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Preface

The intent of this book is to provide an elementary and geometric intro-
duction to differential geometry. We adopt an approach that is elementary
enough for undergraduates but still both conveys the spirit of modern differ-
ential geometry and prepares the student for a more advanced course on the
subject. In particular, we have given significant emphasis to global considera-
tions while providing the basic classical results on curves and surfaces. In
these global results we have been guided in part by the beautiful article of
Chern [1967]. This book is an outgrowth of courses taught by the first author
at Ithaca College and by both authors at Southern Illinois University over a
period of six years.

In differential geometry there is calculus and there is geometry, neither
of which should be slighted. All too often the geometry is hidden in either
machinery, abstraction, or symbolism. Furthermore, an unfortunate thing has
happened to the subject in the last ten years—it has been relegated to the
graduate curriculum. There is no question that differential geometry (or any
subject for that matter) can be done more efficiently if the student has the
background that every second year graduate student has, but to wait until
graduate school to teach the subject is doing an injustice to both the student

xi



Xii Preface

and the subject. We hope that this book will aid in the return of differential
geometry to the undergraduate curriculum and that it can be taught by non-
specialists, as well as by specialists.

A traditional undergraduate course in classical differential geometry
usually hides the geometry in a myriad of symbols such as I',;* or R/,,. We
have minimized this difficulty by making use of linear algebra throughout.
Modern vector space terminology can and should be used effectively to make
the material more comprehensible to the students. Furthermore, we find that
the students are very excited about using the linear algebra they have just
learned in another course. They view differential geometry as an application
of linear algebra, which it is. After the students understand the geometric
content of a result (by use of linear algebra) the result is then expressed in
classical notation. This enables the reader to consult texts in classical differ-
ential geometry without having to develop a whole new vocabulary.

In the advanced approach, which is usually restricted to the graduate
level, the geometry is hidden in the machinery and abstraction. We have
avoided topics which require building complicated machinery, such as differ-
ential forms or cohomology. We have resisted the temptation to prove the
most general results possible if these would require a lot of machinery to
state or to prove. In particular, for the first six chapters we stay in R3. In order
to avoid the trap of abstraction we include many examples—not only of the
definitions but also of the theorems because it is usually much easier to
follow a proof with a firm example in mind.

When first introduced to differential geometry, individuals often have
trouble reconciling the two views of the subject—classical and modern (mani-
folds). It is sometimes hard to tell what the connection (no pun intended) is
between the two approaches. We attempt to remedy this situation in the last
chapter. There we explain how the earlier material motivates the definitions
of manifold, tangent space, Riemannian metric, etc. and give a brief intro-
duction to the modern terminology. We hope that having finished this
chapter the reader will have an easier transition to books such as Hicks [1965],
Boothby [1975], Warner [1971], Matsushima [1972], or Kobayashi and
Nomizu [1963].

There is only one way to learn mathematics and that is to get your hands
dirty working problems. Differential geometry is no exception. We have
included more than 350 problems. The easier problems are usually at the
beginning of the problem sets. Those whose results are used in the text are
marked with an asterisk (*). There is one exception to this rule—in Chapters
1-6 we have not starred any problems which would be needed in Chapter 7.
It should be noted that an asterisk does not denote a hard problem: we have
reserved the dagger (1) for this.

In Chapter 1 we present the material which is the necessary background



for the book. Most of it is review and may be emphasized as needed. We have
found that our students are generally weak in describing lines and planes in
vector notation. The material on eigenvalues and linear transformations is
not used until Chapter 4 and may be delayed until then.

Chapter 2 develops the basic local theory of space curves. The Frenet-
Serret Theorem which expresses the derivative of a geometrically chosen
basis of R? in terms of itself is proved, and many important corollaries are
derived. We include the Fundamental Theorem of Curves, showing the depen-
dence of differential geometry on the theory of ordinary differential equations.
Several classical topics are covered in the exercises, including sphere curves,
contact, Bertrand curves, evolutes, and involutes.

In Chapter 3 we give our first sampling of global theorems. Here we
stay in the plane and cover the Rotation Index Theorem of Hopf, the Isoperi-
metric Inequality, the Four-Vertex Theorem, and curves of constant width.
We feel that this is a basic chapter because global differential geometry is a
very important and popular subject which is all too often slighted in a first
course. It is certainly easier to prove only local results. However, this really
cheats the student who thereby misses one of the most fascinating parts of
the subject and is robbed of the insight gained by examining results in the
plane. \

Chapter 4 presents the basics of local surface theory and serves as the
motivation for the ideas of Chapter 7. We study surfaces in R? and their first
and second fundamental forms. Geodesics and their length-minimizing prop-
erties are discussed. Next comes an investigation of curvature (both Gaussian
and mean), its relationship to the curvature of curves on the surface, and
Gauss’s Theorema Egregium. The chapter ends with optional material on
isometries, the Fundamental Theorem of Surfaces, and surfaces of constant

_curvature. Again, several classical topics are covered in the exercises, includ-
ing ruled surfaces, developable surfaces, and asymptotic curves.

In Chapter 5 we return to global notions, this time for space curves.
Using the concepts of geodesics on the sphere and integration on a surface,
we prove Fenchel’s Theorem about the total curvature of closed space curves
and the Fary-Milnor Theorem about the total curvature of a knot. We also
include the nonstandard topic of total torsion of a closed space curve.

Chapter 6 gives various global results for surfaces. We start off with
Meusnier’s Theorem which states that a compact surface, all of whose points
are umbilics, is a sphere. We then go on to the Gauss-Bonnet Formula, which
relates the curvature of a region with the curvature of its boundary, and the
Gauss-Bonnet Theorem, which gives the total curvature of a compact surface.
As applications of the Gauss-Bonnet Theorem we prove theorems due to
Jacobi, Hadamard, and Poincaré.

Motivated by the first six chapters, we introduce in Chapter 7 the basic



definitions of manifold theory and Riemannian geometry. This chapter is
written in an open-ended fashion, referring the reader to other books for
details.

A brief historical summary and bibliography are given in the appendix.
References to the bibliography are in the form of a name followed by a date
in brackets, such as Chern [1967].

The first four chapters require only a knowledge of calculus and finite-
dimensional vector spaces (mainly bases and linear independence). Chapter 5
has no additional prerequisites, but the material is more difficult. For Chapter
6 it would be helpful if the reader is familiar with the topology of R3. In par-
ticular, the reader should be familiar with the notion of the limit of a sequence
of points in R3. We define compact as closed and bounded. In Chapter 7 it
would be useful if the reader knew some metric space terminology, such as
open sets and continuity. A knowledge of the inverse and implicit function
theorems would also make the going a bit easier.

Several different courses can be made from this book. A one quarter
undergraduate course could be based on Chapters 1, 2, and 3 or 4; a one
semester course on 1, 2, 3, 4 (or more, depending on the pace of the course);
a two quarter course could cover the first six chapters; the entire book could
be used for a year course if the last chapter is supplemented. A graduate
course could start with Chapters 2, 4, and 7 and then go on to a book like
Hicks [1965], Boothby [1975], Matsushima [1972], or Warner [1971].

The following table shows the dependence of the various chapters.

W e N ] =
>
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We would like to thank Sharon Champion for her magnificent job typing
the manuscript, from the first set of class notes to the final draft. Her patience
and attention to detail through the jth rewrite of the ith author (i =1 or 2,
1 <j < oo) were truly amazing. We thank Marjorie Parker for her help with
the proofreading. Finally, we thank Barbara Blum of the Prentice-Hall edi-
torial staff for her help in making this book a reality.

Carbondale, Illinois RICHARD S. MILLMAN
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Preliminaries

Differential geometry has two primary tools—linear algebra and cal-
culus. In this text we assume that the reader is familiar with both. We shall
recall the basic facts of linear algebra and vector calculus and urge the reader
to review with care anything which is unfamiliar.

1-1. VECTOR SPACES

DEFINITION. A real vector space is a set V, whose elements are called vectors,
together with two binary operations +: VX V—Vand -: R X V—V,
called addition and scalar multiplication, which satisfy the following eight
axioms for allu,v,w € Vand r, s € R:

@Qut+v=v-+u;

®ut+ v+ w=+v)+w;

(c) there is an element 0 in ¥ such that 0 + u = u;
(d) (rs)-u=r-(s-w);

@© (r+s)yu=r-u+s-u;

@ rr@wt+v)=ru+rev;

(g) 0-u = 0; and

(h) lcu=u.

We shall normally omit the multiplication symbol -



2 Preliminaries Chap. 1

ExaMPLE 1.1. Ordinary three-dimensional space, R?, is a real vector space.

ExaAMPLE 1.2. The set of all polynomials with real coefficients, R[x], is a real
vector space.

DEFINITION. A set {v,|i € I} < V is linearly independent if whenever a finite
linear combination Y] a'v, is zero, then each &' must also be zero. If it is
possible to find a finite linear combination Y’ a’'v, = 0 with some a* = 0,
then the set is linearly dependent.

DEFINITION. A subset S = V spans V if for each vector v € V there are
vectors v, V,,...,V, in § and real numbers a!, a?,...,a" such that
v = Y, a'v,. (The number of elements used (“r”’) may depend on v.)

DEFINITION. A basis of a vector space V is a linearly independent spanning
set.

THeOREM 1.3. If V is a vector space, then V has a basis. Any two bases have
the same number of elements, or all have infinitely many elements. This
number is called the dimension of V.

ExAMPLE 1.4. R? has dimension 3.
ExaMPLE 1.5. R[x] has infinite dimension. {1, x, x2, ..., x",...} is a basis.

If {v;|i € I} is a basis of V, then every vector v € V¥ can be uniquely
written as a finite sum v = Y a'v,. The numbers &’ are called the components
of v with respect to the given basis.

DEFINITION. An inner product on a vector space V is a function { , >:
V X V— Rsuch that for allu,v,w € Vand r,s € R:
(@) <, v) = v, wp;
(b) <u, rv + sw) = rdu, v) + s{u, wy; and
(©) <u,u) > 0 with equality if and only if u = 0.

ExXAMPLE 1.6. In R? we may use the ordinary dot product:

(@', a2, @), (b, b2, %)) = a'b' + a*b? + a*b3.

ExAMPLE 1.7. In R[x] we may set { p(x), g(x)> = [, p(x)q(x) dx. See Problem
1.4.

DErFINITION. If ¥ has an inner product and v € V, the length of v is

MESVZCAS



Asec. 1-1 Vector Spaces 3

LemMA 1.8 (Cauchy-Schwarz Inequality). If u, v € V, then [{u,v>| < |u]|v|.
Furthermore, |{u, v)>| = |u||v| if and only if u and v are linearly depen-
dent. A

Proof: Problem 1.5. ||

This lemma tells us that —1 < {u, vD/|u||v| < | (unless |u||v| = 0, in
which case <{u, v> = 0 also). Hence an angle § may be defined by the formula

W, v

cos 8 = .
[ul]v]

@, which is defined only up to sign, will be called the angle between u and v.
If the ordinary dot product is used in R?, then this concept of an angle coin-
cides with the usual notion of an angle in the plane. Note that

{u, v)> = |uj|v|cos @

holds if one of the vectors is zero, even though 8 is not defined then.
DEFINITION. u is orthogonal (or perpendicular) to v if (u, v> = 0.
ExaMmpLE 1.9. In R3, (1, 2, 3) is perpendicular to (4, —5, 2).
ExAMPLE 1.10. In Example 1.7, x is perpendicular to (x* + 1).

THreOREM 1.11. If V has dimension n and an inner product, then there exists
a basis {v;, v,,...,v,} such that |v,| = 1 and v, is perpendicular to v,
whenever i £ j. Such a basis is called orthonormal.

This is proved by showing how to create an orthonormal basis from any
given basis by a process called the Gram-Schmidt orthogonalization. See a
linear algebra text such as Hoffman and Kunze [1971] for details.

Suppose ¥V has a basis {u;, u,,...,u,} and an inner product { , >.
The inner product may be associated with a matrix in the following manner.
Let g,; = <u,, u,>. (g,) is a positive definite symmetric matrix which repre-
sents  , > with respect to the given basis. If u = 3] a'w,and v = Y b’u,,
then (u, v> = Y a'b’g,,.

Note that if {u,, w,, ..., u,} is orthonormal, then (g;,) = (J,;) is the
identity matrix. The Kronecker symbol d,; (and its variations 8/, &', 6") is
defined by

(1-1) 5, — 1 {fz =]
0 if i #J.
If {v,, v,, ..., v,} is another basis of ¥, we have u;, = Y a*v,. The matrix
representing ( , > with respect to the basis {v;, v,,...,V,} is given by

8up = {V,, Vp)>. Then g, = <u, u> = ¥ a%,a*,3,, or
(1'2) (gij) = (a%) (£.p) @ ).
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This equation shows the effect of a change of basis on the matrix which
represents the inner product.

PROBLEMS

1.1. Prove that the set of polynomials of degree less than or equal to n forms
a real vector space. What is the dimension ? Do the polynomials whose
degree is exactly n form a vector space?

1.2. Prove that D; = {f: R — R|fis differentiable at x = 5} is a real vector
space. What is the dimension of D,?

1.3. Represent the standard inner product on R? (Example 1.6) with respect
to the basis {(1, 0, 1), (0, 1, 1), (1, —2, 3)}.

1.4. Prove that { , > as defined in Example 1.7 is an inner product.

*1.5. Prove Lemma 1.8. (Hint: Let g(t) = <u + tv, u 4 tv) > 0. How many
real roots does g have ? What does the quadratic formula say ?)

1-2. LINEAR TRANSFORMATIONS AND
EIGENVECTORS

DEFINITION. A linear transformation is a function T : ¥ — W of vector spaces
such that T(av +- bw) = aT(v) 4 bT(w) for all a,b € R and v,w € V.
An isomorphism is a one-to-one onto linear transformation.

If T:V— W is a linear transformation, we ma?y associate a matrix
with it. Let {v;, v,, ..., v,} be a basis of V and let {w,, w,, ..., w,} be a basis
of W. Then there are mn real numbers T, such that T(v;)) = X T, w,. We say
that (T7)) represents T with respect to the given bases. (If V' =W, it is cus-
tomary to use the same basis for V'and W.) If v = 3] a’v, € V, then

T(v) = Z (Z Tij a)w,.
Thus if we view v as a column vector, the i in 77, is the row index and the j
is the column index.

Suppose T:¥V — V is a linear transformation and ¥ has two bases
{uy,u,,...,u}and {v,,v,,...,v,} related by u, = >, a*v,. If (T",) represents
T with respect to the w, and (T" ») represents T with respect to the v,, we have
2Thav, = X The, = T) = T(X a¥;v) = 3 &, T(vp) = X af, T*,v,.
Hence Z Tia% = Y a?;T%, ot (a*)(T*) = (T*,)(a?), or

2-1) (T) = (@) '(T*p)(@*)).
This equation shows the effect of a change of basis on the matrix which
represents a linear transformation.
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DErFINITION. Let T: ¥V — V be a linear transformation. A real number A is
an eigenvalue of T if there is a nonzero vector v such that T(v) = Av. v
is called an eigenvector of T corresponding to A.

If (T¢,) represents T, the eigenvalues of T are the real solutions of the
polynomial equation det (T¢; — x&°)) = 0. Then if the dimension of V is n,
there are at most n eigenvalues (counting multiplicity). There may be fewer,
since some of the solutions might be complex but not real. Once the eigen-
values are known, the eigenvectors are found by solving appropriate linear
equations.

ExampLE 2.1. Let T: R? — R? be represented with respect to the standard
4
basis {(1, 0), (0, 1)/} by the matrix (i )

-3
3—12 4
=B—AN(=3—2)—16
4 _3_1’( ) A)
=—94+12—16
=2 —25
= (A — 5@+ 5.

4
The eigenvalues are therefore 5 and —5. (3 )(x) _ S(x) has

2
( ) as one solution. (3 4)(3:) = —5(x> has ( 1) as one solu-
1 4 —3/\y y —2

AN . . Iy .
tion. Hence ( | ) is an eigenvector corresponding to 5 and ( ) is one

corresponding to —5.

PROBLEMS

3
2.1. In Example 2.1 we have T represented by (4

basis {(1, 0), (0, 1)} of R2,
(a) Represent T with respect to the basis { (I, [}/, (I, —1)'}.
(b) Represent T with respect to the basis {(2, )/, (1,—-2)'} of cigenvectors.

4
3) with respect to the

2.2, Find the eigenvalues and eigenvectors of T : R? - R? given by the matrix

(2 )
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1-3. ORIENTATION AND CROSS PRODUCTS

Let {u;,u,,...,w}and {v,v,,...,v,} be two ordered bases of V and
define a matrix (a')) by v; = 3 a';u,.

DErFINITION. The ordered bases {u,, u,, ..., w,} and {v,,v,,...,v,} give the
same orientation to V if det (a’;) > 0. They give opposite orientations if
det (&';) < 0.

ExampLE 3.1. Let{(1,0,0), (0, 1,0), (0,0, D}and {(1,1,0), (1,0, —1), (2,1, 3)}

1 1 2
be two ordered bases of R3. Since (a')) =1 0 1| has determi-
0 —1 3

nant —4, these ordered bases give opposite orientations.

ExampLE 3.2. {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and {(1, 1, 0), (2, 1, 3), (1, 0, — 1)}
give the same orientation.

The basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)} of R? will be denoted {e,, e,, e,}.
Its orientation will be called right handed.

DEFINITION. If u = Y’ a'e; and v = D] b'e, are vectors in R?, the cross (or
vector) product of u and v is

u X v=(a*h® — a*b*)e, + (a*b* — a'b*)e, - (a'b? — a*b)e,.

By abuse of notation this may be written as

€ € €;
u X v=det]|a! a? at.
b! b? b3

LemmA 3.3. Letu,v,w € R?® and r € R. Then
(A uXv=—v X u;
(b) (ru) X v=r(u X v);
(© u x v =0if and only if u and v are dependent;
@@+ xw=@xw+(¥xXW);
(¢) u x v is perpendicular to both u and v under the usual dot product
of R? (Example 1.6);

(f) |u X v| = |u||v]| sin 8, where 8 is the angle between u and v;
(&) {u, v, u x v} gives a right handed orientation to R? if {u, v} is linearly
independent.

Proof: Problem 3.1. |}



Sec. 1-3 Orientation and Cross Products 7
LeMMA 3.4. Letu, v, w € R3. Then {(u X v), wp = {u, (v X w)).

Proof: Problem 3.2. |i

DEFINITION. The mixed (or triple) scalar product of u, v, w is

[u, v, w] = {(u X v), w).

It is important to remember that [u, v, w] is always a number and not a
vector.

LeMMA 3.5. |[u, v, w]| is the volume of the parallelopiped spanned by u, v, w.
(See Figure 1.1.)

FIGURE 11

Proof: Problem 3.3. |}

PROBLEMS

*3.1. Prove Lemma 3.3.
*3.2. Prove Lemma 3.4.

3.3. Prove Lemma 3.5.

3.4. Prove a x (b x ¢) = <a, ¢)b — (a, b)c.

*3.5. Let {a, b, ¢} be an orthonormal basis of R* with a x b = ¢. Prove
bXxc=aandc X a=nh.

3.6. Prove (a X b) x (¢ x d) = [a, b, d]c — [a, b, ¢]d.

3.7. Let u,, u,, uy, vy, v,, v, be six vectors in R3. Let a;; = {u, v,». Prove
det (a;;) = [uy, uy, ug]lvy, vy, v;].
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1-4. LINES, PLANES, AND SPHERES

We shall recall the vector equations of lines, planes, and spheres in R3.
See a standard calculus text such as Thomas [1968] for more details. Geo-
metrically, a straight line is determined by a point on the line and a vector
parallel to it. A plane is determined by a point on the plane and a vector
perpendicular to the plane. A sphere is determined by its center and its
radius.

DEerINITION. The /ine through x, € R? and parallel to v s 0 has equation
a(t) = X, + tv. (See Figure 1.2.)

tv=a(n)—x,

,//a(z)

Xo

FIGURE 1.2
If we write X, = (X,, Yo, Zo), v = (v', v, v°) and a(t) = (x(1), (1), z(2)),
then the definition gives
x(t) — x, = v, @) —y, = 12, z(t) — z, = 3.

Assuming that o' 5« 0 for i = 1, 2, 3, these equations yield the classical defini-
tion of a straight line after solving each equality for ¢ and setting these
quantities equal:

X~ X _ Y=V _ 27 Zo,
! v? 3

where we have suppressed the ¢ from the notation as is common classically.
If x, and x, are distinct points in R® both of which lie on a line /, then
the vector x, — X, is parallel to /. This observation proves:

LeEMMA 4.1. The line through x, and x, in R? has equation

at) = x; + t(x, — X,).
(See Figure 1.3.)
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a(t)—x ;= t(X,—X)

a(?) X,—X,

X,—X
FIGURE 1.3
DEerINITION. The plane through x, perpendicular to n = 0 has equation
(X — Xg,my = 0.
(See Figure 1.4.)

FIGURE 1.4

The following lemma is clear from Figure 1.5 since u X v is perpendicular
to the desired plane.

FIGURE 1.5 v
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LEMMA 4.2, If {u, v} is linearly independent, the plane through x, parallel to
both u and v has equation (x — X,,u X v)> = 0.

DEFINITION. The sphere in R?® with center m and radius » > 0 has equation
X —m,x —my =r2

If m = (a, b, ¢) and x = (x, y, z), then this definition is the familiar
formula

=@+ —b+(—or=r

PROBLEMS

4.1. Leta= (2,1, —3),b = (1,0, 1), c = (0, —1, 3). What is the equation of
(a) the line through a parallel to b;
(b) the line through b and c;
(c) the plane through b perpendicular to a;
(d) the plane through c parallel to a and b;
(e) the sphere with center a and radius 2?

1-5. VECTOR CALCULUS

If abstract vector spaces are unfamiliar, the reader may assume that
V =R3 below. Let f: R — V, where V is a real vector space. If {v,,v,, ..., V,}
is a basis of V, then f(t) = 3 f'(¢)v,. If the component functions f*(f) are
differentiable or integrable, we may differentiate or integrate f component-
wise:

and
L” ftydt =3 (j" 140 dt)v,.

We should check that these definitions do not depend on the choice of
basis for V. However, this is a simple consequence of the linear properties
of d( )/dt and [2( )drand is left to the reader.

Similarly if f is a vector-valued function of several variables, we may
take partial derivatives or multiple integrals.

LeEmMMA 5.1. Let f,g: R — V and suppose that ¥ has an inner product
{ , >.Then

ate=(Gn+ ()

In particular, if | f| is constant then df/dt is perpendicular to f.
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Proof: Problem 5.1. |}

LeMMA 5.2. Let f, g: R — R®. Then

df dg

d _
;{;(fxg) dtxg+fxdt

Proof: Problem 5.2. |

DEFINITION. f: R — R is of class C* if all derivatives up through order k
exist and are continuous. f: R” — R is of class C* if all its (mixed)
partial derivatives of order k or less exist and are continuous. A vector-
valued function is of class C* if all its components with respect to a given
basis are of class C*.

Note that if fis of class C* it is also of class C*~!.

Rather than continually worrying about what class a differentiable func-
tion belongs to, we shall usually assume it is of class C*. We shall point out
those cases where higher class is needed or lower class is sufficient.

Finally, before we start our study of curves, we want to remind you what
form the chain rule for differentiation takes. Suppose that x is a function of
several variables u!, u?%, ..., u" and that the u' are functions of variables
v, 9% ..., v" Then

ax 2, 0x 0u’
;-1 305 = 2 95 9o’ o=12,...,m

Note that we are writing the coefficients on the right of the vectors
instead of the left as would be usual in linear algebra. This is done so that
Equations (5-1) look more like the chain rule from calculus.

Special cases that we shall often use arise when n = m = 2 as in Equa-

vtion (5-2), or n = 2 and m = 1, as in Equation (5-3).

_ Ox  Ox du'!  Ox du?
(52) = dwar T arae  *=b2

a9 @ TR dr

(5-3) dx _ ox du' | 0x du?

PROBLEMS

*S5.1. Prove Lemma 5.1.

: *5.2. Prove Lemma 5.2.

ﬁ“
!

Set A—Hyperbolic Functions

For some of the examples and problems in this book it will be necessary

10 use certain transcendental functions which behave in many ways like the
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trigonometric functions. Since they are not always covered in a calculus course
we briefly cover them in this problem set. The hyperbolic sine function is the
function sinh : R — R given by sinh(t) = (¢ — e7*)/2. The hyperbolic cosine
Sfunction is the function cosh : R — R given by cosh(z) = (¢ + ¢~*)/2. For aid
in reading, sinh is pronounced “cinch” while “cosh” rhymes with “gosh.”

5.3.

54.
5.5.

5.6.

5.7.

Prove that for any ¢ € R, cosh?(¢) — sinh?(¢) = 1. (Since x? — y2 =1
is a hyperbola, this gives the origin of the term “hyperbolic function.”
Also, you should think about the analogy between this equation and
cos? @ + sin2f = 1.)

Prove that cosh’(f) = sinh(¢), and sinh’(t) = cbsh(t) for all t € R.

Using Problem 5.4 show that sinh is one-to-one. Show that cosh is one-
to-one when restricted to [0, o0). Show also that sinh is onto the reals
whereas cosh(R) = [1, o). (This means we may define the appropriate
inverse function.)

Show that the general solution to the differential equation f"' = a?fis
given by f(¢) = A cosh(at) + B sinh(at) where 4 and B are real con-
stants. (If you cannot show this is the general solution, at least show
that it satisfies the differential equation.)

Compute Idx/J I 4+ x2 by means of the substitution x = sinh(z).
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Local Curve Theory

We shall begin our study of differential geometry with an investigation
of curves in three-dimensional Euclidean space, R3. This is a good place to
start for four reasons: (1) since curves in R? are easy to draw and visualize,
we can develop some geometric insight into the subject by looking at exam-
ples; (2) it is a very complete subject—the Frenet-Serret apparatus of a curve
completely determines the local geometry of curves and gives a complete set
of invariants for the problem of determining whether two curves are the
same; (3) the theory of curves will introduce us to some techniques that are
the mainstay of modern differential geometry (e.g., linear algebra); (4) we
shall base our study of surfaces in Chapter 4 on the behavior of curves on the
surfaces.

The history of the theory of curves (and of all differential geometry) is a
fascinating one. Suffice it to say at this point that the many results in the
theory of curves in R®, which we discuss in this chapter, were initiated by
G. Monge (1746-1818) and his school (Meusnier, Lancret, and Dupin). Our
approach is due to G. Darboux (1842-1917) whose idea of moving frames
unified a great deal of the classical theory of curves. He accomplished this
in 1887-1896. It is interesting to note that the approach to the theory of sur-
faces that we will take in Chapter 4 is that of K. Gauss in 1827. This anomaly
of dates is not due to the fact that the curve theory is more difficult than the

13
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theory of surfaces (just the opposite is true) but rather to the pervasive genius
of Gauss. The history of the theory of curves is discussed more completely in
the historical notes at the end of this book.

There are two ways to think of curves. The first is as a geometric set of
points, or locus. When this is the case, we refer to a geometric curve, or the
geometric shape of the curve. Intuitively we are thinking of a curve as the path
traced out by a particle moving in R3. The second way of thinking of a curve
is as a function of some parameter, say ¢. Intuitively it is not always enough
to know where a particle went—we also want to know when it got there.
(The parameter ¢ is often thought of as time.) It is necessary to view curves the
second way if we are to apply the techniques of calculus to describe the
geometric behavior of a curve. This means that we must pay careful attention
to how the curve is parametrized (e.g., if you change the parameter you also
change the velocity vector field to the curve). However, we are also interested
in geometric properties of curves (e.g., arc length, tangent vector field). These
should not depend on the way a curve is parametrized as a function but only
on the image set of the function, that is, only on the geometric shape. Thus
we shall ask whether our constructions and descriptions depend upon the
parametrizations.

In Section 2-1 we define and give examples of parametrized curves. In
Section 2-2 we introduce a particularly useful parametrization—that by arc
length. Section 2-3 develops the Frenet-Serret apparatus which is the basic
tool in the study of curves. It consists of three vector fields along the given
curve (the tangent T, the normal N, and the binormal B) and two scalar-
valued functions (the curvature x and the tarsion 7). The Frenet-Serret
Theorem is proved in the fourth section. This theorem expresses the deriva-
tives of T, N, and B in terms of T, N, and B. We then make several applica-
tions. There is also a long collection of problems at the end of this section,
many of which deal with topics from the classical differential geometry of
curves. Section 2-5 gives the Fundamental Theorem of Curves and shows that
the Frenet-Serret apparatus does completely determine the geometry of the
curve. Finally, in Section 2-6 we develop the necessary techniques for comput-
ing the Frenet-Serret apparatus for curves which are not parametrized by arc
length.

2-1. BASIC DEFINITIONS AND EXAMPLES

Our study of curves will be restricted to a certain class of curves in R3.
Not only do we want a curve to be described by a differentiable function so
that we may use calculus to describe the geometry, we also want to avoid
certain pathologies and technicalities. If dot/df = 0 on an interval, then
a(?) is constant in that interval, which is geometrically very uninteresting. If
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da/dt is 0 at some point, then the graph of & can have a sharp corner, which is
geometrically unappealing. (Consider the graph of a(f) = (¢2, ¢3, 0).) Be-
cause of these considerations we will only work with regular curves.

DEFINITION. A regular curve in R? is a function & : (a, b)) — R® which is of
class C* for some k >> 1 and for which de/dt = 0 for all ¢t € (a, b).

In this text, a regular curve will be assumed to be of class C* unless stated
otherwise.

Note that from this point of view the curve is the function and rnot the
image set (geometric curve). Two different curves may have the same image
set (see Examples 1.2 and 1.4 below). A regular curve need not be one-to-one,
but as Problem 1.9 shows, it cannot intersect itself too often.

Given a regular curve a(z), we can define some vector fields along a.
This means that for each ¢ we will have a 3-vector v(¢). The reader should
think of the tail of v(¢) to be at the point e(z). The mapping ¢ — v(¢) is a
vector-valued function and so we may use the material of Section 1-5.

DErFINITION. The velocity vector of a regular curve a(f) at t = ¢, is the deriva-
tive de/dt evaluated at t = t,. The velocity vector field is the vector-
valued function de/dt. The speed of a(t) at t = ¢, is the length of the
velocity vector at ¢t = 1, | (dav/dt) (t,)].

If we view the curve as the path of a moving particle, the velocity vector
at ¢t = ¢, points in the direction that the particle is moving at time ¢,. (See
Figure 2.1.) The regularity condition says that the speed is always nonzero—

the particle never stops moving, even instantaneously.

DerFINITION. The rangent vecior field te a regular curve a(f) is the vector-
valued function T(¢) = (dev/dr)/| dev/dt|.
Weerer——————— ¢}

a(ty)

FIGURE 2.1 \Z
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Note that we are able to define T (i.e., divide by |da/dt|) precisely be-
cause of the regularity condition. T is the unit vector in the direction of the
velocity vector.

We shall see later in this section that T is a geometric quantity: it depends
only on the image set of & and not the particular way this set is parametrized.

For each value of ¢, say ¢,, there is a unique straight line through a(z,)
parallel to T(z,). This line is a linear approximation of the curve near out,).
(This is an example of one of the basic techniques in differential geometry:
an object of study (a curve) is replaced by a linear approximation (a tangent
line). This is done because linear mathematics is so much better understood
than nonlinear mathematics.) More formally:

DEerINITION. The tangent line to a regular curve a at the point ¢t = ¢, is the
straight line

I={we R |w=a(, + AT(,), A € R}.

Note that the tangent line is a subset of R* which contains the point
a(t,) and actually is a straight line. Intuitively it is the line that most nearly
approximates the curve near a(z,). (See Figure 2.2.)

a(ty)

\/ FIGURE 2.2

Since da/dt # 0 and da/dt = |de./dt| T, the tangent line at t = ¢, is also
given by

{w € R3|w:a(t0)+u‘fi—?(to),u € R}.

EXAMPLE 1.1. Let u and v be fixed vectors in R3. Then the curve @ : R — R3
given by a(r) = u + tv is a regular curve if and only if v 5= 0. In this
case it is a straight line and da/dt = v. The tangent line at each point is
the given straight line and T = v/|v|.

ExaMPLE 1.2. Let &: R — R3? be given by a(z) = (¢, 0, 0). This is a special
case of Example 1.1.
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ExamrLE 1.3. Let &: R— R° be given by a(t) = (°,0,0). dat/dt = (3¢%,0,0),
which is zero at ¢t = 0. & is not a regular curve, even though its image is
the same as the curve in Example 1.2!

ExaMPLE 1.4. Let &: R — R?® be given by a(r) = (¢* + ¢, 0, 0).

do .,
E*Ot +1,0,0) = 0.

This is a regular curve whose image set is the same as the curve in
Example 1.2.

ExaMPLE 1.5. Let g: R — R be a differentiable function. Let e(z) = (¢, g(¢), 0).
Then da/dt = (1,g'(1),0) # 0 and e is a regular curve. a(z) is the
graph of g except for the extra (third) coordinate. The tangent line at
t=1t,is {(t, + 1, g(t,) + Ag'(t,), 0)| A € R}. In terms of ¢, y, z coordi-
nates this line is z =10, y — g(t,) = (t — t,)g’(t,), which should be
familiar from Calculus I as the equation of the tangent line to the graph
of g(t) at t = t,. (Remember ¢ = x in this example.)

EXAMPLE 1.6. Let & : R — R? be given by et) = (r cos ¢, r sin ¢, ht), where
h > Oand r > 0. This is called a right circular helix. (If h < 0it would be
a left circular helix.) Circular refers to the fact that the projection in the
(x, y) plane is a circle. Since det/dt = (—rsint,rcost, h) # 0, & is a
regular curve. At t=1t,, T = (—rsint,, rcosty, h)//r* + k> (See
Figure 2.3.)

<
<

FIGURE 2.3 ;

, In Examples 1.2 and 1.3 we saw a situation where the same image set
. (the x-axis) was given two different parametrizations, one of which was not
regular. We wish to know what parametrizations can be used to describe a
. Biven image curve.

138

; DEFINITION. A reparametrization of a curve a: (a, b)) — R3 is a one-to-one
: onto function g:(c,d)-— (a, b) such that both g and its inverse
h:(a, b) — (c, d) are of class C* for some k > 1.

e
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What we have in mind is the new curve B = & o g. If r denotes the vari-
able in the interval (¢, d), then dB/dr = (de/dt)(dg/dr) by the chain rule. B is
thus regular if e is regular and dg/dr = 0. But g(h(¢)) = t so that by the chain
rule (dg/dr)(dh/dt) = 1 and dg/dr # 0. Thus the composition of a regular
curve with a reparametrization yields a regular curve. Note that if & is of
class C™ and g is of class C¥, then B is of class C* with n = min (k, m). (See

Figure 2.4.)
4//fr//

B(ry) =a(ty)

—— e <
d b
To ) FIGURE 2.4

The image of a curve and any of its reparametrizations are the same.
This means that any quantity which stays the same when we change para-
meters (i.e., make a reparametrization) is a quantity which depends only on
the geometric shape of the curve. Briefly, the quantity is a geometric invariant.
We will show below that the tangent line to a regular curve is such a geometric
invariant after we give some examples.

ExampLE 1.7. Let g: (0, 1) — (1, 2) be given by g(r) = 1 + r2. g is one-to-
one and onto with inverse A(t) = ./t — 1. g is infinitely differentiable
on (0, 1) and so is # on (1, 2). Thus g is a reparametrization of any regular
curve on (1, 2).

ExaMpLE 1.8. Let g: R — R be given by g(r) = r*. g is one-to-one, onto, and
infinitely differentiable. However, A(t) = t'/? is the inverse and 4’(0) does
not exist, so that 4 is not C'. This is one reason why Example 1.3 was
not a regular curve.

Now we shall show that the tangent vector field is a geometric property
of the image set of a regular curve and does not depend on the parametriza-
tion. This means that the tangent line to a curve is a geometric property also.

ProPoSITION 1.9. Let & : (@, b)) — R? be a regular curve and let
g:(c,d) — (a, b)

be a reparametrization. Set p = a o g. If t, = g(r,), the tangent vector
field T of & at ¢, and the tangent vector field S of B at r, satisfy S = 4 T.
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Proof:

dp do dg
S — dr __  dtadr
= T4B] ~ Tda[|dz
dr dt ||dr
da  dg
_dr dr _
dt | |dr

Note that S = T if dg/dr > 0 (g is increasing) and S = —T if dg/dr < 0

(g is decreasing). Geometrically the difference is whether & and P indicate
particles moving along the image curve in the same or opposite directions.

PROBLEMS

1.1. (a) Show that e(t) = (sin 3¢ cos ¢, sin 3¢ sin ¢, 0) is a regular curve.

(b) Find the equation of the tangent line to & at t = /3.

1.2. (a) Which of the following are regular curves?

(i) a(@) = (cos 9,1 — cos § — sin 6, —sin G).
(ii) B(@) = (2sin% 6, 2 sin? O tan @, 0).
(iii) y(8) = (cos 0, cos? 8, sin ).
(b) Find the tangent line to each of the above curves at § = n/4.

5*1.3. (a) In Example 1.6, what is the equation of the tangent line at t = 7, ?

%

7
&

i
§

(b) Show that the angle between (0, 0, 1) = u and det/dr in Example 1.6
is a constant (i.e., independent of ).

- 14. Show that f:(—1,1) — (—oo, o) given by f(f) = tan (nt/2) is a

reparametrization.

LS. Let g: (0, o0) — (0, 1) be given by g(r) = r2/(r* + 1). Is this a repara-

metrization ?

1.6. Let a(f) = (¢° cos 8, e?sin @, 0). Prove that the angle between a and

T is constant. (A curve with this property is called a logarithmic spiral.)

”17 Let a(?) be a regular curve. Suppose there is a point a € R? such that

o(t) — a is orthogonal to T(¢) for all . Prove that a(?) lies on a sphere.
(Hint: What should be the center of the sphere?)

,-1.8. Consider the function a: R — R? by a(t) = (¢2, 3, 0).

(a) Show that & is C! but not regular.
(b) Show that the image of & has a sharp corner by graphing e.

1*1.9. Let o (a, b)) — R? be a differentiable curve. Suppose there is a

sequence of points {z,} in the interval (a, b) such that the ¢, are all
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distinct, lim ¢, = t* € (a, b), and a(z,) = X, for all n (thus “« intersects
itself infinitely often at x,”). Show that & is not regular. (Hint: Show
that de/df = 0 at £*.) This shows that on any finite closed interval, a
regular curve can intersect itself only a finite number of times at the
same point.

2-2. ARC LENGTH

Sometimes it is useful for technical reasons to consider curves with end
points, that is, curves defined on closed intervals:

DEFINITION. A regular curve segment is a function & : [a, b)] — R?® together
with an open interval (¢, d), with ¢ < a < b < d, and a regular curve
v: (¢, d) — R3 such that a(z) = y(¢) for all ¢t € [a, b].

Thus a curve segment is a curve defined on a closed interval which can be
extended to a curve on a slightly larger open interval. In this case it is possible
to talk about dee/dt at the end points of the curve segment because we define
(dev/dt) (a) to be (dy/dt)(a) and (da/dt)(b) to be (dy/dt)(b).

Now we shall define the length of a curve segment. The intuitive justifica-
tion for what we do is as follows. If e(z) is viewed as the path of a particle
moving in space, then | dat/dt | is the speed of the particle as a function of time.
The integral of speed should be the distance traveled by the particle just as
it is in one dimension.

DEFINITION. The length of a regular curve segment a: [a, b)] — R3 is

r

Note that this is really the familiar formula for the length of a curve in
R3:if a(t) = (x(2), y(?), 2(t)), then |da/dt| = ~/(x')® + (V')* + (2')?, so that
the length of the curve is given by |2 /(x)> + (v')® + (z)* dt.

It makes sense to talk about reparametrizations of curve segments (see
Problem 2.7). One would hope that the length of a curve is a geometric prop-
erty and does not depend on the choice of parametrization. This is the con-
tent of the next proposition.

do
N ' dt.

PROPOSITION 2.1. Let g:[c, d] — [a, b] be a reparametrization of a curve
segment & : [a, b] — R3. Then the length of & is equal to the length of

B—a-g
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Proof: The length of B is

r~d d
dp . da\ (dg
Jc @ d"fc (@)«
d
_ | |dx||dsg
QJ; dt ||dr r.

Case 1: If dg/dr > 0, then |dg/dr| = dg/dr, g(c) = a, g(d) = b, and
[¢|dex/dt | | dgldr | dr = {2 | det/dt | (dg/dr) dr = [?|de/dt|dt by the substitution
rule of integral calculus.

Case 2: If dg/dr < 0, the proof is similar, using |dg/dr| = —dg/dr,
" g(c) = b, and g(d) = a.
In both cases we have that the length of & equals the length of B. |}

Note that the definition of the length of a curve does not really require
o to be regular to make sense—it is sufficient for e to be of class C!. How-
ever, if & is not regular, some segments of the curve may be traversed twice
and the formula will count the doubled section twice.

Using the concept of length of a curve, we are able to define an impor-
tant way to reparametrize a curve. Let & : (@, b)) — R? be a regular curve and
let t, € (a, b). Set h(t) = [, |de/dt|dt. s = h(t) is called arc length along a.

; It actually measures signed arc length along & from e(t,) with A(t) < O if
t<tyand h(t) > 0if t > t,.

THEOREM 2.2. h is a one-to-one function mapping (a, b) onto some interval
‘ (¢, d) and is a reparametrization.

- Proof: By the fundamental theorem of calculus, dh/dt = |de/dt| > O (since
b e is regular). Thus 4 is increasing and so is one-to-one. It is easy to check that
{ if & is of class C* so is h. Let g:(c,d) — (a, b) be the inverse of & and
: denote the parameter in (c, d) by s. This means of course that g(s) = ¢ if and
~only if h(t) = s so that s is the arc length parameter. Because g and 4 are
¢ inverse functions dg/ds = 1/(dh/dt), where the right-hand side is evaluated at
: t = g(s). This quotient makes sense since dh/dr # 0. g can be differentiated
- as often as 4 can. Thus 4 is a reparametrization. |

, As was pointed out in the proof of the above theorem, s is the arc length.
" By using g(s), any regular curve & can be reparametrized in terms of arc
: length from a point. Once this has been done we say that the curve has been
¥ parametrized by arc length. The importance of a curve being parametrized by
b arc length is carried in the observation that its velocity vector field is its
tangent vector field, as may be seen in the following computation.

1 If B(s) is parametrized by arc length, then s = [s 1dB/do| do. By the
;L fundamental theorem of calculus, 1 = (d/ds)([ | dB/do | do) = |dB/do| at
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o = s; that is, 1 = |dB/ds|. Hence the velocity vector field dB/ds is a unit
vector field and is thus T. When a curve B is parametrized by arc length (or
equivalently if its velocity vector field is T) we say that B is a unit speed curve.

The preceding paragraph and the proof of Theorem 2.2 contain some
important facts which we now isolate. We shall assume that 0 is in the
domain of e(r) and base arc length at 0.

CoroLLARY 2.3. If a(z) is a regular curve and s = s(¢) is its arc length, then
(@) s = s(t) = [} |de/dt| dt;
(b) ds/dt = |dajdt|;
(¢) de/dt = (ds/dt)T; and
(d) T = da/ds.

To take a given regular curve & and reparametrize it by arc length, while
always possible in theory, may be very difficult in practice. There are two
obstacles to such a program. In the first place, the integral

o[

may not be elementary (see Example 2.6) and hence not computable.
Secondly, even if A(f) can be determined, it may not be possible to find the
inverse function g(s) (see Example 2.7).

do,
E‘dt

ExAMPLE 2.4. Let a(f) = u + tv be the straight line of Example1.1. da/dt = v,
s=h(t) = [{|v|dt =t|v|. Thus t=g(s) = s/|v|. B(s) =u + sv/lv|
gives the unit speed parametrization of a straight line. Note that the
tangent vector field to x is T = v/|v|, and dT/ds = 0.

EXAMPLE 2.5. Let a(t) = (r cos t, r sin ¢, 0) with r > 0.

dec
dt

and |da/dt| = r. s = h(t) = rt and t = g(s) = s/r.

B(s) = (r cos (%), r sin (%), O)

is the unit speed parametrization of a circle of radius r. Note that the
tangent vector field of & is

T(s) = (—sin (%), cos (%), 0)
% = (——:— cos (%), —71 sin (%), 0)

has length 1/r.

= (—rsint, rcos t,0)

and that
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EXAMPLE 2.6. If o(z) is the ellipse (2 sin ¢, cos t, 0), then

da &
T (2 cos t, —sin t, 0).

’%‘;l: 4 cos*t - sin?t
= /4 —3sin?t = 2,/1 — (3)sin? 1.

But »/1 — 3 sin? ¢ does not have an elementary antiderivative and so
the integration /(1) = [}, |de/dt | dt cannot be carried out by using the
fundamental theorem of calculus. (Definite integrals of this kind are
called elliptic integrals because they can be interpreted as the arc length
of an ellipse. Their values are tabulated in many books of mathematical
tables.)

ExXAMPLE 2.7. Let e(r) = (¢, t%/2, 0). Then de/dt = (1, ¢, 0) and

da_ T 1 2
ar =1+ =

Hence

s = h(t) = j;w T lde = YT F 2+ In(t + /11 1)

However, it is extremely difficult to find 1 = g(s) from this equation.
Note that e is a parabola, a very simple curve geometrically!
What have we accomplished? Suppose that we want to study regular
t curves and we are interested only in their geometric shape (that is, we don’t
_care about parametrization). Theorem 2.2 says that we may as well assume
: that the curve is parametrized by arc length. This will be a very useful tech-
nical device in setting up the Frenet-Serret apparatus in the next section.

: PROBLEMS

Find the arc length of the circular helix in Example 1.6 for 0 < ¢ <C 10.
. Find the arc length of e(r) = (2 cosh 37, —2 sinh 3¢, 6¢) for 0 <t << 5.
. Reparametrize the right circular helix of Example 1.6 by arc length.
4. Reparametrize the curve a(r) = (¢’ cos ¢, €' sin t, ¢') by arc length.

. Reparametrize the curve a(r) = (cosh ¢, sinh 1, t) by arc length.

. Show that a(s) is a unit speed curve where

(s) = (s 1 A/s2+ 1, (s + /52 + 1) /2 In(s + /s> 4 T)).

. Formulate an appropriate definition of a reparametrization of a curve
segment.
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2.8. Let () be a regular curve with |dat/dt| = a, where a is a fixed positive
constant. Show that if s is arc length measured from some point, then
t = (s/a) + ¢ for some constant c.

2-3. CURVATURE AND
THE FRENET-SERRET APPARATUS

This section is devoted almost entirely to making definitions and develop-
ing an intuitive feeling for these definitions. The reader should look again at
the last paragraph of the previous section before starting on this section.

DEFINITION. A curve & : (a, b) — R? is a unit speed curve if |da/dt| = 1.

Note that for a unit speed curve & = a(¢), the arc length s = ¢t — ¢,. We
shall assume that ¢, has been chosen to be 0 (so that s = ) and will write e
as a function of s. Because of this convention we can write unambiguously
o’ = a'(s) = T(s) where T is, as always, the tangent vector field (see Corol-
lary 2.3). For the rest of this section we shall assume that a(s) is a unit speed
curve. This assumption amounts to the philosophical statement that we are
only interested in the geometric shape of a regular curve since any regular
curve can be reparametrized by arc length (Theorem 2.2) and reparametrizing
does not change the shape of a curve. In Section 2-6 we will compute the
quantities defined below if the curve is not given in a unit speed parametriza-
tion.

We now motivate the definition of “curvature” (of a curve). “Curvature”
will measure bending and will serve as the central concept of study in this
book (and, indeed, in all of differential geometry). The reader probably has
some intuitive idea of what “curvature” is. Whatever the definition of “curva-
ture” is, it should satisfy two criteria: (1) the curvature of a straight line
(Example 2.4) is zero; and (2) the curvature of a circle (Example 2.5) is the
same at each point. In terms of the curvature measuring bending, (1) says
that a straight line does not bend at all and (2) says that a circle has constant
bending. What is it about a straight line that does not change (i.e., what
might we choose to be a measure of bending?)? A glance at Example 2.4
(ee(t) = u + tv) shows that the tangent vector field of a straight line does not
change with the arc length s. It is v/|v|, which is independent of s. A glance at
Example 2.5 shows that the tangent vector field of a circle of radius r does
change with s but that its derivative has constant length 1/r. Because of these
considerations we are led to make the following definition.

DEFINITION. The curvature of a unit speed curve a(s) is xk(s) = | T'(s)|.

From the above discussion, it is clear that x(s) = 0 (for all 5) if et is a
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straight line and x(s) = 1/r (for all s) if & is a circle of radius r. This last
equality is especially appealing because it says that the smaller the radius is
the larger the curvature is (that is, the faster or tighter the circle is bending),
which conforms with our intuition.

We may also give a heuristic description of curvature for curves lying in
the plane. If & lies in the (x, y) plane, then a(s) takes the form

“(S) = (x(s)’ y(s), 0),
hence a'(s) = T(s) = (x'(s), ¥'(s), 0). We now let § be the angle between the
horizontal and the tangent vector field to e at s as in Figure 2.5. (Technical
remark: This angle @ is not really well defined. It is defined only up to a
multiple of 2z. We will remedy this problem in Section 3-2. This is the reason
we do not separate out what follows as a theorem but merely call it a heuristic
description.)

T(s)

FIGURE 2.5

Because of the description of the angle § we have
x'(s) = {I(s), (1, 0, 0)> = cos G(s)
§.and T(s) = (cos (s), sin f(s), 0). Thus
T'(s) = (—sin 6(s), cos B(s), 0)(3_3)
-and x(s) = | T'(s)| = |df/ds|. This shows that the curvature of a plane curve
. is the rate of change of the angle the tangent vector field makes with the hori-
i zontal (up to sign). This approach to the curvature of plane curves is essen-
tially due to L. Euler (1736).
: Having justified the definition of curvature, we shall now develop some
. machinery to study curvature. This machinery which is called the Frenet-
Serret apparatus, is the key to studying the geometry of curves in R? and in
fact uniquely determines the curve as we will see in Section 2-5.
It is usual in both elementary physics and mathematics to think of a
* Vector as an arrow with a head and a base point (or “point of application”).
+ If we imagine at each point a(s) on the curve the set of all vectors whose base
point is a(s), then we obtain at each point a(s) a 3-dimensional vector space.
From the point of view of geometry, what is a natural basis for these vector
spaces? Certainly if e, = (1,0, 0), e, = (0, 1, 0), and e, = (0, 0, 1), then
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{e1, e,, e,} is a basis for these vector spaces (for each s). The problem is that
{e1, e,, e, reflects the geometry of R? instead of the geometry of the curve and
is thus unsatisfactory from a geometric viewpoint. Our line of attack is to
take the one “geometric” vector we have (the tangent vector field), find
another one (the normal vector field), and use their cross product (the binor-
mal vector field) to obtain an “intrinsically geometric” basis. The following
definitions are only valid at those points where x(s) #= 0. Note that T'/k is
a unit vector.

DErINITION. The principal normal vector field to a unit speed curve a(s) is the
(unit) vector field N(s) = T'(s)/k(s). The binormal vector field to a(s) is
B(s) = T(s) X N(s). The torsion of e is the real-valued function

7(s) = —<B'(s), N(s)).

We will give the geometric meaning of torsion in the next section. (It
will measure “how far from lying in a plane” & is.)

DEFINITION.
(a) The Frenet-Serret apparatus of the unit speed curve a(s) is
{K(s), 7(s), T(s), N(s), B(s)}.

(b) If B(¢) is a regular curve we .may write ¢t = t(s) or s = s(¢) by
Theorem 2.2. Let a(s) = PB(¢(s)) be a unit speed reparametrization
of B and let {x(s), 7(s), T(s), N(s), B(s)} be the Frenet-Serret appa-
ratus of the unit speed curve a. The Frenet-Serret apparatus of B(¢) is

{r(s0), 7(s0)), T(s(1)), N(s(1)), B(s(0))}.
Because it is so difficult (and often impossible) to find ¢ as a function of

s explicitly, we shall need a computational tool for finding the Frenet-Serret
apparatus for a non-unit speed curve. This is done in Section 2-6.

ExAMPLE 3.1. Let a(s) = (r cos (s/r), r sin (s/r), 0) be a circle of radius » > 0.
T(s) = (—sin (s/r), cos (s/r), 0) so that x(s) = |T'(s)| = 1/r, as was men-
tioned earlier in this section. Note that

N(s) = %(;)) = (—cos (—“:—), —sin (%), 0)

and B(s) = T(s) x N(s) = (0, 0, 1). Since B’ = 0, we see that 7(s) = 0.
We have completed the computation of the Frenet-Serret apparatus in
this case. We sketch {T(s), N(s), B(s)} at some points in Figure 2.6.
ExXAMPLE 3.2. Consider the unit speed circular helix
a(s) = (r cos ws, r sin ws, hws),
where w = (r? + h?)~'/2. (See also Example 1.6.)
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Bj

FIGURE 2.6

T(s) = w(—r sin ws, r cos ws, h)
T'(s) = —w?r(cos ws, sin ws, 0).
Thus k¥ = w?r, which is a constant, yet & is not a circle.
N = (—cos ws, —sin ws, 0)
B=T x N = w(sinws, —h cos ws, r)
B’ = w?h(cos ws, sin ws, 0).

Thus 7 = —(B’' N) = w?h. We sketch {T(s), N(s), B(s)} at several points
in Figure 2.7. Note that the curvature and torsion are both constant in
this example.

FIGURE 2.7

Lemma 3.3. Let a(s) be a unit speed curve. Then for every s such that
K(s) #= 0, the set {T(s), N(s), B(s)} is an orthonormal set.

Proof: T(s) is a unit vector, so by Lemma 5.1 of Chapter I, (T, T"> = 0.
Since T' = kN and x # 0, we have (T, N> = 0 and so T and N are orthogo-
nal. Since B =T x N, Lemma 3.3g of Chapter 1 shows that B is orthogonal
to both T and N. Since T and N are unit vectors, sois B=T x N. |}

Because of this lemma, at every point on the curve where k¥ 7= 0 we have
an orthonormal set of vectors {T, N, B} that move and twist as we move along
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the curve. This is the reason that {T, N, B} is classically called a “moving
frame” or “moving trihedron.” Look again at Figures 2.6 and 2.7.

If a curve has isolated points at which x is zero, then our construction
is not valid. However, if k is zero on an interval, then our intuition demands
that the curve be a straight line. This is indeed the case.

PRrOPOSITION 3.4. Let a(s) be a unit speed curve with ¥ = 0 on an interval
[a, b]. Then the curve segment & : [a, b)] — R3 is a straight line.

Proof: According to Section 1-4 we must produce a vector v and a point X,
of R? such that a(s) = sv + x,. Since | T'| = k¥ = 0, T is constant. Now for

any curve, oa(s) = J.s T(o) do + a(a). Thus, since T(oc) = T is constant,
a(s) = (s — a)T + e&(a). Hence we may let v= T and x, = —aT + a(a). |}

We note that any unit speed curve can be broken into segments with
k¥ = 0 on some and ¥ = 0 only at the end points of others. By the above
proposition, we completely understand the geometry of these segments where
x = 0. We shall usually consider only the second type of curve and in fact
will quite often restrict ourselves to & : (@, b) — R? with ¥ % 0. This is because
at this stage we are interested in the local behavior of curves, which means the
behavior of the curve near a particular point. (If k(c) = 0, then x(s) 7= 0 for
all s near ¢ since x is continuous.)

At an isolated point where ¥ = 0 strange things can happen. Problem
4.14 gives an example of a C~ curve a: (—oo, o) — R? with the image of
(—e0, 0] lying in one plane and the image of [0, o) lying in another. Note
that x is zero only at one point (e(0)).

PROBLEMS

3.1. Show that a(s) = (% cos s, & — sins, —12 cos 5) is unit speed and
compute its Frenet-Serret apparatus.

3.2. Show that

3/2 o 3/2
VR (EDLYES DS

is a unit speed curve and compute its Frenet-Serret apparatus.

3.3. Show that a(s) = 4(cos™1 (8) — s./T — 52,1 — 52, 0) is a unit speed
curve and compute its Frenet-Serret apparatus.

3.4. Show that a(s) = (u/1 + 52 25, In (s + /T + 52))/a/3 is a unit speed

curve and compute its Frenet-Serret apparatus.

3.5. Compute the Frenet-Serret aDparatus of the curve in Problem 2.6.
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*3,6. Let a(s) be a C* curve in the (x, y) plane. Prove that if x % 0 then
T = 0. (Hint: There are differentiable functions x(s) and y(s) such that
a(s) = (x(s), y(s), 0). Show that B = +(0, 0, 1).)

3.7. Let a(s) = (x(s), y(s), 0) be a unit speed curve. Prove that

K= lxlyll _ xllyl |‘

2-4. THE FRENET-SERRET THEOREM AND
ITS COROLLARIES

Because the Frenet-Serret apparatus has been defined so geometrically
we would expect to get a great deal of information from it. This is indeed the
case. After a preliminary lemma, we prove the Frenet-Serret Theorem from
which we can derive many geometric corollaries. Even though the lemma
below belongs-to the realm of linear algebra, we shall prove it in detail here
because it is so crucial in the proof of the Frenet-Serret Theorem.

LemMa 4.1. If E={e,,...,e,} is an orthonormal set of n elements of an
n-dimensional inner product space V, then

(a) E is a basis for V; and

(b) if v e V, thenv = z": {e,vye,.

i=1
Proof:

(a) Because the number of elements in E is the dimension of ¥ we need
only prove that F is linearly independent. Let ¢!, ¢?, ..., ¢" be real numbers
with 3}’ c'e, = 0. Then 0 =3 c'e, e,> =3 e, e> = c'd,;, = ¢ for
each j. (Recall that d,; is the Kronecker delta as defined in Equation (1-1))
of Chapter 1.) Therefore, {e, e,, ..., e,} is linearly independent and a basis
for v.

(b) Since E is a basis, we know that for each v € V there are real num-
bers v/ such that v = 3 v’e;. Therefore,

<et’ V> = <eis Z vje.i> = E vjaij = vi’
which proves (b). |}

The important thing about the above lemma is not that it tells us that
Y € V can be expressed as a linear combination of the elements of E, but
rather that it tells us fow to express v as a linear combination of the elements
of E. To appreciate this, consider what you must do if you are given an
arbitrary basis {u;, u,,...,u} of ¥ and are asked to write a given vector
v € Vas v= ) a'w. You must solve » linear equations in » unknowns,
which is, in practice, very difficult. If, however, the basis is an orthonormal
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one, (V is an inner product space), then it is easy—you need only compute
{u,, v for each j.

THEOREM 4.2 (Frenet-Serret). Let a(s) be a unit speed curve with ¥ % 0 and
Frenet-Serret apparatus {x, 7, T, N, B}. Then

(@) T'(s) = K(IN(s)
(b) N'(s) = —x()T(s) + 7(s)B(s)
() B(s)= — 7(S)N(s)

for each s.

Proof: Lemma 3.3 asserts that {T(s), N(s), B(s)} is an orthonormal set. There-
fore, according to Lemma 4.1, we may write any vector v as
4-1) v =T, v>T 4 (N, v)N + (B, v)B.

(a) T’ = kN is the definition of x¥ and N.

