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Introduction

Fractal geometry will make you see everything differently. There is danger in
reading further. You risk the loss of your childhood vision of clouds, forests,
galaxies, leaves, feathers, flowers, rocks, mountains, torrents of water, carpets,
bricks, and much else besides. Never again will your interpretation of these
things be quite the same.

The observation by Mandelbrot [Mand 1982] of the existence of a “Geom-
etry of Nature” has led us to think in a new scientific way about the edges of
clouds, the profiles of the tops of forests on the horizon, and the intricate
moving arrangement of the feathers on the wings of a bird as it flies. Geometry
is concerned with making our spatial intuitions objective. Classical geometry
provides a first approximation to the structure of physical objects; it is the
language which we use to communicate the designs of technologicakproducts,
and, very approximately, the forms of natural creations. Fractal geometry is an
extension of classical geometry. It can be used to make precise models of
physical structures from ferns to galaxies. Fractal geometry is a new language.
Once you can speak it, you can describe the shape of a cloud as precisely as an
architect can describe a house.

This book is based on a course called “Fractal Geometry” which has been
taught in the School of Mathematics at Georgia Institute of Technology for
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two years. The course is open to all students who have completed two years of
calculus. It attracts both undergraduate and graduate students from many
disciplines, including mathematics, biology, chemistry, physics, psychology,
mechanical engineering, electrical engineering, aerospace engineering, com-
puter science, and geophysical science. The delight of the students with the
course is reflected in the fact there is now a second course entitled “Fractal
Measure Theory.” The courses provide a compelling vehicle for teaching
beautiful mathematics to a wide range of students.

Here is how the course in Fractal Geometry is taught. The core is Chapter
Two, Chapter Three, Sections 1 to 5 of Chapter Four, and Sections 1 to 3 of
Chapter Five. This is followed by a collection of delightful special topics,
chosen from Chapters Six, Seven, and Eight. The course is taught in thirty
one-hour lectures.

Chapter Two introduces the basic topological ideas that are needed to _

describe subsets of spaces such as R2. The framework is that of metric spaces;
this is adopted because metric spaces are both rigorously and intuitively
accessible, yet full of surprises. They provide a suitable setting for fractal
geometry. The concepts introduced include openness, closedness, compactness,
convergence, completeness, connectedness, and equivalence of metric spaces.
An important theme concerns properties which are preserved under equivalent
metrics. Chapter Two concludes by presenting the most exciting idea: a metric
space, denoted by #, whose elements are the nonempty compact subsets of a
metric space. Under the right conditions this space is complete, Cauchy
sequences converge, and fractals can be found!

Chapter Three deals with transformations on metric spaces. First the goal
is to develop intuition and practical experience with the actions of elementary
transformations on subsets of spaces. Particular attention is devoted to affine
transformations and Mobius transformations in R2. Then the contraction
mapping principle is revealed, followed by the construction of contraction
mappings on . Fractals are discovered as the fixed points of certain set
maps. We learn how fractals are generated by the application of “simple”
transformations on “simple” spaces, and yet they are geometrically com-
plicated. It is explained what an iterated function system (IFS) is, and how it
can define a fractal. Iterated function systems provide a convenient framework
for the description, classification, and communication of fractals. Two al-
gorithms, the “Chaos Game” and the Deterministic Algorithm, for computing
pictures of fractals, are presented. Attention is then turned to the inverse
problem: given a compact subset of R?, fractal, how do you go about finding a
fractal approximation to it? Part of the answer is provided by the Collage
Theorem. Finally, the thought of the wind blowing through a fractal tree leads
to discovery of conditions under which fractals depend continuocusly on the
parameters which define them.
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Chapter Four is devoted to dynamics on fractals, The idea of addresses of
points on certain fractals is developed. In particular, the reader learns about
the metric space to which addresses belong. Nearby addresses correspond to
nearby points on the fractal. This observation is made precise by the construc-
tion of a continuous transformation from the space of addresses to the fractal.
Then dynamical systems on metric spaces are introduced. The ideas of orbits,
repulsive cycles, and equivalent dynamical systems are described. The concept
of the shift dynamical system associated with an IFS is introduced and
explored. This is a visual and simple idea in which the author and the reader
are led to wonder about the complexity and beauty of the available orbits. The
equivalence of this dynamical system with a corresponding system on the
space of addresses is established. This equivalence takes no account of the
geometrical complexity of the dance of the orbit on the fractal. The chapter
then moves towards its conclusion, the definition of a chaotic dynamical
system and the realization that “most” orbits of the shift dynamical system on
a fractal are chaotic. To this end, two simple and delightful ideas are shown to
the reader. The Shadow Theorem illustrates how apparently random orbits
may actually be the “shadows” of deterministic motions in higher dimensional
spaces. The Shadowing Theorem demonstrates how a rottenly inaccurate orbit
may be trailed by a precise orbit, which clings like a secret agent. These ideas
are used to make an explanation of why the “Chaos Game” computes fractals.

Chapter Five introduces the concept of fractal dimension. The fractal
dimension of a set is a number which tells how densely the set occupies the
metric space in which it lies. It is invariant under various stretchings and
squeezings of the underlying space. This makes the fractal dimension meaning-
ful as an experimental observable; it possesses a certain robustness, and is
independent of the measurement units. Various theoretical properties of the
fractal dimension, including some explicit formulas, are developed. Then the
reader is shown how to calculate the fractal dimension of real-world data; and
an application to a turbulent jet exhaust is described. Lastly, the Hausdorff-
Besicovitch dimension is introduced. This is another number which can be
associated with a set. It is more robust and less practical than the fractal
dimension. Some mathematicians love it; most experimentalists hate it; and
we are intrigued.

Chapter Six is devoted to fractal interpolation. The aim of the chapter is to
teach the student practical skill in using a new technology for making
complicated curves and fitting experimental data. It is shown how geometri-
cally complex graphs of continuous functions can be constructed to pass
through specified data points. The functions are represented by succinct
formulas. The main existence theorems and computational algorithms are
provided. The functions are known as fractal interpolation functions. It is
explained how they can be readily computed, stored, manipulated, and com-
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municated. “Hidden variable” fractal interpolation functions are introduced
and illustrated; they are defined by the shadows of the graphs of three-dimen-
sional fractal paths. These geometrical ideas are extended to introduce space-
filling curves.

Chapter Seven gives an introduction to Julia sets. Julia sets are determinis-
tic fractals which arise from the iteration of analytic functions. The objective is
to show the reader how to understand these fractals, using the ideas of
Chapters Three and Four. In so doing, we have the pleasure of explaining and
illustrating the Escape Time Algorithm. This algorithm is a means for com-
putergraphical experimentation on dynamical systems which act on two-
dimensional spaces. It provides illumination and coloration, a searchlight to
probe dynamical systems for fractal structures and regions of chaos. The
algorithm relies on the existence of “repelling sets” for continuous transforma-
tions which map open sets to open sets. The applications of Julia sets to
biological modelling and to understanding Newton’s method are considered.

Chapter Eight is concerned with how to make maps of certain spaces,
known as parameter spaces, where every point in the space corresponds to a
fractal. The fractals depend “smoothly” on the location in the parameter
space. How can one make a picture which provides useful information about
what kinds of fractals are located where? If both the space in which the
fractals lie, and the parameter space, are two-dimensional, the parameter space
can sometimes be “painted” to reveal an associated Mandelbrot set.
Mandelbrot sets are defined, and three different examples are explored,
including the one which was discovered by Mandelbrot. A computergraphical
technique for producing images of these sets is described. Some basic theorems
are proved.

Chapter Nine is an introduction to measures on fractals, and to measures
in general. The chapter is an outline which can be used by a professor as the
basis of a course in fractal measure theory. It can also be used in a standard
measure theory course as a source of applications and examples. One goal is to
demonstrate that measure theory is a workaday tool in science and engineer-
ing. Models for real world images can be made using measures. The variations
in color and brightness, and the complex textures in a color picture can be
successfully modelled by measures which can be written down explicitly in
terms of succinct “formulas.” These measures are desirable for image en-
gineering applications, and have a number of advantages over non-negative
“density” functions. Section 9.1 provides an intuitive description of what
measures are, and motivates the rest of the chapter. The context is that of
Borel measures on compact metric spaces. Fields, sigma-fields, and measures
are defined. Carathéodory’s extension theorem is introduced and used to
explain what a Borel measure is. Then the integral of a continuous real-valued
function, with respect to a measure, is defined. The reader learns to evaluate
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some integrals. Next the space & of normalized Borel measures on a eompact
metric space is defined. With an appropriate metric, # becomes a compact
metric space. Succinctly defined contraction mappings on this space lead to
measures which live on fractals. Integrals with respect to these measures can
be evaluated with the aid of Elton’s ergodic theorem. The book ends with a
description of the application of these measures to computer graphics.

This book teaches the tools, methods, and theory of deterministic geome-
try. It is useful for describing specific objects and structures. Models are
represented by succint “formulas.” Once the formula is known, the model can
be reproduced. We do not consider statistical geometry. The latter aims at
discovering general statistical laws which govern families of similar-looking
structures, such as all cumulus clouds, all maple leaves, or all mountains.

In deterministic geometry, structures are defined, communicated, and
analysed, with the aid of elementary transformations such as affine transfor-
mations, scalings, rotations, and congruences. A fractal set generally contains
infinitely many points whose organization is so complicated that it is not
possible to describe the set by specifying directly where each point in it lies.
Instead, the set may be defined by “the relations between the pieces.” It is
rather like describing the solar system by quoting the law of gravitation and
stating the initial conditions. Everything follows from that. It appears always
to be better to describe in terms of relationships.



Metric Spaces;
Equivalent Spaces;
Classification of Subsets;
and the Space of Fractals

2.1

SPACES

In fractal geometry we are concerned with the structure of subsets of various
very simple “geometrical” spaces. Such a space is denoted by X. It is the space
on which we think of drawing our fractals; it is the place where fractals live.
What is a fractal? For us, for now, it is just a subset of a space. Whereas the
space is simple, the fractal subset may be geometrically complicated.

Definition 1. A space X is a set. The points of the space are the elements of
the set.

Although this definition does not say it, the nomenclature “space” implies
that there is some structure to the set, some sense of which points are close to
which. We give some examples to show the sort of thing this may mean.
Throughout this text R denotes the set of real numbers, and “ € ” means
“belongs to.”
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Figure 2.1.1
A point x in the space R.

Examples

1.1

1.2,

1.3.

X = R. Each “point” x € X is a real number. Equally well it is a dot on
a line. _

X = C0,1], the set of continuous functions which take the real closed
interval [0,1] = {x € R: 0 < x < 1} into the real line R. A “point”
S € X is a function f: [0,1] <=5 R where f may be represented by its
graph.

Notice that here f € X is not a point on the x-axis, it is the whole
function. A continuous function on an interval is characterized by the
fact that its graph is unbroken; as a picture it contains no rips or tears
and it can be drawn without removing the pencil from the paper.

X = R?, the Euclidean plane, the coordinate plane of calculus. Any pair
of real numbers x,, x, € R determine a single point in R% A point

Figure 2.1.2
A point f in the space of
continuous functions on

[0,1].
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Figure 2.1.3 >
A point x in the space
RZ. R - X

x € X is represented in several equivalent ways: x = (x,, x,) = (2) =
a point in a figure such as Figure 2.1.3.

The spaces in examples 1.1, 1.2, and 1.3 are each linear spaces. There is an
obviously defined way, in each case, of adding two points in the space to
obtain a new one in the same space. In 1.1 if x, and y € R then x + y is also
in R; in 1.2 we define (f+ g)x)=f(x)+ g(x); and in 1.3 we define
x+y= (2) + (f ;) = (2 i:;) Similarly, in each of the above examples, we
can multiply members of X by a scalar, that is, by a real number « € R. For
example, in 1.2 (af }(x) = af(x) for any a« € R, and af € C[0, 1] whenever
f € C[0,1]. Example 1.1 is a one-dimensional linear space; 1.2 is an co-dimen-
sional linear space (can you think why the dimension is infinite?); and 1.3 is a
two-dimensional linear space. A linear space is also called a vector space. The
scalars may be complex numbers instead of real numbers.

1.4. The complex plane, X = C, where any point x € X is represented
x=x +ix, wherei=y-1,

for some pair of real numbers x,, x, € R. Any pair of numbers x,, x,
€ R determine a point of C. It is obvious that C is essentially the same
as R%; but there is an implied distinction. In C we can multiply two
points x, y and obtain a new point in C. Specifically, we define
x-y=(x +ix)(y + i) =(xp —x0) +i(on + xn).

1.5. X = €, the Riemann sphere. Formally € = C U {oo}; that is, all the
points of C together with “The Point at Infinity.” Here is a way of
constructing and thinking about €. Place a sphere on the plane C, with
the South Pole on the origin, and the North Pole N vertically above it.
To a given point x € C we associate a point x’ on the sphere by
constructing the straight line from N to x and marking where this line
intersects the sphere. This associates a unique point x’ = h(x) with each
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Figure 2.1.4
Construction of a geomet-
rical representation for
the Riemann sphere. N
is the North Pole, and
corresponds to the “Point
at Infinity.”

point x € C. The transformation h: C — sphere is clearly continuous in the
sense that nearby points go to nearby points. Points further and further away
from 0 in the plane C end up closer and closer to N. € consists of the
completion of the range of # by including N on the sphere: “The Point at
Infinity (c0)” can be thought of as a giant circle, infinitely far out in C, whose
image under k is N. It is easier to think of € being the whole of the sphere,
rather than as the plane together with 0. It is of interest that #: C — sphere
is conformal: it preserves angles. The image under 4 of a triangle in the plane
is a curvaceous triangle on the sphere. Although the sides of the triangle on the
sphere are curvaceous they meet in well-defined angles, as one can visualize by
imagining the globe to be magnified enormously. The angles of the curvaceous
triangle are the same as the corresponding angles of the triangle in the plane.

Figure 2.1.5

A triangle in the plane
corresponds to a curva-
ceous triangle on the
sphere.
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Examples & Exercises

1.6. X = 3, the code space on N symbols. N is a positive integer. The
symbols are the integers {0,1,2,..., N — 1}. A typical point in X is a
semi-infinite word such as
. x=2170012115(N - 1)30....
There are infinitely many symbols in this sequence. In general, for a
given element x € X, we can write

X = XXy X3X4XsXoX7Xg ... Whereeach x, € {0,1,2,..., N —1}.

1.7. A few other favorite spaces are defined as follows:

(a) A disk in the plane with center at the origin and with finite radius
R > 0:
‘ ={xEIR2:x12+x§sR2}.
(b) A “filled” square:
m={xeR:0<x <1,0<x,<1}.
(c) An interval:
[¢,6] = {x €R: a<x < b}, where a and b are real numbers with a < b,

(d) Body space:
% = { x € R*: coordinate points implied by a cadaver frozen in R*} .
(e) Sierpinski space:

&= { x € R*: x is a point on a certain fixed Sierpinski triangle} .

Sierpinski triangles occur often in this text as displayed above. There is a
Sierpinski triangle in Figure 3.4.3.

1.8. Show that the examples in 1.5, 1.6, and 1.7 are not vector spaces, using
addition and multiplication by reals as defined in the usual way.

1.9. The notation A C X means A is a subset of X; that is, if x € 4 then
x € X,or x € A = x € X, Here, and elsewhere, “ = ™ means “implies.”
The symbol @ means the empty set. It is defined to be the set such that
the statement “x € @” is always false. We use the notation {x} to
denote the set consisting of a single point x € X. Show that if x € X,
then {x} is a subset of X.

1.10. Any set of points makes a space, if we care to define it as such. The
points are what we choose them to be. Why, do you think, have the
spaces defined above been picked out as important? Describe other
spaces which are equally important.

1.11. Let X; and X, be spaces. These can be used to make a new space
denoted X, X X,, called the Cartesian product of X; and X,. A point
in X; X X, is represented by the ordered pair (x,, x,) where x, € X
and x, € X,. For example, R? is the Cartesian product of R and R.
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2.2 METRIC SPACES

We use the notation “V” to mean “for all.” We also introduce the nota-
tion A\ B to mean the set 4 “take away” the set B. That is, A\ B =
(x€ A4: x & B).

Definition 1. A metric space (X, d) is a space X together with a real-valued
function d: X X X — R, which measures the distance between pairs of points
x and y in X. We require that d obeys the following axioms:

(@) d(x,y)=d(y,x)Vx,y € X

@i 0<d(x,y)<coVx,yEX, x#y

(i) d(x,x)=0YVx € X

(v) d(x, y) <d(x,z)+d(z, y)Vx,y,z€X

Such a function d is called a metric.

The concept of shortest paths between points in a space, geodesics, is
dependent on the metric. The metric may determine a geodesic siructure of the
space. Geodesics on a sphere are great circles; in the plane with the Euclidean
metric they are straight lines.

Examples & Exercises
2.1. Show that the following are all metrics in the space X = R:

a) d(x, y) = |x — y| (Buclidean metric)
by d(x,y)=2"|x — |
¢) d(x, y)=Ix> =)’

2.2. Show that the following are metrics in the space X = R™*

a) d(x,y) = \/(x1 — )+ (25—, (Euclidean metric)
b) d(x, y) =[x, =yl + |x5 — 1l (Manhattan metric)

Why is the name Manhattan used in connection with (b)?
2.3. Show that d(x, y) = |xy| does not define a metric in R. .
2.4. Let R\ {0} denote the punctured plane. Define d(x, y) as follows:
d(x,y) =In —nr|+16]
where r, = Euclidean distance from x to O, r, = Euclidean distance
from y to O, where O is the origin, and 6 is the smallest angle

subtended by the two straight lines connecting x and y to the origin.
Show that d is a metric.
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Figure 221
(The angle 8, and the X
distances r , r, used to

construct a metric on the
punctured plane.) Acute
angle subtended by two

straight lines. 0

2.5. On the code space ¥ define

0

|x, = yl
d(x, =d(xx,%5..., L) = —_—
(x,y) (X1 %53 W) i§1 (N+ 1),

Show that every pair of points in L is a finite distance apart. That is, d
is indeed a function which takes ¥ x ¥ into R. Verify that (X, d) is a
metric space. Try to envisage a possible geometry for L. (Do not confuse
the symbol ¥ for the space, with the symbol for summation 2 ,.)

26. In X= , define d(x, y) to be the Euclidean length of the shortest

S
path lying entirely within X which connects x and y. Show that this is a
metric. Discuss the utility of this metric in anatomy. The distance from a
toenail to a fingertip does not much depend on the position of the body,
whereas the usual spatial distance does.

2.7. Invent a function d: B X B — R which is not a metric. Define a metric
for the space o namely an annulus, which makes it seem like the
curved wall of a cylinder:

2.8. Show that a metric on X = C is defined by the shortest great circle
distances on the sphere. Compare the distances from 0, and from 1 + 4,
to c0.

Definition 2. Two metrics d; and d, on a space X are equivalent if there
exist constants 0 < ¢; < ¢, < oo such that

adi(x,y) <d)(x,y) < cdi(x,y)V(x,y) €X XX.

Exercises & Examples

2.9. Definition 2 looks unsymmetrical; it does not appear to make the same
requirements on d, as it does on d,. Show that this is an illusion by
establishing that if the definition holds then there are constants 0 < ¢,



2.2 Metric Spaces

< e, < oo so that
edy(x, p) <d(x,y) < eydy(x, y) ¥(x,y) € X X X.

2.10. Are the Manhattan and Euclidean metrics equivalent on B C R?? What
about on R??
2.11. Show that the metric in 2.4 is not equivalent to the Euclidean metric on

&\ (0}

One notion underlying the concept of equivalent metrics is that any pair of
equivalent metrics gives the same notion of which points are close together,
and which are far apart. It is as though there were a standard way for
boundedly deforming the space, whereby distances are determined both before
and after deformation.

For example, consider a pair of points x, and y, in B C R? Let the
Euclidean distance between these points be d;(x, y). Think of a thin rubber
sheet lying over B. This sheet is stretched in some repeatable fashion, carrying
copies of the points x and y to new locations, as illustrated in Figure 2.2.2.
The Euclidean distance between these moved points is called d,(x, y). The
condition of equivalence is the requirement that there is no extreme (infinite)
stretching or compression of 'the space.

This leads us to the idea of equivalent metric spaces.

Definition 3. Two metric spaces (X, d,) and (X,, d,) are equivalent if there
is a function h: X, — X, which is one-to-one and onto (i.e, it is invertible),
such that the metric d, on X, defined by

dy(x, y) = dy(h(x), h(¥))Vx, y € X,

is equivalent to d,.

One can think of Definition 3 as requiring that X, and X, are related to
one another by a bounded deformation, and nowhere is there an arbitrarily

13

Y.

Figure 2.2.2

A thin rubber sheet lies
over the W in the plane
and is stretched. The
Euclidean distances be-
tween points are de-
termined before and after
deformation, yielding two
metrics. These metrics
may be equivalent if the
deformation leads to no
rips, tears, or infinite
stretching.
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large compression or stretching. There is also no overlapping, folding or
ripping.

Definition 4. A function f: X, - X, from a metric space (X,, d,) into a
metric*space (X, d,) is continuous if, for each € > 0 and x € X, there is a
8 > 0 so that

d(x,y) <8=d,(f(x),f(y)) <e

If f is also one-to-one and onto, and thus invertible, and if also the inverse f~!
of f is continuous, then we say that f is a homeomorphism between X, and
X;. In such a case we say that X; and X, are homeomorphic.

The assertion that two spaces are equivalent is much stronger than the
statement that they are homeomorphic: to be equivalent there must be a
bounded relationship between € and 8 independent of x.

Examples & Exercises

2,12, Let X; = [1,2] and X, = [0, 1]. Let d, denote the Euclidean metric and
let dy(x, y)=2-|x —y|lin X,. Show that (X;, d,) and (X,, d,) are
equivalent metric spaces.

Figure 2.2.3

This picture suggests two
metric spaces X, and X,
which have the same
topology, but which are
not metrically equivalent:
their “geometries” are
deeply different.

Point at the corner is missing.

/

STRETCH-

The point which is not
at the corner is pulled
to infinity.

Xl and X2 are homeomorphic : they have the same topology.

But they are not equivalent : their geometries are deeply different.




2.13.

2.14.

2.15.

2.16.

2.2 Metric Spaces

Show that (M, Euclidean) and (M, Manhattan) are equivalent metric
spaces.
Show that (C, Euclidean) and (R? Manhattan) are equivalent metric
spaces.

Define two different metrics on the space X = (0,1] = {x € R: 0 <
x <1} by

d(xy) =1x —y| and dy(x,y) =| —1‘

1%, y) =lx =y and dy(x,y) =13 — J).

Show that (X, d,) and (X, d,) are not equivalent metric spaces.

Figure 2.2.4 suggests a subset (black) of (M, Euclidean). It also shows the
space and set deformed by a metric equivalence. Discuss the properties
of the image which would be invariant under (a) any metric equivalence,
and (b) any homeomorphism. To what extent might one be able to “see”
these invariances? Think about how much deformation an image can
withstand while remaining recognizably the same image. Look at reflec-
tions of sets and images in the back of a shiny spoon.

Figure 2.2.4(a)

What features of the set
(black) are invariant
under a metric equiv-
alence transformation?
Two sets which are metri-
cally equivalent to (a)
are shown in (b) and (c).

15
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Figure 2.2.4(b)

Figure 2.2.4(c)

2.17. Show that if two metric spaces are metrically equivalent then there is a
homeomorphism between them.

23 CAUCHY SEQUENCES, LIMIT POINTS, CLOSED SETS, PERFECT SETS,
AND COMPLETE METRIC SPACES

Fractal geometry is concerned with the description, classification, analysis, and
observation of subsets of metric spaces (X, d). The metric spaces are usually,
but not always, of an inherently “simple” geometrical character; the subsets
are typically geometrically “complicated.” There are a number of general
properties of subsets of metric spaces, which occur over and over again, which
are very basic, and which form part of the vocabulary for describing fractal
sets and other subsets of metric spaces. Some of these properties, such as
openness and closedness, which we are going to introduce, are of a topological
character. That is to say, they are invariant under homeomorphism.



2.3 Cauchy Sequences, Limit Points, Closed Sets

For us what is important, however, is that there is another class of
properties which are invariant under metric space equivalence. These include
openness, closedness, boundedness, completeness, compactness, and perfec-
tion; these properties are introduced in this and the next section. Later we will
discover another such property: the fractal dimension of a set. If a subset of a
metric space has one of these properties, and the space is deformed with
bounded distortion, then the corresponding subset in the deformed space still
has that same property.

We are also about another business in this section. In our search for
fractals we are always going to look in a certain type of metric space known as
“complete.” We need to understand this concept.

Definition 1. A sequence { x,}5_; of points in a metric space (X, d) is called
a Cauchy sequence if for any given number € > 0, there is an integer N > 0 so
that

d(x,,x,) <e foralln,m>N.

In other words, the further along the sequence one goes, the closer together
become the points in the sequence. Mentally one pictures something like the
image in Figure 2.3.1.

However, just because a sequence of points moves closer together as one
goes along the sequence, we must not infer that they are approaching a point.
Perhaps they are trying to approach a point that is not there?

Definition 2. A sequence {x,}%_; of points in a metric space (X, d) is said
to converge to a point x € X if, for any given number ¢ > 0, there is an
integer N > 0 so that

d(x,,x) <ce forall n > N.

Figure 2.3.1
Xge Image representing
successive magnifications
on a Cauchy sequence, an
infinite sequence of points
in X. Just because the
points are getting closer
Infinite sequence of and closer together as one
points in X looks in at higher mag-
nification does not mean
that there is a point X to
which the sequence is con-
verging!

17
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Figure 2.3.2
Uncelebrated small ball
B(x, €) with its center at
x and radius €. Beware!
Balls do not usually look
like balls. It depends on
the metric and on the
space. Balls (a)—(c)
represent balls (marked
in black) in spaces X
which are subsets of R?,
with the Euclidean met-
ric. In (a) X has a
ragged boundary, viewed
as a subset of R%. In (b)
the point x € X is iso-
lated. In (¢) X is a
curvaceous Sierpinski tri-
angle. The ball depicted
in (d) is in R?, but the
metric is d(x, y) =
Max{|x, =yl [x2=nl}

2 Metric Spaces; Equivalent Spaces; Classification of Subsets

In this case the point x € X, to which the sequence converges, is called the
limit of the sequence, and we use the notation

x = Lim x,.
n— oo

The limit x of a convergent sequence {x,}>.; has this property: Let

B(x,e) ={yeX:d(x,y) <¢}

denote a closed ball of radius € > 0 centered at x, as illustrated in Figure
2.3.2.

Any such ball centered'at x contains all of the points x, after some index N,
where N typically becomes larger and larger as € becomes smaller and smaller.
See Figure 2.3.3.

Theorem 1. If a sequence of points {x,}> ., in a metric space (X, d) con-
verges to a point x € X, then {x,}*_, is a Cauchy sequence. N

Definition 3. A metric space (X, d) is complete if every Cauchy sequence
{x,}*.,in X has alimit x € X.

In other words, there actually exists, in the space, a point x to which the
Cauchy sequence is converging. This point x is of course the limit of the
sequence. If {x,}5_; is a Cauchy sequence of points in X and if X is
complete, then there is a point x € X such that, for each € > 0, B(x,¢)
contains x, for infinitely many integers n.

We will sometimes use the notation {x,} in place of {x,}>_, and lim in
place of lim when it is clear from the context what the domain of the
index is.

n—o0

Exercises & Examples

3.1. Prove that if {x,}>_, is a Cauchy sequence of points in X and if X is
complete, then there is a point x € X such that, for each ¢ > 0, B(x, ¢)
contains x, for infinitely many integers n.

3.2. Show that (R, Euclidean metric) is a complete metric space.

6

x.Q—E—O

(a) (b) (c) (d)




2.3 Cauchy Sequences, Limit Points, Closed Sets

ZOOM IN ZOOM IN Figure 2.3.3
Magnifying glass looking
ar a magnifying glass near

ore points of a limit point.

3.3. Show that (R?, Euclidean metric) is a complete metric space.

3.4. Show that (B, Euclidean metric) is a complete metric space.

3.5. Show that (€, metric on sphere) is a complete metric space.

3.6. Show that (X, code space) is a complete metric space.

3.7. Show that (C[0, 1], D) is a complete metric space, where the metric D is
defined by

D(f,g) =Max{|f(s) — g(s)]: s €[0,1]}.

38. Let (X;, d;) and (X,, d,) be equivalent metric spaces. Suppose (X;, d;)
is complete. Show that (X,, d,) is complete.
3.9. Show that there are many different “shortest paths” between most pairs
of points in (M, Manhattan).
3.10. Prove Theorem 2.3.1.
3.11. Prove that any sequence in a metric space can have at most one limit.

Definition 4. Let S C X be a subset of a metric space (X, d). A point x € X
is called a limir poin: of S if there is a sequence { x,}%_, of points x, € S\ {x}
such that Lim | _x, = x.

Definition 5. Let S C X be a subset of a metric space ( X, d). The closure of
S, denoted S, is defined to be § = § U {Limit points of S}. S is closed if it
contains all of its limit points, that is, $ = S. S is perfect if it is equal to the
set of all its limit points.

Exercises & Examples
3.12. Show that 0 is a limit of the sequence {x, =1/n}%_; in the metric

n=1
space ([0, 1], Euclidean) but not in the metric space ((0, 1], Euclidean).
3.13. A metric space (X, d) consists of a single point X = {a}, together with
a metric defined by d(a, a) = 0. Show that X contains a Cauchy
sequence and the limit of the Cauchy sequence, but that it possesses no

limit points. Hence show that X is closed and complete but not perfect.

19
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3.14. Show that the sequence {x, = n}%., has no limit in (R, Euclidean) but

that it does when the points are treated as belonging to (C, spherical).
3.15. Show that if 2 X; — X, makes the metric spaces (X;, 4,) and (X, d,)
equivalent, then the statements “x € X, is a limit point of § C X;” and
“h(x) € X, is a limit point of A(S) C X,” are equivalent. Here we use
the notation

h(S)={h(s):s€S}.

3.16. Find all of the limit points of the set {x,=(1/n+ (-1)", 1/n+
(—1)"): n=1,2,3,...} in the metric space (M, Euclidean).

3.17. Show that the subset S = {x = 1/n: n =1,2,3,...} is closed in ((0, 1],
Euclidean).

3.18. Show that S = [0,1] is a perfect subset of (R, Euclidean).

3.19. Show that § = {1/n: n=1,2,3,...} U {0} is not a perfect subset of
(R, Euclidean), but that S = S.

3.20. Show that S = ¥ is a perfect subset of (¥, code space metric).

3.21. Let S be a subset of a complete metric space (X, d). Then (S, d) is a
metric space. Show that (S, d) is complete if, and only if, S is closed
in X.

24 COMPACT SETS, BOUNDED SETS, OPEN SETS, INTERIORS, AND BOUNDARIES

We continue the description of the basic properties to be used to describe sets
and subsets of metric spaces. Where are the fractals? What are they? They are
everywhere, and soon you will be able to see them: not just the pictures, which
are shadows, but in your mind’s eye you will see what they really are.

Definition 1. Let S C X be a subset of a metric space (X, d). S is compact
if every infinite sequence {x,}>., in S contains a subsequence having a limit
in S.

Definition 2. Let S C X be a subset of a metric space (X, d). S is bounded
if there is a point a € X and a number R > 0 so that

d(a,x) <RVx€S.

Definition 3. let S C X be a subset of a metric space (X, d). S is rotally
bounded if, for each € > 0, there is a finite set of points { y,, y5,...,¥%,} © S
such that whenever x € S, d(x, y,) < € for some y, € {y,,¥5....,¥,}- This
set of points { yy, y,,...,y,} is called an e-ner.
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Theorem 1. Let (X, d) be a complete metric space. Let S C X. Then S is
compact if and only if it is closed and totally bounded.

Proof. Suppose that S is closed and totally bounded. Let {x, € S} be an
infinite sequence of points in S. Since S is totally bounded we can find a finite
collection of closed balls of radius 1 such that § is contained in the union of
these balls. By the Pigeon-Hole Principle (a huge number of pigeons laying
eggs in two letter boxes = at least one letter box contains a huge number of
angry pigeons), one of the balls, say B, contains infinitely many of the points
x,. Choose N so that x\ € B,. It is easy to see that B; N § is totally
bounded. So we can cover B; N S by a finite set of balls of radius 1/2. By the
Pigeon-Hole Principle, one of the balls, say B,, contains infinitely many of the
points x,. Choose N, so that x, € B, and N, > N;. We continue in this
fashion to construct a nestéd sequence of balls,
B>B>B>B>B>B>B,>B>B > --- DB, D> ---

where B, has radius 1,/2"', and a sequence of integers { N,}%_; such that
xy € B,. It is easy to see that {xy };.;, which is a subsequence of the
original sequence {x,}, is a Cauchy sequence in S. Since S is closed, {xy }
converges to a point x in S. (Notice that { x} is exactly N>_;B,.) Thus, S is
compact.

Conversely, suppose that S is compact. Let € > 0. Suppose that there does
not exist an e-net for S. Then there is an infinite sequence of points {x, € §}
with d(x;, x;) > e for all i + j. But this sequence must possess a convergent
subsequence { x, }. By Theorem 2.3.1 this subsequence is a Cauchy sequence,
and so we can find a pair of integers N, and N, with N, # N, so that
d(xy, xy) < € But d(xy, xy) > €, s0 we have a contradiction. Thus there
does exist an e-net. This completes the proof.

Definition 4. Let S C X be a subset of a metric space (X, d). S is open if
for each x € § there is an € > 0 such that B(x,¢) = {y € X: d(x, y) <€}
CS.

Exercises & Examples

4.1. Show that if (X, d) is a metric space then X is closed. Give an example
of a metric space which is closed but not complete.

4.2. Let S be a closed subset of a complete metric space (X, d). Skow that
(S, d) is a complete metric space.

4.3. Let (X;, d;) and (X,, d,) be equivalent metric spaces, and let a trans-
formation 6: X; — X, provide this equivalence. Let § C X; be closed.
Show that 8(S) = {0(s): s € S} is closed. This idea is illustrated in
Figure 2.4.1.

4.4. If (X, d) is a metric space then X is open.

21
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Figure 2.4.1
A transformation 8 be- X,

tween two metric spaces,
% ¢

establishing the equiv-
CLOSED

o(S) %

STILL
CLOSED

alence of the spaces and
carrying the closed set S
onto a closed set 6(S).

Proof. Let x € X. Clearly B(x,1) C X.

4.5. If (X, d) is a metric space, then “S C X is open” is the same as “X\ S.
is closed.”

Proof. Suppose “S C X is open.” Suppose { x,} is a sequence in X \ S with
alimit x € X. We must show that x € X\ S. Assume that x € S. Then every
ball B(x, €) with € > 0 contains a point x, € X\ S which means that § is not
open. This is a contradiction. The assumption is false. Therefore x € X\ S.
Therefore “X \ § is closed.”

Suppose “X\ S is closed.” Let x € S. We want to show there is a ball
B(x,€) C S. Assume there is no ball B(x,e) C S. Then for every integer
n=1273,... wecanfind a point x, € B(x,1/n) N (X\ §). Clearly {x,} is
a sequence in X \ S, with limit x € X. Since X\ S is closed we conclude that
x € X\ S. This contradicts x € S. The assumption that there is no ball
B(x,¢) C S is false. Therefore there is a ball B(x,¢) C S. Therefore “S is
open.”

4.6. Every bounded subset S of (R?, Euclidean) has the Bolzano-Weierstrass
property: “Every infinite sequence {x,}; ., of points of S contains a
subsequence which is a Cauchy sequence.” The proof is suggested by the
picture in Figure 2.4.2.

We deduce that every closed bounded subset of (R?, Euclidean) is
compact. In particular, every metric space of the form (closed bounded
subset of R?, Euclidean) is a complete metric space. Show that we can
make a rigorous proof by using Theorem 1. Begin by proving that any
bounded subset of R” is totally bounded.

4.7. Let (X, d) be a metric space. Let f: X — X be continuous. Let 4 be a
compact nonempty subset of X. Show that f(A) is a compact nonempty
subset of X. (This result is proved later as Lemma 3.7.2.)
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BIG BOX Figure 2.4.2
Xy CONTAINS Demonstration of the
Xy X ye m;:“NYITxEL,YS Bolzano-Weierstrass The-
s -« °. 4, . SO ONE N orem. (Government warn-

OF THE ing: This is not a proof )

ZOOM ( MAGNIFY )

BIGBUOX |
Xi002* "o e CONTAINS
X49° X370° INFINITELY
MANY X'S
B PR SO ONE
OF THE
T siee e e FOUR QUARTER
e e egegee o el BOXES
X - . CONTAINS
/_% INFINITELY
( this sub-box does ) MANY Xp\'S

* Z0OM ( MAGNIFY )
\ AND SO ON FOREVER }

48. Let S C (X, d,) be open, and let (X,, d,) be a metric space equivalent
to (X, d,), the equivalence being provided by a function h: X; — X,.
Show that A(S) is an open subset of X,.

4.9. Let (X, d) be a metric space. Let C € X be a compact subset of X. Let
{C,; n=1,2,3,...} be a set of open subsets of X such that “x € C”
implies “x € C, for some n.” {C,} is called a countable open cover of
C. Show that there is a finite integer N so that “x € C” implies “x € C,
for some integer n < N.”

Proof. Assume that an integer N does not exist such that “x € C~ implies
“x € C, for some n < N.” Then for each N we can find

N
xwec\ U,
n=1
Since {x, }%.; is in C it possesses a subsequence with a limit y € C. Clearly
y does not belong to any of the subsets C,. Hence “y € C” does not imply

23



24

2 Metric Spaces; Equivalent Spaces; Classification of Subsets

“y € C, for some integer n.” We have a contradiction. This completes the
proof.

The following even stronger statement is true. Let (X, d) be a metric
space. Let C C X be compact. Let {C.: i € I} denote any collection of open
sets such that whenever x € C, it is true that x € C; for some index i € I.
Then there is a finite subcollection, say {C;, C,, ..., C,} such that C € U,C,.
The point is that the original collection of open sets need not even be
countably infinite. A good discussion of compactness in metric spaces can be

found in Mendelson [1963, Chapter V].

4.10. Let X = (0,1) U {2}. That is, X consists of an open interval in R,
together with an ‘isolated’ point. Show that the subsets (0,1) and {2} of
(X, Euclidean) are open. Show that (0,1) is closed in X. Show that {2}
is closed in X. Show that {2} is compact in X but (0, 1) is not compact
in X.

Definition 5. Let S C X be a subset of a metric space (X, d). A point x € X
is a boundary point of S if for every number € > 0, B(x, €) contains a point in
X\ S and a point in S. The set of all boundary points of S is called the
boundary of S, and is denoted 3S.

Definition 6. Let S C X be a subset of a metric space (X, d). A point x € §
is called an interior point of S if there is a number € > 0 such that B(x, ¢) C S.
The set of interior points of S is called the interior of S, and is denoted S°.

Exercises & Examples

4.11. Let S be a subset of a metric space (X, d). Show that 9§ = J(X\ §).
Deduce that X = @.

4.12. Show that the property of being a boundary of a set is invariant under
metric equivalence.

4.13. Let (X, d) be the real line with the Euclidean metric. Let S denote the
set of all rational points in X (i.e., real numbers which can be written
p/q where p and g are integers with g # 0). Show that 4§ = X.

4.14. Find the boundary of C viewed as a subset of (C, spherical metric).

4.15. Let S be a closed subset of a metric space. Show that 4§ C S.

4.16. Let S be an open subset of a metric space. Show that SN § = @.

4.17. Let S be an open subset of a metric space. Show that S° = S. Con-
versely, show that if $® = S, then § is open.

4.18. Let S be a closed subset of a metric space. Show that S = S® U 4.

4.19. Show that the property of being the interior of a set is invariant under
metric equivalence.



2.5 Connected Sets, Disconnected Sets, and Pathwise Connected Sets

4.20. Show that the boundary of a set S in a metric space always divides the
space into two disjoint open sets whose union, with the boundary 45, is
the whole space. Illustrate this result in the following cases, in the metric
space (R2, Euclidean): (a) S = {(x, y) € R%: x> + y2 < 1};(b) S = R

4.21. Show that the boundary of a set is closed.

4.22. Let S be a subset of a compact metric space. Show that 45 is compact.

4.23. Figure 2.4.3 shows how we think of boundaries and interiors. What
features of the picture are misleading?

4.24. To what extent does Mercator’s projection provide a metric equivalence
to a Cartesian map of the world?

4.25. Locate the boundary of the set of points marked in black in Figure 2.4.4.

4.26. Prove the assertion made in the caption to Figure 2.4.5.
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Definition 1. A metric space (X, d) is connected if the only two subsets of X
that are simultaneously open and closed are X and @. A subset S C X is
connected if the metric space (S, d) is connected. S is disconnected if it is not
connected. S is fotally disconnected provided that the only nonempty con-
nected subsets of S are subsets consisting of single points.

Definition 2. Let S C X be a subset of a metric space (X, d). Then S is
pathwise connected if, for each pair of points x and y in S, there is a
continuous function f: [0,1] —» S, from the metric space ([0, 1], Euclidean)
into the metric space (S, d), such that f(0) = x and f(1) = y. Such a function
f is called a path from x to y in S. S is pathwise disconnected if it is not
pathwise connected.

One can also define simply connected and multiply connected. Let S be
pathwise connected. A pair of points x, y € S is simply connected in § if,

~ ) Figure 2.4.3
) @ Metric Space X, the world | Hoy well can topological

concepts such as open,
boundary, etov, be used to

The coastline is

S = SEA the boundary of
the set called LAND| model land, sea, and
and the set called coastlines?
SEA

ISLAND The land is the interion

of the island.
The wet stuff is the interior of the sea.
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Figure 2.4.4

Should the black part be
called open and the white
part closed? Locate the
boundary of the set of
points marked in black.

Figure 2.4.5

The interior of the “land >
set is an open set in the
metric space (Y = )
Euclidean). The smaller
filled rectangle denotes a
subset Z =M of Y. The
intersection of the interior
of the land with Z is an
open set in the metric
space (Z, Euclidean),
despite the fact that it in-
cludes some points of the
“border” of M.
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fo(s)=9(s.0) Figure 2.5.1

A path f, which connects
the points x and y is con-
tinuously deformed, while
remaining “attached” to
x and y, to become a sec-
ond path f, .

X=g(0,t)

f(s)=g(s.1)

given any two paths f, and f; connecting x, y in S, we can continuously
deform f, to f; without leaving the subset S. What does this mean?

Let there be given the two points x, y € § and the two paths f,, f;
connecting x, y in S. In other words, f,, f; are two continuous functions
mapping the unit interval [0, 1] into S so that f,(0) = f,(0) = x and f(1) =
fi(l) = y. By a continuous deformation of f, and f; within S we mean a
function g continuously mapping the Cartesian product [0, 1] X [0, 1] into S,
so that

@) g(s,0)=fo(s) (O0<s<1
(b) g(s,1)=fi(s) (O<s5<1
(© 8(0,1)=x O=<t<
(d gL, t)=y O<t<.

Thus, we say that two points x, y in S are simply connected in S if, given
any two paths f,, f; going from x to y in S, there exists a function g as just
described. This idea is illustrated in Figure 2.5.1.

If x, y are not simply connected in S, then we say that x, y are multiply
connected in S. .

S itself is called simply connected if every pair of points x, y in S is
simply connected in S. Otherwise, S is called multiply connected. In the latter
case we can imagine that S contains a “hole”, as illustrated in Figure 2.5.2.

Exercises & Examples

5.1, Show that the properties of being (pathwise) connected, disconnected,
simply connected and multiply connected are invariant under metric
equivalence.
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Figure 2.5.2

In a multiply connected
space there exist paths
which cannot be continu-
ously déformed from one
to another. There is some
kind of “hole” in the
space.

Figure 2.5.3

Locate the largest con-
nected subsets of this sub-
set of R?,




2.6 The Metric Space (X (X)), h): The Place Where Fractals Live

the dot at the corner st-ret-cchto o0 Figure 2.5.4
7] is missing —> | 4 Cauchy sequence being
preserved by a metric
equivalence, and de-
stroyed by a certain ho-
meomorphism.

homeomorphism| X

(X,d) Cauchy Sequence
destroyed !

(X.d) contains a
Cauchy Sequence

poill]

metric = R.Xa®
= X2-x3'

equivalence | X

(i, é) Cauchy Sequence
survived !

5.2. Show that the metric space (M, Euclidean) is simply connected.
5.3. Show that the metric space (X = (0,1) U {2}, Euclidean) is discon-

nected.

5.4. Show that the metric space (X, code space metric) is totally discon-
nected.

5.5. Show that the metric space ( o, Manbhattan) is multiply con-
nected.

5.6. Suppose $; 28,2 -+ D §,D --- is a nested sequence of nonempty

connected subsets. Is NS, necessarily connected?
5.7. Identify pathwise connected subsets of the metric space suggested in
Figure 2.5.3.

58. Is (52%;;, Euclidean) simply or multiply connected?
5.9. Discuss which set-theoretic properties (open, closed, connected, com-
pact, bounded, . ..) would be best suited for a model of a cloud, treated
as a subset of R3,
5.10. The property that {x,}> , is a Cauchy sequence in the metric space
(X, d) is not invariant under homeomorphism but is invariant under
metric equivalence, as illustrated in Figure 2.5.4. .

2.6 THE METRIC SPACE (5 (X), h): THE SPACE WHERE FRACTALS LIVE

We come to the ideal space in which to study fractal geometry. To start with,
and always at the deepest level, we work in some complete metric space, such
as (R?, Euclidean) or (C, spherical), which we denote by (X, d). But then,
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when we wish to discuss pictures, drawings, “black-on-white” subsets of the
space, it becomes natural to introduce the space .

Definition 1. Let (X, d) be a complete metric space. Then (X)) denotes
the space'whose points are the compact subsets of X, other than the empty set.

Exercises & Examples

6.1. Show that if x and y € #(X), then x Uy is in 5 (X). Show that
x Ny need not be in H#(X). A picture of this situation is given in
Figure 2.6.1.

6.2. What is the difference between a subset of 3#(X) and a compact
nonempty subset of X?

Definition 2. Let (X, d)be a complete metric space, x € X, and B € #(X).
Define

d(x, By = Min{d(x, y): y € B}.
Then d(x, B) is the distance from the point x to the set B.

Figure 2.6.1

Points in the space The whole smiley
H#(R?Y may be interpret- face is a point

ed as black-and-white in H(X).

images. Unions of points Call it xe H(X).

vield new points. Be care-
ful with intersections,
however.

This thin torso
is a point
in H(X).
Call it ye H(X).

This fellow is
Xuly.

~— He is a single

point in H(X).
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How do we know that the set of real numbers {d(x, y): y € B} contains
a minimum value, as claimed in the definition? This follows from the compact-
ness and nonemptyness of the set B € »#(X). Consider the function f:
B - R defined by

f(y) =d(x,y) forally€B.

From the definition of the metric it follows that f is continuous, viewed as a
transformation from the metric space ( B, d) to the metric space (R, Euclidean).
Let P = Inf{ f(y): y € B}, where “Inf” is defined in Example 2.6.20, and
also in Definition 3.6.2. Since f(y) = 0 for all y € B, it follows that P is
finite. We claim there is a point § € B such that d(x, y) = P. We can find an
infinite sequence of points { y,: n = 1,2,3,...} C B such that |f(y,) — P| <
1/n. Using the compactness of B, we find that {y,: n=1,23 ...} has a
subsequence with limit § € B. Using the continuity of f we discover that
f(p) = P, which is what we needed to show.

Color Plate 2.6.1 shows a picture of the metric space (M, Manhattan). It has
been colored as follows. Let % denote a certain subset of @ whose ‘geometry’
is that of a piece of a fern. Then the color of each point a € B is fixed by the
value of d(a, #).

Definition 3. Let (X, d) be a complete metric space. Let 4, B € 5 (X).
Define

d( A, By = Max{d(x, B): x € A}.

d( A, B) is the distance from the set 4 € 3¢ (X) to the set B € #(X).

Just as above, using the compactness of 4 and B, we can prove that this
definition is meaningful. In particular, there are points £ € 4 and § € B such
that d(A4, B) = d(X, p).

Exercises & Examples

6.3. Show that B, C € #(X), with B C C implies d(x, C) < d(x, B).

6.4. Calculate d(x, B) if (X, d) is the space (R?, Euclidean), x € R? is the
point (1,1), and B is a closed disk of radius 4 centered at the point
(3,0). .

6.5. Same as 6.4, but use the Manhattan metric.

6.6. Calculate d(x, B)if (X, d) is (R, Euclidean), x = 3, and

n
nt+1

B={x,,=3+(—1)" :n=1,2,3,...}U{3}.

6.7. Let A, B € (X ) where (X, d) is a metric space. Show that, in general,
d(A, B) # d(B, A). Conclude that d does not provide a metric on

31
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Figure 2.6.2

This fractal image con-
tains a pair of disjoint
subsets of M < R?,
“black” and “white”.
Let A denote the closure
of the set in black and let
B denote the closure of its
complement. Find a pair
of points x € A andy €
B, such that d(x, y) =
d(A, B). Find a pair of
points ¥ € A andy € B
such that d(p, %) =

d(B, A). Why do we
“close” the sets before we
begin?

H#(X). It is not symmetrical: the distance from A4 to B need not equal
the distance from B to 4.

6.8. Figure 2.6.2 shows two subsets, 4 and B, of (M C R?, Euclidean). 4 is
the white part and B is the black part. (a) Estimate the location of a pair
of points, x € 4 and y € B, such that d(x, y) = d( A4, B). (b) Estimate
the location of a pair of points, ¥ € 4 and § € B, such that d(X, ) =
d(B, A).



2.6 The Metric Space (3 (X), h): The Place Where Fractals Live

| . 'f"|"|n”| 'Iln. ,m' ”In “.,Mf !;"

o r'”' Ak

i

i
x| "'“'Im "“!A i

. At 54'(
WM"

Ml
!Ix!m |l|| | h,

6.9.

6.10.

6.11,

6.12.

6.13.

Figure 2.6.3, shows two fern-like subsets, 4 and B, of (R?2, Manhattan).
Locate points x € A and y € B such that: (a) d(x, y) = d(4, B); (b)
d(x, y) = d(B, A).
Find d(France, USA) and d(USA, France) on (C, spherical metric).
Which is larger? Also compare d(Georgia, USA) to d(USA, Georgia).
Let (X, d) be a complete metric space. Let 4 and B be points in 3£ (X)
such that 4 # B. Show that either d(A4, B) # 0 or d(B, A) # 0. Show
that if 4 C B then d(A4, B) = 0.
Let (X, d) be a complete metric space. Show thatif 4, B, and C € #(X)
then B € C = d(4,C) < d(A, B). (Hint: Use Example 6.3.)
Let (X, d) be a complete metric space. Show that if 4, B, and Ce
H#(X) then

d(AUB,C) =d(A,C)Vd(B,C).

We use the notation x V y to mean the maximum of the two real
numbers x and y.

Proof. d(AUB,C)=Max{d(x,C): x€AUB}=Max{d(x,C): xEA}V
Max{d(x,C): X € B}.
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Figure 2.6.3

Find a pair of points X
and 9, one in the dark
fern and one in the pale
fern, such that the
Hausdorff distance be-
tween the two fern images
is the same as the dis-
tance between the points.
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6.14. Let A, B and C belong to s (X) where (X, d) is a metric space. Show
that

d( A, B) < d(A,C) + d(C, B).
Also determine whether or not the inequality

d(4,B) <d(C, 4) + d(C, B)

is true in general.

Definition 4. Let (X, d) be a complete metric space. Then the Hausdorff
distance between points 4 and B in (X)) is defined by

h(A, B) = d(A, B) v d(B, A).

Exercises & Examples
6.15. Show that # is a metric on the space #( X).

Proof. let A, B,C € 5#(X). Clearly h(A, A)y=d(A, A) Vv d(A, A) =
d(4, Ay = Max{d(x, A): x € A} =0. h(A, B) = d(a, b) for some a € 4
and b € B, using the compactness of 4 and B. Hence 0 < h(A4, B) < oo, If
A # B we can assume there is an a € 4 so that a & B. Then h(A4, B) =
d(a, B) > 0. To show that A(A, B) < h(A4, C) + h(C, B) we first show that
d(A, B) < d(A4,C) + d(C, B). We have for any a € 4

d(a, B) = Min{d(a, b): b € B}
< Min{d(a,c) + d(c,b): bE B} Vce C
=d(a,c) + Min{d(c,b): be B} Vc e C,so
d(a,B) < Min{d(a,c): c € C} + Max{Min{ d(¢,b): b€ B): c€ C}
=d(a,C) + d(C, B),s0
d(A, B) <d(A4,C) +d(C, B).
Similarly

d(B, A) < d(B,C) + d(C, A), whence
h(A,B) = d(A,B) V d(B, A) <d(B,C) V d(C.B)+d(A4,C)Vd(C, A)
=h(B,C) + h(A,C), as desired.

6.16. Show that h(4 U B, CU D) < h(A,C)V h(B, D), for all 4, B, C,
and D € 57(X).

6.17. Let (X,d) be a compact metric space. Show that (3#(X), k) is a
compact metric space, where A is the Hausdorfl metric on the space
H(X).

6.18. Show that (A, B) = d(a, b) for some a € 4 and b € B.
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6.19. The same situation as in 6.9, but this time locate a pair of points £ € 4
and § € B such that d(%, §) = h(A4, B), the Hausdorff distance from A4
to B.

6.20. Let S C R, with § # @. The supremum of S is denoted by Sup S. The
infimum of § is denoted by Inf S. If there is no real number which is
greater than all the numbers in S then Sup S = +oo; otherwise Sup S
= Min{x € R: x > s Vs € §). If there is no real number which is less
than all of the numbers in § then InfS = —o0; otherwise InfS =
Max{x ER: x <sVs € S§}). Show that SupS and InfS are well-
defined. Show that if S is compact then SupS = Max S and Inf S =
Min S. Further exercises on Sup and Inf are given following Definition
3.6.2.

By replacing Max by Sup and Min by Inf, respectively, throughout the
definition of the Hausdorff metric, define a “distance” between arbitrary
pairs of subsets of a metric space. Give several reasons why this
“distance” is not usually a metric.
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2.7 THE COMPLETENESS OF THE SPACE OF FRACTALS

We refer to (3£ (X), h) as “the space of fractals”. It is too soon to be formal
about the exact meaning of ““a fractal”. At the present stage of development of
science and mathematics, the idea of a fractal is most useful as a broad
concept. Fractals are not defined by a short legalistic statement,-but by the
many pictures and contexts which refer to them. For us, for the first eight
chapters of this book, any subset of (X#'(X), h) is a fractal. However, as with
the concept of “a space”’, more meaning is suggested than is formalized.

In this section our principal goal is to establish that the space of fractals
(H(X), h) is a complete metric space. We also want to characterize conver-
gent sequences in 3 (X). To achieve these goals using only the tools intro-
duced so far is quite difficult. Indeed, at this juncture, we want to introduce
another notion; namely, the idea of extending certain Cauchy subsequences.
Definition 1. Let SC XandletI' > 0. Then S+ I'={y e X: d(x, y) < T
for some x € §}. § + I' is sometimes called, for example, in the theory of set
morphology, the dilation of S by a ball of radius T.

Lemma 1. Ler A and B belong to # (X)) where (X, d) is a metric space. Let
€> 0. Then

h(A,B)<e= ACB+eand BC A +e.



36

2 Metric Spaces; Equivalent Spaces; Classification of Subsets

Proof. Begin by showing that d(A4, B) < e < A C B + €. Suppose “d(4, B)
<e.” Then Max{d(a, B): a € A} < ¢ implies d(a, B) < ¢ for all a € 4.
Hence for each a € A we have a € B + ¢. Hence “4 C B + ¢.” Suppose
“A C B+ ¢” Consider d(4, B) = Max{d(a, B): a € A}. Let a € 4. Since
A C B +e thereis a b € B so that d(a, b) < e. Hence d(a, B) < e. This is
true for each a € 4. So “d(A4, B) < ¢.” This completes the proof.

Let {4, n=1,2,..., 00} be a Cauchy sequence of sets in (#(X), h).
That is, given € > O, there is N so that n, m > N implies

A,+eD A, and A,+eDA,,

ie, h(A,, A,) < e. We are concerned with Cauchy sequences {x,}7_; in X
with the property that x, € A, for each n. In particular, we need the
following property which allows the extension of a Cauchy subsequence
{x, €4, )%, with the property that x, € 4, for each j, to a Cauchy
sequence {x, € 4, }>_,.

Lemma 2. (The Extension Lemma) Let (X, d) be a metric space. Let
(A, n=12,... ) be a Cauchy sequence of points in (#(X), h). Let
{n;}%_, be an infinite sequence of integers

O0<m<n,<npy< ---

=1,2,3...} in
2,...} such that

(X, d). Then there is a Cauchy sequence {X, € 4,: n =
%, = x, , for all j=1,23,....

ny

Suppose that we have a Cauchy sequence {x,, €4,: J

Proof. We give the construction of the sequence {%¥, € A4,: n=1,2,...}.
For each n € {1,2,..., n,;) choose X, € {x € 4,: d(x,x,)=d(x,,4,)}.
That is, %, is the closest point (or one of the closest points) in 4, to x,, . The
existence of such a closest point is ensured by the compactness of A4, .
Similarly, for each j € {(2,3,---) and each n € {n; +1,...,n,,,} choose
X, €E{x €A, d(x, X, )= d(x,, A))}.

Now we show that {%X,} has the desired properties, that it is indeed an
extension of {x, } to {4,). Clearly X, = x, and x, € 4,, by construction.
To show that it 1s a Cauchy sequence let ¢ > O be given. There is N, so that
n.,n; > N, implies d(x, , x, ) < ¢/3. There is N, so that m, n > N, implies

d( Am ’ An) < 6/3
Let N = Max{N,,N,} and note that, for m, n > N,
d(im s in) < d( im » xn_,) + d(xnj > xnk) + d(xnk ’ in)

where me {n,_, +1,n,_; +2,...,n;} and ne€{n,_ + 1, n_; +
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Figure 2.7.1

Xnigy,, A The beginning of a
Cauchy sequence { 4, }
Ag of sets in H#(R?) is
shown. A Cauchy subse-

quence of points {x, }
belonging to a subse-

2 Ag A quence of the sets is also
‘:’;,S":} Xn, 7 AB s indicated. Make a photo-
i Ag copy of the figure, and

mark on it the extension
of the subsequence of
points to the visible sets
in {A,}.

2,...,n,}. Since h(4,, A,)<¢/3 there exists y € 4, N ({x,} +¢/3) s0
that d(%,,, x,) < ¢/3. Similarly d(x, , ¥,) <e/3. Hence d(%,, ¥,) <€ for
all m, n > N. This completes the proof.

Exercises & Examples

7.1. A Cauchy sequence {4, } of sets in (#(R?), h) is sketched in the Figure
2.7.1. The underlying metric space is (R? Euclidean). A Cauchy sub-
sequence {x, € A4, } is also shown. Sketch, in the same Figure, an
extension { X}, of this subsequence, to {4, }.

7.2. Repeat 7.1 but this time with reference to Figure 2.7.2.

The central result we have been driving for is this:

Theorem 1. (The Completeness of the Space of Fractals) Let (X, d) be a
complete metric space. Then (3 (X), h) is a complete metric space. Moreover,
if {A, € # (X)), is a Cauchy sequence then

A = Lim 4, € #(X)

n— o0

Figure 2.7.2 )
Al Xa, The same problem as for
* A, Figure 2.7.1. The sets
A3 (A, look very different
here.

5 *ny
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can be characterized as follows:

A = {x € X: there is a Cauchy sequence {x, € A, } that converges to x} .

Proof. Let {A,} be a Cauchy sequence in 5#(X) and let A be defined as in
the statement of the theorem. We break the proof up into the following parts:

(a) 4+ I,

(b) A is closed and hence complete since X is complete;
(c) for e > 0 thereis N suchthatforn >N, A CA, +¢
(d) A4 1s totally bounded and thus by (b) is compact;

() LimA, = A.

Proof of (a). We shall prove this part by proving the existence of a Cauchy
sequence {a, € 4,} in X. Towards this end find a sequence of positive
integers Ny < N, < N; < --- < N, < -.- such that

h(Am,A,,)<% form n> N,.

Choose xy € Ay . Then, since h(Ay , Ay,) < 3, we can find an x,, € 4y,
such that d(xy, xy) < 1. Assume that we have selected a finite sequence
xy €Ay; i=12,... k for which d(xy ,xy)=<1/2"! Then since
h(Ay, Ay ) <1/2% and x, €4y, we can find x, € A4y  such that
d(xy,, xy,,) < 1/2% For example let x,  be the point in A,  which is
closest to xy, . By induction we can find an infinite sequence {x, € 4 } such
that d(xy, xy ) < 1/2'. To see that {xy } is a Cauchy sequence in X, let
€ > 0 and choose N, such that ¥2 y1/2' < €. Then for m > n > N, we have

d(me’xNu) = d(me’me»l) + d(an.+1 ’an,+2) T +d(an—1 ’an)
o0
1
< Z > <e.

By the Extension Lemma, there exists a convergent subsequence {a; € 4,} for
which ay = xy . Then Lim g, exists and by definition is in A. Thus 4 # @.

Proof of (b). To show that A4 is closed, suppose {a; € A} is a sequence that
converges to a point a. We will show that @ € 4, hence making A closed. For
each positive integer i, there exists a sequence {x; ,€A4,} such that
Lim, , _x;, , = a,. There exists an increasing sequence of positive numbers
{N;};Z, such that d(ay, a) < 1/i. Furthermore there is a subsequence of
integers {m,} such that d(xy ,,,ay) < 1/i. Thus d(xy ., a) < 2/i. If we
. we see that ylml = A”;‘ and Lim, _, _y,, —a. By the Extension
Lemma {y,, } can be extended to a convergent sequénce {z, € 4,}, and so
a € A. Thus we have shown A4 is closed.

let ym, = XN

. m
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Proof of (¢). Let e¢> 0. There exists an N such that for m,n> N,
h(A,,,A,) <e Nowlet n> N. Then for m = n, 4, C A, + ¢ We need to
show that 4 C 4, + €. To do this, let a € 4. There is a sequence {a; € 4,}
that converges to a. We may assume N is also large enough so that for
mz=N, d(a,,,a)<e Then a, € A, + ¢ since 4,, C A, + €. Since 4, is
compact, it can be shown that 4, + € is closed. Then since a,, € 4, + € for
all m = N, a must also bein 4, + €. This completes the proof that 4 C 4, + ¢
for n large enough.

Proof of (d). Suppose A were not totally bounded. Then for some ¢ > 0 there
would not exist a finite e-net. We could then find a sequence {x,;}%2; in 4
such that d(x;, x;) = € for 7 # j. We shall show that this gives a contradic-
tion. By (c) there exists an n large enough so that 4 C 4, + ¢/3. For each x,,
there is a corresponding y, € 4, for which d(x,, y;,) <€/3. Since 4, is
compact some subsequence { y, } of {y;} converges. Then we can find points
in the sequence {y, } as close together as we wish. In particular we can find

two points y, and y, such that d(y,, y, ) < ¢/3. But then

+

W
w| ™

d(x,.x,) <d(x,, ) +d(y,,n)+d(n. %) <5+

and we have a contradiction to the way {x, } was chosen. Thus 4 is totally
bounded and by part (b) compact.

Proof of (e). From part (d), 4 € s#(X). Hence by part (¢) and Lemma 1 the
proof that Lim A; = A will be complete if we show that for ¢ > 0, there exists
an N such that for n > N, A, C A + €. To show this let ¢ > 0 and find N
such that for m,n > N, h(A,,, A,) < ¢/2. Then for m,n > N, 4, C A, +
¢/2. Let n > N. We will show that 4, € 4 + €. Let y € 4. There exists an
increasing sequence { N;} of integers such that n < Ny < N, < N, < --- <
N < --- andform,k = N, A, C A, +¢/2’%!. Note that 4, C 4, + ¢/2.
Since y € 4, there is an xy, € 4, such that d(y, xy) < €/2. Since x,, €
Ay, , there is a point xy € Ay such that d(x, , xy,) < €¢/2% In a similar

manner we can use induction to find a sequence x , xy,, Xy,,-.. such that

xy € Ay and d(xy, xy, ) < ¢/2/*1, Using the triangle inequality a number
. s,

of times we can show that .

a'(y,xN/) <e for all j,

and also that {x } is a Cauchy sequence. {x, } converges to a point x which
is in 4. Moreover d(y, xy) < ¢ implies that d(y, x) < e. We have thus
shown that 4, C 4 + ¢ for n > N. This completes the proof that Lim 4, = 4
and consequently that (5 (X), &) is a complete metric space.
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Figure 2.7.3

A Cauchy sequence of sets
{A,} in the space

H# (R?) copuerging to a
fern-like set.
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Exercises & Examples
7.3. A tree waves in the wind. A special camera photographs the tree at times
t,= (1~ 1/n)secs, n=1,23,.... Show that with reasonable assump-

tions the sequence of pictures thus obtained form a Cauchy sequence
{A4,)2.; in #(R?). What does 4 = Lim,, _, .4, look like?

7.4. The Sierpinski Triangle &@ is a compact subset of (R2, Euclidean).

n —co

Hence ( &@ , Euclidean) is a compact metric space. Give an example of
an infinite set in (J#( & ), h). Demonstrate a Cauchy sequence

{4, €#( )} which is contained in your set, and describe its limit.

7.5. Figure 2.7.3 shows a convergent sequence of sets in J# (M) converging to a
fern. Pick a point in 4. Find a Cauchy sequence {x, € A4,} which
converges to it.
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2.8 ADDITIONAL THEOREMS ABOUT METRIC SPACES

We state here a number of theorems which we shall use later on. Full proofs
are not provided. They can be found in most introductory topology texts. We
particularly recommend Kasriel [1971] and Mendelson [1963]. These theorems
may be treated as exercises in metric space theory.

Theorem 1. Let (X, d) be a metric space. Let {x,} be a Cauchy sequence
convergent to x € X (or equivalently ler {x,} be a sequence and x be a point,
such that Lim d(x, x,) = 0). Let f: X = X be continuous. Then

Lim f(x,) = f(x).

Proof. See your first calculus book.

Theorem 2. Ler (X, d,) and (X,, d;) be metric spaces. Let f: X, - X, be
continuous. Let E C X, be compact. Then f: E — X, is uniformly continuous:
that is, given € > O there is a number § > 0 so that

d,(f(x). f(y)) <c¢ whenever d,(x, y) <8 forallx,y € E..

Proof. Use the fact that any countable open cover of E contains a finite
subcover.

Theorem 3. Let (X, d;) be metric spaces fori = 1,2,3. Let f: X, X X, = X;
have the following property. For each € > 0 there exists 8§ > 0 such that
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2 Metric Spaces; Equivalent Spaces; Classification of Subsets

(i) di(xy, 1) <8 = dy(f(x1, X)), f(N, %)) <€, VX, €EX, VX, €EX,,
and (ii) dy(xy, y,) <8 = dy(f(¥1, X3), f(V1, ) <€, Vy €EX,, Vx,,
Y2 € X,. Then f is continuous on the metric space (X = X, X X,, d) where

d((xl’xz}()’n n)) = Max{d,(x;, »1), (x4, y2)}.

Proof. Use d(f(xy, x3), f(y1, »)) < d([f(xy, X3), f()1, x3)) +
d(f(¥1, x5), f(¥1, y;)), but check first that 4 is a metric.

Theorem 4. Let (X,, d;) be metric spaces for i = 1,2 and let the metric space
(X, d) be defined as in Theorem 3. If K|, C X, and K, C X, are compact then
K, X K, C X is compact.

Proof. Deal with the component in K, first.

Theorem 5. Let (X,, d,) be compact metric spaces fori = 1,2. Let f: X, > X,
be continuous, one-to-one and onto. Then f is a homeomorphism.



Transformations

on Metric Spaces;
Contraction Mappings;
and the Construction
of Fractals

3.1 TRANSFORMATIONS ON THE REAL LINE

Fractal geometry studies “complicated” subsets of geometrically “simple”
spaces such as R% C, R,é. In deterministic fractal geometry the focus is on
those subsets of a space which are generated by, or possess invariance
properties under, simple geometrical transformations of the space into itself. A
simple geometrical transformation is one which is easily conveyed or explained
to someone else. Usually they can be completely specified by a small set of
parameters. Examples include affine transformations in R2 which are ex-
pressed using 2 X 2 matrices and 2-vectors, and rational transformations on
the Riemann Sphere, which require the specification of the coefficients in a
pair of polynomials.

Definition 1. Let (X, d) be a metric space. A transformation on X is a
function f: X — X, which assigns exactly one point f(x) € X to each point
x€X If SC X then f(S)={f(x):x €S}. f is one-to-one if x,y €X
with f(x) = f(y) implies x = y. Function f is onto if f(X) = X. f is called
invertible if it is one-to-one and onto: in this case it is possible to define a
transformation f~': X — X, called the inverse of f, by f~!(y) = x where
x € X is the unique point such that y = f(x).

AD



3 Transformations on Metric Spaces; Contraction Mappings

Definition 2. Let f- X > X be a transformation on a metric space. The
forward iterates of f are transformations f°”; X — X defined by f°°(x) = x,
) = £ £ (x) = fo for(x) = F(FOn(x)) for n = 0,1,2,... 1 fis
invertible then the backward iterates of f are transformations f°( ™ (x):
X - X “defined by f°U"D(x)=f"1(x), fFO™(x)=(f")"x) for m=
1,2,3,....

In order to work in fractal geometry one needs to be familiar with the basic
families of transformations in R, R?, C, and €. One needs to know well the
relationship between “formulas” for transformations and the geometric
changes, stretchings, twistings, foldings, and skewings of the underlying fabric,
the metric space upon which they act. It is more important to understand what
the transformations do to sets than how they act on individual points. So, for

example, it is more useful to know how an affine transformation in R? acts on -.

a straight line, a circle, or a triangle, than to know to where it takes the origin.

Exercises & Examples
1.1. Let f: X - X be an invertible transformation. Show that

fomefor = folmtm  for all integers m and n.

1.2. A transformation f: R — R is defined by f(x) = 2x forall x € R. Is f
invertible? Find a formula for f°"(x) which applies for all integers n.

1.3. A transformation f: [0,1] — [0,1] is defined by f(x)= 3x. Is this
transformation one-to-one? Onto? Invertible?

1.4. The mapping f: [0,1] — [0,1] is defined by f(x) = 4x - (1 — x). Is this
transformation one-to-one? Onto? Is it invertible?

