent any element of

-J -
¢ (Usn V) = Cj((ui nv))
by an element

!
g = E o
oeM(J)

of C?“"i 0 V)) where

S: |M|+U].nV

(3)

is a triangulation of U n V such that for every 0 € M there is a unique

TE N(J) with
S(a) < T(T) < Ui(m)'

(o), Then if T € ) we have

We write T
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U S(o) =T v.
U€M(J),T(0)=T ’ (00

Since T is a triangulation of X the subset

U

R T(t)
TEN(J),i(T)=i r

of Ui is a closed subset of X. Therefore the subset

Y s(o)
0€M(J),i(r(o))=i

of Ui n V is a closed subset of V. This means that we can choose a triangu-
lation

R: |L] » vV

of V such that if o € M(j) and i(t(g)) = i then o € L(j) and R(o) = S(o).
Then we can define

5.2.2 () = E o

oeu'3) i(x(0))=i ©

as an element of C?((V)) and hence as an element of
J -
QX(V) = Cj((V)).

It is easy to check that these maps

V. oo -
of: 63 (U n ) > ¢rI(n)

form a partition of unity for the sheaf g;a subordinate to the open cover U.

Horeover the same maps restrict to give a partition of unity for the sheaf
;g_l as well,

5.2.3 Lemma. If p 2 1 then
WP, ) = 0= WP, 1)
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for all j.

Proof. We shall work with Eegh cohomology (see §2.5), and we shall consider
only the case of the sheaf C-J; the argument for ;giJ is just the same.

Suppose a € Cp(X ¢ J) satisfies da = 0. Then there is an open cover
= {U, |1 € I} of X such that a is represented by some a € cp(u ¢ J)
sat1sfy1ng do = 0. That is, for each

-1 . (p+1)
K = {10""’1p+1} €1

we have
pfi
£o, o] =0
30 K-{lj} Uy

where the sign * depends on whether or not the orientation chosen for K
coincides with the orientation chosen for K-{1 } with 1 placed at the
beginning.

It suffices to show that there exists B € cp"(u, g;j) such that a = dB;
i.e. that for each

- {3 ; (p)
K = {10,...,1p} €1

we have
E:B . =a,,
550 K-{1J}IUK K
Choose a partition of unity for the sheaf CX subordinate to the cover U.
For every open subset V of X this gives us maps

V.l -J
Py 2 G (U n V) > (V)

such that if £ €¢ J(U n V) then the support of R (E) is contained in U, nV
and if T €C J(V) then

!

V
o! (z] =z,
ier Ul.nV)
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We can now define B as follows. If

Cfa . (p-1)
K= {10,...,1p_1} €1

let B, € g;j(uK) be defined by the locally finite sum

) Yg
top (o y (4))

B, = +
T

where the sign * depends on Wwhether or not the orientation chosen for K u {i}
coincides with the orientation chosen for K with i placed at the beginning.

It is now messy but straightforward to check, using the fact that do = 0,
that dB = o as required.

5.2.4 A sheaf F on X is called a fine sheaf if for every open cover U of X
there is a partition of unity for F subordinate to U. The proof of Lemma
5.2.3 shows that if F is a fine sheaf then

HP(X,F) = 0

for all p 2 1,

§5.3 Spectral sequences and hypercohomology

By a spectral sequence we shall mean a collection of complex vector spaces

fEE’q|p,q,r €Z, rzry)

where o = 0,1 or 2, together with Tinear maps
d : Ep’q > Ep+r3Q'r+1
r°r r

satisfying di = 0 and
LR B R
ker dr' Er - Er

P29 -
r imd : EP'F,Q+F'1 - Ep’q
r r r

If for all p,q € Z there exists some r(p,q) € Z and a complex vector :space
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EZ’q such that

P»q _ gPsq
Er’ =E°

for all r 2 r(p,q) then we say that the spectral sequence has Timit
{?*91p,q € 23.

that FK* = K* is a complex

v PO 9 ot 4y 02

of vector spaces and if 0 < p < n then FPK* s a subcomplex of Fp-1K‘ with
F'K* = 0. There is an associated spectral sequence {E:'q|p,q-r €z, rz0}
with

b (8 € PP da e PINOMy

Er d(Fp -r+l Kp+q-1) + «P*a
If o € E?’q is represented by a € FP kP*9 then da € E$+r,q-r+1 is represented

by da € FP*T kP!
Now let A® be a complex of sheaves on a topological space X and let U be
an open cover of X, Let

cP(u,a%)

v
be the space of Cech p-cochains over U with coefficients in Al. Ve have a
boundary map

8, CPu,Af) » cP*!(u,4%)

and the sheaf complex differential d: AY Aq+1 induces
8y cPu,A9) & Cp(U,Aq+1)

satisfying

& =
§5=0-= 61, 848y = 8,8+
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Passing to the 1imit with respect to refinement of open covers U of X we
obtain a complex vector space

9 = 1im cPu,AY)
—>

with boundary maps 61: P29 > P15 4pq 62: cPa9 > Cp,q*1_ We define the
hypercohomology H*(X,A*) of A° to be the cohomology of the complex (K- ,d)
where

p+g=n
and d = §, + (-1)P<s2 on P9, That is

ker d: K" » KM

5.3.1 H'(X,A7) = L TR
imd: K170 "

We have a filtered complex {FPK*} defined by setting

'
"= @ P

p'+g=n
p'zp

which makes FPK® a subcomplex of K'. There is an associated spectral sequence

{EE’q|r 2 0} with

Ey*Y = HP(x,H9(4"))

where H3(A") is the qth cohomology sheaf of A", and

gP+q

-]

GrP #P*a(x,A")

where

ker d: FPK" - FPK"!

im d: FPKNTT o EPKD

5.3.2  GrPHP*I(x,A7) =

(see e.g. Griffiths and Harris [1, Chapter 3, §5], Bott and Tu [1, §14]).
This implies that there is an isomorphism
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(XA = 0 EPY
p+q=n

But this isomorphism is not canonical whereas the associated filtration of

H'(X,A") by the subspaces

e P4
p'+q=n *
)

p 2p

is canonical. In this situation we say that the spectral sequence {Eg’q}
abuts to

HP*A(x,A°).

By reversing the roles of p and q we get another filtered complex {EqK'}
defined by

B - e P’
p+q'=n
q'2q

with an associated spectral sequence {Eg’q|r 2 0} such that Eg,q is the qth
cohomology group of the complex Hp(X,A'). By symmetry this spectral sequence
also abuts to the hypercohomology '

HP*a(x,A").

In particular it follows that if
HP(x,A%) = 0

for all q and all p > 0 then

gP-9 - 0

for all q and a1l p > 0 so

5.3.3  H'(X,A") = E2°"
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is the nth cohomology group of the complex
0 . .
H (X3A ) = F(X:A ).

5.3.4 Example. Ve have seen (Lemma 5.2.3) that if X is a quasi-projective
variety with a fixed Whitney stratification then the complexes of sheaves
Cy and ICy on X satisfy

Pex.c9) = 0 = HP(x,1c9
HP(X,Cy) = 0 = HY(X, ICy)

for all q and all p > 0, Thus their hypercohomology groups are canonically
isomorphic to the cohomology groups of the complexes H°(X,gi) and H°(X,;§i).
Since ’

o
HO(,GR) = €_5((X)
and

o
(X, 165) = 1¢_5((X)

these cohomology groups are the same as the homology groups of the complexes
C ((X)) and IC ((X)). Thus we have canonical isomorphisms

-n oy . uCl
H (Xygx) = Hn (X)-

and

n

HT(XICy) = THX).

Of course when X is compact then
cl _
Hy (x) = Hn(x)

and

cL
IHn (x) = IHn(X).

5.3.5 Definition. A sheaf map ¢: A sB between two sheaves of cochain
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complexes on X which commutes with boundary maps is called a quasi—Zsomorphism
if the induced maps

Hi(A) ~ek(8")

of cohomology sheaves are isomorphisms for all i,
Equivalently the maps on stalks

HU(A) ~H'(B,)

are all isomorphisms where A and B, are the stalk complexes. (Recall from
2.5.6 that the stalk of QI(A.) at x is H1(Ax)). A generalised quasi-
isomorphism A + B is a sequence

A > A1 + Az hd A3 « A4 > ..o > B

of quasi-isomorphisms.

It follows from the existence of the spectra1 sequence described above
that a generalised quasi- 1somorph1sm $:A -+ B induces an isomorphism from
the hypercohomology of A to the hypercohomology of B

5.3.6 Remark. Let X be a projective variety. Ve have seen that we can
idetnify the intersection homology groups of X with the hypercohomology
groups of a sheaf complex gx over X,

Thus if A is another sheaf complex over X and ¢:A° > ;g; is a quasi-
isomorphism, then ¢ induces isomorphisms between the hypercohomology groups
of A" and the intersection homology groups of X.

§5.4 Towards the topological invariance of intersection homology

Let X be a projective variety with a fixed Whitney stratification.

5.4.1 Definition. The ith local intersection homology sheaf ﬂ-1(£x) is
the -ith cohomology sheaf of the complex ;gx . That is, it is the quotient
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Ker 3: ;g'i > ££;(1-1)

X

tm a: 1o (), g
X X

in the sense of sheaves. The stalk of H (IC ) at x € X is the relative

intersection homology group IHi(X,X {x})

We saw at 5.3.4 that the intersection homology groups of X are canonically
isomorphic to the hypercohomology groups of the complex Lgi. Therefore
there is a spectral sequence with E2 term given by

5..2 EBY = WP (x; H9(c,))

which abuts to IH_p_q(X) (see §5.3). 1In particular we have the following
very important fact (see 5.3.6).

5.4.3 IH,(X) is determined by ;g; up to generalised quasi-isomorphism.

We want to know that IH,.(X) is independent of the choice of Whitney
stratification on X. For this it suffices to show that the sheaf complex
;g; is independent up to genéralised quasi-isomorphism of the choice of
Whitney stratification.

5.4.4 Definition. A complex A of sheaves over X is bounded if there is an
integer m such that

A' =0 when [i]z

A is constructible if there is a stratification {S |o € A} by X by quasi-
projective subvarieties S such that the cohomo]ogy sheaf H (A )|S is

locally constant for all i and qa.

5.4.5 Remark. The restriction to Sa of a sheaf F on X is the sheaf F]S on
o
S, defined as follows. If U is an open subset of S then F|c (U) is the
o

direct 1imit with respect to restriction of the abelian groups F(V) for V
open in X such that U <V, A sheaf Fon X is called locally constant if
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every x € X has a neighbourhood U in X such that for every y € U the
restriction map

F(U) > F,

to the stalk at y is an isomorphism.

It is easy to check that ;g; is a bounded constructible complex of
sheaves on X by using the Tocal calculation of intersection homology 3.8.1.
The fact that IH,(X) is independent of the choice of Whitney stratification
follows from the next theorem which characterises ;g; uniquely up to
generalised quasi-isomorphism by properties which do not depend on the
choice of stratification.

5.4.6 Theorem. (Goresky and MacPherson [5, §4.1 and §4.3]). The sheaf of
cochain complexes ;g; is uniquely characterised up to a canonical generalised
quasi-isomorphism by the fact that it is a bounded constructible complex of
sheaves on X satisfying the following properties.

(a) There is a subvariety I <X of complex codimension at least 1 such that

Lylx-g
is generalised quasi-isomorphic to the trivial complex c [2n], which is the
constant sheaf IX-Z in dimension i = -2n and 0 in other d1mens1ons.

(b) For all x € X the cohomology H-I(LQ; X) of the stalk complex LQ; X is a
A ) AT ]
finite-dimensional complex vector space for all i andis 0 when i > 2n.

(c) For all i< 2n

.

dimg{x € X[H (ICy ) # 0} < i-n.

(d) ;g; is self dual in the sense of Verdier duality (Goresky and MacPherson
[5, §1.12], Borel and Moore [1], Verdier [11, [2]).

The Verdier self duality of ICX simply comes down to Poincaré duality -
the existence of a natural perfect pairing
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i) 8 IHgn'i(U) .

for all open subsets U of X. One checks that LQX satisfies the conditions
5.4.6 (b) and (c) by using the local calculation 3.8.1 of intersection
homology and the fact that

-3 .
H (Qx’x) = IH1(X3X'{X}).

