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Introduction

A feeling for “inverse problems” can be obtained, for example, by noting that
not every object in nature is accessible to direct study, and consequently, its
properties must be judged indirectly. The bowels of the Earth may serve as an
example and problems of this type have been known for some time in geophys-
ics. At the same time the posing of inverse problems is characteristic of scien-
tific investigation and interest in them has been on the increase in many
fields of science, physics in particular.

What distinguishes mathematical physics is the fact that in it the study
of nature proceeds within the framework of precise mathematical models,
formulated on the basis of known regularities. Such models serve as the basis
for the solution of inverse problems.

However, due to the specificity of inverse problems—their mathematical
‘“wrongness’—substantial progress has been achieved in the posing and solv-
ing of inverse problems only in the last 10-20 years. Responsible for this was
the mathematical ‘“regularization theory” developed by Soviet scien-
tists,”1#>1*® as well as the intensive development of computational tech-
niques.

Familiarity with elements of regularization theory and its applications
to the solution of inverse problems, as well as the description of possible fields
of application, constitute an essential part in the training of scientists and are
useful to workers in many branches of knowledge.

This monograph is based on a special topics course taught by the author
in the Physics Department of Moscow State University and constitutes a
short version of the course “Inverse problems of mathematical physics.” It is
not meant as a substitute for the excellent monographs on the theory of regu-
larization and some of its applications!®#6:132.139.148 f5r readers interested in
the development of the mathematical theory. Neither does it pretend to pro-
vide a full review of known results in the field. However, for the reader not
familiar with the subject under discussion, or interested in practical applica-
tions of regularization theory, this book should serve as a kind of introduc-
tion.

The monograph is addressed to a reader familiar with elements of math-
ematical analysis, with a course in mathematical physics similar to Ref. 162,
with some elements of functional analysis, and with some computational
methods. Unfortunately the size of this monograph precludes the replacing of
references to various results by their explanation.

The content is based on the fundamental papers [Refs. 71, 85, and 148]
including a number of results obtained with the author’s participation.

The material is distributed among four chapters. In Chap. 1, we give a
broad characterization of the class of inverse problems. In contrast to existing
publications and in accordance with the essence of the subject, we consider
questions of uniqueness of solutions of inverse problems (Chap. 3), which
might be useful from both an instructional and pedagogical point of view. In a
slight departure from tradition, we emphasize in Chap. 2 questions relating to
the mathematical posing of inverse problems. Regularizing algorithms for
their solution are considered in Chap. 4. Concrete examples of inverse prob-
lems of mathematical physics are used to illustrate the main assumptions.

1v



Chapter 1

The class of inverse
problems

1. The concept and type of inverse problems

1.1. The concept of the inverse problem of mathematical physics
All phenomena in nature have a causal origin and are governed by objective
regularities, and the task of scientific investigation is to discover these regu-
larities and determine the cause of the phenomenon in order to master it.

Mathematical physics refers to that branch of science wherein on the
basis of known regularities, expressed as (differential or integral) equations,
it becomes possible to pose mathematically'6? the problem describing the phe-
nomenon.

Such a problem then constitutes an approximate mathematical model of
the physical process, which may be stated in various ways.

As a simple example, consider the mathematical model describing the
rectilinear nonuniform motion of a material point of mass m under the action
of a force f(t) for given initial conditions

mx(t)=ft) O<t<T,
x(0) =x, x(0)=x,.

We may be interested in the following questions:

(1)

(1) What is the law of motion of the material point x = x(¢), if the “accel-
eration cause” flt) and “inertial characteristic’’ m of the moving object are
known? This is a classical problem in mechanics and its solution provides a
qualitative idea of the motion; alternatively the process of the motion can be
“numerically modelled,” for example with the help of an electronic comput-
er.

(2) Suppose the law of motion is known (observed). What then is the re-
quired force or (if the force is known) mass of the object—characteristic of its
properties? The solution of one of these problems permits the characteriza-
tion of either the cause of the motion or the properties of the object.

The first of these problems and either of the latter two are invertible.
However, in the first case we are to study consequences due to given causes
and conditions, whereas in the second case we are to study causes and condi-
tions given the consequences. It is this latter type of problem that will be

1



2 Inverse problems of mathematical physics

referred to as “inverse” problems of mathematical physics, provided that a
mathematical formulation is possible (as was obviously the case in the exam-
ple discussed above). It is easily seen that inverse problems are analogous to
the task faced by basic scientific research: Given certain characteristics of the
phenomenon under study, explain its causes. In Ref. 2a common signature of
inverse problems is noted: they are not realizable physically. Indeed, in the
example discussed above, the notion of an experiment which reproduces the
force or the mass of the object from the given law of motion is absurd.

At the same time, in contrast to problems involving direct modeling of
physical processes (in modern scientific literature such problems are accord-
ingly labeled “direct”), the solving of inverse problems is largely the domain
of mathematics.

We shall see later that inverse problems arise in many branches of phys-
ics and manufacturing, and their solution often provides an element for the
mathematical modeling of the processes, because not all the sources and con-
ditions of the processes are known a priori. It could be argued that the theory
and methods of solution of inverse problems constitute an important indepen-
dent direction of research in mathematical physics.

The development of this direction was begun in the fundamental papers
of the Soviet scientists A. N. Tikhonov, M. M. Lavrent’ev, and V. K.
IvanOV.71’85'149'160

1.2. General typification of inverse problems

There is today, probably, no branch of physics in which one or another inverse
problem has not been formulated and subjected to mathematical analysis.
Accordingly, sufficiently detailed classification has been presented in a num-
ber of monographs, based either on the mathematical nature of the sought-for
quantities,''® or on the content of the concrete physical problem (for example,
the study of heat exchange processes?).

Here we shall consider a sufficiently broad classification of such prob-
lems, arising from the development of the fundamental theory'*?~'*® and its
applications.

(a) Scientific studies often deal with objects in nature which are either
inaccessible or difficult to access by direct experiment. Glaring examples are
cosmic objects, the bowels of the Earth, and objects from the microworld. But
even under “earthly” circumstances such a situation is sufliciently typical:
many physical (heat, electromagnetic, etc.) properties of, for example, syn-
thetic and porous materials are known poorly, and their experimental study
is not always possible or easy.

In all these cases one makes judgments about the properties of the object
under study, as being the cause of a phenomenon, on the basis of indirect
manifestations which can be directly observed under earthly conditions.

A mathematical model is formulated, reflecting the connection between
the characteristic z of the object under study and the characteristic u of the
observation, and within the framework of the assumed approximate model
the problem of determining z on the basis of u is posed.
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It is natural to refer to problems of this type as problems of interpretation
of given physical observations.

Any one of numerous examples may serve the problem of the “historical
climate,”'®? connected to the study of the history of formation of permafrost
zones on the Earth’s surface. In this case, in the simplest mathematical de-
scription of the phenomenon, the depth dependence of the temperature of the
frozen layer at the moment of observation (¢ = 0) may serve as the observed
quantity: u(f) = U({,0). The sought-for quantity, assumed to be the cause of
freezing, is the temperature regime of the surface z(¢) = U(0,t). Within the
framework of the approximate mathematical model for a given z(¢), the tem-
perature field U({,?) [and, correspondingly, u({)]is determined as the solution
of a well-known problem of mathematical physics on the effect of the bound-

ary temperature regime'®:

L FU_U o o
a a§2 — ET §€( ,OO), E( 0, )’ (2)

UO,H) =2(t), |Ul< + .

For the inverse problem of interest to us, the relation between u($) and z(¢)
may be given explicitly'®* as

1
2a+/m

consequently the sought-for quantity is a solution of an integral Fredholm
equation of the first kind. This equation provides an elementary mathemat-
ical formulation of the interpretation problem under discussion.

Let us note that the observed quantity u({) represents an integral effect
of the action of the sought-for boundary regime: its formation is affected by
values of 2(¢) at all times and this is determined by the conditions (2) indepen-
dently of the explicit expression (3).

(b) A “subset” of problems of interpretation is formed by problems that
we shall label “instrumental.” The purpose of these type of problems is the
reconstruction of the true signal from instrumental readings, and its elemen-
tary statement can be given in a sufficiently general form.

Suppose that the apparatus function (impulse characteristic) K(¢) of a
certain instrument is known. Then, within the framework of the simplest
“linear” model, its response u(¢) to a continuous influence z(¢) (¢ > 0) is given by
the formula

Q
u(e) = f t3—12- e~ €/aat,(p) 4. 3)

MﬂszU—ﬂAmh )
(4]

By using the instrumental markings, the observed readings wu(¢) can, of
course, be taken as characterizing the input signal. This, however, raises
questions about the resolution of the instrument.!’® Meanwhile, given the
impulse characteristic we may pose the inverse problem of determining z(7)
from u(¢) by means of Eq. (4). It is obvious that if this problem can be solved
with sufficient accuracy, it is equivalent to improving the resolution of the
instrument.



4 Inverse problems of mathematical physics

Sometimes the apparatus function may be defined either by equations
describing the process of transformation of the signal by the instrument,'?* or
experimentally.' In particular, it is conceivable that the experiment could
be set up with a directed (controlled by some other means) signal z(¢) as input
of the instrument, from which the apparatus function can be found by solving
the inverse problem resulting from Eq. (4):

u(t) = f At — OKEdE. (5)
0

(c) An important result of scientific research is the creation or “synthe-
sis” of new scientific instruments or technical setups. Although the object in
question does not yet exist, we may consider its mathematical model wherein
a certain magnitude z characterizes its internal properties on which depends
the characteristic z under exploitation. The problem of determining z given u
belongs to the class of inverse problems of the synthesis type.

The following mathematical model, connected with the problem of syn-
thesis of optical systems with prescribed “transmission coeflicient,” may
serve as an elementary example of this type of inverse problem.

Under certain simplifying assumptions, the amplitude of an electric field
of a light wave of frequency w, polarized parallel to the surface of a plate of
index of refraction n($), normally incident on the surface, is described by the
conditions of the following problem*s:

2 2
‘;g + L nAOE=0, (eO0h)
%‘;— 0) — i 2 ny(B0) — 2E) =0, 6)
dE

(h) + i = noE(h) =0,
d¢ c of
where E is the amplitude of the wave and n, is the index of refraction of the
external medium. By solving this boundary value problem, we can determine
for given n({) the “exploitation” characteristic of the plate—its light trans-
mission coefficient, as a function of the frequency:

2

u=Tw) = n(h) | E(h)|*

n, |k,

The inverse problem of the type considered here consists in the determination

of the index of refraction of the plate, n({), from the given transmission coeffi-

cient T(w). The solution of this type of problem clearly makes possible the
physical synthesis of a plate with a priori specified optical properties.

This time the dependence of T on n({) is given indirectly through condi-
tions (6) and (7); it is, however, clear that the formation of T{w) is influenced by
values of n({) for all £, i.e., the effect T{w) is of integral character.

Examples of papers devoted to the analysis of inverse problems of synthe-
sis type in various branches of physics are to be found in Refs. 126, 127, 150,
and 163.

(d) Often in scientific and manufacturing practice it is necessary to solve
problems of control of active systems. Insofar as the processes occurring in

(7)
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such systems are subject to known physical laws, it is possible to formulate

the corresponding mathematical model. Within the framework of such a

model we extract the control characteristic z and the expected effect u. The
roblem consists in the determination of z from the expected effect.

We shall refer to such problems as inverse problems of control type.

As an example, consider the problem of determining the amplitude of the
current I(¢) in a solenoidal inductor, governing the heating of a cylindrical
sample being inductionally tempered. Since we are dealing here with “case-
hardening,”?* the effect of control will be characterized by the required tem-

perature regime of the sample surface:
u(t) = UR,t) t[0,T].

In the approximation of the simplest model,* for any given I(¢) the quan-

tity u(t) is determined by the following nonlinear problem of mathematical
physics:
19
r dr

: _ au
(rk(U) a—(ﬁ + q(r,t) = c(U)p(U) prl
te(0,7), re(O,R),

2
q(r,t) =0.24 lif ;
ar

1 d( r d : d (8)

= touH + — [w(U)H];

r c?r(a(U) dr e +8t RS

WU 0= 0, —Fk ay (R,t) = a(UR,t) — uy),
r ar

%il 0,5) =0, HR,t) = nI(®), Ur,0) = u,, H(r,0)=0,
r

where 1, is the temperature of the surrounding layer of air, n is the number of
turns per unit length of the “infinite’” solenoid, and the physical parameters
of the material are %, ¢, p, 4, and ¢ in the notation of Ref. 162.

The inverse control problem consists in the determination of (¢) from an
a priori given u(t), where the dependence of I on u is given implicitly by Eq. (8)
and the condition u(t) = U(R,t?).

2. Mathematical specifics of inverse problems

2.1. Generalized mathematical statement of the problem
Asis clear from the above examples, for any given characteristic of the object
(or process) z, a characteristic of the observed phenomenon can be calculated
with the help of a set of operations (or an operator) A, given explicitly in cases
(3) and (4) and implicitly in cases (6) and (7), such that u = Az.

Let us consider a set of such characteristics Z and U, and define on it a
measure of closeness of elements (distance): p,(z,, z,) and p, (u,, uy). Then the
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inverse problem—the determination of z from given u—regardless of its phys-
ical nature in the elementary statement, can be given in the form of an “oper-
ator” equation:

Az=u zeZ, uel. 9)

In what follows we shall lean on this formulation for problems involving
interpretation of observations, in particular instrumental problems.

For problems from the synthesis or control classes, at the same elemen-
tary formulation level, another approach is a priori more natural. In these
problems the characteristic of the expected effect it is usually “idealized,” so
that, generally speaking, @i # Az. Thus, in example (6), it is required that the
transmission coeflicient T{w)=1 for a certain frequency range [w;,»,] and
T(w)=0 for all other frequencies; it is obvious that T{w), obtained as a solution
of problem (6), being a differentiable function of w,'®' cannot coincide with
T(w) at every point. In such a case it is natural to introduce an average mea-
sure of closeness of Az and ii—a distance in Hilbert space—and seek z from
the requirement

inf p(Az,it) zeZ (10)

[or, in the more general case, inf $(Az), where (i) is some functional defined
on U]

It is easily seen that problems from the first two classes can be viewed
analogously. At that if by u is meant, similarly to &, the exact specification of
the characteristic of the phenomenon (as is assumed in the classical analysis),
then such a formulation is equivalent to Eq. (6). If, on the other hand, we take
into account that the characteristic of the phenomenon i is specified within
some error so that, generally speaking, ii1# Az, zeZ, then the equivalence no
longer holds (the problem Az = &z has no solution), and it is more natural to
view the problem in the formulation analogous to Eq. (9): inf p(Az, @), zeZ.

2.2. The concept of well-posed

Any quantitative problem consists in finding the “solution” z from the “ini-
tial data” u: z = R(u). The concept of solution, the meaning of the “operator”
A, the character of the sets Z and U from which z and u are chosen (we shall
take them to be metrical spaces), are all determined by the statement of the
problem. Thus in the above-discussed examples, where the meaning of solu-
tion and the character of the sets Z and U are defined, R can be understood to
mean the totality of algebraic and analytic operations that solve Eq. (9) or the
variational problem (10).

The problem of determining z and u is called well-posed (according to
Hadamard) if it satisfies the following conditions: (i) for each ucU there exists
a solution zeZ; (ii) the solution is unique; and (iii) the solution depends con-
tinuously on u (it is stable against small variations of u).

If even one of the above conditions is not satisfied, then the problem is
called ill-posed.

The concept of being well-posed was formulated by J. Hadamard at the
beginning of this century, in application to problems of mathematical physics
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as a whole. He expressed the opinion, engendered by the success of this disci-
pline in exact description of phenomena, that ill-posed problems have no
physical content and are of no interest for mathematical study. This opinion
turned out to be erroneous with respect to the subject of inverse problems.

2.3. Peculiarities of the ‘‘elementary’”” mathematical formulation of the
inverse problem

In inverse problems of mathematical physics we are usually interested in
detailed information about the introduced characteristic property z of the
object. Thus, if z=pek™ is a vector, then we are interested in all its compo-
nents.

Let us consider the case when z=2(x), xeX,, corresponding to the exam-
ples introduced above. It is understood that, having introduced such a charac-
teristic of the object, we are interested in values z(x) at all points. It is natural,
therefore, to understand under p,(z,, 2,) the “uniform” metric:

JRE zQ)EmXaxlzl(x) — 2,(x)]; Z=C(X)).

1

Let the characteristic of the observations (expected effects) also be a cer-
tain function u=u(x), xeX,, as in the discussed examples. Since © is given with
uncontrollable errors (or idealized), it is natural to consider on the set

a .,

U closeness “in the mean”?:

1/2
pU(ul,uz)E( [u,(x) — uz(x)]zdx> . U=Ly(X,).

X,

Let us consider under these conditions the operator equation (9), taking
into account that in place of the exact right-hand side we are given the ap-
proximation i. It is clear that the equation does not have solutions for all e U,
and consequently the problem isill-posed and the equation Az = & is of purely
conditional character. We note that passing to the variational formulation
does not, generally speaking, solve the question of existence of solutions: it is
not obvious that the existing a priori exact lower bound on the distance is
reached within the set Z.

Let us, however, extract a subset U, on which Eq. (9) has a solution which,
moreover is unique for each u. It is characteristic of inverse problems that the
quantity u expresses the integral effect of the influence z; accordingly it
should be clarified that the operator A is usually “compact” (“fully contin-
uous”).”® This means, in particular, that for the imaging u = Az an arbitrarily
large sufficiently localized variation of z produces an arbitrarily small vari-
ation of u. Hence the solution of the operator equation (inverse imaging) is
unstable. Consequently, and in this respect problem (10) is in no way differ-
ent, the introduced measure depends continuously on u and, therefore, to
small variations of p may correspond arbitrarily large variations in z.

These considerations are readily extended to the case when the operator
equation is given explicitly in the form of a Fredholm (3) or Volterra (4) inte-

®The measures max;|p,, — P | and [2,(p;; — p;,)?]'/2 are equivalent on the set of vectors z=pef£".
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gral equation. The compactness of an integral operator with a continuous
kernel is well known. Obviously the integral is a continuous function of the
parameter (x or ). If the kernel is a smooth function of the parameter, then so
1s the integral. However, u(x) in Eq. (3) need not be smooth since it carries
random perturbations.” On the other hand, we may, for example, set in Eq. (4)
6z = A, sin wt, where A, is an arbitrarily large but fixed number. It is obvious
that for a continuous kernel (| K(¢)|<x) one can find a sufficiently large value
for o to make Su arbitrarily small”® on an arbitrary finite interval #€[0, T (the
integral smooths out the high-frequency oscillations of the integrand func-
tion). Moreover, to arbitrarily small perturbations u(¢) in Ly(0, 7) may corre-
spond arbitrarily large perturbations z(7) in C [0, T7.

We have discussed the case when z and u are functions. This does not
mean that were they elements of a finite-dimensional space (vectors) the ele-
mentary formulation of the inverse problem would be a priori correct. In that
case Eq. (9) turns into a finite system of equations for the vector components
z=p. This type of inverse problem was discussed in Refs. 42 and 43. The
operator A remains fully continuous, and if it depends weakly on certain
components of p, then the corresponding minors of the functional matrix
turn out to be close to zero (the system becomes poorly determined). Then, if
we are interested in all the components of p, we run into instability of the
solution with respect to variation of u. We note that in applied problems a
rather small variation in the sought-for vector characteristic p may lead to
physically inconsistent results. Is, for example, the difference between the
numbers 1 and 3.5 large? If they stand for the calculated values of density of
the Earth’s core, then the first one is patently absurd, and the utilized algo-
rithm is unstable in practice. Examples of inverse problems, which give rise
in elementary formulation to degenerate systems of linear algebraic equa-
tions, are given in Ref. 148. In that case uniqueness is a priori absent and
variation of the right-hand side which produces, as a rule, the last value from
the set of values u = Ap, makes the system conditional. In that case passage
to the variational problem of type (10) amounts to the least-squares method.
However, for a degenerate operator A the matrix A*A of the normal system is
also degenerate and, consequently, the problem in formulation (10) remains
1ll-posed.

Being ill-posed in the elementary formulation is a characteristic proper-
ty of inverse problems of mathematical physics. '

2.4. Practical consequences of being ill-posed

The class of ill-posed problems is larger than the class of inverse problems.
Many problems in analysis belong here: differentiation of functions given
with errors; summation of Fourier series with inexactly given coefficients;
solution of systems of linear equations with determinant close to zero in the
presence of errors in the matrix elements and in the right-hand sides, and so
forth. Corresponding examples can be found in Refs. 86 and 148.

b Let us note that its real prototype need not be a continuous function, since chance perturbations refer to
any point.
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Consequently, the a priori possibility of formally utilizing classical meth-
ods of solution of ill-posed problems of mathematical physics does not mean
that a satisfactory approximation to the exact solution can be obtained in this
way.
yAs an example, consider various realizations of the operator z = R(1) in
application to the solution of integral equations, ignoring the fact that the
problem is ill-posed.

(a) Within the framework of a simplified model the problem of extending
the gravitational field in the direction of its sources gives rise to the equa-

tion'®*

H fb 2(8) dE
u(x) = — ,b).
= i @Y (1)
Let us perform a mathematical experiment for a= —1, b=1, H=1,

2(6) = £4(1 — £7)%, having computed values of u(x) from a given mesh {x,} with
machine accuracy § = 10~°. For R(u) we choose the operator composed of the
solution of a system of linear equations, obtained by a finite approximation to
Eq. (11) with a step A (in £ and x), and the limit A—0. In Fig. 1 we show the
results of such an experiment for A = 0.1. It is seen that the “approximation”
has nothing in common with the true solution (even for a relatively large step
and machine accuracy of u!).

The effect is explained by noting that as a result of the approximation we
arrive at a badly determined system'*® (due to the closeness of columns) and
the “degree of determination” decreases with decreasing A.

(b) Since the kernel is symmetric and continuous, one may choose for the
analogous problem for R(u) the operation of summation of the Fourier series
on the eigenfunctions of the kernel. In that case

=3 (@/A)Wn(@.

k=1
Leaving aside the question of evaluating ¢, and A1,, we note that &, is given
with errors if for no other reason than due to errors in iz(x). Then, in this case,
too, we fail to obtain a satisfactory approximation due to instability in Four-
ler series summation.

(c) Suppose that an inverse problem is specified in terms of a Volterra
equation of the first kind with kernel K(t, ), where K(¢,t)#0 and is differen-
tiable with respect to ¢. Then it can be reduced to an equation of the second
kind, whose solution depends continuously on the right-hand side.'!! For R(u)
we choose an operator analogous to that of part (a), but for equations of the
second kind. The latter, however, has the form

f x(t,7)2(T)dT + 2(t) = V'(t),
0

Where
v') = w(OK Nt (t,n=K,t,HK (1)

It is to be understood that the stability of the solution of this equation does not
mean that to large errors of the right-hand side correspond small errors in the
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solution. And in this case the right-hand-side errors are uncontrollably large
due to the fact that numerical differentiation of the approximate i(?) is not a
well-posed operation.

We note that, as a consequence of the just-mentioned circumstances, the
inverse problems discussed at the beginning of the first paragraph in connec-
tion with Newton’s equation are ill-posed. Indeed, to evaluate f{(t) or m we
must differentiate the function x(¢), which is given experimentally with er-
rors. Clearly such a problem is unstable.

(d) Exploiting the fact that in the Volterra equation corresponding to the
instrumental problem (4) the kernel is a function of the difference of the
arguments, one may choose as the imaging operator the Laplace transform
followed by the inverse transform [precisely as the Fourier transform may be
used for Eq.(11)in the singularcasea = — «,b = + «]. However, due to the
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inexact specification of &(#) [@(x)], we run into the fact that the inverse trans-
form is ill-posed.®”14®

Other examples may be mentioned.

Consequently, the fact that these problems are ill-posed cannot be ig-
nored. There are two paths for overcoming this difficulty: (a) well-posed for-
mulation of the inverse problem of mathematical physics, based on the intro-
duction of additional information about the sought-for solution; and (b)
control of classical algorithms for the solution of ill-posed problems.

Both of these paths are analyzed in the regularization theory developed
by Soviet scientists, which gives rise to the concept of a regularized operator
in numerous realizations.

We study elements of this theory below.



Chapter 2

Well-posing of inverse
problems

1. The concept of problem insertion into the
correctness class

1.1. Selection method of solution of operator equation

Consider, for example, the conditional equation connected with the instru-
mental problem (4). Assume that some estimate of the signal duration 7 is
known (¢€[0, T7), as well as the instant of maximum intensity 7,€(0, 7), and
that the “profile” of the signal can be approximated by the formula

2r,p)=pe P77 p,p,>0.