1.5. Let % denote the Classical Cantor Set. This subset of the metric space
[0, 1] is obtained by successive deletion of middle third open subintervals
as follows. We construct a nested sequence of closed sets

Lhoho>LO>LOL, DL, D -+- DIyD -
where
I()= [0’1]’
Il=[05%]u[%,%’
L=10 1V, $1 U5 F1U L 51V 3 8 U IH BV

24 25 26 27
275 27 U 275 271

1,= I, take away the middle open third of each interval in I,

I,= I, _, take away the middle open third of each interval in I _,.
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I0
0
I
0 H H 1
12
o N T S
I3
03 & » # 3y 3 ¥ mw o 7 onm ol
This construction is illustrated in Figure 3.1.1. We define
’ 0
¥= N1,
n=0
% contains the point x = 0, so it is nonempty. In fact € is a perfect set
which contains uncountably many points, as discussed in Chapter 4. ¥
is an official fractal and we will often refer to it.
We are now able to work in the metric space (%, Euclidean).
A transformation f: € —» € is defined by f(x) = 4x. Show that this
transformation is one-to-one but not onto. Also, find another affine
transformation (see example 1.7) which maps % one-to-one into €.
1.6. f: R? - R? is defined by f(x,, x5) = (2x;, x2 + x,) for all (x;, x,) €
R2 Show that f is not invertible. Give a formula for f°2(x).
1.7. Affine transformations in R are transformations of the form f(x) =a -

x + b where a and b are real constants. Given the interval I = [0, 1],
f(I) is a new interval of length |a|, and f rescales by a. The left
endpoint 0 of the interval is moved to b, and f(7) lies to the left or right
of b according to whether a is positive or negative respectively (see
Figure 3.1.2).

We think of the action of an affine transformation on all of R as
follows. The whole line is stretched away from the origin if |a| > 1, or

Figure 3.1.1
Construction of the
Classical Cantor Set %.
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Figure 3.1.2 Subsets of | are transported

The action of the affine a real interval
transformation f: R - R of length L f length |a| L
b

defined by f(x) = ax 0

+b.

1.8.

1.9.

1.10.

| N

| (1)
rotate 180° about :\'/
if a is less than zero.

contracted towards it if |a| < 1; flipped through 180° about 0 if a < 0;
and then translated (shifted as a whole) by an amount b (shift to the left
if b < 0, and to the right if b > 0).

Describe the set of affine transformations which take the real interval
X = [1,2] into itself. Show that if f and g are two such transformations
then fo g and g o f are also affine transformations on [1, 2]. Under what
conditions does fo g(X) U go f(X) = X?

A sequence of intervals {1,}®_, is indicated in Figure 3.1.3. Find an
affine transformation f: R — R so that f°"(l,) =1, for n =
0,1,2,3,... . Use a straight-edge and dividers to help you. Also show
that {7,}* , is a Cauchy sequence in (#(R), h), where h is the
Hausdorff distance on #(R) induced by the Euclidean metric on R.
Evaluate / = Lim, , I, .

Consider the geometric series ¥°_ob-a"=b +a-b +a’b+ a’b +
a* + -+ >0,0<a < 1. This is associated with a sequence of inter-
vals I, = [0, 6], I, = f°"(1,) where f(x)=ax+b,n=123...; as
illustrated in Figure 3.1.4.

Let 1= U/, and let / denote the total length of /. Show that
f(I) = I\ I, and hence deduce that a/ =/ — b so that / = b/(1 — a).
Deduce at once that

i b-a"=b/(1-a).
"=0

Figure 3.1.3 /-b\

This Figure suggests a se- O AN 1
quence of intervals | I I Lo
(IY>_o. Find an affine 0 1 2 34
transformation f: R - R

so that f°"(1,) = I, for

n=20123.... Usea

straight-edge and dividers

to help you.
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] B Figure 3'1'4

Picture of a convergent
geometric series in R!
(see Ex. 1.9).

lo I I2 I3 Iy Ig lg

Thus we see from a geometrical point of view a well-known result about
geometric series. Make a similar geometrical argument to cover the case
-1<a<0.

Definition 3. A transformation f: R — R of the form

f(x) =ag+ ayx + ayx? + a;x* + -+ +ayx®,

where the coefficients a; (i = 0,1,2,..., N) are real numbers, a, # 0, and N
is a nonnegative integer, is called a polynomial transformation. N is called the
degree of the transformation.

Exercises & Examples

1.11.

1.12,

1.13.

Show that if f/: R -» R and g: R —» R are polynomial transformations,
then so is fo g. If f is of degree N, calculate the degree of f°™(x) for
m=1,23,....

Show that for n > 1 a polynomial transformation f: R — R of degree n
is not generally invertible.

Show that far enough out (i.e., for large enough |x|), a polynomial
transformation f: R — R always stretches intervals. That is, view f as a
transformation from (R, Euclidean) into itself. Show that if I is an
interval of the form I = {x: |x — a| < b} for fixed a, b € R, then for
any number M > O there is a number B8 > 0 such that if » > S, then the
ratio (length of f(I))/(length of I) is larger than M. This idea is
illustrated in Figure 3.1.5.

-

Figure 3.1.5
A polynomial transforma-

x-axis at large positive x

R

N U N RN I R |

//// goes.
R
R N O Y IOUUY (S (N S B—'|

— | t ; Ll tionf: R = R of degree
> 1 stretches R, more and
more the further out one

X-axis at large posttive x

47
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Figure 3.1.6
The polynomial transfor-

mation f(x) = x3 — folcll point fold pf)lnt
R -2 -1 0
L 1
C

1.14.

1.15.

1.16.

1.17.

1.18.
1.19.

1.20.

triply folded region

A polynomial transformation f: R — R of degree n can produce at
most (n — 1) folds. For example f(x) = x* — 3x + 1 behaves as shown
in Figure 3.1.6.
Find a family of polynomial transformations of degree 2 which map the
interval [0, 2] into itself, such that, with one exception, if y € f([0, 2])
then there exist two distinct points x, and x, in [0,2] with f(x;) =
f(x2) = y. ;
Show that the one-parameter family of polynomial transformations fy:
[0,2] — [0, 2], where

Ax)=A-x-(2-x),
and the parameter A belongs to [0, 2], indeed takes the interval [0, 2] into
itself. Locate the value of x at which the fold occurs. Sketch the behavior
of the family, in the spirit of Figure 3.1.6.
Let f: R = R be a polynomial transformation of degree n. Show that
values of x which are transformed into fold points are solutions of

%(x)=0, x eR.

Solutions of this equation are called (real) critical points of the function
f. If ¢ is a critical point then f(¢) is a critical value. Show that a critical
value need not be a fold point.

Find a polynomial transformation such that Figure 3.1.7 is true.

Recall that a polynomial transformation of an interval f: I C R — [ is
normally represented as in Figure 3.1.8. This will be useful when we
study iterates { f°"(x)Z_,. However the folding point of view helps us to
understand the idea of the deformation of space.

Polynomial transformations can be lifted to act on subsets of R? in a
simple way: we can define for example F(x) = (f,(x,), f2(x,)) where f;
and f, are polynomial transformations in R, so that F: R? - R
Desired foldings in two orthogonal directions can be produced; or
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Figure 3.1.7
. . . Find a polynomial trans-
f0|(? point fold \pomt fold pr)mt formation f: R — R, so
Re 4 y —+ H 1 1 3| that this figure correctly
C represents the way it folds
D the real line.

shrinking in one direction and folding in another. Show that the trans-
formation F(x;, x,) = (3x; — ¥x{ + “x,, x,) acts on the triangular
set § in Figure 3.1.9 as shown.

The real line can be extended to a space which is topologically a
circle by including “The Point at Infinity.” One way to do this is to
think of R as a subset of €, and then include the North Pole on €. We
define this space to be R = R U {00}, and will usually give it the
spherical metric.

Definition 4. A transformation f: R — R defined in the form

+b
flxy=2"=. abcdeR, ad+be

is called a linear fractional transformation or a Mobius transformation. If ¢ # 0
then f(—d/c) = oo, and f(o0) = a/c. If ¢ = 0 then f(o0) = co.

Exercises & Examples

1.21. Show that a Mobius transformation is invertible.
1.22. Show that if f; and f, are both Mobius transformations then so is

fie b

/| Figure 3.1.8
- The usual way of pictur-
°€'§ lclg' 1 ing a polynomial transfor-

mation.

-

—_— e - — — —

2 .. .
critical pomt

49
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Figure 3.1.9

A polynomial transforma-
tion acting on a set S in
the plane

fold lines

double cover
/ triple cover

-

1.23. What does f(x) = 1/x do to R on the sphere?

1.24. Show that the set of M0Obius transformations f such that f(00) = oo is
the set of affine transformations.

1.25. Find a Mdbius transformation f: R — R so that f(1) = 2, f(2) =0,
f(0) = co. Evaluate f(o0).

1.26. Figure 3.1.11 shows a Sierpinski triangle before and after the polynomial
transformation x — ax(x — b) has been applied to the x-axis. Evaluate
the real constants a and b. Notice how well fractals can be used to
illustrate how a transformation acts.

3.2 AFFINE TRANSFORMATIONS IN THE EUCLIDEAN PLANE

Definition 1. A transformation w: R? — R? of the form
w(x,x,) =(ax; + bx, + e, cx; + dx; + f)

where a, b, ¢, d, e, and f are real numbers, is called a (two-dimensional)
affine transformation.

Figure 3.1.10
R U (oo} becomes a
circle on the sphere.
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AFTER (X,Y)—(aX-(X-b),Y)

-2 0 10

BEFORE
TRANSFORMATION

Figure 3.1.11
A Sierpinski triangle before and after the polynomial transformation x — ax(x — b) is
applied to the x-axis. Evaluate the real constants a and b.

We will often use the following equivalent notations

or=ofZ) -2 ) (5] ocre

Here 4 = (‘: Z) is a two-dimensional 2 X 2 real matrix and ¢ is the column

7) which we do not distinguish from the coordinate pair (e, J) € R%.
Such transformations have important geometrical and algebraic properties.
Here and in all that follows we shall assume that the reader is familiar with
matrix multiplication.

The matrix A4 can always be written in the form
(a b) (r1 cosf, —rsinb,

c d r,sinf,  rcosb,

vector ( ¢
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Figure 3.2.1
An affine transformation length r, length 1,
takes parallelograms into
parallelograms.
1 | 1
-1 n 1
where (7, 8,) are the polar coordinates of the point (4, ¢) and (r,, (8, + 7/2))
are the polar coordinates of the point (b, d). The /inear transformation
X1 X1
(xz) - A(xz)
in R? maps any parallelogram with a vertex at the origin to another parallelo-
gram with a vertex at the origin, as illustrated in Figure 3.2.1. Notice that the
parallelogram may be “turned over” by the transformation, as illustrated in
Figure 3.2.2.
The general affine transformation w(x) = Ax + ¢ in R? consists of a
linear transformation, 4, which deforms space relative to the origin, as
Figure 3.2.2

A linear transformation
can turn pictures over.

) A( Xu )_ (rl €os o, I sin 92) Xu )
X I Sin o I: €OS 6 /\ Xe
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described above, followed by a iranslation or shift specified by the vector ¢
(see Figure 3.2.3).

How can one find an affine transformation which approximately trans-
forms one given set into another given set in R?? Let’s show how to find the
affine transformation which almost takes the big leaf to the little leaf in Figure
3.2.4. This figure actually shows a photocopy of two real Ivy leaves. We wish
to find the numbers a, b, ¢, d, e, and f defined above, so that

w (BIG LEAF) approximately equals LITTLE LEAF.

Begin by introducing x and y coordinate axes, as already shown in Figure
3.2.4. Mark three points on the big leaf (we’ve chosen the leaf tip, a side spike,
and the point where the stem joins the leaf) and determine their coordinates
(x5 x3), (3, »), and (z,, z;). Mark the corresponding points on the little
leaf, assuming that a caterpillar hasn’t eaten them, and determine their
coordinates; say (X,, %,), (J,, 7,), and (%, 7,) respectively. Then a, b, and ¢
are obtained by solving the three linear equations

xa+ x,b+e=3x,,
na+yb+e=
zia+z,b +e

|
=

It
N
2

while ¢, d, and f satisfy
x;c+x,d+f=%,,
yic +yd + f= 7,
zZie+z,d+f=12,.

Figure 3.2.3
An affine transformation
consists of a linear trans-
formation followed by a
FIRST MAKE A LINEAR translation.
TRANSFORMATION
(e,f)

THEN

TRANSLATE by t

53
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Figure 3.2.4

Two Ivy leaves lying on
the Euclidean Plane de-
termine an affine trans-
formatior.

Exercises & Examples

2.1

2.2,

23.

Find an affine transformation in R? which takes the triangle with
vertices at (0,0), (0, 1), (1,0) to the triangle with vertices at (4, 5), (—1,2)
and (3,0). Show what this transformation does to a circle inscribed in
the first triangle. '

Show that a necessary and sufficient condition for the affine transforma-

tion
a by[* ey
b d)(Xz) #[g) - axe
to be invertible is det 4 # 0, where det A = (ad — bc) is the determi-
nant of the 2 X 2 matrix 4.

Show that if f;: R? > R? and f,: R? - R? are both affine transforma-
tions, then so is

L=hets.

If fi(x)=A,x+1t, i=1,2,3where 4, is a 2 X 2 real matrix, express
A, in terms of 4, and 4,.

Definition 2. A transformation w: R? —» R? is called a similitude if it is an
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affine transformation having one of the special forms
(x1 _ rcos —rsinf\/x +(e)
1) Tl rsing  reosd |\ %2 f
x\ (rcos§ rsind X ( e
%) Tl rsdng  —rcosd (x2)+ f)
for some translation (e, f) € R?, some real number r # 0, and some angle 8§,

0 < 6 < 27. 8 is called the rotation angle while r is called the scale factor or
scaling. The linear transformation

—sinf Xy

cos @ ( X3

%) [cosf
Ro(xz) B ( sin 8
Xy _ (1 0y (X
"= (o -1(%)
is a reflection.

is a rotation. The linear transformation
Figure 3.2.5 shows some of the things that a similitude can do. Notice that
a similitude preserves angles.

55

BOMB

N

-

P

o= O
=
I"r\

§%

Figure 3.25
Some of the things that a
similitude can do.
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Exercises & Examples

24.

2.5.

2.6.

2.7.

28

Find the scaling ratios r;, r, and the rotation angles #,, 8, for the affine
transformation which takes the triangle (0,0), (0,1), (1,0) onto the
straight line segment from (1,1) to (2,2) in R? in such a way that both
(0;1) and (1, 0) go to (1,1).

Let S be a region in R? bounded by a polygon or other ‘nice’ boundary.
Let w: R? > R? be an affine transformation, w(x) = Ax + r. Show that

(area of w(S)) = |derA| - (area of S)

(see Figure 3.2.6). Show that det 4 < 0 has the interpretation that S is
“flipped over” by the transformation. (Hint: Suppose first that S is a
triangle.)

Show that if w: R? - R? is a similitude, w(x) = Ax + ¢, where ¢ is the
translation and A4 is a 2 X 2 matrix, then A can always be written either -
A=rRyor A =rRR,.

View the railway tracks image in Figure 3.2.7 as a subset S of R2. Find a
similitude w: R? - R? such that w(S) C S, w(S) # S.

We use the notation introduced in Definition 3.2.2. Find a nonzero real
number r, an angle 8, and a translation vector ¢ such that the similitude
wx = rRyx + t on R? obeys

L)<k vl £n )=
where & denotes a Sierpinski Triangle with vertices at (0, 0), (1,0),
and (3,1).

Figure 3.2.6

The scaling factor by
which an affine transfor-
mation changes area is
determined by the de-
terminant of its linear
part.

-

T

el ™,
Pl

TRANSFORMATTON T

H(x)=Ax+t
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-
FIXED POINT

ind an affine mapping
which neariy takes

the tracks into
/ hemselves
/v;mw TO NNTY

2.9. Show that if w: R? > R? is affine, w(x) = Ax + ¢, then it can be

reexpressed
(n O n 0\/x
w(x)—(0 rz)Ro(O r4)(x2)+t

where 7, € R and 0 < # < 2«. We call a transformation of the form

xy (n 0Y)(x
w( *2 ) o n ( *2 )
a coordinate rescaling.

2.10. Let S denote the two-dimensional orchard subset of R2 shown in Figure
3.2.8. Find two fundamentally different affine transformations which
map S into S but not onto S. Define the transformations by specifying
how they act on three points.

Figure 3.2.7

Railway to Infinity. Can
you find an affine trans-
formation which nearly
maps the tracks into
themselves?
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Ny
. T
S 1

e

e
S

A
A‘::‘:‘
—~—F N _—
“’é e,
SRR

G E

X

Figure 3.2.8
Orchard Subset of R>. Can you find some interesting affine transformations which map
this set into itself ?

2.11. Let w(x) = Ax denote a linear transformation in the metric space
(R?, D) where
_{a b
a=(2 )

Define the norm of a point x € R* to be |x| = D(x,0) where O
denotes the origin. Define the norm of the linear transformation A4 by

|A|=Max{|—%)|c~|:xeﬂz,x#0}

when this maximum exists. Show that |A4| is defined when D is the
Euclidean metric and when it is the Manhattan metric. Find an expres-



3.3 Mbdbius Transformations on the Riemann Sphere

sion for |A|in terms of a, b, ¢, and d in each case. Make a geometrical
interpretation of the |A|. Show that when | A| exists we have

|Ax| < |A|-|x|  forall x € R2.
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3.3 MOBIUS TRANSFORMATIONS ON THE RIEMANN SPHERE

Definition 6. A transformation f: € — € defined by
_ (az+b)
f(z) = (cz +d)
where a, b, ¢, and d € C, ad — bc # 0, is called a Mdbius transformation on
C. If ¢ # 0 then f(—d/c) = o0, and f(o0) = a/c. If ¢ =0 then f(o0) = c0.

As shown by the following exercises and examples, one can think of a
Moébius transformation as follows. Map the whole plane C together with the
point at infinity, onto the sphere C, as described in Chapter 2. A sequence of
operations is then applied to the sphere. Each operation is elementary and has
the property that it takes circles to circles. The possible operations are:
rotation about an axis, rescaling (uniformly expand or contract the sphere),
and translation (the whole sphere is picked up and moved to a new place on
the plane, without rotation). Finally, the sphere is mapped back onto the plane
in the usual way. Since the mappings back and forth from the plane to the
sphere take straight lines and circles in the plane to circles on the sphere, we
see that a MoObius transformation transforms the set of straight lines and
circles in the plane onto itself. We also see that a Mobius transformation is
invertible. It is wonderful how the quite complicated geometry of Mobius
transformations is handled by straightforward complex algebra, where we
simply manipulate expressions of the form (az + 8)/(cz + d).

Exercises & Examples

3.1. Show that the most general Mobius transformation which maps o to o
is of the form f(z)=az + b, a,b €C, a+ 0, and that this is a
similitude. Show that any two-dimensional similitude which does not
involve a reflection can be written in this form. That is, disregarding
changes in notation,

f(2) = f(x + ixy) = (@ + iay))(x, + ixy) + (b + iby)
=re®(x, + ix;) + (b + iby), (i=V-1)

=(rcoso —rsino)(xl " b,
rsinf  rcosf J\ %2 by |’
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sets in the plane are
mapped onto the sphere

the sphere may be moved to
a new location on the !Jlane,
rescaled, rotated, and inverted.

Figure 3.3.1
A Mobius transformation acting on England to produce a new country.
Find r and # in terms of a4, and a,. Show that the transformation can
be achieved as illustrated in Figure 3.3.2.

3.2. Show that the Md&bius transformation f(z) = 1/z corresponds to first
mapping the plane to the sphere, in such a way that the unit circle
{z € C: |z] =1} goes to the equator, followed by an inversion of the
sphere (turn it upside down by rotating about an axis through +1 and

" —1 on the equator), and finally mapping back to the plane.

3.3. Show that any M&bius transformation which is not a similitude may be

written

f(z)=e+z£g forsomee,f,geC, f+0.
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(1)map him onto
the sphere

(2) spin the globe
on its NS axis
hrough angle ¢

)
S,

7]
— - - =

l?4)keeping the NS
vector constant
pick up and move
the sphere, putting
S down on b.

3 rescale the globe
' until it is r times

, as large as it was

[

|

I

%

IS

—_p - — — —

(5) map hlm onto
the plane

34.

35.

3.6.

3.7.

Sketch what happens to the picture in Figure 3.3.3 under the Mobius
transformation f(z) = 1/z. )

What happens to Figure 3.3.3 under the M&bius transformation f(z) =
1+ iz

Show algebraically that a Mobius transformation f: € - C€is always
invertible.

Show that if f, and f, are Mdobius transformations then f o f, is a
Mobius transformation.

Figure 3.3.2

The mechanism of the si-
militude f(z) = re'®z + b
in terms of the sphere.
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Figure 3.3.3
Up the Garden Path.
What does the Mobius
transformgtion z = 1 +
iz do to this picture?
O (|
(-1,0 (0. 0)
@ -1 .

3.8. Find a Mébius transformation which takes the real line to the unit circle
centered at the origin.
3.9. Evalvate f°"(z)if f(z) =1/ +z),ne {-2,-1,0,1,2,3,...).
3.10. Interpret the Mobius transformation f(z) =i+ 1/(z — i) in terms of
operations on the sphere.

3.4 ANALYTIC TRANSFORMATIONS

In this section we continue the discussion of transformations on the metric
spaces (C, Euclidean) and (é, Spherical). We introduce a generalization of the
MGobius transformations, called analytic transformations. We concentrate on
the behaviour of quadratic transformations. It is recommended that, during a
first reading or first course, the reader obtains a good mental picture of how
the quadratic transformation acts on the sphere. The reader may then want to
study this section more closely after reading about Julia Sets in Chapter 7.

The similitude f: € — €, defined by the formula f(z)=3z + 1 is an
example of an analytic transformation. It maps circles to circles magnified by
a factor three. A disk with center at z, is taken to a disk with center at
f(z4) = 3z, + 1. The transformation is continuous, and it maps open sets to
open sets. Nowhere does it “fold back along the dotted line.”
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The similitude f: ¢ — € defined by f(z) = (3 + 3i)z + (1 — 2i) is simi-
larly described. The circles and disks are now rotated by 45° in addition to
being magnified and translated.

Loosely a transformation on € is analytic if it is continuous and locally it
“behaves like” a similitude. If you take a very small region indeed (How
small? Small enough! There is a smallness such that what is about to be said is
true!) and you watch what the transformation does to that tiny region, you will
typically find that it is magnified or shrunk, rotated, and translated, in almost
exactly the same manner that some similitude would do the job. The similitude
will always be of the special type discussed in example 3.1 above.

We make this description more precise. Let us decide to look at what our
transformation does in the vicinity of a point z, € €. Assume that z, is not a
critical point, defined below. Let T denote a tiny region, a disk for example,
which contains the point z, Let f(T) be its image under the transformation.
Then one can rescale T by a factor which makes it roughly the size of the unit
square, and one can rescale f(7) by the same factor. The assertion of the
previous paragraph is that the action of the transformation, viewed as taking
T, rescaled, onto f(T'), rescaled, can be described more and more accurately
by a similitude. If you like, one could consider a picture P drawn in T and
examine the transformed image f(P). If P and f(P) are rescaled by the same
factor so that P is the size of the unit square, then f(P) looks more and more
like a similitude applied to P. This description becomes more and more precise
the tinier the region under discussion.

Consider the quadratic transformation f: € — € defined by

f(2) =22 = (x + ix,)" = (&} = x3) + 2xx0 = fi( %, %) + f( %, )i,

where f,(x;, x,) = (x{ — x3), is called the real part of f(z), and f,(x,, x,) =
2x,x, is called the imaginary part of f. Pictures of what this transformation
does to some Sierpinski triangles in C appear in Figure 3.4.1.

Two features are to be noticed. (I) Provided that we stay away from the
Origin, the transformation behaves locally like a similitude: for points z close
to z,, f(z) is approximated by the similitude

w(z) =az+b  wherea=2z,and b= —z;.

This fact shows up in Figure 3.4.1: Upon close examination (we suggest the
use of a magnifying glass) of the transformed Sierpinski triangles” one sees
that they are built up out of small triangles whose shapes are only slightly
different from that of their preimages. The only place where this is not true is
at the forward image of the origin, which is a critical point. (II) The
transformation maps the space twice around the origin.

One can track analytically what happens to the point

z=Rcost + iRsint
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Figure 3.4.1
Quadratic transforma- N ?\:&h Sierpinski triangle before

tions are described by transformation
showing how they act on W E &Eh %&k
a Sierpinski triangle. Use

a magnifying glass to S &&h -@ %
check that the transfor-
mations behave locally &&k &E\ & i&k

like similitudes. 0

After z 22

After z_(z-a)2

where R > 0. As the time parameter ¢ goes from zero to 2w, z moves
anticlockwise once around the circle of radius R. The transformed point f(z)
is given by

f(z) = R*cos2t + iR* sin2t.

As the time parameter ¢ goes from 0 to 2m, f(z) goes twice around the circle
of radius R?.

On the Riemann sphere the transformation z — z? can be described as
follows. Let us say that the Equator corresponds to the circle of unit radius in
the plane, that the South Pole corresponds to the Origin, and that the North
Pole corresponds to the Point at Infinity. Then the transformation leaves both
Poles fixed. The Line of Longitude L connecting the Poles, which corresponds
to the positive real axis, is mapped into itself, and the Equator is mapped into
itself. Here is what we must picture. First, points which lie above the Equator



3.4 Analytic Transformations

are moved closer to the North Pole, points which lie below the Equator are
moved closer to the South Pole, and the Equator is not shifted. Second, the
skin of the sphere is cut along the Line of Longitude L. One side of the cut is
held fixed while the other side is pulled around the sphere (following the
terminator when the Sun is high above the Equator), uniformly stretching the
space, until the edge of the cut is back over L. The two lips of the cut are
rejoined. The sphere has been mapped twice over itself. The Poles are the
critical points of the transformation; they are the points about which wrapping
occurs. This description is illustrated in Figure 3.4.2.

The most general quadratic transformation on the sphere is expressible by
a formula of the form f(z) = Az% + Bz + C where A, B, and C are complex
numbers. One can show there is a change of coordinates, z — 6(z), where 6 is
a similitude, such that f(z) becomes expressible in the special form f(z) =

Figure 3.4.2
The action of the

quadratic transformation
(1) POINTS ABOVE z— 22 in terms of the
THE EQUATOR MOVE sphere
CLOSER TO THE phere.
NORTH POLE; BELOW
THEY MOVE SOUTH.

(2)THE SPHERE IS CUT
ALONG THE LINE OF
LONGITUDE L.

(3) ONE EDGE OF THE
CUT IS PULLED RIGHT

AROUND THE SPHERE. .
THE SPHERE IS

COVERED TWICE.
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22+ C for some complex number C; see Exercise 3.5 (5.17). Hence the
description of the most general quadratic transformation on the sphere can be
made in the same terms as above, except that at the end there is a translation
by some constant amount C. This translation leaves the Point at Infinity fixed.

The quadratic transformation f(z) = z? maps the punctured plane C onto
itself twice. Each point z € € \ {0} has two preimages. Hence f: € — € is
not an invertible transformation. In such situations we can define a set-valued
inverse function.

Definition 1. Let f: € — € be an analytic transformation such that €)=
C. Then the set-valued inverse of f is the mapping f!: X(é) —»X(é)
defined by

fiay={wel:f(wyea} forall 4 e#(C).

In Figure 3.4.3 we illustrate the transformation f~! acting on the Space of
Fractals, in the case of the quadratic transformation f(z) = z2.

One can obtain explicit formulas for f'(z) when f is a quadratic
transformation. For example, for f(z) = z2, f%0)= O, f () = o0, and
fi(2) = {(wi(2), wy(2)} for z € ¢ \ {0, o0}. Here wy(x; + ix,) = a(xy, x,)
+ ib(x,, x;), and w,(x,, x,) = —a(x,, x,) — ib(xy,x,), where

[ 2 2
X+ xy +Xx

a(x, x,) = — when x, > 0,

2 2
VX, +x + X

a(x;, x) = — — s when x, < 0,

2 2
X+ X, — X

b(xl’x2)= D)

Each of the two functions w;(z) and w,(z) is itself analytic on C \ [0, c0].
The following definition formalizes what is meant by an analytic transfor-

mation on the complex plane. We recommend further reading, for example
[Rudi 1966].

Definition 2. Let (C, d) denote the complex plane with the Euclidean metric.
A transformation f: C — C is called analytic if for each z, € C there is a
similitude of the form

w(z) =az +b, for some pair of numbers a, b € C

such that d( f(z), w(z))/d(z,z4) > 0 as z = z,. The numbers a and b
depend on z,. If, corresponding to a certain point z, = ¢, we have a = 0, then
c is called a critical point of the transformation; and f(c) is called a critical
value.
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If the analytic transformation f(z) is a rational transformation, which
means that it is expressible as a ratio of two polynomials in z, such as

(i)  f(z) =1+ 2i+ 2722 - 923,

() f(z)= 727,
4 Z2
i) 1) =

then the numbers g and b in the similitude w(z) of Definition 1 arg given by
the formulas

a=f(z)and b=f(z) — az.
The derivative f'(z) of the rational function f(z) can be calculated by treating
z as though it were the real variable x and applying the standard differentiat-
ion rules of calculus. The critical points ¢ € C are the solutions of the
equation f'(¢) = 0.

Figure 3.4.3

The set valued inverse,
£, of the quadratic
transformation f(z) =
2%, maps the Sierpinski
triangle AOB into the
POQ U POQ. More
generally ' maps the
Space of Fractals into it-
self. Look carefully at
this image! There are
several important features
of analytic transforma-
tions illustrated here.
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For example, close enough to any point z, € C such that f'(z,) # 0, the
cubic transformation (i) is well described by the similitude

w(z) = (542 — 27z3) z + (1 + 2i — 27z} + 182))
The finite* critical points associated with (i) may be obtained by solving
S54c — 272 =0

and are accordingly ¢ = 0 + i0 and ¢ = 2 + i0. By making the change of
coordinates z’ = 1/z (see section 3.5), one can also analyse the behaviour near
the Point at Infinity. It turns out that ¢ = oo is always a critical point for a
polynomial transformation f(z) on €. The space is “wrapped” an integral
number of times about the image of a critical point. For example the cubic
transformation (i) wraps space twice about each of the points f(0 + i0) = 1 +
2i, and f(2 + i0) = 37 + 2i, and it wraps it three times about f(c0) = co.

Exercises & Examples

4.1. Sketch a globe representing ¢, including a subset which looks like Africa,
and show what happens to the subset under the quadratic transformation
f(z) =z

4.2. Verify the following explicit formulas for f~!(z), corresponding to f(z)
=22=1: fU(=1)=0; f ()= 00; and f}(2) = (wy(2), wx(2)}
forze €\ {—1, o0}, where w;(x; + ix;) = a(x;, X,) + ib(x;, X,), and
wao( Xy, X5) = —a(x;, x,) — ib(x,, x,). Here

\/y/(1+x1)2+x§ +1+x
2

a(x,x) = when x, > 0,
\/(1+x1)2+x§ +1+ x
a(x, %) = - 3 when x, < 0,
and
VA +x)Y +x3 —1-x
b(x,x) = 5 .

We remark that both wy(z) and w,(z) are analytic on C \ [—1, c0).

4.3. Locate the critical points and critical values of the quadratic transforma-
tion f(z) =z?+ 1.

4.4. Draw a side view of a man with an arm stretched out in front of him,
holding a knife. The blade should point down. Choose the origin of
coordinates to be his naval. Draw another picture to explain how hara-kiri
may be achieved by applying the inverse of the quadratic transformation
f(z) = z? to your image.

4.5. Find a similitude which approximates the behaviour of the given analytic
transformation in the vicinity of the given point: (a) f(z) = z? near
zo=1; (b) f(z) =1/z near z, =1 + i; (¢) f(z) = (z — 1)’ near z, =
1 -1
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3.5 HOW TO CHANGE COORDINATES

In describing transformations on spaces we usually make use of an underlying
coordinate system. Most spaces have a coordinate system by means of which
the points in the space are located. This underlying coordinate system is
implied by the specification of the space. For example, X = [1, 2] provides a
collection of points together with the natural coordinate x restricted by
1 < x < 2. We can think of the space, made of points x € X, or equivalently
we can think of the system of coordinates. If the space X is R? or C then the
underlying coordinate system may be Cartesian coordinates. If X = € then
the coordinate system may be angular coordinates on the sphere.

In each case the underlying coordinate system is itself a subset of a metric
space. We denote this metric space by X.. Usually we do not consciously
distinguish between a point x € X and its coordinate x € X.. Notice how-
ever that the space X may contain points (coordinates) which do not
correspond to any point in the space X. For example, in the case of the space
X =W, it is natural to take X, = R? then points x € X in the space
correspond to coordinates x = (x,;, X,) € X restricted by 0 < x; <1 and
0 < x, < 1. However the coordinates (3, 5) € X do not correspond to a point
in X. We would like the reader to think of the space itself as “lying above” its
coordinate system, as suggested in Figure 3.5.1.

A change of coordinate system may be described by a transformation #:
X — X.. We can think of a change of coordinates being effected by physi-
cally moving each point x € X so that it no longer lies above x € X but
instead above the coordinate x’ = §(x) € X.. Thus we must now distinguish
between a point x lying in the space, X, and its coordinate x € X.. Then we
want to think of the change of coordinates §: X — X as moving X relative
to the underlying coordinate space X, as illustrated in Figure 3.5.2.

Example

5.1. Let X =[1,2] and take X, to be R. Let - R — R be defined by
f(x) = 2x + 1. Then the coordinate of the point x = 1.5 becomes
changed to 4. We want to think of the space X as being moved relative
to the coordinate space X, which is held fixed, as illustrated in Figure
3.5.3. i

Let §: X — X denote a change of coordinates. In order that the
new coordinate system be useful it is usually necessary that 8, treated as
a transformation from X to #(X), be one-to-one and onto, and hence
invertible. Let f: X — X be a transformation on a metric space X. We
want to consider how the transformation f should be expressed after the
change of coordinates. Let x denote simultaneously a point in X and the
coordinates of that point. Let f(x) denote simultaneously the point to
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Figure 3.5.1

The underlying coordi-
nate system X for the
space X.

-

v z.
T
T
Sl

S
S S

which x is transformed by f, and the coordinates of that point. Let x’
denote the point x € X ingdkie new coordinate system. That is, x' =
0(x) € X denotes the ne%oordinates of the point x. Let f'(x')
denote the same transformatt® f: X — X, but expressed in the new
coordinate system. Then the relation between the two coordinate sys-
tems is expressed by the commutative diagram in Figure 3.5.5, and is
illustrated in Figure 3.5.4.

Theorem 1. Let X be a space and let X O X be a coordinate space for X. Let
a change of coordinates be provided by a transformation 8: X — X.. Let 8 be
invertible when treated as a transformation from X to 8(X). Let the coordinates
of a point x € X be denoted by x before the change of coordinates, and by x’
after the change of coordinates, so that

x' =0(x).
Let f: X — X be a transformation on the space X. Let x — f(x) be the formula
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Figure 3.5.2

A change of coordinates
in terms of X and X .
We think of X as being
moved relative to the un-
derlying coordinate space
X

for f expressed in the original coordinates. Let x' — f'(x') be the formula for f
expressed in the new coordinates. Then

fx) = (67 e f20)(x)
F(x)y = (8f07")(x).

i

Exercises & Examples

5.2. Consider an affine transformation f(x)=ax + b, a#0, a# 1, a,b €
R. This has a fixed point x,€ R defined by f(x,) = x,. We find
x;=b/(1 — a). x, is clearly the interesting point in the action of an

o(x) Figure 3.5.3
A change of coordinates
for the space [1,2] given

by the transformation x’
0 1 2 3 4 5 6 —gx)=2x+1

L
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Figure 3.5.4 —F
The transformation F
acting on X is equivalent
to F' acting on 8(X).

Figure 3.5.5 X f f(X)
Commutative diagram for >  J
the coordinate change 8: ORIGINAL
Xc — X, COORDINATES
c c-
o o
NEW
COORDINATES
’ ]
X T HX)
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affine transformation on R. Accordingly let us change coordinates to
move X, to the origin: that is x’ = 6(x) = x — x,. What does f look
like in this new coordinate system?

f(xy=(00fe0"")(x)y=0cf(x+x)=0a(x +x,)+b~-x;
f'(x") = ax’ which is simply a rescaling! Now using the first formula we
get
f(x)y =a(x—x,) + x
and
[ (xy=a"(x~ x) + x forallpe {0, +1,+2,+3,...}.

We now see a new way of vizualizing an affine transformation on R: for
example, if a > 1 we see the image in Figure 3.5.6.

5.3. Let X = [1,2] and let a change of coordinates be defined by x’ = 2x — 1.
Let a transformation f: X — X be defined by f(x) = (x ~ )2 + 1.
Express f in the new coordinate system.

Definition 1. Let f: X — X be a transformation on a metric space. A point
x, € X such that f(x,) = x, is called a fixed point of the transformation.

The fixed points of a transformation are very important. They tell us which
parts of the space are pinned in place, not moved, by the transformation. The
fixed points of a transformation restrict the motion of the space under
nonviolent, non-ripping transformations of bounded deformation.

Exercises & Examples
5.4. Find the fixed points x; and x, of the Mobius transformation
_(z+2)
f(z) - (4 _ Z)
on €. Make a change of coordinates so that x, becomes the origin and

x, becomes the Point at Infinity. Hence interpret the action of f(z) on
the sphere in geometrical terms.

Figure 3.5.6

X
| | ! : / I t An affine trdnsformation
on R. We see rescaling
\ % (magnification or diminu-
f

tion) centered at the fixed
point, together with a flip
of 180° ifa< 0.

73



74

3 Transformations on Metric Spaces; Contraction Mappings

5.5.

5.6.

5.7.

5.8.

5.9.

Let W(x) = Ax + ¢t be a two-dimensional affine transformation acting
on the space X = R? where det(A-I) # 0. Find the fixed point x,.
Change coordinates so that x, becomes the origin of coordinates. Hence
describe the action geometrically of a two-dimensional nondegenerate
affine transformation. What can happen if det(A-I) = 0?

Analyze the behavior of the affine transformation w(z) =7z + 1 on €
near the Point at Infinity by making the change of coordinates h(z) =
1/z.

Two one-parameter families of transformations on R are f,(x) = x* — p
and g,(x) = Ax(1 — x), where p and A are real parameters. Find a
change of coordinates and a function p = p(A) so that f/,,(x") = g\(x")
is valid for an appropriate interval on the A-axis.

Find the real fixed points of g(x) = x? — 1. Analyze the behavior of g
near each of its fixed points by changing coordinates so as to move first
one then the other to the origin. Another method for looking at the
behaviour of g near a fixed point is to approximate g(x) by the first two
terms of its Taylor series expansion about the fixed point. Compare
these methods.

Let w: R? — R? denote the affine transformation

wl =(1 2\ %1 +(1
X2 2 3\ % 1)
Make a change of coordinates so that the transformation is simply a
coordinate rescaling. What are the rescaling factors?

Definition 2, Let F denote a set of transformations on a metric space X. F is
called a semigroup if f, g € F implies fog € F. F is called a group if itis a
semigroup of invertible transformations, and f € F implies f! € F.

We introduce this definition because we will use semigroups (and groups)
of transformations both to characterize and to compute fractal subsets of X.
However we do not use any deep theorems from group theory.

Exercises & Examples

5.10.

5.11.

Let f: X — X be a transformation on a metric space. Show that the set
of transformations { f°": n=0,1,2,3,...} forms a semigroup.
A transformation T: £ — ¥ on code space is defined by

T( X)Xy X3X4X5 * 20 ) = XpX3X4XsXe "
and is called a shift operator. Describe the semigroup of transformations
(T°": n=0,1,2,3,...}. What are the fixed points of T°* if the code
space is built up from the two symbols {0,1}?
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5.12. Show that the set of Mébius transformations on R form a group.

5.13. Show that the set of Mébius transformations on € form a group.

5.14. Show that the set of invertible affine transformations on R? form a
group.

5.15. Show that the set of transformations f: R? — R? such that f( &@)
C &@ form a semigroup.

5.16. Show that a group of transformations is provided by the set of affine
transformations of the form w(x)= Ax + ¢ where 4 = (: ‘3) for
a, b, c € R, with ac # 0, and the translation vector ¢ is arbitrary.

5.17. The most general analytic quadratic transformation f: € — € can be
expressed by a formula of the form f(z) = Az% + Bz + C where 4, B,
and C are complex numbers, and 4 # 0. Show that by means of a
suitable change of coordinates, z’ = §(z), where 8 is a similitude, show
that f(z) can be reexpressed as a quadratic transformation of the special
form f'(z) = (z")* + C for some complex number C.
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3.6 THE CONTRACTION MAPPING THEOREM

Definition 1. A transformation f: X — X on a metric space (X, d) is called
contractive or a contraction mapping if there is a constant 0 < s < 1 such that

d(f(x), f(y)) <s-d(x,y)Vx,yeX
Any such number s is called a contractivity factor for f.

It would be convenient to be able to talk about the largest number and the
smallest number in a set of real numbers. However a set such as § = (— 0, 3)
does not possess either. This difficulty is overcome by the following definition.

Definition 2. Let S denote a set of real numbers. Then the infimum of S is
equal to —oo if § contains negative numbers of arbitrarily large magnitude.
Otherwise the infimum of § = Max{x € R: x < s for all s € S}. The in-
fimum of § always exists, because of the nature of the real number system,
and it is denoted by InfS. The supremum of S is similarly defined. 1t is equal
to + oo if § contains arbitrarily large numbers; otherwise it is the minimum of
the set of numbers which are greater than or equal to all of the numbers in S.
The supremum of S always exists and it is denoted by Sup S.

Exercises & Examples

6.1. Find the supremum and the infimum of the following sets of real
numbers: (a) (— o0, 3); (b) ¥, the Classical Cantor Set; (¢) {1,2,3,4,... };
(d) the positive real numbers.
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6.2. Let f: X — X be a contraction mapping on a metric space (X, d).
Show that Inf{s € R: s is a contractivity factor for f} is a contractivity
factor for f.

6.3. Show that if f X —» X and g: X — X are contraction mappings on a
space (X, d), with contractivity factors s and ¢ respectively, then fo g is
a contraction mapping with contractivity factor st.

Theorem 1. [The Contraction Mapping Theorem] Let f: X — X be a con-
traction mapping on a complete metric space (X, d). Then f possesses exactly
one fixed point x; € X and moreover for any point x € X, the sequence { f°"(x):
n=0,1,2,...} convergesto x;. That is,

Lim f*'(x) = x,, foreach x € X.

n— o0

Figure 3.6.1 illustrates the idea of a contractive transformation on a compact
metric space.

Proof. Let x € X. Let 0 < 5 < 1 be a contractivity factor for f. Then
d(fo(x). £ () < 5" d(x, 207 () (3.6.1)

for all m,n=0,1,2,..., where we have fixed x € X. The notation u A v
denotes the minimum of the pair of real numbers u and v. In particular, for
k=0,1,2,..., wehave

d(x, f(x)) < d(x, (X)) + (f(x), f2(x)) + - +d( 24 V(x), f4(x))
<(L+s+s7+ o +s4 ) d(x, f(x))
< (1= s) 'd(x, f(x))

so substituting into equation (3.6.1) we now obtain

d(fr(x). f(x)) <™ (L= s) - d(x, f(x))
from which it immediately follows that { f°"(x)}*_, is a Cauchy sequence.
Since X is complete, this Cauchy sequence possesses a limit x; € X, and we
have
Lim f*'(x) = x;.
Now we shall show that x, is a fixed point of f. Since f is contractive it is
continuous and hence

05 = im0 = im0 =
Finally, can there be more than one fixed point? Suppose there are. Let x, and
Y be two fixed points of f. Then x,= f(x,), y; = f(»), and
d(x, ) = d(f(x), (%)) < sd(x; )

whence (1 — s)d(x;, y;) < 0, which implies d(x,, y;) = 0 and hence x, = y,.
This completes the proof.
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Figure 3.6.1(a)
Tllustrates the idea of a
contractive transforma-
tion on a compact metric
space.

Figure 3.6.1(b)

A contraction mapping
doing its work, drawing
all of a compact metric
space X towards the fixed
point.

Exercises & Examples
6.4. Let w(x)=Ax + ¢t be an affine transformation in two dimensions.
Make the change of coordinates h(x) = x” = x — x,, under the assump-
tion that det(/ — A4) + 0, and show that w'(x’) = hew o h™}(x’) = Ax’,
that w(x) = (h™'ow’e h)(x) = A(x — x;) + x;. and hence that
w(x =A(x—x)+ . forn=0.1.2.3. (367
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6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

Give conditions on A such that it is contractive (a) in the Euclidean
metric, (b) in the Manhattan metric. Show that if |4| < 1, where |A|
denotes any appropriate norm of 4 viewed as a linear operator on a
two-dimensional vector space, then {w°"(x)} is a Cauchy sequence
which converges to x,, for each x € R*.

Let f: @ — W be a contraction mapping on (M, Euclidean). Show that
Figure 3.6.1 gives the right idea.

Let f: R —> R be the affine transformation f(x) = ix + 3. Verify f isa
contraction mapping, and deduce

Lim f*"(x) = x,  foreach x € R,

n—oo
Use this formula with x = 0 to obtain a geometrical series for the fixed
point x, € R. Observe however that f(R) = R; indeed, that f is invert-
ible.
Let (X, d) be a compact metric space which contains more than one
point. Show that the situation in Example 6.6 cannot occur for any
contraction mapping f: X — X. That is, show that f(X) C X but
f(X) # X. That is, show that a contraction mapping on a nontrivial
compact metric space is not invertible. Hint: Use the compactness of the
space to show that there is a point in the space which is furthest away
from the fixed point. Then show that there is a point that is not in f(X).
Show that the set of contraction mappings on a metric space form a
semigroup.
Show that the affine transformation w: & - & defined by
w(x) = Ax + t is a contraction, where

4 1cos120° —1sin120° i L
1sin120° 4 cos120° 0

Here is an equilateral Sierpinski Triangle with a vertice at the
origin and at (1,0). You need to begin by verifying that w does indeed
map & into itself! Locate the fixed point x,. Make a picture of this

contraction mapping “doing its work, mapping all of the compact metric
space towards the fixed point”. Use different colors to denote the

successive regions f°("’( & )\f°("”)( &) forn=0,1,2,3,....

Define a mapping on the code space of two symbols {0,1} by
f(x9x,x5x, ...) = 1x;x,x,x, ... . (Recall that the metric is d(x, y) =
I® |x; — ,|/3" or equivalent.) Show that f is a contraction mapping.
Locate the fixed point of f.

Let (X, d) be a compact metric space, and let f: X — X be a contrac-
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tion mapping. Show that { f°"(X)}¥_, is a Cauchy sequence of points in
(#(X), h) and Lim,  f°"(X) = {x,;}, where x, is the fixed point
of f.

6.12. Let (X, d)be a compact metric space. Let f: X — X have the property

Lim, ., f°"(X) = {x,). Find a metric 4 on X such that f is a
contraction mapping, and the identity is a homeomorphism from (X, d)
- (X, d)

6.13. Let Ax = ")(j; ) with a, b, ¢, d € R, all strictly positive, be a linear

d
transformation on R2 Show that 4 maps the positive quadrant {(x,, x,):

x; 20, x, =0} into itself. Let a mapping f: [0,90°] — [0,90°] be
defined by

A(cosB

sinf ) = (some positive number)(

cosf(0))
sin f(8) )

Show that { f°"(6)} converges to the unique fixed point of f. Deduce
that there exists a unique positive number A, and an angle 0 < § < 90°

such that A(csj;g) = A 7). See Figure 3.6.2.

.79

Figure 3.6.2

The existence of a posi-
tive eigenvalue of an ““an-
gle-squeezing” linear
transformation.
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3.7 CONTRACTION MAPPINGS ON THE SPACE OF FRACTALS

Let (X, d) be a metric space and let (3#(X), h(d)) denote the corresponding
space of* nonempty compact subsets, with the Hausdorff metric h(d). We
introduce the notation 4(d) to show that ¢ is the underlying metric for the
Hausdorfl metric 4. For example, we may discuss (3 (C), h(spherical)) or
(#(R?), h(Manhattan)). We will drop this additional notation when we
evaluate Hausdorfl distances.

We have repeatedly refused to define fractals: we have agreed that they are
subsets of simple geometrical spaces, such as (R2, Euclidean) and (€, Spheri-
cal). If we were to define a deterministic fractal, we might say that it is a fixed
point of a contractive transformation on (' (X), h(d)). We would require
that the underlying metric space (X, d) be “geometrically simple”. We would
require also that the contraction mapping be constructed from simple, easily
specified, contraction mappings on (X, d), as described below.

Lemma 1. Let w: X — X be a contraction mapping on the metric space
(X, d). Then w is continuous.

Proof. Let € > 0 be given, Let s > 0 be a contractivity factor for w. Then

d(w(x),w(y)) <sd(x,y) <e
whenever d(x, y) < 8 where § = ¢/s. This completes the proof.

Lemma 2. Let w: X — X be a continuous mapping on the metric space
(X, d). Then w maps H#(X) into itself.

Proof. Let S be a nonempty compact subset of X. Then clearly w(§) =
{w(x): x €S} is nonempty. We want to show that w(S§) is compact. Let
{ ¥, = w(x,)} be an infinite sequence of points in S. Then {x,} is an infinite
sequence of points in S. Since § is compact there is a subsequence {x, }
which converges to a point X € S. But then the continuity of w implies that
{yn, = f(xy )} is a subsequence of { y,} which converges to j = f(X) € w(S).
This completes the proof.

The following lemma tells us how to make a contraction mapping on
(£ (X), h) out of a contraction mapping on (X, d).

Lemma 3. Let w: X — X be a contraction mapping on the metric space
(X, d) with contractivity factor s. Then w: 3 (X) — # (X)) defined by

w(B) = {w(x): x € B} VB €(X)

is a contraction mapping on (3 (X), h(d)) with contractivity factor s.



3.7 Contraction Mappings on the Space of Fractals

Proof. From Lemma 1 it follows that w: X — X is continuous. Hence by
Lemma 2 w maps (X)) into itself.
Now let B, C € 5#(X). Then

d(w(B), w(C)) = Max{Min{d(w(x),w(y)): y€ C}: x € B}
< Max{Min{s - d(x, y): y€C}: x € B} =5-d(B,C).
Similarly d(w(C), w(B)) < s - d(C, B). Hence
h(w(B), w(C)) = d(w(B),w(C)) V d(w(C),w(B)) <s-d(B,C)V d(C, B)
<s-h(B,C).
This completes the proof.

The following lemma gives a characteristic property of the Hausdorff
metric which we will shortly need. The proof follows at once from Exercise
2.6.13.

Lemma 4. Forall B, C, D, and E, in 5#(X)
h(BUC,DUE) <h(B,D)V h(C, E)

where as usual h is the Hausdorff metric.

The next lemma provides an important method for combining contraction
mappings on (#(X), #) to produce new contraction mappings on (3#(X), h).
This method is distinct from the obvious one of composition.

Lemma 5. Let (X,d) be a metric space. Let {w: n=12 ... N} be
contraction mappings on (X (X), h). Let the contractivity factor for w, be
denoted by s, for each n. Define W: 3¢ (X) — #(X) by

W(B) = w(B) Uwy(B) U - Uwy(B)

N
=U w,( B), for each B € 5#(X).

n=1

Then W is a contraction mapping with contractivity factor s = Max{s: n=
L,2,...,N}. -

Proof. We demonstrate the claim for N = 2. An inductive argument then
completes the proof. Let B, C € #°(X). We have

h(W(B), W(C)) = h(w(B) U wy(B), w(C) Uwy(C))
< h(w (B), w(C)) V h(wy(B), w,(C)) (byLemma4)
< s;h(B,C) V s,h(B,C) < sh(B,C).
This completes the proof.

81



82

3 Transformations on Metric Spaces; Contraction Mappings

Definition 1. A (hyperbolic) iterated function system consists of a complete
metric space (X, d) together with a finite set of contraction mappings w,:
X - X, with respective contractivity factors s,, for n=1,2, ..., N. The
abbreviation “IFS” is used for “iterated function system.” The notation for
the IF$ just announced is {X; w, n=1,2,..., N} and its contractivity
factoris s = Max{s,: n=12,... ., N}.

We put the word “hyperbolic” in parentheses in this definition because it
is sometimes dropped in practice. Moreover, we will sometimes use the
nomenclature “IFS” to mean simply a finite set of maps acting on a metric
space, with no particular conditions imposed upon the maps.

The following theorem summarizes the main facts so far about a hyper-
bolic IFS.

Theorem 1. Ler {X; w, n=1,2,... N} be a hyperbolic iterated function
system with contractivity factor s. Then the transformation W: #(X) - H#(X)
defined by

N

w(B) = U w,(B)
n=1
for all B €3¢ (X), is a contraction mapping on the complete metric space
(3#(X), h(d)) with contractivity factor s. That is

h(W(B), W(C)) < s -h(B,C)

for all B, C € 3¢(X). Iis unique fixed point, A € #(X), obeys
N
A=w(4) = Uw(4),

n=1

and is given by A = Lim Wer(B) for any B € 3#(X).

n — o
Definition 2. The fixed point A € #(X) described in the theorem is called
the astractor of the IFS.

Sometimes we will use the name “attractor” in connection with an IFS
which is simply a finite set of maps acting on a complete metric space X. By
this we mean that one can make an assertion which is analagous to the last
sentence of Theorem 3.7.1.

We wanted to use the words “deterministic fractal” in place of “attractor”
in Definition 2. We were tempted, but resisted. The nomenclature “iterated
function system” is meant to remind one of the name “dynamical system.” We
will introduce dynamical systems in Chapter 4. Dynamical systems often
possess attractors, and when these are interesting to look at, they are called
strange attractors.
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Exercises & Examples

7.1

7.2,

7.3.

7.4.

75.

7.6.

7.7

This exercise takes place in the metric spaces (R, Euclidean) and
(5#(R), h(Euclidean)). Consider the IFS {R; w,, w,} where wy(x) = 3x
and w,(x) = §x + 3. Show that this is indeed an IFS with contractivity
factor s = . Let B, = [0,1]. Calculate B, = W°"(B,), n=123,....

Deduce that 4 = Lim_ _, B, is the classical Cantor set. Verify directly
that A = }4 U {{4 + %}. Here we use the following notation: for a
subset A of R, xA = {xy: y€Ad}and A + x={y + x: y€ 4}
With reference to example 7.1, show that if w;(x) = s,x and w,(x) =
(1 — 53)x + 5; where s, is a number such that 0 < 5; < 1, then B, = B,
= B, = --- . Find the attractor.
Repeat example 7.1 with wy(x) = ¥x and w,(x) = 3x + %. In this case
A=Lim_ _ B wil not be the classical Cantor set, but it will be
something like it. Describe 4. Show that 4 contains no intervals. How
many points does A contain?
Consider the IFS {R, {x + , 3x, 4x + ). Verify that the attractor
looks like the image in Figure 3.7.1.
Show precisely how the set in Figure 3.7.1 is'a union of three “shrunken
copies of itself.” This attractor is interesting: it contains countably many
holes and countably many intervals.
Show that the attractor of an IFS having the form {R; w;(x) = ax + b,
w,(x) = (cx + d)} where a, b, ¢, and 4 € R, is either connected or
totally disconnected.
Does there exist an IFS of three affine maps in R? whose attractor is the
union of two disjoint closed intervals?
T 0} /x
[o 26}

Consider the IFS
Let Ag={(3,y) 0<y<1}, and let W°"(4,)= A, where W is

1
2
1
2

2.
{R ’
ns

defined on J#(R?) in the usual way. Show that the attractor is 4 =

Figure 3.71
Attractor for three affine
maps on the real line. Can
you find the maps?
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Figure 3.7.2
A sequence of sets con-
verging o a line segment.
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“a

i
.
=~

V><

7.8.

7.9.

7.10.

{(x,y)x=y, 0<x<1} and that Figure 3.7.2 is correct. Draw a
sequence of pictures to show what happens if 4,= {(x, y) € R%:
0<x<10< y<1).

Consider the attractor for the IFS {R; wy(x) =0, wy(x) = ix + 1}.
Show that it consists of a countable increasing sequence of real points
{x,; n=20,12,...} together with {1}. Show that x, can be expressed
as the n™ partial sum of an infinite geometric series. Give a succinct
formula for x,.

Describe the attractor 4 for the IFS {[0,2]; wy(x) = §x7%, wy(x) = 3x +
3} by describing a sequence of sets which converges to it. Show that A4 is
totally disconnected. Show that A4 is perfect. Find the contractivity
factor for the IFS.

Let (r,8), 0 <r <00, 0 <8 < 27 denote the polar coordinates of a
point in the plane, R Define wi(r, ) = (3r + 5, 18), and w,(r, 8) =
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(3r + 5,38 + 27/3). Show that {R? w,, w,} is not a hyperbolic IFS
because both maps w; and w, are not continuous on the whole plane.
Show that {R% w,, w,} nevertheless has an attractor; find it (just
consider r and # separately).

7.11. Show that the sequence of sets illustrated in Figure 3.7.3 can be written
in the form A, = W°"(A4,) for n=1,2,... and find W: #(R?) -
H(R?).

7.12. Describe the collection of functions which constitute the attractor 4 for
the IFS

{C01]s wi(f(x)) = 3f(x), wa(f(x)) = 3f(x) + 2x(1 = x)}.

Find the contractivity factor for the IFS.

7.13. Let C°[0,1] = {f € C[0,1]: f(0)= f(1) = 0}, and define d(f, g) =
Max{|f(x) — g(x): x €[0,1]}. Define wy;: C90,1] - C°0,1] by
(wi(/)(x) = 3f@x mod 1) + 2x(1 = x) and (wy(f))(x) = /().
Show that {C%[0,1]; wy, w,} is an IFS, find its contractivity factor, and
find its attractor. Draw a picture of the attractor.

7.14. Find conditions such that the Mobius transformation w(x) = (ax +
b)/(cz+d), a,b,c,d € C, ad — bc # 0, provides a contraction map-
ping on the unit disk X = {z € C: |z| < 1}. Find an upper bound for
the contractivity factor. Construct an IFS using two Mobius transforma-
tions on X, and describe its attractor.

7.15. Show that a Mébius transformation on € is never a contraction in the
spherical metric.

7.16. Let (X, d) be the code space on three symbols {0, 1,2}, with metric

i ) Figure 3.7.3
ot n I The first three sets A,
d(x,y) = R R A,, and A, in a conver-

gent sequence of sets in
Define wi: £ = ¥ by wy(x) = 0x,x,x, ... and wy(x) = 2x,X,X; ... . H R). Can you find a
Show that w; and w, are both contraction mappings and find their ;;f’("u;fzo)"iazgzﬂlf; such
contractivity factors. Describe the attractor of the IFS (¥;w;, wy}. .0 A= WA
What happens if we include in the IFS a third transformation dgfined by

wyx = lx;x53%5,... 7

7.17. Let & C R? denote the compact metric space consisting of an
equilateral Sierpinski triangle with vertices at (0,0), (1,0) and (%, V3 /2),
and consider the IFS { & Sz 41 1e2m/3 4 %}where we use com-
plex number notation. Let A4, = &@ ,and A, = W°"(A,) for n =

1,2,3,... . Describe 4,, 4,, and the attractor 4. What happens if the
third transformation w.(z) = Lz 1 (/3 /4)i is incl ided in the TFS?



86 3 Transformations on Metric Spaces; Contraction Mappings

3.8 TWO ALGORITHMS FOR COMPUTING FRACTALS FROM ITERATED
FUNCTION SYSTEMS

In this «section we take time out from the mathematical development to
provide two algorithms for rendering pictures of attractors of an IFS on the
graphics display device of a microcomputer or workstation. The reader should
establish a computergraphical environment which includes one or both of the
software tools which are suggested in this section.

The algorithms presented are (1) the Deterministic Algorithm, and (2) the
Random Iteration Algorithm. The deterministic algorithm is based on the idea
of computing directly a sequence of sets {4, = W°"(A)} starting from an
initial set 4,. The Random Iteration Algorithm is founded in ergodic theory;
its mathematical basis will be presented in Chapter 9. An intuitive explanation
of why it works will be presented in Chapter 4. We defer important questions
concerning discretization and accuracy. Such questions are considered to some
extent in later chapters.

For simplicity we restrict attention to hyperbolic IFS of the form {R?; w,:
n=12,..., N}, where each mapping is an affine transformation. We il-
lustrate the algorithms for an IFS whose attractor is a Sierpinski triangle. Here
is an example of such an IFS,

-x1]=—0.5 0]'x1]+'1]
| X2 Lo 05 | X2 1]
'xl]z'o.s 0"x1]+'1]
x| Tlo osllx] "Ll

[x] _[os5 o'I'xl +'5o]
lxn|! 1o 0sllx] Tl

This notation for an IFS of affine maps is cumbersome. Let us agree to

write
x a; b |[x &
w,(x)=w,-[x;]=[q d,][xz]+[f,]=A'x+t"

Then Table 3.8.1 is a tidier way of conveying the same iterated function
system.

Table 3.8.1 also provides a number p; associated with w, for i = 1,2, 3.
These numbers are in fact probabilities. In the more general case of the IFS

Wi

Table 3.8.1

IFS code for a Sierpinski triangle.
w a b ¢ d e f P
1 0.5 0.5 1 1 0.33

0 0
2 0.5 0 0 0.5 1 50 0.33
3 0.5 0 0 0.5 50 50 0.34
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s n

1,2,..., N} which obey
p+p+py+ - +py=1 and p, >0 fori=1,2,...,N.

{(X; w,: n=1,2..., N} there would be N such numbers {p: i=

These probabilities play an important role in the computation of images of the
attractor of an IFS using the Random Iteration Algorithm. They play no role
in the Deterministic Algorithm. Their mathematical significance is discussed in
later chapters. For the moment we will use them only as a computational aid,
in connection with the Random Iteration Algorithm. To this end we take their
values to be given approximately by

det 4; d — b
b= | A _ _lad, — bl fori=1,2, .., N.

i N N
Y |detd;| ) |a;d; — b,
i=1

i=1

Here the symbol = means “approximately equal to.” If, for some i, det 4, =
0, then p, should be assigned a small positive number, such as 0.001. Other
situations should be treated empirically. We refer to the data in Table 3.8.1 as
an IFS code. Other IFS codes are given in Tables 3.8.2, 3.8.3 and 3.8.4.

Table 3.8.2
IFES code for a Square.
w a b ¢ d e f P
1 0.5 0 0 0.5 1 1 0.25
2 0.5 0 0 0.5 50 1 0.25
3 0.5 0 0 0.5 1 50 0.25
4 0.5 0 0 0.5 50 50 0.25
Table 3.8.3
IFS code for a Fern.
w a b ¢ d e f P
1 0 0 0 016 0 O 0.01
2 0.85 004 -004 085 0 16 085
3 0.2 —0.26 023 022 0 16 007
4 -015 028 026 024 0 044 007 ;
Table 3.8.4
IFS code for a Fractal Tree.
w a b ¢ d e )4
1 0 0 0 0.5 0 0 005
2 042 -042 042 042 0 02 04
3 042 042 —-042 042 0 02 04

87



3 Transformations on Metric Spaces; Contraction Mappings

(1) The Deterministic Algorithm

Let {X; w,, w,,...,wy} be a hyperbolic IFS. Choose a compact set 4, C R~
Then compute successively 4, = W°"( A) according to
N

Ay = Uwi(4,)  forn=1,2,...

Jj=1
Thus construct a sequence {A4,: n=0,1,2,3,...} C3#(X). Then by Theo-
rem 3.7.1 the sequence {A,} converges to the attractor of the IFS in the
Hausdorff metric.

We illustrate the implementation of the algorithm. The following program
computes and plots successive sets A, , starting from an initial set 4, in this
case a square, using the IFS code in Table 3.8.1. The program is written in
BASIC. It should run without modification on an IBM PC with a Color
Graphics Adaptor or Enhanced Graphics Adaptor, and Turbobasic. It also
can be modified to run on any personal computer with graphics display
capability. On any line, the words which are preceded by a ° are comments,
they are not part of the program.

PROGRAM 3.8.1 (Example of the Deterministic Algorithm)

screen 1: cls ’initialize graphics

dim s(100, 100): dim (100, 100) ’allocate two arrays of pixels

a(l) = 0.5:b(1) = 0:¢(1) = 0:d(1) = 0.5:¢(1) = 1:f(1) = 1 ’input the
IFS code

a(2) = 0.5:b(2) = 0:c(2) = 0:d(2) = 0.5:¢(2) = 50:f(2) = 1

a(3) = 0.5:b(3) = 0:¢(3) = 0:d(3) = 0.5:¢(3) = 50:£(3) = 50

fori = 1t0100 ’input the initial set A(0), in this case a square, into
the array t(i, ])

t(i,1) = 1: pset(i,1) ’A(0) can be used as a condensation set

t(1,1) = 1:pset(1,i) ’A(0) is plotted on the screen

t(100, i) = 1:pset(100, 1)

t(i, 100) = 1:pset(i, 100)

next: do

fori=1t0100 ‘apply W to set A(n) to make A(n + 1)in the array s(i,])

forj = 11t0100: if t(i,j) = 1 then

s(a)*i + b(1)*j + e(1),c(1)*i + d(1)*j + f(1)) =1 ’and apply W
to A(n)

s(a2)*i + b(2)*j + e(2),c(2)*i + d(2)*) + f(2)) =1

s(a3)*1 + b(3)*j + e(3),c(3)*i + d(3)*j + f(3)) =1

end if: next j: next i

cls ’clears the screen—omit to obtain sequence with a A(0) as a condensa-
tion set (see section 3.9)
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fori=1to 100: forj =1 to 100

t(i,j) = s(i,j) ’put A(n + 1l)into the array t(i, j)

s(i,j) = 0 ’reset the array s(i,]) to zero

if t(3,j) = 1 then

pset(i,j) ’plot A(n + 1)

end if: next: next

loop until instat ’if a key has been pressed then stop, otherwise compute
A(n + 1) = W(A(n + 1))

The result of running a higher resolution version of this program on a
Masscomp 5600 workstation, and then printing the contents of the graphics
screen is presented in Figure 3.8.1. In this case we have kept each successive
image produced by the program,

Figure 3.8.1

The result of running the
Deterministic Algorithm

( Program 1) with various
values of N, for the IFS
code in Table 1.
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Notice that the program begins by drawing a box in the array s(i, j). This
box has no influence on the finally computed image of a Sierpinski triangle.
One could just as well have started from any other (nonempty) set of points in
the array s(i, j), as illustrated in Figure 3.8.2.

To acfapt Program 3.8.1 so that it runs with other IFS codes it usually will
be necessary to change coordinates to ensure that each of the transformations
of the IFS map the pixel array s(i, j) into itself. Change of coordinates in an
IFS is discussed in 3.10, example 10.5. As it stands in Program 3.8.1, the array
s(i, j)is a discretized representation of the square in R? with lower left corner
at (1,1) and upper right corner at (100,100). Failure to correctly adjust
coordinates will lead to unpredictable and exciting results!

Figure 3.8.2

The result of running the
Deterministic Algorithm

(Program 1), again for
the IFS code in Table 1,
but starting from a dif-

ferent initial array. The
final result is always the
same!
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(2) The Random lIteration Algorithm

Let {X; w,,w,,...,wy} be a hyperbolic IFS, where probability p, > 0 has
been assigned to w; for i = 1,2,..., N, where ¥¥  p, = 1. Choose x, € X and
then choose recursively, independently,

X € {wl(xn—l)’WZ(xn'l)""’wN(xn~1)} for n = 1’2’3""’

where the probability of the event x, = w;(x,_,) is p,. Thus construct a
sequence {x,: n =0,1,2,3 ...} C X.

>> The reader should skip the rest of this paragraph and come back to it
after reading section 3.9. If { X, wy, w,w,,...,wy} is an IFS with con-
densation map w,, and associated condensation set C € 3¢ (X) then the
algorithm is modified by (a) attaching a probability p; > 0 to w,, so now
N op; = 1; (b) whenever wy(x,_,) is selected for some », choose x, “at
random” from C. Thus, in this case too, we construct a sequence {x,:
n=20/12,...) of points in X.

The sequence {x, }¥_, “converges to” the attractor of the IFS, under
various conditions, in a manner which will be made precise in Chapter 9.

We illustrate the implementation of the algorithm. The following program
computes and plots a thousand points on the attractor corresponding to the
IFS code in Table 3.8.1. The program is also written in BASIC and runs without
modification on an IBM PC with Enhanced Graphics Adaptor and Turbo-
basic. On any line the words which are preceded by a’ are comments: they are
not part of the program,

PROGRAM 3.8.2

a[1] = 0.5: b[1] = 0: ¢[1] = 0:.d[1] = .5: ¢[1] = 1: f[1}] = 1 ’Iterated
Function System Data

a[2] = 0.5: b[2] = 0: c[2] = 0: d[2] = 5:¢[2] = 50: f]2] = 1

a[3] = 0.5: b[3] = 0: c[3] = 0: d[3] = .5: ¢[3] = 50: f[3] = 50

screen 1: cls ’initialize computer graphics

window (0, 0)-(100,100) ’set plotting window to3 < x < 1,0 <y <1

x = 0: y = 0: numits = 1000 ’initialize (x, y) and define the nupber of
iterations, numits

forn = 1 to numits ’Random Iteration begins!

k = int(3+*rnd-0.00001) + 1 ’choose one of the numbers 1, 2, and 3
with equal probability

"apply affine transformation number k to (X, y)

newx = a[k]*x + b[kj*y + e[k]: newy = c[k]*x + d[k]*y + f[k]

X = newx: y = newy ’set (X,y) to the point thus obtained

if n > 10 then pset (x,y) ’plot (x,y) after the first 10 iterations

PR S |
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The result of running an adaptation of this program to data in Table 3.8.3

on a Masscomp workstation, and then printing the contents of the graphics
screen is presented in Figure 3.8.3. Notice that if the size of the plotting
window is decreased, for example by replacing the window call by wiNDOW
(0, 0)—(50: 50), then only a portion of the image is plotted, but at a higher
resolution. Thus we have a simple means for “zooming in” on images of IFS
attractors. The number of iterations may be increased to improve the quality
of the computed image.

Exercises & Examples

8.1

8.2.

8.3.

84.

Rewrite Programs 3.8.1 and 3.8.2 in a form suitable for your own
computer environment, then run it and obtain hard copy of the output.
Compare their performance.

Modify Programs 3.8.1 and 3.8.2 so that they will compute images
associated with the IFS code given in Table 3.8.2.

Modify Program 3.8.2 so that it will compute images associated with the
IFS codes given in Tables 3.8.3 and 3.8.4.

By changing the window size in Program 3.8.2, obtain images of “zooms”
on the Sierpinski triangle. For example, use the following windows:
(1, 1)-(50,50); (1,1)-(25,25); (1,1)-(12,12);...(1,1)-(N, N). How must
the total number of iterations be adjusted as a function of N in order that
(approximately) the number of points which land within the window
remaijns constant? Make a graph of the total number of iterations against
the window size.