(b) Since N’ is a vector, we may apply Equation (4-1) with v = N'. We
first compute the coefficient (T, N">. Differentiating 0 = (T, N>, we have
0= {T',N> + (T, N> = (kN, N> + (T, N’ so that (T, N> = —x. Since
N is a unit vector, {N, N> = 0 and the second coefficient of (4-1) is zero.
To compute the third coefficient, (B, N">, notice that (B, N> = 0 so that
by using the definition of 7, 0 = {B', N> + (B, N> = —1 + (B, N’> and
{B,N") = 7. Putting these three coefficients in (4-1) with v = N’ yields
Formula (b).

(c) Formula (c) is obtained by using Equation (4-1) with v = B’. The
first coefficient (T, B") is zero because 0 = (T, B} implies

0=<T,B) +<T,B") = (kN, B) + (T, B = (T, B,
since {N, B) = 0. The definition of 7 gives (N, B"> = (B’, N) = —r. Finally,
since B is a unit vector, the last coefficient (B, B> is 0. |}

The reason that we have left spaces in the statement of Theorem 4.2 is
that it is easy to remember the form of the equations in matrix format:

T 0 K 0\/T
Nl=|—-x 0 T||N|.
B’ 0 —z 0/\B

The fact that the matrix is skew symmetric is very important in more abstract
differential geometry.

The equations in the above theorem are naturally called the Frenet-
Serret equations. They were independently found by Frenet (1847, published
in 1852) and Serret (1851). We show how powerful these equations are by
drawing some corollaries and leave other applications for the exercises. The
first corollary shows that the vanishing of torsion characterizes plane curves
with x 7= 0.
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COROLLARY 4.3. Let a(s) be a unit speed curve with x 5= 0. The following are
equivalent:
(a) The image of & lies in a plane (more simply, & is a plane curve).
(b) B is a constant vector.
(©) 7(s) = 0 for all s.

Proof: The equivalence of (b) and (c) is given by the Frenet-Serret equation
B’ = —N. If & is a plane curve, we may assume (by appropriate choice of
coordinates in R?) that & lies in the (x, y) plane. For this case we have already
computed the torsion (Problem 3.6) and it is zero, so (a) implies (b).
We now show (b) implies (a). Let x, be any point on e, say x, = e(0).
According to Section 1-4, we must find a vector v (which does not, of course,
depend on s) such that {a(s) — X,,v) is identically zero. A glance at the
Frenet-Serret equations or a close look at Example 3.1 (when v = (0, 0, 1))
. suggests that we should let v be the binormal vector B.
Since B is a constant vector field, B = 0. Thus

{o(s) — Xq, B)' = (a&'(s), B) + <afs) — %o, B> = (T, B> =0

‘ and {a(s) — X,, B) is therefore constant. But {a(s) — x,, B) = 0 at s = 0,
- so that this constant is zero and a(s) lies in a plane. |}

3 Note that the proof actually gives the plane in which a lies. It is the plane
{Sthrough X, perpendicular to B. This theorem is actually false if the assump-

;tion K # 0 is omitted. See Problem 4.14.

DEFINITION. The osculating plane to a unit speed curve & at the point a(s) is
: the plane through a(s) perpendicular to B (and hence spanned by T
and N).

The normal plane of a(s) is the plane perpendicular to T.

The rectifying plane of a(s) is the plane perpendicular to N.

: One of the standard topics in classical curve theory is an investigation
into the projections of a given curve onto the above planes. The interested
‘reader may consult, for example, Hicks [1965], Stoker [1969], Laugwitz
[1965], Goetz [1970], or Struik [1961].

: What is the significance of the osculating plane? If a curve actually lies
‘in a plane (7 = 0), that plane is the osculating plane. More generally, the
. Osculating plane at a(s) is that plane which e is the closest to being in, just as
| the tangent line at a(s) is the line that & is the closest to being in. See Figure
.2.8. (Note that the tangent line lies in the osculating plane.) The curve twists
ut of the osculating plane, and 7 measures this twisting or torsion. As s
.Increases, the curve twists toward the side B points to if 7 > 0 and toward the
opposite side if 7 < 0. This gives geometric meaning to the sign of 7. Also,
£ since B’ = — 7N and B is the normal to the osculating plane, T measures how
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FIGURE 2.8

the osculating plane is turning as s increases. This provides the geometric
interpretation of ¢ which we promised in the last section.

DEFINITION. A (general) helix is a regular curve e such that for some fixed
unit vector u, (T, u) is constant. u is called the axis of the helix.
Intuitively, the helix grows linearly in the direction of the axis.

ExXAMPLE 4.4. The right circular helix of Example 1.6 is a helix with axis
(0, 0, 1) according to Problem 1.3.

ExaMPLE 4.5. Any regular plane curve is a helix since B is constant and may
serve as u.

COROLLARY 4.6 (Lancret, 1802). A unit speed curve a(s) with & =0 is a
helix if and only if there is a constant ¢ such that T = ck.

Proof: Assume o is a helix. Since (T, u) is a constant, we may write

{T,u) = cos @
where 6 is some fixed angle (called the pitch of a). If 6 is an integer multiple
of n, then u =T or u = —T. In either case this implies that ¥k = 0, which

is a contradiction. We may therefore assume that § is not an integral multiple
of 7. The following computation shows that N is perpendicular to u:
0=<(T,u) =T, u) = kN, u).
Hence Lemma 4.1 shows that u = aT + bB, where a = cos # and b = (B, u).
Since |u| = 1, we may choose the sign of 8 so that b = sin §. Then
0 = u’' = (cos @)xN — (sin 87N

and x cog @ = 7sin 8. Since § is not an integral multiple of 7, we have that
T = ¢k where ¢ = cot 8.

We now assume that 7 = cx and show that e is a helix. Motivated by
the first half of the proof, we define 6 by cot § = ¢ with 0 <8 < = and let
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u = cos 0T + sin §B. An application of the Frenet-Serret equations shows
that u’ = 0, so that u is constant. Note also that (T, u> = cos 8, which is
constant, so that & is a helix. [}

Although Lancret stated this theorem in 1802, the first proof was given
by De Saint Venant in 1845.

One of the beautiful things about the above corollary is its constructive
nature. If you are given the constant ¢ such that T = ck, then you can actually
compute the axis of the helix by first finding its pitch and using the values of
T and B at a single point.

In Problem 5.4 you will show that if both x and 7 are constant, then e
is a circular helix.

We end this section with several propositions which illustrate how the
Frenet-Serret Theorem can be applied to derive simple geometric results.
Many more such results are contained in the exercises. The reader should note
that the general method of proving these results is as follows: (1) express the
geometric hypotheses as an algebraic equation using linear algebra; (2) dif-
ferentiate an appropriate expression (possibly several times), using the
Frenet-Serret Theorem and the hypotheses; (3) interpret the result geometri-
cally.

ProOPOSITION 4.7. afs) is a straight line if and only if there is a point x, € R?
such that every tangent line to a goes through x,.

Proof: If a(s) is a straight line, any point on a(s) may be chosen as x, since
the image of a(s) is the tangent line at each point.
Now suppose that every tangent line to & goes through x,. Then

a(s) — x, = A$)T(s)
for some function A(s). Either ¥ = 0 or N(s) is defined. In the second case
T(s) = a'(s) = 2'(T(s) + AHT'(s) = A(HT(s) + AIK(IN(s).
Hence (2'(s) — DT + A(s)x(s)N = 0. Since T and N are linearly independent,

A'(s) =1 and A(s)x(s) = 0. Thus A(s) = s + ¢, which is not constant, and
hence x(s) = 0. Then e is a straight line by Proposition 3.4. §

PrOPOSITION 4.8. Let a(s) be a unit speed curve such that every normal plane
to a(s) goes through a given fixed point x, € R?*. Then the image of &
lies on a sphere.

Proof: The normal plane is orthogonal to T, so that {a(s) — x,, T) = 0.
Then (& — X,, @ — X,»" = 2{o0 — Xy, T> = 0 and (&0 — Xz, & — Xo» IS 2
constant a > 0. If @ = 0, then a(s) = x,, and e(s) is not regular. Hence a > 0
and afs) lies on a sphere with center x, and radius ./ a. ||
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PROPOSITION 4.9, Let a(s) be a unit speed curve with x 7= 0. Then a(s) lies in
a plane if and only if all osculating planes are parallel.

Proof: Ifafs) lies in a plane, that plane is the osculating plane at each point.
Hence all osculating planes are parallel.

Suppose all osculating planes are parallel. Then the values of B(s) at
any two points are parallel. Hence B(s) is constant and e lies in a plane by
Proposition 4.3, |

PROPOSITION 4.10. Let a(s) be a unit speed curve whose image lies on a sphere
of radius r and center m. Then x 7 0. If £ = 0, then

o —m= —pN — p'GB,
where p = 1/k and ¢ = 1/7. Hence r2 = p? -+ (p'o)>.

Proof: Wehave (a(s) — m, a(s) — m)> = r2, so that
0 = {os) — m, &(s) — m)y = 2<{a(s) — m, T.
Then
0="{<af(s) —m, T =T, T + {a(s) —m, T
= 1 4 <a(s) — m, kN>,

or k{(&(s)~m, N> = —1 == 0. Thus x = 0.
Assume 7 == 0. a(s) — m = aT + bN + ¢B, where the coefficients a, b,
¢ may be found by Lemma 4.1.

a=<a(s) —m, T)> =0.
b=<{a(s) —m Ny = —
¢ =<{a(s) —m, B>.
Since (os) — m, N> = —p,
—0' = {a(s) — m, NY = (T, N> + (&(s) — m, —xT + 7B}
=0 — x{a(s) — m, T) + t{a(s) — m, B)
=0 4 1{a(s)) — m, B>.
Hence ¢ = (a(s) — m, B) = —p’/t = —p’s. Thus
a(s) —m = —pN — p'gB.
Since N and B are orthonormal,
r? = {a(s) — m, &(s) — m>
=|—pN — p'oB|* = p*> + (p'o)’. |

:—p_

x| =

piscalled the radius of curvature and g the radius of torsion.
It is possible to generalize much of the previous material to curves in
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higher dimensional Euclidean spaces—a : (a, b) —> R". The interested reader
might consult H. Gluck [1966, 1967]. The Frenet-Serret frame {T, N, B} is
just one geometrically nice basis for the vector spaces along a curve. There
are other possibilities. See R. L. Bishop [1975].

PROBLEMS
General
4.1. Prove that k1 = —(T', B">.
4.2, If a(s) is a unit speed curve, prove that [&', &”’, &’"’] = x21.

4.3. Let a(s) be a C* unit speed curve with k > 0.

(a) Prove that [a”, &', aV] = x5(1/K)".

(b) Prove that a is a helix if and only if [a”, &', &'] = 0.
4.4. Let a(s) be a unit speed curve with k¥ == 0. Prove

T . [a,/’ a,//’ al//]‘
— <a,//’ a’//

4.5. Describe (if possible) any special geometric shape or form of the

curves in Problems 3.1, 3.2, 3.3, and 3.4. 1f any are helices, find the

axis and pitch.

6,\1 4.6. Find the equation of the normal plane to e(r) = (¢, cos ¢, 3¢?) at
- t = |. (Note: t is not arc length!)

v’ 4.7. If a(s) is a unit speed curve with ¥ + 0, show that the equation of the
osculating plane through a(0) is [x — e(0), &’(0), &¢’'(0)] = 0.

4.8. Find the equations of the osculating plane for the curves in Problems
3.1,3.2,3.3, and 3.4 at s = 0.

4.9. What is the angle between the axis of a helix and the normal to its
osculating plane in terms of the pitch?

*4.10. Prove:
(@ T=NXxB=—B x N;
(b) N=BxT= —T x B;
) B=TxN=-NxT.

4.11. Let a(s) be a unit speed curve with x¥ == 0. Find a vector w(s) such
that T  =w x T, N =w X N, B = w x B. (wis called the Dar-
boux vector after G. Darboux who investigated curves from a kine-
matical viewpoint. If a rigid body is thought to move along the curve
with unit speed, then the instantaneous motion of this body is
described by a translation vector and a rotation vector. The transla-
tion is given by the velocity vector T, while the rotation is described
by the Darboux or angular velocity vector w.)
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4.12.

4.13.

*14.14.

Prove that a(s) is a straight line if and only if all its tangent lines are
parallel.

Let a(s) be a curve with x = 0. Prove that a(s) lies in a plane if and
only if there is a point X, in R3 such that every osculating plane
passes through x,.

Let

e 1 ift£0

0 ift=0.

You may assume fis C* with f(0) = 0 for all n. Let a(¢) be given
by

F) = {

¢ f@),0) ift<0
a(t) =49 (0,0,0) ift=0
(¢, 0, f(t) if t > 0.
(a) Prove that a 1s regular and C~.
(b) Show that ¥ = 0 at ¢t = 0. (Note: t is not arc length.)

o consists of curves in two different planes joined together at a point
where ¥ = 0.

Set A—Spherical Images

The next seven problems deal with the notion of tangent, normal, and
binormal spherical images. These notions, especially that of the tangent
spherical image, are very important in Chapters 3 and 5.

If &(s) is a unit speed curve, then T: (a, b)) — R?® gives a curve defined

by s —

T(s). This curve may not be regular. Since | T(s)| = 1, the image of T

lies on the sphere of radius 1 about 0. This curve is called the tangent spherical
image of a. We may also consider the normal spherical image N (defined by
s — N(s)) and the binormal spherical image (defined by s — B(s)) of a.

4.15.

4.16.

*4.17.

Find the tangent, normal, and binormal spherical images of the
helix in Example 1.6.

Let a(s) be a unit speed curve.

(a) Prove that the tangent spherical image of & is a constant curve if
and only if & is a straight line.

(b) Prove that the binormal spherical image of a is a constant curve
if and only if & is a plane curve.

(c) Prove that the normal spherical image of & is never constant.

Let § be arc length along the tangent spherical image of e so that
§=[;1T(o)| do.
(a) Prove that d§/ds = x.
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4.18.

4.19.

*4,20.

4.21.
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(b) Find a necessary and sufficient condition for the tangent spherical
image of & to be a regular curve.

(c) Let s* be the arc length along the normal (resp. binormal) spher-
ical image of a. Prove that ds*/ds == /K% -+ 1% (resp. | 7).

Let a(s) be a unit speed curve with ¥ > 0. Let s* be arc length on the
normal spherical image. Prove ¥ = |ds*/ds|if and only if & is a plane
curve.

Let a(s) be a unit speed curve with k7 5= 0. Prove that the tangent to
the tangent spherical image is parallel to the tangent to the binormal
spherical image at corresponding points.

If the tangent spherical image of a unit speed curve a(s) lies in a
plane through (0, 0, 0), prove that a(s) is a plane curve.

Prove that a unit speed curve e(s) is a helix if and only if its tangent
spherical image is an arc of a circle.

Problem 6.10 will also deal with the tangent spherical image of a curve.

Set B—Sphere Curves

The next six problems deal with sphere curves, i.e., curves a(s) such that
there are constants m and r >> 0 with {a(s) — m, a(s) — m» = r2. The pur-
pose of this set is to give some recent characterizations of sphere curves
(Problems 4.26 and 4.27). Bishop [1975] also gives a recent characterization.

4.22.

4.23.

4.24.

4.25,

4.26.

Let a be a regular curve and let a be a point that belongs to each
normal plane of a. Prove that a is a sphere curve. (See also Problem
1.7.)

Show that a(f)) = (—cos 20, —2 cos 0, sin 20) is a sphere curve by
showing (—1, 0, 0) belongs to each normal plane.

Let au(s) be a unit speed curve withx # 0,7 £ 0and p = l/x, 0 = l/z.
Assume p? + (p'0)? = constant = a? where a > 0. Prove that the
image of & lies on a sphere of radius a. (Hint: Show a - pN + p'cB
is constant. Call this m. It should be the center of the sphere. This is
motivated by Proposition 4.10.) Assume p'z= 0 on any interrals.

Combine the previous result with Proposition 4.10 to prove that if
a(s) is a unit speed curve with x 7 0, 7 5= 0, then a(s) lies on a
sphere if and only if 7/k = (x'/tx?)’ (or tp = — (p'/T)").

Prove that a unit speed curve o(s) lies on a sphere if and only if
Kk > 0 and there exists a differentiable function f(s) with fr = p/,
f" 4+ tp = 0. (This result is due to Y-C Wong [1963].)
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14.27. Use the previous result to show that e(s) lies on a sphere if and onl
p y
if there are constants A and B with

x(A cos (L tds) + Bsin (L T ds)) = 1L

(This result is an improvement by Y-C Wong [1972] of a result of S.
Breuer and D. Gottlieb [1971].)

Set C—Bertrand Curves

The next five problems deal with a classical topic in the theory of curves,
namely Bertrand curves. These curves were first investigated by J. Bertrand
[1850]. Similar types of curves are treated in E. Salkowski [1909] and A. Voss
[1909]. These problems will not be used in the body of the text.

a(s) and B(s) are called Bertrand curves if for each s, the normal line
to & at s = s, is the same as the normal line to B at s = s,. (s need not be arc
length on both a and B.) We say that B is a Bertrand mate for e if & and P are
Bertrand curves. (Note that this means N, = -= Ng.)

4.28. (a) Show that any two circles in the plane with the same center are
Bertrand curves.
(b) Let
a(s) = $(cos™'s — s/1 — s, 1 — 52, 0)
and let

B(s) = d(cos™!s — su/1 — s% — 5,1 — s + /1 — s2,0).

By Problem 3.3 a(s) is unit speed. B is not unit speed. Show that
o and B are Bertrand curves.

4.29. Prove that the distance between corresponding points of a pair of
Bertrand curves is constant. (Hint: If a(s) is one of the curves with a
unit speed parametrization, then there is a function A(s) such that
a(s) + A(s)N(s) = P(s) gives the other curve. Prove A is constant.
B(s) may not be a unit speed curve.)

4.30. Prove that the angle between the tangents to two Bertrand curves
at corresponding points is constant. (Hint: Show that <{T,, T, is
constant.)

t4.31. Let a(s) be a unit speed curve with xt % 0. Prove there is a curve
B(s) (s not arc length on B) so that a and B are Bertrand curves if and
only if there are constants A 5= 0 and g with 1/A = k + ur.

4.32. Let a(s) be a unit speed plane curve. Prove there exists a curve B(s)
so that a and P are Bertrand curves.

Problems 4.41, 5.6, and 6.12 will also deal with Bertrand curves.
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Set D—Spherical Contact

In Corollary 4.3 and the discussion that followed we saw that the osculat-
ing plane at a(s,) is the plane that a is the closest to being on and 7(s,) mea-
sured how close a is to actually lying on it. Motivated by the problems on
sphere curves, we can ask what is the sphere (osculating sphere) at a(s,) that
o is closest to lying on and how close is & to actually lying on it (spherical
contact). Note that if a actually lies on a sphere with center m, then
|ee(s) — m|? is constant (hence all of its derivatives with respect to s are zero)
and so we are led to the following definition of contact. Let m and r > 0 be
given and let ¢(s) = |o(s) — m|2. We say that o has jth order spherical
contact with the sphere of radius r and center m at s = s, if ¢(s,) = r?,
(o) =¢"(50) = ... = cY(sy) = 0. Note that the larger j is, the closer c(s)
is to being a constant function and so the closer a(s) is to lying on a sphere
of radius r and center m.

4.33. If k = 0 compute the first three derivatives of ¢(s) in terms of T, N,
B, x and 7.

4.34. Prove that a(s) has second order spherical contact at s = s, if and
only if m = a(s,) + (1/x(s,))N(s,) + AB(s,), where A is arbitrary.
Note that as A varies with s, fixed we get a straight line of possible
centers called the polar axis of e at s,. The point

1
m, = ou(s ——N(s
( 0) + K(so) ( 0)
is called the center of curvature of & at s,. p(s,) = 1/x(s,) is the radius
of curvature at s,. The circle of radius p(s,) with center m, and lying

in the osculating plane is called the osculating circle of a at s5,. See

Figure 2.9.
4.35. If 7(s,) # 0, prove that a(s) has third order spherical contact if and
only if = —x'[tx?, where the right-hand side is evaluated at s = s,.

The sphere with center

_ 1 . K'(sq)
mx _ a’(so) + K(SD)N(SO) T(SO)KZ(SO)B(SO)
with third order contact is called the osculating sphere of a. See
Figure 2.9,

FIGURE 2.9
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4.36. Prove that at a point where 7(s,) = O there can be third order spher-
ical contact if and only if x'(s,) = 0. Hence plane curves may not
have third order spherical contact anywhere.

4.37. Let a(s) have constant curvature. Prove that the osculating sphere
and the osculating circle have the same radius.

4.38. Under what conditions does the osculating sphere have a constant
radius, i.e., independent of s,?

Set E—Involutes and Evolutes

The last six problems deal with another classical topic. Let e and B be
two regular curves defined on an interval (a, b). B is an involute of e if B(z,)
lies on the tangent line to & at a(¢,) and the tangents to o and P at a(r,) and
B(z,) are perpendicular. B is an evolute of a if e is an involute of .

4.39. Suppose that a(s) is a unit speed curve.
(a) If B(s) is an involute of & (not necessarily unit speed), prove that
B(s) = a(s) + (¢ — s)T(s), where cis a constant and T = o'.
(b) Under what conditions is a(s) + (¢ — s)T(s) a regular curve and
hence an involute of & ?

Note that because of part (a) |B — e| is a measure of the arc length of
a. For this reason B can be formed by unwinding a string from the curve
o(s). See Figure 2.10 for the case of a plane curve. Because of this, the term
string involute is sometimes used, especially for plane curves. We shall use this
concept in Section 3-5 to give an example of a curve of constant width. The
idea of a string involute is due to C. Huygens (1658), who is also known for
his work in optics. He discovered involutes while trying to build a more
accurate clock. (See Boyer [1968].)

FIGURE 2.10
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4.40. (a) Prove that an involute of a plane curve lies in that same plane.
{b) Prove that an involute of a helix is a plane curve. (Hint: What
should be the normal to this plane?)

4.41. Let a(s) be a unit speed plane curve and let B(s) and y(s) be two dif-
ferent involutes of .. Prove that P and y are Bertrand mates.

4.42. Let a(s) be a unit speed curve with Frenet-Serret apparatus
{r, 7, T, N, B} and let B(s) be an evolute of a.
(a) Prove that B(s) = a(s) + AN + uB.
(b) Prove that A = I/k and (A’ — )/ = (@’ + i)/
(c) Prove that T = (up’ — pu’)/(u* + p*), where p = 1/x as usual.

(d) Prove that u = p cot (Jf Tds + constant).

4.43. Prove that an evolute of a plane curve is a helix.

4.44. Let a(s) be a unit speed plane curve.
(a) Prove that the locus of the centers of curvature of e (Problem
4.34) is the unique evolute of e lying in the plane of o.
(b) Show that this curve is regular if ¥’ = 0. (A point where k¥’ =0
is called a vertex.)

2-5. THE FUNDAMENTAL EXISTENCE AND
UNIQUENESS THEOREM FOR CURVES

After the Frenet-Serret Theorem we drew several corollaries which char-
acterized several types of curves by properties of their curvature and torsion:

k=0 straight line (Proposition 3.4)
Kk #0, =0 plane curve (Corollary 4.3)

% = constant helix (Corollary 4.6).

As problems we will have:
7=0, kx = constant > 0 circle (Problem 5.3)
7 = constant # 0, x = constant > 0 circular helix (Problem 5.4).

There were also a large number of exercises where curvature and torsion
played a major role in describing what was occurring geometrically.

This is not at all accidental. Theorem 5.2 will tell us that as long as
x # 0, the functions x and 7 completely describe the curve geometrically,
except for its position in space. Philosophically, this.is the same as saying that
two angles and one side completely describe a triangle in plane geometry, or
that the radius completely describes a circle. Classically, mathematicians have
called ¥ = k(s), T = 7(s) the intrinsic equations of a curve.
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The actual proof of Theorem 5.2 will not be used in the sequel and may
be omitted. However, the content of the theorem is important and will be
used. The proof will depend on the following basic result from the theory of
ordinary differential equations which is due, in various formulations, to
Picard, Lindeldf, Peano, and Cauchy. See Birkhoff and Rota [1969, Chapter
6] or Coddington and Levinson [1955, Chapter 1]. The dependence of the
Fundamental Theorem of Curves on a major theorem of ordinary differential
equations shows that in the differential approach to geometry, the heart of
geometry is ultimately in differential equations. We will see this again when
we study geodesics in Section 4-5 and the Fundamental Theorem of Surfaces
in Section 4-10.

THEOREM 5.1 (Picard). Suppose that the R"-valued function A(x, ¢) is defined
and continuous in the closed region |[x —¢|< K, |t — a| < T, and
satisfies a Lipschitz condition there. Let M = sup|A(x, )| over this
region. Then the differential equation da/df = A(e, ) has a unique solu-
tion on the interval |z — a| << min (T, K/M) satisfying a(a) = c. (The
technical requirement about the Lipschitz condition is satisfied if A has
bounded partial derivatives with respect to the coordinates of R”.)

THEOREM 5.2. (Fundamental Theorem of Curves). Any regular curve with
x > 0is completely determined, up to position, by its curvature and tor-
sion. More precisely, let (a, b) be an interval about zero, k(s) > 0 a C!
function on (a, b), 7(s) a continuous function on (a, b), X, a fixed point
of R?, and {D, E, F} a fixed right handed orthonormal basis of R3. Then
there exists a unique C? regular curve a : (a, b)) — R? such that:

(a) the parameter is arc length from a(0);
(b) a(0) = x,, T(0) = D, N(0) = E, B(0) = F; and
(© x(s) = k(s), T(s) = T(s).

Proof: Consider the system of ordinary differential equations
3
u// = 2 a".i(s)ul" ./ = 1’ 2’ 3;
i=1

where (a')) is the matrix

0 K 0
—K 0 3
0 —7 0

-

Picard’s Theorem implies that this system has a unique solution u,(s) with
u,(0) = D, u,(0) = E, and u,(0) == F. We shall show that the u, give the
moving trihedron of a regular C? space curve & with the required curvature
and torsion.
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Step 7. The vectors u, are orthonormal:

Proof: Let p;; = {u,, u,> so that
—<ul’ j>+<ul’ ]> Zafpk1+zak1p‘k
Thus p;; satlsﬁes the initial value problem
= 22 (@ :pr; + @ pu)

0 if i=j
p:i0) = &;; = .
1 if i =j.
By Picard’s Theorem, such a system has a unique solution. But
Y@ +ad,)—=a, +ad,=0=9,.
Hence ,; = p;; gives a solution, and thus the only solution: {u, u;> = 4§
and the u; are orthonormal.

Step 2. Let a(s) = X, + [qu,(6)do for s € (a,b). Then a(s) is C?,
regular, and unit speed:

Proof: da/ds = u,(s) by the fundamental theorem of calculus.

2
%” =u, = Kk(s)u,.
Both & and u, are differentiable.
3
‘Z;,T? = K'u, + ku,’ = k'u, + K(—FkKu, + Tu,).

Since % is C!, T is continuous, and the u; are differentiable (hence continu-
ous), d*e/ds® is continuous, and & is C*. |da/ds| = |u,| = 1 by Step (1).
Hence a is regular and unit speed.

Step3.ﬁ:K,fzt,ul:T’uzzN,uszB:

Proof: &' =u, sou, =T. kN =T = u,” = ku,. Since both N and u, are
unit vectors and & > 0, & = k. Hence u, = N also. Now [u, u,, u;] = -1
since the vectors are orthonormal. At s = 0 we have

[u,, u,, u;] = [D,E, F] = +1.

Since [u,, u,, u,] is continuous on (a, b), it is always +1 and {u,, u,, u;} is
right handed. Thus B=T X N =u, X u, = u,. Finally,

—IN =B =u,’ = —7u,,
SOT=T1.
This completes the proof of the existence of a curve a(s) with the required
curvature, torsion, starting point and initial moving trihedron. On the other
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hand, the definition of e(s) was forced if & was to solve the problem. Hence
there is a unique curve with the required property. ||

In general, given x and 7 it is very difficult to solve the Frenet-Serret
equations and find the curve a. However, it can (almost) be done in the case
of a helix.

ExaMpPLE 5.3. Let a(s) be a helix with ¥ > 0, 7 = cx for some constant c.
It will be useful to reparametrize o0 by a parameter ¢ given by

ts) = J: k(o) do.

Note that this is an allowable change of coordinates since t' = k¥ > 0
implies #(s) is one-to-one and both #(s) and s(¢) are differentiable. Since
T = ck, the Frenet-Serret equations are

T = kN, N' = —kT + ckB, B’ = —ckN.

In terms of the parameter ¢ they are

dT dN

W_N’ W_—T+(:B, TI,t————cN.
Thus d2N/dt* = —N — ¢2N = —w?N, where v = /1 + ¢2. Since N
solves this differential equation, we have N = cos wf a + sin wt b for

some fixed vectors a and b. dT/dt = N may be integrated to give
T = (sin wt a — cos wt b + ¢)/ar. Hence

dB

os) = %(r sin wt(c) do a — J.s cos w{(o) do b + sc + d).
0

0

However, the integration constants a, b, ¢, d are not arbitrary.

a;_l:l = —wsinwra+ wcoswthb
so that
— dN
0= <N, 7>
= (—w|a|* + @|b|?) sin wf cos wt + w<a, by(cos? wt — sin? wt).
At t = 0 this equation is {(a, b) = 0. Then
H—wla]* + w|b|?)sin 20t =0
and |a|2 = |b%
1 =|N|2=|al|?cos? wt + |b|*sin® wt

yields [a] = |b| = 1. Thus a and b are orthonormal.
Similarly 0 = (T, N> yields {a, ¢> = 0 and then <{b,¢> = 0. 1 =|T|?
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-1

nont
and

gives |¢| =|c| and so ¢ = H4-c(a X b). dN/dt = —T + ¢B implies that
¢B = dN/dr + T. Hence

-c—cl)—(sinwta—coswtb—l—c):cT:N X ¢B

= [cos wt a + sin w?b] X [(51 — m)(sin wta — cos wtb) + %c}

= %[cos ot (a X ¢) + sinwt (b X ¢) + c%(a X b)].

Thus ¢ = —+c¢(a X b). In terms of the orthonormal basis {a, b, a X b} we
have

s s

ofs) = %(J sin wt(o) do, —J cos wt(o) do, cs) +d,,

0

where (o) = |[; k(s) ds and d, = a(0).

Note that the above solution requires that you be able to compute some
rivial integrals, which may not be all that easy to do. See Problems 5.1
5.2.

ExamrLE 5.4. Using Theorem 5.2 we offer an analytic proof of Corollary 4.3.

proo

We must show that if & is a unit speed curve with 7 = 0, then & lies in
a plane. In Example 5.3 we may put ¢ = 0. Equation (5-1) yields the
curve B(s) = ([; sin 1(6) do, — [; cos (o) do, 0), where (o) = [; K(s) ds.
This is clearly a plane curve, lying in the plane spanned by a and b and
has curvature x(s) and torsion 0. Hence, by Theorem 5.2, it is the same
as a(s), up to position. Thus a(s) is also a plane curve.

The preceding proof, although lacking the geometric appeal of the first
f, does contain a valuable insight: a unit speed plane curve may be ob-

tained from its curvature by three integrations. See Problems 5.1 and 5.2.

PROBLEMS
5.1. A plane curve (7 = 0) is a helix. Perform the integration as outlined in
Example 5.4 for
(a) k = constant > 0;
(b) ¥ = 1/(ms - n), where m, n are constant.
5.2’. Find a unit speed curve a(s) with x(s) = 1/(1 + s?) and 7 = 0.
*5.3. Prove that the only plane or spherical unit speed curves of constant

curvature are circles.
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5.4.

5.5.

5.6.

5.7.

5.8.
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Let a(s) be a unit speed curve with k¥ and 7 constant so that a is a
belix. Prove that e is a circular helix by showing that its projection in
a plane perpendicular to u is a circle. (Hint: Equation (5-1).)

Let e be a helix with axis u. Let IT be a plane perpendicular to u and let
B(s) be the projection of & into this plane. (B is not unit speed.) Let &
be the curvature of B and prove that ¥ = & sin® @, where (u, T) = cos 6.
(Hint:u=a x b.)

Let & be a C? regular curve with 7 == 0. Prove that a is a circular helix
if and only if & has at least two Bertrand mates. (Hint: Problem 4.31.)

Let a(s) be a unit speed curve with ¥ > 0 and 7 > 0. Let

B(s) = Jo B(0) do.

(a) Prove that § is unit speed.
(b) Show that the Frenet-Serret apparatus {, 7, T, N, B} of B satisfies
E=1,7i=x,T=B,N=—-N,and B=T.

Let ax(s) be a helix with x = 7 > 0. If B(s) is defined as in Problem 5.7,
show that o and B are congruent; that is, they are the same curve up to
position in space.

2-6. NON-UNIT SPEED CURVES

In this final section we shall determine the Frenet-Serret apparatus for a

curve that is not given a unit speed parametrization. As was pointed out in
Section 2-2, in practice it may not be possible to reparametrize by arc length.
Thus one must find alternative computational techniques.

Let B(r) be a regular curve and let s(z) denote the arc length function.

Then B(¢) = a(s(r)), where a(s) is B(r) reparametrized by arc length. Note

that

ds/dt = |dB/dt| > 0. We wish to determine the Frenet-Serret apparatus

in terms of the variable r. We denote derivatives with respect to t by dots:

B=

dp/dt, p = d*Bjdt?, and B = d*B/dr*.

PROPOSITION 6.1. If B(¢) is a regular curve in R3, then

@ T=piBl;
() B=P x B/ x BI;
() N=B x T;

(d) x = x BI/pI*; and
() 7= 1[B, B, BINB x B

Proof: (a) Since B(r) = a(s(r)), we have B=as—=sT. Because § > 0,

S =

|B|and T = B/s = B/ABI.



Sec. 2-6 Non-Unit Speed Curves 47

(d) p=35T + sT = 5T 4 $2T" = 5T + xs>N. (Since P is the velocity,
this gives the acceleration in terms of its tangential and normal compo-
nents.) Hence B x li =$T x T + x§?N) = x$°B and x5 =|B x #| or

=[x Blis* =B x BUBP. S

(b) Ifk = 0,then B=f X fi/xs* =B x B/IB x §|.

(¢) Since {T, N, B} is a right handed orthonormal basis, N =B x T.

©)

B =3T 4+ 5T 4+ (65?)°'N + k52N
= 5T + ST + (k52 N + N’
= 5T + x$5N + (5?)°N — k25T + x15°B
= (§ — k%)T + (ks§ + (x53)°)N + x15°B.
Hence. “[ﬁ’ ﬁs.ﬁ] ‘_“"<ﬁ X ﬁ’ ﬁ> = <K‘§3Ba E> = T(KSJ)Z = TIB X ﬁlz Thus
=[5, 8. BB x BI.

EXAMPLE 6.2. Let B(r) = (1 + £2,7,1°). Then B=(2,1,3%,p= (2,0, 61),
and B = (0,0, 6). Hence p x @i = (61, —6r2, —2) and [, B, f] = —12

so that
o — G612 + 361t 4 )12
(42 + 1 + 9¢4)32
. —12
T 36t% + 36t - 4
T — (21, 1, 3t%)
(46> + 1 + 92
B — (61, —6¢2, —2)
(3612 + 361* + 4)172
and

(—18¢% + 2, —4t — 1883, 6t 4 121)
@Z 1 1+ 9%72(36:% 1 361° 1 4)172

N =

ExAMPLE 6.3. We show that
BO =@ 1+t —1)
for >0 is a plane curve. f = (1, —172, —172 — 1), B=(0,27323),
and P = (0, —6r7¢, —6:7*). Clearly B x § = 0 so that [B, B, B] = 0.
By Proposition 6.1, 7 =0 and B is a plane curve, provided x = 0.
B x B = (23 =23 2t7%) % 0. Hence, x # 0.

For a non-unit speed curve p(¢), the Frenet-Serret apparatus is a func-
tion of 7, not s, and does not satisfy the Frenet-Serret equations. However, we
do have the following variation.
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PROPOSITION 6.4. Let B(r) be a regular curve in R?, and let v(r) = |B|. Then
(a T= KN
(b) N= —xoT + TvB
(©) B= — 7oN.

Proof: Problem 6.5. |

PROBLEMS

6.1. Compute the Frenet-Serret apparatus for B(t) = (¢, 2, £*) with r > 0.
6.2. Compute the Frenet-Serret apparatus for B(t) = (cosh ¢, sinh ¢, 7).
6.3. Compute the Frenet-Serret apparatus for B(r) = (r — cos ¢, sin ¢, 1).
6.4. Find the curvature and torsion of B(t) = (e‘ cos ¢, e* sin t, ¢).

*6.5. Prove Proposition 6.4.

6.6. What form do the expressions in Proposition 6.1 take for a curve of
constant speed »?

6.7. Let B(t) be a regular curve with speed v = |dB/dt|. Prove that
x = v VB, B — o2
6.8. Prove that B(¢) is a straight line if and only if § and § are linearly
dependent.
16.9. Let B(t) = (at, bt?, ¢3).
(a) Prove that B is a helix if and only if 4b* = 9a2.
(b) What is the axis in this case?

6.10. Let a(s) be a unit speed curve with k¥ 5= 0. Let # and 7 be the curvature
and torsion of the tangent spherical image. Prove that & = /1 + (t/x)?
and 7 = (7/x)'/k(1 + (z/x)?), where k and 7 are the curvature and
torsion of a. (See Problem Set 4A.)

6.11. Let B(r) be a curve with ¥ 7= 0. Prove that B is a plane curve if and only
if [, B, B = ©.
16.12. Prove that the product of the torsions of two Bertrand curves at cor-
responding points is constant. (See Problem Set 4C.)



3

Global Theory
of Plane Curves

The geometry of a curve at or near a point in no way restricts or reflects
the behavior of the curve at other points “far away” from the given point. In
the previous chapter we adopted the microscopic approach (i.e., we looked in
very small neighborhoods of points and made assumptions about x, 7, etc.).
In this chapter we shall adopt the macroscopic or global approach and look
at the entire curve. The global theorems we shall present are very much in the
spirit of much of the modern research in differential geometry. Because we
are dealing with global notions, the theorems become harder to prove, but
they still do not lose their geometric flavor. To understand the difference be-
tween local and global discussions, the reader is urged to look at the curve of
Problem 4.14 in Chapter 2 again. About each point of this curve, except one,
there is a segment of the curve that lies in a plane. Yet the global behavior is
quite strange.

Our first global theorems will deal with plane curves (so that 7 = 0). We
shall assume that a suitable choice of coordinates has been made in R? so that
the curve lies in the (x, y) plane. We shall then disregard the z-coordinate and
write the curve as if it lies in R2.

Section 3-1 contains a brief review of line integrals and Green’s Theorem,
which should be familiar from Calculus III. In Section 3-2 we define the
plane curvature of a plane curve. This new notion of curvature has the

49
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advantage of being a signed quantity and enables us to globally define a nor-
mal vector field to a plane curve. This new notion of curvature coincides with
the old except for sign. We also introduce the rotation index of a curve. This
measures how many times the tangent vector goes around (the unit circle) as
a closed plane curve is traversed once. In Section 3-3 we discuss convex curves
and give an alternate description of them in terms of curvature. The Isoperi-
metric Inequality (which says that the circle is the curve of largest area for a
given perimeter) is proved in Section 3-4. In Section 3-5 we study ovals,
proving the Four-Vertex Theorem and certain results about curves of con-
stant width. We end the chapter with a brief statement in Section 3-6 about
some global theorems for space curves. These results will be proved in
Chapter 5.

3-1. LINE INTEGRALS AND GREEN’'S THEOREM

We review here the very basic concepts of line integrals for use in this
chapter and in Chapters S and 6. We shall not use the vector notation since
we have no need of it.

Suppose a(t) = (x(¢), y(t)) is a C! parameterization of a geometric curve
€in R? with a < t < b. If fand g are real-valued functions of two variables,
then by the line integral [, fdx + g dy we mean the ordinary integral

b
d.
f 760,y & + gx0), y0) % | .
(Note that there is an obvious generalization to curves in R3.)

ExaMPLE 1.1 Let @ be the unit circle in R? parameterized as
a(@) = (cos 6, sin 6), 0<0<2m.
Then

Ly dx + xdy = _[:” [—sin? @ 4+ cos? 0] db

2r .
= f cos 20 df = sm220
0

2r

= 0.

[]

EXAMPLE 1.2. Let @ be as in Example 1.1. Then
2n 2n
[[xdy —yax=["lcos?0 + sin*6]d8 = | db =22,
c 0 0

Sometimes one is given a function to integrate along a curve, such as
curvature. [, x ds may also be thought of as a line integral and is computed
in the standard fashion: [,x ds = L" x(s) ds. If one is told to integrate a
function along a curve, it is implied that this is with respect to arc length. If
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the function is given in terms of a different parametrization, a suitable change
of coordinates must be made. For example, if it is not practical to repara-
metrize by arc length (Examples 2.6 and 2.7 of Chapter 2), one would
compute [, k ds = [, K(s(t))(ds/dt) dt, where € is parametrized by r. Al-
though s(¢) is not computable, ds/dt = |dei/dt | is and so is x(s(¢)) by the results
of Section 2-6. Example 1.5 of Chapter 5 carries out this program for an
ellipse.

If h is a function defined along a curve, [, dh makes sense as the differ-
ence in the values of / at the end points:

dh *dh
J-edh——— eEdS:_l: d—sds=h(b)—h(a).

If A(s) = p(x(s), y(s)) for some function p(x, y), there is a second way of

computing [, dh:
dp 6’p
dh—— dp— 0xdx+0y

dpdx , dpdy _ dh
dxds " dyds ds
by the chain rule, this latter integral does give the same value for [, dh.

Note that Example 1.1 was of this latter type with p(x, y) = xy: dp =
ydx + x dy.

One important tool for computing line integrals is Green’s Theorem,
which allows us to replace certain line integrals with double integrals. We
shall omit the proof of Green’s Theorem. The interested reader may refer to
an advanced calculus text such as Fulks [1969]. See the next section for the
formal concepts of a closed curve and a piecewise C? curve.

Since

THEOREM 1.3 (Green). If @ is a closed plane curve made up of C? curve
segments, which bounds a region ®, and which is traversed counter-
clockwise, then

J‘fdx—{—gdy—ﬂ‘ ——— a’xdy,

for all differentiable functions f and g defined on ®.

EXAMPLE 1.4. In Example 1.2 we found [, x dy — y dx = 2z. On the other
hand, setting f = —y, g = x in Green’s Theorem yields

J:[ d dyﬂ-l‘f [l —(=Dldxdy

=2 I m dx dy
= 2(area of ®) = 2x.
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PROBLEMS

1.1. Compute J'e (xy + 1) dx 4+ (x?/y) dy along each of the following curves:
(a) Cis parametrized as a(f) = (¢,¢), 0 <t < 1;
(b) € is parametrized as B(t) = (¢2,1%), 0 < < 1.

1.2. Compute [, (x dy — y dx)/(x? + y?) where € is
(a) the straight line from (0, 1) to (1, 0);
(b) the straight line from (1, 0) to (1, 1); and
(c) the straight line from (1, 1) to (0, 1).

1.3. Verify Green’s Theorem for [, (x dy — y dx)/(x* 4 y*) where € is the
triangle with verticles at (0, 1), (1, 0), and (1, 1). (Both sides of the equa-
tion should be 0.)

3-2. THE ROTATION INDEX OF
A PLANE CURVE

Suppose that a: (a, b)) — R? is a plane curve. We can choose coordinates
in R? so that this plane is given by z = 0. We might as well assume that
a: (a, b) — RZ?, which we do.

Because R? has dimension 2 and the tangent vector field of a regular
curve is a nonzero vector at each point, we may define the normal to a plane
curve by using the concept of orientation (Section 1-3). This definition has
the advantage of giving a globally defined normal vector field along the curve,
as opposed to the normal of Chapter 2, which was only defined when x == 0.
Note that a similar approach for general curves in R* would not work because
giving one vector in a 3-dimensional vector space does not uniquely deter-
mine two others to make an oriented basis.

We shall now define the tangent and normal vector fields t(s), n(s) and
the plane curvature k(s). Lemma 2.2 shows how these concepts compare with
the Frenet-Serret apparatus of a viewed as a curve in R? (which happens to
lie in the (x, y) plane R?).

DEFINITION. Let a(s) be a unit speed C? plane curve. The rangent vector field,
t(s), to a is t(s) = a’(s). The normal vector field, n(s), to a is the unique
(unit) vector field n(s) such that {t(s), n(s)} gives a right handed orthonor-
mal basis of R? for each s. The plane curvature, k(s), of & is given by

k(s) = <t'(s), n(s)>-

The following lemma gives both an analogue to the first Frenet-Serret
equation and a “concrete” realization of n(s).
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LeEmMA 2.1. If e is a unit speed plane curve, then
(a) t'(s) = k(s)n(s); and
(b) if a(s) is written in the form a(s) = (x(s), y(s)) for some C? real-
valued functions x and y, then

t(s) = (x'(s), ¥'(s)) and n(s) = (—y'(s), X'(s)).

Proof: (a) This follows from Lemma 4.1 of Chapter 2 and the fact that tis a
unit vector field.

(b) The formula for t is obvious. Note that m(s) = (—y’(s), x'(s)) is a
unit vector orthogonal to t. Thus we must only show that {t(s), m(s)} is a right
handed basis. Note that (using e, = (1, 0), e, = (0, 1) as usual)

t(s) = x'(s)e, + y'(s)e,
m(s) = —y'(s)e, + x'(s)e,.
Hence the matrix A = (a';) for the change of basis is
= (f9 O),
i) x(s)
This has positive determinant and {t(s), m(s)} is a right handed basis. Hence

m(s) = n(s). |}
LemMA 2.2. For a unit speed plane curve a we have that
t(s) = T(s),  n(s) = £N(s)

at all points for which N(s) is defined, x(s) = |k(s)|, n(s) is differenti-
able, and n'(s) = —k(s)t(s) for all s.

Proof: Problem 2.1. |

EXAMPLE 2.3. a(s) = (r cos (s/r), r sin (s/r)) is a circle of radius r traversed
counterclockwise. t = (—sin (s/r), cos (s/r)), n = (—cos (s/r), —sin (s/r))
and k = 1/r.

EXAMPLE 2.4. a(s) = (r cos (s/r), —rsin(s/r)) is the same circle traversed
clockwise. t = (—sin (s/r), —cos (s/r)), mn = (cos (s/r), —sin (s/r)), and
k= —1/r.

These examples indicate that the sign of k is changed when the direction
of traverse is reversed. The sign of k indicates whether a curves in the direc-
tion of m (k > 0) or away from n (k < 0).

DErFINITION. A regular curve B(¢) is closed if B is periodic, i.e., there is a con-
stant g > 0 with $(r) = B(¢z + a) for all 7. The period of B is the least
such number a. Note that t(0) = t(a).
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Lemma 2.5. If B(¢) is closed with period a and a(s) is p reparametrized by arc
length, then a is closed with period L = [;|dB/dt| dt.

Proof:
st +a) = f
0

dp t+a
a ‘ dat + J;

P a

B,

oy

=L -} s().
Thus s(¢t + a) = s(t) + L and
a(s + L) = a(s(t) + L) = as(t + a)) = B(r + a) = (1) = a(s(t)) = a(s).
Hence a(s) is closed. Since a is the least positive number such that

Bt + a) = B@) for all ¢,
L must be the least positive number such that e(s + L) = a(s) forall s. |}

Note that the period of a closed unit speed curve is its perimeter (or
length).

DERINITION. A regular curve B(¢) is simple if either B is a one-to-one function
or if B is a closed curve of period a with B(t,) = B(¢,) if and only if
t, — t, = na for some integer n.

EXAMPLE 2.6. The unit circle is a simple closed curve of length 2z:

a(s) = (cos s, sin ).

ExampLE 2.7. The figure-eight curve is not simple. See Figure 3.1.

% FIGURE 3.1

For a closed curve a(s) it makes sense to ask how much the unit vector t
rotates as the curve is traversed once in the direction of increasing s. This is
described by an angle which, because t(0) = t(L), must be an integral mul-
tiple of 2z. In order to carefully define and find this integer we employ
certain normalizations.

Let o be a closed unit speed curve in the plane. We may choose a right
handed coordinate system in the plane and the starting point of e so that the
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image of a lies in the upper half plane and &(0) = (0, 0). In this case t(0) is
horizontal.

At each point P of the image of & define §(P) to be the angle between the
horizontal and t, measured counterclockwise with 0 < 8 < 2z. § may not
depend continuously on the position of P. However, we can find a continu-
ous function O(s) defined for 0 < s < L which also describes the angle. (8(s)
may be greater than 2z or less than 0.) This is done by breaking [0, L] into
small intervals over which t does not change much and adjusting 8 on each
interval.

More precisely, points s, may be chosen with

O=s,<s5,<...<s5,=L
such that on each segment [s,, s;.,] t does one of four things: (1) points
into the upper half plane (0 < 8 < 7); (2) points into the left half plane
(m/2 < 8 < 37:/2); (3) points into the lower half plane (z < 8 < 27); or
(4) points into the right half plane (0 < 6 < m/2 or 3m/2 < 6 < 2m).

8 is continuous on [0, s,] so we set 8(s) = 8(s) for 0 < s < 5,. We as-
sume by way of induction that 8(s) has been defined continuously on [0, s,].
Then on [s, s,.,] the angle between the horizontal and t is well defined up
to a multiple of 2z. If the angle is forced to lie in a certain interval of
length 7 ((0, #) for Case (1), (%/2, 3n/2) for Case (2), (n, 2x) for Case (3) and
(3n/2, 5r/2) for Case (4)) it is a continuous function of s. By adding an ap-
propriate multiple of 2z it can be made to agree with the known value of 6(s)
at s = 5,. In this manner 6(s) can be continuously defined on [0, s,.,] and
eventually on all of [0, L]. Note that §(L) need not be 0. However, (L) is an
integral multiple of 2z.

DEeriNITION. The rotation index of a closed unit speed plane curve a(s) is the
integer i, = (B(L) — 6(0))/2x = 6(L)/2x.

ExaMpLE 2.8. The curves in Figures 3.2. 3.3, 3.4, and 3.5 have rotation index
1, —1, 0, and 2, respectively. The reader may also want to look ahead to
Example 2.10.

Note that
t(s) = <t(s), e, De, + {t(s), e, e,
= (cos O(s), sin 6(s)).

FIGURE 3.2 FIGURE 3.3
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co@)

FIGURE 3.4 FIGURE 3.5

Since t is differentiable (x is C?), both cos (6(s)) and sin (6(s)) are differen-
tiable. Since 6(s) is continuous and both sine and cosine are differentiable,
6(s) is differentiable. Then 8’(s) = k(s). (This equality combined with Lemma
2.2 shows that |6'(s) | = x(s) for a unit speed plane curve. This was one inter-
pretation of curvature which we promised to make precise in Section 2.3.)

THEOREM 2.9 (Rotation Index Theorem). The rotation index of a simple
closed plane curve a(s) is +-1.

Comment: This theorem seems almost obvious and without need of a formal
proof. However, a simple curve can be quite complicated, spiraling a lot, and
our intuition based on oval-shaped curves may not hold true. Also, the proof
will give us a glimpse of certain techniques.

Proof: Let L be the period of a(s). If 0 < u < v < L, let a(u, v) be the unit
vector from e(u) toward a(v). Let

a(u, u) = t(u) (and a(0, L) = —t(0) = —t(L)).

Then a is a C? function in the region A of Figure 3.6. As in the case of  on
[0, L], it is possible to define a C? function & on A, where a(u, ¥) measures
the angle between the horizontal axis and a(u, v). Note that a(u, ) = 6(u).

B =(0,L) C=(L,L)

A = (0, 0) FIGURE 3.6

Now 2, = O(L) = (L) — 0(0) = [* (d6/ds) ds = |, df. Since
a(u, u) = 0(u),

this last line integral equals [ da.
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_ Oa do.
docfa—udu—l—a—vdv,

and
d% 0% __ 0

dudv Jvou

Thus by Green’s theorem (1.3), |4z, 75,55 d¢ = 0. Hence

(since a is C?).

J__ do. = Jﬁ da + L_Cdoc.

AC
[z de is the angle through which OP rotates as P traverses the image of a
once in the direction of increasing s. (See Figure 3.7) Since & lies in the upper

half plane, OP never points downward and the angle of rotation must be ze,
with € = 41 according to whether & is traversed counterclockwise or not.

FIGURE 3.7 (0]

Likewise, j;,E da. is the angle through which PO rotates as P traverses o
once. PO never points upward and the integral is again me. Thus
2ni, = ne + me = 2xe and i, = +1. |

The above proof is due to H. Hopf [1935].

ExampLE 2.10. Consider the simple closed curve in Figure 3.8. The following
table gives the values of 6 at the labeled points. Hence i, = 1 for this
curve as (V) = 2n.

point A B C D E F G H I J K
[} 12!- n 3—2" 2n 57" 3n ’%” 3n 57" 2n
M N O P Q R S T UV

37” n % 0 "T” —T” 0 125 n %’-‘ 2n
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FIGURE 3.8

In the following corollary, and elsewhere, S! denotes the unit circle in
the plane: S' = {(a,b) € R?|a* 4 b* = 1}.

CoOROLLARY 2.11. If a(s) is a simple closed regular plane curve, the tangent
circular image t: [0, L] — S! is onto.

Proof: Problem 2.2. |}

Quite often it is useful to consider curves that are made up of regular
curve segments joined together. At these junction points t may not be defined.

DEFINITION. A piecewise C* regular curve is a continuous function o:
[a, b] — R® together with a finite set of points {s;|0 < i< n} with
a=s5,<58,<...<s,=>b such that el . is a regular C* curve
segment. ;

At a junction point a(s;) of a piecewise regular plane curve o let
t=(s,) = lim t(s) and t*(s;) = lim t(s). The angle from t~(s,) to t*(s;) will be

denoted Af,. (If & is closed, A, = A8, = angle from t=(s,) to t*(s,).) Let
09, be the angle through which t rotates on the segment |, ..,

DEFINITION. The rotation index of a piecewise regular plane closed curve o is
n—1 n—1
3060, + 3 A9,
— i=0 =0 .
2n

I
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ExaMPLE 2.12. Let a(¢) be the triangle with vertices (0, 0), (2, 0), (I, 1).
(t,0) 0<r<<2
o) = 4—11t—2) 2<t <3
4—14—0 J<r<4.

Here s = 0, s, == 2, 5, = 3, 5, == 4. Note that ¢ is not arc length. The
vectors t~(s;) and t*(s;) are shown in Figure 3.9. Since t is constant on

2
each segment, 80, = 0. Y A, is the sum of the exterior angles of a
i=0

i=

triangle, and is thus 2z. Hence the rotation index is 1.

t™ (s3)
A6,
t* (s;)
t (sy)
r\Aﬂl
ot (s,) t(s))
Ab,

FIGURE 3.9 t~ (s53)

Note that for any piecewise C? curve a(s),

[ ks +°T a0,
e =0 .

60,.:j“"kds and i, -

The following proposition is again almost obvious. However, a careful
proof is even more involved than that of Theorem 2.9. One way to prove it
would be to approximate the piecewise smooth curve by a regular curve.
However, development of the necessary ideas would take us too far afield and
so we omit the proof. See H. Hopf [1935].

ProrosiTiON 2.13. If a(s) is a piecewise regular simple closed plane curve,
then i, = +1.

There is another “obvious” theorem about simple closed plane curves,
called the Jordan Curve Theorem. It states that any simple closed plane curve
has an “inside” and an “outside.” The interested reader can find a careful
proof in Stoker [1969].
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PROBLEMS

*2.1. Prove Lemma 2.2.
*2.2. Prove Corollary 2.11.

2.3. Let € be the curve made up of a straight line segment and two circular
arcs of radius 2 as in Figure 3.10. Compute the §0, and the Af, and
verify that the rotation index is 1.

0, v3)

(-1,0) (1,0)

FIGURE 3.10

3-3. CONVEX CURVES

A straight line / divides R? into two half planes, H, and H,, such that
H, U H, =R?and H, N H, = |. We say a curve lies on one side of I if the
image of & is completely contained in one of the half planes H, or H,.

DEFINITION. A regular curve & is convex if it lies on one side of each tangent
line.

ExampLE 3.1. The curves in Figure 3.11 and 3.12 are convex, while those in
Figures 3.13 and 3.14 are not convex.

The next theorem will use the concept of monotonicity. A function
f(s) is called monotone increasing if s < t implies f(s) < f(t). f(s) is mono-

O

FIGURE 3.11 FIGURE 3.12
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7

FIGURE 3.13 FIGURE 3.14

tone decreasing if s < t implies f(s) = f(¢). fis monotone if it is either mono-
tone increasing or monotone decreasing. We note that if fis differentiable,
Jfismonotone if and only if f’ has constant sign. (f’ = 0 implies monotone
increasing, f' << 0 implies monotone decreasing. See Problem 3.2.)

THEOREM 3.2. A simple closed regular plane curve a(s) is convex if and only
if k(s) has constant sign.

Proof: Since k(s) = df/ds, we must show that 8 is monotone if and only if
a is convex. Suppose 6 is monotone. If & is not convex there is a point A such
that & does not lie on one side of the tangent line / at A. Since & is closed,
there are points B and C of & on opposite sides of / which are farthest from /
(see Figure 3.15). Note that the tangent lines at 4, B, and C must be distinct.

FIGURE 3.15 Iy

The tangent lines /; and /, at B and C must be parallel to /. If this were
not the case, one could construct a line through B (or C) parallel to /. Since
this line is not tangent to the curve and goes through B (or C), there must be
points of the curve on both sides of the line. There would then be points on
the curve farther from / than B is.

Two of the three points A, B, C must have tangents t pointing in the same
direction. Thus there exists s, < s, with t(s,) = t(s,) and 8(s,) = 0(s,) + 2zn.
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Since 0 is monotone, Theorem 2.9 implies n = —1, 0, or 1. If n = 0, then
0(s,) = 6(s,) and by monotonicity € is constant on the interval [s,, s,]. If
n = 41, then 8 is constant on [0, 5,] and [s,, L]. In either case one of the
segments of & between a(s,) and a(s,) is a straight line.

Hence the tangent lines at a(s,) and a(s,) coincide. But /, !/, /, are
distinct. This contradiction implies & is convex.

Now suppose o is convex. If # is not monotone, there are points
5 < 55 < s, With 8(s,) = 0(s,) = 0(s,). We shall prove 8 is monotone by
showing that if 8(s,) = 6(s,), then 8(s) = 6(s,) for all s between s, and s,.

If 0(s;,) = 0(s,) for some 0<s, <s, <L, then t(s,) = t(s,). By
Corollary 2.11, the map t: [0, L] — S! is onto so there is a point s, with
t(s;) = —t(s,). If the tangent lines at s,, s,, 55 are distinct, they are parallel
and one is between the others. This can’t happen since & is convex. Thus two
of the lines coincide and there are points 4 and B of & lying on the same
tangent line / (see Figure 3.16). We next show that the curve & is a straight
line between 4 and B.

FIGURE 3.16

Suppose some point C of the line segment AB is not on &. Let I’ be the
line perpendicular to AB at C. I’ is not a tangent line since o is convex. Thus
!’ intersects a in at least two points, D and E, which lie on the same side of /.
If D denotes the point closer to C, the tangent line at D has at least one of the
points A, B, E on each side, contradicting & being convex.

Hence Cis on & and all of AB is also. Thus the tangents at 4 and B have
the same direction. Then A, B are a(s,), o(s,) and & |, ,, is straight. There-
fore 0 is constant on [s,, s5,], and 6 is monotone on [0, L]. |

Includgd in the proof above is the following result.