Then the signal appearing at the output of the instrument will be a function
of ¢ dependent on the vector parameter p = { p,,p.}:

)2

J K(t — rz(ndr=U(t,p) .
0

Suppose that we have evaluated this function for various values p = p,,
k=1,2,..., N, varying the coordinates within the specified intervals:

O< pyp <M, 0< py, <M,.

Then, upon comparison of U(¢, p, ) with the observed u(¢), we may choose that
P., which leads tobest agreement with observations and accept z(r, p,, ) asthe
approximate solution of the equation.

The just-described search procedure constitutes the content of the “selec-
tion” method. This method has been widely used for quite some time in, for
example, the study of the bowels of the Earth by means of observations on the
Earth’s surface of gravitational or electromagnetic fields.

In a sufficiently general way the selection problem consists of the follow-
ing: Suppose an a priori model of the object under study exists, determined
with a precision up to the vector parameter p = { py, ps, - . ., P, }, Where n is
given and not too large and | p,|<M, i=1,2, ..., n; the calculated field is
u=Ap = Ulx, p), x€X, while the observed field is & = u(x). The vector p is to
be so chosen as to provide, in some well-defined sense, best agreement be-
tween the calculated and observed quantities.

This problem may be solved in a variety of ways.

(a) One may prepare ahead of time an album of “templates”’—in the pres-

13
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ent case this would be curves u = Ulx, p) for various discrete values of p in the
specified region. The comparison of #(x) then proceeds visually by superim-
posing i(x) on the “template.”

(b) In some cases the process of computing U(x, p) can be modeled on an
analog computer equipped with a display. This method is discussed, for exam-
ple, in Ref. 105. Here it is possible to vary continuously the parameter (from
the panel of the analog computer) and visually compare & and Ulx, p).

(c) The problem may be reduced to a variational one,'*'®!'33 inf p(Ap, @),
and one may delegate to an electronic digital computer the task of finding the
minimizing element based on some minimizing algorithm®>“° on a bounded
set | p; | <M.

It is fairly obvious that the first two methods, in contrast to the last one,
are practical only when the number of parameters is small (n = 1-3) and,
consequently, only in the framework of a rough model.

Moreover, the danger of obtaining as a solution to the problem a quantity
significantly different from the “true” one, can be excluded by an “intelli-
gent” choice of a priori restrictions on the parameters. But the question now
arises of what is meant by an “intelligent” choice of restrictions in applica-
tion to the class of inverse problems. The answer is particularly important for
large n, when the vector parameter p may be an approximation to some con-
tinuous function.

A fundamental solution to this question was given by A. N. Tikhonov,'*°
where for the first time a direct connection was established between a certain
result of functional analysis with the selection practice and inverse problems
of mathematical physics. For this reason the corresponding result is common-
ly referred to as Tikhonov’s theorem.

1.2. The theorem of A. N. Tikhonov
Consider an inverse problem of the interpretation-of-observational-data type
described by the operator equation (9).

It is readily seen that the mathematical content of the selection process
consists of direct representation of the characteristics of the object on the set
of characteristics of observations, u = Az, zeZ. With this in mind consider Eq.
(9), Az = u, when the right-hand side is known exactly (u = @).

Let Z be a certain subspace of the metric space Z and U, its image in the
metric space U by the operator A. .

THEOREM. Let A be continuous on Z and let the equation Az = @ have for
every itcU, a unique solution 2€Z. Then the inverse image z = R(1) is contin-
uous with respect to the measure of Zif Zis closed compact (with respect to the
measure of Z2).2

In other words, to sufficiently small perturbations & in the measure of U
correspond arbitrarily small perturbations 2 in the measure of Z.

Proof. Let it be an arbitrarily chosen element of U, and A2 = &. Consider
an arbitrary sequence {u, } - (v,€U,, and convergence is with respect to

‘By closed compact (with respect to some measure) we mean a set such that for every sequence of
elements from the set a subsequence can be selected which converges (with respect to the same
measure) to an element in the set.56
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the measure of U). To it corregponds {z }62 Since Z is closed compact, {z, |
has at least one limit point in Z; label it 2*cZ. Then there exists a subsequence
(z, | —2" (with respect to the measure of Z). Since the operator A is contin-
uous, it follows that {u, = Az, }-Az*. However {u, |4, being a subse-
quence of a convergent sequence and, consequently, Az* = . Now, by unique-
ness of solution, z* = 2, and therefore {z, } —2. This proves the theorem since
{u,| was arbitrary.

We observe that convergence of the approximation in the compactum Z
to the exact solution Z (with respect to the measure of Z) is also possible if Zi 1S
not closed but is compact in Z and 2eZ \Z This case, corresponding to approxi-
mating the exact solution by a sequence of elements from a compact set, will
not be considered here.

It is obvious that Tikhonov’s theorem explains, first of all, the success of
the selection method within the framework of the simplest models: an arbi-
trary bounded set in a finite-dimensional space E" (n given) is compact with
respect to the E” metric (the Bolzano-Weierstrass theorem). Therefore, if the
unique exact solution belongs to this compact set (and that is the meaning of
an “intelligent” choice of a priori limits on the sought-for vector), the selec-
tion method for fixed n is guaranteed to find an approximation to the exact
solution for arbitrary errors in the initial data.

On the other hand, the theorem just proved also covers the larger class—
when n is large and p approximates some continuous function. Suppose, in-
deed, that the sought-for characteristic of the object is described by a contin-
uous function z = z(x), x€[a, b], and Z is the set of continuous functions on
[a, b] (Z=Ca, b]). Obviously, although this set is bounded [max |z(x)|<M)], it
does not follow that it is compact in C [a, b]." It is to be expected that, having
set p = {z(x;)} on some mesh {x;] and made use of the introduced limits, a
satisfactory approximation will not be obtained by the selection method even
if the difficulty posed by large n can be overcome. According to Arzela’s
theorem,”* a set compact with respect to the metric of C[a, b] can be obtained,
for example, by imposing two conditions: max |z(x)|<M;, max |z'(x)| <M,
x€la, b]; if use is made of its analog in the discrete approximation (for arbi-
trary n) and if the unique exact solution belongs to the chosen compact set,
then the efficiency of the selection method (i.e., the ability to come arbitrarily
close to the exact solution) is guaranteed.

1.3. The concept of the conditionally well-posed problem
This concept was introduced by M. M. Lavrent’ev®® for the class of problems of
Interpretation of observational data, including instrumental problems; it
generalizes the conditions of Tikhonov’s theorem.

DEFINITION.®® The problem of solution of the operator equation

Az = u, zeZ uel ,
is called well-posed in the sense of Tikhonov (conditionally well-posed) on the

————

"For example, the sequence of continuous functions z(x) = sin 7nx, restricted to [ — 1, 1], does not
converge to a continuous function.
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set Z provided (i) it is known a priori that its solution exists and belongs to Z
(ueU, = U), (i1) the solution is unique, and (iii) to infinitesimally small varia-
tions of u, which do not take the solution out of Z (¢ 4 SueU,), correspond
infinitesimally small variations of z. In this case the set Z is called the correct-
ness class (in particular, Z is compact).

Here we explicitly emphasize the fact that, in the mathematical formula-
tion of inverse problems of mathematical physics of the type considered here,
the existence of a solution (for an exact right-hand side) is a direct conse-
quence of the validity of the physical model (the operator A) and the observa-
bility of the phenomenon (). However, the solution may not be unique and
the fulfillment of the second requirement requires special analysis (see Chap.
3). In order that the third requirement be satisfied, it is necessary (i) to choose
the correctness class (compactum) such that it contains the exact solution
(this also determines U, ) and (ii) to guarantee control over the variations Su
such that uy; = u + éuclU,.

If the problem is well-posed in the sense of Tikhonov, it is also referred to
as being inserted into the correctness class. It is obvious that in this case any
of the classical methods may serve to solve the problem for arbitrary du: z;

= R(ug) = A 'u,.

In what follows we shall view the concept of “‘conditionally well-posed” in
a narrower sense: we shall require only the conditions of Tikhonov’s theorem
to be satisfied. Let us note for what follows the formal consequences of this
theorem.

CONSEQUENCE (of Tikhonov’s theorem). If the problem of solution of the
operator equation

Az =u, zeézZ, uclU,=U,

is well-posed in the sense of Tikhonov, then it follows from the equation
lim,  _ pylAz,,A2) =0 that lim, _ p,(z,,2) =0.

1.4. Certain practical aspects of being conditionally well posed
As will be seen later, the formulation and algorithms of regularization theory
are based on the just-noted results.

The concept of a prior: problem insertion into the correctness class has
certain practical consequences, one of which is the answer to the question of
choice of the search region in the selection method. In that case the correct-
ness class is constructed “artificially,” taking into account the a priori quanti-
tative estimates about the solution, whereas the belonging of u to U, is en-
sured “naturally” by discussing the direct effect.

Going beyond selection method problems, another research direction is
possible.®® If the compact set was chosen “felicitously,” then U,—the set of
images of the characteristics of the object—was also determined. In practice,
what is given is icU, and then one can solve the problem of “projecting” iicU
on Uy CU uy=Ilpy ac

If the characteristic of observation is a function, for example u = u(x),
x€lc, d], then we arrive at the problem of “smoothing” it out, by which is

‘According to Refs. 9 and 77, u, is the projection of g on U, provided p,(u,, @) = inf,, p,,(u, ).
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meant not only ridding & of random perturbations but also the construction of
the function from the U, “closest” to it. That problem can be effectively
solved to the extent that properties of U,, corresponding to the properties of
the exact solution 2, are known. For example, if it is known that the exact
characteristic of the object cannot produce an effect describable by a not-
smooth function, then the search for u, should proceed on the set of sufficient-
ly smooth functions (e.g., “splines”>*’); if it is known (as in inverse problems
of gravimetry) that the effect is a harmonic function, then u, should be a
function from this class, and so forth. It then often turns out to be possible,
having chosen a basis { ¢, (x)} in the appropriate class, to make effective use of
the least-squares method'”®! in searching for the coefficients {a,} in u,(x)
=3, a, ¥, (x). In that case U, is also constructed “artificially” to make the
formulation of the problem similar to conditionally well posed.

Finally, problems exist for which the compact set is defined “naturally”
by the “elementary” formulation of the problem, as a consequence of the
physical model. Consider as an example the problem (7) in Chap. 1. This prob-
lem is of the control type and usually the expected effect—surface tempera-
ture of the sample U(R, t)—is given by a not-smooth function (Fig. 2).** How-
ever, making use of the preceding remark, it is easily “smoothed,” and this is
sufficient for the existence of the corresponding control function: the current
in the inductor, I(#). Something else is of interest. Within the framework of
the assumed model, 1(¢) is proportional to the magnetic field H(r, ¢) at the
sample surface (r = R), and the latter satisfies a differential equation which
contains the derivative dH/Jt. Since the problem is discussed on a finite time
segment, it follows from general theory’ that dH/dt is bounded and so is
(continuous) H. Therefore H(r, t), and with it X(¢), belong to some compact
class. Taking this into consideration and appealing to Tikhonov’s theorem,
one may employ for the solution of the inverse problem classical transforma-
tion operators (in the present case, finite-difference schemes).'**'** In the
general case, “natural” introduction of the compactum always occurs when-
ever the sought-for characteristic of the object can be associated with some
differential equation.
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2. The concept of quasi-solution

2.1. The problem of selection automatization and ‘‘quasi-solution”’

Aswas already noted (Sec. 1.1), the comparison of the observed and calculated
effect can be “automated” with the help of an electronic digital computer. In
that case one is solving the problem of minimization of p(Ap, u) on some
bounded set of values p.

Asaresult of the analysis, expounded in Sec. 1, a more precise phrasing of
the automation of the selection method is possible, as well as its extension to
the case when the characteristic of the object is of an arbitrary mathematical
nature. This iinportant step was taken by V. K. Ivanov,”! who introduced the
concept of quasi-solution.

DEFINITION. The element z,, belonging to the compactum Z is called the
quasi-solution of the conditional operator equation Az = i, zeZ, uecU, if it
minimizes the functional p(Az, @):

pu(Azy,it) = 1nf p(Az,i) . (12)
zel

This definition states how to search for z,; the question is what is the
relation between the quasi-solution and the sought-for characteristic of the
object. It is obvious that for © = &z and in the case of uniqueness we have z¢Z,
z, = 2; we shall consider the case when # is given with errors and, generally
speaking, does not belong to U, .

2.2. Correctness of the posing of the quasi-solution problem
THEOREM. If (i) the problem Az = u, zeZ, ucU, is well posed in the sense of
Tikhonov on the compactum Z and (ii) for arbitrary aeU (UD U,) llp, & 1s

unique,” then the quasi-solution problem (12) is well-posed in the sense of
Hadamard (from U into Z)

Proof. Since Zis compact the quasi-solution zOeZ obvmusly exists for arbi-
trary ueU. In view of condition (ii), to each iz corresponds a unique u,cU, , and,
in view of condition (i), a unique element z, such that Az, = u,. Consider,
lastly, an arbitrary sequence {i, } - tecU,, and the corresponding sequences
tu, =1l py u,}and {z,: Az, = u,}. It is obvious that

oAz, i, )<p(A2,i,)=p(i, ) —0

in the limit as n— «. But since p(Az,,A2)<p(Az,,i,)+ p(i, iz,), hence
plAz,, Az)—0. Then, in view of condition (i) and as a result of Tikhonov’s
theorem, we have lim,, . _ p,(z,,,2) = 0 and the proof is complete.

The quasi-solution problem may be viewed as a possible well-posed in-
verse problem of the interpretation type. Indeed, it is uniquely solvable for
any given &, and its solution approximates arbitrarily closely (for sufficiently
small errors in the initial data) the exact solution.

V. K. Ivanov has also indicated”!72 sufficient conditions for projection uniqueness, usually fulfilled in
interpretation problems.
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2.3. Certain practical aspects
For calculational convenience in applications it is natural to formulate the

quasi-solution problem in the form
inf pt,(Az,1) (13)

which is, obviously, equivalent to Eq. (12).

Let us note that here, in contrast to the conditionally well-posed problem,
the observational characteristics & serve as the initial data: that means that
the operation of preliminary “smoothing” of @ loses its meaning if the com-
pact set Zincludes the exact solution (the “smoothing” proceeds automatical-
ly since @ is approximated by an element, obtained by the least-squares meth-
od, known to belong to U,). At the same time, as in the conditionally
well-posed case, it is necessary to specify a priori the compact set, and this is
connected with the specification of quantitative restrictions on the sought-for
characteristic of the object.?®:63167

As an example, we consider the simplest model of the problem of deter-
mination of the sources of the gravitational field from its observation on the
Earth’s surface. The sources will be characterized by the location of their
centers of mass M, (¢, n,,{,.) and the masses m,, k=1,2,...,n, where n is
fixed (and usually not too large). Thus the sought-for quantity is the vector
p={m,my...,m,, &, &, .., &, N Nas v s My §1569 -+ .6, 1. A natural
restriction on the components §, could be the requirement that they belong to
the sedimentary layer of the Earth’s core, 0 < {, < H; assuming that the gravi-
tational field, due to the sources being considered, significantly different
from zero in the square K:0 <&, < L has already been extracted from the
observations, we impose on &,, 1, the natural restrictions 0<¢,, 7, <L. A
prioriideas about the size of the masses can be derived from known geological
data and available interpretation results: 0 <m, <M. In the finite-dimen-
sional space E*", all these restrictions select the compact set peP.

The normal (to the “horizontal” surface of the Earth) component of the
gravitational field at the point N(x, y) (consistent with the observations) is
given by

Ryn=[&—&P+(y—m)P+E5]"7.

Suppose that its observed size is (V).
Then the quasi-solution problem is formulated as follows®:

p:inf ” (UWN,p) — &(N))*do, peP?). (14)
K

The corresponding gravimetry models in two dimensions, where use can
be made of the apparatus of analytic functions of a complex variable,!?® were
studied in Refs. 136-171.

“Upon discretization on a mesh {x,, v, 1, the integral is replaced by a finite sum.
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There exist well-developed methods for the solution of the problem of
minimization of a functional on a manifold with boundaries.*>"*"> The com-
plication, however, is due to the fact that in the formulation (13) we are re-
quired to find the location of the “absolute” minimum (inf), and there are no
economical standard procedures to this end (the economical methods of Ref.
75 are determined in that case by the structure of the functional, which need
not be convex). The formal search method of Ref. 75 (or the region sampling
method of Ref. 86 might be termed “universal’ (although not economical). It
can be used in combination with more economical procedures after local mini-
mum regions have been established.

Thus because the inverse problem is ill-posed, one must pay the price of a
more involved formulation. For this reason it becomes imperative to choose
the compact class “felicitously.” The subsequent results of regularization the-
ory reduce the computational difficulties somewhat.

2.4. Construction of the quasi-solution and the inverse problems of synthesis
and control

We have previously remarked (Chap. 1, Sec. 2.1) that problems of the indicat-
ed classes are a priori characterized by a variational formulation. It is often
the case that the operating characteristic, or expected effect, & is compared
with real effects to the same extent as in the previously discussed interpreta-
tion problems. The set Z of the characteristics of the object (sythesis or con-
trol) is determined first of all by their physical nature. On the other hand, in
that type of problem certain additional a prior: requirements are also rel-
evant: reliability of operation, technical realizability, and so forth. As a re-
sult, a subset Z of “acceptable’” solutions is extracted from Z. If, moreover, Zis

compact in Z, then formally the posing of the problem is completely analo-
gous to Eq. (14):

2% inf p%(Az,0) 2eZ . (15)

The solution of such a problem exists for arbitrary i, and if & is single-
valuedly projected on U, then the solution is unique. It coincides with the
exact solution of the operator equation if 2eU, (in that case it also coincides
with the quasi-solution). Let us note that in applications Z is usually specified
by stronger restrictions than those needed to specify the compact class and,
consequently, is compact.

3. The concept of regularization

Starting from the fundamental concept of a “regularizing operator” (algo-
rithm),'*! we shall mean by “regularization” any method for correctly, in a
well-defined sense, posing the inverse problem of mathematical physics or a
method for the construction of a stable (regularizing) algorithm for its ap-
proximate solution. In this paragraph we shall consider posing problems dif-
ferent from the preceding. Questions relating to the construction of regulariz-

ing algorithms (i.e., broader aspects of regularization) will be taken up in
Chap. 4.
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3.1. The practical equivalence set

The result of a measurement of an arbitrary physical quantity consists of a
air of numbers: its approximate value & and an error estimate § such that

i — @] <6. The exact value & remains unknown.

The situation is precisely the same in problems of direct calculation of
effects of the influence of physical objects. If, for example, one wishes to deter-
mine the law of motion of a material point x(¢) subject to a given (measured or
calculated) force f(¢), then one integrates Eq. (1). The error §fis further com-
pounded by calculational errors, and the result is the pair of quantities
[%(8), 8] such that p(%,%)<6, where & = X(#) continues unknown.

In this fashion, the result of our measurements or calculations consists of
a certain “indeterminacy” set, and the input data by themselves provide no
basis for preferring one point from this set over another for an estimate of the
exact value of the sought-for quantity.

In the cases under consideration this “indeterminacy” causes no incon-
venience: it is known from the beginning that if we take as an estimate of the
exact quantity an arbitrary point from the set, we can obtain an arbitrarily
close approximation to its true value by decreasing & (6 —0).

The situation is different for inverse problems of mathematical physics,
which are distinguished by instability in their elementary formulation.

Suppose that some problem from the class of interpretation of experi-
mental data is considered within the framework of a given mathematical
model A. As in the previous cases the input data consist of a pair of quantities
(@, 8)such that p(it, it)<5, where @ is the approximate value of the characteris-
tic of the observation while i is unknown. The sought-for quantity is connect-
ed to the observational data by the conditional operator equation:

Az =u, 37, ucU, (16)
p(@,)<6 .

Suppose that for exact input data the problem has a unique solution 2 where
AZ = 1. Asbefore, the input data provides no guidance on how to choose from
the set

Zs: p(Az,i)<d (17)

a particular element': all elements are “practically equivalent.” However, in
contrast to the previous situation, there is now no basis for choosing as an
approximation to 2 some arbitrary z;eZ,: the “diameter” Z; remains arbi-
grarily large even when § -0 so that it is not necessarily true that z5; —2 as
-0.

In the following, the set Z, [(17)] will be referred to as the practical equiv-
alence set.

Thus a principal problem of the theory is the question of selection from
the practical equivalence set of the approximation to the solution of the inter-
Pretation problem.

———

'The resultant problems of utilizing the statistical information will be discussed in Sec. 4.
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3.2. The regularization principle and the regularized approximation
Let us introduce into the basis for making the selection of the approximation
z5€Z s the requirement'*!

lim p,(z5,2) = 0. (18)
6-0

It 1s natural to call this requirement the regularization principle since it is
automatically satisfied in problems which are a priori stable (‘“regular”).

We shall call the approximation z5 to the solution of the interpretation
problem “regularized” if it satisfies the indicated requirement.

Obviously, regularized approximations exist. As an example, consider
the “quasi-solution” of the inverse problem (see Sec. 2). However, the quasi-
solution is not the sole possible regularized approximation. It could be any
element of the practical equivalence set on the corresponding compact class:
2,62 NZ, if 2776148158

Indeed, if z,€Z,, then p(Az;, @)<6. But then

pU(AZ(S’ A2)<pU(AZ(S ,l~t) + pU(fL,LAL)<25—>O

as 6 0. Now p,(z5,2)—0as 6 -0 asa consequence of Tikhonov’s theorem since
2, zs€/.

The indicated fact opens up new possibilities for well-posed inverse prob-
lems, different from the preceding, and at the same time leaves room for the
choice and precision of solution algorithms. In this connection we introduce
the following definitions.

DEFINITION. An inverse problem of the interpretation class will be called
“generalized-well-posed” for a certain choice of input data (&, §) if (1) its solu-
tion z exists for arbitrary e U and every 6, where 0<6<6,, and (i1) z, satisfies
the regularization principle.

An arbitrary operator z = R(u) for the solution of a well-posed, condition-
ally or generalized, problem will be called regularized in the sense of Tikhon-
ov.t

It is clear that an example of a generalized-well-posed problem is pro-
vided by the problem of “quasi-minimization” of the functional p7,(Az, &) on a
compact class containing the unique exact solution of the operator equation,
i.e., the problem of selection of an arbitrary element z; from the conditions

p%(Az, i1,)<8?, z2.

3.3. The ““consistency’’ of the posing of the problem

It is obvious that if we want the approximation z to be regularized it is neces-
sary that it belongs to the equivalence class, at least for sufficiently small é. If
the search proceeds on some compact class Z, then z;eZ.

It is important to remark that the well-posed formulations discussed
above are based on the assumption that the model of the phenomenon under
study—the operator A—is given, and the compact class Z is “consistent” with
the model (2€Z). In practice, this may fail to hold in two cases: (i) the model

*The fundamental concept of a regularizing operator (algorithm) introduced in Refs. 141 and 148 is
broader than that; we shall discuss it in Chap. 4 in connection with the problem of constructing such
operators.
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provides a good description of objective regularities of the phenomenon,
whereas the compact class contains only “rough” estimates of the character-
istics of the object, and (ii) the compact class provides a sufficiently full de-
scription of the object characteristics but the model is rough. In these cases it
may happen that as the precision § of observations is increased, p(Az, @) > §
and the approximation z;eZ;.

The posing of the problem of the search for z5 will be called inconsis-
tent!*?if § is the exact estimate of the error in the input data, § = inf p (&, ),
iicU, and for the chosen A and Z one has 2567, .

The posing of the quasi-solution problem for 2o [Eq. (12)] may turn out to
be inconsistent. Indeed, suppose that for the chosen A and Z, one has
inf pU(Az i)> 90, zeZ at least for sufficiently small §; it is then obvious that
zOeZ We remark that in this case the posing of the quasi-minimization prob-
lem is also inconsistent: for arbitrary zeZ

o (Az,@)>inf p(Az,i)> 5 .

In this fashion, for a specified level of accuracy the quasi-solution problem
may serve as a control for consistency of the posing, for example as a test of
validity of model choice.

As an example, consider the inverse gravimetry problem on the deter-
mination of the form of the boundary between two regions with different
densities in the bowels of the Earth from an anomaly in the gravitational field
at the surface [z = @i(x) in the two-dimensional version]. Let the division
boundary on a segment be represented by the “continuous curve” 1 in Fig. 3
and correspondingly by the function z = z(£). It is natural to expect that for a
bigger error in the “measured” field we could not distinguish it from the step
in Fig. 3: although the gravitational field associated with these two surfaces is
given by entirely different formulas (operators A, and A,), these formulas
(ust as in the example in Sec. 3.1) are practically equivalent.

However, as the error is reduced, the regularized approximation corre-
sponds to form (1), and not Eq. (2), and if the interpretation is carried out
within the framework of model A, [inf p(A,p, ), p={ p, = ¢, p, = d, p3; = h},
| p;|<M], the problem is inconsistent.