Figure 3.8.3

The result of running the Chaos Algorithm for increasing numbers of iterations. The
randomly dancing point starts to suggest the structure of the attractor of the IFS given in
Table 3.8.3.

y
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8.5. What should happen, theoretically, to the sequences of images computed
by Program 1 if the set 4, is changed? What happens in practice? Make a
computational experiment to see if there is any difference in say 4,
corresponding to two different choices for 4.

8.6. Rewrite Program 3.8.2 so that it applies the transformation w; with
probability p,, where the probabilities are input by the user. Compare the
number of iterations needed to produce a “good” rendering of the
Sierpinski triangle, for the cases (a) p; = 0.33, p, = 0.33, p, = 0.34; (b)
p, =02, p, =046, p, =0.34; (c) p, =01, p, =056, p; = 0.34.
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3.9 CONDENSATION SETS

There is another important way of making contraction mappings on 5 (X).

Definition 1. Let (X, d) be a metric space and let C € #°(X). Define a
transformation wy: (X)) — (X)) by wy(B) = C for all B € 5#(X). Then
w, is called a condensation transformation and C is called the associated
condensation set.

Observe that a condensation transformation wy: M#(X) » H#(X) is a
contraction mapping on the metric space (X' (X), h(d)), with contractivity
factor equal to zero, and that it possesses a unique fixed point, namely the
condensation set.

Definition 2. Let { X, w;, w,,...,wy} be a hyperbolic IFS with contractivity
factor 0 < 5 < 1. Let wy: (X)) — 5 (X) be a condensation transformation.
Then { X, wy, wi,...,wy} is called a hyperbolic IFS with condensation, with
contractivity factor s.

Theorem 3.7.1 can be modified to cover the case of an IFS with con-
densation.

Theorem 3.7.1. Let {X; w, n=0,1,2,... N} be a hyperbolic iterated
function system with condensation, with contractivity factor s. Then the transfor-
mation W: H#(X) — #(X) defined by
N
W(B) = U w,(B)V Bes#(X)

n=0
is a contraction mapping on the complete metric space (#(X), h(d)) with
contractivity factor s. That is

t £ wvrrf MmN wwrf ~\N\ T L em mN e P
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Its unique fixed point A € 3 (X) obeys

N

A=w(ay= Uw(4),
n=0

and is given by A = Lim, _, .W°"(B) for any B € #(X).

Exercises & Examples

9.1.

9.2,

9.3.

94.

A sequence of sets { A, C X}%_,, where (X, d) is a metric space, is said
to be increasing if Ay C A, € A, € ---, and decreasing if Ay D 4, D A4,
D .- . The inclusions are not necessarily strict. A decreasing sequence
of sets {4, CH(X)}¥ ., is a Cauchy sequence (prove it!). If X is
compact, then an increasing sequence of sets {4, CH(X)}5_, is a
Cauchy sequence (prove it!). Let { X; w,, wy,...,w, } be a hyperbolic IFS
with condensation set C, and let X be compact. Let Wy(B) = U Y. w,(B)
VB € #(X) and let W(B) = U Y ,w,(B). Define {C, = W;>(C)}7_,.
Then Theorem 3.7.1 tells us {C,} is a Cauchy sequence in 5#( X') which
converges to the attractor of the IFS. Independently of the theorem
observe that

G, = CUW(C)U W)U - UW(C)

provides an increasing sequence of compact sets. It follows immediately
that the limit set A4 obeys Wy(A4) = 4.

This example takes place in (R® Euclidean). Let C = j‘g =

A, € R? denote a set which looks like a scorched pine tree standing at the
origin, with its trunk perpendicular to the x-axis. Let

X X
w(3) =% 0%s)(3) = (%)
Show that {R?% w,, w;} is an IFS with condensation and find its contrac-
tivity factor. Let A4, = W°"(Ay) for n=1,2,3,... where W(B)=
U N ow,(B) for B € #(R?). Show that A4, consists of the first (n + 1)
pine trees reading from left to right in Figure 3.9.1.
If the first tree required 0.1% of the ink in the artist’s pen to draw, and if
the artist had been very meticulous in drawing the whole attractor

correctly, find the total amount of ink used to draw the whole attractor.
What happens to the trees in Figure 3.9.1 if wl(_':) is replaced by

Wl(;) = (0()5 025)(;) * (0()5)
in Exercise 9.2.

Find the attractor for the IFS with condensation {R; wg,,w,}, where the
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A Figure 3.9.1
\ A geometric series of pine

/\ trees, the attractor of an
\\’\_ IFS with condensation.

— T

“° V\%}ﬁ%ﬁm

condensation set is the interval [0, 1] and w,(x) = 1x + 2. What happens
if w(x) = 3x?

9.5. Find an IFS with condensation which generates the treelike set in Figure
3.9.2. Give conditions on r and 8 such that the tree is simply connected.
Show that the tree is either simply connected or infinitely connected.

9.6. Find an IFS with condensation which generates Figure 3.9.3.

9.7. You are given a condensation map wy(x) in R? which provides the largest
tree in Figure 3.2.8. Find a hyperbolic IFS with condensation, of the form

95
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o

Figure 3.9.2

Sketch of a fractal tree,
the attractor of an IFS
with condensation.
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Figure 3.9.3
An endless spiral of little
men.

{R% wy, w,, w, }, which produces the whole orchard. What is the contrac-
tivity factor for this IFS? Find the attractor of the IFS {R?; wy, w, ).
9.8. Explain why removing the command which clears the screen (“cls”) from
Program 3.8.1 will result in the computation of an image associated with
an IFS with condensation. Identify the condensation set. Run your
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version of Program 3.8.1 with the “cls” command removed.

The following theorem is central to the design of IFS’s whose attractors are

close to given sets.

Theorem 1.

[The Collage Theorem, [Barnsley, 1985bjj
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Let (X,d) be a
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complete metric space. Let L € 3 (X) be given, and let ¢ > 0 be given. Choose
an IFS (or IFS with condensation) { X; (wg), wy, Wy, ..., wy | with contractivity
factor 0 < s <1, 50 that

h <€,

N
L, U w(L)
=0,
where h(d) is the Hausdorff metric. Then
h(L, Ay < ¢/(1 - s)

where A is the attractor of the IFS. Equivalently,

N
L, U w(L)
n=1

(n=0)

h(L,4) <(1-s)""h forall L € #(X).

The proof of the Collage Theorem is given in the next section. The theorem
tells us that to find an IFS whose attractor is “close t0” or “looks like” a given
set, one must endeavor to find a set of transformations—contraction map-
pings on a suitable space within which the given set lies-—such that the union,
or collage, of the images of the given set under the transformations is near to
the given set. Nearness is measured using the Hausdorfl metric.

Exercises & Examples

10.1. This example takes place in (R, Euclidean). Observe that [0,1] = [0, 3]
U [3,1]. Hence [0,1] is the attractor for any pair of contraction
mappings w,;: R > R and w,: R —» R such that w,([0,1]) = [0, 3] and
w,([0,1}) = [5,1]. For example w (x) = 3x and w,(x) = ix + 5 does
the trick. The unit interval is a collage of two smaller “copies” of itself.

10.2. Suppose we are using a trial-and-error procedure to adjust the coeffici-
ents in two affine transformations w,(x) = ax + b, wy(x) = cx + d,
where a, b, ¢, d € R, to look for an IFS {R; w,, w, } whose attractor is
[0,1}. We might come up with w;(x) = 0.51x — 0.01 and w,y(x) =
0.47x + 0.53. How far from [0,1] will the attractor for the IFS be? To
find out compute

2
h([O,l], U w,([O,l])) = h([0,1],[ —0.01,0.5] L [0.53,1])
i=1
= 0.015,
and observe that the contractivity factor of the IFS is s = 0.51. So by
the Collage Theorem, if A is the attractor,

R([0,1], 4) < 0.015/0.49 < 0.04.

97
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Figure 3.10.1
The Collage Theorem ap-
plied to a region bounded
by a polyganalized leaf
boundary.
'
. i
.
*n
A
10.3. Figure 3.10.1 shows a target set L C R2 a leaf, represented by the

104.

10.5.

polygonalized boundary of the leaf. Four affine transformations, con-
tractive, have been applied to the boundary at lower left, producing the
four smaller deformed leaf boundaries. The Hausdorff distance between
the union of the four copies and the original is approximately 1.0 units,
where the width of the whole frame is taken to be 10 units. The
contractivity of the associated IFS {R? wy, w,, wy, w,} is approxi-
mately 0.6. Hence the Hausdorfl distance 4 (Euclidean) between the
original target leaf L and the attractor A of the IFS will be less than
2.5 units. (This is not promising much!) The actual attractor, translated
to the right, is shown at lower right. Not surprisingly, it does not look
much like the original leaf! An improved collage is shown at the upper
left. The distance (L, U%_,w,(L)) is now less than 0.02 units whilst
the contractivity of the IFS is still approximately 0.6. Hence h(L, A)
should now be less than 0.05 units and we expect that the attractor
should look quite like L at the resolution of the figure. 4, translated to
the right, is shown at the upper right.

To find an IFS whose attractor is a region bounded by a right angle
triangle, observe the collage in Figure 3.10.2.

A nice proof of Pythagoras’ Theorem is obtained from the collage in
Figure 3.10.2. Clearly both transformations involved are similitudes.
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Figure 3.10.2

The region bounded by a
right-angle triangle is the
union of the results of two
similitudes applied to it.

The contractivity factors of these similitudes involved are (b/c) and
(a/c). Hence the area o obeys &/ = (b/c)%¥ + (a/c)2«/. This implies
¢t = a? + b* since > 0.

10.6. Figures 3.10.3 through 3.10.7 provide exercises in the application of the
Collage Theorem. Condensation sets are not allowed when working
these examples!

10.7. 1t is straightforward to see how the Collage Theorem gives us sets of

yp . Figure 3.10.3

Use the Collage Theorem
. ] to help you find an IFS
| T 6 consisting of two affine
maps in R? whose attrac-
tor is close to this set.
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Figure 3.10.4

This image represents the atiractor of fourteen affine transformations in R>. Use the
Collage Theorem to help you find them.

Figure 3.10.5 Kot g g 0 W
Use the Collage Theorem : Eﬂkﬂ Eﬂ Es E':'E
to help find a hyperbolic fﬂ "'
IFS of the form {R?; : EEer
Wy, Wy, wy }, where :’ﬂﬂa e

tractor is represented
here. You choose the co-
ordinate system.

wy, Wy, and wy are simil- r
itudes in R%, whose at- £

13

aiad

.'ll:qt.:%

£

el R R o P T




3.10 How to Make Fractal Models with the Help of the Collage Theorem

101

A

: ‘.
3.
2

Figure 3.10.6

Find an IFS of the form {R?; wi, wy, w;, w, }, where the w;’s are affine transformations
on R, whose attractor when rendered contains this image. Check your conclusion using
Program 3.8.2. *

maps for IFS’s which generate & Menger Sponges, look like this:

QaH . Find an IFS for which a sponge is the attractor.

10.8. The IFS which generates the Black Spleenwort fern, shown in Figures
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Figure 3.10.7

How many affine trans-

formations in R? are
needed to generate this
attractor? You do not
need to use a con-
densation set.

w2
i & g 58 T
T8s g%

3.10.8(a) and (b), consists of four affine maps in the form

x\ _(rcos@ —ssing)/x h o .
w"(y)‘(rsino scos¢)(y)+(k) (i =1,2,3,4); see Table 3.10.1.

10.9. Find a collage of affine transformations in R?, corresponding to Figure
3.10.9.
10.10. A collage of a leaf is shown in Figure 3.10.10(a). This collage implies
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the IFS {C; w;, w;, w;, w, } where, in complex notation,
w(z)=sz+(1—-ys)a, fori=1,2,3,4.

Verify that in this formula a;, is the fixed point of the transformation. The

values found for s; and a; are listed in Table 3.10.2. Check that these

make sense in relation to the collage. The attractor for the IFS is shown in
Figure 3.10.10(b).

Figure 3.10.8(a)

The Black Spleenwort
fern. This image il-
lustrates one of the four
affine transformations in
the IFS whose attractor
was used to render the
fern. The transformation
takes the triangle ABC to
the triangle abc. The Col-
lage Theorem provides the
other three transforma-
tions. The IFS code for
this image is given in Ta-
ble 3.8.3. Observe that the
stem is the image of the
whole set under one of the
transformations. De-
termine to which map
number in Table 3.8.3 the
stem corresponds.

Figure 3.10.8(b)
The Black Spleenwort
fern and a close-up.
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Table 3.10.1

The IFS code for the Black Spleenwort, expressed in scale
and angle format.

Translations Rotations Scalings
Map h k 0 ¢ r s
1 00 00 0 0 0.0 0.16
2 00 16 —-25 —-25 085 085
3 00 16 49 49 03 0.34
4 00 044 120 —-50 03 0.37
10.11.

10.12.

The attractor in Figure 3.10.11 is determined by two affine maps.
Locate the fixed points of two such affine transformations on R2.
Figure 3.10.12 shows the attractor for an IFS {R* w, /=123 4}
where each w; is a three-dimensional affine transformation. See
also Color Plate 3.10.1. The attractor is contained in the region
{((x1, x5, x3) €ER: —10 < x; 10,0 < x, < 10, =10 < x, < 10}.

Figure 3.10.9

Use the Collage Theorem
to find the four affine
transformations corre-
sponding to this image.
Can you find a transfor-
mation which will put in
the “missing corner?”
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Table 3.10.2
Scaling factors and fixed points for the collage in Figure
3.10.10.

A) a
0.6 0.45 + 0.9i
0.6 0.45 + 03i
0.4 — 0.3i 0.60 + 0.3
0.4 + 0.3i 030 + 0.3
(%] [o o o]fx 0
w X [=]10 018 Of|X2|[+ |0
5] Lo o 0] x 0
[x:] [o85 o0 0 x
wy| X2 [ =10 085 0.1 X
[ x] Lo —01 085][x
[ o2 -02 o ][x
wlx|=o2 02 0 ||x
[x] Lo 0 03]|x
[ 1] ~02 02 o0 [n
wyl X2 | = 02 02 0O X | +
| X3 | 0 0 03] X%

i

10.13. Find an IFS of similitudes in R? such that the attractor is represented
by the shaded region in Figure 3.10.13. The collage should be “just-

yl

Figure 3.10.11

Locate the fixed points of
a pair of affine transfor-
mations in R? whose at-
tractor is rendered here.

105

(b) Attractor

Figure 3.10.10

A collage of a leaf is ob-
tained using four simili-
tudes, as illustrated in
(a). The corresponding
IFS is presented in com-
plex notation in Table
3.10.2. The attractor of
the IFS is rendered in (b).
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Figure 3.10.12 B
Single three-dimensional ) &
fern. The attractor of an A
IFS of affine maps in R>.

Figure 3.10.13

Find a * just-touching”
collage of the area under
this Devil’s Staircase.
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touching,” by which we mean that the transforms of the region provide
a tiling of the region: they should fit together like the pieces of a jigsaw
puzzle.

10.14. This exercise suggests how to change the coordinates of an IFS. Let
{X,,d,} and {X,,d,} be metric spaces. Let { X; w;, w,,...,w,} be

Figure 3.10.14
Determine some of the affine transformations used in the design of this fractal scene. For
example, where do the dark sides of the largest mountain come from?
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Figure 3.10.15
“Typical” fractals are
not pretty: use the Col-
lage Thegrem to find an
IFS whose attractor ap-
proximates this set.

Figure 3.10.16
Determine the affine
transformations for an
IFS corresponding to this
fractal. Can you see, just
by looking at the picture,
if the linear part of any of
the transformations has a
negative determinant?

"‘Eu,i knﬂz"’ﬂ'g
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a hyperbolic IFS with attractor 4;. Let 6: X; — X, be an invertible
continuous transformation. Consider the IFS {X,; @ow o807}
Gow,o87 1 ..., 00wyo01}. Use 8 to define a metric on X, such that
the new IFS is indeed a hyperbolic IFS. Prove that if 4, € #(X,) is
the attractor of the new IFS, then A4, = 8(A4;). Thus we can readily
construct an IFS whose attractor is a transform of the attractor of
another IFS.

Figure 3.10.17

Use the Collage Theorem
to analyse this fractal. On
how many different scales
is the whole image ap-
parently repeated here?
How many times is the
smallest clearly discern-
ible copy repeated?
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Figure 3.10.18

Consider the white areas
in this figure to represent
aset S in R%. Locate the
boundary of the largest
pathwise connected subset
of S. It is recommended
that you work with a pho-
tfocopy of the image, a
magnifying glass, and a
Sfine red felt-tip pen.

10.15. Find some of the affine transformations used in the design of the fractal
scene in Figure 3.10.14.

10.16. Use the Collage Theorem to find an IFS whose attractor approximates
the set in Figure 3.10.15.

10.17. Solve the problems proposed in the captions of (a) Figure 3.10.16,
(b) Figure 3.10.17, (c) Figure 3.10.18.
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3.11 BLOWING IN THE WIND: THE CONTINUOUS DEPENDENCE OF FRACTALS

ON PARAMETERS

The Collage Theorem provides a way of approaching the inverse problem:
Given a set L, find an IFS for which L is the attractor. The underlying
mathematical principle is very easy: the proof of the Collage Theorem is just
the proof of the following lemma.

Lemma 1. Let (X,d) be a complete metric space. Let f: X — X be a
contraction mapping with contractivity factor 0 < s < 1, and let the fixed point
of fbe x; € X. Then

d(x,x;) < (1 —s5)"'-d(x, f(x))  forallx €X.

Proof. The distance function d(a,b) for fixed a € X is continuous in
b € X. Hence

d(x, x,) = d(x» Lim f°"(X)) = Lim d(x, f*'(x))

A

Lim 3 (/") 1%7(x)

O |

Limd(x, f(x)(L+5+ - +5"71) < (1= )" d(x, /(%)

I/\

This completes the proof.

The following results are important and closely related to the above
material. They establish the continuous dependence of the attractor of a
hyperbolic IFS on parameters in the maps which constitute the IFS,

Lemma 2. Let (P,d ») and (X, d) be metric spaces, the latter being complete.
Let w: P X X — X be a family of contraction mappings on X with contractivity
factor 0 < s < 1. That is, for each p € P, w(p, *) is a contraction mapping on
X. For each fixed x € X let w be continuous on P. Then the fixed point of w
depends continuously on p. That is, x;: P — X is continuous.

Proof. Let x,(p) denote the fixed point of w for fixed p € P. L¥t p € P
and € > 0 be given. Then for all ¢ € P,

d(x,(p). x,(9)) = d(w( 2, x,()), w(q, ,(q)))
< d(w(p, x(p)), w4, x(p)))
+d(w(q, x, (), w(q. x,(9)))

< d(w(p. % (), w(q. % (p))) + sd(x,(p), ()
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which implies

d(x,(p). x,(q)) < (1 —5) 'd(w(p, x(p)), w(a, x,(p)))-

The right-hand side here can be made arbitrarily small by restricting ¢ to be
sufficiently close to p. (Notice that if there is a real constant C such that

d(w(p,x),w(q,x)) <Cd(p,q) forall p,qe P forall xe X

then d(x;(p), x,(q)) < (1 —s)"' - C-d(p,q), which is a useful estimate.)
This completes the proof.

Exercises & Examples

11.1. The fixed point of the contraction mapping w: R — R defined by
w(x) = 3x + p depends continuously on the real parameter p. Indeed,
x;=12p.

11.2. Show that the fixed function for the transformation w: C°[0,1] —
C°[0,1] defined by w(f(x)) = pf(2x mod1) + x(1 — x) is continuous
in p for p e (—1,1). Here, C°[0,1] = {f € C[0,1]: f(0) = f(1) = 0}
and the distance is d(f, g) = Max{|f(x) — g(x)|: x €[0,1}}.

Lemma 3. Let (X,d) be a metric space and suppose we have continuous
transformations w,: X = X (n=1,2,..., N) depending continuously on a
parameter p € P, where (P, d,) is a compact metric space. That is w,(p, x)
depends continuously on p for fixed x € X. Then the transformation W: #(X)
— H(X) defined by
N
W(p.B) = U w(p, B) VB € #(X)

n=1

is also continuous in p. That is, W( p, B) is continuous in p for each B € #(X),
in the metric space (#'(X), h(d)).

Proof. 1t suffices to consider the case N = 1, and then extend the result using

Lemma 3.7.4. For B € 5#(X) we have for p, q € P, and given ¢ > 0,

d(w(p, B),w(q, B)) = Max Migd(wl(p, x), wi(q, »))

x€B ye

A

MaxI\'ﬁn{d(Wl(P, x)awl(p’ y))

x€EB yER
+d(w(p, ). wl(q. 1))}

Now P X B is compact and w,;: P X B —» X is continuous. Hence w, is
uniformly continuous: There is a number § > 0 so that d(w,(p, y), w,(q, ¥))
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<eforall y € B, whenever d (p, ) < 8. So assuming d,(p,q) <& we have
d(wi(p, B), m(q. B)) < MaxMin {d(w,(p.x), wm(p, 1)) + ¢}

<d(w(p,B),w(p,B)) +e=¢.
Similarly
d(w(q, B),w(p,B)) <eford,(p,q) <8,  andwe deduce

h(w\(p,B),w(q,B)) <eford,(p,q) <8
This completes the proof.

We now combine Lemmas 2 and 3 to obtain the result we want.

Theorem 1. Let (X, d) be a metric space. Let { X; (wy), w,, ws,..., wy} be
a hyperbolic IFS (with condensation), of contractivity s. Forn = 1,2,... N, let
w, depend continuously on a parameter p € P, where P is a compact metric
space. Then the attractor A( p) € (X)) depends continuously on p € P, with
respect to the Hausdorff metric h(d).

In other words, small changes in the parameters will lead to small changes
in the attractor, provided that the system remains hyperbolic. This is very
important because it tells us that we can continuously control the attractor of
an IFS, by adjusting parameters in the transformations, as is done in image
compression applications. It also means we can smoothly interpolate between
attractors: this is useful for image animation, for example. The frames from
the video “A Cloud Study” [Barnsley, 1987a] shown in Color Slide 3.11.1
provides an illustration of the application of this technique.
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A(2 a.m)) A(2.75a.m)) A(3am.)

Figure 3.11.1

A one-parameter family
of IFS which tells the
time!
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Exercises & Examples

11.3.

114.

Construct a one-parameter family of IFS, of the form {R?% wy, w,, wy},
where each w; is affine and the parameter p lies in the interval [0, 24].
The attractor should tell the time, as illustrated in Figure 3.11.1. A( p)
dénotes the attractor at time p.

Imagine a slightly more complicated clockface, generated using a one-
parameter family of IFS of the form (R?; wy, wy,w,, w3}, p € [0, 24]. w,
creates the clockface, w, and w, are as in Exercise 11.3, and wj is a
similitude which places a copy of the clockface on the hour hand, as
illustrated in Figure 3.11.2. Then as p goes from O to 12, the hour hand
sweeps through 360°, and the hour hand on the smaller clockface sweeps
through 720°, and the hour hand on the yet smaller clockface sweeps

Figure 3.11.2

This fractal clockface de-
pends continuously on
time in the Hausdorff
metric.
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11.5.

11.6.

11.7.

through 1080°, and so on. Thus as p advances, there exist lines on the
attractor which are rotating at arbitrarily great speeds. Nonetheless we
have continuous dependence of the image on p in the Hausdorfl metric!
At what times do all of the hour hands point in the same direction?
Find a one-parameter family of IFS in R? whose attractors include the
three trees in Figure 3.11.3.

Run your version of Program 3.8.1 or Program 3.8.2, making small
changes in the IFS code. Convince yourself that resulting rendered
images “ vary continuously” with respect to these changes.

Solve the following problems with regard to the images (a)-(f) in Figure
3.11.4. Recall that a “just-touching” collage in R? is one where the
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Figure 3.11.3

Blowing in the wind. Find
a one-parameter family of
IFS whose attractors in-
clude the trees shown
here. The Random Itera-
tion Algorithm was used
to compute these images.
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Figure 3.11.4(a) - (d)
Classical Collages. Can
you find an IFS corre-
sponding to each of these
classical geometrical ob-
Jects?

Figure 3.11.4(e), (f) (0.2pP) (P.2P)
Classical Collages. Can
you find an IFS corre-
sponding to each of these
Euclidean objects?

(P.P) (2P.P)
.—~—-—-—-—--——v

(0. 0) (e) (2pP.0) (n
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transforms of the target set do not overlap. They fit together like the
pieces of a jigsaw puzzle.

(a) Find a one-parameter family collage of affine transformations.

(b) Find a “just-touching” collage of affine transformations.

(¢) Find a collage using similitudes only. What is the smallest
number of affine transformations in R2, such that the boundary
1s the attractor?

(d) Find a one-parameter family collage of affine transformations.

(e) Find a “just-touching” collage, using similitudes only, para-
meterized by the real number p.

(f) Find a collage for circles and disks.




4 Chaotic Dynamics
on Fractals

41 THE ADDRESSES OF POINTS ON FRACTALS

We begin by considering informally the concept of the addresses of points on
the attractor of a hyperbolic IFS. Figure 4.1.1 shows the attractor of the IFS

(C;wi(z) = (0.13 + 0.64i)z, wy(2) = (0.13 + 0.64i)z + 1}.

This attractor, 4, is the union of two disjoint sets, w,(A)and w,(A4), lying to
the left and right, respectively, of the line ab. In turn, each of these two sets is
made of two disjoint sets:

wi(A) = w(w(4) Uw(w(4),  w(4) =w(wm(4)) Uw(w(4)).
This leads to the idea of addressing points in terms of the sequences of
transformations, applied to 4, which lead to them. All points belonging to A4,
in the subset w,(w;(A4)), are situated on the piece of the attractor which lies
below dc and to the left of ab, and their addresses all begin with 11... .
Clearly, the more precisely we specify geometrically where a point in A lies,
the more bits to the address we can provide. For example, every point to the
right of ab, below ef, to the left of 3k, has an address which begins 212... . In
Theorem 4.2.1 we prove that, in examples such as this one, it is possible to
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Every point in this part Addresses begin
g of town has an address

gg ugwhich begins 12. . .
&
§8 4

Addresses begin z Addresses begin
11. .. a ...

assign a unique address to every point of A. In such cases we say that the IFS
is “totally disconnected.”

Here is a different type of example. Consider the IFS

{(Cywm(z) =4z, wm(2) =3z + %, wy(2) = 3z + §i}.
The attractor, A4, of this IFS is a Sierpinski triangle with vertices at (0,0),
(1,0), and (0, 1). Again we can address points on A according to the sequences
of transformations which lead to them. This time there are at least three points
in A which have two addresses, because there is a point in each of the sets
w (A) N wy(A), wy(A) O wy(A), and wy(A) N wy(A4), as illustrated in Figure
4.1.2.

On the other hand, some points on the Sierpinski triangle have only one
address, such as the three vertices (0,0), (1,0), and (0,1). Although the
attractor is connected, the proportion of points with multiple addresses is
“small,” in a sense which we do not yet make precise. In such cases as this we

Figure 4.1.1

Addresses of points on an
attractor. The lines ab,
cd, ef, and gh are not
part of the attractor.
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Figure 4.1.2

Some points on this
Sierpinski triangle have
two addresses, while
others have only one
address. Overlining on the
last symbols, in an ex-
pression such as 31111,
means that the overlined
symbols are repeated end-
lessly. For example,
31111= 31111111111111
111111..., and 31123 =
31123123123123....

33
3 -
31 32
23
1 2
1 21 22
33333
131 132

112 122

A4

13333

Find the
address

N

o

S
i E‘:h%&&».

S

o

Sk

A4
>

N
11111 -iﬂ& ikkiﬁ"“%ﬁs‘\%*‘-mﬁ

say that the IFS is “just-touching.” Notice that this terminology refers to the
IFS itself rather than to its attractor.

Let us look at a third fundamentally different example. Consider the
hyperbolic IFS

{[0,1]; dx,3x + §}.
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The attractor is A = [0, 1], but now
wi(A4) Dwy(4) =[0,5] n[4.1] = [4,3]:

so w,;(A) N wy(A) is a significant piece of the attractor. The attractor would
look very different if this overlapping piece [%, 4] were missing. Now observe
that every point in [}, 3] has at least two addresses. On the other hand, the
points 0 and 1 have only one address each. Nonetheless, it appears that the
proportion of points with multiple addresses is large. In such cases we say that
the IFS is “overlapping.”

The terminologies “totally disconnected,” “just-touching,” and “overlap-
ping” refer to the IFS itself rather than to the attractor. The reason for this is
that the same set may be the attractor of several different hyperbolic IFS’s,
Consider, for example, the two IFS

{10,115 wy(x) = Lx, wy(x) = 4x + 5}
and
{10,11; wi(x) = 4x,wy(x) = —4x + 1}.
The attractor of each one is the real interval [0, 1]. We can obtain two different

addressing schemes for the points in [0, 1], as illustrated in Figure 4.1.3.
These two IFS are “just-touching.” However the IFS

{[0,13; wi(x) = 5x, wy(x) = 3x + %}

is “overlapping” while its attractor is also [0, 1].

Exercises & Examples

1.1. Figure 4.1.4 shows the attractor of an IFS of the form {R?% w,,
n = 1,2,3) where each of the transformations w,: R* —» R? is affine.
The addresses of several points are given. Find the addresses of a, b,

and c.
Figure 4.1.3
0 10 1 Different IFS’s with the
A S S S SO S ot} 4|  same attractor provide
0000 001l 0111 o1l il 00 o0010. 0100 10100 1000 dtfferent addressing
end - and end  ead schemes. Here the sym-
1000 1000 1108 11050

bols {0,1} are used in
place of {1,2} for obvi-
Binary addressing of the Alternative addresses of the oUs reasons.

interval [0,1] induced by the interval [0,1] induced by the
IFS {[0.1],0.5x,0.5x+-0.5} IFS {[0,1].0.5x,-0.5x+1}
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Figure 4.1.4
Can you find the addres-
ses of a, b, and ¢?

1.2. In Figure 4.1.4, locate the point whose address is 11111.

1.3. A quadtree is an addressing scheme used in computer science for
addressing small squares in the unit square @ = {(x,, x,) € R% 0 < x,
<1, 0 < x, <1} as follows. The square is broken into four quarters.
Points in the first quarter have addresses which begin with 0, points in

33 32| 23| 2 the second quarter have addresses which begin with 1, and so on, as
illustrated in Figure 4.1.5. Find an IFS which gives rise to the addressing
30 | 31| 2 |2 scheme suggested in Figure 4.1.5. Is this a “totally disconnected,”

“just-touching,” or an “overlapping” IFS?
03 | 02 13 12 1.4. Addresses are assigned to the Sierpinski triangle, as in Figure 4.1.2.
Characterize the addresses of the set of points which lie on the outer-

00 | 01 | 10 | 11 most boundary, the triangle with vertices 11, 22 and 33.
1.5. Characterize the addresses of points belonging to the boundary of the
Figure 4.1.5 largest hole in Figure 4.1.6.

Addresses at depth two in 1.6. Consider a hyperbolic IFS with condensation set C. Suppose the con-
a quadtree. densation set is itself the attractor of another hyperbolic IFS. Design an
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1.7.

1.8.

1.9.

addressing scheme for the attractor of the IFS with condensation. Can
all possible addresses occur?

Figure 4.1.7 shows an “overlapping” IFS attractor for two affine trans-
formations in R 2 Choose one point in each of the marked regions on the
attractor. Find the first four numbers in two different addresses for each
of these points. To remove ambiguities you should state a choice for how
the two transformations act on the attractor.

» Identify the set of addresses of points on the attractor, 4, of a
hyperbolic IFS with code space. Argue that nearby codes correspond to
points on A which are nearby.

Address the real number 0.7513 in each of the two coding schemes given
in Figure 4.1.3.

In thinking about the addresses of points on fractals, already we have been
led to trying to compare “how many” points have a certain property to how
many have another property. For example, in the case of the addressing
scheme on the Sierpinski triangle described above, we wanted to compare the

Figure 4.1.6

Can you describe the ad-
dresses of the points on
the boundary of the
central white region?
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Figure 4.1.7

Attractor of a hyperbolic
IFS in the overlapping
case. In the overlapping
regions multiple ad-
dresses are available.

Overlapping
regions.
Multiple
addresses
are available

number of points with multiple addresses to the number of points with single
addresses. It turns out that both numbers are infinite. Yet still we want to
compare their numbers. One way in which this may be done is through the
concept of countability.

Definition 1. Let S be a set. S 1s countable if it is empty or if there is an onto
transformation ¢: I — § where I is either: one of the sets {1}, {1,2},
{1,2,3),---,{1,2,3,...,n},--- or: the positive integers {1.2,3,4,...}. S is
uncountable if it is not countable.

We think of an uncountable set as being larger than a countable set,

We are going to make fundamental use of code space to formalize the
concept of addresses. How many points does code space contain?
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Theorem 1. Code space on two or more symbols is uncountable.

Proof. The code space on the two symbols {1,2} is proved here. Denote an
element of code space ¥ by w = w,w,w, ... where each w, € {1,2}. Define p:
(1,2) = {1,2) by p(1) = 2 and p(2) = 1. Suppose code space is countable.
Let the counting function be ¢: {1,2,3,...} — L. Consider the point 6 €
defined by

0 = 0,0,0;3...

where o, = p((c(n)),), and (c(n)),) means the n’* symbol of c(n). When
does the counting function reach ¢? Never! For example, ¢(3) # ¢ because
their third symbols are different! This completes the proof.

Exercises & Examples
1.10. The set of integers Z = {0, £1, £2,... } is countable. Define c: N — Z

by c(z)y=(z - 1)/2if z isodd, ¢(z) = —z/2if z is even.

1.11. A countable union of countable sets is countable. An uncountable set,
take away a countable set, is uncountable.

1.12. The rational numbers are countable. A rational number is one which can
be written in the form p/q, where p and ¢ are integers with ¢ + 0.
Figure 4.1.8 shows how to count the positive ones, some numbers being
counted more than once. Make a rule which gets rid of the redundant
countings. Also show how to include the negative rationals in the
scheme.

1.13. Show that a Sierpinski triangle contains countably many triangles.

1.14. Let S be a perfect subset of a complete metric space. Suppose that S
contains more than one point. Prove that S is uncountable.

1.15. Characterize the addresses of the missing pieces in Figure 4.1.9.
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Figure 4.1.8

How to count the positive
rational numbers. What is
c(24)?

4.2 CONTINUOUS TRANSFORMATIONS FROM CODE SPACE TO FRACTALS

Definition 1. Let { X;w,,w,,...,wy} be a hyperbolic IFS. The code space
associated with the IFS, (L, d ), is defined to be the code space on N symbols
{1,2,..., N}, with the metric d given by

“ o, — o,
d-(w,0) = — forall w, 0 €Y.
oy = Ll

n=1

Our goal is to construct a continuous transformaticn ¢ from the code
space associated with an IFS onto the attractor of the IFS. This will allow us
to formalize our notion of addresses. In order to make this construction, we
will need two lemmas. The first lemma tells us that if we have a hyperbolic IFS
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Figure 4.1.9
Characterize the
addresses of the missing
pieces.
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acting on a complete metric space, but we are only interested in studying how
the IFS acts in relation to a fixed compact subset of X, then we can treat the
IFS as though it were defined on a compact metric space.

Lemma 1. Let (X,d) be a complete metric space. Let {X; w,: n=
1,2,..., N} be ahyperbolic IFS. Let K € #(X). Then there exists K € # (X)
such that K K and w,: K —» K forn=1,2,... N. In other words (K; w,:
n=123,..., N} is a hyperbolic IFS where the underlying space is compact.

Proof. Define W: #(X) — s#(X) by
N
w(By = |J w,(B) forall B €#(X).
1

n=

To construct K consider the IFS with condensation {X; w,; n =
0,1,2,..., N} where the condensation map w, is associated with the con-
densation set K. By Theorem 3.7.1’ the attractor of this IFS belongs to £ (X).

By example 9.1 it can be written

K=(KUWYK)UW3K)yU W3(K)U W*(K) -~ UW(K) U -+ V)

It is readily seen that K © K and that W(If) c K. This completes the proof.
The next lemma provides the first step in linking code space to IFS

attractors, by introducing a certain transformation ¢ which maps the Carte-
sian product space ¥ X N X X into X. By taking appropriate limits, in
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Theorem 1 below, we will eliminate the dependences on N and X to provide
the desired connection between ¥ and X.

Lemma 2. Let (X,d) be a complete metric space. Let {X; w,: n=
1,2,..., N} be a hyperbolic IFS of contractivity s. Let (¥, d-) denote the code
space associated with the IFS. For each 0 € ¥, n € N, and x € X, define

(o, n, x)= Wy, © Wo, © - °wan(x).

Let K denote a compact nonempty subset of X. Then there is a real constant D
such that

d(¢(a,m, x),¢(0,n,x,)) < Ds"""

forall o € X, all m,n € N and all x, , x, € K.

Proof. Let o,m,n x;,and x, be as stated in the lemma. Construct K as in
Lemma 1. Without any loss of generality we can suppose that m < n. Then
observe that

(0, n,x)=0¢(0,m¢(w,n—m,x,))
where w = ¢,,.10,,, ~-- g, - €L
Let x;, = ¢(w, n — m, x,). Then x, belongs to K. Hence we can write
d(¢(o, m,x),6(0,n,x))=d(d(s, m x),é(c,m x;))

< sd(Wp,o o 0w, (%) Wy o 0w (X3))

< (w0 ow, (), W0 0w, (13))

< s"d(x, x3) <s"D,
where D = Max{d(x,, x;): x,, x; € K). D is finite because K is compact.
This completes the proof.

Theorem 1. Let (X, d) be a complete metric space. Let {X, w,: n=
1,2,..., N} be a hyperbolic IFS. Let A denote the attractor of the IFS. Let
(X, dc) denote the code space associated with the IFS. For each 6 € X, n € N,
and x € X, let
¢(U)n,x)=walowuzo'.'Dwﬂ,,(x)' A
Then
¢(0) = Lim ¢ (o, n, x)

exists, belongs to A, and is independent of x € X. If K is a compact subset of X
then the convergence is uniform over x € K. The function ¢: L — A thus
provided is continuous and onto.
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Proof. Let x € X. Let K € #(X) be such that x € K. Construct K as in
Lemma 1. Define W: 5#(X) — 5#(X) in the usual way. By Theorem 3.7.1, W
is a contraction mapping on the metric space (5#(X), h(d)); and we have
A= lim (W(K)).

In particular {W°"(K)} is a Cauchy sequence in (¢, h). Notice that
¢o(o,n,x) € We(K). It follows from Theorem 2.7.1, that if
Lim, _ ¢(0, n, x) exists, then it belongs to A.

That the latter limit does exist follows from the fact that, for fixed ¢ € ¥,
{¢(0, n, x)}*_, is a Cauchy sequence: by Lemma 2

d(¢(o,m,x),d(a,n, x)) < Ds"""  forall x € K,
and the right-hand side here tends to zero as m and n tend to infinity. The
uniformity of the convergence follows from the fact that the constant D is
independent of x € K.
Next we prove that ¢: ¥ — A is continuous. Let ¢ > 0 be given. Choose n
so that s"D < ¢, and let 0, w € ¥ obey

de(a,0) < L L !
y W m n *
¢ mome2 (N+D)™ (N + )"

Then one can verify that ¢ must agree with « through n terms; that is,
0, =@, 0, = w,,...,0, = w, . [t follows that, for each m > n we can write

d(e(o,m, x),¢(w, m,x)) =d(e(o,n,x),(0,n,x,)),
for some pair x,, x, € K. By Lemma 2 the right-hand side here is smaller than
s”D which is smaller than e. Taking the limit as m — oo we find
d(4(0), $(w)) <e
Finally, we prove that ¢ is onto. Let a € A. Then, since A =
Lim Wer({x}), it follows from Theorem 2.7.1 that there is a sequence

n—o

(0 €X: n=1,273,...) such that

Lim ¢( ", n, x) = a.

n—o
Since (¥, d-) is compact, it follows that {w™: n=1,2,3,...) possesses a
convergent subsequence with limit w € . Without loss of generality assume
Lim, ' = w. Then the number of successive initial agreements between
the components of " and w increases without limit. That is, if

a( n) = number of elements in { JEN: ) =w, forl <k sj},
where N = {1,2,3,...}, then a(n) — oo as n — oo. It follows that
d(¢(w, n, x),¢(o', n, x)) < s*UD |

By taking the limit on both sides as n — o0 we find d(¢(w), a) = 0 which
implies ¢(w) = a. Hence ¢: ¥ — A is onto. This completes the proof.
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Definition 2. Let {X;w,, n=1,23,..., N} be a hyperbolic IFS with asso-
ciated code space L. Let ¢: ¥ — A be the continuous function from code
space onto the attractor of the IFS constructed in Theorem 1. An address of a
point a € A is any member of the set

o Na)={weEXl:¢(w)=a}.

This set is called the set of addresses of a € A. The IFS is said to be totally
disconnected if each point of its attractor possesses a unique address. The IFS
is said to be just-touching if it is not totally disconnected yet its attractor
contains a nonempty set & which is open in the metric space 4, such that

(i) w(O)Nw(O)y=2Vije{l,2... N} withi=#j
N
i Uw(0)co.

i=1
An IFS whose attractor obeys (i) and (ii) is said to obey the open set condition.
The IFS is said to be overlapping if it is neither just-touching nor discon-
nected.

Theorem 2. Let {X;w,, n=12,..., N} be a hyperbolic IFS with invertible
maps and attractor A. The IFS is totally disconnected if and only if

w(A)Nw(A)y=02Vi je{l,2,...,N} withi=#j (4.2.1)

Proof. If the IFS is totally disconnected then each point on its attractor
possesses a unique address. This implies Equation (4.2.1). If the IFS is not
totally disconnected then some point on its attractor possesses two different
addresses. These must disagree at some first place: choose inverse images to
get this place out front, to produce a contradiction to Equation (4.2.1). This
completes the proof.

Exercises & Examples
2.1. Show that the IFS {R; ix, $x + 4} is just-touching. Classify the IFS
(R; ix,1).
2.2. Prove that the IFS {R; 3x, 3x + 3) is overlapping.
2.3. Consider the IFS ({[0,1], w,(x) = (n — 1)/10) + {5x, n =12
3,...,10} and for the associated code space use the symbols
{0,1,2,...,9). Show that the attractor of the IFS is [0, 1] andsthat it is
just-touching. Identify the addresses of points with multiple addresses.
Show that the address of a point is just its decimal representation.
Comment on the fact that some numbers have two different representa-
tions.
2.4. Prove that the IFS {[0,1]; wy(x) = ix, wy(x) = jx + 3} is totally
disconnected.
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2.5. Prove that the IFS which generates the Black Spleenwort fern, given in
Chapter 3, p. 103, is just-touching,
2.6. Show that the IFS {[0,1]; wy(x) = 1, wy(x) = 1} is overlapping.

We need to understand the structure of code space. Theorem 1 told us that
the code space on N symbols is the mother of all hyperbolic IFS consisting of
N maps. We will use the following theorem to show that mother is metrically
equivalent to a Classical Cantor Set.

Theorem 3. Let ¥ denote the code space of the N symbols, {1,2,..., N} and
define two different metrics on ¥ by

oo

|xl _yil
d(x, =) ——,d,(x, =
i )’) E1(N+1)' 2 ( )’)

oo

x’—yl
E___

Z1(N+1)

Then (¥, d,) and (X, d,) are equivalent metric spaces.

Proof. We give the proof for the case N = 10. Let x, y € I be given. Clearly
we have d,(x, y) < di(x, y). We must show that there is a constant C so that
Cd,(x, y) < d,(x, y) where C is independent of x and y. Here we pick C = {5
and we show that it works.

We can suppose that for some k€ {1,2,3 ...} x; =y, x, = y,,.
Xp-1= Yk-1» Xk # yi- Then

-y

e o] e o]
X, — Vi |xk _yk| |xl _)’,|
d2(x’ y) = E I > - E 1

o 1 11% 1

% = pil - ( 9) 1
> — — - = - [ [p—
Y i=§+1 1T X~ nl = 1o 11+
>

1 9V 1
1_9 |xk_yk|+ TO)W»

(verify this by checking it for |x, — y,| € {1,2,...,9},)

1 [xe = el - 9 1 e = yel = |x -l
R b

1 & % =yl 1
p E Z=:1 111 - Edl(x’y)'

This completes the proof.

We now show that code space is metrically equivalent to a totally discon-
nected Cantor subset of [0, 1} Define a hyperbolic IFS by {[0,1]; w,(x) =
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Figure 4.2.1

/\g\ Nothing lands here.

N
'NOTHING / w; w, \ A
LANDS
HERE
0 1/4 1/2 3/4 1

A/(N +1)x +n/(N+1): n=12,..., N} Thus

n+1]

([Ol])‘mN+1 forn = 12 ., N,

as illustrated for N = 3 in Figure 4.2.1.

The attractor for this IFS is totally disconnected, as illustrated in Figure
422 for N = 3.

In the case N = 3, the attractor is contained in [}, 1]. The fixed points of
the three transformations wy(x) = fx + 4, wy(x) = x + 3, wy(x) = 4x + 3
are respectively 3, %, and 1. Moreover, the address of any point on the
attractor is exactly the same as the string of digits which represents it in base
N + 1. What is happening here is this. At this zero” level we begin with all
numbers in [0, 1] represented in base (N + 1). We remove all those points
whose first digit is 0. For example in the case N = 3 this eliminates the
interval [0, 4]. At the second level we remove from the remaining points all

Figure 4.2.2
A special ternary Cantor
set in the making.

wy(td 1) Wy(11.1)) w,((L.1)
3 3 3

s
NIt
el
£

oanian
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those which have the digit O in the second place. And so on. We end up with
those numbers whose expansion in base (N + 1) does not contain the digit 0.
Now consider the continuous transformation ¢: (X, d.) — (A4, Euclidean). It
follows from Theorem 3 that the two metric spaces are equivalent. ¢ is the
transformation which provides the equivalence. Thus, we have a realization, a
way of picturing code space.

Exercises & Examples

2.7. Find the Figure analogous to Figure 4.2.2, corresponding to the case
N=039

2.8. What is the smallest number in [0, 1] whose decimal expansion contains
no zeros?

We continue to discuss the relationship between the attractor 4 of a
hyperbolic IFS { X; wy, w,,..., wy} and its associated code space . Let ¢:
Y. — X be the code space map constructed in Theorem 1. Let w = w,wwyw, . ..
be an address of a point x € 4. Then

@ = jwwywy ...

is an address of w;(x), for each j € {1,2,..., N}.

Definition 3. Let A be the attractor of a hyperbolic IFS { X, wy, wy, ..., wy }.
A point a € A4 is called a periodic point of the IFS if there is a finite sequence
of numbers {o(n) € {1,2,..., N})”_, such that

a=Wyp,°Wyp_1° " °Wypy(@)- (42.2)
If a € A is periodic, then the smallest integer P such that the latter statement
is true is called the period of a.

Thus, a point on an attractor is periodic if we can apply a sequence of w,’s
to it, in such a way as to get back to exactly the same point after finitely many
steps. Let a € 4 be a periodic point which obeys equation (4.2.2). Let o be
the point in the associated code space, defined by

6 =0(P)o(P—-1)--- a(l)o(P)o(P—-1)--- a(L)a(P)o(P - 1) -
=o(P)o(P—1)-- a(l). (4.2.3)

Then, by considering Lim _ _¢&(o0, n, a), we see that ¢(o) = a.

Definition 4. A point in code space whose symbols are periodic, as in
equation (4.2.3), is called a periodic address. A point in code space whose
symbols are periodic after a finite initial set is omitted, is called eventually
periodic.
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Exercises & Examples
2.9. An example of a periodic address is:
121212121212121212121212121212121212121212121212121212 ...

where (12) is repeated endlessly. An example of an eventually periodic
address is:

11211111121111211112111121221211212121212121212121212121 . ..

where (21) is repeated endlessly.
2.10. Prove the following theorem: “Let { X; w;, w,,..., wy} be a hyperbolic
IFS with attractor 4. Then the following statements are equivalent:

(I) x € A4 is a periodic point;

(II) x € A possesses an address which is periodic;

(III) x € A4 is a fixed point of an element of the semigroup of trans-
formations generated by {wy, w,, ..., wy}.”

2.11. Show that a point x € [0, 1] is a periodic point of the IFS
{[0,1];3x,4x + 1}

if and only if it can be written x = p/(2¥ — 1) for some integer
0 < p < 2% -1 and some integer N € {1,2,3,...).

2.12. Let {X; w;, w,,..., wy} denote a hyperbolic IFS with attractor A.
Define W(S) = UY_,w,(S) when S is a subset of X. Let P denote the
set of eventually periodic points of the IFS. Show that W(P) = P.

2.13. Locate all the periodic points of period 3 for the IFS {R?% 3z, 3z + 3,3z
+ %)}. Mark the positions of these points on the attractor.

2.14. Locate all periodic points of the IFS {R; wy(x) = 0, wy(x) = ix + 7).

Theorem 4. The attractor of an IFS is the closure of its periodic points.

Proof. Code space is the closure of the set of periodic codes. Lift this
statement to A using the code space map ¢: L — 4. (¢ IS a continuous
mapping from a metric space ¥ onto a metric space 4. If § C ¥ is such that
its closure equals 2, then the closure of f(S) equals A4.)

Exercises & Examples

2.15. Prove that the attractor of a totally disconnected hyperbolic IFS of two
or more maps is uncountable.

2.16. Under what conditions does the attractor of a hyperbolic IFS contain
uncountably many points with multiple addresses? Do not try to give a
complete answer, just some conditions—and think about the problem.

2.17. Under what conditions do there exist points in the attractor of a
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hyperbolic IFS with uncountably many addresses? As in 2.16, do not try
to give a full answer.

2.18. In the standard construction of the Classical Cantor Set %, described in
section 3.1 (example 1.5), a succession of open subintervals of [0, 1] are
removed. The endpoints of each of these intervals belongs to ¢. Show
that the set of such interval endpoints is countable. Show that € itself is
uncountable. € is the attractor of the IFS ([0, 1}; ix, +x + 3}. Char-
acterize the addresses of the set of interval endpoints in %.

4.3 INTRODUCTION TO DYNAMICAL SYSTEMS

We introduce the idea of a dynamical system, and some of the associated
terminology.

Definition 1. A dynamical system is a transformation f: X — X on a metric
space (X, d). It is denoted by {X; f}. The orbit of a point x € X is the

sequence { £°"(x)}2

As we will discover, dynamical systems are sources of deterministic fractals.
The reasons for this are deeply intertwined with IFS theory, as we will see.
Later we will introduce a special type of dynamical system, called a shift
dynamical system, which can be associated with an IFS. By studying the orbits
of these systems, we will learn more about fractals. One of our goals is to learn
why the Random Iteration Algorithm, used in Program 3.8.2, successfully
calculates the images of attractors of IFS. More information about the deep
structure of attractors of IFS will be discovered.

Exercises & Examples
3.1. Define a function on code space, f: ¥ — ¥, by
f(xaxyxaxy o) = Xx324%5 -
Then {¥; f} is a dynamical system.
3.2. {[0,1}; f(x)=Ax( — x)} is a dynamical system for each A € [0,4].
We say that we have a one-parameter family of dynamical systems.
3.3. Let w(x) = Ax + ¢ be an affine transformation in R% Then {R?% w} is
a dynamical system.
3.4. Define T: C[0,1] — C[0,1] by
(Tf)(x) = 3/(3x) + 3f(3x + 7).
Then {C[O ]] T} is a dynamical system.
3.5. Let w: € - € be a Mobius transformation. That is w(z) = (az + b)/
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(cz + d), where a, b, ¢, d € C, and (ad — bc) # 0. Then {é; w(z)}isa
dynamical system.

3.6. {[0,1];2xmod 1} is a dynamical system. Here 2x mod1 = 2x — [2x]
where [2x] denotes the greatest integer less than or equal to 2x.

3.7. Define a transformation f: B — W as illustrated in Figure 4.3.1. {W; f}
is a dynamical system.

In dynamical systems theory one is interested in what happens when one
follows a typical orbit: is there some kind of attractor which usually occurs?
Dynamical systems become interesting when the transformations involved are
not contraction mappings, so that a single transformation suffices to produce
interesting behavior. The orbit of a single point may be a geometrically
complex set. Some thought about horizontal slices through Figure 4.3.2 will

SQUEEZE Figure 4.3.1

An example of a “Stretch,
Squeeze, and Bend”
dynamical system.

| STRETCH

START

FINISH : Put deformed space back
inside itself.
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Figure 4.3.2

One million points of an
orbit of a “Stretch,
Squeeze, and Bend” dy-
namical system. Can you
find a relationship to IFS
theory?

quickly suggest to the inquisitive student that there is a close relationship
between this noncontractive dynamical system and a hyperbolic IFS.

Definition 2. Let { X; f} be a dynamical system. A periodic point of f is a
point x € X such that f°"(x) = x for some n€ {1,2,3,...}. If x is a
periodic point of f then an integer n such that f°"(x) = x,n € {1,2,3,...)
is called a period of x. The least such integer is called the minimal period of
the periodic point x. The orbit of a periodic point of f is called a cycle of f.
The minimal period of a cycle is the number of distinct points which it
contains. A period of a cycle of f is a period of a point in the cycle.

Definition 3. Let { X; f} be a dynamical system and let x; € X be a fixed
point of f. The point x, is called an attractive fixed point of f if there is a
number € > 0 so that f maps the ball B(x/, ¢) into itself, and moreover f is a
contraction mapping on B(x,, ¢). Here B(x;.¢) = {y € X: d(x;, y) <€}
The point x, is called a repulsive fixed point of f if there are numbers ¢ > 0
and C > 1 such that

d(f(x;), f(¥)) = Cd(x,,y) forall y € B(x,,¢).
A periodic point of f of period n is attractive if it is an attractive fixed point
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of f°". A cycle of period n is an attractive cycle of f if the cycle contains an
attractive periodic point of f of period n. A periodic point of f of period n is
repulsive if it is a repulsive fixed point of f°”. A cycle of period n is a repulsive
cycle of f if the cycle contains a repulsive periodic point of f of period 7.

Definition 4. Let { X, f} be a dynamical system. A point x € X is called an
eventually periodic point of f if f°™(x) is periodic for some positive integer m.

Exercises & Examples

3.8. The point x, = 0 is an attractive fixed point for the dynamical system
(R; 3x}, and a repulsive fixed point for the dynamical system {R;2x }.
3.9. The point z = 0 is an attractive fixed point, and z = oo is a repulsive
fixed point, for the dynamical system
{€;(cos10° + isin10°)(0.9)z}.
A typical orbit, starting from near the Point at Infinity on the sphere, is
shown in Figure 4.3.3 (a) and (b).
3.10. The point x, = 111111 is a repulsive fixed point for the dynamical
system {¥; f} where f: ¥ — ¥ is defined by

f(xxaX3x4X5 -+ ) = Xy X3X4X5 " 0°

Show that x = 121212 is a repulsive periodic point of period 2, and that
{IZE, 2121} is a repulsive cycle of period 2.

3.11. The dynamical system {[0,1]; 2x(1 — x)} possesses the attractive fixed
point x, = . Can you find a repulsive fixed point for this system?

There is a delightful construction for representing orbits of a dynamical
system of the special form {R; f(x)}. It utilizes the graph of the function f:
R — R. We describe here how it is used to represent the orbit {x, =
[ (xp)Yso, of a point x; € R.

For simplicity we suppose that f: [0,1] —» [0,1]. Draw the square
{(x,y):0<x<1,0<y<1} and sketch the graphs of y = f(x)and y = x
for x €[0,1]. Start at the point (x,, x,) and connect it by a straight line
segment to the point (x4, x; = f(xy)). Connect this point by a straight line
segment to the point (x,, x,). Connect this point by a straight line segment to
the point (x;, x, = f(x,)); and continue. The orbit itself shows up on the
forty-five degree line y = x, as the sequence of points (xg, xq), (xq, x1),
(x5, X5),--- . We call the result of this geometrical construction & web di-
agram.

It is straightforward to write computergraphical routines which plot web
diagrams on the graphics display device of a microcomputer. The following
program is written in BASIC. It runs without modification on an IBM PC with
Color Graphics Adaptor and Turbobasic. On any line the words preceded by a
* are comments: they are not part of the program.
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Figure 4.3.3(a)

The dynamics of a simple
Mbbius transformation. SPHERE
Points spiral away from
one fixed point and they
spiral in towards the
other. What happens if
the fixed points coincide?

ON THE REPULSIVE FIXED POINT

ATTRACTIVE FIXED POINT

IN THE ’/'**\
%,

PLANE ‘/* \

Figure 4.3.3(b)

Points belonging to an
orbit of a Mobius trans-
formation on a sphere.
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" (XpX))

(XgXs) Fig.ure 4.34
This shows an example of
a web diagram. A web

diagram is a means for
displaying and analysing
the orbit of a point x, €
R for a dynamical system
(R, f}. The geometrical
construction of a web di-
agram makes use of the

graph of f(x).

PROGRAM 4.3.1
1=379:xn = 0.95

def fnf(xn) = 1*xn* (1 — xn)

screen 1: cls
window (0,0) — (1,1)

fork = 1 to 400

pset(k /400, fnf(k /400))
next k

do

n=n+1

y = fnf(xn)

line (xn, xn) — (xn,y), n

line (xn,y) — (y,y),n
Xn =y

loop until instat : end

’parameter value 3.79, orbit starts

at 0.95

’change this function f(x) for other
dynamical systems

’initialize computer graphics

’set plotting window t0 0 < x < 1,
0<y<l

’plot the graph of the f(x)

’the main computational loop
’increment the counter, n

’compute the next point on the orbit
’draw a line from (xn, xn) to (xn, y)
in color n

’draw a line segment from (xn, y)

to (y,y) in color n *

’set xn to be the most recently
computed point on the orbit

’stop running if a key is pressed.

An example of some web diagrams computed using this program are
shown in Figure 4.3.5. The dynamical system used in this case is {[0,1];

f(x)=379%(1 — x)}.
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Figure 4.35

Two examples of web di-
agrams computed using
Program 4.3.1. The dy-
namical system in this
caseis {{0,1]; f(x) =
Ax(1 — x)}, for two dif-
ferent values of A €
(0,4). The system corre-
sponding to the lower
value of A is orderly, the
other is close to being
chaotic.

CHAOS

¥

Il

N

ORDER
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Exercises & Examples

3.12.

3.13.

3.14.

3.15.

3.16.

Rewrite Program 1 in a form suitable for your own computer environ-
ment. Use the resulting system to study the dynamical systems {[0,1];
Ax(1 — x)} for A =055, 1.3, 2.225, 3.014, 3.794. Try to classify the
various species of web diagrams that occur for this one-parameter family
of dynamical systems.

Divide [0,1] into sixteen subintervals [0, %), [, &%), ..., [1%, 1), [12,1].
Let f:[0,1] — [0,1] be defined by f(x) = Ax(1 — x) where A €[0,4] is
a parameter. Compute { f°"(3): n = 0,1,2,...,5000) and keep track of
the frequency with which f°7(3) falls in the k' interval for k =
1,2,...,16, and A = 0.55, 1.3, 2.225, 3.014, 3.794. Make histograms of
your results.

Describe the behavior for the one-parameter family of dynamical sys-
tems {R U {o0}; Ax}, where A is a real parameter, in the cases
HA=0;@)0 <|]A]<1; (i) A= ~-1;(iv) A=1;(v) 1 <A < o0.
Analyze possible behaviors of {R? Ax + ¢} where Ax + ¢ is an affine
transformation.

Study possible behaviors of orbits for the dynamical system {é; Mobius
transformation}. You should make appropriate changes of coordinates
to simplify the discussion.
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(X3X3)

4>7 (xl_xl) Y

Y=14X “ Y=X

XgXg)

Figure 4.3.6

An orbit of the “Slide and
Fold” dynamical system
described in example
3.17. Can you prove that
all orbits are eventually
periodic?
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Figure 4.3.7
A sign of things to come.

3.17. Show that all points are eventually periodic for the slide-and-fold

3.18.

dynamical system {R; f} where

1) -

This system is illustrated in Figure 4.3.6.
Let {X; w;, w,,...,w, ) be a hyperbolic IFS. Then {#(X); W} is a
dynamical system, where

x+1 ifx<0,
-x+1 ifx>0.

N
W(B) = U w,(B) forall Bes#(X).
n=1
Dynamical systems which act on sets in place of points are sometimes
called set dynamical systems. Show that the attractor of the IFS is an
attractive fixed point of the dynamical system { (X ); W }. You should
quote appropriate results from earlier theorems.
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44 DYNAMICS ON FRACTALS: OR HOW TO COMPUTE ORBITS BY LOOKING AT
PICTURES

We continue with the main theme for this chapter, namely dynamical systems
on fractals. We will need the following result.

Lemma 1. Let {X; w,, n=12,..., N} be a hyperbolic IFS with attractor
A. If the IFS is totally disconnected, then for each n € {1,2,... N}, the
transformation w,: A — A is one-to-one.

Proof. We use a code space argument. Suppose that there is an integer
n€{1,2,..., N} and distinct points a;, a, € A so that w (a;) = w,(a,) =
ac A. If a; has address w and a, has address o, then @ has the two
addresses nw and no. This is impossible because the IFS is totally discon-
nected. This completes the proof.

Lemma 1 shows that the following definition is good.

a-a Figure 4.4.1
%:R"; 6 An orbit of a shift
Babs Bube dynamical system on a
Ehk.. &h fractal.
U

Br Bu  Bn B
Bube Babu Bobububa

N
Ba  En
N

Bn B N
Bubs Bube Bobu Bube

&

Bube Bu b
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Definition 1. Let {X; w,, n=1,2..., N} be a totally disconnected hyper-
bolic IFS with attractor A. The associated shift transformation on A is the
transformation S: 4 — A defined by

. S(a) =w, Y(a) fora€w,(A)),

where w, is viewed as a transformation on A. The dynamical system { 4; S} is
called the shift dynamical system associated with the IFS.

Exercises & Examples
4.1. Figure 4.4.1 shows the attractor of the IFS

{R2;o.47(2),0.47(2) + ((1)),0.47(2) + (é)}

Figure 4.4.1 also shows an eventually periodic orbit {a, = §°"(ay)}*_,
for the associated shift dynamical system. This orbit actually ends
up at the fixed point ¢(2222). The orbit reads a0=¢(12313225),
a, = $(23132222), a, = $(3132222), a, = $(132222), a, = $(32222),
as = qb(ZZZ), where ¢: ¥ — A is the associated code space map. The
point a, € A is clearly a repulsive fixed point of the dynamical system.

cycle of period three.

Figure 4.4.2 NABRNRY
This orbit ends up in a QX.§X “‘\X‘x

PERIOD
THREE
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Figure 4.43

A chaotic orbit getting
going. The shift dynamics
are often wild. Why?

Figure 4.4.4

The orbit of the point a is
shown. Can you plot the
first few points of the
orbits of b and ¢? Warn-
ing! The IFS here is not
the usual one. See how
the knowledge of some
dynamics can imply some
more!
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Figure 4.4.5 ’?

This figure shows a sketch L Ry

of part of an orbit of an / < |

IFS (0,15 wi, w0, %} &8 . 3 s
on its attractor [0,1]. The

transformation w;:[0,1]
- {0,1] is affine fori =
1,2 3. Sketch part of the
orbit of b.

Notice how one can read off the orbit of the point a, from its address.
Start from another point very close to a, and see what happens. Notice
how the dynamics depend not only on A itself, but also on the IFS. A
different IFS with the same attractor will in general lead to different shift
dynamics.

4.2. Each of Figures 4.4.2 and 4.4.3 show attractors of IFS’s. In each case the
implied IFS is the obvious one. Give the addresses of the points {a, =
S°"(ay))r-, of the eventually periodic orbit in Figure 4.4.2. Show that
the cycle to which the orbit converges is a repulsive cycle of period 3. The
orbit in Figure 4.4.3 is either very long or infinitely long: why is it hard
for us to know which?

4.3. Figure 4.4.4 shows an orbit of a point under the shift dynamical system
associated with a certain IFS {R?; wy, w;, w;} where w;, w,, and w; are
affine transformations. Deduce the orbits of the points marked b and ¢ in
the figure.

4.4. Figure 4.4.5 shows the start of an orbit of a point under the shift
dynamical system associated with a certain hyperbolic IFS. The IFS is of
the form {R; w;, w,, w3} where the transformations w,: R - R are
affine, and the attractor is [0,1]. Sketch part of the orbit of the point
labelled b in the Figure. (Notice that this IFS is actually just-touching:
nonetheless, it is straightforward to define uniquely the associated shift
dynamics on the open set @ referred to in Definition 4.2.2.)

4.5 EQUIVALENT DYNAMICAL SYSTEMS

Definition 1. Two metric spaces (X;, d,) and (X, d,) are said to be topo-
logically equivalent if there is a homeomorphism f: X; — X,. Two subsets
S; € X, and S, C X, are topologically equivalent, or homeomorphic, if the
metric spaces (S, d;) and (S,, d,) are topologically equivalent. S; and S, are
metrically equivalent if the (S|, d,) and (S,, d,) are equivalent metric spaces.

The Cantor set and code space, discussed following Theorem 4.2.3, are
metrically equivalent. Theorem 2.8.5 tells us that if f: X, —» X, is a continu-
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ous one-to-one mapping from a compact metric (X,.d;) onto a compact
metric space (X,, d,), then f is a homeomorphism. So by means of the code
space mapping ¢: L — A (Theorem 4.2.1) one readily establishes that the
attractor of a totally disconnected hyperbolic IFS is topologically equivalent to
a classical Cantor set.

Topological equivalence permits a great deal more “stretching and com-
pression” to take place than is permitted by metric equivalence. Later we will
define a quantity called the fractal dimension. The fractal dimension of a
subset of a metric space such as (R2, Euclidean) provides a measure of the
geometrical complexity of the set; it measures the wildness of the set, and it
may be used to predict your excitement and wonder when you look at a
picture of the set. We will show that two sets which are metrically equivalent
have the same fractal dimension. If they are merely topologically equivalent,
their fractal dimensions may be different.

With the naturally implied metrics, [0,1] is homeomorphic to [0,2].
APE: G

W is homeomorphic to @@, is homeomorphic to . -<* , and

———— is homeomorphic to ‘A,\h,/\\v\‘ .

In fractal geometry we are especially interested in the geometry of sets, and
in the way they look when they are represented by pictures. Thus we use the
restrictive condition of metric equivalence to start to define mathematically
what we mean when we say that two sets are alike. However, in dynamical
systems theory we are interested in motion itself, in the dynamics, in the way
points move, in the existence of periodic orbits, in the asymptotic behavior of
orbits, and so on. These structures are not damaged by homeomorphisms, as
we will see, and hence we say that two dynamical systems are alike if they are
related via a homeomorphism.

Definition 2. Two dynamical systems { X; f;} and {X,; f,} are said to be
equivalent, or topologically conjugate, if there is a homeomorphism 6: X, — X,
such that

filx)=0"tof,00(x) forall x; € X,
fo(xy) =00 f007(xy) forall x, € X,.

In other words, the two dynamical systems are related by the commutative
diagram shown in Figure 4.5.1.

The following Theorem expresses formally what already should be clear
intuitively from our experience with shift dynamics on fractals.

Theorem 1. Let {X; w,, wy,..., wy ) be a totally disconnected hyperbolic IFS
and let { A; S} be the associated shift dynamical system. Let ¥ be the associated

147

Figure 4.5.1
Commutative diagram
which establishes the
equivalence between two
dynamical systems

{X15 fi} and (X5 [}
The function h: X, - X,
is a homeomorphism.
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code space of N symbols and let T: ¥ — ¥ be defined by

T(0,050, -+ ) = 0,050, -~ forall ¢ = gj000; -+ €L.

Then the two dynamical systems {A;S} and {¥; T} are equivaleni. The
homeomorphism which provides this equivalence is ¢: ¥ — A, as defined in
Theorem 4.2.1. Moreover {a1, a,,..., a,} is a repulsive cycle of period p for S
if, and only if, {¢"(ay), ¢~ '(a3),..., ¢~ (a,)} is a repulsive cycle of period p
for T.

Exercises & Examples

5.1

5.2.

5.3.

5.4.

5.5.

5.6.

Let {X;; f,) and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
6: X\ - X,. Show that {x;,x,,...,x,} is a cycle of period p for
{Xy; f,} if and only if {8(x,), 8(x,),...,8(x,)} is a cycle of period p
for {X,; f,}. Suppose that {x,, x,,..., x,} is an attractive cycle for f;.
Show that this does not imply that {8(x,),...,8(x,)} is an attractive
cycle for f,.

Let {X;; f;} and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
0: X, > X,. Let {f{"(x)}%-, be an eventually periodic orbit of f;.
Show that { f2"(8(x))}7_, is an eventually periodic orbit of f,.

Let {X;; f,) and {X,; f,} be equivalent dynamical systems. Let a
homeomorphism which provides this equivalence be denoted by
6: X, - X,. Let this homeomorphism be such as to make the two
spaces (X;, d,) and (X,, d,) metrically equivalent. Construct an exam-
ple where x, € X is a repulsive fixed point of the dynamical system
{ X1, f1}, yet 8(x/) is not a repulsive fixed point of { X;, f,}.

Let {X;; f1) and { X},; f,} be equivalent metric spaces. Let a homeo-
morphism which provides their equivalence be denoted by 6: X; — X,.
Let x, € X, be a fixed point of f;. Suppose there is an open set ¢ which
contains x, and is such that x € ¢ implies Lim,, _, . f7"(x) = x,. Show
that there is an open neighborhood of 8(x,) in X, with a similar
property.

Our definition of attractive and repulsive fixed points and cycles, Defin-
ition 4.3.4, has the feature that it depends heavily on the metric. It is
motivated by the situation of analytic dynamics where small disks are
almost mapped into disks. Show how one can use example 5.4 to make a
definition of an attractive cycle in such a way that attractiveness of
cycles is preserved under topological conjugacy.

Let 4 C R. Then a function f: 4 — A is differentiable at a point
o €Al Lim { L0 (o) )

x> X, X = Xy

x€A
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5.8.
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exists. If this limit exists it is denoted by f'(x,). Let {R; wi, w,,..., wy}
be a totally disconnected hyperbolic IFS acting on the metric space
(R, Euclidean). Suppose that, for each n =1,2,... N, w,(x) is dif-
ferentiable, with |w/(x)| > 0 for all x € R. Show that the associated
shift dynamical system {4; S} is such that S is differentiable at each
point x, € A, and moreover |S'(x,)| > 1 for all x € 4.