CoROLLARY 3.3. Let & be a simple closed convex curve with horizontal angle
0. If 0(s,) = 0(s,) with s; < s5,, then a is a straight line segment on
[s1, 55).
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The assumption that e(s) is simple cannot be relaxed in Theorem 3.2.
The curve of Figure 3.5 has 6 always increasing (hence k(s) > 0), but it is
not convex.

COROLLARY 3.4. Let a(s) be a closed convex curve. If a straight line / inter-
sects the image of e in three points, then the entire line segment joining
these points lies in the image of a. In particular, if k£ # 0, a straight line
can intersect o in at most two points.

Proof: Let the three points of intersection be A4, B, and F with F between A
and B. ] must be tangent to & at F or else A and B lie on opposite sides of the
tangent line at F, a contradiction. / must also be tangent at A and B or else
there would be points of & on both sides of /. But then the proof of Theorem
2.2 shows that the entire straight line segment from A to B is in the image of
o. Finally, if £ = 0, & has no straight segments (Corollary 3.3) and / can
intersect the image of & in at most two points. ||

This corollary is true for nonclosed convex curves.

PROBLEMS

~3.1. A piecewise C' curve may have two tangents at each junction point.
Define a piecewise C! curve to be convex if it lies on one side of each
tangent line (and on one side of each tangent line at a junction point).
Give an example to show that Theorem 3.2 is false for piecewise C?
curves.

*3.2. Prove that a differentiable function fis monotone increasing if f* > 0
and monotone decreasing if f’ < 0. (Hint: Mean Value Theorem.)

3-4. THE ISOPERIMETRIC INEQUALITY

One of the standard problems of early calculus is to find the rectangle (or
possibly a triangle) of fixed perimeter bounding the greatest area. The answer,
of course, is a square (or equilateral triangle). Quite often the student is told
that of all geometric figures with a fixed perimeter, the circle bounds the
greatest area. We now give a proof of this fact for regions bounded by regular
curves. The proof requires the following result.

LemMA 4.1. If a is a simple closed plane curve whose image bounds a region
®, and which is traversed counterclockwise, then the area of ® is
|o xdy = —{, y dx, where x and y are the coordinates of the plane.

Proof: Problem 4.1. |}
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THEOREM (Isoperimetric Inequality). Let a be a simple closed regular plane
curve of length (perimeter) L. Let A be the area of the region bounded
by e&. Then L? > 4n A with equality if and only if & is a circle. Thus, of
all curves of fixed length L, the circle bounds the greatest area.

Proof: Let l,, 1, be two parallel lines tangent to & with & bounded between
them. Let B be a circle tangent to /;, and /, which does not intersect o and let
r be its radius. Choose coordinates x and y for the plane with the origin at
the center of the circle and with the y-axis parallel to /,. Let /; be tangent to
o at A = &(0) and /, at C = a(s,). See Figure 3.17. The key idea of the proof

FIGURE 3.17

is to compare the area of the region bounded by e with the area of the circle
of radius r. Since both the length and the area enclosed by e are indepen-
dent of parametrization we may assume that o is a unit speed curve. o
may then be written in the (x, y) coordinates as a(s) = (x(s), y(s)) where
(x'(s))* + (¥'(s))? = 1. The curve p may be parametrized by B(s) = (2(s), w(s))
where

z(s) = x(s)
1 ) = — AP — x? 0<s<s,
W —{ Pt — x? s, < s<L.

Note that s is arc length on e but not on B. In fact, with this parametrization
B may not be regular, but it is C>.
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By Lemma 4.1 the area bounded by & is A = [, x dy = [y xy’ ds. The
area bounded by B is nr* = — [ y dx = — [ wz’ ds = — [ wx' ds. Thus

L L
A+nr2:.[ (xy' —wx')dsgj |xy’ — wx'|ds
0 0

= [ 1<6, 7 (w9 s

The Cauchy-Schwarz Inequality (Lemma 1.2 of Chapter 1) together with the
fact that e is unit speed tells us that

|<(xlayl)5 (_W, X)>| S |(xl, y')||(—w, x)| = /\/m =r
(see Equation (4-1)). Thus

L L
A+ art < Jo [, ¥')s (—w, X)>| ds < L rds=rL.

We have thus shown that

4-2) A+ mrr <rL.
If we let a = A and b = =nr? and apply Problem 4.2, we obtain
(43) A <AL L

2

where the second inequality comes from (4-2). Hence Anr? < r3:L?/4 or
L? > 4n A, which is the Isoperimetric Inequality.

Now assume that L? = 4z A4. We shall show that & must be a circle. We
first show that x = ry’. Since L? = 4n 4, inequality (4-3) becomes an equality.
An application of Problem 4.2 yields 4 = nr?. Inequality (4-2) must also be
an equality. Considering the derivation of (4-2) we must have equality where
the Cauchy-Schwarz Inequality was used. By Lemma 1.8 of Chapter 1 there
is a real number ¢ such that

(4-4) (—w, x) = c(x', y').
Taking the length of each side of (4-4) yields
W x2 = el /(X)) + () =]

and so (4-1) implies that ¢ = +r. On the other hand, (4-4) also says that
¢ =<{(x",¥"), (—w, x)> which (since the first inequality in the derivation of
(4-2) must also be an equality) is nonnegative. Hence ¢ = r and (4-4) shows
that x = ry’.

A = nr? implies that r depends on A and not the choice of /,. Thus if
lines /, and /, orthogonal to [, and I, are used, a circle of radius r is tangent
to them. If coordinates x and y with origin at the center of this circle are used
(see Figure 3.17), we would derive x = ry’, Since the y-axis is parallel to and
in the direction of the x-axis and the x-axis is parallel to and in the direction
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of —J there are constants d and e such that ¥ =y — d, y = ¢ — x. Thus
y—d=x=rp' = —rx
and
x>+ (y —d)P =) + (=rx) =r}((x)* + (¥y)) =r*
Therefore e is a circle of radius r centered at (0, d) in the (x, y) coordinate
system. ||

This proof, which is due to E. Schmidt [1939], and another, which in-
volves Fourier series and is due to Hurwitz (1902), may be found in Chern
[1967].

PROBLEMS

*4.1. Prove Lemma 4.1. (Hint: Green’s Theorem.)

*4.2. Let a and b be positive numbers. Prove that ./ab < }(a + b), with
equality if and only if @ = b.

3-5. THE FOUR-VERTEX THEOREM

We shall now consider a certain class of convex curves—those with no
straight segments or isolated points where & = 0.

DEFINITION. An oval is a regular simple closed plane curve with & > 0.
Note that an oval is convex since k£ does not change sign.

DEFINITION. A vertex of a regular plane curve is a point where k has a relative
maximum or minimum.

The concept of a vertex does not depend on the parametrization of a
curve, as you will show in Problem 5.3. Vertices may be found when k is a
function of some arbitrary parameter, much as in Section 2-6.

ExAMPLE 5.1. The (non-unit speed) curve a(t) = (2 cos ¢, sin ¢) is an ellipse.
It has exactly four vertices given by t = 0, n/2, n, 3n/2. See Problem 5.2.

LeEMMA 5.2. If /is a line in R2, then there are a, ¢ € R? with ¢ 7 0 such that
z € lifand only if (z — a,¢> = 0.

Proof: Let I be the line given by e(f) = z, 4 tvwhere 0 = v = (v!, v?) € R2,
Then a = z, and ¢ = (—v?, v!) give the desired result. |

THEOREM 5.3 (Four-Vertex Theorem). An oval eu(s) has at least four vertices.
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Proof: Since o is C?, k' = 0 at each vertex. If k is constant on any segment,
then every point on this segment is a vertex and we are finished. We may
therefore assume that & has no circular arcs (and since ¥ > 0, no straight line
segments either) and that there are distinct vertices 4 and B where k takes on
its global maximum and minimum. Assume also that 4 = a(0). We now show
that the assumption that these are the only vertices leads to a contradiction.
Because vertices come in pairs this will prove the theorem.

Let / be the straight line joining A and B. Since we have assumed that
there are exactly two vertices, k' is positive on one segment of & and negative
on the other. See Figure 3.18.

k <0

(a—a,c> >0

kK >0—

(a—a,cH> <0

/

FIGURE 3.18 c

Lemma 5.2 says that there are constants a and ¢ 7= 0 such that z € /if
and only if {(z — a, ¢) = 0. Because k > 0, & must be convex (Theorem 3.2)
and so (Corollary 3.4) / intersects a at exactly the two points 4 and B. Hence
{afs) — a, ¢ is positive on one segment of & and negative on the other.

A case by case study shows that k'(s){a(s) — a, ¢> does not change sign
on a. (It is nonpositive in Figure 3.18.) At some point k’{a& — a,¢> # 0
and so

L L L
0+ _[ k' — a, ¢> ds = k{a — a, c>| — L k{a', > ds
0 0
=0+ [ (—kt ey ds
0

= LL {n’, e>ds
=<m, ¢

This contradiction implies there are more than two vertices. Since k' changes
sign at a vertex, the number of vertices must be even. Thus there are at least
four vertices. |

L
=0.
0
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This theorem was first proved by Mukhopadhyaya [1909] and Kneser
[1912]. It is, in fact, valid not only for ovals, but also for any simple closed
plane curve. (See Kneser [1912] or S. Jackson [1944].) The proof we gavé is due
to G. Herglotz in a letter to W. Blaschke [1930].

The theorem is false if we omit the hypothesis “closed” (Problem 5.4)
or if we omit the hypothesis “simple” as the following example shows.

ExampLE 5.4. Consider the nonsimple plane curve given in polar coordinates,
(r,9), by r = 1 — 2sin ¢ and whose graph is sketched in Figure 3.19.

(-1,0 (1, 0)

FIGURE 3.19

In rectangular coordinates this is the curve

B($) = (cos ¢ — 2 sin ¢ cos @, sin § — 2 sin? @, 0).
We shall show that B has only two vertices. Since the angle 8 between the

horizontal and t increases as ¢ increases, kK > 0 and hence k = k. We
compute x via Proposition 6.1 of Chapter 2.

B = (—singd — 2cos2$ + 2sin §, cos ¢ — 4sin ¢ cos ¢, 0)
f = (—cos ¢ + 8sin ¢ cos ¢, —sin ¢ — 4 cos ¢ + 4 sin? ¢, 0)
B xB=1(009—6sing)
IBxBl=9—6sing
1Bl = (5 — 4sin §)'2
k=1x=(9— 6sind)5 — 4sin ¢)~¥2
k' = ki—? = (24 cos ¢ — 12 cos ¢ sin $)(5 — 4 sin ¢)‘5"2(%>-

We see that k" = 0 only when
(24 cos ¢ — 12 cos ¢ sin ) = 12(2 — sin @§) cos ¢
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is zero. That is, when cos ¢ = 0, or ¢ = 7/2, 3n/2. Thus B has only two
vertices, which are marked 4 and B in Figure 3.19.

Let & be an oval and P a point on &. By Corollary 2.11, there is a point
P where the tangent t is opposite to that at P (i.e., t(P) = —t(P)). The tangent
lines at P and P are parallel. By the reasoning in the proof of Theorem 3.2,
at no other point of a is the tangent line parallel to these two lines. Thus, given
a point P on an oval, there is a unique point P (called the opposite point to
P) such that the tangents at P and P are parallel and distinct.

DEerFINITION. The width w(s) of an q_val o at a(s) is the distance between the
tangent lines at P = os) and P. (See Figure 3.20.)

P

FIGURE 3.20 P t

DEFINITION. An oval has constant width if the width at P is independent of
the choice of P.

EXAMPLE 5.5. A circle has constant width.

ExXAMPLE 5.6. The “piston” for the Wankel engine gives a piecewise dif-
ferentiable curve of constant width (Figure 3.21). To obtain a differenti-
able curve of constant width one can take the set of points a fixed
distance outside the Wankel piston (Figure 3.22). Note this curve is C!

but not C2. (Why?)

FIGURE 3.21 FIGURE 3.22

\



70 Global Theory of Plane Curves Chap. 3

Problem 5.5. gives another example of a curve of constant width.
The next theorem is surprising because it states that the perimeter of an
oval of constant width depends only on the width.

THEOREM 5.7 (Barbier, 1860). If & is an oval of constant width w, then the
length of a is w.

Proof: Let B(s) denote the opposite point to e(s). The curve B(s) is not a unit
speed curve (unless & is a circle). Using Lemma 4.1 of Chapter 2, we have

(5-1) B(s) — a(s) = vt(s) 4 wn(s),
where v = {f — &, t> and w = (B — a, n). Note that the unit tangent to
B(s) is —t(s) and the unit normal is —n(s).

Let § be arc length along B, so that dB/ds is the unit tangent, and dif-
ferentiate Equation (5-1) with respect to 3.

_ B _dBds

ts) = T ds ds
. c_igd(oc + vt 4 wn)

T ds ds

= Z_‘sf(t + 't 4 ot’ + w'n + wn’)
ds ' )
:‘.E(t+vt+vkn+wn—wkt).

Comparing coefficients of t and n, we have —1 = (ds/ds)(1 + v’ — wk) and
0 = (ds/d5)(vk + w') or (provided ds/ds # 0, see Problem 5.7)

(5-2) 1+v—wk+——0
and
(5-3) vk +w = 0.

Since & has constant width and k£ > 0, Equation (5-3) impl_ies v=0.
Then Equation (5-2) yields 1 + (d5/ds) = wk. Let P = a(0) and P = a(s,).

Then
f(1+ )ds—f wk ds
0 0
flds%—fﬂdizwflkds:wj ggds:wn.
0

' ds is the arc length of & from P to P. [:Z5" d§ is the arc length of B from P
to P, which is the arc length of &« from P to P. Hence the length of o is
slds -+ (7 ds =wa. |1

or
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COROLLARY 5.8. If & is an oval of constant width, the straight line joining P

to P is orthogonal to the tangents at P and P.

Proof: In the course of the above proof we showed that » = 0. This fact
coupled with ‘Equation (5-1) implies § = o« + wn and so the vector from P

to Piswn. |
PROBLEMS
5.1. If a(s) is an oval, prove that t” is parallel to t at at least four points.
5.2. In Example 5.1 show that k&’ = 0 only at the given points. Note that o
is not unit speed.
*5.3, Prove that the concept of a vertex does not depend upon the parametri-
zation.
v“5.4. Prove that the Four-Vertex Theorem is false if the hypothesis “closed”
is omitted by considering the parabola a(t) = (¢, t2).
15.5. (a) Let a: [0, r] — R? be a unit speed curve segment and let B(s) be

the string involute (Problem 4.39 of Chapter 2)

B(s) = auls) + (ro — $t(s)
where r, > r is some constant. Show that the unit tangent to
at B(s) is orthogonal to t(s).

(b) Let A4, B, C be three points in the plane and let & be a closed piece-
wise C? curve with junction points at 4, B, C and t* = —t~ at
each point. (4, B, C are called cusps.) Assume that 4B is the longest
of the segments of . Let D be a point on the tangent line at 4 as
indicated in Figure 3.23. Define a curve B as a string involute of &

FIGURE 3.23
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5.6.

*5.7.

5.8.

5.9.

Global Theory of Plane Curves Chap. 3

starting at D: DE is an involute of ﬁ, EF is an involute of EZ',
etc. By the first part of the problem, DE and EF meet the line EB
at right angles so that B is at least C!'. Note that EB = DA + arc
length AB. Prove JA = DA so that J= D and B is a closed C!
curve. Show that B has constant width.

Let « be a plane oval of constant width. Show that the sum of the radii
of curvature (1/k) at opposite points is a constant independent of the
choice of points.

(a) Let a(s) be a unit speed oval of length L. Let 8 be the angle be-
tween the horizontal and the tangent t(s) as in Section 3-2. Prove
that 6: [0, L] — [0, 2x] is a reparametrization. (Hint: 6 = [ k ds.)

(b) Let y(0) be the same oval parametrized by @ so that a(s) = y(6(s)).
Prove that the opposite point to a(s) is B(s) = y(6(s) + 7).

(c) Prove that B(s) is regular.

(d) Prove that ds/d§ is nonzero and finite as needed in the proof of
Theorem 5.7.

Assume that y(f) is an oval parametrized by 8 as in Problem 5.7. Let
w(@) denote the width of y at y(6). Prove that {2 wdf = 2L, where
L = length of y. (Hint: Equation (5-2).)
Let y be an oval parametrized by 8. Prove that

d*w 1

|
0Tk kKO T )
(Note that k(@ + =) is the curvature at the point opposite to y(6).)

3-6. A PREVIEW

In this section we shall state two theorems about space curves that have

the same flavor as those of the preceding sections. However, we have to
delay their proofs until Chapter 5 so that we may use certain ideas from the
theory of surfaces, namely the concept of curves of shortest length on spheres

and

For

integrals over surfaces.
For a closed plane curve [; k ds measured the rotation index:

L‘ k ds — 2mi,.

a space curve the analogous object to study is joLlcds. For a closed

space curve [y Kk ds > 0 as k >0, and somewhere k¥ > 0. The analogous
statement to Theorem 2.3 is

THEOREM 6.1 (Fenchel). If e is a closed unit speed curve of length L, then

[¢ x ds > 2n with equality if and only if & is a convex plane curve.
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A remarkable extension of this theorem was proved independently by I.
Fary (1949) and J. Milnor (1950). It depends on the concept of a knot, which
will be defined in Chapter 5. For now, think of the special case pictured in

Figure 3.24.

THEOREM 6.2 (Fary-Milnor). If a closed unit speed curve is knotted, then
[s K ds > 4n.

FIGURE 3.24

This seems plausible when you realize how a knotted curve has to twist
about twice as much as an unknotted curve.
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Local Surface Theory

In the study of curves it was not hard to discern what the geometry was:
it was the way in which curves twisted in Euclidean space. This idea leads to
the notions of curvature and torsion and a fruitful study of the geometry of
curves. We will now discuss the geometry of surfaces. This is a much deeper
subject on both a philosophical and mathematical level. There have been
many attempts to study geometry including such axiomatic approaches as
Hilbert’s [1921, 1956]. We shall not attempt to explain this approach, but
rather just call the reader’s attention to the fact that there are approaches to
geometry other than ours. Our viewpoint is that differential geometry pro-
vides a unifying thread to geometry (classical plane, spherical, hyperbolic,
and projective geometry can all be placed within the framework of dif-
ferential geometry) and that the approach of Riemann to geometry is the
appropriate one. For a more abstract interpretation of Riemann’s program in
terms of manifolds (as in Chapter 7), see R. Millman and A. Stehney [1973].

Modern geometry was born when Riemann first separated the concept
of geometry from the concept of space. His inaugural lecture at Gottingen,
On the Hypotheses which Lie at the Foundation of Geometry (1854), began:
“As is well known, geometry presupposes the concept of space, as well as
assuming the basic principles for construction in space. . . . The relationship
between these presuppositions is left in the dark.” In this chapter we shall

74



Chap. 4 Local Surface Theory 75

first define space (the notion of surface). This will take the first two sections.
We are motivated by the idea that a surface should look “locally” like a piece
of the Euclidean plane. Then, since our development of surfaces is based upon
the study of curves in a surface, we establish the notion of arc length and
initiate a study of the curvature of a curve on a surface in Sections 4-3 and
4-4, Having done this, we will discuss in Sections 4-5 and 4-6 what the appro-
priate notion of “straight line” is in the setting of surfaces. We do this by
listing in Section 4-5 the various properties of straight lines in Euclidean space
and taking as a definition the idea that the curve does not bend except as the
surface bends. We then explore which of the other properties of straight lines
in Euclidean space carry over to this setting. Agreeing on a definition of a
straight line is, in Riemann’s words, agreeing on “constructions in space.”
The actual terminology for these generalized “straight lines™ is geodesics.
Next we give a development of the concept of curvature of the surface in
Sections 4-7 through 4-9. We define the curvature of a surface in two ways.
The first way is to break the surface up into (infinitely many) curves and
measure the curvature of these curves. The second way is to measure how the
normal to the surface changes. (Think how we measured the rate of change of
the osculating plane in Chapter 2. We computed B’, that is, the rate of change
of its normal.) Section 4-8 has a very extensive set of problems on certain
classical topics which tie together several ideas that have been developed so
far. The chapter ends with optional material on isometries (length preserving
mappings), the Fundamental Theorem of Surfaces, and an investigation of
surfaces of constant curvature.

A word is due on the method of differential geometry for attacking these
problems. In looking over the first three chapters, the reader should be struck
by the usefulness of linear algebra in attacking geometric problems. What,
after all, are the Frenet-Serret equations but statements about a (nonobvious)
basis for R3? If we are to follow the approach of earlier chapters here, then
we must set up a linear algebraic tool to let us obtain geometric information.
This tool will be the tangent space to a surface at a point. The idea is that the
linear is significantly easier to work with than is the nonlinear. (For students
who have studied differential equations: think how much easier it is to solve
linear ordinary differential equations than nonlinear.)

Another point that should be made while we are speaking in an informal
way is the difference between local and global. In the study of curves we first
introduced only local concepts (in Chapter 2) such as curvature and torsion
and obtained information about the local behavior of the curve. In Chapter
3 we then studied the global behavior of a curve (such as the rotation index
and convexity). We shall adopt the same strategy in our study of surfaces.
We shall first study the local behavior of surfaces, that is, what goes on in a
neighborhood of a given point. This is the content of Chapter 4. We then go
on to the global behavior of surfaces in Chapter 6. The difference between
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local and global can be explained as follows: If you are a creature living on the
2-sphere (i.e., the earth) you can only see a very little bit of it at a time, i.e.,
you can only see “local” things. If, on the other hand, you were an astronaut,
then you would be able to see very global things (such as the shortest distance
between distant points is the distance along great circles).

This last analogy also brings out another point—the difference between
intrinsic and extrinsic. The intrinsic things are the things that an observer who
is on the surface sees. The observer doesn’t know (for example) how his or her
world lies in a bigger universe, or in fact that it does lie in a bigger universe.
He or she only sees concepts that are independent of the embedding of the
sphere in space. The astronaut, on the other hand, is out in this space and is
cognizant of things such as the normal to the surface while the creature on
earth remains totally ignorant of such things. These are the extrinsic concepts.
It is sometimes quite difficult to tell exactly which concepts are intrinsic and
which are extrinsic. The ninth section of this chapter has as its main theorem
the highly nonobvious fact (due to Gauss (1827)) that Gaussian curvature is
an intrinsic concept. This last property (being intrinsic) is a very important
one and one that we will turn to in the last chapter of this book when we take
a very intrinsic (and more abstract!) approach to these ideas.

In the differential geometry of surfaces there is an enormous number of
formulas to be derived. We shall emphasize the most important of these
formulas by placing a gray background behind each of them.

4-1. BASIC DEFINITIONS AND EXAMPLES

In calculus we are introduced to the concept of a surface through several
examples: graphs of functions of two variables, surfaces of revolution, and
quadratic surfaces. Here we shall make the concept of a surface more precise
and study various geometric properties of surfaces.

There will be an immediate difference between curve theory and surface
theory. For a given curve there is a natural geometric parametrization (by
arc length) and this parametrization can be used to describe every point on
the curve. For a surface there is no natural geometric parametrization. In
fact, often it will not be possible to find a parametrization that describes the
whole surface, especially in a unique way. As an example, consider the unit
sphere S2 < R3. No matter how we choose a pair of parameters, there will be
at least one point that cannot be described by them. Ordinary latitude and
longitude fails at the poles ((90° N, 30° E) and (90° N, 60° W) are the same
point) and to a lesser extent along the 180° meridian (east or west?). (See
Figure 4.1).

DEFINITION. A subset U of R? is open if for every point (a, b) € U there is
a number € > 0 such that (x, y) € U whenever

(x — a)* + (y — b)* < €.
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FIGURE 4.1

Thus the statement “U is open” means that about each point of U there
is a little disk that is contained in U.

ExampLE 1.1. U = {(x,y) € R?|x? + y* < 1} is open.

EXAMPLE 1.2. U = {(x, y) € R?|x? + y? < 1} is not open.
ExampLE 1.3. U = {(x,y) € R?*|x?* + y* > 1} is open.

ExaMPLE 1.4. W = {(x,y) € R?*|1 < x < 2,3 < y < 5}is open.
EXAMPLE 1.5. & = {(x,y) € R*|x > 0} is not open.

DErRINITION. A C* coordinate patch (or simple surface) is a one-to-one C*
function x: U — R3 for some k > 1, where U is an open subset of R?
with coordinates #! and u? and (dx/du') x (dx/0u?) # 0 on U.

P B
Notice how closely this definition resembles that of a (simple) regular

C* curve with the open interval (a, b) replaced by an open set U and the

regularity condition replaced by (dx/du!) x (9x/du?) = 0. We refer to

(0x/du') x (0x/du?) # 0 as the regularity condition for surfaces. This makes

sense geometrically because a curve a is “one-dimensional” and so the set of

vectors tangent to it at one point should be one-dimensional. Since da/dt is
tangent to the curve, insisting that da/dt = 0 (i.e., {da/dt} is a linearly
independent set) defines the tangent line to & at a point. A surface is “two-
dimensional” so that the regularity condition for surfaces should be that
we have two linearly independent vectors at each point. According to
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Lemma 3.3 of Chapter 1, (0x/du!) x (0x/du?) # 0 is precisely the condition
that {dx/du', dx/du?} is a linearly independent set.

As was the case for curves, we shall assume that £ > 3 unless stated
otherwise.

ExAMPLE 1.6. Let f(u!, u*) be a C* function of two variables defined in an
open set U of R2. Set x(u?, u?) = (u!, u?, f(u', u?)). x is C* and one-to-
one. Let f; = df/du’.

I X (1,0,£) x 0, 1.£)

= (—f1, —f2, D # 0.
Thus x is a C* simple surface. It is the graph of a function and is fre-
quently called a Monge patch.
ExampLE 1.7. Let U = {(u', u%) € R?| (') + (u*)? < 1} and set
x(u', ur) = (u', u?, /1 — (') — @?)?).
This is a special case of Example 1.6. The image is the upper half of the
unit sphere S? < R3.

ExaMpLE 1.8. Let U = {(v', v*) € R?|(»')? 4+ (v?)? < 1} and set
y(', v?) = (v, —/1 — @")? — (v?)%, v?).

This is essentially another case of Example 1.6. The image is the left half
of the unit sphere.

ExaMpPLE 1.9. Let W = {(w!, w?) € R}|—x/2 < w' < 7/2, —m < w? < 7}
and set z(w!, w?) = (cos w! cos w2, cos w! sin w2, sin w!). The image of
z is all of S* except the 180° meridian.

0z dz : 1 2 : 1 o} 2 1
It xwz(—smw cos w2, —sin w! sin w2, cos w!')
X (—cos w! sin w?, cos w! cos w?, 0)
= (—cos? w! cos w2, —cos? w! sin w?, —sin w! cos w?).
Since cos w! is never zero on (—n/2, /2) and cos w? is never zero when
sin w? is, (dz/dw') x (dz/dw?) == 0 on W and z is a simple surface since
it is easily shown to be one-to-one.

ExampLE 1.10. Let x: R? — R3 by x(u!, u?) = ((u')?, (?)?, u'u?). Then
0x/dut = (2ut, 0, u?), dx/du* = (0, 2u?, u'), and

%, x 9% (<20, =202, dutu).
At the point (0, 0), (0x/du') x (dx/du?) = (0,0,0). Thus x is not a
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simple surface because the regularity condition is not satisfied. x is not
one-to-one either since x(1, 2) = x(—1, —2). If
U = {@', u*) € R*u' > 0,u? > 0},

then x: U — R? is a simple surface.

We urge the reader to review the chain rule (Section 1-5) before con-
tinuing.

DEFINITION. A C* coordinate transformation is a C* one-to-one onto function
S0 — U of open sets in R? whose inverse g: U — U is also of class C*.

Let v!, v? be coordinates in U, #!, #2 in U. Set
F@LvH) = (f1@' 0%, f2, v7) = (f f2).
Similarly, g(u*, u?) = (g'(u', u?), g*(u*, u*)) = (g', g?). Then since f and g
are inverses, we have fo g(u', u*) = (u', u*). Thus
fHugi(u', u), g*w', u?)) = u' and fg'(u', u?), g2, u?)) = u’.
If we differentiate using the chain rule, we obtain the four equations:

odg g, 9 dg | afidg g
dv' odu! ' gvidut T 7’ dv' dur ' ov? dur
df*dg' | 9f20g> _ - Of*0g' | 0f29g* _
ov'du' T gvidul T 7 ovt du> ' gv?dutr
Since f'(v', v?) = u' and g*(u', u*) = v*, we may write the above equa-
tions in either of the shortened forms

2 0f'dg* _
(-0 Zowaw %
or

2, dut dve
(-2 Pk il

(Recall the Kronecker symbol &, = 0 if i % j while ¢', = 1.) Each of the
above forms has its advantages. Equation (1-1) explicitly mentions the trans-
formations f= (f!, f?) and g = (g!, g*), while Equation (1-2) looks more
aesthetic in terms of the chain rule. We will use either (0u'/dv*), (3f*/dv*),
or J(f) to denote the matrix of partial derivatives of £. It is called the Jacobian
of fand is named after Carl G. J. Jacobi (1804-1851). Note thatJ(f) changes
from point to point of U, i.e., it is a matrix-valued function defined on .
Equations (1-1) and (1-2) indicate that J(f) is nonsingular and thus has
a nonzero determinant. An important theorem of advanced calculus (the
Inverse Function Theorem, see Fulks [1969]) states that if f: U — U is one-
to-one, onto, differentiable, and has nonsingular Jacobian at each point, then
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the inverse of fis also differentiable and f'is a coordinate transformation. We
shall not, however, need this result.

These coordinate changes play the role in surface theory that repara-
metrizations played in curve theory. The idea is that the upper hemisphere is
the upper hemisphere whether it is parametrized as in Example 1.7 or Example
1.8 (see Example 1.12 below).

LemMa 1.11. If x: U — R?3 is a simple surface and f: U — U is a coordinate
transformation, then y = x o f: U — R? is a simple surface with the
same image as X.

Proof: y is one-to-one since both x and f are. Its class is the minimum of
that of x and f. Certainly x(U) = y(U). Furthermore the chain rule shows
that

) gy _ 9x df' | 0x 9f* < 0x 9f"
(-3 3 = duT 9" T Quidvr = & 5w g

By a straightforward computation we obtain

. dy 9y _ af\ox . 9x Ix
14y §% x 9% — get (W) x % — de t(J(f)) x

Therefore (dy/dv!) x (dy/dv?) # 0 and y is a simple surface. ||

ExaMmpLE 1.12. Let U and O be as in Examples 1.7 and 1.8. Let
U= {(u',u?) € Wuz <0} and O = {(»',v?) € V|v? > 0.
4 and O are open. Let f: 0V — i be given by
f@, %) = @', —/T— @) — @),
We show that fis a coordinate transformatlon f is one-to-one, onto,
and differentiable. Its inverse is g: U — O given by

g, u) = (', /1 — (') — (u?)?),
which is differentiable. Hence f is a coordinate transformation.
The Jacobian of f is

I | 0
(#) = ( ! 1)2
NI—= @) — @) ST @) - ()
which has nonzero determinant since »* 5 0. Note that in Examples 1.7
and 1.8, using U and U we have

X o f(o!, %) = X(v', —/T = ()" — (7)?)
= (0!, —/T — (") — (v*)%, /(v*)?)
’Ul, _4/1 _ (’Ul)z __ (1;2)2,,02)
= y(v!, v?).
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The discussion for the remainder of this section is absolutely crucial for
understanding the rest of this book. We urge the reader to pay especially
close attention to these definitions and notations and understand them in the
special cases of Examples 1.14 and 1.15.

We shall use the following notation throughout the rest of this book.

NortaTioN. If x: U — R3 is a simple surface, then

(1-5)

In this notation Equation (1-3) becomes
du'
Yo = Z X, 0_:1'

DEFINITION. The tangent plane to a simple surface x: U — R? at the point
P = x(a, b) is the plane through P perpendicular to x,(a, b) X Xx,(a, b).
The unit normal to the surface at P is n(a, b) = X, X X,/|X, X X,],
where the right-hand side is evaluated at (a, b). Note that n(a, b) exists
because x; X x, = 0. It is perpendicular to the tangent plane at P.

The set {x,, X,, n} is linearly independent and hence gives a basis of R3.
In a way it serves the same purpose for surfaces that the Frenet-Serret frame
{T, N, B} does for a curve. However, as we shall see, it is not an orthonormal
basis (in general). Eventually we shall compute the derivatives of x,, x,, and
n with respect to the coordinates #’. The resulting expressions, due to Gauss
and Weingarten, will take the place of the Frenet-Serret equations.

The following proposition is immediate from Equation (1-4).

ProrposiTiON 1.13. If x: U — R? is a simple surface, f/: U — U is a coor-
dinate transformation, and y = x o f; then
(a) the tangent plane to the simple surface x at P = x(f(a, b)) is equal
to the tangent plane to the simple surface y at P = y(a, b);
(b) the normal to the surface x at P is the same as the normal to the
surface y at P, except possibly it may have the opposite sign.

This proposition says that the tangent plane at P is an intrinsic invari-
ant. This is especially important for the general theory of surfaces as we shall
see in the next section. See Problem 1.6.

ExAMPLE 1.14. In Example 1.7 we have
_ul

A v o B (i o e )
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Therefore m = (u', u?, /1 — (u")? — (1?)?). At the point x(}, ) the
tangent plane has the equation

Y- )+ 4o )+ ) o

2 2

See Figure 4.2.

FIGURE 4.2

ExampLE 1.15. Consider the Monge patch x(u!, u2) = (u!, u?, uu?).

x,(a,b) = (1,0,6) and x,(a,b)=(0,1,a)

so that
—b, —a, 1
X, X X, = (—b, —a, 1) and n(a, b) = (ITZ"H))Z-
Note how the normal, and hence the tangent plane, changes as a and
b change. At the point x(1, 2) = (1, 2, 2) the tangent plane has the equa-
tion
2x-D-0—-2+¢—2)=0.

See Figure 4.3. In this example the tangent plane actually intersects the

FIGURE 4.3
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surface in two straight lines:
at) =x(4,2)=(2,2,2r) and B@) =x(,0)=(1,10.
See Problem 1.8.

DEerINITION. A vector X is a tangent vector to a simple surface x: U — R3
at P = x(a, b) if X is the velocity vector at P of some curve in x(U),
i.e., if for some € > O there is a curve a: (—e, €) — x(U) = R? with
a(0) = P, (da/dt)(0) = X, and a(r) = x (&’(1), a>(t)), where
the o/ are .

LEMMA 1.16. The set of all tangent vectors to a simple surface x: U — R?
at P is a vector space.

Proof: 1f X and Y are tangent vectors at P, then X = &(0) and Y = B(0)
for some curves @ and B in x(U) with a(0) = B(0) = P = x(a, b). There are
functions a!(z), a*(t), f1(t), B*(?) such that

a(r) = x(a'(?), a*()) and B@) = x(B'(1), B*(1)).
(In fact, x~! o e defines (a'(f), a%(?)), where x~': x(U) — U is the inverse

of x.) Then

dx da! dx do?
X=00ar Q520 @

(1-6)
9x df gy 4 9 dB )
Consider y(t) = x(a'(t) + B'(¢) — a, a*(t) + B*(¢) — b). Since
a'(0) = p'(0) =a and a?(0) =p*0) = b,
v(¢) make sense and is in x(U) if |z | is small enough. We claim y(0) = X + Y.

dy _ ox (doc‘ dﬂ) ax <da2 dﬂz)

V=

@ = dw\dr tawe\ar tar
ox da' | 0x do Jx dp' | Ox dp?
(du T T dt)+(3_u—1d—ﬁt+du2d€)

By Equation (1-6) ¥(0) = X + Y. Hence the sum of two tangent vectors at
P is a tangent vector at P (y(0) = x(@ + a— a, b + b — b) = x(a, b)) = P).

Assume that X is a tangent vector at P as above and r € R, and
let q(t) = a(rt). For small values of ¢ this makes sense and n(?) is a curve
in x(U). N(0) = a(0) = P. dn/dt = (da/dt)r, so that ©(0) = rX. Thus a
multiple of a tangent vector is a tangent vector.

All other properties of a vector space are satisfied by the set of tangent
vectors to x at P since the set is a subset of the vector space R3. Hence the set
of all tangent vectors to x at P forms a vector space. ||

The next definition is important because it will give examples of tangent
vectors to a surface x.
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DeriniTION. Let x: U — R3 be a simple surface. The u!'-curve, o, through
P = x(a, b) is given by a(u') = x(u!, b). The u?-curve, B, through P is
given by B(v?) = x(a, ¥?). A parametric curve on X is one of these curves.

Note that the standard rectangular grid on U (i.e., the (&', #?) plane) has
as its image under x a grid on x(U). This grid is sometimes called a curvilinear
coordinate system on X(U). The grid lines are the parametric curves. See
Figure 4.4.

/" ] x(W)

e

FIGURE 4.4

ExamMpLE 1.17. Consider the upper hemisphere in Example 1.7. The
ul-curve through P = x(a, b) is a(u') = (u', b, »/1 — (u')?* — b?). The
u?-curve through P is B(u?) = (a, u?, /1 — a*> — (u?)?). See Figure 4.5.

FIGURE 4.5

Let x: U — R? be a simple surface and (a, b)) € U. What is the velocity
vector of the u!-curve a(u!) = x(u!, b) at u' = a? It is
d d
@ = 72, ) = x,(a, b).
Similarly the velocity vector of the u*-curve B(u?) = x(a, u?) at u*> = b is
X,(a, b). This means that both x,(a, b) and x,(a, b) are tangent vectors at
x(a, b).

ProposITION 1.18. The set of all tangent vectors to x at P =X(a, b) is a
vector space of dimension two with basis {x,(a, b), X,(a, b)}. Further-
more, viewed as a plane in R3 through the origin, it is parallel to the
tangent plane at P.
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Proof: x,(a, b) and x,(a, b) are tangent vectors at P and are linearly inde-
pendent. Thus the set of all tangent vectors at P is a vector space (Lemma
1.16) of dimension at least two. It will have dimension two if we can show
that x,(a, b) and x,(a, b) span it.

Let X be tangent to x at P and let y be a curve in x(U) with y(0) = P
and ¥(0) = X. There are functions p!(z), p2(¢) such that y(r) = x(p'(t), p2(t)).
(1), y2(1)) is defined by x~'(y(r)).) By the chain rule we have

. dy _ Ox dy' | Ox dy* _ ay
{-7) dt = dr T awdr = 2X

dr
Thus
(1-8) X = X'x,(a, b) + X*x,(a, b),
where

X' = 740).
Equation (1-8) says that x,(a, b) and x,(a, b) span the set of all tangent
vectors at P. Thus the dimension of this vector space is two.

The tangent plane at P is perpendicular to n(a, b) by definition. n(a, b),
which is a multiple of x,(a, b) X x,(a, b), is certainly perpendicular to
X,(a, b) and x,(a, b). Hence n(a, b) is perpendicular to the plane spanned
by x,(a, b) and x,(a, b) and these two planes are parallel. ||

We quite often identify the vector space of tangent vectors to x at P
with the tangent plane at P by viewing the tail of a tangent vector to be at P.

In the above proof we showed that any vector X tangent to a surface x
can be written in the form X = ¥ X’x,. Suppose f: U — U is a coordinate
transformation and y = x o f. Then X — ¥ X*y,. How are the coefficients
{X!, X2} and {X', X?} related ? Since y, = 3 x, (du'/dv*),

TXxXx,=X=Y Xy, = Ef“(%x,) =3 (X’" g:;)x,

The vectors x, and x, are independent and so we must have

'

dv®

This formula tells us that if we know the components of the vector X in the

V-coordinate system, we can find the coordinates in the U-coordinate system
by multiplying by the Jacobian of f: U — U:

(1-9) X=X

1 1 2 1
(1-10) (X) _ Jdv D) (z\: )
X2 du? du? |\ Xx?
dv! ov?
Note that we also have
(1-11y I = 3 x 9

0
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PROBLEMS

11 Let U = {(u',u?) € R*| -z < u' <7, —n < u* < m}and define
x(u!, u*) = ((2 + cos u') cos u?, (2 + cos u') sin u?, sin u').
(a) Prove that x is a simple surface. (x(U) looks like the surface of a

donut or innertube.)
(b) Compute x,, X,, and n as functions of #! and u?.

This problem is a special case of the next one, which we shall investigate
in detail throughout the chapter.

*1.2. Consider a curve in the (r, z) plane given by r = r(t) > 0, z = z(1). If
this curve is rotated about the z-axis, we obtain a surface of revolution.
(See Figure 4.6.) We may parametrize this surface in the following

FIGURE 4.6

manner. It is useful to use coordinates ¢ and 8 instead of u! and u?,
where ¢ measures position on the curve and § measures how far the
curve has been rotated. The surface is given by

x(t, @) = (r(¢) cos 8, r(¢) sin 8, z(¢)).
(a) Prove that x is a simple surface if the original curve

a(r) = (r@), z(1)
was regular and one-to-one and if —xn < @ < m by computing
x, = 0x/d¢t, x, = 0x/00, and n.
(b) Show that Problem 1.1 is a surface of revolution.
(c) Show that Example 1.9 is a surface of revolution.
The t-curves are called meridians and the @-curves are called circles of
latitude. The z-axis is called the axis of revolution.
(d) What are the meridians and circles of latitude of Problem 1.1 and
Example 1.9?
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1.3.

14.

1.5.

*1.6.

*1.7.

*1.8.

1.9.

1.10.

Let U = {(x', u?)|0 < ', 0 < u?® < 2z} and
x(u', u?) = (u' cos u?, u' sin u?, u' + u?).

Show that x is a simple surface.
Let 8(u') be a C* function. Prove

x(u', u*) = (u? cos B(u'), u? sin B(u'), u')
is a simple surface.
Let x(u', u?) = (' + w2, u' — u?, u'u?). Show that x is a simple
surface. Find the normal n and the equation of the tangent plane at
u =1,u* = 2.
In Example 1.7 compute the equation of the tangent plane at u' = 1,
u? = —3. Show that this is the same as the tangent plane in Example
18atv' =4, 02 =1//2.
Prove Proposition 1.13.

In Example 1.15 verify that the curves @ and B do actually lie in the

tangent plane.
Let x(0, v) = (cos 8, sin 6, 0) + v(sin 38 cos 8, sin 46 sin 8, cos 46) with
—n <80 <m, —} <v <3} Compute n(@, 0) and show that
lim n(@, 0) = —1lim n(@, 0)
8—+—-n 8-r
while
lim x(@, 0) = lim x(@, 0).

8—+—n 8-n

See Figure 4.7. This is called the Mdbius band.

FIGURE 4.7

Let S? = {(u,v,w) € R¥|u? + v? 4+ w? = 1} and

R? = {(u,v,w) € R?*|w = 0}
If (u, v, 0) belongs to RZ?, the line determined by (u, », 0) and (0, 0, 1)
intersects S? in a point other than (0, 0, 1). Denote this point by
x(u, v). Compute the actual form of x(u, v) and show that x: Rz — R?®
is a simple surface. See Figure 4.8. (The inverse mapping to x is called
the stereographic projection.)
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0,0, 1)

FIGURE 4.8

1.11. Let x(r, s) = (r — s, r + 5, 2(r? + s52)), for all (r, s) € R2 Show x is
a simple surface. Can you describe the surface geometrically ?

1.12. Let x(0, ¢) = (sin¢ cosf, 2sin¢dsinf, 3cosd) with —z <0 <=,
0 < ¢ < m. Show x is a simple surface. What is it?

1.13. Let x(u, v) = (/1 —u?cosv, /1 —u?sinv, w) with —1 <u <1

and —n < v < 7. Show that x is a simple surface. What is it ?
1.14. Let a: (a, b)) — R? be a unit speed curve with ¥ = 0. Let
U={(s,1) e R|a<s<b,t+0}]

Define x: U — R? by x(s, t) = a(s) + tat’(s). Prove that x is a simple
surface, provided x is one-to-one. x is called the tangent developable
surface of a.

4-2. SURFACES

The various parametrizations we have given for S? (Examples 1.7, 1.8,
1.9, and Problem 1.10) all had one defect in common: they did not describe
the entire sphere. However, we shall want to consider geometric sets such as
S? as surfaces. To do this will require more sophisticated concepts. Basically,
a surface will be a collection of simple surfaces that overlap. On the overlap
we shall require that the two parametrizations be related by a coordinate
transformation. Because we want to emphasize that a surface is made up of
patches, we shall now refer to a simple surface exclusively as a coordinate
patch. (Both terms mean exactly the same thing.)

DErFINITION. Let M be a subset of R3 and € > 0. The e-neighborhood of
P € M is the set of all points Q € M such that d(P, Q) < €, where d
denotes the usual Euclidean distance in R3.

Note that the e-neighborhood of P is the intersection of M with the ball
in R? of radius € and center P. (The student who has studied topology should
note that what we are doing is defining the relative topology of M in R3.)
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DEerINITION. If M < R3, a function g: M — R2 is continuous at P € M if for
every open set U in R? with g(P) € U there is an e-neighborhood N of
P with g(9) = U.

Intuitively, a continuous function is one that sends nearby points to
nearby points.

DEFINITION. A coordinate patch x: U — R?2 is proper if the inverse function
x 1 x(U) — U is continuous at each point of x(U).

ExampLE 2.1. The function that sends the open rectangle (0,2) X (0, 1)
onto the surface in Figure 4.9 is not proper. Any e-neighborhood of the
point P is mapped in a discontinuous fashion by x7!, if € is sufficiently
small.

FIGURE 4.9

DEFINITION. A C¥ surface in R? is a subset M = R? such that for every point
P € M there is a proper C* coordinate patch whose image is in M and
which contains an e-neighborhood of P for some € > 0. Furthermore,
if both x: U — R? and y: U — R? are such coordinate patches with
U = x(U), V' =y(V),theny~! o x: (x~ (W N V)) — @' U N VY))
is a C* coordinate transformation. (See Figure 4.10.)

|

FIGURE 4.10 |

In practice one usually gives a collection of proper patches such that
each P € M is in at least one of the patches. We shall say the patches cover M.
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EXAMPLE 2.2. The unit sphere S? = {(x,y,z) € R?*|x? 4+ y* + 22 = 1}isa
surface. We will cover S? with six patches. (See also Problem 2.3.) Let
Ut =U" = V* =V =Wr=W" =7{(a,b) € R*|a® + b2 < 1}. The
table gives the various patches.

Patch Definition Inverse
xt: Ut — R3| x*(u!, u2) = !, u2, /T — @")2 — (u2)2) G 1(x, 3, 2) = (x, )
x": U~ — R x~(u', u2) = (!, u2, —/T— @2 = @2)?) (), p,2) = (x,»)
yr: Ut — R¥| yr',02) = (), /1 = (1) — (#2)2, v2) O ix, y,2) = (x,2)

y:UT — R y (!, 02 = (o1, =1 — @1)2 — (®2)2,22) | (%0, 2) = (x,2)
zt: Wt — R3|[ zt(w!, w2) = (W1 — (wD)2 — Ww2)2, wl,w2) (), 5,2)=(,2)
z7: W™ — R3| z=(w1, w2) = (—A/1 — (W12 — (W2)2, wl, w2) | ()" Ux, »,2) = (3, 2)

The images of the patches are (respectively) the upper, lower, right, left,
front, and back hemispheres. Note every point of S? belongs to at least
one of these hemispheres. We should show that on each overlap the
appropriate composite function is a C* coordinate transformation. We
shall only do this for x* and y*. Example 1.12 did it for x* and y-. We
leave the other cases to the reader. We omit all + signs on x*, U*, etc.
UNUV={xy2 € R|y>0,z> 0} so that
x'W N V)= {@u',w?) € U|u* > 0}.
Now

Yo x(ul, u?) =y, u?, o/ T— @) — @)
= @', /1T — ') — @),
which is certainly a C* function for any & > 1 since (#')? + (©2)* < 1.

We need also show that y~! o xis a one-to-one function on x~ (U’ N V).
If (y=' o x)(a, b) = (¥y~! ° x)(c, ), then

(@, /T —a* —b%) = (c, /T — c* — d?)
so that a = ¢ and b = +d. However, since both (g, b) and (c, d) belong
to x (W N V'), both b and d are positive and b = d. Thus y~' o X is
one-to-one. The inverse function is x~! o y given by

x~toy@!, v?) = (v, /1 — (') — (¥))?)

which is differentiable. Hence y~! o x is a coordinate transformation.

ExAMPLE 2.3. We show that the circular cylinder S' X (0, 1) is a surface.
Let W = (—3n/4, 3n/4) X (0, 1) and x: U — R?® by

x(@,t) = (cos 8, sin 8, 1).
x is proper. Let U = (n/4, Tn/4) X (0, 1) and y: U — R? by

Y(@, s) = (cos ¢, sin §, s).
y is proper. Every point of S!' X (0, 1) is in the image of x or y. The
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overlap consists of two separate pieces, a left piece and a right piece.
Note that on the right piece both 8 and ¢ are between m/4 and 3m/4.
Hence on this piece y=! o x(8, t) = (0, ¢), which is certainly a coordinate
transformation. (We may also write this as ¢ = 8 and s = ¢.) On the
left piece @ lies between —3xn/4 and —=/4 whereas ¢ lies between 5n/4
and 7r/4, so that it is impossible for § = ¢. In fact, since cos § = cos ¢
and sin @ = sin ¢, we have y~! o x(6,¢) = (@ + 2=,¢) (or ¢ =0 + 2=
and s = ¢). This is also a coordinate transformation. See Figure 4.11.

7

3n 37: ‘ (n
on 0, 1 S, x (0,1 =,
FIGURE 4.11 ( 4 x 0.1 ! ) 4

»§

>x(0,1)

ExAMPLE 2.4. A surface of revolution (Problem 1.2) can be made into a
surface in a similar manner. See Problem 2.1.

In advanced calculus there is a difficult theorem, which we shall not
prove, called the Implicit Function Theorem. (See Fulks [1969].) It states
that if f: R® — R is a differentiable function such that (f,, f,, f,) # 0 at all
points of M = {(x, y, z)| f(x, y, z) = 0}, then M is a surface. In fact, if
f. # 0 at a point P of M, there is a Monge patch in M that contains P.

ExAMPLE 2.5. Let f(x, y,z) = x2 4+ y?> + z2 — 1. Then the set of points
where = 0 is the surface S2.

ExXAMPLE 2.6.
2 2
fay)=5+5m+ 51
gives a surface called an ellipsoid.

ExAMPLE 2.7. f(x,y,z) = x* — y* — z gives a surface called a hyperbolic
paraboloid.

EXAMPLE 2.8.
2 zZ

f(x,y,z) 02+ ‘“z,_‘_l

gives a surface called a hyperboloid of one sheet.
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ExAMPLE 2.9.
2 2 2
f(X,y’Z)Z)—;a—X-——Z———l

gives a surface called a hyperboloid of two sheets.

PROBLEMS

2.1. The coordinate patch of Problem 1.2 does not cover the entire surface
of revolution—it omits points that would correspond to 8 = 4.
Define a second coordinate patch with 0 << ¢ < 2z, check the overlap
condition, and thus show that a surface of revolution is a surface as in
Example 2.3.

2.2, Problem 1.1 gave one coordinate patch for a torus (or inner tube; see
Figure 4.12). Find three more patches making the entire torus a surface
(including the points where 4! = z and those where u? = 7).

FIGURE 4.12

2.3. Note that every point of S? is either in the image of the patch in Example
1.7 or the patch in Problem 1.10. Show that these two patches make S?
into a surface by computing the coordinate transformation on the
overlap.

2.4. Describe some possible parametrizations of the ellipsoid
xZ 2 22
S+ L+ S=1

2.5. Give another coordinate patch for the surface in Problem 1.9 so that the
curve @ = = is included, thus making that example into a surface.
Note that Problem 1.9 says that it is impossible to make a choice of unit
normal at each point of this surface in a continuous fashion.
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4-3. THE FIRST FUNDAMENTAL FORM
AND ARC LENGTH

In this chapter we are concerned with local properties of surfaces. We
must understand them before we can consider global properties. For that
reason we shall not use the terminology of the last section very much now.
Normally we shall assume we are in a coordinate patch, which is equivalent
to looking at just one small portion of a surface at a time.

One problem will arise by staying in one coordinate patch. Any defini-
tion that seems to depend upon the coordinates will have to be checked as to
its form in another coordinate patch in order to determine if the concept is
really geometric (i.e., independent of coordinate patch). We have already
done this in the case of the tangent plane at a point. (Proposition 1.13.)

Let M be a surfacein R? and P € M. If X and Y are two vectors tangent
to M at P, it makes sense to compute <X, Y>. In terms of a proper coordinate
patch x: U — R® about P we can write X =3 X’x, and Y=} Y'x,.
Then, since the inner product is a bilinear function,

XY =YXXY&Xx,x)>=3 XYg,
where we make the definition

(3-1

The functions g, define a symmetric matrix at each point in the image of
x. It is important to note that g, is a function defined on U and depends
critically on which coordinate patch we have picked. See Example 3.1. The
functions g;; are sometimes referred to as the metric coefficients, the coeffi-
clents of the metric tensor, or the coefficients of the Riemannian metric. Their
definition is due to K. Gauss (1827) and, in a more abstract formulation, to
G. F. B. Riemann (1854).

DEerINITION. The tangent space of a surface M at P € M is the set T,M of
all vectors tangent to M at P.

Propositions 1.13 and 1.18 show that this is the same as the tangent plane
at P to any of the coordinate patches whose image contains P. The standard
inner product { , > of R? can be restricted to this vector space, where it is
still an inner product. The matrix (g,;) is the representation of the restricted
inner product with respect to the basis {x,, x,}. Thus (g;;) is a nonsingular
positive definite matrix. (Recall that a two by two matrix (a,;) is positive
definite if and only if a,, = a,,, a;, > 0, and det (a;;) > 0.)

The rule which assigns to any two tangent vectors X, Y € T.M their
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inner product is called the first fundamental form of the surface. The termi-
nology “form” refers to the fact that an inner product is a bilinear form in the
sense of linear algebra.

ExaMmPLE 3.1. Consider the coordinate patch of Example 1.7:

X', w?) = W'y 1, o/ T—= G — )

= (1’ 04— (;)uz‘— (u2)2>

n=@hw—d$—wﬁ'

Then
_ 1 — (u2)?
&1 = 1T W) — (W)
u'u?
&2 = T— @) — (u2)? = 821
— 1— @) .
822 = 17— @) — @)
Thus

(gu) =

1 1 _ (uZ)Z uluZ
T=@) — @)\ g 1— @)
Note that this matrix is positive definite since (#!)? -+ (%) < 1. We
also note that det (g,,) = 1/(1 — (u')* — (#?)?) > 0.

In the coordinate patch of Example 1.8 you can compute that the
corresponding matrix is

o I O
(82p) = 1 — (@) — (02)2( ) 1 — (v1)2)

Note that this matrix is not found by replacing ' and * by v' and
—/1 — ()2 — (v?)? as given by f: O — qL. This is because the two
matrices represent the inner product with respect to different bases.
Later in this section we shall determine the actual relation between (g,;)
and (gaﬁ)~

ExaMPLE 3.2. Consider the Monge patch x(u!, u?) = (u', w2, f(u', u*)) of
Example 1.6. x, =(1,0,f,) and x,=1(0,1,1,). g,=1+4(f1)%
g2 = 821 = 1/, and g3, = 1 4 (f;)%. Also,

det (g) = 1+ (f)* + (f)* > 0.

ExamPLE 3.3. Consider the surface x(u, v) = (u2, uv, v?), where ¥ > 0 and
v»>0. Then x, = (Qu,v,0) and x, = (0, u, 2v). g, = 4u? + 22,
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g1, = &, = uv, and g,, = u? 4+ 4v%. Note that
det (g,,) = 4u* + 16u20% + 4v* > 0.

The term “metric” used with the functions g, refers to the fact that they
play an important role in measuring. They obviously help to measure lengths
and angles in T,M. We shall see below that they appear in formulas for the
lengths of curves and (later) for areas of regions.

Let a(z) be a regular curve whose image is contained in that of a coor-
dinate patch x: U — R?® so that a(r) = x(a'(t), a2(¢)) for some real-valued
functions a'(f) and a%(¢) defined by (a'(¢), 2%(t)) = x~! o a(¢). If we wish to
know the length of the segment e : [, ] — R?®, we must compute [ | dev/dt| dt.
But dov/dt = ) x, do'/dt so that

| - / da da>
\/ < doc1>
- Xi dt X5 ar
do’ do’
- “/ 28 gy dt dr
Hence the length of the segment is L Y gi(doi/dt)(do’[dt) dr. Thusifa
curve segment o is defined in terms of local coordinates by a' and a2, it is

easy (at least theoretically) to compute its length with the use of the metric
coefficients g,;.

NOTATION.

(3-2)
(3-3)

Lemma 3.4. For a coordinate patch x: U — R?
(@) g =%, X x, %
(b) g'' = g2./8, 8'* = &' = —g1./8, &% = g./g; and
2
(c) foralliandj, Y g,g* = d/.
k=1
Proof:
(a) Let @ be the angle between x, and x, so that

[X, X X, |2 = |x, 2| X, |*sin2 8 =[x, [*]| X, |* (1 — cos? B)

2
:|x1|2|x2|z(| _ {(Xy, X )

[x, *[x,|*
=[x, [*[x, [ — <Xy, X, 02

= £11822 — £12821 — &
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(b) A straightforward calculation shows that

822 _ &2

g g1 and (g“ glz)
_ &2 811 821 822
g g

are inverse matrices.
(© X gug"! is the (7, j) entry of the product (g;;)(g*’), which is the iden-
tity matrix (6,). |

ExAMPLE 3.5. In Examples 1.7 and 3.1 we have g = 1/(1 — (u')? — (u?)?)
so that g'' =1 — (u!)?, g'? = g*! = —uw'u?, and g*? = 1 — (u?)2.

Suppose now that there is a coordinate transformation f: U — U.
How are the metric coefficients g,;, their determinant g, and the inverse
coefficients g’ in the Ul-coordinate system related to those in the U system
for a surface x: U — R3?

Let

d -
y=x Of; Y. = a_v);a 8ap = <ym yﬂ>,

g =det(8,,), and (§7%) = (8.5 "

Just as y, = 3 x, (du//dv*) (Equation (1-3)), we have x;, = Y.y, (0v*/du’)
so that

_ _ v 0vf - dvrgvf
8y = <xn Xj> = Z <Yat5 Yﬂ>w o E 8up 9 oV
Thus
v 0vdvf
(3-4) & = E 8ap 9 o
As a matrix equation this is
(3-5) (gn g12) _ ou' ou' (gll glz) ou! ou?
821 822 ‘9_21 @ &1 &:22 % @
du? du? du! du?
If J is the Jacobian of f: U — U, Equation (3-5) is
(3-6) (&) = (7' )(gup)J !
since
av! Jv!
du’! o’
duv? dv?

du'  du?
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is the Jacobian of g: U — U and the inverse of the Jacobian of f: VU — q.
(See Equation (1-2) of Chapter 1 and the preceding discussion.)

g = det (g;;) = det (Y (@)Y
= det (J ') det (g,,) det (J~1) = g(det (J~1))2.
Thus
(3-7 g= g(det %;)2
Finally
&) = (@) ' = YE I D =J(@up) T = J @),
Thus
5 Ouk o
(3-8) =X& GW F

For future reference we gather together the various formulas associated
with a coordinate transformation f:U— U for a coordinate patch
x: U — R3.