To see that ;g; satisfies condition 5.4.6 (a) take £ = X _,. Then

Lylx-z = &-z

and

) = { 0 ifi4-2n

Oy pif i =-2n

because its stalk at any x € X - ¢ is
H_i(X,X-{x}) = { 0 if 1 # -2n
€ if i=-2n

since x is a nonsingular point of X. Using this it is easy to find a quasi-
isomorphism

O-g[2n] > Lyly -

5.4.7 Remark. The condition 5.4.6 (d) may be replaced by the "dual" of
condition (c), namely

(d') For all i < 2n

dimg{x € x|HI(IC,) # 0} < i-n,

where j = 2n-i and H)':(I__C).() denotes the kth hypercohomology group with compact

supports of LEX restricted to a small open neighbourhood Nx of x of the form
described in §3.8.
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§5.5 Deligne's construction of the intersection sheaf complex

It has been indicated why ;g; satisfies the conditions 5.4.6 (a) - (d) but

not why it is uniquely characterised by them up to generalised quasi-isomorphism.
The proof of this uses Deligne's construction of a complex which is canonically
generalised quasi-isomorphic to ;g;.

5.5.1 Definition. If A is a complex of sheaves on X and p € Z we define the
truncated complex rpA to be the complex which in degree i is

-~

Al if i< p,
ker(d: AP - AP*1) if i = p,
0 if 1> p.

Suppose we have a fixed Whitney stratification

X=X 2X_12-.-2X,

of X as before. Let
n-k > % 7 Kok

be the inclusion.

Recall from §2.4 that if F is a sheaf on X - X__ then (i ),F is the
sheaf on X - X, _, satisfying

. _ _opgs -1
5.5.2  ((1 ) F)Y(V) = F(v 0 (X - X)) = F(i, "' (V))
for any open subset V of X - xn-k-1'

5.5.3 Theorem. (Deligne's construction of ;g;, Goresky and HMacPherson
[5, 83]). The complex of sheaves

T_n_1R(in)*.-- T_2n+1R(12)*T_2nR(i1)*Ex_xn-1[2nJ

satisfies conditions (a) - (d) of Theorem 5.4.6. (As in §2.6 R(ik)* is the
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right derived functor of (ik)*).

Once it has been shown that the conditions (a) - (d) of 5.4.6 uniquely
characterise ;g; up to generalised quasi-isomorphism it will fgl]ow that the
complex defined in 5.5.3 is generalised quasi-isomorphic to LEX' This is
very important because this construction can be used to define intersection
homology in any situation where there is a good sheaf theory and good
stratifications, for example algebraic geometry in characteristic p > 0
(see Chapter 6). Moreover this construction does not require the filtration

of X to be an algebraic one. We shall see that there is a "canonical
filtration"

can can
> X S ... D
n ="n-1= —-Xo

of X by closed subsets Xgan such that Deligne's construction applied to this

filtration gives a complex which is generalised quasi-isomorphic to ;gx.
The X§an will not necessarily be subvarieties of X but they will be uniquely -
determined by X without any need of choice.

5.5.4 Definition of the canonical filtration. Let U1 be the largest open
subset of X such that the cohomology sheaves of the complex gi restricted to

U1 are all locally constant. (Equivalently U1 is thg upion of all open
subsets U of X such that the cohomology sheaves of Cy restricted to U are
locally constant).

Since the -pth cohomology sheaf of C; has stalk Hp(X,X-{x}) at x, and

Hp(X,X—{x}) = [ if p=2n
L0 if p# 2n

if x is a nonsingular point of X, it follows that

X -X cu

n-1 - "1
for any Whitney stratification X o Kpoq 2 oo 2 X of X,
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Let

can

Xpoq = X = Uy
then Xﬁé? is a closed subset of X and
can
*n-1 S Xnoge
can

Define Xn_k inductively for 1 < k s n as follows. If 1 5] <k let

.can , , _ can _ ycan
R T S S

and

X - xS . x

h : n-k ~

k

be the inclusions. Then Tet X§f2_1 be the complement in Xﬁiﬂ of the largest

open subset of nga on which the cohomology sheaves of both the complexes

C
Z,can
Xn-k
and
.can .can .can )
Ry datygn-gRU e -0 RO RO Gy

1

are locally constant. By induction each Xﬁfﬂ is a closed subset of X and
the filtration

can _ ,can can
= =) O eee 2
X Xn —Xn-1 = —Xo

is coarser than any llhitney stratification

X=X 2X_12---2X%

in the sense that

can
X5 =X,
J -3
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for 0 S j £n.
The complex

can

.can .can . .
T R(1n )u Tpep *° R(12 Ve T_ZnR(11 Yo gU1[2n]

-n-1
on X is independent of the choice of stratification on X, and is indeed a
topological invariant of X. One can show by induction (Goresky and
MacPherson [5, §4]) that any bounded constructible complex of sheaves on X
which satisfies the conditions (a) - (d) of 5.4.6 is canonically generalised
quasi- isomorphic to this complex. Since IC satisfies 5.4.6 (a) - (d) it
follows that ICX is uniquely characterised by 5.4.6 (a) - (d) up to
canonical generalised quasi-isomorphism. Thus IH,(X) is independent of the
choice of Whitney stratification and is a topological invariant of X in the
sense that a homeomorphism f: X -~ Y induces an isomorphism

£, 1 IH(X) - IH(Y).
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6 Characteristic p and the Weil
conjectures

In 1973 Deligne completed the proof of the famous Weil conjectures which
relate the arithmetic of projective varieties defined over finite fields and
the homology of nonsingular complex projective varieties (Deligne [1], [2]).
The conjectures were stated by André Weil in the 1940s (Weil [1]) and progress
(1eading to partial proof) was made by Grothendieck and others in the early
1960s. (See the survey articles Katz [1] and Serre [2] for more details).

§6.1 Statement of the Weil conjectures

Let X EEPN be a nonsingular m-dimensional complex projective variety defined
over an algebraic number ring R (e.g. R = Z). That is, X can be defined by
the vanishing of homogeneous polynomials with coefficients in R.

6.1.1 Example. The Fermat curve of degree n is defined in P2 by the
equation

over Z,

Let 7 be a maximal ideal of R, (For example if R = Z then ™ = pZ where
p is a prime). Then R/t is a finite field. Let p be the characteristic of
R/m. Then

R/m = F
/T q
is a field with q = pS elements for some positive integer s.
lle can define a projective variety
}_N+1 - {0}
X cpN(}' y=9
B AR ()

by reducing modulo 7 the equations with coefficients in R which define X.
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If we choose 7 so that the characteristic p of R/w is not one of finitely
many "bad" primes for X then XTT is a nonsingular m-dimensional projective
variety over the field F_.

Let iw be the corresponding variety defined over the algebraic closure
F_of F_ by the same equations as Xﬁ. For each r 2 1 there is a unique
subfield qu of fq such that qu has qr elements, [oreover

F_CF
SF,
a7 q

if and only if r divides t.

Let N_be the number of points in in of the form (xo:...:xN) where each

X; lies in F e Define Z(t) by
q

. ) o
6.1.2  Z(t) = exp( N — ) € Qr[tl].
21 77

6.1.3 Example. If X = Pm’ R=12Z, 7= pZ then

Nr =1 + pr + p2r + el + pmr

and

"
r

exp( L (1+p" + ... +p™)
r21

Z(t)

1
(1-t) (1-pt) (1-p°t) ... (1-p™)

The Weil conjectures relate the numbers Nr to the Betti nwmbers dim H.(X)
of X. They can be expressed in terms of the function Z(t) as follows.

Pi(t)P(t)...Py (1)
Py ()P (). Py (L)

6.1.4 (1) Z(t) =

where P (t) = 1-t, P, (t) =1 - q"t and if 15 j < 2m-1 then Ps(t) s a
polynomial in t with integer coefficients satisfying

P.(t) = (1 - a..t)
J 1s1§1§lﬁj(x) %i

96



where each &5 is an algebraic integer and |aji| = quz.

(Note that these conditions mean that Z(t) uniquely determines the polynomials
Pj(t) and hence the Betti numbers of X since dim Hj(X) = deg Pj(t)).

(2) Let E = Z (-1)jdim Hj(X) be the Euler characteristic of X. Then Z(t)

J
satisfies a functional equation

qu/Z tE 2(t).

Z(1/q™) = =
is called the Riemann hypothesis

6.1.5 Remark. The statement "I“jil = qJ/z“
S in Z(t)

by analogy with the Riemann zeta function as follows. Put t = q
to get

-s 7 -rs
Z(q ) = exp( Nr gr—)'

rz1

Define a prime divisor P of X to be an equivalence class of points of iﬂ
modulo conjugation over Fq, and let its norm be

Norm P = qdeg ?

where deg P is the number of points in the equivalence class.
Then since F i € F j if and only if i divides j the number of points of iﬂ

q
defined over F r is
q

Nr = ) deg P.
deg ?|r

Hence
)-sr/deg P

2(q°%) = exp ) 1 deg Pr(Norm P
rz1 deg P|r

-si
exp 77 (Norm P)
P i

= 1 exp(-log(1 - (Norm °)
P

= 1 (1 - (Norm2)™5)7",
P
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Recall that the classical zeta function is given by
)= Lafe Tyt
nz1 p prime

The classical Riemann hypothesis says that the zeros of c(s).lie on the line
Re(s) = 3 in €. When dim.X = 1 the statement that lajil = q‘]/2 where

()
j+1
Z(t) =1 ( I 1 - “-it))('1)J+
3 Msisdin(x) j
- { - \ vl =1
i \1$i$d]1'TmH1(X)(1 @) (1-t)" (1-qt)

is equivalent to the statement that if Z(t) = 0 then |t| q_é, i.e. that if

2(q"%) = 0 then Re(s) = 3.

Weil proved some special cases of his conjectures and realised that the
general case followed if one could define a suitable cohomology theory for
varieties over fields of nonzero characteristic analogous to ordinary
cohomology for varieties over L, Grothendieck was able to define such a
cohomology theory, %-adic cohomology, using the theory of &tale topology
(due to himself and Artin) and thus proved part of the conjectures (the
rationality of Z(t) and the functional equation). Deligne finished the proof
in 1973, by proving the analogue of the Riemann hypothesis. Before defining
%-adic cohomology let us see how its properties lead to a proof of the Weil
conjectures,

§6.2 Basic properties of 2-adic cohomology

Let Y be a quasi-projective variety over an algebraically closed field k of
characteristic p 2 0. Let 2be-a prime number different from p. Let

Z, = 1imZ/2'2
“
be the ring of 2-adic integers, and let Q, be its field of fractions. The
ith %-adic cohomology group of Y is written H1(Y,QE). It has the following

properties (see e.g. Milne [1]).

6.2.1 (a) %-adic cohomology is a contravariant functor from the category of
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quasi-projective varieties over k to the category of vector spaces over 01.

(b) H1(Y,Ql) = 0 unless 0 < i < 2m where m is the dimension of Y. The
dimension of H](Y,Ql) is finite for all i if Y is projective (and conjecturally
for any quasi-projective Y).

(c) Poincaré duality. If Y is nonsingular and projective then there is a
natural perfect pairing

2m-

i i 2m "
H (Y.Ql) 8 H (Y,Qg) -+ H (Y.Ql) = QE

for 0 < i s 2m,

(d) Lefschetz fixed point formula, If Y is nonsingular and projective of
dimension m over k and f: Y » Y has only isolated fixed points each of
multiplicity one (i.e. 1 is not an eigenvalue of the derivative of f at any
y € Y such that f(y) = y) then the Lefschetz number L(f) of f defined by

2m . . .
L(F) = & (=13 Tr(£™: w(v,0,) »~ H(Y,0,))
3=0 L L
is equal to the number of fixed points. More generally when f has isolated
fixed points of multiplicities possibly greater than one then L(f) is the
number of fixed points counted according to the multiplicities.

(e) Comparison and change of base field. If X is a complex projective
variety then HJ(X,QE) is the ordinary cohomology of X with coefficients in

Q,, so

dimg W) = diqu Hj(X,Ql).

Moreover if X is defined over an algebraic number ring R, as in §6.1, then
J - nd(y
H(X,0,) = HO(X Q).
These are the properties of g-adic cohomology which we shall need. g-adic
cohomology also satisfies most of the familiar properties of cohomology, such
as the existence of relative cohomology, long exact sequences, spectral

sequences and so on.
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Let X be a nonsingular complex projective variety defined over an
algebraic number ring R, and define Xﬂ as in §6.1. The properties 6.2.1
(a) - (e) of g-adic cohomology can be used to prove the Weil conjectures
6.1.4. The crucial ingredient is the definition of the Frobenius mapping.