Let {R; f} and {R; g} be equivalent dynamical systems. Let a homeo-
morphism which provides their equivalence be denoted by §: R — R. If
6(x) is infinitely differentiable for all x € R, then the dynamical sys-
tems are said to be diffeomorphic. Suppose that §’(x) # 0 for all x € R.
Prove that a, is an attractive fixed point of f if and only if 8(a,) is an
attractive fixed point of g.

Let {R; f) be a dynamical system such that f is differentiable for all
x € R. Consider the web diagrams associated with this system. Show
that the fixed points of f are exactly the intersections of the line y = x
with the graph y = f(x). Let a be a fixed point of f. Show that a is an
attractive fixed point of f if and only if |f’(a)| < 1. Generalize this
result to cycles. Note that if {a,, a,,..., a,} is a cycle of period p then
(d/dx)(f°P(x)|c=q, = f'(a)f'(a3) ... f(a,). Assure yourself that the
situation is correctly summarized in the web diagram shown in Figure
4.5.2.

Figure 4.5.2

Attractive and Repulsive
fixed points in a web di-
agram for a differentiable
dynamical system.
Analjyse the ? points.

ATTRACTIVE

FIXED POINT
Fx) <1
- ?
REPULSIVE '
FIXED POINT
[F(X) >1

Y=1(X)

A
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5.9. Consider the dynamical system {[0,1]; f(x)} where

1-2x when x € [0,4],
2x—1 when x € [1,1].

-]

Consider also the just-touching IFS {[0,1},4x + 3, — 4x + 4}). Show
that it is possible to define a “shift transformation,” S, on the attractor,

Figure 4.5.3

Continuous transforma-
tion of a Cantor set into
a Sierpinski triangle. The
inverse transformation
would involve some rip-

ping.

4 g}‘?’} &

;% ! ?;}y
2
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A, of this IFS in such a way that {[0,1]; S} and {[0,1]; f(x)} are
equivalent dynamical systems. To do this you should define S: 4 — A4
in the obvious manner for points with unique addresses; and you should
make a suitable definition for the action of S on points with multiple
addresses.

Let {R?% w,, w,, w;) denote a one-parameter family of IFS, where

P L BRI P
‘(y) 0 (1:,;) (y)
e (e
- e
WB(;)= ( -i—p) (é) (;)+ % for p € [0,1].

Let the attractor of this IFS be denoted by A( p). Show that A4(0) is a
Cantor set and A4(1) is a Sierpinski triangle. Consider the associated
family of code space maps ¢(p): £ — A(p). Show that ¢(p)(o) is
continuous in p for fixed o € ¥; that is ¢( }o): [0,1]] > R? is a
continuous path. Draw some of these paths, including ones which meet
at p = 1. Interpret these observations in terms of the Cantor set becom-
ing “joined to itself” at various points to make a Sierpinski triangle.

Since the IFS is totally disconnected when p =0, ¢(p =0): £ —
A(0) is invertible. Hence we can define a continuous transformation 6:
A(0) = A(1) by 8(x) = ¢(p = 1) (¢~ '(p = 0)(x)). Show that if we de-
fine a set J(x) = {y € A(0): 8(y) = x} for each x € A(1), then J(x)
is the set of points in A4(0) whose associated paths meet at x € A(1)
when p = 1. Invent shift dynamics on paths.
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4.6

THE SHADOW OF DETERMINISTIC DYNAMICS

Our goal in this section is to extend the definition of the shift dynamical
system associated with a totally disconnected hyperbolic IFS to cover the
just-touching and overlapping cases. This will lead us to the idea of a random
shift dynamical system and to the discovery of a beautiful theorem. This
theorem will be called the Shadow Theorem.

Let {X; w, w,,..., wy) denote a hyperbolic IFS, and let 4 denote its
attractor. Assume that w,: 4 — 4 is invertible for each n =1,2,..., N, but
that the IFS is not totally disconnected. We want to define a dynamical system
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{A; S} which is analogous to the shift dynamical system defined earlier.
Clearly we should define

S(x) =w, '(x)  when x € w,(A),but x & w,(A4) for m # n,
- foreachn=1,2,..., N.

However, at least one of the intersections w,,(A4) N w,(A) is nonempty for
some m # n. One idea is simply to make an assignment of which inverse map
is to be applied in the overlapping region. For the case N = 2 we might define,
for example,

wi '(x)  when x € w(4),

S(x)={w21(x) when x € A\ w;(4).

In the just-touching case the assignment of where S takes points which lie
in the overlapping regions does not play a very important role: only a
relatively small proportion of points will have somewhat arbitrarily specified
orbits. We look at some examples, just to get the flavor.

Exercises & Examples
6.1. Consider the shift dynamical systems associated with the IFS
{[0,1]; ix,ix + 1}.

We have S(x) = 2x for x € [0, %) — and S(x) = 2x — 1 for x € (},1].
We can define the value of S(3) to be either 1 or 0. The two possible
graphs for S(x) are shown in Figure 4.6.1. The only points x € [0,1] = 4
whose orbits are affected by the definition are those rational numbers
whose binary expansions end ...0111 or ...1000, the dyadic rationals.

6.2. Show that, if we follow the ideas introduced above, there is only one
dynamical system { 4; S} which can be associated with the just-touching
IFS ([0,1}; — 4x + %, 5x). The key here is that w; '(x) = w; }(x) for
all x € w;(A4) N wy(A).

Figure 4.6.1 1
The two possible shift dy-
namical systems associ-

ated with the just-touch-

ing IFS {[0,1];3x,4x

+ %) are represented by

the two possible graphs of
S(x).

“Most” orbits are unaf-
fected by the difference 0
between the two systems.




6.3.

6.4.

6.5.

6.6.

46 The Shadow of Deterministic Dynamics

Consider some possible “shift” dynamical systems { 4; S§'} which can be
associated with the IFS

(€:52,32 + 3,32+ 4).

The attractor, & , is overlapping at the three points @ = w( & )

mwz(&), b=w2(&)ﬁw3(&), and c=w3(&)m
wi( & ). We might define S(a) = w{ (a) or w; Y(a), S(b) = w; }(b)
or w; '(b), and S(c) = w; '(c) or wi !(c). Show that regardless of which
definition is made, the orbits of a, b, and ¢ are eventually periodic.

Consider a just-touching IFS of the form {R? wy, w,, w; ) whose attrac-
tor is an equilateral Sierpinski triangle . Assume that each of the
maps is a similitude of scaling factor 0.5. Consider the possibility that
each map involves a rotation through 0°, 120°, or 240°. The attractor,

& , is overlapping at the three points a = wy( & ) M wy( & )
=w2(&)ﬁw3(&), and c=w3(& )ﬁwl(&). Show

that it is possible to choose the maps so that w{ '(a) = w; '(a), wy (b)
= w; (b), and w; '(c) = wi '(¢).
Is code space on two symbols topologically equivalent to code space on
three symbols? Yes! Construct a homeomorphism which establishes this
equivalence.
Consider the hyperbolic IFS {¥; ¢, ¢,, ..., t5 ) where ¥ is code space on
N symbols {1,2,..., N} and

1,0 = no forallo € L.

Show that the associated shift dynamical system is exactly {X; T}
defined in Theorem 4.5.1. Can two such shift dynamical systems be
equivalent for different values of N? To answer this question consider
how many fixed points the dynamical system {2; 7T} possesses for
different values of N.

1 Figure 4.6.2

Two possible shift dy-
namical systems which
can be associated with the
overlapping IFS {[0,1];
ix,3x + L} In what
ways are they alike?
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Figure 4.6.3 OVERLAPPING

A partially random and NON-OVERLAPPING NON-OVERLAPPING
partially deterministic 1 o

shift dynamjcal system

associated with the IFS
{I0,1]; §x,3x + ).

=4x-
v=ix}
Y=2X [
¥ ol
‘_—
0 1
UNIQUE RANDOM UNIQUE
DYNAMICS  DYNAMICS DYNAMICS

6.7. Consider the overlapping hyperbolic IFS ([0,1]; 3x, 3x + §}. Compare
the two associated “shift” dynamical systems whose graphs are shown in
Figure 4.6.2. What features do they share in common?

6.8. Demonstrate that code space on two symbols is not metrically equiv-
alent to code space on three symbols.

In considering exercises such as 6.7 where two different dynamical systems
are associated with an IFS in the overlapping case, we are tempted to entertain
the idea that no particular definition of the shift dynamics in the overlapping
regions is to be preferred. This suggests that we define the dynamics in
overlapping regions in a somewhat random manner. Whenever a point on an
orbit lands in an overlapping region, we should allow the possibility that the
next point on the orbit is obtained by applying any one of the available
inverse transformations. This idea is illustrated in Figure 4.6.3, which should
be compared with Figure 4.6.2.

Definition 1. Let { X; wy, w,} be a hyperbolic IFS. Let A denote the attrac-
tor of the IFS. Assume that both w;: 4 —» 4 and w,: 4 — A are invertible. A
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sequence of points {x,}*., in A4 is called an orbit of the random shift
dynamical system associated with the IFS if

wi'(x,)  when x, € w(4),and x, & w(4) N wy(A4),
Xp+1 = “ﬁil(‘xn) when X, € %(A)’ and X, $ wl(A) N %(A),
one of { w 1(x,), ws '(x,)}, when x, € w(A4) N wy(4),

for each n € {0,1,2,...}. We will use the notation x,,, = S(x,) although
there may be no well-defined transformation S: 4 — A which makes this true.
Also we will write { 4; S} to denote the collection of possible orbits defined
here, and we will call { 4; S’} the random shift dynamical system associated
with the IFS.

Notice that if wy(A4) N w,(A4) = & then the IFS is totally disconnected
and the orbits defined here are simply those of the shift dynamical system
{A4; S} defined earlier.

We now show that there is a completely deterministic dynamical system
acting on a higher dimensional space, whose projection into the original space
X, yields the “random dynamics” we have just described. Our random
dynamics are seen as the shadow of deterministic dynamics. To achieve this we
turn the IFS into a totally disconnected system by introducing an additional
variable. To keep the notation succinct we restrict the following discussion to
IFS’s of two maps.

Definition 2. The lifted IFS associated with a hyperbolic IFS { X; wy, w, } is
the hyperbolic IFS { X X ¥; w;, w,} where 2 is the code space on two
symbols {1,2}, and
wy(x,0) =(w(x),1o) forall (x,0) € X X ¥;
Wy(x,0) =(w(x),20) forall(x,0) € X XL.
What is the nature of the attractor 4 C X x ¥ of the lifted IFS? Clearly
A = {(¢(0),0): 6 € ¥}, the graph of the code space map ¢; and

= {xGX:(x,o) ed forsomeer} =¢(X).

In other words the projection of the attractor of the lifted IFS into the original
space X is simply the attractor A4 of the original IFS. The projection of 4 into
Y is ¥. Recall that ¥ is equivalent to a classical Cantor set. This tells us that
the attractor of the lifted IFS is totally disconnected, since the projf;ction map
from A into ¥ is one-to-one on ¥.

Lemma 1. Let { X; wy, w,} be a hyperbolic IFS with attractor A. Let the two
transformations w,: A > A and w,: A — A be invertible. Then the associated
lifted IFS is hyperbolic and totally disconnected.

Definition 3. Let { X; wy, w,) be a hyperbolic IFS. Let the two transforma-
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tions w;: 4 - A and w,: 4 — A be invertible. Let 4 denote the attractor of
the associated lifted IFS. Then the shift dynamical system { 4; S} associated
with the lifted IFS is called the lifted shift dynamical system associated with the
IFS. |

Notice that

.S~‘(x,c)=(w(,:1 x),T(o)) forall(x,o)ej,

where T(0,0,0,0,...) = 0,0,0,05. .. for all 0 = 6,0,0,0,... € L.

Theorem 1. (The Shadow Theorem.) Let { X; wy, w, )} be a hyperbolic IFS of
invertible transformations w, and w, and attractor A. Let {x,}7_, be any orbit
of the associated random shift dynamical system { A; S}. Then there is an orbit
{X,Y2_, of the lifted dynamical system (A; S such that the first component of
%, isx, foralln.

We leave the proofs of Lemma 1 and Theorem 1 as exercises. It is fun
however, and instructive, to look in a couple of different geometrical ways at
what is going on here.

Examples

6.9. Consider the IFS {C; wy(z), wy(2), wy(2), wy(z)} where, in complex
notation,

wi(z) = (0.5)(cos45° — V~1 sin45°)z + (0.4 — 0.2/ -1),

wy(z) = (0.5)(cos45° + V-1 5ind5°)z — (0.4 + 0.2/-1),

wi(z) = (0.5)z + V=1(03),

wy(z) = (0.5)z — v —~1(0.3).
A sketch of its attractor is included in Figure 4.6.4. It looks like a maple
leaf.
The leaf is made of four overlapping leaflets, which we think of as
separate entities, at different heights “above” the attractor. In turn, we
think of each leaflet as consisting of four smaller leaflets, again at
different heights. One quickly gets the idea: one ends up with a set of
heights distributed on a Cantor set in such a way that the shadow of the
whole collection of infinitesimal leaflets is the leaf attractor in the C
plane. The Cantor set is essentially Y. The lifted attractor is totally
disconnected; and it supports deterministic shifts dynamics, as il-
lustrated in Figure 4.6.5.

6.10. Consider the overlapping hyperbolic IFS {R; x, 3x + %}. We can lift
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A
| ‘
Xy
Cantor set of
SEEN infinitesimal
FROM leaflets
THE grouped
‘Srl}?EE Z in fours
SET ]
IS Each “leaflet”
TOTALLY is a microcosm
DISCONNECTED %, of the whole
leaflet stack

| X1 —
/ THE SHADOW OF THE CANTOR SET
IS A LEAF, THE ATTRACTOR OF AN IFS.

Figure 4.6.4

The lift of the overlapping
leaf attractor is totally
disconnected. Determin-
istic shift dynamics be-
come possible. See also
Figure 4.6.5.

/

DETERMINISTIC
SHIFT DYNAMICS
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LIFTED

LEAF

RANDOM *
SHIFT DYNAMICS
ON THE LEAF

XI__>

Figure 4.6.5

A picture of the Shadow
Theorem. Deterministic
dynamics on a totally dis-
connected dust has a
shadow which is dancing
random shift dynamics on
a leaf attractor.
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6.11.

this to the hyperbolic IFS {R?%; w;(x), wy(x)} where

The attractor A of this lifted system is shown in Figure 4.6.6, which also
shows an orbit of the associated shift dynamical system. The shadow of
this orbit is an apparently random orbit of the original system. The
Shadow Theorem asserts that any orbit {x,}_, of a random shift
dynamical system associated with the IFS {R; 3x, 3x + 4} is the projec-
tion, or shadow, of some orbit for the shift dynamical system associated
with the lifted IFS.

As a compelling illustration of the Shadow Theorem, consider the IFS
(R; 3x,3x + ). Let us look at the orbits {x,}>_, of the “shift”
dynamical system which is specified in the left-hand graph of Figure

Figure 4.6.6

The Shadow Theorem as-
serts that the random shift
dynamical system orbit on
the overlapping attractor
A is the shadow of a de-

terministic orbit on A.

OVERLAPPING
REGION

!
!
1
|
!

A looks like
a Classical

Cantor Set
when seen
from the
side.
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4.6.2. In this case we always choose S(x) = w, '(x) in the overlapping
region. What orbits { X}, of the lifted system, described in example
6.10, are these orbits the shadow of? Look again at Figure 4.6.6! Define
the top of A as

/fmp={(x,y)E/f:(x,z)ej=>25y, and x € [0,1]}.

Notice that S: 4 top A wp- 1t is €asy to see that there is a one-to-one

correspondence between orbits of the lifted system { A (op; S } and orbits

of the original system specified through the left-hand graph of Figure
4.6.2. Indeed,

”

“U(x,, %)), isanorbit of the lifted system, and ( x,, y,) €
]
“{x,}7_, isanorbit of the left-hand graph of Figure 4.6.2.”

top

6.12. Draw some pictures to illustrate the Shadow Theorem in the case of the
just-touching IFS {[0,1}; 3x, 3x + 1}.

6.13. Illustrate the Shadow Theorem using the overlapping IFS {[0,1]; — 3x +
% 3x + ). Can you find an orbit of period two whose lift has minimal
period four? Do there exist periodic orbits whose lifts are not periodic?

6.14. Prove Lemma 4.6.1.

6.15. Prove Theorem 4.6.1.

4.7 THE MEANINGFULNESS OF INACCURATELY COMPUTED ORBITS IS ESTABLISHED
BY MEANS OF A SHADOWING THEOREM.

Let { X; w;, w; ..., wy } be a hyperbolic IFS of contractivity of 0 < s < 1. Let
A denote the attractor of the IFS, and assume that w,: 4 — A is invertible for
each n =1 2,... N. If the IFS is totally disconnected let { 4; S} denote the
associated shift dynamical system; otherwise let { 4; S} denote the associated
random shift dynamical system. Consider the following model for the inaccu-
rate calculation of an orbit of a point x, € A. This model will surely describe
the reader’s experiences in computing shift dynamics directly on pictures of
fractals. Moreover it is a reasonable model for the occurrence of numerical
errors when machine computation is used to compute an orbit.

Let an exact orbit of the point x, € A be denoted by {x,}¥_, where
x,=8°"(x,) for each n. Let an approximate orbit of the point x, € 4 be
denoted by { X, }7., where X, = x,. Then we suppose that at each step there is
made an error of at most 8 for some 0 < § < oo; that is,

d(%,,,,S(%,)) <89, forn=0,1,2,...
We proceed to analyse this model. It is clear that the inaccurate orbit
{ %, will usually start out by diverging from the exact orbit {x,}>., at an
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exponential rate. It may well occur “accidentally” that d(x,, X,) is small for
various large values of n, due to the compactness of A. But typically, if
d(x,, X,) is small enough then d(x,, ¥,, ), will again grow exponentially
with increasing j. To be precise, suppose d(%;, S(X,)) = 6 and that we make
no furthew errors. Suppose also that for some integer M, and some integers
0,0,,...,0, € {1,2,..., N} we have
%, and x, € w, (4), forn=0,1,2,... M.
Moreover, suppose that
Xy = wa_nl(x,,) and £, ., = wujl(i"), forn=12,..., M.
Then we have
d(x,, 1, X,01) 258, forn=0,1,2,..., M.
For some integer J > M it is likely to be the case that

= -1 T T =
X;q =W, (x;) and %, =w;'(%;), forsome o, # d;.

Then, without further assumptions, we cannot say anything more about the
correlation between the exact orbit and the approximate orbit. Of course, we
always have the error bound
d(x,,%,) < diam(A) = Max{d(x,y): x€ A, y € A},
foral n =1,23,....

» Sy Ty

I

Do the above comments make the situation hopeless? Are all of the
calculations of shift dynamics which we have done in this chapter without
point because they are so hopelessly riddled with errors? No! The following
wonderful theorem tells us that, however many errors we make, there is an
exact orbit which lies at every step within a small distance of our errorful one.
This orbit shadows the errorful orbit. Here we use the word “shadows” in the
sense of a secret agent who shadows a spy. The agent is always just out of
sight, not too far away, usually not too close, but forever he follows the spy.

Theorem 1. [The Shadowing Theorem] Let { X; w;, w,,..., wy} be a hyper-
bolic IFS of contractivity s, where 0 < s < 1. Let A denote the artractor of the
IFS and suppose that each of the transformations w,: A — A is invertible. Let
{A4; S} denote the associated shift dynamical system in the case that the IFS is
totally disconnected, otherwise let { A; S} denote the associated random shift
dynamical system. Let {X,}¥_, C A be an approximate orbit of S, such that

d(%,41,5(%,)) <0 foralln=0,1,2,3,...
for some fixed constant 0 with 0 < 8 < diam(A). Then there is an exact orbit
{x, = S°"(xq))o for some x, € A, such that

d(i,,H,x,,H)s(lsfos) forall n =0,1,2,....
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Proof. As usual we exploit code space! For n =123 ..., let o, €
(1,2,..., N} be chosen so that w, !, w, ', w,. ', .., is the actual sequence of
inverse maps used to compute S(%;), S(X,), S(X,),... . Let ¢: ¥ — A4 denote

the code space map associated with the IFS. Then define
Xy = ¢(0,0,0;...).
Then we compare the exact orbit of the point x,
{xn = 85(x5) = ¢(0,,,0,,, )},0;0

with the errorful orbit { X, }°_,.
Let M be a large positive integer. Then, since x,, and S(X,_;) both
belong to 4, we have
d(S(xp 1), S(Zy-1)) < diam(4) < co.
Since S(x,,_,) and S(X,,_,) are both computed with the same inverse map
w, ! it follows that
d(xp_1, %y 1) < sdiam( 4).
Hence
d(S(xM—Z)v S(%y-2)) = d(qu , 8(%y-2))
<d(xyo1, Zyoy) +d(Zyo1, S(F-2))
< 0 + sdiam( 4);
and repeating the argument used above we now find
d(Xp_r+ Frr_2) < 5(8 + s diam( 4))
Repeating the same argument k& times we arrive at
A(xp gy Fag_p) <50 + 520 + -+ +55710 + s* diam( 4).

Hence for any positive integer M and any integer n such that 0 <n < M we
have

d(x,,%,) <s0+5%0 + - - +sM 7719 + sM~" diam( 4).
Now take the limit of both sides of this equation as M — oo to obtain
< s
d(x,, %) 55‘0(1 s+ 824 ) = T forallm=12,....
This completes the proof.
Exercises & Examples .

7.1. Let us apply the Shadowing Theorem to an orbit on the Sierpinski
triangle, using the random shift dynamical system associated with the IFS

{Ciyz 52+ 432+ %)
Since the system is just-touching, we must assign values to the shift
transformation applied to the just-touching points. We do this by defining
S(x, + ix;) = 2x, mod1 + i(2x, mod 1).
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We consider the orbit of the point %, = (0.2147, 0.0353). We compute the
first eleven points on the exact orbit of this point, and compare it to the
results obtained when a deliberate error # = 0.0001 is introduced at each
step. We obtain:

ERRORFUL EXACT
X, = (0.2147,0.0353) §°0(%,) = (0.2147,0.0353)
% = (0.4295,0.0705) S°L(%,) = (0.4294,0.0706)
X, = (0.8591,0.1409) S°(%,) = (0.8588,0.1412)
X, = (0.7183,0.2817) S°3(%,) = (0.7176,0.2824)
X4 = (0.4365,0.5635) 5°4(%,) = (0.4352,0.5648)
X5 = (0.8731,0.1269) S°3(%,) = (0.8704,0.1296)
Xe = (0.7463,0.2537) S°6(%,) = (0.7408,0.2592)
%, = (0.4927,0.5073) $°7(%,) = (0.4816,0.5184)
Xy = (0.9855,0.0145) §°%(%,) = (0.9632,0.0368)
£, = (0.9711,0.0289) 5°%(%,) = (0.9264,0.0736)
%10 = (0.9423,0.0577) §°0(%,) = (0.8528,0.1472)

Notice how the orbit with errors diverges from the exact orbit of X,. Nonethe-
less, the Shadowing Theorem asserts that there is an exacr orbit {x,} such
that

1
d(x,,%,) < 7 2 —(0.0001) = 0.0001,
-3
where d(-, -) denotes the Manhattan metric. This really seems unlikely; but it
must be true! Here’s an example of such a shadowing orbit, also computed
exactly.

EXACT SHADOWING ORBIT x, = 5°"(x,) d(x,, %,) < 0.0001
x, = (0.21478740234375, 0.03521259765625) 0.00009
x, = (0.4295748046875, 0.0704251953125) 0.00008
x, = (0.8591496093750, 0.1408503906250) 0.00005
x; = (0.7182992187500, 0.2817007812500) 0.000001
x, = (0.4365984375000, 0.5634015625000) 0.0001
x5 = (0.8731968750000, 0.1268031250000) 0.0001
x¢ = (0.7463937500000, 0.2536062500000) 0.0001
x, = (0.4927875000000, 0.5072125000000) 0.00009
xg = (0.9855750000000, 0.0144250000000) 0.00008
X, = (0.9711500000000, 0.0288500000000) 0.00005
x;, = (0.9423000000000, 0.0577000000000) 0.000000

Figure 4.7.1 illustrates the idea.



4.7 The Meaningfulness of Inaccurately Computed Orbits

1 4

TRUE ORBIT OF X ——— Figure 4.7.1
. The Shadowing Theorem
COMPUTED ORBIT OF Xy —»—— tells us there is an exact
orbit which is closer to

All errors are less than 0.03 {%,} than 0.03 for all n.

True orbit of 5(0 already

&h&h&h&h by AR, B far from the computed orbit

o B B |
b AD BAEE BR B BB AR
0

7.2. Consider the shift dynamical system {¥; T} on the code space of two

symbols {1,2}. Show that the sequence of points { X, } given by

%o =212, and %, =12  foralln=1,2,3,....
is an errorful orbit for the system. Illustrate the divergence of T°"%, from
%,. Find a shadowing orbit {x,}*_,; and verify the error estimate

ne

provided by the Shadowing Theorem.

7.3. Illustrate the Shadowing Theorem by constructing an erroneous orbit,

and an orbit which shadows it, for the shift dynamical system
{[0,1; 3x, 1x + 3}

7.4. Compute an orbit for a random shift dynamical system associated with

the overlapping IFS {[0,1]; 3x, 1x + 1}.

7.5. An orbit of the shift dynamical system associated with the IFS+

(ws1(3)40) 22200+ (61400 = G-

is computed to accuracy 0.0005. How close a shadowing orbit does there
exist? Use the Manhattan metric.

7.6. In Figure 4.7.2 an orbit of the random shift dynamical system associated

with the overlapping IFS {[0, 1], w (x), w,(x)} is computed by drawing a
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Figure 4.7.2

An exact orbit shadows
the orbit “computed ” by
“drawing,” in this web
diagram fer a random
shift dynamical system.

Y=W;1(X)

Figure 4.7.3

Only the Shadow knows.
Inside the “orbit tube”
there is an exact orbit
{x,}¥_y of the random
shift dynamical system
associated with the IFS.

Y

Y=w;}(x)

v=w;l(x)
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web diagram. The computer in this case consists of a pencil and a drafting
table. Estimate the errors in the drawing and then deduce how closely an
exact orbit shadows the plotted one. You will need to estimate the
contractivity of the IFS, Also draw a tube around the plotted orbit, within
which an exact orbit lies.

7.7. Figure 4.7.3 shows an orbit {x,} of the random shift dynamical system
associated with the IFS {[0, 1]; w;(x), w,(x)}. It was obtained by defining
S(x) = w, (x) for x € w;(A) N wy(A4). A contractivity factor for the
IFS is readily estimated from the drawing to be 2. Hence if the web
diagram is accurate to within 1 mm at each iteration, that is

d(in+1 > S(in)) = 1 mm,

then there is an exact orbit {x, = S°"(x,)}:_, such that

5

d(x,,x,) < @ = 1.5 mm.

()
Thus there is an actual orbit which remains within the shaded tube shown
in Figure 4.7.3.
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48 CHAOTIC DYNAMICS ON FRACTALS

The shift dynamical system {A4; S} associated with a totally disconnected
hyperbolic IFS is equivalent to the shift dynamical system {¥, T}, where ¥ is
the code space associated with the IFS. As we have seen, this equivalence
means that the two systems have a number of properties in common; for
example, the two systems have the same number of cycles of minimal period
seven. A particularly important property which they share is that they are both
“chaotic” dynamical systems, a concept which we explain in this section. First,
however, we want to emphasize that the two systems are deeply different from
the point of view of the interplay of their dynamics with the geometry of the
underlying spaces.

Consider the case of an IFS of three transformations. Let ¥ denote the
code space of the three symbols {1,2,3}, and look at the orbit of the point
6 € } given by

=12311121321222331323311111211312112212313J13
21332112122132212222232312322333113123133213
22323331332333111111121113112111221123113111
32113312111212121312211222122312311232123313

1113121212............ FOREVER.

This orbit {T°" };"., may be plotted on a Cantor set of three symbols, as

sketched in Figure 4.8.1. This can be compared with the orbit { S°"(¢(0))}7=,
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Figure 4.8.1
The start of a chaotic orbit
on a Ternary Cantor Set.

of the shift dynamical system { A, S'} associated with an IFS of three maps, as
plotted in Figure 4.8.2. Figure 4.8.3 shows an equivalent orbit, but this time
for the just-touching IFS {[0,1]; §x, 3x + 4, 4x + 3}, and it is displayed using
a web diagram.

In each case the “same” dynamics look entirely different. The qualities of
beauty and harmony present in the observed orbits are different. This is not
surprising: the equivalence of the dynamical systems is a topological equiv-
alence. It 'does not provide much information about the interplay of the
dynamics with the geometries of the spaces on which they act. This interplay is
an open area for research. For example, what are the special conserved
properties of two metrically equivalent dynamical systems? Can you quantify
the grace and delicacy of a dancing orbit on a fractal?

Figure 4.8.2

The start of an orbit of a
deterministic shift dy-
namical system. This
orbit is chaotic. It will
visit the part of the at-
tractor inside each of
these little circles in-
finitely many times.

I'll visit you again and again!
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1 Figure 4.8.3

Equivalent orbit to the one
in Figures 4.8.1 and
4.8.2, this time plotted
using a web diagram. The
starting point has address
a2 12311121321222331. .. .
This manifestation of an
4 orbit which goes arbi-

% trarily close to any point,
takes place on a just-
touching attractor.

Y

1"

Y=3X Y=3X-1

* Y=3X-2

Y

o\
A

This said, we turn our attention back to an important collection of
properties which are shared by all shift dynamical systems. For simplicity we
formalize the discussion for the case of the shift dynamical system {4, S}
associated with a totally disconnected hyperbolic IFS.

Definition 1. Let (X, d) be a metric space. A subset B C X is said to be
dense in X if the closure of B equals X. A sequence {x,}%_, of points in X is
said to be dense in X if, for each point a € X, there is a subsequence
{x,, Y-, which converges to a. In particular, an orbit {x,};"_, of a dynamical

n=0

system { X, f } is said to be dense in X if the sequence { x, }_, is dense in X.

By now you will have had some experience with using the Random
Iteration Algorithm, Program 3.8.2, for computing images of the attractor 4 of
IFS in R2 If you run the algorithm starting from a point x, € A4, then all of
the computed points lie on A. Apparently, the sequences of points which we
plot are examples of sequences which are dense in the metric space (4, d).

The property of being dense is invariant under homeomorphism: if B is
dense in a metric space (X, d) and if 8: X — Y is a homeomorphism, then
6(B) is dense in Y. If {X; f} and {Y; g} are equivalent dynamical systems
under 8; and if {x,} is an orbit of f which is dense in X, then {f(x,)} is an
orbit of g which is dense in Y.
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Definition 2. A dynamical system { X, f } is transitive if, whenever % and ¥~
are open subsets of the metric space (X, d), there exists a finite integer n such
that
UNf(F) + D

The dynamical system {[0,1}; f(x) = Min{2x,2 — 2x}} is topologically
transitive. To verify this just let  and ¥~ be any pair of open intervals in the
metric space ([0, 1}, Euclidean). Clearly each application of the transformation
increases the length of the interval ¥~ in such a way that it eventually over-
laps %.

Definition 3. The dynamical system {X; f} is sensitive to initial conditions
if there exists 8 > 0 such that, for any x € X and any ball B(x,¢) with
radius € > 0 there is y € B(x, ¢) and an integer n = 0 such that d(f°"(x),

oy > 8. '

Roughly, orbits which begin close together get pushed apart by the action
of the dynamical system. For example, the dynamical system {[0, 1}; 2x mod 1}
is sensitive to initial conditions.

Exercises & Examples

8.1. Show that the rational numbers are dense in the metric space
(R, Euclidean).

8.2. Let 7(n) be a counting function which counts all of the rational numbers
which lie in the interval [0,1]. Prove that the sequence of real numbers
{r(nye€[0,1}: n=1,2,3,...}, is dense in the metric space ([0,1],
Euclidean).

8.3. Consider the dynamical system {[0,1}; f(x) = 2xmod1}. Find a point
Xy € [0,1] whose orbit is dense in [0, 1].

84. Show that the dynamical system {[0, 00): f(x) = 2x} is sensitive to
initial conditions; but that the dynamical system {[0, 00): f(x) = (0.5)x}
is not.

8.5. Show that the shift dynamical system {¥; T}, where ¥ is the code space
of two symbols, is transitive and sensitive to initial conditions.

86. Let {X, f} and {Y, g} be equivalent dynamical systems. Show that
{ X, f} is transitive if and only if {¥, g} is transitive. In other words, the
property of being transitive is preserved between equivalent dynamical
systems,

Definition 4. A dynamical system { X, f } is chaotic if

(1) 1t is transitive;
(i) it is sensitive to initial conditions;
(ili) the set of periodic orbits of f is dense in- X.
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Theorem 1. The shift dynamical system associated with a totally disconnected
hyperbolic IFS of two or more transformations is chaotic.

Sketch of Proof. First one establishes that the shift dynamical system {¥; T'}
is chaotic where X is the code space of N symbols, with N > 2. One then uses
the code space map ¢: ¥ — A4 to carry the results over to the equivalent
dynamical system { 4; S }.

Theorem 1 applies to the lifted IFS associated with a hyperbolic IFS.
Hence the lifted shift dynamical system associated with an IFS of two or more
transformations is chaotic. In turn, this implies certain characteristics to the
behaviour of the projection of a lifted shift dynamical system, namely a
random shift dynamical system.

Let us consider now why the Random Iteration Algorithm works, from an
intuitive point of view. Consider the hyperbolic IFS {R? w,, w,}. Let a € 4;
suppose that the address of a is ¢ € X, the associated code space. That is

a=¢(a).

With the aid of a random number generator a sequence of one million 1’s and
2’s, is selected. For example, suppose that the actual sequence produced is the
following one, which has been written from right to left.
21...12121121121211121112111111211211121111211212122211
By this we mean that the first number chosen is a 1, then a 1, then three 2’s,
and so on. Then the following sequence of points on the attractor is com-
puted:

a=¢(o)

wi(a) = ¢(lo)

wew(a) =¢(1l1lo)

wyew ew(a) =¢(2110)

wowewew(a)=¢(22110)

wow,ew,owow(a)=¢(222110)

wiew,omew,owew(a)=¢(1222110)

wyewow,ew,ewow ow(a) =¢(21222110)

wow,owow,omwoeu ewew(a)=¢(121222110)

Wow oewew ew, o, owow ow(a)=¢(2121222110)

Wowow ewewewowomwmewow(a)=¢(12121222110)

wiew e, swew,owewowew,owew(a)=¢(1121212221109)

Wy oW ot W oW OW, e W oW, oW oW,y oW, 0w, o w ow(a)
=¢(21...112121222110)

We imagine that instead of plotting the points as they are computed, we
ceep a list of the one million computed points. This done, we plot the points
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in the reverse order from the order in which they were computed. That
is, we begin by plotting the point ¢(21...112121222110) and we
finish by plotting the point ¢(o). What will we see? We will see a million
points on the orbit of the shift dynamical system {A; S}, namely
(S°"($€21...1121212221140))}1%9%%0

Now from our experience with shift dynamics and from our theoretical
knowledge and intuitions, what do we expect of such an orbit? We expect it to
be chaotic and to visit a widely distributed collection of points on the
attractor. We are looking at part of a “randomly chosen” orbit of the shift
dynamical system; and we expect it to be dense in the attractor.

For example, suppose that you are doing shift dynamics on a picture of a
totally disconnected fractal, or a fern. You should be convinced that by
making sly adjustments in the orbit at each step, as in the Shadowing
Theorem, you can most easily coerce an orbit into visiting, to within a distance
€ > 0, each point in the image. But then the Shadowing Theorem ensures that
there is an actual orbit close to our artificial one, and it too goes close to every
point on the fractal, say to within a distance 2¢ of each point on the image.
This suggests that “most” orbits of the shift dynamical system are dense in the
attractor.

Exercises & Examples

8.7. Make experiments on a picture of the attractor of a totally disconnected
hyperbolic IFS to verify the assertion in the last paragraph, that “by
making sly adjustments in an orbit... you can most easily coerce the
orbit into visiting, to within a distance ¢ > 0, each point in the image.”
Can you make some experimental estimates of how many orbits go to
within a distance ¢ > 0, for several values of €, of every point in the
picture? One way to do this might be to work with a discretized image
and to try to count the number of available orbits.

88. Run the Random Iteration Algorithm, Program 3.8.2, to produce an
image of a fractal, for example a fern without a stem as used in Figure
4.8.2. As the points are calculated and plotted, keep a list of them. Then
plot the points over again in reverse order, this time making them flash on
and off on the picture of the attractor on the screen, so that you can see
where they land. This way you will see the interplay of the geometry with
the shift dynamics on the attractor. See if the orbit is beautiful. If you
think that it is try to make your impression objective.

We want to begin to formulate the idea that “most” orbits of the shift
dynamical system associated with a totally disconnected IFS are dense in
the attractor. The following lemma counts the number of cycles of minimal
period p.
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Lemma 1. Let { A; S} be the shift dynamical system associated with a totally
disconnected hyperbolic IFS { X; w;, w,,..., wy}. Let A°(p) denote the num-
ber of distinct cycles of minimal period p, for p € {1,2,3,...}. Then

p—1
N(py=|N = ¥ k#(K)|/p forp=1,23,...

k=1
k divides p

Proof. 1t suffices to restrict attention to code space, and to give the main
idea, consider only the case N = 2. For p = 1, the cycles of period 1 are the
fixed points of 7. The equation

To =0 gEY

implies o = 1111 or o = 2222. Thus A4"(1) = 2. For p = 2, any point which
lies on a cycle of period 2 must be a fixed point of 7°2, namely

T°% =g,
whence o = 11, 12, 21, or 22. The only cycles here which are not of minimal

period two must have minimal period one. Furthermore, there are two distinct
points on a cycle of minimal period two, so

N(2)=(22-#QQ))/2=2/2=1.

One quickly gets the idea. Mathematical induction on p completes the proof
for N = 2.

For N = 2, we find, for example, A"(2) = 1, A#°(3) = 2, #7(4) = 3, A(5)
=6, A(6)=9, #(T)=18, A4 (8) =30, #(9) =56, A (10) =99, A(11)
= 186, A"(12) = 335, A"(13) = 630, A"(14) = 1161, A(15) = 2182, A'(16)
= 4080, A#°(17) = 7710, A"(18) = 14532, A"(19) = 27594, A4"(20) = 52377.
In particular, 99.8 percent of all points lying on cycles of period 20 lie on
cycles of minimal period 20.

Here is the idea we are getting at. We know that the set of periodic cycles
are dense in the attractor of a hyperbolic IFS. It follows that we may
approximate the attractor by the set of all cycles of some finite period, say
period twelve billion. Thus we replace the attractor 4 by such an approxima-
tion A, which consists of 212000.00.000 h5ints Suppose we pick one of these
points at random. Then this point is extremely likely to lie on a cycle of
minimal period twelve billion. Hence the orbit of a point chosen “at random”
on the approximate attractor A is extremely likely to consist of twelve billion
distinct points on A.

In fact one can show that a statistically random sequence of symbols
contains every possible finite subsequence. So we expect that the set of twelve
billion distinct points on A is likely to contain at least one representative from
each part of the attractor!
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Fractal Dimension

5.1

FRACTAL DIMENSION

How big is a fractal? When are two fractals similar to one another in some
sense? What experimental measurements might we make to tell if two different
fractals may be metrically equivalent? What is it, which is the same about the
two fractals in Figure 5.1.1?

There are various numbers associated with fractals which can be used to
compare them. They are generally referred to as fractal dimensions. They are
attempts to quantify a subjective feeling which we have about how densely the
fractal occupies the metric space in which it lies. Fractal dimensions provide
an objective means for comparing fractals.

Fractal dimensions are important because they can be defined in connec-
tion with real-world data, and they can be measured approximately by means
of experiments. For example, one can measure “the fractal dimension” of the
coastline of Great Britain; its value is about 1.2, Fractal dimensions can be
attached to clouds, trees, coastlines, feathers, networks of neurons in the body,
dust in the air at an instant in time, the clothes you are wearing, the
distribution of frequencies of light reflected by a flower, the colors emitted by
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Figure 5.1.1

Do the two implied
fractals have the same
dimension?

4
44
v
td

dbas

the sun, and the wrinkled surface of the sea during a storm. These numbers
allow us to compare sets in the real world with the laboratory fractals, such as
attractors of IFS.

We restrict attention to compact subsets of metric spaces. This fits well
with the idea of modelling the real physical world by subsets of metric spaces.
Suppose that an experimentalist is studying a physical entity, and he wishes to
model this entity by means of a subset of R>. Then he can use a compact set
for his model. For example, he can assume that the distances which he
measures are Euclidean distances, and he can assume that the universe is
bounded. He can assume that any Cauchy sequence of points in his model set
converges to a point in his model set, because he cannot experimentally
invalidate this assumption. Although mathematically we can distinguish be-
tween a set and its closure, we cannot make the same distinction between their
physical counterparts. The assumption of compactness will allow the model to
be handled theoretically with relative ease.

Let (X, d) denote a complete metric space. Let 4 € »#(X) be a nonempty
compact subset of X. Let € > 0. Let B(x, ¢) denote the closed ball of radius €
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and center at a point x € X. We wish to define an integer, A"( 4, €) to be the
least number of closed balls of radius € needed to cover the set 4. That is

M
A'(4, €) = smallest positive integer M such that 4 c U B(x,,9),
n=1
for some set of distinct points {x,: n =1,2,... M} C X. How do we know

that there is such a number A4”( A4, €)? Easy! The logic is this: surround every
point x € A by an open ball of radius ¢ > 0 to provide a cover of 4 by open
sets. Because A4 is compact, this cover possesses a finite subcover, consisting of
an integer number, say M , of open balls. By taking the closure of each ball, we
obtain a cover consisting of M closed balls. Let C denote the set of covers of
A by at most M closed balls of radius . Then C contains at least one element.
Let f: C— {1,2,3,..., 1\2} be defined by f(c) = number of balls in the
cover ¢ € C. Then { f(c): ¢ € C} is a finite set of positive integers. It follows
that it contains a least integer, A"(A4, ¢€).

The intuitive idea behind fractal dimension is that a set 4 has fractal
dimension D if:

N(A, €)= Ce P for some positive constant C.

Here we use the notation “ =  as follows. Let f(€) and g(e) be real valued
functions of the positive real variable e. Then f(¢) = g(¢) means that
Lim,_ o{Ln (f(e))/Ln(g(e))} = 1.

If we “solve” for D we find that
D= Ln A'(A4,¢) — LnC

- Ln(1/¢)

We use the notation Ln(x) to denote the logarithm to the base e of the
positive real number x. Now notice that the term Ln C/Ln(1 /¢) approaches
zero as € — 0. This leads us to the following definition.

Definition 1. Let A € 5#(X) where (X, d) is a metric space. For each ¢ > 0
let A7( A4, €) denote the smallest number of closed balls of radius € > 0 needed
to cover A4. If
_ qim ] (A (A4, 6)
D= L1m{ Ln(1/c)
exists, then D is called the fractal dimension of A. We will also use the
notation D = D(A), and will say “A has fractal dimension D.”

e—0

Exercises & Examples

1.1. This example takes place in the metric space (R? Euclidean). Let a € X
and let 4 = {a}. A consists of a single point in the space. For each
€ >0, A/ (A, ¢)=1.1It follows that D(A4) = 0.
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1.2. This example takes place in the metric space (R2 Manhattan). Let A

1.3.

denote the line segment [0, 1]. Let € > 0. Then it is quite easy to see that
AN(A,e) = —[—1/¢], where [x] denotes the integer part of the real
number x. In Figure 5.1.2 we have plotted the graph of Ln(A"( A4, ¢)) as
a function of Ln(1 /¢). Despite a rough start, it appears clear that
(La(A#(A4,0)))| _
Lim| ) -1,

In fact, for 0 <e <1

Ln(1/€) - Lo(—[-1/¢]) _ Ln(A'(4,¢))

Ln(1/¢) =  Ln(1/¢) Ln(1 /€)
Lo(l/e + 1) _ Ln(1 + €) + Lo(1/e)
Ln(1/€) Ln(1/¢) :

Both sides here converge to one as ¢ — 0. Hence the quantity in the
middle also converges to one. We conclude that the fractal dimension of
a closed line segment is one. We would have obtained the same result if
we had used the Euclidean metric.

Let (X, d) be a metric space. Let a,b,c € X and let 4 = {a, b,c}.
Prove that D(4) = 0.

The following two theorems simplify the process of calculating the fractal
dimension. They allow one to replace the continuous variable € by a discrete
variable.

~7  Figure 5.1.2
L Plot of Ln([1/x]) as a
function of Ln(1 /x). This
1 illustrates that in the
computation of the fractal
. dimension one usually
T evaluates the limiting

Lo({1/X])

“slope” of a discontinu-

- ous function. In the pre-

_ + sent example this slope is
- | one.
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Theorem 1. Let A € 5#(X) where (X, d) is a metric space. Let €, = Cr" for

real numbers 0 <r <1 and C > 0, and integers n = 1,2,3,... . If
. (Ln(A#(A4,¢,))
. b= ,,LiTo{ Ln(l/c,) |’

then A has fractal dimension D.

Proof. Let the real numbers r and C, and the sequence of numbers E =
{e,, n=1,23 ..} be as defined in the statement of the theorem. Define
f(e) = Max{e, € E: ¢, < €}. Assume that € < r. Then
f(e) <e<f(e)/r and AN'(A,[f(€)) > N(A, €)= N(A,f(e)/r).
Since Ln(x) is an increasing positive function of x for x > 1, it follows that
La(A"(A, f(€)/r)) - Ln( A'(A,¢))
La(i/f(9) | <1~ La(i/0)
Lo( A (4, f(¢)))
< { La(r/f()) | (1)
Assume that A7(A4;€) = oo as € — 0; if not then the theorem is true. The
right-hand-side of (5.1.1) obeys

S - )

{ er(“(){(ﬁi( 1/)3 ) }

_ : Ln(‘/V(A’ n))
- Py}

e—0 n-— oo

Lim
n-—oc

The left-hand-side of (5.1.1) obeys

[ Ln( (A, f() /7))
L““{ La(1//(<)) }

Ln(1/¢,)

Lo(A(A,€, 1))
Lim { Ln(l/r) + Ln(l/f,, 1)) }

{Ln(JV(A, )

e—0

nir?o{Ln(JV(A,fm))}

n— oo

Lim
n-— o

Ln(1/e,)

So as ¢ —» 0 both the left-hand-side and the right-hand-side of equation (5.1.1)
approach the same value, claimed in the theorem. By the Sandwich Theorem
of Calculus, the limit as ¢ — 0 of the quantity in the middle of (5.1.1) also
exists, and it equals the same value. This completes the proof of the theorem.

Theorem 2. (The Box Counting Theorem) Ler 4 € #(R™), where the
Euclidean metric is used. Cover R™ by closed just-touching square boxes of side
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length (1/2"), as exemplified in Figure 5.1.3 forn = 2 andm = 2. Let N,(A)

denote the number of boxes of side length (1/2") which intersect the attractor. If
_ Lim [ 10(A(4))
b= ,.Li“;{ Ln(2") }
then A has fractal dimension D.
Proof. We observe that for m = 1,23 ... ]
roof. e m V3, Bl l
2 < N(AL/2T) < N,  foralln=1,2,3,. ..

where k(n) is the smallest integer k satisfying k > n — 1 + 1/2log, m. The Figure 513

; ; : n : m  Closed boxes of side
first inequality holds because a ball of radius 1/2” can intersect at most 2 a2 R B
“.on-grid” boxes c.)f s.ide 1/2""' The se(fond follows' from the fact that a boxof | ' .Sf::e;heor.em zr.e
side s can fit inside a ball of radius r provided r’ > (s5/2)? + (s/2)°
+ -+ +(s/2)> = m(s/2)” by the theorem of Pythagoras. Now

[ Lo(Ay ) _ .| Ln(2'0) Lo(Ai) _
le{ LH(Z") } = Li { Ln(2") Ln(zl\(,z)) } - D,

n— oo n— o

since k(n)/n — 1. Since also

Li {anfm./i/l;ll Lim Lnu, D
me{ ———~—; = 1 P =
n— oo Ln(zﬂ) n— Ln(2"’1) ’

Theorem 5.1.1 with r = 1/2 completes the proof.

There is nothing magical about using boxes of side (1,/2)" in Theorem 2.
One can equally well use boxes of side Cr”, where C > 0 and 0 < r < 1 are
fixed real numbers.

Exercises & Examples
1.4. Consider the m C R2 It is easy to see that .4 (W) =4, 4,(H) = 16,
N,(W) = 64, A, (W)= 256, and in general that 4 (W)= 4" for n =
1,2,3,... (see Figure 5.1.4).
Theorem 5.1.2 implies that

D(W) = Lim {M} = nang{Lﬂﬂ} -2

Ln(2") Ln(2")

n— oo

1.5. Consider the Sierpinski triangle & , in Figure 5.1.5, as a subset of
(R?, Euclidean).

We see that Ml(&)=3, Mz(&)=9, %(&)=27,

Mol £ ) =81, and in general .4, B y=3torn=123....
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Figure 5.1.4

It requires (1/27)7?
boxes of side (1 /2")

to cover @ C R2. We
deduce, with a feeling of
relief, that the fractal
dimension of M is 2.
Which collage is this
image related 10?

Figure 5.1.5

It requires 3" closed boxes
of side (1/2)" to cover
the Sierpinski triangle

& C R?. We deduce

that its fractal dimension
is Ln(3)/Ln(2).
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Theorem 5.1.2 implies that

D(&) _ Lim{“(”n(&)} _ Lim{Ln(B")} _ La@3)

"o 00 Ln(2") no oo | L0(27) Ln(2) "

1.6. Use the Box Counting Theorem, but with boxes of side length (1/3)”, to
calculate the fractal dimension of the classical Cantor set € described in
Section 3.1.1 (example 5).

1.7. Use the Box Counting Theorem to estimate the fractal dimension of the
fractal subset of R? shown in Figure 5.1.6. You will need to take as your
first box the obvious one suggested by the figure. You should then find
that there appears to be a pattern to the sequence of numbers
Ny N Ay

1.8. The same problem as 1.7, this time applied to Figure 5.1.7. By making
the right choice of Cartesian coordinate system, you will make this
problem easy.

What happens to the fractal dimension of a set if we deform it “with
bounded distortion?” The following theorem tells us that metrically equivalent
sets have the same fractal dimension. For example, the two fractals in Figure
5.1.1 have the same fractal dimension!

Figure 5.1.6

Use the Box Counting
Theorem to estimate the
fractal dimension of the
subset of (R%, Euclidean)
shown here. What other
well-known fractal has the
same fractal dimension?
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Figure 5.1.7
If you choose the “ first”
box just right, the fractal

‘dﬁw % %‘5"
dimension of this fractal ‘f&éﬁﬁ‘é “ﬁﬁ%

is easily®estimated. Count

the number A, of boxes z;y

of side 1/2" which inter- % %
sect the set, forn = %

1,2,3,... and apply the

Box Counting Theorem.

%

4

o
R

X

Theorem 3. Let (X, d)) and (X ,, d,) be metrically equivalent metric spaces.
Let 0: X, —» X, be a transformation which provides the equivalence of the
spaces. Let A, € 3 (X,) have fractal dimension D. Then A, = 8(A;) has
fractal dimension D. That is

D(4y) = D(6(4)).

Proof. This proof makes use of the concepts of the Limsup and Liminf of a
function.

Since the two spaces (X, 4)) and (X ,, d,) are equivalent under 8, there
exist positive constants e; and e, such that

(512) e1ds(8(x),8(7)) < di(x, ) < exds(6(x).8())
forall x, y € X .

Without loss of generality we assume that e; <1 < e,. Equation (5.1.2)
implies
d,(8(x),0()) < M for all x, y € X, .
This implies
(51.3) 0(B(x,€)) C B(8(x),¢/e) forall x € X .

Now, from the definition of A7(A4,, ¢), we know that there is a set of points
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{x1, X9,-.., x4} © X, where A = A'(A;, €), such that the set of closed
balls { B(x,,€): n=1,2,..., (A4, €)} provides a cover of A4,. It follows
that {8(B(x,,€)): n=12,..., /' (A, €)} provides a cover of 4,. Equation
(5.1.3) now implies that { B(8(x,), ¢/e)): n =1,2,..., /' (A, €)} provides a
cover of A,. Hence

N (Ay,€/e)) < N (A, ¢€).
Hence, when € < 1,

Lo(A'(A,,¢/e))) - Lo( A'(4,,€))
Ln(1 /¢) - Ln(l/¢)

It follows that

- Lo(A'(4,,€))
(5.1.4) Lxcn:soup{ ) }

Limsup {

€—0

La(A'(4;,¢/e1)) }
Ln(1 /¢)

Lim{%/%f))} = D(4,).
We now seek an inequality in the opposite direction. Equation (5.1.2)
implies that
di(07(x),07'(y)) < edy(x,y) forall x,y € X,.
This tells us that
07 (B(x,€)) € B(67(x), es€) forall x € X,,

and this in turn implies

A

€0

N (A, ex) < N ( Ay, ¢€).
Hence, when € < 1,
Lo( A'( A, e))) < Lo(A'(4,,¢€))
Ln(1/¢) Ln(l/e)

It follows that

(5.1.5) D(4) = 51’3{%}
- (S
< e P75 )
By combining (5.1.4) and (5.1.5) we obtain .
it S5 | = o040 = viman (TS

From this it follows that

i LA (A2 )
D(AZ)—E,_.O{ Ta(l/e) } D( 4,).

This completes the proof.
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Exercises & Examples

1.9. Let ¥ denote the Classical Cantor Set, living in [0,1} and obtained by
omitting “middle thirds.” Let # denote the Cantor set which is obtained
by starting from the closed interval [0, 3] and omitting “middle thirds.”
Us? Theorem 5.1.3 to show that they have the same fractal dimension.
Verify the conclusion by means of a box counting argument.

1.10. Let 4 be a compact nonempty subset of R%. Suppose that 4 has fractal
dimension D; when evaluated using the Euclidean metric and fractal
dimension D, when evaluated using the Manhattan metric. Show that
D, = D,.

1.11. This example takes place in the metric space (R?, Manhattan). Let 4,
and A, denote the attractors of the following two hyperbolic IFS:

y {R ; O)(y) 3),(3 o)(y)( 0) ;)+ f)};
s o S 0 )

By finding a suitable change of coordinates, show 4; and A, have the
same fractal dimensions.

5.2 THE THEORETICAL DETERMINATION OF THE FRACTAL DIMENSION

The following definition extends Definition 5.2.1. It provides a value for the
fractal dimension for a wider collection of sets.

Definition 1. Let (X, d) be a complete metric space. Let 4 € »#(X). Let
A"(€) denote the minimum number of balls of radius € needed to cover 4. If
- Li Lo #(8) .
o< e 0

exists, then D is called the fractal dimension of A. We will also use the
notation D = D(A), and will say “A has fractal dimension D.”

In stating this definition we have “spelled out” the Limsup. For any
function f(¢), defined for 0 < € < 1 for example, we have

Lims(;lpf(f) = f,_i.rg{Sup{f(f): e (0,¢)}}.

It can be proved that Definition 5.2.1 is consistent with Definition 5.1.1: if
a set has fractal dimension D according to Definition 5.1.1 then it has the
same dimension according to Definition 5.2.1. Also, all of the theorems in this
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book apply with either definition. The broader definition provides a fractal
dimension in some cases where the previous definition makes no assertion.

Theorem 1. Let m be a positive integer; and consider the metric space (R™,
Euclidean). The fractal dimension D(A) exists for all A € #(R™). Let B €
H'(R™) be such that A C B; and let D(B) denote the fractal dimension of B.
Then D(A) < D(B). In particular,

0< D(A) < m.

Proof. We prove the theorem for the case m = 2. Without loss of generality
we can suppose that 4 C W It follows that A7(4, €) < AW, ¢) for all € > 0.
Hence for all € such that 0 < ¢ <1 we have

Ln(A'(A4,¢€)) Ln(A4'(W,¢))

0< Ln(1/¢) = Ln(1/¢)

It follows that

Limsup
€« -0

< Limsup

€0

La(A"(4,¢)) Lo( A"(W, €))
The Limsup on the right-hand side exists and has value 2. It follows that the
Limsup on the left-hand side exists and is bounded above by 2. Hence the
fractal dimension D(A) is defined and bounded above by 2. Also D(A) is
non-negative.

If 4, B € X(Rz) with 4 C B, then the fractal dimensions of 4 and B are
defined. The above argument wherein M is replaced by B shows that D(4) <
D(B). This completes the proof.

The following theorem helps us to calculate the fractal dimension of the
union of two sets.

Theorem 2. Let m be a positive integer; and consider the metric space (R™,
Euclidean). Let A and B belong to s (R™). Let A be such that its fractal

dimension is given by
D(A) = Lim{—Ln(“V(A"))}.

€=0 Ln(l/E)
Let D(B) and D(A U B) denote the fractal dimensions of B and A U B
respectively. Suppose that D(B) < D(A). Then -

D(A U B) = D(4).

Proof. Assume for simplicity D(B) < D(A). From Theorem 1 it follows that
D(A U B) = D(A). We want to show that D(A4 U B) < D(A4). We begin by
observing that, for all € > 0,

N (AU B, e}y < A (A,€) + /(B,¢€).
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It follows that

D(AU B) = LimSup{Ln(JV(A U Byf))}

0 Ln(1/¢)
ey
e[ 5
+ Li:isoup{ Ln(1 +./Vénlz,1£/)fg./1/(A,£)) }

The proof is completed by showing that A"(B, €)/A"(A, €) is less than one
when e is sufficiently small. This would imply that the second limit on the right
here is equal to zero. The first limit on the right converges to D(4).

Notice that

Lo(#(B,6)
Sup{ La(l/e) € < E}
is a decreasing function of the positive variable e. It follows that
Ln( A"( B, €))

Ln(1/¢)
Because the limit which is explicitly stated in the theorem exists, it follows that
Ln(A"(B,€)) Ln(A(A4,¢))

Lo(l/e) ~  Ln(l/e)

This allows us to conclude that

A(B,¢€)
AN(A,€)

< D(A)  for all sufficiently small ¢ > 0.

for all sufficiently small € > 0.

<1 for all sufficiently small € > 0.
This completes the proof. Slightly more care is needed when D(A) = D(B).

Exercises & Examples

2.1. The fractal dimension of the hairy set 4 C R?, suggested in Figure 5.2.1
is 2. The contribution from the hairs to 4"( A4, ¢) becomes exponentially
small compared to the contribution from W, as ¢ — 0.

We now give you a wonderful theorem which provides the fractal dimen-
sion of the attractor of an important class of IFS. It will allow you to estimate
fractal dimensions “on the fly,” simply from inspection of pictures of fractals,
once you get used to it.

Theorem 3. Let {R™; wy, wy,..., wy | be a hyperbolic IFS, and let A denote
its attractor. Suppose w, is a similitude of scaling factor s, for each n €
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Figure 5.2.1

Picture of a hairy box.
The fractal dimension of
the subset of R? sug-
gested here is the same as
the fractal dimension of
the box. The hairs are
overpowered.

{1,2,3,..., N}. If the IFS is totally disconnected or just-touching then the
attractor has fractal dimension D( A), which is given by unique solution of

N
2 15,17 =1, D(A4) € [0, m].

n=1

If the IFS is overlapping then D > D(A) where D is the solution of

N — —
Y Is,/°=1,De [0, 00).

n=1

Sketch of Proof. The full proof can be found in [Bedford 1986}, [Hardin
1985}, [Hutchinson 1981}, and [Reuter 1987]. The following argument gives a
valuable insight into the fractal dimension. We restrict attention to the case
where the IFS {R™; wy, w,,..., wy } is totally disconnected. We suppose that
the scaling factor s; associated with the similitude w; is nonzero for each
i€ {1,2,..., N}. Let e > 0. We begin by making two observations.

Observation (i). Let i € {1,2,..., N}. Since w; is a similitude of scaling
factor s, it maps closed balls onto closed balls, according to

w,( B(x,€)) = B(w/(x),|s]¢).
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Assume that s; # 0. Then w; is invertible, and we obtain
W (B(x,€)) = B(w (%), Isi|7).
The latter two relations allow us to establish that for all € > 0,
: W (A, ) = K (w,(A), s e):
which is equivalent to
(5.2.6) A (w(A),€) =H(A,|s] ).
This applies for each i € {1,2,3,..., N}.
Observation (ii). The attractor A of the IFS is the disjoint union
A=w(A)Uw(A)U - Uwy(A),
where each of the sets w,(A) is compact. Hence we can choose the positive
number e so small that if, for some point x € R? and some integer i €
{1,2,..., N}, we have B(x,e) N w(A4) # &, then B(x,¢) N w(4)= & for
all j€{1,2,..., N} with j # i It follows that if the number ¢ is sufficiently
small we have

N (A, €) =N (w(A),€) + A (w,(A4),€)
A (wi(A)s€) + o+ A (wy(4)€).
We put our two observations together. Substitute from equation (5.2.6)
into the last equation to obtain
(5.2.7) N (A €) =N (A ls7") + 4 (A, ]55] )
+ (A, s3] 72) + - +A7( A, syl 7).
This functional equation is true for all positive numbers ¢ which are suffic-
iently small. The proof is completed by showing formally that this implies the
assertion in the theorem.
Here we demonstrate the reasonableness of the last step. Let us make the

assumption A"(A,€¢) ~ Ce~P. Then substituting into (5.2.7) we obtain the
equation:

Ce P = Clsy|Pe™ P + Cls,)| PP + Clss|Pe P + -« +Clsy|PeP.
From this we deduce that
L=15|” + [s21” + [s3]° + - -+ +[sn|”.

This completes our sketch of the proof of Theorem 5.2.3.

Exercises & Examples

2.1. This example takes place in the metric space (R? Euclidean). A
Sierpinski triangle is the attractor of a just-touching IFS of three simili-
tudes, each with scaling factor 0.5. Hence the fractal dimension is the
solution D of the equation

(0.5° + (0.5% + (05" =1
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23.

24.

25.
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from which we find

_ Ln(1/3) _ Ln(3)
"~ Ln(0.5)  Ln(2)°

Find a just-touching IFS of similitudes in R* whose attractor is M. Verify
that Theorem 5.2.3 yields the correct value for the fractal dimension of M.
The Classical Cantor set is the attractor of the hyperbolic IFS

{10,1]; wi(x) = }x; wy(x) = tx + %}

Use Theorem 5.2.3 to calculate its fractal dimension.

The attractor of a just-touching hyperbolic IFS {R?% w,(x), i = 1,2,3 4}
is represented in Figure 5.2.2. The affine transformations w;: R> - R? are
similitudes, and are given in tabular form in Table 5.2.1. Use Theorem
5.2.3 to calculate the fractal dimension of the attractor.

The attractor of a just-touching hyperbolic IFS {R?% w,(x), i =1,2,3} is
represented in Figure 5.2.3. The affine transformations w,: R* » R? are

Figure 5.2.2

The Castle fractal. This
is an example of a self-
similar fractal, and its
fractal dimension may be
calculated with the aid of
Theorem 5.2.3. The
associated IFS code is
given in Table 5.2.1.
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Table 5.2.1

IFS code for a Castle.
w a b ¢ d e f P
1 Q5 0 0 05 0 0 025
2 05 0 0 05 2 0 025
3 04 0 O 04 O 1 025
4 05 0 0 05 2 1 025

2.6.

2.7.

2.8.

similitudes. Use the Collage Theorem to find the similitudes, and then use
Theorem 5.2.3 to calculate the fractal dimension of the attractor.

Figure 5.2.4 represents the attractor of an overlapping hyperbolic
IFS {R?% w/(x), i =1,2,3,4}. Use the Collage Theorem and Theorem
5.2.3 to obtain an upper bound to the fractal dimension of the attractor.
Calculate the fractal dimension of the subset of R? represented by Figure
5.2.5.

Consider the attractor 4 of a totally disconnected hyperbolic IFS {R7;
w,(x), i = 1,2} where the two maps w;: R” = R’ and w,: R’ > R’ are
similitudes, of scaling factors s; and s, respectively. Show that 4 is also
the attractor of the totally disconnected hyperbolic IFS {R’; v,(x),
i=1,234} where v, =wjew, 0, =wow, v;=wow, and v, =
w, e w,. Show that v,(x) is a similitude, and find its scaling factor, for
i=1,2 3,4 Now apply Theorem 5.2.3 to yield two apparently different
equations for the fractal dimension of A. Prove that these two equations
have the same solution.

Figure 5.2.3

To calculate the fractal
dimension of the subset of
R? represented here, first
apply the Collage Theo-
rem to find a correspond-
ing set of similitudes.
Then use Theorem 5.2.3.
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An upper bound to the
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Figure 5.2.5

Calculate the fractal
dimension of the subset of
R? represented by this
image.
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5.3 THE EXPERIMENTAL DETERMINATION OF THE FRACTAL DIMENSION

In this section we consider the experimental determination of the fractal
dimensjon of sets in the physical world. We model them, as best we can. as
subsets of (R?, Euclidean) or (R, Euclidean). Then, based on the definition of
the fractal dimension, and sometimes in addition to one or other of the
preceding theorems, such as the Box Counting Theorem, we analyse the model
to provide a fractal dimension for the real-world set.

In the following examples we emphasize that when the fractal dimension of
a physical set is quoted, some indication of how it was calculated must also be
provided. There is not yet a broadly accepted unique way of associating a
fractal dimension with a set of experimental data.

Example

3.1. There is a curious cloud of dots in the woodcut in Figure 5.3.1. Let us try
to estimate its fractal dimension by direct appeal to Definition 5.1.1.

We begin by covering the cloud of points by disks of radius e for a range
of e-values from ¢ = 3 cm down to € = 0.3 cm; and in each case we count the
number of disks needed. This provides the set of approximate values for
A(A, €) given in Table 5.3.1. The data is redisplayed in log-log format in
Table 5.3.2. The data in Table 5.3.2 is plotted in Figure 5.3.2. A straight line

Figure 5.3.1
Covering a cloud of dots
in a woodcut by balls of
radius € > 0.
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Table 5.3.1
Minimal numbers of balls, of various radii, needed to cover a
“dust” in a woodcut.

€ N(A,€)
3cm 2
2cm 3
1.5cm 4 |
1.2 cm 6
1 cm 7
0.75 cm 10
0.5cm 16
0.4 cm 23
03cm 31
0.015cm 267

Table 5.3.2
The data in Table 5.3.1 is tabulated in log-log form. These
values are used to obtain the fractal dimension.

In(1 /¢) In(A"(A,€))
- 11 0.69
~0.69 1.09
—0.405 1.39
—0.182 1.79
0 1.95
0.29 230
0.693 277
0.916 313
1.204 3.43
4.2 5.59

which approximately passes through the points is drawn. The slope of this
straight line is our approximation to the fractal dimension of the cloud of
points.

The experimental number A7( A4, 0.015 cm) is not very accurate. It is a very
rough estimate based on the size of the dots themselves, and is not included in
the plot in Figure 5.3.2. The slope of the straight line in Figure 5.3.2 gives

(5.3.8) D(A) =12,  overtherange 0.3 cmto 3 cm,

where A4 denotes the set of points whose dimension we are approximating.

The straight line in Figure 5.3.2 was drawn “by eye.” Thus if one was to
repeat the experiment, a different value for D(.4) may be obtained. In order to
make the results consistent from experiment to experiment, the straight line
should be estimated by a least squares method.

191
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Figure 5.3.2

Log-log plot to estimate
the fractal dimension D
for the cloud of dots in
the woodtut in Figure
53.1. The data is in
Tables 531 and 532.  “SNAE)

0.69
1 Log(1/E)

In proceeding by direct appeal to Definition 5.1.1, the estimates of A"( 4, €)
need to be made very carefully. One needs to be quite sure that A"( 4, €) is
indeed the /east number of balls of radius € needed. For large sets of data this
could be very time consuming.

It is clearly important to state the range of scales used: we have no idea or
definition concerning the structure of the dots in Figure 5.3.1 at higher
resolutions than, say, 0.015 cm. Moreover, regardless of how much experimen-
tal data we have, and regardless of how many scales of observation are
available to us, we will always end up estimating the slope of a straight line
corresponding to a finite range of scales. If we include the data point (0.015
cm, 267) in the above estimation we obtain

(5.3.9) D(A) =09,  over the range of scales 0.015 to 5 cm.

We comment on the difference between the estimates (5.3.8) and (5.3.9). If
we restrict ourselves to the range of scales in (5.3.8), there is little information
present in the data to distinguish the cloud of points from a very irregular
curve. However the data used to obtain (5.3.9) contains values for A4"( 4, €) for
several values of € such that the corresponding coverings of A4 are discon-
nected. The data is “aware” that 4 is disconnected. This lowers the experi-
mentally determined value of D.

Example

3.2. In this example we consider the physical set labelled 4 in Figure 5.3.3. 4
is actually an approximation to a classical Cantor set. In this case we
make an experimental estimate of the fractal dimension, based on the Box



5.3 The Experimental Determination of The Fractal Dimension 193

1 Figure 5.3.3

Successive subdivision of
overlaying grid to obtain
; the box counts needed for
the application of Theo-

rem 5.1.2 to estimate the
fractal dimension of the

Cantor Set A. The counts
are presented in Table

I 5.33.

Counting Theorem. A Cartesian coordinate system is set up as shown and
we attempt to count the number of square boxes A, (A) of side (1/27)
which intersect A. We are able to obtain fairly accurate values of A(A)
forn=20,1,2, 3, 4,5, and 6. These values are presented in Table 5.3.3.
We note that these values depend on the choice of coordinate system.
Nonetheless, the values of A/ (A4) are much easier to measure than the
values of A"( A4, €) used in example 5.3.1.

The analysis of the data proceeds just as in example 5.3.1. It is represented
in Table 5.3.3 and Figure 5.3.4. We obtain

D(A) =08,  over the range ¢ inch to 8 inches.

Example

3.3. In this example we show how a good experimentalist [Strahle 1987]
overcomes the inherent difficulties with the experimental determination of
fractal dimensions. In so doing he obtains a major scientific result. The
idea is to compare two sets of experimental data, obtained by different
means, on the same physical system. The physical system is a laboratory
jet flame. The data are time series for the temperature and velocity at two
different points in the jet. The idea is to apply the same procedure to the
analysis of the two sets of data, to obtain a value for the fractal
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Table 5.3.3
The data determined from Figure 5.3.3, in the experimental
calculation of the fractal dimension of a physical set A.

n N (A) In A, (A) nin?
0 1 0 0

1 3 1.10 0.69
2 7 . 195 1.38
3 10 230 2.08
4 19 2.94 277
5 33 3.50 3.46
6 58 4.06 416

dimension. The two values are same. Instead of drawing the conclusion
that the two sets of data “have the same fractal dimension,” he deduces
that the two sets of data have a common source. That common source is
physical, real world, chaos.