(-9) X =% X 3¢
where X = Y X'x, = Y, Xy, is a tangent vector to the surface,
. v gvP
(3-10) 8i; = Egapa—:j,%
o= s{on (35
and
k
G - s ge
Interchanging the roles of U and U, we obtain
(3-9) r-rx
) d0u' du/
(3-10) 8up = E 8ij d’;l"‘ 6%
, N d
G-11) 3 — (det ( o ))
and
- v v’
61 pop e I

In Equations (3-9), (3-10), (3-11), and (3-12) there is one fundamental
difference. While all four tell us how to write an expression in the U-coor-
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dinates if we know how to write the analogous expression in the U system,
some involve the Jacobian of f: U — U ((3-9) and (3-12)) and some involve
the Jacobian of g: U — U ((3-10) and (3-11)). Classically, transformation
laws (3-9) and (3-12) are called contravariant transformations, while (3-10)
is called a covariant transformation. Transformation (3-11) is neither covari-
ant nor contravariant because it does not involve matrix multiplication. We
shall not belabor the difference between covariant and contravariant. How-
ever, from time to time we may mention whether a given quantity is
covariant, contravariant, or neither. In the abstract approach of Chapter 7
it is easy to distinguish between covariant and contravariant.

Our notation (due to Ricci, Levi-Civita, and Einstein, circa 1900) is
designed to aid in remembering such formulas. Whenever we are summing
an expression, such as Y X*x,, it is with an upper index versus a lower index.
In any transformation equation (like (3-9) or (3-10)) the dummy summation
indices are upper versus lower. All other indices appear on both sides of the
equation in the same position (upper or lower). We shall use Latin indices
(i, j, k) in the U-coordinate system and Greek indices (a, 8, ) in the U
system. With these rules in mind it is easy to recall Equations (3-9), (3-10),
(3-11), (3-12). In some texts the summation sign is omitted completely and
one must remember to sum whenever there is a repeated index.

ExaMpLE 3.6. Consider the sphere S? and, in particular, the overlap of the
coordinate patches in Examples 1.7 and 1.8. To make the following
computation a little easier to read, we set r = u!, s = u?, a = »!, and
b =2,

f(@a,b)=(a, —A/1 —a* —b*) = (r,)
and
g(r,s) = (r, /1 — r* — s2) = (a, b).

The matrix (J(f))™! = J(g) is

1 0
—r —s .
1 —rr—s? T —rr—5s?
1 — b ab
- I —a*—b? 1 —a*— b
(grzﬂ):
ab 1 — qa?
1 — a?> — b2 1 —a?— b2
rt 4 s r/1T—r2 —s2
5 I
/T = =52 1 —1r?
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Thus
1 - —r
T ——
oy =| M
0 —S
Ml — 2 52
r* + s? r /1 —r*—s*
T e
Nl aA=—rF—5 1—r?
52 52
1 0
. —r —s
1T —rt— 52 A1 —rr—s?
1 — s rs
1 —r2—s? 1 —r2— 2
N rs 1 —r2 = (&)
I —r2 —s? T +7r2—s

DIGRESSION (This material may be omitted.)

If e(z) is a curve in a simple surface x: U — R3, and if s is arc length
on o, then

ds_J doi dov (éﬁ)z_ dot doJ,
NG g o \g) =X 4

A classical geometer would drop all reference to the parameter ¢ (and in fact
the curve itself) and write this equation as

(3-13) ds* = 3, gy du’ du

and call ds? the first fundamental form. To a classical geometer the symbols
ds, du!, dw’ had meaning as infinitesimals. To a modern geometer they have
meaning as linear functionals, as we shall describe below.

Equation (3-10) can also be derived from (3-13). We must have

ds? = Y, 8,p dv* dvP.
dv* =3 (9v*/dut) did, so that
o

Z §¢p dv* dvf = z gmﬁ ‘a—ul— a—u; dut duf.
If we accept the fact that the symbols du du’/ are independent, then
ds* = Y, gy du* dw
must yield

a B
gij = P §ap%%'
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Classically the expressions du! and du? expressed the difference in the
coordinates of two infinitesimally close points. The modern viewpoint is to
view them as linear functions on TpM. Before we indicate how this is done, let
us review some more linear algebra.

DEFINITION. A linear functional on a real vector space V is a linear function
p:V—R

ExaMmPLE 3.7. Let V¥ —= R? and define p by p(x, y,2) = x - 2y + =

ExampLE 3.8. Let V be any real vector space with an inner product. Let
p € Vand define p: V— R by p(v) = <p, v).

The set of all linear functionals defined on V forms a vector space under
the usual concepts of function addition and multiplication by real numbers:

C(rd - w)v) = r(§(v)) + w(v). This vector space is called the dual space of

V, and is denoted V'*.
THeoOREM 3.9. If V is a real vector space of dimension », then so is V*.

Proof: By the previous observation we need only show that ¥* has dimension

n. Let {uy, u,, ..., u,} be a basis of V. Define a linear functional ¢: ¥ — R
by @u,)) = 6. Then ¢« a/uy) = 3 a/di(u)) = 3, a/d; = a*. We claim
{@', ..., d}is a basis of V'*. First we show that the ¢ are independent. Sup-

pose there are real numbers a; with 3 a,¢' being the zero function. Then
0 = (3 aid)uy) = 3 aldi(uy)) = X a,0'; = a;. Hence the ¢ are indepen-
dent. Now we need to show that they span V*. Let p € V*andletc; = p(u,).
Then a straightfoward calculation shows that 3] ¢;¢/(v) = p(v) forany v € V
so that p = 3} ¢,¢". Hence {@!, . . ., ¢"} is a basis and V* has dimension n. [I

The basis {@!, §2, . .., ¢} found in the previous proof is called the dual
basis of V* with respect to the basis {u,, u,, . . ., u,}. Suppose one has another
basis {vq, vz, ..., v,} of V with u; = 3} a*v,. Let {y!, w2, ..., y"} be the
basis of V* dual to {v, Vs, . .., v,). Then y= = 3} b*;¢ for some matrix (b%).
What iS buj?

be = 5 beidy = B bitu) = (X bru) = po(w)
=yE @ yp) = B aty vy = X a0y = .
Thus (bmj) = (a"j). If u; = 2 a*V,, then

(3-14) we = 3 a* .
If (c/p) denotes the inverse of (a*;), then
(3-15) ¢ =X clpyh.

Now we shall indicate how the differentials du!, du?> may be viewed as
linear functionals on TpM. If X = Y, X'x; € TpM, then du/(X) is defined to
be X4. This is certainly a linear functional, and {du!, du?} is the dual basis
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*3.1.

3.2,

3.3.
34.

*3.5.

3.6.

3.7.

(of TpM *) with respect to {x,, ’&z} This is also consistent with the manner in
which dual bases transform:

:ETY“ while du' = E*dv"

Note that (9ui/dv®) is the inverse of (dv*/du') as required by Equation (3-15).
It thus makes sen$e to call ds2 = 3 g;; du' du’ the first fundamental form
because it is a bilinﬁér form:

dszgx Y) = X gi;dii did(X,Y) = 3 gi; dui(X) dui(Y
- =D g,;XYI =X Y.

The matrix (g'/) can be viewed as representing an inner product on TpM*,
namely {di', du’y = gi/. This is natural in the following sense. X = ¥} g%x;
has the property that (X?@, Y> = dui(Y). gii = (X@ X%, That is, the inner
product of du' and du’ is defined to equal that of the vectors that represent
du’ and du/ via the inner product in TpM.

PROBLEMS

Show that the metric coefficients for a surface of revolution (Problem

X . PP 22 0
1.2) are given by the matrix ( * )
0 r?
Compute the metric coefficients for the parametrization of S? in Prob-

lem 1.10.
Compute the inverse of metric coefficients in Examples 3.2 and 3.3.

A coordinate patch x: U — R? is called an orthogonal net if the
u'-curves meet the u2-curves at right angles, that is, X, is perpendicular
to x, everywhere. Prove that the meridians and circles of latitude of
a surface of revolution form an orthogonal net.

For a coordinate patch x: U — R2 show that u! is arc length on the
u'-curves if and only if g, = 1.

Let x and y be cartesian coordinates of the plane while r and @ are polar
coordinates. Show that x = r cos @, y = rsin@ is a C! coordinate
transformation for r > 0. Show that the metric coefficient matrix for

1 0 .
the plane with respect to the x, y coordinates is (0 1). Determine

the metric coefficients for polar coordinates.

Consider the coordinate patch x(r, 8) = (r cos 8, r sin 8, r) where r > 0.
Find the coefficients of the metric tensor (g;,). Now consider the curve
r(t) = e'tP/2 f(r) = t/,/2 in this surface, where 0 <t <z and f
is a constant. Find the length of the curve. Show that f is the angle
between this curve and the line 8 = constant.
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4-4. NORMAL CURVATURE, GEODESIC
CURVATURE, AND GAUSS'S FORMULAS

Let y(s) be a unit speed curve whose image lies on a surface M < R3. y
has Frenet-Serret apparatus {x, 7, T, N, B}. The reader is warned not to con-
fuse N, the normal vector field to ¥ as defined in Chapter 2, with n, the normal
vector to a coordinate patch in M. They can very well point in different direc-
tions (and usually do!).

ExAMPLE 4.1. Let M = S§? and let y(s) be the curve

¥(s) = (@cosﬂs,ﬁzgsinﬁs,ﬂ).

2
Then

Y =T=(—sin,/2 s,co5./2 5,0)

T = (—A/2coss/2 5, —+/2 siny/2 s,0)

N = (—cos./2 s, —sin /2 s,0).
At s =mn/2,/2,N = (0, —1, 0). Using Example 1.14 we find
= (02 2 m_\_ (0,802 ~/2Y _ x(0,8L2).
n= (0555 %) at 1(3g) = (0375 %) = x(0257)

See Figure 4.13.

FIGURE 4.13

NoTtATION. If x: U — RS3 is a simple surface and y(s) is a unit speed curve in
the image of x, then

)]

42)
@-3)

€5
"
.
>

i\ r€eq
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We shall call S the intrinsic normal of y. It is welkdefined on a surface M
up to sign, just as n is. The two choices of sign correspond to different orien-
tations. Do not let the terminology mislead you: S is normal to the curve but
tangent to the surface. Note that x,; = x,, under the assum 'gion that x is
ce. N

For the curve y(s) whose image is contained in the coordinate patch
x: U — R3, we write, as usual, y(s) = x(p!(s), p*(s)). By Equation (1-7) we
have T = y" = 3] (9x/0u')(y") = X x(y)’ or
(4-4) Y'(s) = 2 %' (s), (N ().

We wish to differentiate this equation with respect to s. What is the derivative
of x(p(s), y%(s))? An application of the chain rule yields

dx(y'(s), y*(s)) __ 9%, dy! . 0%, dy’
ds

0u‘ ds U dutds
dy? dy’
—th d + X2 dy - 2 ij dJ;

This equation and (4-4) imply
(4-5) Y'(s) = 12} X, () () + Xy

If P € M, we may let N.M = {rn|r € R}. NpM is the set of all vectors
perpendicular to M at P and is called the normal space of M at P. Clearly
R? = T,M ++ N,M, and thus any vector can be decomposed as a sum of a
vector tangent to M at P and a vector normal to M at P. In particular, this
may be done for the vector y''(s):

Y'(s) = X(s) + V(s),
where X(s) is tangent to M and V(s) is normal to M.
Since T(s) is tangent to M, <V, T) = 0. {y"”, T> = 0 and thus {X(s), T)
= 0 also. But {(X(s), n) = 0. Hence X(s) is perpendicular to both n and T
and is thus a multiple of S = n X T. We may then define two functions

K,(s) and x,(s) by x,(s) = {y'(5), n(p'(s), p*(5))> and x,(s) = {y"(s), S(s)>
so that

(4-6)

DEFINITION. The normal curvature of a unit speed curve ¥ is the normal com-
ponent of ¥ (i.e., is k). The geodesic curvature of y is the component of
7" in the direction of S =n x T (i.e,, is x,).

In Section 4-7 we will see that the normal curvature helps measure how
M is curving in R3. In Section 4-5 we will see that the geodesic curvature
measures how ¥ is curving in M.
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Note that although ¥ > 0, k,, and %, can be negative. In fact, a change of
the sign of m changes the signs of x, and x,. Note also that x, x,, and x, are
related by
47 K* =K+ K2
(See Problem 4.1.)

DEFINITION. The coefficients of the second fundamental form of a simple
surface x: U — R? are the functions L,, defined on U by L,; = {x,;, n).
The Christoffel symbols are the functions T';;* (1 < i, j, k < 2) defined on

2
Uby Tt = S Cxpxdg. b Papre oios
1=1

Since x,; = x;;,, we have L,, = L;, and T',;* = T',,*. Proposition 4.2 will
show that the L,, measure the normal component of x,; while the T",*
measure the tangential components. The reason that the L;; are called the
coefficients of the second fundamental form is that the assignment
(X, Y) = lZL,.,.X‘ Y/ is a symmetric bilinear form (but not necessarily

s J

positive definite) on T,M just as the first fundamental form
XY )=XY>=3g,X'Y’
is. We will study the second fundamental form and its relation to x, in Section

4-7. 4 —( . :Y’.;,K)/; A )9127

PROPOSITION 4.2. Let x: U — R? be a simple surface. Then
(a) (Gauss’s formulas)

(4-8)
(b) for any unit speed curve, Y(s) = x(p'(s), p(s))

(49)

and

(4-10)

Proof:

(a) Since n, X, X, are linearly independent, and hence a basis of R?, we
may express any arbitrary vector as a linear combination of these three vec-
tors. In particular, there are functions, a,, and b,,”, defined on U such that
X, = a;n + 3, b,;"X,,. Thus L, = {x;, n> = g,, since {X,,ny=0. Also
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Xy Xy = E b,"g. so that (x,;, x, g'* = Z b, g..8"%. If we sum this
equation over / and apply Lemma 3.4, we obtam

r k= Z <X,], x gl = ; bij "8 = E bijm = bijk-

Thus a;; = L;; and b;* = T, )*, which proves Gauss’s formulas.
(b) Substitute Equation (4-8) into Equation (4-5) to get

= 2 %) + 2 x L @Y (¢) + X nL,(») ()

Y =20 + 2TV X + (2 Ly () (/) )n.
Since x, and x, are tangent to the surface, a comparison of this equation with
Equation (4-6) completes the proof. ||

or

From Equation (4-8) we obtain (x,;, X,> = Y, T',;*g,,. This quantity
k

is classically written T';;|, and is called a Christoffel symbol of the first kind,
while I, % is called a Christoffel symbol of the second kind. We have no use for
T';;; and will use the word Christoffel symbol to refer to I';*. These symbols

were first used by G. B. Christoffel (1829-1900) who used {k } for T, *.

The remainder of this section is devoted to the calculations of the
Christoffel symbols in terms of the metric coefficients and several applications
of these calculations.

PROPOSITION 4.3. For a coordinate patch x: U — R? with metric coefficients
gij)

(4-11)

Proof: This proof (which is due to Gauss) makes use of a classical technique
called “cyclic permutation of indices.”

(+12) Oy — 0 0x %> = (oo XD+ X0 X
(4-13) %i‘f = (K X5 A (X XD
(4-14) 984 — (x, %> + (X X

Since we assume that x is of class C?, x,, = x;,. Hence, we may combine
(4-12), (4-13), and (4-14) to obtain

@13) (38 — %8 + 98) — <, x>
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If we multiply this result by g*! and sum over k, we obtain

1 d dg,; , 0
72 g’d(aii;‘ - 051‘1 + %) = Z <xij9'xk>gkl - rijl' l

Note that this formula shows that T',;* is completely determined by the
metric coefficients. We say that the IT';* are intrinsic. This means that they can
be determined by measurements within the surface. More generally, an
intrinsic concept is one which depends only on (g,,). If we were two-dimen-
sional beings living on a surface, we would be able to compute lengths and
angles and thus the metric coefficients and anything that depends on them.
The intrinsic concepts would be the only geometric concepts we would have.
We would know nothing about a normal vector. (An amusing interpretation
of thisis in E. A. Abbott’s Flatland, a story about a two-dimensional creature
in a two-dimensional world with insight into the third dimension.)

ProPOSITION 4.4. The geodesic curvature of a surface curve is intrinsic.

Proof: Let €, = [n, x,, X,] (see Section 1-3 for triple bracket notation) so
that €,, = €,, =0 and, by Lemma 3.4, ¢,, = —¢€,, = /g . Since ¢, is
either zero or depends only on g, ¢,; is intrinsic. Now
K, = <x,S,S> = [x,S,n, T].

Equation (4-10) shows that

ke = 20 (7" + X T /9y )X 0, 20 %"

=2 + 2 Tyly"y")y [, x,, x,]

or
(4-16) Ko =20 (0" + X Ty ) en,
which is intrinsic. ||

Although (4-16) gives a formula for x,, sometimes it is useful to have an
extrinsic formula.

@17 %, =<T,$)=[T,n,T=nTT]=®mTxT)
={n, T x kN> = k{n, B) = k cos «,
where o is the angle between the unit normal n of the surface, and the

binormal B of the curve. Note that x, = x cos & makes sense even when
x = 0 and neither B nor « is defined because ¥, = 0 when x = 0.

ExAMPLE 4.5. Let x(u!, u?) = (1!, u?, f(u', u*)) be a Monge patch. We
compute some of the coefficients of the second fundamental form and
then some of the Christoffel symbols both extrinsically and intrinsically.

x, = (1,0, f))andx, = (0, 1, f),n= (—f,, —f5, D//1 + (fD)* + ()%




~
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N
X, = (0,0,1,)), X;, = X5, = (0,0, f,,) and x,_,_f(O 0, f22). B)’GQUSSS
formulas (4-8), x,, = L, ;n + I',,'x, + T",,2x,. Thus N
=Xy )y = S

NVAENTAES VAL

Considering the first coordinate of x,,, we note

-
VI (fl)2 + (f)?

Thus we obtain T’ ;' = £, f,,/(1 + (f))* + (f2)?). A similar calculation
yields 'y,* = £, fi, /(0 + (f)* + ().

Alternatively we could compute I', ;2 intrinsically by using Equation
(4-11).

+ Tt

g12: *flfz 1+(f1)2 .
L+ () + () I+ () + (H)?

dg,, _ 01 + ()Y
W ———1_ - 2f1f11’

and g?? =

0g,, a(f1fz)
Jul =fufa + fifars

and

0 11
éiz = 2f1f12~

_ 1 dg, agll 0g;
Tt = 2 Eg“(ﬁulk dur T t?u )

_ l[(_flfz)(2f1f11 _ 2f1f11 - 2f1f11)
2 (I + (/) + ()

L A UMWk +fifa — 201 a H 1S +f1f21)]
I+ (D 4 (D)

_ 200000+ 2 fs + 2fD 0 /]
201 + (f)* + ()

f]le
BCENCAEIAD)

Notice how much easier it was to compute I'; ;2 extrinsically than intrin-
sically.

ExAMPLE 4.6. Consider the upper hemisphere x(r, s) = (r, 5, /1 — r2 — s2).
Let y(r) = (sin ¢, 0, cos t). This is a unit speed curve in x for —x/2 < t <
/2.

= (cos 1,0, —sint), T' = (—sin 1,0, —cos 1),
and

n={(r,s, /1 —rr— s?.
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At the point (sin ¢, 0, cos £), n is (sin ¢, 0, cos 7). Then
K, =<T',n> = —sin? ¢t — cos?t = —1.

Since k = 1, and x? = k> + k%, we have x, = 0 for this curve. Note
that the image of this curve is part of a great circle.

PROBLEMS

*4.1. Prove x? = x,> + x,°.

*4,2. Show that the matrix (L,)) for a surface of revolution (Problem 1.2) is

4.3.

4.4.

4.5.

1 ( FE— o)
P+ 22 ’
VI 0 rz

Prove that for a surface of revolution det (L,;) = 0 if and only if each
meridian is a straight line.

Let L,, be the corresponding expression to L;; in a coordinate system
V. Let f: U — U be a coordinate transformation. Show that

= dv* gv*
Ly= £ X Lar g g

where the sign is that of det (dv*/du’). This shows that up to sign, the

functions L;, transform covariantly, (i.e., just like g,,).

In the Monge patch x(u, v) = (u, v, u?> 4+ v?) find the normal curvature
of the curve y(¢) = x(t2,¢)at ¢t = |.

* *4.6. The plane is a simple surface: x(r, s) = (r, 5, 0). Show that the geodesic

4.7.

*4.8.

4.9.

curvature of a curve in the plane is its plane curvature: ¥, = k.

The sphere is a surface of revolution. Find the geodesic curvature of a
circle of latitude w! = constant in Example 1.9.

Prove that if x is a coordinate patch of the sphere and n is the unit
normal, then at any point x(r, s), n(r, s) = +x(r, ) as vectors.

Let y be a curve on the sphere. Prove k, is constant.

4.10. Let y be a curve on the sphere with x, constant. Prove ¥ is a circle.

4.11.

(Hint: Problem 5.3 of Chapter 2 and Problem 4.9.)

Let f‘,ﬂV denote the Christoffel symbols for a coordinate system U, and
/>0 — U a coordinate transformation. Use Gauss’s formulas to prove

5, 0w du | 0%k \ ov
Fo = 5 (ST ok 3o + Gogen) 9

This formula is the first example of a transformation law that is no
well behaved (because of the term (0%u*/dv* dv#)).
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4.12. Prove that

%_a((;zlg) =TI;,'4+T,,2 and %0(5229 =T + Tt

4.13. Does the sign of the geodesic curvature have any meaning in a coor-
dinate patch? In a surface?

4-5. GEODESICS

In plane geometry, the straight lines play a very important role as the
basis for most constructions and for the formation of most figures studied. We
would like to find curves on an arbitrary surface that play an analogous role.
However, there are several properties of straight lines and it is not clear which
is the most important. That is, it is not clear which of these properties should
be taken as the definition of a “straight line” on an arbitrary surface. For
example:

SLI Straight lines have (plane) curvature zero.

SL2 Straight lines give the shortest path between two points.

SL3 Given two points there is a unique straight line joining them.
SL4 The tangent vectors to a straight line are all parallel.

We shall generalize each of these properties to curves on surfaces and
explore their interrelationships.

DEFINITION. A geodesic on a surface M is a unit speed curve on M with
geodesic curvature equal to zero everywhere.

This is an immediate translation of property SL1 above. Since the geo-
desic curvature of a plane curve is its plane curvature (Problem 4.6), this means

that straight lines in the plane are geodesics.

PROPOSITION 5.1. A unit speed curve ¥(s) in M is a geodesic if and only if
[, T, T']=0.

Proof: By Equation (4-17), k¥, = [n, T, T'] is the geodesic curvature. |

PROPOSITION 5.2. Let y(s) be a unit speed curve, X a coordinate patch, and
write ¥(s) = x(p'(5),7*(s)). ¥ is a geodesic if only if

(5-1)

Proof: By Equation (4-10) x,S = 3 (y*"" 4+ Y I';*9'y/)x,. Since x, and X,
are independent, the result follows. ||
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PRrROPOSITION 5.3. A unit speed curve Y(s) on a surface M is a geodesic if and
only if ¥”" is everywhere normal to the surface (i.e., is a multiple of the
normal to M).

Proof: ¥ = kN = x,S 4+ x,n. ¥ is normal to the surface if and only if
k,=0. |

ExaMmrLE 5.4. Consider the great circle ¥(s)= (sins, 0,coss) on S2
¥ = (cos s, 0, —sin s), ¥’ = (—sins, 0, —coss). Then y''(s) is the
inward pointing normal to S? at y(s). By Proposition 5.3, ¥ is a geodesic
since a normal to S? at y(s) is +9¥(s). Since there is nothing geometrically
special about this particular great circle, every great circle of S* is a
geodesic. The converse is true: if y is a geodesic of S2 then ¥ is an arc
of a great circle (see Problem 5.3).

PROPOSITION 5.5. Let M be a surface of revolution generated by the unit
speed curve (r(2), z(¢)). Then
(a) every meridian is a geodesic; and
(b) a circle of latitude is a geodesic if and only if the tangent x, to the
meridians is parallel to the axis of revolution at all points on the
circle of latitude.

Proof: M may be parametrized by x(t, 8) = (r(t) cos 8, r(¢) sin 8, z(t)) as in
Problem 1.2. Since ¢ is arc length along the generating curve, the metric
matrix is, according to Problem 3.1,

IR TN
(g,.,>—( . rz)—(o )

Letu! = t,u* = 0 so that the Christoffel symbols can be computed by Propo-
sition 4.3: T'\,>2 =T,,%> = F/r, T';,' = —rF, and all other T',;* are zero. By
Proposition 5.2, a unit speed curve y(s) = x(¢(s), 8(s)) is a geodesic if and
only if it is a solution of the differential equations

(5-2) 1 — 109 = 0
' F\.g
(5-3) 0" + 2(7)”9 = 0.

(a) A meridian is given by 8 == constant. Then 8’ and 8"’ are zero and
(5-3) is satisfied. Along a meridian t = s, so that ' =1 and ¢t = 0. Thus
(5-2) is satisfied. Hence each meridian is a geodesic.

(b) A circle of latitude is given by 7 = constant. Then "' =t = 0.
Since y(s) = x(t(s), 8(s)) has unit speed,

__ ’ . dx, (9x ,
P=[Y® P =|Z71" + 559

We therefore have

2

= £,,(0).

1 = r2(0")2.
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This last equation implies that 0 = 8" = +1/r. (Note r is constant if 7 is.)
Thus §” = 0 and a circle of latitude satisfies (5-3). Since ' = Oand r > 0,a
circle of latitude satisfies (5-2) if and only if = 0. This occurs if and only if
x, = (Fcos 8, 7 sin 8, 2) is parallel to the axis of rotation (0, 0, 1). See Figure
4.14. |

FIGURE 4.14

EXAMPLE 5.6. Let M be the Monge patch x(u, v) = (u, v, u*> — v?). Let y(?)
be the (non-unit speed) curve y(z) = (¢, 0, t?) in M. Now

;o dt v afd\? | . d*
T =17 and ¥y ~1(%) +170

so that [n, ¥', ¥"] = [n, ¥, ¥] (dt/ds)*.

L (=2u,20,1)
1 4t £ 4ot

— (_2t’ 0> l)

n(u(t)’ 1)([)) - ,\/w

¥=(,0,2r) and §=1(0,0,2)

so that [n, ¥, ¥] = 0. Hence [n, y’, ¥''] = 0 and ¥ is a geodesic by Propo-
sition 5.1.

In the plane, a straight line is determined once a point on the line and the
direction of that line (at that point) are given. The next theorem says that this
is true for geodesics in general.

THEOREM 5.7. Let P be a point on a surface M and let X be a unit tangent
vector at P. Then, if s, € R is given, there exists a unique geodesic ¥
with y(s,) = P, ¥'(s,) = X.

Proof: Let x be a patch about P with P = x(0, 0),and X = Y X'x,. If there is
a geodesic Y(s) = X(p!(s), p*(s)), then we must have p*' = —3 T, *p"'p’
with initial conditions y'(sy) = 0, 9'(s,) = X'. Conversely, any solution to



112 Local Surface Theory Chap. 4

this initial value problem is a geodesic with the required properties, if the
solution is a unit speed curve. Picard’s theorem (Theorem 5.1 of Chapter 2)
implies there is a unique solution to this initial value problem, for values of s
near s,. We must show that the solution ¥(s) = x(*(s), p2(s)) to the differen-
tial equation is unit speed.

Let f(s) = |¥'|* = X g,9"'y"". Then
’ 6 ij LT 7] Pt ’ "
116 =TGRy yy + Tayy + T ey’

= 2 gl Wy vy + X gl uly !y
+ 2"y + gy
= 2 &l + Tuly" v W + X g™ + Tuly"v* W,
which is zero since (p!, p?) solves the differential equation. Thus f'(s) is con-
stant. Since f(s,) = | X|*> = 1, f must be identically 1. Thus ¥’ is a unit vector
and ¥ is a unit speed curve, hence in this case a geodesic.
Repeated application of this gives y(s) defined for s in some open interval

(a, b), even though the image of y may not be all in one coordinate patch. The
proof shows that ¥ is unique at all points where it is defined. |

ExampLE 5.8. Let M be the surface consisting of all the points in R? except
(2,0). Let P = (0, 0) and let X = (1, 0) be the unit vector pointing in the
direction of the positive x-axis. The associated geodesic is y(s) = (s, 0)
and is defined for all s < 2. Since ¥ is continuous, it is impossible to
define y(2) as anything but (2, 0), which is not in M. It is therefore pos-
sible for the geodesic, which is the solution of the differential equation,
to be defined only for |s| < € << co.

(The question as to whether a geodesic extends indefinitely, i.e., is de-
fined for all s € (—oo, 00), is metrical. One calls a surface complete if
every geodesic extends indefinitely. A famous theorem due to Hopf and
Rinow says that M is complete if and only if it is complete as a metric space.
See Hicks [1965].)

The next theorem tells us that geodesics also possess property SL2 of
straight lines. The proof we give is a variant of Gauss’s proof of Theorem 5.3.
The technique of the proof is to start with a length-minimizing curve ¥ and
assume its geodesic curvature is not zero. We “wiggle” the curve to form a
family &, of curves with the same end points asy and withe, = ¥. The function
L(z) which gives the length of &, must have a minimum at 7 = 0 so that
L’(0) = 0. This fact together with integration by parts yields a contradiction.
The idea of differentiating with respect to the “wiggle” parameter ¢ is due to
Gauss. A proof like this is called *“variational” and is a cornerstone in the
calculus of variations.
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THEOREM 5.9. Let ¥ be a unit speed curve in a surface M between points
P = y(a) and Q = y(b). If y is the shortest curve between Pand Q, then
¥ is a geodesic.

Proof: Let a < s, < b and &, be the geodesic curvature of y. We shall show
that x,(s,) = 0. Suppose x,(s,) # 0. Then there exist numbers ¢ and d with
a<c<sy,<d<b,x, # 0 onlc d], and the image of [¢, d] under y con-
tained in a coordinate patch x. Note that the segment of y from y(c¢) to y(d)
must be the shortest curve joining y(¢) and y(d) or else there is a piecewise
regular curve from y(a) to y(c) to y(d) to y(b) that is shorter than y. But y is
assumed to give the shortest curve from y(a) to y(b).
Let A(s) be a C? function defined for ¢ <C s <C d such that

Alc) = Ad) =0, A(so) = 0, and A(s)x,(s) >0 for c < s<<d
(If y is C*, then A(s) = (s — &)(d — )k, (s) will work.) If S =n X y’, then
in the patch x we have A(s)S = ) v/(s)x, for some v': [c, d] -— R. Let y(s) be
given by y(s) = x(p*(s), y*(s)) and define a family of curves by
o, (s) = X(p'(s) + t0'(s), p*(s) + tv%(s)),
where |7] is small enough. &, is a curve from y(c) to y(d) for each choice of ¢
with &, = y. We may also write a,(s) = a(s; ?). (See Figure 4.15.)

FIGURE 4.15

The length of a(s; 7) is L(r) = [ {da/ds, dou/ds»'/* ds. L(r) has a mini-
mum for ¢ = 0 since a(s; 0) = y(s) gives the shortest path.

1/2
o § [ - [ 5

_ 14%’3—?) _ <%"§—f>
f T Jda da\ 77 4 f da_da\ 2 4
‘ <B?Ts> <as a>

8- 8-

Attt =0,
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Thus

L' = r <;:3t’ ?9_:> )

—f[d doc 0oc
S

ds
0

L E.

]ds
0

do. da y ¢ /da 070
-G 0s>\‘ Oc“ﬁ <W’795_2>,=0 ds.
da| ; _
3l = 3 vi(s)x, = A(s)S.
=0

But A was constructed so that A(c) = A(d) = 0. Thus
0= L'(0)=0— j" S)S, K,(5)S + Ko(s)n) ds

= —jd M) (s) ds < 0.

This contradiction implies x,(s,) = 0. |}

The above theorem is true if y is only assumed to be piecewise regular
unit speed (see Hicks [1965]). The converse is false. A geodesic need not mini-
mize distances. Let P and Q be two points on S2 with P s« + Q. There are
two geodesics of different lengths joining P to Q, corresponding to the two
arcs of the great circle through P and Q. The longer geodesic does not mini-
mize length.

The next two examples show that, in general, property SL3 of straight
lines is false for geodesics.

ExampLE 5.10. Let M be the surface of Example 5.8. Then there is no geode-
sic joining the points (0, 0) and (4, 0).

ExaMpLE 5.11. Let M be the unit sphere with P and Q the two poles. There
are an infinite number of great circles through the poles. Hence there is
not a unique geodesic from P to Q.

The closest we can come to having property SL3 is the following theorem -
which is local in nature (i.e., it says nothing about geodesics between “distant”
points). To get stronger, global theorems requires further topological assump-
tions (e.g., simple connectivity) and further geometric assumptions (e.g., on
curvature). The reader is referred to M. Berger [1965]. The proof of White-
head’s theorem below is beyond the scope of this book. It may be found in
Hicks [1965].
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Tueorem 5.12 (J. H. C. Whitehead, 1932). Let P be a point on a surface M.
Then there is an e-neighborhood U of P such that any two points of U
can be joined by a unique geodesic of shortest length, and this geodesic is
contained in U.

PROBLEMS

5.1. Show that a meridian of a surface of revolution is a geodesic without
solving the differential equations as was done in Proposition 5.5. Also,
determine which circles of latitude are geodesics. (Hint: Proposition
5.3)

5.2, Let M be a surface and IT a plane that intersects M in a curve ¥. Show
that ¥ is a geodesic if IT is a plane of symmetry of M, i.e., the two sides
are mirror images.

*5.3. Combine Problems 4.9 and 4.10 to show that any geodesic on S?isa
great circle.

5.4. Let y be a straight line in a surface M. Prove ¥ is a geodesic. 7‘6

*5,5. Suppose x is a coordinate patch such that g,, = 1 and g,, = 0. Prove
that the u!-curves are geodesics. (Such a patch is called a geodesic
coordinate patch.)

15.6. Prove that if M/ is a surface of revolution and ¥ is a geodesic, then
r cos B(s) = constant, where S(s) is the angle between ¥'(s) and the
circle of latitude (of radius ) through y(s).

5.7. Let 4(¢) be a geodesic not parametrized by arc length. Prove

dry dy! dy* dyt d*t (ds\? .
SFANED 3p L/ A _%F@) fori—1and 2.

15.8. Prove that a regular curve y(?) is a geodesic if and only if

Dyldy gy g (i iy drdy

dt* dt di? dt dt dt dr dr T

5.9. Let M be the Monge patch x(u, v) = (u, v, uv). Show that the non-unit
speed curve y(t) = (7, —t, —t?) is a geodesic when parametrized by

arc length. Can you find other geodesics in M?
5.10. Let a(s) = (f(s), g(s)) be a simple unit speed plane curve. Let x(s, ?)
be the surface x(s, 1) = (f(s), g(s), 7). (This is called a cylinder over

a(s).) Let B be a fixed constant and let y(8) = (@), g(6), 8 tan B).
Prove ¥ is a geodesic (6 is not arc length). Prove ¥ is a helix.

5.11. Let M be the surface given by x* 4+ y* — z2 = | (Example 2.8). Find
as many geodesics as you can.
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5.12. Find as many geodesics as you can on the Monge patch (u, v, u? — v?).

(Hint: Problems 5.2, 5.4)

5.13. Find as many geodesics as you can on the surface

2
x2+yz—22:|.

15.14. Let x and y be two different coordinate patches for part of a surface M.

Let X=3 X/x,= 3 X%, and Y=Y Y'x,— 3 V*y, be two
vector fields. Define symbols Z* and Z* by

zt - 2 %);ij -+ erjkYin

and

- 6)7;' - = .o

Z;’ — ZwXﬂ + EruﬂrY Xﬂ.
Prove that Z» = 3" Z*(dv?/du*). (Hint: Problem 4.11.) This proves
that 3° Z*x, = 3 Z’y, defines a vector field Z = VyY, called the
covariant derivative of Y with respect to X. This is one of the most

fundamental concepts of modern differential geometry. It is due to
Levi-Civita (1917) and will be used in Chapter 7.

t5.15. Let x be a patch where g,, = g,, = a(@') + b(u?) and g,, = 0. Let

v(s) be a geodesic and let § be the angle between y and the u!-curves
(i.e., between ¥’ and x,). Prove a sin? 8 — b cos? § = constant. (Hint:
Equation (4-16).)

4-6. PARALLEL VECTOR FIELDS ALONG

A CURVE AND PARALLELISM

Finally we would like to generalize property SL4 which involves the

concept of “parallel.” In plane geometry there are concepts of both parallel
lines and parallel vectors. We shall treat the concept of parallel vectors as
the more primitive of the two. Indeed, there are geometries (e.g., spherical
geometry) in which parallel lines do not exist.

DEFINITION. A vector field along a curve y: [a, b] — M is a function X which

assigns to each t € [a, b] a tangent vector X(f) to M at y(2).

EXAMPLE 6.1. Let y(s) be a unit speed curve in M. Then T(s) is a vector field

along vy.

EXAMPLE 6.2. Let y(s) be a unit speed curve in a coordinate patch x. Then

S(s) = n x T is a vector field along 4. Since T and S are linearly inde-

pendent, any vector field X along ¥ has the form
X(s) — a(s)T(s) + b(s)S(s).
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DErFINITION. A vector field X(¢) along y(¢) is differentiable if as a function
X: [a, b] — R? it is differentiable.

That dX/dt is normal to the surface means there is no tangential com-
ponent in the change of X as ¢ varies. Thus an “intrinsic” being living on the
surface could detect no change in X along y. The being would view the vectors
X(¢,) and X(z,) (for ¢, near t,) as parallel if dX/dt is normal. Hence the fol-
lowing:

DEerINITION. A differentiable vector field X(z) along y(¢) is parallel along y(t)
if dX/dt is perpendicular to M.

EXAMPLE 6.3. Let ¥(¢) = (a(z), b(¢), 0) be a plane curve. Let
X(r) = (A(), B(t), 0)

be a vector field along y. dX/dt = (dA/dt, dB/dt, 0). The normal to the
surface is (0, 0, 1). Hence dX/dr is perpendicular to the surface (plane)
if and only if d4/dt = 0 = dB/dt. Therefore X is parallel along ¥ if and
only if 4 and B are constants. This is the usual notion of parallel vectors
in the plane. Note that in this case, the notion of parallel along y isinde-
pendent of y. This is atypical and in fact characterizes the plane locally.

EXAMPLE 6.4. Let M be the unit sphere, y(f) the equator, and X(¢) the
unit vector pointing north at each point on y. Then X is parallel since
X(t) = (0,0, 1) and dX/dt = (0,0, 0) is certainly perpendicular to the
surface.

EXAMPLE 6.5. Let M be the unit sphere, and ¥(¢) the circle of latitude

v(t) = (“/22 cos t, V22 sin ¢, “/27)

Let X(¢) be the unit vector field that points toward the north pole at each
point of y. Analytically

X(r) = <-“2/7 cos 1, _*2/7 sin ¢, \/27)

so that

dX (/2 —/2
7_< 5 sin f, o) cost,O),

which is not normal to the surface. X is not parallel along y.

PROPOSITION 6.6. If y(r) = x(p!(2), p*(¢)) is a regular curve in a coordinate
patch x and X(¢) is a differentiable vector field along y with X = 3 X'x,,
then X(z) is parallel along v if and only if

dy’

0__+zr,,ka P, k=land2.
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Proof: X is parallel if and only if for all /,
X dax! ; i
o= (28 x) (5% x,x) (5 75,9 )

that is, if and only if
_dX!
(6-1) 0= E 8t 3 Xy XX ﬁ, =12

If these equations are multiplied by g'* and summed over /, the result is
0 = Y (dX‘ldt) 6 + X T, X' (dy[dt) or

(6-2)

Conversely, if Equations (6-2) are multiplied by g,, and summed over k,
the result is (6-1). Thus X(z) is parallel if and only if (6-2) holds. |}

Notice that we did not assume that 7 is arc length along y. Further note
that the differential equation that X must satisfy depends only on the given
curve y and the intrinsic quantities [, ;. Hence the concept of parallel along
a curve is intrinsic.

THEOREM 6.7. Let y(¢) be a regular curve on a C? surface M. Let X be a
vector tangent to M at y(¢,). Then there exists a unique vector field X(z)
that is parallel along y(z) with X(¢,) = X

Proof: Let x be a patch about ¥(7,). Y(t) = x(y!(¢), y*(¢)). Consider the
initial value problem

) GRS O COL S S )
X*(1,) — Xk

By Picard’s Theorem, this has a unique solution for values of ¢ near ¢,. By

Proposition 6.6 this solution is parallel along y (where defined) and any

parallel field along ¥ whose value at ¢, is X must solve this problem.
Repeated application of this gives a unique X defined along all of y. |

DEeFINITION. The unique vector field X(z) parallel along y(z) such that X(z,)
= X is called the parallel transilate of X along y.

EXAMPLE 6.8. Let M = S? and y be a circle of latitude ¢ = ¢, so that
¥(1) = (sin @, cos 1, sin @, sin ¢, cos ¢,). We shall work in the coordinate
patch x(¢ 0) = (sin ¢ cos 8, sin ¢ sin §, cos ¢). Let X — x,(¢,,0) so
that X is a unit vector pointing south. We now compute (using
Theorem 6.7) the parallel translate of X.
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Recall that by Problem 3.1

1 0
(&) — ( )
g 0 sin? ¢
so that T'y,2 =T,,2 =cot ¢, [',,! = —sin ¢ cos ¢, and all other T, /*
are zero. Now ¥(¢) = x(p!(2), y2(r)) where p'(t) = ¢, and p2(t) = ¢ so
that the equations for parallel translation (Equation (6-2)) become

1 2
ddit—sin%coszz:O and %—i—cot(ﬁoX‘ =0

with X1(0) = 1 and X%(0) = 0 (i.e., X(0) = X). 1t is easy to check that
X1(t) = cos ((cos ¢o)t) and X2(t) = (—sin ((cos @,)2))/sin ¢, are solu-
tions to the system of differential equations which satisfy the initial
conditions. Thus the parallel translate of X is

X() = cos ((cos $o)r)x, — 31 (S(iioz oy

Note that X(0) 5= X(2). See Figure 4.16.

FIGURE 4.16

PROPOSITION 6.9. Let X(z) and Y(¢) both be parallel along a regular curve ¥
in M. Then | X(¢)| is constant and so is the angle between X(¢) and Y(z).

Proof: Let f(1) = {X(t), Y(@)). dffdt = {dX[dt, Y> + (X, dY/dt) =0+ 0,
0 fis constant. If X = Y, this implies | X| is constant. The cosine of the angle
between X and Y is f(z)/|X]|| Y|, which is then constant and so is the
angle. ||

Comment: This theorem says that when we parallel translate vectors, angles
and lengths are preserved, just as in plane geometry. However, we shall see
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below in Example 6.11 that if two different curves join P to Q and X is a
tangent vector at P, the value of the vector field at Q depends on which curve
is used. This is one of the critical differences between geometry in the plane
and the geometry on an arbitrary surface. It was T. Levi-Civita (1917) who
first realized the importance of parallel translation.

DEFINITION. A regular curve y(¢) on a surface M is maximally straight if
dy/dt is parallel along .

This is the generalization of property SL4 of straight lines in terms of the
given notion of parallel.

PROPOSITION 6.10. A regular curve y(z) on a surface M is maximally straight
if and only if dz/ds is constant and y(z(s)) is a geodesic, where s is the arc
length.

Proof: Assume ¥(t(s)) is a geodesic and dt/ds = ¢. Then
dyldt = T ds|dt = T|c.

y(¢) is maximally straight if dy/dt is parallel along y. d?y/dt?> = T'/c?. Since
v(t(s)) is a geodesic T’ = y'’ is normal to the surface. Thus dy/dr is parallel,
and 7y(¢) is maximally straight.

Now assume that y(r) is maximally straight. d?y/dt? is normal to
M. We need to show that dt/ds = constant and dT/ds is normal to M.
dyldt = (dy/ds)(ds/dt) = T(ds/dt). Since dy/dt is parallel, its length | ds/dt| is
constant by Proposition 6.9. Since ds/dt is continuous, ds/dt is a constant % 0.
Thus dt/ds, which is the reciprocal of ds/dt, is a constant.

dT _d*y  (d>y\(dt\? dy\ (d*t

& =& =(@)&) + @)@)
Since dt/ds is constant, d*t/ds? = 0 and dT/ds is normal because d2y/dt?
is. 1

We might note that if y(z) ts maximally straight, then to an intrinsic
being y(r) has no acceleration (the acceleration vector d*y/dt? is normal to
the surface) and hence is traveling in uniform or “linear” motion. When
differential geometry is applied to physics, and particularly to general rela-
tivity, the concept of uniform motion mentioned in Newton’s first law of
motion (the law of inertia) is translated to motion along a geodesic because
the Euclidean notion of straight line has been lost. (See Misner, Thorne,
and Wheeler [1973].)

We shall now give two examples to show that the notion of parallel
translation depends upon the path. In the first example we take two curves
with the same end points and parallel translate a given vector along each curve
and get different answers. In the second example we translate a vector around
a “geodesic triangle” but do not return to the original vector.
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ExAMPLE 6.11. On S? consider two different meridians vy, & from the north
to the south pole. Let X be the unit tangent to 4y at the north pole. If
X is parallel translated along ¥ to the south pole, we get the unit tangent
to y at the south pole since y is a geodesic. If X is parallel translated along
o, it must keep constant angle with a’, which is also parallel. Let 8 be the
angle between ¥’ and a’ at the north pole. The angle between the two
translates of X at the south pole is 2. Note that 26 is the area of the
region bounded by ¥ and a. See Figure 4.17.

ExAMPLE 6.12. On S? consider a great circle segment vy, from the north pole
N to point A4 on the equator, followed by part of the equator ¥y, to B,
then a great circle segment vy, back to N. Let X be the unit vector point-
ing south along vy, at N. This may be parallel translated along y, to 4,
where it points south, then along ¥, to B, where it points south, and then
along y; to N, where it points south along y,. The final result is a vector
different from X. In fact, the angle between the two vectors at N is
0 = angle between vy, and v;. @ also equals the area of the region sur-
rounded by ¥,, ¥, and ¥,. See Figure 4.18.

FIGURE 4.17 FIGURE 4.18

PROBLEMS

Equation (4-6) will be useful in many of these problems.

6.1. Let y(¢) be a maximally straight curve. Prove there are constants a, b €
R such that s = ar + b, where s is arc length.

6.2. Let y(s) be a unit speed curve on a surface M and let S be its intrinsic
normal. Prove that S is parallel along v if and only if y is a geodesic.
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6.3. Let X, be the tangential component of the normal vector N of a unit
speed curve ¥ on a surface M.
(a) Prove that X, = N — (N, npyn and that X,, is a vector field along y.
(b) Prove that the following are equivalent:
(1) Xy =0;
(ii) y is a geodesic;
(iii) X, is parallel along v.

6.4. Let X; be the tangential component of the binormal vector B of a unit
speed curve ¥ on a surface M.
(a) Prove X; = —(x,/k)S.
(b) Prove that the following are equivalent:
(1) X5 = B;
(ii) y is a geodesic;
(iii) Xy is not zero and is parallel along Y-

6.5. Let y be a curve with y(0) = P, y(1) = Q. If X € T»M, let X be the
parallel translate of X along y. Define y#: ToM — ToM by y#(X) =
X(1).

(a) Prove that y# is a linear transformation.
(b) Prove that y¥ is an isometry, that is, that

@&, y¥ (1)) = <X, D).
(c) Prove that y# is an isomorphism. y# is called the parallelism defined

by ¥.
(This problem requires an understanding of the proof of Theorem 6.7.)

4-7. THE SECOND FUNDAMENTAL FORM
AND THE WEINGARTEN MAP

In the previous sections we considered concepts related to the geodesic
curvature of a curve y(s) on a surface M. We now turn our attention to the
normal curvature of the curve. It will tell us how M is curving in the direction
of T (see Proposition 7.2). In order to study how M is curving at a point,
without reference to a direction, we define the Weingarten map L. This
map will be essentially the directional derivative of the normal vector. (If
v: M — §? = R3 is the normal spherical image given locally by v(P) = n(P),
then L can be viewed as the derivative of v.) It will be the eigenvalues of L
at a point which will tell us how M curves at that point, as we shall see in
Section 4-8.

As before, let y be a unit speed curve on M whose image is contained
in a coordinate patch x(U). Let y(s) = x(p'(s), p*(s)). We have (from (4-6)
and (4-8))

7-1) v’ = k,n + K,S
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(7-2) X;; = Lyn + 3T f %,

Recall that the L,; were called the coefficients of the second fundamental
form.

DEerINITION. The second fundamental form 11 on M is the bilinear form on
T-M (for each P € M) given by II(X, Y) = 3 L,; X" Y/, where

X=X Xx, Y=Y Yix, e T,M.

PROPOSITION 7.1. Let M be a surface. Then
(a) II is a symmetric bilinear form on T,M for each P € M;
(b) if ¥ is a unit speed curve with tangent T, then k, = II(T, T);
(c) if @ and B are regular curves with a(0) = B(0) and whose velocity
vectors are dependent at ¢ = 0, then & and B have the same normal
curvature at ¢t = 0.

Proof:
(a) It is easy to show that
(X, + X, Y) = 1(X,, Y) + II(X,, Y),
X, Y, +Y,) =X, Yy + II(X, Y,)
and
X, rY) =X, Y) = rII(X, Y)

(forall r € R and X,X,,X,,Y,Y,,Y, € TpM), which is what is meant by
bilinearity. Since L,; = L,,, II(X, Y) = II(Y, X) and II is symmetric.

(b) This is precisely Equation (4-9).

(c) Let T and T denote the (unit) tangent vectors to & and B at
a(0) = B(0). Since &(0) and P(0) are dependent, T = - T. Hence, the normal
curvature of & at ¢ = 0 is II(T, T) = II(4T, +-T) = II(T, T), which is the
normal curvature of pat r = 0. ||

PRrOPOSITION 7.2. Let y(s) be a unit speed curve in a surface M with normal
curvature k, at P. Let y be the curve formed by the intersection of M
with the plane IT through P spanned by n and y'. (See Figure 4.19.)
Then |k, | is the curvature & of the plane curve ¥.

Proof: Part (c) of Proposition 7.1 shows that ¥ and ¥ have the same normal
curvatures. However, ¥ is a plane curve with normal 4-n at P. Its plane cur-
vature k satisfies || = %. On the other hand, £ is +(normal curvature of
¥) = +k, Thus |k,| = |k|=%. |

We now discuss directional derivatives in preparation for the Weingarten
map.
A subset & of a surface M is open if for each P € ® there is an e-neigh-
borhood of Pin M contained in ®. (The image of a proper coordinate patch
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FIGURE 4.19

is open.) A function f: ® — R is differentiable if for every C!' curve e(z)
with «(0) € ® the derivative (d(f o &)/dt)(0) exists.

DErFINITION. Let f be a differentiable function defined on an e-neighborhood
of Pe M. let X € ToM and let a(t) be a curve on M su:ch that
a(0) = P and X = (dot/dt)(0). The directional derivative of f in the
direction X is Xf = (d(f o a)/dr)(0).

Note that Xf is a number for each X € T,M and each differentiable
function f. We will show that Xf'is well defined (i.e., independent of choice of
a) and give an easier way to compute X/ after an example.

EXAMPLE 7.3. Let
M=S8P=(,0,0,X=(0,1,0), and f(x,y,2z)= x*+ y.

If we choose a(s) = (cos s, sin s, 0), then fo & = cos? s + sin s so that
(foa)(s) = —2cosssins - cos s. Hence Xf = (f o a)'(0) = 1.

PROPOSITION 7.4. Let x: W — M be a coordinate patch for M about
P=x(0,0). If X=13 X'x, then Xf=3 X'(d(/ o x)/du)0,0). In
particular, X/ does not depend on the cho;;el: of & such that X = &(0)
and a(0) = P.

Proof: We may write a(r) = x(a'(¢), a%(¢)). Therefore

(foa)(®) = (f o x)a'(t), a*(2)).

The chain rule implies
d, .. _x0(feox)da’
7 (So)@) = 2 9 dr

i
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Since X' = (do’/dt)(0) (Equation (1-8)), the above expression when evaluated
at t = 0 completes the proof. ||

Using Proposition 7.4 it is easy to show:

LEMMA 7.5. Let f be a differentiable function in an e-neighborhood of
PeM If X,Y e TeM and r € R, then (X +Y)f=Xf+ Yf and
(rX)f= r(Xf).

If f = (f!, f2, f3) is a vector-valued function defined on an open set in
M, we can let Xf= (Xf', Xf2 Xf3) be the definition of the directional
derivative of a vector-valued function. In particular, this may be done for the
function f = n. (Remember that n is really only defined up to sign: in a
coordinate patch n is determined and if a change of coordinates is made, the
worst that can happen is that the sign of n is changed.)

DErINITION. The Weingarten map L is, for each P € M, the function
L: T.M — R? given by L(X) = —Xn. (The minus sign is for future
convenience.)

Because n is only determined up to sign, the same is true of L.

PROPOSITION 7.6. Let M be a surface. Then

(a) L is a linear transformation from 7M to T, M;
(b) If L(x,) = X L'y, then L', = 3. L, g".

Proof-

(a) It is immediate from Lemma 7.5 that L(X + Y) = L(X) + L(Y)
and L(rX) = rL(X). Thus L is a linear transformation. We must show that
L(X) € TxM for-each X € TpM. Since L is linear, we need only check this
on the basis {x,, x,}. Let &, be the w’-curve through P. Then

d on

L(x,) = —x,(n) = —-‘—1;{—,,(11 ool) = I

Since 1 = (n, n>, 0 = {dn/du’, n) and dn/du* is tangent to M at P. Hence

(7-3)

and L(x)) is tangent to M. Note that (7-3) defines n,.
(b) Since x, is tangent to M, <{n, x;> = 0. Hence
o<n, d
= HID (98 ) o, x> = (LD XD + Ly
=Ly — O Lx, X = Ly — X LN<Xp, XD
=Ly —3 L,g;.
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Thus
(7-4) L, = E ijgji~
Therefore 3 L, g" = >, L, g,8" = >, L',6) = L',. That is,

(7-5)

A classical geometer would say that L', is obtained from L,, by raising
anindex. L (or L',) is a “tensor of type (1, 1)” because it has one upper and one
lower index and behaves in a certain fashion under change of coordinates
(see Problem 7.6). Note that (L',) is the matrix representing L with respect
to the basis {x,, X,}.

ProPosITION 7.7. On a surface M we have Weingarten’s equations

(7-6)

Proof: By Equation (7-3) L(x,;) = —dn/du’ so that

_0n4__ _ k
nj—a?f Lx;)= =X L*;x.. |

For a surface M, the basis {X,, x,, n} of R? plays a role analogous to the
Frenet-Serret frame {T, N, B} of a curve. Gauss’s formulas (7-2) and the
Weingarten equations (7-6) give the analogues of the Frenet-Serret equations:
(7-2) Xy = Lyn + 325 Tk x,

(7-6) n, = —3 L¥x,

ExaMPLE 7.8. Let M = R2?. We show that L is the zero transformation (at
each point) in two ways. First by the definition of L: n = (0,0, 1) is
independent of P so that L(X) = 0 for all X € TpM. The second way is
to compute the L, for M: x(u', u?) = (u*, u?, 0) and

Ly = Xy my = 0, m) =0
for all i and k. Hence raising an index by (7-5) gives L', = 0 so that
L=0.

EXAMPLE 7.9. Let M = S? and choose n to be the outward pointing normal.
Let X € T,S? and choose & to be a curve on M such that &(0) = X,
a(0) = P, and e(t) = (x(z), y(t), z(¢)). At a(t), n = a(z) so that

LX) = —Xn = —(Xx, Xy, Xz)
= —(x(0), ¥(0), 2(0)) = —a(0) = —X.
That is, L is the negative of the identity. If we had chosen the inward
pointing normal, we would have had L equals the identity.
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The following result says that L is a self-adjoint (or symmetric) linear
transformation.

LemMMA 7.10. If P € M and X, Y € T, M, then
H(X, Y) = LX), Y)> = <X, L(Y)).

Proof: Problem 7.4. |

PROBLEMS

7.1. Show that for M = S2, L is a plus or minus the identity by computing
the L, in a coordinate patch and raising an index.

7.2. Show that for M = S' x (0, 1) (Example 2.3) L can be represented by

| 0
the matrix ( ) .
0 0]

7.3. Find L for the torus in Problem 1.1.
*7.4. Prove Lemma 7.10.

7.5. Find the matrix (L',) for a surface of revolution. (Compare your answer
with 7.3)

7.6. Let f: U — AU be a coordinate transformation. How are the L*, related
to the L;? Compare your result with Equation (2-1) of Chapter 1.

7.7. Let y(s) = x(p'(s), p*(s)) be a unit speed curve in a surface M. Note
that {T, S, n} give a right-handed orthonormal basis of R? at each point
of y. View n as n(s) = n(p'(s), p*(s)) and prove the following analogues
of the Frenet-Serret equations:

(a) T = I(T, T)n + x,S;
(b) ' = —x,T + 1T, S)n;
(¢) ” = —I(T, T)T — I(T, S)S.

4-8. PRINCIPAL, GAUSSIAN, MEAN, AND
NORMAL CURVATURES

We now have two ways to measure how a surface is curving. The first is
through the normal curvature of curves. This is aesthetically unsatisfactory
because it forces us to break up a surface into infinitely many curves. The
second measurement involves the change of the normal, which is given by L.
Since L is a linear transformation, there are two associated numerical
invariants: the determinant of (L!;) (the Gaussian curvature) and one-half
the trace of (L’;) (the mean curvature). This section is devoted to understand-
ing the relationship between these different kinds of curvatures.
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We know that the normal curvature of ¥ at P depends only on the unit
tangent of y at P. If we knew all the possible values that x, takes on at P we
would know. how M curves. One step in this direction would be to find the
maximum and minimum values that x, takes on. That is, determine the
maximum and minimum of II(X, X) as X runs over all unit vectors in 7M.
This means we are maximizing (and minimizing) II(X, X) subject to the con-
straint (X, X> = 1. The method of Lagrange multipliers tells us to find the
critical values of

FX, 2) = II(X, X) — <X, XD — D) = (LX), XD — KX, XD + 4

= (LX) — AX, X + 4
at P.
In terms of a coordinate patch x we consider the function

XL X5 =A44 3 (L, — A )X/ X*g,.

Following the method of Lagrange multipliers we must have df/dX*! = 0,
df/dX? = 0, and df/dA = 0. Now 0df/dA = {—X,X> + 1, s0 df/d1 = O is
the equation <X, X> = 1.

d

0—){, — 2 (L, — A8)guX .
Hence dfj0X! = 0 implies }; (L' — 16',)g,X’Y" = 0 for all choices of Y’
That is, {L(X) — AX,YD> =0 forall Y, or L(X) = AX. Thus 4 is an eigenvalue
of L, and X is a corresponding unit eigenvector. L has real eigenvalues since
L is self-adjoint (Lemma 7.10) and so the Lagrange problem has a solution.
(Alternatively, the problem has a solution since II(X, X) does have a maxi-
mum and minimum: the set of unit vectors in TRM is closed and bounded,
i.e., compact.) The eigenvalues are the roots of

0 = det (L — Al) = A2 — (trace L)A + det L.