We note that the concept of “consistency” of the posing should not be
confused with the concept of “existence” of solution: the quasi-solution on the
compact class exists for arbitrary 6.

The solution of the consistency question goes beyond the boundaries of
the mathematical analysis of the problem. In the discussion of the posing of
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M

inverse problems that follows, it will be assumed that they are a priori consis-
tent in the indicated sense.

To formulate new posings we need one more fundamental concept of
regularization theory.

3.4. Stabilizer according to A. N. Tikhonov

Obviously, a compact manifold can be extracted from the finite-dimensional
space E" (in practice for not too large n) by imposing explicit quantitative
restrictions on the “Hilbert norm” of the vector peE™:

P PO=[pl. = ¥ Pi<M,

=1
where M is some number."

The analogous operation is also possible in the (infinite-dimensional)
space of functions z = z(x), defined on [a, b]. Here restrictions on the corre-
sponding norm ||z||;: do not produce a compact class in C[a, b] since, as we
have seen (Sec. 1.2), compactness is not guaranteed even upon restricting the
set {z(x)}. However, as was shown in Ref. 148, the subset of equicontinuous
and uniformly bounded on [a, b] functions (compactum) may be defined by
restriction to the Sobolev norm:

b
iy =] 12+ po201dxaM pw>py>0.

We note that the introduction of such a norm already presupposes the
isolation in C[a, b] of a certain subset of functions, which possess at the very
least square-integrable generalized'*® first derivatives (the Sobolev space
Ws3).

The introduced norms constitute continuous non-negative functionals,
and the corresponding method of defining the compactum on the set Z of
definition of the operator A admits generalization.

DEFINITION.!*® The non-negative continuous functional Q(z), defined on
an everywhere dense in Z subset Z,, is called the stabilizing functional (stabi-
lizer) for the operator equation Az = i, zeZ, iic U, provided (i) the exact solu-
tion belongs to Z,, and (ii) for arbitrary M > O the set Z,, of elements z from Z,,
for which Q(z)<M, is compact in Z,.

The indicated examples show that stabilizers exist. In particular, in the
spaces discussed above, it follows from the definition that an arbitrary func-
tion ¢(|| p||), respectively ¢(||z|| W;)’ could serve as a stabilizer provided that

@( y) is continuous, non-negative, and strongly monotonic, with ¢(0) = 0.

It could happen that the introduced characteristic of the object is a func-
tion of several variables: z = z(x), x = (x, ..., x,,)eE". Such characteristics
have to be introduced in connection with the study of the spatial structure of
the bowels of the Earth,'3? the solution of inverse problems connected with
nonstationary or spatially inhomogeneous processes of heat conductivity,>’

"One may also consider the more general expression 27_, ¢,( p, — p, )2 where pqis agiven vectorand ¢,
are given constants.
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and so forth. The study of such objects in the framework of ever more “exact”
models is the perspective of scientific investigation in many branches of phys-

ics.
It is not hard to convince oneself that in these cases the simplest analog to

|2||%:, namely 5, [(V2)* 4 2*]dr, no longer provides a stabilizer on C(D)." In-
deed, upon setting z(x) = |x —x,| ~*, where x,€DCE® 0<A<!, so that
Vz~|x — %xo| _ (141 In the neighborhood of x,, we note that the integral re-
mains bounded although z(x)eC(D).

It follows from Ref. 106 and 129 that a stabilizer in C(D), DeE", can be

taken as

lelB= S 2V 19)

2| = ‘ X
W b kgo i+ ;L ~ k ( Ox' 1 oxg - ox." )

provided that 2p>n 4 1.

In particular, for n=2 [z=2(x,,x5)], p>2; and for n=3
[z = 2(xy, Xy, X3)], p>2. It is to be understood that the use of such a stabilizer in
formulating the problem presupposes that the true solution of the problem
satisfies even more rigid “smoothness” requirements than in the examples
discussed above. However, if the true solution of the problem is “close” to
some function of the corresponding class, then the introduced assumptions do
not give rise to substantial errors in applications.

On the other hand, it could happen that there is available about the
solution of the inverse problem, described by some function, a priori informa-
tion of another kind: the presence of “singular points” on the hypersurface
z = z(x), the presence of discontinuities, and so forth. In such cases, the corre-
sponding functional that is to serve as stabilizer should be constructed on a
space of functions Z larger than continuous. Examples of this can be found in
Refs. 44, 64, and 176.

It is not hard to observe that in constructing the stabilizer use is made of
available a priori qualitative information about the sought-for solution: “si-
milarity” to some known property (e.g., vector), “closeness” to sufficiently
smooth functions, existence of discontinuities, and so forth.

Along with this, in the construction of the stabilizer quantitative infor-
mation about the sought-for solution may turn out to be useful, for example,
}ts value on a certain subset of the region of definition. We consider the follow-
Ing example.?® Let the boundary dividing two media (such a boundary is
called a “contact surface”) in the bowels of the near-surface layer of the
Earth’s core, described by the function z = z(x), x€[a, b] (Fig. 3), be reproduced
from the observed gravitational field near the logging-well slit, so that the
value z, = z(c) at some point c€[a, b]is known. Then on the set Z of continuous
functions, defined on [a, b] and satisfying the condition 2(c) = z,, the stabilizer

function satisfies
b .
d 2
0= | (G) @

The role of such functionals in the construction of stable algorithms148 will be discussed in Chap. 4.
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Indeed, suppose that Q,(z)<M. Then for arbitrary z(x) and an arbitrary pair of
points x,,x,€[a, b] ,

Zég—dx

12(xy) — 2lxy)[ = .

LG el [l

([ () "o

and since the estimate is independent of z, Z is the set of equicontinuous
functions. On the other hand, it follows from this estimate that |z(x) — 2(c)|
<[M(b — a)]"* for an arbitrary point xe[a, b], but then for arbitrary z(x)eZ
one has |z(x)|<|z(c)] + |z(x) — z(c)|<|z.] + [M(b — a)]'?, and, consequently, Z
is the set of uniformly bounded functions. By Arzela’s theorem, Z is compact
and our assertion is proven.

Similar quantitative information can be particularly helpful in multidi-
mensional problems. Suppose, for example, that the subject being studied is
the density of heat sources z(x, t), te[ 0, T'], distributed on the segment 0<x<a,
reconstructed from measurements of the temperature field u(x, ) on a cer-
tain segment [c, d] inside [0, a] (0, a]N[c, d] = 0).>3 Assume that the following
information is known about the sought-for density: (1) 2(x, ¢) is “close” to a
twice differentiable function and (i1) 2(x, 0) = 2(0, t) = z, = const. Then on the
set Z of continuous functions, satisfying the above “quantitative’ restric-
tions, the stabilizer turns out to be

Qz(z):Jf( i )dx dt |
K ox dt

A\

Indeed, if Q,(2)<M, then

and analogously

t,

dx dt| <yMay|t, — t,],

t
xl,xZE[O,a}; tl’t2e[O’T] .
However, since dz/dx(x, 0)=0, the first of these integrals equals

J"(———( t)——a—(xO))dx— —gi(xtl)dx

ox x, O0x
and analogously the second integral equals
L.
* 0z
— (x,,0)dt .
Lot c

It therefore follows that for an arbitrary pair of points M, (x,, ¢t,), and M,(x., t,)
€D and an arbitrary z(x, t), one has
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|2(M,) — 2(My)|<2dVM p"*(M,,M,)

provided d = max(T, a). Consequently Z is the set of equicontinuous func-
tions. The uniform boundedness is established in the same fashion as in the
example given above. Therefore Z is compact and Q,(z) is the stabilizer.

It is not hard to verify®® that on the set of continuous functions
7 =2(x,, Xy, ..., %,), defined in the region

D=T] [a,b,]CE",

=1
possessing the appropriate derivative and satisfying the conditions z|, _
=z, = const, the stabilizer is given by

n 2
Qn(z):f( ki )dx.
p\dx,0x,...0x,

In what follows, stabilizers, obtained with the help of quantitative infor-
mation about the solution of the inverse problem of the indicated type, will be
called conditional. We note that Q (z) (s =1, 2, .. .,n) no longer possesses the
properties of the square of a distance.

The concept of the stabilizer provides new ways for well-posing inverse
problems.

3.5. Possible well-posed interpretation problems, based on the stabilizer
concept

We note that once the stabilizer (z) is found, the quasi-solution problem (12)
can then be formulated as

inf p,(Az,it), zeZy,: U2)<M . (20)

Such a formulation of the problem may turn out to be more convenient than
the previous formulations, because the quantitative information about the
solution is given in terms of a single constant M. It could, however, happen,
that even such information is absent and the quantitative restrictions are
introduced in the “unfortunate” manner Q(2)> M. For this reason it is of
interest to pose interpretation problems in such a way that only “natural”
information about the sought-for characteristic of the object is used. The
above-discussed concepts of the practical equivalence set and stabilizer make
this possible.

Since the stabilizer is constructed with the qualitative peculiarities of
the exact solution to the problem taken into account, then for finite accuracy
of the input data it is natural to strive for the greatest possible similarity
between the approximation and the exact solution with respect to that quali-
tative characteristic. If, for example, the solution 2 = peE", then one could
demand that the approximation deviate minimally from some given p,, pro-
vided that it does not fall outside the bounds of the practical equivalence set
Zs; if it is known that the solution is “close” to a smooth function, then one
could demand maximal smoothness subject to that same condition with re-
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spect to the set Z, and so forth. This leads to the following posing of the

problem on the search of the regularized approximation'*®:

inf Q(z), zeZ,NZ; , (21)

where Z, ={zeZ: p,(Az, @15)<b}. It is clear that we use here along with qualita-
tive considerations only an estimate of the accuracy of the input data; the
restriction of )(z) by some, even though unspecified, constant is a natural
consequence of the posing of the problem. The operator z, = R(i15,6) of the
solution of the variational problem (21) on a restricted set can be realized, as
also for Eq. (12), by means of known numerical methods.”""”

We confine ourselves to “unconditional” stabilizers and introduce the
conditions ( /3), possessing ‘“practical generality” for a broad class of inverse
problems:

Q2)=2|% = (2,2), = p3(20)

(Z,1s the Hilbert space with the corresponding metric and the stabilizer is the
square of the metric). Then the following theorem holds:

THEOREM 1. If, in the posing Az = @i, ucU ,, the inverse problem has a
unique solution 2€Z,, he operator A is continuous, and p (&, @) < 8, then un-
der the conditions ( 3) the problem (21) is generalized well-posed in the sense
of Tikhonov.

To prove this assertion let us first verify that the solution (21) exists for
arbitrary  and ii. Since ()0, there exists ), = inf Q(z), zeZ,NZ,, and there
exists a minimizing sequence {z, | CZ,, where lim,,_ _ Q(z,) = Q,; without
loss of generality we may suppose that for arbitrary n

O(z,)<Qz,, )<, =Q(z,) .

But then, by definition of the stabilizer, {z, } belongs to the compactum and,
therefore, one may extract from it a subsequence which converges to z*eZ.
Without change in notation suppose thatp,(z,,,2*)—>0asn— «. Weshall prove
that {z,] is fundamental in Z,, i.e., that z*€Z,. Assume the opposite. Then
there exists €,> 0 and a sequence of integers {m} and { p,, } such that for an
arbitrary pair (m,p,) we have |§, |z =z, —2.,, [>€ Set vy,

=0.5(z,,, +2,,,, ); then vy, =2, -05§, =2,,, +0.5§,. Obviously,
O(y,,)>Q,; in view of conditions ( 5) we have simultaneously

122, — @msEm)z, +0.25]|€ (|7, >

and
12+ po 7+ @y ps Em)z, +0.25(1E, 112, > -

Since Q(z,, , , ) and (z,,) converge to ), as m— « and both these quantities
are no smaller than (), it is obvious that

— ZpsEm)z, +0.25(|E 117, > — AL,
(A’ >0,A7, -0 and m— ),

(2m+p,,,’§m)Z, +O-25H§m“%, > — A7

(A” >0,A” -0 and m— «).

m
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Upon combining these inequalities, we obtain
—0.5|[En 12, > — (A% + A%,

and, consequently, ||£,, ||Z is infinitesimally small in the limit as m — «. This
contradicts the assumption (||£,, || >€,), and, therefore, z*€Z,. It is obvious from
continuity of the stabilizer that Q(z,)— Q(z*) as n— «, and since {z, } is the
minimizing subsequence it follows that }(z*) = Q,. This proves the existence
of the solution to problem (21) for arbitrary 6 and .

Upon setting z* =z, let us show that z; satisfies the regularization prin-
ciple. Consider an arbitrary sequence {6, } —0 and the corresponding {z,}
(where py (&, 1) —0. Obviously Q(z; )<(2) for arbitrary n; consequently z,
and 2 belong to the set Z, compact in Z. Then the sequence {z; } has a limit
(with respect to the measure in Z) point z**. On the other hand, z, €Z; , and,
therefore, p,(Az; , i,)—»0as n— «. Then p,(Az**, &) = 0 by continuity of A,
i.e., Az** = 1. By uniqueness of the solution, z** = 2; consequently the se-
quence {z; | has a unique limit point and lim,, . p,(z; , 2) = 0. The theorem

is proved.

More general conditions under which the assertion is true were estab-
lished in Ref. 148. As a result the theorem also applies to conditional stabili-
zers.) On the other hand, one can indicate sufficient (although hard to prove)
conditions’® under which the “extremum” of the functional (z,) is unique. In
that case all the requirements are satisfied for the problem (21) to be well-
posed “‘at the point 2.”

The above-discussed formulation of the problem requires minimization
on a set with restrictions, which could be difficult. In Ref. 148 the question was
studied, in part, on the applicability of the method of Lagrange multipliers
and, consequently, on the reduction of the problem to parametrization. Let us
introduce the set Z, of elements z,, on which the absolute in Z, minimum of
the functional Q(z2) is reached: inf Q(2), zeZ;. It turns out that if p(Az,, @) > 6
(1.e., Z, does not intersect Z,) and the functional Q(z) has no local minima on
the set Z,\ Z, (is “quasi-monotonic” by definition of Ref. 148, in particular is
convex), then the solution to the problem (21) is given by an element satisfy-
ing the condition p(Az, &) = & (the conditional minimum is reached on the
boundary of Z;). In that case one may consider in place of Eq. (21) the problem
of absolute minimization of the parametric functional:

M(z,u,)=p%,(Az,0,) + dQ(2) (22)

on the whole set Z,, and if z* is the “‘extreme point” of this functional then «a
can be chosen from the condition

pu(Az%iis) =6 . (23)

We note that the functional (22) is known as Tikhonov’s smoothing functional
and the condition (23) as the discrepancy principle.

Having introduced the concept of a smoothing parametric functional,
one may study'*® its minimization problem independently of the formulation
(21). In that case the question of well-posing reduces to the choice of the de-
pendence a = a(d), such that z¥® satisfies the regularization principle.

[ —

This problem was investigated by E. E. Kondorskaya.
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THEOREM 2. Under the conditions of Theorem 1, there exists a set of
functions a = a($), for which the problem

2o inf M*'[2,015], z2€Z,, (24)

1s generalized well-posed in the sense of Tikhonov.

We note first of all that because A and p,, are continuous (just as in the
proof of the corresponding assertion of Theorem 1) one can verify that
M(z, lil 2(35) reaches the exact lower bound for z°€Z,, and at that for arbitrary
a>0.""

Let 3,(6) and 3,(8) be two nondecreasing non-negative continuous func-
tions of § [ 5,(8),35(8) —»0 as §-0], with 6°/3,(8) -0 as -0 [6* = o( 3,(5))].
Consider an arbitrary non-negative function a = a(8), satisfying the condi-
tions 6% ; 1(8)<a(8)<By(8). It follows from the obvious inequality

M u ) < M(G,iis) =p2 (i) + af3)

for a = a(8) that (1) Q(z“?)<6*B ; 1(8) + Q(3), and, therefore, 2 belongs to the
same compactum in Z as does 2, and (ii) p(Az™?, @15)<56* + B8 2), and,
therefore, p;(Az*®, 15) -0 as § - 0. From this we conclude, just as in the proof
of Theorem 1, that lim p,(z*®, 2) = 0 as § -0, which is what was to be proved.

In Ref. 148 were also established sufficient conditions for the uniqueness
of the extreme point z“ of the smoothing functional, at least for sufficiently
small 6. In that case the problem (24) for o appropriately coordinated with §
satisfies all the conditions to be well-posed with respect to z. The formulation
(22)-(23) constitutes a special case of the above.

We remark that in the last two formulations of the problem the operator
zs = R(i1, &) (regularizing operator) had a simpler realization than in the pre-
ceding, since unconditional minimization of a functional was involved. Ques-
tions related to the construction of the algorithms will be discussed in Chap. 4,
where we also give the fundamental concept of the regularizing operator,'*!
which falls outside the framework formulated in this chapter.

3.6. Some examples of posings of inverse problems
In Sec. 2.3 we considered as an example one of the inverse problems of gravi-
metry, which reduced to the determination of the vector p = {m,,£,,7,,{:
k=12 ...,n from an approximately specified, in a certain two-dimen-
sional region K function (V) (the gravitational field on the surface of the
Earth).
If no quantitative information about the vector p is known, then one may
introduce as the stabilizer Q(p) = ="_, p?, where p, are the components of the
vector p. Then the problem is formulated as follows [compare with Eq. (14)]:

=1

inf ff(u(N,p) — u(N))°do + a i Pits (25)
K

where a posteriori coordination of @ with 8 is presupposed, either by means of
the discrepancy principle (23), or by some other means (see Chap. 4), but such
that p*? satisfies the regularization principle.
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For the problem (mentioned in Sec. 3.4) of determination of the contact
surface within the framework of the two-dimensional interpretation model,
under the condition that one of the surface points is known, one correlates
with the observed gravitational field @(x), x€[c, d], the quantity Ulx, z]
= — Ju/d¢|- _,, where v is the field potential due to the sources of constant
(excess) density &p, distributed in the region D: a<é<b, H<¢ <z2(8),
2(a) = 2(b) = H. Accordingly v is the solution of the Poisson equation
Av = —2myf, where f = 0 outside D and f = dp inside D. The quantity Ulx, z]
may be represented explicilty in the form

b
Ulx,z] = J K(x,£,2E)de |

where

2
K g @)=2% 1 &= +H
2 (x — & + (H — 2(§))*
with H treated as a known quantity. Since the sought-for surface is assumed
to be “close” to some smooth one and since z(a) = H, one may introduce the
“conditional stabilizer”

b
Q,(2) :J 2 EdE .

Then the problem is formulated as follows:

d b 2 b
inf lf (f K(x,£,2( &£)déE — ft(x)) dx + aJ 2'¥( g‘)dg‘] : (26)

where again it is presupposed that a and é are correlated in some manner.

We remark that after a final approximation (of the derivative and the
integrals) the problem reduces to the search for a global minimum of a func-
tion of many variables, but already with a more “sensitive” to errors finite-
dimensional analog of the stabilizer.

3.7. Equivalence sets and stabilizers for synthesis and control problems

In problems of this class, along with the characteristic of the expected effect &,
one often specifies a measure of “tolerance” §,, so that one is solving the
problem of choosing the characteristic of the object to be synthesized (con-
trolled) from a certain equivalence set p (Az, )<8,, z€Z, where the metric
space Z is defined by the physical nature of the object. The question of unique-
ness of this choice is not raised, but certain “technical” requirements, as was
already remarked in Sec. 2.5), are imposed on any chosen element. Asaresult
a certain set ZC Z is a priori introduced—the set of admissible solutions.

It is obvious that an arbitrary element z;, satisfying the conditions

pu(Az,0)<b,, 27, (27)

can be /yiewed as a solution to the problem.
If Z turns out to be compact and in addition

dy= ill}fp v (W) =p(uy,it) <8,
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[in the opposite case, the problem (27) is inconsistent], then one may choose as
the solution to Eq. (27) the quasi-solution of the conditional operator equation
Az =1.

It is quite obvious that if (for compact Z) d,<pd, (0 <p < 1), then the solu-

tion can be taken in the form of any element z, from the practical equivalence
set Z,:
7,

pU(Azaalu )</~L )

where 0 < u<(1 — p)d,.

Lastly, if the “technical” requirements can be expressed by the condition
O (2)<M, where Q(z) posesses the properties of a stabilizer, then the solution to
(27) can be chosen in the form of Z, —the solution of either problem (21) or (24)
for the conditional equation.

Az=u,, pu,d)<ud=u),

where p 1s sufficiently small and u<(1 — p)&,. Indeed, solutions of these prob-
lems belong to the indicated compactum, and p(4z,, #1)<d,. We remark that
for & = Az, 2eZ, we have p;(Az,,,01) >0 as §,-0.

In this manner, the above-discussed posing of the interpretation prob-
lems can also turn out to be effective for the solution of problems from other
classes.

We consider some examples. In the optical covers synthesis problem
[Chap. 1, Sec. 1.2(c)], we confine ourselves to layered structures, characterized
by thesetp = {d,,. .. ..d,,ny, .. ,ny}, whered, is the thickness of a layer and
n, is its refraction coeflicient.*® The operator Ap=A(w, p) = T{w) is defined
by the solution of a system of differential equations corresponding to Eq. (6)
for a layered structure, here T(w) 1s the transmission coefficient for a light
wave of frequency w. Let T{w) be a given transmission coefficient, equal to
unity within some part of the segment [w,, w,] and equal to zero outside; let 6,
be the tolerance. In this case the following belong to the realm of “technical”
requirements: (1) the fixed (by the conditions of preparation) value of N, (i1)
natural quantitative restrictions on the components: d, >0 and (correlated
with the set of utilized materials) n_, <n,<n...; and 2Y_, d, <M (this is
dictated by stability in operation).

Let us denote by Pthe obviously compact in E*" set satisfying the indicat-
ed restrictions; the distance between T(w) and T(w) will be estimated in
Ly(w,, ;). Then the problem is formulated as follows:

3 (Alw,p), Tw)<d3, peP. (28)

We remark that Q(p)=23"_, d, is a conditional stabilizer on the set
{d,>0): if Q(p)<M, then 0<d, <M.
That means that the problem may also be posed as follows:

1

A~ N
inflp?, (Awp).T0) +a 3 dl. (29)

F=1
Noin <Hp <Npayxs dp >0, B =12,... N.
The formulation of this problem, corresponding to Eq. (21), is also given

in Ref. 148. Examples of posing control problems of tempering by induction,
based on the regularization concept, can be found in Refs. 39 and 44.
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In a number of problems the starting characteristic of the object being
synthesized or the result of the control is described by the values of some
functional flz), where the set Z is defined by the physical nature of the object.
It is required to determine z from the condition that f{z) be minimum, which
we shall call “purposeful.” As an example, consider the posing of the problem
of controlling a beam of charged particles with the help of an “external”
electric field.'*” Consider for definiteness a two-dimensional model, where
the particles move in a certain rectangular region from left to right, reaching
the right boundary at x = d. Let z = z(x, y5) be the controlling potential at
the boundary B of the region, and let © be the scattering angle of the particles
at the boundary x = d, defined by the solution of a certain self-consistent
system of equations that describe within the framework of some model the
motion of the particles; clearly © = ©(z) is a functional of z. If the purpose of
the control is to focus the beam, then we consider the problem of minimiza-
tion of this (purposeful) functional.* We remark that ©(z2) is given implicitly
and its values are calculated with some error. At the same time the conditions
for construction of similar systems clearly impose definite restrictions on z.

__ We consider the problem of determining Z from the conditions: inf fiz),
2eZ C Z,where Zis determined by a priori technical restrictions, and flz)—the
purposeful functional—is continuous and bounded from below [flz)>m].
(Then there exists f = inf f(z), zeZ, which, as is well known, does not yet imply
the existence of z™"—the “extremum”.) Let us suppose that there exists at
least one extremum 2eZ; otherwise the problem is a priori inconsistent. For
problems from the class being discussed, it is immaterial whether the extre-
mum set consists of more than one element; any of its elernents is acceptable.
For the sake of definiteness we consider the case when 2 is the unique mini-
mizing element. However, it could happen that not every minimizing se-
quence converges to Z (corresponding examples are given in Ref. 19), and then
the problem is unstable with respect to errors in the specification of f{z) and,
consequently, the problem is ill-posed.

I1l-posed variational problems were studied in Refs. 8, 19, 93, 148, and
150.

Suppose that instead of Az) we are given its approximation Az):
Az) — fl2)|<8(2)<8,, where the“estimating” functional 6(z) or its upper bound
o, is specified. Then the variational problem is formulated as

z,inf Rz), 2€2C 7 . (30)

Generally speaking, lim p,(z5,2)#0 as §—0, and the problem in the for-
mulation (30) is ill-posed.93'163

In Ref. 148 it is shown that a possible correct posing of the problem of
Interest to us can be formulated analogously to Eq. (24).