The experimental setup is as follows. A flame is probed by (a) a laser beam
and (b) a very thin wire. These two probes, coupled with appropriate measur-
ing devices, allow measurements to be made of the temperature and velocity in
the jet at two different points, as a function of time. In (a) the light bounces off
the fast moving molecules in the exhaust and a receiver measures the char-
acteristics of the bounced light. The output from the receiver is a voltage. This
voltage, suitably rescaled, gives the temperature of the jet as a function of
time. In (b) a constant temperature is maintained through a wire in the flame.
The voltage required to hold the temperature constant is recorded. This
voltage, suitably rescaled, gives the velocity of the jet as a function of time. In

Figure 5.3.4 5
Slope of the plot of the
data in Table 53.3 gives
an approximation to the
fractal dimension of the
Set A in Figure 5.3.3.

Log (Np)

nlog (2) ——
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RAYLEIGH SCATTERING VOLTAGE Figure 5.3.5

Graph of voltage as a
function of time from an
experimental probe of a
turbulent jet. In this case
the probe measures
scattering of a laser beam
by the flame.

this way we obtain two independent readings of two different, but related,
quantities.

Of course the experimental apparatus is much more sophisticated than it
sounds from the above description. What is important is that the measuring
devices are of very high resolution, accuracy, and sensitivity. A reading of the
velocity can be made once every microsecond. Vast amounts of data can be
obtained. A sample of the experimental output from (a) is shown in Figure
5.3.5, where it is represented as the graph of voltage against time. It is a very
complex curve. If one “magnifies up” the curve, one finds that its geometrical
complexity in the curve continues to be present. It is just the sort of thing we
fractal geometers like to analyse.

A sample of the experimental output from (b) is shown in Figure 5.3.6,
again represented as a graph of voltage against time. You should compare
Figures 5.3.5 and 5.3.6. They look different. Is there a relationship between

HOT FILM VOLTAGE Figure 5.3.6

Graph of voltage as a
function of time from an
experimental probe of a
turbulent jet. In this case

: Expanded frea
the probe measures the
‘ " H h voltage across a wire in
I h WA
AR T

i I;\ | the flame. This data has
" a definite fractal char-
acter, as demonstrated by
' the expanded piece shown
P ¥ in Figure 53.7.
*

195



196

S Fractal Dimension

them? There should be: they both probe the same burning gas and they are in
the same units.

In order to bring out the fractal character in the data, an expanded piece of
the data in Figure 5.3.6 is shown in Figure 5.3.7.

The fractal dimensions of the graphs of the two time series, obtained from
(a) and (b), is calculated using a method based on the Box Counting Theorem.
Exactly the same method is applied to both sets of data, over the same range
of scales. Figure 5.3.8 shows the graphical analysis of the resulting box counts.
Both experiments yield the same value

D =15  over the range of scales 2° X 107> to 2> X 10" sec.

This suggests that, despite the different appearances of their graphs, there is a
common source for the data.

We believe that this common source is chaotic dynamics of a certain
special flavor and character, present in the jet exhaust. If so, then fractal
dimension provides an experimentally measurable parameter which can be
used to quantify chaos.

Exercises & Examples

3.4. Use a method based on the direct application of Definition 5.1.1 to make
an experimental determination of the fractal dimension of the physical set
defined by the black ink in Figure 5.3.9. Give the range of scales to which
your result applies.

3.5. Use a method based on the Box Counting Theorem, as in example 5.3.2,
to estimate the fractal dimension of the “random dendrite” given in
Figure 5.3.10. State the range of scales over which your estimate applies.

Figure 5.3.7 EXPAMDED AREA HOT FILK VOLTAGE
A blow-up of a piece of
the graph in Figure 5.3.6.
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LOG N

Figure 5.3.8
: ]I‘g%:gggf"%l;;"f .;) ;1 1 Graphical analysis of Box
h\a\& *-a‘\\lupe : Counts associated with
| experiments (a) and (b).
The data analysed is
illustrated in Figures
5.3.5 and 5.3.6. The two
data streams, which come
from probes of a single
turbulent system, when
analysed in exactly the
same way, yield the same
value D = 1.5 for the
fractal dimension. This
suggests that, despite the
different appearances of
their graphs, there is a
common source for the
data. This source is
chaotic dynamics of a cer-
tain special flavor and
character. The fractal di-
mension provides a mea-
surable symptom of the
brand of chaos.

Rayleigh Scattening

p LG E 1@

3.6.

3.7.

3.8.

3.9.

Make several complete experiments to obtain some idea of the accuracy
of your result.

Make an experimental estimate of the fractal dimension of the dendrite
shown in Figure 5.3.11. Note that a grid of boxes of size (1,/12)" inch by
(1/12)" inch has been printed on top of the dendrite. Compare the result
you obtain with the result of example 5.3.5. It is important that you
follow exactly the same procedure in both experiments.

Make an experimental determination of the fractal dimension of the set in
Figure 5.2.5. Compare your result with a theoretical estimate based on
Theorem 5.2.3, as in example 5.2.7.

Obtain maps of Great Britain of various sizes. Make an experimental
determination of the fractal dimension of the coastline, over as wide a
range of scales as possible.

Obtain data showing the variations of a Stock Market index, at several
different time scales, for example: hourly, daily, monthly, and yearly.
Make an experimental determination of the fractal dimension. Find a
second economic indicator for the same system, and analyse its fractal
dimension. Compare the results.
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Figure 5.3.9

Make an experimental
estimate of the fractal
dimension of the set A of
black ink, above, over the
range of scales 5 inches
0.1 inches. Base your
experimental method di-
rectly on the Definition
51.1
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(a) (b)

Figure 5.3.10

Make an experimental estimate of the fractal dimension of this set in (a), over the range
of scales S inches to (1/12)" inch, basing your method on the Box Counting Theorem and
graphical analysis. In order to help you with your work, in (b) we have overlayed on the
set a grid of boxes of size (1/12)'" inch by (1/12)"* inch.

] FHH Figure 5.3.11

Make an experimental
estimate of the fractal
dimension of the random
dendrite shown here. Note
that a grid of boxes of
size (1/12)"* inch by
(1/12)"* inch has been
printed on top of the den-
. drite. Compare the ex-

0 : acuunn perimental fractal dimen-
: T T sion here with that of the
& . . ¢ . . dendrite in Figure 5.3.10.
; : i ] 5s In advance, whith one do
you expect will have the
F : lower fractal dimension?
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54 THE HAUSDORFF-BESICOVITCH FRACTAL DIMENSION

The Hausdorff-Besicovitch dimension of bounded subset of R™ is another real
number_which can be used to characterize the geometrical complexity of
bounded subsets of R™. Its definition is more complex and subtle than that of
the fractal dimension. One of the reasons for its importance is that it is
associated with a method for comparing the “sizes” of sets whose fractal
dimensions are the same. It is harder to work with than the fractal dimension,
and its definition is not usually used as the basis of experimental procedures
for the determination of fractal dimensions of physical sets.

Throughout we work in the metric space (R™, d), where m is a positive
integer and d denotes the Euclidean metric. Let 4 € R™ be bounded. Then
we use the notation

diam(A4) = sup{d(x,y): x,y € 4}.

Let0 <e < o0, and 0 < p < 0. Let o7 denote the set of sequences of subsets
{ A, € A}, such that 4 = U2, 4,. Then we define

M(A, p, €)= inf{ i (diam( 4,))”: {4,} € «, and diam( 4,) < €

fori = 1,2,3,...}.

Here we use the convention that (diam(A4;))" =0 when 4, is empty.
M (A, p,€)is a number in the range [0, oo]; its value may be zero, finite or
infinite. You should verify that it is a nonincreasing function of ¢. We now
define

M(A, p)=sup{ A(A, p,e):e>0}.
Then for each p € [0, co] we have #( A4, p) € [0, ].

Definition 1. Let m be a positive integer and let 4 be a bounded subset of
the metric space (R™, Fuclidean). For each p € [0, o0) the quantity # (4, p)
described above is called the Hausdorff p-dimensional measure of A.

Exercises

4.1. Show that /#(A, p) is a nonincreasing function of p € [0, cc].

4.2. Let A denote a set of seven distinct points in (R ?, Euclidean). Show that
M(A,0)=Tand A(A, p)=0for p > 0.

4.3. Let A denote a countable infinite set of distinct points in (R %, Euclidean).
Show that #(A,0) = oo and A (A, p) =0 for p > 0.

4.4. Let € denote the Classical Cantor set in [0, 1]. Show that #(%,0) = «
and H#(¥¢,1) = 0.
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4.5. Let & denote a convenient Sierpinski triangle. Show that
M &,1) = o0 and #( & ,2) = 0. Can you evaluate

M ( & ,In(3)/In(2))? At least try to argue why this might be an
interesting number.

The Hausdorff p-dimensional measure #(A, p), as a function of p €
[0, 0], behaves in a remarkable manner. Its range consists of only one, two, or
three values! The possible values are zero, a finite number, and infinity. In
Figure 5.4.1 we illustrate this behaviour when A is a certain Sierpinski
triangle.

Theorem 1. Let m be a positive integer. Let A be a bounded subset of the
metric space (R™, Euclidean). Let #( A, p) denote the function of p € [0, )
defined above. Then there is a unique real number D, € [0, m] such that

oo if p < Dy and p € [0, ),

H(A, p) =
(4. p) {0 if p> Dy and p € [0, ).

Proof. This can be found, for example, in [Federer 1969, section 2.10.3].

INFINITY Figure 5.4.1
Graph of the function
M ( &, p) when

is a certain
Sierpinski triangle. It
takes only three values.

M(p)

_ZERO
0 P — 1.58 2
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Definition 2. Let m be a positive integer and let 4 be a bounded subset of
the metric space (R™, Euclidean). The corresponding real number Dy, occur-
ring in Theorem 5.4.1, is called the Hausdorff-Besicovitch dimension of the set
A. This number will also be denoted by D, ( A).

Theorem 2. Let m be a positive integer and let A be a subset of the metric
space (R™, Euclidean). Let D(A) denote the fractal dimension of A and let
D, (A) denote the Hausdor[f-Besicovitch dimension of A. Then

0 < Dy(A) < D(A) <m.

Exercises

4.6. Describe a situation where you would expect Dy(A4) < D(A).
4.7. Prove Theorem 5.4.2.

Theorem 3. Let m be a positive integer. Let {R™, w,w,,...,wy} be a
hyperbolic IFS, and let A denote its attractor. Let w, be a similitude of scaling
factor s, for each n € {1,2,3,... N}. If the IFS is totally disconnected or
Just-touching, then the Hausdorff-Besicovitch dimension Dy (A) and the fractal
dimension D( A) are equal. In fact, D(A) = D, (A) = D where D is the unique
solution of

N
Y Is,|”=1, De[0,m].
n=1

Moreover, if D is positive then the Hausdorff D-dimensional measure
M (A, Dy (A)) is a positive real number.

Proof. 'This can be found in [Hutchinson 1981].

In the situation referred to in Theorem 5.4.3, the Hausdorff D ( A)-dimen-
sional measure can be used to compare the “sizes” of fractals which have the
same fractional dimension. The larger the value of #( 4, D, ( A)), the “larger”
the fractal. Of course, if two fractals have different fractal dimensions, then we
say that the one with the higher fractal dimension is the “larger” one.

Exercises & Examples

4.8. Here we provide some intuition about the functions # (A4, p,¢) and
M (A, p), and the “sizes” of fractals. We illustrate how these quantities
can be estimated. The type of procedure we use can often be followed,
for attractors of just-touching and totally disconnected IFS whose maps
are all similitudes, and should lead to correct values. Formal justification
is tedious, and follows the lines suggested in [Hutchinson 1981].



4.9.

4.10.

4.11.

5.4 Hausdorff-Besicovitch Dimension

Consider the Sierpinski triangle & with vertices at (0,0), (0,1)
and (1,0). We work in R? with the Euclidean metric. We begin by
estimating the number . ( & , p,€) for p € [0, o0) for various values
of . The values of € we consider are € = y2(1/2)" for n = 0,1,2,3, ... .
Now notice that & can be covered very efficiently by 3” closed disks
of diameter y2 (1,/2)". We guess that this covering is one for which the
infimum in the definition of .#( &@ L pr € =V2(1/2)") is actually
achieved. We obtain the estimate

//( &,pﬁ(l/z)")=3"(\/§)”(1/2)"” forn=1,2,3,....

The supremum in the definition of #( & , p) can be replaced by a
limit; so we obtain

“ £an)

I

Lim {3(/2)"(1/2)"")

oo if p < In(3)/In(2),

_ (ﬁ)m(avlnm if p = In(3)/In(2),
0if p > In(3)/In(2).

This tells us that Dy ( & ) = In(3)/In(2), which we already know

from Theorem 54.3. It also tells us that (&2 . Dy( &) =
(v2)"®/®) This is our estimate of the “size” of the particular Sierpin-
ski triangle under consideration. ~

If one repeats the above steps for the Sierpinski triangle &
with vertices at (0,0), (0,1/v2) and (1/y2,0) one finds

M ( & , D,,(&)) = 1. Thus & is “smaller” than &

Similar estimates can be made for pairs of attractors of totally
disconnected or just-touching IFS whose maps are similitudes, and
whose fractal dimensions are equal. The comparison of “sizes” becomes
exciting when the two attractors are not metrically equivalent.

Estimate the “sizes” of the two fractals represented in Figure 5.4.2.
Which one is “largest?” Does the computed estimate agree with your
subjective feeling about which one is largest?

Prove that the Hausdorff-Besicovitch dimension of two metrically equiv-
alent bounded subsets of (R™, Euclidean) is the same.

Let d denote a metric on R? which is equivalent to the Euclidean metric.
Let A denote a bounded subset of R2. Suppose that d is used in place of
the Fuclidean metric to calculate a “Hausdorff-Besicovitch” dimension
of A, denoted by D,,(A). Prove that D,,(A) = D,,(A). Show, however,
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Figure 5.4.2

The two images here rep-
resent the attractors of
two different IFS of the
form (R w, , wy, ws}
where all of the maps are
similitudes of scaling fac-
tor 0.4. Both sets have
the same fractal dimen-
sion Ln(3)/Ln2.5). So
which one is the
“largest”? Compare their
“sizes” by estimating
their Hausdorff
Ln(3)/Ln(2.5)-dimensional
measures.
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that the “size” of the set, # (A, Dy (A)), may be different when com-
puted using d in place of the Euclidean metric.
4.12. If distance in R? is measured in inches, and a subset A4 of R? has fractal
dimension 1.391, what are the units of .#(A,1.391)?
4.13. The image in Figure 5.4.3 represents the attractor A4 of a certain

hyperbolic IFS.

(a) Explain, with support from appropriate theorems, why the fractal di-
mension D and the Hausdorff-Besicovitch dimension D, of the at-
tractor of the IFS are equal.

(b) Evaluate D.

(¢) Using inches as the unit, compare the Hausdorff-Besicovitch D-
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Figure 5.4.3

Why are the fractal
dimension and the
Hausdorff-Besicovitch di-
mension of the attractor
of the IFS represented by
this image equal?

dimensional measures of 4 and w( A), where w( 4) denotes one of the
small “first generation” copies of A.

4.14. By any means you like, estimate the Hausdorff-Besicovitch dimension of
the coastline of Baron von Koch’s Island, shown in Figure 5.4.4. It is
recommended that theoreticians try to make an experimental estimate,
and that experimentalists try to make a theoretical estimate.

Figure 54.4

By any means you like,
estimate the Hausdorff-
Besicovitch dimension of
the coastline of Baron von
Koch’s Island.

The
middle of

Baron von Koch's
Island is white to
save ink
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4.15. Does the work of some artists have a characteristic fractal dimension?
Make a comparison of the empirical fractal dimensions of Romeo and
Juliet in Figure 5.4.5 over an appropriate range of scales.

Figure 5.4.5

Does the work of some
artists have a characteris-
tic fractal dimension?
Make a comparison of the
empirical fractal dimen-
sions of Romeo and Juliet,
over an appropriate range
of scales.




Fractal Interpolation

6.1 INTRODUCTION: APPLICATIONS FOR FRACTAL FUNCTIONS

Euclidean geometry, trigonometry, and calculus have taught us to think about
modelling the shapes we see in the real world in terms of straight lines, circles,
parabolas, and other simple curves. Consequences of this way of thinking are
abundant in our everyday lives. They include the design of household objects;
the common usage of drafting tables, straight-edges, and compasses; and the
“applications” which accompany introductory calculus courses. We note in
particular the provision of functions for drawing points, lines, polygons, and
circles in computer graphics software such as MacPaint and Turbobasic. Most
computer graphics hardware is designed specifically to provide rapidcomputa-
tion and display of classical geometrical shapes.

Euclidean geometry and elementary functions, such as the sine, cosine, and
polynomials, are the basis of the traditional method for analysing experimen-
tal data. Consider an experiment which measures values of a real-valued
function F(x) as a function of a real variable x. For example, F(x) may
denote a voltage as a function of time, as in the experiments on the jet-engine
exhaust described in Section 5.3, example 3.3. The experiment may be a
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numerical experiment on a computer. In any case the result of the experiment
will be a collection of data of the form:

{(x,,F):i=01,2,...,N}.

Here N is a positive integer, F, = F(x,), and the x,’s are real numbers such
that

Xog <X} <Xy <Xy < -0 < xy.

The traditional method for analysing this data begins by representing it
graphically as a subset of R2. That is, the data points are plotted on graph
paper. Next the graphical data is analysed geometrically. For example, one
may seek a straight line segment which is a good approximation to the graph
of the data. Or else, one might construct a polynomial of as low degree as
possible, whose graph is a good fit to the data over the interval [x,, x]. In
place of a polynomial, a linear combination of elementary functions might be
used. The goal is always the same: to represent the data, viewed as a subset of
R?, by a classical geometrical entity. This entity is represented by a simple
formula, one that can be communicated easily to someone else. The process is
illustrated in Figure 6.1.1.

Elementary functions, such as trigonometric functions and rational func-
tions, have their roots in Euclidean geometry. They share the feature that
when their graphs are “magnified” sufficiently, locally they “look like” straight
lines. That is, the tangent line approximation can be used effectively in the
vicinity of most points. Moreover, the fractal dimension of the graphs of these
functions is always one. These elementary “Euclidean™ functions are useful
not only because of their geometrical content, but because they can be
expressed by simple formulas. We can use them to pass information easily
from one person to another. They provide a common language for our
scientific work. Moreover, elementary functions are used extensively in scien-
tific computation, computer-aided design, and data analysis because they can
be stored in small files and computed by fast algorithms.

Graphics systems founded on traditional geometry are effective for making
pictures of man-made objects, such as bricks, wheels, roads, buildings and
cogs. This is not surprising, since these objects were in the first place designed
using Euclidean geometry. However, it is desirable for graphics systems to be
able to deal with a wider range of problems.

In this chapter we introduce fractal interpolation functions. The graphs of
these functions can be used to approximate image components such as the
profiles of mountain ranges, the tops of clouds, stalactite-hung roofs of caves
and horizons over forests, as illustrated in Figure 6.1.2. Rather than treating
the image component as arising from a random assemblage of objects, such as
individual mountains, cloudlets, stalactites, or tree tops, one models the image
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Figure 6.1.1

Hlustration of the process
whereby experimental
data is represented
graphically and modelled
geometrically by means of
a classical geometrical
entity, such as a straight
. line or a polynomial fit to
the data.

A STRAIGHT LINE IS A
EUCLIDEAN APPROXIMATION
TO THE DATA

THE GRAPH OF A POLYNOMIALISA .
EUCLIDEAN APPROXIMATION
TO THE DATA

component as an interrelated single system. Such components are not well
described by elementary functions or Euclidean graphics functions.

Fractal interpolation functions also provide a new means for fitting experi-
mental data. Clearly it does not suffice to make a polynomial “least-squares”
fit to the wild experimental data of Strahle for the temperature in a jet exhaust
as a function of time, as illustrated in Figure 5.3.5. Nor would classical
geometry be a good tool for the analysis of voltages at a point in the human
brain as read by an electroencephalograph. However, fractal interpolation
functions can be used to “fit” such experimental data: that is, the grapB of the
fractal interpolation function can be made close, in the Hausdorff metric, to
the data. Moreover, one can ensure that the fractal dimension of the graph of
the fractal interpolation function agrees with that of the data, over an
appropriate range of scales. This idea is illustrated in Figure 6.1.3.

Fractal interpolation functions are like elementary functions in that
they are of a geometrical character, that they can be represented succinctly by
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Figure 6.1.2

The fractal interpolation
functions introduced in
this chapter may be used
in computer graphics
software packages to pro-
vide a simple means for
rendering profiles of
mountain ranges, the tops
of clouds, and horizons
over forests.

“formulas,” and that they can be computed rapidly. The main difference is
their fractal character. For example, they can have a noninteger fractal
dimension. They are easy to work with—once one is accustomed to working
with sets rather than points, and with IFS theory using affine maps. If we start
to pass them from one to another, fractal functions will become part of the
common language of science. So read on!



6.2 Fractal Interpolation Functions

THE EXPERIMENTAL DATA
AND THE FRACTAL FUNCTION
MIGHT “LOOK ALIKE” OVER
A RANGE OF SCALES.

DATA POINTS LIE CLOSE TO
THE GRAPH OF A FRACTAL
INTERPOLATION FUNCTION

Exercises & Examples

Figure 6.1.3

This figure illustrates the
idea of using a fractal in-
terpolation function to fit
experimental data. The
graph of the interpolation
function may be close, in
the Hausdorff metric, to
the graph of the experi-
mental data. The fractal
dimension of the interpo-
lation function may agree
with that of the data over
an appropriate range of
scales.

1.1. Write an essay on the influences of Euclidean geometry on the way in
which we view the physical world. How does fractal geometry change that

view?

1.2. Find the linear approximation /(x) to the function f(x) = sin(x), about
the point x = 0. Let € > 0. Find the linear change of coordinates (x’, y")
=0(x, y) in R% such that ([0, €] X [0, ¢]) =[0,1] x [0,1]. Let /'(x")
denote the function /(x) represented in the new coordinate system. Let
f'(x") denote the function f(x) in the new coordinate system. Let L
denote the graph of /’(x’) for x’ € [0,1] and let G denote the graph of
f(x") for x” €[0,1]. How small must ¢ be chosen to ensure that the
Hausdorft distance from L to G is less than 0.01? The Hausdorff distance
should be computed with respect to the Manhattan metric in R?2.

211

6.2 FRACTAL INTERPOLATION FUNCTIONS

Definition 1. A set of data is a set of points of the form {(x,, F,) € R

i=0,1,2,..., N}, where

Xog <X <Xy < Xy < ccr < Xy
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An jnterpolation function corresponding to this set of data is a continuous
function f: [x,, xy] — R such that

f(x)=F fori=0,1,2,..., N.

The points (x;, F,) € R? are called the interpolation points. We say that the
function f interpolates the data; and that (the graph of) f passes through the
interpolation points.

Exercises & Examples

2.1. The function f(x) =1 + x is an interpolation function for the set of
data {(0,1),(1,2)}. Consider the hyperbolic IFS {R?; w,, w, }, where

x\ _ (05 0 \(x 0.
Wl(y) ‘( 0 0.5)(y) * (0.5)’ and
X\ _ {05 0 )\(x 0.5
Wz(y) ‘( 0 0.5)(y) +( 1 )
Let G denote the attractor of the IFS. Then it is readily verified that G is
the straight line segment which connects the pair of points (0,1) and
(1,2). In other words, G is the graph of the interpolation function f(x)
over the interval [0, 1].
2.2, Let {(x;, F): 1=0,1,2,..., N} denote a set of data. Let f: [x,, xy] =
R denote the unique continuous function which passes through the

interpolation points and which is linear on each of the subintervals
[x;_1, x;] Thatis

(x = X

f(x) = For + (= x‘_l)(F,—F,ﬂ) forxe[x, ,,x],i=1,2,...,N.

The function f(x) is called a piecewise linear interpolation function.
The graph of f(x) is illustrated in Figure 6.2.1. This graph, G, is also the

Figure 6.2.1 Y
Graph of the piecewise
linear interpolation func-
tion f(x) through the in-
terpolation points
(F,x)i=
0,1,2,3,4}. This graph is
also the attractor of an
IFS of the form

(R%; w,,n=1,2,3,4}
where the maps are af-
fine. X

(X, Fy)
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attractor of an IFS of the form {R% w,, n= 1,2,..., N} where the
maps are affine. In fact

- [0 om+(7)

W,
where
a = (xn - X, l) _ (xanAl - xOxn)
" (xN _ xO) " (xN _ xO) ’
EF_, — x,F
¢, = ( n l) ”=(XN n—1 Xp n), fOI'n=1,2,...,N
(xN_xO) (xy = x0)

Notice that the IFS may not be hyperbolic with respect to the Euclidean
metric in R2 Can you prove that, nonetheless, G is the unique non-
empty compact subset of R? such that

N

= U w(6)?

n=1

Verify the claims in example 6.2.2 in the case of the data set
{(0,0),(1, 3),(2,0)} by applying either the Deterministic Algorithm, Pro-
gram 3.8.1, or the Random Iteration Algorithm, Program 3.8.2. You will
need to modify the programs slightly.

The parabola defined by f(x) = 2x — x? on the interval [0,2] is an
interpolation function for the set of data {(0,0),(1,1),(2,0)}. Let G
denote the graph of f(x). That is

G={(x2x-x%:x€[0,2]}.

Then we claim that G is the attractor of the hyperbolic IFS {R?; w;, w, },
where

Wl(;)=(8j§ 025)(;)¥ and “ﬁ(;)=(—065.5 ogs)(:;)+(i)'

We verify this claim directly. We simply note that for all x € [0, 2]

W‘(f(xﬂ) - (2(%x) z—x(%x)z) - (f(z;))’

x B 1+ 3x 1+41x
wz(f(x))_ 2(1+-§—x)—(1+-%x)2) (f(l+ x))

As x varies over [0, 2], the right-hand side of the first equation yields the
part of the graph of f(x) lying over the interval [0, 1], while the
right-hand side of the second equation yields the part of the graph of
f(x) lying over the interval [1,2]. Hence G = wi(G) U w,(G). Since
G € #(R?), we conclude that it is the attractor of the IFS. Notice that
the IFS is just-touching,

Find a hyperbolic IFS of the form {R% w,, w,}, where w; and w, are

213



214

6 Fractal Interpolation

affine transformations in R, whose attractor is the graph of the quadratic
function which interpolates the data {(0,0),(1,1),(2,4)}.

Let a set of data {(x;, F)): i=0,1,2,..., N} be given. We explain how
one can eonstruct an IFS in R? such that its attractor, which we denote by G,
is the graph of a continuous function f: [x,, x,] — R which interpolates the
data. Throughout we will restrict our attention to affine transformations. The
usage of more general transformations is discussed in [Barnsley 1986a],
[Barnsley 1986c], [Hardin 1985], [Massopust 1986].

We consider an IFS of the form {R?% w,,n = 1,2,..., N} where the maps

are affine transformations of the special structure

x a, 03/x n
wly) = ( ¢, d,,)(y) i (f)
The transformations are constrained by the data according to

Xo Xn—1 XN X
w"(FE))=(E,v1) and w, FN)=(F) forn=1,2,..., N.

n

The situation is summarized in Figure 6.2.2.
Let n € {1,2,3,..., N}. The transformation w, is specified by the five real
numbers a,, ¢,, d,, e,, and f,  which must obey the four linear equations

n

a,x, te,=x,_,
a,xy+te,=x,

eXo +d,Fy+ f,=F,_,
Xyt d,Fy+f,=F,

It follows that there is effectively one free parameter in each transformation.
We choose this parameter to be d, for the following reason: The transforma-
tion w, is a shear transformation: it maps lines parallel to the y-axis into lines
parallel to the y-axis. Let L denote a line segment parallel to the y-axis. Then
w,(L) is also a line segment parallel to the y-axis. The ratio of the length of
w,(L) to the length of L is |d,| We call d, the vertical scaling factor in the
transformation w,. By choosing d, to be the free parameter, we are able to
specify the vertical scaling produced by the transformation. With d, = 0,
n=1, 2,..., N, one recovers the piecewise-linear interpolation function. In
this section we will show that these parameters determine the fractal dimen-
sion of the attractor of the IFS.

Let 4, be any real number. We demonstrate that we can always solve the
above equations for a,, c,, e,, and f, in terms of the data and 4,. We find

ns

(621) an = (xn - xn—l)/(xN - xO)’

(62.2) e, = (xyx,_1 = XoX,)/(Xy = X),

(623) ¢, = (E, = F,_)/(xy = Xo) = dy(Fy = Fy)/(xy = xo),

(6.24) f, = (xyF,_y = %o F)/(xy = x0) = d,(xyFy = X Fy) /(x5 = Xg)-
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Figure 6.2.2

Two illustrations showing
how an IFS of shear
transformations is used to
construct a fractal inter-
polation function. ( Pro-
duced by Peter
Massopust.)

t —t— t +
XO Xl X2 X3 X4
K
W (K)
w, {K)
w, (K)

Now let {R% w,,n =1,2,..., N} denote the IFS defined above. Let the
vertical scaling factor d, obey 0 <d, <1 for n =1,2,..., N. Even with
this condition, the IFS is not in general hyperbolic on the metric space
(R2, Euclidean). Despite this, let us see what happens if we apply the Random
Iteration Algorithm to the IFS.

Here we present Program 3.8.2 modified so that the input data consists of
the interpolation points and vertical scaling factors. It is written for N = 3
and the data set .

{(0,0),(30,50),(60,40),(100,10) } .

The vertical scaling factors are input by the user during execution of the code.
The program calculates the coefficients in the shear transformations from the
data, and then applies the Random Iteration Algorithm to the resulting IFS.
The program is written in BASIC. It runs without modification on an IBM PC
with enhanced graphics adaptor and Turbobasic. On any line the words
preceded by a ’ are comments: they are not part of the program.
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PROGRAM 6.2.1
x[0] = 0: x[1] = 30: x[2] = 60: x[3] = 100 ’Data set
F[0] = 0: F[1] = 50: F[2] = 40: F[3] = 10
input “enter scaling factors d(1), d(2), and d(3)”, d(1), d(2), d(3)
"Vértical Scaling Factors
forn =1to3 ’Calculate the shear transformations from the Data and
Vertical Scaling Factors
b = x[3] — x[0]: a[n] = (x[n] — x[n — 1])/b: e[n] = (x[3]*x[n — 1]
~x[0]*x[n])/b
¢[n] = (FIn] — Fln — 1] — d[n]*(F[3] — F0]))/b
filn] = (x[3]#Fln — 1] — x[0]* F[n] — d[n]*(x[3]* FI0] — x[0]+ F[3]))/b
next
screen 2: cls ’initialize graphics
window (0,0) — (100,100) ’change this to zoom and /or pan
x = 0:y =0 ’initial point from which the random iteration begins
forn = 1t0 1000 ’Random lteration Algorithm
k = int(3*rnd — 0.0001) + 1
newx = a[k]*x + e[k]
newy = c[k]*x + dk]+y + fi[k]
X = newx: y = newy
pset(x,y) ’plot the most recently computed point on the screen
next
end

The result of running an adaptation of this program on a Masscomp
workstation and then printing the contents of the graphics screen, is presented
in Figure 6.2.3. In this case d; = 0.5, d, = —0.5, and d, = 0.23. Notice that
if the size of the plotting window is decreased, for example by replacing the
window call by WINDOW (0, 0) — (50, 50), then a portion of the image is
plotted at a higher resolution. The number of iterations can be increased to
improve the quality of the computed image.

Exercises & Examples

2.6. Rewrite Program 6.2.1 in a form suitable for your own computer
environment, then run it and obtain hardcopy of the output.

2.7. Vary the data used by Program 6.2.1. Verify, by means of computer-
graphical experiments, that the corresponding IFS always seems to have
a unique attractor, provided that the vertical scaling factors are less than
one in norm. Verify that, provided sufficiently many points are plotted,
the attractor always contains the data points, and that it looks like the
graph of a function.

2.8. Show that the shear transformations w,, described above, need not be
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contractions in the Euclidean metric, even though the magnitudes of the
vertical scaling factors are less than one. Once you have found such an
example, use Program 6.2.1, suitably modified, to obtain graphical
evidence concerning the possible existence of an attractor. You are
supposed to discover that even though the IFS is not hyperbolic in the
Euclidean metric, it appears to possess an attractor.

2.9. Use Program 6.2.1 to verify that the attractor of the IFS in example 6.2.4
is a parabola.

We now give the theoretical basis for our experimental observations.

Theorem 1. Let N be a positive integer greater than one. Let (R% w,,
n=12..., N} denote the IFS defined above, associated with the data set
{(x,, F): n=12,..., N}. Let the vertical scaling factor d, obey 0 < d, <1
forn=1,2 ..., N. Then there is a metric d on R?, equivalent to the Euclidean
metric, such that the IFS is hyperbolic with respect to d. In particular, there is a
unique nonempty compact set G C R? such that

N

G= U w(6).
n=1
Proof. We define a metric d on R? by
d((x;5 1), (%2, 1)) =x1 = x3| + 8]y, = »y

where 8 is a positive real number which we specify below. We leave it as an
exercise to the reader to prove that this metric is equivalent to the Euclidean

Figure 6.2.3

The result of running pro-
gram 6.2.1 with vertical
scaling factors 0.5, ~0.5,
and 0.23. It appears that
the corresponding IFS
possesses a unique attrac-
tor which is the graph of
a function which passes
through the interpolation
points {(0,0),(30, 50),
(60, 40), (100,10)}. Is
there a metric such that

“the IFS is hyperbolic?
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metric on R2 Let n€ (1,2,..., N}. Let the numbers a,,c,,e,, f,, be

ns n?

defined by equations (6.2.1), (6.2.2), (6.2.3), and (6.2.4). Then we have
d(w,(x1, 1) wa (%2, 1)) = d((a,x + e, ¢,x; +d, 3 +1,),
- (a,x; +e,,¢,x +d,y, + 1))
= a,|x; — x| + Olc,(x; — x5) +4d,(y — »)l
< (la,| + 0le,Dx; = xof + 01d, | [y — yal-
Now notice that |a,| = {x, — x,_{|/|xy — x| <1 because N = 2. If ¢, = ¢,
- = ¢, = 0 then we choose § = 1. Otherwise we choose

o Min{l - |a,|: n=1,2,...,N }
© Max{2l¢,:n=1,2,...,N}

Then it follows that
d(w,(x1, ), (%2, 32)) < (la,] + Ble,)xy = xol + 01, ||y = il
< alx; — x,| + 08|y, — y,|
<Max{a,8}d((x;, n),(x2, 1)),
where

Max{|a,|: n=1,2,...,N}
2

8=Max{|d,:n=1,2,...,N} <1.

a=(1/2+ )<la.nd

This completes the proof.

Theorem 2. Let N be a positive integer greater than one. Let {R?* w,,
n=12 ..., N} denote the IFS defined above, associated with the data set
{(xy F): n=1,2,..., N}. Let the vertical scaling factor d,, obey 0 < d, <1
forn=12,... N, sothat the IFS is hyperbolic. Let G denote the attractor of
the 1FS. Then G is the graph of a continuous function f: [x,, xy] = R which
interpolates the data {(x,, F)): i =1,2,..., N}. That is

G = {(x,1(x)): x € [xg, xy]},
where

f(x)=F fori=0,1,23 ..., N,

Proof. Let % denote the set of continuous functions f: [x,, x;] = R such
that f(x,) = F, and f(xy) = Fy. We define a metric d on % by

d(f,g) =Max{|f(x) — g(x)]: x € [x,, xy]} forall f, g in &F.

Then (#, d) is a complete metric space; see for example Rudin [1966], or
prove it yourself.
Let the real numbers a,, c,, ¢,, f,, be defined by equations (6.2.1), (6.2.2),

n» n>
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(6.2.3), and (6.2.4). Define a mapping T: F — % by

(TF)(x) = ¢, '(x) + d, f(1;(x)) + 1, for x € [x,_1, x,],
forn=1,2,..., N,
where [ [x,, xy] = [x,_;, x,] is the invertible transformation
ll'(x) = al1x + ell'
We verify that T does indeed take % into itself. Let f € #. Then the function
(Tf)(x) obeys the endpoint conditions because
(T7)(x0) = el H(x0) + dif(I7(x0)) + /i = erxo + dif(x0) + /i
=cxo+dify+fi =k
and
(TN (xy) = enly'(xn) + duf(I3'(xy)) + fy = eyxy + duf(xx) + Iy
=cyxy + dyFy + fx = E.
The reader can prove that (7f )(x) is continuous on the interval [x,_,, x,] for
n=12..., N.Then it remains to demonstrate that (7f)(x) is continuous at
each of the points x|, x,, x5,..., xy_;. At each of these points the value of
(Tf)(x) 1s apparently defined in two different ways. Forn € {1,2,..., N — 1}
we have
(Tf)(xn) = Cn+11~4}1(xn) + dn+1f( l;ll(xn)) +f"+l
= CiXo +dyi1f(x0) + for1 = F,,

and also

(Tf)(xn) = Cnl;l(xn) + dnf(l;l(xn)) +fn = G Xy + dnf(xN) +fn = El

so both methods of evaluation lead to the same result. We conclude that T
does indeed take % into F.

Now we show that T is a contraction mapping on the metric space (%, d).
Let f,ge#. Letne {1,2,..., N} and x € [x,_,, x,]. Then

I(T7)(x) = (Tg)(x) | = 1d,)| £( 15 {(x)) — g(4; }(x)) | < |d.1d( ], 8).
It follows that
d(Tf,Tg) <8d(f,g) whered=Max{|d,:n=1,2,...,N} <L

We conclude that T: % — % is a contraction mapping. The Contraction
Mapping Theorem implies that T possesses a unique fixed point in #. That is,
there exists a function f € % such that

(TH(x) =f(x) forall x € [x,, xy].

The reader should convince himself that f passes through the interpolation
points.
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Let G denote the graph of f. Notice that the equations which define T can
be rewritten

(TH)(a,x +e,)=c,x+d,f(x)+f, forxe[x,,xy], forn=1,2,...,N,
which implies that

G=

TnCz

w,(G).

1

But G is a nonempty compact subset of R% By Theorem 6.2.1 there is only
one nonempty compact set G, the attractor of the IFS, which obeys the latter
equation. It follows that G = G. This completes the proof.

Definition 1. The function f(x) whose graph is the attractor of an IFS as
described in Theorems 6.2.1 and 6.2.2 above, is called a fractal interpolation
function corresponding to the data {(x;, F}): i=1,2,..., N}.

Figure 6.2.4 shows an example of a sequence of iterates {T°"f;: n =
0,1,2,3,...} obtained by repeated application of the contraction mapping T,
introduced in the proof of Theorem 6.2.2. The initial function f,(x) is linear.
The sequence converges to the fractal interpolation function f which is the
fixed point of T. Notice that the whole image can be interpreted as the
attractor of an IFS with condensation, where the condensation set is the graph
of the function f,(x).

The reader may wonder, in view of the proof of Theorem 6.2.2, why we go
to the trouble of establishing that there is a metric such that the IFS is
contractive. After all, we could simply use T to construct fractal interpolation
functions. The answer has two parts, (a) and (b). (a) We can now apply the

Figure 6.2.4

A sequence of functions
{£r1(0) = (Tf,)(%)}
converging to the fixed
point of the mapping T:
F - F used in the proof
of Theorem 6.2.4. This is
another example of a con-
traction mapping doing its
work.
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theory of hyperbolic IFS to fractal interpolation functions. Of especial impor-
tance, this means that we can use IFS algorithms to compute fractal interpola-
tion functions, that the Collage Theorem can be used as an aid to finding
fractal interpolation functions which approximate given data, and that we can
use the Hausdorfl metric to discuss the accuracy of approximation of experi-
mental data by a fractal interpolation function. (b) By treating fractal interpo-
lation functions as attractors of IFS of affine transformations we provide a
common language for the description of an important class of functions and
sets: the same type of formula, namely an IFS code, can be used in all cases.

One consequence of the fact that the IFS {R; w,, n=1,2,... N} associ-
ated with a set of data {(x,, F,): n=1,2,..., N} is hyperbolic is that any set
A, € #(R?) leads to a Cauchy sequence of sets {4, } which converges to G
in the Hausdorfl metric. In the usual way we define W: s#(R?) - s#(R?) by

W(B) = LAJ w,(B)  forall B € #(R%).
1

Then {4, = W°"(A,)} is a Cauchy sequence of sets which converges to G in
the Hausdorfl metric. This idea is illustrated in Figures 6.2.5(a) and (b). Notice
that if 4, is the graph of a function f, € # then A, is the graph of T°"f,.

Exercises & Examples

2.10. Prove that the metric on R? introduced in the proof of Theorem 6.2.1 is
equivalent to the Euclidean metric on R,

2.11. Use the Collage Theorem to help you find a fractal interpolation
function which approximates the function whose graph is shown in
Figure 6.2.6.

2.12. Write a program which allows you to use the Deterministic Algorithm to
compute fractal interpolation functions.

2.13. Explain why Theorems 6.2.1 and 6.2.2 have the restriction that N is
greater than one.

2.14. Let a set of data {(x;, F,): i =0,1,2,..., N} be given. Let the metric
space (F, d) and the transformation 7: % — % be defined as in the
proof of Theorem 6.2.2. Prove that if f € # then Tf is an interpolation
function associated with the data. Deduce that if f € % is a fixed point
of T, then f is an interpolation function associated with the data.

2.15. Make a nonlinear generalization of the theory of fractal interpolation
functions. For example, consider what happens if one uses an IFS made
up of nonlinear transformations w,: R* — R? of the form

w,(x,y) = (a,,x +e,,c,x+d,y+g,y* +f")

where a,, e,, c,, d,, 8,, and f, are real constants. This example uses
“quadratic scaling” in the vertical direction instead of linear scaling.
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Figure 6.2.5(a) and (b).
Examples of the conver-
gence of a sequence of sets
{A,} in the Hausdorff
metric, to the graph of a
fractal interpolation func-
tion.
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Figure 6.2.6

Use the Collage Theorem
to find an IFS

{R?; wy, wy}, where w
and w, are shear trans-
formations on R?, such
that the attractor of the
IFS is a good approxima-
tion to the graph of the
function shown here.

2.16.

Determine sufficient conditions for the IFS to be hyperbolic, with an
attractor which is the graph of a function which interpolates the data
{(x;, F): i=0,1,2,..., N}. Note that in certain circumstances the IFS
generates the graph of a differentiable interpolation function.

Let f(x) denote a fractal interpolation function associated with a set of
data {(x,, F): i=0,1,2,..., N} where N > 1. Let the metric space
(#, d) and the transformation T: % — % be defined as in the proof of
Theorem 6.2.2. The functional equation 7f = f can be used to evaluate
various integrals of f. As an example, consider the problem of evaluating
the integral

The integral is well-defined because f(x) is continuous. We have

-

I=f:N(Tf)(X)dx= f f:i (T7)(x) dx

N
= Z/ (cnx+d,,f(x)+f,,)d(a”x+e”)=a1+/3

n=1"%o

where

N N .
a = ( Z a"d,,) and B = Z a,,f N(c,,x + f,) dx.
n= n=1

Xo
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2.17.

2.18.

Show that, under the standard assumptions, |a| <.1. Show also that
B=["fox) dx,
X0

where f,(x) is the piecewise linear interpolation function associated with
the data. Conclude that

L:Nf(x) dx = a f Q)

Check this result for the case of the parabola, described in exercise 6.2.4.
In Figure 6.2.7 we illustrate a geometrical way of thinking about the
integration of a fractal interpolation function.

Let f(x) denote a fractal interpolation function associated with a set of
data {(x,, F)): i=0,1,2,..., N}, where N > 1. By following similar
steps to those in example 2.16, find a formula for the integral

I = fXNxf(x) dx.

Check your formula by applying it to the parabola which is described in
exercise 6.2.4.
Figure 6.2.8 shows a fractal interpolation function together with a zoom.

Figure 6.2.7
Tlustration of the geomet-
rical viewpoint concern-

ing the integration of (total area) =( Det(A;)+Det (A,))x(total area) + B
fractal interpolation func-
tions.
area = Det(Al) (total area) area = Det(Az) (total area)
\

B=area of triangle
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| dimension is equal to one,

i Figure 6.2.8
A/"""_w\r\w | A fractal interpolation
eV Tt | function together with a
/‘/' '4-"\ : zoom. If the fractal
|

what do you expect

/
¢ “most” very high mag-
g/\‘ nification zooms to look
\ like?

Can you reproduce these images, and then make a further zoom? What
do you expect a very high magnification zoom to look like?

6.3 THE FRACTAL DIMENSION OF FRACTAL INTERPOLATION FUNCTIONS

The following excellent theorem tells us the fractal dimension of fractal
interpolation functions.

Theorem 1. Let N be a positive integer greater than one. Let {(x,, F,) € R
n=12,...,N} be aset of data. Let (R% w,, n=1,2,..., N} be an IFS
associated with the data, where
X\ _ a, 0 X €n _
w"(Y)_(c,, d")(y)+(fr,) forn=1,2,...,N.

The vertical scaling factors d, obey 0 < d_ < 1, and the constants a,, c,, e,,
and f,, are given by Equations (6.2.1), (6.2.2), (6.2.3) and (6.2.4), for n =
1,2,..., N. Let G denote the attractor of the IFS, so that G is the graph of a
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fractal interpolation function associated with the data. If

N
Y 4, >1, (6.3.1)
n=1

and the interpolation points do not all lie on a single straight line, then the fractal
dimension of G is the unique real solution D of

N

2 ld,Ja? "t = 1.

n=1

Otherwise the fractal dimension of G is one.

Informal Demonstration: The formal proof of this theorem can be found in
[Barnsley 1986c]. Here we give an informal argument for why it is true. We
use the notation in the statement of the theorem.

Let € > 0. We consider G to be superimposed on a grid of closed square
boxes of side length ¢, as illustrated in Figure 6.3.1.

Let A7(¢) denote the number of square boxes of side length € which
intersect G. These boxes are similar to the ones used in the Box Counting
Theorem, Theorem 5.1.2, except that their sizes are arbitrary. On the basis of
the intuitive idea introduced in Chapter 5, Section 1, we suppose that G has

Figure 6.3.1

The graph G of a fractal
interpolation function is
superimposed on a grid of
closed square boxes of
side length €. A (€) is

used to denote the num- M,
ber of boxes which inter- / N
sect G. What is the value A g \v
N /
of ' (€)? i [ N\
§ N M ‘f\
V] N\
i N
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fractal dimension D, where
N'(€) =constant- € ?  ase > 0.

We want to estimate the value of D on the basis of this assumption.

Let n€ {1,2,..., N}. Let & (¢) denote the number of boxes of side
length € which intersect w,(G) for n = 1,2 ... N. We suppose that € is very
small compared to |xy — x,|. Then, because the IFS is just-touching, it is
reasonable to make the approximation
(6.3.2) N(€) =N () + M) + A(e) + - + Ay (€).

We now look for a relationship between A"(€¢) and A (e). The boxes
which intersect G can be thought of as being organized into columns, as
illustrated in Figure 6.3.2,

Let the set of columns of boxes of side length € which intersect G be
denoted by {c;(e): j=1,2,..., #(e)}, where H (¢€) denotes the number of
columns. Under the conditions in Equation (6.3.1), in the statement of the
theorem, one can prove that the minimum number of boxes in a column
increases without limit as e approaches zero. To simplify the discussion we
assume that

|d,| > a, forn=1,2,..., N.

(Notice that
N N

which tells us that this assumption is stronger than the assumption L_,|d,| >

VY Figure 6.3.2

¥ N The boxes which intersect
a ]A VAN G can be .thought of as
i — » organized in columns. The
set of columns of boxes of
| \ side length € which inter-
7 b sect G is denoted by
{Cj((): J=

1,2,..., #(€)}, where
M (€) denotes the number
of columns. What is the
value of # (¢) and how
many boxes are there in
¢, (¢€), in this illustration?

]
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1.) Then consider what happens to a column of boxes c;(¢) of side length e,
when we apply the affine transformation w, to it. It becomes a column of
parallelograms. The width of the column is a,¢ and the height of the column is
|d,| times the height of the column before transformation. Let A7(c;(¢))
denote the number of boxes in the column c,(¢). Then the column w,(c;(¢))
can be thought of as being made up of square boxes of side length a,¢, each of
which intersects w,(G). How many boxes of side length a,¢ are there in this
column? Approximately |d,|A4"(c;(¢))/a,. Adding up the contribution to
N (a,€) from each column we obtain

O d | A (¢, (e #(O
K = 3 D) id L #(e(0) = el .
j=1 n n j= n

The situation is illustrated in Figure 6.3.3.
From the last equation we deduce that when € is very small compared to

[x0> xn),
633 H(e) = 1l (€ forn=1,2,...,N
(63.3) "(e)~a" (a) orn=1,2,...,N.

n

We now substitute from (6.3.3) into (6.3.2) to obtain the functional
equation

d d
H(e) ~ ﬂm(i) + %Jf

d d
(;) N uj(;) ‘.. +MJ/(;)_
a a, 2 a

a, 3 a, ay ay

Figure 6.3.3

When the shear transfor-
mation w, is applied to
the columns of boxes
which cover the graph, G,
the result is a set of
thinner columns, of width G
a e, which cover w;(G).
The new columns are o Whe
made up of small paral- /z)/
lelograms, but the num- Zﬁ

ber of square boxes of side
length a,€ which they con- 4
tain is readily estimated. f
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Into this equation we substitute our assumption A4"(€) = constant - ¢ °

obtain the equation

to

€ P=|d|al e P+ |dylad e P 4 |dylaP e P + - Hldylal e P

The main formula in the statement of the theorem follows at once.

If the interpolation points are collinear, then the attractor of the IFS is the
line segment which connects the point (x,, Fj) to the point (x,, Fy), and this
has fractal dimension one. If £Y_ |d,| < 1 then one can show that A"(¢)
behaves like a constant times ¢ !, whence the fractal dimension is one. This
completes our informal demonstration of the theorem.

Exercises & Examples

3.1. We consider the fractal dimension of a fractal interpolation function in
the case where the interpolation points are equally spaced. Let x;, = x, +
(i/N)xy — x¢) for i =0,1,2,..., N. Then it follows that a, = 1/N for
n=1,2,..., N. Hence if condition (1) in Theorem 6.3.1 holds, then the
fractal dimension D of the interpolation function obeys

N 1,21 1,21 N
Elldnl(ﬁ) = (W) Elldnl =1

It follows that

n=1

TNy

This is a delightful formula for reasons of two types, (a) and (b). (a) This
formula confirms our understanding of the fractal dimension of fractal
interpolation functions. For example, notice that £V_;|d,| < N. Hence
the dimension of a fractal interpolation function is less than two: however
we can make it arbitrarily close to 2. Also, under the assumption that
TN_.ld,| > 1, the fractal dimension is greater than 1: however we can
vary it smoothly down to one. (b) It is remarkable that the fractal
dimension does not depend on the values {F: i =0,1,2,..., N}, aside
from the constraint that the interpolation points be noncollineas. Hence it
is easy to explore a collection of fractal interpolation functions, all of
which have the same fractal dimension, by imposing the following simple
constraint on the vertical scaling factors:

N
Y ld,|= NPl

n=1

Log( ﬁ Idnl)

D=1+

Figures 6.3.4(a)—(c) illustrate some members of the family of fractal
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Figure 6.3.4(a)- (c)
Members of the family of
fractal interpolation func-
tions corresponding to the
sel of data
(©0,0),(1,1),2,1),(3,2)),
such that the fractal di-
mension of each member
of the family is D = 1.3

(b)

A
e

-

LRV
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/- /MM/

3.2,

3.3.

3.4.

interpolation functions corresponding to the set of data {(0,0), (1, 1),
(2,1), (3, 2), such that the fractal dimension of each member of the family
is D=13.

Figures 6.3.5(a) and (b) illustrate members of a family of fractal interpo-
lation functions parameterized by the fractal dimension D. Each function
interpolates the same set of data.

Make an experimental estimate of the fractal dimension of the graphical
data in Figure 6.3.6. Find a fractal interpolation function associated with
the data {(0,0), (50, —50),(100,0)}, which has the same fractal dimen-
sion, and which has two equal vertical scaling factors. Compare the graph
of the fractal interpolation function with the graphical data.

Find a fractal interpolation function which approximates the experimen-
tal data shown in Figure 5.3.5.

Figure 6.3.7 shows the graphs of functions belonging to various one-
parameter families of fractal interpolation functions. Each graph is the
attractor of an IFS consisting of two affine transformations. Find the IFS
associated with one of the families.

Figure 6.3.4
(continued).

(c)
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Figure 6.3.5(a) and (b)
Members of a one-param-
eter family of fractal in-
terpolation functions.
They correspond to the
sel of data

(0,0, (1,1, 2,1),3,2)}
with vertical scaling fac-
torsd, = —d, =dy =
322 for D=1,11,12,
and 1.3,1.4,1.5,1.6, and
1.7. D is the fractal di-
mension of the fractal in-
terpolation function.

NAVAS
ANANANAY




6.3 The Fractal Dimension of Fractal Interpolation Functions 233

Figure 6.3.6

Make an experimental
estimate of the fractal di-
mension of the graphical
data shown here. Find

¥ a fractal interpolation
function associated

with the data

{(0,0), (50, — 50y, (100, 0y},
1 which has the same fractal
dimension, and which has
two equal vertical scaling
factors. Compare the

I
117

Anui

11

LT 11

111
T
T

H _ : graph of the fractal inter-
3 it ¥ polation function with the
1 ! ] E : graphical data.

1
1
1
1T
Bagul
T
1T

NBREEI
£
T

1T
1T
|
1
{

HH
OHL

T T
amm- e ymu
T T T o

Figure 6.3.7

This figure shows graphs of various one-parameter families of fractal interpolation func-
tions. Each graph is the attractor of an IFS consisting of two affine transformations. Can
you find the families?
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6.4 HIDDEN VARIABLE FRACTAL INTERPOLATION

We begin by generalizing the results of Section 6.2. Throughout this section,
let (Y, dy) denote a complete metric space.

Definition 1. Let I C R. Let f: I - Y be a function. The graph of f is the
set of points

G={(x,f(x)) ERXY:x€eT}.

Definition 2. A set of generalized data is a set of points of the form
{(x;, FYeR XY:i=0,1,2,..., N}, where

Xo < X <Xy <Xxy3< -0 < xy.

An interpolation function corresponding to this set of data is a continuous
function f: [x4, xy] — Y such that
f(x)=FE fori=1,2, ., N.

The points (x;, F;) € R X Y are called the interpolation points. We say that
the function f interpolates the data and that (the graph of) f passes through the
interpolation points.

Let X denote the Cartesian product space R X Y. Let 8 denote a positive
number. Define a metric d on X by

(6.4.1) d(X,, %) =|x — x|+ 0dy(y1, ),
for all points X, = (x,, y,) and X, = (x,,y,) in X. Then (X,d) is a
complete metric space.

Let N be an integer greater than one. Let a set of generalized data
{(x;, FYe X: i=0,1,2,..., N} be given. Let n € {1,2,..., N}. Define L :

R — R by
(xn B xn—l)
6.4.2 L(x)y=a,x +e, wherea,=-——""—"—""—+
( ) (x) (xn — X)
and e = (xan—l - xOxn)
12 (xN — xO)

sothat L ([x,, xy]) = [x,_,, x,]. Let c and s be real numbers, with0 < s < 1
and ¢ > 0. Foreach n € {1,2,..., N} let M: X - Y be a function which
obeys

(64.3) dy(M,(a,y), M, (b,y)) <cla—b| foralla,beR,y€eY,
and

(6.4.4) dy(M,(x,a), M(x,b)) <sdy(a,b) foralla,be Y, x € R.
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Define a transformation w,: X = X by

w,(x, ) = (L,(x), M,(x,y)) forall(x,y) €X,n=1,2,...,N.

Theorem 1. Let the IFS {X;w,, 1,2,..., N} be defined as above, with
N > 1. In particular, assume that there are real constants ¢ and s such that
0<s <1, 0<c, and conditions (64.3), and (6.4.4) are obeyed. Let the
constant 8 in the definition of the metric d in Equation (6.4.1) be defined by

1_
0=(—2CQ where a = Max{a,:i=1,2,...,N}.

Then the IFS {X;w,, n=1,2,... N} is hyperbolic with respect to the met-
ric d.

Proof. This follows very similar lines to the proof of Theorem 6.2.1. We leave
it as an exercise for enthusiastic readers. The proof can also be found in
[Barnsley, 1986¢].

We now constrain the hyperbolic IFS {X;w,, n=1,2,..., N}, defined
above, to ensure that its attractor includes the set of generalized data. We
assume that

(645) M,(x,,F)=F_, and M,(xy,F)=F forn=1,2 ., N.
Then it follows that
M,(xo,FE))=(x,,v1,E,,1) and wn(xNaFN)=(xnv EI) forn=1,2,...,N.

Theorem 2. Let N be a positive integer greater than one. Let {X, w,, n =
1,2,..., N} denote the IFS defined above, associated with the generalized data
set {(x;,, F)e R X Y:i=12,...,N}. In particular, assume that there are
real constants ¢ and s such that 0 < s < 1,0 < ¢, and conditions (6.4.3), (6.4.4),
and (6.4.5) are obeyed. Let G € (X)) denote the attractor of the IFS. Then G
is the graph of a continuous function f: [x,, x ] = Y which interpolates the data
{(x;, F): i=1,2,..., N}. That is

G={(xf(x)):xe[x,xy]},
where

f(x)=F  fori=0,1,23,...,N. .

>

Proof. Again we refer to [Barnsley 1986¢]. The proof is analogous to the
proof of Theorem 6.2.2.

Definition 3. The function whose graph is the attractor of an IFS, as de-
scribed in Theorems 6.4.1 and 6.4.2, above, is called a generalized fractal
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interpolation function, corresponding to the generalized data {(x;, F): i =
1,2,...,N}.

We now show how to use the idea of generalized fractal interpolation
functions to produce interpolation functions which are more flexible than
heretofore. The idea is to construct a generalized fractal interpolation func-
tion, using affine transformations acting on R3, and to project its graph into
R2 This can be done in such a way that the projection is the graph of a
function which interpolates a set of data {(x;, F) € R%: i=1,2,..., N}. The
extra degrees of freedom provided by working in R> give us “hidden”
variables. These variables can be used to adjust the shape and fractal dimen-
sion of the interpolation functions. The benefits of working with affine
transformations are kept.

Let N be an integer greater than one. Let a set of data {(x,, F) € R%:
i=0,12,...,N} be given. Introduce a set of real parameters {H;: i =
0,1,2,..., N}. For the moment let us suppose that these parameters are fixed.
Then we define a generalized set of data to be {(x,, F,, H) € R X R%:
i=0,1,2,..., N}. In the present application of Theorem 6.4.2 we take
(Y, dy) to be (R?, Euclidean). We consider an IFS {R* w,, n=1,2,..., N}
where for n € {1,2,..., N} the map w,: R®> - R? is an affine transformation
is of the special structure:

x a, 0 0|, e,
wn [ y :| = Cn dn hn [ y + fn *
z k, 1, m,|*% &n

Here a,, c,, d,, e,, f,. &, 7., k,, [,, and m, are real numbers. We assume

n> “n> ns "no

that they obey the constraints

Xo Xp-1
w| B |=|F1]|
HO anl
and
XN Xn
w, Fy|= w ], forn=1,2,..., N.
HN Hn

Then we can write
w,(x,y,2) =(L,(x), M,(x,,2)) forall (x,y,z) €eR* n=1,2,..., N,
where L,(x) is defined in Equation (6.4.2) and M,: R> - R? is defined by

X +c x
- y] fn n
Mh] A"[Z +[3,,+an]’
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where

6.4.6 A, = oy { =1,2 N
(6.4.6) Sl m orn=1,2,...,N.

n n

Let us replace F, in condition (6.4.5) by (F,, H). Then M, obeys condition
(6.4.5). Let us define

¢=Max{Max{c k;}:i=12,.. N}.

Then condition (6.4.3) is true. Lastly, assume that the linear transformations
A,: R? > R? are contractive with contractivity factor s with 0 < s < 1. Then
condition (6.4.4) is true. We conclude that, under the conditions given in this
paragraph, the IFS {R* w,,n =1,2,..., N} satisfies the conditions of Theo-
rem 6.4.2. Tt follows that the attractor of the IFS is the graph of a continuous
function f: [x,, xy] = R? such that

f(x)=(F,H) forl,2,...,N.
Now write

f(x) = (A(x), £(%)).
Then f;: [xy, xy] = R is a continuous function such that

fi(x)=F fori=12,... N.

Definition 4. The function f;: [x,, xy] = R? constructed in the previous
paragraph is called a hidden variable fractal interpolation function, associated
with the set of data {(x;, F;) € R% i=1,2,..., N}.

The easiest method for computing the graph of a hidden variable fractal
interpolation function is with the aid of the Random Iteration Algorithm.
Here we present an adaptation of Program 6.2.1. It computes points on the
graph of a hidden variable fractal interpolation function and displays them on
a graphics monitor. It is written for N = 3 and the data set

{(0,0),(30,50), (60, 40), (100,10) } .

The “hidden” variables, namely the entries of the matrices 4, and the number
H, for n=1,2,3, are input by the user during execution of the code. The
program calculates the coefficients in the three-dimensional affine transforma-
tions from the data, and then applies the Random Iteration Algorithm to the
resulting IFS. The first two coordinates of each successively computed point,
which has three coordinates, is plotted on the screen of the graphics monitor.
The program is written in BASIC. It runs without modification on an IBM PC
with Enhanced Graphics Adaptor and Turbobasic. On any line the words
preceded by a ’ are comments: they are not part of the program.
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PROGRAM 64.1
x[0] = 0: x[1] = 30: x[2] = 60: x[3] = 100 ’Data set
F[0] = 0: F[1] = 50: F[2] = 40: F[3] =10
input enter the hidden variables H[0], H[1], H[2] and H[3]”, H[0], H[1], H[2],
R[3] ’Hidden Variables
forn =1 to 3: print ”forn = 7, n
input “enter the hidden variables d, h, |, m”, d[n], hh[n], I[n], m[n] "More
Hidden Variables
next
forn = 1to3 ’Calculate the affine transformations from the Data and the
Hidden Variables
p = F[n-1]-d[n]* FO0]-hh[n]* H[0]: ¢ = h[n-1]-1[n] * F[0]-m[n]* H[0]
r = F[n]-d[n]* F[3]-hh[n]* H[3]: s = H[n]-1[n]* F[3]-m[n]* H[3]
b = x[3]-x[0]: c[n] = (r-p)/b: k[n] = (s-q)/b
a[n] = (x[n]-x[n-1])/b: e[n] = (x[3]* x[n-1]-x[0] * x[n]) /b
filn] = p-c[n]*x[0]: g[n] = g-k[n]*x[0]
next
screen 2: cls initialize graphics
window (0, 0)-(100,100) ’change this to zoom and /or pan
x = 0:y = 0:z = hh[0] ’initial point from which the random iteration
begins
forn = 1t01000 °Random Iteration Algorithm
kk = int(3*rd-0.0001) + 1
newx = a[kk]*x + e[kk]
newy = c[kk]*x + d[kk]*y + hh[kk]*z + fi[kk]
newz = k[kk]*x + I[kk]*y + m[kk]*z + g[kk]
X = Newx: y = newy: Z = Nnewz
pset (x,y),z ’plot the most recently computed point, in color z, on
the screen
next
end

The result of running an adaptation of this program on a Masscomp
workstation, and then printing the contents of the graphics screen, is presented
in Figure 6.4.1. In this case H[0] = 0, H[1] = 30, H[2] = 60, H[3] = 100,
d)=d2)=d(3) =03, h1)=r2)=02, A3 =01, (D) =12)=1(3)
= =01, m(1)=0.3, m2) =0, m(3)= —0.1. Remember that the linear
transformation A4, must be contractive, so certainly do not enter values of
magnitude larger than one for any of the numbers d(n), A(n), {(n), and
m(n). The program renders each point in a color which depends on its
z-coordinate. This helps the user to visualize the “hidden” three-dimensional
character of the curve.
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The important point about hidden variable fractal interpolation is this:
Although the attractor of the IFS is a union of affine transformations applied
to the attractor, this is not the case in general when we replace the word
“attractor” by the phrase “projection of the attractor.” The graph of the
hidden variable fractal interpolation function fi(x) is not self-similar, or
self-affine, or self-anything!

The idea of hidden variable fractal interpolation functions can be devel-
oped using any number of “hidden” dimensions. As the number of dimen-
sions is increased, the process of specifying the function becomes more and
more onerous, and the function itself, seen by us in flatland, becomes more
and more random. One would never guess, from looking at pictures of them,
that they are generated by deterministic fractal geometry.

Exercises & Examples

4.1. Generalize the proof of Theorem 6.2.1 to obtain a proof of Theorem 6.4.1.

4.2. Let % denote the set of continuous functions: f: [x4, xy] — Y “such that
f(xq) = Fy and f(xy) = Fy. Define a metric d on & by d(f, g) =
Max{d,(f(x), g(x)): x € [xq, xy]}. Then (F, d) is a complete metric
space; see for example [Rudin, 1966]. Use this fact to help you generalize
the proof of Theorem 6.2.2 to provide a proof of Theorem 6.4.2.

4.3. Rewrite Program 6.4.1 in a form suitable for your own computer environ-
ment, then run it and obtain hardcopy of the output.

Figure 6.4.1

An example of a hidden
variable fractal interpola-
tion function. This graph
was computed using Pro-
gram 6.4.1 with the fol-
lowing values for the
“hidden” variables:
H[0] =0, H[1] = 30,
H[2] = 60, H[3] = 100,
d(l)=d2)=4d(3) =
03, k1) = h(2) =02,
h(3) =101, /1) =

12y =13)= —-01,
m(1l) =03, m(2) =0,
m(3) = —0.1.
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4.4. Modify your version of Program 6.4.1 so that you can adjust one of the
“hidden” variables while it is running. In this way, make a picture which
shows a one-parameter family of hidden variable fractal interpolation
functions.

4.5. Modify your version of Program 6.4.1 so that you can see the projection
of the attractor of the IFS into the (y, z)-plane. To do this, simply plot
(y, z) in place of (x, y). Make hardcopy of the output.

4.6. Figure 6.4.2(a) shows three projections of the graph G of a generalized
fractal interpolation function f: [0,1] — R2 The projections are: (i) into
the (x, y) plane, (ii) into the (x, z) plane, and (iii) into the (y, z) plane. G
is the attractor of an IFS of the form {R? w;, w,} where w; and w, are
affine transformations. Find w; and w,. See also Figure 6.4.2(b).

4.7. Use a hidden-variable fractal interpolation function to fit the experimen-
tal data in Figure 5.3.5. Here is one way to proceed. (a) Modify your
version of Program 6.4.1 so that you can adjust the “hidden” variables
from the keyboard. (b) Trace the data in Figure 5.3.5 onto a sheet of
flexible transparent material, such as a viewgraph. (c) Attach the tracing
to the screen of your graphics monitor using clear sticky tape. (d)
Interactively adjust the “hidden” variables to provide a good visual fit to
the data.

4.8. > Show that, with hidden variables, one can use affine transforma-
tions to construct graphs of polynomials of any degree.

6.5 SPACE-FILLING CURVES

Here we make a delightful application of Theorem 64.2. Let A denote a
nonempty pathwise connected compact subset of R% We show how to
construct a continuous function f: [0,1] — R? such that f([0,1]) = 4.

Let (Y, dy) denote the metric space (R?, Euclidean). We represent points
in Y using a Cartesian coordinate system defined by a y-axis and a z-axis.
Thus, (y, z) may represent a point in Y, To motivate the development we take
A =mC Y. Consider the just-touching IFS {Y; w , w, wy, w,} where the
maps are similitudes of scaling factor 0.5, corresponding to the collage in
Figure 6.5.1.

Let

(Fy, Hy) = (0,0), (F, H)) = (0,0.5), (K, H,) = (0.5,0.5),
(F, H) =(1,05),and (K, H,) = (1,0).
The maps are chosen so that
W»I(F(‘)vHO)z(Elflwflnfl) and W"(F;‘,H4)=(E’, HH) forn=1,2,3,4,

The IFS code for this IFS is given in Table 6.5.1.
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Figure 6.4.2(a)

This figure shows three
projections of the graph
of a generalized fractal
interpolation function f:
[0,1] = R2. The projec-
tions are into the (x, y)
plane, the (x, z) plane,
and the (y, z) plane. G
is the attractor of an IFS
of the form {R>; w,, w, },
where w, and w, are
affine transformations.
Can you find w; and w,?

Figure 6.4.2(b)

Three orthogonal projec-
tions of the graph of a
generalized fractal inter-
polation function. The
fractal dimension here is
higher than that for Fig-
ure 6.4.2(a).
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Figure 6.5.1

Collage of W using four
similitudes of scaling fac-
tor 0.5. The map w,

is chosenso that

W,,(F(‘), HO) =

(F;r—l ’ Hn*l) and
Wn(Et’ H4) = (El’ I{n)

forn=1,2,3,4 (F1,Hy) (F2, H2) (F3, H3)
bl £ i) . '

[ @

®
(Fo, Ho) (F4, Hg)

Let A, € 5# (W) denote a simple curve which connects the point (F,, Hy)
to the point (F, H,), such that 4, N dW = {(F,, H,),(F,, H,)}. This last
condition says that the curve lies in the interior of the unit square box, except
for the two endpoints of the curve. Consider the sequence of sets {4, =
W°"(Ay))5-o where W: s (l) — ¢ (W) is defined by

4
W(B) = |J w,(B) forall B €#(m).
n=1
It follows from Theorem 3.7.1 that the sequence converges to M in the
HausdorfI metric. The reader should verify that foreach n =1,2,..., 4, isa
simple curve which connects the points (F,, H;) to the point (F,, H,).
Sequences of such curves are illustrated in Figures 6.5.2(a)—(d).

We use the IFS defined in the previous paragraph to construct a continu-
ous function f: [0,1] — M such that f([0, 1]) = WM. We achieve this by exploit-
ing a hidden variable fractal function constructed in a special way, We use

Table 6.5.1

IFS code for W, constrained to yield a space-filling curve.
w a b ¢ d e f J4
1 0 0.5 05 O 0 0 0.25
2 05 0 0 05 0 05 025
3 05 0 0 05 05 05 025
4 0 -05 -05 O 1 05 025
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Figure 6.5.2(a)
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6 Fractal Interpolation

Figure 6.5.2(c)

A sequence of sets “con-
verging to” a M. These
are obtained by applica-
tion of the Deterministic
Algorithm to the IFS code
in Table 6.5.1, starting
from the set Ay in the
lower left panel. How
fascinating they are!