Denote these roots by x, and x, with k¥, > x,.

LemMA 8.1. Let P € M and A, X be an eigenvalue-eigenvector pair for L
at P. Let Y be a unit vector in TM such that (X, Y) = 0. Then Y is
also an eigenvector.

Proof: Note that {X, Y} is a basis for T M.
0 = <X, Y) = (LX), Y) = <X, L(Y).

Hence L(Y) is orthogonal to X and L(Y) = Y for some g since TpM has
dimension 2. Thus Y is also an eigenvector. ||

PROPOSITION 8.2. At each point of a surface M there are two orthogonal
directions such that the normal curvature takes its maximum value in
one direction and its minimum along the other.
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Proof: By the preceding discussion we know that the maximum and mini-
mum values of x, are taken in the direction of eigenvectors of L. Note that if
X is a unit eigenvector of L with eigenvalue x,, then the value of x,, in the
direction of X, is

(X, Xiiy) = LX) Xy = Xy, Xy = K4
Thus the maximum value of x,, is x, and the minimum is x,. If &, 7 k,, then
K1 Xy Xiay) = LX)y Xozy) = Kinys LX) = 5,{X (1), X5, > implies that
X1y Xzy» = 0. If ¥, = x,, Lemma 8.1 implies that a unit vector orthogonal
to X, is also an eigenvector. Hence it may be chosen as X,,. In either case

<Xm, X<2)> = 0. I

DerINITION. The principal curvatures of a surface M at a point P are the
eigenvalues of L there (x, and x,). Corresponding unit eigenvectors are
called principal directions at P.

DEFINITION. An umbilic is a point where x, = k,.

ExAMPLE 8.3. Every point of either S2? or R? is an umbilic. We shall see that
the converse is true in Section 6-1.

DEFINITION. A line of curvature on a surface M is a curve whose tangent
vector at each point is a principal direction at that point.

In Problem 8.5 you will show that the meridians and circles of latitude
of a surface of revolution are lines of curvature.
THEOREM 8.4 (Euler). Let Y be a unit vector tangent to M at P. Then

IY,Y) = x, cos? @ + K, sin? @,

where 6 is the angle.between Y and the principal direction X,,, corre-

sponding to x,.
Proof: Let X,,, be the principal direction corresponding to x,.

LX) = K: X,

Thus in terms of the orthonormal basis X, X, L is represented by

X, 0
( 0 xz) ‘
Y = cos X, + sin 6X,,.
TI(Y, Y) = <L(Y), Y>
= {1, cos 8X,y, + K, sin 0X,,,, cos 6X,,, -+ sin 0X ;)
=1,c0820 + K, sin?6. |

Note that this theorem can be used to compute normal curvatures.
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ExaMPpLE 8.5. Consider the Monge patch (u,v, 9?2 — u?) defined for
u? + v* < 1. The curves u = 0 and » = 0 are lines of curvature. See
Figure 4.20.

FIGURE 4.20

DerFINITION. The Gaussian curvature of M at P is K = 1k, = det L. The
mean curvature of M at P is H = 4(x, + x,) = } trace (L).

The terminology “mean curvature” reflects the fact that H is the average
normal curvature (see Problems 8.3 and 8.11). Surfaces for which H = 0 are
called minimal surfaces. A minimal surface has the local property that if a
“small” region of the surface is deformed slightly without changing the
boundary curve, the area of the region is increased. That is, the given region
has minimal area among all nearby regions. (The concept of area is developed
below.) Such a surface may be made experimentally by dipping a simple
closed curve made out of wire into some liquid soap. The resulting soap film
bounded by the wire frame is a minimal surface. See do Carmo [1976] for a
more extensive study of the differential geometry of minimal surfaces. See
Almgren [1966] for a detailed study of soap films and their geometric prop-
erties.

We shall now give a geometric interpretation of the Gaussian curvature.
This will require the concept of integration on a surface.

DEFINITION. If x: U — R? is a parametrized surface, the area of a subset
® <= x(U) is Hx_,«m [x,, X,, n] du' du? or

@8-1)

/8 du! du? is called the area element and is denoted dA.

If it is necessary to integrate a function, such as K, over a surface, it is done
with respect to dA: ([ KdA = ||, q K, u*)/ g du® du*. See the digres-
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sion below for a justification of this definition. In this chapter, the concept
of area is used only in Proposition 8.6, which can be omitted.

DEerNITION. The normal spherical image (or Gauss map) of a surface is the
function v: M — S? which sends each point of M to the normal at M.
(Actually v is only defined on a coordinate patch, where there is a well
defined normal.)

PROPOSITION 8.6. The Gaussian curvature K at a point P is the limit of the
ratio A(v(®))/A(®R) as the region ® shrinks to the point P and 4 denotes
(signed) area.

Proof: A®) = [[ @ [X1, X, ] du’ du® = [[ /g du' du*. The function
n: x !(®) — S? has image »(®) and is a parametrized surface that might not
be regular (n; X n, = 07). This lack of regularity does not affect the formula
for the absolute area of W(®): | AW(®R))| = [[ -+ @ [y, My, m] du* du?, where
m = n; X n,/|n; X n,| = 4n. The plus sign holds if v preserves orientation,
the minus if it reverses it. Thus signed area is given by

AM@zJMMMW%ﬂ
Then

A( ((R)) [nla n25 ll]
CP) = lim 0 = ]’

By Problem 8.9 n, x n, = K./ gn. Thus [n,, n,, n] = K./ g and C(P) =K

This theorem gives geometric significance to the sign of K: K negative
means v reverses orientation at P.

Note that neither the matrix L,; nor the mean curvature is intrinsic. It is
a remarkable fact that the Gaussian curvature is intrinsic, as we shall see in
Theorem 9.2.

We have given some geometric meaning to the Weingarten map L in
terms of its trace 2H and determinant K. We shall now give a further geome-
tric interpretation to the second fundamental form. We know that II(X, Y)
is a symmetric bilinear form on T,M for each P € M. If we think of Il as a
generalization of the length of a vector, then we can ask which vectors have
“generalized length” 41 and —1 with respect to II. This information (which
is classically called the Dupin indicatrix) provides information about the
geometry of M near P.

DEerFINITION. The Dupin indicatrix D of M at P € M is the subset of ToM
given by

={X e LM|IX,X) = 3 U {X € TM|II(X, X) = —1}.
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We shall write D= D* U D~. In terms of local coordinates,
D* = {3 X'x, |} Ly X' X' =1} and D~ ={3 Xx,|X L, X'X' = —1}.
(Since the sign of n is not well defined, neither is that of II. A change in the
sign of n will interchange D* and D~ but does not, of course, change their
union which is D.) The local coordinate description shows that D+ and D~
are (possibly degenerate) conic sections when viewed as graphs in the tangent
plane. Note that the axes (x,, x,) that we use for T, M may not be orthogonal
since g,, may not be zero.

ExAMPLE 8.7. Let M = S2. By Problem 7.1 L is the identity transformation.
Hence II(X, X) = (L(X), X)> = (X, X>. Then D = D* = the unit circle
in TpM. See also Problem 8.20.

Depending on the signs of the principal curvatures and whether they
vanish or not, the Dupin indicatrix may be an ellipse, two conjugate pairs of
hyperbolas (i.e., having the same asymptotes and semi-axes), two parallel
lines, or empty. We leave the proof of the precise statement (below) as
Problem 8.21.

ProprosITION 8.3. Let P be a point on M with Gaussian curvature K at P.

Then

(a) if K > 0, the Dupin indicatrix is an ellipse;

(b) if K < 0, the Dupin indicatrix is two conjugate pairs of hyperbolas;
and

(¢) if K = 0, the Dupin indicatrix is two parallel lines if one principal
curvature is not zero and is empty if both principal curvatures are
zero.

Because of this proposition, the point P is called elliptic if K > 0, hy-
perbolic if K < 0, parabolic if only one principal curvature vanishes, and flat
(or planar) if both principal curvatures are zero.

The geometric significance of the Dupin indicatrix comes from the
classical interpretation we now describe. The basic idea is to shift the tangent
plane parallel to itself in the direction of the normal to the surface. The curve
of Tntersection of this new plane and the surface is ~approximately the Dupin
indicatrix.” See Figures 4.21, 4.22, 4.23 for the case of elliptic, hyperbolic,
and parabolic points, respectively.

We now make the classical notion that the intersection is “approximately
the Dupin indicatrix” more precise. Let x: U4 — R?* be a coordinate patch
about P with x(0, 0) = x, = P. The tangent plane at P is given by

TpM = {y € R*|<{y — X, n) = 0},

where n is the normal to M at P. Let € be any (possibly negative) number
and I1, = {y € R*|<{y — x,, n) = €}. I1, is the plane parallel to T-M at a
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FIGURE 4.21 FIGURE 4.22

FIGURE 4.23

signed distance € from it. Since we wish to know what M N II, is for small
€, we shall examine

x(U) NI, = {x(', w?)| (!, u%) € U and x(u', u?) — x,, N> = €}.
To this end we expand x in a Taylor series about (0, 0):
x(u', u?) = x, + 3, %0, 00’ + 1 3 x,,(0, Oy + r(u', u?).

Then
€ = {x(u!, u?) — X4, 0>
= 22<x(0,0), mu' + § 37 <{x;4(0, 0), mpue! + {x,m)
or
8-2) € =% Lu'w 4 {r,n)

Providing x is sufficiently differentiable we may assume that the remainder
r(u', u?) satisfies

1 2

lim (u—,’)%% —0 as (u',u%)—> (0,0).

Thus for %! and »2 small, r is quite small and the intersection is approximated
by the conic section € = 4 37 L,;u'u/. We shall make a change of coordinates
that will have the effect of normalizing this conic section, and will stretch it
as € — 0. Currently we are using u! and »* as coordinates in the plane, with
axes given by x,(0, 0) and x,(0, 0), which may not be perpendicular. Define
new coordinates here by A’ = u//,/2]€[. Notice that as € — 0 this has the
effect of stretching the graph of M N II, relative to a fixed (4!, 12) coordinate
system.
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If we substitute v’ = 1'/2] €| into Equation (8-2) and divide by | e| we
obtain

1= S L, 4 S22,

We compute the limiting position of this locus as € — 0. By assumption,

i FW/2TETA, L/2T€]2%) _ g
o 2[e[((A1)* + (4%)?)

lim r(./2)e€| A‘ 20€1AY)

e—~0 |

Hence

Thus the limiting position as € — 0 of these “stretched conic sections” is
given by
A% |1 =3 LA} =D

This is the classical interpretation of the Dupin indicatrix.

DEeFINITION. Two non-zero vectors X and Y are called conjugate directions
(or conjugates) if 11(X, Y) = 0.

DEFINITION. A tangent vector X at P is an asympiotic direction (or is self-
conjugate) if 1I(X, X) = 0. An asymptotic curve is one whose tangent
vector is an asymptotic direction at each point.

The terminology asymptotic direction is due to the fact that the asymp-
totic directions at a hyperbolic point are the asymptotes of the Dupin in-
dicatrix, which is an hyperbola. See Example 8.9 below. Various properties
of asymptotic and conjugate directions are developed in Problems 8.22
through 8.35.

ExampLE 8.9. Let x be the Monge patch x(u, v) = (u, v, 4> — 2v2). Then
x, = (1,0, 2u), x, = (0,1, —4v), n = (—2u, 40, 1)/ /T 4 4u* | 1602,
x;;, = (0,0,2), x,, =(0,0,0) = x3;, X3, = (0,0, —4),

L, = 2
T /T F A ¥ 16wt
L,=L,, =0,
and
L, —4

27 T+ &r 16

At x(0,0) the coordinate axes x, and x, are orthogonal. The Dupin indicatrix
there is given by

+1 = 2(X1)2 — 4(X?)?,
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and consists of two conjugate pairs of hyperbolas, as pictured in Figure
4.24. The asymptotic directions are given by

0 = II(X, X) = 2(X)? — 4(X2)* = 0

or X' = +,/2 X2 Note that these give the asymptotes of the hyper-
bolas in Figure 4.24. Note that x, and x, are conjugates. If X = x, + X,
then Y = Y'x, 4 Y2x, is conjugate to X if and only if

0= (LX), Y> = 2X'Y' — 4X2Y? = 2Y! — 4}

or Y' = 2Y2. Hence 2x, + X, is conjugate to X, + X,.

N~
=

—7
N\

FIGURE 4.24

DIGRESSION

We indicate here in a very brief fashion, the origin of the area formula
in a coordinate patch. For a more rigorous foundation see Fulks [1969].

Consider a region @& contained in the image of a coordinate patch
x:U— R3 bounded by four parametric curves: u! = a, ! =a + Aul,
u2 = b, u2 = b + Au?. In the tangent plane at x(a, b) there is a parallelogram
® spanned by Au! x, and Au? x,. If Au! and Au? are quite small, the area
of B and @ should be almost the same. See Figure 4.25.

The area of B is | Aut x; X Aw2x,| = Aul Au? |x, X X,| = Aut Auz A/ g .
The area of a large region ® in x(‘l) should be the sum of lots of small areas of
regions like @ and thus should almost equal the sum of terms Au! Au2 /g .
In the limit this says

area of ® = ” A g dut du?.
xH(®)

FIGURE 4.25
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If®is also contained in the U coordinate patch we must have area of
® = [[,. @ /& do' dv?, Where ¢ = det (Z.). Since (g,)) = (J7Y(@ep)T ™",
g = det (g;p) = det (J~1) det (£.p) det (J71) = g(det (J~1))2
Thus o/ 2 = A/ % |det (J~1)|. Thus

([ WEdede=([[ /FofDldet(]de di2,
x"1(R) x Y(R)

which, by Jacobt’s rule for transformation of integrals (the substitution or
change of variables formula for multiple integrals), equals _Uy_, @ N g dv' dvi.
(f: U — ‘U is the transformation of coordinates.)

ExaMmPLE 8.10. For a Monge patch x(r, s) = (7, s, f(r, s)) we have
g=0+AA+fAD - L =1+f2+f

The area is given by [[ /T + f,2 + f;2 dr ds. This should be a familiar
formula from Calculus I1I.

ExaMmPLE 8.11. For the upper hemisphere (Example 1.7 of Chapter 4) we have

fr,s) =a/1—r2 =52 f,= —r|/1—rt —s2, f, = —s/a/1—r2 —s2,

and »/1 + f,2 + ;2 = A/1/(1 — r2 — s2). Hence the area of a hemis-
phere must be

dr ds _ VT=st
Ji[uvl—ﬂ—ﬁ_f f«/ﬁm/l_rz_ ar ds
VT-s2
f (arCSanl—s) ds
(" (= 7 (! _
—f_1<7—(—7>)ds—£lnds—2n.

—T—g2
Recall from Calculus II that if a function f defined in R? is given in terms
of polar coordinates, then the integral of f over a region is given by
([ £, 6 r dr d@, not [[ f(r, 6) dr 46. Furthermore, the expression r dr d6 is
precisely what is integrated to find area: area of ® = Hm r dr d6. Similarly, if
we have a function fdefined on a surface, its integral over a region ® contained
in a coordinate patch will be defined as [[ f(u!, u)a/g du? du.

PROBLEMS

General

" 8.1. Find the Gaussian and mean curvatures of R?, $2, T'? (Problems 1.1
and 7.3), and S! x (0, 1) (Problem 7.2).

v 8.2. Prove H? > K. When does equality hold?
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V8.3

8.4.

v 85

— 18.6.

*8.7.

8.8.

*8.9.

8.10.
8.11.

18.12.

8.13.

18.14.

8.15.

. Let X and Y be orthonormal vectors at P. Prove

H = J(1I(X, X) + 1KY, Y)).
Prove that the u'-curves are lines of curvature if and only if

g.=L,=0.

. Prove that the circles of latitude and the meridians of a surface of

revolution are lines of curvature.
Suppose g,, = 0. Prove
0gy, a_gz_z
(sl o 5
2/ g\0u* /g ' Ou' /g

Suppose g,; = 1, g,, = 0. Prove

K:

0% /e, —
B 4 K 0,

Determine which points of the Monge patch x(u, v) = (u, v, u> + v°)
have K > 0 and which have K < 0.

Proven, X n, = K./ gn.

What are the principal curvatures for a surface of revolution?

Prove H = (1/2xn) j:" k,df, where 8 is as in Euler’s Theorem (8.4).
This shows that the mean curvature is the average of the normal cur-
vature over all directions.

Suppose two surfaces M, and M, intersect in a curve C. Let x be the
curvature of @, 4, the normal curvature of € in M,, and 8 the angle
between the normals of M, and M,. Prove
kisin28 = 4,2 + 4,2 — 21,4, cos 8.

Let y(s) be a unit speed curve on a surface M. The geodetic torsion of
vist, = —<{S, dn/ds) (where S=n x T).
(a) Prove 7, = 0 if and only if y is a line of curvature.
(b) Prove if v is a geodesic then 7 = 7,.
(c) Does T =17, imply v is a geodesic? (Give proof or counter-

example.)
Suppose that in a coordinate patch x: U — M the Weingarten map
satisfies L = f| where f: U — R and | is the identity linear transfor-
mation. Prove f is a constant in a neighborhood of each point.

Set A—Minimal Surfaces

Let M be the surface of revolution generated by the non-unit speed
curve at) = ((1/a) cosh (at -} b), r). Show that M is minimal (H =: 0).
M is called a catenoid.
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8.16.

8.17.

18.18.

8.19.

8.20.

8.21.

8.22.

8.23.
8.24.

8.25.

~ 8.26.
18.27.

v 8.28,

8.29.

Local Surface Theory Chap. 4

Let M be the surface x(u!, u?) = (u? cos u', u?® sin u!, pu'). Show that
M is minimal. M is called a helicoid.

Prove that a surface is minimal if and only if
8&i1L2, — 2812 Ly, + g22L,, =0.

Prove that Problem 8.15, together with the plane, gives all surfaces of
revolution that are minimal.

Set B—Dupin Indicatrix, Asymptotic and Conjugate Directions

Classify all the points of the Monge patch x(u, v) = (u, v, u> + v?)
as to being elliptic, hyperbolic, parabolic, or flat.

Let P = (1/2,1/2,1/s/2) € S2. Graph the Dupin indicatrix of S?
at P, using axes parallel to x, and x,, where the coordinate patch is
the upper hemisphere (Example 1.7). Be careful, x, and x, are ot
orthogonal. Your result should still be a circle as in Example 8.7.

Prove Proposition 8.3. (Hint: Write elements of T»M in terms of a
basis of principal (orthogonal) directions.)

Show that there are 0, 1, or 2 linearly independent asymptotic direc-
tions at P, depending on whether P is elliptic, parabolic, or hyper-
bolic.

Prove that the principal directions bisect the asymptotic directions at
each hyperbolic point.

Prove that the parametric curves are asymptotic curves if and only if
L,=L,,=0.

Let y be a curve on M. Suppose that the curvature x of ¥ is nonzero.
Prove that y is an asymptotic curve if and only if B is normal to the
surface, i.e., the osculating plane of ¥ coincides with the tangent plane
of M at each point of y.

Let y be a straight line lying on a surface M. Prove that y is asymptotic.

Let x be the Monge patch x(u, v) = (u, v, (u?/4) — v?). Prove that all
asymptotic curves are straight. (Hint: Problem 8.26 may be useful.)

Prove that a geodesic is an asymptotic curve if and only if it is a
straight line.

Two surfaces x(u!, u%) and y(u', u?) are said to have contact of order r
at (a, b) if x — y and all its derivatives up through order r are zero at
(a,b). If x: U — R3 is a surface with P = x(0, 0), determine under
what conditions y=a+ Y b + 3 ¢, u'u’ has second order
contact with x at (0, 0). The resulting surface y is called the osculating
paraboloid. Show that x and y have the same normal vector at P.



Sec. 4-8 Principal, Gaussian, Mean, and Normal Curvatures 139

8.30.

8.31.

8.32.

~8.33.
8.34.

18.35.

Consider a plane parallel to the tangent plane at P. How is its inter-
section with the osculating paraboloid related to the Dupin indicatrix ?
(This problem is an analog for surfaces of Problem Set D of Section
2-4 which deals with spherical contact for curves.)

Prove that if K 5= 0 and X == O then there are exactly two unit vectors
Y, and Y, such that X and Y, are conjugates for ;i = 1 and 2.

Prove that the tangents to the parametric curves are conjugates at
each point if and only if L,, = 0. In this case we say that the para-
metric curves form a conjugate family of curves.

Let M be a surface with no umbilics. Prove that the parametric curves
form an orthogonal conjugate family of curves if and only if they are
lines of curvature.

Can a line of curvature ever be an asymptotic curve?

Prove that <L(X), L(Y)> — 2H{L(X),Y> + KX, Y)>=0. (Hint:
Write X and Y as linear combinations of the principal directions or use
the Cayley-Hamilton Theorem from linear algebra.)

Prove the Beltrami-Enneper Theorem: If y has non-zero curvature,
torsion 7, and is an asymptotic curve, then 7> = —K, where K is the
Gaussian curvature. (The proof will make use of Problem 8.34.)

Set C—Ruled Surfaces

A ruled surface is a surface swept out by a moving straight line, much as
a curve is swept out by a moving point. Such a surface can be parametrized
in the form x(s, ) = a(s) + tB(s), where a(s) is a unit speed curve and
|B(s)| = 1. However, not every function of this form gives a surface. There
are minor problems with self intersections if x is not one-to-one. These will
be ignored. However, there may be singular points, that is, points where
X; X X, = 0. We allow this below but will keep track of any singular points.

8.36.

18.37.

18.38.

8.39.

Prove that the surfaces in Problems 1.4, 1.9, and 1.14 of Section 4-1
are ruled.

Prove that the surface z = x* — y? is doubly ruled; that is, through

each point of the surface there are two straight lines that lie on the
surface.

Prove that the surface

2 z

2 2
+i -5 =1

%

a

o

is doubly ruled.

Prove that the curvature of a ruled surface is never positive.
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A ruled surface for which B’ = 0 is called a cylinder. (See Problem 5.10
for an example.) A ruled surface for which B’(s) == 0 for all s is called non-
cylindrical.

8.40.

8.41.
8.42.

8.43.

8.44.

Let x(s,t) = a(s) + tp(s) be a noncylindrical ruled surface. Prove
there exists a unique curve Y(s) = a(s) + r(s)p(s), which in general
is not unit speed, such that {y’, p’> = 0. This is called the line of
striction.

Find the line of striction for the surfaces in Problem 8.36.

If y(s) is the line of striction of the ruled surface x(s, 1) = a(s) -+ 1B(s),
prove that y(s,u) = y(s) + uP(s) is a reparametrization, where
u=1—r(s).

Show that any point on the line of striction where ¥’ = 0 is a singular
point.

Show that every singular point of a ruled surface lies on the line of
striction. (Hint: Parametrize as y(s, u) = y(s) + up(s).)

Set D—Developable Surfaces

A ruled surface is called developable if along each line of the ruling the
tangent planes are all parallel.

8.45. Let x(s,?) = a(s) + tP(s) be a developable surface. Show that the

8.46.

8.47.
8.48.

8.49.

8.50.

8.51.
8.52.

8.53.

normal vector n does not depend upon the parameter .

Let x(s, 1) = a(s) -+ ta'(s) be the tangent developable surface of a unit
speed curve a(s) (Problem 1.14). Show that x is developable.

Compute the metric matrix for the surface in Problem 8.46.

Show that a surface of revolution generated by a straight line is
developable.

Prove that x(s,t) = a(s) + 7p(s) is developable if and only if
[a',B,B']1=0.
If a(s) is a unit speed curve, under what conditions is
x(s, 1) = os) -+ tN(s)
developable?
When is y(s, 1) = a(s) -+ tB(s) developable?

Show that a developable surface has Gaussian curvature equal to
zero.

Show that each line in the ruling of a developable surface is both an
asymptotic curve and a line of curvature.
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8.54. Let M be a developable surface without umbilics. Let a(s) be a (unit
speed) line of curvature corresponding to the nonzero principal cur-
vature. Show that e(s) is orthogonal to each line in the ruling.

8.55. Let a(s) be chosen as in Problem 8.54 and parametrize the develop-
able surface M by x(s, 1) = a(s) + tp(s) with |p| = 1. Show that
B'(s) = A(s)a'(s) for some function A(s).

8.56. If A(s) is as in Problem 8.55, show that

(a) A =0 implies M is a cylinder;

(b) A = constant 7= 0 implies all lines of the ruling have a point in
common and in this case that point is the line of striction (M is a
cone, but not necessarily circular);

(c) A and 1’ both nonzero implies M is the tangent developable sur-
face of its line of striction.

4-9. RIEMANNIAN CURVATURE AND
GAUSS’'S THEOREMA EGREGIUM

In this section we introduce the Riemannian curvature tensor (R/})),
which is an intrinsic invariant. We then obtain Gauss’s equations and the
Codazzi-Mainardi equations and use them to prove the surprising fact that
the Gaussian curvature is 3 R,’,,g,,/g and hence intrinsic.

Let x: U — R?® be a coordinate patch on M with Christoffel symbols
T,/ and second fundamental form coefficients L,;.

DErINITION. The Riemannian curvature tensor with index (i, 1, j, k) is given

forall 1 <i,Lj,k <2.

Most readers complain about the definition of R/;, because it is so
replete with symbols that they feel (correctly) that the geometric meaning of
the Riemannian curvature tensor is lost. In order to define R/, more geo-
metrically we would have to take a much more abstract approach using the
formalism of covariant derivatives. We will do this in Chapter 7.

PrOPOSITION 9.1. Forall 1 <i,1j, k<2
(a) (Gauss’s equations)

9-2)
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(b) (Codazzi-Mainardi equations)

(9-3)

Proof: We prove both equations simultaneously by computing dx,;/du* = x,,,
two ways and comparing the tangential and normal components of the
result. Using Gauss’s formulas (4-8), we have x,,;, = d(L,;n + > [',;//x))/du*.
Therefore

oL,

1]
e = a kn—{—L,,n,,+ Z&Fu

X; R + 2%y

5L”

=6kn L,y x1+26r'j

x + 2T/ Tyx, + 3T/ Lyn

<6L” + X r‘ulek)n + 3 < — Lyl + D Ty Ty )xl
Similarly

Xik] = (ale + Z rzkILIj)n + Z <0rlk - LtkL'j + E rlkprpjl>xl

Since we assume that x is at least C3,

d3x 3x

Xk = 3k 0 0~ 0w duF o

{x, X,, n} is a basis of R? at each point so that the various components of
X, With respect to this basis must equal those of x,,,. Hence

64 (G + £r/Ls) = (4 + SruL,)

©-5) (G — Ll + ST, = (U5 — L1, + STWT,))

Equation (9-4) can be rewritten as

JdL dL

au;(l du"k Z (rik LI] - ru le)
which is the Codazzi-Mainardi equation (9-3). Equation (9-5) may be re-
written as

! 1
6_61;'—; B ‘291;"5 + 2 Tu’T, — T, Ty)) = Ly 'y — L; L.

Since the left-hand side of this equation is R/, (by the definition), we have
Gauss’s equation (9-2). |
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The important point here is that the Riemann curvature tensor is defined
intrinsically by Equation (9-1). Gauss’s equation (9-2) gives an extrinsic
description in terms of the second fundamental form and the Weingarten
map.

We use the above to prove:

THEOREM 9.2 (Gauss’s Theorema Egregium.) The Gaussian curvature K of a
surface is intrinsic.

Proof: By Gauss’s equation (9-2) R}, = L, L', — L,,I',. Hence

E Rlljkglm = Lz‘kLmj — L;L,,.
Leti=k=1landj=m=2.
2 Ry)yi182 =1Ly Ly, — Ly, Ly, = det (Llj) = det ((ij)(gik))
= det (L*)) det (g4) = Kg.
Hence K = 3] R/5,8n/g. 1

Gauss called this theorem egregium because it is truly remarkable.
(Look up the meaning of egregious if it is unfamiliar.) K is defined very
extrinsically—in terms of m, or in terms of L, or in terms of v, none of which
are intrinsic. Yet K is intrinsic.

It can be shown that if a different coordinate patch is used, the coef-
ficients R,?;, defined there satisfy

dv* 9! dvf v

Rip = LR 0w dv® du’ duF
From this it follows that there is a trilinear function mapping
ToM X ToM x ToM —> TpM,

called the Riemann curvature tensor, by R(X,Y)Z = 3 R/, X'Y*Z'x,. We
then note that (R(X,, X,)X;, X,)/|X, X X,|* = K. In modern differential
geometry (of higher dimensions) the expression (R(X, Y)Y, X>, where X
and Y are orthonormal, is called a sectional curvature. It plays a significant
role in describing the geometry of M. This will be covered in more depth in
Chapter 7.

One important aspect of the Codazzi-Mainardi equations (9-3) is that
they give integrability conditions. The Fundamental Theorem of Surfaces
states that if g,;and L,, are symmetric functions such that g,,> 0, det (g,;) >0,
and both Equations (9-2) and (9-3) hold, then there is a surface in R3,
unique up to position in space, having the g,, and L,; as coefficients of the
first and second fundamental form. See Section 4-10. Thus the situation for
surfaces is a bit different than that for curves, where only the (natural) restric-
tion ¥ > 0 is placed upon x and 7 in order to determine a curve.
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PROBLEMS
9.1. Show that if M = R?, then R/, = 0 for all 1 <i,/,j, k <2 both
intrinsically and extrinsically.
9.2. Prove that the Riemann curvature tensor has the following symmetry
properties:
(@) R!;x = —R/y;, hence R/,; = 0;
(b) Ri]k + Rjki + ‘Rkij —0
(©) if Rmuk E Rl % 8im then Rimjk = —lejk; and
(d) Rzm;k - Rjktm
9.3. Compute the Riemann curvature tensor for M = §?
(a) extrinsically;
(b) intrinsically. (Hint: Use Problem 9.2 to cut down on the calcula-
tions.)
9.4. Compute the R/,, for

(a) T? (Problem 1.1);
(b) St x (0, 1) (Example 2.3).

The following problems are on the whole more difficult than most of our

exercises. They are intended to introduce some of the modern terminology to

help

bridge the gap between this text and. more advanced texts. They may be

omitted if Chapter 7 is not covered.

9.5.

9.6.

Let X and Y be vector fields defined on a surface M. In a coordinate
patch x: U — M define

Zi= ;(Xf‘;y Yfgf)

where X =37 X'x,and Y = 3 Y/x,. Similarly, in the patchy: 0 — M

define
5 Y- ax=
g9Y " vys
2= - TG)

Prove that Z! = ¥ Z*du'/dv*. This means that ¥ Zix, = 3, Z°*y, = Z
is a vector field. Z is denoted [X, Y] and is called the Lie bracket of X
and Y. Prove that [x,, x;] = 0. Prove that [X, Y] = —[Y, X]. Show
that [u'x,, u'u?x,] = (u')*x, — u'u?x,.

Recall that in Problem 5.14 we defined the vector field

VY =3, X’(_a__ +3 F,jka>Xk
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9.7.

9.8.

9.9.

9.10.

in a coordinate patch x: U — M. Prove that
VxY —Vy X - [X, Y] = 0.
(Hint: T, = T;* (Why?).)

In this problem we interpret a vector field as a “directional derivative.”
Let f: M — R be a function defined on all of M. We say that f is
differentiable if for every coordinate patch x: U — M, fox: U — R
is differentiable. If X is a vector field on M, then in the patch x set
X(f) = X X! df/du’. Prove that in terms of another patchy: U — M
we have 3 X df/dv* = 3 X! f/du‘. Prove that if a € R, and fand g
are differentiable functions on M then: (1) X(f + g) = X(f) + X(g);
) X(f-g) = g-X(f)) + f-(X(g)), where - denotes multiplication;
and (3) X(a) = 0, where a denotes the constant function A(P) = a. It
can be shown that any operator X that satisfies (1), (2), and (3) actually
is a vector field. This will be the definition in Chapter 7.

Prove [X, YI(f) = X(Y(/)) — Y(X(f)). Let f-X denote the vector field
which at Pis f(P) times X at P. Prove [ f-X, Y] = f-[X, Y] — (Y(/))-X.
Prove X + Y, Z] = [X, Z] + [Y, Z].

Prove Vx(Y -+ Z) = VyY - VyZ. Prove Vy . y(Z) = VyxZ -+ VyZ.
Prove V,x(Y) = f-VxY. Prove Vx(f-Y) = X(f)-Y + f-VxY.

If X, Y, Z are vector fields on M, set
R(X, Y)Z = VX(VY Z) - Vy(VxZ) - V[X,YIZ-

Prove that in a patch x: U — M we have R(X, Y)Z = 3 W'x, with
W'= 3R/, Z'XY* and R/, is defined by (9-1). This is the same
concept as that at the end of this section.

9.11. Prove R(X, Y)Z = —R(Y, X)Z.

9.12.

9.13.

Prove XY, Z>) = {VxY, Z> + Y, VxZ>.
Prove {R(X,Y)Z,Z> = 0.
Prove (R(X,Y)Z,W> = —(R(X, Y)W, Z).
Prove R(X, Y)Z - R(Y, Z)X + R(Z,X)Y = 0.
Prove <R(X, Y)Z, W) = (R(Z, W)X, Y>.
Prove {R(X, Y)Y, X)> = |X x Y|*K, where K is the Gaussian curva-
ture. ¢
Let X and Y be two fixed vector fields. If Z is a vector field define
S(Z) = R(Z, X)Y. Prove S(f-Z) = f-S(Z) and
S(Z + W) = S(Z) + S(W).
In particular, this means that S is a linear transformation from 7TpM
to 7M. Prove that the trace of S is | X, Y|*X.

X e, 2wD Roomaniio- fise 5 K odeiria s R. 7 =

A tonsedaence of {be A s FL 4+ 12y
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4-10. ISOMETRIES AND THE FUNDAMENTAL
THEOREM OF SURFACES

In this section we shall discuss the question as to when two surfaces are
geometrically the same. There will be two concepts: isometry, which refers
to intrinsic geometry, and rigidity, which refers to both the intrinsic and
extrinsic geometry. In the latter case, two surfaces will be considered the same
if they differ only in their position in space, as for example the two spheres
{x € R?*||x| =1} and {x € R?*||x — (1,0, 0)| = 1}. It is the former concept
that shall be our primary interest.

DEerINITION. Let f: M — N be a function between surfaces. f'is differentiable
if for each P € M there are coordinate patches x:U — M and
y: U — N about P and f(P) respectively such that y=to fox: U — U
is differentiable as a function of two variables.

In practice, f is often given in local coordinates by giving y~! o fo X,
as in the following example.

ExAMPLE 10.1. Let M be the surface of revolution
x(u, @) = (cosh (u) cos 8, cosh (u) sin 8, u)
for —sinh~! (1) < u < sinh~! (1) and 0 < 8 < 2z. Let N be the heli-
coid y(v,¢) = (vcos @, vsing, @) for —1 <v <1 and 0 < ¢ < 27.
The function y=!o fo x(u, 8) = (sinh (), 8) is clearly differentiable and
gives a differentiable function f: M — N by f(x(u, 6)) = y(sinh (u), 8).
Note that this particular function is also one-to-one and onto. See
Figure 4.26. The meridians of M are sent to straight lines on N and
the circles of latitude are sent to circular helices.

FIGURE 4.26
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DEFINITION. An isometry from M to N is a one-to-one, onto, differentiable
function f: M — N such that for any curve ¥: [¢, d] — M, the length of
v equals the length of fo y. M and N are isometric if such an isometry
exists.

In Problem 10.1 you will verify that a rotation of S2is an isometry. A
less obvious example is the following.

ExampLE 10.2. If £, M, N are as in Example 10.1, then fis an isometry. This
is seen as follows. With respect to the coordinates (u, ), the metric
matrix of M is

(@) = cosh? (u) 0 )
B _( 0 cosh? (u) .

With respect to the cordinates (v, ¢), the metric matrix of N is

w0

If ¥:[c,d] — M is given by ¥(t) = x(u(t), 0(t)), then dy/dt has length
cosh (u(t))«/ a2 + 02, Since (f o ¥)(r) = y(sinh (u(t)), 0(r)), d(f o y)/dt
has length ~/cosh? (u(r))i? + (1 + sinh? (u(1)))? = cosh ()W u?* + >

also. Hence ¥y and f o ¥y must have the same length and f'is an isometry.

In the above example we saw that the vectors dy/dt and d(f o y)/dt had
the same length for a particular isometry. This is true in general.

ProrosiTioN 10.3. Let f: M — N be an isometry and let y:[c, d] — M be a
regular curve. Then dy/dt and d(f o y)/dt are vectors of the same length
for each value of ¢t € (c, d).

Proof: For each t* € (c, d), the curve ¥ : [c, t*] — M has the same length
as foy:[e,t*] — N. Hence [I'|dy/dt|dt = ["|d(foy)/dt|dr. If we dif-
ferentiate with respect to t* and evaluate at t* = ¢ we obtain

ay| _|d(fe 7){
ar

DEFINITION. Two surfaces M and N are locally isometric if for each P € M
there are open sets W' < M, U’ < N with P € U, and an isometry
f:UW — U’ (and vice versa for Q € N). Such an fis called a local isometry.

ExaMPLE 10.4. In Example 10.1 we now allow 0 < 8 <C 27, so that M is the
entire surface of revolution, and —oo << ¢ <C oo so that NV is an infinite
staircase. f gives one local isometry. Choosing a second coordinate patch
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to cover M we can easily define another local isometry from M to N
so that M and N are locally isometric. However, they are not isometric
because M has finite area while N has infinite area and we shall see in
Proposition 10.5 that isometries preserve the intrinsic geometry, in
particular, the area. This proposition says that isometries preserve the
first fundamental form.

ProposITION 10.5. Two surfaces M and N are locally isometric if and only if
for each P € M there is an open set U = R? and coordinate patches
x:U— M, y:U— N with P € x(U) such that the metric coefficients
of x and y are the same. Hence locally isometric surfaces have the same
local intrinsic geometry at corresponding points.

Proof: First assume that f: U — UV’ is a local isometry with P € U'".
Let x:U — M be a coordinate patch about P with x(U) = U’. Let
y=fox:U— N, which is clearly a coordinate patch about f(P).
(g;;) will denote the metric tensor of x and (4,;) will denote the metric
tensor of y. We shall first show that g, (a, b) = h,(a, b) for all (a,b) € U
when i =j. Let y(t) = x(a + ¢, b) (i.e., a u'-curve). By Proposition 10.3,
YO =1(f°¥)" (@] for all z. Since ¥(0) = x,(a, b) and (f o ¥)"(0) = y,(a, b),
|x1(a, b)| = |y.(a, b)| and g,,(a, b) = hy,(a, b). Similarly g,,(a, b) = h,.(a, b)
by using a u2-curve.

Now we show that g,,(a, b) = hy,(a, b). Let at) = x(a+ 1, b + ¢).
a(0) = x,(a, b) + x,(a, b) and (fo &)*(0) = y,(a, b) + y,(a, b). Proposi-
tion 10.3 implies |&(0)| = | (f o &)"(0)| so that

<Xy + Xy, Xy + X0 =<y + ¥ ¥1 + A2

or

(X XD+ 22Xy, X5 + (Xpy X = Y15 Y1) + XY, ¥2) + Ya» Y20

or

g1+ 2812 t+ 82 = hyy £ 2k, + by,
By the previous paragraph g,,(a, b) = hy,(a, b) and g,,(a, b) = h,,(a, b) so
that g,,(a, b) = h,,(a, b) also. Hence (g;;) = (h;)).

On the other hand, if there exists an open set U and coordinate patches
x:U— Mand y: U — N with the same metric coefficients, let U’ = x(U),
V' =y(U) and define f: U — V' by f(x(@!',u?))=y@u!,u*). Then
ytofox(ul,u?) = (u', u?) is clearly one-to-one, onto, and differentiable.
If y : [e, d] — W, (1) = x((1), () and (fo Y)(t) = y@'(2), y(1)), then
¥ and foy have the same length [!./FPg, dt = [{ /PP h;dt since
gy = h,;. Hence fis a local isometry. |

ExAMPLE 10.6. Let f, M, N be as in Examples 10.1 and 10.2 so that
¥~ 1o fox(u,0) = (sinh (&), 8). Then the Jacobian matrix of y=1o fo X is
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v dv
du d6 _(cosh (u) 0)
¢ 9 _( 0 A
du 06

The metric matrix for N in the (u, 8) coordinates is then

cosh u 0) 1 0 )(cosh u 0)
( 0 1 (0 1 4 »? 0 1

_ (cosh2 u 0 )

0 1+ »2
. (cosh2 u 0 )
o 0 1+ sinh?u

_ (cosh2 u 0 )
- 0 cosh? u

which is the metric matrix for M in the (u, ) coordinates.

By using Proposition 10.5 we shall show in the next section that any two
surfaces of revolution having the same positive constant curvature are locally
isometric. In fact, in Section 6-2, after we have introduced the concept of a
geodesic coordinate patch, we shall prove the more powerful theorem stated
below.

THEOREM 10.7. Let M and N be two surfaces with the same constant curva-
ture K= c. Then foreach P € M, X € T,M, Q € N, Y € T,N with
X and Y unit vectors, there is a local isometry f such that f(P) = Q
and fo o = v, where a is the unique geodesic through P in the direction
X and 7 is the unique geodesic through Q in the direction Y.

Note that the above theorem must hold in particular for M = N and
P = Q. Thus for each P on a surface of constant curvature there is a local
isometry that acts like a rotation about P. Also, if M = N there must be a
local isometry that sends any given point P to any other point Q. This is a
situation that is clear on S2 and in the plane, where each local isometry is
actually global, i.e., defined on all of S% or R2. (The isometries of S consist
of compositions of rotations about various axes and reflections. The isome-
tries of R? are compositions of translations, rotations, and reflections. See
Problem 10.7.)

Gauss’s Theorema Egregium may be stated in the language of isometries
(and in fact originally was, using the word “developed” which means mapped
by an isometry):

THEOREM 10.8. If two surfaces are locally isometric, their Gaussian curva-
tures at corresponding points are equal.
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The analogue of Theorem 10.7 for mean curvature is false (see Problem
10.6). Further, the condition of constant curvature cannot be dropped from
Theorem 10.7. Problem 10.10 gives an example of two surfaces and a func-
tion from one to the other which is not a local isometry yet corresponding
points have the same nonconstant Gaussian curvature.

We now turn to the stronger notion of equivalence of surfaces called
rigidity.

DEFINITION. An n X n matrix 4 is a special orthogonal matrix if AT = A~

and det 4 = 1. When thought of as a linear transformation from R” to
R”, A is called a roration.

The terminology rotation comes from the situation when n = 2.

a b —
If A= ( ), then A°! = ( d b) /det (4). If det4A =1 and
c d —c a

AT =A"', then a=4d and b= —c. 1=detd=ad— bc=a*+ b?

implies we may write ¢ = cos ¢ and b = —sin ¢ with 0 < ¢ << 27. Hence
4= (c.osqS —sin ¢)
sin ¢ cos¢

0
Ify — (’ cos ) & R?, then

rsin @
Ay — (cos ¢ —sin ¢) (r cos 0)
sin ¢ cos ¢/ \r sin 0
_ (r cos¢pcos@ — r sin‘¢ sin 0)
r sin ¢ cos @ + r cos ¢ sin 0

_ (r cos (0 + ¢)).
rsin (@ + ¢)

Hence the special orthogonal matrix A rotates R? through an angle of ¢
radians.

DEFINITION. f: R" — R~ is called a rigid motion of R if there is a rotation A
of R” and a vector b € R” such that f(¥) = (4y) + b.

DEFINITION. Two surfaces M and N are rigidly equivalent if there is a rigid
motion f: R® — R3 such that J(M)=N.

Note that a rigid motion is the composition of a rotation (by 4) and a
translation (by b). Since a rotation preserves distances, as does a translation,
a rigid motion must preserve distances and the length of curves. Thus the
restriction of a rigid motion £ to a surface M is an isometry from M to f(M).
However, the converse is false and an example is given by Example 10.2.
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The two surfaces are isometric but not rigidly equivalent. It can be shown that
rigidly equivalent surfaces have the same first and second fundamental forms
at corresponding points so that they must have the same mean curvatures as
well as the same Gaussian curvature. In Problem 10.6 you will give another
example of isometric surfaces which are not rigidly equivalent by exploiting
this idea.

Recall that the Fundamental Theorem of Curves (Theorem 5.2 of Chap-
ter 2) said that the curvature and torsion determine a space curve up to posi-
tion, that is, up to a rigid motion. Further, any differentiable function # > 0
and continuous function 7 determine a curve with curvature ¥ and torsion
7. We now state the analogous theorem for surfaces and give a brief discus-
sion of its proof.

THEOREM 10.9 (Fundamental Theorem of Surfaces). Let U be an open set
in R? such that any two points of U may be joined by a curve in U and
let L;;: 4 — R and g, : U — R be differentiable functions for i = 1, 2
and j = 1, 2 such that
(@ Llfj: Ly1, 812 = 821> 811 >0, g2, >0, and g,,8,, — (812)* >0,

an
(b) L,; and g, satisfy Gauss’s Equations (9-2) and the Codazzi-Mainardi

Equations (9-3) where the I';* are determined by Equation (4-11).
Then, if P € U, there is an open set U <= U with P € U and a simple
surface x: U — R® such that (g;,) and (L,;) are the matrices of the first
and second fundamental forms. Further, if y: U — R?3 is another simple
surface with first and second fundamental forms (g;) and (L;;), then
y(U) is rigidly equivalent to x(0).

It is clear that conditions (a) and (b) are necessary (this is Proposition
9.1). What is surprising is that these conditions are sufficient! A detailed
proof may be found in the Appendix to Chapter 4 of Do Carmo [1976].

We discussed the analogy between the Frenet-Serret frame {T, N, B} and
the “frame” {x,, X,, n} just before Proposition 1.13. Because of this, the ideas
of the proof of Theorem 10.9 are very similar to those of the Fundamental
Theorem of Curves, but the technical details are more formidable. The idea is
to set up a system of differential equations for the derivatives of X;, X,, and n
in terms of g;, and L,, and then solve. To actually carry this out for surfaces
requires an existence and uniqueness theorem from partial differential
equations (instead of ordinary differential equations). In general, one cannot
always solve a system of partial differential equations. In the case at hand,
the equations can be solved if and only if condition (b) of the theorem holds!
This once again points out how the theory of differential equations lies at the
heart of geometry. _

The first proof of Theorem 10.9 was given by O. Bonnet in 1867.
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10.1.

10.2.

10.3.
10.4.

10.5.

10.6.

10.7.

110.8.

Local Surface Theory Chap. 4

PROBLEMS
Let f;: S — S? be given by
cos@ —sinf 0\ /x
fix,y,z) =|sin@  cos®@ O||
0 0 1/ \z

Show that f,(0, 0, 1) = (0, 0, 1) and that f, is a rotation around the
z-axis through an angle 8. Prove that f, is an isometry.

Let S%(r) = {x € R3||x| =r} and let f: §2 — S%(r) by f(x) = rx.
Prove that fis one-to-one and onto but not an isometry.

Show that R? and the cylinder S! X (—oo, 00) are locally isometric.

Prove that R? and the torus 7'% are not locally isometric. (Hint: Prob-
lem 8.1.)

If f: M — N is an isometry and ¥ is a geodesic in M, show that fo ¥y
is a geodesic in N.

Find an example to show that the following statement is false: If M
is locally isometric to N, then the mean curvature of M is equal to the
mean curvature of N at corresponding points.

Prove that any rigid motion of R? is an isometry of R? onto itself
(where R? = {(x, y, z) € R*|z = 0}).

An isometry f is called orientation preserving if the Jacobian of f has

positive determinant. Prove that f: R2 — R? is an orientation pre-

serving isometry if and only if fis a rigid motion. Do this by setting

S, u?) = (f1(u!, u?), f2(u', u?)) and proceeding as follows.

(a) Assume that f(0, 0) = (0, 0), (d1/du')(©0, 0) = (df*/0u*)(0, 0) =1
and (9f/du?)(0, 0) = (df?/0u')(0, 0) = 0. Show that

%)+ )~

for i = 1 and 2 at all points of R2. Differentiate this last expression
to show that 9%f*/du’ du’ = 0 at all points in an open set about
(0,0) so that df*/du’ is constant there. Use this to show that
S, u?) = (ut, u?).

(b) Assume that g:R? — R? is an isometry. Show that there is a
rigid motion T:R? — R? such that f= go T-! satisfies the
assumptions of part (a). (Hint: b = g(0, 0).)

(c) Use parts (a), (b) and Problem 10.7 to finish the proof.

Note that if f: R2 — R? is an isometry that does not preserve orien-

tation and if S = ((1)

0\ . . .
1) is the reflection in the u! axis, then S o f
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is an orientation preserving isometry. Hence every isometry of R? is

either a rigid motion or a rigid motion followed by a reflection.
110.9. If M is a surface show that the set of (global) isometries from M to

M forms a group under the operation of composition.
10.10. Let M be the surface of revolution

x(t,0) = (tcos B, tsinf,logt) for 0<1,0<0 <2n
and let N be the helicoid
¥(t,0)=(tcosf,1sinh,8) for 0<1t0<f <2n.

(a) Show that the metric tensors for M and N are respectively
el S 1 0
t and (0 14 tz)
0 t?

so that the obvious function from M to N is not a local isometry.
(b) Show that the Gaussian curvature of both surfaces at (¢, 8) is
K= —1/[(1 + #?)?]. (Hint: Problem 8.6.)

4-11. SURFACES OF CONSTANT CURVATURE

In this last section we shall discuss certain surfaces of constant Gaussian
curvature. Our goal is to determine and describe all such surfaces that are
actually surfaces of revolution. This topic is a good one for the final section
of this chapter because this description will require most of the ideas of this
chapter. Unfortunately, it will also entail the use of integrals that are nonele-
mentary, and hence not computable by elementary functions. We shall find
that such surfaces of revolution fall into three general classes depending upon
the sign of their curvature. Within each class all surfaces with the same curva-
ture will have the same local intrinsic geometry although their global and
extrinsic properties will differ; that is, each surface is locally isometric to
every other surface in the class with the same curvature, but is not globally
isometric to any of the others.

We recall briefly some facts about surfaces of revolution. Let

o(s) = (r(s), z(s))
be a unit speed curve defined for s in some interval (sq, 5,) With r(s) > 0
and

M = {(r(s) cos 0, r(s) sin 0, 2(s)) |0 < 6 < 27, s € (50, 51)}-

M is a surface and can be covered with two coordinate patches. Since a is
unit speed we know (Problem 3.1) that the metric matrix with respect to s

and @ is
1 0
(&) = (0 rz) .
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We also know (Problem 4.2) that the second fundamental form has matrix

rlzll _ zlrll 0
(Lu) = ( ,) .

0 rz

From these equations you can derive (Problem 11.1) the formula for the
Gaussian curvature K of M:
’
(11-1) K = -
We shall integrate Equation (11-1) to find all surfaces of revolution of
constant curvature, handling first the case of positive curvature, then zero,
and finally negative curvature.

Case 1: K= a?* a > 0.

In this situation Equation (11-1) becomes r"’ + a%r = 0, which can be
solved to yield r(s) = a, cos (as) -+ a, sin (as) or by rearranging the constants
of integration r(s) = A cos (as -+ b). By an appropriate choice of the point
from which we measure arc length we may force b = 0. Since r(s) > 0 we
must have 4 > 0 and |s| < #/2a. Since & is unit speed, z’ = +./1 — (r')?
and we have

ProrosITION 11.1. If M is the surface of revolution generated by the unit
speed curve a(s) and M has constant positive Gaussian curvature
K = a?, then a(s) = (r(s), z(s)) is given by

r(s) = Acos (as), |s| < ®/2a

11- s
a1-2 2(s) = :I:J.D A1 — a?A*sin? (at) dt + C

where A > 0 and C are constants.
Note that if 4 > 1/a, z(s) will be defined only for
1 . _,/1 n
|S|<751n (EZ)<-2—Q
If A 5~ 1/a, the integral giving z(s) is nonelementary (it is an elliptic integral)
and cannot be computed by elementary functions.

If A=1/a, then z(s)= 4[;cos(ar)dt + C = 4(1/a)sin (as) + C.
Thus if A = 1/a, M is part of a sphere of radius 1/a. The three cases
A <lja, A= 1Ja, A> 1/a are pictured in Figures 4.27, 4.28, and 4.29
respectively. Note that for A < 1/a the surface tends to a sharp point on
the axis of revolution and that for A > 1/a the limiting tangent plane for
s = +(1/a) sin~! (1/aA) is perpendicular to the axis.

We thus have a whole family of surfaces of revolution with constant
curvature a? > 0. This family is parametrized by the integration constant 4.
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FIGURE 4.27

FIGURE 4.28

FIGURE 4.29

The extrinsic geometry varies with the parameter A because different values
of A give geometrically distinct surfaces. The intrinsic geometry is independ-
ent of the parameter A (but not a).

ProPosiTION 11.2. Let M, and M, be two surfaces of revolution of unit
speed curves o, and &,. If both M, and M, have constant curvature
a* > 0, then M, is locally isometric to M,.
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Proof: We shall show that there is a change of coordinates so that the metric
matrix for any surface of revolution in the family (11-2) takes the form

1 0
0 Lcost(as)|
72 €08 (as)

The result will then follow from Proposition 10.5.
With respect to the coordinates (s, §), the metric matrix is

(o seo o)

0 A? cos? (as)

Define new coordinates (s, §) by ¢ = aAf. Then the metric matrix with
respect to (s, ¢) is

1 0\/1 0 1 0 1 0
(0 aiA) (0 A? cos? (as)) (0 aLA) - (0 % cos? (as)) '

Thus locally, in terms of the coordinates (s, ¢), all members of this family
have the same metric matrix and so are locally isometric by Proposition
10.5. 1

Thus all surfaces of revolution with constant curvature a? are locally
isometric to the sphere of radius 1/a. However, their global properties are
different. For example, a surface of revolution given by Equation (11-2)
with 4 > 1/a cannot be extended past the boundary |s| = (1/a) sin~! (1/aA4)
and remain a surface of revolution of curvature a2. A path around the “equa-
tor” cannot be stretched and deformed to a single point without leaving the
surface. For a sphere the equator can be so shrunk by passing it up over the
north pole. This is a topological difference between the surfaces. See Figure
4.30.

FIGURE 4.30

Case 2: K=0.

ProposITION 11.3. If M is a surface of revolution of a unit speed curve o
and M has constant curvature zero then M is either
(a) part of a circular cylinder;
(b) part of a plane; or
(c) part of a circular cone.
Furthermore, these surfaces are locally isometric. (See Figures 4.31,
4.32 and 4.33.)
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FIGURE 4.31 FIGURE 4.32 FIGURE 4.33

Proof: Equation (11-1) becomes r’’ = 0 so that there are constants a, b € R
such that r = as + b. Since z' = +./1 — (r')?, z(s) = +A/] — a®*s+d.
Thus a(s) is a straight line and is given by

(11-3) o(s) = (as + b, cs + d), where a> + ¢2 = 1.

If @ = 0 then M is a part of a circular cylinder, which is possibility (a).
If ¢ = 0, M is part of a plane (possibility (b)). If ac = 0 then e is parallel to
Weither the r nor z axes and M is part of a circular cone (possibility (c)).

Again these surfaces are quite different extrinsically but not intrinsically.
As before we could carefully describe a change of coordinates that would
indicate the local intrinsic geometry is like that of the plane. However, the
formulas become quite messy in the case of the cones, and we shall be content
with the following heuristic description. If M is a piece of a cylinder or a
cone, make a slit along one of the meridians. The surface may now be un-
rolled flat and laid on the plane. The placement gives rise to a coordinate
patch for M with respect to which the metric matrix is the identity matrix.
This is true because the process of unrolling the surface did not cause any
distortions and hence did not change the length of any curve. |

Case 3: K= —a? a > 0.

Equation (11-1) becomes r’’ — a?r = 0. This has the general solution
(see Problem 11.5)
(11-4) r(s) = ¢, cosh (as) + c, sinh (as).

This may be rewritten for some real numbers B, b or C, c as

B cosh (as + b) ife, > ¢,
(11-5) r(s) =49 Ae* ife,=c¢, =4
Csinh (as + ¢) if ¢, < e,
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By choosing the point from which arc length is measured we may force b = 0
and ¢ = 0 in the above. Thus we get three basic kinds of surfaces.

r(s) = Ae*
(11-6) { ;
2(s) = ifo JT = a?A%e™ dt + D
r(s) = B cosh (as)
(11-7) , _
‘[ z(s) = i.l.o ~/1 — a*B?sinh? (ar) dt + D
r(s) = C sinh (as)
(11-8) s
2(s) = ijo T — a?C% cosh? (ar) dt + D

In order that z be defined we must have s < (1/a) In (1/aA4) in Equation
(11-6). By use of the substitution ade* = sin ¢, the integral describing z(s)
may be computed. See Problem 11.4. Geometrically ¢ measures the angle
between the tangent to & and the z-axis. This curve is called a tractrix or
drag curve. The terminology drag curve comes from the geometric description
of the curve: walk along the z-axis dragging an object by a rope of length
1/a, starting at the origin with the object at a distance 1/a out the r-axis. The
resulting path of the object is the tractrix. The surface of revolution generated
by the tractrix is called the pseudo-sphere of radius 1/a. The limiting tangent
plane as s — (1/a) In (1/aA) is perpendicular to the axis of revolution. See
Figure 4.34. The pseudo-sphere was one of the first models of non-Euclidean
geometry and was discovered by E. Beltrami (1835-1900) in 1868.

FIGURE 4.34

In Equation (11-7) we must have |s| < (I/a) sinh~! (1/aB). The result-
ing surface is pictured in Figure 4.35. The limiting tangent planes as
s — +(1/a) sinh~! (1/aB) are perpendicular to the axis.

In Equation (11-8) we must have 0 < aC < 1 and then

1

1 1
0 <s<—a—cosh (E)
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The

resulting surface is pictured in Figure 4.36. Again the limiting tangent

planes are perpendicular to the axis.

In analogy with the case of positive curvature, the surfaces of constant

curvature —a? << 0 are locally isometric to the pseudo-sphere of radius 1/a.
This result will follow from a more general result to be proved in Section 6-2.

11.1.

11.2.

11.3.

114.

FIGURE 4.35

FIGURE 4.36

PROBLEMS

Let M be the surface of revolution generated by the unit speed curve
a(s) = (r(s), z(s)) and show that K= —r"/r. (Hint: First show
K = z(z''" — r’z")/z and then use the relationship obtained by dif-
ferentiating {a’, @’> = 1.)

In Case 1, if 4 > 1/a, verify that as s — +(1/a)sin"! (1/a4) the
tangent to & becomes perpendicular to the z-axis. Use this to conclude
that the limiting tangent planes are perpendicular to the axis as
claimed.

In Case 1, if A < 1/a, determine the angle between &’ and the z-axis
as s — +xn/2a.

Use the trigonometric substitution ade” =sin¢ to compute
s /T — a*A%e** dt and then parametrize the tractrix as a function

of ¢.
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11.5.

11.6.
11.7.

11.8.

11.9.

Local Surface Theory Chap. 4

Verify that if K = —a? then Equation (11-4) does give the general
solution to K = —r"/r. (You must be able to solve linear differential
equations with constant coefficients.)

Derive the basic forms of Equation (11-5) from Equation (11-4).

Verify that the limiting tangent planes for Case 3 behave as described.
For the surface given by Equation (11-8) determine the angle between
the meridian and the axis of revolution at the sharp point.