6.2.2 Definition. The Frobenius mapping f: in > Xﬂ is given by

This makes sense because the equations defining X as a subset of PN(f )
have coefficients in the field Fq, and if p(X ..,XN) is a polynomial with
coefficients in Fq then

0’

q qy _ q

TCST ) IR CTC SR LN
- r

A point x € XTr is fixed by the rth iterate f of f if and only if it has

coordinates in F - Hence the number Nr of points in iﬂ with coordinates in

F. is the same as the number of fixed points of . One can check that all

q
the fixed points of " have multiplicity one. Thus by the Lefschetz fixed
point formula 6.2.1 (d) we have

6.2.3 N = L(f")

for all r 2 1. This means that

JoLEnt”
rz1 r

Z(t)

n
o
x

©

e L L endm(e e 0000 B

P Y‘Z1 0§J§2m * TR Tf’ 2 r
e I (-nit () (7,0, 57,000 £
Iy 0 LTt a4 00
2m : .. J+1

* 0 Jog J (-1)

jEU det(1-tf :HY(X ,Ql)+H (X",QQ))
P(t)P5(t)...Py (1)

Po(t)Pz(t)...PZm(t)
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where

o
.
—
ot
~
"

- *,.j' J‘-
det(1 - tf :H (xﬂ,mz) + H (x",wg)).
Then

P.(t) = I .. (1-a,.t)
J 1sisdimi? (X ,Q ) a1

where the a;; are the eigenvalues of the action of the Frobenius map on
HJ(XN;QQ). Thus the Riemann hypothesis is equivalent to the eigenvalues of

the Frobenius action on HJ(in,Qz) being algebraic integers of modulus quz.
The functional equation 6.1.4 (2) for Z(t) comes straight from Poincaré
i 2

duality and the fact that if a € H1(XN,Q£) and B € H m-i()—(ﬂ,%) then the
Poincarée pairing of f*a and 8 is qm times the Poincaré pairing of @ and B.
This is because of the naturality of the Poincaré pairing and because the
Frobenius map

*

£ 0 W(EL0,) > HM(R L)

is multiplication by qm.

Having seen why &-adic cohomology is useful for proving the Weil
conjectures, let us consider how it is defined. For more details see Milne
[11.

§6.3 Etale topology and cohomology

Let Y be a quasi-projective variety defined over an algebraically closed
field k. The Zariski topology on Y is the topology whose closed subsets
are the subsets defined by the vanishing of homogeneous polynomials (i.e.
the closed subvarieties of Y)., This topology reflects the algebraic structure
of Y. However it is too coarse for many purposes. Of course when k is the
complex field € we can also give Y the usual complex topology, by regarding
it as a subset of a complex projective space, but in general this topology
is not available.

The étale topology on Y plays a role similar to that of the complex
topology. It is not a topology at all in the usual sense but it behaves in
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much the same way as a topology. Instead of open subsets of Y one works with
&tale morphisms g: U » Y. Roughly speaking these are unbranched coverings of
Zariski open subsets of Y.

Hore precisely, if U is a quasi-projective variety over k then g: U~ Y
is an étale morphism if and only if every Xo € U satisfies the following

condition. There are Zariski open neighbourhoods V of Xo in U and W of f(xo)
in Y, functions

ay: ¥k, 1<sJsn,
such that each a. is a rational function in the homogeneous coordinates on
W and for each x € W the polynomial

p(Tyx) = T" + a1(X)Tn_1 + e+ (x)
in T has simple roots, and an isomorphism
V> {(t,x) €k x W|p(t,x) = 0}
whose projection onto W is g. An &tale morphism g: U -~ Y is of finite type
if and only if g-1(y) is finite for every y in Y.
If g: U~ Y and f: V> U are étale morphisms of finite type then so is
gof V=Y, loreover if g: U~ Y and f: V> Y are &tale morphisms of

finite type then there is a commutative diagram of étale morphisms of finite
type (called a pullback diagram),

with the universal property that if

W —2 5y
Vo—— ¥
f
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is another commutative diagram then there is a unique tT:W' + W such that
a=aotandb =bo T, The composition goa=fo°b:W=>Y plays the
role for the etale topology of the intersection of g: U~ Y and f: V> Y,

The definition of a sheaf F on Y with respect to the étale topology is.
closely analogous to the definition of a sheaf for a genuine topology on Y.
For each étale morphism of finite type g: U~ Y there is an abelian group
F(g) satisfying the following conditions.

6.3.1 (i) If g: U->Y and f: V- U are étale morphisms of finite type then
there is a restriction map

F(g) » F(g o f)
s > slg o f

with the usual functorial properties (Hilne [1, Chapter 2 §1]).

(ii) If g: U~>Y and g;: U; > Uare étale morphisms of finite type such
that U= U g.(U.) and if s, € F(g o g.) satisfy
e i i i i

S. =S,
1|g ° 945 Jlg ° 95j

for all i and j where g..: U,. » U fits into the pullback diagram
ije "ij

i T Y
g'iJ l 95
U,
i . > U
J

then there exists a unique s € F(g) such that s; = s| ) for all i € I,

geg

Sheaf maps are defined in the obvious way and we get a éategory Et sh(y)
of etale sheaves on Y.

The definition of right derived functors given in §2.6 for left exact
additive functors from the category Sh(Y) to the category Ab of abelian
groups can be adapted directly to define the right derived functors of
functors from £t sh(y) to Ab. There is a functor Iy: Et Sh(Y) ~ Ab
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defined by

6.3.2 FY(F) = F(1,: Y>VY),

Y

where 1, is the identity map on Y, and Iy is a left exact additive functor.
The étale cohomology groups of F are defined to be the right derived
functors of Iy applied to F:

i _ i
6.3.3  Hg (Y,F) = R ry(F).

v
6.3.4 Remark. Aaternatively one can adapt the definition of Cech cohomology
and define étale Cech cohomology groups

M
Hét (Y,F)

which for sufficiently well behaved sheaves F are canonically isomorphic to
the groups

i
Hét (Y,F).

Now suppose that g is any prime number different from the characteristic
p of k. The constant sheaf (mz)Y on Y is defined by

(@,)y(g: U~ Y) = {continuous maps h: U~ Q,}
where U is given the Zariski topology and Ql has the discrete topology (so
that a continuous map h: U+ Q is constant on every connected component of
U). The restriction map

(@))y(9) > (@,)y(g = )
is given by composition with f,
6.3.5 Definition. The g-adic cohomology of Y is defined to be

a = HE(

(Y,0,) = HE (Y,(Q,))).

104



§6.4 The VWeil conjectures for singular varieties and 2-adic intersection
cohomology

Suppose that Y = X" where X is the reduction modulo a prime ideal m of a
complex projective variety X < P” defined over an algebraic number ring R
and X1T is the extension of X to a variety defined over the algebraic closure
Fq of Fq = R/m, W have seen that if X is nonsingular and T is chosen
appropriately then properties of the %-adic cohomology of Y can be used to
prove the Weil conjectures for X. What happens when X is allowed to be
singular? The Weil conjectures certainly fail as they stand, but they can
be made to work if one uses intersection cohomology throughout instead of
ordinary cohomology. To see why this might be true we must define %-adic
intersection cohomology.

By enlarging the algebraic number ring R if necessary, we can assume that

X has a Whitney stratification given by a filtration

where each X, is defined over R. Iloreover we can assume that if Y is the
extension to F of the reduction of X modulo T then

by closed subvarieties Yj such that Yj - Yj-1 is either empty or is non-

singular of dimension j for each j. We can now use Deligne's construction
of intersection homology (§5.5) to define the l-afic intersection cohomology

I (1,0,)

of Y as follows. Let i : Y - Ym-k AL S be the inclusion. Define a

complex of sheaves ;g; on Y in the étale topology by

6.4.1 ICy = T R(i ). R(1)% (1) (0y)yy _ (2]

-1 T oom1 -2m
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where
(q,) [2m]
LYY

is the complex on Y-Y #hich is the constant sheaf (@,),_ in degree
m~1 LY Ym_1

i = -2m and 0 in other degrees (all with respect to the &tale topology).
Define

IH,(1,0,)

*
to be the hypercohomology of this complex LEY and let IH (Y,Ql) be its dual.
For more details see Beilinson, Bernstein and Deligne [1], Brylinski [1].
g-adic intersection cohomology thus defined has the following properties.

6.4.2 (i) Comparison and change of base field. With the notation above
we have

W (1,0,) = 14 (X,0,)

where Y = Xﬂ. Moreover '

. i . i
d1mQ£IH (X’ml) = d1m¢IH (x).

(ii) Poincaré duality. There is a perfect pairing
v,a,) 8 ™) - a,.

(ii1) Lefschetz fixed point formula. If f: Y - Y is an isomorphism with
isolated fixed points then the Lefschetz number

2m /

L) = £ 03 (e winay) - iv,e,)

j=0
of f is equal to the number of fixed points of f counted according to
multiplicity. Unfortunately the definition of multiplicity becomes more
complicated when the fixed point is a singular point of Y (cf. Goresky and
MacPherson [6]).
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As in §6.2 we consider the Frobenius map f: in + X, defined by

flxgieaaixy) = (xg:...:xﬂ).
The Lefschetz number L(f") of the rth iterate of f is the number of points
of X defined over the field F but counted according to multiplicity.
The mu]t1p11c1ty of a nons1ngu?ar point is one, but in general the multi-
plicity depends on the singularity of iﬂ at the point in question.
Just as in the nonsingular case the Frobenius map acts trivially on
IHo(iﬂ,Qz) and as multiplication by q" on IHzm(iﬂ,mz). Moreover the eigen-
values of its action on

H (X.,0,)

for any j between 0 and 2m are algebraic integers aji with modulus

6.4.3 o,

J1|=q .

This fact, sometimes called the Riemann hypothesis as in §6.1, is very
important. (Its proof makes use of Poincaré duality: once it has been
shown that |o; . | < qJ/2 for all j then Poincaré duality gives the reverse
inequality |ao, | 2q /2). Its importance is not merely that it can be used
to generalise the Weil conjectures to apply to singular projective varieties,
provided one uses intersection homology and counts points according to
multiplicities depending on the singularity of the points. Its main
importance is that in any reasonable cohomology theory such as %-adic inter-
section cohomology there are natural boundary maps and degeneracy maps
appearing in long exact sequences, spectral sequences etc. These maps often
go from the cohomology of one space to the cohomology of another space in a
different dimension. Because these maps are natural, in the case of the
f-adic intersection cohomology of subvarieties of PN(fq) defined over F_ they
must commute with the Frobenjus maps. But since the eigenvalues of the
Frobenius maps acting on %2-adic intersection cohomology groups of projective
varieties in different dimensions are different this means that the boundary
and degeneracy maps between such intersection cohomology groups must vanish,
Using the comparison theorem one finds that the corresponding boundary maps

107



and degeneracy maps for the ordinary intersection cohomology of complex
projective varieties must vanish also. This enables one to prove important
theorems about the ordinary intersection cohomology of complex varieties
(see Beilinson, Bernstein and Deligne [1]).

6.4.4 Remark., At first sight this argument only applies when the complex
varieties involved are defined over algebraic number rings. However a
finite set of equations defining any complex projective variety can be
"deformed" slightly without altering the intersection cohomology so that the
equations become equations with coefficients in an algebraic number field.

§6.5 The Decomposition Theorem

One of the most important theorems about intersection cohomology which can be
proved via the g-adic intersection cohomology of varieties defined over fields
of nonzero characteristic is the decomposition theorem of Beilinson, Bernstein,
Deligne and Gabber (see Beilinson, Bernstein and Deligne [1], Goresky and
MacPherson [3], MacPherson [1]).

6.5.1 Definition, Let X SPn and Y SPn be quasi-projective complex
varieties. A regular map

o X > ¥

is a map such that for each x = (xO:...:xn) € X there exist homogeneous
polynomials fo,...,fm in n+1 variables, all of the same degree and not all
vanishing on (xo,...,xn), such that

¢(y0:...:yn) = (fo(yo,...,yn):...:fm(yo,...,yn))

for all (yO:...:yn) in some neighbourhood U of x in X. ¢ is called projective
if it can be factored as

" X
X — PN xY-—>Y

for some N, where y is an isomorphism (i.e. a regular map with a regular
inverse) of X onto a closed subvariety of PN x Y and x is the projection of
PN x Y onto Y. HNote that every fibre ¢'1(y) of ¢ is a projective subvariety
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of PN.

6.5.2 Decomposition theorem. Let ¢: X = Y be a projective map between

complex quasi-projective varieties. Then there exist closed subvarieties

Va of Y and local systems La on the nonsingular parts (Va)nonsing of V, and

integers za such that
IH, = @ IH,
GO0 =0 T, (VL)

for all j 2 0.,

6.5.3 Remark. In fact this decomposition comes from a decomposition up to
generalised quasi-isomorphism of complexes of sheaves over Y

. . .
¢, IC, =0 i IC [&.1
*=ZX 0 @ '_(Va’La) o

where ia: Va + Y is the inclusion.

Two special cases are important.

6.5.4 (1) Suppose that ¢:X - Y is a resolution of singularities of Y.