Figure 6.5.2(d)

A sequence of curves
“converging 10> a space-
Silling curve. These are
obtained by application
of the Deterministic
Algorithm to the IFS code
in Table 6.5.1, starting
from a curve Ay which
connects (0,0) to (1,0)
and lies in B,

7]
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ideas presented in Chapter 6, Section 4. Consider the IFS {R% w,, n =

1,2,...,4} where the map w,: R? - R? is the affine transformation
X 025 0 0]y (n—1)/4
W"|:y:| = 0 a, bn [}’ + €, for n € {1,2,3,4}
z 0 Cﬂ dﬂ z .fn
The constants a,, b, ¢,, d,, e,, and f are defined in Table 6.5.1. This IFS
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satisfies Theorem 6.4.2, corresponding to the set of data
{(0, y, Hy),(0.25, F,, H)),(05, K, H,),(0.75, F,, Hy),(1, F,, H,)}.

It follows that the attractor of the IFS is the graph, G, of a continuous
function f: [0,1] —» R2 What is the range of this function? It is

G, = {(y,z) €R?: (x,y,2) €G},
namely the projection of G into the ( y, z)-plane. It is straightforward to prove
that G, is the attractor 4 = W of the IFS defined by the IFS code in Table
6.5.1. It follows that f([0,1]) = B. So we have our space-filling curve!

We have something else very exciting as well. The attractor of the three-
dimensional IFS is the graph of a function from [0, 1] to B. The projections
G,, and G,,, in the obvious notation, are graphs of hidden-variable fractal
functions, while G,, = B. What does G look like from other points of view?
Various views of the attractor are illustrated in Figures 6.5.3(a) and (b). We
conclude that G is a curious complex three-dimensional object. It would be
wonderful to have a three-dimensional model of G made out of very thin
strong wire.

The following theorem summarizes what we have just learned

Theorem 1. Let A C R? be a nonempty pathwise-connected compact set, such
that the following conditions hold. Let N be an integer greater than one. Let
there be a hyperbolic IFS {R* M,, n=1,2...,N} such that A is the
attractor of the IFS. Let there be a set of distinct points {(F,,G,) € A:
i=0,1,2..., N} such that
Mn(F(‘)’HO)':(F;lAl’Hn—l) and Mn(FN9HN)=(F;I9I{")
forn=1,2...,N.
Then there is a continuous function f: [0,1] = R? such that f([0,1]) = A. One
such function is the one whose graph is the attractor of the IFS

n—1
M), =12 N

1
{R3; w,(x,y,2) = (ﬁx +

Exercises & Examples

5.1. Let & denote the Sierpinski triangle with vertices at the points (0, 0),
(0,1) and (1,0). Find an IFS of the form {R? w;, w,, w;}, where the
maps are affine, such that the attractor of the IFS is the graph of a

continuous function f: [0,1] = R? such that f([0,1]) = & . Four
projections of such an attractor are shown in Figure 6.5.4.

5.2. Find an IFS {R> w,, w,, w;, w,}, where the transformations are affine,
whose attractor is the graph of a continuous function f: [0,1] = R? such
that f([0,1]) = A, where A4 is the set represented in Figure 6.5.5.
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Figure 6.5.3(a)

Various views of the at-

tractor of a certain IFS.

From some points of view
we see that it is the graph
of a function. From one
point of view it is clear

that it is the graph of a

space-filling curve!

Figure 6.5.3(b)

Higher resolution view of
the lower right panel in
Figure 6.5.3(a).

6 Fractal Interpolation
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Figure 6.5.4

Four views of the attrac-
tor of an IFS. This ar-
tractor is the graph of a
continuous function f:
[0,1] = R? such that
f({0,1)) is a Sierpinski
triangle. This function
provides a “space-filling”
curve, where the space is
a fractai!

VY
7 7

ad

Figure 6.5.5

Find an IFS

{R‘;’ Wi Wy, W, W4},
where the transformations
are affine, whose attrac-
tor is the graph of a
continuous function
f:10,1] - R? such that
f{0,1]y = 4, where A is
the set represented here.
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71 THE ESCAPE TIME ALGORITHM FOR COMPUTING PICTURES OF FS ATTRACTORS
AND JULIA SETS

Let us consider the dynamical system {R2; f)} where /: R? = R? is defined
by

{(2x,2y—1) ify > 0.5,
f(x, ) ={(@2x-1,2y)  ifx>05and y <0.5,
(2x,2y) otherwise.
This dynamical system is related to the IFS
{R?; w(x, y) = (0.5x,0.5y + 0.5),
wy(x, y) = (0.5x + 0.5,0.5y), wy(x, y) = (0.5x,0.5y)}.
The attractor of the IFS is a Sierpinski triangle & with vertices at (0, 0),
(0,1), and (1, 0). The relationship between the dynamical system {R?, f} and
the IFS {R% w,, w,, w;} is that {&; f} is a shift dynamical system



7.1 The Escape Time Algorithm for Computing Pictures

associated with the IFS. (Shift dynamical systems are discussed in Chapter 4,
Section 4.) One readily verifies that f restricted to & satisfies

wi (%, y) if (x, y) Ewl(&)
fnp) ={wi(xy) it(xy) em( &)\ ((05.09),
wl(x,y)  if(x,y) € w_,(& ) \ {(0,0.5),(0.5,0)}.

In particular, f maps & onto itself. The dynamical system {R?% £} is an

extension of the shift dynamical system { & ; f} to R% The situation is
illustrated in Figure 7.1.1.

249

& In this region f(x,y)=wi1(x,y)

ad

WVVVWVVV
-

o4
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Here f(x,y)=w§1(x.y) In this region f(x.y)=w'21(x,y)

Figure 7.1.1

The dynamical system
{R?, £} is obtained by
extending the definition of
a shift dynamical system
on a Sierpinski triangle
to all of R?.
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Let d denote the Euclidean metric on R? The shift dynamical system
{R?% f} is “expanding:” for any pair of points x,, x, lying in any one of the
three domains associated with f, we have

. d(f(x1), f(x;)) = 2d(x, ;).
One can prove that the orbit { f°"(x)}>_, diverges towards infinity if x does
not belong to & That is

0.1 w ety s wN

What happens if we compute numerically the orbit of a point x € &?
Recall that the fractal dimension of & is log(3)/log(2). This tells us that

& is “very small” compared to R, Hence, although f( &) = &,

errors in a computed orbit are likely to produce points which do not lie on
& . This means that, in practice, most numerically computed orbits will

diverge, regardless of whether or not the initial point lies on & The

Sierpinski triangle & is an “unstable” invariant set for the transformation
f: R? > R2 It is an attractive fixed point for the transformation W: s (R?)
- #(R?), where W = w, U w, U w, is defined in the usual manner.
Intuitively, we expect that orbits of the dynamical system {R% f} which
start close to & should “take longer to diverge” than those which start far

from & How fast do different orbits diverge? Here we describe a
numerical, computergraphical experiment to compare the number of iterations
required for the orbits of different points to escape from a ball of large radius,
centered at the origin. Let (a, b) and (¢, d), respectively, denote the coordi-
nates of the lower-left corner and the upper-right corner of a closed, filled
rectangle #'C R2 Let M denote a positive integer, and define an array of
points in #” by

- d—b
Xy, = a+p(c‘71wa)’b+q£T)) forp,g=10,1,2,..., M.

In the experiment these points will be represented by pixels on a computer
graphics display device. We compare the orbits { f°"(x, ,):}7=o for p,q =
0,1,2,..., M.

Let R be a positive number, sufficiently large that the ball with center at
the origin and radius R, contains both & and #". Define

¥={(x,y) € R: x? + y2 > R}.

A possible choice for the rectangle #” and the set ¥7, in relation to & , 18
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A Figure 7.1.2
N How long do orbits of
N pointsin W take to arrive

\ in V"1 We expect that the
number of iterations re-
quired should tell us
something about the

structure of

illustrated in Figure 7.1.2. In order that the comparison of orbits provides
information about , one should choose #” so that #"'N & #+ 2.

Let numits denote a positive integer. The following Program computes a
finite set of points { f°!(x, ), f°%(x, ), [ (%, o)., f°"(x,,,)} belonging
to the orbit of x, , € #, for each p,q=1,2,..., M. The total number of
points computed on an orbit is at most numits. If the set of computed points
of the orbit of x, , does not include a point in ¥~ when n = numits, then the
computation passes to the next value of ( p, g). Otherwise, the pixel corre-
sponding to x,, , is rendered in a color indexed by the first integer » such that
f°"(x,, ,) € ¥, and then the computation passes to the next value of (p, q).
This provides a computergraphical method for comparing how long the orbits
of different points in %~ take to reach ¥".

The following program is written in BASIC. It runs without modification on
an IBM PC with Enhanced Graphics Adaptor and Turbobasic. On any line
the words preceded by a * are comments: they are not part of the program.

PROGRAM 7.1.1 (Example of the Escape Time Algorithm)
numits =20:a=0:b=0:c=1:d=1: M = 100 ’Define viewing
window, ¥, and numits.
R =200 ’Define the region ¥".
screen 9: cls ’Initialize graphics.
forp=1toM
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forq=1toM
x=a+(c—ay*xp/M:y=>b+(d —b)xq/M ’Specify the initial
point of an orbit, x(p, q).
forn = 1 to numits ’Compute at most numits points on the orbit of
: X(p, Q).
’Evaluate { applied to the previous point on
the orbit.

if y > 0.5 then

X =2*xx:1y=2*xy—1
elseif x > 0.5 then

X =2%x — l:y = 2=y

| THE FORMULA FOR THE FUNCTION f{(x)
else

X =2%Xx1y = 2%y
end if

150 if x*x + y*y > R then ’If the most recently computed point lies
in ¥ then. .,

’. .. render the pixel x(p, q) in color n, and
go to the next (p, q).

160 pset(p, q), n: n = numits

170 end if

if instat then end ’Stop computing if any key is pressed!
next n: next g: next p

end

Color Plate 7.1.1 shows the result of running a version of Program 7.1.1 on
a Masscomp 5600 workstation with Aurora graphics.

In Figure 7.1.3 we show the result of running a version of Program 7.1.1,
but this time in black-and-white. A point is plotted in black if the number of
iterations required to reach ¥~ is an odd integer, or if the orbit of the point
does not reach ¥~ during the first numits iterations.

In Figure 7.1.4 we show the result of running a version of Program 7.1.1,
with (a, b) = (0,0), (¢, d) = (5 X 10718 5 x 107!8), and numits = 65. This
viewing window is minute. See also Color Plate 7.1.2. Now you should be
convinced that & is not simplified by magnification.

The dynamical system {R?% f} contains deep information about the
“repelling” set & . Some of this information is revealed by means of the

Escape Time Algorithm. The orbits of points which lie close to & do
indeed appear to take longer to escape from R2\ ¥~ than those of points

which lie further away from & :

Exercises & Examples
1.1. Let {R? f} denote the dynamical system defined at the start of this
chapter, and let denote the associated Sierpinski triangle. Prove
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Figure 7.1.3

Output from a modified
version of Program 7.1.1.
A pixel is rendered in
black if either the number
of iterations required to
reach ¥ is an odd in-
teger, or the orbit does
not reach ¥~ during the
first numits iterations.

Figure 7.1.4

Here we show the result
of running a version of
Program 1.1.1, with
(a,b) = (0,0), (¢, d) =
(5 X 1071 5 X 107 1%y,
and numits = 65. This
viewing window is minute,
yet the computation time
was not significantly in-
creased. If we did not
know it before, we are
now convinced that

& is not simplified

by magnification.
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that the orbit {f°"(x)}, diverges, for each x € R?\ & That is,

prove that d(O, f°"(x)) — o as n - o for each x € R?\ & .

1.2. Rewrite Program 7.1.1 in a form suitable for your own computergraphical
environment, then run it and obtain hardcopy of the output.

1.3. If the Escape Time Algorithm is applied to the dynamical system
{R?; f(x, ) = (2x,2p)}, what will be the general appearance of result-
ing colored regions?

1.4. By changing the window size in Program 7.1.1, obtain images of ‘zooms’
on the Sierpinski triangle. For example, use the following windows:
(0,0)-(0.5,0.5); (0,0)-(0.25,0.25); (0,0)—(0.125,0.125); ... . How must
the total number of iterations, numirs, be adjusted as a function of
window size in order that the quality of the images remains (approxi-
mately) uniform? Make a graph of the total number of iterations against
the window size. Is there a possible relationship between the behaviour of
numits as a function of window size, and the fractal dimension of the
Sierpinski triangle? Make a hypothesis and test it experimentally.

Here we construct another example of a dynamical system whose orbits
“try to escape” from the attractor of an IFS. This time we treat an IFS whose
attractor has nonempty interior. Consider the hyperbolic IFS{R?; w,, w,},

where
A HE A

1= 3 - [

The attractor of this IFS is a closed, filled rectangle, which we denote here by
. This attractor is the union of two copies of itself, each scaled by a factor
1/ V2, rotated about the origin anticlockwise through 90°, and then translated
horizontally, one copy to the left and one to the right. The inverse transforma-
tions are

o I B | R I b o N R

Define f: R? > R? by

f(x’y)={w; (%, ¥) if x>0

wy Y x, y) when x < 0.
Then the dynamical system {R? f} is an extension of the shift dynamical
system {m; f} to R?.

What happens when we apply the Escape Time Algorithm to this dynami-
cal system? To see, one can replace the function f(x) in Program 7.1.1 by
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if x > 0 then

NEWX = S*y: Newy = —S*X + s

else THE FORMULA FOR THE
NEWX = S*yI NEWY = —S*X — § FUNCTION f(x).

end if

X = NeWX: y = newy

Results of running Program 7.1.1, thus modified, with the window #" and the
escape region ¥~ chosen appropriately, are shown in Figure 7.1.5 and in Color
Plate 7.1.3.

It appears that the orbits of points in the interior BB do not escape. This is
not surprising. The fractal dimension of the attractor of the IFS is the same as
the fractal dimension of R2 so small computational errors are unlikely to
knock the orbit off the invariant set. It also appears that the orbits of points
which lie in R?\ B reach ¥~ after fewer and fewer iterations, the further away
from HH they start.

Again we see that the Escape Time Algorithm provides a means for the
computation of the attractor of an IFS. Indeed, we have here the bare bones of
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Figure 7.1.5

An image of an IFS at-
tractor compuled using
the Escape Time Al-
gorithm. This time the at-
tractor of the IFS is a
filled rectangle and the
computed orbits of poinis
in MR seem never to
escape.
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a new algorithm for computing images of the attractors of some hyperbolic
IFS on R? Here are the main steps: (a) Find a dynamical system {R?% f}
which is an extension of a shift dynamical system associated with the IFS, and
which tends to transform points off the attractor of the IFS to new points
which are further away from the attractor. (This is always possible if the IFS is
totally disconnected. The tricky part is to find a formula for f(x), one which
can be input conveniently into a computer. In the case of affine transforma-
tions in R2, one can often define the extensions of the domains of the inverse
transformations with the aid of straight lines.) (b) Apply the Escape Time
Algorithm, with ¥~ and #” chosen appropriately, but plot only those points
whose numerical orbits require sufficiently many iterations before they
reach 7",

For example, in Program 7.1.1 as it stands, one can replace the three lines
150, 160, and 170 by the two lines

150 if n = numits then pset(p, q), 1
160 if x*x + y*y > R then n = numits

and define numits = 10. If the value of numits is too high, then very few
points will not escape from #” and a poor image of & will result. If the

value of numits is too.low, then a coarse image of the & will be produced.
An image of an IFS attractor computed using the Escape Time Algorithm,
modified as described here, is shown in Figure 7.1.6.

Color Plates 7.1.4,7.1.5, 7.1.6, 7.1.7 and 7.1.8, show the results of applying
the Escape Time Algorithm to the dynamical system associated with various
hyperbolic IFS in R In each case the maps are affine, and the shift dynamical
system associated with the IFS has been extended to R 2.

Exercises & Examples

1.5. Modify your version of Program 7.1.1 to compute images of the attractor
of the IFS (C; wy(z) = rez — 1, wy(z) = re’®z + 1}, when r=1/2
and 8 = 7 /2.

1.6. Show that it is possible to define a dynamical system {C; f} which
extends to € the shift dynamical system associated with the IFS

{C; wi(2) =rez — 1, wy(2) = rez + 1},
for any 8 € [0,27), provided that the positive real number r is chosen
sufficiently small. Note that this can be done in such a way that f is
continuous.

1.7. Let {A4; f} denote the shift dynamical system associated with a totally
disconnected hyperbolic IFS in R2, 4 denotes the attractor of the IFS.

Show that there are many ways to define a dynamical system {R?; g} so
that f(x) = g(x) for all x € 4.
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Figure 7.1.6

Images of an IFS atirac-
tor computed using the
Escape Time Algorithm.
Only points whose orbits
have not escaped from
R\ ¥ after numits itera-
tions are plotted. The
value for numits must be
chosen not too large, as
in (@), and not too small,
as in (b), but just right,
as in (c).

(b)

(c)

The Escape Time Algorithm can be applied, often with interesting results,
to any dynamical system of the form {Rz; fHLA{C; f}or {é; /}. One needs
only to specify a viewing window #°, and a region ¥~ to which orbits of
points in %" might escape. The result will be a “picture” of %~ wherein the
pixel corresponding to the point z is colored according to the smallest value of
the positive integer n such that f°"(z) € ¥". A special color, such_as black,
may be reserved to represent points whose orbits do not reach ¥~ before
(numits + 1) iterations.

What would happen if the Escape Time Algorithm were applied to the
dynamical system f: € — € defined by f(z) = z?? This transformation can
be expressed f(x, y) = (x2 — y2,2xp). From the discussion of the quadratic
transformation in Chapter 3, Section 4, we know that the orbits of points in
the complement of the unit disk F = {z € C: |z] < 1} converge to the Point
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at Infinity. Orbits of points in the interior of F converge to the Origin. So if %~
is a rectangle which contains F and if the radius R, which defines ¥, is
sufficiently large, then we expect that the Escape Time Algorithm would yield
pictures of F surrounded by concentric rings of different colors. The reader
should verify this!

F is called the filled Julia set associated with the polynomial transforma-
tion f(z) = z2 The boundary of F is called the Julia set of f, and we denote
it by J. It consists of the circle of radius one, centered at the origin. One can
think of J on the Riemann Sphere as being represented by the Equator on a
globe. This Julia set separates those points whose orbits converge to the Point
at Infinity from those whose orbits converge to the origin. Orbits of points on
J itself cannot escape, either to infinity or to the origin. In fact J € #(C) and
fuJ )y=J= f 1(J). It is an “unstable” fixed point for the transformation f:
#(€) » #(C).

Definition 1. Let f: C - € denote a polynomial of degree greater than one.
Let F; denote the set of points in C whose orbits do not converge to the Point
at Infinity. That is

E={zec.(if(z)p , is bounded}

This set is called the filled Julia set associated with the polynomial f. The
boundary of F; is called the Julia set of the polynomial f, and it is denoted by
J,.
/

Theorem 1. Let f: C - € denote a polynomial of degree greater than one. Let
F, denote the filled Julia set of f and let J, denote the Julia set of . Then F, and
J are nonempty compact subsets of C; that is, F,€ #(C) and J, € X(C)
Moreoverf(Jf) =J,=f(J;) and f(F;) = F; = f (F,). The set ¥, = C\ F,
is pathwise connected.

Proof. We outline the proof for the one-parameter family of transformations
fr: € = C defined by

f(z) =2z =\,  where A € C is the parameter.

The general case is treated in [Blanchard 1984], [Brolin 1966], [Fatou 1919],
[Julia 1918], for example. This outline proof is constructed to provide informa-
tion about the relationship between the Theorem and the Escape Time
Algorithm. Some of the ideas and notation used here are illustrated in Figure
7.1.7.

Let J, denote the Julia set for f, and let F, denote the filled Julia set for
f- Let d denote the Euclidean metric on C and let

R>05+ /025 +A].
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Ball around 0O Figure 7.1.7

SRLIiihéAR'I\E'N (o @) .Illust.ration .showing what

is going on in the proof of
Theorem 7.1.1. This il-
lustrates the increasing
sequence of sets { ¥}
which converges to the
boundary of the basin of
attraction ¥, of the
Point at Infinity. It also
shows the decreasing se-
quence of sets, K, the
complements of the latter,
which converge to the
Sfilled Julia set F;. In gen-
eral the origin, O, need
not belong to F;.

Then it is readily verified that
d(0, f(z)) > d(0,z2) for all z such that d(0, z) > R.
Define
¥={zeC:|z|>R} U {0}.
Then it follows that
f(¥ycv.
One can prove that the orbit { f°"(z)} converges to o« for all z € ¥". No
bounded orbit intersects ¥". It follows that
= {z e C: f°"(z) & ¥ for each finite positive integer n} .
That is, F, is the same as the set of points whose orbits do not intersect .
Now consider the sequence of sets
¥, =f(¥) forn=0,12,. ..

For each non-negative integer n, ¥, is an open connected subset of (€,
Spherical). ¥, is open because ¥~ is open and f is continuols. ¥, is
connected because of the geometry of the quadratic transformation, described
in Chapter 3, Section 4: the inverse image of a path which joins the Point at
Infinity to any other point on the sphere contains a path which contains the
Point at Infinity.

Since f(¥") C ¥, it follows that ¥"C f~!(¥"). This implies that

(7.1.1) ¥Y=9,C¥ C¥,C - C¥,C -
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For each non-negative integer n,
= {z€€:{z,1(2), °(2), £(2),- ()} N V% B},

That is, ¥, is the set of points whose orbits require at most » iterations to
reach "+ Let

K,=C\¥, forn=01,23,....

PR Rt ]

Then K, is the set of points whose orbits do not intersect ¥ during the first n
iterations. That is

Kn= {ZGC; {Z,f°1(2),f°2(z),f°3(z),...,f°"(z)} N ¥= Q}_

For each non-negative integer n, K, is a nonempty compact subset of the
metric space (C, Spherical). How do we know that K is nonempty? Because
we can calculate that f possesses a fixed point z, € C, by solving the equation

f(z) =2} = N=2z.

The orbit of z, converges to z,. Hence it cannot belong to ¥, for any
non-negative integer n. Hence z, € K, for each non-negative integer n.
Equation (7.1.1) implies that

K,DK,DK,DK,D - DK, D -+ .

It follows that { K} is a Cauchy sequence in X(é). It follows that {K,}
converges to a point in S#(C). The limit is the set of points whose orbits do
not intersect ¥~. Hence
F,=Llmk, = K,
n—oo n=0
and we deduce that F, belongs to 9?((3).
The equation

K,..=1""YK,) forn=0,1,2,...
now implies, as in the proof of Theorem 7.4.1, that
F)‘ =f°~l(F)‘).
Since f is an onto map, we obtain f(F,) = F,.

Let us now consider the boundary of F,, namely the Julia set J, for the
dynamical system {C; f,}. Let z € interior (F,). Then the continuity of f
implies f~'(z) C interior (Fy). Hence F, D f~'(dF,) D dF,. Now suppose
that z € f7!(dF,). Let O be any open ball which contains z. Since f is
analytic, f(O) is an open set, and it contains f(z) € dF,. Hence f(O)
contains a point whose orbit converges to the Point at Infinity. It follows that

f Y(dF,) c dF,. We conclude that f~!(dF,) = dF, and in particular that
f(dF,) = dF,. This completes the proof of the theorem.
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We summarize some of what we discovered in the course of this proof. The
filled Julia set F, is the limit of a decreasing sequence of compact sets. Its
complement, which we denote by ¥, , is the limit of an increasing sequence
{7, } of open pathwise connected sets in (C, spherical). That is,

¥, = Limy,= |J¥.
n=eo n=0
The latter is called the basin of attraction of the Point at Infinity under the
polynomial transformation f,. It is connected because each of the sets ¥, is
connected. We have
E=RUY.
¥_, is open, connected, and nonempty. F) is compact and nonempty.

The Escape Time Algorithm provides us with a means for “seeing” the
filled Julia sets F,, as well as the sequences of sets { ¥, } and { K, } referred to
in the Theorem. Let us look at what happens in the case A = 1.1. Define ¥~ by
choosing R = 4, and put #'= {(x, y): —2 <x <2, -2 <y < 2}. The func-
tion fy_,,;: C — C is given by the formula

froa(x, ) = (x* = y? = 1.1,2xy) for all (x, y) € C.

An example of the result of running the Escape Time Algorithm, with ¥~ #~
and f: € - € thus defined, is shown in Figure 7.1.8. The black object
represents the filled Julia set F,_,,. The contours separate the regions
¥,+1\ 7., for some successive values of n. These contours also represent the

Figure 7.1.8

The Escape Time Al-
gorithm provides us with
a means for “seeing” the
filled Julia sets F, , as
well as the sequences of
sets {¥,} and { K} re-
ferred to in Theorem
7.1.1. In this illustration,
A = 1.1. The black object
represents the filled Julia
set F,_, . The contours
separate the regions
¥r i\ Y5, for some
successive values of n.
These contours also rep-
resent the boundaries of
the regions K, referred to
in the proof of the theo-
rem.
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boundaries of the regions K, referred to in the proof of the theorem. We refer
to them as escape time contours. Points in ¥/, | \ ¥, have orbits which reach
¥ in exactly (n + 1) iterations. In Color Plate 7.1.8 we show another example
of running the Escape Time Algorithm to produce an image of the same set.
The regions 7, , | \ 7, are represented by different colors.

Figure 7.1.9 shows a zoom on an interesting piece of F,_,,, including
parts of some escape time contours. This image was computed by choosing #~
to be a small rectangular subset of the window used in Figure 7.1.8.

Figures 7.1.10(a)—(e) shows pictures of the filled Julia sets F, for a set of
real values of A. These pictures also include a number of the escape time
contours, to help indicate the location of F,. F; is a filled disk. As A increases
the set becomes more and more pinchéd together, until, when A = 2, it is the
closed interval [ -2, 2]. For some values of A € [0, 2], it appears that F, has
no interior, and is “tree-like;” for other values it seems to possess a roomy
interior, It also appears that F, is connected for all A € [0,2], and totally
disconnected when A > 2. In the latter case F, may be described as a
“Cantor-like” set, or as a “dust.” The transition between the totally discon-
nected set and the connected, bubbly set as the parameter A is varied reminds

Figure 7.1.9
Zoom on an interesting
piece of Figure 7.1.8.
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Figure 7.1.10(a)-(e)

A sequence of Julia set
images, as in Figure
7.1.8, for an increasing
sequence of values of A
in the range 0 to 3. In
(d) and (e) the filled
Julia set is the same as
the Julia set. the filled
Julia set has no interior,
so it equals its boundary.
In (d) the Julia set is
“tree-like.” In (e) the
Julia set is totally discon-
nected.

Figure 7.1.10(b)
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Figure 7.1.10(c)

Figure 7.1.10(d)

Figure 7.1.10(e)
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us of the transition between the Cantor Set and the Sierpinski triangle,
discussed in connection with Figure 4.5.3.

Exercises & Examples

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14,

Modify your version of the Escape Time Algorithm to allow you to
compute pictures of filled Julia sets for the family of quadratic poly-
nomials z2 — A for complex values of A. Compute a picture of the filled
Julia set for A = i and obtain hardcopy of the output.

Give the iteration formulas, and find a suitable value for R in terms of
|A|, so that the Escape Time Algorithm can be applied to the comptex
polynomial z* — A.

Study web diagrams associated with z2 — A, for increasing values of
A € [0, 3]. Speculate on the relation of these diagrams to the correspond-
ing filled Julia sets.

Let A €[0,0.7] U [0.8,1.2]. Let ¥ be an open ball of radius 0.00001
centered at the origin. Apply the Escape Time Algorithm to the dynami-
cal system {C, z2 — A} with this choice of ¥". Obtain computergraphi-
cal data in support of the hypothesis that, in this case, the algorithm
yields approximate pictures of pieces of the closure of C \ F). Design an
escape region ¥~ so that, for A €[0,0.7] U [0.8,1.2], the Escape Time
Algorithm yields approximate pictures of J,.

The Escape Time Algorithm introduces numerical errors in the computa-
tion of orbits. These errors should lead to inaccuracies in the computed
pictures of Julia sets and IFS attractors. Consider the application to the
filled Julia set for z2 — 1. By means of computergraphical experiments,
determine the importance of these errors in the images which you
compute. One way to proceed is to choose successively smaller windows
#", which intersect the apparent boundary of the filled Julia set, and to
seek the window size at which the quality of computed images seems to
deteriorate. (You will need to increase the maximum number of itera-
tions, M, as you zoom.) Can you give evidence to show that the
apparently deteriorated images are not, in fact, correct?

Figure 7.1.11 was computed by applying the Escape Time Algorithm to
the dynamical system {C; f(z) = z* — z — 0.78). The viewing window
is #'={(x,y): "-1<x<1 —1<y<1} Determine the escape re-
gion ¥". Also, you might like to try magnifying one of the little faces in
this image.

The images in Figure 7.1.12(a), (b), (c) and (d) represent the nontrivially
distinct attractors of all IFS of the form {W; w,, w,, w;} where the maps
are similitudes of scaling factor one-half, and rotation angles in the set
{0°,90°,180°,270°}. The three translations (0,0), (1,0) and (0,1) are
used. These IFS are all just-touching. For i # ;j the set w,(4) N w;(A4),
is contained in one of the two straight lines x = 1 or y = 1. Show that,
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Figure 7.1.11

This image was computed
by applying the Escape
Time Algorithm to the
dynamical system {C;
f(z)=z2*—z-078).
The viewing window is
#={(x,y) —-1<
x<l -1l<y<l)
Can you determine the
escape region ¥ ?

1.15.

as a result, it is easy to compute these images using the Escape Time
Algorithm.

Here are some observations about this “group” of images: Many of
them contain straight lines. They all have the same fractal dimension.
They all use approximately the same amount of ink. Many of them are
connected. Make some more observations. Can you formalize and prove
some of these observations?

Verify computationally that a “snowflake” curve is a basin boundary for
the dynamical system {R% f} where, for all (x, y) € R%:

f(x,y)=(0,-1)if y < 0; f(x, y) = (3x,3y)
if y=0and x < —y/V3 +1;

e, y)=((9-3x - 3V3y)/2,(3/3 —=3/3x +3)2
if y>0and —y/V3 +1 <x <3/2;

F(x,y) = (B3x = 33y)/2, (3V3x + 3y — 6/3)/2) /2),
ify>0,and3/2 <x <y/V3 +2;

f(x,»)=(9—3x,3y),if y > 0,and x > y/V/3 + 2.
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Figure 7.1.12(a)- (d)
The images in (a), (b),
(¢), and (d) represent
the nontrivially distinct
attractors of all IFS of
the form {M; wy, w,, wy}
where the maps are simil-
itudes of scaling factor
one-half, and the rotation
angles are in the set
{0°,90°,180°,270°}.
The three translations
0,0y, (1,0) and (0,1)
are used. These IFS are
all just-touching. Fori #
J the set w,(A4) N w, (A),
is contained in one of the
two straight lines x =1
ory = 1. Hence it is easy
to compute images of
these attractors using the
Escape Time Algorithm.

Figure 7.1.12(b)
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Figure 7.1.12(c)

N R
Y

Figure 7.1.12(d)
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7.2 ITERATED FUNCTION SYSTEMS WHOSE ATTRACTORS ARE JULIA SETS

In Section 7.1 we learned how to define some IFS attractors and filled Julia
sets with the aid of the Escape Time Algorithm applied to certain dynamical
systems. In this section we explain how the Julia set of a quadratic transforma-
tion can be viewed as the attractor of a suitably defined IFS.

The Escape Time Algorithm compares how fast different points in #~
escape to ¥, under the action of a dynamical system. Which set repells the
orbits? From where do the escaping orbits originate? In the case of the
dynamical systems considered at the start of Section 7.1, orbits were “escaping
from” the attractor of the IFS.

Let A € C be fixed. Which set repells the orbits, in the case of the
dynamical system {C; fy(z) =z2—A}? To find out let us consider the
inverse of f,(z). This is provided by a pair of functions, f~!(z) = {+ vz + X,
— vz + A } where, for example, the positive square root of a complex number
is that complex root which lies on the non-negative real axis or in the upper
half plane. Explicitly vz = x, + ix, = (a(x,, x,), b(x,, x,)) with

\/xlz + x% + x;

a(x, x) =\ ———5—— when x, > 0,
Vxd + x3 + x
a(x;, x,) = — — when x, < 0, and
2 2
x{+ x5 —Xx
b(x, %)=\ ——5—.

To find the “repelling” set, we must try to run the dynamical system back-
wards. This leads us to study the IFS

{€;m(z) =Vz+X,w(z) = —Vz+1}.

The natural idea is that this IFS has an attractor. This attractor is the set from
which points try to flee, under the action of the dynamical system
(€C; 22 =)

A few computergraphical experiments quickly suggest a wonderful idea:
they suggest that the IFS indeed possesses an attractor, namely the Julia set
J, = 9F, for f,(z). Consider for example the case A = 1. Figugg 7.2.1(a)
illustrates points in the window #'= {z = (x,y) €C: -2 <x <2, -2<y
< 2} whose orbits diverge. It was computed using the Escape Time Algorithm.
Figure 7.2.1(b) shows the results of applying the Random Iteration Algorithm
to the above IFS, with A = 1 and the same screen coordinates, superimposed
on (a). The boundary of the region F, ., is outlined by points on the attractor
of the IFS.

Figures 7.2.2(a)—(d) show the results of applying the Random Iteration
Algorithm to the IFS {C: wi(z) = Vz + A, wy(z) = — Vz + A} for various
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Figure 7.2.1(a), (b)

The attractor of the IFS
(€ w(z)=yz+1,
wy(z)=—Vz+1}is
the Julia set for the trans-
formation f(z) =

22 — 1. (a) illustrates
points whose orbits
“escape” when the
Escape Time Algorithm is
applied. (b) shows the re-
sults of applying the Ran-
dom Iteration Algorithm
to the IFS, superimposed
on (a).

Figure 7.2.1(b)

A €[0,3]. In all cases it appears that the IFS possesses an attractor, and this
attractor is the Julia set J,.

Perhaps {é, wi(z) =vVz + A, wy(z) = — Yz + A} is a hyperbolic IFS
with J, as its attractor? No, it is not, because ¢ = wl(é) U wz(é). The IFS is
not associated with a unique fixed point in the space # (é). In order to make
the IFS have a unique attractor, we need to remove some pieces from é, to
produce a smaller space on which the IFS acts.

Theorem 1. Let A € C. Suppose that the dynamical system {é f(z) =
z? — N} possesses an attractive cycle {zy, 25, 23, ..., z,} € C. Let € be a very
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Figure 7.2.2(a)- (d)

The results of applying the
Random Iteration Al-
gorithm to the IFS {C;
Vz+ A, —yz+ A} for
various values of A €

[0, 3]. Compare these
images with those in Fig-
ure 7.1.10. The results are
pictures of the Julia set
for fy(z) = 22 — \. The
connection between these
Julia sets and IFS theory
is revealed!

Figure 7.2.2(b)

Figure 7.2.2(c)
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Figure 7.2.2(d)

s S

small positive number. Let X denote the Riemann Sphere C with (p+1) open
balls of radius € removed. (The radius is measured using the spherical metric.)
One ball is centered at each point of the cycle, and one ball is centered at the
Point at Infinity, as illustrated in Figure 7.2.3. Define an IFS by {X; w(2)
=vVz+ A, wy(2) = — Vz + A }. Then the transformation W on # (X), defined

by

W(B) = w(B) Uwy(B)  forall BE#(X),
maps #(X) into itself, continuously with respect to the Hausdorff metric on
H(X). Moreover W: H#(X) — H(X) possesses a unique fixed point, J,, the
Julia set for z* — \. Also,

Lim W°"(B) =J,  forall B € #(X).

These conclusions also hold if the orbit of the origin, { f°"(0)}, converges to the
Point at Infinity, and X = C \ B(o0, ¢).

Sketch of Proof: The fact that W takes 5 (X) continuously into itself follows
from Theorem 7.4.1. To apply Theorem 7.4.1, three conditions must be met.
These conditions are (i), (ii) and (iii), stated next: f is analytic on € so () it is
continuous, and (ii) it maps open sets to open sets. The way in which X is
constructed ensures that, for small enough ¢, (iii) f(X) > X and W(X) =
X)) c X,

To prove that W possesses a unique fixed point, we again make use of
Theorem 7.4.1. Consider the limit 4 € 5#(X) of the decreasing sequence of
sets, { W°"(X)}, namely,

A= [ f°C"(X) = Lim W°"(X).
n=1 n— o0
This obeys W(A) = A. It follows from [Brolin 1965], Lemma 6.3, that 4 = J,,
the Julia set. This completes the sketch of the proof.

Theorem 7.2.1 can be generalized to apply to polynomial transformations
f: € - € of degree N greater than one. Here is a rough description: Let
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Infinity Figure 7.2.3

4 The Riemann Sphere ¢
with a number of very
small open balls of radius
€ removed. One ball is
centered at each of the
points {z, € C} belong-
ing fo an attractive cycle
of the transformation
fn(2) = 22 — X. One ball
is centered at the Point at

Infinity.

FY(z2) = {wi(2), wy(2),..., wy(z)} denote a definition of branches of the
inverse of f. Then consider the IFS {C; wi(2), wy(2), ..., wy(2)}. This IFS is
not hyperbolic: the “typical” situation is that the associated operator W
9?((3) - 9?((5) possesses a finite number of fixed points, all except one of
which are “unstable.” The one “stable” fixed point is J,, and W°"(4) - J;
for “most” 4 € #(C). In principle, J, can be computed using the Random
Iteration Algorithm.

Results like Theorem 7.2.1 are concerned with what are known as hyper-
bolic Julia sets. The Julia set of a rational transformation f: € — € is
hyperbolic if, whenever ¢ € € is a critical point of £, the orbit of ¢ converges
to an attractive cycle of f. The Julia set for z2 — 0.75 is an example of a
non-hyperbolic Julia set. We refer to [Peitgen 1986] as a good source of further
information about Julia sets from the dynamical systems point of view.

Explicit formulas for the inverse maps, {w,(z):n=1,2,...,N}, for a
polynomial of degree N, are not generally available. So the Random Iteration
Algorithm cannot usually be applied. Pictures of Julia sets and filled Julia sets
are often computed with the aid of the Escape Time Algorithm. The case of
quadratic transformations is somewhat special, because both algorithms can
be used. The Random Iteration Algorithm can also be applied to compute

273



274

7

julia Sets

Julia sets of cubic and quartic polynomials, and of special polynomials of
higher degree such as z” + A where n = 5,6,7,..., and A € C.

Exercises & Examples

2.1.

2.2,

23.

24.

Consider the dynamical system {C; f(z) = z?}. The origin, O, is an
attractive cycle of period one: indeed f(O)= O and |f'(0)|=0 < 1.
Notice that Lim,__f°%(z)= O for all z &€ B(0,0.99999999). Let
l-'?(z, r) denote the open ball on é, with center at z and radius 7. Theorem
7.2.1 tells us that the IFS

{x =€\ { 8(0,0.0000001) U B(0,0.0000001) } ;w(z) = vz, wy(z) = —Vz }

possesses a unique attractor. The attractor is actually the circle of radius
one centered at the origin. It can be computed by means of the Random
Iteration Algorithm. Notice that if we extend the space X to include O,
then O € ¢ (X) and O = W(0) = wy(0) U wy(0). If we extend X to
include f?(O, 0.0000001) then the filled Julia set F, belongs to 5#(X) and
obeys F, = W(F,). If we take X to be all of € then € = W(C). In other
words, if the space on which the IFS acts is too large, then uniqueness of
the “attractor” of the IFS is lost.

Can you find two more nonempty compact subsets of € which are
fixed points of W, in the case X = ¢?

Establish that for all A € (-0.25,0.75), the point z,= 0.5 —

v0.25 + X is an attractive cycle of period one for {€; z% — A}. Deduce
that the corresponding IFS, acting on a suitably chosen space X, pos-
sesses a unique attractor.
Let A € (0.75,1.25). Consider the dynamical system {C; f(z) = z2 — A}.
Let z;,z, €R, denote the two solutions of the equation z?+ z +
(1 = Ay =0. Show f(z)) = 25, f(25) = 2, (/2 ()| = (/) ()] < 1
and hence that {z, z,} is an attractive cycle of period two. Deduce that
the IFS

{é\{é(zl,e)Ué(zz,e)Ué(oo,e)};+\/z+>\,—\/z+>\}

possesses a unique attractor when e is sufficiently small.

The Julia set J, for the polynomial z2 — A is a union of two “copies” of
itself. Identify these two copies for various values of A. Explain how,
when A = 1, the two inverse maps w; '(z) and w, '(z) rip the Julia set
apart, and the set map W = w; U w, puts it back together again. Where is
the rip? Describe the geometry of what is going on here.

Consider the one-parameter family of polynomials f(z) = z* — A, where
A € C is the parameter. Give explicit formulas for the real and imaginary
parts of three inverse functions w;(z), wy(z), and wy(z) such that
U (z2) = {w(2), wmy(2), ws(2)} for all X € C. Compute images of the
filled Julia set for f(z) for A = 0.01 and A = 1. Compare these images
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with those obtained by applying the Random Iteration Algorithm to the
IFS (€; wy(2), wa(2), wy(2)}.

2.5. Consider the dynamical system {C; f(z) = z> — A} for A > 2. Show that
{ f°"(0)} converges to the Point at Infinity. Deduce that the IFS

{X=C\B(oo,e); +Vz+ A, =Yz + 1}

possesses a unique attractor A(A). A(A) is a generalized Cantor set.
Compute some pictures of A(3). Use the Collage Theorem to help find a
pair of affine transformations w;: R = R, i = 1,2, such that the attractor
of the IFS {R; w,, w,}isan apprommatlon to A(3). Define fiR > R by
f(x) = w; (x) when x <0 and f(x) = w; '(x) when x > 0. Compare
the graphs of the functions f(x) = x*> — 3 and f(x) for, say, x € [—4,4].
Compare one-dimensional “images” obtained by applying the Escape
Time Algorithm in a similar manner to both {R; f} and {R; f}.

One can sometimes obtain a Ayperbolic IFS associated with a Julia set,
if the domains and ranges of the inverse transformations are defined
carefully. The following theorem provides such an example.

Theorem 2. Ler A €[—0.249 0.749], and let € be a very small positive
number. Let a = 0.5 — y0.25 + X, an attractive fixed point of the dynamical
system {C; f(z) = z>— A}. Let X = €\ {é(a, ey u B(s0, e) U (—A, ).
That is, X consists of the Riemann Sphere with a small open ball centered at a
a small open ball centered at oo, and the open interval (—\, ) removed. (This
space is not compact because the edges of the lips of the cut, from — A\ to ¢, are
missing.) To each lip attach copies of the pieces of real interval (— X, o0) which
were removed to provide a compact space X, as illustrated in Figure 72.4. The
distance d(z,, z,) between a pair of points z, and z, € X is the length
(measured using the spherical metric) of the shortest path which lies in X and
connects z, to z,. (Paths in X cannot cross the cut, they have to go round it.)
(X,d) is a compact metric space.

Define w: X = X by w\(z) = Vz + N, the root which lies in the “upper
half plane” For z on the lower edge of the cut, w\(z) lies on the negative real
axis, and on the upper edge if w(z) > —A. Define wy: X = X by wy(2) =
— ¥z + N, the root which lies in the “lower half plane.” For z on the upper edge
of the cut, wy(2) lies on the negative real axis, and on the lower edge if
wy(2) > —A. This makes w, and w, continuous on X.

Then there is a metric on X, equivalent to the metric d, such that the IFS
{X; w,, w,} is hyperbolic. The attractor is the Julia set J, for z* — X, where the
real point 0.5 + V0.25 + X is repeated on both the upper and the lower edges of
the cut.
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Figure 7.2.4

Construction of a com- e RIEMANN SPHERE

pact metric space X for N
the IFS {X; Vz + X, AFTER SURGERY

—Vz+A}withA € *
(—0.25,0.75), used in

Theorem 7.2.2. Both sides

of the “slit” from —AX to

infinity belong to the

space. The distance be-

tween a pair of points on

“UPPER HALF PLANE”

Both edges of the
small ball centered cut are copies of [05]
at a removed

X is the length of the - L2 V4 —Infinity
shortest path which con- Cut along the
nects the points without positive real axis
crossing the slit. The dis- with two lips.
tance between points may
be much greater than it
looks.
oo “LOWER HALF PLANE”
Outline of Proof. lete= (e, e,,...,¢e,...) €L the code space on the two

symbols {1,2}. Define a sequence of nonempty compact subsets of X by

X, (e) =w, ow, ow. ow, ow, ow, o - ow, (X) forn=1,23,....

It follows, using [Brolin 1965] Theorem 6.2 and Lemma 6.3, that the sequence
{X, € (X))} converges to a singleton, say {$(e)}, where ¢(e) € J, and

U o(e) =7y

ecl
A beautiful theorem of Elton [Elton 1988] applies under just these conditions,
and provides the conclusion of the theorem. This completes the outline of the
proof.

In those situations where the IFS {X; + vz + A, — ¥z + A} is hyper-
bolic, one can use the associated code space to discuss both the Julia set and
the associated shift dynamical system {Jy; f(z) = z® — A}. Here we give
some of the flavor of such a discussion. More details can be found in [Barnsley
1984].

For the remainder of this section let A € (—0.25,0.75) and consider the
IFS {X; wi(z) =Vz+ A, wy(z) = — Vz + A}, as defined in Theorem 7.2.2.
Let ¥ denote the code space on the two symbols {1,2}, and let ¢: ¥ — J,
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denote the associated code space map, introduced in Theorem 4.2.1. If
e= (e, e,...,€,...) €L, then

¢(e) = L_’;Igwelt’wez"wejc’We4°We5°We6° owe"(z)_
n

Replace the symbol “1” by the symbol “+ and replace the symbol “2” by
the symbol “—7, Then the point ¢(e) on the Julia set J, can be represented
by the formula

o(e) =e )xez\/)xe_,\/)xe“\/)\es\/)\eﬁ\/)\eﬂ/)\eg cee /A

where e, € {+, —} for each positive integer i. The set J, itself can be
represented by the collection of formulas

(7.21) + *i\/Ai\/Ai\/xi\/ki\/Aim

where all possible sequences of plus and minus signs are permitted. A
particular sequence of signs, corresponding to a point in J,, is an address of
the point,

In Figure 7.2.5 we show the Julia set for z2 — 0.7, with the addresses of
various points marked on it. Some points on J;, have multiple addresses
while others have single addresses. It appears that the IFS is just-touching.

The shift dynamical system associated with the IFS is { J,; f(z) = z* — A}.
Notice how the set of points represented by the formulas in equation (7.2.1) is
mapped into itself by the function which “squares” a formula and subtracts A.
A point on a cycle of period two is represented by

+ A—\/M\/A—\/M\/x—\/um

The other point on this cycle is obtained by squaring the formula and
subtracting A.

In Theorem 4.2.4, we learned that the set of periodic points of the shift
dynamical system associated with a hyperbolic IFS is dense in the attractor of
the IFS. Here this tells us that the set of periodic points of the dynamical
system {Jy; f(z) = z>— A} is dense in J,. In fact, a related ided was the
starting point of Julia’s original investigations. He considered dynamical
systems of the form {C; f(2)}, where f(z) is analytic. He defined the (Julia)
set to be the closure of the set of repulsive cycles of f.

Following Theorem 4.8.1 we explained the sense in which the shift dynami-
cal system associated with a hyperbolic IFS is chaotic. In the present context
we learn that the dynamical system {J,; z2 — A} is chaotic.
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The “positive” root lies
in the upper half plane

The branch cut is on
the positive real axis.

cycle of period 2

—A10.744]0.7—4]0.7+40.7—§0.7++0.7— 0.7+

Figure 7.2.5

The Julia set for z2 — 0.7, labelled with various addresses. Chaotic dynamics takes place
on the Julia set and orderly dynamics takes place off it. Boundaries of a fractal character
often separate regions where the dynamical system behaves differently. The behaviour of
the dynamical system on such a boundary may then be indecisive, and in some way
chaotic.

One can think of the dynamical system {€; z2 — A} as being the union of
two dynamical systems, a chaotic one {J,; z2— A} and an orderly one
{é \Jy; 2% — A). The orbit of any point in the latter system converges to a
fixed point of the transformation. The orbits of “most” points in the former
system are wild. In practice they are usually so wild they cannot be con-
strained to remain on the repelling set J, . They escape, and thereafter behave
in a rather predictable manner.

An example of chaotic dynamics on a Julia set is provided by the
dynamical system {[0, 1]; f(x) = 4x(1 — x)}. The interval [0, 1] is exactly the
Julia set for the transformation. This system is close to the “chaotic” one
illustrated in Figure 4.3.5.

Exercises & Examples

2.6. The Julia set for z?> — 2 is the interval [—2,2]. Show that the shift
dynamical system associated with the IFS {[-2,2]; + vz + 2, - Vz + 2}
is precisely the dynamical system {[—2,2]; z?>—2}. Use a chain of
square roots to locate a cycle of minimal period three.
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2.9.

7.2 lterated Function Systems Whose Attractors are Julia Sets

Verify numerically that for various choices of + on each square root, and
for various complex numbers A such that |A| is very small, the expression
below evaluates approximately to a complex number which lies on the
unit circle centered at the origin, if enough square roots are taken. (+ vz
means the solution, w, of the equation w? = z, which lies either on the
non-negative real axis or in the upper half plane.) Make a hand-waving
explanation of why this is, in terms of Julia set theory.

x Ai\/u\/u \ﬂi\/Ai\/Ai\/ki“-i\/X

Design an IFS with condensation such that its attractor looks like an
infinite nested chain of square root signs.

Figure 7.2.6 represents a sequence of sets { 4,} which converges to the
Julia set of f(z) = z2 — 1. A, denotes the union of the two largest faces
and A4, = f°(""(4,). Identify the set 4,.
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Figure 7.2.6

Let f: € - € denote the
polynomial 22 — 1. Let
Ay be the union of the
two largest smiley faces.
Define a transformation
w: #(C€) - #(C) by
W(B) =f‘(B) for all
Bes#(C) andlet A, =
We(Ay) forn=
0,1,2,.... Then the se-
quence of sets { A, } con-
verges to the Julia set of
22 — 1. Can you identify
Ay
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7.3

THE APPLICATION OF JULIA SET THEORY TO NEWTON'S METHOD

We are familiar, since our first course in calculus, with Newton’s method for
computipg solutions of the equation F(x) = 0. Or are we?

Consider the polynomial F(z) = z* — 1 for z € C. There are four distinct
complex numbers, a, (i = 1,2, 3,4) such that F(a,) = 0. These are called the
roots, or the zeros, of the polynomial F(z). Newton’s method provides a
means to compute them. Pretend that we do not know that ¢, = 1, a, = —1,
ay =1i,and a, = ~i. Then Newton tells us to consider the dynamical system

o= A3}

We call f(z) the Newton transformation associated with the function F(z).
The general expectation is that a typical orbit { f°"(z;)}, which starts from an
initial “guess” z, € C, will converge to one of the roots of F(z). In the present
example, the Newton transformation is given by

324+ 1
47’

f(2) = :
We expect the orbit of z, to converge to one of the numbers a,, a,, a5, or
a4. If we choose z;, close enough to a; then it is readily proved that

Lim f°'(z,) = a,, fori=1,2,34.
n—oo

If, on the other hand, z, is far away from all of the 4,’s, then what happens?
Perhaps the orbit of z, converges to the root of F(z) closest to z,? Or perhaps
the orbit does not settle down, but wanders, hopelessly, forever?

Let us make a computergraphical experiment to help answer these ques-
tions. We use the Escape Time Algorithm to produce a picture of those points
zy € € whose orbits converge to a,. Define #'= {(x,y) e C: -2 <x <2,
—2<y<2}and ¥'={z€ C: |z — a,| <0.0001}. The real and imaginary
parts of f(x + iy) are given by

(ce + df) +l_(de-cf)
(X 4179 (e +17)

where a = x2— y2 b =2xy, c = 3a®>— 3b*+ 1, d = 6ab, e = 4(xa — yb),
and f = 4(xb + ya). Program 7.1.1 is modified accordingly. Pixels correspond-
ing to points in #~ whose orbits reach ¥~ in less than a fixed number of
iterations are plotted. A picture resulting from such an experiment is shown in
Figure 7.3.1(a). See also Figures 7.3.1(b) and (c).

Color Plate 7.3.1 shows the output from another such experiment. This
time Mercator’s projection is used to represent the Riemann sphere, and

f(x+1iy) =
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Figure 7.3.1(a)

The Escape Time Al-
gorithm is applied to
analyse Newton’s method
for finding the complex
roots of the polynomial
2% — 1. The boundary of
this region represents the
Julia set for the rational
function f(z) =

(3z* + 1)/42°. The
points plotted black are
those points z = x + iy
with —2 <x <2, and
-2 <y <2, whose
orbits intersect V"=
{(zeC:z+ 1<
0.0001} in less than 1000
iterations.

Figure 7.3.1(b)

The boundary of this re-
gion represents the Julia
set for the rational
function f(z) =

(3z* + 1)/42°. The two
shades of grey, black,
and white, correspond to
the basins of attraction of
the four attractive fixed
points of f(z). To which
point in C do the orbits
of poinis in the white re-
gion converge?
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Figure 7.3.1(c)
Mercator’s projection of
the Riemann sphere
showing the basins of at-
traction of the four attrac-
tive fixed points of the
Newton transformation of
2% — 1. The top of the
rectangle corresponds to
the Point at Infinity and
the bottom of the box cor-
responds to the origin.
The points =1, +i, +1,
and —1 lie on the equa-
tor. The shading follows
the same convention as in
(a) and (b). Which point
on € is represented by
the midpoint of this
image?
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points whose orbits converge to the different points a,, a,, a5, and a, are
plotted in different colors.

The following definition is equivalent to Definition 7.1.1 in the case of
polynomials, [Brolin 1966].

Definition 1. The Julia set of a rational function f. ¢ - é, of degree greater

than one, is the closure of the set of repulsive periodic points of the dynamical
system {C; f}.

For the rational function f(z) considered above, one can prove that the
Julia set J is the same as the set of points whose orbits do not converge to any
one of the points a,, 4,, a4, a,. In Figure 7.3.1, J N #" is represented by the
boundary between the black and the white regions. In Color Plate 7.3.1,
J N # is the place where the four colors meet. The complement of the Julia
set consists of four open sets, the basins of attraction of the four attractive
fixed points of the Newton iteration scheme. In Color Plate 7.3.1 the red
region represents part of the basin of attraction of a,. The black regions in the
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color plate are caused by (a) rounding errors, and (b) the fact that only one
hundred points on each orbit are tested, for convergence to one of the points
a, a,, a,, dy. '

The Julia set J is the part of € on which chaotic dynamics occurs, It can
be characterized as the closure of the set of points whose orbits wander,
hopelessly, forever. Orderly, slightly boring motion takes place on C\J. Jis
the boundary of the blue region. It is the boundary of the red region, It is a
bonafide fractal, yet nobody knows its fractal dimension.

There is a beautiful theorem of Sullivan, which can be illustrated using the
“petals” in Color Plate 7.3.1. The complement of the Julia set is the union of a
countable collection of connected open sets, which we call petals. If P is a
petal then f(P) is another petal. The Non-Wandering Domain Theorem
[Sullivan 1982] says that no connected component of the complement of the
Julia set wanders, hopelessly, forever. It always settles into a periodic orbit of
petals. If P is a petal in the present example, then one can prove there is a
positive integer S so that fOS(P) = foS*D(P) = fo5+2(py = foS+I(p) =
---. The final petal f°S(P) is one of the connected components of the
complement of the Julia set which contains one of the points a,, a,, a4, a,.
Each petal is eventually periodic. The orbit of a petal ends up in a cycle of
petals of period one.

How are we to think about this fabulous Julia set? IFS theory provides a
simple point of view, as we show next. We begin by defining the inverse map
associated with f. Let z € € be given and solve

3wty
h 4w’

5

to find w in terms of z. This leads to the quartic equation
3w — 4’ +1=0.

This has four solutions, when we count solutions according to their multiplici-
ties. We can organize these solutions to provide four functions; that is, we
write f~1(z) = {w(2), wy(2), w3(2), wy(z)}. Then the Julia set is the “attrac-
tor” for the IFS {é; w;, i =1,2,3,4}. However, as in the case of quadratic
transformations on C, this statement must be treated cautiously: for example,
clearly this IFS admits more than one invariant set.

Theorem 1. Ler f: € — € be the Newton transformation associated with the
polynomial z* — 1. Let € > 0 be very small. Let X = ¢ \U,Llé(a,-, €} where
a,=1,a,= —1,a,=1i,anda, = —i. As above, define W: H#(X) — #°(X)
by
4
W(B)= Uw(B)=f""(B) forall Be#(X).

i=1
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Then W is continuous, possesses a unique fixed point, J, the Julia set of f, and
Lim W°'(B) =J  forall B € X (X).

Sketch of Proof. This is essentially the same as the sketch of the proof of

Theorem 7.2.1.

The Newton transformation associated with a polynomial may possess an
attractive cycle of minimal period greater than one. This cycle may not be
directly related to the roots of the polynomial. As an example consider the
Newton transformation f(z) associated with the polynomial

F(z)=22+(A-1)z + 1.
A € € can be chosen so that f(z) possesses an attractive cycle {b,, b,} of
minimal period 2. Figure 7.3.2 illustrates the basin of attraction of the cycle.
The Escape Time Algorithm was used to obtain this image. Points whose
orbits arrive within a distance 0.01 of the cycle, prior to one hundred
iterations, are plotted in white. Accordingly, the escape region is ¥ '=
B(b,,0.00001) U B(b,,0.00001). Notice the resemblance of the basin of at-

Figure 7.3.2

The Escape Time Al-
gorithm is applied to a
Newton transformation
f(2) associated with a
cubic polynomial. f(z)
possesses an atlractive
cycle {by, by} of
minimal period 2. The
basin of attraction of the
two-cycle is represented in
white. Points whose orbils
arrive within a distance
of 0.01 of the cycle, prior
to one hundred iterations,
are plotted in white. Does
the basin of attraction of
the cycle look familiar?
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traction of {b;, b,} to the filled Julia set for z*> — 1. This similarity is not
accidental. It can be explained using the theory of “polynomial-like” map-
pings [Douady 1986].

Some interesting computergraphical experiments involving Julia sets

for Newton’s method are described in [Curry 1983], [Peitgen 1986], and
[Vrscay 1986].

Exercises & Examples

3.1

3.2

3.3.

3.4.

Verify that z = 1 is an attractive fixed point for the Newton transforma-
tion associated with F(z) = z* — 1.

The Newton transformation associated with the polynomial F(z) = z% +
1is

f(z) = %(z - %)

Show that the corresponding IFS is {C; w (z) = z + Vz2 + 1, wy(z) = z
— Vz? + 1}, where the square root is defined appropriately. Verify that
A =R U {oo} is an attractor of the IFS. Prove, or give evidence to show,
that A4 is the Julia set for f(z). (Hint: see exercise 3.7.) How could the
space € be modified, so that the IFS has a unique attractor? Notice that
numerically computed orbits of points on 4, under the dynamical system
{é; f}, can be constrained from escaping from A4 by keeping imaginary
parts equal to zero. Verify numerically that the dynamics of { 4; f} are
wild.

Find the Newton transformation f(z) associated with the polynomial
F(z) = z> — 1. Use the Escape Time Algorithm to obtain an image,
analogous to Figure 7.3.1, which illustrates this Julia set. Discuss the
dynamics of the “petals” in the image.

In this example we speculate on the application of fractal geometry to
biological modelling. Let Fy(z) = (z — iA)(z — 1)(z + 1), where A is a
real parameter, and let f,(z) denote the associated Newton transforma-
tion. Let J, denote the Julia set for f,(z). In Figure 7.3.3 we show images
relating to J,, for an increasing sequence of values of A. These images
were computed by applying the Escape Time Algorithm to f,.

These images show complex blobs that are reminiscent of §Omething
small, biological, and organic. They make one think of the nuclei of cells;
of collections of cells during the early stages of development of an
embryo; of the process of cell division; and of protozoans. As we track
the images we see that the blobs pass through one another. Somehow they
do so while preserving their complex geometries. Their geometries seem to
interact with one another. Such images suggest that fractal geometry can
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Figure 7.3.3(a)- (h)
Julia sets associated with
a one-parameler family of
dynamical systems. Can
such systems be used to
model biological processes
such as myosis?

Figure 7.3.3(b)
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Figure 7.3.3(c)

Figure 7.3.3(d)
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Figure 7.3.3(e)

Figure 7.3.3(f)
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Figure 7.3.3(g)

Figure 7.3.3(h)
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3.5.

3.6.

3.7.

julia Sets

do more than provide a means for modelling static biological structures,
such as ferns: it appears feasible to construct deterministic fractal models,
which describe the processes of physiological change which occur during
the growth, metamorphosis, and movement of living organisms.

Find the Newton transformation f(z) associated with the function F(z)
= e¢? — 1. What are the attractive fixed points of the dynamical system
{C; f}? Figure 7.3.4 was computed using the Escape Time Algorithm
applied to f(z), with #'= {(x, y) € R —25<x <25 -25<y<
2.5}. Describe the main features of the image. Explain, roughly, the
causes of some of these features.

What are the “petals”, in the case of the Julia set for z> — 1?7 Use a
picture of the Julia set for z2 — 1 to illustrate the orbit of a tiny petal
which is eventually periodic with minimal period two.

By making an explicit change of the coordinates, using a Mobius transfor-
mation, show that the following two dynamical systems are equivalent:

(€:r()=3(z- 7)) md (Ein() =)

Figure 7.3.4

This image was computed
using the Escape Time
Algorithm applied to the
Newron transformation
associated with f(z) = €°
— 1. The viewing window
is W= {(x,y) € R%:
~25<x<25 25
<y < 25}. Canyou
work out what “‘escape
region” was used?
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7.4 A RICH SOURCE OF FRACTALS: INVARIANT SETS OF CONTINUOUS
OPEN MAPPINGS

Let f be a transformation which acts on a space X. Recall that a set A4 is
invariant under f if f '(A4) = 4. We are interested in invariant sets of f
which belong to #(X). The following theorem is a theoretical tool which
provides both the existence and a means for the computation of invariant sets.
Most of the material in this chapter is based on it.

Theorem 1. Let (Y,d) be a metric space. Let X C Y be compact and
non-empty. Let f: X — Y be continuous and such that f(X) D X. Then (1) a
transformation

W #(X) = H#(X) is defined by

W(A) = (A)  forall A € #(X).

(2) W possesses a fixed point A € (X)), given by

00
A= fPC™(X) = Lim W*'(X).
n=0 n=

Suppose f obeys the additional condition that f(O) is an open subset of the meiric
space (f(X), d) whenever O C X is an open subset of the metric space (X, d).
Then (3) W is a continuous transformation from the metric space (5 (X), h(d))
into itself. (4) If f has domain all of Y rather than just X, but f~*(X) C X as
well as f(X) D X, then the above applies and (1), (2), and (3) hold. (For
example, see the proof of Theorem 7.2.1).

Proof of (1) and (2). (The proof of (3) can be found in [Barnsley 1988c].)

(1) We begin by proving that W maps s#(X) into s (X). Let B € 5#(X).
The condition f(X) D X implies that f~!(B) is nonempty; f~'(B) C X since
f has domain X. B is compact, so it is a closed set in the metric spage (X, d).
The continuity of f implies that f~(B) is closed in the metric space (X, d).
Since X is compact it follows that f~(B) is compact. This completes the
proof of (1).

(2) Since f has domain X, it follows that X D f°(~1(X). Application of
£°¢=™ to both sides of the latter equation yields

X > foC-1(X) :>f°(‘2)(X) DUMNX) - D(X) D -
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It follows that { f°("™(X)} is a Cauchy sequence in #(X), and it possesses a
limit 4 € H#(X), given by 4 = N=_,f°¢~"(X) = Lim ,_, W°*(X).

It remains to be proved that A4 is a fixed point of W. We need to show that
oD 4,) =N*_yA, where 4, = f°C"(X) for n=1,2,.... But for
any sequeénce { B, } of sets whatever and any function f, f/~}NB,) = N/ (B,)
as is easily checked, so we have here [N 4,)=N"_f (4, =

® oAy =N 4, =NT_yA4,, since 4, D A; D 4, > ... . This completes
the proof of (2).
The invariant set A referred to in Theorem 7.4.1 can be expressed

A={xeX:f"(x)eX foralln=1,2,3,..}.

n

That is, A4 is the set of points whose orbits do not escape from X. Also, 4 is
the complement of the set of points whose orbits do escape. If X C R? then
pictures of 4 can be computed by using the Escape Time Algorithm.

The last statement in the last theorem expresses a desirable property for a
transformation W on s#(X). If W is not continuous, yet A4, € #(X) and
{W°n(A4y)} converges to A € #(X), one cannot conclude that W(A4) = 4.
Without continuity of W, one should not trust the results of applying the
Escape Time Algorithm. For example, slight numerical errors may mean that a
computed sequence of sets { 4, = W°"(X)} is not decreasing. One may still
wish to define 4 = Lim A~n. Without continuity one cannot suppose that
fY(A) = LimW(A4,) = A, even approximately.

Analytic transformations map open sets to open sets. Hence their inverses
act continuously on the space (X)), where X C € is chosen appropriately.
To help visualize this, look back at Figure 3.4.3. If the Sierpinski triangle 4ABO
is deformed or moved, its inverse image POQ U POQ will move continuously
with it.

The Hausdorfl' metric is the metric of perception: what we call a small
change in the appearance of a picture is probably a small change in a
Hausdorff distance. When one talks about continuous motion in the context of
graphics, continuous growth in the context of botany, or continuous change in
the context of a chemical system, the word “continuous” can often be
replaced, pedantically, by “continuous in the Hausdorff metric.” Theorem
7.4.1 suggests that one could use continuous open maps to model such
systems.

Exercises & Examples
4.1. Let A € [—1,1]. Define a transformation f: R? -» R? by

(x* —y? —1,2x) when x > 0,

x,y) =
(x5 (X2 —y* =14 Ax,2xp) when x < 0.

Show f is continuous. Show that if X denotes a ball, centered at the
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Figure 7.4.1

The result of applying the Escape Time Algorithm fo the function f in example 7.4.1 with

A = 1. This function is continuous, and is such that {f(X) D X, where X denotes the
Fabergé egg in the middle. {(X) is the region bounded by the outer curve. Different
“escape times” of orbits of points in X are represented by different greytones.

origin, of sufficiently large radius, then f(X) 2 X and f~!(X) c X. Also
verify that if A € [—1,0] then f maps open sets into open sets. Show that
this is not the case for A = 1. (Hint: look at what the map does to a very

small disk centered at the origin.)

Figure 7.4.1 shows the result of applying the Escape Time Algorithm
to f when A = 1. The inner region, bounded by an ellipse, actually
represents a disk X such that f(X) D X. Different scales have been used
in the x and y directions. f(X) is the region bounded by the outer curve.
The image of a point which goes once around the inner ellipse is a point
which goes twice around the origin, following the outer curve which looks
like a folded figure eight. Different “escape times” of orbits of points in X
are represented by different greytones. A magnified version of X, painted
by escape times, is shown in Figure 7.4.2. Roughly speaking, regions
closest to the outside escape fastest. Points in the white region also
escape. So where is the invariant set A? It is right in the middle. It

appears to be a branching, connected, tree-like set, with no interior.
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e

Figure 7.4.2

A magnified version of the region X, in Figure 7.4.1. Approximately, orbits of poinis
closest to the outside escape fastest. Points in the white region also escape. The invariant
set A, is in the middle. It appears to be a branching, connected, tree-like set. It is
surrounded by layers, just as the center of a real tree is surrounded by layers of growth.

Figure 7.4.3 shows the result of applying the Escape Time Algorithm
to f when A = 0. This time we see that the invariant set A4, in the center,
in white, is just the filled Julia set for z? — 1.

What happens if we choose A = —1? This time we obtain the image

shown in Figure 7.4.4. However, this time things may not be as simple as
they appear to be. The inner “layers” which surround the apparent
invariant set 4 are highly irregular and unstable. That is, points which are
very close together seem to have orbits which have very different escape
times.
Construct a function f: X — R2 where X C R?, which obeys the condi-
tions of Theorem 7.4.1. Use the Escape Time Algorithm to analyse the
associated invariant set A4 described in the statement of the theorem.
Your example should be interesting, and of a different character from
those specifically described in this chapter.

4.2
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Figure 7.4.3

The result of applying the Escape Time Algorithm to f in example 7.4.1 with A = 0. This

time we see that the invariant set A, in the center, in white, is just the filled Julia set for
2

z -1
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Figure 7.4.4

What happens if we choose A = —1? This time things may not be as simple as they appear
; to be. The inner “layers” which surround the apparent invariant set A are highly irregular

and difficult to pin down numerically.



Parameter Spaces and
Mandelbrot Sets

8.1 THE IDEA OF A PARAMETER SPACE: A MAP OF FRACTALS

A map, with nothing marked on it, is practically useless. A map of a
1000 X 1000 square-mile region containing the British Isles is shown in Figure
8.1.1; it does not convey much information. However, as a concept it is quite
exciting. Each location on the map corresponds to somewhere on the Earth.
For example, the dot with coordinates (750, 227.3) represents the town of
Maidstone. A point on the map may represent a certain grain of soil in a
ploughed field, or a molecule of flotsam on the top of some foam on the
surface of the sea. Nearby points in the map correspond to nearby points on
the Earth. Connected sets with interiors correspond to physical regions.

How could a perfect map be made? Ideally, it should specify locations on
the Earth’s surface at a certain instant. The coordinates would be relative to
some absolute coordinate system, perhaps determined by reference to the fixed
stars. Moreover, the surface of the Earth would have to be defined precisely,
up to the last molecule of water, soil, and plant matter; for this purpose one
can imagine using a straight line from the center of the Earth as suggested in
Figure 8.1.2. Of course, maps are not made like this, but the goal is the same:
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Figure 8.1.1 N
A map with no informa-
tion marked on it is quite
exciting. A very unhelp-
ful map of the British

Isles. The dot represents ) )
Maidstone. The map is 1000 miles Maidstone

accurate up to dot size.

<—— 1000 miles ———>

to have an accurate correspondence between points on the physical surface of
the Earth and the physical surface of the paper.

We must be careful how we interpret a map. Geographical maps are
complicated by the real number system and the unphysical notion of infinite
divisibility. Mathematically, the map is an abstract place. A point on the map
cannot represent a certain physical atom in the real world, not just because of
inaccuracies in the map, but because of the dual nature of matter: according to
current theories one cannot know the exact location of an atom, at a given
instant,

Fractal geometers avoid this problem by pretending that the surface of the
Earth is an abstract place too; we imagine, once again, that matter is infinitely

Figure 8.1.2 point on map
How Figure 8.1.1 might coordinates
have been made. . specified by

. the fixed stars

g oint on Earth's surface

o

exact center of Earth
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divisible, and that we can address every point, In the same spirit, we presume
that we can model trees and clouds, horizons, churning seas, and infinitely
finely defined coastlines. Then, for example, we can define the Hausdorff-
Besicovitch dimension of the coastline of the British Isles.