Prove that the surface x(s, 1) = (cos s, 2 sin s, #) has constant Gaussian
curvature but is not a surface of revolution. Hence the results of this
section do not give all surfaces of constant curvature.

Compute the area of each of the surfaces in Cases 1 and 3 in terms of
the arbitrary constants.



5

Global Theory
of Space Curves

In this chapter we will prove analogues of the Rotation Index Theorem
(Theorem 2.9 of Chapter 3) for space curves. For a quick overview you should
reread Section 3-6 at this time. The notion of the tangent spherical image of a
curve (Problems 4.15-4.21 of Chapter 2) is critical for this discussion because
the total curvature of a curve is the length of the tangent spherical image of
that curve. Anyone wishing to delve further into the material covered in this
chapter should see Fenchel [1951], who gives a good survey of related
questions.

5-1. FENCHEL'S THEOREM
DEFINITION. The fotal curvature of a regular curve a: [0, L] — R? is Lf K ds.
Since ¥ = |T’|, the total curvature of & is the length of the tangent
spherical image
T:[0,L] — S$* ={(x,5,2) € R®|x* + y* + 2> =1} ={a € R*||a| = 1}.

Thus it is not surprising that we need some results about sphere curves in
order to prove Fenchel’s Theorem on the total curvature of a space curve.

161
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DerINITION. If A, B € S2, then AB denotes the distance from 4 to B along
any shortest geodesic (i.e., along a great circle through 4 and B).

DEFRINITION. The open hemisphere with pole N is {X € SZIJV-X’ < m/2}. If §?
is viewed as the set of unit vectors, the open hemisphere with pole n is

{x e 2|, x> >0} ={x e S0 L (0, x) <l2z—}

where <((a, b) denotes the (positive) angle between a and b.

The closed hemisphere with pole N is {X € S?| NX < m/2}. In vector
notation, the closed hemisphere with pole n is

{x € S, x) >0} ={x € SZIOg{(n,x)g%}-

DerINITION. If 4, B € §?, then A and B are antipodal points if AB=z.In
vector notation, a and b are antipodal if a = —b. (See Figure 5.1.)

B FIGURE 5.1

LemMa 1.1. If & is a regular closed curve, then its tangent spherical image
does not lie in any open hemisphere.

Proof: We use vector notation and give a proof by contradiction. Suppose
that the tangent spherical image lies in the open hemisphere with pole a,
so that {a, T) > 0. Then

L L L L
o< | <a,T>ds=j (a,ayds= [ (a,@y ds=(a,ay[ =0
0 0 0 0
(since & is closed), which is impossible. |}

CoROLLARY 1.2. The tangent spherical image of a regular closed curve does
not lie in any closed hemisphere unless it lies in the great circle that
bounds the hemisphere.

Proof: Problem1.1. |

Note that the next lemma does not require that the curve y be regular.
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LemMma 1.3. Let () be a closed C* curve on the unit sphere S2. The image
€ of y is contained in an open hemisphere if either of the following two
conditions hold:

(a) the length / of y is less than 27x; or
(b) / =2z but the image of ¥ is not the union of two great semicircles.

Proof:
(a) Assume / < 27m. Let 4 and B be two points of € which divide y into

two segments of equal length //2. We say 4 and B bisect y. AB< /2 <z since
geodesics (great circles) give the shortest distance between points. Thus A
and B are not antipodal and there is a unique great circle through 4 and B
(formed by the intersection of the sphere with the plane determined by 4,
B, and the center of the sphere). The shorter of the two segments of this circle

has length AB. Let M be the midpoint of this segment. We will show that €
lies in the open hemisphere with pole M. This means we must show that if

X is a point on € then XM < /2.
Since the spherical distance from X to M is a continuous function and

since AM < 7/2, if there is a point ¥ on @ whose distance from M is not less
than /2, the Intermediate Value Theorem of calculus (see Fulks [1969])

implies that for each real number r with AM < r < YM there is a point
Y, € @ with Y,/—A} = r. In the next paragraph we show that if C € € with
CM < 7/2 then, in fact, M < /4. This says that there is no Y, € € with
17,—1&= r if //4 <r < m/2. This contradiction of the Intermediate Value
Theorem implies there is no ¥ € € with YM > z/2.

Suppose C € € with CM < n/2. Let D € §?* be chosen so that C, M,
D all lie on the same great circle, D % C, and CM = MD. (Sec F)gure 5.2)
D is called the reﬂectton of C through M. Note that CD = CM + MD since
CM < n/2 and that AC = BD since the spherical triangles AMC and BMD
are congruent. Hence 2CM = CM + MD = CD < CB + BD = CB + AC

D

FIGURE 5.2 A
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< distance along y from 4 to C to B=[/2. Thus cM < I/4. Hence there is

no Y on the image of y with YM > m/2 and (a) is proved.

(b) Now assume that / = 2z. This time we must choose 4 and B more
carefully. We first show that there is no pair of antipodal points on €. If P
and Q are on € and are antipodal, then P and Q divide 7y into two segments

whose lengths are at least 7 since I;é = z. Since / = 2z, each of these seg-
ments must have length 7 and must give a curve of shortest length joining
P to Q, and so must be a geodesic by Theorem 5.9 of Chapter 4, i.e., a great
semicircle. But this means that € is a union of two great semicircles, which
contradicts the hypothesis. Thus there are no antipodal points on @.

Next we show that there is a pair of points 4, B that bisect ¥ such that
AF + FB < nforall F € e. Suppose P, Q bisect y. If P, Q have the desired
property (i.e., if we can take 4 = P and B = Q) we are done. Otherwise there
is a point X on € with PX + f@ = 7. Since the distance along y from P
to X to Q is also m, each of the two segments PX and XQ are great circle
segments (geodesics). They are not part of the same great circle since P and
Q are not antipodal. (See Figure 5.3.)

FIGURE 5.3

Consider the great circle segment XP. We know that it does not continue
along @ past X. However, it may continue along € past P. Let C be the point
of the @ beyond which this great circle segment does not continue in €. Like-

wise the great circle segment X'Q extends to a point D. CX < mand XD < n.
Let Y be chosen so that X'and Y bisect y. If X'and Y serve as 4 and B, we are

done. Otherwise there is a point R on € with XR + RY = n. Then the seg-
ment of ¥ from X to Rto Yis the union of two great circle segments as before.
Thus R = C or R = D. Without the loss of generality we may assume that
R = D. The great circle segment D to Y in € extends to a point E.

If E = C, then v is a spherical triangle of perimeter 2z. Then the solid
angle at the center O of the sphere has 2z as the sum of its face angles (see
Figure 5.4). Hence it is flat and v is a great circle, a contradiction. Thus
E=C.
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FIGURE 5.4

Let A be a point on @ between C and E and let B be chosen so that A4,
B bisect y. Note that B must be between D and X. Then no matter what point
F on € is chosen, the segment of ¥ from A to Fto B has either D and Yor C
and X on it. Thus this segment is not the union of just two great circle seg-

ments. Hence AF 4 FB < 7 and we have the desired 4 and B.
A and B are not antipodal. Let M be the midpoint of the unique great

circle segment of length AB < 7 joining A4 to B. If Cis on € with CM < /2,
let D be its reflection through M as before. 2CM = CM + MD = €D
_<_C/'l\3+l/i’\D= C/'B+A/a<n by choice of 4 and B. Thus @<n/2and
there are no points on € whose distance from M is 7/2. Since AC < n/2, all

points X € € satisfy XM < m/2, or else the Intermediate Value Theorem
implies there are points on € at a distance n/2 from M. Hence € lies in the
open hemisphere with M as pole. ||

THEOREM 1.4 (Fenchel, 1929). The total curvature of a closed space curve e
is at least 2z. It equals 2z if and only if & is a plane convex curve.

Proof: Let y be the tangent spherical image of a. Its length is [ & ds. If this
is less than 2z, Lemma 1.3 shows that the image of ¥ lies in an open hemi-
sphere, which contradicts Lemma 1.1. Thus [;* x ds > 27.

Now assume that [;" ¥ ds = 2z. Then v is the union of two great semi-
circles by Lemma 1.3. If y is not a single great circle, the image of y lies in a
closed hemisphere but not entirely in the boundary, which contradicts Corol-
lary 1.2. Thus v is a single great circle. By Problem 4.20 of Chapter 2, & is a
plane curve. [ x ds measures the length of the parametrized curve y and
counts those segments traversed more than once with appropriate (positive)
multiplicity. Since the image set of y is a great circle whose length is 2z, no
segment of this circle can be traversed twice, or else [;" & ds > 2z. If the plane
curvature k = df/ds of o takes on both positive and negative values, then
some segment of the tangent spherical image y is traversed at least twice, a
contradiction. Hence k does not change sign and, by Theorem 3.2 of Chapter
3, wis convex. |}
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Fenchel’s Theorem is also true for piecewise smooth curves provided that
the total curvature is defined as _[ Kk ds + > Af,, where the Af, are the (posi-
tive) jump angles of T at the junction points. The tangent spherical image 7y
of such a curve consists of a collection of disconnected segments. These may
be joined by great circle segments of lengths A6, to get B, whose length is the
total curvature. Lemma 1.1 still holds with virtually the same proof. Lemma
1.3 holds for piecewise smooth curves, in particular §. (A piecewise smooth
curve may be parametrized to be C! but need not be regular or unit speed.) It
is possible to have piecewise smooth convex curves, although we have not
made a formal definition. The proof of Theorem 1.4 can be modified to
handle this case. We have not done this because there is a tendency to get
lost in the technicalities.

The proof of Fenchel’s Theorem that we have given is due to B. Segre
[1934] and to H. Rutishauser and H. Samelson [1948]. A proof due to K. Voss
[1955] may be found in Laugwitz [1965]. This proof involves surrounding the
curve with a tubular surface and relating [ x ds to [[,., K d4, where K is the
Gaussian curvature of the surface. Both Fary [1949] and Milnor [1950] gave
proofs of Fenchel’s Theorem while studying the total curvature of knots.
In Problem 2.3 you will prove the easy part (| x ds > 2x) by using Crofton’s
Formula.

Fenchel’s Theorem is also true for curves in R”, as has been proved by
Borsuk [1948]. In fact, it was Borsuk who first conjectured the Fary-Milnor
Theorem.

ExAMPLE 1.5. We verify Fenchel’s Theorem in the special case where € is the
ellipse a(t) = (2 cos ¢, sin t, 0) for 0 << ¢ <C 2m. If s is arc length on €,

f xds = JN2 *(s(0)) S ds Sdr =4 f " *(s(0) & ds S ar

0
because of the symmetry of the ellipse. Now

ds = |&| = /4sin*t + cos?t.
By the results of Section 2-6, k(s(?)) = 2/./4sin*¢t + cos® ¢ . Hence

™ n/2 n/2
_ 2dt _ 2secttdt
_Iexds_4_£ 4sin2t+coszt‘4L 1 + 4tan?¢

Let u = 2 tan ¢ so that du = 2 sec? t dt.

_ du 1
Lkds;4£ TT & =4tan ' u

Note that € is plane and convex.
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PROBLEMS

*1.1. Prove Corollary 1.2.

1.2. Let a(s) be a closed space curve. Suppose 0 << ¥ << 1/R for some real
number R > 0. Prove that the length of & is at least 2z R.

1.3. Compute the tangent spherical image for the ellipse in Example 1.5.
What does the proof of Fenchel’s Theorem say about this image ?

1.4. Consider the piecewise regular plane nonconvex curve e in Figure 5.5
made up of three circular segments of radius 2. Compute the total
curvature of a.

(0, v'3)

FIGURE55 (—1,0) (1,0

5-2. THE FARY-MILNOR THEOREM

Suppose that @ is an oriented great circle on S%. Then there is a unique
point W € S? associated with @, namely the pole of the hemisphere to the
left as @ is traversed. (See Figure 5.6.) Conversely every point of S? is as-
sociated with some oriented great circle. Thus the set of oriented great circles
is in one-to-one correspondence with the points of S2. The orientation is what
allows this to be one-to-one—it gives a well defined choice of a pole (from two
possibilities) for each oriented great circle. If the north pole corresponds to
the equator with one orientation, the south pole corresponds to the equator
with the opposite orientation.

FIGURE 5.6

DeriNITION. The measure of a set of oriented great circles (counted with
multiplicity) is the area of the corresponding subset of S? (counted with
multiplicity).
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If W e S?, let W+ be the associated great circle. For a regular curve y
with image set ©, let n, (W) be the number of points in € N W+ (which might
be infinite). Note that n,(W) does not depend upon the parametrization of 7.
We shall usually omit the subscript ¥ in n,(W) if no confusion will result.

THEOREM 2.1 (Crofton’s Formula). Let C be the image of a regular curve y(¢)
on S? of length /. The measure of the set of oriented great circles that
intersect G, counted with multiplicity, is 4/.

Proof: Since neither n(W) nor / depends on the parametrization, we may
assume that y is unit speed. Let S = {W € S?| W+ N € = @}. The measure
of the set of oriented great circles that intersect € is the area of §; that is,
|[s 44. We wish to count the circles with multiplicity—if € N W+ has three
points, we want to count W+ three times. This measuring is done by the
integral [[; n(W) dA. We are to prove [[; n(W) dA = 4l.

Let a(t) = y(¢), b(t) = dy/dt and ¢(#) = a X b. Then analogously to the
Frenet-Serret equations, for some function A(¢) we have the equations

a’' = b
b= —a + A(He
¢ = — A@®)b.

(See Problem 2.1.) a, b, and ¢ give an orthonormal basis of R* for each
t € [0, 7]. If W+ meets € at y(z,), then the unit vector w which represents the
pole of W+ is orthogonal to y(¢t,) = a(t,)- Hence

w = —sin ¢ b(t,) + cos ¢ ¢(z,),
where ¢ is the angle between the tangent vector b of y and the tangent vector
of Wi at y(t,).
Define a map w: [0, /) x [0, 27) — S? by
w(t, ¢) = —sin @ b(z) + cos ¢ c(2).
The image of w is S. This makes S a parametrized surface. Despite the fact

that w might not be regular (i.e., w; X w, might be zero sometimes), the area
of the parametrized surface S is given by

)

just as for a regular surface (Equation (8-1) of Chapter 4). However, this is
not the area of the set S, but rather the area counted with multiplicity (w need
not be one-to-one either). Now, if Y e S, precisely n(Y) points in [0, /)
X [0, 27) are mapped to Y. Thus

ffyes n(Y)dA = J:)z" LI %—‘;V X (%V‘dt de.

dw _ dw
—a—txwldtdqh



Sec. 5-2 The Fary-Milnor Theorem 169

This last equality can also be derived from Jacobi’s rule for change of variables
(Fulks [1969]). By Problem 2.2 we have

J .
%xg—;v‘zmnqﬂ.
Thus
" 2r pl r2n
J'l‘sn(Y)dA=J.0 [ Isin@ldedp=1]"|sing|dg

rn/2
= 41J sinddp = 4L ||
0
CoROLLARY 2.2. Crofton’s Formula holds for piecewise smooth curves.
Proof: Use Theorem 2.1 on each segment of the curve and add. |}

DERINITION. D? = {(x, y) € R?*|x? + y* < 1} is the closed unit disk. S* =
{(x,y) € R*|x* + y* = 1} is the unit circle.

DerFINITION. A simple closed curve e is unknotted if there is a one-to-one con-
tinuous function g: D? — R? that sends S! onto the image of a. Other-
wise o is knotted.

THEOREM 2.3 (Fary-Milnor). If a is a simple knotted regular curve, then the
total curvature of a is at least 4z.

Proof: We shall prove the contrapositive: [ k ds < 4z implies e is unknotted.
Assume [xds < 4m. Let y be the tangent spherical image of a. Then
}[[¢s n(W)dA = | = [k ds < 4m. Then for some point ¥ € §%, n(Y) < 4,
otherwise  [[n(W) dA > }4-4n = 4z. Let y be the unit vector representing
Y and set f(s) = <y, &(s)). Then f'(s) =<y, T(s)) = <y, ¥(s)> and f"(s) = 0
if and only if Y- intersects © at y(s). Thus f(s) has exactly n(Y) < 4 critical
points. There is an absolute maximum, an absolute minimum, and possibly
an inflection point (if n(Y) = 3). There are no relative extrema other than
the absolute extrema.

We may assume that coordinates for R® have been chosen so that
y = (0,0, 1). If M and m are the maximum and minimum values of f and
m < r < M, the plane z = r intersects & in exactly two points, or else the
Mean Value Theorem of calculus would imply some more relative extrema.
Join these two points with a straight line segment. The totality of these seg-
ments gives the image of a one-to-one continuous function g: D?> — R?
making a unknotted. See Figure 5.7. ||

The above proof is essentially that outlined by Fenchel [1951]. The
theorem holds for piecewise regular curves, but this proof does not work.
(Why ?) Milnor [1950] proved the theorem by approximating the curve with
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=\

i

FIGURE 5.7

piecewise regular curves made up of straight segments. He used very geometric
methods to compute the total curvature and then took the necessary limits.
Fary [1949] also approximated a by piecewise linear curves. One important
step in his proof was the result that the total curvature of e is the average of
the total curvature of the projections of a into the planes through a fixed
point. Voss [1955] also outlines a proof.

PROBLEMS

*2.1. Prove thata’ = b, b’ = —a + Ac, ¢’ = — b, as claimed in the proof
of Theorem 2.1.

*2,2, Prove that |(dw/dr) x (dw/d¢)| = |sin @| as claimed in the proof of
Theorem 2.1.

2.3. Use Crofton’s Formula to prove that | x ds > 2z for all closed regular
curves.

2.4. Leta(s) be the curve on S given by a(s) = (cos s, sin s, 0), 0 < s < 27.
Verify that Crofton’s Formula is true for this curve.

5-3. TOTAL TORSION

After considering the total curvature of a space curve it would seem
natural to investigate the integral [ 7 ds. Results here are not as strong as for
J' x ds. In fact, if r € R, there is a closed curve & with jr ds = r. To see this,
one need consider curves made up of a circular helix with the ends joined, as
in Figure 5.8. By varying the pitch, the number of coils, and the right- or
left-handedness of the helix, any desired total torsion may be found.

Despite this, there are some results on total torsion worth studying.
Recall that p = 1/k is the radius of curvature and that & = 1/7 is the radius
of torsion of the curve a.

THeOREM 3.1. The total torsion, j‘r ds, of a closed unit speed curve a(s) on
S? is zero.
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Proof: a(s) = AT + uN -+ vB. Since a is a unit vector,

A=<a,T)=Kea,a) = 0.
Thus ¢ =uN +vB. T=a'= u'N+ u(—«T + 7B) + v'B + v(—N).
Thus T = —uxT + (4’ — )N + (ut +v)B. Hence 1= —ux or
u=—l/k=—p, and g’ — v =0. Since (&, > =1, > +v>* =1 and

V=41 —u?*=+./1— pi

Hence —p' = +1./1 — p? and 7= 4p'//1 — p? (when p#1). If
p <1 always so that p’/./1 — p? always makes sense, and if a constant
choice of sign in 7 = 4 p’/o/T — p? could be made, then T = +p'//T— p*
everywhere. In this case

L L ’ L
J; Tds = i-[; A/11)7_—1)“1& = 4sin~! p(s) ) =
since p(L) = p(0). However, this may not be true. In fact, we shall see below
that p = 1 whenever the geodesic curvature of & is zero, and the choice of
sign depends on the sign of the geodesic curvature.
We have a” = x,n + x,S where S = n X T. If we choose the inward
pointing normal to S? as n, thenn = —a and k, = +1.

k,=<{S,a">=m@xTa>=—laxT,T)
= —(a, T X kN> = —r{a, B.

On the other hand, (&, B> = —p’c so that x, = kp'c or T = kp'[k, if
7#0. Since k> =«,> + k> =1+ k,%, we have k, = ++/k* — 1 and
Ke/K = +./1 — p2. Thus T =kp'[k, = p'[(K,/K) = £p’[/1 — p* and the
sign -+ is that of x,. Note also that p = 1 if and only if ¥ = 1, which is true
if and only if ¥, = 0. Thus 7 = 4 p’/o/1 — p? whenever k, # 0 and the sign
is that of «,.

To simplify the proof we shall assume there are a finite number of points
0=1s, <s; <...<s,=L where k, is zero and such that on (s;_,, s,) k, is
either strictly positive, strictly negative, or identically zero. (This finiteness
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need not be true. In order to handle the general situation one needs some
topology and a more sophisticated concept of integration. However, the
basic idea is the same.)

[y Tds =3 [ 7ds Ateachs, k, is zero, ¥ = 1 and thus p(s;) = 1.
If , > 0 on (s,_;,s), then 7= p’/\/1 — p? and [ T ds is the improper

integral
R S N _(m _ =
J:H T—p ds = sin~! (p(s)) = (7 2) = 0.

Likewise if x, < 0 on (s;_y, s,), then [ 7ds=0. If x, =0 on (s, 5,)
then x = 1 on (s;_,, ;). Problem 5.3 of Chapter 2 implies that this segment of
a is part of a circle and hence is a plane curve. Thus 7 = 0 on [s,_;, ;] and
[ 7ds = 0. Therefore [ 7 ds=0. |I

-1

51

$1-1

W. Scherrer [1940] has proved the converse of this theorem: if M is a
surface in R? such that [ 7 ds = 0 for all closed curves in M, then M is part of
a plane or part of a sphere. B. Segre [1947b] has studied the total absolute
torsion [|7|ds and has obtained some results on lower bounds on the
integral.

PROBLEM

3.1. Prove that [ (z/x) ds = 0 for any closed unit speed sphere curve. (This
result and its converse is due to B. Segre [1947a].)



6

Global Theory
of Surfaces

After the brief hiatus of Chapter 5 we return once again to surfaces. We
now study results about surfaces which are of a global nature—that is, they
do not just depend on the behavior of a surface in a neighborhood of a point
but rather on the surface as a whole. These results are very much in the spirit
of modern research in differential geometry. We get quite unexpected rela-
tionships between quantities that seem totally different (e.g., Euler char-
acteristic and total curvature), especially mixing results of a topological nature
with those of a geometric one. One word of caution: the concepts in this
chapter are more difficult than those of Chapter 4 because we are dealing
with global concepts. Note how much more difficult Chapters 3 and 5 were
than was Chapter 2.

In the first section we define basic topological concepts and prove some
simple results to give the reader the flavor of the kinds of theorems that we
are aiming at. Sections 6-2 and 6-3 are rather technical, giving some results
(geodesic coordinate patches) and introducing concepts (orientability and
angular variation) which will be needed to prove the Gauss-Bonnet Formula
in Section 6-4. This formula is truly beautiful because it relates the total
geodesic curvature of a curve to the sum of the jump angles of the curve and
the total Gaussian curvature of the area it encloses—seemingly unrelated
things! The last three sections prove corollaries of the Gauss-Bonnet Formula,

173
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all of which are important theorems in global differential geometry (the
Gauss-Bonnet Theorem, Hadamard’s Theorem, Jacobi’s Theorem, and the
Poincaré-Brouwer Theorem). It is startling relationships of this sort between
unexpectedly related quantities like these which give global differential
geometry its fascination.

6-1. SIMPLE CURVATURE RESULTS

In this section we will be concerned with some simple results relating the
curvature of the surface to its “topology.” The first theorem (Theorem 1.2)
shows how a topological assumption (compactness) yields a geometric con-
clusion (that the curvature must be positive at some point). The second
theorem (Theorem 1.3) shows how a geometric assumption (all points are
umbilics) can yield an extremely strong conclusion (M is a sphere).

DEerINITION. If P € R3, then | P| denotes the distance from P to the origin
O of R®. (This agrees with the vector notation: if p is the vector from O
to P, |P|=1pl|)

DEFINITION. Let B, = {P € R?*||P| < r}. M < R? is bounded if there is an

r > 0 such that M = B,. M is closed if for each sequence {P,} such that

P, € M and lim P, = P exists (in R?), P is actually in M.

The ball B ={P € R*||P| < 1} is bounded but not closed. The (x, y)
plane in R3 is closed but not bounded. Observe that if M is bounded, then (1)
there is a minimum r such that M < B,, and (2) if {P,} is a sequence in M,
then {P,} must contain a subsequence which converges in R3.

DerpNITION. If M < R3 is closed and bounded, then M is compact.

LemMA 1.1, Let M be a compact surface in R? and r the minimum number
such that M < B,. Then there is a point P € M with |P|=r, ie.,
M N S, # o, where S, is the sphere of radius r.

Proof: Let r,=r — 1/n for n> 0. By the choice of r we have M — B, # &.
Let P, € M — B, . Since M is bounded and P, € M, there is a subsequence
(which we also name P,) which converges to P e R?. Since M is closed,
P € M. Clearly, lim | P,| = rso that |P|=r. |

THEOREM 1.2. Let M be a compact surface in R3. Then there is a point P € M
such that the Gaussian curvature at P is positive.

Proof: Let r be the minimum number such that M < B,. By Lemma 1.1 we
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know that the sphere S, of radius r and center O satisfies S, " M = &. We
will show that M has positive curvature at all points of S, N M. Let
P e S N M. Mand S, have the same unit normal n at P, or else there is a
point of M outside S,. (This argument is similar to that about parallel lines
in the proof of Proposition 3.2 of Chapter 3.) Hence M and S, have the same
tangent plane at P also. Let X be tangent to both M and S, at P. Let IT be the
plane spanned by n and X. The normal curvature x, of M in the direction X
is the curvature (with respect to m) of the curve IT N M. This has the same
sign as the normal curvature of S, at P, which is +1/r. Clearly |k, | > 1/r. If
K., K, are the principal curvatures of M at P we have K = x,x, > 1/r? > 0.
See Figure 6.1. |1

NnM
nns,
FIGURE 6.1

This theorem is false without the assumption that M is compact. If
M = R? < R?, then the Gaussian curvature is zero everywhere. If M is the
hyperboloid of revolution x* + y* — 22 =1 (Example 2.8 of Chapter 4),
then the Gaussian curvature is negative everywhere so that we cannot even
hope for K = 0 at some point.

THEOREM 1.3 (Meusnier, 1785). Let M be a compact connected surface all of
whose points are umbilics. Then M is a sphere.

Proof: We first prove that the curvature is constant in any coordinate patch.
Let x: U — R?® be a coordinate patch of M. Then since every direction is

K 0
0' ) Weingarten’s equations ((7-6) of
K;

Chapter 4) are thus n, = —k,x,. Hence n,; = —(dx,/du))x, — K,X,; and
0=n,, —n,, = (dx,/du")x, — (dK,/du?)x;. Since X, and x, are independent,
0x,/0u' = 0 and k, is constant. Hence K = x,k, is constant.

In overlapping patches K must have the same (constant) value. Thus K
is constant on M. By Theorem 1.2, K > 0 and x, # 0. In a patch x we have
n=[n du' = —k, [ X,du' = —k,(x — c). Take the length of each side
of this equation to obtain 1 = K{Xx — ¢, x — ¢) so that the patch is con-

principal at an umbilic, (L!;) = (
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tained in a sphere of radius 1/,/K centered at ¢. An overlapping patch must
be contained in a sphere of radius 1/./K and centered at some point d. The
overlap of the two patches is a simple surface and lies in both spheres. Hence
¢ = d. Thus M is contained in a sphere. Using compactness, we see that M
is the entire sphere. |

PROBLEMS

1.1. If M is a surface in R? each of whose points is an umbilic, prove that
each point of M has a coordinate patch whose image is either an open
subset of a plane or an open subset of a sphere. (Hint: Examine the proof
of Theorem 1.3 carefully.) What invariant differentiates between these
two cases ?

1.2. Parametrize the level surface x2 - y? — z2 =1 as a surface of revolu-
tion. Compute its Gaussian curvature and show that it is negative at
each point.

6—2. GEODESIC COORDINATE PATCHES

In this section we will show that any point of a surface M is contained
in a special kind of coordinate patch, called a geodesic coordinate patch.
This kind of patch is very useful for the theoretical computations involved in
proving the Gauss-Bonnet Theorem. (See Sections 6-4 and 6-5.)

DerINITION. If x: U — R? is a coordinate patch such that g,, =1 and
g2 =0 (hence g,; =0) in U, then x is called a geodesic coordinate
patch. If, in addition, there is a curve ¥ on M defined on [a, b] such that
Y([a, b]) = x(U) and such that the u2-curve through a point of the image
of ¥ is y itself, then x is called a geodesic coordinate patch along ¥y.

In Problem 5.5 of Chapter 4 we saw that the u!-curves in a geodesic
coordinate patch are geodesics. We will obtain a geodesic coordinate patch
by starting with any nonclosed curve a and constructing geodesics perpendi-
cular to a which fill out a neighborhood. (See Figure 6.2.) This will mean that
the u*-curves are geodesics and the u2-curve through any point of e is e.

ProrosiTioN 2.1. Let M be a surface and let a: [a, b] — M be a simple
regular curve which is not closed. Then there is a geodesic coordinate
patch x: U — R? of M along a.

Proof: We may assume that e is defined on (c,d) with c <a<b <d.
Choose e, f € Rsothatc < e < a <b < f < d. For each ¢, let X(t) = —S,
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FIGURE 6.2

where S is the intrinsic normal n X é&/|a | and n is a continuous choice of a
unit normal to M along a. (Such a choice of n can be made because a is not
closed.) For each ¢ € [e, f] let a,r) be the unique geodesic satisfying
a,(0) = a(t) and (da,/dr)(0) = X(¢). Let x(r, t) = a(r). x is of class C* because
of the smooth dependence of the solution of differential equations upon a
smoothly varying parameter ¢, (Recall that a geodesic satisfies a differential
equation: Equation (5-1) of Chapter 4.) Because [e, f] is a closed interval,
there is a § > 0 such that x is one-to-one on [—4, 4] X [e, f].

x,(0, 1) = X(@), x,(0, t) = dav/dt.

X; X X,(0,1) = 0 since X and da/dt are orthogonal and nonzero. Thus

there is an € > 0 with ¢ <C § such that x; X x, 7 0 on [—¢, €] X [e, f].

Then x: (—e, €) X (e, f) — R?is a C° coordinate patch containing a([a, b]).
g1 = 1 since x; = da,/0r and a,(r) is a geodesic with r arc length.

912 — 9 (xp 32 = G X2+ G Xad

or
2-1) % = Xy, X3 + Xy X2,

Now x,, equals da,/dr?, which is normal to M since a, is a geodesic. Thus
{Xy1» X5» = 0. Since {x;,x,> =1, we have 2{X;,,X,> = 0 and hence, by
Equation (2-1), dg,,/dr = 0. This means that g, , is constant with respect to
r so that g,,(r,t) = g,,(0,t) = (&, X> = 0. Therefore g,, =0 and x is a
geodesic coordinate patch (with #' = r and u? = ). The u?-curve through
a(a) = &,(0) = x(0, @) is X(0, a + £) = &,,0) = a(a + 1), ie.,iso. 1

We note that the first fundamental form in the coordinate patch has as
. . {1 0
its matrix (0 hz)’ where 0 < h = |x,|.

In the special case where a in Proposition 2.1 is a (unit speed) geodes-

ic, the function A = |x,| has two important properties. In the first place,
A0, u?) = |x,(0, u?)| = |a’(u?)| = 1. Secondly, since o is a geodesic,
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X,,(0, u*) = o "(1?) is normal to the surface. Thus

2
0‘521) = %<X2, X2> - 2<x21: x2> = 2<X12, X2>

= 2(61142<X1: X,) — <Xy, x22>) = — 22Xy, X2

Hence at u! = 0 we have (9(42)/0u*)(0, u*) = 0 and hence (d/4/du')(0, u?) = 0.

These results, that A0, u?) = 1 and (0h/du?)(0, u?) = 0 if & is a geodesic,
are very useful in proving the next theorem, which gives a nice application of
geodesic coordinate patches.

THEOREM 2.2. Any two surfaces of the same constant Gaussian curvature
K = ¢ are locally isometric.

Proof: Suppose M and N bothsatisfy K=c.LetP € M,X e T,M,Q € N,

and Y € ToM, where X and Y are unit vectors. Let a: (—#, n) — M and

v:(—n,n) — N be the unique geodesics such that a(0) = P, a’(0) = X,

v(0)= Q, and ¢'(0)=Y. Construct geodesic coordinate patches

x:(—e€, € X (—n,n) — Mand y:(—e,€) X (—n,n) — N along & and ¥y

respectively, denoting the parameter in (—¢, €) by ¢ and that in (—#, 1) by s.
The metric matrices for x and y are

_ 1 0) d () — | 0)
(&) = (0 o2 an (hy) = (0 12 ’
where e and f satisfy
e(0,s) = £(0,s) = 1 and g_f(o, ) =gft—’(o, s) = 0.

According to Problem 2.3, the Gaussian curvature of x and y are given
by K = (—d%)/dt*)/e and K = (—0?%f/dt?)/f, respectively. Hence, for each
fixed value of s, e and f both solve the initial value problem

it = —cu,
u0) =1, u(0) = 0.

By Picard’s Theorem, Equation (2-2) has a unique solution. In fact, it is

given by

22

cos(n/ ¢ 1) ife>0
2-3) u(t) = 1 ife=0
cosh (./—ct) ifec <O.

In particular, e = f and there exist coordinate patches x: W — M,y: U — N
such that the metric matrices are the same. Hence, M and N are locally iso-
metric by Proposition 10.5 of Chapter 4. ||
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It should be noted that the above proof gives more than is required. In
fact, it shows that for surfaces of the same constant curvature if there are
given any two points P and Q in M and N and geodesics a and y through
P and Q, then there is a local isometry f of a neighborhood W’ of P with a
neighborhood UV’ of Q such that f(P)= Q and ¥ = fo &. In particular, if
M = N there is a local isometry mapping P to Q (a generalized “translation™)
and if P = Q there is a local isometry sending a given geodesic through P to
a second given geodesic through P (a generalized “rotation™).

ExaMmPLE 2.3. The standard parametrization of a surface of revolution is a
geodesic coordinate patch along a circle of latitude.

PROBLEMS

*2.1. Prove the assertion in Example 2.3.

2.2. Suppose the curve a used in Proposition 2.1 is a geodesic. Prove that
along this curve (g,;) = (J,)). Are the other u%-curves geodesics, or even
unit speed, in general?

1 0
*2.3. Let x be a geodesic coordinate patch with (g;;)) = (0 h’) and 4 > 0.
Show that I';,2=T,,2= h,/h, T,,' = —hh,, T',,2 = h,/h and all
other T, * are zero, where s, = dh/du'. Show that K = —h, /h.

2.4. (Hyperbolic Half Plane.) Suppose there is a simple surface x: U — R?
with

0

1

y?
Show thatI';;2 = —TI",' = —TI',,! = —T',,*> = 1/y and all other I", *
are zero. Compute K. (See the comment below.)

1
y?

U={(xy) e R?|y>0} and (g)=

0

2.5. (Poincaré Disk.) Suppose there is a simple surface x: U — R? with
U={(x,y) € R?|x* + > < 1}

and
4
_— 0
1 — x2 — 12)2
(gij) - ( ) 4
° T== =
Show that
Iy = Fp'= rzx‘ =-TI}= Y

T—x—»°
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and

2
M '=T=T2=-Ty'= l—:x;'cTyz
Compute K.

Comment: These last two exercises are a bit misleading because there is no
function x giving the desired properties. They are examples of abstract sur-
faces. Both are models of hyperbolic geometry, just as the sphere is a model
of elliptic geometry. We shall return to them below. See also Chapter 7.

6-3. ORIENTABILITY AND ANGULAR
VARIATION

Let y(t) be a piecewise regular simple closed curve in a surface M with
period L. Let Z(¢) be a continuous vector field along ¥ which is differentiable
along the regular segments of y. In general Z(0) 7= Z(L). We shall be inter-
ested in the angle between these two vectors. In the plane we measured angles
counterclockwise from the x-axis. In our more general setting we do not have
an “x-axis” to use as a reference. We must therefore find some reference
“line” from which to compute angles as well as to define angles themselves.
Given any two vectors, the cosine of the angle between them is well defined,
but the angle itself is not. (Recall the problems we had in Chapter 3 in defining
the rotation index.) We need a concept analogous to “counterclockwise” in
the plane. We will do that first by defining orientation.

DEerFINITION. A surface M is orientable if there is a continuous function
v: M — §? with y(P) normal to M at P forall P € M.

Thus for an orientable surface the Gauss map is globally defined.

ExAMPLE 3.1. S? is orientable; let v(P) be the outward pointing normal at
P. y(P) = p, where p is the vector from the origin to P.

ExampLE 3.2. The torus T2 (see Problem 1.1 of Chapter 4) is orientable; let
v(P) be the outward pointing normal at P. See Figure 6.3.

FIGURE 6.3
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ExaMPLE 3.3. The M&bius band is not orientable. See Figure 6.4 and Prob-
lem 2.5 of Chapter 4.

FIGURE 6.4

ExampLE 3.4, Recall the example of a surface mentioned between Examples
2.4 and 2.5 in Chapter 4. Let f: R®* — R be a differentiable function and
(VAYP) = (f+s f,s f=) be the gradient of f (where the derivatives are all
evaluated at P). We mentioned that M = {P € R3| f(P) =0} is a sur-
face if (V/)(P) = 0 for all P € M. M is called a level surface of f. A level
surface of f is always orientable. (Just take v(P) = V/(P)/|V/(P)|.) This
example subsumes most examples we will run into in practice. Level sur-
faces are treated in depth in Chapter 7.

The following is a very deep topological result and is beyond the scope
of this book. A recent proof may be found in Samelson [1969].

THEOREM 3.5. Every compact surface in R? is orientable.

An orientation (choice of n globally) aids in measuring angles. If X and
Y are tangent to M at P, the angle from X to Y is defined up to sign by
cos 8 = <X, Y)/|X||Y|. The sign of 8 is that of [X, Y, n]. This corresponds to
counterclockwise, or the right-hand rule. We write (X, Y) for the angle 8
from X to Y.

DEFINITION. A subset ® of a surface M is a region in M if ® is open and if
any two points of ® may be joined by a curve in Q. If ® is a region in
M, then the boundary of ®, bd &, is the set {P € M|P ¢ ® and there is
a sequence {P,} in ® with lim P, = P}. A curve ¥ bounds a region ® if the
image of ¥ is the boundary of ® and S points into ® at all points of ¥y
while —S points out, where S is the intrinsic normal of ¥.

ExaMPLE 3.6. Let M = R%. R = {(x, y, 0) € R?|x? 4 y* < 1} is a region.
The curve o(f) = (cos 8, sin 8, 0) bounds R.

ExaMmpLE 3.7. Let M be the torus T2 and let R be all the points of T2 except
those on the image of v, as in Figure 6.5. ® is a region and the boundary
of ® is the image of ¥ but ¥ does not bound ® since both S and —S
point into ®. '
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FIGURE 6.5 FIGURE 6.6

ExampLE 3.8. Let M be S? and let ® be the set pictured in Figure 6.6. & is
not a region because there is no curve in ® joining A4 to B.

Now in order to measure the total angular change of Z along y we need
to replace the x-axis. Suppose y bounds a region Q. It can be shown that
there is a region § in M containing ® and the image of ¥ and a field of unit
vectors in $, i.e., an assignment of a unit tangent vector V(P) to each point
P < §, which is differentiable. (See also Problem 3.1.)

Let a(t) = < (V(y(t)), Z(t)) with a continuous, and hence differentiable.
Once V is fixed, a is unique up to an integral multiple of 2z and so da/dt
depends only on Z.

DEerFINITION. The total angular variation of Z along y with respect to V is
ovo = [ (do/dt) dt.

In general the total angular variation depends on V. However, if the
curve ¥ can be continuously shrunk in ® to a point, we will show that dya
is independent of V. In this case we shall write da for d< (V(y(¢)), Z(2)) for
any choice of the unit vector field V. We shall now make the idea of “shrink-
ing” precise.

DEFINITION. Let ¥ be a closed curve which bounds a region ®. Let ¢ be any
closed curve of period L which is either y or lies in ®. Let 6(0) = X,.
o is null-homotopic in ® if for each s € [0, 1] there is a closed curve o,
in M such that
(@) 6,(0) = x,;
(b) 6,(¢) = o(t) and 6,(t) = X, (i.e., 6, is the constant curve);
(¢) 6t) € Rforall0 <s<landt € (0,L); and
(d) the function I": [0, L] X [0, 1] — M given by I'(¢, s) = o,(¢) is con-

tinuous.
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The o, represent the shrinking and the fourth condition is a precise state-
ment that the shrinking is continuous. Note that the third condition says
that each of the curves ¢, must lie in ® if s > 0 (except possibly for the end
point X,). The notion of homotopy is discussed more fully in Singer and
Thorpe [1967].

EXAMPLE 3.9. Let M = R? and ¥.(¢) = (cos ¢, sint), 0 < t << 2n. Then & =
{(x, y)| x* + y? < 1}. That ¥ is null-homotopic is clear from Figure 6.7.
More formally, if 6,(¢) = (1 — s)y(t) + (s, 0), then o, satisfies the defini-
tion above.

xo = (1, 0)

FIGURE 6.7

ExAMPLE 3.10. Let y(¢) be as above with ® = {(x, ¥)|0 < x* + p? < 1} and
M = R? — {(0, 0)}. Then y(¢) is not null-homotopic. This is intuitively
clear because y(¢) goes around the hole (i.e., the origin) and so cannot
be shrunk through it. Notice that an attempt to mimic the procedure of
Example 3.9 fails because &,,,(n) = (0, 0) which is not in ® and so vio-
lates condition (¢).

Because the proof of the next lemma is very technical we shall only
sketch it here.

Lemma 3.11. If y bounds the region ® and is null-homotopic in ®, then
dve does not depend on the choice of V.

Proof: Let W be another field of unit vectors.
o =IL(V,Z)= LV, W)+ J(W,Z) + 2an =6 + B + 2an.
Hence dot/dt = dB/dt + df/dt. We need only show that

L 40
fo 99 41— 56 — .

Since V(0) = V(L) and W(0) = W(L), 60 = 2xr for some integer r.
To say that y is null-homotopic means we have a family of curves 6,(¢)

for 0 < s < | with 6, = ¥, 6,_. = a very small circle, 6,(¢) continuous in s
and ¢, and o6,(r) piecewise differentiable in 7. Then 60, — [ (df/dr) dt is
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defined and continuous in s. Since it is always an integral multiple of 27 it
must be constant. But along a very small circle V and W can’t change much
relative to each other and so 86,_, = 0. Then 66 = 86, = 60,_. = 0 and
ovo = dwpf. 1

ExampLE 3.12. Let M be S? and take ¥ to be the circle of latitude ¢ = ¢, so
that y(@) = (sin ¢, cos 8, sin ¢, sin 8, cos ¢,). We work in the coordi-
nate patch x(¢, 8) = (sin ¢ cos 0, sin ¢ sin 6, cos @). Let

Z2(0) = cos ((cos ¢p,)0)x, — w X,
sin @,
as in Example 6.8 of Chapter 4. Recall that Z(6) is parallel along y with
Z(0) = x,. Let V be a field of unit vectors on S? defined everywhere
except at the south pole S (see Problem 3.2). We will compute
do. = J(V, Z) and show that da = [[; K d4 where ® is the cap of the
sphere bounded by y and KX is the Gaussian curvature. The fact that
0o = [[s K dA is a special case of the Gauss-Bonnet Formula, which we
prove in Section 6-4.
Note that

(3-1) do. = 0V, 7) + 61, 2).
We first compute d< (Y, Z). Now ¥ = X,(¢,, §) and g,, = sin? ¢ so that

. - 1, 2 __ —sin ((cos $0)0)g,,
cos (J(1, 2)) Tz = Sin Gon/2or

— —sin ((cos $,)8) = —cos (% — (cos ¢0)0)-
Thus
L0 2) = 3 — (cos 0
and

SI( 2) = Lhd%(izﬁ — (cos ¢0)0) d0 — — 27 cos ¢,

Clearly §<((V, ¥) = 2an for some integer ». ¥ is null-homotopic in ®,
and for a very small circle B it is clear that §<(V, B) = 2z. Hence n =1
and < (V, ¥) = 2n. By Equation (3-1)

¢0
S0 = 2 — 2m cos ¢, = 2n(1 — cos ¢o) = 27 L sin ¢ d

_ j:" j:" singdpdo — [[ da— || Kad

since K= 1 on S2.
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PROBLEMS

*3.1. Prove that if ¥ bounds a region QR that is entirely contained in a single
coordinate patch, then a field of unit vectors exists in ®.

” *3,2. Prove there is a field of unit vectors defined on all of the sphere except
the south pole. (Hint: Problem 1.10 of Chapter 4.)

3.3. In Example 6.12 of Chapter 4 we considered parallel translating a vector
along a certain piecewise regular curve. Show that the angular variation
equals the area of the region surrounded in that case.

6-4. THE GAUSS-BONNET FORMULA

DEFINITION. A region of a surface is simply connected if every closed curve
in that region is null-homotopic.

ExamPLE 4.1. Any coordinate patch which has U equal to a disk or a
rectangle is simply connected.

ExAMPLE 4.2. The entire sphere S? is simply connected. This is easy to
visualize but difficult to prove. See Figure 6.8.

FIGURE 6.8 FIGURE 6.9

ExamPLE 4.3. The entire torus, 72, is not simply connected—a circle going
around either “hole” cannot be shrunk to a point while staying in T2
Neither of the curves a and P in Figure 6.9 is null-homotopic.

THEOREM 4.4 (Gauss-Bonnet Formula). Let y be a piecewise regular curve
contained within a simply connected geodesic coordinate patch and
bounding a region ® in the patch. Let the jump angles at the junctions
be oy, ..., a, Then ([ Kdd + [ x,ds + 3o, = 2.
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Proof: We first point out that the geodesic coordinate patch referred to in
the hypothesis is not a geodesic coordinate patch along y. It can’t be because
v is closed.

Recall that for a geodesic coordinate patch, the metric tensor takes the

1
form (

0
0 hz)’ where 4 > 0 is a function of u! and u?. By Problem 2.3,

FIZ":I"?_IZ:%-» Iyt = —hhy, r222=%’

' =Ty' =T, =T, =0 and K=—Tu,

where h, = dh/du’.

Since all the quantities in the conclusion are independent of parametriza-
tion, we may assume that ¥ is parametrized by arc length. We compute the
angular variation of a vector field parallel along 7.

Let T be the unit tangent to y (where it exists) and let P be a unit vector
field parallel along ¥, starting at a junction point. (Such a P exists by Theorem
6.7 of Chapter 4.) Note that x, is a field of unit vectors in ®. Let & = J(x,, T),
¢ = L (x;, P)and 8 = (P, T). do/ds = dp/ds + db/ds.

First we write y(s) = x(p'(s), p2(s)). Note that cos ¢ = (x;, P> so that
—(sin ¢)p’ = <x;", P> + <{x;, P> = (x,/, P) since P is parallel along ¥.
However, x," = ' x;, + »*' X,, so that Gauss’s formulas (Equations (4-8)
of Chapter 4) yield

—(sin )" = {p'Xyy + yxpp P
=<' Ty + P T )% + ¢'To? + P Tuhx, P
The specific form of the I'; * allows us to conclude

@D —Gin ) =y 2X 2.

Because g, =0, {X;,X,/|X,[} is an orthonormal basis of ToM for each
Q € x(U); hence by Proposition 4.1 of Chapter 2,

P = (P, x,)x, + @x_lz/lxlzﬂ,
X2

Since P is a unit vector and {P,x,> = cos ¢, we have <P, X,>/h = sin ¢.

Hence Equation (4-1) becomes ¢’ = —h,p?’ so that
- - 21 _ 2 - _ 2
(4-2) 59 thy ds J;hldy thdu.
We now show that
4-3 ds = | 8'ads.
4-3) J; K, ds J; s

Note cos 8 = (T, P) so that —(sin 8)8' = (T', P> + (T, P> =T, P).
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T, T x T
sin 8
_PTX@XT) (P =T _,

- sin 8 ~ sin@ 7

x,=<nxT,T'>=<n,TxT'>=<P><

Hence | x,ds = [ 6" ds, which is Equation (4-3).

Because [ a'ds= | ¢’ ds+ [,6 ds, Equations (4-2) and (4-3) imply
lyo'ds + o= —[ hydut + [k, ds + L&, [, ds+ 3« is precisely
the angular variation of T along y taking into account the jump angles at the
junctions. Since ¥ bounds ®, du = | &’ ds + 3 &; = 2z. (This is essentially
the Rotation Index Theorem.)

Finally, Green’s (Theorem 1.3 of Chapter 3) states that

—fh, du? = —ff By, dut du? = — f Mg gyt gur — +H K dA.
Y ® ® h @

Thus 27 = [[o KdA + [k, ds + 2o, |

EXAMPLE 4.5. On S? let vy be a triangle whose sides are geodesics and whose
interior angles are 8, #,, 8;. Thena, =7 — B,.

27Z=J.J.mKdA+'[7ngS+Z(xi=area(@)_’_o_i_:;n_zﬁi‘

Thus (3 f;) — 7 = area(®). The number (3} B,) — = is called the angular
excess of y. The fact that the angular excess is equal numerically to
area is a standard result of spherical geometry due to Legendre.

EXAMPLEL 4.6. Let y be a circle of latitude ¢ = @, on S%. The geodesic curva-
ture of 7y is k¥ cos y, where ¥ = 1/sin ¢, is the curvature of ¥ and y is
the angle between the tangent plane of S? and the osculating plane of ¥
(this is the extrinsic formula for x,). This angle is also ¢,. Hence
K, = cot ,. [ k, ds = Kk, (length of ¥) = x, (27 sin @) = 27 cos §,. Thus

27z=_|._|. de—{—_[k,ds+2a,=area(@l)+2ncos¢o
® k4

or
27(l — cos ¢,) = area(®)

as we found in Example 3.12.

PROBLEMS

4.1. Use the Gauss-Bonnet Formula to prove that the sum of the exterior
angles of a Euclidean polygon is 2z.
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4.2, In Problems 2.4 and 2.5 we had “surfaces” with K = —1. Suppose 7 is
a geodesic triangle in either of these cases. What can you say about the
sum of the interior angles? (Hint: Example 4.5.)

4.3. (Hyperbolic Half Plane, see Problem 2.4.) Prove x = constant gives a
geodesic. Prove x = a + r cos 6, y = r sin § gives a geodesic with a and
r constant and 0 < @ < z. (Use Problem 5.8 of Chapter 4.) Note that in
U these curves are vertical straight lines and circles which meet the
x-axis at right angles. They give all the geodesics.

4.4, (Poincaré Disk, Problem 2.5.) Prove that y = O gives a geodesic.
Prove that x = a + rcos 8, y = rsin @, where a and r are constants
related by a® = 1 1 r2, gives a geodesic (for a suitable range of §). Note
that in U this curve is a circle that intersects x2 4 y2 = 1 at right angles.
Due to the rotational symmetry of the matrix (g;) (it depends on
x2 -+ y2, not really on x or y) any such circle (or straight line through the
origin) gives a geodesic. These give all the geodesics.

4.5. In Problems 4.3 and 4.4 let ¥ be a geodesic and let P be a point not on
the geodesic. Show that there are at least two geodesics through P that
never meet y. (Proof by reasonable picture is sufficient.) These “surfaces”
give examples of geometries where Euclid’s parallel axiom fails, if by
straight line you mean geodesic and by parallel you mean never inter-
secting. These models of hyperbolic geometry are discussed more fully
in Chapter 7.

6-5. THE GAUSS-BONNET THEOREM AND
THE EULER CHARACTERISTIC

DEFINITION. A polygon on a surface M is a piecewise regular curve y whose
segments are geodesics and which bounds a simply connected region ®.

Let M be a compact surface in R3. Suppose M can be broken into
regions bounded by polygons, each region contained in a simply connected
geodesic coordinate patch. Let V equal the number of vertices, E the number
of edges, and F the number of faces (i.e., the number of polygonally bounded
regions). Let the Euler characteristic of M (with respect to this decomposi-
tion) be the integer y = F — E 4 V.

The next theorem is a truly amazing result. 1t relates two seemingly un-
related quantities, curvature (which is a geometric quantity) with the Euler
characteristic y (which is a topological or combinatorial quantity).

THEOREM 5.1 (Gauss-Bonnet). If M is compact then [[,, KdA4 = 2ny.
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Proof: Let the polygonally bounded regions be {®; |1 <{ i <{ F}, the polygons
themselves {y,|1 < i < F}, and {$,;} the interior anglés of y,. An application
of the Gauss-Bonnet Formula shows that

ﬂMKdA - i j Kdd=3% (27: -S@- ﬂ,.j))

Now
3 = n (number of vertices of y,) = # (number of edges of ¥,).
J F F
Since each edge belongs to two polygons, > > 7 = 2zE. > 3 B, is the sum
i=1"J =15

F

of all interior angles. At each vertex the sum is 2z. Hence ); > 8, = 2nV.
=177

Thus [, KdA = 2aF — 2rE + 22V = 2zny. |

The quantity [[,, K dA is called the fotal curvature of M or the curvatura
integra. Since it is a well defined number, y cannot depend on how the
polygons are chosen, so long as each is small enough to be contained in a
simply connected geodesic coordinate patch! This fact alone is surprising but
we may also look at the Gauss-Bonnet Theorem the other way. From its
definition y must be an integer, hence (1/27) [{,, KdA is an integer! There is
no a priori reason for this. (It is similar to the situation for plane curves,
where (1/27) | k ds is an integer.) The Gauss-Bonnet Theorem shows us one
of the beautiful things about global differential geometry (and its present
popularity): the mixing of topological and geometric results in a very unusual
and striking manner. To us, this theorem is even more egregious than the
Theorema Egregium.

To define y we do not really need geodesic polygons, just piecewise
regular curves. They were chosen to be geodesic so that the terms L K, ds in
the Gauss-Bonnet Formula would not appear. They would cancel anyway
since each edge is traversed twice and in opposite directions because it bounds
part of two regions.

On the other hand, if M is broken into polygons that are not small
enough to be in simply connected geodesic coordinate patches, we could still
define 7 = F — E + V, where F, E, V are the number of faces, edges, and
vertices. If a particular polygon is not small enough, let P be a point inside it.
Join P to each of the vertices of that polygon by a regular curve segment.
(Since M is compact, these curves can even be geodesics.) If the polygon
has r vertices, we have added r edges, 1 vertex, and r — 1 faces (where there
was 1 face there are now r). F=F+4+r—1, E=E+r, V=V + 1.



190 Global Theory of Surfaces Chap. 6

Then F— E+ V=F—E+V +4+r—1—r-+1=j. Hence we have not
changed the value of ¥, but we have eliminated one large polygon. This can
be continued until all polygons are small enough.

DEFINITION. y is called the Euler characteristic of M.

EXAMPLE 5.2. x(S?) = ;_nﬂ KdA — ‘2*_77: .
Sl

x has been defined combinatorially. Our theorem shows that it is an
intrinsic geometric invariant. y can also be defined topologically.

The proof of the following theorem (which gives the classification of
surfaces) and the formal definition of “looks like” can be found in Massey
[1967].

THEOREM 5.3. Every compact surface in R® “looks like” a sphere with

handles. The number of handles is called the geometric genus of M and
is denoted g. (See Figures 6.10 and 6.11.)

=

THEOREM 5.4. If M is a compact surface in R3, then y = 2(1 — g).

FIGURE 6.10

FIGURE 6.11

Proof (by induction on g): If g = 0, then M looks like S? and x(S?%) =2
= 2(1 — 0). Assume the theorem is true for g = n and let M have genus
n - 1. Break M into polygons with F, E, V faces, edges, and vertices and so
that one handle looks like that in Figure 6.12.

If three faces are removed as in Figure 6.13 and the resulting holes filled
in, there is a net loss of one face and three edges. The new surface has Euler
characteristic # which is two more than the original. It has genus n. By induc-
tion ¥ = 2(1 — n). Hence the Euler characteristic of the original surface is
x=1—-2=20-—nm—-2=20-@n-+1))=21-2). I
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FIGURE 6.12 FIGURE 6.13

Note that the Euler characteristic of a compact surface in R? is even and
less than or equal to 2.

There is a more general version of the Gauss-Bonnet Theorem in our
context.

THEOREM 5.5. Let y be a piecewise regular curve in an oriented surface M.
Suppose ¥ bounds a region ®. Then

Ha Kdd + Lxg ds+ 3 (1 — 0) = 22x(®),

where the a, are the interior angles of y and y(®) is the Euler character-
istic of & found by breaking ® into polygons and counting those
edges and vertices lying on y in addition to those in ®.

Proof: Problem 5.1. |

There are many generalizations of the Gauss-Bonnet Theorem. Note that
in its simplest form it states that positive curvature everywhere implies posi-
tive Euler characteristic. The conjecture that this is true in higher even
dimensions (in the context of Chapter 7) has long been one of the outstanding
problems in differential geometry. It is called the Chern-Hopf Conjecture
(Conjecture 8.16 of Chapter 7).

PROBLEMS

*5.1. Prove Theorem 5.5.

5.2. Call a polygon an n-gon if it has n vertices (so a 0-gon is a closed
geodesic). Let M be a surface with K < 0. Prove that there are no
n-gons forn =0, 1, 2.
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v/ 5.3, Find an example of a surface with K < 0 that has a closed geodesic 7.
(Y cannot bound a simply connected region by Problem 5.2.)

5.4. Consider a “triangle” in the Poincaré disk whose vertices are on the
boundary of the disk (“at infinity”). What do you expect the area to
be? (See Figure 6.14.) What would be the area of an n-gon if all the
vertices are at infinity ? (Figure 6.15).

>

FIGURE 6.14 FIGURE 6.15

5.5. Prove that a compact surface in R? which has K > 0 “looks like” a
sphere. (Hint: You may use Theorem 5.3.)

6-6. THE THEOREMS OF JACOBI AND
HADAMARD

In this section we give two more examples of theorems from global
differential geometry. The first is due to C. G. J. Jacobi (1804-1851) and the
second to J. Hadamard (1865-1963). Both are proven as applications of the
Gauss-Bonnet Theorem.

Recall that if y is a regular space curve with ¥ > 0, then its normal
spherical image ¢ is the curve on S? given by 6(s) = N(s), where N is the
normal to vy. Since N’ = —xT + 7B = 0, o(s) is regular.

THEOREM 6.1 (Jacobi, 1842). Let y be a regular closed unit speed space curve
with k¥ > 0. Assume that @, the normal spherical image, is a simple
curve. Then it divides the unit sphere into two regions of equal area.

Proof: Let ¢t be arc length on ¢ and %, the geodesic curvature of ¢ viewed as
a curve on S2, Let ® be the region bounded by 6. We will show that the area
of ® is 2z by applying the Gauss-Bonnet Formula. (Since the area of S? is
47, this will complete the proof.) To this end, we must compute ¥,. We shall
show that

_ _d T\ds.
Since ¢ is arc length on ¢, the Frenet-Serret equations of y show that
ds _dN _ ds
(6-2) = _7_( xT—}-rB)E
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which is a unit vector so that

ds 1
(6-3) & T
Also
2
= GO () CRT TR T,

or, after applying Equation (6-2),

d?N _ d?s dt dN

&Y e wEsd

ds\*, .. R (2 2
+(E)( %'T + 7'B — (k* + 2)N).