That is, X is nonsingular and ¢ is a surjective projective map which restricts
to an isomorphism from a dense open subset of X to the nonsingular part

Y of Y. Then there is a unique o, say %o such that Va =Y, and

nonsing o
moreover la = 0 and La is the constant local system €. Thus
(¢} 0
H.(X) = IH.(X) = IH,(Y @ IH. V.,L.)).
5(X) = TH;(X) = TH,(Y) @ (afa 5o, Vo))
[5}

In other words the intersection homology of any quasi-projective variety Y

is a direct summand of the ordinary homology of any resolution of singularities
X of Y.

(2) Suppose that ¢:X +~ Y is a projective map which is topologically a
fibration, with fibre V (a projective variety). That is, every y € Y has an
open neighbourhood U in Y such that there is a homeomorphism

0Ny »uxv
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whose projection onto U is ¢: ¢-1(U) + U, In such a situation there is a
spectral sequence {EE’q} called the Leray spectral sequence which abuts to

Hp"‘q(x)
and has E2 term given by
E*9 = WP (v, HI(V)),

where H3(V) denotes the local system L on Y such that

L

q
y H (VY)

where Vy = ¢_1(y) = V for each y € Y (Bott and Tu [1, p. 169], Griffiths and
Harris [1, p. 463]). Similarly there is a spectral sequence of intersection
cohomology abutting to

IHP*9(x)

with E2 term IHP(Y; IHq(V)). The decomposition theorem for ¢ is equivalent
to the degeneration of this spectral sequence at the E2 term. That is, it
says that

W) = e IHP(Y, TH(V))
p+q=J

or equivalently

H.(X)= ® IH (Y, IH_(V)).
(X) e p( q( ))

6.5.5 Example. (Cheeger, Goresky and MacPherson [1, §5.2]). If a S b are
positive integers the Grassmann variety

Gr(a,Eb) = {a-dimensional subspaces of mb})
is a nonsingular projective variety of dimension
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a(b-a).
If M is a fixed subspace of Ib and ¢ £ a is a positive integer then
S = {V € 6r(a,t®)|dimVnHzcl

is a projective subvariety of Gr(a,cb) called a single condition Schubert
variety. There is a resolution of singularities

$: S>S
where

§ = {(V,M) € 6r(a,t®) x 6r(c,t®) [ W<V

and
®(V,W) = V.
If we choose an isomorphism of H with Id where d = dim M then we can define
p: S -+ Gr(c,ﬁb)
by
p(V,H) = W.
It is easy to check that p is a projective fibration with fibre
Gr(a-c, Eb-c).

Thus the decomposition theorem applied to ¢ and p tells us that IH,(S) is a
direct summand of

IH,(S) = H,(S)

and that
11



H.S) = @ H(6r(c,t®), H (Gr(a-c,t®¢)).
J P+q= g

Since Grassmann varieties are simply connected any local system over Gr(c,tb)
is trivial, so we get

HiE) = @ H(er(c,t)) 8 H(Gr(a-c,e”)).

p+q=J q
The homology of Grassmann varieties is well known (see e.g. Griffiths and
Harris [1, Chapter 1 §5]). The Betti numbers

By = dim Hj(Gr(a,Eb))

of Gr(a,Eb) are given by the formula

il (1+t2+t4+...+t21)
Z B.t‘j . agi<b

j20 9

4 )

T (1+t2st 2]

1gj<b-a

+...4t

6.5.6 Definition. A resolution of singularities ¢: X ~ Y is called small
if for every r > 0

codim {x € Y | dim ¢'1(x) 2r} > 2r.

6.5.7 Theorem (Goresky and MacPherson [5, §6.2]). If ¢: X » Y is a small
resolution then

IH,(X) = IH.(Y).
This theorem can be proved by showing that the sheaf complex ¢*;£; on Y
satisfies the criteria 5.4.6 (a) - (d) which characterise EEY up to

generalised quasi-isomorphism, and that its hypercohomology is IH,(X).

6.5.8 Exercise. The resolution ¢:5 + S of the Schubert variety S defined
at 6.5.5 is a small resolution.
Thus
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IH,(S) = Hy(§) = Hy(Gr(c,®)) 8 Hy(Gr(a-c,8®™©)).

6.5.9 Remark. Every quasi-projective complex variety has a resolution of
singularities but not every quasi-projective complex variety has a small -
resolution., Some varieties have more than one small resolution. One can
show, for example,that intersection cohomology has no natural ring structure
generalising the cup product on ordinary cohomology by exhibiting a variety
with two small resolutions whose cohomology rings are not isomorphic.

13



7 D-modules and the Riemann-
Hilbert correspondence

This chapter contains a brief sketch of the theory of D-modules and their
relationship to intersection homology. For further details see e.g. Borel
[2], Deligne [3], Bernstein [1], Malgrange [1], Kashiwara, Kawai and Kimura
[1], Kashiwara [1], [2], [3], Le Dung Trang and Mebkhout [1], Oda [1].

§7.1 The Riemann-Hilbert problem

Consider the system of m first-order differential equations
dfi

fil
7.1.1 ?z—= jE a‘-j(Z) fj(z)’ 1 £1sm

1
in m complex-valued functions of one complex variable z, where each aij(z)
is a meromorphic function of z defined on a connected open subset U of

P CU {=} .

1

7.1.2 Example. A single mth order differential equation

d"f d"e )
E;ﬁ + a1(z) ;;ﬁ?T ..+ am(z) f(z) =0

is equivalent to the system of equations

dfi
1z—=f‘-+1’ 15‘5"1"1,

df
.aiﬂ = -a,(z) f (2) - ... - a (2) f(2).

If each meromorphic function aij(z) is holomorphic on U then the solutions
of the system 7.1.1 are multivalued holomorphic functions of z € U and the
space L of solutions is a vector space of dimension m. However if at least
one of the coefficients aij(z) has a singularity at some b € U then in
general the solutions have branch points at b and b is called a singular point

114



of the system.

7.1.3 Definition., A singular point b € U is called a regular singular
point of the system 7.1.1 if whenever

(f1(z),...,fm(z))

is a multivalued solution of the system near b then there is some positive
integer r such that

|z-b|r fj(z) +0

for each j as z + b, Otherwise b is called an <rregular singular point.

When all the functions aij(z) are rational (i.e. they are meromorphic on
P1) then the system 7.1.1 is said to be of Fuchsian type if all the singular
points are regular. The mth order equation 7.1.2 is said to be of Fuchsian
type if the corresponding system of m first order differential equations is
of Fuchsian type.

7.1.4 Example. Let o be a fixed complex number. The equation

df _a
w7 @)

has solutions f(z) = cz* for c € €. If o £ Z these solutions are multivalued
with branch points at 0, and 0 is a regular singular point of the system,

In fact the system 7.1.1 has a regular singular point at 0 if and only
if it is equivalent to a system of the same form such that the coefficients
ai.(z) have poles of order at most one at 0 (see e.g. Borel [2, III 1.3.1]).

Now let bo”"’bk be the points of U which are singular points for the
system 7.1.1. If y is a closed path in

U= {by,evsby}

then analytic continuation along y induces a linear transformation
¢(y): £ > ¢ of the space of solutions. If we choose a basis of L we get a
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representation
7.1.5 ¢: n1(U - {bo,...,bk}) + GL(m,C)

of the fundarental group of U-{bo,...,bk}. This representation ¢ is called
the monodromy of the system (with respect to the chosen basis of ). Note
that up to a choice of basis such a representation ¢ corresponds exactly to
a local system L on U~{b_,...,b } with L = €" for all x € U = {by,...,b,}
(cf. §3.9).

In 1857 Riemann posed the following problem. Given points bo,...,bk € P1
and a faithful representation

¢: m(Py = {b_,...,b,}) + GL(m,C)

find all systems of Fuchsian type whose singular points are bo""’bk and
whose monodromy (with respect to some basis of the space of solutions) is ¢.
Riemann showed that when m = k = 2 there is a unique system of Fuchsian type

with given singular points bo’b b2 and given monodromy

1’

d:m (P, = {bysbysb,3) + GL(250).

When the singular points are 0, 1, = this system is given by the hyper-
geometric equation

2

o
-

7.1.6  z(1-z) + (y - (a+p+1)z) gg - off =0

"

z
where o, B, vy are constants depending on the monodromy ¢.

When in 1900 Hilbert listed twenty three problems as targets for
mathematicians in the twentieth century he included a generalisation of
Riemann's question. It is easy to extend to arbitrary compact Riemann
surfaces the definitions of systems of first order differential equations
with meromorphic coefficients, systems of Fuchsian type and monodromy. (One
way to identify functions on a fixed compact Riemann surface S with multi-
valued functions on P1). Suppose we are given a compact Riemann surface S,
points bo""’bk of S and a representation

¢ my(S - {b ..,bk}) + GL(m,C)

0"
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of the fundamental group n1(5 - {bo,...,bk}). Hilbert's twenty first problem
(often called the Riemann-Hilbert problem) was to find those systems of
differential equations of Fuchsian type over S whose monodromy is ¢.

Many mathematicians worked on this problem and it was finally shown a
hundred years after Riemann posed his original question that there is an
exact correspondence between systems of Fuchsian type and their monodromy
representations (see R6hr1 [1]). This correspondence is often called the
Riemann-Hilbert correspondence. However systems with irregular singularities
are not determined by their monodromy representations.

So far we have been considering systems of differential equations in one
complex variable, i.e. over a one-dimensional complex manifold. In this
chapter we shall discuss a more general form of the Riemann-Hilbert
correspondence which relates differential systems (or D-modules) on a complex
quasi-projective variety X to the intersection sheaf complexes of subvarieties
of X with coefficients in local systems.

§7.2 Differential systems over ",

Fix n 2 1 and let O denote either the ring of holomorphic functions on t" or
the ring of polynomial functions on t". The choice we make depends on whether
we wish later to study holomorphic D-modules or algebraic D-modules. le shall
mainly be interested in algebraic D-modules, but the theories are very closely
related. Let D be the ring of differential operators generated by the ring

0 together with

D .5 D

1 DZ’ o n

. ] ]
(which are to be thought of as 33;,...,32; where ZyseeerZ are comp Tex

coordinates on (II"), satisfying the relations

D;D; = D,D,,

_ 3g .
Dyg=gD, + sf% if g e€o.

- _ _ of
Then D acts on 0 via g.f = g¢f, Dif = 52; for f € 0.
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7.2.1 Definition., A differential system on t" is a left D-module M such
that there is an exact sequence of left D-modules

s 09 5 w0

where P = D @ ... 8 D is the direct sum of D with itself p times. A
solution of the differential system M with values in a left D-module F is a
map of left D-modules

¢: M+ F
7.2.2 Hotivation, If M is a differential system with an exact sequence
¥ u-0

then M is generated as a left D-module by the images f1....,f under the
surjection 99 > M of the usual basis e1,...,eq of D% as a left D-module.
Moreover the kernel of this surjection is the image of the map ® > 9,

Hence it is generated as a left D-module by the images r1,...,rp, say, of the
standard basis of DP, We can write

where each dij is an element of D, Then the generators f1,...,fq of M
satisfy the relations

A solution ¢ of M with values in F is uniquely determined by the images
¢(f1),...,¢(fq) of the generators f1,...,fq of M in F, 1If ¢1”"’¢q are
elements of F then there is a solution ¢: M + F such that ¢(fj) = 9; for
1sJ <qif and only if the ¢j satisfy the equations

z d..¢. =0, 151 <p.
1<i5q W
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Thus a differential system M on " together with a choice of generators and
relations for M is "equivalent" to a finite set of partial differential
equations in a finite number of unknown functions in the variables ZyseeesZp.

7.2.3 Examples. (1) The equations

of Af L, of of
= =0, ool F =0
3z, 4 az2 2 az Zn-1 azn

define a differential system M1 on " with one generator f and two relations
D1f and (z1D2 + 2203 + ... +2 ,D)f. Thus there is an exact sequence of

left D-modules

n-1"n

DZ+D+M1+0.

(2) The equations g?% =0, ==—=0,0050—=10

define a differential system M2 on €" with one generator f and n relations

D1f,...,an. Recall that the commutator of two elements 61,62 of D is

The differential systems M1 and M2 are isomorphic (as left D-riodules) because

D1=0D.;

[Dj’ 2102 + 2,0, + ...+ 24P, 541

273

for 1 £ j < n, so the left ideal of D generated by D1 and 2102 ACEERC 1Dn
is the same as the left ideal generated by D1,...,Dn.
(3) When n =1 write z for z, and D for D1.