For a map to be useful it must have information marked on it, such as
heights above sea-level, population densities, roads, vegetation, rainfall, types
of underlying rock, ownership, names, incidence of volcanoes, malarial infesta-
tion, and so on, A good way of providing such information is with colors. For
example, if we use blue for water and green for land then we can “see” the
land on the map and we can understand some geometrical relationships, We
can estimate overland distances between points, land areas of islands, the
shortest sea passage from Llanellian Bay to Amylwch Harbour, the length of
the coastline, etc. All this is achieved through the device of marking some
colors on a blank map!

Let us consider the boundary of the shaded region in Figure 8.1.3. It is
here that the map conveys extra information. In the interior of the shaded
region we learn no more about the surface of the Earth than that “there is
land there,” However, on the boundary we learn not only that “there is land
and sea there,” but also, if the map is accurate enough, a feature which we will
actually “see” on the surface, namely the local shape of the coastline,

The latter idea can be extended. If we include more colors on a geographi-
cal map, to provide more information about properties of the Earth’s surface,
we produce more boundaries on the map. These boundaries can give informa-
tion about local geometry. For example, a map finely colored according to
elevation reveals the shapes of the bases of the mountains, the paths of rivers,
and—if we look closely enough—the outlines of buildings. Such a map, made
abstract and perfect, placed in a metric space, would contain much detailed
information about what, at each point, the local observer would see,

Figure 8.1.3

In this map points corre-
sponding to land have
been shaded. A fascinat-
ing entity, the coastline,
is revealed.

1000 miles

<—1000 miles ————>
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Exercises & Examples

1.1. Study an atlas which contains maps colored according to diverse criteria,
such as rainfall, population density, vegetation, and elevation. Discuss to
what extent these maps provide information about the local geometry of
the surface of the Earth.

We turn attention to making colored maps of parameterized families of
fractals. We consider families of iterated function systems and families
of dynamical systems which depend on two real parameters, The collection of
possible parameter values defines a parameter space associated with the
family. We use the notation P to denote a parameter space. Typically P is a
subspace of (R2, Euclidean) such as W, a closed ball, or R?,

An example of a parameter space is P = {(A;, A,) € R% |\, A, <
27%%), This is a parameter space for the family of hyperbolic IFS {C;
(Ay+iAy)z+ 1, (A +iXy)z — 1}, Each point A= (A, A,) € P corre-
sponds to an IFS. Each IFS possesses a unique attractor, say 4(A). Hence
each point of P corresponds to a single fractal. We can think of P as
representing part of £ (C), a space of fractals. A map of P, with a few points
marked on it, is shown in Figure 8.1.4. Each point in P corresponds to a single

Figure 8.1.4

An example of a parame-
ter space. Each point A
in the space corresponds
to a fractal, A(X). This
is a poor map, because
very little has been
marked on it. It is like
the map of the British
Isles shown in Figure
8.1.1. It needs coloring.
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fractal. Nearby points in P correspond to nearby fractals, that is, points in
H#(C) whose Hausdorff distance apart is small,

Another example is P = C, which provides a parameter space for the
family of dynamical systems {é; fr(z) = z2 — A). Each point in the parame-
ter space corresponds to a different dynamical system. Each dynamical system
is associated with a unique Julia set, J(A). The collection of fractals { J(A):
A € P}, associated with the parameter space, is vast and diverse.

Let X be a metric space such as R? or €. Let P denote a parameter space
corresponding to a family of fractals {A(A) € #(X): A € P},
Can we provide the explorer who wishes to investigate this collection of
fractals, with a colored map? This map should give him information about the
sets A(A), to be found at different points on P.

Suppose P = WM. To make a map, let us represent P by the pixels on the
screen of a computer graphics monitor. The idea is to color the pixel A
according to some property of A(A). (We write A = pixel = point in P,
without repeatedly explaining that A is a point in the small rectangle in P
which corresponds to the pixel.) Suitable properties could relate to the
connectivity of A(A), the fractal dimension of A(A), the escape time of a
special point on A(A) under an associated dynamical system, the number of
holes in A(A), or the presence of straight lines in A(A), for example,

If we make a good selection of the properties to associate with colors, the
result will be a useful map containing various differently colored regions, This
map will be a ready reference for the explorer of fractals. It will tell him
something about what to expect as he travels about P. He might be surprised
nonetheless.

The boundaries of the colored regions can provide additional geometrical
information to the explorer, over and above the information which the map
was originally designed to convey. It sometimes occurs that the local shapes of
the boundaries in the map reflect the shapes of the corresponding fractals.
There is a deep principle here, which we shall not pin down as a theorem, but
which we will illustrate in a number of cases.

Exercises & Examples

1.2. Let P = {(A;, A,) € R% ||, |A,| < 0.9). The family of IFS {R; A,x,
A,x + 1 —A,,0.5x + 0.5} is hyperbolic, with contractivity factor s = 0.9,
for all A € P. Use Theorem 3.11.1 to prove that the attractor depends
continuously on A.

1.3. The family of IFS {[0,1]; A;x2 A,x + (1 — XA,)} is hyperbolic, with
contractivity factor s =09, for all A in the parameter space P =
{(Al,A) €ER%0 <A 09,0 <A, <09). The attractor depends con-
tinuously on A.
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1.4. An example of a parameter space is (P, Euclidean) where P = {(A,, A,)
€ R% |A], |A,] < 0.999)}. This space can be used to represent the family
of hyperbolic IFS {R? w,, w,}, where

R R R

8.2 MANDELBROT SETS FOR PAIRS OF TRANSFORMATIONS

Let P C R? be a parameter space corresponding to a family of fractals. That
is, we have a function 4: P — (X)), so that each point A € P corresponds
to a set A(A) € H#(X). One way to make a map is to color the parameter
space according to whether or not A(A) is connected.

Theorem 1. Let {X; w,, w,} be a hyperbolic IFS with attractor A. Let w, and
w, be one-to-one on A. If

w(4) Nwy(A4) =@
then A is totally disconnected. If

wi(A4) Nwy(A4) # 2

then A is connected.

Proof. Suppose that w,(A4) N w,(A) = &. Let ¥ denote the code space map
associated with the IFS. By Theorem 4.2.2 the code space map ¢: ¥ — A4 is
invertible. ¢ is also a continuous transformation between two compact metric
spaces. Hence, by Theorem 2.8.5, ¢ is a homeomorphism. Hence A4 is
homeomorphic to code space, which is totally disconnected. (Recall that code
space on two or more symbols is metrically equivalent to a classical Cantor
set.) It follows that A is totally disconnected.

Suppose that w;(4) N wy(A) # @. Then there is at least one point x €
w,(A) N wy(A4). This point x has two addresses, say

x=¢(5) =¢(0) where{; =1 and o, =2.
Let us see what happens if we additionally suppose that “A is not connected.”

Then, since A4 is compact, we can find two nonempty compact sets £ and F so
that

A=EUF, ENF=2.
Using compactness, there is a positive real number § so that
d(e, f) =8 foralle € E, fe F.
Let 7 and ¥ be a pair of codes which agree through the first K symbols,
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for some positive integer K. Thatis w, = ¢, for i = 1,2,..., K. Then
d(¢(7),$(¥)) < s"diam(4),

where diam(A4) = Max{d(x, y): x, y € A}, and s € [0,1) is a contractivity
factor for the IFS. Suppose also that ¢(7) € E and ¢(y) € F. Then

8 < d(¢(m),9(¥)).
Combining the latter two inequalities we discover § < s®diam(A4), which
implies
Log(8/diam( 4

K=< (Log(S) 2.
We conclude that if ¢ € E and f € F then the number of successive agree-
ments between an address of ¢ and an address of f cannot exceed the number
on the right-hand side here. It follows that there is a maximum number, M, of
initial agreements between the address of a point ¢ € E and a point f € F;
and this maximum is achieved on some pair of points, say, ¢ and f. Then we
can find p, € {1,2} for i = 1,2,..., M such that

¢(P1,P2,P3,---aPM,1,---) =e€E
and

(P10, P31er s Pys2,...) =fEF

Now consider the point z € 4 which has the two addresses

2=¢(P1,Pz,P3,---,PM,1y§2,§3,§4,---) =¢(P1,pz,P3,---,PM,2,02,03704,“-)-

Suppose z € E. Then its address agrees with that of f € F through (M + 1)
initial symbols. Hence z € F. But then its address agrees with that of e € E
through (M + 1) initial symbols, which is not possible. We have a contradic-
tion, Hence “A4 is nor disconnected.” It follows that A is connected. This
completes the proof of the theorem.

Definition 1. Let {X; w,,w,} be a family of hyperbolic IFS which depends
on a parameter A € P C R? Let A(A) denote the attractor of the IFS. The set
of points .# C P defined by

M ={ A€ P: A(X) is connected}
is called the Mandelbrot set for the family of IFS.

For the rest of this section we consider the family of IFS
{C; Az ~-1,Az+1},
where the parameter space is
P={XA=(A,\)€C: N +X<1}).

Figure 8.2.1 shows a picture of the associated Mandelbrot Set, .#. This is a
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Figure 8.2.1

A map of the family of
IFS {(C; Az~ 1, Az +
1} where the parameter
spaceis P = {A =

(AL, A) EC A< 1)
This picture of parameter
space is obtained by
“painting” black where
the attractor of the IFS
is disconnected and light
where it is connected. The
Mandelbrot set is the light
region, the sea. It con-
tains a dragon at A =
(0.5,0.5).

A IMAGINARY §

<

map for the collection of fractals associated with the IFS. It has been colored
dark where the attractor is totally disconnected, and light where it is con-

nected.

Here is an outline of an algorithm to compute images of the Mandelbrot
Set # associated with the family {C; wy(z) = Az — 1, wy(z) = Az + 1}. Itis

based on Theorem 8.2.1.

Algorithm 1 (Example of Method for Making Pictures of the
Mandelbrot Set of a Family of IFS)

(i) Choose a positive integer, L, corresponding to the amount of compu-
tation one is able to do, The greater the value of L, the more accurate
the resulting map image will be.

(i) Represent the parameter space P = {A € C: |A| < 1} by an array of

pixels. Carry out the following steps for each A in the array.

(iiiy Calculate a number R, so that the attractor is contained in a ball
of radius R, centered at the origin; that is, choose R > 0 so that

A(\) C B(O, R).

(iv) Compute the number
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H= Mjn{ d(x,y): x € wl(W‘”‘({O})), y € wz(W“‘({O}))},

where W = w, U w,. If H < 2|]A|“"'R then the pixel A is assumed to
belong to 4, and is colored accordingly.

Step (iv) is based on the following observation. The attractor of the IFS 1s
contained in the set WX +*D(B(0, R)), which consists of 27! balls of radius
IA|E*1R. The centers of these balls lie in the union of the two sets wy(W°"(0))
and wy(W°L(0)). If H is greater than 2|A|"*'R then A(A) must be discon-
nected.

Figure 8.2.2 shows the “coastal region” of a quarter of the complement of
the Mandelbrot set in Figure 8.2.1. It has been laid over a grid, in order to
help you locate points where interesting fractals lie.

The boundary of # is complicated and intricate. Close-ups of the “coast-
line” near the places marked (a), (b), and (c) are shown in Figure 8.2.3. Figure
8.2.4 shows a zoom on the spiral peninsula in Figure 8.2.2.

Figure 8.2.2

This shows the coastal

H region of a quarter of the
q(,?x complement of the

Mandelbrot set in Figure

8.2.1. It has been laid

over a grid, in order to

help you locate points

where interesting fractals

lie. Close-ups of the coast

at (a), (b), and (c) are

shown in Figure 8.2.3.

The coordinates of the

grid are (0,0)-

(0.71,0.71).
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Figure 8.2.3

Close-ups of the boundary
of the Mandelbrot set at
(a), (b), and (c). The
diverse structures in this
boundary echo the shapes
of the attractors of the
corresponding IFS.

(2)

Now look at Figures 8.2.5 (a) and (b), which show pictures of the attractors
A(M) for some points A located near the boundary of the Mandelbrot set.
There is a “family resemblance” between the places on the boundary from
which the fractals come, and the fractals themselves. To help see this, look
back at the close-ups on the coastline in Figure 8.2.3, Figure 8.2.6 shows the
IFS attractor corresponding to the tip of the peninsula in Figure 8.2.4. Notice
how it contains spirals, very much like the ones in the peninsula in parameter
space. At the end of this chapter we make some comments on why such
“family resemblances” occur.

The following theorem provides rigorous bounds on the locations of A4
and d.#. The proof is delightful, because it relies on a fractal dimension
estimate.

Theorem 2. [Barnsley 1985c] The attractor A(N) of the IFS {C; Az — 1,
Az + 1} is totally disconnected if |A| < 0.5 and connected if 1 > |A| > 1/V2.
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Figure 8.2.4

Close-up on the spiral
peninsula on the edge of
the Mandelbrot set in
Figures 8.2.1 and 822.
What information about
the corresponding fractals
does this boundary
convey?

The boundary of the associated Mandelbrot set is contained in the annulus

12 <Al<1/V/2.

Proof. Let A denote the attractor of the IFS and let D(A) denote its fractal
dimension. The two maps in the IFS are similitudes of scaling factor |A|. This
means that Theorem 5.2.3 can be applied.
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Suppose that A4 is totally disconnected. Then the IFS is totally discon-
nected and, by Theorem 5.2.3,

D( A) = log(1/2) /log(|A])-
By Theorem 5.2.1, D(A) < 2. Hence
log(1/2) /log(|A]) < 2.

Figure 8.2.5(a)

Some of the fractals to be
found at various points
near the boundary of the
Mandelbrot set
associated with the
parameterized family of
IFS {C; Az — 1,

Az + 1}
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This implies that |A| < 1/V2.

Suppose that A is connected. Then it contains a path which connects two
distinct points. The fractal dimension of any path is greater than or equal to
one. Hence D(A) > 1. However, by Theorem 5.2.3,

D(4) < log(1/2)/log(]A).

Figure 8.2.5(b)

Some of the IFS attrac-
tors to be found at various
points near the boundary
of the Mandelbrot set as-
sociated with the para-
meterized family of IFS
{C; Az —1,Az+ 1}
Where would you look for
an interesting fractal?
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Figure 8.2.6

Attractor of the IFS

{C; Az -1, Az + 1}
corresponding to the value
of \ at the tip of the
spiral peninsula, shown in
Figure 8.2.4.

It follows that

1 < log(1/2) /log([A).
This implies that {A| > 1/2. This completes the proof of the Theorem.

A different point of view on the Mandelbrot set considered above is given
by Figure 8.2.7. .# has been turned inside-out by making the change of
variable A’ = A~!. The inner white disk is no-man’s land it does not belong to
the parameter space. Also included are the two bounds provided by Theorem
8.2.2, namely the circle |\’| = 2 and the circle |\’| = V2. The fractal dimension
decreases with increasing distance from the origin.

Exercises & Examples

2.1. Sketch the Mandelbrot set for the family of IFS {R; A\ x + A,, A,x + A}
where the parameter space is P = {(A;, A,): [A[L [A, <1}

2.2. Let {X; w;,w,} be a family of hyperbolic IFS which depends on a
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DECREASING DECREASING
FRACTAL FRACTAL
DIMENSION DIMENSION

NO MAN'S LAND

TOTALLY
DISCONNECTED
HERE AND IN
BLACK

23.

24.

2.5.

parameter A € P C R Let w, and w, depend continuously on A for
fixed x € X. Assume that the IFS has contractivity factor s € [0, 1)
which is independent of A € P. Then by Theorem 3.11.1, the function
A: P - #(X) is continuous. Use this continuity to prove that the
Mandelbrot set associated with the family of IFS is closed. It is suggested
that you begin by showing that the set S = {B €s(X): B is not
connected} is an open subset of J#(X).

Use Figure 8.2.2, to determine some values of A which belong, approxi-
mately, to the boundary d.# of the Mandelbrot set. Compute images of
the corresponding attractors. Compare images corresponding to two
points A; and A, € d.#, with |A,| <|A,]. Explain why the picture of
A()\) is more delicate than the picture of A(A,). Also comment on
similarities and differences between your images and the local geography
of the parts of d.# from which they come.

The pictures of the Mandelbrot set associated with the family of IFS
{C; Az — 1, Az + 1} suggest the conjecture that .# is symmetric about
the x-axis and about the origin. Prove the conjecture.

An interesting point in the parameter space for the family {C; Az — 1,

Figure 8.2.7

Inside-out picture of the
Mandelbrot set for
{(C;Az -1 Az+ 1} It
has been turned inside-out
by making the change of
varigbles X' = A~ The
inner white disk is no-
man’s land; it does not
belong to the parameter
space. The figure also in-
cludes the two bounds
provided by Theorem
8.2.2, namely the circle
[A'| = 2 and the circle
IV =V2.
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2.6.

2.7.

2.8.

Az + 1) is A = (1/2,1/2). This lies on the circle 1/]A| = [N|= V2 in
Figure 8.2.7. It appears to be located in the interior of the Mandelbrot set,
although the IFS is just-touching. It corresponds to the Twin-Dragon
Fractal. A picture of it is shown in Figure 8.2.8. It is possible to tile the
plane with Twin-Dragons. Various other values of A also correspond to
tilings of the plane. See [Gilbert 1982). Show that the attractor at the
point A = (0,1/v2) can be used to tile the plane.

Notice the line segments on the real axis in Figure 8.2.7. In [Barnsley
1985c¢] it is proved that

{A€C€:05<A <053, A, =0} Cc A,

but neighboring points in € are not in .#. For A in such a line segment,
what does the attractor look like? Are you surprised, in view of what you
know about maps of coastlines?

Some of the most delicate attractors of the family {C; Az — 1, Az + 1}
are associated with points on d.# where it touches the circle 1/|A| = |X|
= 2. These have the lowest possible fractal dimension while still being
connected. Let us call these attractors tree-like if w,(A) N\ wy(A) is a
single point. Argue (or, better yet, prove) that a tree-like attractor A
contains no trapped holes; that is, A contains no nontrivial non-self-
intersecting paths which start and finish at the same point. A picture of a
tree-like attractor is shown in Figure 8.2.9.

Let e = e;e5e5...€,... be a point in the code space L of two symbols,

Figure 8.2.8

The Twin-Dragon
Fractal. You can tile the
plane with these sets. Al-
though it is just-touching,
it appears to lie in the
interior of the Mandelbrot
set.
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Figure 8.2.9

A “tree-like” attractor
A from the family

(€ w(z)=Az - 1,
wy(z) = Az + 1}. The
two sets wi(A) and wy(A)
meet approximately at a
single point.

with ¢, € {+1, —1} for all n. Let A € C. Prove that the series

fA) =e; + A+ s+ e,N + esX + eX -+ +e, N+ -
has radius of convergence one. What is the relationship between f(A) and
the code space map ¢: L. — A(A) associated with the family of IFS
{C; Az — 1, Az + 1}? Let |A| < 1. Show that the attractor of the IFS is
the set of all points which can be written in the form

1A A LR ERENMNENENEN EN LN N0 N -

8.3 THE MANDELBROT SET FOR JULIA SETS .

In this section we introduce a good method for making maps, such as might be
found in an atlas, of families of dynamical systems. The method is based on
the use of escape times and is discussed more generally in Section 8.4. Here we
restrict attention to the family

{é;f/\(z) =z —)\},
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where the parameter space is P = C. This family is of special importance
because it provides a model for the onset of chaotic behaviour in physical and
biological systems; see [May 1986], and [Feigenbaum 1979]. Moreover, it was
the first family of dynamical systems for which a useful computergraphical
map was constructed, by Mandelbrot. We concentrate on map making.

The Julia set J(A) associated with f,(z) is symmetric about the origin, O.
We know this because the filled Julia set, of which J(A) is the boundary, is the
set of points whose orbits remain bounded. The orbit of z € C remains
bounded if and only if the orbit of —z remains bounded.

For some values of A € P, O belongs to the filled Julia set, F()), while for
others it is quite far from F(A). This suggests that we try to color the
parameter space according to the distance from O to F(A). How can we
estimate this distance? An approximate method is to look at the “escape time”
of the orbit of O. That is, we can color the parameter space according to the
number of steps along the orbit of O that are required before it lands in a ball
around the Point at Infinity, from where we know that all orbits diverge. The
intuitive idea is that the longer an orbit of O takes to reach the ball, the closer
O must be to F(A). Of course, if an orbit does not diverge then we know that
0 € F(M).

Suppose that we want to make a map corresponding to a region ¥ C P.
Here we choose

W= {>‘ = (A, A) €C N A, < 2}-
Let R > 0 and define
Y (R)y={z€C:|z|>R} U {x}.
Suppose
R>05+ 025+ (A,

Then it is readily proved that the orbit { f,°>"(z)} diverges if and only if it
intersects ¥"(R). So if we choose R = 10 we are sure that, for all A € #”, the
orbit { ,°"(0)} diverges if and only if it intersects ¥"(R). Let us see what
happens if we color the pixels of %" according to the number of iterations
required to enter ¥ (10).

The following program is written in BASIC. It runs without modification on

an IBM PC with Enhanced Graphics Adaptor and Turbobasic. On any line
the words preceded by ’° are comments: they are not part of the program.

Program 8.3.1 (Example of algorithm for coloring parameter space according
to an escape time.)
numits =20:a= —-2:b=—-2:c=2:d =2: M =100 ’ Define
viewing window, #”, and numits.
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R =10 ’ Define the region ¥ .
screen 9: cls ’ Initialize graphics.
forp=1toM
forq=1to M
k=a+(c—ay*sp/M:1=D0b + (d — b)*q/M ’ Specify the value of
lambda (k,1) € P
X =0:y =0 ’ Specify the initial point, O, on the orbit
for n = 1 to numits ’ Compute at most numits points on the orbit of O
newx = X*X — y*y — k
newy = 2*x*y — |
X = newx: y = newy
if x*x + y*y > R then ’ If the most recently computed point lies in ¥~
then...
. render the pixel (p, q) in color n, and
go to the next (p, q).

’

pset(p, @), n: n = numits

end if

if instat then end ’ Stop computing if any key is pressed!
next n: next g: next p

end

Color Plate 8.3.1 shows the result of running a version of Program 8.3.1 on
a Masscomp 5600 workstation with Aurora graphics.

In Figure 8.3.1 we show the result of running a version of Program 8.3.1,
but this time in halftones. The central white object corresponds to values of A
for which the computed orbit of O does not reach ¥~ during the first numits
iterations. It represents the Mandelbrot set (defined below) for the dynamical
system {é; z> — A}. The bands of colors (or white and shades of grey)
surrounding the Mandelbrot set correspond to different numbers of iterations
required before the orbit of O reaches 7" (10). The bands which are furthest
away from the center represent orbits which reach O most rapidly. Approxi-
mately, the distance from O to F(A) increases with the distance from A to the
Mandelbrot set.

Definition 1. The Mandelbrot set for the family of dynamical systems
(C; 22— A} is .
M = {X e P:J(X) isconnected} .

The relationship between escape times of orbits of O and the connectivity
of J(A) is provided by the following theorem.

315
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Figure 8.3.1

The Mandelbrot set for
22 — X, computed by
escape times.

Theorem 1. The Julia set for a member of the family of dynamical systems
(C; fi(z) =22 = A}, A€ P =C is connected if and only if the orbit of the
origin does not escape to infinity; that is

./(={}\EC:|f>\°”(O)|+»ooasn—>oo}.

Proof. This theorem follows from [Brolin 1966], Theorem 11.2, which says
that the Julia set of a polynomial, of degree greater than one, is connected if
and ounly if none of the finite critical points lie in the basin of attraction of the
Point at Infinity. f,(z) possesses two critical points, O and oc. Hence J(A) is
connected if and only if | f°4(0)| » o0 as n — oo,

In this paragraph we discuss the relationship between the Mandelbrot set
for the family of dynamical systems {é; z2— A}, and the corresponding
family of IFS {é, Vo+ A, —Vz+ A }. We know that for various values of A
in € the IFS can be modified so that it is hyperbolic, with attractor J(A). For
the purposes of this paragraph let us pretend that the IFS is hyperbolic, with
attractor J(A), for all A € C. Then Definition 8.2.1 would be equivalent to
Definition 8.3.1. By Theorem 8.2.1, the attractor of the IFS would be con-
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nected if and only if wi(J(A)) N wy(J(A)) # &. But w(C) N wy(C) = {0}.
Then it would follow that the attractor of the IFS is connected if and only if
O € J(A). In other words: we discover the same criteria for connectivity of
J(A) if we argue informally using the IFS point of view, as can be proved
using Julia set theory. This completes the discussion.

We return to the theme of coastlines, and the possible resemblance
between fractal sets corresponding to points on boundaries in parameter space
and the local geometry of the boundaries. Figures 8.3.2 (a) and (b) show the
Mandelbrot set for z2 — A, together with pictures of filled Julia sets corre-
sponding to various points around the boundary. If one makes a very high
resolution image of the boundary of the Mandelbrot set, at a value of A
corresponding to one of these Julia sets, one “usually” finds structures which
resemble the Julia set. It is as though the boundary of the Mandelbrot set is
made by stitching together microscopic copies of the Julia sets which it
represents. An example of such a magnification of a piece of the boundary of
A, and a picture of a corresponding Julia set, are shown in Figures 8.3.3 and
8.3.4.

If you look closely at the pictures of the Mandelbrot set .# considered in
this section, you will see that there appear to be some parts of the set which
are not connected to the main body. Pictures can be misleading.

Theorem 2. [Mandelbrot-Douady-Hubbard] The Mandelbrot set for the family
of dynamical systems {C; z* — N} is connected.

Proof. This can be found in [Douady 1982].

The Mandelbrot set for z2 — A is related to the exciting subject of cascades
of bifurcations, quantitative universality, chaos, and the work of Feigenbaum.
To learn more you could consult [Feigenbaum 1979], [Douady 1982], [Barnsley
1984], [Devaney 1986], [Peitgen 1986], [Scia 1987].

Exercises & Examples

3.1. Rewrite Program 8.3.1 in a form suitable for your own computergraphical
environment. Run your program and obtain hardcopy of tlze output.
Adjust the window parameters a, b, c, and d, to allow you to make
zooms on the boundary of the Mandelbrot set.

3.2. Figure 8.3.5 shows a picture of the Mandelbrot set for the family of
dynamical systems {é; z? — \} corresponding the coordinates —0.5 <
A, <15, =10 < A, < 1.0. It has been overlayed on a coordinate grid.
The middle of the first bubble has not been plotted, to clarify the
coordinate grid. Let By, B,, B,, B;,... denote the sequence of bubbles
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Figure 8.3.2(a)
Mandelbrot set for

2% — \, decorated with
various Julia sets and
filled Julia sets.

Figure 8.3.2(b)
Mandelbrot set for

2% — X, decorated with
various Julia sets and
filled Julia sets. These
often resemble the place

on the boundary from
which they come, espe-

cially if one magnifies up
enough.
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Figure 8.3.3

A zoom on a piece of the
boundary of the
Mandelbrot set for

2 — A

Figure 8.3.4

A filled Julia set corre-
sponding to the piece of
the coastline of the
Mandelbrot set in Figure
8.3.3. Notice the family
resemblances.
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Figure 8.3.5

A picture of the
Mandelbrot set for the
family of dynamical sys-
tems {€; 22 — \}. It has
been overlayed on a coor-
dinate grid. The middle
of the first bubble has not
been plotted, to clarify

the coordinate grid.
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on the real axis, reading from left to right. Verify computationally that
when A lies in the interior of B, the dynamical system possesses an
attractive cycle, located in C, of minimal period 2", for n = 0, 1, 2, and 3.

3.3. The sequence of bubbles {B,}*_, in exercise 3.2 converges to the

Myreberg point, A = 1.40115... The ratios of the widths of successive
bubbles converges to the Feigenbaum ratio 4.66920... . Make a conjec-
ture about what sort of “attractive cycle” the dynamical system {é;
z2 — A} might possess at the Myreberg point. Test your conjecture
numerically. You will find it easiest to restrict attention to real orbits.

3.4. Make a parameter space map for the family of dynamical systems {é;

fi(z)} where f, is the Newton transformation associated with the family
of polynomials

F(z) =23+ (A—-1)z A,

Notice that the polynomial has a root located at z = 1, independent of A.
Color your map according to the “escape time” of the orbit of O to a ball
of small radius centered at z = 1. Use black to represent values of A for
which O does not converge to z = 1. Examine some Julia sets of f,

Aep=C.
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corresponding to points on the boundary of the black region. Are there
resemblances between structures which occur in your map of parameter
space, and some of the corresponding collection of Julia sets? (The correct
answer to this question can be found in [Curry 1983].)
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84 HOW TO MAKE MAPS OF FAMILIES OF FRACTALS USING ESCAPE TIMES

We begin by looking at the Mandelbrot set for a certain family of IFS. It is
disappointing and we do not learn much. We then introduce a related family
of dynamical systems and color the parameter space using escape times. The
result is a map which is packed with information. We generalize the procedure
to provide a method for making maps of other families of dynamical systems.
We discover how certain boundaries in the resulting maps can yield informa-
tion about the appearance of the fractals in the family. That is, we begin to
learn to read the maps.

Figures 8.4.1 (a) and (b) show the Mandelbrot set .#, for the family of
hyperbolic IFS

{C;w(2) =Az+ 1, w(z) =Nz~ 1}, P={AeC:|A|<1]}.
We use the notation A* = (A + iX,)* = (A; — iA,), for the complex con-
jugate of A. The two transformations are similitudes of scaling factor |A|. At
fixed A, they rotate in opposite directions through the same angle. The figures
also show attractors of the IFS corresponding to various points around the
boundary of the Mandelbrot set. What a disappointing map this is! There are
no secret bays, jutting peninsulas, nor ragged rocks in the coastline.

Theorem 1. [Hardin 1985] The Mandelbrot 4| is connected. Its boundary is
the union of a countable set of smooih curves, and is piecewise differentiable.

Proof. This can be found in [Barnsley 1988d].

Let us try to obtain a better map of this family of attractors. In order to do
so we begin by defining an extension of the associated shift dynamical system,
for each A € P\ .#,. Let A(A) denote the attractor of the IFS. One can
prove that A(A) is symmetric about the y-axis. Hence A € #, if and only if

A(A) intersects the y-axis. Define f,: C — C by
wy 1(2) ifRez > 0;
wy 1(2) ifRez < 0.

-]

Then, when A is such that A(A) is disconnected, { A(A); f\} is the shift
dynamical system associated with the IFS; {C; f,} is an extension of the shift
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set are colored black. The
fractals which it repre-
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boundary of #, is

smooth and does not re-

sents. The figure also

shows attractors of the

Figure 8.4.1(a) 1
The complement of the

Mandelbrot set M| asso-

ciated with the family of

IFS {C; w(2) =

Az 4+ 1, wm(z) = A*z —

1}. Points in the comple-

veal much information >

IFS corresponding to

ment of the Mandelbrot
about the family of
various points on the
boundary of M. What

a disappointing map this
is!

:
;
3

dynamical system to all of C; and A(A) is the “repelling set” of {C; f, }. This
system can be used to compute images of A(A) in the just-touching and totally
disconnected cases, using the Escape Time Algorithm, as discussed in Chapter
7, Section 1.

We make a map of the family of dynamical systems {R?; f,}, A € P. To
do this we use the following algorithm, which was illustrated in Program 8.3.1.
The algorithm applies to any family of dynamical systems {R? f,} which
possesses a “repelling set” A(A), such that P is a two-dimensional parameter
space with a nice classical shape, such as a square or a disk.

Algorithm 1 (Method for Coloring Parameter Space According to an
Escape Time.)

(1) Choose a positive integer, numits, corresponding to the amount of
computation one is able to do. Fix a point Q € R? such that Q €
A(M) for some, but not all, A € P.
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Figure 8.4.1(b)

The complement of the
Mandelbrot set #, asso-
ciated with the family of
IFS (C;w(2)=Az+1,
wy(2) = A*z — 1}, 10-
gether with some of the
corresponding fractals.
Notice how these have
subsets of points which lie

on straight lines, like the
} local structure of 3.4#1.

¥
:
;

(i) Fixaball B C R?suchthat A(\) C B forall A € P. Define an escape
region to be ¥'= R?\ B.

(iit) Represent the parameter space P by an array of pixels. Carry out the
following step for each A in the array.

(tv) Compute { f,i°"(Q): n=0,1,2,3,..., numits}. Color the pixel A
according to the least value of n such that f,°"(Q) € 7. If the com-
puted piece of the orbit does not intersect ¥~, color the pixel black.

The result of applying this algorithm to the dynamical system defined
above, with Q = O, is illustrated in Figures 8.4.2, 8.4.3 (a)-(g), and Color
Plates 8.4.1 and 8.4.2,

Figure 8.4.2 contains four different regions. The first is a neighborhood of
O, surrounded by almost concentric bands of black, grey, and white. The
location of this region is roughly the same as that of P\ .#,, which corre-
sponds to totally disconnected and just-touching attractors. The second region
is the grainy area, which we refer to as the foggy coastline. Here, upon
magnification, one finds complex geometrical structures. An example is il-
lustrated in the sequence of zooms in Figures 8.4.3 (a)-(g). The structures

323
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Figure 8.4.2

A map of the family of
dynamical systems

{C; f1}, where

f(2) ={(2_1)/X

(z+1)/A*
The parameter space is
P={A€eC;0<A <
1,0 <X, <0.75). The
map is obtained by apply-
ing Algorithm 8.4.1.
Pixels are shaded accord-
ing to the “escape time”
of a point O € R?, The
exciting places where the
interesting fractals are to
be found are not within
the solid bands of black,
grey, or white, but within
the foggy coastline. This
coastline is itself a fractal
object, revealing infinite
complexity under mag-
nification. In it one finds
approximate pictures of
some of the connected and
“almost connected” re-
pelling sets of the dy-
namical system. Why are
they there?

if Rez > 0;
if Rez < 0.
Sea of Connection S+
Foggy Coastline
The Land of E = Unexplored Region
Total Disconnection 3 g ZEhvab il J oms
H B wmon
= 2=

appear to be subtly different from one another. Early experiments show that if
A is chosen in the vicinity of one of these structures, then images of the
“repelling set” of the dynamical system {R?; f,}, computed using the Escape
Time Algorithm, contains similar structures. An example of such an image is
shown in Figure 8.4.4. The third region, at the lower right in Figure 8.4.2, is
made up of closed contours of black, grey, and white. Here the map conveys
little information about the family of dynamical systems. To obtain informa-
tion in this region one should examine the orbits of a point Q, different from
O. The fourth region, the outer white area in Figure 8.4.2, corresponds to
dynamical systems for which the orbit of O does not escape. It is likely that
for A in this region, the “repelling set” of the dynamical system possesses an
interior.
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Figures 8.4.3(a)- (g)

A sequence of zooms

on a piece of the foggy
coastline in Figure 8.4.2.
The window coordinates
of the highest power zoom
are 04123 < A| <
0.4139,0.6208 < A, <
0.6223. Can you find
where each picture lies
within the one that pre-
cedes it?

Figure 8.4.3(b)
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Figure 8.4.3(g)

Our new maps, such as Figure 8.4.2, can provide information about the
family of IFS

{Cyw(2) =Az+1,wm(z) =A%z -1}, P={AeC:|\|<1}.

in the vicinity of the boundary of the Mandelbrot set. For A € d.#, the
attractor of the IFS is the same as the repelling set of the dynamical system.
For A close to d.#, the attractor of the IFS “looks like” the repelling set of
the dynamical system.

Figure 8.4.5 shows a transverse section through the anther of a lily. We
include it because some of the structures in Figures 8.4.3 (a)-(g) are remi-
niscent of cells.

Algorithm 8.4.1 can be applied to families of dynamical systems of the
type described in Theorem 7.4.1. For example, let {R% f,}, where A€ P =1
C R?, denote a family of dynamical systems. Let X ¢ R? be compact. Let
fi: X = R? be continuous and such that f(X) D X. Then f, possesses an
invariant set A(A) € 5#(X), given by

o0

A(N) = N A(X).

n=0

A(X) is the set of points whose orbits do not escape from X. The set of points
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Figure 8.4.5
Longitudinal section
through part of the stigma
of a lily, showing
germinating pollen-
grains. h, papillae of
stigma; p.g., pollen
grains; t, pollen tubes.
Highly magnified. (After
DodelPort, [Scott 1917].)

Figure 8.4.4

Image of the repelling set
for one of the family of
the dynamical systems
whose parameter space
was mapped in Figure
8.4.2. This image corre-
sponds to a value of A
which lies within the
highest power zoom in
Figure 8.4.3. Notice how
the objects here resemble
those in the corresponding
position in the parameter
space.
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in P corresponding to which the orbit of Q does not escape from X is
H#(Q) = {A€P:Q € AN)).

We conclude this chapter by giving an “explanation” of how family
resemblarces can happen between structures which occur on the boundary of
A (Q) and the sets A(A). (1) Suppose that A(A)is a set in R? which looks like
a map of Great Britain, translated by A. Then what does .#(Q) look like? It
looks like a map of Great Britain. (2) Suppose that A(A) is a set which looks
like a map of Great Britain at time A,, translated by A. We picture the set
A(M) varying slowly, perhaps its boundary changing continuously in the
Hausdorft metric as A varies. Now A(A) looks like a deformed map of Great
Britain. The local coves and inlets will be accurate representations of those
coves at about the time A; to which they correspond in the parameter space
map. That is, the boundary of .#(Q) will consist of neighboring bays and
inlets at different times stitched together. It will be a map which is microscopi-
cally accurate (at some time) and globally inaccurate. (3) Now pretend in
addition that the coastline of Great Britain is self-similar at each time A,.
That is, imagine that little bays look like whole chunks of the coastline, at a
given instant. Now what will .#(Q) look like? At a given microscopic location
on the boundary, magnified enormously, we will see a picture of a whole
chunk of the coastline of Great Britain, at that instant. (4) Now imagine that
for some values of A, Great Britain, in the distant future, is totally discon-
nected, reduced to grains of isolated sand. It is unlikely that those values of A
belong to #(Q). As A varies in a region of parameter space for which 4(A) is
totally disconnected, it is not probable that Q € A(A). In these regions we
would expect .#(Q) to be totally disconnected.

The families of sets {A(A) € X: A € P} considered in this chapter
broadly fit into the description in the preceding paragraph. Both P and X are
two-dimensional. The sets A4(A) are derived from transformations which
behave locally like similitudes. For each A € P, A(X) is either connected or
totally disconnected. Finally, the sets A(A) and their boundaries appear to
depend continuously on A.

Exercises & Examples

4.1. In the above section we applied Algorithm 8.4.1, with Q = (0,0), to
compute a map of the family of dynamical systems

(z=-1/X ifRez>0;

f*(z)={(z+1)/>\* ifRez <0.

The resulting map was shown in Figure 8.4.2. This map contains an
unexplored region. Repeat the computation, but with (a) Q = 0.5, and
(b) Q@ = —0.5, to obtain information about the Unexplored Region.
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4.2. In this example we consider the family of dynamical systems {C; f,}
where
(z—=1/A if A, x — Ay >0,
H(z) = .
(z+1)/A if A,x ~ A,y <0.

The parameter space is A € P = {A € C: 0 <|A| <1}, This family is
related to the family of IFS
{Ciw(2) =Az+ 1, wm(z) =Az—1}.
Let A(\) denote the attractor of the IFS and let A(A) denote the
“repelling set” associated with the dynamical system. Let
S = {A € P: theline A, x — A,y = O separates the two sets w; ( A(X))
and w,(A(A))}.
If A € § then {A(A); f,) is the shift dynamical system associated with

the IFS, and A4(\) = A(\). Even when A & S we expect there to be
similarities between A(A) and A(M).

Figure 8.4.6

A map of the family of
dynamical systems de-
scribed in Example 8.4.2,
computed using Al-
gorithm 8.4.1. The
parameter space is P =
{AeC:0<A; <1,0
< X, < 1}. The grainy
grey area is the interest-
ing region. This is the
“coastline;” it is itself a
fractal object, revealing
infinite complexity under
magnification.
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43.

In Figures 8.4.6, 8.4.7, 8.4.8, and Color Plates 8.4.3 and 8.4.4, we show
some results of applying Algorithm 8.4.1 to the dynamical system {C;
f)-

In Figure 8.4.6, the outer white region represents systems for which

the brbit of the point O do not diverge, and probably corresponds to
“repelling sets” with nonempty interiors. The inner region, defined by the
patchwork of grey, black, and white sections, bounded by line segments,
represents systems for which the orbit of O diverges and corresponds to
totally disconnected “repelling sets.” The grainy grey area is the interest-
ing region. This is the “coastline;” it is itself a fractal object, revealing
infinite complexity under magnification. Figures 8.4.7 and 8.4.8 show
magnifications at two places on the coastline. The grainy areas which are
revealed by magnification resemble pictures of the repelling set of the
dynamical system at the corresponding values of A.
This exercise refers to the family of dynamical systems {C; z? — A}. Use
Algorithm 8.41 with —025 <A, <2, -1 <A, <1, and Q = (0.5,0.5),
to make a picture of the “Mandelbrot set” #(0.5,0.5). An example of
such a set, for a different choice of Q, is shown in Figure 8.4.9.

Figure 8.4.7

Zoom on a small piece of
the foggy area in Figure
8.4.5. In it one finds
grainy areas which re-
semble the repelling sets
of the corresponding dy-
namical systems. At what
value of A does one find
them? At the value of A
in the map where the pic-
ture you are interested in
occurs.
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Figure 8.4.8

Zoom on a small piece of
the foggy area in Figure
8.4.5. The grainy areas in
this picture here have dif-
ferent shapes from those
in Figure 8.4.7.

Figure 8.4.9

A “Mandelbrot set”

M (z,) associated with
the family of dynamical
systems {C; z2 — A }.
This was computed using
escape times of orbits of
a point z = z, different
from the critical point,
z=0.



Measures on Fractals

9.1

INTRODUCTION TO INVARIANT MEASURES ON FRACTALS

In this section we give an intuitive introduction to measures. We focus on
measures which arise from iterated function systems in R?2,

In Chapter 3, Section 8, we introduced the Random Iteration Algorithm.
This algorithm is a means for computing the attractor of a hyperbolic IFS in
R2. In order to run the algorithm one needs a set of probabilities, in addition
to the IFS,

Definition 1. An iterated function system with probabilities consists of an
IFS {X; wy,w,,..., wy} together with a set of numbers { p;, p,,..., Py }»
such that

pr+pr+ps+ - +py=1 and p >0fori=1,2,.. ., N.

The probability p, is associated with the transformation w,. The nomenclature
“IFS with probabilities” is used for “iterated function system with probabili-
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ties.” The full notation for such an IFS is {X; wy, w,,...,
Pi> P2s---, Py }- Explicit reference to the probabilities may be suppressed.
An example of an IFS with probabilities is

C; w(z) =05z, wy(z) =0.5z + 0.5, wy(z) = 0.5z + 0.5,
1 2 3
wy(z) = 0.5z + 0.5 + (0.5)i; 0.1,0.2,0.3,0.4}.

Wy,

s

It can be represented by the IFS code in Table 9.1.1. The attractor is the filled
square W, with comers at (0, 0), (1,0), (1,1), and (0, 1).

Here is how the Random Iteration Algorithm proceeds in the present case.
An initial point, z, € C is chosen. One of the transformations is selected “at
random” from the set {w,, w,, wy, w, }. The probability that w; is selected is
p:, for i = 1,2, 3,4. The selected transformation is applied to z, to produce a
new point z; € C. Again a transformation is selected, in the same manner,
independently of the previous choice, and applied to z; to produce a new
point z,. The process is repeated a number of times, resulting in a finite
sequence of points {z,: n =12, ... numits} where numits is a positive
integer. For simplicity, we assume that z, € B. Then, since w,(l) C W, for
i=1,234, the “orbit” {z,: n = 1,2,..., numits} lies in B

Consider what happens when we apply the algorithm to the IFS code in
Table 9.1.1. If the number of iterations is sufficiently large, a picture of B will
be the result. That is, every pixel corresponding to B is visited by the “orbit”
{z,: n=1,2,..., numits}. The rate at which a picture of B is produced
depends on the probabilities. If numits = 10000, then we expect that, because
the images of W are just-touching,

the number of computed points in w, () = 1000,
the number of computed points in w, (W) = 2000,
the number of computed points in w; () = 3000,
the number of computed points in w, () = 4000.

These estimates are supported by Figure 9.1.1, which shows the result of
running a modified version of Program 3.8.2, with the IFS code in Table 9.1.1,
and numits = 10000.

Table 9.1.1 T
IFS code for a measure on .
w a b ¢ d e f )4
1 0.5 0 0 0.5 1 1 0.1
2 0.5 0 0 0.5 50 1 02
3 0.5 0 0 0.5 1 50 0.3
4 0.5 0 0 0.5 50 50 0.4
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Figure 9.1.1

The Random Iteration
Algorithm, Program
3.8.1, is applied to the
IFS code in Table 9.1.1,
with numits = 100,000.
Verify that the number of
points which lie in w, (W)
is approximately
(numits) p,, fori=
1,2,3,4.

In Figures 9.1.2 (a)-(c) we show the result of running a modified version of
Program 3.8.2, for the IFS code in Table 9.1.1, with various choices for the
probabilities. In each case we have halted the program after a relatively small
number of iterations, to stop the image becoming “saturated.” The results are
diverse textures. In each case the attractor of the IFS is the same set, B.
However, the points produced by the Random Iteration Algorithm “rain
down” on B with different frequencies at different places. Places where the
“rainfall” is highest appear “darker” or “more dense” than those places where
the “rainfall” is lower. In the end all places on the attractor get wet.

The pictures in Figure 9.1.2 (a)-(c) suggests a wonderful idea. They suggest
that, associated with an IFS with probabilities, there is a unique “density” on
the attractor of the IFS. The Random Iteration Algorithm gives one a glimpse
of this “density,” but one loses sight of it as the number of iterations is
increased. This is true, and much more as well! As we will see, the “density” is
so beautiful that we need a new mathematical concept to describe it. The
concept is that of a measure. Measures can be used to describe intricate
distributions of “mass” on metric spaces. They are introduced formaily further
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Figure 9.1.2(a)- (c)

The Random Iteration
Algorithm is applied to
the IFS code in Table
9.1.1, but with various
different sets of probabili-
ties. The result is that
points rain down on the
attractor of the IFS at
different rates at different
places. What we are see-
ing are the faint traces of
wonderful mathematical
entities called measures.
These are the true
fractals. Their supports,
the attractors of IFS, are
merely sets upon which
measures live.

Figure 9.1.2(b)
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Figure 9.1.2(c)

on in this chapter. The present section provides an intuitive understanding of
what measures are, and of how an interesting class of measures arises from
IFS’s with probabilities,

As a second example, consider the IFS with probabilities

{€; wi(2) =052, wy(2) = 0.5z + 48, wy(z) = 0.5z + 24 + 48i; 0.25,0.25,0.5}.

The attractor is a Sierpinski triangle, z& . The probability associated with
w;y is twice that associated with either w; or w,. In Figure 9.1.3 we show the
result of applying the Random Iteration Algorithm, with these probabilities, to

compute 10000 points belonging to . There appear to be different
“densities” at different places on & . For example, w;y( z&) appears to

have more “mass” than either w( Z&) or wy( Z& ).

In Figure 9.14 we show the result of applying the Random Iteration
Algorithm to another IFS with probabilities, for three different sets of prob-
abilities. The IFS is {R?; w;, w,, wy, w, }, where w, is an affine transformation
for i = 1,2,3,4, The attractor of the IFS is a leaf-like subset of R2. In each
case we see a different pattern of “mass” on the attractor of the IFS. It
appears that each “density” is itself a fractal object.
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Exercises & Examples

1.1. Carry out the following numerical experiment. Apply the Random
Iteration Algorithm to the IFS code in Table 9.1.1, for numits = 1000,
2000, 3000, ... In each case record the number, 4", of computed points
which land in B = {(x, y) € R% (x — 1)? + (y — 1)? < 1}, and make
a table of your results. Verify that the ratio .A4/numits appears to
approach a constant,

1.2. Repeat the computergraphical experiment which produced Figure 9.1.1.
Verify that you obtain “similar looking” output to that shown in Figure
9.1.1, even though you (probably) use a different random number se-
quence. .

The Random Iteration Algorithm is used to compute 100,000 points
belonging to M, using the IFS code in Table 9.1.1, How many of these
points, do you expect, would belong to w; o w;(H)? Why?

1.3.

Let (X, d) be a complete metric space. Let {X; w,,..., wy; p1,..., Py}
be an IFS with probabilities. Let 4 denote the attractor of the IFS, Then there
exists a thing called the invariant measure of the IFS, which we denote here by

Figure 9.1.3
The Random Iteration
Algorithm is used to com-
pute an image of the
Sierpinski triangle

. The probability
associated with wy is twice
that associated with w or
w, . One thousand points
have been computed. The

result is that wy( )
appears denser than

w; ( ) or

ws ( ). This ap-
pearance is lost when the
number of iterations is in-
creased. We are led to the
idea of a “mass” or mea-
sure which is supported on
the fractal.
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Figure 9.1.4
The Random Iteration Algorithm is used to compute an image of a leaf. Different sets of
probabilities lead 1o different distributions of “mass” on the leaf.

p. p assigns “mass” to many subsets of X. For example p(A4) =1 and
p#(2) = 0. That is, the “mass” of the attractor is one unit. and the “mass” of
the empty set is zero. Also p(X) = 1. which says that the whole space has the
same “mass” as the attractor of the IFS: the “mass” is located on the
attractor.

Not all subsets of X have a “mass” assigned to them. The subsets of X
which do have a “mass” are called the Borel subsers of X. denoted by Z(X).
The Borel subsets of X include the compact nonempty subsets of X. so that
H(X) € B(X). Also, if ¢ is an open subset of X, then ¢ € #(X). So there
are plenty of sets which have “mass.”

Let B denote a closed ball in X. Here is how to calculate the “mass” of the
ball, u(B). Apply the Random Iteration Algorithm to the IFS with probabili-
ties, to produce a sequence of points {z,}>_,. Let

A’( B, n) = number of pointsin {z,,2,2y,5.....2,} N B.
forn=10.1.2.....
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Then, almost always,

o= ().

That is, the “mass” of the ball B is the proportion of points, produced by the
Random Iteration Algorithm, which land in B. (To be precise, we also have to
require that the “mass” of the boundary of B is zero; see Corollary 9.7.1)

By now you should be bursting with questions. How do we know that this
formula “almost always” gives the same answer? What are Borel sets? Why
don’t all sets have “mass?” Welcome to measure theory!

As an example, we evaluate the measure of some subsets of C, for the IFS
with probabilities

{€; wy(2) =05z, wy(z) = 0.5z + (0.5)i, wy(z) = 0.5z + 0.5; 0.33,0.33,0.34} .

The attractor is a Sierpinski triangle & with vertices at 0, i, and 1. We
compute the measures of the following sets:
By ={zeC:|z/< 05}
By={zeC:|z—(05+05i)] <02}
By={zeC:|z-(05+05i)] <05}
By={zeC:|z-(2+i)|<V2}.
The “mass” of B is the ;;gure 915 " d
proportion of time tagram of the Random
\ spent in B Iteration Algorithm run-
\ ning, and a dancing point
coming and going from

the ball B. The “mass”
or measure of the ball is
w(B). It is equal to the
proportion of points which
land in B.

Random lIteration Algorithm produces
a dancing point. ?:h

INENE AN

g aaaad
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Table 9.1.2
The measures of some subsets of & are computed by random iteration.

n N (By, n)/n N(B,,n)/n N (By, n)/n N (By, n)/n
5,000 * 0.3313 0.1036 0.6385 0.0004
10,000 0.3314 0.1050 0.6500 0.0002
15,000 0.3323 0.1041 0.6512 0.0001
20,000 0.3330 0.1030 0.6525 0.0000
50,000 0.3326 0.1041 0.6527 0.0000
100,000 0.3325 0.1054 0.6497 0.0000

p(B;)) = 033 p(B,) = 0.10 p(By) = 0.65 u(B,) = 0.00

The results are presented in Table 9.1.2.
Figure 9.1.5 illustrates the ideas introduced here.

Exercises & Examples

1.4. Explain why u(B,) = 0 in Table 9.1.2.

1.5. What value, approximately, would have been obtained for u(B,) in Table
9.1.2, if the probabilities on the three maps had been p, = 0.275, p, =
0.125, and p, = 0.5?

1.6. Why, do you think, is the phrase “almost always” written in connection
with the formula for u(B), given above?

9.2 FIELDS AND SIGMA-FIELDS

Definition 1. Let X be a space. Let # denote a nonempty class of subsets of
a space X, such that

(i) A,Be%=AUBEcZ,
(i) AeF=X\A4eF.

Then & is called a field. (In example 9.2.13 you are asked to prove that
X eF)

Theorem 1. Let X be a space. Let 9 be a nonempty set of subsets of X. Let
F be the set of subsets of X which can be built up from finitely many sets in 9

using the operations of union, intersection, and complementation with respect to
X. Then F is a field.

Proof. Elements of # consist of sets such as
X\ (((X\ (G, V G,)) N G3) U (G5 N Gy)),
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where G,, G,, G;,G;,... denote elements of ¢, That is, % is made of all
those sets whjch can be expressed using finite chains of parentheses,
N7, “U”,“N” elements of ¢, and X. (In fact, using de Morgan’s laws one

can prove that 1t is not necessary to use the intersection operation,) If we form
the union of any two such expressions, we obtain another one. Similarly, if we
form the complement of such an expression with respect to X, we obtain
another such expression. So conditions (i) and (ii) in Definition 9.2.1 are
satisfied. This completes the proof,

Definition 2. The field referred to in Theorem 9.2.1 is called the field gener-
ated by 9.

Exercises & Examples

2.1. Let X be a space and let 4 C X. Then #= {X, 4, X \ 4, @} is a field.

2.2. Let X be the set of all leaves on a certain tree, and %, the set of all
subsets of X. Then % is a field. Let A denote the set of all the leaves on
the lowest branch of the tree. Then 4 € %#. Prove that % is generated
by the leaves.

23. Let X =[0,1] € R. Let ¢ denote the set of all of subintervals (open,
closed, half-open) of [0,1]. Let % denote the field generated by ¢.
Examples of members of # are [0.5,0.6) U (0.7,0.81); [0,1]; [1,1]; and
G, DU G H U U, 95). Show that

1 1 11 11
U ((n+ 53] = (39 v(5.3) v(53) v
is a subset of X but it is not a member of %
24. Let X = B C R2 Let ¢ denote the set of closed rectangles contained in
X, whose sides are parallel to the coordinate axes and whose corners

have rational coordinates, Let denote the field generated by 4. An
example of an element of #

((m\ ((m\R) U Rz) N R;) U (R, N (M\Ry))

where R;, R,, R,, R,, and R; are rectangles in 4. Let S € %. Prove
that the area of S is a rational number Deduce that % does not contain
the ball B(0,1) = {(x, y) € ®: x* + y* < 1}. .

2.5. Let X denote the set of pixels corresponding to a certain computer
graphics display device. The set of all monochrome images which can be
produced on this device forms a field. Figure 9.2.1 shows an example of
a small field of subsets of X. It is generated by the pair of images, G,
and G,, in the middie of the first row, together with the set X. X is
represented by the black rectangle. The empty set is represented by a
blank screen. Find formulas for all of the images in Figure 9.2.1, in
terms of G, G,, and X.

343
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Figure 9.2.1

A field whose elements are
sets of pixels. Can you
find two elements of the
field which generate the
field?

5 4 O

2.6. Let X denote the code space on two symbols 1 and 2. Let n &
{1,2,3,...} and e; € {1,2} for i = 1,2,..., n. Let
Cle,ey,...,e,)={x€Zix;=¢fori=12,... n}.

Any subset of 2 which can be written in this form is called a cylinder
subser of Z. Let # denote the field generated by the cylinder subsets of
2. Find a subset of £ which is not in #

2.7. Let X be a space. Let & denote the set of all subsets of X. The
customary notation for this field is #= 2X. Show that # is a field.

Definition 3. Let # be a field such that

A, eFforiel2,3. = )4 eZ.
i=1
Then % is called a o-field (sigma-field). Given any field, there always is a
minimal, or smallest, o-field which contains it.

Theorem 2. Let X be a space and let G be a set of subsets of X. Let
(% a €1) denote the set of all o-fields on X which contain 4. Then
F=n_% isa o-field containing 9.
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Proof. Note that there is at least one o-field which contains ¢, namely 2%,
the field consisting of all subsets of X. We have to show that N %, is a
o-field if each % is a o-field which contains . Suppose that 4, € N % ;
then, for each &, A, is an element of the o-field &%, and so U2, 4, € %,
Suppose 4 € N %, then, for each a, 4 €%, and so X\ 4 € %, Hence

X\ 4 € N _ %, This completes the proof.

Definition 4. Let 4 be a set of subsets of a space X. The minimal o-field
which contains ¢, defined in Theorem 9.2.2, is called the o-field generared
by %.

Definition 5. Let (X, d) be a metric space. Let & denote the o-field gener-
ated by the open subsets of X. & is called the Borel field associated with the
metric space. An element of & is called a Borel subset of X,

The following theorem gives the flavor of ways in which the Borel field can
be generated.

Theorem 3. Let (X, d) be a compact metric space. Then the associated Borel
field % is generated by a countable set of balls.

Proof. We prove a more general result first. Let ¥= {b, C X: n =1,2,3,..;
b, open} be a countable base for the open subsets of X. That is, every open set
in X can be written as a union of sets in ¢, Then # is generated by %. To see
this, let % denote the o-field generated by ¥. Then % C % because ¥ is
contained in the set of open subsets of X. On the other hand % C % because
4 contains all the generators of %, Hence 8 = 4.

It remains to construct a countable base for the open subsets of X using
balls. For R > 0 let

B(x,R) ={ye€X:d(x,y) <R}.

Let n be a positive integer. Then X = U . B(x,1/n). Hence { B(x,1/n):
x € X} is an open covering of X, Since X is compact, it contains a finite
subcovering { B(x{",1/n): m = 1,2,..., M(n)} for some integer M(n). We
claim that

9 = {B(x,(""),%): m=12,...,M(n); n= 1,2,3,...}

is a countable base for the open subsets of X. For let @ be an open subset of
X, and let x € 0. Then there is an open ball, of radius R > 0, such that
B(x,R)C @. Let n be large enough that 1/n < R/2, Then there is m €
{1,2,..., M(n)} so that x is in the ball B(x{”,1/n), and this ball is
contained in @. Each x in @ is contained in such a ball, belonging to 2.
Hence 2 is indeed a countable base for the open subsets of X. This completes
the proof,
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Exercises & Examples

2.8. This example takes place in the metric space ([0,1], Euclidean). Let %
denote the o-field generated by the real intervals which are contained in
[0,1]). Then Z is the Borel field associated with the metric space ([0, 1],
Euclidean metric). Show that % is the same as the o-field generated by
the field in exercise 9.2.3.

2.9. Let # denote the o-field generated by the field in exercise 9.2.4. Then %
contains the ball B(O, 1). Similarly, it contains all balls in @ ¢ R?. Show
that % is the Borel field assoctated with (M, Manhattan).

2.10. Let 2 denote the code space on the two symbols {0,1}. Show that the
Borel field associated with (Z, code space metric) is generated by the
cylinder subsets of 2, defined in exercise 9.2.6.

2.11. Let & C R? denote a Sierpinski triangle. Let ¢ denote the set of

connected components of R?\ . Let % denote the o-field gener-
ated by ¢. Show that % is contained in, but not equal to, the Borel field
associated with (R?, Euclidean).

2.12. Let X be a space and let ¢ be a set of subsets of X, Let #, be the field
generated by ¢, let %, be the o-field generated by ¢, and let #; be
the o-fiéld generated by &%, . Prove that %, = %,.

2.13. Let % be a field of subsets of a space X. Prove that X € %.

9.3 MEASURES

A measure s defined on a field. Each member of the field is assigned a
non-negative real number, which tells us its ““mass.”

Definition 1. A measure pi, on a field &, is a real non-negative function p:
F - [0, 00) C R, such that whenever 4, € # fori=1,2,3,..., with 4,N 4,
= @ fori#jand U¥ 4, €%, we have

“(UIA') = ¥ w4,
i= i=1

(In other texts, a measure as defined here is usually referred to as a finite
measure.)

Definition 2. Let (X, d) be a metric space. Let & denote the Borel subsets of
X. Let p be a measure on #. Then p is called a Borel measure.

Some basic properties of measures are summarized below.

Theorem 1. Let F be a field and let p: % — R be a measure. Then
Q) If B> A then p(B) = p(B\ 4) + p(B), for A, B € %,
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(i) If B> A then u(B) > u(A);

i) p(2) = 0;

vy IfA, €% fori=123,... and U2 A, €F then u(U 2 4;) <
Z?O‘I’J,(A,),

v If {A,€F )} obeys A\, C A, CA;C ..., and if U2, A, € F,
then p(A;) = p(Y 7, 4,).

vi) If{A,€F}obeysA, DA, D2 A;2 ...,andif N2 1A; €EF, then
p(A;) = p(NiZ4,).

Proof. [Rudin 1966] Theorem 1.19, p. 17. These are fun to prove for yourself!

We are concerned with measures on compact subsets of metric spaces such
as (R?, Euclidean). The natural underlying o-field is the Borel field, generated
by the open subsets of the metric space. The following theorem allows us to
work with the restriction of the measure to any field which generates the
o-field.

Theorem 2. (Carathéodory) Ler p denote a measure on a field F. Let 2

denote the o-field generated by F. Then there exists a unique measure fi on ¥
such that p(A) = fi(A) forall A € F.

Sketch of proof. The proof can be found in most books on measure theory,
see [Eisen 1969] Theorem 5, Chapter 6, p. 180, for example. First p is used to
define an “outer measure” pu° on the set of subsets of X, u® is defined by

00 00
p(A) = mf{ Yu(4,) Ac U4, A4, eFvne z*}.

n=1 n=1

1® is not usually a measure, However, one can show that the class #° of

subsets A of X such that—this was Caratheodory’s smart idea—
p(E) =p°(A NE) + p°((X\A) NE)  forall E € 2%,

is a o-field which contains %#. One can also show that p° is a measure on % °.
Note that #° > %, ji is defined by restricting u° to %. Finally one shows
that this extension of p to % is unique. This completes the sketch.

In the above sketch we have discovered how to evaluate the extended
measure fi in terms of its values on the original field.

Theorem 3. Let a measure p on a field F be extended to a measure i on the
minimal o-fielld % which contains % . Then, for all A € &%,

=} =}
i(A4) = inf{ Y u(4,): Ac U4, 4,€eFvn= 1,2,...}.

n=1 n=1
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Exercises & Examples

3.1.

3.2

33.

34.

3.5.

Consider the field = {X, 4, X\ 4, @}, where A # X and 4 # &. A
measure p: F— R is defined by p(X) = 7.2, p(4) = 3.5, p(X\ 4) =
3.7, and p(d) =0. F is also a o-field. The extension of the measure
promised by Caratheodory’s theorem is just the measure itself.
Let # be the field made of sets of leaves on a certain tree, at a certain
instant in time, and let p(A) be the number of aphids on all the leaves in
A € #. Then p is a measure on a finite o-field.
Let X =[0,1] € R. Let & be the field generated by the set of subinter-
vals of [0,1]. Let a, b € [0,1] and define p((a, b)) = p(a, b]) = b — a,
for a < b; and more generally let
p(element of # ) = sum of lengths of disjoint subintervals which
comprise the element.
Show that p is a measure on %. The o-field % generated by % is the
Borel field for ([0,1]), Euchdean) Show that § = {x €[0,1]: x 1s a
rational number} belongs to & but not to #. Evaluate ji(S), where p Tis
the extension of p to %.
Let X = 2, the code space on the two symbols 1 and 2. Let % denote the
field generated by the cylinder subsets of X, as defined in exercise 9.2.6.
Let0 <p, <1and p, =1 — p,. Define
n(Cler,er,....€,)) = PeyPey--- P,

for each cylinder subset C(e;,e,,...,e,) of Z. Show how p can be
defined on the other elements of % in such a way as to provide a measure
on %. Evaluate

p({x €2 x,=1}), and p(2).

Extend % to the field % generated by %, and correspondingly extend g
to fi. Show that

={x €3 x4 =1} eF
and evaluate fi(S).
This example takes place in the metric space {[0, 1]; Euclidean}. Consider
the IFS with probabilities
{[051]; wi(x) = jx;wy(x) = 3x + 3 p1, Pz}-
Let % denote the field generated by the set of intervals which can be
expressed in the form
w, ow,, e -+ ow, ([0,1]),

where n € {1,2,...} and ¢, € {1,2} foreach i = 1,2,..., n. Let 0 < p,
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< 1land p, =1 — p,. Show that one can define a measure on % so that,
for every such interval,

p(w, om, o ow, ([0,1]) = p. pe, - P, -
Let A denote the attractor of the IFS. Evaluate p(A4), u(X \ A4), and
u[1/3,2/3).
3.6. What happens in exercise 9.3.5 if the IFS is replaced by
{10,1]; wy(x) = $x,wy(x) =4x + i p1» 2 }?
For what value of p, is the extension of the measure to the o-field
generated by # the same as the Borel measure defined in exercise 9.3.3?

Definition 3. let (X, d) be a metric space, and let p be a Borel measure.
Then the support of p is the set of points x € X such that p(B(x, ¢)) > 0 for
all € > 0, where B(x,¢) = {y € X: d(y, x) <¢€}.

The support of a measure is the set on which the measure lives. The
following is an easy exercise.

Theorem 4. Let (X, d) be a metric space, and let p be a Borel measure. Then
the support of . is closed.

Exercises & Examples

3.7. Let (X, d) be a compact metric space and let p be a Borel measure on X
such that p(X) # 0. Show that the support of p belongs to #°(X), the
space of nonempty compact subsets of X.

3.8. Prove the following. “Let p be a measure on a o-field %, and let % be
the class of all sets of the form 4 U B where 4 € % and B is a subset of
a set of measure zero. Then % is a o-field and the function fi: % — R
defined by p(A4 U B) = ji(A) is a measure.” The measure ji referred to
here is called the completion of p. The completion of the measure in

Exercise 3.3 is called the Lebesgue measure on [0, 1].
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9.4 INTEGRATION

In the next section we will introduce a remarkable compact metric space. It is
a space whose points are measures! In order to define the metric on this space,
we need to be able to integrate continuous real-valued functions with respect
to measures.

Can one integrate a continuous function defined on a fractal? How does
one evaluate the “average” temperature of the coastline of Sweden? Here we
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learn how to integrate functions with respect to measures. Let (X, d) be a
compact metric space. Let p be a Borel measure on X. Let f: X - R be a
continuous function. We will explain the meaning of integrals such as

) [ 1) ().

Definition 1. We reserve the notation x , for the characteristic function of a
set A C X. It is defined by

_[1 forx €A,
Xa() =10 forx e X\ 4.

A function f: X — R is called simple if it can be written in the form

N
f(x) = Zy[x/,(x)s
i=1
where N is a positive integer, [, € # and y, € R for i=1,2,..., N, UNX I,
=X,and [N, =& for i #j.

The graphs of several simple functions, associated with different spaces, are
shown in Figures 9.4.1 (a) and (b).

Definition 2. The integral (with respect to p) of the simple function f in
Definition 9.4.1, is

N
J 1) du(x) = [ fdp = T yn(1).
X X i=1
This does not depend on how f is represented as a simple function.

Exercises & Examples

4.1. Let f: [0,1] > R be a piecewise constant function, with finitely many
discontinuities. Show that f is a simple function. Let p denote the Borel
measure on [0, 1] such that u(7) = length of I, when [ is a subinterval
of [0, 1]. Show that

[rende= [ 1(x) du(x),

where the left-hand side denotes the area under the graph of f.

4.2. This example takes place in the metric space (M, Euclidean). Let ¥
denote the set of rectangular subsets of M. Let % denote the field
generated by ¢. Show that there is a unique measure p on % such that
u(A) = area of 4, for all 4 € 4. Notice that the o-field generated by #
is precisely the Borel field % associated with (B Euclidean). Let f
denote the extension of p to #. Let & denote a Sierpinski triangle
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Figure 9.4.1(a)

The graph of a simple
function on a Sierpinski
triangle. The domain is
a Sierpinski triangle in
the (x, y)-plane. The
function values are repre-
sented by the z-coordi-
nates.

Figure 9.4.1(b)

The graph of a simple
function whose domain is
a fractal fern. If, in-
stead, the function values
were represented by col-
ors, a painted fern would
replace the graph.
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43.

44.

4.5.

4.6.

contained in M. Show that &E 4%, and

Zx&dﬁ=ﬁ(&)=0.

This example concerns the IFS with probabilities
{Ciwm(z) = 0.5z, wy(z) = 0.5z + (0.5)i, wy(z) = 0.5z + 0.5;
p1=02,p, =03, p, =05}
Let Z& denote the attractor of the IFS. Let % denote the Borel

subsets of ( [& Euclidean). Let p denote the unique measure on %
such that

(&)=1
A ))=p terie 123y
p(wl.owj( & )) =p:p fori, j € {1,2,3}

p(wiowj... owk( [& )) =p;p;- - Pk fori, j,..., ke {1,2,3}.
Define a simple function on z& by

lforx + iy € &andl/35xsl,
—1lforx +iy € &andOsxslﬂ.

Calculate /& f(2) du(z), accurate to two decimal places.

f(x+ip)=

Based on the ideas of Section 1 of this chapter, can you guess a
method for calculating the integral which makes use of the Random
Iteration Algorithm? Try it!

Show that if &, 8 € R and f, g are simple functions then af + Bg is a
simple function, and

afxfd# + fogd# = fx(af+ Bg) dp.

Black ink is printed to make this page. Let @ C R? be a model for the
page, and represent the ink by means of a Borel measure g, so that p(A4)
is the mass of ink associated with the set 4 C B. Let &/ € % denote the
smallest Borel set which contains all of the letters “a” on the page.
Assume that the total mass of ink on the page is one unit. Estimate
JaX ardp.

Let 2 denote code space on two symbols {1,2}. Let & denote the Borel
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field associated with (=, code space metric). Consider the IFS {2; w;(x)
= 1x, wy(x) = 2x; p; = 0.4, p, = 0.6}, where “1x” means the string
“lx;x,%;...” and “2x” means the string “2x,x,x,...”. The attractor
of the IFS is 2. Let pu denote the unique measure on % such that

p(womw - s w () =pp - p  fori j,... ke (1,2}
Define sets A and B in & by
A={x€%B:x,=1} and B={x€B:x,=2}.
Define f: 2 - R by
f(x) = xa(x) + (2.3)x5(x) forall x € X.
Evaluate the integral

[ 1) duz).

Definition 3. Let (X, d) be a compact metric space, and let # denote the
associated Borel field. Let p be a Borel measure. A parrition of X is a finite set
of nonempty Borel sets, {4, € #: i=1,2,..., M}, such that X = UM 4,
and 4; N A, = & for i # j. The diameter of the partition is Max{Sup{d(x, y):
x, yEAi=12,...,M}.