193

Now the surface normal to S? at p is p. Hence the surface normal to S?
at ¢(f) is N(¢) so that the intrinsic normal to ¢ is N x dN/dt. By using (6-2),

(6-4), and the fact that k¥, = <{S, d2N/dt*), we obtain

o dN d®N\ _ /. dN _ d°N
"e—<N 7’W>-<’dt"dﬂ>

- <N, %‘{ x (%)2(—;& LB (k2 TZ)N)>

- (513)3<N, (—KT + B) X (—K'T ++ 7B — (k2 -+ t)N)>

(‘2) (—tx' + x1).
Because of Equation (6-3), this last equation is

_ _ds{TKk — K'T ds d T
K”HE(—TZ +x2) T a5 (arc tan x)

as desired.
We integrate Equation (6-1) to obtain

ds ,, | d T _
fk thJ‘ arctan—) dt = £—£<arctan7)ds—0

since ¥ is closed. Thus the Gauss-Bonnet Formula gives us

ﬂadA = ﬂaKdA —on — L;z,dt = 2m.

Thus the area of ® is 2z and ¢ breaks S? into two regions of equal area.

The next result generalizes Theorem 3.2 of Chapter 3 relating convexity

to the sign of the curvature of a plane curve.

THEOREM 6.2 (Hadamard, 1897). Let M be a compact surface in R3. If K > 0
everywhere, then the surface is convex (lies on one side of each tangent

plane).
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Proof: K > 0implies 0 < |f,, KdA = 2my =272(1 — g) and g < 1. Hence
g=0and [[,, Kd4 = 4n.

Let v: M — S? be the Gauss normal map defined by the outward point-
ing normal. We show that v is onto. Let n € S2. Let I, be the plane in R?
given by (x,n)=r. Since M is bounded, there is an r > 0 with. —r <{p,n><r
for all p € M. Let R be the smallest real number such that {p,n> < R
for all p € M. R may be negative. Then M N I1 7 0. If P € M N I, then
Il is the tangent plane at P, v(P) = n, and (M) = S2. Note ||, KdA4 is the
area of y(®) counted with multiplicity.

Next we show that v is one-to-one. Suppose v(P) = y(Q) with P = Q.
Then there is a small open set U about Q such that y(M — U) = S§? also
since v is continuous. Hence (f,, o Kd4d >4n. ([, Kd4A > 0. Hence
[l KdA = ([, KdA + [[, KdA > 4m, a contradiction. Hence v is one-
to-one.

Now suppose there is a point P on M such that there are points of M
on both sides of the tangent plane at P. Let Q, R be points of M on opposite
sides of this plane and farthest from the plane. The normals at P, Q, R must
be parallel. Hence two are equal and v is not one-to-one, a contradiction.
Thus M is convex. ||

PROBLEM

The following problem generalizes the notion of curves of constant
width to surfaces. (See Section 3-5.)

16.1. Let M be compact with K > 0 (hence M is convex).

(@) If P € M, prove there is a unique point P % P with the tangent
planes at P and P parallel.

(b) From now on assume that the distance between these planes is a
constant independent of the choice of P. Prove that the line joining
P to P is normal to M at both P and P.

(c) Prove that the principal directions at P and P are parallel (in the
Euclidean sense).

(d) Let X be a principal direction at P with principal curvature K, and
X the corresponding principal direction at P with principal curva-
ture i,. Prove that 1/k, - 1/&, is a constant independent of P.
Does H(P) = H(P), where H is the mean curvature? (See Struik
[1961, p. 202].)

() Prove [[,, HdA = 2zrc, where ¢ = width (constant distance from P
to P). (You will need the Gauss-Bonnet Theorem for this last
result.)
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6-7. THE INDEX OF A VECTOR FIELD

Let M be a compact surface with a vector field Von M. Wesay P € M
is an isolated zero of V if there is an open set U about P with P the only point
in U where V is zero. Suppose P is an isolated zero of V, and let y be a simple
closed piecewise regular curve which bounds a simply connected region ®
with P the only zero of V in ®&.

DEFINITION. The index of V at Pis i(V) = (1/2n) < (U, V), where U is any
field of unit vectors in ®.

We know that i,(V) does not depend on U. It is an integer which does
not really depend on y either—a continuous deformation of y cannot change

the integer.

ExAMPLE 7.1. The vector fields in Figure 6.16 have indices as indicated.

N Al
/TN N Al
(/‘:\\f SN \/
_>_\:°Z/:_> L f‘\ ’ B\,é,
O RN
~ —

FIGURE 6.16



196 Global Theory of Surfaces Chap. 6

Let M be a compact surface in R? with V a vector field on M with only
a finite number of zeros. The total index of V is I(V) = 3, i (V).

ProposiTION 7.2. If V and W are two vector fields on a compact surface M
with only a finite number of zeros, then I(V) = I(W).

Proof: Break M up into triangles y, so that each triangle is in a simply con-
nected coordinate patch, each triangle has at most one zero of V and at most
one zero of W in its interior, and all zeros are inside triangles. Let U, be a
field of unit vectors in the patch about v,.

IV) = 5 3 65U, V).
IV) — I(W) = 5 3 (63(U, V) — 8L(U, W) = - 5 65(W, V)
1 S 5LW, V) =0,

2rn triangles edges

since each edge is traversed twice, in opposite directions. Thus I(V) = I(W).

THEOREM 7.3 (Poincaré-Brouwer). If M is a compact surface and V is a
vector field on M with only a finite number of zeros, then I(V) = y(M),
the Euler characteristic of M.

Proof: We break M into triangles. We can define a vector field W on M
which has a zero at each vertex, at the midpoint of each edge, and at the center
of each triangle as in Figure 6.17. The zeros at the vertices and at the centers
have index +1 while those on the edges have index —1. Thus

IW)y=Yi,=HD+(—DE+ (+)F=V—E+ F=y.
But (V) = I(W) by Proposition 7.2. |}

I FIGURE 6.17
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This theorem implies that any vector field on $* must have a zero. This
fact is sometimes referred to by saying “you can’t grow hair on a coconut,”
meaning somewhere there will be a swirl or a cowlick.

PROBLEMS

7.1. Let M be a compact surface. Prove that M has a vector field with no
zeros if and only if M “looks like” a torus.

7.2. Prove that on M = R? there are vector fields with infinitely many zeros
P, such that the sequence {P,} does not have a convergent subsequence.

7.3. Prove that on M = R? there are vector fields with no zeros.

7.4. Find an example to show that Proposition 7.2 is false if the hypothesis
“compact” is omitted.



e

Introduction
to Manifolds

In this chapter we return to the theme of the introduction to Chapter 4—
that of geometry being built with the concepts of “space” and “line.” In
Chapter 4 we used surfaces for the concept of space and geodesics for the
concept of line. In this chapter we will take a much more abstract view of
space by defining “space” to be anything that looks locally like Euclidean
n-space (a manifold). Note that this is similar to what we did for surfaces;
they were locally like R2. One important difference here is that we are not
assuming that our manifolds lie in a Euclidean space of one dimension higher
(as we did for surfaces) or even that they lie in Euclidean space at all!

Having settled on a definition for space (which occupies the first two
sections), we must find a suitable geometric structure to add to space to give
the concept of “lines” (which we again call geodesics). A careful reading of
Chapter 4 shows that there are two geometric structures which led inexorably
to the notion of lines. One was the notion of differentiating a vector field with
respect to a vector field and the other was the notion of measuring lengths
and angles (the metric tensor). We shall take the view here that the first idea
is primitive and call such a structure a “covariant differentiation” in Section
7-6. We will also introduce the notion of a Riemannian metric on a manifold
and show in Section 7-8 that every Riemannian metric gives rise to a covariant
differentiation. We conclude this last section with a discussion of the various

.
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notions of curvature which can be defined on a manifold with Riemannian
metric and their relationship with curvature as defined in Chapter 4.

There are a couple of things to notice. The first is that we must be very
careful to define everything intrinsically because there is no such thing as
extrinsic! This is one reason why it was so important in Chapter 4 to get an
intrinsic description of something we had already defined extrinsically. In this
chapter we will use the intrinsic description for the very definition of the con-
cept. (This set of ideas is best exemplified by the notion of curvature. See
Gauss’s Theorema Egregium of Section 4-9. Compare that section with
Section 7-8.) A more philosophical question is: Since this material has become
so very abstract, has it lost all possible “relevance” to anybody but a mathe-
matician ? The answer is an emphatic no! There are many applications of this
material to high energy physics (the theory of Lie groups is useful in quantum
mechanics) and relativity theory. In fact Albert Einstein gave much impetus
to differential geometry at the turn of the twentieth century by introducing
relativity theory.

On the question of what is the proper level of abstraction, we would
certainly want our approach to be abstract enough to include all of the clas-
sical geometries. In fact, we do have as special cases Euclidean, spherical,
hyperbolic, and projective geometries. There are, of course, other ways of
obtaining these classical geometries. For example, a group theoretic ap-
proach is taken in Millman [1977].

Another point to make about this chapter is that we have written it in a
different manner than the previous six. We have written it in an open-ended
style; that is, we have not tried to be encyclopedic but rather have given
references for the results which we do not prove here. What we are doing here
is motivating the abstract definitions of manifold theory so that if the reader
wishes to study some of the more advanced works in the field he or she may
do so without being attacked by a formalism which seems to be totally un-
motivated. We have also adopted the notation which is most common in
manifold theory. In this we follow Kobayashi and Nomizu [1963].

We make one further comment on this chapter and that is about the
level of sophistication required to read it. We outline in Section 7-1 some of
the analytic preliminaries necessary. The reader should have some familiarity
with metric spaces and with advanced calculus (at least to the point of the
Inverse and Implicit Function Theorems).

7-1. SOME ANALYTIC PRELIMINARIES

In this section we review some basic results from analysis, especially
metric spaces and the Inverse and Implicit Function Theorems.
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DEFINITION. Let X be a set. A metric d on X is an assignment of a nonnega-
tive number d(x, y) to each pair of points x, y € X such that:
(@) d(x,y) = 0if and only if x = y;
(b) d(x, y) = d(», x); and
(¢) if z € Xthend(x, z) < d(x, y) + d(y, 2).
A metric space is a set X together with a metric d.

ExaMmPLE 1.1. Let X =RV, If x =(x*,...,x¥) and y = (3*,..., y"), we

define d(x,y) =,/ ﬁ: (x* — y)> =|x — y|. This is the usual Euclidean
i=t

distance on RV.

The next example is inserted to show that “strange looking™ spaces can
be higher dimensional surfaces. This example may be skipped on a first
reading.

EXAMPLE 1.2. Let P be the set of all straight lines through the origin in
R"*1. P is called real projective n-space. P? is called the projective plane.
If I € P, then I may be represented by any nonzero point in R**! (say
a=(a',...,a"")) through which / passes. Note that ¢ and b € R**!
represent the same line if and only if there is a 0 = A € R such that
a = Ab. Motivated by this fact, we define an equivalence relation on
R**! — {0} by a ~ bif thereisa 0 # 1 € R such that a = 1b. We write
[a] for the equivalence class of @ € R**!. Note that P* = (R**! — {0})/~.
The coordinates of any a € R**! such that / = [a] are called homogene-
ous coordinates for I. (They are only determined up to a real multiple, of
course.) Let /,, I, € P" and write /, = [a,] for @, € R**! where i = 1, 2.
Define the distance from /, to /, to be

a, a,

[a,] - [a,]
The motivation for this is as follows: For each i = 1 or 2, g;/|a,| is one
of the two points on S” which represent /,. (They are antipodal points.)
We then measure distance by computing the Euclidean distance between
the nearest pair of representatives of /, and /,. See Figure 7.1.

a a,

d(l,, 1,) = minimum of d |4 o %2
(s 1) ° and |2+ e

DEFINITION. If x € X and € > 0 then the (open) ball of radius € about x is
B.(x) ={y € X|d(x,y) < €}. A subset S of X is open in X if for each
x € S there is an € > 0 such that B(x) = S. If Sis open and x € S,
then S is a neighborhood of x.

The following is immediate.
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FIGURE 7.1

ProPOSITION 1.3. Let X be a set with a metric d.
(a) If U and V are open in X, then U N V is open.
(b) If U, is open in X for each & € I, then | J U, is open.

acl

(¢) If p, g € X and p # ¢, then there are open sets U and ¥ in X such
thatp € U,q € V,and U N Vis empty.

For students who have seen the definition, the following proposition is
immediate from the definition of continuity in a metric space. For students
who have not, the following may be taken as the definition of continuity.

PROPOSITION 1.4. Let X and Y be metric spaces and f: X — Y. f is contin-
uous if and only if for every open set Vin Y, f~!(V) is open in X.

We now recall some facts about calculus. If f: R* — R™, then f(x) may
be written as (f*(x), ..., f™(x)) for some real-valued functions f*,..., f™
of n variables. fis C* if all partial derivatives of each f' exist and are
continuous up to order k. We will usually omit reference to the k£ by saying
that f is differentiable. As in the case m = n =2, we may form the
Jacobian matrix J(f) at each point p € R":

Loy - L

0£; (p) e ‘;ﬁf (p)
J(f)p) = )

af m(p) e ?9{; (p)
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ExAMPLE 1.5. Letf: R? — R3 be given by f(x!, x) = (sin x!, x2x!, x2 cos x1).
At p = (x!, x*) we have

cos x! 0
J(f)(p) = x? x!
—x2 gin x! cos x!

DEerFINITION. Suppose U is open in R*, Vis openin R, and f: U — V. fis a
C* diffeomorphism if fis C* and there is a C* function g: ¥V — U such
that fo g (resp. g o f) is the identity map on V (resp. on U). g is called
the inverse of f. (These were called coordinate transformations in
Chapter 4.)

ExAMPLE 1.6. Let U = V = the open interval (—1, 1) in R and f(x) = x°.
The inverse of fis g(y) = ~/ y so that fis a C* diffeomorphism if and
only if £k = 0.

For a proof of the following theorems see Fulks [1969].

TueoreM 1.7 (Inverse Function Theorem). Let Ube an opensetinR", p € U
and f: U— R~ If det J(f)(p) # O, then there are neighborhoods N, of
p and N, of ¢(p) such that f|y,: N, — N, is a diffeomorphism.

ExampLE 1.8. Let U = {(x!, x?)| —4 < x' < 1} and define
f: U—R2by f(x!, x?) = (e* cos x2, e *' sin x2).
An easy computation shows that det (J(f)(x!, x%)) = —e~2*' % 0 so the
Inverse Function Theorem applies for any point p = (x!, x?). Note,
however, that although f is one-to-one when restricted to small enough

neighborhoods of any point, f: U — R? is not one-to-one! However, f
is one-to-one on the open set

N,y ={(x", x)| —F <x' <4, —n < x* <m}.

Let i be a fixed integer between 1 and n + 1. If
w = (Wl, ey wn+l) c Rn+1,
then we shall write w = (w', ..., w"Lw*, . w*) e RUIf W R:'“,
then W = {Ww|w € W} < R". Note that if W is open in R™1, then W is
open in R* (Problem 1.3). We shall now state the Implicit Function Theorem,

which roughly says that if df/du’ == 0, then we can solve for the ith variable
in terms of the others.

THEOREM 1.9 (Implicit Function Theorem). Let f: R"*! — R be a C* func-
tion (k > 1), a € R"*! and assume that (df/du’) (a) # 0 for some fixed
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i. Then there is a neighborhood W of g in R**! and a C* function
g: W— Rsuch that, forw = (w!,...,w"*") € R*™*, f(wh,...,w*1)=0
if and only if w' = g(W).

PROBLEMS

1.1. Prove that P" is a metric space.

*12. Let U, ={l € P"|I=[(a', ..., a"*Y)]and &' # 0}. Prove that U, is well
defined and open in P~.

*1.3. If W < R"*! is open, show that W is open in R". Show that the con-
verse is false.

1.4. Prove Theorem 1.9 for f(x!, ..., x"*') = —1 + > (x"2.

7-2. MANIFOLDS—DEFINITION AND
EXAMPLES

In this section we define the main object of study of this chapter, a dif-
ferentiable n-manifold, and give a large collection of examples. It will be
obvious from the definition of manifolds that surfaces (as defined in Chapter
4) are exactly those 2-manifolds which are subsets of R?. (See Section 7-5 for
a more precise description.) We shall prove the important fact that if
f: Rt — R is a differentiable function, then f~*(0) (the hypersurface defined
by f) is an n-manifold if a certain condition on f holds.

Just as a surface looked locally like R?, an n-manifold will look locally
like R”.

DEFINITION. Let M be a metric space and p € M. A coordinate chart about
p of dimension n is a neighborhood U of p and a one-to-one continuous
function ¢: U — R” such that U = ¢(U) is open in R”. (U, ¢) is a proper
coordinate chart if ¢$=*: ¢(U) — U < M is continuous.

EXAMPLE 2.1. Let S" = {(x‘, ..., X" e Rt

'i‘l, (x)? = 1} be the n-
i=1

sphere and let p = (0, ..., 1). A proper coordinate chart about p of
dimension n is given by U= {(x!,...,x"*!) € S"|x"*! > 0} and
¢:U—R by ¢(xt, ..., x""") = (x!, ..., x"). Note that

U = ¢(U) =B,(0),

which is certainly open. Clearly

GG, .., ) = (u‘,...,u", J1— Z:l(u')")

which is continuous so that (U, @) is a proper coordinate chart.
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DErINITION. Let M be a metric space. M is an n-dimensional C= manifold if
there is a collection @ of coordinate charts (U, ¢), called the atlas of M,
such that
(a) for each p € M there is a proper coordinate chart (U, §) € @ of

dimension » with p € U,
) if (U, ¢), (V,yp) € @ with UN V = & then

wod:$(UN V)— y(UN V)
is a C= diffeomorphism (of open sets of R”); and

(c) @ is maximal with respect to conditions (a) and (b), i.e., @ contains
all possible charts with these properties. (See Figure 7.2.)

m//ﬁlf @

The content of condition (b) is that y o ¢! is C=. Having proven this

for all y, ¢ shows that y o ¢~! is a diffeomorphism since
Wod ) =goy

We will usually abbreviate “n-dimensional C= manifold” by “differentiable
n-manifold” or “n-manifold,” or write M™. It is possible to define a C*
manifold for any 1 < k < co. However, in this case it is necessary to con-
tinually check the degree of differentiability. We prefer to avoid this.

In practice we usually give a collection of proper coordinate charts
(U, ¢,) on M which cover M (i.e., M = L'j U)). There is then a unique atlas

determined which includes the given subcollection of (U, ¢,), much as a
subbasis determines a topology. It is possible to have two different atlases on
a metric space M, making M into a manifold in different ways. We shall not
get involved with such problems here.

Note that this definition is essentially the same as that of a surface as
given in Section 4-2, with two exceptions: the direction of the maps has been
reversed and U is a subset of M instead of being a subset of R%. A coordinate
patch was a map from R? to the surface; a coordinate chart is a map from the

FIGURE 7.2
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manifold (surface) to R* (R2). This change emphasizes the fact that the
manifold is the primary object of study, not Euclidean space.

ExAMPLE 2.2. R” itself is an n-manifold, for example, with the single coordi-
nate chart (R, identity). Similarly any open set in R is an #-manifold.

EXAMPLE 2.3. S” is an n-manifold. This can be seen by using Example 2.1 and
imitating the proof that S? is a surface. See also the proof of Theorem 2.6
below.

ExaMpLE 2.4. Let G = GL(n, R) be the group of all nonsingular n X n
matrices. We show that G is an n2-dimensional manifold. G is a metric

space with distance function d(A4, B) = «/ z”] (a;; — b,;)*, where 4 = (a;;)
L j=1
and B = (b,). If A = (a;;) € G, let
O(A) = (a1, Ayas e o5 Ayys Aa1s o - .5 4,,) € R™.
To show that (G, ¢) is a proper coordinate chart we need only show

that ¢(G) is open in R™. We define a function A: R” — R by

Axyys ooy X)) = 20 (1Y X400 X2,002) -+ + Xnyotm)s

CESa

where S, is the group of permutations of » letters. Note that A is con-
tinuous and A o ¢(4) = det 4. Therefore ¢(G) = A-*(R — {0}) is open
by Proposition 1.4.

If we write M(n) for the set of all n X n matrices, then we have identified
M(n) and R™ via the mapping ¢.

EXAMPLE 2.5. We show that projective n-space P" is an n-manifold. We
define (n 4 1) sets U, ={l € P*|/ =[(a,, ..., a,.,)] and g,  0}. By
Problem 1.2 these are open subsets of P*. Note that {U,, U,, . . . , Ups1}
covers P". We define ¢,: U, — R" by

¢,.(1)=(ﬂ,..., b“_i) eR  forl<i<n+l
a, a,’ a; a,
(@) is called the ith nonhomogeneous coordinates of 1.) Note that ¢, is
well defined and that ¢(U,) = R, which is certainly open. (U,, ¢,) is
proper because

(2-1) O, .. ) = [t ., Lt L ut)).
To save on notation we will only show that ¢, o ¢, is C=. By (2-1)

- w1 u"
¢2°¢3 l(ul""’u"):¢2(ul5u29 19u3,-~"u"):(?,?,?’...,—lﬁ).
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Since 4% 7 0 on ¢,(U, N U;), which is the domain of ¢, o 37, ¢, 0 ¢;7?
is C=.

Although P? is a 2-manifold, it is not a surface in R3? (see Section
7-5).

The next result is really another example, but because it includes so many
familiar examples, we separate it out as a theorem. This theorem is the
rigorous basis for the assertion of Section 4-2 about level surfaces of a
function. Because most students have trouble with the constructions involved
in this theorem, we will carry along (inside bold-face brackets| |]) the special
case which gives S2.

DErINITION. If f: R**! — R is C= (with k > 1), then the gradient of fis the
function grad f: R**! — R"*! given by

(erad 1XP) = (J5P) - 322 (p)-

THEOREM 2.6. Let f: R**' — R be a C* function and
M; = {x € R"*!|f(x) = O}

If (grad f)(p) # O for all p € M, then M, is a C* n-manifold (called
the hypersurface defined by f).

Proof: We write M for M;. [f(x,y,2) = x>+ y* 4 z2 — 1 for $?]. Let
m, € M be fixed. Since (grad f)(m,) # 0, there is an 1 <i<<n -+ 1 such
that df/du’ (m,) # 0. For notational convenience we assume that j = n -+ 1.
[Take m, = (0, 0, 1) for S2.] This can be accomplished by renumbering the
variables. As in Section 7-1iff w = (w', ..., w"*!) € R**'and W < R"*!, we
will write w = (W', ..., w") € R" and W {Wwlw € W}. By Theorem 1.9
there is a neighborhood W of m, in R**! and a C* function g: W — R such
that w = (!, ...,w"*) € WnN M if and only if w**! = g(w',..., w").
[For 82: W = {(x, y, z)| x > 0} and g: W — R is given by

glu', u¥) = /T — @) = (2]
Since W is open in R"*!, U= W N M is open in M [U is the upper
hemisphere for $?]. Let ¢: U — R” be defined by
owh, ..., W) =W, ..., w").
The point is that (U, ¢) is a chart about m, for M. First note that ¢(U) =
which is open by Problem 1.3. To show that ¢ is one-to-one and proper we
need only write down ¢~ ': ¢~ '(u', ..., u") = @', ..., u", g(u',...,u").
[For 82: ¢~1(u*, u?) = (u', u?, /1 — (u')* — (u?)?)]
We now check the overlap condition: Suppose that (V, y) is another
patch about m,. We may assume that this corresponds to df/dx*(m,) # 0 and
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so by the construction above y: V' — R” is given by
!, ..., x"*) = (xi, coL, XM,
Therefore.
yod ..., u)=yw@', ..., ug!, ..., u")
= (..., u g, ..., u"),
which is C~ on ¢~ (V' " U). [For §2%:
yod ' u) =1 — ) —w)] I

207

The next example shows that Theorem 2.6 can also be used to produce

fairly abstract examples.

ExaMPLE 2.7. Let SL(n) be the set of all matrices of determinant one. We

may view SL(n) as a subset of R” by stringing out coordinates as in
Example 2.4. Showing that SL(n) is a manifold of dimension n? — 1
amounts to investigating the function /: R” — R given by f(4) = det 4.
Since f~!'(1) = SL(n) we can use Theorem 2.6 once we know that
(grad f)(4) = O for all A € SL(n). This computation is done in Guil-
lemin and Pollack [1974].

ExampLE 2.8. Let C = {(x, y,z) € R*|x? 4 y? — 2% = 0} be a double cone.

Then C is not a 2-manifold. (See Figure 7.3.) Suppose C were a 2-mani-
fold. Intuitively, we can disconnect C by removing the origin which
could not happen to a 2-manifold. More formally (for those who have
had some topology) let (U, ¢) be a coordinate chart about p = (0, 0, 0)
with U connected. Then U — {p} must be connected since ¢(U) — {¢(p)}
is connected. On the other hand, U — {p} is obviously not connected
(from the picture). Note that if f(x,y, z) = x* + y* — z? then (grad f)
(0,0,0)=0.

FIGURE 7.3



208 Introduction to Manifolds Chap. 7

PROBLEMS

2.1. Prove that S” is an n-manifold directly from the definition (i.e., without
Theorem 2.6).

2.2. If M, (resp. M,) is a C~ ny-manifold (resp. n,-manifold), prove that
M, x M, is a C~ n-manifold for n = n, + n,. (Hint: If (U, ¢,) is a
chart about m;, € M,, then make (U; X U,, ¢, X $,) a chart about
(my, my).)

23. LetT" =
{(x...,x) e R |(x)2 +(x3)2=1,..., (x* ) 4 (x): = 1}.

Prove that T* is an n-manifold. 7" is called the n-torus. (For those who
have had topology: T? is homeomorphic to the inner tube of Chapter 4.)

24, Let M = {4 € M(n)|trace (4) = 0}. Prove that M is a manifold (of
what dimension ?). Can you picture M?

12.5. Let O(n) = {4 € M(n)| AA* = I} be the set of orthogonal matrices.
Since O(n) = M(n) = R*, we may view O(n) = R™,
(a) Show that O(n) is compact (i.e., closed and bounded).
(b) Show that O(n) is an (n(n — 1)/2)-manifold.

7-3. TANGENT VECTORS AND
THE TANGENT SPACE

Because the concept of a tangent vector was so useful in surface theory,
we would like to define an analogous concept on an arbitrary manifold. An
immediate generalization of the definition is not possible. On a surface we
defined a tangent vector to be the velocity vector of some curve on the surface.
This meant we viewed the curve as lying in R3, where we knew how to dif-
ferentiate. In our current setting a curve on M is only a curve on M (there is
no ambient Euclidean space in which it is included) and it does not make
sense to differentiate in a metric space. The reader may argue that locally M
is an open set in R”, where we do know how to differentiate. This is true, but
there is no canonical way to make M look locally like Euclidean space. Dif-
ferent people could choose different coordinate charts and obtain different
notions of differentiation.

In elementary calculus, a vector v at a point p € R* may be viewed as a
directional derivative. If v = (a', @, ..., a") and f: R* — R s differentiable,
then the directional derivative of f at p in the direction v is

W) =4 L.
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We will imitate this idea by defining a tangent vector as a real-valued oper-
ator on the set of differentiable functions on M which obeys the properties
of a derivative. First we will need the concept of a differentiable function

defined on a manifold.
Let M be a C~ n-manifold. We shall use the word “chart” for “proper

coordinate chart.”

DErFINITION. Let p € M and let f: M — R. f is differentiable of class C'
(I < o) at p if there is a chart (U, ¢) about p such that
fod ' d(U)— R
is of class C' at ¢(p) € R~

There are two things to note about this definition. First of all, it is not
circular because ¢(U) is an open set in R", where we know already what it
means to be differentiable. Also, the definition does not really depend upon
the choice of chart because if (¥, ) is another chart, then

Joy l=(fod Do(poy™)

is also of class C'.

ExaMpLE 3.1. Let f: S2 — R be given by f(x, y, z) = x* + z. We show that
fis differentiable at p = (0, 0, 1) by using the chart (U, ¢) in which U is
the upper hemisphere and ¢(x, y, z) = (x, y). Since

¢t u?) = (', u?, /1 — W) — W),
we have fo ¢~ (1, u?) = (u')* + /1 — (u')> — (u?)?, which is of class
C> at ¢(0, 0, 1) = (0, 0).

DEerINITION. If /2 M™ — N" is a function between C*~ manifolds, f is dif-
ferentiable of class C' (I < oo) at p € M if there is a chart (U, ¢) about
p on M and a chart (¥, w) about f(p) on N such that f(U) < V and
wofod l:d(U)— w(V)is of class C* at ¢(p). fis of class C* if it is of
class C* at each point. If the precise value of / is unimportant, then we
simply say that f is differentiable.

DErINITION. (M) = {f: M — R|f is of class C~}.
ExampLE 3.2. The function of Example 3.1 is an element of {(S?).

DerINITION. If G is a manifold which is also a group such that both
U:G X G— G by u(x,y)=xy and 1:G— G by 1(x) = x~! are of
class C=, then G is called a Lie group.

Under addition, Example 2.2 is a Lie group. Under matrix multiplica-
tion, Examples 2.4 and 2.7 and Problem 2.5 are Lie groups. We have defined
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Lie groups because of their importance in both mathematics and physics.
We shall not pursue the study of Lie groups here. The reader is urged to con-
sult Warner [1971] for more information.

Before we continue we need certain technical results on the existence of
differentiable functions with certain properties on a manifold M. We shall
only sketch the proofs and leave the details to the reader.

LeMMA 3.3. Let W be an open set in M with p € W. Then there is an open
set V with p € V=« W and a C~ function f: M — R such that
@@ fx)=1ifxe V;
(b) f(x)=0if x ¢ W; and
© 0L f(x<LIlforallx € M.

Proof: Let (U, §) be a chart about p with U = W and ¢(p) = 0 € R". With-
out loss of generality we may assume that B,(0) = ¢(U). Let 4 be the func-
tion A: R — R of Problem 3.6. Define g: R* — R by g(y) = A(y|*) and
define f: M — R by

f(x)={

Then this f'satisfies the conditions of the lemma if ¥ = ¢~(B,,,(0)). |

(god)x) ifx e ¢7'(Bx0))

0 otherwise.

LemMa 3.4. Let W be a neighborhood of p € M and let F: W— Rbe dif-
ferentiable. Then there exists a differenti{ble function ¥: M — Rand an
open set V with p € V = W such that F(x) = F(x) for all x € V.

Proof: Let fand ¥V be as in Lemma 3.3 and define F by

Fo) = { S(X)F(x) .if xew
0 ifx¢ w. |

LeEMMA 3.5. Let p € M and let W be a neighborhood of p. Then
(a) there is a differentiable function f: M — R with f(p) = 1,f(x) =0
if x ¢ W; and
(b) there is a differentiable function g: M — R with g(p) =0, g(x) =1
ifx ¢ W.

Proof: Problem 3.7. ||

We are now able to define the concept of a tangent vector and prove that
the set of tangent vectors to M at a point forms a vector space of dimension .

DEFINITION. A tangent vector to M at p is a function X,: F(M)— R, whose
value at fis denoted X, f or X,(f), such that for all £, g € F(M) and
re R,
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(@) X,(f+8) = X,(f) + X, (8);

() X,(rf) = rX,(f); and

©) X,(fg) = f(p)X,(8) + g(pX,(f), where fg is the ordinary product
of functions f and g and f(p)X,(g) is the product of real numbers
f(p) and X,(g).

We urge the reader to read “X,f” as “the directional derivative of f in
the direction X, at p.” Condition (c) is the product rule for derivatives.

LeEMMA 3.6. Let X, be a tangent vector at p € M.
(@) If £, g € &(M) with f(p) = g(p) = 0, then X,(fz) = 0.
(b) If r is the constant function r(m) = r, then X (r) = 0.
(© Iff, g € F(M) and f(x) = g(x) for all x in some neighborhood W
of p, then X, (f) = X ,(g).

Proof: (a) This is immediate from the definition of a tangent vector.
(b) Let 1 be the constant function 1(x) = 1. Then

X,(1) = Xx,1-1) = X,(1) + X, (1) = 2X,(1).
Hence X,(1) = 0 and X,(r) = X,(r1) = rX, (1) = 0.

(c) It suffices to show that if #=0 on W, then X,(h) = 0. (Let h =
f— g.) By Lemma 3.5 there is a differentiable function z: M — R such that
up)=0and ux)=1if x ¢ W.

We first show that (hu)(x) = h(x) forall x € M.If x € W, then

(hp)(x) = h(x)pu(x) = 0- pu(x) = 0 = h(x).
If x ¢ W, then (hu)(x) = h(x)u(x) = h(x). Thus hy = h. Hence
X,(h) = X,(hu) = h(p)X (1) + w(p)X,(f) =0. 1

Because of part (c) of this lemma, it makes sense to differentiate a func-
tion defined only in a neighborhood U of p: if f € F(U), then X,(f) is defined
to be X,(f) where f is any function in (M) that agrees with f on some
neighborhood of p. Lemma 3.6(c) says this does not depend upon the choice
of f and Lemma 3.4 says that such an extension f of fexists.

ExaMmpLE 3.7. Let a:(—¢€, €) — M be a differentiable curve in M with
a(0) = p. Let X,* be defined by X,*(f) = (d(f° a)/dt)(0), where the
derivative on the right-hand side is the usual derivative of the real-valued
function of a real variable, f o a. That X, is a tangent vector at p is the
content of Problem 3.5.

This example shows that our new concept of tangent vector agrees with
that on surfaces. In Proposition 7.4 of Chapter 4 we showed that a tangent
vector X, to a surface may be viewed as a directional derivative by choosing
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some curve whose velocity vector is X, and then differentiating along the
curve. This is what Example 3.7 is doing.

We now define some important tangent vectors (d/dx’), to M at p. They
will play the same role for manifolds as the x, did in surface theory. In par-
ticular, they will serve as a basis of the tangent space of M at p.

DerINITION. Let (U, ¢) be a chart about p € M and let u', u?,..., u" be
Cartesian coordinates in R". Then (d/dx"), is the tangent vector given by

@3-1) (32) ) = 258400
(That (d/dx"), really is a tangent vector is Problem 3.4.)

ExampLE 3.8. Let f:S? — R be given by f(x,y,z) =x%* -+ z and let

= (1/a/2,0,1/,/2). If (U, §) is the chart given by the upper hemi-
sphere U and the function ¢(x, y, z) = (x, ), then

(feod N u?) = W) + /1 — @) — @)
and ¢(p) = (1/4/2, 0). Hence

(3,0~ 4527

- (2u‘ - 1 — (ul“)12 — (uz)z) («/1_2_’ 0)

=T -1

Similarly

(%), = (== (7 9)

We cannot stress enough that the value of (d/dx'),f depends critically on
the chart used. See Problem 3.1.

DeriNiTION. The ith (local) coordinate function on M with respect to a chart
(U, ¢) is the function x’: U — R given by x'(m) = u'(§(m)).

Note that since x': U — R, it makes sense to compute X, x' if p € U.
In particular, we have as a result of Equation (3-1)

(3-2) (3"?) y=8) foralll<i,j<n.
p

As on a surface, we have parametric curves given by all but one param-
eter «* held constant. It should be true (by the general “poetry” of mathe-
matics) that if e, is 2 parametric curve then X,* (which on a surface was
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x,(p)) corresponds to (d/dx’),. The following computation shows that this is
indeed the case.
Let p = ¢~'(a) and write a = (a*, ..., a") € R”. Let

o) =¢ a',...,a +t,...,a".
This is exactly the analogue of a parametric curve. (Compare with the
definition of parametric curve in Section 4-1, remembering that for a surface
¢~ 'isx.) We show that X, = (d/dx"), by showing that X, *f = (df/dx")(p)
for all f € F(M).

e f d(fo d’i) — 0(fo ¢_1) 1 ny — 0
X of = 0) = r(al,...,a") = (55
~f dt ( du ) <0x >p(f)
where the next to the last equality uses the chain rule and the last equality is

Equation (3-1).

DEFINITION. The tangent space to M at p, T, M, is the set of all tangent vectors
to M at p.

ProrosITION 3.9. T M is a vector space.

Proof: fX,,Y, € T,M and r € R, we define X, + Y, and rX, by

X, +Y,)N=X,f+7Y,f and (X)f =r-X,(f)

By Problem 3.3, X, + Y, and rX, belong to T,M. It is then trivial to
check the rest of the axioms of a vector space. Note that the 0 of this vector
space is the operator which is zero on all functions. ||

We next wish to show that the set {(d/dx"),|1 < i< n} is a basis of
T, M. This requires the following technical result which is essentially Taylor’s
Theorem with remainder.

Lemma 3.10. If F: R* — R is a function of class C* and (a!,...,a") € R",
then there exists functions A,; of class C¥~2 such that

Fy ... )= F,...,a)+ 3 %f-:.(al, @) — dY)
+ h(ul, ..., u) (W — a)w! — a’)
Proof: Let u= (u',...,u")and a = (a', ..., a"). Then

F) — F(a) = J 4 (Pt — a) + a)) de

= Jﬂ (E 3_11;0(“ — a) + a)@ — a")) dt

=3 W —d) fl gf;(t(u — a) + a)dt = 3] g — a').
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Note that g(a) = [; (OF/du’) (t(a — a) + a) dt = (9F/du’) (a). Similarly
g{u) — gda) = X h, ()’ — a’). Hence
Fu) = F(a) + X g — a')
= F(a) + 3 (ga) + 2 h,(w)(@’ — a))(u' — a’)
= F(a) + X g(a)@' — a") + X h,(u)u' — a)w’ — a’)

—F@)+ % g—f (@D — @) + T hy@) @ — a) — o). |

ProposiTiON 3.11. Let (U, ¢) be a chart about p € M. Then
® = ((d/dx), || <1< n)

is a basis of T,M. In particular, T,M has dimension n.

Proof: First we show ® is linearly independent. Suppose 3 ¢'(d/dx'), = 0.
Then we must have 0 = 3 ¢/(d/dx%) (x') = 3 ¢'6,/ = ¢’. Hence ® is linearly
independent.

Now we must show that ® spans T ,M. Let f € F(M), a = ¢(p), and
set F= fo ¢~!. By Lemma 3.10 we have form € U

J(m) = Fo¢(m)= Fod(p) + Z (¢(p))(x'(m) — a)
+ 22 hi($m)(xi(m) — a')(x'(m) — )

or
=10+ [ () D ]e = a9+ Tty 0 ) — a7 — o
Hence, since f(p) is a constant, X,(f(p)) = 0 by Lemma 3.6(b) and
X, = 5,0 0) + X[ (33) D16 = a9
+ 3 Klhy o )<t — @) — a)
=0+ Z X, (33) () +0.

where the last term is zero by Lemma 3.6(a) because it is X, on the product
of the two functions (h;, o §)(x* — ') and (x/ — a’) both of which vanish at
p=¢ '(a',...,a"). Thus

nf 0
3-3 X, =3 X,(x (_)
(3-3) »= X X,0)(55)
and ® spans 7,M. Hence ® is a basis of T,M. |

ExAMPLE 3.12. Let M =R" and p < R”. Since (R", id) is a chart for all of
R", we have {(d/dx"),|1 < i < n} is a basis for T ,M for each p € R". If
X, € TR, then X, = Y a’(d/dx’), for some numbers a', a?,...,a"
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Hence we may associate with X, the 2n-tuple (p; @', . . ., a”). Under this
identification, the effect of (p; a',. .., a") on a function fis 3 a'(df/du?),,
which is exactly the Euclidean idea of directional derivative. We fre-
quently write X = (p;a',...,a") (if X € T,R*) and T ,R* = R".

If M, is the hypersurface defined by f, we will show in Section 7-5 a way

to visualize T,M; as a subspace of T ,R**! for each p € M,.

3.1.

3.2.

*3.3.

*3.4.

PROBLEMS

Let f: S> — R and p € S? as in Example 3.8. Let (¥, y) be the chart
defined by V = right hemisphere and y(x,-y, z) = (x, z). Show that
with respect to this chart (df/dx'), = /2 and (df/dx?), = 1. Note
that this is a different result than was obtained by using the chart of
Example 3.8. )

Let &@: S* — P" be defined by ®(a) = the line through the origin and
a. Show that @ is C* for all k and that ® is two-to-one. (If you have
had some algebraic topology, ® is actually a (double) covering map.)

IfX,, Y, € T,Mand r € R, prove that both X, 4+ Y, and rX, are in
T,M.

If (U, $) is a coordinate chart about p, prove that (¢/dx'), as defined by
Equation (3-1) is a tangent vector at p for each i.

*3.5. If a: (—e, €) — M is a curve with a(0) = p, show that X,* € T M.

*3.6. The point of this problem is to show that there is a C= function 4:

R— Rsuchthat 0 < A(x) < 1forallx € R, (x) = 1if |x| < ] and
h(x) = 0 if | x| > 1. The graph of & will look like that of Figure 7.4.
h is called a bump function.

(a) Let

e~ ifx>0

h S
2 { 0 if x < 0.

Show that &,(x) is C* for all k.

| |
T T
: -1 ~ 4 L 1
FIGURE 7.4 4 4
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(b) Let hy(x) = h(x + D)h(—% — x). Show that h,(x)>0 if
—1 < x < —} but hy(x) = 0 otherwise.

() Show that Ay(x) =0 if x<< —1, hy(x)=1 if x> —}, and
0 < hy(x) < 1 for all x € R, where

[ hayar

.[ h,(¢) dt
-1
(d) Show the existence of the function A: R — R described above.
(Hint: Let h(x) = hy(x)h;(—x).)
*3.7. Prove Lemma 3.5.

hy(x) =

7-4. VECTOR FIELDS AND LIE BRACKETS

In this section we introduce two concepts (vector fields and Lie brackets)
which we will need later. Let M be a fixed C* n-manifold.

DEFINITION. A fleld of vectors X is an assignment of a tangent vector
X, € T,Mtoeachp € M.If X is a field of vectors and f € F(M), then
we may define a real-valued function Xf on M by (Xf)(p) = X,f.
If Xf € §(M)foreachf e F(M), then X is called a vector field.

Note that if X is a vector field and (U, ¢) is a patch, then (since the x*
are differentiable functions) Equation (3-3) shows that X can be written as
X, =Y, X{(p)(0d/dx"), forp € U.

This is usually written X = Y X(d/dx’). This definition makes sense
if we only want X to be defined on an open set U of M, in which case we have
a vector field on U. We will write X(M) for the set of all vector fields on M.
The zero vector field, X, is defined by X, = 0 € T,M. There are certainly
nonzero vector fields in X(M), as Problem 4.2 shows. The question of
whether, given M, there is a vector field which is never zero on M is much
more difficult. (Remember: X is nonzero if X, # 0 for some p. We are look-
ing for a vector field X with X, == 0 for all p.) In Theorem 7.3 of Chapter 6
we proved that for a compact surface there was a vector field on M which is
never zero only if the Euler characteristic of M is zero. This theorem gen-
eralizes to compact, orientable, even-dimensional manifolds for a suitable
definition of Euler characteristic. See Milnor [1965].

Since T,M is a real vector space, it comes as no surprise that ¥(M) is
also a vector space (of infinite dimension). We can also define fX for
f e &M) and X € X(M). More precisely, if X, Y € (M), r € R, and
f e &(M), we may define X + Y, rX, and fX by

X+Y),=X,+7Y,
rx),=r-X,
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and
(X)), = f(p)X,.

The reader is warned: fX is a vector field while Xf'is a function.
Note that Xf is a C= function so that Y ,(Xf) makes sense.

DEerINITION. If X, Y € X(M), then the Lie bracket of X and Y, [X, Y], is the
field of vectors defined by

@1 X, Yf=X,(Yf)— Y, (X) forfe (M) andp € M.
LemMa 4.1. [X, Y]is a vector field on M.

Proof: It is immediate from (4-1) that [X, Y] (f+ &) =[X, Y],f+[X, Y],g
and [X, Y], (rf) =r[X, Y],f for r € R and f, g € §(M). To show that
[X, Y], € T,M we compute [ X, Y],(fg). Note that since

Y, (fg) = f(pDY,g + g(pY,f,

we have Y(fg) =fYg + gYf, where we are multiplying the two differentiable
functions in each term of the right-hand side together (i.e., f and Yg are
multiplied as functions). Now

[X, Y],(f8) = X,(Y(f2)) — Y, (X(f3))
= X,(fYg + g¥f) — Y, (fXg + gXf)
= f(DX,Yg + (Y&)P) X, f + g(0)X, Yf + (Y )(P)X,g
— f(P)Y,Xg — (Xg)(P)Y,f — g(P)Y, Xf — (X NP)Y ,8
= f(D)IX, Y],g + gOIX, Y], f.

Therefore [X, Y], € T,M.
To show that [X, Y] € £(M) we note that Yfand Xf are in F(M); then
so are X(Yf), Y(Xf), and their difference [X, Y]f. |}

ExaMPLE 4.2. Let M =R?, X = x!'x?(d/dx!) and Y = x*(d/dx?). If
g(x!, x¥) = (x1)2x2, then gX = (x!)3(x2)*(d/dx*) but
Xg = x'x2(2x'x?) = 2(x')*(x2)2.
If f € F(R?), then
(X, Y]f—xxza (ng){) x2 3t (xx ;;Cf)
9*f 2,1 9f 9°f

= x1(x*)? axtox: XX axt xHx%)? dx? dx!

21 O
= —x2x! It

Thus [X, Y] = —x'x*d/dx").
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The next to last line in the above computationis quite revealing
because in it we see that second order terms (the mixed partials) cancel
out. This is the reason that, although f— X, (Yf) is not a tangent vector,
J— X (Yf) — Y, (Xf) is a tangent vector.

The following lemma is left as an exercise.

Lemma 4.3. If X, Y,Z € ¥(M) and r € R, then
(@) [X, Y]= —1Y, X]and [rX, Y] = r[X, Y];
®) X+ Y,Z] =X, Z] + [V, Z),[Z, X + Y] =[Z, X] +Z, Y);
(¢) (Jacobi’s Identity.) [[X, Y1, Z1 4+ ([Y, Z], X] + [{Z, X], Y] = 0.

Note in particular that the Lie bracket “multiplication” of vector fields
is not associative but instead satisfies the rather strange substitute of Lemma
4.3(c). Conditions (a), (b), and (c) should remind you of the cross product of
vectors in R3,

PROBLEMS

*4,1. Let )?p e T,M for some point p € M. Show that there is a neighbgr-

hood U of p and a vector field X defined on U such that X, = X,.
(Hint: Use local coordinates.)

*4.2. Let ¥ » € T, M for some p~oint p € M. Show that there is a vector field,
X, on M such that X, = X . (Hint: Use Problem 4.1 and Lemma 3.5.)
In particular, there is a nonzero vector field on M.

4.3. Let (U, ¢) be a chart with {(d/0x"),, ..., (d/dx"),} as basis for T ,M for

pe U
d d7_
(2) Show that [ £, 297] =0.
(b) Show that if X = Y’ X¥(d/9x’) and Y = Y, Y’(0/dx), then

o (Y XN 3
[X’Y]“Z<X79?, Yooxt) o

Compare this with Problems 9.5 and 9.8 of Chapter 4.
44. If f,g € F(M) and X, Y € ¥(M), show that
X, gY] = felX, Y1 + f(Xg)Y — g(Yf)X.
*4.5. Prove Lemma 4.3.

4.6. M is called parallelizable if there are n vector fields, X, . . ., X, such
that {(X,),, - . ., (X,),} is a basis for T M for each p € M. Prove that
R” and T™ are parallelizable. It is often quite difficult to decide if a



Sec, 7-5 The Differential of a Map and Submanifolds 219

manifold is parallelizable. S" is parallelizable if and only if n =1, 3,
or 7. S X 87is parallelizable if p and g are both odd. (Do not try to
prove these last assertions!)

7-5. THE DIFFERENTIAL OF A MAP
AND SUBMANIFOLDS

In this section we introduce the concept of the differential of a mapping
between manifolds and then apply this notion to the idea of submanifolds of
a given manifold. It is this last idea that will provide many examples of the
geometric concepts which have been treated already and those which follow.
In particular, we will have a concrete way of visualizing the tangent space of
the hypersurface defined by a function £. We shall assume throughout that
M and N are manifolds and that ®: M — N is differentiable. We want to
define for each X, € T,M an element (®,),(X,) of Ty, N in such a way that
the assignment X, — (®,),(X,) is a linear transformation for each p € M.
One way of doing this would be to define (®,), on a basis of T, M, i.e., view
(®,), as a matrix instead of a linear transformation. There is a natural candi-
date for the matrix definition of (®,),—just take the Jacobian of yy o @ o ¢!
(evaluated at ¢(p)) where (U, @) is a chart about p and (V, y) is a chart about
®(p). The trouble with this definition is that it is not an invariant definition;
that is, the definition itself depends on a coordinate chart. This is contrary
to our desire for invariance. It also causes many technical problems (in the
proof of other results) involving picking the “right” coordinate chart to do
the computations. The definition which we will use avoids these technical and
aesthetic problems but is, unfortunately, quite abstract.

DEerFINITION. If @: M — N is differentiable, the differential of ® at p is the
function (®),: T,M — Ty, N defined by

(5-1) (@4),(X)(f) = X,(fo @)
where X, € T,M and f € F(N).

LEMMA 5.1. (®,), is well defined; that is, if ®: M — N and X, € T,M, then
(@,)«(X,) € TomN.

Proof: For notational convenience we drop the subscript p in this proof.
We must show that, for all f, g € §(N) and r € R,

(2) @(X)(f + 8) = (X)(f) + D4(X)(g),

(0) @(X)(rf) = r@,(X)(f), and

©) (X)) = f(@{P)DK(X)(8) + g@(P)PL(X)(S).
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First we prove (a):
D (XNSf+8)=X(f+8)o®) = X(fo®)+ X(go D)
= @.(X)(f) + @(X)(8),

where we have used Equation (5-1) repeatedly.
Next we prove (b):

Q.(X)(rf) = X(rf o @) = rX(f o @) = r@.(X)(/)

For (c) we note that ((fg) o ®)q) = (/)D(9)) = f(@(9))g(®(9))
for any g € M so that

(f8) o @ = (fo ®D)(g o D).
Hence,
D.(X)(f) = X((fg) ° @) = X((f > D)(g - D))
= (fo ®)(P)X(g>®) + (g° ®YP)X(fo D)
= f(@(p)P(X)g + g(@(p))@.(X)S. 1

ProPOSITION 5.2. Let ®: M — N and p € M. Then (®,),: T,M — Ty ,\N
is a linear transformation.

Proof: Letre R, X,, Y, e T, M. We shall prove that
(@,),(rX, + Y,) = r(@,),X, + (®4),Y,.
For any f € §(N):
(@0,0rX, + Y )(f) = (X, + Y )(f o @)
=rX,(fo®) + Y,(fo @)
= "((D*)p(Xp)f + ((D*)p(Y,,)f. ]
PrOPOSITION 5.3. If ®: M — Nand ¥W: N — P are differentiable maps of the
manifolds M, N, and P, if p € M and g = ®(p), then
(¥ o @)y), = (Fx)g © (D),-
(More succinctly: (¥ o @), = ¥, o ®,.)

Proof: Problem 5.1. |

PropPOSITION 5.4. Let ®: M — N, p € M. Let (U, ¢) be a chart about p and
(V,w) be a chart about ¢ = ®(p) such that ®(U) = V. If we write
{(9/dx"),|i=1,..., m} for the basis of T,M derived from (U, ¢) and
{(@/dy",|i =1, ..., n} for the basis of T,N derived from (¥, y), then
the matrix of (®,), with respect to these bases is the Jacobian of
yodogt:

0 () c® o P! 0

(52) @, () ) = 320220 (g5). -

where s = ¢(p).
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Proof: By Equation (3-3) we know that
02(%), = S[@() (...

=2[(2) 9|,

An application of (3-1) gives (5-2). |}

It is also convenient to write @/ = y’ o @ so that

Yo @(p) = (@'(p), ..., D(p).
With this notation (5-2) becomes

(5-3) @.), (%) g di (%)

ExAMPLE 5.5. Let M = M, be the hypersurface induced by f: R"*! — R,
(See Theorem 2.6.) Let ®: M — R"*! be inclusion. Let p € M such that
df/du+'(p) # 0. In the natural coordinates for R**! and the coordi-
nates about p given by Theorem 2.6 we see that

(5-4) @4 (3) —edp) + FEPewes(p)

where e,(p) = (p;0,...,1,0,...,0) as discussed in Example 3.12.

Note that in the notation of the proposition, V' = R"*!, y is the
identity, and ¢ '(ul,...,u")= (', ..., u" g(ul,...,u"). Thus
wo®od '(u!,...,um) =@ ...,u"gw',...,u") and Equation
(5-4) follows by computing the Jacobian of y o @ o ¢~ 1.

DEerFINITION. Let M™ and N* be manifolds. M is a submanifold of N if there is
a differentiable function ®: M — N such that @ is one-to-one and (®,),
is one-to-one for each p € M. Such a map @ is called an embedding of
M in N.

We remark that: (1) if M is a submanifold of N, then dim M < dim N;
(2) it is possible for (®,), to be one-to-one for all p without @ being an
embedding (Example 1.8); and (3) it is possible for & to be one-to-one with-
out @ being an embedding (take @: R! — R! with @(7) = ¢3).

Because (@), is one-to-one for an embedding we may identify T,M and
(®,),T,M = Ty,,N. Using this identification we are simply viewing the
tangent space to M as a subspace of the tangent space to N. This is very
important intuitively in the case when N = R™** because it is exactly how we
define the tangent plane to a surface (i.e., when m = 2 and k = 1). (Recall
that the tangent plane to a surface at p was defined as a certain subspace of
T R?* =R3.) One word of caution: we must be careful not to forget the em-
bedding itself. (There are many ways to embed R! in R2!)
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The next proposition gives us even more faith in this abstract approach
because it reaffirms our intuition.

PROPOSITION 5.6. If M = M, is the hypersurface defined by f: R"*! — R,
then T,M is isomorphic (as a vector space) to

@®.),T,M={X, e TR |{(grad f),, X,> = 0},
where @ is the inclusion of M in R**+1,

Proof: We already know that (), is an isomorphism, so we need only show
the equality. Actually since both subspaces have the same dimension we need
only show that (®,),(T,M) c {X, € T,R**!|{(grad f),, X,>=0}=6. It
is sufficient that we show that (®,),(d/dx"), € & foreach i=1,2,...,n,
where we are now in some chart about p. We shall do this assuming that
(at p) 9fjdu+' # 0. (The computation for the other charts is similar.) Using
Example 5.5 we see that

(@, (32 Ead 12,) = (ep) + JE(Peres(p). 3] S5 (Pes()

or

5 (@0,(3)  @adN,) = 5L + $E o) 3.

Recall, however, that g = g(u!, ..., u") was defined in such a way that
f@t,...,u, g, ...,u") = 0. Differentiate this equation with respect to
u' to obtain

of of dg _

+ aurﬁ-l aul 0
so that the right-hand side of Equation (5-5) is zero. (®,),(d/dx"), is therefore
ingforeachl <i<<n |

We have defined embeddings in this book so that we could present
Proposition 5.6 which enables us to concretely visualize T,M if M is a hyper-
surface defined by a function. The subject of embeddings is a very deep and
subtle one. Even some very simple sounding questions (e.g., “For what k
does P" embed in R"*¥ ?”) are very difficult. Because the theory of embedding
is actually a part of differential topology (not differential geometry), we will
only give the following theorem (whose proof is in Guillemin and Pollack
[1974]) and make some comments. (One word of caution: the definition of
embedding in differential topology is slightly different than that in differ-
ential geometry—in the former one also assumes that M has the subspace

topology.)

THEOREM 5.7 (Whitney Embedding Theorem, 1937). Every n-manifold em-
beds in R27+1,
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A surface is a 2-manifold which is embedded in R3. It can be shown that
P2 cannot be embedded in R? but can be embedded in R* so there are 2-
manifolds that are not surfaces. (In Problem 5.6 we give an embedding of
P2 into R3.) An immersion ® : M — N is a differentiable map with (®,),
one-to-one at each point (so that an embedding is a one-to-one immersion).
Although P2 cannot be embedded in R3, it can be immersed in R? (as Boy’s
surface, see Hilbert and Cohn-Vossen [1952]).

PROBLEMS

*5.1. Prove Proposition 5.3.

5.2. If p is the north pole (0, 0, 1) and ®@: S> — P2 as in Problem 3.2, find
(@), as a matrix. Show it is nonsingular.

5.3. Prove if I: M — M is given by I(x) = x, then (I,), = identity for all
peE M

5.4. A differentiable map ®: M — N is a diffeomorphism if there is a dif-
ferentiable map W: N — M suchthat ® o W =Jand W o ® = I.
(a) If @ is a diffeomorphism, prove that (®,), is an isomorphism for
allp e M.
(b) If there is a diffeomorphism between M and N then dim M =
dim N.

5.5. Let G be a Lie group and g € G. Define L,: G— G by L(x) = gx
(multiplication in the group).
(@) If X, € T,G, prove that the field of vectors X given by X, =
(Lg)*,(f o) is actually a vector field. X is called a left-invariant vector
field on G. (e denotes the identity of the group G.)
(b) Show that any Lie group is parallelizable. (See Problem 4.6.)

5.6. Let ®: P2 — RS be defined as follows: Let / € P?; then! = [(a!, a2, a°)]
for some a = (@', a?, a®) € R? with (a')? 4 (2?)* + (a®)* = 1. (There
are two such points a.) Let ®(/) = ((a')?, (a?)?, a'a?, a'a®, a*a®). Prove
that ® is an embedding of the projective plane P? into R3. (Does this
help you visualize P2?)

7-6. LINEAR CONNECTIONS ON MANIFOLDS

In Chapter 4 we saw how important it was to differentiate a vector field
along a curve «. This really meant that given a vector field ¥ we could dif-
ferentiate Y in the direction of the tangent to «. This led naturally to the
definition of a parallel vector field and gave a necessary and sufficient condi-
tion for a curve to be a geodesic (that the tangent vector field be parallel
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along the curve). In this section we formalize the notion of differentiating a
vector field with respect to a vector field by defining a linear connection and
we present some examples and technical results in preparation for the dis-
cussion of parallel vector fields and geodesics in the next section.

DEFINITION. A linear connection on M is a function V: X(M) x ¥(M) —
X(M) (which we write V,Y) such that for X, ¥,Z € ¥(M), r € R and
fe dM)

@) Vi(Y+2Z)=VY 4+ VyZand VyrY = rV,Y

(b) VyxoyZ =V3Z 4+ VyZand V3 Y = fV,Y; and

©) VxfY=(X)Y + fVxY.

Note that Condition (c) makes sense both technically and philosophical-
ly. Technically, Xf € §(M) so that (Xf)Y makes sense and the right-hand
side of (¢) is a vector field. Philosophically, (c) is just a “derivative of the
product” rule. V is called a linear connection, but V, Y should be read as the
covariant derivative of Y with respect to (or in the direction of) X. It can be
shown that any manifold admits many linear connections (Hicks [1965]).

If we are in a chart (U, ¢) so that {(d/dx"),|i=1,...,n} is a basis for
T,M for all p € U, then any vector field X can be expressed locally in the
form Y X (9/0x"), where X' € F(U). Because of the various linearity prop-
erties of V and the product rule, the behavior of V is completely determined
by the values of V,,;,(0/dx’). These values must be expressible as linear
combinations of the d/dx* with the coefficients in F(U).

DEFINITION. Let V be a connection on M and let (U, ¢) be a proper coordi-
nate chart. The Christoffel symbols of V with respect to (U, ¢) are the
functions I';;* € F(U) defined by

(6-1) Vijaxs (ai-xj) 2 | WP 021‘

Note that nothing in this definition allows us to conclude that
I,/ and I';* are equal. In fact this is often not true.