Consider the differential system M3 with one generator f and one relation
o™ + a,0™'f ! vee v 2 f

1 m

where LPTRRRPL € 0, corresponding to the differential equation
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"f am-1g (
2 +a,(z2) — + ... +a (z)f =0,
azm 1 azm T m

It was observed at 7.1.2 that My is isomorphic to the differential system M4
with m generators f1,...,fm and m relations

Dy = f yuuuy DF 4 =

and

Dfm + a,'fm + oeee + amf1.

§7.3 Dx-modu1es and intersection homology

We can globalise the definition of a differential system. Let X be either
a complex manifold or a complex quasi-projective variety. Denote by OX the
sheaf of holomorphic (respectively regular) functions on X. That is, if U
is an open subset of X (in either the complex topology or the Zariski
topology) then

{holomorphic functions h: U + €}

0y (V)

or

OX(U) {regular functions h: U - C}.

Recall that a regular function h is one which can be expressed locally with
respect to homogeneous coordinates on the ambient projective space as the
quotient P/Q of a homogeneous polynomial P by a locally nonvanishing homo-
geneous polynomial Q of the same degree. A regular function " > is Just
a polynomial function,

A differential operator on X is a sheaf map

§: 0X+0X

such that in Tocal coordinates § is given by a differential operator on a
subset of € with either holomorphic or regular coefficients. Equivalently
for some positive integer k and every open U < X

8(U) & 0y (U) > 0,(U)
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satisfies
LFyLfyqeee[Fy[F5611...01 = 0

for any f,...,f, € 0y (U) where ?j is the operator on OX(U) given by multi-
plication by fj.

The sheaf DX on X is defined by
DX(U) = {differential operators on U}

for U open in X, Note that both OX and DX are sheaves of rings on X, in the
sense that if U is open in X then OX(U) and DX(U) are rings and the
restriction maps preserve the ring structure.

If A is a sheaf of rings on X then a left A-module is a sheaf M on X
such that for each open U in X the abelian group M(U) is an A(U)-module and
the restriction maps respect the module structure.

7.3.1 Definition. A sheaf of rings A on X is called coherent if given any
map of left A-modules

62Ap - Aq

then for all x € X there exist open neighbourhoods U of x in X and finitely
many sections Opseees0, of ker o over U such that Opseees0y generate ker eIU
as anA|U-modu1e. That is, the map

r
(Aly)" > ker o]
given by sending (a1,...,ar) € AW to

a0qly *+ eee *+ a0y € ker o(V)

for V= U is surjective. Equivalently there is an exact sequence of left
A|-modules

0
Ay > APy — A

U
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7.3.2 Theorem, (see e.g. Borel [2, II §3]). OX and DX are coherent sheaves
of rings on X,

7.3.3 Definition. If A is a coherent sheaf of rings on X then a Teft A-
module M is called cokerent if every x € X has an open neighbourhood U in X
such that there is an exact sequence

ApIU - Aq|u - MIU >0

of left A -modules,

Coherent A-modules on X are better behaved than A-modules in general,
Some pathological examples are avoided by imposing the condition of coherence
(cf. Pham [1, §2.6]).

The natural way to globalise the definition of a differential system is
now the following.

7.3.4 Definition, A differential system on X is a coherent left Dx-module
M.

We shall see that differential systems are closely related to intersection
homology as follows. Let X be a nonsingular complex projective variety of
d1mens1on n. Let QX be the sheaf of holomorphic sections of the bundle
AT X where T X is the complex cotangent bundle of X. Then QX is a left
Ox-modu1e. A local section y of QX is given in local coordinates Zyseees2
on X by

n

w(z) = ) a; 5 (2)dz; A ...oadzy
LPATERAY 1" r 1 r
r
where the coefficients a; ; are holomorphic functions of z = (21""’Zn)'
r+1 r

We define d: QX > Oy in local coordinates by

dw(z) = ! ) (aa. /3z ) dz AdZ Ave. AdzZ, .
'i1<...<1‘r 1sksn Tyeeedy L Tp

Given a coherent Dx-modu1e M we define the De Rham complex DR(M) of M to be
the complex
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d d
M 1 M 2 n
0> M—— , 8, M-— q, 8, M... g, 8, M0
X OX X OX X OX

where in local coordinates ZyseensZy the sheaf map dM is given by

dwém=do8m+ L (dz, Ay) 8 Dy.
M 1gkgn k k

(cf. Pham [1, §2.14.2]).

The Riemann—Hilbert correspondence will tell us that, under the De Rham
functor DR, irreducible holonomic Dx-modules with regular singularities
correspond exactly to the intersection sheaf complexes of irreducible
subvarieties of X with coefficients in local systems, up to general ised
quasi-isomorphism.

In order to explain the Riemann-Hilbert correspondence we must define
holonomic Dx—modu]es with regular singularities.

§7.4 The characteristic variety of a DX-modu1e

Let P € D be a differential operator on t". Then we can write

pe L oc (g™
|e|sm ©
o) Q,
1
where a = (ays..50)) € N, o = I ) 0% = D, ...Dnn and

ca(z) € 0. If m is chosen as small as possible then m is called the order
of P, and the principal symbol of P is

o(P) = I ¢ (z) %€ OLEyseee08y]
af=m &

o | % i ) o
where £ = By eee Ep and 0[51,...,gn] is the polynomial ring in Epseeesty
with coefficients in 0. For any m € N we define the mth symbol cm(P) of P
by the same formula.

Let D(m) < D be the set of differential operators of order at most m.

(By convention the operator 0 has order -«), Let £ be the ring

L= ") D(m) /D(m-1)
m20
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with multiplication

(D(m)jv(m-l)) 9 (D(n)jp(l-1)) R D(n+m)jp(z+m—1)

defined by the composition of differential operators
D(m) 8 D(JL) N D(l+m)'

There is an isomorphism
L > 005000561

whose restriction to D(m)/v(m-1) is induced by the symbo]l Oy He shall use
this isomorphism to identify I with the polynomial ring 0[51,...,€nJ.

Now consider a differential system M on t" with a given exact sequence
P > 09> u~o0.
Let M(m) be the image of (v(m))q in M, and let

GrM= 8 .
r m2g um-T)

Then Gr M is a coherent Z-module. Let I be the ideal in T which is the
annihilator of Gr y and let YT be its radical. Then

I={pe€ort,... 5] |pu =0, vu € Gr M}

and

Melpeoe,...e0lakzt, pK € 1},

7.4.1 Theorem, /T'depends only on M, not on the choice of exact sequence
oP » 09 > > 0.

Sketch proof. (For more details see e.g. Pham [1, §2.8]). One shows that
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/T is a homogeneous ideal (that is, it is generated by homogeneous poly-
nomials) and that the following two statements hold.

(i) 1£peo™ andp = o (P) then p € /T if and only if
pou(®) < yliams=r(s)) y pem, sen
where r(s) + = as s+« ,

(ii) If {ﬁ(m)lm 2 0} is another such filtration of M then there exist
As 1 €N such that

M(JL) < ﬂ(m), KA(“ < M(de)

for all 2 2 0.
This 1is enough to prove the theorem.

We can globalise Theorem 7.4.1. Let X be a complex manifold or a non-
singular quasi-projective complex variety as before., Then the sheaf of
rings DX is graded by a filtration D§m) in the obvious way and the sheaf of
rings

can be naturally identified with the sheaf of holomorphic (or regular)
functions on T*X which are polynomial in the variables in the fibre direction.
If U is an open subset of X and

Pe vﬁm)(u)

is a differential operator of order m over U then the symbol o(P) of P is
the image of P under the composition

(m)
o (V)

(m)
D, (U) » T Gr D, (U).
X Dxm" (U) X

Now let M be a coherent Dx-modu1e. One can always find Zocally a "good
filtration" (Borel [2, II §4], Pham [1, §2.8])
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of M; that is, a filtration which satisfies the conditions
7.4.2 () D(r)M(m) - M(r+m) with equality when m is sufficiently large;

(i1) u(m is a coherent 0 -module.

Then (Tocally)

Gr M= @ ;A-(-"T_—r)-

is a coherent sheaf of Gr Dx-modules, and its annihilator I is a coherent
sheaf of ideals in Gr DX' lioreover locally v/T is a coherent sheaf of ideals
in Gr Dy which is independent of the choice of filtration. This means that
/T is well defined globally as a sheaf of ideals in Gr DX’ which is a sheaf
of functions on T*X. The set of zeros of this sheaf of ideals is a closed
analytic (or quasi-projective) subvariety of T"X called the characteristic
vartety

7.4.3  Ch(M)

of M. Since /T is generated by elements which are homogeneous polynomials
in the variables Eyseverky of the fibre directions of T*X it follows that
Ch(M) is a conical subvariety of T*X, i.e., it is invariant under scalar
multiplication in the fibres of T"X.

§7.5 Holonomic differential systems

It is easy to prove the following lemma.

7.5.1 Lemma. If P € D(m) and Q € D(Q) then the commutator [P,Q] of P and Q

is an element of D(Q+m'1) and

(tp,q1) = L 2f 39 _ of g

a
2+m-1 1gign 96§ 927 9Z; 9k

where f = cm(P) and g = UE(Q)'
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7.5.2 Definition. If f and g lie in [51,...,gnJ then the Poisson bracket
{f,q} € 0[51,...,5n] of f and g is defined by

(Fgy = L 2f 29 _ 3f ag
1gign 964- 3%§ 9Z; %y

7.5.3 Theorem. (cf. Pham [1, §2.9], Sato, Kawai and Kashiwara [1]). If M
is a differential system on ¢" and YT is defined as in §7.4 then vT is
involutive, in the sense that if f € /T and g € /T then {f,g} €T .

This theorem can be globalised in the obvious way.

If X is a complex manifold then T*X has a holomorphic symplectic form w
defined in local coordinates by

w = Z d€. A dz,,
1Sisn 1

That is, w is a holomorphic section of A2 (T*X) such that

dw =0

and when elements of the fibres of AZT*(T*X) are identified with skew-
symmetric bilinear forms on the tangent spaces to T the skew-symmetric
bilinear form defined by w on each tangent space is nondegenerate.

Theorem 7.5.3 has an infinitesimal counterpart in terms of this symplectic
form w,

7.5.4 Theorem. Let n be a nonsingular point of the characteristic variety
Ch(M) of a differential system M on X. Then

1
(T, Ch(M))™ = T Ch(M)

*
where L denotes the orthogonal complement in Tn(T X) with respect to the
holomorphic symplectic form w,

It follows immediately from 7.5.4 that if the characteristic variety
Ch(M) is nonempty then its dimension satisfies

127



dim Ch(M) 3 dim T'X - dim Ch(M),
i.e.
7.5.5  dim Ch(M) 2 dim X.

7.5.6 Definition, A differential system M on X is called holonomic if M = 0
or

dim Ch(M) =n

where n is the dimension of X, Equivalently for every nonsingular point n of
Ch(M) we have

1
(T Ch())* = T ch(M).

*
Such a subvariety of T*X is called a Lagrangian subvariety of T X.

Holonomic differential systems used to be called "maximally overdetermined";
"overdetermined" because the number of independent equations is greater
than or equal to the number of unknowns (otherwise yT = 0 so the system is
not holonomic) and "maximally" because yI is as large as possible (equiva-
lently the characteristic variety is as small as possible).

§7.6 Examples of characteristic varieties

Consider the differential system M1 on € defined by one generator u and one

equation

7.6.1 (2D - @)% =0

where o € €, q € N, z is the coordinate on € and D = g%. The filtration
WO cult) <

of M1 defined by this choice of generator u is given by
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- p(m

Mgm) u

= {am(Z)Dmu + et ao(z)u|aj(z) €0,0sjsm)

Hence Mgm) /M

M1(m)/M1(m-1)

(m-1)
1

. The Gr D-module structure on

is generated as an (O-module by the image of D™ in

- (m) ,, (m-1)
Gr M1 =@ M1 /M1

(m-1) (M) and i

is such that if p € D(m)/D € Gr D is represented by P € D

X € Mgl)/Mgl_1) < Gr M is represented by X then px is the image of PX in

Mﬁ“"‘)/mg“""” < Gr M.

Thus when the symbol is used to identify Gr D with O[£] the image in
Mgm)/Mgm_1) of D"u is gmu. Hence Gr M is generated as an O[£]-module by u.
Moreover if

am(z) £ 4 L+ a,(2) € 0[g]
then
2,(2) ey e w31 gor 055 5m
SO
m

(am(Z)E ol ao(z))u =0

if and only if
J
(z =0
aJ( ) E%u
for 0 < j < m, and this happens if and only if

J (3-1)
aj(z) D'u € M1
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for 0 < j s m. Buta,(z) Dju € ng_1) if and only if there exist
bo(z),...,bj_1(z) € 0 such that

3y - -1
a;(2) D°u = by (2) D7 Tu + ...+ by (2)u,

i.e. if and only if aj(z) gj is the symbol of some P € D such that Pu = 0.
In our case Pu = 0 if and only if

PeED(zD - q)d

S0 aj(z) gdu = 0 if and only if (z£)9 divides aj(z) g9, Thus Gr My s
generated as an O[g]-module by one generator u with relation

(zg)qu = 0.