Let the set Z be a Hilbert space that admits a stabilizer (in Z): Q(z) = || z|| 5
= (z, 2); and 8(z) = 80(z), where § is the measure of the error in f;(z) with
respect to ()(z). We shall call these assumptions conditions ( 3).

We introduce, analogously to Eq. (22), Tikhonov’s smoothing functional

F,2)=Ff52) + aQz). (31)

“The example under discussion belongs, obviously, to the class of optimal equations problems.109.148
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THEOREM. Let £, (2) be a functional continuous for every 8. Then under the
conditions ( f3) there exists a set of functions a = a(8), for each of which the
problem

zs: inf F_, (2) (32)

1s a generalized well-posed problem for the minimization of fiz) on Z.

Proof. It follows from conditions ( 3) that Az) — 5Qz)<f,(2)<fz) + 60(z).
Whence it follows, in particular, that for arbitrary z we have F (2)>f(2)
+ (@ — 6)QU2); hence for a > 6 we have F,(z)>m and there exists an exact low-
er bound F* and, therefore, a minimizing sequence {z, }. Without loss of gen-
erality we have F, (z,)<F (z, ,)<F,,(z,) for arbitrary n>1. But then flz,)
+ (a — 6)Qz, )< F,(z,)and, therefore,

(@ —6)Qz,)<F (z;) — m.
Since
F.,z)>m+ (a —8Wz)>0, a>60z,)<M, (M, s>0),

it follows that the minimizing sequence belongs to the compactum and conse-
quently converges in Z. Because f;(2) is continuous, Z is a Hilbert space and
Q(2) = ||2||3 and one verifies, just as in _the proof of the theorem of Sec. 3.5 for
interpretation problems, that z, —2°€Z as n - «. Consequently, for arbitrary
6 and arbitrary a(é) > 6 the solution to problem (32) exists and belongs to Z. It
remains to discuss the behavior of z** as §-0. R

Obviously, F, (z*)<F,(2), where Z is the extremum of f{z) on Z; then from
the estimate for F,(z) for arbitrary z ( 5), we have

(*) A2%) + (@ — OUzY)<F, ()< AA2) + (a 4 6)QU2)

for arbitrary a and §. Since flz*)>£f12), then for a > 6 it follows first of all that
Oz )<[(a+ 8/(a—8)]02(2). Let a =¢85, where g>1. Then {z; =2z} is a
compact set which contains z. Consider the limit point z* (in Z) of this set as
6—0. From the inequalities (*) it also follows that 0<flz5) — 2)<(1 + )6 (2),
and, therefore, z%)— f(2) as 6 - 0. By continuity of the functional fiz) we have
flz*) = fi2), and by uniqueness of the extremum we have z* = 2. Consequently
pz(2s,2)—0as §—-0 and the theorem is proven.

The corresponding assertion is proven in Ref. 148 for a more general case.
In Ref. 19 are also considered other correct formulations of inverse problems
of this class, analogous to those introduced in Secs. 2 and 3 for interpretation
problems. .

Suppose now that the problem inf fiz), zeZC Z has a set of extrema Z,, as
is typical for the class under discussion. In that case the problem will be called
generalized well-posed for inexact specification of the functional provided
that it leads to the choice of one element from Z, as 6 - 0.

In Refs. 19 and 148 sufficient conditions are established under which the
solution of problem (32) converges to 2€Z,, such that 2(2) = inf Q(2), zeZ, (the
so-called Q-normal solution of the initial problem. Consequently the problem
(32) admits approximation from Z, and thus becomes well-posed in the indi-
cated sense in that case as well.
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4. Regularization possibilities for statistical approaches
to the posing of inverse problems

It is not hard to note that for physical problems connected, for example, with
the measurement of the quantity & one customarily chooses a unique value
from the equivalence set p, (&, #)<5. To this end use is made of measurements
statistics, based on the knowledge of the “distribution law” of the random
quantity u.

The apparatus of probability theory also makes possible this method of
choice in problems related to the evaluation of some quantity z from given
measurements . In the well-known papers Refs. 55,95, and 169, it is attempt-
ed to extend this approach also to problems of mathematical physics belong-
ing to the inverse class.

It 1s not hard to verify that, although formal development of the corre-
sponding apparatus is also possible in this field, its effectiveness depends on
the introduction of regularization elements, for example into the posing of
the problem, or the problem can be considered only in the very restricted
region of inverse problems for which real statistical data are available.

Obviously, since inverse problems are being considered, the basis for the
“statistical” formulation of the problem is provided by the theorem of
Bayes.?® Let us consider the corresponding model for a certain problem of
interpretation of experimental data.

Let us view the characteristic of observations as a random quantity with
a known (for example, Gaussian) probability density p(&z). Correspondingly
the sought-for characteristic of the object is also a random quantity with,
however, an unknown distribution law; the problem consists in discovering
the latter or some moments of the distribution. Let us assume for simplicity
that the physical quantities, corresponding to the indicated random ones, are
connected deterministically: Az = u. Then for any given z we have the condi-
tional probability p.(iz) = p,(Az — &). The conditional probability of the value
z for specified @ is determined by the formula of Bayes:

p.(2)=p)p,(Az — ), (33)

where p(z) is the a priori unconditional probability of the value z.

From this it already follows that for a probabilistic prognostication of z
from given &z, one must, in essence, have available some statistics about direct
observations of this quantity.

One may indicate inverse problems for which such statistics are avail-
able. These are, for example, certain problems of atmospheric physics, where
data on the distribution of temperature, water vapor density, etc. are collect-
ed, in part, by direct “soundings.” It is natural that in this field the direct
statistical analysis of the data provides the foundation for the development of
subsequent formulations. The possibility of employing aviation and satellites
for indirect observations of effects of the sought-for distributions (for exam-
ple, the heat emission by the Earth’s surface) and the successes of regulariza-
tion theory made possible the formulation of inverse problems of atmospheric
physics.”® At the present time solutions based on algorithms and formula-
tions discussed in Secs. 1 and 3 and Chap. 4 are being tested.*®*” At the same
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time the availability of observational statistics permits the development of
the probabilistic approach.®>96

An opposite example is provided by the physics of the bowels of the Earth,
where a priort information from direct soundings is practically absent. Thisis
typical of inverse problems of mathematical physics on the whole. Conse-
quently, within the framework of the Bayes model one depends in essence on
the hypothesis about the distribution p(z), making use, of course, of any quan-
titative estimates of z that might be available. In this case it is not at all
obvious, for example, that the formal mean

zZ= f zp,(2)dz

converges to the true value as the number of measurements increases with-
out limit.

Let us suppose now, as is natural, that p,(Az — @) corresponds to the
normal (error) distribution law; furthermore we shall treat the values & as
statistically independent and of equal weight. Then

p(Az— )= B exp ( — 54z — llh).

20 2
where o 2is the dispersion (assumed known from the experiment) and Uis the
set of values of the random quantity. We remark that, in accordance with the
“least-squares” principle®' in application to the problems under discussion,
|Az — &|| = py(Az, @) is the previously introduced measure on the observa-
tions set.

One possible way of realizing the statistical approach is based on the
principle of maximal likelihood.®®

We attempt to determine, following this principle, the most probable
value z, of the sought-for quantity z. If no additional information is available,
then one supposes that p(x) = const, and then z, 1s the soiution of the problem
inf py(Az — @), zeZ whose ill-posing was noted above. Utilizing quantitative
information of the form zeZ, where Z is a given subset of Z, one may set
p(z) = const #0 for zeZ, and p(z) =0 for zeZ. Then 2, is the solution of the same
problem on the subset Z. It is obvious that the well-posing of such a problem
does not follow from the probability-theoretical approach. The results pre-
sented in this chapter, as in the case of “selection,” give an indication of what
a priori information is needed for the problem to be well-posed and the sought-
for quantity to be effectively obtainable. If Z is compact then z, is the quasi-
solution. We note that formally one may also arrive at posing the problem as
in Eq. (24): it 1s sufficient to set a priori

5(2) = exp ( _ g- Q(z)) ,

where Q(z) is some functional.! However, in this case too, the well-posing of
the problem becomes possible because of the stabilizer properties of {)(z) and
1s not due to properties of Z that follow from the probability-theoretical ap-
proach.

'For Q(2) = ||z — Zo||% this corresponds to the normal distribution of the random quantity zeZ, about
certain mean Z, with dispersiono; = a .
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In this manner, in the presence of definite sufficient (even though not
complete) statistical information about the object under study, the probabili-
ty-theoretical formulation under consideration can be “regularized” on the
basis of the results given in Chap. 1.

When this is done it becomes possible to draw parallels between “deter-
ministic”’ and statistical estimates of model parameters. For example, the
absolute error 6 of the input data can be compared with the mean-square
error of this quantity treated as random. It is then clear that the selection by
discrepancy [problems (24) and (23)] results in an asymptotically “unshifted”
parameter estimate for 0 —0. Let us suppose now that for the inverse problem
under study Q(z) = ||z — zOHZ and (2) 1s the stabilizer. Then the last of the
hypotheses about p(z) means that the random quantity z is normally distrib-
uted about the mean z = z, with dispersion o = a~'. It is to be understood
that the a priori specification of the dispersion is usually impossible, and that
this equation simply indicates the statistical meaning of the parameter « if it
was chosen by some other means, for example by discrepancy.

References 65-67 are devoted to the analysis of other statistical models,
corresponding to finite approximation of certain inverse problems (systems of
ill-defined linear algebraic equations). In these papers the possibility is stud-
ied of obtaining moments of the “true” distribution from the statistics of the
observations on the basis of a consistent Bayes approach and under definite
hypotheses regarding the a priori distribution of the sought-for quantity. It is
shown that the “generalized well posing” of the problem within the frame-
work of such models includes the requirement of “multiple” repetition of the
observations. In that case the input information may be taken as

and the “regularization parameter” of the problem turns out tobe n~', where
n is the number of “measurements.”

In this manner, the correct (in the indicated sense) statistical formula-
tion of the problem turns out to be possible, provided sufficiently complete
statistical information about the observed quantity is available, as well as
additional a priori information about the sought-for quantity.



Chapter 3

Uniqueness question in
observational data
interpretation problems

The meaning of the uniqueness question in problems of mathematical physics
is well known.'®? One wants to know whether the mathematical model of the
physical process (phenomenon) contains a sufficient number of conditions to
isolate one real process (one phenomenon) from among many of the same type
and, therefore, to uniquely determine from the input data the sought-for
characteristic of the object or the phenomenon created by it. In other words,
the question is raised about the uniqueness of the correspondence between
the mathematical model and the real process. On the assumption that the
basic physical laws governing the process (expressed through differential
equations) are already well known, the problem in question becomes that of
“identification” (of the mathematical model and the real process).? Natural-
ly, the question of uniqueness is studied for an “exact” posing of the problem,
free of the influence of any errors. For inverse problems from the interpreta-
tion class, studied for “inexact” input data, a positive solution to the unique-
ness question is of principal significance: in that case one has the assurance
that upon application of stable (“regularizing”) algorithms it is possible to
obtain, within the framework of the chosen ‘“identified with the object”
model, a result arbitrarily close to the real characteristic, provided that the
error in the input data is sufficiently small.

Let us consider the interpretation problem, expressed through the opera-
tor equation

Az=u, zeZ, uclU,. (34)

It is obvious that the problem has a unique solution in Uy, if the inequality
2, #29(2,,2,6Z) implies u, #u,(u, = Az,,uy = Az,). Herein is containeq a suffi-
ciently general approach to the study of the uniqueness of solutions to inverse

problems. | |
A large literature is devoted to the study of the uniqueness of solutions 1n

various inverse problems of interpretation (for example, Refs. 25-30, 54, 102,
107, 112-114, 119, 130, 137, 144, 146, 166, and others). In this chapter we
consider but some examples, focusing attention on questions of formulational

or methodological interest.

39
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1. The uniqueness of inverse problems involving a
linear correspondence operator

The general theory of equations (including differential and integral equa-
tions) involving a linear operator A is well developed and the uniqueness of
the solution of Eq. (34) is often a direct consequence of general results.

Many inverse problems of the type under consideration are formulated
as Volterra integral equations of the convolution type. As an example may
serve instrumental problems (4). Under not too rigid restrictions on the ker-
nel, the question of uniqueness of the solution of such problems is easily ana-
lyzed with the help of the Laplace transform and its inverse.®* In the case of
inverse problems expressed in the form of singular Fredholm equations of the
first kind, a similar role is played by Fourier transforms, and in other cases by
the apparatus of Fourier expansions.

Let us consider, for example, the problem of determining the intensity
f (¢t) of a heat source concentrated at the point x,e( — «, «)from the tempera-
ture at the point x, #x,:

u(x,, t)=qp(?).

Such a problem may be viewed as the simplest mathematical model of an
experiment on the detection of internal defects in the “walls” of industrial
aggregates from observations of the temperature field of the wall.>® The prob-
lem

82u du
2

t ; )
a 5 + ] ( )<3(x xO) = ;

lu|-0asx— w0, ulx,0)=0[ f(0)=0], ulx,, t) = @(t) [Af=ulx,, t)] gives rise to
the Volterra equation of the first kind

(1) = f K(t — f (rdr,
¢]

where

Kit—r7)=

1 ( (x, — xO)Q) .
exp| ———; ;

2a\/7(t — 7) 4a*(t —7)
and, since the kernel has a removable discontinuity at the point 7 =t, the

question of uniqueness of determination of £ (¢) is solved in accordance with
Ref. 62.

As another example, we consider the problem of determination of the
initial temperature ¢(t) of the finite “segment” [0, [ ], given the temperature
ulx, T') = u(x) for T> O (for example, Ref. 88). This inverse problem (from 7'> 0
to t = 0) is determined by the conditions

D) 8211/ _ du
x>
U(O, t) — U(l, t) — 07 U(x, O) — ¢(x)) U(x, D — a(x)’

xc(0,0), te(0,T),

and in that case the operator is Agp = u(x, t), provided that u(x, ) is deter-
mined (uniquely, as is known from Ref. 162) by the preceding conditions. One
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of the possibilities for the solution of the question of uniqueness of ¢(x) is
based on the fact that u(x, ¢) can be expressed, for any given ¢(x), in terms of a
Fourier series over the closed (in the sense of Ref. 74) orthogonal system of
functions ¥, (x) = sin(7n/l)x:

w0 =Y g.e Y, ),

n=1

wherew,, = arn/l,and ¢, are the Fourier coefficients of the function ¢(x). Let
us assume that the problem has two solutions ¢,(x)=£¢,(x) for one and the
same i(x). Then we have for the difference pu(x)=¢,(x) — @y (x)

n=1

as a consequence of uniqueness of the expansion we have i, = 0 for arbitrary
n, and since the system { ¢, (x)} is closed it follows that u(¢#)=0, in contradic-
tion with the starting assumption. Thus the solution is unique.

Typical examples are provided by problems of extension of potential
fields in the direction of their sources.'”!%6:1%* In particular, one of the corre-
sponding formulations is equivalent to the Hadamard problem, well known
to be ill-posed. Suppose that one is given the potential field and its normal
derivative at one boundary ( y = 0) of a plane layer (|x| < + «,0<y < h):

Jv
_(9—)7 y=0 - ¢(x)

Since v is a harmonic function within the layer (containing no sources of the
field), then supposing it to be the real part of some analytic function,

v(x, y) = Re f(x),

one may assume the value of the latter to be given on the boundary. Indeed,
from the given

UI‘y: 0 — ¢(x)>

v = @'(x), v

v = (x)
8x y=20 ay y=20 ¢(

the imaginary part is determined accurate to within an additive constant C,
irrelevant for the determination of v. However, from the known (for some
fixed C) values £ (z) on the boundary, the function is uniquely determined'*®
also within the layer. From this follows the uniqueness of the solution to the
Problem of extension with respect to v.

Unfortunately, even for equations involving a linear operator “identi-
cal” to the inverse problem, the fundamental results are not always helpful in
Solving the uniqueness question. Thus, for the Fredholm equation of the first
kind with a regular symmetric kernel, there exists a criterion (necessary and
sufficient condition) for unique solvability (Picard’s theorem!'!), which, how-
ever, is practically useless in concrete applications since it requires, in addi-
tion to the knowledge of the asymptotics with respect to n of the coefficients of
f{he right-hand side of the equation, the asymptotics of the eigenvalues of the

ernel.

Consequently, the solution to the uniqueness question for inverse prob-
lems is connected with the study of its specifics.!6-27:197 This is even more so in
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the case of problems involving nonlinear correspondence operators, since the
general theory of such equations is developed insufficiently.

In the paragraphs that follow we shall consider problems involving non-
linear operators.

2. The uniqueness of solutions to inverse problems in
layered media

The medium in which the physical processes take place is often identified
with the one-dimensional plane-layered model.'* Such are models of the re-
gional structure of the Earth’s core, of optical filters, etc. The structure is
usually described by the totality of numerical parameters (n p): the number
of layers n, their thickness, and a set of values for some physical characteris-
tics of the material, constant in each layer (conductivity, density, etc.). In
other cases (for example, for large n and for small variation of the material
characteristic from layer to layer) the structure is described by a function
z = 2({) of a single spatial variable 0<{<h, where A may also be a parameter.

If a wave of some physical nature is propagating through the layered
medium, then the observed wave field depends on the structure and it is
possible to pose the inverse problem: determine the parameters of the struc-
ture from observations on the wave field. In the present paragraph we shall
be concerned with the uniqueness question for the solution of problems of this

type.

2.1. Tikhonov’s theorem on the uniqueness of the solution of the MTS
problem

The Magneto-Telluric Sounding (MTS) method in geophysics (the Tikhonov-
Cagniard method'*"'"3) consists of the study of the conductivity of the Earth’s
bowels from observations on the Earth’s surface of its natural electromagnet-
ic field.

For the one-dimensional plane model (Fig. 4) the “relative” amplitude

(a) (b)
0 — > & 0 —E
6, %
&
6(¢) z S, J d;
2
C Gs id's
! |
hi— id,,
‘ G, % Cn —
: Z 6!7*{

Figure 4
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[v(&)=w()/w(0)] of the magnetic field H in a plane harmonic wave
(H = We'*"), normally incident on the medium surface, satisfies the condi:

tions
v” +iwoc(Ov=0 0<{<h,
v(0)=1, v(ew)=0.

We may characterize the observed field by the “impedance” of the medium:
i=(E/H)|._, = V'(0). The impedance is a function of w, and for each w it is a
continuous functional of o ({) (Ref. 144); thus Eq. (35) defines implicitly a
continuous nonlinear operator Ac=v'(0)=u(w, o). The geoelectric section is
determined by the equation Ao = iil(w), w€|w,, w,], where &i(w) is the exact ana-
log of the “observable” quantity.

Let K now be the set of positive piecewise-analytic functions o ({), defined
on [0, A], for which A and 0, = o ({) for { > h are known quantities.

THEOREM 1.'** To two different “geoelectric sections” from the class K
[0,(§)=£0,({)] correspond different structure impedances [, (w)=£i(w)].

Obviously this theorem establishes sufficient conditions for the unique-
ness of the solution to the inverse problem, including the case when the geo-
electric section is described by a piecewise constant function, i.e., by a choice
of parameters p.

Following the methodology of Ref. 144, we outline the proof of this
theorem for the subset K,C K o ({) = 0, = const for { > h, where A is known
and o ({) 1s analytic for 0<{ < A and continuous at the point A. In that case the
condition in (35) as { — « is replaced by

o(h) = — (1 — i)( “’50)1/21)@).

(35)

Consider two sections: o,({)e K,, s = 1, 2, with 0,({) # 04(£). By making use
of the conditions (35) it is not hard to verify that the corresponding impe-
dances are related to o,(¢) by the formula

h
J [01(8) — 2O ]v1(Ev(8)dE = Kw),

where I(w)=(1/iw)[@1,(w) — @1,(w)] and v, () is the amplitude of the correspond-
ing magnetic fields.

. Now it is sufficient to verify that I(w)=£0, at least for sufficiently large o
(in the high-frequency asymptotic region). Since v, (¢) satisfies for w— « an
equation with a small parameter multiplying the highest derivative,u = 0™,
analysis analogous to that used in Refs. 21 and 45 gives rise to the asymptotic

exXpression

Us(§)wexp( — 1\/;; \/Ef \/as(y)dy> .

Whence follows, for @ — «, that

1—
J2

0 (O0s&) wexp( Sl @A(;)) ,
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where

-
s

A@zf [Vor(3) + ool 3 ]y,

and A(¢) is analytic and B({)=A'(£) #0.
On the other hand, in view of the analyticity of o, (), for o,({)=£05({) there
exist integersn, k>0andc, andc,, , ., (¢c,, ¢, . .1 #0) such that

01(6) —05(8) =, 0"+ Cp k1 &7 T 4 G(0)],

where ¢({) is analytic.
With the help of integration by parts we now obtain for I(w)

I((z)) — n!CnB*(n+l)(O)a)*(;1+l)/2 + O(a)g(n+2)/2)’

and, consequently, l(w)=£0, at least for sufficiently large «». From here the
validity of the assertion follows.

In geophysical practice the impedance model (apparent resistance) is
conventionally used as input information for structure prognosis:

plw)=|t(w)|.
For media with piecewise constant parameters, characterized by the
“vector’p={oy,...,0,,d,,...,d,} (d, is the layer thickness, o, is the layer

conductivity), the additive-asymptotic (w — « ) representation®® of the appar-
ent resistance turns out to be valid; it was obtained by N. I. Kulik and has the
form'~®

p(n)(a)) Ip(k)(a))—2\/5 Z CSRSQ*\QMUS[COS(\/QEUJS) +e—\2m/lx¢8(a))]’
s=k+1
where p'"(w) is the apparent resistance of the structure of k layers, lying in the
half-space with conductivity o, , (for arbitrary k, O<k<n —1); w,
= 3% _, d,(0,)"* and, therefore, w, , , > w,;

1 — B o
b %s—_ ’

:l—l-%S o

R

S

furthermore, without loss of generality we may assume that R, #0 (in the
opposite case one relabels d,);

s—1 —1
Cs — 43- 1(0_8)1/2( H (1 4+ %3)2)
=1
is independent of d, and o, ,; ¢, is a bounded function as w— w; A,
—=min,_, .|d,(0,)"?}. In turn, p"%w) = (wo,)'">.

This representation makes possible for “properly layered” structures ap-
plication of the method of analysis, developed in the proof of the preceding
theorem (see also Sec. 4). The following theorem is valid.

THEOREM 1*. To two structures, differing for known o, (or o, , ;) in even
one of the parameters n, oy,,...,0,,, (or o,..., 0,), dy, ds, ... ,d,, corre-
spond different apparent resistance “curves” p'"(w).

In this manner, the apparent resistance minimally augmented by some
information about the structure uniquely determines the geoelectric section.
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A similar representation is also valid for the phase of the impedance. It
follows from this analysis that (a) the phase of the impedance may also be
used to obtain a unique prognosis of the structure, but (b) it provides no addi-
tional information about the structure in comparison with p(w).

2.2 Equivalence of structures and effective parameters

The indicated results testify to the fact that in MTS problems given the im-
pedance, it is possible to obtain sufliciently detailed information about the
structure. We note, however, that a certain quantitative restriction was im-
posed here on the sought-for characteristic; the value of o at a certain point
was assumed known.

We consider next a certain class of inverse problems for which the “ob-
served” quantity is the impedance, or the reflection coefficient. As will be
seen below, the formulation of the latter is identical to the former.

Let the plane structure consist of n layers (horizontal, for the sake of
definiteness) (0 < { < h), confined between two media. To the upper medium
corresponds the wave number %, and to the lower (filling half-space), &, , ,;
the wave numbers of the layers will be denoted by £, (s=1, 2, ... ,n). The
amplitude of the harmonic wave of arbitrary physical nature satisfies, for
normal incidence on the (without loss of generality) upper boundary of the
structure, the conditions®

v’ + kv, =0, £, |, <E<C,, s=12,...n;
[v]l;-;, =0, [pV'];—; =0, s=12,..n,

and the radiation conditions for { — « are transferred to the point h = ¢, :

(U;1+1 o ikn+1 Un+1)§:h = 0.
Let r, denote the amplitude reflection coefficient at the lower boundary
of each layer, and I, = (v./ik,v,)|{ = {, be the impedance at the same point.

Then the following relations (for arbitrary s, where 0<s<n) can be readily
obtained from the above-indicated conditions:

1—r,
B 1+ r,
B R, +ry, , exp(—2tk,, ,d ;)
1+ R.r,., exp(— 2k, ,d,,,)

where R, =(1—6,)/(1+6,) is the Fresnel reflection coefficient and
0, =(ps ., /p )Nk, /k,)is the wave contact resistance,'” and d, is the layer
thickness.