Theorem 1. Ler (X, d) be a compact metric space. Let % denote the associ-
ated Borel field. Let p be a Borel measure on X. Let f: X = R be continuous.
(1) Let n be a positive integer. Then there exists a partition B, = {A, , € %:
m=12..., M(n)} of diameter <1/n. (i) Let x,, €A, , for m=
1,2,3,... and define a sequence of simple functions by
M(n)
fu(x) = Zlf(x,,‘m)xA"‘m(x) forn=1,2,3,...

Lid

Then { f,} converges uniformly to f(x). (iii) The sequence { [ f, du} converges.
(iv) The value of the limit is independent of the particular sequence of partitions,
and of the choices of x, ,, € A4, .

Sketch of Proof. (i) Since X is compact, it is possible to cover X by a finite
set of closed balls of diameter 1/n, say b, , b, 5, .-, b, ar- We caniassume
that each ball contains a point which is in none of the other balls. Then define
A, =b,,, and 4, ;=b, \NU[]A,,, for j=23,..., M(n). Then %,
={A,,€% m=12..., M(n)} is a partition of X of diameter < 1/n.
(i) Let € > 0. f is continuous on a compact space, so it is uniformly
continuous. It follows that there exists an integer N(¢) so that if x, y € X and
d(x,y) £1/N(e) then |f(x) ~ f(»)| < e. It follows that |f(x) — fi(x)| <€

when n > N(e).
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(iii) It is readily proved that { [x f, dp} is a Cauchy sequence. Indeed, for
all n, m > N(¢) we have

‘ [ fodn= [ f o

It follows that the sequence converges.

(iv) Let { £.} be a sequence of simple functions, constructed as above.
Then there is an integer N(¢) such that |f(x) ~ f(x)| < € when n > N(e). It
follows that, for all n > Max{ N(¢), N(¢)},

< [ JCf = 1) s < 2600%).

[ Jndn= [ fudn Sfx|(f,. ~ fu) | dn < 2en(X).

This completes the sketch of the proof.

Definition 4. The limit in Theorem 9.4.1 is called the inregral of f (with
respect to p). It is denoted by

lim fxf,. dp = fxfd#-

Exercises & Examples

4.7. Let (X, d) be a metric space. Let a € X. Define a Borel measure §, by
0,(B)=11if a€ B and §,(B) =0 if a & B, for all Borel sets B C X.
This measure is referred to as “a delta function” and “a point mass at
a.” Let f: X — R be continuous. Show that

[ J0x) 8. () = f(a).

4.8. This example takes place in the metric space (B, Euclidean). Let p be the
measure defined in exercise 9.4.2, and define f: B - R by f(x, y) = x?
+ 2xy + 3. Evaluate

ffdp.

4.9. Make an approximate evaluation of the integral Q@xz dp(x) where
p and & are as defined in Exercise 9.4.3.

4.10. Let X denote the set of pixels corresponding to a certain computer
graphics display device. Define a metric d on X so that (X, d) is a
compact metric space. Give an example of a Borel subset of X and of a
nontrivial Borel measure on X. Show that any function f: X - R is
continuous. Give a specific example of such a function, and evaluate
Ixfdp.
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9.5 THE COMPACT METRIC SPACE (2(X), d)

We introduce the most exciting metric space in the book. It is the space where
fractals really live.

Definition 1. Let (X, d) be a compact metric space. Let p be a Borel
measure on X. If u(X) =1 then p is said to be normalized.

Definition 2. Let (X, d) be a compact metric space. Let Z(X) denote the set
of normalized Borel measures on X. The Hutchinson metric d;; on #(X) is
defined by

dy(p,v)
= Sup{fxfdp - fxfdv: 71X > R, fcontinuous, | f(x) — f( )]
<d(x, y)Vx,y }

for all u, v € #(X).

Theorem 1. Ler (X, d) be a compact metric space. Let P(X) denote the set
of normalized Borel measures on X and let d,; denote the Hutchinson metric.
Then (P(X), dy) is a compact metric space.

Sketch of proof. A direct proof, using the tools in this book, is cumbersome.
It is straightfoward to verify that d,, is a metric. It is most efficient to use the
concept of the “weak topology” on #(X) to prove compactness. One shows
that this topology is the same as the one induced by the Hutchinson-metric,
and then applies Alaoglu’s Theorem. See [Hutchinson 1981] and [Dunford
1966].

Exercises & Examples

5.1. Let K be a positive integer. Let X = {(i, j): i, j = 1,2,..., K}. Define
a metric on X by d((iy, j1), (i3, /) = |iy = iy + [jy = jol Then(X, d) is
a compact metric space. Let p & 2(X) be such that p((i, j)) =
(i +7)/(K*>+ K?) and let v € 2(X) be such that »(i, j) = 1/K?, for
all i, j € {1,2,..., K}. Calculate d,(u, »).

3.2. Prove Theorem 9.4.6 for the space X in exercise 9.5.1. (See also Exercise
9.4.10.)

53. Let (X, d) be a compact metric space. Let u € #(X). Prove that the
support of p belongs to 5#(X).
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9.6 A CONTRACTION MAPPING ON 2(X)

Let (X, d) denote a compact metric space. Let % denote the Borel subsets of
X. Let wiX — X be continuous. Then one can prove that w™!: & - 2. It
follows that if v is a normalized Borel measure on X, then so is vow !, In
turn, this implies that the function defined next indeed takes %(X) into itself.

Definition 1. Let (X, d) be a compact metric space and let #(X) denote the
space of normalized Borel measures on X, Let {X; wy,w,,..., wy;
D1, P+, Py} be a hyperbolic IFS with probabilities. The Markov operator
associated with the IFS is the function M: #(X) — #(X) defined by

M(v) =ppew ' +ppow ' + o +pyrowy!
for all v € 2(X).

Lemma 1. Let M denote the Markov operator associated with a hyperbolic
IFS, as in Definition 9.6.1. Let f: X —» R be either a simple function or a
continuous function. Let v € P#(X). Then

N
[ rd(m() = Zn [ Jowar

Proof. Suppose that f: X — R is continuous. By Theorem 9.5.1 we can find
a sequence of simple functions { f,} which converges uniformly to /. Let n be
a positive integer. It is readily verified that

N N N
ndMV = ] "dyowi—1= i "dyow’_‘1= i f"ow’dy'
fxf (M(v)) iglp fxf EIP L,(X)f iglp fx

The sequence { [f, d(M(»))} converges to [fd(M(»)).

For each i€ {1,2,..., N} and each positive integer n, f, ow, is a
simple function. The sequence { f, ow;}?_; converges uniformly to fow,.
It follows that {[f,ow,dv}y., converges to [feow,dv. It follows that
(ZX 1 p;[f,ow, dv}>_| converges to L™, p, [f o w; dv. This completes the proof.

Theorem 1. Ler (X, d) be a compact metric space. Ler {X; wy, wy, ..., wy;
DP1s Pys---, Pn | be a hyperbolic IFS with probabilities. Let s € (0,1) be a
contractivity factor for the IFS. Let M: P(X) - P(X) be the associated
Markov operator. Then M is a contraction mapping, with contractivity factor s,
with respect to the Hutchinson metric on #(X). That is,

dy(M(v), M(pn)) < sdy(v,p) forall v, p € P(X).

In particular, there is a unique measure p € P(X) such that

My=yp.
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Proof. Let L denote the set of continuous functions f: X — R such that
[f(x) = f(»)] < d(x, ) Vx, y € X. Then

4y (M(3), M(w) = Sup{ [1d(M(w) = [rd(M(): s L]

N N

=Sup{f2p,f°w,du*pr,-ff’w,dv:fG L}~
i=1 i=1

Let f=5s"'YN p.fow.Then feL Let L={feL: f=5s"'EV pfow,

some f € L}. Then we can write

dy(M(v), M(p)) = Sup{sffdp— sff"du: fe Z}.
Since L c L, it follows that

dH(M(V)7 M(p')) =< SdH(Vs p’)
This completes the proof.

Definition 2. Let p denote the fixed point of the Markov operator, promised
by Theorem 1. p is called the invariant measure of the IFS with probabilities.

We have arrived at our goal! This invariant measure is the object which we
discussed informally in Section 1 of this chapter. Now we know what fractals
are.

Exercises & Examples

6.1. Verify that the Markov operator associated with a hyperbolic IFS on a
compact metric space indeed maps the space into itself.

6.2. This example uses the notation in the proof of Theorem 9.6.1. Let f € L
and let f=s"'CN p.f ow,. Prove that f € L.

6.3. Consider the hyperbolic IFS {8 C R% wy, w,, wy, Wy} Py1» P2, P3, Pa)
corresponding to the collage in Figure 9.6.1(a). Let M be the associated
Markov operator. Let p, € #(X), so that p (M) = 1. For example, g,
could be the uniform measure, for which py(S) is the area of S € #(m).
We look at the sequence of measures {u, = M°"(py)}. The measure
By, = M(pg) is such that p(w,(®)) = p; for i = 1,2,3, 4, as illustrated in
Figure 9.6.1(b). It follows that p, = M°*(p) obeys p(w, o w;(W) = p, p;
for i, j = 1,2,3,4, as illustrated in Figure 9.6.1(c). We quickly get the
idea. When the Markov operator is applied, the “mass” in a cell
W, ,=weoweo - ow(l) is redistributed among the four smaller
cells w,(®,, ), w(®,, ), w;(®,, ), and w,@,; ). Also, mass
from other cells is mapped into subcells of B;;  in such a way that the
total mass of M;; , remains the same as before the Markov operator
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Figure 9.6.1(a), (b)

A collage for an IFS of
four maps. The attractor
of the IFS is W, and the
probabilify of the map w,
isp; fori=1,2,3,4. Let
M denote the associated
Markov operator. Let p
€ P(X) so that p, (W) =
1. Then p; = M(p,) is
a measure such that

p(w, (W) = p; for
i=1,2,3,4, as il-
lustrated in (b). The
measure p, = M°*(po)
is such that p(w, o w;(W))
=pip fori,j=
1,2,3,4, as illustrated in
(¢). See also Figures
9.6.2 and 9.6.3.

(a)

(b)

4 3
1 2
Py Py
P P,
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()

Figure 9.6.1(c)
P4P4 P4P3 P3P4 P3P3
P4P1 P4P2 P3P1 P3P2
P1P4 P1P3 P2P4 P2P3
P1P1 P1P2 P2P1 P2P2

6.4.

6.5.

6.6.

was applied. In this manner the distribution of “mass” is defined on
finer and finer scales as the Markov operator is repeatedly applied. What
a wonderful idea. We have also illustrated this idea in Figures 9.6.2 and
9.6.3.

Apply the Random Iteration Algorithm to an IFS of the form consid-
ered in exercise 9.6.3. Choose the probabilities p;, p,, p;, and p, so as
to obtain a “picture” of the invariant measure which would occur at the
end of the sequence which commences in Figures 9.6.3 (a), (b), (¢), and
(d).

Consider the IFS {[0,1] € R; wy(x) = (0.5)x, wy(x) = (0.7)x + 0.3;
p1 = 045, p, = 0.55}. The attractor of the IFS is [0,1]. Let M denote
the associated Markov operator. Let p, € #([0,1]) be the uniform
measure on [0, 1]. The successive iterates M(uq), M°2(y4), M°*(4,) and
M°%(p,) are represented in Figures 9.6.4 (a), (b), (c), and (d). Each
measure is represented by a collection of rectangles whose bases are
contained in the interval [0,1]. The area of a rectangle equals the
measure of the base of the rectangle. Although the sequence of measures
converges { M°"(py)} in the metric space {£([0,1],d,;} some of the
rectangles would become infinitely tall as n tends to infinity.

Make a sequence of figures, analogous to Figures 9.6.4(a)-(d), to repre-
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Figure 9.6.2(a), (b)

This illustrates the action
of the Markov operator
on one of the sequence of
measures {'M°”(p0)},
where (W) = 1. When
the Markov operator is
applied, the “mass™ in
acellm; =

wiawja awk(.) is
redistributed among the
four cells w (W, ),
W@, ) W ),
and w,(M;; ). Also,
mass from other cells is
mapped into subcells of
W, . insuch away that
the total mass of L
remains the same as be-
fore the Markov operator
was applied. In this
manner the distribution of
“mass” is defined on finer
and finer scales as the
Markov operator is re-
peatedly applied.

MASS IN CELL 1S
DISTRIBUTED TO
SMALLER CELLS

MASS FROM
ELSEWHERE
MAKES UP
THE LOSS
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Figure 9.6.3(a)-(d)
This sequence of figures
represents successive
measures produced by
iterative application of a
Markov operator of the
type considered in Fig-
ures 9.6.1 and 9.6.2. The
result of one application
of the operator to the uni-
form measure on R is
represented in (a). Fig-
ures (b), (¢), and (d)
show the results of further
successive applications of
the Markov operator. The
measures are represented
in such a way as to keep
the total number of dots
constant. The measure of
a set corresponds ap-
proximately to the num-
ber of dots which it con-
tains. This represents the
first few of a sequence of
measures which converges
in the metric space

(2 (W), d;;) to the in-
variant measure of the
IFS.

Figure 9.6.3(b)
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Figure 9.6.3(c)

Figure 9.6.3(d)




96 A Contraction Mapping on 2 (X)

Figure 9.6.4(a) - (d)
This sequence of images
relates to the IFS {[0,1]
C R; w(x) = (0.5x,
wy(x) = (0.7)x + 0.3;
p = 045, p, = 0.55}.
The attractor of the IFS
is [0,1]. Let M denote
the associated Markov
operator. Let py €
2((0,1)) be the uniform
measure on [0,1]. The

0 1 successive iterates M(p,),
M (o), M (o) and
M°*(u,) are represented
in Figures (a), (b), (¢)
and (d). Each measure
is represented by a collec-
tion of rectangles whose
bases are contained in the
interval [0,1]. The area
of a rectangle equals the
measure of the base of the
rectangle.
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Figure 9.6.4(d) []

6.7.

°J | 1

sent the Markov operator applied to the uniform measure p,, for each of
the following IFS’s with probabilities:

@ {0,1] C R; wi(x) = (0.5)x, wy(x) = (0.5)x + 0.5; p, = 0.5,
P2 =05},

@) {[0,1] € R; wy(x) = (0.5)x, wy(x) = (0.5)x + 0.5;
p1 =099, p, = 0.01};

(i) {[0,1] € R; wy(x) = (0.9)x, wy(x) = (0.9)x + 0.1;
p1 = 045, p, = 0.55)}.

In each case describe the associated invariant measure.

Let X = {4, B, C} denote a space which consists of three points. Let %
denote the o-field which consists of all subsets of X. Consider the IFS
with probabilities {X; wy, w,; p; = 0.6, p, = 0.4} where w;: X = X is
defined by w,(4) =B, w(B)= B, w(C)= B, and w,: X - X is
defined by w,(A4) = C, wy(B) = 4, and w,(C) = C. Let #(X) denote
the set of normalized measures on %. Let p, € #(X) be defined by
fo(A) = po(B) = pno(C) = 5. Let M denote the Markov operator asso-
ciated with the IFS, and let u, = M°"(uy) for n=1,2,3,.... De-
termine real numbers a, b, ¢, d, e, f, g, h, i such that for each n

""n(A) a b 4 "":141(’4)
""n(B) =[d e f ""nfl(B) .
[J."(C) g h i By — I(C)

Let M denote the 3 X 3 matrix here. Explain how M is related to M,
and show that the invariant measure of the IFS can be described in
terms of an eigenvector of M.
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68. Let 3G w,,wy,...,Wx; D1, DP2,--., Pn) be a hyperbolic IFS with
probabilities. Let p denote the associated invariant measure. Let A
denote the attractor of the IFS. Let u, € #(X) be such that p(A4) = 1.
By considering the sequence of measures {j, = M°"(u,)}, prove that

p'(wiowjo nwk(A)) Zplpj ..-Pk’ foralll.,j,...,Ke {1,2,,N}

Show that if the IFS is totally disconnected then the equality sign holds.

Theorem 2. Let (X, d) be a compact metric space. Let {X; wy, w,,..., wy;
P1, Pas---5 Py} be a hyperbolic IFS with probabilities. Let p be the associa-
ted invariant measure. Then the support of | is the attractor of the IFS
{X5 wy,wy, o, wy b

Proof. Let B denote the support of u. Then B is a nonempty compact subset
of X. Let A denote the attractor of the IFS. Then {A4; w;, w,,..., wy;
DPis Pas---, Pn ) is @ hyperbolic IFS. Let v denote the invariant measure of the
latter. Then » is also an invariant measure for the original IFS. So, since p is
unique, v = p. It follows that B C A.

Let a A. Let O be an open set which contains a. We will use the
notation of Theorem 4.2.1. Let X denote the code space associated with the
IFS and let 0 € = denote an address of a. It follows from Theorem 4.2.1 that
Lim, _, (0, n, A) = a, where the convergence is in the Hausdorfl metric. It
follows that there is a positive integer n so that ¢(o, n, 4) C 0. But
p(¢(o, n, A)) 2 p, p,, -+ P, > 0. It follows that p(0) > 0. It follows that a
is in the support of p. It follows that a € B. It follows that A C B. This
completes the proof.

Theorem 3. (The Collage Theorem for Measures) Ler {X; wy, w,,... wy;
DP1» Pas---, Py} be a hyperbolic IFS with probabilities. Let p be the associated
invariant measure. Let s € (0,1) be a contractivity factor for the IFS. Let
M: P(X) - P(X) be the associated Markov operator. Let v € P(X). Then

dy(v,p) < ii”g’_—Ms()”)).

Proof. This is a corollary of Theorem 9.6.1.

We conclude this section with a description of the application of Theorem
9.6.3 to an inverse problem. The problem is to find an IFS with probabilities
whose invariant measure, when represented by a set of dots, looks like a given
texture.

A measure supported on a subset of R? such as B can be represented by a
lot of black dots on a piece of white paper. Figures 9.1.2 and 9.1.4 provide
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examples. The dots may be granules of carbon attached to the paper by means
of a laser printer. The number of dots inside any circle of radius } inch, say,
should be approximately proportional to the measure of the corresponding
ball in R?. A greytone image in a newspaper is made of small dots and can be
thought af as representing a measure.

Let two such images, each consisting of the same number of points, be
given. Then we expect that the degree to which they look alike corresponds to
the Hutchinson distance between the corresponding measures.

Let such an image, L, be given. We imagine that it corresponds to a
measure v. Theorem 9.6.3 can be used to help find a hyperbolic IFS with
probabilities whose invariant measure, represented with dots, approximates
the given image. Let N be a positive integer. Let w;: R2 — R? be an affine
transformation, for i = 1,2,..., N. Let {R% wy, wy, ..., Wy Py, P2,---, Pn)
denote the sought-after IFS. Let M denote the associated Markov operator.

Let p;& L mean the set of dots L after the “density of dots” has been
decreased by a factor p,. For example, 0.5 & L means L after “every second
dot” in L has been removed. The action of the Markov operator on » is
represented by UM ,w,( p,& L). This set consists of approximately the same
number of dots as L. Then we seek contractive affine transformations and
probabilities such that

(9.6.1) LAil w(p&L) =L

i=1
That is, the coefficients which define the affine transformations and the
probabilities must be adjusted so that the left-hand side “looks like” the
original image.

Suppose we have found an IFS with probabilities so that (9.6.1) is true.
Then generate an image L of the invariant measure of the IFS, containing the
same number of points as L. We expect that

(9.6.2) L=L.

If the maps are sufficiently contractive, then the meaning of “ = ” should be
the same in both (9.6.1) and (9.6.2). These ideas are illustrated in Figure 9.6.5.

Exercises & Examples

6.9. Use the Collage Theorem for Measures to help find an IFS with
probabilities for each of the images in Figure 9.6.6.

6.10. Let {X; w;,w,,...,Wy; pP1, Pa,..., Py} be a hyperbolic IFS. Let u
denote the invartiant measure. Let 4 denote the attractor. Let 2 denote
the associated code space on the N symbols {1,2,...,N}. Let
T: X — 3 be defined by T:(0) = io, forall 6 € Z, for i = 1,2, 3,4. Let
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6.11.

p denote the invariant measure for the hyperbolic IFS (2; T\, T,, T3, T, ;
P1> D2, Py, Pq - Let ¢: 2 — A denote the continuous map between code
space and the attractor of the IFS introduced in Theorem 4.2.1. Prove
that p(¢~'(B)) = u(B) for all Borel subsets B of X.

Figure 9.6.7 depicts the invariant measure for the IFS N

{[0,1] CR; w(x) =ax,m(x) =ax +e;p.p},

where a,, a, and e, are real constants such that the attractor is
contained in [0,1]. The measure of a Borel subset of [0, 1] is approxi-
mately the amount of black which lies “ vertically” above it. Find aq,,
a,, and e,.

Figure 9.6.5

This illustration relates to
the Collage Theorem for
Measures. The shades of
gray “add up” in the
overlapping regions.
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Figure 9.6.6(a)

Can you find the IFS and
probabilities correspond-
ing to this texture?

Figure 9.6.6(b)
Determine the IFS and
probabilities for this cloud
texture.
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Figure 9.6.6(c)

Find the four affine maps
and probabilities for this
texture.

Figure 9.6.7

This figure depicts the in-
variant measure for the
IFS: {[0,1] C R;

wi(x) = aix, wy(x) =
ax + e pr, Pl
where a,, a,, and e, are
real constants such that
the attractor is contained
in [0,1]. The measure of
a Borel subset of [0,1] is
approximately the amount
of black which lies “verti-
cally” above it. Can you
find a), a,, and e,?
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9.7 ELTON'’S THEOREM

Both the following theorem and its corollary claim that certain events occur
“with prqbability one.” Although this has a very precise technical meaning, it
is fine to interpret it in the same way as you would interpret the statement
“There is 100% chance of rain tomorrow.” After the statements we mention
the mathematical framework which is used for dealing with probabilistic
statements. To go further, we recommend reading parts of [Eisen 1969].

The theorem below is actually true when the p,’s are functions of x, the
w,’s are only contraction mappings “on the average” and the space is “locally”
compact.

Theorem 1. Ler (X, d) be a compact metric space. Let {X; wy, wy, ..., wy;
P1sDys-.-, Pn} be a hyperbolic IFS with probabilities. Ler (X,d) be a
compact metric space. Let {x, )., denote an orbit of the IFS produced by the
Random Iteration Algorithm, starting at x. That is,

Xy = wa,,o wa,,,l e e Wal(xo)’
where the maps are chosen independently according to the probabilities
Pi>Drs--r Pn> form=1,23 ... . Let p be the unique invariant measure for

the IFS. Then, with probability one (that is, for all code sequences a,,0,,...
except for a set of sequences having probability zero),

. 1 z
tim 757 X /(%) = [ 703 du(x).

n—

for all continuous functions f: X - R and all x,,.

Proof. See [Elton 1986].

Corollary 1. Ler B be a Borel subset of X and let p(boundary of B) = 0. Let
N (B, n) = number of points in {xy, x|, x5, X3,...,%,} N B,
forn=20,1,2,....
Then, with probability one,
) AN (B, n
w(B) = "1111{7(,,(+ 1))},

for all starting points x,. That is, the “mass™ of B is the proportion of iteration
steps, when running the Random Iteration Algorithm, which produce points in B.

We explain more deeply the context of the statement “with probability
one.” Let 2 denote the code space on the N symbols {1,2,..., N}. Let p
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denote the unique Borel measure on = such that
p(C(o1,0,,...,0,)) = PoPs, " Po,
for each positive integer m and all 0,,0,,...,0, € {1,2,..., N}, where
C(0,,0,,...,0,)={w€Zw =0,0,=0;,...,0, =0, }.

Then p € #(2). This measure provides a means for assigning probabilities to
sets of possible outcomes of applying the Random Iteration Algorithm. Let us
see how this works. _

When the Random Iteration Algorithm is applied, an infinite sequence of
symbols w;, w,, w;,...,namely a code w = w,w,w;... €Z, is generated.
Provided that we keep x, € X fixed, we can describe the probabilities of
orbits {x,} in terms of the probabilities of codes w. So we examine how
probabilities are associated to sets of codes.

The Random Iteration Algorithm is applied, and produces a code w € Z.
What is the probability that w, = 1? Clearly it is p; = p(C(1)). What is the
probability that @, = 6;, w, = 0,,..., and w, = ¢, 7 Because the symbols are
chosen independently, it is p(C(0y,0,,...,0,)) = p, P,, *** P, Let B de-
note a Borel subset of 3. What is the probability that the Random Iteration
Algorithm produces a code ¢ € B? It is at least intuitively reasonable that it is
p(B). This can be formalized; see for example [Eisen 1969]. The measure p
provides a means of describing the probabilities of outcomes of the Random
Iteration Algorithm.

Here is a heavy way of stating the central part of Theorem 1. “... Let
B C Z denote the set codes o € 2 such that

fim iy £k = [ 1(5) duC).

for all x, € X and all continuous functions f: X — R, where
Xp = wo,,o wo,,,l A Wol(x0)~
Then B is a Borel subset of £ and p(B) = 1."

A similar equivalent restatement of the Corollary can be made.

Exercises & Examples

7.1. This example concerns the IFS {[0,1]; ix, x + %;0.5,0.5}. Show that
the invariant measure  is such that p([x, x + 8]) = § when [x, x + 8] is
a subinterval of [0,1]. Deduce that if f: [0,1] = R is a continuous
function then

j:f(x) dx = j;o,l]fd“.

Let f(x) =1 + x? Compute approximations to the latter integral with
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the aid of Elton’s theorem and the Random Iteration Algorithm. Com-
pare your results with the exact value %.

7.2. This example concerns the IFS (B C R?% wy, wy, wy, w,; 0.25,0.25,
(.25, 0.25) corresponding to the collage in Figure 9.6.1(a). Let u denote
the ihvariant measure. Argue that p is the uniform measure which assigns
“measure” dxdy to an infinitesimal rectangular cell of side lengths dx
and dy. Use Elton’s theorem and the Random Iteration Algorithm to
evaluate approximations to

f(xz + 2xp + 3y?) dxdy.
n

Compare your approximations with the exact value.
7.3. This example concerns the IFS

(& R m(x ) = (35.0), m(x0) = (x by + 3),
w(x, ) = (3x+ 1,10): 3. 4,4).

where z& is the attractor of the IFS, our old friend. Let u denote the
invariant measure of the IFS. Argue that p provides a good concept of a
“uniform” measure on . Use Elton’s theorem and the Random
Iteration Algorithm to compute approximations to

f (x* + 2xy + 3y*) dxdy.

9.8 APPLICATION TO COMPUTER GRAPHICS

We begin by illustrating how a color image of the invariant measure of an IFS
with probabilities, can be produced. The idea is very simple. We start from an
IFS such as

(€;0.52 + 24 + 24i 0.5z + 24i,0.52;0.25,0.25,0.5}.

A viewing window and a corresponding array of pixels P,; is specified. The
Random Iteration Algorithm is applied to the IFS, to produce an orbit
{z,: n=0,1,..., numits}, where numits is the number of iterations. For each
(i, j) the number of points .4°( P, ), which lie in the pixel P, are counted.
The pixel P;; is assigned the value A"(P,;)/numits. By Elton’s theorem, if
numits is large, this value should be a good approximation to the measure of
the pixel. The pixels are plotted on the screen in colors which are determined

from their measures.
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The following program implements this procedure. It is written in BASIC. It
runs without modification on an IBM PC with Enhanced Graphics Adaptor
and Turbobasic.

Program 9.8.1 (Uses the Random lIteration Algorithm to Make a “Picture”
of the Invariant Measure Associated with an IFS with Probabilities.)

screen 9: cls ’Initialize graphics.

dims(51,51) ’Allocate array of pixels.

a(l) = 0.5: b(1) = 0: ¢(1) = 0: d(1) = 0.5: e(1) = 24: f(1) = 24 °IFS
code for a Sierpinski triangle,

a2)=05:b2)=0:c(2)=0:d(2) = 05:e(2) = 0: f(2) = 24

a3)=05:b3)=0:¢3)=0:d(3) = 05:¢(3)=0: f(3) = 0

p(1) = 0.25: p(2) = 0.25;: p(3) = 0.5 ’Probabilities for the IFS; they must

add to one!

mag = 1 ’Magnification factor.

numits = 5000 ’Increase the number of iterations as you magnify.

factor = 100 ’Scales pixel values to color values.

numcols = § ’This is the number of colors you are able to use.

for n = 1 to numits ’Random iteration begins!

r=rmd: k=1 ’Pick anumber in [0, 1] at random,

ifr > p(1) thenk = 2

ifr > p(1) + p(2) thenk = 3

newx = alk]*x + blk]*y + e[k] ’Map k is picked with probability p(k).

newy = c[k]*x + dk]*y + f[k]

X = NewX:y = Newy

i = int(mag*x): j = int(mag*y) ’Scale by magnification factor.

if (1 < 50)and (i > = 0)) and ((0 = < j) and (j < 50))) then If the

scaled value is.. .

s(i,j) = s(i,j) + 1 ’...in the array add one to pixel (i,j).

end if

pset(i,j) ’Plot the point.

if instat then end ’Stop if a key is pressed.

next
fori = 0 to 49 ’'Normalize values in pixel array, and plot. ..
forj=0t049 ’...in colors corresponding to the normalized. .,

s

... values of the
numbers s(i, ).

pset(i,j),col ’Plot the pixel (i,j) in the color determined by, ..

nextj ’...its measure.

next i

end

col = s(i,]) * numcols * factor * mag * mag /numits
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The program allows the user to zoom in on a piece of the rendered measure
by altering the value of the magnification parameter mag. The result of
running an adaptation of this program on a Masscomp workstation, and then
printing the contents of the graphics screen, is shown in Figure 9.8.1.

Rendéred invariant measures for IFS’s acting in R? are also shown in
Figures 9.8.2 (a) and (b).

By carrying out some simple computergraphical experiments, using a
program such as the one above, we discover that “pictures” of invariant
measures of IFS’s possess a number of properties. (i) Once the viewing
window and color assignments have been fixed, the image produced is stable
with respect to the number of iterations, provided that the number of itera-
tions is sufficiently large. (i) Images vary consistently with respect to transla-
tion and rotation of the viewing window, and with respect to changes in
resolution, In particular, they vary consistently when they are magnified.
(iit) The images depend continuously on the IFS code, including the probabili-
ties. Property (i) ensures that the images are well-defined. The properties in

Figure 9.8.1

The result of running a
modified version of Pro-
gram 9.8.1 and then
printing the contents of
the graphics screen in
greytones. A rendered
picture of a measure is
the result.
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Figure 9.8.2(a), (b)
Rendered invariant mea-
sures for IFS’s of wo
maps.

(it) are also true for views of the real world seen through the viewfinder of a
camera, Property (iii) means that images can be controlled interactively. These
properties suggest that IFS theory is applicable to computer graphics.

We should, if we have done our measure theory homework, understand the
reasons for (1) and (it). They are consequences of corresponding properties
Borel of measures on R? Property (iii) follows from a theorem by Withers
[Withers 1987].

-

Exercises & Examples

8.1. Rewrite Program 9.8.1 in a form suitable for your own computer
environment. Adjust numits and facror to ensure that a stable image
results. Then make experiments to verify that the conditions (i)—(iii)
above are verified. For example, to test the consistency of images with
respect to changes in resolution, you should try mag = 0.5, 1, and 1.5.
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Figure 9.8.2b

Unless you have a very powerful system, do not make extreme adjust-
ments. For example, do not choose mag too small, otherwise you will
need a very large value for numits.

Applications of fractal geometry to computer graphics have been investi-
gated by a number of authors including [Mandelbrot 1982], [Kawaguchi 1982],
[Oppenheimer 1986], [Fournier et al. 1982], [Smith 1984], [Miller 1986], and
[Amburn er al. 1986]. In all cases the focus has been on the modelling of
natural objects and scenes. Both deterministic and random geometries have
been used. The application of IFS theory to computer graphics was first
reviewed in [Demko 1985]. It provides a single framework which can reach an
unlimited range of images. It is distinguished from other fractal approaches
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because it is the only one which uses measure theory.

The modeling of natural scenes is an important area of computer graphics.
Photographs of natnral scenes contain redundant information in the form of
subtle patterns and variations. There are two characteristic features. (i) The
presence of complex geometrical structure and distributions of color and
brightness at many scales: Natural boundaries and textures are not smoothed
out under magnification; they preserve some degree of geometrical complexity.
(ii) Natural scenes are organized in hierarchical structures. For example, a
forest is made of trees; a tree is a collection of boughs and limbs along a
trunk; on each branch there are clusters of leaves; and a single leaf is filled
with veins and covered with fine hairs. It appears often in a natural scene that
a recognizable entity is built up from numerous near repetitions of some
smaller structure. These two observations can be integrated into systems for
modeling images using IFS theory.

Exercises & Examples

8.2. Examine a good quality color photograph of a natural scene, such as can
be found in a Sierra Club calendar, or an issue of National Geographic.
Discuss the extent to which (i) and (ii) are true for that photograph. Be
specific.

In [Barnsley 1988a] it is reported that IFS theory can be used efficiently to
model photographs of clouds, mountains, ferns, a field of sunflowers, a forest,
seascapes and landscapes, a hat, the face of a girl, and a glaring arctic wolf.

There are two parts to making any computer graphics image. They are
geometrical modeling and rendering. Consider an architect making a com-
putergraphical house: first she defines the dimensions of the floor, the roof, the
windows, the shapes of the gables, and so on, to produce the geometrical
model. Traditionally this is specified in terms of polygons, circles, and other
classical geometrical objects which can be conveniently input to the computer.
This model is not a picture. To make a picture, the model must be projected
into two-dimensions from a certain point of view and distance, discretized so
that it can be represented with pixels, and finally rendered in colors on a
display device. *

Here we describe briefly the software system designed by the author, Alan
Sloan, and Laurie Reuter, which was used to produce the color images which
accompany this section. More details can be found in [Reuter 1987] and
[Barnsley 1988a]. The system consists of two subsystems known as Collage
and Seurat. Collage is used for geometrical modeling, while Seurar is used for
rendering.
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Collage and Seurar process IFS structures of the form
{Rz;w19w2s""wN;Pl?PZ?""PN: n=1’2""’N}s

where the maps are affine transformations in R?, An IFS is represented by a
file which consists of an IFS code, where each coefficient is written with a fixed
number of bits. Let p denote the invariant measure of such an IFS and let 4
denote the attractor. The pair (A4, p) is referred to as an underlying model. The
attractor A carries the geometry, while g carries the rendering information.
One can think of the IFS code, or equivalently (A4, p), as being analogous to
the plans of an architect. It corresponds to many different pictures.

Collage is a geometrical modeling system which is used to determine the
coefficients of the affine transformations w,, w,,..., wy. It is based on the
Collage Theorem. Seurar is a software system for rendering images starting
from an IFS code. An image is produced once a viewing window, color table,
and resolution have been specified. This is achieved using the Random
Iteration Algorithm. Its mathematical basis is Elton’s Theorem. Seurar is also
used in an interactive mode to determine the probabilities and color values.

The input to Collage is a target image, which we denote here by T. For
example, T may be a polygonal approximation to a leaf. We suppose that
Tcl={(x,y)€R% 0<x<1,0<y<1), and that the screen of the
computer display device corresponds to M. T is rendered on the graphics
workstation monitor. An affine transformation

b
Wl(x’}’)=(2 di)(;) +(;I)=A1x+tl

is introduced, with coefficients initialized at a, = d, = 0.25, b, = ¢; = ¢, = f}.
The image w(T) is displayed on the monitor in a different color from T.
w,(T) is a quarter-sized copy of T, centered closer to the point (0, 0). The user
now interactively adjusts the coefficients with a mouse or some other interac-
tion technique, so that the image w,(T) is variously translated, rotated, and
sheared on the screen. The goal of the user is to transform w,(7T) so that it lies
over part of 7. It is important that the dimensions of w(7) are smaller than
those of T, to ensure that w, is a contraction. Once w,(T) is suitably
positioned, it is fixed, and a new subcopy of the target, w,(T), is introduced.
w, is adjusted until w,(7") covers a subset of those pixels in 7 which are not in
wy(T). Overlap between w,(T) and w,(T) is allowed, but in general it should
be made as small as possible, for efficiency. New maps are added and adjusted
until Uf’=1wj(T) is a good approximation to T. The output from Collage is the
IFS resulting code. The probability p; is chosen proportional to |ad; — bic;| if
this number is non-zero, and equal to a small positive number if the determi-
nant of A4, equals zero.
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The input to Seurar is one or more IFS codes generated by Collage. The
viewing window and the number of iterations are specified by the user. The
measures of the pixels are computed. The resulting numbers are multiplied by
the inverse of the maximum value so that all of them lie in [0, 1]. Colors are
assigned to numbers in [0, 1] using a color assignment function. The default is
a greyscale where the intensity is proportional to the number, such that 0
corresponds to black and 1 corresponds to brightest white. The coloring and
texture of the image can be controlled through the probabilities and the color
assignment function. Although one does not explicitly use it, Theorem 9.6.3
lies in the background and can help in the adjustment of the probabilities.

Color Plate 9.8.1 shows some smoking chimneys in a landscape. The IFS
codes for the elements of this image we obtained using Collage. Different color
assignment functions are associated to different elements in the image. The
image was rendered using Seurar.

The consistency of images with respect to changes in resolution is il-
lustrated in Color Plate 9.8.2, which shows a zoom on one of the smokestacks
in Color Plate 9.8.1. The number of iterations must be increased with mag-
nification to keep the number of points landing within the viewing window
constant. This requirement ensures the consistency of the textures in an image
throughout the magnification process.

Color Plates 9.8.3 and 9.8.4 show various renderings of leaves produced by
Seurat.

Color Plate 9.8.5 shows a sequence of frames taken from an IFS encoded
movie entitled A Cloud Study [Barnsley 1987a]. The smooth transition from
frame to frame is a consequence of the continuous dependence on parameters
of the invariant measure of the IFS for the cloud.

Color Plates 9.8.6, 9.8.7, and 9.8.8, were encoded from color photographs.
Segmentation according to color was performed on the originals to define
textured pieces. IFS codes for these components were obtained using Collage.
The IFS database contained less than 180 maps for the Monterey seascape,
and less than 160 maps for the Andes Indian girl.

The two primitives, a leaf and a flower, in Color Plate 9.8.9, were used as
condensation sets in the picture Sunflower Field, Color Plate 9.8.10. Here we
see the hierarchical structure: the leaf is itself the attractor of an IFS; and the
flower is an overlay of four IFS attractors. The leaf is a condensaton set for
the IFS which generates all of the leaves. The flower is a condensation set to
an IFS which generates many flowers, converging to the horizon. In the
pictures Sunflower Field and Black Forest, shown in Color Plates 9.8.11,
9.8.12, 9.8.13, and 9.8.14, the primitives were displayed from back to front,
The databases for Sunflower Field and Black Forest contain less than 100 and
120 maps, respectively. Notice the shadows behind the little trees in the
background in Color Plate 9.8.12. The winter forest pictures were obtained by
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adjusting the color assignment function. The important point is that once the
adjustment has been made, the image and the zoom are consistent.

Exercises & Examples

8.3.

8.4.

Use the Collage Theorem to help you find an IFS code for a leaf. Adjust
your version of Program 9.8.1 to allow you to render images of associated
invariant measures. Assign colors in the range from red through orange to
green. Adjust the probabilities. Obtain a spectacular color picture of the
leaf showing the veins. Make a color slide of the output. To photograph a
picture on the screen of a computergraphics monitor, use a telephoto lens.
Mount the camera on a tripod, and take the photograph in a darkened
room, on Ektachrome 64 ASA color slide film, 0.1 sec exposure, f-stop
5.6. For possible publication, submit the color slide, together with a letter
of copyright assignment, to Michael Barnsley, School of Mathematics,
Georgia Institute of Technology, Atlanta, Georgia, 30332 USA. Include a
self-addressed envelope.

Obtain a very powerful computer with good graphics. Find the heirarchi-
cal IFS codes for the Sunflower Field. Replace the sunflowers by roses.
Fly into your picture, to explore forever that scent-filled horizon. You are
on your own.
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, definition, 10

~% . definition, 10
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A C X, definition, 10
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definition, 129
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periodic, see periodic address
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52-53, 54, 56, 57, 71, 73, 74, 75, 76, 78,
97, 98,102, 110, 117, 121, 123, 134, 141,

146, 187, 214, 221, 228, 231, 236, 239,
240, 244, 245, 256, 275, 338, 366, 378
definition, 50
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see also transformation, affine
algorithm, see fractals; specific algorithms
for computing
analytic transformation, 62-68, 75, 292
definition, 66
Andes Girl, 379
illustration, Plate 9.8.7
Arctic Wolf, illustration, Plate 9.8.8
attractive cycle, 148, 270, 274, 320
definition, 137
attractive fixed point, 137, 142, 148, 250
definition, 136
illustration, 138, 149
attractive periodic point
definition, 137
attractor, 83—84, 85, 86, 87, 91, 92, 94, 96, 97.
98, 101, 103, 105, 110, 113, 118-119,
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attractor (continued)
120-124, 125-127, 129-132, 133, 134,
135, 142, 148, 150-151, 153, 154, 155,
158, 160, 170, 171, 173, 184, 185, 186,
187, 188, 202, 203, 212-213, 214, 216,
217, 218, 220, 225, 229, 235, 236, 245,
248, 254, 255, 265, 269, 274, 275, 283,
285, 301, 302, 304, 305, 306, 307, 311,
312, 313, 316-317, 321, 331, 336, 338,
341, 349, 352, 353, 365, 366, 372, 378
definition, 82
illustration, 83, 95, 102, 103, 105, 106, 119,
124,189, 204, 233, 313
strange, definition, 82
A\ B, definition, 11

basin of attraction, 282, 284
definition, 261
illustration, 282, 284
biological modelling, 4, 285, 290
Black Forest, 379-380
illustration, Plates 9.8.11-9.8.14
Bolzano-Weierstrass Theorem, 21, 22
illustration, 23
proof, 21
Borel field, 345, 346, 347, 348, 350, 352-353
definition, 345
Borel measure, 4, 346, 349, 350, 352, 353,
354, 371, 375
illustration, Plate 9.8.3
Borel measure, normalized, 355, 356
definition, 355
Borel subset, 340, 345, 346, 352, 367, 370, 371
definition, 340, 345
boundary, 25, 56, 262, 265, 266, 269, 283,
299, 301, 305, 306, 307, 311, 314, 317,
321, 328, 330
definition, 24
illustration, 18, 25, 26, 110, 123, 261
bounded, 22, 173, 200, 201, 203, 314
definition, 20
totally, 21
definition, 20
boundedness, 17
Box Counting Theorem, 176-177, 179, 190,
192-193, 226
illustration, 177, 179, 180
proof, 177

%, definition, 44, 45
C, definition, 8

C, definition, 8
Cantor set, 151, 156, 165, 182, 265, 275
illustration, 150
Cantor set, classical, 44, 75, 83, 130, 134, 147,
179, 182, 187, 192, 302
illustration, 45
Carathéodory’s Extension Theorem, 4, 347,
348
proof, 347
see also Extension Theorem
Cartesian map, 25
Cartesian product, 27, 126-127, 234
definition, 10
Castle fractal, IFS code for, 188
illustration, 187
Cauchy sequence, 18, 19, 21, 22, 37, 41, 46,
78, 79, 94, 128, 173, 221, 260, 291, 354
definition, 17
illustration, 17, 29, 37, 40
Cauchy subsequence,
extension of, 35, 36
illustration, 37
cell, 328
Chaos Algorithm, illustration, 92
Chaos Game, 2, 3
chaotic, definition, 168
chaotic dynamical system, 3, 165, 169-170,
196, 277, 278, 283
definition, 168
charactenistic function, definition, 350
X, definition, 350
classical Cantor set, see Cantor set, classical
closed, 21, 22, 24, 174, 291
definition, 19
closedness, 2, 17
closure, 133
definition, 19
Cloud Study (video), 113, 379
illustration, Plate 3.11.1
code space, 78, 85, 123, 124, 125-133, 134,
143, 144, 146, 147-148, 153, 154, 161,
163, 165, 168,171, 276277, 302,
312-313, 344, 346, 348, 352-353, 365,
366, 370
definition, 10, 125
Collage, 377-380
Collage Theorem, 2, 96-97, 98, 99-101, 111,
188, 221, 275, 378, 380
illustration, 98, 99, 100, 103, 104, 108, 109
proof, 111
Collage Theorem for Measures, 365, 366
illustration, 367
proof, 365-366



compact, 21, 22, 23, 24, 42, 80, 94, 112, 127,
128, 182, 186, 217, 245, 258, 261, 275,
291, 345, 347
definition, 20
compact metric, 147
compact metric space, see metric space, com-
pact
compactness, 2, 17, 24, 31 160, 173, 302
completeness, 2, 17
definition, 18
see also metric space, complete
Completeness of the Space of Fractals Theo-
rem, 37-39
proof, 38-39
completion, of a measure, 349
definition, 349
computer programs
Deterministic Algorithm, 88-90, 213
Escape Time Algorithm, 251-252, 255, 256,
280
see also Escape Time Algorithm, illus-
tration
hidden variable fractal interpolation func-
tion with Random Iteration Algor-
ithm, 237-238
invariant measure of an IFS with probabil-
ities, 372-374
illustration, 374
parameter space coloring, 314-315, 317
Random Iteration Algorithm, 91-92, 213
Random Iteration Algorithm with interpo-
lation and vertical scaling factors,
215-217
illustration, 217
web diagram, 137-139
condensation, 220, 279
condensation set, 93-96
definition, 93
condensation transformation, definition, 93
conformal; 9
connected, 29, 83, 259, 302, 306, 309, 316,
317, 321, 330
definition, 25
illustration, 28
connected, multiply, 27, 29
definition, 27
illustration, 28
connected, pathwise, 27, 29, 240, 245, 258,
261
definition, 25
illustration, 110
connected, simply, 27, 29
definition, 25, 27

Index

connectedness,
see also connected; connection
connection, illustration, Plate 8.3.1
continuous, 41-42, 62, 63, 80, 81, 111, 112,
127, 128, 147, 219, 223, 259, 272, 291,
292, 353, 356, 367
continuous, uniformly, 112-113
definition, 41
continuous deformation, definition, 27
continuous function, 7, 234, 236, 239, 240,
242, 245, 349, 356, 357, 370, 371
definition, 14
illustration, 7
continuous transformation, 125, 291, 302
illustration, 150
Contraction Mapping Theorem, 76, 219
proof, 76
contraction mapping, 2, 5, 75-79, 80, 81, 82,
85, 93-94, 97, 111, 135, 219, 220, 356
definition, 75
illustration, 77, 220
contractive transformation, 76, 80, 238
illustration, 77
contractivity, 76, 80, 81, 82 83, 84 85, 93, 94,
96, 111, 113, 127, 159, 160, 165, 220
contractivity factor, 237, 301, 303, 311
definition, 75
convergence, 2, 18, 21, 128 173, 258, 259,
272, 280, 292
definition, 17
illustration, 40, 47
convergent sequences, 35, 41, 85, 91, 279,
353, 354, 356
illustration, 84, 85, 243, 244
coordinate changes, 69-75, 77, 107/109
illustration, 71, 72
coordinate space, 69
illustration, 71
coordinate system, 69, 70, 73, 179, 193, 240,
297
illustration, 70
countable, 23, 84, 125, 321
definition, 124
illustration, 125
countable base, 345
definition, 345
critical point, 63, 65, 67, 68, 316
definition, 48, 66
illustration, 49
critical value, 68
definition, 48, 66
illustration, 49
cycle, 170-171, 277, 278
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cycle (continued )

definition, 136

see also attractive cycle; repulsive cycle
cylinder subset, 344

definition, 344

dS, definition, 24
data, 192, 193196, 208, 212, 214, 216, 218,
220, 221, 224, 225-226, 236
definition, 211
generalized, 234, 235
definition, 234
illustration, 197
deformation, bounded, 13-14
deformation, of space, 48, 52-53, 179
degree, of transformation, definition, 47
8,(B), definition, 354
delta function, definition, 354
dense, 167, 168, 170, 171, 277
definition, 167
Deterministic Algorithm, 2, 86, 87, 88, 221
computer program for, 88-90, 213
deterministic shift dynamical system, illustra-
tion, 166
Dy, (A), definition, 202
dy(p, v), definition, 355
diam( 4), definition, 200
diameter, of partition, definition, 353
diffeomorphic, 149
differentiable, 149, 321
definition, 148
disconnected. 29, 192, 321
definition, 25
disconnected, pathwise, 27
definition, 25
disconnected, totally, 29, 83, 84, 119, 121,
130, 143, 147, 149, 151, 155, 159, 165,
167, 170, 171, 185, 188, 202, 203, 256,
302, 306, 308, 322, 323, 330, 365
definition, 25, 129
illustration, 157
disconnection, illustration, Plate 8.3.1
dynamical system, 4, 82, 134-142, 143146,
151-152, 248, 252, 254, 256, 257, 269,
270, 274, 275, 280, 301, 313-314, 315,
316, 317, 320, 321, 324, 328, 330, 331
definition, 134
sensitive to initial conditions definition,
168
stretch, squeeze, and bend, illustration, 135,
136
transitive, definition, 168
see also chaotic dynamical system; set dy-
namical system; shift dynamical system;

slide and fold dynamical system; stretch,
squeeze, and bend dynamical system;
transitive dynamical system

dynamical systems, family of, illustration,
Plates 8.4.1-8.4.4

dynamics, on fractals, 3

€ , definition, 6
Elton’s ergodic theorem, 5, 370-372, 378
e-net, 21
definition, 20
equivalence, 2, 3, 147,148 151, 153, 165, 166,
167, 203, 290
see also metric space, equivalence; metri-
cally equivalent
Escape Time Algorithm, 4, 248-268, 269, 273,
275, 280, 285, 290, 292, 294, 295, 296,
322, 324
computer program, 251-252, 255, 256, 280
illustration, 253, 255, 257, 261, 262, 266,
267-268, 270, 290, 293, 294, 324-328,
329, 331, 332, 333, Plates 7.1.1-7.1.9,
7.3.1
Euclidean geometry, see geometry, classical
eventually periodic point, definition, 137
see also periodic, eventually
Extension Lemma, 36-37
extension of a Cauchy subsequence, 35, 36
Extension Theorem, Carathéodory’s, 4

%, definition, 342
f71, definition, 43
FTY(A) (for a set A), definition, 66
family resemblances, 330
Feigenbaum ratio, 320
fern, 92, 170, 290
IFS code for, 87, 92, 103
illustration, 33, 40, 92, 166, 351, Plate 3.10.1
fern, Black Spleenwort, 101-102, 130
IFS code for, 104
illustration, 103
field, 343, 344, 347, 348
definition, 342
illustration, 344
see also Borel field; sigma-field
field, generated by ¢, definition, 343
fixed point, 74, 76, 78, 80, 82, 103, 111, 112,
131, 153, 220, 272, 275, 284, 291, 357
definition, 73
table, 105
see also attractive fixed point; repulsive
fixed point



folds, 48—-49
illustration, 48, 49, 50
fon, definition, 44
fractal dimension, 3, 17, 147 172-206, 208,
210, 214, 225, 226, 226-227, 229, 236,
250, 254, 255, 266, 283, 301, 306, 307,
309, 312
calculating, 175-177
definition, 172, 174, 182
experimental determination of, 190-199,
231
llustration, 190, 192, 193, 194, 195, 166,
198, 199
table, 191, 194
idea behind, 174
illustration, 173, 178, 179, 180, 185, 187,
188, 189, 204, 205, 206, 233
of fractal interpolation functions, 225, 229
fractal function, hidden variable, 242,
244--245
fractal interpolation function, 3-4, 208,
209-210, 220, 221, 223, 224, 226, 229,
231
definition, 220
generalized, 235-236, 240
definition, 235-236
illustration, 241
hidden variable, 237, 239, 240
computer program for, 237-239
illustration, 210, 211, 215, 222, 223, 224,
225,226, 227, 230-231, 232, 233
fractal interpolation, 3
hidden variable, illustration, 239
fractal tree, 2, 95
fractal, deterministic, definition, 80
fractals, algorithms for computing, 2, 86-96
see also “Chaos Game”; Deterministic Al-
gorithm; Random Iteration Algorithm
function
characteristic, definition, 350
simple
definition, 350
see also simple function
see also specific functions

generalized data, definition, 234
see also data, generalized

geodesics, definition, 11

geometric series, 47
illustration, 47

geometry, classical, 1, 207, 208, 209, 211
illustration, 116, 209

geometry, deterministic, 5, 43, 239, 376

Index

graph, 236, 237, 240, 245, 254, 275, 350
definition, 234

group, 74, 75
definition, 74

X ( X), definition, 30
illustration, 30
HausdorfT distance, 46, 80, 98, 211, 292, 301
definition, 34
illustration, 33
Hausdorfl metric, 35, 80, 81, 88, 97,113, 115,
209, 221, 272, 292, 330, 365
illustration, 114
Hausdorfl' p-dimensional measure, 201
definition, 200
illustration, 201
Hausdorfl-Besicovitch, 3
Hausdorfl-Besicovitch dimension, 200, 202,
203, 204, 205, 299
definition, 202
illustration, 205
hidden variable, 237
definition, 237
see also fractal interpolation function, hid-
den variable
homeomorphic, 14, 146, 147, 302
definition, 146
homeomorphism, 16, 42, 146 147, 148, 153,
167, 302
definition, 14
illustration, 29, 147
Hutchinson metric, 355, 356
definition, 355

IFS, 2, 83,84, 85, 86,87, 88,96-110,111-117,
118-134, 142, 143-146, 147, 149,
150-151, 166, 170, 184, 186, 187, 202,
203, 210, 213, 214-215, 216, 217-218,
220, 225, 229, 235, 237, 239, 244-245,
248, 255, 269-270, 273, 283, 285, 311,
359

definition, 82

hyperbolic, 151-159, 160-162, 165, 167,
169, 171, 184-185, 187, 188, 202, 204,
212, 213-214, 217-218, 221, 223, 235,
245, 254, 256, 275, 277, 301, 302, 303,
310, 316-317, 321, 356, 357, 366-367

hyperbolic with condensation, 94, 95,
122-123
definition, 93

illustration, 99, 100, 101, 113, 116, 189, 233

lifted, 156, 169
definition, 155
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IFS (continued)
Random Iteration Algorithm applied to,
computer program, 215-216, 237-238
with condensation, illustration, 95, 96
with probabilities, 336, 338, 340, 348, 352,
356, 364, 365, 366, 370
illustration, 368, 369
invariant measure of, 357
computer program, 372-374
illustration, 374
see also iterated function system
IFS code, 221, 378, 379, 380
for a measure on @ , 335, 336, 339
illustration, 336, 337, 338
for Black Spleenwort, 104
for Castle fractal 188
for Fern, 87, 92, 103
for Sierpinski triangle, 86, 91
for M 240, 242, 245
for Square, 87
for Tree, Fractal, 87
image animation, 113
=, definition, 10
Inf S, definition, 35, 75
infinum, definition, 35, 75
fx fdp, definition, 354
integral, 354
definition, 350, 354
of a continuous real-valued function, 4
interior, 25
definition, 24
illustration, 25, 26
interpolation function, 212, 213, 234, 236
definition, 212, 234
see also piecewise linear interpolation func-
tion
interpolation points, 219, 226, 234
definition, 212, 234
interval [a, b), definition, 10
invariant, 16, 167, 283, 292
illustration, 15
invariant measure, 366-367, 370, 371, 374,
378
definition, 339-340
illustration, 375, 376
of IFS with probabilities, 365, 366, 372
definition, 357
illustration, 369
invertible, 14, 49, 59, 69, 151, 154-156, 159,
186, 219, 302
definition, 43
invertible transformation, 66, 74, 160
iterated function system, 2, 334
definition, 82

with probabilities, 334-335
definition, 334
see also IFS, with probabilities
see also TFS
iterates, 48
backward, definition, 44
forward, definition, 44

jet exhaust, 3, 196, 207-208, 209
see also jet flame
jet flame, 193-196
illustration, 195, 196
Julia set, 4, 62, 258, 260, 265, 269, 270, 272,
273, 274, 275, 276, 277, 278, 279, 283,
284, 285, 290, 301, 314, 315, 316, 317,
321
definition, 258, 277
hyperbolic, 273
illustration, 271, 278, 279, 281, 286289,
318, Plates 7.1.3, 7.1.9, 8.3.1
Julia set, filled, 258, 261, 262, 265, 269, 273,
274, 294
definition, 258
illustration, 261, 262, 263, 264, 314, 318,
319
Jjust-touching, 120, 121, 129, 130, 146, 150,
151-153, 159, 161, 166, 185, 186, 187,
202, 203, 213, 227, 240, 265, 277, 322,
323
definition, 129
illustration, 152
just-touching collage, 105-107, 115-117
illustration, 106

landscape, 379
illustration, Plates 9.8.1, 9.8.2
Leaf and Sunflower, condensation sets, illus-
tration, Plate 9.8.9
leaf, 53, 98, 102-103, 105, 156, 379
illustration, 54, 98, 105, 340, Plates 9.8.3,
9.8.4
Lebesgue measure, definition, 349
lily, 328
illustration, 329
Lim inf, 180
limit, 18, 19, 23
definition, 18
limit point, 20
definition, 19
illustration, 19
Lim sup, 180, 182, 183
linear fractional transformation, see Mobius
transformation



linear space, 7, 8
linear transformation, 52-53, 55, 58, 79
illustration, 52, 53, 79

A , definition, 315
M (A, p,¢), definition, 200
M (A, p), definition, 200
Mandelbrot, B., 1
Mandelbrot set, 4, 303, 304, 305, 306, 307,
310, 311, 312, 315, 316, 317, 321, 328,
332
definition, 303, 315
illustration, 304, 305, 306, 307, 308, 309,
310, 311, 312, 316, 318, 319, 320, 321,
322, 323, 333, Plate 8.3.1
map, 4, 82, 85, 99, 102, 132, 133, 144, 153,
155,161, 185, 188, 202, 203, 210,
212-213, 214, 236, 240, 244, 245, 265,
272,273, 274, 277, 283, 291, 292,
297-302, 304, 307, 313, 314, 320, 328,
330, 366, 367, 378
illustration, 57, 58, 60, 61, 67, 83, 298, 299,
Plates 7.1.8, 8.4.3, 8.4.4
mapping, 44, 59, 60, 62, 63, 65, 147, 321
see also contraction mapping
Markov operator, 356, 357, 359, 364, 365, 366
definition, 356
illustration, 358, 359, 360, 361, 362, 363,
364
measure, 4, 336, 338, 341, 346, 347, 348, 350,
352, 356, 357
definition, 346
Mercator’s projection, 25, 280
illustration, 282
metric, 12, 15, 31, 79, 109, 217, 220, 234, 235,
275, 349, 355
compact, 147
definition, 11
equivalent, 13, 217-218, 275
definition, 12
Euclidean, 11, 13, 14, 46, 58, 78, 175,
176-177, 182, 200, 203-204, 213,
217-218, 221, 250, 258
illustration, 18
illustration, 12, 13, 14, 18
Manhattan, 11, 13, 58, 78, 162, 182, 211
metric equivalence, 24, 25
metric space, 2, 3, 11-42, 44, 69, 78, 80, 81,
83, 94,113, 149, 167, 168, 173, 174, 175,
176, 180, 182, 183, 200, 201, 202, 215,
219, 221, 240, 291, 301, 346, 347, 348,
349, 350, 354
closedness of, 2
see also closed; closedness

Index

compact, 5, 41, 76, 78, 79, 85, 112, 113,
126, 147, 275, 302, 345, 349, 353, 355,
356, 357, 365, 370
illustration, 77
compactness of, 2, 78
see also compact; compactness
complete, 19, 21, 29, 31, 33, 35, 76, 82, 111,
126, 127, 173, 182, 218, 234, 239
completeness of, 2
see also completeness
connectedness of, 2
see also connected; connectedness
convergence of, 2
see also convergence
definition, 11
equivalence of, 2, 17
illustration, 22, 29
equivalent, 13, 14, 15, 19, 20, 21, 23, 130,
132, 146, 148
illustration, Plate 2.6.1
openness of, 2
see also open; openness
subsets of, 2, 16
transformation on, 2
see also transformation
metrically equivalent, 146, 147, 148, 166, 172,
179, 180, 203, 302
definition, 146
illustration, 15
minimal period, definition, 136
Mbbius transformation, 2, 49, 50, 59-62, 73,
75, 85, 134-135, 290
definition, 49, 59
illustration, 60, 61, 62, 138
model, 29, 159, 173, 190, 290, 314, 352 377,
378
Monterey Coast, 379
illustration, Plate 9.8.6
mountain, illustration, 107
Myreberg point, 320

A (a, €), definition, 174
natural scene, 377
nested, 44, 279
Newton transformation, 283, 284, 285, 290,
320
definition, 230
illustration, 290, Plate 7.3.1
Newton’s method, 4, 280-290
Non-Wavering Domain Theorem, 283
norm, of a point, definition, 58
norm, of the linear transformation, defini-
tion, 58
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numits, 251, 254, 256, 322, 323, 335, 372
definition, 251

one-parameter family, 134, 141 151, 258 274
illustration, 232, 233, 240
one-to-one, 14, 44, 69, 143, 147,159
definition, 43
onto, 14, 44, 69, 124, 127, 128
definition, 43
open set condition, definition, 129
open set, 62, 272, 292, 294
open, 22, 24, 259, 291, 345
definition, 21
openness, 2, 17
orbit, 3, 134, 135, 137, 144, 146, 147, 148,
152,154, 155,158, 159-165, 167,
168-170, 250, 257, 259, 260, 272, 280,
290, 292, 314, 316
chaotic, 165-166, 170
definition, 134
illustration, 143, 144, 145, 146, 166, 167,
251
outer measure, definition, 347
overlapping, 121,123,129 130, 151,152, 154,
156, 163, 185, 188
definition, 121, 129
illustration, 124, 153, 157

+ (for set and real numbers), definition, 35
parameter space, 4, 300, 301, 302, 303, 310,
311, 313, 314, 317, 320, 321, 323, 330,
331
illustration, 300, 304, Plates 8.4.1-8.1.4
parameter space coloring, computer program
for, 314-315, 317
parameters, 74, 112 113, 214, 236, 274, 303,
311, 317
continuous dependence of fractals on, 2,
111-117
continuous dependence of invariant mea-
sure on, illustration, Plate 9.8.5
partition, definition, 353
partition, diameter of, definition, 353
path, 25, 27
definition, 25
illustration, 27
perfect, 20, 45, 84
perfection, 17
definition, 19
period, definition, 132
periodic address, definition, 132

periodic point, 133,136 277
definition, 132, 136
see also attractive periodic point; repulsive
periodic point
periodic, eventually, 137, 142, 144, 146, 148,
153
definition, 132
p, & L, definition, 366
piecewise linear interpolation function, 212,
214, 224
illustration, 212
point x, illustration, 7, 8, 18
Point at Infinity, 257-258, 259, 260, 261, 272,
275, 314, 316
polynomial transformation, 48, 50, 68, 261,
272
definition, 47
illustration, 47, 48, 49, 50, 51

quadratic transformation, 62, 63, 65-66, 68,
75, 257, 259, 269, 283
illustration, 64, 65, 67
quadree
definition, 122
illustration, 122

R, definition, 55
R, definition, 6
Ry, definition, 55
Random Iteration Algorithm, 86, 87, 91, 134,
167, 169, 170, 215, 269, 273, 274, 275,
335, 336, 338, 339, 340, 341, 352, 359,
370, 371-372, 378
illustration, 115, 270, 271, 336, 337, 338,
339, 340, 341
Random Iteration Algorithm, computer pro-
gram, with interpolation and vertical
scaling factors, 215-216
Random Iteration Algorithm, computer pro-
gram, 91-92 213
random shift dynamical system, 151, 154,
158, 159, 160, 161, 163, 165, 169
definition, 154-155
illustration, 154, 164
rational numbers, 168
definition, 125
rational transformation, 67, 273
reflection, 59
definition, 55
repelling sets, 4
repulsive cycle, 3, 146, 148, 277
definition, 137



repulsive fixed point, 137, 144, 148 250
definition, 136-137
illustration, 138, 149

repulsive periodic point, 137, 282

Riemann sphere, 8, 43, 258, 272, 275, 280
illustration, 9, 259, 273, 276, Plate 7.3.1
Mébius transformations on, 59-62, 64-65

rotation, definition, 55

Sy, definition, 24
scaling factor, 184-185, 186, 188, 202, 240,
265, 307, 321
definition, 55
illustration, 56
see also vertical scaling factor
semigroup, 74, 75, 78
definition, 74
sensitive to initial conditions, definition, 168
sequence, of intervals, 46
illustration, 46, 47
set dynamical systems, definition, 142
set-valued inverse, definition, 66
Seurat, 377-380
Shadow Theorem 3, 156, 158-159
illustration, 157, 158
Shadowing Theorem, 3, 160, 161-162, 163,
165, 170
illustration, 163, 164
proof, 161
shear transformation, 214, 215, 216-217
definition, 214
illustration, 215, 228
shift dynamical system, 3, 144, 146, 147-148,
149, 151-159, 159-161, 163, 165-167,
168, 169-170, 171, 248, 250, 254-255,
256, 276, 277, 278, 321-322, 331
definition, 144
illustration, 143 152 153, 154, 249
lifted, definition, 156
see also deterministic shift dynamical sys-
tem; random shift dynamical system
shift operator, definition, 74
shift transformation, definition, 144
Sierpinski space & , definition, 10
Sierpinski triangle, 10, 41, 50, 56, 63, 67, 78,
85, 89, 90, 92, 93, 119-120, 122, 123-124,
125, 151, 153, 161, 177, 186, 201, 203,
245, 248-251, 252, 254, 265, 292, 338,
341, 346, 350-352
IFS code for, 86, 91
illustration, 18, 51, 64, 67, 89, 90, 120, 150,
178, 201, 247, 249, 251, 339, 351

Index

table, 342 !
2, definition, 10, 125
o-field, definition, 344
sigma-field, 344, 345, 346, 347, 348, 350
sigma-field, generated by ¥, definition, 345
similitude, 55, 56, 59, 60, 62, 63, 65-66, 68,
75, 98, 99, 105, 117, 184-185. 186188,
202, 203, 240, 265, 307, 321, 330
definition, 54-55
illustration, 55, 64, 99, 100, 105, 188
simple function, 350, 352, 353, 354, 356
definition, 350
illustration, 351
slide and fold dynamical system, 142
illustration, 141
space X, 6-10
definition, 6
points of, 6
space, see metric space
space-filling curves, 240-247
illustration, 243, 244, 246, 247
IFS code for, 240, 242, 245
Square, IFS code for, 87
strange attractor, see attractor, strange
stretch, squeeze, and bend dynamical system,
illustration, 135, 136
Sunflower Field, 379, 380
illustration, Plate 9.8.10
Sup S, definition, 35, 75
support, of a measure, 349
definition, 349
supremum, 203
definition, 35, 75

topologically conjugate, 148
definition, 147
topologically equivalent, 147, 153
definition, 146
topology, 14, 16
illustration, 14
totally disconnected, 119
definition, 129
see also disconnected, totally
transformation, 3, 31, 43-117
affine, 2, 43, 44, 45
see also affine transformation
contractive, 76
definition, 43
illustration, 22
invertible, 44
Mobius, see Mobius transformation
rational, 43
real line, 43-50
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transformation ( continued)
see also affine; analytic; condensation;
continuous; invertible; Mdbius; New-
ton; one-to-one; onto; polynomial;
quadratic; rational; and shear transfor-
mations
transitive, 168
definition, 168
translation, 46, 53
illustration, 53
tree, 41, 94
illustration, 95
Tree, fractal, IFS code for, 87
illustration, 95
turbulent jet, see jet flame
Twin-Dragon Fractal, 312
illustration, 312

uncountable, 125
definition, 124

vector space, see linear space

vertical scaling factor, 215, 216, 217, 218,
225, 229

vertical scaling factor, definition, 214

web diagram, 141, 149, 163-165. 166, 265
computer program, 137-139
definition, 137
illustration, 139, 140, 149, 164. 167

X . definition, 10
Xy, definition, 73
| X|, definition, 58



Credits for Figures and
Color Plates

Dr. John Herndon collaborated with the author on the computation of
many of the black and white figures.

The Orchard Subset of R? Figure 3.2.8, was computed by Henry
Strickland.

Figure 6.2.2 was produced by Peter Massopust.

All of the color images were produced in the Computergraphical Mathe-
matics Laboratory at Georgia Institute of Technology. The following list gives
the authors of each color image. The italics indicate who did most of the work.

Plate Author

2.6.1 Michael Barnsley, Alan Sloan

3.10.1 Michael Barnsley

3.11.1 Michael Barnsley, Arnaud Jacquin, Laurie Reuter, Alan Sloan
7.1.1 Michael Barnsley, John Herndon

7.1.2 Michael Barnsley, John Herndon

7.1.3 Michael Barnsley, John Herndon

7.1.4 Michael Barnsley, John Herndon



7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.3.1
8.3.1
8.4.1
8.4.2
8.4.3
8.4.4
9.8.1
9.8.2
9.8.3
9.8.4
9.8.5
9.8.6
9.8.7

9.8.8
9.8.9
9.8.10
9.8.11
9.8.12
9.8.13

9.8.14

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, John Herndon

Michael Barnsley, Laurie Reuter, Alan Sloan

Michael Barnsley, Laurie Reuter, Alan Sloan

Michael Barnsley

Michael Barnsley

Michael Barnsley, Arnaud Jacquin, Laurie Reuter, Alan Sloan
Michael Barnsley, Laurie Reuter, Alan Sloan

Michael Barnsley, Arnaud Jacquin, Francois Malassener, Laurie
Reuter, Alan Sloan

Michael Barnsley, Arnaud Jacquin, Laurie Reuter, Alan Sloan
Michael Barnsley, Arnaud Jacquin, Laurie Reuter, Alan Sloan
Michael Barnsley, Arnaud Jacquin, Laurie Reuter, Alan Sloan
Michael Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie
Reuter, Alan Sloan

Michael Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie
Reuter, Alan Sloan

Michael Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie
Reuter, Alan Sloan

Michael Barnsley, Arnaud Jacquin, Francois Malassenet, Laurie
Reuter, Alan Sloan

All of the color images were computed on a Masscomp 5600 with Aurora
Graphics. Photographs were taken with the aid of a Dunn Multicolor on
Ectachrome color slide film, ASA 100. Color Images 9.8.1-9.8.14 were en-
coded and produced with the aid of the Seurar and Collage software systems.
Collage was designed by Michael Barnsley and Alan Sloan and written by
Alan Sloan. Seurat was designed by Michael Barnsley and Laurie Reuter and
written by Laurie Reuter. :