Thus the annihilator I of Gr M1 in O[g] is the ideal generated by (zg)q and
/T is generated by z£. Thus

Ch(M) = {(z,£) € T'C|z£ = 0)

{(2,6) €T'C|z = 0 or £ = 0}.

We can choose a different set of generators and relations for M1 as
follows. Let

uj = (20-0)37 "y for 15 isaq.

Then ug=u S0 u1,...,uq generate M1 with relations

+au., 1<j<m,

Z Du, = u.
U5 = Yje j

zDu_ = .
Up = oup

With this set of generators Gr M1 becomes the O[g]-module generated by
u1,...,uq with relations

130



= < i <
z guj 0, 1sjsm,

Thus in this case both I and /T are the ideal generated by zf .

M1 extends to a differential system M on P1 =T U {o} as follows. Let w
be the local coordinate on P1 - {0} given by

for z € € - {0} and such that w takes the value 0 at ». Then on € - {0}

oo d__dwd_ _1d__
D=z =2gmgm "z "

d . . . . R
where D = . Thus if M, is the differential system on P, - {0} defined

by one generator u and one relation
(wa +a)% =0

then there is an obvious isomorphism between the restrictions of M1 and M2
to € - {0}. Hence there is a Dy-module M on X = P, such that

Mg =M, M |1>1 - {0} “Mpe

*
The characteristic variety Ch(M) is the subvariety of T P1 which is the union
of the zero section and the fibres over 0 and ». Since dim Ch(M) = 1 = dim P1,
M is holonomic.

7.6.2 Remark. Of course when X is one-dimensional a coherent Dx-modu1e M
is holonomic if and only if its charactersitic variety Ch(M) is not equal to
T*X,ror equivalently the sheaf of ideals /T is nonzero. In particular a
nonzero differential system on X defined locally by one generator and one
nonzero equation is always holonomic.

The differential system M on Ez defined by one generator u and one

equation

7.6.3 Dfu + Dgu + alzy,2,)u = 0
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has characteristic variety Ch(M) defined by
2 2
51 + 52 =0,
*
in T°C%. Thus dim Ch(M) = 3 > dim € so M is not holonomic.

§7.7 Left and right Dx-modu1es.

The sheaf of holomorphic (respectively regular) vector fields on a non-
singular complex variety X (i.e. holomorphic or regular sections of TX) can
be regarded as an Ox-submodule of the sheaf of rings DX. In local
coordinates a vector field

]
a1(;) 377 + ... +va(z) 2%,

where a1(z),...,an(z) are holomorphic or regular functions of z = (21""’Zn)’
is identified with the differential operator

a1(z)D1 + ool an(z)Dn

given by differentiation along the vector field. As a sheaf of rings DX is
generated by these vector fields together with OX. Thus a Dx-module structure
on an Oy-module M is determinedby the action on M of these vector fields.

Wle have been working with left Dx-modu]es but we can go freely between
left Dx-modules and right Dx-modules. (For more details see e.g. Pha
[1, §2.13]). If v is a holomorphic vector field on an open subset U of X and
if w is a holomorphic n fom on U (i.e. a holomorphic section of AnT*X over
U) then we can contract v and w using the dual pairing between TX and T*X
to get a holomorphic (n-1) form ivw on U, Clearly ivw is regular if both v
and w are regular, If n = dim X then the Lie derivative of w along v is
the n-form

Lie,(w) = d(ivw).

Given a left Dx-module M we can put a right Dx-modu]e structure on the tensor
product
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_ N
Q(M) = Oy GOX M.
*
where Q; is the sheaf of holororphic (or regular) sections of AnT X, as
follows. If U is an open subset of X and if w € QQ(U), u €uMU), fe o)

< DX(U) and v is a holomorphic (or regular) vector field on U define

7.7.1 (w8 u)f

w 8 fu,

(w B u)v = -Liev(m) 8u-wb vu.

This defines a right D,-module structure on Q(M).

The motivation for this definition is the usual process of identifying
functions with distributions by multiplying by a fixed differential form of
top degree. It is not hard to check (see e.g. Bernstein [1, Lecture 1 §4],
Borel [2, VI §3], Pham [1, §2.13]) that @ is a functor which induces an
equivalence of the category of left Dx-modules with the category of right
Dx-modu1es.

§7.8 Restriction of Dx-modules

Let Y be a nonsingular subvariety of a nonsingular variety X, let iz Y = X
be the inclusion and letM™ be a Dx-module. One would Tike to be able to
restrict the Dx-module M to give a DY-module in some sensible way., If Y is
an open subset of X then this is easy (because then open subsets of Y are
open subsets of X) so we may as well assume Y is a closed subvariety of X.

It is not hard to restrict M as a sheaf on X to a sheaf M|Y onY., IfU
is an open subset of Y we set

MIY(U) = 1im M(V)

where the limit is over all open subsets V of X containing U. Then if y €Y
the stalk of M|Y at y is the same as the stalk of M at y.

The sheaf M|Y is an OXIY-module, and so is the sheaf OY. The tensor
product

7.8.1 %M =0, 8, M|

X|Y
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has a natural OY-module structure given by f(g 8 u) = fg 8 u. In order to
make i°M a DY-module it is necessary to define the action of holomorphic
vector fields (cf. §7.7).

Suppose that U is an open subset of Y and u € M|Y(U). Then there is an
open subset of V of X such that U = Vn Y and

u = E]Y

for some U € M(V). By choosing U and V small enough we can assume that
there are coordinates ZI""'Zn on V and YyseessYy ON u, If

v = E a.(y) 9
1gigm 1 ¥
is a holomorphic vector field on U and f € OY(U) is a holomorphic function
on U then v(f) is the holomorphic function on U given by

Now define the action of v on the element f 8 u of i°M(U) by

7.8.2 v(fBu)=v(f)Bu~+ I' fv(zi) 8 g%i
15isn ily

It can be checked (see e.g. Borel [2, VI 4.1]) that this action is independent
of the choice of coordinates and defines a DY-module structure on i°M. In a
similar way given any holomorphic map w: Y - X and a Dx-module M we can

define a DY-module mM.

7.8.3 Example. Suppose M = DX. Locally we can choose coordinates LITREEL
such that Y is defined by

Then i°M is the locally free DY-module with local basis the set of all

monomials in D1""’Dd where

9
D, = =2,
19z
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7.8.4 Example. Let X = € and let

_ 2 _ 2
Y = {(21,22) €t |z2 =z}
He can identify Y with € via the isomorphism
2
z€elH (z,z2°) €Y,

Let M be the D,-module with one generator u and two relations

X
(D? + Dg)u =0,
z,u = 0.

1

We can change coordinates on Iz from (21,12) to (z,w) where z = z, and

W=z, - z?. Then z, =12 and Z, =W+ 2" so

9 _ 9 _
37 " D1 + 2z DZ’ i Dz.
Hence
Jn2 . pd) - pd (2 . 2 j+2
DZ(D1 +D3) = Dy (57 - 22D,)" + Dy
32 J ) j+1 2, ~j+2
= (52) D, (4z (57) +2) D"+ (1 + 4z°) D,
and
J - J
02 z1 = z1 D2

Thus i°(M) is the quotient of the free DY-module with basis
0y u|jz0

by the submodule generated by
0%0%u - (2 + 4z0)03*Nu + (1 + 42P)0d P |4 2 0}
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and
zDju|jz0)

where z is the standard coordinate on Y = € and

D=4 -

Equivalently i°(M) is generated as a DY-module by u and v = Dzu subject to
the relations

7.8.5 Remark. Suppose that F is a left exact covariant functor from the
category of quasi-coherent Dx-modu1es to the category of quasi-coherent DY—
modules. (Quasi-coherence is a technical condition which is weaker than
coherence; for the definition see Bernstein [1, §1.1], Borel [2, VI 1.4],
Hartshorne [1, II §5]). He can modify the definition of right derived
functors given in §2.6 as follows. Given a DX-module M choose an injective
resolution

d d

0k-1, —25 1, !

_— 12 > ..
of M (as a quasi-coherent DX-module) and define RF(M) to be the complex

Fd,) F(d)
0~ K1) F(1,) F(Ip) * oo

If F 1s left exact then this complex is independent of the choice of
injective resolution up to quasi-isomorphism. Similarly if F is right
exact then we can define the left derived functor LF of F by reversing all
arrows in the definitions. LF(M) is a complex of DY-modu1es defined up to
quasi-isomorphism.

Sometimes it is convenient to think of the restriction of a vx-modu1e M
to Y as a complex of DY-modules rather than a single DY-module. He can
regard i° as a right exact covariant functor from the category of quasi-
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coherent Dx-modules to the category of quasi-coherent vY-modules, and thus we
can consider its left derived functor Li°. It turns out to be convenient to
make a dimension shift and so we define

7.8.6  i'(M) = Li°(M) [d]
where
d =dimX - dim Y
(Borel [2, VI §4.2], Bernstein [1, §1.8]). It is often useful to regard
either the complex i!M or the DY-module H® i!M as the restriction of M to Y.

From our point of view the main reason for this is the following theorem.

7.8.7 Theorem. (Kashiwara). Let i: Y X be a closed embedding of non-
singular varieties. Then the functor

is an equivalence between the category of holonomic Dx-modules with support
in Y and the category of holonomic DY-modules.

For the proof of this theorem see Bernstein [1, §1.10, §3.1] or Borel
[2, VI §7.11].

§7.9 Regular singularities

7.9.1 Definition. A Dx-modu1e M on a nonsingular variety X is called a
connection if it is a coherent locally free Ox-modu1e for the OX-structure
coming from the embedding OX - DX.

7.9.2 Remark. In fact any Dx-module which is coherent as an Ox-modu1e is
locally free as an OX-modu1e (Bernstein [1, §2.1(a)], Borel [2, IV, §1.1]).

7.9.3 Remark. Let M be a coherent locally free OX-mndule. Then Tocally M
is freely generated as an Ox-module by finitely many sections Upsesaslp, SAY.
This means that M can be identified with the sheaf of holomorphic (or
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regular) sections of a complex vector bundle V of rank m over X. If moreover
Mis a Dx—modu1e then there exist local sections F?j of ox such that

D. u, = Z

k
Vd qgksm Fig Y

The local sections r?i define a flat connection on V in the sense of
differential geometry. Flatness corresponds to the commutativity condition

[Di’Dj] =0,
7.9.4 Remark. Let M be a connection on X generated locally as an Ox-module
by a basis of sections {u1,...,um}. Then Gr Mis generated locally as an
OX[51,...,gn]-modu1e by Upsonnsliy with relations

gqY; = 0, tsisn, 1sism
Thus vT is locally the sheaf of ideals generated by 51""’En in Ox[g1,...,gn].
Hence the characteristic variety Ch(M) of M is the zero section in ™. In

particular any connection is a holonomic Dx-module.

7.9.5 Example. Consider the differential system M on € defined by one
generator u and one equation

(20 - a)"u = 0,
where o € € and m € N. Then M|c_{0} is generated by the global sections
up =, vy (zD - a)j'1u, 1<jsm,
with relations
7.9.6 Duj = . 1<j<m
Du, =3 u.
If a £ N the gpace of solutions of M in OX over any simply connected subset
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of T - {0} is spanned by the solutions
u=2* (log z)J, 0sjsgsmi,

MlE-{O} is a connection. But M has no sections over any neighbourhood of
0 in € so M itself is not a connection. It is the presence of z ' factors
in the relations 7.9.6 which prevents M from being a connection over €,

If X is quasi-projective and nonsingular of dimension one (i.e. X is a
nonsingular curve) then we can choose an embedding of X in a nonsingular
projective curve X* such that X™X is a finite set of points. Fix s € x*
and choose a local coordinate z on a neighbourhood U of s in X* such that z
vanishes at s. Let D = d/dz be the corresponding differential operator on U.

7.9.7 Definition. Let M be a holonomic DX-module. Then M has a regular
singularity at s if U and z can be chosen such that

Mly-(s)

is a connection on U-{s} and is generated as a DU_{S}-module by a finitely
generated OU-module which is invariant under the action of zD. That is, on
U-{s} the module M is defined by a system of equations in variables Upseessl
such that for all i we can write

p

z Du, = z ai. u.
1sjsp W 9

where 35 € OX(U). Equivalently

Du, = Z —li u
Vo1gisp

where the a5 extend to holomorphic functions of z on U.