It is seen from Eq. (37) that the reflection coefficient r,, and therefore the
structure impedance I, are determined by certain combinations of physical
parameters, entering into the formulas for k_d_ and 6.; if upon varying the
physical parameters the indicated combinations remain unchanged, then the

I

S

b

(37)

Vr

S

roo1 =00, = 1),

"Here [v]. . denotesthe “jump”invat the corresponding point: v, , (£, + 0) — v, (£, — 0), p = p. has
its value in each layer (it is some parameter, determined by the physical nature of the problem).
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field characteristic ry(w) [{,(@)] under consideration remains unchanged as
well. To these characteristics corresponds a class of equivalent structures.

The indicated combinations of physical parameters will be called the
effective parameters of the layered structure.?®>* We include among effective
parameters also the number of layers of the structure. It is clear that the
question of uniqueness in problems ry (w)—(n, p) can be discussed, generally
speaking, only with respect to the effective parameters.

Naturally, given certain additional information about a part of the phys-
ical parameters of the structure, one may expect unique determination of the
remaining ones from the effective ones. We shall be interested in the minimal
additional information of this kind.

Let us consider examples of concrete physical fields.
(a) In the MTS problem,

kZ=iwo, $s=012,..n+1;, p, =0, l<s<n+1;

correspondingly 6, = (o,/0, ,,)"* and k.d, = (in)"*(0,)""?d,. Consequently
the effective parameters consist of 8, and v, = (0,)"*d,.

Obviously, the minimal information needed within the framework of
this model, for the totality of the effective parameters to determine uniquely
all the physical parameters, consists of the specification of the value of one of
the o, for example (as is natural) o,

(b) Let us consider a (e.g., optical) system of dielectric layers. In that case
k? = 0®n?, where n, = (e, u,)"* is the index of refraction® of the layer
s=0,1,...,n+ 1) p. = (lwe,) . Correspondingly 0, = (e, u,

+1/e,,, u)"* k. d, = (€, u,)"?d,w, and the effective parameters consist of
0, and v, = n_ d, (optical thickness).

Since 1, and €, are known, then from the totality {6,, v} the quantities
0, =(u,/e)*fors=1,2,...,n—1landv, fors=1,2,...,n are uniquely
determined.

However, in a number of cases it may be assumed that ¢, is known for
every layer: u,=u, (or €,). Then the totality of effective parameters uniquely
determines the physical ones: ¢, (and n )fors=1,2,..,n +1andd, fors =1,
2,...,n.

(c) An analogous state of affairs may be noted in the case of absorption-

free propagation of elastic compression or shear waves. In that case, for shear
waves for example, it is not hard to see that the effective parameters consist of
O, =ps 1 b, . /n,b, and v, =d_/b,, where u_ is the shear modulus and b,
= (u,/p,)""? with p, the layer density. Thus, for problems involving elastic
(“seismic”’) oscillations it is not possible to determine uniquely from a given
impedance such physical parameters as {d,, b, (‘“velocity section of the me-
dium”), for example. If, however, the material of the layers is known, then
their thickness is determined uniquely.

In Ref. 174 it is shown that the pair of functions u({) and p = p({), and
therefore the complete characteristic of the structure, are uniquely deter-
mined by, for example, independent measurements of displacements and
stresses on the surface of the elastic medium as a function of the surface point.

"u. and €, are the magnetic and electric permeability.
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Moreover, it is sufficient to obtain values of the harmonic components of
these quantities for two values of the frequency.

2.3. Additive representations of the reflection coefficient for a layered
structure

Special additive representations® of r, are useful in the analysis of unique-
ness in the problem of determination of effective parameters for a layered
medium.

Setting n = k (1<k < n)informula (37) results in a structure with k layers
on a half-space with parameters of the (k + 1) th. Let us denote the corre-
sponding reflection coefficient by r’ (r,=r{"). The following identities are
obvious:

=t 4 z A D s =1
for arbitrary s, provided A _rﬁ)’") — rg’” -1,
We introduce the notatlon — rO =D,(r,).Ifn=sthenr, , =0and
r., =R, ,;thatis, A =ry —r5- (RS .1). At the same time, be defini-
tion D, ,(r,, )= ) — sV = (r ) — A,. Whence by induction we arrive

at the expressmns

n
() _ (0) (s —1)
ry’ =ry +ZA_r5' + > A,
m —

m=1 S
ro’ =R, (38)
. Rm+1 e
A =W expl| 2 Z kid;],
Am 1 J=1
where®
n ] _ R |
W, =1] > 4, =1+p,R, exp(2ik,d,),
i=1 {;
1

Ps = 7 [R, 1 +ps_, exp2tk, ;d; )],
s—1
s=12,...,n, po=0, q,=1.

The formulas (38) provide an “additive” representation of the quantity
ro¥ in the sense that the reflection coefficient of the structure is given additi-
vely in terms of the corresponding quantity of any of the “partial” structures
(s=1,2,...,n—1). Also, ry’is, apparently, independent of the parameters of
the lower-lying layers of the structure [the (s 4+ 1)th taken to be as the half-
space]. Moreover, each term in this representation (m>1) contains an expo-
nent whose modulus increases with increasing m. The indicated peculiarities
of Eq. (38) make the additive representation of rj¥ useful in the uniqueness
analysis of the problems under consideration.

“It is not hard to note that p, corresponds to the amplitude coefficient of the “moving in the opposite
direction’’ (fictitious) wave.
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2.4. Solution uniqueness for impedance interpretation

Let us introduce for MTS problems a class K of structures of the above-dis-
cussed type, for which the quantity o, is known. We shall refer to these struc-
tures as “different” provided they are distinguished by at least one value of
the physical parameters (n, oy, ...,0,,d,,...,d,).

THEOREM 2. To two different structures from the class K correspond two
different functions ry(w) (correspondingly impedances).

Let the structure K, (¢t =1, 2) correspond to r,,t(w). We verify, just as in
the proof of Theorem 1 (Sec. 2.1), that r, , (w)=£r, (@) at least for sufficiently
large o (w— o).

We note that, since k;, = — (1 — i)(wo;/2)"? the quantity A, is of higher
asymptotic order than A,, _,, and consequently for sufficiently large w subse-
quent terms cannot “compensate’ for preceding ones. On the other hand, for
a structure containing more than m layers, the argument of the exponential
in A, is different from zero. Finally, in the asymptotic representation for A ,,

A‘m NAmRm +1 exp[ - (1 - l)\/—%(a’m + \/adm)]

the quantities A, and a,, depend only on the preceding layers of the structure
(1<s<m — 1)1

We now suppose that the structures K, are distinguished by the values of
R, = ry"; then obviously r, , (w)£r, . (@), since the “corrections” are exponen-
tially small as w — «. Let us isolate a subset of structures for which R, has the
same value; if one of them is the half-space (n = 0), and for the other n>1, then

o1 (w) — oo (w) = A(12)(0)) + 27{—:0,

1.e., the reflection coefficients are different as w — «. Let us consider the sub-
set of structures for which values of R, coincide and at the same time n>>1; in
that case A, and a, (a, = 0) also have the same values in the asymptotic repre-
sentation of A,, and therefore r, , (w)=£r, () provided only either R}’ # RS’ or
(I 2d'Y #£(0'?)2d?. Clearly induction is possible, as a result of which we
verify that a difference in the values of any of the effective parameters results
in different reflection coeflicients r,(w) (consequently, in different impe-
dances). But in the class K the set of effective parameters determines the
indicated physical ones in a one-to-one fashion. This proves the theorem.

Theorem 1* of Sec. 2.1, involving the use of apparent resistance in struc-
ture prognosis, is proven analogously.

We consider now an optical or elastic system. In that case it is not hard to
see that in the expression (38):

A, =A,R,  ; exp|2ia, +n,d,0][1+a,@)],

where n,, is the index of refraction, A,, and a,, are constants independent of

YFor w— oo the representation (38) becomes “‘additive-asymptotic.’'28
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R,..,n,,andd,,, and ,,(w)is an “almost-periodic” function®° with lowest
Fourier exponent different from zero. Correspondingly A, is an almost-peri-
odic function with lowest exponent v,=2(a,, + n,,d,,) and lowest generalized
Fourier coefficient f,=A,,R,, ;. As is known,* to such a function corre-
sponds uniquely a set (v,, f,) and, therefore, values of v, and f,,. This means
that for two structures K, and K,, with coincident parameters of the first
m — 1 layers and, correspondingly,

ron Vo)=rgy Yw), d))=al, Al)=AY,
a difference in the values of R,, ., or n,d,,, or in the number of layers
(n>m + 1) results in r{}(0)=£rys (). By means of induction, as in the previous
case, we conclude that the following theorem is valid.
THEOREM 3. For the interpretation problem in the case of the reflection
coefficient (impedance) of an optical or elastic layered medium, the input

information uniquely determines the totality of the effective parameters of
the structure.

2.5. The uniqueness of the solution of problems of interpretation of data on
dispersion of surface seismic waves

An elastic impulse in a layered medium such as, in particular, the Earth’s
core, creates a wave field which contains waves propagating along the Earth’s
surface (“surface” waves, whose amplitude is damped with depth). The de-
pendence of the phase (or group) velocity of such waves on the spectral fre-
quency may serve as input information for the problem of determination of
the core “elastic-density” section: u = u($), p = p(¢) for displacement waves
(“Lyav’s waves”).!#

Let c(w) be the phase velocity of the corresponding w-“harmonic” of
Lyav’s wave, propagating along the boundary { = 0 in a horizontally uniform
plane-layered medium, and let v = v({) be the wave amplitude. Then (for each
w) c(w) can be found as the solution of the eigenvalue problem*’

v;’+a)2(bs—2—c—2)vs :O’ gs—l <§<§s;
[v]._. =0, [wv]._. =0, s=12,...,nm (39)

;=0 =

W, +o\e > —b, 5 v,)—. =0, UV

It can be shown that for ¢ < b, , ; there exists a discrete spectrum of eigenval-
ues {c,, }.289% In practice it is customary to make use of one of them, ¢, = cy(w),
and in what follows we shall mean by ¢ precisely this quantity.

It is fairly obvious that in terms of this information the effective param-
eters (n, p) of the structure are the quantities n, b, (s=1, 2,...,n+ 1), v,
=u,/u, ., ,and d; (the layer thickness) fors=1,2,...,n.®

“The function £ will be called “almost-periodic” if it is expressible in the form of a generalized
trigonometric series

flw) = i f_Aexp(/T/A,w),

A == -
where v, and #, are numbers. The ratio of two generalized trigonometric polynomials is an almost-

periodic function.8®
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To study the inverse problem c¢(w)— (n, p), one may use, for example, re-
cursion relations analogous to Eq. (37), and then the condition v'|._, =0
results in the equation I(w, ¢) = 0 with a recursively determined left-hand
side. In the same manner as above, one obtains for the latter an additive
representation.”® Assuming that b, = min, b, and b, <c < b, ,, (asisthe case
in real problems), one finds that ¢(w) — b, as w — « and, consequently, c¢(w) < b,
(s=2,3,...,n+ 1) forsufficiently large w. Therefore in the indicated region
the additive representation for I, (w, ¢) displays the influence of lower-lying
layers, similarly to the MTS problem (skin effect), and one may apply asymp-
totic analysis (w— «), as in the proof of Theorem 2. To this end an additive-
asymptotic formula for c(w) is “extracted” from the equation /,(w,c) =0 (in
the additive representation). Its main (nonexponential) term—the eigenval-
ue for one layer on a half-space with parameters of another—has the form

2 3 2 4 3
01-2(0))___61-2_ T 1 {1__2,01 + £1 P1

4 o*d? o w° ©°
~? (1 2 1
X |1 — + — @plw),
[ T 16 ( 3)” o P

where ¢(w) = (1) is a function determined by the parameters of the first
element of the structure (b,,d,, v, by), and p, = (v,/d,)(b, * — by ?). It is clear
that ¢; *(w), and therefore c(w), uniquely determines the indicated param-
eters. Performing for the additive-asymptotic representation of c¢(w) the pre-
vious induction, we arrive at the conclusion that the following theorem is
valid.

THEOREM 4. In the class of structures for which b, = min, b,, the disper-
sion of the fundamental tone of the Lyav wave uniquely determines all effec-
tive parameters of the structure.

It can also be shown that “overtones” of the Lyav wave {c, (), k£ >0} have
completely analogous representations and carry no additional information
about the structure.

The same assertions are valid for Rayleigh waves—elliptically polarized
compression-shear waves.**

In Refs. 26 and 30 the more general case of not necessarily discrete struc-
tures is discussed.

We note that in the problem under discussion the sought-for quantity
consists of the totality of the coefficients of a certain type of equation, with a
certain element of the eigenvalue “spectrum” given. The fundamental result
for this type of problem (inverse spectral) was obtained in Ref. 25, where one-
to-one correspondence was established in Schrodinger-type problems be-
tween the equation coefficient [compared with 4 %¢)] and the full spectrum
characteristic (the spectral function). In the above-mentioned papers the for-
mulation of the problem “approximates’” the experimental situation.
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3. The uniqueness of the solution in certain inverse
problems of heat conductivity

3.1. Different aspects of the study of uniqueness of the solution (on the
example of heat conductivity problems)

In discussing inverse problems for layered media we called attention to the
fact that to an exactly given, correlated with experiment, field characteristic
may correspond a multitude of equivalent structures, determined by the to-
tality p of effective parameters.

An even broader statement can be made: in problem (39), for example, to
the set of such structures for a given harmonic and specified normalization of
the eigenfunction corresponds one and the same wave field and, therefore,
the same pair [c(w), v(x, {)]. The analogous situation is possible for any math-
ematical model formulated as a (mixed) boundary-value problem for a differ-
ential equation. It is obvious, for example, that the temperature field, deter-
mined by the boundary-value problem for the equation & 9°u/9x* = cp du/dt
for constant k, ¢, and p, remains unchanged under a change in the parameters
that preserves the ratio a® = k/cp.

This means that it is not possible to determine uniquely all the param-
eters, which may be of interest in the inverse problem, even if complete infor-
mation on the solution of the differential equation (the complete field) is
available, and therefore there exists no field characteristic that could provide
additional information for the determination of the sought-for parameters.

In this vein one of the directions of research on inverse problems, con-
nected with differential equations of mathematical physics, consists at the
present time of the extraction of a subset of object characteristics (in particu-
lar, the totality of coefficients), on which the solution of the boundary-value
problem is invariant, and also the study of such solutions.

If by “identifiability” of the model of the inverse problem with the object
under study we mean, as before, the existence of a one-to-one correspondence
between characteristics of object and effect, then problems for which such
correspondence is violated, even for a full characterization of the effect, may
be called “nonidentifiable in full.”''":!!®

Consider as an example''® the boundary-value problem

2
du = Qg I u +1, ul,_g=x(x—1), ul,_o=ul,_, =t

4 T

It is well known'%? that its solution is unique for given values of @, and a,. Set
u*(t)=t + x(x — 1); u*(¢t) satisfies additional conditions. Upon substitution of
u* into the equation we find a, = 2a, + 1. Suppose now that the coeflicients a,
and a, are the sought-for quantities. Then if the field has the form u*(x, ?),
there corresponds to it a multitude of coeflicient pairs and there exists no
additional information about the field that could be used to extract a unique
pair.

The indicated direction is reflected, in part, in Refs. 119, 166, and 170.
The analogous problem has been studied long since in problems of gravi-
metry131'179 (see Sec. 4).
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D —————————————————

The main direction of research on the uniqueness question for solutions
of inverse problems, connected with differential equations, consists in clarifi-
cation of what constitutes minimal additional information about the solution
of the equation and, possibly (as we have seen in the examples), the sought-for
characteristic, under which the solution of the inverse problem becomes
unique.

While searching for such a posing of the problem, qualitative consider-
ations are useful. For example, if the sought-for quantity is the coefficient of
heat conductivity as a function of temperature [k = k(u)], then in addition to
the conditions of the boundary-value problem on u(x, t), xe E', it makes sense
to specify the independent characteristic of the field as a function of one
variable. If instead k£ = k(u, x), then additionally one should specify a function
of two variables. However, the subsequent proof of the uniqueness of the
solution is necessary, since the preliminary considerations may turn out to be
erroneous.

As an example, consider the problem of determination of the location of a
“plane” heat source of given intensity from observations on the temperature
field. In the simplest model the temperature field is determined from the
conditions

aZAu+f<t>5(x,xo>=%, 0<x? +22< + 0, ul,_o=0(f(0)=0),

where x = (x,, x,)e E %

It would follow from purely qualitative considerations that for the deter-
mination of the pair (x,,x,) it is sufficient to state additionally the tempera-
ture at two points (at some fixed instant of time). In Refs. 35 and 80 it is shown,
in particular, that this is not so; the minimal information turns out to be the
temperature at three not colinear points: u(x,, t;) = u, (t,>0,s =1, 2, 3). The
fact that, in general, two observation points are insufficient becomes clear
upon a more careful consideration of the problem: the integral connection
between u(x,, t,) and x,determines the distance A, =|x, — x,|. If s = 1,2 then
(in view of the a priori solvability of the problem) the pair A, determines the
intersection of two circles, i.e., two values for x,,.

3.2. The uniqueness in the determination of the coefficient of heat
conductivity in high-temperature processes

Asis well known, information on the behavior of the physical characteristics
of many technical materials in high-temperature, rapidly proceeding pro-
cesses is far from complete.??'®” Their experimental study is often difficult if
not possible.

For this reason the “inverse problems method,”? replacing the physical
experiment by a mathematical one, has become more and more popularin the
heat technology field. It is based on the fact that the sought-for characteristics
are (as also in the above-discussed problems) coeflicients in differential equa-
tions, describing a certain technological process.

In many cases it is sufficient to consider the simplest model of such a
process.
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Let us consider the spatially uniform model of heat conductivity:

3 ou ou
——ku—):c— Ocx<l Oct<T
8x(()c9x Pogy ST shUsis

ou
ul,_o =u,=const, k—

=0, & gu = P(¢)> 0, (40)
ox

x=20 ax x=1

where k(u) is also an unknown function. To determine it we specify further
u|,_, =f®,f0)=u, f'(t)>0.Correspondingly, if v(x, ¢, k(1)) is the solution
of the problem (40) for some & = k(u), then the latter is a solution of the opera-
tor equation Ak=u(l, t, k) = f(t), with A defined implicitly. Such a problem
corresponds to, for example, the modeling of casehardening**'°? with other
parameters of the material known.

Let us note certain peculiarities of the problem and facts, helpful in the
study of uniqueness of the solution: (i) at an arbitrary instant ¢t(0, 7') in a
certain finite interval in x, we have u’ > 0; (i1) the solution to problem (40)
satisfies the maximum principle: v <u<f (?); and (iii) if p(x ¢) is determined as
the solution of the problem with “inverse time” [¢, + pp,, =0, O<t<T,
O<x<!, ¢,0,8)=0, .1, 0)=y® (>0, ¥y >0), ulx,7)=0, where
p = p(x, t)> 0 and satisfies the Lipschitz condition'*?], then ¢, > 0 almost ev-
erywhere. The first two facts are understandable from the physics of the
process, and all three can be proven rigorously'%? on the basis of the results in
Refs. 73 and 87.

Let us introduce the class K of functions £ = k(u), analytic in the neigh-
borhood of the segment [u,, f (¢)] or piece wise-polynomial on the segment.

THEOREM 5. If f(¢) is continuous and strictly monotonic on [0, 7' ] and
f(0) = u,, then to it corresponds a unique k(u)e K.

We sketch the proof of this assertion.'®” The problem (40) is reduced by
the substitution

bw) = f rOdE

to the form
Uy, = bxx’ u'tzo = Uy, bx‘x:O :O’ bx‘x:l :(D(t)’

and b, = ku_. Multiplying the equation u, = b,, by an arbitrary function
¢(x, )eC >! and integrating over the region @, = {0 <x <[, 0 <t < 7} for arbi-
trary 7, we arrive at the integral identity for (u, b):

T

l
f Lz, I, 7) — ugplx, 0)]dx — f (DO, D
0

0

— b(f W), A, t) + bw(0,))e, (0, )] dt

— ff [up, + bwe,, |dx di=0. (41)
Q-

Suppose now that there exist two solutions to the problem and corre-
spondingly two pairs of functions (i, b). Since each of them satisfies the identi-
ty (41), by performing a subtraction and choosing ¢(x, t) such that ¢(x, 7) = 0,
@.(0, t) = 0 (v is a parameter), we arrive at the equation
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JJ [(uy — uxdp, + [b,(u,) — by (uy)]e,, |dx dt
Q.

_ f [5,(F () — byl fF ) ], (L, D)t
0

Let us i1solate under the first integral sign the difference

bi(u)) — bo(ug)=[0,(u)) — by (uy)] + r (uy)

and carry out the integration involving r (u,) by parts. We then obtain, as can
be easily shown,

ff [(ul — u)¢1 + [bl(ul) — bg(uz)]§0xx ]dx dt
Q,

= ff [R1(uy) — ko(us)]ul, @, dx dt.
Q

Finally, let us choose ¢(x,t) such that ¢t+ p(x, t)p,, =0, where
p=[b,(u;) — b,(uy)]/(uy; — us) for u;#u, and p = k,(u,) for u, = u, (these p’s
satisfy, as can be verified, the Lipschitz condition); and let us require ¢ ([, t)

= y(?) (y'(¢) > 0) to be positive. Then, summarizing the restrictions on ¢(x, ?),
we conclude in view of condition (iii) that ¢, >0 almost everywhere. As a
result we have, for arbitrary 7> 0,

I E” [k, () — Eeoly) |1, 0. die dit = 0,
Q-

and furthermore u), >0 (2), ¢, >0 almost everywhere, and, by assumption,
kl(u2)§ék2(u2),

Suppose now (without loss of generality) that k,(u,)> ky(u,). Since
k.(u)e K, there exist u; and € such that k,(1) — k(1) > € for u,<u<u,. Let us
choose 7 from the condition £ (¢) = u,. This is possible in view of the conditions
of the theorem. Then u(/, t) = u,, and in view of the maximum principle (i1),
u,<u(x, t)<u, for 0<t<7. But on the indicated set of variation of u, we have
k,(u) — ky(u)> €. Consequently, I_> 0, which contradicts the resultant identi-
ty.

Let now k,(u,) = ko(u,). Then there exist u, and € such that &,(u) = ky(u)
for u,<u<u, and (without loss of generality) k,(u) > k() for u, <u<u, + €.
Choosing 7 from the equation f(¢) = u, + €, we verify that there exists a finite
interval AC[0, rJonwhich u, < u < u, 4+ €,and, consequently, 2,(u) — k(1) > €.
Thus in this case, too, I_#0 for some 7.

Therefore our assumption that %,(u)s=k,(u) is false and the theorem is
proven.

In Ref. 102 a more general result is obtained: for the equation c(u)u,
= (k(wWu,), with the previous initial and boundary conditions and with the
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additional conditions u(0, t) = f1(8), u(l, t) = f5(¢), t€[0, T' ], f.()eC'[0, T) and are
monotonic, and f,(0) = u,, there results a unique determination of a pair of
functions [c(u), k(u)]e K.

Similar results make it apparently possible to plan a physical experi-
ment (control of the heat flow and measurement of the temperature) suffi-
cient, in conjunction with calculations on an electronic computer with the
help of regularizing algorithms, to determine both characteristics of the ma-
terial.

4. Uniqueness in a certain inverse problem in
gravimetry

The gravimetric method in geophysics consists of the study of the structure of
local sources of the gravitational field, located in the Earth’s bowels, from
field observations carried out on the Earth’s surface. In the mining papers
(Refs. 132 and 137), the objects under study were isolated bodies and the
sought-for characteristics were their form and density. We shall consider as
the characteristic of the observed field its potential. The connection between
the indicated quantities is easily established explicitly in accordance with the
universal gravitation law.

It is well known'?! that the form of the “gravitating” body and the den-
sity distribution within it cannot be uniquely determined from the “external”
(with respect to the source distribution region) potential. Indeed, suppose that
the field is due to a density distribution p(M’') within the volume of the body 7.
Then the external potential is given by

VM) = J p(M)R iy dryy.
T

Let us add to p(M') the function o (M') = — (1/4m)AW, where W(M') is an
arbitrary twice differentiable function, satisfying the conditions
W|s = (0W/dn)|s = 0, with = the surface of the body 7. It is easily shown, by
making use of the second Green formula for W and R~' (for observations

outside 7°),'6% that
f U(M’) dTM' = O
T

Consequently, for a given form of the surface X, there corresponds to the
potential V(M ), generally speaking, an infinite set of density distributions
p' (M) = p(M') 4+ o(M’). In contemporary terminology the gravimetry problem
under consideration is nonidentifiable in full.”

Let us note'3! that the above-introduced density o (M ) exhausts for arbi-
trary W the set of densities for which the external potential of the body T
vanishes.! It turns out that o (M ) possesses a remarkable property.