We will show in the next section that (in the presence of a Riemannian
metric) these Christoffel symbols play the same role that those of Chapter 4
did. Condition (c) of the definition of V¥ shows why I'; * had such a strange
transformation law (see Problem 4.11 of Chapter 4). Note that if M can be
covered with one chart, then giving the I', * with respect to this chart defines
a unique linear connection. We will use this approach in Example 6.2.

ExaAMPLE 6.1 (Flat Euclidean Space). Let M =R If Y € Z(R"), then
Y=Y fle, for some fi c F(R"). We define the flat connection on R”

by VyY = Z::l( Xf*")e,. That this defines a linear connection is the content
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of Problem 6.1. Note that V,,,(d/dx’) = 0 for all i and j so that
I, =0for all j, j, and k. VY is the usual directional derivative of a
vector-valued function.

ExAMPLE 6.2 (Hyperbolic (or Poincaré) Upper Half Plane). Let
M=H={xy) € R|y>0}.
Define a linear connection on H by setting all I',* to zero except that
r,'=r,'=-r,*=r,,2= —1/y. This gives a connection on H
because H can be covered by one coordinate chart.

Before giving another example we shall need some technical results. We
shall fix a manifold M with linear connection V.

LEMMA 6.3. If X, ¥ € ¥(M)and X, = Y, for some p € M, then (V,Z), =
(Vy2), for all Z € X(M).

Proof: If W= X — Y, then W, = 0. Thus, in some coordinate chart about
p, W=1Y f1(0/0x) and fi(p) = O for all i. This means that for any Z €
x(M), (VWZ p — 2 fl(p)(vﬁ/ﬁx‘z)p = 0‘ I

What Lemma 6.3 means is that (V,Y), depends only on the value of X
at the point p. The Y dependence is not so simple. It depends on the value of
Y along any curve which “fits” X as we see in Lemma 6.6.

DEFINITION. Z is a vector field along the curve o.: I — M if Z assigns to each
t € TanelementZ,, € T,,,M such that t — Z,,(f) is a differentiable
real-valued function of ¢ for each f € F(M).

DEFINITION. Let o : 7 — M be a curve. The tangent vector field to a, T,, is
given by (T,).y = (¢64),(d/dt), where t is the natural coordinate for I.

If there is no ambiguity, we write T for T,. Note that T, is an example of
a vector field along a. In local coordinates about a(z,) we have

©2) T =S990 ().

(see Equation (5-3)) just as in the Euclidean case. This is the reason one often
sees dai/dt used instead of T,. We have no concept of length at this point so
we cannot talk about T, being a unit vector. Note 7, is a function of ¢, not
o(t). This was called the velocity vector field in Chapter 2.

DEFINITION. Leta:I— M and Y € X(M) be given. We shall now define the
covariant derivative of Y with respect to o, Vz Y. Let ¢, be given and
let X be any vector field on M such that X,,, = Ty¢,. (Such an X
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exists by Problem 4.2.) V.Y is the vector field along & defined by
(V2 ey = (Vx Y)(y- (This is well defined by Lemma 6.3.)

ExaMpLE 6.4. Let M be flat Euclidean 2-space, a(t) = (cost,sint) for
0<t<?2m and Y = pe, — xe,. Since T = —sint e, + cost e,, if we
let X = —ye, + xe,, then X, = T,,. Therefore,

V:Y=V,Y = Xye, — Xxe, = xe, + ye,
so that (V;,Y) =coste, +sinte,.

LeMMA 6.5. If f € §(M) and a: ] — M are such that fo a is constant, then
T.f=0.

Proof: T,f= a.(dld)f = (dldt)(foa)=0. |

LEMMA 6.6. Let a:/— M be a curve and Y, Z € ¥(M) such that
Y9 =Z,y forallt € I. Then V, Y =V, Z along a.

Proof: Let W= Y — Z so that W,,, = 0. We now show that V. W = 0.

In local coordinates about some point on the curve we may write

W =73 f1(9/0x"), where f'(e(z)) = 0. Therefore using Property (c) of the
[]

definition of V, we have

VW = B TS g+ T 1V (3

Since f* o a is constant (it is actually zero), the first term of the right-hand side
is zero by Lemma 6.5. Since f* is zero at «(t), the second term is zero when
evaluated along a(r). |}

Three remarks about Lemma 6.6 are in order: (1) the conclusion
V:Y = V.Z is only valid at points along the curve a, (in fact, it does not
make sense at any other point); (2) an examination of the proof shows
that if t, € I and Y,, =Z,, for t in some interval about ¢,, then
Ve Vi = (V22)4y; ) if Y is a vector field along «, then we may define
V-, Y to be a vector field alonga by picking any ¥ € ¥(M) such that
Y, = Y. in some neighborhood of ¢, in I and setting

V2 Yoy = (VoY )ay-
This is well defined by Lemma 6.5.

We shall now assume that M is a submanifold of N and that M has been
identified as a subset of N and T,M as a subset of T,N. If N has a linear con-
nection ¥ and X, Y € ¥(M), then we may extend X and Y to vector fields
on N which agree (at least locally) with X, Y; hence VY makes sense for
X, Y € ¥(M). (It is well defined by Lemmas 6.3 and 6.6.) Since ¥ obeys the
rules for a linear connection, the overly optimistic reader is tempted to think
that V is a linear connection on M. Alas, this is not true because ¥y Y need
not be in ¥(M) (although it must be in X(N), of course). Specifically look at
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the case when M = S, N=R? X = —ye, + xe,, and Y = ye, — xe,.
Since S! is the hypersurface of R? defined by f(x,y) = x* + y* — 1 and
grad f = 2xe, + 2ye,, Proposition 5.6 shows that both X and Y are in X(S*).
However, in Example 6.4, we computed ¥, Y to be xe, + ye, which is not
in ¥(S!). However, guided by Gauss’s formula (Equation (4-8) of Chapter 4)
we can prove the following proposition:

PROPOSITION 6.7, Let M = M, be the hypersurface defined by f, let ¥ be
the linear connection of flat Euclidean (n 4 1)-space, and write
N = grad f/|grad f|. If X, Y € ¥(M), then

(6-3) ViY = VY —{VxY, N)N

defines a linear connection on M.

Proof: We only show that V,Y € ¥(M) and leave the rest as Problem 6.2.
VxY € (M) if and only if (V,Y, N> =0 (by Proposition 5.6), but this is
clear. |

It will be shown in Section 7-8 (Problem 8.4) that
{UxY, N) =—Y, VxN).
If we write down explicitly what YN is, we find that §xN = —L(X) is our

old friend the Weingarten map (if » = 2)! Now write out Equation (6-3)
in local coordinates. It should be Gauss’s formulas (4-8) of Chapter 4.

PROBLEMS

6.1. Prove that flat R* (Example 6.1) is a manifold with linear connection.
*6.2. Prove Proposition 6.7.
6.3. Let H be the hyperbolic upper half plane (Example 6.2) and let
a@)=(@,1).If
Y(t) = sint (i) + cost (i) )
0x'/ a 0x%/ a0
prove that V, Y = 0.
6.4. Prove that Equation (6-3) yields Gauss’s formulas when n = 2.

7-7. PARALLEL VECTOR FIELDS AND
GEODESICS ON A MANIFOLD WITH
A LINEAR CONNECTION

In this section we define the notions of parallel vector fields, parallel
translation, and geodesics on a manifold with linear connection. We show
that parallel translation is the “global” version of covariant differentiation



1
228 Introduction to Manifolds Chap. 7

and also compute the geodesics of the classical geometries, R?, H, and S2. We
fix a manifold M and linear connection V.

What should we take for the definition of a vector field Y being parallel
along a curve a? For a surface it was that the derivative of Y was normal to
the surface. Equation (6-3) tells us that this happens precisely when V,_ Y = 0.

DEFINITION. Let Y be a vector field along a.. Y is parallel along 0.1tV Y = 0.

ExaMpLE 7.1. For flat Euclidean space a vector field Y is parallel along o if
and only if Y, = (a(?); a', ..., a") for some constants a' € R. (See
Problem 7.1.)

A review of Section 4-6 will enable you to guess all of the results (and
proofs) of this section (except Proposition 7.6).

THEOREM 7.2 (T. Levi-Civita, 1917). Let a: [c,d]— M, p = a(c) and
Y » € T,M. Then there is a unique vector field Y parallel along & such
that Ya(c) = Yp.

Proof: The proof proceeds exactly like that of Theorem 6.7 of Chapter 4.
Assume that we are in a chart (U, ¢) about p and that ¥ = ¥ Y (£)(9/0x"),,
is a vector field along &, where the Y" are differentiable. Y is parallel along o

if and only if
o~ 3R 7o
or

- erdny

where a(t) = ¢~ 1(@'(¥), . . . , a"(t)). Thus Y is parallel along a if and only if
the Y? solve the initial value problem

{ +2Y'-—rj, =0 k=1,...,n
Y<c) =Y

An application of Picard’s Theorem finishes the theorem in a neighborhood
of a(c). Now repeat this process until we get to a(d). |

(7-2)

ExAMPLE 7.3. Let H be the hyperbolic upper half plane of Example 6.2 and
let a(z) = (¢, 1) with ¢ = 0 (and d > 0) so that p = a(0) = (0, 1). Let
¥, = (8/0x?), so that in the notation of Equation (7-2), ¥' = 0 and
Y2 = 1. Equation (7-2) becomes

dY' _ yidet 1y, dat 1
dt Y dt a(r) Y dr a?(?) =0
dY2_+_ v de! 1 _y da 1 —0

dr PRRO) di a?(r)
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or

. ar' v, _ day? 1
(7-3) i Y?=0 and 7+Y—O.

This coupled system (7-3) can be solved by obtaining
(szz/dt2~) 4+ Y2=0 so that Y2{)=c,sint+ c,cos?. Since
Y%(0) = Y? =1 we see that ¢, = 1. Going back to Equation (7-3) yields
Y'(t) = —c, cost + sin ¢. Since Y'(0) = 0, ¢, = 0, and so

Y(t) = Y'(t)(0/0x")uty + Y*(1)(0/0x*)ay
or

Y(1) = sin 1(8/0x")q(y + cos 1(3/0x2), .
(See Figure 7.5.)

IERN

% ©, 1) ﬂl(
FIGURE76 —————— ——— —_—

DEFINITION. Let & be a given curve. We define parallel translation along o,
P*: T, oM — Ty M by P*(Y ,(.,) = Y, Where Y is the unique paral-
lel vector field along & such that Y,,, = Y .

ProvosiTION 7.4. For each curvea, P*: T, ,M — T,(,,M is an isomorphism.
Proof: Problem 7.2. |}

ExaMPLE 7.5. Let M = H be the hyperbolic half plane and let a(z) = (¢, 1).
Example 7.3 shows that if 1, = 0 then

pe ((chi) = sint, (067)(“") + (cos t2)(£i)m,1).

It should be pointed out that Example 7.3 was picked with malice afore-
thought; that is, we picked it carefully so that we could actually solve the
initial value problem (7-2). In practice it is often quite difficult to actually
solve this initial value problem.

The next proposition shows either that parallel translation is a global
version of covariant differentiation or covariant differentiation is the infini-
tesimal version of parallel translation, depending on your viewpoint. We feel
that it gives a better intuitive feeling for covariant differentiation.

PrOPOSITION 7.6. Let P*®: T, M — T, M be parallel translation along &
(with respect to the linear connection V). Then

(V7Y )oioy = lim (P (Vo) — Yao
xt Ja m :
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Proof: Let Z, be the unique parallel vector field along « guaranteed by
Theorem 7.2 such that (Z,),) = (P**)~!(¥,(,)- In a chart we write

(Z.v)u(t) = 2 Z,'(t)(a/ax")‘,(,),
T, = Y, (da'[de)(3)0x"),

and

Yoo = 22 Y()(9/0x s
Since Z, is parallel along a, we apply Equation (7-2) to obtain

dZ x dot - X . B
+ ;]: QTZ/(“)F:‘] (a() =0, k=1,...,n

(7-4) dt
Z,5(s) = Y*(s).
Applying the Mean Value Theorem to the function Z *(¢) on the interval
0 <t < s we see that ZJ*(s) = Z*(0) + sZ*'(£,) for some 0 < &, <s.
Thus the kth component of

(PN (Y i) — Yaoy
s

ZX0) — Y*0) _ ZM(s) — sZ,*'(€x) — Y*(0)
S S

k I %
= —Z (&) + Z(s) : Y (0)
Using Equation (7-4) this becomes

(7-5) S )z e0r e + FOZ 1O,

s

Letting s — 0 in Formula (7-5) and remembering that £, — 0 as s — 0, we
get the kth component of

hm (Pu(x))—l(Yu(:));— YE(O)

50 S

is
= Xz /0T, @) + 2 0)

= ;j; %'(0) YH(O)T',*((0)) + %f(O)

= kth component of V,_ Y by Equation (7-1). |i
A direct translation of the definition of geodesic applies in this setting.
Unlike Chapter 4, we do not assume T, has length one because we can’t!

There is no notion of length of vectors on a manifold with linear connection.

DEFINITION. A curve & on M is a geodesic (with respect to V) if V, T, = 0.
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Note that applying (7-2) in the case ¥ = T, yields

(7-6) d’a* i pdeide) 0 fork=1,...,n

dt? L =1 Uodt dt

as the equation of a geodesic. From this we conclude

THEOREM 7.7. Let M be a manifold with linear connection V. Letp € M and
X, € T,M. Then there is an € > 0 and a unique geodesic & such that
o: (—e€, €) — M, a(0) = P and (do/dt) (0) = X,.

We shall finish this section by actually computing the geodesics of the
hyperbolic upper half plane. We leave the geodesics of flat Euclidean space
as a problem (see Problem 7.1).

ExampLE 7.8. Let H be the hyperbolic upper half plane (Example 6.2). With
the given Christoffel symbols, a geodesic a(t) = (2!(?), %%(¢)) must
satisfy

dat 2 dotde
di*  a*(t) dt dt

@+ oo(d) ~eo(E) —°

which results from Equation (7-6). Recall that

(7-7

2

nd secht=-—=_
a ec P

tanh ¢t =

et —_— e—t
et e—!
are the hyperbolic tangent and hyperbolic secant. Solutions of (7-7) are
of the following form:

(7-8) o!(t) = a + btanh (rt) and o?(t) = b sech (rt)
or
(7-9) a'(®) =c and o) = de”,

where a, b, ¢, d,p,r € R.

Those geodesics which are in the form (7-9) are straight lines per-
pendicular to the x-axis. Those geodesics which are in the form (7-8)
are upper semicircles of radius | 5| with center at (a,0) since

(@'(1) — a)* + (a*(r) — 0)* = b*.
See Figure 7.6.

It is important to examine the hyperbolic upper half plane in regard to
Euclid’s Fifth Postulate. H is a space on which classical hyperbolic geometry
lies. Note that if we use line to mean geodesic and parallel lines to mean they
never meet (when infinitely extended), then given a line in H and a point not
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FIGURE 7.6

on the line there are infinitely many lines through the point which are parallel
to the given line.

PROBLEMS

*7.1. Prove Example 7.1 and find the geodesics.

*7.2. Prove Proposition 7.4.

7.3. Let M™ be a parallelizable manifold with parallelization

74.

7.5.

*7.6.

71.1.

X, ..., X, € ¥M).

(See Problem 4.6.) Show there is a linear connection V on M such
that each X; is parallel along any curve. (Hint: Analyze the example
of flat Euclidean space.)

Let M = R? and define Von R* by I';) =0except I',,! =T',' = 1.
Find all geodesics through p = (a, b)) € R2, (Note that the geodesics of
this example are not the same as the geodesics of flat R2.)

Use the connection of Proposition 6.7 to find all the geodesics on
S? = R3.

Let {W,, W,, ..., W} be parallel vector fields along &. Show that the
W, are linearly independent at each point of ¢ if and only if they are
linearly independent at one point of a.

Verify that Equations (7-8) and (7-9) do indeed give the solution of
Equation (7-7).

7-8. RIEMANNIAN METRICS, DISTANCE,
AND CURVATURE

In this final section we define a Riemannian metric and a Riemannian

manifold. We show that every Riemannian manifold has a natural linear con-
nection associated to it (called the Riemannian connection) so that the notion
of geodesic makes sense on a Riemannian manifold. We then put this natural
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connection on a Riemannian manifold and discuss the distance-minimizing
properties of geodesics. (Compare with Theorem 5.9 of Chapter 4.) We also
define several different kinds of curvature on a Riemannian manifold.

A Riemannian metric is defined as a differentiable assignment of an
inner product on T',M for each p € M. More formally

DEFINITION. A field of metrics g on a manifold M is an assignment of a map
g, T,M xT,M— Rtoeachp € MsuchthatforallX,, Y, Z, € T,M
and r € R:

(@) g,(X, +Y,,Z,)=g,X,,Z,) + g(Y,, Z,) and
g.(rX,, Y,) =rg,(X,, Y,);

(b) g,(X,, Y,) = g,(Y,, X;); and
(c) g,(X,, X,) >0 with g,(X,, X,) = 0 if and only if X, = 0.

Note that Conditions (a) and (b) imply that
gP(XP’ YP + ZP) = gp(Xp’ Yp) + gp(Xp, Zp)
and
gp(Xp, rYp) = rgp(Xp’ Yp)

Thus a metric is an inner product on T,M because it is symmetric (b), bi-
linear (a), and positive definite (c). If g is a field of metrics on M and X,
Y € ¥(M), then g(X, Y)is a real-valued function on M, whose value at p is

gp(Xpa Yp)

DEFINITION. A Riemannian metric on a manifold M is a field of metrics g
such that g(X, Y) € (M) for all X, Y € X(M). A Riemannian manifold
is a manifold M together with a fixed Riemannian metric.

It can be shown that every manifold possesses a Riemannian metric (see
Hicks [1965]). Note that in geometry the term metric does not refer to a dis-
tance function but rather to an inner product. We shall see below that there
is a natural distance function associated with a Riemannian metric.

As in Chapter 4, we may define n* real-valued functions g;, on a coordi-

nate chart (U, ¢) by
g,(p) = g ((01#); (%)p)

ExAMPLE 8.1. Let N =R" and let g=< , > (the usual inner product)
so that

8o(Xp, Y,p) = E a'b',

where X, = (p;a',...,a")and Y, = (p; b,...,b"). Clearly g,(p) = J,,
(the Kronecker delta).
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ExAMPLE 8.2. Assume that M is a submanifold of a manifold N and that M
(resp. T,M) has been identified as a subset (resp. subspace) of N (resp.
T,N). If N has a Riemannian metricg" and X, Y, € T,M < T,N, then
g,V (X,, Y,) makes sense and we may define g,(X,, ¥,) = g,*(X,, Y,).
This is exactly the way in which we made a surface in R? into a Rieman-
nian manifold.

DEFINITION. The Riemannian metric g™ defined in Example 8.2 above is
called the Riemannian metric induced by gV (or the induced metric).

ExAMPLE 8.3. Let M = H be the hyperbolic upper half plane of Example 6.2.
If X,, Y, € T,H, then {X,, Y,> will denote the dot product of Example
8.1. We define, at the point p = (x, y) € H,

(8-1) g/(X,, Y,) = _<Xpy, Y.

g is a Riemannian metric on H. This example is what we were alluding
to in Problem 2.4 of Chapter 6. g is not an induced metric.

We are now in the pleasant situation of having an entire chapter for
motivation. We will examine some of the results of Chapter 4 and see which
carry over to the more general setting of Riemannian manifolds. Assume M
is a manifold with a fixed Riemannian metric.

DErINITION. Suppose that A: T,M — T, M is a linear transformation. A4 is
an isometry if for all X,, Y, € T, M, g,(X,, Y,) = g,(4X,, AY,).

DEFINITION. Let V be a linear connection on the Riemannian manifold M.
V is called metrical if for all X, Y, Z € (M)

(8-2) Xg(Y,Z) = g(VxY, Z) + g(Y, VxZ).

A word is in order about what Equation (8-2) means. g( Y, Z)is a function
so Xg(Y, Z) makes sense (and is a function). Since V,Y and V,Z € X¥(M),
the right-hand side is also a function. Intuitively, there are two ways to
view (8-2). The first comes by reading g(Y, Z) as “Y dot Z.” From this
viewpoint Equation (8-2) reads exactly like the formula for the derivative of
a dot product where the derivative on the left is a directional derivative and
those on the right are covariant derivatives. The second way to view (8-2) is
geometrically via the following proposition.

PROPOSITION 8.4. Let V be a linear connection on a Riemannian manifold
M. V is a metrical connection if and only if for every curve & on M,
parallel translation along « is an isometry.



Sec. 7-8 Riemannian Metrics, Distance, and Curvature 235

Proof: First assume that V is metrical and let o be a curve in M. If
Y,Z € T, oM, let Y and Z be their parallel translates along & so that
Y, =P*O(¥)and Z,,, = P**(Z). We must show that g, ,(¥, 2) = g,,( ¥, Z)
for each ¢ in the domain of &. We shall do this by showing the function
f(®) = g.(Y, Z) is constant. By Equation (8-2) we have

Y — 7,(f) = Tugar% 2) = 8eVaY, 2) + oY, V2Z) = 0+ 0 =0,
since both Y and Z are parallel along «. Hence f is constant.

Now assume P* is an isometry for each curve &. We shall verify Equa-
tion (8-2). Let X, € T,M and let & be the unique geodesic such that a(0) =
and T,,, = X,, as guaranteed by Theorem 7.7. Let {W,, W,,..., W,} be an
orthonormal basis of T,M and let W, be the parallel translate of W, along
o. The uniqueness of a parallel translate (Proposition 7.2) guarantees that the
W, are linearly independent at each point of o (see Problem 7.6). Hence

i

{W,, ..., W,}is a basis at each point of a. By hypothesis,
(8'3) 5i/ = gp(Wi, W]) = gu(r)(Wi, W;)
and the W, give an orthonormal basis of the tangent space at each point of a.

Let Y, Z € X(M). There are differentiable functions Y'(t) and Z’(t) such
that Y, = X Y(O)W)uw and Z,,, = 3 Z/(t)(W )ay. By Equation (8-3),

8.V, Z)= 2 YZ'g.y(W,, W,) = D Y26, = >, Y'Z".
Then
(8-4) T.g(Y,Z2) = 3 T(Y'Z").
Since the W, are parallel along a,
V.Y =Y TYOW, + YV, W, =3 T(Y)W,.
Thus
§V2¥, 2) + gV, V;Z) = £ T(Y)Zg(W,, W) + 5 YT(Z)eW, W)
=2 T(Y'Z)e(W, W) = X T(Y'Z').
If we combine this result with Equation (8-4) and evaluate at 1 = 0 (remem-
bering that T,,, = X,), we obtain
(8-5) X,8(Y,Z) = g(Vx,Y, Z) + (Y, Vy,2).

Hence V is metrical. ||

DEFINITION. A linear connection V is torsion-free (or symmetric) if

VyY -V, X =[4 Y] forall X, Y € X¥(M).

This condition is not as intuitive as the property of being metrical. In
particular, it has nothing to do with the torsion of a curve. The reason for the
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terminology “symmetric” is the following lemma, whose proof we leave as
Problem 8.2.

LEMMA 8.5. V is torsion-free if and only if in every coordinate chart,
r[jk = rj,-k fOI‘ all 1 S i,j, k g n.

THEOREM 8.6 (Fundamental Lemma of Riemannian Geometry). Let M be a
Riemannian manifold with a Riemannian metric g. Then there is a u-
nique torsion-free metrical linear connection V on M.

Proof: A straightforward calculation using the metrical and torsion-free con-
ditions shows that if V exists, then

(8-6)  2(VxY,Z) = }(Xg(Y,Z) — Zg(X, Y) + Yg(Z, X) — g(X, [V, Z])
+ 8(Z, X, Y]) — g(Y,[Z, X))

for all X, Y, Z € ¥(M). Since the right-hand side is totally determined by
g, the value of V, Y is determined. Hence V is unique if it exists. Equation
(8-6) is equivalent to the equation

R ko L 1 (98 68.1 0gu
@7 Tt = 2 xe (611‘ o T 0u’>

where (g'*) is the inverse of (g,;) (Lemma 8.5 has been used). This latter for-
mula should be familiar as the intrinsic formula for the I",* (see Equation
(4-11) of Chapter 4) and is the actual motivation behind Equation (8-6).

On the other hand, Equation (8-6) may be used to define a connection
V:(VxY), is the unique element of T,M whose inner product with an arbi-
trary Z, is given by the right-hand side of (8-6) evaluated at p. A tedious
calculation shows that this does give a linear connection and that it is metrical
and torsion-free. |

In Problem 8.3 you will verify that (8-7) follows from (8-6). Note that
(8-7) can be used to find the Christoffel symbols for this connection.

DErFINITION. The linear connection V guaranteed by Theorem 8.6 is called
the Riemannian connection of the Riemannian manifold.

ExaMPLE 8.7. The Riemannian connection of Example 8.1 gives flat Eucli-
dean space (Example 6.1). The Riemannian connection of Example 8.2
is given in Problem 8.7. The Riemannian connection of the hyperbolic
upper half plane is given in Example 6.2 as may be seen by computing
the I',;* via Equation (8-7).

We now put a notion of distance on a Riemannian manifold and discuss
the length-minimizing properties of geodesics (with respect to the Rieman-
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nian connection). Again we fix a manifold M and a Riemannian metric g
and let V be the Riemannian connection. We shall assume that M is path-
connected (i.e., if p, ¢ € M, then there is a curve « : [a, )] — M such that
o(a) = p and a(b) = q). We shall not prove any of the results in the rest of
this section but merely give references.

DErINITION. If & [a, b] — M then the length of « is

b
|l = | /Bl To) .

If p, g € M, the distance from p to q is d(p, q) = inf |« |, where the in-
fimum is taken over all broken C= curves joining p to q.

ProPOSITION 8.8. The Riemannian manifold M with the distance defined
above is a metric space.

The symmetry and the triangle inequality for d are very easy. The hard
part of Proposition 8.8 is showing that d(p,q) = 0 implies p = q. This
requires Theorem 8.11 below. Note that we have assumed that M is a metric
space to start with. Is the distance defined by g the same as the original
metric? The answer is an emphatic no. The upper half plane is a metric space
(as a subset of R?). The metric space structure of H coming from a Rieman-
nian metric is entirely different (see Problem 8.8). However, we can show the
topologies are the same. (If you don’t know what a topology is, then skip
the next result.)

ProprosITION 8.9. The topology of a Riemannian manifold M as a metric
space is the same as the topology induced by the metric space structure
coming from the Riemannian metric g (Hicks [1965, p. 70)).

Because we are assuming that M is a Riemannian manifold it makes
sense to talk about a parametrization by arc length.

DerINITION. The curve « is parametrized by arc length if g(T,, T,) = 1.

We see that the analogue of Theorem 5.9 of Chapter 4 is true even in
this very general setting. A reference for the next four results is Milnor
[1963, pp. 55-67] or Hicks [1965, Chapter 9].

THEOREM 8.10. Suppose «: [a, ] — M is a curve parametrized by arc length.
If |a| <|B]| for all broken C= curves § such that B(a) = a(a) and
B(b) = a(b), then a is a geodesic.

This says that any curve which minimizes distance is a geodesic. The
converse is false as S? with the induced metric shows. (Great circles are
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geodesics, as usual.) However, locally things are better (compare with
Theorem 5.12 of Chapter 4).

THeoreM 8.11 (J. H. C. Whitehead, 1932). For every point p in a Rieman-

nian manifold M there is a neighborhood U such that

(a) any two points g and r in U may be joined by a geodesic a whose
image lies in U;

(b) the geodesic « is the unique geodesic joining ¢ to r which has length
d(g,r); and

(c) there is a local coordinate chart (U, ¢) such that the geodesics
through p take the form a(t) = ¢~!(a't, . .., a"t) for some constants
al,...,a" € R.

As mentioned in Chapter 4 it need not be possible to join any two points
by a geodesic but:

THEOREM 8.12 (Hilbert, 1902). If a connected Riemannian manifold M is
complete as a metric space with the metric induced by g, then any two
points can be joined by a geodesic which minimizes distance between the
points.

Hilbert’s Theorem has a partial converse:

THaeOREM 8.13 (Hopf-Rinow, 1931). If every geodesic on M may be extended
indefinitely (i.e., is defined on all of R), then any two points may be
joined by a geodesic of minimal length and M is complete as a metric
space under the distance determined by g.

We now turn to the notion of curvature. It is not even clear what the
definition of curvature should be on a Riemannian manifold. We cannot use
the Weingarten map L because there is not one on an arbitrary Riemannian
manifold (there is no concept of a normal vector). It is Gauss’s Theorema
Egregium that tells us what to do. Indeed, that is the whole point of the
Theorema Egregium.

DEerINITION. The Riemann-Christoffel curvature tensor of type (1, 3) is the
map R:X(M) X ¥(M) x X(M) — X(M) by

R(X, Y)Z = VyVyZ — Vy\VyZ — VixnZ.
In local coordinates we have

9 I\NO _spi 0,
R(g 35%) 0 = Z Rl g

where R/, is defined by Equation (9-1) of Chapter 4 (see Problem 8.9). Note
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that if X = d/dx’ and Y = d/dx’, then R(X, Y)Z measures how much the
“equality of mixed partials™ fails to hold for covariant derivatives.

A simple calculation shows that R = 0 in flat Euclidean space, which
intuitively does not curve. On the other hand, R is nonzero in S” (as we have
actually computed in the case of S? in Chapter 4). As a hypersurface in R**!,
S” does have an intuitive notion of curvature. Thus in some sense R does mea-
sure curvature, or lack of flatness. (It can be shown that a manifold with
R = 0 cannot be distinguished locally from R" geometrically—about each
point there can be found a coordinate chart in which g, is identically equal
to d,,.) However, we would prefer to have a numerical invariant for curva-
ture. There are several ways to obtain a numerical invariant from the Rie-
mann-Christoffel tensor. We shall give the definition of three: sectional,
Ricci, and scalar curvatures. Each is defined in terms of the Riemann-
Christoffel curvature tensor of type (1, 3) or type (0, 4).

DeriNiTION. The Riemann-Christoffel tensor of type (0,4) is the map R:
X(M) X ¥(M) X ¥(M) x £(M) — F(M) given by

R(X, Y,Z, W) = g(R(X, Y)Z, W).

A straightforward calculation shows that the values of R(X, Y)Z and
R(X, Y,Z, W) at p € M depend only on the values of X,,Y,,Z,, and W,
and not on the vector fields themselves.

In surface theory we studied curvature by breaking the surface up into
curves. Analogously, we can try to break a manifold up into two-dimen-
sional submanifolds, or we may look at two-dimensional subspaces of T, M.

DEerFINITION. Let IT be a two-dimensional subspace of T',M. The sectional
curvature of I1 is K (IT) = R(X, Y, Y, X)(p), where {X,, Y,} is an ortho-
normal basis of IT.

For surfaces in R?, K, (IT) is exactly the same as the Gaussian curvature
at p.

The other two kinds of curvature, the Ricci and scalar curvatures, are
quite frequently used in physics (especially relativity) as well as mathematics.

If X,, Y, € T,M, we may define a map E,(X,,Y,): T,M —T,M by
E,(X,, Y, )V,=R(V,,X,)Y,. Problem 8.10 shows that E,(X,,Y,) is a linear
transformation for each p and X,, Y, € T,M and so we may take the trace
of E,(X,, Y)).

DEeRNITION. The Ricci curvature tensor S is an assignment, to each p € M,
of a function S,: T,M X T ,M — R defined by

S (X,, Y,) = trace(E (X, Y,)).
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DEerINITION. If M™ is a Riemannian manifold with Ricci tensor S, then the
scalar curvature of M at p is 2”] S,((X),s (X)), where {(X,),, . . ., (X,),}
i=1

is any orthonormal basis of 7,M.

It should be pointed out that the applications of the above to relativity
theory is not Riemannian geometry. In relativity theory one does not have a
Riemannian metric but rather a nondegenerate metric; Condition (c) of the
definition is replaced by

) 8(X,, Y,)=0 forall Y, € T,M if and only if X, = 0.

This lack of positive definiteness does create certain problems in translating
Riemannian geometry into relativity theory.

One area of research in differential geometry revolves around the effect
of assumptions about curvature on the topology of the manifold. The results
in this area are fascinating (and quite difficult). Most of them require more
topology than we can assume, so we will only mention a few of them and
refer the interested reader to Kobyashi and Nomizu [1963, especially p. 294].
Readers who have gone through Chapter 6 have seen some results of this
type.

There are many very simple sounding questions which are extremely
difficult to answer. For example, there are very few examples known of com-
pact manifolds with every where positive sectional curvature. In fact, it is not
even known what the spaces with constant positive sectional curvature 1/a?
are. However, we do have the following.

THeEOREM 8.14. Every connected complete Riemannian manifold M of even
dimension which has constant positive sectional curvature 1/a? is either
a sphere of radius a or a suitable projective space.

If we are willing to assume that M is simply connected, then there is the
following classification.

THeOREM 8.15. If M is a complete, connected, simply connected Riemannian
manifold of constant sectional curvature ¢, then M is either
(a) a sphere of radius /1/c (c > 0);
(b) flat Euclidean space (¢ = 0); or
(¢) hyperbolic space form (see Problem 8.13) (¢ < 0).

In Section 6-5 we saw that the Euler characteristic y was (1/27) times the
integral of the Gaussian curvature so that K > 0 implies y > 0. There is an
analogous formula in higher even dimensions but the following conjecture,
with the appropriate meaning for Euler characteristic, has remained un-
solved for over fifty years:
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CoNJECTURE 8.16. If M is a compact, orientable, even-dimensional manifold
with everywhere positive sectional curvature, then M has positive Euler
characteristic.

PROBLEMS

8.1. If g° and g! are Riemannian metrics on M, prove that tg® + sg! is
also a Riemannian metric on M if ¢ and s are both positive.

*8.2. Prove Lemma 8.5.
*8.3. Prove that Equation (8-7) follows from Equation (8-6).

*8.4. Prove that the Riemannian connection of Example 8.1 is flat Eucli-
dean space. Verify that (Y, N> = —(¥, VxN ) as claimed at the
end of Section 7-6.

*8.5. Prove that the Riemannian connection of the hyperbolic upper half
plane (Example 8.3) is the linear connection given in Example 6.2,

*8.6. Prove Proposition 8.8 assuming Theorem 8.11.

18.7. (Riemannian Connection for Submanifolds). Let M be a submanifold
of N, M = N and write g for the Riemannian metric of N (and ¢
for the Riemannian connection of N). If p € M, then the normal
space to M at p is

v,={X,e T,N|g,(X,, Y,)=0forall Y, e T,M}.
Since T,N=T,M @ v, for each p € M, we may talk about the
tangential and normal components of an element of T,N. If
X, Y € ¥(M), then V(X, Y) is (by definition) the normal component
of Vx Y. (Vis called the second fundamental tensor of M in N.) Define
V.Y by:
(8-8) ViY =9vY— V(X, V).
(This is known as Gauss’s formula.)
(a) Show that V(X, Y)= V(Y, X) and V(fX, Y)=fV(X, Y) for
any f € F(M).
(b) Show that V is a linear connection on M.
(c) Show that V is the Riemannian connection for the induced
metric on M.
(d) If M = M, is the hypersurface of N = R**! defined by f, show
that Equation (8-8) reduces to Equation (6-3).

*8.8. Let 0 < € < 1. Show that the distance between p = (0, I) and
g. = (0,¢€) is (1/e) — 1 in the hyperbolic upper half plane. (Hint:
Consider the curve in H, a(f) = (0,1 — ) for 0 <t < 1 — ¢.) Note
that the Euclidean distance between p and g, is 1 — € (hence stays
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finite as € — 0) whereas the “origin” is infinitely far away from
(0, 1) in the hyperbolic distance.

8.9. Show that, in local coordinates,

9 d\d _ or,' dr,/ 1 (7]
R(ax” 0x") ox 2 { F A ; Tu’T,) =T, rpk')} pipe

1
for all 1 < i, j, k < n. Compare with Equation (9-1) of Chapter 4.

*8.10. Show that E,(X,, Y,): T,M — T,M is a linear transformation for
eachp e M.

8.11. Compute the sectional, Ricci, and scalar curvatures of R” and S”.

8.12. Let M? be a surface in R? with Gaussian curvature K(p) and mean
curvature H(p) at p. Express the sectional, Ricci, and scalar curva-
ture of M at p in terms of K and H. Are you surprised at the answer ?

8.13. (Hyperbolic Space Form.) Let H"= {x € R"||x| < 1}. Define the

Riemannian metric on H" at x € H" by

2
800 = T Ty

We are taking the chart on H” given by the identity map.

(a) Find the Riemannian connection of H". (Answer: '} is zero
unless at least two of the indices 7, j, k are equal, and then
r,/)=r,/=-TI,/=T,/=2x/[(1—|x]?.

(b) Show that the sectional curvature of any plane at any point is
—1/a®. (Hint: Show R/, =O unless k =iand r=j, or k=j
and r =1.)

Comment: H? is not the hyperbolic upper half plane. It is the

Poincaré disk. We choose H as the model for hyperbolic geometry

rather than H? because the computation and visualization of

geodesics on H is easier. It can be shown that H2 and H are the same
in the sense that they are isometric.

118.14. Prove Conjecture 8.16 and win a prize.



Appendix

Historical Notes

The history of mathematics, in addition to being a fascinating field in its
own right, is a very valuable aid in learning a new field of mathematics. For
this reason we have included these historical notes. They are not meant to
be a history of differential geometry or even a history of the results contained
in this book. Such a history itself would be at least as long as this volume. For
a more complete history see Struik [1933], [1967], or Coolidge [1940]. There is
also an interesting chapter in Boyer [1968].

Problems in the differential geometry of plane curves have been studied
since the invention of calculus, but we shall not concern ourselves with this
aspect of the history. (One amusing fact: some historians date the beginning
of differential geometry before the invention of the calculus!) The first major
contributor to the subject was Leonhard Euler (1707-1783). In 1736, he intro-
duced the intrinsic coordinates of a plane curve (arc length s and the radius
of curvature p instead of the curvature k), and so began the study of intrinsic
geometry. You may recall that the description of curvature as the rate of
change of a particular angle was due to Euler. The original theory of curves of
constant width is due to him. He also contributed to the theory of surfaces,
especially (with John and Daniel Bernoulli (1667-1748) and (1700-1782))
some work on geodesics, and was the first to describe geodesics as the solu-
tions to certain differential equations. Motivated by physical problems, he
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showed, in 1736, that a point mass constrained to lie on a surface and sub-
ject to no other forces must move along a geodesic.

A second major figure in the history of differential geometry was
Gaspard Monge (1746-1818). He also was motivated by practical problems—
in his case, questions of fortification. Monge started the theory of space
curves in a paper he wrote in 1771 and published in 1785. His methods were
very geometric and reflected his interest in partial differential equations. He
published the first text on differential geometry in 1807. An indication of the
importance of this book is the appearance of a fifth edition, thirty years
after his death. Monge is remembered not only for his original contribu-
tions but also for the results of his teaching. Among his pupils were Pierre
Laplace (1749-1827), Jean Meusnier (1754-1793), Joseph Fourier (1768-
1830), Michel Lancret (1774-1807), André Ampére (1775-1836), Etienne
Malus (1775-1812), Siméon Poisson (1781-1840), Charles Dupin (1784
1873), Victor Poncelet (1788-1867), and Olinde Rodrigues (1794-1851). Today
the work of the Monge school is hard to read because they thought in
terms of infinitesimals. Although Euler had introduced analytical methods to
the study of space curves just before his death, these were not even used in
Monge’s text twenty-five years later. As an example of this awkward language,
we note that Lancret defined the “premiére flexion” (curvature) and “seconde
flexion” (torsion) as the differential of the angles between two consecutive
normal or osculating planes. It was Augustin Cauchy (1789-1857), one of
the founders of group theory and the theory of limits, who first expressed
curvature and torsion in terms of finite quantities as we do today.

Even in the 1840s the theory of space curves was inelegant and difficult
to find. To ameliorate this situation Barré de Saint Venant (1797-1886)
wrote in 1846 a study on space curves. In this study, he included much his-
torical material and collected the available results together in one work. He
is responsible for the term “binormal” and the first proof of Lancret’s
Theorem. The theory of space curves finally became unified when F. Frenet
(1816-1868) and Joseph Serret (1819-1885) working independently came up
with what we call the Frenet-Serret equations in 1847 and 1851. Unfor-
tunately, their work was not highly regarded when it appeared. Patt of this
was due to the lack of the language of linear algebra, which we have used
extensively. For example, instead of computing the derivative of the normal
with respect to arc length, they computed the derivatives of the direction
cosines of the line in the direction of the normal. It was Gaston Darboux
(1824-1917) who first unified the theory of curves with his concept of a
moving frame (“triédre mobile”). In this he was motivated by the theory of
mechanics. This is the modern theory which in turn, under the guidance of
Elie Cartan (1869-1951), gave valuable insight into the theory of manifolds.

The contributions of Carl Friedrich Gauss (1777-1855) can be found in
his Disquisitiones generales circa superficies curvas of 1827, which has been
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translated into English (Gauss [1965]). Once you overcome the differences in
mathematical language, this translation is not too difficult to read, especially
with the aid of the section “How to Read Gauss” in Spivak [1970, vol. II].

Struik [1933, p. 164] notes that Gauss “became the teacher of the entire
learned world.” The reason for this goes beyond the fact that he proved new
and startling results. He was responsible for an entirely new approach to dif-
ferential geometry, one that has proved fruitful for over 150 years: intrinsic
geometry based upon the first fundamental form. The idea that a surface could
be written parametrically as a function of two variables, at least locally, was
known to Euler, but Gauss emphasized that a surface should be described
this way, rather than as a set of points in R* whose coordinates satisfy some
relation. The sphere (or Gauss) map was also known to Euler. Gauss’s ap-
proach made heavy use of it. In fact, it is the first concept that he defines in
his book. Rodrigues had earlier found the limit of the ratio between the area
of a surface and the area of the corresponding region on the sphere (Proposi-
tion 8.6 of Chapter 4). Gauss actually was the first to recognize the impor-
tance of this limit and used it as the definition of the curvature of a surface
at a point. This is a second important aspect of Gauss’s contributions: his
insight into what was useful and important.

One can say that geometers before Gauss viewed a surface as being made
up of infinitely many curves, whereas Gauss viewed the surface as an entity
in itself. To better understand this, think about computing the curvature of a
surface in two ways. One way would be extrinsic: find the principal directions
and then compute the product of the normal curvatures of the corresponding
lines of curvature, an approach essentially known to Euler. The second way
would be intrinsic: use the Theorema Egregium. The contrast between the
extrinsic and the intrinsic calculations of curvature is a very deep philo-
sophical one, of which Gauss was well aware. His statement of the Theorema
Egregium (Gauss [1965, p. 20]) illustrates this, along with his interest in the
surface as a whole: “If a curved surface is developed upon any other surface
whatever, the measure of curvature in each point remains unchanged.”
(Here “developed” means mapped in a one-to-one, onto, distance-preserving
fashion.) Although Gauss was making tremendous steps forward with his
intrinsic geometry, it was not completely recognized at the time. While he was
advocating the study of the Gaussian curvature because it was invariant
under a development, a mathematician as good as Sophie Germain (1776—
1831) was advocating the mean curvature as the main object of study. (This
is understandable since it came up constantly in her study of elasticity.)

If there are two key ideas which have permeated the history of geometry
from 1827 to the present, they are (1) the continuing influence of physical
problems in directing various avenues of research and (2) the desire to both
understand and enlarge upon the work of Gauss. These two ideas are not
unrelated. Indeed, Gauss was surveying the Kingdom of Hanover from 1821
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to 1825 and this practical work combined with his work as a theoretical
geodesist motivated much of his work in differential geometry.

We shall not go into the applications of differential geometry to physics,
mechanics, and the like except to mention those most responsible. Gabriel
Lamé (1795-1871) worked in the theory of elasticity and heat, as did de Saint
Venant. Ampére and Lazare Carnot (1753-1823) were guided by their
interest in electricity. Many individuals, including Alexis Clairaut (1713-
1765), Monge, Ampére, and Henri Poincaré (1854-1912), studied differential
geometry to gain insight into the theory of partial differential equations.
Malus came to differential geometry from optics (line congruences). Dupin
was interested in the applications of differential geometry to mechanics.
Albert Einstein (1879-1955) based his theory of general relativity on dif-
ferential geometry in 1915. There are still applications of differential geometry
being made in new areas. See Newsweek, January 19, 1976, pp. 54-55 for a
nontechnical account of René Thom’s catastrophe theory. (It is actually more
topology than geometry.) Catastrophe theory is also covered in Zeeman
[1976].

The idea of the surface itself being an important entity was taken up
again in the brilliant address of Bernard Riemann (1826-1866) in 1854, A
translation of this may be found in Spivak [1970, vol. II], which we urge the
reader to try to read. We have already discussed a part of Riemann’s philoso-
phy in the introductions to Chapters 4 and 7. We mentioned the philosophical
importance of his realization that space and geometry are different. Of equal
importance is his realization that a “quadratic differential” (which we now
call the Riemannian metric) is the structure to add to the notion of manifold.
This gives an infinitesimal way to measure distance and an enormous amount
of structure on manifolds. To appreciate Riemann’s contribution in this area
we must realize that geometers had been putting a Riemannian metric on
surfaces in R? (the induced metric) without realizing that it was an extra
structure. Riemann realized that this notion was extraordinarily important
and separated it out. There are now more general notions of geometry (e.g.,
linear connections or connections on a fiber bundle), but this does not
diminish Riemann’s contribution.

In the period between 1854 and 1900 geometers were mostly obsessed
with the language of differential geometry rather than the subject itself. This
tendency for symbolism culminated with the development of the tensor
calculus by Gregorio Ricci (1853-1925) and his student Tullio Levi-Civita
(1873-1941). It was upon Riemann’s abstract view of space and this tensor
celculus that Einstein based his theory of gravitation, commonly called gen-
eral relativity. One of the important historical developments during this pe-
riod was the use of group theory in differential geometry. This unifying
concept was introduced by Felix Klein (1849-1925) and Sophus Lie (1842-
1899). it was further developed by Cartan in a plethora of fascinating papers.
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Unfortunately, much of Cartan’s work is difficult to read because of the lack
of a suitable theory of topology at the time he wrote. For a modern interpre-
tation of Klein’s ideas see Millman [1977].

For those readers who are interested in what has happened more recently,
a survey by Chern [1946] is a good source. Since then there has been a move-
ment to change the notation once again and get away from the local tensor
notation of Ricci and Levi-Civita. This new invariant notation, which we
used to some degree in Chapter 7, along with the definition of a linear con-
nection due to Koszul, first appeared as recently as 1954 in an important
paper by Katsumi Nomizu.

We conclude these notes and this book with a quote from Gauss [1965,
p. 45] which is as valid now as it was in 1827:

Although geometers have given much attention to general investigations of
curved surfaces and their results cover a significant portion of the domain of
higher geometry, this subject is still so far from being exhausted, that it can be
well said that, up to this time, but a small portion of an exceedingly fruitful
field has been cultivated.
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ofan oval, 72(5.6,5.9)
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tangent circular image, 58
tangent vector field, 52
polar axis, 39 (4.34)
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reparametrization, 17
by arclength, 21
segment, 20
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vertex of, 41 (4.44), 66
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Cusp, 71 (5.5)
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curvature of, 136 (8.1)
asa developable surface, 141 (8.56)
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Euler’s Theorem, 129
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for Riemannian connections, 236
for surfaces, 151

Fary-Milnor Theorem, 73, 169
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covariant derivatives, 226
curvature, 242 (8.11)
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parallel vector fields, 228
Riemannian connection, 241 (8.4)
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Four-Vertex Theorem, 66
Frenet-Serret apparatus, 26
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5.8)
existence and uniqueness theorem,
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Hadamard’s Theorem, 193
Helicoid, 87 (1.4), 138 (8.16), 146, 147,
148,153 (10.10)
line of striction, 140 (8.41)
asaruled surface, 139 (8.36)
Helix, 46 (5.5), 48 (6.9), 115(5.10)
axis, 32, 35(4.9)
characterization, 35(4.3),37(4.21)
circular, 17,23(2.1,2.3), 26, 32
Bertrand mate, 46 (5.6)
characterization, 46 (5.4, 5.6)
general, 32
general form, 44-45
involute, 41 (4.40)
Laucret’s characterization, 32
pitch, 32,35(4.9)
Hemisphere, 162
Hilbert’s Theorem, 238
Homogeneous coordinates, 200
Hopf-Rinow Theorem, 238
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Hyperbolic cosine, 12
Hyperbolic disk (see Poincaré disk)
Hyperbolic half plane, 179 (2.4),
188(4.2,4.3,4.5)
connection, 225
covariant derivatives, 227 (6.3)
distance, 241 (8.8)
geodesics, 231
parallel translation, 229
parallel vector fields, 228
Riemannian connection, 241 (8.5)
Riemannian metric, 234
Hyperbolic paraboloid, 87 (1.5),91,
111
asymptotic curves, 138 (8.27)
geodesics, 115(5.9),116(5.12)
asa ruled surface, 139 (8.37)
Hyperbolic point, 132, 138(8.22, 8.23)
Hyperbolic secant, 231
Hyperbolicsine, 12
Hyperbolic space form, 242 (8.13)
Hyperbolictangent, 231
Hyperboloid of one sheet, 91
geodesics, 115(5.11),116(5.13)
as a ruled surface, 139 (8.38)
Hyperboloid of two sheets, 92
Hypersurface defined by f; 203, 206,
221,241 (8.7)
tangent space, 222

Immersion, 223
Implicit Function Theorem, 202
Index of a vector field, 195
Inner product, 2
Intrinsic normal, 103
Inverse Function Theorem, 202
Involute of a curve, 40
Isometric, 147

locally, 147
Isometry, 147, 234

local, 147

orientation preserving, 152 (10.8)
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Isomorphism, 4
Isoperimetric Inequality, 64

Jacobian, 79,201, 220
Jacobi’sidentity, 218
Jacobi’s Theorem, 162
Jordan Curve Theorem, 59

Kronecker symbol, 3

Lancret’s Theorem, 32
Left invariant vector field, 223 (5.5)
Length of a curve, 20, 237
Length of a vector, 2
Length minimizing curves, 112
Level surface, 91
orientability, 181
Lie bracket, 144(9.5), 217
Lie group, 209, 223(5.5)
Line:
as an asymptotic curve, 138(8.26)
characterization, 28, 33, 36 (4.12,
4.16),48 (6.8)
equation, 8
asa geodesic, 115(5.4)
Lineintegral, 50
Line of curvature, 129
as an asymptotic curve, 139 (8.33)
of a developable surface, 140(8.53)
of asurface of revolution, 137 (8.5)
Line of striction, 140 (8.40)
Linear functional, 100
Linear transformation, 4
eigenvalues and eigenvectors, 5
Linearly dependent and independent
vectors, 2
Logarithmic spiral, 19 (1.6),45(5.1)

Manifold, 204
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Manifold (cont.)
dimension, 204
product, 208 (2.2)
tangent space, 213
Maximally straight curve, 120
Measure of aset, 167
Meridian, 86 (1.2)
Metric:
induced, 234, 241 (8.7)
nondegenerate, 240
Riemannian, 233
topological, 200
Maetric coefficients, 93
Metric space, 200
Meusnier’s Theorem on umbilics, 175
Minimal surface, 130, 137
characterization, 138 (8.17)
Mixed scalar product, 7
M (n), 205,208 (2.4)
Mobius band, 87(1.9)
line of striction, 140(8.41)
nonorientability, 87 (1.9), 181
as aruled surface, 139 (8.36)
as asurface, 92(2.5)
Monge patch, 78
areaformula, 136
I;*,106-107
24 o
g »101(3.3)
L;,106-107
Monotone, 60
Moving frame, 28
Moving trihedron, 28

Neighborhood, 200
Nonhomogeneous coordinates, 205
Non-unit speed curves, 4648
Normal plane, 31, 37 (4.22)
Normal space, 103

of a submanifold, 241 (8.7)
Normalspherical image:

ofacurve, 36,162
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Normal spherical image (cont.)
of a surface, 131

Normal vector field:
ofa plane curve, 52
of a regular curve, 26
of a surface, 81

n-sphere, 203, 205, 208 (2.1),215(3.2)
curvature, 242(8.11)

n-torus, 208 (2.3)

Null-homotopic, 182

0(n), 208 (2.5)
Openset:

in a metric space, 200

in the plane, 76

in a surface, 123
Oppositepoint:

on anoval, 69

onan ovaloid, 194 (6.1)
Orientable surface, 180
Orientation of a vector space, 6

right handed, 6
Oriented great circle, 167
Orthogonal net, 101 (3.4)
Orthogonal vectors, 3
Orthonormal basis, 3
Osculating circle, 39 (4.34)
Osculating paraboloid, 138 (8.29)
Osculating plane, 31

equation, 35(4.7)
Osculating sphere, 39 (4.35)
Oval, 66,71 (5.1),72(5.6,5.7,5.8,5.9)

constant width, 69

Barbier’s Theorem, 70

width, 69

Ovaloid (Convex surface), 193

Parabolic point, 132, 138 (8.22)
Parallelism defined by a curve, 122
6.5)
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Parallelizable manifold, 218 (4.6),
232(7.3)
Parallel translation, 118
on a manifold, 229
and metrical connections, 234
Parallel vector field :
alongacurve, 117,228
differential equation, 117
existence and uniqueness, 118
on a manifold, 229
Parametric curves, 84
asasymptotic curves, 138 (8.24)
as a conjugate family of curves,
139(8.32)
Period of a closed curve, 53
Perpendicular (see Orthogonal net,
Orthogonal vectors)
Picard’s Theorem, 42
Planar point (Flat point), 132
Plane:
curvature of, 136 (8.1)
equation of, 9
geodesic curvature in, 108 (4.6)
gi> 101(3.6)
normal, 31
osculating, 31
parallel vector fields in, 117
R/!;,144(9.1)
rectifying, 31
Plethora, 246
Poincaré-Brouwer Theorem, 196

Poincarédisk, 179(2.5), 188(4.2,4.4,

4.5),242(8.13)
Polar axis, 39 (4.34)
Polygon, 187(4.1), 188,191 (5.2)
Principal curvatures, 129
Principal directions, 129
Principal normal vector field, 26
Product manifold, 208 (2.2)

Projective n-space, 200,203 (1.1, 1.2),

205,215(3.2)
Projective plane, 200, 223 (5.2, 5.6)
Proper coordinate chart, 203
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Proper coordinate patch, 89
Pseudo-sphere, 158

Raising anindex, 126
Rectifying plane, 31
Reflection through a point, 103
Region, 181
Regularity condition for surfaces,
77
Reparametrization:
by arclength, 21
ofacurve, 17
of a curve segment, 23 (2.7)
of asurface, 79
Riemann-Christoffel curvature ten-
sor:
type(1, 3), 238
type (0, 4), 239
Riemannian connection, 232,236
Riemannian curvature tensor, 141
143
coeflicients, 141, 242(8.9)
invariant definition, 145 (9.10)
symmetry properties, 144 (9.2),
145(9.11)
Riemannian manifold, 233
Riemannian metric, 233
Right handed orientation, 6
Rigid motion, 150
Rigidly equivalent, 150
Rotation, 150
Rotation index, 55, 58
Rotation Index Theorem, 56, 161
Ruled surface, 139
curvature, 139(8.39)
line of striction, 140(8.40)
noncylindrical, 140
singular point, 139

2

Second fundamental form, 123
coeflicients, 104
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Second fundamental tensor of a sub-
manifold, 241 (8.7)
Self-adjoint linear transformation,

Surface (cont.)
convex, 193
first fundamental form, 94

127 Fundamental Theorem, 151
Simply connected, 185 metric coefficients, 93
SL(n), 207 minimal, 130
Span, 2 normal to, 81

Special orthogonal matrix, 150
Speed of acurve, 15

normal space, 103
orientable, 180

Sphere, 87(1.10),88(1.13), 108 (4.7, simple, 77
4.10), 185(3.2), 187, 209, tangent plane, 81
215(3.1),223(5.2) tangent space, 93

angular excess, 187

angular variation, 184

area formula, 136

curvature of, 136 (8.1)

Dupin indicatrix, 132, 138(8.20)

Surface of revolution, 86 (1.2), 179
axis, 86 (1.2)
circle of latitude, 86 (1.2)
of constant curvature, 153
curvature, 127 (7.5), 137(8.10),

equation, 10 159(11.1)

Euler characteristic, 190 developable, 140 (8.48)
g,96 geodesics, 110,115(5.1, 5.6)
geodesics, 110, 115(5.3),232(7.5) gi» 101 (3.1)

gij»94,98,101 (3.2) L;,108(4.2,4.3)

¢, 96 L;,127(1.5)

L, 127(7.1) lines of curvature, 137(8.5)

normal to, 102, 108 (4.8)
orientability, 180
parallel translationon, 118-119,

meridian, 86 (1.2)
minimal, 138(8.18)
principal curvatures, 137 (8.10)

121 asasurface, 92(2.1)

parallel vector fields, 117

R/, 144(9.3)

simply connected, 185 Tangent circular image, 58

stereographic projection, 87 (1.10) Tangent developable surface, 88

asasurface, 90,92 (2.3) (1.14), 140 (8.46)
Sphere of dimension n (see n-sphere) asa developable surface, 141 (8.56)
Spherical image, 36 gii» 140(8.47)
Stereographic projection, 87 (1.10) line of striction, 140 (8.41)
Stringinvolute, 71 (5.5) as aruled surface, 139(8.36)
Submanifold, 221 Tangentline toacurve, 16
Surface, 89 Tangent plane, 81

arc length on, 95 Tangent space:

complete, 112 to a manifold, 213

of constant curvature, 178 toasurface, 93

of constant width, 194 (6.1) basis, 84
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Tangent spherical image, 36
curvature and torsion, 48 (6.10)
Tangent vector field, 15
invariance under reparametriza-
tion, 18
of aplane curve, 52
Tangent vectors:
on a manifold, 210
onasurface, 83
as avector space 84,213
Taylor’s Theorem, 213
Tensor of type(1, 1), 126
Theorema Egregium, 143, 149
Torsion:
ofacurve, 26, 139(8.35)
geodetic, 137 (8.13)
radius, 34
of aspherecurve, 171
Torus, 86 (1.1), 152(10.4), 181,197
(7.1
curvatureof, 136(8.1)
L, 127(7.3)
not simply connected, 185
orientability, 180
R};,144(9.9)
asasurface, 92(2.2)
Total angular variation, 182
Total curvature of a curve, 161
Total curvature of a surface, 189
Total index of a vector field, 196
Total torsion, 170
Tractrix, 158
Triplescalar product, 7

u'-curve, 84
Umbilic, 129
Meusnier’s Theorem, 175

Unit circle, 58, 169
Unitdisk, 169

Unit normal to a surface, 81
Unit speed curve, 22, 24, 237

Vector field:
alongacurve, 116, 225
on a manifold, 216
existence, 218 (4.2)
Vector product, 6
Vector space, 1
basis, 2
dimension, 2
orientation, 6
Vectors:
angle between, 3
components, 2
linearly dependent and indepen-
dent, 2
orthogonal, 3
Velocity vector, 15
Vertex, 41 (4.44), 66
Four-Vertex Theorem, 66

Weingarten map, 125

coefficients, 125
Weingarten’s equations, 126
Whitehead’s Theorem, 238
Whitney Embedding Theorem, 222
Width:

ofan oval, 69

ofan ovaloid, 194 (6.1)

Zero of a vector field, 195