In fact a system M on € has a regular singularity at 0 if and only if
near 0 it is isomorphic to a finite direct sum of D-modules of the form

0/0(zD - o))"
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form€Nand a € C - N (see e.g. Pham [1, §2.11.6]).

7.9.8 Definition. The holonomic Dx-modu]e M has regular singularities if it
has a regular singularity at each s € x*. It is not hard to check that this
definition is independent of the choice of x*.

7.9.9 Definition. A complex of Dx-modu1es is holonomic (and has regular
singularities) if all its cohomology sheaves are holonomic (and have regular
singularities).

Finally if M is a holonomic Dx-module on a nonsingular variety X of any
dimension we make the following definition,

!
7.9.10 Definition. M has regular singularities if the restriction i'M of M
to any closed nonsingular curve C in X with inclusion map i: C =+ X has
regular singularities.

For more details on holonomic Dx-modules with regular singularities see
e.g. Borel [1], Bernstein [1], Kashiwara and Kawai [1], Mebkhout [2].

§7.10 The Riemann-Hilbert correspondence

7.10.1 Definition., Let A be a nonsingular subvariety of a nonsingular
variety X. The conormal bundle to A in X is

* * 0
TpX = lyeTx|n(ly) €A, ye (Tﬂ(y)A) }

L3
where m:T X >~ X is the projection and (Tﬂ(y)A)O is the annihilator of the
*
tangent space Tﬂ(y)A to A at m(y) in the dual Tw(y)x of Tﬂ(y)X.

If A is a singular subvariety of X with
A = {nonsingular points of A}
* *
then we define T,X to be the closure in T X|A of

*
TAX.
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*
Note that TXX is the zero section of T*X.

*
7.10.2 Proposition. (see e.g. Pham [1, §2.10,1]). Let V=T X be an
*
irreducible Lagrangian conical closed subvariety of T X. Then the image
*
(V) of V under m:T X - X is an irreducible subvariety of X and

is the conormal bundle to V in X.

Recall from §7.4 and §7.5 that if M is a holonomic Dx-modu1e then the
characteristic variety Ch(M) of M is a closed conical Lagrangian subvariety
*
of T X.

7.10.3 Corollary. If M is a holonomic DX-module then every irreducible
component V of Ch(M) is of the form

X

(%% ]

where S is an irreducible subvariety of X.

7.10.4 Lemma. (Pham [1, §2.10.3]). Let M be a holonomic Dx-modu1e. If
V1,...,Vp are the irreducible components of Ch(M) and if

V. = T. X
i Si
let
Ss= U Si .
Sifx

Then the restriction of M to X-S is a connection (possibly zero).

Let M be a connection on a quasi-projective variety X. The sheaf of
horizontal sections of M is the sheaf F on X such that if (Z1""'Zn) are
Tocal coordinates on an open subset V of X then

F(V) = {u € M(V)[Du =0, 1sisn}
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It is easy to check that this is a good definition, independent of the choice
of local coordinates. MNow suppose that M is freely generated as an Ox-modu1e
over V by sections Upseenslp of M(V) with

k

= Z
D.u, Fij uk.

T <ksm

Then a general element u of F(V) can be written in the form

where f1,...,fm € OX(V) are functions on V satisfying

of . .
M) ik i
92 ygkgm

for 1 s isnand 1 s jsm The theory of existence and uniqueness of
local solutions of differential equations implies that if V is simply
connected then the restriction to V of F is isomorphic to the constant

sheaf Iv, or equivalently the restriction map
F(V) ~ Fy

is an isomorphism for all x € V. This means that F defines a local system L
on X with L =F (cf. §3.9).

He can now give a classification of irreducible holonomic Dx-modules which
is itself sometimes called the Riemann-Hilbert correspondence (cf. Borel
[2, IV], Deligne [3], Bernstein [1, §53.14 and §4.1]).

7.10.5 Theorem. (i) Let Y be a closed irreducible subvariety of a non-
singular variety X, and let L be an irreducible local system on a dense open
nonsingular subvariety U of Y, Then there is a unique irreducible holonomic
DX-module with regular singularities, denoted M(Y,L), whose support is
contained in Y and whose restriction to U is a connection such that the local
system defined by its sheaf of horizontal sections is L.

(ii) Any irreducible holonomic D,-module with regular singularities is

X
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isomorphic to M(Y,L) for some Y and L as in (i).

(i1i) M(Y',L') is isomorphic to M(Y,L) if and only if Y = Y' and the
restrictions of L and L' to some nonempty open subset of Y, on which they
are both defined, are isomorphic.

In order to relate this form of the Riemann-Hilbert correspondence to one
which involves intersection cohomology, we need the following theorem (cf.
Bernstein [1, §5.9]).

7.10.6 Theorem. Let Y be a closed irreducible subvariety of a nonsingular
n-dimensional variety X and let L be a Tocal system on a dense open non-
singular subvariety of Y. Then the De Rham complex DR(M(Y,L)) of M(Y,L)
0> M(Y,L) »al 8 MY,L)~...>a) 8 MY,L) >
X "0y X 0y

has support in Y and its restriction to Y is generalised quasi-isomorphic to
the intersection sheaf complex ngY L) with a shift in degree.

The idea of the proof of Theorem 7.10.6 is to check that after a shift in
degree DR(M(Y,L)) satisfies the conditions which uniquely characterise
;QEY L) up to generalised quasi-isomorphism (cf. §5.4). These conditions
’
are

7.10.7 (a) There is a subvariety L <Y of complex codimension at least f
such that L is defined over Y - Z and

Liv,u) vz

is generalised quasi-isomorphic to the complex which is

L|Y_Z

in dimension i = -2n and 0 in other dimensions, where n is dim Y.

(b) For all x € Y the cohomology H_1(1gzY L) x) of the stalk complex of
- ’ ’

LEEY L) at x is a finite-dimensional vector space for all i and is O when

i> én.
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(c) For all i< 2n

ding {x € Y[ W (Lgy ) ) # 0} < i-n.

(d) For all i < 2n

dimg {x € Y [H(Ie7y |)) # 03 < i-n

where j = 2n-i and Hi(;gzx L)) denotes the kth hypercohomology group with
- ’

compact supports of IC(Y L) restricted to a small open neighbourhood Nx of

x of the form described in §3.8,

Using these Theorems 7.10.5 and 7.10.6 one can obtain the Riemann-Hilbert
correspondence in the following form, first proved by Kashiwara [1] and
Hebkhout [1] in the holomorphic case and Beilinson and Bernstein in the
algebraic case (see Bernstein [1] and Borel [2, VIII]).

7.10.8 Theorem . The De Rham functor DR induces a one-to-one correspondence
between isomorphism classes of irreducible holonomic Dx-modules with regular
singularities and generalised quasi-isomorphism classes of intersection sheaf
complexes of irreducible closed subvarieties of X with coefficients in
irreducible local systems.

7.10.9 Remark. Bounded constructible sheaf complexes on X which satisfy
the conditions 7.10.7 (b), (c), (d) above with strict inequality in (c) and
(d) replaced by weak inequality and without the normalising condition (a)
are called perverse sheaves. The Riemann-Hilbert correspondence can be
generalised if one uses the category of perverse sheaves. In fact the De
Rham functor gives an equivalence of categories between the category of
holonomic D-modules with regular singularities on X and the derived category
of perverse sheaves of X (Borel [2, VIII 14.4], Bernstein [1, §5.9]). (The
derived category of perverse sheaves is obtained from the category of
perverse sheaves by formally inverting all quasi-isomorphisms, so that they
become isomorphisms.) By considering only the irreducible objects in each
category this gives the Riemann-Hilbert correspondence in the form above.
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8 The Kazhdan-Lusztig
conjecture

To complete this introduction to intersection homology we shall describe
briefly the proof of a conjecture of Kazhdan and Lusztig (Kazhdan and
Lusztig [11, [2]) concerning the representation theory of Lie algebras.

The proof (following Bernstein [1]) involves translating the problem first
into the language of D-modules, then via the Riemann-Hilbert correspondence
into a problem involving intersection cohomology and finally using g-adic
intersection cohomology into the theory of Hecke algebras.

First it is necessary to review some basic facts about the representation
theory of complex Lie groups and Lie algebras. For more details see e.g.
Atiyah [1], Bourbaki [1], Chevalley [1], Jacobson [1], Kac [1], Springer [1].

§8.1 Verma modules

Let K be a compact Lie group. For simplicity let us assume that K is
connected and simply connected. Let k be the Lie algebra of K and let

g=rt BR (8

be its complexified Lie algebra. The Lie bracket [ , ] on g is the unique
complex bilinear extension of the Lie bracket on k.

There is a unique connected, simply connected complex Lie group G whose
Lie algebra is g. We shall assume for simplicity that G is semisimple; that
is, that its Lie algebra g has no nonzero abelian ideals. For many reasons
mathematicians have long been interested in the complex representations of
such complex Lie groups G and their Lie algebras g.

Let T be a maximal torus of G and let NG(T) be its normaliser in G. Then

W= NG(T)/T

is a finite group called the Weyl group of G.
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8.1.1 Example. We can take

K = su(n),

G = SL(n;C),

T = {diagonal matrices in SL(n;C)},
W=z,

n
where Zn denotes the symmetric group.

Let h be the Lie algebra of T and let h* be its dual vector space. Then
a € h*-{0} is called a root of g if there exists some nonzero £ € g such
that

Ch,g0= alh)g

for all h € h. Let g be the set of all £ € h such that
[h,&] = alh)g

for all h € h, Let r be the set of roots of g. Then

g=he (8 g%,
0€L
The Weyl group W acts on h and h* and permutes the roots. W is generated
by elements which act as reflections in hyperplanes. We can choose a
fundamental domain (called a Weyl chamber) for the action on W on h* which is
a cone in h* bounded by hyperplanes.
Let h: be the chosen Weyl chamber (called the positive Weyl chamber).
Then o € & is called a positive root if

al(x) >0

*
for all x in the interior of h+. Let z* be the set of positive roots. Then
T is the disjoint union of £* and -z*. Let
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[

N = g

]
aern?t
Then N is a nilpotent subalgebra of g. There is a partial order on r*
defined by-

a2 B & alx) 2 B(x) wx €h,.

Now let M be a g-module, that is, a complex representation of g. Then M
is a complex vector space (possibly infinite-dimensional) with an action of
g given by a complex linear map

p: g » End(M) = {a:M > M |o complex linear}
which takes the Lie bracket on g to the usual Lie bracket

[G,B] =af - Bo

on End(M). Assume that M is finitely generated, i.e. that there exist
MysoeesMy € M such that the only g-submodule of M containing Moo M is
M itself.

If we restrict the representation p of g to the abelian subalgebra i (or
equivalently think of M as an h-module) then I decomposes as a direct sum

M= o M
XER*

where

X = (m € M|hm = X(h)m, Vh € h}.

x is called a weight of M if X # 0 and a highest weight if in addition n < x
whenever M1 # 0. If o €% and € € g® and m € M and h € h then

h(&m) = [h,&Jm + &(hm)

a(h)m + &£(x(h)m)

(o#x) (h)&m
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SO

e X

But if « € ' then a + X > X. Thus if x is a highest weight and o € z* then
M*X = 0 so ‘

g = 0,
Hence if x is a highest weight then
NMC=0

M is called a highest weight g-module if it is generated by a single element
m € MX where X is a highest weight, Any finitely generated g-module has a
filtration

M=H oM 2. .2H =0

by g-submodules Mj such that the quotient g-modules Mj/Mj+1 are all highest
weight modules.

For each X € h* there exists a unique (usually infinite-dimensional)
g-module HX generated by one element mX satisfying

8.1.2 (i) gmx =0 forall g €N,

ii hm = X(h f 11 h € h,
(i) n ( )mX or a

with the universal property that every other g-module ! generated by one
element m satisfying (i) and (ii) is a quotient module of M via a map which
sends m to m, The module M is called the Verma module for g with highest
weight x. X

If P is a proper submodule of M then every weight n of P satisfiesn < X .
From this it is easy to see that any sum of proper submodules of M 1is again
a proper submodule, so M has a unique maximal proper submodule. Equiva]ent]y
MX has a unique irreducigle quotient module called LX. This module is the
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unique irreducible g-module with highest weight X.

A Verma module r& has a filtration by submodules

M = M .ol =0
X ”x,o2 Xo1 = 2"

such that the quotient modules M " /H i+ are all irreducibie. This
filtration is not necessarily un1que but the modules H / ”X,J+1
uniquely determined by !_ up to isomorphism and change of order. It turns
out that these modules are all of the form L¢ where ¢ € h* and ¢ S X, and
moreover ¢ + p lies in the same Weyl group orbit as x + p where

!

acst

are

1
Z
is half the sum of the positive roots of g. The module L_ occurs exactly
once in the list. An important problem in the study of Verma modules (and
hence of all representations of g) is to determine how many times L¢ occurs
in the 1ist when ¢ # x.
This problem can be rephrased using the Grothendieck group of g-modules.