'For arbitrary planar case,
o*M) = — AW/27T, Me D, W|( = aW/an|( =0,

where Cis the boundary of D, and Wis arbitrary satisfying the indicated conditions.
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Figure 5

LEMMA. o (M ) is orthogonal within 7'to an arbitrary harmonic function:
fr7 Uodr =0, provided AU=0 within 7T (in the two-dimensional case,
§p Uo*dS =0, AU = 0 within D).

The validity of the assertion follows from the second Green formula for U
and W.131,162

Properties of harmonic functions will also be helpful down the line in
further studies of the uniqueness question.

We consider next the question of the uniqueness of determination of the
shape of the body given its density distribution from an external potential.
We confine ourselves to the case of constant density.

Let us isolate the class K of convex bodies 7' having in common a certain
inner point, whose mass density p = const 1s known.

THEOREM (S. P. Novikov-L. N. Sretenskii)."?! To two different bodies
from the class K correspond different external potentials:

T £T,= V(M) VM), Me ENT,UT,.

We sketch the proof of this assertion for two-dimensional bodies (regions)
D, and Dy(Fig. 5).

Let O be the common point of D, and D,, which consequently intersect,
and p, = const be the density of each. Let us suppose that D,s£D,, but for
arbitrary Me D,UD, we have V(M )= V,(M ), where V_(M ) are the corre-
sponding external potentials.

Consider the region D=(D,UD,)\(D,ND,). By assumption

V(M) = —_@-f In Ry, doy = —_@-f In Ry, doy = V(M)
27 Jbp, 27 Jp,

Consequently §, u(M)In R,;,, do,, =0, where u(M')= — 1 if M'e D\ D,
and w(M') = 1if M'e D,\ D, (Fig. 5). But then u(M')=0 (M), as defined above,
for some W(M') and consequently (by the lemma) I = §;, Uu do = 0 for arbi-
trary harmonic in D function U.

Let us verify that there exists a function, harmonic in D, for which the
last equality is false.® Let us introduce polar coordinates, with the point O as
origin, and let r = R (¢) (s = 1, 2) be the polar equation of the boundary near-
est to and farthest from the point O, respectively. Then

27 R, (¢)
I = f ude f u(r, o)rdr.
0

R, (¢)

*The proof of the theorem would follow from the fact that the resultant w(M’) cannot equal o{M') for any
w.
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Let us introduce the function

Vir, ) = Jr Ulr, p)rdr.
0

It is not hard to show that if U(r, ¢) is a harmonic function then so is V(r, ¢)
and vice versa, so that the problem reduces to the construction of a harmonic
in D function V. For it,

2
I:f w@[RAD VR, @) — RE@VIR,, ¢)]dy.
0

Let usisolate a finite interval A<(0, 27), corresponding for the sake of definite-
ness to the region wherein u = 1. We construct a sequence of functions &, (¢),

defined on the boundary C as follows:

4 el
® () =4 Ri(p)mes A $=a,
=
0 PEA; 42)
R:®, | d f R: d
b ()= f @ ¢ e,
ped;

where g > 0. It is not hard to show that then
f (R2D, — R2d, dg — 0,
A

and the integral has zero value upon completion of A to [0, 277]. Consider next

a sequence of solutions to the Dirichlet problem AV (M )= 0, Me D,V |
= ¢, (¢), where Cis the boundary of D, and construct V(r, ) =27 % V., (r, ).

This series converges uniformly in an arbitrary closed subregion of D. Indeed,

V. (r, @) <mel<I>n(§0)! <7 mle!CDn_ 1 (@),

where

= f Ri(p)dg J R3(p)de < 1,

since |Py|<q/[min, R3(#) ¢y — ¢1)] <C, = const, it follows that |V,(r, ¢)|
<C,n". Whence we conclude by the first theorem of Harnack'?' that V(r, ¢) is
harmonicin D. Moreover, V, (R,, ) = V, (R,, ¢) = ¢, in view of the boundary
conditions. Consequently

RV, (Ry, ¢) — RIVIR,, ¢) = R3 D, + Z 5®, —Ri®, ],

n=1

and therefore, in view of the remarks made above,

I = f Rid(p)de = g> 0.
A

Thus there exists a function U, harmonic in D, not orthogonal to the body
density, and giving rise to a vanishing external potential. That means the
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external potential for the region D,UD, is not identically zero, i.e.,
V(M )=£ V(M ). The assertion is proven.

More general theorems are proven in Refs. 107 and 113. The question of
uniqueness in gravimetry is alsostudied in Refs. 112, 124, and 137 and others.

It is obvious that the theorem establishes one-to-one correspondence be-
tween the external potential field and the shape of the body. It is presumed
that sufficiently complete input information for the corresponding inverse
problem is known. It is known, however, that the potential as a harmonic
function is uniquely determined by specifying its value and the value of its
normal derivative'”®* on some interval of the region boundary, for example
(for the model under consideration) for { = 0. Such data may serve as minimal
input information for the problem of determination of the body shape. It is
usual in such problems to make indirect use of more complete data—an ex-
plicit expression for the potential everywhere in a source-free region. It is
sufficient!%” 162 to specify its value on the boundary (£ = 0).



Chapter 4

The stability problem and
regularizing operators

1. Regularizing operator

1.1. The concept of a regularizing operator

The fundamental concept of a regularizing operator (algorithm) for the solu-
tion of ill-posed problems was introduced in Ref. 141 and may be applied to the
entire class of problems of interpretation of physical observations. Suppose
that to such a problem corresponds, with measurement inaccuracies taken
into account, the equation

Az = iy, 2eZ, uselU, p(it,ug)<6, (43)

where @ is the hypothetical exact value of the right-hand side (icU,), for
which the existence of a unique exact solution (AZ = @) has already been es-
tablished. Then the question of stability of the approximation in the neigh-
borhood of the exact solution of the problem comes to the forefront, i.e., the
question whether the principle of regularization expounded in Chap. 2 (Sec.
3.2) is satisfied. It follows from Chap. 1 that z = A~ '&z5, where A~ does not
satisfy the regularization principle; here A ' (whose existence is assumed) is
some operator of the classical (exact) inversion of Eq. (43) with approximate
data. We have seen, however, that the reduction of Eq. (43) to being well-posed
or generalized well-posed results in the possibility of obtaining an operator
whose values on i are stable in the neighborhood 2. It is any classical opera-
tor of the inversion problem in the new posing.

DEFINITION 1. The operator z; = R (iz5, A) is called regularizing (in the
sense of Tikhonov) for the problem (43) in the metric space Z (with respect to
the element @) if (1) it is defined for some &, for arbitrary 6 (0 < < 8,), and for
arbitrary &5 for which p (@15, 2)<8, and (ii) z5 satisfies in the metric Z the
principle of regularization: p,(z;,, 2)—0 as § 0.

We have seen above that regularizing operators exist. However, the just-
introduced concept is not connected with the manner in which the operator is
constructed, and we shall see in the following that for each concrete problem
more than one operator of this type may exist.

The choice of the regularizing operator (RO) is determined mainly by
considerations of “economy” in the solution of inverse problems of math-
ematical physics. (Here the concept of economy is analogous to that of Ref.
125 and has to do with the use of computer time.)

59
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1.2. Types of regularizing operators

As already noted (Chap. 1), there are two possibilities for overcoming the
instability of problem (43): either the corresponding correct posing, or a “reg-
ularized” correction of the classical algorithm for its solution. The fundamen-
tal RO concept embraces both these possibilities.

Let us agree, first of all, to give the name ‘“‘general regularizing opera-
tors” to those whose construction involves the element of well-posing (gener-
alized well-posing) of the problem corresponding to Eq. (43). As is clear from
the preceding, such posings include broad classes of inverse problems. An
arbitrary algorithm for the solution of such a problem is regularizing (by
definition, given in Chap. 2).

Regularizing operators obtained by correcting the classical ones, without
preliminary analysis of the posing of the problem, will be given the name
“adaptive” (ARO).? As a rule, ARO are connected with the specifics of the
concrete problem and, as we shall see, are constructed in general for problems
with linear, explicitly given operators A. The latter is natural, since it is
precisely for such problems that classical inversion procedures have been
developed. This type of operator will be considered in Sec. 3.

One of the simplest examples is provided by the problem on the extension
of the potential in the direction of the sources (Chap. 1, Sec. 2.4), if the solution
1s sought in the form of a Fourier series. Due to inaccuracies in & such a series
diverges. However, as is shown in Refs. 13 and 148, for a given 6 the number
n = n(6) of the partial sum S, can be chosen sothat S, s, — 2 as §—0; obviously
S,.s exists for arbitrary 8. Consequently, the indicated algorithm, including
the method of correlating n and 6, is regularizing by definition. Moreover it is
adaptive because (a) it corrects the classical (ineffective) algorithm with the
help of the choice of n(5) and (b) it makes use of the specifics of the problem
(not for every kernel can a system of eigenfunctions be explicitly constructed).

It follows from the results in Chap. 2 that in the well posing of inverse
problems it is helpful to introduce the auxiliary parameter a. Then also the
corresponding resolving operator turns out to be dependent on this param-
eter. Auxiliary parameters may also be introduced in the construction of
ARO. Thus in the example discussed above, instead of the controlled replace-
ment of the Fourier series by its partial sum one could introduce a multiplier
v, (a) for each term of the series,'*® ensuring convergence of the series in the
region a > 0 (existence of the operator). In such cases construction of the ARO
reduces to correlating a with §, so that the resultant approximation satisfies
the regularization principle.

DEFINITION 2. The operator z* = R(iz5, A), dependent on the parameter «,
is called regularizing in the sense of Tikhonov in Z for the problem (43) (with
respect to &) (i) provided it is defined for all a (0 < a<e, for some «,) and
arbitrary &z, for which p (i, #)<6, and (ii) there exists a dependence a = a(6)
such that z*? satisfies the regularization principle in the metric Z.

In what follows such RO will be called a-parametric. Let us note that it is
also conventional to call a the “regularization parameter.” However, it is not

"This term was introduced by V. N. Strakhov'38 in application to certain algorithms, in the sense of
“adaptation’’ to the specifics of the initial data of the problem.
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hard to see that such a term has a broader meaning: any RO depends on some
parameter, since it depends on the degree of accuracy; in the example above,
such a parameter is the number n of terms in the series.

A sufficient sign of an a-parametric regularizing operator z = R(u, a),
useful for the construction of RO, was established in Ref. 149.

THEOREM. Let A be an operator from Z into U and R(u, a) be an operator
from U into Z, defined for every ueU and arbitrary a > 0. Then R(u, a) is a
regularizing operator for the equation Az = u provided (a) R(u, @) is contin-
uous in u for each a > 0 and (b) for arbitrary zeZ we have lim, , R(Az, a) = 2.

From the conditions of the theorem it is enough to prove that z_

= R(i4, a) satisfies the regularization principle for some a = a(5). Let

=A% pylisi)<d and 7, = R(iLa).

Then
pZ(Ea ’2) EPZ (R(Aé’a)yé) - O

as a—0 independently of the choice of by condition (b).
This means that for arbitrary €>0 we can find a, such that
pz(Z, ,2) <6/2.On the other hand,

pz(2, 2. )=ps(RUus,a )R(l,a))<o, (6)-0

as 6 —0 by condition (a) of the theorem. That means there exists §, such that
pz(2, 2, )<€/2, provided only that p, (s, 2)<6.. Hence, provided the last

inequality is satisfied, we have
pZ(za6 )2) <pZ(§a€ )2) + pZ(Ea6 ’Zaé) < €.

This proves the theorem since € was arbitrary.

Recently, along with the study of operators regularizing with respect to
the metric of some space in the sense of Definitions 1 and 2, consideration has
been given to operators for which p(zs, 2) converges to zero “probabilistical-
ly”’® on a certain statistical ensemble of approximations as the error measure
tends to zero (see also Sec. 3.1).37'°° Such operators will be called “stochasti-
cally regularized” in the sense of Tikhonov.

As was noted in Chap. 2, Sec. 2.5, generalized well-posings of problems
based on the regularization concept also turn out to be effective for problems
of the synthesis or control type. The mathematical formulation of such a
problem reduces typically to the selection of some element from a set of accep-
table ones (z€2), satisfying the inequality p(Az, &1)<d,, where i is the expect-
ed effect and §, is the given tolerance.

Any operator that makes possible a unique choice of ‘“‘solution” of this
problem will be called “conditionally regularizing” (for problems of synthesis
or control type).2® The construction of conditionally regularizing operators
may also depend on either the general framework (Chap. 2) or the specifics of
the problem (Sec. 3).

We turn next to the study of certain concrete regularizing operators.

A sequence p,,=p_(z,, 2) is called convergent to zero probabilistically in P, or stochastically ( p,—0), if
for arbitrary e>0onehaslim,  Plp <e =1.
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2. The general regularizing operator of A. N. Tikhonov

2.1. Basic construction

Under Tikhonov’s regularizing operator we shall understand the totality of
operations z* = R(is5, a), a = a(6) which solve the problem of minimization
of the smoothing functional (24).

It 1s obvious that it refers to parametric operators of a general type and
indeed encompasses a rather broad class since the basic element of the con-
struction—Tikhonov’s smoothing functional—is restricted by neither the di-
mension of the spaces Z and U, nor the character of the operator A, which can
be both nonlinear and specified only implicitly.

Examples of use of such an operator in all of the above situations in
problems of interpretation of data on physical observations can be found in
Refs. 34, 43,47, 49, 50-53, 60, 101, 121, 155, 159, and 164, devoted to problems
of geophysics. In other branches of physics, the basic construction was used, in
particular,in Refs. 17, 32,117,152, 176, and 178 for the solution of problems of
interpretation or control.

In constructing R(it5, a) for concrete inverse problems one needs first of
all (1) to formulate the mathematical model for the direct correspondence (43)
(1.e., display the operator A); the solution of the resultant problem with re-
spect to z is not necessary (!); and (ii) choose a stabilizer in conformity with the
character of the a prior: information about the solution (Chap. 2).

It then remains to complete the construction by (a) indicating the method
of selection of a = a(8), corresponding to the regularization principle (this
need not be explicit; an algorithm is sufficient, and (b) choosing the method of
minimization of the smoothing functional.

Let us discuss in order some general possibilities for the solution of these
last two questions.

2.2. The choice of regularizing parameter by the discrepancy principle
Departing somewhat from generally accepted terminology, we shall under-
stand “discrepancy principle” to mean the totality of methods for selecting
the parameter, based on the natural (for finite ) practical criterion of validity
of the approximations: coincidence of the observed effect (&z) with the calculat-
ed one (Az) within the specified observations accuracy.

As was established in Chap. 2, the well-posing of the inverse problem
with this criterion taken into account is possible [see Eqgs. (22) and (23)].

Let us verify that the corresponding choice of @ = a($) results in a regu-
larized approximation within the framework (24).

Let z be the extremum of Tikhonov’s smoothing functional (taken, for
the sake of definiteness, to be unique®) and let 6 be the given measure of error.
Consider for the given § the function ¢(a) = p%,(Az% @1,;) to be the value of

‘Sufficient conditions for the extremal to be unique are established in Ref. 148, where a more general case
Is discussed.
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square of the discrepancy [ p(Az, i)] on the extremum (z%). It is calculated
for each a, when the extremum is already known.

The selection of the regularizing parameter “by discrepancy” is deter-
mined, generally speaking, algorithmically by the equation

pla) = 6. (44)

Algorithms for numerical solution of this equation for concrete models are
indicated in Refs. 57 and 100.

It is not hard to show that ¢(a) is a monotonically nondecreasing func-
tion, bounded from below and (under certain conditions) above. Indeed,®?-'4®
with the notation ¥{a)=((z”), we have for arbitrary a; < a, and corresponding
extrema z%,2* that

¢(a1) + al¢(al)<¢(a2) + algb(az)
= [play) + asilas)] + (@) — az)i(a,)
<@lay) + asilay) + (a; — ax)ila,) .

Upon comparison of the first and last expression in this chain we conclude
that (a; — ay)la;)<(a; — a)ia,), i.e., fa;)>¥a,); it then follows from the
inequality ¢(a,) + a;¥la)<gla,) + a,;¥a,) that ¢(a,)<¢(a,), which estab-
lishes the monotonicity. Further, it is obvious that ¢(a)>0 is bounded from
below. .

Suppose, further, that Z and U are Hilbert spaces and Q(z)=||z — 2|3,
where z,—a certain given element—is an extreme point of Q(z). Then for
arbitrary a we have

Ma(za,i%) = CO(G) + alb(’l)gMa(Zo,a(s) = ,O%J(AZO,%) . (45)

From here it follows, in particular, that ¢(a)>p%,(Az,, is) is bounded from
above.

From the established properties of the discrepancy follows the existence
of its limits for arbitrary infinitely small or infinitely large sequences of val-
ues a. Indeed, it follows from Eq. (45) that for an infinitely large sequence
ta,}, we have

Ha,) <= py(Azg,ity) =0
aP
then z; -2, in the metric of Z, since it is an element of the compactum contain-
ing 2,. Hence, by continuity, lim, .., ¢(a,) = p(Az,, iis). On the other hand,
it was shown in Ref. 148 that if U, iseverywhere dense in U, then lim, _, ¢(a)
= 0O for arbitrary § and ;.

We have assumed that to each a corresponds a unique value of z—the
extreme point of the functional. If the inverse representation z*=« is also
single valued, then it is not hard to see that ¢(a) is strictly monotonic. Suffi-
cient conditions for strict monotonicity, as well as for continuity, of this func-
tion are established in Refs. 99 and 148. (Under the above-introduced assump-
tions, linearity of the operator is sufficient to this end.)

THEOREM. If U and Z are Hilbert spaces, Q2)= |z — z)|3, ¢@)
(0 <@ < + oo)isstrictly monotonic and continuous (semicontinuous at o = 0),
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and 0 < 8 < p7,(Az,, is), then for every § and arbitrary iz, there exists a unique
regularized approximation, selected by discrepancy.

Proof. Existence and uniqueness follow, obviously, from the above-estab-
lished properties on the conditions of the theorem (Fig. 6). Let us verify that z;
satisfies the regularization principle. Indeed, suppose that a is a value select-
ed by discrepancy; then ¢(a,) = §°-0 as §—0 and, consequently, p,(Azs, A2)
—~0as §-0. On the other hand,

plas) + astlas) = 6% + a, Oz ) <M P(A2,i05)<8* + asQ(3) ;

this means that (z;)<(2), i.e., that z; and z belong to the same compactum.
From this, it follows by Tikhonov’s theorem (Chap. 2) that lim p, (25, 2) = 0 as
6 -0, as was to be proved.

We remark that the upper bound on 6 in the conditions of the theorem 1is
quite natural. Suppose, for example, that z, = 0; then p%,(Az,, it5) = ||is||*
Should we now have §> ||i5||, this would mean that the error exceeds the
useful information about the object, contained in &, and the problem be-
comes meaningless.

For problems for which the operator A is nonlinear, ¢(a) need be neither
strictly monotonic nor continuous (Fig. 6b). To deal with this case there is
described in Ref. 42 a “generalized discrepancy principle,” when «; is selected
by the condition

as = Inf «a. (46)

@la)>6

We note that in practice both methods are equivalent, since for finite 6
the selection of the approximation proceeds on some sequence of values {a, | .

For numerical realization of the algorithm the operator A is itself given
with some error, and if its effect is comparable to the error in & then this
should be taken into account in selecting the regularizing parameter. A meth-
od to this end is described in Refs. 57 and 148, applicable to problems with a
linear operator A.

Let Z and U be real Hilbert spaces and suppose that an estimate of the
quantity

A, — Az
h — sup || hz || U
Z 12|l 2
¥(%) (@) 5;(“) (b)
2
555—::::::{
)/ 34 T |
sl
ﬂ 7 | | | [ ] —_—
051 “2 “3 «©, 122

Figure 6
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is known for the approximate operator A,. Then the relative error of the
operator is given by the formula ||A,z — Az||<h||z|| for arbitrary zeZ. In that
case for the smoothing functional, corresponding to the problem 4,2 = & 5
zeZ, with previous estimate of the error in i, the correlation of a with (A, &)
proceeds via the equation

gla) — (5 + hljz||)> =u, (47)

where u = inf, p*(A, 2, it5). The left-hand side of Eq. (47) is called®’ the gener-
alized discrepancy. Iterative processes for the calculation of 4 are discussed in
Ref. 56.

In this case, by regularized approximation is understood z?, which satis-
fies the condition p,(z% 2)—-0 as 0—0 [translator’s note: the original has §
everywhere instead of o], provided o = max(h, §). A more general formulation
of the problem of selection of a in the presence of errors in the operator and
corresponding methods are discussed in Ref. 148.

We remark that the discrepancy principle of Egs. (44) and (46) can also be
extended to adaptive regularizing operators.

2.3. The quasi-optimal method of parameter selection

Another approach to the question of selection of the regularizing parameter
is based more on the mathematical nature of inverse problems as ill-posed
and a mental comparison of the exact solution of the problem with its “ran-
dom” approximation. It can already be noted in the elementary posing of the
inverse problem (Chap. 1) that if the input characteristic & carries a random
error, then the probability that it belong's to the set U, is arbitrarily close to
zero and, therefore, there is a gap between the exact solution of the problem
and the mental random approximation to it; the latter is simply absent with a
probability arbitrarily close to unity. In this respect the situation is complete-
ly analogous to what happens when attempting to obtain a rational number
by the process of division by a rational of an arbitrarily chosen real.

This nature of the ill-posed problem suggests that things will be the same
with respect to the approximation to Z, obtained by means of some a-paramet-
ric algorithm, if the question of correlating a with the random error of the
problem is ignored: p,(z%2)— « as a —0 with probability close to unity. At the
same time, in the absence of any errors the corresponding limit should equal
zero. Indeed we have, for example,'*® for the extreme point of Tikhonov’s
smoothing functional for § = 0 (2 = 2% that p*(Az%, @) + aQU(Z*)<afX(2), which
shows that z* belongs to the same compactum as 2 and p*(Az%, A2)—0 as a—0;
this is sufficient for the convergence of z“ to Z.

If, in turn, a were correlated with the error in accordance with the regu-
larization principle, it would follow for sufficiently small § that p*(Az**, 2) is
close to zero also for arbitrarily small as. Thus one may assert with “high
probability” the existence of a “critical value” a = a(5), corresponding to the
exact lower bound of values of a)=p%(2%2) as a -0, provided z“ is the result
of the action of the regularizing parametric operator in the presence of errors,
but without the errors being correlated with a. The approximation corre-
sponding to the indicated minimum, is optimal in the sense of the problem. It
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remains to indicate a certain indirect characteristic of the quantity v{«a), since
z is unknown, and, once that is done, one may speak of a ‘“quasi-optimal”
approximation. In Ref. 153 such a characteristic was taken to be a certain
norm of the quantity a dz%/da, correlated with the first term in the Taylor-
series expansion of the difference z* — Z in the absence of errors.
DEFINITION 1. (a) The quantity ji(a) = supy, |@dz®/da|, will be called the

quasi-optimal measure on the equivalence set Uj: p (i, &t)<5; (b) the quanti-
ty ula)=|adz*/da|, will be called the weakly quasi-optimal measure for the
concrete given &, [translator’s note: original has here iz, instead.]

In Fig. 7(a) are shown the results of a numerical experiment,'®® giving an
1dea about the behavior of u(a) and fi(@) [the “envelope” curve is for the family

YAn elementary modification of these concepts is admissible such as, for example, the replacement of Z
by any of its subsets'48.152.156. in the following we do not restrict these concepts to concrete forms of
subsets. ‘
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p(a), corresponding to various specifications of &5 ]. Characteristic behavior
of u(a) is shown in Fig. 7(b). The experiment was performed on the problem of
determination of the boundary form separating two media in the Earth’s
bowels, which gives rise to a nonlinear integral equation. In this case & = ii(x),
x€la, b], and its various values were imitated by random numbers generated
by an electronic computer: u4(x) = @t(x) + 6&(x), where £(x) is a random func-
tion such that p(us, 2)<6. Analogous behavior of u(a) in a certain region
0 < 6<6, was established in a broad class of problems using the quasi-optimal
selection method.?*4%491.152.164 Thjig fact is confirmed by a rigorous math-
ematical analysis, based either on the expounded-above “statistical” consid-
erations®”'*° or (for a particular problem, Sec. 3.2) on the equivalent func-
tional apparatus.”

It has been established that for a broad class of problems of the interpre-
tation type, an a, exists such that for a > a, one has u(a) decreasing monotoni-
cally [ u(a@)-0as a— .

DEFINITION 2. We call « = a, the quasi-optimal value for concrete speci-
fication of & provided pu(a,,) = inf u(a), 0<a<a,. The corresponding selec-
tion «a is called the weakened quasi-optimal criterion.