This is the abelian group generated by isomorphism classes [M] of finitely
generated g-modules M with relations

(M, = [M,1 + [M]

for every exact sequence 0 - M1 - H2 > M3 + 0 of g-modules. In the Grothen-
dieck group we can formally write

8.1.3 M7= 1L b [L.]
o+p€H (x+p) X¢~ ¢

for some integer coefficients b_ . Our problem then becomes that of
determining these coefficients. The coefficient bXX is always 1, but the
other coefficients are more mysterious.

The matrix (b ) where x+p and ¢+p run over a fixed Weyl group orbit
in h is lower tr1angu1ar with respect to the partial order < on h* and has
ones on the diagonal. Hence this matrix is invertible. It is more convenient
to work with the inverse matrix (ax¢) defined by the equation
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8.1.4 [L]-= 2 a [.]
X d+p€W (x+p) X¢ ¢

in the Grothendieck group.

The Kazhdan-Lusztig conjecture (see Kazhdan and Lusztig [1], [2],
Brylinski and Kashiwara [1], Beilinson and Bernstein [1]) identifies the
coefficients a in the special case when x + p and ¢ + p Tie in the Weyl
group orbit of -p. If wand v lie in the Weyl group W let us write a = for

wv
ax¢, Lw for LX and Hw for MX where
X = w(-p) - ¢}
and
¢ = v(-p) - p.

Then the Kazhdan-Lusztig conjecture is concerned with the coefficients QL
satisfying

815 ML= L oa, )

in the Grothendieck group. Following Bernstein [1] we shall first identify
these coefficients in terms of Dx-modu]es for a suitable X.

8.2 D-modules over flag manifolds

Recall from §8.1 that the Lie algebra g of G can be decomposed as
g=ho (0 g%.
€L
Let B be the Borel subgroup of G whose Lie algebra is
(¢}
b=ho (8@ L9
(1)
Then
X = G/B
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is the flag manifold of G.

8.2.1 Examples. If G = SL(n;C) as in 8.1.1 then we can take B to be the
subgroup of SL(n;C) consisting of upper triangular matrices. Then X can be
naturally identified with the space of all flags

N
SV,S...cV =t

such that Vj is a j-dimensional subspace of t" for each J.

The flag manifold X is a nonsingular complex projective variety and G
acts transitively on X. Hence if M is a DX-module then the space T'(M) = M(X)
of global sections of M has a natural g-module structure defined as follows.

Given any £ € g the infinitesimal action of G on X induces a vector field
Xxp g oon X. Here gx is the tangent at x to the smooth path

t e exp(tg).x (t €R)

in X where exp: g +~ G is the exponential mapping (see e.g. Warner [1]). In
Tocal coordinates 21""’Zn we can write

- 9 9
I RN T

We can define a differential operator D, on X by

g
Dg = a1(z) D1 + . + an(z) Dn

in local coordinates. This gives a Lie algebra homomorphism from g to the
space DX(X) of differential operators on X defined by

£ DE.

Hence there is a g-module structure on I'(M) = M(X) defined by

£.0 = Dgo, E€g , og€T(M.
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The transitive action of G on X = G/B restricts to an action of B which
has finitely many orbits, corresponding to the finitely many double cosets
in BNG/B. The Bruhat decomposition tells us that these orbits are indexed
by the Weyl group W. If we€EW = NG(T)/T is represented by w f NG(T) then
the B-orbit Xw of X indexed by w is Ehe B-orbit of the COS?t wB in X, i.e.
the image in X of the double coset BwB in G. The closure Xw of any B-orbit
Xw in X is a union of B-orbits.

We wish to find Dx-modules Ay and My supported on Xw such that the
associated g-modules F(Aw) and r(uw) are naturally isomorphic to L and the
Verma module ”w' How can we describe these Dx-modules Ay and “w? We can
use the Riemann-Hilbert correspondence (57.10) between Dx-modules and inter-
section sheaf complexes of subvarieties of X.

Consider the intersection sheaf complex ;g%w of the irreducible closed

subvariety iw of X. By the Riemann-Hilbert correspondence (7.10.5 and
7.10.6) there exists a unique irreducible holonomic Dx-module Ay with
regular singularities such that the De Rham complex DR(Aw) of A, 1s

generalised quasi-isomorphic to IC; with a dimension shift.
W
Let T be the sheaf conp]ex on X which is the extens1on by zero of the

trivial sheaf complex EX on Xw In other words T is zero when i is nonzero,
W
and when i is zero its restriction to Xw is the constant sheaf defined

by € and its stalk at any x £ X is zero. There is a D,-module y
on X supported on X whose De Rhan comp]ex DR(uw) is generalised quasi-
isomorphic to the sheaf complex T with a dimension shift.

8.2.2 Theorem. (Bernstein [1], Beilinson and Bernstein [1], Brylinski and
Kashiwara [1]). The g-modules P(uw) and P(xw) are isomorphic to Mw and Lw‘

It follows that for suitable integers d(v,w) coefficients 2y defined
by equation 8.1.5 can also be defined by the equation

8.2.3 ICy ~ Da 1 [d(v,w)]
'_Xw vew W v

where n denotes the equivalence relation on the free abelian group of
generalised quasi-isomorphism classes of bounded constructible complexes of
sheaves on X given by quotienting by the subgroup generated by all elements
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of the form
A+ -8

such that there is a short exact sequence
0+ A"~>B -»C ~»0.

Since A.[n] N (-1)nA' for any complex A. we can replace 8.2.3 by the equation

8.24 1¢ n L (-1 T

Xw vel

The Euler characteristic of a complex ¢ of abelian groups with only
finitely many nonzero homology groups is by definition

x€) = I 0l gimn ).
ieZ

It is easy to check that if
0+A’+B’+C.+0
is a short exact sequence of complexes then

X(A) + x(C) = x(B).

Thus by restricting 8.2.4 to the orbit XV and taking Euler characteristics
of stalk complexes one finds that

8.2.5 Ay = 0

unless X < Xw and

dim X_ - dim X ~ oo
v W Loent gin IH)]( (X,)
iz0 v

8.2.6 a,, © (-1)

if Xv < Xw where
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. i g
dim IHXv (Xw)

denotes the dimension of the stalk of the(-i)th conomology sheaf of [

1Cq at any
s W
point in X .
v

So the question arises whether we can work out the dimensions of these
intersection cohomology groups. The answer is that in general we cannot
give explicit formulas for their dimensions but we can express them in terms
of some interesting polynomials related to Hecke algebras, which can be
computed by recursive formulas, given enough time and patience.

The first step is to consider the whole set up in characteristic p where

p is a prime number, as in Chapter 6.

§8.3 Characteristic p

Let us assume that G is an algebraic group aefined over an algebraic number
field R (see Springer [1]) and that m is a prime ideal in R such that R/m

is isomorphic to the finite field F_ with q = pm elements. Let us assume
that the reduction of G modulo 7 is an algebraic group Gq defined over Fq.
As in Chapter 6 when we were considering the Weil conjectures we assume that
m is not one of finitely many "bad" primes for G. Then we can assume that
the reductions modulo m of the Borel subgroup B, the flag manifold X = G/B
and each orbit Xw are respectively a Borel subgroup Bq of Gq, the flag
manifold

X =G /B
q= %758

and an orbit (Xw)q = Xw q of Bq on X . Then if & is a prime different from
’
p the g-adic intersection cohomology sheaf complex

jo
_..)(W,q

and the sheaf complex T; q given by extending the trivial sheaf complex
L]
@),
L Xw,q

on Xw,q by zero satisfy
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dim X - dim X .
2 (_1 w Vv a

8.3.1 Ic; T
'—Xw,q vEW W% q

where the equivalence relation is defined as in §8.2.

The Frobenius mapping (6.2.2) Tifts naturally to actions on ;gi and on
W,q

T& q Let us modify the equivalence relation ~ by considering bounded

coﬁstructib]e complexes of f-adic sheaves together with distinguished
"Frobenius"endomorphisms which 1ift the Frobenius mapping, and quotienting
by the subgroup generated by expressions of the form

A +C -8

for each short exact sequence
0+ A - B. > C. +0

which respects the Frobenius actions. Let us also write
A~ 3%

if A. is the tensor product of B. with a one-dimensional vector space over 01
on which the Frobenius endomorphism acts as multiplication by an algebraic
integer of modulus qJ/Z. Then

8.3.2 ICg ) p..(q) T

g vew W vQ
where pwv(q) is a polynomial in qé such that
P(@) =1
and
Puy = 0

if X, ¢ X while
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(@ =1 (-0 ¢"2din 1} (X)

8.3.3
i20 v ¥

pWV

if Xv < iw' This can be deduced from the Riemann Hypothesis (6.4.3) (see
Kazhdan-Lusztig [2]).

In particular it follows from the local calculation 3.8.1 that if w v

then pwv(q) is a polynomial in qi of degree less than dim X - dim X . In

fact

IH (xw) =0

i
Xy
when i is odd, so pwv(q) is a polynomial in q of degree less than
3(dim Xw - dim Xv)'
Note that if we formally put q = 1 then by comparing 8.3.1 and 8.3.2 we get
dim X - dim X
W v

(1) = (-1) a

wv

for all w, v € W,

§8.4 Hecke algebras and the Kazhdan-Lusztig polynomials.

The Hecke algebra H of the Weyl group W of G with parameter q is an algebra
over the ring Z[qé, q_i] of polynomials with integer coefficients in qi and
q-i. As a module over Z[qé, q'ij it has a basis consisting of 1 and one
element Ty for each w € W. Its multiplication is uniquely determined by the

rules

8.4.1 T, Ty = Ty

"

if w,v € W and dim X dim X + dim X , and
WV W v

"
o

8.4.2 (To* 1)(T0 -q)

if g € W acts as a reflection on h (see e.g. Bourbaki [1, Chapter IV, §2,
Exercises 22, 24]).
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There is a unique involution D: H - H satisfying

8.4.3 D(q?) = q?
and

8.4.4 D(T0 +1) = q-1(ro +1)

whenever g € |l is a reflection.

8.4.5 Proposition/Definition. (Kazhdan and Lusztig [1], Theorem 1.1). For
each w € W there is a unique Cw € H of the form

C =1 + E P (q) 7.5
W W VEl-{W}, vaxw WV v

where va(q) is a polynomial in q of degree less than
3(dim Xw - dim Xv),

satisfying

The polynomials 5wv(q) are called Kazhdan-Lusatig polynomials.

8.4.6 Theorem. (Kazhdan and Lusztig [2]). The polynomials P,y and va
defined by 8.3.2 and 8.4.5 coincide.

Sketch proof. Let G. be the trivial sheaf complex on Xq and if w € V let

Tw,q be the extension by zero of the trivial sheaf complex on X WG as in
§8.3. Cons1der the set of all formal linear combinations with coefficients
in the ring Z[q , q J of bounded constructible complexes of g-adic sheaves
on X_ with distinguished "Frobenius" endomorphisms, modulo the equivalence
relation defined in §8.3. Let H be the submodule generated by the equivalence

classes Tw of Tw q for w € W and the equivalence class of IX . One can show
’ q
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that H has a natural Z[qé, q_é]-a1gebra structure with I; as multiplicative

q
identity and that there is an isomorphism y: H -~ H such that w(Tw) =T, for
all w € W. Verdier duality (see e.g. Borel [1, V §7]) enables one to define
an involution A of this algebra H such that

and
= o]
A(T0 +1) =g (Tc +1)

if o € W is a reflection.
It follows from §8.3 that the intersection cohomology sheaf ;gx

W,q
represents the element

T + ) (@) T

g - P
W ) "% v
vEW-{w} Xvsxw

of H. Moreover ;gi is self dual with respect to Verdier duality by

Theorem 5.4.6 (this %s essentially Poincaré duality) but the Frobenius map
is multiplied by the scalar factor
-dim X
q W

under this duality. It therefore follows from the uniqueness of the Kazhdan-
Lusztig polynomials

(q)

pWV

that

pwv(Q) = pwv(q)
for all wand v in W,
Combining 8.4.6 with 8.3.4 and 8.1.5 we obtain the Kazhdan-Lusztig
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conjecture (proved by Brylinski and Kashiwara and by Beilinson and Bernstein).
8.4.7 Theorem. (Kazhdan-Lusztig conjecture). The coefficients a,, such that

= Loy, o)

in the Grothendieck group of g-modules are given by

dim X - dim X
=(-1) ¥ v

aWV pWV

(1)

where pwv(q) are the Kazhdan-Lusztig polynomials.
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