The concept of the “quasi-optimal criterion’ in the proper sense, i.e., on
the ensemble i1, is introduced analogously. However, the weakened criterion
1s more convenient in practical applications. One should also keep in mind
that the indicated behavior of u(a) refers to a region of values of § bounded
from above. If § is “excessively large,” u(a) may turn out tobe a monotonically
nonincreasing function [ u(a)-0 as a - «, u(a@)— « as a—-0]. In this respect
the situation is the same as for the “discrepancy principle” for 6 > || i||.

We now call attention to the fact that the weakened quasi-optimal crite-
rion involves no a priort information on the quantity 6 and, therefore, may be
used in those cases where such an estimate is unknown.'”?

On the other hand, in the practical realization of the regularizing algo-
rithm one unavoidably includes errors of the operator A, of the calculation of
the minimizing element, and of the roundings-off on the electronic computer.
The quasi-optimal criterion “summarizes” the effect of all these errors.

It was established in Refs. 37, 91, 148, and 156 that the “quasi-optimal
approximation” is regularized. In particular, the following theorem, based on
a statistical modeling of the aggregate error, is valid:

THEOREM. Let A be a linear operator and )(z) = I|Z||%. Then onecan find a
class of models of aggregate error in & and calculations, characterized by
dispersion o, such that (a) as 0 -0 we have with unit probability that a,, -0

and u(a,,)—0 and (b) p,(z"*, 2) converges stochastically to zero as 0— 0. (The
concept of stochastic convergence was described in Sec. 1.)

This means that under the indicated conditions Tikhonov’s generalized
RO for quasi-optimal choice of the approximation is, at the very least, stochas-
tically regularizing. The analogous fact is also established for problems in-
volving nonlinear operators. This assertion also extends to a series of “adap-
tive” RO'"% in the latter case the operator is defined as regularizing in the
sense of the basic definition (Sec. 1).?” In practice the approximation is taken
on some sequence of values {a,}. If this is a geometric progression
[a, = Aa, _; (0 <A <1)] then, asis easily noted, the quasi-optimal measure is
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“approximated” by the simple formula a(a,) = ||z** — z* ||, which is conven-
lent for calculations. Algorithms are also given for the calculation of the
quasi-optimal measure in Ref. 68, based on the reduction of the minimization
problem to the Euler equation (see Sec. 6).

The “ratio criterion,” proposed in Ref. 68, is similar in its mathematical
nature to the quasi-optimal one. In that case a = «,,,,, is defined by the condi-
tion sup [ u(a)/@(a)] in the region 0 < a < a,, for some «,,.°® The experimental
and analytical definition of this criterion may be found in Refs. 37, 68, and
148.

2.4. The parameter-descent method for Tikhonov’s smoothing functional
One of the questions in the construction of general-type RO, connected with
the variational formulation of the problem, is the method of minimization of
the functional, and A. N. Tikhonov’s operator is no exception in this regard.
The point is that, as is also the case in the “quasi-solution” concept, one wish-
es to reach the exact lower bound of the functional, and not one of its local
minima. These concepts usually coincide for inverse problems with a linear
operator A, and in that case the smoothing functional plays a decisive role,
being “strictly convex” for a>0 due to the choice of the stabilizer.”® This
assertion cannot be made in the case of a nonlinear operator.

It turns out that Tikhonov’s a-parametric smoothing functional may ful-
fill one more function, related to the construction of a stable “absolutely mini-
mizing”’ sequence {z"}.

We call attention to the fact that the convergence of any of the well-
elaborated iteration processes, as well as the rate of convergence, depend,
generally speaking, on the choice of the initial approximation.”® For the
smoothing functional, viewed on the sequence {«,}, it is possible to make a
rational choice.

Indeed, as was noted in Sec. 2.2, for the case when Q(z) = ||z — z,||, the
extreme point 2% -z, as @ — «. This makes possible the realization of the fol-
lowing procedure.*?'3%153:159 Let {a_ } be an infinitely small sequence for a
sufficiently “large” value of ¢, (s = 0). Choose as the initial approximation to
2% the quantity z; it belongs to the neighborhood of the extreme point and
therefore any classical iteration process will converge to z* for such an initial
approximation. For a = a, < a, choose as the initial approximation z* and
use the same iteration process; if a, is not “too different” from «,, we remain
in a situation favorable to the convergence of the process to z*'. Clearly induc-
tion is possible. We shall refer to this procedure as “parameter descent” for
the smoothing potential.®

The parameter descent is interrupted by one of the criteria of selection of
a from the sequence {a, |, thus closing the construction of the regularizing
algorithm.

Practice shows that even for a ‘“not too painstaking” choice of {«,} the
described procedure is effective. On the other hand, the result is independent

“This terminology was used previously 72 in a different context: the calculation of solutions of ““correct”’
operator equations from a known solution of another equation, taken as the initial approximation.
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of the choice z, (in the stabilizer) in a sufficiently large range of values, vali-
dated by the available a priori information.?!42?0:51.60.135

This last fact is easily illustrated in the example of interpretation of
gravitational field data to determine the depth and shape of the boundary
dividing two media of differing density in the Earth’s bowels (contact sur-
face).”! The result of the mathematical experiment is given in Fig. 8. It is seen
that for a given initial depth and shape, substantially different from the true
ones, the latter are reproduced with an accuracy sufficient for practical pur-
poses. In this experiment (as in many other calculations) we have chosen for
{a,} a geometric progression with ratio A=0.1 and a,=1; for
8 = 0.01 = 5% max i, there results ¢, = 10™°.

It turns out further that the parameter-descent procedure admits “econ-
omization” (by one iteration for each «,) in the case when the operator is

“weakly nonlinear.” This possibility—the so-called diagonal process—was
studied in Refs. 42 and 132.

2.5. The Gauss—-Newton procedure for minimization of the smoothing
functional

The choice of the minimization method M“(z ,iz), with the parameter-descent
procedure taken into account, is not the principal problem. Nonetheless it is
worth calling attention to the fact that the specifics of the main element of the
smoothing functional in interpretation problems with nonlinear A [discrep-
ancy p“(Az,i)] make convenient the “linearization” of A in the neighborhood
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of the sequential (for given a) approximation z, . In that case one may use for
the determination of z,,; minimization methods for quadratic func-
tions.20-75.:98

Indeed, suppose that the nonlinear operator A is represented for arbi-
trary z, z,,€Z in the form

AR)=A(z,))+ ALz Nz —2,) + o]z — 2, , (48)

76,77 and

where A’(z ) is a certain operator called the Frechet derivative,

Al(z, )z — z,,) is the “Frechet differential” at the point z,,.
Introducing the notation B=A'(z,) and 0,=u, — A(z,)) + A.(z,)z,, we

arrive for a predetermined z, at the problem of minimization of the func-

tional p7,(Bz, 0,,) + a)(z), which is quadratic provided
Q2) = ||z — 2|13 -

In a concrete problem there is usually no doubt as to the linearizability of
A since the Frechet differential can be found by the “perturbation method”
and, moreover, is given explicitly even when the operator A is known only
implicitly. Let us consider as an example the operator for the direct corre-
spondence in the MTS problem (Chap. 3, Sec. 2). According to Eq. (5) we have
Az = v.(0, w), where v'(0, w) is determined (implicitly) by the boundary-value
problem v” + iwo(§)v =0, v(0) =1, v'(h) = — xv(h).

Upon setting

v’ = pv (v = exp f P y)dy) ,
0

we obtain Az = p(0), p’ + p* + iwo(£) =0, p(h) = x. Suppose that o,({) and
p.() [v,(0)] are already known. Setting 0 = 0, + 9, p = p,, + w and viewing
n and w as small, we find that Az = p,, (0) + w(0), where w(0)—the linear part
of the operator increment—is the Frechet differential. The latter, obviously,
is determined from the conditions w’ +2p, w = — iwn, w(h) = 0 (with terms
~ w*being ignored). Then, with the help of the variation-of-constants method
and taking into account the relation between p and w, we obtain

h

w(0) = 1w f v2 (On()dE .
0
Correspondingly

h
Baziwf V2 (O H)dE
0

where v, ({) is determined algorithmically, once o, ({) has been found, by the
above-indicated boundary-value problem.

Linearization of the operator in the discrepancy functional (10) is re-
ferred to in the contemporary scientific literature as the Gauss—Newton pro-
cedure.?®'3? Questions of realization of the parameter-descent method and
the Gauss—-Newton procedure are discussed in detail in Ref. 132. A priori
linearization of A allows the utilization of the Euler operator”® in the search
for z* for each a.
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2.6. The gradient of Tikhonov’s smoothing functional and use of the Euler
equation for minimization
The formal search method™ is most universal for the minimization M“(z, @)
for fixed a, applicable as an element of the parameter-descent procedure. In a
number of cases'®®'®® it may also turn out to be sufficiently “economical.”
However, “gradient” methods are more economical.”

Under the gradient of the functional ®(z) is understood?®”? the operator
Cz=®'(z), provided the following representation is valid: ®(z + Az) = $(2)
+ [P'(2), Az] + o(||Az]||). In the case that such a representation is valid for
arbitrary z, AzeZ, ®(z) is called differentiable in Z, and [ ®’(z), Az] is called the
differential of ®. It is obvious upon setting Az = #£, where ¢ is a numerical
parameter and { an arbitrary fixed element, that the differential of ® can be
expressed by the formula [®'(2),Az] = (d/d)[P'(z + t)]],_,. In practice the
differential 1s calculated by “perturbation methods,” similarly to the differ-
ential of the nonlinear operator A.

From here it is not hard to obtain the general expression for the gradient
of the smoothing functional with nonlinear operator A in the neighborhood of
the approximation z,,:

VM (2) = A*(z, (A(z,) — it5) + aLz, ; (49)

2Lz, is the gradient of the stabilizer, and A.*(z,,) is the operator conjugate to
the Frechet derivative.”®’’ In the case that Z and U are Hilbert spaces and
Q(2) = ||z]|3 = (2, 2);, the operator A * is determined by the formula

(A*v,2), = (V,AL2)y

for arbitrary veU and zeZ. Analogously L is determined by the formula (z, {)z
= (Lz, {); for an arbitrary pair z, {eZ.

We note that if Z is a function manifold [for example, z = z(x, y) (x, y)eD
with boundary I'], then L is a differential operator containing derivatives of
higher order than Q(z). Consequently the use of gradient methods is connect-
ed in this case with the extraction from the introduced compactum of a subset
of functions, possessing the corresponding (classical) derivatives. Thus, for
example, for the “simplified” conditional stabilizer (Chap. 2, Sec. 3.4)

d%z )2
Q — d d ) :0’
@) ff(axay xdy, 2|r
D

it is easily verified that with a scalar product conventionally defined for a
function manifold we have Lz = d*z/dx* dy* with the same boundary condi-
tion.

The indicated “narrowing” of the compactum is guaranteed not to vio-
late the regularizing properties of Tikhonov’s operator only in the case when
the sought-for exact solution belongs to the corresponding subset of Z and, in
particular, satisfies the boundary conditions, which are unavoidably used in
the construction of L; otherwise the RO guarantees convergence to 2 “almost
everywhere” (for example, with the exception of points where the higher
derivatives are discontinuous and points on the region boundary), which
usually is acceptable in concrete problems.




72 Inverse problems of mathematical physics

If the operator A is linear, or has been linearized by the Gauss—-Newton
procedure (Sec. 2.5), then a natural method for searching out the extremum
for fixed a consists of going over to the Euler equation. As is well known,'*® we
obtain such an equation by equating to zero the gradient of the functional.
Consequently, for the smoothing functional with the operator linearized at
the point z, it has the form

(B*(z,,)B(z,,)) + al.)z = B*(z,)v,, . (50)

If Z is a function manifold, then Eq. (50) explicitly includes boundary
conditions for z, which must also be obeyed by the exact solution z in order
that the RO guarantee uniform convergence of z“ to 2.

As an example let us consider the “Euler equation” for the search for the
next approximation to the extremum for fixed « in the contact surface prob-
lem, treating as unknown also the depth of the “base” layer. To simplify the
description, the problem will be considered within the framework of a two-
dimensional model with known excess density Ap (Fig. 8). In that case the
space Z consists of the manifold of pairs z= {w({), H} with the scalar product

b
(21,20) = f W OwAEE + HoH,

The quantity under observation—the { component of the gravitational field
at the Earth’s surface—is explicitly given in terms of z:

Ap (° (x — &2 + H?
Az=u(xw, :Lﬁfl 5 de .
e=uw, ) == | Y a0+ (H—wd]? s

The result of linearizing u in the neighborhood of z, = (w,, H, ) may be writ-
ten in the form

b b
B,z=B(z,)z = J K (x,Hw&)dE + HJ K, (x,6)dE

where K|, and K}; are derivatives of the ‘“kernel” of the integral operator Az
with respect to the corresponding arguments. Correspondingly v, (x) = (x)
—ulx, w,,H, )+ B(z,)z,. Since U is a function manifold, u = u(z), xe[a, b],
with a standard scalar product, we have for arbitrary v(x)

b

(0,B,2)y = J e (no0wndy + o, (0)=(B*v,2),,

a

where

d b rd
X1 -—-J‘ K, (x,puvx)dx, »x,, :f f K, ,;(x,nv(x)dx dy

is determined by the expression for B,z. Consequently, B,*v
= {2,,(n, V), %,,(V)}€Z. From this we easily determine B, *(B,z) and B, *0,,
for Eq. (50). Suppose it is known that w(&) is a smooth function satisfying the
conditons w(a) = w(b) = 0. Then we may introduce as the stabilizer

b 2
) :j (fl_‘éf) dé + H,

Z is the manifold of pairs {w(¢§), H} with the scalar product
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b
20, = [ wi@ns©os + HH, w,(@=w,(0)=0

for s = 1,2. It is not hard to see that
b

(21,2005 = W, wy]" — f wiwy dé + HyH, = (Lz,,2,), |

a

provided
Lz, = | — wi),H,}, 2, = w,(), 2= wy( )

Comparing in accordance with Eq. (50) the components of the pair, we arrive
at the following expression for the “Euler equation” for the problem under
discussion:

b
J K,11(,Swé)ds + K,,,,(n)H — aw"(n) = b,, (1), wz)=wb) =0,

b
f K Ow(E)dE + K py H — aH — b,y
where

d
Knll(n’ 9) :f K;‘Lw(xﬂ])Kr’lw(x’ f’)dx ’

4

Koo = || KoK ol de.
(& a d

b,,(m) = J K, (xnv,(x)dx ,

4o

K5 () = f f K, (. OK,u(x,pdx dy,
d 'bc ba

K,y = f f f Koy K (0, £)dx dE dy

d (b
b, :f f K, o, (x,nv, (x)dx dn .

In this manner there corresponds to Eq. (50), in the example under dis-
cussion, a system of integro-differential (with specified boundary conditions)
and integro-algebraic equations. Obviously, as a result of finite-difference
approximation, it reduces to a system of algebraic equations with respect to
the (n + 1)th variable {w(&)), ... ,w(&,), H}, and inversion of the latter re-
duces to a standard electronic computer procedure.

3. Certain adaptive regularizing operators

3.1. Fourier regularizing operators
One of the methods for locating sources of anomalous gravitational fields in
geoprospecting is based on extending the field from the Earth’s surface
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towards the sources. Let the normal component of the gravitational field v(x),
x = (&, 11,6), be measured on the surface [v|._, = @(x)] in a certain rectangle
[T of sufficiently large dimensions so that on its boundary I' we may set
(die/dn)| = 0. Then it is obvious that in a certain source-free layer 0 < < h
beneath the surface, v(x) satisfies the same condition and is there harmonic.
Consequently a formal representation of v(x) is possible in terms of a Fourier
series over an orthogonal system: {¢,(y)}, ¥y = (§, ), where the ¢ are eigen-
functions of the problem A., ¢+ A¢Y =0, (d¢¥/dn)| = 0. Use of the classical
method results in the following expression for v|._ , =w( y):

W)= 3 e’ "3,

n=1

where A, are the eigenvalues of the boundary-value problem. It is obvious
that for exact values of the Fourier coefficients &, this series converges: éi(x) is
produced by sources located on the level H>h, and therefore 1,

— (A )*H . ~ . .
= e “" 7). However, in the presence of errors u, = i, the series diverges
and, consequently, is useless in the search for an approximation.
Let us introduce multipliers for the terms in the series, 7, ()

=1+ ad, em")'/zh) ~! obtained “heuristically,” for example with the help of a
construction analogous to Tikhonov’s functional:
M*(w, &) = p7 (Aw, ) + afly(w),

where

Qo(w) = f (Vw)? do
|

(it is not the stabilizer on the function manifold under consideration’). In-
deed, taking into account Green’s formula

Qo(w) = — f wAw do

and the fact that Aw is the result of recalculating the field from thelevel { = A
to the level { = 0, we obtain the representation

Mwa) =S we " —a,)l+a Y A,w,?

n=1 n=1

The indicated expressions then follow from the condition dM“/dw, = 0.
Let us consider the “regularized” Fourier series:

w (D=3 @7, (@e ", (y)=Ry(ais). (51)
n=1

THEOREM. The operator R, (a,i,) is regularizing in the sense of Tikhonov
on the manifold of functions continuous in II.

'1o(w) may be the conditional stabilizer, for example, on the manifold of sufficiently smooth functions
satisfying the conditions w|,. = 0 (Chap. 2, Sec. 3).
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Proof. For any ueL,(Il) and any a > 0, the series (51) obviously converges
and, therefore, the operator is defined. It remains to verify that for any i,
such that p; (&5, 21)<6, there exists a function a = a(5) such that

lim; ., max [Ww,e(y) —w(y)| =0.

To this end we replace @( y) by the set of its Fourier coefficients {0, | and take

into account that w, = Ote ~ "), where H> h and |¢, ( y)|<1. Then for arbi-
trary  and 6 we have

w0 () = W] = | S @, 7a(@) — @, )¢y, ()

n=1
< @, — 7. @e™" + @, [ya@) — 1]e ™!
n=1 n=1

=0, +05.

Since

yol@e " <e VM an, )
it follows from the Cauchy-Bunyakovskii inequality that
1/ & _ i T ) T 15
<— AW, )? B <C, =,
01 o ( Z ( ) ngl /l‘?l ) 1 a

n=1

where C; = const.
On the other hand,

(@ —1] =al "1 + ad, ™" 1=4, %, (@),
and the series
S i, A0
n=1

converges. Therefore o,<max, x,(a)C, where C = const. Next we take into
account the fact that 1, =4, = (7p/l,)* + (7q/l,)?, where [, and [, are the
lengths of the sides of I, and p and g are natural numbers. Then max,, x,(a)
<max x(&, 1), c5 <& 4+ 9 < + o0, ¢, = const, and

;{(5’{7) — aez"?}:??h[l n a(g-Q + ﬁz)ezx"gz';?h] -1
Let us put

2\/5‘2 + {72}1 =T.

Then 0,<Cmax u,(7), 7o<7< + o, where

1
412 eT) =0

1s continuous for 7— « (for arbitrary a). From this it follows, provided
du,/dr = 0for sufficiently small , that the extremum point (r,,) corresponds
to a maximum of u,(7). The quantity r,, is determined by the equation ae’

u,(rn=ae’ (1 + «a
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= 2h*r~ ', and for a -0 it equals asymptotically |In «|.°! Therefore max ., (7)
= p,(7,,)<C*(2h*/1In* a); hence 0,<C, In~* a, where C, = const. It is now ob-

vious that for ¢ = /6

lwa(s)(y) — w(y)‘<cl\/3 + CQ lnﬂz O-0

for 60, uniformly with respect to y. The theorem is proved.

In this fashion the operator R, (a, ii5) introduced above is regularizing in
the sense of Tikhonov for the potential extension problem.

One example of utilizing this operator for the extension of gravitational
fields is shown in Fig. 9. Here one was able to determine the depth of the
sources to a 10% accuracy.

In Ref. 17 it is also shown that an operator similar to Eq. (51), applied to
the Hadamard problem for a circular region (the problem of extension of a
static magnetic field in a plasma trap) with a “normal” stabilizer )(z), guar-
antees regularization in arbitrarily ‘“high order”,'*® i.e., provides conver-
gence also for D*w for arbitrary finite k.

The generalization of problem (43) to the case when A is an arbitrary self-
conjugate linear operator in L,, possessing a discrete spectrum Ay, = u, ¢,
is discussed in Ref. 56. In particular the following theorem is established.
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THEOREM. Suppose that (i) the asymptotic order of 1, as n— « is one of
the following: either u, = O(n = "), y>1,0r u, = Xe ~ "), or u,, = Ke ~ **): (ii)
the random errors in the Fourier coefficients Au,, = &, — @, are independent
in the aggregate and distributed uniformly on the segment A
=[—C8/n*, C5/n*],0<A<1, C = const; and (iii)

2= 3 .0,/ + )b, =Rg(a, i).
n=1

Then for a quasi-optimal choice of @ in the norm of the L, space, we have
2%, —2 (see Sec. 1), provided that Z is the unique solution of the equation
Az =1

In this fashion the regularized Fourier series becomes, for a quasi-opti-
mal choice of a, a “stochastic RO.”

It is not hard to see that in the concrete problem discussed above one has
i, = Ole = "™); on the other hand the restrictions on the errors in the state-
ment of the theorem are natural if the Fourier coefficients &z, decrease with
increasing n according to a law analogous to that of the error. The model
includes the case when {u, Jel,: 0 <A <.

Questions arising in regularization of Fourier transformations are also
discussed in Refs. 148 and 156.

3.2. Simplified regularization
In Ref. 141 attention was called to the fact that for specified requirements on
the operator A, naturally arising in certain inverse problems in potential
theory and heat conductivity, which are expressed as linear integral equa-
tions, it is possible to obtain the regularizing (in the required metric) operator
by direct insertion of the parameter-dependent “differential increment” into
the equation. Similar constructions were studied in Ref. 85.
Consider the operator equation (43) under the conditions of uniqueness of
the exact solution, where A is a linear operator defined in W; [a, b]. Let L(2)
= — p, d’z2/dx? + py,z, where p, and p, are positive functions of xe[a, b].
Introduce the operator z* = R(«a, i15), which solves the equation

Az(x) + all2) = u4(x), 2z(a) =2(b) =0, (52)

where p; (i, i)<6.
THEOREM.'% If the linear operator A is self-conjugate and positive defi-
nite, then the inversion operator for Eq. (562) is regularizing in the sense of

Tikhonov.
By making use of the variational method it is not hard to verify that

problem (52) corresponds to the Euler equation (see Sec. 2) for the smoothing
“energetic” functional

P,(2)=(Az — 2u;,2), + af)z), (53)
where (z) = ||z||2W:12 is Tikhonov’s stabilizer, viewed on the manifold of func-

tions twice differentiable on [a, b] satisfying the conditions z(a) = 2(b) = 0. It 1s
clear that for a self-conjugate positive definite A the functional (53) is strong-
ly convex: P,(z + {)> P, (2) + [ P, (2),§ ] for { #0; consequently it has on the
indicated manifold a unique extremum for arbitrary a > 0, coinciding with
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the solution of Eq. (63). This then establishes the existence of z2* = R(«, iz5) for
arbitrary 6> 0. Then the uniqueness of the solution of Eq. (62) under the
conditions of the theorem follows from the Fredholm alternative!l!; as a re-
sult the problem (52) is equivalent to the problem of minimization of Eq. (53).
Let us verify that an a = a(§) exists, such that z_ ;, satisfies the regularization
principle.

We note that the variational equation for Eq. (53) has the form

(Az —us,0)L, + a(z,g)wé =0.
Putting here { = z = z* we find
(AZ,Z)L2 + (ZHZ”?V}Z — (aa ’Z)L2 =0,

and since (Az, 2)>0, 1t follows that
1

1 . N 1, .-
213 <= @s2)r, <= ||&s ||, |2]| o, <=5l ., ]I2]
a a a

7l .
W5

Consequently, for any i&;€L, (in particular also for @) |27, <(1/a)||a;]|.,-

Next we estimate u, = ||2* — 2||¢a.s - ObVviously we have
o <[2® = Zc + |27 = 2l|c<]lz® = 2%y + [I2° = Z]lc

where z“ is the solution of Eq. (62) for u = &z. From the previous estimate we
have in view of the linearity of the operator that
|as — ., &

2 = | gy < S

To estimate the second component of 1, we make use of the obvious inequali-
ty
(AZ" — 20,2, + a||§“||i,é<(A2 —20,2); + a||2||%‘,ilz :
From here it is not hard to obtain, under the conditions of the theorem with
respect to A,
(AG* — 27" — ), + allZ)3, <allZl1%,

2
wy’
to the same compactum in the metric C|[a, b]; at the same time we have as

a—0 that (AE* - 2), 2" — 2);,<a||2||},; 0. Next we use the fact that, under

the conditions of the theorem, A has a “square root”: A = B X B, where Bisan
operator with the same properties as A.”® Then

Consequently, ||2°||3,, <||2]|%,:, and therefore z* and 2 belong for arbitrary a > 0

p3 (AZ",A5) = Az — A3, = ||AG" - 2)|13,
= [|BBz" — 2)||7, <||BII*|| BE* — 2)|I1,
<||B|I*(B(z* — 2),B(z* — 2)), <(AE* — ),z — %), ||B||>—0

as a—0. Since p; (Ajz% Axz)-0 as a—0 and jz* and xz belong to the same
compactum (in the metric C|[a, b)), it follows from Tikhonov’s theorem (Chap.

2) that |[jz* — x2||¢ = pc(jz%, x2)<ela) -0 as a —0. Setting for example, a = /5,
we find that i, <J8 + €(6)—0 as §—0, as was to be proven.
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Consequently the operator introduced above turns out to be regularizing
in the sense of Tikhonov. In Refs. 103 and 141 it is referred to as “simplified”
RO.

It is interesting to note that in place of Eq. (52) one could solve the vari-
ational problem, although only for the indicated restricted class of operators.

3.3. The quasi-inversion operator

The quasi-inversion method was developed in a monograph [Ref. 88] in appli-
cation to inverse problems of control type, modeled by bounds to evolution
equations in partial derivatives. It amounts to the introduction into the equa-
tion of a differential “increment” of higher order, which depends on some
parameter. This permits the construction of a “stable” time inversion opera-
tor. The “stability” question is framed and analyzed with respect to the con-
trol “effect,” although the numerical examples given in Ref. 88 show that also
the controlling characteristic z is reconstructed in a stable fashion.

It turns out that the “quasi-inversion” operator may be viewed as regu-
larizing in the sense of Tikhonov for interpretation problems as well, where
uniqueness of solution is presumed.

Let us consider a model of the heat conductivity process, described by the
equation u,, =u,, — oo<X< + o, O0<t<T. Suppose that the tempera-
ture at the instant 7Tis known, u(x, 7) = @u(x), and one wishes to determine the
temperature at the initial instant of time, u(x, 0) = z(x). The problem is equiv-
alent to a conditional integral equation of the convolution type

i(x) =f . Gx — &, Dz(&)dE .

The uniqueness of the solution Z(x) for an exact it(x) can be proved by means of
Fourier analysis, and for such an equation one may construct the general
(Sec. 2) or the “simplified” regularizing operator.

Following the quasi-inversion method of Ref. 88, we consider the para-

metric problem
U, =u,, +au,.., —owo<x<+ o, teOD), u|,_r=rul). (54)

Let us denote by z* = R(«a, i2) any algorithm for its inversion, and let Az*
=uv(x, T), where v(x, t) is determined by the Cauchy condition v(x, 0) = z%(x)
for Eq. (54). Let p, (&, it;)<8. Then, according to Ref. 88, we can choose
a = a(8) such that p; (Az*?,i15)<6 for arbitrary predetermined 6. It turns out

that a stronger assertion is possible.

THEOREM.'%* Let 2(x) be the exact solution of the problem u,, =u,,
— 0 <X < + 0,0, ), ulx,T)=ix),andp; (&, i5)<S. Then there exists a
manifold of functions a = a(8) such that lim,_, max [z*° — 2(x)| = 0, where
2% 1s the quasi-inversion operator; the manifold ¢ = a(8) includes selection by
discrepancy.

This assertion can be proven in complete analogy to the proof of the
theorem in Sec. 3.1 after Fourier-transforming the problem. In Ref. 104 it is
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also shown that upon selection of a by discrepancy the algorithm converges in
WE for arbitrary fixed k.

This, then, establishes that the ‘“quasi-inversion” operator for the prob-
lem under consideration is regularizing in the sense of Tikhonov.

3.4. Iteration operators

Under certain restrictions on the operator A, analogous to the ones assumed
in Sec. 3.2, various iteration processes'''>#2%16% may be used to construct a
stable approximation to the solution of Eq. (43). Suppose that the input data
are given with some error: p, (i, it;)<5. Then an iteration operator, with “dis-
continuities” in accordance with a certain criterion corresponding to the reg-
ularization principle,

2, ., =R,,i,), n=01,..N; N=NGJ) (55)

turns out to be regularizing. In this case the number N serves as the regular-
ization parameter and the selection criterion may be one of those described in
Sec. 2.

The analog to the quasi-optimal measure for “one-step
cesses was introduced in Ref. 37:

My = Hn(zn —<Zn_1 )ll . (56)

Correspondingly the quasi-optimal value of Nis that for which uy, = inf 1,, on
someset no<n < + «.Inturn, approximation by “discrepancy’” may be deter-
mined by the formula

19 jteration pro-

|5 _pU(AZN7a(S)| = min lpU(AZn ,L~t5) T 5' .

Suppose~next that the operator equation is reduced to the variational
problem inf ®(z),zeZ, where ®(z)= p%,(Az, iLs). It is obvious that the iteration
operators'® can be used to obtain the solution, provided that a choice
N = N(6), satisfying the regularization principle, is possible.

Suppose that z, ., = R,(2,,, i5)=R(2,, i,) is some iteration process for
the variational problem posed above, possessing (for the sake of definiteness)
a unique solution z for 6 = 0. We shall call the operator R(z, u) continuous at
the point (z*, u*) provided that for arbitrary € > 0 there exists an 7 = n(¢) >0
and a 6 =05(e)>0 such that p,(R(z, u), R(z*,u*)) <€, provided only that
pz(2,2*)<mand py(u, u*) < 6.

THEOREM." Let (i) the iteration process z, ., = R(z,, &) converge to 2 for
exact input data u = & and for an arbitrary choice of the initial approxima-
tion z,eZ and (i1) the operator R(z, u) be continuous at every point except
possibly (2, t). Then there exists a function N = M) such that lims_, p,
(éN(éné) = 0.

Indeed, according to condition (i), for any € > 0 we can find z, and N such
that (a) p,(zy, 2)<€/2 and (b) z,#2 for n =0,1,...,N — 1, where {z,} is an
iteration sequence obtained for exact data. On the other hand, for the indicat-
ad NN, as a consequence of condition (i1) for the chosen € there exist for the

only that p,(zy 1,2n 1)<ny_ 1 and py(a,,) <S5, _, . By induction, for any
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k=N-—-1,...1, for given 55 _, we have p,(Z5 ,,2v_1)<7Tnx_ ., provided
only that p,Zy_, 1,28 r 1)<Wnv_x_1 and pylis, #)<dy_, ,. Since
pz (2o, 20) = 0 (by the conditions of the theorem), upon making the choice
S =min§,, 0<s<N — 1, we find pz(2y, 2)<p,(2yN, 2y) + pz(zN, 2) <€. Clearly
one can find a monotonic infinitesimal sequence {85} for which
limy . pz(Z25,2) = 0,since eis arbitrary. But then for arbitrary § > 0 and arbi-
trary s [ pyl(its, i) < 8] one can find M6) = max N, for which <84, such that
limg_, pz(Zns),2) = 0. The theorem is proved.

It is not hard to note that in the case of a linear operator A properties of
the discrepancy functional ensure that the first condition of the theorem is
fulfilled for well-developed iteration processes on the search for a local mini-
mum (coinciding with a global one.**">77 In Refs. 4 and 120 it was also estab-
lished that under the same circumstances a number of gradient methods (in
particular, the method of conjugate gradients’®) give rise to iteration opera-
tors that satisfy also the second condition of the theorem. More general re-
sults have also been obtained, in particular when the solution of the exact
equation is not unique. Thus if the operator A in Eq. (43) is linear, then the
classical iteration procedures with discontinuity according to any criterion
satistying the regularization principle are regularizing operators. In Ref. 120
are stated, in particular, certain modifications of the above-mentioned consis-
tency criteria n = n(5).

The situation is different for equations where the operator A is nonlin-
ear. In that case, asremarked in Sec. 2, the functional need not be convex, and
condition (1) of the theorem is violated so that the “adaptive” iteration opera-
tor loses, generally speaking, its regularizing properties.

In Sec. 2 it was shown, in particular, in what way the iteration operators
can be used in the framework of the general regularizing algorithm of A. N.
Tikhonov (for nonlinear A). The fullest study of the construction of regulariz-
ing iteration operators for “nonlinear” inverse problems was carried out 1n
Refs. 108, 120, and 132.

4. The solution of a control problem with the help of
regularizing operators

4.1. The control problem of induction tempering of a steel sample

As is well known,**%° the process of induction tempering of a steel part in-
cludes two basic stages: (a) heating of the part by induction Foucault currents
and (b) rapid cooling by a “cleansing” liquid stream. The thickness A of the
near-surface “tempered” layer (where the material underwent “martensite”
transformation® may be viewed as the effect of the tempering. The control-
ling factor consists of the pair of quantities z = {I, v}, where I = I(?) is the
amplitude of the current in the inductor during the tempering heating as a
function of time, v being some characteristic of the speed of cooling of the
sample layers.
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The solution of the problem of “purposeful” control of max A(z), where A
1s an implicitly specified functional, naturally divides into three steps, par-
ticularly since in the framework of existing mathematical-physics models v
also 1s not given explicitly and, moreover, depends on the law of heat ex-
change on the sample surface during the cooling, which is also unknown.®:'19

These three steps will be discussed concisely in the example of the axi-
symmetric model of tempering long cylindrical samples (0 <r< R,|z| < 4+ «)
by heating in a solenoidal inductor.**'>*

(1) The determination of the heat exchange law on the surface under
realistic conditions is the subject of the problem of interpretation of observa-
tions of the temperature field on the sample surface during cooling. The heat
exchange condition can be written in the form

kw2 = Haw —u),_ g
rir—r

where H(u) is the sought-for function of temperature and u* is the tempera-
ture of the cleansing stream. The solution of the nonlinear heat conductivity
equation with this condition and for a given initial temperature, obtained as a
result of heating, determines (implicitly) the nonlinear operator A(H)
=u|,_ r, whose values are compared with the measured surface temperature
it. The solution of the operator equation A(H) = & by means of some regulariz-
ing algorithm (see Sec. 3.2) permits the a priori determination of the heat
exchange law. It was shown in Ref. 157 that in spite of the influence of certain
fine physical effects (“bubbling,” skin effect), one may view the heat exchange
as obeying the “classical” law H(u) = H, = const. As a result one may view
the quantity H,, which depends on the properties of the cooling stream and its
speed, as one of the parameters that control the speed of cooling of the sample
layers.

(2) In the control problem of heat tempering one usually specifies the
desirable surface temperatures regime: u|,_ = @i(t). Since in this case the
heat exchange law on the surface is known,

R hw—u, g,

orl,—r

where h 1s a given constant and i, is the air temperature, then for an arbi-
trary given current I(t)e’“! in the inductor the temperature field in the sample
may be determined by solving a system of nonlinear Maxwell and heat con-
ductivity equations, analogous to Eq. (7).39** That determines the operator
A(l)=u|, _ p, whose values are compared with the desired i, and for the solu-
tion of the control problem one may also utilize the regularizing algorithm.®

(3) If I(t) 1s determined then a series of mathematical experiments on
“electronic computer tempering” can be realized. (a) The temperature field in
the sample is calculated during both tempering stages as a function of the
parameters of the heating (2) and cooling (H,) regimes."” (b) “Temperature

It was shown in Chap. 2 (Sec. 1) that for the simplest model (7) this problem turns out to be automatically
inserted into the correctness class.

"We note that for each given (4, H,) step (3) is carried out automatically following step (2).
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curves” for cooling in various layers u(r;, f) are compared (automatically by
the electronic computer)'®” with “thermokinetic diagrams” for phase transi-
tions''® and, as a result, the percent content of martensite after cooling in
each (ith) layer is established. (c) The thickness of the near-surface layer con-
taining the a priort specified percent of martensite, i.e., 4, is determined by
elementary means. The nomogram A = A(z, H,) obtained on the electronic
computer permits the selection of optimal parameters.

4.2. Consecutively stabilizing Tikhonov operator
One and the same regularizing operator, based on the evolution character of
the process, turned out to be effective for problems of the first and second step.
Suppose that the sought-for characteristic [1(¢) or H(u(t))] is 2(¢), te[¢,,t];
suppose further that 0(¢) i1s the measured (or prescribed) temperature of the
sample surface for which the allowed deviation (or measure of error) is
known: p; (0, v)<8, where v is either the exact (unique) value of the tempera-
ture, or that possible in the given physical process (allowable) effect.
We introduce on the segment [¢,, {] the grid t,<t, < - <t, =t (A,

= [¢t,_1,t,], n fixed) and the grid function {z,}. We set §, = §/\/n and
P2(0,0)= f " e — v(0]%de.

It is obvious that for given {z,} this defines on each of the segments A, the
operator A (z,); its values are obtained by solving either the mixed problem
for the heat conductivity equation with initial condition u (¢, ,,r)=u, ,
(t,_,, r), or the analogous problem for the system of heat conductivity and
Maxwell equations.

Let us consider the sequence of problems with respect to { = z,:

m1n(§ — Zs* 1)2, §€Zs = {§EE1: ,OSZ(AS(g),D)<52} )
s=12,..,n. (57)

It is obvious that for each s this posing is analogous to Eq. (21) (Chap. 2). It was
established in Refs. 44 and 161 that the inversion operator for Eq. (57) 1s
conditionally regularizing for control problems. Such a consecutively stabiliz-
ing operator' can be realized on the sequence of Gauss—Newton iterations
(Sec. 2), minimizing the discrepancy p2(A,(£), 0) with natural discontinuity in
the quantity &2.

4.3. Some results on solutions of tempering control problems

One of the tempering heating regimes requires that the sample surface tem-
perature be rapidly raised to u (above the temperature of austenite transi-
tions), and then held at a constant level for a longer or shorter time interval
(Fig. 10); the latter is called the “isothermal holding time” of the surface. In
this case u; may be viewed as the controlling parameter.

'In Refs. 39, 44, and 157 it is called “'stepwise.”
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Figure10. R =20mm, f,.,, = 4sec, U.,, = 850 °C (the numberslabeling the curves refer to Hy in
kcal/m2 hour deg).

In Fig. 10 is shown a nomogram of the dependence of the layer thickness
A, containing 100% of martensite, on the duration of the isothermal holding
time, for various values of H,.%?-'>’

It turns out to be possible to select uniquely an optimal (for given other
parameters) heating regime and correspondingly reduce the tempering time.
As was noted in Ref. 157, an increase in excess of 10% was made possible in
equipment productivity by incorporation of these results in manufacturing.

We note that the behavior of tempering characteristic indicated in Fig.
10 has a natural physical explanation. It is the result of interaction between
the heating currents during the cooling stage: the “cooling” (from the surface)
and the heating (from the deep layers of the sample, previously heated to
higher temperatures for sufficiently long holding time). Such an effect was
first discovered as a result of mathematical modeling of the process carried
out in Refs. 39, 44, and 157.

The characteristic behavior of the current amplitude, obtained in solving
second-stage problems, 1s shown 1n Fig. 11. This information allows one to
control the heating stages appropriately.

The results quoted in the present paragraph testify to the fact that use of
concepts of regularization theory in the posing and solving of inverse prob-
lems permits the solution of actual current problems: the problem of automa-
tization of the analysis of data from a physical experiment and the automati-
zation of the control of technological processes.

5. The solution of certain seismic data interpretation
problems with the help of regularizing operators

In the solution of every concrete interpretation problem, from the multitude
of RO one is chosen or constructed anew, corresponding to the actually exist-



The stability problem 85

XX1072 a/mm
3}

1 |
20 40 t,°C

Figure 11

ing information about the solution. We consider the various possibilities in-
volved in this choice for the example of seismic problems.

In seismology one studies the structure of the bowels of the Earth from
data resulting from observations on the Earth’s surface of elastic waves
caused by earthquakes or by artificial sources (seismic prospecting). Seismic
waves of one type or another,'** whose formation was influenced by deep-
lying structures, carry information about them.

5.1. Interpretation of observations on surface seismic waves

Of the two types of surface waves (Rayleigh and Lyav), distinguished by the
character of vibration and polarization, we shall consider for clarity the lat-
ter, confining ourselves—as in Chap. 3—to the plane-layered model of the
medium. The interpretation problem consists of the following: to determine
the effective parameters of the elastic-density section (n, p) (see Chap. 3, Sec.
2.5) from that extracted from observations “dispersion curve” u=¢é(w) of the
fundamental tone of the Lyav wave.

It 1s obvious that the conditions (39) uniquely determine the operator of
direct correspondence Az=c(w, n, p)—the principal eigenvalue of the bound-
ary-value problem (39), which can be calculated for each pair (n, p) by stan-
dard algorithms on electronic computers.*® Consequently, the fact that this
operator is only specified implicitly does not create an obstacle to the solution
of the inverse problem corresponding to the conditional operator equation
clw, n,p)=cw), O<w< x.

Upon taking into account the character of the dispersed data (the ran-
dom scatter of points about some mean with noticeable dispersion) and, on the
other hand, the continuous dependence on w of the “left-hand side” of the
equation, it becomes obvious that the posed problem has no solution. How-
ever, it is known that the phase velocity depends only weakly on certain
“passive”!’® parameters, and for an unknown number of layers with a priort
specified sufficiently large n the phase velocity for the true structure (with a
smaller number of layers) is altogether independent of any of the values of the
layer thickness d,. Consequently, the operator equation is “poorly condition-
ed,” and to small variations ¢(w) may correspond quite large variations of the
sought-for parameters. Upon considering the fact that physically reasonable
values for medium parameters lie in a rather narrow interval, it becomes
clear that the problem is unstable in practice.
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For some time a “visual” method of selection has been used for the inter-
pretation of dispersion data, which consists of correlating “experimental”
dispersion curves ¢(w) with calculated “templates,” based on peculiarities of
the behavior of the dispersion curves depending on the structure character.
To automatize the selection with the help of an electronic computer the inter-
pretation problem must be well-posed, for which it is necessary to choose a
“regularization strategy” from a number of possible variants. Taking into
account the discrete character of the input information é¢(w)= { ¢, =¢(w;),1 = 1,
2, ...,N|, we introduce in the role of p(c, 7) the mean-square deviation on the
specified grid of values {w, . It is clear that the problem of searching for the
minimum of this function (the least-squares method) does not ensure the
automatization of the selection in view of the instability noted above.

The following aspects of regularization are possible (Chap. 2).

(1) Insertion of the problem into the correctness class by means of exclu-
sion of the “passive” parameters for a known number of layers n. Useful
information may be lost if the accuracy of the input data is sufficiently high.

(2) Posing the quasi-solution problem by extracting the compactum Z by
explicit restrictions on the parameters: | p,|<M, i=1,2,.. ., mforknownn.
As usual the compactum should be chosen felicitously, in the sense of consis-
tency with the accuracy 6 of the input data. Since the operator ¢(p) is defined
algorithmically, the solution of such a problem may be obtained, for example,
by direct tabulation of the function p*(c, ¢) on the specified grid in # with
automatic extraction of regions where p*<5*, and exact location of the mini-
mum in each of these regions.'®

(3) Use of the general Tikhonov RO by introducing the stabilizer Q(p),
based on considerations of “similarity’”’ between the sought-for structure and
some specified one (see footnote h of Chap. 2). n plays a role of a parameter and
may be quite arbitrary. In that case we arrive at the problem of minimization
of the smoothing functional (22), solvable by standard methods for each «,
with a and § correlated either by discrepancy, p*(c(w, p%), ¢)<5%, p* being the
minimizing element, or by the quasi-optimal method.

The solution of the interpretation problem of data on Rayleigh waves is
in principle the same as above. As an example we consider some data for the
New York-Pennsylvania region. The values of p, obtained with the help of
RO,*! are as follows: p = {d, = 36.03 km, b, = 3.61 km/s, p' = 3.07 g/cm?,
b, = 4.68 km/s|. Thisresult is in good agreement with data obtained by other
geophysical methods for these parameters, when known. On the other hand,
the least-squares method without regularization gives the following “section
fragment”'”®. p = {d, = 46.5, b, = 3.70, p, = 1.34, b, = 4.29}. The erroneous
value of p,; stands out.

The mathematical experiment described in Ref. 41 shows that use of the
same algorithm, for input data of sufficiently high accuracy, makes possible
the unique determination, along with the physical parameters, of the number
of layers n; by choosing n unquestionably larger than the true value, we ar-
rive at a structure with “coinciding” parameter values in certain neighboring
layers.
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5.2. The inverse kinematic seismic problem

Conclusions about the structure of the Earth’s bowels can be drawn from the
arrival time at various points on the Earth’s surface S of seismic waves, pro-
duced by sources whose location and instant of activity are known: ¢t = #(M),
MeS. Such a dependence is called a “hodograph.” The sought-for quantities
could be the location and form of the boundary dividing two media with differ-
ing “speed” (see Chap. 3) characteristics and the values of the latter. This
interpretation problem, called “kinematic,” 1s discussed in the framework of
the “ray” approximation neglecting diffraction of the seismic waves by
“small” (~ 300 m) inhomogeneities, and a large number of papers have been
devoted to it (see Refs. 27, 86, and 122).

We consider for clarity a plane model of the medium, characterized by
the function v({) which determines the depth dependence of the speed of vol-
ume waves (for example, shear: v=5). We shall assume that in the observa-
tion field signals have been isolated corresponding to identically formed rays,
for example refracted, not containing segments parallel to the Earth’s sur-
face. Then for arbitrary specified v = v({), the seismic ray originating at the
point Z (0, 0) and ending at the point £ (x, 0) can be described by the solution
of the following boundary-value problem, resulting from the eikonal equation
for the front of the seismic wave. Let s = L7 be the length of the arc along the
ray q = ({(r),{(7)) and L its full length, let t = t(7) be the time of propagation of
the seismic wave along the ray, u =v~'. Then (uq) = |q'|*Vu, ¢ = |q|u
0<7<1),q0) = {0,0}, q(1) = {x, 0},£(0) = 0. Methods for solution of bound-
ary-value problems are well developed, and consequently for each point x on
the surface we have defined an operator for the direct correspondence Av
={(1)=T|[x,v], where T 1s the time of propagation of the signal from the
source to the chosen point on the surface.

It is known®’ that the existence of deep-down waveguides—layers with
lowered speed—results in an “exact” hodograph 7{x) having a nonunique
speed section corresponding to it. However, in problems of regional seismic
prospecting it can be assumed that the speed v({) is a monotonically increas-
ing function of depth, and then the solution of the operator equation Av = T'is
unique. It is natural, therefore, to solve the inverse kinematic problem for
seismic prospecting purposes on the manifold of monotonic functions.

This already defines a possible regularization strategy since the mani-
fold of monotonic and bounded functions is compact on the manifold of contin-
uous ones. Taking into account the fact that the observations are carried out
on a discrete grid of values x, we introduce the mean-square measure of devi-
ation p(T, T) on this grid. Suppose that an upper estimate R for v({) and the
ray penetration depth H are known in the given region. Then the speed sec-
tion of interest can be determined’ as the quasi-solution

u( &):inf pX(Av,T), veV,

where V is the manifold of functions monotonically increasing with depth,
defined on [0, H], with values in [0, R]. Furthermore it is immaterial whether
v(£) is a continuous or piecewide continuous function of the depth. It was
shown in Ref. 7, in particular, that for sufficiently high accuracy of the input
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data it is possible to reconstruct quite precisely by this method speed sections
of various types also in the case when the coordinates x, are specified with
some error.

It is understood that if we are interested in some averaged characteristic,
a priori expressible in the form of some smooth function, then the correspond-
ing stabilizer may be introduced and use can be made, for example, of the
general parametric regularizing operator (Sec. 1). In both cases the choice of
the initial approximation for the iterational minimization process, unavoid-
able in view of the nonlinearity of the problem, is immaterial. The corre-
sponding formulations are also easily generalized to the case when v depends
on a larger number of variables.

The special a priori parametrization of the speed section, for example
representing the dependence v(M) in the form of a polynomial, requires either
the imposition of quantitative restrictions on each of the parameters (coeffi-
cients of the polynomial), and then we arrive again at the problem with quasi-
solution, or the development of an adaptive iterational regularizing operator.
Naturally, in the absence of information on monotonicity, for even the “aver-
age’’ section, for the problem to be well-posed, in view of nonuniqueness of the
solution, the introduction of additional well-founded conditions on the choice
of approximation i1s unavoidable.

The examples discussed in this paragraph and above testify to the wide
range of possibilities for the utilization of the regularization concept at the
level of data interpretation. It i1s understood that this does not exhaust the
problem of constructing automated systems for data analysis by electronic
calculators, since, as is easily noted on these examples, there exist the prob-
lems of (a) primary analysis of the observational data, giving rise to the inter-
preted characteristic of the observation field, and (b) supply of a priori infor-
mation about the object under study, which can be done by means of complex
interpretation of observational data of various nature.

Nevertheless, the use of RO is an indispensable element of any automat-
ed analysis system.
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